DOS
PL/l Optimizing Compiler:
Execution Logic

5C330019-1
File No. 5360/5370-29

DOS
PL/lI Optimizing Compiler:

Program Product Execution Logic

PL/l Optimizing Compiler 5736-PL1
PL/l Resident Library 5736-LM4
PL/l Transient Library 5736-LM5
(These products are also distributed
as composite package 5736-PL3)

“lli=

Second Edition (September, 1973)

This is a major revision of SC33- 0019 0 and associated
technical newsletters.

Information has been included on the new features that
are available with release 4 of the DOS PL/I Optimizing
Compiler as follows:

COUNT option - Chapter 7
New options for PLIDUMP - Chapter 12

A number of minor changes and corrections have also been
made throughout the book. A new topic heading "How
Addressed" has been added to the control block descriptions
in appendix A. Technical changes are marked with a vertical
line to the left of the change. .

This edition applies to Version 1, Release U4, Modification 0
of the DOS PL/I Optimizing Compiler and to all subsequent
releases until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the
information herein; before using this publication in
connection with the operation of IBM systems, consult the
latest IBM System/360 and System 370 Bibliography SRL
Newsletter, Order No. GA22-6822, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM United Kingdom Laboratorles Ltd., Programming
Publications, Hursley Park, Winchester, Hampshire, England.

©Copyright International Business Machines Corporation 1971,
1972,1973.

Preface

The main purpose of this publication is to
explain, in general terms, the way in which
programs compiled by the DOS PL/I
Optimizing Compiler (Program Number 5736-
PL1) are executed. It describes the
organization of object programs produced by
the compiler, the contents of the
executable program phase, and the main
storage situation throughout execution.

The type of information provided is
intended primarily for those persons
involved in program maintenance of the
compiler and its related library program
products, but it should ‘also provide
valuable information for applications
programmers, since a knowledge of the way
in which source program statements are
implemented at execution time can only lead
to the writing of more efficient programs.
To this emnd, the book contains a chapter on
how to obtain and read a PL/I dump.

Although different source programs
produce different executable programs, the
structure of every executable program phase
produced by the compiler is basically the
same. This structure is explained in
chapter 1. Chapters 2,3,4, and 5 describe
the various elements that make up the
executable program phase. Chapters 6 and 7
explain the housekeeping and error-handling
schemes. Chapters 8, 9, 10, and 11
describe the implementation of various
language features, the majority of which
are handled by a combination of compiled
code, PL/I library routines, and DOS systen
routines. Chapter 12 is the guide to
obtaining and using dumps. The final
chapter, chapter 13, deals with
interlanguage communication. In addition,
there are two appendixes: appendix A
provides a diagrammatic summary of the
principal contents of main storage during
program execution; appendix B contains
details of all coantrol blocks that can
exist during execution.

The reader of this publication is
assumed to have a sound knowledge of PL/I,
and a working knowledge of the IBM Disk
Operating System and its assembler
language. It is recommended, therefore,
that the reader should be familiar with the
content of the following publications:

RECOMMENDED PUBLICATIONS

DOS_PL/I Optimizing Compiler:
Programmer's Guide, Order No. SC33-0008

DOS_PL/I Optimizing Compiler: Lanquage
Reference Manual, Order No. GC33-0005

System/370 Principles of Operation, Order
No. GA22-7000

Introduction to System Control Programs,
Order No. GY24-5017

REFERENCE PUBLICATIONS

This book makes reference to the following
publications for related information that
is beyond its scope:

IBM_System/360 Reference Data Card, Order
No. GX20-1703

IBM System/370 Reference Summary, Order No.
GX20-1850

IBM Disk Operating System:

DOS_Supervisor_and Input/Output Macros,
Oorder No. GC24-5037

DOS_PL/I Optimizing Compiler: Progranm
Logic, Order No. LY33-6010

DOS PL/I Resident Library:
Order No. LY33-6011

Program Logic,

DOS_PL/I Transient Library: _Progranm
Logic, Order No. LY33-6012

AVATLABILITY OF PUBLICATIONS

The availability of a publication is
indicated by its use_key, the first letter
in the order number. The use keys are:

G - General: available to users of IBM
systems, products, and services
without charge, in quantities to meet
their normal requirements; can also be
purchased by anyone through IBM branch
offices.

iii

S - Sell: can be purchased by anyone
through IBM branch offices.

L - Licensed materials, property of IBM:
available only to licensees of the
related program products under the
terms of the license agreement.

iv

Contents

CHAPTER 1: INTRODUCTION . . « . « .
Processing a PL/I Program . . « « « «
Compilation .+ ¢« « o o « o o o o &
Link-Editing . « o ¢ o o « ¢ o o o

Library Calls . . .« . « <« o« . 28
Setting-Up Argument Llsts « « o 29
Addressing the Subroutine . . . 29

DO-LOOPS o o « o « o « o « o o« « o« 30

Execution o . « e e e Compiler-Generated Subroutines . . 30
Factors Affecting Implementatlon . . Optimization and Its Effects 31
Key Features of the Executable Examples of Optimized Code 31

PrOogram =« « o o o o o o o o o o o &« Elimination cf Common

Communications Area . « « « « « EXpPressions « « « « « ¢« o « o o 31

Lynamic Storage Allocation Movement of Expressions out of

Use cf Library Subroutines LOOPS « o o o o o « =« o o« o« « o 32

Initialization Routines Elimination of Unreachable
Contents of a Typical FExecutable Statements . . ¢ ¢ ¢ « o « o o 33

NN it =

=SR-3 SN SN}

Prcgral PhasSe . ¢ o ¢« o o o « o o & 4 Simplification of Expressions . 33
The Overall Use of Storage 6 Modification cf DO-Loop Control
The Process of Execution 6 Variables« . « -« o 33
Branching Around Redundant
CHAPTER 2: COWPILER OUTPUT 9 EXpressions « « « « o« « « « « « 35
Introduction . . « ¢ &« ¢ ¢« ¢ o ¢ . . 9 Rationalization of Program
The Organization of this Chapter 11 Branches . « « « « « « « « « « 35
Listing Conventions « + « « ¢« « « « « 11 Use of Common Constants and
Static-Storage Map 11 Control Blocks .« « « « « « « « 35
Object-Program Listing 12
Static Internal Control Section . . . 16 CHAPTER 3: THE PL/I LIBRARIES . . . 37
Program Control Section 16 Resident and Transient Libraries . . 37
Register Usage =« « « o« « o o = o « <« 17 Naming Conventions . « « « « o « « .. 37
Dedicated Registers 18 Library WOLkSpace « « « ¢« « « « « « o 39
Work Registers 18 Pormat of Library Workspace . . . 39
Floating-Point Registers 18 Allocation of Likrary Workspace . 39
Library Register Usage 18 Library Modules and Weak External
Handling and Addressing Variables . . 19 References . « o « ¢ o« ¢ o ¢ o « « o« 39
Handling Automatic Variables . . . 19
Compiler-Generated Temporaries . . 19 CHAPTER 4: COMMUONICATION BETWEEN
Temporaries for Adjustable ROUTINES « 2 « « o « « o o o o o « « 43
Variables . .« . . « « « ¢« &« « . 19 Notes on Terminology . . « « . . 43
Contrclled Variables« . . . 19 Descriptors and Locators 43
Control Block . . . « « « « - . 19 String Locator/Descriptor . . . U5
Allocating a Variable 21 Area Locator/Descriptor U6
Freeing a Contrclled Variable . 21 Aggregate Locator « . U6
Based Variables « . « . o 21 Array Descriptor U6
Static Variables . . . o . - .« 21 Structure Descriptor 46
Addressing Beyond the uk lelt - . 21 Aggregate Descriptor Descriptor 46
Handling Data Aggregates 22 Arrays of Structures and
Arrays of Structures and Structures of Arrays 48
Structures of Arrays 22 Data Element Descriptors 50
Array and Structure Assignments . 23 Symbol Tables and Symbol Table
Handling Flow of Control 23 VECtOTS « o o o o s o o o o o « « 51
Activating and Terminating Blocks 23
Prolcgue and Epilogue Code 23 CHAPTER 5: OBJECT PROGRAM
Prologue « o o o o o o o o o« o o 23 INITIALTZATION ¢« « « « o o « « » =« o« 55
Epilogue « ¢ o« o o« o o o o + o o 24 Link-Editing . . ¢« ¢« « ¢« « ¢ « « « « 55
CALL Statements 25 Program Initialization 55
Function References 25 Initialization and Termination
END Statement . . . « . . « . . 25 Routines . ¢« o« « ¢« ¢ « ¢« « « « o 56
RETURN Statement 25 The Program Management Area . . . 58
GOTO Statements . .« « « « « ¢ « o« 26 Task Communications Area (TCA) . 58
GOTO Within a Block 26 TCA Appendage (TIA) =« « « « « « 59
GOTO Out of Block 27 Save Area for IBMDPGR 60
GOTIO Label Variable 27 Dummy ONCA < & ¢ ¢ ¢ « ¢« o« « « « 60
GOTO Only On-Units . . . « . 27 Translate-and-Test Table 60
Interpretive GOTO Subroutlne . . 28 Diagnostic File Block . « . « « 60
Arqument and Parameter Lists 28 Dummy DSA ¢ « o o ¢« o« o « o =« « 61

Contents 1

Library Workspace (L®WS)
ON Communications Area (ONCA) .
Caller's STXIT Options
Operation Interrupt Analysis
COAEe & v v ¢ o o o o o o o o

CHAPTER 6: STORAGE MANAGEMENT . . .
Types of Dynamic Storage Required
Contents of LIFO Storage
Content$ of Non-LIFO Storage . .
Dynamic Storage Allocation
Fields used in Storage Handling
Allocating and Freeing LIFO
Storage .« « o ¢ ¢ o o " e e o o .
BRllocating and Freeing Non-LIFO
StOTAgE « o o ¢ o o o o o o o
Acquiring a New Segment of LIFO
StOTage « v o ¢ ¢ o o o o o o e .
IBMDPGR - Storage Management
Routine « e .
Allocating Non- IIFO Storage
(IEMBPGRR) & & « & = o o « o
Freeing Non-LIFO Storage
(IBMEPGRE) e o o e+ e s e & e o
Segment Handling (IBMBPGRC and
TJEMEPGRD) .« &« o ¢ @ o o o o o &
Storage Management in Programmer-
Allccated ATeas .« « ¢ o o 4 o . - .

CHAPTER 7: ERROR AND CCONDITION
HANDLING ¢ o ¢ o o o ¢ o o o o o o o
Summary of PL/I Error Handling . . .
Static and Dynamic Scope
Levels of Interrupt . . « . . .
Condition Built-In Functions . .
The ERROR Condition
The Implementation of Error Handling
Information Required At Interrupt
The Fields Used in Error Handling
The Error Code « « « o o o = « &
EFnable Cells « e .
ONCEs (ON Control Blocks) o e
ONCA (ON Communications Area) .
DURMY ONCA o o « o o o o o o o
~ Dummy DSA . . . e e e e .
Translate-and- Test Table « e e e
Executing ON and REVERT Statements .
Unqualified Conditions
Qualified Conditions . . . « . .
IBMDERR - Error-Handling Module . . .
Hardware Interrupts « . .
Software Interrupts
Return to Point of Interrupt . . .
Software Interrupts
Hardware Interrupts
The CHECK Condition « . e .
Raising the CHECK Condltlon « o e
Testing for Enablement
Searching for Established On—Unlts
Errcr Messages =« « « ¢ o o o o o o o
Message Formats« . .
Interrupts in Library Modules .
Identifying the Erroneous
Statement o o
Finding the Address of the Entry
Point of the Block
Ancillary Information
Message Text Modules

67
68
68
68
68
70

DUMDP BOUtINES o v o ¢ o o o o « o o
Miscellaneous Error Routines . . « .
The FLOW and COUNT Options
Implementation c¢f FLOW and COUNT .
Tables Used by FLOW and CCUNT .

CHAPTER 8: RECORD-ORIENTED
INPUT/OUTPUT o o o o o o o o o o o =
Note on Terminology =+ « « « « «
Introduction .« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o o o o
Sunmary of Record I/0 Implementation
Compilation =« « o« o o o o o < =
Execution . . « o,
Access Method and DTF Type « e e
Compiler Output for Record I/0 . . .
File Declaration
The OPEN Statement . . « ¢« « « &
Transmission Statements
CLOSE Statements o« « o« ¢ o o o o
Library Routines in Record I/0 . . .
Type of Likrary Modules Used . .
Opening a File Explicitly . . .
Opening a File Implicitly . . .
Transmissicn Statements
Transmitter Action . « .« « « « .
Raising Conditions in
Transmission Statements
General Error Routines
(Transient) « ¢ o o o o « « o o
ENDFILE Routine . ¢ o« ¢ o o o «
CLOSE Statements « « o o o o o «
In-Line I/0 Statements . « . « « o =
Control Blocks tor In-Line Calls
Implicit Open for In-Line Calls
Bvent I/0 ¢ o o o o o o o« o o o . s o o

CHAPTER 9: STREAM-CRIENTED
INPOT/O0UTPUT ¢ o o o o o o o o o « =
Note on Terminology
Introduction « e e e e o =
Operations in a Stream 1/0
Statement
Stream I/0 Control Block (SIOCB)
File Handling . « « « ¢ o & o o « «
Transmission « « « ¢« ¢ o « +
Opening the File . « « . . « .
Implicit Open . . « .« « o . &
‘Keeping Track of Buffer Position
Handling the Conversions« .
Handling GET and PUT Statements . . .
List-directed GET and PUT Statements
PUT LIST Statement
GET LIST Statement
Data-Directed GET and PUT Statements
Edit-Directed GET and PUT Statements
Compiler-Generated Subroutines .
Handling Contrcl Format Items .
Matching and Non-Matching Data
and Format Lists .« « « « o « &
Choice of Initialization Routlnes. .
Handling Format Options « « « « « . &
Input and Output of Complete Arrays .
Effects of the LIMSCONV Option . . .
PL/I Conditions in Stream I/0
TRANSMIT Condition « « « . « o« &
CONVERSION Condition
NAME Condition . . < . .
ENDFILE Condition and Unexpected

85
86
87

89

106

108
108
108
109
109
109
109

115
115
115

115
118
118
118
118
118
118
119

120

120
120
122
124
125
125
126

126
128
130
130
130
130
130
131
131

End of File
Built-In Functions imn Streanm I/O
COPY Option ¢ o o o o ¢ o o o « =«
STRING Option . . e v e e o

Corrleting Strlng—Handllng

Orerations .« « ¢« o « « « &

Sunmary of Subroutines Used . .
Initializing Modules
Director Modules

Litrary Director Routines

Modules used with Ccmpiler-
Generated Subroutines

Modules for Complete Library

e " s s o

s & o

Control of Edit-Directed I/0 of

a Single Item . « & « « o «
Compiler-Generated Director
Routines
Transmitter Modules
Formatting Modules
Library Subroutines
Compiler-Generated Subroutine
External Conversion Director
Modules . . . e e o e o o s @
Miscellaneous Modules « o o o =

CHAPTER 10: .
Note on Terminology

The Library Conversion Package . .
Specifying a Conversion Path . .
Housekeeping When More Than One
Module Is Used . « « « « « o «

DATA CONVERSICON . .

Arguments Passed to the Conversion

Routines . o« o o o o« o o o o «
Communication Between Modules .
Free Decimal Format =« « « « o« =«

In-Line Conversions . . « « « « «
Note on Picture Types
Basic Conversions . &« « « o« « @
Multiple Conversions
Hybrid Conversion . . . o« .
Raising the CONVERSION Condltlon .

CHAPTER 11: MISCELLANEQCUS LIBRARY
SUEROUTINES AND SYSTEM INTERFACES
Ccmputational and Data-Handling
Subroutines . . . « o o o s o o
Arithmetic and Mathematlcal
Subroutines . « « o « ¢ ¢ o o o
Array, String, and Structure
Subroutines « « ¢ ¢ ¢ ¢ ¢ o . .
Indexing Interleaved Arrays
(IEMBAIH) o o o o o o o o
Structure Mapping (IBMBAMM)
Miscellaneous System Interfaces
TIME o ¢ o o ¢ o o o o o o =
DATE o v o o o o o o o o o @
DELAY v &« ¢ o e o o o o o =

s s o 8 o

DISPLAY . . . « o o
IBMEJDS DISPLAY vlth EVENT
Option. -

DISPLAY without REPLY Optlon
IBMDJIDZ - DISPLAY wlthout the
EVENT Option <« « « «
SOTE/MELge o« o ¢ o o o o o o o &«
Housekeering Problems
Restoration of the PL/I
Environment on Exit from SORT

summary of Work Done by the SORT

131
131
131
132

133
133
133

133

134

134

134
134
135
135
135

135
135

137

137
138

138

138
138

140
140
142
142
142
142

145
145
145
145

145
147
147
149
149
149
149

149
149

149
150
150

150

CHAPTER 12:

Section 1:

Section 2:
ProcediresS « o« = o « o s « o o« =

Section 3:
Information . ¢ o o o o o o o o o

Module
Storage for SORT .
Checkpoint/restart .

WAIT .
Event Variables
WATIT Statement . . .
Housekeeping Problems
Control Blocks
Multiple-¥Wait Module (IBMDJWT
Single-Wait Module (IBMGJWT)

)

DEBUGGING USING DUMPS .
How to Use this Chapter
How to Obtain a PL/I Dump
Recommended Coding . . .
Contents of a PL/I Dump
Headings « « « « o «
Trace Information
File Information .
Debug Cption . . .
Hexadecimal Dump .
Block Option . . .
Report Information .
Using the REPORT Optlon for
Program Tuning . . « « « « < .
Recommended Debugging

s 8 & o o
e 8 ¢ o & o
s ¢ 8 5 8 &

* o o 8 &4 % 4 4

-
-
-
-
-
-
.
-
-

The Contents of a Dump « « . . .
Debugging Procedures
PL/I Dump Called from On-Unit

DOS System DUmp =« « « « o« o« .
Locating Specific

o« o &

contents - . . . <« <« . . e s o =
Key Areas of a PL/I Dump « o e e
Key Areas of a DOS System Dump .
Stand-Alone DuUmpsS . o+ - ¢ o o o
Housekeeping Information in all
DUNPS = & ¢ o o o o o o o @
Finding Variables
Control Blocks and Fields .
Key Areas of a PL/I Dump
P1: Statement Number and Address
where Error Occurred (Dump
Called from On-Unit only) . . .
P2: Type of Error (Dump Called
from On-Unit only) . . . « . .
P3: Register Contents at Time
of Error or Dump Invocation .
P4: The DSA Chain
P5: The TCA -
Key Areas of a DOS System Dump
D0: Partition Save Area . .
D1: Address of Interrupt .
D2: Type of Interrupt . . .
D3: Register Contents at the
Point of Interrupt
D4: The DSA Chain
D5: The TCA ¢ ¢ o ¢ o ¢ o o o @
D6: PFinding Program Interrupt
Key (PIK) o o o o o o o o o o «
D7: PFinding the Communications
Region .« o o ¢ o o o o o o o »
Stand-Alone DUMPS .« « o o o o o
S1: Finding Key Areas in Stand-
Alone DUMPS o « o = o o & o« .
Housekeeping Information in All
DUBPS o « 2« o o o o o o' a-e o o @

s & o & s o o

Contents

152
152
152
152
154
154
155
156
156
159

161

161
163
165
165
165
167
167
167
167
167

168

168
170
170
170
171

173
173
173
173
173

173
173
174
174

174
174
174
177
177
177
177
177
179
179
180
180
180

180
180

180
180

3

H1: Following the DSA Backchain
. H2: Associating Instraction
‘Wwith Correct Statement and
Program Block - « .« « « « o . .

H3: Following Calling Trace . .
H4: Associating DSA with Block
H5: Finding Relevant ONCA . . .
H6: Following the Chain of

ONCAS « ¢ o « o o o o o o o s =
H7: PFinding Informaticn from
IBMDERR'S DSA . . ¢ « o o « o =
H8: Finding and Interpreting
Register Save Areas . « « « « =«

H9: Register Usage . « . . « .
H10: Following Free—Area Chain
E11: Action if Interrupt

Occured at Address not in
Linkage Editor Map . « « « « «
H12: Block Structure of Progran
(Static Backchain)
H13: Forward Chain in DSAs . .
H14: Action if Error is in a
Library Module &+ . .
H15: Discovering Contents of
Parameter Lists « o« « ¢ o o
H16: Finding Main Procedure
Finding Variables

V1: Autcmatic Variables
V2: Static Variables
v3: Controlled variables . . .
V4: Based variables . . « .+ . .
V5: Area Variables
V6: Variables in Areas

Control Blocks and Fields . .« .
C1: Quick Guide to Ident1fy1ng
Ccntrol Fields .« o« « o o o« « &

CHABTER 13: INTERLANGUAGE
COMMUNICATICON o o « o o o ¢+ o o o «
Background to Interlanguage
Communication . . « & & ¢ o o o o
Differences in Data Aggregates . .
Use cf Locators « « « &+ o & o o &
Differences of Environment
The Basic Principles of
Interlanguage Communication . . .
PL/I Calls FORTRAN or COBOL . .
FORTRAN or COBOL Calls PL/I . .
Control Blocks in Interlanguage
Communication «
Space for PL/I Dynamic Storage
Program Management Area . « . « .
Handling Changes of Environment . . .
COBOL When Called from PL/I
(IBMDIEC) - .
Before Entry to COBOL Program
(IRMBIECA, IBMBIECB) . . « « -«
On Return from COBOL Progran
(IBMBIECC) =« o & o « - . .
Action on Interrupt in COBOL .« e
Return from Interrupt
Fortran When Called from PL/I
(ibmdief) . . . ¢ ¢ o ¢ o . . .
Before Entry to FORTRAN Program
(IEMBIEFA and IBMBIEFB)
Action on Return from FORTRAN
Program (IBMBIEFC and IBMBIEFD)
Action on Interrupt in FORTRAN .

180

180
182
182
182

183
183

183
183
184

184

184
185

185

185
185
185
185
185
185
186
186
186
186

186

189
189
189
191
191
191
192
193
195

195
197

197
197
197
200
200
200
200

201
201

PL/I Called frcm COBOL or FORTRAN
(IBMDIEP) o v o o o o o o o o o @
Before Entry to PL/I progran

(IBMBIEPA) =« « « o = o = o o «
Action after the PL/I Program is
Completed (IEMBIEPC and
IBMBIEPD) o o« ¢ o o o o o o o =
Interrupt Handling . . « « « .
Handling DNata Aggregate Arguments . .

ATTAYS o « o o o = o o o o o o o

StrucCtures « « o o ¢ o « o « o o o

Method Used . .« ¢ ¢ ¢ o o o o o =«

NOMAP, NOMAPIN, and NOMAPOUT
OPtiONS o v o o o« o o o o o o o o

Calling SeQUENCe « « « o « o o « =

Main Storage Situation During
Interlanguage Communication
Options ASSEMBLER ¢« & o « o o o o « «
COBOL Option in the Environment
Attribute . < ¢ ¢ 4 ¢ o o 0 e . . .

APPENDIX A: PRINCIPAL CONTENTS OF
STORAGE & « ¢ o o o o o o = s o o o

APPENDIX B: CONTEOL BLOCKS « o « « «
Area Locator/descriptor . . « « « .
Area Descriptor . . . e e e
Area Variable Contrcl Block « e e e e
Aggregate Descriptor Descriptor . . .
General FOTMAt « « « « o o o o« «
Structure Element
Base Element .« « o« o o « o o o o
Aggregate Locator « . .« ¢ ¢ ¢ o .
Array Descriptor
Arrays of Strings or Areas .
General Format « « ¢« « « « o
Controlled Variable Block .« .
Data Element Descriptor (DED) .« .
Format Of DEDS « o« o o « « o«
‘General Format « « ¢ « o o o o
DED for STRING Data .« « « « « =«
DED for FLOAT Data « « o« o o « «
DED for FIXED Data « « « o « « &
DED for PICTURE STRING Data . .
DED for PICTURE DECIMAL
Arithmetic Data « « « ¢ o « o
DED for Program Control Data . .
Format DEDS - FEDS « ¢« ¢ o o « +
DED for F and E Format Items
(FED) e o o o o s @
DED for PICTURE Format
Arithmetic Items (FED) o o .
DED for PICTURE Format Character
Items (PED) o o o o o o o « o @
DED for C Format Items (FED) . .
DED for Contrcl Format Items
(FED) « o o o « « « e e o o
DED for STRING Format Itens
(FED) o o o o o « o o o o o o =
Diagnostic File Block (DFB)
Dynamic Storage Area (DSA)
Entry Data Control Block (Entry
Variable) .« ¢ ¢ o ¢ ¢ o o« o s o
Environment Block (ENVB)
Event Table (EVTAB) . . . e e e .
Event Variable Control Block e e e
File Control Block (FCB) « o e = a o
common Section ¢« « o« o ¢ o o o -

« o 4 o &
. .

202
202

203
203
203
203
203
203

205
205

205
205

206

21

213
214
214
215
216
216
216
216
217
218
218
218
219
220
220
220
221
221
221
221

221
222
222

222
222

222
223

223

223
224
225

2217
228
229
230
231
231

Record I/0 Section . . .
Flow Statement Table . .

Input Output Control Block (TOCB)

Interlanguage Root Control Block

(IBMBILC1) & v « 4 v o « o«
Interlanguage VDA . .
Key Descriptor (KD) .

Function
¥hen Generated .
Where Held . . .
Label Data Control Block
Function « « « « o =«
When Generated .
Where Held . . .
Labkel Variable .
Label Comnstant . . .
Library Workspace (LWS) .
Function . .« ¢ & o o . .
Vhen Generated
Where Held
On Communications Area (ONCA)
Function
WYhen Generated . .
Where Held
Dummy ONCA
On Control Block (ONCB) . . .

.
PR T S
[. L] . .
.

« 8 s
.

s & 4 s s o

o 2 s b o

-
.,
e

Function
When Generated .
Where Stored
How Addressed . .
Static and Dynamic
Control Block .
Function
When Generated .

Open

Where Held . .
How Addressed
PLIMAIN ¢ ¢ ¢ o o o «
PLISTART . ¢ o o « o «
Record Descriptor (RD)
Function
When Generated .
Where Held . . .
Request Ccntrol Block
Function . . .

L S S |

— s e
o
(Ye ¢ o o &
o]

38 & & 8 s 1 & 6 2 s 5 s 8 s

When Generated

Where Held

How Addressed . . . -
Statement Frequency Count Tabl

s ¢ & & o

¢ s & 8 ¢ o s & 3 2 s

D s o o

& & 4 & 4 s 8

" s % 2 4 0

¢ 4 6 8 4 s 4 & 0 4

233
234
235

237
238
239
239
239
239
240
240
240
240
240
240
241
241
241
241
242
242
242
242
242
243
243
243
243
243
243
244
244
244
244
244
245
246
247
247
247
247
248
248
248
248
248
249

Stream I/0 Control Block (SIOCB)

Punction « . « . .
When Generated . .
Where Held
How Addressed . .
Statement Number Table (DST)
Fanction « . . .« .
When Generated . . .

Where Held . . .
How Addressed .
Sections of Table .
String Locator/descriptor
Function « « . «
When Generated .
Where Held . . .
String Descriptor
Structure Descriptor
Function « . . .
When Generated .
Where Stored . .
How Addressed .
General Format .
Symbol Table (SYMTAB)
Function
When Generated .
Where Held . . .
Address Fields .
Symbol Table Vector .
Function
When Generated .
Where Held . . .
General Format .
Communications Ar

e & s o o o
s s 8 & s o 4 & o

.

Task

[+
o~

Function . . .
When Generated
Where Held . .
TCA Appendage (TIA)
Function . . .
When Generated
Where Held . .
Zygo-Lingual Control Li
Function
When Generated . .
Where Held

S

.Hn-.-co-m.uun
¢ 8 6 8 s s 4 0 s 6 s &

e o s o 4 s 0 0 e

[g]
¢ o & Dms s 0 o

N
e o NNs & 4 o
=]
e o [te o 4 s & o

a4 & 8 g & 8 a2 8 g 2 0 3 v g
s s 8 . .

e & 4 6 5 s s 6 8 & s & 4 s 6 g s 0 4 & 3 s .
e 8 6 ¢ & 4 3 & 4 2

e & 4 & & &
e & 4 s & o s

" e e 0 4 & o

@ 8 s 8 & 4 8 o 6 & 3§ & s s 0

Apperdix C: List of PL/I lerary

Modules . o « ¢ ¢ ¢ o o .
Resident Library Modules .
Transient Library Modules .

e e e e
e o o &

e o e e

Contents

@ 8 4 & & 4 6 4 s 8 8 & 4 s 8 4 5 & s 8 & & & 4 & g s s

250

250
250
250
250
251
251
251
251
251
251
252
252
252
252
252
253
253
253
253
253
253
254
254
254
254
255
256
256
256
256
256
257
257
257
257
259
259
259
259
261
261
261

261

263
263
265

5

Figure 1.1. The process of running a
PL/I DPIrOgral « « « o o o o o o o« o =
Figure 1.2. Use of dynamic storage .
Figure 1.3. Simplified diagram of an
executable program phase
Figure 1.4. Use of storage
Figure 1.5. Flow of control during.
eXecution .« . ¢ ¢ ¢ ¢ o o o o « o o
Figure 2.1. Output from the compiler
Figure 2.2. Contents of listing and
‘associated compiler options
Figure 2.3. Examrple of static
storage map .« .« ¢ ¢ ¢ o o o 2 o o o
Figure 2.4. Example of object
program listing . « « ¢ « « < ¢ . .
Figure 2.5. Register usage in
compiled code 4 o o . .
Figure 2.6. Library register usage .
Figure 2.7. Typical contents of a
compiled code DSA . & .+ « & « « o .
Figure 2.8. Typical prologue code .
Figure 2.9. Epilcgue code
Figure 2.10. Examples of library
calling Se€qUEeNncCesS . « o« « o o o« + o
Figure 2.11. Mnenomic letters in
library module entry-point names . .
Figure 2.12. Offsets where addresses
of library modules are held in the
TCA ¢ ¢ ¢ o o o @ s o« o o o o o o =
Figure 2.13. Code showing
modification of do-loop control
variable « ¢« ¢« ¢ ¢ ¢« ¢ ¢ e 4 e o o .
Figure 2.14. Code showing branch
around redundant exrression
Figure 2.15. Code showing use of
common constant e o o ¢ e .
Figure 3.1. Library module names . .
Figure 3.2. Library workspace . .
Figure 3.3. Example of use of WXTRNs
Figure 4.1. Fxample of descriptors,
locators and DEDs for an array . « .
Figure 4.2. Descriptors, locators,
and symbecl tables: when generated,
where held . « . « &« ¢« & ¢ ¢ ¢ o« « &
Figure 4.3. String
locator/descriptor (SLD) « « « <« « .
Figure 4.4. Area locator/descriptor
(ALD) @ 4 @ o o o o = o o o« o « o
Fiqure 4.5. Aggregate locator (AL) .
Figure 4.6. Array descriptor (AD) .
Figure 4.7. Aggregate descriptor
descriptor (ADD)
Figure 4.8. Fxample of handllng
structure containing adjustable
extent « « ¢ ¢ 4 e e e e e e e . e
Figure 4.9. Structure descriptors
for arrays of structures and
structures of arrays « o« « o« o « o
Figure 4.10. Format of DEDs
Figure 4.11. Symbol tables and
symbol table vectors
Figure 5.1. Flow of control during

12
13
14

17
18

20
24
24
29

29

30

45
47
47
47
47

48

49

50

53

Figures

€XeCUtion .+ « & <« 4 ¢ o o o o o o .
Figure 5.2. Program management area
Figure 6.1. The principles of

dynamic storage allocation . . . -
Figure 6.2. Principles involved 1n

allocating and freeing LIFO storage
Figure 6.3. Principles invclved in
allocating and freeing non-LIFO

StOTAge ¢ o + o o o o o e o o o o o
Figure 6.4. Segment handling . . < .
Figure 7.1. Hardware interrupts

associated with PL/I conditions . .
Figure 7.2. (Part 1 of 2). PL/I

conditions ¢« ¢ « o ¢ o ¢ e e e s o @
Figure 7.2. (Part 2 of 2). PL/I

CONAitiONS o « ¢ o ¢ o o o .o o o o
Figure 7.3. The principal fields

used in error handling . . . <« . < .
Figure 7.4. Example of error

handling « « « o« o ¢ o o o o ¢ o o o
Figure 7.5. Handling the CHECK

condition .« . ¢ ¢ ¢ ¢ ¢ e e o o o
Figure 7.6. Interrelationship of

dump routines « <« « ¢ o ¢ o o o o o
Figure 7.7 How branch counts are

used to calculate the number of

times each statement is executed. .
Figure 8.1. The principles used in

handling record 1/0 statements . . .
Figure 8.2. Conditions under which

I/0 statements are handled in-line .
Figure 8.3. Data management

access methods for record-

oriented transmission . . . o e .
Figure 8.4. Type of DTF set up

for different PL/I file types . . .
Figure 8.5. Control blocks used

in record I/0 . . c e e e e
Figure 8.6. Annotated llst

showing record I/0 statements

handled by in-line code
Figure 8.7. Annotated object

program showing record I/O

statements handled by library

subroutines .« ¢ o ¢ o ¢ o ¢ o o o
Figure 8.8. PL/I resident and

transient library OPEN and CLOSE

TOUtinesS v e o o o o o o o o o o o o
Figure 8.9. Record I/O transmitters

and their associated file types . .
Figure 8.10. PL/I transient library

error modules . . ¢ . ¢ e ¢ o o o .
Figure 8.11. Organization of

record I/0 library modules
Figure 8.12. Summary of work done by

PL/I library routines . . . « . . .
Figure 8.13. Implicit open procedure
Figure 8.14. If conditions are

raised during transmission, flow of

control depends on the contents of
the FCB field FERM . « « « « o « o &
Figure 8.15. TFlow of control for

Figures

56
57

64

67
69

EAl
73
74
76
78
83

86

88
92

93

94
95

97

98

99

101
102

103
104

105
106

107

1

READ, EVENT and WAIT statements . .
Figure 8.16. Overview of record 1/0
implementaticn . « ¢« . . ¢ . o . .
Figure 9.1. Conceptual diagram of
stream I/0 v o o 4 o o o o o o o « =«
Figure 9.2. Record toundaries do not
affect stream I/0 « o e
Figure 9.3. Generalized flowchart of
a stream input statement . .
Figure 9.4. Stream I/0 control hlock
(S10CB) . .
Figure 9.5. The FCBA and FREM fields
of the FCB . .+ & ¢ ¢ ¢ ¢ ¢ o o o o &
Figure 9.6. List-directed output .
statement . . ¢ ¢ ¢ e 0 e o e o o .
Figure 9.7. Typical code generated
for a PUT LIST statement
Figure 9.8. Data directed input
statement . . ¢ ¢ ¢ d e ¢ e @ @ e .
Figure 9.9. 1Iypical code generated
for a PUT DATA statement
Figure 9.10. Choice of subroutines
for edit directed I,0 -
Figure 9.11. =dit directed output
statement with matching data and
format lists « . « « ¢ . <
Figure 9.12. Typical code generated
for a GET EDIT statement
Figure 9.13. Code seguences for
matching and non-matching data and
format lists « . « ¢ ¢« ¢« ¢ ¢ o . . .
Figure 9.14., Use of FCBA and FCPM in
copy option implementation
Figure 10.1. Internal forms of data
EYEES & ¢ ¢ v e e h e e e e e e e
Figure 10.2. (Part 1 of 2). Data
conversions performed in-line . . .
Figure 10.2. (Part 2 of 2). Data
conversions performed in-line . . .
Figure 10.3. Fundamental in-line
CONVErSionNs « o o o o o o o o o o =
Figure 10.4. Multiple conversions .
Figqure 11.1. Arithmetic operations
performed by library subroutines . .
Figure 11.2. (Part 1 of 2). Array,
structure, and string subroutines .
Figure 11.2. (Part 2 of 2). Array,
structure, and string subroutines .
Figure 11.3. 1Indexing interleaved
ATTAYS o o o o o o o o o o o o « o o
Figure 11.4. DSA chaining during
execution of SORT ¢ o o o o ¢ o « «
Figure 11.5. Summary of action
during use of SORT exit
Figure 11.6. Example of WAIT
implementation problems
Figure 11.7. (Part 1 of 2).

110

121
122
123
124

126

127

128

129
132
137
139
140

141
143

146
146
147
148
151
153
154

Simplified flowchart of modules used
in execution of WAIT statement . . .
Figure 11.7. (Part 2z of 2).
Simplified flowchart of modules used
in execution of WAIT statement . . .
Figure 12.1. How to use this chapter
when debugging « « « o« ¢« o o o o o .
Figure 12.2. Coding dump options . .
Figure 12.4. Examrle of PLIDUMP . .
Figure 12.3. Abbreviations for
condition names used in PLIDUMP
trace information. « . <« <« ¢ ¢ . o .
Figure 12.5. A typical arrangement
of main storage and an associated
storage Teporte =« « o o o o o o o« =
Figure 12.6. Error message group of
MOdUlesS ¢ ¢ ¢ o o o ¢ « o o o o o @
Figure 12.7. Information stored by
IBMDERR after a program check and a
software interrupt e o e e
Figure 12.8. Error code fleld lookup
table . . . e o o o o o o e s o
Figure 12.9. Partition save area . .
Figure 12.10. DSA chaining
Figure 12.11. The register save area
in the DSA -rl . . « o o o« ¢ o o o &«
Figure 12.12. Register usage
Figure 13.1. Principles of
interlanguage communication . .
Figure 13.2. Typical code when PL/X
calls COBOL or FORTRAN routine . . .
Figure 13.3. Nested procedures used
when COBOL or FORTRAN calls PL/I . .
Figure 13.4, Action when setting up
PL/I environment on call from COBOL
or FORTRAN principal procedure . . .
Figure 13.5. Chaining of save areas
when PL/I is called from COBOL or
FORTRAN principal procedures. . . .
Figure 13.6. Example of chaining
sequences (PL/I principal procedure)
Figure 13.7. Example of chaining
sequences (FORTRAN principal
procedure) . . ¢ . ¢ . ¢ @ e o o . .
Figure 13.8. Encompassing procedure
to be called by FORTRAN . . . « . .
Figure 13.9. Main storage situation
when PL/I main procedure calls
FORTRAN . o« ¢ o o« o o o ¢ o o o o
Figure 13.10. Main storage situation
when PL/I main procedure calls
FORTRAN, which in turn calls PL/I .
Figure 13.11. Main storage situation
when PL/I main procedure calls
FORTRAN, which calls PL/I, which
Calls COBOL o o « o o o o o o o o

157

158
162

164
165

166

169

172

175
176
178
179

184
184

190
192

193
194

196

198

199

204
207

208

209

e
| c
PREPARE
Source
program
\
4
PL/I
: ‘ Optimizing
il
COMPILE Compiler
Obiject
. module
LINK-EDIT
PL/! library and . : Other
data management object
modules modules

- Executable
program

phase

EXECUTE

.

environment

source program

Initialization ' Object Termination
routine program routine
Receives control Carries out Closes any files
from system, and actions still open, and -
sets up PL/I specified in returns control

to system

Figqure 1.1.

The process of running a PL/I progran

Processing a PL/I Program

Figure 1.1 shows the processes through
which a PL/I program passes from its
inception to its use. There are four
stages:

1. Writing the program and preparing it
for the computer.

2. Compilation: translating the program
into machine instructions (i.e.,
creating an object module).

3. Link-editing: producing an executable
program phase from the object module.
This includes linking the compiled
code with PL/I library modules, data
management routines, and possibly with
other compiled programs. It also
includes resolving addresses within
the code.

4. Execution: running the executable
progran phase.

The process is not necessarily continuous.
The program may, for example, be kept in
either a compiled or link-edited form
before it is executed, and it will normally
be executed a number of times once
compiled.

COMPILATION

Conmpilation is the process of translating a
PL/I program into machine instructions.
This is done by associating PL/I variables
with addresses in storage and translating
executable PL/I statements into a series of
machine instructions. For example, the
PL/I statements:

pCcL 1,J,K;
I=J+K;

would typically result in the generation of
machine instructions corresponding to the
assembler lanquage instructions shown
below: '

LH 7,88(0,13) Load J into register 7
AH 7,90(0,13) Add K to J
STH 7,96(0,13) Place result in I

(The variables I, J, and K are held at
offsets 96,88, and 90, respectively, from
the address in register 13.)

Chapter 1: Introduction

The DOS PL/I Optimizing Compiler does
not translate all PL/I statements directly
into the necessary machine instructionms.
Instead, certain statements are translated
into calls to standard subroutines held in
the DOS PL/I Resident Library. Soie of the
resident library routines may, in turn,
call further library routines from either
the resident or the transient PLyI library.
The following PL/I statements would, for
example, result im a call being made to a
resident library routine.

pCL X, Y3
X=SIN(Y);

The code that would typically result from
such statements is shown below:

Place address of Y
in register 14.
Place. address of X
in register 15.
Place addresses in
argument list.

Point register 1 at
argument list.

Load register 15
with the address of
the resident library
routine IBMBMGS.
(This is held in the
form of an address
constant generated
by the compiler and
resolved by the
linkage editor.)
Branch to the
library routine,
which will carry out
the required
function.

LA 14,92 (0,13)
LA 15,96 (0, 13)
sT® 14,15,80(0,3)
LA 1,80(0,3)

L 15,88(0,3)“

BALR 14,15

LINK-EDITING

Link-editing links the compiler output with
external modules that have been requested
by the compiled program. These will be.
PL/I resident library routines, data
management routines, and, possibly, modules
produced by further compilations. As well
as linking the external modules, the
linkage editor also resolves addresses.

Chapter 1: Introduction 1

EXECUTION

The optimizing compiler produces code that
requires a special arrangement of control
blocks and registers for correct execution.
This arrangement of coatrol blocks and
registers is known as the PL/I environment.
Execution consequently becomes a three-
stage process:

1. Setting—upkthe environment. 'This is
handled by the PL/I initialization
routines IBMDPIR and IBMDPII.

2. Executing the progranm.

3. Completing jobs after execution. This
consists of closing any files that are
left open and either returning control
to the control program, with an EOJ
macro instruction, or returning to a
calling module.

Factors Affecting Implementation

Three major factors influenced the design
of the executable programs produced by the
optimizing compiler. These factors are
inherent in the language, and are:

1. The modular structure_ of PL/I prograns

The PL/I language allows the
programmer to divide his program into
a series of blocks that can be written
and compiled independently of each
other.

2. The_dynamic allocation _and_freeing of

Automatic, controlled, and based
variables all have their storage
allocated and freed dynamically. This
implies a system of re-use of storage
to reduce space requirements.

3. The comprehensive facilities offered
by _the PL/I lanquage

The PL/I language offers more
facilities than any other high-level
language. These facilities include
allowing the PL/I program to control
the flow of execution after any PL/I
interrupt.

Key Features of the Executable Program

Taken together, the factors outlined above
are responsible for the main features of

the executable program produced by the
compiler. These features are:

1. A communications area addressed by a
dedicated register throughout the
execution of the program.

2. 1A scheme to handle dynanic storage
allocation.

3. The use of standard subroutines from
the PL/I libraries, to handle such
standard tasks as the housekeeping
scheme and error handling.

4. The use of an initialization routine
to set up the communications area and
initiate the housekeeping scheme.

These features are discussed in greater
detail below.

COMMUNICATIONS AREA

The facilities offered by the PL/I
language, particularly the error-handling
facilities, imply that certain items must
be accessible at all times during
execution. To simplify accessing such
items, a standard communications area is
set up for the duration of execution. This
area is known as the task communications
area (TCA), and is addressed by reglster 12
throughout executlon.

The TCA has an appendage known as the
task implementation appendage (TIA). The-
TCA appendage holds a number of addressing
fields and is, itself, addressed from the
TCA.

DYNAMIC STORAGE ALLOCATION

The allocation and freeing of automatic:
storage on a block~by-block basis implies
an automatic facility for the re-use of
such storage. This problem and the problem
of inter-block communication are solved by
having, for each block, a save area that
contains register save information,
automatic variables, and housekeeping
information. This area is known as a
dynamic storage area (DSA). It comsists of
the standard operating system save area
concatenated with certain- housekeeping
information and with storage for automatic
variables. DSAs are held contiguously in a
last-in/first-out (LIF0O) storage stack and
are freed and allocated by the alteration
of pointer values.

On entry to a block, the registers of

Partition

Executable
program phase

Program
management area

Executable
h

ISA
@ A partition is The executable @The program
allocated program phase management
is placed at the low area (a PL/l communi-
address end of the cations area) is placed
partition. The remain- contiguously with the
der of the partition is executable program
refered to as the ini- phase.
tial storage area (ISA).
Executable Executable Executable Executable
program phase program phase program phase program phase
Program Program Program Program

management area management area

LIFO storage

management area management area

LIFO storage

LIFO storage

LIFO storage

ISA ISA ISA

Non-LIFO storage

Non-LIFO storage

Elements not
freed on a last

reed non-LIFO

When non-LIFO
storage is freed,

@When LIFO
storage is freed,

@ Al storage freed
on a last in/first

Fiqure 1.2.-

out basis (LIFO storage)
is allocated at the low
address end of the
remaining unused
storage.

the most recently
allocated element is
the first to be freed.
It is freed by being
reabsorbed into the
major free area.

Use of dynamic storage

in first out basis (non
LIFO storage) are
allocated at the high
address end of the
free storage.

Chapter 1:

it is, where possible
absorbed into the
major free area. Where
this is not possible, it
is placed on a chain of
free storage. The head
of this chain is held at
a fixed offset in the
program management
area. Areas on this
chain are reused where
possible.

Introduction 3

the preceding block are stored in the
previous DSA and a new DSA is acquired. A
chainback pointer to the previous DSA is
placed in the new DSA. This arrangement
allows access to information in previous
blocks. Register 13 is pointed at the head
of the DSA for the current block. The code
that carries out this and any other block
initialization is known as a prologue. To
obviate the need for special coding in the
main procedure, a dummy DSA is set up by an
initialization routine, and register 13
points at this dummy DSA on entry to the
main procedure.

In addition to automatic variables,
certain other types of storage are
allocated and freed dynamically. Such items
as are not freed on a last-in/ first-out
basis are kept in a second stack. If
storage within this stack is freed, it is
placed on a free-area chain. The principles
of the dynamic storage scheme are
illustrated in figure 1.2.

In certain circumstances, additional "

- LIFO storage may be required during the
execution of a block. When this is
necessary storage is acquired in the same
manner as for a DSA. The areas thus
acquired are known as variable data areas
(VDAs).

The storage scheme is handled partly by
compiled code and partly by a resident-
,library routine. Compiled code acgquires
‘and frees space in the LIF0O storage stack.
LIFO storage is acquired by the prologue
code of every block and freed by the
epilogue code of every block.

The library routine IBMDPGR is called
when non-LIFO dynamic storage has to be
allocated or freed, or when there is
insufficient space for an allocation of
LIFO storage in the LIFO stack.

USE OF LIBRARY SUBROUTINES

The use of library subroutines simplifies
compilation. However, using such routines
slows execution because they cannot be
tailored for the particular situation in
hand, and because they incur the overhead
of saving and restoring registers. Library
subroutines are used for handling standard
jobs such as program initializatiom and
error handling, and for such items as
require interpretive code. 1Interpretive
code is required when a significant part of
the data will not be available until
execution.

Two PL/I libraries are used by the DOS
PL/I Optimizing Compiler: the DOS PL/I

Resident Library and the DOS PL/I Transient
Library. Transient library routines have
the advantage of saving space, because they
require storage only when they are actually
in use and can be overwritten when they are
no longer required. Resident library
routines, however, have the advantage of
speed, because they do not have to be
loaded during execution of the PL/I
program. Dividing subroutines into
transient and resident types enables the
compiler to balance the advantages of both
types and so to produce programs that
combine fast execution with reduced space
overheads. E

INITIALIZATION ROUTINES

The job of the initialization routines is
to prepare a standard environment for all
procedures compiled by the DOS PL/I
Optimizing Compiler. This consists of
setting-up the TCA and initializing the
storage scheme. Also, a STXIT macro
instruction is issued so that all progran
checks will be intercepted by the PL/I
error-handling facilities. Using stamdard
library routines for these tasks reduces
the amount of special-case coding that is
needed for a main procedure. A consequence
is that procedures can be compiled and
tested individually and then link-edited
with other procedures and run without re-
compilation.

Contents of a Typical Executable
Program Phase

The contents of a typical executable
program phase are shown in figure 1.3.
contents are:

The

1. Compiled code (the executable machine
instructions that have been
generated). '

2. Link-edited routines. These will
include resident library routines and
probably DOS data management routines.
Certain resident library routines are
included in every executable program
phase. These are the initialization
routine, IBMDPIR, the storage-handling
routine, IBMDPGR, and the error
handler, IBMDERR. Other resident
routines are included as required.

As well as executable machine
instructions, the program requires certain
control information and addresses. Some of
these are listed in figure 1.3, but full
details are given in chapter 2. Other

EXECUTABLE PROGRAM PHASE

PROGRAM CONTROL SECTION
Compiled code

LIBRARY MODULES
Link-edited library
modules, including:
IBMDPIR, IBMDPGR,
IBMDERR

ADDRESSES
Addresses of:
Library modules,
PL/! subroutines and
entry points,
Label constants,
External procedures, etc.

CONTROL BLOCKS
Various control blocks
(such as DTFs) needed
during execution Static

internal

control

section

CONSTANTS
Storage for any constants
used in the program

STATIC VARIABLES
Storage for variables
declared as STATIC
INTERNAL

OTHER CONTROL SECTIONS
PLISTART, PLIMAIN.
Storage for variables
declared as STATIC EXTERNAL,
Control blocks and
other data for
external files, etc.

Figure 1.3. Simplified diagram of an executable program phase

Chapter 1: Introduction

Beginning of partition

EXECUTABLE

PROGRAM PHASE

Compiled code
Library modules
Addresses
Control blocks

Constants
Static variables

PROGRAM
MANAGEMENT AREA

TCA (task communications area)
Dummy DSA (dynamic storage area)
Other housekeeping control blocks

LAST-IN/FIRST-OUT
(LIFO) STORAGE

DSAs and VDAs (variable data areas).

Storage for automatic variables and
compiler-generated temporaries, and
other items allocated and freed on

a block and procedure basis

NON-LIFO STORAGE

Storage for 1/0 buffers, transient
library routines, controlled and
based variables

End of partition

Figure 1.4. Use of storage

control sections generated are also shown
in figure 1.3. They are PLISTART, which
passes control to the initialization
routine, and PLIMAIN, which holds the
address of the start of compiled code.

The Overall Use of Storage

The overall use of storage is illustrated
in figure 1.4. As can be seen, the low-
address end of the partition is occupied by
the executable program phase. Immediately
following the executable program phase is
the program management area. This contains
the control blocks set up by the
initialization routines, including the TCA
and the dummy DSA discussed above. The
remainder of the partition is used for
dynamic allocations of storage. The LIFO
stack starts beyond the end of the progran
management area and expands, as necessary,
towards the end of the partition. Non-LIFO
dynamic storage starts at the end of the
partition and expands towards the LIFO
stack.

The Process of Execution

The process of execution is illustrated in
figure 1.5. The processes involved for a
sample program are described below.

EXAMPLE: PROC OPTIONS (MAIN) ;
INPUT: GET LIST(Y,Z);:

(process data as required)

PUT LIST(X);
IF X<500 THEN GO TO INPUT;
END;

Execution would involve the steps described
below.

1. The control program passes control to
the control section PLISTART, which
has been generated by the compiler.

2. PLISTART calls the resident library
initialization routine, IBMDPIR.

3. IBMDPIR, and IBMDPII, which it calls,
set up the PL/I environment. IBMDPIR
then passes control to the main
procedure compiled code, with register
12 pointing at the TCA and register 13
pointing at the dummy DSA. The
address to which IBMDPIR passes

PLISTART Initialization routines

Prologue code

Receives control from
system

Passes control to
initialization/
termination routine,
IBMDPIR.

Set up TCA, initialize storage and
issue STXIT to initialize PL/! error-
handling scheme. Pass control to
the address in PLIMAIN.

Acquires DSA for main
procedure, initializes
control blocks, etc.

Stores registers of
initialization/
termination routine,
IBMDPIR.

Figure 1.5.

Functional code

Epilogue code

Termination routine

Carries out function required
in source program. This
usually involves calls to
library subroutines.

Restores the registers of
the initialization/
termination routine.

Closes any files still open and
returns control to system with EQJ
macro instruction, or returns
control to caller.

Flow of control during execution

control is held in the control section
PLIMAIN.

Compiled code prologue stores the
contents of the registers used by
IBMDPIR in the dummy DSA and acquires
a DSA for the main procedure.

Compiled code calls the library
routines used for stream I/0. These
in turn call transient routines to
open the standard files and further
transient routines to interface with,
and call, the link-edited data
management routines. Storage must be
acquired for transient routines and
I/0 buffers. This involves calling
the storage management routine
IBMDPGR.

Processing is then carried out by
compiled code. Further calls to the
library may be involved if, for
example, mathematical functions are
used.

The stream output will involve further
steps similar to those described in 5,
above.

8. VWhen the END statement is reached, the
epilogue code is entered. This
restores the registers of IBMDPIR and
returns control to IBMDPIR.

9. IBMDPIR raises the FINISH condition,

calling the resident error-handling
module IBMDERR, which searches for a
FINISH on-unit. Finding nomne, it
returns to IBMDPIR; IBMDPIR calls
IBMDOCL to close the standard files
SYSIN and SYSPRINT, which were opened
to permit execution of the stream I/0
statements. An EOJ macro instruction
is then issued to terminate the
program. ‘

This program illustrates the main points
mentioned earlier in the chapter. The
ipnitialization routines are used in steps 3
and 9. The storage management scheme is
illustrated in the prologue and epilogue
code in steps 4 and 8. The communications
area_(TCA) is set up by the initialization
routine, and the use of standard library

subroutines is shown in steps 5 and 7. The
use of special error and PL/I condition
handling code is shown in step 9.

Chapter 1: Introduction 7

Introduction

The compiler output is a relocatable object
module consisting of a series of records in
card-image format. These records contain
either machine instructions, constants, or
external or internal addresses to be
resolved by the linkage editor. The
records are known as:

TXT records containing machine
instructions or constants.

RLD records containing internal
addresses.
ESD records containing external

addresses.

Purther information about the output passed
to the linkage editor is given in the
publication DOS_ PL/I Optimizing Compiler
Program_Logic.

There are two main control sections
(CSECTs) output by the compiler. These are:

1. The program control section, holding
the executable instructions translated
from the PL/I progranm.

2. The static internal control section

holding coastants, addresses, and
static variables.

A number of other control sections are
also generated. These either handle certain
housekeeping functions, or are used for
external data which may have identical
control sections generated for it by other
compilations.

Workspace and storage for automatic
variables is acquired during execution,
normally by the prologue code that is
executed at the start of every block.

The output from the compiler is shown in
figure 2.1 and listed below:

1. Control sections that_are_always
generated
Program control Containing
section executable
instructions.
Static internal Containing

control section addresses, control
blocks, coastants,

and STATIC INTERNAL

Chapter 2: Compiler Output

variables.
PLISTART The entry point for
the executable
program phase.
Passes control to
initialization
routine.
2. Control sections_that are generated
only when required

PLIMAIN

Containing the
address of the entry
point of the main
procedure.
(Generated only for
procedures with
OPTIONS (MAIN).)
PLIFLOW - A control section
generated when the
compiler FLOW option
is specified. (See
chapter 7.)

PLICOUNT A control section
generated when the
compiler COUNT
option is specified.
(See chapter 7).

A static external
control section is
generated for every
external variable,
file, and procedure.

Static external
control sectioms

Each user-defined
condition, and each
compiler-generated
subroutine used.

Plus control
sections for

The remainder of this chapter deals with
these control sections in further detail.
Where possible, it refers to the object
program listing, because this is the fornm
in which the output from the compiler is
most readily available.

The two control sections, PLISTART and
PLIMAIN, are used during.progran
initialization. PLISTART holds the address
of the library initialization routine
IBMDPIR, which will be entered at the start
of the program. PLIMAIN holds the address
of the start of the code for the main
procedure. This is the address to which
the library initialization routine branches
vhen initialization is complete; it is
marked "+REAL ENTRY" in the object-program
listing.

Chapter 2: Compiler Output 9

Program control section

Contains:

Executable instructions
translated from source
program

COMPILER
Static internal control section
Contains:
Addresses
Constants
Control information
Static internal
variables
Housekeeping
control sections
Control sections for
data declared
PLISTART EXTERNAL
Contains: e - e
Instructions passing control to i— 1
initialization routine A separate control section for each l
| PLIMAIN I external: |
| Contains: | l ::/ia;(r;able |
ddress of mam r
- — A inprocedure _ _ | | Procedure '
| PLIFLOW | | User condition |
Contains: | I Symbol table for external data |
: External reference to library L e e e]

module used in FLOW option |

,_
l
|
|
|
|
|
!
!
!
|
L

Control sections for
compiler-generated
subroutines

——— e ——
|
I
I

A control section for each |
compiler-generated subroutine
used in a program I

Control sections surrounded with dotted lines are generated only when required.

Figure 2.1. Output from the compiler

10

A PLIMAIN control section is generated
for every procedure for which OPTIONS
(MAIN) is specified in the procedure
statement. When two such procedures are
being run together, control will always
pass to the first of the procedures
processed by the linkage editor.

The format of PLIMAIN and PLISTART is
given in appendix B.

If the compiler FLOW option is being
used, a control section called PLIFLOW is
also generated. This contains code that
results in the link-editing of the trace
‘module IBMDEFL and also contains the values
‘of "n" and "m" specified in the option.

The format of PLIFLOW is given in chapter
7.

|

{If the compiler COUNT option is in effect,
{a control section called PLICOUNT is
{generated. This contains code to link-edit
{ IBMDEFL.

‘The_Organization of this Chapter

The remainder of this chapter describes the
contents of the static internal control
section and the program control section.
First, the conventions used in the object
program listing and the static storage map
are described. Descriptions of the two
control sections follow. The description
of the program control section covers the
conventions used in the object program code
such as register usage, method of handling
flow of control, and addressing
information. The chapter is completed by a
short discussion of the effects of
optimization.

Listing Conventions

Figure 2.2 shows the major program listing
information that can be produced by the
compiler. It also shows the relevant
compiler options and summarizes the
information that will be produced if these
options are specified. Some or all of these
options may be deleted at system generation
time. To obtain deleted options, the
correct password (specified at system
generation time) must be specified in the
CONTROL option. .

This chapter describes the contents of
the static-storage map and the object-
program listing. Information on the other
items generated is given in the publication
DOS PL/I Optimizing Compiler Programmer's
Guigde.

STATIC-STORAGE MAP

The static-storage map is a formatted
listing of the contents of the static
internal and static external control
sections. The static control sections
contain items grouped in the following
order:

1. Address constants for entry points to
procedures, and for branch
instructions.

2. Address constants for resident library
subroutines.

3. Address constants for addressing
static storage beyond 4K.

4. The constants pool, which contains
source program constants, data element
descriptors, locator/descriptors,
symbol tables, file control blocks,
and other control blocks.

5. Static variables.

The constants pool and the static-variable
sections of static storage begin o
doubleword boundaries. :

The static control section is listed,
each line comprising the following
elements:

1. Six-digit hexadecimal offset.

2. Hexadecimal text, in 8-byte sections
where possible.

3. Comment, indicating the type of item
to which the text refers; a comment
appears against only the first line of
the text for an item. A typical
example is shown in fiqure 2.3.

The following comments are used (xxx
indicates the presence of an identifier):

A.. - Address constant.

COMPILER LABEL CL.nn - Compiler—-generated
label. '

CONDITION CSECT - Control section for
programmer-named condition

CONSTANT

CSECT FOR EXTERNAL VARIABLE - Control
section for external variable.

D.. - Descriptor.
DED.. — Data element descriptor.
DTF (CONSTANT PART) - Constant part of

Chapter 2: Compiler Output 1M

Name | Contents

=)

Compiler Option

Source progran

Aggregate table
-and arrays

Storage requirements
procedures

ESD references

Statistics

Static storage

Variables offset map

Table offset and

statement number statements

Object progranm

— - — —— . - ——— — a— — — —— - — a— " — —— ——— —

Source program statements

Namés and storage requirements of strubtures
Names and storage requirements of all
Name, type, and identifier of all external

symbols generated by the compilerx

Number of source records, program text
statements, and object code bytes

Contents of static internal and static
external control sections in hexadecimal
notation with comments

The offset of static and automatic variables
from this defining base

Offsets, within code, of the start of all
The contents of the program control section

in hexadecimal and translated into a
pseudo-assembler-language format

SOURCE

AGGREGATE
STOR!GE
ESD

ESD

MAP

MAP
OFFSET

LIST

[P e e A - - - DA - — - — - i —— s - ——

* External references within library modules are not included.

Pigure 2.2.
define-the-file (data management)
control block.

DTF (VARIABLE PART) - Variable part of
define-the~-file control block.

ENVB - Environment control block.

FCB - File control block.

FED.. - Format element descriptor.

KD.. - Key descriptor.

ONCB - ON control block.

PICTURED DED.. - Pictured DED.

RD.. - Record descriptor. |

SYMTAB - Symbol table.

USER LABEL xxx - Source program label xxx.

XXX - Name of static variable. tf the
variable is not initialized, no text
appears against the comment; there is
also no static offset if the variable

is an array. (The static offset can
be calculated from the array

12

e i b - = - - —— —_———— — — —— —— - o S

Contents of listing and associated compiler options

descriptor if required.)

OBJECT-PROGRAM LISTING

By including the option LIST in the PROCESS
statement, the programmer can obtain a

listing of the compiled code, known as the
object-program listing. It consists of the
machine instructions plus an interpretation

of these instructions in a form that

resembles assembler language, and a number
of comments such as the statement number..
The format of this listing is shown in
figure 2.4. As can be seen, blocks of code
are headed by the number of the statement
in the PL/I program to which they are
equivalent. When optimization has resulted
in code being moved out of a statement,
this is indicated. Only executable
statements appear in the listing. DECLARE
statements are not included, because they
have no direct machine-code equivalent. To
simplify understanding of the listing, the
names of PL/I variables are inserted,
rather than the addresses that appear in
the machine code. Special mnemonics are
used when referring to control blocks and

PL/1 OPTIMIZING COMPILER

€C00Co
©00004
00008
€0000C
ocoolo
000014
000018

00005
€00062
000064
00C066
€00068
00006C
©€C0070
©00074
0C0078
€COo07C
0€C08¢C
000084
000088
0cocsec
0co0sc

ccoooce

00000098
00000008
0000005A
00000064
00000064
00000000
00000000
00000000
60600000
00600000
00000000
00C00000
00€00000
00000000
00C00000
00C00000
00000000
00000000
00€00000
0€000000
€8040680
500000030080
60€00008
58010000

91EC91EQ
00600000
46008000
€00G0000
€0€00000
00000000
80000000
00006060
80000000

000000FC 00000064

00000€C06C000000
00C00€000C0C0000
0000007000000078
000000A8000C0000

PL/I OPTIMIZING COMPILER

0o0gocc

00007C

0C00AD
0000A4%
€CcooA8
000080
000084

€00004

4TFFO01C

€0C0CcCCCoc0c0000
€0000060060C0000
000000706000007C
€0000CA8GC0C0000
4046000041201000
80800C2002000000
0C79E200000CCCT9
00000198600€0198
000000600C000000
€0€00GC000CC0000
00CG60000000C0078
€0C0¢CC00CcC0000
00€000€0000€0000
00¢00000000€0000
0008E2EBE207D9CS
DSE30000
€000C060020000A0
010000A4G20000A0
020000A0020GC0A0
020000A0020000A0
02000040
00000000
00000079
000086C€068000003
00000100
00€0006000000000
3300E2E8E207C9CS
D5€00CCC60000000
00000800002020F3
240CC198

o

0co1cC
€00104
000108
ccoloc
00011¢
000114
¢colis
Goo11C
600120
000124
000128
cool2C
€C0130
000134

006G00C0000CFFO0
€0600060000C0060
1300002000000006
00000079470C0000
C7000CE2
40000606
310000E4
40600005
08000108
200600001
1D000CF4
A0000008
€5¢C0198
60000079
310000€4
40000005
08000128
20€00001

Fiqure 2.3.

EXAMPLE: PROC OTIONS (MAIN) REORCER:

STATIC INTERNAL STORAGE MAP

PROGRAM ACCON
PROGRAM ACCON
PROGRAM ACCON
PROGRAM ADCON
PRCGRAM ALCON
A.IELCGIA

A. . IBMBCHFC
A. . IBMBCTHC
A. . IBMBCVOY
A..1BMBOCLA
A..IBMBOCLC
A..1BMBSEIA
IBMBSICA

« o IBHBSXCA
Ao IBHBSMHA
A..1BMBSEEA
A. - IBMBSEHA
A..IBMBSILA
DED«eX
FED
FED
FED
CONSTANT
CONSTANY
CONSTANT
CONSTANT
CONSTANT
CONSTANT
AeoFCB

FCB

A«.FCB

AL TEMP

COMPILER LABEL CL.11

STATIC EXTERNAL CSECTS

FCB

000c78

000C9C
0000AQ
ooocae
0G0CBC
oooca4

000004
ooocns

000100
000104
000108
00010C
000110
000114
0co118
00011¢C

4040000001100000
808€002002C0000C
0050E20000600050
0000019800000158
00G00000004000E 8
€0€0006<00000000
000€000000000050
000€0000000000G0
00€C0600000000C0O
00€00006006600CC
0005E2E8E2CSD5LF
00C000000200009C
0100004002¢€009C
0200009€0200009C
02€0009€02C0005C
0200009C

00€00000

00000050

00C0800008000001
€0000100

0000000000000000
33C2E2E8E2CSD540
460€060000C000C0
00C60CB00002020F 3
800C0198

800€€00000€C0000
€0C00000000CFFO0
€0CCCC0000C000CC
1301002000G600CC
00000050470000C0
07CCO0E2

40000006

310000E4

40000005

080€0108

20000001

066C0198

20000050050CD858
60€0007931CODDES
4000000508C0DDF 8
200000011ECCDECE
3000008100000000
00060000600C00C0
£0€0000000600G00
000€0000000000C0
000C0C0000CC00C0
€0C€000000000000
00€000006CCCO0CC
0000000000000000
000000€000060000
600£0€0000C000¢0
000600004 7FFO0LC

EXAMPLE: PROC OYIONS (MAIN) REORLER:

FCB

ENVB

ENVE CONSTANT
ENVE CONSTANT
OTF (CONSTANT
DTF (VARIABLE
DTF (CONSTANT

DTF (VARIABLE
DTF (CGNSTANT

DTF (VARIABLE
DTF (CENSTANT
DTF (VARIABLE
OTVF (CONSTANT
DYF (VARIABLE
DTF (CONSTANT
OTF (VARIABLE
DTF (CONSTANT
DTF (VARIABLE
DTF (CONSTANT
DTF (VARIABLE
DTF (CONSTANT
OTF (vARIABLE
DTF (CONSTANT

PART)
PART}
PART)

PART)
PART}

PART)

PART)

PART)

PART)
PART)
PART)
PART)
PART)
PART)
PART)
PART)
PART)
PART}
PART)

ENVB

PAGE 3

ENVB CONSTANT
ENVB CONSTANT

DTF (CGNSTANT
DTF (VARIABLE
DTF (CCNSTANTY

DTF (VARIABLE
OTF (CONSTANT

DTF (VARIABLE
DTF (CONSTANT
OTF {VARIABLE
DTF (CONSTANT
DTF (VARIABLE
DTF (CCNSTANT
DTF (VARIABLE
DTF {CONSTANT

PART)
PART)
PART)

PART)
PART)

PART)
PART)
PART)
PART)
PART}
PART)
PART)
PART)

PAGE 4

600138 1E0C0118 DTF (VARIABLE PARY)
00013C 300C008100C0GGCE DTF (CONSTANT PART)
000€0000006000C0
€0CCC0C000CCO0LE
€00C€06000CCCO0CC
€0€CC000000000C0
0G6C000000C60000
€00CGOC0000G00GE
$0000060C0CGOCLO
€0CC0C0G00CC00C0
G0CCOGC00000000C0
66CC00004 7FFOCIC
47FFO01C
SOURCE LISTING
STuT LV NT
1 0 EXAMPLE: PROC CTIONS (MAIN) REORDER:
2 10 OCL X(10)4Y,Z INITIAL (0)5
3 1 0 GET EDIT(XoY)LF(3),X(11))5
4 1 0 DO I =17T0VY;
5 1 1 T=2X(1)3
6 11 END;
7T 10 PUT EDITUZI(AD;
8 1 0 END;

Example of static storage map

Chapter 2:

Compiler Output

13

PL/1 GPTIMIZING COMPILER
OBJECT LISTING

* CDMPILER GENERATED SUBROUTINE IELCGIA
EO 0 ST

€00000 10 1444€0,1)
€00004 53 FO 1 01 L 15,2640,1)
€00008 D2 03 1 oxc D 04C MVC 28(4s1),76(13)
CCO0OE 91 10 1 011 ™ 17(1),X* 10"
€00012 47 10 7 OlA BO *+8

000016 96 04 C 002 o1 2(12)4X704¢
000014 ©5 01 F 050 E 002 cLc 80(2,15),2(14)
000020 47 40 7 04E BL 446

000024 91 4C F 02C ™ 44015) 4X140°
000028 47 8C 7 03C BZ %48

€0002C 96 80 1 Q10 oI 16(1),X"80°"
00003C 48 7C F 050 LH 7,80(0,15)
000034 4B 70 E 002 SH 7+200114)
000038 40 70 F 050 STH 7,80(0,15)
C0003C 58 70 F 04C L 717640115)
€C0040 50 70 1 000 ST 7,000,1)
000044 4A 70 E 002 AH 7:210414)
€00048 50 70 F 04C ST 7,76(0,15)
6G004C 07 F6 BR 6

CQ004E 58 FC 7 064 L 15,1C0(Cs7)
€00052 95 60 E 000 CLI 0(14),X'60"
000056 47 70 7 05E BNE *+8

CCO0SA 58 FO 7 068 L 154104(017)
CO00SE 05 EF BALR 14,15
060060 07 Fé B8R &

€00062 07 00 NOPR O

€C0064 oc AL4(0)
000068 bC AL4tO)

% END OF COMPILER GENERATED SUBROUTINE

* STATEMENT NUMBER 1

€00000 oc C'EXAMPLE*
€00007 oC ALL(T)

* PROCEDURE EXAMPLE

* REAL ENTRY

€00008 90 EC D 00C STM 14,12,12(13)
0C000C 47 FO F 010 B %412

0€0010 00000120 oC F1288"
€C0014 COGCC000 oc A(STATIC CSECT)
060018 58 3C F 00C L 3,12(0,15}
0C001C 58 10 D 04C L 1,76(0113)
000020 58 00 F 008 L C+8(0,15)
600024 1E ¢l CALR 01l

000026 55 0C C 00C cL 0412€0,12)
PL/I GPTIMIZING COMPILER EXAMPLE: PROC OTIONS
€GCOCO 47 CO 2 02E BNH CL.5

€000C4 41 EQ D 0A8 LA l4,v

G000C8 41 FO 3 050 LA 15,DED. .Y
ccooCC 90 EF 1 008 STM 14y15,8(1)
000000 05 AA BALR 10410
€C0002 47 FG 2 098 [} CL.1l
G0COD6 cL.10 Eou *

CGCOD6 41 EQ 3 054 LA 14,84(0+3)
C000DA 58 10 D 0E4 L 15228(0,13)
0000DE 50 EC 1 004 3 14,4(0,1})
OCOOE2 58 FC 3 044 L 15,A..IBMBSEEA
0000E6 05 EF BALR 14,15
CCOCE8 05 AA BALR 10,10
0CO0EA 41 EO 3 05A LA 14,90(0,3)
OCOOEE 58 10 [OE4 L 1,228(0,13)
00C0F2 58 70 2 0l4 L Tehe IELCGER
0000F6 C5 67 BALR 617

GCOOF8 47 FO 2 072 8 CL+10
0000FC cL.ll EQU *

* srnemem NUHBER 4

COCOFC 78 D 0A8 LE oY

CCOLOC 70 oo D 0E8 STE 0,232(0,13)
CC0104 48 7C 3 064 LH 7+100(043)
€00108 4C 70 D 0BO STH 7,1

€0010C 48 40 D 0BO LH 441

€CO11C " 50 40 D OF8 ST 45248(0513)
000114 48 4G 3 070 LH 4,4112¢0,3)
€00118 40 40 D OF8 STH 44248(0,13)
00011C 97 80 D OFA X1 250(13) 4 X* 80
060120 78 2C D OF8 LE 2,24810,13)
0C0124 78 2C 3 070 SE 2,112(043)
€c0128 70 20 D OEC STE 2,236(0,13)
©0012C 39 20 CER 2,0

0C0L2E 47 20 2 116 BH CL.3

000132 cL.2 EQU *

* STATEMENT NUMBER 5

060132 $C D 080 tH Syl

000136 aa 9¢ 0 ooz SLA §,2

C0013A 78 4C D 0AC LE 4z

COOL3E 7C 49 D 0B4 ME 4,VO..X(9)
000142 7C 40 D 0AC STE 4,2

* STATEMENT_NUMBER 6

600146 48 7C p 080 tH 7,1

CCOl4A 4A 70 3 0é&4 AH 7,1060043)
GOOL4E 40 70 D 08O STH 791
Figure 2.4. Example

14

EXAMPLE: PROC OTIONS (MAIN} RECRLER;

00002A 47 CO

F 02C BNH
00002 58 FG C 074 L
000C32 05 EF BALR
000C34 58 EO D 048 v
000638 18 FO LR
000C3A 90 EC 1 048 STH
00063E 50 DO 1 004 ST
000C42 41 T1 0 00C LA
000046 50 5C D 058 ST
000C4A $2 8C D 000 MVI
000C4E 92 20 D ool VI
000052 D2 03 D 054 3 C68 MVC
000C58 €5 26 BALR
* PROLOGUE BASE
* INITIALISATION CODE FCR Z
000c54 78 40 3 06C LE
COOCSE 70 40 D 0AC STE
% ENC DF INITIALISATION CLDE FOR Z
000C62 05 20 BALR
* PROCEDURE BASE
* S'MTEHENT NUMBER 3
000664 D OF8 LA
600068 50 40 3 080 ST
000C6C 96 £C 3 08GC cl
000070 92 24 D 109 Myl
000074 41 EO 3 09¢C LA
000678 50 €0 © 110 ST
000C7C 41 10 3 07C LA
000C80 58 FO 3 04C
000C84 05 EF BALR
000686 41 A0 2 072 A
000CgA 48 E0 3 064 LH
000c8E 50 EC D OEOQ 3
000¢92 (L.5 EQU
000€92 58 40 D 0F0 L
000C96 88 40 0 002 SLA
000C94 41 E4 D 084 LA
000C9E 41 FO 3 050 LA
000CAZ 41 10 D OF8 LA
000CAE 50 10 © 0E4 ST
C00CAA 90 EF 1 008 STM
000CAE 05 AA BALR
000CBO 58 EC D OEO L
000C84 4A EO 3 064 AH
000¢B8 56 EC D 0€0 ST
0COCBC 49 EO 3 062 cH

(MAIN) RECRCER;

* CLDE MDVEC FROM STAIEI’ENT NUMBEP -4
030 LH

000152 48 70 D

000156 50 7C D QF38 sT
00015A 48 70 3 070 LH
GCOl5€ 40 70 D OF8 STH
000162 S7 80 D OFA XI
000166 78 CC D OF8 LE
000164 7B (C 3 070 SE
00016E 70 CC D OF0 STe
000172 79 €O D CE8 CE
000176 47 CGC 2 OCE ENH

* COCNTINUATIDN OF STATEMENT NUMBER 6
000174 CL.3 QU

* SIATEVENT I\UMBER 7
41

c00174 D LA
00017E 50 ac 3 oes st
000182 $6 ec 3 088 c1
000186 92 20 D 109 MvL
00018A 41 10 3 084 LA
00018E 58 FC 3 038

000192 05 EF BALR
000194 41 A0 2 14E LA
000198 41 EO C OAC LA
00019C 41 FO 3 050 LA
000140 41 10 D OF8 LA
0001A4 50 1C D OE4 ST
0001A8 90 EF 1 000 STHM
0001AC 05 AA BALR
000LAE 47 FO 2 166 8
000182 CL.7 EQU
€00182 4l EO 3 O0SE LA
000186 58 1C D OE4 L
0001BA 50 EC 1 00C ST
0001BE 58 FO 3 048 L
0001C2 05 EF BALR
C001C4 05 AA BALR
0001C6 47 FO 2 14E B
0C01CA cL.8 EQU
* smreyem NUMBER 8

0001CA oD LR
0001€C 58 £C b 004 L
000100 58 EC D 00C L
000104 98 2C D 01C LM
000108 05 1E 3ALR
#* END PROCECURE

cooloa 07 €7 NOPR

of objeét program listing

PAGE

*#+10
15,116(C,12}
14y 1
14,72(0,13)
540
1450572010
13,410,1)
13,001,0)
5,88(0513)
0(13),X'80°
1(13),X120°
84(4413)4104(3)
2,0

49108(0,3}
492

240

44248(0,13)
49128(0,3)
128(3) X80
265(13) ,X124"
1441441093)
144272(C¢13)
14124(043)
15,A..IBMBSILA
14,15
10,CL.10
14,100(Gs3}
14,224(C,13)

*
49224(0,13)
492

144 VL. o X(4)
15,DED. . VO..X
1,248(0,13)
1,228(0,13)
14,15,8(1)
10,10
14,224(C413)
14,1C0(Cy3)
14,224(C+13)
14,98(0,3)

PAGE

7,1
7+24840,13)
7+112(0,+3)
71248(0,13)
250013),%'80"
01248¢0,13)
05112(C,2}
€r24C(0r13)
09232(0,13)
CL.2

4924840,413)
42136(0,3)
136(3)1X*80"
265(13) ,X"20°
10132(0,3)
15,A..1BMBSIDA

154DED..2
1424840+13)
1,228(0,13)
1441540(1)
10,10

CL.8

*

14,94(0,3)
14228(0413)
14512(051)
15444+ IEMBSEHA
14415

10,10

cL.7

*

Ce12
1344(C413)
14,1200,13)
2912,28(13)
le14

other items.

Statements in the object program listing
are ordered by block. Statements in the
outermost block are given first, followed
by statements in the inner blocks. Thus
the order of statements will frequently
differ from that of the source program.

Every object-program listing begins with
the name of the procedure. The name is
defined as a constant in a DC instruction.
This is followed by another constant
containing the length of the procedure
name. Then comes the name of the
procedure, as a comment, followed by code
under the heading "REAL ENTRY." This is
the point at which the code will, in fact,
be entered. The second section of code is
the prologue, which carries out various
housekeeping tasks and is described more
fully later in this chapter. The end of
the prologue is marked by the message
"PROCEDURE BASE." This is followed by a
translation of the first executable
statement in the PL/I source program.

The comments used in the listing are as
follows:

* PROCEDURE xxx - identifies the start of
the procedure labeled xxx.

% REAL ENTRY xxx - heads the
initialization code for an entry point
t0o a procedure labeled xxx.

* PROLOGUE BASE - identifies the start of
the prologue code common to all entry
points into that procedure.

% PROCEDURE BASE - identifies the address
loaded into the base register for the
procedure.

% STATEMENT LABEL xxx ~ identifies the
position of source program statement
label xxx

% PROGRAM ADDRESSABILITY. REGION BASE -
identifies address to which the
program base is updated if progran
exceeds 4096 bytes and cannot be
addressed from one base.

CONTINUATION OF PREVIOUS REGION -
identifes the point at which
addressing from the previous progranm
base recommences.

% END OF COMMON CODE - identifies the end
of code used in the execution of more
than one statement.

% END PROCEDURE xxx - identifies the end
of the procedure labeled xxx.

% BEGIN BLOCK xxx — indicates the start of

the begin block with label xxx.

END BLOCK xxx - indicates the end of the
begin block with label xxx.

BEGIN BLOCK - GENERATED NAME BLOCK.nn -
indicates the start of an unnamed
begin block for which the compiler has
generated the name BLOCK.nn, where nn
is two hexadecimal digits.

END BLOCK.nn - indicates the end of the
begin block with compiler-generated
name BLOCK.nn.

STATEMENT NUMBER n - identifies the start
of code generated for statement number
n in the source listing.

INTERLANGUAGE PROCEDURE xxx - identifies
the start of encompassing procedure
XXx (see chapter 13).

END INTERLANGUAGE PROCEDURE xxx -
identifies the end of encompassing
procedure XxX.

COMPILER GENERATED SUBROUTINE xxx -
indicates the start of compiler-
generated subroutine xxx.

END OF COMPILER GENERATED SUBROUTINE -
indicates the end of the compiler-
generated subroutine.

ON UNIT BLOCK - indicates the start of
an on-unit block.

ON UNIT BLOCK END - indicates the end of
the on-unit block.

END PROGRAM - indicates the end of the
external procedure.

INITTALIZATION CODE FOR OPTIMIZED LOOP
FOLLOWS - indicates that some of the
following code has been moved from
within a loop by the optimization
process.

CODE MGVED FROM STATEMENT NUMBER n -
indicates object code.moved by
optimization to a different part of
the program and gives the number of
the statement from which it
originated. .

CALCULATION OF COMMONED EXPRESSION
FOLLOWS - indicates that the value of
an expression used more tham once in
the program is calculated at the point
indicated.

METHOD OR ORDER OF CALCULATING
EXPRESSIONS CHANGED - indicates that
the order of the code following has
been changed to optimize the object
code.

Chapter 2: Compiler Output 15

In certain cases, mnemonics are used to
identify the type of operand in an
instruction, and, where applicable, this is
followed by a source-program identifier.
The following prefixes are used:

A.. Address constant.

ADD.. Aggregate descriptor
descriptor.

BASE.. Base address of a
variable.

BLOCK.nn Label created for an
otherwise unlabeled
block.

CL.nn Compiler-génerated

: label.

D.. Descriptor.

DED.. Data element
descriptor.

WSP.n Workspace, followed by
decimal number of the
block of allocated
workspace.

L.. Length of variable.

LOCATOR. . Locator.

RKD.. Record or key
descriptor.

vo.. Virtual origin (the

address where element
0 would be held for a
one-dimensional array,
element 0,0 for a
two-dimensional array,
etc.) .

Static Internal Control Section

The static internal control section
contains the majority of items that are not
executable instructions. The contents of a
typical static control section are shown in
figure 2.3.

The first part of the static intermnal
control section contains addresses. These
are held in the order:

1. Addresses of library modules

2. Addresses of entry points

3. Addresses of label constants that may
be assigned to label variables

16

4. Addresses of external procedures
(other than library modules)

The address section is followed by a
section known as the constants_pool. This
contains the following items (if required
by the progranm):

Constants Constant values used
by compiled code.

ONCBs Control blocks used
in error handling.
(See chapter 7.)

Descriptors, Control information

locators and used by compiled
DEDs (data element code and library.
descriptors) (See chapter 4.)

Symbol table Control information

address vector and used in

symbol tables data-directed I/0.
(See chapter 4.)

Information on
statement numbers.

Diagnostic
statement table

Items are arranged according to their
alignment requirements, those requiring
doubleword alignment first, followed by
fullword, halfword, byte, and bit.

