

Program Product

SC33-0019-1
File No. S360/S370-29

DOS
PL/I Optimizing Compiler:
Execution Logic

PL/I Optimizing Compiler 5736-PL 1
PL/I Resident Library 5736-LM4
PL/I Transient Library 5736-LM5
(These products are also distri_buted
as composite package 5736-PL3)

--..--------- - ---- -,'--- ~ ---- -- ------------~-,-

Second Edition (September, 1973)

This is a major revision of SC33-0019-0 and associated
technical newsletters.

Information has been inclu~ed on the new features that
are available with release 4 of the DOS PL/I Optimizing
Compiler as follows:

COUNT option - Chapter 7
New options for PLIDUMP - Chapter 12

A number of minor changes and corrections have also been
made throughout the book. A new topic heading "How
Addressed" has been added to the control block descriptions
in appendix A. Technical changes are marked with a vertical
line to the left of the change.

This edition applies to Version 1, Release 4, Modification 0
of the DOS PL/I Optimizing Compiler and to all subsequent
releases until otherwise indicated in new editions or
Technical Newsletters. Changes are continually made to the
information herein; before using this publication in
connection with the operation of IBM systems, consult the
latest IBM System/360 and System 370 Bibliography SRL
Newsletter, Order No. GA22-6822, for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IB~l Uni ted Kingdom Laboratories Ltd., Programming
Publications, Hursley Park, Winchester, Hampshire, England.

eCopyright International Business' Machines Corporation 1971,
1972,t973.

Preface

The main purpose of this publication is to
explain, in general terms, the way in which
programs compiled by the DOS PLII
Optimizing Compiler (Program Number 5736-
PL1) are executed. It describes the
organization of object programs produced by
the compiler, the contents of the
executable program phase, and the main
storage situation throughout execution.
The type of information provided is
intended primarily for those persons
involved in program maintenance of the
compiler and its related library program
products, but it should also provide
valuable information for applications
programmers, since a knowledge of the way
in which source program statements are
implemented at execution time can only lead
to the writing of more efficient programs.
To this end, the book contains a chapter on
how to obtain and read a PLII dump.

Although different source programs
produce different executable programs, the
structure of every executable program phase
produced by the compiler is basically the
same. This structure is explained in
chapter 1. Chapters 2,3,4, and 5 describe
the various elements that make up the
executable program phase. Chapters 6 and 7
explain the housekeeping and error-handling
schemes. Chapters 8, 9, 10, and 11
describe the implementation of various
language features, the majority of which
are handled by a combination of compiled
code, PLII library routines, and DOS system
routines. Chapter 12 is the guide to
obtaining and using dumps. The final
chapter, chapter 13, deals with
interlanguage communication. In addition,
there are two appendixes: appendix A
provides a diagrammatic summary of the
principal contents of main storage during
program execution; appendix B contains
details of all control blocks that can
exist during execution.

The reader of this publication is
assumed to have a sound knowledge of PLII,
and a working knowledge of the IBM Disk
Operating System and its assembler
language. It is recommended, therefore,
that the reader should be familiar with the
content of the following publications:

RECOMMENDED PUBLICATIONS

QQ~gL/I_gptimiz!~Compiler:
g~Qgrammer's Guid~, Order No. SC33-0008

QQS P1LI Optimizin~compiler: Language
Reference Manual, Order No. GC33-0005

System/370 Princi~Q~ratiQB, Order
No. GA22-7000

In!~Qdu£tion_to ~ystem Control Prog~,
Order No. GY24-5017

REFERENCE PUBLICATIONS

This book makes reference to the following
publications for related information that
is beyond its scope:

IBM~tem/360 Reference Data Card, Order
No. GX20-1703

I!H~2y.§tem/37LRe!~~ Summary, Order No.
GX20-1850

QQS Superviso~~d Ineut/Out~l1~.§,
Order No. GC24-5037

QQ~_gL/I Optimizing Compiler: Program
1Qgic, Order No. LY33-6010

QOS ~Resident Library: Program Logic,
Order No. LY33-6011

DOS PLII Transient Librar~ Prog~
Logi£, Order No. LY33-6012

AVAILABILITY OF PUBLICATIONS

The availability of a publication is
indicated by its use key, the first letter
in the order number. The use keys are:

G - General: available to users of IBM
systems, products, and services
without charge, in quantities to meet
their normal requirements; can also be
purchased by anyone through IBM branch
offices.

iii

S - Sell: can be purchased by anyone
through IBM branch offices.

L - Licensed materia1s, property of IBM:
available only to licensees of the
related program products under the
terms of the license agreement.

iv

CHAPTER 1: INTRODUCTION • • • • •• 1
Processing a PL/I Program • 1

Compilation 1
Link-Editing. • • • • • • • • •• 1
Execut ion • • • • • 2

Factors Affecting Implementation 2
Key Features of the Executable

Program • • • • • • • • . • • 2
Communications Area •• . • • 2
Bynamic storage Allocation • 2
Use cf Library Subroutines. 4
Initialization Routines 4

contents of a Typical Executable
Prcgram Phase •• • • • • 4

The Overall Use of Storage 6
The Process of Execution 6

CHAPTER 2: COMPILER OUTPUT 9
Introd uction • • • • 9

The Organization of this Chapter 11
Listing Conventions • • • • • • 11

Static-Storage Map. • • . 11
Object-Program Listing. • • 12

Static Internal Control Section • 16
Program Control Section • • 16
Register Usage • • • • • • 17

Dedicated Registers 18
Work Registers • • • • 18
Floating-Point Registers 18
Library Register Usage • • 18

Handling and Addressing Variables 19
Handling A uto'matic Variables • 19
Compiler-Generated Temporaries •• 19

TemForaries for Adjustable
Variables. • • • 19

Contrclled Variables. • 19
Control Block •• • • 19
Allocating a Variable • • • •• 21
Freeing a Controlled Variable 21

Eased Variables •• • . 21
Static Variables • • • • 21
Addressing Beyond the 4k Limit 21

Handling Data Aggregates • • • • 22
Arrays of Structures and
Structures of Arrays 22

Array and Structure Assignments 23
Handling Flow of Control • • •• 23

Activating and Terminating Blocks 23
Prologue and Epilogue Code • • 23

Prologue • • • • • • • 23
Epilogue • • • • • • • 24
CALL Statements 25
Function References 25
END Statement 25
RETURN Statement • • • 25

GOTO Statements •• • • 26
GOTO Within a Block 26
GOTO Out of Block 27
G'O'IO Label Variable • • •• 27
GOTO Only On-Units • • • • • •• 27
Interpretive GO TO Subroutine 28

Argument and Parameter Lists 28

Contents

Library Calls •• • • • • • • 28
Setting-Up Argument Lists 29
Addressing the SUbroutine 29

DO-Loops • • • • • • • • • • • 30
Compiler-Generated Subroutines •• 30

Optimization and Its Effects 31
Examples of Optimized Code • • 31

Elimination of Common
Expressions • • • • • • • • 31

Movement of Expressions out of
Loops • • • • • • • • • • • 32

Elimination of Unreachable
Statements • • • • • • • • 33

Simplification of Expressions 33
Modification of DO-Loop Control
Variables • • • • • • • • • 33

Branching Around Redundant
Expressions • • • • • • • • 35

Rationalization of Program
Branches • • • • • • • • • 35

Use of Common Constants and
Con trol Blocks •• • • • • 35

CHAPTER 3: THE PL/I LIBRARIES 37
Resident and Transient Libraries 37
Naming Conventions • • • • • • • 37
Li brary Workspace • • • • • • • • 39

Format of Library Workspace 39
Allocation of Library Workspace 39

Library Modules and Weak External
References • • • • • • • • • • • 39

CHAPTER 4: COMMUNICATION BETWEEN
ROUTINES • • • • • • • • 43

Notes on Terminology • • • • 43
Descriptors and locators • • • 43

String Locator/Descriptor 45
Area Locator/Descriptor 46
Aggregate Locator 46
Array Descriptor • • 46
Structure Descriptor 46
Aggregate Descriptor Descriptor 46
Arrays of Structures and
Structures of Arrays 48

Data Element Descriptors 50
Symbol Tables and Symbol Table
Vectors • • • • • • • • 51

CHAPTER 5: OBJECT PROGRAM
INITIALIZATION • • • • • 55

Link-Editing • • • • • • • • 55
Program Initialization 55

Initialization and Termination
Routines • • • • • • • • • • 56

The Program Management Area 58
Task Communications Area (TCA). 58
TCA Appendage (TIA) 59
Save Area for IBMDPGR 60
Dummy ONCA • • • • • • • 60
Translate-and-Test Table 60
Diagnostic File Block 60
Dummy DSA • • • • • • • 61

Contents 1

Library Workspace (LW S) •••• 61
ON Communications Area (ONCA) 61
Caller's STXIT Options. • • 61
Operation Interrupt Analysis

Code • • • • • • • • • • • 61

CHAPTER 6: STORAGE MANAGEMENT ••• 63
Types of Dynamic Storage Required 63

Contents of LIFO Storage • • •• 63
Contents of Non-LIFO storage.. 63

Dynamic Storage Allocation •• • •• 63
Fields used in Storage Handling 65

Allocating and Freeing lIFO
Storage. •• • • • • • • •• 65

Allocating and Freeing Non-LIFO
Storage • • • •• •• •• 65

Acquiring a New Segment of LIFO
Storage • • • • • • • • • • • •• 67

IEMDPGF - storage Management
Routine • ~ • • • • • • • • • 68

Allocating Non-tIFO Storage
(IEKBPGRA) • • • • • • 68

Freeing Non-LIFO Storage
(IEMEPGRB) • • • • • 68

segment Handling (IBMBPGRC and
IEMEPGRD) • • • • • • • • • 68

Storage Management in Programmer-
Allocated Areas • • • • • 70

CHAPTER 7: ERROR AND CONDITION
HANDLING. • • • • • • 71

Summary of PL/I Error Handling 71
Static and Dynamic Scope. 72
Levels of Interrupt 72
Condition Built-In Functions 72
The ERROR Condition • • • • 72

The Implementation of Error Handling 72
Information Required At Interrupt 75
The Fields Used in Error Handling 75

The Error Code • • • • • • 75
Enable Cells • • • • • • • • •• 75
ONCEs (ON Control Blocks) 75
ONCA (ON Communications Area) 77
Dummy ONCA • • • • • • • • 77
Dummy DSA •• • • • • • • • •• 77
Translate-and-Test Table • • •• 77

Executing ON and REVERT Statements 77
Unqualified Conditions. • 79
Qualified Conditions • • • 79

IBMDERR - Error-Handling Module • 79
Hardware Interrupts • • • • 79
Software InterrUpts •• • • • •• 80
Return to Point of Interrupt 81

Software Interrupts 81
HardWare Interrupts 81

The CHECK Condition. • • • • • • 81
Raising the CHECK Condition 82
'Iesting for Enablement • • • 82
Searching for Established On-units 84

Error Messages • • • • • • • • • •• 84
Message Formats • • • • • • •• 84
Interrupts in Library Modules 84
Identifying the Erroneous
Statement • • • • • • 84

Finding the Address of the Entry
Point of the Block 85

Ancillary Information 85
Message 'Iext Modules • 85

2

Dump Routines • • • • • • • • 85
Miscellaneous Error Routines 86
The FLOW and COUNT Options 87

Implementation ot FLOW and COUNT. 89
Tables Used by FLOW and COUNT 89

CHAPTER 8: RECORD-ORIENTED
INPUT/OUTPUT • • • • • • • •

Note on Terminology
Introduction • • • •

91
91
91

Summary of Record I/O Implementation
compilation •• • • • • •

91
91
94
95
95
95
96
96

Execution • • • • • • • • •
Access Method and DTF Type •

Compiler Output for Fecord I/O
File Declaration • • • •
The OPEN Statement •••
Transmission Statements
CLOSE Sta tements • • • •

Library Routines in Record I/O
Type of Library Modules Used
Opening a File Explicitly
Opening a File Implicitly
Transmission Statements
Transmitter Action • • •
Raising Conditions in
Transmission Statements ••

General Error Routines
(Transient)

ENDFILE Routine
CLOSE Statements ••

In-Line I/O Statements

• • 100
100
100
101
103
103
106

106

• • 108
108
108
109

Control Blocks tor In-Line Calls
Implicit Open for In-Line Calls

109
109
109 Event I/O • • • • • • • • • • • • • •

CHAPTER 9: STREAM-ORIENTED
INPUT/OUTPUT • • • • • • • •

Note on Terminology
Introduction • • • • • • • •

Operations in a Stream I/O

115
• • 115

115

Statement. • • • • ••• 115
Stream I/O Control Block (SIOCB) 118

File Handling • 118
Transmission • • 118
Opening the File 118
Implicit Open 118
Keeping Track of Buffer Position 118

Handling the Conversions •••••• 119
Handling GET and PUT Statements .•• 120
List-directed GET and PUT Statements 120

PUT LIST Statement • • • • . • • 120
GET LIST Statement. • • • . • • 122

Data-Directed GET and PUT Statements 124
Edit-Directed GET and PUT Statements 125

Compiler-Generated Subroutines • 125
Handling Control Format Items • 126
Matching and Non-Matching Data

and Format Lists • • • • • • • 126
Choice of Initialization Routines. • 128
Handling Format 0 ptions • • • • • • • 130
Input and Output of Complete Arrays • 130
Effects of the LIMSCONV Option 130
PL/I Conditions in Stream I/O 130

TRANSMIT Condition. 130
CONVERSION Condition 131
NAME Condi tiO.n • • • 131
ENDFILE Condition and Unexpected

End of File • • • • • • • •
Built-In Functions in stream I/O
COpy Option • • • • • • • • • •
STRING Option • • • • • • • • •

Coro~leting String-Handling
O~erations • • • • •

Summary of Subroutines Used • •
I ni tia Ii zing Mod ules • • • •
Director Modules • • • • • •

Litrary Director Routines

131
• • 131

• 131
132

133
• 133

133
• 133
• 133

Modules used with Ccmpiler­
Generated Subroutines ••••• 134

Modules for Complete Library
Control of Edit-Directed I/O of
a Single Item • • • •••••• 134

Compiler-Generated Director
Poutines •• • • • • • •

Transmitter Modules
Form at ting Modul es • • • • • • •

Library Subroutines
Compiler-Generated Subroutine

External Conversion Director
Modules • • • • • •••

Miscellaneous Modules

• 134
• 134
· 135
• 135
• 135

• 135
135

CHAPTER 10: DA TA CONVERSION • • • •
Note on Terminology

137
137
137
138

The Library Conversion Package
Specifying a Conversion Path • • •
Housekeeping When More Than One

Module Is Used ••• • • • • • •
Arguments Passed to the Conversion
Routines •• • • • • • • • • • •

Communication Between Modules

138

138
138
138 Free Decimal Format

In-Line Conversions • • • • • • • • • 140
Note on Picture Types

Basic Conversions • • •
• 140

Multiple Conversions •••••••
142
142
142
142

Hybrid Conversion ••
Raising the CONVERSION Condition

CHAPTER 11: AISCELLANEOUS LIBRARY
SUEROUTINES AND SYSTEM INTERFACES . 145

Ccmputational and Data-Handling
Subroutines • • • • • • •

Arithmetic and Mathematical
Subroutines • ••• • •

Array, String, a~d Structure
Subroutines • • • • •

• 145

145

• 145
Indexing Interleaved Arrays

(IEMBAIH) • • • • • • • • • • •
Structure Mapping (IBMBAMM)

145
147
147 Miscellaneous System Interfaces

TIME ••
DATE ••
DELAY
DISPLAY • • • • • •••

IBMDJDS DISPLAY with EVENT

• 149
149

• 149
149

Option. • • • • • • • 149
DISPLAY without REPLY Option •• 149
IBMDJDZ - DISPLAY without the

EVENT Option •• • • 149
Sort/merge • • • • • • • • • • • • 150

Housekeeping problems •• • • • 150
Restoration of the PL/I

Environment on Exit from SORT. 150
Summary of Work Done by the SORT

Module • • • •
Storage for SORT • •

Checkpoint/restart
WAIT •••••••

E vent Variables
WAIT Statement •
Housekeeping Problems

•• 152
152
152
152
154
154
155

Control Blocks • • • • •
Multiple-Wait Module (IBMDJWT)
Single-Wait Module{IBMGJWT)

156
• 156

159

CHAPTER 12: DEBUGGING USING DUMPS • 161
How to Use this Chapter •••• 161

Section 1: How to Obtain a PL/I Dump 161
Recommended Coding • • • • 163
Contents of a PLjI Dump 165

Headings • • • • • • 165
Trace Information 165
File Information 167
Debug Option • • • • 167
Hexadecimal Dump • • 167
Block option • • • • 167
Report Information • 167
Using the REPORT Option for

Program Tuning •• • • • •
Section 2: Recommended Debugging

Procedures •••••••
The Contents of a Dump • • • •
Deb ugging Procedures • • • • •

PLjI Dump Called from On-Unit
DOS System Dump •• • •

Section 3: Locating Specific

168

168
170
170

• 170
171

Information • • • • • • 173
Contents. • • • • • • • • 173

Key Areas of a PLjI Dump 173
Key Areas of a DOS System Dump • 173
Stand-Alone Dumps •••• 173
Housekeeping Information in all

Dumps • • • • • • • • • • •
Finding Variables • • • • •
Control Blocks and Fields

Key Areas of a PLjI Dump • • •
P1: Statement Number and Address

where Error Occurred (Dump

173
173
174
174

Called from On-Unit only) • • • 174
P2: Tipe of Error (Dump Called

from On-unit onln •••••• 174
P3: Register Contents at Time

of Error or Dump Invocation 174
P4: The DSA Chain • • • • • 177
P5: The TCA • • • • • • • • 177

Key Areas of a DOS System Dump 177
00: Partition Save Area • • 177
D1: Address of Interrupt ••• 177
02: Type of Interrupt 179
D3: Register Contents at the
Point of Interrupt 179

04: The DSA Chain • • • • • • • 180
05: The TeA • • • • • • • ••• 180
D6: Finding Program Interrupt

Key (PIK) • • • • • • • 180
07: Finding the Communications

Region • • • • • 180
Stand-Alone Dumps • • • • • 180

S1: Finding Key Areas in Stand-
Alone Dumps • • • • • • • 180

Housekeeping Information in All
Dumps • • • • • • • •. .'. -. • • • 180

Contents 3

"

H1: Following the DSA Backchain 180
H2: Associating Instruction

with Correct Statement and
Program Block. • • . • • • 180

H3: Following Calling Trace 182
H4: Associating DSA with Block 182
H5: Finding Relevant ONCA ••• 182
H6: Following the Chain of

ONCAs •••••••.••••• 183
H7: Finding Informaticn fIom

IBMDERR's DSA ••••••••• 183
H8: Finding and Interpreting

Register Save Areas • • • • • • 183
H9: Register Usage .••••• 183
H10: Following Free-Area Chain 184
H11: Action if Interrupt

Occured at Address not in
Linkage Editor Map 184

H12: Block Structure of Program
(Static Backchain) •••••• 184

H13: Forward Chain in DSAs 185
H14: Action if Error is in a
Library Mod ule • • • • • • 185

H15: Discovering Contents of
Parameter Lists • • • • • • • • 185

H16: Finding Main Procedure DSA 185
Fin ding Variables • • • • • 185

V1: Autcmatic Variables. • 185
V2: Static Variables • 185
V3: Controlled Variables 185
V4: Based Variables. • • • 186
V5: Area Variables 186
V6: Variables in Areas • 186

Control Blocks and Fields •.•• 186'
C1: Quick Guide to Identifying
Centrol Fields ••••• 186

CHAPTER 13: INTERLANGUAGE
COMMUNICATION •• • • • • 189

BaGkground to Interlanguage
Communication • • • . • • • 189

Differences in Data Aggregates •• 189
Use ef Locators ••••••••• 191
Differences of Environment. • 191
The Easic Principles of
Interlanguage Communication. 191
PLII Calls FOPTRAN or COBOL 192
FORTRAN or COBOL Calls PLII •• 193

ContIol Blocks in Interlanguage
Communication • • • • .••••• 195

Space for PL/I Dynamic Storage and
Program Management Area • • • 195

Handling Changes of Environment ••• 197
COBOL ~hen Called from PL/I

4

(IBMDIEC) •••••••••••• 197
Before Entry to COBOL program

(IBMBIECl,\, IBMBIECB) 197
On Return' from COBOL Program

(IBMBIECC) ••••• . • 197
Action on Interrupt in COBOL • • 200
Return fIom Interrupt ••••• 200

Fortran When Called from PL/I
(ibmdief) • • • • • • • • • • • • 200
Before Entry to FORTRAN Program

(IEMBlEFA and lBMBlEFB) •••• 200
Action on Return from FORTRAN

Program (IBMBIEFC and lBMBIEFD) 201
Action on Interrupt in FORTRAN • 201

PL/I Called from COEOL or FORfRAN
(IBMDIEP) • • • • • • • • • • 202
Before Entry to PL/I program
(IB~BIEPA) •••••••••• 202

Action after the PL/I Program is
Completed (IEMBlEPC and
IBMBIEPD) • • • • • • • • •

Interrupt Handling • • • • •
Handling Data Aggregate Arguments

Arrays ••••••••
Structures • • • • • • • •••
Method Used • • • • • • • • •
NOMAP, NOMAPIN, and NOMAPOUT
Options • • • • • • • • •

Calling Sequence • • • • •
Main Storage Situation During
Interlanguage Communication

Options ASSEMBLER ••••••
COBOL Option in the Environment
Attribute ••••••••••

APPENDIX A: PRINCIPAL CONTEN1S OF

203
• • 203

203
• • 203

203
203

205
• • 205

• • 205
205

• 206

STORAGE •••••••••• 211

APPENDIX B: CONTFOl BLOCKS •
Area Locator/descriptor • • •

Area Descriptor ••• • •
Area Variable Control Block •
Aggregate Descriptor Descriptor •

General Format •••
Structure Element
Base Element

Aggregate Locator ••••
Array Descriptor •• • • • • • •

Arrays of Strings or Areas •
General Format • • •

Controlled Variable Block
Data Element Descriptor (DED)

Format of DEDs
General Format • • •
DED for STRING Data
DED for FLOAT Data •
DED for FIXED Data.
DED for PICTURE STRING Data
DED for PICTURE DECIMAL

• • 213
• • 214
• • 214

215
• • 216
• • 216

216
• • 216

217
218
218
218

• • 219
220
220

• • 220
221

• • 221
221

• • 221

Arithmetic Data. • • • • • 221
DED for Program Control Data • • 222

Format DEDs - FEDs • • • 222
DED for F and E Format Items

(FED) • • • • • • • • •
DED for PICTURE Format
Arithmetic Items (FED)

• • 222

222
DED for PICTURE Format Character

Items (FED) • • • • • 222
DEI' for C Format Items (FED) •• 223
DED for Contrel Format Items

(FED) • • • • • • • • • • • • • 223
DED for STRING Format Items

(FED) • • • • • • • • • • •
Diagnostic File Block (DFB) • •
Dynamic Storage Area (DSA)
Entry Data Control Block (Entry
Variable) •••••••

Environment Block (ENVB)
Event Table (EVTAB) • • • • •
Event Variable Control Block
File Contro1 Block (FCB)

Common Section •••••

223
• 224

225

227
228
229
230

• • 231
231

Record I/O Section • • • • • •
Flow Statement Table •••••••
Input Output Control Block (IOCB)
Interlanguage Root Control Block

(IBMBILC1) ••••
Interlanguage VDA •
Key Descriptor (KD)

Function • • •
When Genera ted
Where Held • •

Label Data Control Block
Function • • •
When Generated ••
Where Held • •
Label Variable • •
Label Constant

Library Workspace (LiS)
1"unction • • •
When Generated • •
Where Held • • • •

On Communications Area (ONCA)
Function • • •
~hen Generated
Where Held • •
Dummy ONCA • •

'/ .

• 233
• 234

235

• 231
• 238

239
• 239
• 239
• 239
• 240
• 240
• 240
• 240
• 240
• 240
• 241
• 241
• 241
• 241
• 242
• 242

242
• 242
• 242

On Control Block (ONCB)
Function • • •
When Generated

• • • • • 243

Where Stored •
How Addressed
Static and Dynamic ONCBs •

Open Control Block
Function • • •
when Generated
Where Held • •
How Addressed

• 243
243

• 243
• • 243

• 243
• 244
• 244
• 244
• 244
• 244
• 245 PLIMAIN • • • • • •

PLISTART • • • • •
Record Descript or (RD)

• • • • • 246

Function • • •
when Generated ••
Where Held • • • •

Request Central Block (RCB)
Function • • •
when Generated
Where Held • •

• 247
241
241

• 247
• 248
• 248
• 248
• 248

How Addressed
Statement Freguency

• 248
count Table • • • 249

Stream I/O Control Block (SIOCB)
Function • • • •
When Generated •
Where Held • • •
How Addressed

Statement Number Table (DST)
Function ••••
When Generated •
Where Held • • •
How Addressed
Sections of Table

String Locator/descriptor •
Function • • ••
When Generated •
Where Held •••

String Descriptor
Structure Descriptor

Function • • • •
When Generated •
Where Stored • •
H ow Addressed
General Format •

Symbol Table (SYMTAB)
Function • • • •
When Generated •

250
250

• • 250
250

• • 250
251
251

• • 251
251

• • 251
• • 251

252
• • 252

252
• • 252

• • • 252
253
253
253

• • 253
253
253
254
254
254

Where Held • • •
Address Fields •

• • • • • • 254

Symbol Table Vector •
Function ••••
When Generated •
Where Held • • •
General Format •

Task Communications Area (TCA)
Function • • • •
When Generated •
Where Held •••

TCA Appendage (TIA) •
Function • • • •
When Generated •
Where Held • • •

Zygo-Lingual Control List (ZCTL)
Function • • • •
When Generated • • • •
Where Held • • • • • •

Appendix C: List of PL/I Library

255
• • 256

256
256
256
256

• 251
251
251
251

• • 259
• • 259

259
• 259

• • 261
• • 261
• • 261
• • 261

Modules • • • • • • 263
Resident Library Modules •••••• 263
Transient Library Modules • • • • • • 265

Contents 5

Figure 1.1. The process of running a
PL/I program • • • • • • • • • • • •

Figure 1.2. Use of dynamic storage. 3
Figure 1.3. SimFlified diagram of an
executable program phase • • • • •• 5

Figure 1.4. Use of storage • • • •• 6
Figure 1.5. Flow of control during
execution • • • • • • • • • • • •• 7

Figure 2.1. output from the compiler 10
Figure 2.2. Contents of listing and
associated compiler options • • •• 12

Figure 2.3. ExamFle of static
storage map • • • • • • • • • 13

Figure 2.4. Example of object
program listing 14

Figure 2.5. Register usage in
compiled code •• • • . • • 17

Figure 2.~. Library register usage. 18
Figure 2.7. Typical contents of a
compile d code DSA •• • • • • • •• 20

Figure 2.8. Typical prologue code 24
Figure 2.9. Epilogue code •• • •• 24
Figure 2.10. Examples of library
calling sequences •• • • • • • 29

Figure 2.11. Mnenomic letters in
library module entry-point names 29

Figure 2.12. Offsets where addresses
of library modules are held in the
TCA •••••••••••••• 30

Figure 2.13. Code showing
modification of do-loop control
variable • • • • • • • • • • • • .• 34

Figure 2.14. Code showing branch
around redundant eXFression • • •• 34

Figure 2.15. Code showing use of
common constant • • • • • • • • 36

Figure 3.1. Library module names.. 38
Figure 3.2. Library workspace 40
Figure 3.3. Example of use of WXTBNs 41
Figure 4.1. Example of descriptors,

locators and DEDs for an array • •• 44
Figure 4.2. Descriptors, locators,

and symbol tables: when generated,
where held • • • • • • • • 45

Figure 4.3. String
locator/descriptor (SLD) • • • • •• 47

Figure 4.4. Area locator/descriptor
(AtD) • • • • • • • • • • • •• 47

Figure 4.5. Aggregate locator (AL). 47
Figure 4.6. Array descriptor (AD) 47
Figure 4.7. Aggregate descriptor
descriptor (ADD) • • • • • • • • •• 48

Figure 4.8. ExamFle of handling
structure containing adjustable
extent • • • • • • • • • • • • • • • 49

Figure 4.9. Structure descriptors
for arrays of structures and
structures of arrays • • • • • 50

Figure 4.10. Format of DEDs • • •• 52
Figure 4.11. Symbol tables and

symbol table vectors. • • • • 53
Figure 5.1. Flow of control during

Figures

execution • • • • • • • • • • 56
Figure 5.2. Program management area 57
Figure 6.1. The Frinciples of

dynamic storage allocation • • 64
Figure 6.2. principles involved in
allocating and free~ng LIFO storage 66

Figure 6.3. Principles involved in
allocating and freeing non-LIFO
storage •••• • • • • • • • • 67

Figure 6.4. Segment handling. • 69
Figure 7.1. Hardware interrupts
associated with PL/I conditions 71

Figure 7.2. (Part 1 of 2). PL/I
conditions • • • • • 73

Figure 7.2. (Part 2 of 2). PL/I
conditions • • • • • 74

Figure 7.3. The principal fields
used in error handling • • • • • 76

Figure 7.4. Example of error
handling • • • • • • • • • • 78

Figure 7.5. Handling the CHECK
condition • • • • • • • • • • • 83

Figure 7.6. Interrelationship of
dump routines ••••• • • • • 86

Figure 7.7 How branch counts are
used to calculate the number of
times each statement is executed. 88

Figure 8.1. The principles used in
handling record I/O statements. •• 92

Figure 8.2. Conditions under which
I/O statements are handled in-line. 93

Figure 8.3. Data management
access methods for record-
oriented transmission 94

Figure 8.4. 'l'ype of DTF set up
for different PL/I file types 95

Figure 8.5. Control blocks used
in record I/O • • • • • • • • • 97

Figure 8.6. Annotated list
showing record I/O statements
handled by in-line code 98

Figure 8.7. Annotated object
program showing record 1/0
statements handled by library
subroutines • • • • • • • • • • 99

Figure 8.8. PL/I resident and
transient library OPEN and CLOSE
routines • • • • • • • • • • • • 101

Figure 8.9. Record I/O transmitters
and their associated file types 102

Figure 8.10. PL/I transient library
error modules • • • • • • • 103

Figure 8.11. Organization of
record I/O library modules ••••• 104

Figure 8.12. Summary of work done by
PL/I library routines • • • • 105

Figure 8.13. Implicit open procedure 106
Figure 8.14. If conditions are
raised during transmission, flow of
control depends on the contents of
the FCB field PERM • • • • • \07

Figure 8.15~ Flow of control for

Figures 1

READ, EVENT and WAIT statements 110
Figure 8.16. Overview of record I/O

implementaticn ••••••••••• 111
Figure 9.1. Conceptual diagram of

stream I/O ••••••••••••. 114
Figure 9.2. Record toundaries do not
affect stream I/O ••••••••• 116

Figure 9.3. Generalized flowchart of
a stream input statement • • • • • • 117

Figure 9.4. stream I/O control block
(SIOCB) •••••• • ••••• 118

Figure 9.5. The rCBA and FREM fields
of the FCB ••••••••••••• 119

Figure 9.6. List-directed output.
statement ••••••••••••• 121

Figure 9.7. Typical code generated
for a PUT LIST statement •••.•• 122

Figure 9.8. Data directed input
statement •••••.••••.•• 123

Figure 9.9. ~ypical code generated
for a PUT DATA statement • • • • • • 124

Figure 9.10. Choice of subroutines
for edit directed I/O •••.••• 126

Figure 9. 11. 'Edit directed outpu t
statement with matching data and
format lists • • • • • • • • • • • • 127

Figure 9.12. Typical code generated
for a GET EDIT statement •••.•• 128

Figure 9.13. Code sequences for
matching and non-matching data and
format lists • • ••••.•••.• 129

Figure 9.14. Use of FCBA and FCPM in
copy option implementation ••••• 132

Figure 10.1. Internal forms of data
types ••••••••••••••• 137

Figure 10.2. (Part 1 of 2). Data
conversions performed in-line 139

Figure 10.2. (Part 2 of 2). Data
conversions performed in-line • 140

Figure 10.3. Fundamental in-line
conversions • • • • • • • • •• 141

Figure 10.4. Multiple conversions • 143
Figure 11.1. Arithmetic operations

performed by library subroutines •• 146
Figure 11.2. (Part 1 of 2). Array,
structure, and string subroutines • 146

Figure 11.2. (Part 2 of 2). Array,
structure, and string subroutines • 147

Figure 11.3. Indexing interleaved
arrays ••••••••••••••• 148

Figure 11.4. DSA chaining during
execution of SORT •• • • • • • 151

Figure 11.5. Summary of action
during use of SORT exit • 153

Figure 11.6. Example of WAIT
implementation problems 154

Figure 11.7. (Part 1 of 2) ..

2

Simplified flowchart of modules used
in execution of WAIT statement • • • 157

Figure 11.7. (Part 2 of 2).
Simplified flowchart of modules used
in execution of WAIT statement. • • 158

Figure 12.1. How to use this chapter
when debugging • • • • • • • • • 162

Figure 12.2. Coding dump options 164
Figure 12.4. Example of PLIDUMP 165
Figure 12.3. Abbreviations for
condition names used in PLIDUMP
trace inf orma tion. • • • • • • • • • 166

Figure 12.5. A typical arrangement
of main storage and an associated
stor.age report. 169

Figure 12.6. Error message group of
modules •••• • • • • • • • • • • 172

Figure 12.7. Information stored by
IBMDERR after a program check and a
software, in~errupt • • • • • • • • • 175

Figure 12~8. Error code field lookup
table • • • • • • • • • • 176

Figure 12.9. Partition save area •• 178
Figure 12.10. DSA chaining • • • • • 179
Figure 12.11. The register save area
in the DSA -rl • • • • • • • 184

Figure 12.12. Register usage. • 184
Figure 13.1. Principles of
interlanguage communication 190

Figure 13.2. Typical code when PL/I
calls COBOL or FORTRAN routine 192

Figure 13.3. Nested procedures used
when COBOL or FORTRAN calls PL/I •• 193

Figure 13.4. Action when setting up
PL/I environment on call from COBOL
or FORTRAN principal procedure ••• 194

Figure 13.5. Chaining of save areas
when PL/I is called from COBOL or
FORTRAN principal procedures. 196

Figure 13.6. Example of chaining
sequences (PL/I principal procedure) 198

Figure 13.7. Example of chaining
sequences (FORTRAN principal
procedure) • • • • • • • • • • • 199

Figure 13.8. Encompassing procedure
to be called by FORTRAN •••••• 204

Figure 13.9. Main storage situation
when PL/I main procedure calls
FORTRAN •••• • • • • • • • • • • 207

Figure 13.10. Main storage situation
when PL/I main procedure calls
FORTRAN, which in turn calls PL/I • 208

Figure 13.11. Main storage situation
when PL/I main procedure calls
FORTRAN, which calls PL/I, which
calls COBOL •••• • • • • • • • • 2Q9

PREPARE

COMPILE

LINK-EDIT
PL/I library and
data management
modules

EXECUTE

Initial ization
routine

Receives control
from system, and
sets up PL/I
environment

PL/I
Optimizing
Compiler

Object
module

Exec;:utable
program
phase

Object
program

Carries out
actions
specified in
source program

Figure 1.1. The process of running a PL/I program

~

Source
program

Other
object
modules

Termination
routine

Closes any files
still open, and
returns control
to system

Processing a PLII Program

Figure 1.1 shows the processes through
which a PLII program passes from its
inception to its use. There are four
stages:

1. Writing the program and preparing it
for the computer.

2. Compilation: translating the program
into machine instructions (i.e.,
creating an object module).

3. Link-editing: producing an executable
program phase from the object module.
This includes linking the compiled
code with PLII library modules, data
management routines, and possibly with
other compiled programs. It also
includes resolving addresses within
the code.

4. Execution: running the executable
program phase.

The process is not necessarily continuous.
The program may, for example, be kept in
either a compiled or link-edited form
before it is executed, and it will normally
be executed a number of times once
compiled.

COMPILATION

compilation is the process of translating a
PL/I program into machine instructions.
This is done by associating PL/I variables
with addresses in storage and translating
'executable PL/I statements into a series of
machine instructions. For example, the
PL/I statements:

DCL I,J,K;
I=J+K;

would typically result in the generation of
machine instructions corresponding to the
assembler language instructions shown
below:

LH
AH
5TH

7,88(0,13)
7,90(0,13)
7,96(0,13)

Load J into register 7
ldd K to J
Place result in I

(The variables I, J, and K are held at
offsets 96,88, and 90, respectively, from
the address in register 13.)

Chapter 1: Introduction

The DOS PL/I optimizing Compiler does
not translate all PL/I statements directly
into the necessary machine instructions.
Instead, certain statements are translated
into calls to standard subroutines held in
the DOS PL/I Resident Library. Some of the
resident library routines may, in turn,
call further library routines from ~ither
the resident or the transient PL/I library.
The following PL/I statements vould, for
example, result in a call being made to a
resident library routine.

DeL X,Y;
X=SIN(Y);

The code that would typically result from
such statements is shown below:

LA 14,92 (0, 13) Place address of Y
in register 14.

Ll 15,96 (0, 13) Place. address of X
in register 15.

STM 14,15,80(0,3) Place addresses in
argument list.

Ll 1,80(0,3) Point register 1 at
argument list.

L 15,88(0,3) Load register 15
with the address of
the resident library
routine IBftBftGS.
(This is held in the
form of an address
constant generated
by the compiler and
resolved by the
linkage editor.)

BALR 14,15 Branch to the
library routine,
which will carry out
the required
function.

LINK-EDITING

Link-editing links the compiler output with
external modules that have been requested
by the compiled program. These will be
PLII resident library routines, data
management routines, and, possibly, modules
produced by further compilations. As well
as linking the external .odules, the
linkage editor also resolves addresses.

Chapter 1: Introduction 1

EXECUTION

The optimizing compiler produces code that
requires a special arrangement of control
blocks and registers for correct execution.
This arrangement of control blocks and
registers is known as the ~kL!_~ironment.
Execution consequently becomes a three­
stage process:

1. Setting-up the environment. This is
handled by the PL/I initialization
routines IBMDPIR and IBMDPII.

2. Executing the program.

3. Completing jobs after execution. This
consists of closing any files that are
left open and either returning control
to the control program, with an EOJ
macro instruction, or returning to a
calling module.

Factors Affecting Implementation

Three major factors influenced the design
of the executable programs produced by the
optimizing compiler. These factors are
inherent in the language, and are:

The PL/I language allows the
programmer to divide his program into
a series of blocks that can be written
and compiled independently of each
other.

2. The~ynamic allocation and fre~in~
§1Q~ggg

Automatic, controlled, and based
variables all have their storage
allocated and freed dynamically. This
implies a system of re-use of storage
to reduce space requirements.

3. The_£omprehe!!si.!~--tacilities of!ered
ll_the PLLLlanQuage

The PL/I language offers more
facilities than any other high-level
language. These facilities include
allowing the PL/I program to control
the flow of execution after any PL/I
interrupt.

Key Features of the Executable Program

Taken together, the factors outlined above
are responsible for the main features of

2

the executable program produced by the
compiler. These features are:

1. A communications area addressed by a
dedicated register throughout the
execution of the program.

2. A scheme to handle dynamic storage
allocation.

3. The use of standard subroutines from
the PL/I libraries, to handle such
standard tasks as the housekeeping
sche~e and error handling.

4. The use of an initialization routine
to set up the communications area and
initiate the housekeeping scheme.

These features are discussed in greater
detail below.

COMMUNICATIONS AREA

The facilities offered by the PL/I
language, particularly the error-handling
facilities, imply that certain items must
be accessible at all times during
execution. To simplify accessing such
items, a standard communications area is
set up for the duration of execution. This
area is known as the task communications
area (TCA), and is addresSed by register 12
throughout execution.

The TCA has an appendage known as the
task implementation appendage (TIA). The
TCA appendage holds a number of addressing
fields and is, itself, addressed from the
TCA.

DYNAMIC STORAGE ALLOCATION

The allocation and freeing of automatic
storage on a block-by~block basis implies
an automatic facility for the re-use of
such storage. This problem and the problem
of inter-block communication are solved by
having, for each block, a save area that
contains register save information,
automatic variables, and housekeeping
information. This area is known as a
dynamic storage area (DSA).It consists of
the standard operating system save area
concateriated with certain housekeeping
information and with storage for automatic
variables. DSAs are held contiguously in a
last-in/first-out (LIFO) storage stack and
are freed and allocated by the alteration
of pointer values.

On entry to a block, the registers of

ISA

Partition

f1\ A partition is
\.v allocated

UFO storage

f4\ All storage freed
\V on a last in/first

out basis (UFO storage)
is allocated at the low
address end of the
remaining unused
storage.

ISA

.• Initial

. storage
area
(I SA)

f2\ The executable
\J program phase
is placed at the low
address end of the
partition. The remain­
der of the partition is
refered to as the ini­
tial storage area (lSA).

ISA

ISA

@)The program
management

area (a PUI communi­
cations area) is placed
contiguously with the
executable program
phase.

Non-U FO storage

Non-U FO storage ··'[IF'd·:··

f5\ When UFO
\:::.J storage is freed,
the most recently
allocated element is
the first to be freed.
I t is freed by being
reabsorbed into the
major free area.

f6\ Elements not
~ freed on a last
in first out basis (non
UFO storage) are
allocated at the high
address end of the
free storage.

o When non-LIFO
\.!J storage is freed,

it is, where possible
absorbed into the
major free area. Where
this is not possible, it
is placed on a chain of
free storage. The head
of this chain is held at
a fixed offset in the
program management
area. Areas on this
chain are reused where
possible.

Figure 1.2. Use of dynamic storage

Chapter 1: Introduction 3

the preceding block are stored in the
previous OSA and a new OSA is acquired. A
chainback pointer to the previous DSA is
placed in the new 051. This arrangement
allows access to information in previous
blocks. Register 13 is pointed at the head
of the OSA for the current block. The code
that carries out this and any other block
initialization is known as a ~Q!ogue. To
obviate the need for special coding in the
main procedure, a dummy DSA is set up by an
initialization routine, and register 13
points at this dummy DSA on entry to the
main procedure.

In addition to automatic variables,
certain other types of storage are
allocated and freed dynamically. Such items
as are not freed on a last-inl first-out
basis are kept in a second stack. If
storage within this stack is freed, it is
placed on a free-area chain. The principles
of the dynamic storage scheme are
illustrated in figure 1.2.

In certain circumstances, additional
LIFO storage may be required during the
execution of a block. When this is
necessary storage is acquired in the same
manner as for a DSA. The areas thus
acquired are known as varia~le d~ta ar~
(VDAs) •

The storage scheme is handled partly by
compiled code and partly by a resident­
Ilibrary routine. Compiled code acquires
land frees space in the LIFO storage stack.
LIFO storage is acquired by the prologue
code of every block and freed by the
epilogue code of every block.

The library routine IBMDPGR is called
when non-LIFO dynamic storage has to be
allocated or freed, or when there is
insufficient space for an allocation of
LIFO storage in the LIFO stack.

USE OF LIBRARY SUBROUTINES

The us~ of library subroutines simplifies
compilation. However, using such routines
slows execution because they cannot be
tailored for the particular situation in
hand, and because they incur the overhead
of saving and restoring registers. Library
subroutines are used for handling standard
jobs such as program initialization and
error handling, and for such items as
require interpretive code. Interpretive
code is required when a significant part of
the data will not be available until
execution.

Two PL/I libraries are used by the DOS
PL/I Optimizing Compiler: the DOS PL/I

4

Resident Library and the DOS PL/I Transient
Library. Transient library routines have
the advantage of saving space, because they
require storage only when they are actually
in use and can be overwritten when they are
no longer required. Resident library
routines, however, have ~he advantage of
speed, because they do not have to be
loaded during execution of the PL/I
program. Dividing subroutines into
transient and resident types enables the
compiler to balance the advantages of both
types and so to produce programs that
combine fast execution with reduced space
overheads. I

INITIALIZATION ROUTINES

The job of the initialization routines is
to prepare a standard environment for all
procedures compiled by the 005 PL/I
Optimizing Compiler. This consists of
setting-up the TCA and initializing the
storage scheme. Also, a STXIT macro
instruction is issued so that all program
checks will be intercepted by the PL/I
error-handling facilities. Using standard
library routines for these tasks reduces
the amount of special-case coding that is
needed for a main procedure. A consequence
is that procedures can be compiled and
tested individually and then link-edited
with other procedures and run without re­
compilation.

Contents of a Typical Executable
Program Phase

The contents of a typical executable
program phase are shown in figure 1.3. The
contents are:

1. Compiled code (the executable machine
instructions that have been
generated).

2. Link-edited routines. These will
include resident library routines and
probably DOS data management routines.
Certain resident library routines are
included in every executable program
phase. These are the initialization
routine, IBMDPIR, the storage-handling
routine, IBMDPGR, and the error
handler, IBMDERR. Other resident
routines are included as required.

As well as executable machine
instructions, the program requires certain
control information and addresses. Some of
these are listed in figure 1.3, but full
details are given in chapter 2. Other

EXECUTABLE PROGRAM PHASE

PROGRAM CONTROL SECTION
Compi led code

LIBRARY MODULES
Link-edited library
modules, including:
IBMDPIR,IBMDPGR,
IBMDERR

ADDRESSES
Addresses of:
Library modules,
PUI subroutines and
entry points,
Label constants,
External procedures, etc.

CONTROL BLOCKS
Various control blocks
(such as DT Fs) needed
during execution

CONSTANTS
Storage for any constants
used in the program

STATIC VARIABLES
Storage for variables
declared as ST A TI C
INTERNAL

OTHER CONTROL SECTIONS
PLiSTART, PLiMAIN.
Storage for variables
declared as STATIC EXTERNAL.
Control blocks and
other data for
external files, etc.

Static
internal
control
section

Figure 1.3. Simplified diagram of an executable program phase

Chapter 1: Introduction 5

Beginning of partition

EXECUTABLE
PROGRAM PHASE

Compiled code
Library modu les
Addresses
Control blocks
Constants
Static variables

PROGRAM
MANAGEMENT AREA

TCA (task communications area)
Dummy DSA (dynamic storage area)
Other housekeeping control blocks

LAST-IN/FIRST-OUT
(LIFO) STORAGE

DSAs and VDAs (variable data areas).
Storage for automatic variables and
compiler-generated· temporaries, and
other items allocated and freed on
a block and procedure basis

Storage for I/O buffers, transient
library routines, controlled and
based variables

End of partition

Figure 1.4. Use of storage

6

control sections generated are also shown
in figure 1.3. They are PLISTART, which
passes control to the initialization
routine, and PLI~~IN, which holds the
address of the start of compiled code.

The Overall Use of Storage

The overall use of storage is illustrated
in figure 1.4. As can be seen, the low­
address end of the partition is occupied by
the executable program phase. Immediately
following the executable program phase is
the program management area. This contains
the control blocks set up by the
initialization routines, including the TCA
and the dummy DSA discussed above. The
remainder of the partition is used for
dynamic allocations of storage. The LIFO
stack starts beyond the end of the program
management area and expands, as necessary,
towards the end of the partition. Non-LIFO
dynamic storage starts at the end of the
partition and expands towards the LIFO
stack.

The Process of Execution

The process of execution is illustrated in
figure 1.5. The processes involved for a
sample program are described below.

EXAMPLE: PROC OPTIONS (MAIN) ;
INPUT: GET LIST(Y,Z) ;

(process data as required)

PUT LIST(X) ;
IF X<500 THEN GO TO INPUT;
END;

Execution would involve the steps described
below.

1. The control program passes control to
the control section PLISTART, which
has been generated by the compiler.

2. PLISTART calls the resident library
initialization routine, IBMDPIR.

3. IBMDPIR, and IBMDPII, which it calls,
set up the PL/I environment. IBMDPIR
then passes control to the main
procedure compiled code, with register
12 pointing at the TeA and register 13
pointing at the dummy DSA. The
address to which IBMDPIR passes

PLISTART Initialization routines Prologue code

Receives control from Set up TCA, initialize storage and Acquires DSA for main
system issue STXIT to initialize PL/I error- procedure, initializes

Passes control to ... handling scheme. Pass control to .. control blocks, etc.
... the address in PLiMAIN . .. 1\ initial ization/ Stores registers of

termination routine, initialization/

IBMDPIR. termination routine,
IBMDPIR .

.......
~

Functional code Epilogue code Termination routine

Carries out function required Restores the registers of

"-
in source program. This the initialization/ Closes any files still open and
usually involves calls to .. termination routine. ... returns control to system with EOJ
library subroutines.

Figure 1.5. Flow of control during execution

control is held in the control section
PLIMAIN.

4. Compiled code prologue stores the
contents of the registers used by
IBMDPIR in the dummy DSA and acquires
a DSA for the main procedure.

5. Compiled code calls the library
routines used for stream I/O. These
in turn call transient routines to
open the standard files and fUrther
transient routines to interface with,
and call, the link-edited data
management routines. storage must be
acquired for transient routines and
I/O buffers. This involves calling
the storage management routine
IBMDPGR.

6. Processing is then carried out by
compiled code. Further calls to the
library may be involved if, for
example, mathematical functions are
used.

7. The stream output will involve further
steps similar to those described in 5,
above.

... macro instruction, or returns
control to caller.

8. When the END statement is reached, the
epilogue code is entered. This
restores the registers of IBMDPIR and
returns control to IBMDPIR.

9. IBMDPIR raises the FINISH condition,
calling the resident error-handling
module IBMDERR, which searches for a
FINISH on-unit. Finding none, it
returns to IBMDPIR; IBMDPIR calls
IBMDOCL to close the standard files
SYSIN and SYSPRINT, which were opened
to permit execution of the stream I/O
statements. An EOJ macro instruction
is then issued to terminate the
program.

