OS PL/I Optimizing Compiler:
Programmer’s Guide

SC33-0006-7
File No. S370-29

OS PL/I Optimizing Compiler:

Program Product Programmer’s Guide
Optimizing Compiler 5734-PL1
Resident Library 5734-LM4
Transient Library 5734-LM5

(These program products are also available
as composite package 5734-PL3)

Release 4.0
Release 5.0
Release 5.1

Seventh Edition (September 1985}
This is a major revision of, and makes obsolete, SC33—0006—6.

This edition applies to Releases 6.0, 5.0, and 5.1 of the 0S
PL/I Optimizing Compiler, Program Product 5736-PL1, the 0S PL/I
Resident Library, Program Product 5734-LM4G, the 0S PL/I
Transient Library, Program Product 5734-LM5, and composition
package, Program Product 57364-PL3, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments™ following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Biblio hy, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
;epr§§:ntative or to the IBM branch office serving your

ocality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to vou.

©® Copyright International Business Machines Corporation 1971,
1972, 1973, 19746, 1976, 1981, 1983, 1985

PREFACE

This publication explains how to use the compiler to execute
PL/I programs and describes the operating system features that
can be required by a PL/I programmer. It is a guide to the use
of the 0S PL/I Optimizing Compiler (Program Ne. 5734-PL1) in a
batch environment of vour operating system. It does not
describe the language implemented by the compiler, nor does it
explain how to use the compiler in an operating system with the
Time Sharing Option (TS3), or with the Conversational Monitor
System (CMS) of VM/370; these are the functions of the manuals
listed under "Associated Publications™ on page iv.

For execution of a PL/I program, the optimizing compiler employs
subroutines from the GS PL/I Resident Library (Program No.
5734-LM&) and the 0S PL/I Transient Library (Program No.
5734~-LM5), and this programmer's guide assumes the availability
of these program products.

Different release levels of the 0S PL/I QOptimizing Compiler and
the PL/I Resident and Transient libraries will be compatible in
execution provided that the following conditions are satisfied:

1. The release and service level of the transient library is
equal to or greater than the release and service level of
the resident library.

2. The release and service level of the resident library is
equal to or greater than the release and service level of
the compiler.

ORGANIZATION OF THIS BOOK

Chapter 1, "Introduction™ explains how to run a PL/I program.
The rest of the manual contains more detailed information on the
optimizing compiler, and provides guidance and reference
information on operating system features that are likely to be
required by the PL/I applications programmer. Most of this
information is equally relevant to the use of the compiler in a
batch or conversational (TS0 or CMS) environment.

Chapter 2, "The Compiler"™ describes the optimizing compiler, the
data sets it requires, its optional facilities, and the listings
it produces.

Chapter 3, "The Linkage Editor and the Loader™ contains
infoermation for the linkage editor and loader that is similar to
Chapter 2, "The Compiler." Either the linkage editor or the
loader is needed in addition to the compiler to prepare a PL/I
program for execution.

Chapter 4, "Data Sets and Files"™ through Chapter 7, “Using VSAM
Data Sets from PL/I"™ on page 222 are concerned with the various
types of data sets that can be creatad and accessed by a PL/I
program, and explains how to define these data sets.

Chapter 8, "Litraries of Data Sets"™ describes libraries of data
sets.

Chapter 9, "Cataloged Procedures™ describes the cataloged
procedures provided by IBM for the optimizing compiler, and
explains how to modify them.

Chapter 10, "™Program Checkout™ deals with the facilities
available for debugging PL/1 programs.

Chapter 11, "Communicating between PL/I and Assembler-Language

Modules™ and Chapter 14, "Interlanguage Communication with COBOL
and FORTRAN"™ describe the language implemented by the optimizing

Preface iii

compiler to facilitate communication between programs written in
gL/I and those written in FORTRAN, COBOL, and Assembler
anguage.

Chapter 12, "The Sort Program" and

Chapter 13, "Checkpoint/Restart™ are concerned with the use of
built-in subroutines included in the resident library to provide
direct interface between PL/1 programs and the operating system
sort/merge and checkpoint/restart facilities.

Chapter 15, "Using PL/I on CICS™ tells how to use PL/I under
CICS. The user who is running a PL/I application under CICS
must read Chapter 15, "Using PL/I on CICS."™ The chapter lists
restrictions for running under CICS, and describes the
g}ggerences from batch operation that exist when running under

A series of appendixes supplies sundry reference information.

ASSOCIATED PUBLICATIONS

0S PL/I

. 0S and DOS PL/I lanquage Reference Manual, GC26-3977

Describes the language implemented by the optimizing
compiler.

. 0S PL/Y Optimizing Compiler: General Information, GC33-0001

Gives an overview of the optimizing compiler.

. 0S PL/I Optimizing Compiler: TSO User's Guide, SC33-0029

Describes how to use the optimizing compiler in a TSO
environment,

. 0S PL/I Optimizing Compiler: CMS User's Guide, SC33-0047

Describes how 1o use the optimizing compiler in a CMS
environment.

. 0S PL/1 QOptimizing Compiler: Messages, SC33-0027

Contains the diagnostic messages issued by the compiler and
the transient library. It also contains any necessary
explanation of the message with the suggested programmer
response.

. 0S _and DOS PL/I Optimizing Compilers: Debug Guide, SY26-3990
Aids in problem determination.

. 03 PL/Y Optimizing Compiler: Execution lLogic, SC33-0025
Describes how a compiled program is executed.

. 0S PL/] Optimizing Compiler: Installation Guide, SC33-0026.
(For 0S PL/I Release %)

. 0S PL/I Dptimizing Compiler: Installation Guide for MVS,
SC26-46121.

. 0S PL/I Optimizing Compiler: Installation Guide for CMS,
SC26-4122. (For 0S PL/I Release 5.1)

Explains how to install the compiler.

e 0S PL/I Checkout Compiler: Programmer's Guide, SC33-0007

iv 0S PL/I Optimizing Compiler: Programmer's Guide

Contains information about the 0S PL/I Checkout Compiler and
about combining modules from the optimizing and checkout

compilers.
CICS
. Customer Information Contr System/_Virtu Storage
(CICS/VS) Version 1 Release 6: Application_ Programmer's
Reference Manual {(Macro lLevel), SC33-0079. (For 0S PL/I
Release % only)
. Customer Information Control stten/ Virtual Storage
(CICS/VS) Version 1 Release 6: Application Programmer's
Reference Manual (Command Level), SC33-0077. (For 0S PL/I
Release 4 only)
. CICS/0S/VS Version 1 Release 6 Modification 1l Application
Programmer's Reference Manual (Command Level), SC33-0161.
COBOL
. 0S/VS_COBOL Compiler and library Programmer's Guide,
SC28-6483.
. VS COBOL II Application Programming Guide, GC26-4045.
VS FORTRAN
. VS _FORTRAN Application Programming: Guide, SC26-3985.
. VS FORTRAN Application Programming: Librar eference,
SC26-3989,
IMS/VS

. IMS/VS Version 1 Application Programming, SH20-9026.
. IMS/VS Version 1 Data Base Administration Guide, SH20-9025.

IBM DATABASEZ2

. IBM DATABASEZ2 A ication Programmi Guide_ for CICS/0S5/V
Users, S5C26-4080

. IBM DATABAS A ication Programming Guide for IMS/V
Users,SC26-4079

. IBM DATABASEZ2 Application Programming Guide for TS0 Users,
SC26-4081
. IBM DATABASEZ2 Introduction to S8L, GC26-4082

MVS

MVS/System Product v1.2.1
. 0S/VS Linkage Editor and lLoader, GC26-3813.

Preface v

MVS/Extended Architecture

DFSORT

. MVS/Extended Architecture Conversion Notebook, GC28-1143.

[MVS/Extended Architecture Linkage Editor and Loader,
GC26-4011 .

. MVS/Extended Architecture Svstem Programming lLibrary:
System Modifications,CG28-1152.

. MVS/Extended Architecture Svstem Programming Library: User
Exits, GC28-1147.

. MVS/Extended Architecture System Programming Library:
31-Bit Addressing, GC28-1158.

. DFSORT Application Programming: Guide, SC33-4035,
. Getting Started with DFSORT, 5C26-4109.

08/VS Sorts/Merge (SortsMerge Release 5 only)

VSANM

. 0S/VS Sort/Merge Programmer's Guide, SC33-4035.

. MUS/Extended Architecture YSAM Administration Guide,
GC26-4015

. 0S/VS Virtual Storage Access Method (VSAM) Programmer's
Guide, GC26-3838.

RELATED RECOMMENDED PUBLICATIONS

SYNTAX NOTATION

A number of system publications are referred to throughout the
manual by generic names such as "the linkage editor manuals."”
The actual manual you require will depend on your installation.

When using this manual, you should have the job control language
(JCL) reference manual for your operating svstem, and the
linkage editor manual.

For information on the 3800 Printing Subsystenm, see the IBM 3800
Printing Subsystem Programmer's Guide, GC26-3846.

For definitions of terms used in this manual, see the 1B

Vocabulary for Data Processing, Telecommunications, and Office
Systems, GC20-1699.

Throughout this publication, whenever a PL/]1 statement—or some
other combination of elements—is discussed, the manner of
writing that statement or phrase is illustrated with a uniform
system of notation. This notation is not a part of PL/I; it is
merely a notation that is used to describe the syntax, or
construction, of the language.

For the syntax notation used in this publication, see the
"Syntax Notation™ section of the 03 and DOS PL/I lLanguage

Reference Manual.

vi O0S PL/I Optimizing Compiler: Programmer's Guide

INDUSTRY STANDARDS

The 0S PL/I Optimizing Compiler is designed according to the
specifications of the following industry standards as understood
and interpreted by IBM as of May, 1979:

. American National Standard Code for Information Interchange
(ASCII), X3.4 - 1977.

. American National Standard Representation of Pocket Select
Characters in Information Interchange, level 1, X3.77 - 1980
(proposed to IS0, March 1, 1979)

. The draft proposed American National Standard Representation
of Vertical Carriage Positioning Characters in Information
Interchange, level 1, dpANS X3.78 (Also proposed to IS0,
March 1, 1979)

Preface vii

SUMMARY OF AMENDMENTS

SEPTEMBER 1985

| NEW PROGRAMMING SUPPORT

I
I

SERVICE CHANGES

OCTOBER 1984

Information on using the 31-bit addressing capability of MVS/XA

for PL/]I Release 5.1 running under CICS/0S/VS Version 1, Release
6, Modification 1, with upgrade, has been added in

Chapter 15, "Using PL/I on CICSY™ on page 360. That chapter has

been rewritten to include information that formerly appeared in

a separate appendix.

Support of 0S PL/I Release 5.1 for VM/SP and VM/PC is also
provided.

Miscellaneous corrections have been made throughout the manual.

EXTENDED ARCHITECTURE SUPPORT

SERVICE CHANGES

Information on running the optimizing compiler, its generated
object code, and libraries in an MVS Extended Architecture
(MVS/XA} environment has been added in a new Appendix.

The new ISAINC, HEAP, and TASKHEAP execution-—time options have
been added to the "The Compiler™ chapter.

Enhanced error—handling support for 0S PL/I transactions under
IMS/VS Releases 1.2 and 1.3, and support for the 3l-bit
addressing capabilities of MVS/XA, with 1IMS/VS Release 1.3, are
described in another new Appendix.

Note: 0S PL/I Optimizing Compiler and Libraries Release
5.0 will not support VM/CMS and CICS/VS. Users of these
zrgducts will continue to be supported on 0S PL/I Release

Release 4 of the PL/I Optimizing Compiler and Libraries is
the last release to support VS1.

For Release 5.0, the storage size of the compiler is
increased to 128K.

Figures have been renumbered to enhance retrievability of
information. Page numbers have also been added to the heading
and figure references to improve clarity and retrievability.

viii 0S PL/I Optimizing Compiler: Programmer's Guide

SEPTEMBER 1981

NEW PROGRAMMING SUPPORT

SERVICE CHANGES

JULY 1979

SERVICE CHANGES

For Extended Graphic Character Set support, the GRAPHIC compiler
option and the GRAPHIC ENVIRONMENT option are described.

This edition is for use with the new 0S5 _and DOS PL/I1 lLanguage
Reference Manual, order number GC26-3977.

Information moved from the old 0S PL/I Checkout and Optimizing
Compilers: lanquage Reference Manual into this edition includes:

. "The ENVIRONMENT Attribute," data transmission statements,
and related topics.

. Chapter 4, "Data Sets and Files"™ on page 100

. Chapter 149, "Interlanguage Communication with COBOL and
FORTRAN™ on page 343

Chapter 15, "Using PL/I on CICS"™ on page 360 has been added. It
updates and adds to information formerly in Appendix H.
Appendix H now contains "PL/I-CICS System Information."

Appendix A, "VSAM Background™ on page 383 has been added. It
contains information formerly in Chapter 9.

The appendix on "Running Under a Virtual Storage Oparating
System (Q0S/VS)"™ has been deleted.

Other miscellaneous corrections have been made throughout the
publication.

For Release 3, Modification 1, the storage size in which the
compiler runs has been increased.

Parts of Chapter 1 that were outdated have been deleted, and the
former Chapter 2 has been merged into Chapter 1. Chapter 3 has
been deleted, because the information on how to create and
access a data set is elsewhere (such as in the job control
language manual for your system).

Appendix A, which describes DCB subparameters, has been deleted.
Your job control language reference manual contains more
up~to-date information on the DCB subparameters.

Appendix B, which described compatibility with the PL/I (F)
compiler, has been deleted; this information is in 0S PL/I
Optimizing Compiler: Genera formation.

Otherlmiscellaneous corrections have been made throughout the
manual.

Summary of Amendments ix

JUNE 1978

SERVICE CHANGES
A new section has been added to Chapter 5 on link-editing

multiple object modules. Various maintenance corrections have
been made.

x 0S PL/Y Optimizing Compiler: Programmer's Guide

CONTENTS

Chapter 1. Introduction 1

Chapter 2. The Compiler 3
Description of the Compiler 4
Job Control Statements for Compilation 8
EXEC Statement
DD Statements For The Standard Data Sets 8
Input (SYSIN, OR SYSCIN) 8
OQutput (SYSLIN, SYSPUNCH) 9
Temporary Workfile (SYSUT1) 9
Statement Lengths 9
Listing (SYSPRINT) 10
Source Statement Library (SYSLIB) 10
Example 0f Compiler JCL 11
Compiler QOptions 11
Specifying Compiler Options 11

Specifying Compiler Options in the EXEC Statement 12
Specifying Compiler Options in the XPROCESS Statement 13

Compiler Option Types 13

AGGREGATE Option 18

ATTRIBUTES [(FULL|SHORT)] Option 18

CHARSET Option 18

COMPILE Option 18

COUNT Option 19

DECK Option 19

ESD Option 19

FLAG Option 19

FLOW Option 19

GONUMBER Option 20

GOSTMT Option 20

GRAPHIC QOption 20

IMPRECISE Option 20

INCLUDE Option 21

INSQURCE Option 21

INTERRUPT Option 21

LINECOUNT QOption 21

LIST Option 21

LMESSAGE Option 22

MACRO Option 22

MAP Option 22

MARGINI Opticn 22

MARGINS Option 22

MDECK Option 23

NAME Option 23

NEST Option 24

NUMBER Option 24

OBJECT Option 24

OFFSET Option 25

OPTIMIZE Option 25

OPTIONS Option 25

SEQUENCE Option 25

SIZE Option 26

SMESSAGE Option 27

SOURCE Option 27

STMT Option 27

STORAGE Option 27

SYNTAX Option 27

TERMINAL Option 28)

XREF [(SHORTIFULL)} Option 28
Specifying Execution-Time Options 28

Specifying Execution-Time Options in the PLIXOPT String 29
Specifying Execution-Time Options and Main Procedure

Parameters in the EXEC Statement 30
Execution-Time Options 31

Execution-Time ISASIZE Option 35

Execution-Time ISAINC Option (Release 5 Only)

Execution-Time HEAP Option (Release 5 Only)

36

36

Contents xi

Using PLIXHD to Identify COUNT and REPORT Output 37
Execution-Time Storage Requirements for Nonmultitasking
Programs 37
Using the REPORT COption 40
Finding the Optimum Region Size 62
Execution-Time Storage for Multitasking Programs 43
Using the REPORT Option 43
Execution-Time COUNT Option 44
Execution-Time FLOW Option 45
Compiler Listing 466
Heading Information 46
Options Used For The Compilation 46
Preprocessor Input 46
SOURCE Program 47
Statement Nesting Level 47
ATTRIBUTE and Cross-Reference Table 47
Attribute Table 48
Cross—Reference Table 48
Aggregate Length Table 49
Storage Requirements 50
Statement Offset Addresses 50
External Symbol Dictionary 51
ESD Entries
Other ESD Entries 53
Static Internal Storage Map 54
Object Listing 54
Messages 56
Return Codes 55
Batched Compilation 55
SIZE Option 56
NAME Option 56
Return Codes in Batched Compilation 57
Job Control Language For Batched Processing 57
Examples of Batched Compilations 58
Compile-~Time Processing (Preprocessing) 59
Invoking The Preprocessor
The %ZINCLUDE Statement 60
Dynamic Invocation of the Compiler 62
Option List 63
DDNAME List 63
Page Number 64
Uiingszast Path Initialization/Termination (PL/I Release

Chapter 3. The Linkage Editor and the Loader 65
Basic Differences 65
Choice of Program 65
Linkage Editor 66
Loader 66
Performance Considerations 66
Module Structure 66
Text
External Symbol Dictionary 67
Relocation Dictionary 67
END Instruction 68
Linkage Editor 68
Linkage Editor Processing 69
Job Control Language for the Linkage Editor 70
EXEC Statement 70
DD Statements For The Standard Data Sets 70
Primary Input (SYSLIN) 71
Output (SYSLMOD) 71
Temporary MWorkspace (SYSUT1) 72
Automatic Call Library (SYSLIB) 72
Listing (SYSPRINT) 73
Example of Linkage Editor JCL 73
Optional Facilities 74
LET Option 74
LIST Option 74
MAP Option 74
NCAL Option 74
RENT Option 75
REUS Option 75
SIZE Option 75

xii O0S PL/I Optimizing Compiler: Programmer's Guide

XCAL Option 75
XREF Option 75
Listing Produced by the Linkage Editor 75
Diagnostic Messages and Control Statements 76
Diagnostic Message Directory 77
Module Map 77
Cross—-Reference Table 78
Return Code 78
Additional Processing 79
Format of Control Statements 79
Module Name 79
Alternative Names 80
Additional Input Sources 81
INCLUDE Statement 81
LIBRARY Statement 81
Overlay Structures 82
Design of the Overlay Structure 82
Control Statements 84
Creating an Overlay Structure 384
Link Editing Multiple Object Modules 86
Link-Editing Fetchable Load Modules 87
Multitasking Considerations 89
Extended Architecture Considerations 89
Combining PL/I Modules From the Optimizing and Checkout
Compilers 89
Loader 90
Loader Processing 90
Main Storage Requirements 91
Job Control Language for the lLoader 93
EXEC Statement 93
DD Statements for the Standard Data Sets 93
Primary Input (SYSLIN) 93
Automatic Call Library (SYSLIB) 94
Listing (SYSLOUT) 94
Listing (SYSPRINT) 94
Examples of lLoader JCL 94
Optional Facilities of the Loader 96
CALL Option 97
EP Option 97
LET Option 97
MAP Option 97
PRINT Option 97
RES Option 938
SIZE Option 938
Listing Produced by the Loader 98
Module Map 98
Explanatory and Diagnostic Messages 99

Chapter 4. Data Sets and Files 100
Data Sets 100
Data Set Names 100
Blocks and Records 101
Record Formats 101
Fixed-Length Records 102
Variable-lLength Records 102
Undefined-Length Records 104
Data Set Organization 104
Labels 105
Data Definition (DD) Statement 105
Use of the Conditional Subparameters 106
Auxiliary Storage Devices 107
IBM 2520 and 2540 Card Reader and Punch 107
IBM 3505 and 3525 Card Reader and Punch 108
Basic Card Reading and Punching 108
EBCDIC or Column Binary Modes 108
Stacker Selection 109
Optical Mark Read 109
Read Column Eliminate 110
Punch Interpret 111
Printing on Cards 111
Multiple Operations 112
Data Protection 113
Paper Tape Reader 113
Line Printers 114

Contents xiii

3800 Printing Subsystem 114
Magnetic Tape 114
Direct-Access Devices 1l4
Operating System Data Management 115
Buffers 115
Access Methods 116
Data Control Block 117
Opening a File 118
Closing a File 119
Associating Data Sets With Files 119
Associating Several Files with One Data Set 121
Concatenating Several Data Sets 121
The ENVIRONMENT Attribute 122
Data Set Organization Options 122
Other ENVIRONMENT Options 125
Record Format Options for Record-Oriented Data
Transmission 125
Record Format Options for Stream-Oriented Data
Transmission 126
RECSIZE Option 126
BLKSIZE Option 127
Record Format, BLKSIZE, and RECSIZE Defaults 129
BUFFERS Option 129
GENKEY Option—Key Classification 129
NCP Option—Number of Channel Programs 131
TRKOFL Option—Track Overflow 131
COBOL Option—Data Interchange 132
SCALARVARYING Option—Varying~Length Strings 132
KEYLENGTH Option 133

Chapter B. Defining Data Sets for Stream Files 134
Defining Files for Stream-Oriented Data Transmission 134
ENVIRONMENT Options 135
CONSECUTIVE Option 135
Record Format Options 135
RECSIZE Option 136
Record Format, BLKSIZE, and RECSIZE Defaults 136
GRAPHIC Option 136
Creating a Data Set for Stream—Oriented Data Transmission 137
Essential Information 137
Examples 138
Accessing a Data Set for Stream-Oriented Data Transmission 140
Essential Information 141
Magnetic Tape Without IBM Standard lLabels 142
Record Format 142
Example 143
Print Files 143
Record Format 144
Example 144
Tab Control Table 146
SYSIN and SYSPRINT Files 147

Chapter 6. Using Consecutive, Indexed, Regional, and
Teleprocessing DPata Sets 149
Consecutive Data Sets 149
Consecutive Organization 150
Defining a Consecutive Data Set 151
ENVIRONMENT Options for Consecutive Data Sets 151
CONSECUTIVE Option 151
TOTAL Option —— In-Line Code Optimization 152
CTLASA and CTL360 Options - Printer and Punch Control 154
LEAVE and REREAD Options - Magnetic Tape Handling 154
ASCII Option 155
BUFOFF Option and Block Prefix Fields 155
BUFOFF Defaults 156
D-format and DB-format Records 156
Creating a Consecutive Data Set 157
Essential Information 158
Accessing and Updating a Cunsecutive Data Set 158
Essential Information 160
Magnetic Tape HWithout IBM Standard Labels 161
Record Format 161
Example of Consecutive Data Sets 161
Punching Cards and Printing 163

xiv 0SS PL/I Optimizing Compiler: Programmer's Guide

Example 165
Device-Associated Files (IBM 3525 Card Punch) 166
Indexed Data Sets 167
Indexed Organization 167
Keys 169
Embedded Keys 169
Indexes 170
Dummy Records 172
Defining an Indexed Data Set 172
ENVIRONMENT Options for Indexed Data Sets 173
INDEXED Option 173
KEYLOC Option — Key Location 173
INDEXAREA Option 176
NOWRITE Option 176
ADDBUFF Option 176
Creating an Indexed Data Set 176
Essential Information 177
Name of the Data Set 179
Record Format and Keys 180
Overflow Area 182
Master Index 183
Accessing an Indexed Data Set 183
Sequential Access 183
Direct Access 184
Essential Information 185
Reorganizing an Indexed Data Set 185
Examples of Indexed Data Sets 186
Regional Data Sets 189
Regional Organization 189
Defining a Regional Data Set 191
ENVIRONMENT Options for Regional Data Sets 192
REGIONAL Option 192
Keys 193
REGIONAL(1) Organization 194
Dummy Records 194
Creating a REGIONAL(1) Data Set 194
Accessing a REGIONAL(1) Data Set 195
REGIONAL(2) Organization 195
Source Keys 196
Dummy Records 197
Creating a REGIONAL(2) Data Set 197
Accessing a REGIONAL(2) Data Set 198
Sequential Access 198
REGIONAL(3) Organization 199
Dummy Records 199 :
Creating a REGIONAL(3) Data Set 199
Accessing a REGIONAL(3) Data Set 200
Essential Information for Creating and Accessing Regional Data
Sets 201
Examples of Regional Data Sets 204
REGIONAL(1l) Data Sets 204
REGIONAL(2) Data Sets 204
REGIONAL(3) Data Sets 205
Teleprocessing Data Sets 214
Message Control Program (MCP) 214
Message Processing Program (MPP) 214
Teleprocessing Organization 215
Defining a Teleprocessing Data Set 215
ENVIRONMENT Options for Teleprocessing Data Sets 215
TP Option 216
RECSIZE Option 216
BUFFERS Option 216
Statements and Options for Teleprocessing 217
Condition Handling 219
Essential Information 220
Example of a PL/I MPP 220