The final section of the static internal
control section holds the static variables.
These are held in size order, smallest
first: first the variables of 8 bytes or
less, next the variables of 2048 bytes or
less, and finally any variable greater than
2048 bytes. This system ensures that the
smallest possible number of items will
require indirect addressing, since it will
always be the largest variables that
overflow the 4K boundary. Within each
division, items are grouped according to
alignment stringencies, starting with those
requiring doubleword alignment. This

‘method ensures optimum use of storage.

Program Control Section

The program control section contains the
executable instructions that are a
translation of the PL/I source program.
The format of each program control section
depends on the contents of the source
program. The discussion that follows
covers items that will be common to all
source programs.

To keep discussions of subjects as
complete as possible the chapter also
includes descriptions of certain library
functions when they are closely allied with
the subject under discussion.

{ Dedicated

| Work registers

- —— s o ———— - - ————— "~ — -~ — —— L ————

| registers | (plus special use) | 1
i R e ————— - _—
{t 0| | Gemneral | | Cannot be used
{ | ! { | as base
l - - ———————— ———— - ——— —— —— - - -— - —— v ——— ——— = o ——
[I | | General + address | |
{ | | of parameter list i {
| - ——— — " " ———— > S ————— -~ - — - ——— " — — . T —— . - " " —— > — -
{ 2 | Address of { | | Saved during
| | program base { i { in-line record |
i { 1 { { I/0 and TRT 1
{ | { 1 | instructions
I - - - - ——————— — " o ——— — — — o ——— — - P
I 3 | Address of] | {
i | static base | | |
| ——————————————— e > > < i o i > i it T S~ > o - -
14 { Address of i |
[} {) | temporary base, | i
l { { if DSA is |]
| | { larger than | i
| | | 3896 bytes | 1
'-. e o e o o —— ——— > —— - — - ——— - - - — T ——— - —— - ——
I 51 { General + static | Preferred register |
| I { chainback on entry | for DO loop |
{ i | to procedure | control variable 1
=== -- ikttt it tnd |
i 6| { General | { (
- ———- -== |
1 7 | General | | {
|- Bt ittt -—= - {
I 8| | General | | |
i T T e e s sem—ssssss e |
1 9| | General { | |
== e e e e T m—m— s - -- ===\
I 10 | | General { Preferred registers for |
i- - --| DO loop control when [
1 11 | | General { BXLE instruction is used |
- -——— DB et {
| 12 | Address of TCA | | | |
| e e e e e e e e e e e e e e e —— e — - |
f 13 | Address of { | | |
{ | current DSA i | | |
'_ _________ -——
BRI | General + branch- | | |
1 } and-link to library |-- - - |
t 15 | | and other routines | | |

-
|

Fiqure 2.5. BRegister usage in compiled code

Register Usage

Details of register usage during the
execution of compiled code are given in
figure 2.5.

Four general registers are used as bases
for addressing various types of data; these
are known as dedicated registers. The
remainder of the registers are used as they
are required and are known as work
registers

Dedicated registers are:

R2 Program base.
R3 Static base.
R12 TCA pointer.
R13 DSA pointer.

This arrangement of dedicated registers
allows compiled code the use of six
even/odd work register pairs. These are
(0,1, (4,5), (6,7), (8,9), (10,11), and
(14,15). :

Certain registers have special tasks for
17

Chapter 2: Compiler Output

which they are always used, or for which
they are preferred and used when available.
These tasks are shown in figuye 2.5.

Dedicated Registers

Register 2 - Program_ Base Register:
Register 2 is the program base register and
is used for branching within the code.

When the code exceeds UK, register 2 is
updated so that all branching is done on
this register. During in-line I/O0 (when
data management calls are handled by
compiled code rather than by library
subroutines), and during the execution of
TRT instructions, the program base register
contents are saved and the register used
for other purposes.

Register 3 - Static Base Register:
Register 3 points to the start of the
static internal control section. The items
to be found in this control section in any
particular program are listed in the
static-storage map put out by the compiler.
(See "Static Internal Control Section,™
later in this chapter.) “When the static
control section is larger than 4K bytes, a
further base register is used.

Register 12 - TCA: Offsets from register
12 are used to address the various fields
in the TCA. The TCA is discussed further in
chapter 5 and appendix B.

Register 13 - Current DSA: Register 13
points to the current DSA and is used to
address the automatic variables declared in
the current procedure or block. References
to offsets from register 13 which do not
appear as names in the assembler language
listing are references to the housekeeping
fields held in every DSA or to temporaries.
These are discussed in chapter 6; a map of
the housekeeping information in a DSA is
given in appendix B.

Special or preferred uses for work
registers are shown in figure 2.5. Special
uses are those for which the register is
freed and always used. Preferred uses are
those for which the register is used when
possible.

Floating~Point Registers

Floating-point registers are all used as

18

general work registers for floating-point
data.

Library Register Usage

Register usage in library modules is
different from that in compiled code. It is
shown in figure 2.6.

Work register

Work register

Program base register
(dedicated)

Work register

Work register

Work register

Work register

Work register

Work register

Work register

Work register

TCA pointer (dedicated in
both library and compiled
code)

DSA pointer

Work register (always used
for branch-and-link to other
routines)

Work register (used with
register 14 for
branch-and-1link)

LCoOodOnE w N =

-
N=O

-
£ w

-
wn
— . —— ——— —————— " ——a ——— —— . —— e)

(o T e s - —
=
-t

— - — — — — —— — ——— —— — — — —— —— —— —— —

[

Figure 2.6. Library register usage
Two further points about library
register usage are worth noting:

1. Registers 14 through 4 are normally
saved by the library. This is because
the majority of library subroutines
use only these registers.
Consequently, time can be saved by
reducing save-restore requirements.
However, some library routines also
save one or more of registers 5
through 11.

2. The majority of library subroutines
require argument lists that are
addressed by register 1. However,
certain library routines have their
parameters/arguments passed directly
in registers. The registers used for
this purpose are 1, 5, 6, and 7.

Handling and Addressing Variables

HANDLING AUTOMATIC VARIABLES

Automatic variables have storage allocated
on a procedure or begin-block, basis.
Variables whose length is known during
compilation have storage allocated within
the DSA of the block in whick they are
declared. Variables whose length is not
known until execution time have their
storage allocated in variable data areas
(VDAs). VDAs are held in the last-in/first-
out storage stack and are acgquired in the
prologue code after the DSA has been
acquired. The same method is used as is
used for acquiring the DSA (see above under
"Prologue Code.")

Automatic variables when used in the
block in which they are declared are
addressed from register 13, if they are
held in the DSA. If they are held in a
VDA, a separate base is set up for the VDA
and they are addressed from this.

Within a DSA, automatic variables are
held in size order. First those of 8 bytes
or less, then those of 2048 bytes or less,
and finally those larger than 2048 bytes.
Within each group items are held in
alignment stringency starting with items
that require doubleword alignment. This
arrangement results in the minimum number
of variables overflowing the 4096 byte
addressing boundary. The contents of a
typical compiled code DSA are shown in
figure 2.7.

Automatic variables known in any
procedure or block are those that are
declared in that procedure or block, or in
any encompassing procedures or blocks. The
method used to address automatic variables
in outer blocks is as follows. The address
of the DSA of the block in which the
required variable was declared is placed in
the current DSA. This address can then be
accessed from register 13. This is done in
the prologue. (Frequently, the value is
retained in the register used in the
initial load and not reloaded when the
variable is accessed.) Typical code would
be

L 7,96(0,13) Pick up address of

correct DSA

Place value of variable

L 8,108(7)
' in register 8

COMPILER-GENERATED TEMPORARIES

Because PL/I statements can contain an
unlimited number of operands, it is
freguently necessary to set up fields
containing intermediate results. These
fields are known as temporary variables
(temporaries) and are allocated within the
DSA of the associated block, provided that
the size of storage required is known at
compile time. To simplify addressing the
temporaries, register 4 is used to point at
the start of the area used for storing
them, if the DSA requires more than 30896
bytes of storage.

Because temporary storage is continually

being reused, the same storage area will
not always hold the same temporary.

Temporaries_ for Adjustable Variables

Where a temporary is needed to hold a value
for an adjustable variable, its size is not
predictable until execution. In such
cases, a VDA is acquired for the temporary
value. :

CONTROLLED VARIABLES

Controlled variables are addressed through
a field that holds the address of the most
recent allocation of the variable. For
internal controlled variables, this address
is held in the static internal control
section. For external controlled
variables, a separate control section is
generated. When no allocations of the
controlled variable have been made, the
address field is set to zero.

Bach allocation of a controlled variable
holds the address of the previous
allocation in a chainback field at its
head. PFor the first allocation, the
chainback field is set to zero.

The stacking and unstacking of
controlled variables is handled by the
library module IBMBPAF. This, in turn,
makes use of IBMDPGR to actually allocate
or free the storage for the variables.

Control Block

The control block area at the head of each
controlled variable is four words in length
and consists of the following fields.

Chapter 2: Compiler Output 19

R13

Figure 2.7.

20

Housekeeping information
See appendix A

Items < 9 bytes in fength

Held in alignment order:
doubleword
fullword
halfword
byte
bit

Items 9 — 2048 bytes in length

Held in alignment order as above

Items > 2048 bytes

Held in alignment order as above

Parameter storage area
Addresses of any parameters
passed to the associated
procedure are stored here

Register bind storage area

Used by compiled code when
registers must be saved

Local temporary storage

Used for temporaries required
for duration of statement

Global temporary storage

Used by temporaries required
for duration of block

Storage for automatic
variables declared in
the block, dynamic
ONCBsetc.

Temporary storage

Typical contents of a compiled code DSA

Wword 1 The first word is used for
chaining.

Word 2 Word 2 contains the length of the
variable, including the control block.

Word 3 Word 3 points to the address of the
previously allocated variable, or
contains zero if there is none. (This
address is word 5 of the area used by
the previous allocation, because the
address is that of the start of the
variable itself rather than the
control block.)

Word 4 Word 4 is unused.

Allocating a_Variable

A controlled variable is allocated when
IBMBPAF is entered by entry point A. The
length of the storage required and the
address of the anchor word which will hold
the address of the current invocation are
passed in register 1. The length is
increased by 16 bytes to allow for the
control block, and the module IBMDPGR
called to allocate the storage. The
control block is then initialized. The
first bit in the anchor word is set to
indicate that the controlled variable has
been allocated, the o0ld address in the
anchor word having been set in the
chainback field (word 3) in the control
block at the start of the variable. 1If
there have been no previous allocatiouns,
this address is zero.

Freeing.a Controlled Variable

Freeing a controlled variable is carried
out by IBMBPAF when entered via entry point
B. The address of the anchor word is
passed by compiled code. TIf the chainback
field in the variable is zero, the first
bit of the anchor word is set on, and the
area freed by calling IBMDPGR.

If the chainback field is not zero, the
address in the chainback field is placed in
the anchor word, and IBMDPGR called to free
the area.

BASED VARIABLES

Based variables are addressed by using the
contents of the pointer on which they are
based. The pointer is addressed in the
usual manner, depending on its storage

class.

When a based variable is allocated, a
call to the storage management module
IBMDPGR is made. IBMDPGR acquires storage
in the non-LIF0 dynamic storage area and
returns the address of the storage in
register 1. The address held in register 1
is then placed in the pointer on which the
allocated variable is based.

When the variable is freed, a further
call to IBMDPGR is made to free the
storage. (Details of the functions of
IBMDPGR are given in chapter 6.)

Pointers: Pointers are held as fullwords.
The null pointer value is X'FF000000°'.

STATIC VARIABLES

Static internal variables are held in the
static internal control section and are
addressed from register 3.

Static external variables are held in
separate control sections and are addressed
from an address constant in the static
internal control section.

ADDRESSING BEYOND THE 4K LIMIT

As described above, variables and
temporaries can, in the simplest case, be
addressed by using an offset from one of
the base registers. However, as the space
required for any particular type of storage
can exceed the maximum offset allowed in
addressing (4096 bytes), it is necessary to
have a scheme to allow addressing of
variables beyond this limit.

The method used is to divide storage for
automatic variables, temporaries, and
static variables into sections of 4096
bytes. The addresses of the second and
subsequent sections are then placed in the
first section. Addressing of an automatic
variable beyond the #096-byte limit is
typically done by code resembling the
following:

Place address of 4K
boundary in register 6.

L 6,92(0,13)

AH 7,96 (0,6) Address variable by using
offset from 4K boundary
placed in register set

ap in last instruction.

A similar system is used for addressing
any static variables and temporaries which

Chapter 2: Compiler Output 21

are at an offset greater than 4096 bytes.
The addresses are held in the following
areas:

Imnmediately following the
housekeeping information
of the DSA.

Automatic

Static At the head of the first
section of static

storage.

At the head of temporary
storage, following bases
of parameters, register
save area, and addresses
of any outer DSAs.

Temporaries

Constants and variables are held in
order of size, with the smallest first.
This minimizes the number of items that
overflow the 4K boundary.

Handling Data Aggregates

PL/I data aggregates are structures and
arrays. This includes both arrays of
structures and structures of arrays.

Array elements are addressed from the
virtual origin of an array. This is the

point at which the element whose subscripts
are all zeros is held, or would be held if
no such element is included in the array.
Bach element can be accessed by using a
multiplier for each dimension. The
multiplier is the distance between elements
in a cross-section of an array. For
example, in an array B(9,9) the multiplier
for the first dimension is the distance
between elements B(1,1) and B{(2,1); the
multiplier for the second dimension is the
distance between elements B(1,1) and
B(1,2).

If the bounds of the array and the
length of the elements of the array are
known during compilation, the values of
multipliers can be calculated and placed as
constants in the static internal control
section. For accessing an element with a
constant subscript, the offset from the
virtual origin can be calculated during
compilation. If the subscript value is a
variable, the multiplier must be picked up
from static storage during execution and
the value calculated.

If the bounds or extents of an array are
not known during compilation, a control
block known as an array descriptor is set
up. This control block is used to hold
necessary information about bounds,
multipliers, etc. The information is placed
in the control block during execution.

22

Array descriptors are described in chapter
4.

Structures are treated in a similar
manner. Where all information about a
structure is known, it is mapped during
compilation and offsets to each item from
the start of the structure are known to
compiled code. If a structure cannot be
mapped during compilation, it is mapped
during execution, and the offsets within
the structure are placed in a control block
known as a structure_descriptor. To access
an item in the structure, compiled code
finds the offsets and calculates the
address of each element from them.
Structure descriptors and the process of
mapping during execution are described in
chapter 4.

ARRAYS OF STRUCTURES AND STRUCTURES OF
ARRAYS

Arrays of structures and structures of
arrays are held as they are declared.

The array of structures

5(2),
B,
Cs

would be held in the order S(1).B, S(1).C,
S(2).B, S(2).C.

B and C are known as interleaved arrays,
because the elements within each array are
not contiguous.

The structure of arrays
S,
B (2)
C(2);

would be held in the order S.B{(1), S.B(2),
s.C(1), S.C(2)-

Elements are accessed as array elements in
both cases. In the array of structures
shown above, both B and C are treated as
separate arrays with their own virtual
origins and multipliers. When possible,
the values of multipliers are calculated
during compilation. When adjustable bounds
or extents are involved, the necessary data
for both arrays of structures and
structures of arrays is placed in a
structure descriptor (see chapter 4).

ARRAY AND STRUCTURE ASSIGNMENTS

Assignments between structures and arrays
of the same format are done by MVC
instructions. Provided an array is not
interleaved, an assignment will be made to
it as a whole, and the elements will not be
moved one at a time. Similarly, structures
that are contiquous and have the sanme
format are moved as a whole.

Handling Flow of Control

In PL/I, five types of statement can result
in non-consecutive flow of control. These
statements are: .

CALL statements

END statements
RETURN statements
Function references
GOTO statements

The first four of these are concerned with
the block structure of the PL/I program and
involve passing control from ome block to
another. GOTO statements can result in
branches to code that is either in the
current block, or in any other active
block.

Consecutive flow of control also ceases
when an error or program interrupt occurs.
The methods used to handle error and PL/I
condition situations are described in
chapter 7, "Error Handling."

ACTIVATING AND TERMINATING BLOCKS

CALL, END, and RETURN statements, and
function references, all result in the
activation or termination of blocks. The
block structure of PL/I, as explained in
chapter 1, is implemented by means of a
hierarchy of DSAs.

Each block (begin block, procedure
block, or on-unit block) executes on its
own program base that is set up at the end
of the prologue code for each block. This
base is marked in the object code listing
with: .

* PROCEDURE BASE

In the PL/I optimizing compiler, blocks
are always called by means of a BALR

instruction on registers 14 and 15. Within
the prologue code, the registers are stored
in the DSA of the calling block, and a new
DSA is set up to hold the automatic
variables of the new block plus a certain
amount of environmental information such as
the enablement or disablement of certain
conditious.)

When a block is terminated, the
registers of the calling block are
restored, and a branch is made on register

‘14. This immediately returns control to the

instruction after the BALR issued in the
preceding block. The DSA of the called
block is automatically discarded because
all fields in the DSA, including the
pointer to the next available byte of free
storage, were addressed from register 13.
Because register 13 has been altered, the
values that apply to the calling block
automatically become current when the
calling block's registers are restored.

PROLOGUE AND EPILOGUE CODE

Every PL/I begin block or procedure block
has prologue and epilogue code. The
prologue prepares the environment for the
associated block and acquires storage for
automatic variables, compiler-generated
temporaries, and workspace. The epilogue
frees the storage acquired. for the block,
restores the environment of the calling
block, and returns control to the calling
block.

Prologue

The prologue appears on the object-program
listing between REAL ENTRY and either
PROCEDURE BASE or BLOCK BASE. Every
prologue has to acquire a dynamic save area
(DSA) for the new block. (The DSA is a
register save area concatenated with
housekeeping information, plus storage for
automatic variables and temporaries.) Other
jobs that may be done in the prologue code
are:

e Initialization of automatic variables
that have the INITIAL attribute.

e Initialization of pointers and locators
that have the INITIAL attribute.

e Movement of parameter addresses passed
to the procedure to the correct
location.

e Acquisition of storage for adjustable
variables.

Chapter 2: Compiler Output 23

- ——

Store registers of calling program.

Constant - address of statement number table.
Constant - length required for new DSA.
Constant - address of static 1nternal CSECT filled in

(start of new DSA).~
Place length required for new DSA in RO.
Add old NAB (in R1) and length required for DSA (in

Branch around library call if new DSA fits segment.
Load address of stack overflow routine (IBMBPGRC) from

Pick up library workspace address.

Store library workspace address and current and
end—-of-prologue NAB addresses in new DSA.
Set up backchain to previous DSA.

Set up static backchain. :
Set up housekeeping flags - see appendix B.

Set up enable cells - see chapter 7.

Other tasks may be carried out at this point. (Such
as, initialization of variables with the initial
attribute, acquiring a VDA for adjustable variables,
and setting up certain error-handling fields.)

[- - - —— i — i —— . —————— T ——— ———)

Figure 2.8.

STH 14,12, 12(13)
BC *+16 Branch around coanstants.
DC A(STMT NO TABLE)
DC F1272¢
DC A (STATIC CSECT)
by linkage editor.
L 3,16(0,15) Set up R3 as static base.
L 1,76 (0,13) Set R1 to o0ld NAB
L 0,12(0,15)
ALR 0,1
. : RO) .
CcL 0,12(0,12) Compare with EOS in TCA.
BNH *+10
L 15,116 (0, 12)
TCA. -
BALR 14,15 Branch to overflow routine.
L 14 72(0 3)
LR 15,0 Place NAB address in R15.
STHM 14,0,72(N)
ST 13,4(0, 1
LA 13,0(1,0) Point R13 at new DSA.
ST 5,88(0,13)
MVI 0(13) ,x*80"
MVI 1(13) ,x'00?
MVC 84 (4,13),166(3)
Other code as required
BALR 2,0 Set R2 as program base.

e o o e S G e T S ame W e - — - —— s o s =)

Typical prologue code

in register 5.

Static backchains are used in tracing

r a3

| L 13,4(0,13) Chainback | the scope of names and the enablement of
| LM 14,12,12(13) Restore registers of| PL/I conditions.

{ preceding block |

{ BR 14 Return | For PL/I procedures with COBOL or

L- - —— 4

Figure 2.9. Epilogue code
e TIpitialization of certain 1tems for
argument lists.

e Setting-up certain interrupt-handling
information such as ONCBs and enable
cells. (See chapter 7.)

An example of prologue code is shown in
" figure 2.8.

Two backchains are set up. The dynamic
backchain, which points to the DSA of the
calllng or precedlng block, and the static
statically encompassing block. - For the
main procedure, the dynamic backchain
points to the dummy DSA, and the static
backchain is set to zero. The address of
the statically encompassing block is passed

24

FORTRAN in the OPTIONS option, the prologue
is considerably different. See chapter 13,
"Interlanguage Communication."

The format of the DSA is shown in figure
2.7.

Epiloque

Epilogue code comprises the instructions
generated for END or RETURN statements.
These instructions restore the registers to
the values that were held when the current
block was called. The register values are
those stored in the previous DSA. Typical
epilogue code is shown in figure 2.9.

For the external procedure the epilogue
code ‘is slightly different. The address of
the current DSA is saved in register 0, and

return made by a BALR instruction using
registers 1 and 14. This allows return to
the program if a FINISH on-unit has to be
© executed.

CALL_Statements

CALL statements are executed by picking up
the address of the block to be called from
static storage. A BALR instruction is then
carried out on registers 14 and 15. 1If
arquments are being passed to the called
procedure, an argument list is set up in
temporary storage, the .first bit of the
last argument is set to '1', and register 1
is pointed at the argument list. Typical
code would be:

000312 18 5D LR 5,13
Load. static backchain
address

00031C 58 F0 3 020 L 15,A...X

Pick up address of
procedure X
BALR 14,15
Branch to procedure

000320 05 EF

e R I m2s

Punction references are compiled in exactly
the same way as CALL statements. If the
function returns a value, an extra field is
placed as the last argument in the list.
The returned value is placed in. this field
when the function is completed. Typical
code would be:

0001PE 41 90 6 OB4 LA 9,B
000202 50 90 3 0OBC ST 9,188 (0,3)
000206 41 90 6 0BO LA 9,
000202 50 90 3 0cCO ST 9,192(0,3)
. Set up parameter list
00020E 18 5D LR 5,13
Load static backchain
) address
000210 41 10 3 OBC LA 1,188(0,3)

Point register 1
: at parameter list
000214 58 FO 3 008 L 15,A...DOUBLE
) Place address of
function
(DOUBLE) in R15
BALR 14,15
Branch to function

- 000218 05 EF

END Statement

END statements result basically in
restoring the registers of the calling

block and branching to the value held in
register 14 of that block.

Code compiled for an END statement of an
internal block takes the following form:

000402 58 DO D 004 L 13,4(0,13)
Pick up DSA backchain
000406 98 EC D 00C LM 14,12,12(13)
Restore registers
000402 07 FE BR 14

Branch to procedure

For main procedures, certain further
actions have to be taken. Because the end
of a main procedure raises the FINISH
condition, it is necessary to save the
current value of register 13 so that the
error handler may search the DSA chain for
a FINISH on-unit. As it is possible to
request a SNAP trace in a FINISH on-unit,
it is also necessary to save the address of
the END statement. For this reason, the
branch is made with a BALR instruction
rather than a branch instruction as used
for internal blocks. Typical code would

be:
00188C 18 0D LR 0,13
Save current DSA
address in RO
00188E 58 DO D 004 L 13,4(0,13)
Pick up DSA backchain
001892 58 EO0 D 00C L o 14,12(0,13)
Restore register 14
001896 98 2C D 01C LM 2,12,28(13)
: Restore registers 2
; through 12
001892 05 1E BALR 1,14

-Branch to initializa-
tion routine saving
branch address in
register 1

RETURN Statement

RETURN statements are executed in a similar
way to END statements, but result in the
termination of a procedure rather than a
block. Consequently, before the
restoration of the registers, a chainback
must be made to the correct DSA. A
chainback is made through any begin blocks.
The depth of nesting can be determined
during compilation, so the backchain can be
loaded the required number of times before
the branch is made. Typical code would be:

0003EC 58 DO
0003F0 58 DO

. 004 L 13,4(0,13)
004 L 13,4(0,13)

Pick up DSA backchain
00C LM 14,12,12(13)
_ ~ Restore registers
0003F8 07 FE , BR 14 B
Branch to procedure

o oo

0003F4 98 EC

Chapter 2: Compiler Output 25

Note: If the procedure in which the RETURN
statement occurs is a main procedure, the
code will take the form compiled for an END
statement for an external procedure (see
above). i

GOTO STATEMENTS

The implications of a GOTO statement depend
on whether the label branched to is within
the block or external to it. If the label
is outside the block, the branch implies
that one or more blocks must be terminated.
If the label in the GOTO statement is a
label variable, it is not always possible
to determine during compilation whether the
label will be in the same block as the GOTO
statement. Consequently, interpretive code
is used for label variables. ‘

For GOTO statements to a label coanstant
within the block, the compiler produces a
straightforward branch instruction. For
GOTO statements that may pass control to
another block, compiled code calls the
interpretive code in the TCA.

Interpretive code to handle a GOTO out
of block is held in the TCA. To implement
a GOTO that will or may transfer control
out of the block, compiled code branches to
code in the TCA. The code in the TCA
checks to see whether it is one of a small
nunber of special cases, and, if it is,
calls a subroutine of the PL/I resident
library module IBMDPIR. IBMDPIR is the
program initialization routine and is
always link-edited. In other
circumstances, the GOTO code in the TCA
handles the branch and any block
termination involved.

The special cases all occur when
executing code handled by library modules.
These library modules flag the TCA and
their own DSA to indicate that special
action must be taken when a GOTO occurs.

To execute a GOTO statement, three
things must be known:

1. The address of the instruction to be
branched . to.

2. The address of the program base.

3. The address of the DSA associated with
the instruction.

The label constant holds items 1 and 2.

Item three is held im a label variable.
(For formats see appendix B). When a
branch is made to a label constant using
the GOTO code in the TCA, a label temporary
is created. The‘label temporary has the

26

same format as a label variable, consisting
of the address of the label constant
followed by the address of the associated
Dsa.

GOTO_Within a_Block

The optimizing compiler produces code that
assumes that the registers retained across
the execution of a labeled statement will
be 2, 3, 12, and 13. These are the progranm
base, the static base, the address of the
TCA, and the address of the current DSA.
A1l other register values may be different
wvhen control pases through the labeled
statement on differe occasions.

The enablement of conditions may differ
in the GOTO statement and in the labeled
statement. Within a block, the enablement
status may be varied only for the duration
of a single statement. The GOTO therefore
resets the block enablement status before
the branch is taken. If the labeled
statement has a different enablement status
from the block, it will be automatically
reset in the labeled statement.

As explained in chapter 7, "Error and
Condition Handling," the enablement of
conditions is recorded by enable cells.

Two sets are used: the block enable cells
retain the enablement situation at the
start of the block, which can consequently
be restored at any time; the current enable
cells hold the enablement situation that is
current, which, as explained earlier, may
differ from that at the start of the block.

A GOTO within block normally takes the
form of a simple branch instruction plus
any alteration of the enablement bits that
may be necessary to reset the enablement
situation to that at the start of the
block. Typical code would be:
000F1a 47 FO 2 0cC8 B INPOUT

Branch to correct
address in compiled
code (label name is
"INPUTY)

The optimizing compiler attempts to
retain the same block base for all branches
within a block. However, this is not always
possible and, if the code for the block is
longer than 4096 bytes, it may be necessary
to set up a new base when a GOTO statement
is executed. As all labels are stored with
both their address and their base, this
presents no problem. The address of the
label and the value of its base form the
value of the label constant. The value of
the base is placed in register 2, and a
branch is made to the label address.

When a GOTO to a label within the block
is made, there is no need to reset
registers 3, 12, or 13 as these are not
altered within a block.

Labeled statements within a block have
an effect on optimization in that, apart
from the bases and block addresses
mentioned above, values cannot be retained
in registers beyond a labeled statement.

GOTO Out of Block

GOTO statements that transfer control from
a block have to overcome the problems
described above, plus problems of block
termination.

For a GOTO out of block or to a label
variable, compiled code makes a call to the
GOTO code in the TCA, which is held at
offset 128 (decimal). The GOTO code
receives, through registers 14 and 15,
either the contents of the label variable
or the equivalent information for a label
constant, namely the address at which the
label constant is held, and the address of
the DSA of the block in which the label
appears.

| The GOTO code first tests to see if a
{change of block is being made. If not, the
|enablement is reset as described below. If
ta change of block is being made, then, if
{FLOW or COUNT is in effect a call is made
{to IBMDEFL to update the flow or count
|tables. Next, the GOTO subroutine of

| IBMDPIR is called to determine if a valid
|GOTO is being undertaken. The GOTO
|subroutine ensures that the target block
jfor the GOTO is still active and is not an
|invalid address. Provided that this is not
{an abnormal GOTO, registers 3 and 4 are
{restored from the target DSA, register 2 is
{loaded from the second word of the label
{constant, and register 13 is set to the
{address of the target DSA. The routine
then branches to the appropriate point in
code which is picked up from the address of
the label constant, passed in register 14.

The enablement situation at the start of
the block has to be restored, and this is
done by setting the current enable cells in
the DSA to the value of the block enable
cells. If the current enable cells
indicate that CHECK is enabled, the module
IBMDPGD is called. A sedrch is made for a
qualified CHECK ONCB, so that the enable
cells may be set to the start-of-block
situation in this ONCB.

In a similar manner, it may be necessary
to restore the NAB value to that at the
start of the block. This will be necessary

if the statement that invoked the block
acquired a VYDA. The start-of-block NAB
value is retained in the DSA and is krown
as the end-of-prologue NAB. If a VDA has
been acquired, the fact is flagged in ‘the
flag byte of the DSA, and the GOTO code
places the end-of-prologue NAB value in the
current NAB field.

Such action is never required within a
block, as VDAs are only acquired for the
duration of one statement and are never
used for GOTO statements. Typical code
would be:

GOTO label-constant (out of block)

000226 18 F6 LR 15,6
Place address of DSA
in R15

000228 41 EO 3 088 LA 14,136 (0,3)
Place address of
label constant in R14

47 FO C 080 B 128 (0, 12)
Branch to GOTO code
in TCA

00022C

GOTO Label Variable

GOTO label variable statements are treated
in different ways depending on whether
optimization has been specified.

For NOOPTIMIZE, they are all treated as
GOTO out of block; for OPTIMIZE(TIME), a
check is made to determine whether they
could be out-of-block branches. The check
is made by testing a label list, which is a
list of the label constants to which the
label variable may be assigned. If the
programmer has supplied a label list, it is
used. Otherwise, a list is generated
containing all the label constants that are
assigned to label variables. If a branch
to any of the labels in the list could
result in a GOTO out of block, all GOTO
statements referring to the label variable
are treated as GOTO out-of-block
situations. Typical code would be:

GOTO label-variable

0000D0 98 EF D 0A8 LM 14,15,168 (13)
Load R14 and R1S5 with
label variable

0000D4 47 FO O 080 B 128 (0,12)

Branch to GOTO code
in TCA

GOTO_Only On-Units

On-units containing only a GOTO statement

Chapter 2: Compiler Output 27

are not compiled as separate program
blocks. ON_con _bl

(ONCB) normally used to address the on-
unit, is specially flagged and, instead of
containing the on-unit address, contains
the offset within the associated DSA of a
word which contains the address of a label
variable or label temporary. This variable
or temporary contains the address of the
label constant to which control is to be
transferred and the DSA associated with the
label constant.

Before an on-unit is entered, the error
handling module, IBMDERR, inspects the ONCB
and, for a GOTO only on-unit, transfers
control by loading registers t4 and 15 with
the label variable or temporary and passing
control to the GOTO code in the TCA.

{If the test in the GOTO subroutine in

{ IBMDPIR indicates that an abnormal GOTO may
|occur, control passes to the interpretive
{GOTO subroutine. This routine is held as
{another subroutine of the initialization
froutine IBMDPIR, and is consequently always
|link-edited.

All the situations that can lead to
abnormal GOTOs are handled by library
routines. When these routines are entered
they flag the TCA and their own DSA to
indicate that an abnormal GOTO may occur.

The interpretive GOTO subroutine chains
back through the DSA's and when it finds
the flagged DSA passes control to the
associated module which does any necessary
housekeeping.

/Thg special calses in which the
interpretive GOTO subroutine is called are:

GOTOout of a SORT E35 or E15 routine.
GOTO out of an EVENT 'I/O on-unit.

GOTO out of an on-unit which results in
the termination of a COBOL or
FORTRAN routine.

These situations are covered more fully in
the relevant sections of this publication
(See index).

The interpretive GOTO subroutine is
described in DOS_PL/I Resident Library
Program Logic manual.

28

Argument and Parameter Lists

In PL/I usage, a parameter list is a list
of the items a program expects to be
passed; an argument list is a list of the
items that are passed by the calling
routine.

Between PL/I routines, addresses are
always passed rather than the arguments
themselves. For strings, structures,
arrays, and areas, the addresses of
locators are passed rather than the
addresses of the arguments themselves. The
format of locators and the reasoms for
their use are given in chapter 4.

When arguments are passed to routines
whose entry points are declared with the
ASSEMBLER, COBOL, or FORTRAN attribute, the
address of the data itself must be passed.
The method used is described in chapter 13,
"Interlanguage Communication."

Arguments are passed in an argument list
addressed by register 1. Normally the list
is set up in static storage. The addresses
are loaded into consecutive registers and
placed in the list by an STM instruction.
If the procedure is reentrant or recursive,
the list is moved into the temporary
storage area of the DSA before the call is
nade.

The addresses passed in the argument
list are moved into the parameter storage
area, which is held at the head of
temporary storage and is addressed by
register 4. (See figure 2.9.) Parameters
are then accessed by picking up the
addresses from this area.

Dummy arguments, when they are required,
are set up by the calling program.
Consequently, the called program can treat
all arguments in the same manner.

LIBRARY CALLS

Library calls are a feature of every object
program. All library calls that appear in
the object-program listing are to modules
in the resident library. Transient library
routines are called by bootstrap routines
which are held in the resident library.

The number of library calls used depends
on the source program and the level of
optimization specified. For OPTIMIZE
(TIME), the minimum number of library calls
vill be made. If NOOPTIMIZE is specified,
library calls will be made where this will
speed compilation. The standard default is
NOOPTIMIZE.

|

LA 1,40 (0, 4) Point R1 at argqument|
list {
LA 14,V0..0(11) Load address of |
argument in register|
LA 15,DED..VO0.. Load address of |
g1 arqument in register|
STM 14,15,0(1) Store into argument |
list |
L 15,R..IBMBSLOA Pick up address of |
routine from static |
internal control |
section and place in|
R15
BALR 14,15 Branch and link to
routine
Example 1. Call to library routine that

has been link-edited and whose address
is held in the static internal control
section. The arguments passed are
addressed by register 1.

e e M i - — i —— i — — — — — — i — —— ———

L 15,116 (0,12) Load address of
routine held in TCA
BALR 14,15 Branch and link to
routine
{ Example 2. Call to library routine

{ whose address is held in the TCA

L ——

he e o o o A — —— — o — o — - —

Figure 2.10. Exanmples of library

calling sequences

Figure 2.11 shows examples of sequences
used for calling library modules. The
majority of library calls can easily be
recognized by the appearance in the listing
of the letters "IBM" followed by five
letters specifying the module name and
entry point. To call a module, its address
is loaded into register 15, and a BALR
instruction is carried out on registers 14
and 15.

The fifth letter of the entry point name
is mnemonic of the type of module that is
being called. Figure 2.12 gives the
meaning of the mnemonics. Full details of
the library modules are given in the
program product publications DOS_PL/I
Transient Library: _Program_Logic and DOS
PL/I Resident Library: _Program Logic.

A further discussion of library module
naming conventions is given chapter 3.

Setting-Up Arqument Lists

Before a call is made to a library module,

an argument list must normally be set up.
This is done in one of several ways,
depending on the library module. The
majority of library calls require the
method shown in fiqure 2.10, example 1.
This consists of loading the list into
sequential registers starting at register
14, and then using a store-multiple
instruction to place the arguments into an
area of static storage, whose address is
then loaded into register 1. Argument
lists are set up as far as possible during
compilation and, where necessary, completed
during execution.

Addressing_the_ Subroutine

Library addresses are normally held inmn
static storage and addressed as an offset
from register 3. However, the addresses of
certain library routines are held in the
TCA or the TCA appendage and addressed from
register 12. They are addressed either
directly or indirectly as shown in example
2 of figure 2.10. The names of these
routines do not appear on the listing;
however, they can be identified by their
offset from the start of the TCA (see
figure 2.12).

r A
{ IBMBA--- | Array handling |
| IBMBB--- String handling |
| IBMBC--- | Conversion]
{ IBMBE--- | Error handling |
IBMBI---	Interlanguage communication
IBMBJ---	Date/time/delay/wait
IBMBK---	Dump/sort/checkpoint/restart
IBMBM--—-	Mathematical
IBMBO---	Open/close i
IBMBR---	Record I/O
IBMBS---	Stream I/0
IBMBT---	Completion pseudovariable {
	routine 1
L S—

Figure 2.11. Mnenomic letters in
library module entry-point names

Chapter 2: Compiler Output 29

DO-LOOPS

Where possible, do-loops are carried out by
means of a BXLE instruction, because this

-
| Offset fronm

|Decimal | Hex |

-
| Name of | Use
| start of TCA | module i
| (Register 12) | entry {
[ittt { point |
|

|
{
I
|
I
|
|
48 IBMBPGRD |Stack overflow|
|routine to |
: {get VDA |
108 6C IBMBPGRA {Get non-LIFO |
|dynanmic |
|storage {
IBMBPGRB |Free non-LIFO |
{dynanic |
|storage |
IBMBPGRC |Stack overflow]
|routine for |
{prologue {
IBMBERRB |[Error handler |
| software 1
linterrupt |
IBMBJWTA |WAIT module {
IBMBTOCA |Completion |
|pseudovariable|
|routine |
IBMBTOCB |Event variable|
{assignment |
|routine |

112 70

116 74
120 78

264
268

108
10C

272 110

\

- — — — o — T o S —— = —— — -
N — —— T — —— T — T auon T ——— D p— - . — — ——

L ———

Figure 2.12. Offsets where addresses
of library modules are held in the TCA

is more efficient than using a simple BCT
instruction. BIXLE do-loops can be used
where the control variable cannot be
altered except at the head of the loop, and
where it is not subsequently accessed after
the completion of the loop. BXLE do-loops
cannot be used for the outer of a number of
nested do-loops. For outer loops, other
branch instructions are used. Code for two
of typical nested do-loops is shown below.
Note that the code will differ according to
the context of the loop.

~ Source_program

DO I = 1 to 10;

DO J =1 to 10;

<]
Ze 0 s e e
o

30

END;

Note: For the code to be compiled in the
manner shown below, J must not be accessed
during the loop, nor after the loop until a
new value has been assigned.

Object progranm

1. Code _for outer do-loop

LH 5,596 (0,3) Pick up 1 from
constants pool

STH 5,1 Place 1 in I

CL.1 EQU *

LH 5,1

AH 5,596 (0,3) 1Increment and

STH 5,1 store in I

C 5,598(0,3) Compare I and
constant 10 in
static storage

BNH CL.1

2. Code for inner do-loop

LH 5,596 (0,3) Place 1 in
first operand

LH 10,596 (0,3) Place 1 in
second operand

LH 11,598 (0,3) Place 10 inm
comparand

CL.2 EQU *

BXLE 5,10,CL. 2 Increment,
test, and
branch if
necessary.

COMPILER-GENERATED SUBROUTINES

The compiler uses internal subroutines to
carry out certain functions. These have
the advantage over library modules, because
they can be tailored for the most common
case. When special cases arise, the
library routines are called. Compiler-
generated subroutines have the further
advantage that they are internal to
compiled code and consequently need not
follow the standard operating system
calling sequence.

Compiler-generated subroutines are used
for the following purposes.

IELCGIA Stream I/0 input - provides
address of source of next
edit-directed data or format
item

IELCGIB Stream (edit) I/O input -
housekeeping after
transmission of data item

IELCGOA Stream I/0 output - provides
address of target of next
edit-directed data or format
item

IELCGOB Stream I/0 output - updates
FCB, counts data item, and
frees VDA if one was used

IELCGOC Stream I/0 - processes X
format items

IELCGMYV Move long (registers 6,7,8,9)

IELCGCL Compare long (registers
1,6,7,8,9)

IELCGCB Compare long bits

IELCGON Dynamic ONCB chaining

IELCGRYV Revert VDA chaining

IELCGBB Test for '1' bits

IFLCGBO Test for '0' bits

Compiler-generated subroutines are held in
separate control sections and are printed
at the head of the object-program listing
if they are used in a progranm.

Optimization and Its Effects

Optimization is the attempt to produce the
most efficient possible object progranm.
The DOS PL/I Optimizing Compiler adopts a
threefold approach:

1. It attempts to compile each statement
in the most efficient manner.

2. It modifies the resulting code for
each block, in an attempt to make it
more efficient (for example, by
maintaining values in registers and by
using common control blocks for
similar items).

3. It examines the source program to
discover whether statement flow can be
reorganized to produce a more
efficient program (for example, by
moving code out of loops).

The effect of specifying the compiler
option OPTIMIZE (TIME) is that the compiler
loads and calls the optimization phases,
and executes optimization code in other
phases. The optimization phases are
described in the publication DOS_PL/I
Optimizing Compiler: Program Logic.

When NOOPTIMIZE is specified, the

optimization phases are not called; mno
attempt is made to study the flow of the
program, and the examination of compiled
code for possible improvements is not
undertaken on a global basis. More library
calls will generally be made if NOOPTIMIZE
is specified.

EXAMPLES OF OPTIMIZED CODE

A number of the more noticeable effects of
optimization are shown below. These are
code sequences which may prove difficult to
understand without knowledge of the
objectives of optimization. Where possible,
the examples of code given are expansions
of the examples shown in the language
reference manual for this compiler. The
examples do not attempt to cover all
optimization carried out by the compiler.

Elimination of Common Expressions

This is done by avoiding multiple
calculations of the same expression, by
holding the value either in temporary
storage or in a register. 1In the examples
shown below, the common expression is
“B+C", In the first example, the value is
held in a register. In the second, it is
held in temporary storage, because the
value to which it is first assigned is
altered. In certain circumstances, the
code could be compiled to move the value
from the variable to which it was
originally assigned to the second variable.

Example_1: Value held in_register

Source_program
2 A=B+C;
3 IF X<Y THEN X=Y;
4 D=B+C;

Object program

* STATEMENT NUMBER 2

000062 78 00 D 0A4 LE 0,B

000066 7A 00 D OAS8 AE o0,C

00006a - 70 00 D 0AO STE 0,2

*« STATEMENT NUMBER 3

00006E 78 60 D 0OAC LE 6,X

000072 79 60 D 0OBO CE 6,Y

000076 47 BO 2 020 BNL CL.2
00007Aa 78 60 D 0BO LE 6,Y

00007E 70 60 D 0AC STE 6,X

000082 CL.2 EQU =x

Chapter 2: Compiler Output 31

* STATEMENT NUMBER 4

% CALCULATION OF COMMONED EXPRESSION
FOLLOWS
000082

70 00 D OB4 STE 0,D

Example 2: Value held in_ temporary storage

Source_program

2 A=B+C;
3 IF X<Y THEN A=6;
4 D=B+C;
Note: A may be altered before subsequent
use of expression.
Obiject progran
% STATEMENT NUMBER 2
000062 78 00 D OA4 LE 0,B
000066 7A 00 D 0AS AE o,cC
000067 38 20 LER 2,0
00006C 70 20 D ORAO STE 2,A
% STATEMENT NUMBER 3
000070 78 60 D OAC LE 6,X
000074 79 60 D 0BO CE 6,Y
000078 47 BO 2 024 BNL CL.2
00007Cc 78 20 3 010 LE 2,20(0,3)
000080 70 20 D 010 STE .
000084 CL.2 EQU =

* STATEMENT NUMBER U4

* CALCULATION OF COMMONED EXPRESSION
FOLLOWS
000082

70 00 D OB4 STE 0,D

Movement of Expressions_out_ of_ Loops

When expressions cannot be altered inside a
section of code that may be executed a
nunber of times, the expression is moved
out of the loop to a position where it will
be executed only once, regardless of the
numnber of times that the loop is executed.
The process is known as movement of
invariant expressions. The most obvious
example is in do-loops. However, the
compiler analyzes the source program for
other types of loop and also moves code
from these. :

Example 1 shows code moved from a do-
loop. Example 2 shows code moved from a
loop that has been detected by the
compiler. It should be noted that code
moved out of loops frequently involves
conversion and is not obvious in the source
progran. i

32

Source_prodram

3 DO I=1 TO N;
4 J=3;

5 A(I)=B(I);
6 END;

7 END;

Obiect_prodgranm

% STATEMENT NUMBER 3

00005E 48 EO D 0AA LE 14,N
000062 48 60 3 010 LE 6,16 (0, 3)
000066 40 60 D 0A8 STH 6,1
00006A 19 6E CR 6,14
00006C 47 20 2 036 BH CL.3

% INITIALIZATION CODE FOR OPTIMIZED LOOP
FOLLOWS

% CODE MOVED FROM STATEMENT NUMBER 4
000070 48 80 3 012 LE 8,18(0,3)
000074 40 80 D OAC STH 8,J

+ CODE MOVED FROM STATEMENT NUMBER 5
000078 48 90 3 014 LE 9,20(0,3)
00007C 18 7E LR 7,184
00007E 8B 70 0 002 sta 7,2

* CONTINUATION OF STATEMENT NUMBER 3
000082 18 59 LR 5,9
000084 18 B7 LR 11,7
000086 18 A9 LR 10,9
000088 CL.2 EQU =

* STATEMENT NUMBER 4

* STATEMENT NUMBER 5

000088 78 25 D OD4 LE 2,V0..B(5)
00008C 70 25 D OAC STE 2,V0..A(5)

&« STATEMENT NUMBER 6
000090 87 52 2 02A
000094 CL.3

BXLE 5,10,CL.2
EQU =%

Example 2: Compiler-detected loop

Source_progran

2 L: IF X>Y THEN GOTO BED;
/*LOOP BEGINS*x/

3 J=1-N;

4 X=X+J;

5 GO TO L; /*L0O0OP ENDSx%x/

6 BED: A=X3 .

Object_ program

% INITIALIZATION CODE FOR OPTIMIZED LOOP
FOLLOWS

%« CODE MOVED FROM STATEMENT NUMBER 3

000066 48 EO D OAE LH 14,1
000062 4B EO0O D OBO SH 14,N
00006E 50 EO 4 028 ST 14,40 (0,4)

* CONTINUATION OF STATEMENT NUMBER 1
% STATEMENT NUMBER 2

* STATEMENT LABEL L

000072 78 00 D OAO LE 0,X
000076 79 00 D OA4 CE 0,Y
000072 47 20 2 042 BH BED

* STATEMENT NUMBER 3

% CALCULATION OF COMMONED EXPRESSION
FOLLOWNS

00007E 58 60 4 028 L 6,40(0,u)
000082 40 60 D OAC STH 6,J

* STATEMENT NUMBER 4

* END OF COMMON CODE

000086 50 60 4 030 ST 6,48 (0,4)
00008r 48 60 3 020 LH 6,32(0,3)
00008E 40 60 4 030 STH 6,48(0,4)
000092 97 80 4 032 X1 50(4) ,x*80!
000096 78 60 4 030 LE 6,48 (0,4)
00009a 7B 60 3 020 SE 6,32(0,3)
00009E 32 60 AER 6,0
000020 70 60 D O0AO STE 6,X

* STATEMENT NUMBER 5

0000A4 47 ¥0 2 00C B L

* STATEMENT NUMBER 6

* STATEMENT LABEL BED

0000a8 70 00 D 0Oas8 STE 0,A

Blimination of Unreachable Statements

If the source program contains statements
that can never be executed because they are
unconditionally branched around, these
statements will be ignored by the compiler.

In the example below, the statements
between 5 and 8 can never be reached.
Consequently, no code is compiled for these
statements, and a compiler diagnostic
message is issued to indicate that this is
the case.

Example

Source program

5 GOTO LABEL;
6 IF A<B THEN
IF B<C THEN
IF A<X THEN
B=Bx%C3

7 ELSE C=B%C;
8 LABEL: X=X+1;

Obiject program

%« STATEMENT NUMBER 5

00008A 47 FO 2 028 B LABEL

% STATEMENT NUMBER 8

* STATEMENT LABEL LABEL

00008E 78 60 D OAC LE 6,X

000092 7A 60 3 018 AE 6,24
(0,3)

000096 70 60 D OAC STE 6,X

Compiler message reads:

"6,7 STATEMENT MAY NEVER BE EXECUTED.
STATEMENT IGNORED."

Simplification of Expressions

Certain expressions are simplified for
speedier execution. For example,
multiplication is simplified to addition,
as in the following example.

* STATEMENT NUMBER 2

000062 78 20 D 0A4 LE 2,B
000066 32 22 AER 2,2
000068 7A 20 D OA4 AE 2,B
00006C 70 20 D 0RO STE 2,X

When the do-loop control variable is used
for accessing array elements, it is
frequently modified to simplify addressing
of the array elements.

If, as in the example below, the
elenents of the array are four bytes long,
it simplifies addressing to increment the
loop control variable by 4 rather than by
1. When this is done, the increment
becomes the distance between the start of
successive array elements.” Provided that
the original value of the loop control
variable is the same as that of the first

Chapter 2: Compiler Output 33

o s o e e B el — - — —— o o > o o o

Source_progranm

2 DCL C(10) FLOAT DECIMAL (6);
3 DCL B(10) FLOAT DECIMAL (6);
4 DO I=1 TO 10;

5 C(I)=B(I);

6 END;

Object_ program

* STATEMENT NUMBER &

000066 48 60 3 010 LE 6,16(0,3) pick up 1 from static
00006A 40 60 D OAO STH 6,1 Place in I

% INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

* CODE MOVED FROM STATEMENT NUMBER 5

00006E 48 E0O 3 012 LH 14,18(0,3) Load "4" into R14 from static
000072 48 90 3 014 LH 9,20(0,3) Load "40" into R9 from static
% CONTINUATION OF STATEMENT NUMBER 4 .

000076 18 B9 LR 11,9 Load "40" into R11 for BXLE
000078 58 A0 3 012 L 10,18(0,3) Load "4% into R10

00007C 18 SE LR 5,14 Load "4" into RS

00007E CL.2 EQU x%

* STATEMENT NUMBER 5

000078 78 45 D OA4 LE 4,70..B(5) Pick up VO..B+R5

000082 70 45 p OcC STE 4,V0..C(5) Place in VO..C+R5

* STATEMENT NUMBER 6
000086 87 524 2 018 BXLE 5,10,CL.2 Increment R5 by 4, test for end of
loop, and branch or continue

Figure 2.13. Code showing modification of do-loop control variable

Source_prodgranm

2 IF (A=D) | (C=D) THEN
X=Y+Z;
Object progran

* STATEMENT NUMBER 2

000062 78 00 D 0AO LE 0,A Pick up A
000066 79 00 D OA4 CE 0,D Compare A and D
000062 47 80 2 018 BE CL.3 Branch if equal
00006E 78 40 D 0aS8 LE 4,c Pick up C
000072 79 40 D OA4 CE 4,D Compare C and D
000076 47 70 2 024 BNE CL.2 Branch if not equal
000072 CL.3 EQU =x%

000072 78 60 D 0BO LE 6,Y

00007E 7aA 60 D OB4 AE 6,2 X=Y+Z

000082 70 60 D OAC STE 6,X

000086 CL.2 EQU =

Figure 2.14. Code showing branch around redundant expression

34

bound of the array, the loop control
variable in turn becomes the offset of the
element from the virtual origin of the
arraye.

If the loop control variable is altered,
this means that the increment and final
value must also be altered. Thus the loop
in the example below, instead of being
incremented from 1 to 10 by 1, is
incremented from 4 to 40 by 4. Note that
the value of the loop control variable is
set at the start of the loop but is not
incremented. If the value of the loop
variable is required after the loop has
been executed, this type of optimization
cannot take place.

In the example in figure 2.13, the
control variable is held in register 5
using a BXLE instruction. The array
elements are addressed by using register 5
as the offset from the virtual origins of
arrays C and B. As register 5 starts the
loop with the value of 4 and is incremented
by 4 for each iteration of the loop, this
gives the correct address. Both arrays
begin 4 bytes from their virtual origins,
and each array element is 4 bytes long.

Branching Around Redundant Expressions

If a series of tests are to be made and
action taken if any of the tests proves
positive, the compiler takes the requisite
action as soon as the first positive test
is found.

In the example in figure 2. 14, a test is
first made to see if A=D. If so, the value
of Y+Z is assigned to X without a further
test being made to see if C=D. Note that
the last test is for inequality, so that if
the variables are equal, control will
continue with the code that assigns the
value to X.

Rationalization of Program Branches

When the length of a program is greater
than 4096 bytes and, consequently, it
cannot be addressed from one base register,
an attempt is made to update the base at
the most efficient point, so that there
will be as few changes of program base as
possible during execution. The aim is to
avoid any program branches which move from
the scope of one base register to the scope
of another.

The program base register is register 2,
and this is updated when necessary. As
register 2 is required for in-line record
I/0 and TRT instructions, the program base
is saved and restored after such use.

n
=]

e_of Common_ Constants _and Control
locks

(1]
x

|

Constants and control information used more
than once are generated only once in static
storage. Thus for the statements X=768,
Y=768, the constant value 768 will be
picked up from the same address in both
cases. Similarly, compiler-generated
control information, such as DEDs and
descriptors (see chapter 4), are generated
only once if a number of variables require
identical control information.

The process of avoiding duplication is
known as commoning. It should be noted
that constants may not be commoned if they
are not used in the same way. In the
following example, comstant '123' is stored
in a different form for assignment, and
exponentiation.

Chapter 2: Compiler Output 35

e

r_;
ISource progdram

2 X=123; /*COMMONED ITEM%x/
3 Y=123%2Z;

4 V=Vxx123; o
S A=123; /*COMMONED ITEMx%/

Object program

* STATEMENT NUMBER
000066 78 00 3 020
00006A 70 00 D OAO

* STATEMENT NUMBER
00006E 78 20 D 0AS8
000072 6C 20 3 018
000072 -70 20 D OA4

* STATEMENT NUMBER

00007E 41 90 D OB4
000082 50 90 3 024
000086 50 90 D 02C
00008A 96 80 3 02C
00008E 41 10 3 024
000092 58 F0 3 00C

000096 05 EF

* STATEMENT NUMBER
0000B8 78 20 3 020
0000BC 70 20 D 0BO

2 .
LE 0,32(0,3)
STE 0,X

3
LE 2,2
ME 2,24(0,3)
STE 2,Y

4
LA 9,V
ST 9,36(0,3)
ST 9,44 (0,3)
(028 44 (3) ,xX'80"
LA 1,36 (0,3)
L 15,A..IBMBMXSA
BALR 14,15

5

LE 2,32(0,3)
STE 2,A

/*COMMONED ITEMx/

/%COMMONED ITEMx/

-

Figure 2.15. Code showing use of common comnstant

36

This chapter explains the use of libraries
by the DOS PL/I Optimizing Compiler. The
topics covered are: when and why library
routines are called, why there is both a
transient and a resident library, naming
conventions, and two implementation topics
that cover all library modules: the use of
library workspace and the use of weak
external references.

The DOS PL/I Optimizing Compiler is
designed to be used in conjunction with the
DOS PL/I Resident Library and the DOS PL/I
Transient Library. These libraries consist
of sets of standard subroutines that are
used for the majority of interfaces with
the system and for those jobs that camn be
most efficiently done by the use of
interpretive subroutines. The main areas
where library modules are used are:
input/output, error handling, storage
management, conversions, mathematical
functions, and various string- and array-
handling operatiomns.

Use of library routines simplifies
compilation by enabling the compiler to set
up an argument list and generate a call to
a subroutine, rather than compile the
complete code. However, library
subroutines are less efficient than
compiled code, since they must be
generalized routines, whereas compiled code
can be specially tailored to the particular
program being executed. Furthermore, a
library call involves the overhead of
saving and restoring registers, and may
require the setting-up of various .
additional control blocks to describe the
data (see chapter 4). For these reasons,
programs that are optimized for time use as
few library calls as possible.

The majority of interfaces between
compiled code and the operating system are
implemented via library routines. This is
done mainly for reasons of implementation
convenience, as such interfaces are in this
way localized and minimized.

Resident and Transient Libraries

The DOS PL/I subroutine library is divided
into two separate program products: the
DOS PL/I Resident Library (Program Number
5736-LM4) and the DOS PL/I Tramsient
Library (Program Number 5736-LMS).
Resident library modules are link-edited
with the executable program phase.

Chapter 3: The PL/I Libraries

Transient library modules are loaded into
dynamic storage when they are required.
When they are no longer mneeded, the storage
is freed and may be overwritten. Resident
library routines have the advantage of
speed; transient library routines have the
advantage of saving space. By using both
types of library, it is possible to produce
morefefficient programs.

Routines in the transient library are:
input/output transmitters, open and close
modules, error message modules, and PLIDUMP
routines. All other library routines are
held in the resident library, including a
number of bootstrap routines that load and
call tramnsient routines.

The DOS PL/I libraries reside in two
direct-access libraries. The resident
library is on the relocatable library and
the transient library on the core-image
library.

The internal logic of individual library
modules is described in the publications
Program_Logic
and DOS_PL/I Transient Library: Program
Logic. However, in such cases as I/0,
error handling, and conversion, where
compiled code and a hierarchy of library
modules are used in implementing certain
features of PL/I, the overall logic is
described in this publication. Similarly,
an overall explanation of storage
management and interlanguage commrunication
is given in this publication.

Naming Conventions

Most PL/I library modules have names of
seven letters, the first three letters
being IBM. This identifies the module as
belonging to one of the PL/I libraries.
The remaining letters indicate which
particular library the module was written
for, and the use of the ‘module.

BEach resident library module has two
names, the control name (which uniquely
identifies the module) and the link-edit
name (which is used to link edit the module
to the appropriate data set. The link edit

- name is the same as the name of the first

entry point). See figure 3.1. The use of
tvo names allows the compiler to call the
appropriate module regardless of the actual
module available on the system. For
example, there are two WAIT modules, one

Chapter 3: The PL/I Libraries 37

CONTROL NAME

EXAMPLES

IBMDPIR
IBMBEOC
IBMGJWT
IBMDREF
Identify module as part of a D=specially written for DOS Mnemonic of module’s
PL/1 library B=shared by other PL/! function
libraries
G=see text
ENTRY POINT NAME
Resident library modules Transient library modules
IBMBxyz followed by Control name followed by IBMBPIRA
A, B, C, etc.** : A, B, C, etc. IBMDREFA
LINK-EDIT NAME IBMBPIRA
Primary entry point name IBMBEOCA
IBMBJWTA
IBMDREFA
* Conversion modules sometimes have only two mnemonic letters to identify the function, IBMBCH
and use two mnemonic letters to identify entry points: IBMCHXD
** Certain |BMDxyz resident modules called only by other IBMDxyz modules, and not by
IBMDSTFA

compiled code have entry point names IBMDxyzA etc.

Figure 3.1. Library module names

38

for machine configurations that support the
WAITM macro instruction, and one for those
that do not. (The WAITM macro instruction
allows waits on multiple events.) These
modules have different control names.
Machine configurations that support the
WAITM instructiom will normally have the
module with the control name IBMDJWT in
their resident library. Machine
configurations that do not support the
WAITM macro instruction will have the
module with the control name IBMGJWT. Both
modules have the link-edit name, IBMBJWTA.
The compiler can therefore generate
appropriate ESD references without knowing
which module is available on the system.
(Note: Underlinings are not part of the
name.) Link-edit names, and all entry point
names called from compiled code, have the
fourth letter "B".

Resident library module entry points
that can be called from compiled code have
names in which the fourth letter is "“BY,
regardless of the control name. An
additional letter or letters are used to

make up the name to 8 letters. Normally
the primary entry point is "A" (IBMBJWTA)
the second entry point "B" etc. Transient

library modules and certain resident
library modules not called directly by
compiled code have entry point names
consisting of the control name plus an
additional letter.

Library Workspace

FPor certain library routines, DSA (dymamic
storage areas) are not acquired in the sanme
way as they are for source progranm
subroutines. Instead of the storage being
acquired from the LIFO stack, space is
allocated, in the program management area,
for two pre-formatted DSAs. These DSAs are
known as levels of library workspace.

Their format can be seen in figure 3.2.
Library workspace (LWS), provides a fast
method for library routimes to obtain DSaAs.
All the library routines have to do is to
address the DSA and set the chainback
field. There is no need to test to see if
there is enough space for the DSA, and the
NAB pointer does not have to be reset,
because the next available byte is not
changed.

The PL/I libraries have been so designed
that two levels of library workspace are
the maximum required. This does not mean,
however, that more than two modules are
never called. Some library modules - for
example, the error handler - use DSAs in
the LIFO stack for working storage.

FORMAT OF LIBRARY WORKSPACE

Library workspace is designed so that
either level can be treated by the
housekeeping routines in the same way as a
DSA. Chainback fields to the calling
block's save areas are held in the head of
library workspace and, where more than omne
level of library workspace is used, a
chainback field is set up to the previous
level. Figure 3.2 illustrates the method
of chaining employed.

ALLOCATION OF LIBRARY WORKSPACE

Library workspace is originally allocated
within the program management area by the
initialization routine IBMDPII. However,
whenever an interrupt occurs and an on-unit
is to be entered, a further two levels are
allocated. This allows library modules to
be called within an on-unit, without
overwriting library workspace which may
have been in use at the time of interrupt.

Attached to each allocation of library
workspace, including the initial allocation
in the program management area, is an ON
communications area (ONCA). This is a
control block used in error handling to
hold condition built-in function values.
ONCAs are described fully in chapter 7.

Library Modules and Weak External
References

Because of the modular structure of the
library, a group of modules is frequently
used to carry out some particular task.
Conversions, for example, are normally done
by using a series of modules, and the same
is true of many of the mathematical built-
in functions. For this reason, many
library modules contain a number of
external references to modules which may
not be needed in a particular program. An
example of this is shown in figure 3.3. To
prevent unnecessary modules being link-
edited, "weak external references" (WXTRNs)
are used. WXTRNs are a special type of
external reference designed to cater for
this situation.

Those entry points that are called only
optionally are coded as WXTRNs. This
prevents the linkage editor from loading
these modules unless a separate external
reference is made to them by the compiler.
Thus the executable program phase does not
contain modules that it never uses.

Chapter 3: The PL/I Libraries 39

Flags

Offset to ONCA

Chain back field (to last DSA)

Standard save area

Address of next library workspacé

Current NAB

‘Workspace for library modules

Flags

Offset to ONCA

“Chain back field

Standard save area

Address of this level of LWS

(used only when addressing the ONCA)

Current NAB

Workspace for library modules

Figure 3.2.

40

Current ONCA

Library workspace

1st level

2nd level

IBMBSFI

F-format input
conversion director.
Contains WXTRNs for:
IBMBCCSA, IBMBCTHD,
etc.

Pigure 3.3. Example of use of WXTRNs

Figure 3.3 shows part of a hierarchy of
modules with alternative paths through
them. When such a hierarchy exists, the
actual path to be taken through the modules
will be known to the compiler, and external
references will be made to all the required
modules whose names are coded as WXTRNs.
The effect of this is that the linkage
editor loads only these modules.

IBMBCCS

Special string conversion

module. Contains WXTRNs for:
IBMBCCAA, IBMBCACA, etc.

IBMBCTH

E- or F-format-to-arithmetic
conversion module. Contains
WXTRNs for:

IBMBCEZX, IBMBCHZD, etc.

e —

- Chapter 3: The PL/I Libraries 41

Chapter 4: Communication Between Routines

PL/I allows the programmer the choice of a
large number of data attributes. Normally
there is no need for explicit attribute
information to be retained until execution,
because the methods used to handle the data
can be resolved during compilation.
However, there are certain situations where
this cannot be done. For example, the
attributes of the data may not be fully
known at compile time, because of
adjustable bounds or lengths, or the data
may be passed to another PL/I program or
PL/I library subroutine. When these
situations arise, it is necessary to retain
some or all of the data attributes in an
explicit form throughout execution.

The names of variables fall into a
similar category. Normally, they need not
be explicitly known during execution.
However, for data-directed input/output and
the CHECK condition, the names of the
variables need to be known so that they can
be associated with the correct values.

When such information must be retained
until execution, special control blocks are
set up for the purpose. These control
blocks are described in this chapter. The
following control blocks are used.

Descriptors: These hold the extent of the
data item (i.e., string lengths, array
bounds, and area sizes).

Locators: These hold the address of a data
item and are either concatenated with the
descriptor, or hold the address of the
descriptor.

Descriptor Descriptors: These hold the
logical structure levels, dimensions, and
lengths, of all elements within a
structure.

Data_ Element Descriptors_ (DEDs): These
hold the attributes of a variable required
for data manipulation, except for extents,
which are held in descriptors.

Symbol Tables: These hold the names of the
variables and associate them with the
appropriate storage locations during
execution.

Symbol Table Vector: This associates
symbol tables with the block in which they
are known.

An example of the way in which data is
-related to its locators, descriptors, and
DEDs is given in figure 4.1.

Chapter 4:

The following terms are used in this
chapter.

The address where the
element of an array
whose subscripts are
all zero is held or, if
such an element does
not appear in the
array, where it would
be held.

Virtual origin (VO)

The byte address of the
first item in the array
or structure.

Actual origin (RO)

Relative virtual
origin (RVO)

Byte actual origin
minus virtual origin.
Structure element A minor or major
structure that contains
a number of base
elements.

Base element A data element or array
within a structure.

DESCRIPTORS AND LOCATORS

Descriptors are generated when adjustable
extents are involved, or when an item is to
be passed as an argument and the associated
parameter is the type that can be declared
with an asterisk among its attributes. For
example, DCL X CHAR (N); or DCL X CHAR (%) ;
would both result in the generation of a
descriptor. In the first case, code for the
SUBSTR built-in function would have to be
interpretive if STRINGSIZE were enabled.
The appropriate library module would be
called, and it would make use of the
descriptor to discover the length of the
string. This length would have been placed
in the descriptor by the prologue code of
the block in which the string was declared.
In the second case, where the length of the
string is signified with an asterisk, the
program that is passed the string will
expect to receive the length of the string
in a descriptor. '

Data items that can be declared with an
adjustable value or an asterisk are:
string lengths, array bounds, and area
sizes. Descriptors are, therefore, needed
for strings, arrays, and areas. They are

Communication Between Routines 43

PL/1 Statement
DCL TABLE (10}
FLOAT DECIMAL (6);

Storage

TABLE (0)

TABLE (1)

TABLE (9)

TABLE (10)

Address of TABLE

Short floating-point decimal 6

Address of descriptor

*RVO=4

Multiplier=4

Upperbound-10

*RVO (Relative virtual origin) is the offset of the actual
origin of the array from the virtual origin (the position that

Lowerbound=1

element TABLE (0) would hold if it existed)

Virtual origin

Array TABLE (10)

DED

Aggregate locator

‘Array descriptor

Figure 4.1. Example

44

of descriptors, locators and DEDs for an array

Name of comntrol block |
| generated

—— o e o o o

Conditions under which it is

|Location
| (control section)

Data element descriptor (DED)

Array descriptor

Aggregate locator
generated.

Area locator/descriptor

String locator/descriptor
argument.

Structure descriptor

Aggregate descriptor
descriptor

Symbol table

CHECK list

Symbol table vector

When conversion or stream I/0 library|Static internal
modules are called. |

When an array has adjustable bounds
or may be passed to a library |
subroutine or other PL/I routine. |

When structure or array descriptor is|Static internal

When an area is declared with an
adjustable size or may be passed as
an argument.

When a string is declared with an
adjustable length or is passed as an

When a structure is declared with
adjustable elements or is passed as
an argument.

When a structure contains elements
declared with adjustable bounds.

When an item may appear in
data-directed I/0 or in a

When GET DATA or PUT DATA is used
without a data list, or when SIGNAL |
CHECK is used without a data list. {

{Static internal

|
| -
|Static internal

Static internal
Static internal

|
|
|
l
|
|
{
(
|
|
i
{Static internal
{

i

|Static internal
| for internal
|items. Separate

|CSECT for
|external itenms.

|Static internal

Lo e s i o T —— . —— - = — D ——— — ——— —— T — i —— — i —— —— e = e &)

Figure 4.2.

also needed for structures, because
structures can contain strings, arrays or
areas.

In order to connect the data with its
descriptor, a further control block is
generated. This is the locator. The
locator addresses both the descriptor and
the variable, For strings and areas, the
locator is concatenated with the descriptor
and contains only the address of the
variable. For structures and arrays, the
locator is a separate control block and
holds the address of both the variable and
the descriptor. Called routines are
normally passed the addresses of locators,
rather than the addresses of arguments when
arguments requiring descriptors are passed.

When the descriptor and locator are not
concatenated, it is possible to use the
sane descriptor for a number of different
data items, provided that these items have
the same attributes. This process is known
as "commoning" and is used to comserve

Chapter 4:

Descriptors, locators, and symbol tables:

when generated, where held

space. Where possible, the compiler
commons structure and array descriptors and
aggregate descriptor descriptors.

Descriptors and locators are always held
in the static internal control section,
regardless of the attributes of the data
that they describe.

The following types of descriptor ahd
locator are generated. Figure 4.2
summarizes the conditions under which they

‘are generated and gives their storage

locations. In the main, they are set up
during compilation and completed during
execution, if necessary.

String Locator/Descriptor

The string locator/descriptor holds the
byte address of the string, informatiom on
whether or not it is a varying string, and

Communication Between Routines 45

the maximum length of the string. For a
bit string, the bit offset from the byte
address is held. (See figure 4.3.)

Area Locator/Descriptor

The area locator/descriptor holds the
address of the start of the area and the
length of the area. (See figure U4.4.)

Aggregate Locator

The aggregate locator holds the address of
the start of the array or structure and the
address of the array descriptor or
structure descriptor. (See figure 4.5.)

Array Descriptor

The array descriptor holds:

1. The relative virtual origin (RVO) of
the array. This is the offset of the
start of the first element in an array
(actual origin) from the virtual
origin. The virtual origin (V0) is the
point at which element (0) would be
held in a one-dimensional array,
element (0,0) would be held in a two-
dimensional array, etc. In a one-
dimensional array, the address of any
particular element can be discovered

"by multiplying together the subscript
and the multiplier (see below) and
adding the result to the virtual
origin of the array. An extension of
this method is used for multi-
dimensional arrays, the formula being:

Address of element (S4,S2¢e=«¢5n)

= VO+ (M %S)

wvhere S is the subscript number, and
M the multiplier, of the ith
dimension, and VO is the virtual
origin. :

2. The high and low bounds for the
subscripts in each dimension.

3. The multiplier for each dimension.
The multiplier is the distance between
the start of one elemenrt and the start
of the next element in the same

46

dimension. For example in the array
declared A(2,2), the multiplier for

the first dimension is the distance

between the start of element A(1,1)

and the start of element A(1,2).

When the array is an array of strings or
areas the string or area descriptor is
concatenated with the end of the array
descriptor to provide the necessary
additional information. Array descriptors
are commoned where possible. That is, one
descriptor is used for a number of similar
arrays. (See figure 4.6.)

Structure Descriptor

This consists of a series of fullwords,
giving the byte offset of the start of each
base element from the start of the
structure. If a base element has a
descriptor, the descriptor is included in
the structure descriptor, following the
appropriate fullword offset. Where a bit
offset is involved, this will be held in
the descriptor for the bit string, or in
the relative virtual origin if the item is
a bit string array.

A structure must be mapped during
execution if any of the elements in the
structure have adjustable bounds or
extents, or if the REFER option is used.
Where possible, structure descriptors are
comnmoned. That is, one descriptor is used
for a number of similar structures. If a
structure or an array of structures
contains elements with adjustable extents,
the structure descriptor is not set up
during compilation. Instead, it is set up
during execution from information held in
the aggregate descriptor descriptor. (See
below for information on arrays of
structures and structures of arrays.)

Agqgregate Descriptor Descriptor

When a structure cannot be mapped during
compilation, more information than is held
in the structure descriptor is needed for
it to be mapped during execution. This
information is held in a control block
known as an aggregate descriptor
descriptor.

The information held in an aggregate
descriptor descriptor is the dimensionality
and logical level of all the structure

0 1 2 3 4

Byte address of string
Length Unused Bit offset
. | \
A . : N
For varying strings, the maximum O=fixed length For bit strings only
length is held 1=varying length

Figure 4.3. String locator/descriptor (SLD)

0 1 2 3 4

Address of first byte of area

Allocated length of area (in bytes)

Figure 4.4. Area locator/descriptor (ALD)

0 1 2 3 4

Byte address of first byte of aggregate

Address of array or structure descriptor

Figure 4.5. Aggregate locator (AL)

0 1 2 3 4
RVO (Relative virtual origin)
M, (muttiplier) Multiplier and bounds
‘ for 1st dimension
U, (upperbound) L, (lowerbound) :
| |
1 |
M, ' Multiplier and bounds
for nth dimension
u, L,
Notes: 1.’ For unaligned bit strings, RVO and multiplier are bit values.

2. For strings and areas, the area or string descriptor is concatenated

to the end of the array descriptor.

Pigure 4.6. Array descriptor (AD)

Chapter 4: Communication Between Routines

47

0 1
Structure

Offset (fullwords)

’Offset of entry for containing structure from
start of ADD (all ones for a major structure)

O=structure ‘

1=base element

O=not bit string
1=bit string

1=last element '
0=not last element

— — m—— m— — G S — — — — O— \

Level Dimension

\

1=area
0=not area

Alignment Length (bytes)

7=byte
15=halfword
31=fullword
63=doubleword

// Base element \\\\
O=bit

There is a fullword entry in the ADD for each structure (major and minor} and each base element.

All zero for areas and strings

Figure 4.7. Aggregate descriptor descriptor (ADD)

elements, and the dimensionality, logical
level, and alignment requirements, of all
base elements, plus the length of those
base elements that do not have their length
held in descriptors. (Strings and areas,
and arrays of strings and areas, have their
lengths in descriptors.) The length held
for an array is the length of an array
element. The total length of the array can
be calculated by using the information in
the array descriptor.

The aggregate descriptor descriptor is
set up in static internal storage and is
set up completely during compilation. The
format is shown in figure 4.7. An example
showing the method used to map a structure
that contains an element with an adjustable
extent is shown in figure 4.8.

48

Where possible, aggregate descriptor
descriptors are commoned.

Arrays of Structures and Structures of

Arrays

Where necessary, an aggregate locator, a
structure descriptor, and an aggregate
descriptor descriptor are generated for
both arrays of structures and structures of
arrays.

The structure descriptor for both an
array of structures and a structure of
arrays has the same format. The difference
is in the values in the fields of the array

DURING COMPILATION

Space for structure descriptor allocated in static
storage.

Aggregate descriptor descriptor allocated, and
fields filled in from structure declaration.
Aggregate locator allocated, and address of
structure descriptor.place in second word.
Code is generated within the prologue of the
block in which the structure is declared to call
structure mapping routine, IBMBAMM, to
acquire a VDA, and to complete the aggregate
locator.

THE RESULT

DURING EXECUTION

Prologue code olaces value of N{1 byte) in
the string descriptor for D in structure
descriptor.

IBMBAMM is calied to map the structure,
using the information in the ADD and the
SD (which contains the length of element
D). D is aligned with E, then B is aligned
with DE. (The rules for structure mapping
are given in the language reference manual
for this compiler.) The results of the
mapping are placed in the structure
descriptor.

IBMBAMM returns the length of the
structure to compiled code, which acquires
a VDA for the structure and places the
address of the structure in the aggregate
locator.

Every member of the structure can be addressed by
means of the address in the aggregate locator and
the offsets within the structure descriptor. When bit
offsets are involved, they are contained within the
appropriate descriptor in the structure descriptor.

DURING COMPILATION
SD 1

Space for offset of B

Space for offset of D

Space for descriptor of D

Space for offset of E
ADD 2
o1 All ones Level 1 | 00 Zero

10 | X°31"| X'4' | Level2 | 00 Zero

00 Zero Level 2 | 00 Zero

10 | X7" | Zero | Level3 | 00 Zero

11] X31"| X4 | Level3 | 00 Zero

AL 3

Igaoe for address of structure

Address of structure descriptor

Declaration
DCL 1 A,

2 B FLOAT,
2¢
3
3

F
D CHAR(N),
E FLOAT;

DURING EXECUTION
SD 5

Zero

X7

1 byte 0 unused

X8’

ADD

ADD is unchanged during execution.

For meaning of entries, see Figure 4-7.

AL 6

Address of structure

Address of structure descriptor

Figure 4.8. Example of handlihg structure containing adjustable extent

Chapter 4: Communication Between Routines

49

Array of structures
DCL 1 AR(10),

2 B,
2 G

Structure descriptor for AR

Offset = 0

RVO = 4
AR.B

Multiplier = 8

Upperbound = 10 Lowerbound = 1

Offset = 4

RVO = 4

AR.C
Multiplier = 8

10 Lowerbound = 1

Upperbound

Figure 4.9.

descriptors within the structure
descriptor. Take for example the array of
structures AR and the structure of arrays
ST, declared below.

Array of Structures Structure of Arrays
DCL 1 AR(10), DCL 1 ST,
2 B, 2 B(10),
2 C; 2. Cc(10);

The structure descriptor for both AR and
ST would contain an offset field for both B
and C and an array descriptor for both B
and C. (See figure 4.9.) However, the
values in the descriptors would differ,
because the array of structures AR would
consist of elements held in the order
B,Cc,B,C, etc., and the elements in the
structure of arrays ST would be held in the
order
B,B,B,B,B8,8,8,8,8,8,¢,C¢,¢,C,C,C,C,C,C,C.

50

Structure of Arrays

DCL 1 ST,
2 B(10),
2 c(10);

Structure descriptor for ST

Offset = 0

RVO = 4

ST.B
Multiplier = 4

Upperbound = 10 Lowerbound = 1

Offset = 40

RVO = 4

ST.C
Multiplier = 4

#

Upperbound = 10 Lowerbound = 1

Structure descriptors for arrays of structures and structures of arrays

DATA ELEMENT DESCRIPTORS

When data is passed to the PL/I library
routines, a complete description of the
data is frequently required, and something
more than a descriptor is therefore needed.
Conversion routines, for example, need to
know the complete attributes of the data.
To hold such information, data element
descriptors (DEDs) are generated. (Control
blocks known as DEDs are also used by the
compiler. These are compile-time DEDs and
have a different format from those that are
used during execution. Compile-time DEDs
never appear in the executable progranm.)
For stream I/O, DEDs are denerated to
describe the format of the input or output.
These DEDs are known as format element
descriptors (FEDs).

DEDs are produced for all types of
variable or temporary that are passed to
the library for conversion or strean
input/output. The length and format of the
DED is dictated by the data type of the
item. DEDs are shown in detail in appendix
B.

DEDs are always held in static internal
storage. They are used only to pass
information to library routines.

There are five types of DEDs:
arithmetic DEDs, arithmetic pictured DEDs,
string DEDs, pictured string DEDs, and
FEDs.

Arithmetic DEDs: are 4 bytes long.
Arithmetic_pictured DEDs: (always decimal)
are 8 bytes plus picture specification,
which consists of at least one byte for
every character in the pictured string.
Maximum length for pictured arithmetic DEDs
is 264 bytes.

String DEDs: are 4 bytes long.

Pictured string DEDs: (always character
string) are six bytes plus the picture
specification, which consists of one byte
for every character in the picture string.
The maximum length for pictured character
DEDs is 261 bytes.

FEDs_(input/output DEDs): fall into five

classes

1. A,B, and control format FEDs have four
bytes.

2. E and F format FEDs are six bytes
long.

3. Pictured arithmetic FEDs consist of
four bytes followed by the pictured
arithmetic DED.

4. Pictured character string FEDs consist
of four bytes followed by the pictured
character string DED.

5. C format FEDs are four bytes plus the
tvwo constituent FEDs that make up the
complex item. They are used for
complex data.

The first two bytes of any DED are the
look-up byte and the flag byte. Taken
together, they define the data type and
permit a receiving routine to determine if
it needs to look further into the DED for
more information. The gemeral format of
DEDs is shown in figure 4.10. Full details
are given in appendix B.

SYMBOL TABLES AND SYMBOL TABLE VECTORS

Data-directed I/0 statements, and the CHECK
condition, require the names of variables
to be available throughout execution.
Normally, such names are not used after
compilation. When required during
execution, these names are held in control

Chapter 4:

blocks known as symbol_ tables or,
sometimes, symtabs. Symbol tables hold the
name of the variable, its address, and the
address of its DED plus certain other
information (see appendix B).

PUT DATA and GET DATA statements without
a data list, and SIGNAL CHECK statements
when there is no check list, imply that the
names of all variables known at that point
in the program must be available. This
information is held in a further control
block known as the symbol table vector.
The symbol table vector holds the addresses
of symbol tables arranged in order of
program blocks, commencing with the main
procedure block. The symbol table vector
consists of a series of fullword fields.
These fields contain either the address of
a symbol table, a fullword of zeros, or a
further address within the symbol table
vector. The end of entries for symbol
tables, for variables declared in each
block, is followed by a fullword of zeros,
which in turn is followed by the address in
the symbol table vector where entries for
the encompassing block begin. If there is
no encompassing block, another word of
zeros is used.

Figure 4.11 shows the relationship
between variables, symbol tables, and the
synbol table vector.

Data-directed I/0 modules, and the CHECK
module, use symbol tables and symbol table
vectors in the following ways.

PUT_DATA_(A,B,C), GET DATA_ (A,B,C), SIGNAL
CHECK (A,B,C): In_all these cases, the
addresses of the symbol tables for A, B,
and C are passed to the appropriate library
module.

GET_DATA, PUT DATA, SIGNAL CHECK: When no
data or check list is included in the
statement, the library is passed the
address of the start of the associated
block entries for the symbol table vector.
By following the symbol table vector, it .is
possible to access the names of all the
variables known in the block.

The contents of symbol tables vary
according to the storage class of the
variable. The method used for holding the
address, and other information, is given in
appendix B. For internal variables, symbol
tables are held in static internal storage.
For external variables, symbol tables are
held as separate control sections in static
external storage. The name of each control
section is the name of the associated
variable followed by an %x. Thus the
control section for the external variable B
would be Bx. Such a control section would
also contain the DED of the variable (or
DEDs if the variable was a structure).

Communication Between Routines 51

String DED

Look-up byte Flag byte Not used
Arithmetic DED
Look-up byte Flag byte Precision Scale
Pictured string DED
7
Look-up byte Flag byte Length of string
Length of string without/insertion characters Translation of picture
specification into internal format (one byte per character)
—
Pictured arithmetic DED
Look-up byte Flag byte Precision Scale
Length of picture Length of data Mantissa byte Exponent byte

Translation of picture specification into internal format (at least one byte per character)

/

For details of look-up byte and flag byte conventions, see appendix B.

Figure 4.10. Format of DEDs

52

Vector for
main procedure

Vector for
subroutine 1

Vector for
subroutine 2

Figure 4.11.

PROGRAM BLOCK STRUCTURE

Main procedure

DCL A, B, C;

Subroutine 1

DCL X, Y, A;

Subroutine 2

DCL X, Y;

I

Symbol table vector

A

Symbol tables for:

A in main procedure

—» B in main procedure

\ 4

C in main procedure

P X in subroutine 1

¥ Y in subroutine 1

1 Pointer

P A in subroutine 1

P X in subroutine 2

Y in subroutine 2

— Pointer

The symbol table vector is built up on a block by block basis, the last entry for each block being a word of
zeros followed by a pointer to the first entry for the encompassing block. This mechanism allows for

multiple declarations of names.