This program illustrates the main points
mentioned earlier in the chapter. The
ini!iglization_routines are used in steps 3
and 9. The storage management scheme is
illustrated in the prologue and epilogue
code in steps 4 and 8. Th~ communications
~~~_(TCAl is set up by the initialization 
routine, and the use of standard library 
§YQ~uting§ is shown in steps 5 and 7. The 
use of special error and PL/I condition 
h~dling~de is shown in step 9. 

Chapter 1: Introduction 7 





Chapter 2: Compiler Output 

Introduction variables. 

The compiler output is a relocatable object 
module consisting of a series of records in 
card-image format. These records contain 
either machine instructions, constants, or 
external or internal addresses to be 
resolved by the linkage editor. The 
records are known as: 

TXT records containing machine 
instructions or constants. 

RLD records containing internal 
addresses. 

ESD records containing external 
addresses. 

Further information about the output passed 
to the linkage editor is given in the 
publication DOS p1LI-0ptimiz!ng Compiler 
.R~Qgnm Lggic. 

There are two main control sections 
(CSECTs) output by the compiler. These are: 

1. The program control section, holding 
the executable instructions translated 
from the PLII program. 

2. The static internal control section 
holding constants, addresses, and 
static variables. 

A number of other control sections. are 
also generated. These either handle certain 
housekeeping functions, or are used for 
external data which may have identical 
control sections generated for it by other 
compila tions. 

Workspace and storage for automatic 
variables is acquired during execution, 
normally by the prologue code that is 
executed at the start of every block. 

The output from the compiler is shown in 
figure 2.1 and listed below: 

1. ~ontrol_§~!ions that are always 
g!tl!~~~ 

Program control 
section 

Static internal 
control section 

Containing 
executable 
instructions. 

Containing 
addresses, control 
blocks, constants, 
and STATIC INTERNAL 

2. 

PLISTART The entry point for 
the executable 
program phase. 
Passes control to 
initialization 
routine. 

control sections that are generated 
only when reguired 

PLI6AIN 

PLIFLOW -

PLICOUNT 

static external 
control sections 

Plus control 
sections for 

Containing the 
address of the entry 
point of the main 
procedure. 
(Generated only for 
procedures with 
OPTIONS(ftAIN).) 

A control section 
generated when the 
compiler FLOW option 
is specified. (See 
chapter 7.) 

A control section 
generated when the 
compiler COUNT 
option is specified. 
(See chapter 7). 

A static external 
control section is 
generated for every 
external variable, 
file, and procedure. 

Each user-defined 
condition, and each 
compiler-generated 
subroutine used. 

The remainder of this chapter deals with 
these control sections in further detail. 
Where possible, it refers to the object 
program listing, because this is the form 
in which the output from the compiler is 
most readily available. 

The two control sections, PLISTART and 
PLIMAIN, are used during program 
initialization. PLISTART holds the address 
of the library initialization routine 
IBftDPIR, which will be entered at the start 
of the program. PLIMAIN holds the address 
of the start of the code for the main 
procedure. This is the address to which 
the library initialization routine branches 
when initialization is complete; it is 
marked "*REAL ENTRY" in the object-program 
listing. 

Chapter 2: Compiler Output 9 



Housekeepi ng 
control sections 

PLISTART 
Contains: 

COMPILER 

Instructions passing control to 
initialization routine 

I PLIMAIN 
I Contai ns: I 
I- - Addre~o~a~~edur~ - - --I 

PLIFLOW 
Contains: 

External reference to library 

I 
I 

I module used in FLOW option I 
L ___________ J 

Control sections for 
compi ler-generated 
suilroutines 

Program control. section 

Contains: 

Executable instructions 
translated from source 
program 

Static internal control section 

Contains: 
Addresses 
Constants 
Control information 
Static internal 
variables 

Control sections for 
data declared 
EXTERNAL 

r------- ---, 
I A separate control section for each I 
I external: I 
I Variable I 
I File I 

Procedure 
I User condition I 
I Symbol table for external data I L- __________ ..J 

.--------- ---, 
I A control section for each 
I compiler-generated subroutine I 
I used in a program I L ____________ J 

Control sections surrounded with dotted lines are generated only when required. 

Figure 2.1. Output from the compiler 

10 



, 

A PLIMAIN control section is generated 
for every procedure for which OPTIONS 
(MAIN) is specified in the procedure 
statement. When two such procedures are 
being run together, control will always 
pass to the first of the procedures 
processed by the linkage ~ditor. 

The format of PLIMAIN and PLISTART is 
given in appendix B. 

If the compiler FLOW option is being 
used, a control section called PLIFLOW is 
also generated. This contains code that 
results in the link-editing of the trace 
module IBMDEFL and also contains the values 
of "n" and "m" specified in the option. 
The format of PLIFLOW is given in chapter 
7. 

IIf the compiler COUNT option is in effect, 
ta control section called PLICOUNT is 
I generated. This contains code to link-edit 
IIBMDEFL. 

The Organization of this Chapter 

The remainder of this chapter describes the 
contents of the static internal control 
section and the program control section. 
First, the conventions used in the object 
program listing and the static storage map 
are described. Descriptions of the two 
control sections follow. The description 
of the program control section covers the 
conventions used in the object program code 
such as register usage, method of handling 
flow of control, and addressing 
information. The chapter is completed by a 
short discussion of t-he effects of 
optimization. 

Listing Conventions 

Figure 2.2 shows the major program listing 
information that can be produced by the 
compiler. It also shows the relevant 
compiler options and summarizes the 
information that will be produced if these 
options are specified. Some or all of these 
options m~y be deleted at system generation 
time. To obtain deleted options, the 
correct password (specified at system 
generation time) must be specified in the 
CONTROL option. 

This chapter describes the contents of 
the static-storage map and the object­
program listing. Informatio~ on the other 
items generated is given in the publication 
.QQ~ RL/I Optimizillil ~ompily Programm~~ 
Guide. 

STATIC-STORAGE MAP 

The static-storage map is a formatted 
listing of the contents of the static 
internal and static external control 
sections. The static control sections 
contain items grouped in the following 
order: 

1. Address constants for entry points to 
procedures, and for branch 
instructions. 

2. Address constants for r~sident library 
subroutines. 

3. Address constants for addressing 
static storage beyond 4K. 

4. The constants pool, which contains 
source program constants, data element 
descriptors, locator/descriptors, 
symbol tables, file control blocks, 
and other control blocks. 

5. Static variables. 

The constants pool and the static-variable 
sections of static storage begin on 
doubleword boundaries. 

The static control section is listed, 
each line comprising the following 
elements: 

1. six-digit hexadecimal offset. 

2. Hexadecimal text, in 8-byte sections 
where possible. 

3. Comment, indicating the type of item 
to which the text refers; a comment 
appears against only the first line of 
the text for an item. A typical 
example is shown in figure 2.3. 

The following comments are used (xxx 
indicates the presence of an identifier): 

A •• - Address constant. 

COMPILER LABEL CL.nn - Compiler-generated 
label. 

CONDITION CSECT ~ Control section for 
programmer-named condition 

CONSTANT 

CSECT FOR EXTERNAL VARIABLE - Control 
section for external variable. 

D •• - Descriptor. 

DED •• ~ Data element descriptor • 

DTF (CONSTANT PART) - Constant part of 

Chapter 2: Compiler output 11 



r---------------------------------------------------------------------------------------, 
I Name I Contents I ~ompiler Option 
1---------------------------------------------------------------------------------------
I Source program Source program statements SOURCE 
I 
, Aggregate table 
1 
t 
I Storage requirements 
I 

ESD references 

Statistics 

Static storage 

Variables offset map 

Table offset and 
statement number 

Names and storage requirements of structures 
and arrays 

Names and storage requirements of all 
procedures 

Name, type, and identifier of all external 
symbols generated by the compiler* 

Number of source records, program text 
statements, and object code bytes 

Contents of static internal and static 
external control sections in hexadecimal 
notation with comments 

The offset of static and automatic variables 
from this defining base 

Offsets, within code, of the start of all 
statements 

AGGREGATE 

STORAGE 

ESD 

ESD 

!lAP 

MAP 

OFFSET 

Object program The contents of the program control section LIST 
in hexadecimal and translated into a 
pseudo-assembler-language format 

1---------------------------------------------------------------------------------------
1* External references within library modules are not included. 
L---------------------------------------------------------------------------------------~ 
Figure 2.2. Contents of listing and associated compiler options 

define-the-file (data management) 
control block. 

DTF (VARIABLE PART) - Variable part of 
define~the-file control block. 

ENVB - Environment control block. 

FCB - File control block. 

PED •• - Format element descriptor. 

KD •• - Key descriptor. 

ONCB - ON control block. 

PICTURED OED •• - Pictured OED. 

RD •• - Record descriptor. 

SYMTAB - Symbol table. 

USER LABEL xxx - Source program label xxx. 

xxx - Name of static variable. If the 
variable is not initialized, no text 
appears against the comment; there is 
also no static offset if the variable 
is an array. (The static offset can 
be calculated from the array 

12 

descriptor if required.) 

OBJECT-PROGRAM LISTING 

By including the option LIST in the PROCESS 
statement, the programmer can obtain a 
listing of the compiled code, known as the 
object-program listing. It consists of the 
machine instructions plus an interpretation 
of these instructions in a form that 
resembles assembler language, and a number 
of comments such as the statement number. 
The format of this listing is shown in 
figure 2.4. As can be seen~ blocks of code 
are headed by the number of the statement 
in the PL/I program to which they ar~ 
equivalent. When optimization has resulted 
in code being moved out of a statement, 
this is indicated. Only executable 
statements appear in the listing. DECLARE 
statements are not included, because they 
have no direct machine-code equivalent. To 
simplify understanding of the listing, the 
names of PL/I variables are inserted, 
rather than the addresses that appear in 
the machine code. Special mnemonics are 
used when referring to control blocks and 



PL/I OPTIMIZING COMPILER 

CCOOOO 00000098 
000004 00000008 
000008 0000005A 
COOOOC 00000064 
000010 00000064 
000014 00000000 
000018 00000000 
00001C 00000000 
OC0020 00000000 
000024 OOCOOOOO 
COO02B 00000000 
00002C 00000000 
00003C OOCOOOOO 
000034 00000000 
000038 00000000 
00003e 00000000 
000040 00000000 
000044 00000000 
000048 00000000 
00004C 00000000 
COO050 08040680 
000054 500000030080 
00005A 60eOOOOB 
00005E 58010000 
COO062 OOOA 
000064 0001 
000066 0004 
COO068 91E091EO 
00006C 00000000 
000070 46008000 
000074 00000000 
000078 00000000 
00007C 00000000 
000080 80000000 
0000B4 00000000 
000088 80000000 
OC008C 
00009C 000000FCOOOOO064 

cooooe OOOOOOCOOOOOOOOo 
OOOOOOOOOOOCOOOO 
0000007000000078 
000000A8000COOOO 

PLII OPTIMIZING COMPILER 

47FF001e 

OOOOOC COCOCOCCOOOCOOOO 
COOOOOOOOOOOOOOO 
00000070"000007C 
COOOOCA8000COOOO 
4040000041201000 
8080002002000000 
0079E2COOOOCOC79 
00000198000C0198 
0000000000000000 
COCOOOCOOOOCOOOO 
00C0000000000078 
cocoooeoocccoOOO 
OOOOOOOOOOOCOOOO 
OOCOOOOOOOOCOOOO 
0008E2E8E2D71l9C9 
1l5E30000 

00007C 00000000020000AO 
010000A4020000AO 
020000A0020000AO 
020000A0020000AO 
020000AO 

OOOOAO 00000000 
0000A4 00000079 
CCOOA8 000080C008000003 
OOOOBO 00000100 
0000B4 0000000000000000 

3300E2E8E207C9C9 
05cooeocoooooooo 
00000800002020F3 

C00004 240CC198 
000008 800000COOOOOOOOO 

OOGOOOCOOOOCFfOO 
COOOOOOOOOOCOOOO 
1300002000000000 
0000007947000000 

OC010e C7000CE2 
C00104 40000006 
00010B 310000E4 
C0010e 40C00005 
000110 08000108 
000114 20000001 
OC01l8 10000CF4 
OOOlle A0000008 
(;00120 C5000198 
000124 60000079 
000128 310000E4 
00012C 40000005 
OC0130 08000128 
000134 20C00001 

Figure 2.3. 

EXAMPLE: PROC OTIONS (MAlNI IIEORCER; 

STATIC INTERNAL STORAG E MAP 4040000001100000 
808C002002COOOOC 

PIIOGRAM AtCON 0050E20000ClOO050 
PROGRAM ACCON 0000019800000198 
PROGRAM ACCON 00000000004000E 8 
PROGRAM AOCON COCOOOOOOOOOOOOO 
PROGIIAM ACCDN 000COOOOOOOOO050 
A •• IELCGlA 0000000000000000 
A •• I BMBCAC_ OOCOOOOOOOOOOOCO 
A •• IBMBCEOB OOC 0 OOOOOOC cooe c 
A •• IBMBCHfC 0005E2E8E2C9D51F 
A •• I BMBCTHC 000C78 00COOOOO0200009C ENVB 
A •• JBMBCVOV o 10000A0 020 C009C 
_ •• IBMBDCLA 0200009C0200009C 
A •• IBMBDClC 0200009C02COOOC;C 
A •• IBMBSEU 0200009C 
A .. IBMBSHA 000C9C ooeooooo ENVB CONSTANT 
A •• IBMBSXCA OOOOAo 00000050 ENVB CONSTANT 
A •• IBMBSMWA 000eA8 00C080000800000 1 OTF (CONSTANT P/lRT! 
A •• IBMBSEE_ ocoeBe 00000100 OTF (VARIABLE PARTI 
A •• IBMBSEHA 000C84 OOOCOOOOoooooooo OTF (CCNSTANT P/IRTI 
A •• IBMBSlLA 33e2E2E8E2C<;0540 
OEO .. X 400COO OO OOOOOO(;0 
fED 0000C800002020F3 
FEO 000004 80000198 OTF (VARIABLE PAIIT! 
FEO 000C08 8000COOOOOOOOOOO OTF (CONSTANT PAIIT! 
CONSTANT cocooooooooeFFOO 
CONSTANT COCCOCOOOOCOOOCC 
CDNSU",T 13010020000000CC 
CONSTANT 00000050470000CO 
CONSTA"'T 000100 070COOE2 OTF (VAIiIABlE PARJI 
eO"'STANT 000104 40000006 OTF (CONSTANT PART I 
A •• FeB 000108 310000E4 OTF (VARIABLE PAin I 
A •• FeB 00010e 40000005 OTF (CONSTANT PAIIT! 
A •• FeB 000110 080C0108 OTf (VAIiIABlE pAIIT I 
A •• TEMP 000114 20000001 OTF (cCNSTANT PAIIlI 
A .. FeB OCO 118 06CC0198 OTF (VAIIIABlE PARTI 
A •• TEMP 00011C 2000005005000858 OTF (CONSTANT PAil T I 

60COO07931COO064 
COMPILEII lABEL CL.ll 400000050BOOOOf 8 

200000011EceOEOf 
3000008100000000 
OOOCOOOOOOOOOOCO 
COCOOOOOOOOOOOOO 

STATIC EXTERNAL esECTS OOOCOOOOOOOOOOCO 
OOOCOCOOOOCOOOCO 
COCCOOOOOOOOOOOO 
OOCCOOOOOCCCOOCC 

FCB 0000000000000000 
OOCOOOOOOOOOOOOO 
OOOCOCOOOOOOOOOO 
0000000047FF001C 

EXAMPLE: PRoe OTIONS (MAINI IIt:ORCER; 

FCB 

ENVB 

ENve eCNST.6NT 
ENVB eONST.6NT 
OTf (cONSHNT PARTI 
Olf (VAIiIABLE PAIIJI 
OTf (CONSTANT. PAil TI 

OTF (VARIAeLE PARJI 
OTF ICONSHNT PAIITI 

OTF (VARIAeLE PAil TI 
OTF (CCNSTANT pARTI 
DTF (VARIABLE PARlI 
OTF (CONSTANT PAlIlI 
OTF (VARIAeLE PARn 
OlF (COI\STANT PARJI 
DTF (VARIAelE PARJI 
OTF (CONSTANT pARJI 
OTF (VARIABLE PARlI 
OTF (CONSTANT PARlI 
OTF (YARlAeLE PARlI 
OTF (CONSTANT PAIIJI 
OTF (VARIUlE PART! 
DlF (CONSTANT PAIITI 

000138 lEOCOU8 DTF (VARIABLE PARTI 
OTf (CONSTANT PAIIT I 00013C 300C008100COliOCC 

OOOCOOOOOOOOOOCO 
coceooooooCCOO(,c 
COOCOOOOOCCCOOCC 
COCCOOOOOOOOOOCO 
OOOCOOOOOOCOOOOO 
COCCOOOOOOOCOOCO 
OOOOOOOOCOOGOC('O 
COCCOCOOOOCCOOCO 
OOCCOCOOOO('OOOCO 
00CC000047FF001C 
47fF001C 

SOURCE LISTING 

ST"T lEV NT 

4 
5 
6 

o 
1 0 

1 0 

1 0 

1 0 

EXAMPLE: PROC [JTIONS (MAINI ~EOROER; 
DeL XIlOIoV,Z INIT1Al (01; 

GET EOITlX,VI (F(31 ,xc 1111; 

00 I = 1 TO V; 
Z"Z*X(I I; 

END; 

PUT EDITClI (AI; 

END; 

Example of static storage map 

PAGE 

PAGE 

Chapter 2: compiler Output 13 



PlII OPTIMIZING COMPILER EXAMPL.E: PROC OllONS (MAINI RECRCER; PAGE 

OBJECT LISTING 00002A 47 CO F 02C BNH *+10 
00002E 58 FC C 074 L 15,1161 C,121 
000C32 05 EF BALR 14,15 

* COMPILER GENERATED SUBROUTiNE IELCGIA 000C.34 58 EO 0 048 L 14,7210,131 
COOOOO 50 EO 1 004 ST 14,410,11 000~38 18 Fa LR 15, a 
COOO04 58 Fa 1 014 L 15,2010,1) OOOe.3A 90 EC 1 048 STM 14,0,72(11 
COOO08 02 0 3 laIC 0 04C MVC 2814,11,761131 000C3E 50 DO 1 004 ST }3,410,1I 
CCOOOE 91 10 1 all TM 17111 ,X'10' 000e42 41 C1 a 000 LA 13,011,01 
000012 47 10 7 alA BO *+8 000e46 50 50 0 058 S1 5,8810tl.31 
000016 96 04 C 002 01 21121,X'04' 00004A ~2 80 0 000 MVI 01131,x'80' 
00001A 05 01 F 050 E 002 CLC 8012,151,21141 00004E 92 20 0 001 "'VI 1I131,X'20' 
000020 47 40 7 04E BL *+46 000052 D2 03 D 054 3 068 MVC 8414,131,104131 
000024 91 40 F 02C TM 441151 ,J( '40' 000C58 C5 20 BALI< 2,0 
000028 47 80 7 030 BZ *+8 
COO02C 96 80 1 010 01 16111 ,X' 80' * PRDLOGUE BASE 
000030 48 70 F 050 LH 7,80(0,151 
000034 4B 70 E 002 SH 7,210,141 * INlTJ~L1SATlON CODE FeR Z 
000038 40 70 F 050 STH 7,80(0,151 000c5A 78 40 3 06C lE 4,10810,31 
00003C 58 70 F 04C L 7,7610rl51 COOC5E 70 40 0 OAC STE 4,Z 
OC0040 50 70 1 000 ST 7,010,11 * END Of INITIALISPION CilDE FOR Z 
000044 4A 70 E 002 AH 7,210r141 
000048 50 70 F 04C ST 7,76(0,151 000C62 as 20 BAlR 2,G 
OC004C 07 F6 BR 6 
00004E 58 FO 7 064 L 15,lCO( 0,71 * PROCEDURE BASE 
COO052 95 60 E 000 ClI 01141,X'60' 
000056 47 70 7 05E BNE *+8 
OCOOSA 58 FO 7 068 L 15tl041 a ,71 * STATEMENT NUMBER 3 
COOOSE as EF BALR 14,15 000064 41 40 0 OF8 lA 4,24810,131 
oe0060 07 F6 BR 6 000068 50 40 3 080 ST 4,12810,31 
000062 07 00 NOPR 0 000C6C 96 eo 3 080 1:1 12813I,X'80' 
COO064 DC AL4101 000070 92 24 D 109 "vI 2651131,X'24' 
000068 DC AL4101 000C74 41 EO 3 09C LA 14r14410,31 

000078 50 EO C 110 ST 14,27210,131 
* END OF COMPILER GENERATED SUBROUTI NE 000C7C 41 10 3 07C LA 1,124(0,31 

000080 58 Fa 3 04C L 15,A •• IBM8SJlA 
000C84 as EF BALR 14,15 

* STATEMENT NUMBER 1 000C86 41 ~o 2 072 LA 10,CL.lO 
(00000 DC (' EXAMPLE' 000e8A 48 EO 3 064 LH 14,10010,31 
COOO07 DC AL1I71 000C8E 50 EO 0 OEO ST 14 ,224IC,131 

000(92 CL.5 EQU * 
* PROCEDURE EXAMPLE 000C92 58 40 0 OEO L 4,22410, 13 1 

000C96 8 B 40 a 002 SLA 4,2 
* REAL ENTRY 000(9/1 41 E4 0 OB4 lA 14, vc •• X141 
000008 90 Ee 0 Ooe STM 14,12,121131 00OC9E 41 FO 3 050 LA 15,DEO •• VO •• X 
ocoooe 47 FO F 010 B *+12 00OCA2 41 10 0 OF8 lA 1,24810,131 
OCOOI0 00000120 DC F' 288' OOOCAc 50 10 D OE4 ST 1,22810,131 
COOO14 COOOOOOO DC jllSTATIC CSECT) OOOOAA 90 EF 1 008 STM 14,15,8111 
000018 58 3C F OOC L 3,1210,151 OOOCAE 05 AA BALR 10,lC 
00001C 58 10 0 04C L 1, 7610rl31 OOOCBO 58 EO 0 OEO l 14, 224( C,131 
000020 58 00 F 008 L C,810,151 000CB4 4A EO 3 064 AH 14,lCOIC,31 
000024 lE Cl ALR Od 000088 5G EO 0 OEO ST 14,224IC,13) 
000026 55 OC ( ooe CL 0,1210,121 OCOCB( 49 EO 3 062 (11 14,9810,31 

PLII GPTIMIZING COMPILER EXAMPLE: PROC OTIONS IMAINI RE[,R~ER; PAGE 

CCOOCO 47 CO 2 02E BNH CL.5 * ceDe ~OVEC fROM STATt~ENT NUMBEP.·4 
COOOC4 41 EO 0 OA8 LA 14,Y 000152 48 70 D oao lH 7,1 
0000C8 41 FO 3 050 LA 15,DED •• Y 000156 50 70 0 OFB ST 7,248(0,131 
OCOoCC 90 Ef 1 008 STM 14, 15,8( 11 0001SA 48 70 3 070 lH 7,11210,31 
000000 05 AA BALR 10,10 00015€ 40 70 0 OF8 STH 7,24810,131 
CCOO02 47 FO 2 098 B CL.ll 000162 S7 80 0 OFA XI 250( 131 ,X'80' 
GOOO06 CL .10 EQU * 000166 78 CO 0 OF8 lE 0,24810,131 
OCOO06 41 EO 3 054 LA 14,84(0,31 00016A 78 (0 3 070 SE 0,112(0,31 
OOOOOA 58 10 0 OE4 L 1,228(0,131 00016E 70 CO D OFO STE 0,24CIO,131 
OOOOOE 50 EO 1 U04 ST 14,410,11 000172 79 CO D OE8 CE 0,23210,131 
OCOOE2 58 FC 3 044 L 15,A •• IeMBSEEA 000176 47 CO 2 aCE bNH (L.2 
0000E6 05 EF BALR 14,15 
COOOE8 05 AA BALR 10,10 * CCNTlI\UATION OF ST A TE~ENT NUMBER 6 
ocooEA 41 EO 3 05A LA 14,9010,31 00017A CL.3 E~U 

OCOOEE 58 10 0 OE4 L 1,228 10,131 
0000F2 58 70 3 014 l 7, A • .IElCGI A 
0000F6 C5 67 BALR 6,7 * SlATHENT NUI'SER 7 
GCOOf8 47 FO 2 072 8 (L .10 GOo17A 41 40 0 Ofd LA 4,248(0,131 

OOOOFC Cl.ll EQU * 00017E 50 40 3 088 ST 4, B6( 0,31 
000182 96 ec 3 088 (I 136131,X'80' 
000186 92 20 0 109 "VI 265(131,X'20' 

* STATEMENT NUMBER 4 00018A 41 10 3 084 lA 1,13210,31 
COOOFC 78 00 D OA8 LE C, Y 00018E 58 FO 3 038 l 15,A •• IB"'BSIOA 
CCOI00 70 00 0 OE8 STE 0,23210,131 000 192 05 EF BALR 14,15 

CC0104 48 70 3 064 LH 7,1 00 1 0 ,31 000194 41 AO 2 14E LA 10,Cl.7 
COOI08 4C 70 D aBO STH 7,1 000198 41 EO C OAC LA 14,Z 
COOlOC 48 40 0 OBO LH 4,1 00019C 41 Fa 3 050 LA 15,oEO •• Z 
CCOll0 50 40 0 OF8 ST 4,24810,131 0001AO 41 10 0 OF8 lA 1,24810,131 
000114 48 40 3 070 lH 4,112(0,31 0001A4 50 10 0 OE4 ST 1,22810,131 
COO1l8 40 40 0 OF8 STH 4,24810,131 0001A8 90 EF 1 000 STf.1 14.15,0111 
OOOllC 97 80 0 OFA XI 2501131 ,X, 80 ' 0001AC as jlA BAlR 10,10 
000120 78 2C 0 OF8 lE 2,248 10,131 OOOlAE 47 fO 2 166 8 (L.8 

OC0124 7B 2C 3 070 SE 2,112(0,31 0001B2 Cl.7 EQU * 
CC0128 70 20 D OEC STE 2,236(0,131 000182 41 EO 3 05E LA 14,9410,31 
00012C 39 20 CER 2,0 0001B6 58 10 0 OE4 L 1,22810,13 1 

OC012E 47 20 2 116 8H CL.3 0001BA 50 EC 1 ooe ST 14,1210,11 
000132 CL.2 EQU * 0001BE 58 Fa 3 048 L 15,A •• leMBsEHA 

0001C2 05 EF 8AlR 14,15 
0001C4 as AA BALI< 10.10 

* STATEMENT NUM8ER 5 0001C6 47 FO 2 14E B CL.7 
000132 48 9C 0 OBO LH <;,1 OCOICA Cl.8 EQU * 
000136 8B 9C 0 002 SLA <;,2 
00013A 78 40 0 OAC LE 4,Z 
DOO13E 7C 49 D OB4 ME 4, VO •• X( 91 * STATEI(ENT NUM8ER 8 
000142 70 40 0 OAe STE 4,Z 0001CA 18 CD LR C,13 

0001ce 58 co 0 004 l 13,4(0,131 
000100 58 EO 0 ooe l 14,1210,131 

* STATEMENT NUM8ER 6 000104 98 2C 0 Ole L~ 2,12,28(131 
000 146 48 70 0 080 lH 7,1 000108 as lE oALR 1,14 
OC014A 4A 70 3 064 AH 7,10010,31 
COO14E 40 70 D OBO STH 701 * E,.,O PROeECURE 

000 lOA 07 e7 NDPR 7 

Figure 2.4. Example of object program listing 

14 



other items. 

statements in the object program listing 
are ordered by block. statements in the 
outermost block are given first, followed 
by statements in the inner blocks. Thus 
the order of statements will frequently 
differ from that of the source program. 

Every object-program listing begins with 
the name of the procedure. The name is 
defined as a constant in a DC instruction. 
This is followed by another constant 
containing the length of the procedure 
name. Then comes the name of the 
procedure, as a comment, followed by code 
under the heading "REAL ENTRY." This is 
the point at which the code will, in fact, 
be entered. The second section of code is 
the prologue, which carries out various 
housekeeping tasks and is described more 
fully later in this chapter. The end of 
the prologue is marked by the message 
"PROCEDURE BASE." This is followed by a 
translation of the first executable 
statement in the PL/I source program. 

The comments used in the listing are as 
follows: 

* PROCEDURE xxx - identifies the start of 
the procedure labeled xxx. 

* REAL ENTRY xxx - heads the 
initialization code for an entry point 
to a procedure labeled xxx. 

* PROLOGUE BASE - identifies the start of 
the prologue code common to all entry 
points into that procedure. 

* PROCEDURE BASE - identifies the address 
loaded into the base register for the 
procedure. 

* STATEMENT LABEL xxx - identifies the 
position of source program statement 
label xxx 

* PROGRAM ADDRESSABILITY. REGION BASE -
identifies address to which the 
program base is updated if program 
exceeds 4096 bytes and cannot be 
addressed from one base. 

* CONTINUATION OF PREVIOUS REGION -
identifes the point at which 
addressing from the previous program 
base recommences. 

* END OF COMMON CODE - identifies the end 
of code used in the execution of more 
than one statement. 

* END PROCEDURE xxx - identifies the end 
of the procedure labeled xxx. 

* BEGIN BLOCK xxx - indicates the start of 

the begin block with label xxx. 

* END BLOCK xxx - indicates the end of the 
begin block with label xxx. 

* BEGIN BLOCK - GENERATED NAME BLOCK.nn -
indicates the start of an unnamed 
begin block for which the compiler has 
generated the name BLOCK.nn, where· nn 
is two hexadecimal digits. 

* END BLOCK.nn - indicates the end of the 
begin block with compiler-generated 
name BLOCK.nn. 

* STATEMENT NUMBER n - identifies the start 
of code generated for statement number 
n in the source listing. 

* INTERLANGUAGE PROCEDURE xxx - identifies 
the start of encompassing procedure 
xxx (see chapter 13). 

* END INTERLANGUAGE PROCEDURE xxx -
identifies the end of encompassing 
procedure xxx. 

* COMPILER GENERATED SUBROUTINE xxx -
indicates the start of compiler­
generated subroutine xxx. 

* END OF COMPILER GENERATED SUBROUTINE -
indicates the end of the compiler­
generated subroutine. 

* ON UNIT BLOCK - indicates the start of 
an on-unit block. 

* ON UNIT BLOCK END - indica~es the end of 
the on-unit block. 

* END PROGRAM - indicates the end of the 
external procedure. 

* INITIALIZATION CODE FOR OPTIMIZED LOOP 
FOLLOWS - indicates that some of the 
following code has been moved from 
within a loop by the optimization 
process. 

* CODE MOVED FROM STATEMENT NUMBER n -
indicates object code. moved by 
optimization to a different part of 
the program and gives the number of 
the statement from which it 
originated. 

* CALCULATION OF COMftONED EXPRESSION 
FOLLOWS - indicates that the value of 
an expression used more than once in 
the program is calculated at the point 
indicated. 

* METHOD OR ORDER OF CALCULATING 
EXPRESSIONS CHANGED - indicates that 
the order of the code following has 
been changed to optimize the object 
code. 

Chapter 2: Compiler Output 15 



In certain cases, mnemonics are used to 
identify the type of operand in an 
instruction, and, where applicable, this is 
followed by a source-program identifier. 
The following prefixes are used: 

A •• 

ADD •• 

BASE •• 

BLOCK.nn 

CL.nn 

D •• 

DED •• 

IISP.n 

L •• 

LOCATOR •• 

RKD •• 

VO •• 

Address constant. 

Aggregate descriptor 
descriptor. 

Base address of a 
variable. 

Label created for an 
othervise unl~eled 
block. 

Compiler-generated 
label. 

Descriptor. 

Data element 
descriptor. 

Workspace, followed by 
decimal number of the 
block of allocated 
workspace. 

Length of variable. 

Locator. 

Record or key 
descriptor. 

Virtual origin (the 
address where element 
o would be held for a 
one-dimensional array, 
element 0,0 for a 
two-dimensional array, 
etc.). 

Static Internal Control Section 

The static internal control section 
contains the majority of items that are not 
executable instructions. The contents of a 
typical static control section are shown in 
figure 2.3. 

The first part of the static internal 
control section contains addresses. These 
are held in the order: 

1. Addresses of library modules 

2. Addresses of entry points 

3. Addresses of label constants that may 
be assigned to label variables 

16 

4. Addresses of external procedures 
(other than library modules) 

The address section is followed by a 
section known as the £Qgstant§_EQQ!. This 
contains the following items (if required 
by the program): 

Constants 

ONCBs 

constant values used 
by compiled code. 

Control blocks used 
in error handling. 
(See chapter 1.) 

Descriptors, Control information 
locators and used by compiled 
DEDs (data element code and library. 
descriptors) (See chapter 4.) 

Symbol table Control information 
address vector and used in 
symbol tables data-directed I/O. 

(See chapter 4.) 

Diagnostic 
statement table 

Information on 
statement numbers. 

Items are arranged according to their 
alignment requirements, those requiring 
double word alignment first, followed by 
fullword, halfword, byte, and bit. 

The final section of the static internal 
control section holds the static variables. 
These are held in size order, smallest 
first: first the variables of 8 bytes or 
less, next the variables of 2048 bytes or 
less, and finally any variable greater than 
2048 bytes. This system ensures that the 
smallest possible number of items viII 
require indirect addressing, since it will 
always be the largest variables that 
overflow the 4K boundary. Within each 
division, items are grouped according to 
alignment stringencies, starting with those 
requiring doubleword alignment. This 
method ensures optimum use of storage. 

Program Control Section 

The program control section contains the 
executable instructions that are a 
translation of the PL/I source program. 
The format of each program control section 
depends on the contents of the source 
program. The discussion that follows 
covers items that will be common to all 
source programs. 

To keep discussions of subjects as 
complete as possible the chapter also 
includes descriptions of certain library 
functions when they are closely allied with 
the subject under discussion. 



r----------------------------------------------------------------------------------, 
I Dedicated I Work registers I Preferred registers I Notes 
1 registers 1 (plus special use) 1 I 

r---------------------------------------------------------------------------------------
, 0 I I General I I cannot be used 
I I I lias base 
1---------------------------------------------------------------------------------------
I 1 1 1 General + address I , 
I I I of parameter list 1 I 

2 Address of 
program base 

3 1 Address of 
1 static base 

4 Address of 
temporary base, 
if DSA is 
larger than 
3896 bytes 

5 1 1 General + static 1 Preferred register 
1 1 chainback on entry 1 for DO loop 

, lito procedure 1 control variable 1 

Saved during 
in-line record 
I/O and TRT 
instructions 

1---------------------------------------------------------------------------------------
I 6 1 1 General I 1 
1---------------------------------------------------------------------------------------
I 7 1 1 General I 1 
1---------------------------------------------------------------------------------------
I 8 I I General I I 
1-------------------------------------------------------------------------------------~-
I 9 I 1 General I 1 
1---------------------------------------------------------------------------------------
I 10 1 1 General I Preferred registers for 1 
1-------------------------------------------1 DO loop control when 1 
1 11 1 1 General 1 BXLE instruction is used 1 
1---------------------------------------------------------------------------------------1 12 1 Address of TCA 1 1 1 
1---------------------------------------------------------------------------.------------
I 13 I Address of I 1 1 
t I current DSA I I 1 
1---------------------------------------------------------------------------------------
I 14 I 1 General + branch- 1 I 
1---------------------1 and-link to library I---------------------~---------------------
I 15 I t and other routines 1 1 
L-------------------------------------------------------------~-------------------------J 

Figure 2.5~ Register usage in compiled code 

Register Usage 

Details of register usage during the 
execution of compiled code are given in 
figure 2.5. 

Four general registers are used as bases 
for addressing various typ~s of data; these 
are known as dedicated registers. The 
remainder of the registers are used as they 
are required and are known as XQ~~ 
.I~gisters 

Dedicated registers are: 

R2 Program base. 

R3 Static base. 

R12 TCA pointer. 

R13 DSA pointer. 

This arrangement of dedicated registers 
allows compiled code the use of six 
even/odd work register pairs. These are 
(0,1), (4,5), (6,7), (8,9), (10,11), and 
(14,15). 

certain registers have special tasks for 

Chapter 2: Compiler Output 17 



which they are always used, or for which 
they are preferred and used when available. 
These tasks are shown in figu~e 2.5. 

~ggi21~2 -_Program Base Register: 
Register 2 is the program base register and 
is used for branching within the code. 
When the code exceeds 4K, register 2 is 
updated so that all branching is done on 
this register. During in-line I/O (when 
data management calls are handled by 
compiled code rather than by library 
subroutines), and during the execution of 
TRT instructions, the program base register 
contents are saved and the register used 
for other purposes. 

Register 3 - Static Base Register: 
Register 3 points to the start of the 
static internal control section. The items 
to be found in this control section in any 
particular program are listed in the 
static-storage map put out by the compiler. 
(See "static Internal Control Section," 
later in this chapter.) "When the static 
control section is larger than 4K bytes, a 
further base register is used. 

!!ggis.tg~.-1~-=-TCA: Offsets from register 
12 are used to address the various fields 
in the TCA. The TCA is discussed further in 
chapter 5 and appendix B. 

!!ggist~l1-=_Current DS!: Register 13 
points to the current DSA and is used to 
address the automatic variables declared in 
the current procedure or block. References 
to offsets from register 13 which do not 
appear as names in the assembler language 
listing are references to the housekeeping 
fields held in every DSA or to temporaries. 
These are discussed in chapter 6; a map of 
the hOUsekeeping information in a DSA is 
given in appendix B. 

Special or preferred uses for work 
registers are shown in figure 2.5. Special 
uses are those for which the register is 
freed and always used. Preferred uses are 
those for which the register is used when 
possible. 

Floating-Point Registers 

Floating-point registers are all used as 

18 

general work registers for floating-point 
data. 

Register usage in library modules is 
different from that in compiled code. It is 
shown in figure 2.6. 

r-----------------------------------------, 
Register I Usage I 

-----------------------------------------1 
1 
2 
3 

4 
5 
6 
7 
8 
9 
10 
11 
12 

13 
14 

15 

Work register 
Work register 
Program base register 
(dedicated) 
Work register 
Work register 
Work register 
Work register 
Work register 
Work register 
Work register 
Work register 
TCA pointer (dedicated in 
both library and compiled 
code) 
DSA pointer 
Work register (always used 
for branch-and-link to other 
routines) 
Work register (used with 
register 14 for 
branch-and-link) 

L-----------------------------------------J 
Figure 2.6. Library register usage 

Two further points about library 
register usage are worth noting: 

1. Registers 14 through 4 are normally 
saved by the library. This is because 
the majority of library subroutines 
use only these registers. 
Consequently, time can be saved by 
reducing save-restore requirements. 
However, some library routines also 
save one or more of registers 5 
through 11. 

2. The majority of library subroutines 
require argument lists that are 
addressed by register 1. However, 
certain library routines have their 
parameters/arguments passed directly 
in registers. The registers used for 
this purpose are 1, 5, 6, and 7. 



Handling and Addressing Variables 

HANDLING AUTO~ATIC VARIABLES 

Automatic variables have storage allocated 
on a procedure or begin-block) basis. 
Variables whose length is known during 
compilation have storage allocated within 
the DSA of the block in which they are 
declared. Variables whose length is not 
known until execution time have their 
storage allocated in variable data areas 
(VDAs). VDAs are held in the last-in/first­
out storage stack and are acquired in the 
prologue code after the DSA has been 
acquired. The same method is used as is 
used for acquiring the DSA (see above under 
"Prologue Code.") 

Automatic variables when used in the 
block in which they are declared are 
addressed from register 13, if they are 
held in the DSA. If they are held in a 
VDA, a separate base is set up for the VDA 
and they are addressed from this. 

Within a DSA, automatic variables are 
held in size order. First those of 8 bytes 
or less, then those of 2048 bytes or less, 
and finally those larger than 2048 bytes. 
Within each group items are held in 
alignment stringency starting with items 
that require doublevord alignment. This 
arrangement results in the minimum number 
of variables overflowing the 4096 byte 
addressing boundary. The contents of a 
typical compiled code DSA are shown in 
figure 2.7. 

Automatic variables known in any 
procedure or block are those that are 
declared in that procedure or block, or in 
any encompassing procedures or blocks. The 
method used to address automatic variables 
in outer blocks is as follows. The address 
of the DSA of the block in which the 
required variable was declared is placed in 
the current DSA. This address can then be 
accessed from register 13. This is done in 
the prologue. (Frequently, the value is 
retained in the register used in the 
initial load and not reloaded when the 
variable is accessed.) Typical code would 
be 

L 7,96(0,13) Pick up address of 
correct DSA 

L 8,108 (7) Place value of variable 
in register 8 

COMPILER-GENERATED TEMPORARIES 

Because PL/I statements can contain an 
unlimited number of operands, it is 
frequently necessary to set up fields 
containing intermediate results. These 
fields are known as tem£orary variable§ 
(temporaries) and are allocated within the 
DSA of the associated block, provided that 
the size of storage required is known at 
compile time. To simplify addressing the 
temporaries, register 4 is used to point at 
the start of the area used for storing 
them, if the DSA requires more than 30896 
bytes of storage. 

Because temporary storage is continually 
being reused, the same storage area viII 
not always hold the same temporary. 

l~~£Qraries for Adjustable !griables 

Where a temporary is needed to hold a value 
for an adjustable variable, its size is not 
predictable until execution. In such 
cases, a VDA is acquired for the temporary 
value. 

CONTROLLED VARIABLES 

Controlled variables are addressed through 
a field that holds the address of the most 
recent allocation of the variable. For 
internal controlled variables, this address 
is held in the static internal control 
section. For external controlled 
variables, a separate control section is 
generated. When no allocations of the 
controlled variable have been made, the 
address field is set to zero. 

Each allocation of a controlled variable 
holds the address of the previous 
allocation in a chainback field at its 
head. For the first allocation, the 
chainback field is set to zero. 

The stacking and unstacking of 
controlled variables is handled by the 
library moduleIBMBPAF. This, in turn, 
makes use of IBMDPGR to actually allocate 
or free the storage for the varia~les. 

The control block area at the head of each 
controlled variable is four words in length 
and consists of the following fields. 

Chapter 2: compiler output 19 



R13 ---. 

Housekeeping information 

See appendix A 

\ 
Items < 9 bytes in length 

Held in alignment order: 
doubleword 
fullword 
halfword 
byte 
bit 

Items 9 - 2048 bytes in length 

Held in alignment order as above 

Items> 2048 bytes 

Held in alignment order as above 

Parameter storage area 

Addresses of any parameters 

passed to the associated 

praced u re are stored here 

Register bind storage area 

Used by compiled code when 
registers must be saved 

Local temporary storage 

Used for temporaries required 
for duration of statement 

Global temporary storage 

Used by temporaries required 
for duration of block 

Storage for automatic 
variables declared in 
the block, dynamic 
ONCBsetc. 

Temporary storage 

Figure 2.7. Typical contents of a compiled code DSA 

20 

-- -----_._-----------_ ... _-- -------------- - - -- -------



Word 1 The first word is used for 
chaining. 

Word 2 Word 2 contains the length of the 
variable, including the control block. 

Word 3 Word 3 points to the address of the 
previously allocated variable, or 
contains zero if there is none. (This 
address is word 5 of the area used by 
the previous allocation, because the 
address is that of the start of the 
variable itself rather than the' 
control block.) 

Word 4 Word 4 is unused. 

AI12£g!i~ a Variable 

A controlled variable is allocated when 
IBMBPAF is entered by entry point A. The 
length of the storage required and the 
address of the anchor word which will hold 
the address of the current invocation are 
passed in register 1. The length is 
increased by 16 bytes to allow for the 
control block, and the module IBMDPGR 
called to allocate the storage. The 
control block is then initialized. The 
first bit in the anchor word is set to 
indicate that the controlled variable has 
been allocated, the old address in the 
anchor word having been set in the 
chainback field (word 3) in the control 
block at the start of the variable. If 
there have been no previous allocations, 
this address is zero. 

Freeinq.a Controlled Variable 

Freeing a controlled variable is carried 
out by IBMBPAF when entered via entry point 
B. The address of the anchor word is 
passed by compiled code. If the chainback 
field in the variable is zero, the first 
bit of the anchor word is set on, and the 
area freed by calling IBMDPGR. 

If the chainback field is not zero, the 
address in the chainback field is placed in 
the anchor word, and IBMDPGR called to free 
the area. 

BASED VARIABLES 

Based variables are addressed by using the 
contents of the pointer on which they are 
based. The pointer is addressed in the 
usual manner, depending on its storage 

class. 

When a based variable is allocated, a 
call to the storage management module 
IBMDPGR is made. IBMDPGR acquires storage 
in the non-LIFO dynamic storage area and 
returns the address of the storage in 
register 1. The address held in register 1 
is then placed in the pointer on which the 
allocated variable is based. 

When the variable is freed, a further 
call to IBMDPGR is made to free the 
storage. (Details of the functions of 
IBMDPGR are given in chapter 6.) 

Pointers: Pointers are held as fullwords. 
The null pointer value is X'FFOOOOOO'. 

STATIC VARIABLES 

Static internal variables are held in the 
static internal control section and are 
addressed from register 3. 

Static external variables are held in 
separate control sections and are addressed 
from an address constant in the static 
internal control section. 

ADDRESSING BEYOND THE 4K LIMIT 

As described above, variables and 
temporaries can, in the simplest case, be 
addressed by using an offset from one of 
the base registers. However, as the space 
required for any particular type of storage 
can exceed the maximum offset allowed in 
addressing (4096 bytes), it is necessary to 
have a scheme to allow addressing of 
variables beyond this limit. 

The method used is to divide storage for 
automatic variables, temporaries, and 
static variables into sections of 4096 
bytes. The addresses of the second and 
subsequent sections are then placed in the 
first section. Addressing .of an automatic 
variable beyond the 4096-byte limit is 
typically done by code resembling the 
following: 

L 6,92 (0, 13) Place address of 4 K 
boundary in register 6. 

AE 7,96 (0,6) Address variable by using 
offset from 4K boundary 
placed in register set 
up in last instruction. 

A similar system is used for addressing 
any static variables and temporaries which 

Chapter 2: Compiler output 21 



are at an offset greater than 4096 bytes. 
The addresses are held in the following 
areas: 

Automatic 

Static 

Temporaries 

Immediately following the 
housekeeping information 
of the DSA. 

At the head of the first 
section of static 
storage. 

At the head of temporary 
storage, following bases 
of parameters, register 
save area, and addresses 
of any outer DSAs. 

Constants and variables are held in 
order of size, with the smallest first. 
This minimizes the number of items that 
overflow the 4K boundary. 

Handling Data Aggregates 

PL/I data aggregates are structures and 
arrays. This includes both arrays of 
structures and structures of arrays. 

Array elements are addressed from the 
Yi£!Ys!_QrigiQ of an array_ This is the 
point at which the element whose subscripts 
are all zeros is held, or would be held if 
no such element is included in the array. 
Each element can be accessed by using a 
multiplier for each dimension. The 
multiplier is the distance between elements 
in a cross-section of an array. For 
example, in an array B(9,9) the multiplier 
for the first dimension is the distance 
between elements B(1,1) and B(2,1); the 
multiplier for the second dimension is the 
distance between elements B(1,1) and 
B (1,2) • 

If the bounds of the array and the 
length of the elements of the array are 
known during compilation, the values of 
multipliers can be calculated and placed as 
constants in the static internal control 
section. For accessing an element with a 
constant subscript, the offset from the 
virtual origin can be calculated durin~ 
compilation. If the subscript value is a 
variable, the multiplier must be picked up 
from static storage during execution and 
the value calculated. 

If the bounds or extents of an array are 
not known during compilation, a control 
block known as an ~~1-descriptor is set 
up. This control block is used to hold 
necessary information about bounds, 
multipliers, etc. The information is placed 
in the control block during execution. 

22 

Array descriptors are described in chapter 
4. 

structures are treated in a similar 
manner. Where all information about a 
strQcture is known, it is mapped during 
compflation and offsets to each item from 
the star~of the structure are known to 
compiled code. If a structure cannot be 
mapped during compilation, it is mapped 
during execution, and the offsets within 
the structure are placed in a control block 
known as a structu£~~£tiptQ£. To access 
an item in the structure, compiled code 
finds the offsets and calculates the 
address of each element from them. 
Structure descriptors and the process of 
mapping during execution are described in 
chapter 4. 

ARRAYS OF STRUCTURES AND STRUCTURES OF 
ARRAYS 

Arrays of structures and structures of 
arrays are held as they are declared. 

The array of structures 

S (2) , 
B, 
C; 

would be held in the order S(1).B, 5(1).C, 
5(2).B, 5(2).C. 

Band C are known as interleaved arrays, 
because the elements within each array are 
not contiguous. 

The structure of arrays 

5, 

B (2) 

C (2) ; 

would be held in the order 5.B(1), 5.B(~, 
5. C (1), 5. C (2) • 

Elements are accessed as array elements in 
both cases. In the array of structures 
shown above, both Band C are treated as 
separate arrays with their own virtual 
origins and multipliers. When possible, 
the values of multipliers are calculated 
during compilation. When adjustable bounds 
or extents are involved, the necessary data 
for both arrays of structures and 
structures of arrays is placed in a 
structure descriptor (see chapter 4). 



ARRAY AND STRUCTURE ASSIGNMENTS 

Assignments between structures and arrays 
of the same format are done by MVC 
instructions. Provided an array is not 
interleaved, an assignment will be made to 
it as a whole, and the elements will not be 
moved one at a time. Similarly, structures 
that are contiguous and have the same 
format are moved as a whole. 

Handling Flow of Control 

In PLII, five types of statement can result 
in non-consecutive flow of control. These 
statements are: 

CALL statements 

END statements 

RETURN statements 

Function references 

GO TO statements 

The first four of these are concerned with 
the block structure of the PLII program and 
involve passing control from one block to 
another. GOTO statements can result in 
branches to code that is either in the 
current block, or in any other active 
block. 

Consecutive flow of control also ceases 
when an error or program interrupt occurs. 
The methods used to handle error and PLII 
condition situations are described in 
chapter 7, "Error Handling." 

ACTIVATING AND TERMINATING BLOCKS 

CALL, END, and RETURN statements, and 
function references, all result in the 
activation or termination of blocks. The 
block structure of PLII, as explained in 
chapter 1, is implemented by means of a 
hierarchy of DSAs. 

Each block (begin block, procedure 
block, or Qn-unit bloc~ executes on its 
own program base that is set up at the end 
of the prologue code for each block. This 
base is marked in the object code listing 
with: 

* PROCEDURE BASE 

In the PLII optimizing compiler, blocks 
are always called by means of a BALR 

instruction on registers 14 and 15. Within 
the prologue code, the registers are stored 
in the DSA of the calling block, and a new 
DSA is set up to hold the automatic 
variables of the new block plus a certain 
amount of environmental information such as 
the enablement or disablement of certain 
condi tions. 

When a block is terminated, the 
registers of the calling block are 
restored, and a branch is made on register 
14. This immediately returns control to the 
instruction after the BALR issued in the 
preceding block. The DSA of the called 
block is automatically discarded because 
all fields in the DSA, including the 
pointer to the next available byte of free 
storage, were addressed from register 13. 
Because register 13 has been altered, the 
values that apply to the calling block 
automatically become current when the 
calling block's registers are restored. 

PROLOGUE AND EPILOGUE CODE 

Every PLII begin block or procedure block 
has prologue and epilogue code. The 
prologue prepares the environment for the 
associated block and acquires storage for 
automatic variables, compiler-generated 
temporaries, and workspace. The epilogue 
frees the storage acqu~red for the block, 
restores the environment of the calling 
block, and returns control to the calling 
block. 

The prologue appears on the object-program 
listing between REAL ENTRY and either 
PROCEDURE BASE or BLOCK BASE. Every 
prologue has to acquire a dynamic save area 
(DSA) for the new block. (The DSA is a 
register save area concatenated with 
housekeeping information, plus storage for 
automatic variables and temporaries.) Other 
jobs that may be done in the prologue code 
are: 

• Initialization of automatic variables 
that have the INITIAL attribute. 

• Initialization of pointers and locators 
that have the INITIAL attribute. 

• Movement of parameter addresses passed 
to the procedure to the correct 
location. 

• Acquisition of storage for .adjustable 
variables. 

Chapter 2: Compiler Output 23 



r----------------------------~------------------------------------------------------~---, 
STK 14,12,12(13) store registers of calling program. 
BC *+16 Branch around constants. 
DC A(STHT NO TABLE) Constant - address of statement number table. 
DC P'272' Constant - length required for new DSA. 
DC A(STATIC CSECT) Constant - address of static internal CSECT filled in 

by linkage editor. 
L 3,16 (0,15) 

1,76 (0,13) 
0,12 (0,15) 
0,1 

Set up R3 as static base. 
L 
L 
ALR 

Set R1 to old NAB (start of new DSA).· 
Place length required for new DSA in RO. 
Add old NAB (in R1) and length required for DSA (in 
RO) • 

CL 
BNH 
L 

. 0, 12 (0, 12) 
*+10 

Compare with EOS in TCA. 

15,116 (0, 12) 
Branch around library call if new DSA fits segment. 
Load address of stack overflow routine (IBKBPGRC) from 
TCA. _ 

BALR 
L 

14,15 
14,72(0,3) 
15,0 
14,0,72(1) 

Branch to overflow routine. 

LR 
STM 

pick up library workspace address. 
Place NAB address in R15. 
Store library workspace address and current and 
end-of-prologue NAB addresses in new DSA. 

ST 
LA 
ST 
KVI 
MVI 
MVC 

13,4(0,1) Set up backchain to previous DSA. 
13,0 (1,0) Point R13 at new DSA. 
5,88(0,13) ! 
0(13) ,X'80' 

Set up static backchain. 
Set up housekeeping flags - see appendix B. 

1 (13) ,X'OO' 
84 (4,13) ,166 (3) Set up enable cells - see chapter 7. 

Other code as required Other tasks may be carried out at this point. (Such 
as, initialization of variables with the initial 
attribute, acquiring a VDA for adjustable variables, 
and setting up certain error-handling fields.) 

BALR 2,0 Set R2 as program base. 
L------------------------------------------------------------------------------~--------J 

Figure 2.8. Typical prologue code 

r-----------------------------------------, 
I L 13,4(0,13) Chainback I 
I LM 14,12,12(13) Restore registers ofl 
, preceding block I 
I BR 14 Return I 
L-----------------------------------------J 
Figure 2.9. Epilogue code 

• Initialization of certain items for 
argument lists. 

• Setting-up certain interrupt-handling 
information such as ONCBs and enable 
cells. (See chapter 7.) 

An example of prologue code is shown in 
figure 2.8. 

·TwO backchainsare set up. The gynamic 
backchain, which points to the DSAof the 
calling or preceding block, and the stati£ 
!!g£~chgin, which points to the DSA of the 
statically encompassing block. Por the 
main procedure, the dynamic backchain 
points to the dummy DSA, and the static 
backchain ~s set to zero. The address of 
the statically encompassing block is passed 

24 

in register 5. 

Static backchains are used in tracing 
the scope of names and the enablement of 
PLII conditions. 

For PLII procedures with COBOL or 
FORTRAN in the OPTIONS option, the prologue 
is considerably different. See chapter 13, 
"Interlanguage Communication." 

The format of the DSA is shown in figure 
2.7. 

Epilogue code comprises the instructions 
generated for ENDYor RETURN statements. 
These instructions restore the registers to 
the values that were held when the current 
block was called. The register values are 
those stored in the previous DSA. Typical 
epilogue code is shown in figure 2.9. 

Por the external procedure the epilogue 
code is slightly different. The address of 
the current DSA is saved in register 0, and 



return made by a BALR instruction using 
registers 1 and 14. This allows return to 
the program if a FINISH on-unit has to be 
executed. 

CALL Statements 

CALL statements are executed by picking up 
the address of the block to be called from 
static storage. A BALR instruction is then 
carried out on registers 14 and 15. If 
arguments are being passed to the called 
procedure, an argument list is set up in 
temporary storage, the.first bit of the 
last argument is set to '1', and register 1 
is pointed at the argument list. Typical 
code would be: 

00031A 18 5D 

00031C 58 FO 3 020 

000320 05 EF 

LR 5,13 
Load static backchain 
address 
L 15,A ••• X 
Pick up address of 
procedure X 
BALR 14,15 
Branch to procedure 

Function references are compiled in exactly 
the same way as CALL statements. If the 
function returns a value, an extra field is 
placed as the last argument in the list. 
The returned value is placed in this field 
when the function is completed. Typical 
code would be: 

0001FE 41 90 6 OB4 
000202 50 90 3 OBC 
000206 41 90 6 OBO 
00020A 50 90 3 OCO 

00020E 18 5D 

000210 41 10 3 OBC 

000214 58 FO 3 008 

000218 05 EF 

END Statement 

LA 9,B 
ST 9,188(0,3) 
LA 9,A 
ST 9,192(0,3) 
Set up parameter list 
LR 5,13 
Load static backchain 
address 
LA 1 , 1 88 (0, 3) 
Point register 1 
at parameter list 
L 15,A ••• DOUBLE 
Place address of 
function 
(DOUBLE) in R15 
BALR 14,15 
Branch to function 

END statements result basically in 
restoring the registers of the calling 

block and branching to the value held in 
register 14 of that block. 

Code compiled for an END statement of an 
internal block takes the following form: 

000402 58 DO D 004 L 13,4(0,13) 
pick up DSA backchain 

000406 98 EC D OOC Lft 14,12,12(13) 
Restore registers 

00040A 07 FE BR 14 
Branch to procedure 

For main procedures, certain further 
actions have to be taken. Because the end 
of a main procedure raises the FINISH 
condition, it is necessary to save the 
current value of register 13 so that the 
error handler may search the DSA chain for 
a FINISH on-unit. As it is possible to 
request a SNAP trace in a FINISH on-unit~ 
it is also necessary to save the address of 
the END statement. For this reason, the 
branch is made with a BALR instruction 
rather than a branch instruction as used 
for internal blocks. Typical code would 
be: 

00188C 18 OD 

00188E 58 DO D 004 

001892 58 EO D OOC 

001896 98 2C D 01C 

00189A 05 1E 

RETURN Statement 

LR 0,13 
Save current DSA 
address in RO 
L 13,4(0,13) 
pick up DSA backchain 
L 14,12(0,13) 
Restore register 14 
Lft 2,12,28(13) 
Restore registers 2 
through 12 
BALR 1,14 
Branch to initializa­
tion routine saving 
branch address in 
register 1 

RETURN statements are executed in a similar 
way to END statements, but result in the 
termination of a procedure rather than a 
block. Consequently, before the 
restoration of the registers, a chainback 
must be made to the correct DSA. A 
chainback is made through any begin blocks. 
The depth of nesting can be determined 
during compilation, so the backchain can be 
loaded the required number of times before 
the branch is made. Typical code would be: 

0003EC 58 DO D 004 L 13,4(0,13) 
0003FO 58 DO D 004 L 13,4(0,13) 

pick up DSA backchain 
0003F4 98 EC D OOC Lft 14,12,12(13) 

Restore registers 
0003F8 07 FE BR 14 

Branch to procedure 

Chapter 2: Compiler Output 25 



.HQ!~: If the procedure in which the RETURN 
statement occurs ~s a main procedure, ~he 
code will take the form compiled for an END 
statement for an external procedure (see 
above). 

GOTO STATEMENTS 

The implication~of a GOTO statement depend 
on whether the label branched to is within 
the block or external to it. If the label 
is outside the block, the branch implie~ 
that one or more blocks must be terminated. 
If the label in the GOTO statement isa 
label variable, it is not always possible 
to determine during compilation whether the 
label will be in the same block as the GOTO 
statement. Consequently, interpretive code 
is used f~r label variables. 

For GOTO statements toa label constant 
within the block, the compiler produces a 
straightforward branch instruction. For 
GOTO statements that may pass control to 
another block, compiled code calls the 
interpretive code in the TCA. 

Interpretive code to handle a GOTO out 
of block is held in the TCA. To implement 
a GOTO that will ot may transfer control 
out of the block, compiled code branches to 
code in the TeA. The code in the TCA 
checks to see wheth~r it is one of a small 
number ~f special cases, and, if it is, 
calls a subroutihe of the PL/I resident 
library module IBMDPIR. IBMDPIR is the 
program initialization routine and is 
always link-edited. In other 
circumstances, the GOTO code in the TCA 
handles the branch and any block 
termination involved~ 

The special cases all occur when 
executing code handled by library modules. 
These library modules flag the TeA and 
their own DSA to indicate that special 
action must be taken when a GOTO occurs. 

To execute a GOTO statement, three 
things must be known: 

1. The address of the instruction to 
branched to. 

2. The address of the program base. 

3. The address of the DSA associated 
the instruction. 

be 

with 

The label constant holds items 1 and 2. 
Item three is held in a label variable. 
(For formats· see a~pendix B). When a 
branch is made~toa label constant using 
the GOTO code in the TCA, a label temporary 
is created. The'label temporary has the 

26 

same format as a label variable, consisting 
of the add~ess of the label constant 
followed by the address of the associated, 
DSA. 

The optimizing compiler produces cod.e that 
assumes that the registers retained across 
the execution of a labeled statement will 
be 2, 3, 12, and 13. These are the program 
base, the static base, the address of the 
TCA, and the address of the current DSA. 
All other register values may be different 
when control pases thr9ligh the labeled 
statement on dif~~ent occasions. 

The enablement of conditions may differ 
in the GOTO statement and in the labeled 
statement. within a block, the enablement 
status may be varied only for the duration 
of a single statement. The GO TO therefore 
resets the block enablement status before 
the branch is taken.- If the labeled 
statement has a different enablement status 
from the block, it will be automatically 
reset in the labeled statement. 

As explained in chapter 7, "Error and 
Condition Handling," the enablement of 
conditions is recorded by enable cells. 
Two sets are used: the block enable cells 
retain the enablement situation at the 
start of the block, which can consequently 
be restored at any time; the current enable 
cells hold the enablement situation that is 
current, which, as explained earlier, may 
differ from that at the start of the block. 

A GOTO within block normally takes the 
form of a simple branch instruction plus 
any alteration of the enablement bits that 
may be necessary to reset the enablem~nt 
situation to that at the start of the 
block. Typical code would be: 

000F1A 47 F02 OC8 B INPUT 
Branch to correct 
address in compiled 
code (label name is 
"I NPUT") 

The optimizing compiler attempts to 
retain the same block base for all branches 
within a block~ However, this is not always 
possible and, if the code for the block is 
longer than 4096 bytes, it may be necessary 
to set up a new base when a GOTO statement 
is executed. As all labels are stored with 
both their address and their base, this 
presents no problem. The address of the 
label and the value of its base form the 
value of the label constant. The value of 
the base is placed in register 2, and a 
branch is made to the label address. 



When a GOTO to a label within the block 
is made, there is no need to reset 
registers 3, 12, or 13 as these are not 
altered within a block. 

Labeled statements within a block have 
an effect on optimization in that, apart 
from the bases and block addresses 
mentioned above, values cannot be retained 
in registers beyond a labeled statement. 

GOTO Out of Block 

GOTO statements that transfer control from 
a block have to overcome the problems 
described above, plus problems of block 
termination. 

For a GOTO out of block or to a label 
variable, compiled code makes a call to the 
GOTO code in the TCA, which is held at 
offset 128(decimal)~ The GOTO code 
receives, through registers 14 and 15, 
either the contents of the label variable 
or the .quivalent information for a label 
constant, namely the address at which the 
label constant is held, and the address of 
the DSA of the block in which the label 
appears. 

The GOTO code first tests to see if a 
change of block is being made. If not, the 
enablement is reset as described below. If 
a change' of block is being made, then, if 
FLOW or COUNT is in effect a call is made 
to IBftDEFL to update the flow or count 
tables. Next, the GOTO subroutine of 
IBMDPIR is called to determine if a valid 
GOTO is being undertaken. The GOTO 
subroutine ensures that the target block 
for the GOTO is still active and is not an 
invalid address. Provided that this is not 
an abnormal GOTO, registers 3 and 4 are 

frestored from the target DSA, register 2 is 
Iloaded from the second word of the label 
Iconstant, and regist~r 13 is set to the 
laddress of the target DSA. The routine 
then branches to the appropriate point in 
code which 1S picked up from the address of 
the label constant, passed in register 14. 

The enablement situation at the start of 
the block has to be restored, and this is 
done by setting the current enable cells in 
the DSA to the value of the block enable 
ce1ls. If the current enable cells 
indicate that CHECK is enabled, the module 
IBftDPGD is called. A seaych is made for a 
qualified CHECK ONCB, so' that the enable 
cells may be set to the start-of-block 
situation in this ONC~. 

In a similar manner, it may be necessary 
to restore the NAB ~lue to that at the 
start of the bloc~. This will be necessary 

if the statement that invoked the block 
acquired a VDA. The start-of-block NAB 
value is retained in the DSA and is known 
as the end-of-prologue NAB. If a VDA has 
been acquired, the fact is flagged in the 
flag byte of the DSA, and the GOTO code 
places the end-of-prologue NAB value in the 
current NAB field. 

Such action is never required within a 
block, as VDAs are only acquired for the 
duration of one statement and are never 
used for GOTO statements. Typical code 
would be: 

GOTO label-constant (out of block) 

000226 18 F6 LR 15,6 
Place address of DSA 
in R15 

000228 41 EO 3 088 LA 14,136(0,3) 
Place address of 
label constant in R14 

00022C 47 FO C 080 B 128(0,12) 
Branch to GOTO code 
in TCA 

GOTO label variable statements are treated 
in different ways depending on whether 
optimization has been specified. 

For NOOPTIMIZE, they are all treated as 
GOTO out of block; for OPTIMIZE(TIME), a 
check is made to determine whether they 
could be out-of-block branches. The check 
is made by testing a label list, which is a 
list of the label constants to which the 
label variable may be assigned. If the 
programmer has supplied a label list, it is 
used. Otherwise, a list is generated 
containing all the label constants that are 
assigned to label variables. If a branch 
to any of the labels in the list could 
result in a GOTO out of block, all GOTO 
statements referring to the label variable 
are treated as GOTO out-of-block 
situations. Typical code would be: 

GOTO label-variable 

OOOODO 98 EF D OA8 

0000D4 47 FO 0 080 

GOTO Only On-units 

LM 14,15,168(13) 
Load R14 and R15 with 
label variable 
B 128 (0, 12) 
Branch to GOTO code 
in TCA 

On-units containing only a GOTO statement 

Chapter 2: Compiler output 27 



are not compiled as separate program 
blocks. Instead the ON control block 
(ONCB) normally used to-address~he-on­
unit, is specially flagged and, instead of 
containing the on-unit address, contains 
the offset within the associated DSA of a 
word which contains the address of a label 
variable or label temporary. This variable 
or temporary contains the address of the 
label constant to which control is to be 
transferred and the DSA associated with the 
label constant. 

Before an on-unit is entered, the error 
handling module, IBMOERR, inspects the ONCB 
and, for a GOTO only on-unit, transfers 
control by loading registers 14 and 15 with 
the label variable or temporary and passing 
control to the GOTO code in the TCA. 

IIf the test in the GOTO subroutine in 
IIBMDPIR indicates that an abnormal GOTO may 
loccur, control passes to the interpretive 
tGOTO subroutine. This routine is held as 
,another subroutine of the initialization 
Iroutine IBMOPIR, and is consequently always 
I link-edited. 

All the situations that can lead to 
abnormal GOTOs are handled by library 
routines. When these routines are entered 
they flag the TCA and their own OSA to 
indicate that an abnormal GOTO may occur. 

The interpretive GOTO subroutine chains 
back through the DSA's and when it finds 
the flagged OSA passes control to the 
associated module which does any necessary 
hOUfsekee-plng • 

.' Th~ spedial calses in which the 
interp~etive GOTO ,ubroutine is called are: 

GOTQ/out of a so~t E35 or E15 routine. 

GOTO out of an EVENT 'I/O on-unit. 

GOTO out of an on-unit which results in 
the termination of a COBOL or 
FORTRAN routine. 

These situations are covered more fully in 
the relevant sections of this publication 
(See index). 

The interpretive GOTO subroutine is 
described in ~OS_PL/I Resident Library 
Program Logic manual. 

28 

Argument and Parameter Lists 

In PL/I usage, a parameter list is a list 
of the items a program expects to be 
passed; an argument list is a list of the 
items that are passed by the calling 
routine. 

Between PL/I routines, addresses are 
always passed rather than the arguments 
themselves. For strings, structures, 
arrays, and areas, the addresses of 
locators are passed rather than the 
addresses of the arguments themselves. The 
format of locators and the reasons for 
their use are given in chapter 4. 

When arguments are passed to routines 
whose entry points are declared with the 
ASSEMBLER, COBOL, or FORTRAN attribute, the 
address of the data itself must be passed. 
The method used is described in chapter 13, 
"Interlanguage Communication." 

Arguments are passed in an argument list 
addressed by register 1. Normally the list 
is set up/in static storage. The addresses 
are loaded into consecutive registers and 
placed in the list by an STM instruction. 
If the procedure is reentrant or recursive, 
the list is moved into the temporary 
storage area of the DSA before the call is 
made. 

The addresses passed in the argument 
list are moved into the parameter storage 
area, which is held at the head of 
temporary storage and is addressed by 
register 4. (See figure 2.9.) Parameters 
are then accessed by picking up the 
addresses from this area. 

Dummy arguments, when they are required, 
are set up by the calling program. 
Consequently, the called program can treat 
all arguments in the same manner. 

LIBRARY CALLS 

Library calls are a feature of every object 
program. All library calls that appear in 
the object-program listing are to modules 
in the resident library. Transient library 
routines are called by bootstrap routines 
which are held in the resident library. 

The number of library calls used depends 
on the source program and the level of 
optimization specified. For OPTIMIZE 
(TIME), the minimum number of library calls 
will be made. If NOOPTIMIZE is specified, 
library calls will be made where this will 
speed compilation. The standard default is 
NOOPTIMIZE. 



r-----------------------------------------, 
I 
ILA 
I 
ILA 
I 
ILA 
I 
ISTM 
I 
IL 
I 

BALR 

1,40 (0,4) 

14,VO •• U(11) 

15,DED •• VO •• 
U (11) 
14,15,0(1) 

15,A •• IBMBSLOA 

14,15 

I 
Point R1 at argument I 
list I 
Load address of I 
argument in register I 
Load address of I 
argument in register 
Store into argument 
list 
Pick up address of 
routine from static 
internal control 
section and place in 
R15 
Branch and link to 
routine 

Example 1. Call to library routine that 
has been link-edited and whose address 
is held in the static internal control 
section. The arguments passed are 
addressed by register 1. 

fL 
I 

15,116(0,12) 

IBALR 14,15 
I 
I 

Load address of 
routine held in TCA 
Branch and link to 
routine 

, Example 2. Call to library routine 
, whose address is held in the TCA 
L-----------------------------------------~ 

Figure 2.10. Examples of library 
calling sequences 

Figure 2.11 shows examples of sequences 
used for calling library modules. The 
majority of library calls can easily be 
recognized by the appearance in the listing 
of the letters "IBM" followed by five 
letters specifying the module name and 
entry point. To call a module, its address 
is loaded into register 15, and a BALR 
instruction is carried out on registers 14 
and 15. 

The fifth letter of the entry point name 
is mnemonic of the type of module that is 
being called. Figure 2.12 gives the 
meaning of the mnemonics. Full details of 
the library modules are given in the 
program product publications DOS PL/I 
Transient Library: Program Logic and DOS 
RL/I Resident Library: Program Logic,. 

A further discussion of library module 
naming conventions is given chapter 3. 

Set!ing-Up Argument Lists 

Before a call is made to a library module, 

an argument list must normally be set up. 
This is done in one of several ways, 
depending on the library module. The 
majority of library calls require the 
method shown in figure 2.10, example 1. 
This consists of loading the list into 
sequential registers starting at register 
14, and then using a store-multiple 
instruction to place the arguments into an 
area of static storage, whose address is 
then loaded into register 1. Argument 
lists are set up as far as possible during 
compilation and, where necessary, completed 
during execution. 

Addressing the Subroutine 

Library addresses are normally held in 
static storage and addressed as an offset 
from register 3. However, the addresses of 
certain library routines are held in the 
TCA or the TCA appendage and addressed from 
register 12. They are addressed either 
directly or indirectly as shown in example 
2 of figure 2.10. The names of these 
routines do not appear on the listing; 
however, they can be identified by their 
offset from the start of the TCA (see 
figure 2.12). 

r-----------------------------------------, 
IBMBA--- Array handling 
IBMBB--- String handling 
IBMBC--- Conversion 
IBMBE--- Error handling 
IBMBI--- Interlanguage communication 
IBMBJ--- Date/time/delay/wait 
IBMBK--- Dump/sort/checkpoint/restart 
IBMBM--- Mathematical 
IBMBO--- Open/close 
IBMBR--- Record I/O 
IBMBS--- Stream I/O 
IBMBT--- Completion pseudovariable 

routine 
L-----------------------------------------~ 

Figure 2.11. Mnenomic letters in 
library module entry-point names 

Chapter 2: Compiler output 29 



DO-LOOPS 

Where possible, do-loops are carried out by 
means of a BXLE instruction, because this 

r-----------------------------------------, 
I Offset from 1 Name of I Use 
I start of TCA 1 module I 
I (Register 12) I entry I 
,---------------1 point 1 
IDecimal I Hex 1 1 

1 
72 I 48 IBMBPGRD Stack overflow 

I routine to 
I get VDA 

108 I 6C IBMBPGRA Get non-LIFO 
I dynamic 
1 storage 

112 I 70 IBI1BPGRB Free non-LIFO 
I dynamic 
I storage 

116 I 74 IBMBPGRC Stack overflow 
routine for 
prologue 

120 78 IBMBERRB Error handler 
software 
interrupt 

264 108 IBMBJWTA WAIT module 
268 10C IBMBTOCA Completion 

pseudovariable 
routine 

272 110 IBMBTOCB Event variablel 
assignment 1 
routine I 

L-----------------------------------------~ 

Figure 2.12. Offsets where addresses 
of library modules are held in the TCA 

is more efficient than using a simple BCT 
instruction. BXLE do-loops can be used 
where the control variable cannot be 
altered except at the head of the loop, and 
where it is not subsequently accessed after 
the completion of the loop. BXLE do-loops 
cannot be used for the outer of a number of 
nested do-loops. For outer loops, other 
branch instructions are used. Code for two 
of typical nested do-loops is shown below. 
Note that the code will differ according to 
the context of the loop. 

DO I = 1 to 10; 

DO J 1 to 10; 

END; 

30 

END; 

No!~: For the code to be compiled in the 
manner shown below, Jmust not be accessed 
during the loop, nor after the loop until a 
new value has been assigned. 

Q1Uect program 

LH 

STH 
CL.1 EQU 

LH 
AH 
STH 
C 

BNH 

5,596(0,3) 

5,1 

* 

5,I 
5,596(0,3) 
5,1 
5,598(0,3) 

CL.1 

2. £Qg~_ f oL!~r do-l.QQE 

LH 5,596 (0,3) 

LH 10,596 (0,3) 

LH 11,598 (0,3) 

CL.2 EQU * 

BXLE 5,10,CL.2 

pick up 1 from 
constants pool 

Place 1 in I 

Increment and 
store in I 
Compare I and 
constant 10 in 
static storage 

Place 1 in 
first operand 

Place 1 in 
second operand 
Place 10 in 
comparand 

Increment, 
test, and 
branch if 
necessary. 

COMPILER-GENERATED SUBROUTINES 

The compiler uses internal subroutines to 
carry out certain functions. These have 
the advantage over library modules, because 
they can be tailored for the most common 
case. When special cases arise, the 
library routines are called. Compiler­
generated subroutines have the further· 
advantage that they are internal to 
compiled code and consequently need not 
follow the standard operating system 
calling sequence. 



Compiler-generated subroutines are used 
for the following purposes. 

IELCGIA 

IELCGIB 

IELCGOA 

IELCGOB 

IELCGOC 

IELCGMV 
IELCGCL 

IELCGCB 
IELCGON 
IELCGRV 
IELCGBB 
IELCGBO 

Stream I/O input - provides 
address of source of next 
edit-directed data or format 
item 
Stream (edit) I/O input -
housekeeping after 
transmission of data item 
Stream I/O output - provides 
address of target of next 
edit-directed data or format 
item 
Stream I/O output - updates 
FCB, counts data item, and 
frees VDA if one was used 
Stream I/O - processes X 
format items 
Move long (registers 6,7,8,9) 
Compare long (registers 
1 ,6,7,8,9) 
Compare long bits 
Dynamic ONCB chaining 
Revert VDA chaining 
Test for '1' bits 
Test for '0' bits 

Compiler-generated subroutines are held in 
separate control sections and are printed 
at the head of the object-program listing 
if they are used in a program. 

Optimization and Its Effects 

Optimization is the attempt to produce the 
most efficient possible object program. 
The DOS PL/I Optimizing Compiler adopts a 
threefold approach: 

1. It attempts to compile each statement 
in the most efficient manner. 

2. It modifies the resulting code for 
each block, in an attempt to make it 
more efficient (for example, by 
maintaining values in registers and by 
using common control blocks for 
similar items). 

3. It examines the source program to 
discover whether statement flow can be 
reorganized to produce a more 
efficient program (for example, by 
moving code out of loops). 

The effect of specifying the compiler 
option OPTIMIZE (TIME) is that the compiler 
loads and calls the optimization phases, 
and executes optimization code in other 
phases. The optimization phases are 
described in the publication DOS PL/I 
Q~!imi~~Compiler: Program Logic. 

When NOOPTIMIZE is specified, the 

optimization phases are not called; no 
attempt is made to study the flow of the 
program, and the examination of compiled 
code for possible improvements is not 
undertaken on a global basis. More library 
calls will generally be made if NOOPTIMIZE 
is specified. 

EXAMPLES OF OPTIMIZED CODE 

A number of the more noticeable effects of 
optimization are shown below. These are 
code sequences which may prove difficult to 
understand without knowledge of the 
objectives of optimization. Where possible, 
the examples of code given are expansions 
of the examples shown in the language 
reference manual for this compiler. The 
examples do not attempt to cover all 
optimization carried out by the compiler. 

Elimination of Common ExpressiQn§ 

This is done by avoiding multiple 
calculations of the same expression, by 
holding the value either in temporary 
storage or in a register. In the examples 
shown below, the common expression is 
"B+C". In the first example, the value is 
held in a register. In the second, it is 
held in temporary storage, because the 
value to which it is first assigned is 
altered. In certain circumstances, the 
code could be compiled to move the value 
from the variable to which it was 
originally assigned to the second variable. 

~~~mple 1: Value held in registe~ 

Source program

2 A=B+C;

3 IF X<Y THEN X=Y;
4 D=B+C;

Obj~ct program

* STATEMENT NUMBER 2
000062 78 00 D OA4 LE O,B
000066 7A 00 D OA8 AE O,C
00006A 70 00 D OAO STE O,A

* STATEMENT NUMBER 3
00006E 78 60 D OlC LE 6,X
000072 79 60 D OBO CE 6,y
000076 47 BO 2 020 BNL CL.2
000071 78 60 D OBO LE 6,y
00007E 70 60 D OAC STE 6,X
000082 CL.2 EQU *

Chapter 2: Compiler output 31

* STATEMENT NUMBER 4

* CALCULATION OF COMftONED EXPRESSION
FOLLOWS

000082 70 00 D OB4 STE O,D

2
3
4

A=B+C;
IF X<Y THEN A=6;
D=B+C;

Note: A may be altered before subsequent
use of expression.

* STATEMENT NUMBER 2
000062 78 00 D OA4 LE O,B
000066 7A 00 D OA8 AE O,C
00006A 38 20 LER 2,0
00006C 70 20 D OAO STE 2,A

* STATEMENT NUMBER 3
000070 78 60 D OAC LE 6,x
000074 79 60 D OBO CE 6,1
000078 47 BO 2 024 BNL CL.2
00007C 78 20 3 010 LE 2,20 (0,3)
000080 70 20 D OAO STE 2,A
000084 CL.2 EQU *

* STATEMENT NUMBER 4

* CALCULATION OF COMMONED EXPRESSION
FOLLOWS

00008A 70 00 D OB4 STE O,D

When expressions cannot be altered inside a
section of code that may be executed a
number of times, the expression is moved
out of the loop ttr a position where it will
be executed only once, regardless of the
number of times that the loop is executed.
The process is known as movement of
invariant expressions. The most obvious
example is in do-loops. However, the
compiler analyzes the source program for
other types of loop and also moves code
from these.

Example 1 shows code moved from a do­
loop. Example 2 shows code moved from a
loop that has been detected by the
compiler. It should be noted that code
moved out of loops frequently involves
conversion and is not obvious in the source
program.

32

3
4
5
6
7

DO 1=1 TO N;
J=3 ;

A (I) =B (I) ;
END;
END;

* STATEMENT NUMBER 3
00005E 48 EO D OAA
000062 48 60 3 010
000066 40 60 D OA8
00006A 19 6E
00006C 47 20 2 036

LH 14, N
LH 6,16 (0,3)
STH 6,1
CR 6,14
BH CL.3

* INITIALIZATION CODE FOR OPTIMIZED LOOP
FOLLOWS

* CODE MOVED FROM STATEMENT NUMBER 4
000070 48 80 3 012 LH 8,18(0,3)
000074 40 80 D OAC STH 8,J

* CODE MOVED FROM STATEMENT NUMBER 5
000078 48 90 3 014 LH 9,20(0,3)
00007C 18 7E LR 7,14
00007E 8B 70 0 002 SLA 7,2

* CONTINUATION OF STATEMENT NUMBER 3
000082 18 59 LR 5,9
000084 18 B7 LR 11,7
000086 18 A9 LR 10,9
000088 CL.2 EQU *

* STATEMENT NUMBER 4

* STATEMENT NUMBER 5
000088 78 25 D OD4
00008C 70 25 D OAC

LE 2,VO •• B(5)
STE 2,VO •• A(5)

* STATEMENT NUMBER 6
000090 87 5A 2 02A
000094 CL.3

BXLE 5,10,CL.2
EQU *

2 L: IF X)Y THEN GOTO BED;
I*LOOP BEGINS*I

3 J=I-N;
4 X=X+J;
5 GO TO L; I*LOOP ENDS*I
6 BED: A=X;

* INITIALIZATION CODE FOR OPTIMIZED LOOP
FOLLOWS

* CODE MOVED FROM STATEMENT NUMBER 3
000066 48 EO D OAE LH 14,I
00006A 4B EO D OBO SH 14,N
00006E 50 EO 4 028 ST 14,40 (0,4)

* CONTINUATION OF STATEMENT NUMBER 1

* STATE~ENT NUMBER 2

* STATEMENT LABEL L
000072 78 00 D OAO LE O,X
000076 79 00 D OA4 CE O,Y
00007A 47 20 2 042 BH BED

* STATEMENT NUMBER 3

* CALCULATION OF COMMONED EXPRESSION
FOLLOWS

00007E 58 60 4 028
000082 40 60 D OAC

* STATEMENT NUMBER 4

* END OF COMMON CODE
000086 50 60 4 030
00008A 48 60 3 020
00008E 40 60 4 030
000092 97 80 4 032
000096 78 60 4 030
00009A 7B 60 3 020
00009E 3A 60
OOOOAO 70 60 D OAO

* STATEMENT NUMBER 5
0000A4 47 FO 2 OOC

* STATEMENT NUMBER 6

* STATEMENT LABEL BED
0000A8 70 00 D OA8

L
STH

ST
LH
STH
XI
LE
SE
AER
STE

B

6,40 (0,4)
6,J

6,48(0,4)
6,32 (0,3)
6,48 (0,4)
50(4) ,X'80'
6,48 (0,4)
6,32 (0,3)
6,0
6,X

L

STE O,A

If the source program contains statements
that can never be executed because they are
unconditionally branched around, these
statements will be ignored by the compiler.

In the example below, the statements
between 5 and 8 can never be reached.
Consequently, no code is compiled for these
statements, and a compiler diagnostic
message is issued to indicate that this is
the case.

5 GOTO LABEL;
6 IF A<B THEN

IF B<C THEN
IF A<X THEN

B=B*C;

7 ELSE C=B*C;
8 LABEL: X=X+1 ;

.QQE~!:Qqra!!

* STATEMENT NUMBER 5
00008A 47 FO 2 028 B LABEL

* STATEMENT NUMBER 8

* STATEMENT.LABEL LABEL
00008E 78 60 D OAC LE 6,X
000092 7A 60 3 018 AE 6,24

(0,3)
000096 70 60 D OAC STE 6,X

Compiler message reads:

"6,7 STATEMENT MAY NEVER BE EXECUTED.
STATEMENT IGNORED."

Si!!~ification of Expressions

Certain expressions are simplified for
speedier execution. For example,
multiplication is simplified to addition,
as in the following exam~le.

Example~ __ ~ultiplication into addition_

* STATEMENT NUMBER 2
000062 78 20 D OA4
000066 3A 22
000068 7A 20 D OA4
00006C 70 20 D OAO

LE 2,B
AER 2,2
AE 2,B
STE 2,X

Modification of DO-Loop Control
Va!:ia12le.§

When the do-loop control variable is used
for accessing array elements, it is
frequently modified to simplify addressing
of the array elements.

If, as in th~\example below, the
elements of the array are four bytes long,
it simplifies addressing to increment the
loop control variable by 4 rather than by
1. When this is done, the increment
becomes the distance betwe.en the start of
successive array elements. Provided that
the original value of the loop control
variable is the same as that of the first

Chapter 2: Compiler Output 33

2
3
4
5
6

DCL C(10) FLOAT DECIMAL (6);
DCL B(10) FLOAT DECIMAL (6);

DO 1=1 TO 10;
C (I) =B (I) ;
END;

bj~ct_.E!:ogram

* STATEMENT NUMBER 4
000066 48 60 3 010
00006A 40 60 D OAO

L H 6, 1 6 (0 , 3)
STH 6,1

* INITIALIZATION CODE FOR OPTIMIZED LOOP FOLLOWS

* CODE MOVED FROM STATEMENT NUMBER 5
00006E 48 EO 3 012 LH 14,18(0,3}
000072 48 90 3 014 LH 9,20(0,3)

* CONTINUATION OF STATEMENT
000076 18 B9 LR
000078 58 AO 3 012 L
00007C 18 5E LR
00007E CL.2 EQU

NUMBER 4
11,9
10,18(0,3)
5,14

*
* STATEMENT NUMBER 5
00007E 78 45 D OA4
000082 70 45 D OCC

LE 4,VO •• B(5)
STE 4,VO •• C(5}

* STATEMENT NUMBER 6
000086 87 5A 2 018 BXLE 5,10,CL.2

pick up 1 from static
Place in I

Load "4" into R14 from static
Load "40" into R9 from static

Load "40" into R11 for BXLE
Load "4" into R10
Load "4" into R5

pick up VO •• B+R5
Place in VO •• C+R5

Increment R5 by 4, test for end of
loop, and branch or continue

Figure 2.13. Code showing modification of do-loop control variable

2 IF (A=D) I (C=D) THEN
X=Y+Z;

OQ~ct program

* STATEMENT NUMBER 2
000062 78 00 D OAO LE O,A
000066 79 00 D OA4 CE O,D
00006A 47 80 2 018 BE CL.3
00006E 78 40 D OA8 LE 4,C
000072 79 40 D OA4 CE 4,D
000076 47 70 2 024 BNE CL.2
00007A CL.3 EQU * 00007A 78 60 D OBO LE 6,y
0OO07E 7A 60 D OB4 AE 6,Z
000082 70 60 D OAC STE 6,X
000086 CL.2 EQU *

Pick up A
Compare A and D
Branch if equal
pick up C
Compare C and D
Branch if not equal

X=Y+Z

Figure 2.14. Code showing branch around redundant expression

34

bound of the array, the loop control
variable in turn becomes the offset of the
element from the virtual origin of the
array.

If the loop control variable is altered,
this means that the increment and final
value must also be altered. Thus the loop
in the example below, instead of being
incremented from 1 to 10 by 1, is
incremented from 4 to 40 by 4. Note that
the value of the loop control variable is
set at the start of the loop but is not
incremented. If the value of the loop
variable is required after the loop has
been executed, this type of optimization
cannot take place.

In the example in figure 2.13, the
control variable is held in register 5
using a BILE instruction. The array
elements are addressed by using register 5
as the offset from the virtual origins of
arrays C and B. As register 5 starts the
loop with the value of 4 and is incremented
by 4 for each iteration of the loop, this
gives the correct address. Both arrays
begin 4 bytes from their virtual origins,
and each array element is 4 bytes long.

Brgn£hi~ Around Redundant Expressions

If a series of tests are to be made and
action taken if any of the tests proves
positive, the compiler takes the requisite
action as soon as the first positive test
is found.

In the example in figure 2.14, a test is
first made to see if A=D. If so, the value
of Y+Z is assigned to X without a further
test being made to see if C=D. Note that
the last test is for inequality, so that if
the variables are equal, control will
continue with the code that assigns the
value to X.

Rationalization of Program Branches

When the length of a program is greater
than 4096 bytes and, consequently, it
cannot be addressed from one base register,
an attempt is made to update the base at
the most efficient point, so that there
will be as few changes of program base as
possible during execution. The aim is to
avoid any program branches which move from
the scope of one base register to the scope
of another.

The program base register is register 2,
and this is updated when necessary. As
register 2 is required for in-line record
I/O and TRT instructions, the program base
is saved and restored after such use.

Use of Common constants and Control
~!Qcks

Constants and control information used more
than once are generated only once in static
storage. Thus for the statements X=768,
Y=768, the constant value 768 will be
picked up from the same address in both
cases. Similarly, compiler-generated
control information, such as DEDs and
descriptors (see chapter 4), are generated
only once if a number of variables require
identical control information.

The process of avoiding duplication is
known as £Q~oning. It should be noted
that constants may not be commoned if they
are not used in the same way. In the
following example, constant '123' is stored
in a different form for assignment, and
exponentiation.

Chapter 2: Compiler Output 35

2 X=123; I*COKMONED ITEK*I
3 Y=123*Z;
4 V=V**123;
5 A=123; I*COMMONED ITEM*I

Object prog!:D

* STATEMENT NUMBER 2
000066 78 00 3 020
00006A 70 00 D OAO

* STATEftENT NUMBER
00006E 78 20 D OA8
000012 6C 20 3 018
00001A 70 20 D OA4

* STATEMENT NUMBER
00007E 41 90 D OB4
000082 50 90 3 024
000086 50 90 D 02C
00008A 96 80 3 02C
00008E 41 10 3 024
000092 58 FO 3 OOC
000096 05 EF

3

4

* STATEMENT NUMBER 5
0000B8 78 20 3 020
OOOOBC 70 20 D OBO

LE 0,32(0,3)
STE O,X

LE
ME
STE

LA
ST
ST
01
LA
L
BALR

2,Z
2,24(0,3)
2,y

9,V
9,,36 (0,3)
9,44 (0,3)
44(3) ,X'80'
1,36(0,3)
15,A •• IBMBMXSA
14,15

LE 2,32(0,3)
STE 2,A

Figure 2.t5. Code showing use of common constant

36

This chapter explains the use of libraries
by the DOS PL/I optimizing Compiler. The
topics covered are: when and why library
routines are called, why there is both a
transient and a resident library, naming
conventions, and two implementation topics
that cover all library modules: the use of
library workspace and the use of weak
external references.

The DOS PL/I Optimizing Compiler is
designed to be used in conjunction with the
DOS PL/I Resident Library and the DOS PL/I
Transient Library. These libraries consist
of sets of standard subroutines that are
used for the majority of interfaces with
the system and for those jobs that can be
most efficiently done by the use of
interpretive subroutines. The main areas
where library modules are used are:
input/output, error handling, storage
management, conversions, mathematical
functions, and various string- and array­
handling operations.

Use of library routines simplifies
compilation by enabling the compiler to set
up an argument list and generate a call to
a subroutine, rather than compile the
complete code. However, library
subroutines are less efficient than
compiled code, since they must be
generalized routines, whereas compiled code
can be specially tailored to the particular
program being executed. Furthermore, a
library call involves the overhead of
saving and restoring registers, and may
require the setting-up of various
additional control blocks to describe the
data (see chapter 4). For these reasons,
programs that are optimized for time use as
few library calls as possible.

The majority of interfaces between
compiled code and the operating system are
implemented via library routines. This is
done mainly for reasons of implementation
convenience, as such interfaces are in this
way localized and minimized.

Resident and Transient Libraries

The DOS PL/I subroutine library is divided
into two separate program products: the
DOS PL/I Resident Library (Program Number
5736-LK4) and the DOS PL/I Transient
Library (Program Number 5736-LK5).
Resident library modules are link-edited
with the executable program phase.

Chapter 3: The PL/I Libraries

Transient library modules are loaded into
dynamic storage when they are required.
When they are no longer needed, the storage
is freed and may be overwritten. Resident
library routines have the advantage of
speed; transient library routines have the
advantage of saving space. By using both
types of library, it is possible to produce
more~fficient programs.

.'r

Routines in the transient library are:
input/output transmitters, open and close
modules, error message modules, and PLIDUKP
routines. All other library routines are
held in the resident library, including a
number of bootstrap routines that load and
call transient routines.

The DOS PL/I libraries reside in two
direct-access libraries. The resident
library is on the relocatable library and
the transient library on the core-image
library.

The internal logic of individual library
modules is described in the publications
DOLPL/I Resigent Lib~ll Pro!l!:n-1&gic
and DOS PL/I Transient Library: Program
1Qgi£. However, in such cases as I/O,
error handling, and conversion, where
compiled code and a hierarchy of library
modules are used in implementing certain
features of PL/I, the overall logic is
described in this publication. Similarly,
an overall explanation of storage
management and interlanguage communication
is given in this publication.

Naming Conventions

Kost PL/I library modules 'have names of
seven letters, the first three letters
being IBM. This identifies the module as
belonging to one of the PL/I libraries.
The remaining letters indicate which
particular library the module was written
for, and the use of the 'module.

Each resident library module has two
names, the control name (which uniquely
identifies the module) and the link-edit
name (which is used to link edit the module
to the appropriate data set. The link edit
name is the same as the name of the first
entry point). See figure 3.1. The use of
two names allows the compiler to call the
appropriate module regardless of the actual
module available on the system. For
example, there are two WAIT modules, one

Chapter 3: The PL/I Libraries 37

Identify modu Ie as part of a
PL/I library

Resident library modules

IBMBxyz followed by
A, B, C, etc. * *

D=specially written for DOS Mnemonic of module's
B=shared by other PL/I function
libraries
G=see text

ENTRY POINT NAME

I

LINK-EDIT NAME
Primary entry point name

Transient library modules

Control name followed by
A, B, C, etc.

* Conversion modules sometimes have only two mnemonic letters to identify the function,

and use two mnemonic letters to identify entry points:

** Certain IBMDxyz resident modules called only by other IBMDxyz modules, and not by
compiled code have entry point names IBMDxyzA etc.

Figure 3.1. Library module names

38

EXAMPLES

IBMDPIR
IBMBEOC
IBMGJWT
IBMDREF

IBMBPIRA
IBMDREFA

IBMBPIRA
IBMBEOCA
IBMBJWTA
IBMDREFA

IBMBCH

IBMCHXD

IBMDSTFA

for machine configurations that support the
WAITM macro instruction, and one for those
that do not. (The WAITM macro instruction
allows waits on multiple events.) These
modules have different control names.
Machine configurations that support the
WAITM instruction will normally have the
module with the control name IBMDJWT in
their resident library. Machine -
configurations that do not support the
WAITM macro instruction will have the
module with the control name IBMGJWT. Both
modules have the link-edit name,-IBM~JWTA.
The compiler can therefore generate
appropriate ESD references without knowing
which module is available on the system.
(~Q1~: Underlinings are not part of the
name.) Link-edit names, and all entry point
names called from compiled code, have the
fourth letter "B".

Resident library module entry points
that can be called from compiled code have
names in which the fourth letter is "B",
regardless of the control name. An
additional letter or letters are used to
make up the name to 8 letters. Normally
the primary entry point is "A" (IBMBJWTA)
the second entry point "B" etc. Transient
library modules and certain resident
library modules not called directly by
compiled code have entry point names
consisting of the control name plus an
additional letter.

Library Workspace

For certain library routines, DSA (dynamic
storage areas) are not acquired in the same
way as they are for source program
subroutines. Instead of the storage being
acquired from the LIFO stack, space is
allocated, in the program management area,
for two pre-formatted DSAs. These DSAs are
known as levels of library workspace.
Their format can be seen in figure 3.2.
Library workspace (LiS), provides a fast
method for library routines to obtain DSAs.
All the library routines have to do is to
address the DSA and set the chainback
field. There is no need to test to see if
there is enough space for the DSA, and the
NAB pointer does not have to be reset,
because the next available byte is not
changed.

The PL/I libraries have been so designed
that two levels of library workspace are
the maximum required. This does not mean,
however, that more than two modules are
never called. Some library modules - for
example, the error handler - use DSAs in
the LIFO stack for working storage.

FORMAT OF LIBRARY WORKSPACE

Library workspace is designed so that
either level can be treated by the
housekeeping routines in the same way as a
DSA. Chainback fields to the calling
block's save areas are held in the head of
library workspace and, where more than one
level of library workspace is used, a
chainback field is set up to the previous
level. Figure 3.2 illustrates the method
of chaining employed.

ALLOCATION OF LIBRARY WORKSPACE

Library workspace is originally allocated
within the program management area by the
initialization routine IBMDPII. However,
whenever an interrupt occurs and an on-unit
is to be entered, a further two levels are
allocated. This allows library modules to
be called within an on-unit, without
overwriting library workspace which may
have been in use at the time of interrupt.

Attached to each allocation of library
workspace, including the initial allocation
in the program management area, is an ON
communications area (ONCA). This is a
control block used in error handling to
hold condition built-in function values.
ONCAs are described fully in chapter 7.

Library Modules and Weak External
References

Because of the modular structure of the
library, a group of modules is frequently
used to carry out some particular task.
Conversions, for example, are normally done
by using a series of modules, and the same
is true of many of the mathematical built­
in functions. For this reason, many
library modules contain a number of
external references to modules which may
not be needed in a particular program. An
example of this is shown in figure 3.3. To
prevent unnecessary modules being link­
edited, "weak external references" (WXTRNs)
are used. WXTRNs are a special type of
external reference designed to cater for
this situation.

Those entry points that are called only
optionally are coded as VXTRNs. This
prevents the linkage editor from loading
these modules unless a separate external
reference is made to them by the compiler.
Thus the executable program phase does not
contain modules that it never uses.

Chapter 3: The PL/I Libraries 39

..

I Flags Offset to ONCA

Chain back field (to last DSA)

Standard save area

1st level

Address of next library workspace

Current NAB

Workspace for library modules

..
r

I Flags Offset to ONCA

Chain back field

Standard save area

2nd level
Address of this level of LWS
(used only when addressing the ONCA)

Current NAB

Workspace for library modules

Current ONCA

~

Figure 3.2~ Library workspace

40

IBMBSFI

F-format input
~

conversion director. " Contains WXTRNs for:
IBMBCCSA, IBMBCTHO,
etc.

~

I
I
I

Figure 3.3. Example of use of IITRNs

Figure 3.3 shows part of a hierarchy of
modules with alternative paths through
them. When such a hierarchy exists, the
actual path to be taken through the modules
will be known to the compiler, and external
references will be made to all the required
modules whose names are coded as WXTRNs.
The effect of this is that the linkage
editor loads only these modules.

IBMBCCS

Special string conversion
module. Contains WXTRNs for:
IBMBCCAA, IBMBCACA, etc.

IBMBCTH

E- or F-format-to-arithmetic
conversion module. Contains
WXTRNsfor:
IBMBCEZX, IBMBCHZO, etc.

Chapter 3: The PL/I Libraries 41

Chapter 4: Communication Between Routines

PL/I allows the programmer the choice of a
large number of data attributes. Normally
there is no need for explicit attribute
information to be retained until execution,
because the methods used to handle the data
can be resolved during compilation.
However, there are certain situations where
this cannot be done. For example, the
attributes of the data may not be fully
known at compile time, because of
adjustable bounds or lengths, or the data
may be passed to another PL/I program or
PL/I library subroutine. When these
situations arise, it is necessary to retain
some or all of the data attributes in an
explicit form throughout execution.

The names of variables fall into a
similar category. Normally, they need not
be explicitly known during execution.
However, for data-directed input/output and
the CHECK condition, the names of the
variables need to be known so that they can
be associated with the correct values.

When such information must be retained
until execution, special control blocks are
set up for the purpose. These control
blocks are described in this chapter. The
following control blocks are used.

Qg§£~iEtQ£§: These hold the extent of the
data item (i.e., string lengths, array
bounds, and area sizes).

Locators: These hold the address of a data
item and are either concatenated with the
descriptor, or hold the address of the
descriptor.

DescriEtor DescriEtors: These hold the
logical structure levels, dimensions, and
lengths, of all elements within a
structure.

Data Element DescriEtors~§l: These
hold the attributes of a variable required
for data manipulation, except for extents,
which are held in descriptors.

Symbol Tables: These hold the names of the
variables and associate them with the
appropriate storage locations during
execution.

~mbol Table Vector: This associates
symbol tables with the block in which they
are known.

An example of the way in which data is
related to its locators, descriptors, and
DEDs is given in figure 4.1.

The following terms are used in this
chapter.

Virtual origin (VO)

Actual origin (AO)

Relative virtual
origin (RVO)

Structure element

Base element

The address where the
element of an array
whose subscripts are
all zero is held or, if
such an element does
not appear in the
array, where it would
be held.

The byte address of the
first item in the array
or structure.

Byte actual origin
minus virtual origin.

A minor or major
structure that contains
a number of base
elements.

A data element or array
within a structure.

DESCRIPTORS AND LOCATORS

Descriptors are generated when adjustable
extents are involved, or when an item is to
be passed as an argument and the associated
parameter is the type that can be declared
with an asterisk among its attributes. For
example, DCL X CHAR (N); or DCL X CHAR (*);
would both result in the generation of a
descriptor. In the first case, code for the
SUBSTR built-in function would have to be
interpretive if STRINGSIZE were enabled.
The appropriate library module would be
called, and it would make use of the
descriptor to discover the length of the
string. This length would h.ave been placed
in the descriptor by the prologue code of
the block in which the string was declared.
In the second case, where the length of the
string is signified with an asterisk, the
program that is passed the string will
expect to receive the length of the string
in a descriptor.

Data items that can be declared with an
adjustable value or an asterisk are:
string lengths, array bounds, and area
sizes. Descriptors are, therefore, needed
for strings, arrays, and areas. They are

Chapter 4: Communication Between Routines 43

PL/1 Statement

DCl TABLE (10)

FLOAT DECIMAL (6);

Storage

TABLE (0)

TABLE (1)

TABLE (9)

TABLE (10)

Address of TABLE

Address of descriptor

* RVO=4

Multiplier=4

Upperbound-10 lowerbou nd= 1

*RVO (Relative virtual origin) is the offset of the actual
origin of the array from the virtual origin (the position that
element TABLE (0) would hold if it existed)

Figure 4.1. Example of descriptors, locators and DEDs for an array

44

Virtual origin

Array TABLE (10)-

DED

Aggregate locator

Array descriptor

r---,
, Name of control block , Conditions under which ~t is ,Location
, I generated I (control section)

Data element descriptor (DED) When conversion or stream I/O librarYIStatic internal
modules are called. I

I
Array descriptor When an array has adjustable bounds ,Static internal

or may be passed to a library ,
subroutine or other PL/I routine. I

I
Aggregate locator When structure or array descriptor islStatic internal

generated. I
I

Area locator/descriptor When an area is declared with an IStatic internal
adjustable size or may be passed as I
an argument. ,

I
string locator/descriptor When a string is declared with an Static internal

adjustable length or is passed as an
argument.

Structure descriptor When a structure is declared with
adjustable elements or is passed as
an argument.

Static internal

Aggregate descriptor
descriptor

When a structure contains elements
declared with adjustable bounds.

Static internal

Symbol table When an item may appear in
data-directed I/O or in a
CHECK list

Static internal
for internal
items. Separate
CSECT for
external items.

Symbol table vector When GET DATA or PUT DATA is used
without a data list, or when SIGNAL
CHECK ~s used without a data list.

Static internal

L---J
Figure 4.2. Descriptors, locators, and symbol tables: when generated, where held

also needed for structures, because
structures can contain strings, arrays or
areas.

In order to connect the data with its
descriptor, a further control block is
generated. This is the locator. The
locator addresses both the descriptor and
the variable. For strings and areas, the
locator is concatenated with the descriptor
and contains only the address of the
variable. For structures and arrays, the
locator is a separate control block and
holds the address of both the variable and
the descriptor. Called routines are
normally passed the addresses of locators,
rather than the addresses of arguments when
arguments requiring descriptors are passed.

When the descriptor and locator are not
concatenated, it is possible to use the
same descriptor for a number of different
data items, provided that these items have
the same attributes. This process is known
as "commoning" and is used to conserve

space. Where possible, the compiler
commons structure and array descriptors and
aggregate descriptor descriptors.

Descriptors and locators are always held
in the static internal control section,
regardless of the attributes of the data
that they describe.,

The following types of descriptor ahd
locator are generated. Figure 4~2
summarizes the conditions under which they
are generated and gives their storage
locations. In the main, they are set up
during compilation and completed during
execution, if necessary.

String LocatorLDes£ripto£

The string locator/descriptor holds the
byte address of the string, information on
whether or not it is a varying string, and

Chapter 4: Communication Between Routines 45

the maximum length of the string. For a
bit string, the bit offset from the byte
address is held. (See figure 4.3.)

The area locator/descriptor holds the
address of the start of the area and the
length of the area. (See figure 4.4.)

The agqregate locator holds the address of
the start of the array or structure and the
address of the array descriptor or
structure descriptor. (See figure 4.5.)

The array descriptor holds:

1. The relative virtual origin (RVO) of
the array. This is the offset of the
start of the first element in an array
(actual origin) from the virtual
origin. The virtual origin (VO) is the
point at which elem~nt (0) would be
held in a one-dimensional array,
element (0,0) would be held in a two­
dimensional array, etc. In a one­
dimensional array, the address of any
particular element can be discovered
by multiplying together the subscript
and the multiplier (see below) and
adding the result to the virtual
origin of the array. An extension of
this method is used for multi­
dimensional arrays, the formula being:

Address of element (S~,S2, ••• ,Sn)

= VO+ (Ii *S)

where S is the subscript number, and
Ii the multiplier, of the ith
dimension~ and VO is the virtual
oriqin.

2. The high and low bounds for the
subscripts in each dimension.

3. The multiplier for each dimension.

46

The multiplier is the distance between
the start of one element and the start
of the next element in the same

dimension. For example in the array
declared A(2,2), the multiplier for
the first dimension is the distance
between the start of element A(1,1)
and the start of element A(1,2).

When the array is an array of strings or
areas the string or area descriptor is
concatenated with the end of the array
descriptor to provide the necessary
additional information. Array descriptors
are commoned where possible. That is, one
descriptor is used for a number of similar
arrays. (See figure 4. 6.)

Structure Descrip!Q~

This consists of a series of fullwords,
giving the byte offset of the start of each
base element from the start of the
structure. If a base element has a
descriptor, the descriptor is included in
the structure descriptor, following the
appropriate fullword offset. Where a bit
offset is involved, this will be held in
the descriptor for the bit string, or in
the relative virtual origin if the item is
a bit string array.

A structure must be mapped during
execution if any of the elements in the
structure have adjustable bounds or
extents, or if the REFER option is used.
Where possible, structure descriptors are
commoned. That is, one descriptor is used
for a number of similar structures. If a
structure or an array of structures
contains elements with adjustable extents,
the structure descriptor is not set up
during compilation. Instead, it is set up
during execution from information held in
the aggregate descriptor descriptor. (See
below for information on arrays of
structures and structures of arrays.)

!gg~~ate Descriptor DescriptQ!:

When a structure cannot be mapped during
compilation, more information than is held
in the structure descriptor is needed for
it to be mapped during execution. This
information is held in a control block
knov~ as an aggregate descriptor
descriptor.

The information held in an aggregate
descriptor descriptor is the dimensionality
and logical level of all the structure

o 2 3 4

Byte address of string

Length I, I Unused I Bit o~fset

/
For varying strings, the maximum

I
O=fixed length For b~ strings only

length is held 1=varying length

Pigure 4.3. string locator/descriptor (SLD)

o 2 3 4

Address of first byte of area

Allocated length of area (in bytes)

Figure 4.4. Area locator/descriptor (ALD)

o 2 3 4

Byte address of first byte of aggregate

Address of array or structure descriptor

Figure 4.5. Aggregate locator (AL)

o 2 3 4

RVO (Relative virtual origin)

Ml (multiplier)

U1 (upperbound) I Ll (lowerbound)

Notes: 1. For unaligned bit strings, RVO and multiplier are bit values.

2. For strings and areas, the area or string descriptor is concatenated

to the end of the array descri ptor.

Pigure 4.6. Array descriptor (AD)

}

Multiplier and bounds
for 1st dimension

Multiplier and bounds
for nth dimension

Chapter 4: Communication Between Routines 47

o 2 3 4

Structure

I t Offset of entry for containing structure from
Offset (fullwords) start of ADD (all ones for a major structure)

~------------------------~

O=structure

1 =base element
O=not bit string
1=bit string

/
~~~~-- ------------.,-------------~--~,~-------------, 

Level Dimension 
~~~~ __ ___________ .~ ____________ ~ .. ~.~~~-------------J 

. / ~area
1=last element ~ O=not area

O=not last element ~

Alignment Length (bytes)

/
O=bit

7=byte

15=halfword

Base element

31 =fu Ilword
63=doubleword

\
All zero for areas and strings

There is a ful/word entry in the ADD for each structure (major and minor) and each base element.

Figure 4.7. Aggregate descriptor descriptor (ADD)

elements, and the diaensionality, logical
level, and alignment requirements, of all
base elements, plus the length of those
base elements that do not have their length
held in descriptors. (Str~ngs and ar$as,
and arrays of strings and areas, have their
lengths in descriptors.) The length held
for an array is the length of an array
element. The total length of the array can
be calculated by using the information in
the array descriptor.

The aggregate descriptor descriptor is
set up in static internal storage and is
set up completely during compilation. The
format is shown in figure 4.7. An example
showing the method used to map a structure
that contains an element with an adjustable
extent is shown in figure .4.8.

48

Where possible, aggregate descriptor
descriptors are commoned.

Arrays of structures and structures of
Arrays

Where necessary, an aggregate locator, a
structure descriptor, and an aggregate
descriptor descriptor are generated for
both arrays of structures and structures of
arrays.

The structure descriptor for both an
array of structures and a structure of
arrays has the same format. The difference
is in the values in the fields of the array

..

1

DURING COMPILATION

Space for structure descriptor allocated in static
storage.

2 ~:~~~~d:':!:~:~~~~:~~:~e~:~C:~~: and

3 Aggregate locator allocated, and address of
structure descriptor. place in second word.
Code is generated within the prologue of the
block in which the structure is declared to call
structure mapping routine, IBMBAMM, to
acquire a VOA, and to complete the aggregate
locator.

THE RESULT

DURING EXECUTION

4 Prologue code olaces value of N(1 byte) in
the string descriptor for 0 in structure
descriptor.

5 I BMBAMM is called to map the structure,
using the information in the ADD and the
SO (which contains the length of element
D). 0 is aligned with E, then B is aligned
with DE. (The rules for structure mapping
are given in the language reference manual
for this compiler.) The re~lts of the
mapping are placed in the structure
descriptor.

6 IBMBAMM returns the length of the
structure to compiled code, which acquires
a VOA for the structure and places the
address of the structure in the aggregate
locator.

Every member of the structure can be addressed by.
means of the address in the aggregate locator and
the offsets within the structure descriptor. When bit
offsets are involved, they are contained within the
appropriate descriptor in the structure descriptor.

DURING COMPILATION DURING EXECUTION

SO 1 so 5

Space for offset of B Zero

Space for offset of 0 X'7'

Space for descriptor of 0 4 1 byte I 0 I unused

Space for offset of E X'S'

ADD 2 ADD

01 All ones Level 1 00 Zero

10 X'31' X'4' Level 2 00 Zero
ADD is unchanged during execution.

00 Zero level 2 00 Zero

10 X'7' Zero Level 3 00 Zero For meaning o(entries, _ Figure 4-7.

11 X'31' X'4' Level 3 00 Zero

Al 3 Al 6
Space for address of structure Address of structure

- Address of structure descriptor Address of structure descriptor

Declaration
DCl1 A,

2 B FLOAT,
2 C,

3 0 CHAR(N),
3 E FLOAT;

VDA for structure 6

o

Figure 4.8. Example of handling structure containing adjustable extent

Chapter 4: Communication Between Routines 49

AR.B

AR.C

Array of structures

Del 1 AR(10),
2 B,
2 C;

Structure descriptor for AR

Offset = 0

RVO = 4

Multiplier = 8

Upperbound = 10 I lowerbound

Offset = 4

RVO = 4

Multiplier = 8

Upperbound = 10 I lowerbound

= 1

= 1

ST.B

ST.C

Structure of Arrays

DCl 1 ST,
2 B(10),
2 C(10};

Structure descriptor for ST

Offset = 0

RVO = 4

Multiplier = 4

Upperbound = 10 I lowerbound

Offset = 40

RVO = 4

Multiplier = 4

Upperbound = 10 I lowerbound

= 1

= 1

Figure 4.9. Structure descriptors for arrays of structures and structures of arrays

descriptors within the structure
descriptor. Take for example the array of
structures AR and the structure of arrays
ST, declared below.

DCL 1 AR(10),
2 B,
2 C;

DCL 1 ST,
2 B(10),
2C(10);

The structure descriptor for both AR and
ST would contain an offset field for both B
and C and'an array descriptor for both B
and C. (See figure 4.9.) However, the
values in the descriptors would differ,
because the array of structures AR would
consist of elements held in the order
B,C,B,C, etc., and the elements in the
structure of arrays ST would be held in the
order
B,B,B,B,B,B,B,B,B,B,C,C,C,C,C,C,C,C,C,C.

50

DATA ELEMENT DESCRIPTORS

When data is passed to the PL/I library
routines, a complete description of the
data is frequently required, and something
more than a descriptor is therefore needed.
Conversion routines, for example, need to
know the complete attributes of the data.
To hold such information, data element
descriptors (DEDs) are generated. (Control
blocks known as DEDs are also used by the
compiler. These are compi!~tim~_Q~Q2 and
have a different format from those that are
used during execution. Compile-time DEDs
never appear in the executable program.)
For stream I/O, DEDs are generated to
describe the format of the input or output.
These DEDs are known as format element
descriptors (FEDs).

DEDs are produced for all types of
variable or temporary that are passed to
the library for conversion or stream
input/output. The length and format of the
DED is dictated by the data type of the
item. DEDs are shown in detail in appendix
B.

DEDs are always held in static internal
storage. They are used only to pass
information to library routines.

There are five types of DEDs:
arithmetic DEDs, arithmetic pictured DEDs,
string DEDs, pictured string DEDs, and
FEDs.

Ari!h~~!i£_pictu~~d D~Ds: (always decimal)
are 8 bytes plus picture specification,
which consists of at least one byte for
every character in the pictured string.
Maximum length for pictured arithmetic DEDs
is 264 bytes.

~!~igg_DEDs: are 4 bytes long.

Pi£!y£~g_§tri~~~]§: (always character
string) are six bytes plus the picture
specification, which consists of one byte
for every character in the picture string.
The maximum length for pictured character
DEDs is 261 bytes.

!~]~~Y!LQ~tpu1-]l]§l: fall into five
classes

1. A,B, and control format FEDs have four
bytes.

2. E and F format FEDs are six bytes
long.

3. Pictured arithmetic FEDs consist of
four bytes followed by the pictured
arithmetic DED.

4. Pictured character string FEDs consist
of four bytes followed by the pictured
character string DED.

5. C format FEDs are four bytes plus the
two constituent FEDs that make up the
complex item. They are used for
complex data.

The first two bytes of any DED are the
look-up byte and the flag byte. Taken
together, they define the data type and
permit a receiving routine to determine if
it needs to look further into the DED for
more information. The general format of
DEDs is shown in figure 4.10. Full details
are given in appendix B.

SYMBOL TABLES AND SYMBOL TABLE VECTORS

Data-directed I/O statements, and the CHECK
condition, require the names of variables
to be available throughout execution~
Normally, such names are not used after
compilation. When required during
execution, these names are held in control

blocks known as symbol tables or,
sometimes, symtabs. Symbol tables hold the
name of the variable, its address, and the
address of its DED plus certain other
information (see appendix B).

PUT DATA and GET DATA statements without
a data list, and SIGNAL CHECK statements
when there is no check list, imply that the
names of all variables known at that point
in the program must be available. This
information is held in a further control
block known as the symbol table vector.
The symbol table vector holds the addresses
of symbol tables arranged in order of
program blocks, commencing with the main
procedure block. The symbol table vector
consists of a series of fullword fields.
These fields contain either the address of
a symbol table, a fullword of zeros, or a
further address within the symbol table
vector. The end of entries for symbol
tables, for variables declared.in each
block, is followed by a fullword of zeros,
which in turn is followed by the address in
the symbol table vector where entries for
the encompassing block begin. If there is
no encompassing block, another word of
zeros is used.

Figure 4.11 shows the relationship
between variables, symbol tables, and the
symbol table vector.