Chapter 7. Using VSAM Data Sets from PL/I 222
VSAM Organization 222
Keys for VSAM Data Sets 224
Keys for Indexed VSAM Data Sets 224
Relative Byte Addresses (RBA) 224
Relative Record Numbers 226
Choice of Data Set Type 227

Contents xv

xvi

Defining a VSAM Data Set to PL/I 228
ENVIRONMENT Options for VSAM Data Sets 229
VSAM Option 229
PASSWORD Option 230
GENKEY Option 230
REUSE Option 230
BKWD Option 231
Performance Options 231
SKIP Option 231
SIS Option 232
BUFND Option 232
BUFNI Option 232
BUFSP Option 233
Files for Both VSAM and Non~-VSAM Data Sets 233
CONSECUTIVE Files 233
INDEXED Files 234
The VSAM Compatibility Interface 234
Adapting Existing Programs for VSAM Data Sets 235
CONSECUTIVE Files 235
INDEXED Files 235
REGIONAL(1) Files 235
Associating Several VSAM Files with One Data Set 235
Shared Data Sets 236 ‘
How to Execute a Program Using VSAM Data Sets 236
Associating an Alternate Index Path with a File 237
Entry-Sequenced Data Sets 237
Loading an ESDS 237
Sequential Access 237
Key-Sequenced and Indexed Entry-Sequenced Data Sets 239
Loading a KSDS 239
Sequential Access 239
Direct Access 239
SAMEKEY Built~In Function 240
Relative Record Data Sets 243
Loading an RRDS 243
Sequential Access 243
Direct Access 244
Examples 246
Examples with Entry-Sequenced Data Sets 246
Defining and Loading an Entry-Sequenced Data Set 266
Updating an Entry-Sequenced Data Set 248
Creating a Unique Alternate Index Path for an ESDS 249
Creating a Nonunique Key Alternate Index Path for an
ESDS 249
Using Alternate Indexes and Backward Reading on an ESDS
Examples with Key-Sequenced Data Sets 253
Defining and Loading a Key-Sequenced Data Set 256
Updating a Key-Sequenced Data Set 256
Creating a Unique Alternate Index Path for a KSDS 257
Using a Unique Alternate Index Path with a KSDS 258
Examples with Relative Record Data Sets 260
Defining and Loading a Relative Record Data Set 260
Updating a Relative Record Data Set 262

Chapter 8. Libraries of Data Sets 264
Types of Library 264
How to Use a Library 264
By the Linkage Editor or Loader 264
By the Operating System 265
By Your Program
Creating a Library 266
SPACE Parameter 266
Creating a Library Member 267
Examples 267
Library Structure 270

Chapter 9. Cataloged Procedures 273
Invoking a Cataloged Procedure 273
Multiple Invocation of Cataloged Procedures 274
Multitasking Using Cataloged Procedures 274
Modifying Cataloged Procedures 275
EXEC Statement 275
DD Statement 276
IBM-Supplied Cataloged Procedures 277

0S PL/I Optimizing Compiler: Programmer's Guide

250

Compile Only (PLIXC) 278

Compile and Link-Edit (PLIXCL) 278

Compile, Link—-Edit and Execute (PLIXCLG) 280
Link-Edit and Execute (PLIXLG) 280

Compile, Load, and Execute (PLIXCG) 280

Load and Execute (PLIXG) 281

Chapter 10. Program Checkout 282
Conversational Program Checkout 282
Compile-Time Checkout 282
Linkage Editor Checkout 283
Execution-Time Checkout 283
Logical Errors in Source Programs 284
Invalid Use of PL/I 286
Unforeseen Errors 284
Operating Error 284
Invalid Input Data 285
Unidentified Program Failure 285
Compiler or Library Subroutine Failure 286
System Failure 286
Statement Numbers and Tracing 286
Dynamic Checking Facilities 287
Control of Conditions 287
Use of the PL/I Preprocessor in Program Checkout 288
Condition Codes 288
Dumps 288
Example 290
Trace Information 290
File Information 2990
Hexadecimal Dump 290
Execution-time Return Codes 290
Abend Codes 292
The Abend Facility 292
When You Really Need an Abend 292
PL7I Action When the ERROR Condition is Raised 292
Getting a System—Issued Abend 293

Chapter 11. Communicating between PL/I and Assembler-Language
Modules 294
Overview 294
Parameter Passing 294
Environment 294
How To Write Your Routines 295
The PL/1 Environment 295
Establishing The PL/I Environment 296
Use of PLIMAIN to Invoke a PL/I Procedure 296
The Dynamic Storage Area (DSA) and Save Area 300
Calling Assembler Routines from PL/I 300
Invoking a NonRecursive and NonReentrant Assembler
Routine 300
Invoking a Recursive or Reentrant Assembler Routine 301
Use of Register 12 303
Calling PL/I Procedures from Assembler Language 303
Establishing the PL/I Environment for Multiple
Invocations 303
PL/I Calling Assembler Calling PL/I 304
Assembler Calling PL/I Calling Assembler 306
Overriding and Restoring PL/1 Error-Handling 306
Arguments, Parameters, Returned Values and Return Codes 308
Receiving Arguments in an Assembler-Language Routine 308
Assembler Routine Entry Point Declared with the ASSEMBLER
Option 308
Assembler Routine Entry Point Declared without the ASSEMBLER
Option 308
Passing Arguments from an Assembler-Language Routine 309
Arguments from Assembler when PL/I Environment set up 309
Argumgnts from Assembler When PL/1 Environment is not set
up 10
Return Codes 314

Chapter 12. The Sort Program 315
The Sort Programs Available 315
Background—-How the Sort Program Horks 316
Using the Sort Program 318

Contents xvii

What You Need to Know Before Using Sort 318
The CALL PLISRT Statement 319
Examples of Calls to PLISRT 319
Example 1 319
Example 2 319
Example 3 319
Example ¢ 320
Example 5 320
Testing the Return Code 320
Writing the Input and Qutput Routines 321
The Input-Handling Routine (SORT EXIT El15) 321
The Output—-Handling Routine (SORT EXIT E35) 322
Data Sets for Sort 324
Storage for Sort 328
Main Storage 328
Auxiliary Storage 328

Chapter 13. Checkpoint/Restart 339

Writing a Checkpoint Record 339

Checkpoint Data Set 340

Performing a Restart 341
Automatic Restart After a System Failure 341
Automatic Restart From HWithin the Program 341
Deferred Restart 341
Modifying Checkpoint/Restart Activity 342

Chapter 14. Interlanguage Communication with COBOL and
FORTRAN 343
Invoking COBOL from PL/I 3464
Arguments and Parameters 344
Passing Arguments to COBOL or FORTRAN Routines 344
Invoking COBOL or FORTRAN Routines 347
Passing Arguments from COBOL or FORTRAN Routines 349
Data Mapping 349
Invoking PL/I Routines from COBOL or FORTRAN 350
Matching COBOL Arguments/Parameters 351
Matching FORTRAN Arguments/Parameters 351
Compile~Time Return Codes
Using Common Storage 355
Interlanguage Environment 356
Establishing the PL/I Environment 356
Establishing the FORTRAN Environment 357
Handling Interrupts 357
GO TO Statement 358
Terminating FORTRAN and COBOL Routines 359
Execution-Time Return Codes 359

Chapter 15. Using PL/I on CICS 360
PL7/I-Supplied vs. CICS-Supplied Interface 363
PL/I-CICS Transactions 364
Macro-Level Interface 365
Command-Level Interface 365
Compatibility 366
PL/I Storage 367
Lifetime of Storage Acquired from CICS/0S/VS 367
Storage Classes 368
"Read-Only"™ PL/I-CICS Transactions 368
Output to SYSPRINT 369
Declaration of SYSPRINT 369
CHECK and PUT DATA 370
Execution-Time Options 370
Error Handling 372
Abend Codes Used by PL/I Under CICS 374
IBMBEERA 375
Use of PLIDUMP 375
Interlanguage Communication—OPTIONS ASSEMBLER 376
STORAGE and CURRENTSTORAGE 376
PL/I Program Termination 377
PL/I Shared Library for CICS/0S/VS 377
Link-Editing PL/I-CICS Applications 378
PL/I-CICS/0S/VS Interface Components 379
PL/I-CIC5/70S/VS Application Program Interface (DFHPL10I) 3380
PL/I CICS/0S/VS Nucleus Interface Module (DFHSAP) 381

xviii O0S PL/I Optimizing Compiler: Programmer's Guide

Appendix A. VSAM Background 383
The VSAM Catalog 383
VSAM Data Sets 383
Access Method Services 384
Password Protection 385
The Life of a VSAM Data Set 385
Defining a VSAM Data Set 385
DEFINE CLUSTER Command 386
Using the Access Method Services Program 389
Sharing VSAM Data Sets 389
Sharing a Data Set between Jobs 390
Sharing within a Job 390
Deleting a VSAM Data Set 390
Alternate Index Paths 391
How to Build and Use Alternate Index Paths 392
Terminology 392
Planning and Coding with Alternate Indexes 392
Passwords 394
Performance 394
How to Build an Alternate Index 394
DEFINE ALTERNATEINDEX Command 395
BLDINDEX Command 396
DEFINE PATH Command 397
Executing the Access Method Service Commands to Create an
Alternate Index Path 397
Deleting an Alternate Index 398

Appendix B. Requirements For Problem Determination And APAR
Submission 400
General Information 400
Machine-Readable Information 400
Original Source 400
Load Libraries 601
Input Data Sets 401
Listings 401
Compiler Listing 4601
JCL Listing 401
CMS Terminal Session Log 402
Linkage Editor Listing 4602
Execution-Time Dump 402
Applied Fixes 4602
Materials Checklist 403

Appendix €. Shared Library Cataloged Procedures 606
Execution when Using the Shared Library 604
Multitasking Considerations 604
Using Standard IBM Cataloged Procedures 405

Appendix D. Sample Program 406

Appendix E. Using the 0S PL/I Optimizer Under VM/PC 447
Methods of Using the 0S PL/I Optimizer Under VM/PC 447
Downloading the 0S5 PL/I Optimizer Into VM/PC 447
Invoking The 0S PL/I Optimizer Under VM/PC 450

0S PL/1 Optimizer Programming Tips 451

0S PL/1I Optimizer Restrictions 652

Appendix F. MVS/Extended Architecture (MVS/XA)
Considerations 453
System 370 and 370/XA Differences 453
Compatibility Considerations 654
Considerations for Release 4 Programs 4655
AMODE RMODE Exceptions to Defaults 656
AMODE and RMODE Summary 456
Use of MVS/XA Facilities by PL/I Release 5 657
Characteristics of Release 5 Modules 457
Assembler Routine to Mode-Switch 657
BIT Data Type Restriction 459
Unusual Array Declarations 659
Interlanguage Communication 660
Limits on Sizes 4661
Object Code and Library Modules Compatibility 661
Other Characteristics of Release 5 in MVS/XA 461

Contents xix

TOTAL Option 662

LOCATE Mode I/0 662

FETCH/RELEASE Considerations 662
The PL/I NULL Pointer and MVS/XA 463

Appendix G. IMS Considerations for PL/I Release 5 465
Background for Enhanced PL/I-IMS Error Handling 465
PL/1 Release 5, IMS 1.3, and MVS/XA 468

Index 669

. xx 0SS PL/I Optimizing Compiler: Programmer's Guide

EIGURES

Example of Running a PL/I Program 2

Simplified Flow Diagram of the Compiler 5

Compiler Standard Data Sets 6

Job Control Statements for Compiling a PL/I Program Not

Using Cataloged Procedures 11

ﬁozpilez Options, Abbreviations, and Defaults in Batch

ode 1

Compiler Options Arranged by Function 16

Execution Time Options Listed by Function 30

Storage Arrangements in Multitasking and Nonmultitasking

Programs 39

REPORT Output and Its Meaning (Release 5 Example) 41

Selecting the Lowest Severity of Messages to be Printed,

Using the FLAG Option 55

Return Codes from Compilation of a PL/I Program 55

Use of the NAME Option in Batched Compilatien 57

Example of Batched Compilation, Including Execution 58

Example of Batched Compilation, Excluding Execution 58

Format of the Preprocessor Qutput 59

Using the Preprocessor to Produce a Source Deck That Is

Placed on a Source Program Library 60

17. Including Source Statements from a Library 61

18. The Sequence of Entries in the DDname List 63

19. The CSECT IDR Information 638

20. Basic Linkage Editor Processing 69

21. Linkage Editor Standard Data Sets 70

22. Typical Job Control Statements for Link-Editing a PL/I
Program 73

23. Linkage Editor Listings and Associated Options 76

24. Diagnostic Message Severity Codes 77

25. Return Codes from the Linkage Editor 79

26. Processing Additional Data Sources 31

27. Overlay Structure and Its Tree 83

28. g;eatigg and Executing the Overlay Structure of Figure

8

29. Link~Editing PL/I with Other High Level Languages 87

30. Control Sections to be Deleted for Optimum Space-Saving 88

31. Example of Link~Editing a Fetchable Load Module 88

32. Main Storage Requirements for the Loader 91

33. Basic Loader Processing 91

34. Loader Processing, Link-Pack Area and SYSLIB Resolution 92

35. Loader Standard Data Sets 92

36. Job Control Language for Load-and-Go 95

37. Object and Load Modules in Load-and-Go 95

38. Contents of SYSLOUT and SYSPRINT Data Sets 98

39, Fixed-length Records 102

0. Variable-Length Records 103

1. IBM 2540 Card Read Punch: Stacker Numbers 107

2. The Access Methods Used by the Compiler 116

43. Access Methods for Record-Oriented Data Transmission 117

44, How the Operating System Completes the DCB 118

5. Attributes and Options of PL/I File Declarations 123

6. Equivalent ENVIRONMENT Options and DCB Subparameters 125

47. Creating a Data Set for Stream-Oriented Data Transmission:
Essential Parameters of DD Statement 138

48. Creating a Data Set with Stream—-Oriented Data
Transmission 139

49. Hriting Graphic Data to a Stream File 140

50. Accessing a Data Set: Essential Parameters of DD
Statement 141

51. Accessing a Data Set with Stream-Oriented Data
Transmission 142

52. Creating a Data Set Using a PRINT File 145

53. PL/I Structure PLITABS for Modifying the Preset Tab
Settings 147

54. ? gom§2;ison of Data Set Types Available to PL/I Record

/

-

NUWNH OO0 0ONON U1 DA

bt e et et

[y
o

Figures xxi

55. Statements and Options Permitted for Creating and Accessing
Consecutive Data Sets 150

56. Conditions Under Hhich I/0 Statements Are Handled In-Line
(TOTAL Option Used) 153

57. Effect of LEAVE and REREAD options 155

58. Creating a Consecutive Data Set: Essential Parameters of DD
Statement

59. DCB Subparameters for Consecutive Data Sets 159

60. Accessing a Consecutive Data Set: Essential Parameters of
DD Statement 160

61. Creating and Accessing a Consecutive Data Set 162

62. American National Standard Print and Card Punch Control
Characters (CTLASA) 163

63. 1IBM Machine Code Print Control Characters (CTL360) 164

64, 2540 Card Read Punch Control Characters (CTL360) 164

65. 3525 Card Printer Control Characters (CTL360) 164

66. 3525 Card Printer Control-Characters (CTLASA) 165

67. Printing with Record-Oriented Data Transmission 166

68. Statements and Options Permitted for Creating and Accessing
Indexed Data Sets 168

69. Index Structure of An Indexed Data Set 171

70. Adding Records to an Indexed Data Set 174

71. Effect of KEYLOC and RKP Values on Establishing Embedded
Kevs in—Record Variables or Data Sets 175

72. Creating an Indexed Data Set: Essential Parameters of DD
Statement 178

73. DCB Subparameters for an Indexed Data Set 179

74. Record Formats in an Indexed Data Set 181

75. Record Format Information for an Indexed Data Set 182

76. Accessing an Indexed Data Set: Essential Parameters of DD
statement 186

77. Creating an Indexed Data Set 187

78. Updating an Indexed Data Set 188

79. Statements and Options Permitted for Creating and Accessing
Regional Data Sets 190

80. Creating a Regional Data Set: Essential Parameters of DD
Statement 202

81. DCB Subparameters for a Regional Data Set 203

82. Accessing a Regional Data Set: Essential Parameters of DD
Statement 203

REGIONAL(1) Data Set 206

REGIONAL(1) Data Set 207

REGIONAL(2) Data Set 208

REGIONAL(2) Data Set Directly 209

REGIONAL(2) Data Set Sequentially 210

REGIONAL(3) Data Set 211

89. Updating REGIONAL(3) Data Set Directly 212

90. Updating REGIONAL(3) Data Set Sequentially 213

91. Statements and Options Permitted for TRANSIENT Files 218

92. PL/1 Message Processing Program 221

93. Types and Advantages of VYSAM Data Sets 225

94. VSAM Data Sets and Permitted File Attributes 228

95. Processing Allowed on Alternate Index Paths 228

96. Statements and Options Permitted for Loading and Accessing
VSAM Entry-sequenced Data Sets 237

97. Statements and Options Permitted for Loading and Accessing
VSAM Indexed Data sets 240

98. Statements and Options Permitted for Loading and Accessing

- VSAM Relative-Record Data Sets 244

99. Defining and Loading an Entryv-Sequenced Data Set
(ESDS) 247

100. Updating an ESDS 248

101. Creating a Unique Key Alternate Index Path for an

83. Creating
84. Updating
85. Creating
86. Updating
87. Updating
88. Creating

DoODDOODO

ESDS 249

102. Creating a Nonunique Key Alternate Index Path for an
ESDS 250

103. Alternate Index Paths and Backward Reading with an
ESDS 251

104. Defining and Loading a Key-Seaquenced Data Set (KSDS) 254
105. Updating a KSDS 255

106. VSAM Methods of Insertion into a KSDS 257

107. Creating an Alternate Index Path for a KSDS 258

108. Using a Unique Alternate Index Path to Access a KSDS 259

xxii 0SS PL/I Optimizing Compiler: Programmer's Guide

[L
ot ot ol ok et et ol et
NN O

166.
145,
146.
147.
148.

149.
150.
151.
152.
153.
156,
155,
156.

157.
158,
159.

160.
161.
162.
163.

-]

Defining and Loading a Relative Record Data Set

(RRDS) 261

Updating an RRDS 263

Information Required When Creating a Library 266
Creating New Libraries for Compiled Object Modules 268
Placing a Load Module in an Existing Library 268
Creating a Library Member in a PL/I Program 269
Updating a Library Member 269

Structure of a Library 271

Listing Names of the Members of a Library 272

Invoking a Cataloged Procedure 277

Modifying a Cataloged Procedure to Produce a Punched Card
Output 277

Cataloged Procedure PLIXC 278

Cataloged Procedure PLIXCL 279

Cataloged Procedure PLIXCLG 279

Cataloged Procedure PLIXLG 280

Cataloged Procedure PLIXCG 281

Cataloged Procedure PLIXG 281

Inserting a PL/I Entry Point Address in PLIMAIN and
Calling the Entry 296

Skeletal Code for an Assembler Program that Calls PL/I
Subroutines a Number of Times 297

Invoking PL/I Procedures from an Assembler Routine 298
Skeletal Code for a Non-Recursive Assembler Routine to be
Invoked from PL/I 301

Skeletal Code for a Recursive or Reentrant Assembler
Routine to be Invoked from PL/I 302

Passing Parameters from PL/I to Assembler to PL/I. 305
Method of Overriding and Restoring PL/I

Error—-Handling 307

Use of PLISTART for ATTACH 310 .

Use of PLISTART Passing Null Parameter String 311

Use of PLICALLA 311

Use of PLICALLB 312

Overview of the Sorting Process 317

Skeletal Code for an Input Procedure 322

Flowcharts for Input and Output Handling Subroutines 323
Skeletal Code for an Output Handling Procedure 323

The Entry Points and Arguments to PLISRT 326

The SORT Statement, the First Argument to PLISRT 329
The RECORD STATEMENT—The Second Argument to Sort 331
Example of Sorting from Data Set to Data Set

(PLISRTA) 333

Example of Sorting from Input Handling Routine to Dataset
(PLISRTB) 334

Example of Sorting from Data Set to Output Handling
Routine (PLISRTC) 335

Sorting from Input Handling Routine to Output Handling
Routine (PLISRTD) 336

Example of Sorting Varying Length Records Using Input and
Output Handling Routines 337

COBOL—PL/I Data Equivalents 346

Declaration of a Data Aggregate in COBOL and PL/I 352
FORTRAN-PL/I Data Equivalents 353

Return Codes Produced by PL/I Data Types 354

Extent of PL/I Environment 356

Restrictions on PL/I when Used with CICS 361

DFHPL10I Link-Edited into Transaction 364

Valid Combinations of PL/I Releases with CICS/0S/VS
Release 1.6 367

Format of Records Sent to SYSPRINT 369

Base Cluster, Alternate Indexes, and Paths 393

The Commands Required to Create an Alternate Index

Path 399

Summary of Requirements for APAR Submission 603

0S PL/I Optimizer Modules Needed for Downloading 448
CMS Commands to Download the 0S PL/I Optimizer 651
Example of Code for Mode-Switching 458

Figures xxiii

CHAPTER 1. INTRODUCTION

The process of executing a PL/I program requires a minimum of
two job steps.

A compilation job step is always required. In this step the
optimizing compiler translates the PL/I source program into a
set of machine instructions called an object module. This
object module does not include all the machine instructions
required to represent the source program. In many instances the
compiler merely inserts references to subroutines that are
stored in the 0S5 PL/I Resident Library.

To include the required subroutines from the resident library,
the object module must be processed by one of two processing
programs, the linkage editor or the loader.

When using the linkage editor, two further job steps are
required after compilation. In the first of these steps, the
linkage editor converts the object module into a form suitable
for execution, and includes subroutines, referred to by the
compiler, from the resident library. The program in this form
is called a load module. In the final job step, this load
module is loaded into main storage and executed.

When using the loader, only one more job step is required after
compilation. The loader processes the object module, includes
the appropriate resident library subroutines, and executes the
resultant executable program immediately.

Both the linkage editor and the loader can combine separately
produced object modules and previously processed load modules.
However, they differ in one important respect: the linkage
editor produces a load module, which it always places in a
library, where it can be permanently stored and called whenever
it is required; the loader creates only temporary executable
programs in main storage, where they are executed immediately.