Symbol tables and symbol table vectors

Chapter 4: Communication Between Routines

53

Chapter 5: Object Program Initialization

Before the output from the compiler can be
executed as an executable program phase, it
must be link-edited, and the PL/I
environment must be set up. This chapter
briefly describes the effects of link-
editing, the mamner in which the program is
entered, and the initialization process
that sets up the PL/I environment.

Link-Editing

The logic and effects of the linkage editor
program are described in the publicatiomn
IBM_System/360 DOS:_ _Introduction to Systenm
Control Programs. This chapter describes
the effects of link-editing on the PL/I
program. The linkage editor combines the
various control sections generated by the
compiler and resolves addresses within
these control sections. The linkage editor
also incorporates into the executable
program phase all library modules that are
called from compiled code, and a number of
other library modules that are required
either because they in turn are called by
the library modules called by compiled
code, or because they are needed for
program management. The most important of
the modules used in program management are
the error-handling module, IBMDERR, and the
storage management module, IBMDPGR. An
external reference to both of these modules
is contained in the PL/I initialization
routine, IBMDPIR. An external reference to
IBMDPIR is included in the control section
PLISTART which is generated by every
compilation and nominated as its entry
point. PLISTART contains an external
reference to the control section PLIMAIN
(vhich holds the address of the start of
the main procedure).

One of the features of the linkage
editor is that it does not accept more than
one control section with the same name; the
second use of the name is ignored. As a
result of this, only one PLISTART and one
PLIMAIN is generated for each executable
program phase. This allows two or more
PL/I main procedures to be link-edited
together. The procedure that receives
control will be the first that is passed to
the linkage editor, because it will be the
PLISTART and PLIMAIN of this procedure that
are included in the executable progran
phase. This feature is also used to handle
data declared EXTERNAL. Control sections
for each such data item are generated by
all programs in which the data is declared.

Chapter 5:

Only one of these is resolved.

The PLIMAIN control section is not
generated by the compiler if the PL/I
source program does not contain the MAIN
option. Instead, a control section named
PLIMAIN is included in the initialization
module IBMDPIR. This control section
contains the address of code that calls the
module IBMDPEP, which puts out a message
saying there is no main procedure and then
terminates the program.

Program Initialization

Code is compiled by the PL/I Optimizing
Compiler on the assumption that various
control blocks will be set up and that
certain registers will point to them when
the program is entered. This arrangement
of control blocks and registers is known as
the PL/I environment.

The most important factors affecting the
PL/I environment are the following:

1. 2 dynamic storage area (DSA) should
exist before compiled code is entered.
This will give the address of the area
available for the first compiled code
DSA and will act as a save area for
the calling routine's registers.

2. 1 task communications area (TCA)
should exist. The TCA acts as a
central commnunications area for the
program, holding addresses of various
storage- and error-handling routines,
and control blocks. The TCA also
contains a number of flags and other
fields.

3. Program checks should - be passed to the
PL/I error-handling module IBMDERR.

4. Pre-formatted DSAs should exist for
certain library routines. These pre-
formatted DSAs are known as library
workspace (LWS).

5. A space should be available for any
condition built-in function values
(ONCHAR, ONSOURCE, etc.) should a
PL/I interrupt occur. This space is
known as an ON communications area
(ONCA) . As the condition built-in
functions have default values, an area
to hold the default values is
required. This is known as the dummy

Object Program Initialization 55

PLISTART

Initialization routines

Prologue code

Receives control from
system

Set up TCA, initialize storage and
issue STXIT to initialize PL/I error-
handling scheme. Pass control to

Acquires DSA for main
procedure, initializes
control blocks, etc.

Passes control to — the address in PLIMAIN. —» tors of
initialization/ .Stpre§ rengters o
termination routine, initialization/
IBMDP!R. termination routine,
IBMDPIR.
Functional code Epilogue code Termination routine
Carries out function required Restores the registers of . .
in source program. This . the initialization/ Closes any files still open and
usually involves calls to termination routine.) returns control to system with EOJ
library subroutines. P ‘ macro instruction, or returns
control to caller.

Figure 5.1.

ONCA.

6. Register 12 should point at the TCaA,
and register 13 should point to the
DSA.

The resident program initialization
routine IBMDPIR, and the transient routine
IBMDPII, which it calls, set up the various
control blocks involved immediately
following the executable program phase in
an area known as the program_ mapagement
area. The contents of the program
management area are described later in this
chapter.

Two similar initialization procedures
are available for initializing the PL/I
environment when a PL/I procedure is called
from assembler language. These modules are
IBMDPJR which is resident and carries out
the same functions as IBMDPIR, and IBMDPJI
which is transient and carries out the same
functions as IBMDPII. The use of these
modules prevents the normal PL/I progranm
having an overhead of redundant code.

The advantage of having progranm

56

Flow of control during execution

initialization routines is that it obviates
the need for special code in the prologue
of main procedures and allows two
procedures with the MAIN option to be used
in one program. As shown in figure 5.1, the
initialization routine IBMDPIR is re-
entered after the execution of compiled
code. Again, this is done automatically by
standard epilogue code. This is because
the registers of IBMDPIR have been stored
by the prologue code and are restored by
the epilogue code. The functions of
IBMDPIR and IBMDPII are explained below.

INITIALIZATION AND TERMINATION ROUTINES

~When called from the control progranm,

IBMDPIR established the initial storage
area (ISA) in that part of the partition

that is not taken up by the executable

program phase. It then calls the transient
routine IBMDPII which sets up the program
management area and issues a STXIT macro
instruction so that program checks will be
passed to the error handler. Control is

NAB.

PROGRAM MANAGEMENT AREA

1

TCA
Task communications area.
See text and appendix B

TCA Appendage
See text and appendix B

Dummy ONCA (ON communications area)
Holds default values for condition built-
in functions

TRT Table
Translate-and-test table for IBMDERR, used
in error handling to test for relevant
on-cells

Diagnostic File Block
Contains information relating to the use
of SYSPRINT for the transmission of
diagnostic messages

Save area for IBMDPGR
Used by storage management routines when
new segment of storage is required

Dummy DSA (Dynamic storage area)
Contains DSA for initialization routine,
backchain to calling routine’s save area
(if any), pointer to start of major free
area (NAB), etc.

LWS (Library workspace)
Two preformatted DSAs for use by certain
library routines

ONCA
Space in which condition built-in function
values are placed after an interrupt.
Backchain points to dummy ONCA

Caller’s STXIT options
Save area for caller’s STXIT program check
options

Figure 5.2. Program management area

then returned to IBMDPIR which passes
control to the procedure whose address is
held in the contrcl section PLIMAIN.

Before passing control, register 13 is
pointed to the dummy DSA and register 12 to
the TCA. The dummy DSA will be used by
compriled code tc sotre IRMDPIR's registers.

On return frcm compiled code, IBMDPIR
raises the FINISH condition by calling the
error handler IBMDERR. After handling the
FINISH condition, IEMDERR branches to the
GOTO code in the TCA to terminate the
program. This is standard system action
for the FINISH condition and for normal
return from an ON FINISH on-unit. The GOTO
code is given the address of the dummy DSA
as the target DSA address. The abnormal
GOTO out of block routine is thus enetered.
This routine checks to see if any files are
open and closes any that are. Any exit DSA
processing (for example termination of
SORT) is handled during this routine.
Finally a test is made to discover whether
IBMDPIR was called from the control
program. If so, a test is made to discover
whether the termination is the result of an
ERROR condition. If the termination is
caused by an ERROR condition, a CANCEL
macro instruction is issued to ensure the
flushing of any SYSIPT data. If the
termination is not caused by an error
condition, an EOJ macro instruction is
issued to return to the control program.

If there was a caller, IBMDPJR is called at
entry point IBMBPJRC (see below).

IBMDPIR also contains certain utility
routines that may be used by all progranms.
These are the GOTO out of block routine
described in chapter 2, and the code to
acquire second and subsequent levels of
library workspace. IBMDPIR also contains a
CSECT PLIMAIN that is link-edited if an
attempt is made tc initialize a non-main
PL/I procedure. This dummy PLIMAIN is
link-edited because the compiler only
generates a PLIMAIN control section for a
main procedure. The dummy PLIMAIN contains
code to load and call the module IBMDPEP.
IBMDPEP puts out a message indicating that
there is no main procedure and terminates
the progran.

Initialization when a PL/I procedure is
called from another language is similar
except that the module IBMDPJR is used.
This module contains the entry p01nts
PLICALLA and PLICALLB.

The major difference between IBMDPIR and
IBMDPJR is that IEMDPJR can be passed
paraneters indicating the size and the
location provided for the ISA, and also a
parameter list for the called procedure.

IBMDPJR has four 1n1t1allzat10n entry
points as follows:

Chapter 5: Object Program Initialization 57

PLICALLA ‘ISA acquired is remainder of
partition. Can pass parameter
list to PL/I program. Control
passed to procedure whose

add:ess is in PLIMAIN.

ISA size and address must be
specified. Can pass parameter
list to compiled code.

Control passed to procedure
whose address is in PLIMAIN.

PLICALLB

IBMBPJRA ISA acquired is remainder of
partition. Can pass parameter
list to compield code.

Control passed to routine
whose address is in word

addres§ed ky register zero.

ISA size and address must be
specified. Can pass parameter
list to compiled code.

Control passed to routine
whose address is in word
addressed by register zero.

IBMEPJRB

A further entry point IBMBPJRC is used
during - termination. TIf the GOTO cut of
block routine discovers that PL/I was
called from another language it returns
ccntrol to IBMBJRC which calculates a
return code and restores the caller's STXIT
options and program mask. IBMBBEJRC then
returns to the caller.

IBMDPJR calls on the transient routine
IBMDPJI to initialize the progran
management area, save the caller;s STXIT
options and set up the PL/I STXIT optionms.

When calling PL/I from another language
via PLICALLA or PLICALLB it is necessary to
explicitly include reference to IBMDPJR in
the input to the linkage editor. For
example by an INCLUDE IBMBPJRA statement.
(Note that IBMBPJRA must be specified
because this is the entry point nanme.)

THE PROGRAM MANAGEMENT AREA

A diagram of the program management area is
shown in figure 5.2. It shows the
situation when the compiled program is
called. The various fields in the frogranm
management area are shown in detail in
appendix B. A brief description of their
use is given below.

Task_Compunications_Area_(TCA)

The, TCA is the central communications: block
used throughout the program. It is used to

58

address the érror—handling and storage-

.-management routines, and to point to the

current .segnent of dynamic storage.

The TCA is the most important control
block in the PL/I environment. A field-by-
field description follows.

Indicate that an abnormal
GOTO cut of block may take
place (see below). Also
indicate that certain special
error conditions may arise.

Flags

BOS The pointer that points to
the beginning of the current
segment (see chapter 6).
EOS The pointer that points to
the end of the current
segment (see chapter 6).
Address of external save area:
The addfess of the save area
for the calling routine, if
IBMDFIR was not called from
the control program.

Address of translate-and-test table
for IBMDERR:

See below, under heading
"Translate-and-Test Table."

Address of TCA appendage

Address of save area for IBMBPGRC and
IBMBPGRD (see below)

Open file chain:

Used when closing files at end
of job

PL/I and user return code:

A standard area to keep these
codes.

Address of IBMBPEGRKL:

Stack cverflow routine for
VDAs (see chapter 6)

Address of the diagnostic file block
below)

(see

Address of flow statement table:
This is used‘to.address the
flow statement table which
holds statement numbers for
use during execution.
Address of tab table:

The address of a table of

Address

Address

Address

Address

tabulator positions used in
list-directed output.

of FLOW module:

The address of the module used
to implement the compiler FLOW
cption.

of storage-handling routines:

Entry points to IBMDPGR that
get non-LIFO storage, free
non-LIFO storage, and acgquire
a new segment for LIFO storage
(see chapter 6).

of IBMBERRB
Address branched to after a
software-detected interrupt
occurs (see chapter 7).

of environment descriptor:

Identifies release of compiler
being used.

Code for GOTO out of block:

Whenever a GOTO out of block
occurs, or could potentially
occur because of the value of
a label variable, compiled
code branches to this code in
the TCA, which calls a
subroutine in IBMDPIR. The
subroutine calls the flow and
count module if either FLOW or
COUNT is in effect and tests
flags to see if an abnormal
GOTO has occurred. ' The
abnormal GOTO

flags are set by compiled code
or by library routines in
which an abnormal GOTO could
occur. (See, for example,
description of SORT in chapter
11.) If the abnormal GOTO flag
is set, the abnormal GOTO
subroutine is called.
Otherwise, the routine
restores the value of register
13 for the block to which a
branch is being made, and also
restores the values of
registers 4 (the temporary
tase) and 3 (the static base).
Condition enablement is also
restored, and NAB may require
alteration if a variable data
area (VDA) has been used. If
necessary IBMBPGO is called to
reset CHECK enablement.
‘Finally, a branch is made to
the correct location and the
program base altered if this
is necessary.

Chapter 5:

|Address of count module

Used to call IBMBEFLC when the
COUNT option is in effect.

Address of IBMBPGO

Addresses of

Used in GOTO code see above
various routines:

The TCA is completed with the
address of the WAIT COMPLETION
and Event assign routines.
These are library routines
that, for speed, are addressed
from the TCA. The addresses
are held as WXTRNs and are
resolved if compiled code
calls these modules.

The fields to hold the address
of the overflow routine, the
envircnment descriptor, the
GOTO code, and the error
handler are duplicated. This
allows version 4 of the
compiler to use more efficient
means of calling these
routines and retains
compatibility with previous
versions. For details of the
locaticns of TCA fields see
Appendix B.

TCA_Appendage_(TIA)

The TCA appendage is addressed from the
standard part of the TCA (see above). Its
contents are as follows:

Address of the byte beyond the ISA (TISA):

This holds the address beyond
the end of the partition and

is necessary because EOS gets
altered when non-LIFO dynamic
storage is allocated.

Address of last free area (TLFE):

Flags

This points to a chain of
areas of non-LIFO dynamic
storage that have been freed,
but cannot be amalgamated with
the major free area.

Indicating:

1. SISPRINT is opened for

Object Program Initialization 59

stream output (i.e.,
that it has been opened
as expected and can be
used for error
messages) .

2. That an aktnormal
termination is in
progress.

3. That dump I/0 is in

progress.
Address of dummy DSA:

Used, when abnormally
terminating the program, to
restore IBMDPIR's registers.
This is faster than chaining
back and testing for the dummy
DSA, and allows IBMDPIR to be
reached should the BSA chain
become overwritten.

Address of get-library-workspace rcutine:

This routine is part of the
transient library module
IBMDPIR and is used to get a
new allocation of library
workspace and an ONCA. This
routine is called after
interrupts and during program
initialization (see chapter
3).

Address of loaded-module chain:

This is a chain of the names
of transient library modules
that have been loaded. It is
kept to prevent duplicate
loading.

Code to handle interrupts and save area
for STXIT:

The STXIT macro requires a
save area to use after a
program check interrupt
(program check); this is the
area used. The code branches
to the error-handling module
IBRMDERR.

Address of interrupt handler (TERA):
This is the address to which
the branch is made after a
program check interrupt (see
above) ‘has occurred.

Address cof codht tables

These are used for
implementing the COUNT option.

Address of the TCA

60

—— e — o — e —— o o - ——— — s S

This is used to restore
register 12 when a progran
check cccurs, in case it has
been changed by a non-PL/I
subroutine.

3

ab Table

Forty bytes reserved for
PLITABS (transient library
module IBMBSTAB). This CSECT
is loaded when a STREAM PRINT
file is opened or when PLIDUMP
is called. It contains the
linesize, tabulating positions
and cther information for
PRINT files. Only the
pagesize is used for PLIDUMP.

Save_ Area_for_ IBMDEGR

This area is used as a DSA for IBMDPGR, the
routine entered when there is not enough
room for a further DSA in the current
segment of the LIFC stack. Both DSAs in
library workspace may be in use when
IBMDPGR is required, and there may be no
caller's save area because a DSA has not
yet been acquired. Consequently, IBMDPGR
has a save area reserved in the progranm
management area.

Dummy_GCNCA

The dummy ONCA holds default values for the
condition built-in functions. These will
be supplied if they are requested either
when no interrupt has occurred, or when no
interrupt with the requested condition
built-in function value has occurred.

There is a chain back through all ONCAs to
the dummy ONCA. (See chapter 7.)

Translate-and-Test_Table

The translate-and-test table contains code
used in error handling to identify relevant
on-cells. (See chapter 7.)

Diagnostic File Block

The diagnostic file block holds information
used by the error-message modules. This
includes the address of the SYSPRINT
transmitter.

Dunmy DSA

The dummy DSA acts as a save area for the
registers of the initializatiocn routine
IBMDPIR, and an end to the chain of DSAs
when a search through blocks is being made,
as for example, when searching for a
relevant established on-unit (see chapter
7). The dummy DSA has a bit in its flag
byte to indicate that it is a dummy. The
dummy DSA contains a NAB (next available
byte) peinter enabling the main procedure
to obtain a DSA in the LIFO stack.

Library Workspace_(L¥WS)

This consists of two pre-~-formatted DSAs
that are used by certain of the library
modules. (See chapter 3.)

ON_Communications_Area (ONCA)

The ONCA is supplied as an area vhere
compiled code or library routines can store
or read out any condition built-function
values that may be required. (See chapter
7.)

Chapter 5:

Caller's STXIT Options

This is two words in which the caller's
STXIT PC options are held. These are
restored before a return is made.

Operation_ Interrupt_ Analysis Code

This is code placed in the program
management area by IBMDPII. It is used by
the error handler to test whether an
operation interrupt has been caused by an
attempt to execute a floating point
instruction on a machine with no floating
point hardware. ,

During program initialization IBMDPII
tests to see if the machine has floating
point hardware. If it has, the code
consists only of a direct return. If there
is no floating point hardware on the
machine, code to analyze the interrupt is
placed in the program management area.

The code is addressed from the TCA and
is called by the error handler when an
operation interrupt occurs. If the analysis
shows that the error was due to lack of
floating point hardware, a code is returned
to the error handler.

Object Program Initialization 61

The program compiled by the DOS PL/I
Optimizing Compiler is executed in either a
background partition or a foreground
partition. The executable program phase is
placed at the start of the partition. The
repainder of the partition is known as the
initial storage area (ISA), and is used for
various functions during execution. The
start of the ISA is used as the program
management area. This is an area that
contains a number of housekeeping fields
and is set up by the initialization routine
IBMDPIR. (See chapter 5.) The remainder
of the ISA is used for PL/I dynamic storage
allocation.

The contents of the executable program
phase are described in chapters 2 and 5 of
this publication. The contents of the
program management area are described in
chapter 5. This chapter is concerned with
the allocation and freeing of PL/I dyrnamic
storage. Information on storage handling
during interlanguage communication is given
in chapter 13.

TYPES OF DYNAMIC STORAGE REQUIRED

The requirement for dynamic allocation and
freeing of storage is inherent in the
language. Automatic variables are
allocated and freed on a block-by-block
basis. Controlled and based variables can
be allocated and freed by appropriate PL/I
statements. Storage is also obtained
dynamically for workspace, compiler-
generated temporary values, I/O buffers,
and PL/I transient library routines.

Dynamic storage can be conveniently
divided into two classes.

1. That which is allocated and freed om a
last-in/first—-out (LIFO) basis.

2. That which is not.
The first class is known as LIFO dynamic

storage and the secoand class as non~LIFO
dynamic storage.

£ B3 R -8 X T TN .-

Two kinds of storage area are allocated in
LIFO storage. They are dynamic storage
areas(DSAs) and variable data areas(VDAs).

Chapter 6: Storage Management

A DSA is allocated for every procedure or
block and contains:

s The operating system standard save area.
e Certain standard housekeeping fields.

e All automatic variables and compiler-
generated temporaries whose length is
known during compilation.

VDAs are acquired for all other allocations
of LIFO dynamic stonage. These are:

e Storage for automatic variables and
compiler-generated temporaries whose
length is not known until execution.
(DCL X CHAR(N), for example.)

e Storage for those transiently-loaded
library routines that can be freed
immediately they have been used. (Open
and dump routines, for example.)

e Library workspace (LWS) and ON
communication area (ONCA) acquired
immediately before am on-unit is
entered.

Workspace for certain library modules.

Contents of Non-LIFO Storagde

Non-LIFO storage is used for the following:
e Controlled variables.

e Those based variables that are allocated
by the ALLOCATE statement, provided that
they are not allocated in a static or
automatic area.

e Such transient library routines as may
be required more than once when they
have been loaded. (I/0 transmitters, for
exanple).

e Input/output buffers.

Dynamic Storage Allocation

The principle used in dynamic storage
allocation is to allocate LIFO storage from
the low-address end of ISA, starting at the
first 8-byte boundary beyond the progranm
management area, and to allocate non-LIFO

Chapter 6: Storage Management 63

(TLFE in TCA)

Head of free-area chain

/ Main procedure DSA

LIFO storage

il

S

Held in a contiguous
stack, starting at the

s

Partition ' ' ‘

Executable ‘ W,

Program ‘ v
Phase

Subroutine DSA

N 2nd allocation for
\ a controlled variable

address following the
program management area.
Elements can be freed
only from the high-address
end of the stack.

Program ' ’ .
Management / Non-L1FO storage
Area , .
/ 3rd allocation for Held in a stack starting
a controlled variable at the high-address end

of the partition. Any
element in the stack can
be freed; consequently,
all elements are not
necessarily contiguous.
When elements are freed,
they are placed on a

- free-area chain and used

- for subsequent
allocations, if possible.

\ 1st allocation for

\ a controlled variable

End of partition

Figure 6.1.

storage from the high~address end of the
ISA, which is also the high—-address end of
the partition. All storage is allocated in
multiples of 8 bytes. Between the areas of
LIFO and non-LIFO storade is an unused
section known as the major_free_area.
figure 6.1.)

(See

The last element in the LIFO stack is
always the first to be freed and-
consequeantly can always be amalqamated wlth
the major free area. This is not always

64

The principles of dynamic storage allocation

the case with non-LIFO storage. When an
item not ‘contiguous with the major free
area in the non-LIFO stack is freed, it is
placed on a free-area chain whose head is
anchored in the TCA. Attempts are always
made to use areas on this chain when
further allocations of non-LIFO storage are
made.

Allocations of LIFO storage are made by
testing to .see if there is enough space in
the major free area. If ‘there is not

enough space, an attempt is made to use an
area on the free-area chain. When an area
on the free-area chain is used, it is known
as a new segment of the LIFO stack.

To keep track of the storage allocated and
freed, a number of pointers are used.
These are:

e The begining-of-segment pointer (BOS).
e The end-of-segment pointer (EOS).

¢ The next-available-byte pointer (NAB).
e The free-area chain.

e A pointer to the byte beyond the end of
the ISA (TISA).

The_beginning-of-seqment pointer (BOS) is
initially set during program initialization
to point to the start of the ISA. It is
not altered unless a new segment of storage
is acquired. BOS always points to the
start of the current storage segment. BOS
is held at offset 8 from the head of the
TCA, and is addressed from register 12.

The end-of-segment_ pointer (EO0S) is
ipitially set during program initialization
to point to the end of the ISA. However,
it is updated, when non-LIFO storage is
allocated, to point to the end of the major
free area. EOS is held at offset X'C' (12)
in the TCA, and is addressed from register
12.

e e R s e SR S R R S S 2L

held in every DSA and points to the first
8-byte boundary beyond the DSA (or VDA if
one has been acquired). This address is
the start of the major free area. The
current NAB is held in the most recent DSA
and is addressed from offset X'4C! (76) from
register 13. As register 13 is altered
every time a DSA is acquired, the value in
a NAB pointer need only be altered when a
VDA is freed or acquired. Previous NABs
are automatically restored when register 13
is pointed to a previous DSA.

e e e i s e e S e

(TISA) is used to keep track of the end of
the ISA.

The first two bytes of BOS, EOS, and NAB
contain segment numbers ("FF" for the ISA).
The use of these numbers is explained under
"Acquiring a New Segment."

The free—area chain includes those elements
of non-LIFO dynamic storage that have been

freed but that could not be amalgamated
with the major free area. The start of the
chain is held at offset 8 (TLFE) in the TCA
appendage and points to that element with
the highest address.

ALLOCATING AND FREEING LIFO STORAGE

Allocating and freeing LIFO storage is
handled by compiled code or by the
particular library module that requires the
space. The allocation is done in the
manner used by the prologue code shown in
chapter 2. Freeing is done ir the manner
used by the epilogue code, which is also
shown in chapter 2. Before allocating the
storage, a test is made to see if there is
enough space in the major free area for the
new allocation. This test is carried out by
logical arithmetic, for reasons explained
later, under the heading "Acquiring a New
Segment." If there is not enough roon,
entry to the segment-handling entry point
of the resident library module IBMDPGR is
made. The address of this entry point is
held at offset X'74' (116) in the TCA. The
allocation of LIFO storage involves finding
the current NAB. This gives the address of
the start of storage to be used. A new
value of NAB is calculated, addressing the
byte beyond the end of the new allocation.
Freeing the storage is done by restoring
the NAB pointer to the previous value.
Figure 6.2 illustrates the principles
involved. Before allocating the storage, a
test is made to see if there is enough
space for the allocation.

ALLOCATING AND FREEING NON-LIFO STORAGE

Any section of non-LIFO storage can be
freed at any time; therefore a simple
stacking mechanism cannot. be used, because
it would waste storage by leaving freed
storage within the stack. A modified
method is therefore used. When storage
that is contiquous with the major free area
is freed, it is amalgamatéd with the major
free area by altering the end-of-segment
pointer, which indicates the end of this
area. When storage that is not contiguous
with the major free area is freed, it is
placed on the free-area chain, which is
anchored to a field in the TCA. Whenever
an allocation is made, an attempt is made
to place the allocation in an area that is
already on the chain, rather than use a
further section of the major free area.
Allocations of non-LIFO dynamic storage are
always handled by the library module
IBMDPGR, whose address is held in the TCA.
Figure 6.3 illustrates the principles

Chapter 6: Storage Management 65

To dummy DSA

1 R13
1
|
| _ _ _ _ _] Backchain (stored at fixed offset from R13)
Main procedure DSA
NAB (stored at fixed offset from R13)
R13 o
=old NAB)
Backchain (= old R13)
Subrouting DSA
NAB —
EOS

Store new NAB at fixed offset
from register R13. '

Allocating a new DSA Freeing a DSA

1. Test if major free area large :
enough for new DSA. If not 1. Load register 13 with current
call IBMBPGRC. backchain address. Since the

2. Store R13 at fixed offset from NAB and backchain flelds'are
old NAB to act as backchain. always addressed from register

13, the previous values are
3. - Load R13 with address of old NAB. automatically restored.
4.

Figure 6.2.

66

Principles involved in allocating and freeing LIFO storage

NAB NAB
EOS
3rd allocation
EOS
2nd allocation 2nd allocation
1st allocation 1st allocation
Initial situation New allocation
Two contiguous 1. Free-area chain?
allocations of No. (TLFE in TCA=0)
non-LIFO storage 2. Allocate by altering

EOS pointer.

Fiqure 6.3.

involved. Whenever an allocation within
the major free area is made, the end-of-
segment pointer, in the TCA, is updated to
point to the end of the major free area.

If there is insufficient space for an
allocation of non-LIFO storage either in
the major free area or in an area on the
free-area chain, the program is terminated.

ACQUIRING A NEW SEGMENT OF LIFO STORAGE

Every time a new procedure or block is
entered, or a VDA is acquired, a test is
made to see whether there is enough space,

for the DSA or VDA, between the NAB pointer

and the EOS pointer. If there is not
enough space then an attempt is made to use
the largest space on the free-area chain.

NAB

EOS

NAB

EOS

3rd allocation 3rd allocation

2nd allocation

2nd allocation

4th allocation

Further allocation

Free Ist area

1. Isarea nex‘r%to 1. Free-area chain? Yes.

major free area? No. 2. Find smallest area that
2. Is area next to an will hold new allocation.

area already on Allocate at high-address

free-area chain? No. end, leaving remaining

3. Place area on free- area on free-area chain.

area chain. 3. Alter length field at head
of remaining area.

Principles involved in allocating and freeing non-LIFO storage

Pointers BOS and EOS are set to point to
the beginning and end, respectively, of the
new segment. The DSA or VDA is allocated
in the low-address end of the segment, and
the NAB pointer is set to point to the
first free byte after the DSA or VDA. The
former values of BOS and EOS are stored at
the start of the new segment.

- A segment number is given to each
segment, starting at hexadecimal "FF" and
reducing by 1 for each new segment. The
number for the ISA is "FF", the second
segment "FE", and so on. This number is
held as the first byte of the NAB, BOS, and
EOS pointers. The result of this device is
that when logical arithmetic is used, all
addresses in later segments are apparently
less than those in the earlier segments,
regardless of their actual position. This
simplifies segment handling. For instance,
when a DSA in the second segment is freed,

Chapter 6: Storage Management 67

NAB is simply restored to its previous
value which may well be in the first
segment. NAB will then hold value "FF--—--
", and EOS the value YFE-——-- %, TWhen a
further DSA is required, EOS will be less
than the sum of NAB and the DSA length, as
NAB is already greater than EOS.
Consequently it will appear that there is
insufficient space for the DSA in the first
segment, regardless of whether or not this
is the case. The library module IBMDPGR is
thus called to restore BOS and EOS,
rearrange the free-area chain, and if
possible place the new DSA after NAB in the
first segment. The process is illustrated
in fiqure 6.4.

IBMDPGR - STORAGE MANAGEMENT ROUTINE

The allocation and freeing of LIFO storage
within a given segment is handled by
compiled code or by the library module
requiring the storage. All other dynamic
storage allocation is carried out by the
resident library routine IBMDPGR; this
module has four entry points:

IBMBPGRA Allocating non~LIFO storage.
IBMBPGRB Freeing non-LIFQ storage.
IBMBPGRC Obtaining and freeing additional
storage segments (for DSAs).
IBMBPGRD Obtaining and freeing additional

storage segments (for VDAs).

These four entry points are described
below.

When entered by entry point IBMBPGRA, the
module first frees any LIFO segments that
are not in use, searches the free-area
chain, if one exists, and allocates the
storage in the smallest possible area on
the chain. If an area of the exact size is
found, it is removed from the chain;
otherwise the length stored in the first
word of the area is altered. If there is
no chain, or no area on the chain that is
large enough, IBMDPGR attempts to allocate
the storage in the area immediately
preceding the EOS pointer. If there is not
enough space between the EOS pointer and
the current NAB pointer, the program is
terminated.

Provided that storage can be allocated,

control is passed back, with register 1
pointing to the address of the storage

68

allocated.

When entered by IBMBPGRB, the module scans
the free-area chain (if one exists) to see
whether the storage being freed can be
amalgamated with areas already om the
chain. This is done if possible. The
module then checks to see whether the
storage being freed is adjacent to the
rajor free area. If so, EOS is altered to
point to the end of the area being freed or
to the end of the amalgamated area, if this
adjoins the major free area. If neither
case applies, the area is added to the
free-area chain, which is arranged in
descending order of addresses.

Segment Handling (IBMBPGRC_ and

When compiled code discovers that the
address contained in the NAB pointer plus
the length of the area to be allocated is
greater than the value of the pointer EOS,
either IBMDPGRC or IBMDPGRD is called,
depending on whether a new DSA or VDA is
required.

The entry points are called in two
circumstances:

1. There is insufficient room in the
current segment for allocation of the
DSA or VDA and, consequently, a new
segment is required.

2. A segment other than the first one has
been allocated, but is no longer in
use. :

IBMBPGRC and IBMBPGRD check to see which
of the above two situations caused the
call. This is done by checking whether the
number in the first byte of NAB is greater
than the number in the first byte of EOS.

In case 1 above, the segment numbers are
the same, and a new segment must be
allocated. A new segment is allocated by
searching the free-area chain for the
largest available area and using this as a
new segment. If there is no area large
enough to hold the new DSA, control returns
to IBMDPIR, which calls module IBMDPES to
generate an "insufficient storage" message,
and then terminates the program. If a new
segment is allocated, the o0ld values of BOS
and EOS are placed in control words at the
head of the new segment. New values for
BOS and EOS, with first byte numbers

9 193deyd

juauabeuey abeiolzs

69

BOS

A 4

NAB

TLFE

Initial situation

1. Free-area chain exists.
B80S, NAB, and EQS have
X'FF in first byte, i.e.,
segment number 1.

Figure 6.4.

Segment handling

BOS

NAB

EOS

BOS
R13

NAB
EOS

TLFE

=Dy BOS .—--{>
NAB
EOS
non-LIFO storage
BOS
old BOS and EOS old BOS and EOS
new
segment
EOS
TLFE
Acquiring new segment Freeing DSA in segment
1. Compiled code or library 1. Register 13 is restored in
routine finds major free the normal way. BOS and
areas too small. Calls EOS are not restored. The
IBMBGR. segment will not be freed
2. IBMBGR finds an area on until there is a further
free-area chain large demand for storage, that
enough for aliocation. ganhbe accqmmndated
3. Stores old BOS and EOS. in the previous segment.
Sets new BOS and EOS, and 2. NAB now has X'FF’ in first
returns to caller. byte, BOS and EOS still
have X'FE’.

4, Caller gets new DSA.
BOS, EOS, and NAB have
X‘FE’ in first byte, i.e.,
segment number 2.

BOS

R13

NAB
EOS

TLFE

A 4

New DSA

Freeing segment

1. When storage is again required,
NAB + storage required is
compared with EOS using
logical arithmetic.

2. NAB + storage is found to be
greater (because of different
segment numbers), so IBMBGR
is called.

3. IBMBGR finds segment
numbers are different. Tests to
see if new storage will fit in old
segment. If not, allocates in
current segment.

Storage will fit, so restores old
BOS and EOS, places segment
on free-area chain, and returns
to caller.

Caller allocates storage starting
at current NAB.

>

o

decremented by one, are placed in the TCA.
The address of the new NAB is passed in
register zero; the address for the start of
the new DSA or VDA is passed in register 1.

In case 2 above, the number in the first
byte of NAB is greater than the number in
the first byte of E0S. If the difference is
greater than one, then more than one extra
segment has been allocated for DSAs which
are no longer current. In this case,
segments are freed until only one empty
segment remains. This is done by setting
BOS and EOS to the values held in the
control words at the head of each segment
and freeing the storage in the way
described for IBMBPGRB above.

When only one empty segment remains, a
~.test is made to see whether the new DSA
will fit into the segment that contains the
present NAB pointer (the segment before the
empty segment). This test is made by
comparing the current NAB pointer with the
0ld EOS pointer held in the control words
of the empty segment. If there is.
sufficient room, the empty segment is freed
as described under IBMBPGRB, above. Return
is then made to the caller with a new value
for EOS and BOS, and the DSA is allocated
immediately after the old NaB.

If there is not enough room in the
segment containing NAB, then a test is made
to see if the empty segment is large enough
to hold the new DSA. This is done by
comparing the difference between the
current BOS and EOS with the length of the
element. If there is enough room, the DSA
is allocated in the empty segment. The
address of the start of the storage is
passed to compiled code in general register
1 and the address of the new NAB in general
register 0.

If there is not enough room in the empty
segment, then the segment is freed. There
are now no empty segments, and the
situation is treated as if there had been
no empty segments in the first place.

Note: It is possible that after freeing a

number of empty segments, an area on the
free—-area chain can immediately follow EOS.

70

.variable's storage class.

However, the possibility is remote, and no
check is made to see whether this is the
case.

Storage Management in Programmer-
Allocated Areas

By using area variables, PL/I allows the
programmer to use a continuous area of
storage for based variables. The
allocation of storage for area variables is
handled in the same way as that for other
types of variable, and depends on the

The allocation
and freeing of storage within an area is
handled by the library module IBMBPAM.

If there is not enough space for an
allocation or if the target area is too
small in an assignment statement, the AREA
condition is raised.

The method employed is that storage is
allocated from the low-address end of the
area, and an offset is kept to the end of
the item with the highest address allocated
in that area. This offset is known as OEE
(offset to end of extent). . When storage is
freed, either the OEE is altered or the
storage is placed on a free-storage chain,
with the largest segment at the start of
the chain. The method used is conceptually
the same as that used for non-LIFO storage.
However, the chain is held in a different
order and the stack extended in the
opposite direction. If a space freed is
adjacent to any that are already free, the
spaces involved are amalgamated into one.
This is done either by altering OEE, or
combining the new free space with one or
more free spaces that are already in the
free chain, or possibly by a combination of
these methods. When a free chain exists,
IBMBPAM always attempts to allocate storage
by using a space on the chain. The low-
address end of the smallest possible space
on the chain is used, and the chain is then
rearranged to maintain the correct order of
decreasing size.

Chapter 7: Error and Condition Handling

This chapter deals with the method used to
Many errors detected at execution time are
related to PL/I conditions and can be
handled either by on-units written by the
programmer, or by standard system action.
The chapter starts with a summary of the
error and PL/I condition handling
facilities offered by the PL/I language.
The implementation problems these
facilities raise, and the methods used to
handle them, are then described. An exanple
of error handling is given which allows the
principles involved to be followed through
in a program. The chapter finishes with a
brief description of the error message
modules, the modules used to implement the
PLIDUMP facility, and other debugging
facilities.

Summary of PL/I Error Handling

PL/I allows the programmer to obtain
control after the occurrence of any PL/I
interrupt. A PL/I interrupt is defined as
“the redirection of flow of control of a
program, as the result of the raising of an
enabled PL/I condition." A PL/I interrupt
is not the same as a program check
interrupt, although all program check
interrupts, other than "significance" and
certain input/output interrupts, can, and
normally do, cause PL/I interrupts. (See
figure 7.1.) PL/I interrupts are always
associated with PL/I conditionmns.
into three classes:

1. Hardware interrupts (program checks)
which are interpreted as PL/I
conditions and treated as PL/I
interrupts. See figure 7.1.

2. sSpecial PL/I error conditions that
have no equivalent at the program
check level. For example: CONVERSION
and SUBSCRIPTRANGE.

3. PL/I conditions that are not errors,
but occur at unpredictable times
during the program; for example,
ENDFILE and ENDPAGE.

Throughout this chapter, interrupts and
PL/I conditions recognized by the systen,
are referred to as program_check
interrupts. Interrupts detected by
checking code at the PL/I level are
referred to as software-detected
interrupts, or software interrupts.

Chapter 7:

They fall

A table showing all PL/I conditions, and
the method by which they are detected, is
given in figure 7.2.

Hardware interrupt | PL/I condition

o

r
{

i
|
i

I

: {

{Operation | |
{Privileged operation | |
| Execute i |
|Protection | ERROR |
{Addressing | (after issuing {
{Specification { a message) {
| Data | |
| ==— = * -—= {
{Fixed point overflow FIXEDOVERFLOW/SIZE|
|Fixed point divide ZFRODIVIDE/SIZE = |
{Decimal overflow FPIXEDOVERFLOW/SIZE|

|
|
I
| Decimal divide ! ZERODIVIDE
|
|
|

|
| Exponent overflow OVERFLOW/SIZE |
|Exponent underflow UNDERFLOW |
|Floating point divide| ZERODIVIDE {
-3

L—- -

Figure 7.1. Hardware interrupts
associated with PL/I conditions

The programmer has the choice of
defining the action that will be taken when
a PL/I interrupt occurs, by writing an on-
unit for the relevant condition, or of
accepting the default action. This default
action is known as standard system_action.
If control has passed through an ON-
statement (that has not been overridem by a
REVERT or other statement), the associated
on-unit is said to be established.

The programmer also has the choice of
whether or not certain of the PL/I
conditions shall cause PL/I interrupts when
they occur. When a condition causes a PL/X
interrupt, it is said to be enabled. When
it does not cause a PL/I interrupt, it is
said to be disabled. Some conditions are
enabled by default; some are disabled by
default. Details are shown in figure 7.2.
Many of the conditions whose enablement is
under programmer control are error
conditions that are peculiar to the PL/I
language. Because these interrupts are not
recognized by the system, special®code has
to be generated if they are to be
recognized. PL/I, therefore, gives the
programmer a choice of whether to have this
code generated and have more efficient
debugging aids at his disposal, or of not
having the code generated, and having a
faster and shorter program. Normally,

Error and Condition Handling 71

relevant conditions will be enabled during
the testing of a program and removed for
production runs. Conditions whose
enablement is under programmer control can
be enabled or disabled for the duration of
a statement or a block.

Certain of the program check interrupts
can be disabled by the programmer. When
this is done, the interrupts still occur at
system level. They are intercepted before
PL/I interrupts occur, and control is
returned to the point of interrupt.

A number of further factors influence

the implementation of error handling.
These factors are discussed below.

Static_and Dynamic Scope

On-units have dynamic scope. That is, each
procedure or block inherits the on-units
established in the block that calls it,
unless such on-units are specifically
overridden. Thus, as the sequence in which
procedures are called may depend on the
input data, it is not always possible at
compile time to predict which on-units will
be applicable to any given section of the
program. A method is therefore needed to
deternine this during execution.

Condition prefixes have static scope.
That is, they are inherited from the
encompassing procedure or block in the
source program. Thus, the enablement or
otherwise of a condition is predictable at
compile time.

Levels of Interrupt

An important concept in the understanding
of error handling is that of levels of
interrupt. With a few minor exceptions,
the language allcws any statements to be
executed in on-units, but stipulates that
the environment of the original interrupt
must be retained so that a return can be
made to the point of interrupt when the on-
unit is completed. This necessitates a
further allocation of library workspace for
use during the on-unit, as the original
allocation may be in use when the interrupt
occurs and cannot be overwritten. As there
may be PL/I interrupts during the execution
of on-units, the stacking of levels of
library workspace can, theoretically,
continue indefinitely.

72

Condition Built-In Functions

PL/I defines a number of condition built-in
functions and pseudovariables that allow
the program to inspect the causes of an
interrupt and, in certain cases, to alter
the fields involved. These built-in
function values are placed in a special
control block known as the ONCA (ON
communications area) before the main error-
handling code is entered.

Because any number of levels of
interrupt can occur, a new ONCA is provided
for every level of interrupt. This is dome
at the same time as a new allocation of
library workspace is made.

The ERROR condition is raised as standard
systemn action for those PL/I conditioms
that will normally be caused only by
errors. (See figure 7.2 for details.) It
is also raised by certain program check
interrupts (see figure 7.1), and a number
of software~-detected interrupts that have
no directly-associated PL/I condition. 1
message is generated before the condition
is raised. This is beyond the control of
the programmer, and the message will be
produced regardless of the presence of an
ERROR on-unit.

The Implementation of Error Handling

The most important points in the error-
handling scheme are the following:

1. During compilation, the compiler
generates code to check for the
various PL/I conditions that are not
related to program check interrupts
or, alternatively, code to call
appropriate library modules that will
check for these conditions when they
carry out the required function.

2. During program initialization, the
initialization module IBMDPII issues a
STXIT macro instruction, which results
in the system passing control to the
error-handling routine IBMDERR,
vhenever a program check (hardware-
detected imterrupt) occurs.

3. During execution. The PL/I resident
library module IBMDERR gains control
whenever a PL/I condition is
recognized, or a program check
interrupt associated with a PL/I

-
|
{

|
|
{
|
{
|
|
|
|
|
|
|
{
!
|
{
i
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
|
1
!
|
{
1
|
{
|
{
|
|
|
|
|
|
-1
1
|
|
|
1
{
J

| Name of {Qual-|Description | Recognized by |Default |Program|
| condition {ified} | | {-mer | ERROR %%
i { | { | |Control|Condition]|
' ——————————————— —— i e e e < o > i e e " S > - —— - - -~ - o o P -
| Computatiopal | 1 { | 1 |
| | | { | I {
| CONVERSION | no |Attenpt to |Code in relevant |enabled | yes § yes
		convert invalid	library modules	i
1 fcharacter string				
				t
FIXEDOVERFLOW	no {Overflow of a	Systenm	enabled	yes
	{fixed point {	i		
{ I {value		{		
l		’ (
SIZE	no	Attempt to	Compiler-generatedjdisabled	yes i yes
i	assign too large	checking code, or		{
	ja value { progran systenm		1	
l i		i		
{ OVERFLOW	no {Overflow of a 4 systenm {enabled	yes	yes	
{		floating-point		
	{value	l i		
i				
UNDERFLOW	no	Exponent becomes	Systen	enabled
	Ismaller than			
i	permitted {	1 y		
	{ainimum		{	
{			{ t	
ZERODIVIDE	no	Attempt to [Systenm	enabled	yes
		divide by zero		
.—-—_ ———————— —————————— - — Pr—
: Input/Output : { | { { |

{ | | | !
| ENDFILE | yes |End of file |Code in relevant |enabled | no { yes
| i | reached {library modules | | |
i { | | | { |
{ ENDPAGE | vyes |End of a page on|Code in relevant {enabled | no | no
1 | ta print file |library modules | | |
{ { | reached | | | |
| | | | | { {
{ TRANSMIT | yes |Transmission {Code in library {enabled { no | yes
{ i ferror on a file |modules { | {
! | | | | | t
{ UNDEFINEDFILE | yes |Error in opening|{Code in relevant |enabled | no | yes
| | ifile |library modules i { {
i | { | | | !
| KEY | yes {Invalid key |Code in relevant |(enabled | no i yes
{ l | |library modules | [|
{ { | | | | |
| NAME | yes |Unrecognizable |Code in relevant |enabled | no | no
I { {data-directed [library modules { { {
{ ({input 1 | | |
i { 1 i | { t
{ RECORD | yes |Incorrect size |Code in relevant |enabled | mo { yes
{ | jrecord {library modules | i i
| —— [
|
{*%x The ERROR condition is raised when an error occurs that is not covered by PL/I
| exceptional conditions - taking the square root of a real negative number, for
{ example. It is also raised as standard system action when handling all types of
i error conditions. Thus an ERROR on-unit enables the programmer to intercept all
i error conditions.
L. - - - -

Figure 7.2.

(part 1 of 2).

PL/1I conditions

Chapter

7:

Error and Condition Handling

73

| Name of : |Qual-{Description | Recognized by |Default |Programn} |
| Condition |ified| | | |-ner |ERROR%*% |
{ i | | i |controljcondition]|
. ——————————————————————— - ————————— —————— - ———
Program Checkout| | | [

| | |
no |Array subscript |Compiler-generated|disabled

hl

|
| | | |
{ | | |
| SUBSCRIPTRANGE | | yes | yes |
] : i |outside declared|checking code | | 1 |
| { | bounds t | { | |
i | |) | | { i |
| STRINGSIZE | no |Attempt to {Code in relevant |disabled | yes | no |
| | jassign string {1library modules { { { |
| | {to smaller | | | | {
{ { { string { | | { {
| | | | | | |
| STRINGRANGE | no (Attempt to |Code in relevantx {(disabled | yes | no |
{ i jaccess beyond library modules | | | |
| . | |limits of string|] | |
{ CHECK | vyes {Value assigned (Compiler—-generated{disabled | yes | no [
| (variable or { |to identifier or|checking code, or | i { |
| label) | |control passed {(library module | { | {
{ | |through label | { | i |
| - T T e e e s e - - {
{ List Processing | { 1 | { | 1
| | | | | | | |
| AREA | no |Attempt to |Relevant library |(enabled | no | yes |
i jallocate beyond {modules | | { |
i : fend of area | { | | |
I- - A —— - -1
| System Action | [} | i { { |
| | | | | | | |
{ ERROR | no |Any error |Relevant library {enabled | no 1 - |
| ! fcondition . {modules { | i |
| | |including those | { | | |
{ i fnot covered by | | | | {
{ { {other | | { ! |
{ | {conditions%x% | i i | {
[{ { | | i |
{ FINISH | no (Program about to|Relevant library |enabled | no | - {
| | | be terminated |modules l | { |
- - - 1
{ Programmer Named| | | | |] |
{ | i : | | | | |
| CONDITION { no |Programmer {Signal |enabled | no | - |
{ (name) { {defined - . |statement { (when | | |
| | jcondition | | coded) | | [

3

== Bttt e sssssss—s e
| * When STRINGRANGE is enabled, library modules are always called to handle substring |

operations. These modules have the necessary code for checking for the STRINGRANGE |
condition.

3#
*

:
The ERROR condition is raised when an error occurs that is not covered by PL/I |
exceptional conditions - taking the square root of a real negative number, for |
example. It is also raised as standard system action when handling all types of l
error conditions. Thus an ERROR on-unit enables the programmer to intercept all |
error conditions. |

J

- - ——— ——— — —— v s,
-t

[- e o - o—

Figure 7.2. (Part 2 of 2). PL/I conditions

74

condition occurs. This module checks
to see if the associated PL/I
condition is enabled and, if it is
not, returns control to the point of
interrupt. If the condition is
enabled, the module then searches for
a relevant, established on-unit,
passing control to the first one that
is found. If no established on-unit
is found, IBMDERR carries out the
standard system action, calling any
library modules necessary to do this.

INFORMATION REQUIRED AT INTERRUPT

For the error—-handling module to carry out
the various functions necessary, the
following information must be available.

1. The type of PL/I condition that has
occurred and the associated on-code.

2. Whether the condition is one that can
be enabled or disabled by the
programmer and, if it is such a
condition, whether it ig enabled or
disabled.

3. Whether there is an established on-
unit that applies to this condition.

4. The values that may be used by any on-
unit built-in function that appears in
the on-unit.

5. The standard system action for the
condition.

THE FIELDS USED IN ERROR HANDLING

The fields used in accessing this
information are the following: the error
code, enable cells, ONCBs (ON control
blocks), ONCAs (ON communications areas),
and translate-and-test table in the TCA.
The fields are shown in figure 7.3 and an
example of error handling given in figure
7.4. Appendix B contains diagrams of these
fields.

The error code is either a four-byte or
two-byte code. A four-byte code is
generated when a PL/I condition is detected
by compiled code. A two-byte code is
generated when an error has been detected
that does not have an immediately
associated PL/I condition.

Chapter 7:

Byte 1 holds a number which uniquely
identifies the type of error or condition.
Byte 2 is used to indicate the oncode and
message associated with the error or
condition. When bytes 3 and 4 are present,
they are used to indicate which condition
built-in functions may be required, and are
copied into the flag byte in the current
ONCA. '

The error code is generated by the
object program or library module, for
software-detected PL/I conditions, and by
the error handler itself for hardware-
detected interrupts.

Enable Cells

Enable cells are held at a fixed offset in
each DSA. They are a set of flags that
correspond to the PL/I conditions whose
enablement can be controlled by the
programmer. The PL/I conditions referred to
are as follovs:

Bit 0 CHECK=*

Bit 1 ZERODIVIDE
Bit 2 FIXEDOVERFLOW
Bit 3 SIZE

Bit &4 CONVERSION
Bit 5 OVERFLOW

Bit 6 UNDERFLOW

Bit 7 STRINGSIZE
Bit 8 STRINGRANGE
Bit 9 SUBSCRIPTRANGE
Bit 10 CHECK=x%

Bit 11 CHECK=x

*See section on handling CHECK for details.

A flag is set to zero when the relevant
condition is enabled. Two sets of these
flags are held in each DSA - the block
enable cells and the current enable cells.
The block enable cells indicate the
situation at the start of the procedure or
block. The current enable cells show the
position at the point in the program that
is currently being executed. Having two
sets simplifies resetting the flags when
enablement is changed for a. single
statement. It also simplifies resetting of
the enable cells should the statement
result in entry to an on-unit or function
reference, and simplifies return of control
to a different part of the block because of
a GOTO in the on-unit or function.

ONCBs_ (ON_Control Blocks)

ON control blocks are used to address the
on-unit and hold various information about

Error and Condition Handling 75

9L

UNQUALIFIED CONDITIONS

A flag at the head of the DSA indicates that static ONCBs exist for that
block.

The block and current enable cells indicate which of those conditions that
are under programmer control are enabled at any given point in the program.
Each such condition is represented by a single bit in each cell.

There is an on-cell for every ON-statement in the block. Each on-cell consists

of a one-byte code identifying the condition, e.g., X'OA' (SUBSCRIPTRANGE).

If the same condition appears more than once, previous on-cells are set to
zero.

Static ONCBs are held contiguously in static storage, in the same order as the
corresponding on-cells. They contain a code byte and flags that indicate such
things as : whether SYSTEM was specified, whether SNAP was specified,
whether the on-unit consists of a single GOTO statement, whether it is a null
on-unit, etc. If there is an on-unit, its address is given in the second byte. (For
GOTO-only on-units, the offset of the address of the label variable is given.)

QUALIFIED CONDITIONS

A flag at the head of the DSA indicates that dynamic ONCBs exist.

Dynamic ONCBs are set up during execution of each block in which qualified
condition ON-statements occur. The last two words of a dynamic ONCB
contain the same type of information as static ONCBs {described above, under
‘Unqualified Conditions’), but use additional flags to indicate whether the
condition is enabled and whether it is established. The second word contains
qualifying information, such as the address of the FCB (for conditions such

as ENDFILE, RECORD, TRANSMIT, KEY, etc.), or address of a symbol
table (for ON CHECK on-units).

Dynamic ONCBs are chained together, the most recent being addressed from
a fixed offset in the DSA. The last dynamic ONCB in the chain contains zero
in its backchain field.

Enable
cells

On-cells

DSA

Flags

Address of LWS

Block l Current

Address of static ONCBs

LWS ‘
Flags DNCA offset
1st level
Flags l ONCA offset
2nd level

Dynamic ONCB chain

Backchain to dummy ONCA

Address of on-cells

Condition built-in
function information

ONCA

e

End of chain {Zero)

Address of FCB

Dynami
ONCB

Code Flags

Address of on-unit

Static storage

1st static

Address of on-unit

ONCB

Figure 7.3.

Backchain

Code] Flags

2nd static

Address of symbol table

Address of on-unit

ONCB

Dy i
ONCB

Code Flags

Code Flags

3rd static

Address of on-unit

Backchain

Address of FCB

ONCB

Code Flags

Offset of label variable
(On-unit is GOTO only)

Address of label variable

The principal fields used in error handling

Not set (system action)

ONCB

the on-unit, for example, whether or not it

is a null on-unit.

1. Dynamic ONCBs: Dynamic ON control
blocks are held in dymamic storage and
are used for conditions that need
gqualification - ENDFILE, ENDPAGE, KEY,
NAME, RECORD, TRANSMIT, UNDEFINEDFILE,
CHECK, and the CONDITION comndition.
The dynamic ONCBs for each block are
chained together, and the address of
the first dynamic ONCB is held at
offset X'60'(96) in the DSA of each
block. One ONCB is generated for each
condition and qualifier regardless of
the number of ON-statements in the
block for that condition and
qualifier. Dynamic ONCBs, but not
static ONCBs, are used to test if
there is a relevant established on-
unit for the condition and qualifier.

St oN Static ONCBs are held
contiquously in static storage and
refer to conditions that do not need
qualification. A static ONCB is
generated for every ON-statement in
the block and holds the address of the
associated on-unit if there is one.
Each ONCB is associated with an oncell
held in the DSA of the associated
block. On-cells and ONCBs are held in
the same order. The error-handling
module searches the on-cells, counting
how many on-cells it tests before the
relevant on-cell is reached. The
static ONCB is addressed by an offset
from the address of the first static
ONCB. The offset is calculated by
multiplying the count of on-cells by
eight, the length of a static ONCB.
The address of the first static ONCB
is held at offset X'5C' (92) in the
DSA.

The addresses of the ONCBs are held at
fixed offsets in the DSA. Dynamic ONCBs
are chained together. Static ONCBs are
held contiguously and can be found by
incrementing the value of the first address
until the correct ONCB is reached.

ONCA (ON Communications Area)

The ON communhications area contains fields
to hold the values, or address of the
values, of any condition built-in functions
that may be used. Flags are set to indicate
which values are valid for the particular
interrupt. The appropriate data is placed
in the ONCA by compiled code or library
modules. The on-code is not generated
until required. Instead an error code is
used. This gives greater flexibility in
generating messages, as the error can, in

Chapter 7:

certain circumstances, be defined more
accurately than on-codes allow. On-codes
are compatible with those used in previous
PL/I compilers.

ONCAs are chained together, so that a
search can be made for the correct
condition built-in function values through
various levels of interrupt. The dummny
ONCA, held in the program management area,
acts as an effective end to the chain, and
contains the default values for condition
built-in functions.

Dummy DSA

‘The dummy DSA is not set-up exclusively for

the use of the error-handling module.
However, it plays an important part in
error handling. After an interrupt, all
existing DSAs are searched for an
established on~unit that corresponds to the
interrupt. The dummy DSA acts as an end in
the chain that is searched. When the dummy
DSA has been reached, standard systen
action is taken.

The dummy DSA is also used to avoid the
need for providing special-case code when
calculating the address of the interrupt,
and the name of the entry point, when an
interrupt has occurred in the main
procedure.

Translate—-and-Test Table

When an unqgualified condition has been
raised, the translate-and-test table in the
TCA is used by a translate-and-test (TRT)
instruction to test the on-cells and see if
a relevant on-unit is established.

Executing ON and REVERT Statements

Executing ON and REVERT statements is
essentially a matter of setting a flag,
either on or off, in an on-cell or in a
dynamic ONCB. The action depends on
whether the associated PL/I condition is
qualified or not, and hence whether an on-
cell or a dynamic ONCB contains the flag.

Error and Condition Handling 77

8L

(SUBSCRIPTRANGE) : SORT:

SOURCE PROCEDURE OPTIONS (MAIN);

PROGRAM ON SUBSCRIPTRANGE BEGIN;

PUT EDIT (‘SUBSCRIPTRANGE OCCURRED') (A);
PUT SKIP DATA (1,4,K);

/%SUBSCRIPT VALUES FOR TEST#/

END;

.

O;\I SUBSCRIPTRANGE SYSTEM;
.

.

END SORT;

ACTION
DURING
COMPILATION

1. Remove the on-unit from the position it holds in the
block and treat it as a separate begin block.

2. Generate code to set a flag in the block enable cell of the
DSA, to indicate that SUBSCRIPTRANGE is enabled
throughout the block.

3. Generate code to set up two on-cells in the DSA. Set up
two corresponding ONCBs in the static internal control
section {one for each ON-statement in the block).

4. - Place instructions equivalent to the ON-statements in
compiled code. The first statement causes a code byte
corresponding to SUBSCRIPTRANGE to be inserted in
the first on-cell; the second statement causes the same
code byte to be inserted in the second on-cell, and sets
the first on-cell to zero.

5. Generate code to insert flags in the ONCBs. Insert the
address of the on-unit in the first ONCB.

6. Generate code to.carry out the on-unit.

7. Generate code to check for the occurrence of SUB-
SCRIPTRANGE in every statement that could potentially
cause the condition to be raised.

ACTION
DURING
EXECUTION

1. The checking code generated by the compiler recognizes the occurrence
of SUBSCRIPTRANGE and- passes control to the error handler, after
placing any required condition built-in function values in the ONCA. (In
this case only the error code is generated.)

2. The error handler checks to see if SUBSCRIPTRANGE is one of those
conditions that can be enabled by the programmer. Since it is such a
condition, a check is made, in the block enable cells of the DSA, to see
if it is enabled. {If it were not enabled, control would return directly to
to the point of interrupt.)

3. Finding that the condition is enabled, the error handler then goes to
the on-cells in the DSA. These are tested, using a translate-and-test table
in the TCA, to see if SUBSCRIPTRANGE is established. After this, the
action depends on whether the code for SUBSCRIPTRANGE is detected
in the first or second on-cell, and consequently whether the first or
second ONCB is used.

4. If the first ONCB is used, on-unit action is indicated; if the second ONCB
is used, standard system action must be taken. (Standard system action
would also be taken if the code for SUBSCRIPTRANGE were not found
in the DSA on-cells of the block in which the interrupt occurred, or in
the DSA of any dynamicaily encompassing block.)

[]

Figqure 7.4. Example of error handling

On-unit action

A further allocation of tibrary workspace
and a new ONCA are acquired in case they
should be needed during execution of the
on-unit.

The on-unit {addressed from the ONCB})

is executed.

Provided there is not a GOTO out of the
on-unit, return is made to the error
handler. The error handler then carries
out standard system action for return
from an on-unit.

System action

For SUBSCRIPTRANGE, standard system
action is to produce a message and raise
ERROR. The message modules are called
to put out a message dependent on the
error code.

ERROR is raised, and a search is made

" through all active blocks for an ERROR

on-unit; Since there is none, standard
system action is again taken; this is to

raise FINISH. Since there is no FINISH on-
unit, the standard system action of return-
ing to IBMDPIR is taken, thus terminating
the program. .

For unqualified conditions, the ON-
statement action is merely to set a flag on
in an on-cell which is associated with that
statement. If there is more than one ON-
statement for the same condition in a
block, the previous on-cells will be set to
zero when second and subsequent on-cell
flags are set on. The REVERT statement is
executed by setting the flag in the latest
on-cell to zero. The situation then
reverts to that at the start of the block.

On-cells are not generated for qualified
conditions; instead, ONCBs are generated in
the DSA of the block in which the ON-
statement appears. When the ON-statement
is executed, one of the ONCBs is associated
with the condition. The ONCB has the
qualifier and the address of the associated
on-unit placed in it, and the 'established!
flag set on. If a further ON-statement for
the same condition with the same qualifier
has to be executed, the address of the on-
unit is changed. For a REVERT statement,
the establishment bit is set off. This
returns the situation to that at the
beginning of the block.

IBMDERR-Error-Handling Module

The error-handling module, IBMDERR, handles
three situations. These are as follows:

1. Hardware interrupts.

2. PL/I conditions detected by the object
program.

3. Errors detected by the object program
that are not directly related to PL/I
conditions and which raise the ERROR
condition.

All three situations are ultimately
dealt with as PL/I conditions. For
example, the FIXEDOVERFLOW condition would
be raised when fixed point overflow occurs
and causes a program check interrupt.

Where there is no directly-applicable, PL/I
condition (for instance after a data
interrupt) a system message is printed and
the ERROR condition is raised.

Chapter 7:

HARDWARE INTERRUPTS

The STXIT macro instruction, issued by
IBMDPII during program initialization,
specifies a save area and the address of a
user exit routine to which control is to be
passed after a program check interrupt.
(A1l program check interrupts except
"significance" and certain input/output are
intercepted.) When a program check
interrupt occurs, the supervisor saves the
PS¥ and the contents of registers 0 through
15 at the time of interrupt in the special
save area provided, and then passes control
to the user exit routine.

The "exit routine" comnsists of two
fullwords of machine instructions, in the
TCA appendage, immediately preceding the
interrupt save area. These instructions
set up addressability and ensure that
register 1 is pointing at the interrupt
save area before branching to entry point A
of the error handler, IBMDERR.

Before a program check interrupt can be
handled by IBMDERR as a PL/I condition,
action must be taken to prevent the systen
terminating the job should a further
program check interrupt occur. The second
word of the PSW (containing the interrupt
address) is stored by IBMDERR in the
register 14 slot of the save area which was
current when the interrupt occurred.
| Registers 0 - 12 are also saved in this
IDSA. (Register 12 is saved in the field
|normally used for register 15. Registers
14 and 15 are saved later in IBMDERR's
DSA.) IBMDERR then changes the address in
the PSW in the save area to an address in
IBMDERR. An EXIT macro instruction is then
issued to indicate to the supervisor that
the program check exit is finished.
Control then passes via the supervisor to
the address in IBMDERR that has been
inserted in the PSW. As an EXIT macro has
been issued, handling of the interrupt
appears to the supervisor to be finished.
The address, in the field in the TCA, to
which control will pass after a progran
check interrupt is then changed to
IBMBERRC. Should an interrupt now occur
during the execution of IBMDERR, control
will pass to IBMBERRC, which terminates the
job with a DUMP macro. IBMDERR can now

{handle the interrupt. Having changed
|register 12 to the PL/I register 12 as

| previously saved, its first task is to
generate a suitable error code that will
equate the interrupt with a PL/I condition.

The floating point registers are saved
in IBMDERR's DSA, if the interrupt is one
corresponding to a PL/I condition, and
control can then be passed to the main PL/I
condition-handling routines described in
the next section. There are, however, -three

Error and Condition Handling 79

special cases that require further action.
These are:

1. If the interrupt was floating point
underflow, then the doubleword in
which the floating point register
which underflowed was stored is set to
Zero.

2. If fixed point, exponent or decimal
overflow, or fixed-point divide has
occurred, then this may correspond to
the PL/I condition SIZE and not to
FIXEDOVERFLOW or ZERODIVIDE. If this
is the case, a flag will have to be
set in the program check interrupt
gualifier in the TCA. 1 test of this
flag is therefore made and the
necessary action taken.

3. If an operation exception occurs a
branch is made to the operation
interrupt analysis code in the program
management area. A return code
indicates whether the interrupt was
caused by an attempt to execute a
floating point imstruction on a
machine with no floating point
hardware. The analysis code is set by
IBMDPII as described im chapter 5.

SOFTWARE INTERRUPTS

When the main condition-handling logic is
reached, an error code will have been
generated to indicate the type of error or
condition that has been raised. For
progran check interrupts, the code is
produced by the error module itself. For
errors or conditions detected by the object
program, the object program sets up this
code. When the object program has detected
the error, this will, in some cases,
correspond to a PL/I comndition. However,
there are certain errors (such as
attempting to take the square root of a
real negative number) that do not have
directly-related, PL/I conditions. For
PL/I conditions, a four- byte code is
passed. For other errors, the code consists
of only two bytes. In the second case, the
first byte indicates which class of error
has occurred (I/0, computational, etc.).

In the first case, the first byte is the
identifier of the PL/I condition being
raised (the same identifier is used in on-
cells).

The error-handling module checks the
first byte of the code to see whether it is
handling an error or a PL/I condition. If
the code indicates an error, then the
message module IBMDESM is loaded into a VDA
and called. This module prints the relevant
diagnostic message; a suitable four-byte

80

code is then generated, and the ERROR
condition is raised. The situation is then
treated as a PL/I condition.

The second two bytes of the code passed
when a PL/I condition has been raised
indicate which on-unit built-in functions
are relevant to the condition. If the
condition is one that needs to be
qualified, the qualifier is also passed.

When a PL/I condition code is passed,
action depends on whether the condition is
one of those that can be enabled or
disabled by the programmer. If it is such a
condition, a test is made in the current
enable cells of the DSA. If the conditiomn
is not disabled, then a search for a
relevant established on-unit must be nade.
If the condition is disabled, a return is
made to the point of interrupt. If the
condition is not qualified, then a search
is made through the on-cells of all active
blocks to find a match for the number in
the first byte of the code passed to
IBMDERR. This is done with a translate-
and-test instruction using the TRT table in
the TCA. When found, the offset of the
located on-cell gives the offset of the
associated ONCB. A test can then be made
to determine the action to be taken.

If the condition is one that needs
qualification, a search for an active
matching ONCB is carried out through the
chain of dynamic ONCBs held in each DSA.

If the dummy DSA is reached without a match
being found, then standard system action is
taken. This action is defined in IBMDERR.
(The CHECK condition, which may be either
qualified or unqualified, is handled
differently, as described later in this
chapter.) When a matching active ONCB is
found, tests are then made, as follows, on
the flags in the OWNCB.

Test 1. Is SNAP specified? If so, the
message module IBMDESM is
dynamically loaded and a SNAP
message printed.

Test 2. Is SYSTEM specified? (This can
occur when "™ON condition SYSTEM"
has been specified.) If SYSTEM is
specified, then the action for
system action specified in IBMDERR
is taken.

Test 3. Does the on-unit consist only of a
GOTO statement? If so, then the
GOTO is executed without entering
the on-unit. This saves the
housekeeping involved in entering
an on-unit.

Test 4. Is the on-unit a null on-unit? If
so, then the action on a normal
return from the on-unit is taken.

If none of these tests is positive, then it
is necessary to enter the on-unit.

Before entering the on-unit, the
following action must be taken. A new
allocation of library workspace and ONCA
must be initialized and its address put
into the standard offset in the DSA of
IBMDERR. This provides workspace for any
further library modules that may be called.
Tests must be made to see that the ONCA is
correctly set-up for any built-in functioas
that may be used. The linkage to the error
handler must also be altered to its
original settings so that program check
interrupts will cause entry to be made to
the error handler by the entry point
IBMBERRA rather than IBMBERRC. This
ensures that the action specified by the
PL/I program id taken if a program check
interrupt occurs during the execution of an
on-unit.

Normal return from the on-unit to
IBMDERR is made by a branch on register 14.
Depending on the condition, a return to the
interrupted program is then made, or some
special action may be taken. Five PL/I
conditions cause action other than return
to be taken.

1. If the condition was the ERROR
condition, the FINISH condition is
raised.

2. If the FINISH condition was raised by
a STOP statement or the raising of
ERROR, or by the normal termination of
the main procedure, then a returm code
is set in the correct field of the
TCA, and GOTO performed to the
initialization routine IBMDPIR. If
FINISH was signaled, then returm is
made to the point of interrupt.

3. 1If CONVERSION was raised, then a test
is made in the ONCA, and if either
ONSOURCE or ONCHAR has been accessed,
control is passed to the address
contained in the retry slot in the
ONCA. The conversion is then
attempted again. If the field has not
been changed, then the ERROR condition
is raised.

4. TIf ENDPAGE was raised, then a return
code is set in register 15 to indicate
than an on-unit has been entered.

5. If the condition was SUBSCRIPTRANGE,
ERROR is raised.

Chapter 7:

RETURN TO POINT OF INTERRUPT

Software Interrupts

If the condition was one that was detected
by compiled code, then a return to the
point of interrupt is made by a branch on
register 14.

Hardware Interrupts

For program check imnterrupts, the status of
the program at the original point of
interrupt has to be restored. This means
that the contents of the system save area
must be reset, so that they are identical
with those saved after the original
interrupt. (The PSW and the register
values were saved in the interrupt DSA on
entry to IBMDERR.)

The method used is as follows. The
address that is to be branched to, after a
programn check interrupt, is changed fronm
IBMBERRC to another point in IBMDERR. An
interrupt is then caused, and the
supervisor gains control. Consequently,
the address in IBMDERR is reached with the
address of the system save area in register
1. The contents of the save area and the
PSW are then changed to those that were
current after the original interrupt
including the original value of register
12. The point of entry for program check
interrupts is then reset to IBMBERRA. An
EXIT macro is then issued, and return is
made to the address in the PSW, which is
that of the instruction following original
interrupt.

The CHECK Condition

The CHECK condition has to be handled in a
different manner to other conditions. This
is because it can be used as a qualified or
unqualified condition and its enablement is
under programmer control.

The CHECK condition is disabled by
default and is enabled by writing a CHECK
prefix. It can be disabled for the duration
of a statement or block by the NOCHECK
prefix. Prefixes can take the form (CHECK)
or (NOCHECK), or the form (CHECK(A,B)) or
(NOCHECK (A,B)). When no name list is
appended, the CHECK applies to all the
relevant names in the program. An ON-
statenent may also be writtem as either ON

Error and Condition Handling 81

CHECK or ON CHECK(A,B). ON-statements are
independent of prefixes and may be included
in a block to which no prefix applies. 1
qualified on-unit can be used with an-
unqualified prefix and vice-versa.

Throughout this discussion, CHECK and
NOCHECK without a name list are referred to
uali . CHECK or NOCHECK with a
name list are referred to as qualified.

RAISING THE CHECK CONDITION

CHECK is normally raised by compiled code.
This is done by inspecting the source
program and generating calls to the error
handler at appropriate points. As
enablement is statically descendant, it is
possible to tell during compilation at
which points CHECK is enabled and
consequently at which points the calls to
the error handler have to be made. For GET
DATA statements, however, there is no way
of predetermining which items will be
present in the input stream; when an itenm
is input, therefore, the symbol table for
that item is inspected to determine whether
the CHECK condition may be enabled, and, if
so, the error handler is called.

With the exception of the CHECK
condition, all conditions whose enablement
is under programmer control are unqualified
conditions. Consequently, their enablement
or disablement can be indicated by one bit
in the enable cells. This is because there
are only two possibilities. Either the
condition is enabled or it is disabled.
With CHECK, however, there are many
possiblities, because CHECK may be enabled
for some variables and disabled for others.
Consequently, the enable cells are used inm
a different manner for the qualified CHECK
condition, and the enablement of qualified
CHECK for any particular name is given in
an ONCB.

When the CHECK condition is raised, the
error handler has to carry out the
following tasks.

1. Test to see if CHECK is enabled.
involves a search along the static
backchain to determine, for each
block, first if qualified CHECK is
enabled or disabled for the particular
name for which CHECK was raised, and
then if unqualified CHECK is enabled
or disabled. (This test is carried
out only if it is not known at
compile-time that the CHECK condition
is enabled.)

This

2. Search for a qu 11f1ed established on-

T S et~ S o~

unit. This involves searching the

82

dynamic backchain for a relevant
dynamic ONCB.

3. If_there is no_gqualified established
on-unit, search for an_ungualified
established on-unit. This involves a
further search of the dynamic
backchain looking for appropriate on-
cells.~

4. 1If no established om-unit_ is_ found,
take standard system_action.

This process is illustrated in figure 7.5.

TESTING FOR ENABLEMENT

There are three bits that refer to CHECK in
the enable cells; they have the following
significance:

Bit O
0 CHECK is enabled for certain items
1 CHECK is disabled

Bit 10 (only valid if bit 11 is set)

0 The unqualified prefix that
applies is NOCHECK

1 The unqualified prefix that
applies is CHECK

Bit 11
0 VWNo unqualified prefix applies
1 An unqualified prefix applies

Bit 0 is referred to as the "any-CHECK"
enablement bit, and bits 10 and 11 as the
"unqualified CHECK enablement bits."
Enablement and disablement of gualified
CHECK is indicated in the flag bits of the

- ONCB.

The test for enablement begins by a test
on the any-CHECK bit (bit 0) in the enable
cell. If this is set to '1!'B, control is
immediately returned to the caller. 1If the
bit is set on, a search is made for a
relevant qualified ONCB in the DSA of the
block in which the interrupt occurred; if
such an ONCB is found, the enablement
status is determined from it. If no such
ONCB is found, the ungualified CHECK
enablement bits are tested for unqualified
enablement or disablement. If bit 11 is
on, the enablement status is taken from bit
10. If bit 11 is not set, neither an
unqualified CHECK nor an unqualified
NOCHECK applies, and a further search must
be made in the preceding DSA on the static
backchain. If the dummy DSA is reached
without any of the tests proving positive,

CHECK is disabled.

Test ‘any-check’
enablement bit

ENABLEMENT SEARCH I

Search dynamic

Disabled?

CHECK enabled? ONCBS for relevant

Figure 7.5.

in current
enable cell qualified CHECK
(bit 0)
>
Test further
enablement bits
(10& 11) for L 2
unqualified CHECK
i Unqualified Unqualified
Chain back to qf
previous DSA on NOCHECK CHECK
static chain found? found?
Return to DSA
of block in
which CHECK
was raised
A 4
Return to DSA Search dynamic
of block in Yes o Dummy DSA? No | ONCBSs for
which CHECK I v qualified
was raised ON-statement
Take Chain back to
standard previous DSA
A 4 system on dynamic found?
action chain
a
Search on-cells Reached Enablement Take action
for unqualified eac only specified
CHECK dummy DSA? specified in ONCB

Unqualified
CHECK
found?

Yes

Take action
specified
in ONCB

Chain back

to previous
DSA on
dynamic chain

r ESTABLISHMENT SEARCH l

Handling the CHECK condition

Chapter 7:

Error and Condition Handling

83

SEARCHING FOR ESTABLISHED ON-UNITS

When it is Kknown that CHECK is enabled, a
search must be made for established on-
units. This search is separate from the
search for enablement. A return is first
made to the DSA in which the interrupt
occurred.

Two searches are made, the first for a
qualified on-unit. The complete dynamic
backchain is searched for relevant ONCBs.
If one is not found, a search is made
through the backchain for enable cells that
indicate unqualified CHECK. If nothing is
found, standard system action is taken.

Error Messages

The library module IBMDESM is called by the
error handler to generate the systen
messages and find the on-code value;
control is then passed to IBMDESN to finish
the system message, or to generate the SNAP
message. In order to save space, IBMDESN
is overlaid on IBMDESM. No new DSA is
acquired for IBMDESN.

Message Formats

System_Messages: For non-PL/I conditions,
systemn messages have the following form:

IBMxxxXx 'ONCODE'= xxxx message text
[qualifier] IN STATEMENT xx AT/NEAR
OFFSET xxx IN PROCEDURE WITH ENTRY xXxXxXX

The qualifier might, for example, consist
of the file name. For PL/I conditionmns, the
format of the message is much the same, but
the name of the condition is also given.
For example:

IBMU4B21 'ONCODE'= 3108 'FIXEDOVERFLOW!
CONDITION RAISED IN DECIMAL DIVIDE IN
STATEMENT 31 AT OFFSET 000A35 IN
PROCEDURE WITH ENTRY ZERNES

Snap Messages: If an on-unit contains both
SNAP and SYSTEM, the resulting message is
essentially the system message followed by
the line

FROM (STATEMENT/OFFSET) xxx IN A (BEGIN
BLOCK/PROCEDURE WITH ENTRY xxx/A 'xxXxX'
ON-UNIT)

which is repeated as many times as
necessary to trace back to the main
procedure. If an on-unit contains only
SNAP, the message begins

84

*xxxxxxx' CONDITION RAISED [IN STATEMENT
xxx] (AT/NEAR) OFFSET xxx IN PROCEDURE
XXX

and continues as for a SNAP SYSTEM message.

The statement number is not always
present in messages because the generation
of execution-time statement numbers by the
compiler is a compiler option. When
statement numbers are generated, they are
held on a block or procedure basis. For
each block or procedure, a table in static
storage relates each statement number to
the, offsets of the corresponding
instructions in compiled code. 1A field
addressed by compiled code gives the
address of the relevant table.

The statement number is held in relatiomn
to its offset from the main entry point.
Since the PL/I program need not have
entered via this entry point, the offset is
calculated independently from that given in
the message. If the FLOW option is used,
then additional information is printed out
after every snap message. (See "The FLOW
Option," later in this chapter.)

Interrupts in Library Modules

When an interrupt occurs in a library
module, the system message does not give
the offset from the start of the library
module, but gives the statement number of
the statement in which the library module
was called and the offset of this statement
from the entry point of the procedure block
in which it is contained.

Identifying the Erroneous Statement

If the interrupt was a software interrupt
in compiled code, the address will be the
return address that was used by the BALR
instruction when IBMDERR was called.

If the interrupt was a program check
interrupt in compiled code, the address of
the interrupt will have been moved from the
o0ld PSW and placed in the register 14 field
by IBMDERR to simplify return to the point
of interrupt.

If the interrupt was in a library
module, the address required is the point
in compiled code at which the library
routine was entered. This will have been
placed in the register 14 field when the
library module was called.

Thus the address required to identify

the erroneous statement is always the
address held in the register 14 field in
the most recent compiled code DSA.

Finding the Address of the Entry Point
of the_ Block

The address of the entry point of the block
is found by chaining back along the DSAs to
the DSA before the last compiled code DSA.
The start of the chain is the DSA addressed
by the current value of register 13. The
address of the required entry point is held
in the save area of this DSA as the branch
register contents (offset X'C'). The
existence of the dummy DSA ensures that
there will always be a DSA before the one
in which the interrupt occurred.

When the addresses of the entry point
and the offending statement are known, the
address of the block can be calculated and
the statement number found. If the DSA in
which the address of the link register was
found is that of a procedure which was
entered at its first entry point, then the
offset already calculated will be the one
required for the message. However, if the
DSA containing the address of the interrupt
was a begin block or on-unit, the offset
for use on the statement number table is
recalculated by using the exit address
found above or taking from it the address
of the main entry point, which is found in
the statement number table. The offset is
then calculated between the offending
statement and the new address. This is
necessary because the offsets given in the
system message are taken from procedure
entry points, whereas statement numbers are
related to offsets in all blocks including
begin blocks.

For snap messages, once the first
procedure has been found and the
appropriate message generated, the rest of
the trace gives information about both
procedures and on-units, and thus their
DSAs are treated in the same way.

Ancillary Information

If the error was in I/0, then the address
of the FCB of the file is passed to IBMDERR
which stores it for IBMDESN to find the
file name. Similarly, the address of the
control section containing the condition
name is passed to IBMDERR if the CONDITION
condition is raised.

Chapter 7:

Message Text Modules

The message module IBMDESM calls on a
number of message text modules to produce
the relevant message. These modules
consist essentially of the fixed message
text portions of the message. The messages
are held in groups. The groups are
addressed from a table at the head of the
module, and the messages in their turn are
addressed by an offset from the start of
each particular table in IBMDESM. The
message required is determined from
information in the error code. TIBMDESN
puts all error messages onto SYSPRINT
provided that SYSPRINT has not been
declared with unsuitable attributes.
has been declared with unsuitable
attributes, then the system messages go to
the console operator, and the snap messages
are ignored.

If it

Dump Routines

A series of library modules are provided to
implement the PLIDUMP facility. Module
IBMDKDM is the dump bootstrap module which
is part of the resident library. This loads
and calls the transient dump control module
IBMDKMR, which in turn loads and calls
those modules required to carry out the
dump options specified in the call to
PLIDUMP. A number of transient modules are
used to reduce the amount of storage
required. The organization of these
modules is shown in figure 7.6.

In order to ensure that as much

information as possible is provided when a
call to PLIDUMP is made, a special STXIT
macro instruction is issued to intercept
program check interrupts. When a progranm
check interrupt occurs, an attempt is made
to continue. If the interrupt occurs in a
program called from the dump control
module, that particular routine is
abandoned and a return is made to the dump
control module. Any further routines needed
to complete the information specified in
the options are then called. If the
interrupt occurs in the trace or file
modules, a hexadecimal dump is produced.
If the interrupt occurs during IBMDKDD, the
hexadecimal dump module, the job is stopped
with a DOS system dump macro to ensure that
a hexadecimal dump will be produced.

The dump control module IBMDKMR is
divided into sections, and if an interrupt
occurs in any of these sections, control is
passed to a predefined address, at which
point an attempt is made to continue with
the next option. Processing then continues
from that point. The dump modules are

Error and Condition Handling 85

IBMDKDM
RESIDENT
BOOTSTRAP LIBRARY
MODULE
IBMDKMR
MAIN DUMP
TRANSIEN
CONTROL LIBRARY i
MODULE
/
IBMDKPT IBMDKTC IBMDKTB IBMDKDR
DuUmMP DUMP
TRACE BL
PARAMETER INITIALISATION FLOW MO(;-)L(J:EE REPORT
TRANSLATE MODULE
IBMDKDT IBMDKTR IBMDKFA IBMDKDD
DUMP SYSLST TRACE
TRANSMITTER MODULE FILE DUMP DUMP MODULE
A
IBMBEOC
ON CODE

Figure 7.6.

fully described in the publication DOS_PL/I
Transient Library Program_Logic.

{ The dump control module acquires a VDA
{of the correct size for each module that it
t{loads. When one module is completed it
joverlays the next module, adjusting the
‘Isize of the VDA as necessary. Informatiomn
{is transmitted to SYSLST by the PLIDUMP
|transmitter IBMDKDT (this transmitter is
falso used for COUNT information). SYSLST
|must be assigned either to a printer or to
ja tape device.

. Miscellaneous Error Routines

Two further library routines are used in
certain error situatiomns.

86

Interrelationship of dump routines

These are:

IBMDPEP Housekeeping error message
module
IBMDPES Insufficient non-LIFO storage

message module

Both routines are held in the transient
library.
IBMDPEP: This module issues an appropriate
message in three circumstances:

1. When there is no main procedure.
2. When there is insufficient space for
the program management area at

initialization.