Data-directed I/O modules, and the CHECK
module, use symbol tables and symbol table
vectors in the following ways.

gUT_~Al1-1AL~~ GET DATA-1ALB,C), SIGNAL
£MEC!-1A~L£l: In all these cases, th~
addresses of the symbol tables for A, B,
and C are passed to the appropriate library
module.

GET DATA, PUT_DATA, SIGNAL CH~CK: When no
data or check list is included in the
statement, the library is passed the
address of the start of the associated
block entries for the symbol table vector.
By following the symbol table vector, it is
possible to access the names of all the
variables known in the block.

The contents of symbol tables vary
according to the storage class of the
variable. The method used for holding the
address, and other information, is given in
appendix B. For internal variables, symbol
tables are held in static internal storage.
For external variables, symbol tables are
held as separate control sections in static
external storage. The name of each control
section is the name of the associated
variable followed by an *. Thus the
control section for the external variable B
would be B*. Such a control section would
also contain the DED of the variable (or
DEDs if the variable was a structure).

Chapter 4: Communication Between Routines 51

String DED

Look-up byte Flag byte Not used

Arithmetic DED

Look-up byte Flag byte Precision Scale

Pictured string DED

I

Look-up byte Flag byte Length of string

Length of string without/insertion characters Translation of picture

specification into internal format (one byte per character)

~

Pictured arithmetic D ED

Look-up byte Flag byte Precision Scale

Length of picture Length of data Mantissa byte Exponent byte

Translation of picture specification into internal format (at least one byte per character)

/
For details of look-up byte and flag byte conventions, see appendix B.

Figure 4.10. Format of DEDs

52

Vector for
main procedure

Vector for
subroutine 1

Vector for
subroutine 2

..
I"

PROGRAM BLOCK STRUCTURE

Main procedure

Del A, B, C;

~utine1
~X'Y'A;

~utine2
~X,Y;

Symbol table vector

A

B

C

00000 a

00000 a

x

Y

A

00000 a

Symbol tables for:

.. .. A in main procedure

.. B in main procedure ..

... C in main procedure ..

-.
X in subroutine 1 ...

..
Y in subroutine 1 ...

..
A in subroutine 1 ...

~""Pointer

L-

X ... X in subroutine 2 ..
Y ~ Y in subroutine 2 ..
00000 a

,... Pointer

The symbol table vector is built up on a block by block basis, the last entry for each block being a word of
zeros followed by a pointer to the first entry for the encompassing block. This mechanism allows for
multiple declarations of names.

Figure 4.11. Symbol tables and symbol table vectors

Chapter 4: Communication Between Routines 53

Chapter 5: Object Program Initialization

Before the output from the compiler can be
executed as an executable program phase, it
must be link-edited, and the PL/I
environment must be set up. This chapter
briefly describes the effects of link­
editing, the manner in which the program is
entered, and the initialization process
that sets up the PL/I environment.

Link-Editing

The logic and effects of the linkage editor
program are described in the publication
IJ2~.2Y.§temL360 DOS:_Introduction ~st~U!l
~ontrol P~oqr~m.§. This chapter describes
the effects of link-editing on the PL/I
program. The linkage editor combines the
various control sections generated by the
compiler and resolves addresses within
these control sections. The linkage editor
also incorporates into the executable
program phase all library modules that are
called from compiled code, and a number of
other library modules that are required
either because they in turn are called by
the library modules called by compiled
code, or because they are needed for
program management. The most important of
the modules used in program management are
the error-handling module, IBMDERR, and the
storage management module, IBMDPGR. An
external reference to both of these modules
is contained in the PL/I initialization
routine, IBMDPIR. An external reference to
IBMDPIR·is included in the control section
PLISTART which is generated by every
compilation and nominated as its entry
point. PLISTART contains an external
reference to the control section PLIMAIN
(which holds the address of the start of
the main procedure).

One of the features of the linkage
editor is that it does not accept more than
one control section with the same name; the
second use of the name is ignored. As a
result of this, only one PLISTART and one
PLIMAIN is generated for each executable
program phase. This allows two or more
PL/I main procedures to be link-edited
together. The procedure that receives
control will be the first that is passed to
the linkage editor, because it will be the
PLISTART and PLIMAIN of this procedure that
are included in the executable program
phase. This feature is also used to handle
data declared EXTERNAL. Control sections
for each such data item are generated by
all programs in which the data is declared.

Only one of these is resolved.

The PLIMAIN control section is not
generated by the compiler if the PL/I
source program does not contain the MAIN
option. Instead, a control section named
PLIMAIN is included in the initialization
module IBMDPIR. This control section
contains the address of code that calls the
module IBMDPEP, which puts out a message
saying there is no main procedure and then
terminates the program.

Program Initialization

Code is compiled by the PL/I Optimizing
Compiler on the assumption that various
control blocks will be set up and that
certain registers will point to them when
the program is entered. This arrangement
of control blocks and registers is known as
the PL/I environment.

The most important factors affecting the
PL/I environment are the following:

1. A dynamic storage area (DSA) should
exist before compiled code is entered.
This will give the address of the area
available for the first compiled code
DSA and will act as a save area for
the calling routine's registers.

2. A task communications area (TCA)
should exist. The TCA acts as a
central communications area for the
program, holding addresses of various
storage- and error-handling routines,
and control blocks. The TCA also
contains a number of flags and other
fields.

3. Program checks should- be passed to the
PL/I error-handling module IBMDERR.

4. Pre-formatted DSAs should exist for
certain libra~y routines. These pre­
formatted DSAs are known as library
workspace (LWS).

5. A space should be available for any
condition built-in function values
(ONCHAR, ONSOURCE, etc.) should a
PL/I interrupt occur. This space is
known as an ON communications area
(ONCA). As the condition built-in
functions have default values, an area
to hold the default values is
required. This is known as the dummy

Chapter 5: Object Program Initialization 55

PLISTART Initialization routines Prologue code

Receives control from Set up TeA, initialize storage and Acquires DSA for main
system issue STXIT to initialize PL/I error- procedure, initializes

Passes control to handling scheme. Pass control to ... control blocks, etc.

initialization/
... the address in PLiMAIN

Stores registers of ~
termination routine, initialization/
IBMDPIR. termination routine,

IBMDPIR.

~

"""

Functional code Epilogue code Termination routine

Carries out function required Restores the registers of

"-
in source program. This the initialization/ Closes any files still open and
usually involves calls to .. termination routine. returns control to system with EOJ
library subroutines.

Figure 5.1. Flow of control during execution

ONCA.

6. Register 12 should point at the TCA,
and register 13 should point to the
DSA.

The resident program initialization
routine IBMDPIR, and the transient routine
IBMDPII, which it calls, set up the various
control blocks involved immediately
following the executable program phase in
an area known as the .Qroqram mana.9~.:t
~. The contents of the program
management area are described later in this
chapter.

Two similar initialization procedures
are available for initializing the PL/I
environment when a PL/I procedure is called
from assembler language. These modules are
IBMDPJR which is resident and carries out
the same functions as IBMDPIB, and IBMDPJI
which is transient and carries out the same
functions as IBKDPII. The use of these
modules prevents the normal PL/I program
having an overhead of redundant code .•

The advantage of having program

56

... macro instruction, or returns
control to caller.

initialization routines is that it obviates
the need for special code in the prologue
of main procedures and allows two
procedures with the MAIN option to be used
in one program. As shown in figure 5.1, the
initialization routine IBMDPIR is re­
entered after the execution of compiled
code. Again, this is done automatically by
standard epilogue code. This is because
the registers of IBMDPIR have been stored
by the prologue code and are restored by
the epilogue code. The functions of
IBMDPIR and IBMDPII are explained below.

INITIALIZATION AND TERMINATION ROUTINES

When called from the control program,
IBMDPIR established the initial storage
area (ISA) in that part of the partition
that is not taken up by the executable
program phase. It then calls the transient
routine IBMDPII which sets up the program
management area and issues a STXIT macro
instruction so that program checks viII be
passed to the error handler. Control is

R1

TCA
Task communications area.
See text and appendix B

TCA Appendage
See text and appendix B

Dummy ONCA (ON communications area)
Holds default values for condition built­
in functions

TRT Table
Translate-and-test table for I BMDE R R, used
in error handling to test for relevant
on-cells

Diagnostic File Block
Contains information relating to the use
of SYSPR I NT for the transmission of
diagnostic messages

Save area for IBMDPGR
Used by storage management routines when
new segment of storage is required

Dummy DSA (Dynamic storage area)
Contains DSA for initialization routine,
backchain to calling routine's save area
(if any), pointer to start of major free
area (NAB), etc.

LWS (Library workspace)
Two preformatted DSAs for use by certain
library routines

ONCA
Space in which condition built-in function
values are placed after an interrupt.
Backchain points to dummy ONCA

Caller's STXIT options
Save area for caller's STXIT program check
options

Figure 5.2. Program management area

then returned to IBMDPIR which passes
control to the procedure whose address is
held in the control section PLIMAIN.
Before passing control, register 13 is
pointed to the dummy DSA and register 12 to
the TCA. The dummy DSA will be used by
com~'iled code to sotre IBMDPI~' s registers.

On return frcm compiled code, IBMDPIR
raises the FINISH condition by calling the
error handler IBMDERR. After handling the
FINISH condition, IEMDERR branches to the
GOTO code in the TCA to terminate the
program. This is standard system action
for the FINISH condition and for normal
return from an ON FINISH on-unit. The GOTO
code is given the address of the dummy DSA
as the target DSA address. The abnormal
GOTO out of block routine is thus enetered.
This routine checks to see if any files are
open and closes any that are. Any exit DSA
processing (for example termination of
SORT) is handled during this routine.
Finally a test is made to discover whether
IBMDPIR was called from the control
program. If so, a test is made to discover
whether the termination is the result of an
ERROR condition. It the termination is
caused by an ERROR condition, a CANCEL
macro instruction is issued to ensure the
flushing of any SYSIPT data. If the
termination is not caused by an error
condition, an EOJ macro instruction is
issued to return to the control program.
If there was a caller, IBMDPJR is called at
entry point IBMBPJRC (see below).

IBMDPIR also contains certain utility
routines that may be used by all programs.
These are the GOTO out of block routine
described in chapter 2, and the code to
acquire second and sUbsequent levels of
library workspace. IBMDPIRalso contains a
CSECT PLIMAIN that is link-edited if an
attempt is made to initialize a non-main
PL/I procedure. This dummy PLIMAIN is
link-edited because the compiler only
generates a PLIMAIN control section for a
main procedure. The dummy PLIMAIN contains
code to load and call the module IBMDPEP.
IBMDPEP puts out a message indicating that
there is no main procedure and terminates
the program.

Initialization when a PL/I procedure is
called from another language is similar
except that the module IBMDPJR is used.
This module contains the entry points
PLICALLA and PLICALLB.

The major difference between IBMDPIR and
IBMDPJR is that IEMDPJR can be passed
parameters indicating the size and the
location provided for the ISA, and also a
parameter list for the called procedure.

IBMDPJR has four initialization entry
points as follows:

Chapter 5: Object Program Initialization 57

PLICALLA

PLICALLB

IBMBPJRA

IBMEPJRB

ISA acqUired is remainder of
partition. Can pass parameter
list to PL/I program. Control
passed to procedure whose
address is in PLIMAIN.

ISA size and address must be
specified. Can pass parameter
list to compiled code.
Control passed to procedure
whose address is in PLIMAIN.

ISA acquired is remainder of
partition. Can pass parameter
list to compield code.
Control passed to routine
whose address is in word
addres~ed by register zero.

ISA size and address must be
specified. Can pass parameter
list to compiled code.
Control passed to routine
whose address is in word
addressed by register zero.

A further entry point IBMBPJRC is used
during termination. If the GOTO eut of
block routine discovers that PL/I was
called from another language it returns
centrol to IBMBJRC which calculates a
return code and restores the caller's STXIT
options and program mask. IBMBPJRC thea
returns to the caller.

IBMDPJR calls on the transient routine
IBMDPJI to initialize the program
management area, save the caller;s STIlT
options and set up the PL/I STXIT options.

When calling PLII from another language
via PLICALLA or PLICALLB it is necessary to
explicitly include reference to IBMDPJR in
the input to the linkage editor. For
example by an INCLUDE IBMBPJRA statement.
(Note that IBMBPJFA must be specified
because this is the entry point name.)

THE PROGRAM MANAGEMENT ARE~

A diagram of the program management area is
shown in figure 5.2. It shows the
situation when the compiled program is
called. !he various fields in the program
management area are shown in ~etail in
appendix B. A brief description of their
use is given below.

Tha TCA is the central communications block
used throughout the program. It is used to

58

address the error-handling and storage­
management routines, and to point to the
current,segment of dynamic storage.

The TCA is the most important control
block in the PL/I environment. A field-by­
field description follows.

Flags

BaS

EOS

Indicate that an abnormal
GOTO cut of block may take
place (see below). Also
indicate that certain special
error conditions may arise.

The pointer that points to
the beginning of the current
segment (see chapter 6).

The pointer that pOints to
the end of the current
segment (see chapter 6).

Address of external save area:

The address of the save area
for the calling routine, if
IBMDPIR was not called from
the control program.

Address of translate-and-test table
for IBMDERR:

See below, under heading
"Translate~and-Te~t Table."

Address of TeA appendage

Address of save area for IBMBPGRC and
IBMBPGRD (see below)

Open file chain:

Used when closing files at end
of job

PL/I and user return code:

A standard area to keep these
codes.

Address of IBMBPGRt:

Stack cverflow routine for
VDAs (see chapter 6)

Address of the diagnostic file block (see
below)

Address of flow statement table:

This is used to address the
flow statement table which
holds statement numbers for
use during execution.

Address of tab table:

The address of a table of

tabulator positions used in
list-directed output.

Address of FLOW module:

The address of the module used
to implement the compiler FLOW
option.

Address of storage-handling routines:

Entry pOints to IBMDPGR that
get non-LIFO storage, free
non-LIFO storage, and acquire
a new segment for LIFO storage
(see chapter 6).

Address of IBMBERRB

Address branched to after a
software-detected interrupt
occurs (see chapter 7).

Address of environment descriptor:

Identifies release of compiler
being used.

Code for GOTO out of block:

Whenever a GOTO out of block
occurs, or could potentially
occur because of the value of
a label variable, compiled
code branches to this code in
the TCA, which calls a
subroutine in IBMDPIR. The
subroutine calls the flow and
count module if either FLOW or
COUNT is in effect and tests
flags to see if an abnormal
GOTO has occurred. The
abnormal GOTO
flags are set by compiled code
or by library routines in
which an abnormal GOTO could
occur. (See, for example,
description of SORT in chapter
11.) If the abnormal GOTO flag
is set, the abnormal GOTO
subroutine is called.
Otherwise, the routine
restores the value of register
13 for the block to which a
branch is being made, and also
restores the values of
registers 4 (the temporary
tase) and 3 (the static base).
Condition enablement is also
restored, and NAB may require
alteration if a variable data
area (VDA) has been used. If
necessary IBMBPGO is called to
reset CHECK enablement.
Finally, a branch is made to
the correct location and the
program base altered if this
is necessary.

IAddress of count module

used to call IBMBEFLC when the
COUNT option is in effect.

Address of IBMBPGO

Used in GOTO code see above

Addresses of various routines:

The TCA is completed with the
address of the WAIT COMPLETION
and Event assign routines.
These are library routines
that, for speed, are addressed
from the TCA. The addresses
are held as WXTRNs and are
resolved if compiled code
calls these modules.

The fields to hold the address
of the overflow routine, the
envircnment descriptor, the
GOTO code, and the error
handler are duplicated. This
allows version 4 of the
compiler to use more efficient
means of calling these
routines and retains
compatibility w~th previous
versions. For details of the
locations of TCA fields see
Appendix B.

The TeA appendage is addressed from the
standard part of the TCA (see above). Its
contents are as follows:

Address of the byte beyond the ISA(TISA):

This holds the address beyond
the end of the partition and
is necessary because EOS gets
altered when non-LIFO dynamic
storage is allocated.

Address of last free area (TLFE):

Flags

This pOints to a chain of
areas of non-LIFO dynamic
storage that have been freed,
but cannot be amalgamated with
the major free area.

Indicating:

1. SYSPRINT is opened for

Chapter 5: Object Program Initialization 59

stream output (i.e.,
that it has been opened
as expected and can be
used for error
messages).

2. That an abnormal
termination is in
progress.

3. That dump 1/0 is in
progress.

Address of dummy DSA:

Used, when abnormally
terminating the program, to
restore IBMDPIF's registers.
This is faster than chaining
back and testing for the dummy
DSA, and allows IBMDPIR to be
reached should the DSA chain
become overwritten.

Address of get-library-workspace routine:

This routine is part of the
transient library module
IBMDPlR and is used to get a
new allocation of library
workspace and an ONCA. This
routine is ~alled after
interrupts and during program
initialization (see chapter
3) •

Address of loaded-module chain:

This is a chain of the names
of transient library modules
that have been loaded. It is
kept to prevent duplicate
loading.

Code to handle interrupts and save area
for STXl'!:

The STXlT macro requires a
save area to use after a
program check interrupt
~rogram check); this is the
area used. The code branches
to the error-handling module
IBMDERR.

Address of interrupt handler (TERA):

This is the address to which
the branch is made after a
prograa check interrupt (see
above) has occurred. ,

IAddress , of count tables

,
I
I
lAddress

60

These are used for
implementing the COUNT option.

of the TCA

Tab Table

This is used to restore
register 12 when a program
check cccurs, in case it has
been changed by a non-PL/I
subroutine.

Forty bytes reserved for
PLITABS (transient library
module IBMBSTAB). This CSECT
is loaded when a STREAM PEINT
file is opened or when PLIDUMP
is called. It contains the
linesize, tabulating positions
and other information for
PRINT files. Only the
pagesize is used for PLIDUMP.

This area is used as a DSA for IBMDPGR, the
routine entered when there is not enough
room for a further DSA in the current
segment of the LIFO stack. Both DSAs in
library workspace may be in use when
IBMDPGE is required, and there may be no
caller's save area because a DSA has not
yet been acquired. Consequently, IBMDPGR
has a save area reserved in the program
management area.

The dummy ONCA holds default values for the
condition built-in functions. These will
be supplied if they are requested either
when no interrupt has occurred, or when no
interrupt with the requested condition
built-in function value has occurred.
There is a chain back through all ONCAs to
the dummy ONCA. (See chapter 7.)

The translate-and-test table contains code
used in error handling to identify relevant
on-cells. (See chapter 1.)

The diagnostic file block holds information
used by the error-message modules. This
includes the address of the SYSPRINT
transmitter.

The dummy DSA acts as a save area for the
registers of the initialization routine
IBMDPIR, and an end to the chain of DSAs
when a search through blocks is being made,
as for example, when searching for a
relevant established on-unit (see chapter
7). The dummy DSA has a bit in its flag
byte to indicate that it is a dummy. The
dummy DSA contains a NAB (next a~ailable
byte) pointer enabling the main procedure
to obtain a DSA in the LIFO stack.

This consists of two pre-formatted DSAs
that are used by certain of the library
modules. (See chapter 3.)

The ONCA is supplied as an area where
compiled code or library routines can store
or read out any condition built-function
values that may be required. (See chapter
7.)

This is two words in which the caller's
STXIT PC options are held. These are
restored before a return is made.

This is code placed in the program
management area by IBMDPII. It is used by
the error handler to test whether an
operation interrupt has been caused by an
attempt to execute a floating point
inst~uction on a machine with no floating
point hardware.

During program initialization IBMDPII
tests to see if the machine has floating
point hardware. If it has, the code
consists only of a direct return. If there
is no floating point hardware on the
machine, code to analyze the interrupt is
placed in the program management area.

The code is addressed from the TCA and
is called by the error handler when an
operation interrupt occurs. If the analysis
shows that the error was due to lack of
floating point hardware, a code is returned
to the error handler.

Chapter 5: Object Program Initialization 61

The program compiled by the DOS PL/I
Optimizing Compiler is executed in either a
background partition or a foreground
partition. The executable program phase is
placed at the start of the partition. The
remainder of the partition is known as the
initial storage area (ISA), and is used for
various functions during execution. The
start of the ISA is used as the program
management area. This is an area that
contains a number of housekeeping fields
and is set up by the initialization routine
IBMDPIR. (See chapter 5.) The remainder
of the ISA is used for PL/I dynamic storage
allocation.

The contents of the executable program
phase are described in chapters 2 and 5 of
this publication. The contents of the
program management area are described in
chapter 5. This chapter is concerned with
the allocation and freeing of PL/I dynamic
storage. Information on storage handling
during interlanguage communication is given
in chapter 13.

TYPES OF DYNAMIC STORAGE REQUIRED

The requirement for dynamic allocation and
freeing of storage is inherent in the
language. Automatic variables are
allocated and freed on a block-by-block
basis. Controlled and based variables can
be allocated and freed by appropriate PL/I
statements. Storage is also obtained
dynamically for workspace, compiler­
generated temporary values, I/O buffers.,
and PL/I transient library routines.

Dynamic storage can be conveniently
divided into two classes.

1. That which is allocated and freed on a
last-in/first-out (LIFO) basis.

2. That which is not.

The first class is known as LIFO dynamic
storage and the second class as non-LIFO
dynamic storage.

Two kinds of storage area are allocated in
LIFO storage. They are dynamic storage
areas (DSAs) and variable data areas(VDAs).

Chapter 6: Storage Management

A DSA is allocated for every procedure or
block and contains:

• The operating system standard save area.

• Certain standard housekeeping fields.

• All automatic variables and compiler­
generated temporaries whose length is
known during comp~lation.

VDAs are acquired for all other allocations
of LIFO dynamic stoDage. These are:

• Storage for automatic variables and
compiler-generated temporaries whose
length is ~ot known until execution.
(DCL X CHAR(N), for example.)

• Storage for those transiently-loaded
library routines that can be freed
immediately they have been used. (Open
and dump routines, for example.)

• Library workspace (LiS) and ON
communication area (ONCA) acquired
immediately before an on-unit is
entered.

• Workspace for certain library modules.

Contents of Non-LIFO Storag~

Non-LIFO storage is used for the following:

• Controlled variables.

• Those based variables that are allocated
by the ALLOCATE statement, provided that
they are not allocated in a static or
automatic area.

• such transient library routines as may
be required more than once when they
have been loaded. (I/O transmitters, for
example).

• Input/output buffers.

Dynamic Storage Allocation

The principle used in dynamic storage
allocation is to allocate LIFO storage from
the low-address end of ISA, starting at the
first 8-byte boundary beyond the program
management area, and to allocate non-LIFO

Chapter 6: Storage Management 63

Head of free-area chain
(TLFE in TeA)

LIFO storage

/ Main procedure DSA Held in a contiguous

Partition

Executable
Program
Phase

Program
Management
Area I

\

/
/

/

\

Subroutine DSA J

2nd allocation for

stack, starting at the
address following the
program management area.
Elements can be freed
only from the high-address
end of the stack.

Non-L I FO storage

Held in a stack starting
at the high-address end
of the partition. Any
element in the stack can
be freed; consequently,
all elements are not
necessari Iy contiguous.
When elements are freed,
they are placed on a
free-area chain and used
Ifor subsequent
allocations, if possible.

\
\

a controlled variable

1 st allocation for
a controlled variable

End of partition

Figure 6.1. The principles of dynamic storage allocation

storage from the high-address end of the
ISA, which is also the high-address end of
the partition. All storage is allocated in
multiples of 8 bytes. Between the areas of
LIFO and non-LIFO storage is an unused
section known as the ~ajor-1~~~_~. (See
figure 6.1.)

The last element in the LIFO stack is
always the first t6 be freed and
consequently can always be amalgamated with
the major free area. This is not always

64

the case with non-LIFO storage. When an
item not contiguous with the major free
area in the .non-LIFO stack is freed, it is
placed on a free-area chain whose head is
anchored in the TeA. Attempts are always
made to use areas on this chain when
further allocations of non-LIFO storage are
made.

Allocations of LIFO storage are made by
testing to see if there is enough space in
the major free area. If there is not

enough space, an attempt is made to use an
area on the free-area chain. When an area
on the free-area chain is used, it is known
as a new segment of the LIFO stack.

Fields used in Storage Handling

To keep track of the storage allocated and
freed, a number of pointers are used.
These are:

• The begining-of-segment pointer (BOS).

• The end-of-segment pointer (EOS).

• The next-available-byte pointer (NAB).

• The free-area chain.

• A pointer to the byte beyond the end of
the ISA (TISA).

Th~-h~ginBin~Qf-segm~nt EQinter (BOS} is
initially set during program initialization
to point to the start of the ISA. It is
not altered unless a new segment o~ storage
is acquired. BOS always points to the
start of the current storage segment. BOS
is held at offset 8 from the head of the
TCA, and is addressed from register 12.

The end-of-segment pointer (EOSl is
initially set during program initialization
to point to the end of the ISA. However,
it is updated, when non-LIFO storage is
allocated, to point to the end of the major
free area. EOS ~s held at offset X'C' (12)
in the TCA, and is addressed from register
12.

The-1!~xt-gvailable-bY1.!Ll!ointer .1llll is
held in every OSA and points to the first
8-byte'boundary beyond the OSA (or VOA if
one has been acquired). This address is
the start of the major free area. The
current NAB is held in the most recent OSA
and is addressed from offset X'4C' (76) from
register 13. As register 13 is altered
every time a OSA is acquired, the value in
a NAB pointer need only be altered when a
VOA is freed or acquired. Previous NABs
are automatically restored when register 13
is pointed to a previous OSA.

Th~_pointeL10 th~~!LbeYQl!.Lthe IS!
(TISA) is used to keep track of the end of
the ISA.

The first two bytes of BOS, EOS, and NAB
contain segment numbers ("FF" for the ISA).
The use of these numbers is explained under
"Acquiring a New Segment."

The free-area chain inclu~ those elements
of-noi=LIFo-dynamic storage that have been

freed but that could not be amalgamated
with the major free area. The start of the
chain is held at offset 8 (TLFE) in the TCA
appendage and points to that element with
the highest address.

ALLOCATING AND FREEING LIFO STORAGE

Allocating and freeing LIFO storage is
handled by compiled code or by the
particular library module that requires the
space. The allocation is done in the
manner used by the prologue code shown in
chapter 2. Freeing is done in the manner
used by the epilogue code, which is also
shown in chapter 2. Before allocating the
storage, a test is made to see if there is
enough space in the major free area for the
new allocation. This test is carried out by
logical arithmetic, for reasons explained
later, under the heading "Acquiring a New
Segment." If there is not enough room,
entry ~o the segment-handling entry point
of the resident library module IBMDPGR is
made. The address of this entry point is
held at offset X'74' (116) in the TCA. The
allocation of LIFO storage involves finding
the current NAB. This gives the address of
the start of storage to be used. A new
value of NAB is calculated, addressing the
byte beyond the end of the new allocation.
Freeing the storage is done by restoring
the NAB pointer to the previous value.
Figure 6.2 illustrates the principles
involved. Before allocating the storage, a
test is made to see if there is enough
space for the allocation.

ALLOCATING AND FREEING NON-LIFO STORAGE

Any section of non-LIFO storage can be
freed at any time; therefore a simple
stacking mechanism cannot be used, because
it would waste storage by leaving freed
storage within the stack. A modified
method is therefore used. When storage
that is contiguous with the major free area
is freed, it is amalgamated with the major
free area by altering the end-of-segment
pointer, which indicates the end of this
area. When storage that is not contiguous
with the major free area is freed, it is
placed on the free-area chain, which is
anchored to a field in the TCA. Whenever
an allocation is made, an attempt is made
to place the allocation in an ar~a that is
already on the chain, rather than use a
further section of the major free area.
Allocations of non-LIFO dynamic storage are
always handled by the library module
IBMOPGR, whose address is held in the TCA.
Figure 6.3 illustrates the principles

Chapter 6: Storage Management 65

To dummy DSA
6
I R13
I
I
I _ _ _ _ Backchain (stored at fixed offset from R 13)

Main procedure DSA

NAB (stored at fixed offset from R13)
I
I

R13----~~--------------------------------------~r~ (=old NAB)

Backchain (= old R 13)

Subroutine DSA

NAB

EOS--....

Allocating a new DSA

1. Test if major free area large
enough for new DSA. If not
call IBMBPGRC.

2. Store R 13 at fixed offset from
old NAB to act as backchain.

3. Load R 13 with address of old NAB.

4. Store new NAB at fixed offset
from register R13.

Freeing a DSA

1. Load register 13 with current
backchain address. Since the
NAB and backchain fields are
always addressed from register
13, the previous values are
automatically restored.

Figure 6.2. Principles involved in allocating and freeing LIFO storage

66

NAB

EOS

2nd allocation

1 st allocation

Initial situation

Two contiguous
allocations of
non-LIFO storage

NAB

EOS

3rd allocation

2nd allocation

1st allocation

New allocation

1. Free-area chain?
No. (TLFE in TCA=O)

2. Allocate by altering
EOS pointer.

NAB

EOS

TLFE

3rd allocation

2nd allocation

Free 1st area

1. Is area next;to
major free area? No.

2. Is area next to an
area already on
free-area chain? No.

3. Place area on free­
area chain.

NAB

EOS

TLFE

3rd allocation

2nd allocation

Further allocation

1. Free-area chain? Yes.

2. Find smallest area that
will hold new allocation.
Allocate at high-address
end, leaving remaining
area on free-area chain.

3. Alter length field at head
of remaining area.

Figure 6.3. Principles involved in allocating and freeing non-LIFO storage

involved. Whenever an allocation within
the major free area is made, the end-of­
segment pointer, in the TeA, is updated to
point to the end of the major free area.

If there is insufficient space for an
allocation of non-LIFO storage either in
the major free area or in an area on the
free-area chain, the program is terminated.

ACQUIRING A NEW SEGMENT OF LIFO STORAGE

Every time a new procedure or block is
entered, or a VDA is acquired, a test is
made to see whether there is enough space,
for the DSA or VDA, between the NAB pointer
and the EOS pointer. If there is not
enough space then an attempt is made to use
the largest space on the free-area chain.

Pointers BOS and EOS are set to point to
the beginning and end, respectively, of the
new segment. The DSA or VDA is allocated
in the low-address end of the segment, and
the NAB pointer is set to point to the
first free byte after the DSA or VDA. The
former values of BOS and EOS are stored at
the start of the new segment.

A segment number is given to each
segment, starting at hexadecimal "FF" and
reducing by 1 for each new segment. The
number for the ISA is "FF", the second
segment "FE"~ and so on. This number is
held as the first byte of the NAB, BOS, and
EOS pointers. The result of this device is
that when logical arithmetic is used, all
addresses in later segments are apparently
less than those in the earlier segments,
regardless of their actual position. This
simplifies segment handling. For instance,
when a DSA in the second segment is freed,

Chapter 6: Storage Management 67

NAB is simply restored to its previous
value which may well be in the first
segment. NAB will then hold value "FF----­
". and EOS the value "FE-----". When a
further DSA is required, EOS will be less
than the sum of NAB and the DSA length, as
NAB is already greater than EOS.
Consequently it will appear that there is
insufficient space for the DSA in the first
segment, regardless of whether or not this
is the case. The library module IBMDPGR is
thus called to restore BOS and EOS,
rearrange the free-area chain, and if
possible place the new DSl after NAB in the
first segment. The process is illustrated
in figure 6.4.

IBMDPGR - STORAGE MANAGEMENT ROUTINE

The allocation and freeing of LIFO storage
within a given segment is handled by
compiled code or by the library module
requiring the storage. All other dynamic
storage allocation is carried out by the
resident library routine IBMDPGR; this
module has four entry points:

IBMBPGRA

IBMBPGRB

IBMBPGRC

IBMBPGRD

Allocating non-LIFO storage.

Freeing non-LIFO storage.

Obtaining and freeing additional
storage segments (for DSAs).

Obtaining and freeing additional
storage segments (for VDAs).

These four entry points are described
below.

When entered by entry point IBMBPGRA, the
module first frees any LIFO segments that
are not in use, searches the free-area
chain, if one exists, and allocates the
storage in the smallest possible area on
the chain. If an area of the exact size is
found. it is removed from the chain;
otherwise the length stored in the first
word of the area is altered. If there is
no chain, or no area on the chain that is
large enough, IBMDPGR attempts to allocate
the storage in the area immediately
preceding the EOS pointer. If there is not
enough space between the EOS pointer and
the current NAB pointer, the program is
terminated.

Provided that storage can be allocated,
control is passed back, with register 1
pointing to the address of the storage

68

allocated.

When entered by IBMBPGRB, the module scans
the free-area chain (if one exists) to see
whether the storage being freed can be
amalgamated with areas already on the
chain. This is done if possible. The
module then checks to see whether the
storage being freed is adjacent to the
major free area. If so, EOS is altered to
point to the end of the area being freed or
to the end of the amalgamated area, if this
adjoins the major free area. If neither
case applies, the area is added to the
free-area chain, which is arranged in
descending order of addresses.

When compiled code discovers that the
address contained in the NAB pointer plus
the length of the area to be allocated is
greater than the value of the pointer EOS,
either IBMDPGRC or IBMDPGRD is called,
depending on whether a new DSA or VDA is
required.

The entry points are called in two
circumstances:

1. There is insufficient room in the
current segment for allocation of the
DSA or VDA and, consequently, a new
segment is required.

2. A segment o~her than the first one has
been allocated, but is no longer in
use.

IBMBPGRC an~ IBMBPGRD check to see which
of the above two situations caused the
call. This is done by checking whether the
number in the first byte of NAB is greater
than the number in the first byte of EOS.

In case 1 above, the segment numbers are
the same, and a new segment must be
allocated. A new segment is allocated by
searching the free-area chain for the
largest available area and using this as a
new segment. If there is no area large
enough to hold the new DSA, control returns
to IBMDPIR, which calls module IBMDPES to
generate an "insufficient storage" message,
and then terminates the program. If a new
segment is allocated, the old values of BOS
and EOS are placed in control words at the
head of the new segment. New values for
BOS and EOS, with first byte numbers

n =r
S»
~
t+
(I)
t1

0\

en
t+
o
t1
S»

IQ
(I)

til:
S»
1:1
S»

IQ
(I)
Ell
(I)
1:1
t+

0\
\Q

BOS

:I NAB , .. ,w ... », .. ;....,_lj"m<!:=;.;.;.;.;-}:.;~..:.;.;"'"

EOS ---. ~.i.lt. •. :"' ~.~:~ : .. !M

TLFE
.1' .. ·······iI

Initial situation

1. Free-area chain exists_
BOS, NAB, and EOS have
X'FF' in first byte, i.e.,
segment number 1.

:::~]
."m.,,,.,,., . .t,,.-.:,,,,, ~J

:·.:~m{:::::>::::.<:-:.-». "-';~.'t:,.::?;~~!:~.; EOS ---i>

\\\\\\\\;:ii£E~§~~~~iE\\\\\\\\\\\\\\\\\\\\
BOS ...

old BOS and EOS 1 R13~

NAB"~J
EOS ~ ~~:~~~t·:~;
TLFE .. f;;;~:;~,:~~::~~;:;;;;~~~;~~~;~::.:~i~;:_iiC~1

Acquiring new segment

1. Compiled code or library
routine finds major free
areas too small. Calls
IBMBGR.

2. I BMBG R finds an area on
free-area chain large
enough for allocation.

3_ Stores old BOS and EOS.
Sets new BOS and EOS, and
returns to caller.

4. Caller gets new DSA.
BOS, EOS, and NAB have
X'FE' in first byte, i.e.,
segment number 2.

Figure 6.4. Segment handling

new
se!JTlent

BOS .---~.

NAB .l~l.B II
EOS ---~Il;~~~~;';~;;;"\I\\\\~~t~II
BOS

EOS

TLFE
.[:;.::.:.;.;i;,;:;.;.;:;.;:;.;.;.;.;.;.;.;.;.~;:;.;.;.;:;:;.;.;.;.;.;.;.;.,

Freeing DSA in segment

1. Register 13 is restored in
the normal way_ BOS and
EOS are not restored. The
segment will not be freed
until there is a further
demand for storage, that
can be accommodated
in the previous segment.

2. NAB now has X'FF' in first
byte, BOS and EOS still
have X'FE'.

BOS

R13

NAB

EOS

TLFE

I New DSA

Freeing segment

1. When storage is again required,
NAB + storage required is
compared with EOS using
logical arithmetic.

2. NAB + storage is found to be
greater (because of different
segment numbers). so IBMBGR
is called_

3. IBMBGR finds segment
numbers are different. Tests to
see if new storage will fit in old
segment. If not, allocates in
current segment_

4. Storage will fit, so restores old
BOS and EOS, places segment
on free-area chain, and returns
to caller.

5. Caller allocates storage starting
at current NAB.

decremented by one, are placed in the TeA.
The address of the new NAB is passed in
register zero; the address for the start of
the new DSA or VDA is passed in register 1.

In case 2 above, the number in the first
byte of NAB is greater than the number in
the first byte of EOS.If the difference is
greater than one, then more than one extra
segment has been allocated for DSAs which
are no longer current. In this case,
segments are freed until only one empty
segment remains. This is done by setting
BOS and EOS to the values held in the
control words at the head of each segment
and freeing the storage in the way
described for IBMBPGRB above.

When only one empty segment remains, a
~test is made to see whether the new DSA

• ill fit into the segment that contains the
present NAB pointer (the segment before the
empty segment). This test is made by
comparing the current NAB pointer with the
old EOS pointer held in the control words
of the empty segment. If there is
sufficient room, the empty segment is freed
as described under IBMBPGRB, above. Return
is then made to the caller with a new value
for EOS and BOS, and the DSA is allocated
immediately after the old NAB.

If there is not enough room in the
segment containing NAB, then a test is made
to see if the empty segment is large enough
to hold the new DSA. This is done by
comparing the difference between the
current BOS and EOS with the length of the
element. If there is enough room, the DSA
is allocated in the empty segment. The
address of the start of the storage is
passed to compiled code in general register
1 and the address of the new NAB in general
register o.

If there is not enough room in the empty
segment, then the segment is freed. There
are now no empty segments, and the
situation is treated as if there had been
no empty segments in the first place.

No!~: It is possible that after freeing a
number of empty segments, an area on the
free-area chain can immediately follow EOS.

70

However, the possibility is remote, and no
check is made to see whether this is the
case.

Storage Management in Programmer­
Allocated Areas

By using area variables, PL/I allows the
programmer to use a continuous area of
storage for based variables. The
allocation of storage for area variables is
handled in the same way as that for other
types of variable, and depends on the
variable's storage class. The allocation
and freeing of storage within an area is
handled by the library module IBMBPAM •

If there is not enough space for an
allocation or if the target area is too
small in an assignment statement, the AREA
condition is raised.

The method employed is that storage is
allocated from the low-address end of the
area, and an offset is kept to the end of
the item with the highest address allocated
in that area. This offset is known as OEE
(offset to end of extent). When storage is
freed, either the OEE is altered or the
storage is placed on a free-storage chain,
with the largest segment at the start of
the chain. The method used is conceptually
the same as that used for non-LIFO storage.
However, the chain is held in a different
order and the stack extended in the
opposite direction. If a space freed is
adjacent to any that are already free, the
spaces involved are amalgamated into one.
This is done either by altering OEE, or
combining the new free space with one or
more free spaces that are already in the
free chain, or possibly by a combination of
these methods. When a free chain exists,
IBMBPAM always attempts to allocate storage
by using a space on the chain. The low­
address end of the smallest possible space
on the chain is used, and the chain is then
rearranged to maintain the correct order of
decreasing size.

Chapter 7: Error and Condition Handling

This chapter deals with the method used to
implement ~];~£yti.Q.!!-ti~ error handling.
Many errors detected at execution time are
related to PL/I conditions and can be
handled either by on-units written by the
proqrammer, or by standard system action.
The chapter starts with a summary of the
error and PL/I condition handling
facilities offered by the PL/I language.
The implementation problems these
facilities raise, and the methods used to
handle them, are then described. An example
of error handling is given which allows the
principles involved to be followed through
in a program. The chapter finishes with a
brief description of the error message
modules, the modules used to implement the
PLIDUMP facility, and other debugging
facilities.

Summary of PL/I Error Handling

PL/I allows the programmer to obtain
control after the occurrence of any PL/I
interrupt. A PL/I interrupt is defined as
"the redirection of flow of control of a
program, as the result of the raising of an
enabled PL/I condition." A PL/I interrupt
is not the same as a program check
interrupt, although all program check
interrupts, other than "significance" and
certain inputloutput interrupts, can, and
normally do, cause PL/I interrupts. (See
figure 7.1.) PL/I interrupts are always
associated with PL/I conditions. They fall
into three classes:

1. Hardware interrupts (program checks)
which are interpreted as PL/I
conditions and treated as PL/I
interrupts. See figure 7.1.

2. Special PL/I error conditions that
have no equivalent at the program
check level. For example: CONVERSION
and SUBSCRIPTRANGE.

3. PL/I conditions that are not errors,
but occur at unpredictable times
during the program; for example,
ENDFILE and ENDPAGE.

Throughout this chapter, interrupts and
PL/I conditions recognized by the system,
are referred to as pro~check
interrupts. Interrupts detected by
checking code at the PL/I level are
referred to as software-detected
interrupts, or software interrupts.

A table showing all PL/I conditions, and
the method by which they are detected, is
given in figure 7.2.

r---,
Hardware interrupt I PL/I condition

Operation
Privileged operation
Execute
Protection
Addressing
Specification
Data

ERROR
(after issuing
a message)

Fixed point overflow FIXEDOVERFLOW/SIZE
Fixed point divide ZERODIVIDE/SIZE
Decimal overflow FIXEDOVERFLOW/SIZEI
Decimal divide ZERODIVIDE I
Exponent overflow OVERFLOW/SIZE I
Exponent underflow I UNDERFLOW I
Floating point dividel ZERODIVIDE I
L--~~

Figure 7.1. Hardware interrupts
associated with PL/I conditions

The programmer has the choice of
defining the action that will be taken when
a PL/I interrupt occurs, by writing an on­
unit for the relevant condition, or of
accepting the default action. This default
action is known as standard system action.
If control has passed through an ON­
statement (that has not been overriden by a
REVERT or other statement), the associated
on-unit is said to be established.

The programmer also has the choice of
whether or not certain of the PL/I
conditions shall cau~e PL/I interrupts when
they occur. When a condition causes a PL/I
interrupt, it is said to be ~bled. When
it does not cause a PL/I interrupt, it is
said to be disabled. Some conditions are
enabled by default; some are disabled by
default. Details are shown in figure 7.2.
Many of the conditions whose enablement is
under programmer control are error
conditions that are peculiar to the PLjI
language. Because these interrupts are not
recognized by the system, special~code has
to be generated if they are to be
recognized. PL/I, therefore, gives the
programmer a choice of whether to have this
code generated and have more efficient
debugging aids at his disposal, or of not
having the code generated, and having a
faster and shorter program. Normally,

Chapter 7: Error and Condition Handling 71

relevant conditions will be enabled during
the testing of a program and removed for
production runs. Conditions whose
enablement is under programmer control can
be enabled or disabled for the duration of
a statement or a block.

Certain of the program check interrupts
can be disabled by the programmer. When
this is done, the interrupts still occur at
system level. They are intercepted before
PL/I interrupts occur, and control is
returned to the point of interrupt.

A number of further factors influence
the implementation of error handling.
These factors are discussed below.

On-units have dynamic scope. That is, each
procedure or block inherits the on-units
established in the block that calls it,
unless such on-units are specifically
overridden. Thus, as the sequence in which
procedures are called may depend on the
input data, it is not always possible at
compile time to predict which on-units will
be applicable to any given section of the
program. A method is therefore needed to
determine this during execution.

Condition prefixes have static scope.
That is, they are inherited from the
encompassing procedure or block in the
source program. Thus, the enablement or
otherwise of a condition is predictable at
compile time.

An important concept in the understanding
of error handling is that of levels of
interrupt. with a few minor exceptions,
the language allcws any statements to be
executed in on-units, but stipulates that
the environment of the original interrupt
must be retained so that a return can be
made to the point of interrupt when the on­
unit is completed. This necessitates a
further &llocation of library workspace for
use during the on-unit, as the original
allocation may be in use when the interrupt
occurs and cannot be overwritten. As there
may be PL/I interrupts during the execution
of on-units, the stacking of levels of
library workspace can, theoretically,
continue indefinitely.

72

Condition Built-In Functions

PL/I defines a number of condition built-in
functions and pseudovariables that allow
the program to inspect the causes of an
interrupt and, in certain cases, to alter
the fields involved. These built-in
function values are placed in a special
control block known as the ONCA (ON
communications area) before the main error­
handling code is entered.

Because any number of levels of
interrupt can occur, a new ONCA is provided
for every level of interrupt. This is done
at the same time as a new allocation of
library workspace is made.

The ERROR Condition

The ERROR condition is raised as standard
system action for those PL/I conditions
that will normally be caused only by
errors. (See figure 7.2 for details.) It
is also raised by certain program check
interrupts (see figure 7.1), and a number
of software-detected interrupts that have
no directly-associated PL/I condition. A
message is generated before the condition
is raised. This is beyond the control of
the programmer, and the message will be
produced regardless of the presence of an
ERROR on-unit.

The Implementation of Error Handling

The most important points in the error­
handling scheme are the following:

1. IHrri!HL£2nilg:ti2!1, the compiler
generates code to check for the
various PL/I conditions that are not
related to program check interrupts
or, alternatively, code to call
appropriate library modules that will
check for these conditions when they
carry out the required function.

2. Qur!~E~Oqram initialization, the
initialization module IBMDPII issues a
STXIT macro instruction, which results
in the system passing control to the
error-handling routine IBKDERR,
whenever a program check (hardvare­
detected interrupt) occurs.

3. Q~in~~ution. The PL/I resident
library module IBMDERR gains control
whenever a PL/I condition is
recognized, or a program check
interrupt associated with a PL/I

r---,
Name of IQual-IDescription IRecognized by I Default IPrograml I
condition lifiedl I I I-mer IERROR** I

I I I I IControllConditionl

~omputational

CONVERSION no Attempt to Code in relevant enabled yes yes
convert invalid library modules
character string

FIXEDOVERFLOW no Overflow of a System enabled yes yes
fixed point
value

SIZE no Attempt to Compiler-generated disabled yes yes
assign too largelchecking code, or
a value I program system

I
OVERFLOW no Overflow of a " System enabled yes yes

floating-point I
value I

I
UNDERFLOW no Exponent becomeslsystem enabled yes no

smaller than I
permitted I
minimum I

I
ZERO DIVIDE no Attempt to I System enabled yes yes

divide by zero I
----------------------~--
lnput/outpy.:t I

I
ENDFILE yes End of file ICode in relevant enabled no yes

reached I library modules
I

ENDPAGE yes End of a page onlCode in relevant enabled no no
a print file I library modules
reached I

I
TRANSMIT yes Transmission ICode in library enabled no yes

error on a file I modules
I

UNDEFINEDFILE yes Error in openinglCode in relevant enabled no yes
file I library modules

I
KEY yes Invalid key ICode in relevant enabled no yes

I library modules
I

NAME yes Unrecognizable ICode in relevant enabled no no
data-directed I library modules
input I

I
RECORD yes Incorrect size ICode in relevant enabled no yes

record IlibraI:'Y modules

** The ERROR condition is raised when an error occurs that is not covered by PL/I

exceptional conditions - taking the square root of a real negative number, for
example. It is also raised as standard system action when handling all types of
error conditions. Thus an ERROR on-unit enables the programmer to intercept all
error conditions.

L-------------~---~

Figure 7.2. (part 1 of 2). PL/I conditions

Chapter 7: Error and Condition Handling 73

r---,
I Name of IQual-IDescription IRecognized by I Default IPrograml
I Condition lifiedl I I I-mer IERROR**
f I I I 'Icontrollcondition

Prggram Checkout

SUBSCRIPTRANGE no

STRINGSIZE

STRINGRANGE

CHECK
(variable or
label)

1ist_PQtge ssi.ng I
I

no

no

yes

AREA I no

:
-----------------~-----
.§.Ist~LActig1!

ERROR no

FINISH no

I
I

Array subscript ICompiler-generated disabled
outside declared checking code

I ,

bounds

Attempt to
assign string
to smaller
string

Attempt to
access beyond
limits of string
Value assigned
to identifier or
control passed
through label

IAttempt to
lallocate beyond
end of area

Any error
condition
including those
not covered by
other
conditions**

I
I

Code in relevant
library modules

Code in relevant*
library modules

Comp~ler-generated
checking code, or
library module

IRelevant library
modules

Relevant library
modules

Program about to Relevant library
be terminated modules

disabled

disabled

disabled

,
1
lenabled
I
I ,
I
I enabled
I
1
I ,
I
1
I enabled
I

Prog.£smm~Llf~g I 1 ,

CONDITION
(name)

1 I 1 1
1 no ,Programmer ISignal I enabled
I I defined I statement I (when

yes

yes

yes

yes

no

no

no

no

1 , condition I I coded) I I

yes

no

no

no

yes

1---J
I * When STRINGRANGE is enabled, library modules are always called to handle substring I
I operations. These modules have the necess~ry code for checking for the STRINGRANGE I
I condition. I
I I
1** The ERROR condition is raised when an error occurs that is not covered by PL/I I
I exceptional conditions - taking the square root of a real negative number, for I
t example. It is alsp raised as standard system action when handling all types of I
I error conditions. Thus an ERROR on-unit enables the programmer to intercept all I
I error conditions. I
L----------------------~---_________ J

Figure 7.2. (Part 2 of 2). PLII conditions

74

condition occurs. This module checks
to see if the associated PL/I
condition is enabled and, if it is
not, returns control to the point of
interrupt. If the condition is
enabled, the module then searches for
a relevant, established on-unit,
passing control to the first one that
is found. If no established on-unit
is found, IBMDERR carries out the
standard system action, calling any
library modules necessary to do this.

INFORMATION REQUIRED AT INTERRUPT

For the error-handling module to carry out
the various functions necessary, the
following information must be available.

1. The type of PL/I condition that has
occurred and the associated on-code.

2. Whether the condition is one that can
be enabled or disabled by the
programmer and, if it is such a
condition, whether it is enabled or
disabled.

3. Whether there is an established on­
unit that applies to this condition.

4. The values that may be used by any on­
unit built-in function that appears in
the on-unit.

5. The standard system action for the
condition.

THE FIELDS USED IN ERROR HANDLING

The fields used in accessing this
information are the following: the error
code, enable cells, ONCBs (ON control
blocks), ONCAs (ON communications areas),
and translate-and-test table in the TCA.
The fields are shown in figure 7.3 and an
example of error handling given in figure
7.4. Appendix B contains diagrams of these
fields.

The error code is either a four-byte or
two-byte code. A four-byte code is
qenerated when a PL/I condition is detected
bV compiled code. A two-byte code is
generated when an error has been detected
that does not have an immediately
associated PL/I condition.

Byte 1 holds a number which uniquely
identifies the type of error or condition.
Byte 2 is used to indicate the oncode and
message associated with the error or
condition. When bytes 3 and 4 are present,
they are used to indicate which condition
built-in functions may be required, and are
copied into the flag byte in the current
ONCA.

The error code is generated by the
object program or library module, for
software-detected PL/I conditions, and by
the error handler itself for hardware­
detected interrupts.

Enable cells are held at a fixed offset in
each DSA. They are a set of flags that
correspond to the PL/I conditions whose
enablement can be controlled by the
programmer. The PL/I conditions referred to
are as follows:

Bit 0 CHECK*
Bit 1 ZERODIVIDE
Bit 2 FIXEDOVERFLOW
Bit 3 SIZE
Bit 4 CONVERSION
Bit 5 OVERFLOW
Bit 6 UNDERFLOW
Bit 7 STRINGSIZE
Bit 8 STRINGRANGE
Bit 9 SUBSCRIPTRANGE
Bit 10 CHECK*
Bit 11 CHECK*

*See section on handling CHECK for details.

A flag is set to zero when the relevant
condition is enabled. Two sets of these
flags are held in each DSA - the block
enable cells and the current enable cells.
The block enable cells indicate the
situation at the start of the procedure or
block. The current enable cells show the
position at the point in the program that
is currently being executed. Having two
sets simplifies resetting the flags when
enablement is changed for a single
statement. It also simplifies resetting of
the enable cells should the statement
result in entry to an on-unit or function
reference, and simplifies return of control
to a different part of the block because of
a GOTO in the on-unit or function.

Q!~~§-lON Control BlocksL

ON control blocks are used to address the
on-unit and hold various information about

Chapter 7: Error and Condition Handling 75

-..l UNQUALIFIED CONDITIONS
0'1

DSA LWS

1. A flag at the head of the DSA indicates that static ONCBs exist for that
bloc.k.

2. the block and current enable cells indicate which of those conditions that
1st level

are under programmer control are enabled at any given point in the program.
Each such condition is represented by a single bit in each cell.

3. There is an on-cell for every ON-statement in the block. Each on-cell consists Enable Block
of a one-byte code identifying the condition, e.g., X'OA' (SUBSCRIPTRANGE).

Current

If the same condition appears more than once, previous on-cells are set to
cells 2nd level

Address of static ONCBs
zero.

4. Static ONCBs are held contiguously in static storage, in the same order as the
n\ln:uni nNr.:R ,..h!:llin I-~ Backchain to dummy ONCA

corresponding on-cells. They contain a code byte and flags that indicate such
things as : whether SYSTEM was specified, whether SNAP was specified, Condition built-in
whether the on-unit consists of a single GOTO statement, whether it is a null

IONCA

on-unit, etc. If there is an on-unit, its address is given in the second byte. (For
function information

GOTO-only on-units, the offset of the address of the label variable is given.)

On-cells

QUALIFIED CONDITIONS End of chain (Zero)

~ I I I
Static storage

AJ .. ___ ... &. Cr-D

1. A flag at the head of the DSA indicates that dynamic ONCBs exist. Dynamic

2. Dynamic ONCBs are set up during execution of each block in which qualified
ONCe

condition ON-statements occur. The last two words of a dynamic ONCB

I I
"uue I I la~;)

contain the same type of information as static ONCBs (described above, under
Address of on-unit 1st static

'Unqualified Conditions'), but use additional flags to indicate whether the
Address of on-unit

ONCe

condition is enabled and whether it is established. The second word contains
qualifying information, such as the address of the FCB (for conditions such
as ENDFI LE, RECORD, TRANSMIT, KEY, etc.), or address of a symbol

Backchain ,--1 I 2nd static

table (for ON CHECK on-units). Address of symbol table
A .-1_1 ____ _ .£. __ ONCB

3. Dynamic ONCes are chained together, the most recent being addressed from Dynamic
a fixed offset in the DSA. The last dynamic ONCB in the chain contains zero ONCe Code Flags ---- I I 3rd static
in its backchain field. ONCe

Dynamic t-I --~­
ONCe

Figure 7.3. The principal fields used in error handling

the on-unit, for example, whether or not it
is a null on-unit.

1. Qynami£~NCB~ Dynamic ON control
blocks are held in dynamic storage and
are used for conditions that need
qualification - ENDFILE, ENDPAGE, KEY,
NAME, RECORD, TRANSMIT, UNDEFINEDFILE,
CHECK, and the CONDITION condition.
The dynamic ONCBs for each block are
chained together, and the address of
the first dynamic ONCB is held at
offset X'60'(96) in the DSA of each
block. One ONCB is generated for each
condition and qualifier regardless of
the number of ON-statements in the
block for that condition and
qualifier. Dynamic ONCBs, but not
static ONCBs, are used to test if
there is a relevant established on­
unit for the condition and qualifier.

2. Static OHeBs: Static ONCBs are held
contiguouslY-in static storage and
refer to conditions that do not need
qualification. A static ONCB is
generated for every ON-statement in
the block and holds the address of the
associated on-unit if there is one.
Each ONCB is associated with'an oncell
held in the DSA of the associated
block. On-cells and ONCBs are held in
the same order. The error-handling
module searches the on-cells, counting
how many on-cells it tests before the
relevant on-cell is reached. The
static ONCB is addressed by an offset
from the address of the first static
ONCB. The offset is calculated by
multiplying the count of on-cells by
eight, the length of a static ONCB.
The address of the first static ONCB
is held at offset X'SC' (92) in the
DSA.

The addresses of the ONCBs are held at
fixed offsets in the DSA. Dynamic ONCBs
are chained together. Static OHCBs are
held contiguously and can be found by
incrementing the value of the first address
until the correct OHCB is reached.

ONCA-10N Communications Areal

The ON communications area contains fields
to hold the values, or address of the
values, of any condition built-in functions
that may be used. Flags are set to indicate
which values are valid for the particular
interrupt. The appropriate data is placed
in the ONCA by compiled code or library
modules. The on-code is not generated
until required. Instead an error code is
used. This gives greater flexibility in
generating messages, as the error can, in

certain circumstances, be defined more
accurately than on-codes allow. On-codes
are compatible with those used in previous
PL/I compilers.

ONCAs are chained together, so that a
search can be made for the correct
condition built-in function values through
various levels of interrupt. The dummy
ONCA, held in the program management area,
acts as an effective end to the chain, and
contains the default values for condition
built-in functions.

The dummy DSA is not set-up exclusively for
the use of the error-handling module.
However, it plays an important part in
error handling. After an interrupt, all
existing DSAs are searched for an
established on-unit that corresponds to the
interrupt. The dummy DSA acts a~ an end in
the chain that is searched. When the dummy
DSA has been reached, standard system
action is taken.

The dummy DSA is also used to avoid the
need for providing special-case code when
calculating the address of the interrupt,
and the name of the entry point, when an
interrupt has occurred in the main
procedure.

Translate-and-Test Table

When an unqualified condition has been
raised, the translate-and-test table in the
TCA is used by a translate-and-test (TRT)
instruction to test the on-cells and see if
a relevant on-unit is established.

Executing ON and REVERT Statements

Executing ON and REVERT statements is
essentially a matter of setting a flag,
either on or off, in an on-cell or in a
dynamic ONCB. The action depends on
whether the associated PL/I condition is
qualified or not, and hence whether an on­
cell or a dynamic ONCB contains the flag.

Chapter 7: Error and Condition Handling 77

...,J
en

SOURCE
PROGRAM

Figure 7.4.

(SUBSCRIPTRANGE) : SORT:
PROCEDURE OPTIONS (MAIN);
ON SUBSCRIPTRANGE BEGIN;
PUT EDIT ('SUBSCRIPTRANGE OCCURRED') (A);
PUT SKIP DATA (I,J,K);
/*SUBSCRIPT VALUES FOR TEST*/
END;

ON SUBSCRIPTRANGE SYSTEM;

END SORT;

1. Remove the on~unit from the position it holds in the
block and treat it as a separate begin block.

2. Generate code to set a flag in the block enable cell of the
DSA, to indicate that SUBSCRIPTRANGE is enabled
throughout the block.

3. Generate code to set up two on-cells in the DSA. Set up
two corresponding ONCBs in the static internal control
section (one for each ON-statement in the block).

4. Place instructions equivalent to the ON-statements in
compiled code. The first statement causes a code byte
corresponding to SUBSCRIPTRANGE to be inserted in
the first on·cell; the second statement causes the same
code byte to be inserted in the second on-cell, and sets
the first on-cell to zero.

5. Generate code to insert flags in the ONCBs. Insert the
address of the on-unit in the first ONCB.

6. Generate code to carry out the on-unit.

7. Generate code to check for the occurrence of SUB­
SCRIPTRANGE in every statement that could potentially
cause the condition to be raised.

Example of error handling

On-unit action

1. The checking code generated by tile compiler recognizes the occurrence
of SUBSCR IPTRANGE and passes control to the error handler, after
placing any required condition built-in function values in the ONCA. (In
this case only the error code is generated.)

2. The error handler checks to see if SUBSCRIPTRANGE is one of those
conditions that can be enabled by the programmer. Since it is such a
condition, a check is made, in the block enable cells of the DSA, to see
if it is enabled. (If it were not enabled, control would return directly to
to the point of interrupt.)

3. Finding that the condition is enabled, the error handler then goes to
the on-cells in the DSA. These are tested, using a translate-and-test table
in the TCA, to see if SUBSCR IPTRANGE is established. After this, the
action depends on whether the code for SUBSCRIPTRANGE is detected
in the first or second on·cell, and consequently whether the first or
second ONCB is used.

4. If the first ONCB is used, on-unit action is indicated; if the second ONCB
is used, standard system action must be taken. (Standard system action
would also be taken if the code for SUBSCRIPTRANGE were not found
in the DSA on-cells of the block in which the interrupt occurred, or in
the DSA of any dynamically encompassing block.)

I
r 1

System action

1. A further allocation of library workspace
and a new ONCA are acquired in case they
should be needed during execution of the
on-unit.

1. For SUBSCRIPTRANGE, standard system
action is to produce a message and raise
ERROR. The message modules are called
to put out a message dependent on the
error code. 2. The on-unit (addressed from the ONCB)

is executed.

3. Provided there is not a GOTO out of the
on-unit, return is made to the error
handler. The error handler then carries
out standard system action for return
from an on-unit.

2. ERROR is raised, and a search is made
through all active blocks for an ERROR
on-unit; Since there is none, standard
system action is again taken; this is to
raise FINISH. Since there is no FINISH on­
unit, the standard system action of return­
ing to I BMDPI R is taken, thus terminating
the program.

For unqualified conditions, the ON­
statement action is merely to set a flag on
in an on-cell which is associated with that
statement. If there is more than one ON­
statement for the same condition in a
block, the previous on-cells will be set to
zero when second and subsequent on-cell
flaqs are set on. The REVERT statement is
executed by setting the flag in the latest
on-cell to zero. The situation then
reverts to that at the start of the block.

On-cells are not generated for qualified
conditions; instead, ONCBs are generated in
the DSA of the block in which the ON­
statement appears. When the ON-statement
is executed, One of the ONCBs is associated
with the condition. The ONCB has the
qualifier and the address of the associated
on-unit placed in it, and the 'established'
flag set on. If a further ON-statement for
the" same condition with the same qualifier
has to be executed, the address of the on­
unit is changed. For a REVERT statement,
the establishment bit is set off. This
returns the situation to that at the
beginning of the block.

IBMDERR-Error-Handling Module

The error-handling module, IBMDERR, handles
three situations. These are as follows:

1. Hardware interrupts.

2. PL/I conditions detected by the object
program.

3. Errors detected by the object program
that are not directly related to PL/I
conditions and which raise the ERROR
condition.

All three situations are ultimately
dealt with as PL/I conditions. For
example, the FIXEDOVERFLOW condition would
be raised when fixed point overflow occurs
and causes a program check interrupt.
Where there is no directly-applicable, PL/I
condition (for instance after a data
interrupt) a system message is printed and
the ERROR condition is raised.

HARDWARE INTERRUPTS

The STXIT macro instruction, issued by
IBMDPII during program initialization,
specifies a save area and the address of a
user exit routine to which control is to be
passed after a program check interrupt.
(All program check interrupts except
"significance" and certain input/output are
intercepted.) When a program check
interrupt occurs, the supervisor saves the
PSW and the contents of registers 0 through
15 at the time of interrupt in the special
save area provided, and then passes control
to the user exit routine.

The "exit routine" consists of two
fullwords of machine instructions, in the
TCA appendage, immediately preceding the
interrupt save area. These instructions
set up addressability and ensure that
register 1 is pointing at the interrupt
save area before branching to entry point A
of the error handler, IBMDERR.

Before a program check interrupt can be
handled by IBMDERR as a PL/I condition,
action must be taken to prevent the system
terminating the job should a further
program check interrupt occur. The second
word of the PSW (containing the interrupt
address) is stored by IBMDERR in the
register 14 slot of the save area which was
current when the interrupt occurred.

IRegisters 0 - 12 are also saved in this
IDSA. (Register 12 is saved in the field
Inormally used for register 15. Registers

14 and 15 are saved later in IBMDERR's
DSA.) IBMDERR then changes the address in
the PSW in the save area to an address in
IBMDERR. An EXIT macro instruction is then
issued to indicate to the supervisor that
the program check exit is finished.
Control then passes via the supervisor to
the address in IBMDERR that has been
inserted in the PSW. As an EXIT macro has
been issued, handling of the interrupt
appears to the supervisor to be finished.
The address, in the field in the TCA, to
which control will pass after a program
check interrupt is then changed to
IBMBERRC. Should an interrupt now occur
during the execution of IBMDERR, control
will pass to IBMBERRC, which terminates the
job with a DUMP macro. IBMDERR can now

Ihandle the interrupt. Having changed
Iregister 12 to the PL/I register 12 as
Ipreviously saved, its first task is to
generate a suitable error code that will
equate the interrupt with a PL/I condition.

The floating point registers are saved
in IBMDERR's DSA, if the interrupt is one
corresponding to a PL/I condition, and
control can then be passed to the main PL/I
condition-handling routines described i~
the next section. There are, however,/fhree

Chapter 7: Error and Condition Handling 79

special cases that require further action.
These are:

1. If the interrupt was floating point
underflow, then the doubleword in
which the floating point register
which underflowed was stored is set to
zero.

2. If fixed point, exponent or decimal
overflow, or fixed-point divide has
occurred, then this may correspond to
the PL/I condition SIZE and not to
FIXEDOVERFLOW or ZERODIVIDE. If this
is the case, a flag will have to be
set in the program check interrupt
qualifier in the TCA. A test of this
flag is therefore made and the
necessary action taken.

3. If an operation exception occurs a
branch is made to the operation
interrupt analysis code in the program
management area. A return code
indicates whether the interrupt was
caused by an attempt to execute a
floating point instruction on a
machine with no floating point
hardware. The analysis code is set by
IBMDPII as described in chapter 5.

SOFTWARE INTERRUPTS

When the main condition-handling logic is
reached, an error code will have been
generated to indicate the type of error or
condition that has been raised. For
program check interrupts, the code is
produced by the error module itself. For
errors or conditions detected by the object
program, the object program sets up this
code. When the object program has detected
the error, this will, in some cases,
correspond to a PL/I condition. However,
there are certain errors (such as
attempting to take the square root of a
real negative number) that do not have
directly-related, PL/I conditions. For
PL/I conditions, a four- byte code is
passed. For other errors, the code consists
of only two bytes. In the second case, the
first byte indicates which class of error
has occurred (I/O,'computational, etc.).
In the first case, the first byte is the
identifier of the PL/I condition being
raised (the same identifier is used in on­
cells).

The error-handling module checks the
first byte of the code to see whether it is
handling an error or a PL/I condition. If
the code indicates an error, then the
message module IBMDESM is loaded into a VDA
and called. This module prints the relevant
diagnostic message; a suitable four-byte

80

code is then generated, and the ERROR
condition is raised. The situation is then
treated as a PL/I condition.

The second two bytes of the code passed
when a PL/I condition has been raised
indicate which on-unit built-in functions
are relevant to the condition. If the
condition is one that needs to be
qualified, the qualifier is also passed.

When a PL/I condition code is passed,
action depends on whether the condition is
one of those that can be enabled or
disabled by the programmer. If it is such a
condition, a test is made in the current
enable cells of the DSA. If the condition
is not disabled, then a search for a
relevant established on-unit must be made.
If the condition is disabled, a return is
made to the point of interrupt. If the
condition is not qualified, then a search
is made through the on-cells of all active
blocks to find a match for the number in
the first byte of the code passed to
IBMDERR. This is done with a translate­
and-test instruction using the TRT table in
the TeA. When found, the offset of the
located on-cell gives the offset of the
associated ONeB. A test can then be made
to determine the action to be taken.

If the condition is one that needs
qualification, a search for an active
matching ONeB is carried out through the
chain of dynamic ONCBs held in each DSA.
If the dummy DSA is reached without a match
being found, then standard system action is
taken. This action is defined in IBMDERR.
(The CHEeK condition, which may be either
qualified or unqualified, is handled
differently, as described later in this
chapter.) When a matching active ONCB is
found, tests are then made, as follows, on
the flags in the ONCB.

Test 1. Is SNAP specified? If so, the
message module IBMDESM is
dynamically loaded and a SNAP
message printed.

Test 2. Is SYSTEM specified? (This can
occur when "ON condition SYSTEM"
has been specified.) If SYSTEM is
specified, then the action for
system action specified in IBMDERR
is taken.

Test 3. Does the on-unit consist only of a
GOTO statement? If so, then the
GOTO is executed without entering
the on-unit. This saves the
housekeeping involved in entering
an on-unit.

Test 4. Is the on-unit a null on-unit? If
so, then the action on a normal
return from the on-unit is taken.

If none of these tests is positive, then it
is necessary to enter the on-unit.

Before entering the on-unit, the
following action must be taken. A new
allocation of library workspace and ONCA
must be initialized and its address put
into the standard offset in the DSA of
IBMDERR. This provides workspace for any
further library modules that may be called.
Tests must be made to see that the ONCA is
correctly set-up for any built-in functions
that may be used. The linkage to the error
handler must also be altered to its
oriqinal settings so that program check
interrupts will cause entry to be made to
the error handler by the entry point
IBKBERRA rather than IBKBERRC. This
ensures that the action specified by the
PLII program i~ taken if a program check
interrupt occurs during the execution of an
on-unit.

Normal return from the on-unit to
IBKDERR is made by a branch on register 14.
Depending on the condition, a return to the
interrupted program is then made, or some
special action may be taken. Five PLII
conditions cause action other than return
to be taken.

1. If the condition was the ERROR
condition, the FINISH condition is
raised.

2. If the FINISH condition was raised by
a STOP statement or the raising of
ERROR, or by the normal termination of
the main procedure, then a return code
is set in the correct field of the
TCA, and GOTO performed to the
initialization routine IBMDPIR~ If
FINISH was signaled, then return is
made to the point of interrupt.

3. If CONVERSION was raised, then a test
is made in the ONCA, and if either
ON SOURCE or ONCHAR has been accessed,
control is passed to the address
contained in the retry slot in the
ONCA. The conversion is then
attempted again. If the field has not
been changed, then the ERROR condition
is raised.

4. If ENDPAGE was raised, then a return
code is set in register 15 to indicate
than an on-unit has been entered.

5. If the condition was SUBSCRIPTRANGE,
ERROR is raised.

RETURN TO POINT OF INTERRUPT

Software InterruE!§

If the condition was one that was detected
by compiled code, then a return to the
point of interrupt is made by a branch on
register 14.

For program check interrupts, the status of
the program at the original point of
interrupt has to be restored. This means
that the contents of the system save area
must be reset, so that they are identical
with those saved after the original
interrupt. (The PSW and the register
values were saved in the interrupt DSA on
entry to IBKDERR.)

The method used is as follows. The
address that is to be branched to, after a
program check interrupt, is changed from
IBKBERRC to another point in IBMDERR. An
interrupt is then caused, and the
supervisor gains control. Consequently,
the address in IBKDERR is reached with the
address of the system save area in register
1. The contents of the save area and the
PSW are then changed to those that were
current after the original interrupt
including the original value of register
12. The point of entry for program check
interrupts is then reset to IBMBERRA. An
EXIT macro is then issued, and return is
made to the address in the PSW, which is
that of the instruction following original
interrupt.

The CHECK Condition

The CHECK condition has to be handled in a
different manner to other conditions. This
is because it can be used as a qualified or
unqualified condition and its enablement is
under programmer control.

The CHECK condition is disabled by
default and is enabled by writing a CHECK
prefix. It can be disabled for the duration
of a statement or block by the NOCHECK
prefix. Prefixes can take the form (CHECK)
or (NOCHECK), or the form (CHECK(A,B» or
(NOCHECK(A,B». When no name list is
appended, the CHECK applies to all the
relevant names in the program. An ON­
statement may also be written as either ON

Chapter 7: Error and Condition Handling 81

CHECK or ON CHECK(A,B). ON-statements are
independent of prefixes and may be included
in a block to which no prefix applies. A
qualified on-unit can be used with 'an'
unqualified prefix .and vice-versa.

Throughout this discussion, CHECK and
NOCHECK without a name list are referred to
as ungyal!fied. CHECK or NOCHECK with a
name list are referred to as gualifie~.

RAISING THE CHECK CONDITION

CHECK is normally raised by compiled code.
This is done by inspecting the source
program and generating calls to the error
handler at appropriate points. As
enablement is. statically descendant, it is
possible to tell during compilation at
which points CHECK is enabled and
consequently at which points the calls to
the error handler have to be made~ For GET
DATA statements, however, there ~s no way
of predetermining which items will be
present in the input stream; when an item
is input, therefore, the symbol table for
that item is inspected to determine whether
the CHECK condition ~~ be enabled, and, if
so, the error handler is called.

with the exception of the CHECK
condition, all conditions whose enablement
is under programmer control are unqualified
conditions. Consequently, their enablement
or disablement can be indicated by one bit
in the enable cells. This is because there
are only two possibilities. Either the
condition is enabled or it is disabled.
with CHECK, however, there are many
possiblities, because CHECK may be enabled
for some variables and disabled for others.
Consequently, the enable cells are used in
a different manner for the qualified CHECK
condition, and the enablement of qualified
CHECK for any particula~ name is given in
an ONCB.

When the CHECK condition is raised, the
error handler has to carry out the
following tasks.

1. Test to see if CHECK is enabled. This
lIiVOlvesasearchaloDg-thestati£
back chain to determine, for each
block, first if qualified CHECK is
enabled or disabled for the particular
name for which CHECK was raised, and
then if unqualified CHECK is enabled
or disabled. (This test is carried
out only if it is not known at
compile-time that the CHECK condition
is enabled.)

2. ~~~£h-1Q~g_qua!ified established Qll­
unit. This involves searching the

82

g~namic backchain for a relevant
dynamic ONCB.

3. If there is no qualified established
on-unitL~~~£h for_gn~nqualifigg
established on-unit. This involves a
furthersearchOfthe n.nami£
packchain looking for appropriate on­
cells.

4. If no established on-unit is foun1L
take standard system actio~.

This process is illustrated in figure 7.5.

TESTING FOR BNABLEMENT

There are three bits that refer to CHECK in
the enable cells; they have the following
significance:

Bit 0
o CHECK is enabled for certain items
1 CHECK is disabled

Bit 10 (only valid if bit 11 is set)
o The unqualified prefix that

applies is NOCHECK
1 The unqualified prefix that

applies is CHECK

Bit 11
o No unqualified prefix applies
1 An unqualified prefix applies

Bit 0 is referred to as the "any-CHECK"
enablement bit, and bits 10 and 11 as the
"unqualified CHECK enablement bits."
Enablement and disablement of qualified
CHECK is indicated in the flag bits of the
ONCB.

The test for enablement begins by a test
on the any-CHECK bit (bit 0) in the enable
cell. If this is set to '1'B, control is
immediately returned to the caller. If the
bit is set on, a search is made for a
relevant qualified ONCB in the DSA of the
block in which the interrupt occurred; if
such an ONCB is found, the enablement
status is determined from it. If no such
ONCB is found, the unqualified CHECK
enablement bits are tested for unqualified
enablement or d~sablement. If bit 11 is
on, the enablement status is taken from bit
10. If bit 11 is not set, neither an
unqualified CHECK nor an unqualified
NOCHECK applies, and a further search must
be made in the preceding DSA on the static
backchain. If the dummy DSA is reached
without any of the tests proving positive,
CHECK is disabled.

in current
enable cell
(bit 0)

Return to DSA
of block in
which CHECK
was raised

Search on-cells
for unqualified
CHECK

Take action
specified
inONeB

No

Chain back to
previous DSA on
static chain

Take
standard
system
action

Chain back

Yes

Yes

to previous
DSAon
dynamic chain

Yes Search dynamic
>-..... ---1 ONCBs for relevant

qualified CHECK

No

ENABLEMENT SEARCH

Test further
enablement bits
(10& 11)for
unqualified CHECK

Return to DSA
of block in
which CHECK
was raised

Search dynamic

>-N~04_-I ~:!~~~or

Chain back to
previous DSA
on dynamic
chain

Enablement
only
specified

ON-statement

No

No

ESTABLISHMENT SEARCH

Yes Take action

>--+--1 ~~i~

Figure 7.5. Handling the CHECK condition

Chapter 7; Error and Condition Handling 83

SEARCHING FOR ESTABLISHED ON-UNITS

When it is Known that CHECK is enabled, a
search must be made for established on­
units. This search is separate from the
search for enablement. A return is first
made to the DSA in which the interrupt
occurred.

Two searches are made, the first for a
qualified on-unit. The complete dynamic
backchain is searched for relevant ONCBs.
If one is not found, a search is made
through th~ backchain for enable cells that
indicate unqualified CHECK. If nothing is
found, standard system action is taken.

Error Messages

The library module IBMDESM is called by the
error handler to generate the system
messages and find the on-code value;
control is then passed to IBMDESN to finish

\ the system message, or to generate the SNAP
message. In order to save space, IBMDESN
is overlaid on IBMDESM. No new DSA is
acquired for IBMDESN.

~~§1g~_~g§§gg~§: For non-PL/I conditions,
system messages have the following form:

IBMxxxx 'ONCODE'= xxxx message text
rqualifier] IN STATEMENT xx AT/NEAR
OFFSET xxx IN PROCEDURE WITH ENTRY xxx x

The qualifier might, for example, consist
of the file name. For PL/I conditions, the
format of the message is much the same, but
the name of the condition is also given.
For example:

IBM4821 'ONCODE'= 3108 'FIXEDOVERFLOW'
CONDITION RAISED IN DECIMAL DIVIDE IN
STATEMENT 31 AT OFFSET OOOA35 IN
PROCEDURE WITH ENTRY ZERNES

Sna~Messaqes: If an on-unit contains both
SNAP and SYSTEM, the resulting message is
essentially the system message followed by
the line

FROM (STATEMENT/OFFSET) xxx IN A (BEGIN
BLOCK/PROCEDURE WITH ENTRY xxx/A 'xxxx'
ON-UNIT)

which is repeated as many times as
necessary to trace back to the main
procedure. If an on-unit contains only
SNAP, the message begins

84

'xxxxxxx' CONDITION RAISED'[IN STATEMENT
xxx) (AT/NEAR) OFFSET xxx IN PROCEDURE
xxx

and continues as for a SNAP SYSTEM message.

The statement number is not always
present in messages because the generation
of execution-time statement numbers by the
compiler is a compiler option. When
statement numbers are generated, they are
held on a block or procedure basis. For
each block or procedure, a table in static
storage relates each statement number to
the, offsets of the corresponding
instructions in compiled code. A field
addressed by compiled code gives the
address of the relevant table.

The statement number is held in relation
to its offset from the main entry point.
Since the PL/I program need not have
entered via this entry point, the offset is
calculated independently from that given in
the message. If the FLOW option is used,
then additional information is printed out
after every snap message. (See "The FLOW
Option," later in this chapter.)

When an interrupt occurs in a library
module, the system message does not give
the offset from the start of the library
module, but gives the statement number of
the statement in which the library module
was called and the offset of this statement
from the entry poin~ of the procedure block
in which it is contained.

If the interrupt was a software interrupt
in compiled code, the address will be the
return address that was used by the BALR
instruction when IBMDERR was called.

If the interrupt was a program check
interrupt in compiled code, the address of
the interrupt will have been moved from the
old PSW and placed in the register 14 field
by IBMDERR to simplify return to the point
of interrupt.

If the interrupt was in a library
module, the address required is the point
in compiled code at which the library
routine was entered. This will have been
placed in the register 14 field when the
library module was called.

Thus the address required to identify

the erroneous statement is always the
address held in the register 14 field in
the most recent compiled code DSA.

lindinL!he Addre2.2-.of :.the Entr.Y_Point
of_the Bloc~

The address of the entry point of the block
is found by chaining back along the DSAs to
the DSA before the last compiled code DSA.
The start of the chain is the DSA addressed
by the current value of register 13. The
address of the required entry point is held
in the save area of this DSA as the branch
register contents (offset X·C·). The
existence of the dummy DSA ensures that
there will always be a DSA before the one
in which the interrupt occurred.

When the addresses of the entry point
and the offending statement are known, the
address of the block can be calculated and
the statement number found. If the DSA in
which the address of the link register was
found is that of a procedure which was
entered at its first entry point, then the
offset already calculated will be the one
required for the message. However, if the
DSA containing the address of the interrupt
vas a begin block or on-unit, the offset
for use on the statement number table is
recalculated by using the exit address
found above or taking from it the address
of the main entry point, which is found in
the statement number table. The offset is
then calculated between the offending
statement and the new address. This is
necessary because the offsets given in the
system message are taken from procedure
entry points, whereas statement numbers are
related to offsets in all blocks including
begin blocks.

For snap messages, once the first
procedure has been found and the
appropriate message generated, the rest of
the trace gives information about both
procedures and on-units, and thus their
DSAs are treated in the same way.

Ancillary Information

If the error was in I/O, then the address
of the FCB of the file is passed to IBKDERR
which stores it for IBKDESN to find the
file name. Similarly, the address of the
control section containing the condition
name is passed to IBKDERR if the CONDITION
condition is raised.

The message module IBKDESK calls on a
number of message text modules to produce
the relevant message. These modules
consist essentially of the fixed message
text portions of the message. The messages
are held in groups. The groups are
addressed from a table at the head of the
module, and the messages in their turn are
addressed by an offset from the start of
each particular table in IBMDESK. The
message required is determined from
information in the error code. IBKDESN
puts all error messages onto SYSPRINT
provided that SYSPRINT has not been
declared with unsuitable attributes. If it
has been declared with unsuitable
attributes, then the system messages go to
the console operator, and the snap messages
are ignored.

Dump Routines

A series of library modules are provided to
implement the PLIDUKP facility. Kodule
IBMDKDM is the dump bootstrap module which
is part of the resident library. This loads
and calls the transient dump control module
IBKDKMR, which in turn loads and calls
those modules required to carry out the
dump options specified in the call to
PLIDUKP. A number of transient modules are
used to reduce the amount of storage
required. The organization of these
modules is shown in figure 7.6.

In order to ensure that as much
information as possible is provided when a
call to PLIDUMP is made, a special STXIT
macro instruction is issued to intercept
program check interrupts. When a program
check interrupt occurs, an attempt is made
to continue. If the interrupt occurs in a
program called from the dump control
module, that particular routine is
abandoned and a return i~ made to the dump
control module. Any further routines needed
to complete the information specified in
the options are then called. If the
interrupt occurs in the trace or file
modules, a hexadecimal dump is produced.
If the interrupt occurs during IBKDKDD, the
hexadecimal dump module, the job is stopped
with a DOS system dump macro to ensure that
a hexadecimal dump will be produced.

The dump control module IBMDKMR is
divided into sections, and if an interrupt
occurs in any of these sections, control is
passed to a predefined address, at which
point an attempt is made to continue with
the next option. processing then continues
from that point. The dump modules are

Chapter 7: Error and Condition Handling 85

IBMDKDM
RESIDENT

BOOTSTRAP LIBRARY

IBMDKPT

DUMP
PARAMETER
TRANSLATE

MODULE

IBMDKMR

IBMDKTC

DUMP
INITIALISATION
MODULE

IBMDKTB

T:RACE BLOCK
FLOW MODULE

TRANSIENT
LIBRARY

IBMDKDR

REPORT

IBMDKDT IBMDKTR IBMDKFA IBMDKDD

DUMP SYSLST
TRANSMITTER

TRACE
MODULE

FILE DUMP DUMP MODULE

IBMBEOC

ON CODE

Figure 7.6. Interrelationship of dump routines

fully described in the publication QQ~_PL/!
Trg~sien!_1i~~g~y_prQ~am-1Qgic.

I The dump control module acquires a VDA
lof the correct size for each module that it
I loads. When one module is completed it
loverlays the next module, adjusting the
Isize of the VDA as necessary. Information
lis transmitted to SYSLST by the PLIDUMP
I transmitter IBMDKDT (this transmitter is
lalso used for COUNT information). SYSLST
Imust be assigned either to a printer or to
la tape device.