The linkage editor also has several facilities that are not
provided by the loader; for example, it can divide a program
that is too large for the space available in main storage, so
that it can be loaded and executed segment by segment.

The loader is intended primarily for use when testing programs
and for processing programs that will be executed only once.

Subroutines from the resident library may contain references to
other subroutines stored in the 05 PL/I Transient Library. The
subroutines from the transient library do not become a permanent
part of a load module; they are loaded into main storage when
needed during execution of the PL/I program, and the storage
they occupy is released when they are no longer needed.

The job control statements shown in Figure 1 on page 2 are
sufficient to compile and execute a PL/I program that comprises
only one external procedure.

This program uses only punched-card input and printed output.
The listing produced includes only the default items. Many
other items can be included by specifying the appropriate
compiler options in the EXEC statement. The compiler listing
and all the compiler options are described in Chapter 2, "The
Compiler™ on page 3. The linkage editor listing and the linkage
editor options are described in Chapter 3, "The Linkage Editor
and the Loader®™ on page 65. Appendix D, "Sample Program” on
page 407 is a sample PL/I program that includes most of the
listing items discussed in these two chapters.

Chapter 1. Introduction 1

The example in Figure 1 uses the cataloged procedure PLIXCLG.
Several other cataloged procedures are supplied by IBM for use
with the optimizing compiler (for example, for compilation
only). The use of these other cataloged procedures is described
in Chapter 9, "Cataloged Procedures™ on page 273.

An alternative method of specifying compiler options is by use
of the PROCESS statement, which is described in "Specifying
Compiler Options in the XPROCESS Statement™ on page 13. An
example of a PROCESS statement is:

¥ PROCESS MACRO, OPT(TIME);

JOB statement

EXAMPLE is the name of the job. You can use any name
that does not have more than eight alphameric or national
characters; the first character must not be numeric. The
job name identifies the job within the operating system; it
is essential. The parameters required in the JOB statement
depend on the conventions estabtished for your installation.

EXEC statement

PLIXCLG is the name of a cataloged procedure supplied by
1BM. When the operating system meets this name, it replaces

the EXEC statement with a set of JCL statements that have PL/! source statements l-—-—
been written previously and cataloged in a system library.
The cataloged procedure contains three procedure steps: = [[EXAMPLE JOB (6487 ,N14),JONESMSGLEVEL=1

PLI The compiler processes the PL/! program and translates

it into a set of machine instructions called an object <
module. EX001: PROCEDURE OPTIONS(MAIN);

LKED The linkage editor produces a load module from the DECLARE {A,B,C) FIXED DECIMAL(3);
object module produced by the compiler. ON ENDFILE(SYSIN) GO TO FINISH;

GO The load module produced by the linkage editor is

[//STEP1 EXEC PLIXCLG
——» //PLI.SYSIN bD *

NEXT: GET FILE(SYSIN) DATA(A,B);

card deck.

This statement indicates that the data to be processed by the
program (in procedure step GO) follows immediately in the

. . C=A+B;
loaded into main storage and executed. PUT FILE(SYSPRINT)SKIP DATA(A B,C);
GO TO NEXT,
DD statement FINISH: END;
o

This statement indicates that the statements to be processed o //GO.SYSINDD *
in procedure step PLI follow immediately in the card deck. - :
SYSIN is the name that the compiler uses to refer to the A=131 B=75;
device on which it expects to find this data. (In this case, A=2 B=907,;
the device is the card reader, and the data is the PL/! program.) =--14 B=14; E: tti‘:opll)‘e/lp;?ge::?

A=341 B=429; 9

A=245 B=102;
DD statement

//

Null statement

This statement indicates the end of this job.

Figure 1.

Example of Running a PL/I Program

2 0S PL/I Optimizing Compiler: Programmer's Guide

CHAPTER 2. THE COMPILER

This chapter describes the optimizing compiler and the job
control statements required to invoke it, and defines the data
sets it uses. It describes the compiler options, the listing
produced by the compiler, batched compilation, and the
preprocessor, all of which are introduced briefly below.

The optimizing compiler translates the PL/I statements of the
source program into machine instructions. A set of machine
instructions such as is produced for an external PL/I procedure
by the compiler is termed an object module. If several sets of
PL/1 statements, each set corresponding to an external procedure
and separated by appropriate control statements, are present,
the compiler can create two or more object modules in a single
job step.

However, the compiler does not generate all the machine
instructions required to represent the source program. Instead,
for frequently used sets of instructions such as those that
allocate main storage or those that transmit data between main
storage and auxiliary storage, it inserts into the object module
references to standard subroutines. These subroutines are
stored either in the 0S PL/I Resident Library or in the 0S PL/1I
Transient Library.

An object module produced by the compiler is not ready for
execution until the appropriate subroutines from the resident
library have been included; this is the task of either one of
two processing programs, the linkage editor or the loader,
described in Chapter 3, "The Linkage Editor and the Loader™ on
page 65. An object module that has been processed by the
linkage editor is referred to as a load module; an object module
that has been processed by the loader is referred to as an
executable program.

Subroutines from the transient library do not form a permanent
part of the load module or executable program. Instead, they
are loaded as required during execution, and the storage they
occupy is released when they are no longer needed.

While it is processing a PL/I program, the compiler produces a
listing that contains information about the program and the
object mcdule derived from it, together with messages relating
to errors or other conditions detected during compilation. Much
of this information is optional, and is supplied either by
qefgultkog by specifying appropriate options when the compiler
is invoked.

The compiler also includes a preprocessor {(or compile-time
processor) that enables you to modify source statements or
insert additional source statements before compilation
commences.

Compiler options, discussed further in "Compiler Options™ on
page 11, can be used for purposes other than to specify the
information to be listed. For example, the preprocessor can be
used independently to process source programs that are to be
compiled later, or the compiler can be used merely to check the
syntax of the statements of the source program. Also,
continuation of processing through syntax checking and
compilation can be made conditional on successful preprocessing.

Chapter 2. The Compiler 3

DESCRIPTION OF THE COMPILER

The compiler consists of a number of load modules, referred to
as phases, each of which can be loaded individually into main
storage for execution. A simplified flow diagram is shown in
Figure 2 on page 5. The first phase to be loaded is a resident
control phase, which remains in main storage throughout
compilation. This prhase consists of a number of service
routines that provide facilities required during execution of
the remaining phases. One of these routines communicates with
the supervisor program of the operating system for the
sequential loading of the remaining phases, which are referred
to as processing phases.

The resident control phase also causes a trapsient control phase
to be loaded, the function of which is to initialize the
operating environment in accordance with vour options.

Each processing phase performs a single function or a set of
related functions. Some of these phases must be loaded and
executed for every compilation; the requirement for other phases
depends on the content of the source program or on the optional
facilities selected. Apart from the phases that provide
diagnostic information, each phase is executed once only.

Input to the compiler is known throughout all stages of the
compilation process as text. Initially, this text comprises the
PL/]I statements of the source program. At the end of
compilation, it comprises the machine instructions substituted
by the compiler for the source text, together with the inserted
references to resident library subroutines for use by the
linkage editor or by the loader.

The source text must be in the form of a data set defined by a
DD statement with the name SYSIN. The source text is passed to
the syntax—-analysis stage either directly or after processing by
one of the following preprocessor phases:

1. If the source text is in the PL/I 48-character set or in
BCD, the 68-character-set preprocessor translates it into
the 60~-character set. To use the 48-character-set
pr%processor, specify the CHARSET(48) or CHARSET(BCD)
options.

2. If the source text contains preprocessor statements, the
preprocessor executes these statements in order to modify
the source text or te introduce additional statements.
Also, if the source text is in the PL/1 48-character set or
in BCD (as specified by the CHARSET(48) or CHARSET(BCD)
options), the preprocessor translates it into the
60—~character set. To use the preprocessor, specify the
MACRO compiler option.

4 05 PL/I Optimizing Compiler: Programmer's Guide

SOURCE TEXT
(FROM SYSIN)

PRE- MACRO
ROCESSING>
?

NOMACRO

BCD or CHARSET(48) .cHARACTER

N

EBCDIC or
5 y CHARSET(60) !
CHARACTER- COMPILE-
SET TIME PRE-
PROCESSOR PROCESSOR

PROCESSED SOURCE
TEXT VIASYSUT1

60-CHARACTER-SET
TEXT VIASYSUT1
SYNTAX-
ANALYSIS
STAGE

A

DICTIONARY-
BUILD
STAGE

TRANSLATION
STAGES

4

FINAL-
ASSEMBLY
STAGE

l

OBJECT MODULE
{TO SYSLIN OR SYSPUNCH)

Figure 2. Simplified Flow Diagram of the Compiler

Chapter 2. The Compiler 5

Both preprocessor phases store the translated source text in the
data set defined by the DD statement with the name SYSUT1.

The syntax—analysis stage takes its input either from this data
set or from the data set defined by the DD statement with the
name SYSIN. This stage analyzes the syntax of the PL/I
statements and removes any comments and non-significant blank
characters.

After syntax analysis, the dictionary-build stage creates a
dictionary containing entries for all identifiers in the source
text. The compiler uses this dictionary to communicate
descriptions of the elements of the source text and the object
module between phases. The dictionary-build stage of the
compiler replaces all identifiers and attribute declarations in
the source text with references to dictionary entries.

Further processing of the text involves several compiler stages,
known as translation stages, which:

. Translate the text from the PL/I syntactic form into an
internal syntactic form.

. Rearrange the text to facilitate further translation (for
example, by replacing array assignments with do-loops that
contain element assignments).

. Map arrays and structures to ensure correct boundary
alignment.

[Translate the text into a series of fixed-length tables,
each with a format that can be used to define machine
instructions.

. Allocate main storage for static variables and generate
inline code to allow storage to be allocated during
execution. (In certain cases resident library subroutines
may also be called to allocate storage during execution.)

Possible Reconrd Record
Standanrd Contents of Device Format Size BUFNO BLKSIZE
ddname Data Set Classes! (RECFM)S (LRECL)S Buffers Buffers
SYSIN Input to the SYSSQ F,FB,U <101(100) 2 200
(or compiler VB,V <105(104)
SYSCIN) 4
SYSLIN Object SYSSQ FB 30 2 80
Module
SYSPUNCH Preprocessor SYSSQ FB 80 2 80
Cutput, SYSCP
Compiler
OQutput
SYSUT12 Temporary SYSDA E 1091, 1691, - -
Horkfile 3491, or
4051
according to
available
space
SYSPRINT Listing, SYSsSQ VBA 125 2 129
including
messages

Figure 3 (Part 1 of 2).

6 0S PL/I Optimizing Compiler:

Compiler Standard Data Sets

Programmer's Guide

Possible Reconrd Record
Standard Contents of Device Format Size BUFNO BLKSIZE
ddname Data Set Classesl {RECFM)3 (LRECL)S Buffers Buffers
SYSLIB2 Source SYSDA E,FB,U <101 - -
statements V,VB <105
for
preprocessor

Figure 3 (Part 2 of 2).

Compiler Standard Data Sets

Notes to Figure 3:

1

The possible device classes are:

SYSSQ Magnetic-tape or direct-access device
SYSDA Direct-access device
SYSCP Card-punch device

Any block size can be specified except for SYSLIB and SYSUT1l. Block size for
SYSLIB depends on the options specified. If the INCLUDE option is specified,
the maximum block size is 4260 bytes. If MACRO is specified, the block size
maximum is eleven bytes less than the value of LRECL for SYSUT1l. The block size
for SYSUT1 is always provided by the compiler. The relationship between
available space and the LRECL for SYSUT1 is given under "Temporary Workfile
(SYSUT1)™ on page 9.

If the record format is not specified in a DD statement, the default value
(underlined) is provided by the compiler.

The compiler will attempt to obtain source input from SYSCIN if a DD statement
for this data set is provided. Otherwise it will obtain it's input from SYSIN.

The numbers in parentheses in the "Record size"™ column are the defaults which
can be overridden by the user.

The final—-assembly stage translates the text tables into machine
instructions, and creates the external symbol dictionary (ESD)
and relocation dictionary (RLD) required by the linkage editor
and by the loader.

The external symbol dictionary includes the names of subroutines
that are referred to in the object module but are not part of
the module and that are to be included by the linkage editor or
by the loader; these names, which are termed external
references, include the names of all the PL/I resident library
subroutines that will be required when the object module is
executed. (These resident library subroutines may, in their
turn, contain external references to other resident library
subroutines required for execution).

The relocation dictionary contains information that enables
absolute storage addresses to be assigned to locations within
the load module when it is loaded for execution.

The external symbol dictionary and the relocation dictionary are
described in Chapter 3, "The Linkage Editor and the Loader™ on
page 65, which also explains how the linkage editor and the
loader use them.

Chapter 2. The Compiler 7

JOB _CONTROL STATEMENTS FOR COMPILATION

EXEC STATEMENT

Although you will probably use cataloged procedures rather than
supply all the job control required for a job step that invokes
the compiler, you should be familiar with these statements so
that you can make the best use of the compiler, and if
necessary, override the statements of the cataloged procedures.

The IBM-supplied cataloged procedures that include a compilation
procedure step are as follows:

PLIXC Compile only.

PLIXCL Compile and link-edit.

PLIXCLG Compile, link-edit, and execute.

PLIXCG Compile, load, and execute.

The following paragraphs describe the job control statements
needed for compilation. The IBM-supplied cataloged procedures
described in Chapter 9, "Cataloged Procedures™ on page 273

contain these statements. You will not therefore have to code
them vourself unless yvou are not using the cataloged procedures.

The basic EXEC statement is:
//stepname EXEC PGM=IELOQAA

The PARM parameter of the EXEC statement can be used to specify
one or more of the optional facilities provided by the compiler.
These facilities are described under "Specifying Compiler
Options in the EXEC Statement"™ on page 12.

DD STATEMENTS FOR THE STANDARD DATA SETS

Input (SYSIN,

The compiler requires several standard data sets, the number
depending on the optional facilities specified. You must define
these data sets in DD statements with the standard ddnames which
are shown, together with other characteristics of the data sets,
in Figure 3 on page 6. The DD statements SYSIN, SYSUT1, and
SYSPRINT are always required.

You can store any of the standard data sets on a direct-access
device, in which case, you must include the SPACE parameter in
the DD statement that defines the data set to specify the amount
of auxiliary storage required. The amount of auxiliary storage
allocated in the IBM-supplied cataloged procedures should
suffice for most applications.

OR SYSCIN)

Input to the compiler must be a data set defined by a DD
statement with the name SYSIN or SYSCIN; this data set must have
CONSECUTIVE organization. The input must be one or more
external PL/I procedures; if you want to compile more than one
external procedure in a single job or job step, precede each
procedure, except possibly the first, with a PROCESS statement.
For further detail, see "Batched Compilation" on page 55.

Eighty-column punched cards are commonly used as the input
medium for PL/I source programs. However, the input data set
may be on a direct-access device, magnetic tape, or paper tape.
The input data set may contain either fixed-length records,
blocked or unblocked, variable-length records, or
undefined-length records; the maximum record size is 100 bytes.
The compiler always reserves 200 bytes of main storage (100
bytes each) for two buffers for this data set; however, you may
specify a block size of more than 100 bytes, provided that :

8 0S PL/I Optimizing Compiler: Programmer's Guide

sufficient main storage is available to the compiler. (For
further details of the SIZE compiler option under “SIZE Option"
on page 26.)

When data sets are concatenated for input to the compiler, the
concatenated data sets must have similar characteristics (for
example, block size and record format).

output (SYSLIN, SYSPUNCH)

Qutput (that is, one or more object modules) from the compiler
can be stored in either the data set defined by the DD statement
with the name SYSLIN (if vou specify the OBJECT compiler option)
or in the data set defined by the DD statement with the name
SYSPUNCH (if you specify the DECK compiler option). You may
specify both options in one program, when the output will be
stored in both data sets.

The object module is always in the form of 80-byte fixed-length
records, blocked or unblocked. The compiler always reserves two
buffers of 80 bytes each; however, vou may specify a block size
of more than 80 bvtes, provided that sufficient main storage is
available to the compiler. (For further details see the
dizscussion of the SIZE compiler option under “SIZE Option™ on
page 26.) The data set defined by the DD statement with the
name SYSPUNCH is also used to store the output from the
preprocessor if you specify the MDECK compiler option.

TEMPORARY WORKFILE (SYSUT1)

Statement Lengths

The compiler requires a data set for use as a temporary
workfile. It is defined by a DD statement with the name SYSUT1,
and is known as the gpill file. It must be on a direct-access
device, and must not be allocated as a multi-volume data set.
The spill file is used as a logical extension to main storage
and is used by the compiler and by the preprocessor to contain
text and dictionary information.

The record size used depends on the amount of storage available
to the compiler and whether or not the storage device is a 3330,
3340, 3350, or 3380.

Note that the DD statements given in this publication and in the
cataloged procedures for SYSUT1l request a space allocation in
blocks of 1024 bytes; this is to insure adequate secondary
allocations of direct-access storage space are acquired.

The optimizing compiler has a restriction that any statement
must fit into the compiler's work area. The maximum size of
this work area varies with the amount of space available to the
compiler. The maximum length of a statement is 3400 characters.

The DECLARE statement is an exception in that it can be regarded
as a sequence of separate statements, each of which starts
wherever a comma occurs that is not contained within
parentheses. For example:

DCL 1 A,
2 B(10,10) INIT(1,2,3,...3,
2 €(10,100) INIT((IO 0)€0J),
(D,E) CHAR(20) VAR,...

In this example, each line can be treated by the compiler as a

separate DECLARE statement in order to accommodate it in the

work area. The compiler w111 also treat in the same way the

INITIAL attribute when it is followed by a list of items

separated by commas that are not contained within parentheses.

Each item may contain initial values; that, when expanded, do not
{

Chapter 2. The Compiler 9

LISTING (SYSPRINT)

exceed the maximum length. The above also applies to the use of
the INITIAL attribute in a DEFAULT statement.

It is possible that programs with large DECLARE statements will
not compile successfully on the optimizing compiler although
they had compiled successfully on another compiler. The
following techniques are suggested to overcome this problem:

. Increase the main storage available to the compiler, unless
it already exceeds 128K bytes.

. Simplify the DECLARE statement so that the compiler can
treat the statement in the manner described above.

. Modify any lists of items following the INITIAL attribute so
that individual items are smaller and separated by commas
not contained in parentheses. For example, the following
declaration is followed by an expanded form of the same
declaration. The compiler can more readily accommodate the
second declaration in its work area:

1. DCL Y (1000) CHAR(2)
INIT CC1000) (8)'Y"™);

2. DCL Y (1000) CHAR(8) INIT
((250)(8) "Y', (250)(8)'Y?",
(250)¢8)'Y" »(250)(8) Y';

The compiler generates a listing that includes all the source
statements that it processed, information relating to the object
module, and, when necessary, messages. Most of the information
included in the listing is optional, and you can specify those
parts that vou require by including the appropriate compiler
options. The information that may appear, and the associated
compi%gr options, are described under "Compiler Listing™ on

page .

You must define the data set in which vou wish the compiler to
store its listing in a DD statement with the name SYSPRINT.
This data set must have CONSECUTIVE organization. Although the
listing is usually printed, it can be stored on any
magnetic~tape or direct-access device. For printed ocutput, the
following statement will suffice if your installation follows
the convention that output class A refers to a printer:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes of main storage (129
bytes each) for two buffers for this data set; however, you may
specify a block size of more than 129 bytes, provided that
sufficient main storage is available to the cowmpiler. (For
further ggt?ils of the SIZE compiler option, see "SIZE Option™
on page .

SOURCE STATEMENT LIBRARY (SYSLIB)

If vou use the preprocessor XINCLUDE statement to introduce
source statements into the PL/I program from a library, you can
either define the library in a DD statement with the name
SYSLIB, or you can choose vour own ddname (or ddnames) and
specify a ddname in each XINCLUDE statement. (For further
information on the preprocessor, see "Compile-Time Processing
(Preprocessing)” on page 59.)

10 0S PL/I Optimizing Compiler: Programmer's Guide

EXAMPLE OF COMPILER JCL

COMPILER OPTIONS

SPECIFYING COMPILER

A typical sequence of job control statements for compiling a
PL/I program is shown in Figure 6. The DECK and NOOBJECT
compiler options, described below, have been specified to obtain
an object module as a card deck only. Job control statements
for link editing an object module in the form of a card deck are
shown6§n Chapter 3, "™The Linkage Editor and the Loader™ on

page .

//0PTG4%#46 JOB :

//STEP EXEC PGM=IELOAA,PARM="DECK,NGOBJECT®
//SYSPUNCH DD SYSOUT=B

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(60,60),,CONTIG)
//SYSPRINT DD SYSOUT=A

//SYSIN DD %

/%

Figure 6. Job Control Statements for Compiling a PL/I Program
Not Using Cataloged Procedures.

The compiler provides a number of options, both at compile time
and at execution time. Options that can be specified at compile
time are known as compiler options. Options that can bhe

specified at execution time are known as execution—-time options.

Compiler options, their abbreviated syntax, and their defaults
(as supplied by IBM) are shown in Figure 5 on page 14 and
Figure 6 on page l6. An installation can modify defaults or
delete options according to local requirements; check for any
modified defaults at your installation. Deleted compiler
options can be reinstated for a compilation by means of the
CONTROL compiler option.

Also provided is the ability tu pass an argument to the PL/I
main procedure. This facility is described under "Specifying
Execution-Time Options and Main Procedure Parameters in the EXEC
Statement™ on page 30.

OPTIONS

For each compilation, the IBM or installation default for a
compiler option will apply unless it is overridden by specifying
the option in a PROCESS statement or in the PARM parameter of an
EXEC statement.

An option specified in the PARM parameter overrides the default
value, and an option specified in a PROCESS statement overrides
both that specified in the PARM parameter and the default value.

When conflicting attributes are specified either explicitly or
implicitly by the specification of other options, the latest
implied or explicit option is accepted. HNo diagnostic message
is issued to indicate that any options are overridden in this
way.

Chapter 2. The Compiler 11

SPECIFYING COMPILER OPTIONS IN THE EXEC STATEMENT

To specify options in the EXEC statement, code PARM= followed by
the list of options, in any order (except that CONTROL, if used,
must be first) separating the options with commas and enclosing

the list within single quotation marks, for example:

//STEP1 EXEC PGM=IELOAA,PARM="OBJECT,LIST'

Any option that has quotation marks, for example MARGINI('c'),
must have the quotation marks duplicated. The length of the
option list must not exceed 100 characters, including the
separating commas. However, many of the options have an
abbreviated syntax that you can use to save space. If vou need
to continue the statement onto another line, you must enclose
the list of options in parentheses (instead of in quotation
marks) enclose the options list on each line in quotation marks,
and ensure that the last comma on each line except the last line
is outside of the quotation marks. An example covering all the
above points is as follows:

//STEP1 EXEC PGM=IELOAA,PARM=('AG,A",
7/ 'C,ESD,F(I),FLOW(C10,1)"*,
/77 "M,MIC"*X''),NEST,STG,X")

If you are using a cataloged procedure, and wish to specify
options explicitly, vou must include the PARM parameter in the
EXEC statement that invokes it, qualifying the keyword PARM with
the n?me of the procedure step that invokes the compiler, for
example:

s/STEP]1 EXEC PLIXCLG,PARM.PLI='A,LIST,ESD!

12 0S PL/I Optimizing Compiler: Programmer's Guide

SPECIFYINGVCQMPILER OPTIONS IN THE %PROCESS STATEMENT
To specify options in the PROCESS statement, code as follows:
¥ PROCESS options;

where "options™ is a list of compiler options. The list of
options must be terminated with a semicolon and should not
extend beyond the default right~hand source margin. The
asterisk must appear in the first data byte of the record. 1If
the records are F format, the asterisk must be in column 1. 1If
the records are V or U format, the asterisk must be as far left
as possible, that is column 1 if possible, or immediately
following the sequence numbers if these are on the extreme left.
The keyword PROCESS may follow in the next byte (column) or
after any number of blanks. 0Option keywords must be separated
by a comma and/or at least one blank.