3. When there is an interrupt in the
error handler. ’

The first message is written on SYSPRINT.
The last two messages are both written on
the console, because SYSPRINT may not be
able to function in the situations that are
handled. This could be either because of
overwriting of control blocks, if there is
an interrupt in the error haandler, or
because there is insufficient room, if
there is no storage available.

IBMDPES: If no dynamic storage is
available, this module puts out a message
using either SYSPRINT or the console
message transmitter module, if available.
If neither can be used, the message is
written on the console using an EXCP macro
instruction.

{The FLOW and COUNT Options
|

{The FLOW and COUNT options are used to
{provide information about which statements
fare executed in a particular run of a

| program. The FLOW option is used to
{maintain a trace of the most recently
|executed statements. The COUNT option is
|used to maintain a count of the number of
|times each statement is executed.

{

| Both options are implemented by calling
jan interpretive library routine, IBMDEFL,
|at every point in a program where the flow
|of control may not be sequential. The
{library routine, IBMDEFL, analyzes the
|situation and updates tables to retain a
frecord of the branches made. IBMDEFL is
lalso called during program initialization
|to set up housekeeping information. Two
{transient library modules are used to
linterpret the tables set up by IBMDEFL and
{to put out the information. The routines
|are IBMDESN for the PFLOW option, and

| IBMDEFC for the COUNT option.

|

| The compiler
|executable code
{FLOW option.

|

{ Points at which the flow of control may
Inot be sequential are known as branch-in
{and branch-out points. For example,

| labeled statements and entry points are
{branch-in points, and GOTO .statements are
{branch-out points. At branch-in and branch-
jout points the compiler places code that
{will call IBMDEFL. If the branches are
{taken, they are recorded. For COUNT they
|are recorded in a table known as the
Istatement frequency count table. For FLOW,
| they are recorded in a table known as the
|£flow statement table.

|

{Use_of Branching Information for FLOW

{

{For the FLOW option, a list of the

generates the sanme
for both the COUNT and the

Chapter 7:

|statement numbers at which branches were
|taken and a list of any changes of

| procedure is retained.

|

|

|PLOW output consists simply of the 1list
{that is recorded by IBMDEFL and typically
|takes the form shown below.

12 TO 18

27 TO 35 IN SORTER
76 TO 108 IN TESTER
134 TO 77 IN SORTER

|This indicates that the program branched
|from statement 12 to statement 18, then ran
|sequentially from 18 to 27. After
[statement 27 it branched to, or called,

| statement 35 in the procedure called

| SORTER. Control then ran sequentially to

| statement number 76, at which point it

| passed to statement number 108 in the

| procedure called TESTER. Control then ran

| sequentially from 108 to 134 and finally

| passed to statement 77 in SORTER.

|

|0se_of Branching Information for COUNT The
|COUNT option calculates the number of times
jeach statement is executed by recording
|branch-in and branch-out points as they
loccur and analyzing them at the end of the
jprogram.

The formula used for calculating the
nunber of times each statement is executed
from the branch count is:

Cn=Cn—-1+BIn-BOn-1
]

Where:
Cn =the number of times the statement
vas executed.
Cn-1 =the number of times the previous
statement was executed.
BIn =the number of times the statement

was branched to.
BOn~-1=the number of times the previous
statement was branched froum.

- ——— — — ———— i — — —— — —— — — —

To retain the information, a count field
|is set up for every statement in the

| program, and branches-in and branches-out
lare recorded when they occur. Every time a
| branch-in is made, the count for the
|statement to which the branch is made is
lincremented by one. Every time a branch-out
}is made, the count for the statement after
|the branch-out is decremented by one. When
|the program ends, statements that have
|{values other than zero mark the beginning
fand end of ranges of statements that have
|been executed the same number of times.
|The number of times the ranges of
|statements have been executed is calculated
| by adding the value in the count field to
{the sum of any preceding values. This
|process can be followed in figure 7.7.

Error and Condition Handling 87

- - A—

-

PL/I_PROCEDURE_TO BE COUNTED

1 COUNTIT:PROC OPTIONS (MAIN);
2 DO I=1 TO 2;

3 PUT LIST (I);
4 END;

5 END COUNTIT;

In this procedure, the do-loop in statements 2 through 4 will be

executed twice, and the other statements once. Statement 2 will be executed
three times as a return is made at the end of the loop to test the value

of I.

o e - ————— ————

HISTORY OF THE STATEMENT FREQUENCY COUNT TABLE

After the branch-in to statement number 1, the table is set up with a value
of 1 for the first statement and 0 for all others, thus:

statement number 1 2 3 4 5
branch count 1 0 0 0 0

After the bramnch-out at statement 4, the count of the next statement
is decremented by one and the table becomes:

statement number 1 2 3 4 5
branch count 1 0 0 0 -1

After the branch-in at statement 2, the branch count for statement 2 is
incremented by one and the table becomes:

statement number 1 2 3 4 5
branch count 1 1 0 0 -1

At statement 4, a further branch out is made and a return made to
statement 2 to test the value of I. One is subtracted from the value

of statement five makin the count -2 and one added to the count

of statement 2 making it 2. Because I is greater than 2 a

branch is made after the test to statement 5. This results in

one being subtracted from the count for statement 3 and one being added to
the count for statement 5. At the end of the program the table reads:

statement number 1 2 3 4 5

branch count 1 2 -1 0 -1
ANALYSIS OF THE STATEMENT FREQUENCY COUNT TABLE
A value known as the current count, which is initially set to zero,
is added to the branch count for each statement in turn. The sum is
the number of times the statement was executed; this value also becomes
the current count.
statement number current count branch count times executed

1 0 1 0+1= 1

2 1 2 1+2= 3

3 3 -1 3-1= 2

4 2 0 2+0= 2

5 2 -1 2-1= 1

I e o o = ——— — —— o "~ —— — i~ — o = o~ ——— " — " o o o =

(o o e — T — T — S S et v o —— i ———— " — o — i —————— ———— o ——

Figure 7.7 How branch counts are used to calculate the number of times each
statement is executed.

- - — T c— S GAD —mn SIS G e SR A D G G e i G o A S D R S e M — —— — R A wmn G e e G S e i G G —— —— — i — - — v —— — —— — —— — — — -

88

{Special_cases There are a number of special
|cases that require additional action,
|{either by the compiler, or by IBMDEFL, or
|Iby both. These special cases arise for
{three reasons:

{

1. Branches can be caused by
interrupts, but the points at
which they will occur cannot be
predicted during compilation.
Consequently the compiler cannot
place calls to IBMDEFL at these
points.

t

|

l

|

|

i

|

{

| 2. Branches to labeled statements,
| - can come from either the same

{ block or a different block.

| Consequently the code generated by
i the compiler cannot be used to
1 indicate whether a new block entry
i is required.

|
|
{
|
|
|
{
{
{

3. The algorithm used for the COUNT
option is not effective for CALL
statements and function references
because the branch-in and branch-
out are made to and from the same
statement.

The first case is handled by IBMDEFL
{checking for the occurrence of an interrupt
fwhen it is called in situations where one
{could have occurred. The second case is
{handled by altering the GOTO code in the
|TCA so that it calls IBMDEFL to set
jappropriate flags when a GOTO out of block
foccurs. A test for the flags is made when
{the call to IBMDEFL for the branch-in at
{the labeled statement is made. The third
lcase is predictable during compilation and
{is handled by the compiler setting up
Jdifferent code for branches—-in to CALL
{statements and function referemnces, and by
{IBMDEFL testing for such code.
|

| IMPLEMENTATION OF FLOW AND COUNT
|

ITables Used by FLOW and COUNT
{

jTo enable it to retain FLOW and COUNT
|information, IBMDEFL sets up tables in
|dynanic storage.

Details of their formats are
shown in appendix B.

LOW_Option: PFLOW information is retained
in a table called the flow statement table.
IThe flow statement table has three
isections; a header section containing
|housekeeping information, a statement
{number section holding the numbers of
|statements that were branched to or fronm

I plus flags to indicate the type of entry,

]

Chapter 7:

{and a procedure rames section containing
|the names of procedures and on-units to
{which branches are made. The length of the
|{flow statement table is determined by the
|values given to "n" and "m" when the FLOW
|option is specified.

(

| When all the spaces in the table for
|statement numbers or procedure names have
|been filled, the earliest entries are
joverwritten. The fields in the header
|section are used to indicate which is the

| next space available in the table.

|

| The table is set up during progran
|initialization and is addressed from the

| TCA.

|

ICOUNT Option: COUNT information is retained
Iin tables called statement frequency count

|tables. The tables have a field for every
|statement. They are set up when an

|external procedure is entered. A table is
| needed for every external procedure because
|two external procedures can contain the

| same statement numbers.

|

| Statement frequency count tables are
|chained together and addressed from the TCA
|appendage (the TIA). Two addresses are
jkept in the TIA, the address of the current
|statement frequency count table (that is
|the table that was last used) and the
|address of the statement frequency count
|table for the first procedure in the chain.
|Statement frequency count tables are
|associated with their matching external

| procedures by having the address of the
|static control section for the procedure
(placed at a fixed offset in the table. (A
|static control section is unique to an
|external procedure and its address can be
|easily accessed as it is addressed
{throughout compiled code by register
[three). The last statement frequency count
{table in the chain has its chaining field
|set to zero.
|
|Interpreting
|

| Information from the flow statement
|table is interpreted by the message module
|{IBMDESN or the PLIDUMP routines, and
|transmitted in the form of statement number
|pairs which are associated with the names
{of procedures or with on-unit condition

| types.

{

| To extract the information, the message
{module must know from which points output
|in the statement number and procedure names
|section of the table output is to start.
|It must also be able to match the entries
{in the two sections of the table.

|

| The starting points in both sections of
{the table are found by checking whether the
{dummy entr%, inserted during program

the Flow_ Statement Table

Error and Condition Handling 89

{initialization, has been overwritten. If
{the dummy entry has not been overwritten,
|the starting point is the first entry in
{that section of the table. If the dummy
|entry has been overwritten, the starting
tpoint will be the entry flagged as the next
lavailable entry. This is because the table
|is used cyclically, with the newest entry
{overwriting the oldest entry.

|
|
| Statement numbers are matched with

| procedure names by comparing the number of
| procedure names with the number of
|statement number entries that are flagged
|as being associated with procedure name
lentries. If the two numbers are the same,
| the first procedure name will be associated
{with the first statement number that
jrequires a procedure name. If there are
{more procedure names than statement numbers
(that require procedure names, the trace of
| procedures must be longer than the trace of
|statement numbers. Accordingly, the
{procedure names are put out without
|statement' numbers until the point is
|reached where the number of procedure names
]left is the same as the numrber of statement
|numbers that require them. From that point
lon statement numbers and procedure names
Jare put out together. If there are more
|statement numbers that reguire procedure
|names than there are procedure names, the
|trace of statement numbers must be longer
{than the trace of procedure names. The
fearliest statement numbers are put out

| without names and, where a procedure name
{is required, "UNKNOWN" is used. When the
|number of names required matches the number
{available, the procedure names are put out
{with the statement numbers.

|

90

{Interpreting the statement fregquency count
|tables

| Module IBMDEFC is called at progran
|termination to print count information.
|Output is tabular and printed four colunmns
{to a page. An entire page is built before
|transmission.

|

| Output for a procedure begins with the
|procedure name. This is followed by the
fcolumn headings: "FROM TO COUNTY. The
|current count is initialized to zero and
{the first non-zero entry in the table is

| found. The associated statement number is
{then placed in the 'FROM' part of a

| temporary line and the value for the non-
|zero entry is added to the current count.

| The entries for the following statements
lare scanned until one with a non-zero count
{value is found. ' The number of the

| preceding statement is then placed in the
{'TO' part of the line and the current count
{in the 'COUNT' part. This line is included
{in the page. The statement number found is
{then placed in the *'FROM' part of the
|temporary line and its branch count (which
|may be negative) is added to the curremnt
jcount. The scan of entries continues until
|another non-zero count is reached, and the
| process is repeated

l .

| If the count for a range is zero, the
{line is not moved into the page but the two
|statement numbers are saved for separate
fprinting. Whenever a line is moved into
|the page, checks are made for the end of a
fcolunn and the end of the page. When the
|page is full it is transmitted.

i

| The .process is continued until the end of
fthe table is reached.

|

| The next table is then processed, until all
|procedures have been handled.

|

|Finally, ranges of unexecuted statenents
lare printed for each procedure.

Chapter 8: Record-Oriented Input/Output

Note on Terminology

Discussions of record-oriented input/output
tend to become confusing because of the
wide use that is made of the word "filen
throughout the Disk Operating System. In
the DOS usage, the word "file" pmeans a
collection of data stored on an external
storage medium. Throughout this chapter,
however, the term "data set" is used for
this concept. "File" is used in its PL/I
sense - the representation (within a PL/T
program) of a data set.

Also used in this chapter are the terms
record_ variable and key variable. These
terms refer to the PL/I variables to which
or from which data is moved. For example,
in the statement:

READ FILE (X) INTO (Y) KEY (2):

Y is the record variable, and Z is the key
variable. The term transmission_statement
is used to cover READ, WRITE, LOCATE, and
REWRITE statements. These three terms are
not standard PL/I terminology, but they are
used for convenience throughout this
chapter.

Introduction

The DOS PL/I Optimizing Compiler uses the
logical input/output control system (LIOCS)
routines of DOS data management to
implement record I/0. These routines offer
facilities similar to, but not the same as,
those of the PL/I language.

The LIOCS routines require that:

1. A define-the-file control block (DTF)
is set up to describe and identify the
data set.

2. OPEN and CLOSE macro instructions are
issued to open and close the data set.

3. GET, PUT, READ, or WRITE macro
instructions are issued to store or
obtain a new record.

The LIOCS routines transmit the data one
block at a time between the data management
buffer and the external medium, but each
separate macro instruction issued by the
program results in only a single record
being passed. When a transmission error

Chapter 8:

occurs, or when the end-of-file is reached,
the LIOCS routines either set flags
indicating the error or branch to error
handling or end-of-file routines that can
be specified by the programmer.

The basic method used by the optimizing
compiler to implement record I/0 is to
retain the source program information in a
number of control blocks, and to pass these
control blocks to PL/I library routines
which interpret the information and carry
out the necessary action by calling the
data management LIOCS routines as required.
The method is summarized below, and shown
diagramatically in figure 8.1. Figure 8.16
shows the overall scheme in greater detail.

Summary of Record I/0 Implementation

During compilation e compiler sets up a
number of control Blocks that describe the
file declaration,” and the OPEN, CLOSE, and
transmnission atements. The compiler also
generates code to complete these control
blocks from execution-time information, and
to pass their addresses to the PL/I library
or LIOCS routines.

The compiler also determines which LIOCS
routine will be used for each transmission
statement, and generates an ESD record so
that the appropriate routine will be link-
edited.

If no environment options depend on
execution time values, the compiler also
acquires buffers, and completes the DTF and
FCB. This reduces the work to be done
during execution to little more than
issuing the OPEN macro instruction. The
process is referred to as optimization of
the OPEN function in the compiler
diagnostic messages.

Record-oriented Input/output 91

Set up control blocks
from file declaration COMPILER
and 1/0 statements

Call PL/t library
or LIOCS routines COMPILED CODE
passing control blocks

OPEN & CLOSE STATEMENTS TRANSMISSION STATEMENTS
aF ;

In-lﬁme 1/0 Library call 1/0

TRANSMITTER INTERFACE
ROUTINE

OPEN/CLOSE BOOTSTRAP
ROUTINE

(Resident library) (Resident library)

R |

OPEN ROUTINES CLOSE ROUTINE PL/I TRANSMITTER

(Transient library) (Transient library) (Transient library)

————— . ———— - - e —————-

(LIOCS) ROUTINES

LIOCS OPEN L10CS CLOSE LIOCS TRANSMITTER ROUTINE

ROUTINE ROUTINE

Figure 8.1. The principles used in handling record I/0 statements

92

r

File type: Consecutive buffered

- - ——————— ———— —— — — —— - — —_—— — - - -

time

Record type: F,FB
Statement | Record variable restrictions { ENVIRONMENT option requirements
READ SET | None | Nomne
| |
READ INTO { Length known at compile time | RECSIZE known at compile time
{ (max. length if a varying string)|
| ' {
WRITE FROM | Length known at compile time | RECSIZE known at compile time
{fixed string) 1 |
{ |
WRITE FROM | | RECSIZE known at compile time
(varying string) | | SCALARVARYING option used
{ i
WRITE FROM 1 | RECSIZE known at compile time
Area * | |
I |
LOCATE A | Maximum length known at compile | RECSIZE known at compile time
({

|
|
i
i
{
'-
|
|
{
|
!
|
|
|

Record type: U

READ SET

READ INTO
WRITE FROM
(fixed string)

WRITE FROM

(varying string)

WRITE FROM
(area =)

LOCATE

None

Maximum length known at compile
time

Length known at compile time

-

Not BACKWARDS

BLKSIZE known

BLKSIZE known

BLKSIZE known

SCALARVARYING

BLKSIZE known

BLKSIZE known at compile time

at compile time

at compile time

at compile time

option used

at compile time

o -

Notes: All statements must be found to be valid during compilation. File parameters
or file variables are never handled by in-line code.

o o e ——

%« Including structures whose last element is an unsubscripted area.

Fi

gure 8.2.

Chapter 8:

Conditions under which I/0 statements are handled in-line

Record-oriented Input/output

-

93

-
{
{

(
{
|
{
{
|
(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
{
|
|
|
{
1
|
!
|
(
{
[
|
|
|
|
1
i
|
{
{
.}

L i " “
| Data Set | File Attributes { Access {
: organization | i Methods i
- . — |

| | [} INPUT i BUFFERED 1 |
| CONSECUTIVE | SEQUENTIAL { OUTPUT or SAM |
: | | UPDATE UNBUFFERED [}
- - |

| | | INPUT BUFFERED |
| { SEQUENTIAL | OUTPUT UNBUFFERED ISAM [}
| . | { UPDATE is ignored |
| INDEXED [} - !
{] i INPUT |
| [DIRECT | UPDATE ISAM {
{ - f
| | : i INPUT BUFFERED : |
| i SEQUENTIAL i OUTPUT or DAM |
] REGIONAL | i UPDATE ONBUFFERED {
{ |== |
| 1 1 INPUT |
{ { DIRECT { OUTPUT DAM |
{ | [UPDATE |
' - - I
| VSAM [} | INPUT BUFFERED |
| entry-sequenced | SEQUENTIAL | OUTPUT or VSANM |
: | { UPDATE UNBUFFERED i
: _— : i

| { { INPUT BUFFERED |
| | SEQUENTIAL | OUTPUT or VSAM |
| VSAM] I UPDATE UNBUFFERED |
{ key-sequenced | - —-———— }
i | | INPUT BUFFERED |
{ | DIRECT] UPDATE or VSAM |
1] [} | UNBUFFERED [} |

Figure 8.3.

‘Execution

PL/I record I/0 statements are executed in
the following manner:

OPEN - by a call to the open routines in
the PL/I library.

CLOSE - by a call to the close routines in
the PL/I library.

READ, WRITE, LOCATE, REWRITE - generally by
a call to the PL/I library transmitter

modules via an interface routine, IBMDRIO.
The transmitters call the data management
(LIOCS) routines. (This process is
referred to "library-call 1I/0.%)

94

Data management access methods for record-oriented transmission

on buffered consecutive files, most
transmission statements are
executed by a direct call fronm
compiled code to the data
management (LIOCS) routines. (This
process is referred to as "in-line
T/0.") Figure 8.2 shows the
conditions under which I/0
statements are handled in-line.

Implicit opem - by manipulation of
addresses so that all attempts to access
the file when it is not open result in
control being passed to the open routines
in the PL/I libraries.

Implicit _close - by the progranm
termination routine checking for open
files, and calling the PL/I library routine
to close then.

| Note:

L

DTFs are not set up for VSAM files

{ File Type | Device Type | DTF Type }
: SEQUENTIAL BUFFERED CONSECE;IVE | Card T T | --_;;;CD ‘--:
: : Printer : DTFPR :
: : Tape : NDTFMT :
: : Disk : DTFSD :
: : logical unit = SYSIPT, : DTFDI :
| { SYSLST, SYSPCH 1 |
{ 1 (F fqrmat only) | |
:-;;a;;;TIAL UNBUFFERED CONSECUTIVE ‘-T-;;pe o -—--‘-;‘---;;;;;-1;;;;;--:
: : Disk : DTFSD (work) :
:-;;BEXED | ;isk T T ;-- DTFIS :
:—REGIONAL(1) AND (3) - | Disk - { DTFDA :

:v

o |

Figure 8.4.

Access_Method and DTF_ Type

The access method used for different PL/I
file types is shown in figure 8.3. The DTF
used for different file types is shown in
figure 8.4.

Compiler Output for Récord I/0

The output of the compiler for record I/0
is subdivided below according to the
statement type in the source program.
Figure 8.5 shows the control blocks
generated for each statement type, and the
relationship between these control blocks.

File Declaration

{For every file declaration, except those
with ENV (VSAM), a define-the-file control
block (DTF), a file control block (FCB), an
environment control block (ENVB), and a
field to contain the filename and the
length of the filename are set up. All
these items are held in static internal
storage for INTERNAL files, and in a
separate control section for external
files. i

i For a file declared with ENV (VSAM) a DTF
fis not set up. Instead an ACB (access

Chapter 8:

Type of DTF set up for different PL/I file types

method control block) is used which is
generated by the library routines during
{execution. The FCB, ENVB and filename
fields are set up as for other files. 1If a
file that is declared with ENV (INDEXED) is
fused to access a VSAM key sequenced data
set, the VSAM interface is used.

The DTF is required by DOS data
management. There are nine types of DTF
that can be used by the compiler. The type
used depends on the file and device type,
as shown in figure 8.4. PFull details of
the DTF are given in tle publication DOS
Supervisor and Input/Output Macro
Instructions. v

Where there are no environment optioms
that depend on execution time values the
compiler also acquires buffers and fills in
the DTF fields with buffer addresses. The
buffers are held within the file control
section for external files and within the
static internal control section for
internal files. The compiler also does any
necessary checking on items such as
blocksize. If the declaration is invalid
the compiler generates a message and makes
no attempt to optimize the operation.

When the operation is optimized a flag
is set in the FCB.
The FCB is a control block that is used
as a central addressing area for file
information. It holds the addresses of the
{DTF, and the ENVB, the filename and
filename length. PFor VSAM files the

Record-oriented Input/output 95

laddress of the ACB (access method control
|block) is set when the file is opened and
{the block has been generated. It also
holds a mask indicating which statements
are valid for the file. The format of the
FCB is shown in appendix B.

Both the FCB and DTF are made as near
complete as possible during compilation;
those values which are not available until
execution time are added to the blocks
during the execution of the open routines.
These values are derived from the ENVB and
the open control block OCB (see below).

The ENVB contains the addresses of such
items in the environment options as can be
declared with variable values. The format
of theé ENVB is given in appendix B.

The filename and filename_length are used
by the error message modules when the name
of the file is needed for an error message.

8

For an OPEN statement, the compiler
generates a call to the library open/close
bootstrap routine, IBMDOCL; if the
attribute input or output has been used in
the OPEN statement, the compiler also
generates an open control block (OCB).
OCB indicates whether the input or the
output attribute was used in the statement.
The OCB is held in static internal storage

The

For each file to be opened, the following
information is passed to the open/close
bootstrap routine:

1. The address of the FCB.

2. The address of the OCB (or zero, if no
OCB exists).

3. The address of the TITLE, if
specified.

The code and control blocks generated for a
transmission statement depend on whether it
will be handled by an in-line call to the
LIOCS routines or by a call to the PL/I
library transmitter.

In-line record I/0 statements: the
_compiler generates a call to an LIOCS
routine, which uses information in the DTF
as a parameter list. Compiled code
addresses the LIOCS routine through a field
in the DTF. The DTF is addressed from a

96

field in the FCB.

For an in-line call, code may also be
generated either to move the data to the
record variable or to. set a pointer to the
data, and to check whether the transmission
has been successful.

The code and control blocks generated
for an in-line record I/O statement are
shown in figure 8.6.

Library-call record I/O_statements: the
compiler generates a call to the PL/I
transmitter module, IBMDRIO. IBMDRIO has
the following parameter list passed to it:

Address of FCB

Address of request control block
(RCB)

Address of record descriptor (RD));
or, address ignore factor; or,
address at which to set pointer

Address of key descriptor (KD) ; or
zero if no key descriptor

Address of event variable (EV); or,
zero if no event variable

Abnormal locate return address
(locate statements only)

The FCB is generated from the file
declaration and is described above. The
remainder of the control blocks in each
parameter list are generated for the
transmission statement.

The_request_control block (RCB) defines
the statement type. It consists of two
words. The first word is a fullword of
flags that define the statement. types,
indicating whether the statement is READ
SET, READ INTO, WRITE FROM, etc. The
second word is a machine language
instruction that will be executed by
IBMDRIO. (For exact format, see appendix
B.) The RCB is set up in static internal
storage. ’

A branch instruction is placed in the
second word of the RCB if, during
compilation, the statement type can be
validated. A direct branch to the
transmitter will then occur during
execution. 1If, however, the statement type
cannot be checked during compilation, or if
it is invalid, a test-under-mask
instruction is placed in the RCB. The
check of statement validity will then be
made during execution, using the flags in
the FCB which indicate the valid statements
for the file. ’

All transmission statements can be
checked for validity during compilation
except for statements on unbuffered
consecutive files, file parameters, and
file variables. Unbuffered consecutive
files can be opened for either INPUT or

CONTROL BLOCKS GENERATED FROM
FILE DECLARATION

CONTROL BLOCK GENERATED FROM
OPEN STATEMENT

CONTROL BLOCKS GENERATED FROM
INPUT/OUTPUT STATEMENTS

CONTROL BLOCKS GENERATED FOR
VSAM FILES

Environment control block (ENVB)

File control block (FCB)

Function: Acts as a central source of
information about the file
Location: In static storage
When Generated: During compilation
Contents include: .

Flags indicating

valid statements

Transmitter name

Transmitter address

Error module address

ENVB address

DTF address
Filename addre:
Buffer address
Flags and workspace for
the transmitters

ACB address

Request control block (RCB)

Access Method control block . (ACB)

Function: To hold information required by
data management for VSAM files.

Location: Non-L{FO storage

When generated: During the execution of OPEN
Contents: See data management document-
ation.

Input Output control block (OCB)

| -

"1 Function: Holds information on Function: Holds a definition of the statement
environment options (except the for execution-time checking
MEDIUM option) Location: In static storage
Location: In static storage When generated: During compilation, for
When generated: During compilation library data management calls only
Contents: Addresses of Contents: Flags defining statement

blocksize Code for TM instruction, or
record length a branch instruction (if
of buffer tracks checking was done during
KEYLOC value execution)
key length
indexarea size
addbuf
Define the file control block (DTF) Open control block (OCB) Record descriptor (RD)

| -

"I Function: To hold information Function: To contain file attributes Function: To describe the record variable
necessary to data management given in OPEN statement Location: Depends on storage class of record
Location: In static storage Location: !n static storage variable
When generated: As far as When generated: During compilation When generated: Depends on storage
possible during compilation, and Contents: The attribute INPUT or class of record variable
completed during open from OUTPUT when specified on the OPEN Contents: Length and address of record
information in the ENVB and FCB statement. variable
Contents: See data management
documentation :

Filename Key descriptor (KD)
| -

Ll

Function: To hold information
about the filename

Location: In static storage

When generated: During compilation
Contents: Filename and its length

Function: To hold address information for
VSAM files.

Location: Non-LIFO storage

When generated: During the execution of OPEN
Contents: Equivalent of FCB for VSAM files.

Function: To describe the key variable
Location: Depends on storage class of key
variable

When generated: Depends on storage
class of key variable

Contents: Length and address of key
variable’

Figure 8.5.‘ Control blocks

used in record I1I/0

Chapter 8: Record-oriented Input/output

97

STMT

SOURCE LISTING

1 EXAMPLE:PROC OPTIONS (MAIN);

DCL LINE FILE RECORD INPUT
ENV(FB,RECSIZE (80) ,BLKSIZE (400) ,MEDIUM(SYSIPT, 2540)),
CARD CHAR (80);

READ FILE (LINE) INTO (CARD);

s Ww

000000
000004
000008
00000C
000010
000014
000018
00001C
000020
000024
000028

END;

00000008
0000005E
0000005E
00000000
00000000
00000000
00000000
00000000
91E091E0
00000000
000000940000005E

OBJECT LISTING

* STATEMENT NUMBER 3

000062
000064
000068
00006A
00006E
000072
000076
00007A
00007E
600082
000086

00008A
00008E
000092
000092

000098
000098
00009C
0000A0

0000AL
0000R6

0000A6

Figure

98

18 72

58 90 3 024
18 29

58 10 2 018
58 80 2 05C
58 BO 8 000
5A BO 8 Q04
50 BO 8 000
59 BO 8 008
47 DO 7 030
41 80 3 028
58 FO 1 010
45 EO F 008
D2 4F D.0A8 B 000
91 80 2 02C
47 EO 7 04t
58 FO 3 018
05 EF

18 27

8.6.

STATIC INTERNAL STORAGE MAP

CL.4

PROGRAM ADCON
PROGRAM ADCON
PROGRAM ADCON
A..IBMBOCLA
A..IBMBOCLC
A..IBMBRIOA
A..IBMBRIOD
A..STATIC
CONSTANT
A..FCB
COMPILER LABEL CL.3

IR 7,2

L 9,36(0,3)
LR 2,9

L 1,24(0,2)

L 8,92(0,2)
L 11,0(0,8)
A 11,4¢0,8)
ST 11,0(0,8)

c 11,8(0,8)
ANH CL.2

L2 8,40(0,3)

L 15,16(0,1)
BAL 14,8(0,15)
EQU *

MVC CARD(80),0(11)
EQU *

™ 44(2),X'80"
BNO CL.4

L 15,A..IBMBRIOD
BALR 14,15

EQU *

LR 2,7

000000

000090

0000BO
0000B8
0000BC

0000C8
Q000cc
0000D0
0000D4

9100000000000000
0000000000000000
0000008800000090
000000C000000000
D8E90000021103100
8880202002000000
0190000000000050
000000F8000000F8
00000000001C0000
00000000000000F8
0000028800000000
0000000000000000
00000000G0000000
0000000006000000
0000000000000000
0000000000000000
0004D3C9ID5C50000
€0000000010000B0
010000B4020000B8
020000B8020000B8
020000B8020000B8
0000800000000001
000000E0
0000000000000000
02050202
00000288
00000000
020000F8
2000019041BE000O
470000000000

STATIC EXTERNAL CSECTS

FCB

ENVB

DTF
DTF
DTF

DTF
DTF
DTF
DTF

Set R2 as program base

Place address of FCB in R9

Place address of FCB in R2

Place address of DTF in R1

Pick up deblocking words in DTF

Place previous record address in R11
Add record length to old address

Store in current record address

Test if current record address is in buffer
If it is branch around LIOCS call

Pick up end-of-file address from static storage

Call LIOCS routine to get new buffer

Move record into record variable (CARD)

Test for errors
Branch if no errors

If errors call record 1/O bootstrap routine

Restore R2 as program base

(CONSTANT
(VARIABLE
(CONSTANT

(VARIABLE
(CONSTANT
(VARIABLE
(CONSTANT

Annotated list showing”record I/0 statements handled by in-line code

PART)
PART)
PART)

PART)
PART)
PART)
PART)

STMTY

SOURCE LISTING

EXAMPLE: PROC OPTIONS (MAIND;

DCL

CARD
READ FIL

END;

* PROLOGUE BASE

00005E
000064
000068

02 67 O 0A8 3 028
41 60 D 0BO
50 60 D 0A8

LINE FILE UNBUFFERED INPU

T RECURD

ENV(F.RECS!ZE(BODoMEDlUH(SYSOOl.Z3lll)v

CHAR (80);
E (LINE) INTO (CARD);

MvC 168(8413)440(3)
LA 69CARD
ST 6416810413}

move skeleton record descriptor to DSA

complete descriptor with address

of record variable

00006C 05

20

BALR 2,0

set R2 as program base

* PROCEDURE BASE

* STATEMENT NUMBER 3

00006E 41
000072 50
000076 41
00007A 58
00007E 05

000000
000004
000008
00000C
000010
000014
000018
00001C
000020
000028
000030
000034
0000 38
00003C
000040
000044
000048
00004C

000000

00C090

Figure 8.7.

90 D 0A8
90 3 040
10 3 038
FO 3 014
EF

00000008
0000005E
0000006E
00000000
00000000
00000000
00000000
00000000
0080000007FFO000
0000000000000050
91E091E0
00000000
60000000
00000020
00000000
00060000
00000060
80000000

1188000000000000
0000000000000000
0000008800000090
0000008860000000
C3E9000002110200
8080000002000000
0000000000000000
0006000000000000
00000000¢0000000
0006000000000000
0000000000000000
0000000060000G00
0000000000060000
00006060000000000
0000000000000000
0000000000000000
0004D3C9D5C50C0C
40000000020000B0
0100008402000080
0200008002000080

Annotated object program showing record I/O statements handled by

LA 9,168(0,13)

ST 9+64(0+3)

LA 1¢56(0+3)

L 159A.. IBMBRIDA
BALR 14415

pick up address of record descriptor

place in argument list

point R1 at argument list
branch and link to IBMDRIO

STATIC INTERNAL STORAGE MAP

PROGRAM ADCON
PROGRAM ADCON
PROGRAM ADCUN
Ae..IBMBOCLA
A..18MBOCLC
A. o IBMBRIOA
Ae o IBMBPGOA
Ae o STATIC
CDONSTANT
RECORD DESCRIPTOR
CONSTANY

A. .FCB

A.o.FCB

A. LCONSTANT

A+ +RD

As o NULL ARGUMENT
AsoNULL ARGUMENT
Ao o NULL ARGUMENT

STATIC EXTERNAL CSECTS

FCB
000080
000088
00008C

0000F8
0000FC
006100
000104
. 000108
00010C

ENVB

000120
000124
000128
06012C
000130
000134
000138
00013C .

library subroutines

request control block

0200008002000080
0000920400000101
00000100
0000000000000000
2060D03C9D5C54040
40000E2900000000
00000009G06400GC0
000G6000000000000
000000000000FFC0
000000642000CCA4
AOQOCCAC
070000EE
40000006
310000F0
40000005
08000108
00C00000C30CD278
2000000105000280
20000001
310000F0
40000005
08000128
G00C0000
1E000148
30000008
12000148
0000000800000000
01000000

Chapter 8s

OTF
DTF
DTF

DTF
DTF
DTF
DTF
DTF
OTF

OTF
DTF
DTF
DTF
DTF
DTF
DTF
DTF

Record-oriented Input/output

(CONSTANT
(VARIABLE
(CONSTANT

(VARIABLE
(CONSTANT
(VARIABLE
{CONSTANT
(VARIABLE
{CONSTANT

(VAREABLE
(CONSTANT
(VARIABLE
(CONSTANT
(VARIABLE
{CONSTANT
{VARIABLE
{CONSTANT

PART)
PART)
PART}

PART)
PART)
PART)
PART)
PART)
PART)

PART)
PART)
PART)
PART)
PART)
PART)}
PART)
PART)

99

OUTPUT in the OPEN statement and,
consequently, the statement validity cannot
be determined until the file is opened.
With file parameters and file variables, it
is impossible to know which file will be
referred to, and consequently the validity
of statements using file parameters or file
variables cannot be determined during
compilation.

The format of the RCB is given in
appendix B.

The record descriptor (RD) contains the
address, length and type of the record
variable. It is generated only if a record
variable is required. (For exact format,
see appendix B.)

The_ key descriptor_ (KD) contains the
address and length of the key variable. It
is generated only if a key variable is
used. (For exact format, see appendix B.)

If the record variable or the key
variable is STATIC INTERNAL, a complete RD
or KD is set up and placed in static
internal storage during compilation. In
most. other circumstances, a skeleton RD or
KD will be set up which will- be completed
during execution by the inclusion of the
address. The completed descriptor may be
moved into temporary storage. 1In certain
conditions, no skeleton is produced: the
complete descriptor is built in temporary
storage by compiled code.

The event variable (EV) contains
information about the event that has been
associated with the event I/0O statement.
(For exact format, see appendix B.) The
implementation of event Y/0 is covered
briefly at the end of this chapter, and
more fully in chapter 11 under the heading
"The WAIT Statement."

The abnormal-locate return address is
used only for LOCATE statements. It is the
address to which control will be passed if
an error is detected in a locate statement
and a normal return is made after execution
of the on-unit. The abnormal-locate return
address is usually the start of the next
statenment.

The code and control blocks generated
for a transmission statement using a
library call to the LIOCS routines are
shown in figure 8.7.

CLOSE Statements

For CLOSE statements, the compiler
generates a call to the open/close
bootstrap routine, IBMDOCL, passing to it

100

- IBMDOCL.

the address of the FCB, and, if required,
flags indicating the presence of the LEAVE
or UNLOAD option.

Library Routines in Record 1/0

Because the amount of code involved in
implementing a record I/O statement is
guite large and would be duplicated for
each similar record I/0 statement, record
I/0 is handled mainly by PL/I library
routines. The work done by library routines
is summarized in figure 8.12.

Type_of Library Modules Used

The library modules used by the compiler
can conveniently be considered under three
headings:

1. Open_and close modules - called to
open and close the files.

2. Transmitter modules - called to
transmit data by calling the LIOCS
routines. The PL/I transmitters hold
the error and end-of-file routines for
both library and in-line LIOCS calls.

For consecutive buffered files, the
error and end-of-file routines are
provided as a separate library module,
IBMDRRR. This module is loaded when
the file is opened, and can be
considered as part of the transmitter.

3. Error_routines - used, when PL/I
conditions occur, to handle
housekeeping problems and calls to the
error handler, IBMDERR.

The routines involved are shown in
figures 8.8, 8.9, and 8.10
respectively. Their interrelationship
is shown in figure 8.11.

Because of their length, the major
modules are held in the transient library,
and are loaded and called when required by
small resident modules.

The open and close routines are loaded
by the open/close bootstrap routine,
Transmitters are loaded by the
transient open routines, and are called via
the resident transmitter interface module,
IBMDRIO. The error routines are loaded by
{bootstrap entry points in IBMDOCN. The
|module IBMDOCN contains the open/close
| parameter list and is seperated from
|IBMDOCL to improve overlong performance.

- -—— -

r hl
| Resident library bootstrap routine IBMDOCL - loads and calls appropriate transient {
{ module |
t - - B ittt ettt |
| Entry point| Function

l ______ - - —— p——

| IBMBOCLA | Explicit open

{ IBMBOCLB | Implicit open for library-call I/0

{ IBMBOCLC | Explicit close

{ IBMBOCLD | Implicit close

| IBMBOCLG | Implicit open for in-line I/0

Transient library open and close modules

-

IBMDOCY Close for VSAM files

files

files acquire buffers initialize

files acquire buffers and
and stream files initialize DTF for

files acquire buffers and

i

|

| Name { Function

| -

| IBMDOPHM | Open stage 1 consecutive unbuffered files
{ IBMDOPP | Open stage 1 consecutive buffered files
{ IBMDOPS | Open stage 1 stream files

| IBMDOPX | Open stage 1 regiomnal and indexed
i 1

| IBMDOPO | Open stage 2 consecutive buffered
| | DTF except for disk and tape

{ 1IBMDOPT | Open stage 2 stream files acquire
i | disk and tape

{ IBMDOPY | Open stage 2 regional and indexed
i | initialize DTFDA

{ IBMDOPU | Open stage 3 consecutive buffered
| { disk or tape

| IBMDOPZ | Open stage 3 regiomal and indexed
{ | initialize DFTIS

| IBMDOPY | Open for VSaM files

| {

{ IBMDOCA | Close files

| |

L

|
|
|
|
|
|
|
|
|
buffers initialize DTF except for |
|
|
|
|
|
|
|
S |

Figure 8.8.

Opening a File Explicitly

For an explicit open, a call is made to the
resident library module IBMDOCL to open the
file. This routine, known as the
open/close bootstrap, is called once for
every file that requires opening and is
passed the address of the FCB, the address
of the OCB, if one is required, and the
address if the string locator for the title
option, if the TITLE option is being used.
IBMDOCL then calls ome of five tramnsient
open modules depending on the file type.

For VSAM files the compiler places the
address of IBMDOPV in the FCB and
consequently IBMDOPV is called by IBMDOCL.
IBMDOPV acquires space for an ACB (access
control block), IOCB (input/output control
block) and an RPL (request parameter list)
and then creates an ACB using a GENCB macro
instruction. IBMDOPV also sets fields in
the FCB so that the correct error module
will be called, and loads the appropriate

Chapter 8:

PL/I resident and transient library OPEN and CLOSE routines

transmitter.

For files other than VSAM there are four
groups of modules, one group for
consecutive buffered files, one group for
stream files, one group for regional and
indexed files and a single module for
consecutive buffered files. The module
called by IBMDOCL is the major module in
the group. It has the job of issuing the
open macro instruction, loading the
transmitter if necessary, setting up the
ERROPT and EOFADDR fields in the ¥CB and
handling TITLE, PAGESIZE and any
repositioning options such as REWIND. If
the buffer space has been allocated during
compilation no further action will be
necessary. However, if buffers are
required and the DYNBUFF option, variable
environment options, or am invaliad
declaration has prevented buffer space
being acquired during compilation, further
action is necessary. The first transient
modules then call further transient modules
in the group to complete the DTF and get
buffer space. These further modules are
overlayed on the high address end of the
first module. For certain file types it is

Record-oriented Input/output 101

Resident library interface routines IBMDRIO/IBMDOCN

Entry point | _Function

IBMBRIOA | Test statement validity and call transmitter

IBMBOCNB | Bootstrap entry point to load and call error or endfile module on
{ first error : o

IBMBRIOC | Call error handler with invalid statement code

IBMBRIOD | Entry from in-line code when errors detected. Branches to RIOB

Transient library transmitter modules IBMDRxXxX

—— - — —— o — o o i o]

—— v ——— ——— — - ——— —— T ——— ——

Data set | File attributes | Transmitter

organization | | module
- T T s — = e |
i | unbuffered output F-format f IBMDRAY |
| | buffered output F-format | IBMDRAZ {
| SEQUENTIAL | unbuffered input/update F-format | IBMDRBZ |
| | buffered input/update F-format | IBMDRBW {
REGIONAL (1) |-- - —-——=
{ DIRECT { F-format | IBMDRDZ |
—————— -—— - . - - ——l
t { | l
| | unbuffered output F/U-format { IBMDRAW {
| | buffered output F/U-format | IBMDRAX |
| SEQUENTIAL | wunbuffered input/update F/U-format | IBMDRBY |
| | buffered input/update F/U-format | IBMDRBX |
REGIONAL (3) | -— -- ———————-— - |
| DIRECT | F/u-format | IBMDRDY |
| === e me—m—s——ss—se——e—— - - -\
! | | unbuffered U-format | IBMDRCY |
{ t | unbuffered F-format | IBMDRCZ i
{ CONSECUTIVE | SEQUENTIAL | buffered U-format | IBMDRRX |
| I | buffered Vv-format | IBMDRRY |
{ | | buffered F-format | IBMDRRZ i
| | | associated file f-format | IBMDRRW |
{ | | associated file v-format | IBMDRRYV |
| | | associated file u-format | IBMDRRU i
| | | OMR file F-format | IBMDRRT |
{ | | error and end-of-file exit module 1 IBMDRRR i
|—-- - - ———— |
| | SEQUENTIAL | input/update F-format | IBMDRJIZ !
| | | output F-format { IBMDRLZ i
| INDEXED | —=————— -— - - -1
{ { DIRECT | input/update F-format | IBMDRKZ |
== - - -1
{ VSAM { SEQUENTIAL | buffered/unbuffered input/output/ | IBMDRVZ |
{ (entry [{ update { |
{ sequenced) | | | i
l ettt |
{ Vsam { DIRECT buffered/unbuffered input/update | IBMDRVR |
| (key-sequenced)| SEQUENTIAL buffered/unbuffered input/update | IBMDRVS |
i i SEQUENTIAL buffered/unbuffered output | IBMDRVT i
| |
. |

L o oo o o s s s e e i . S s 0 P R e o e

Figqure 8.9. Record I/O transmitters and their associated file types

102

| Name | Function

| Access method

tx3
2
=
g
Lol
t
it
1=}
[}
="
=
ll-d
®

PR S A

| module has not been loaded.

General error_modules

| unbuffered consecutive files
|

(. e e e ot —— i —

IBMDREF| Calling error handler for ENDFILE condition if general error

IBMDREZ| Calling error handler, for buffered consecutive files
|
IBMDREX| Calling error handler, for indexed files

IBMDREY{ Calling error handler, for regional files and

IBMDREV| Calling error handler for all errors (VSAM files)

Any

SAM
ISAM

DAM
SAM (workfiles)

VSAM

b ot e e e e A — o — e o

Figure 8.10.

necessary to call a third module which is
overlayed on the second. See figure 8.11
for the interrelationship of these modules.
After the second and, possibly, third
nodule has been exectued a return is made
to the first transient module to issue the
OPEN macro instruction and load the library
transmitter. The first module returms via
the open/close bootstrap to compiled code.

Space for the open modules and for
buffers is acquired in non-LIFO storage.
IBMDOCL acquires 2K bytes for the transient
open routines and, if buffer space is
required and the length of buffers was
known at compile time, also acquires
sufficient storage for buffers.

The transmitter is only loaded if it is
not already in main storage. (A test is
made on the chain of loaded modules to see
if it is.) If the transmitter is not
already loaded it is overlayed on the high
address end of the first transient module.
It is moved down until the end of the
transmitter is contiguous with the high
address end of the 2K acquired for the
transient modules. The transmitter is then
contiguous with any buffer space that may
have been acquired by IBMDOCL. On return
to IBMDOCL the unused space left in the
original 2K acquirement is freed.

If the length of the buffers to be
acquired is unknown during compilation,
buffer space is acquired by one of the
transient modules. When this occurs an
unused free area will normally be left
between the transmitter and the buffer
space. This is placed on the free area
chain in the usual manner.

The open routines also alter the
contents of certain fields in the FCB so

Chapter 8:

PL/I transient library error modules

that transmission statements will not
result in a call to the open routines, as
would occur in the case of an implicit
open, described below.

Opening a File Implicitly

Implicit open is implemented by
manipulation of the addresses to which
transpission statements pass control so
that these addresses always point to the
open/close bootstrap if the file is not
already open. This method is necessary as
it is not always possible to determine
during compilation which transmission
statements will result in the opening of
the file. (Implicit open is further
explained under "Transmission Statements"
below, and in figure 8.13.)

Transnission Statements

Compiled code calls the tramsmitter
interface module IBMDRIO, passing to it the
parameter list described above under the
heading "Library-call record I/0
statements" in the section "Compiler Output
for Record 1I/0."

The interface module, IBMDRIO, first
acquires a DSA, which is used both by
IBMDRIO itself, and by the transmitter. It
then initializes the registers and executes
the instruction in the request control
block (RCB). 1If the transmission statement
being executed has been tested and found to
be valid, the instruction will be a branch

Record-oriented Input/output 103

hot

OPEN and CLOSE

TRANSMISSION

: statements statements
KEY e e
IBMDRIO Names not in italic in resident library IMPLICIT OPEN e Call from WAIT module
NS . . > 4 for EVENT {/0
1BMDOPA Names in italic in transient library
' ————pp—o Call to module - ~
———D—— Return to calling module v
—-—p———— Load but no call
Implicit close IBMB'OCNC (See fig8.13) - IBMBRIOA IBMBOCNB
Call during program v Invalid 19 ©. invalid Interface Error
termination to statement —4q—FAIS Statement routine module
close any files routine v bootstrap
still open + —_t e =
IBMDERR
A
IBMDOCL
Open/close o IMPLICIT OPEN < FATM
bootstrap - (See fig 8.13)
Ay v
[[l l IBMDERR
1BMDOPM 1BMDOPP IBMDOPS IBMDOPX IBMDOCA 1BMDOCV ‘Execute on-
a unit or standard
Consec. Consec. Regional/ - ose Close system action
Buff Stream Indexed routine VSAM
Unbuff. uff. X Non VSAM J7
] \ 4
A\ 4
1BMDOPY IBMDOPQ ™ 1BMDOPT 1BMDOPY —
Open VSAM Get buffers and Get buffers and
f
init. DTF (not ‘k init. DTF (not ﬁ?:?;;;i;f"d Call to IBMDREF/V
disk or tape) disk or tape) . complete’ Endfile routine
: output Call error
Y 2 handler for
\ Endfile
IBMDOPU I1BMDOPZ . 4
Init. DTF for Get buffers and > | IBMDRE/X/Y/Z
disk or tape init. DTFIS Transmitter Ly FERM ~
(See fig 8.14) Record 1/0
error support
module .
v

Figure 8. 11.

Organization of record I/0 library modules

Returns to compiled code or WAIT module

DTF

LIOCS TRANSMITTER «-) A(LIOCS transmitter)
/
/ (Address set only for files that can
/ use in-line 1/0).
// FCB
/ .
PL/! TRANSMITTER “— i) FATM A(Transmitter)
/ /
/ /
/ / FAIS Aflnvalid stmt) —P INVALID STATEMENT
/ /v (Entry point G of IBMBRIO)
/ /
I/
/ /
/
! 7/ 7
/| /7
1/,
/ /7 /
/7 7/
Iy ¥
| 4
OPEN/CLOSE BOOTSTRAP
Key
- = e — — P Address when file closed

¥ Address when file opened

Figure 8.13. Implicit open procedure

instruction. If the statement has not been the interface module, IBMBRIOC, which

tested, or has been found to be

invalid, results in a call to the error handler.

the instruction will be a TM instruction.
If the statement is valid, control will be Therefore, if the file is open, the

passed directly, or after the TM

transmitter will be called if the statement

instruction, to the address in the. FCB is valid; the error handler will be called

field FATM. If the statement is

invalid, if the statement is invalid.

control will be passed to another address,

in the FCB field "FAIS."

If the file is not open, both FATM and
FAIS contain the address of the open/close

As is shown in figure 8.13, the bootstrap routine IBMDOCL, entry point
addresses held in these words depend on the IBMBOCLC.

condition of the file.

address of the PL/I transmitter,

Therefore, if the file is not open, the

If the file is open, FATM contains the execution of any transmission statement
and FAIS will result in a branch to the open/close
point in bootstrap routine. The open/close

contains the address of an entry

Chapter 8: Record-oriented Input/output 105

OPEN_Statements

1 Complete the DTF and the FCB for
the file if necessary, or
generate the ACB for VSAM files,

2 Obtain storage for buffers,
index areas, etc. if necessary.

3 Issue the data management OPEN
macro instruction.

4 Raise the UNDEFINEDFILE
condition if the file cannot be
opened.

Transmission statements

1 Branch to the open routines if
the file is not open.

2 Ensure that the statement is

valid for the file.

Check the record and key

variables for errors.

Issue the appropriate data

management macro instruction.

Move the data between the buffer

and the record variable if

necessarye.

6 Raise any conditions that occur
during the execution of the
statement.

o £ W

CLOSE statements

1 Ensure that all operations
commenced on the file have been
completed.

2 Issue data management close
macro instruction.

3 Release any storage allocated toj
the file, e.g., I/0 transmitter |
space.

s S w— — —— — g A D W oo G S G G —— . — — ———— — — —— —— — s w— o o =]

The functions are not
necessarily carried out in the
above order.

[n o e e A ——————— i ——— o ———— ——] —— o — — ———— o ——— . ot o "

O

Figure 8.12. Summary of work done by
PL/I library routines

bootstrap routine calls the transient
library open routines, which open the file,
and alter the contents of FATM to point to
the transmitter, and of FAIS to point to
the error entry point IBMBRIOC. When the
file is open, control is returned to the
interface module and execution of the
transmission statement is reattempted.

Implicit open for record I/0 statements

handled by in-line calls to data management

are handled in a similar manner.

106

Transmitter Action

After the file is open and the statement
validated, control is passed to the
transmitter, which checks the record and
key variables for errors, and issues the
appropriate data management macro
instruction. After data management has
handled the request, control returns to the
transmitter. The transmitter moves the
data between the data management buffer and
the record variable, or sets the pointer to
the record, and checks to see whether any
errors have occurred.

Transnitter modules do not acquire a DSA
but use the DSA acquired by IBMDRIO.
1 .
| For VSAM files a further control block,
| the I0CB (Input/Output Control Block)
| provided by OPEN, is used, in preference to
{the FCB, to hold information relating to
{the current statement. Space is provided
{in the IOCB for MODCB & SHOWCB parameter
|lists used respectively to modify and
|display the various fields in the data
|management RPL (Request Parameter List),
{which is passed to the VSAM LIOCS routine
|for any action macro. (See Appendix B for
|details of yhe I0CB). The transmitter
laction is essentially similar to that for
{other access methods. It is worth noting
|that a READ INTO will gemerally be
|implemented by means of a VSAM GET macro
fdirectly from the system buffer to the
|record variable. If the record variable is
|too short, VSAM will give a logical error
|return code and no transmission will take
|place, where upon the PL/I transmitter will
|reissue the request, providing an
|intermediate dummy buffer, and finally move
| the truncated record to the record
(variable.

To enable PL/I error handling to be
available yet cause the mimimum possible
overhead to error-free programs, transient-
library modules are provided which are not
loaded unless an error occurs. Two modules
lare available for all file types except
VSAM file. VSAM files use one error

| module, IBMDREV and this handles both
{errors and end-of-file situations. The
following discussion does not therefore
apply to VSAM. The two types of error
sorting used for non-VSAM files are:

1. The ENDFILE routine, IBMDREF, which
can deal only with the ENDFILE
condition.

Contents FEFT .
Initialized by open routine with

indicating general error support

module.
Altered for non-VSAM files

by EOFADDR routines in
transmitter to character *'F"

character uxu, “Y“, IIZII or uvu

IBMDR!O

(entry point C)

Loads and calls module
indicated in “FEFT" and
places its address in FERM.

Figure 8.14.

depends on the contents of the FCB field FERM

Chapter 8:

If conditions are raised during transmission, flow of control

Record-oriented Input/output

indicating ENDFILE module. FCB
Restored by ENDFILE mod-
uleto “X"”, “Y" or "Z'"" when
non-endfile error found
IBMDREF
Endfile module
If ENDFILE :
FEFT Calls error handler
If other error :
Loads and calls
error module indicated
in “FEMT". Placing
FEMT address in FERM
FERM \\\
Contents FEMT LI
Always contains character ° AN
indicating general error - o 3
support module - ° s IBMDRE/X/Y/or Z
PS N General error support module.
\.\ \\\ Handles all errors including
o \ | ENDFILE
™Y N
o
°
L]
\
®
*, | IBMDREV
d Al errors for VSAM files
Key
If no errors have occurred.
900000 If 1st. error was ENDFILE and
no other errors occurred.
—————— If non-ENDFILE errors have
occurred.
o-0-0-0-0- VSAM files

107

2. A general error module (one for each
access method - see figure 8.10).
This module is capable of handling all
conditions that may arise, including
ENDFILE, but is loaded only if the
TRANSMIT, RECORD, KEY, or ERROR
condition occurs

modules are all
letters IBMDRE
single character (see

These transient error
identified by the six
followed by a further
figure 8.10).

If a transmission error occurs, the
transmission error routine within the
transmitter will be entered, whether an in-
line or library-call statement is being
executed. Similarly, if end-of-file
occurs, the end-of-file routine within the
transmitter will be executed. Record and
key errors are detected either by the
transmitter or by compiled code.

When any of the errors or PL/I
conditions mentioned above occurs during
the execution of a record I/0O statement,
control is passed to the address held in
the word "FERM" in the FCB. This address
may be any one of the following:

1. The address of IBMDREF, the
module.

ENDFILE

2. The address of
module for the

the general error
file type.

3. The address of a bootstrap routine,

| - - IBMBOCNB. This routine constructs the
name of an error module by taking the
skeleton IBMDRExA and replacing the
"x" by the letter in the single
character field “FEFT" in the FCB.
IBMDRIO then places the address of
this module in FERM, and branches to
the module it has loaded.

Thus by changing the contents of the field
“"FEFT", the transmitter can select a
particular error module. The contents of
WFEFTY" is one of the following:

1. A character indicating the name of the
general error module for the file
type. This character is placed in
"FPEFT" during the execution of the
OPEN statement.

2. The character "F", indicating the name
of the ENDFILE module. The content of
"FEFT" is changed to "F" by the end-
of-file routine in the transmitter
(wvhich is entered when data management
detects end-of~-file).

Thus the module loaded by the bootstrap
|routine IBMBOCNB, and the address placed in
"FERM", depends on whether end-of-file or
another error is the first to occur on the

108

file.

The result of this arrangement is that
the general error module can be called in
an end-of-file situation. Similarly, the
ENDFILE module can be called when another
type of error occurs, if ENDFILE was the
first condition to occur.

To overcome this problem, the general
error module contains code to handle
ENDFILE, and the ENDFILE module contains
code to test for other conditions, and load
and call the general error module if
appropriate.

The ENDFILE module restores the
character in 'FEFT' from the field 'FEMT!
land calls IBMBOCNB. FEMT always holds the
character that identifies the general error
module for the file. When the name has
been constructed, the general module is
loaded, its address is placed in FERM, and
a branch is made to the module.

The process is illustrated in figure
8.14.

The general error routines set up a
parameter list, and branch to the resident
error-handler, IBMDERR, to handle the
condition. If a normal return is made from
an on-unit, the general error module will
raise any further conditions that have
occurred. After all conditions have been
raised, a return is made to compiled code,
or, in EVENT 1I/0, to the WAIT module.

The ENDFILE routine checks to ensure that
the situation which has resulted in the
call is really end-of-file, and, if so,
passes control to the error handler.

CLOSE Statements

Files and data sets can be closed either by
the PL/I CLOSE statement or by the
termination of the program. In both cases,
the close is carried out by the library
routines. ' The bootstrap module IBMDOCL is
called at entry point C or D, and it loads
and calls the close routine, IBMDOCA. If
fany VSAM files are found, IBMDOCA loads and-
jcalls IBMDOCV.

The bootstrap routine is passed a
parameter list containing the addresses of
the PCBs for the files that require
closing. IBMDOCA then closes these files.
This may involve completing I/O operations
and hence calling the transmitter. After
handling any necessary transmission,
IBMDOCA disassociates the file from the
data set. If the transmitter was being
used only by the file that is being closed,
the storage for the transmitter is freed.
A check is kept on the use of transmitter
and other transient modules in a sixteen
byte prefix at their head. The value held
in this field is set to one when the
transmitter is loaded, and decreased or
increased as new files requiring the
transmitter are opened. For implicit
closing, the chain of open files starting
in the TCA is scanned to determine which
files must be closed.

When IBMDOCA has finished, it returns
control (via IBMDOCL) either to compiled
code (for an explicit close statement) or
to the termination routine (for the end of
the progranm).

If any VSAM files are found by IBMDOCA
it makes a call to IBMDOCV for each VSAM
file found. IBMDOCV themn carries out
similar action to IBMDOCA for the file.
IBMDOCV is loaded for the first VSAM file-
found. The space it occupies is freed by
IBMDOCA before returning to IBMDOCL.

In-Line I/O Statements

Most transmission statements on buffered
consecutive files are implemented by in-
line calls to the LIOCS routines (see
figure 8.2 for details). Such statements
are referred to as "in-line I/0
statements."™ Only READ, WRITE, and LOCATE
statements are handled in this way. OPEN
and CLOSE statements always result in
library calls.

For in-line I/0, a call is made direct
to the data management LIOCS routine whose
address is held in the DTF. The DTF is
addressed from the FCB. 1In addition to
calling the LIOCS routine, compiled code
moves the data as necessary to or from the
record variable, or sets appropriate
pointers. Compiled code may also check for
the RECORD condition.

If there is amn error in transmission, or
if end-of~-file is reached, the LIOCS
routines will branch to the ERROPT or
EOFADDR routines that are held in the PL/I
transmitter. (The PL/I transmitter is
always loaded by the open routines.) The
ERROPT and EOFADDR routines set an error

Chapter 8:

flag in the FCB and return to compiled
code, normally via the LIOCS routine. If
the error flag is on, or if the RECORD
condition has occurred, compiled code
branches to IBMBRIOD. This results in a
call being made to the transient error
module.

Typical code produced for an in-line I/O
statement is shown in figure 8.6.

Control Blocks for_ In-Line Calls

For in-line I/0 statements, the only
control blocks that are set up are the FCB
and DTF. The request control block, and
record and key descriptor are not required
as the information is known during
compilation and suitable code to move the
data to or from the record variable can be
generated. The RCB is not generated, as it
is required only by the library routines to
determine the statement type when checking
statement validity.

Implic1t open for in-line calls is handled
in a similar way to that used for 11brary
calls (described above).

For a compiled code call, the address in
the DTF that normally holds the address of
the data management LIOCS transmitter is
initialized to point to the open/close
bootstrap routine, IBMDOCL (see figure
8.13). When the open routines have
finished, the address in the DTF is altered
to point to the LIOCS routine.

If the file is successfully opened, a
test is made to see whether the entry to
IBMDOCL was for an in-line call and, if it
was, control is passed to the data
management address held in the DTF. For
input, this causes the LIOCS transmitter to
be entered and a return made to compiled
code. For output, it will cause entry into
code in the PL/I library transmitter which
places the address of the LIOCS transmitter
in the DTF and returns to compiled code.
This is the normal transmitter action for
the first output statement.

Event I/0

Event I/0 is fully described in chapter 11,
under the heading "The WAIT Statement."
The principles are described briefly below.

Record—oriehted‘Input/output‘-109

l r—_—— ————
P: PROC; , v
: A IBMDRIO
» T
: I
READ. . ..EVENT (E); l Y
¢ y i
: PL/t TRANSMITTER
; e
[
I
ISSUE DATA MANAGEMENT — V|
MACRO |
RETURN IF EVENT 1/0 |
ISSUE WAITF MACRO — ———J — — }——-
i
|
l
TEST FOR ERRORS
IF NONE RETURN TO WAIT
MODULE ;
I
|
¥
|
: , \

WAIT(E); = = = =D — = e = - e e — -
X I
Fmm———— —: v |
: | WAIT MODULE |

: IF EVENT I/O CALLIBMDR!O—--——-ﬂ———}-D _——
] | _
| RETURN IF NO MORE
: EVENTS TO WAllT ON
| |
I
|
!]
L o
END P; Key
> READ EVENT statement
- = — D — — — WAIT statement

.............. Further PL/I statements

Figure 8.15. Plow of control for READ, EVENT and WAIT statements

110

EXECUTION
SOURCE
PROGRAM COMPILATION COMPILED CODE LIBRARY AND DATA MANAGEMENT MODULES COMPILED CODE
Generate code EXPLICIT OPEN IMPLICIT OPEN
otement to call open > B N e
bootstrap \. J ‘ | |
| I
|
IBMDOCL I
A
Pass control I
block addresses |
Transmission to IBMDOPA
1/0 statement I !
. I I
Generate | |
in.line D'..O'.'.......'.0...'..'....'......C.'.I....Q..l.........0...’.........0...0......'................I.l.'..l... 00.....001....OC.......ll’.l0....0...'0.0'............r 'C.'....l:
code v I .
L I[— —_— e ———————— ———— —! Open Routines | é
i Associate file | :
! In-line I I with data set | .
Load trans- ‘ v
: IBMDRIO : mitter ? V
i T T In-line calls :
Library calls | H
statement? | Branch to A CPRYes L »>—— i :
i ERROR > | | :
handler ——p— ————— e —— »P—— e
| (IBMDERRA) T gl 1 :
or open | M
> LIBRARY | bootstrap if ! TRANSMITTER LI10CS ROUTINE A :
| file not open | | :
| | -
I .
Set up RCB Set up RCB | | Gall LIOCS > Coryout | 1...] Call
for Execution- branch found] | routin } LIOCS routine
Time test Execution-Time | |
test : |
|
: | NO
I Instruction A Error routines < YES IR RN
Generate v I mit::g?ng error §
call to Call _L> Execute 1 — has occurred NO :
lBMDR|O lBMDRIO lnStrUCtion BranCh .’ 'I.......’....’.'..’...C.l........:
in RCB instruction :
‘ 3 v
Move record < Move record key
. ~ key etc. Check etc. Check for
Key for record & record & key
key condition errors
Path using library calls v
XY TTYIYYY Path for in-line 1/0 Any YES Record 1/0 Any
-0-0-0-0- Common path, in-tine/library condlt_ions ——P (E:;rI::r module conditions
—_— * Path for implicit open to r'alse ' IBMDERR to gise
CONTINUE < * NO :
) CONTINUE

Figure 8.16. Overview of record I/0 implementation

€

Chapter 8: Record-oriented Input/output 111

If the EVENT option is used in am I/0
statement, the statement will be handled by
a library call. Thus control will be passed
from IBMDRIO to a PL/I library transmitter.
This transmitter returns control to
compiled code as soon as the data
management macro instruction is issued..
When the WAIT statement nominating the
event is reached by compiled code, a call
is made to the WAIT module which returas
control to the transmitter via IBMDRIO.

A WAITP macro instruction is then
issued, and control is returned to the
transmitter when the input or output
operation is complete. The transmitter then

112

tests for errors and, providing no errors
have been detected, returns control to the
WAIT module, which returns control to the
next statement.

For VSAM files EVENT I/0 is simulated.
The return code from data management is
tested by the transmitter immediately after
issuing an action macro instruction.
However, any errors detected are held over
until the corresponding WAIT statement is
issued when control is returned to the
transmitter.

Figure 8.15 illustrates the principles
used in EVENT I/0. ‘ :

PL/I Statement: GET LIST(1);

1
call L10CS routines to move !
the data between the external]
|
|
|
_

medium and the data manage- 1
ment buffer. :
b FoTTT oo |
External medium File SYSIN | Data Management buffer |
i
v A
8 9 10 1 I 8 9 10 1 |
\ Stage 1 ' |
! I
\
| |
\ !
\
\ I
\ |
1 I
\ I
4(I
I
\ |
\
| |
\ !
‘\ stage2 ¥ L
\ S r- .
1 Conversion routines or | | Director routines control the
\ I compiled code convert | | process, calling necessary
1 ' data and move to variable. | | conversion and transmitter
L : | | modules when required.
| - 4
0090000000001000 o -
b] - __

Variable.| (Fixed Binary 15,0)
~ (in main storage)

Stream input/output is a two stage process. The data is moved between the external medium and the data management buffer, and
between the buffer and the variable. Any necessary conversions are made between the buffer and the variable. The operation is
controlled by director modules. The director modules call the appropriate routines to do the transmission and conversion. Transmission
is carried out in a similar way to that used for RECORD 1/0.

Note that a further input statement will require the value 9 which is already in the data management buffer. Consequently the trans-
mitter need not be called and a pointer must be kept to the position reached in the buffer.

Figure 9.1. Conceptual diagram of stream I/0

Chapter 9: Stream-Oriented Input/Output

Note on Terminology

In this chapter, the terms source and
target are used when referring to transfer
of data. The source is the point from
which the data is taken; the target is the
point to which it is moved, possibly in a
converted format.

Introduction

PL/I stream-oriented input/output allows
the programmer to move data between a PL/I
variable and an external medium without amny
concern about internal and external data
types or any attention to record
boundaries; both conversion and record
boundary problems are handled
automatically.

Although it appears to the programmer
that the data is moved directly between the
external medium and the PL/I variable, the
move is in fact a two stage process, as
shown in figqure 9.1. 1In the first stage,
the data is moved to a data management
buffer, in the second stage, it is moved
from the buffer to the target. When the
data is moved to or from an external
medium, a complete record is always moved.
When the data is moved to or from a PL/I
variable only as much data as is contained
in the variable is moved. The amount of
data moved in the one stage need bear no
relation to the amount moved in the other.
Thus synchronization of the two stages is
the principal job in implementing stream
I/0.

Transmission between the buffer and the
external medium is handled by the LIOCS
routines of data management. These
routines are called by PL/I transieat
library transmitters in a way similar to
that used in library call record I/0. The
movement between the buffer and the PL/I
variables is generally handled by the PL/I
conversion routines.

Data items transmitted by stream I/0 are
not affected by record boundaries (see
figure 9.2). There may be any number of
data items in a record, and an item may
span any number of records. Because the
LIOCS routines make only one record
available to the program at any one time, a
method is needed to build up complete itens

Chapter 9:

if they span the record boundary.
Similarly, because GET and PUT statements
may read or write less than a complete
record, a method is needed of keeping track
of the position reached in the record, so
that the next GET or PUT can start from the
correct position.

Operations_in_a Stream I/0 Statement

A stream I/O operation can involve any or
all of the following opertions:

1. Opening the file, and raising the
ERROR condition if the statement is
invalid.

2. FKeeping track of the position in the
buffer.

3. Calling the transmitter for a new
record.

4. Building in intermediate workspace an
item too large to be held in the
current record.

5. Determining which conversion is
required, and calling the routine to
carry out the conversion.

Control of operatiomns (2) through (5) is
handled by director routines. For list-
directed and data-directed I/0, PL/I
library director routines are used. For
edit-directed I/0, the job is shared
between library routines, compiler-
generated subroutines, and compiled code.

Before the director module or director
code receives control an initialization
module is called. This module handles item
(1) in the list above: checking statement
validity, and opening the file if it is not
already open.

Because there are three modes of streanm
I/0, the exact situation cannot be defined
in a generalized discussion or diagram.
However, the basic principles are shown in
figure 9.3. The sequence is:

1. 1A call to the imnitialization module.
2. A return to compiled code.

3. A call to the director module.

Stream-oriented Input/output 115

/" URTA LTEM DHET TOATR TTEM TiHD* *DATA TTEM THREE' TDRTH TTEM FOURT ’DﬁTﬁ\\

b [gt VI I VA F T R
T I n Hoood I

0 000 0806000000000 000: 008 08000000 000 000 00000000000 60D 00000 60000000 ©
ansurnlmnunusuunumnuuuﬂuﬂnammuauaanuam«uuua«aanmmuumaunnuwnunununnamnnnuunnnnn
S R R AN R R R R R R R R R R R AR R R R R RN R R R R AR R AR R R R R R R RO B R R R RN R RRRRERER IR
22
333 333 3333333333333/333 333 333333333 333333 33333333333 333 33333333333333 3
4 4444444 444440044/4484444 4044044088, 4444444 43444448444, 484848448, 844,.°444444 444

5555555 555 - 5555555555, 55555! 555! 5555555: 55555/ ' :'555 5555555 555555 555 555§
66EE6EEEH66 666666666666666666° G6EC6666666066666666666666665666666 66666666666
NN NIINNIINIINNIININIIIIIIIIIIIIIIIIIII Ity |
1 8888838888888:888{:8688388808088883;!883 188888388888 888 .888 .59088880888885 888 8883
?g??ss ssssssassssssasssﬂsssssssssssssssssCssssas%ssssssssssasﬂsssssss’995999999‘/J

$670010NRBHNILYWIS202322326252627 2029790 31 32 33 26 3530 37 38 39 40 43 42 4364 4546 47 4149 50 50 5753 54 5556 57 58 5000 61 62 LIBS 6563 B1S2RIN N 12 TI M IS 6 77 8 Ta 68
666 - 508; .

LK
12
11

(’VITEM FIVE' "DATA ITEM SIX'
L SRRV S T}
!i

80 00000 00GO0O0O0O0! 000 000 O 000600000000000000000C0000C050000000000000000000008¢
12343030 9NNLBUBETUONNLBEET 2031233935387 W3340 4 20USGO @05 2HUIEHTHN062OHUSHIBONVAIBNTAN NN
IR R R R R R N R R R R AR R R R R R R R R R R R R R A R R AR R R R R R R R R R R R AR R R R R AR R AR RN RRRRRRRRRE
2222222222222222222222222.:122
33 33333333333333.333,33
4444 44444484444 4448444 444444484444484444444444444444444444444444444444444484444
§55 §555i 555f5555555h55555?555
666666 6666666666666666666666666686666666666666666606666666666566666666666E666666
1777777000707 707 000070207075 000 700001007170 079710777177970177717017117111717171117717 |
8888888838 885 8888886883888 888008888888888588883888883856883888888888888888863
9 89999 38989§959!99"99939&3!9999393999999999999995999999999!988!99!99999999999i‘J

123435879090V RRUBENIBVNNRBNBBIBRWNIAD 53827303940 41424344 85465 47 485051 5253543556 37 58 590 5167 EIRIESCIAISILBM ANV NN BT 181580
e, 965 - 5081

Figure 9.2. Record boundaries do not affect streanm I/0

116

Pass A (SIOCB)
to initializing module
Indicate stmt type in COMPILED CODE
slocs
NO Call IBMDOCL
File to open file
open? (see Ch. 8)
¢ INITIALIZATION
YES < MODULE
\ Checks statement validity,
opens file if necessary
Check stmt &
return to
compiled code
if valid
A
Set A(DED) and '
Alsource)
or A (target)
inS10CB
} * COMPILED CODE
CallOneof |
director
modules
4
New YES
record
needed?
NO
Y
A 4
Call
transmitter
Transmitter
Locate item in TRANSMISSION
buffer <4 Movement
Get between
new record buffer and
external medium
Y
A
DIRECTOR
MODULE
v Handles complete operation
calling transmitter and con-
version modules as required
Conversion
Convert item .
as indicated
by DEDs CONVERSION
Movement
between
+‘ buffer and
variable
Move to
target
Update FREM
& FCBA buffer
pointersin FCB
COMPILED CODE

CONTINUE

Figure 9.3. Generalized flowchart of a streanm input statement

Chapter‘9: Stream-oriented Input/output 117

Stream I/0 Control Block (SIOCB)

To simplify communication between the large
number of routines that may be used in a
stream I/0 operation, a control block is

set up for the duration of execution of the

stream I/0 statement. This control block
is known as the stream_I/0 control block
(SIOCB). The contents of the SIOCB are
shown in figure 9.4.

r == 1
| | . : |
| SSRC | Address of source or source |
| | locator {
{ |- {
{ SSDD { Address of source DED i
! | |
| STRG | Address of target or target]
{ | locator (
| | ‘ |
| STDD | Address of target DED |
1 | {
| SFLG | Flag bytes I
| I . t
| SFCB | Address of PCB for file {
i | |
{ SRTN | Abnormal return address (next |
I | statement) |
{ | l
| SAVE | Save word used by compiler |
| | |
{ SCNT | Count of items transmitted |
i | (Halfword) |
| | |
{ SOCA | Address of OXNCA |
i - - , |
| SSTR | Area present only for GET or PUT |
| | STRING, to hold a dummy file |
| { block. |
e -

Figure 9.4. Stream I/O control block

(SIOCB) -.

Basically, the SIOCB consists of the
addresses of the source and target (or
their locators), of the DEDs of the source
and the target, and of various other items.
The SIOCB can be passed directly to the
conversion modules, because the first four
words are the same as the parameters
expected by the conversion routines.

File Handling

In stream I/0, file organization is always
sequential and the access method used is
the queued sequential access method (QSAM).

118

Transmission

Transmitters are called by the director
modules or by the close module to complete
transmission when the program is
terminated.

As with record 1I/0, LIOCS transmitters
are used, and they are called by PL/I
transmitters. The PL/I transmitters
contain the ERROPT and EOFADDR routines,
which are entered when end-of-file or other
errors are detected in the LIOCS routines.
Seven different transmitter modules are
used in stream I/0; they are listed in the
summary of subroutines at the end of this
chapter.

Opening the File

The same basic method is used for opening
the file as is used for record I/O. During
compilation, a define-the-file control
block (DTF), a file control block (FCB),
and an environment control block (ENVB) are
set up. At open time, the information
addressed from the ENVB is used to complete
the FCB and DTF, the PL/I transmitter is
loaded, and its address is placed in the
FCB. The LIOCS routine to be used is
determined during compilation, and link-
edited. :

Implicit Open

Implicit opening is handled by the
initialization routines, which check to see
whether the file is open and, if not, call
the open/close bootstrap routine IBMDOCL.

The FCB for stream I/O is similar to
that used for record I/0. However, it
contains certain additional fields which
are needed only for stream I/0. The most
important of these fields are the buffer
control fields.

Keeping Track_of Buffer Position

Two fields in the FCB are used to keep
track of the position which has been
reached in the data management buffer, and
to indicate when a new record will be
required. These fields are the buffer
control fields:

1. FCBA - pointer for position reached in
current record. '

PL/I STATEMENT:
GET FILE (SYSIN) LIST (A, B);

80 Byte record
In data management buffer

*FUER HOLDE CURRENT POEITION=:

FREM HDLDE I‘%UI“,BEF;‘. DF FEMAINING BEYTES»».

8000000000 0C 0000 000 6 6660C000000GG0CC00C0CNT 0O GUUUDQUBUUUGQSUL’OOS.=U;QUdDG

$23 456 78 9011213141515 17802021 22723242526 772825 30 2 32 33 34 35 35 37 3339 40 41 42 4244 45 45 47 4849 50 51 5253 54 5555 57 58 5960 61 A2 6364 €S EE T3 EI 70 71 2293 4 7576 77 7879 80
<

ittt it i1t titgitettit111ilg

INEREREREEEERS

FCBA

FCBA

———r—— P — - —— S ——— > — — — >

FCBA
Holds addr:ess reached

At start of first item

after processing first item start of second item

after processing second item

FREM

FREM
vaLue 0 50

VALUE

FREM 4
VALUE

FREM

1 VALUE

FREM holds number of remaining bytes

Figure 9.5.

2. FREM - number of unused bytes
remaining in the record.

FCBA points at the position reached in the
record and enables the director routines to
identify where the next input item must be
read from, or where the next output iten

" must be written. FREM contains the number
of bytes left in a record. It enables the
director modules to determine when a new
record will be required, and whether an
item is too large to be held in the
remainder of the record and will
consequently require intermediate
workspace. Figure 9.5 illustrates the use
of FCBA and FREMN.

Chapter 9:

The FCBA and FREM fields of the FCB

Handling the Conversions

Conversions in stream I/0 are normally
handled by the library cohversion package.
The conversion package, described in
chapter 10, consists of conversion routines
and conversion director routines.
Conversion director routines examine the
DEDs of the source and the target passed in
the arguwment list (i.e., the SIOCB, for
stream I/0), and determine which entry
point of which conversion module is
required. Each conversion has a unique
entry point.

A number of conversion director modules

are used exclusively by edit-directed
stream I/0. These are called external

Stream-oriented Input/output 119

summary of subroutines at the end of this
chapter. Each module corresponds to a
particular format of input/output. When
the type of input or output has been
determined by the director modules, the
appropriate conversion director routine can
be called to handle the comnversion.

In edit-directed I/0, the conversion
required is normally predictable during
compilation, because it is implied in the
format list. Consequently, the conversion
modules can be called from compiled code
rather than from the stream I/0 director
routines. Alternatively, compiled code may
handle the conversion in-line.

When a library conversion module is
required by compiled code, the conversion
director module may be called, or the
conversion module itself may be called.
When the conversion module is called,
compiled code must carry out the jobs
normally handled by conversion director
modules, that is, setting up a number of
fields that are used mainly in handling
CONVERSION and other PL/I conditions.

Handling GET and PUT Statements

There are considerable differences in
detail between the handling of GET and PUT
statements for the three different modes of
stream I/0. However, they all follow the
basic scheme in figure 9.3 and summarized
above under the heading "Operations in a
Stream I/0 Statement." :

The implementation of GET and PUT
statements is covered in some detail below
for list—-directed I/0. For data-directed
and edit-directed I/0, the differences from
list—-directed are highlighted.

List-Directed GET and PUT Statements

PUT_LIST Statement

Inplementation of a list-directed output
statement is shown in fiqure 9.6. The
process consists of four steps:

1. Compiled code calls the initialization
routine, passing the address of the
FCB and of the SIOCB, in which
compiled code has set flags indicating
the statement type.

2. The initialization routine, IBMDSIO,
calls the open routine if the file is

120

locators.)

not open, and checks the validity of
the statement. If the statement is
invalid, a branch is made to the error
handler, passing an error code
indicating "invalid statement." This
results in a message being generated,
and the ERROR condition being raised.
If the statement is valid, control is
returned to compiled code.

IBMDSIO also handles any format
options, by calling the formatting
module IBMDSPL. Control then returns
to compiled code. :

Compiled code places the address of
the source (or its locator, if the
item is a string) and the address of
the source DED in the SIOCB. (See
chapter 4 for information on
Compiled code then calls
the director module.

The director module completes the
SIOCB with the address of the target
locator and the address of the DED of
the target. The target locator gives
the length required for the item. As
the target is always a character
string, a locator will always be used
for it. The address of the target is a
position in the buffer. For PRINT
files, the position is indicated in
the tab table, which will either have
been set up by the programmer by use
of PLITABS, or be the default tab
table in the library module IBMBSTA.
For non-print files, a one-byte space
follows each item. When the starting
postion for the item has been
determined, the director module

‘determines whether there is enough

space in the output buffer for the
converted item. If there is not, the
director determines whether this is
because there is no room left in the
buffer, in which case it is simply a
new record that is needed, or because
there is insufficient room in one
buffer, in which case the item will
have to span a record boundary.

If it is simply a case of acquiring a
new record, the director calls the
transmitter to acquire it. The
director then calls the appropriate
conversion routine, passing it the
SIOCB as a parameter list. The
conversion routine will then move the
data from the PL/I variable to the new
record in the data management buffer.

If, however, the converted item will
span the boundary between the current
and subsequent records, intermediate
workspace is acquired in the form of a
VDA (variable data area). The
converted item is then placed in the

6 Io3deyd

3nd3no/3ndul pPa3juULTIO-WERAI}S

(%A

PUT LIST (A)
+ Step 3
FLOW DIAGRAM COMPILED CODE & NOTES C iled
. LA 1,40(0,4) Point R1 at SIOCB
Point R1 LA 14 Load A(A)
at LA 157200,3) Load A(DED . . A}
slocs STM 14,15,0(1) Store in SIOCB
Step 1 LA 940004) Load address SIOCB L 15A..IBMBSLDAY Cali LIST output
Place address Compiled code ST 80y Place in p - list 2 BALR 1415 } dvector
SI0CB in 0l 184(3),X'80" Mark end of p - list ’
parameter list MVI 57(4),X°40° Set LIST OUTPUT flag Put address
LA 1,180(0,3) Point R1 at p - list of DED &
L 15A .. IBMBSIOA } Call stream output source variable
¥ BALR 14,15 initializer in SIOCB
g\ai:aﬁzi Y Step 4
module "o :)B"h:"p'g.g'“d“" The director module caiis the transmitter and
conversion modules when required and handles
Reached YES Call transistor any housekeeping problems.
end of current for new record
Before calling the ion module it |
4 the SIOCB with the address of the target locator
and the address of the target DED.
The target for the conversion is either the data
management buffer or a VDA acquired for
Step 2 intermediate workspace.
Initializing routine The initiatization routine is passed the address of the
IBMDSIO FCB and the address of the SIOCB. G::ﬂ:’ggt/\f :‘r set
a
conversion
Call IBMDOCL
to open file & Y NO <
load transmitter
It opens the file if necessary and acquires the first Set target]
record for print files. 1f the statement is invalid it address in
y calls the error handler. If the statement is valid it SI10CB
places the addresses of the ONCA and the FCB in Call conversion
the SIOCB and returns to compiled code. module
Fill record
from VDA

Is
statement
val’id

YES

Set FCB &
ONCA address
inSI0CB

v

Figure 9.6.

NO | Callerror
handler

List-directed

output statement

call transmitter

Update FCBA YES
& FREM

VDA
exhausted?

e

Continue as
from Step 3
until state-
ment complete

Compiled code

If the is I piled code

with the next t. If the is not
compiled code places new data in the SIOCB and once
more calls the director module.