Miscellaneous Error Rou tines

Two further library routines are used in
certain error situations.

86

These are:

IBMDPEP

IBMDPES

Housekeeping error message
module

Insufficient non-LIFO storage
message modul.e

Both routines are held in the transient
library.

!§~QPE~: This module issues an appropriate
message in three circumstances:

1. When there is no main procedure.

2. When there is insufficient space for
the program management area at
initialization.

3. When there is an interrupt in the
error handler.

The first message is written on SYSPRINT.
The last two messages are both written on
the console, because SYSPRINT may not be
able to function in the situations that are
handled. This could be either because of
overwriting of control blocks, if there is
an interrupt in the error handler, or
because there is insufficient room, if
there is no storage available.

!~~Q~!~: If no dynamic storage is
available, this module puts out a message
using either SYSPRINT or the console
message transmitter module, if available.
If neither can be used, the message is
written on the console using an EXCP macro
instruction.

I The FLOW and COUNT Options
I

,

The FLOW and COUNT options are used to
provide information about which statements
are executed in a particular run of a
program. The FLOW option is used to
maintain a trace of the most recently
executed statements. The COUNT option is
used to maintain a count of the number of
times each statement is executed.

Both options are implemented by calling
an interpretive library routine, IBMDEFL,
at every point in a program where the flow
of control may not be sequential. T"he
library routine, IBMDEFL, analyzes the
situation and updates tables to retain a
record of the branches made. IBMDEFL is
also called during program initialization
to set up housekeeping information. Two
transient library modules are used to
interpret the tables set up by IBMDEFL and
to put out the information,. The routines
are IBMDESN for the FLOW option, and
IBMDEFC for the COUNT option.

The compiler generates the same
executable code for both the COUNT and the
FLOW option.

Points at which the flow of control may
not be sequential are known as branch-in
and branch-out points. For example,
labeled statements and entry points are
branch-in points, and GOTO -statements are
branch-out points. At branch-in and branch­
out points the compiler places code that
will call IBftDEFL. If the branches are
taken, they are recorded. For COUNT they
are recorded in a table known as the
stat~.ment !J;~'y§!£'y '£..Q.Ynt table. For FLOW,
they are recorded in a table known as the
tlow §!atement !g!!le.

Y§~_Qt_Brgnchin9-1ntgJ;~~!iQD_for !10W

,For the FLOW option, a list of the

statement numbers at which branches were
taken and a list of any changes of
procedure is retained.

FLOW output consists simply of the list
that is recorded by IBMDEFL and typically
takes the form shown below.

12 TO 18
27 TO 35 IN SORTER
76 TO 108 IN TESTER
134 TO 77 IN SORTER

This indicates that the program branched
from statement 12 to statement 18, then ran
sequentially from 18 to 27. After
statement 27 it branched to, or called,
statement 35 in the procedure called
SORTER. Control then ran sequentially to
statement number 76, at which point it
passed to statement number 108 in the
procedure called TESTER. Control then ran
sequentially from 108 to 134 and finally
passed to statement 77 in SORTER.

Us~f B!:MChi1!L!nformatig!!_iQLCOUNT The
COUNT option calculates the number of times
each statement is executed by recording
branch-in and branch-out points as they
occur and analyzing them at the end of the
program.

The formula used for calculating the
number of times each statement is executed
from the branch count is:

Cn=Cn-1+BIn-BOn-1
t

Where:
Cn =the number of times the statement

was executed.
Cn-1 =the number of times the previous

statement was executed.
BIn =the number of times the statement

was branched to.
BOn-l=the number of times the previous

statement was branched from.

To retain the information, a count field
is set up for every statement in the
program, and branches-in and branches-out
are recorded when they occur. Every time a
branch-in is made, the count for the
statement to which the branch is made is
incremented by one. Every time a branch-out
is made, the count for the statement after
the branch-out is decremented by one. When
the program ends, statements that have
values other than zero mark the beginning
and end of ranges of statements that have
been executed the same number of times.
The number of times the ranges of
statements have been executed is calculated
by adding the value in the count field to
the sum of any preceding values. This
process can be followed in figure 7~7.

Chapter 7: Error and Condition Handling 87

r--,

• t

PL/I PROCEDURE TO BE COUNTED

1 COUNTIT:PROC OPTIONS (MAIN);
2 DO 1=1 TO 2;
3 PUT LIST (I);
4 END;
5 END COUNTIT;

In this procedure, the do-loop in statements 2 through 4 will be
executed twice, and the other statements once. Statement 2 will be executed
three times as a return is made at the end of the loop to test the value
of I.

HISTORY OF THE STATEMENT FREQUENCY_COUNT TAB11

After the branch-in to statement number 1, the table is set up with a value
of 1 for the first statement and 0 for all others, thus:

statement number 1 2 3 4 5
branch count 1 0 0 0 0

After the branch-out at statement 4, the count of the ~.I! statement
is decremented by one and the table becomes:

statement number 1 2 3 4 5
branch count 1 0 0 0 -1

After the branch-in at statement 2, the branch count for statement 2 is
incremented by one and the table becomes:

statement number
branch count

1
1

2
1

3
o

4
o

5
-1

At statement 4, a further branch out is made and a return made to
statement 2 to test the value of I. One is subtracted from the value
of statement five makin the count -2 and one added to the count
of statement 2 making it 2. Because I is greater than 2 a
branch is made after the test to statement 5. This results in
one being subtracted from the count for statement 3 and one being added to
the count for statement 5. At the end of the program the table reads:

statement number
branch count

1
1

2
2

3
-1

4
o

5
-1

!NALYS!~_OF ~E STATEMENT FREQUENCY COUNT TABL~

A value known as the current count, which is initially set to zero,
is added to the branch count for each statement in turn. The sum is
the number of times the statement was executed; this value also becomes
the current count.

statement number
1
2
3
4
5

current count
o
1
3
2
2

branch count
1
2

-1
o

-1

times executed
0+1= 1
1+2= 3
3-1= 2
2+0= 2
2-1= 1

L-----------------------------________________________ -________________________ ~
Figure 7.7

88

How branch counts are used to calculate the number of times each
statement is executed.

Special cases There are a number of special
cases that require additional action,
either by the compiler, or by IBMDE~L, or
by both. These special cases arise for
three reasons:

1. Branches can be caused by
interrupts, but the points at
which they will occur cannot be
predicted during compilation.
Consequently the compiler cannot
place calls to IBMDEFL at these
points.

2. Branches to labeled statements,
can come from either the same
block or a different block.
Consequently the code generated by
the compiler cannot be used to
indicate whether a new block entry
is required.

3. The algorithm used for the COUNT
option is not effective for CALL
statements and function references
because the branch-in and branch­
out are made to and from the same
statement.

The first case is handled by IBMDEFL
checking for the occurrence of an interrupt
when it is called in situations where one
could have occurred. The second case is
handled by altering the GOTO code in the
TCA so that it calls IBMDEFL to set·
appropriate flags when a GOTO out of' block
occurs. A test for the flags is made when
the call to IBMDEFL for the branch-in at
the labeled statement is made. The third
case is predictable during compilation and
is handled by the compiler setting up
different code for branches-in to CALL
statements and function references, and by
IBKDEFL testing for such code.

IIMPLEMENTATION OF FLOW AND COUNT
I

ITables Used by FLOW and COUNT ,
ITo enable it to retain FLOW and COUNT
linformation, IBKDEFL sets up tables in
Idynamic storage.
, Details of their formats are
Ishown in appendix B.
I
Il10W OptiQB: FLOW information is retained
lin a table called the flow statement table.
IThe flow statement table~as three-- ----­
Isections; a header section containing
Ihousekeeping information, a statement
Inumber section holding the numbers of
Istatements that were branched to or from
I plus flags to indicate the type of entry,

and a procedure names section containing
the names of procedures and on-units to
which branches are made. The length of the
flow statement table is determined by the
values given to "n" and "m" when the FLOW
option is specified.

When all the spaces in the table for
statement numbers or procedure names have
been filled, the earliest entries are
overwritten. The fields in the· header
section are used to indicate which is the
next space available in the table.

The table is set up during program
initialization and is addressed from the
TCA.

~QY~1-0pti2n: COUNT information is retained
lin tables called §!g!~nt frequency £2Yn1
I~!~. The tables have a field for every
I statement. They are set up when an
lexternal procedure is entered. A table is
Ineeded for every external procedure because
Itwo external procedures can contain the
Isame statement numbers.
I
I Statement frequency count tables are
chained together and addressed from the TCA
appendage (the TIA). Two addresses are
kept in the TIA, the address of the current
statement frequency count table (that is
the table that was last used) and the
address of the statement frequency count
table for the first procedure in the chain.
Statement frequency count tables are
associated with their matching external
procedures by having the address of the
static control section for the procedure
placed at a fixed offset in the table. (A
static control section is unique to an
external procedure and its address can be
easily accessed as it is addressed
throughout compiled code by register
three). The last statement frequency count
table in the chain has its chaining field
set to zero.

Int~~re!!~he Flow statement Tabl~

Information from the flow statement
table is interpreted by the message module
IBMDESN or the PLIDUMP routines, and
transmitted in the form of statement number
pairs which are associated with the names
of procedures or with on-unit condition
types.

To extract the information, the message
module must know from which points output
in the statement number and procedure names
section of the table output is to start.
It must also be able to match the entries
in the two sections of the table.

The starting points in both sections of
the table are found by checking whether the
dummy entry, inserted during program

•
Chapter 1: Error and Condition Handling 89

,initialization, has been overwritten. If
Ithe dummy entry has not been overwritten,
!the starting point is the first entry in
Ithat section of the table. If the dummy
lentry has been overwritten, the starting
,point will be the entry flagged as the next
!available entry. This is because the table
lis used cyclically, with the newest entry
loverwriting the oldest entry. ,

statement numbers are matched with
procedure names by comparing the number of
procedure names with the number of
statement number entries that are flagged
as being associated with procedure name
entries. If the two numbers are the same,
the first procedure name will be associated
with the first statement number that
requires a procedure name. If there are
more procedure names than statement numbers
that require procedure names, the trace of
procedures must be longer than the trace of
statement numbers. Accordingly, the
procedure names are put out without
statement'numbers until the point is
reached where the number of procedure names
left is the same as the number of statement
numbers that require them. From that point
on statement numbers and procedure names

tare put out together. If there are more
Istatement numbers that require procedure
!names than there are procedure names, the
,trace of statement numbers must be longer
Ithan the trace of procedure names. The
,earliest statement numbers are put out
,without names and, where a procedure name
lis required, "UNKNOWN" is used. When the
Inumber of names required matches the number
lavailable, the procedure names are put out
Iwith the statement numbers.
I

90

IIn1.!ll:£!:etinq th~ §tatemen1 lregue.n~ £ount
!tables

!Module IBMDEFC is called at program
Itermination to print count information.
loutput is tabular and printed four columns
Ito a page. An entire page is built before
transmission.

Output for a procedure begins with the
procedure name. This is followed by the
column headings: "FROM TO COUNT". The
current count is initialized to zero and
the first non-zero entry in the table is
found. The associated statement number is
then placed in the 'FROM' part of a
temporary line and the value for the non­
zero entry is added to the current count.
The entries for the following statements

lare scanned until one with a non-zero count
Ivalue is found. The number of the
!preceding statement is then placed in the
I'TO' part of the line and the current count
lin the 'COUNT' part. This line is ·included
lin the page. The statement number found is
,then placed in the 'FROM' part of the
Itemporary line and its branch count (which
Imay be negative) is added to the current
count. The scan of entries continues until
another non-zero count is reached, and the
process is repeated.

If the count for a range is zero, the
line is not moved into the page but the two
statement numbers are saved for separate
printing. Whenever a line is moved into
the page, checks are made for the end of a
column and the end of the page. When the
page is full it is transmitted.

The process is continued until the end of
tthe table is reached.
t
,The next table is then processed, until all
Iprocedures have been handled. ,
,Finally, ranges of unexecuted statements
tare printed for each procedure.

Chapter 8:

Discussions of record-oriented input/output
tend to become confusing because of the
wide use that is made of the word "file"
throughout the Disk Operating System. In
the DOS usage, the word "file" means a
collection of data stored on an external
storage medium. Throughout this chapter,
however, the term "data set" is used for
this concept. "File" is used in its PL/I
sense - the representation (within a PL/I
proqram) of a data set.

Also used in this chapter are the terms
record variable and ke~i~bl~. These
terms refer to the PL/I variables to which
or from which data is moved. For example,
in the statement:

READ FILE (X) INTO (Y) KEY (Z);

Y is the record variable, and Z is the key
variable. The term transmission statement
is used to cover READ;-iRiTE, LociTi;-and­
REWRITE statements. These three terms are
not standard PL/I terminology, but they are
used for convenience throughout this
chapter.

Introduction

The DOS PL/I Optimizing Compiler uses the
logical input/output control system (LIOCS)
routines of DOS data management to
implement record I/O. These routines offer
facilities similar to, but not the same as,
those of the PL/I language.

The LIOCS routines require that:

1. A define-the-file control block (DTF)
is set up to describe and identify the
da ta set.

2. OPEN and CLOSE macro instructions are
issued to open and close the data set.

3. GET, PUT, READ, or WRITE macro
instructions are issued to store or
obtain a new record.

The LIoes routines transmit the data one
block at a time between the data management
buffer and the external medium, but each
separate macro instruction issued by the
program results in only a single record
being passed. When a transmission error

Record-Oriented Input/Output

occurs, or when the end-of-file is reached,
the LIOCS routines either set flags
indicating the error or branch to error
handling or end-of-file routines that can
be specified by the programmer.

The basic method used by the optimizing
compiler to implement record I/O is to
retain the source program information in a
number of control blocks, and to pass these
control blocks to PL/I library routines
which interpret the information and carry
out the necessary action by calling the
data management LIoes routines as required.
The method is summarized below, and shown
diagramatically in figure 8.1. Figure 8.16
shows the overall scheme in greater detail.

Summary of Record I/O Implementation

During compilation e compiler sets up a
number of control locks that describe the
file declaration and the OPEN, CLOSE, and
transmission atements. The compiler also
generates code to complete these control
blocks from execution-time information, and
to pass their addresses to the PL/I library
or LIOCS routines.

The compiler also determines which LIoes
routine will be used for each transmission
statement, and generates an ESD record so
that the appropriate routine will be link­
edited.

If no environment options depend on
execution time values, the compiler also
acquires buffers, and completes the DTF and
FCB. This reduces the work to be done
during execution to little more than
issuing the OPEN macro instruction. The
process is referred to as opti~i~atiQn_21
th~Q~EN_fYnction in the compiler
diagnostic messages.

Chapter 8: Record-oriented Input/output 91

OPEN/CLOSE BOOTSTRAP
ROUTINE

(Resident Ii brary)

Set up control blocks
from file declaration
and I/O statements

Call PL/I library
or L10CS routines
passing control blocks

OPEN ROUTINES CLOSE ROUTINE

(Transient library) (Transient library)

tl. ", ---t ------1----------
'~:~Il~;:··

~------~------~

L10CS OPEN
ROUTINE

L10CS CLOSE
ROUTINE

COMPILER

COMPI LED CODE

TATEMENTS

Library call I/O

PL/I LIBRARIES

TRANSMITTER INTERFACE
ROUTINE

(Resident library)

PL/I TRANSMITTER

(Transient library)

~t~~
1M - -----1---------
II DATA MANAGEMENT
~i (L10CS) ROUTINES

L10CS TRANSMITTER ROUTINE

Figure 8.1. The principles used in handling record I/O statements

92

r---,
t File type: Consecutive buffered
1---
I Record type: F,FB
1---~-----------------------
I statement I Record variable restrictions I ENVIRONMENT option requirements

READ SET

READ INTO

WRITE FROM
(fixed string)

WRITE FROM
(varying string)

WRITE FROM
Area *
LOCATE A

Record type: U

READ SET

READ INTO

WRITE FROM
(fixed string)

WRITE FROM
(varying string)

WRITE FROM
(area *)

LOCATE

None None

Length known at compile time RECSIZE known at compile time
(max. length if a varying string)

Length known at compile time RECSIZE known at compile time

Maximum length known at compile
time

None

Maximum length known at compile
time

Length known at compile time

RECSIZE known at compile time
SCALARVARYING option used

RECSIZE known at compile time

RECSIZE known at compile time

Not BACKWARDS

BLKSIZE known at compile time

BLKSIZE known at compile time

BLKSIZE known at compile time
SCALARVARYING option used

BLKSIZE known at compile time

BLKSIZE known at compile time

~Q!~: All statements must be found to be valid during compilation. File parameters
or file variables are ~ handled by in-line code.

* Including structures whose last element is an unsubscripted area.
L---~

Figure 8.2. Conditions under which I/O statements are handled in-line

Chapter 8: Record-oriented Input/output 93

r---~---, Data Set I File Attributes I Access ,
Organization I I Methods I

--~------------I
I I INPUT I BUFFERED I I

CONSECUTIVE I SEQUENTIAL I OUTPUT I or I SAM I
I I UPDATE I UNBUFFERED I I

INPUT BUFFERED
SEQUENTIAL OUTPUT UNBUFFERED ISA"

I 1 UPDATE I is ignored I
INDEXED I-------------------------~--

, I INPUT I I
1 DIRECT I UPDATE I I ISAM

I INPUT BUFFERED
SEQUENTIAL I OUTPUT or DAM

REGIONAL I , UPDATE I UNBUFFERED I
1--
I I INPUT I
1 DIRECT 1 OUTPUT I DAM
1 I UPDATE I

---1
VSAft I 1 INPUT I BUFFERED I I
entry-sequenced I SEQUENTIAL I OUTPUT I or 1 VSAM 1

1 I UPDATE 1 UNBUFFERED I 1
-------------------~----~--1

I 1 INPUT 1 BUFFERED 1 1
I SEQUENTIAL I OUTPUT I or 1 VSAM 1

VSA"
key-sequenced

1 I UPDATE I UNBUFFERED 1 I
1--,
, I INPUT I BUFFERED I I
,DIRECT I UPDATE I or I VSAM I
I I I UNBUFFERED I I L---------------------__ ~

Figure 8.3. Data management access methods for record-oriented transmission

PLII record I/O statements are executed in
the following manner:

OPEN - by a call to the open routines in
the PL/I library.

CL2~E - by a call to the close routines in
the PL/I library.

REA~ WRITE. LOCATE. REWRITE - generally by
a-call to the PL/I library transmitter
modules via an interface routine, IBftDRIO.
The transmitters call the data management
(LIOeS) routines. (This process is
referred to "library-call I/O.")

94

On buffered consecutive files, most
transmission statements are
executed by a direct call from
compiled code to the data
aanagement (LIOCS) routines. (This
process is referred to as "in-line
I/O.") Figure 8.2 shows the
conditions under which I/O
statements are handled in-line.

Impli~i! open - by manipulation of
addresses so that all attempts to access
the file when it is not open result in
control being passed to the open routines
in the PL/I libraries.

Implicit close - by the program
termination routine checking for open
files, and calling the PL/I library routine
to close them.

r---,
1 File Type 1 Device Type I DTF Type
1---
I SEQUENTIAL BUFFERED CONSECUTIVE Card I DTFCD
I I
I Printer I DTFPR
1 I
I Tape I DTFMT
1 I
1 Disk I DTFSD
1 I
I logical unit = SYSIPT, I DTFDI
t SYSLST, SYSPCH I
I (F format only) t
1---
I SEQUENTIAL UNBUFFERED CONSECUTIVE 1 Tape I DTFMT (work)
I I I
I I Disk I DTFSD (work)
1---
I INDEXED I Dis~ I DTFIS
I---~---
I REGIONAL (1) AND (3) I Disk I DTFDA
1---
I Note: DTFs are not set up for VSAM files I
L---J

Figure 8.4. Type of DTF set up for different PL/I file typ~s

The access method used for different PL/I
file types is shown in figure 8.3. The DTF
used for different file types is shown in
figure 8.4.

Compiler Output for Record I/O

The output of the compiler for record I/O
is subdivided below according to the
statement type in the source program.
Figure 8.5 shows the control blocks
generated for each statement type, and the
relationship between these control blocks.

IFor every file declaration, except those
with ENV(VSAft), a define-the-£ile control
block (DTF), a file control block (FCB), an
environment control block (ENVB), and a
field to contain the filename and the
length of the filename are set up. All
these items are held in static internal
storage for INTERNAL files, and in a
separate control section for external
files.

t For a file declared with ENV(VSAM) a DTF
fis not set up. Instead an ACB (access

method control block) is used which is
generated by the library routines during

I execution. The FCB, ENVB and filename
fields are set up as for other files. If a
file that is declared with ENV(INDEXED) is

lused to access a VSAM key sequenced data
set, the VSAM interface is used.

~he D!l is required by DOS data
management. There are nine types of DTF
that can be used by the compiler. The type
used depends on the file and device ~ype,
as shown in figure 8.4. Full details of
the DTF are given in the publication QOS
~.!U~~ilisor and Input/Out12!!i Ma£~
In§tructions.

Where there are no environment options
that depend on execution time values the
compiler also acquires buffers and fills in
the DTF fields with buffer addresses. The
bufferiare held within the file ~ontrol
section for external files and within the
static internal control sect~on for
internal files. The compiler also does any
necessary checking on items such as
blocksize. If the declaration is invalid
the compiler generates a message and makes
no attempt to optimize the operation.

When the operation is optimized a flag
is set in the FCB.

1he FCB is a control block that is used
as a central addressing area for file
information. It holds the addresses of the

IDTF, and the ENVB, the filename and
filename length. For VSAM files the

Chapter 8: Record-oriented Input/output 95

laddress of the ACB (access method control
I block) is set when the file is opened and
tthe block has been generated. It also
holds a mask indicating which statements
are valid for the file. The format of the
FCB is shown in appendix B.

Both the FCB and DTF are made as near
complete as possible during compilation;
those values which are not available until
execution time are added to the blocks
during the execution of the open routines.
These values are derived from the ENVB and
the open control block OCB (see below).

The ENVB contains the addresses of such
items-in the environment options as can be
declared with variable values. The format
of th~ ENVB is given in appendix B.

Ihg_fil~g~e and filename,length are used
by the error message modules when the name
of the file is needed for an error message.

For an OPEN statement, the compiler
qenerates a call to the library open/close
bootstrap routine, IBMDOCL; if the
attribute input or output has been used in
the OPEN statement, the compiler also
generates an open control blo£UOCBl. The
OCB indicates whether the input or the
output attribute was used in the statement.
The OCB is held in static internal storage

For each file to be opened, the following
information-is passed to the open/close
bootstrap routine:

1. The address of the FCB.

2. The address of the OCB (or zero, if no
OCB exists).

3. The address of the TITLE, if
specified.

Transmission Statements

The code and control blocks generated for a
transmission statement depend on whether it
will be handled by an in-line call to the
LIOCS routines or by a call to the PL/I
library transmitter.

In-line record I/O state~ents: the
_ compiler generates a call to an LIOCS
routine, which uses information in the DTF
as a parameter list. Compiled code
addresses the LIOCS routine through a field
in the DTF. The DTF is addressed from a

96

field in the FCB.

For an in-line call, code may also be
generated either to move the data to the
record variable or to. set a pointer to the
data, and to check whether the transmission
has been successful-.

The code and control blocks generated
for an in-line record I/O statement are
shown in figure 8.6.

Library-call recor~O statements: the
compiler generates a call to the PL/I
transmitter module, IBMDRIO. IBMDRIO has
the following parameter list passed to it:

Address of FCB
Address of request control block

(RCB)
Address of record descriptor (RD»;

~, address ignore factor; Q~,
address at which to set pointer

Address of key descriptor (KD) ; ~
zero if no key descriptor

Address of event variable (EV); ~,
zero if no event variable

Abnormal locate return address
(locate statements only)

The FCB is generated from the file
declaration and is described above. The
remainder of the control blocks in each
parameter list are generated for the
transmission statement.

The~guest~trol b!2£]L(RCBl defines
the statement type. It consists of two
words. The first word is a fullword of
flags that define the statement. types,
indicating whether the statement is READ
SET, READ INTO, WRITE FROM, etc. The
second word is a machine language
instruction that will be executed by
IBMDRIO. (For exact format, see appendix
B.) The RCB is set up in static internal
storage.

A branch instruction is placed in the
second word of the RCB if, during
compilation, the statement type can be
validated. A direct branch to the
transmitter will then occur ~uring
execution. If, however, the statement type
cannot be checked during compilation, or if
it is invalid, a test-under-mask
instruction is placed in the RCB. The
check of statement val-idity will then be
made during execution, using the flags in
the FCB which indicate the valid stateaents
for the file.

All transmission statements can be
checked for validity during compilation
except for statements on unbuffered
consecutive files, file parameters, and
file variables. Unbuffered consecutive
files can be opened for either INPUT or

CONTROL BLOCKS GENERATED FROM CONTROL BLOCK GENERATED FROM CONTROL BLOCKS GENERATED FROM CONTROL BLOCKS GENERATED FOR
FILE DECLARATION OPEN STATEMENT INPUT/OUTPUT STATEMENTS VSAM FILES

Environment control block IENVB) Request control block (RCB) Access Method control block, (ACB) .
r

Function: Holds information on Function: Holds a definition of the statement
environment options (except the for execution-time checking

Function: To hold information required by
data management for VSAM files. MEDIUM option) Location: In static storage Location: Non- LI FO storage Location: I n static storage When generated: During compilation, for
When generated: Durinq the execution of OPEN When generated: During compilation library data management calls only

Contents: Addresses of Contents: Flags defining statement Contents: See data management document-
File control block (FCB)

blocksize Code for TM instruction, or ation.

Function: Acts as a central source of
record length a branch instruction (if
of buffer tracks checking was done during information about the file KEYLOC value execution) Location: In static storage key length

When Generated: During compilation indexarea size
Contents include: addbuf

Flags indicating
valid statements Input Output control block (OCB)
Transmitter name
Transmitter address
Error module address Function: To hold address information for

ENVB address VSAM files.
DTF address

Record descriptor (RD)
Location: Non-L1 FO storage

Filename address I Define the file control block (DTF) Open control block (OCB) When generated: During the execution of OPEN ..
Buffer address Function: To hold information Function: To contain file attributes Function: To describe the record variable Contents: Equivalent of FCB for VSAM files.
Flags and workspace for necessary to data management given in OPEN statement Location: Depends on storage class of record the transmitters Location: In static storage Location: In static storage variable ACB address When generated: As far as When generated: During compilation When generated: Depends on storage

possible during compilation, and Contents: The attribute I NPUT or class of record variable
completed during open from OUTPUT when specified on the OPEN Contents: Length and address of record
information in the ENVB and FCB statement. variable
Contents: See data management
documentation

Filename Key descriptor (KD) .
r

Function: To hold information Function: To describe the key variable
about the filename Location: Depends on storage class of key
Location: In static storage variable
When generated: During compilation When generated: Depends on storage
Contents: Filename and its length class of key variable

Contents: Length and address of key
variable

',,-

Figure 8.5. Control blocks used in record I/O

Chapter 8: Record-oriented Input/output 97

Sl'MT

1
2

3
4

SOURCE LISTING

EXAMPLE:PROC OPTIONS (MAIN);
DCL LINE FILE RECORD INPUT

ENV(FB,RECSIZE(SO),BLKSIZE(400),MEDIUM(SYSIPT,2540»,
CARD CHAR (80);

READ FILE (LINE) INTO (CARD);
END;

STATIC INTERNAL STORAGE MAP STATIC EXTERNAL CSECTS

000000
000004
000008
OOOOOC
000010
000014
000018
00001C
000020
000024
000028

00000008
0000005E
0000005E
00000000
00000000
00000000
00000000
00000000
91E091EO
00000000
000000940000005E

OBJECT LISTING

* STATEMENT NUMBER 3
000062 18 12
000064 58 90 3 024
000068 18 29
0OOO6A 58 10 2 018
00006E 58 80 2 05C
000072 58 BO 8 000
000076 5A BO 8 004
0OO07A 50 BO 8 000
00007E 59 BO 8 008
000082 47 DO 7 030
000086 41 80 3 028
00OO8A 58 FO 1 010
00008E 45 EO F 008
000092
000092 D2 4F D OA8 B 000
000098
000098 91 80 2 02C
00009C 47 EO 7 044
OOOOAO 58 FO 3 018
OOOOA4 05 EF
OOOOA6
OOOOA6 18 27

CL.2

CL.3

CL.4

PROGRAM ADCON
PROGRAM ADCON
PROGRAM ADCON
A •• IBMBOCLA
A •• IBMBOCLC
A •• IBMBRIOA
A •• IBMBRIOO
A •• STATIC
CONSTANT
A •• FCB
COMPILER LABEL CL.3

LR 7,2
L 9,36(0,3)
LR 2,9
L 1,24(0,2)
L 8,92(0,2)
L 11,0(0,8)
A 11,4(0,8)
5T 11,0(0,8)
C 11,8(0,8)
8Nrl CL.2
LA 8,40(0,3)
L 15,16(0,1>
BAL 14,,8(0,15)
EQU * MVe CARD(SO) ,,0 (11)
EQU *
TM 44(2),X'80'
BNO CL.4

000000

000090

OOOOBO
0000B8
OOOOBC

0000C8
OOOOCC
000000
000004

9100000000000000
0000000000000000
0000008800000090
OOOOOOCOOOOOOOOO
08E9000002110100
8880202002000000
0190000000000050
000000F8000000F8
00000000001COOOO
00000000000000F8
0000028800000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
000403C9D5C50000
C0000000010000BO
010000B4020000B8
020000B8020000B8
020000B8020000B8
0000800000000001
OOOOOOEO
0000000000000000
02050202
00000288
00000000
020000F8
2000019041BEOOOO
470000000000

Set R2 as program base
Place address of FCB in R9
Place address of FCB in R2
place address of DTF in Rl
Pick up deblocking words in DTF
Place previous record address in Rll
Add record length to old address
Store in current record address
Test if current record address is in buffer
If it is branch around LlOCS call

FCB

ENVB

DTF (CONSTANT PART)
DTF (VARIABLE PART)
OTF (CONSTANT PART)

OTF (VARIABLE PART)
OTF (CONSTANT PART)
DTF (VARIABLE PART)
DTF (CONSTANT PART)

Pick up end-of-file address from static storage

Call LlOCS routine to get new buffer

Move record into record variable (CARD)

Test for errors
Branch if no errors

L 15.A •• IBMBRIOD If errors call record I/O bootstrap routine
BALR 14,15
EQU * LR 2,7 Restore R2 as program base

Figure 8.6. Annotated list showinif!record I/O statements handled by in-line code

98

snn

1
2

3

SOURCE LISTING

EXAMPLE:PROC OPTION~C~M~~~~;FILE UN8UFFERED INPUT RECORD
ENVCF,RECSIZE(80.,MEDIUMCSYS001,2311),

CARD CHAR (80);
READ FILE CLINE) INTO (,CARD);

END;

• PRDLOGUE BASE
00005E 02 01 0 OA8 3 028
000064 41 60 0 OBO
000068 50 60 0 OA8
00006C 05 20

• PROCEDURE BASE

• STATEMENT NUMBER 3
00006E 41 90 0 OA8
000012 50 90 3 040
000016 41 10 3 038
00007A 58 FO 3 014
00007E 05 EF

000000 00000008
000004 0000005E
000008 0000006E
OOOOOC 00000000
000010 00000000
000014 00000000
000018 00000000
OOOOlC 00000000
000020 0080000001FFOOOO
000028 0000000000000050
000030 91E091EO
0000.34 00000000
000038 00000000
00003C 00000020
000040 00000000
000044 00000000
000048 00000000
00004C 80000000

MVC
LA
ST
BALR

LA
ST
LA
L
8ALR

16818,13),40C3)
6,CARD
6,168(0,13.
2,0

9,16810,13J
9,64(0,31
1.5610.31
15,A •• 18MBRIOA
14.15

STATIC INTERNAL STORAGE MAP

PROGRAM AOCON
PROGRAM AOCON
PROGRAM AOCON
A .. I8H80CLA
A •• IBMBOCLC
A •• I8MBRIOA
A .. IBMBPGOA
A •• STATIC

move skeleton record descriptor to DSA
complete descriptor with address
of record variable
set R2 as program base

pick up address of record descriptor
place in argument list
point Rl at argument list
branch and link to IBMDRIO

CONST ANT request control block
RECORD DESCRIPTOR
CONSTANT
A •• FCB
A •• FCB
A •• CONSTANT
A •• RO
A •• NULL ARGUMENT
A •• NULL ARGUMENT
A •• NUlL ARGUMENT

STATIC EXTERNAL CSECTS

FCB 000000 1188000000000000
0000000000000000
0000008800000090
0000008800000000
C3E9000002110200
8080000002000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
0000000000000000
000403C905C50000

OOOOBO
0000B8
00008C

0200008002000080
0000920400000101
00000100
0000000000000000
206003C905C54040
40000E2900000000
0000000900640000
0000000000000000
OOOOOOOOOOOOFFOO
000000642000CCA4
AOOOCCAC
070000EE
40000006
310000FO
40000005
08000108
0000000003000278
2000000105000280
20000001
310000FO
40000005
08000128
00000000
lE000148
30000008
12000148
0000000800000000
01000000

OTF (CONSTANT PARTI
OTF (VARIABLE PART)
OTF (CONSTANT PART)

000090 4000000002000080
0100008402000080
0200008002000080

ENV8

OOOOF8
OOOOFC
000100
000104
000108
00010C

000120
000124
000128
00012C
000130
000134
000138
00013C

OTF
OTF
OTf
OTF
OTF
OTF

OTF
OTF
OTf
OTf
OTF
DTF
OTF
OTf

(VARIA8LE PART)
(CONSTANT PARTJ
(VARIA8LE PART)
(CONSTANT PARTJ
(VARIABLE PARTt
(CONSTANT PARTJ

1 VARlA8LE PARTJ
ICONSTANT PARTJ
(VARIA8LE PART)
(CONSTANT PARTJ
1 VARIABLE PARTJ
(CONSTANT PART)
(VARlA8lE PARTJ
(cLJNSTANT PARTJ

Figure 8.7. Annotated object program showing record I/O statements handled by
library subroutines

Chapter 8: Record-oriented Input/output 99

OUTPUT in the OPEN statement and,
consequently, the statement validity cannot
be determined until the file is opened.
With file parameters and file variables, it
is impossible to know which file will be
referred to, and consequently the validity
of statements using file parameters or file
variables cannot be determined during
compilation.

The format of the RCB is given in
appendix B.

Ihg_£g£Q£~de§£~i~tor (RDl contains the
address, length and type of the record
variable. It is generated only if a record
variable is required. (For exact format,
see appendix B.)

1he key descri~~jKD) contains the
address and length of the key variable. It
is generated only if a key variable is
used. (For exact format, see appendix B.)

If the record variable or the key
variable is STATIC INTERNAL, a complete RD
or KD is set up and placed in static
internal storage during compilation. In
most other circumstances, a skeleton RD or
KD will be set up which will- be completed
during execution by the inclusion of the
address. The completed descriptor may be
moved into temporary storage. In certain
conditions, no skeleton is produced: the
complete descriptor is built in temporary
storage by compiled code.

The event variabl~(EVl contains
information about the event that has been
associated with the event I/O statement.
(For exact format, see appendix B.) The
implementation of event I/O is covered
briefly at the end of this chapter, and
more fully in chapter 11 under the heading
"The WAIT Statement."

The abnormal-locate return address is
used only-for LOCATE statements. It is the
address to which control will be passed if
an error is detected in a locate statement
and a normal return is made after execution
of the on-unit. The abnormal-locate return_
address is usually the start of the next
statement.

The code and control blocks generated
for a transmission statement using a
library call to the LIOCS routines are
shown in figure 8.7.

For CLOSE statements, the compiler
generates a call to the open/close
bootstrap routine, IBMDOCL, passing to it

the address of the FCB, and, if required,
flags indicating the presence of the LEAVE
or UNLOAD option.

Library Routines in Record I/O

Because the amount of code involved in
implementing a record I/O statement is
quite large and would be duplicated for
each similar record I/O statement, record
I/O is handled mainly by PL/I library
routines. The work done by library routines
is summarized in figure 8.12.

The library modules used by the compiler
can conveniently be considered under three
headings:

1. Qpen_~nd_clos~~odule§ - called to
open and close the files.

2. Transmitter modules - called to
transmit-data~y-calling the LIOCS
routines. The PL/I transmitters hold
the error and end-of-file routines for
both library and in-line LIOCS calls.

For consecutive buffered files, the
error and end-of-file routines are
provided as a separate library module,
IBMDRRR. This module is loaded when
the file is opened, and can be
considered as part of the transmitter.

3. !£~Q~~ting§ - used, when PL/I
conditions occur, to handle
housekeeping problems and calls to the
error handler, IBMDERR.

The routines involved are shown in
figures 8.8, 8.9, and 8.10
respectively. Their interrelationship
is shown in figure 8.11.

Because of their length, the major
modules are held in the transient library,
and are loaded and called when required by
small resident modules.

The open and close routines are loaded
by the open/close bootstrap routine,
IBMDOCL. Transmitters are loaded by the
transient open routines, and are called via
the resident transmitter interface module,
IBMDRIO. The error routines are loaded by

Ibootstrap entry points in IBKDOCN. The
Imodule IBMDOCN contains the open/close
Iparameter list and is seperated from
IIBMDOCL to improve overlong performance.

r---,
I Resident library bootstrap routine IBMDOCL - loads and calls appropriate transient
I module
1---
I Entry pointl Function
1---
I IBMBOCLA I Explicit open
I IBMBOCLB I Implicit open for library-call I/O
I IBMBOCLC 1 Explicit close
I IBMBOCLD I Implicit close
I IBMBOCLG I Implicit open for in-line I/O
1---
I Transient library open and close modules
1---
1 Name 1 Function
1---
I IBMDOPM Open stage 1 consecutive unbuffered files
I IBMDOPP Open stage 1 consecutive buffered files
I IBMDOPS Open stage 1 stream files
I IBMDOPX Open stage 1 regional and indexed files
I
1 IBMDOPO
I

Open stage 2 consecutive buffered files acquire buffers initialize
DTF except for disk and tape

t IBMDOPT
1

Open stage 2 stream files acquire buffers initialize DTF except for
disk and tape

I IBMDOPY
I

Open stage 2 regional and indexed files acquire buffers and
initialize DTFDA

I IBMDOPU
I

Open stage 3 consecutive buffered and stream files initialize DTF for
disk or tape

, IBMDOPZ
1

Open stage 3 regional and indexed files acquire buffers and
initialize DFTIS

I IBMDOPV
I
I IBMDOCA
1 IBMDOCV

Open for VSAM files

Close files
Close for VSAM files

L--------~--________________ ~
Figure 8.8. PL/I resident and transient library OPEN and CLOSE routines

~Rening a File EXRlicitl~

For an explicit open, a call is made to the
resident library module IBMDOCL to open the
file. This routine, known as the
open/close bootstrap, is called once for
every file that requires opening and is
passed the address of the FCB, the address
of the OCB, if one is required, and the
address if the string locator for the title
option, if the TITLE option is being used.
IBMDOCL then calls one of five transient
open modules depending on the file type.

For VSAM files the compiler places the
address of IBMDOPV in the FCB and
consequently IBMDOPV is called by IBMDOCL.
IBMDOPV acquires space for an ACB (access
control block), IOCB (input/output control
block) and an RPL (request parameter list)
and then creates an ACB using a GENCB macro
instruction. IBMDOPV also sets fields in
the FCB so that the correct error module
will be called, and loads the appropriate

transmitter.

For files other than VSAM there are four
groups of modules, one group for
consecutive buffered files, one group for
stream files, one group for regional and
indexed files and a single module for
consecutive buffered files. The module
called by IBMDOCL is the major module in
the group. It has the job of issuing the
open macro instruction, loading the
transmitter if necessary, setting up the
ERROPT and EOFADDR fields in the FCB and
handling TITLE, PAGESIZE and any
repositioning options such as REWIND. If
the buffer space has been allocated during
compilation no further action will be
necessary. However, if buffers are
required and the DYNBUFF option, variable
environment options, or an invalid
declaration has prevented buffer space
being acquired during compilation, further
action is necessary. The first transient
modules then call further transient modules
in the group to complete the DTF and get
buffer space. These further modules are
overlayed on the high address end of the
first module. For certain file types it is

Chapter 8: Record-oriented Input/output 101

r---,
I Resident library interface routines IBMDRIO/IBMDOCN f
1---
I Entry point 1 Function

IBMBRIOA
IBI!BOCNB

IBltBRIOC
IBMBRIOD

Test statement validity and call transmitter
Bootstrap entry point to load and call error or endfile module on

first error
Call error handler with invalid statement code
Entry from in-line code when errors detected. Branches to RIOB

Transient library transmitter modules IBMDRxx

Data set 1
organization 1

File attributes Transmitter
module

unbuffered output F-format IBMDRAY
buffered output F-format IBMDRAZ

SEQUENTIAL unbuffered input/update F-format IBMDRBZ
I 1 buffered input/update F-format I IBMDBBW

REGIONAL (1) 1---
I DIRECT 1 F-format 1 IBMDRDZ

1---
I 1 1 1
I 1 1 unbuffered output F/U-format 1 IBMDRAW
I I 1 buffered output F/U-format 1 IBMDRAX
1 1 SEQUENTIAL 1 unbuffered input/update F/U-format 1 IBMDRBY
1 t I buffered input/update F/U-format 1 IBMDRBX
1 REGIONAL (3) 1---
1 1 DIRECT 1 F/U-format 1 IBMDRDY

CONSECUTIVE SEQUENTIAL

unbuffered U-format
unbuffered F-format
buffered U-format
buffe·red V-format
buffered F-format
associated file f-format
associated file v-format
assoc'iated file u-format
OMR file F-format
error and end-of-file exit module

IBMDRCY
IBMDRCZ
IBMDRRX
IBltDRRY
IBltDRRZ
IBMDRRW
IBMDRRV
IBMDRRU
IBMDRRT
IBMDRRR

SEQUENTIAL input/update F-format IBMDRJZ
1 1 output F-forma t 1 IBMDRLZ

INDEXED 1---
1 DIRECT 1 input/update F-format ,IBMDRKZ

VSAM
(entry
sequenced)

VSAM 1
(key-sequenced) 1

1
1

SEQUENTIAL buffered/unbuffered input/output/
update

DIRECT buffered/unbuffered input/update
SEQUENTIAL buffered/unbuffered input/update
SEQUENTIAL buffered/unbuffered output

IBMDRVZ

IBMDRVR
IBMDRVS
IBMDRVT

L---~---~

Figure 8.9. Record I/O transmitters and their associated file types

102

r---,
I Name I Function I Access method

~.HDF!1Lmodule
I
I
I

IBMDREFI Calling error handler for ENDFILE condition if general
I module has not been loaded.

errorl
I
I

Any

IBMDREZI calling error handler, for buffered consecutive files
I

SAM

IBMDREXI Calling error handler, for indexed files ISAM
I

IBMDREYI Calling error handler, for regional files and
I unbuffered consecutive files

DAM
SAM (workfiles)

I
IBMDREVI Calling error handler for all errors (VSAM files) VSAM

L---~

Figure 8.10. PL/I transient library error modules

necessary to call a third module which is
overlayed on the second. See figure 8.11
for the interrelationship of these modules.
After the second and, possibly, third
module has been exectued a return is made
to the first transient module to issue the
OPEN macro instruction and load the library
transmitter. The first module returns via
the open/close bootstrap to compiled code.

Space for the open modules and for
buffers is acquired in non-LIFO storage.
IBMDOCL acquires 2K bytes for the transient
open routines and, if buffer space is
required and the length of buffers was
known at compile time, also acquires
sufficient storage for buffers.

The transmitter is only loaded if it is
not already in main storage. (A test is
made on the chain of loaded modules to see
if it is.) If the transmitter is not
already loaded it is overlayed on the high
address end of the first transient module.
It is moved down until the end of the
transmitter is contiguous with the high
address end of the 2K acquired for the
transient modules. The transmitter is then
contiguous with any buffer space that may
have been acquired by IBMDOCL. On return
to IBMDOCL the unused space left in the
original 2K acquirement is freed.

If the length of the buffers to be
acquired is unknown during compilation,
buffer space is acquired by one of the
transient modules. When this occurs an
unused free area will normally be left
between the transmitter and the buffer
space. This is placed on the free area
chain in the usual manner.

The open routines also alter the
contents of certain fields in the FCB so

that transmission statements will not
result in a call to the open routines, as
would occur in the case of an implicit
open, described below.

Implicit open is implemented by
manipulation of the addresses to which
transmission statements pass control so
that these addresses always point to the
open/close bootstrap if the file is not
already open. This method is necessary as
it is not always possible to determine
during compilation which transmission
statements will result in the opening of
the file. (Implicit open is further
explained under "Transmission Statements"
below, and in figure 8.13.)

Tr5nsmission Statements

Compiled code calls the transmitter
interface module IBMDRIO, passing to it the
parameter list described above under the
heading "Library-call record I/O
statements" in the section "Compiler Output
for Record I/O."

The interface module, IBKDRIO, first
acquires a DSA, which is used both by
IBMDRIO itself, and by the transmitter. It
then initializes the registers and executes
the instruction in the request control
block (RCB).. If the transmission statement
being executed has been tested and found to
be valid, the instruction will be a branch

Chapter 8: Record-oriented Input/output 103

~

o
.&::

KEY

BMDRIO

BMDOPA

--c>--.-----
Names not in italic in resident library

Names in italic in transient library

Call to module

Return to calling module

Load but no call

I mplicit close
Call during program
termination to
close any files
still open

OPEN and CLOSE
statements

..

+

IBMDOCL

IMPLICIT OPEN

IBMBOCNC

Invalid
statement

---.. ..

TRANSMISSION
statements

•

(See fig 8.13) invalid I

~
Call from WAIT module
for EVENT I/O

IBMBOCNB

routine

IBMBRIOA

Interface
routine t---+- FAIS .. ""'ment I

I---t-------~-'_T_T~ L-.---'f--
Error
module
bootstrap

IBMDERR

..
FATM

(See fig 8.13)
Open/close ~1MP.LlCITOPEN
bootstrap .

r-~----~----~--~¥jf~
r---"===-----

•
IBMDERR

Execute on­
unit or standard
system action

IBMDOPM

Consec.
Unbuff.

I
IBMDOPV

IBMDOPP IBMDOPS

Consec.
Buff.

IBMDOPQ IBMDOPT

IBMDOPX

r

IBMDOPY

IBMDOCA

Close
routine
Non VSAM

IBMDOCV

Close
VSAM

•

7

•
Open VSAM Get buffers and Get buffers and \

Get buffers and +
init. DTF (not init. DTF (not

init.DTFDA
disk or tape) disk or tape)

~

IBMDOPU IBMDOPZ

Init.DTF for Get buffers and t-
disk or tape init.DTFIS

Figure 8 .• 11. Organization of record I/O library modules

Call to
complete
output

Transmitter

\

..
IBMDREF/V

Endfile routine
Call error
handler for
Endfile

/ A

, IBMDRE/X/Y/Z

~ FERM / .1' I R,oo", I/O (See fig 8.14) error support

module

I
Returns to compiled code or WAIT module

DTF

A(LIOeS transmitter) L10CS TRANSMITTER .. 41------­
Ir-------------------~

I

/
/

I (Address set only for files that can
use in-line liD).

I
/

/
I

FCB

PL/I TRANSMITTER "~1-----7~--' FATM A(Transmitter)

I /
I /

/ / / / ,I FAIS A(Invalid stmt) --'INVALID STATEMENT
(Entry point G of I BMB RIO)

I / /
I II I'

I / I
I / I

/ / /

/
1/

/ I
I~ ~

• OPEN/CLOSE BOOTSTRAP

Key

- - - - - - - + Address when file closed

-------I~. Address when file opened

Figure 8.13. Implicit open procedure

instruction. If the statement has not been
tested, or has been found to be invalid,
the instruction will be a TM instruction.
If the statement is valid, control will be
passed directly, or after the TM
instruction, to the address in the PCB
field PATM. If the statement is invalid,
control will be passed to another address,
in the PCB field "PAIS."

As is shown in figure 8.13, the
addresses held in these words depend on the
condition of the file.

If the file is open, PATM contains the
address of the PL/I transmitter, and PAIS
contains the address of an entry point in

the interface module, IBMBRIOC, which
results in a call to the error handler.

Therefore, if the file is open, the
transmitter will be called if the statement
is valid; the error handler will be called
if the statement is invalid.

If the file is not open, both PATM and
PAIS contain the address of the open/close
bootstrap routine IBMDOCL, entry point
IBMBOCLC.

Therefore, if the file is not open, the
execution of any transmission statement
will result in a branch to the open/close
bootstrap routine. The open/close

Chapter 8: Record-oriented Input/output 105

r---,
.Q,gEN_Stg!~~nts

1

2

3

4

Complete the DTF and the FCB for
the file if necessary, or
generate the ACB for VSAM files.
Obtain storage for buffers,
index areas, etc. if necessary.
Issue the data management OPEN
macro instruction.
Raise the UNDEFINEDFILE
condition if the file cannot be
opened.

1 Branch to the open routines if
the file is not open.

2 Ensure that the statement is
valid for the file.

3 Check the record and key
variables for errors.

4 Issue the appropriate data
management macro instruction.

5 Move the data between the buffer
and the record variable if
necessary.

6 Raise any conditions that occur
during the execution of the
statement.

CLOSE statements

1

2

3

Ensure that all operations
commenced on the file have been
completed.
Issue data management close
macro instruction.
Release any storage allocated to
the file, e.g., I/O transmitter
space.

The functions are not
necessarily carried out in the
above order.

L---~

Figure 8.12. Summary of work done by
PL/I library routines

bootstrap routine calls the transient
library open routines, which open the file,
and alter the contents of FATM to point to
the transmitter, and of FA IS to point to
the error entry point IBMBRIOC. When the
file is open, control is returned to the
interface module and execution of the
transmission statement is reattempted.

Implicit open for record I/O statements
handled by in-line calls to data management
are handled in a similar manner.

106

After the file is open and the statement
validated, control is passed to the
transmitter, which checks the record and
key variables for errors, and issues the
appropriate data management macro
instruction. After data management has
handled the request, control returns to the
transmitter. The transmitter moves the
data between the data management buffer and
the record variable, or sets the pointer to
the record, and checks to see whether any
errors have occurred.

Transmitter modules do not acquire a DSA
but use the DSA acquired by IBMDRIO.

For VSAM files a further control block,
the IOCB (Input/Output Control Block)
provided by OPEN, is used, in preference to
the FCB, to hold information relating to
the current statement. Space is provided
in the IOCB for MODCB & SHOWCB parameter
lists used respectively to modify and
display the various fields in the data
management RPL (Requ~st Parameter List),
which is passed to the VSAM LIOCS routine
for any action macro. (See Appendix B for
details of !~e IOCB). The transmitter
action is essentially similar to that for
other access methods. It is worth noting
that a READ INTO will generally be
implemented by means of a VSAM GET macro
directly from the system buffer to the
record variable. If the record variable is
too short, VSAM will give a logical error
return code and no transmission will take
place, where upon the PL/I transmitter will
reissue the request, providing an
intermediate dummy buffer, and finally move
the truncated record to the record
variable.

ggiEin~~Qnditions in Transmission
Stg!~~nts

To enable PL/I error handling to be
available yet cause the mimimum possible
overhead to error-free programs, transient­
library modules are provided which are not
loaded unless an error occurs. Two modules

lare available for all file types except
VSAM file. VSAM files use one error

Imodule, IBMDREV and this handles both
terrors and end-of-file situations. The
following discussion does not therefore
apply to VSAM. The two types of error
sorting used for non-VSAM files are:

1. The ENDFILE routine, IBMDREF, which
can deal only with the ENDFILE
condition.

Contents FE FT
Initialized by open routine with
character "X", "Y", "Z" or "V"
indicating general error support
module.
Altered for non-VSAM files
by EOFADDR routines in
transmitter to character "F"
indicating ENDFILE module.
Restored by ENDFILE mod­
ule to "X" I "Y" or "Z" when
non-endfile error found

Contents FEMT
Always contains character
indicating general error
support module

FCB

FEMT

FERM

Key

••••••

.-.-.-e-e-

IBMDRIO
(entry point C)
Loads and calls module
indicated in "FEFT" and
places its address in FERM.

, , . '
\ ' . "
~ ~ . '

\ ' . , , , . , . " • \ • ,
~
~ • , •

If no errors have occurred.

If 1st. error was ENDFILE and
no other errors occurred.

If non-ENDFI LE errors have
occurred.
VSAM files

~

IBMDREF
Endfile module
If ENDFILE :
Calls er.ror handler
If other error:
Loads and calls
error module indicated
in "FEMT". Placing
address in FE RM

IBMDRE/X/Y! or Z
General error support module.

Handles all errors including
ENDFILE

IBMDREV
All errors for VSAM files

Figure 8.14. If conditions are raised during transmission, flow of control
depends on the contents of the PCB field FERM

Chapter 8: Record-oriented Input/output 107

2. A general error module (one for each
access method - see figure 8.10).
This module is capable of handling all
conditions that may arise, including
ENDFILE, but is loaded only if the
TRANSMIT, RECORD, KEY, or ERROR
condition occurs

These transient error modules are all
identified by the six letters IBMDRE
followed by a further single character (see
figure 8.10).

If a transmission error occurs, the
transmission error routine within the
transmitter will be entered, whether an in­
line or library-call statement is being
executed. Similarly, if end-of-file
occurs, the end-of-file routine within the
transmitter will be executed. Record and
key errors are detected either by the
transmitter or by compiled code.

When any of the errors or PL/I
conditions mentioned above occurs during
the execution of a record I/O statement,
control is passed to the address held in
the word "FERM" in the FCB. This address
may be anyone of the following:

1. The address of IBMDREF, the ENDFILE
module.

2. The address of the general error
module for the file type.

3. The address of a bootstrap routine,
IBMBOCNB. This routine constructs the
name of an error module by taking the
skeleton IBMDRE*A and replacing the
"*" by the letter in the single
character field "FEFT" in the FCB.
IBMDRIO then places the address of
this module in FERM, and branches to
the module it has loaded.

Thus by changing the contents of the field
"FEFT", the transmitter can select a
particular error module. The contents of
"FEFT" is one of the following:

1. A character indicating the name of the
general error module for the file
type. This character is placed in
"FEFT" during the execution of the
OPEN statement.

2. The character "F", indicating the name
of the ENDFILE module. The content of
"FEFT" is changed to "F" by the end­
of-file routine in the transmitter
(which is entered when data management
detects end-of-file).

Thus the module loaded by the bootstrap
I routine IBMBOCNB, and the address placed in

"FERM", depends on whether end-of-file or
another error is the first to occur on the

108

file.

The result of this arrangement is that
the general error module can be called in
an end-of-file situation. Similarly, the
ENDFILE module can be called when another
type of error occurs, if ENDFILE was the
first condition to occur.

To overcome this problem, the general
error module contains code to handle
ENDFILE, and the END FILE module contains
code to test for other conditions, and load
and call the general error module if
appropriate.

The ENDFILE module restores the
character in 'FEFT' from the field 'FEMT'

land calls IBMBOCNB. FEMT always holds the
character that identifies the general error
module for the file. When the name has
been constructed, the general module is
loaded, its address is placed in FERM, and
a branch is made to the module.

The process is illustrated in figure
8.14.

The general error routines set up a
parameter list, and branch to the iesident
error-handler, IBMDERR, to handle the
condition. If a normal return is made from
an on-unit, the general error module viII
raise any further conditions that have
occurred. After all conditions have been
raised, a return is made to compiled code,
or, in EVENT I/O, to the WAIT module.

The ENDFILE routine checks to ensure that
the situation which has resulted in the
call is really end-of-file, and, if so,
passes control to the error handler.

£LOSE Statements

Files and data sets can be closed either by
the PL/I CLOSE statement or by the
termination of the program. In both cases,
the close is carried out by the library
routines. The bootstrap module IBMDOCL is
called at entry point C or D, and it loads
and calls the close routine, IBMDOCA. If

lany VSAM files are found, IBMDOCA loads and
Icalls IBMDOCV.

The bootstrap routine is passed a
parameter list containing the addresses of
the FCBs for the files that require
closing. IBMDOCA then closes these files.
This may involve completing I/O operations
and hence calling the transmitter. After
handling any necessary transmission,
IBMDOCA disassoc~ates the file from the
data set. If the transmitter was being
used only by the file that is being closed,
the storage for the transmitter is freed.
A check is kept on the use of transmitter
and other transient modules in a sixteen
byte prefix at their head. The value held
in this field is set to one when the
transmitter is loaded, and decreased or
increased as new files requiring the
transmitter are opened. For implicit
closing, the chain of open files starting
in the TCA is scanned to determine which
files must be closed.

When IBMDOCA has finished, it returns
control (via IBMDOCL) either to compiled
code (for an explicit close statement) or
to the termination routine (for the end of
the program).

If any VSAM files are found by IBMDOCA
it makes a call to IBMDOCV for each VSAM
file found. IBMDOCV then carries out
similar action to IBMDOCA for the file.
IBMDOCV is loaded for the first VSAM file­
found. The space it occupies is freed by
IBMDOCA before returning to IBMDOCL.

In-Line I/O Statements

Most transmission statements on buffered
consecutive files are implemented by in­
line calls to the LIOCS routines (see
figure 8.2 for details). Such statements
are referred to as "in-line I/O
statements." Orily READ, WRITE, and LOCATE
statements are handled in this way. OPEN
and CLOSE statements glwaY§ result in
library calls.

For in-line I/O, a call is made direct
to the data management LIOCS routine whose
address is held in the DTF. The DTF is
addressed from the FCB. In addition to
calling the LIOCS routine, compiled code
moves the data as necessary to or from the
record variable, or sets appropriate
pointers. Compiled code may also check for
the RECORD condition.

If there is an error in transmission, or
if end-of-file is reached, the LIOCS
routines will branch to the ERROPT or
EOFADDR routines that are held in the PL/I
transmitter. (The PL/I transmitter is
al~~y§ loaded by the open routines.) The
ERROPT and EOFADDR routines set an error

flag in the FCB and return to compiled
code, normally via the LIOCS routine. if
the error flag is on, or if the RECORD
condition has occurred, compiled code
branches to IBMBRIOD. This results in a
call being made to the transient error
module.

Typical code produced for an in-line I/O
statement is shown in figure 8.6.

For in-line I/O statements, the only
control blocks that are set up are theFCB
and DTF. The request control block, and
record and key descriptor are not required
as the information is known during
compilation and suitable code to move the
data to or from the record variable can be
generated. The RCB is not generated, as it
is required only by the library routines to
determ~ne the statement type when checking
statement validity.

Implicit open for in-line calls is handled
in a similar way to that used for library
calls (described above).

For a compiled code call, the address in
the DTF that normally holds the address of
the data management LIOCS tr~nsmitter is
initialized to point to the open/close
bootstrap routine, IBMDOCL (see figure
8.13). When the open routines have
finished, the address in the DTF is altered
to point to the LIOCS routine.

If the file is successfully opened; a
test is made to see whether the entry to
IBMDOCL was for an in-line call and, if it
was, control is passed to the data
management address held in the DTF. For
input, this causes the LIOCS transmitter to
be entered and a return made to compiled
code. For output, it wili cause entry into
code in the PL/I library transmitter which
places the address of the LIOCS transmitter
in the DTF and returns to compiled code.
This is the normal transmitter action for
the first output statement.

Event I/O

Event I/O is fully described in chapter 11,
under the heading "1he WAIT Stat~ment."
The principles are described briefly below.

Chapter 8: Record-oriented Input/output 109

P: PRoe;

r----<1----,
~--~. __ -------v~--~ I

I
IBMDRIO I

I
I

6
READ EVENT (E);--'"

I
Y .~

.....
PL/I TRANSMITTER l L_I> _____ ,

I
I

ISSUE DATA MANAGEMENT - ~ II
MACRO
RETURN IF EVENT I/O I /).

..... -......j~ ISSUE WAITF MACRO- ---<J - - I- I I
I I
I I
I I
I I

TEST FOR ERRORS I
IF NONE RETUR'N TO WAIT I
MODULE I I

I 6.
I I

: I
V I

I

WAIT (E); - - -....;. t>:"'" - -- ----.,- L _________ -, I

L.-__

: + ~ - - - - - - - -, ~---&....-_--------,
I I

: I
I
I
I

I I
WAIT MODU LE : I

I
IF EVENT I/O C~~':.!~M~~~ '=-':-:'f-..=-J- I> - --

RETURN IF NO MORE
EVENTS TO WAIT ON

I
I ,

I L ________I

END P; Key

• READ EVENT statement

- - - [> - - - WAIT statement
. Further PLII statements

Figure 8.15. Flo. of control' for READ, EVENT and WAIT statements

110

SllR:E
PROGRAM

Open
statement

Transmission
I/O statement

Key

~---

...........

••••

Pigure 8.16.

COMPI LATION

Generate code
to call open
bootstrap

----I

...

COMPI LED CODE

Call
IBMDOCL

...

EXECUTION

LIBRARY AND DATA MANAGEMENT MODULES

EXPLICIT OPEN IMPLICIT OPEN

1-----· --- - ------,
I I

~,y I
IBMDOCL I

Pass control
block addresses
to IBMDOPA

I

.&
I
I
I
I

I I

COMPI LED CODE

NJ> ...
Validity

check
ssible?

Generate
in-line
code

'V I I•..•..........•....•................•...............• -. .••...•••••••...••••••....•••••...•............•.......•. ·~···············~····························r
r-~------"L--, :

.... ...

YES

Valid
statement?

."NO

Set up RCB
for Execution­
Time test

Path using library calls

Path for in-line I/O

YES

Common path, in-line/library

Path for implicit open

-+ In-line
I

In-line
or

library?

." LIBRARY

Set up RCB
with code to
branch found
Execution-Time
test

Generate
call to
IBMDRIO

Overview of record I/O implementation

Call
IBMDRIO

r----.------------. Open Routines : ~

..
I

IBMDRIO

I
I
I
I

Associate file I :
with data set I :
Load trans-
~~ I

I Library calls JI In-line calls I
4...______ L __ ---.---, I Branch to

ERROR
handler
(lBMDERRA)
or open
bootstrap if

I I
f---- .----T - -----------. -------1- - - --,

• I

fi Ie not open

~
o

Valid YES
statement?

TM
Instruction

~~

Execute
Instruction
in RCB

Branch
instruction

..
I
I

TRANSMITTER

Call LlOCS
routine

.... ..

LlOCS ROUTINE •

Carry out
I/O

I
I
I

~ •••• J Call
LlOCS routine

r---------,...t...I-H-~-~ __ ... ~~~trs? NO ••••••••••••••••
Error routines
set flags YES :
i nd icati n9 error :
has occurred NO:

~----r-----~ ·
~ ____ ~ ____Ii". · · · · .~ · · · · · · · · ; ,. · · · · · · · · · .~ · · · · · · · · · · · · · · E • •

Move record
key etc. Check
for record &
key condition

..... Move record key
etc. Check for
record & key
errors

ronditions >--+-_Y_E_S __ -I~" Error module ... ~ -. co~~~ons
to raise Call YES to raise

? IBMDERR ?

CONTINUE

~ny Record I/O ~ ..

~ .NO ~---------....I NO

~-------4 ~--------~ I CONTINUE I
'---------.....

Chapter 8: Record-oriented Input/output 111

If the EVENT option is used in an I/O
statement, the statement will be handled by
a library call. Thus control will be passed
from IBMDRIO to a PL/I library transmitter.
This transmitter returns control to
compiled code as soon as the data
management macro instruction is issued.
When the WAIT statement nominating the
event is reached by compiled code, a call
is made to the WAIT module which returns
control to the transmitter via IBMDRIO.

A WAITF macro instruction is then
issued, and control is returned to the
transmitter when the input or 6Qtput
operation is complete. The transmitter then

112

tests for errors and, providing no errors
have been detected, returns control to the
WAIT module, which returns control to the
next statement.

For VSAM files EVENT I/O is simulated.
The return code from data management is
tested by the transmitter immediately after
issuing an action macro instruction.
However, any errors detected are held over
until the corresponding WAIT statement is
issued when control is returned to the
transmitter.

Figure 8.15 illustrates the principles
used in EVENT I/O.

a:_*h T1ii;;:::aAllOOiXNMi4" idaU 1#' \ ATIi AM ,4A¢E'

PL/I Statement: GET L1ST(I);

External medium File SYSIN

8
\
\
\

\

\
\
\
\

4'
\
\
\
\
\

9 10

r----------------..,
I PL/I transmitter modules I

I call L10CS routines to move I
I the data between the external r4 - - - - - - - - - - - - - - --l

medium and the data manage- I
I ment buffer. I
I I
I I L ______ , ________ _

I Data Management buffer
I

y
8

Stage 1
9 10

Stage 2

I
I
I
I
I

• I
I
I
I
I
I
1

I
I
I
I
I
I
1

I
I
I -----1 ,--- - ------- -----\

\ ,---------
\
\
J

I Conversion routines or
I compi led code convert

data and move to variable.

I I Director routines control the
I I process, calling necessary
I I conversion and transmitter
I I modules when required.

0000000000001000 ... ~--+J
~.~~~I I I

Variable I (Fixed Binary 15,0)
(in main storage)

L ______________ .-J 1 _______________ _

Stream input/output is a two stage process. The data is moved between the external medium and the data management buffer, and
between the buffer and the variable. Any necessary conversions are made between the buffer and the variable. The operation is
controlled by director modules. The director modules call the appropriate routines to do the transmission and conversion. Transmission
is carried out in a similar way to that used for RECORD I/O.

Note that a further input statement will require the value 9 which is already in the data management buffer. Consequently the trans­
mitter need not be called and a pointer must be kept to the position reached in the buffer.

Figure 9.1. conceptual diagram of stream I/O

114

Chapter 9:

In this chapter, the terms source and
is£get are used when referring-to transfer
of data. The source is the point from
which the data is taken; the target is the
point to which it is moved, possibly in a
converted format.

Introduction

PL/I stream-oriented input/output al19ws
the programmer to move data between a PL/I
variable and an external medium without any
concern about internal and external data
types or any attention to record
boundaries; both conversion and record
boundary problems are handled
automatically.

Although it appears to the programmer
that the data is moved directly between the
external medium and the PL/I variable, the
move is in fact a two stage process, as
shown in figure 9.1. In the first stage,
the data is moved to a data management
buffer, in the second stage, it is moved
from the buffer to the target. When the
data is moved to or from an external
medium, a complete record is always moved.
When the data is moved to or from a PL/I
variable only as much data as is contained
in the variable is moved. The amount of
data moved in the one stage need bear no
relation to the amount moved in the other.
Thus synchronization of the two stages is
the principal job in implementing stream
I/O.

Transmission between the buffer and the
external medium is handled by the LIOCS
routines of data management. These
routines are called by PL/I transient
library transmitters in a way similar to
that used in library call record I/O. The
movement between the buffer and the PL/I
variables is generally handled by the PL/I
conversion routines.

Data items transmitted by stream I/O are
not affected by record boundaries (see
figure 9.2). There may be any number of
data items in a record, and an item may
span any number of records. Because the
LIOCS routines make only one record
available to the program at anyone time, a
method is needed to build up complete itemp

Stream-Oriented Input/Output

if they span the record boundary.
Similarly, because GET and PUT statements
may read or write less than a complete
record, a method is needed of keeping track
of the position reached in the record, so
that the next GET or PUT can start from the
correct position.

A stream I/O operation can involve any or
all of the following opertions:

1. Opening the file, and raising the
ERROR condition if the statement is
invalid.

2. Keeping track of the position in the
buffer.

3. Calling the transmitter for a new
record.

4. Building in intermediate workspace an
item too large to be held in the
current record.

5. Determining which conversion is
required, and calling the routine to
carry out the conversion.

Control of operations (2) through (5) is
handled by director routines. For list­
directed and data-directed I/O, PL/I
library director routines are used. For
edit-directed I/O, the job is shared
between library routines, compiler­
generated subroutines, and compiled code.

Before the director module or director
code receives control an initialization
module is called. This module handles item
(1) in the list above: checking statement
validity, and opening the file if it is not
already open.

Because there are three modes of stream
I/O, the exact situation cannot be defined
in a generalized discussion or diagram.
However, the basic principles are shown in
figure 9.3. The sequence is:

1. A call to the initialization module.

2. A return to compiled code.

3. A call to the director module.

Chapter 9: Stream-oriented Input/output 115

1·JO' HREE' , nATA I Eitl FOUR' 'nAT"

fl II fi !i
100 000 0000000000000 000000 oeoooooo; 000 000 00000000000 000 0000000000000 0
tJI ••• : •• gnUDMmUD.U~~UH~H Da3 ~U.M •• D.uu~~a"u""au~~U"~"HP""~hUnM""Q""~nnn_~.n.H.
11,1, 111111111111.1111.1111111111111.1 l1111111ill111111 1 1111111111111111 1

22

333.333 3333333333333: 333 333.333333333 .. 333'.333 33333333333 333 3333333.3333333'3

.4 4444444: 44444.44 4l : 4444444· .444444444;: 4444444· 4 .. 4 4 4 4 4 4 4 4 4 .. 4444444, .444, .444444 444

5555555 555 .555i5555555 55555!'555i5555555 55555: '.:'555::5555555 .555555 :555 5555

&6666666666 666666666666666666' .11666666666666666666666666666666666 66666666666

777717771777771777777777

. 8888888888888::888r;8888888888888::I8'::88888888888.;888.;888::08888888888888888 '88Ba

999 999 99 9 9 9 9 9 9 9 9 9 9 9 9999 f: 9999999" 9 9 9 9 9 9 9 9 : :s 9 9 9 9 9 i ; 9999 9 9 9 999 9 9 ' ,99 9 9 9 9 9 9 9 999 9 9 9 9
IJ2.I'J"W"UQM.WUUW~DUHuHPppaw~u.M •• U •• UfiUq"U"""QM~UUM""~U"~hUQ""~~~q~~n~U~Nnnn.

8&Ii-IOBi

ITEt1 FIVE'
Ii L

, IIATA ITEl1 s:rw

I;
l.

10 00000 000000001000 000 0 00
tJi ••• :.~wnUDMmUD.UH~UH~H~Da3H~U.h •• D.UUfl~a"U"QaU~~UnM"HD""~hUnM""p""~nnnM~.n.H.
1111111111111111 1: 111

222

33 33333333333333 333 3333333333333333333333333)33333333333333333333333333333333

4444 4444444444, 4444444= 44

5 5 5 5 5 55!, 5 5 5 .. 5 5 5 5 5 5 5, 5 5 5 5 5 : : 5

&66666 6666666666666666666666686118666

777717777771177777777777777: 7777777777777777777777777777177777777777771777777177

8888888888 888 8888888888888,,888118888888888888888888888808888888888888888888888

9 99999 99999999999999999:~99999'999
IJJ'5'J •• gPUQM.wuuw~nUHNHPUPUWU •• M •• U •• GflUq"U"""QM~UUM""~"U~~~QU"~~~qmnn~U~Nnng.

l1&li-1081

Figure 9.2. Record boundaries do not affect stream I/O

116

A

Figure 9.3.

NO

Pass A (SIOCB)
to initializing module
Indicate stmt type in
SIOCB

I

<¥? open?

YES

T
Check stmt&
return to
compiled code
if valid

• ..
Set A(DED) and
A(source)
or A (target)
inSIOCB

t
Call One of
director
modules

New
record
needed?

NO ,

} COMPILED COD'

NO I ",nIBMDOCL 1
to open file

I (see Ch. B)

- ~-

~

~ COMPILED CODE

.~

YtS

,

I 1
Call
transmitter

f
Transmitter

....

~

~ INITI
MOD

ALiZATION

ULE

Check
opens

5 statement validity.
file if necessary

Locate item in
f-+-1 I

TRANSMISSION
buffer Movement'

Get between

COnverSion

Convert item
as indicated
by DEDs

•
Move to
target

;.
Update FREM
& FCBAbuffer
pointers in FCB

<{? items
processed

?

YES

CONTINUE

new record

I~

CONVERSION
Movement

~ between
buffer and
variable

..

COMPILED CODE

buffer and
external medium

DIRECTOR

MODULE

Handles complete operation
calling transmitter and con­
version modules as required

Generalized flowchart of a stream input statement

Chapter 9: stream-oriented Input/output 117

."WiMiiM'QQ(c::;a';;"U,iA4kN 0' ('jii4,;;;QrA4A A¥4 h

To simplify communication between the large
number of routines that may be used in a
stream I/O operation, a control block is
set up for the duration of execution of the
stream I/O statement. This control block
is known as the streg~ILO cont~Ql bl2£!
j~IQ~al. The contents of the SIOCB are
shown in figure 9.4.

r---,
SSRC Address of source or source

locator

SSDD Address of source DED

STRG Address of target or target
locator

STDD Address of target DED

SFLG Flag bytes

SFCB Address of FCB for file

SRTN Abnormal return address (next
statement)

SAVE Save word used by compiler

SCNT Count of items transmitted
(Halfword)

SOCA Address of ONCA

SSTR I Area present only for GET or PUT
I STRING, to hold a dummy file
I block.

L---J
Figure 9.4. Stream I/O control block

(SIOCB)

Basically, the SIOCB consists of the
addresses of the source and target (or
their locators), of the DEDs of the source
and the target, and of various other items.
The SIOCB can be passed directly to the
conversion modules, because the first four
words are the same as the parameters
expected by the conversion routines.

File Handling

In stream I/O, file organization is always
sequential and the access method used is
the queued sequential access method (QSAft).

118

Transmitters are called by the director
modules or by the close module to complete
transmission when the program is
terminated.

As with record I/O, LIOCS transmitters
are used, and they are called by PL/I
transmitters. The PL/I transmitters
contain the ERROPT and EOFADDR routines,
which are entered when end-of-file or other
errors are detected in the LIOCS routines.
Seven different transmitter modules are
used in stream I/O; they are listed in the
summary of subroutines at the end of this
chapter.

The same basic method is used for opening
the file as is used for record I/O. During
compilation, a define-the-file control
block (DTF), a file control block (FCB),
and an environment control block (EN'B) are
set up. At open time, the information
addressed from the ENVB is used to complete
the FCB and DTF, the PL/I transmitter is
loaded, and its address is placed in the
FCB. The LIOCS routine to be used is
determined during compilation, and link­
edited.

Implicit opening is handled by the
initialization routines, which check to see
whether the file is open and, if not, call
the open/close bootstrap routine IBftDOCL.

The FCB for stream I/O is similar to
that used for record I/O. However, it
contains certain additional fields which
are needed only for stream I/O. The most
important of these fields are the buffer
control fields.

Keepin~!rack of Buffer PQsition

Two fields in the FCB are used to keep
track of the position which has been
reached in the data management buffer, and
to indicate when a new record viII be
required. These fields are the buffer
control fields:

1. FCBA - pointer for position reached in
current record.

PL/I STATEMENT:

GET FILE (SYSIN) LIST (A, B);

80 Byte record
In data management buffer

~FCBA HOLDS CURRENT POSITION·~: ~FREM HOLDS NUMBER OF REMAINING BYTES·'·

o 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 (j Don 0 0 0 0 0 0 0 ODe 0 0 0 0 0 no 0 0 0 0 0 0 0 0 a 0 0 0 0 ~ n 0 0 0 0 0 0, : 0 i DODO G
I 2 3 4 5 6 7 a 9 '0 11 12 13 11 15 16 17 i8 19 1021 22 13 J~ 25 16 ,7 lB 7930 ,: 32 33 3~ 35); 37 38 39 40 41 ~2 4244 45 46 47 48 4~ ,0 51 1253545556 57 58 ,960 61 62 63£4 ,,€€ ,) ~a 6, 70 Ii 11 73 147576 77 78 79 aD

• 1

FCBA FCBA

+-- +---+:---: -+- --+---+-~-+-
FCBA
Holds address reached

At start of 'first item after processing first item start of second item after processing second item

FREM
VALUE 80

FREM
VALUE 50

FREM
VALUE 41

FREM
VALUE 3

FREM holds number of remaining bytes

Figure 9.5. The FCBA and FREM fields of the FCB

2. FREM - number of unused bytes
remaining in the record.

FCBA points at the position reached in the
record and enables the director routines to
identify where the next input item must be
read from, or where the next output item
must be written. FREM contains the number
of bytes left in a record. It enables the
director modules to determine when a new
record will be required, and whether an
item is too large to be held in the
remainder of the record and will
consequently require intermediate
workspace. Figure 9.5 illustrates the use
of FCBA and FREM.

Handling the Conversions

Conversions in stream I/O are normally
haadled by the library cohversion package.
The conversion package, described in
chapter 10, consists of conversion routines
and conversion director routines.
Conversion director routines examine the
DEDs of the source and the target passed in
the argument list (i.e., the SIOCB, for
stream I/O), and determine which entry
point of which conversion module is
required. Each conversion has a unique
entry point.

A number of conversion director modules
are ased exclusively by edit-directed
stream I/O. These are called ~~te~al

Chapter 9: Stream-oriented Input/output 119

."_"",,","."':MMiii'i1A#l4Qoo,;;;M CMPk" U

conversion directors, and are listed in the
summary of sUbroutines at the end of this
chapter. Each module corresponds to a
particular format of input/output. When
the type of input or output has been
determined by the director modules, the
appropriate conversion director routine can
be called to handle the conversion.

In edit-directed I/O, the conversion
required is normally predictable during
compilation, because it is implied in the
format list. Consequently~ the conversion
modules can be called from compiled code
rather than from the stream I/O director
routines. Alternatively, compiled code may 3.
handle the conversion in-line.

When a library conversion module is
required by compiled code, the conversion
director module may be called, or the
conversion module itself may be called.
When the conversion module is called,
compiled code must carry out the jobs 4.
normally handled by conversion director
modules, that is, setting up a number of
fields that are used mainly in handling
CONVERSION and other PL/I conditions.

Handling GET and PUT Statements

There are considerable differences in
detail between the handling of GET and PUT
statements for the three different modes of
stream I/O. However, they all follow the
basic scheme in figure 9.3 and summarized
above under the heading "Operations in a
Stream I/O Statement."

The implementation of GET and PUT
statements is covered in some detail below
for list-directed I/O. For data-directed
and edit-directed I/O, the differences from
list-directed are highlighted.

List-Directed GET and PUT Statements

Implementation of a list-directed output
statement is shown in fiqure 9.6. The
process consists of four steps:

1. Compiled code calls the initialization
routine, passing the address of the
FCB and of the SlOCB, in which
compiled code has set flags indicating
the statement type.

2. The initialization routine, IBKDSIO,
calls the open routine if the file is

120

not open, and checks the validity of
the statement. If the statement is
invalid, a branch is made to the error
handler, passing an error code
indicating "invalid statement." This
results in a message being generated,
and the ERROR condition being raised.
If the statement is valid, control is
returned to compiled code.

IBMDSIO also handles any format
options, by~~lling the formatting
module IBMDSPL. Control then returns
to compiled code.

Compiled code places the address of
the source (or its locator, if the
item is a string) and the address of
the source DED in the SIOCB. (See
chapter 4 for information on
locators.) Compiled code then calls
the director module.

The director mod~le completes the
SIOCB with the address of the target
locator and the address of the DED of
the target. The target locator gives
the length required for the item. As
the target is always a character
string, a locator will always be used
for it. The address of the target is a
position in the buffer. For PRINT
files, the position is indicated in
the tab table, which will either have
been set up by the programmer by use
of PLITABS, or be the default tab
table in the library module IBMBSTA.
For non-print files, a one-byte space
follows each item. When the starting
postion for the item has been
determined, the director module
determines whether there is enough
space in the output buffer for the
converted item. If there is not, the
director determines whether this is
because there is no room left in the
buffer, in which case it is simply a
new record that is needed, or because
there is insufficient room in one
buffer, in which case the item will
have to span a record boundary.

If it is simply a case of acquiring a
new record, the director calls the
transmitter to acquire it. The
director then calls the appropriate
conversion routine, passing it the
SIOCB as a parameter list. The
conversion rOlutine will then move the
data from the PL/I variable to the new
record in the data management buffer.

If, however, the converted item will
span the boundary between the current
and subsequent records, intermediate
workspace is acquired in the form of a
VDA (variable data area). The
converted item is then placed in the

n
tT
PI
."
rt
<D
1'1

\0

tI.I
t+
11
<D
PI
B
t
o
11
~.

<D
::t
t+
<D
~

....
::t
."
d
t+
"­o
.::=
t+
."
d
t+

...
t\) ...

PUT LIST (A)

FLOW DIAGRAM

Place address
SIOCB in
parameter list

call
initializing
module

Set FCB &
ONCA address
inSIOCB

Figure 9.6.

Step 1
Compiled code

Step 2
Initializing routine
IBMDSIO

NO I call1BMDOCL
~ toopenfile&

NO

load transmitter

call error
handler

COMPILED COD~ & NOTES

LA
5T
01
MVI
LA

9,40(0,41
9,184(0,31
184(3).x'80'
57 (4),X'40'
1,180(0,3)

Load address SIOCB
Place in p - list
Mark end of p - list
Set LIST OUTPUT flag
Point Rl at p - list

L
BALR

:::~5' .IBMB510A} call stream output
initializer

The initialization routine is passed the address of the
FCB and the address of the SIOCB.

It opens the file if necessary and acquires the first
record for print files. If the statement is invalid it
calls the error handler. If the statement is valid it
places the addresses of the ONCA and the FCB in
the SIOCB and returns to compiled code.

List-directed output statement

Point R1
at
SIOCB

Put address
of OED &
source variable
in SIOCB

Call conversion
module

Continue as
from Step 3
until state­
ment complete

Step 3
Compiled code

Get VDA & set
as target for
conversion

LA 1,40(0,4)
LA 14,A
LA 15,72(0,3)
5TM 14,15,0(1)

~ALR ~~5' IBMB5LDA}

Point Rl at SIOCB
Load AlA)
Load A(DED .. A)
Store in SIOCB
call LIST output
director

The director module calls the transmitter and
conversion modules when required and handles
any housekeeping problems.

Before calling the conversion module it completes
the SIOCB with the address of the target locator
and the address of the target OED.
The target for the conversion is either the data
management buffer or a VDA acquired for
intermediate workspace.

If the statement is complete compiled code continues
with the next statement. If the statement is not complete
compiled code places new data in the SIOCB and once
more calls the director module.

* 2 STATEMENT NUMBER Load address of SloeB
00a05E 41 90 DOCS LA 9.200(0,13)

Store in parameter list
GOOO62 50 90 3 044 ST 9,68(0,3)

000066 96 SO 3 044 01 6S(3),X'SO' Set end of ~rameter list flag

00OO6A 92 40 o 009 MVI 211CI3t,X'40' Set flags in SIOeB

0OOO6E 41 10 .3 040 LA 1,64(0,3) Po i nt R 1 at parameter list

000072 58 FO 3 024 L 15,A •• IBMBS.lOA Branch and link to initialization routine
000016 05 EF BALR 14,15

Load address of A 41 EO 0 OA8 LA 14,A 000078
00001C 41 FO 3 0.30 LA 15,OEO •• A Load address of DED .. A

000080 41 10 0 OC8 LA 1,200CO,13) Load address of SloeB
000084 50 10 0 oeo ST 1,192(0,13) Store in tempora'A storaBe

Place address of and ED .. A in SIOeB 000088 90 EF 1 000 5TH 14,15,0 (1l
00008C 58 FO 3 028 l 15,A •• IBMBSlOA Branch and I ink to list directed director routine
000090 05 EF BALR 14,15
000092 41 EO 0 OAe LA 14,B Load add ress of B
pOO096 58 10 0 OCO l 1,192(0,13) Point R 1 at SIOeB
0OOO9A 50 EO 1 000 ST 14,0(0,1) Place address of B in SIOeB
0OOO9E 58 fO 3 028 L 15,A •• IBMBSlOA Branch and link to list-directed director routine
OOOOA2 05 Ef BAlR 14,15

Figure 9.7. Typical code generated for a PUT LIST statement

VDA. As much of the data as will fit
is moved into the data management
buffer, and a new record is acquired
by a call to the output transmitter.
The new record is then filled. This
process is continued until the
complete item has been moved into
buffers. Finally, FCBA and FREM are
updated.