Blanks are permitted before and after any non-blank delimiter in
the list, with the exception of strings within quotation marks,

for e:agple MARGINI('*%'), in which padding blanks should not be

inserted.

The number of characters is limited only by the length of the
record. If yvou do not wish to specify any options, code:

¥ PROCESS;

Should it be necessary to continue the PROCESS statement onto
the next card or record, terminate the first part of the list
after any delimiter, up to the default right-hand margin, and
continue on the next card or record. O0Option keywords or keyword
arguments may be split, if required, when continuing onto the
next record, provided that the keyword or argument string
terminates in the right-hand source margin, and the remainder of
the string starts in the same column as the asterisk. A PROCESS
statement may be continued in several statements, or a new
PROCESS statement started. For use of the PROCESS statement
with batched compilation, see "Batched Compilation™ on page 55.

COMPILER OPTION TYPES
The compiler options are of the following types:

1. Simple pairs of keywords: a positive form (for example,
NEST) that requests a facility, and an alternative negative
form (for example, NONEST) that rejects that facility.

2. Keywords that permit you to provide a value~list that
qualifies the option (for example, FLAG(W)).

3. A combination of 1 and 2 above (for example, NOCOMPILECE)).

The following paragraphs describe the options in alphabetic
order. For those options that specify that the compiler is to
list information, only a brief description is included; the
generézed listing is described under "Compiler Listing™ on
page

Chapter 2. The Compiler 13

Figure 5 lists all the compiler options with their abbreviated
syntax and their default values for batch mode. Defaults under
TS0 and CMS are given in the TS0 User's Guide, and CMS User's

Guide, respectively for this compiler.

Figure 6 on page 16 lists the options by function so that you

can, for example,

determine the preprocessing.

Compiler Option

Abbreviated Name

IBM Default

AGGREGATE | NOAGGREGATE AG|NAG NOAGGREGATE
ATTRIBUTESI(FULL|SHORT)1I ALCFIS)IINA NOATTRIBUTES
NOATTRIBUTES , [CFULLY)]

CHARSET([48]601[EBCDICIBCD]) | CS(I[48|60ILEBIBI) CHARSET(60 EBCDIC)
COMPILE|[NOCOMPILEL(W|E|S)] CINCLC(R|E|S)] NOCOMPILE(S)
CONTROL("password") - -
COUNT | NOCOUNT CTINCT NOCOUNT
DECK|NGDECK DIND NODECK
ESD|NOESD - NOESD
FLAGL(IIWIEIS)] FICIIWIEIS)] FLAG(I)
FLOWL(n,m)] | NOFLOW - NOFLOW
GONUMBER | NOGONUMBER GN|NGN NOGONUMBER
GOSTMT | NOGOSTMT GS|NGS NOGOSTMT
GRAPHIC|NOGRAPHIC - NOGRAPHIC
IMPRECISE|NOIMPRECISE IMP|NIMP NOIMPRECISE
INCLUDE|NOINCLUDE INCININC NOINCLUDE
INSOURCE|NOINSOURCE ISINIS INSOURCE
INTERRUPT |NOINTERRUPT INTININT NOINTERRUPT
LINECOUNT(n) v LC(n) LINECOUNT(55)
LISTEC(mL,nl)I|INOLIST - NOLIST
LMESSAGE | SMESSAGE LMSG|SMSG LMESSAGE
MACRO|NOMACRO MINM NOMACRO
MAP | NOMAP - NOMAP
MARGINI('c") |NOMARGINI MIC*c') INMI NOMARGINI
MARGINS(m,nl,c]) MARCm,nl,cl) MARGINS(2,72) or
MARGINS(10,100)
(see text)
MDECK | NOMDECK MD|NMD NOMDECK
NAME("name') N('name") -
NESTINONEST - NONEST
NUMBER | NONUMBER NUM| NNUM NONUMBER

Figure 5 (Part 1 of 2). Compiler Options, Abbreviations, and Defaults in Batch Mode

14 0SS PL/Y Optimizing Compiler: Programmer's Guide

Compiler Option

Abbreviated Name

IBM Default

OBJECTINOOBJECT 0BJ | NOBJ OBJECT
OFFSET|NODFFSET OF | NOF NOOFFSET
OPTIMIZE(TIME|OI2)1 OPTCTIMEI O] 2)NOPT NOOPTIMIZE
NOOPTIMIZE
OPTIONS|NOOPTIONS OP | NOP OPTIONS
SEQUENCE(m, n) [NOSEQUENCE SEQ(m,n) |NSEQ F-format:
SEQUENCE(73,80)
V-format:
SEQUENCE(1,8)
SIZEC[-1lyvyvyyyvl SZ(L-1yyyyyyyvl SIZE(MAXD
[-lyyyyyKIMAX) [-lyyyyyKIMAX)
SOURCE | NOSOURCE S|NS SQURCE
STMT | NOSTMT - STMT
STORAGE | NOSTORAGE STGINSTG NOSTORAGE
SYNTAX|NOSYNTAXL(W]IEIS)] SYNINSYNLCWIE]|S)] NOSYNTAX(S)
TERMINALI (opt-list) 1] TERML(opt-1ist)1|{NTERM NOTERMINAL
NOTERMINAL
XREFL(FULL|SHORT) 1| NOXREF XECFIS)IINX NOXREFL(FULL*) 1]

Figure 5 (Part 2 of 2.

Note to Figure 5:

Compiler Options, Abbreviations, and Defaults in Batch Mode

1 FULL is the default suboption if the suboption is omitted with ATTRIBUTES or

XREF

Chapter 2. The Compiler

15

LISTING OPTIONS

Control listings
produced

AGGREGATE
list of aggregates and their size

ATTRIBUTESI (SHORT|FULL)1
list of attributes of identifiers

ESD
list of external symbol dictionary

INSOURCE
list of preprocessor input

FLAG(IIWIEIS)
suppress diagnostic messages below a certain

severity
LIST
list compiled code produced by compiler
MAP
lists offsets of variables in static control
section and DSAs
OPTIONS
list of options used
SOURCE
list of source program or preprocessor output
STORAGE

list of storage used

XREFI[(SHORT|FULL]}1]
list of statements in which each identifier

is used
Improve readability NEST
of source listing indicates do-group and block level by
numbering in margin
MARGINI
highlights any source outside margins
Control lines per LINECOUNT
page of listing specifies number of lines per page on listing
INPUT OPTIONS GRAPHIC
specifies that graphics are used in source
CHARSET
identifies the character set used in source
MARGINS
identifies position of PL/I source and a
carriage control character
SEQUENCE
specifies the columns used for sequence
numbers

OPTIONS TO PREVENT
UNNECESSARY
PROCESSING

NOSYNTAX(WIE]S)
stop processing after errors are found in
preprocessing

NOCOMPILE(WIE]S)
stop processing after errors are found in
syntax checking

Figure 6 (Part 1 of 2).

Compiler Options Arranged by Function

16 0S PL/I Optimizing Compiler: Programmer's Guide

OPTIONS FOR

INCLUDE

PREPROCESSING allows secondary input to be included without
using preprocessor
MACRO
allows preprocessor to be used
MDECK ‘
produces a source deck from preprocessor
output
OPTIONS TO IMPROVE OPTIMIZE/NOOPTIMIZE

PERFORMANCE improves execution performance but increases
compilation time. NOOPTIMIZE does the
reverse

OPTIONS TO USE WHEN OBJECT

QSSBEEING AN OBJECT produce an object module from compiled output

NAME
specify the name of the object module
produced

DECK
produce an object module in punched card
format

OPTIONS TO CONTROL SIZE

STORAGE USED controls the amount of storage used by the
compiler

OPTIONS TO IMPROVE TERMINAL

USABILITY AT A
TERMINAL

specifies how much of listing is transmitted
to terminal

LMESSAGE/SMESSAGE
specifies concise or full message format

OPTIONS TO SPECIFY
STATEMENT NUMBERING
SYSTEM USED

NUMBER & GONUMBER
numbers statements according to line in which
they start

STMT & GOSTMT
numbers statements sequentially

OFFSET
specifies that a listing associating
statement numbers with offsets will be
generated

OPTIONS FOR USE
WHEN DEBUGGING

COUNT
generate code that, if execution-time COUNT
is specified, will result in a count of the
number of times each statement is executed

FLOW
generate code that, if execution-time FLOW is
specified, will result in a trace of
statements executed being retained

OPTION TO CONTROL
EFFECT OF ATTENTION
INTERRUPTS

INTERRUPT
specifies that the ATTENTION condition will
be raised after interrupt is caused

Figure 6 (Part 2 of 2).

Compiler Options Arranged by Function

Chapter 2. The Compiler

17

AGGREGATE OPTION

The AGGREGATE option specifies that the compiler is to include
in the compiler listing an aggregate length table, giving the
lengths of all arrays and major structures in the source
program.

ATTRIBUTES [{FULL|SHORT)1 OPTION

CHARSET OPTION

COMPILE OPTION

The ATTRIBUTES option specifies that the compiler is to include
in the compiler listing a table of source-program identifiers
and their attributes. If both ATTRIBUTES and XREF apply, the
two tables are combined.

If SHORT is specified, unreferenced identifiers are omitted,
making the listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict
between SHORT and FULL, the usage is determined by the last
option found. For example, ATTRIBUTES(SHORT) XREF(FULL) results
in FULL applying to the combined listing.

The suboption default FULL means that FULL applies if the option
is specified with no sub-option.

The CHARSET option specifies the character set and data code
that you have used to create the source program. The compiler
will accept source programs written in the 60-character set or
the 48-character set, and in the Extended Binary Coded Decimal
Interchange Code (EBCDIC) or Binary Coded Decimal (BCD).

60~ OR 48-~CHARACTER SET: If the source program is written in
the 60-character set, specify CHARSET(60); if it is written in
the G8-character set, specify CHARSET(48). The language
reference manual for this compiler lists both of these character
sets. (The compiler will accept source programs written in
either character set if CHARSET(48) is specified, however, if
the reserved keywords, for example, CAT or LE are used as
identifiers, errors may occur.)

BCD OR EBCDIC: If the source program is written in BCD, specify
CHARSET(BCD); if it is written in EBCDIC, specify
CHARSET(EBCDIC). The language reference manual for this
compiler lists the EBCDIC representation of both the
48-character set and the 60-character set.

If both arguments (48 or 60, EBCDIC or BCD) are specified, they
may be in any order and should be separated by a blank or by a
comma.

The COMPILE option specifies that the compiler is to compile the
source program unless an unrecoverable error was detected during
preprocessing or syntax checking. The NOCOMPILE option without
an argument causes processing to stop unconditionally after
syntax checking. With an argument, continuation depends on the
severity of errors detected so far, as follows:

NOCOMPILE(W) No compilation if a warning, error, severe error,
or unrecoverable error is detected.

NOCOMPILECE) No compilation if error, severe error, or
unrecoverable error is detected.

NOCOMPILE(S) No compilation if a severe error or unrecoverable
error is detected.

18 0S PL/I Optimizing Compiler: Programmer's Guide

COUNT OPTION

DECK OPTION

ESD OPTION

FLAG OPTION

FLOW OPTION

If the compilation is terminated by the NOCOMPILE option, the
cross-reference listing and attribute listing may be produced;
thedothsr listings that follow the source program will not be
produced.

The COUNT option specifies (1) that the compiler is to produce
code that, when the execution-time COUNT (or FLOW) option is
specified, counts and lists the number of times each statement
is executed, and (2) the the default execution—-time option for
COUNT [NOCOUNT be set to COUNT.

The COUNT option implies the GOSTMT option if the STMT option
applies, or the GONUMBER option if the NUMBER option applies.

The DECK option specifies that the compiler is to produce an
object module in the form of 80-column card images and store it
in the data set defined by the DD statement with the name.
SYSPUNCH. Columns 73-76 of each card contain a code to identify
the object module; this code comprises the first four characters
of the first label in the external procedure represented by the
object module. Columns 77-80 contain a 4%-digit decimal number:
the first card is numbered 0001, the second 0002, and so on.

The ESD option specifies that the external symbol dictionary
(ESD) is to be listed in the compiler listing.

The FLAG option specifies the minimum severity of error that
requires a message to be listed in the compiler listing. The
format of the FLAG option is shown below.

FLAG(I) List all messages.

FLAG(H) List all except informatory messages. If vou specify
FLAG, FLAG(H) is assumed.

FLAG(E) List all except warning and infermatory messages.

FLAG(S) List only severe error and unrecoverable error messages.

The FLOW option specifies (1) that the compiler is to produce
code that, when the execution-time FLOW option is specified,
lists the flow of control when the program is executed, and (2)
that the default execution-time option for FLOWINOFLOW be set to
FLOW. The format of the FLOW option is:

FLOWLCn,m)]

where 'n' is the maximum number of entries to be included in
, the lists. It should not exceed 32767.

m? is the maximum number of procedures for which the
: é%$§? are to be generated. It should not exceed

The IBM default, if (n,m) is not specified, is (25,10).

The output produced by‘the FLOW option is described under
"Execution-Time FLOW Option™ on page 45

Chapter 2. The Compiler 19

GONUMBER OPTION

GOSTMT OPTION

GRAPHIC OPTION

IMPRECISE OPTION

The GONUMBER option specifies that the compiler is to produce
additional information that will allow line numbers from the
source program to be included in execution-time messages.
Alternatively, these line numbers can be derived by using the
offset address, which is always included in execution-time
messages, and the table produced by the OFFSET option. (The
NUMBER option must also apply.)

Use of the GONUMBER option implies NUMBER, NOSTMT, and NOGOSTMT.
If NUMBER applies, GONUMBER is forced by the COUNT option.

The GOSTMT option specifies that the compiler is to produce
additional information that will allow statement numbers from
the source program to be included in execution-time messages.

Alternatively, these statement numbers can be derived by using
the offset address, which is always included in execution—time
messages, and the table produced by the OFFSET option. (The
STMT option must also apply.)

Use of the GOSTMT option implies STMT, NONUMBER, and NOGONUMBER.
If STMT applies, GOSTMT is forced by the COUNT option.

The GRAPHIC option specifies that either:
. You have graphics within comments in your source program

. You use the MACRO option and your source program contains
graphics within comments or graphic constants

(You need not specify GRAPHIC if vou use graphic constants and
do not use the preprocessor.)

If yvou do not require graphic support, specify NOGRAPHIC. The
default is NOGRAPHIC.

When using the GRAPHIC compiler option, ensure that all comments
within your program use the hexadecimal value '0E' (or whatever

value your installation has defined as the left delimiter) only

as a left delimiter to begin a graphic string.

You must use the compiler opticn CHARSET=(EBCDIC,60) when the
GRAPHIC compiler option is specified.

To print graphic data (including your source program), your data
must be in a format acceptable for a printer with graph@c
s:pgg;t or for a print utility program such as the Kanji print
utility.

The IMPRECISE option specifies that the compiler is to include
extra text in the object module to localize imprecise interrupits
when executing the program with an IBM System/360 Model 91 or an
IBM System/370 Model 165 or 195. This extra text is generated
for ON statements (to ensure that, if interrupts occur, the
correct on—units will be entered), for null statements, and for
ENTRY statements. The correct line or statement numbers will
not necessarily appear in execution-time messages. If you need
more accurate identification of the statement in error, insert
null statements at suitable points in your program.

20 O0S PL/I Optimizing Compiler: Programmer's Guide

INCLUDE OPTION

INSOURCE OPTION

INTERRUPT OPTION

LINECOUNT OPTION

LIST OPTION

The INCLUDE option requests the compiler to handle the inclusion
of PL/I source statements for programs that use the ZINCLUDE
statement. For programs that use the XINCLUDE statement but no
other PL/I preprocessor statements, this method is faster than
using the preprocessor., If the MACRO option is also specified,
the INCLUDE option has no effect.

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor
statements) in the compiler listing. This option is applicable
only when the preprocessor is used; therefore, the MACRO option
must also apply.

This option determines the effect of attention interrupts when
the compiled PL/I program is being executed under an interactive
sgStzmi (If specified on a batch system, INTERRUPT may cause an
abend.

If INTERRUPT was in effect during compilation, an established
ATTENTION on-unit will be executed when one attention interrupt
is caused during execution. If there is no such on-unit,
processing will continue. '

If NOINTERRUPT was in effect during compilation, one attention
interrupt during execution will end the execution of the program
and cause control to return to the interactive systen.

It should be noted that if any procedure within a load module
was compiled with the INTERRUPT option, an attention interrupt
will lead to the ATTENTION condition being raised if polling is
carried out, and execution continuing with no apparent effect if
polling is not carried out regardless of which option was used
for the procedure in which the interrupt occurs. Polling is
carried out during the execution of stream I/0 for all modules,
and, additionally, at branching points for modules compiled with
the INTERRUPT option. Because the ATTENTION cond1t1on is raised
when polling is done, an attention interrupt in a program partly
compiied with the INTERRUPT option can lead to unexpected
results.

The LINECOUNT option specifies the number of lines to be
included in each page of the compiler listing, including heading
lines and blank lines. The syntax of the LINECOUNT option is:

LINECOUNT(n)

where 'n' is the number of lines. It must be in the range 1
through 32767, but only headings are generated if
you specify less than 7.

The LIST option specifies that the compiler is to include a
listing of the cbject module (in a syntax similar to assembler
language instructions) in the compiler listing. The syntax of
the LIST option is:

LISTI(mL,n1)]

where 'm' is the number of the first, or only, source statement
for which an object listing is required and "n' is the number of

- the last source statement for which an object listing is

Chapter 2. The Compiler 21

LMESSAGE OPTION

MACRO OPTION

MAP OPTION

MARGINI OPTION

MARGINS OPTION

required. If 'n' is omitted, only statement "m' is listed. If
theboption NUMBER applies, 'm' and "'n' must be specified as line
numbers.

If LIST is used in conjunction with MAP, additional listings of
static storage are produced. (For further information on the
MAP compiler option, see "MAP Option.™)

The LMESSAGE and SMESSAGE options specify that the compxler is
to produce messages in a long form (specify LMESSAGE) or in a
short form (specify SMESSAGE).

The MACRO option specifies that the source program is to be
processed by the preprocessor.

The MAP option specifies that the compiler is to produce tables
showing the organization of the static storage for the object
module. A table showing the mapping of static and automatic
variables with offsets from their defining bases is always
produced. If the LIST option (described above) is also used, a
map of the static internal and external control sections is also
generated.

The MARGINI option specifies that the compiler is to include a
specified ¢character in the column preceding the left-hand
margin, and in the column following the right-hand margin of the
listings resulting from the INSOURCE and SQOURCE options. Any
text in the source input which precedes the left-hand margin
will be shifted left one column, and any text that feollows the
right-hand margin will be shifted right one column. For
variable-length input records that do not extend as far as the
right-hand margin, the character is inserted in the column
following the end of the record. Thus text outside the source
margins can be easily detected.

The MARGINI option has the syntax:
MARGINI('c")

where "c¢c" is the character to be printed as the margin
1nd1cator.

The MARGINS option specifies the part of each input record that
contains PL/I statements. The compiler will not process data
that is outside these limits (but it will include it in the
source listings).

The option can also specify the position of an American National
Standard (ANS) printer control character to format the listing
produced if the SOURCE option applies. This is an alternative
to using %PAGE and %SKIP statements (described in the language
reference manual for this compiler). If you do not use either
method, the input records will be listed without any intervening
blank lines. The syntax of the MARGINS option is:

MARGINS(m,nl,c1)

22 0S5 PL/I Optimizing Compiler: Programmer's Guide

MDECK OPTION

NAME OPTION

where "m! is the column number of the leftmost character that
will be processed by the compiler. It should not
exceed 100.

n' is the column number of the rightmost character that
will be processed by the compiler. It should be
greater than m, but not greater than 100.

fe! is the column number of the ANS printer control
character. It should not exceed 100 and should be
outside the values specified. for m and n. 0Only the
following control characters can be used:

(blank) Skip one line before printing.

0 Skip two lines before printing.

- Skip three lines before printing.
+ No skip before printing.

1 Start new page.

The IBM-supplied default for fixed-length records is
MARGINS(2,72); that for variable-length and undefined-length
records is MARGINS (10,100). This specifies that there is ho
printer control character.

The MARGINS option allows vou to override the default for the
primary input in a program. The secondary input must have
either the same margins as the primary input if it is the same
tvpe of record, or default margins if it is a different type.

The MDECK option specifies that the preprocessor is to produce a
copy of its output (see also "MACRO Option™ on page 22) and
store it in the data set defined by the DD statement with the
name SYSPUNCH. The last four bytes of each record in SYSUT1 are
not copied, thus this option allows vou to retain the output
from the preprocessor as a deck of 80-column punched cards.

The NAME option specifies that the compiler is to place a
linkage editor NAME statement as the last statement of the
object module. When processed by the linkage editor, this NAME
statement indicates that primary input is complete and causes
the specified name to be assigned to the load module created
from the preceding input (since the last NAME statement).

It is required if vou want the linkage editor to create more
than one load module from the object modules produced by batched
compilation (see also "Batched Compilation™ on page 55).

If yvyou do not use this option, the linkage editor will use the
member name specified in the DD statement defining the load
module data set. You can also use the NAME option to cause the
linkage editor to substitute a new load module for an existing
load module with the same name in the library. The format of
the NAME option is:

NAME("name')
where "name™ has from one through eight characters, and begins
with an alphabetic character. The linkage editor NAME statement

is described in Chapter 3, "The Linkage Editor and the Loader™
on page 65.

Chapter 2. The Compiler 23

NEST OPTION

NUMBER OPTION

OBJECT OPTION

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the block level
and the do-group level.

The NUMBER option specifies that the numbers specified in the
sequence fields in the source input records are to be used to
derive the statement numbers in the listings resulting from the
AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOQURCE and XREF options.

If NONUMBER is specified, STMT and NOGONUMBER are implied.
NUMBER is implied by NOSTMT or GONUMBER.

The position of the sequence field can be specified in the
SEQUENCE option. Alternatively the following default positions
are assumed:

U First 8 columns for undefined-length or variable-length
source input records.

. Last 8 columns for fixed-length source input records.

These defaults are the positions used for line-numbers generated
by T50; thus it is not necessary to specify the SEQUENCE option,
or change the MARGINS defaults, when using line numbers
generated by TS0. Note that the preprocessor output has
fixed~length records irrespective of the original primary input.
Any sequence numbers in the primary input are repositioned in
columns 73-80.

The line number is calculated from the five right-hand
characters of the sequence number (or the number specified, if
less than five). These characters are converted to decimal
digits if necessary. Each time a sequence number is found that
is not greater than the preceding line number, a new line number
is formed by adding the minimum integral multiple of 100,000
necessary to produce a line number that is greater than the
preceding one. If the sequence field consists only of blanks,
the new line number is formed by adding 10 to the preceding one.
The maximum line number permitted by the compiler is
134,000,000, or, when FLOW/COUNT is spacified, the maximum
becomes 33,000,000; numbers that would normally exceed this are
set to this maximum value, Only eight digits are printed in the
source listing; line numbers of 100,000,000 or over will be
printed without the leading "1™ digit.

If there is more than one statement on a line, a suffix is used
to identify the actual statement in the messages. For example,
the second statement beginning on the line numbered 40 will be
identified by the number 40.2. The maximum value for this
suffix is 31. Thus the thirty-first and subsequent statements
on a line have the same number.

The OBJECT option specifies that the compiler is to store the
object module that it creates in the data set defined by the DD
statement with the name SYSLIN.