* STATEMENT NUMBER 2

Load address of SIOCB

SE 41 90 D ©C8 LA 9,200(0,13) ¢ A

ggggbz 50 90 3 044 ST 9,68(04 3) Store in parameter list

000066 96 80 3 044 o1 68(3),X*80" Set end of parameter list flag

00006A 92 40 D OD9 Mvli 217(13),X%40° Set flags in SIOCB .

GOOO6E 41 10 3 040 LA 1,641(04+3) Point R1 at parameter list

000072 58 FO 3 024 L 153A.. IBMBSIOA Branch and link to initialization routine

00076 05 EF BALR 14,15 A

000078 41 EO D OAS8 LA 144A Load address of

00007C 41 FG 3 030 LA 154DED. « A Load address of DED. .A

000080 41 10 D OC8 LA 1,200(0,13) Load address of SIOCB

000084 50 10 D 0CO ST 1,192(0,13) Store in temporary storage

00G088 90 EF 1 000 STM 1:;, 15,0;1) Place addresF;oof and BED. .A in SIOCB

gggggg gg :g 3 028 :;ALR :2':;' IBMBSLOA g 1 ch and link fo list directed director routine
24

000092 41 EO D OAC LA 14,.8 Load address of B

060096 58 10 D OCC L 191921(0,13) Point R1 at SIOCB

00009A S50 €0 1 000 ST 14,0(0,41) Place address of B in SIOCB

ggggzg gg 22 3 028 gALR iZ:?;'IBMBSLDA Branch and link to list~directed director routine

Figure 9.7.

VDA. As much of the data as will fit
is moved into the data management
buffer, and a new record is acquired
by a call to the output transmitter.
The new record is then filled. This
process is continued until the
complete item has been moved into
buffers. Finally, FCBA and FREM are
updated.

If there are further data items to be
handled, a return is made to step (2), and
the address of a new source field and its
DED are placed in the SIOCB. This process
is continued until all items in the data
list have been processed. The object code
produced for a PUT LIST statement is shown
in figure 9.7.

122

Typical code generated for a PUT LIST statement

GET_LIST Statement

GET LIST statements follow the same
sequence, but the transmission is in the
opposite direction. The main differences
are:

1. If record spanning is involved, the
iter is assembled in intermediate
workspace before it is converted.

2. A locator is built for the source
string from the input, and the
addresses of the locator and of the
DED for the source are placed in the
SIOCB by the director module. For
input, the address of the target or
its locator and the address of the
target DED are placed in the SIOCB by
compiled code.

3. FCBA and FREM are updated before the
item is converted.

6 Io3deyd

-
.

and3ino/3ndul pejusrio-uesils

4%

€

>

GET DATA (A,B);

FLOW DIAGRAM

Step 1
+ Compiled code

Set up parameter

COMPILED CODE & NOTES

LA 0,40(0,4)

ST 0,136(0,3)
ol 136(3),X'80"
MVl 57(4),K°84

Pick up address of SIOCB
Place in p - list

flag last argument in p - list
Set flag ‘DATA INPUT’ in

list, call slocs
initializer LA 15,56(0,3) Set abnormal return
ST 15,64(0,4) address in SIOCB
LA 1,132(0,3) Point R1 at p - list
L 15,A. . IBMBSIIA Branch to stream
BALR 14,15 initializing module
A 4
Step 2
Input initializing module
IBMBSI| . P .
The input initializing module is passed the
address of the SIOCB and the FCB for the file.
Set fields
in SI0CB

It checks the validity of the statement, opens
the file and places the address of the FCB in the
SIOCB and returns to compiled code

From Step 6

Call IBMBOCL
to open file
4
Return to
compiled code -4
Step 3 ;
Compiled code
LA 0,40(0,4) Pick up address of SIOCB
Set up p. list ST 0,140(0,3) Place address in p - list
for data
director p-list, containing addresses
consisting of of symbol tables and
A(SIOCB) variables already set up,in
A(SYMTAB,I) static
A(SYMTAB,J) LA 1,140(0,3) Point R1 at p - list
L 15,A.. IBMBSDIA Call data-directed director
BALR 14,15 module .
CLS EQu* Abnormal locate return

address

Step 4
Data - directed director
module 1BMBSDI The data directed director module is passed the
New address of the SIOCB and either a list of symbol
record YES Call transmitter table addresses or an address in the symbol table
or spanning? setting up VDA vector.
if necessary
The module reads in the name, checks that the
] name read is in the symbol tables passed and if
not raises the NAME condition.
Call IBMBERR When the variable is identified the module places
stream match the address of the target and its DED in the SIOCB
SYMTAB?, and calls the list-directed director module passing
it the SIOCB.
Place address
DED and variable
in S10CB
Update FREM &
FCBA to beyond
equal symbol
Call list-directed
director module
Step 5
List directed director
d 1BMBSLI The list directed module completes the operation as
Decide on for list directed 1/0
conversion
required and call
correct module
Update FREM &
FCBA
Return to
1BMBSDI
V Step 6 On return to the data directed module a search is

Repeat from
step 4 until
final semicolon
found

Return to compiled code

Return to IBMBSDI

made for the next name and the action continued
as from step 4 untit a semicolon is reached in the
input stream

Figure 9.8.

Data directed input statement

* STATEMENT NUMBER 3

Load address of SIOCB

0000A4 41 90 D OCS8 LA 9,200{0,13) 1 et

00C0AB 50 90 3 044 ST 9468(0¢3) Store in parameter list

0000AC 96 80 3 044 oi 68(3),X*80°* Mark end of parameter list

0000BO 92 80 D 0D9 MVI 217(13),X*B0* Set flags in SIOCB

000084 92 01 D ODA MVI 218{(13),X*01" . .

0000B8 41 10 3 040 LA 1,64(0,3) Point R1 at parameter list

0O0CBC 58 F0 3 G24 L 154Ae¢ IBMBSIDA

G000CO 05 EF BALR 14,15 Branch to initialization routine
0000C2 41 90 D 0C8 LA 99200(0,13) Load address of SIOCB

000GC6 50 90 3 (48 ST 9,72(0,3) Store in parameter list

0000CA 96 8C O 0DB ol 219{13) 4X* 80" Set flag in SIOCB

00GOCE 41 10 3 048 LA 1,72(0,3) 21 ot ter list

0000D2 58 FO 3 020 L 15,A..iBMBSDOA PointRla parame od direct tine
000006 05 EF BALR 14,15 Branch to data=direct irector rov

Figure 9.9.

Data-Directed GET and PUT Statements

Data-directed GET and PUT statements follow
a similar sequence to list-directed
statements, in that there is first a call
to the initialization module, followed by a
call to a director routine. However, the
data~directed director module is passed a
means of identifying the names and
addresses of all the variables involved in
the statement rather than one item at a
time.

Wwhen the data-directed module has
identified the location of the variable to
or from which the data is to be moved, it
calls the list-directed director module
which then handles the movement of the
value of the variable. When the value of
the variable has been transmitted, control
returns to the data-directed module. The
data-directed director then handles the
next name, determines the address of the

124

Typical code generated for a POUOT DATA statement

variable associated with the name, and
calls the list-directed director module to
handle the transmission of the value. This
process continues until the statement is
complete. The process is illustrated in
figure 9.8.

The list-directed director module is
called separately for each item. It is
passed the SIOCB with the addresses of the
source or target (or its locator) and the
address of its DED correctly set up by the
data-directed director module. The item is
then handled as if it were a list-directed
iten.

If a data list is included in the
statement, the source or target variables
are identified from a list of symbol
tables. If no data list is included in the
statement, they are identified from the the
symbol table vector.

A symbol table associates a name with

the address of a variable. The symbol
table vector for an external procedure is a
list of the symbol tables known in the
external procedure. The list is arranged
in program block order. When a symbol
table vector is used, the address passed is
the start of entries for items known in the
current block. Symbol tables and the
synbol table vector are described further
in chapter 4. Their format is shown in
appendix B.

The object code produced for a PUT DATA
statement is shown in figure 9.9.

Edit-Directed GET and PUT Statements

Edit-directed 1I/0 differs from the other
modes of stream I/0 in that the conversions
required and the positions in the record
where an item is to be placed or will be
found are indicated in the format list of
the I/0 statement.

The format list contains two related
types of information:

1. The type and length of the item (e.g.,
F(3), R(25), etc.), known as data
format information.

2. Spacing information
X (3),COL (70) ,etc.),
format information.

(€eGuey . o
known as control

Both types of information are compiled as
format DEDs (FEDs) and are passed by
compiled code to the routines that require
the information. ;

Because the information is available
during compilation, it is normally possible
for the compiler to determine the
conversions that will be required.
Consequently compiled code can call the
required conversion or comversion director
routine, or generate in-line conversion
code without the assistance of a library
director module.

Compiler—-Generated Subroutines

To further optimize edit-directed I/0, a
number of compiler-generated subroutines
have been provided. They carry out the
following functions:

1. Keeping track of the buffer position,
freeing and acquiring intermediate
workspace where necessary, and calling
the library when a new record is
required.

Chapter 9:

2. Handling X format control itenms,
except where a new record is required.

These compiler-generated subroutines have
the advantage over library modules that
they are not external, and comnsequently do
not have to follow the externmal calling
conventions.

The compiler—-generated subroutines are
supported by two types of library director
module:

1. Two short modules, IBMDSEO and
IBMDSEI, that interface with the
transmitter and are called by the
compiler-generated subroutines when a
new record is required.

2. Three routines that handle the
complete processing of an item (as
does the director for list-directed
I/0). These routines are called when
an item cannot be handled by compiler-
generated subroutines.

IBMDSED is used only when complex data
or format items appear in the progranm.

IBMDSEE is used when both GET amnd PUT
EDIT statements are used in the
program and no complex data or C-
format items appear. This routine
contains the functions of the
formatting module IBMDSXC and the
conversion director modules
IBMBSFI,IBMBSFO, and IBMBSAO, and the
A-format function of IBMBSAI.
Consequently, it normally uses less
space than IBHDSED which calls these
modules.

IBMDSEH is used when only edit-
directed output is used in a program
and no complex data is used. IBMDSEH
is similar to IBMDSEE but does not
contain the input code.

The superset/subset feature of the linkage
editor ensures that only one of the modules
is link-edited if ESD references are made
to IBMDSEE and IBMDSEH. 1IBMDSED can handle
all situations, and IBMDSEE can handle any
situation handled by IBMDSEH.

The decision on whether to use compiler-
generated subroutines or the overall
library director module is made at compile
time. . Figure 9.10 shows the conditions
under which each method is used.

A typlcal edlt—dlrected statement takes
the form: Lo

1. 1 call toithevinitialization module to

open the file (if necessary), and
check statement validity.

Stream-oriented Input/output 125

Handle entirely by library
routine or use compiler-
generated sub-routines?

COMPILER

Compiler-generated subroutines are used
except in the cases shown opposite. Even so,
a library routine will be called if a new record
is required, and, generally, to handle a con-
version.

LIBRARY

Handles processing completely for:
Negative or zero field widths in format specification
A-format item with implied length on output*®
B-format item with implied length on output

* An exception is that A-format items with implied length are
handled in-line if: OPT (TIME) is in effect, and the compiler
can match the data list with the format list.

Figure 9.10.

2. A call to a compiler-generated
subroutine to check whether a new
record is required, and if so to call
a library module to transmit a record
by making a call to the transmitter.

The SIOCB is completed with source or
target DEDs and the addresses of the
source and the target or their
locators.

3. A call to a conversion module or
conversion director, or a compiled-
code conversion using the information
set up in the SIOCB.

4. A further call to a compiler—generated
subroutine, to update the buffer
control fields, and free any
intermediate workspace if spanning was
involved.

This sequence is illustrated in the
annotated flowchart in fiqure 9.11., Figure
9.12 shows the code generated for a GET
EDIT statement.

Handling Control Format Items

control format items are implemented by
passing the SIOCB, which contains the FED

126

Choice of subroutines for edit directed I/0

for the control format item, to one of the
control format modules. There are four
modules:

1. IBMDSPL: library routine for SKIP,
PAGE, and LINE formats and optionms.

2. TIBMDSXC: 1library routine for X and
COLUMN formats.

3. IELCGOC: compiler-generated
subroutine for X output items that do
not span a record boundary.

4. TIELCGIA: compiler-generated
subroutine for X input items that do
not span a record boundary. (This
module also has other functions; see
the section "Compiler-generated
Director Routines" near the end of
this chapter.)

Matching and_ Non-Matching Data_and
Format Lists

In the majority of edit-directed
statements, the data and format lists can
be matched during compilation, since the
programmer requires conversions for
specific variables. However, it is
possible to write statements which, because

6 I93deyd

LeL

3nd3ino/3andul pPoO3ULTIO-EEDIIS

PUT EDIT (B){A);

A FLOW DIAGRAM

FLOW DIAGRAM NOTES NOTES
LA 9,60(0, 4} Pick up address of SIOCB v
Set up part of Step 1 ST 9,848(0, 3) Placs in parameter list
S10CB. Compited code Mvi 77(4), X'20° Set “edit output” flag Carry out f:‘::-;m code 1 15 IBMBCHFH | orsion routine
Call initialization LA 184400, 3) Point R1 at param. list conversion either or conversion BALR 14,15
routine 1BMDSIO L 15,A. . IBMBSIOA Bram;h to initialization in - line or by routine
BALR 14,15 routine calling library module|
L 7,A..1ELCGOB Call compiler - generated
Y BALR 6,7 director module
Step 2
Initialization routine Call
A Test if file is open, and open if necessary, calling {ELCGOB
transmitter to locate record.
) ves | Call1BMDOCL to Place address of ONCA and FCB in the SIOCE.
File open file & call Check statement validity.
closed transmitter to
get 1st record
Y
NO } Step 6
Y IELCGOB Update buffer control fields
—— handled by YES o Handle housekeeping
IBMBSEDB, v
?
Check
statement
validity
Call IBMBSEOA
Call transmitter
y and free VDA
Step 3 .
Place address of o LA 2,60(8 4) Point R1 at SIOCB
" " Compiled code C
variable, its DED, LA 14,B Pick up address of B v
& DED generated ST 14,00, 1} Place in SIOCB
from format item , L 14,76(0, 3} Pick up DED
in SIOCB L 7A...IELCGOA Branch to compiler -) .
BALR 67 generated subroutine Update FREM, Clear VDA’ flag | J
T . FCBA, and FCNT and IBMDSED
. flag
Call IELCGOA +
Return to
compiled code
Y Step 4
IELCGOA
ftem span or ;YES , Set 'VDA' flag in Acquire VDA for item if necessary. .
require new SI0CB. Get VDA Either if there is no room in current record, or, L'
“N\record?, and set as if-the converted item will span the record boundary. Step 7 Continue as necessary
f target. "
address of targe Continue from Compiled code

»

STEP 3 with next
item, if any

Figure 9.11. Edit directed output statement with matching data and format lists

PLA statement: GET EDIT (A,B)(F(3),X (8));

® STATEMENT NUMBER 3

00007A 41 90 4 010 LA 9+16(0y4) Pick up address of SIOCB
00D0TE 50 90 3 060 ST 9496(093) Store in parameter list
000082 96 80 3 060 o1 96(3) ,X'80° Mark end of parameter list
000086 92 24 4 021 MVI 33(4),X°24° Set 'edit input flag
00008A 41 00 3 050 LA 0,801{0,3) Set up abnormal locate return address (CL 2)
00008E S0 €0 4 028 ST 0940(0,4) Store in SIOCB
000092 41 10 3 05C LA 1+921043) Point R1 at parameter list
000096 58 FO 3 030 L 155A. . IBMBSIIA e eie fe_ e o
00009A 05 EF BALR 14,15 Call stream /O initialization routine
00Q09C 41 EO D 0A8 LA 14,A Pick up address of source
0000A0 41 FO 3 040 LA 15,DED. . A Pick up address of source DED
0000A4 41 10 4 010 LA 1916(044) Point R1 at SIOCB
0000A8 50 10 4 008 ST 1,8(044) Save A(SIOCB) in temporarE stora%e
0000AC 90 EF 1 008 STM 14915,+8(1) Store A(target), A(target DED) in SIOCB
000080 %1 EO 3 044 LA 1468104 3) Point R14 at FED

oo A ° 3
ggggg: gg Zg 3 0oC ;ALR l:¢ 1ELCGH Call compiler generated subroutine
0000BA 58 FO 3 02C L 155A.. IBMBSFIA . .
0000BE 05 EF v BALR 14,15 v Call conversion director
0000CO0 58 70 3 010 L TeA. .IELCGIB . : .
0000C4% 05 67) BALR 6y 7 Cﬂ" Complla' generOfed SUbrOUflne
0000C6 41 EO 3 04A LA 14,74(0,3) . o
0000CA S8 10 4 008 L 158(044) Pick up FED of format item
0000CE 58 70 3 00C L T9A..IELCGIA . .
000002 05 67 " BALR 6,7 Call compiler generated subroutine
000004 41 EO D OAC LA 14,48 Pick up address of second item
000008 50 EO 1 008 ST 14,8(0,1) Store in SIOCB
0000DC 41 EO 3 044 LA 14,68(0,3) Point R14 at FED
gggggg gg Z‘-), 3 00C ';ALR Z:-‘}" IELCGIA Call compiler generated subrautine
0000E6 58 FO 3 02C : L 159A..IBMBSFIA . .
00COEA 05 EF BALR 14415 Call conversion director
0000EC 58 70 3 010 L TyA. IELCGIB . .
0000F0 05 67 " BALR 6,7 Call compller generated subroutine
0000F2 CL.2 EQU =% Abnormal-locate return address

*igure 9.12. Typical code generated for

of iteration factors, cannot be matched at
compile time. For example, in the
statement:

PUT EDIT (A,B,C) (N(F(3)),X(10))

it is impossible to know at which point the
ten-character space indicated by "X (10)"
will be required, without knowing the value
of N. If the statement had been

PUT EDIT (A,B,C) (F(3),X(10));

the code would be compiled in the order:
handle the conversion of a variable, handle
an X item, handle the conversion of a
variable, etc., until the data list was
exhausted. However, as it is not known at
which point the X items will be required in
the unmatched statement, it is impossible
to compile sequential code to handle the
statement. Consequently, the code for each
item is compiled separately, and branches
are made between the two types of code as
the values of the repetition factor
indicates. In the example above, the
branches would be made when the F item had

128

a GET EDIT statement

been executed N times, and when the X item
had been executed once.

The code sequences used for matching and
non-matching data and format lists are
shown in figure 9.13.

Choice of Initialization Routines

Three initialization ‘routines are available
for stream I/O using the FILE option. (The
module for use with the STRING option is
described later in the chapter.) The
initialization routines are:

IBMDSII - input only

IBMDSIL - input and output, provided
the COPY option is not used

IBMDSIO - output only

IBMDSIL has space saving advantages when
either input or input and output are used
in a program. If only output is used,
IBMDSIO is the most economical module.

MATCHING LISTS

PUT EDIT (I, NAME, ACT. NO)
(F (3),X (3), A (15), X (3), P'2ZZ9");

HANDLE
CONVERSION
OF I

HANDLE
X ITEM

HANDLE .
CONVERSION
OF NAME

HANDLE
XITEM

HANDLE
CONVERSION
OF

ACT - NO

+

Chapter 9:

UNMATCHING LISTS

PUT EDIT (AB, C, D) ((N} F (3}, SKIP, A {4));

HANDLE

—_»| CONVERSION
F(3)

OPERATION
COMPLETE

?

CONVERSION
DONE N TIMES

HANDLE
CONVERSION
A4)

OPERATION
COMPLETE

v

Figure 9.13. Code sequences for matching and non-matching data and format lists

Stream-oriented Input/output

129

Compiled code calls these modules as
follows.

IBMDSIL is used when both stream input
and stream output are used in one program
and the COPY option is not used for the
input.

IBMDSII is used when input with the COPY
option is used in the progranm.

IBMDSIO is used when only output is
required, or when both input and output are
required and the input uses the COPY
option.

The autolink feature of the DOS linkage
editor prevents duplicate modules being
incorporated into one program. To allow
the choice of modules to be made by the
linkage editor, IBMDSII contains additional
entry points with the same names as those
in IBMDSIL. Similary, IBMDSIL containms
entry points with the same names as those
in IBMDSIO. (The autolink feature resolves
external references alphabetically. Thus
if there is a reference to IBMDSII, any
references to IBMDSIL entry points will be
resolved to the entry points in IBMDSII.
Similarly, any references to IBMDSIO can be
resolved in IBMDSIL.)

Handling Format Options

Format options are handled by a call to the
appropriate entry point of the
initialization routine.

The initializing module calls the
formatting module IBMDSPL to carry out the
formatting.

Input and Output of Complete Arrays

When transmitting complete arrays, it is
uneconomnical for a return to be made to
compiled code after each item has been
handled. Accordingly, the list- and data-
directed director modules have a facility
that enables them to handle complete
arrays. The modules access the array
multipliers, and handle the indexing from
information held in the array
descriptors. PFor edit-directed I/0, each
element is handled separately.

Effects of the LIMSCONY Option

GET LIST and GET DATA statements do not

130

specify the format of the input in the data
stream. Consequently the compiler must
allow for any valid input form. Modules to
handle the necessary conversions must,
therefore, be included in the object
module. This frequently results in a number
of lengthy modules being link edited but
never used.

To overcome this problem, the compiler
option LIMSCONV can be used. LIMSCONV
specifies that the input stream will not
contain items whose format would require
the conversions shown below.

Source_ (input stream) Target (variable)

arithmetic constant string
bit string constant arithmetic
binary constant arithmetic

The occurrence of input that would cause
these conditions results in the raising of
the CONVERSION condition.

When the LIMSCONV option is in force,
the compiler does not generate external
references for the modules that would
handle the prohibited conversions. This
results in considerable space savings.
Compiled code differs when LIMSCONV is in
force, in that calls are made to different
director modules. IBMDSLJ is called for
list-directed statements, and IBMDSDJ for
data-directed statements. The list-
directed director module, IBMDSLJ, contains
code to check for the prohibited
conversions and raise the CONVERSION
condition if necessary. The data-directed
module, IBMDSDJ, is exactly the same as the
normal director module, IBMDSDI, except
that it calls IBMDSLJ and not IBMDSLI.
(Figure 9.8 shows how, in data-directed
I/0, the list-directed director module is
called to handle the conversions.)

PL/I Conditions in Stream I/0

The following errors and PL/I conditions
are particularly relevant to the
implementation of stream I/0: TRANSMIT,
CONVERSION, NAME (data-directed only),
ENDFILE, and unexpected end of file.
Unexpected end of file occurs when the end
of file is reached in the middle of an
input item. Other conditions that occur
present no special problems.

TRANSMIT Condition

The rules for raising the TRANSMIT
condition in stream I/0 are that the

condition shall be raised after the
assignment of the potentially incorrect
data item. Thus TRANSMIT can be raised on
input for a data item even though the
transmitter has not been called for the
statement involved.

When the TRANSMIT condition is detected
by the LIOCS routines, control returmns to
the error routine in the transmitter, which
sets a flag in the FCB indicating a
transmission error. The director module
inspects this flag, and, if it is set, sets
a flag in the SIOCB. For input, TRANSMIT
is raised for every item that is taken from
a record in the block with which the
transmission error was associated.

TRANSMIT is raised after the potentially
incorrect value has been assigned. For
output, TRANSMIT is raised by the
transmitter immediately it occurs.

A special entry point, IBMBSEIT, is used
by the compiler—-generated subroutines to
raise the TRANSMIT condition. When called
by this entry point, the module calls the
error handler with the appropriate error
code for the TRANSMIT condition.

CONVERSION Condition

The CONVERSION condition is detected by the
conversion modules in the PL/I library.
{Conversions that could cause the
CONVERSION condition are not handled in-
line except where "NOCONVERSION" is
specified.) CONVERSION is raised by calling
a special library module, IBMDSCV. This
module analyzes the type of comversion
error, and calls the error handler with an
appropriate error code. The module also
saves the field that caused the conversion;
it is necessary to do so, because the field
could be lost if an on-unit was entered and
another GET statement executed which
resulted in a new record being acquired.

NAME _Condition

The NAME condition can occur only in data-
directed input. It is raised by the data-
directed director module when it cannot
find a symbol table to match the name read
in. DATAFIELD is set up, and the file
positioned for the next read, before
calling the error handler, with the
appropriate error code

Chapter 9:

ENDFILE Condition and Unexpected End of
File

End of file is detected by the LIOCS
routines, which then enter the EOFADDR
routine in the transmitter. This routine
sets a flag in the FCB. On return to the
director modules, the flag is inspected
and, depending on the situation in which
the transmitter was called, ENDFILE or
unexpected end of file is raised by calling
the error handler, with the appropriate
error code.

For unexpected end of file, the ERROR
condition is always raised as soon as the
end of file is detected. ENDFILE, in the
case of list- and data-directed I/0, is not
raised until a further attempt is made to
read the input file.

Built-In Functions in Stream I/0

The built-in functions that are relevant to
stream I/0 are COUNT, DATAFIELD, ONCHAR,
and ONSOURCE.

ONCHAR and ONSOURCE are dealt with in
chapter 10, under the heading "Raising the
CONVERSION Condition."

The COUNT built-in function is handled
by the director routines. A count of
transmitted items is kept in the FCB; the
number is updated after every transmission
to or from a PL/I variable.

The DATAFIELD built-in function is
handled by the director routine, which
places the address of a string locator
descriptor for the data in the ONCA. The
offending field is first moved to a
workspace area, as the buffer may get lost
if further stream I/O operations take place
in an on-unit.

COPY Option

Inplementation of the COPY option involves
the use of a pointer, FCPM, in the FCB.
FCPM points to the start of the data that
is to be copied. Use is also made of the
buffer control pointer, FCBA, to point
immediately beyond the end of the data that
is to be copied. At the end of the GET
statement, or when further processing will
result in the data to be copied no longer
being held between FCPM and FCBA (for
examrple when the transmitter is being
called to acquire a new record), the copy
module IBMDSCP is called. IBMDSCP moves

Stream-oriented Input/output 131

GET LIST FILE (SYSIN) (STRING?)

GET LIST FILE (SYSIN) (STRING2)}

GET LIST FILE (SYSIN) {STRING3)

COPY FILE(A): COPY FILE (A); COPY FILE (B);
A B A
e Y - A 4) A
M - — - — - - - - = = = - ‘] —————— —[- — — — ‘1 pointer for start of COPY data
i'DATA .FOR COPYING ONTO’ ‘FILE | (NAMED A" ‘DATA FOR COPYING ONTO FILE B’ 1
i
' ‘ ‘ { ‘ J pointer for ena of COPY data
FCBA Y RPN [—— I e — —

Data is transmitted to the copy file at the end of each statement and at those
times when it can no longer be held between the pointers FCBA and FCPM.
In the example above this will be at the end of each GET statement and at
the end of the first record.

Figure 9. 14.

the data into the buffer being used by the
copy file, and then calls the transmitter
to transmit the data.

The data to be copied is normally held
between FCPM, which is initialized for a
statement with the COPY option, and FCBA,
which is updated with every input to point
to the next position in the buffer from
which data will be acquired. This is
illustrated in figure 9.14.

When execution of a GET statement with
the COPY option is begun, the flag FCOP in
the FCB is set, and the address of the FCB
for the copy file is placed in the FCB of
the input file to which the statement
refers.

To ensure that no data is lost, the copy
flag, FCOP, is tested in the following
situations:

1. By the input transmitter, before a néw
record is acquired. A

2. By the stream I/O initialization/
termination routine, IBMDSII, after
the completion of a GET statement with
the COPY option. : -

3. By the close routine, when the input
file is being closed. ‘

132

Use of FCBA and FCPM in copy option implementation

4. By the initialization routine, IBMDSII
every time a GET statement is to be
executed.

If the copy flag is on, a call is made to
the copy module, which transmits the data
directly to the copy file, calling a
suitable PL/I output transmitter. The copy
flag is turned off after calling IBMDSCP in
situations 2, 3, and 4 above.

STRING Option

Since the stream I/0 director modules and
conversion routines are primarily concerned
with moving data in main storage, they are
used to implement the STRING option as well
as normal stream I/0. However, as the same
modules are used, something must be done to
prevent calls to a transmitter. It is
achieved by having a special STRING module,
IBMDSIS, that sets up a dummy FCB
containing addresses vwhich result in
control being passed to suitable code when
an attempt is made to call the transmitter.

Compiled code passes the string
initialization module an extended SIOCB in
which the dummy FCB is set up. The buffer
control fields FCBA and FREM in the dumnmy
FCB are set up as if the string were a

record. The address that would hold the
transmitter in the dummy FCB is set up to
point to fields that will result in the
correct action being taken if an attempt is
made to read or write beyond the end of the
string, or if a transmitter call is made.

When an attempt is made to call the
transmitter for a PUT statement, the
address in the transmitter field will have
been initialized to point to the error
handler. As register 1 will have been
pointed to the head of the FCB by the
caller, the error code for exceeding string
size is placed at the head of the FCB, and
the correct error is automatically raised
when the branch is made.

When an attempt is made to call a
transmitter for a GET STRING statement, the
address in the transmitter field is the
address of code set up in the dummy FCB
that sets the end-of-file flag and returns
to the caller.

As far as the caller is concerned,
attempting to read beyond the end of the
string is equivalent to finding an end-of-
file mark in stream I/0 statements. Where
the ENDFILE condition or unexpected end-of-
file would be raised for a stream file, the
ERROR condition is raised, and a 'GET
STRING SIZE EXCEEDED' message is issued.

Completing String-Handling Operations

In certain circumstances a further call is
made to the string routine IBMDSIS, to
complete the operation.

For output into a fixed-length string,
the routine is called, after the first
assignment only, to blank out any remaining
bytes in the string. For varying strings,
a call is made after every assignment to
update the current length of the string.

For_input, for varying strings only, the
routine is called to update the string
information held in the dummy PCB, as this
information may have been changed by an.
assignment to the string.

The need to make a further call to
IBMDSIS is flagged in the SIOCB when
IBMDSIS is first called in connection with
any particular statement. The library
director routines and the compiler-
generated subroutines test this flag, and
call IBMDSIS if necessary.

Chapter 9:

Summary of Subroutines Used

This section gives a summary of the
subroutines used in the implementation of
stream-oriented input/output. Detailed
descriptions of the library modules are
given in the relevant program logic
manuals.

Nine different types of subroutine are
used in stream I/0. They are:

1. Initializing modules

2. Director modules

3. Transmitter modules

4, Formatting modules

5. Conversion moduleé

6. External conversion director modules
7; The conversion fix-up module (IBMDSCYV)
8. The copy module (IBMDSCP)

9. The string module (IBMDSIS)
Conversion modules are described in chapter

10 of this manual. The other types of
module are dealt with below.

INITIALIZING MODULES

Initializing modules initialize the strean
I/0 statement. There are two of these
modules: ,
IBMDSII - input initializer
IBMDSIO ~ output initializer

IBMDSII and IBMDSIO are described earlier
in this chapter.

DIRECTOR MODULES

Library_ Director Routines

IBMDSLI - list-directed input

element iten
complete array

Entry point A:
Entry point B:

IBMDSLJ - list-directed input vith LIMSCONV

element iten
complete array

Entry Point A:
Entry Point B:

Stream-oriented Input/output 133

IBMDSLO - list-directed output

element item
‘complete array

Entry point A:
Entry point B: '~

IBMDSDI - data-directed input

with data list’
all known variables

Entry point A:
Entry point B:

IBMDSDJ -~ data directed input with LIMSCONV

with data list
all known variables

Entry Point A:
Entry Point B:

IBMDSDO - data-directed output

element variables and
whole arrays

single array elements
all known variables and
SIGNAL CHECK when CHECK
without a check list is
enabled.

CHECK output

output a final semicolon

Entry point A:

Entry point B:
Entry point C:

Entry point D:
Entry point T:

Modules_used with Compiler—-Generated
Subroutines

IBMDSEI - edit-directed input
Entry point A: housekeeping for input

item spanning a record

boundary.

raise TRANSMIT for 1nput

item

Entry point T:

IBMDSEO - edit-directed output

Edit-Directed IzO —of _ a_Single Item

IBMDSED - Used when complex data or format
items appear in the program.

Entry point A:
Entry point B:

input
output:

IBMDSEE - Used when edit-directed input or
edit-directed input and output are required
in the same program, provided there are no
complex items in the program.

Entry points:

Edit-directed input of a data

IBMBSEEA: -
item

IBMBSEHA: Edit-directed output of a
data item

IBMBSXCA: X format input

IBMBSXCB: X format output

134

IBMBSEHB: X format output

IBMBSXCC: COLUMN format input
IBMBSXCD: COLUMN format output
IBMBSEHC: COLUMN format output

in a program, and there are no complex
itens.

Entry points:

IBMBSEHA: Edit-directed output of a
data itenm

IBMBSEHB: X format output

IBMBSEHC:

COLUMN format output

For input:

IELCGIA - provides the address of the
source of an edit-directed data
or X-format itenm.

IELCGIB - completes the transmission of an
edit-directed data item, by
freeing a VDA if one was used,
updating the COUNT built-in
function value, and calling
IBMBSEIT if TRANSMIT has been
raised.

For output:

IELCGOA - provides the address of the
target of an edit-directed data
itenm.

IELCGOB - completes the transmission of an
edit-directed data item, updating
the buffer items in the FCB,
counting the data item, and
freeing a VDA if one was used.

TRANSMITTER MODULES

The actual movement of the data between the
external medium and the buffer area is
carried out by a series of seven
transmitter modules, which interface with
the LIOCS routines of DOS data management.
These modules essentially complete the
setting up of the DTF, and issue the data
management GET and PUT macro instructions,
thus reading or writing one record.

One module is used for input, six for
output. The.output modules are divided into
tvo groups: one group for PL/I print
files, the other for all other output
files. Both output module groups contain
three modules: one for P-format records,

one for V-format records, and one for U-
format records. All modules interface with
the queued sequential access method.

The followind transmitters are used:
IBMDSTI - input transmitter

IBMDSOF - output transmitter for F-format
records

IBMDSOV - output transmitter for V-format
records

IBMDSOU - output transmitter for U-format
records

IBMDSTF - print transmitter for P-format
records

IBMDSTV - print transmitter for V-format
records

IBMDSTU - print transmitter for U-format
records

The modules IBMDSTI (stream input) and
IBMDSTF (stream output for F-format print
files) are held in the resident library and
are link-edited. 1All other transmitter
modules are held in the tramnsient library
and loaded during file opening.

FORMATTING MODULES

Formatting modules control the position of
the data on the external medium. There are
three formatting modules: two library
subroutines, and one compiler—generated
subroutine.

Library Subroutines

IBMDSPL - PAGE, LINE, and SKIP format items
and options
Entry point A: PAGE option or format
item
LINE option or format
item

Entry point B:

Chapter 9:

Entry point C: SKIP option or format

iten
IBMDSXC - X and COLUMN format items

Entry point A:
Entry point B:
Entry point C:
Entry point D:

X format input

X format output
COLUMN format input
COLUMN format output

Ccompiler-Generated Subroutine

IELCGOC -~ X i tems, in edit-directed output,
that do not span a record
boundary.

EXTERNAL CONVERSION DIRECTOR MODULES

The following external conversion director
routines are used exclusively in edit-
directed I/0:

IBMBSAI - input A, B, and P character
formats

IBMBSAO - output A, B, and P character
formats

IBMBSCI - input C format

IBMBSCO - output C format

IBMBSFI - input F and E fdrmats

IBMBSFO - output P and E formats

IBMBSPI - input P format arithmetic

IBMBSPO - output P format arithmetic

MISCELLANEOUS MODULES

The other subroutines used in stream I/O
are:

IBMDSCP - the copy module

IBMDSIS - the string module

IBMDSCV - the conversion fix-up module
IBMDSMW - module for calculating

output format widths not
specified in program

Stream-oriented Input/output 135

Note on Terminology

In this chapter, the terms source and
target are used when referring to transfer
of data. The gource is the point from
which the data is taken; the target is the
point to which it is moved, possibly in a
converted format.

The PL/I language specifies situatious
in which conversion of data types will be
carried out. These include the execution
of stream I/0 and assignment statements,
and the evaluation of expressions that
include different types of data. The large
number of data types allowed in the PL/I
language mears that some 170 types of
conversion are possible. How these
conversions are handled by the PL/I
Optimizing Compiler depends, to some
extent, on the optimization specified for
the progranm.

If no optimization is specified, all
except simple conversions are carried out
by calls to the library conversion package.
If the program is being optimized, all
possible conversions are done in-line.

This chapter describes the library
conversion package and explains how in-line
conversions are handled. It concludes with
a description of how the CONVERSION
condition is raised.

Before conversions can be understood,
knowledge of the way in which data types
are held is necessary. This is summarized
in figure 10.1.

The Library Conversion Package

The library conversion package consists of
26 modules and is capable of handling all
the conversions that are allowed in the DOS
PL/I Optimizing Compiler implementation of
the PL/I language. All but seven of the
modules convert data from one data type to
another. As there are approximately 170
possible conversions and only 19 conversion
modules, many conversions are done by using
a series of modules. For instance, to
convert from fixed-decimal to bit-string
involves an intermediate conversion to
floating-point. The conversion package
also contains five control and utility
modules, and two modules used for strean
I/0.

Chapter 10: Data Conversion

r i
| Data attributes | Stored internally as

BIT (n) Aligned:
for each group of
eight bits or part
thereof.
Unaligned:
bits as are
required, regardless
of byte boundaries.

one byte

as many

BIT (n) VARYING As BIT(n), with
two-byte prefix
containing current
length of string.
CHARACTER (n) One byte per

character.

|

| |

| |

i |

| {

| t

| |

| |

| |

| |

| {

{ i

| {

{ |

{ i

| |

| I

| . |

CHARACTER (n) | As CHARACTER (n), 1
VARYING | with two-byte prefix|
{ containing current |
| length of string. {
i |
i {
{ |
| |
| |
{ |
i |
i i
{ {
| |
l |
| |
{ |
| 1
| |
i |
| |
l |
1 |
i 1
{ !
| |

Packed decimal:
1/,-byte per digit,
plus 1/,+byte for
sign.

'p <= 15: halfword
fullword

FIXED BINARY (p,q)
p>15:
FLOAT DECIMAL (p) p<=6: short
floating-point
p>6: long
floating-point
FLOAT BINARY (p) p<=21: short
floating-point
p>21: 1long
floating-point
PICTURE One byte for each
picture character
(except K and V)

|
|
{
1
i
{
|
|
|
|
{
|
|
{
|
|
|
|
{
|
{
|
| FIXED DECIMAL (p,9q)
|
|
{
|
|
1
|
{
|
|
{
|
{
|
|
|
|
|
(
|
L

Figure 10.1. 1Internal forms of data

types

The stream I/0 modules move character and
bit strings between the data management
buffer and the PL/I variable when no
conversion is necessary. ‘

A full description of the routines in
the library conversion package is given in
the publication DOS PL/I Resident Library:
Program Logic.

Chapter 10: Data Conversion 137

The conversion paths followed for every
conversion are known to the compiler, and
ESD records are generated for all the
modules that will be used. 1In certain
cases, however, the data types involved are
not known at compile time. Examples of
this are data-directed and list-directed
input, and edit-directed input or output
wvhen format and data lists cannot be
matched. In such cases, the compiler
generates ESD records for all conversion
modules that could possibly be needed.

SPECIFYING A CONVERSION PATH

When a number of conversion modules need to
be used for a certain conversion, it is
necessary for there to be some control of
the path taken after the first module has
been entered. The method used is for each
module to have a number of entry points.
Each one is entered for a certain type of
conversion, and each one implies the
subsequent entry points to be invoked for
that particular conversion. For instance,
the module IBMBCE handles fixed-decimal to
fixed-binary conversions. If the module is
entered to carry out this conversion, entry
point IBMBCEDX is called. However, if it
is only an intermediate stage in a
conversion from fixed-decimal to bit-
string, the entry point IBMBCEDB will be
called. When the conversion to floating-
point is completed, the conversion to bit
will be carried out by the module IBMBCR.

In addition to the use of various entry
points to specify the conversion path to be
taken, there are two control modules to
handle the conversion paths between
character-string and arithmetic data.

HOUSEKEEPING WHEN MORE THAN ONE MODULE
IS USED

When more than one conversion module is
used in a conversion, a method of .
rinimizing the housekeeping has been
evolved. This avoids saving registers and
acquiring workspace for each module
entered. The same library workspace is
used for all modules in a single conversion
operation. The first module imn the chain
saves the registers and acquires workspace;
the last module frees the workspace and
restores the registers.

A simple method is used to allow each
mnodule to test whether or not it is the
first to be called. A bit at a fixed
offset from register 13 is tested. If the
module is the first to be called, this bit

138

will be a bit in the calling procedure's
DSA, which is always set to zero. If the
module is not the first to be called, the
bit will be in library workspace and will
have been set to one by the previous
module. If the module is the first, library
workspace will be acquired in the usual
manner. If the module is not the first, a
branch will be made around this code.

ARGUMENTS PASSED TO THE CONVERSION
ROUTINES

Fach conversion routine has a standard set
of parameters. These consist of the
address of the source and target, and the
addresses of the DEDs. (data element
descriptors) for the source and the target.
Arguments are passed in a list addressed by
register 1. (The source is the variable or
constant that requires conversion; the
target is the area where the converted
result is to be placed.)

The DEDs are used to describe the data
type of the element. Those passed to the
library conversion package are set up by
compiled code in the constants pool. They
are described in chapter 4 and fully mapped
in appendix B.

COMMUNICATION BETWEEN MODULES

When the conversion path goes through a
series of modules, the address of the final
target must be retained until the last
module is reached.

Temporary targets are created for the
intermediate results, and these are passed
on as the source for the next module. When
information is passed between two
conversion modules, registers are normally
used rather than a parameter list.

Temporary DEDs are created for
intermediate modules. These are set up in
library workspace and are based on the
original source DEDs.

In some arithmetic conversions to
string, precision data is passed through
certain modules that do not themselves need
such data.

FREE DECIMAL FORMAT

Because all floating-point data is in
binary form, there is no direct

| Fixed binary {
|

Figure 10.2. (Part 1 of 2).

representation of the PL/I floating-point
decimal format. In order to simplify
certain conversions, a simulated floating-
point decimal format is employed by the
optimizing compiler. This format is termed
free decimal (sometimes known as/pggggg
intermediate decimal). The format of free
decimal is a 17-digit packed decimal

Comments and conditions |-

e o e s 2 i . e e e o o S — o o > o S o >

|
|If either scale factor =

| Optimization

| SIZE
fdisabled|enabled

"
{

|

| SIZE |
|

|

|

{

i

|

| { | |
{ | ! |
{ |Fixed decimal 0 and the {f time | time |
| i |other factor < 0, the optimization | | |
{ i {can be 'nonet'. | | |
| | | { | (
{Fixed binary |Floating-point {If source scale factor = 0, the | time | time |
| | loptimization can be 'none' (whether | | {
{ { |SIZE is enabled or not). | | |
| { | { { {
| |Bit string |String must be fixed-length, aligned,| - Inot donel
| | land with length <20u48. | | in-linel
| | | | | |
| {Character string |Source scale factor must be < 0. { time (|not done|
{ |or picture | String must be fixed-length with i { in-line|
{ | |length <256.Picture type 1, 2, or 3. | |
l ————————————————————————————— o ————— — ——— - —— —— — ——————— —— - —— — o] 2 s > DD T " s e i s '
| {Fixed binary |If source and target scales have the | - | time |
i | | same sign and are non-zero, the { { |
| | |optimization (SIZE disabled) must be | | |
| { {*time'. i { |
| | | | 1 I
| | Fixed decimal { - | - | - |
{ | | i l |
|Fixed decimaljFloating-point | Source precision must be <10. j] time | time |
{ } | | | |
| |Bit string | Source scale factor must be zero. | - |not done|
| | |String must be fixed-length, aligned,| [in-line |
i I tand with length <2048, { | |
| | | | | |
| |Character string |Source scale factor must be 2> 0. | time | time {
{ | |String must be fixed-length and | | |
] llength <256.			
{			
	Picture jPicture type 1, 2, or 3. For { time {(not done		
		picture types 1 and 2 with no sign,	{in-line
{ loptimization can be 'none'.	{		
e e e e e e e e e e e e e e e e — - !			
	Fixed binary 1 - { - time	not donel	
[{ {in-line	
1 I	{	i	
{ {Fixed decimal {Target precision must be <9.	time (not domne	
	{		in-line
			1
{Floating-	Ploating-point	Source and target may be single or } -	- \
point { {double length.	{ {		
{	{ {		
{Bit string	String must be fixed-length, aligned,l time	not donej}	
	{and with length <2048.	{in-line	
L.

Data conversions performed in-line

mantissa and a fullword binary exponent.
Conversions to and from free decimal form
an integral part of the arithmetic
conversion package. ‘

Chapter 10: Data Conversion 139

r |
{ conversion I | Optimization |
jr————r e —— . ——— | Comments and conditions { |
| Source [Target [| SIZE | SIZE |
| | { |disabled|enabled |
—————————————— - - '
|Fixed binary {Source string must be fixed-length, | - {not done}
i faligned, and with length <2048. | fin-line |
| i { i |
Bit string |Fixed decimal and|Source must be fixed-length, aligned,! time |not done|
|floating-point fand with length <32. 1 {in-line |

- t
| i |
|Character string |String must be fixed-length with {
| llength <256. {
| { : |
| |
| |

|

|

}

|

|

|

|

{

|

|

| Picture

| l

| Picture |Pictures must be identical. - -

'-— -

| | Fixed binary |Source precision must be <10. { time |not donej
| | | i |in-line |
| | v { | |

i | Fixed decimal |If picture has a sign, the | - Inot done|
i | foptimization must be 'space'. { { 1
|Picture | |) i | |
{type 1 { | | { |
| | ! | | t
| | Floating-point {Source precision must be <10. | time |not done|
{ | { | | |
| | Picture |Picture type 1, 2 or 3. | time |[not done|
! (| { {in-line |
- - |
|Locator |Locator i -] - | - |
| v dated |
fLabel jLabel | - i - | -

{
l
| The word "time" in the columns headed "Optimization" indicates that the conversion is |
{done in-line only if optimization has been specified; "not done in-line" indicates |
|that the conversion is done by library call. |

J

Lo cm e — e ——————————— - —-— _— —

Figure 10.2. (Part 2 of 2). Data conversions performed in-line

In-Line Conversions Note on Picture Types

The optimizing compiler generates in-line Figures 10.2 and 10.3 use the teras

code for the more commonly used "picture type 1, 2, and 3%". These picture
conversions. Eighteen basic types of " types must contain only the following

conversion are handled in-line. = Several of characters:
these basic types are used in conjunction,

to enable a total of 28 conversions to be Vv and 9
handled in-line. The circumstances in
which in-line conversions are used are prifting or non-drifting characters $, +

shown in figure 10.2.
| Zero suppression characters Z =*
Punctuation characters, . / B
The types are defined as follows.

An example of the way in which a
compiler conversion is used to convert from Picture type_1: Pictures of all 9s with

fixed-binary to fixed-decimal is given (optionally) a V and a leading or trailing

below. A list of the eighteen fundamental sign. For example:

compiler conversions is given in figure

10.3. t99vy999*, 199, 1599y9r . 199y+?,
'$999"

140

Conversion | Conversion
number |
|
2 | Fixed-binary to
{ floating-point
|
3 | Floating-point to
| fixed-binary
|
4 | Fixed-decimal to
| floating-point
|
5 { Floating-point to
| fixed-decimal
|
6 | Fixed-binary to
| fixed-decimal
i
7 { Fixed-decimal to
| fixed-binary
|
8 | Character-string to
{ fixed-decimal
|
9 | Character-string to
| floating-point
\
10 | Character-string to
| £ixed-binary
|
12 | Fixed-decimal to
| character-string
| ,
14 { Bit-string to
| character-string
|
15 | Fixed-binary to bit-string
|
16 | Floating-point to bit-string
i
17 { Bit-string to fixed-binary
i
18 | PFixed-decimal to picture
| type 1
| .
19 | Fixed-decimal to picture
{ type 2.
|
20 | Fixed-decimal to picture
| type 3
|
21 | Picture type 1 to
| fixed-decimal ‘
Note: Conversions numbers 1, 11, and 13
not used.
| I - - —— -

Fiqgure 10.3. Fundamental in-line

conversions

Picture_type 2: Pictures with zero
suppression characters and (optionally)
punctuation characters and a sign
character. Also, type 1 pictures with
punctuation characters. For example:

'222%, VYxx/%x9',
'$///99, '9.9°'.

'729V.99', V+72Z.Z7%Z',

Picture type 3: Pictures with drifting

Lt o o - ——————— e . . —_——— ——— e = — — o ——— o —— o 2~ s o 1 — o — ——— ——— o o _—— —— — o o e]

strings and (optionally) insertion
characters and a sign character. For
exanmple:

'$$588, '-,--91,
T++49V.9!, 185591

's/ss/s9t,

Sometimes a picture conversion is not
performed in-line even though the picture
is one of the above types. This may be
because:

1. There is no overlap between the digit
positions in the source and target.
For example:

DECIMAL (6,8) or DECIMAL (5, -3) to
PIC '999v99' will not be performred

2. The picture may have certain
characteristics that make it difficult
to handle in-line. For example:

a. Punctuation between a drifting Z
or a drifting % and the first 9 is
not preceded by:-a V. For exanple:

1%2.99¢

b. Drifting or zero expression
characters to the right of the
decimal point. For example:

VZZV.Z2Z, '44V++!

Chapter 10: Data Conversion 141

BASIC CONVERSIONS

Example:

Fixed-Binary_ to Fixed-Decimal (Compiler Conversion No. 6)

The conversion is performed by comverting from binary to decimal via a CVYD instruction,
with a scale-matching operation (to line up the decimal and binary points) either before

or after the CVD (or occasionally both).

This scale-matching operation is done by shifts

where possible but, depending on scales and precision, a decimal multiplier is sometinmes

used.

DCL SOURCE PIXED BINAPY (31,9),
TARGET FIXED DECIMAL (15,-6);

TARGET=SOURCE;

L E1,SOURCE

LTR R1,R1

BNM Compiler-label

A R1,CONST

Load source in general register.
Determine sign of source.
Branch if >=0.

~Add a constant to negative source, rounding toward

zero before subsequent divide (right shift).

Compiler-label EQU x%
SRA R1,9
CVD R1,WSP

ZAP TARGET(8) ,WSP(5)
10%%6.

MVN TARGET+7(1) ,WSP+7

MULTIPLE CONVERSIONS

The conversions listed in figure 10.3 can be regarded as fundamental types.
other conversions can be performed by using two fundamental conversions in series.

are shown in figure 10.4.

HYBRID CONVERSION

Finally, there is one hybrid conversion
that is carried out partially in-line.

This is floating-point- to character-string,
which requires an interpretive routine to
analyze the floating-point data (as
distinct from the attributes, which all the
others use), in order to generate the
correct scale factor. This is done by the
library, because in-line code would use the
same algorithm. However, partial
optimization is carried out by setting up a
character string of the correct length
before calling the library, and then
handling the subsequent string assignment
in-line.

142

Divide by source scale (2x%%9).
Convert to decimal in workspace.

Transfer to target, at the same time dividing by

Transfer the sign.

A number of
These

Raising the Conversion Condition

The PL/I language specifies that when an
invalid conversion is attempted on
character-string data, the CONVERSION
condition will be raised unless it has been
disabled.

When the CONVERSION condition has been
raised, the language allows the progrem to
access the invalid field or character by
use of the ONSOURCE or ONCHAR built-in
function. The language also stipulates
that conversion should be attempted again
if an on-unit is entered in which the
ONSOURCE or ONCHAR pseudovariable is used
to change the invalid field or character.

Raising the CONVERSION condition

Fixed-decimal to fixed-binary

Fixed-binary to bit-string

Floating-point to fixed-binary

Fixed-binary to bit-string

Bit-string to fixed-binary

Fixed-binary to fixed-decimal

- - e o i e o " i - —— — — ——— i - " o o o

Bit-string to fixed-binary
Fixed-binary to floating-point

Character-string to fixed-binary

Fixed-binary to bit-string

Fixed-binary to fixed-decimal

Fixed-decimal to character-string

Picture to fixed-decimal

Fixed-decimal to fixed-binary

Picture to fixed-decimal

Fixed-decimal to floating-point

| Fixed-decimal to bit-string { No. 7
: : No. 15
| Floating-point to bit-string 1 No. 3
: : No. 15
| Bit-string to fixed-decimal 1 No. 17
‘. | ¥o. 6
| Bit-string to floating-poime 1 No. 17
: : No. 2
:-E;;;;;;;;—stri;;-;o bit-string -I—No. 10
: : No. - 15
:_;ixed:;;nary to ch;;;;ter-string i ;o. g-
: : No. 12
| Tixed-binary to decimal pictare 1 No. 6
: : No. 18,
| Floating-point to decimal | Wo. 5
{ picture |

| | No. 18,
| Decinal picture to fixed-bimary | No. 21
: ‘ No. 7
| Decimal picture to floating- | No. 21
| point]

| { No. &4
| Decinal picture to decimal | No. 21
{ picture |

| | Yo.

L -

Figure 10.4. Multiple conversions

involves a number of housekeeping problenms,
which are handled by a special conversion
module, IBMBSCV. IBMBSCV is never called
by compiled code, since conversions that
could raise the CONVERSION condition are
not attempted in-line unless the CONVERSION
condition is disabled. IBMBSCV produces the
correct error code for the error handler,
IBMDERR, and looks after the housekeeping
problenms.

The alternative to using a separate
housekeeping module would be to place the
code either in the error handler or in the
various conversion modules. These solutions
would result in a considerable overhead

being carried either by all types of errors
or by all correct conversions. The reason
for the overhead lies principally in the
facility offered by the language of using
the ONSOURCE and ONCHAR built-in functiomns
to access and optionally change the field
causing the error, and subsequently
reattempting the conversion on the changed
field. :

Before any conversion in which the
CONVERSION condition could be raised is
attempted, the ONSOURCE field in the ONCA
must be set up, and the address at which a
reattempted conversion should begin must
also be placed in the ONCA.

Chapter 10: Data Conversion 143

The code carrying out the conversion

must then test the validity of the field to

be converted and, if it is invalid, set the
ONCHAR field in the ONCA to the first
invalid character. The module IBMBSCV is
then called to diagnose the conversion and
produce the correct error code for the
error handler. There are some twenty
possible error codes associated with the
CONVERSION condition.

If the condition was raised during the
execution of stream input, further action
is necessary. This is because an on-unit
may specify further input, and the buffer
which contains the ONSOURCE field may be
lost. PFor example the on-unit might be:

ON CONVERSION BEGIN;
ON CONVERSION SYSTEM; /% PREVENTS
RECURSIVE ENTRY%/
GET LIST (KEYB); .
IF KEYB< 200 THEN ONCHAR ='1';

144

ELSE ONCHAR ='9';
'END;

If KEYB was in the next record, the source
field that caused the conversion would be
lost. To prevent this, a VDA is acgquired
in the LIFO stack, and the source field is
stored in this VDA. The ONSOURCE and
ONCHAR pointers are altered to point to the
field in the VDA, and all further
operations are carried out on this field.

The NAB pointer associated with the
block in which the interrupt occurred must
then be altered so that it encompasses the
VDA. The fact that the NAB pointer has
been altered must be known in the block for
a GOTO out of block to be handled. The
reset-NAB bit is accordingly set to ome in
the relevant DSA. When these operations are
complete, IBMBSCV calls the error-handling
module IBMDERR.

Chapter 11: Miscellaneous Library Subroutines and System

Interfaces

In addition to employing the PL/I libraries
for the functions described in previous
chapters, the DOS PL/I Optimizing Compiler
calls on a large number of computational
and data-handling subroutines and on
subroutines that provide interfaces with
the operating system for such functions as
TIME and DATE. These miscellaneous library
calls are discussed in this chapter. The
library subroutines themselves are fully
described in the publications IBM

Disk Operating System: PL/I Resident
Operating System: PL/I Transient
Library Program_Logic. '

This chapter is divided into two main
sections: the first deals with the
computational and data-~handling
subroutines, and the second with
miscellaneous system interfaces.

Computational and Data-Handling
Subroutines

The computational and data-handling
subroutines are used to handle all the
mathematical built-in functions, the
majority of arithmetic built-in functions,
and a number of array-handling, structure-
handling, and string-handling functions.
The extent to which library calls are used
depends on the level of optimization
specified by the programmer, the type of
data involved, and, for string functionmns,
on whether STRINGRANGE and STRINGSIZE are
enabled.

ARITHMETIC AND MATHEMATICAL SUBROUTINES

The compiler always uses library
subroutines for mathematical functions.
The use of compiled code in these
circumstances is impracticable. Where
possible, arithmetic functions are handled
by in-line code. The circumstances in
which library subroutines are used are
listed in figure 11.1.

Considerable use is made of chains of
library modules to carry out the various
functions. For example, the subroutines
that handle complex arithmetic normally
call on those that handle real values to
process each part of a complex number;
similarly, the square-root subroutine is

Chapter 11:

used in the computation of several of the
trigonometrical functions.

Arguments are passed to the arithmetic
and mathematical subroutines either in
registers or in a parameter list addressed
from register 1. The use of registers
results in faster execution, but allows
less flexibility in use of the routines.
All built-in functions, except the STRING
built-in function, have their arguments
passed in a list comprising the addresses
of the source and target (and sometimes
also the addresses of DEDs). Where
possible, other routines use registers.
Computational routines are always carried
out in flocating-point unless otherwise
indicated. This may involve conversion
before calling the routine.

ARRAY, STRING, AND STRUCTURE
SUBROUTINES

A number of array, string, and structure
subroutines are included in the DOS PL/I
Resident Library. These are used to carry
out certain of the array and string built-
in functions and a number of other
operations. Where possible, in-line code is
generated to carry out these functionms.
However, the enablement of STRINGSIZE, the
use of unaligned bit strings, and the use
of adjustable and certain varying-length
strings will result in calls being made to
the library sub-routines.

The subroutines involved in these
functions are shown in figure 11.2. Two of
them, IBMBAIH and IBMBAMM, are concerned
with the handling of data aggregates rather
than with the execution of specific
operations. They are discussed below.

IBMBAIE is used to assist the other library
array-handling subroutines to process
multidimensional interleaved arrays.
not called by compiled code.

It is

Interleaved arrays are arrays whose
elements are not held contiguously in
storage. They occur in arrays of
structures. For example, the declaration:

Miscellaneous Library Subroutines and System Interfaces 145

{ REAL _ARGUMENTS

{ Function { Data type

-
!
|
|

| (|
| I . i |
| Integer exponentiation | Short floating-point| IBMBMXS { When exponent is a variable |

{ | Long floating-point | IBMBMXL | When exponent is a variable |

| | | { |

| General exponentiation | Short floating-point| IBMBMYS | Always |

{ | Long floating-point | IBMBMYK | Always |

| - - N - o ——— o o o o > T . U - > = - - '

{ COMPLEX ARGUMENTS | { | |

{) | | | |

| Integer exponentiation | Short floating-point| IBMBMXW | When exponent is a variable {

	Long floating—-point	IBMBMXY	When exponent is a variable
	'		
General exponentiation	Short floating—point	IBMBMYX	Always
	Long floating-point	IBMBMYY	Always
[e b - - - e ot e o e A e S o > W s e e e o e o o e e e Jd
Figure 11.

IBMBAAH
IBMBAIH

IBMBAMM
IBMBANM

IBMBAPC

IBMBAPF

IBMBASC
IBMBASF
IBMBAYF
IBMBBBA

IBMBBBC

.
|

|

|

[

|

|

l

|

{

|

{

|

|

|

{

|

{ IBMBAPM
|

{

|

{

{

{

|

|

|

|

{

|

|

{

|

|

| IBMBBBN
{

Figure 11.
structure,

146

When used

functions

Indexer for interleaved
arrays

Structure mapping
STRING built-in function

PROD built-in function
(fixed—-point integer)

PROD built-in function
(floating-point)

STRING pseudo-variable

SUM built-in function
(fixed-point)

SUM built-in function
(floating-point)

POLY built-in function
(floating-point)

AND and OR logical
operations (aligned bit
strings)

Compare aligned bit strings

Invert aligned bit string
(NOT) :

2. (Part 1 of 2). Array,
and string subroutines

fe o com e e e M T amm e . R G . e — M T ST S —— ——— — —

DCL 1 STRUCTURE (2),
2 Aa(2),
2 B ;

would result in successive storage
locations being allocated to elements of A
and B as follows:

A(1,1),2(1,2),B(1),A(2,1),2(2,2),B(2)

Both A and B are interleaved arrays. A is
a two-dimensional array, the first row of
which is separated from the second by an
element of B. As can be seen, the elements
of A are not contiguous, nor is there a
fixed interval between their addresses.

r |
| { |
{ IBMBBCI | INDEX built-in function {
| | (character string) |
{ IBMBBCK | Concatenate character {
{ | strings and REPEAT built-in |
| | function {
| | |
| IBMBBCT | TRANSLATE built-in function |
i | (character string) |
i { (
{ IBMBBCY | VERIFY built-in function |
{ | (character string) |
| | |
{ IBMBBGB | BOOL built-in function |
{ | |
| IBMBBGC | Compare unaligned bit

{ | strings

| U |
| IBMBBGF | Bit-string assignment

i | (aligned, source and target) |
i | |
{ IBMBBGI | INDEX built-in functiomn (bit |
{ | string) |
{ | !
{ IBMBBGK | Concatenate bit strings, |
| | REPEAT built-in function, |
{ | and assign {
| | {
{ IBMBBGS | Produces SLD (SUBSTR |
| | built-in function) |
1 | |
| IBMBBGT | TRANSLATE built-in function |
t | (bit string) |
IBMBBGV	VERIFY built-in function
	(bit string)
e ———— - —— -1

Figure 11.2. (Part 2 of 2). Array,
structure, and string subroutines

The interval between the addresses of
elements of an interleaved array referred
to by varying only the final subscript is
always fixed, and these elements can be
stepped through by using the last
multiplier from the array descriptor.
However, such groups of contiguous elements
are not themselves necessarily contiguous.

Chapter 11:

When IBMBAIH is called, it is passed the
address of a work area in which to
construct a table, the address of the array
descriptor, and the number of dimensions in
the array. Basically, IBMBAIH calculates
the extent of each dimension and enters
this information in the table; it then
calculates the increments that must be
added in order to step between elements
that may be non-contiguous (see figure
11.3). The information in the completed
table is used by the calling module to
address successive elements of the array
using simple code.

Structure Mapping (IBMBAMM)

Structures are normally mapped during
compilation. However, certain structures
that contain adjustable strings or arrays
cannot be mapped until the actual lengths
or bounds are known. Compiled code calls
on the module IBMBAMM to carry out this

mapping. There are four entry points:

IBMBAMMA Compute length of structure.

IBMBAMMB Map structure in PL/I manner.

IBMBAMMC Map structure in COBOL manner
(for interlanguage comunication
or for files declared with the
COBOL option).

IBMBAMMD Map structure declared with

REFER option.

Miscellaneous System Interfaces

In addition to the system interface used
for input and output, the PL/I Optimizing
Compiler makes use of a number of other
system facilities. These are for the
DELAY, DISPLAY, and WAIT statements, the
TIME and DATE built-in functions, and the
sort/merge and checkpoint/restart built-in
subroutines.

Calls to these facilities are made
through library subroutines held in the DOS
PL/I Resident Library. These subroutines
act as an interface, issuing any SVC calls
that may be necessary, and handling
housekeeping problems. The descriptions of
the subroutines in this chapter are kept to
a minimum except where the housekeeping
problems are large and have a major effect
on the contents of main storage. In these
cases, background information is given and
the various control blocks are explained,
thus enabling the situation during
execution to be understood.

Miscellaneous Library Subroutines and System Interfaces 147

Declaration

DECLARE 1 X(2),
2 C,

2 Y (2),
323,

Storage

C

Z(1,1,1)

Z(1,1,2)

Z(1,1,3)

3 B; Inc,

B

Z(1,2,1)

Z21(1,2,2)

Z(1,23)

Inc,

B

C

Z2(2,1,1)

Z(2,1,2)

Z(2,1,3)

Inc,

B

Z is a three-dimensional interleaved array, for which

M,, M,, and M3

Inc, and inc, =

Z(2,2,1)

2(2,2,2)

Z{2,2,3)

B

multipliers held in array descriptor (see chapter 4)

for first and second dimensions, respectively, change

The increment when the subscript for the ith dimension changes is computed as fotlows:

Inc; = M; = Ej.qy * My + Incy,
Where E, ., is the extent of the (i+1)th dimension.

Increment table for array Z (as initialized by IBMBAIH)

intervals between addresses of successive elements of Z when subscripts .

2 subscript count
2nd dimension 2 extent of dimension
Inc, increment
2 subscript count
1st dimension - 2 extent of dimension
. Inc, increment ‘

Note: IBMBAIH returns the extent of the nth dimension in register 1. (in this example, the extent of

the 3rd dimension = 3.)

Figure 11.3.

148

Indexing interleaved arrays

The DOS macro instructions referred to
below are described in IBM_System/360 Disk
Operating System: _Supervisor and
Input/Output Macros.

TIME

The PL/T TIME built-in function is
implemented by issuing a GETIME macro
instruction. This is done by the module
IBMDJTT.

On entry from compiled code, register 1
points to the address of the character-
string target. The module issues a GETIME
macro instruction with the TU option, and
the current time is returned as a character
string of length nine in the fornm
hhmmssttt. The GETIME macro, and
consequently this module, returns the time
of day to the nearest 1/300 second.

DATE

The PL/I DATE built-in function is
implemented by module IBMDJDT, which
accesses the job'!s communications region to
obtain the necessary data.

On entry from compiled code, register 1
points to the address of the date character
string. The module accesses bytes 0 - 7 of
the communications region, which contain
the data in the form ddmmyy if bit 0 of the
date-convention byte is 1, or in the form
mmddyy if the bit is 0. The date is then
translated using the appropriate translate
table. The date is returned as a character
string of length six in the form yymmdd.

DELAY

The PL/I DELAY statement is implemented
using the SETIME and WAIT macro
instructions, which are issued by module
IBMDJDY. The SETIME macro instruction
allows the interval time to be set only to
an integral number of seconds; hence the
delay is restricted to an integral number
of seconds. On entry from compiled code,
register 1 points to the number of
milliseconds delay. The delay interval is
rounded to the nearest second and a maximum
interval of less than 55919 seconds set up.
A SETIME macro is issued, specifying the
interval and a timer event control block
(TECB) name. A WAIT macro instruction is
issued to delay execution for the required
interval; register 1, unchanged by the

Chapter 11:

SETIME macro, points to the TECB. On
completion of the wait, the time will have
elapsed and control is returned to compiled
code.

DISPLAY

The PL/I DISPLAY statement is implemented
by two library modules, IBMDJDS and
IBMDJIDZ. 1IBMDJDZ handles display without
the EVENT option; IBMDJIDS handles display
with the EVENT option.

IBMDJIDS_DISPLAY with EVENT Option.

DISPLAY without REPLY Option

If no reply is requested, the message is
scanned and trailing blanks are removed.

An EXCP macro instruction is issueqd,
specifying a channel control block (CCB)
that contains the address and length of the
message.

If a reply is requested, the message is
scanned and trailing blanks are removed.
Three channel command words (CCWs) are used
for the message and reply: the first to
put out the message, the second to put out
a standard message saying "awaiting reply,"
and the third to accept the reply. An EXCP
macro instruction is issued; if the EVENT
option is not specified, a WAIT macro
instruction is also issued. Return is made
to compiled code.

If the EVENT option is specified, the
event variable is checked before the EXCP
macro instruction is issued, to see if it
is active. When the corresponding WAIT
statement in compiled code is executed,
IBMDJWT returns control to IBMBJDSB on
completion of the event.

IBMDJDZ — DISPLAY without the EVENT
Option

When IBMDJDZ is entered, the display string
is scanned and trailing blanks are removed.
If there is no REPLY option, an EXCP macro
and a WAIT macro are issued to transmit the
message to the console. The channel
control block (CCB) used contains the
address and length of the message. Return
is then made to the caller.

If there is a REPLY option, the EXCP and
WAIT macros are issued as above. However,

Miscellaneous Library Subroutines and System Interfaces 149

the EXCP specifies a chain of three channel
control blocks. The first channel control
block is to transmit the display string,
the second is to transmit a standard
message to the operator stating that a
reply is required, and the third is for the
reply to the message. VWhen the reply is
recieved, return is made to the caller.

If a unit check or exception occurs on
the console, any reply string is blanked
out and the EXCP and WAIT macros for the
display or reply are reissued. The ERROR
condition is raised if there is a zero
length display with the REPLY option, or if
the length of the string to accept the
reply is zero.

SORT/MFERGE

The PL/I programmer can make use of the DOS
sort/merge facilities through a call to the
built-in subroutine PLISRT. The method of
using the facility is fully described in

the publication IBM Operating System:
PL/I_Optimizing Compiler Programmers’

Guide,

The DOS sort/merge program includes a
number of user_exits that can be
conveniently thought of as allowing the
programmer to write sections of code that
become included in the sort/merge routines.
Two of these user exits can be used by the
PL/I programmer: user exit 15 allows
records to be set up by PL/I and passed to
the SORT routines; user exit 35 allows
records that have been sorted to be passed
to and processed by the PL/I program.

Exits are not allowed in the PL/I
lanquage. To overcome this problem, code
is inserted between the sort/merge modules
and the PL/T routines. A bootstrap module,
IBMDKST, is used, and this nodule acts as
an interface between SORT and PL/I. The
module retains the PL/I environment and
restores it on return from sort/merge so
that the PL/I exit-15 or exit—-35 code can
operate in a PL/I environment. Similarly,
it restores the environment for SORT on
return from the exit.

Housekeeping Problenms

Various housekeeping problems occur in the
user exit procedures, since there is no DSA
chain through the SORT modules.
Particularly difficult is the handling of a
GOTO out of the exit procedure that passes
control to a procedure on the same or
higher level as the procedure that

originally called the sort program. This

150

action implicitly terminates SORT.
However, SORT will not be terminated by
standard PL/I action, since it does not
function in the PL/I environment.

The problems are overcome by setting up
a chainback that includes a simulated DSA
for the SORT routines. This DSA is
specially flagged so that it can be
recognised by the GOTO code. The chaining
of save areas in shown in figure 11.4,

An area of workspace is acquired by the
bootstrap routine IBMDKST. This consists
of one level of library workspace, a VDA of
the correct size to hold two save areas,
and a nine-word area of workspace. The
second DSA is chained back to the first.
(See figure 11.4.) ‘

If the SORT program is terminated by a
GOTO out of the block that contains the
PL/I exit program, the SORT routine has to
be terminated before the GOTO can be
completed. This is done by the GOTO
routine looking for the SORT exit DSA
(vhich is specially flagged) in the DSA
chain. If one is found, a return code of 8
is set up and return made to the SORT
routine. This results in the termination
of the SORT rouytine, and the GOTO can then
be continued in the usual manner by
following the DSA backchain through the
bootstrap routine until the target DSA is
reached.

For handling on-units in the exit

procedure, the DSA chain can be followed
without reference to SORT.

Restoration of the PL/I Environment on

Exit from SORT

¥hen an exit is made from SORT, it is
necessary to restore the PL/I environment.
The method used is to have a section of
code that restores the registers at the
point to which SORT makes its exit. Use is
rade of the SORT exit table shown in figure
11.4. As can be seen, which ever exit is
taken, control passes to this code, which
saves the registers passed by SORT and
restores the registers of the bootstrap
module IRMDKST, thus restoring the PL/I
environment. The save area of the SORT
bootstrap routine is addressed by means of
an offset from the code that is being
executed. This is possible because the
SORT exit table and the register save area
are both held in the same workspace at a
fixed offset from each other. The code is
not included in the bootstrap module, in
order to preserve reentrancy.

Backchain
DSA for PL/I program
requiring SORT facilities
<
Backchain
First save area:
for SORT interface Sort bootstrap DSA on
module calling SORT
*Exit table
Backchain
Second save area:
for exit routine
interface
Sort bootstrap DSA on
Work area for the calling exit routine
interface routines
Address of SORT
save area
Backchain
PL/1 exit procedure DSA
*Exit table
NOP 0 not used
Entry point for E15 BC 15,12(15) branch to exit code for E15 exit
Entry point for E35 BC 15,12(15) branch to exit code for E35 exit
STM 14,12,12(13) save sort registers
L 2,28(15) locate bootstrap save area
L 2,12,28(2) restore bootstrap registers
B exit bootstrap initialized address of routine
DC A (save area 1) address of first save area

Figure 11.4.

DSA chaining

Chapter 11:

during execution of SORT

Miscellaneous Library Subroutines and System Interfaces

151

Summary of Work Done by the_ SORT Module

Before callihg the SORT program, IBMDKST:
1. Obtains a VDA for two DSAs.

2. Creates a parameter list suitable for
SORT.

3. Sets up addressability code for use
after return from SORT.

4. Sets the program check exit so that a

program check results in entry being
made to a section of the sort o
bootstrap. The sort bootstrap then
determines the error, puts out a
message to SYSPRINT indicating that a
program check has occurred during the
execution of SORT, and then terminates
the program.

On exit from the SORT program, the
addressability code saves the registers of
SORT and reestablishes the PL/I
environment, and then branches to an entry
point of IBMDKST, which:

1. Resets the program-check exit so that
control will pass to the PL/I error-
handling routines.

2. Sets up parameters for the PL/I exit
routine from information passed by
SORT.

3. Calls the PL/I exit routine.
Setting the return code in the PL/I exit
program resets the parameters that IBMDKST

passes to the SORT routines. (See figure
11.5.)

Storage_ for_ SORT

Storage for sort/merge workspace and the
modules used is obtained in the LIFO stack.
A VDA of the correct length is obtained by
the bootstrap module. The length required
nust be specified in the arguments that are
given in the call to PLISORT.

CHECKPOINT/RESTART

The PL/I Optimizing Compiler allows the
programmer to make use of the systenm
checkpoint/restart facilities by calliang -
the built-in subroutine PLICKPT. This is
implemented by a call to the resident-
library subroutine IBMDKCP, which issues
the CKPT macro imnstruction.

152

‘processing could continue.

Before the CKPT macro instruction is
issued, two control blocks must be set up.
One of these control blocks contains the.
names of all tape files that are open; it
is used to reposition the tapes on restart. -
The other control block contains .
verification information for all disk files
that are open; it is used to verify that
the disk packs are on the same devices on
restart as they were when the check-point
was taken. The two control blocks are held
in the workspace acquired for the module
IBMDKCP.

‘When a restart is made, control is
passed to the module IBMDKCP at a fixed
entry point. After carrying out necessary
checks, control is then returned to the
calling routine in the normal manner.
Control is thus returned to the statement
after the call to PLICKPT, and processing

.continues.

WAIT

The PL/I WAIT statement allows the
programmer to specify that processing shall
halt until a specified number of events are
complete. In this implementation, an event
can be associated with either a record I/0
operation or a DISPLAY statement, or it can
be an inactive event that is not associated
with any operation.

All information relating to an event is
event variable. This is a

control block of five words in length; it
is treated for storage allocation like any
other PL/I variable. The event variable
holds information on whether the event is
associated with an operation and whether it
is complete; it also records the status of
the event (i.e., whether the associated
operation was completed successfully or
otherwise). When an event is associated
with an operation, it is said to be active;
otherwise, it is said to be inactive.

When the wait statement is used, the
keyword WAIT is followed by a list of
events that are to be waited on. A number

can follow this list, indicating that omnly

that number of events need be completed
before processing can continue. Typical
WAIT statements are:

WAIT (EVENT1,EVENT2);
WAIT (EVENT1,EVENT2) (1);

For the first statement, both the events
would have to be completed before

For the second
statement, processing would continue as
soon as either of the events was complete.

© Call SORT bootstrap
Main procedure
l Set program-check exit for SORT to code in SORT bootstrap.
Arrange parameters for SORT.
Store registers in first bootstrap DSA.
SORT Call SORT.
bootstrap
IBMDKST

l

Sort as instructed by parameters.

SORT

Save registers in SORT save area.
) Restore registers for bootstrap.
Branch to bootstrap.
A

Addressability code On entry from SORT On entry from exit routine
Reset program-check exit Reset program-check exit
for PL/I. for return to SORT.
Set up parameters for exit Arrange parameters for SORT.

| routine from information Restore SORT registers.
I passed by SORT. Return to SORT.

Call exit routine.

SORT bootstrap

Carry out processing — return to SORT bootstrap.

PL/I exit routine

Fiqure 11.5. Summary of action during use of SORT exit

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 153

|
|
|
|
|
I
|
!
]
1
i
|
|
|
:
|
|
|

-

WAITER: PROC OPTIONS (MAIN);

ON TRANSMIT (A) CALL L;
ON TRANSMIT (C) CALL L;
ON TRANSMIT (X) CALL L;

r
{

{

|

|

|

|

|

| ON RECORD (A) CALL M;
{ ON RECORD (C) CALL M;
i ON RECORD (X) CALL M;
i K=03;

|1 READ FILE (A) INTO (B) EVENT
| (ET) s

{2 READ FILE (C) INTO (D) EVENT
1 (E2) ;

| L]

| .

[} [}

13 WAIT (E1,E2);

| .

{ [}

{ o

|4 IF K=1 THEN WAIT (E2);
i .

| .

| .

|5 BOOTLE: WAIT (E3);

| .

| -

{ .

| L: PROC;

16 COMPLETION (E3)='1'B;
17 GO TO BOOTLE;

| END Lj

| M: PROC;

18 COMPLETION (E3)='1'B;
19 RAIT (E2);

110 K=1;

111 READ FILE(X) INTO(Y) EVENT
| (E2) ;

| END M;

{

{

END WAITER;

-
|
i
]
|
]
|
|
|
|
t
|
|
|
]
]
|

Figure 11.6. Example of WAIT

implementation problens

The WAIT statement implemented in any
particular installation depends on whether
or not that particular system supports the
DOS data-management WAITM macro
instruction. If it does not support this
macro instruction, the full PL/I WAIT
statement cannot be supported and the
routine IBMGJWT will be included in the DOS
PL/I Resident Library. If the WAITM macro
instruction is supported, the full WAIT
statement can be supported, and the module
IBMDJWT will normally be included in the
resident library, although it will be
possible to specify the other module if the
full WAIT facilities are not required.

The difference between the two modules

154

Lo oo o o — i — A S M - AR S e R A o S e - —— T o — M — i M_ et ——— — — o —

is:

IBMGJWT Supports only waits on
single events.

IBMDJWT Supports waits on multiple
events.

Event Variables

When storage is allocated for an event
variable, the event variable is set
inactive and incomplete. When the EVENT
option is used to associate the event with
an operation, the event variable is set
active and incomplete. When a WAIT
statement is executed and the operation
associated with the event has been
completed, the event variable is set
inactive and complete. The status of the
event is also set at this time, indicating
whether or not the operation was
successfully completed.

The PL/I language allows the programmer
to set complete or incomplete any inactive
event, by use of the COMPLETION
pseudovariable, This sets the appropriate
bit in the event variable. The completion
status may be inspected by means of the
COMPLETION built-in function. The PL/I
language also allows the progranmmer to
inspect and change the status of an event,
by means of the STATUS built-in function
and pseudovariable.

The WAIT statement is implemented by a call
to the resident library routine IBMDJWT.
This is passed a set of parameters
consisting of the addresses of the event
variables and the number of events that
have to be completed. If the number of
events that have to be completed is not
specified, all the events in the list must
be completed.

The WAIT makes use of the DOS data-
management WAITM and WAITF macro
instructions. However, because of the
differences between the facilities offered
by the DOS system and the PL/I language,
considerable housekeeping problems are
involved for waits on more than one event.
For waits on single events, the problems
are small and are described at the end of
this section.

When a WAIT or associated macro
instruction is issued to the DOS
supervisor, the event is considered to be

complete when input/output transmission is
finished. In PL/I, however, a WAIT
statement is not considered complete until
any error-handling activity caused by the
operation which was being waited on is
finished. The error handling may include
entry into an on-unit, and further WAIT
statements may be executed in the on-unit.
This process can continue to any number of
levels of interrupt.

PL/I also allows the programmer direct
control over the completion of an event by
use of the COMPLETION pseudo-variable.
Consequently, the PL/I programmer need nhot
associate an event variable with an
input/output operation, but can use it
instead as a flag, setting the event
complete at any point in the program.

WAIT or associated macro instructions
issued to the supervisor are completed by
setting a completion bit in the ECB (event
control block) which is held in the DTF.

At the PL/I level, completion is indicated
by setting the completion bit in the event
variable. Thus a WAIT operation is carried
on at two levels, the PL/I level and the
system level.

Housekeeping Problems

The problems involved in implementing the
WAIT statement may be illustated with
examples from the skeleton program in
figure 11.6. Four problems arise. They
ares:

Problem 1: If an event being waited on in
a multiple WAIT statement is completed in
an on-unit entered while processing one of
the other events in the statement, this
nust be made known to the first WAIT
statement. Setting the event variable
complete is not sufficient, because the
event variable may be used again during the
on-unit. Suppose that the RECORD condition
is raised during the execution of the WAIT
statement numbered 3 in fiqure 11.6, for
the operation associated with event E1.

The following then takes place:

1. Control passes to procedure M.

2. The statement WAIT(E2) is then
encountered, and the program waits
until event E2 is completed. When
this occurs, the event variable is set
complete and inactive.

3. Event E2 is then used in a further I/0
operation (statement 11), causing the
event variable to be set active and
incomplete.

Chapter 11:

On return to the main program, there would
be no way of determining from the event
variable for E2 that the original event E2
had been completed. The problem is solved
by the use of control blocks called event
tables (EVTABs). An EVTAB is set up by the
wait module each time a WAIT statement is
encountered; it contains entries for each
incomplete event specified in the
statement. The entries are termed EVTAB
elements. Each element is chained to its
corresponding event variable and contains a
bit that can be set to indicate that the
event has been completed. 1In the above
exanple, therefore, EVTAB elements for E1
and E2 are set up when the wait module is
called at statement 3. When the on-unit is
entered, the WAIT statement 9 causes a
further EVTAB to be set up with an entry
for E2. The event variable pointer is reset
to address the latest EVTAB elements, and a
field in this element is set to point to
the previous. EVTAB element for E2. When
event E2 is completed (without causing any
I/0 conditions to be raised), the event
variable and each EVTAB element for E2 is
set complete and inactive, and a bit in the
event variable is set to indicate that the
chain of EVTAB elements is no longer
associated with the event variable.
statement 11 is executed, the event
variable is set active and incomplete.
After the on-unit has been executed, the
wait module sets the EVTAB element and
event variable for E1 complete®and
inactive. It then tests any remaining
EVTAB elements to determine whether they
were set complete during an on-unit; in
this case, it finds that the next EVTAB
element (for E2) has been set complete and
that there are no more events to process.
Execution therefore continues until
statement 4 is executed, at which time a
new EVTAB element is created for E2 and
chained to its event variable.

When

Problem 2: A method must be provided to
signal that an event waited on in an on-
unit is already being waited on in the
procedure that caused entry to the on-umnit.
Suppose that the RECORD condition is
encountered in the operation associated
with E2 (statement number 2) during
processing of the WAIT at statement number
3. The following then takes place:

1. Control passes to procedure M.

2. A further WAIT on E2 is encountered
(statement number 9). Since E2 cannot
now be completed, a mechanism must be
available to raise the ERROR
condition; otherwise, the program
would never get out of the wait state,

The problem is solved by setting a flag
in the event variable whenever an on-unit
is entered during WAIT statement

Miscellaneous Library Subroutines and System Interfaces 155

o

- cater for a GOTO out of a SORT exit,
. uses the same flag bit.)

processing. If the wait module is
subsequently reentered from an on-unit, to
process a WAIT on the same event, it finds
that this bit is set and raises the ERROR
condition.