If there are further data items to be
handled, a return is made to step (2), and
the address of a new source field and its
DED are placed in the SIoeB. This process
is continued until all items in the data
list have been processed. The object code
produced for a PUT LIST statement is shown
in figure 9.7.

122

GET LIST statements follow the same
sequence, but the transmission is in the
opposite direction. The main differences
are:

1. If record spanning is involved, the
item is assembled in intermediate
workspace before it is converted.

2. A locator is built for the source
string from the input, and the
addresses of the locator and of the
DED for the source are placed in the
SIOCB by the director module. For
input, the address of the target or
its locator and the address of the
target DED are placed in the SIOCB by
compiled code.

3. FCBA and FREM are updated before the
item is converted.

n
::r'
PI
to
t+
(I)
11

~

ttl
t+
11
(I)
PI
S
I
o
11
tJ·
(I)

= t+
(I)
~

t-I

= to
~
t+

" o
~
t+
to
~
t+

~

l'\)

W

GET DATA (A,B);

FLOW DIAGRAM COMPI LED CODE & NOTES

+
Step 1
Compiled code LA 0,40(0,4) Pick up address of SIOCB

ST 0,136(0,3) Place in p - list
01 136(3),X'80' flag last argument in p - list

Set up parameter MVI 57(4),'<'84' Set flag 'DATA INPUT' in
list, call SIOCB
initializer LA 15,56(0,3) Set abnormal return

s1' 15,64(0,4) address in SIOCB
LA 1,132(0,3) Point R1 at p - list
L 15,A .. IBMBSIIA Branch to stream
BALR 14,15 initializing module ,

Step 2
Input initializing module
IBMBSII

The input initializing module is passed the
address of the SIOGB and the FGB for the file.

Set fields
in SIOGB

It checks the validity of the statement, opens
the file and places the address of the FGB in the
SIOGB and returns to compiled code

CaIlIBMBOGL 4?NO File to open file
open?

YES
,

Return to
compiled code ...

Step 3
Compiled code

LA 0,40(0,4) Pick up address of SIOCB
Set up p.list ST 0,140(0,3) Place address in p - list
for data
director p-list, containing addresses
consisting of of symbol tables and
A(SIOCB) variables already set up,in
A(SYMTAB,1l static
A(SYMTAB,J) LA 1,140(0,3) Point R1 at p -list

L 15,A..IBMBSDlA can data-directed director
BALR 14,15 module
CL.5 EQU* Abnormal l!lcate return

address

+

Fiqure9.8. Data directed input statement

From Step 6
Step 4

0 Data - directed director
module IBMBSDI The data directed director module is passed the

New address of the SIOGB and either a list of symbol
record YES

Call transmitter table addresses or an address in the symbol table
or spanning? setting up VDA vector.

if necessary

The module reads in the name, checks that the NO 1 name read is in the symbol tables passed and if
not raises the NAME condition.

0/ in data NO CaIlIBMBERR When the variable is identified the module places
stream match the address of the target and its DED in the SIOGB
SYMTAB? and calls the list-directed director module passing

it the SIOGB.

;YES

Place address
DED and variable
in SIOGB

~
Update FREM &
FGBA to beyond
equal symbol

-.
Call list-directed
director module

Step 5
List directed director
module IBMBSLI The list directed module completes the operation as

Decide on for list directed I/O
conversion
required and call
correct module

Update FREM &
FCBA
Return to
IBMBSDI

,
Step 6 On return to the data directed module a search is
Return to IBMBSDI made for the next name and the action continued

Repeat from as from step 4 until a semicolon is reached in the

~ step 4 until input stream
final semicolon
found

+.
Return to compiled code

* STATEMENT NUMBER 3 Load address of S 10CB
OOOOA4 41 90 0 OC8 LA 9,200(0,13)

Store in parameter list 00OOA8 50 90 3 044 ST 9,68(0,3)
Mark end of parameter list OOOOAC 96 803 044 01 68(3),X'80'

000080 92 80 0 009 MVI 211(13),X'SO' Set flags in SIOCB
000084 92 01 0 OOA MVI 2l8(13),X'0I'

Point Rl at parameter list 000088 41 10 3 040 LA 1.64(0,3)
0OOO8C 58 FO 3 024 L 15,A •• 18MBSIOA
OOOOCO 05 EF BAlR 14,15 Branch to initialization routine
0000C2 41 90 0 OC8 LA 9,200(0,13) Load address of SIOCB
0000C6 50 90 3 048 ST 9,72(0,3) Store in parameter list
OOOOCA 96 80 0 OOB 01 219(13) ,X' 80' Set flag in SIOCB
OOOOCE 41 10 3 048 LA 1,12(0,3)

Point R 1 at parameter list
000002 58 fO 3 020 L 15,A •• IBMBSOOA

Branch to data-directed director routine 000006 05 Ef 8AlR 14,15

Figure 9.9. Typical code generated for a PUT DATA statement

Data-Directed GET and Pur Statements

Data-directed GET and PUT statements follow
a similar sequence to list-directed
statements, in that there is first a call
to the initialization module, followed by a
call to a director routine. However, the
data-directed director module is passed a
means of identifying the names and
addresses of all the variables involved in
the statement rather than one item at a
time.

When the data-directed module has
identified the location of the variable to
or from which the data is to be moved, it
calls the list-directed director module
which then handles the movelllent of the
value of the variable. When the value of
the variable has been transmitted, control
returns to the data-:-directed module. The
data-directed director then handles the
next name, determines the address of the

124

variable associated with the name, and
calls the list-directed director module to
handle the transmission of the value. This
process continues until the statement is
complete. The process is illustrated in
figure 9.8.

The list-directed director module is
called separately for each item. It is
passed the SIoeB with the addresses of the
source or target (or its locator) and the
address of its DED correctly set up by the
data-directed director module. The item is
then handled as if it were a list-directed
item.

If a data list is included in the
statement, the source or target variables
are identified from a list of symbol
tables. If no data list is included in the
statement, they are ~dentified from the the
symbol table vector.

A symbol table associates a name with

the address of a variable. The symbol
table vector for an external procedure is a
list of the symbol tables known in the
external procedure. The list is arranged
in program block order. When a symbol
table vector is used, the address passed is
the start of entries for items known in the
current block. Symbol tables and the
symbol table vector are described further
in chapter 4. Their format is shown in
appendix B.

The object code produced for a PUT DATA
statement is shown in figure 9.9.

Edit-Directed GET and PUT Statements

Edit-directed I/O differs from the other
modes of stream I/O in that the conversions
required and the positions in the record
where an item is to be placed or will be
found are indicated in the format list of
the I/O statement.

The format list contains two related
types of information:

1. The type and length of the item (e.g.,
F(3), A(25),etc.), known as dat~
!Qn!at informati.Q!!'!'

2. Spacing information (e.g.,
X(3),COL(70),etc.), known as control
!.Q!:J!lat inf~nti.Q!!.

Both types of information are compiled as
fO~J!l~1~]Ds (lED§) and are passed by
compiled code to the routines that require
the information.

Because the information is available
during compilation, ~t is normally possible
for the compiler to determine the
conversions that will, be required.
Consequently compiled code can call the
required conversion or conversion director
routine, or generate in-line conversion
code without the assistance of a library
director module.

COJ!l~iler-Generated Subroutines

To further optimize edit-directed I/O, a
number of compiler-generated subroutines
have been provided. They carry out th~
following functions:

1. Keeping track of the buffer position,
freeing and acquiring intermediate
workspace where necessary, and calling
the library when a new record is
required.

2. Handling X format control items,
except where a new record is required.

These compiler-generated subroutines have
the advantage over library modules that
they are not external, and consequently do
not have to follow the external calling
conventions.

The compiler-generated subroutines are
supported by two types of library director
module:

1. Two short modules, IBMDSEO and
IBHDSEI, that interface with the
transmitter and are called by the
compiler-generated subroutines when a
new record is required.

2. Three routines that handle the
complete processing of an item (as
does the director for list-directed
I/O). These ,routines are called when
an item cannot be handled by compiler­
generated subroutines.

IBMDSED is used only when complex data
or~ormat items appear in the program.

IBMDSEE is used when both GET and PUT
EDIT statements are used in the
program and no complex data or C­
format items appear~ This routine
contains t~e functions of the
formatting module 1BMDSXC and the
conversion director modules
1BMBSF1,IBMBSFO, and 1BMBSAO, and the
A-format function of IBMBSAI.
Consequently, it normally uses less
space than IBMDSED which calls these
modules.

IBMD~ is used when only edit­
directed output is Used in a program
and no complex data is used. IBHDSEH
is similar to IBHDSEE but does not
contain the input code.

The superset/subset feature of the linkage
editor ensures that only one of the modules
is link-edited if ESD references are made
to IBHDSEE and 1BHDSEH. IBMDSED can handle
all situations, and IBMDSEE can handle any
situation handled by IBMDSEH.

The decision on whether to use compiler­
generated subroutines or the overall
library director module is made at compile
time. Figure 9.10 shows the conditions
under which each method is used.

A typical edit-directed statement takes
the form:

1. A call to the, initialization module to
open the file (if necessary), and
check ,statement validity.

Chapter 9: Stream-oriented Input/output 125

MI#M1A .;QU;. \Ii; ¥tAM.4 M # =&&,lIfh'lI

Handle entirely by library
routine or use compiler­
generated sub-routines?

COMPILER LIBRARY

Compiler-generated subroutines are used
except in the cases shown opposite. Even so,
a library routine will be called if a new record
is required, and, generally, to handle a con­
version.

Handles processing completely for:
Negative or zero field widths in format specification
A-format item with implied length on output*
B-format item with implied length on output

* An exception is that A-format items with implied length are
handled in-line if: OPT (TIME) is In effect, and the compiler
can match the data list with the format list.

Figure 9.10. Choice of subroutines for edit directed I/O

2. A call to a compiler-generated
subroutine to check whether a new
record is required, and if so to call
a library module to transmit a record
by making a call to the transmitter.

The SIoeB is completed with source or
target DEDs and the addresses of the
source and the target or their
locators.

3. A call to a conversion module or
conversion director, or a compiled­
code conversion using the information
set up in the SIOCB.

4. A further call to a comp~ler-generated
subroutine, to update the buffer .
control fields, and free any
intermediate workspace if spanning was
involved.

This sequence is illustrated in the
annotated flowchart in figure 9.11. Figure
9.12 shows the code generated for a GET
EDIT statement.

Control format items are implemented by
passing the SIOCB, which contains the FED

126

for the control format item, to one of the
control format modules. There are four
modules:

1. IBMDSPL: library routine for SKIP,
PAGE, and LINE formats and options.

2. IBMDSXC: library routine for X and
COLUMN formats.

3. IELCGOC: compiler-generated
subroutine for X output items that do
not span a record boundary.

4. IELCGIA: compiler-generated
subroutine for X input items that do
not span a record boundary. (This
module also has other functions; see
the section "Compiler-generated
Director Routines" near the end of
this chapter.)

~~1£hing_~nd~Qg=~~tchin~at~~ng
.EQ!:!!at Li.§ts

In the majority of edit-directed
statements, the data and format lists can
be matched during compilation, since the
programm~r requires conversions for
specific variables. However, it is
possible to write statements which, because

n
~
PI
"tj
c+
(1)
11

'.,t)

til
c+
11
(1)
PI
e
I
o
11 ..,.
(1)
::s
c+
(1)
PI

1-1
t:S
"tj
~
c+

" o
~
c+
"tj
~
c+

-\
I\.)
..,J

T EDIT (B)(A);

0 FLOW DIAGRAM :LOW DIAGRAM NOTES

PU

LA 9,60(0,4) Pick up address of SIOCB
Step 1 ST 9,848(0,3) Place in parameter list

Step 5 Set up part of
Compiled code MVI 77(4), X'20' Set "edit output" flag Carry out Compiled code SIOCB.

LA 1,844(0,3) Point R1 at paramo list conversion either or conversion Call initialization
L ~::~5' IBMBSIOA} Branch to initialization in . line or by routine routine IBMDSIO
BALR routine calling library module

~ t
Step 2

Call Initialization routine
Test if file is open, and open if necessary, calling IELCGOB

,
transmitter to locate record.

~
CaIlIBMDOCL to Place address of ONCA and FCB in the SIOCB.

File open file & call Check statement validity.
closed transmitter to

get 1 st record .-
Step 6 NO

J Item IELCGOB ..
handled by YES --"00 ,
IBMBSEDB

p

?

NO
Check
statement
validity

Call1BMBSEOA Was a YES
Call transmitter VDA used?
and free VDA + Step 3

LA 2,60(n 4) Point R1 at SIOCB
NO t

Place address of Compiled code
LA 14, B Pick up address of B variable, its D ED,
ST 14,0(0,1) Place in SIOCB & OED generated

X L 14,76(0,3) Pick upDED from format item ,

"" L 7,A .. .IELCGOA Branch to compiler·
Clear 'VDA' flag in SIOCB

BALR 6,7 generated subroutine Update FREM,
and IBMDSED l-t FCBA, and FCNT
flag

CaIiIELCGOA j t j
Return to I
compiled code

~~P4 1
IELCGOA

Will YES Set 'VDA' flag in Acquire VDA for item if necessary.

i item ~pan or '. . SIOCB. Get VDA Either If there is no room in current record, or,

Step 7
require new and set as iHhe converted item will span the record boundary.

Compiled code
record? address of target.

Continue from

J STEP 3 with next
item, if any 6- 0

Fiqure 9.11. Edit directed output statement with matching data and format lists

NOTES

, "~'IBMBCHFH} "''''''''''''.'''';M
BALR 14,15

L 7,A .. IHCGOB } ""',ro""""'·
director module BALR 6,7

Update buffer control fields
Handle housekeeping

Conti nue as necessary

PL/I statement: GET EDIT (A,B)(F(3) ,X (S»;

• STATEMENT NUMBER
00007A 41 90 4 010
OOOOlE 50 90 3 060
000082 96 80 3 060
000086 92 24 4 021
00008A 41 00 3 050
00008E 50 00 4 028
000092 41 10 3 05C
000096 58 FO 3 030
00009A 05 fF
0000ge 41 EO 0 OA8
OOOOAO 41 FO 3 040
0000A4 41 10 4 010
0000A8 50 10 4 008
OOOOAC 90 EF 1 008
OOOOBO ~l EO 3 044
0000B4 58 10 3 OOC
0000B8 05 6'7,
00008A 58 FO 3 02e
OOOOBE 05 EF
ooooeo 58 10 3 010
0000C4 05 61
0000e6 41 EO 3 04A
OOOOCA 58 10 4 008
OOOOCE 58 10 3 OO~
000002 05 61
000004 41 EO 0 OAe
000008 50 EO 1 008
OOOOOC 41 EO 3 044
OOOOEO 58 10 3 ooe
0000E4 05 61
0000E6 58 FO 3 02C
OOOOEA 05 EF
OOOOEC 58 70 3 010
OOOOFO 05 67
0000F2

3

Cl.2

LA
ST
01
MVI
LA
ST
LA
L
BAlR
LA
LA
LA
Sf
STH
LA
l
BAlR
L
BAlR
L
BALR
LA
L
L
BALR
LA
ST
LA
~
BALR
L
BALR
L
BALR
EQU

9,16(0,4»
9,96(0,3)
96(3),X'SO'
33(4),X'24'
O,SOC 0, ,3}

0,40(0,4)
1,92(0,3.
15,A •• IBMBSIIA
14,15
14,A
1'5 ,OED •• A
1,16(0,4)
1,8(0,4)
14,15,8(1)
14,68(0,3'
1,A •• IELCGIA
6,1
15,A •• IBMBSFIA
14,15
7,A •• IELCGIB
6,1
14,74(0,3)
1,8(0,41
7,A •• IELCGIA
6,1
14,B
14,8(0,1)
14,68(0,31
7,A •• IELCGIA
6,7
15,A •• IBMB,SFIA
14t1.5
1,A •• IELCGIB
6,7

*

Pick up address of SIOCB
Store in parameter list
Mark end of parl1meter list
Set 'edit input flag
Set up abnormal locate return address (Cl 2)
Store in SIOCB
Point Rl at parameter list
Call stream I/O initialization routine

Pi ck up address of source
Pi ck up address of sourceDED
Point Rl at SIOCB
Save A(SIOCB) in temporar~ storage
Store A(target), A(target DED) in SIOCB
Point R14 at FED

Call compi ler generated subroutine

Call conversion director

Call compiler generated subroutine

Pick up FED of format item

Call compiler generated subroutine
Pick up address of second item
Store in SIOCB
Point R14 at FED

Call compiler generated subrQUtine

Call conversion director

Call compiler generated subroutine
Abnormal-locate return address

~iqure 9.12. Typical code generated for a GET EDIT statement

of iteration factors, cannot be matched at
compile time. For example, in the
statement:

PUT EDIT (A,B,C) (N (F (3» ,X (10» ;

it is impossible to know at which point the
ten-character space indicated by "X(10)"
will be required, without knowing the value
of N. If the statement had been

PUT EDIT (A,B,C) (F(3) ,X(10»;

the code would be compiled in the order:
handle the conversion of a variable, handle
an X item, handle the conversion of a
variable, etc., until the data list was
exhausted. However, as it is not known at
which point the X items will be req~ired in
the unmatched statement, it is impossible
to compile sequential code to handle the
statement. Consequently, the code for each
item is compiled s~parately, and branches
are made between the two types of code as
the values of the repetition factor
indicates. In the example above, the
branches would be made when the F item had

128

been executed N times, and when the X item
had been executed once.

The code sequences used for matching and
non-matching data and format lists are
shown in figure 9.13.

Choice of Initialization Routines

Three initialization~routines are available
for stream 1/0 using the FILE option. (The
module for use with_the STRING option is
described later in the chapter.) The
initialization routines are:

IBMDSII - input only
IBMDSIL - input and output, provided

the COPY option is not used
IBMDSIO - output only

IBMDSIL has space saving advantages when
either input or input and output are used
in a program. If only output is used,
IBMDSIO is the most economical module.

MATCHING LISTS

PUT EDIT 0, NAME, ACT. NO)
(F (3),X (3), A (15), X (3), P'ZZZ9');

HANDLE
CONVERSION
OFI

~,

HANDLE
X ITEM

~,

HANDLE
CONVERSION
OF NAME

~~

HANDLE
XITEM

"
HANDLE
CONVERSION
OF
ACT· NO

"

UNMATCHING LISTS

PUT EDIT (AB, C, D) ((N) F (3), SKIP, A (4));

HANDLE
CONVERSION
F(3)

HANDLE
CONVERSION
A(4)

YES

Figure 9.13. Code sequences for matching and non-matching data and format lists

Chapter 9: Stream-oriented Input/output 129

Compiled code calls these modules as
follows.

IBMDSIL is used when both stream input
and stream output are used in one program
and the COpy option is not used for the
input.

IBMDSII is used when input with the COpy
option is used in the program.

IBMDSIO is used when only output is
required, or when both input and output are
required and the input uses the COPY
option.

The autolink feature of the DOS linkage
editor prevents duplicate modules being
incorporated into one program. To allow
the choice of modules to be made by the
linkage editor, IBMDSII contains additional
entry points with the same names as those
in IBMDSIL. Similary, IBMDSIL contains
entry points with the same names as those
in IBMDSIO. (The autolink feature resolves
external references alphabetically. Thus
if there is a reference to IBMDSII, any
references to IBMDSIL entry points will be
resolved to the entry points in IBMDSII.
similarly, any references to IBMDSIO can be
resolved in IBMDSIL.)

Handling Format Options

Format options are handled by a call to the
appropriate entry point of the
initialization routine.

The initializing module calls the
formattinq module IBMDSPL to carry out the
formatting.

Input and Output of Complete Arrays

When transmittinq complete arrays, it is
uneconomical for a return to be made to
compiled code after each item has been
handled. Accordingly, the list- and data­
directed director modules have a facility
that enables them to handle complete
arrays. The modules access the array
multipliers, and handle the indexing from
information held in the array
descriptors. For edit-directed I/O, each
element is handled separately.

Effects of the LIMSCONV Option

GET LIST and GET DATA statements do not

130

specify the format of the input in the data
stream. Consequently the compiler must
allow for any valid input form. Modules to
handle the necessary conversions must,
therefore, be included in the object
module. This frequently results in a number
of lengthy modules being link edited but
never used.

To overcome this problem, the compiler
option LIMSCONV can be used. LIMSCONV
specifies that the input stream viII not
contain items whose format would require
the conversions shown below.

arithmetic constant
bit string constant
binary constant

string
arithmetic
arithmetic

The occurrence of input that would cause
these conditions results in the raising of
the CONVERSION condition.

When the LIMSCONV option is in force,
the compiler does not generate external
references for the modules that would
handle the prohibited conversions. This
results in considerable space savings.
Compiled code qiffers when LIMSCONV is in
force, in that calls are made to different
director modules. IBMDSLJ is called for
list-directed statements, and IBMDSDJ for
data-directed statements. The list­
directed director module, IBMDSLJ, contains
code to check for the prohibited
conversions and raise the CONVERSION
condition if necessary. The data-directed
module, IBMDSDJ, is exactly the same as the
normal director module, IBMDSDI, except
that it calls IBMDSLJ and not IBMDSLI.
(Figure 9.8 shows how, in data-directed
I/O, the list-directed director module is
called to handle the conversions.)

PL/I Conditions in Stream I/O

The following errors and PL/I conditions
are particularly relevant to the
implementation of stream I/O: TRANSMIT,
CONVERSION, NAME (data-directed only),
ENDFILE, and unexpected end of file.
Unexpected end of file occurs when the end
of file is reached in the middle of an
input item. Other conditions that occcr
present no special problems.

The rules for raising the TRANSMIT
condition in stream I/O are that the

condition shall be raised after the
assignment of the potentially incorrect
data item. Thus TRANSMIT can be raised on
input for a data item even though the
transmitter has not been called for the
statement involved.

When the TRANSMIT condition is detected
by the LIOCS routines, control returns to
the error routine in the transmitter, which
sets a flaq in the FCB indicating a
transmission error. The director module
inspects this flag, and, if it is set, sets
a flag in the SIOCB. For input, TRANSMIT
is raised for every item that is taken from
a record in the block with which the
transmission error was associated.
TRANSMIT is raised after the potentially
incorrect value has been assigned. For
output, TRANSMIT is raised by the
transmitter immediately it occurs.

A special entry point, IBMBSEIT, is used
bV the compiler-qenerated subroutines to
raise the TRANSMIT condition. When called
by this entry point, the module calls the
error handler with the appropriate error
code for the TRANSMIT condition.

The CONVERSION condition is detected by the
conversion modules in the PL/I library~
(Conversions that could cause the
CONVERSION condition are not handled in­
line except where "NOCONVERSION" is
specified.) CONVERSION is raised by calling
a special library module, IBMDSCV. This
module analyzes the type of conversion
error, and calls the error handler with an
appropriate error code~ The module also
saves the field that caused the conversion;
it is necessary to do so, because the field
could be lost if an on-unit was entered and
another GET statement executed which
resulted in a new record being acquired.

The NAME condition can occur only in data­
directed input. It is raised by the data­
directed director module when it cannot
find a symbol table to match the name read
in. DATAFIELD is set up, and the file
positioned for the next read, before
calling the error handler, with the
appropriate error code

End of file is detected by the LIOCS
routines, which then enter the EOFADDR
routine in the transmitter. This routine
sets a flag in the FCB. On return to the
director modules, the flag is inspected
and, depending on the situation in which
the transmitter was called, ENDFILE or
unexpected end of file is raised by calling
the error handler, with the appropriate
error code.

For unexpected end of file, the ERROR
condition is always raised as soon as the
end of file is detected. ENDFILE, in the
case of list- and data-directed I/O, is not
raised until a further attempt is made to
read the input file.

Buil t-In Functions in Stream I/O

The built-in functions that are relevant to
stream I/O are COUNT, DATA FIELD, ONCHAR,
and ONSOURCE.

ONCHAR and ON SOURCE are dealt with in
chapter 10, under the heading "Raising the
CONVERSION Condition."

The COUNT built-in function is handled
by the director routines. A count of
transmitted items is kept in the FCB; the
number is updated after every transmission
to or from a PL/I variable.

The DATAFIELD built-in function .is
handled by the director routine, which
places the address of a string locator
descriptor for the data in the ONCA. The
offending field is first moved to a
workspace area, as the buffer may get lost
if further stream I/O operations take place
in an on-unit.

COpy Option

Implementation of the COPY option involves
the use of a pointer, FCPM, in the FCB.
FCPM points to the start of the data that
is to be copied. Use is also made of the
buffer control pointer, FCBA, to point
immediately beyond the end of the data that
is to be copied. At the end of the GET
statement, or when further processing will
result in the data to be copied no longer
being held between FCPM and FCBA (for
example when the transmitter is being
called to acquire a new record), the copy
module IBMDSCP is called. IBMDSCP moves

Chapter 9: Stream-oriented Input/output 131

_g._Wi AU IMe;;;:«"" M Ai i Ism # #A#414'iiQ4

GET LIST FILE (SYSIN) (STRING1)
COpy FILE(A):

GET LIST FILE (SYSIN) (STRING2)
COPY FILE (A);

GET LIST FILE (SYSIN) (STRING3)
COpy FILE (B);

(((

FCPM

i
-- - - - ---

t

-1- -----T ----1 po;'''' "'"tort ,. COpy d",

rl'D-A-T-A~F-O-R-C-OP-Y-IN--G-o-N-T-o-·------------·-F-�L-E----.I IL_N_AM_E_D_A_. ______ .~D-AT-A-F-O-R-C~O-P-YI-N-G-O-N-TO--FI_L_E_B·.-__ ~

FCB' J _ __ _ _ _ _ _ ____ 1 ___ 1_ _ _1_ _ _ _ _1 _ _ _ _ _ _ _ J po"'" "" ,mf ,. COpy d,,'
Data is transmitted to the copy file at the end of each statement and at those
times when it can no longer be held between the pointers FCBA and FCPM.
In the example above this will be at the end of each GET statement and at
the end of the first record.

Figure 9.14. Use of FCBI and FCPM in copy option implementation

the data into the buffer being used by the
copy file, and then calls the transmitter
to transmit the data.

The data to be copied is normally held
between FCPK, which is initialized for a
statement with the COpy option, and FCBI,
which is updated with every input to point
to the next position in the buffer from
which data will be acquired. This is
illustrated in figure 9.14.

When execution of a GET statement with
the COpy option is begun, the flag FCOP in
the FCB is set, and the address of the FCB
for the copy file is placed in the FCB of
the input file to which the statement
refers.

To ensure that no data is lost, the copy
flag, FCOP, is tested in the following
situations:

1. By the input transmitter, before a new
record is acquired.

2. By the stream I/O initialization/
termination routine, IBMDSII, after
the completion of a GET statement with
the COPY option.

~. By the close routine, when the input
file is being closed.

132

4. By the initialization routine, IBMDSII
every time a GET statement is to be
executed.

If the copy flag is on, a call is made to
the copy module, which transmits the data
directly to the copy file, calling a
suitable PL/I output transmitter. The copy
flag is turned off after calling IBMDSCP in
situations 2, 3, and 4 above.

STRING Option

Since the stream I/O director modules and
conversion routines are primarily concerned
with moving data in main storage, they are
used to implement the STRING option as well
as normal stream I/O. However, as the same
modules are used, something must be done to
prevent calls to a transmitter. It is
achieved by having a special STRING module,
IBMOSIS, that sets up a dummy FCB
containing addresses which result in
control being passed to suitable code when
an attempt is made to call the transmitter.

Compiled code passes the string
initialization module an extended SIOCB in
which the dummy FCB is set up. The buffer
control fields FCBI and FREM in the dummy
FCB are set up as i(the string were a

------------ --- -~---

record. The address that would hold the
transmitter in the dummy FCB is set up to
point to fields that will result in the
correct action being taken if an attempt is
made to read or write beyond the end of the
string, or if a transmitter call is made.

When an attempt is made to call the
transmitter for a PUT statement, the
address in the transmitter field will have
been initialized to point to the error
handler. As register 1 will have been
pointed to the head of the FCB by the
caller, the error code for exceeding string
size is placed at the head of the FCB, and
the correct error is automatically raised
when the branch is made.

When an attempt is made to call a
transmitter for a GET STRING statement, the
address in the transmitter field is the
address of code set up in the dummy FCB
that sets the end-of-file flag and returns
to the caller.

As far as the caller is concerned,
attempting to read beyond the end of the
string is equivalent to finding an end-of­
file mark in stream I/O statements. Where
the ENDFILE condition or unexpected end-of­
file would be raised for a stream file, the
ERROR condition is raised, and a 'GET
STRING SIZE EXCEEDED' message is issued.

In certain circumstances a further call is
made to the string routine IBMDSIS, to
complete the operation.

IQ~-2!!put into a fixed-length string,
the routine is called, after the first
assignment only, to blank out any remaining
bytes in the string. For varying strings,
a call is made after every assignment to
update the current length of the string.

F0I::_inpu!., for varying strings only, the
routine is called to update the string
information held in the dummy FCB, as this
information may have been changed by an
assignment to the string.

The need to make a further call to
IBMDSIS is flagged in the SIOCB when
IBMDSIS is first called in connection with
any particular statement. The library
director routines and the compiler­
generated subroutines test this flag, and
call IBMDSIS if necessary.

Summary of Subroutines Used

This section gives a summary of the
subroutines used in the implementation of
stream-oriented input/output. Detailed
descriptions of the library modules are
given in the relevant program logic
manuals.

Nine different types of subroutine are
used in stream I/O. They are:

1. Initializing modules

2. Director modules

3. Transmitter modules

4. Formatting modules

5. Conversion modules

6. External conversion director modules

7. The conversion fix-up module (IBMDSCV)

8. The copy module (IBMDSCP)

9. The string module (IBMDSIS)

Conversion modules are described in chapter
10 of this manual. The other types of
module are dealt with below.

INITIALIZING MODULES

Initializing modules initialize the stream
I/O statement. There are two of these
modules:

IBMDSII - input initializer

IEMDSIO - output initializer

IBMDSII and IBMDSIO are described earlier
in this chapter.

DIRECTOR MODULES

IBMDSLI - list-directed input

Entry point A:
Entry point B:

element item
complete array

IBMDSLJ - list-directed input with LIMSCONV

Entry Point A:
Entry Point B:

element item
complete array

Chapter 9: Stream-oriented Input/output 133

1M '.'U:UI4iM'41ik, PMW ;;m

IBMDSLO - list-directed output

Entry point A:
Entry point B:

element item
complete array

IBMDSDI -data-directed input

Entry point A: with data list'
Entry point B: all known variables

IBMDSDJ - data directed input with LIMSCONV

Entry Point A: with data list
Entry Point B: all known variables

IBMDSDO - data-directed output

Entry point A: element variables and
whole arrays

Entry point B: single array elements
Entry point C: all known variables and

SIGNAL CHECK when CHECK
without a check list is
enabled.

Entry point D: CHECK output
Entry point T: output a final semicolon

~Qg~l~§-y§~d with_~Q~iler-Generated
~~12l:.Q~tiD~§

IBMDSEI - edit-directed input

Entry point A: housekeeping for input
item spanning a record
boundary.

Entry point T: raise TRANSMIT for input
item

IBMDSEO - edit-directed output

~.Qg~l~s f.Q~ Co~lete Library Cont~ol_.Q!
1!gi!=Directed !~L~~inqle Item

IBlIDSE~ - Used when complex data'or format
items appear in the program.

Entrv point A:
Entry point B:

input
output

IBlI~SEE - Used when edit-directed input or
edit-directed input and output are required
in the same program, provided there are no
complex items in the program.

Entry points:

134

IBMBSEEA: Edit-directed input of a data
item

IBMBSEHA: Edit-directed output of a
data item

IBMBSXCA: X format input
IBMBSXCB: X format output

IBMBSEHB:
IBMBSXCC:
IBMBSXCD:
IBMBSEHC:

X format output
COLUMN format input
COLUMN format output
COLUMN format output

I~~DSEH - Used when only output is required
in a program, and there are no complex
items.

Entry points:

IBMBSEHA: Edit-directed output of a
data item

IBMBSEHB: X format output
IBMBSEHC: COLUMN format output

~.Q~nil~~~~~!ed Director Routines

For input:

IELCGIA - provides the address of the
source of an edit-directed data
or X-format item.

IELCGIB - completes the transmission of an
edit-directed data item, by
freeing a VDA if one was used,
updating the COUNT built-in
function value, and calling
IBMBSEIT if TRANSMIT has been
raised.

For output:

IELCGOA - provides the address of the
target of an edit-directed data
item.

IELCGOB - completes the transmission of an
edit-directed data item, updating
the buffer items in the FCB,
countirig the data item, and
freeing a VDA if one was used.

TRANSMITTER MODULES

The actual movement of the data between the
external medium and the buffer area is
carried out by a series of seven
transmitter modules, which interface with
the LIOCS routines of DOS data management.
These modules essentially complete the
setting up of the DTF, and issue the data
management GET and PUT macro instructions,
thus reading or writing one record.

One module is used for input, six for
output. The"output modules are divided into
two groups: one group for PL/I print
files, the other for all other output
files. Both output module groups contain
three modules: one for F-format records,

one for V-format records, and one for U­
format records. All modules interface with
the queued sequential access method.

The followin~ transmitters are used:

IBMDSTI - input transmitter

IBMDSOF - output transmitter for F-format
records

IBMDSOV - output transmitter for V-format
records

IBMDSOU - output transmitter for U-format
records

IBMDSTF - print transmitter for P-format
records

IBMDSTV - print transmitter for V-format
records

IBMDSTU - print transmitter for U-format
records

The modules IBMDSTI (stream input) and
IBMDSTF (stream output for F-format print
files) are held in the resident library and
are link-edited. All other transmitter
modules are held in the transient library
and loaded during file opening.

FORMATTING MODULES

Formatting modules control the position of
the data on the external medium. There are
three formatting modules: tvo library
subroutines, and one compiler-generated
subroutine.

IBKDSPL - PAGE, LINE, and SKIP format items
and options

Entry point A: PAGE option or format
item

Entry point B: LINE option or format
item

Entry point C: SKIP option or format
item

IBMDSXC - X and COLUMN format items

Entry point A:
Entry point B:
Entry point C:
Entry point D:

X format input
X format output
COLUMN format input
COLUMN format output

£2~Eiler-Generated Subroutine

IELCGOC - X items, in edit-directed output l

that do not span a record
boundary.

EXTERNAL CONVERSION DIRECTOR MODULES

The following external conversion director
routines are used exclusively in edit­
directed I/O:

IBMBSAI - input I, B, and P character
formats

IBMBSAO - output A, B, and P character
formats

IBMBSCI - input C format
IBMBSCO - output C format
IBMBSFI - input P and E formats
IBMBSFO - output F and E formats
IBMBSPI - input P format arithmetic
IBMBSPO - output P format arithmetic

MISCELLANEOUS MODULES

The other subroutines used in stream I/O
are:

IBMDSCP - the copy module

IBMDSIS - the string module

IBMDSCV - the conversion fix-up module

IBKDSMW - module for calculating
output format widths not
specified in program

Chapter 9: Stream-oriented Input/output 135

''''''''''''',";:''',''''**'*,,«;;;4#(;;,a; 114 « .wPw

In this chapter, the terms source and
l~~get are used when referring to transfer
of data. The §QY~ce is the point from
which the data is taken; the ta~g~l is the
point to which it is moved, possibly in a
converted format.

The PLII language specifies situations
in which convers~on of data types will be
carried out. These include the execution
of stream 110 and assignment statements,
and the evaluation of expressions that
include different types of data. The large
number of data types allowed in the PL/I
language means that some 170 types of
conversion are possible. How these
conversions are handled by the PL/I
Optimizinq Compiler depends, to some
extent, on the optimization specified for
the program.

If no optimization is specified, all
except simple conversions are carried out
by calls to the library conversion package.
If the program is being optimized, all
possible conversions are done in-line.

This chapter describes the library
conversion package and explains how in-line
conversions are handled. It concludes with
a description of how the CONVERSION
condition is raised.

Before conversions can be understood,
knowledge of the way in which data types
are held is necessary. This is summarized
in figure 10.1.

The Library Conversion Package

The library conversion package consists of
26 modules and is capable of handling all
the conversions that are allowed in the DOS
PLII Optimizing Compiler implementation of
the PL/I language. All but seven of the
modules convert data from one data type to
another. As there are approximately 170
possible conversions and only 19 conversion
modules, many conversions are done by using
a series of modules. For instance, to
convert from fixed-decimal to bit-string
involves an intermediate conversion to
floating-point. The conversion package
also contains five control and utility
modules, and two modules used for stream
1/0.

Chapter 10: Data Conversion

r---,
Data attributes I Stored internally asl

---1
BIT(n) I Aligned: one byte 1

BIT(n) VARYING

CHARACTER (n)

CHARACTER (n)
VARYING

FIXED DECIMAL(p,q)

FIXED BINARY(p,q)

FLOAT DECIMAL (p)

FLOAT BINARY (p)

PICTURE

I for each group of I
I eight bits or part ,
I thereof. I
t Unaligned: as many t

bits as are
required, regardless
of byte boundaries.

As BIT(n), with
two-byte prefix
containing current
length of string.

One byte per
character.

As CHARACTER(n),
with two-byte prefix
containing current
length of string.

Packed decimal:
1/2-byte per digit,
plus 1/2~byte for
sign.

P <= 15: halfword
p>15: fullword

p<=6: short
floating-point
p>6: long
floating-point

p<=21: short
floating-point
p>21: long
floating-point

One byte for each
picture character
(except K and V)

L-------~----------- ---------------------J
Figure 10.1. Internal forms of data
types

The stream 1/0 modules move character and
bit strings between the data management
buffer and the PLII variable when no
conversion is necessary.

A full description of the routines in
the library conversion package is given in
the publication QQ~ ~~! Resig~nt Library:
£~QYf:~~ Logic.

Chapter 10: Data Conversion 137

"jia"'.'''NRMMi,aun,; 4:ilt;ii in t 4 (;

The conve~sion paths followed for every
conversion are known to the com~iler, and
ESD records are generated for all the
modules that will be used. In certain
cases, however, the data types involved are
not known at compile time. Examples of
this are data-directed and list-directed
input, and edit-directed input or output
when format and data lists cannot be
matched. In such cases, the compiler
generates ESD records for all conversion
modules that could possibly be needed.

SPECIFYING A CONVERSION PATH

When a number of conversion modules need to
be used for a certain conversion, it is
necessary for there to be some control of
the path taken after the first module has
been entered. The method used is for each
module to have a number of entry points.
Each one is entered for a certain type of
conversion, and each one implies the
subseguent entry points to be invoked for
that particular conversion. For instance,
the module IBMBCE handles fixed-decimal to
fixed-binary conversions. If the module is
entered to carry out this conversion, entry
point IBMBCEDX is called. However, if it
is only an intermediate stage in a
conversion from fixed-decimal to bit­
string, the entry point IBMBCEDB will be
called. When the conversion to floating­
point is completed, the conversion to bit
will be carried out by the module IBMBCR.

In addition to the use of various entry
points to specify the conversion path to be
taken, there are two control modules to
handle the conversion paths between
character-string and arithmetic data.

HOUSEKEEPING WHEN MORE THAN ONE MODULE
IS USED

When more than one conversion module is
used in a conversion, a method of
minimizing the housekeeping has been
evolved. This avoids saving registers and
acquiring workspace for each module
entered. The same library workspace is
used for all modules in a single conversion
operation. The first module in the chain
saves the registers and acquires workspace;
the last module frees the workspace and
restores the registers.

A simple method is used to allow each
module to test whether or not it is the
first to be called. A bit at a fixed
offset from register 13 is tested. If the
module is the first to be called, this bit

138

will be a bit in the calling procedure's
DSA, which is always set to zero. If the
module is not the first to be called, the
bit will be in library workspace and will
have been set to one by the previous
module. If the module is the first, library
workspace will be acquired in the usual
manner. If the module is not the first, a
branch will be made around this code.

ARGUMENTS PASSED TO THE CONVERSION
ROUTINES

Each conversion routine has a standard set
of parameters. These consist of the
address of the source and target, and the
addresses of the DEDs (data element
descriptors) for the source and the target.
Arguments are passed in a list addressed by
register 1. (The source is the variable or
constant that requires conversion; the
target is the area where the converted
result is to be placed.)

The DEDs are used to describe the data
type of the element. Those passed to the
library conversion package are set up by
compiled code in the constants pool. They
are described in chapter 4 and fully mapped
in a ppendi x B.

COMMUNICATION BETWEEN MODULES

When the conversion path goes through a
series of modules, the address of the final
target must be retained until the last
module is reached.

Temporary targets are created for the
intermediate results, and these are passed
on as the source for the next module. When
information is passed between two
conversion modules, registers are normally
used rather than a parameter list.

Temporary DEDs are created for
intermediate modules. These are set up in
library workspace and are based on the
original source DEDs.

In some arithmetic conversions to
string, precision data is passed through
certain modules that do not themselves need
such data.

FREE DECIMAL FORMAT

Because all floating-point data is in
binary form, there is no direct

r---,
Conversion 1 I Optimization

---~---------------------------I Comments and conditions 1-----------------
Source I Target 1 1 SIZE I SIZE

I 1 Idisabled enabled
------------- ----------------------~--------------------------------

Fixed binary

Fixed decimal

Fixed binary Floating-point

Bit string

Character string
or picture

-----------------------------~-
IFixed binary
1
1
I
I
IFixed decimal
1

Fixed decimal Floating-point

If either scale factor = 0 and the
other factor ~ 0, the optimization
can be 'none'.

If source scale factor = 0, the
optimization can be 'none' (whether
SIZE is enabled or not).

String must be fixed-length, aligned,
and with length ~2048.

Source scale factor must be ~ o.
String must be fixed-length with
length ~256.Picture type 1, 2, or 3.
------------------~-----------~------
If source and target scales have the
same sign and are non-zero, the
optimization (SIZE disabled) must be
'time'.

Source precision must be <10.

time

time

time

time

time

time

not done
in-line

not donel
in-line

time

time

Bit string Source scale factor must be zero.
String must be fixed-length, aligned,
and with length ~2048.

not donel
in-line 1

1

Character string Source scale factor must be ~ o.
String must be fixed-length and
length ~256.

time time
1 ,
1
1
1

Picture Picture type 1, 2, or 3. For time not donel
picture types 1 and 2 with no sign, lin-line I
eptimization can be 'none'. 1 1

--- -----------------1
IFixed binary I time not done1
I 1 in-line I
I 1 I

f IFixed decimal ITarget precision must be ~9. time not donel
I I I in-line ,
I I 1 I
I Floating- I Floating-point ISource and target may be single or 1
Ipoint 1 Idouble length. 1
f I I I
I IBit string IString must be fixed-length, aligned, time not donel
I I land with length ~2048. in-line 1
L---__ ----------------------------------J
Figure 10.2. (Part 1 of 2). Data conversions performed in-line

representation of the PL/I floating-point
decimal format. In order to simplify
certain conversions, a simulated floating­
point decimal format is employed by the
optimizing compiler. This format i~ termed
t£~~ g~i~l (sometimes known as ~£~ed
inter~~dia1~ gecimal). The format of free
decimal is a 17-digit packed decimal

mantissa and a fullword binary exponent.
Conversions to and from free decimal form
an integral part of the arithmetic
conversion package.

Chapter 10: Data Conversion 139

4i4ilWWW_."'; __ ,,_"",",'.4kN; .. tal".IX it, #4¥AQ,ij

r---,
f Conversion 1 I Optimizatioh 1
1-------------------------------1 Comments and conditions 1-----------------1
I Source I Target I 1 SIZE I SIZE I
I I I Idisabledlenabled I
1---1
1 I Fixed binary I Source string must be fixed-length, I I not donel I 1 laligned, and with length S2048. 1 lin-line I
I " I • I
IBit string IFixed decimal andlSource must be fixed-length, aligned, I time Inot done
1 I floating-point land with length <32. I lin-line
1---
I 1 I I I
I ICharacter string IString must be fixed-length with 1 I
I I Ilength S256. I I
I Picture 1 1 1 I
til I I
I I Picture IPictures must be identical. I I

Fixed binary ISource precision must be <10. time not done
I in-line
I

Fixed decimal IIf picture has a sign, the not done
loptimization must be 'space' •

picture 1
type 1 I ,

Floating-point I Source precision must be <10. time not done
1

Picture IPicture type 1, 2 or 3. time not done
I in-line

Locator 1 Locator

Label ILabel

The word "time" in the columns headed "Optimization" indicates that the conversion is
done in-line only if optimization has been specified; "not done in-line" indicates
that the conversion is done by library call.
L---~

Figure 10.2. (Part 2 of 2). Data conversions performed in-line

In-Line Conversions NO!L2n Picture Types

The optimizing compiler generates in-line
code for the more commonly used
conversions. Eighteen basic types of
conversion are handled in-line. Several of
these basic types are used in conjunction,
to enable a total of 28 conversions to be
handled in-line. The circumstances in
which in-line conversions are used are
shown in figure 10.2.

An example of the way in which a
compiler conversion is us~d to convert from
fixed-binary to fixed-decimal is given
below. A list of the eighteen fundamental
compiler conversions is given in figure
10.3.

140

Figures 10.2 and 10.3 use the terms
"Picture type 1, 2, and 3". These picture
types must contain only the following
characters:

V and 9

Drifting or non-drifting characters $, +

Zero suppression characters Z *

punctuation characters, • / B

The types are defined as follows.

Pi£tuI~!Y~~_l: Pictures of all 9s with
(optionally) a V and a leading or trailing
sign. For example:

'99V999', '99', 'S99V9',1 '99V+',
'~9991

r~------~---------------------------------,
IConversion I Conversion
, number I
I---~--~~---------------------------------
I ,

, ,
I ,
I
I
I
I
1
I
1
I
1

2

3

4

5

6

7

8

9

10

12

14

15

16

17

18

19

20

Fixed-binary to
floating-point

Floating-point to
fixed-binary

Fixed-decimal to
floating-point

Floating-point to
fixed-decimal

Fixed-binary to
fixed-decimal

Fixed-decimal to
fixed-binary

Character-string
fixed-decimal

Character-string
floating-point

Character-string
f.ixed-binary

Fixed-decimal to
character-string

Bit-string to
character-string

to

to

to

Fixed-binary to bit-string

Floating-point to bit-string

Bit-string to fixed-binary

Fixed-decimal to picture
type 1

Fixed-decimal to picture
type 2

Fixed-decimal to picture
type 3

I 21 Picture type 1 to
I fixed-decimal
1---
l.Not,g: Conversions numbers 1, 11, and 13
Inot used.
L-------------------------------_---------~

Figure 10.3. Fundamental in-line
conversions

Picture type 2: Pictures with zero
suppression characters and (optionally)
punctuation characters and a sign
character. Also, type 1 pictures with
punctuation characters. For example:

'ZZZ', ~**/**9', 'ZZ9V.99', '+ZZ.ZZZ·,
, $/ / /99 " '9 • 9 '

R.!£.tY!:!LllIDL1: Pictures with drifting
strings and (optionally) insertion
characters and a sign character. For
example:

'$$$$', '-,--9', '5/55/59',
'+++9V.9·,'$$$9-'

50metimes a picture conversion is not
performed in-line even though the picture
is one of the above types. This may be
because:

1. There is no overlap between the digit
positions in the source and target.
For example:

DECIMAL (6,8) or DECIMAL (5, -3) to
PIC '999V99' will not be performed

2. The picture may have certain
characteristics that make it difficult
to handle in-line. For example:

a. Punctuation between a drifting Z
or a drifting * and the first 9 is
not preceded by a V. For example:

'ZZ.99·

b. Drifting or zero expression
characters to the right of the
decimal point. For example:

'ZZV.ZZ·, '++V++'

Chapter 10: Data Conversion 141

•• ,,, •• Ai,neMiN.,""; # 4 MM

BASIC CONVERSIONS

The conversion is performed by converting from binary to decimal via a CVD instruction,
with a scale-matching operation (to line up the decimal and binary points) either before
or after the CVD (or occasionally both). This scale-matching operation is done by shifts
where possible but, depending on scales and precision, a decimal multiplier is sometimes
used.

DCL SOURCE FIXED BINAFY (31,9),
TARGET FIXED DECIMAL (15,-6);

TARGET=SOURCE;

L Bl,SOURCE Load source in general register.

LTR Rl,Rl Determine sign of source.

BNM Compiler-label Branch if >=0.

A Rl,CONST . Add a constant to negative source, rounding toward
zero before subsequent divide (right shift).

Compiler-label EQU *

SRA Rl,9 Divide by source scale (2**9).

CVD R1,WSP Convert to decimal in workspace.

ZAP TARGET (8) , WSP (5) Transfer to target, at the same time dividing by
10**6.

MVN TARGET+7(1) ,WSP+7 Transfer the sign.

MULTIPLE CONVERSIONS

The conversions listed in figure 10.3 can be regarded as fundamental types. A number of
other conversions can be performed by using two fundamental conversions in series. These
are shown in figure 10.4.

HYBRID CONVERSION

Finally, there is one hybrid conversion
that is carried out partially in-line.
This is floating-point· to character-string,
which requires an interpretive routine to
analyze the floating-point data (as
distinct from the attributes, which all the
others use), in order to generate the
correct scale factor. This is done by the
library, because in-line code would use the
same algorithm. However, partial
optimization is carried o~t by setting up a
character string of the correct length
before calling the library, and then
handling the subsequent string assignment
in-line.

142

Raising the Conversion Condition

The PL/I language specifies that when an
invalid conversion is attempted on
character-string data, the CONVERSION
condition will be raised unless it has been
disabled.

When the CONVERSION condition has been
raised, the language allows the progrom to
access the invalid field or character by
use of the ONSOURCEor ONCHAR built-in
function. The language also stipulates
that conversion should be attempted again
if an on-unit is entered in which the
ONSOURCE or ONCHAR pseudovariable is used
to change the invalid field or character.

Raising the CONVERSION condition

r---,
Conversion required I Compiler conversions used

Fixed-decimal to bit-string

Floatinq-point to bit-string

Bit-string to fixed-decimal

Bit-string to floating-point

Character-string to bit-string

Fixed-binary to character-string

Fixed-binary to decimal picture

Floating-point to decimal
picture

Decimal picture to fixed-binary

Decimal picture to floating­
point

No. 7 Fixed-decimal to fixed-binary

No. 15 Fixed-binary to bit-string

No. 3 Floating-point to fixed-binary

No. 15 Fixed-binary to bit-string

No. 17 Bit-string to fixed-binary

No. 6 Fixed-binary to fixed-decimal

No. 17 Bit-string to fixed-binary

No. 2 Fixed-binary to floating-point

No. 10 Character-string to fixed-binary

No. 15 Fixed-binary to bit-string

No. 6 Fixed-binary to fixed-decimal

No. 12 Fixed-decimal to character-string

No. 6 Fixed-binary to fixed-decimal

No. 18, 19, or 20 Fixed-decimal to picture

No. 5 Floating-point to fixed-decimal

No. 18, 19, or 20 Fixed-decimal to picture

No. 21 Picture to fixed-decimal

No. 7 Fixed-decimal to fixed-binary

No. 21 Picture to fixed-decimal

No. 4 Fixed-decimal to floating-point

Decimal picture to decimal No. 21 Picture to fixed-decimal
f picture
I No. 18, 19, or 20 Fixed-decimal to picture L-------------------__________________________________ ----------------------------------J
Fiqure 10.4. Multiple conversions

involves a number of housekeeping problems,
which are handled by a special conversion
module, IBMBSCV. IBMBSCV is never called
by compiled code, since conversions that
could raise the CONVERSION condition are
not attempted in-line unless the CONVERSION
condition is disabled. IBMBSCV produces the
correct error code for the error handler,
IBMDERR, and looks after the housekeeping
problems.

The alternative to using a separate
housekeeping module would be to place the
code either in the error handler or in the
various conversion modules. These solutions
would result in a considerable overhead

being carried either by all types of errors
or by all correct conversions. The reason
for the overhead lies principally in the
facility offered by the language of using
the ONSOURCE and ONCHAR built-in functions
to access and optionally change the field
causing the error, and subsequently
reattempting the conversion on the changed
field.

Before any conversion in which the
CONVERSION condition could be raised is
attempted, the ONSOURCE field in the ONCA
must be set up, and the address at which a
reattempted conversion should begin must
also be placed in the ONCA.

Chapter 10: Data Conversion 143

"'''''kAlnY,; 4#4/\ 'I ;: I , ...

The code carrying out the conversion
must then test the validity of the field to
be converted and, if it is invalid, set the
ONCHAR field in the ONCA to the first
invalid character. The module IBMBSCV is
then called to diagnose the conversion and
produce the correct error code for the
error handler. There are some twenty
possible error codes associated with the
CONVERSION condition.

If the condition was raised during the
execution of stream input, further action
is necessary. This is because an on-unit
may specify further input, and the buffer
which contains the ONSOURCEfield may be
lost. For example the on-unit might be:

144

ON CONVERSION BEGIN;
ON CONVERSION SYSTEM; 1* PREVENTS

RECURSIVE ENTRY*I
GET LIST (KEYB);
IF KEYB< 200 THEN ONCHAR ='1';

ELSE ONCHAR ='9';
END;

If KEYB was in the next record, the source
field that caused the conversion would be
lost. To prevent this, a VDA is acquired
in the LIFO stack, and the source field is
stored in this VDA. The ONSOURCR and
ONCHAR pointers are altered to point to the
field in the VDA, and all further
operations are carried out on ~his field.

The NAB pointer associated with the
block in which the interrupt occurred must
then be altered so that it encompasses the
VDA. The fact that the NAB pointer has
been altered must be known in the block for
a GOTO out of block to be handled. The
reset-NAB bit is accordingiy set to one in
the relevant DSA. When these operations are
complete, IBMBSCV calls the error-handling
module IBMDERR.

Chapter 11: Miscellaneous Library Subroutines and System
Interfaces

In addition to employing the PL/I libraries
for the functions described in previous
chapters, the DOS PL/I optimizing Compiler
calls on a large number of computational
and data-handling subroutines and on
subroutines that provide interfaces with
the operating system for such functions as
TIME and DATE. These miscellaneous library
calls are discussed in this chapter. The
library subroutines themselves are fully
described in the publications IBM
~i§~_QBergtin~ystem: PL/I Resident
1iQ~g~~-frog~m Logi£ and IBM Disk
QBg~~!ing~~!~~! Transi~!
1iQ~~~~ogrgm-tQgic.

This chapter is divided into two main
sections: the first deals with the
computational and data-handling
subroutines, and the second with
miscellaneous system interfaces.

Compu tational and Data-Handling
Subroutines

The computational and data-handling
subroutines are used to handle all the
mathematical built-in functions, the
majority of arithmetic built-in functions,
and a number of array-handling, structure­
handling, and string-handling functions.
The extent to which library calls are used
depends on the level of optimization
specified by the programmer, the type of
data involved, and, for string functions,
on whether S.TRINGRANGE and STRINGSIZE are
enabled.

ARITHMETIC AND MATHEMATICAL SUBROUTINES

The compiler always uses library
subroutines for mathematical functions.
The use of compiled code in these
circumstances is impracticable. Where
possible, arithmetic functions are handled
by in-line code. The circumstances in
which library subroutines are used are
listed in figure 11.1.

Considerable use is made of chains of
library modules to carry out the various
functions. For example, the subroutines
that handle complex arithmetic normally
calIon those that handle real values to
process each part of a complex number;
similarly, the square-root subroutine is

used in the computation of several of the
trigonometrical functions.

Arguments are passed to the arithmetic
and mathematical subroutines either in
registers or in a parameter list addressed
from register 1. The use of registers
results in faster execution, but allows
less flexibility in use of the routines.
All built-in functions, except the STRING
built-in function, have their arguments
passed in a list comprising the addresses
of the source and target (and sometimes
also the addresses of DEDs). Where
possible, other routines use registers.
Computational routines are always carried
out in floating-point unless otherwise
indicated. This may involve conversion
before calling the routine.

ARRAY, STRING, AND STRUCTURE
SUBROUTINES

A number of array, string, and structure
subroutines are included in the' DOS PL/I
Resident Library. These are used to carry
out certain of the array and string built­
in functions and a number of other
operations. Where possible, in-line code is
generated to carry out these functions.
However, the enablement of STRINGSIZE, the
use of unaligned bit strings, and the use
of adjustable and certain varying-length
strings will result in calls being made to
the library sub-routines.

The subroutines involved in these
functions are shown in figure 11.2. Two of
them, IBMBAIH and IBMBAMM, are concerned
with the handling of data aggregates rather
than with the execution of specific
operations. They are discussed below.

IBMBAIH is used to assist the other library
array-handling subroutines to process
multidimensional interleaved arrays. It is
not called by compiled code.

Interleaved arrays are arrays whose
elements are not held contiguously in
storage. They occur in arrays of
structures. For example, the declaration:

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 145

r-----------~---,
I Function I Data type I Module I When used
f t I name I

Integer exponentiation

General exponentiation

Integer exponentiation

I
I

Short floating-point I IBMBMXS
Long floating-point I IBMBMXL

I
Short floating-point I IBMBMYS
Long floating-point I IBMBMYK

I
I

Short floating-point I IBMBMXW
Long floating-point I IBMBMXY

I

When exponent is a variable
When exponent is a variable

Always
Always

When exponent is a variable
When exponent is a variable

General exponentiation Short floating-point, IBMBMYX Always
Long floating-point I IBMBMYY Always L--------------------------------_____________________ -----------_______________________ ~

Figure 11.1. Arithmetic operations performed by library subroutines

r---,
IBMBAAH ALL and ANY built-in

IBMBAIH

IBMBAMM

IBMBANM

IBMBAPC

IBMBAPF

IBMBAPM

IBMBASC

IBMBASF

IBMBAYF

IBMBBBA

IBMBBBC

IBMBBBN

functions

Indexer for interleaved
arrays

Structure mapping

STRING built-in function

PROD built-in function
(fixed-point integer)

PROD built-in function
(floa ting-point)

STRING pseudo-variable

SUM built-in function
(fixed -poin t)

SUM built-in function
(floa ting-point)

POLY built-in function
(floa ting-point)

AND and OR logical
operations (aligned bit
strings)

Compare aligned bit strings

Invert aligned bit string
(NOT)

L---~

Figure 11.2. (Part 1 of 2). Array,
structure, and string subroutines

146

DCL 1 STRUCTURE (2),
2 A (2) ,
2 B ;

would result in successive storage
locations being allocated to elements of A
and B as follows:

A(1,1) ,A(1,2) ,B(l) ,A(2,1) ,A(2,2) ,B(2)

Both A and B are interleaved arrays. A is
a two-dimensional array, the first row of
which is separated from the second by an
element of B. As can be seen, the elements
of A are not contiguous, nor is there a
fixed interval between their addresses.

r----------
I
I IBMBBCI
I
I IBMBBCK
t

IBMBBCT

IBMBBCV

IBMBBGB

IBMBBGC

IBMBBGF

IBMBBGI

IBl1BBGK

IBMBBGS

IBMBBGT

IBMBBGV

------------------------------,
INDEX built-in function
(character string)
Concatenate character
strings and REPEAT built-in
function

TRANSLATE built-in function
(character string)

VERIFY built-in function
(character string)

BOOL built-in function

Compare unaligned bit
strings

Bit-string assignment
(aligned, source and target)

INDEX built-in function (bit
string)

Concatenate bit strings,
REPEAT built-in function,
and assign

Produces SLD (SUBStR
built-in function)

TRANSLATE built-in function
(bit string)

VER,IFY built-in function
(bi t string)

L---------------·-------------------------J
Figure 11.2. (Part 2 of 2). Array,
structure, and string subroutines

The interval between the addresses of
elements of an interleaved array referred
to by varying only the final subscript is
always fixed, and these elements can be
stepped through by using the last
multiplier from the array descriptor.
However, such groups of contiguous elements
are not themselves necessarily contiguous.

When IBMBAIH is called, it is passed the
address of a work area in which to
construct a table, the address of the array
descriptor, and the number of dimensions in
the array. Basically, IBMBAIH calculates
the extent of each dimension and enters
this information in the table; it then
calculates the increments that must be
added in order to step between elements
that may be non-contiguous (see figure
11.3). The information in the completed
table is used by the calling module to
address successive elements of the array
using simple code.

Structures are normally mapped during
compilation. However, certain structures
that contain adjustable strings or arrays
cannot be mapped until the actual lengths
or bounds are known. Compiled code calls
on the module IBMBAMM to carry out this
mapping. There are four entry points:

IBMBAMMA Compute length of structure.

IBMBA~MB Map structure in PL/I manner.

IBMBAMMC Map structure in COBOL manner
(for interlanguage comunication
or for files declared with the
COBOL option).

IBMBAMMD Map structure declared with
REFER option.

Miscellaneous System Interfaces

In addition to the system interface used
for input and output, the PL/I Optimizing
Compiler makes use of a number of other
system facilities. These are for the
DELAY, DISPLAY, and WAIT statements, the
TIME and DATE built-in functions, and the
sort/merge and checkpoint/restart built-in
subroutines.

Calls to these facilities are made
through library subroutines held in the DOS
PL/I Resident Library. These subroutines
act as an interface, issuing any SVC calls
that may be necessary, and handling
housekeeping problems. The descriptions of
the subroutines in this chapter are kept to
a minimum except where the housekeeping
problems are large and have a major effect
on the contents of main storage. In these
cases, background information is given and
the various control blocks are explained,
thus enabling the situation during
execution to be understood.

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 147

Declaration Storage

DECLARE 1 X(2),
2 C,
2 Y (2),

3 Z (3),
3 B;

C

Z (1, 1, 1)

Z (1, 1,2)

Z (1, 1,3)
B

Z(1,2,1)

M3 i ~.

M2

~
M1

Inc1

Z (1,2,2)

~ Z (1, 2, 3)

B

C

Z (2,1,1)
Z (2, 1,2)

Z (2, 1,3)

B

Z (2,2,1)

Z (2,2,2)

Z (2, 2, 3)

B

Z is a three-dimensional interleaved array, for which

multipliers held in array descriptor (see chapter 4)

Inc1 and Inc2 intervals between addresses of successive elements of Z when subscripts.
for first and second dimensions, respectively, change

The increment when the subscript for the ith dimension changes is computed as follows:

Inc j = Mj ~ Ej+1 * M j+ 1 + Inc j+ 1
Where Ej';' 1 is the extent of the (i+ 1)th di mension.

Increment table for array Z (as initialized by IBMBAIH)

2

2nd dimension 2

Inc2

2

1st dimension 2

Inc1

subscript count

extent of dimension

increment

subscript count

extent of dimension

increment

Note: IBMBAIH returns the extent of the nth dimension in register 1. (In this example, the extent of
the 3rd dimension = 3.)

Figure 11.3. Indexing interleaved arrays

148

The DOS macro instructions referred to
below are described in IBM ~ystg~L160_Dis~
Q~g~ating_~~§!g~~ __ Superv!~~Q
In~Y!LQY!EYt_~S£~Q~

TIME

The FL/I TI~E built-in function is
implemented by issuing a GETIME macro
instruction. This is done by the module
IBMDJTT.

On entry from compiled code, register 1
points to the address of the character­
strinq target. The module issues a GETIME
macro instruction with the TU option, and
the current time is returned as a character
string of length nine in the form
hhmmssttt. The GETIME macro, and
consequently this module, returns the time
of day to the nearest 1/300 second.

DATE

The PL/I DATE built-in function is
implemented by module IBMDJDT, which
accesses the job's communications region to
obtain the necessary data.

On entry from compiled code, register 1
points to the address of the date character
string. The module accesses bytes 0 - 7 of
the communications region, which contain
the data in the form ddmmyy if bit 0 of the
date-convention byte is 1, or in the form
mmddyy if the bit is O. The date is then
translated using the appropriate translate
table. The date is returned as a character
string of lenqth six in the form yymmdd.

DELAY

The PL/I DELAY statement is implemented
using the SETIME and WAIT macro
instructions, which are issued by module
IBMDJDY. The SETIME macro instruction
allows the interval time to be set only to
an integral number of seconds; hence the
delay is restricted to an integral number
of seconds. On entry from compiled code,
reqister 1 points to the number of
milliseconds delay. The delay interval is
rounded to the nearest second and a maximum
interval of less than 55919 seconds set up.
A SETIME macro is issued, specifying the
interval and a timer event control block
(TECB) name. A WAIT macro instruction is
issued to delay execution for the required
interval; register 1, unchanged by the

SETIME macro, points to the TECB. On
completion of the wait, the time will have
elapsed and control is returned to compiled
code.

DISPLAY

The PL/I DISPLAY statement is implemented
by two library modules, IBMDJDS and
IBMDJDZ. IBMDJDZ handles display without
the EVENT option; IBMDJDS handles display
with the EVENT option.

DISPLAY without BEPLY Option

If no reply is requested, the message is
scanned and trailing blanks are removed.
An EXCP macro instruction is issued,
specifying a channel control block (CCB)
that contains the address and length of the
message.

If a reply is requested, the message is
scanned and trailing blanks are removed.
Three channel command words (CCWs) are used
for the message and reply: the first to
put out the message, the second to put out
a standard message saying "awaiting reply,"
and the third to accept the reply. An EXCP
macro instruction is issued; if the EVENT
option is not specified, a WAIT macro
instruction is also issued. Return is made
to compiled code.

If the EVENT option is specified, the
event variable is checked before the EXCP
macro instruction is issued, to see if it
is active. When the corresponding WAIT
statement in compiled code is executed,
IBMDJWT returns control to IBMBJDSB on
completion of the event.

IBMDJDZ - DISPLAY without the EVENT
Q~iiQ~-----------------------------

When IBMDJDZ is entered, the display string
is scanned and trailing blanks are removed.
If the~e is no REPLY option, an EXCP macro
and a WAIT macro are issued to transmit the
message to the console. The channel
control block (CCB) used contains the
address and length of the message. Return
is then made to the caller.

If there is a REPLY option, the EXCP and
WAIT macros are issued as above. Howeve'r,

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 149

the EXCP specifies a chain of three channel
control blocks. The first channel control
block is to transmit the display string,
the second is to transmit a standard
message to the operator stating that a
reply is required, and the third is for the
reply to the message. When the reply is
recieved, return is made to the caller.

If a unit check or exception occurs on
the console, any reply string is blanked
out and the EXCP and WAIT macros for the
display or reply are reissued. The ERROR
condition is raised if there is a zero
length display with the REPLY option, or if
the length of the string to accept the
reply is zero.

SORT/MERGE

The PL/T programmer can make use of the DOS
sortlmerge facilities through a call to the
built-in subroutine PLISRT. The method of
using the facility is fully described in
the publication !~~_Q£~~ating_~YE!~~:
g1L!_Q~!i~i~ing_~Q~£i1er_£~Qg££~~~~§~~uiQ~.

The DOS sortlmerge program includes a
number of user exits that can be
conveniently-thought of as allowing the
programmer to write sections of code that
become included in the sortlmerge routines.
~wo of these user exits can be used by the
PL/I programmer: user exit 15 allows
records to be set up by PL/I and passed to
the SORT routines; user exit 35 allows
records that have been sorted to be passed
to and processed by the PL/I program.

Exits are not allowed in the PL/I
language. To overcome this problem, code
is inserted between the sortlmerge modules
and the PL/T routines. A bootstrap module,
IBMDKST, is used, and this module acts as
an interface between SORT and PL/I. The
module retains the PL/I environment and
restores it on return from sortlmerge so
that the PLII exit-15 or exit-35 code can
operate in a PL/I environment. Similarly,
it restores the environment for SORT on
return from the exit.

Various housekeeping problems occur in the
user exit procedures, since the~e is no DSA
chain through the SORT modules.
particularly difficult is the handling of a
GOTO out of the exit proc~dure that passes
control to a procedure on the same or
higher level as the procedure that
originally called the sort program. This

150

action implicitly terminates SORT.
However, SORT will not be .terminat~d by
standard PL/I action, since it does not
function in the PL/I environment.

The problems are overcome by setting up
a chainback that includes a simulated DSA
for the SORT routines. This DSA is
specially flagged so that it can be
recognised by the GOTO code. The chaining
of save areas in shown in figure 11.4.

An area of workspace is acquired by the
bootstrap routine IBMDKST. This consists
of one level of library workspace, a VDA of
the correct size to hold two save areas,
and a nine~word area of workspace. The
second DSA is chained back. to the first.
(See figure 11.4.)

If the SORT program is terminated by a
GOTO out of the block that contains the
PL/I exit program, the SORT routine has to
be terminated before the GOTO can be
completed. This is done by the GOTO
routine looking for the SORT exit DSA
(which is specially flagged) in the DSA
chain. If one is found, a return code of 8
is set up and return made to the SORT
routine. This results in the termination
of the SORT roqtine, and the GOTO can then
be continued in the usual manner by
following the DSA backchain through the
bootstrap routine until the target DSA is
reached.

For handling on-units in the exit
procedure, the DSA chain can be followed
without reference to SORT.

When an exit is made from SORT, it is
necessary to restore the PL/I environment.
The method used is to have a section of
code that restores the registers at the
point to which SORT makes its exit. Use is
made of the SORT exit table shown in figure
11.4. As can be seen, which ever exit is
taken, control passes to this code, which
saves the registers passed by SORT and
restores the registers of the bootstrap
module IBMDKST, thus restoring the FL/I
environment. The save area of the SORT
bootstrap routine is addressed by means of
an offset from the code that is being
executed. This is possible because the
SORT exit table and the register save area
are both held in the same workspace at a
fixed offset from each other. The code is
not included in the bootstrap module, in
order to preserve reentrancy.

.. ...

....
~

Backchain

Backchain

First save area:
for SO R T interface
module

* Exit table

Backchain

Second save area:
for ex it routi ne
interface

Work area for the
interface routines

Address of SORT
save area

Backchain

*Exit table

Entry point for E 15
Entry point for E35

... ,

NOP
BC
BC
STM
L
LM
B
DC

\
J

DSA for PL/I program
requiring SORT facilities

1
Sort bootstrap DSA on
calling SORT

1
Sort bootstrap DSA on
calling exit routine

PLiI exit procedure DSA

o
15,12(15)
15,12(15)
14,12,12(13)
2,28(15)
2,12,28(2)
exit bootstrap
A (save area 1)

not used
branch to exit code for E15 exit
branch to exit code for E35 exit
save sort registers
locate bootstrap .$ave area
restore bootstrap registers
initialized address of routine
address of first save area

Figure 11.4. DSA chaining during execution of SORT

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 151

Before calling the SORT program, IBMDKST:

1. Obtains a VDA for two DSAs.

2. Creates a parameter list suitable for
SORT.

3. Sets up addressability code for use
after return from SORT.

4. Sets the program check exit so that a
program check results in entry being
made to a section of the sort
bootstrap. The sort bootstrap then
determines the error, puts out a
message to SYSPRINT indicating that a
program check has occurred during the
execution of SORT, and then terminates
the program.

On exit from the SORT program, the
addressability code saves the registers of
SORT and reestablishes the PL/I
environment, and then branches to an entry
point of IBMDKST, which:

1. Resets the program-check exit so that
control will pass to the PL/I error­
handling routines.

2. Sets up parameters for the PL/I exit
routine from information passed by
SORT.

3. Calls the PL/I exit routine.

Setting the return code in the PL/I exit
program resets the parameters that IBMDKST
passes to the SORT routines. (See figure
11.5.)

Storage for sort/merge workspace and the
modules used is obtained in the LIFO stack.
A VDA of the correct length is obtained by
the bootstrap module. The length required
must be specified in the arguments that are
given in the call toPLISORT.

CHECKPOINT/RESTART

The PL/I optimizing Compiler allows the
programmer to make use of the system
checkpoint/restart facilitie~ by calling
the built-in subroutine PLICKPT. This is
implemented by a call to the resident­
library subroutine IBMDKCP, which issues
the CKPT macro instruction.

152

Before the CKPT macro instruction is
issued, two control blocks must be set up.
One of these control blocks contains the
names of all tape. files that are o peon ; it
is used to reposition the tapes on restart.
The other control block contains
verification information for all disk files
that are open; it is used to verify that
the disk packs are on the same devices on
restart as they were when the check-point
was taken. The two control blocks are held
in the workspace acquired for the module
IBMDKCP.

When a restart is made, control is
passed to the module IBMDKCP at a fixed
entry point. After carrying out necessary
checks, control is then returned to the
calling routine in the normal manner.
Control is thus returned to the statement
after the call to PLICKPT, and processi~g
continues.

WAIT

The PL/I WAIT statement allows the
programmer to specify that processing shall
halt until a specified number of events are
complete. In this implementation, an event
can be associated with either a record I/O
operation or a DISPLAY statement, or it can
be an inactive event that is not associated
with any operation.

All information relating to an event is
kept in an ~gnt yariabl~ This is a
control block of five words in length~ it
is treated for storage allocation like any
other PL/I variable. The event variable
holds information on whether the event is
associated with an operation and whether it
is complete; it also records the status of
the event (i.e., whether the associated
operation was completed successfully or
otherwise). When an event is associated
with an operation, it is said to be activ§;
otherwise, it is said to be .!!!§;ctive.

When the wait statement is used, the
keyword WAIT is followed by a list of
events that are to be waited on. A number
can follow this list, indicating that only
that number of events need be completed
before processing can continue. Typical
WAIT statements are:

WAIT (EVENT1,EVENT2);

WAIT (EVENT1, EVENT2) (1);

-
For the first statement, both the events
would have to be completed before
processing could continue. For the second
statement, processing would continue as
soon as either of the events was complete.

Main procedure

"
SORT
bootstrap
IBMDKST

"
SORT

,r

Addressability code

"

SO RT bootstrap

,n

"

PL/I exit routine

-

o

,

Call SORT bootstrap

Set program-check exit for SORT to code in SORT bootstrap.
Arrange parameters for SO RT.
Store registers in first bootstrap DSA.
Call SORT.

Sort as instructed by parameters.

Save registers in SORT save area.
Restore registers for bootstrap.
Branch to bootstrap.

On entry from SO RT

Reset program-check exit
for PL/I.
Set up parameters for ex it
routi,ne from information
passed by SORT.
Call exit routine.

On entry from exit routine

Reset program-check exit
for return to SORT.
Arrange parameters for SORT.
Restore SO RT registers.
Return to SORT.

Carry out processing - return to SORT bootstrap.

Fiqure 11.5. Summary of action during use of SORT exit

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 153

r-------·----------------------------------,
I
tWAIT~R: PROC OPTIONS (MAIN);

1

2

3

4

ON TRANSMIT (A) CALL L;
ON TRANSMIT (C) CALL L;
ON TRANSMIT (X) CALL L;

ON RECORD (A) CALL M;
ON RECORD (C) CALL M;
ON RECORD (X) CALL M;
K=O;
READ FILE (A) INTO (B) EVENT

(E 1) ;
READ FILE (C) INTO (D) EVENT

(E2)
•
•
•

WAIT (E1, E2) ;
•
•
•

IF K= 1 THEN WAIT (E2);
•
• ..

5 BOOTLE: WAIT (E3);

L:
6
7

M:
8
9
10
11

•
•
•

PROC;
COMPLETION (E3)='1'B;
GO TO BOOTLE;
END L;
PROC;
COMPLETION (E3)='1'B;
WAIT (E2);
K=1;

READ FILE (X) INTO (Y) EVENT
(E2) ;

END M;

END WAITER;
L---~

Figure 11.6. Example of WAIT
implementation problems

The WAIT statement implemented in any
particular installation depends on whether
or not that particular system supports the
DOS data-management WAITM macro
instruction. If it does not support this
macro instruction, the full PLII WAIT
statement cannot be supported and the
routine IBMGJWT will be included in the DOS
PLII Resident Librarv. If the WAlTM macro
instruction is supported, the full WAIT
statement can be supported, and the module
IBMDJWT will normally be included in the
resident library, although it will be
possible to specify the other module if the
full WAIT facilities are not required.

The difference between the two modules

154

is:

lBMQJWT Supports only waits on
single events.

IBM~JWT Supports waits on multiple
events.

When storage is allocated for an event
variable, the event variable i$ set
inactive and incomplete. When the EVENT
option is used to associate the event with
an operation, the event variable is set
active and incomplete. When a WAIT
statement is executed and the operation
associated with the event has been
completed, the event variable is set
inactive and complete. The status of the
event is also set at this time, indicating
whether or not the operation was
successfully completed.

The PL/I language allows the programmer
to set complete or incomplete any inactive
event, by use of the COMPLETION
pseudovariable~ This sets the appropriate
bit in the event variable. The completion
status may be inspected by means of the
COMPLETION built-in function. The PLII
language also allows the programmer to
inspect and change the status of an event,
by means of the STATUS built-in function
and pseudovariable.

The WAIT statement is implemented by a call
to the resident library routine IBMDJWT.
This is passed a set of parameters
consisting of the addresses of the event
variables and the number of events that
have to be completed. If the number of
events that have to be completed is not
specified, all the events in the list must
be completed.

The WAIT makes use of the DOS data­
management WAITM and WAITF macro
instructions. However, because of the
differences between the facilities offered
by the DOS system and the PLII language,
considerable housekeeping problems are
involved for waits on more than one event.
For waits on single events, the problems
are small and are described at the end of
this section.

When a WAIT or associated macro
instruction is issued to the DOS
supervisor, the event is considered to be

complete when input/output transmission is
finished. In PL/I, however, a WAIT
statement is not considered complete until
any error-handling activity caused by the
operation which was being waited on is
finished. The error handling may include
entry into an on-unit, and further WAIT
statements may be executed in the on-unit.
This process can continue to any number of
levels of interrupt.

PL/I also allows the programmer direct
~ontrol over the completion of an event by
use of the COMPLETION pseudo-variable.
Consequently, the PL/I programmer need not
associate an event variable with an
input/output operation, but can use it
instead as a flag, setting the event
complete at any point in the program.

WAIT or associated macro instructions
issued to the supervisor are completed by
setting a completion bit in the ECB (event
control block) which is held in the DTF.
At the PL/I level, completion is indicated
by setting the completion bit in the event
variable. Thus a WAIT operation is carried
on at two levels, the PL/I level and the
system level.

The problems involved in implementing the
WAIT statement may be illustated with
examples from the skeleton program in
figure 11.6. Four problems arise. They
are:

Problem 1: If an event being waited on in
a-multiple WAIT statement is completed in
an on-unit entered while processing one of
the other events in the statement, this
must be made known to the first WAIT
statement. Setting the event variable
complete is not SUfficient, because the
event variable may be used again during the
on-unit. Suppose that the RECORD condition
is raised durinq the execution of the WAIT
statement numbered 3 in figure 11.6, for
the operation associated with event E1.
The following then takes place:

1. Control passes to procedure M.

2. The statement WAIT(E2} is then
encountered, and the program waits
until event E2 is completed. When
this occurs, the event variable is set
complete and inactive.

3. Event E2 is then used in a further I/O
operation (statement 11), causing the
event variable to be set active and
incomplete.

On return to the main program, there would
be no way of determining from the event
variable for E2 that the original event E2
had been completed. The problem is solved
by the use of control blocks called even1
tahl~§ (EVTABs). An EVTAB is set up by the
wait module each time a wAIT statement is
encountered; it contains entries for each
incomplete event specified in the
statement. The entries are termed EVTAB
elements. Each element is chained to its
corresponding event variable and contains a
bit that can be set to indicate that the
event has been completed. In the above
example, therefore, EVTAB elements for E1
and E2 are set up when the wait module is
called at statement 3. When the on-unit is
entered, the WAIT statement 9 causes a
further EVTAB to be set up with an entry
for E2. The event variable pointer is reset
to address the latest EVTAB elements, and a
field in this element is set to point to
the previous. EVTAB element for E2. When
event E2 is completed (without causing any
I/O conditions to be raised), the event
variable and each EVTAB element for E2 is
set complete and inactive, and a bit in the
event variable is set to ind~cate that the
chain of EVTAB elements is no longer
associated with the event variable. When
statement 11 is executed, the event
variable is set active and incomplete.
After the on-unit has been executed, the
wait module sets the EVTAB element and
event variable for E1 complete'and
inactive. It then tests any remaining
EVTAB elements to determine whether they
were set complete during an on-unit; in
this case, it finds that the next EVTAB
element (for E2) has been set complete and
that there are no more events to process.
Execution therefore continues until
statement 4 is executed, at which time a
new EVTAB element is created for E2 and
chained to its event variable.

PrQQle~l: A method must be provided to
signal that an event waited on in an on­
unit is already being waited on· in the
procedure that caused entry to the on-unit.
Suppose that the RECORD condition is
encountered in the operation associated
with E2 (statement number 2) during
processing of the WAIT at statement number
3. The following then takes place:

1. Control passes to procedure M.

2. A further WAIT on E2 is encountered
(statement number 9). Since E2 cannot
now be completed, a mechanism must be
available to raise the ERROR
condition; otherwise, the program
would never get out of the wait state,

The problem is solved by setting a flag
in the event variable whenever an on-unit
is entered during WAIT statement

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 155

~rocessing. If the wait module is
subseguently reentered from an on-unit, to
process a WAIT on the same event, it finds
that this bit is set and raises the ERROR
condition.

Problem 3: If there is a GOTO out of an
on=unlt:-this involves setting an event
variable complete, and terminating the WAIT
statement. Suppose the TRANS~IT condition
is raised during the WAI~ statement
numbered 3, 4, or 9. The procedure L is
entered and the following takes place:

1. E3, which is a dummy event, is $et,
complete.

2. A GOTO is executed to the label
BOOTLE.

If no other action were taken, the event
that caused entry to the on~unit (either E1
or E2) would not be set complete; any
subsequent WAIT on that event would thus
cause the wait module to be invoked, with
unpredictable results. The problem is
solved by setting a flag bit in the current
DSA whenever the wait module is called.
(The method is similar to that used to
cater for a GOTO out of a SORT exit, and
uses the same flag bit.) If the GOTO
module finds that the bit is set, it
returns to the wait module; the wait module
sets the event variable complete and
inactive and then returns to the GOTO
module to continue the GOTO out of the on­
unit. Only the event that caused entry to
the on-unit is set complete. Any other
incomplete events specified in the WAIT
statement are left incomplete.

Problem 4: If control reaches label BOOTLE
wIthout~he TRANSMIT or RECORD condition
haying been raised, the event E3 can never
be completed. Some method must be
available of making this fact known,
otherwise the program would go into an
indefinite wait on an event that could
never be completed. This problem is solved
bV setting an event variable active only
when it is associated with an operation.
Thus, if a WAIT statement specifies an
event that is inactive and incomplete, the
wait module causes the program to be
terminated. (If a WAIT statement specifies
more than one event and one of the events
is inactive and incomplete, the program is
not terminated immediately because it is
possible, although unlikely, that the
incomplete event will be completed by the

156

COMPLETION pseudovariable in an on-unit
entered as a result of an I/O condition
raised while processing one of the other
events specified in the WAIT statement.)

Four control blocks are involved in the
implementation of the WAIT statement.
These are shown in detail in appendix B.

1~ Event variable. Used to hold all
information about the event at a PL/I
level. Fields indicate whether it is
active or inactive; complete or
incomplete; whether it is already
being waited on at a previous
interrupt level; the type of operation
with which it is associated. Each
event variable contains the address of
its associated ECB or CCB and, if it
associated with an I/O event, the
address of the FCB for the file.