26 0S PL/I Optimizing Compiler: Programmer's Guide

OFFSET OPTION

OPTIMIZE OPTION

OPTIONS OPTION

SEQUENCE OPTION

The OFFSET option specifies that the compiler is to print a
table of statement or line numbers for each procedure with their
offset addresses relative to the primary entry point of the
procedure. This information is of use in identifying the
statement being executed when an error occurs and a listing of
the object module (obtained by using the LIST option) is
available. If GOSTMT applies, statement numbers, as well as
offset addresses, will be included in execution-time messages.
If¥ GONUMBER applies, line numbers, as well as offset addresses,
will be included in execution—time messages.

A method of determining statement or line numbers from the
offsets given in error messages is given under "Statement Offset
Addresses™ on page 50.

The OPTIMIZE option specifies the type of optimization required:

NOOPTIMIZE
specifies fast compilation speed, but inhibits
optimization for faster execution and reduced main
storage requirements.

OPTIMIZE(TIME)
specifies that the compiler is to optimize the machine
instructions generated to produce a very efficient
object program. A secondary effect of this type of
optimization can be a reduction in the amount of main
storage required for the object module. The usa of
OPTIMIZE(TIME) could result in a substantial increase
in compile time over NOOPTIMIZE.

OPTIMIZE(O)
is the equivalent of NOOPTIMIZE.

OPTIMIZE(2)
is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization.

The OPTIONS option specifies that the compiler is to include in
the compiler listing, a list showing the compiler opticns, to be
used during this compilation. This list includes all those
applied by default, those specified in the PARM parameter of an
EXEC statement, and those specified in a PROCESS statement.

The SEQUENCE option specifies the extent of the part of each
input line or record that contains a sequence number. This
number is included in the source listings produced by the
INSOURCE and SOURCE option. Also, if the NUMBER option applies,
line numbers will be derived from these sequence numbers and
will be included in the source listings in place of statement
numbers. No attempt is made to sort the input lines or records
intg the specified sequerice. The SEQUENCE cption has the
syntax:

SEQUENCE(m,)
where 'm! specifies the column number of the left—-hand margin.

'n? specifies the column number of the right-hand
margin.

Chapter 2. The Compiler 25

SIZE OPTION

The extent specified should not overlap with the source program
(as specified in the MARGINS option),

The 1BM-supplied default for fixed-length records is SEQUENCE
(73,80); that for variable~length and undefined-length records
is SEQUENCE (1,8). -

If the SEQUENCE option is in effect, an external procedure
cannot contain more than 32,767 lines. To be able to compile an
external procedure containing more that 32,767 lines, the
NOSEQUENCE option must be specified provided that the actual
number of statements is no more than 32,767. Because NUMBER and
NONUMBER imply SEQUENCE, these options also should not be
specified.

This option can be used to limit the amount of main storage used

by the compiler. This is of value, for example, when
dynamically invoking the compiler, to ensure that space is left
?or other purposes. The SIZE option can be expressed in five
orms:

SIZEC(yyyyyyyy) .
specifies that yyvyyyyy bytes of main storage are to
be requested. Leading zeros are not required.

SIZE(yyyyyK)
specifies that vyyyvyK byvtes of main storage are to be
requested (1K=1024). Leading zeros are not required.

SIZE(~-yyyyyy)
specifies that the compiler is to obtain as much main
storage as it can, and then release yyyvyy bytes to
the operating system. Leading zeros are not required.

SIZE(-yyyK)
specifies that the compiler is to obtain as much main
storage as it can, and then release yyyK bytes to the
aperating system (1K=1024). Leading zeros are not
required.

SIZE(MAX)
specifies that the compiler is to obtain as much main
storage as it can.

The IBM default is SIZE(MAX), which permits the compiler to use
as much main storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the operating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a fixed amount of main storage, but
this amount can vary unknown to the compiler.

The negative forms can be useful when a certain amount of space
must be left free and the maximum size is unknown, or can vary
because the job is run in regions of different sizes.

After the compiler has loaded its initial phases and opened all
files, it attempts to allocate space for working storage.

If SIZE(MAX) is specified, it obtains all space remaining in the
region or partition (after allowance for subseaquent data
management storage areas). If a limit is specified, then this
amount is requested. If the amount available is less than
specified, but is more than the minimum workspace required,
compilation proceeds. If insufficient storage is available,
compilation is terminated. This latter situation should arise
only if the region or partition is too small, that is, less than
128K bytes, or if too much space for buffers has been requested.

26 0S PL/I Optimizing Compiler: Programmer's Guide

SMESSAGE OPTION

SOURCE OPTICON

STMT OPTION

STORAGE OPTION

SYNTAX OPTION

The value cannot exceed the main storage available for the job
step and cannot be changed after processing has begun.

This means that, in a batched compilation, the value established
when the compiler is invoked cannot be changed for later
programs in the batch. Thus it is ignored if specified in a
PROCESS statement.

In a TSO environment, an additional 10K to 30K bytes must be
allowed for TSO0. The actual size required for TS0 depends on
which routines are placed in the link-pack area (a common main
storage pool available to all regions).

For details on the use of the SIZE option under CMS, see the CMS
User's Guide for this compiler.

See "LMESSAGE Option™ on page 22.

The SOURCE option specifies that the compiler is to include in
the compiler listing a listing of the source program. The
source program listed is either the original source input or, if
the MACRO option applies, the output from the preprocessor.

The STMT option specifies that statements in the scurce program
are to be counted, and that this "statement number®™ is used to

identify statements in the compiler listings resulting from the
AGGREGATE, ATTRIBUTES, LIST, OFFSET, SQURCE, and XREF options.

STMT is implied by NONUMBER or GOSTMT. If NOSTMT is specified,
NUMBER and NOGOSTMT are implied.

The STORAGE option specifies that the compiler is to include in
the compiler listing a table giving the main storage
requirements for the object module.

The SYNTAX option specifies that the compiler is to continue
into syntax checking after initialization (or after
preprocessing if the MACRO option applies) unless an
unrecoverable error is detected. The NOSYNTAX option without an
argument causes processing to stop unconditionally after
initialization (or preprocessing). MWith an argument,
continuation depends on the severity of errors detected so far,
as follows:

NOSYNTAX (W))
No syntax checking if a warning, error, severe error,
or unrecoverable error is detected.

NOSYNTAX(E)
No syntax checking if an error, severe error, or
unrecoverable error is detected.

NOSYNTAX(S)
. No syntax checking if a severe error or unrecoverable
error is detected.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

Chapter 2. The Compiler 27

TERMINAL OPTION

XREF [(SHORT|FULL)]

If the compilation is terminated by the NOSYNTAX option, the
cross~reference listing, attribute listing, and other listings
that follow the source program will not be produced.

The use of this option can prevent wasted runs when debugging a
PL/I program that uses the preprocessor.

The TERMINAL option is applicable only in a conversational
environment. It specifies that a subset of or all of the
compiler listing produced during compilation is to be printed at
the terminal., If TERMINAL is specified without an argument,
diagnostic and informatory messages are printed at the terminal.
You can add an argument, which takes the form of an option list,
to specify other parts of the compiler listing that are to be
printed at the terminal.

The listing at the terminal is independent of that written on
SYSPRINT. However, if SYSPRINT is associated with the terminal,
only one copy of each option requested will be printed even if
it is requested in the TERMINAL option and also as an
independent option. The following option kevywords, their
negative forms, or their abbreviated forms, can be specified in
the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE,
LIST, MAP, OPTIGNS, SOURCE, STORAGE,
and XREF.

If the option does not apply to the SYSPRINT listing, specifying
it in the TERMINAL option has no effect. The other options that
relate to the listing (that is, FLAG, GONUMBER, GOSTMT,
LINECOUNT, LMSESSAGE/SMESSAGE, MARGINI, NEST, NUMBER, and the
SHORT and FULL suboptions of ATTRIBUTES and XREF) will be the
sane as for the SYSPRINT listing.

OPTION

The XREF option specifies that the compiler is to include in the
compiler listing a cross-reference table of names used in the
program together with the numbers of the statements in which
they are declared or referenced. For a description of the
format and content of the cross-reference table, see
"Cross—-Reference Table"™ on page 48.

if thg suboption SHORT is specified, unreferenced names are not
isted.

The default suboption FULL means that FULL applies if the option
is specified with no suboption.

If both XREF and ATTRIBUTES are specified, the two listings are
combined. If there is a conflict between SHORT and FULL, the
usage is determined by the last option specified. For example,
ATTRIBUTES(SHORT) XREF(FULL) results in FULL applying to the
combined listing.

SPECIFYING EXECUTION-TIME OPTIONS

Each execution of a PL/I program requires that values be
established for a set of PL/I execution-time options. These
options determine many of the properties of a PL/I program's
execution, including its performance, its error-handling
characteristics, and its production of debugging and tuning
information.

Generally, it is unwise to rely on default settings (whether
IBM-supplied or supplied by your loccal system programming
staff). Inappropriate settings of these options can adversely
atfect both the function and the performance of your program.

28 O0S PL/I Optimizing Compiler: Programmer's Guide

The correct settings of these options should be established for
all PL/I programs that you execute on a production basis.

You should understand in particular that almost no action vou
can take can do more to optimize the performance of a PL/I
program than the correct setting of these options. Conversely,
inappropriate settings of them can seriously degrade the
performance of even a well-coded PL/I program.

It is a waste of time to undertake serious performance
measurement or perfaormance-oriented modification of a PL/I
program until the execution-time options have been set
appropriately.

This fact is not new with Release 5; it is true of all prior
reifases of the 0S PL/I Optimizing Compiler and Libraries as
well.

If you are already aware of the importance of these options, and
have already undertaken to establish the proper value for
ISASIZE, for example, for some or all of your programs, then you
should take note of the fact that Release 5 adds three new
options related to storage management: ISAINC, HEAP, and
TASKHEAP. These options are described below along with the
other options provided prior to Release 5.

In most cases, a setting of ISASIZE which resulted in efficient
execution of your PL/I program on Release 4 will continue to do
so on Release 5, although this should be verified for programs
the performance of which is of critical importance.

If proper execution—-time options are being determined for the
first time for a program, if the program is to exploit 31-bit
addressing, or if the program is one which exhibits widely
varying storage requirements depending on its input data, then
the new storage~related execution—time options should be taken
into account., (See the section below entitled, "Execution—Time
Storage Requirements™.)

For each execution, the IBM or installation default for an
execution—-time option will apply unless it is overridden by a
PLIXOPT string in the source program or by the PARM parameter of
the EXEC statement for the execution step.

An option specified in the PLIXOPT string overrides the default
value, and an option specified in the PARM parameter overrides
that specified in the PLIXOPT string.

When execution~time options are not passed as parameters at
execution time, the ISA is acquired and used instead of internal
work areas. This provides faster execution but adds the
requirement that enough storage be available for the ISA. If
any execution options are passed at execution time, execution
will be slower.

SPECIFYING EXECUTION-TIME OPTIONS IN THE PLIXOPT STRING

Execution-time options can be specified in a source program by
means of the following declaration:

DCL PLIXOPT CHAR(len) VAR INIT('strg')
STATIC EXTERNAL;

where "strg" is a list of options separated by commas or blanks,
and "len"™ is a constant equal to or greater than the length of
"strg.™ The maximum length of "strg™ is 250 characters.

If more than one external procedure in a job declares PLIXOPT as
STATIC EXTERNAL, only the first string will be link-edited and
available at execution time,

The PLIXOPT string is ignored in a Checkout Compiler/0Optimizing
Compiler mixture environment.

Chapter 2. The Compiler 29

OPTION Applies to

(default USE Release
underlined)
Storage Control HEAP? Control storage for 5
allocated variables.
ISAINC? Size of increments of 5

storage added to
initial allocation.

ISASIZE Control initial % and 5
allocation of working
storage.
REPORT | NOREPORT Generate report of 4 and 5
storage usage.
TASKHEAP? Control HEAP storage 5
’ for each subtask for
multitasking.
Debugging . COUNTZ | NOCOUNT List number of times % and 5
each statement is
exacuted.
FLOW(n,m)2 | NOFLOW List last n branches G and 5
and m changes of
_ procedure. _
Error Handling SPIEINOSPIE Allow program check % and 5

interrupts to be
handled by PL/I (SPIE)
or prassed to system
(NOSPIE).

STAEINOSTAE Allow ABENDS to be % and 5
handled, if possible,
by PL/I (STAE), or by
system (NOSTAE).

Figure 7. Execution Time Options Listed by Function

Notes to Figure 7:

1 May be used only if all of the application is Release 5.

2 Only works if the FLOW or COUNT option was specified at compile time. Default
is what was specified at compile time.

SPECIFYING EXECUTION~TIME OPTIONS AND MAIN PROCEDURE PARAMETERS IN THE EXEC

STATEMENT

The method of coding the PARM parameter in an EXEC statement is
described under "Specifying Compiler Options in the EXEC
Statement™ on page 12.

If vou are using a cataloged procedure, you must qualify the
keyword PARM with the name of the execution step; for example:

7/STEP EXEC PLIXCLG,
/7 PARM.GO="ISASIZE(10K)"

30 0S PL/I Optimizing Compiler: Programmer's Guide

You can also use the PARM field to pass an argument to the PL/I
main procedure. To do so, place the argument, preceded by a
slash, after the execution-time options. For example:

//7G0 EXEC PGM=0PT,
/77 PARM="ISASIZE(10K)/ARGUMENT?®

If you wish to pass an argument without specifying options, it
should be preceded by a slash. For example:

77G0 EXEC PGM=0PT,PARM='/ARGUMENT®

If vyou omit the slash, vour program may execute correctly, but
it will incur extra overhead and cause a message regarding
"invalid options™ to be sent to SYSPRINT.

The method of coding the PARM parameter in an EXEC statement is
given under "Specifying Compiler Options in the EXEC Statement®
on page 12. See also "Execution-Time Options."™

EXECUTION-TIME OPTIONS

The following paragraphs describe the execution-time options,
which can be specified in the EXEC statement or in the PLIXOPT
string. The values of all parameters are filled in successively
from the system defaults, the PLIXOPT string, and the PARM
parameter of the EXEC statement. Figure 7 on page 30 lists the
options by function.

COUNT specifies that a count is to be kept of the number
of times each statement in the program is executed
and that the results are to be printed when the
program terminates. This option is discussed in
greater detail under "“Execution-Time COUNT Option™
on page 44.

NOCOQUNT specifies that statement counting is not to be
performed.

FLOWI(n,m) 1] specifies that a list of the most recent transfers
of control in the execution of the program is to
be generated. This option is discussed in greater
detail under "Execution-Time FLOW Option™ on

page 45
NOFLORW specifies that a flow list is not to be produced.
HEAP Release 5 Only) separates storage for allocated

(that is, CONTROLLED and dynamically allocated
BASED) variables from all other PL/I storage and
specifies how that storage is to be handled. 1In a
multitasking environment, HEAP option values apply
only to the major task; subtask allocated storage
is governed by the TASKHEAP option. The HEAP
option is discussed in greater detail under
"Execgéion*Time HEAP Option (Release 5 Only)" on
page .

The HEAP option has four parameters. These
include one or two positional parameters, both
optional, which must be numeric. If one or more
of the positional parameters is omitted, then one
or two keyword parameters can still be specified.
No leading commas are required to specify only the
keyword parameters. If the second positional
parameter is specified but the first omitted, then
a leading comma would be required to indicate the
missing first positional parameter.

Chapter 2. The Compiler 31

The syntax of the HEAP option is:
HEAP(size,increment, ANYWHERE |BELOW, KEEP | FREE)
where:

size is optional. If specified, it
determines the minimum initial size of
heap storage, and is specified in
bytes or as nnnK or as nnM. Storage
is acquired in multiples of 4K. If
not specified, no heap area is used.
The IBM-supplied default is HEAP(0),
that is, the HEAP option is not in
effect.

increment is optional. If specified, it
determines the minimum size of any
subsequent increment to the heap area.
Storage is acquired in multiples of
GK. The IBM-supplied default value
for the HEAP increment is 4K.

ANYWHERE specifies that PL/I can allocate the
heap area anywhere in storage. 1In an
MVS/XA environment, this allows PL/I
to locate heap storage either above or
below 16 megabytes; PL/I will usually
place it above 16 megabytes. In a
non—-MVS/XA environment, use of
ANYWHERE necessarily places heap
storage below 16 megabytes. ANYWHERE
is the IBM-supplied default.

BELOW specifies that PL/I must allocate heap
storage below 16 megabvte, in storage
accessible to 24-bit addressing.

KEEP specifies that storage allocated to
HEAP increments will not be released
when a FREE statement in the program
deallocates the last variable stored
there. This is the IBM-supplied
default.

FREE specifies that storage allocated to
HEAP increment will be released when
;EEEzaSt variable occupying it is

ISAINC (Release 5 Only) specifies the minimum size of an
increment to the ISA.

If ISAINC is not specified, when the storage
currently allocated to the ISA is not large enough
to handle all of a program's storage requests,
only that amount of storage needed at the time of
the request is obtained. When ISAINC is used, the
amount of storage allocated when the ISA is too
small for the current request is the larger of the
ISAINC size or the requested size, rounded up to
the next higher multiple of 4K. Thus the use of
the ISAINC option can save the increased execution
time caused by frequent GETMAINS of small amounts
of storage.

32 0S PL/I Optimizing Compiler: Programmer's Guide

ISASIZE

The syntax of the ISAINC option is:

ISAINC(sizel,size2)
where:
sizel specifies the minimum amount by which

size2

the ISA for the major task will be
incremented, and is specified in bytes
or as nnnk or nnM. The IBM-supplied
default is ISAINC=0.

specifies the minimum amount by which
the ISA for any subtask will be
incremented, and is specified in bytes
or as nnnk or nnM. "size2" is ignored
in a nontasking environment.

specifies the storage sizes and number of

subtasks.

The syntax of the ISASIZE option is:
ISASIZE(sizel,size2, tasks)

where:

sizel

size2

specifies the length of the initial
storage area.

This specifies the main (or only) task
size, in bytes or as nnnK or as nnM.
It can be preceded by a minus sign.
The storage will be contiguous.

A size of '0' causes PL/I to issue a
GETMAIN request for the largest block
of contiguous storage in the region;
PL/1I then returns half of that block
to the system and retains the other
half as its ISA.

The minus sign is used when stating
the amount of storage in the region or
partition that must be left outside
the resident load module and the ISA.
This storage will be contiguous. A
value of '-0' should not be specified
unless the largest possible ISA is
required and no files, including
SYSPRINT, will be used, and no
subtasks may be allocated. Otherwise
an ABEND may occur because of lack of
system storage.

ISASIZE=0 is the IBM-supplied default
in a nontasking environment. 1In a
multitasking environment, the default
is 8192 bytes.

specifies the length of each subtask
initial storage area. This is an
unsigned integer, n bytes, nnnK, or
nnM.

"size2" is ignored in a nontasking
environment.

Chapter 2. The Compiler 33

REPORT

NOREPORT

SPIE

NOSPIE

STAE

NOSTAE

TASKHEAP

‘tasks is a decimal integer that is the

maximum number of subtasks. The
IBM-supplied default is 20.

"tasks"™ is ignored in a nontasking
environment.

Commas must be provided if "size2™ or
"tasks? is used and earlier arguments
are omitted.

specifies that a report of the use of storage by a

program will be generated and placed on the file
with the ddname PLIDUMP or PL1DUMP at the end of
execution. A description of the output and how to
make use of it is given in "Execution-Time Storage
Requig?ments for Nonmultitasking Programs™ on

page .

REPORT output is headed by the name of the main
procedure and the time and date of the end of
execution. You can also supply vour own
identifier using the PLIXHD string. For more
information on PLIXHD, see "Using PLIXHD to
Identify COUNT and REPORT Qutput™ on page 37.

If no DD statement is provided for PLIDUMP or
PL1DUMP, a message 1s generated and the report is
not given.

The use of the REPORT option downgrades
performance.

specifies that no program management report is
required. This option may be abbreviated to NR.

specifies that when a program interrupt occurs,
the PL/I error handler is to be used. Under
certain circumstances the ERROR condition will be
raised.

specifies that on program initialization, PL/I
will not issue the SPIE or ESPIE macro to request
control after a program check. Unless running
under MVS/XA, do not use NOSPIE when extended
precision variables are used in the PL/1 source
program.

specifies that when an ABEND occurs, the PL/I
library routines are to attempt to raise the ERROR

conditions or to produce a diagnostic message and
a PLIDUMP.

specifies that on program initialization, PL/I
will not issue the STAE or ESTAE macro to request
control after an ABEND.

(Release 5 Only) specifies that a separate heap
storage area is to be created for each subtask in
a multitasking environment. This separates
storage for CONTROLLED and dynamically allocated
BASED variables in a subtask from all other PL/I
storage and specifies how that storage is to be
handled. ,

734 0S PL/I Optimizing Compiler: Programmer's Guide

The syntax of the TASKHEAP option is:
TASKHEAP(size,increment, ANYWHERE|BELOW, KEEP | FREE)
where:

size is optional. If specified, it
determines the minimum initial size of
taskheap storage, and is specified in
bytes or as nnnK or as nnM. Storage
is acquired in multiples of 4K. If
not specified, no taskheap area is
used. The IBM-supplied default is
TASKHEAP(0), that is, the TASKHEAP
option is pnot in effect.

increment is optional. If specified, it
determines the minimum size of any
subsequent increment to the taskheap
‘areas. Storage is acquired in
multiples of K. The IBM-supplied
default value for the TASKHEAP
increment is 4K.

ANYWHERE specifies that PL/I can allocate the
taskheap areas anywhere in storage.
In an MVS/XA environment, this allows
PL/I to locate taskheap storage either
above or below 16 megabytes; PL/I will
usually place it above 16 megabytes.
In a non—-MVS/XA environment, use of
ANYHHERE necessarily places taskheap
storage below the line. ANYWHERE is
the IBM-supplied default.

BELOW specifies that PL/I must allocate
taskheap storage below 16 megabytes,
in storage accessible to 24-bit
addressing.

KEEP specifies that storage allocated to
TASKHEAP increments will not be
released when a FREE statement in the
program deallocates the last variable
stored there. This is the
IBM-supplied default.

FREE specifies that storage allocated to
TASKHEAP increments will be released
gaggdthe last variable occupying it is

EXECUTION-TIME ISASIZE OPTION

The types of informétion kept in the ISA vary depending on
whether or not the HEAP option applies to the execution of your
current PL/I program.

The values vou specify for ISASIZE and for the related ISAINC,

HEAP, and TASKHEAP options determine the method used to acquire
storage for your program and, consequently, the time and space

that it uses.

It is important to set these values appropriately for each PL/I
program. Appropriate values for ISASIZE and ISAINC can
significantly reduce the number of GETMAINs and FREEMAINs
required for execution of your PL/I program.

Your major source of input for proper specification of options

generally is the PL/I storage management report, produced using
the REPORT option. ‘

Chapter 2. The Compiler 35

Storage associated with the ISA (and increments to the ISA) is
acquired below 16 megabytes on MVS/XA, so it is always
addressable in 24-bit mode.

On MVS/XA, since the ISA resides below 16 megabytes, the
residual storage reguested by a negative value of ISASIZE is
residual storage below 16 megabytes.

Note that the load module containing the PL/I program is not
always located in the user's region below 16 megabytes. For
example, the load module may be loaded above 16 megabytes on
MVS/XA, or it can be located in the link pack area of the
operating system.

EXECUTION-TIME ISAINC OPTION (RELEASE 5 ONLY)

EXECUTION-TIME HEAP

lhether or not the ISAINC option is used, both the ISA and all
increments added to it reside in storage below 16 megabytes, so
that the ISA and all increments to it are addressable in 24-bit
addressing mode under MVS/XA.