________ If there is a GOTO out of an
on-unit, this involves setting an event
variable complete, and terminating the WAIT
statement. Suppose the TRANSMIT condition
is raised during the WAIT statement
numbered 3, 4, or 9. The procedure L is
entered and the following takes place:

1. E3, which is a dummy event, is set.
-complete. .

2. ‘A GOTO is executed to the label
BOOTLE.

If no other action were taken, the event
that caused entry to the on-unit (either E1
or E2) would not be set complete; any
suabsequent WAIT on that event would thus
cause the wait module to be invoked, with
unpredictable results. The problem is
solved by setting a flag bit in the current
DSA whenever the wait ‘module is called.
(The method is similar to that used to
and
If the GOTO

- module finds that the bit is set, it

returns to the wait module; the wait module

sets the event variable complete and
inactive and then returns to the GOTO
module to continue the GOTO out of the on-
unit. Only the event that caused entry to
the on-unit is set complete. Any other
incomplete events specified in the WAIT
statement are left incomplete.

Problem f4:
without the TRANSMIT or RECORD condition
having been raised, the event E3 can never
be completed. Some method must be
available of making this fact known,
otherwise the program would go into an
indefinite wait on am event that could
never be completed. This problem is solved
by setting an event variable active only
when it is associated with an operation.
Thus, if a WAIT statement specifies an
event that is inactive and incomplete, the
wait module causes the program to be
terminated. (If a WAIT statement specifies
more than one event and one of the events
is inactive and incomplete, the program is
not terminated immediately because it is
possible, although unlikely, that the
incomplete event will be completed by the

156

COMPLETION pseudovariable in an -on-unit
entered as a result of an I/O condition
raised while processing one of the other
events specified in the WAIT statement.)

Control Blocks

If control reaches label BOOTLE

Four control blocks are involved in the
implementation of the WAIT statement.
These are shown in detail in appendix B.

1. EBvent variable. Used to hold all
" ‘information about the event at a PL/I

level. Fields indicate whether it is
active or inactive; complete or
incomplete; whether it is already
being waited on at a, previous
interrupt level; the type of operation
with which it is associated. Each
event variable contains the address of
its associated ECB or CCB and, if it
associated with an I/0 event, the
address of the FCB for the file.

2. ECB (event control block). Used to
hold information about the event at
the system level. For I/0 events, ECBs
are part of the DTF. For DISPLAY
events, the equivalent control block
is known as a CCB (channel control
block). .

3. EVTAB (event table). Created for each
entry to the WAIT module; comprises an
element for every incomplete event '
that is to be waited on. The EVTAB is
held in a VDA acquired by the WAIT
module.

4. ECB list. This is a list of ECB
addresses that is created in
circumstances that are explained
below. The ECB list is held in the
VDA described above, and acts as an
argument list for the WAITM macro
instruction. N

Multiple-Wait Module_ (IBMDJWT)

The actions of the multiple-wait module,
IBMDJWT, are shown in the flowchart in
figure 11.7, and are described in detail in
the publication DOS_PL/I Resident Library
Program_ Logic.

Start

Branch to point in transmitter
where WAITF is issued

Issue WAITF macro instruction

Any PL/I
ON-conditions
1o raise?

Y

Call display module to
clear storage

IBMBRIO &
TRANSMITTER

DISPLAY
event?

1BMBRIO

issue WAITF macro and
check for ON-conditions

Any events
completed in on-units
during call to IBMBRIO?

Call error handler which
may in turn call on-units

No

‘ Return to caller }

Figure 11.7.
WAIT statement

Chapter 11:

Py
D

(Part 1 of 2).

Simplified flowchart of

No

a

CHECK
SUBROUTINE

Decrement count of
events to be completed
by correct number.

Set EVTABEs as inactive

Decrement count by one
for event completed in
{BMBRIO

complete?

All /O &
DISPLAY events

complete?

Return to caller

Return to
PL/I program

Call error
handler

modules used in execution of

Miscellaneous Library Subroutines and System Interfaces

Start

WAIT MODULE
v IBMBJWT
Remove any completed
events from list
All No . Build EVTAB and ECB
remaini > list (from CCBs for
events 1/0? DISPLAY event) in VDA
b v
Issue WAITM on
ECB list ’'N
4
Call CHECK subroutine . "
Build EVTABS in VDA with first event returned Fatiidred
from WAITM P
y v
Calt CHECK subroutine A CHECK subroutine
with one item in list
Handles one event and
returns if all required 4
events not complete b
4
»
CHECK subroutine

Handles one event and
returns if all events not
complete

L

All
ECB list scanned
for completed
WAITs?

Yes

Figure 11.7. (Part 2 of 2). Simplified flowchart of modules used in execution of
WAIT statement

158

As the flowchart shows, the WAIT module
sometimes issues a WAITM macro instruction,
and sometimes relies on the WAITF macro
instructions in the PL/I transmitters. The
reasons for this are as follows.

The WAITF macro instruction in the
transmitter can only be used for I/0
events, and only one transmitter can be
called at a time. If only a certain number
of the events in an event list need to be
comnpleted, it is uneconomic to pass these
events one at a time to the transmitter,
because the first event passed could be the
last to finish. Consequently, whenever non-
I/0 events are involved and whenever only a
specified number of events in an event list
have to be completed, an ECB list is
generated for all incomplete events and a
WAITM macro instruction is issued.

The WAITM macro instruction returns
control as soon as any event in the list is
complete, thus allowing an event list to be
handled efficiently when only a number of
events have to be completed. For I/O
events, it is still necessary to issue the

Chapter 11:

WAITF macro instruction in the transmitter,
even though the events are known to be
complete. This is because the WAITF macro
instruction carries out various checking
functions.

Single-Wait Module (IBMGJWT)

When the WALT statement is handled by the
resident library routine IBMGJWT, only one
event can be waited on in any WAIT
statement. The housekeeping problems are
therefore considerably less complicated
than those encountered when handling waits
on multiple events. No EVTABs, or ECB
lists are needed. When the module is
entered, it either calls IBMDRIO for an I/0
event, or issues a WAIT macro instruction
using the CCB for a DISPLAY event, calling
the DISPLAY module IBMDJDS to clear the
working storage and check for any
transmission error.

Miscellaneous Library Subroutines and System Interfaces 159

Chapter 12: Debugging Using Dumps

The DOS PL/T Optimizing Compiler allows the
programmer to obtain an execution time dump
either by calling PLIDUMP or by specifying
DUMP in the options statement. If he
specifies DUMP in the options statement a
dump will be given if the program is
stopped because of the ERROR condition. 1In
both these situations a formatted PL/I dump
is given. A DOS system dump will not be
produced except in exceptional conditions
unless it is specified by the programmer
using the Q option of PLIDUMP.

Certain types of program error, result
in overwriting of the control information
used by the PL/I error-handling routines,
thus causing a program check to occur. If
this occurs whilst a previous program check
is being handled, a system dump will be
generated even if NODUMP has been specified
in the JCL. A dump is produced because the
program check exit is reset during the
handling of program check interrupts. (See
chapter 7, "Error Handling" for further
details.) If DUMP has been specified in
the JCL, it is, possible (though most
unlikely) that a DOS system dump will be
generated for other abnormal conditioas,
such as a rapid succession of program check
interrupts.

Furthermore, it is always possible for
the prcgrammer to ask an operator to take a
stand-alone dump at any point in the
prograsn. The need to 4o this should,
however, occur only infrequently.

How_to Use_this Chapter

This chapter contains information on how to
obtain and interpret dumps, and on how to
identify compiled code, data, and control
blocks. Some knowledge of the compiler's
housekeeping scheme, described in other
chapters of this book, is assumed. Trying
to use a dump without this knowledge can
result in a great deal of wasted time. To
acquire a quick overall picture, chapter 1
and the introduction to chapters 6 and 7
should be read. A summary of how to use
this chapter when debugging is given in
fiqure 12.1.

This chapter is divided into three
sections:

Section 1: How to obtain a PL/I dump

Section 2: Recommended debugging

procedures

Section 3: Locating specific

information

Section 1 explains how to obtain a
hexadecimal dump of a PL/I program. It
also gives some suggestions on the use of
various compiler and PL/I options that may
prove useful when debugging.

Section 2 offers two recommended courses
for debugging a PL/I program by use of a
dump. The first course deals with a PL/I
dump that has been called from an ERROR on-
unit and is being used to debug the problem
program. The second course deals with the
situation in which a DOS system dump has
been generated, probably because the
housekeeping control blocks have somehow
been overwritten.

Section 3 describes how to find various
data areas and other information. It is
indexed and numbered for quick reference.

Before taking a dump, Section 1 should
be read, because the methods used are not
those familiar to programmers using the DOS
system. Sections 2 and 3 are for use when
debugging. Programmers who know what they
are looking for should refer directly to
the contents table in section 3. This will
direct them to numbered sections which give
details of how to find particular itenms.
Programmers wishing to follow some
organized plan can follow the recommended
procedures in section 2. Section 2
crossrefers to the items in section 3, so
that the details of the steps involved may
be guickly found.

Section 1: How to Obtain a PL/I Dump

In order to get a formatted PL/I dump, the
programmer can either include a call to
PLIDUMP in his program, or specify the
option DUMP in his JCL. If he specifies
DUMP in his JCL a dump will be given if the
program terminates with the essay.

The statement CALL PLIDUMP may appear
wherever a CALL statement may legitimately
be used. It has the following form:

CALL PLIDUNMP
(character-string-expression 1,
character-string-expression 2);

Chapter 12: Debugging Using Dumps 161

HOW TO USE THIS CHAPTER WHEN DEBUGGING

Have you got a dump
?

Read section 1 of this chapter to discover correct
method. (Use of the DUMP option will not produce
a dump)

Do you understand

the housekeeping

scheme of the
compiler

?

Do not attempt to debug without this knowledge. Read
chapter 1 and introduction to chapters 6 and 7 of this
book.

Are you
looking for some
particular item

or area
?

Examine contents list at start of section 3 to find
quickest method of finding item.

Do you have
a method of reading
PL/1 Optimizing
Compiler
dumps
?

Use contents list at start of section 3 to simplify finding
various items.

Follow the most suitable check list in
section 2 of this chapter. Refer to
keyed items in section 3 for details.

Figure 12.1. How to use this chapter—whea—debugging

162

—— — —— —— i —

- — —

Character-string-expression 1 is a "dump
options" character string comnsisting of one
or more of the following dump option
characters. The maximum length of this
string is 256 characters. Defaults are
underlined.

T Trace. 1A calling trace thiough all
active DSAs is generated. When an on-
unit DSA is encountered, the values of
the relevant condition built-in
functions are given. The reason for
the entry to the on-unit is also given
if the ERROR or FINISH conditions are
raised as standard system action for
another condition.

NT ©No trace. A calling trace is not
given.

F File information. A complete set of
attributes for all open files is
given, plus the contents of all
accessible buffers.

NF VNo file information required.

S Stop. The program will be terminated
after the dunmp.

[} Continue. Execution of the progran

will be continued after the dump.

H Hexadecimal. A hexadecimal dump of
the partition will be given. If trace
information is requested, the TCA and
DSA addresses will be given. If file
information is requested, the
addresses of the FCBs will be given
and the contents of all accessible
buffers will be printed in hexadecimal
notation as well as in character.

No hexadecimal dump required.
B Blocks. The contents of the TCA, TIA,

DSAs, FCBs, and file buffers are
printed in hexadecimal notation.

NB No block information required.

R Report. The lengths and addresses of
the main areas of storage in use
immediately before the call to PLIDUMP
are given.

NR No report information required.

Q Quick dump. This gives a DOS systen
dump with none of the formatting and
other information provided by PLIDUMP.
The Q option only takes effect if all

other options are negated. To obtain
a DOS system dump using the Q option
should be specified thus:

CALL PLIDUMP('Q NH ND NR NB NF NT');
There is no requirement for a dump

identifier because this will not be
reproduces on the DOS system dunmp.

NQ 1A DOS system dump is not required.

D Debug. Additional information about
files will be given. This includes
the name of the transmitter and the
open module, and information on
vhether ENDFILE or an error has
occurred on the file.

ND VNo debug. The additional files.

60 The hexadecimal notation will be
translated into the 60 character set.

48 The hexadecimal notation will be

translated into the 48 character set.
The default options are TFCRDNHNB60.
That is, trace information, file
information, debug file information,
storage report, block information, no
hexadecimal dump, continuation after the
information has been put out, and
translation into the 60 character set.

Options are read from left to right.
Invalid options are ignored, and if
contradictory options are coded, the
rightnost options are taken. A further
discussion of the output that results from
each of these options is given later under
the heading “Contents of a PL/I Dump".

Character-string—-expression 2 is a "dump
identifier"™ character string of up to 90
characters chosen by the PL/I programmer.
It is printed at the head of the dump. If
the character string is omitted, nothing is
printed. .

RECOMMENDED CODING

Since PL/TI dumps are transmitted onto the
standard file SYSLIST, it is important to
insure that SYSLIST is assigned to a line
printer device. PLIDUMP can be called from
anywhere in a program, but the normal
method used when debugging will be to call
PLIDUMP from an on-unit. As continuation
after the dump is one of the options
available, PLIDUMP can be used as a shap
dump to get a series of dumps of main
storage throughout the running of the
programe.

Chapter 12: Debugging Using Dumps 163

//JoB DUMPER

//OPTIONS LINK, DUMF, MAP

//EXEC PLIOPT

* PROCESS (CDE,.MAP, GOSTMT, FLOW {n,m));

DUMPER: PROC;

(SIZE, SUBSCRIPTRANGE, STRINGRANGE):

ON ERROR CALL PLIDUMP (‘HB’, ‘/ERROR ON-UNIT DUMP’);

END;

®

®

Ensures that a system dump will be given
in some exceptional circumstances. Does not
produce a PL/1 dump.

These options give compiled code listing and
static storage map, essential for interpreting
any dump.

Provides trace of last n branch-out/branch-ih.
points in up to m blocks, if SNAP or PLIDUMP
with trace is used.

Two arguments can be passed to PLIDUMP.
They are the dump options character string and
the dump identifier. The format of the call
statement is:.

®

Produces linkage editor map giving actual address
of each module after the link-edit step.

Permits trace of statement numbers in original
source program, and simplifies program checking.

@
®

Prefix options. The use of these PL/l checkout
options is strongly urged. Since, however, they
cause an increase both in the size of object code
and in execution time, it may be necessary to
restrict their use to suspected blocks or statements.

CALL PLIDUMP (character-string-expression 1, character-string-expression 2);

o Dump options character string
(Default is ‘TFC’)
T. Trace information required -
NT No trace information required
~F File information required
NF

S . Stop after dump
C . Continue after. dump

No file information required

H Hexadecimal infofmation required
- NH : No hexadecimal information réquired
B .- Control block information required

NB No control block information required

Also R, NR, Q, NQ, D, ND, 60, and 48, see text.

Dump identifier character string

Printed at head of dump. May be up to 90
characters long.

Figure 12.2.

164

Coding dump options

[iatmhatubetatd kbt]
Abbreviation| Condition Name

|

|

| |

| AREA | AREA

: CHCK : CHECK

: COND : CONDITION

: CONV : CONVERSION

‘ ENDF : ENDFILE

: ENDP : ENDPAGE

: ERR : ERROR

: FIN : FINISH

} FOFL : FIXEDOVERFLOW
: KEY : KEY

: NAME : NAME

: OFL ‘ OVERFLOW

: REC ‘ RECORD

: SIZE : SIZE

: STRG : STRINGRANGE

: STRZ : STRINGSIZE

: SUBG = SUBSCRIPTRANGE
: TMIT l TRANSMIT

: UFL : UNDERFLOW

: UNDF : UNDEFINEDFILE
i ZDIV : ZERODIVIDE

Figure 12.3. Abbreviations for
condition names used in PLIDUMP trace
information

Ey including the statement CALL PLIDUMP
(*HB?','dump identifier'); in an ERROR on-
unit or by including DUMP in the optiomns
card "Contents of a PL/I Dump", it is
possible to ottain a hexadecimal dump, with
control blocks identified and formatted,
should an error occur. If an ERROR on-unit
is being included in a program, care should
be taken that there are no further ON ERROR
statements which might override the on-unit
requesting a dump.

Suggested code for use when debugging
with a dump is given in figure 12.2.

CONTENTIS OF A PL/I LUMP

The appearance of a typical dump produced
by the PLIDUMP modules with the options
TFHB is shown in figure 12.4. The contents
of particular secticns are described in
detail below.

Headings

The dump is headed by the line
%*PL/1 DUMP*

This is followed by the user identifier, if
any, given as the second character string
in the argument list of PLIDUMP.

Irace Information

A request for trace information results in
the following outgput:

1. A trace of every procedure, begin
block, and on-unit that is active at
the time of the call to PLIDUMP. For
procedures, the procedure name and
statement numker from whic¢h the
procedure was called are given. If
the 'H' opticn is requested, the
offset of the statement is also given
as well as the entry point address and
DSA address. Also, if the entry point
used is not the main entry point and
the statement number option is in use,
the main entry name is given.

2. For on-units, the values of any
relevant condition built-in functions
are given. The type of on-unit is
given and, where the cause of entry
into the on-unit is not self-
explanatory, the cause of entry is
also given (e.g., if an ERROR on-unit
was entered because of a conversion
error, this fact is given in the trace
information). The on-unit type is
specified, using a three or four
letter abbreviation. A list of these
abbreviations is given in figure 12.3.

3. When a hexadecimal dump is requested,
the entry point address of each active
block is also given, together with the
address of its associated DSA.

4. When the compiler FLOW option is in
effect, the flow statement table is
also given.

5. If a hexadecimal dqump is requested,

‘Chapter 12: Debugging Using Dumps 165

USER IDENTIFIER 3 EXAMPLE OF PLIDUMP

(TCA ADDRESS 009E08 ')’

® % % PL/T DUMP * % &

* % & CALLING TRACE * * *

PLIDUHP WAS CALLED FROM STATEMENY NUMBER 3 AT OFFSET OO009E FROM-A ERR. TYPE ON-UNIT WITH ENTRY ADDRESS 0018FC

(AND DSA ADDRESS 004628)

PL/L CONDITION DETECVED: CONV
QONCODE = 612

ONCHAR =1

ONSOURCE =1F THIS DOES NOT RAISE

ADDRESS OF ERROR HANDLER'S SAVE AREA 00A438

ERROR DIAGNOSTICS

INTERRUPT CODEs SEE LANGUAGE REFERENCE MANUAL
CHARACTER CAUSING CONVERSION ERROR

CONVERSIGN NOTHING WILL
STRING CAUSING CONVERSION ERROR

REGISTERS ON ENTRY TO ERROR HANDLER

REGS 0-7 FFOOA438
REGS B-15 00000001

0000A430
0000A33D

WHECH WAS CALLED FROM A LIBRARY MODULE WITH
WHICH WAS CALLED FROM A LIBRARY MOOULE WITH
MHICH WAS CALLED FROM A L [BRARY MODULE WITH

WHICH WAS CALLED FROM STATEMENT NUMBER 5 AT
{

AND DSA ADDRESS 00A250)

TRACE OF PL/T CONTROL BLOCKS
TASK COMMUNICATIONS AREA

ADDR.
009E08

DFFSET

00000 00000000 00000000 FFOO9ED8B

0000A388
00000000

FFQ35DF8

" 80007A1A
00009284

0000A310
FFOOA3EQ

0000A3C8
4ECO9DDE

6EQQ9BE6
00008BES8

0000A1ES8
00009E08

END OF ERROR DIAGNOSTICS
ENTRY ADDRESS O098E0 (AND DSA ADDRESS OOA3EQ

ENTRY ADDRESS 008960 (AND DSA ADDRESS O0AODS
ENTRY ADDRESS 007808 (AND DSA ADDRESS 00A368

OFFSET 0000AC FROM A PROCEDURE EXAMPLE WITH ENTRY ADDRESS 007840

* % % END OF CALLING TRACE * * *

00000000 00009EL8 00000000 0000A000

009€28 00020 00009F28

0000A038

00009000

00009996

009E48
009E68
Q09EBS
Q09EAS
009ECS8
009EES

00040
00060
00080
000A0
000co
Q00E0

0000A020
0000900A
582E0004
O7FF0000
D203D04C
00009102

00000000
19DF478C
00000000
DOO1OTBE

00000000
58EEQO00
00000000
00509120
OTFEQ00C

00009988
00829500
180F9834
0201D056

00000000
58FCOOEO
478C00CC
QOF40TFF
00000000

00009984
€001478C
00209160
00549180

0000928A
18E1181F
91400001
181F58FC
00000000

00009994
00AC180E
DOO1078E
D054071E
00008FC8

009F 08 00100
TCA lNPLEHENY‘T[DN APPENDAGE

ADDR. OFFSET

000091C4 00000000 05F058F0

009F28 00000 00036000

009F48 00020 = FO4E051F 00000€00

009F68
009F88

00040
00060

DYNAMIC. SAVE AREA (LIBRARY)

CONTENTS OF REGISTER SAVE AREA
REGS 0->7 FFOO0AT50 00007A3C
REGS 8->15 0000A6D8 0000A6F8

ADDR.
00A700
00A720
Q0AT40
00A760
00A780
00ATAG
00ATCO
QOATEQ
00A800
00A820
00A840
00A860
00A880
00ABAQ
00ABCO
0OABEC
00A900
00A92C
GOA940
004960
00A980
00A9AC
00A9CO
00A9EO
00AACO
00AA20
00AA40
00AA60
00AA80
00AAAD
00AACO
00AAEO
00ABOO
00AB20
00AB40
00AB60
00AB8O
00ABAD
0QABCO
00ABEO
- 00ACO0
00AC20
00AC40

OFFSET
00000
00020
00040
00060
00080
00040
oooco
000€0
00100
00120
00140
00160
00180
00140
001CC
001E0
00200
00220
00240
00260
00280
00240
002¢0
002E0
00300
00320
00340
00360
00380
00340
003C0
003E0
00400
00420
00440
00460
00480
00440
004C0O
004EQ
00500
00520
00540

88004780
4EQ08F2E
00009F28
CB8E340C9
41000138
5$0D01004
5500C00C
D0649200
58FOF052
0Al04110
471030E2
41103138
31381255
5000004C
01340214
58560000
00024850
44503444
1A0C5810
18070404
€00C47D0

.D04C4110
33189120
5500C00C
58100028
00000001
O07FE4110
00634301
00015021
07F65800
FO02ED202
02021005
4TFOF020
18214850
4TF04030
20630277
98E5000C
C9C2D4C4
005A0200
C4E4D4DT
00008000
00000000
a

00004628
0000A1EB
47103288
€20440¢3
5810004C
18019288
47003050
D05C5840
051FD207
33245010
41100064
50100134
47803138
18714110
00953457
91806006
00601255
45E03318
DO4C1EO1L
18F105EF
320E58F0
324C5010.
005C4 780
47003270
4100101C
0A021 BFF
34820700
002C5021
00704201
10489580
10051051
10410A11
5900103C
20569188,
92F12063
20642063
OTFE3S8E
D2C4C4C1
00706000
405C405C
0C000003
00000800

00045866
00007A3C
FF00A4CO
06090748
1€015500
00009200
58F0C048
€0289608
DODC1000
D1305050
50100050
9280005E
41000320
340A1807
45E032C4
47103174
4TD031AA
41103224
5500C00C
5070004C
C0480SEF
D1349210
32824110
58F0C048
41101024
9110005C
501032DA
002C4201
C0T041F0
DOSE4770
0A11D203
9540D05E
4TBOF020
20504780
41500030
12554720
€9C204C4
5858C2C3
5C405C40
405CE4E2
0000ACT70
002008F0
1

00009260

5€007952
0000A250

5E008F8C
0000A2F8
FFO0BOBO
40FLF9FT7
C00C47DO
00019107
05€F5000
DG015030
410000DC
D0605820
41100050
9120400C
5810004C
DAO4L8F1
91805000
48560004
49503442
50100134
47003108
9140005C
5000004C
DGSE4SED
32829220
05EF5000
0A104110
47103286
41103432
002C4301
339C50F0
F0469200
000C1050
4T70F062
9520D05€
40309108
96802050
40580214
D207€3C1
D3D6E2CS
5C40C505
C€50940C9
CO000ACTS8
24008113

00000000 00000000 CO0004A8 00004248

* & % PL/L DUMP % & &

4EO00BF2E
00009F 28

0000ALES
47103288

00007A3C
FFO0ATO00

0000A2F8
SE008F8C

FFO0AT50
FFOOATT8

FFO0AT50
00004608
60D3D4F5
000078F0
CO7405EF
30544100
DO5CDO5C
00445000
50100134
00041 2FF
00549248
58250000
€00C47D0
004C% 110
9140D05F
47703188
48503442
9180D05C
05€F5000
41000888
34141807
D0923444
D1344100
41103422
50103242
58000004
00000304
00784201
DOSDLB6E
D05C9640
00145000
9680DOSF
4110FL16
4024947F
40E058F1
4TF04024
D2E3C3C1
D7C5D509
405C405C
€9C6CICS
33000204

FFOOATTS
FFO0A750
FSFTIF3F6
F1400000
301A58F0
DO4F4780
D04CD703
002050C0
411030E2
CO4058F2
07030054
47803104
1EQ015500
GSEF5070
4TL031AA
58660000
4700319A
9240005€
58F0C048
47803224
18714110
3318020C
DOSE5010
DO4C1871
34820700
41F00008
450032D€
.00785021
00589208
005C9621
02331008
9621005C
4770F02€E
20504710
06504110
20964085
£€9€204C4
5858C206
C440D6C6
'C4C5D5€3
0800ACFO

00007A3C
0000A6F8
40C3D6DT
90EBDOOC
58F0D048
00045810
92400064
D12C4510
4110D0E4
478030E2
00554120
0200005C
312258F0
31AA9210
471031AA
02010060
02100069
478031EE
D04C1871
5810004C
0A0418F1
D20EDOIF
06405810
18070A04
4110342A
58EQDOOC
0000ACOC
00784301
181058F0
DOSF59D0
103CD207
5900103C
0AQ0290ES
205092FC
00 1045EF
40502056
C9C2D4C4
5858C2C4
405C4007
D9407402
C4E3C640

5E0079%52
0000A250
E809C9ICT
05301851
90F01048
DO4CL1EOL
D2760065
308805F0
9210D05E
91802000
DO5405EF
20004 TF0
CO4805EF
DO5ES5010
58650004
50004165
346C0650
41000888
41103412
1015500
05EF5070
345045E0
DQ4C1€01
18FLO05€F
45003246
98080014
0A024120
00704122
DO5805EF
103C4770
1040000C
4TT0F02E
DO0CO540
20630650
000C9240
94802050
D2C6C1IC1
E4D4DT40
0361C940
28006006
40000000
0000FFO0

.5736-LH5 CDPVRIG\
NT IDN CORPe 1971

vekKe veoee oKeos 060 o sscesald
eVeooose IBNDKPTAIBMOKTCAI BMDKFAA
1 8C

seKoo®=o® * % END OF * . % % pPL/]

00000079

00AC60 00560 3100AC3C

47000000 0700AC3A 40000006

0800AC60 2

00AC80 00580 . 3100AC3C 0800AC80

01008114
1€000540

20000078 05008113 60000079
1

1
01

OOACAQ 005A0

LINE THE SAME AS
005E0 00000000
00600 47FOF000
00620 100895FF
00640 FO5A94BF
00660 4780F0A8
00680 D5004000
00640 00124334

ABOVE

00000000
4TFOF 000
101E4780
102C4530
9524000
30004780
£2791930

00ACED
00ADOO
00AD20
00AD40
00AD60
00AD80
00ADAQ

4TFFOOLC.
47FOF02E
FO3E4A60
F12C5846
4T80F0A8
FOA80630
4T780F0CO

Figure 12.4. Example

166

4TFFOO1C
4TFOF186
104A9103
00000640
95¢34000
4600F090
4640F082

04320000
C901D1C6
. 10284710
9200F2A2
4780F0A8
9201F2A2
4940F270

4TFOF02A
F3F99026
F13A9140
4T10F0A8
4130F279
18304304
92086000

4TFOF02A
F2585860
102C4780
95C14000
41330012
00004140
4530F12C

4TFOF00C
C3C2E9C4
F1904740
91F04000
4B00F2A0
4TFOFOD4
4TBOFODO

of PLIDUMP

the address of the TCA is printed at
the head of the trace.

6. If either a hexadecimal dump or
control block information has been
requested, and any ERROR on-units are
found, then the following information
is also included:

a. The address of IBMDERR's DSA.

b. The contents of the general and
floating point registers at the
time IBMDERR was called.

c. If there was an interrupt, the
address of the interrupt.

d. A trace of library DSAs back to
the last compiled code DSA.

Pile Information

A request for file information results in
the following output:

1. The default and declared attributes of
all open files are given.

2. Buffer contents of all buffers are
given. If a hexadecimal dump has been
requested, the contents of the buffers
are given in both hexadecimal and
character notation. If no hexadecimal
dump is requested, the contents are
given in character notation only.

{

|If the 'B' option is included the the
fcontents of the FPCB, ENVB and DTF, and for
{VSAM files the IOCB and ACB are given.

|

| Due to the many possible
{length of these blocks, the
{block may not always appear
jof the PLIDUMP.

{

| The description of the MEDIUM option
{contains the following abbreviations:

variations in
full control
in this section

: UNIT Unit record device (card reader,
| printer etc.) '

: TAPE Tape unit

: DISK Disk storage unit

: INDE Device independent

|

{Debug_QOption
|

|If the debug option is specified,
tadditional information about files is

| provided. The name of the transmitter and
lopen module associated with the file are
provided, and other data regarding the
{status of the file is given. This includes
{whether an error has occurred on the file
fand whether ENDPAGE or ENDFILE have been
lraised.

Hexadecimal Dump

This is a dump of the partition associated
with the program. The dump is set out in
four columns. The first column contains
the address in main storage. The second
and third columns contain four fullwords
each in hexadecimal notation. The fourth
column is a reproduction of the second and
third columns in character form. You can
|specify whether you want the tramslation to
{be into the 60 or 48 character set by using
|either the '60' or '48' option. 60 is the
default.

The PL/I hexadecimal dump is headed by
the contents of the communications region
and, if no trace information was requested,
by the values of registers 12 & 13 and the
floating point registers on entry to the
dump. It should be noted that if the dump
was called from an on—~unit, these values
are pot the values of the registers at the
point of interrupt. The method of finding
the register values at the point of
interrupt is described in section 3,
"Locating Specific Information."

Block _Option

When the block option is used, the contents
of the TCA, the TIA, and the DSAs in the
LIFO stack (that is, all active DSAs) are
printed in hexadecimal and character
format. The absolute address is printed in
the left hand column; the offsets Within
the block are then -printed. This is
followed by the contents of the block,
£irst in hexadecimal and then in character
notation. For DSAs, the type of DSA is
shown; i.e., library DSA, procedure DSa,
on-unit DSA, or dummy DSA. The contents of
the FCBs, ENVBs, DTFs etc for any open
files are printed in a similar format.

|Report Information
|

[The report option gives a report of the use
jof main storage immediately before the
{PLIDUMP was taken. It gives addresses and
| lengths of the major areas of storage and

Chapter 12: Debugging Using Dumps 167

|shows how much storage in the partitiona is
inot in use. If the PL/I prograp was called
|from a program in another lanquage that
Ispecified the storage area to be used,

|storage may be inaccurate.

1

[As described in chapter 1 and chapter 6,
{the partition used by a program compiled by
{the PL/I Optimizing Compiler is divided in
{a standard manner. A typical storage
{layout and related report are shown in
{figure 12.3. The partition is headed by
|the problem program which consists of
|compiler output link~edited with PL/I
|library routines. This is followed by an
|area. of housekeeping control blocks known
|as the "program management area". The
{storage between the end of the progranm
{management area and the end of the
|partition is allocated dynamically, this
jarea is known as the ISA (initial storage
Jarea). During execution, two storage
Istacks are created, one starting at each
{end of the ISA. One stack is the LIFO

| stack containing all storage that is
tacquired and freed on a last-in/first-out

| (LIFO) basis. This stack contains
|housekeeping information for each PL/I
{block, storage for automatic variables, and
| workspace. 1In the PLIDUMP storage report
|this area is referred to as "primary LIFO

| storage", and shown on the line numbered
{04. The other stack starts at the end of
|the partition and contains all storage that
{is not acquired and freed on a last-
{in/first-out basis. This includes items

| such as controlled and based variables,
|transient library routines, I/0 buffers,
land control blocks associated with files.
{In the PLIDUMP storage report table this
jarea is referred to as the "primary non-
{LIFO area" and shown on the line numbered
105. Both stacks extend into an area of
{unallocated storage known as the major free
farea. Within the non-LIFO stack certain
fareas may be freed which cannot be
|incorporated into the major free area.
{These are listed in the PLIDUMP storage
|report table with the line number 06 and
fheaded "free area". In certain situations
| these free areas can be used for further
{segments of LIFO storage. Such segments
|are listed in the PLIDUMP report table with
{the line number 07 and are headed "LIFO
{overflow segment". When LIFO overflow

| segments have been allocated, the figures
{for total used storage and total unused

| storage on lines numbered 09 and 10 in the
|storage report table will be inaccurate.
{The total used storage will be
|overestimated. The overestimate will be
{smaller than the largest LIFO overflow

| segment.

168

|Using _the REPORT Option_ for Program
|Tuning
1

|As well as its use for debugging, the
|report option can be used for estimating

| the optimum storage size for a programn.
|When this is done PLIDUMP should be called
{when the maximum amount of storage is in
|use. This will be at the point when the
|greatest number of blocks are active, the
lgreatest number of files are open, and the
|largest allocations of based or controlled
|variables have been made. PLIDUMP can be
lcalled in a number of places to get an
|accurate picture. As well as using the
|report option, it may be useful to use the
|trace and file options. The file option
|will tell what files are open, and the
|trace option will show the point in the

| progran where the report was taken. . These
|options are defaults, and to get a dump of
|this type the following PL/I statement
Ishould be included:

CALL PLIDUMP('ND','REPORT FOR TUNING'):

| *"ND" overrides the debug option and reduces
{the output. "Report for tuning" is the
|dump identifier and is used to show the

| parpose of the dump. When the maximum
famount of storage used in the program has
| been established, the figure should be
{rounded ip to the nearest K bytes and a

| safety margin added. 1A suggested minimunm
fis 2K bytes if SYSPRINT is open and 4K
|bytes if it is not. (The extra 2K for

| SYSPRINT allows error messages to be

{ produced.)

Section 2: Recommended Debugging
Procedures

The main difficulty in reading a dump of a
PL/I program is knowing where to start.

The signposts known to assembler language
programmers are of little help. There are,
however, five main sources of information
to be considered when using a dump to debug
a PL/I program. They are: ‘

1. The statement number and the address
where the error occurred (if the dump
was taken after an error)

2. The type of error (if the dump was

(ADDR

MAIN STORAGE LAYOUT

7800

PROBLEM PROGRAM AREA

ceB8

PROGRAM MANAGEMENT AREA

€968

D938

PARTITION D,
AREA

34FB8

35800
35808

35A60

PRIMARY LIFO STORAGE

NON-LIFO STORAGE AREA

NON-LIFO STORAGE AREA

TRANSMITTER AREA

35D00

\. 36000

TRANSMITTER AREA

Unused storage is shaded thu

ASSOCIATED STORAGE REPORT

¥ ¥ ¥ PL/I DUMP * * *

USER IDENTIFIER : REPORT

01.PARTITION AREA
02.PROBLEM PROGRAM AREA
03.PROGRAM MANAGEMENT AREA
04 .PKIMARY LIFO STORAGE
05.PRIMARY NON LIFO AREA
INCLUDING

06.FREE AREA

06T.FREE AREA TOTAL

08.TRANSMITTER AREA

08.TRANSMITTER AREA

08T.TRANSMITTER AREA TOTAL
09.TOTAL USED STORAGE
10.TOTAL UNUSED STORAGE

* % % STORAGL REPORT * * *

FROM
FROM
FROM
FROM
FROM

FROM

FROM
FROM

007800
007800
00C6B8
00C9¢€8
034FBE

035800

035260
035D00

TO
TO
TO
TO
TO

TO

TO
TO

036000 LENGTH
00C6B8 LENGTIH
00C968 LENGTII
000938 LENGTH
036000 LENGTH

035808 LENGTH
LENGTH
035D00 LENGTH
036000 LENGTH
LENGTH
LENGTE
LENGTH

* ¥ * END OF REPORT * * *

HEX
HEX
HEX
HEX
HEX

HEX
HEX
HEX
HEX
HEX
HEX
IEX

02F800
O04ERS
0002E0
000FDO
001048

000008
000008
000220
000200
000520
007178
027688

DEC
DFC
DEC
DEC
DEC

DEC
DEC
DEC
PEC
DEC
DEC

DEC

>PRIMARY NON-LIFO AREA

190464
20152
688
4ous
4168

8

8

672
768
1440
29048
161416

| Figure 12.5. A typical arrangement of main storage and an associated storage report.

Chapter 12:

Detugging Using Dumps 169

taken after an error)

3. The values in the general registers
when the dump was taken or when the
error occurred

4. The chain of DSAs
5. The TCA

The first two of these items hold
equivalent information to that held in the
PSW in a DOS system dump. - The last three
items enable the housekeeping to be checked
and the location of the control blocks and
the program variables to be discovered.

The methods of locating other information,
given in section 3, refer to the key areas
shown above.

When debugging, it is essential to have
a listing of the object program and a
linkage editor map. The object progran
listing allows the programmer to study the
instructions that are being carried out and
to find various control blocks in static
storage. The linkage editor map allows the
programmer to identify particular parts of
the executable program phase and, for
instance, to identify the routine
associated with each DSA. It is also very
desirable to have a variables offset map
generated when the compiler MAP option is
used.

THE CONTENTS OF A DUMP

The PLIDUMP and the DOS system dump both
consist of a dump of the partition that is
associated with the progran.
contents of the partition are shown in
appendix A. More detailed descriptions of
the contents of main storage can be
obtained from chapters 1 and 2. The
partition contents will also appear in a
stand—-alone dump. The partition contains
all information that is connected with the
program. This will comprise the compiled
code, any link-edited PL/I library modules,
any transient PL/I library modules that are
currently loaded, housekeeping control
blocks, and all program variables.

DEBUGGING PROCEDURES

The best approach to a dump depends on the
problem to be solved and must therefore be
left largely in the hands of the
programmer. However, two suggested courses
of action are given in this section.

These courses cover two situations:

170

The principal

1. - When PLIDUMP has been called ‘from an
ERROR . or other on-unit

2. When a DOS system dump has. been
‘generated

Other possible situations are when a
dump is taken at a specified -point in the
program, or when a stand-alone dump is
taken.. No attempt is made to suggest a
course of action in these circumstances,
because the reason for the dump being taken
is not predictable. However, in such
cases, the main storage situation can be
investigated by following the methods
itemized in section 3 of this chapter.

Throughout each of the two recommended
procedures given in the following
paragraphs, there are cross-references to
the methods given in section 3. The cross-
references consist of the keys by which the
methods are identified; for example, H6,
D5.

e T 2 e e S et e et S

If a PL/I dump is called from an ERROR on-
unit it can be assumed that the
housekeeping system of the program is
working. If it were not working, the dump
would probably not have been generated.

A large amount of diagnostic information
will be available at the head of the dump.
An error message will have been generated,
and this will provide a useful starting
point. The first step should be to examine
the error type and the point at which it
occurred. ONCODE and other condition
built-in function values should be
examined, as should the trace information.

‘A suggested procedure is the following:

1. Examine the error by means of the
. ONCODE and any other relevant. built-in
function values. These values are
held in the trace information. (The
meanings of oncodes are given in the
language reference manual for this
compiler.)

2. Find the location of error (P1) and in
which block the error occurred (H12).
If error occurred in library. module,
see H14.

3. Examine the trace to see if it appears
as expected.

4., Examine the information in the file
buffers, and check that file
attributes are as expected. This
information will be prlnted in the
dump heading.

5. 'Check the values of any variables
involved in the interrupt (V1-Vé).

6. Check values of registers to see if
dedicated registers are pointing to
correct areas (H8 & H9). Distinguish
between compiled code and library
register usage.

7. Check housekeeping (H1-H16) starting
with area most directly concerned with
type of statement in which the errcor
occurred.

8. Check values of all variables in the
program (V1-V6).

9. Check logic of code being executed
from object listing.

DOS_System Dump

A DOS system dump consists of four columns
of hexadecimal figures. The first column
is the address in main storage; the second
and third columns are the contents of main
storage printed in hexadecimal notation;
the fourth is the contents of main storage
in character form, with a period for
unprintable characters. Each column
contains four fullwords. The dump is
headed by the register values at the point
when the dump was taken, and this is
followed by the address of the
communications region.

A DOS system dump is generated when
there is a failure of the error-handling
modules, or of the module that prints the

|PL/I hexadecimal dump, or when it is

| requested by the Q option of PLIDUMP or
{when there is not enough main storage to
{continue. It should be noted

that the failure of these modules is more
likely to be caused by the overwriting of
essential information than by an error in
the modules themselves.

A DOS system dump will not normally be
produced for program checks, because a
program check exit is set by the PL/I
housekeeping routines, so that the systen
returns all program checks to the error
handler. - In the error handler itself, the
program check exit is reset so that a
progran check interrupt will result in a
dump.

Thus, a DOS system dump will be produced
if the program check exit, which is
normally set by the program initialization
routines to prevent a dump, has been reset
during the program, or, possibly, has not
‘been set at all. The second alternative is
extremely unlikely. A third possibility is

that the program check exit itself is not
working, and the STXIT macro in the
initialization routines did not
successfully set the program check exit.
The most probable of these suggested causes
is that the program check exit has been
reset by the program. The program check
exit is always reset for the duration of
error handling or PLIDUMP, to prevent
looping should an interrupt occur. (See
chapter 7, "Error Handling.") If an
interrupt occurs during error handling, a
dump is therefore produced. An interrupt in
the error-handling routines indicates
either that the error-handling routines are
at fault, or, more probably, that some of
the control information of the error-
handling routines has been overwritten
during the execution of the program. The
nost practical solution may be to re-run
the program with SUBSCRIPTRANGE,
STRINGSIZE, and STRINGRANGE enabled.

However, having obtained a DOS systenm
dump, the following debugging procedure may
be adopted.

1. Determine whether dump was caused by
. program check. This can normally be
discovered from the message printed omn
the page before the dump. If no
message is printed, inspect the
program interrupt key (PIK) in the
conmunications region (D6).

2. Determine in which routines the error
occurred. (D1 and 2 for address of
interrupt, H2 for associating address
with code.) Verify that this module is
one called from error handler. (a3
and H10 for identifying module; figure
12.6 for modules called from error
handler.)

3. Investigate the error that caused
entry into the error handler. This
can be done by examining the contents
of IBMDERR's DSA (H7) and the
associated ONCA (H6). See whether
incorrect information passed to the
error handler could be causing a
failure. If the instruction is within
the program control section shown on
the linkage editor map the address can
be associated with a statement (see
He2) .

4. Locate instruction causing interrupt.
This is done by looking for the PSW in
the partition save area (D0).

5. 1Inspect this instruction to see if it
'~ appears to have been overwritten,
bearing in mind the cause of the
interrupt, e.g.,

a. is it a valid instruction?

Chapter 12: Debugging Using Dumps - 171

RESIDENT ’ 1BMDERR

LIBRARY = . Error
MODULES : handler
TRANSIENT
LIBRARY
MODULES
IBMBEOC | IBMDESM IBMBETx
On-code "Error message | =—— Message
calculator module phase | text module
IBMDEDW IBMDESN IBMDSxx
Console — Error message SYSPRINT
transmitter module phase I} transmitter

Figure 12.6. Error message group of modules

172

b. is it a branch to a protected
address?

Inspect the TCA(D5) to ensure that all
error-handling addresses are correct.

Investigate the housekeeping fields,
starting with the DSA chain (H1-H3),
then the chain of ONCAs (HS5,H6).

If none of the above actions produces
any results, an error in the error-
handling modules must be presumed.
This cannot be investigated without a
listing of the modules. Meanwhile the
cause of the original .entry to the
error handler has been discovered and
can possibly be avoided by altering
the source program so that the error
does not occur. The _trouble should
nonetheless be reported, because a bug
in the PL/I error-handling routines
has apparently been discovered. It
must be emphasized that the cause of

entry into the PL/I error handler was
not the cause of the system dump.

9. If the interrupt is not in the error
handler or PLIDUMP, or one of the
routines they call, the highest
probability is still that the program
check exit was altered in the error
handler and that an invalid branch has
been made from one of the addresses in
the TCA. 1A careful check should
therefore be made in the TCA. (See
appendix B for map of TCA.) If this
fails to produce results, return to
stage 2 of the above procedure.

It may be possible to use the progranm by
avoiding the cause of entry into the error
handler discovered in 3 above. However, as
the error is probably due to some kind of
overwriting, simply bypassing the stat~ :nt
identified in 3 may not have the de 4
results. .

Section 3: Locating Specitic
Information

This section tells the reader how to
discover information from the dump. It has
been produced in a modular form for easy
reference. The reader should look through
the following contents list to discover the
items in which he is interested. Suggested
methods of debugq1ng a PL/I program from a
dump are given in section 2 of this
chapter. Unless the programmer is
experienced in using dumps, .or is looking
for some particular item, the procedures in
section 2 should be followed, rather than
attempting to find various items through
the information in this section.

CONTENTS

Key_Areas_of a PL/I Dump

P1 Statement number and address where
error occurred (dump called from
on-unit only) ,

P2 Type of error (dump called from
on-unit only)

P3 Register contents at time of error or
dump invocation

Py The DSA chain

P5 The TCA

Do Partition save area

D1 Address of interrupt

D2 Type of interrupt.

D3 Register contents at the point of
interrupt

D4 . The DSA chain

D5 The TCA
D6 Finding program interrupt key (PIK)

D7 Pinding the communications region

__EQ:ALQEE_DBEES

s1 Pinding key areas in stand-alone

dumps

Housekeeping Information_in_all Dumps

H1

‘H2

H3
HY
H5
H6

H7

H8

HO
H10

H11

H12

H13

H14

H15

H16

Following the DSA backchain

Associating instruction with correct
module

Following calling trace
Associating DSA with block
Finding relevant ONCA
Following the chain of ONCAs

Pinding information from IBMDERR's
DSA)

Finding and interpreting register
save areas

Register usage
Pollowing free-area chain

Action if interrupt occurred at
address not imn linkage editor map

Block structure of program
(static-backchain)

Forward chain in DSA's

Action if error is in a library
module

Discovering contents of parameter
lists

Finding main procedure DSA

Finding Variables

v1

V2

V3

V4
v5
vé

Chapter 12:

Automatic variables

Statici variables

Controlled variables
Based variables
Area variables

Variables in areas

Debugging Using Dumps 173

Control Blocks _and Fields

Cc1 Quick guide to identifying ccntrol

fields

KEY AREAS OF A PL/I DUNMP

P1: Statement Number_and_ Address.where
Exrrcr_Occurred (Dump_Called from On-Unit

only)

Informaticn required is the point at which
the condition that caused entry tc the on-
unit occurred. This is identified in the
trace information. If no trace informaticn
'is generated, the method suggested for DOS
system dumps can be employed. If the
condition occurred in compiled code, the
machine instruction being executed can be
identified on the object program listing.
This is done by subtracting the address of
the program control section from the
address cf the interrupt and locking at
this offset in the object fprecgram listing.
- The instruction thus found will be the one
after the instruction that was last
executed.

Alternatively the statement number table
can ke used (see H2).

P2: _Tyre_of Error (Dump_Called_frcm
On-Unit_cnly)

The type of error is identified in the
trace infeormation, in terms of the type of
on-unit entered and the reason for entry.
The on-code is also given, thus providing
further indication of the cause of the
conditicn. If the dump was called from an
EEROR on-unit, an error message should have
been generated before the dump. This again
will give the cause cf the error.

If no trace information has been
generated, the type of error can ke
discovered frcom the error code appearing in
the ONCA associated with the interrupt.

The method for finding the ONCA is
described in HS5.

P3:_ _Register Contents at_ Time of Frror
or_Dump_Invocation

If trace information has been generated,
the contents cf the registers must be found
from the save area in the DSA. The

174

— e -

addresses of all DSAs appear in the trace
information. The register contents.
reguired will depend on the situation.
PLIDUMP was called from an. on-unit, ‘the
register contents at the time the condition
was raised will be most useful, unless the
condition was raised in a library module.

if

: If the condition was raised in a library

module, the contents of the registers at
the point where the library call was made
will probably prove more useful.

The method of finding the register
contents is as follows:

1. Find the DSA of IBMDERR. (For release
4.0 and subsequent releases of the
compiler, this DSA contains X'EEEE' in
the second and third bytes of the save
area.) The value cf register 13 will
be found in the chainback field at
offset 4 of this DSA. The first byte
will contain the segment no. (propably
'FF') and can be ignored for
addressing purfposes.

If the interrupt was a program check
interrupt (sce figure 12.7), the
contents of registers 14 and 15 will
also be stored in the DSA, register 14
at offset ,'5C'(92) and register 15 at
offset '60'(96) from the head of the
DSA. .

Registers 0 through 11 will be stored
in the save area of the previous DSA,
starting at offset '14' (20).

If the interrupt was a software
interrupt, the registers will be
stored at offset 'C'(12) of the DSA
before IBMDERR's DSA in the order 14
through 11. See figure 12.7.

Discovering_ if interrupt_was_program_check
If trace information is
availakle, a check can be made on whether
IBMBEERA or IBMBERRE was called. IBMBERRA
is entered after program check interupts,
IPMBERRB after software interrupts. If no
trace information is available, the
simplest method of discovering if the
interrupt was a prcgram check interrupt is
to inspect bit 7 in byte X'56' (86) in
IBMDERR's DSA. This is set to zero for
program check interrupts, and to 1 for
other interrupts.

Finding registers_if interrupt _occurred_in
library routine: It on-unit was entered
from a library module, a search back
through the DSA chain to the first compiled
code DSA should be made. This can be
discovered from the trace information or by
following the backchain from IBMDERR's DSa
(offset 4 in s2ach DSA) until a procedure
block, begin block, or on-unit DSA is
found. This may be determined from flag

Software detected interrupt

DSA of block in which
interrupt occurred

Program check interrupt

DSA of block in which
interrupt occurred

> >
0
0
4 Backchain
4 Backchain 8
c Interrupt address from word 2 of PSW
8
Registers 14 through 11 at time of interrupt 14 Registers 0 through 11 at time of interrupt
44
Other DSA information
44 Other DSA information
DSA for IBMDERR
DSA for IBMDERR
0 0
4 Address of interrupt DSA
4 Backchain, register save area, address
of LWS, NAB, etc.
8 Register save area, address of LWS, NAB, etc.
50 Qualifier for 1/0, CHECK condition 54 Error code created
by IBMDERR
1st 2 bytes of error
54 code passed to 58 Interrupt code
IBMDERR
5C Register 14 at time of interrupt
60 Register 15 at time of interrupt
5C
Not used
68 Floating point registers O, 2, 4, 6
84
/I

Floating point registers are saved only if interrupt '
relates directly to a PL/I condition, and return may
be made to the point of interrupt

Figure 12.7. 1Information stored by IBMDERR after a program check and a software

interrupt

Chapter 12: Debugging Using Dumps 175

BYTE 1 PL/I CONDITION IF ANY BASE NO;

X'02" . ZERODIVIDE 320

X'03"' ‘ . FIXEDOVERFLOW ‘ 310
xX'ou ‘ SIZE , . 340
X'05"' CONVERSION o . 600
X'06"' OVERFLOW) 300
X'07' UNDERFLOW ; 330
X'08" STRINGSIZE ‘ 150
© X'09! STRINGRANGE 350"
X'0A! SUBSCRIPTRANGE , 520
X'0B' AREA , : ' 360
X'0C’' ERROR } 009
X'0D' FINISH © o004
X'0E"' CHECK 510
X'OF' CONDITION ; ' 500
x'10° KEY 050
X'11 RECORD 020
X'12° UNDEFINEDFILE 080
X'13" ENDFILE 070
X'14° TRANSMIT 040
X'15" NAME 010
X'16"' ENDPAGE 090
X'cp') , 9250
X'CF' - . 1000
X'D3' 9200
X'D5"' 3500
X'D7' 4050
X'D9' 5050
X'DF' 5000
X'E1' ‘ ; 9050
X'E3"' 1000
X'ES5! : , 4000
X'E7' no on-coce*
X'E9' 4050
X'EB' ' 0003
X'ED' 1000
X'EF' 1550
X'F1' - 1500
X'F3!' 2000
X'F5' : - 3768
X'F7! 3000
X'F9' o , , 3800
X'FB' ‘ ; . 13900
X'FD' _ ‘ 9000
X'FF' » 8090

* Permanent WAIT. Generates message and terminates.

Figure 12.8. Error code field lookup table

176

bits 4 and 5 of a DSA, as follows:

Bit 4 Bit 5 DSA

0 0 Procedure block DSA
0 1 Begin block DSA

1 0 Library DSA

1 1 On-unit DSA

The value of register 12 can only be
discovered in a DSA prior to a compiled
code DSA, as it is not stored by the
library when entering a routine. This means
that the dummy DSA always contains the
value of register 12. Register 12 should
point to the TCA, whose address is also
given at the head of trace information.

No_trace_information_generated: If no
trace information has been generated, the
register values on taking the dump will be
printed at its head. The address of the
DSA for PLIDUMP will be in register 13.

The. chainback can then be followed to find
the DSA for IBMDERR. The DSA for IBMDERR
can be recognized if an on-unit is
involved, because it will be the DSA before
the on-unit DSA. IBMDERR's DSA will always
be headed by a flag of hexadecimal '88?
meaning that it is a library DSA in LIFO
storage. To identify IBMDERR's DSA for
certain, register 15 of the previous
block's DSA must be inspected to see if it
points to the module IBMDERR. The positicn
of IBMDERR is shown in the linkage editor
maEg.

P4: The_ DSA_Chain

The addresses of the DSAs are given in a
PL/I dump if trace information and a
hexadecimal dump are requested. If trace
information is not requested, the address
of the DSA for the dump routine can. be
obtained from register 13 at the head of
the dump. The chainktack field is held in
the second word of the DSA. When the dunmy
DSA is reached, this chainback field will
te set tc zero. The DSA chain passes
through DSAs in LIFO storage and DSAs in
LWS.

See H1 and figure 12.10 for details of
how to fcllow the DSA chain.

B The ICA

The address of the TCA is given in a PL/I
dump. If 'B' (block option) is specified

in the dump-options character string, the
complete TCA (including the appendage) is
printed separately from the body of the
dump.

KEY AREAS OF A DOS SYSTEM DUMP

The method of finding the key areas of a
DOS system dump derends on finding the
partition save area. The partition save
area contains the c¢ld PSW and the register
values at the point of interrupt; from
these the key items can be identified. The
format of the partition save area is shown
in figure 12.9.

e e S e T e i T 2B e e e S e i e i 2 .

The partition save area immediately
precedes compiled code and is found in the
following manner. :

1. Use the linkage editor map to find the
absolute address of the start of the
program control section.

2. Look immediately before the control
section in the body of the dump. This
will be the start of the partition
save area. The partition save area is
120 bytes long and usually starts with
the characters 'NO NAME'. Normally it
starts at the head of background
storage, which is headed by the
letters ---BG---.

The contents of the registers and the

0old PSW are located in the partition save
area at the offsets shown in figure 12.9.

D1: _Address_of_Interrupt

The address of the interrupt can be found
frorm the second word of the PSW, which
gives the address cf the imnstruction
following the point of interrupt. ' To find
the associated statement number see H2.

Finding the statement number is not
likely to prove useful because of the
circumstances in which a DOS system dump is
generated. The address found will usually
be the address at which the error handler
was entered before the program check exit
was altered. The reason for entry into the
error handler is nct the cause of the dump.

Chapter 12: Debugging Using Dumps 177

10
14
18
1c
20
24
28
2C
30
34
38
3c

40

44

4C

54
5C
64

6C

Figure 12.9.

178

Partition ,save' area

Normally ‘NO NAME’

P.S.W.

Register

Register

10

Register

1

Register

12

Register

13

Register

14

Register

15

Register

Register

Register

Register

Register

Register

Register

Register

Register

Length reserved label area

Partition start time

Floating point register

Floating point register

Floating poinf registef

Floating point register

Partition

save are€a

To previous DSA

0 Flags Reserved

4 Backchain

8 Not used

Register save area (60 bytes) é

48 Address of library workspace

4C Segment No. NAB NAB points to the

next DSA only if it
isin LIFO storage
50 Segment No. End of prologue NAB and has the same

segment number

Space for automatic variables and temporaries.
Length depends on number and type of
variables declared in the associated block.

R13) meme— m‘————-
0 Flags Reserved
4 Backchain Current
DSA

- |

Figure 12.10. DSA chaining

D2:_ _Type of Interrupt D3: _Register Contents_at_the Point_of
Interrupt

The type cf interrupt can be found from the

first word of the PSW (see Principles_of These are printed at the head of the dump,

Operation for details). or can be found in the partition save area.

Chapter 12: Debugging Using Dumps 179

D4: _The DSA Chain

Register 13 should point at the most recent
DSA. The back chain can be followed from
offset '4' of each DSA.. See figure 12.10.

Pegister 12 should pecint at the TCA.

D6: _Finding Program Interrupt Key

{RIK)

The program interrupt key is held at offset
hexadecimal '2E' (46) from the start of the
communications region. It stores
information on where the interrupt
occurred; from this information it is
possiktle to decide which PSW to inspect for
the address of the interrupt.

Task_in_which PIK_value Relevant PSW
interrupt
occurred
Background X'10' 01d program PSW

Toreground 2 X'20' 014 program PSW

Foreground 1 X'30' 014 program PSW
I,/0 X*'50' 014 I/0 ESW
Supervisor X'60' 014 supervisor PSW

D7:__Finding the Communications_Region

The address of the communications region is
printed at the head cf a DOS system dump.

STAND-ALONE DUMPS

S1:__Finding Key Areas_in_Stand-Alone
Dumps o

From the linkage editor map, the address of
the end of the executable.program phase can
be identified. If the program is a
straightforward PL/I program, the TCA will
start at the first doubleword boundary
following the end of the executable programn

180

phase. 1If PL/I has been called from
assembler, COBOL, or FCRTRAN, the address
of the TCA may have been specified by -that
language. In either case, the TCA is
readily discovered. . From the TCA the dummy
DSA can be found. The flag byte of the
dummy DSA is set tc X'82'. The dummy DSA
can be located frcm a field at offset X'10!
(16) in the implementation-defined
appendage. (The address of the
implementation-defined appendage. is held at
of fset X*'28' (40) from the start of the
TCA.) The main prccedure DSA can then be
located and further information found by
following through the DSA chain. NAB
(offset X'4C' decimal 76) in the dummy DSA
always points to the main procedure DSA.

HOUSEKEEPING INFOKMATION fN'ALL DUMPS

H1: _Following the_ DSA Backchain

Each DSA holds a backchain address in the
second word. This word holds the address
of the previous DSA. The end of the chain
is marked by the dummy DSA whose first word
contains the fiag hexadecimal '82'. The
backchain in the dumrmy DSA points to the
external save area c¢r is zero if the
program was called from the systen.
P4 or D4 for finding the DSA chain).

(See

H2:_ _Associating Instruction with
Correct_Statement_and_ Program_3Block

Statement_ Number_and Program_Rlock
The statement number and entry point

"associated with the interrupt will normally

be given in a PLIDUMP. However, if they
have to be found by the programmer, he
should follow the method used by the error
message modules.

Statement number: It must first be
established whether the GOSTMT option is in
effect. This will be indicated in the
listing for the compilation. If the
listing is not available it will be flagged
in the compiled code DSA. (Flag bit 13. of
the DSA flags is set to *1'B.) If this bit
is not set the takle of offsets and
statement numbers may be available, ii this
is not available statement numbers and
offsets must be deduced from the object
program listing. The method of using the
table of offsets is described below under
the heading "Using the Table of Offsets".
If both statement numbers and the table of
offsets are availakle it will probably be
faster to use the table of offsets rather
than the statement number table.)

The statement number is found by use of
the DSA chain as described below:

1. Find the chain of DSAs. The most
recent DSA should be addressed by
register 13.

2. If the DSA found is not a compiled
code DSA, (flag bits 4 -and 5 set to
'00'B, '01'B or '11'B) the interrupt
was not in compiled code. If the
interrupt was in compiled code, the
interrupt address can be directly
asscciated with a statement number.

If the interrupt was not in compiled
code, the address at which ccmpiled
code vwas left must be discovered and
this address associated with a
statement number. To find the address
at which compiled code was left:

a. Chain back along the DSA chain
until a compiled code DSA is
reached (flag bits 4 and 5 set to
100*, '01', or "11'B).

b. The register 14 address saved in
the DSA (offset 12 X'C') will be
the point to which the library
module or other mcdule would have
returned if the call had been
successfully ccmpleted.

The address thus found is the address to
be associated with a statement number.

3. Chain back one DSA to the DSA before
the compiled code DSA that has been
discovered in 1 or 2 above. The
register 15 value im this DSA (offset
16 X'10') is the entry point of the
block. 1If this appears to give an
invalid result, check to see whether
the DSA is one of those used in
interlanguage communication (flag bit
7 set to '1'B and bit 0 of flags 2
(offset X'76') set to '1'B). If this
is the case chain back one more DSA
and try again.

4. At offset 8 frcm the entry pcimt of
the block, the address of the
statement number table will ke held.

5. Calculate the offset between the value
in the first word of the statement
number takle and the address for which
a statement number is required. If
the address for which a statement
number is required is less than the
address in the first word of the
statement number table, then either an
invalid branch has been made, or a
compiler generated subroutine is being
executed. If it is possible that a
compiler generated subroutine is being
executed return to the ccmpiled code

DSA and attempt to find a statement
number associated with the values held
first in register 6, and, if this
gives an invalid or improtable result,
then in register 14. TIf the second
word in the statement number table is
less than the ctfset between the
address for which a statement number
is required and the first word of the
statement number table, it is not
within the program control section and
an erroneous bkranch has been made out
of the progranm.

6. If the offset is more than X'7FFF' the
statement numter will be held in the
second or subsequent sections of the
table. Obtain the number given by
translating the offset into binary and
ignoring the last 15 bits and step
down this number of sections of the
table. (For example, if the offset
was X'8FFF', translate to binary =
1000 1111 1111 1111'B, ignore last 15
binary digits =1, therefore step down
one section of the table. If the
offset was X'18FFF' the binary would
be *0001 1000 1111 1111 1111'B.
Ignoring the 1% right hand bits leaves
"11'B therefore step down three
secticns of the table.)

The address of the second section of
the tabkle is held at offset X'8' in
the table, the address of the third
section is held at the head of the
second secticn, the address of the
fourth section at the head of the
second secticn and so forth.

7. When the correct section of the table
has been identified, search for the
first offset in the table that is
greater than or egual to the offset
that is being searched for. The
statement numker is in two-byte
hexadecimal format and immediately
precedes this offset.

Procedure_name: To find the entry point
name, a chainback is made beyond the first
procedure LSA found on the chain. Register
15 in the save area before this procedure
DSA will point to the entry point of the
procedure. (Procedure DSA have flag bits 4
and 5 set to '00'B. The register 15 value
is held at offset 16 X'10'.)

The entry is preceded by a one byte
field that holds the number of characters
in the name. This one byte field is in
turn preced2d by the entry point nanme.

Using_the_table of offsets: Statement
numbers can also be found by comparing then
with the offsets in the offset and
statement number tatle generated by the
compiler when the OFFSET option is

Chapter 12: Debugging Using Dumps 181

specified.

Offsets are held from each primary entry
point or a procedure or on-unit. To use the
table of offsets find the entry point used
by the program in the manner described
above. Find the primary entry point for
the procedure. (If the primary entry point
was not used look at the object prcgran
listing to see the relationship between the
entry peint used and the primary entry
roint.) Note, the offsets given are from
the point marked *REAL ENTRY in the object
program listing. This point is one byte
after the end of the primary entry point
name.

If the interrupt occurred in an on-unit
it may re necessary to discover the type of
on-unit entered before it can be
identified. This is done by inspecting the
DSA before the DSA of the on-unit. This
DSA will be for IBMDERR. At offset 84
(X'54') in this DSA the first byte of the
errcr code will be held. Compare this with
the values in figure 12.8. This will give
an associated PL/I condition. It will be
the on-unit for this condition that has
been entered. If there is more than one
on-unit for the condition, the on-unit
entered must ke deduced by studying the
dump, and source and object listings. If
the register 15 value appears to be invalid
this may be caused by rechaining in,
interlanguage processing {see chapter 13).
If this is possible, chain back one more
DSA and try again. (To check if this has
occurred see 3, above under "Statement
Numbers").

Compare address of instruction with linkage
editor map. This will give the name of the
control secticn for compiled code c¢r a
library module. If the address is not
included in the linkage editor map, the
address is probably in a transient routine,
unless an invalid branch has been made.
(See H11.)

H3:_ _Following_Calling Trace

The calling trace can be followed because
branches within the program are always made
on registers 14 and 15. Hence register 15
in each DSA save area points to the address
that was branched to from that block.
Pegister 14 points to the address to which
control passed when the bklcck was
completed. By comparing these values with
the linkage editor map, it is possible to
associate each DSA with the correct module
of code. By following the backchain of
DSAs (H1) it is possible to do this for
every DSA and so discover the calling
trace. The calling trace is printed in a
PL/I dump.

182

H4: Associeting LSA_with Block

DSAs are associated with code by finding
the register values in the register save
area (H7) and using the fact that all
branches are made via registers 14 and 15.
Register 14 in any DSA points to the
instruction after the point at which
control left that block. Register 15
points to the address at which the next
block was entered. By comparing these
addresses with the linkage editor map, the
DSA can be associated with the correct
block of code.

H5: Finding Relevant ONCA

When an interrupt has occurred in the error
handler and a system dump has been
produced, it is possible to discover the
information that the error handler would
have used to generate appropriate error
messages. The ONCA holds values for the
condition built-in functions. The
appropriate ONCA can be found in the
following manner.

1. Find the DSA before that of IBMDERR
(follow back the DSA chain until
register 15 in the sdave area points to
IBMDERR). See H1, H3, H7. 1If this is
a library DSA in library workspace
(flag bit 4 set to '1'B and flag bits
0 and 5 set to '0'B) continue to step
3.

2. Find the LWS addressed from this DSA.
This is held at offset X'u48' (72).

3. Find the offset from the LWS to the
CNCA. This is held at offset 2 in the
LWS.

4. Add the offset to the address of the
DSA in LWS.

Interpreting_the_ Error_code: The first two
bytes of the error code are held at offset
4 in the ONCA. These two bytes normally be
translated into an oncode which refers to
the type of interrupt. The meaning of the
oncode can te found in the language
reference manual for this ccmpiler. For

L/I conditions the first byte indicates
the PL/I condition that has occurred. (See
figure 12.8).

To translate the first two bytes of the
error code into the oncode:

1. Find the base numbker associated with
the value in the first byte (offset
X'54'), Figure 12.8 is a table of the
byte values and their associated Lbase

number. (Base values are in decimal).

2. Take the right hand five bits of the
second byte (offset X'55') and
translate these into decimal.

3. RAéd this value to the base number
found in 1 above. The result is the
oncode for the interrupt that caused
entry into the error handler.

Example:
Error code X'1266"

Look up base value = 80 (eguivalent PL/I
condition UNDEFINEDFILE)

Translate second tkyte to binary
X'66'=0110 0110 binary

5 right hand bits =0 0110=6 decimal
Oncode=6 +base value=86

H6: _Following the Chain of ONCAs

ONCAs are used to hold ccndition built-in
function values. They are chained
together, one being provided for every
level of interrupt. The cnainback field is
in the first word of the ONCA. The dummy
ONCA is marked by a chainback field of

Finding_Information from IBMDERR's

The infcrmation held in IBMDERR's DSA is
that which is used by the error message
modules for information about the error.

It can be useful if the messages have not
been generated, because the information can
be deduced from the DSA. The contents of
IBMDERR's DSA are shown in figures 12.7.
See H4 for associating DSAs with correct
cogde.

Interrurt Address: The address of the
interrupt that caused entry into the error
handler is held at offset 12 (X'C') in the
DSA preceding the error handler's DSA. To
find the statement number of the interrupt
see H2.

H8: _Finding_and _Interpreting Register
Save _Areas

Register save areas are held at offset
X*C'(12) in all DSAs, including DSAs in
L9S. Offsets and registers are shown in
figure 12.11. Each DSA holds the register
values as they were on exit from its block.

Note: Library routines store at least
registers 14 through 4, and up to registers
14 through 11; comriled code routines store
registers 14 through 12. Thus the address
of register 12 can always be found in the
dummry DSA although it may not be in other
DSAs. The contents of the register save
area in the DSA of the block that called
IBMDERR are slightly difterent frcm normal
if the interrupt was a program check
interrupt. See figure 1z.7.

H9: _Register Usage

RPegister usage is fully discussed in
chapter 2, "Compiler Output."™ A summary of
register usage, showing which registers are
always used for a rarticular purpose, is
given in figure 12.12.

DSA
0 Ffags
4 Backchain
8 Not used
c R14 (*)
10 R15 (*)
14 RO
18 R1 ﬁ;\:;i\;s stored by -
1c R2
20 R3
24 R4
28 RS
2C R6
30 R7
R oo Y
38 RO
3C R10
40 R11
44 R12 Stored by compiled code only

(*) Not stored if hardware interrupt occurs

Figure 12.11. The register save area

in the DSA

Chapter 12: Detugging Using Dumps 183

The free-area chain connects the areas of
non-LIFO dynamic storage that have been
used and freed, but have not been absorbed
into the major free area. See chapter 6,
"Storage Management." The chain starts at
offset 8 in the implementation-defined
appendage, which is addressed from offset
X¥28' (40) in the TCA. The end of the chain
is marked with a zero entry. The length of
each item is held at offset 0. The address
of the next free area at offset 4. If
there are no further free areas the word at

offset 4 is set to zero.

Register (Compiled code.

|Library usage

-4

(x) The contents of the program base
register are saved during in-line
record I/0 and TRT instructions

t

|

t

i —

{ (*%) Dedicated register, i.e., the

i contents remain unchanged

| throughout the execution of the

{ associated compiled code or library
| routine : .

L

-
| {
| {usage | ‘
l -
i RO | #ork register |Work register |
{ R1 {Work register |Work register |
| R2 |Program base {Work register |
l i (%, %%) | |
{ R3 |Static base |Program base |
! | (%) | (*x) I
| RY |Work register |(Work register |
| | (Temporary. base| |
| {if DSA>3896 | i
	bytes)	
RS	Work register	Work register
		(if used)
R6 {Work register	Work register	
{		(if used)
1 R7 {Work register	{(Work register	
{		(if used)
{ RS {#ork register	Work register	
]	(if used)	
R9	Work register	Work register
:	i (if used)	
{ R10	Work Tegister	Work register
{ B	(if used)	
i R11	Work register (Work register	
(I ((if used)		
R12	TCA pointer	TCA pointer
i ((xx) l (%)	
{ R13	Current DSA {Current DSA	
	pointer (xx)	pointer (xx%)
R14 {Branch	Branch	
i	register { register {	
{ R15 {Link register	Link register	
t		
{		
{		
J

Figure 12.12. Register usage

184

B TN e

If the interrupt occurred at‘an,addreség:
that is not mentioned:in the linkage editor
map, there are two possible explanations:

1. The interrupt occurred in a transient
module. : i .

2. An invalid brénch has bgen made.

To test whether the error is in a
transient module, the backchain should be
followed to see whether register 14 in the
previous DSA points to an area reasonably
close to the point of interrupt. If so, an
invalid branch can be discounted. Further
chain-backs should be made along the DSA
chain (H1) until a register save area is
found that contains a register 14 which
points to an area in the linkage editor
map. This will be the routine that called
the transient routine. It will usually be
possible to deduce which transient routine
is involved from the calling module and the
context of the code.

If the most recent DSA is that of
IBMDRIO the tramnsient routine will be one
associated with record I/0. The 5th, 6th,
and 7th letters of the name of the module
will be held in bytes 8-10 of the module.
The letters are most simply found by
inspecting the character translation of the
dump. The first of these letters will
always be R. The module will also be on a
transmitter chain that starts at a word
addressed from offset X'18' (24) in the TCa
appendage, which is addressed from
X'28' (40) in the TCA.

H12: _Block Structure of Prodgram

{(Static Backchain)

The block structure of the program can be
followed from the address held at offset
X'58' (88) in each compiled code DSA. This
address holds the address of the compiled
code DSA of the statically enccmpassing
block. The chain thus formed is known as
the static backchain.

H13: Forward Chain in DSAs

The forward chain in DSAs is not supported
by the ccmpiler. However, a forward chain
through the LIFO stack can normally be
followed by use of the NAB pointer. The
NAB pointer is held at offset X'4C!' (76)
from the head of each DSA. The last
pointer in the chain points to the major
free area. If the NAB pointer contains
anything except 'FF' in its first byte, the
chain cannot be followed, because it is not
contained in a single LIFO segment. The
address required is held in the last three
bytes of NAB; the first byte contains the
segment number (see C1). The forward chain
includes only those DSAs in the LIFO stack
and does not include any DSAs in LWS.

Hi4:_ _Action if Error_is_in_a_Library
Module ‘

If the source of an error is traced to a
library module, it may appear that there is
little that the programmer can do unless he
~has a listing of the library module.
However, the fact that the interrupt or the
error was discqvered during the execution
of a library module does not mean that the
library module itself was in error. Before
such a ccnclusion can be drawn, a check
must be made on the data that is being
passed to the module.

HA15: Discoverihq Contents of Parameter

Lists

Parameters are passed in a list of words
pointed to by register 1, except during
stream I/0. To find the positicn cf a
parameter passed to a prcgram, find the
value of register 1 in the save area of the
DSA (see H4) of the calling blcck.

- Register 1 will then locate the parameter
list. This can be compared with the static
storage listing. The name of the called
routine can be discovered (H3). The
correct parameters are given in the
appropriate library PLM.

H16: _Finding Main Procedure_ DSA

The main procedure DSA can be found by
following the backchain of DSAs to the
dummy DSA. The address of the main
procedure DSA will be given by the last 3
bytes of NAB in the dummy DSA. This is
held at offset X'4C' (76) in the dummy DSA.

The address of the dummy DSA is held at
offset X'10' (16) in the TCA appendage,
which is addressed from offset X'28'(40) in
the TCA. The dummy DSA can be recognized
by the presence of X'82' in the flag byte.

FINDING VARIABLES

The value of the variables in the progranm
at the point of interrupt can be discovered
by using offset map and the compiled code
listing as a guide to their addresses, and
then finding these addresses in the dunmp.
The nethod used depends on the type of
variable.

Yi:_ _Automatic_Variables

Automatic variakles can be found by using
an offset from the DSA of the block in
which they were declared. This information
appears in the variables offset map
generated when the compiler MAP option is
used. If the compiler MAP option has not
been used, the information can be deduced
from compiled ccde. (For finding the DSA
associated with the block, see Hd).

V2: _Static_Variakbles

Static variables are normally addressed by
an otffset from register 3. This offset is
given in the variakles otffset map generated
when the compiler MAP option is used. If
the compiler MAP option has not been used,
the oftset can ke deduced by studying the
listing of compiled code. The value of
register 3 can be found in the save area of
the DSA. (For finding the DSA associated
with the block, see HY).

V3:_ _Controlled_Variables

As described in chagter 2, internal
controlled variables are addressed by an
anchor word that is held in the static
control section. This can be identified
from compiled code, where it will normally
be addressed by an cftset from register 3.
Typical code would be: .

From this it can be deduced that the
address of K is held at offset X'88' from
register 3. -

External contrclled variables are

Chapter 12: Debugging Using Dumps 185

addressed from control sections that are
shown in the linkage editor map. The ;
variable starts at an offset of '8' fronm
the address held in the control section.
The first four bytes contain a pointer to
previous allocations of the variable, or
are zerc if there are no previous
allocations of the variable.

V4: Based Variahles

Based variables are located by finding the
value of the defining pointer. This value
is found by using one of the methods
described above to find static, automatic,
or controlled variables. If the fpcinter is
itself lbased, its defining pointer must be
found and the chain followed until the
correct value is found.

Typical code would be the following:
For X BASFL (P), with P AUTCMATIC

58 60 D 088 L 6,P
58 EO 6 000 L 14,X

P is held at offset X'88' from register
13, and this address points at X.

Care must be taken when examining a based

variable to ensure that the pointers are
still valid.

V5: _Area_Variables

Area variables are lccated in cne of the
ways described above, according to their
storage class.

Typical code wculd be:

For are€a variable A declared AUTOMATIC

41 6C D 088 LA 6,7

The area would start at offset X'88!
from register 13.

V6: _Variatles in Areas

Variables in areas are found by locating
the area and then using the offset to find
the variable.

186

CCNIROL BLOCKS AND FIELDS

For simplicity, the methods of finding
various control blocks are placed in an.
alphabetic table, Details of the control
blocks can be discovered from the relevant
chapters (see index) or from appendix B.

As well as control blocks, various other
items are included in the 1list. Where’
necessary, cross-reference is made to other

/sections in this chapter.

Quick Guide to Identifying Control

Automatic variables see "Variables®

Backchain
DSA backchain
ONCA backchain

offset X'4' in DSA
offset X'0' in ONCA

BOS offset X'8' from TCA

Controlled varjables see "Variables"

DED ; deduced from object
) program listing

addressed from
offset '8' from
entry point of main
procedure

Diagnostic statement
table

DFB addressed from
offset X'40°' (64) in
TCA

DSA ’ addressed by
register 13 (see P3
and D3)

DTF : addressed fron
offset X*'18' (24) in
'FCB

ENVB addressed fron

offset X'14' (20) in

FCB

EOS ‘ offset X'C' (12) in
TCA

Event variable deduced from object

program listing and

knowledge of

parameter lists of

I/0 and wait modules

FCB identified in PL/I
dumps. Open file
statement listing.

Flow statement table

Filename

Free-area chain

Locator/descriptor

LwS

Module name (when
interrupt occurs in
library module)

NAB

ONCA

CNCEB - start of
dynamic CNCB
chain

- first static
CNCB

On-cells

0CB

Psw

Parameter lists

Register values

RCB

Statement fregquency
count table

addressed from
offset X'4C' (76) in
TCA

addressed from
offset X*'10' (16) in
FCB

offset '8' in
implementation-
defined appendage,
which is addressed
from offset x'28!
(40) in TCA

deduced frcm object
program listing

addressed from
offset X'48' (72) in
every DSA

comparing address of
error with link-edit
map

offset X'4C?
DSA

(76) in

the offset of the
associated CNCA is
held in a halfword
at offset '2' in
each section of LWS

offset X'60' (96) in
DSA
offset X'5C* (92) in

DSA

addressed fronm
offset X'70' (112)
in CSA

deduced from object
program listing and
parameter list of

open module, IBMDOCL

see D2

" object program

listing and static
storage map

See P3 and D3
object program

listing and static
storage map

X *'80' in the TCA

Static storage

SIOCB

Symbol table
Symbol table vector
Start of program

Segment number

TCA

Variables
automatic

based

controlled

static

area

Variables in areas

Chapter 12:

addressed by
register 3 in
compiled code. See
P3 and D3

object progran
listing

Static listing
Static listing
linkage editor map
first two bytes of
BOS, EOS, or NAB.
'FF'=1, '"FE'=2 etc.*
addressed by

register 12.
and D3

See P3

offset (shown in
variables offset
map) from DSRA of
block in which they

.are declared. See

LA

address of the
pointer must be
deduced’ from the
object program
listing. This gives
the address of the
variable. See V2

address referenced
in compiled code
holds latest
allocation of the
variable. A
chain-back through
the previous
allocation can be
made using the
header chain. See
chapter 2, and V3

deduced from offset
from register 3 in
variables offset
map. See V4

as for other
variables depending
on storage class.-
See V5

find address of
area. Find variable
from offset within
areas shown in
compiled code. See
vé

Dekugging Using Dumps 187

*When the first two bytes of EOS and BOS
are greater than NAB, it means that an
extra segment of storage has been used, hut
not yet freed. See chapter 6, "Storage
Management.™"

188

Chapter 13: Interlanguage Communications

The DOS PL/I Optimizing Compiler allows
subroutines compiled on certain IBM COBOL
or FORTRAN compilers to be used in PL/I
programs compiled on the optimizing
compiler. Similarly, it compiles PL/I
programns that can be run as subroutines of
either COBOL or FORTRAN programs.

Facilities are also provided to overcome
the addressing problems that arise when
passing arquments to assembler language
routires. These facilities are described
under the heading "Options Assembler" later
in this chapter.

A full description of how the ‘
interlanguage communication facilities can
be used is given in the language reference
manual and the programmer's guide for this
compiler. A detailed description of the
library routines involved is given in the
resident library PLM. This chapter
explains the basic design principles used.
It will assist in understanding the
situation in main storage during the
execution of a program involving
interlanguage calls.

Background to Interlanguage
Communication

The major problems involved in allowing
procedures written in PL/I to be used with
programs written in COBOL or FORTRAN are:

1. The existence of different data types
in the 4different languages.

2. The different methods of holding data
aggregates in the different languages.

3. PL/I's use of locators when passing
areas, arrays, strings, and structures
as arqguments.

4. The need for programs compiled on PL/I
and FORTRAN compilers to have a
specially initialized enviromment in
which to operate.

The first of these problems must be solved
by the programmer himself, by ensuring that
arguments passed between the routines are
of suitable data types. (Information in
the lanquage reference manual for this
compiler enables the programmer to do
this.)

The other problems mentioned above are

handled automatically by the interlanguage
communication facilities of the compiler.
These problems are summarized below.

DIFFERENCES IN DATA AGGREGATES

Structures in PL/I and COBOL, and arrays in
PL/I and FORTRAN, are held in different
manners.

COBOL structures are mapped as follows.
Working from the start, each item is
aligned to its required boundary in the
order in which it is declared, the
structure starting on a doubleword
boundary.

PL/I structures are mapped by a method
that minimizes the unused bytes in the
structure. Basically, the method used is
first to align items in pairs, moving the
item with the lesser alignment requirement
as close as possible to the item with the
greater alignment requirement. The method
is described in full in the lahguage
reference manual.

Take, for example, a structure
consisting of a single character and a
fullword fixed binary item. The fullword
binary item has a fullword alignment
requirement; the character has a byte
alignment requirement. In PL/I, the
structure would be declared:

DCL 1 a4,
2 B CHAR (1),
2 C FIXED BINARY (31,0);

and would be held thus:

Lle———

In COBOL, the structure would be declared:

01 a,
02 B, PICTURE X, DISPLAY.
02 C, PICTURE S9(9), COMPUTATIONAL.

and would be held thus:

T K . .
| B'l 3 unused bytes | C
L

[

Chapter 13: Interlanguage Communication 189

Calling routine

Call to routine in
other language

|
lv,;

apparent path
|

I
|
|
|
|
|

Called routine

Routine of other language
carries out required
task and returns

I
v
I
!
|
[
I

apparent path

Calling routine

Continuation of procedure in
original language

real
path

real
path

real
path

real
path

_Intervening code

‘Save old environment,

set up new environment.
If necessary, provide dummy
data aggregate arguments

Intervening code

Restore former environment.
Where necessary, assign
values in dummy data
aggregate arguments to

real arguments

Figure 13.1. Priﬁéiples of\interlanguage communication

190

In FORTRAN, multidimensional arrays are
held in column-major order. In PL/I, they
are held in row-major order. Thus the
second element in a FORTRAN two-dimensional
array has the subscript (2,1), whereas the
second element in a PL/I two-dimensional
array has the subscript (1,2).