2. ECB (event control block). Used to
hold information about the event at
the system level. For I/O events, ECBs
are part of the DTF. For DISPLAY
events, the equivalent control block
is known as a CCB (channel control
block).

3. EVTAB (event table). Created for each
entry to the WAIT module; comprises an
element for every incomplete event
that is to be waited on. The EVTAB is
held in a VDA acquired by the WAIT
module.

4. RCB list. This is a list of ECB
addresses that is created in
circumstances that are explained
below. The ECB list is held in the
VDA described above, and acts as an
argument list for the WAITM macro
instruction.

The actions of the multiple-wait module,
IBMDJWT, are shown in the flowchart in
figure 11.7, and are described in detail in
the publication ~OS-RL/I~esig~1-Libra£y
.R£Qg£~.!!L1Qg!£ •

Branch to point in transmitter
where WAITF is issued

Issue WAITF macro instruction

Yes

No

Return to caller

IBMBRIO&
TRANSMITTER

Call error handler which
may in turn call on-units

Call display module to
clear storage Yes

Issue WAITF macro and
check for ON·conditions

Decrement count by one
for event completed in
IBMBRIO

Yes

CHECK
SUBROUTINE

Decrement count of
events to be completed
by correct number.
Set EVTABs as inactive

Return to
PL/I program

Call error
handler

Figure 11.7. (Part 1 of 2).
WAIT statement

Simplified flowchart of modules used in execution of

Chapter 11: Miscellaneous Library Subroutines and system Interfaces 157

Remove any completed
events from list

Build EVTABs in VDA

Call CHECK subroutine
with one item in list

CHECK subroutine

Handles one event and
returns if all events not
complete

No

No

pi qu re 11. 1. (Part 2 of 2).
WAIT statement

158

No

WAIT MODULE
IBMBJWT

Build EVTAB and ECB
list (from ceBs for
DISPLA Y event) in VDA

Issue WAITM on
ECB list

Call CHECK subroutine
with first event returned
fromWAITM

CHECK subroutine

Handles one event and
returns if all required
events not complete

Yes

Build new ECB list
for incomplete events

Simplified flowchart of modules used in execution of

As the flowchart shows, the WAIT module
sometimes issues a VAITM macro instruction,
and sometimes relies on the WAITF macro
instructions in the PL/I transmitters. The
reasons for this are as follows.

The WAITF macro instruction in the
transmitter can only be used for I/O
events, and only one transmitter can be
called at a time. If only a cer.tain number
of the events in an event list. need to be
completed, it is uneconomic to pass these
events one at a time'to the transmitter,
because the first event passed could be the
last to finish. consequently, whenever non-
1/0 events are involved anLvhenever only a
specified number of events in an event list
have to be completed, an ECB list is
qenerated for all incomplete events and a
WAITft macro instruction is issued.

The WAITM macro instruction returns
control as soon as any event in the list is
complete, thus allowing an event list to be
handled efficiently when only a number of
events have to be completed. For I/O
events, it is still necessary to issue the

WAITF macro instruction in the transmitter,
even though the events are known to be
complete. This is because the WAITF macro
instruction carries out various checking
functions.

When the WKiT statement is handled by the
resident library routine IBMGJWT, only one
event can be waited on in any WAIT
statement. The housekeeping problems are
therefore considerably less complicated
than those encountered when handling waits
on multiple events. No EVTABs, or ECB
lists are needed. When the module is
entered, it either calls IBMDRIO for an 1/0
event, or issues a WAIT macro instruction
using the CCB for a DISPLAY event, calling
the DISPLAY module IBMDJDS to clear the
working storage and check for any
transmission error.

Chapter 11: Miscellaneous Library Subroutines and System Interfaces 159

Chapter 12: Debugging Using Dumps

The DOS PL/I Optimizing Compiler allows the
programmer to obtain an execution time dump
either by calling PLIDUMP or by specifying
DUMP in the options statement. If he
specifies DU~P in the options statement a
dump will be given if the program is
stopped because of the ERROR condition. In
both these situations a formatted PL/I dump
is given. A DOS system dump will not be
produced except in exceptional conditions
unless it is specified by the programmer
using the Q option of PLIDUMP.

Certain types of program error, result
in overwriting of the control information
used by the PL/I error-handling routines,
thus causing a program check to occur. If
this occurs whilst a previous program check
is being handled, a system dump will be
generated even if NODUMP has been specified
in the JCL. A dump is produced because the
program check exit is reset during the
handling of program check interrupts. (See
chapter 7, "Error Handling" for further
details.) If DUMP has been specified in
the JCL, it is, possible (though most
unlikely) that a DOS system dump will be
qenerated for other abnormal conditions,
such as a rapid succession of program check
interrupts.

Furthermore, it is always possible for
the prcqrammer to ask an operator to take a
stand-alone dump at any point in the
progra~. The need to do this should,
however~ occur only infrequently.

This chapter contains information on how to
obtain and interpret dumps, and on how to
identify compiled code, data, and control
blocks. Some knowledge of the compiler's
housekeeping scheme, described in other
chapters of this book, is assumed. Trying
to use a dump without this knowledge can
result in a great deal of wasted time. To
acquire a quick overall picture, chapter 1
and the introduction to chapters 6 and 7
should be read. A summary of how to use
this chapter when debugging is given in
figure 12.1.

This chapter is divided into three
sections:

Section 1: How to obtain a PL/I dump

Section 2: Recommended debugging
procedures

Section 3: Locating specific
information

Section 1 explains how to obtain a
hexadecimal dump of a PL/I program. It
also gives some suggestions on the use of
various compiler and PL/I options that may
prove useful when debugging.

Section 2 offers two recommended courses
for debugging a PL/I program by use of a
dump. The first course deals with a PL/T
dump that has been called from an ERROR on­
unit and is being used to debug the problem
program. The second course deals with the
situation in which a DOS system dump has
been generated, probably because the
housekeeping control blocks have somehow
been overwritten.

section 3 describes how to find various
data areas and other information. It is
indexed and numbered for quick reference.

Before taking a dump, Section 1 should
be read, because the methods used are not
those familiar to programmers using the DOS
system. Sections 2 and 3 are for use when
debugging. Programmers who know what they
are looking for should refer directly to
the contents table in section 3. This will
direct them to numbered sections which give
details of how to firid particular items.
Programmers wishing to follow some
organized plan can follow the recommended
procedures in section 2. Section 2
crossrefers to the items in section 3, so
that the details of the steps involved may
be quickly found.

Section 1: How to Obtain a PL/I Dump

In order to get a formatted PL/I dump, the
programmer can either include a call to
PLIDUMP in his program, or specify the
option DUMP in his JCL. If he specifies
DUMP in his JCL a dump will be given if the
progra~ terminates with the essay.

The statement CALL PLIDUMP may appear
wherever a CALL statement may legitimately
be used. It has the following form:

CALL PLIDUMP
(character-string-expression 1,
character-string-expression 2);

Chapter 12: Debugging Using Dumps 161

HOW TO USE THIS CHAPTER WHEN DEBUGGING

Start

Follow the most suitable check list in
section 2 of thIS chapter. Refer to
keyed items in section 3 for details.

Read section 1 of this chapter to discover correct
method. (Use of the DUMP option will not produce
a dump)

Do not attempt to debug without this knowledge. Read
chapter 1 and introduction to chap1jers 6 and 7 of this
book.

Examine contents list at start of section 3 to find
quickest method of finding item.

Use contents list at start of section 3 to simplify finding
various items.

Figure 12.1. How to use this chapter when debugging

162

Character-string-expression 1 is a "dump
options" character string consisting of one
or more of the following dump option
characters. The maximum length of this
string is 256 characters. Defaults are
underlined.

1 Trace. A calling trace thloUgh all
active DSAs is generated. When an on­
unit DSA is encountered, the values of
the relevant condition built-in
functions are given. The reason for
the entry to the on-unit is also given
if the ERROR or FINISH conditions are
raised as standard system action for
another condition.

NT No trace. A calling trace is not
given.

l File information. A complete set of
attributes for all open files is
given, plus the contents of all
accessible buffers.

NF No file information required.

S Stop. The program will be terminated
after the dump.

~ Continue. Execution of the program
will be continued after the dump.

H Hexadecimal. A hexadecimal dump of
the partition will be given. If trace
information is requested, the TCA and
DSA addresses will be given. If file
information is requested, the
addresses of the FCBs will be given
and the contents of all accessible
buffers will be printed in hexadecimal
notation as well as in character.

III No hexadecimal dump required.

B Blocks. The contents of the TCA, TIA,
DSAs, PCBs, and file buffers are
printed in hexadecimal notation.

NB No block information required.

~ Report. The lengths and addresses of
the main areas of storage in use
immediately before the call to PLIDUMP
are given.

NR No report information required.

Q Quick dump. This gives a DOS system
dump with none of the formatting and
other information provided by PLIDUMP.
The Q option only takes effect if all

other options are negated. To obtain
a DOS system dump using the Q option
should be specified thus:

CALL PLIDUMP('Q NH ND NR NB NF NT');

There is no requirement for a dump
identifier because this will not be
reproduces on the DOS system dump.

!2 A DOS system dump is not required.

] Debug. Additional information about
files will be given. This includes
the name of the transmitter and the
open module, and information on
whether ENDFILE or an error has
occurred on the file.

ND No debug. The additional files.

~Q The hexadecimal notation will be
translated into the 60 character set.

48 The hexadecimal notation will be
translated into the 48 character set.

The default options are TFCRDNHNB60.
That is, trace information, file
information, debug file information,
storage report, block information, no
hexadecimal dump, continuation after the
information has been put out, and
translation into the 60 character set.

Options are read from left to right.
Invalid options are ignored, and if
contradictory options are coded, the
rightmost options are taken. A further
discussion of the output that results from
each of these options is given later under
the heading "Contents of a PL/I Dump".

Character-string-expression 2 is a "dump
identifier" character string of up to 90
characters chosen by the PL/I programmer.
It is printed at the head of the dump. If
the character string is omitted, nothing is
printed.

RECOM~ENDED CODIWG

Since PL/I dumps are transmitted onto the
standard file SYSLIST, it is important to
insure that SYSLIST is assigned to a line
printer device. PLIDUMP can be called from
anywhere in a program, but the normal
method used when debugging will be to call
PLIDUMP from an on-unit. Ascontinuation
after the dump is one of the options
available, PLIDUMP can be used as a snap
dump to get a series of dumps of main
storage throughout the running of the
program.

Chapter 12: Debugging Using Dumps 163

00
II JOB DUMPER.' 1
//OPTIONS LINK, DUM~, MAP

//EXEC PLiOPT

(SIZE, SUBSCRIPTRANGE, STRINGRANGE):
DUMPER: PROC;

ON ERROR ~7IDUMP ('HB', 'ERROR ON-UNIT DUMP');

END; • (!)

{;\ Ensures that a system dump wi II be given \..!.J in some exceptional circumstances. Does not
produce a PL/1 dump.

(;;\ These options give compiled code listing and o static storage map, essential for intel\preting
any dump.

(;;\5. Provides trace of last n branch-out/branch-i"",
\V points in up to m blocks, if SNAP or PLiDUMP

with trace is used.

O Two arguments can be passed to PLiDUMP.
7 They are the dump options character string and

the dump identifier. The format of the call
statement is:

--.L

® Produces linkage editor map giving actual address
of each module after the. link-edit step.

Permits trace of statement numbers in original
source program, and simplifies program checking.

Prefix options. The use of these PL/I checkout
options is strongly urged. Since, however, they
cause an increase both in the size of object code
and in execution time, it may be necessary to
restrict their use to suspected blocks or statements.

CALL PLiDUMP (character-string-expression 1, character-string-expression 2);

/ "" Dump options character string
(Default is 'TFC') I .

T Trace information required

NT No trace information required

F File information required

NF No file information required

S Stop after du mp

C Continue after dump

H Hexadecimal information required

NH No hexadecimal information required

B; Control block information required

NB No control block information required

Also R, NR, a, NO, D, ND, 60, and 48, see text.

Dump identifier character string

I
Printed at head of dump. May be up to 90
characters long.

Figure 12.2. Coding dump options

164

r---,
Abbreviationl Condition Name I

AREA AREA

CHCK CHECK

COND CONDITION

CONV CONVERSION

ENDF ENDFILE

ENDP ENDPAGE

ERR ERROE

FIN FINISH

FOFL FIXEDOVERFLOW

KEY KEY

NAME NAME

OFL OVERFLOW

RIC RECORD

SIZE SIZE

STRG STRINGRANGE

STRZ STRINGSIZE

SUEG SUBSCRIPTRANGE

TMIT TRANSMIT

UFL UNDERFLOW

UNDF UNDEFINEDFILE

ZDIV ZERODIVIDE
L---J
Figure 12.3. Abbreviations for
condition names used in PLIDUMP trace
information

By including the statement CALL PLIDUMP
('HB','dump identifier'); in an ERROR on­
unit or by including DUMP in the options
card "Contents of a FLII Dump", it is
possible to obtain a hexadecimal dump, with
control blocks identified and formatted,
should an error occur. If an ERROR on-unit
is being included in a program, care should
betaken that there are no further ON ERROR
statements which might override the on-unit
requesting a dump.

Suggested code for use when debugging
with a dump is given in figure 12.2.

CONTENTS OF A PL/I tUMP

The appearance of a typical dump produced
by the PLIDUMP modules with the options
TFHB is shown in figure 12.4. The contents
of particular sections are described in
detail below.

The dump is headed by the line

PL/I DUMP

This is followed by the user identifier, if
any, given as the second character string
in the argument list of PLIDUMP.

A request for trace information results in
the following output:

1. A trace of every procedure, begin
block, and on-unit that is active at
the time of the call to PLIDUMP. For
procedures, the procedure name and
statement number from whi~h the
procedure was called are given. If
the 'H' option is requested, the
offset of the statement is also given
as well as the entry point address and
OSA address. Also, if the entry Foint
used is not the main entry point and
the statement number option is in use,
the main entry name is given.

2. For on-units, the values of any
relevant condition built-in functions
are given. the type of on-unit is
given and, where the cause of entry
into the on-unit i~ not self­
explanatory, the cause of entry is
also given {e.g., if an ERROR on-uni~
was entered because of a conversion
error, this fact is given in the trace
information). The on-unit type is
specified, using a three or four
letter abbreviation. A list of these
abbreviations is given in figure 12.3.

3. When a hexadecimal dump is requested,
the entry point address of each active
block is also given, together with the
address of its associated OSA.

4. When the compiler FLOW option is in
effect, the flow statement ta~le is
also given.

5. If a hexadecimal dump is requested,

Chapter 12: Debugging Using Dumps 165

••• PLII DUMP •••

USER 10ENTlF lER EXAMPLE OF PlloUMP

••• CALLING TRACE •••

ITCAAooRESS 009E08 I

PLlOUMPWAS CALLED FROM STATEMENT NUM8ER 3 AT OFFSET 00009E FROM A ERR TYPE ON-UNIT WITH ENTRY ADDRESS 0078FC
(AND OSA ADDRESS 00A628 I

ERROR DIAGNOSTICS
Pl/l CONDITION DETECTED: CONV
ONCOOE 612 INTERRUPT CODE, SEE LANGUAGE REFERENCE MANUAL
ONCHAR = I CHARACTER CAUSING CONVERSION ERROR
ONSoURCE =1F THIS DOES NOT RAISE CONVERSION NOTHING WIll

STRING CAUSING CONVERSION ERROR

ADDRESS OF ERROR HANDLER'S SAVE AREA 00A438
REGISTERS ON ENTRY TO ERROR HANDLER

REGS 0-7 FFOOA438
REGS 8-15 00000001

0000A430
000011330

0000A388
00000000

6E009BE6
00008BE8

0000lllE8
00009E08

END OF ERROR DIAGNOSTICS

0000A310
FFOOA3EO

WHICH WAS CAllED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 009BEO (AND OSA ADDRESS OOIl3Eo
WHICH WAS CAllED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 008960 (AND OSA ADDRESS 00A008
WHICH WAS CALLED FROM A LIBRARY MODULE WITH ENTRY ADDRESS 001B08 (AND OSA ADDRESS 00A368

0000A3C8
4E00900E

80007A1II
000092811

WHICH WAS CAllED FROM STATEMENT NUM8ER 5 AT OFFSET OOOOAe FROM A PROCEDURE EXAMPLE WITH ENTRY ADDRESS 007840
(AND OSA ADDRESS 00A250 I

TRACE OF PLI I CONTROL BLOCKS

TASK COMMUNICATIONS AREA

••• END OF CALLING TRACE •• 'I<

0~~~~8 ~~~~~ T 00000000 00000000 FF009E08 FF0350F8 00000000 00009El8 00000000 OOOOAOOO •••••••••••••• 18 ••••••••••••••••
009E28 00020 00000000 00000000 00009F28 00000000 0000A038 00000000 00000000 00000000 ••••••••••••••••••••••••••••••••
009E48 00040 0000A020 00000000 00009996 00000000 00000000 80000000 80000000 00009000 ••••••••••••••••••••••••••••••••
009E68 00060 0000900A 00000000 00000000 00009988 0000998A 0000999A 0000928A 00000000 ••••••••••••••••••••••••••••••••
009E88 00080 582E0004 58EEOOOO 190F418C 00829500 C001478COOAC180E 18E1181F 58FCOOEO ••••••••••••••••••••••••••••••••
009EA8 OOOAO 07FFOOOO 00000000 00000000 180F9834 00209160 0001018E 91400001 418COOCC ••••••••••••••••••• - •••••••••••
009EC8 OOOCO 0203004C 00509120 0001018E 02010056 00549180 005401lE 181F58FC 00F407FF K ••••••••••• K •••••••••••••••• 4 ••
009EE8 OOOEO 00009102 01FEOOOO 00000000 00000000 00000000 00008FC8 00000000 00000000 ••••••••••••••••••••••• H ••••••••
009F08 00100 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ••••••••••••••••••••••••••••••••

TCA IMPLEMENTATloN APPENOAGE

0~~~8 g~~~~T 00036000 00000000 0000000(; 00000000 0000A080 000091C4 00000000 05F058FO •• - •••••••••••••••••••• 0 ••••• 0.0
009F48 00020 F04E051F 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0+ ••••••••••••••••••••••••••••••
009F68 00040 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 ••••••••••••••••••••••••••••••••
009F88 00060 00000000 00000000 00000000 00009260 00000000 00000000 000004A8 0000A248 ••••••••••••••• - ••••••••••••••••

OYNAMIC SAVE AREA (L18RIIRY I

••• PL/I OUMP ' •••

CONTENTS OF REGISTER SAVE AREA
REGS 0->1 FF00A750 00001A3C
REGS 8-> 15 0000A608 0000A6F8

5E001952
0000A250

4E008F2E
00009F28

0000AIE8
41103288

0000lA3C
FFOOAloo

0000A2F8
5E008F8C

FFO0A750
FFOOAn8

AOOR. OFFSET
OOA 100 00000 88004180 0000A628 00045866 5E008F8C FFOO A 778 FF00A750 00007A3C 5E001952
00A120 00020 4E008F2E 00001llE8 0000lA3C 00001l2F8 FFOOU50 0000A608 00001l6F8 0000A250
00A140 00040 00009F28 47103288 FFOOMCO FF0080BO F5F7F3F6 6003041'.5 40C30601 E809C9C7
0011160 00060 C8E340C9 C20440C3 0609014B 40FIF9F7 F1400000 000078FO 90EBOOOC 05301851
00011780 00080 41000138 5810004C lE015500 COOC4700 30lA58FO C01405EF 58F00048 90FOI048
00A7110 000110 50001004 18019288 00009200 00019101 004F4780 30544100 00045810 004ClEOI
OOllltO OOOCO 5500COOC 47003050 58FOC048 05EF5000 OO4C0703 005CD05C 92400064 02760065
001l7EO OOOEO 00649200 005C5840 C0289608 00015030 002050CO 00445000 012C4510 3088051'0
0011800 00100 58FOF052 051F0207 00DCI000 4100000C 41103062 50100134 "11000E4 9210005E
0011820 00120 011104110 33245010 01305050 00605820 CO,.058F2 000412FF "78030E2 91802000
00A840 00140 41l030E2 ,,110006,. 50100050 "1100050 0103005" 00549248 00554120 005,.05EF
00A860 00160 41103138 50100134 9280005E 9120"00C 41803104 58250000 0200005C 2000"11'0
0011880 00180 3138125541803138 41000320 5810004C 1E0155j)0 COOC"100 312258FO C04805EF
001l8AO OOlAO 5000004C 18114110 340A1801 OA0418Fl 05EF5070 004C4110 3lAA9210 oo5E5010
00A8CO 001ce 0134021"00953"57 "5E032C" 91805000 411031AA 91"0005F "1103IAA 5865000"
001l8EO 001EO 58560000 91806006 "710311A "856000" 58660000 "7F03188 02010060 50004165
00A900 00200 0002"850 00601255 "7003lAII 49503"42 47oo319A "8503""2 02100069 346C0650
0011920 00220 4"503,.44 45E03318 4110322" 5010013" 92"0005E 9180005C 418031EE 41000888
00A9"0 002"0 1II0C5810 OO"CIEOI 5500COOC "1003108 58FOCO"8 05EF5000 001tC1811 41103412
0011960 00260 18070AO" 18fl05EF 5070004C 9l1t0005C 4780322,. "10008B8 5810004C 1E015500
00A980 00280 COOC4700 320E58FO C04805EF5000004C 1871"110 34lA1801 OAOltl8Fl 05EF5010
00119110 002110 004C4110 324C5010 01349210 0C,5E1t5EO 3318020C 009231t"" 020E009F 345045EO
00A9CO 002CO 33189120 005CIt780 3282"110 32829220 005E5010 0134"100 061005810 oo4CIEOl
00A9EO 002EO 5500COOC 47003270 58FOCO"8 05EF5000 001tC1811 "1103"22 18010110" 18fl05EF
00111100 00300 5810C028 "100101C 4i101024 0111010110 34820700 501032A2 4110342A "50032116
00llA20 00320 00000001 01l0218FF 911000sC 47103286 "11'00008 58000004 58EOoOOC 980800llt
00All40 003"0 01FE4110 34820700 5010320A 41103,,32 "500320E 00000304 OOOOACOO OA021tl20
00AA60 00360 0063.4301 002t5021 002C"201 002C"301 00785021 0078"201 00184301 0070"122
0011480 00380 00015021 00704201 0070"IFO 339C50FO 00589208 o050186E 181058FO 005805EF
00114110 003AO 01F65800 10"89580005E"710 F0469200 o05C9621 005C9640 005F59oo 103C4770
OOIlIlCO 003CO ,F02E0202 10051051 011110203 000CI050 02331008 00145000 103C0201 10"ODOOC
OOIlAEO 003EO 02021005 101tl0All 95"0005E 4110F062 9621005C 9680005F 5900103C 4770F02E
00A800 00400 "lFOF020 59OO103C 4780F020 9520005E "710F02E "11.0Fi16 OA0290E5 000C0540
0011820 00420 18214850 20569188. 2050"780 40309108 2050"710 4024941F 205092FO 20630650
00AB40 00""0 41FO"030 92F12063 41500030 96802050 06504110 40E058Fl 0010"5EF 000C92"0
0011860 00460 20630271 206"2063 1255"120 40580214 20964085 47F0402" 40502056 9"802050
00A880 00"80 98E5000C 07FE358E C9C20loC4 0207E3Cl C9C2oltC" o2E3C3C1 C9C20"C4 02C6C1CI
00A8110 00"110 C9C204C'' o2CItC"CI 5B58C2C3 0306E2C5 5858C206 07C50509 5858C2C" E4040740
00A8CO 004CO 005A0200 00706000 5t"05C"0 5C"OC505 C,,4006C6 "05C"05C "05C"007 0361C9"0
OOIlBEO 004ED C''E404Dl "05C405C' 405CE4E2 C50940C9 C1tC505E3 C9C6C9C5 094071102 28006006
00llC0000500 00008000 OC0000030000llCl0 0000llC78 0800ACFO 33000204 C4E3C640 40000000
00llC20 00520 00000000 00000800 002008FO 24008113 80000,000 00000000 00000000 OOOOFFOO
00llC40 00540 00000000 00000000 130.00000 00000000 00000079 47000000 0700AC3A 40000006
00llC60 00560 3100AC3C "0000005 0800llC60 20000001 01008114 20000078 05008113 60000079
00AC80 00580 3.100AC3C 40000005 0800AC80 20000001 IE0005,.0 30000081 00000000 00000000
OOACIIO 005AO 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

LINE THE SliME AS A80VE
OOACEO 005EO 00000000 00000000 47FFOOIC41FFOOIC OA320000 "7FOFOOO It7FOF02A 41FOF0211
0011000 00600 "lFOFOOO "lFOFOOO "lFOF02E 47FOF186 C90101C6 C3C2E9C" F3F99026 F2585860
00A020 00620 100895FF 101E"780 F03£""60 10"A9103 10284110. FI90"7"0 F13119140 102C4780
00110"0 00640 F05A948f- 102C4530 F 12C5846 000006"0 9200F2A2 91FO"000 4710FOA8 95CI4000
00A060 00660 4780FOA8 95C2"000 4780FOA8 95C3"000 "180FOA8 "8.00F2AO "130F279 "1330012
0011080 00680 05004000 30004780 FOll80630 "600F090 9201F2A2 411'01'004 1830430" 00004140
OO,AOAO 006AO 00124334 F2791930 4180FOCO "61001'082 ,.940F270 107801'000 92086000 "530F12C

Figure 12.4. Example of PLIDUMP

166

............ ; ; .. .
+ •••••• Y ••••••• 8 ••••••• Q ••• 8 ••••
•••••••••••••••• 5736-LM5 COPVR1G·,
HT IBM CORP. 1971 ••••• 0 ••••••••
••••••••••••••••••• 0 ••••• 0 ••• 0 ••
••••• J ••••••••••••••••••••••••••
•• •••••• • 0 •••••••• P •••••••• K •••
••••••• •••••••• ~ • •••••• J •••••• O
.00 ••• K •••••••••••• S •• J •••• U ••• ;
•••••••• J •••• - •••• 2~ •••••• S ••••
••• s •••.•••••••• P •••••••••••.••••
• ••••• J •••• ; ••. ,. •••••••• K •••••• O
••••••••••••••••••••••••••• 0 ••••
••••••••••••••• 1 ••••••••••••• ; ••
J.K •••••••• 0 •••••••••••••••••••
•••••• - •••••••••••••• O •• K •• - ••••
••••• - •••••••••••••••••• K •••••• · •
••••• •••• ••••• J ••• ; ••••••••••••
••••••••••••••• Q.O ••••••••••••••
••••• 1 •••••••••••• • ~ •••••••••••
••••••• 0 ••••••••••• · •••••••• 1 ••••
•••••••• J •••• ; •••• K ••••• K •••• I ••
••••••••••••••••• ; •• J ••••••••••
••••••••• 0 ••••.••••••••••••••• 1 ••
•• •••••••••••••.• • 0 •••••••••••••• '
• •••••••••• 0 ••• 0 ••••••••••• 0 ••••
.6 ••••••• ; • • o~ ••• * ••. , . .••.
O.K ••••••• K ••••• K ••••••••• K ••••
K ; •• 0 ••••••••••••••• p.
.OO ••••••• O .•••• ; •• O ••• l •••• V •••
••••••••• 1 •••••• 1 •••••• J.O ••••
.0 •• 1 •••••••••••••••• 1 •••••••
• .K ••••••••• ~K ••••• 0 •.•••••••
• V •••••• 18MOKPT A I 8MOKTCAlBMOKFAA
18MOKooA$$8CLOSE$$80PENRU80UM'
.. K •• o-•••• END OF ••• PL/I
DUMP ••• USER 10ENTlF IER •••• -.
••••••••••••••••••• O •• KNOTF •••
~ •••••• ~ ••• O •••••• ~ •••••• ~ ••••••

·
• ~-••••••••••••••••••• 00 •• 00 •• 00.
.00 •• 00 •• 00 •• 0 1.IJJFC8Z039 •• 2 •• -
•••••••• 0 •• - •••••••• 1 •• 1 ••••••
0 ••••••• 1 •••••••• 2 •• 0 ••• 0 •• 4 •
•• 0 •• 8 ••• o •• c ••• 0 ••• 2 ••• 2 •••••
N •••••• 0 ••••• 0 ••• 2 •• 00M •••••••
•••• 2 ••••• 0 •• 0 •• 2 ••• 0 ••• - ••• 1.

the address of the TCA is printed at
the head of the trace.

6. If either a hexadecimal dump or
control block information has been
requested, and any ERROR on-units are
found, then the following information
is also included:

a. The address of IBMDERR's DSA.

b. The contents of the general and
floatinq point registers at the
time IBMDERR was called.

c. If there was an interrupt, the
address of the interrupt.

d. A trace of library DSAs back to
the last compiled code DSA.

A request for file information results in
the following output:

1. The default and declared attributes of
all open files are given.

2. Buffer contents of all buffers are
qiven. If a hexadecimal dump has been
requested, the contents of the buffers
are given in both hexadecimal and
character notation. If no hexadecimal
dump is requested, the contents are
given in character notation only.

If the 'B' option is included the the
contents of the FCB, ENVB and DTF, and for
VSAM files the IOCB and ACB are given.

Due to the many possible variations in
length of these blocks, the full control
block may not always appear in this section
of the PLIDUMP.

The description of the MEDIUM option
contains the following abbreviations:

UNIT Unit record de~ice (card reade~~
printer etc.)

TAPE Tape unit

DISK Disk storage unit

INDE Device independent

I De.Q.Y9-0ption
I

IIf the debug option is specified,
ladditional information about files is

I provided. The name of the transmitter and
lopen module associated with the file are
Iprovided, and other data regarding the
Istatus of the file is given. This includes
Iwhether an error has occurred on the file
land whether ENDPAGE or ENDFILE have been
lraised.

This is a dump of the partition associated
with the program. The dump is set out in
four columns. The first column contains
the address in main storage. The second
and third columns contain four fullwords
each in hexadecimal notation. The fourth
column is a reproduction of the second and
third columns in character form. You can

Ispecify whether you want the translation to
Ibe into the 60 or 48 character set by using
leither the '60' or '48' option. 60 is the

I

default.

The PL/I hexadecimal dump is headed by
the contents of the communications region
and, if no trace information was requested,
by the values of registers 12 & 13 .and the
floating point registers on entry to the
dump. It should be noted that if the dump
was called from an on-unit, these values
are n2! the values of the registers at the
point of interrupt. The method of finding
the register values at the point of
interru.pt is described in section 3,
"Locating Specific Information."

When the block option is used, the contents
of the TCA, the TIA, and the DSAs in the
LIFO stack (that is, all active DSAs) are
printed in hexadecimal and character
format. The absolute address is printed_in
the left hand column; the~ffsets~hin
the block are tlljlll---p-rinted. This is
follo_!ed-by-tlie contents of the block,
~±fst in hexadecimal and then in character
notation. For DSAs, the type of DSA is
shown; i.e., library DSA, procedure DSA,
on-unit DSA, or dummy DSA. The contents of
the FCBs, ENVBs, DTFs etc for any open
files are printed in a similar format.

IB~ort Information
I

IThe report option gives a report of the use
lof main storage immediately before the
IPLIDUMP was taken. It gives addresses and
I lengths of the major areas of storage and

Chapter 12: Debugging Using Dumps 167

Ishows how much storage in the partition is
I not in use. If 1he .R~fl liQg~ .!~ call~g
I!~.Q'!!! gprogram in another !g1!guag~ that
1'§J2~2ified th~ st2~age g);:gg 12 12~ ysed,
liigy);:~.§ fo);: the 10tal Y§~g g1!Q YnY.§ed
''§!Q£g~ mAY be ins££'y£g1~.
I
, As described in chapter 1 and chapter 6,
Ithe partition used by a program compiled by
the PL/I Optimizing Compiler is divided in
a standard manner. A typical storage
layout and related report are shown in
figure 12.3. The partition is headed by
th.e problem program which consists of
compiler output link-edited with PL/I
library routines. This is followed by an
area of housekeeping control blocks known
as the "program management area". The
storage between the end of the program
management area and the end of the
partition is allocated dynamically, this
area is known as the ISA (initial storage
area). During execution, two storage
stacks are created, one starting at each
end of the ISA. One stack is the LIFO
stack containing all storage that is
acquired and freed on a last-in/first-out
(LIFO) basis. This stack contains
housekeeping information for each PL/I
block, storage for automatic variables, and
workspace. In the PLIDUMP storage report
this area is referred to as "primary LIFO
storage", and shown on the line numbered
04. The other stack starts at the end of
the partition and contains all storage that
is not acquired and freed on a last­
in/first-out basis. This includes items
such as controlled and based variables,
transient library routines, 110 buffers,
and control blocks associated with files.
In the PLIDUMP storage report table this
area is referred to as the "primary non­
LIFO area" and shown on the line numbered
05. Both stacks extend into in area of
unallocated storage known as the major free
area. within the non-LIFO stack certain
areas may be freed which cannot be
incorporated into the major free area.
These are listed in the PLIDUMP storage
report table with the line number 06 and
headed "free area". In certain situations
these free areas can be used for further
segments of LIFO storage. Such segments
are listed in the PLIDUMP report table with
the line number 07 and are headed "LIFO
overflow segment". When LIFO overflow
segments have been allocated, the figures
for total used storage and total unused
storage on lines numbered 09 and 10 in the
storage report table will be inaccurate.
The total used storage will be
overestimated. The overestimate will be
smaller than the largest LIFO overflow
segment.

168

IUsing-1h~_RE~QRT QBtion for_~~2g~
I IY1!i1!g
I

lAs well as its use for debugging, the
Ireport option can be used for estimating
Ithe optimum storage size for a program.

When this is done PLIDUMP should be called
when the maximum amount of storage is in
use. This will be at the point when the
greatest number of blocks are active, the
greatest number of files are open, and the
largest allocations of based or controlled
variables have been made. PLIDUMP can be
called in a number of places to get an
accurate picture. As well as using the
report option, it may be useful to use the
trace and file options. The file option
will tell what files are open, and the
trace option will show the point in the
program where the report was taken. These
options are defaults, and to get a dump of
this type the following PL/I statement
should be included:

CALL PLIDUMP('ND','REPORT FOR TUNING');

"ND" overrides the debug option and reduces
the output. "Report for tuning" is the
dump identifier and is used to show the
purpose of the dump. When the maximum
amount of storage used in the program has
been established, the figure should be
rounded ip to the nearest K bytes and a
safety margin added. A suggested ~inim~
is 2K bytes if SYSPRINT is open and 4K
bytes if it is not. (The extra 2K for
SYSPRINT allows error messages to be
produced.)

Section 2: Recommended Debugging
Procedures

The main difficulty in reading a dump of a
PL/I program is knowing where to start.
The signposts known to assembler language
programmers are of little help. There are,
however, five main sources of information
to be considered when using a dump to debug
a PL/I program. They are: .

1. The statement number and the address
where the error occurred (if the dump
was taken after an error)

2. The type of error (if the dump was

MAIN STORAGE LAYOUT
AOOR

7800

PROBLEM PROGRAM AREA

C6B8
PROGRAM MANAGEMENT AREA

C968

PRIMARY LIFO STORAGE

0938

PARTITION
AREA

34FB8

35800

35808
NON-LIFO STORAGE AREA PRIMARY NON-LIFO AREA

35A60

TRANSMITTER AREA

35000

TRANSMITTER AREA
36000

Unused storage is shaded thus

ASSOCIATED STORAGE REPORT

USER IDENTIFIER REPOR'l' 1

01.PARTITION AREA

02 • P ROBLEr-~ P ROG RAM AREA

03.PROGRAM MANAGEMENT AREA

04.PhIMARY LIFO STORAGE

OS. PRIMARY NON LIFO AREA

INCLUDING

06.FREE AREA

06T.FREE AREA TOTAL

08. 'l'RANSMI'l'TER AREA

08.TRANSMITTER AREA

08T. TRANSMIT'l'ER AREA TO'l'AL

09.TOTAL USED STORAGE

10. TOTAL UNUSED ST.ORAGE

* * * PL/I DUMP * * *

* * * STORAG~ REPORT * * *
FROM 007800 TO

FROM 007800 TO

FROH 00C6B8 TO

FROM 00C9€8 TO

FROM 034FBf; TO

FROM 035800 TO

FROM 035A60 TO

FROM 035DOO TO

036000 LENGTH HEX

00C6B8 LENG'l'IJ HEX

00C968 LENGTH HEX

00D938 LENGTH HEX

036000 LENGTH HEX

035808 LENGTH HEX

LENGTH HEX

035000 LENGTH HEX

036000 LEHGTII HEX

02F800

004EB8

0002BO

OOOF'nO

001048

OOf)008

000008

00021\0

000300

DEC

DRC

DEC

DEC

DEC

DEC

DEC

DEC

DEC

190464

20152

688

4048

4168

8

8

672

768

LENGTH HEX 00051\0 DEC 1440

LENGTH HEX 007178 DEC 29048

LENGTH HEX 027688 DFC 161416
* * * END OF REPORT * * *

IFigure 12.5. A typical arrangement of main storage and an associated storage report.

Chapter 12: Detugging Using Dumps 169

taken after an error)

3. The values in the general registers
when the dump was taken or when the
error occurred

4. The chain of DSAs

5. The TCA

The first two of these items hold
equivalent information to that held in the
PSW in a DOS system dump. The last three
items enable.the housekeeping to be checked
and the location of the control blocks and
the program variables to be discovered~
The methods of locating other information,
qi ven in section 3, ·refer to the key areas
shown above.

When debugging, it is essential to have
a listing of the object program and a
linkage editor map. The object program
listing allows the programmer to study the
instructions that are being carried out and
to find various control blocks in static
storage. The linkage editor map allows the
programmer to identify particular parts of
the executable program phase and, for
instance, to identify the routine
associated with each DSA. It is also very
desirable to have a variables offset map
generated when the compiler MAP option is
used.

THE CONTENTS OF A DUMP

The PLIDUMP and the DOS system dump both
consist of a dump of the partition that is
associated with the program. The principal
contents of the partition are shown in
appendix A. More detailed descriptions of
the contents of main storage can be
obtained f~om chapters 1 and 2. The
partition contents will also appear in a
stand-alone dump. The partition contains
all information that is connected with the
program. This will comprise the compiled
code, any link-edited PL/I library modules,
any transient PL/I library modules that are
currently loaded, housekeeping control
blocks, and all program variables.

DEBUGGING PROCEDURES

The best approach to a dump depends on the
problem to be solved and must therefore be
left largely in the hands of the
programmer. However, two suggested courses
of action are given in this section.

These courses cover two situations:

110

1. ~hen PLIDUMP hosbeen called from an
ERROR or ~theron-unit

2. When a DOS system dump has, been
generated

Other possible situa.t,ions are when a
dump is taken at a specified point in the
program, or when a stand-alone dump is
taken. No attempt is mad~to suggest'a
course of action in these circumstances,
because the reasOn for the dump being taken
is not predictable. However, in., such
cases, the main storage situation can be
investigated by £ollowingthe methods
itemized in section 3 of this chapter.

Throughout each of the t.o recommended
procedures given in the following
paragraphs, there are cross-references to
the methods given in section 3. The cross­
references consist of the keys by which the
methods are identified; for example, H6,
D5.

If a PL/I dump is called from an ERROR on­
unit it can be assumed that the
housekeeping system of the program is
working. If it were not working, the dump
would probably not have been generated.

A large amount of diagnostic information
will be available at the head of the dump.
An error message will have been generated,
and this will provide a useful starting
point. The first step should be to examine
the error type and the point at which it
occurred. ONCODE and other condition
built-in function values should be
examined, as should the trace information.
A suggested procedure is the following:

1. Examine the error by means of the
ONCODE and any other relevant built-in
function values. These values are
held in the trace information. (The
meanings of oncodes are given in the
language reference manual for this
compiler.)

2. Find the location of error (P1) and in
which block the error occurred (H12).
If error occurred in library. module,
see H14.

3. Examine the trace to see if it appears
as expected.

4. Examine the information in the file
buffers, and check that file
attributes are as expected~ This
information will be printed in the
dump heading.

5. Check the values of any variables
involved in the interrupt (V1-V6).

6. Check values of registers to see if
dedicated registers are pointing to
correct areas (H8 & H9). Distinguish
between compiled code and library
register usage.

1. Check houseke~ping (H1-H16) starting
with area most directly concerned with
type of statement in which the error
occurred.

8. Check values of all variables in the
program (V1-V6).

9. Check logic of code being executed
from object listing.

A DOS system dump consists of four columns
of hexadecimal figures. The first column
is the address in main storage; the second
and third columns are the contents of main
storage printed in hexadecimal notation;
the fourth is the contents of main storage
in character fQrm, with a period for
unprintable characters. Each column
contains four fullwords. . The dump is
headed by the register values at the point
when the dump was taken, and this is
followed by the address of the
communications region.

A DOS system dump is generated when
there is a failure of the. error-handling
modules, or of the module that prints the

IPL/I hexadecimal dump, or when it is
Irequested by the Q option of PLIDUMP or
Iwhen there is not enough main storage to
,continue. It should be noted
that the failure of these modules is more
likely to because·d by the overwriting of
essential information than by an error in
the modules themselves.

A DOS system dump will not normally be
produced for program checks, because a
program check exit is set by thePL/I
housekeeping routines, so that the system
returns all program checks to the ~rror
handler. In the error handler itself, the
program check exit is reset so that a
program check interrupt will result in a
dump.

Thus, a DOS system dump will be produced
if the program check exit, which is
normally set by the program initialization
routines to prevent a dump, has been reset
during the program, or, possibly, has not
been set at all. The second alternative is
extremely unlikely. A third possibility is

that the program check exit itself is not
working, and the STXIT macro in the
initialization routines did not
successfully set the program check exit.
The most probable of these suggested causes
is that the program check exit has been
reset by the program. The program check
exit is always reset for the duration of
error handling or PLIDUMP, to prevent
looping should an interrupt occur. (See
chapter 1, "Error Handling.") If an
interrupt occurs during error handling, a
dump is therefore produced. An interrupt in
the error-handling routines ~ndicates
either that the error-handling routines are
at fault, or, more probably, that some of
the control information of the error­
handling routines has been overwritten
during the execution of the program. The
most practical solution may be to re-run
the program with SUBSCRIPTRANGE,
STRINGSIZE, and STRINGRANGE enabled.

However, having obtained a DOS system
dump, the following debugging procedure may
be adopted.

1. Determine whether dump was caused by
program check. This c~n normally be
discovered from the message printed on
the page before the dum? If no
message is printed, inspect the
program interrupt key (PIK) in the
communications region (D6).

2. Determine in which routines the error
occurred. (D1 and 2 for address of
interrupt, H2 for associating address
with code.) Verify that this module is
one called from error handler. (H3
and Hl0 for identifying module; figure
12.6 for modules called from error
handler.)

3. Investigate the error that caused
entry into the error handler. This
can be done by exam~ning the contents
of IBMDERR's DSA (H1) and the
associated ONCA (H6). See whether
incorrect information passed to the
error handler could be causing a
failure. If the instruction is within
the program control section shown on
the linkage editor map the address can
be associated with a statement (see
H. 2) •

4. Locate in~truction causing interrupt.
T~is is done by looking for the PSW in
the partition save area (DO).

5. Inspect this instruction to see if it
appears to have been overwritten,
bearing in mind the cause of the
interrupt, e.g.,

a. is it a valid instruction?

Chapter 12: Debugging Using Dumps 111

RESIDENT
LIBRARY
MODULES

TRANSIENT
LIBRARY
MODULES

IBMBEOC
On-code
calculator

IBMDEDW
Console
transmitter

IBMDERR
Error
handler

IBMDESM
Error m'essage
modu Ie phase I

IBMDESN
Error message
module phase II

Figure 12.6. Error message group of modules

b. is it a branch to a protected
address?

6. Inspect the TCA(D~ to ensure that all
error-handling addresses are correct.

7. Investigate the housekeeping fields,
starting with the DSA chain (H1-H3),
then the chain of ONCAs (H5,H6).

8. If none of the above actions produces
any results, ~n error in the error­
handling modules must be presumed.
This cannot be investigated without a
listing of the modules. Keanwhile the
cause of the origina~ 4ntry tQ the
error handler has been discovered and
can possibly be avoided by~altering
the source program so that the error
does not occur. The_trouble should
nonetheless be reported, because a bug
in the PL/I error-handling routines
has apparently been discovered. It
must be emphasized that the cause of

172

IBMBETx --- Message
text module

IBMDSxx
SYSPRINT
transmitter

entry into the PL/I error handler was
n21 the c~use of the system dump.

9. If the interrupt is not in the error
handler or PLIDUMP, or one of the
routines they call, the highest
probability is still that the program
check exit was altered in the error
handler and that an invalid branch has
been made from one of the addresses in
the TCA. A careful check should
therefore be made in the TCA. (See
appendix Bfor map of TCA.) If this
fails to produce results, return to
stage 2 of the above procedure.

It may be possible to use the program by
avoiding the cause of entry into the error
handler discovered in 3 above. However, as
the error is probably due to some kind of
overwri ting, simpl y bypassing the stat~- -:nt
identified in 3 may not have the de J

results.

Section 3: Locating Spec i fic
information

This section tells the reader how to
discover information from the dump. It has
been produced in a modular form for easy
reference. The reader should look through·
the following contents list to discover the
items in which he is interested. Suggested
methods of debugging a PL/I program from a
dump are given in section 2 of this
chapter. Unless the programmer is
experienced in using dumps, or is looking
for some particular item, the procedures in
section 2 should be followed, rather than
attempting to find various items through
the information in this section.

CONTENTS

P1

P2

P3

P4

Statement number and address where
error occurred (dump called from
on-unit only)

Tvpe of error (dump called from
on-unit only)

Register contents at time of error or
dump invocation

The DSA chain

P5 The TCA

DO Partition save area

D1 Address of interrupt

D2 Type of interrupt

D3 Register contents at the point of
interrupt

D4 The DSA chain

D5 The TeA

D6 Finding program interrupt key (PIK)

D7 Finding the communications region

stand-Alone Dumps

51 Finding key areas in stand-alone

dumps

H1 Following the DSA backchain

H2 Associating instruction with correct
module

H3 Following calling trace

H4 Associating DSA with block

H5 Finding relevant ONCA

H6

H7

H8

Following the chain of ONCAs

Finding information from IBMDERR's
DSA

Finding and interpreting register
save areas

H9 Register usage

H10

H11

H12

Following free-area chain

Action if interrupt occurred at
address not in linkage editor map

Block structure of program
(static-backchain)

H13 Forward chain in DSA's

H14

H15

H16

V1

V2

V3

V4

V5

V6

Action if error is in a library
module

Discovering contents of parameter
lists

Finding main procedure DSA

Automatic variables

Static variables

Controlled variables

Based variables

Area variables

Variables in areas

Chapter 12: Debugging Using Dumps 173

C1 Quick guide to identifying control
fields

KEY AREAS OF A PL/I DUMP

R1~_~i~l§melli-BgID£§~_~ng_!£g~~§§_~h~~§
~f:!.g£_Q£.fJJ.££~Ll12!ll!!£_£~!!g£_!£Q!1LQn=Q!!it.
Ql!lJl

Information required is the point at which
the condition that caused entry to the on­
unit occurred. This is identified in the
trace information. I~ no trace information
is generated, the method suggested for DOS
system dumps can be employed. If the
condition occurred in compiled code, the
machinp. instruction being executed can be
identified on the object program listing.
This is done by subtracting the address of
the program control section from the
aQdress cf the interrupt and locking at
this offset in the object Frogram listing.
The instruction thus found will be the one
~!!§f: the instruction that was last
execut E d.

Alternatively the statement number table
can te used (~ee 82).

The type of error is identified in the
trace information, in terms of the type of
on-unit entered and the reason for entry.
The on-code is also given, thus providing
further indication of tne cause of the
condition. If the dump was called from an
EEROR on-unit, an error message should have
been gen~rated before the dump. This again
will giVE the cause of the error.

If no trace information has been
generatEd, the type of error can be
discovered from the error code appearing in
the QNCA associated with the interrupt.
The method for finding the ONCA is
describEd in H5.

~l~ __ B~gi§t.~£_kQ!!I~nl§_~i_1iIDg_g1_!f:£Qf:
Q£_~gN£_l!!YQ£~iiQ!!

If trace information has been generated,
the contents of the registers must be found
from the save area in the DSA. The

174

addresses of all DSAs appear in the trace
information. The Iegister contents
required will depend on the ~ituation. If
PLIDUMP was called from an on~unit~ the
register contents at the time the condition
was raised will be most useful, unless the
condition was raised in a library module.
If the condition was raised in a library
module, the contents of the registers at
the point where the library call was made
will probably prove more useful.

The method of finding the register
cont~nts is as follows:

1. Find the DSA of IBMDERR. (For release
4.0 and subseguent releases of the
compiler, this DSA contains X'EEEE' in
the second and third bytes of the save
area.) The value of register 13 will
be found in the chain back field at
offset 4 of this DSA. The first byte
will contain the segment no. (probably
'FF') and can be ignored for
addressing purFoses.

2. If the interrupt was a program check
interrupt (SEe figure 12.7), the
contents of registers 14 and 15 will
also be stored in the DSA, register 14
at offset .'5C' (92) and register 15 at
offset '60'(96) from the head of the
DSA.

3. Registers 0 through 11 will be stored
in the save area of the previous DSA,
starting at offset '14' (20).

4. If the interrupt was a software
interrupt, the registers will be
stored at offset 'C' (12) of the DSA
before IBMDERR's DSA in the order 14
through 11. See figure 12.7.

~i§£Qygring_if_in!~r£gE!_~~§_E£Qg£~m_£hg£~
i!!ig~£gQ1: If trace information is
availatle, a check can be made on whether
IBMBEEPA or IBMEERRB was called. IBMBERRA
is entered after program check interupts,
IBMBERRB after software interrupts. If no
trace information is available, the
simplest method ot discovering if the
interrupt was a prcgram check interrupt is
to inspect bit 7 in byte X'56' (86) in
IBMDERR's DSA. This is set to zero for
program check interrupts, and to 1 for
other interrupts.

fill£ing_£~gi§t~£§_i!_inl~££gEI_Q££gf:££2_!!!
!ibra~Y_~Qglillg: It on-Unit was entered
from a library module, a search back
through the DSA chain to the first compiled
code DSA should be made. This can be
discovered from the trace information or by
following the bacKchain from IBMDERR's DSA
(offset 4 in aach DSA) until a procedure
block, begin block, or on-unit DSA is
found. This may be determined from flag

o

..
Software detected interrupt

DSA of block in which
interrupt occurred

4 Backchain

8

44

o

4

50

54

5C

84

Registers 14 through 11 at time of interrupt

Other DSA information

DSA for IBMDERR

Backchain, register save area, address
of LWS, NAB, etc.

Qualifier for I/O, CHECK condition

1 st 2 bytes of error
code passed to
IBMDERR

Not used

...
0

4

8

C

14

44

0

4

8

54

58

5C

60

68

Program check interrupt

DSA of block in which
interrupt occurred

Backchain

Interrupt address from word 2 of PSW

Registers 0 through 11 at time of interrupt

Other DSA information

DSA for IBMDERR

Address of interrupt DSA

Register save area, address of LWS, NAB, etc.

Error code created
by IBMDERR

I nterru pt code

Register 14 at time of interrupt

Register 15 at time of interrupt

Floating point registers 0, 2, 4, 6

I

/
Floating point registers are saved only if interrupt'
relates directly to a PLII condition, and return may
be made to the point of interrupt

Figure 12.7. Information stor~d by IBMDERF after a program check and a software
interrupt

Chapter 12: Debugging Using Dumps 175

BYTE 1

x'02'
X' 03'
X'04 '
X'05'
X'06'
X'07'
X'OS'
X'09'
X'OA'
x'OB'
X'OC'
X'OD'
X'OE'
X'OF'
X' 10'
X' 11 '
X' 12'
X, 13'
X' 14'
X'15'
X' 16'
X'CD'
X'CF'
X'D3'
X'D5'
X'D7'
X'D9'
X'DF'
X' 1: 1 '
X'E3'
X'l:5'
X'E7'
X'E9'
X'Eb'
X'ED'
X'EF'
X'F1 '
X'F3'
X'F5'
X'F7'
X'F9'
X'FB'
X'FD'
X'FF'

PL/I CONDITION IF ANY

ZERODIVIDE
FIXEDOVERFLOW
SIZE
CONVERSION
OVERFLOW
UNDERFLOW
STRINGSIZE
STRINGruU~GE
SUBSCRIPTRANGE
AREA
ERROR
FINISH
CHECK
CONDITION
KEY
RECORD
UNDEFINEDFILE
ENDFILE
TRANSMIT
NAME
EN DPAGE

BASE NO.

320
310
340
600
300
330
150
350
520
360
009
004
510
500
050
020
080
070
040
010
090

9250
1000
9200
3500
4050
5050
5000
9050
1000
4000

no on-cocle*
4050
0003
1000
1550
1500
2000
3768
3000
3800
3900
9000
8090

* Permanent \,~AIT. Generates message and terminates.

Figure 12.8. Error code field lookup table

176

bits 4 and ~ of a DSA, as follows:

o

o

,

o

1

o

Procedure block DSA

Begin block DSA

Library OSA

on-unit DSA

The value of register 12 can only be
discovered in a DSA prior to a compiled
code DSA, as it is not stored by the
library when entering a routine. This means
that the dummy DSA always contains the
value of register 12. Register 12 should
point to the TCA, whose address is also
given at the head of trace information.

NQ_~Ig£g_iniQ~g1iQB_g~ll§!~!~g: If no
trace information has been generated, the
register values on taking the dump will be
printed at its head. The address of the
DSA for PLIDUMP will be in register 13.
The chainback can then be followed to find
the DSA for IBMDERR. The DSA for IBMDERR
can be recognized if an on-unit is
involved, because it will be the DSA before
the on-unit OSA. IBMDERR's OSA will always
be headed by a flag of hexadecimal '88'
meaning that it is a library DSA in LIFO
storage. To identify IBMD!RR's DSA for
certain, register 15 of the previous
block's DSA must be inspected to see if it
points to the module IBMDERR. The position
of IBMDERR is shown in the linkage editor
map.

The addresses of the DSAs are given in a
PL/I dump if trace information and a
hexadecimal dump are requested. If trace
information is not requested, the address
of the DSA for the dump routine can,be
obtained from register 13 at the head of
the dump. The chainback field is held in
the second word of the OSA. When the dummy
DSA is reached, this chainback field will
te set to zero. The DSA chain passes
through DSAs in LIFO storage and DSAs in
LiS.

See H1 and figure 12.10 for details of
how to fellow the DSA chain.

The address of the TCA is given in a PL/I
dump. If 'B' (block option) is specified

in the dump-options character string, the
complete TCA (including the appendage) is
printed separately from the body of the
dump.

KEY AR!AS OF A DOS SYSTEM OUMP

The method of finding the key areas of a
DOS system dump depends on finding the
partition save area. The partition save
area contains the old PSW and the register
values at the point of interrupt; from
these the key items can be identified. The
format of the partition save area is shown
in figure 12.9.

The partition save area immediately
precedes compiled code and is found in the
following manner.

1. Use the linkage editor map to find the
absolute address of the start of the
program control section.

2. Look immediately before the control
section in the body of the dump. This
will be the start ot the partition
save area. The partition save area is

_120 bytes long and usually starts with
the characters 'NO NAME'. Normally it
starts at the head of background
storage, which is headed by the
letters ---BG---.

The contents of the registers and the
old PSW are located in the partition save
area at the offsets shown in figure 12.9.

The address of the interrupt can be found
from the second word of the PSi, which
gives the address of the instruction
following the point of interrupt. To find
the associated statement number see H2.

Finding the statement number is not
likely to prove useful because of the
circumstances in which a DOS system dump is
generated. The address found will usually
be the address at which the error handler
was entered before the. program check exit
was altered. The reason for entry into the
error handler is D2~ the cause of the dump.

Chapter 12: Debugging Using Dumps 111

o

4

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

5C

64

6C

Partition save area
..

Normally 'NO NAME'

P.S.W.

Register 9

Register 10

Register 11

Register 12

Register 13

Register 14

Register 15

Register 0

Register 1

Register 2

Register 3

Register 4

Register 5

Register 6

Register 7

Register 8

Length reserved label area

Partition start time

Floating point register 0

Floating point register 2

Floating point register 4·

Floating point register 6

Figure 12.9. Partition save area

178

... ...
0

4

8

C

48

4C

50

R13 ~

0

4

Flags Reserved

Backchain

Not used

Register save area (60 bytes)

Address of library workspace

Segment No. NAB

Segment No. End of prologue NAB

Space for automatic variables and temporaries.

Length depends on number and type of
variables declared in the associated block.

Flags Reserved

Backchain

-..

To previous DSA
.~

NA 8 points to the
next DSA only if it
is in LIFO storage
and has the same
segment number

Current
DSA

- ------
Figure 12.10. DSA chaining

The type of interrupt can be found from the
first vord of the PSW (see E~in£iEl~2_Q1
QE~IsliQn for details).

Ql~ __ ~~gi§!~~_~Qn!~nts_s!_!h~_~Qin!_of
In!~!:IJH!l

These are printed at the head of the dump,
or can be found in the partition save area.

Chapter 12: Debugging Using Dumps 119

Register 13 should point at the most recent
DSA. The back chain can be followed from
offset 14' of each DSA. See figure 12.10.

register 12 should point at the TCA.

The program interrupt key is held at offset
hexadecimal '2E' (46) from the start of the
communications region. It stores
information on where the interrupt
occurred; from this information it is
possible to decide which PSW to inspect for
the address of the interrupt.

1£§1s_1:1L!'!.h1:£Q EllS-.Y£l!!§ .E§1§J!£n1_£~!!
1:lli§£!:!!Ei
Q££!!'£!:§'Q

Background XI 10' Old program PSW

~oreground 2 X' 20' Ola program PSW

F'oreground 1 X'30' Old program PSW

1/0 X'SO' Old 1/0 FSW

Supervisor X'60' Old supervisor PSW

The address of the communications region is
printed at the head of a DOS system dump.

STAND-ALONE DUMPS

~l~ __ EinQing_lSgy_Arg~§_ill~i£llg=!lQn~
J2!!l!l£§

From the linkage editor map, the address of
the end of the executable_program phase can
be identified. If the program is a
straightforward PLjI program, the TeA will
start at the first doubleword boundary
following the end of the executable program

180

phase. If PL/I has been called from
assembler, COBOL, or FORTRAN, the address
of the TeA may have been specified by~that
language. In either case, the TeA is
readily discovered. From the TeA the dummy
DSA can be found. lhe flag byte of the
dummy DSA is set to X'82'. The dummy DSA
can be located frcm a field at offset 1'10'
(16) in the implementation-defined
appendage. (The address of the
implementation-defined appendage is held at
offset X'28' (40) from the start of the
TCA.) The main procedure nSA can then be
located and further information found by
following through the DSA chain. NAB
(offset X'4C' decimal 76) in the dummy DSA
always points to the main procedure DSA.

HOUSEKEEPING INFORMATION IN ALL DUMPS

Each DSA holds a backchain address in the
second word. This word holds the address
of the previous DSA. The end of the chain
is marked by the dummy DSA whose first word
contains the flag hexadecimal '82'. The
backchain in the duremy DSA points to the
external save area cr is zero if the
program was called from the system. (See
P4 or D4 for finding the DSA chain).

lll~ __ !§§Q£i~1ing_l~§!.£~£1iQn_~i!h
fQ!:!:§£1_~!g!§~~n!_gnQ_R!:Qg!:£m_~lQ£&

~i£!~l!l§n!_BYl!lQ~!:_~llg_R.£Qg!:~~_]lQ£~
The statement number and entry point
associated with the interrupt will normally
be given in a PLIDUMP. However, if they
have to be found by the programmer, he
shculd follow the method used by the error
message modules.

Statement number: It must first be
established-whether the GOSTMT option is in
effect. This will be indicated in the
listing for the cOBpilation. If the
listing is not available it will be flagged
in the compiled code DSA. (Flag bit 13,of
the DSA flags is set to '1'B.] If this bit
is not set the table of offsets and
statement numbers may be available, i~ this
is not available statement numbers and
offsets must be deduced from the object
program listing. ~he method of using the
table of offsets is described below under
the heading "Using the Table of Offsets".
If both statement numbers and the table of
offsets are availatle it will probably be
faster to use the table of offsets rather
than the statement number table.

The statement number is found by use of
the DSA chain as described below:

1. Find the chain of DSAs. The most
recent DSA should be addressed by
register 13.

2. If the DSA found is not a compiled
code DSA, (flag bits 4 and 5 set to
'OO'B, '01'B or '11'B) the interrupt
was not in compiled code. If the
interrupt was in compiled code, the
interrupt address can be directly
asscciated with a statement number.

If the interrupt was not in compiled
code, the address at which compiled
code was left must be discovered and
this address associated with a
statement number. To find the address
at which compiled code was left:

a. Chain back along the DSA chain
until a compiled code DSA is
reached (flag bits 4 and 5 set to
'00', '01', or '11'B).

b. The register 14 address saved in
the DSA (offset 12 X'C') will be
the pOint to which the library
module or other module would have
retuIned if the call had been
successfully ccmpleted.

The address thus found is the address to
be associated with a statement number.

3. Chain back one DSA to the DSA before
the compiled code DSA that has been
discovered in 1 or 2 above. The
register 15 value in this DSA (offset
16 X'10') is the entry point of the
block. If this appears to give an
invalid result, check to see whether
the DSA is one of those used in
interlanguag€ communication (flag bit
7 set to '1'B and bit 0 of flags 2
(offsetX'76') set to '1'B). If this
is the case chain back one more DSA
and try again.

4. At offset 8 frcm the entry Feint of
the block, the address of the
statement number table will be held.

5. Calculate the offset between the value
in the first word of the statement
number table and the address for which
a statement number is reqUired. If
the address for which a statement
number is required is less than the
address in the first word of the
statement number table, then either an
invalid branch has been made, or a
compiler generated subroutine is being
executed. If it is possible that a
compiler generated subroutine is being
executed return to the compiled code

DSA and attempt to tind a statement
number associated with the values held
first in register 6, and, if this
gives an invalid or improtable result,
then in register 14. If the second
word in the statement number table is
less than the otfset between the
address tor which a statement number
is required and the first word of the
statement number table, it is not
within the program control section and
an errcneous branch has been made out
of the program.

6. If the offset is more than X'7FFF' the
statement number will be held in the
second or subsequent sections of the
table. Obtain the number given by
translating the offset into binary and
ignoring the last 15 bits and step
down this number of sections of the
table. (For example, if the offset
was X'8PFP', translate to binary =
'1000 1111 1111 1111'B, ignore last 15
binary digits =1, therefore step down
one section of the table. If the
offset was X'18FFF' the binary would
be '0001 1000 1111 1111 1111'B.
Ignoring the 15 right hand bits leaves
'11'B therefore step down three
sections of the table.)

The address of the second section of
the table is held at offset X'8' in
the table, the address of the third
section is held at the head of the
second secticn, the address of the
fourth section at the head of the
second section and so forth.

7. When the correct section of the table
has been identitied, search tor the
first offset in the table that is
greater than or equal to the offset
that is being searched for. The
statement number is in two-byte
hexadecimal fOImat and immediately
precedes this offset.

R~Q£~gy~g_n~mg: To find the entry point
name, a chainback is made beyond the first
.E~Q£§du~~ DSA found on the chain. Register
15 in the save area before this procedure
DSA will point to the entry point of the
procedure. (Procedure DSA have flag bits 4
and 5 set to 'OO'E. The register 15 value
is held at offset 16 X'10'.)

The entry is preceded by a one byte
field ~hat holds the number of characters
in the name. This cne byte field is in
turn preced3d by the entry point name.

Q§ing_thg_1~Qi§_Q1_Q11se!§: Statement
numbers can also be found by comparing them
with the offsets in the offset and
statement number table generated by the
compiler when the OFFSET option is

Chapter 12: Debugging Using Dumps 181

specified.

Offsets are held from each primary entry
point or a procedure or on-unit. !o us~ the
tahle of offsets find the entry pOint used
by the program in the manner described
above.' Find the primary entry point for
the procedure. (If the primary entry point
was not used look at the object program
listing to see the relationship between the
entry point used and the primary entry
point.) Note, the offsets given are from
the point marked *REAL ENTRY in the object
program listing. This point is one byte
after the end of the primary entry point
name.

If the interrupt occurred in an on-unit
it may te necessary to discover the type of
on-unit entered before it can be
identified. This is done by inspecting the
DSA before the DSA of the on-unit. This
DSA will be for IBMDERR. At offset 84
(X'54') in this DSA the first byte of the
errcr code will be held. Compare this with
the values in figure 12.8. This will give
an associated PL/I condition. It will be
the on-unit for this condition that has
been entered. If there is more than one
on-unit for the condition, the on-unit
enterea must te deduced by studying the
dump, and source and object listings. If
the register 15 value appears to be invalid
this may be caused by rechaining in,
interlanguage processing (see chapter 13).
If this is possible, chain back one more
DSA and try again. (To check if this has
occurred see 3, above under "statement
Numbers") •
Compare address of instruction with linkage
editor map. This will give the name of the
control section for compiled code or a
library module. If the address is not
included in the linkage editor map, the
address is probably in a transient routine,
unless an invalid branch has been made.
(See H11.)

The calling trace can be followed because
branches within the program are always made
on registers 14 and 15~ Hence register 15
in each DSA save area points to the address
that was branched to from that block.
Register 14 points to the address to which
control passed when the block was
completed. By comparing these values with
the linkage editor map, it is possible to
associate each DSA with the correct module
of code. By following the backchain of
DSAs (H1) it is possible to do this for
every DSA and so discover the calling
trace. The calling trace is printed in a
PL/I dump.

182

DSAs are associated with code by finding
the register values in the register save
area (H7) and using the fact that all
branches are made via registers 14 and 15.
Register 14 in any DSA points to the
instruction after the point at which
control left that block. Register 15
points to the address at which the next
block was entered. By comparing these
addresses with the linkage editor map, the
DSA can be associated with the correct
block of code.

When an interrupt has occurred in the error
handler and a system dump has been
produced, it is possible to discover the
information that the error handler would
have used to generate appropriate error
messages. The ONeA holds values for the
condition built-in functions. The
a~propriate ONCA can be found in the
following manner.

1. Find the DSA before that of IBMDERB
(follow back the DSA chain until
register 15 in the save area points to
IBMDEPR). See H1, H3, H7. If this is
a library DSA in library workspace
(flag bit 4 set to '1'B and flag bits
a and 5 set to 'O'B) continue to step
3.

2. Find the LWS addressed from this DSA.
This is held at offset X' 48' (72).

3. Find the offset from the LWS to the
ONCA. This is held at offset 2 in the
LWS.

4. Add the offset to the address of the
DSA in LWS.

In!~~£~~iing_ihg_~ffQ£_£Q~~: The first two
bytes of the error code are held at offset
4 in the ONCA. These two bytes normally be
translated into an oncode which refers to
the type of interrupt. The meaning of the
oncode can be found in the language
reference manual for this compiler. For
PL/I conditions the first byte indicates
the PL/I condition that has occurred. (See
figure 12.8).

To translate the first two bytes of the
error code into the oncode:

1. Find the base number associated with
the value in the first byte (offset
X'54'). Figure 12.8 is a table of the
byte values and their associated base

number. ~ase values are in decimal).

2. ~ake the right hand five bits of the
second byte (offset X'55') and
translate these into decimal.

3. Add this value to the base number
found in 1 above. The result is the
oncode for the interrupt that caused
entry into the error handler.

Example:

Error code X'1266'

Look up base value = 80 (equivalent PL/I
condition UNDEFINEDFILE)

Translate second byte to binary
X'66'=0110 0110 binary

5 right hand bits =0 0110=6 decimal

Oncode=6 +base value=86

ONCAs are used to hold cendition built-in
function values. They are chained
together, one being provided for every
level of inter~upt. The caainback field is
in the first word of the ONCA. The dummy
ONCA is marked by a chainback field of
zero.

The infcrmation held in IBMDEPR's DSA is
that which is used by the error message
modules for information about the error.
It can be useful if the messages have not
been generated, because the information can
be deduced from the DSA. The contents of
IBMDEFR's DSA are shown in figures 12.7.
See H4 for associating DSAs with correct
code.

I~!§I~Y£!_A~~~§§: The address of the
interrupt that caused entry into the error
handler is held at offset 12 (X'C') in the
DSA preceding the error handler's DSA. To
find the statement number of the interrupt
see H2.

li~~_-1inging_2ng_In!~~I§!l~g_]§gi§1§~
.22Y.§_A~.§.2§

Register save areas are held at offset
X' C' (12) in all DSAs, including DSAs in
LWS. Offsets and registers are shown in
figure 12.11. Each DSA holds the register
values as they were on exit from its block.

!Q1~: Library routines store at least
registers 14 through 4, and up to registers
14 through 11; compiled code routines store
registers 14 through 12. Thus the address
of register 12 can always be found in the
dummy DSA although it may not be in other
DSAs. The contents of the register save
area in the DSA of the blOCK that called
IBMDERR are slightly difterent frem normal
if the int~rrupt was a program check
int~rrupt. See figure 12.7.

Register usage is fully discussed in
chapter 2, "Compiler output." A summary of
register usage, showing which registers are
always used for a particular purpose, is
given in figure 12.12.

DSA

Flags

Backchain

Not used

C R14 {*}

f--- -
10 R15 {*}

f----

14 RO

f--

Rl ~
Always stored by
library 18

f---

lC R2

I---
20 R3

-
24 R4 .A

28 R5 . ."

f---

2C R6

I---

30 R7

f--- -
R8 ~

Stored by library
if required 34

- -
38 R9

-
3C Rl0

-
40 Rll

44 R12 Stored by compiled code only

{*} Not stored if hardware interrupt occurs .

Figure 12.11. The register save area
in the DSA

Chapter 12: Debugging Using Dumps 183

The free-area chain connects the areas of
non-LIFO dynamic storage that have been
used and freed, but have not been absorbed
into the major free area. See chapter 6,
"Storage Management." The chain starts at
offset 8 in the implementation-defined
appendage, which is addressed from offset
Xt 28' (40) in the TCA. The end of·the chain
is marked with a zero entry. The length of
each item is held atof·fset O. The address
of the next free area at offset 4. If
there are no further free areas the word at
offset 4 is set to zero.

r---,
I Register ICompiled code ILibrary usage
I I usage I

RO ,Work register IWork register
R1 Iwork register IWork register
R2 ,Program base IWork register

I (*,**) I
R3 ,Static base IProgram base

I (**) I (**)
R4 IWork register IWork register

I (Temporary basel
if DSA)3896 I
bytes) I

R5 Work register IWork register
I (if used)

R6 Work register IWork register
I (if used)

R7 Work register IWork register
I (if used)

R8 Work register Iwork register
I (if used)

R9 Work register Iwork register
I (if used)

R10 Work register ,Work register
I (if used)

R11 Work register ,work register
I (if used)

R12 TCA pointer ITCApointer
(**) I (**)

R13 Current DSA tCurrent DSA
pointer (**) I pointer (*~

R14 Branch IBranch
register , register

R15 Link register ILink register

(*) The contents of the program base
register are saved during in-line
record I/O and TRT instructions

(**) Dedicated register, i.e., the
contents remain unchanged
throughout the execution of the
associated compiled code or library
routine

L---~

Figure 12.12. Register usage

184

1ll1i __ Actio!Lif. I~!:!rn.LQ££~g_ll
Address not in Linkage Edi!2r MaE

Iftheinterruptoccurr.edat an address,
that is not mentioned ,in the linkage edit'or
map, there are t~o possible explanations:

1. The interrupt occurred in .a transient
module.

2. An invalid branch has been made.

To test whether the error is ina
transient module, the backchain should be
followed to see whether register 14 in the
previous DSA points to an area reasonably
close to the point of interrupt. If so, an
invalid branch can be discounted. Further
chain-backs should be made along the DSA
chain (H1) until a register save area is
found that contains a register 14 which
points to an area in the linkage editor
map. This will be the routine that called
the transient routine. It will usually be
possible to deduce which transient routine
is involved from the calling module and the
context of the code.

If the most recent DSA is that of
IBMDRIO the transient routine will be one
associated with record I/O. The 5th, 6th,
and 7th letters of the name of the module
will be held in bytes 8-10 of the module.
The letters are most simply found by
inspecting the character translation of the
dump. The first of these letters will
always be R. The module will also be on a
transmitter chain that starts at a word
addressed from offset X'18' (24) in the TCA
appendage, which is addressed from
X'28' (40) in the TCA.

nlJl __ BlQ£~_~1~~£1~~_of_R!:Qg~~!
121~1i~~~£kch~inl

The block structure of the program can be
followed from the address held at offset
X'S8' (88) in each compiled code DSA. This
address holds the address of the compiled
code DSA of the statically enccmpassing
block. The cha{n thus formed is known as
the static backchain.

The forward chain in DSAs is not sUfported
by the compiler. However, a forward ~hain
through the LIFO stack can normally be
followed by use of the NAB pointer. The
NAB pointer is held at offset X'4C' (76)
from the head of each DSA. The last
pointer in the chain points to the major
free area. If the NAB pointer contains
anything except 'FF' in its first byte, the
chain cannot be followed, because it is not
contained in a single LIFO segment. The
address required is held in the last three
bytes of NAB; the first byte contains the
segment number (see C1). The forward chain
includes only those DSAs in the LIFO stack
and does not include any DSAs in LiS.

If the source of an error is traced to a
library module, it may appear that there is
little that the programmer can do unless he
has a listing of the library module.
However, the fact that the interrupt or the
error was discqvered during the execution
of a library module does not mean that the
library module itself was in error. Before
such a conclusion can be drawn, a check
must be made on the data that is being
passed to the module.

l!12.;. __ ~.i§£Q!g r i !HL~2D1~U!1'§_Q!._f2&2l!!g1g&
Iti.§1.§

Parameters are passed in a list of words
pointed to by register 1, except during
stream I/O. To find the position of a
parameter passed to a program, find the
value of register 1 in the save area of the
DSA (see H4) of the calling block.
Register 1 will then locate the parameter
list. This can be compared with the static
storage listing. The name of the called
routine can be discovered (H3). The
correct parameters are given in the
appropriate library PLM.

The main procedure DSA can be found by
following the backchain of DSAs to the
dummy DSA. The address of the main
procedure DSA will be given by the last 3
bytes of NAB in the dummy DSA. This is
held at offset X'4C' (76) in the dummy DSA.

The address of the dummy DSA is held at
offset X' 10' (16) in the TCA appendage,
whiCh is addressed from offset X'28'(40) in
the TCA. The dummy DSA Cdn be recognized
by the presence of X'82' in the flag byte.

FINDING VAFIABLES

The value of the variables in the program
at the point of interrupt can be discovered
by using offset map and the compiled code
listing as a guide to theiraddre.sses, and
then finding these addresses in the dump.
The method used depends on the type of
variable.

Automatic variables can be found by using
an offset from the DSA of the block in
which they were declared. This information
appears in the variables offset map
generated when the compiler KAP option is
used. If the compiler MAP option has not
been used, the information can be deduced
from compiled code. (For finding the DSA
associated with the block, see H4) •

Static variables are normally addressed by
an offset from register 3. This offset is
given in the variatles otfset map generated
when the compiler MAP option is used. If
the compiler MAP option has not been used,
the offset can be deduced by studying the
listing of compiled code. The value of
register 3 can be found in the save area of
the DSA. (For finding the DSA associated
with the block, see H4).

As described in chapter 2, internal
controlled variables are addressed by an
anchor word that is held in the s~atic
control section. This can be identified
from compiled code, where it will normally
be add~essed by an cftset from register 3.
Typical code would pe:

From this it can be deduced that the
address of K is held at offset X'88' f~om
register 3.

Externql contrclled variables are

Chapter 12: Debugging Using Dumps 185

addressed from control sections that are
showb. in the linkage editor map. The
variable starts at an offset of '8' from
the address beld in the control section.
The first four bytes contain a pointer to
previous allocations of the variable, or
are zero if there are no previous
allocations of the variable.

Eased variables are located by finding the
value of the defining pointer. This value
is found by using one of the methods
described above to find static, automatic,
or controlled variables. If the Fointer is
itself based, its defining pointer must be
found and the chain followed until the
correct value is found.

Typical code would be the following:

For X BASED (P), with P AUTCMATIC

58 60 D 088 L 6,P

58 EO 6 000 L 14,X

P is held at offset X'88' from register
13, and this address points at X.

Care must be taken when examining a based
variable to ensure that the Fointers are
still valid.

Area variables are located in cne of the
ways described above, according to their
storage class.

Typical code would be:

For area variable A declared AUTOMATIC

41 60 D 088 LA 6,A

The area would start at offset X'8S'
from register 13.

variables in areas are found by locating
the area and then using the offset to find
the variable.

186

CONrROL BLOCKS AND FIEtbs

For simplicity, the methods of finding
various control blocks are placed in,an
alphabetic table. Details of the control
blocks can be discovered from the relevant
chapters (see index) or from appendixB.

As well as control blocks, various other
items are includ'ed in the list. Where
nece~sary, cross~reference is made to other
section$ in this. chapter.

Automatic variables

Backchain

BaS

DSA backchain
ONCA backchain

Controlled var~ables

DED

Diagnostic statement
table

DFB

DSA

DTF

ENVB

EOS

Event variable

FCB

see "Variables"

offset X'4' in DSA
offset X'O' in ONeA

offset X'S' from TeA

see "Variables"

deduced from Object
program listing

addressed from
offset '8' from
entry point of main
procedure

addressed from
offset X'40' (64) in
TCA

addressed by
register 13 (see P3
and D3)

addressed from
otfset X'18' (24) in
FCB

addressed from
offset X' 14' (20) in
FCB

offset X'C' (12) in
TeA

deduced from object
program listing and
knowledge of
parameter lists of
I/O ~nd wait modules

identified in PL/I
dumps. Open file
statement listing.

Flow statement table

Filename

Free-area chain

Locator/descriptor

LiS

Module name (when
interrupt occurs in
library mod ule)

NAB

ONCA

ONCE - start of
dynamic ONCB
chain

first static
ONCB

On-cells

OCB

PSW

Parameter lists

Register valu es

RCB

Statement frequency
count table

addressed from
offset X' 4C' (76) in
TCA

addressed from
offset X'10' (16) in
FCB

offset '8' in
implementation­
defined appendage,
which is addressed
from offset X'28'
(40) in TCA

deduced frc~ object
program listing

addressed from
offset X'48' (72) in
every DSA

comparing address of
error with link-edit
map

offset X'4C' (76) in
DSA

the offset of the
associated CNCA is
held in a halfword
at offset '2' in
each section of LiS

offset X'60' (96) in
DSA

offset X' 5C' (92) in
DSA

addressed from
offset X'70' (112)
in r:SA

deduced from object
program listing and
parameter list of
open module, IBMDOCL

see D2

object program
listing and static
storage map

See P3 and D3

object program
listing and static
storage map

X '80' in the TCA

Static storage

SIOCB

Symbol table

Symbol table vector

Start of program

Segment number

TCA

Variables
automatic

based

controlled

static

area

Variables in areas

addressed by
register 3 in
compiled code. See
P3 and D3

object program
listing

Static listing

Static listing

linkage editor map

first two bytes of
BOS, EOS, or NAB.
'FF'=1,'FE'=2 etc.*

addressed by
register 12. See P3
and D3

offset (shown in
variables offset
map) from DSA of
block in which they
are declared. See
V1

address of the
pointer must be
deduce~ from the
object program
listing. This gives
the address of the
variable. See V2

address referenced
in compiled code
holds latest
allocation of the
variable. A
chain-back through
the previous
allocation can be
made using the
header chain. See
chapter 2, and V3

deduced from offset
from register 3 in
variables offset
map. See V4

as for other
variables depending
on storage class.
See V5

find address of
area. Find variable
from offset within
areas shown in
compiled code. See
V6

Chapter 12: Detugging Using Dumps 187

*When the first two bytes of EriS and BOS
are greater than NAB, it means that an
extra segment of storage has been used, but
not yet freed. See chapter 6, "Storage
Management. "

188

Chapter 13:

The DOS PLII Optimizing Compiler allows
subroutines compiled on certain IBM COBOL
or FORTRAN compilers to be used in PLII
programs compiled on the optimizing
compiler. Similarly, it compiles PL/I
programs that can be run as subroutines of
either COBOL or FORTRAN programs.

Facilities are also provided to overcome
the addressing problems that arise when
passing arguments to assembler language
routi~es. These facilities are described
under the heading "Options Assembler" later
in this chapter.

A full description of how the
interlanguage communication facilities can
be used is given in the language reference
manual and the programmer's guide for this
compiler. A detailed description of the
library routines involved is given in the
resident library PLM. This chapter
explains the basic design principles used.
It will assist in understanding the
situation in main storage during the
ex~cution of a program involving
interlanguage calls.

Background to Interlanguage
Comm unication

The major problems involved in allowing
procedures written in PL/I to be used with
programs written in COBOL or FORTRAN are:

1.

2.

The ex~stence of different data types
in the different languages.

The different methods of holding data
aqgregates in the different languages.

3. PL/I's use of locators when passing
areas, arrays, strings, and structures
as arguments.

4. The need for programs compiled on PL/I
and FORTRAN compilers to have a
specially initialized environment in
which to operate.

The first of these problems must be solved
by the programmer himself, by ensuring that
arguments passed between the routines are
of suitable data types. (Information in
the language reference manual for this
compiler enables the programmer to do
this.)

The other problems mentioned above are

Interlanguage Communications

handled automatically by the interlanguage
communication facilities of the compiler.
These problems are summarized below.

DIFFERENCES IN DATA AGGREGATES

Structures in PL/I and COBOL, and arrays in
PLII and FORTRAN, are held in different
manners.

COBOL structures are mapped as follows.
Working from the start, each item is
aligned to its required boundary in the
order in which it is declared, the
structure starting on a double word
boundary.

PL/I structures are mapped by a method
that minimizes the unused bytes in the
structure. Basically, the method used is
first to align items in pairs, moving the
item with the lesser alignment requirement
as close as possible to the item with the
greater alignment requirement. The method
is described in full in the labguage
reference manual.

Take, for example, a structure
consisting of a single character and a
fullword fixed binary item. The fullword
binary item has a fullword alignment
requirement; the character has a byte
alignment requirement. In PL/I, the
structure would be declared:

DCL 1
2
2

A,
B CHAR (1),
C FIXED BINARY (31,0);

and would be held thus:

r----------------------,
I B I C I
L----------------------~

In COBOL, the structure would be declared:

01 A,
02 B,
02 C,

PICTURE X, DISPLAY.
PICTURE 59(9), COMPUTATIONAL.

and would be held thus:

r----~----------~--------------,
I B I 3 un~sed bytes I C I
L------------------------------~

Chapter 13: Interlanguage Communication 189

Calling routine

Call to routine in
other language;

I

I •
apparent path

Called routine

I
I
I
I
I
I
I

Routine of other language
carries out required
task and returns

• I
I
I
I
I

apparent path

I
I
I
I
I
I

...l

Calling routine

Continuation of procedure in
original language

v

real
path

real
path

real
path

real
path

Intervening code

Save old environment,
set up new environment.
If necessary, provide dummy
data aggregate argu ments

Intervening code

Restore former environment.
Where necessary, assign
values in dummy data
aggregate arguments to
real arguments

Figure 13.1. prin~iples of interlanguage communication

190

In FORTRAN, multidimensional arrays are
held in column-major order. In PL/I, they
are held in row-major order. Thus the
second element in a FORTRAN two-dimensional
array has the subscript (2,1), whereas the
second element in a PL/I two-dimensional
array has the subscript (1,2).