OPTION (RELEASE 5 ONLY)

If the value of the initial heap allocation results in zero,

then the HEAP option is not active. In this case, no separate

heap area is utilized, and all storage goes into the ISA or into

ascrgxents to the ISA. Such areas reside below 16 megabytes on
S/XA.

The HEAP option performs these functions:

1. It separates storage allocated to PL/I variables which vou
allocate with PL/I ALLOCATE statements, (that is, CONTROLLED
variables and dynamically allocated BASED variables), from
all other PL/I storage. It causes such variables to be
placed in a separate "heap™ area, rather than in the ISA or
an increment to the ISA. You may control both the minimum
initial size of the heap area and the minimum sizes of
subsequent increments tc the heap area. You can improve
performance by picking values for both HEAP and ISASIZE that
will minimize the number of times PL/I must acauire storage
from the operating systenm.

Neither the original heap area nor any increment to it is
acquired until your program executes an ALLOCATE statement
which requires storage not currently available in the heap
area.

Each acquisition of storage for the heap area is in
multiples of 64K bytes aligned on a 4K-bvte page boundary.
The first eight bytes of each such area contains PL/I
housekeeping information. Thus a GK-byte heap increment
occupies 4096 bytes, but provides 4088 bytes of space to
hold your data.

PL/I will place as many of vour CONTROLLED or dynamically
iliocated BASED variables in a unit of the heap area as will
it.

A based variable requires no additional space beyond itself,
although all allocations are begun on double-word
boundaries. A controlled variable requires a PL/I control
and possibly a PL/I string or aggregate descriptor in
addition to the variable itself.

2. It allows vou to specify whether PL/I should free an
increment of heap storage when FREE statements issued by
vour program leave a unit of the heap area enmpty.

The initial heap allocation is retained until program or
task termination.

36 0S PL/I Optimizing Compiler: Programmer's Guide

3. In the MVS/XA environment, it allows you to specify whether
the heap area must be kept below 16 megabytes, or whether
the heap area can go anywhere. If the latter is specified,
and your program is being executed in 31-bit addressing
mode, PL/1 will normally put the heap area above 16
megabytes on MVS/XA. If vou are executing your program in
24-bit addressing mode on MVS/XA or if vou are executing
your program on a non-MVS/XA system, either BELOW or
ANYWHERE may be specified, but the heap area will
necessarily be acquired in storage below 16 megabytes.

USING PLIXHD TO IDENTIFY COUNT AND REPORT OUTPUT

When COUNT or REPORT output is generated and vour program
contains a static external character variable called PLIXHD, the
value in PLIXHD is printed at the head of the output after the
name of the main procedure and the date and time of execution.
This allows vou to supply an identifier for such output.

To do this, PLIXHD must be declared as STATIC EXTERNAL CHARACTER
VARYING. (STATIC may be omitted because all EXTERNAL data is
STATIC by default). For example:

DCL PLIXHD EXTERNAL CHARACTER(58) VARYING
INITC'THIS IS A PLIXHD MESSAGE')

The printed output of PLIXHD is limited to one line and is
truncated if necessary. The result of using PLIXHD as shown
above would be:

STORAGE MANAGEMENT REPORT FOR PROCEDURE P
DATE 26 NOVEMBER 1981 TIME 13.15.16.00
THIS IS A PLIXHD MESSAGE

(Report Output goes here)

If PLIXHD is declared EXTERNAL but not CHARACTER VARYING, a
diagnostic message is generated during compilation. If PLIXHD
is CHARACTER but not VARYING, its value is printed as shown
above. In other cases, it will normally be ignored but could
lead to execution time errors.

EXECUTION-TIME STORAGE REQUIREMENTS FOR NONMULTITASKING PROGRAMS

During the execution of a nonmultitasking program, the region
used by vour PL/I program is divided into three areas; the load
module, the ISA (Initial Storave Areal), and the remainder,
called for convenience during the rest of this discussion
residual storage. If vou have used the HEAP execution-time
option, a fourth area, heap storage, will be established in the
residual area when vour program uses the ALLOCATE statement.
See Figure 8 on page 39.

The load module is used for the compiled code, constants, and
storage for STATIC variables. The ISA is used for storage of
all variables that are not STATIC and certain housekeeping
fields. Heap storage is used for controlled and dynamically
allocated BASED variables. These are referred to as PL/I
storage. Residual storage is used for 1I/0 buffers and
transiently lcaded routines from the PL/I and system libraries.
It is also used as an overflow area for the ISA and heap and,
consequently, may be used for PL/I storage.

The ISA is acquired by the PL/I program at the start of
execution and retained until termination. Consequently,
obtaining and freeing of storage within it can be managed by the
PL/I program without resorting to system facilities. Thus the
overheads of obtaining and freeing storage within the ISA are
small compared with using the residual area where GETMAIN and
FREEMAIN macro instructions have to be used. Execution is,
therefore, faster if all PL/I storage is contained in the ISA.
However, if significant parts of the ISA remain unused
throughout long perioads during the execution of a program, space

Chapter 2. The Compiler 37

is wasted because storage within the ISA cannot be used for
buffers or transient routines which must use the residual area.
Appropriate choice of the value of ISAINC can help reduce system
overheads if it is impractical to specify an ISASIZE large
enough to hold all PL/I storage. The fact that ISA storage is
quickly acquired and freed, but conversely may only be used for
certain items makes the choice of ISA size a critical factor in
determining both the time and space requirements of your
program.

Heap storage is acquired when the first ALLOCATE is encountered
during program execution. Increments to heap storage are
obtained when there is not enough space in the existing heap
storage to satisfy an ALLOCATE request and freed when all
variables within the increment have been freed. The initial
heap storage segment is retained until the main PL/1 procedure
terminates.

By using the REGION parameter in JCL in systems other than MFT,
vou can control the total size of the storage available to your
program, and by using the ISASIZE execution time option vou can
control how much of the region is included in the ISA. Output
from the REPORT option will indicate the best ISASIZE. This,
together with installation accounting information, will help to
determine the minimum practical region size.

When the REPORT option is in force, the use of storage is
monitored and a report generated at the end of the program. The
report is transmitted to the file with the ddname of PLIDUMP or
PLIDUMP and is identified by the name of the main procedure and
the date and time of execution. Optionally, the user can
generate a further report identifier by use of PLIXHD. The
REPORT option should only be used while the ISA size is being
determined. It involves a considerable time overhead and should
be removed as soon as possible. REPORT should be used after
COUNT and FLON have been removed, because COUNT and FLOW use
extra storage and so make the report inaccurate.

38 0S PL/I Optimizing Compiler: Programmer's Guide

LAYOUT OF REGION FOR NONMULTITASKING

ISA
Load Module (Initial Storage Area) Residual Storage
Compiled code, LIFO _SORAGE I/0 buffers,
link—edited AUTOMATIC variables transiently loaded
library modules, and block—dependant routines, overflow
STATIC variables, housekeeping fields for ISA and heap
constants storage, if HEAP
is used.
Free for further
Tt T
NON—-LIF0 STORAGE
BASED & CONTROLLED
variables (if HEAP is
not used) + other block
independent storage
LAYOUT OF REGION FOR MULTITASKING
LOAD MODULE ISA for MAIN TASK ISAs for

active subtasks
(use as ISA for
nonmultasking)

(use as ISA for

(use as above)
nonmultitasking)

Residual Storage
(use as above)

Figure 8. Storage Arrangements in Multitasking and Nonmultitasking Programs

Chapter 2. The Compiler 39

USING THE REPORT OPTION

40

When using the REPORT option, the best strategy to ensure
satisfactory results is to specify a very large ISASIZE so that
the chances of all PL/1 storage being within the ISA are high.
This gives the most accurate estimate of PL/I storage used, and
so the most accurate indication of the ISA size required. The
ISA size should then be set to the size of the PL/I storage used
and the program run again with the REPORT option to see if the
ISA size 1s satisfactory. It should be born in mind that
different data, or different paths through the program may
result in different storage requirements. If it is impractical
to specify a large ISA, an alternative is to specify a value of
1 and an ISAINC value of 0. This results in the minimum
acceptable ISASIZE being used. This minimum is such that PL/I
storage for the first and all subsequent blocks will be met from
residual storage. The disadvantage of this method is that it
tends to slightly overestimate the total amount of PL/I storage
used. Because of the method of measurement used, an ISASIZE
where PL/I storage is partly inside and partly outside the ISA
gives the least satisfactory result.

The output caused by the REPORT option for a nonmultitasking
program is shown with explanatory notes in Figure 9 on page 41l.

0S PL/I Optimizing Compiler: Programmer's Guide

STORAGE MANAGEMENT REPORT FOR MAIN PROCEDURE TEST
DATE 13 AUG 84 TIME 16.59.13.00

ISASIZE SPECIFIED 102400 BYTES The size specified in the
ISASIZE option. If the option
is not used, for nonmultitasking,
0 is given. For multitasking, 8192
bytes is given.

ISAINC SPECIFIED 0 BYTES The size specified in the
ISAINC option. If this option
is not used, 0 is given.

LENGTH OF INITIAL STORAGE AREA (ISA) 102400 BYTES
Length used.
Normally this is the length specified
or the default (half of what's left
when the load module is loaded.) However,
if this is not large enough for the
requirements of the first block,
another value is used.

AMOUNT OF PL/I STACK STORAGE REQUIRED 3074048 BYTES
This is the maximum amount of storage
that could have used the ISA.
It is the optimum ISASIZE in most
conditions but see text for provisos.

AMOUNT OF STORAGE OBTAINED QUTSIDE ISA 3074048 BYTES
Overflow of ISA, if any. 0 means none.

NUMBER OF STACK GETMAINS 3 Number of times ISA overflowed.
NUMBER OF STACK FREEMAINS 0 Number of times ISA overflow was freed.

NUMBER OF GET NON-LIFO REQUESTS 4
Number of times non-LIF0 storage was
requested.

NUMBER OF FREE NON-~LIFO REQUESTS 1 »
Number of times freeing of non-LIF0
storage was requested.

Non-LIFO storage is storage that is

not attached to a block, for example,
BASED and CONTROLLED storage, as opposed
to AUTOMATIC storage that is.

For a full description, see the
Execution Logic Manual.

HEAP SIZE SPECIFIED 0 BYTES The size specified in the HEAP option.
If the option is not specified, 0 is given.

HEAP INCREMENT SPECIFIED 4096 BYTES
The minimum size of subsequent increments
to HEAP storage, specified in a HEAP
option parameter. If the parameter is
not used, 4K is given.

AMOUNT OF PL/I HEAP STORAGE REQUIRED 0 BYTES
This is the maximum amount of storage that
heap could have used.

NUMBER OF HEAP GETMAINS 0 Number of times heap overflowed.

NUMBER OF HEAP FREEMAINS O Number of times heap overflow was freed.

NUMER OF GET HEAP REQUESTS 0 Number of times heap storage was requested.

NUMBER OF FREE HEAP REQUESTS 0 Number of times freeing c¢f heap storage was
requested.

Figure 9. REPORT Output and Its Meaning (Release 5 Example)

Chapter 2. The Compiler

41

Figure 9 on page 41 shows the output from the REPORT option. An
ISA size equal to the "Amount of PL/I Storage Required™ value in
the report will give the fastest execution time, because it will
allow all PL/I storage to be obtained within the ISA. However,
it may increase overall size requirements, for example, if a
program uses large BASED or CONTROLLED variables for a short
time during execution when HEAP is not used, or if a little used
subroutine contains a number of large variables, use of an
ISASIZE equal to the "PL/I Storage Required” figure may be
uneconomic as it will lead to the need for an unnecessarily
large region. Where space is critical, increase of ISA size
without increasing the REGION size may lead to the program
terminating because of lack of space.

The most important line items on the report other than "Amount
of PL/I Storage Required™ are those which specify numbers of
GETMAIN and FREEMAIN requests. Those associated with the ISA and

- its increments are identified as “stack™ GETMAIN's and

FINDING THE OPTIMUM

FREEMAIN's. Those associated with the HEAP area are identified
as "heap™ GETMAIN's and FREEMAIN's. These counts are important
because they show the cost associated with non-optimal ISASIZE
and HEAP values. If the size of the ISA can be cut in half at a
cost of a few extra GETMAIN and FREEMAIN requests, then that may
be acceptable or even desirable in some circumstances. If the
cost is thousands or millions of extra GETMAIN and FREEMAIN
requests, then it is probably unacceptable. The goal of the
ISASIZE, ISAINC, and HEAP coptions is to permit a trade-off to be
made between the amount of storage required and the cost of the
GETMAIN and FREEMAIN requests required to manage storage.

If a program has to run in the smallest possible area, it is
normally best to use an ISA size of 1. This results in all
storage requests being made within the residual area, thus all
spare storage is available for all purposes. This method does
have a disadvantage, however, where a large number of small
items, such as based variables, have to be allocated, because
each item requires eight additional bytes for chaining.

When optimum sizes for ISASIZE, ISAINC, and HEAP have been
determined, the program should be rerun with these sizes
specified and the REPORT option still in force so that the
results can be checked. When they are satisfactory the REPORT
option should be removed.

REGION SIZE

When the optimum storage options have been determined, the
optimum region size can be determined using the Svystem
Management Facilities (SMF) of the system. These will tell vou
the region size used by vour program. You should then specify
the size used as the REGION size for subsequent runs. The SMF
facilities are described in the operating system publications.

SMF does not give meaningful information about a PL/I program’'s
use of storage unless a positive ISASIZE value is specified. If
vou want SMF storage data to be meaningful for a PL/I program,
vou should not let ISASIZE default to the IBM value of half the
region excluding the load module, and you should avoid using a
negative number for ISASIZE. The implementation of either of
these values for ISASIZE requires that PL/I1 acquire the entire
region via GETMAIN and then release part of it via FREEMAIN. The
system accounting information provided by SMF in either case
will always show the entire region being used. This is not
useful for determining anything about the program's actual
storage requirements, and it may cause inflated billing charges
if SMF data is used to charge for storage.

G2 0S PL/I Optimizing Compiler: Programmer's Guide

EXECUTION-TIME STORAGE FOR MULTITASKING PROGRAMS

During the execution of a multitasking program, the region is
divided into the load module area, an ISA for every task (each
having the lifetime of its task), and the residual area that
reabsorbs the ISA of a task when it is detached. See Figure 8 on
page 39. The HEAP option, if in effect, provides a HEAP area for
the major task. If it is desired to provide separate heap areas
for the subtasks, then the TASKHEAP option can be specified to
accomplish this. On MVS/XA the load modules (and thus STATIC
storagce) may reside above 16 megabytes, and the heap areas
associated with the HEAP and TASKHEAP options may reside above
or below 16 megabytes. The various types of storage are used for
the same purposes as they are for nonmultitasking programs,
except that ISAs of subtasks (and the TASKHEAP areas if they are
required) are taken from the residual area, and later returned
to the residual area when the subtask terminates.

You should review the discussion above concerning storage
management for nonmultitasking. The various considerations
discussad there concerning ISASIZE, ISAINC, and HEAP apply to
ISASIZE, ISAINC, HEAP, and TASKHEAP for multitasking progranms.

Every time a task is attached, an ISA is acquired. Because ISAs
can only be used for certain types of storage, there is a danger
of the free area for transient routines and cther storage items
that cannot use ISAs becoming too small. Consequently, the
desirability of keeping all PL/I storage within the ISA is
considerably reduced when compared with nonmultitasking
programs.

USING THE REPORT OPTION

For multitasking programs, the REPORT option generates a report
of storage use that can be used to determine the optimum size

for the ISA of the main task, and the optimum size for the ISAs
of all subtasks. It can in addition be used to evaluate the

need for and effectiveness of values used for the ISAINC, HEAP,
and TASKHEAP options. The report contains the information shown
in Figure 9 on page 41 above for the main task, plus a combined
listing for all subtasks containing the information shown below.

. Largest and smallest ISA sizes used by subtasks.

. Largest and smallest amounts of PL/I storage obtained by
subtasks.

. Largest and smallest amounts of PL/I storage obtained
outside the ISA as increments to the ISA by any subtask.

. Largest and smallest amounts of PL/I storage obtained as
‘heap storage by any subtask, provided that the TASKHEAP
option is active.

. Total number of GETMAIN and FREEMAIN requests issued by all
subtasks to acquire and release increments to ISAs, .
identified as "stack"™ GETMAINs and FREEMAINs in the report.

. Total number of GETMAIN and FREEMAIN requests issued by all
subtasks to acquire and release TASKHEAP areas, identified
as "heap"™ GETMAINs and FREEMAINs in the report.

. Maximum number of subtasks attached at any one time.

As with nonmultitasking programs, the fastest execution will be
achieved if all tasks obtain all their PL/I storage from within
their own ISA. To achieve this result, the first figure in the
ISASIZE option should be set to the amount of PL/I storage
obtained for the main task, and second to the largest amount of
PL/1I storage obtained for any subtask. Whether or not this is
practical depends on the number of tasks active at any one time,
the difference in the storage usage of the subtasks, and the
storage use within each task.

Chapter 2. The Compiler 43

When an ISA size has been determined, a further run with the
REPORT option should be tried to ensure that the expected
results have been achieved. MWhen they are satisfactory, the
REPORT . option should be removed.

The third argument to ISASIZE (maximum number of active tasks)
is used to determine the number of subtask control blocks that
will be allocated. This figure is not critical as far as
storage use is concerned because the control blocks are not
large. However, if the figure specified (or defaulted) is
exceeded, execution will terminate. A generous figure should,
therefore, be specified for this argument.

When the optimum storage options have been established, the
optimum region size can be calculated using the System
Management Facilities (SMF) of the system. See "Finding the
Optimum Region Size™ on page 42.

EXECUTION~TIME COUNT OPTION

Statement count information can be obtained at execution time
only if one of the compiler options COUNT or FLOW was specified
at compile time. For further details, see "COUNT Option™ on
page 19, and "FLOW Option™ on page 19. If FLOW but not COUNT
was specified at compile time, COUNT must be specified at
execution to obtain count information. If COUNT was specified
at compile time, count information will be produced unless
NOCOUNT is specified at execution time.

Count information can be produced only when a statement number
table exists. If COUNT is specified at compile time, a table is
automatically produced. If only FLOW is specified at compile
time, and COUNT is specified at execution time, then to obtain
count information, GOSTMT or GONUMBER must also be specified at
compile time. '

Count output is written on the PLIDUMP file, or on the SYSPRINT
file if no dump file is provided. The output has the following

format:
PROCEDURE name
FROM T0 COUNT
1 20 1
21 30 10
200 210 1

Three such columns are printed per page.

To draw attention to statements that have not been executed,
ranges for which the count is zero are listed separately after
the main tables.

The count tables are printed when the program terminates. If a
procedure is invoked with one of the multitasking options, the
count table for the invocation is printed when the task
terminates.

Count output is headed by the name of the main procedure and the
time and date the output was generated. You can also supply
your own identifier for the output using the PLIXHD string. For
more information on PLIXHD, see "Using PLIXHD to Identify COUNT
and REPORT Output™ on page 37.

If no DD statement is provided for PLIDUMP or PL1DUMP, a message
is generated and COUNT output is written onto SYSPRINT if it has
a suitable format.

Under CICS, COUNT output is sent to SYSPRINT; for further
discussion see Chapter 15, ™Using PL/I on CICSY™ on page 360.

44 0S PL/I Optimizing Compiler: Programmer's Guide

PR

EXECUTION-TIME FLOW

If an invocation is terminated as a result of the termination of
another task, its count table cannot be printed, because it is
impossible to determine the point at which it terminated. In
these circumstances, only the count table for the first task to
terminate can be printed. For example, although a STOP
statement will cause all tasks to be terminated, only the count
table for the task containing the statement will be printed.

Count and flow output can be produced only for the main
procedure and inner procedures compiled with it. When control
is passed to a separate external PL/I procedure, any COUNT or
FLOW options in force are suspended until control is returned to
the main procedure. Only the compiler options that applied for
compilation of the main procedure have any effect on
execution-time COUNT and FLOW facilities.

OPTICN

Flow information can be obtained at execution time only if one
of the compiler options COUNT or FLOW was specified at compile
time. For further details on these options, see "COUNT Option™
on page 19, and "FLOW Option™ on page 19. If FLOW was not
specified at compile time, it must be specified at execution
time to obtain flow information. If FLOW was specified at
compile time, flow information will be produced unless NOFLOHW is
specified at execution time,

The format of the execution-time FLOW option is the same as that
of the compile-time FLOW option, that is:

FLOWLCn,m)]

where 'n' is the maximum number of entries to be made in the
flow output, and "m' is the maximum number of procedures for

ghich7entries are to be made. Neither 'n' or 'm' may exceed
2,767.

If 'n' and "m' are not specified at execution time, they are set
as follows:

. If FLOW was specified or defaulted at compile time, the
values of "'n' and "m' specified or defaulted at compile time
are used at execution time.

U If FLOW was specified at compile time without the

sub:arameters (n,m), the IBM default values (25,10) are
used.

. If NOFLOW was specified or defaulted at compile time, the
IBM default values (25,10), are used.

Flow output is written on the SYSPRINT file whenever an on—unit
with the SNAP option is executed. It is also included as part
of PLIDUMP output if "T"™ is included in the dump options string.
The format of each line of flow output is:

snl TO0 sn2 [IN namel

where:

snl
is the number of the statement from which the branch
was made (the branch out point).

sn2
is the number of the statement to which the branch was
made (the branch in point).

name

is the name of the procedure or the type of the
on-unit that contains "sn2"™ if this is different from
that containing "snl."™

Chapter 2. The Compiler 45

COMPILER LISTING

HEADING INFORMATION

The branches are listed in the order in which they occur. The
last '"n' branch-in/branch-out point and the last "'m' procedures
or on-units are listed. If more than 'm! procedures or on-units
are entered in the course of "n' branches, changes prior to the
last ™m' procedures or on-units are indicated by printing
BUNKNOWN™ for "name.™

During compilation, the compiler generates a listing, most of
which is optional, that contains information about the source
program, the compilation, and the object module. It places this
listing in the data set defined by the DD statement with the
name SYSPRINT (usually output to a printer). In a TSO
environment, vou can also redquest a listing at vour terminal
(using the TERMINAL option). The following description of the
listing refers to its appearance on a printed page.

An example of the listing produced for a typical PL/I program is
given in Appendix D, "Sample Program™ on page 407. ’

The first part of Figure 6 on page 16 shows the components that
can be included in the compiler listing. The rest of this
section describes them in detail.

0f course, if compilation tgrminates before reaching a
particular stage of processing, the corresponding listings will
not appear.

The listing comprises a small amount of standard information
that always appears, together with those items of optional
information specified or supplied by default. The listing at
the terminal contains only the optional information that has
been requested in the TERMINAL option.

The first page of the listing is identified by the name of the
compiler, the compiler version number, the time compilation
commenced (if the system has the timer feature), and the date;
this page, and subsequent pages are numbered.

The listing either ends with a statement that no errors or
warning conditions were detected during the compilation, or with
one or more messages. The format of the messades is described
under "Messages"™ on page 5. If the machine has the timer
feature, the listing also ends with a statement of the CPU time
taken for the compilation and the elapsed time during the
compilation; these times will differ only in a multiprogramming
environment.

The following paragraphs describe the optional‘parts of the
listing in the order in which they appear.

OPTIONS USED FOR THE COMPILATICN

PREPROCESSOR INPUT

If the option OPTIONS applies, a complete list of the options
used for the compilation, including the default options, appears
on the first page.

If both the options MACRO and INSCURCE apply, the input to the
preprocessor is listed, one record per line, each line numbered
sequentially at the left.

46 0S PL/I Optimizing Compiler: Programmer's Guide

If the preprocessor detects an error, or the possibility of an
error, it prints a message on the page or pages following the
input listing. The format of these messages is exactly as
described for the compller messages described under "Messages™
on page 54.