Structures are not available in FORTRAN.
The equivalent of arrays in COBOL are held
as in PL/I.

USE OF LOCATORS

When passing arquments, PL/I passes the
address of locators for areas, arrays,
strings, and structures rather than the
address of the items themselves. This is
because the routine that receives the
arguments may require information about
bounds or sizes of the data passed, and
this is accessible through the locator.
Other languages, however, expect the
address of the data. The correct type of
argument list must therefore be set up when
an interlanguage call is made.

DIFFERENCES OF ENVIRONMENT

IBM FORTRAN compilers and the PL/I
optimizing compiler rely upon
initialization routines to set up an
environment in which the compiled code
routines can operate. In FORTRAN, the main
task of the ipitialization routine is to
issue a STXIT macro imnstruction to initiate
the FORTRAN error-handling scheme. 1In
PL/I, the initialization routines prepare
for the PL/I error-handling scheme and also
prepare the way for dynamic storage
allocation. Register 12 is pointed at the
TCA, which is used for addressing a number
of housekeeping fields and library
routines. Register 13 is pointed at a DSA
which contains a standard save area, a NAB
pointer pointing to the next available byte
in the LIFO stack, and various other
housekeeping fields. (See chapter 1 and
chapter 5 for a discussion of the PL/I
environment.)

When PL/I is called from either a COBOL
routine or a FORTRAN routine, the PL/I
environment must be set up before the
program can be run. Similarly, when PL/I
calls another language, the environment
suitable for the program that has been
called must be set up.

Chapter 13:

- the PROC or ENTRY statement.

THE BASIC PRINCIPLES OF INTERLANGUAGE
COMMUNICATION

The method used to solve the problems
outlined above is to insert code
immediately before and immediately after
the execution of a routine in a different
language. This code alters the environment
and, where necessary, sets up dummy
aggregate arguments to and from which the
values can be assigned. The handling of
the environment is done by three
interlanguage housekeeping routines that
are held in the resident library. Data
aggregates are handled by compiled code.
Figure 13.1 illustrates the basic
principles.

The interlanguage facilities allow any
number of calls to be made, and calls to
both COBOL and@ FORTRAN routines can be made
in the same program. Thus PL/I can call
COBOL that calls PL/I that calls FORTRAN;
FORTRAN can call PL/I that calls COBOL, and
so on. All calls must, however, be made
either to PL/I or from PL/I. Calls cannot
be made directly between COBOL and FORTRAN.
Options allow the programmer to specify
that PL/I interrupt-handling facilities
will be available through the COBOL or
FORTRAN routines for those program checks
that are not handled by COBOL or FORTRAN,
and also allow the programmer to specify
whether he wishes data aggregates to be
automatically re-formatted when passed as
arquments. (The programmer may wish to
carry out the re-formatting himsel€.) The
rules involved are fully described in the
language reference manual. Briefly, they
are as follows. For a PL/I procedure to
call a COBOL or FORTRAN routine, the name
of the routine must be declared as an
external entry point with the option COBOL
or FORTRAN in the OPTIONS attribute. If
the programmer wishes to take advantage of
the PL/I error-handling or interrupt-
handling facilities, the INTER option must
be included in the declaration. When a
PL/I procedure is to be called by COBOL or
FORTRAN, the keyword COBOL or FORTRAN
should be included in the OPTIONS option of
To override
the creation or remapping of dummy
arguments for aggregates when calling
FORTRAN or COBOL, or to override the
creation or remapping of dummy parameters
when being called from FORTRAN or COBOL,
the NOMAP, NOMAPIN, and NOMAPOUT options
can be used.

The compiler also allows the
specification of the COBOL option in the
ENVIRONMENT attribute of a PL/I file. This
is separate from the interlanguage
facilities described above, and is a method
of allowing data sets produced by programs
of one language to be used by programs of

Interlanguage Communication 191

SOUWRCE LISTING

1 P13P2:PRICS
2 1 . DCL FRED DPTIONS(COBOL),
1 STRUCTURE,

2 € CHAR (1),

2 D FIXED BINARY (31,0};
31 CALL FRED(STRUCTURE);
& 1 END;
OBJECT LISTING

* STATEMENT NUMBER 3

00CC6A 41 0N O 0C8 LA g.g;c:éo;”
000C6E 58 10 D L4C L ' '
000072 1E C1 ALR 0,1 Get VDA for dummy
000074 55 GC C 20C cL €,12(0,12) arguments
000678 47 DO 2 P18 BNH CL.4
COZ07C 58 FC C 048 L 15,7210,12)
occesc 05 EF BALR 14,15
0CLO82 CL.4 EQU *
0Co082 5C GO D 04C ST C:76(0413) Place new value in NAB
20C086 41 11 0 00C LA 140(1,0)
GCOC8A 50 10 D 0A8 ST 1,168(0,13)
000GBE D2 C3 D 088 D GBR MVC WKSP.1+16(4),STRUC
TURE.C
000094 58 80 D 88 L 8)WKSP.1416 .
0C0C98 D2 €3 1 00C D (88 MVC STRUCTURE~179(4),w ¢ Move structure into dummy
KSP.1+16
0CCO9E 58 7C D 0B4 L 71 STRUCTURELD
C330A2 50 70 1 004 ST 714 (Cyl)
30ICA6 58 FO 3 00C L 15,A.+ IBMBIECA)
9CICAA 18 91 LR 9,1 Branch to interlanguage
OCGOAC €5 EF BALR 14,15 housekeeping routine
C00GAE 5C 9C 3 C3C ST 9,48(C y3)
003CB2 96 80 3 C3C a1 48(3),X180° Set up
CGCOB6 1B 55 SR 5,5 "
C000B8 41 1C 3 G30 LA 1,48(C,3) argument list
000CBC 58 FC 3 034 L 15,52(0,3)
18 LR 6,9
gggggg 5 E: BALR 14,15 Branch to COBOL routine
00C0C4 58 FC 3 C1C L 154A.. IBMBIECC Branch to interlanguage
0000C8 05 EF BALR 14415 housekeeping routine
0COGCA D2 03 D 088 9 0CO MVC WKSP.1+16(4)},STRUC
TURE-179
0000DC 58 FC D 088 L 15,WKSPo1416 Move values from dummy to
00C0D4 D2 €3 D CB3 D (88 MVC STRUCTURE.C(4) yWKS Jreal arguments
: P.1+16
000CDA 58 €0 9 004 L 614(049)
COZGDE 50 6C D

cB4 ST 6, STRUCTURELD

Figure 13.2. Typical code when PL/I calls COBOL or FORTRAN routine

the other lanquage. The use of the COBOL
option in the ENVIRONMENT attribute is
described in the last section of this
chapter. ‘

PL/I_Calls FORTRAN or COBOL

When the calling program is PL/I, the
compiler generates in-1line code and library
calls to handle the environment and data
aggreqgate problems and places the code
before and after the call to a program of a

qifferentklanguage. The order of events
is:

1. gefarrange détafaggregate arquments,
}f necessary, by creating and
initializing a dummy of the correct.
format. TEE

2. call the appropriate interlanguage

192

6.

“housekeeping routine to save the PL/I

environment and prepare for the other
program. :

Call the required COBOL or FORTRAN
routine passing a parameter list which

~does not use locators.

Call the‘interlanguagevhousekeeping
routine to restore the PL/I
environment.

If necessary, assign the values of the

dummy data aggregate to the PL/I data

aggregate.

Continue processing in the normal
manner.

A typical code sequence illustrating the
above process is shown in figqure 13.2.

Encompassing procedure called by COBOL or FORTRAN

Save calling environment.
Establish PL/l environment.
Set up dummy data aggregate parameters, if necessary.

Call required procedure.

Required procedure

established by encompassing procedurg.

Restore environment of calling program.

Figure 13.3.

FORTRAN or_ COBOL_Calls PL/I

When PL/I is called from another language,
the method used is different. The code to
handle environment and data aggregate
problems cannot be included in the calling
program, as this has been compiled in the
normal manner by a COBOL or FORTRAN
compiler. 1Instead the code is placed in
the called program. This is done by the
conpiler generating two nested PL/I
procedures. The outer procedure is the one
that is actually called by the other
program. It carries out the housekeeping
duties, calling the interlanguage
housekeeping routines to set up or restore
the PL/I environment, and producing
suitable dummy aggregate parameters if
necessary. The inner procedure is compiled
in the normal manner, called by the outer
procedure, and executes the object code
corresponding to the PL/I program.’
Throughout this chapter the outer procedure
is called the encompassing procedure and
the inner procedure the required procedure.
The system of nested procedures is
illustrated in figure 13.3.

Chapter 13:

Carry out required tasks in PL/l environment

Assign values of dummy data aggregates to correct aggregates.

Nested procedures used when COBOL or FORTRAN calls PL/I

Throughout the remainder of this
discussion, the first procedure entered in
a job or jobstep, which would be known in
PL/I as the main procedure, is referred to
as the principal procedure. This is
because there is no COBOL or FORTRAN term
equivalent to "main procedure" in PL/I.

When PL/I is called from COBOL or
FORTRAN, the PL/I environment may already
have been set up and may need restoring
from the information that has been saved.
This can happen in two circumstances.

1. The principal procedure in the job or
jobstep may have been a PL/I main
procedure which called FORTRAN or
COBOL, which in turn called PL/I.

2. There may have been a previous call to
PL/I in a job or jobstep whose
principal procedure is in COBOL or
FORTRAN. In this situation, the PL/I
environment is retained until the
calling routine itself is completed.
This speeds execution of other calls
to PL/I routines.

When the PL/I eénvironment has already

been established, it can be restored by
pointing registers 12 and 13 at the TCA and

Interlanguage Communication 193

Encompassing routine compiled with ESD reference to PAYROLL

Save registers of calling routine
Call interlanguage housekeeping routine

Set up TCA etc.

Rearrange chaining of save areas

Return to encompassing -routine

Call PAYROLL

Call interlanquage housekeeping routine

Return to calling routine
Figure 13.4.
principal procedure

the current DSA respectively, and resetting
the program check exit and program mask so
that program checks are passed to the PL/I
condition- handling modules. However, on
the first call in a program with a
principal procedure in COBOL or FORTRAN,
the PL/TI environment must be completely
initialized. This involves acquiring
storage for the program management area and
for dynamic storage allocation. This
storage is known as the ISA(initial storage
area) and is described in chapter 6.

The area used for the ISA will be that
part of the partition that is not taken up
by the executable program phase, unless an
area has been assigned, in either a COBOL
or FORTRAN routine, by use of a call to
-PLISA. (PLISA is described later in this
chapter.) Space is also allowed in the
high-address end of the partition for the
DTF and buffers for SYSLST.

Sequence of Events_when PL/I is called_from
FORTRAN or COBOL: When PL/I is called from
FORTRAN or COBOL, the routime that gets
control is the encompassing PL/I routine.

194

 IBMDPIR - PL/I initialization routine

Interlanquage housekeeping routine (entry point IBMBIEPA)

Call PL/TI initialization routine IBMDPIR, if PL/I environment not set up

Issue STXIT macro instruction to initialize PL/I error handling
Acquire bSA for encompassing routine PAYROLL

Produce dummy data aggregate of correct format if necessary

PAYROLL (procedure required by calling program)

Functioning in normal PL/I environment, so no special coding required
Interlanguage housekeeping routine (entry point IBMBIEPC)
Issue STXIT macro instruction to restore calling program's error-handling mechanism

Assign values in dummy data aggregate to correct data aggregate.

Action when setting up PL/I environment on call from COBOL or FORTRAN

This routine is given the name of the
procedure called from COBOL or FORTRAN, and
appropriate ESD references are generated.
The subsequent sequence of events depends
on whether or not the PL/I environment has
been previously initialized. The sequence
is given below and illustrated in figures
13.4 and 13.5.

1. The encompassing routine is called by
COBOL or FORTRAN and:

a. Saves the registers of the calling
progranm.

b. Calls the interlanguage
housekeeping routine, passing the
interlanguage routine the size of
the DSA that the encompassing
routine itself will require.

2. The interlanguage housekeeping routine
then:

a. Tests to see if the PL/I environ-
has been established previously
and can be restored.

b. If possible, restores the PL/I
environment and returns to the
encompassing routine.

to indicate which environments have been
established, and to save environment and
interrupt information.

c. If the PL/I environment has yet to
be initialized, the housekeeping
routine calls IBMDPIR, passing it
an address in the interlanguage
housekeeping routine, to which
control will return. Control
blocks are set up to handle the
housekeeping problems. Save areas
are rechained so that the save
area of IBMDPIR (dumimy DSA) comes
before the save area for the COBOL
or FORTRAN calling progranm.
Consequently, the PL/I environment
will not be lost until the calling
program itself is finished.

Module IBMDIEP inserts a short
save area and an interlanguage
save area, and IBMDPII creates a
dummy DSA, all of which are left
in the DSA chain (see figure
13.5). These save areas are
specially created and used to
return control to the
interlanguage housekeeping routine
before and after the execution of
IBMDPIR on termination. Control
is then returned to the
encompassing procedure.

The encompassing procedure reformats
data aggregate arguments if necessary,
sets up locators where they will be
expected by PL/I, and calls the
required PL/I routine.

The required PL/I routine carries out
the required operations and returns
control to the encompassing procedure.

The encompassing procedure reassigns
the data aggregate arguments, if any,
and calls the interlanguage
housekeeping routine.

The interlanquage housekeeping module:
a. Saves the PL/I environment.

b. Restores the environment of the
calling progran.

1.

2.

A control section included in
each interlanguage
housekeeping routine. The
control sectiomn consists of
two words. The first word
contains a pointer to ZCTL (see
below). The second word
contains three flags: COBOL
and FORTRAN flags indicate
whether the COBOL or FORTRAN
environment has been set up
and still exists; the third
flag is a stack flag which
indicates whether a call has
been made to PLISA to indicate
where the ISA should be
placed.

IBMBILC1

ZCTL A control block generated on
the first interlanguage call
and retained until the PL/I
environment is discarded, or
until the end of job. ZCTL is
set up in the high-address end
of the area used for the ISA.
It is set up as non-LIFO
dynamic storage when PL/I
calls FORTRAN or COBOL. When
PL/I is called from COBOL or
FORTRAN, ZCTL is set up before
any of the PL/I ehvironment is
established; however, it is in
the position that would be
occupied by non-LIFO dynamic
storage, although it is not in
the ISA.

Interlanguage VDA

This is a control block that
is generated in a VDA in the
LIFO stack for every call to
COBOL or FORTRAN, or
initializing call to PL/I. It
is used to retain register 13
and to retain COBOL and
FORTRAN interrupt information
during the execution of nested
calls.

interlanguage communication.

7. Control is returned to the

encompassing routine, which, inm turn,

returns control to the original
FORTRAN or COBOL calling procedure.

CONTROL BLOCKS IN INTERLANGUAGE
COMMUNICATION

Three control blocks are used during

They are used

Chapter 13:

Figures 13.6 and 13.7 show how these
control blocks are used in a series of
interlanguage calls that start from PL/I
and FORTRAN principal procedures
respectively.

SPACE FOR PL/I DYNAMIC STORAGE AND
PROGRAM MANAGEMENT AREA

Unlike FORTRAN or COBOL, PL/I requires
space for dynamic storage allocation and

Interlanguage Communication 195

SAVE AREA CHAINING

Standard save area of outer
procedure/calling routine (if any)

COBOL or FORTRAN calling routine save area

— (Save area 2 in ZCTL)

Short save area

Interlanguage routine save area

PL/1 initialization routine save area

Figure 13.5. Chaining of save areas when PL/I is called from COBOL or FORTRAN

PL/l encompassing procedure save area

PL/I required procedure save area

Rearrangement of save area chaining takes place after the
firstcall to PL/I, so that the PL/I environment is not discarded
until the calling routine itself is finished.

Save areas thatreturn control to the PL/| initialization routine
and interlanguage housekeeping routine are placed before the
calling routine. (The numbers 1-7 in the diagram show the
order of backchaining).

principal procedures.

196

for a program management area. These areas
are an important part of the PL/I
environment and are set up during
initialization of the ISA.

The default action of the PL/I
initialization routine is to set up the ISA
in that part of the partition that is not
taken up by the executable program phase,
allowance being automatically made for a
buffer and a DTF for SYSLST. Consequently,
there is no need to call PLISA if only
SYSLST is used for I/0 by FORTRAN.

However, the programmer in FORTRAN or COBOL
has a2 method of overriding this action by a
call to PLISA. In the call to PLISA, a
FORTRAN or COBOL variable must be named and
a length given. The ISA will then be set up
at an address starting at the first
doubleword in the variable, and taking up
an area large enough to hold the specified
length starting on a doubleword. This
length should not be greater than that of
the variable, or other parts of the COBOL
or FORTRAN program will be overwritten by
the ISh.

This facility 1is necessary because
FORTRAN I/0 buffers use space outside the
executable program phase and can
consequently overwrite or be overwritten by
the ISA. However, when the area to be used
for the ISA is included in the executable
program phase, as it will be if a FORTRAN
or COBOL variable is used, the area will be
automatically protected from overwriting.
The facility is available in COBOL
programs, since these programs may call
PL/I, which may in turn call FORTRAN.

Since the ISA is set up on the first call
to PL/I, the problem of overwriting with
FORTRAN buffers arises in this situation,
unless the area is specified before the
first call to PL/I.

A call to PLISA goes to a section of the
interlanquage housekeeping routine of which
PLISA is an alias. This routine sets a
flag in IBMBILC1, to indicate that am area
has been designated for the ISA, and alters
a parameter list for IBMDPIR in such a way
that the length and address of the largest
area that can be bounded with doubleword
boundaries inside the declared length are
placed -in the parameter list.

When the PL/I interlanguage housekeeping
routine IBMDIEP is called, it tests to see
if the stack flag is on. If the flag is
on, the ISA is set up in the area
designated in the PLISA call.

Handling Changes of Environment

Because the environments required for the

Chapter 13:

various languages differ, they are handled
by three distinct library modules. These
nodules are known as interlanguage
housekeeping modules.

Three modules are involved in the
management of housekeeping during
interlanguage communication.

1. IBMDIEC: <COBOL when called from PL/I

2. IBMDIEF: FORTRAN when called from PL/I

3. IBMDIEP: PL/I when called from FORTRAN

or COBOL.
Each module has a number of entry points to
deal with various situations, and each is

called immediately before and immediately
after the program that is required.

COBOL WHEN CALLED FROM PL/I (IBMDIEC)
When calling COBOL, IBMDIEC carries out the

following tasks:

Before Entry to COBOL_ Program

(IBMBIECA, IBMBIECB)

1. Test to see if this is the first
interlanguage call; if so, set COBOL
flag in IBMBILC1 and set up ZCTL.

2. Acquire interlanguage VDA and store
register 12 in ZCTL, register 13 in
the VDA. Write null (zero) error
information in ZCTL.

3. If INTER option not specified (i.e.,
entry point IBMBIECA), issue STXIT
macro instruction and set program mask
so that errors will be handled by the
supervisor. Return to compiled code.

4. If INTER option is specified (entry

point IBMBIECB), issue new STXIT macro
instruction and return.

On_Return from COBOL_ Program (IBMBIECC)

The following ‘actions take place on return:

1. A STXIT macro instruction is executed,
which results in the program check
exit being set to pass control
directly to the PL/I interrupt
handler. EN

2. The first word of the interlanguage

Interlanguage Communication 197

the COBOL routine.

R12

interrupt handling information

‘l Initial situation : Fin
IBMBILC1 is set up as a control section by the PL/I interlanguage |
routines. Its first word and flags are initially zero. IBMBILC1 IBMBILC1 ZCTL ZC

Zero //' Address of ZCTL
Zero Zero X
1 i
\ /
COBOL FORTRAN
flag flag
IBMBILC1 ZCTL VDA (First)
2 Call FORTRAN from PL/I (IBMBIEF) FO
The compiler generates a call to the interlanguage communications
routine. This routine: Wh
1. Sets up ZCTL after testing for zero pointer in IBMBILC1. X to
Acquires an interlanguage VDA. FORTRAN R13 1.
2. Sets ZCTL pointer to interlanguage VDA, and IBMBILC1 interrupt handling 2
pointer to ZCTL. . information 3.
3. Sets FORTRAN flagin IBMBILC1. Saves R12 in ZCTL,
R13 in interlanguage VDA. 4
4, Calls FORTRAN library to initialize FORTRAN SPIE :
5. Resets program check exit as required.
6. Returns to compiled code, which calls FORTRAN
procedure.
; IBMBILC1 ZCTL VDA (First)
3 Call PL/i from FORTRAN (IBMBIEP) /V pL
The PL/1 program, because it is declared with the option
FORTRAN, will have been compiled inside an encompassing Wh
procedure. The encompassing procedure is the one called by to
FORTRAN. The encompassing procedure calls the inter- X cal
language communications routine IBMBIEP, which: FORTRAN R13 ma
1. Checks IBMBILC1 to see if either FORTRAN or COBOL interrupt handling of
flag is set. As one flag is set, restores registers. information ins
2. Issues PL/I SPIE and STAE and stores interrupt handling FORTRAN cur
information of calling program in interlanguage VDA. ; ;
Control then returns to thg gnc%mpassing progugam,g which calls !n‘;errupt'handllng FC
the required PL/I program. R12 information Th
sin
pre
. 5 .
4 Call COBOL from PL/I (IBMBIEC) IBMBILC1 ZCTL VDA (Second) VDA (First) cC
The PL/I program will contain a call to the interlanguage routine
IBMBIEC, which: - Th
1. Sets up another interlanguage VDA, points ZCTL to this X X im|
VDﬁ, and places the old value of ZCTL's pointer in the rot
VDA.
2. Stores R13 in the new VDA. iﬁ\?elz:;:?)?:\\landlin R13 R13 E:
3. Issues.a SPIE so that error handling will be as requested information 9
by PL/I program. PL
Control is then returned to compiled code, which then calls FORTRAN

Figure 13.6. Example of chaining sequences (PL/I principal procedure)

198

Final situation

IBMBILC1 IBMBILC1 ZCTL ZCTL is retained until program is completed.

Zero //v Address of ZCTL
Zero Zero X
1 1

COBOL FORTRAN

flag flag

IBMBILC1 ZCTL VDA (First)
FORTRAN returns to PL/i (IBMBIEF)
When control returns from a FORTRAN procedure, a call is made

X i to the interlanguage communication routine IBMBIEF, which:

FORTRAN R13 1. Moves the pointer in the VDA to the first word of ZCTL.

interrupt handling 2. Issuesa PL/I SPIE macro.

i i 3. Issuesa PL/I STAE macro leaving the previously-stacked

FORTRAN STAE for possible future use.
4, Returns control to compiled code.
R12
IBMBILC1 ZCTL VDA (First)
PL/1 returns to FORTRAN (IBMBIEP)
When the required PL/I procedure is finished, it returns control
X to the encompassing procedure. The encompassing procedure

FORTRAN calls the interlanguage routine IBMBIEP, which issues a SPIE

interrupt handlin R13 macro instruction to restore the error-handling situation to that

. pt 9 of the calling routine. The information for the SPIE macro
instruction is retrieved from the interlanguage VDA. The

FORTRAN current PL/I STAE is canceled, leaving the previously stacked
interrupt handling FORTRAN STAE in control.

R12 information The interlanguage routine returns control to the PL/I encompas-
sing procedure, which then returns control to the FORTRAN
program.

IBMBILC1 ZCTL VDA (Second) VDA (First)
COBOL returns to PL/I
The COBOL program returns to the PL/I program, which
X X immediately calls the interlanguage routine IBMBIEC. This
routine rearranges the chain by placing the word in the most

FORTRAN R13 R13 recent VDA in the first word of ZCTL. It then issues a SPIE

interrupt handling macro instruction to restore the PL/I error-handling situation.

information
FORTRAN PL/! compiled code then continues.
interrupt handling information

R12

al procedure)

Initial situation

Situation on return

Initial situation

Situation on return

4

IBMBILC1 IBMBILC1 2CTL PARTITION
“ Address of ZCTL Exists for use TCA etc.
if PLISA has
Zero l Zero I I been called Dummy DSA
_/ .
First VDA ISA
FORTRAN flag SR
FORTRAN principal procedure calls PL/|
PARTITION
TCA etc.
IBMBILC1 ZCTL VDA (First} Dummy DSA
7 First VDA
| X ! - 1SA
Encompassing DSA
FORTRAN f13
interrupt Required DSA
handling
information FORTRAN
interrupt
handling
R12 information
PL/I calls FORTRAN
PARTITION
TCA etc.
IBMBILC1 ZCTL VDA (Second) VDA (First) Dummy DSA
P d = d
First VDA
[x|
Encompassing DSA - ISA
FORTRAN R13 R13
interrupt i
handiing Required DSA
information
FORTRAN Second VDA
interrupt
handling
information
FORTRAN calls PL/1
PARTITION
TCA etc.
1BMBILC zeTL VDA (Second) VDA (First) Dummy DSA
= - 4
First VDA
[x]
Encompassing DSA 1
FORTRAN R13 R13
interrupt Required DSA 1 ISA
handling
information
FORTRAN FORTRAN Second VDA
interrupt interrupt
handling handling .
information information Encompassing DSA 2
. Required DSA 2

Figure 13.7.

Example of chaining sequences (FORTRAN principal procedure)

Chapter 13:

Interlanguage Communication

VDA is moved into the first word of
ZCTL, and the VDA is freed.

Action _on _Interrupt in COBOL

If the INTER option is not specified, all
program checks will be handled by the
supervisor or the COBOL library. However,
if the INTER option is specified and the
COBOL program has been compiled with a
request for the COBOL interrupt handler not
to be called, the following takes place.

1. During the first invocation of
IBMDIEC, a STXIT macro instruction is
issued, which results in interrupts
being passed to an entry address in
IBMDIEC.

2. When an interrupt occurs, register 12
is restored from ZCTL and register 13
from the interlanguage VDA, thus
restoring the PL/I environment.

3. A DSA is acquired for IBMDIEC in LWS.
The address of the interrupt, in the
second word of the PSH, is saved in
this DSA and replaced by the address
of another entry address in IBMDIEC.
For underflow interrupts, the four
bytes preceding the point of interrupt
are also copied and placed before the
entry address in case the error
handler needs to examine them. This
point acts as the return address for
the PL/I error handler.

4. TFlags are set in the TCA and DSA to
indicate that it is possible for an
abnormal GOTO to occur in a PL/I on-
unit.

5. A STXIT macro instruction is issued to
transfer the program check exit to the
PL/I error-handling routines whose
address is held in the TCA appendage.

6. An interrupt is then caused, and
control is passed to the PL/I error-
handling routines by the supervisor.

Return from Interrupt

If a normal return to the point of
interrupt is made, the following takes
place. i

1. When the PL/I error-handling routines
return control to what they take to be
the point of interrupt, control in
fact returns to an entry address in
IBMDIEC.

200

2. A further STXIT macro instruction is
issued altering the program check exit
to a further point in IBMDIEC. . An
interrupt is then caused and control
passed through the supervisor to the
new interrupt address. The reason for
this is that the program in which the
error occurred expects all registers
to be restored, and this can only be
done if return is made by the LPSW
instruction. This is eventually
caused by the EXIT macro. The address
of the interrupt, taken origimnally
from the second word of the PSW, is
then restored to the PSW which has
been saved in the area nominated by
the STXIT macro instraction. The
COBOL registers are restored to the
interrupt save area. The program
check exit is altered by a further
STXIT macro instruction to IF007.

3. Control is returned to the supervisor
by an EXIT macro instruction, which
returns control to the point of
interrupt.

If, however, return occurs via the
abnormal GOTO mechanism, IE015 branches to
IE018, which unchains and frees the latest
VDA and returns to the abnormal GOTO code.

FORTRAN WHEN CALLED FROM PL/I (IBMDIEF)

When FORTRAN is called by PL/I, the module
IBMDIEF is entered immediately before and
immediately after the execution of the
FORTRAN program. The processing done
before entry to the FORTRAN program depends
on whether the INTER option is specified.
Entry point IBMBIEFA handles calls without
the INTER option. Entry point IBMBIEFB
handles calls with the INTER option.

Prior to the call to FORTRAN, IBMDIEF does
the following: o i

1. Tests the pointer in IBMBILC1 to
discover if this is the first
interlanguage call. If it is the
“first call, it sets up ZCTL and sets
the FORTRAN flag in IBMBILC1. If it
is not the first call, it tests to see
whether the FORTRAN flag is set in
IBMBILC1 and sets the FORTRAN flag if
it is not already set.

2. If the FORTRAN environment has not
previously been set up, calls the

FORTRAN initialization routine. This
routine sets up the program check exit
so that program interrupts will be
handled by the FORTRAN error handling
method. The FORTRAN error data is
stored in ZCTL.

3. Acquires an interlanguage VDA. Points
the first word of ZCTL to this VD3,
taking the value previously in the
first word of 2ZCTL and placing it in
the first word of the VDA. (This
places the new VDA at the head of a
chain starting from ZCTL.)

4. Stores PL/I's register 13 in the
interlanguage VDA., thus saving the
PL/I environment.

5. If INTER option is not specified
issues a FORTRAN STXIT macro
instruction from ZCTL, sets progtam
mask to '2', and returns to compiled
code.

6. If INTER option is specified, a STXIT
macro instruction is issued that will
result in control being passed to an
entry address in IBMDIEF, should an
interrupt occur. The program mask is
reset to 'E' in case it was changed by
the FORTRAN initialization routine.

o o . i e e e e i i s i, o 5 s i e, 5 S o o s o

(IBMBIEFC and IBMBIEFD)

When return is made from the FORTRAN
subroutine, PL/I compiled code immediately
makes a call to the FORTRAN interlanguage
routine. If the FORTRAN routine may be
used as a function, entry point IBMBIEFD is

used. Otherwise, entry point IBMBIEFC is
used. The module IBMDIEF does the
following:

1. A STXIT macro instruction is issued
that resets the prograr check exit to
the PL/I error—-handling modules, and
the program mask is set to 'Ef.

2. The first word of the interlanguage
VDA is placed in the first word of
ZCTL and the VDA freed.

3. For entry point IBMBIEFD (the FORTRAN
function entry point) the parameter
. list passed by PL/I is examined, and
the values are moved out of the
registers in which they were placed by
the FORTRAN routine, and moved to the
correct location.

Chapter 13:

Action_on Interrupt in FORTRAN

If the INTER option is not specified, the
action on any interrupt that occurs in the
FORTRAN program will be that specified in
the FORTRAN error-handling schene.
However, if the INTER option is specified,
all program checks that are not handled by
FORTRAN error-handling are passed to the
PL/I error-handling modules.

The FORTRAN error-hanmdling scheme is
used after the following interrupts have
occurred:

1. Specification (other than for ipvalid
instruction address)

2. TFixed-point divide

3. Decimal divide

4, Exponent overflow

5. Exponent underflow

6. Floating-point divide

A1l other program checks are handled by the
PL/I error handler.

When an interrupt occurs, the following
takes place:

1. When control is passed by the
supervisor to an entry address, the
type of interrupt is discovered by
examining the PSW. If the interrupt
is one of the types that can be
handled by FORTRAN, the normal FORTRAN
environment is established and the
FORTRAN error handling module invoked.

2. 1If it is not the type of interrupt
that can be handled by FORTRAN,
register 12 is restored from ZCTL and
13 from the latest interlanguage VDA.

3. The address of the interrupt is taken
from the second word of the PSW and
stored in the DSA. The second word of
the PSW is then replaced by another
entry address in IBMDIEF.

4. TFlags are set in the TCA and DSA to
indicate that it is possible for an
abnormal GOTO to occur in a PL/I on-
unit.

5. A STYXIT macro instruction is then
issued to restore the PL/Y error-
handling situation. A branch is then
made to the PL/I error handler.

6. For a normal return, the PL/I or
FORTRAN error-handling routine returas

Interlanguage Communication 201

to the point of interrupt, which it
takes from the second word of the PSW.
This, in fact, is the entry address in
IBMDIEF, which has been placed in the
PSW in the PL/I interrupt save area.
(See 3 above)

7. 1If, however, return occurs via the
abnormal GOTO mechanism, control
passes to an address in IBMDIEF that
unchains and frees the latest VDA and
returns to the abnormal GCTO code.

8. A STXIT macro instruction is issued to
alter the program check exit to a
third address in IBMDIEF.

9. An interrupt is then caused, and the
supervisor passes control to the
program check exit address set in 8
above.

10. A further STXIT macro instruction is
then given to restore the progran
check exit to the position at the
start of the process.

The method described in 7, 8, 9, and
10 above is adopted as control has to
be returned via the supervisor so that
the values of all registers may be
restored.

11. The word originally taken from the PSW
and stored in the DSA is restored to
the PSW, which now holds the address
of the point of interrupt. The
FORTRAN registers are restored to the
save area and an EXIT macro issued.
This results in control returning
through the supervisor to the point of
interrupt.

PL/T CALLED FROM COBOL OR FORTRAN
(IBMDIEP)

As with the other interlanguage
communication routines, IBMDIEP is called
immediately before and immediately after
the program that is to be executed.
However, the interlanguage housekeeping
routine cannot be called direct from the
COBOL or FORTRAN routine, because the
existence of such a routine is unknown to
COBOL or FORTRAN. To overcome this problen,
an encompassing routine is generated with
the same name as the PL/I routine. This
encompassing routine is called by COBOL or
FORTRAN-and in turn calls the interlanguage
housekeeping routine and the required PL/I
routine. Code generated for a typical
encompassing routine is shown in figure
13.8.

Although the names of both PL/I

202

procedures are the same, the encompassing
routine gets control when called from COBOL
or FORTRAN, because no ESD records are
generated for the interlanguage entry
points of the required PL/I program.

Before Entry to PL/I program (IBMBIEPA)

Before a call is made to the PL/I progran,
IBMDIEP does the following:

1. Tests to see if the PL/I environment
has already been initialized, by
examining whether the COBOL or FORTRAN
flag in IBMBILC1 is set.

2. If the COBOL or FORTRAN fiag is on,
this means that a previous
interlanguage call has been made, and
as the call must have been made either
to or from PL/I, the PL/I environment
must have been set up. Register 12 is
restored from ZCTL. A STXIT macro
instruction is issued so that program
checks are handled by the PL/I
condition handler.

The FORTRAN flag is set on and control
returned to the PL/I encompassing
procedure.

3. If neither the COBOL nor the FORTRAN
flag is on, PL/I is being called for
initialization by a program whose
principal procedure is in COBOL or
FORTRAN.

The following actions take place:

a. IBMDIEP sets up ZCTL and then
calls the initialization/
termination routine IBMDPIR to set
up the PL/I environment. 7Tt
passes the address of the storage
to be used as an ISA. This is
either the storage specified in a
call to PLISA or the section of
the partition between the
executable program phase and an
area allowed for the DTF and the
buffer for SYSLST. IBMDPIR is
passed an address within IBMDIEP.

b. 1IBMDPIR when completed makes a
call to the entry point of IBMDIEP
it was passed. This entry point
saves the registers of IBMDPIR and
rearranges the register save
areas. .The chaining of save areas
is altered so that the save area
that returns control to the
initialization/termination routine
IBMDPIR is placed above the save
area of the routine that called
the PL/I program.

As this rearrangement could cause
certain housekeeping problems two
additional save areas are created
and inserted in the chain before
and after the save area for the
initialization termination
routine. Restoring the registers
of these save areas results in
comtrol passing to IBMDIEP which
handles any housekeeping problenms.
These two save areas are known as
"save area two" and "the short
save area".

Cc. The FORTRAN or COBCL flag is set
deperding on the language of the
calling progranm.

d. A DSA for the PL/I encompassing
routine is acquired and its
address returned to the
encompassing routine.

The encompassing procedure then
points register 13 to its DSA, and
after any necessary re-formatting
of parameters calls the required
PL/I routine.

The order in which save areas are
held starting with the oldest is:

Caller's caller
Save area two

Dummy DSA (save area for
IBMDPIR)

Caller's save area (save area
for COBOL or FORTRAN calling
routine

Short save area

PL/I encompassing procedure DSA

PL/I required procedure DSA

4. A DSA for the encompassing routine is
acquired.

5. Control is then returned tp compiled
code in the encompassing routine.

Action after the PL/I Proqram_is
Completed (IBMBIEPC and_ IBMBIEPD)

IBMDIFP is called at the end of the PL/I
routine by the encompassing routine
generated by the compiler. 1If the calling
program is FORTRAN, a returned value may be
expected in register 0 or one or more of
the floating-point registers. When this is
the case, the entry point IBMBIEPD is used
and the returned value is loaded into the
required position. In other situations,

Chapter 13:

the entry point IRMBIEPC is used. The
module resets the program mask and issues a
STXIT macro instruction to restore the
calling routine's program check exit, the
address of which has been stored in the
interlanguage VDA.

Interrupt Handling

When PL/I is called by COROL or FORTRAN,
error handling is carried out in the normal
PL/1 manner. The STXIT macro instruction
is issued by IBMDPII when the PL/I
environment is first set up. For calls
after the first, the STXIT macro
instruction is issued by IBMDIEP.

Handling Data Aggregate Arguments

In order to communicate effectively between
COBOL and PL/I, and FORTERAN and PL/TI, a
method of handling data agarecate arguments
is necessary, because the three languages
hold data aggregates in different ways.

ARRAYS
Arrays as such are not used in COBOL. .The
use of OCCURS in structures does, however,

have a similar effect. However, PL/T
structures of arrays and COBROL structures
using OCCURS are both held in row-major
order. In FORTRAN, arrays are held in
column-major order. Thus, in a two-
dimensional array, the element known in the
FORTRAN array as (2,1) will become (1,2) in
the PL/I array.

STRUCTURES

Structures are not used in FORTRAN. 1In
COROL the alignment requirements are met
differently from PL/I. Full details of the
differences in mapping are given in the
language reference mannual for this
compiler.

METHOD USED

The method used in handling data aggregates
is to create dummy arqguments of the correct
format and let the called routine use the
dummy. The values in the dummy are then

Interlanguage Communication 203

OBJECT LISTING

000000
000007

* INTERLANGUAGE PROCEDURE

* REAL ENTRY

000008 90 EC D 00C
00000C 47 FO F 014
000010 00000000
000014 000000A0
000018 00000000
00001C 58 30 F 010
000020 41 10 0 004
000024 58 00 F 00C
000028 18 8F
00002A 58 FO 3 018
00002E 05 EF
000030 18 F8
000032 D2 03 D 054
000038 58 10 D 004
00003C 58 10 1 018
000040 D2 08 D 078
000046 92 00 D 080
00004A 05 20

* PROCEDURE BASE
00004C 58 90 D 078
000050 50 90 3 038
000054 58 80 D 0O7C
000058 50 80 3 03C
00005C 58 70 D 080
000060 S50 70 3 040
000064 41 60 D 098
000068 50 60 3 044
00006C 96 80 3 044
000070 18 55
000072 41 10 3 038
000076 58 FO 3 008
00007A 05 EF
00007C 41 60 D 098
C00080 50 60 3 048
000084 41 10 3 048
000088 58 FO 3 01C
00008C 05 EF
00C08E 58 DO D 004
000092 58 EO D OOC
000096 98 2C D 01C
00009A 07 FE

* END INTERLANGUAGE PROCEDURE

3 030

1 000

DC
bDC

STM

DC
DC
DC

LA
LR
BALR

MVC

MVC
MVI
BALR

L
ST
L
ST
L
ST
LA
ST
o1
SR
LA
L
BALR
LA
ST
LA
L
BALR
L
L
LM
BR

C* pl3r1l*
AL11(6)

P13P11

14,12,12(13)
*+16

A(STMT. NO. TABLE)

F*160°

A{(STATIC CSECT)
3,16(0,15)
1744(0,0)
0,12(0,15)

8415 :
159A..IBMBIEPA
14,415

15,8
84(4+13),48(3)
144(0,13)
1,24(0,1)
120112,131,0(1}
128(13)+X*00°*
240

9,120{0,13)
9456(043)
84+124(0,13)
8,60(0,3)
79128(0,13)
T+6410,43)
6,152(0,13)
6+468(0,3)
68{13),X*80"
545
1,56(043)

‘154A..P13P11

14,415
69152(0,13)
6972(0,3)
1,72(0,3)
15+A.. IBMBIEPD
14,15
13,4{0,13)
14512100,413)
2912,28(13)

14

Store registers

Set R3 as static base

Pass length required for DSA

Retain entry point address

Branch and link to interlanguage housekeeping routine

Restore entry point address to RIS
Set up on-unit flags

Place parameters at head of temporary storage

Set R2 as program base

Point R9 at arguments

Store in argument list

Place address of fullword in argument list
for possible returns value

Mark end of argument list
Set static backchain to zero
Point R1 at parameter list

Branch and link to required procedure
Pick up RETURNS value

Store in static storage
Point R1 at returns value

Branch and link to interlanguage housekeeping routine

Restore all registers except R1 (used for returns value)

Return to caller

Figure 13.8. Encompaésinq procedure to bé called by FORTRAN

204

assigned to the original argument when the
execution of the called program is
completed.

If the data aggregates are
nonadjustable, the mapping will be done
during compilation and both the PL/I and
the COBOL or FORTRAN mapping are produced.
If the data aggregates are adjustable, the
mapping is done during execution. Before
the execution of the call to a program in
another lanqguage, the data is transferred
into the correctly mapped aggregate, which
will be held in PL/I temporary storage.
The values are reassigned to the original
data aggregate after execution of the
program in the other language.

The assignment of data between the dummy
and the arqument is done by compiled code.

NOMAP, NOMAPIN, AND NOMAPOUT OPTIONS

The NOMAP, NOMAPIN, and NOMAPOUT options
can be used by the programmer to specify
that data aggregates will not be remapped
and placed in dummy arguments.

When NOMAP is specified, or when both
NOMAPIN and NOMAPOUT are specified, the
dummy is not generated at all, and the
structure or array is passed as it stands.

When only NOMAPIN is specified, a dummy
is created, but it is not initialized with
the values of the aggregate being passed.
However, on return from the COBOL or
FORTRAN routine, the data in the dummy is
placed in the Jdata aggregate that is being
passed.

When only NOMAPOUT is specified, a dummy
is created, and the data from the data
aggregate is moved into the dummy. When
control is returmed to the calling progranm,
however, the data from the dummy is not
moved into the data aggregate that was
passed.

CALLING SEQUENCE

When PL/I calls COBOL or FORTRAN passing
data aggregates as arguments, the sequence
of events is:

1. Handle data reassignment to dummy by
compiled code.

2. Call interlanguage housekeeping
routine.

3. Call COBOL or FORTRAN routine.

~Chapter 13:

4. Call interlanguage housekeeping
routine.

5. Assign data in dumny to real argqument,
by means of compiled code.

When COBOL or FORTRAN calls PL/I, the
sequence of events is:

1. The COBOL or FORTRAN routine calls the
encompassing PL/I routine.

2. The encompassing PL/I routine:

a. Calls the interlanguage
housekeeping routine.

b. Sets up the necessary dummy data
aggregate argument by compiled
code.

c. Calls the required PL/I routine.

d. Reassigns the data from the dumny
by compiled code.

e. Calls the interlanguage
housekeeping routine.

f. Returns to the original calling
routine.

It is necessary to make calls in this
order, because the data mapping must be
done in a PL/I environment.

Main Storage Situation During
Interlanguage Communication

To help with debugging, some of the main
storage situations that can occur during
interlanguage situations are shown in
figures 13.9 through 13.11.

Options Assembler

The optimizing compiler provides a facility
to simplify calling assembler language
routines from PL/I. This consists of
setting up an argument list that contains
the addresses of all items passed rather
than the addresses of locators.

When an entry point is declared as
OPTIONS ASSEMBLER, argument lists passed to
the entry point contain no locator
addresses. The addresses of any areas,
arrays, strings, or structures are passed
directly in the parameter list. (For a
call to a PL/I routine, the parameter list
would contain the address of locators for
these data types. This is because the

Interlanguage Communication 205

called routine might require information on
the length or bounds of the data and this
is accessible through the locator. See
chapter 4 for details.)

The ASSEMBLER option does not provide
facilities for automatically overriding
PL/I interrupt handling, nor does it allow
PL/I routines to be called from assembler
language. If the programmer requires these
facilities, he must provide the necessary
code himself. The COBOL option without the
INTER option provides complete facilities
for calling, or being called by, assembler
routines. However, its use involves the
overhead of calls to the PL/I library
interlanguage communication routines.

Full instructions on hcw to use PL/I
with assembler lanquage are given in the
programmer's guide for this compiler.

Cobol Option in the Environment
Attribute

A separate interlanguage communication
facility offered by the compiler is the use
of the COBOL option in file declarations.
This option allows data sets created by
COBOL programs to be read by PL/I programs
and allows data sets to be created by PL/I
programs in a format that is usable by
COBOL programs. Interchange of data sets
presents no problems, unless structures are
used in the data set. If structures are
used, their mapping may be different. (See
above, under the heading "Handling Data
Aggregate Arguments.") When structures are
involved and the mapping is not known to be
the same, both COBOL and PL/I structures
are mapped, and compiled code transfers the
data between structures immediately after

206

reading the data for input, and immediately
before writing the data for output.

During compilation, the conpiler
examines the record variable to see if any
structures are involved. If no structures
are involved, no further action need be
taken. If structures are involved, a test
is then made to see if the mapping of the
structure or structures will be the same in
COROL and PL/Y. If the compiler can
determine that the mapping will be the
same, then no action is required. If the
compiler cannot determine that the mapping
will be the same or if the structure is
adjustable, the structure will be mapped in
both the PL/I and the COBOL format.
Adjustable structures will be mapped during
execution by the resident library
structure-mapping routines. Other
structures will be mapped during
compilation.

When re-formatting of data is necessary,
the following actions take place when a
record I/0 statement involving a file with
the COBOL option is executed.

INPUT:
The data is read into a structure
which has been mapped using the
COBOL mapping algorithm and
assigned to a PL/I mapped
structure.)

OUTPUT:
Before the output takes place, the
data in the PL/I structure is
assigned to a structure mapped for
COBOL. The output to the data set
then takes place from the second
structure. ‘

The data assignment is carried out by
compiled code in all circumstances.

Partition

PL/I program

Executable PL/I library interlanguage routine

program
phase

Pointer

IBMBILC1

FORTRAN

FORTRAN routine

TCA

DSA for interlanguage housekeeping routine in LWS

Dummy DSA

Main procedure DSA

Interlanguage VDA
for FORTRAN

ZCTL Pointer

Figure 13.9. Main storage situation when PL/I main procedure calls FORTRAN

Chapter 13: Interlanguage Communication 207

Executable
program
phase

Partition

PL/I program

PL/1 library interlanguage routine

Pointer

FORTRAN

FORTRAN routine

COBOL routine

TCA

DSA for interlanguage housekeeping routine in LWS

Dummy DSA

Main procedure DSA

Interlanguage VDA

IBMBILC1

Interlanguage VDA
for COBOL

T for FORTRAN]
DSA for PL/I encompassing procedure
DSA for PL/I required procedure

-]

ZCTL Pointer

Figure 13.10. Main storage situation when PL/I main

208

procedure calls FORTRAN, which in turn calls PL/I

Partition

PL/I program

Executable PL/I library interlanguage routine

program
phase

Pointer

IBMBILC1
FORTRAN

FORTRAN routine

TCA

DSA for interlanguage housekeeping routine in LWS

Dummy DSA

Main procedure DSA

Interlanguage VDA
for FORTRAN

DSA for PL/I encompassing procedure

DSA for PL/I required procedure

ZCTL Pointer

Fiqure 13.11. Main storage situation vhen-PL/Ilmain procedure calls FORTRAN,
which calls PL/I, which calls COBOL

Chaptér»13: Interlanguage Communication 209

BEGINNING OF PARTITION

EXECUTABLE PROGRAM PHASE

Compiled code
All executable instructions
generated by the compiler.
Contents depend on source
program.

Library subroutines
IBMDPIR - initialization routine
(sets up TCA and other control
blocks in program management -
area, then passes control to
compiled code using address
held in PLIMAIN)
IBMDERR - error and condition
handling routine
IBMDPGR - storage management
routine
Other routines, as necessary,
for 1/0 conversions, etc.
LIOCS data management routines
(if required)

Static storage (static internal and miscellaneous
control sections)

PLISTART - Initial entry point.
Contains code to pass control
to initialization routine IBMDPIR

PLIMAIN - Contains address of
main procedure

Addresses of:
Compiled code entry points
External routines
Library routines
Controlled variables
Static external variables
External files
Label constants

R12

Control blocks:
Symbol table vector
Symbol tables
Parameter lists for library calls
Descriptors and locators
DEDs (data element descriptors)

//_\—_-/

File information:
FCB (file control block)

OCB (open control block)
Filename

DTF (data management control block)
ENVB (environment control block)

Diagnostic statement table
Non-qualified ONCBs
Constants used in program

Static variables less than 8 bytes
Static variables less than 2048 bytes
Other static variables

PROGRAM MANAGEMENT AREA

TCA
Flags
Segment No. BOS
Segment No. EOS
Address of TRT table
Address.of TCA appendage
Address of save area for IBMDPGR
Anchor for open-file chain

BOS

Address of DFB

Address of IBMBPGRD - VDA overflow routine

Address of IBMBPGRA - Get non-LIFO storage
routine

Address of IBMBPGRB - Free non-LIFO storage
routine

Address of IBMBPGRC - DSA overflow routine

Address of IBMDERR - Error and condition
handling routine

TCA Appendage

TISA - Address of byte beyond ISA

TLFE - Address of last free area

Address of d/ummy DSA

Address of ;get LWS'’ routine

Address of load module chain

TERA - Address of interrupt handler

Dummy ONCA
(ON communications area)

Holds default values for PL/}
condition buiit-in functions

A d

TRT table

Translate-and-test table for IBMDERR, used
in error handling to test for relevant on-cells

Diagnostic File Block {see appendix B)

Contains information relating to the use
of SYSPRINT for the transmission of
diagnostic messages

Save area for IBMDPGR

Used by storage management routines when
new segment of storage is required

Dummy DSA (Dynamic storage area)

Contains DSA for initialization routine,
backchain to calling routine’s save area
(if any), pointer to start of major free
area (NAB), etc.

LWS (first allocation)

Flags Offset to ONCA

Chainback

R13

LIFO STORAGE (Tyj

Main procedure DSA

Chainback (to dummy DSA

Save area for main
procedure'’s registers

Address of LWS

Segment No.

Automatic variables and te
associated with the procedu
of dynamic ONCBs (ON col

Register save area

Address of LWS

Segment No. NAB
Workspace (56 bytes)

Flags Offset to ONCA
Chainback

Register save area

Address of LWS

Segment No. NAB

Workspace (56 bytes)

ONCA (see appendix B)

Chainback (to dummy ONCA)

Values of (or locators for)

condition built-in functions
rCaller's STXIT options

Save area for caller’s STXIT program check
options

Subroutine DSA

Chainback

Register save area

Address of LWS

Segment No.

Automatic variables and ter
associated with subroutine,

VDA

Automatic variables of adju
such library routines as are
in/first-out basis. Other ite:
LIFO storage that cannot b
during prologue code.

cks:

abol table vector

bol tables

imeter lists for library calls
criptors and locators

Js (data element descriptors)

ation:

3 (file control block)

= (data management control block)
VB (environment control block)

3 (open control block)

name

itatement table
2d ONCBs
sed in program

dles less than 8 bytes
>les less than 2048 bytes
 variables

ANAGEMENT AREA

BOS

EOS
table
appendage

rea for IBMDPGR

file chain

BOS

Appendix A: Principal Contents of Storage

Address of DFB

Save area for IBMDPGR

Address of IBMBPGRD - VDA overflow routine

Used by storage management routines when
new segment of storage is required

Address of IBMBPGRA - Get non-LIFO storage
routine

Dummy DSA (Dynamic storage area)

Address of IBMBPGRB - Free non-LIFQ storage
routine

Address of IBMBPGRC - DSA overflow routine

Contains DSA for initialization routine,
backchain to calling routine’s save area
(if any), pointer to start of major free
area {NAB), etc.

LWS (first allocation)

Address of IBMDERR - Error and condition
handling routine

Flags Offset to ONCA

TCA Appendage

Chainback

R13

M

LIFO STORAGE (Typical contents)

Main procedure DSA

Chainback (to dummy DSA) T

Save area for main
procedure’s registers

Address of LWS

Segment No. NAB

Automatic variables and temporaries
associated with the procedure, chain
of dynamic ONCBs (ON control blocks), etc.

Register save area

TISA - Address of byte beyond ISA

Address of LWS

TLFE - Address of last free area

Address of d/ummy DSA

Address of ‘get LWS' routine

Address of load module chain

Segment No. NAB
Workspace (56 bytes)

Flags Offset to ONCA
Chainback

TERA - Address of interrupt handler

Register save area

Dummy ONCA
(ON communications area)

Address of LWS

Holds default values for PL/|
condition built-in functions

Segment No. NAB

Workspace (56 bytes)

TRT table

ONCA (see appendix B)

Translate-and-test table for IBMDERR, used
in error handling to test for relevant on-cells

Diagnostic File Block (see appendix B)

Contains information relating to the use
of SYSPRINT for the transmission of
diagnostic messages

Chainback (to dummy ONCA)

Values of (or locators for)
condition built-in functions

r

Caller’s STXIT options

Save area for caller's STXIT program check
options

Subroutine DSA

Chainback

Register save area

Address of LWS

Segment No. NAB

Automatic variables and temporaries
associated with subroutine, etc.

VDA

Automatic variables of adjustable extent;
such library routines as are used on a last-
in/first-out basis. Other items requiring
LIFO storage that cannot be allocated
during prologue code.

Transient tibrary routine not
released on a block or procedure
basis e.g., 1/0 transmitter

1/0 buffer

Based variable allocated during
execution

Controlled variable

Controlled variable TLFE

END OF PARTITION

Appendix A: Principal Contents of Storage 211

Appendix B: Control Blocks

This aprendix provides information on the
format of the control blocks that may be
used during the execution of a program
compiled by the DOS PL/I Optimizing
Compiler. Brief details of the fuynction of
each control block, together with when it
is generated and where it can be located,
are also given.

Except where explicitly stated all
offsets from the start of a block are byte
offsets and are given in hexadeciral
notation.

Appendix B: Control Blocks 213

Area Locator/descriptor

Punction

Holds the address and length of the area
variable for passing to other routines or
for execution time reference if the area
has an adjustable length.

3hen Generated

As far as possible during compilation. 1If
necessary completed during execution.

Rhere Held

Static internal control section.

214

D] A (AREA VARIABLE) |

4y ~ LENGTH , |

[-

the area variable control block.

Length is the total lepgth including both
the control block and the area variable.

AREA DESCRIPTOR

The area descriptor is the second word of
the area locator descriptor. It is used in
structure descriptors, when areas appear in
structures, and in the controlled variable
tdescriptiont' field when an area is
controlled.

Area Variable Control Block

Used to control storage allocation within
the area variable.

When Generated

When the area variable is initialized.
This depends on the storage class of the
area.

Fhere Held

As a variable dependant upon storage class.
At the head of the area variable.

- —

r '
01 FLAG | UNUSED |
e S [
by OFFSET OF END OF EXTENT (OEF) |
‘ ———————————————————— - '

8¢ OFFSET OF LARGEST FREE ELEMENT (LFE)|
| === -—- -1
C| ZERO CHAIN FIELD IF FREE ELEMENTS |
| === e e At |
101 Area variable [
| |
{ |

L - -—— -

Note: If there are free elements in the
area variable, they are headed by two
words., The first wofrd gives the length of
the element, the sectnd word gives the
offset to the next smaller free element.
If there is no smaller free element, the
second word is set to zero.

Flag X'0' Area variable does not contain
: free elements. :
X'1' Area variable does contain

free elements.

Appendix B: Control Blocks 215

Aggregate Descriptor Descriptor

Punction

Contains information needed to map a
structure or an array of structures during
execution. Used for structures that
contain adjustable extents or the REFER
option. See chapter 4.

When Generated

As far as possible during compilation.
Adjustable values are filled im during
execution.

Fhere_Held

Static internal control section.

How_Addressed

By an offset from register 3 known to
compiled code

General Format

An aggregate descriptor descriptor comsists
of a series of fullword fields one for each
structure element and one for each base
element in the structure.

Structure Element

0 1

(4 N
010 |Py|O0ffset to entry for containing
't 1 Iblock

2y Level
[B

[AT X

IFaiFal DIM

216

I1Fa| Fal DIN

[
=
=
[23
3
=
e e d D)

where,
Fq = '0'B Not last element in structure
= *1'B Last element in structure

Fa = '0'B Not an AREA
= '1'B An AREA

Fa = '0'B Not a BIT string

'1'B BIT string

.The offset within the
aggregate descriptor
descriptor to the entry for
the containing structure.
The offset is held in
multiples of four bytes.

OFFSET

LEVEL Logical level of identifier

in structure

DIM = Real dimensionality of
identifier

ALIGNMENT

Alignment stringency

Yalue(dec.) Meaning

0 bit

7 byte

15 half-word
31 word
63 double-word

LENGTH Length (in bytes) of data
LENGTH is set to 0 for strings
and AREAs, whose length is
held in descriptors

Aggregate Locator Where Held
Static internal control section.

Function
How_Addressed

Used to pass the address of an array or

structure and its associated descriptor to By an offset fronm registerk3 known to
a called routine. Also to associate the gompiled code.
aggregate with its descriptor during 0
execution. r ———— _—

(|1} Address of data aggregate

' . -

LY Address of descriptor

When Generated L ———— -

—_—_—S eSS e S -

During compilation.

Appendix B: Control Blocks 217

[e Y)

Array Descriptor
Function

Contains information about the extent .of an
array and the number of its dimensions.
For arrays of area variables or strings, an
area or string descriptor is attached to
the array descriptor.

The array descriptor is used to pass
information about an array to called
routines, or to hold information about an
array with adjustable extents. -

When Generated

As far as possible during compilation. If
the array has adjustable extents, it is
compléted during execution when the values
are known.

Arrays of structures make use of
structure descriptors to hold similar
information.

Rhere Held

Static internal control section.

How Addressed

By an offset from register 3 known to
compiled code

Arrays of Strings or Areas

For arrays of strings or areas, the
descriptors are completed by string or area
descriptors concatenated to the array
descriptor. String and area descriptors are
the second word of string and area
descriptor/locator pairs.

For bit string arrays, the bit offset
from the byte address is held in the string
descriptor.

General Format

The first word in the array descriptor is

the RVO (relativf virtual origin). This is
followed by two words for each dimension of
the array, containing the nultiplier and
high and low bound for each dimension.

0
i - - -
0 | RVO (RO-VO)
|====- - -
4 = Multiplier
| == === -
8 | High bound | Low bound
‘
C | Multiplier 2

101 High bound 2 | Low bound 2

{ etc.

Note: Two full words containing
multiplier and high and low bound are
included for each array dimension

b e e o e e T i . - s -

RV0 = Relative virtual origin, the
distance between the virtual
origin (VO) and the byte actual
origin (AO). Virtual origin is
the point at which the element in
the array whose subscripts are all
zeros is, or would be, held.
Actual origin is the byte address
of the first element in the array.

RVO is held as a bit value for
arrays of unaligned non-varying
bit strings, but otherwise as a
byte value.

High bound: The highest sSubscript in
the dimension.

Low bound: The lowest subscript in the
dimension.

Multiplier: Tke multiplier is the
offset between any two elements
marked by the change of subscript
number in the dimension.

For example for the array DATA (10,10),
the multiplier for the first dimension is
the offset between DATA(1,1) and DATA(2,1)
etc. The nmultiplier for the second
dimension is the offset between DATA (1,1)
and DATA(1,2). The offset is measured from
the start of the one element to the start
of the next.

Multipliers are byte values except for
unaligned non-varying bit string arrays, in
which case they are bit values.

Controlled Variable Block

To hold information about the controlled

variable.

The latest a}lgcation is addressed from an
anchor word which is held in static
internal storage for internal variables and
I a separate control section for external

When the vaniable is allocated. variables.
0 o 4
[bttt - i |
WORD 1 01 A (Anchor word)
| e ittt ittt |
WORD 2 4 | - LENGTH
' - - -
WORD 3 8 | Chain back to previous allocation,
. |- - —
WORD 4 C | Unused
' - - —— —— - ——
104 ~ DESCRIPTION
| Field used for descriptor or
} locator/descriptor im certain
1 circumstances, (see below)
' - o —
(
{ DATA
|
L - -
LENGTH: Length of the total allocation

CHAIN BACK:

including the 4 words of the
heading.

Address of word 5 of previous
allocation, set to zero if

first allocation.

DESCRIPTION

. before the data.

If the item is one that
requirés a descriptor/locator
or a locator, this is placed
at the head of the data. If
the item is a structure or
array and the extents are
descriptor will also be placed
class.

Appendix B:

Address held in anchor word

‘“Thus for:

STRINGS and AREAS, the
controlled variable is headed

by a locator/descriptor.

‘STRUCTURES ‘and ARRAYS, the

controlled variable is headed
by a locator.

STRUCTURES and ARRAYS with
ADJUSTABLE EXTENTS, the
controlled variable is headed
by a locator followed by a
descriptor. '

ALL OTHER DATA, the

‘description field 'is not used

and the data itself starts at
offset X'10° (16)‘ ‘ :

Control Blocks 219

Data Element Descriptor (DED)

Function
o

Used to pass desctiptioh of data elements

to library conversion and stream I/O
routines.

When Generated

puring compilation.
. 9

Where Held

Static internal control section.

How_Addressed

By an offset from register 3 known to
compiled code. °

o

All DEDs are headed by two bytes that
indicate the data type. These two bytes
are followed by as many bytes as are
required to complete the description of the
data. :

For arithmetic items, DEDs are completed
by such items as scale and precision. Por

pictured items, a representation of the
picture is included in internal form.

General Format

0o o 1 ‘ 2

. .
{Elag_byte 1 |Flag byte 2 |Further bytes
| , ' |as :
{Defines data |Completes as|required

I type , fdefinition |

{ |if necessaryl|

- FIXED BINARY
FIXED DECIMAL

s
£° 8
|
s
-
o
=
{+}
[+
E

220

28 O

Flag Byte 2
Bits 081 =

FLOAT

Free decimal (an
internal form)

FIXED PICTURE BINARY
FIXED PICTURE DECIMAL
FLOAT PICTURE BINARY
FLOAT PICTURE DECIMAL
non-VARYING CHARACTER
non-VARYING BIT
VARYING CHARACTER
VARYING BIT

CHARACTER PICTURE
BINARY constant
DECINMAL constant

BIT constant

F/E Format .

P Pormat (arithmetic)
A/B/P Format (character)
C Format

X Format

COL Format

SKIP Format

LINE Format

PAGE Format

LABEL

ENTRY

AREA

TASK

OFPSET

POINTER

FILE

EVENT

'00'B A-format item
'01'B B-format item *10'B

character picture format item

Bit 2

'0'B fixed constant

*1'B float constant

Bit 3

*0'B not extended float

'1'B extended float

Bit 4

'0'B F-format/fixed picture

*1'B E-format/float picture

Bit 5

0'B declared binary

1'B declared decimal

If bits 4 and 5 = *11'B then DED is for

character

Bit 6 = 'Q'B short precision
'1'B long precision

Bit 7 = '0'B real or length specified (A

~or B format) or unaligned bit
string

11'B complex (also set if E, F, or

P in C-format) or no leangth
specified (A or B format) or
aligned bit string

A1l bits for which neither value is
defined are set to '0'B

Internal codes_for pictures Flag byte 1 = Hex 30

Code Picture Code Picture The internal code for string pictures is
as follows:
00 9 48 - (%)
04 Y uc = (4) Code Ricture (hex)
08 A 50 - (s)
oc * 54 $ (t) A 00
10 E 58 $ (d) 9 04
14 K 5C $ (s) / 08
18 T 60 /7 (t) . 0ocC
1c I 64 / (Q) R 10
20 R 68 /7 (s) * 14
24 CR 6C . (t) B 18
28 DB 70 . (d) X 1C
2C B T4 . (s)
30 S (t) 78 . (B) Ly = length of field with insertion
34 s (4) 7C ¢ (d) characters
38 S (s) 80 . (s) ‘
3c + 84 v Lz = length of field without insertion
40 + (d) characters
uy + (s)
(t) = terminal
(d) = drifting
(s) = static DED_for PICTURE DECIMAL Arithmetic Data
DED_for STRING_ Data
0 1 2 3 4
0 1 2 r ~
- - 0| Flag | Plag | Precision| Scale {
{Flag byte 1 |Flag byte 2| i{Byte 1 | Byte 2 | {Factor+128¢{
L -— 4 — |
4)Length ofjLength of|Flag 1 Flag |
{Picture |Data {Byte 3 '{ Byte &4 |
|=-- - - |
DED_for FLOAT Data | Picture in internal code |
L - 4
Flag byte 1 = Hex 14 or 1C
0 1 .2 3 4 :
r - - Flag Byte 3 (describes the mantissa
{Flag byte 1|Flag byte|2 precision|Unused | subfield)
s 3
Bit 0 = reserved; must be set to
t0'B
DED_for FIXED Data Bit 1 = v1'B drifting S in subfield
= '0'B no drifting S in subfield
0 1 2 3 .4 Bit 2 '*1'B driftirg + in subfield

[skt == b
|Flag byte 1 {Flag byte 2|precision (scalel

{ 1 | 1r128 | Bit 3
-]

'0'B no drifting + in subfield

*1'B drifting - im subfield
'0'B no drifting - in subfield

Bit 4 = *1°'B drifting % in subfield
= '(0'B no drifting $ in subfield
DED_for PICTURE_STRING Data
Bit 5 = *1'B total suppression in
subfield)
0 1 2 3 4 = '0'B no total suppression in
- - - 2 subfield
0{ Flag | PFlag | Ls |
| Byte 1 | Byte 2 | | Bit 6 = "1'B % in subfield
| === | = '0'B no * in subfield
4) L, f{Picture in internal |
| |form o Bit 7 = reserved; must be set to
L - J 10'B :

Appendix B: Control Blocks 221

Flag_Byte_ 4 (descrlbes the exponent
subfield)

Same format as Flag Byte 3.

Note: After E or K, the next byte contains
the number of digits in /the exponent.

Scale Factor

The scale factor of a picture DED is the
number of digit positions after the 'Vv* (0
if there is no 'V!') added to the number in
the F specification, if any.

e_for setting bit 5

Bit 5 is set if no 9, Y, T, }_L__c’)r R is
present. This applies before any 2z, S,
etc. has been translated to a 9.

Rules for translating pictures into_encoded
pictures

1. Characters 9, Y, E, K, T, I, R, CR,
* DB, B, and V are translated directly.

2. Characters Z and % are translated
directly if they do not follow a V.
If either follows a VvV, it is
translated into the code for character
9.

3. An S, +, -, or % is translated to a
static 5, +, -, or $ if it is the only
one of its kind in the subfield.

4. If more than one S appears in a
subfield, the S's are translated into
drifting St's.

Except when:

a. It appears immediately before a Y,
9, Vv, T, I or R. In this case it
is translated into the code for a
terminal S.

b. It appears anywhere after a V. 1In
this case it is translated into
the code for a 9.

The same rule applies for the +, -, or
$.

5. A wW/m, a n'n"or a n_n
drifting, if:

is treated as

a. It is in a subfield containing
either one or more Z or asterisk,
or more than one +s, -s, or $.

b. It is not immediately preceding a
Y, 9, v, T, I, or R. 1In this case

222

it is translated into termimnal
fornm.

DED_for_ Program_ Control Data

{ Flag | Flag]
|byte 1 |byte 2|

FORMAT DEDS - FEDS

For meaning of flag bytes see above under
Data FElement Descriptors.

DED_for F_and E_Format Items_ (FED)

1
| Flag | Flag (W | |

Ibyte 2 | | | |
[- J

Flag byte 1 = Hex 50

W = total length of the format field
D = number of decimal places
X = precision + 128 for F~format number of

significant figures for E-format

0 1 2 3 4

-
{f Flag | Flag | W |(jcopy of DED as for}|
|byte 1 {byte 2 | tarith. picture |
bercrccaccc e ——— 4

Flag byte 1 = Hex 54

W = total length of the format field

DED_for PICTURE Format Character Items
(FED)

1 2 3 4

-
Flag | Flag | ¥ ({copy of DED as for |
byte 1 tbyte 2 | [pictured character |

—————————— - J

e~ O

Flag byte 1 = Hex 58 FPlag byte 1 = Hex 60, 64, 68, 6C or 70

W = total length of the format field Parameter = length of item (X format)
column number (COL format)
nunber of lines to skip (SKIP

format)

DED_for C_Format Items (FED) line number (LINE format)
omitted for PAGE format

0 1 2 4

T T T TS TT s emT e SEmsTTmEmEss h)

{ Flag | Flag { W | FED for | FED for {

|byte 1 |byte 2} freal part (imag. part |

[—-—t

Flag byte 1 = Hex 5C

Note: The complex bit (bit 7) in flag byte

2 is set in both the real part and the DED_for STRING Format Items_ (FED)
imaginary part FED.

q = total length of the format field 0 1 2 4

r aates |

{ Flag | Flag |length |

: |byte 1 |byte 2 | !

DED_for Control Format Items_ (FED) L-- ——— —— —d

Flag byte 1 = Hex 58
0 1 2 4 .
-~ —-——— The difference between A, B, and P
{ Flag | Flag |(parameter | (character) formats is given by bits 0 and
|byte 1 {byte 2 | 1 1 of flag byte 2. The length field may be
L - 4 omitted for A and B format items.

Appendix B: Control Blocks 223

Diagnostic File Block (DFB)

Function

Holds information used by the errcr message
routines.

¥hen Generated

During program initialization.

Program managment area.

224

Zow Addressed

Trom ¥ '40° in the ICA

APLA [Plags | Unused |

s | A(transmitter) P
AseD | A(stseRINT PoB) A
Aoct | h(ExeLicIe opEm) P c
ASDC { A(;;;;;viséd Syspr;;;-;;;;--} :Z

AELA_-_Flags

ARTO Bit 0 = 1 Messages going to operator's
console

ASNO Bit 1 = always O

ASCO Bit 2 = 1 SYSPRINT cannot be opened or

open with unsuitable

attributes.

1 Force ‘page

APPF Bit 3

& &=

0 2
r
0] Flags i Offset
ol Chain Back
8: ;nused)
C:--- Save area R 14
10:--- Save area R 15
1#: -Save area R 0
18:-- Save area R1
1c: Save area R2 o
20: Save area R3
26: Save area R4
28=-‘- Save area RS
2C! Save area R6
30: ;;ve area R7 o
30y Save area me
38: Save area R9
3c: Save area R10
uo: Save area R11
ua: Save area R12
RB: A (LWS)
uc:Seqnentt|~ NAB .

)
50| Segment#| End of Prologue NAB

|
54 |Block-Enable Cell |Current-Enable Cell

589 Static backchain

SC} A(First Static ONCB)
60=A(most recent Dynamic ONCB in Block)
GQ:--_- Unused

68:--- Unused

sc:—- Unused

70: A (ONCELLS)

7“:CEXQ { // | Flags 2 |

L

b cos o am cwn s G . . A —— e e o T i S amn T s — e a— — — S G — — A ——— —— — — ———— —— o —— — — ——— . ————

Dynamic Storage Area (DSA)

unction

Holds housekeeping information, automatic
variables, and temporaries for each block.

When Generated

During execution. Allocated by prologue
code every time a new block is entered.

Hhere Held

n the LIPO storage stack. Certain library
routines have their DSAs in library
wvorkspace (LWS). See below

Current DSA addressed from register 13.
Chainback to previous DSAs from offset X
e,

Flags
Bit 0 = 0 DSA in LWS
1 DSA
Bit 1 = 0 No ON Cells
1 ON cells
Bit 2 = 0 No Dynamic ONCBs
1 Dynamic ONCBs
Bit 3 Always set to zero.

Bits 4 and S
= 00 Procedure DSA
01 Begin DSA
10 Library DSA

11 On DSA
Bit 6 = 0 Not a dummy DSA
1 Dummy DSA
Bit 7 = 0 Flags 2 invalid
1 Flags 2 valid
Bit 8 = always zero
"Bit 9 = 0 Do not restore NAB on GOTO
1 Restore NAB
Bit 10 = 0 Do not restore Current-enable

on GOTO
1 Restore current-enable cells

Appendix B: Control Blocks 225

Bit 11 = 0 Callee cannot use this DSA ‘ is not used.

1 Callee can use this DsSA

' CEXQ

Bit 12 = 0 Not am EXIT DSA ; ‘ : ”

1 EXIT DSA Save area for flag byte 1 of the TCA.

' » ; Used if DSA is an exit DSA.

Bit 13 = 0 No statement ¥ table

1 Statement # table available Flags_2
Bit 14 = always zero ' Bit 0 = 1 Last PL/I DSA
Offset v Bit 1 = 1 Ignore DSA for SNAP

If the DSA is im LWS, offset is the Bit 3 = 1 Inter-language DSA after

offset of the ONCA. Otherwise, this field interrupt in FORTRAN or COBOL

226

Entry Data Control Block (Entry How_Addresse

Variable)
Function
As a variable, dependant on storage class.
Holds the addresses of the data item and 0
its DSA. - -

Address

0
4 Address of statically containing
DSA at time of assignment

.
|
l - -
{
|
L

When the variable is allocated.
Word 1: bit 0 0 Address of entry
1 Address of location
containing 8-char.
Where_ Held EBCDIC name of entry

point

Depends on the storage class of the data
item. Word 2: bit 0 always = 0

Appendix B: Comtrol Blocks 227

L el

Environment Block (ENVB)

Function

Holds addressed of information declared in
the environment option

When Generated

Bit 0 Function (R) (read)

228

puring compilation
r ; == e |
0 { NFLA | NFLB | Unused |
| Flags t Flags | |
| : - -
4 (Address of blocksize (NBLK) |
=== - - |
8 |Address of record size (NREC) |
| == ————— --|
C {(Address of keyloc or address of stacker |
| (NLOC/NSTK) |
- |
10 { A (BUFOFF) or A(KEYLENGTH) (NBOF/NKYL) 1
(- ———- - |
14 | A(INDEXARE]) {NXAR) |
i -— - -1
18 { A(ADDBUFF) (NABF) |
- - - |
1C | A (OFLTRACKS) (NOFL) |
|=--- |
{20 | A(PASSWORD string locator) (NPAS) |
L - [PRUp——
NFLA_Flags
Bit 0 when set BLOCKSIZE field valid.
1 when set RECORDSIZE field valid.
2 when set KEYLOC field valid.
3 when set BUPFPOFF field valid
4 when set KEYLENGTH field valid.
5 when set INDEX AREA field valid.
6 when set ADDBUF field valid.
7 when set OFLTRACKS valid.
NFLB_flags

In the static external control section for
the file if file is external.

the internal static control section.

How Addressed

By an address contained in the FCB of the

file.

Bit
Bit
Bit
Bit
Bit
Bit
Bit

Addresses

~SNoaunmswNhda

Function
Function
reserved
when set
reserved
wvhen set
reserved

(P) (punch)
(W) (write)

STACKER field valid

PASSWORD field valid

The addresses held are the locatioans
where compiled code will have placed
the correct values for the current

environment.

Otherwise in

Event Table (EVTAB) i

Function

Address known to WAIT module
Used by WAIT module as workspace and to
provide status information on associated

event.
0 4
r N .= “1
¥hen Generated 0 | (see below) | WECB
| -1
4 JChain field through EVTABs | WECH
puring execution. | - {
8 {A(Event variable) | WAEV
f - {
C |A(ECBLIST element) | WAEL
Where Held L o]
WECB Bit 0 set when event is complete Bits
In LIFO storage. 1-7 Not used in this implementation

Appendix B: Control Blocks 229

Event Variable Control Block '

]

unction

To hold information about the operation
with which the EVENT has been associated.

When_Generated

Depends on the storage class of the event
variable.

Depends on the storage class of event
variable.

How_Addressed As a variable, dependand upon

storage class.

0 1 2

— - -
0|Flags1| Flags2 | STATUS

4y Anchor for ECB chain

8i A (ECB) /A (CCB)

C{A (TCA appendage for I/0)

109 A (FCB)

e e o o n aon > . - -]

230

Flags 1

Bit ©

Bit 1

Bit 2

Bit 3

Bit 4

Bit 7

Flags_ 2

Bit 0

Bit 1

Incomplete
Complete

1}
- O

.Inactive
Active

]
-

Not an I/O EVENT
1/0 EVENT

i
-0

Not a DISPLAY EVENT .
DISPLAY EVENT

[}
-

EV has not caused on-unit entry
EV has caused entry to an
on-unit

1]
- O

=always zero

=0 No chain of ECBs
1 Chain of ECBs exists

=0 Not a dummy EVENT
1 Dummy EVENT

File Control Block (FCB)
Function

Used to access all file information.
Contains addresses of the ENVB, DTF,
filename, etc.

ACB,

¥hen Generated.

As far as possible during compilation.
Completed by the open routines during
execution.

Where Held

In the static internal control section for
internal files.
In the associated file control section for
external files.

How_Addressed By an offset from register 3
if internal. Address filled in by linkage
editor if external.

Common Sectlon

FFST Flags 1nd1cat1ng types of statement
(8 bytes)
Bit number Statement + optionms

0 READ SET

1 . READ SET KEYTO

2 READ SET KEY.

3 READ INTO

4 READ INTO KEYTO

5 READ INTO KEY

6 READ INTO KEY NOLOCK

7 READ IGNORE

8 READ INTO EVENT

9 READ INTO KEYTO EVENT

10 READ INTO KEY EVENT

1 READ INTO KEY NOLOCK EVENT
12 . READ IGNORE EVENT

13 WRITE FROM.

14 " WRITE FROM) KEYFROM

15 WRITE FROM. EVENT “
16 WRITE FROM KEYFROM EVENT
17 REWRITE

18 REWRITE FROM

19 REWRITE FROM KEY
20 REWRITE FROM EVENT
21 REWRITE FROM KEY EVENT
22 LOCATE SET

23 LOCATE SET KEYFROM
24 DELETE

25 DELETE KEY

26 DELETE EVENT

27 DELETE KEY EVENT
28 UNLOCK KBY

29-63 Reserved

0 1 2 3 4
T TEE === i |
0| Flags showing valid statement types |
| (FFST) |
et it Sttt {
8| A(invalid statement module) (FAIS) |
'— -
(o] A (library transmltter) (FATM) |
| S e e s ———— |
10} A(file name) ' (FNAM) |
i -— e ————————
144 A (environment block) (FENV) {
| - - - -
1181 A (DTF) /A (ACB) (FDTF/FACB) |
et e |
1C| A (open file chain) (FAFO) |
| —=== smosms——s——e- |
204 FTYP | FER1 | FER2 |
| === e |
24| FATA { FATB | FATC | PFATD |
|===== —— ——————|
28| FFLA I FFLE | FFLC | FFLD t
|- |
2C| FFLE | FFLF | FFLG | FFLH |
| == e — |
30{ Blocksize (FBKZ) | FLOP | FFLI |
1= - - I
344 Record 1length (FRCL) |
| - - -1
381 A(hidden buffer)/) (FREC) |
{ A(IOCB) for VSAM (FAFR) |
3C| A(buffer space) (FIO0A) |
'-
40| Length of buffer space ., (FIOL) |
| ——=————m— s s |
{ 1 l
44 FEFA I FERA |
| { {
| , |
48| -~ - Unused (1 word) t
[S |
FTYP 6th and 7th characters of library

transmitter nanme
FER1 and FER2 Error Flags

FATA-FATD Flags showing attributes
allowable with file types, and
other file usage information.

Bit

Attribute

FATA 0 (Open SYSPRINT for error

Appendix B: Control Blocks 231

FATB

FATC

FATD

P OO NEWNSONAANEWN=ONIOUNEWN -

11

message)
(SYSPRINT)
unused
(String operation)
unused
DISPLAY
RECORD
STREAM
BACKWARDS
UPDATE
OUTPUT
INPUT
unused
unused
DIRECT
SEQUENTIAL
unused
unused
unused
PRINT
unused
KEYED
UNBUFFERED
BUFFERED
anused

FFLA-FFLH Flags Bit

FFLA

FFLB

- PFLC

FFLD

NOVEWN SO

NOUEWNN=20

o N E W =0

-

F-format
Vv-format
g-format
Spanned

Blocked

unused

unused

Key in record
variable KEYLOC

CONSECUTIVE
INDEXED

REGIONAL (1)

unused

REGIONAL (3)

unused

unused

other organization
(see FFLI)

LEAVE

UNLOAD

BUFFERS (2)

Permanent output error
(nag.tape)

stacker (2)

associated file

3881 device

unused

Transmitter
deblocking
ERET macro

permitted ,

DTF completed by compiler
buffer length calculated
by compiler

ENDFILE module loaded
unused

error module loaded
GENKEY

~NounsE wWwN

FFLE I/0 error

permanent input error or
non-scalar varying, length
set

permanent output error

end of file ,
hidden buffer in use

move required
non-SCALARVARYING

operation checked

- O

FFLF previous READ
previous READ SET
previous LOCATE
previous REWRITE
previous OPEN

close in progress
implicit close
outstanding event or
previous open

NOUNMEWNSO NSouesEwN

| (VSAM resume load)

PFLG Endpage

end of extents

COPY option active
CONSEC UNBUFF

unused

Synad entered

Newly opened print file
File open

FFLH In-line I/0

In-line locate

unused

unused

unused

Blanks at end of record
uanused

unused

~NousEwNn -0 NOAEsEWNaO

FLOP 7th character of OPEN module name

{FPLY 0 VSAM
1-7 reserved

FEFA offset of EOFADDR in DTF
FERA offset of ERROPT address in DTF

The common section is followed by either
the RECORD or STREAM sections.

Record _I/0 Section

FKLO

{ Base OPTCD for RPL (VSAM)

FKLO/FXXX | FECC |

FENT

KEYLOC-1

Offsets are from start of the FCB. FXXX Error bytes for DAM
FECC 2 for BACKWARDS (12 for FORWARDS) (Mag
Tape only)
0 1 2 3 4
e ———————— —-———a |[FFLYV 0 KSDS 1 ESDS 2-7 reserved
| Current buffer address or |FCDA|FRID
4C{Relative disk address (DAM) | FEMT 7th char of error module name
== e e |
501 A (key area) | FAKY FEFT 7th char of endfile module name
et tdntd |
| Current record number (DAM){FREL|FERY FSAT saved attributes (consec unbuff)
St{or A(embedded key) (ISAM) |
f=———- - | FNRT number of records/track (DANM)
58{A (error module or bootstrap) |FERM
[Rttt e L L b | FPFNC Associated file byte
| A (event variable) | FEVT| FABL
5Clor A (deblocker field in DTF) | FCNF Associated file conflicting operations
|- ————————————— | flags
60|Stored record descriptor | FARD
j=-— - - - FKLN Keylength-1
68{Stored key descriptor {f FAKD
|-—-- | FLCT Number of lines left on card
70|Stored request control block |FRCB|FAWB
| (first word) { FKYL Keylength (VSAM only)
|Address (associated files |
{work area) | FAFB Associated file work byte
| == - -— -1
74|0-format record length (DAM) |FURL|FALM|
|A(LIOCS transmitter (SAM)) |
{ FOPT
|
|
{

{ | /FFLV|

|
7C|0Offset table for error check |FRTB

80| FEPT | FSAT | FNRT/ |
l 1 { FFNC | FCNF|
........... —-——— '
84| FKLN/FLCF| FAFB | unused]

| /FRYL | | {
L - -d

Stream I/0 Section

Offsets are from the start of the FCB.