Structures are not available in FORTRAN.
The equivalent of arrays in COBOL are held
as in PL/I.

USE OF LOCATO~S

When passing arguments, PL/I passes the
address of locators for areas, arrays,
strings, and structures rather than the
address of the items themselves. This is
because the routine that receives the
arguments may require information about
bounds or sizes of the data passed, and
this is accessible through the locator.
Other languaqes, however, expect the
address of the data. The correct type of
argument list must therefore be set up when
an interlanguage call is made.

DIFFERENCES OF ENVIRONftENT

IBM FORTRAN compilers and the PL/I
optimizing compiler rely upon
initialization routines to set up an
environment in which the compiled code
routines can operate. In FORTRAN, the main
task of the initialization routine is to
issue a STXIT macro instruction to initiate
the FORTRAN error-handling scheme. In
PL/I, the initialization routines prepare
for the PL/I error-handling scheme and also
prepare the way for dynamic storage
allocation. Register 12 is pointed at the
TCA, which is used for addressing a number
of housekeeping fields and library
routines. Register 13 is pointed at a DSA
which contains a standard save area, a NAB
pointer pointing to the next available byte
in the LIFO stack, and various other
housekeeping fields. (See chapter 1 and
chapter 5 for a discussion of the PL/I
environment.)

When PL/I is called from either a COBOL
routine or a FORTRAN routine, the PL/I
environment must be set up before the
program can be run. Similarly, when PL/I
calls another language, the environment
suitable for the program that has been
called must be set up.

THE BASIC PRINCIPLES OF INTERLANGUAGE
COMMUNICATION

The method used to solve the problems
outlined above is to insert code
immediately before and immediately after
the execution of a routine in a different
language. This code alters the environment
and, where necessary, sets up dummy
aggregate arguments to and from which the
values can be assigned. The handling of
the environment is done by three
interlanguage housekeeping routines that
are held in the resident library. Data
aggregates are handled by compiled code.
Figure 13.1 illustrates the basic
principles.

The interlanguage facilities allow any
number of calls to be made, and calls to
both COBOL and FORTRAN Eoutines can be made
in the same program. Thus PL/I can call
COBOL that calls PL/I that calls FORTRAN;
FORTRAN can call PL/I that calls COBOL, and
so on. All calls must, however, be made
either !Q PL/I or !£Q~ PL/I. Calls cannot
be made directly between COBOL and FORTRAN.
Options allow the programmer to specify
that PL/I interrupt-handling facilities
will be available through the COBOL or
FORTRAN routines for those program checks
that are not handled by COBOL or FORTRAN,
and also allow the programmer to specify
whether he wishes data aggregates to be
automatically re-formatted when passed as
arguments. (The programmer may wish to
carry out the re~formatting himself.) The
rules involved are fully described in the
language reference manual. Briefly, they
are as follows. For a PL/I procedure to
call a COBOL or FORTRAN routine, the name
of the routine must be declared as an
external entry point with the option COBOL
or FORTRAN in the OPTIONS attribute. If
the programmer wishes to take advantage of
the PL/I error-handling or interrupt­
handling facilities, the INTER option must
be included in the declaration. When a
PL/I procedure is to be called by COBOL or
FORTRAN, the keyword COBOL or FORTRAN
should be included in the OPTIONS option of
the PROC or ENTRY statement. To override
the creation or remapping of dummy
arguments for aggregates when calling
FORTRAN or COBOL, or to override the
creation or remapping of dummy parameters
when being called f~om FORTRAN or COBOL,
the NOMAP, NOMAPIN, and NOMAPOUT options
can be used.

The compiler also allows the
specification of the COBOL option in the
ENVIRONMENT attribute of a PL/I file. ~his
is separate from the interlanguage
facilities described above, and is a method
of allowing data sets produced by programs
of one language to be used by programs of

Chapter 13: Interlanguage Communication 191

SOLRCE LISTING

P13P2:PRLlC;
OCL FRED OPTIONSCCOBOLI,

1 STRUCTURE,
2 C CHAR (11,
2 0 FIXED BINARY C31,0);

3 CAll FREOISTRUCTURE);
4 END;

OBJECT LISTING

* STATEMENT NUMBER 3
OOCOb A 41 00 0 OC8 LA 0,8CO,0)
OOO('bE 513 10 D C,4C L 1,7bCO,13) f G.t VDA r"......." 000072 IE 01 ALR 0,1
000074 55 OC C :'OC CL e,12CO,12) arguments

000078 47 DO '2 ('J8 8NH CL.4
CO:07C !>ti FC C 048 L 15,7210,121
OCC08e O~ EF 8ALR 14,15
CCC082 CL.4 EQU *
Oe::lOb2 50 00 0 04C ST C,7bI0,13) Place new value in NAB

OCC08b 41 11 0 OOC' LA 1,0(1,0)
000C8" 50 10 0 CA8 ST
00008E D2 C3 I) 088 D OB:- MVC WKSP.1+16141,STRUC

TURE.C
1,16"0,131 I

000094 58 80 0 088 L 8,WKSP.1+16 MKJve structure into dummy
C3 1 OOG D (,88 MVC STRUCTURE-179C41,W OCOC98 02

KSP.1+16
DOC09E 58 70 o 084 L 7,STRUCTURE.0
00::lOA2 50 70 1 004 ST 7,410,11
ii~:)eA6 58 FO 3 ODC L 15,A •• IRMBIECA

Branch to interlanguage DC:'C AA 18 91 LP 9,1
.:lee·OAC 05 EF BALR 14,15

t

housekeeping routine

OOOOAE 5(, 90 3 C30 ST 9,48(0,3)
00:'C82 9b ~O 3 C3C 01 48(31 ,X'80' Set up
COCOBI) IB 55 SR 5,5 argument list
COOOB8 41 Ie 3 030 LA 1,48((' ,31
OOOOBC 58 FO 3 034 L 15 ,52CO, 31
ooooce 18 69 LR 6,9

Branch to COBOL routine :;0:'OC2 05 EF BALR 14,15
0000C4 58 FO 3 C 10 L 15,A .. IBMBIECC Branch to interlanguage

0000C8 05 EF 8ALR 14,15 housekeeping routine
DooaCA 02 03 D 088 9 oeo MVC

TURE-179
oooooe 58 FO D 088 L 15,WKSP.1+16 MKJve values from dummy to

.,S •. 1+16""S"U'1
00C004 02 (3 0 CB3 0 ('S8 MVC STRUCTURE.CC41,WKS real arguments

P.l+l6
OOOc.oA 58f09004 L 6,4CO,91
CO:·OOE 50 6C D (B4 ST 6,STRUCTURE.D

Figure 13.2. Typical code when PL/I calls COBOL or FORTRAN routine

the other language. The use of the COBOL
option in the ENVIRONMENT attribute is
described in the last section of this
chapter.

~1L!_~alls FORTRAN or COBOL

When the calling program is PL/I, the
compiler generates in-line code and library
calls to handle the environment and data
aggregate problems and places the code
before and after the call to a program of a
different language~ The order of events
is:

1. Re-arrange data aggregate arguments,
if'necessary, by creating and
initializing .. $1 dummy of the correct
format. \.\'.

2. Call the appropriate interlanguage

192

housekeeping routine to save the PL/I
environment and prepare for the other
program.

4. Call the required COBOL or FORTRAN
routine passing a parameter list which
does not use locators.

4. Call the interlanguage housekeeping
routine to restore the PL/I
environm.ent.

5. If necessary, assign the values of the
~ummy data aggregate to the PL/I data
aggr~gate.

6. Continue processing in the normal
manner.

A typical code sequence illustrating the
above process is shown in figure 13.2.

Encompassing procedure called by COBOL or FORTRAN

Save calling environment.

Establish PL/I environment.

Set up dummy data aggregate parameters, if necessary.

Call required procedure.

Required procedure

r-::y out required tasks in PL/I environment

L:bliShed by encompassing procedure.

Assign values of dummy data aggregates to correct aggregates.

Restore environment of calling program.

!igure 13.3. Nested procedures used when COBOL or FORTRAN calls PL/I

When PL/I is called from another language,
the method used is different. The code to
handle environment an4 data aggregate
problems cannot be included in the calling
program, as this has been compiled in the
normal manner by a COBOL or FORTRAN
compiler. Instead the code is placed in
the called program. This is done by the
compiler generating two nested PL/I
procedures. The outer procedure is the one
that is actually called by the other
program. It carries out the housekeeping
duties, calling the interlanguage
housekeeping routines to set up or restore
the PL/I e.nvironment, and producing
suitable dummy aggregate parameters if
necessary. The inner procedure is compiled
in the normal manner, called by the outer
procedure, and executes the obj~ct code
corresponding to the PL/I program~
Throuqhout this chapter the outer procedure
is called the ~ompg§§!~~ocedy~ and
the inner procedure the reguired_~~dure.
The system of nested procedures is
illustrated in figure 13.3.

Throughout the remainder of this
discussion, the first procedure entered in
a job or jobstep, which would be known in
PL/I as the main procedure, is referred to
as the E~incip51-pro£edu~. This is
because there is no COBOL or FORTRAN term
equivalent to "main procedure" in PL/I.

When PL/I is called fro~ COBOL or
FORTRAN, the PL/I environment may already
have been set up and may need restoring
from the information that has been saved.
This can .happen in two circumstances.

1. The principal procedure in the job or
jobstep may have been a PL/I main
procedure which called FORTRAN or
COBOL, which in turn called PL/I.

2. There may have been a previous call to
PL/I in a job or jobstep whose
principal procedure is in COBOL or
FORTRAN. In this situation, the PL/I
environment is retained until the
calling routine itself is completed.
This speeds exec~tion of other calls
to PL/I routines~

When the PL/I ehvircinment has already
been established, it can be restored by
pointing ~egisters 12 and 13 at the TCA and

Chapter 13: Interlanguage Communication 193

Encompassing routine compiled with ESD reference to PAYROLL

Save reqisters of calling routine
Call interlanguage housekeeping routine

Interlanguage housekeeping routine (entry point IBMBIEPA)

Call PL/I initialization routine IBMDPIR, ifPL/I environment not set up

IBMDPIR - PL/I initialization routine

I Set up TeA etc.
Issue STXIT macro instruction to initialize PL/I error handling

Acquire DSA for encompassing routine PAYROLL
Rearrange chaining of save areas
Produce dummy data aggregate of correct format if necessary
Return to encompassing-routine

Call PAYROLL

PAYROLL (procedure required by calling program)

IFunctioning in normal PL/I environment, so no special coding required

Call interlanguage housekeeping routine

Interlanguage housekeeping routine (entry point IBMBIEPC)

IIssue STXIT macro instruction to restore calling progr~.'s error-handling mechanism

Assign values in dummy data aggregate to correct data aggregate.

Return to calling routine

Figure 13.4. Action when setting up PL/I environment on call from COBOL or FORTRAN
principal procedur~

the current DSA respectively, and resetting
the proqram check exit and program mask so
that proqram checks are passed to the PL/I
condition- handlinq modules. However, on
the first call in a program with a
principal procedure in COBOL or FORTRAN,
the PL/I environment must be completely
initialized. This involves acquiring
storage for the program management area and
for dynamic storage allocation. This
storage is known as the ISA(initial storage
area) and is described in chapter 6.

The area used for the ISA will be that
part of the partition ~hat is not taken up
by the executable program phase, unless an
area has been assigned, in either a COBOL
or FORTRAN routine, by use of a call to
PLISA. (PLISA is described later in this
chapter.) Space is also allowed in the
hiqh-adqress end of the partition for the
DTF and buffers for SYSLST.

~gguence of Events when PL/I i§_£glle~_fro~
lQ~TRAB-Q~_CO~Q1: When PL/I is called from
FORTRAN or COBOL, the routine that gets
control is the encompassing PL/I routine.

194

This routine is given the name of the
procedure called from COBOL or FORTRAN, and
appropriate ESD references are generated.
The subsequent sequence of events depends
on whether or not the PL/I envir9nment has
been previously initialized. The sequence
is given below and illustrated in figures
13.4 and 13.5.

1. The encompassing routine is called by
COBOL or FORTRAN and:

a. Saves the registers of the calling
program.

b. Calls the inter language
housekeeping routine, passing the
interlanguage routine the si~e of
the DSA that the encompassing
routine itself will require.

2. The interlanguage housekeeping routine
then:

a. Tests to s~e if the PL/I environ­
has been established previously
and can be restored.

b. If possible, restores the PL/I
environment and returns to the
encompassing routine.

c. If the PL/I environment has yet to
be initialized, the housekeeping
routine calls IBMDPIR, passing it
an address in the interlanguage
housekeeping routine, to which
control will return. Control
blocks are set up to handle the
housekeeping problems. Save areas
are rechained so that the save
area of IB~DPIR (dummy DSA) comes
before the save area for the COBOL
or FORTRAN calling program.
Consequently, the PL/I environment
will not be lost until the calling
program itself is finished.
Module IBMDIEP inserts a short
save area and an interlanguage
save area, and IBMDPII creates a
dummy DSA, all of which are left
in the DSA chain (see figure
13.5). These save areas are
specially created and used to
return control to the
interlanguage housekeeping routine
before and after the execution of
IBMDPIR on termination. Control
is then returned to the
encompassing procedure.

3. The encompassing procedure reformats
data aggregate arguments if necessary,
sets up locators where they will be
expected by PL/I, and calls the
reguired PL/I routine.

4. The required PL/I routine carries out
the required operations and returns
control to the encompassing procedure.

5. The encompassing procedure reassigns
the data aggregate arguments, if any,
and calls the inter language
housekeeping routine.

6. The interlanguage housekeeping module:

a. Saves the PL/I environment.

b. Restores the environment of the
calling program.

7. Control is returned to the
encompassing routine, which, in turn,
returns control to the original
FORTRAN or COBOL calling procedure.

CONTROL BLOCKS IN INTERLANGUAGE
COMMUNICATION

Three control blocks ar~ used during
interlanguage communication. They are used

to indicate which environments have been
established, and to save environment and
interrupt information.

1. IBMBILC1 A control section included in
each interlanguage
housekeeping routine. The
control section consists of
two words. The first word
contains a pointer to ZCTL(see
below). The second word
contains three flags: COBOL
and FORTRAN flags indicate
whether the COBOL or FORTRAN
environment has been set up
and still exists; the third
flag is a stack flag which
indicates whether a call has
been made to PLISA to indicate
where the ISA should be
placed.

2. ZCTL A control block generated on
the first interlanguage call
and retained until the PL/I
environment is discarded, or
until the end of job. ZCTL is
set up in the high-address end
of the area used for the ISA.
It is set up as non-LIFO
dynamic storage when PL/I
calls FORTRAN or COBOL. When
PL/I is called from COBOL or
FORTRAN, ZCTL is set up before
any of the PL/I ehvironment is
established; however, it is in
the position that would be
occupied by non-LIFO dynamic
storage, although it is not in
the ISA.

3. Interlanguage VDA

This is a control block that
is generated in a VDA in the
LIFO stack for every call to
COBOL or FORTRAN, or
initializing call to PL/I. It
is used to retain register 13
and to retain COBOL and
FORTRAN interrupt information
during the execution of nested
calls.

Figures 13.6 and 13.7 show how these
control blocks are used in a series of
interlanguage calls that start from PL/I
and FORTRAN principal procedures
respectively.

SPACE FOR PLII DYNAMIC STORAGE AND
PROGRAM MANAGEMENT AREA

Unlike FORTRAN or COBOL, PL/I requires
space for dynamic storage allocation and

Chapter 13: Interlanguage Communication 195

SAVE AREA CHAIN.ING
,----------- p-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

... ..

Standard save area of outer
procedure/calling routine (if any)

COBOL or FORTRAN calling routine save area

Short save area

o

.....
r

....
L __ Interlanguage routine save area

--- --- (Save area 2 in ZCTL)

.... ...
PL/I initialization routine save area

~ ..
Pl/I encompassing procedure save area

Pl/I required procedure save area

Rearrangement of save area chaining takes place after the
first call to Pl/I, so that the Pl/I environment is not discarded
until the calling routine itself is finished.

Save areas that return control to the PL/I initialization routine
and interlanguage housekeeping routine are placed before the
calling routine. (The numbers 1-7 in the diagram show the
order of backcha.ining).

Figure 13.5. Chaining of save areas when PL/I is called from COBOL or FORTRAN
principal procedures.

196

for a program management area. These areas
are an important part of the PL/I
environment and are set up during
initialization of the ISA.

The default action of the PL/I
initialization routine is to set up the ISA
in that part of the partition that is not
taken up by the executable program phase,
allowance being automatically made for a
buffer and a DTF for SYSLST. Consequently,
there is no need to call PLISA if only
SYSLST is used for 1/0 by FORTRAN.
However, the programmer in FORTRAN or COBOL
has a method of overriding this action by a
call to PLISA. In the call to PLISA, a
FORTRAN or COBOL variable must be named and
a length given. The ISA will then be set up
at an address starting at the first
double word in the variable, and taking up
an area large enough to hold the specified
length starting on a doubleword. This
length should not be greater than that of
the variable, or other parts of the COBOL
or FORTRAN program will be overwritten by
the ISA.

This facility is necessary because
FORTRAN 1/0 buffers use space outside the
executable program phase and can
consequently overwrite or be overwritten by
the ISA. However, when the area to be used
for the ISA is included in the executable
program phase, as it will be if a FORTRAN
or COBOL variable is used, the area will be
automatically protected from overwriting.
The facility is available in COBOL
programs, since these programs may call
PLII, which may in turn call FORTRAN.
Since the ISA is set up on the first call
to PL/I, the problem of overwriting with
FORTRAN buffers arises in this situation,
unless the area is specified before the
first call to PL/I.

A call t6 PLISA goes to a section of the
interlanquage housekeeping routine of which
PLISA is an alias. This routine sets a
flag in IBMBILC1, to indicate that an area
has been designated for the ISA, and alters
a parameter list for IBKDPIR in such a way
that the length and address of the largest
area that can be bounded with doubleword
boundaries inside the declared length are
placed in the parameter list.

When the PL/I inter language housekeeping
routine IBMDIEP is called, it tests to see
if the stack flag is on. If the flag is
on, the ISA is set up in the area
designated in the PLISA call.

Handling Changes of Environment

Because the environments required for the

various languages differ, they are handled
by three distinct library modules. These
modules are known as interlanguage
housekeeping modules.

Three modules are involved in the
management of housekeeping during
interlanguage communication.

1. IBMDIEC: COBOL when called from PL/I

2. IBMDIEF: FORTRAN when called from PL/I

3. IBMDIEP: PL/I when called from FORTRAN
or COBOL.

Each module has a number of entry points to
deal with various situations, and each is
called immediately before and immediately
after the program that is req~ired.

COBOL WHEN CALLED FROM PL/I (IBMDIEC)

When calling COBOL, IRMDIEC carries out the
following tasks:

1. Test to see if this is the first
interlanguage call; if so, set COBOL
flag in IBMBILC1 and set up ZCTL.

2. Acquire interlanguage VDA and store
register 12 in ZCTL~ register 13 in
the VDA. Write null (zero) error
information in ZCTL.

3. If INTER option not specified (i.e.,
entry point IBMBIECA), issue STXIT
macro instruction and set program mask
so that errors will be handled by the
supervisor. Return to compiled code.

4. If INTER option is specified (entry
point IBMBIECB), issue new STXIT macro
instruction and return.

The following ~c~ions take place on return:

1. A STXIT macro instruction is executed,
which results in the program check
exit being set to pass control
dire.ctly to the PL/I interrupt
handler.

2. The first word of the interlanguage

Chapter 13: Interlanguage Communication 197

1

2

3

4

Initial situation
IBMBIlC1 is set up asa control section by ~he PL!I interlanguage
routines: Its first word and flags are initiall~ zero.

Call FORTRAN from PL/I (lBMBIEF)
The compiler generates a call to the interlanguage communications
routine. This routine:
1. Sets up. ZCTl after testing for zero pointer in I BMB I lCl.

Acquires an interlanguage VDA.
2. Sets ZCTl pointer to interlanguage VDA, and IBMBllCl

pointer to ZCTL.
3. Sets FORTRAN flag in IBMBllC1. Saves R12 in ZCTl,

R13 in interlanguage VDA.
4. Calls FORTRAN library to initialize FORTRAN SPIE
5. Resets program check exit as required.
6. Returns to compiled code, which calls FORTRAN

procedure.

Call PL/I from FORTRAN (lBMBIEP)
The PL/I program, because it is declared with the option
FORTRAN, will have been compiled inside an encompassing
procedure. The encompassing procedure is the one called by
FORTRAN. The encompassing procedure calls the inter­
language communications routine IBMBIEP, which:
1. Checks IBMBIlC1 to see if either FORTRAN or COBOL

flag is set. As one flag is set, restores registers.
2. Issues PL!I SPIE and STAE and ~tores interrupt handling

information of calling program in interlanguage VDA.
Control tnen returns to the encompassing program, which calls
the required PLII program.

Call COBOL from PL/I (lBMBIEC)
The PL/I program will contain a call to the interlanguage routine
IBMBIEC, which:
1. Sets up another interlanguage VDA, points ZCTl to this

VDA,and places the old value of ZCTl's pointer in the
VDA.

2. Stores R13 in the new VDA.
3. Issues a SPI E so that error handling will be as requested

by PL!I program.
Control is then returned to compiled code, which then calls
the COBOL routine.

IBMBIlC1

Zero

z~ro I Z~ro I
\

COBOL
flag

\
FORTRAN
flag

IBMBIlC1

x

IBMBllel

IBMBllCl ZCTl

.~x -11 Add~
ZCTl VDA (First)

ZCTl VDA (First)

I-----r--x---------tf ~~I------------!
R13

interrupt handling
information

FORTRAN
interrupt handling

R12 information

IBMBIlC1 ZCTl VDA (Second)

x

R13

Figure 13.6. Example of chaining sequences (PL/I principal procedure)

198

VDA (First)

R13

FORTRAN
interrupt handling information

Fin

ZC'

FO

Wh
to
1.
2.
3.

4.

Pl

Wh
to
cal
rna
of
ins
cur
Fa
Th
sin
pre

CO

Th
iml
rOl
ree
ma

Pl

IBMBllCl IBMBllCl ZCTl

Zero ~ ____ ~ __ X __ ,, __________ ~~ __ A_d_d_re_s_s_o_f_Z_C_T_l ______ ~

COBOL FORTRAN
flag flag

IBMBllCl ZCTl VDA (First)

x

IBMBllCl ZCTl VDA (First)

t------r-x-...,--------tf ~~I--R-1-3----------l
interrupt handling
information

R12

IBMBllCl ZCTl

x

)al procedure)

FORTRAN
interrupt handling
information

VDA (Second)

R13

VDA (First)

R13

FORTRAN
interrupt handling information

Final situation

ZCTl is retained until program is completed.

FORTRAN returns to PL/I (lBMBIEF)

When control returns from a FORTRAN procedure, a call is made
to the interlanguage communication routine IBMBIEF. which:
1. Moves the pointer in the VDA to the first word of ZCTL.
2. Issues a PL/I SPI E macro.
3. Issues a P L/I ST AE macro leaving the previously-stacked

FORTRAN STAE for possible future use.
4. Returns control to compiled code.

PL/I returns to FORTR.~N (IBMBIEP)

When the required PL/I procedure.is finished, it returns control
to the encompassing procedure. The encompassing procedure
calls the interlanguage routine (BMBIEP, which issues a SPIE
macro instruction to restore the error-handling situation to that
of the calling routine. The information for the SP(E macro
instruction is retrieved from the interlanguage VDA. The
current PL/I STAE is canceled, leaving the previously stacked
FORTRAN STAE in control.
The interlanguage routine returns control to the PL/I encompas­
sing procedure, which then returns control to the FORTRAN
program.

COBOL returns to PL/I

The COBOL program returns to the PL/I program, which
immediately calls the interlanguage routine IBMBIEC. This
routine rearranges the chain by placing the word in the most
recent VDA in the first word of ZCTL. It then issues a SPIE
macro instruction to restore the PL/I error-handling situation.

PL/I compiled code then continues.

8

7

6

5

Initial situation

IBMBILCl IBMBILCl

Situation on return

ZCTL

L. '-.L-------li L~~ ~I~ero .. J~
FORTRAN flag

1

FORTRAN principal procedure calls PL/I

IBMBILCl ZCTL

2

PL/I calls FORTRAN

IBMBILCl ZCTL

3

FORTRAN calls PL/I

IBMBILCl ZCTL

4

VDA (First)

R13

FORTRAN
interrupt
handling
information

VDA (Second)

VDA (Second)

FORTRAN
interrupt
handling
information

VDA (First)

R13

FORTRAN
interrupt
handling
information

VDA (First)

R13

FORTRAN
interrupt
handling
information

Initial situation Situation on return

PARTITION

~----------- ~----------~ } Ex ists for use .
if PLISA has
been called

r------------I . ISA

PARTITION

ISA

PARTITION

ISA

PARTITION

TCAetc.

Dummy DSA

First VDA

Encompassing DSA 1

Required DSA 1 ISA

Second VDA

Encompassing DSA 2

Required DSA 2

Figure 13.1. Example of chaining sequences (FORTRAN principal procedure)

Chapter 13: Interlanguage Communication 199

VDA is moved into the first word of
ZCTL, and the VDA is freed.

If the INTER option is not specified, all
program checks will be handled by the
supervisor or the COBOL library. However,
if the INTER option is specified and the
COBOL program has been compiled with a
request for the COBOL interrupt handler not
to be called, the following takes place.

1. During the first invocation of
IBMDIEC, a STXIT macro instruction is
issued, which results in interrupts
being passed to an entry address in
IBMDIEC.

2. When an interrupt occurs, register 12
is restored from ZCTL and register 13
from the interlanguage VDA, thus
restoring the PL/I environment.

3. A DSA is acquired for IBMDIEC in LWS.
The address of the interrupt, in the
second word of the PSW, is saved in
this DSA and replaced by the address
of another entry address in IBMDIEC.
For underflow interrupts, the four
bytes preceding the point of interrupt
are also copied and placed before the
entry address in case the error
handler needs to examine them. This
point acts as the return address for
the PL/I error handler.

4. Flags are set in the TeA and DSA to
indicate that it is possible for an
abnormal GOTO to occur in a PL/I on­
unit.

5. A STXIT macro instruction is issued to
transfer the program check exit to the
PL/I error-handling routines whose
address is held in the TCA appendage.

6. An interrupt is then caused, and
control is passed to the PLII error­
handling routines by the supervisor.

If a normal return to the point of
interrupt is made, the following takes
place.

1. When the PL/I error-handling routines
return control to what they take to be
the point of interrupt, control in
fact returns to an entry address in
IBMDIEC.

200

2. A further STXIT macro instruction is
issued altering the program check exit
to a further point in IBMDIEC. An
interrupt is then caused and control
passed through the supervisor to the
new interrupt address.' The reason for
this is that the program in which the
error occurred expects all registers
to be restored, and this can only be
done if return is made by the LPS~
instruction. This is eventually
caused by the EXIT macro. The dddress
of the interrupt, taken originally
from the second word of the PSi, is
then restored to the PSW vhich has
been saved in the area nominated by
the STXIT macro instruction. The
COBOL registers are restored to the
interrupt save area. The program
check exit is altered by a further
STXIT maCro instruction to IE007.

3. Control is returned to the supervisor
by an EXIT macro instruction, which
returns control to the point of
interrupt.

If, however, return occUrs via the
abnormal GOTO mechanism, IE015 branches to
IE018, which unchains and frees the latest
VDA and returns to the abnormal GOTO code.

FORTRAN WHEN CALLED FROM PL/I (IBMDIEF)

When FORTR~N is called by PL/I, the module
IBMDIEF is entered immediately before and
immediately after the execution of the
FORTR~N program. The processing done
before entry to the FORTRAN program depends
on whether the INTER option is specified.
Entry point IBMBIEFA handles calls without
the INTER option. Entry point IBMBIEFB
handles calls with the INTER option.

~gfQ.Ig~n t£L12-I.QRTR A N Progr~Hq
j!~~BI~!A_and_I~~~IEF~

Prior to the call to FORTRAN, IB~DIEF does
the following:

1. Tests the pointer in IBMBILC1 to
discover if this is the first
interlanguage call. If it is the
first call, it sets up ZCTL and sets
the FORTRAN flag in IBMBILC1. If it
is not the first call, it. tests to see
whether the FORTRAN flag is set in
IBMBILC1 and sets the FORTRAN flag if
it is not already set.

2. If the FORTRAN environment has not
previously been set up, calls the

FORTRAN initialization routine. This
routine sets up the program check exit
so that program interrupts will be
handled by the FORTRAN error handling
method. The FORTRAN error data is
stored in ZCTL.

3. Acquires an interlanguage VDA. Points
the first word of ZCTL to this VDA,
taking the value previously in the
first word of ZCTL and placing it in
the first word of the VDA. (This
places the new VDA at the head of a
chain starting from ZCTL.)

4. Stores PL/I's register 13 in the
interlanguage VDA., thus saving the
PL/I environment.

5. If INTER option is not specified
issues a FORTRAN STIlT macro
instruction from ZCTL, sets prog~am
mask to '2', and returns to compiled
code.

6. If INTER option is specified, a STIlT
macro instruction is issued that will
result in control being passed to an
entry address in IBMDIEF, should an
interrupt occur. The program mask is
reset to 'E' in case it was changed by
the FORTRAN initialization routine.

When return is made from the FORTRAN
subroutine, PL/I compiled code immediately
makes a call to the FORTRAN inter language
routine. If the FORTRAN routine may be
u.sed as a function, entry point IBMBIEFD is
used. Otherwise, entry point IBMBIEFC is
used. The module IBMDIEF does the
following:

1. A STIlT macro instruction is issued
that resets the program check exit to
the PL/I error-handling modules, and
the program mask is set to 'E'.

2. The first word of the interlanguage
VDA is placed in the first word of
ZCTL and the VDA freed.

3. For entry point IBMBIEFD (the FORTRAN
function entry point) the parameter
list passed by PL/I is examined, and
the values are moved out of the
registers in which they were placed by
the PORTRAN routine, and moved to the
correct location.

Action o~ Interru~n FOR1]AN

If the INTER option is not specified, the
action on any interrupt that occurs in the
FORTRAN program will be that specified in
the FORTFAN error-handling scheme.
However, if the INTER option is specified,
all program checks that are not handled by
FORTRAN error-handling are passed to the
PL/I error-handling modules.

The FORTRAN error-handling scheme is
used after the following interrupts have
occurred:

1. specification (other than for i~valid
instruction address)

2. Fixed-point divide

3. Decimal divide

4. Exponent overflow

5. Exponent underflow

6. Floating-point divide

All other program checks are handled by the
PL/I error handler.

When an interrupt occurs, the following
takes place:

1. When control is passed by the
supervisor to an entry address, the
type of interrupt is discovered by
examining the PSW. If the interrupt
is one of the types that can be
handled by FORTRAN, the normal FORTRAN
env~ronment is established and the
FORTRAN error handling module invoked.

2. If it is not the type of interrupt
that can be handled by FORTRAN,
register 12 is restored from ZCTL and
13 from the latest interlanguage VDA.

3. The address of the interrupt is taken
from the second word of the PSi and
stored in the DSA. The second word of
the PSi is then replaced by another
entry address in IBMDIEF.

4. Flags are set in the TCA and DSA to
indicate that it is possible for an
abnormal GO TO to occur in a PL/I on­
unit.

5. A STXIT macro instruction is then
issued to restore the PL/I error­
handling situation. A branch is then
made to the PL/I error handler.

6. For a normal return, the PL/I or
FORTRAN error-handling routine returns

Chapter 13: Interlanguage Communication 201

to the point of interrupt, which it
takes from the second word of the PSW.
This, in fact, is the entry address in
IBMDIEF, which has been placed in the
PSW in the PL/I interrupt save area.
(See 3 above)

7. If, however, return occurs via the
abnormal GOTO mechanism, control
passes to an address in IBMDIEF that
unchains and frees the latest VDA and
returns to the abnormal GO TO code.

8. A STXIT macro instruction is issued to
alter the program check exit to a
third address in IBMDIEF.

9. An interrupt is then caused, and the
supervisor passes control to the
program check exit address set in 8
above.

10. A further STXIT macro instruction is
then given to restore the program
check exit to the position at the
start of the process.

The method described in 7, 8, 9, and
10 above is adopted as control has to
be returned via the supervisor so that
the values of all registers may be
restored.

11. The word originally taken from the PSi
and stored in the DSA is restored to
the PSW, which now holds the address
of the point of interrupt. The
FORTRAN registers are restored to the
save area and an EXIT macro issued.
This results in control returning
through the supervisor to the point of
interrupt.

PL/I CALLED FRPM COBOL OR FORTRAN
(IBMDIEP)

As with the other interlanguage
communication routines, IBMDIEP is called
immediately before and immediately after
the program that is to be executed.
However, the interlanguage housekeeping
routine cannot be called direct from the
COBOL or FORTRAN routine, because the
existence of such a routine is unknown to
COBOL or FORTRAN. To overcome this problem,
an encompassing routine is generated with
the same name as the PL/I routine. This
encompassing routine is called by COBOL or
FORTRAN and in turn calls the interlanguage
housekeeping routine and the required PL/I
routine. Code generated for a typical
encompassing routine is sliown in figure
13.8.

Although the names of both PL/I

202

procedures are the same, the encompassing
routine gets control when called from COBOL
or FORTRAN, because no ESD records are
generated for the interlanguage entry
points of the required PL/I program.

Before a call is made to the PL/I program,
IBMDIEP does the following:

1. Tests to see if the PL/I environment
has already been initialized, by
examining whether the COBOL or FORTRAN
flag in IBMBILC1 is set.

2. If the COBOL or FORTRAN flag is on,
this means that a previous
interlanguage call has been made, and
as the call must have been made either
to or from PL/I, the PL/I environment
must have been set up. Register 12 is
restored from ZCTL. A STXIT macro
instruction is issued so that program
checks are handled by the PL/I
condition handler.

The FORTRAN flag is set on and control
returned to the PL/I encompassing
procedure.

3. If neither the COBOL nor the FORTRAN
flag is on, PL/I is being called for
initialization by a program whose
principal procedure is in COBOL or
FORTRAN.

The following actions take place:

a. IBMDIEP sets up ZCTL and then
calls the initializationl
termination routine IBMDPIR to set
up the PL/I environment. It
passes the address of the storage
to be used as an rSA. This is
either the storage specified in a
call to PLISA or the section of
the partition between the
executable program phase and an
area allowed for the DTF and the
buffer for SYSLST. IBMDPIR is
passed an address within IBMDIEP.

b. IBMDPIR when completed makes a
call to the entry point of IBMDIEP
it was passed. This entry point
saves the registers of IBMDPIR and
rearranges the register save
areas. The chaining of save areas
is altered so that the save area
that returns control to the
initialization/termination routine
IBMDPIR is placed above the save
area of the routine that called
the PL/I program.

As this rearrangement could cause
certain housekeeping problems two
additional save areas are created
and inserted in the chain before
and after the save area for the
initialization termination
routine. Restoring the registers
of these save areas results in
control passing to IBMDrEP which
handles any housekeeping problems.
These two save areas are known as
"save area two" and "the short
save area".

c. The FORTRAN or COBOL flag is set
depending on the language of the
calling program.

d. A DSA for the PL/I encompassing
routine is acquired and its
address returned to the
encompassing routine.

The encompassing procedure then
points register 13 to its DSA, and
after any necessary re-formatting
of parameters calls the required
PL/I routine.

The order in which save areas are
held starting with the oldest is:

Caller's caller

Save area two

Dummy DSA (save area for
IBtv1DPIR)

Caller's save area (save area
for COBOL or FORTRAlJ calling
routine

Short save area

PL/I encompassing procedure DSA

PL/I required procedure DSA

4. A DSA for the encompassing routine is
acquired.

5. Control is then returned tp compiled
code in the encompassing routine.

IBMDIEP is called at the end of the PL/I
routine by the encompassing routine
generated by the compiler. If the calling
program is FORTRAN, a returned value may be
expected in register 0 or one or more of
the floating-poin±_~egisters. When this is
the case, the entry point IBMBIEPD is used
and the returned value is loaded into the
required position. In other situations,

the entry point IF~BIEPC is used. The
module resets the program mask and issues a
STXIT macro instruction to restore the
calling routine's program check exit, the
address of which h~s been stored in the
interlanguage VDA.

When PL/I is called by COBOL or FORTRAN,
error handling is carried out in the normal
PL/I manner. The STIlT macro instruction
is issued by IBMDPII when the PL/I
environment is first set up. For calls
after the first, the STXIT macro
instruction is issued by lBMDIEP.

Handling Data Aggregate Arguments

In order to communicate effectively between
COBOL and PL/I, and FORTRAN and PL/I, a
method of handling data aggregate arguments
is necessary, because the three languages
hold data aggregates in different ways.

ARRAYS

Arrays as such are not used in COBOL. _The
use of OCCURS in structures does, however,
have a similar effect. However, PL/T
structures of arrays and COBOL structures
using OCCURS are both held in row-major
order. In FORTRAN, arrays are held in
column-major order. Thus, in a two­
dimensional array, the element known in the
FO~TRAN array as (2,1) will become (1,2) in
the PL/I array.

STRUCTURES

Structures are not used in FORTRAN. In
COBOL the aliqnment requirements are met
differently from PL/I. Full details of the
differences in mapping are given in the
language reference mannual for this
compiler.

METHOD USED

The method used in handling data aggregates
is to create dummy arguments of the correct
format and let the called routine use the
dummy. The values in the dummy are then

Chapter 13: Interlanguage Communication 203

OBJECT lISTING

000000 DC C· P13Pl1'
000007 DC Al1(6)

* INTERlANGUAGE PROCEDURE P13Pll

* REAL ENTRY
000008 90 EC 0 OOC ST". 14,12.,12(13. Store registers
OOOOOC 47 FO F 014 B *+16
000010 00000000 DC A(STHT. NO. TABLE.
000014 OOOOOOAO DC F'160'
000018 00000000 DC ACSTATIC CSECn

Set R3 as static base 00001C 58 30 F 010 l 3,16(0,15.
000020 41 10 0 004 lA 1,4(0,0.
000024 58 00 F OOC l 0,12(0,15) Pass length required for DSA
000028 18 8F lR 8,15 Retain entry point address
00002A 58 FO 3 018 l 15,A •• 18MBIEPA Branch and I tnk to interlanguage housekeeping routine
00002E 05 EF BAlR 14,15
000030 18 F8 lR 15,8 Restore entry point address to RI5
000032 02 03 0 054 3 030 MVC 84(4,13),48(3. Set up on-unit flags
000038 58 10 0 004 L 1,4(0,13)
00003C 58 10 1 018 l 1,2410,1)
000040 02 08 0 018 1 000 MVC 120(12,13) ,0(1. Place parameters at head of temporary storage
000046 92 00 0 080 MVI 128(13),X'00'
00004A 05 20 BAlR 2,0 Set R2 as program base

* PROC EOURE BASE
00004C 58 90 0 018 L 9,120(0,13' Point R9 at arguments
000050 50 90 3 038 ST 9,56(0,3) Store in argument list
000054 58 80 0 01C l 8,124(0,13, Place address of fullword in argument list
000058 50 80 3 03C ST 8,6010,3. for possible returns value
00005C 58 10 0080 l 7, 128(° .-13)
000060 50 10 3 040 ST 1,64(0-,3.
000064 41 60 0 098 LA 6,152(0,13.
000068 50 60 3 044 ST 6,68(0,3)
00006C 96 80 3 044 01 6tH 3) ,X • 80' Mark end of argument list
000010 18 55 SR 5,5 Set static backchain to zero
000072 41 10 3 038 lA 1,56(0,3' Point R 1 at parameter list
000016 58 FO 3 008 L 15,A •• P13Pll Branch and link to required procedure 00001A 05 EF BALR 14,15
00001C 41 60 0 098 lA 6,152(0,13) Pick up RETURNS value
000080 50 60 3 048 Sf 6,12(0,3) Store in static storage
000084 41 10 3 048 LA 1,12(0,3) Point R 1 at returns value
000088 58 FO 3 01C l 15,A •• IBMBIEPO

Branch and link to interlanguage housekeeping routine 00008C 05 EF 8AlR 14,15
00008E 58 00 0 004 L 13,4(0,13)
000092 5-8 EO 0 OOC l 14,12(0,13. Restore a II registers except R 1 {used for returns value}
000096 98 2C 0 01C lM 2,12,28(13.
00009A 01 FE 8R 14 Return to caller

* END INTERLANGUAGE PROCEDURE

Figure 13.8. Encompassing procedure to be called by FORTRAN

204

assigned to the original argument when the
execution of the called program is
completed.

If the data aggregates are
nonadjustable, the mapping will be done
during compilation and both the PL/I and
the COBOL or FORTRAN mapping are produced.
If the data aggregates are adjustable, the
mapping is done during execution. Before
the execution of the call to a program in
another language, the data is transferred
into the correctly mapped aggregate, which
will be held in PL/I temporary storage.
The values are reassigned to the original
data aggregate after execution of the
program in the other language.

The assignment of data between the dummy
and the argument is done by compiled code.

NOMAP, NOMAPIN, AND NOMAPOUT OPTIONS

The NOMAP, NOMAPIN, and NOMA POUT options
can be used by the programmer to specify
that data aggregates will not be remapped
and placed in dummy arguments.

When NOMAP is specified, or when both
NOMAPIN and NOMAPOUT are specified, the
dummy is not generated at all, and the
structure or array is passed as it stands.

When only NOKAPIN is specified, a dummy
is created, but it is not initialized with
the values of the aggregate being passed.
However, on return from the COBOL or
FORTRAN routine, the data in the dummy is
placed in the data aggregate that is being
passed.

When only NOMAPOUT is specified, a dummy
is created, and the data from the data
aqgregate is moved into the dummy. When
control is returned to the calling program,
however, the data from the dummy is not
moved into the data aggregate that was
passed.

CALLING SEQUENCE

When PL/I calls COBOL or FORTRAN passing
data aggreqates as arguments, the sequence
of events is:

1. Handle data reassignment to dummy by
compiled code.

2. Call interlanguage housekeeping
routine.

3. Call COBOL or FORTRAN routine.

4. Call interlanguage housekeeping
routine.

5. Assign data in dummy to real argument,
by means of compiled code.

When ~OBOL or FORTRAN calls PL/I, the
sequence of events is:

1. The COBOL or FORTRAN routine calls the
encompassing PL/I routine.

2. The encompassing PLII routine:

a. Calls the interlanguage
housekeeping routine.

b. Sets up the necessary dummy data
aggregate argument by compiled
code.

c. Calls the required PL/I routine.

d. Reassigns the data from the dummy
by compiled code.

e. Calls the interlanguage
housekeeping routine.

f. Returns to the original calling
routine.

It is necessary to make calls in this
order, because the data mapping must be
done in a PL/I environment.

Main Storage Situation During
Interlanguage Communication

To help with debugging, some of the main
storage situations that can occur during
interlanguage situations are shown in
figures 13.9 through 13.11.

Options Assembler

The optimizing compiler provides a facility
to simplify calling assembler language
routines from PL/I. This consists of
setting up an argument list that contains
the addresses of all items passed rather
than the addresses of locators.

When an entry point is declared as
OPTIONS ASSEMBLER, argument lists passed to
the entry point contain no locator
addresses. The addresses of any areas,
arrays, strings, or structures are passed
directly in the parameter list. (For a
call to a PLII routine, the param~ter list
would contain the address of locators for
these data types. This is because the

Chapter 13: Interlanguage Communication 205

called routine might require information on
the length or bounds of the data and this
is accessible through the locator. See
chapter 4 for details.)

The ASSEMBLER option does not provide
facilities for automatically overriding
FL/I interrupt handling, nor does it allow
PL/I routines to be called from assembler
language. If the programmer requires these
facilities, h~ mtist provide the necessary
code himself. The COBOL option without the
INTER option provides complete facilities
for calling, or being called by, assembler
routines. However, its use involves the
overhead of calls to the FLII library
interlanguage communication routines.

Full instructions on how to use PL/I
with assembler language are given in the
programmer's guide for this compiler.

Cobol Option in the Environment
Attribute

A separate inter language communication
facility offered by the compiler is the use
of the COBOL option in file declarations.
This option allows data sets created by
COBOL programs to be read by PL/t programs
and allows data sets to be created by PL/I
programs in a format that ~s usable by
COBOL programs. Interchange of data sets
presents no problems, unless structures are
used in the data set. If structures are
used, their mapping may be different. (See
above, under the heading "Handling Data
Aggregate Arguments.") When structures are
involved and the mapping is not known to be
the sam~, both COBOL and PL/I structures
are mapped, and compiled code transfers the
data bet~~en structures immediately after

206

reading the data for input, and immediately
before writing the data for output.

During compilation, the compiler
examines the record variable to see if any
structures are involved. If no structures
are involved, no further action need be
taken. If structures are involved, a test
is then made to see if the mapping of the
structure or structures will be the same in
COBOL and FL/I. If the compiler can
determine that the mapping will be the
same, then no action is required. If the
compiler cannot determine that the mapping
will be the same or if the structure is
adjustable, the structure will be mapped in
both the PL/I and the COBOL format.
Adjustable structures will be mapped during
execution by the resident library
structure-mapping routines. Other
structures will be mapped during
compilation.

When re-formatting of data is necessary,
the following actions take place when a
record 1/0 statement involving a file with
the COBOL option is executed.

INPUT:
The data is read into a structure
which has been mapped using the
COBOL mapping algorithm and
assigned to a PLII mapped
structure.

OUTPUT:
Before the output takes place, the
data in the PL/I structure is
assigned to a~tructure mapped for
COBOL. The output to the data set
then takes place from the second
structure.

The data assignment is carried out by
compiled code in all circumstances.

Executable
program
phase

Partition

PL/I program

PL/I library interlanguage routine

_----t- Pointer

FORTRAN

FORTRAN routine

TCA

DSA for interlanguage housekeeping routine in LWS

Dummy DSA

Main procedure DSA

ZCTL

Interlanguage VDA
for FORTRAN

lIBMB'LCl

Pointer

Figure 13.9. Main storage situation when PL/I main procedure calls FORTRAN

Chapter 13: Interlanguage Communication 207

Executable

program
phase

Partition

PL/I program

PL/I library interlanguage routine

Pointer

FORTRAN

FORTRAN routine

COBOL routine

TCA

DSA for interlanguage housekeeping routine in LWS

Dummy DSA

Main procedure DSA

Interlanguage VDA
for FORTRAN

DSA for PL/I encompassing procedure

DSA for PL/I required procedure

ZCTL

I nterlanguage VDA
for COBOL

Pointer

Figure 13.10. Main storage situation when PL/I main
procedure calls FORTRAN, which in turn calls PL/I

208

11BMBILCl

Executable
program
phase

Partition

PUI program

PUI library interlanguage routine

Pointer

FORTRAN

FORTRAN routine

TeA

DSA for inter language housekeeping routine in LWS

Dummy DSA

Main procedure DSA

Interlanguage VDA
for FORTRAN

DSA for PUI encompassing procedure

DSA for PL/I required procedure

ZCTL Pointer

lIBMB'LC1

Fiqure 13.11. Main storage situation whenPL/I main procedure calls FORTRAN,
which calls PL/I, which calls COBOL

Chapter 13: Interlanguage Communication 209

BEGINNING OF PARTITION

EXECUTABLE PROGRAM PHASE

Compiled code
All executable instructions
generated by the compiler.
Contents depend on source
program.

Library subroutines
I BMDPI R - initialization routine
(sets up TCA and other control
blocks in program management
area, then passes control to
compiled code using address
held in PLIMAIN)
IBMDERR - error and condition
handling routine
IBMDPGR - storage management
routine
Other routines, as necessary,
for I/O conversions, etc.
LlOCS data management routines
(if required)

Static storage (static internal and miscellaneous
control sections)

PLiSTART - Initial entry point.

Contains code to pass control
to initialization routine I BMDPI R

PUMAI N - Contains address of
main procedure

Addresses of:
Compiled code entry points
External routines
Library routines
Controlled variables
Static external variables
External files
Label constants

Flags

Control blocks:
Symbol table vector
Symbol tables
Parameter lists for library calls
Descriptors and locators
DEDs (data element descriptors)

Fi Ie information:
FCB (file control block)
DTF (data management control block)
ENVB (environment control block)
OCB (open control block)
Filename

Diagnostic statement table
Non-qualified ONCBs
Constants used in program

Static variables less than 8 bytes
Static variables less than 2048 bytes
Other static variables

Segment No. BOS

Segment No. EOS

Address of TRT table

Address ,of TeA appendage

Address of save area for IBMDPGR

Anchor for open-file chain

BOS

Address of D F B

Address of IBMBPGRD - VDA overflow routine

Address of IBMBPGRA - Get non-LIFO storage

storage
routine

Address of IBMBPGRC - DSA overflow routine

Address of IBMDERR - Error and condition
handling routine

TCA Appendage

TISA - Address of byte beyond ISA

TLrE - AddreS!' of last free area

Address of dummy DSA
/

Address of 'get LWS' routine

Address of load module ch3in

TERA - Address of interrupt handler

Dummy ONCA
(ON communications area)

Holds default values for PUI
condition built-in functions

TRT table

Translate-aod-test table for I BMDER R, used
in error handling to test for relevant on-cells

Diagnostic File Block (see appendix B)

Contains information relating to the use
of SYSPRI NT for the transmission of
diagnostic messages

Save area for IBMDPGR

Used by storage management routines when
new segment of storage is required

Dummy DSA (Dynamic storage area)

Contains DSA for initialization routine,
backchain to calling routine's save area
(if any), pointer to start of major free
area (NAB), etc.

LWS (first allocation)

Flags

Chainback

Register save area

Address of LWS

Segment No.

Workspace (56 bytes)

Flags

Chainback

Register save area

Address of LWS

Segment No.

Workspace (56 bytes)

ONCA (see appendix B)

Chainback (to dummy ON CAl

Values of (or locators for)
condition built-in functions

Caller's STXIT options

Offset to 0 N CA

NAB

Offset to 0 N CA

NAB

Save area for caller's STXIT program check
options

R13

Main procedure DSA

Chainback (to dummy DSJ!

Save area for main
procedure's registers

Address of LWS

Segment No.

Automatic variables and te
associated with the procedu
of dynamic ONCBs (ON COl

Subroutine DSA

Chainback

Register save area

Address of LWS

Segment No.

Automatic variables and ter
associated with subroutine,

VDA

Automatic variables of adj u
such library routines as are I

in/first-out basis. Other iter
LIFO storage that cannot bl
during prologue code.

,cks:
1bol table vector
1bol tables
Imeter lists for library calls
criptors and locators
)s (data element descriptors)

ation:
~ (file control block)
: (data management control block)
liB (environment control block)
~ (open control block)
name

rt:atement table
ed ONCBs
sed in program

)Ies less than 8 bytes
)Ies less than 2048 bytes
: variables

BOS

EOS

table

:ippendage

rea for IBMDPGR

·file chain

BOS

Address of D F B

Address of IBMBPGRD - VDA overflow routine

Address of I BMBPG RA - Get non- LI FO storage
routine

storage

Address of IBM BP"G R C - DSA overflow routine

Address of IBMDERR - Error and condition
handling routine

TCA Appendage

TISA - Address of byte beyond ISA

TLFE - Address of last free area

Address of d/ummy DSA

Address of 'get LWS' routine

Address of load module chdin

TERA - Address of interrupt handler

DummyONCA
(ON communications area)

Holds default values for PL/I
condition built-in functions

TRTtable

Translate-and-test table for IBM D ERR, used
in error handling to test for relevant on-cells

Diagnostic File Block (see appendix B)

Contains information relating to the use
of SYSPR I NT for the transmission of
diagnostic messages

Save area for I BMDPG R

Used by storage management routines when
new segment of storage is required

Dummy DSA (Dynamic storage area)

Contains DSA for initialization routine,
backchain to calling routine's save area
(if any), pointer to start of major free
area (NAB), etc.

LWS (first allocation)

Flags

Chainback

Register save area

Address of LWS

Segment No.

Workspace (56 bytes)

Flags

Chainback

Register save area

Address of LWS

Segment No.

Workspace (56 bytes)

ONCA (see appendix B)

Chainback (to dummy ONCA)

Values of (or locators for)
condition built-in functions

Caller's SlXIT options

Offset to 0 N CA

NAB

Offset to ONCA

NAB

Save area for caller's STXIT program check
options

R13

Appendix A: Principal Contents of Storage

Main procedure DSA

Chainback (to dummy DSA)

Save area for main
procedure's registers

Address of LWS

Segment No. NAB

Automatic variables and temporaries
associated with the procedure, chain
of dynamic ONCBs (ON control blocks), etc.

Subroutine DSA

Chainback

Register save area

Address of LWS

Segment No. NAB

Automatic variables and temporaries
associated with subroutine, etc.

VDA

Automatic variables of adjustable extent;
such library routines as are used on a last­
in/first-out basis. Other items requiring
LIFO storage that cannot be allocated
during prologue code.

END OF. PARTITION

Appendix A: Principal Contents of Storage 211

This appendix provides inform~tion on the
for.at of the control blocks that may be
used durinq the execution of a proqram
compilea by the DOS PL/I Optimizinq
Compiler. Brief details of the f~Dction of
each control block. toqether with when it
is qenerated and where it can be located.
are also qiven.

Except where explicitly stated all
offsets from the start of a block are byte
offsets and are qiven in hexadeciaa1
notation.

AppendixB: Control Blocks

Appendix B: Control Blocks 213

Area Locator/descriptor

Holds the address and length of the area
variable for passing to other routines or
for execution time reference if the area
has an adjustable length.

As far as possible during compilation. If
necessary completed during execution.

Static internal control section.

214

How Addressed From an offset from register
3-known-to-COmpiled code.

r--,
01 A(AREA VARIABLE) 1
1--1

41 LENGTH I
L-----~-------~---------------------·----~

Address of area variable is the address of
the-ar~a variable control block.

1~ng!h is the total length including both
the control block and the area variable.

AREA DESCRIPTOR

The area descriptor is the second word of
the area locator descriptor. It is used in
structure descriptors, when areas appear in
structures, and in the controlled variable
'description' field when an area is
controlled.

Area Variable Control Block

Used to control storage allocation within
the area variable.

When the area variable is initialized.
This depends on the storage class of the
area.

Where Held

As a variable dependant upon storage class.
At the head of the area variable.

r-----------------------------------·---·-· ,
01 FLAG I UNUSED I
1---------------------------------------1 41 OFFSET OF END OF EXTENT (OEF) I
1---------------------------------------1

81 OFFSET OF LARGEST FREE ELEMENT (LFE) I
1---------------------------------------1

CI ZERO CHAIN FIELD IF FREE ELEMENTS 1
1----------------------------------·----1

101 Area variable I
II

, I
L---------------------------------------J

Note: If there are free elements in the area variahle; they are headed by two
words. The first wo~d gives the length of
the element, the secpnd word gives the
offset to the next smaller free element.
If there ~s no smaller free element, the
second word is set to zero.

X'O' Area variable does not contain
free elements.

X'l.' Area variable does contain
free elements.

Appendix B: Control Blocks 215

Aggregate Descriptor Descriptor

Contains information needed to map a
structure or an array of structures during
execution. Used for structures that
contain adjustable extents or the REFER
option. See chapter q.

As far as possible during compilation.
Ad1ustable values are filled in during
execution.

Static internal control section.

By an offset from register 3 known to
compiled code

An aggreqate descriptor descriptor consists
of a series of full word fields one for each
structure element and one for each base
element in the structure.

o 1 2

r------------~-------~-------------------, 010 IF~IOffset to entry for containing •
I 1 ,block 1
1--1 21 Level IFaIF3' DIM 1 L-----___________________________________ ~

216

o , 2

r--,
011 IP~I ALIGNMENT I LENGTH I
I--------------------------~-------------I

21 Level IFalF3' DIM I
L--~

where,

F~ = loeB Not last element in structure

= "'B Last element in structure

F2 = loeB Not an AREA

= '1'B An AREA

F3 = loeB Not a BIT string

= '1'B BIT string

OFFSET =.The offset within the
aggregate descriptor
descriptor to the entry for
the containing structure.
The offset is held in
multiples of four bytes.

LEVEL = Logical level of identifier
in structure

DIM = Real dimensionality of
identifier

ALIGNMENT = Alignment stringency

Value(dec.:.l Pleaning

LENGTH

o
1

15
31
63

bit
byte
half-word
word
double-word

= Length (in bytes) of data

LENGTH is set to 0 for strings
and AREAs, whose length is
held in descriptors

Aggregate Locator

FUllction,

Used to pass the address of an array or
structure and its associated descriptor to
a called routine. Also to associate the
aqgregate with its descriptor during
execution.

During compilation.

Static internal control section.

How Addressed

By an offset from register 3 known to
compiled code.
o 4
~---------------------------------------, 01 Address of data aggre~ate 1
,----------------------~------~----------, 41 Address of descriptor ,
L--~

Appendix B: Control Blocks 217

""aiiiiihIH",u'A,ilY' #

Array Descriptor

Contains information about the extent .of an
array and the number of its dimensions.
For arrays of area variables or strings, an
area or string descriptor is attached to
the arr~y desc~iptor.

The array-descriptor is used to Rass
inform~ti~~ about an array to called
routines, or to hold information about an
array with adjustable extents.

As far, as possible during compilation. If
the a~ray has adjustable extents, it is
compl~ted during execution when the values
are known.

Arrays of structures make use of
structure descriptors to hold similar
information.

Static internal control section.

BV an offset from register 3 known to
compiled code

For arrays of strings or areas, the
descriptors are completed by string or area
descriptors concatenated to the array
descriptor. String and area descriptors are
the second word of string and area
descriptor/locator pairs.

For bit string arrays, the bit offset
from the byte address is held in the string
descriptor.

General Format

The first word in the array descriptor is

218

the RVO (relativ~ virtual origin). This is
followed by two words for each dimension of
the array, containing the multiplier and
high and low bound for each dimension.

o

4

B

C

10

o 4

r-------------------------~-------------,
RVO (AO-VO) I

---------~-----------~-----------------I
Multiplier I

---------------------------------------1
High bound , Low bojun d I

---------------------------------------1
Multiplier 2 ,

---------------------------------------1
High bound 2 , Low bound 2 ,

---------------------------------------1
etc. 1

I
I

!Q!~~ Two full words containing ,
multiplier and high and low bound are ,
included for each array dimension I
L---------------------------------------~

RVO = Relative virtual origin, the
distance between the virtual
origin (VO) and the byte actual
origin (AO). Virtual origin is
the point at which the element in
the array whose subscripts are all
zeros is, or would be, held.
Actual origin is the byte address
of the first element in the array.

RVO is held as a bit value for
arrays of unaligned non-varying
bit strings, but otherwise as a
byte value.

High bound: The highest subscript in
the dimension.

Low bound: The lowest subscript in the
dimension.

Multiplier: The multiplier is the
offset between any two elements
marked by the change of subscript
number in the dimension.

For example for the array DATA(10,10),
the multiplier for the first dimension is
the offset between DATA(l,l) and DATA(2,1)
etc. The multiplier for the second
dimension is the offset between DATA(l,l)
and DATA(1,2}. The ,offset is measured from
the start of the one element to the start
of the next.

Multipliers are byte values except for
unaligned non-varying bit string arrays, in
which case they are bit values.

Controlled Variable Block

At the head of the c~trolled variable.

To hold information about the controlled
variable.

When the vaniable is allocated.
o

The latest a~cation is addressed from an
anchor word wh1ch is held in static
internal storage for internal variables and
~ a separate control section for external
variables.

4

r--,
WORD 1 o I A(Anchor word) I

1--1
WORD 2 4 1 LENGTH 1

--1
WORD 3 8 Chain back to previous allocation, 1

------------------------------------~---I
WORD 4 C Unused -t

------------------------------------~---I
10 DESCRIPTION 1

Field used for descriptor or 1
locator/descriptor in certain 1
circumstances, (see below) 1

--1
1

OATA 1
1

L---------------...;---------------------.---.J

LENGTH: Length of the total allocation
including the 4 words of the
headinq.

CHAIN BACK: Address of word 5 of previous
allocation, set to zero if
first allocation.

DESCRIPTION

If the item is one that
requires a descriptor/locator
or a locator, this is pla~
at the head of the data. If
the item is a structure or
array and the extents are
ynknQX~ at compile time, the
descriptor will also be placed
before the data. class.

Addresa held in ~nchor word
<---------

Thus for:

STRINGS and AREAS, the
controlled variable is headed
by alocato~descriptor.

STRUCTURES and ARRAYS, the
controlled variable is headed
by a locator.

STRUCTURES and ARRAYS'~ith
ADJUSTABLE EXTENTS, the
controlled variable is headed
by a loc~to~ followed by a
de§£~iEtor.

ALL OTHER DATA, the
description field is not used
and the data itself starts at
offset X'10' (16)

Appendix B: Control Blocks 219

........ "y

Data Element Descriptor (DED)

o

Used to pass description of data elements
to library conversion and stream I/O
r,ol1tines.

During compilation.

static internal control section.

By an offset from register 3 known to
compiled code.

o

All DEDs are headed by tvo bytes that
indicate the data type. These two bytes
are followed by as many bytes as are
required to complete the description of the
data.

For arithmetic items, DEDs are completed
by such items as scale and precision. For
pictured items, a representation of the
picture is included in internal form.

o 1 2

r--
11lAg~byt~1 IFlag byte 2 IFurther bytes
I 'I las
IDefines data ,Completes aslrequired
Itype ,definition I
, lif necessary I L--------------------------_______________ _

00
04

220

FIXED BIN,ARY
FIXED DECIMAL

08
OC

10
14
18
11C
20
24
28
2C
30
40
44
48
50
54
58
5C
60
64
68
6C
70
80
84
88
8e
90
94
98
9C

()

FLOAT
Free dec'imal (an
internal form)
FIXED PICTURE BINARY
FIXED PICTURE DECI~AL
FLOAT PICTURE BINARY
FLOAT PICTURE DECIMAL
non-VARYING CHARACTER
non-VARYING BIT
VARYING CHARACTER
VARYING BIT
CHARACTER PICTURE
BINARY constant
DECIMAL constant
BlT constant
F/E Format
P Format (arithmetic)
A/B/P Format (character)
C Format
X Format
COL Format
SKIP Format
LINE Format
PAGE Format
LABEL
ENTRY
AREA
TASK
OFFSET
POINTER
FILE
EVENT

l!9.LBytL1

Bits OS1 = '~O'B A-format item
'01'B B-format item '10'B

character picture format item

Bit 2 = loeB fixed constant
'1'B float constant

Bit 3 = loeB not extended float
'1'B extended float

Bit 4 = loeB F-format/fixed picture
'1'B E-format/float picture

Bit 5 = loeB declared binary
'1'B declared decimal

If bits 4 and 5 = '11'B then DED is for
c.haracter

Bit 6 = 'O'B short precision
'1'B long precision

Bit 1 = loeB real 2I length specified (A
or B format) ~~ unaligned bit
string

'1'B complex (also set if E, F, or
P in C-format) ~ no length
specified (A or B format) ~
aligned bit string

All bits for which neither value is
defined are set to loeB

Internal codes fOL.2ictures

~.Qg~ Pictu~~ Code Ricture

00 9 48
04 y 4C
08 Z 50
OC * 54
10 E 58
14 K 5C
18 T 60
1C I 64
20 R 68
24 CR 6C
28 DB 10
2C B 14
30 S (t) 18
34 s (d) 1C
38 S (s) 80
3C + 84
40 + (d)
44 + (s)

(t) = terminal
(d) = driftinq
(s) = static
DEQ_for STRING Data

o 1

$
$
!
/
1
1

· · · ,
,
,
V

2

r------------------------,
IFlaq byte 1 I,lag byte 21
~------------------------J

o 1 2

(t)
(d)
(s)
(t)
(d)
(s)
(t)
(d)
(s)
(t)
(d)
(s)
(t)
(d)
(s)

3 4

r---,
IFlaq byte 11Flag bytel2 precisionlUnused 1
~---J

o 1 2 3 4

r---,
IFlag byte 1 IFlag byte 21precision Iscale,
I 1 1 1/128 1
L---J

o 1 2 3 4

r---~------------------------------------,
01 Flag 1 Flaq I Ls. 1

1 Byte 1 1 Byte 2 1 1
1--1

41 L2 IPicture in internal ,
1 Iform 1
L--J

Flag byte 1 = Hex 30

The internal code for string pictures is
as follows:

~.Qde Pic!.!!.I~ (hex)

A 00
9 04
/ 08

OC
10

* 14
B 18
x 1C

L1. = length of field with insertion
characters

La = length of field without insertion
characters

o 1 2 3 4

r--,
01 ¥lag 1 Flag 1 Precision, Scale I

IByte 1 I Byte 2 1 ,Factor+128f
1--1

41Length oflLength oflFlag I Flag 1
1 Picture IData IByte 3 1 Byte 4 ,
1--1
, Picture in internal code I L __ J

Flag byte 1 = Hex 14 or 1C

1!~~1 (describes the mantissa
subfield)

Bit 0 =

Bit 1 = • l' B
= loeB

Bit 2 = '1'B
= loeB

Bit 3 '1'B
= '0' B

Bit " = '1'B
= loeB

Bit 5 = • l' B

= loeB

Bit 6 = '1'B
= '0' B

Bit 7 =

reserved; must be set to
loeB

drifting S in subfield
no drifting S in subfield

driftir.g + in subfield
no drifting + in subfield

driftina - in subfield
no drifting - in subfield

driftinq ~ in subfield
no drifting $ in subfield

total suppression in
subfield
no total suppression in
subfield

* in subfield
no * in subfield

reserved; must be set to
loeB

Appendix B: Control Blocks 221

f!~g~~te-! (describes the exponent
subfield)

Same format as Flag Byte 3.

~Q!~: After E or K, the next byte contains
the number of digits in/the exponent.

The scale factor of a picture DED is the
number of digit positions after the 'V' (0
if there is no ·V·) added to the number in
the F specification, if any.

Bit 5 is set if no 9, Y, T,_~_or R is
present. This applies before any Z, S,
etc. has been translated to a 9.

EY!~§_fQ~_!~Dslaling_£!£tu~~2-i~to_~~codeg
J2i£tuJ::~

1. Characters 9, Y, E, K, T, I, R, CR,
DB, B, and V are translated directly.

2. Characters Z and * are translated
directly if they do not follow a V.
If either follows a V, it is
translated into the code for character
9.

3. An S, +, -, or ~ is translated to a
static S, +, -, or $ if it is the only
one of its kind in the sub field.

4. If more than one S appears in a
subfield, the S's are translated into
driftinCl S·s.

Except when:

a. It appears immediately before a Y,
9, V, T, I or R. In this case it
is translated into the code for a
terminal S.

b. It appears anywhere after a V. In
this case it is translated into
the code for a 9.

The same rule applies for the
$.

+ \ -, or

5. A "I", a ",", or a "." is treated as
drifting, if:

a. It is in a subfield containing
either one or more Z or asterisk,
or more than one +s, -s, or $.

and if;

222

b. It is not immediately preceding a
Y, 9, V, T, I, or R. In this case

it is translated into terminal
form.

o 1 2
r--------------,
'Flag I 'Flag I
Ibyte 1 Ibyte 21
L-------------.-.J

FORMAT DEDS - FEDS

For meaning of flag bytes see above under
Data Element Descriptors.

JH!.!L!.Q-Ll and E Format Items (FEDl

o 1 234 5 6
r---------------------7-----------,
I Flag I Flag I 'if I D I X I
I byte 1 I byte 2 I I I ,
L---------------------------------.J
Flag byte 1 = Hex 50

W = total length of the format field

D number of decimal places

X = precision + 128 for F-format number of
significant figures for E-format

o 1 234
r--,
I Flag I Flag I W IcoPy of DED as fori
Ibyte 1 ,byte 2 I larith. picture 1
L--~

Flag byte 1 = Hex 54

w = total length of the format field

o 1 234
r---,
1 Flag I Flag I W Icopy of DED as for,
Ibyte 1 Ibyte 2 I Ipictured character I
L------~---------------~------------------~

Plag byte 1 = Hex 58

W = total length of the format field

o 1 2 4

r-----------------------------~-----------,
I Flag I Flag , W I FED for ,FED for I
Ibyte 1 Ibyte 21 Ireal part limag. part I
L---~

Flaq byte 1 = Hex 5C

BQ1~: The complex bit (bit 7) in flag byte
2 is set in both the real part and the
imaginary part FED.

w = total length of the format field

Q]]_for Control Format Items (FED)

o 1 2 4

r--------------------------,
I Flag I Flag Iparameter I
'byte 1 I byte 2 I I
L--------------------------~

Flag byte 1 = Hex 60, 64, 68, 6C or 70

Parameter = length of item (X format)
column number (COL format)
number of lines to s~ip (SKIP
format)

o 1

line number (LINE format)
omitted for PAGE format

2 4
r--------------------------,
I Flag ,Flag ,length I
,byte 1 Ibyte 2 , I
L--------------------------~

Flag byte 1 = Hex 58

The difference between A, B, and P
(character) formats is given by bits 0 and
1 of flag byte 2. ~he length field may be
omitted fo~ A and B format items.

Appendix B: Control Blocks 223

.........

Diagnostic File Block (DFB)

Holds information used by the errcr m~sage
routines.

During program initialization.

'Program managme nt area.

224

Fr.cm ~ '40' in th~ teA

r------------------------------, 0 AFLA IFlags 1 Unused 1
1------------------------------1 4

ARTS I A (transmitter) 1
1------------------------------1 8 ASPD 1 A(SYSPRIN~ PCB) ,
,---~------------------~-------I C

AOCL 1 A (EXPLICIT OPEN) I
I------------~-----------------I 10

ASOC 1 A (Improvised Sysprint DTF) I
L----~-------------------------J 14

Af~A_=_I!sg§

A~'TO Bit 0 = , Messages going to operator's
console

ASNO Bit , = always 0
Aseo Bit 2 = 1 SYSPEINT cannot be opened or

open with unsuitable
attributes.

APPF Bit 3 = 1 Force 'page

o 2 4

r---------------------------------------,
01 Flags , Offset

,---------------------------------------
4, Chain Back

,---------------------------------------
8, Unused

1---------------------------------------
CI Save area R 14

I-----------~---------------------------
10, Save area R1S

1---------------------------------------
14, Save area R 0

,---------------------------------------
181 Sav~ area R1

1---------------------------------------
1CI Save area R2

1---------------------------------------
201 Save area R3

1---------------------------------------
241 Save area R4

1---------------------------------------28, Save area R5

,---------~-----------------------------
2Ct Save area R6

1---------------------------------------
30, Save area R7

I--------------------~------------------
34, Save area R8

1---------------------------------------
381 Save area R9

1---------------------------------------
3C, Save area R10

,---------------------------------------
401 Save area R11

,---------------------------------------
44, Save area R12

1---------------------------------------1
48, A (LWS) 1

1---------------------------------------1
4Clsegmentll BAB. 1

,---------------------------------------
50lSegmentii End of Prologue NAB

1---------------------------------------
54,Block-Enable Cell ICurrent-Enable Cell

1---------------------------------------58, Static backchain

1---------------------------------------
SC, A(First Static ONCB)

1---------------------------------------
60,A(most recent Dynamic ONCB in Block)

,---------------------------------------
64, Unused

,---------------------------------------,
681 Unused ,

1---------------------------------------1
6el Unused 1

,---------------------------------------,
70. A (ONCELLS) ,

,---------------------------------------1
74,CEXQ I II 1 Flags 2 , ,

L---------------------------------------~

Dynamic Storage Area (DSA)

Function

Holds housekeeping information, automatic
variables, and temporaries for each block.

When Generated

During executio~. Allocated by prologue
code every time a new block is entered.

In the LIFO storage stack. Certain library
routines have their DSAs in library
,orkspace (LWS). See below

Current DSA addressed from register 13.
Chainback to previous DSAs from offset X
• 4' •

Flags

Bit 0 = 0 DSA in LWS
1 DSA

Bit 1 = 0 No ON Cells
1 ON cells

Bit 2 = 0 No Dynamic ONCBs
1 Dynamic ONCBs

Bit 3 1nrways set to zero.

Bits 4 and 5
= 00 Procedure DS!

01 Begin DSA
10 Library DSA
11 On DSA

Bit 6 = 0 Bot a dummy DSA
1 Dummy DSA

Bit 7 = 0 Flags 2 invalid
1 Flags 2 valid

Bit 8 = always zero

, Bit 9 = o Do not restore BAB on GO TO
1 Restore NAB

Bit 10 = 0 Do not restore Current-enable
on GOTO

1 Restore current-enable cells

Appendix B: Control Blocks 225

Bit 11 0 Callee cannot use this DSA
1 Cal lee can use this DSA

Bit 12 = 0 Not an EXIT DSA
1 EXIT DSA

Bit 13 .0 No statement # table
1 statement i table available

Bit 14 = always zero

If the DSA is in LiS, offset is the
offset of the ONCA. Otherwise, this field

226

is not used.

Save area for flag byte 1 of the TCA.
Used if DSA is an exit DSA.

!.!~HI§_l

Bit 0 = 1 Last PL/I DSA

Bit 1 = 1 Ignore DSA for SNAP

Bit 3 = 1 Inter-language DSA after
interrupt in FORTRAN or COBOL

Entry Data Control Block (Entry
Variable)

Holds the addresses of the data item and
its DSA.

When the variable is allocated.

Depends on the storage class of the data
item.

As a variable, dependant on storage class.

o 4

r---------------------------------------, o 1 Address ,
1---------------------------------------1

4 1 Address of statically containing ,
I DSA at time of assignment I
L---------------------------------------J

Word 1: bit 0 o Address of entry
1 Address of location

containing 8-char.
EBCDIC name of entry
point

Word 2: bit 0 always = 0

Appendix B: Control Blocks 227

Environment Block (ENVB)

Holds addressed of information declared in
the environm~nt option

When Generated

During compilation
r-----,-----------------------------------,

o NFLA 1 NFLB 1 Unused
Flags I Flags ,

4 Address of blocksize (NBLK)

8 Address of record size (NREC)

C Address of keyloc or address of stacker
(NLOC/NSTK)

10 A (BUFOFF) or A (KEYLENGTH) (NBOF/NKYL)

14 A (INDEXAREA) (NXAR)

18 A (ADDBUFF) (NABF)

1C A (OFLTRACKS) (NOFL)

120 A (PASSWORD string locator) (NPAS)
L------------------------------------____ ~

Bit 0 when set BLOCKSIZE field valid.
1 when set RECORDSIZE field valid.
2 when set KEYLOC field valid.
3 when set BUFOFF field valid
4 when set KEYLENGTH field valid.
5 when set INDEX AREA field valid.
6 when set ADDBUF field valid.

7 when set OFLTRACKS valid.

NFLB_l!gg.§

Bit 0 Function (R) (read)

228

In the static external control section for
the file if file is external~ Otherwise in
the internal static control section.

By an address contained in the FCB of the
file.

Bit 1 Function (P) (punch)
Bit 2 Function (W) (write)
Bit 3 reserved
Bit 4 when set STACKER field valid
Bit 5 reserved
Bit 6 when set PASSWORD field valid
Bit 7 reserved

.!dd~.§.§!l.§

The addresses held are the locations
where compiled code will have placed
the correct values for the current
environment.

Event Table (EVTAB)

Used by WAIT module as workspace and to
provide status information on associated
event.

During execution.

In LIFO storage.

Address known to WAIT module

o 4

r----------------------------, o 1 (see below) 1 WECB
1----------------------------1

4 IChain field through EVTABs 1 WECH
1----------------------------1

8 ,A(Event variable) 1 WAEV
1----------------------------,

C IA(ECBLIST element) I WAEL
L----------------------------~

WECB Bit 0 set when event is complete Bits
1-1 Not used in this implementation

Appendix B: Control Blocks 229

-

Event Variable Control Block

To hold information about the operation
with which the EVENT has been associated.

Depends on the storage class of the event
variable.

Depends on the storage cl~ss of event
variable.

HQ~-Agg~~§§~g As a variable, dependand upon
storaqe class.

o 1 2 4

r------------------------------,
0lFlags11 Flags2 I STATUS 1
1------------------------------1

41 Anchor for ECB chain 1
1------------------------------1

81 A (ECB)/A(CCB) 1
1------------------------------1

CIA(TCA appendage for I/O) ,
1------------------------------1

101 A (PCB) 1
1------------------------------1

141Not used I
L------------------------------J

230

Flags 1

Bit 0 =0 Incomplete
1 Complete

Bit 1 =0 .Inac.tive
1 Active

Bit 2 =0 Not an I/O EVENT
1 I/O EVENT

Bit 3 =0 Not a DISPLAY EVENT
1 DISPLAY EVENT

Bit 4 =0 EV has not caused on-unit
1 EV has caused entry to an
on-unit

Bit 7 =always zero

Bit 0 =0 No chain of EeBs
1 Chain of ECBs exists

Bit 1 =0 Not a dummy EVENT
1 Dummy EVENT

entry

File Control Block (FCB)

Used to access all file information.
Contains addresses of the ENVB, DTF, ACB,
filename, etc.

As far as possible during compilation.
Completed by the open routines during
execution.

In the static internal control section for
internal files.
In the associated file control section for
external files.

How Addressed By an offset from register 3
if internal. Address filled in by linkage
editor if external.

FFST Flags indicating types of statement
(8 bytes)

o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
11
18
19
20
21
22

StS!·ement + options

READ SET
READ SET KEYTO
READ SET KEY.
READ INTO
READ INTO KEYTO
READ INTO KEY
READ INTO KEY NOLOCK
READ IGNORE
READ INTO EVENT
READ INTO KEYTO EVENT
READ INTO KEY EVENT
READ INTO KEY NOLOCK EVENT
READ IGNORE EVENT
WRITE FROM.
WRITE ~RO~KEYF~OM
WRITEFRm! EVENT
WRITE FROM KEYFROM EVENT
REWRITE
REWRITE FROM
REWRITE FROM KEY
REWRITE FROM EVENT
REWRITE FROM KEY EVENT
LOCATE SET

o

23
24
25
26
27
28
29-63

1

LOCATE SET KEYFEOM
DELETE
DELETE KEY
DELETE EVENT
DELETE KEY EVENT
UNLOCK K1!:Y
Reserved

2 3 4

r-------------------------------------, o Flags showing valid statement types
(FFST)

8 A (invalid statement module) (FAIS)

C A(library transmitter) (F·ATM)

10 A (file name) (FNAM)

14 A (environment block) (FFNV)

118 A (DTF) IA (ACB) (FDTF IFACB)

1C l(open file chain) (FAFO)

20 FTYP FER1 FER2

24 FATA FATB FATC FA.TD

28 PFLA ~ FFLE FFLC FFLD

2CI FFLE 1 FFLF 1 FFLG 1 FFLH
1-------------------------------------

301 Blocksize (FBKZ) 1 FLOP 1 FFLI
1-------------------------------------

341 Record length (FRCL)
1-------------------------------------

381 A(hidden buffer)1 (FREC)
I A(IOCB) for VSAM (FAFR)
1-------------------------------------

3C I A (buffer space) (FIOA)
1-------------------------------------

401 Length of buffer space (FIOL)
1-------------------------------------
1 1

441 FEFA 1 FERA
, 1
1-------------------------------------

481 Unused (1 word)
L-------------------------------------J

FTYP 6th and 7th characters of library
transmitter name

FER1 and FER2 Error Flags

FATA-FATD Flags showing attributes
allowable with file types, and
other file usage information.

FATA o (Open SYSPRINT for error

Appendix B: Control Blocks 231

message)
1 (SYSPRINT)
2 unused
3 (String operation)
4 unused
5 DISPLAY
6 RECORD
7 STREAl'!

FATB o BACKWARDS
1 UPDATE
2 OUTPUT
3 INPUT
4 unused
5 unused
6 DIRECT
7 SEQUENTIAL

PATC o unused.
1 unused
2 unused
3 PRINT
4 unused
5 KEYED
6 UNBUPPERED
7 BUFPERED

PATD all unused

FPLA-FFLH Flags Bit

PFLA

FFLB

FFLC

FFLD

232

o
1
2
3
4
5
6
7

o
1
2
3
4
5
6
7

o
1
2
3

" 5
6
7

o

1

F-format
V-format
U-format
Spanned
Blocked
unused
unused
Key in record
variable KEYLOC

CONSECUTIVE
INDEXED
REGIONAL (1)
unused
REGIONAL (3)
unused
unused
other organization

(see FFLI)

LEAVE
UNLOAD
BUFPERS (2)
Permanent output error
(mag. tape)
stacker (2)
associated file
3881 device
unused

Transmitter
deblocking
ERET macro

PPLE

PFLF

PFLG

PFLH

permitted
2 DTF completed by compiler
3 buffer length calculated

by compiler
4 ENDFILE mOdule loaded
5 unused
6 error module loaded
7 GENKEY

o
1

2
3
4
5
6
7

o
1
2
3
4
5
6
7

o
1
2
3
4
5
6
7

o
1
2
3
4
5
6
7

I/O error
permanent input error or
non-scalar varying, length
set
permanent output error
end of· file
hiddan buffer in use
move required
non-SCALAR VARYING
operation checked

previous READ
previous READ SET
previous LOCATE
previous REWRITE
previous OPEN
close in progress
implicit close
outstanding event or
previous open
(VSAK resume load)

Endpage
end of extents
COPY option active
CONSEC UNBUFF
unused
Synad entered
Newly opened print file
File open

In-line I/O
In-line locate
unused'
unused
unused
Blanks at end of r~cord
unused
unused

FLOP 7th character of OPEN module name

IPFLI o VSArlI
1-7 reserved

PEPA offset of ROPADDR in DTP

FERA offset of ERROPT address in DTP

The common section is followed by either
the RECORD or STREA" sections.

Offsets are from start of the FCB.

o 1 2 3 4
r-----------------------------,
I Current buffer address or IFCDAIFRID

4C I Rela ti ve disk address (DAM) I
1-----------------------------1

501 A(key area) IFAKY
1-----------------------------
I Current record number (DAM) FRELIFEKY

54 lor A (embedded key) (ISAM)
1-----------------------------

58 A (error module or bootstrap) FERM

A (event variable) FEVTIFABL
5C or A (deblocker field in DTF)

60 Stored record descriptor FARD

FKLO KEYLOC-1

FXXX Error bytes for DAM

FECC 2 for BACKWARDS (12 for FORWARDS) (Mag
Tape only)

IFFLV 0 KSDS 1 ESDS 2-7 reserved

FEMT 7th char of error module name

FEFT 7th char of endfile module name

FSAT saved attributes (consec unbuff)

FNRT number of records/track (DAM)

FFNC Associated file byte

FCNF Associated file conflicting operations
flags

----------------------------- FKLN Keylength-1
68 Stored key descriptor FAKD

----------------------------- FLeT Number of lines left on card
70 Stored request control block FRCBIFAWB

(first word) FKYL Keylength (VSAM only)
Address (associated files
work area) FAFS Associated file work byte

74 U-format repord length (DAM) FURLIFALMI
A(LIOCS transmitter (SAM»

Sase OPTeD for RPL (VSAM) rOPT

78 FKLO/FXXX IFECC I FEMT
I/FFLVI

7C Offset table for error check FRTB

80 FEFT I fSAT I FNRT/
I FFNC I FCNF

84 FKLN/FLCFI FAFB I unused
/FKYL 1 I

L-----------------------------J
Stream I/O Section

Offsets are from the start of the FCB.

o 2 4
r--,

4C A(next available byte in a buffer) FCBA

FRLl1 50 Bytes remaining in 1 Value of count FCNT
buffer 1 built-in function

-~-------------------I------------------
r'PGZ 54 Page size 1 Line size FLHZ

---------------------1------------------
FLNN 58 Current line no. 1 Record size FMl\X

SC A(copy position in buffer) FCP~

60 A(FCB for COpy file) FCPF
1--

641 A(copy module(input)/tab module FCP1\IFT1·,B
I output print
L

Appendix B: Control Blocks 233

Flow Statement Table

Function
Usedto-implement the compiler FLOW
option. Holds the last 'n' statement
number pairs and the last 'm' proc~dure
executed. (' n' and 'm' are programmer
defined.)