SOURCE PROGRAM

If the option SOURCE applies, the input to the compiler is
listed, one record per line; if the input records contain
printer control characters or %SKIP or %PAGE statements, the
lines will be spaced accordingly. X%NOPRINT and %PRINT
statements can be used to suppress and restart the printing of
the listing.

If the option NUMBER applies, and the source program contains
iine numbers, these numbers are printed to the left of each
ine. :

If the option STMT applies, the statements in the source program
are numbered sequentially by the compiler, and the number of the
“first statement in the line appears to the left of each line in
which a statement begins. If the source statements are
generated by the preprocessor, columns 82-84 contain diagnostic
information, as shown in Figure 15 on page 59.

STATEMENT NESTING LEVEL

If the option NEST applies, the block level and the do-level are
printed to the right of the statement or line number under the
headings LEV and NT respectively, for example:

STMT LEV NT

A: PROC OPTIONS(MAIN);
B: PROC;
DCL K(10,10) FIXED BIN (15);
DCL Y FIXED BIN (15) INIT (6);
DO I=1 TO 10;
DG J=1 TO 10;
KC(I,J) = N;

WN OOV NSOULTDUWN -
HFRWWHNNDNNNNNN -
CHMRMRENNHOODOO

ot ot ot ot

ATTRIBUTE AND CROSS~REFERENCE TABLE

If the option ATTRIBUTES applies, the compiler prints an
attribute table containing a list of the idantifiers in the
source program together with their declared and default
attributes. In this context, the attributes include any
relevant options, such as REFER, and also descriptive comments,
such as:

/%STRUCTUREX/

If the option XREF applies, the compiler prints a ’
cross-reference table containing a list of the identifiers in
the source program together with the numbers of the statements
or lines in which they appear. If both ATTRIBUTES and XREF
apply, the two tables are combined. If the suboption SHORT
applies, unreferenced identifiers are not listed.

Chapter 2. The Compiler 47

ATTRIBUTE TABLE

If an identifier is declared explicitly, the number of the
DECLARE statement is listed. An undeclared variable is
indicated by asterisks. (Undeclared variables are also listed
in an error message.) The statement numbers of statement labels
and entry labels are also given.

The attributes INTERNAL and REAL are never included; they can be
assumed unless the respective conflicting attributes, EXTERNAL
and COMPLEX, appear.

For a file identifier, the attribute FILE always appears, and
the attribute EXTERNAL appears if it applies; otherwise, only
explicitly declared attributes are listed.

For an array, the dimension attribute is printed first; the
bounds are printed as in the array declaration, but expressions
are replaced by asterisks and structure levels other than base
elements have their bounds replaced by asterisks.

For a character string or a bit string, the length, preceded by
the word BIT or CHARACTER, is printed as in the declaration, but
an expression is replaced by an asterisk.

If the SHORT suboption applies, unreferenced identifiers are not
listed.

CROSS~REFERENCE TABLE

If the cross-reference table is combined with the attribute
table, the numbers of the statements or lines in which a name
appears follow the list of attributes for the name. The order
in which the statement numbers appear is subject to any
reordering of blocks that has occurred during compilation. In
general, the statement numbers for the outermost block are given
first, followed on the next line by the statement numbers for
the inner blocks.

The PL/I text is expanded and optimized to a certain extent
before the cross-reference table is produced. Consequently,
some names that may appear only once within a source statement
may acquire multiple references to the same statement number.
By the same token, other names may appear to have incomplete
lists of references, while still others may have references to
statements in which the name does not appear explicitly.

For example:

. Duplicate references may be listed for items such as do-loop
control variables, and for some aggregates.

U Optimization of certain operations on structures can result
in incomplete listings in the cross-reference table; the
numbers of statements in which these operations are
performed on major or minor structures are listed against
the names of the elements, instead o+ against the structure
names.

. No references to PROCEDURE or ENTRY statements in which a
name appears as a parameter are listed in the
cross-reference table entry for that name.

. References within DECLARE statements to variables that are
not being declared are not listed. For example, in the
statements:

DCL ARRAY(N);
DCL STRING CHAR(N);

no references to these statements would appear in the
cross-reference table entry for N.

48 0S PL/I Optimizing Compiler: Programmer's Guide

. The number of a statement in which an implicitly
pointer—qualified based variable name appears is included
not only in the list of statement numbers for that name, but
also in the list of statement numbers for the pointer
implicitly associated with it.

. The statement number of an END or LEAVE statement that
refers to a label is not listed in the entry for the label.

. Automatic variables declared with the INITIAL attribute have
a reference to the PROCEDURE or BEGIN statement for the
block containing the declaration included in the list of
statement numbers.

AGGREGATE LENGTH TABLE

An aggregate length table is obtained by using the AGGREGATE
option. The table shows how each aggregate in the progranm is
mapped. It contains the following information:

. The statement number in which the aggregate is declared.

. The name of the aggregate and the element within the
aggregate.

. The level number of each item in a structure.
. The number of dimensions in an array.

. The byte offset of each element from the beginning of the
aggregate. (The bit offset for unaligned bit-string data is
not given). As a word of caution, be careful when
interpreting the data offsets indicated in the data length
table. An odd offset does not necessarily represent a data
element without halfword, fullword, or even double word
alignment, If the aligned attribute is specified or
inferred for a structure or its elements, the proper
alignment requirements will be consistent with respect to
other elements in the structure, even though the table does
not obviously indicate the proper alignment relative to the
beginning of the table.

. The length of each element.

. The total length of each aggregate, structure and
sub-structure.

If there is padding between two structure elements, a
/%PADDING%/ comment appears, with appropriate diagnostic
information.

The table is completed with the sum of the lengths of all
aggregates that do not contain adjustable elements.

The statement or line number identifies either the DECLARE
statement for the aggregate, or, for a controlled aggregate, an
ALLOCATE statement for the aggregate. An entry appears for each
ALLOCATE statement inveolving a controlled aggregate, as such
statements can have the effect of changing the length of the
aggregate during execution. Allocation of a based aggregate
does not have this effect, and only cone entry, which is that
corresponding to the DECLARE statement, appears.

When passing an aggregate to a subroutine, the length of an
agaregate may not be known during compilation, either because
the aggregate contains elements having adjustable lengths or
dimensions, or because the aggregate is dynamically defined. 1In
these cases, the word Madjustable™ or "defined™ appears in the
the "offset"™ column while "param™ for parameter appears in the
"element length™ and/or "total length™ columns. Because the
length of an aggregate may not be known during compilation,
padding information cannot be printed.

Chapter 2. The Compiler 49

An entry for a COBOL mapped structure, that is, for a structure
into which a COBOL record is read or from which a COBOL record
is written, or for a structure passed to or from a COBOL
program, has the word "COBOL™ appended. Such an entry will
appear only if the compiler determines that the COBOL and PL/I
mapping for the structure is different, and creation of a
temporary structure mapped according to COBOL synchronized
structure rules is not suppressed by one of the options NOMAP,
NOMAPIN, and NOMAPOUT,

An entry Tor a FORTRAN mapped array, that is, an array passed to
or from a FORTRAN. program, has the word "FORTRAN™ appended.

If a COBOL or FORTRAN entry does appear it is additional to the
entry for the PL/I mapped version of the structure.

A separate entry will be made in the aggregate table for every
aggregate dummy argument or FORTRAN mapped array or COBOL mapped
structure.

STORAGE REQUIREMENTS

If the option STORAGE applies, the compiler lists the following
information under the heading "Storage Requirements®™ on the page
following the end of the aggregate length table:

. The storage area in bytes for each procedure.
. The storage area in bytes for each begin block.
. The storage area in bytes for each on-unit.

U The dynamic storage area in bytes for each procedure, begin
block, and on-unit. The dynamic storage area is acquired at
activation of the block.

. The length of the program control section. The program
control section is the part of the object that contains the
executable part of the program.

. The length of the static internal control section. This
control section contains all storage for variables declared
STATIC INTERNAL.

STATEMENT OFFSET ADDRESSES

If the option OFFSET applies, the compiler lists, for each
primary entry point, the offsets at which statements occur.
This information is found, under the heading "Table of Offsets
and Statement Numbers,"™ following the end of the storage
requirements table.

Offsets given in error messages can be compared with this table
and the erroneous statement discovered. The statement is
identified by finding the section of the table that relates to
the procedure or on-unit named in the message and then finding
the largest entry in the table that is less than the offset in
the message. If the procedure or on-unit name specified in the
message is the same as that in the table (os it will be unless a
iecogdary entry point is used), the statement will have been
ound.

If a secondary entry point is used the correct offset must be
calculated.

The offset figure in the message is taken from the entry point
used by the program and mentioned in the message. The offset
used in the table is taken from the primary entry point of the
procedure. If the entry points are not the same, the offset of
the entry point must be added to the figure given in the
execution time message and this figure used to establish the
statement number.

50 O0S PL/I Optimizing Compiler: Programmer's Guide

In the program whose listing is shown below, the error message
gives an offset of X'50' from the entry point A2. Entry point
A2 is not the primary entry point. From the listing it can be
seen that entry point A2 (statement 5) is at offset X'78'. To
get the true offset, it is necessary to add the two figures and
arrive at an offset of X'C8'. From the table it is clear that
this offset is within statement 6.

SOURCE LISTING

M:PROC OPTIONSC(MAIN);
CALL AZ2;
Al:PROC;
N=3;

A2:ENTRY;

N=N/0;

END;

END;

TABLES OF OFFSETS AND STATEMENT NUMBERS
WITHIN PROCEDURE M

OO DN -

OFFSET (HEX) 0 56 SE
STATEMENT NO. 1 2 8

WITHIN PROCEDURE Al
OFFSET (HEX) 0 78 A8 B4
STATEMENT NO. 3 5 G 6
Message:

IBM301] *ONCODE'=0320 'ZERODIVIDE"
CONDITION RAISED AT OFFSET +000050 IN
PROCEDURE WITH ENTRY A2

If a BEGIN block is involved, the offset to the BEGIN statement
must be added before the process begins.

EXTERNAL SYMBOL DICTIONARY

If the option ESD applies, the compiler lists the contents of
the external symbol dictionary (ESD).

The ESD is a table containing all the external symbols that
appear in the object module. (The machine instructions in the
object module are grouped together in what are termed control
sections; an external symbol is a name that can be referred to
in a control section other than the one in which it is defined.)
The contents of an ESD appear under the following headings:

SYMBOL An 8-character field that identifies the external
symbol.

TYPE Two characters from the following list to identify the
type of entry:

sD Section definition: the name of a control
section within the object module.

CM Common area: a type of control section that
contains no data or executable instructions.

ER External reference: an external symbol that is
not defined in the object module.

WX Weak external reference: an external symbol that
is not defined in this module and that is not to
be resolved unless an ER entry is encountered
for the same reference.

Chapter 2. The Compiler 51

PR Pseudoregister: a field in a communications
area, the task communications area (TCA), used
by the compiler and by the library subroutines
for handling files and controlled variables.

LD Label definition: the name of an entry point to
the external procedure other than that used as
the name of the program control section.

ID Four-digit hexadecimal number: all entries in the ESD,
except LD-type entries, are numbered sequentially,
commencing from 0001.

ADDR Hexadecimal representation of the address of the
external symbol.

LENGTH The hexadecimal length in bytes of the control section
(SD, CM and PR entries onlvy).
ESD ENTRIES
The external symbol dictionary always starts with the standard
entries shown in the table below, which assumes the existence of
an external procedure called NAME.

External Symbol Dictionary

Symbol Type ID Address Length
PLISTART SD 0001 000000 000050
*X%%XNAME] SD 0002 0000090 014538
%XXXNAME2 SD 0003 000000 004F40
PLITABS WX 0004 000000
PLIXOPT WX 0005 000000
IBMBPOPT WX 0006 000000
PLIXHD WX 0007 000000
IBMBEATA WX? 0008 000000
PLIFLOKW WX 0009 000000
PLICOUNT WX 000A 000000
IBMBPIRA ER 000B 000000
IBMBPIRB ER 000C 000000
IBMBPIRC ER 000D 000000
PLICALLA LD 000006
PLICALLB LD 00000A
PLIMAIN SD 0B0E 000000 000008

1 An ER type entry for IBMBEATA is
produced if the INTERRUPT compiler
option is specified.

PLISTART
SD-type entry for PLISTART. This control section transfers
control to the initialization routine IBMBPIR. MWhen
initialization is complete, control passes to the address
stored in the control section PLIMAIN. (Initialization is
required only once during the execution of a PL/I program,
even if it calls another external procedure; in such a
case, control passes directly to the entry point named in
;?fMgéhL)statement, and not to the address contained in

x¥xnamel
SD-type entry for the program control section (the control
section that contains the executable instructions of the
object module). This name is the first label of the
external procedure, padded on the left with asterisks to 7
characters if necessary, and extended on the right with the
character 1.

52 0S PL/I Optimizing Compiler: Programmer's Guide

OTHER ESD ENTRIES

x¥¥name

SD-type entry for the static internal control section
(which contains main storage for all variables declared
STATIC INTERNAL). This name is the first label of the
external procedure, padded on the left with asterisks to 7
characters if necessary, and extended on the right with the
character 2.

IBMBPIRA

ER-type entry for IBMBPIRA, the entry point of the PL/I
resident library subroutine that handles program
initialization and termination.

The remaining entries in the external symbol dictionary vary,
but generally include the following:

SD-type entry for the 4-byte control section PLIMAIN, which
contains the address of the primary entry point to the
external procedure. This control section is present only if
the procedure statement includes the option MAIN.

Weak external reference to a number of housekeeping control
sections as Tollows:

PLITABS A control section based on a structure that may be
declared in the PL/I program to control formatting
of stream files.

PLIXOPT Execution time options string control section.

IBMBEATA A module in the PL/I library used to set the
attention exit for use in procedures compiled with
the INTERRUPT option. This is an ER type entry if
th:_procedure was compiled with the INTERRUPT
option.

PLIFLOW A control section used to hold information
generated by the FLOW cption.

PLICOUNT A control section used to hold information
generated by the COUNT option.

LD-type entries for all names of entry points to the
external procedure.

ER~type entries for all the library subroutines and external
procedures called by the source program. This list includes
the names of resident library subroutines called directly by
compiled code (first-level subroutines), and the names of
other resident library subroutines that are called by the
first-level subroutines.

CM-type entries for nonstring element variables declared
STATIC EXTERNAL without the INITIAL attribute.

SD-type entries for all other STATIC EXTERNAL variables and
for external file names.

PR~type entries for all file names. For external file
names; the name of the pseudoregister is the same as the
file name; for internal file names, the-compiler generates
pseudoregister names.

PR-type entries for all controlled variables. For external
variables, the name of the variable is used for the
pseudoregister name; for internal variables, the compiler
dgenerates names.

Chapter 2. The Compiler 53

STATIC INTERNAL STORAGE MAP

OBJECT LISTING

MESSAGES

" The MAP option produces a Variable Offset Map. This map shows

how PL/]I data items are mapped in main storage. It names each
PL/I identifier, its level, its offset from the start of the

storage area in both decimal and hexadecimal form, its storage
class, and the name of the PL/I block in which it is declared.

If the LIST option is also specified a map of the static
internal and external control sections is also produced.

If the option LIST applies, the cdmpiler generates a listing of
the machine instructions of the object module, including any
gompiler—generated subroutines, in a form similar to Assembler
anguage.

'Both a static internal storage map and the object listing

contain information that cannot be fully understood without a
knowledge of the structure of the object module. This is beyond
the scope of this manual, but a full description of the object
module, the static internal storage map, and the object listing
can be found in 0S5 PL/1 Optimizing Compiler: Execution lLogic.

If the preprocessor or the compiler detects an error, or the
possibility of an error, they generate messages. Messages
generated by the preprocessor appear in the listing immediately
after the listing of the statements processed by the
preprocessor. You can generate your own messages in the
preprocessing stage by use of the %NOTE statement. Such
messages might be used to show how many times a particular
replacement had been made. Messages generated by the compiler
appear at the end of the listing. All messages are graded
according to their severity, as follows:

I An informatory message that calls attention to a possible
inefficiency in the program or gives other information
generated by the compiler that may be of interest to you.

W A warning message that calls attention to a possible error,
although the statement to which it refers is syntactically
valid.

E An error message that describes an error detected by the

compiler for which the compiler has applied a “fix-up™ with
.confidence. The resulting program will execute and will
probably give correct results.

S A severe error message that specifies an error detected by
the cempiler for which the compiler cannot apply a "fix-up®™
with confidence. The resulting program will execute but
will not give correct results.

u An unrecoverable error message that describes an error that
forces termination of the compilation.

The cohpiler lists only those messages with a severity equal to
or greater than that specified by the FLAG option, as shown in
Figure 10 on page 55.

Each message is identified by an 8-character code of the form
IELnnnnl, where:

. The first three characters "IELY identify the message as
coming. from the optimizing compiler.

. The next four characters are a 4-digit message number.

56 05 PL/I Optimizing Compiler: Programmer's Guide

RETURN CODES

BATCHED COMPILATION

. The last character "I"™ is an operating system code for the
operator indicating that the message is for information
only.

The text of each message, an explanation, and any rgcommended
programmer response, are given in the messages publication for
this compiler.

Type of message Option
Informatory FLAG(I)
Warning FLAG(HW)
Error FLAG(E)
Severe Error FLAG(S)
Unrecoverable Error Always listed

Figure 10. Selecting the Lowest Severity of Messages to be
Printed, Using the FLAG Option

For every compilation job or job step, the compiler generates a
return code that indicates to the operating system the degree of
success or failure it achieved. This code appears in the "end
of step" message that follows the listing of the job control
statements and job scheduler messages for each step. The
meanings of the codes are given in Figure 1l1l.

Return .

Code Meaning

0000 No error detected; compilation completed; successful
execution anticipated.

0004 Possibkle error (warning) detected; compilation
completed; successful execution probable.

0008 Error detected; compilation completed; successful
execution probable.

0olz2 Severe error detected; compilation may have been
completed; successful execution improbable.

0016 Unrecoverable error detected; compilation terminated

abnormally; successful execution impossible.

Figure 11. Return Codes from Compilation of a PL/I Program

Batched compilation allows the compiler to compile more than one
external PL/1 procedure in a single job step. The compiler
creates an object module for each external procedure and stores
it sequentially either in the data set defined by the DD
statement with the name SYSPUNCH, or in the data set defined by
the DD statement with the name SYSLIN. Batched compilation can
increase compiler throughput by reducing operating system and
compiler initialization overheads.

Chapter 2. The Compiler 55

SIZE OPTION

NAME OPTION

To specify batched compilation, include a compiler PROCESS
statement as the first statement of each external procedure
except possibly the first. The PROCESS statements identify the
start of each external procedure and allow compiler options teo
be specified individually for each compilation. The first
procedure may require a PROCESS statement of its own, because
the options in the PARM parameter of the EXEC statement apply to
all procedures in the batch, and may conflict with the
requirements of subsequent procedures.

The method of coding a PROCESS statement and the options that
may be included are described under "Specifying Compiler UOptions
in the XPROCESS Statement™ on page 13. The options specified in
a PROCESS statement apply to the compilation of the source
statements between that PROCESS statement and the next PROCESS
statement. Options other than these, either the defaults or
those specified in the PARM field, will also apply to the
compilation of these source statements. Two options, the SIZE
option and the NAME option have a particular significance in
batched compilations, and are discussed below. Furthermore,
OBJECT, MDECK, and DECK may cause problems if they are specified
on second or subsequent compilations but not on the first. This
is because they require the opening of SYSLIN or SYSPUNCH and
there may not be room for the associated data management
routines and control blocks. MWhen this happens compilation ends
with 80A ABEND.

In a batched compilation, the SIZE specified in the first
procedure of a batch (by a PROCESS or EXEC statement, or by
default) is used throughout. If SIZE Is specified in subsequent
procedures of the batch, it is diagnosed and ignored. The
gogp%ler does not reorganize its storage between procedures of a
atch.

The NAME option specifies that the compiler is to place a
linkage editor NAME statement as the last statement of the
object module. The use of this option in the PARM parameter, of
the EXEC statement, or in a PROCESS statement determines how the
object modules produced by a batched compilation will be handled
by the linkage editor. When the batch of object modules is
link-edited, the linkage editor combines all the object modules
between one NAME statement and the preceding NAME statement into
a single load module; it takes the name of the load module from
the NAME statement that follows the last object module that is
to be included. HWhen combining two object modules into one load
module, the NAME opticon should not be used in the EXEC
statement. An example of the use of the NAME option is giveh in
Figure 12 on page 57.

56 0S PL/] Optimizing Compiler: Programmer's Guide

7/ EXEC PLIXC,PARM.PLI=TLIST"

X PROCESS NAME('AY);
ALPHA: PROC OPTIONS(MAIN);

END ALPHA;
X PROCESS;
BETA: PROC;
END BETA;

¥ PROCESS NAME('B');
GAMMA: PROC;

END GAMMA;
Figure 12. Use of the NAME Option in Batched Compilation

Compilation of the PL/I procedures ALPHA, BETA, and GAMMA, would
result in the following object modules and NAME statements:

Object module for ALPHA
NAME A (R)

Object module for BETA

Object module for GAMMA
NAME B (R)

From this sequence of object modules and control statements, the
linkage editor would produce two load modules, one named A
containing the object module for the external PL/I procedure
ALPHA, and the other named B containing the object modules for
the external PL/I procedures BETA and GAMMA.

You should not specify the option NAME if vou intend to process

the object modules with the loader. The loader processes all

object modules into a single load module; if there is more than

228 n:ae, the loader recognizes the first one only and ignores
e others.

RETURN CODES IN BATCHED COMPILATION

The return code generated by a batched compilation is the
highest code that would be returned if the procedures were
compiled separately.

JOB CONTROL LANGUAGE FOR BATCHED PROCESSING

The only special consideration relating to JCL for batched
processing refers to the data set defined by the DD statement
with the name SYSLIN. 'If yvou include the option O0BJECT, ensure
that this DD statement contains the parameter DISP=(MOD,KEEP) or
DISP=(MOD,PASS). (The IBM-supplied cataloged procedures specify
DISP=(MOD,PASS).) If vou do not specify DISP=MOD, successive
object modules will overwrite the preceding modules.

Chapter 2. The Compiler 57

EXAMPLES OF BATCHED COMPILATIONS

If the external procedures are components of a large program and
need to be executed together, they can be link-edited together
and executed in subsegquent job steps. Cataloged procedure
PLIXCG can be used, as shown in Figure 13.

/70PTG4¥#13 JOB
/7/7STEPL1 EXEC PLIXCG
/7PLI.SYSIN DD x
First PL/I source module
% PROCESS;

¥ PROCESS;

Second PL/1 source module

Third PL/I source module
//GO SYSIN DD *

Data processed by comblned

PL/7I modules

/%

Figure 13. Example of Batched Compilation, Including Execution

If the external procedures are independent programs to be
invoked individually from a load module library, cataloged
procedure PLIXCL can be used. For example, a job that contains
three compile-and-link-edit operations can be run as a s1ngle
batched compilation, as shown in Figure 164.

/7/70PTG4¥16 JOB
s/STEP1 EXEC PLIXCL,
/7 PARM.PLI="NAME(''PROG1'")"*,
/7 PARM.LKED=LIST
7//PLI.SYSIN DD x
First PL/I source program
¥ PROCESS NAME('PROG2');
Second PL/I source program
X PROCESS NAME(®*PROG3');
Third PL/I source program
/%
//LKED.SYSLMOD DD DSN= PUBPGM,
77/ DISP=0LD

Figure 14. Example of Batched Compilation, Excluding Execution

One of these programs, such as PR0OG2, can be invoked from thé
load module library as follows:

/7/0PTEX JOB

/7JOBLIB DD DSNAME=PUBPGM, DISP=SHR
/7J2 EXEC PGM=PROG2

//SYSIN DD *

Bata processed by program PR0OGZ2
Va3) .