0 2
o e e e
4C| A(next available byte in a buffer)
l __
FREM 50| Bytes remaining in | Value of count
| buffer | built-in function
-z il Rt
FPGZ 541 Page size | Line size
|=mmm e e |
FLNN 58| Current line no. | Record size
| __
5C| A(copy position in buffer)
I __
601 A(FCE for COPY file)
| __
641 A(copy module(input)/tab module

| output print

| FCHT
|

|

| FLZ

I

| FMAX

|

| FCPM

|

| FCPF

!

| FCPA|FT2E

Appendix B: Control Blocks

233

Flow Statement Table

Function

Used to implement the compiler FLOW
option. Holds the last 'n' statement

- number pairs and the last 'm' procedure
executed. ('n' and 'm' are programmer
defined.)

When Generated

initialization if the FLOW option has been
specified. The table is continually
updated as the prgoram is executed.

(8 BYTES)

From offset X '4C' in the TCA.
0 1 4
T T EE e - s |
ARGT O | \
' | === -
4 I
8 1 |
{=- -1
Cc | |
| ‘ ===
AFLL 10| Total length of table |
| === - -1
ANEN 14| A(next free field in stmt. no i
| sect.) ' |
1 -
AASB 18} A(start of names section of |
| table) |
|-- -- =1
ANEB 1C| A(next free field in names |
: | section) {
1-- , == l
AAF¥B 20| A(end of table) |
————————— - ————— =1
ASBS 24| A(start of numbers section) |
- it |
28| AFL1 (AFLF {AFLG { STATE- i
| == - -1
{ MENT NO. (4 bytes) {AFLF -
[==- - {
{ AFLG | STATEMENT NUM- |
= e {
| BER |etc. |
| === |
i {
| i
i |
i |
|- e ————————— - -1
ASBD | NAMES OF BLOCKS |
| |
L. 4

234

unused

AFL1 - Flags

ANON Bit 0 No statement numbers required
AFLI Bit 1 last entry was branch-in

AILF Bit 2 unused

AINT Bit 3 interrupt not recorded

AGOT Bit 4 GOTO out of block

Bits 5-7 unused

AFLF_-_Flags

ATBY
ABCD
Bits

Bit 0 Branch-in entry
Bit 1 BCD form for this entry
2-7 unused

Input Output Control Block (IOCB)

Function

To hold information about the current I/0

operation on VSAM files.

When Generated

During the execution of the OPEN statement.

Where Held

In non~-LIFO storage.

From the FCB.

r

01 reserved {
4: INXT) _:
8: IFLA | IFLB |) IERR --_l
C=--— IRCB —-:
10: IORD :
14: IORE—-- o :
8 10KD |
o T e T l
20:- IEVT :
24:—-_ IDUB :
28:--- IKS;--- T :
ZC:—--— IEVE—_- —-—_:
30:--- IMHD o :
3“:- IH;L :
38} |
3C| |
40} [}
[- =]
444 ISHD |
38:_—— ISEL -—:
uc:— IHTE--- --:
501 ReL l
5“: ISAR :
58: ISLN [* :
SC:—- ;xau | * -‘:
60: JOPT :
64: IX2C | * -‘_-=
68: IARA ---l

6C| IX2D | * |
ol mame :
74: IX35 [e --:
ol meL
i s | . :
80: stk -_:
8u= IX2E I * -:
soi tame 7
BC: IX30 | _--.-; -------- :
Y :
9u= . :

% indicates reserved fields

INXT
IFLA

IFLB

IERR

(IER1
IER2)

IRCB
I0RD

IORL
I0KD
TOKL
IEVT
IDUB
IKSV
IEVC
MODCB
IMHD
IMEL
SHOWCB

ISHD
ISEL

Next IOCB on chain (set to
Flag byte - bits set to '1!
indicate:
Bits 0 - 3 reserved
Bit 4
Bit 5
operation
Bits 6 - 7 reserved

0)

general error flag
unable to complete

Code byte containing offset within
*look-up! table used for record

checking ,
Error codes (as for FER1 &
of FCB see under FCB) :
First byte is for TRANSMIT,

FER2

second byte for ENDFILE, RECORD,

KEY & ERROR conditions
Request Control Block

1st word of record descriptor

record address

2nd word of redord descriptor

flags + record length

1st word of key descriptor
address

2nd word of key descriptor
+ key length

A(EVENT variable)

A (dummy buffer)

A (key save area)

1st word of pseudo CCB

plist (5 words starting at
X*30")

A (header entry) -> IHTC
Element entry addresses
(maximum of 4)

plist - (2 words starting at
X'44r) N

A (header entry)-> IHTC

A (element entry)

Appendix B:

Control Blocks

= key

flags

offset

offset

“Header control entry (4 words

235

starting at offset X'4C?)

IHTC header type code for MODCB/SHOWCB
of RPL

IRPL Address. of request parameter list

ISAR A(receiving area for SHOWCB)

ISLN Length receiving area for SHOWCB

Element control entries start at offset
X'5C* and continue to end of IOCB. Each
entry occupies 2 words, with keyword type
code set in 1st half-word for example:
1X34 = X'0034¢*

236

The 2nd ‘word of each entry is used as
either a setting field for MODCB or a
receiving field for SHOWCB. The IOCB field
names are listed with their corresponding
RPL (Request Parameter List) parameters.

IOPT OPTCD
IARA AREA
IARL - AREALEN
IRCL RECLEN
ISIK FDBK
IARG ARG
IKYL KEYLEN

Interlanguage Root Control Block How_Addressed

(IBMBILC1)
By an offset from register 3 known to
Function compiled code.
[V 1 2 3 4
: re - |
Connects ZCTL and interlanguage VDA to 01 Address of ZCTL |
interlingual routines, and records state of | - |
activation of language interfaces. 4 | COBOL (FORTRAN | Stack | |
|flag |flag { flag | |
e e e rc e e ——————— 4
Rhen Generated
COBOL flag = COBOL active
During compilation.
FORTRAN flag = FORTRAN active
here_Held Stack flag = PLISA specified
In static internal storage, as a control Note: If COBOL or FORTRAN flag is on PL/I
section. is also active.

Appendix B: Control Blocks 237

Interlanguage VDA Where Held

unction _ v - In the LIFO storage stack.

To hold information required for How_Addressed
interlanquage calls. Used for information
that alters from invocation to invocation.

The latest interlanguage VDA is addressed
from offset 0 in ZCTL.

Hhen Generated

0 1 4

r 8 d -

One interlanguage VDA is generated for each 0 jA(previous interlanguage VDA) |-
interlanguage c¢all made from PL/I to jor A(2CTL for first VDA) |
FORTRAN or COBOL. An interlanguage VDA is - -1
also acquired if the PL/I environment has 4 JAddress of current DSA |
not yvet been set up when PL/I is called e c e —— ———mm— e e ——— |
from COBOL or FORTRAN. 8 |A(Callers error routine) B |
ittt st |
C |Program }(A(Callers machine check |
{ mask |save area) . R |
[P J

238

Key Descriptor (KD)

Function

Contains address and length of key for
passing to library record I/0 routines.

As far as possible during compilation.
necessary, completed during execution.

Normally in static internal control
section. In static external control
section if key is EXTERNWNAL.

If

Will be copied

into, or generated in, temporary storage if

procedure is reentrant or recursive.

0 1 2 3

(_— - -
0f Address of KEY variable

' ————————— -
4y |

| Flags { Length

‘ ——— ——— —— - ————— - . T ————— ——

{ Region No.

L - -

a. Address of source key

(excluding

the length bytes if VARYING)

b. Address of where to put key
(excluding length bytes if
VARYING)

Bit 1

Bits 2-15

Bits 16-31

'1'B if KEYTO string is
VARYING. (If this bit is set,
the I/0 transmitters will set
the current length field).

'1'B if word 3 contains a
region number.

Unused (zero)

Length of key string
(excluding length bytes for
VARYING) ; current length for
KEY or KEYFROM, maximum length
for KEYTO.

Region number in fixed binary, right

justified.

Appendix B:

Control Blocks 239

Label Data Control Blbck
Function

Holds the address of the data item and, if
a label variable, the address of the
associated DSA.

' When_Generated

Label constants: during compilation
Label variables: when the variable is
allocated

Depends on the storage class of the data
item

240

As a variable, dependant on
storage class. :

| Address of DSA (at time of
4 assignment) of owning block

Lo oo -

01 Address of label

4 | Value to be loaded into

] Register 2 on GOTO
Lo

e e B)

Library Work Space (LWS) How_Addressed The associated allocations is

addressed from offset X'48' in the current

DSA.
0 2 4
Function - Attt 4
0 {Flags (As DSA) |offset to ONCA |
: . | == e |
Space reserved for two pre-formatted DSAs 4 JHousekeeping information.as for |
used by certain library modules. | DSA ‘ |

50 { 56 bytes workspace

(

. = |

When Generated . 88 |Flags (as DSA) |offset to ONCA |

' | === -===|

8C [Housekeeping information as |

The first L¥S is generated during program | for standard DSA |

initialization. Subsequent LWSs are e ittt |

allocated before entry to any on-unit, D8 |56 bytes workspace |

This is because the on-unit may require the |- ———— ————————————————— |

use of library modules using LWS but must 110{Current ONCA |

not alter the environment of the interrupt. lrme e e e e — e ———————————————————]
Hhere Held

First allocation in the program management
area. Subsequent allocations in the LIFO
storage stack. ONCAs are generated with
LWS.

Appendix B: Control Blocks 241

On Communications Area (ONCA)

Function

An area in which built-in function values
or their addresses are placed, after the
occurrence of a PL/I interrupt.

¥hen_Generated

The first ONCA is generated during progranm
initialization. Subsequent ONCAs are
generated with each allocation of LWS.

Contiquous with LWS in the progran
management area and in the LIPC stack.

start of LWS held at offset X'02' in each
segement of LWS.

Dummy ONC

The dummy ONCA has the same format as other

ONCAs and holds default values for those
condition built-in functions that have
default values.

Flagsi
Bit 0 =. 0 ONFILE invalid
= 1 ONFILE valid
Bit 1 = 0 ONCHAR/ONSOURCE invalid
= 1 ONCHAR/ONSOURCE valid
Bit 2 = 0 ONIDENT invalid
= 1 ONIDENT valid
Bit 3 = 0 ONKEY invalid
= 1 ONKEY valiad
Bit 4 = 0 DATAFIELD invalid
= 1 DATAFIELD valid
Bit 5 = 0 No associated EVENT variable
= 1 Associated EVENT variable
Bit 6 Unused ‘
Bit 7 = 0 ONCOUNT invalid

242

= 1 ONCOUNT valid

Bits 8-~15 unused

|-
4y ONCODE | flags1

|
I-- |
81 string locator for |
| ONFILE 1
| === e e |
101 string locator for |
] ONCHAR |
| == ————— e ————————— [
181 string locator for |
i ONSOURCE : i
|- I niathaieatdet |
20| string locator for |
| ONKEY |
== e e |
28] string locator for |
{ DATAFIELD |
| B ittt |
301 string locator for |
{ ONIDENT {
=== e e e |
38} A (record I/0 EVENT variable) |
== |
3Cy Unused |
| === e m—es s e - |
40} ONCOUNT
441 retry environment
=== - {
48] retry offset {
=== e e e e
4crxruaor § X'0000 | flags2 |
————————————————————————————————— '
SOVLCT1 {LRAC | Unused i
L o e o e e o e e e e e e e o -
Flags_ 2
Bit 0 =0 ONSOURCE/ONCHAR‘not used
on-unit

1 ONSOURCE/ONCHAR used

Bit 1 0 ONSOURCE not set in ONCA

1 ONSOURCE set in ONCaA

non

Bits 2-7 unused

LCT1

Copy of TCA flag byte 1 (TF¥B1)
LRAC

Retry address code

Retry offset

LOCB
LCDE

LOFL

LOCH

L.OsC

LOKY

LODF

LOID

LEVT

LCNT

LREN

LRAD

in

The offset from the base of the library
module involved to the address at which a
conversion will be reattempted if ONSOURCE

or ONCHAR has been used.

On Control Block (ONCB)

Function

Contains pointer to associated on unit, or
indicates action to be taken when interrupt
occurs.

Bher Generated

Static ONCBs are generated during
compilation, one for each ON statement.
Dynamic ONCBs are generated by the prologue
code of the procedure or block in which the
ON statement occurs, or are allocated in a
VDA when the ON statement is executed.

Hhere Stored

Static ONCBs are generated in the static
internal control section. Dynamic ONCBs
are stored in the DSA of the block in which
the associated on-unit occurs.

How_Addressed

Start of dynamic ONCBs - offset X'60!?
in the DSA.

First Static ONCB - offset X'5C?! in DSA.

Static and Dynamic ONCBs

Static ONCBs are generated for unqualified
conditions. Dynamic ONCBs are generated
for qualified conditions (ENDPAGE, ENDFILE,
etc.)

0 1 2 4
r " = i b]
0|1 Address of previous dynamic ONCB |
| in block (or zero, if first) |
{ B ittt sttt |
4y Qualifier
“““ -1
8| Code | Flags | Unused |
=== e e e ———— 1
Ci Target |
L - - ¥]

Static ONCB

0 1 2 4
r e e 1
0 Code | PFlags | Unused {
(———————— |
4| Target (
L ———d
Qualifier

Rit

Bit

Bit

Bit

Bit

Bit

A(FCB) for I/0 conditions
A(SYMTAB) for CHECK
A(CSECT) for CONDITION condition.

PL/I code for condition

0 = 0 SYSTEM not specified
1 SYSTEM specified

1 = 0 Not a null on-unit
1 Null on-unit

2 = 0 Not a GOTO only on-unit
1 GOTO only on-unit

3 = 0 Condition not established
1 Condition established

4 Onused

5 = 0 Condition not enabled at blo
entry
1 Enabled at block entry

6 = 0 Condition disabled
1 Condition enabled

Bit 7 = 0 SNAP not specified
1 SNAP specified
Target

Address of on-unit, or offset in DS
word containing A (label variable or
label temporary).

Appendix B: Control Blocks

ck

A of

243

Open Control Block

NPA_-_Open_attributes

, This word indicates the explicit and
Function implied attributes on the OPEN statement.

. . - Byte No. Hex. Value Attributes
Used to indicate that a file attribute ’

(either input or output) was declared in 1 Not used .
the associated OPEN statement. 2 10 ‘ INPOT
. : 20 OUTPUT
3,4 Not used
When Generated . ' NDEM_~ Open_conflict masz

. , This is a mask generated by thevcompiler
During compilation. . ; : containing bits for all attributes which:
h ‘ conflict with those on the OPEN statement.

Where Held

Static internal control section.

How_Addressed

By an offset €from reg1ster 3 known t
compiled code.

(o}

- - e o e a0 2 e e e o e -

81 Unused ' {

244 , . P \

PLIMAIN How_Addressed

As a control section.

Function
T]
To hold address of entry point of a PL/I 0| A (Entry Main Procedure) |
main procedure. » |mm—————— |
41 Unused - |
When Generated s 3

During compilation of a procedure with the
MAIN option.

Rhere held

Separate control section.

Appendix B: Control Blocks 245

PLISTART

Entry point for PL/I program, passing
control to IBMDPIR. Primary entry point
passes control to IEMDPIRA. PLICALLA
passes control to IBMDPTRB. PLICALLB
passes control to PLICALLC.

¥hen_Generated

During compilation for every PL/I
compilation.

®here held

Held as a separate control section.

246

As a control section.

PLTSTART CSECT

' EXTRN
BALR
USING
L

BALR

DC
PIR EQU
DC
END

PLIMAIN
15,0

*,15
15,PIR
0,15

A PLIMAIN
%

V IBMBPIRA
PLISTART

Record Descriptor (RD)

Function

Contains address and length of record for
passing to library record I/0 routimes.

When Generated

As far as possible during compilation. If
necessary, completed during execution.

Normally in static internal control
section. 1In static external control
section if record is FXTERNAL. Will be
copied into, or generated in, temporary
storage if procedure is reentrant or
recursive.

How_Addressed

By an offset from register 3 known to
compiled code.

P et -

-
01 A (record variable) {
{ - - {

{

J

4 length

Lo - - -

1. Address of the data to be writtenm out.

2. Address of where data read in is to be

put.

3. LOCATE statement: Address of where to

store buffer
address.

READ SET statement: Address of

pointer to be
set.

READ IGNORE statement: Ignore factor.

¥ord_2

Bits 0. - 7 indicate the type of INTO or
FROM argument as follows:

X '00°
X '01¢
X '02¢
X 103

Bits 8-31 length

fixed length strings

area variables

varying length character
strings

varying length bit strings

of data to be transmitted

(length of variable or bhuffer
for locate mode).

The value is in bytes for all
strings including bit strings.

For VARYING strings, the value
includes the two length bytes,

and is

the maximum length for

input operations and for LOCATE,
the current length for other
operations.

Appendix

B: Control Blocks 247

Regquest Control Block (RCB) . 10 - DELETE
14 - UNLOCK
18 - WAIT
Function
REQ2 (options)
Used by the record I/O interface module

(IBMDRIO) to check the validity of an I/O 80 - INTO/FROM
statement. The instruction in RTMI is 40 - SET
carried out by IBMDRIO. 20 - IGNORE

02 - NOLOCK

01 - EVENT
When Generated REQ3 (options)

: 01 - KEY

During compilation. 02 - KEYTO

04 - KEYFROM

REQY4 unused
¥here Held
RTMI

Static internal control section. Either a TM or a BR instruction
depending on source program.

A TM instruction is used if the
How_Addressed statement cannot be checked for validity
during compilation, or if it has been
checked and found to be invalid.
From parameter list passed in register 1 to

IBMDRIO. The TM instruction is used by IBMDRIO
for testing the validity of a statement and
is;

0 1 2 3
T T e e e e 1 X'91MM25SS?
0 { REQ1 { REQ2 | REQ3 | REQ4 |
| ==== -—- - - { where MM is byte containing current
4 : RTMI 1 statement bit and SSS is offset of
Les e = e — = ——— 4 corresponding byte in FCB statement mask.
REQ1 (statement identification) A BR instruction is used if the
statement has been checked during
00 - READ compilation and found to be valid.
04 - REWRITE
08 - WRITE Unconditional branch instruction to PL/I
0C - LOCATE library or LIOCS transmitter.

2u8

:Statement Frequency Count Table

{To retain a record of the number of times a
| statement has been branched to or fron,

|use by the COUNT option.
|

{When the associated external procedure is

|entered.
Where Held
on-LIFO storage.

N
How_Addressed

{
|
|
{
(
{
|
|

The statement frequency count table for the

{first external procedure in a program is

{addressed from offset X'80"
jappendage (TIR).

in the TCA
The tables are chained

| together and the chain field of the last

{table set to zero.
|offset 0 in the table.

The chain field is at
The most receantly

{used table is addressed from X'84' in the

{TIA.

| ——=- -—=4

10 | A(next table _ | ACTB
i T T e e - i

{4 | A(static CSECT OF PROCFDURE) { ACST
| - -- -1

{8 | name of procedure | ACEP
1c | |

Y e - -—=1

1101 flags | ACFL
l |- |

114) A(first segment) | ACBS
I |- e e e {

{18} A (next segment) { ACSG
| |- e {

| 1C| number of entries | ACNG
I - |

120 length of segment | ACLG
| |- e |

{ | count entry |

I sttt |

{ | count entry |

| == e e it

| | count entry |

| lemremre e 3

for

ACBS

ACFL

ACBI

{ACIA
JACNM
|ACUI
{AczC

The address held in ACBS is the
address of ACSG. If tables are
segmented, second and subsequent
sections of the table will start at a
point equivalent to ACSG.

Flags

Bit 0 last update was for a branch
in

Bit 1 last update was for a GOTO
out of block

Bit 2 table inactive

Bit 3 not used

Bit &4 not used

Bit 5 not used

Other bits unused.

Appendix B: Control Blocks 249

Stream I/0 Control Block (SIOCB)
Function

Holds addresses of source and target,
source and target DEDs etc and is used as
parameter list by stream I/O routines.

During execution for the: duratlon of the
stream I/0 statement.

Phere Held

By register 1 during the stream I/0
statement.
0 2

po——————— -

L)

SSRC 0 |Address. of source or its locator

SSDD 4 | Address of source DED

STRG 8 (Address of target or its locator

STDD C | Address of target DED

10| SFLG | STYP | SDSA | SDFL

|
SFCB 14} Address of FCB for file

SRTN 18] Address of next statement

'-——-—

1C{Save word used in compiler
|generated subroutines
|-_
20{value of COUNT |
fbuilt-in functn.|
'--

24

SAVE

SCNT Unused

SOCA Address of ONCA

SSTR
{to hold dummy FCB.

v ———————

28| Area used during GET or PUT string

|
4

250

Flag Byte SFLG

Bit 0 = 1 Transmit on input

Bit 1 = 1 VDA used in edit-directed input

Bit 2 = 1 IBMDSED is used

Bit 3 = 1 Call to IBMBSIST required after
dealing with next item (GET or
PUT STRING only)

SDSA

DSA level number (used only for
data-directed I/0)

Type_code STYP

Bit 0 = 1 data-directed 1/0

Bit 1 = 1 list-directed I/0

Bit 2 = 1 edit-directed I/0

Bit 3 = 1 string I/0

Bit 4 = 1 CHECK entry to data-directed I/0
Bit 5 = 1 input

Data-directed flag SDFL

Bit 0 = 1 Terminating call to data-directed

output

Statement Number Table (DST) : therefore step down one section of the
table. If the offset was X'18FFF' the
. : binary would be '0001 1000 1111 1111
Function , 1111*B. Ignoring the 15 right-hamnd bits
. o leaves '11'B therefore step down three
. sections of the table.)
To relate statement numbers to offsets so :
that statement numbers may be given in
execution-time messages.

0 2 4

-
0 | A primary entry point of block |

|———mmmm s e e e {

bDuring compilation, if the GOSTMT option is 4 |Size of code generated for block |
in effect. | in bytes |
. . ‘----—---—-a---_ - '

8 {A(end of first section of table) |

Rhere Held C | Offset | Statement No. |

Static intermnal control section. } {--

How_Addressed

{

|

|

|

|

|

|

further offsets and statement {

|

point to a block. |
|
|
|
|

|
{
|
t
|
From offset 8 from each pr1n01pal entry | numbers
v (
|
|
{
|

P2 S22 - S SN 31 ¥ 53

lA(end of second section of table) |
As offsets are held in two bytes and the | === ———- ===
value may in fact take up to three bytes . | Offset | Statement No. [
(4096) , it is necessary to hold the table | ——— -—- -—=1
in sections. If the offset is greater than | Etc. B |
X'7FFF' the statement number will be held - - 4
in the second or subsequent sections of the i S)
table. Obtain the number given by -
translating the offset into binary and * = End of first section
ignoring the last 15 bits and step down : :
this number of sections of the table. (For Offset: Offset is the offset of the first

example, if the offset was X'8FFF’, ‘ byte of the statement relative to
translate to binary = '1000 1111 1111 the address of the primary entry
1111'B, ignore last 15 binary digits =1, point of the block.

Appendix B: Control Blocks 251

String Locator/descriptor

Punction

Used to pass the address and the length of
strings to other routines. Also for
handling strings with adjustable lengths
(e.g., DCL STRING CHAR (N)).

Hhen_Generated

Storage reserved during compilatioh.
Fields completed during execution if string
has adjustable length.

Static internal control section.

=

w_Addressed

By an offset from register 3 known to
compiled code.

o 1 2 3 4

r - e —————
(]] Byte address of string {
== cmo=——mss -1
4§ Allocated length |F| unused {F2]
L -
— e e et — N Bt~
Bit 16 Bits 29-31

252

Word 2
Bit 16
F = 10' B Pixed string (First bit of second

byte)
*1' B Varying string

Bits 29-31

F2 Used for bit strings to hold 6ffset from
byte address of first bit in string (3

bits) L . _ ,

Allocated length

For varying strings this is the declared

length. Length is held in bits for bit
strings and in bytes for character strings.

STRING DESCRIPTOR

The string descriptor is the second word of
the string locator/descriptor. It appears
in structure descriptors and in the)
description field of controlled variables.

Structure Descriptor

Function

Contains information about the offset of
each element within a structure, and the
nature of each element. Used when passing
a structure to another routine, or for
accessing structure elements during
execution, if the structure is declared
with adjustable extents or with the REFER
option.

When Generated

If the structure has no adjustable
-elements, during compilation. If the
structure has adjustable eleménts, during
execution from information held in the
aggregate descriptor descriptor.

Where Stored

Static internal control section.

How Addréssed

By an offset from regiéter 3 known to
compiled code.

For each base element in the structure, a

fullword field containing the offset of the
start of the element from the start of the
structure is given. If the base element is
a string, area, or array, this fullword is
followed by the offset field for the next
base element.

Offset of element from start
of structure

Descriptor of element if
element requires descriptor

o

&=

Offsei of element from start
of structure

@

Descriptor of element if
element requires descriptor

(]
[0 - - ———— - = o —— ——— - O

etc

For every base element in
the structure, an entry is
made consisting of an
offset field and, if the
element requires a descrip-
tor, a descriptor.

b o o o o o - —— o - ——]

Offset

The offset field is held in bytes, Any
adjustments needed for bit-aligned
addresses are held in the respective
descriptors.

Appendix B: Control Blocks 253

Symbol Table (SYMTAB)

Holds the name of the variable during
execution and associates it with the
address of the variable. Used only when
data-directed I/0 or the CHECK condition is
specified. .

During compilation, if data-directed I/0 or
the CHECK condition is used in the progranm

whe;e Held

Static internal control section for
internal names. Separate control section
for external names. For exte:kal variables
the name of the control section is the nanme
of the variable followed by an x*.
How_Addressed

By an offset from register 3 knownbto

compiled code for internal variables. As a
control section for internal variables.
0 2 3 4
r - -]
8 |FPlags | Dimension | Level |
| { ality | number |
- -- |
4 | A (DED) |
| == t
8 | Address field A |
I- -—- {
C {Address field B |
................ I
10{Length of name |
................ J |
| Name (fully qualified) {
L - -d
Flags

Bits 0,1 6 2 1000'B STATIC

100'B AUTOMATIC

*010'B CONTROLLED

(not param.)

*001'B BASED

'011'B DEFINED

'101'B a non-CONTROLLED
parameter

*111'B a CONTROLLED
parameter

noun

"

Bit 3 '1'B EXTERNAL

'0'B INTERNAL

254

Bit 4

]

'1'B item may appear in some
CHECK list.

= '0'B item appears in

- .no CHECK list.

(Bit 4 must be '1'B if item is EXTERNAL).

t1'B Address field A refers to
data.

'0'B Address field A refers to
locator.

Bit 5

(Bit 5 must be '0'B for.a CONTROLLED
parameter)

a member of a structure.

Bit 6 = "1'B
= '0'B not a member of a structure.
Bit 7 = *1'B Normal SYMTAB..
= '0'B Short SYMTAB (has fields A &
B omitted). ‘
Bit 8 = '1'B Address field A addresses

code.
Address field A does not
address code.

= tQ'B

reservedf‘ nust be set to

'O'BQ

Bits 10 - 11

*1'BR Symtab concerns a BASED
variable; Bits 0,1,2,5,8 of
Flags, level # and Field 1A
all refer to the POINTER
qualifier.

*0'B normal Symtab.

Bit 12

Bit 13 '1'B Symtab concerns a BASED
variable and Field B contains
an address (in Static).

.If Symtab concerns a BASED
variable, Field B contains an
offset (right justified) in
the DSA defined by level #.

= |0|B

Bits 14,15 reserved: nust be set to

'0'B.

L4 A28 X 3% 1 A

The number of dimensions declared for
an array item. Dimensionality is zero for
other items.

Level number

(for AUTOMATIC, DEFINED, and BASED items.
Also for all parameters.) The level of the
block in which the variable is declared.
The level of a block is one greater than
the level of the immediately containing
block; the level of the external block is
0.

Addresses are held in different formats for
different data types. As far as possible,
addresses are held in address field A.
However, more information than can be held
in a fullword field is sometimes required.
When this is the case, address field B is
also used. ’

If STATIC Address of data or address of
locator for items that have

locators.

If AUTOMATIC Offset within the associated
DSA of the data or of the
locator for items that have
locators

If CONTROLLED Address of anchor word.
If BASED Offset of one word field with
in associated DSA containing

address of declared pointer
qualifier.

If PARAMETER or DEFINED
Offset of one word field in
associated DSA containing
address of corresponding
arqument, or DEFINED data, or
its locator. For CONTROLLED
parameters, the argument is
its anchor word.

Address _field B

If non—structured AUTOMATIC, STATIC,
DEFINED or CONTROLLED
parameter, field B is set to
a fullword of zeros.

If structured not BASED
Offset from start of structure
descriptor to field that holds
offset of element from start
of structure. See "Structure
Descriptor."

If BASED
set)

(except when flag bit 12 or 13 is

For non-structured BASED items
field B holds the offset of
the descriptor from the start
of the DSA in which it is
held.

For structured BASED itens,
the offset is to the offset
word in the structure
descriptor. This word holds
the offset of the item from
the start of the structure.
See "Structure Descriptor".

Length

Length is the number of characters in the
fully quallfled nane.

Appendix B: Control Blocks 255

Symbol Table Vector

Holds addresses of symbol tables and
associates them witkh the block in which the
associated names were declared.

» When Generated

During compilation.

Static internal control section.

How_Addressed

By an offset from register three known to
compiled code.

0 v 4
-

A (symbol table)

A (symbol table)

|
- ‘ -—— ‘ —l
- —— - ‘

r
l

|

|

|

|

|

i

|

{ fullword of zeros
{

i

|

{

{

|

|

L.

'A(of first entry in symbol table vector
of encompassing block). All zeros

for main procedure block .

General Format
The format of symbol table vector is a
series of fullwords. = These contain either:
1. The address of a symbol table
or
2. The address in the symbol table vector
of the start of the entries for the

encompassing block.

or

<--marks end of
block.

3. A fullword of zeros indicating the end -

of the current block.

256

Task Communications Area (TCA) When_Generated
During program initialization by IBMDPIR.

Punction

Acts as a central communications area for
the program. Contains addresses of Fhere Held
essential routines and control blocks, and
various flags. (See chapter 5).
In the program management area at the head

How_Addressed By register 12 -u43 of the initial storage area (ISA).
0 [- Flags-- } TFLG
4 : Unused :

8 : Segment #| BOS : TBOS
o : Segment #|{ EOS : TEOS

10 : Unus;E :

14 : A(current event variable) : TEVT

18 : A(External Save Area) o : TESA

1c : A(TRT Table) : TTRT

20 :A(overgzow routine - get DSA)—- : TOVF

24 |;;;;;; to get DSA subroutine : TGDS

28 :— A (TCA appendage) : TTIA

2C : A (error handler) : TERR

30 :—;;;ave Are;-;or Overflo;—;;utine) -: TPSA

34 :-——--6;;; File Chain An;;or : TFOP

38 :Branch inst;uction for TC;-;BTO code: TGTC

3C l--- A (Bugtable)) : TBUG

40 : A(Diaqnos;;c File Block) : TDFB

TORC :-PL/I Return Code | User return : TORC

44 { i Code |

48 =—A(Overflow Routine for Get VDA) : TOVV

4c : A(Flow stmt number table) : TPST

50 : A(Tab table) : TTAB

54 : A(Flov module) : TEFL

58 : Branch instruction for call routine: TCAL

| Branch instruction for link routine|{ TLIN
5C | Unused |

60 : Unused | TRLR | TTLR | TENV

64 E (set to ze;;) E TPRI

Appendix B: Control Blocks 257

68

Unused

- —.'

1
' - -
6C | A (Get Dynamic Storage Routine)
{ - =1
70 } A(Free Dynamic Storage Routine) |
| - - -—=1
T4 | A (Overflow Routine for Get DSA)|
| - - -
78 { A(Error Handler) |
e e g ===
7C | Environment Description |
(- ——- -1
80 | Normal GOTO Code |
{ Used when GOTO out of block may |
| occur) : |
| - - l
FO | A(IBMBEFLC)/ |
| dummy if NOFLOW and NOCOUNT |
|- =1
F4y | A(Interpretive GOTO routine) |
| - -—=1
F8 i Unused |
| === - |
FC | Unused [}
| - - -1
100 | Unused |
=== - - {
104 | Unused |
(=mm=— - |
108) A(WAIT routine) |
| ===
10C | A(COMPLETION pseudovariable |
| routine) |
| -1
110 | A (EVENT assign routine) [
{ -—= -1
114 Unused
118 | 2 unused words |
L J

[}

TGET
TFRE
TOVFO

PERRO
TENVO

TGTCO

TEFC

TGTHM

TAWT .

TACP

TAEA

TFLG contains flag bytes TFBO, TFB1, TFB2, and TFB3.

TFBO

TFB1

TFB2

TFB3

Bit

all not used in this
implementation

0 not used

1='1'B Event Y/0 on-unit active

2 not used :

3=11'B Abnormal exit requiring
special action

4-7 not used

0='1'B Raise SIZE for fixed-
point divide, fixed-point

overflow, exponent overflow,

decimal overflow exceptions

1='1'B Ignore the exceptions
detailed for bit 0

2-6 not used
7=1'1'B I/0 conversion
all notvused

TENV contains environment description
TRLR resident library release number
TTLR transient library release number

TOVFO TERRO TENVO TGTCO

These fields are used in previous releases
and are retained for compatibility.

258

TCA Appendage (TIA)

From Offset X'28' in the TCA

aQ o & ©Oo

24
6C

70

T4
78

7cC

0 1

—— -

r
{ A(Byte beyond ISA)

|
{ Unused

| A(Last Free Area)

|
| Flags |Unused

{ A(Dummy DSA)

'——
{ A(Get LWS code)

'-
{ A(Load Module Chain Anchor)

|
{ Two words for code to call
| IBMBERRA

Interrupt Save Area (18 words)

A (Interrupt Handler

A (latest DSA) for abnormal
termination

Wword for A (IBMBCCLR)

(communications region)

| A(Operation exception checking

{ code)

|
| A(first count table)

I A(last count table used)

'-—
| Saved address of TCA to be
| restored after interrupt

| Space for system tab table

| (IBMBSTAB)
|

b o o v e o —— - —— - . W — - S Gl —— ———— - W — ——— ——— g w— o] =

TISA

TLFE
TFLA
TDDS
TLWR
TLMC

TEBL

“TSAI

TERA

TABT

TCCL

TCOM

TAFF

TCTF

TCTL

TATC

TTBS

Appendix B:

Control Blocks

259

Flags = TFL1

TFLS Bit 1 = 0 SYSPRINT not open for STREAM
PRINT
1 SYSPRINT open STREAM PRINT

TFLJ Bit 2 = 0 Abnormal termination exit
not in progress :
= 1 Abnormal termination exit in
progress
TFLK Bit 3 0 No dump I/0 in progress

nn

1 Dump I/O in progress

TISA identifies end of region.

Note: Chain beginning in TLFE is continued
at offset 4 in free area. First word in

260

free

TLWR

TFRA

TCCL

TAFF

area contains length.

is an address in IBMDPIR that acquires
library workspace.

is entry point A of IBMDERR.

is a field used to hold the address of
the complex string conversion routine
IBMBCCL. This routine is in the
transient library and is loaded by the
bootstrap routine IBMBCCS. When the
routine is loaded, the address is
placed in the field TCCL.

is the address of the code used to
check whether an operation interrupt
is caused by an attempt to execute a
floating point instruction on a
machine with no floating point
hardware.

Zygo-Lingual Control List (ZCTL)
Function

To hold information required for
interlanguage calls. Holds information

that does not change for every invocation.

In the LIFO stack if PL/I is main
procedure. If COBOL or FORTRAN are
principal procedures, at the head of the
unused portion of the region immediately
before the TCA.

From offset X'0!' in IBMBILC1 the

Interlangauge Root Control Block.

10
14

18

60

80

0

-
{3 (latest interlanguage VDA). If none,

|A (COBOL error routine), if any
:;-;Save area for COBOL program mask,
1if any) '

:;-};BEESZN erro;.routine) ')
:A (Sa;e area for FORTRAN program mask)|

{Address TCA
|.....--
| Save Area 1 (18 words)

|Save area used by IBMBIEPA

‘ - -

| Short Save Area (8 words)

|Used as DSAR when principal procedure
|is not in PL/I

l— - -

| Save Area 2 (18 words)

|Used as DSA when principal procedure
|is not in PL/I

L. - -

—_—-_————-J. s

e e o e - — o — s = -

Appendix B: Control Blocks 261

Appendix C: List of PL/I Library Modules

The following list of modules is arranged in alphabetical order of
the last three letters
save the reader the trouble c¢f remembering whether the module is
prefixed with IBMB or IBMD.

Resident Library Modules

Name

IBMBAAH
IBMEAIH
IBMEAMM
IBMBANM
IBMEBAPC
IBMEAPF
IBMBAPM
IBMBASC
IBMBASF
IBMBAYF
IBMEEBA
IBMBBBN
IBMEBCI
IBMBEBCK
IBMEBECT
IBMBBCY
IBMBRGB
IBMEBGC
IBMBBGF
IBMEBGI
IBMBBGK
IBMBBGS3
IBMEBGYV
IBMBCAC
IBMECEB
IBMECBC
IBMBCRQ
IBMECCA
IBMBCCB
IBMECCC
IBMBCCQ
IBMDCCS
IBMECE

IBMBCGP
IBMBCGQ
IBMBCGT
IBMBCG?Z
IBMBCH

IBMBCK

IBMECH

IBMECO

IBMBCP

IBMBCR

IBMBCT

IBMECU

IBMBCV

IBMBCW

IBMBCY

IBMDEFL
IBMBEOC
IBMBEOL
IEMEBERC

of the module name. This ordering is used to

Punction

ALL, ANY (simple and interleaved arrays)

Indexer for interleaved arrays

Structure mapping

STRING built-in function

PROD (arrays with fixed point integer elements)
PEOD (arrays with floating pcint elements) ,
STRING pseudovariable

SUM (arrays with fixed-point elements)

SUM (arrays with floating-point elements)

POLY built-in function

AND,

OR operations (bvte-aligned bit strings)

NOT operation (byte-aligned bit strings)
INDEX (character strings)

Ccncatenate,

REPEAT (character strings)

TRANSLATE (character strings)

VERIFY (character strings)

BCOL (bit strings)

Compare (general bit strings)

Assign (byte-aligned bit strings) and Fill (general bit strings)

INDEX (bit

Concatenate,

SUBSTR SLD
VERIFY
Conversion
Conversion
Conversion
Ccnversion
Conversion
Conversion
HIGH, LOW,
Conversicn

strings)

REPEAT, General Assign (bit strings)

(bit strings)

director (arithmetic to character)
(tit to bit)

(bit to character)

(bit to pictured character)
director (character to arithmetic) .
(ckharacter to bit) ‘

Assign (character strings)
(character to pictured character)

String conversion director bootstrap

Conversion

(fixed decimal - free decimal - float - fizxed binary)

Check input (pictured decimal)

Check input (pictured character) .

Table of powers of ten

Set a subfield of a complex number to zero

Conversion
Conversion
Conversion
Conversion
Conversion
Conversion
Conversion
Conversiocn

Conversion

Conversion
Conversion

(fixed blnary - float - free decimal)

(fixed decimal - free decimal - fixed decimal)
(pictured decimal to packed decimal)

(packed decimal to pictured decimal)

(bit to fixed binary or float)

(fixed binary or float to bit)

(decimal constant to packed decimal)

(binary constant to float) ‘

(packed decimal to E format)

(packed decimal to F format)

(fixed binary to fixed binary and float to float)

FLOW and COUNT option

ON-code

ONLOC built-in function
CEECK system action

Appendix C: List of PL/I Library

Size
(approx)

390
100
1760
1630
580
370
1230
420
330
380
520
400
200
610
770
210
660
240
390
350
890
330
420
700
350
220
240
520
420
270
410
340
720
870
200
140
300
480
370
810
1080
490
400
670
780.
670
490
250
1200
220
160
490

Modules

bytes

bytes
bytes
bytes
bytes
bytes
bytes
bytes
kytes
bytes
bytes
bytes
tytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
kytes
bytes

‘bytes

bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
kytes
bytes
bytes

‘bytes
‘bytes

bytes

263

IBMLERR
IBMDEVO
IEMDIEC
IBMDIEF
IBMDIEP
IBMDJIDS
IBMDJIDT
IRMDJIDY
IBMLID7
IBMLCJTT
IBMEJIVI
IRMDJWT
IRMGIWT
IBMDKCP
IBMDKDM
IBMDKST
IBMEMAL
IBMEMAS
IBMEMAX
IBMEMAY
IBMEMBL
IBMBMBS
IEMEMBX
IBMBMEY
IBMEMCL
IEMBNCS
IBMEMDL
IBMEMDS
IBMBMDX
IBMEMDY
IBMBMGL
IBMENGS
IRMEMGY
IBMBMGY
IBMEMHL
IBMEMES
IBMBYHY
IBMEMHY
TBMBMIL
IBMBMIS
IBMEMJL
IBMEMJIS
IBMBMXL

IBMBMES

IBMBMKY
IBMBMKY
TBMBMLL
IRMBMLS
IBMEMNL
IBNIMMS
IBMBMOD
IBMBMPN
TBMBMPV
IBMBMQU
IEMBMQV
IRMBMPY
IBMEMRY
IBMBMPX
IBMBMRY
IBMBMUD
IBMBMYD
IBMEMVY
IBMBMVW
IBMEUWY
IBMBMWY
IBMEMNYL
IBMBMXS
IBMBMXW

264

Error handler

Event Variable’ operatlons
Interlanguage housekeeping
Interlanguage housekeeping
Interlanguage housekeeping

DISPLAY

LATE built-in function

DELAY

DISPLAY without EVENT

TIMF built-in function

WAIT (array events)

WAIT (multiple events)

WAIT (single event)
Checkpoint/restart interface

Dump bootstrap

SORT interface

SQRT (long float real)

SQRT (short flcat real)

SQRT (short float complex)

SQPT (long f£loat complex)

EXP (long float real)

EXP (short float real)

EXP (short float corplex)

EXP (long float complex)

ERF, ERFC (long float real)

ERF, ERFC (short float real)

LOG, LOG2, LOG10 (long float real)
L0G, LOG2, LOG10 (short float real)
LOG (short float complex)

LOG (long float complex)

SIN, SIND, COS, COSD (long float real)
SIFN, SIND, COS, COSD (short float real)
SIN, SINH, COS, COSE (short flcat complex)
SIN, SINH, COS, COSH (long float complex)
TAN, TANC {long float real)

TAN, TAND (short float real)

TAN, TANH (short float complex)
TAN, TANH (long flocat ccmplex)
SINH, COSH (long float real)

SINH, COSH (short €loat real)

TANH (long float real) '

TANH (short flcat real)

ATAN, ATAND (long float real)

ATAN, ATAND (short float real)
ATAN, ATANH (short float ccmplex)
ATEN, ATANH (long float conmplex)’
ATANH (long float real)

ATANH (short float real)

ASIN, ACOS (long float real)

ASIN, ACOS (short float real)

ADD (fixed decimal real or complex)
MOLTIPLY (fixed binary complex)
MULTIPLY (fixed decimal complex)
DIVIDF (fixed tinary ccmplex)
DIVICE (fixed decimal ccmplex)

ABS (fixed binary conmplex)

ABS (fixed decimal comrlex)

BRS (short float complex)

ABS (long float complex)

Shift and assign/load (fixed decimal real)

Multiplication and Division (fixed binary complex)
Multiplication and Division (fixed decimal complex)
Multiplication. (long and short float comolex)

Division (short float complex)
Division (long float complex)
Integer exponentiation (long flcat real)

‘Integer exponentiation (short float real)
Integer exponentiation (short and long float coaplex)

1500.

1000

1440

310
310
370
320

230
230
240
160
260
200
470
360
260
260
260
180
350
260
290
290
280
460
580
210
540
120
130
360
290
660
120
100
100
140
140
410

bytes

_bytes

hytes
bytes
bytes
bytes
tytes
bytes
Eytes
bytes
bytes
tytes
bytes
bytes
bytes
kytes
bytes
bytes
bytes
bytes
tytes
bytes
kytes
bytes
bytes
Lytes
bytes
ktytes
bytes
bytes
bytes
bytes
kytes
bytes
kytes
kytes
bytes
bytes
bytes
bytes
tytes
bytes
kytes
bytes
Lytes
bytes
ktytes
bytes
bytes
Eytes
bytes
Lytes
bytes
bytes
bytes
kytes
pytes
poytes
bytes
bytes
bytes:
bytes
bytes
kytes
bytes
bytes
tytes
bytes

IBMBNMYL
IEMBMYS
IBMBMYY
IBMBMYY
IBMDOCL

IBMTOCN

IBMEPAF
TEMBPAM
IBMEPGO
IBMDPGR
IBMDPIR
IBMDPJR
IBMDPOV
IBMBPRC
IBMDRIO
IBMBSAI
IBMBSAO
IBMESBO
IBMBSCI
IBMBSCO
IBMDSCP
IBMDSCV
IBMDSDI
IBMLSDJ
IBMDSDO
IBMISED
IBMDSEE
IBMDSEH
IBMDSEL
IBMDSEO
IBMBSFI
IBMBSFO
IBMDSII
IBMDSIO
IBMDSIS
IEMDSLI
IBMDSLJ
IBMDSLO
I3BMESMW
IBMBSPI
IBMDSPL
IBMESPO
IBMDSTF
IBMDSTI
IBMDSXC
IBMBTOC

General exponentiation (long float real) . 160 bytes

General exponentiation (short float real) 150 bytes
General exponentiation (short float complex) 260 bytes
General exponentiation (long float complex) 270 bytes
OPEN/CLCSE bootstrap 240 bytes
OPEN/CLOSE address 1list and record I/O error bootstrap 200 bytes
Ccntrolled variable management 150 bytes
AREA management 540 bytes
Reset CHECK enalklement , 40 tytes
Storage management 610 bytes
Program initialization from systemn K 420 tytes
Program initialization from caller _ 330 bytes
Overlay 110 kytes
Return ccde module. : 40 bytes
Record I,/0 interface module 80 bytes
Input conversion director (A, P, and B formats) 420 bytes
Output conversion director (A format) ‘ , 130 bytes
Output conversion director {(character-? and B formats) 400 bytes
Input conversion director (C format) : 300 bytes
Output conversion director (C format) 290 tLkytes
COPY - 230 bytes
Conversion fix-up bootstrap . . 90 tytes
Data-directed input ‘ 2090 bytes
Data-directed input 2090 bytes
Data-directed output : 1210 bytes
Edit-directed I/0 housekeeping 1050 tytes
Edit-directed ccmbination module 1420 bytes
Edit-directed combination subset module . 880 kytes
Edit-directed input) 440 bytes
Edit-directed output 210 tytes
Input conversion director (“ and E fornats) 240 bhytes
Output conversion director (F and E formats) 210 bytes
GET FILE initialization » 420 bytes
PUT FILE initialization 330 kytes
GET or PUT STRING initialization : 350 bytes
List-directed input 2220 tytes
List-directed input 2070 bytes
List-directed output 1610 kytes
Missing output width module ‘ 340 bytes
Input conversion director (P format) 370 tytes
PAGE, LINF, and SKIP 530 bytes
Output conversion director (P format) 290 kytes
Stream input transmitter ~ : 440 bytes
Stream print F-format transmitter - : 190 tytes
X and COLUMN format itenms 440 bytes

COMPLETION pseudovariable and Event variable assignment 130 bytes

Transient Library Modules

The following 1list is arranged in alphabetical order of the last
three letters of the module name. This ordering is used to save the
reader the trouble of remembering whether the module is prefixed
with IBMB or IBMD. :

Name

IBMECCL
IBMBCCR
IBMBEOC
IBMBETA
IBMBETB
IBMBETC

Function o : ’ Size
’ (approx)
Conversion director (ccmplex strings) . . 1830 bytes
Ccnversion director (ncn_complex strings) _ : 940 bytes
On-code translate . 240 bytes
Miscellaneous non-ON messages (1) , . C o 710 kytes
Miscellaneous non-ON messages (2) S .] 1140 tytes
Misc. and computational non-ON messages : 1000 bytes

Appendix C: List of PL/I Library Modules 265

IBMBETI
IBMBETO
IBMBETP
IBMBETQ
IBMRETT
IEBMDEDO
IBMDEDW
TEMDESM
IBMDESN
IBMDESY
IBMDKDD
IBMDKTA
" IBMCKDR
IBMDKDT
IBMDEMR
TBMDKPT
IBMDKTR
ZRMDKTIC
TBMDKTR
IBMDOCA
1BMLOCY
IBMDOPM
IBMDOPD
IBMDOFPQ
IBMDOPS
TBMDOPT
IBMDOPU
IBMDODY
IBMDOPW
IBMDOPX
IBMDOPY
IBMDOP7,
IRMDEF?
IBMDPES
TIBMDPIF
IBMDPII
IEMLPJI
IBMDRAW
IBMDPAY
IBMDRAY
IBMDRAT
IEMCRRY
IBMDRRY
IBHD&RY
IBMDRBZ
IBMDRCY
IEMCRC?
IBMDRDY
TIBMDRDZ
IBMDREF
IBMDPEX
IBMDREV
IBMDREY
IBMDREZ
IBMDRJZ
IBMDRKZ
IBMDRLZ
IBMDPRR
IBMDRPT
ZBMDRRU
IBMDRRY
IBMDRRW
IBMERVR
IBMD®VS
IBMDRVT
IBMDRVZ
IBMDERY
IBMDRRY

266

I/0. non-ON messages

ON messages (1)

ON messages (2)

ON messages {(3)

EVENT messages

Open diagnostic file

Ccnsole transmitter

Error message module rhase 1

Error message module pahse 2

Error system action

Hexadecimal dump

Dump file attributes

Dump storage report

Dump/COUNT transmitter

Dump control

Dump parameter translate

Save Area Control Block printout

Save Area chain validity checker

Dump trace '

Close

Close VSAM files

OPFN - consecutive unbuffered files

OPEN - consecutive buftered files

OPEN - consecutive buffered files (level 2)

OPEN - streanm files

OPEN - stream files (level 2)

OPEN - consecutive buffered/stream files (level 3)

Open VSAM files

OPEN - indexed files (level 4)

OPEN - regional and indexed files

OPEN - regional/indexed files (level 2)

OPEN - regional indexed files (level 3)

Housekeering Diagnostic message module

Storage management Diagnostic message modulse

Operation ®xception checking, (no floating-point hardware)
Program ISA initialization

Program ISA initializaticn frcm caller

Regional(3) seqguential unbuffered output transmitter
Regional (3) sequential buffered output transmitter
Eegional (1) sequential unbhuffered output transmitter
Pegional (1) segquential buffered output transmitter
Regional (1) seguential buffered input/update transmitter
“egional (3) sequential buffered input/update transmitter
Pegional (3) seguential unbuffered input/update transmitter
Regional (1) sequential unbuffered input/update transmitter
Consecutive sequential unbuffered transmitter, U-format
Consecutive sequential unbuffered transmitter, F-format
Regional(3) direct transmitter

Regional (1) direct transmitter

ENDFILE module

Error handler for indexed files

‘Error handler for VSAM files

Error handler for regional and unbuffered consecutive files
Error handler for ruffered ccnsecutive files

Indexed sequential input/update transmitter

Indexed direct input/update transmitter

Indexed sequential output transmitter

Consecutive ptuffered exit module

Consecutive seqguential buffered OMR transmitter, F-format
Consecutive sequential buffered associate files, U-format
Consecutive sequential btuffered associate files, V-format
Consecutive sequential buffered associate files, F-fcrmat
VSAM KSDS direct transmitter

VSAM KSDS seguential input/update transmitter

VSAM KSDS seguential output transmitter

VSAM ESDS transmitter n

Consecutive sequential buffered transmitter, U-format
Ccnsecutive seguential buffered transmitter, V-format

1340 -
1380
760
1020
1140
210
190
1010
2250
180
1000
3300 -
1100
1550
1040

2100

1410

1380
1820
970
1460
520
620

bytes
bytes
kytes
kytes
bytes
bytes
bytes
bytes
kytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
kytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
tytes
bytes
bytes
bytes
bytes
kytes:
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
bytes
tytes
hytes
bytes
bytes
bytes
bytes
bytes
kytes
bytes
bytes
bytes

IBMDRR?Z Consecutive sequential buffered transmitter, F-format ' 620 bytes

IEMILSCT Conversion conditicn interface 470 bytes
IBMDSOF Stream output transmitter, F-format i 210 bytes
IBMDSOT Stream output transmitter, J-format ' 170 bytes
IBMDSOV Stream output transmitter, V-fcrmat 210 Lkytes
IBMBSTA Tab table ‘ 40 bytes
IBMDSTU Stream print transmitter, U-format 410 tytes
IBMDSTV Stream print transmitter, V-format 430 bytes

Appendix C: List of PL/I Library Modules 267

abnormal GOTO
code in TCA 59
event I/0 156
interpretive GOTO subroutine 28
routine IBMBPGO 58
SORT exit 150
abnormal locate return address 96
access method
record 1/0 95
stream I/0 118
activating blocks 23
actuwal origin (AO) 43
address constants 9
addresses
DsA 17
external save area 58
library subroutines 16
parameter lists 17
program base 17
static base 17
TCA 17
temporary base 17
within T™CA 58,59
addressing
beyond 4K limit 21
controlled variables 19
interrupt 71
library subroutines 17
register usage 17,18
through locators 43-45
adjustable extents
control blocks 43
creation of temporaries 19
aggregates
address 21,45
array 170 131
arrays of -structures 22,49
assignments 23
COBOL 189; 203
descriptor descriptor 43-50,216
FORTRAN 189,203
interlanguage arguments 189,203
library subroutines 145
listing 11
locator 45,217
main discussion 22
alignment in structures 189
ALL built-in function 146
allocating of storage 63-71
allocating variables 19
AND logical operations 146
ANY built-in function 147
A0 (actual oriain) 43
AREA condition 70
areas
address 45
control block 215

areas (continued)

descriptor 216

locator descriptor 45,214

storage management 70
arguments

for conversion routines 138

implementation 28

library subroutines 28
arrays

assignments 23

descriptor 22,218

FORTRAN 189-207, 203

i/0 131

Index

interlanguage communication 189-207

interleaved 148

locator 45

of structures 22,48

structures of arrays 22,48

subscripts outside bounds 74
ASSEMBLER option 205.
ASSEMBLER-FL/I communication 205
attributes data 43,50
automatic variables

addressing 19

implementation in general 19

in dump 187

storage 63

base addressing
change of program base 35
register usage 17,18
base element 43
based variables
implementation 21
in dump 187
storage 63
basic in-line conversions 142
beginning of segment (BOS) pointer
BIT data
internal representation 137
string assignment subroutine
(IBMBBGF) 146
block enable cells 75,26
blocks
activating 23
inactive ' 28
terminating 24
BOOL built-in function 146
bootstrap routines 28
BOS (begining of segment pointer)
bounds adjustable 43
branching 26-27
buffered consecutive files 109,94
buffers
contents in dump 167
general 118
pointers 119
record I/0 106

58,65

58,65

Index 269

N

buffers (continued)
storage 63
stream I/0
pointers 119
built-in functions
arithmetic 145
array handling 145
condition 72
DATE 149
library subroutines 147
mathematical 145
stream I/0 131
string handling 146
structure handling 146
TIME 149
byte beyond the ISA 65
byte, next available (NAB) 65

C format item DED 222
CALL statement 25
calling sequence
interlanguage calls 205
library 28
calling trace
following through dump 182
obtaining 163
CCB (channel control block) 149
chain, free area 65-68
chain, loaded module 60
chain, open file 57,58
channel control block 149
CHARACTER data (how held) 137
CHECK condition 81-84,50
CHECK prefix 81
checkpoint/restart facility 152
CKPT macro instructionm 152
closing files
CLOSE macro instruction 91
explicit closing 101,93,109
implicit closing 95
library subroutine 101 -
COBOL
COBOL-PL/I communication 189-208
interrupt 200
option in ENVIRONMENT attribute 206
structure mapping 189-207, 205
COLUMN format option 131,134
common constants 35
common control blocks 35
common expressions, elimination of 31
commoning 35
communication
between languages 189-207
between routines #43-50
compare aligned bit string subroutine
(IBMBBBC) 146
compare unaligned bit string subroutine
(IBMBBGC) 147
compilation 1
compile time DED 50
compiler generated subroutines 30,134
compiler generated temporarles 11
compiler options
AGGREGATE 11
COUNT 87,249
deleted 11
ESD 11

270

compiler options (continued)
FLOW 82-90
LIST 11
MAP 11
OFFSET 11
SOURCE 11
STORAGE 11
compiler output 9-3 :
COMPLETION built-in function 152
COMPLETION pseudovariable 152,156
concatenate-character-strings subroutine
(IBMBBCK) 147
CONDITION condition 74
conditions
built-in functions
general 71
storage for values 77
values in dump 182
default enablement 73-86
enablement 73
main discussion 71-81
name abbreviations in dump 163
prefixes 72
record I/70 106
stream I/0 130-131
values in dump 183
consecutive buffered files 113,94
constants
commoning of 35
general 16
pool 16
control blocks
built-in functions
default values 77
commoning 35
error handling 75-77
formats and functions 213-261
interlanguage communication 193
locating in dump 186
record I/0 96
stream I/0 118
CONTROL compiler option 11
control format items 126
control sections 9
control variable of DO loop 30,33
controlled variables
control block 219
in dump 185
main discussion 19
storage - 63
conversion 137-144
basic 142
CONVERSION condition 142,73,81
hybrid 142
in-line 141)
intermediate results 138
invalid 142
library subroutines 137,138,142
multiple 142 ~
ONCA 143
ONSOURCE 142
stream I/O0 119
CONVERSION condition 142,73,81
COPY option 131-132,135
COUNT function 131
COUNT option 87,249
count table 87,249
CSECT (control section) 9

current enable cell 75

DAM 94
data
aggregates (see aggregates)
conversion (see conversion)
internal representation 137
interrupt - 73
DATA built-in functlon 149
data directed I/O 124-125,51
data element descriptor (DED)
as argument for conversion routine 138
for format items (see format element
descriptor)
fFormats 220-222
general description 590
in SIOCB 119
data format item 125
data interrupt 71
data list matching 131
data management buffer 119
data sets
definition 91
interchange between PL/I and COBOL 206
DATAFIELD built-in function 131
depbug option of PLIDUMP 163
debugging using dumps 161-188
decimal data format 137
decimal divide interrupts 71
decimal overflow interrupts 71,80
DED (see data element descriptor)
dedicated registers 17,18

define the file control block (DTF) 94,95
location 186

DEILAY statement 149

descriptors 43-50
aggregate descriptor descriptor #6,216

area 46,214
array 46,218
data element (see data element
descriptor)
string 45
structure 46
DFB (see diagnostic file block)
diagnostic file block
format 224
function 60
diagnostic messages 84-87 '
diagnostic statement table (DST) (see
statement number table)
director routines in stream I/0 115 133
disablement of conditions 71 :
disk files for restart 152
DISPLAY statement 149
DO loops 30
modification of control varlable 33
register for control variable 17
DSA (see dynamic storage area)
dummy arguments in interlanguage
communications 191
dummy DSA
address 59
error handling 77
introduction &
dummy ONCA
chaining 77
description 60

durmy ONCA (continued)
introduction 55
dummy PLIMAIN in IBMDPIR 55
dump bootstrap module (IBMDKDM) 85
dump control module (IBMDKMR) 85
DUMP option in JCL 161
dumps
debugging with 161-188
housekeeping information 180
implementation 85)
library subroutines 84
obtaining 161
options 163
stand alone 180
trace information 165
dynamic ONCB 77
dynamic scope 72
dynamic storage 63
dynamic storage area (DSA)
address register 17
associating DSA with block 182
backchain in dump 180
duarnmy
address 59
error handling 77
erroxr handling 77
for main procedure in dump 184
format 225
forward chain in dump 29
IBMDERR's DSA in dump 175
initialization 55
introduction 3
prologue code 15
uses 63

E format DED 222
ECB (see event control block)
edit-directed I/0 125-130
arrays 131
buffer operations 125
compiler generated subroutines 125
control format items 126
data format items 126
FED 126
format DED 126
format list 126
format option handling 131
GET EDIT statement 125
library director modules 131,133
matching data and format lists 126
non-matching data and format lists 126
PUT EDIT statement 126
X format items 126
element, structure U3
element, base 43
elimination of common expressions 31
elimination of unreachable statements 33
enable cells 75,26
enablement of conditions
general 71
summary chart 73,74
testing for 82
encompassing procedure (definition) 193
end of extent, offset to (OEE) 70
end of file 132,73
end of segment pointer 65
END statement 25

Index 271

ENDFILE cordition
library subroutine IBMDREF 108
record I/0 106
stream I/0 131 :
summary information 73
ENDPAGE condition 73,81
entry data control block 227
entry points 29
addresses in dump 182
conversion subroutines 138
error handling subroutine 79
executable program phase 9
interlanguage communication 191
library subroutines 37-44,28
main procedure 9
ENTRY statement in interlanguage calls
ENVB (see environment block)
environment
at interrupt 72
definition 2
FORTRAN 191, 200
interlanguage communication 191
SORT 150
ENVIRONMENT attribute COBOL option
environment block
format 228
locating 186
record I/0 96
stream I/0 118
EOFADDR routine
stream I/O 131,118
EOS (end of segment) pointer 65
epilogue 24
ERROPT routine
record I/0 109
stream I/0 118
ERROR condition 72
on-unit and dumps 170
error handling during execution 71-84
error code 75,184
erroxr handling subroutine IBMDERR 79-85
event I/0 154,156
FORTRAN 201
identifying the erroneous statement 84
interrupt in error handler 79
messages 84,85
record 170 106-120
stream I/0 131
error identification
address in dump 173
ERROR on-unit 161
in library module 185
interrupt in error handler 171
using dump in general 161-188
error messages 84
ESD records
definition 9
for conversion modules
for LIOCS routines 91
interlanguage communication
reference listing 11
established on-units 79
EV (see event variable)
even/odd register pairs 17

191

206

138

194

event control block (ECB) 156
event I/0 112,156

EVENT option 154,112

event table (EVTAB) 154,229

272

event variabies 154-159
control block 230
locating in dump 186
EVTAB (event table)
discussion 152
format 229
EXCP macro instruction 150
executakle program phase 4
execute interrupt 71
execution 9
entry point 9
exit table, SORT 149
explicit open 106 '
record I/0 106,96
stream I/0 118 ,
exponent overflow interrupt 71,80
exponent underflow interrupt 71
exponentiation 146
expressions
common elimination of 31
invariant 31
movement out of loop 32
redundant branching around 35
simplification 24
extent adjustable 19
creation of temporaries 19
in structures 147
EXTERNAIL data 21
external reference,weak 39
external symbol listing 11

P-format records 134
FAIS field in FCB 105
FATM filed in FCB 105
FCB (see file control block)
FCBA field in FCB 119
FCOP field in FCB 131
FCPM fielé in FCB 132

FED (format element descriptor)
description 50
format 222
use in stream I/0 125

FEFT field in FCB 108

FEMT field in FCB 108

FERM field in FCB 108

fields, locating in dump 186

file control block (FCB) 105
FAIS field 105-119
FATM field 106,105,108
FCBA field 118,119
FCOP field 132
FCPM field 131,132
FEFT field 108
FEMT field 108
FERM field 108
fields for buffer operation 118

format 231
FREM field 118,119
locating in dump 186
record 1I/0 96
stream I/0 118
filenames 95
files
(see also data sets)
chain open 58
declaration with COBOL option
definition 91

206

files (continued)
information in dump 163
open file chain 58
record 1I/0
declaration 95
explicit closing 101,109
explicit opening 101
filename 95
implicit closing 94
implicit opening 103
types 94
FINISH condition
fixed point data
binary 137
decimal 137
DED 221
divide interrupt 71,79
overflow interrupt 71,79
FIXEDOVERFLOW condition 73,71,80
floating point data
binary 137
conversion to character string 142
decimal 137
DED 221
divide interrupt 71
underflow interrupt 80
floating point registers
saving 79
usage 18
FLOW compiler option 87
(see also flow statement table)
library subroutine IBMDEFL 87,89
flow of contrecl 23
flow statement table
format 234
format DED (see format element descriptor)
format element descriptor (FED)
description 50
format 222
use in stream I/0 125
format items 126
format list matching 131
format option handling 131
formatting modules in stream I/0 135
FORTRAN-PL/I communication 189-208
FORTRAN interrupt 200
FORTRAN cption 191
free area chain 59
free decimal format 141
freeing storage 63
freeing variables 21
FREM field in FCB 119
FST (sece flow statement table)
function reference 25
function values, on-condition 60

57,74,81

87-94

general registers (see registers)
GET DATA cstatement
CHECK condition 82
main discussion 122
symbol tables and symbol table
vectors 51
"GET EDIT statement 125
GET LIST statement 122
GET macro instruction 91
GOTO statement
from SORT 150

GOTO statement (continued)
main discussion 26

hardware interrupts (see program check
interrupts)

hexadecimal dump 167,163

hexadecimal dump subroutine (IBMDKDD) 87
hybrid conversion 142

IBMBRAAH 146
IBMBAIH 145
IBMBAMM 147
IBMBANM 146
IBMBAPC 146
IBMBAPF 146
IBMBAPM 146
IBMBASC 146
IBMBASF 146
IBMBAYF 146
IBMBBBA 146
IBMBBBC 146
IBMBBBN 146
IBMBBCI 147
IBMBBCK 147
IBMBBCT 147
IBMBBCV 147
IBMBBGB 1u47
IBMBBGC 147
IBMBBGF 147
IBMBBGI 1u47
IBMBBGK 147
IBMBBGS 147
IBMBBGT 147
IBMBBGV 147
IBMBILC1 {interlanguage root control
block) 195,235
IBMBMXL 146
IBMBMXS 146
IBMBMXW 146
IBMBMXY 3iué6
IBMBMYK 146
IBMBMYS 146
IBMBMYX 146
IBMBMYY 146
IBMBPAF 21
IEMBPAM 70
IBMBSAI 135
IBMBSCI 135
IBMBSCO 135
IBMBSCV 143
IBMBSFT 135
IBMBSFu 135
IBMBSPI 135
IBMBSPO 135
IBMBSTAB 122
IBMDEFL 87-94
IBMDERR 79-85
IBMDESM 84
IBMDESN 84
IBMDIEC 197
IBMDIEF 200
IBMDIEP 202
IBMDJDS 150,159
IBMDJDT 149
IBMDJDY 149
IBMDJTT 149

Index 273

IBMDIJWT 156,155 . IEICGBB 31

IBMDRKCP 152 . IELCGBO 31
IBMDKDD 85 . IEICGCB 31
IBMDKDM 85 IELCGCL 31
IBMDKMR 85 IELCGIA 31,131,134
IBMDKST 15¢ IELCGIB 31,134
IBMDOCA 108,101 . . IEICGMV 31
IBMDOCL IELCGOA 31,134
record I/0 IELCGOB 31,134
implicit opening 101 IELCGOC 31,131
record I/0 close 109,101 IEICGON 31
record I/0 open 100-117 IELCGRV 31
stream I/0 - 118) IIBMDREY 102,106
IBMDOPA 101 . implicit close in record I/0 109,94
IBMDOPB 101) implicit open
IBMDOPC 101 record I/0 103
IBMDPEP 86 stream I/0 118
IBMDPES 86 in-line conversion 139
IBMDPGR 68 i in-line record I/0 109,91
IBMDPII 56 inactive event 156,152
IBMDPIR 56 : INDEX built-in function 146
IBMDPJR 57 indexing interleaved arrays 145
IBMDRAW 102 initial storage area (ISA) 63,55
IBMDRAX 102 initialization 55,56
IBMDRAY 102) FORTRAN 200
IBMDRAZ 102) . stream I/0 subroutines 133
IBMDRBW 102 _ input/ouput control block
IBMDRBX 102 . o format 235
IBMDRBY 102 input/output 91-135
IBMDRBZ 102 instruction associating with module 181
IBMDRCY 102 INTER option 191,200,201
IBMDRCZ 102 , interlanguage communication 189-206
IBMDRDY 102 aggregate arguments 189-207,46
IBMDRDZ 102 arrays 203
IBMDREF 102,108 assembler 205
IBMDREX 102,106 ASSEMBLER option 205
IBMDREZ 102,106 basic rules 191
IBMDRIO 109-112 COBOL option of the environment
entry points 102 attribute 205
paramenter list 96 . : control blocks 195
IBMDRJZ 102 : entry point declaration 191
IBMDRKZ 102 . environment changes 191
IBMDRLZ 102) interrupt handling 191
IBMDRQX 102 ‘ interrupt in COBOL 200
IBMDRQY 102 : interrupt in FORTRAN 46
IBMDRQZ 102 interrupt in PL/I 203
IBMDSCP 131 : . NOMAP option 205,191
IBMDSCV 131 NOMAPIN option 205 1917
IBMDSDI 134 . . NOMAPOUT option 205 191
IBMDSDG 134 principles 32 }
IBMDSED 134 root control block (IBMBILCl1l) 195,238
IBMDSEI 125,131,134 storage 205-208
IBMDSEO 125,134 structures 189-207,205
IBMDSII 133 S o SYSLST 197
IBMDSIO 133) VDA 195,235
IBMDSIS 132,133 , interlanguage VDA 238,195
IBMDSLI 133 interleaved arrays 145-147
IBMDSLO 134 internal form of data 137
IBMDSOF 135 : interpreti ve code
IBMDSOU 135 for GOTO 28
IBMDSOV 135 need for 4
IBMDSPL 131, 135 . interrupt handling 71
IBMDSTF 135 : COBOL 200 :
IBMDSTI 135 . event I/0 156
IBMDSTU 135 5 FORTRAN 201
IBMDSTV 135 : interrupt levels 71
IBMDSXC 125,134 , . : interrupt save area 79 _—
IBMGJWT 159,152 library subroutine (IBMDERR) 79-85

-274

interrupt handling (continued)
program check 79
return 81
software 80
interrupt identification using dump
at address not in linkage editor
map 185
in error handler 171
in library modules 185
invariant expressions 32
invert-aligned-bit-string subroutine

(IBMBBBN) 146
IOCB-
format 235

ISA (initial storage area)
ISA, byte beyond 65
ISAM (indexed sequential access method) 94

63,55

RD (see key descriptor)
KEY condition 73
key descriptor 239
key descriptor (KD)
key variable 91,100

100

label
control block 240
labelled statements 26-27
label data control block 240
label variables 27-28 ’
labelled statements 26-28

last in/first out (LIFO) storage 2,64-68
LEAVE option 102
lengths of library modules 264-~268

levels of interrupt 72
library subroutines 37
alphabetical list with lengths and
function 263-267
arithmetic 145
array handling 145-147
calls 28
computational 145
conversion package 137
entry points 29
in record 1,0 101
in stream I/O 133-146
interrupt in
finding module name 187
programmer action 184
interrupt in transient module
INTRODUCTION 4
MATHEMATICAL 145
naning conventions
register usage 18
string handling 146
‘structure handling 147
workspace 39 '
library workspace (LWS)
description 39
format 241
locating 187
LIFO (last-in/first-out) storage
LIMSCONV option 130
LINE format option 131
link-editing S5
LIOCS (logical input/output control system)
routines 91,108 .

185

37,29

63-71

LIST compiler option 11
list-directed 170 120,122
listings 11
loaded module chain 60
LOCATE statement 91
locators 43-50
aggregate locator format 217
area locator format 214
logical input output control system
(LIOCS) 91,108
logical operation subroutines
loops 30
modification of control variable 33
movement of expressions out of 32

146

main procedurs
DSA in dump 180
entry pcint 9
in interlanguage communication 193
no main procedure 55
termination of 56
major free area 64,65
map of static storage 11
merge facility 150-153
messages, diagnostic, implementation
of 8u4-87
modification of control wvariable 33
movement out of loop 32
multiple conversions 142
multiple event waits 156
maltiplication, optimization of 33
multiplier array 22

NAB (next available byte) pointer 65
locating 187 .

NAME condition 131,73

naming of library modules 37-42,29

next available byte (NAB) pointer 65
locating 187

NOCHECK prefix 81

NOCONVERSION prefix 131

NOMAP option 191,205

NOMAPIN option 191,205

NOMAPOUT option 191,205

non-LIFO storage 4,63,66

NOOPTIMIZE 31

null on-unit 80

object module 9

object program listing 12,11

OCB (see open control block)

OCCURS (COBOL) 205

OEE (offset to end of extent) 70

offset
listing 11
on-cells 75,80

ON CHECK statements 81

on communications area (ONCA)
description 77
dummy 55,60
format 242

ON control block (ONCB)
description 75
locating - 187

ON statements 77

243

Index

275

on-code 75
in dump 182
on-units 71-82
GOTO only 28
in event I/0 156
ONCA (see ON communications area)
ONCB (see ON control block)
ONCHAR 142,81
CNSOURCE 142,81 .
open control block (OCB)
format 244
function 96
locating 187
open file chain 58
OPEN macro instruction 91
opening files
explicit open for record 1I/0 100
implicit open for record I/0 . 94,103
stream I/O0 118
operating system interfaces
operation interrupt
analysis code 60
optimization 31-36
branching around redundant
expressions 35
commoning 35
effect in conversion 137
effect of common expressions 31
elimination of unreachable
statements 33
modification of loop control
variable 33 ‘
rationalization of branches 35
simplification of expressions 33
OPTIMIZE (TIME) 31
OPTIONS attribute 191
options of PLIDUMP 163
OR logical operation 146
output (see input/output)
output, compiler 9-3
OVERFLOW CONDITION 73,71
overflow routine,stack 58,70

150,159

packed intermediate decimal format 139
PAGE format option 131,135 .
pairs, evensodd, register 17
parameter lists

address register 17

contents in dump 185

for conversion routines 138

main discussion. 29
partition dump 163
partition save area 180
password for deleted compiler options
PICTURE data

DEDs 221

FEDs 222

internal representation 137

PIK (program interrupt key) in dump 171

PL/I environment (see environmeht)
PL/I-ASSEMBLER communication 205
PL/I-COBOL communication 189-207
PL/I-FORTRAN communlcatlon 189-2067
PLICALLA 57

PLICALLB 57

PLICKPT 152

276

PLIDUMP facility .
how to obtain dQump 161-165
how to use 163
implementation 85
options, list of 163
PLIFLOW 87,9
PLIMAIN 55,9
dummy in IBMDPIR 55
format 245
PLISA 197
PLISRT 150
PLISTART 55
format 246
initialization 55-60
PLITABS 120
pointer data 21
pointers
BOS 65
buffer pointers, stream I/0 119
COPY option 131
DsA 17
EOS 65
FCBA 119,131
FCPM 131
FREM 116
NAB 65
TCA 17
TISA 65
POLY built-in function 1&6
prefixes 72
principal procedure, definition 193
PRINT files 120 .
privileged operation interrupt 71

PRCC statement in interlanguage calls 191

PROCEDURE BASE 15
PROD puilt-in function 147
program base 17,35
program check interrupts
program control section
program flow 23
program interrupt key (PIK) in damp 180
program management area 56-61
program status word (PSW)

locating in dump 171

using to identify interrupt 171
program text statements, number of 11
program tuning, report option 168
prologue 23
protection interrupt 71
PSW (see program status word)
PUT macro instruction 91
PUT statement 120

71,79
9,16

Q option of PLIDUMP 163

RD (see record descriptor)
READ macro instruction 91
READ statement 91 .
REAL ENTRY 15
recompilation to obtain dump, avoiding
RECORD condition 73
record descriptor (RD)
discussion 100
format 247
record I/0 91-135
control blocks generated 97,96

22

record I/0 (continued)
control blocks generat (continued)
in-line 170 109
error handling 106
in-line - 109-112,94 :
interface routine (IBMDRIO) 96,109
library call 94
libraxy routines 100-110
list of 101-102
raising conditions 106
record I/0 109
implicit opening 109
summary of library usage 100
record variable 91,100

redundant expressions, branching round 35

REFER option 46
registers
contents in dump 28
save area in dump 183
summary 184
usage 17-31
relative virtual origin (RVO) 43,46
release identification 59
relocatable object module 9
REPEAT built-in function 147
REPLY option 149
report option of PLIDUMP 167
using for program tuning 168
required procedure, definition 193
resident library 37 .
alphabetical list of modules with
lengths 263

restart (checkpoint restart) facility 152

return code
PL/I 81
SORT 150
return from interrupt 81
RETURN statement 25 ‘
REVERT statement 77
REWRITE stetement 94
RLD records 9
RVO (relative virtual origin) 43,46

SAM 94
save areas
calling routine 58
IBMDPGR 60 ‘
IBMDPIR 60
partition 25
registers in dump 184
system 81
SAVE field in SIOCB 118
SCNT field in SIOCB 118
scope 72
segments (see storage)
SETIME macro instruction 149
SFCB field in SIOCB 118
SF1IG field in SIOCB 118
gignificance interrupt 71
simplification of expressions 33
single event waits 159
SIZE condition 73,71,80
SKIP format option 131,135
'SID (see string locator descriptor)
SNAP - 80,85
SOCA field in SIOCB 118

software interrupts
definition 71
main discussion 80
SORT exit 150,28
sort merge facility 150-152
source
address, during stream I/0 118
DED address, during conversion 138
definition 115
source program listing 11
source recoxrds, number of 11
spanning record boundaries (stream
I/70) 116
specification interrupt 71
SRTN field in SIOCB 118
SsDD field in SIOCB 118
SSRC field in SIOCB 118
SSTR field in SIOCB 118
stand alone duamp 180
standard system action
action taken 74
definition 71
when taken 77
statement frequency count table
format 249
statement number
in messages 85
of exror in dump 182
statement number table (DST)
format 251
statements, €limination of unreachable
static backchain
in dump 180
static base address 17
static internal control section 16
static
contents 16
listing 11
map 11
scope 72
static variables 21
locating 185
STATUS function/pseudovariable 156
STDD field in SIOCB 118
storage
automatic 19

chart showing principal contents 211

interlanguage communication 195
main discussion 63-72
management routine 68
requirerents listing 11
segments 65,70
sort merge facility 150
static map 11)
temporary 17

stream I/0 115-135
access method 118
buffer usage 118 .
built-in functions 131
conditions 131
conversion 118
COPY option 132,131
COUNT function 131 -
DATAFIELD function 131
define the file control block (DTF)
director routines 115,132,135
end of file 118
error handling 131

Index

33

118

277

stream I/0 (continued)
external conversion director
modules 120,134
file opening 118
format items 126
format lists 126
format options 131
formatting modules 133,134
implicit open 118
initializing modules 133
library usage summary 133
LIOCS routines 115
ONCHAR 131
ONSOURCE 131)
spanning record boundarles 115,118
stream I/0O
general 117
transmitter modules 118,133
stream I/0 control block
discussion 118 _
stream I/0 control block (SIOCB):
format 250
stream I/0 opening 118
STRG field in SIOCB 118
string descriptor 252
string locator/descriptor 45,252
subroutine 147
strings
adjustable 145
DED 221
FED 222-223
length 46
library subroutines 133,147
locator descriptor 45
STRING function/pseudovariable 147
STRING option 132-144
STRINGRANGE condition 74,147
STRINGSIZE condition 74
analigned 146
varying-length 137,146
structure descriptor 253
structures
array of structures 22,48
COBOL 189-207,206
descriptor 45
element definition 43
interlanguage communication 205
locator (aggregate locator) 46
main discussion 22
mapping 46,147
of arrays 22,48
structure descriptor descriptor 46
STXIT macro instruction 56
subroutines, compiler generated 30,125
subroutines, library (see library
subroutines)
SUBSCRIPTRANGE condition 74,81,161
SUBSTR built-in function 147
SUM built-in function 147
symbol table (symtab) 51-67
format 254
symbol table element list (see symbol .
table vector)
symbol table wvector 51
format 256
SYSIST in interlanguage calls 195
system action, standard
action taken 74

278

system action, standard = (continued)
definition 71 *- ,
system dumps
initiation 79,85
interpretation 171
system interfaces, mlscellaneous 147-159
system save area 79 ~

tab table 120
target
address, in conversion 138
address, stream I/0 118
DED address, conversion 138
definition 118§
task communications area (TCA)
address register 17
appendage (TIA) 59
format 257
GOTO code in 59,28
introduction 2
major discussion 58
offsets for library subroutlne
addresses 30
TCA (see task communications area)
TCA appendage (TIA)
format 259
TECB (timer event control block) & 149
temporary variables (temporaries)
address register 17
description’ 19
storage for 63
TERA field in TCA 59
terminating blocks 24
termination of program
after dqump 163
after interrupt in error handler 79
general 56
TEST field in TCA 87
TIA (TCA appendage)
format 260
main discussion 59
TIME built-in function 149
timer event control block (TECB) 149
TISA (address of byte beyong ISA) 65
TITLE option 102
TLFE field in TCA 59
trace
FLOW option 87
information in dump 22
optaining in dump 165
transfer of control 23
transient library 37
alphabetical list of modules with
lengths 266
translate and test table in TCA 77,60
TRANSLATE built-in function 147
transmission statement
definition 91
in record 1I/0 94
TRANSMIT condition 131
transmitter modules
stream I/0 118,134
TXT records 9

U-format records 135
unaligned strings 145,147

UNDEFINEDFILE condition 73
UNDERFLOW CONDITION 71,73
UNLOAD option 102
unqualified conditions 73,74
user exits (sort) 150

V-format records 135

variable data area (VDA) 63
interlanguage communication 195,238

variables
adjustable (see adjustable extents)
area (see areas)
automatic (see automatic variables)
based (see based variables)
controlled (see controlled variables)
entry 227
event (see event variables)
label 26-27,240
map of offsets 12
locating in dump 187
pointer 21

varaibles offset map 12

varying length strings
effect on library usage 147
internal representation 137

VDA (see variable data area)

VERIFY built-in function 147

version identification 59

virtual origin (VO) 22

VO (virtual origin) 22

WAIT macro instruction 152

WAIT statement 152-159,112

WAITF macro instruction 150

WAITM macro instruction 150

weak external reference (WXTRN) 39

work registers 17

workspace, library (see library workspace)
WRITE macro instruction 91

X format items 131,134

ZCTL (zygo-lingual control 1list) 195,197
format 261
ZERODIVIDE condition 73,71,80
zygo-lingual control list 195,197
format 261

48 option of PLIDUMP 163

60 option of PLIDUMP 163

Index 279

oujn Buojy pjod 40 IND

DOS

PL/1 Oprimizing Compiler: READER'S
Execution Logic COMMENT
Order No. SC33-0019-1 . FORM

Your views about this publication may help improve its usefulness, this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your

IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC33-0019-1

Your comments, please . . .

[2]
| 12
This manual is part of a library that serves as 4 reference source for systems analysts, e
programmers, and operators of IBM\systems Your comments:on the other side of this : IE
form will be carefully reviewed by the persons responsmle for writing and publlshmg I:
this material. All comments and suggestlons become the property of IBM. g
«Q
|c
3
I o
Fold Fold l
NO POSTAGE
NECESSARY |
IF MAILED
IN THE |
UNITED STATES
——
—— |
BUSINESS REPLY MAIL ——
]
] |
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. pre——
POSTAGE WiLL BE PAID BY ADDRESSEE: E— |
I
EEEE—
——— |
I
e |
ERE—
— |
EER—
g
Fold Fold |

— — —

21607 uonndex3y epdwog Buiziwndo 1/1d SOQ

(62-0L£S/09ES ©ON 3|id)

1-6L00-€€D0S 'V'S'N Ul paluld