When Generated
InItIalizatIon if the FLOW option has been
specified. The table is continually
updated as the prgoram is executed.

static internal control section.

From offset X '4C' in the TCA.

o 1 4
r----------------------------------,

ARGT 0 1
f----------------------------------

4 1
8 ,

1----------------------------------
C I

t----------------------------------
AFLL 101 Total length of table

1----------------------------------
ANEN 141 A(next free field in stmt. no

1 sect.)
1----------------------------------

AASB 181 A(start of names section of
, table)
I-------------------------~--------

ANEB 1CI A(next free field in names
1 section) . .

1----------------------------------
AAEB 201 A(end of table)

1----------------------------------
ASBS 241 A(start of numbers section)

I---------~---------------~--------
281 AFL1 IAFLF IAFLG I STATE-

1----------------------------------
I MENT NO. (4 bytes) 1 AFLF

AFLG I STATEMENT NUM-
-----~----------------------------t

BEB I etc. I
------------ 1

1 ,
I
I

----------------------------------1
ASBD . NAMES OF BLOCKS I

(8 BYTES) I L----------------------____________ ~

234

unused

ANON Bit 0 No statement numbers required
AFLI Bit 1 last entry was branch-in
AILF Bit 2 unused
AINT Bit 3 interrupt not recorded
AGOT Bit 4 GOTO out of block
Bits 5-1 unused

ATB! Bit 0 Branch-in entry
ABeD Bit 1 BCD form for this entry
Bits 2-1 unused

-------- .. --.------.. --~---

Input Output Control Block (IOCB)

Function
To-hold-information about the current I/O
operation on VSAM files.

When Generated
Durinq-the-execution of the OPEN statement.

Wh~k:~_!ie!g
In non-LIFO storage.

HOJ!_A~dr~§~g
From the FCB.

r--------------------------------,
01 reserved I
1--------------------------------1

41 INXT 1
1--------------------------------1

8t IFLA I IFLB t IERR 1
1--------------------------------1

CI IRCB I
1--------------------------------1

101 lORD 1
1--------------------------------

141 TORL

18

1C

20

24

28

2C

30

34
38
3C
40

IOKD

IOKL

IEVT

IDUB

IKSV

IEve

IMHD

lMEL

441 ISHD
1--------------------------------

481 ISEL
1--------------------------------

4CI IHTe
f--------------------------------

501 IRPL
1--------------------------------

541 ISAR
1--------------------------------

581 ISLN I *
1--------------------------------

SC f IX34 1 *
1--------------------------------

601 IOPT
1--------------------------------

641 IX2C I *
1--------------------------------

681 lARA
1--------------------------------

6C IX2D 1 * I
--------------------------------f

70 IARL I
--------------------------------1

14 IX35 1 * I
--------------------------------1

18 lRCL 1
--------------------------------1

1e lX38 1 * 1
--------------------------------t

80 ISIK I
--------------------------------1

84 IX2E , * ,
--------------------------------1

88 lARG 1
--------------------------------1

8e IX30 I * 1
--------------------------------1

90 IKYL ,

--------------------------------1
94 * ,

L---.----------------------------J
* indicates reserved fields

INXT
I~LA

Next lOCB on chain (set
Flag byte - bits set to
indicate:

Bits 0 - '3 reserved

to 0)
, 1 '

Bit 4
Bit 5

general error flag
unable to complete
operation

IFLB

IERR

(IER1
IER2)

IRCE.
lORD

IORt

IOKD

lOKL

IEVT
IDUB
IKSV
IEVC

MODCB

IMHD
IMEL

SHOWCB

ISHD
lSEL

Bits 6 - 1 reserved
Code byte containing offset within
'look-up' table used for record
checking
Error codes (as for FER1 & FER2
of FCB see under FCB)
First byte is for TRANSMIT r
second byte for ENDFILE r RECORD,
KEY f, ERROR conditions
Request Control Block
1st word of record descriptor =
record address
2nd word of re~ord descriptor
flags + record length
1st word of tey descriptor = key
address
2nd word of key descriptor
+ key length
A(EVENT variable)
A (dummy buffer)
A(key save area)
1st word of pseudo CCB

flags

plist (5 words starting at offset
X'30')
A(header entry) -> IHTC
Element entry addresses
(maximum of 4)

plist (2 words starting at offset
X' 44')
A(header entry)-> IHTC
A (element entry)

Header control entry (4 words

Appendix B: Control Blocks 235

lHTC

IRPL
ISAR
1SLN

starting at offset X'4C')
header type code for "ODeB/SHoICB
of RPL
Address of request parameter list
A(receiving area for SHOVeB)
Length receiving area for SHOleB

Element control entries start at offset
x'se' and continue to end of IOCB. Each
entry occupies 2 words, with keyword type
code set in 1st half-word for example:
1X34 = X'0034'

236

The 2nd c word of each entry is ~sed as
either a setting field for "ODCB or a
receiving field for SHOICB. The IOCB field
names are listed with their corresponding
RPL (Request Paramet.er List) parameters.

IOPT
lARA
IARL
IRCL
ISIK
IARG
IKYL

OPTCD
AREA
AREALEN
RECLEN
FPBK
lRG
KEYLEN

Interlanguage Root Control Block
(IBMB"ILCl)

Connects ZCTL and interlanguage VDA to
interlingual routines, and records state of
activation of languaqe interfaces.

During compilation.

In static internal storage, as a control
section.

By an offset from register 3 known to
compiled code.

o 1 234
r-------~------------------------, o I Address of ZCTL I
1--------------------------------1

4 1 COBOL IFORTRAN I stack 1 1
1 flag I flag I flag I 1
L--------------------------------~

COBOL flag = COBOL active

FORTRAN flag = FORTRAN active

Stack flag = PLISA specified

Note: If COBOL or FORTRAN flag is on PL/I
is-also active.

Appendix B: Control Blocks 237

a Q ##4.lAmSMiIi;:nlii i4N,

Interlanguage VDA

To hold information required for
interlanquaqe calls. Used for information
that alters from invocation to invocation.

One interlanguage VDA is generated for each
inter language call made from PL/I to
FORTRAN or COBOL. An interlanguage VDA is
also acquired if the PL/I environment has
not yet been set up when PL/I is called
from COBOL or FORTRAN.

238

In the LIFO storage stack.

The latest interlanguage VDA is addressed
from offset 0 in ZCTL.

o 1 4

r-------------------------~-------, o IA(previousinterlanguage VDA) I
lor A(ZCTL for first VDA) I
I~--------------------------------I

4 IAddress of current DSA ,
1---------------------------------1

8 1 A (Callers error routine) 1
1---------------------------------1

C IProgramlA(Callers machine check I
'mask Isave area) I
L---------------------------------~

Key Descriptor (KD)

Contains address and length of key for
passinq to library record I/O routines.

As far as possible during compilation. If
necessary, completed during execution.

Normally in static internal control
section. In static external control
section if key is EXTERNAL. Will be copied
into, or generated in, temporary storage if
procedure is reentrant or recursive.

o 1 2 3 4

r--,
01 Address of KEY variable 1
1--1 41 1 1
I Fl~gs' Length 1
,--1
I Feqion No. 1
L--J

a. Address of source key (excluding
the length bytes if VARYING)

b. Address of where to put key
(excluding length bytes if
VARYING)

Bit 0

Bit 1

'1'B if KEYTO string is
VARYING. (If this bit is set,
the I/O transmitters will set
the current length field).

'1'B if word 3 contains a
region number.

Bits 2-15 Unused (zero)

Bits 16-31 Length of key string
(excluding length bytes for
VARYING); current length for
KEY or KEYFROM, maximum length
for KEYTO.

Region ~umber in fixed binary, right
jJ1stified.

Appendix B: Control Blocks 239

$4;;

Label Data Control Block

~olds the address of the data item and, if
a label variable, the address of the
associated DSA.

Label constants: during compilation
Label variables: when the variable is
allocated

Depends on the storage class of the data
item

240

!!Q!!_!gdressed

As a variable, dependant on
storage class.

r---------------------------------, o 1 Address of label constant 1
1---------------------------------1
1 Address of DS! (at time of 1

4 1 assignment) of owning block ,
L---------------------------------~

o 4

r---------------------------------,
o I Address of label I

1---------------------------------1
4 1 Value to be loaded into 1

I Register 2 on GOTO 1
L---------------------------------~

Library Work Space (LWS)

Space reserved for two pre-formatted DSAs
used by certain library modules.

The first LiS is generated during program
initialization. Subsequent LWSs are
allocated before entry to anyon-unit.
This is because the on-unit may require the
use of library modules using LWS but must
not alter the environment of the interrupt.

First allocation in the program management
area. Subsequent allocations in the LIFO
storage stack. ONCAs are generated with
LWS.

How Addressed The associated allocations is addressed frolll off set X' 48' in the current
DSA.
024
r--------------------------------, o Flags (As DSA) I offset to ONCA

4 Housekeeping information as for
DSA

50 56 bytes workspace

88 Flags (as DSA) loffset to ONC~ .

BC Housekeeping information as
for standard DSA

D8 56 bytes workspace

110 Current ONCA
L--------------------------------~

Appendix B: control Blocks 241

On Communications Area (ONCA)

An area in which built-in function values
or their addresses are placed, after the
occurrence of a PL/I interrupt.

The first ONCA is generated during program
initialization. Subsequent ONCAs are
qenerated with each allocation of LWS.

contiguous with LiS in the program
management area and in the LIFO stack.

HQ~!gg~22ed By an offset held from the
start of LiS held at offset X'02' in each
seqement of LiS.

The dummy ONeA has the same format as other
ONCAs and holds default values for those
condition built-in functions that have
default values.

Flslg21

Bit 0 = 0 ONFILE invalid
= 1 ONFILE valid

Bit 1 = 0 ONCHAR/ONSOURCE invalid
= 1 ONCHAR/ONSOURCE valid

Bit 2 = 0 ONIDENT invalid
= 1 ONIDENT valid

Bit 3 = 0 ONKEY invalid
1 ONKEY valid

Bit 4 0 DATAFIELD invalid
= 1 DATAFIELD valid

Bit 5 = 0 No associated EVENT variable
= 1 Associated EYENT variable

Bit 6 Unused

Bit 1 = 0 ONCOUNT invalid

242

.~-- _---_ .. --_._ .. _-_ _- . -- -_. _._-

1 ONCOUNT valid

Bits 8-15 unused

r---------------------------------,
OlChainback to previous ONeA LOCB
I-------------------------~-------

41 ONCODE 1 flags1 LCD!
1---------------------------------

81 string locator for LOFL
1 ONFILE
1---------------------------------

101 string locator for LOCH
1 ONCHAR
I~--------------------------------

181 string locator for LOSC
1 ONSQURCE
1---------------------------------

201 string locator for LOKY
1 ONKEY
1---------------------------------

281 string locator for LODF
1 DATAFIELD
1---------------------------------

301 string locator for LOID
1 ONIDENT
1---------------------------------

381 A (record I/O EVENT variable) LEVT
1---------------------------------

3Ct Unused
1---------------------------------

401 ONCOUNT LCNT
1---------------------------------

44, retry environment LREN
1---------------------------------1

481 retry offset 1 LRAD
I-----~---------------------------I

4CIX'40' I X'OOOO' 1 flags2 1
1---------------------------------1

50, LCT1 1 LRAC 1 Unused 1
L---------------------------------J

Fl~g§_l

Bit 0

Bit 1

= 0 ONSOURCE/ONCHAR not used in
on-unit
= 1 ONSOURCE/ONCHAR used

= 0 ONSOURCE not set in ONCA
= 1 ONSOURCE set in ONeA

Bits 2-7 unused

1£11

Copy ofTCA flag byte 1 (TFB1)

Retry address code

.Ret~.L2ll§et

The offset from the base of the library
module involved to the address at which a
conversion will be reattempted if ONSOURCE
or ONCHAR has been used.

On Control Block (ONCB)

Contains pointer to associated on unit, or
indicates action to be taken when interrupt
occurs.

Static ONCBs are generated during
compilation, one for each ON statement.
Dynamic ONCBs are generated by the prologue
code of the procedure or block in which the
ON statement occurs, or are allocated in a
VDA when the ON statement is executed.

static ONCBs are generated in the static
internal control section. Dynamic ONCBs
are stored in the DSA of the block in which
the associated on-unit occurs.

Start of dynamic ONCBs - offset X'60'
in the DSA.

First Static ONCB - offset X'5C' in DSA.

Static ONCBs are generated for unqualified
conditions. Dynamic ONCBs are generated
for gualified conditions (ENDPAGE, ENDFILE,
etc.)

o 1 2 4

r-----------------------------~----,
01 Address of previous dynamic ONCE 1 I in block (or zero, if first) I
1----------------------------------1

41 Qualifier I
1----------------------------------1

81 Code 1 Flags I Unused 1
,----------------------------------1

CI Target I
L----------------------------------J

o 1 2 4

r----------------------------------,
01 Code 1 Flags I Unused 1
I--------------------------~-------I

41 Target I
L----------------------------------J

A(FCB) for I/O conditions
A (SYMTAB) for CHECK
A (CSECT) for CONDITION condition.

PL/I code for condition

Bit 0 o SYSTEM not specified
1 SYSTEM speci~ied

Bit 1 = 0 Not a null on-unit
1 Null on-unit

Bit 2 = 0 Not a GOTO only on-unit
1 GOTO only on-unit

Bit 3 = 0 Condition not established
1 Condition established

Bit 4 Unused

Bit 5 = 0 Condition not enabled at block
entry

1 Enabled at block entry

Bit 6 = 0 Condition disabled
1 Condition enabled

Bit 7 = 0 SNAP not specified
1 SNAP specified

Address of on-unit, or offset in DSA of
word containing A (label variable or
label temporary).

Appendix E: Control Blocks 243

Open Control Block

Used to indicate that a file·attribute
(either input or output) was declaied in
the associated OPEN statement.

When Generated

During compilation.

Static internal control section.

By an offset from register 3 known to
compiled code.

r----------------------------------,
0, NPA (word of attribute flags) t
I-------------~--------------------I

41 NDEM I
1----------------------.·------------1

8, Unused I
L----------------------------------J

244

This word indicates the explicit and
implied attributes on the OPEN statement~

1 Not used
2 10

20
3,4. Not used

Attribu!!t2

INPUT
OUTPUT

!QEM~~~Q~fli£t mas!

This is a mask generated by the compiler
containing bits for all. attributes which
conflict with those on the OPEN statement.

PLIMAIN

To hold address of entry point of a PL/I
main procedure.

Wh~§.ener9.j;~g

Durinq compilation of a procedure with the
MAIN option.

Separate control section.

HOl[Addressed

As a control section.

r---------------------------, 01 A (Entry Main Procedure) ,
1---------------------------1

41 Unused I
L---------------------------~

Appendix B: Control Blocks 245

PLISTART

Entry point for PL/I program, passing
control to IBMDPIR. Primary entry point
passes control to IBMDPIRA. PLICALLA .
passes control to IBMDPIRB. PLICALLB
passes control to PLICALLC.

During compilation for every PL/I
compilation.

!h~!:!L_.held

Held as a separate control section.

246

As a control section.

PLTSTART CSECT
EXTRN PLIMAIN
BALH 15,0
USING *,15
L 15,PIR
BALR 0,15
DC A PLIMAIN

PIR EQU *
DC V IBMBPIRA
END PLISTART

Record Descriptor (RD)

Contains address and length of record for
passing to library record IIO routines.

As far as possible during compilation. If
necessary, completed during execution.

Normally in static internal control
section. In static external control
section if record is EXTERNAL. will be
copied into, or generated in, temporary
storage if procedure is reentrant or
recursive.

By an offset from register 3 known to
compiled code.

r---------------------------------,
o I A (record variable) I

1---------------------------------1
4 I length I

L---------------------------------J

'1. Address of the data to be written out.

2. Address of where data read in is to be
put.

3. LOCATE statement: Address of where to
store buffer
address.

READ SET statement: Address of
pointer to be
set.

READ IGNORE statement: Ignore factor.

Wo};:£_l

Bits 0 - 7 indicate the type of INTO or
FROM argument as follows:

X '00' fixed length strings
X '01' area variables
X '02' varying length character

strings
X '03' varying length bit strings

Bits 8-31 length of data to be transmitted
(length of variable or buffer
for locate mode).

The value is in bytes for all
strings including bit strings.

For VARYING strings, the value
includes the two length bytes,
and is the maximum length for
input operations and for LOCATE,
the current length for other
operations.

Appendix B: Control Blocks 247

Request Control Block (RCB)

Used by the record I/O interface module
(IBMDRIO) to check the validity of an I/O
statement. The instruction in RTMI is
carried out by IB~DRIO.

During compilation.

Static internal control section.

From parameter list passed in register 1 to
IBMDRIO.

o 1 2 3
r-----~---------------------------,

o I REQ1 I REQ2 I REQ3 I REQ4 I
1---------------------------------1

4 ,RTMI t L-------------_--_________________ J

B£i.Ql (statement identification)

248

00 - READ
04 - REWRITE
08 - WRITE
OC - LOCATE

10 - DELETE
14 - UNLOCK
18 - WAIT

.R£i.Q~ (options)

80 - INTO/FROM
40 - SET
20 - IGNORE
02 - NOLOCK
01 - EVENT

lU'J.QJ (options)

01 - KEY
02 - KEYTO
04 - KEYFROM

.R£i.Q!! unused

RT!!

Either a TM or a BF. instruction
depending on source program.

A TM instruction is used if the
statement cannot be checked for validity
during compilation, or if it has been
checked and found to be invalid.

The TM instruction is used by IBMDRIO
for testing the validity of a statement and
is;

X'91MM2SSS'

where MM is byte containing current
statement bit and SSS is offset of
corresponding byte in FCB statement mask.

A BR instruction is used if the
statement has been checked during
compilation and found to be valid.

Unconditional branch instruction to PL/I
library or LIOCS transmitter.

IStatement Frequency Count Table
1

tlg.ll£1iru! ,
ITo retain a record of the number of times a
,statement has been branched to or from, for
luse by the COUNT option. ,
I !h'§!Lg'§1!~r ate d
I
IWhen the associated external procedure is
, entered.
1
IWh~!:~Helg
t
INon-LIFO storage.
I
I.!!Q!:_Agg!:.§.§.§.§g
I
IThe statement frequency count table for the
Ifirst external procedure in a program is
laddressed from offset X'80' in the TCA
lappendage (TIA). The tables are chained
!together and the chain field of the last
,table set to zero. The chain field is at
,offset 0 in the table. The most recently
,used table is addressed from X'84' in the
ITIA.

r---------------------------------, o A(next table ACTB

4

8
C

A{static CSECT OF PROCEDURE)

name of procedure

10 flags

14 A(first segment)

18 A(next seqment)

1C number of entries

ACST

ACEP

ACFL

ACBS

ACSG

ACNG

120 length of segment ACLG
I ---------------------------------
t count entry
I 1---------------------------------1
I 1 count entry ,
I 1---------------------------------1
I 1 count entry I
I L---------------------------------~

IACBS
I
I
1
1
I
IACFL
1
IACBr
I
I-ACGT

IACIA
IACNM
IACUI
IACZC
I
I

The address held in ACBS is the
address of ACSG. If tables are
segmented, second and subsequent
sections of the table will start at a
point equivalent to ACSG.

Flags

Bit 0

Bit

Bit 2
Bit 3
Bit 4
Bit 5

last update was for a branch
in
last update was for a GOTO
out of block
table inactive
not used
not used
not used

Other bits unused.

Appendix B: Control Blocks 249

Stream I/O Control Block (SIOeB)

Holds addresses of source and target,
source and target DEDs etc and is used as
parameter list by stream I/O routines.

Durinq execution fo~ ~he Quration of the
stream I/O statement.

In temporary storage.

By register 1 during the stream I/O
statement.

o 2 4

r----------------------------------,
SSPC 0 IAddress of source or its locator

1----------------------------------
SSDD 4 I Address ~f source DED

1----------------------------------
STRG 8 IAddress of target or its locator

I------------~---------------------
STDD C 1 Address of target DED

I----------------------------~-----
10lSPLG I STYP I SDSA 1 SDPL

1----------------------------------
SPCB 141 Address of FCB for file

1----------------------------------
SRTN 181 Address of next statement

t----------------------------------
SAVE 1CISave word used in compiler

Igenerated subroutines
1----------------------------------

SCNT 20lValue of COUNT I Unused
Ibuilt-in functn.1
t----------------------------------

SOCA 241 Address of ONCA
1----------------------------------

SSTR 281Area used during GET or PUT string
Ito hold dum~y FCB. L------------------________________ ~

250

Bit 0 1 Transmit on input

Bit 1 = 1 VDA used in edit-directed input

Bi t 2 = ,1 IBMDSED is used

Bit 3 = 1 Call to IBMBSIST required after
dealing with next item (GET or
PUT STRING only)

DSA level number (used only for
data-directed I/O)

Bit 0 = 1 data-directed I/O

Bit 1 = 1 list-directed I/O

Bit 2 1 edit-directed I/O

Bit 3 = 1 string I/O

Bit 4 = 1 CHECK entry to data-directed I/O

Bit 5 1 input

Bit 0 = 1 Terminating call to data-directed
output

Statement Number Table (DST).

To relate statement numbers ta offsets so
that statement numbers may be given in
execution-time messages.

During compilation, if the GOSTftT option is
in effect.

Where Held

Static internal control section.

From offset 8 from each principal en~ry
point to a block.

As offsets are held in two bytes and the
value may in fact take up to three bytes
(4096), it is necessary to hold the table
in sections. If the offset is greater th~n
X'7FFF' the statement number will be held
in the second or subsequent sections of the
table. Obt~in the number given by
translating the offset into binary an\d'
iqnoring the last 15 bits and step down
this number of sections of the table. '(For
example, if the offset was X'8FFP',
translate to binary = '1000 1111 1111
1111'B, ignore last 15 binary digits =1,

therefore step down one section of the
table. If the offset was X'18FPF' the
binary would be '0001 1000 1111 1111
1111'B. Ignoring the 15 right-hand bits
leaves '11'B therefore step down three
sections of the table.)

o 2 4

r---------------------------------,
o A primary entry point of block

4 Size of code generated for block
in bytes

--------~------------------------
8 A(end of first section of table)

C Offset I Statement No.

Offset I statement No.

further offsets and statement
numbers

A(end of second section of table)

Offset I Statement No.

Etc.
L---------------------------------~

* = End of first section

*

Offset: Offset is the offset of the first
byte of the statement relative to
the address of the primary entry
point of the block.

Appendix B: Control Blocks 251

String Locator/descriptor

Used to pass the address and the length of
strings to other routines. Also for
handlinq strings with adjustable lengths
(e.q., DeL STRING CHAR (N».

Storage reserved during compilation.
Fields completed during execution-if string
has adjustable length.

Static internal control section.

By an offset from reg~.ster 3 known to
compiled code.

o 1 2 3 4

r-------------·-----------------------,
01 Byte address of string ,
1-------------------------------------1

41 Allocated lenqth IF, unused ,F2,
L-------------------------------------~

Bit 16 Bits 29-31

252

Word 2
Bit16

F = '0' B Fixed string (First bit of second
byte)

'1' B Varying string

Bits 29:"'31

F2 Used for bit strings to hold offset from
byte address of first bit in string (3

bits)

Allo.£g!~Llenq!.h

For varying strings this is the declared
length. Length is held in bits for bit
strings and in bytes for character strings.

STRING DESCRIPTOR

The string descriptor is the second word of
the string locator/descriptor. It appears
in structure descriptors and in the
description field of controlled variables.

Structure Descriptor

Contains information about the offset of
each element within a struc~ure, and the
nature of each ele.ent. Used when passing
a structure to another routine, or for
accessing structure elements during
execution, if the structure is declared
with adjustable extents or with the REFER
option.

If the s~ructure has no adjustable
elements, during compilation. If the
structure has ad1ustable elem$nts, during
execution from information held in the
aqgregate descriptor descriptor.

Where Stored

Static interna~ control section.

BV an offset from register 3 known to
compiled code.

For each base element in the structure, a

fullword field containing the offset of the
start of the element from the start of the
structure is given. If the base element is
a string, area, or array, this fullword is
followed by the offset field for the next
base element.

o 4
r------------.-------------------,

01 Offset of element from start 1
I of structure 1
1-------------------------------1

41 Descriptor of element if 1 1 element requires descriptor 1
I------------------------------~I

al Offset of element from start 1
, of structure I
I-----------------~-------------

Ct Descriptor of element if
1 element requires descriptor
I---------~---------------------
1 etc ,
, For every base element in
I the structure, an entry is
I made consisting of an
1 offset field an~, if the
1 element requires a descrip­
, tor, a descriptor.
L-------------------------------J

The offset field is held in bytes, Any
adjustments needed for bit-aligned
addresses are held in the respective
descriptors.

Appendix B: Control Blocks 253

Symbol Tilble ,(SYMTAB)

Holds the name of the variable during
execution and associates it with the
address of the variable. Used only when
data-directed I/O or the CHECK condition is
specified.

During compilation, if data~directe4I/0 or
the CHECK condition is used in the program

static internal control section for
internal names. Separate con~rol section
for external names. Por exter al variables
the name of the control sectio is the name
of the variable followed by an' ••

BV an offset from register 3 known to
compiled code for internal variables. As a
control section for internal variables.

o 2 3 4

r------------------------~--------------,
8 Flags I Dimension I Level

I ality I number

4 A (DED)

8 Address field A

C Address field B

10 Length of name
----------------~

Name (fully qualified)
L---------------------------------------~

lig9§

Bits 0,1 & 2 = 'OOO'B £TATIC
= '100' B AOTOKATIC
= '010'B CONTROLLED

(not param.)
= '001'B BASED
= '011'S DEFINED
= '101'S a non-CON'ROLLED

parameter
= '111'B a C9NTROLLED

parameter

Bit 3 '1'B EXTERNAL
= • 0·' B INTERNAL

254

'Bit 4 ' l' B item may appear in some
CHECK list.

= 'O'B item appears in
no CHECK list.

(Bit 4 must be '1'B if item is EXTERNAL) •

Bit 5 = '1'B Address field A refers to
data.

= 'O'B Address field A refers to
locator.

(Bit 5 must be 'O'B for a CONTROLLED
parameter)

Bit 6 = '1'B
= '0' B

a member of a structure.
not a member of a structure.

Bit 7 =
=

Bit 8 =

=

Bits 10

'1'B
'O'B

'1'B

loeB

- 11

Normal SYMTAB.
Short SYMTAB (has fields A &
B omitted).

Address field A addresses
code.
Address field A does not
address code.

reserved: must be set to
loeB.

Bit 12 = '1'B Symtab concerns a BASED
variable; Bits 0,1,2,5,8 of
Flags, level • and Pield A
all refer to the POINTER
qualifier.

= loeB normal Symtab.

Bit 13 = '1'B Symtab concerns a BASED
variable and Field B contains
an address (in Static).

= 'O'S If Symtab concerns a BASED
variable, Field B contains an
offset (right justified) 'in
the DSA defined by level I.

Sits 14,15 reserved: must be set to
loeB.

The number of dimensions declared for
an array item. Dimensionality is zero for
other items.

Level numb~!:

(for AUTOMATIC, DEFINED, and BASED items.
Also for all parameters.) The level of the
block in which the variable is declared.
The level of a block is one greater than
the level of the immediately containing
block; the level of the external block is
o.

Addresses are held in different formats for
different data types. As far as possible,
addresses are held in address field A.
However, more information than can be held
in a full word field is sometimes required.
When this is the case, address field B is
also used.

If STATIC Address of data or address of
locator for items that have
locators.

If AUTOMATIC Offset within the associated
DSA of the data or of the

locator for items that have
locators

If CONTROLLED Address of anchor word.

If BASED Offset of one word field with
in associated DSA containing

address of declared pointer
qualifier.

If PARAMETER or DEFINED
Offset of one word field in
associated DSA containing
address of corresponding
argument, or DEFINED data, or
its locator. For CONTROLLED
parameters, the argument is
its anchor word.

If non-structured AUTOMATIC, STATIC,
DEFINED or CONTROLLED
parameter, field B is set to
a fullword of zeros.

If structured not BASED
Offset from start of structure
descriptor to field that holds
offset of element from start
of structure. See "Structure
Descriptor."

If BASED (except when flag bit 12 or 13 is
set)

For non-structured BASED items
field B holds the offset of
the descriptor from the start
of the DSA in which it is
held.

For structured BASED items,
the offset is to the offset
word in the structure
descriptor. This word holds
the offset of the item from
the start of the structure.
See "Structure Descriptor".

Length is the number of characters in the
fully qualified name.

Appendix B: Control Blocks 255

Symbol Table Vect~r

Holds addresses of symbol tables and
associates them with the block in which the
associated names were declared.

Durinq compilation.
o 4
r-----------------------~----------------, o A(symbol table)

4 A(symbol table)

fullword of zeros

A(of first entry in symbol table vector
of encompassing block). All zeros

t for main procedure block
I----------------------~-----------------
I etc.
L--J

The format of symbol table vector is a
series of fullwords. These contain either:

1. The address of a symbol table

or

2. The address in the symbol table vector
of the start of the entries for the
encompassing block.

or

3. A fullword of zeros indicating the end
of the current block.

256

Static internal control section~

!!Q:!-Add1::ess~g

By an offset from register three known to
compiled code.

(--marks end of
block.

Task Communications Area (TCA)

During program initialization by IBMDPIR.

Acts as a central communications area for
the program. Contains addresses of
essential routines and control blocks, and
various flags. (See chapter 5).

In the program managemen~ area at the head
of the initial storage area (ISA).

r------------------------------------, o Flags TFLG

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

TURC
44

48

4C

50

54

Unused

Segment '1 BOS

Segment " 1!:OS

Unused

A(current event variable)

A(External Save Area)

A (TRT Table)

A(overflow routine - get DSA)

Branch to get DSA subroutine

A (TCA appendage)

A (error handler)

A(Save Area for Overflow Routine)

Open File Chain Anchor

Branch instruction for TCA GOTO code

A (Buqtable)

A(Diaqnostic File Block)

PL/I Return Code User return
Code

A(Overflow Routine for Get VDA)

A(Flow stmt number table)
--------------------~---------------

A (Tab table)

A (Flow module)

TBOS

TEOS

TEVT

TESA

TTRT

TOVF

TGDS

TTl A

TERR

TPSA

TFOP

TGTC

TBUG

TDFB

TORC

TOVV

TFST

TTAB

TEFL

58 Branch instruction for call routine I TCAL
Branch instruction for link routine I TLIN

5C Unused 1
-----------------.-------------------1

60 Unused I TRtE I TTLR 1 TENV
------------------------------------t

64 (Set to zero) I TPRI
------------------------------------1

Appendix B: Control Blocks 257

68, Unused 1 -
1------------------------------------1

6C 1 A(Get Dynamic storage Routine) I TGET
,--------~---------------------------I

70 1 A(Free Dynamic Storage Routine) 1 TFRE
1------------------------------------1

74 I A(Overflow Routine for Get DSA) 1 TOVPO
1------------------------------------ .

78 I A (Error Handler) TERRa
1--------------------------------· .---

7C I Environment Description TENVO

80

FO

Normal GOTO Code
Used when GOTO out of block may
occur

A(IBMBEFLC)/

TGTCO

dummy if NOFLOW and NOCOUNT TEFC

F4

F8

FC

100

104

108

10C

110

114

118

A(Interpretive GO TO routine)

Unused

unused

Unused

Unused

A (WAIT routine)

A(COMPLETION pseudovariable
routine)

A(EVENT assign routine)

Unused

2 unused words
L------------------------------------J

TGTM

TAWT

TACP

TAEA

TFLG contains flag bytes TPBO, TFB1, TFB2, and TFB3.

TFBO

TFB1

TFB2

TFB3

all not used in this
implementation

o not used
1='1'B Event I/O on-unit active
2 not used
3='1'B Abnormal exit requiring

special action
4-7 not used
0='1'B Raise SIZE for fixed-

point divide, fixed-point
overflow, exponent overflow,
decimal overflow exceptions

1='1'B Ignore the exceptions
detailed for bit 0

2-6 not used
7="'B I/O conversion
all not used

TENV contains environment description
TRLR resident library release number
TTLR transient library release number

TOVFO TERRa TENVO TGTCO
These fields are used in previous releases
and are retained for compatibility_

258

TeA Appendage (TIA)

To hold control and communication information.

WhruL~~~rated

During program initialization.

Program management area.

How Addressed
From-offset X'28' in the TCA

o 1 4

r---------------------------------, o A(Byte beyond ISA) TISA

4 Unused

8

C

10

14

18

1C

24

6C

70

74

78

7C

180
I
184
I
188
I
90

A(Last Free Area)

Flags I Unused

A (Dummy DSA)

A (Get LiS code)

A(Load Module Chain Anchor)

Two words for code to call
IBMBERRA

Interrupt Save Area (18 vords)

A(Interrupt Handler

A (lat.st DSA) for abnormal
termination

Word for A(IBMBCCLA)

(communications region)

A(Operation exception checking
code)

TLlE

TFL1

TDDS

TLWR

TLMC

TEBL

TSAI

TERA

TABT

TCCL

TCOM

TAFF

A(first count table) TCTF

A(last count table used) TCTL

Saved address of TCA to be
+estored after interrupt TATC

Space for system tab table
(IBMBSTAB)

TTBS

98 L---------------------------------J

Appendix B: Control Blocks 259

ll~- TF1.1

TFLS Bit 1 = 0 SYSPRINT not open for STREAM
PRINT

= 1 SYSPRINT open STREAM PRINT

TFLJ Bit 2 = 0 Abnormal termination exit
not in progress

= 1 Abnormal termination exit in
progress

TFLK Bit 3 = 0 No dump I/O in progress
f Dump I/O in progress

TISA identifies end of region.

No!~: Chain beginning in TtF! is continued
at offset 4 in free area. First word in

260

free area contains length.

TLWR is an address in IBMDPIR thatacqui,res
library workspace.

TF.P.A is entry point A of IBMDERR.

TCCt is a field used to hold the address of
the complex string conversion routine
IBMBCCL. This routine is in the
transient library and is loaded by the
bootstrap routine IBMBCCS. When the
routine is loaded, the address is
placed in the field TCCL.

TAFF is the address of the code used to
check whether an operation interrupt
is caused by an attempt to execute a
floating point instruction on a
machine with no floating point
hardware.

Zygo-Lingual Control List (ZCTL)

To hold information required for
interlanguaqe calls. Holds information
that does not change for every invocation.

Interlangauge Root Control Block.

o 4

r--------------------------------------, o IA(latest interlanguage VDA). If none,
1--------------------------------------

4 IA (COBOL error routine), if any

8 A (Save area for COBOL program mask,
if any)
-----------~--------------------:~-----

C A (FORTRAN error routine)
Wh~n Gene~ateg --------------------------------------

On the first interl~nguage call.

In the LIFO stack if PL/I is main
procedure. If COBOL or FORTRAN are
principal procedures, at the head of the
unused portion of the region immediately
before the TCA.

From offset X'O' in IBMBILC1 the

10 A (Save area for ~ORTBAN program mask)

14 Address TCA
--------------------------------------1

18 Save Area 1 (18 words) I
Save area used by IBMBI!PA 1
--------------------------------------1

60 Short Save Area (8 vords) t
Used as DSA when principal procedure 1
is not in PL/I 1
----------------------------~---------I

80 Save Area 2 (18 words) I
Used as DSA when principal procedure 1
is not in PL/I 1
L--------------------------------------~

Appendix B: Control Blocks 261

Appendix C: List of PL/I Library Modules

The following list of modules is arranged in alphabetical order of
the last three letters of the module name. This 6rdering is used to
save the reader the trouble of remembering whether the module is
prefixtd with IBMB or IBMD.

Resident Library Modules

Name

IBMBAAH
IBMEAIH
IBMBAMM
IBMBANM
IBMEAPC
IBMEAPF
IBMBAPM
IBMBASC
IBMBAS1"
IBMBAYF
IBMEEBA
IBMBBBN
IBMEBCI
IBMBBCK
IEMEECT
IBMBBCV
IBMBPGB
IBMEBGC
IBMBBGF
IBMEBGI
IBMBBGK
IBMBBGS
IBMEBGV
IBMBCAC
IBMBCEB
IBMECBC
IBMBCBQ
IEMECCA
IBMBCCB
IBMECCC
IBMBCCQ
IBMDCCS
IBMECE
IBMBCG'P
IBMBCGQ
IBMBCGT
IBMBCG'l
IBMBCH
IBMBCK
IBMPCM
IBMBCO
IBMBCP
IBMBCR
IBMBCT
IBMBCU
IBMBCV
IBMECW
IBMBCY
IEMDE'PL
IBMBEOC
IBMBEOr..
IBMEERC

Function

ALL, ANY (simple and interleaved arrays)
Indexer for interleaved arrays
Structure mapping
STRING built-in function
PROD (arrays with fixed point integer elements)
PEOD (arrays with floating peint elements)
STRING pseudovariable
SUM (arrays with fixed-point elements)
SUM (arrays with floating-point elements)
POLY built~in function
AND, OR operations (byte-aligned bit strings)
NOT operation (byte-aligned bit strings)
INDEX (character strings)
Concatenate, REPEAT (character strings)
TRANSLATE (character strings)
VERIFY (character strings)
BeOL (bit strings)
Compare (general bit strings)
Assign (byte-aligned bit strings) and Fill (general bit strings)
INDEX (bit strings)
Concatenate, REPEAT, General Assign (bit strings)
SUBSTR SLD
VERIFY (bit strings)
Conversion director (arithmetic to character)
Conversion (bit to bit)
Conversion (bit to character)
Cenversion (hit to pictured character)
Conversion director (character to arithmetic)
Conversion (character to bit)
HIGH, LOW, Assign (character stri~gs)
Conversion (character to pictured character)
String conversion director bootstrap
Conversion (fixed decimal - free decimal - float - fixed binary)
Check input (pictured decimal)
Check input (pictured character)
Table of powers of ten
Set a sUbfield of a complex number to zero
Conversion (fixed binary - float - free decimal)
Conversion (fixed decimal - free decimal - fixed decimal)
Conversion (pictured decimal to packed decimal)
Conversion (packed decimal to pictured decimal)
Conversion (bit to fixed binary or float)
Conversion (fixed binary or float to bit)
Conversion (decimal constant to packed decimal)
Conversion (binary constant to float)
Conversion (packed decimal to E format)
Conversion (packed decimal to F format)
Conversion (fixed binary to fixed bina.ry and float to float)
FLOW and COUNT option
ON-code
ONLOC built-in fUnction
CF.ECK system action

Size
(approx)

390 bytes
100 bytes

1760 bytes
1630 bytes

580 bytes
370 bytes

1230 bytes
420 bytes
330 l:ytes
380 bytes
520 bytes
400 bytes
200 bytes
610 bytes
770 bytes
210 bytes
660 bytes
240 bytes
390 bytes
350 bytes
890 bytes
330 bytes
420 bytes
700 bytes
350 byte's
220 bytes
240 bytes
520 bytes
420 bytes
270 bytes
410 bytes
340 bytes
720 bytes
870 bytes
200 bytes
140 bytes
300 bytes
480 bytes
370 byt.es
810 bytes

1080 bytes
490 bytes
400 bytes
670 bytes
780 bytes
670 bytes
490 cytes
250 bytes

1200 bytes
220 bytes
160 bytes
490 bytes

Appendix C: List of FLII Library Modules 263

IBMtERF
IBMDEVO
IEMDIEC
IBI1DIEF
IBI1DIEP
IBMDJDS
IBMDJDT
I:RMDJDY
IB~r:JD'7

IBMtJTT
IBMEJWI
IBMDJWT
IRMGJWT
IBMDKCP
IBMDKDr1
IEMDKST
IBMEMAL
IBI1EMAS
IBMEMAX
IBMBNA Y
IEMEMRL
IBMBMDS
IEMEMBX
IBM,BMF. Y
IBI1EMCL
IEI1BI1CS
IBMBI1DL
IBl1EMDS
IBMBl1T)X
IBMEMDY
IBI1BMGL
IBMEMGS
IEME!t!GX
IBMBMGY
IBI1EMHL
IBMEN!' S
IBI1B:1HX
IB!'IEMHY
!BMBMIL
IBMBMIS
IaNBMJL
IBM1?MJS
IBI1BMKL
IBMBMKS
ISMBMKX
IBMBMKY
IBI1EMI.L
IBMB~LS

IBMFMMt.
IBMBMl1S
IBI1BI10!)
IBMBMPT)
TBI1BMPV
IBMBMQU
IBMBMQV
IBMBMPU
IBMEMRV
IBMBMPX
IBMBMRY
IBMBMUD
IBI1BMVU
IBMEMVV
IBl1B~VW

IBMEMWY
IBM'BMWY
IBMEMXL
IBMEMXS
IBMBMXW

264

Error handler
Event Variable operations
Interlanguage housekeeping
Interlanguage housekeeping
Interlanguage housekeeping
DISPLAY
tATE built-in function
DELAY
DIS~LAY without EVEN~
TIME built-in function
WAIT (array events)
WAIT (multiple events)
9AIT (single event)
Checkpoint/restart interface
Dump bootstrap
SORT interface
SQRT (long float real)
SQRT (short fleat real)
SQRT (short float complex)
SQRT (long float complex)
EXP (long float real)
EXP (short float real)
EXP (short float cO«-Flex)
EXP (long float complex)
ERF, EBFC (long float real)
ERF, ERFC (short float real)
LOG, LOG2, LOG10 (long float real)
LOG, LOG2, LOG10 (short float real)
LOG (short float complex)
LOG (long float complex)
SIN, SIND, COS, COSD (long float real)
SIN, SIND, COS, COSD (short float real)
SIN, SINH, COS, COSH (short fleat complex)
SIN, SINH, COS, COSH (long float complex)
T~N, TAND (long float real)
TAN, TAND (short float real)
TAN, lANH (short float compl~x)
TAN, TANH (long float cemplex)
SINH, COSH (long flo~t r~al)
SINH, COSH (short float real)
TANH (long float real)
TANH (short fleat real)
ATAN, ATAND (long float real)
A~AN, ATAND (short float real)
ATAN, ATANH (short float cemplex)
A'IAN, A'!ANH (long float conplex)"
A~ANH (long float real)
A TA Nfl (short f loa t real)
ASIN, ACOS (long float real)
ASIN, ACOS (short float real)
ADD (fixed decimal real or complex)
MULTIPLY (fixed binary complex)
MULTIPLY (fixed decimal complex)
DIVIDE (fixed binary complex)
DIVIDE (fixed decimal complex)
ADS (fixed binary complex)
A ES (fixed decimal complex)
ABS (short float complex)
ABS (long float com~l~x)
Shift and assign/load (fixed decimal real)
Multiplication and Division (fixed binary complex)
Multiplication and Division (fixed decimal complex)
Multiplication, (long and short float complex)
Div ision (short float complex)
Division (long float complex)
Integer exponentiation (long float real)
Integer exponentiation (short float real)
Integer exponentiation (short and long float co~plex)

1500 bytes
16 bytes

500 bytes
910 bytes

1000 by+es
740 bytes

80 bytes
130 bytes
590 bytes
150 bytes
390 bytes
800 bytes
220 bytes
820 bytes
140 bytes

1 Q40 by+.es
170 bytes
170 bytes
290 bytes
300 bytes
Q60 tytes
2bO bytes
140 l:ytes
140 bytes
640 bytes
410 tytes
340 byt€s
260 bytes
230 bytes
230 bytes
390 bytes
310 bytes
310 tytes
370 bytes
320 bytes
260 tytes
230 bytes
230 bytes
240 bytes
160 bytes
260 bytes
200 bytes
470 bytes
'~60 bytes
260 tytes
260 bytes
260 .tytes
180 bytes
350 bytes
260 l:yt.es
290 bytes
290 bytes
280 bytes
Q60 bytes
580 byte~
210 bytes
540 bytes
120 Dytes
130 bytes
360 bytes
290 bytes
660 bytes
120 bytes
100 tytes
100 bytes
140 bytes
140 byt.es
410 bytes

IBMBMYL
IBMBMYS
IBMBMYX
IBMBMYY
IBMDOCL
IBMIOCN
IBMBPAF
IBMBPAM
IBMBPGO
IBMDPGR
IBMDPIR
IBMDPJR
IBMDPOV
IBMBPRC
IBMDRIO
IBMBSAI
IBMBSAO
IBMPSBO
IBMBSCI
IBMBSCO
IBMDSCP
IBMDSCV
IBMDSDI
IBMtSDJ
IBMDSDO
IEMISED
IBMDSEE
IBMDSEH
IBMDSEI
IBMDSEO
IBMB SFI
IBMBSF'O
IBMDSII
IBMDSIO
IBMDSI S
IEMDSLI
IBMDSLJ
IBMDSLO
13MBSMW
IBMBSPI
IBMDSPL
IBMBSPO
IBMDSTF
IBMDSTI
IBMDSXC
IBMBTOC

General exponentiation (long float real)
General exponentiation (short float real)
General exponentiation (short float complex)
General exponentiation (long float complex)
OPEN/CLOSE bootstrap
OPEN/CLOSE address list and record I/O error bootstrap
Centrolled variable management
AREA management
Beset CHEC~ enatlement
Storage manaqement
~rogram initialization from system
Program initialization from caller
Overlay
Return cede module.
Record I/O interface module
Input conversion director (A, P, and B formats)
output conversion director (A format)
output conversion director (character-P and B formats)
Input conversion director (C format)
output conversion director (C format)
COpy
Conversion fix-up bootstrap
Data-directed input
Data-directed input
Data-directed output
Edit-directed I/O housekeeping
Edit-directed cembination module
Edit-directed combination subset module
Edit-directed input
Edit-directed output
Input conversion director (F and E formats)
Output conversion director (F' and E formats)
GET FILE initialization
PUT FILE initial1zation
GET or PUT STRING initialization
List-directed input
List-directed input
List-directed output
Missing output width modul~
Input conversion director (P format)
PAGE, LINF, and SKIP
Output conversion director (P format)
Stream input transmitter
Stream print F-format transmitter
X and COLUMN format items
COM~LETION pseudovariable and Event variable assignment

Transient Library Modules

The following list is arranged in alphabetical order of the last
three letters of the module name. This ordering is used to save the
reader the trouble of remembe=ing whether the module is prefixed
with IBMB or IBMD.

Name

IBMBCCL
IBMBCCR
IBMBEOC
IBMEETA
IBMBETB
IBMBETC

Function

Conversion director (ccmplex strings)
Ccnversion director (nen_complex strings)
On-code translate
Miscellaneous non-ON messages (1)
Miscellaneous non-ON messages (2)
Misc. and computational non-ON messages

160 bytes
150 bytes
260 bytes
270 bytes
240 bytes
200 bytes
150 bytes
540 bytes

40 tytes
610 bytes
420 tytes
330 bytes
110 tytes

40 bytes
cro bytes

420 bytes
130 bytes
400 bytes
300 bytf's
290 bytes
230 bytes

90 tytes
2090 bytes
2090 bytes
1210 bytes
1050 tytes
1420 bytes

880 bytes
440 bytes
210 bytes
240 byt.es
210 b:y-tes
420 bytes
330 bytes
350 bytes

2220 tytes
2070 by~es
1610 byt es

340 bytes
370 bytes
530 bytes
290 bytes
440 bytes
190 byt.es
440 bytes
130 bytes

Size
(a~prox)

1830 bytes
940 bytes
240 bytes
710 bytes

1140 tytes
1000 bytes

Appendix C: List of PL/I Library Hodules 265

IBMEETI
IBMBETO
I BMBF.'I' P
IBMBETQ
IBMBET1'
IBMDED'J
:BMDEDW
IEMDESM
IBMDESN
!BMDESY
IBMDKDD
IB.MDK?A
::BMDKDR
IBMDKDT
:EMDKMR
IBMDKP'r
IBMDK'!:'B
:BMDKTC
:BMDKTP.
IBMDOCA
IEMtOCV
IBMDOPM
IBMDOPP
IBMDOPQ
IBMDOPS
IBMDOPT
IBMDOPU
IBMDO?~

IBMDOPW
IBMDOPX
IBMDOPY
IBMDOPZ
IFMDP'P.?
IBMDPES
IBMDPIF
IBMDPII
IBMtP,-11
IBMD.RAW
IBMD;PAY
IBMDRAY
IBMD~AZ
IEMCRBr.T
IBMDt·B'X
IBMI'! BY
IBMD~BZ
IEMDRry
IEMtRCZ
IBMDPDY
IBMDRDZ
IBMD~EF
IBMDPEX
IBMDBEV
IBMDREY
IBMDREZ
IBMDP.JZ
IBMDBKZ
IBMDRLZ
IBMDPRR
::BMDRPT
::BMDRRU
IBMnRRV
IBMDRRW
I BMP RVE
IBMD?VS
IBMDRVT
IBMDRVZ
IBMDRRX
IBMDRRY

266

I/O. non-ON messages
ON messages (1)
ON mess ages (2)
ON messages (.3)
EVENT messages
Open diagnostic fil~
Ccnsole transmitter
Error message module Fhase 1
Error messaqe module pahse 2
Error system action
Hexadecimal dump
Dump file attributes
Dump storage report
Dump/COUNT transmitter
Dump control
Dump parameter translate
Save Area Control Block printout
Save Area chain validity checker
Dump trace
Close
Close VSAM files
OPPN - consecutive unbuffered files
OPEN - consecutive buffered files
OPEN - consecutive buffered files (level 2)
OPEN - stream files
OPEN - stream files (level 2)
OP3N - consecutive buffered/stream files (level 3)
Open VSAM files
OPEN - indexed files (level 4)
OPEN - regional and indexed files
OPEN - regional/indexed files (level 2)
OPEN - r~gional indexed files (level 3)
Housekeeping Diagnostic message module
Storage management Diagnostic message module
Operation ~xception checking, (no floating-point hardware)
Program ISA initialization
Program ISA initialization from caller
Regional(3) seguential unbuffered output transmitter
Regional (3) sequential buffered output transmitter
Regional(1) sequential unbuffered output transmitter
Regional (1) seguential buffered output transmitter
Regional(1) seguential buffered input/update transmitter
?egional(3) sequential buffered inpat/update transmitter
P.egional(3) sequential unbuffered input/update transmitt.er
Regional (1) seguential unbuffered in?ut/update transmitter
Consecutive sequential unbuffered transmitter, V-format
Consecutive sequential unbuffered transmitter, F-format
Regional (3) direct transmitter
Regional (1) direct transmitter
ENDFILE module
Error handler for indexed files
Error handler for VSAM files
Error handler for regional and unbuffered consecutive files
Error handler for ruffered ccnsecutive files
Indexed sequential input/update transmitter
Indexed direct input/update transmitter
Indexed sequential output. transmitter
Consec~~ive buffered exit module
Consecutive sequential buffered OMR transmitter, F-format
Consecutive sequential puffered associate files, U-format
Consecutive sequential buffered associate files, V-format
Consecutive sequential buffereo associate files, F-fcrmat
VSAM KSDS dirEct transmitter
VSAM KSDS segqential input/update transmitter
VSAM KSDS sequential output transmitter
VSAM ESDS transmitter
Consecutive sequential buffered transmitter, U-format
Ccnsecutive sequential buffered transmitter, V-format

1340 -bytes
1380 bytes

760 rytes
1020 bytes
1140 bytes

210 bytes
190 bytes

1010 bytes
2250 rytes

180 bytes
1000 bytes
3300 bytes
1100 bytes
1550 bytes
1040 bytes

380 bytes
2100 rytes

.360 bytes
3600 bytes
1740 bytes
460 bytes
1250 bytes
1000 bytes

870 bytes
1030 bytes
1080 bytes

780 bytes
2260 bytes

740 bytes
1130 bytes

760 bytes
550 bytes
780 bytes

1580 bytes
130 bytes
910 bytes
760 rytes
710 bytes
650 bytes
770 bytes
680 bytes
860 tytes·
860 bytes

1040 bytes
1020 bytes
1020 bytes
1030 bytes

950 bytes
850 bytes
170 bytes
580 bytes
730 byteli-
690 bytes
490 bytes

1410 bytes
960 bytes
660 bytes
300 bytes
400 bytes
360 bytes
380 bytes
620 bytes

1380 bytes
1820 bytes

970 tytes
1460 bytes

520 bytes
620 bytes

IBMDRRZ
IEMISCT
IBMDSOF
IBMDSOU
IBMDSOV
IBMBSTA
IBMDSTU
IBMDSTV

Consecutive sequential buffered transmitter, P-format
Conversion conditicn interface
Stream output transmitter, F-format
Stream output transmitter, ry-format
Stream output transmitter, V-fermat
Tab ta.b le
Stream print transmitter, U-format
Stream print transmitter, V-for.mat

620 bytes
470 bytes
210 bytes
170 bytes
210 bytes

40 bytes
410 l:ytes
430 bytes

Appendix C: List of PL/I Library Modules 267

abnormal GOTO
code in TCA 59
event I/O 156
interpretive GOTO subroutine 28
routine IBMBPGO 58
SORT exit 150

abnormal locate return address 96
access method

record I/O 95
stream I/O 118

activating blocks 23
actual origin (AO) 43
address constants 9
addresses

DSA 17
external save area 58
library subroutines 16
parameter lists 17
program bas e 17
static base 17
TCA 17
temporary base 17
within TeA 58,59

addressing
beyond 4K limit 21
controlled variables 19
interrupt 71
library subroutines 17
register usage 11,18
through locators 43-45

adjustable extents
control blocks 43
creation of temporaries 19

aggregates
address 21,45
array I/O 131
arrays of structures 22,49
a sSig nments 23
COBOL 189; 203
descriptor descriptor 43-50,216
FORTRAN 189,203
interlanguage arguments 189,203
library subroutines 145
listing 11
locator 45,211
main discussion 22

alignment in structures 189
ALL built-in function 146
allocating of storage 63-71
allocating variables 19
AND logical operations 146
ANY built-in function 147
AO (actual origin) 43
AREA condition 70
areas

address 45
control block 215

areas (continued)
descriptor 216
locator descriptor 45,214
storage management 70

arguments,
for conversion routines 138
implementation 28
library subroutines 28

arrays
assignments 23
descriptor 22,218
FORTRAN 189-207,203
I/O 131

Index

interlanguage communication 189-207
interleaved 148
locator 45
of structures 22,48
structures of arrays 22,48
subscripts outside bounds 14

ASSEMBLER option 205,
ASSEMBLER-FL/I communication 205
attributes data 43,50
automatic variables

addressing 19
implementation in general 19
in dump 187
storage 63

base addressing
change' of program base 35
register usage 17,18

base element 43
based variables

implementation 21
in dump 187
storage 63

basic in-line conversions 142
beginning of segment (BOS) pOinter 58,65
BIT data

internal representation 137
string aSSignment subroutine

(IBMBBGF) 146
block enable cells 75,26
blocks

activating 23
inactive 28
termina tinq 24

BOOL built-in - function 1,46
bootstrap routines 28
BOS (begining of segment pointer) 58,65
bounds adjustable 43
branching 26-27
buffered consecutive files 109,,94
buffers

contents in dump 167
general 118
pOinters 119
record I/O 106

Index 269

buffers (continued)
storage 63
stream I/O

pOinters 119
bUilt-in functions

arithmetic 145
array handling 145
condition 12
DATE 149
library subroutines 141
mathematical 145
stream I/O 131
string handling 146
structure handling 146
TIME 149

byte beyond the ISA 65
byte, next available (NAB) 65

C format item DED 222
CALL statement 25
calling sequence

interlanguage calls 205
library 28

calling trace
following through dump 182
obtaining 163

CCB (channel control block) 149
chain, free area 65-68
chain, loaded module 60
chain, open file 57,58
channel control block 149
CHARACTER data (how held) 131
CHECK condition 81-84,50
CHECK prefix 81
checkpoint/restart facility 152
CKPT macro instruction 152
closing files

CLOSE macro instruction 91
explicit clOSing 101,93,109
implicit closing 95
library subroutine 101

COBOL
COBOL-PL/I communication 189-208
interrupt 200
option in ENVIRONMENT attribute 206
structure mapping 189-201,205

COLUMN format option 131,134
cornmon constants 35
common control blocks 35
common expressions, elimination of 31
commoning 35
communication

between languages 189-207
between routines 43-50

compare aligned bit string subroutine
(IBMBBBC) 146 -

compare unaligned bit string subroutine
(IBMBBGC) 141

compilation 1
compile time DED 50
compiler generated subroutines 30,134
compiler generated temporaries 11
compiler options

270

AGGREGATE 11
COUNT 81,249
deleted 11
ESD 11

compiler options (continued)
FLOW 82-90
LIST 11
MAP 11
OFFSET 11
SOURCE 11
STORAGE 11

compiler output 9-3
COMPLETION built-in function 152
COMPLETION pseudovariable 152,156
concatenate-character-strings subroutine

(IBMBBCK) 141
CONDITION condition 74
conditions

bUilt-in functions
general 11
storage for values 71
values in dump 182

default enablement 13-86
enablement 13
main discussion 11-81
name abbreviations in dump 163
prefixes 72
record I/O 106
stream I/O 130-131
values in dump 183

consecutive buffered files 113,94
constants

commoning of 35
general 16
pool 16

cont rol blocks
built-in functions

default values 77
commoning 35
error handling 15-17
formats and functions 213-261
interlanguage communication 193
locating in dump 186
record I/O 96
stream I/O 118

CONTROL compiler option 11
control format items 126
control sections 9
control variable of DO loop 30,33
controlled variables

control block 219
in dump 185
rrain discussion 19
storage 63

conversion 137-144
basic 142
CONVERSION condition 142,13,81
hybrid 142
in-line 141
intermediate results 138
invalid 142
library subroutines 137,138,142
multiple 142
ONCA 143
ONSOURCE 142
stream I/O 119

CONVERSION condition 142,73,81
COpy option 131-132,135
COUNT function 131
COUNT option 81,249
count table 81,249
CSECT (control section) 9

current enable cell 7~

DAM 94
data

aggregates (see aggregates)
conversion (see conversion)
internal representation 137
interrupt 73

DATA built-in function 149
data directed I/O 124-125,51
data element descriptor (DED)

as argument for conversion routine 138
for format items (see format element
descriptor)

formats 220-222
general description 50
in SIOCB 119

data format item 125
data interrupt 71
data list matching 131
data management buffer 119
data sets

definition 91
interchange between PL/I and COBOL 206

DATAFIELD built-in function 131
debug option of PLIDUMP 163
debugging using dumps 161-188
decimal data format 137
decimal divide interrupts 71
decimal overflow interrupts 71,80
OED (see data element descriptor)
dedicated registers 17,18
define the file control block (DTF) 94,95

location 186
DELAY statement 149
descriptors 43-50

aggregate descriptor descriptor 46,216
area 46,214
array 46,218
data element (see data element
descriptor)

string 45
structure 46

DFB (see diagnostic file block)
diagnostic file block

format 224
function 60

diagnostic messages 84-87
diagnostic statement table (DST) (see
statement number table)

director routines in stream I/O 115,133
disablement of conditions 71
disk files for restart 152
DISPLAY statement 149
DO loops 30

modification of control variable 33
register for control variable 17

DSA (see dynamic storage area)
dummy arguments in interlanguage

communications 191
dummy DSA

address 59
error handling 77
introduction 4

dummy ONCA
chaining 77
description 60

dummy ONCA (continued)
introduction 55

dummy PLI~AIN in IBMDPIR 55
dump bootstrap module (IBMDKDM) 85
dump control module (IBMDKMR) 85
DUMP option in JCL 161
dumps

debugging with 161-188
housekeeping information 180
implementation 85
library subroutines 84
obtaini ng 161
options 163
stand alone 180
trace information 165

dynamic ONCB 77
dynamic scope 72
dynamic storage 63
dynamic storage area (DSA)

address register 17
associating DSA with block 182
backchain in dump 180
dummy

address 59
error handling 77

error handling 77
for main procedure in dump 184
format 225
forward chain in dump 29
IBMDERR's DSA in dump 175
initialization 55
introduction 3
prologue code 15
uses 63

E format 'DED 222
ECB (see event control block)
edit-directed I/O 125-130

arrays 131
buffer operations 125
compiler generated subroutines 125
control format items 126
data format items 126
FED 126
format DED 126
format list 126
format option handling 131
GET EDIT statement 125
library director modules 131,133
matching data and format lists 126
non-matching data and format lists 126
PUT EDI~ statement 126
X format items 126

element, structure 43
element, base 43
elimination of common. expressions 31
elimination of unreachable statements 33
enable cells 75,26
enablement of conditions

general 71
summary chart 73,74
testing for 82

encompassing procedure (definition) 193
end of extent, offset to (OEE) 70
end of file 132,73
end of segment pOinter 65
END statement 25

Index 271

ENDFILE condition
library subroutine IBMDREF 108
record I/O 106
stream I/O 131
summary information 73

ENDPAGE condition 73,81
entry data control block 227
entry pOints 29

addresses in dump 182
conversion subroutines 138
error handling subroutine 79
executable program phase 9
interlanguage communication 191
library subroutines 37-44,28
main procedure 9

ENTRY statement in interlanguage calls 191
EN VB (see environment block)
environment

at interrupt 72
definition 2
FORTRAN 191,200
inter language communication 191
SORT 150

ENVIRONMENT attribute COBOL option 206
environment block

format 228
locating 186
record I/O 96
stream I/O 118

EOFADDR routine
stream I/O 131,118

EOS (end of segment) pOinter 65
epilogue 24
ERROPr routine

record I/O 109
stream I/O 118

ERROR condition 72
on-unit and dumps 170

error handling during execution 71-84
error code 75,184
error handling subroutine IBMDERR 79-85
event I/O 154,156
FORTRAN 201
identifying the erroneous statement 84
interrupt in error handler 79
messages 84,85
record I/O 106-120
stream I/O 131

error identification
address in dump 173
ERROR on-unit 161
in library module 185
interrupt in error handler 171
using dump in general 161-188

error messages 84
ESD records

definition 9
for conversion modules 138
for LIOCS routines 91
interlanguage communication 194
reference listing 11

established on-units 79
EV (see event variable)
even/odd register pairs 17
event control block (ECB) 156
event I/O 112,156
EVENT option 154,112
event table (EVTAB) 154,229

272

event variables 154-159
control block 230
locating in dump 186

EVTAB (event table)
discussion 152
format 229

EXCP macro instruction 150
executable program phase 4
execute interrupt 71
execution 9

entry poi nt 9
exit table, SORT 149
explicit open 106

record I/O 106,96
stream I/O 118

exponent overflow interrupt 71,80
exponent underflow interrupt 71
exponentiation 146
expressions

common elimination of 31
invaria nt 31
movement out of loop 32
redundant branching around 35
simplification 24

extent adjustable 19
creation of temporaries 19
in structures 147

EXTERNAL data 21
external reference,weak 39
external symbol listing 11

F-format records 134
FAIS field in FCB 105
FATM filed in FCB 105
FCB (see file control block)
FCBA field in FeB 119
FCOP field in FCB 131
FCPM field in FeB 132
FED (format element descriptor)

des cription 50
format 222
use in stream I/O 125

FEFT field in FCB 108"
FEMT field in FCB 108
FERM field in FCB 108
fields, locating in dump 186
file control block (FCB) 105

FAIS field 105-119
FATM field 106,105,108
FCBA field 118,119
FCOP field 132
FCPM field 131,132
FEFT field 108
FEMT field 108
FERM field 108
fields for buffer operation 118
format 231
FREM field 118,119
locating in dump 186
record I/O 96
stream I/O 118

filenames 95
files

(see also data sets)
chain open 58
declaration with COBOL option 206
definition 91

files (continued)
information in dumo 163
open file chain 58
record I/O

declaration 95
explicit closing 101,109
explicit opening 101
filename 95
implicit closing 94
implicit opening 103
types 94

FINISH condition 57,74,81
fixad pOint data

binary 137
decimal 137
DED 221
divide interrupt 71,79
overflow interrupt 71,79

FIXEDOVERFLOW condition 73,71,80
floating point data

binary 137
conversion to character string 142
decimal 137
DED 221
divide interrupt 71
underflow interrupt 80

floating point registers
saving 79
usage 18

FLOW compiler option 87
(see also flow statement table)
library subroutine IBMDEFL 87,89

flow of control 23
flow statement table 87-94

format 234
format DED (see format element descriptor)
format element descriptor (FED)

description 50
format 222
use in stream I/O 125

format items 126
format list matching 131
format option handling 131
formatting modules in stream I/O 135
FORTRAN-PL/I communication 189-208

FORTRAN interrupt 200
FORTRAN option 191

free area chain 59
free decimal format 141
freeing storage 63
freeing variables 21
FREM field in FCB 119
FST (see flow statement table)
function reference 25
fUnction values, on-condition 60

general registers (see registers)
GET DATA statement

CHECK condition 82
main discussion 122
symbol tables and symbol table

vectors 51
'GET EDIT statement 125
GET LIST statement 122
GET macro instruction 91
GOTO statement

from SORT 150

GOTO statement (continued)
main discussion 26

hardware interrupts (see program check
interrupts)

hexadecimal dump 167,163
hexadecimal dump subroutine (IBMDKDD)
hybrid conversion 142

IBMB]\..AH
IBMBAIH
IBMB~l

IBMBANM
IBMBAPC
I Br-mAPF
IBMBAPM
IBMBASC
IBMBASF
IBMBAYF
'IBMBBBA
IBMBBBC
IBMBBBN
IEMBBCI
IBMBBCK
IBMBBC'I'
IBMBBCV
IBMBBGB
IBMBBGC
IBMBBGF
IBMBBGI
IBMBBGK
IBMBBGS
IBMBBGT
IBMBBGV
IBMBILCl
block)

IBMBMXL
IBlVlBMXS
IBHBMXW
IBNBiVIXY
IBMBMYK
IBMBMYS
IBMBMYX
IBMBMYY
I Br'lBPAF
IBMBPAM
IBr."BSAI
IBMBSCI
IBMBSCO
I Bt-1BSCV
IBr-mSF:r
IBMBSFv
IBMBSPI
IBMBSPO
I BPlBSTAB
IBMDEFL
I Br-'!DERR
IBMDES~

IBMDESN
IBMDIEC
IBMDIEF
IBMDIEP
IBMDJDS
IBMDJDT
IBlvIDJDY
IBMDJTT

146
145
147
146
146
146
146
146
146
146
146
146
146
147
147
147
147
147
147
147
147
147
147
147
147
(interlanguage
195,235
146
14b
146
146
146
146
146
146
21
70
135
135
135
143
135
135
135
135

122
87-94
79-85
84
84
197
200
202
150,159
149
149·
149

root control

87

Index 273

___ "mARM

156,155
152
85
85
85

IBMDJWT
IBfJlDKCP
IBMDKDD
IBMDKDM
IBMDKMR
IBtlJDKST 150
IBMDOCA 108,101
IBMDOCL

record I/O
implicit opening 101

record I/O close 109,101
record I/O open 100-117
stream I/O 118

IBt-lDOPA 101
IBMDOPB 101
I BV.J)OPC 101
IBMDPEP 86
IBMDPES 86
IBMDPGR 68
IBMDPII 56
IBMDPIR 56
IBMDPJR 57
IBMDRAW 102
IBMDRAX 102
IBMDRAY 102
IBMDRAZ 102
IBMDRBW 102
IBMDRBX 102
IBMDRBY 102
I Bt-1.DRBZ 102
IBMDRCY 102
IBrtDRCZ 102
IBMDRDY 102
IB!IomRDZ 102
IBMDREF 102,108
IBMDREX 102,106
IBMDREZ 102,106
IBMDRIO 109-112

entry points 102
paramenter list 96

IBMDRJZ
IBMDRKZ
IBMDRLZ
IBMDRQX
IBMDRQY
IBtA.DRQZ
IBMDSCP
IBflDSCV
IBMDSDI
IBMDSDO
IBMDSED
IBMOSEI
IBMDSEO
IBMDSII
IBMDSIO
IBtlDSIS
IBMDSLI
IBMDSLO
IBMDSOF
IBMDSOU
IBMDSOV
IBMDSPL
IBMDSTF
IBMDSTI
IBMDSTU
IBMDSTV
IBMDSXC
IBMGJWT

274

102
102
102
102
102
102
131
131
134
134
134
125,131,134
125,134
133
133
132,133
133
134
135
135
135
131,135
135
135
135
135
125,134
159,152

IELCGBB 31
IELCGBO 31
IELCGCB 31
IELCGCL 31
IELCGIA 31,131,134
IELCGIB 31,134
IELCGMV 31
IELCGOA 31,134
IELCGOB 31,134
IELCGOC 31,131
IELCGON 31
IELCGRV 31
IIBMDREY 102,106
implicit close in record I/O 109,94
implicit open

record I/O 103
stream I/O 118

in-line conversion 139
in-line record I/O 109,91
inactive event 156,152
INDEX built-in function 146
indexing interleaved arrays 145
initial storage area (ISA) 63,55
initialization 55,56

FORTRAN 200
stream I/O subroutines 133

input/ouput control block
format 235

input/output 91-135
instruction ass9ciating with module 181
INTER option 191,200,201
interlanguage communication 189-206

aggregate arguments 189-207,46
arrays 203
assembler 205
ASSEMBLER option 205
basic rules 191
COBOL option of the environment
attribute 205

control blocks 195
entry pOint declaration 191
environment changes 191
interrupt handling 191
interrupt in COBOL 200
interrupt in FORTRAN 46
interrupt in PL/I 203
NOMAP option 205,191
NOMAPIN option 205,191/
NOMAPOUT option 205,191
principles 32
root control block (IBMBILC1) 195,238
storage 205-208
structures 189-201,205
SYSLST 197
VDA 195,235

interlanguage VDA 238,195
interleaved arrays 145-147
internal form of data 137
interpreti ~e code

for GOTO 28
need for 4

interrupt handling 71
COBOL 200
event I/O 156
FORTRAN 201
interrupt levels 71
interrupt save area 79
library subroutine (IBMDERR) 79-85

interrupt handling (continued)
program check 79
return 81
software 80

interrupt identification using dump
at address not in linkage editor

map 185
in error handler 171
in library modules 185

invariant expressions 32
invert-aligned-bit-string subroutine

(IBMBBBN) 146
IOCB·

format 235
ISA (initial storage area) 63,55
ISA, byte beyond 65
ISAM (indexed sequential access method) 94

lID (see key deser iptor)
KEY condition 73
key descriptor 239
key descriptor (KD) 100
key variable 91,100

label
control block 240
labelled statements 26-27

label data control block 240
label variables 27-28
labelled statements 26-28
last in/first out (LIFO) storage 2,64-68
LEAVE option 102
lengths of library modules 264-268
levels of interrupt 72
library subroutines 31

alphabetical list with lengths and
function 263-267

arithmetic 145
array handling 145-141
calls 28
computational 145
conversion package 131
entry pOints 29
in record I/O 101
in stream I/O 133-146
interrupt in

finding module name 181
programmer action 184

interrupt in transient module 185
INTRODUCTION 4
MATHE~A~ICAL 145
naming conventions 37,29
register usage 18
string handling 146
structure'handling 141
workspace 39

library workspace (LWS)
description 39
format 241
locating 181

LIFO (last-in/first-out) storage 63-71
LIMSCONV option 130
LINE format option 131
link-editing 55
LIOCS (logical input/output control system)

routines 91,108

LIST compiler option 11
list-directed I/O 120,122
listings 11
loaded module chain 60
LOCATE statement 91
locators 43-50

aggregate locator format 217
area locator format 214

logical input output control syst~m
(LIOCS) 91,108

logical operation subroutines 146
loops 30

modification of control variable 33
movement of expressions out of 32

main procedure
DSA in dump 180
entry pcint 9
in interlanguage communicat,ion 193
no main procedure 55
termination of 56

major free area 64,65
map of static storage 11
merge facility 150-153
messages, diagnostic, implementation
of 84-87

modification of control variable 33
movement out of loop 32
multiple conversions 142
multiple event waits 156
multiplication, optimization of 33
multiplier array 22

NAB (next available byte) pOinter 65
locating 187

NAME condition 131,13
naming of library modules
next available byte (NAB)

31-42,29
pOinter 65

locating 181
NOCHECK prefix 81
NOCONVERSION prefix 131
NO~AP option 191,205
NOMAPIN option 191,205
NO~APOUT option 191,205
non-LIFO storage 4,63,66
NOOPI'IMIZE 31
null on-unit 80

object module 9
object program listing 12,11
OCB (see open control block)
OCCURS (COBOL) 205
OEE (offset to end of extent) 10
offset

listing 11
on-cells 75,80

ON CHECK statements 81
on communications area (ONCA)

descripti on 77
dummy 55,60
format 242

ON control block (ONCB) 243
description 75
locating' 187

ON statements 71

Index 275

on-code 75
in dump 182

on-units 71-82
GOTO only 28
in eveilt I/O 156

ONCA (see ON communications area)
ONCB (see ON cont-rol block)
ONCHAR 142,81
ONSOURCE 142,81
open control block (OCB)

format 244
function 96
locating 181

open file chain 58
OPEN macro instruction 91
opening files

explicit open for record I/O 100
implicit open for record I/O 94,103
stream I/O 118

operating system interfaces 150,159
operation interrupt

analysis code 60
optimization 31-36

branching around redundant
expressions 35

commoning 35
effect in conversion 137
effect of common expressions 31
elimination of unreachable
statements 33

modification of loop control
variable 33

rationalization of branches 35
simplification of expressions 33

OP!'IMIZE (TIME) 31
OPTIONS attribute 191
options of PLIDUMP 163
OR logical operation 146
output (see input/output)
output, compiler 9-3
OVERFLOW CONDITION 13,71
overf low routi ne ~ stack 58, 70

packed intermediate decimal format 139
PAGE format option 131,135
pairs, even/odd,registf.!r 17
parameter lists'

address register 17
contents in dump 185
for conversion routines 138
main discussion 29

partition dump 163
partition .save area 180
passwdrd for deleted compiler options 11
PICTURE data

DEDs 221
FEDs 222
internal representation 137

PIK (program interrupt key) in dump 171
PL/I environment (see environment)
PL/I-ASSEMBLER communication 205
PLlI-COBOL communication 189-201
PLlI-FORTRAN communication 189-201
PLICALLA 57
PLICALLB.57
PLICKPT 152

276

PLIDUMP faci Ii ty
how to obtain dump 161-165
how to use 163
implementation 85
options, list of 163

PLIFLOW 81,9
PLIMAIN 55,9

dummy in IBMDPIR 55
format 245

PLISA 197
PLISRT 150
PLISTART 55

format 246
initialization 55-60

PLITABS 120
pOinter data 21
pOinters

BOS 65
buffer pOinters, stream I/O 119
COpy option 131
DSA 17
EOS 65
FCBA 119,131
FCPM 131
FREM 116
NAB 65
TCA 17
TISA 65

POLY built-in function 146
prefixes 12
principal procedure, definition 193
PRINT fileS 120
privileged operation interrupt 71
PRCC statement in interlanguage calls 191
PROCEDURE BASE 15
PROD built-in function 147
program base 17,35
program check interrupts 71,19
program control section 9,16
program flow 23
program interrupt key (PIK) in dump 180
program management area 56-61
program status word (PSW)

locating in dump 111
using to identify interrupt 171

program text statements, number of 11
program tuning, report option 168
prologue 23
protection interrupt 71
PSW (see program status word)
PUT macro instruction 91
PUT statement 120

Q option of PLIDUMP 163

RD (see record descriptor)
READ macro instruction 91
READ statement 91
REAL ENTRY 15
recompilation to obtain dump, avoiding 22
RECORD condition 13
record descriptor (RD)

discussion 100
format 241

record I/O 91-135
control blocks generated 91,96

record I/O (continued)
control blocks generat (continued)

in-line I/O 109 I,

error handling 106
in-line 109-112,94
interface routine (IBMDRIO) 96,109
library call 94
library routines 100-110

list of 101-102
raising conditions 106
record I/O 109

implicit opening 109
summary of library usage 100

record variable 91,100
redundant expressions, branching round 35
REFER option q6
registers

contents in dump 28
save area in dump 183
summary 18q
usage 17-31

relative virtual or~g~n (RVO) q3,q6
release identification 59
relocatable object module 9
REPEAT built-in function lq7
REPLY option 1q9
report option of PLIDUMP 167

using for program tuning 168
required procedure, definition 193
resident library 37

alphabetical list of modules with
lengths 263

restart (checkpoint restart) facility 152
return code

PL/I 81
SORT 150

return from interrupt 81
RETURN statement 25
REVERT statement 77
REWRITE statement 9q
RLD records 9
RVO (relative virtual origin) Q3,Q6

SAM 94
save areas

calling routin~ 58
IBMDPGR 60
IBMDPIR 60
parti ti on 25
registers in dump 18Q
system 81

SAVE field in SIOCB 118
SCNT field in SIOCB 118
scope 72
segments (see storage)
SETlME macro, instruction 149
SFCB field in SIOCE 118
SFLG field in SIOCB 118
s'ignificance interrupt 71'
simplification of expressions 33
sinqle event waits 159
SIZE condition 73,71,80
SKIP format option 131,135
SID (see string locator descriptor)
SNAP 80,85
SOCA field in SIOCB 118

software interrupts
definition 71
main discussion 80

SORT exit 150,28
sort merge facility 150-152
source

address, during stream I/O 118
DED address, during conversion 138
definition 115

source program listing 11
source records, number of 11
spanning record boundaries (stream
I/O) 116

specification interrupt 71
SRTN field in SIOCB 118
SSDD field in SIOCB 118
SSRC field in SIOCB 118
SSTR field in SIOCB 118
stand alone dump 180
standard system action

action taken 74
defini t.ion 71
when taken 77

statement frequency count table
format 2Q9

statement number
in messages 85
of error in dump 182

statement number table CDST)
format 251

statements, elimination of unreachable 33
static backchain

in dump 180
static base address 17
static internal control section 16
static

contents 16
listing 11.
map 11
scope 72

static va:r'iables 21
loca ti ng 185

STATUS function/pseudovariable 156
STDD field in SIOCB 118
storage

automatic 19
chart showing principal contents 211
interlanguage communication 195
main discussion 63-72
management routine 68
require~ents listing 11
segments 65,70
sort merge facility 150
static map 11
temporary 17

stream I/O 115-135
access method 118
buffer usage 118
built-in functions 131
conditions 131
conversion 118
COpy option 132,131
COUNT function 131
DATAFIELD function 13i
define the file control block (DTF) lr8
director routines 115,132,135
end of file 118
error handling 131

Index 277

stream I/O (continued)
external conversion director

modules 120,134
file opening 118
format items 126
format lists 126
format options 131
formatting modules 133,134
implicit open 118
initializing modules 133
library usage summary 133
LIOCS routines 115
ONCHAR 131
ONSOURCE 131
spanning record boundaries 115,118
stream I/O

general 117
transmitter modules 118,133

stream I/O control block
discussion 118

stream I/O control block (SIOCB)'
format 250

stream I/O opening 118
STRG field in SIOCB 118
string descriptor 252
string locator/descriptor 45,252

subroutine 147
strings

adjustable 145
DED 221
FED 222-223
length 46
library Subroutines 133,147
locator descriptor 45
STRING function/pseudovariable 147
STRING option 132-144
STRINGRANGE condition 74,147
STRINGSIZE condition 74
unaligned 146
varying-length 137,146

structure descriptor 253
structures

array of structures 22,48
COBOL 189-207,206
descriptor 45
element definition 43
interlanguage communication 205
locator (aggregate locator) 46
main discussion 22
mapping 46,147
of arrays 22,48
structure descriptor descriptor 46

STXIT macro instruction 56
Subroutines, compiler generated 30,125
subroutines, library (~ee library

subroutines)
SUBSCRIPTRANGE condition 74,81,161
SUBSTR built-in function 147
SUM built-in function 147
symbol table (symtaor--51-67

format 254
symbol table element list (see symbol
table vector)

symbol table vector 51
format 256

SYSLST in interlanguage calls 195
system action, standard

action taken 74

27&

system action, standard (continued)
definition 71

system dumps
initiation 79,85
interpretation 171

system interfaces, miscellaneous 147-159
system save area 79

tab table 120
target

address, in conversion 138
address, stream I/O 118
DED address, conversion 138
definition 115

task communications area (TeA)
address register 17
appendage (TIA) 59
format 257
GOTO code in 59, 28
introduction 2
major discussion 58
offsets for library subroutine

addresses 30
TCA (see task communications area)
TCA appendage (TIA)

format 259
TECB (timer event control block) 149
temporary variables (temporaries)

address register 17
description' 19
storage for 63

TERA field in TCA 59
terminating blocks 24
termination of program

after dump 163
after interrupt in error handler 79
general 56

TEST field in TCA 87
TIA (TeA appendage)

format 260
main discussion 59

TI~~ built-in function 149
timer event control block (TECB) 149
TISA (address of byte beyong ISA) 65
TITLE option 102
TLFE field in TCA 59
trace

FLOW option 87
information in dump 22
obtaining in dump 165

transfer of control 23
transient library 37

alphabetical list of modules with
lengths 266

translate and test table in TCA 77,60
TRANSLATE built-in function 147
transmission statement

definition 91,
in record I/O 94

TRANSMIT condition 131
transmitter modules

stream I/O 118,134
TXT records 9

U-format records
unaligned strings

135
145,147

UNDEFINEDFILE condition 13
UNDERFLOW CONDITION 11,13
UNLOAD option 102
unqualified conditions 13,14
user exits (sort) 150

V-format records 135
variable data area (VOA) 63

interlanguage communication 195,238
variables

adjustable (see adjustable extents)
area (see areas)
automatic (see automatic variables)
based (see based variables)
controlled (see controlled variables)
entry 221
event (see event variables)
label 26-21,240
map of offsets 12
locating in dump 181
pOinter 21

varaibles offset map 12
varying length strings

effect on library usage 141
interna 1 representation 137

VDA (see variable data area)
VERIFY built-in function 141
version identification 59
virtual origin (VO) 22
VO (virtual origin) ~2

WAIT macro instruction 152
WAIT statement 152-159,112
WAITF macro instruction 150
WAITM macro instruction 150
weak external reference (WXTRN) 39
work registers 11
workspace, library (see library workspace)
WRITE macro instruction 91

X format items 131,134

ZCTL (zygo-lingual control list) 195,191
format 261

ZERODIVIDE condition 73,11,80
zygo-lingual control list 195,191

format 261

48 option of PLIDUMP 163

60 option of PLIDUMP 163

Index 279

o .. ,.
o a:
»
0'
::J

~I
5'
• I

DOS
PL/I Oprimizing Compiler:
Execution Logic

Order No. SC33-0019-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such requests, please contact your
IBM representative or the IBM Branch Office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Index Figures Examples Legibility

What is your occupation? _____________________________ _

READER'S
COMMENT
FORM"

Number of latest Technical Newsletter (if any) concerning this publication: ________ .;... __

Please indicate in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

SC33-0019-1

Your co'mments, please ...

This manual is part of a library that serves as a referencesource'for systems analysts,
programmers, and operators of IBM' systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold, Fold •• '1

II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

...
Fold Fold

--.. - ·R ----- -- ----- ~--- -.. _ -- - - ----~- .. --- _ .. -

c
o en
"'tI

S

m
x
CD
(')
c:: s·
:::s

r-
eS
c:;"

"'tI ..,
:i"
S-
o..

:i"
c
en
~
en
n w w
6 g
cp -