58 0S PL/I Optimizing Compiler: Programmer's Guide

COMPILE-TIME PROCESSING (PREPROCESSING)

The preprocessing facilities of the compiler are described in
the language reference manual for this compiler. You can
include in a PL/I program statements that, when executed by the
preprocessor stage of the compiler, modify the source program or
cause additional source statements to be included from a
library. The following discussion supplements the information
contained in the language reference manual by providing some
illustrations of the use of the preprocessor and explaining how
to establish and use source statement libraries.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is executed if vyou
specify the compiler option MACRO. The compiler and the
preprocessor use the data set defined by the DD statement with
the name SYSUT1 during processing. They also use this data set
to store the preprocessed source program until compilation
begins. The IBM-supplied cataloged procedures for compilation
all include a DD statement with the name SYSUT1.

The term MACRO owes its origin to the similarity of some
applications of the preprocessor to the macro language available
with such processors as the IBM 0S/VS-DOS/VSE-VM/ 370 Assembler.
Such a macro languacge allows you to write a single instruction
inh a program to represent a sequence of instructions that have
previously been defined.

The format of the preprocessor output is given in Figure 15.

Column 1

Columns 2-72

Columns 73-80

Column 81
Columns 82,83

Column 84

Printer control character, if any, transferred from the position
specified in the MARGINS option.

Source program. If the original source program used more than 71
columns, then additional lines are included for any lines that need
continuation. If the original source program used less than 71
columns, then extra blanks are added on the right.

Sequence number, right-aligned. If either SEQUENCE or NUMBER apply,
this is taken from the sedquence number field. Otherwise, it is a
preprocessor generated number, in the range 1 thrcough 99999. This
sequence number will be used in the listing produced by the INSOURCE

. and SOURCE options, and in any preprocessor diagnostic messages.

blank

Two-digit number giving the maximum depth of replacement by the
preprocessor for this line. If no replacement occurs, the columns

are blank.

"EM signifying that an error has occurred while replacement is being

attempted. If no error has occurred, the column is blank.

Figure 15. Format of the Preprocessor Qutput

Three other compiler options, MDECK, INSOURCE, and SYNTAX, are
meaningful only when vou also specify the MACRO option. All are
described in detail under "Compiler Options"™ on page 11.

A simple example of the use of the preprocessor to produce a
source deck for a procedure SUBFUN is shown in Figure 16 on
page 60; according to the value assigned to the preprocessor
variable USE, the source statements will represent either a
subroutine or a function. ' The DSNAME used for SYSPUNCH
specifies a source program library on which the preprocessor

.. output will be placed. Normally compilation would continue and
~the preprocessor output would be compiled.

Chapter 2. The Compiler 59

THE %INCLUDE STATEMENT

The language reference manual for this compiler describes how to
use the %INCLUDE statement to incorporate source text from a
library into a PL/I program. (A library is a partitioned data
set that can be used for the storage of other data sets, termed
members.) Source text that yvou may wish to insert into a PL/I
program by means of a XINCLUDE statement must exist as a member
within a library. Defining a source statement library to the
compiler is described further under "Source Statement Library
(SYSLIB)™ on page 10.

/7/73TEP1
//PLI.SYSIN DD ¥
MAKEIN:

EXEC PLICLG
PROC OPTIONS(MAIN);

DCL IN FILE RECORD;

DCL 1 CARD1,
2 NAME

2 NUMBER
2 GARBAGE

DCL 1 CARDZ,
- 2 NAME

2 NUMBER
2 GARBAGE

CHAR(103,
CHAR(7),
CHAR(63);

CHAR(10), ,
FIXED DEC(7),
CHAR(66);

ON ENDFILE (SYSIN) GO TO PRINT;
OPEN FILECIN) OUTPUT;

NEXT :

READ FILE(SYSIN) INTO(CARDL);

CARD2 = CARDl, BY NAME;
WRITE FILECIN) FROM(CARD2);

GO TO NEXT;

PRINT: CLOSE FILECIN);
PUT FILE(SYSPRINT) PAGE;
OPEN FILECIN) SEQUENTIAL INPUT:
ON ENDFILECIN) GO TO FINISH;

PRINTIN: READ FILECIN) INTOCCARD2);
PUT FILECSYSPRINT) SKIP EDIT (CARD2) (A);
GO TO PRINTIN;

FINISH:
END MAKEIN;
/%

7/G0.IN

CLOSE FILECIND;

*

DD DSN=HPU8 .NEWLIBCIN), DISP=(NEW, KEEP),UNIT=SYSDA,

/77 SPACE=(TRK,(1,1,1)),DCB=(RECFM=FB, LRECL=80, BLKSIZE=400)

//G0.SYSIN DD ¥

LOS ANGLES1234567
BUFFLO 0000000
PORTLAND 0000036
SAN FRAN 0001234
ST PAUL 9873640
SACRAMENT00069872
COLUMBUS 0000000

DENVER 567000
SEATTLE 34
ROME 1234590
/%

Figure 16 (Part 1 of 2).

Using the Preprocessor to Produce a Source Deck That Is
Placed on a Source Program Library

60 O0S PL/I Optimizing Compiler: Programmer's Guide

//0PT4%#8 JOB
//STEP2 EXEC PLIXC,PARM.PLI="MACRO,MDECK'
//PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIB(FUN),DISP=(NEW,KEEP),UNIT=SYSDA,
77 SPACE=(TRK,(1,1,1)),DCB=(RECFM=FB, LRECL=80, BLKSIZE=400)
//PLI.SYSIN DD X
SUBFUN: PROCC(CITY)
RETURNS(FIXED DEC(7));
DCL IN FILE RECORD,
1 DATA,
2 NAME CHAR(10),
2 POP FIXED DEC(7),
2 GARBAGE CHAR(66);
DCL CITY CHAR(10);
%DCL USE CHAR;
ZUSE="FUN'; /X% FOR SUBROUTINE, SUBSTITUTE X%USE='3SUB' x/

OPEN FILECIN);
NAME=" ';

NEXT: READ FILECIN) INTOCDATA);
PUT FILE(SYSPRINT) SKIP EDIT (DATA) (A);
IF NAME=CITY THEN DO;
CLOSE FILECIN);
%IF USE=TFUN' %THEN %xGOTO L1;
ENDPUT FILE(SYSPRINT) SKIP LIST(DATA);
%GO TO L2;

%LY:;
RETURNCPOP);
%L2:;
ELSE
GO TO NEXT:;
END SUBFUN;

Figure 16 (Part 2 of 2). Using the Preprocessor to Produce a Source Deck That Is
Placed on a Source Program Library ‘

//70PT4%#9 JOB
//STEP3 EXEC PLIXC,PARM.PLI="M,INC,IS®
#sPLI.SYSLIB DD DSNAME=HPUS.NEWLIBCFUN),DISP=(0LD,KEEP),UNIT=SYSDA,
77 VOL=SER=nnnnnn, DCB=(RECFM=FB, LRECL=80, BLKSIZE=400)
//PLI.SYSIN DD %
TEST: PROC OPTIONSC(MAIN);
DCL NAME CHAR(10),
NO FIXED DEC(7);
ON ENDFILECSYSIN) GO TO FINISH;
AGAIN: GET FILE(SYSIN) EDITC(NAME) (COLUMN(1),A(10));
NO=SUBFUN(NAME) ;
PUT FILE(SYSPRINT) SKIP EDIT('FOUND',NAME,NO)
(AC6),AC10),F(7));
GO TO AGAIN;
%INCLUDE FUN;
FINISH: END TEST;
/%
77G0.IN DD DSN=HPU8 .NEWLIBCIN),DISP=(OLD,KEEP),UNIT=SYSDA,
’7 VOL=SER=nnnnnn, DCB=(RECFM=FB, LRECL=80, BLKSIZE=400)
//G0.SYSIN DD X
LOS ANGLES
SACRAMENTO
COLUMBUS
/%

Figure 17. Including Source Statements from a Library

Chapter 2. The Compiler

61

The ZINCLUDE statement may include one or more pairs of
identifiers. Each pair of identifiers specifies the name of a
DD statement that defines a library and, in parentheses, the
name of a member of the library. For example, the statement:

ZINCLUDE DD1 (INVERT),DD2(LOOPX);

specifies that the source statements in member INVERT of the
library defined by the DD statement with the name DD1, and those
in member LOOPX of the library defined by the DD statement with
the name DD2, are to be inserted consecutively into the source
program. The compilation job step muat include appropriate DD
statements.

If vou omit the ddname from any pair of identifiers in a
%INCLUDE statement, the ddname SYSLIB will be assumed. In such
a case, you must include a DD statement with the name SYSLIB.
(The IBM-supplied cataloged procedures do not include a DD
statement with this name in the compilation procedure step.)

A PROCESS statement in source text ihcluded by a XZINCLUDE
statement will result in an error in the compilation.

The use of a XINCLUDE statement to include the source statements
for SUBFUN in the procedure TEST is shown in Figure 17 on

page 61. The library HPU8.NEWLIB is defined in the DD statement
with the qualified name PLI.SYSLIB, which is added to the
statements of the cataloged procedure PLIXCL for this job.

Since the source statement library is defined by a DD statement
géth the name SYSLIB, the %ZINCLUDE statement need not include a

name.

It is not nscessary to invoke the preprocessor if your source
program, and any text to be included, contains no preprocessor
statements other than %ZINCLULDE. Under these circumstances,
faster inclusion of text can be obtained by specifying the
INCLUDE compiler option.

DYNAMIC INVOCATION OF THE COMPILER

You can invoke the optimizing compiler from an Assembler
language program by using one of the macro instructions ATTACH,
CALL, LINK, or XCTL. The folleowing information supplements the
description of these macro instructions given in the supervisor
and data management manual.

To invoke the compiler specify IELCAA as the entry point name.
You can pass three address parameters to the compiler:
1. The address of a compiler option list.

2. The address of a list of ddnames for the data sets used by
the compiler.

3. The address of a page number that is to be used for the
first page of the compiler listing on SYSPRINT.

These addresses must be in adjacent fullwords, aligned on a
fullword boundary. Register 1 must point to the first address
in the list, and the first (left-hand) bit of the last address
must be set to 1, to indicate the end of the list.

Note: If vou want to pass parameters in an XCTL macro
instruction, vou must use the execute (E) form of the macro
instruction. Remember also that the XCTL macro instruction
indicates to the control program that the load module containing
the XCTL macro instruction is completed. Thus the parameters
must be established in a portion of main storage outside the
load module containing the XCTL macro instruction, in case the
load module is deleted before the compiler can use the
parameters.

62 0S PL/I Optimizing Compiler: Programmer's Guide

OPTION LIST

DDNAME LIST

The format of the three parameters for all the macro
instructions is described below.

The option list must begin on a halfword boundary. The first
two bytes contain a binary count of the number of bytes in the
list (excluding the count field). The remainder of the list can
comprise any of the compiler option keywords, separated by one
or more blanks, a comma, or both of these.

The ddname list must begin on a halfword boundary. The first
two bytes contain a binary count of the number of bytes in the
list (excluding the count field). Each entry in the list must
ggcupy ?g 8-byte field; the sequence of entries is given in
igure .

Entry Standard ddname
1 SYSLIN

2 not applicable
3 not applicable
4 SYSLIB

5 SYSIN

6 SYSPRINT

7 SYSPUNCH

8 SYSUT1

9 not applicable
10 not applicable
11 not applicable
12 not applicable
13 ﬁot applicable
14 SYSCIN

Figure 18. The Sequence of Entries in the DDname List

If a ddname is shorter than 8 bytes, fill the field with blanks
on the right. If you omit an entry, fill its field with binary
ze:gs;lhowever, vou may omit entries at the end of the list
entirely.

Chapter 2. The Compiler 63

PAGE NUMBER

The page number is contained in a 6-byte field beginning on a
halfword boundary. The first halfword must contain the binary
value ¢ (the length of the remainder of the field). The last
four bytes contain the page number in binary form.

The compiler will add 1 to the last page number used in the
compiler listing and put this value in the page-number field
before returning control to the invoking routine. Thus, if the
compiler is reinvoked, page numbering will be continuous.

USING FAST PATH INITIALIZATION/TERMINATION (PL/I RELEASE 4)

The fast path initialization/termination feature reduces the
time taken for initialization and termination of a PL/I program
at the expense of a slight additional storage overhead in the
load module. It is intended for installations where a large
number of small programs are in use, such as IMS or other
transaction oriented systems. (It is not intended for use with
CICS where initialization and termination is handled in a
different way; see Chapter 15, "Using PL/I on CICS™ on page 360
for information on CICS.)

The feature can be installed during installation of the compiler
and libraries. If it is installed, it applies to all programs.
Your system programmer will tell vou whether fast path
initialization/termination is installed in your installation.

If the feature is installed, the following points should be
borne in mind to make the best use of it:

. Execution time options should either be specified in the
PLIXOPT string or be taken from installation defaults. Do
not pass them as parameters.

. ISASIZE should be specified as a positive figure large
enough to hold at least the initial storage requirements of
the first block.

. NOSTAE and NOSPIE should be specified. (Using NOSTAE gives
greater savings than using NOSPIE but both should be used
where possible.)

. ON FINISH on-units should not be used.
An example of a suitable PLIXOPT string might be:

DCL PLIXOPT CHAR(50) VAR EXTERNAL INIT
('NOSTAE NOSPIE ISASIZE(5000)');

The REPORT option will help vou to determine the ISA size that
vou need. To determine the minimum figure vou should specify an
ISASIZE of 1 and run with the REPGRT option. The figure given
in report output for "Length of Initial Storage Area™ will then
give you the minimum requirements for fast initialization. This
will not, however, necessarily give the optimum performance;
(see "Execution-Time Options™ on page 31 for a full discussion
on ISASIZE.)

In most installations using fast path
initialization/termination, ISA size will not be critical as the
PL/I programs will be small, and there will probably be enough
space to make the installation default ISA size large enough to
handle most programs.

64 0S PL/I Optimizing Compiler: Programmer's Guide

CHAPTER 3. THE LINKAGE EDITOR AND THE LOADER

BASIC DIFFERENCES

CHOICE OF PROGRAM

This chapter describes two processing programs of the operating
system, the linkage editor and the loader. It explains the
basic differences between them, describes the processing done by
them, the JCL required to invoke them and, for the linkage
editor, the additional processing it can do. Both processing
progr?ms are fully described in linkage editor and loader
manuals.

The object module produced by the compiler from a PL/I program
always requires further processing before it can be executed.
This further processing, the resolution of external references
inserted by the compiler, is performed either by the linkage
editor or by the loader, both of which convert an object module
into an executable program, which in the case of the linkage
editor, is termed a load module.

The linkage editor and the loader require the same type of
input, perform the same basic processing, and produce a similar
type of output. The basic differences between the two programs
lie in the subsequent form and handling of this output.

The linkage editor converts an object module into a load module,
and stores it in a program library in auxiliary storage. The
load module becomes a permanent member of that library and can
be retrieved at any time for execution in either the job that
created it, or in any other job.

The loader, on the other hand, processes the object module,
loads the processed output directly into main storage, and
executes it immediately. The loader is essentially a one-shot
program checkout facility; once the load module has been
executed, it cannot be used again without reinvoking the loader.
To keep a load module for later execution, or to provide an
overlay structure, vou must use the linkage editor.

When using the linkage editor, three job steps are
required—compilation, link editing, and execution. When using
the loader, only two job steps are required—compilation and
execution.

If your installation includes both programs, the choice of
program will depend on whether or not you want to retain a
permanent copy of the load module, and on whether you want to
use one of the facilities provided only by the linkage editor.
All object modules acceptable to the linkage editor are
acceptable to the loader; all load modules produced by the
linkage editor, except those produced with the NE (not editable)
attribute,! are also acceptable to the loader. The differences
between the two programs are summarized below.

1 The NE attribute is given to a load module that has no
external symbol dictionary (ESD); a load module without an
ESD cannot be processed again, either by the linkage editor
or by the loader.

Chapter 3. The Linkage Editor and the Loader 65

LINKAGE EDITOR

LOADER

] The linkage editor converts an object module into a load
module and stores it in a partitioned data set (program
library) in auxiliary storage.

. The linkage editor can produce one or more load modules in a
single step (for example, output from batch compilation).

. The linkage editor can accept input from other sources as
well as from its primary input source and from the call
library (SYSLIB).

. The linkage editor can provide an overlay structure for a
program.

. The loader converts an object module into an executable
program in main storage and executes it immediately.

. The loader can produce only one load module in a single job
step no matter how many object modules are produced (for
example, the output from a batched compilation).

. The loader can accept input from its primary input source
and from the call library (SYSLIB).

PERFORMANCE CONSIDERATIONS

MODULE STRUCTURE

If you use the loader, you will gain the advantage of a
considerable saving in both time and auxiliary storage when
running your PL/I program. Although the execution time will be
unchanged, both the scheduling time and the processing time will
be reduced, and much less auxiliary storage will be needed.
These savings are achieved as follows:

Scheduling Time: Schedulihg time for the loader is much less
than that for link editing and execution because the loader
needs only one job step.

Processing Time: The time taken to process an object module by
the loader is approximately half that taken by the linkage
editor to process the same module. This is achieved by the
elimination of certain input/output operations required by the
linkage editor, and by a reduction in module access time by the
use of chained scheduling and improved buffering in the loader
program.

Auxiliary Storage: The amount of auxiliary storage required by
the loader when your job is compiled, loaded, and executed as a
single job step, is much less than that required by the linkage
editor because two of the standard data sets used by the linkage
editor are not needed. If the loader input is to consist of
existing load modules the auxiliary storage required for these
can be reduced by storing them with unresoclved external
references. These external references are resolved by the
loader.

Object and load modules have very similar structures; they
differ only in that a load module that has been processed by the
linkage editor contains certain descriptive information required
by the operating system; in particular, the module is marked as
"axecutable™ or "not executable.”™ A module comprises the
following information:

. Text (TXT)

® External symbol dictionary (ESD)

66 0S PL/I Optimizing Compiler: Programmer's Guide

TEXT

. Relocation dictionary (RLD)

. END instruction

The text of an object or load module consists of the machine
instructions that represent the PL/I statements of the source
program. These instructions are grouped together in what are
termed control sections; a control section is the smallest group
of machine instructions that can be processed by the linkage
editor. An object module produced by the optimizing compiler
includes the following control sections:

. Program control section: contains the executable
instructions of the object module.

. Static internal control section: contains storage for all
variables declared STATIC INTERNAL and for constants and
static system blocks.

. Control sections termed common areas: one common area is
created for each EXTERNAL file name or for each non-string
element variable declared STATIC EXTERNAL without the
INITIAL attribute.

. PLISTART: execution of a PL/I program always starts with
this control section, which passes control to the
appropriate initialization subroutine; when initialization
is complete, control passes to the address stored in the
control section PLIMAIN.

. Control sections for all PL/1 library subroutines to be
included with the program.

EXTERNAL SYMBOL DICTIONARY

The external symbol dictionary (ESD) is a table containing all
the external symbols that appear in the object module. An
external symbol is a name that can be referred to in a control
section other than the one in which it is defined.

The names of the control sections are themselves external
symbols, as are the names of variables declared with the
EXTERNAL attribute and entry names in the external procedure of
a PL/1 program. References to external symbols defined
elsewhere are also considered to be external symbols; they are
known as external references. Such external references in an
object module always include the names of the subroutines from
either the 0S PL/I Resident Library or the 0S PL/I Transient
Library that will be required for execution. They may also
include calls to your own subroutines that are not part of the
PL/1I subroutine library, nor already included within the object
module. The linkage editor or loader locates all the
subroutines referred to, and includes them in the load module,
or exacutable program respectively.

RELOCATION DICTIONARY

At execution time, the machine instructions in a load module use
the following two methods of addressing locations in main
storage:

1. Names used only within a control section have addresses
relative to the starting point of the control section.

2. O0Other names (external names) have absolute addresses so that
any control section can refer to them.

Chapter 3. The Linkage Editor and the Loader 67

END INSTRUCTION

LINKAGE EDITOR

The relocation dictionary (RLD) contains information that
enables absolute addresses to be assigned to locations within
the load module when it is loaded into main storage for
execution. These addresses cannot be determined earlier because
the starting address is not known until the module is loaded.
The relocation dictionaries from all the input modules are
combined into a single relocation dictionary when a load module
is produced.

This specifies the compiler-generated control section PLISTART
as the entry point for the object module. It also contains
"CSECT IDR"™ information for processing by the linkage editor.
The CSECT IDR information is given in Figure 19.

column Information

33 The number of IDR entries that follow.
This is always "1" for the optimizing compiler.

34 to 41 The program humber of the compiler.
(57364-PL1 for the optimizing compiler.)

44 to 47 The release number of the compiler.
For example, '0102' indicates Release 1.2.

48 to 52 The date in year-day form (that is, yyddd).
Figure 19. The CSECT IDR Information

The linkage editor is an operating system processing program
that produces load modules. It always stores the load modules
in a library, from which the job scheduler can call them for
execution.

The input to the linkage editor can include object modules, load
modules, and control statements that specify how the input is to
be processed. The output from the linkage editor comprises one
or more load modules.

In addition to its primary function of converting object modules
into load modules, the linkage editor can also be used to:

. Combine previously link-edited load modules.

. Modify existing load modules.

U Construct an overlay structure.

A load module constructed as an overlay structure can be
executed in an area of main storage that is not large enough to
contain the entire module at one time. The linkage editor

divides the load module into segments that can be loaded and
executed in turn.

68 0S PL/1 Optimizing Compiler: Programmer's Guide

LINKAGE EDITOR PROCESSING

A PL/I program, compiled by the optimizing compiler, cannot be
executed until the appropriate library subroutines have been
included. These subroutines are included in two ways:

1. By inclusion in the load module during link editing.
2. By dynamic call during execution.

The first method is used for most of the PL/I resident library
subroutines; the following paragraphs describe how the linkage
editor locates them. The second is used for the PL/I transient
library subroutines, for example those concerned with input and
output (including those used for opening and closing files), and
those that generate execution—-time messages.

In basic processing, as shown in Figure 20, the linkage editor
accepts from its primary input source a data set defined by the
DD statement with the name SYSLIN. For a PL/I program, this
input is the object module produced by the compiler. The
linkage editor uses the external symbol dictionary in this
object module to determine whether the module includes any
external references for which there are no corresponding
external symbols in the module: it attempts to resolve such
references by a method termed avtomatic library call.

SYSLIN
(primary input)

PL/1 object
module

PL/I library
(SYS1.PLIBASE)

SYSLIB
(call library)

—_— SYSLMOD (load)

module library)

>} linkage
editor

>| load module

Figure 20. Basic Linkage Editor Processing

External symbol resolution by automatic library call involves a
search of the data set defined by the DD statement with the name
SYSLIB; for a PL/I program, this will be the PL/I resident
library. The linkage editor locates the subroutines in which
the external symbols are defined (if such subroutines exist),
and includes them in the load module.

The linkage editor always places its output (that is, the load
module) in the data set defined by the DD statement with the
name SYSLMOD.

Any linkage editor processing additional to the basic processing
described above must be specified by linkage editor control
statements placed in the primary input. These control statement
are described under "Additional Processing" on page 79.

Chapter 3. The Linkage Editor and the Loader 69

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

EXEC STATEMENT

DD STATEMENTS

Although you will probably use cataloged procedures rather than
supply all the j0b control language (JCL) required for a job
step that invokes the linkage editor, you should be familiar
with these JCL statements so that vou can make the best use of
the linkage editor and, if necessary, override the statements of
the cataloged procedures.

The IBM-supplied cataloged procedures that 1nc1ude a 11nk-ed1t
procedure step are:

PLIXCL Compile and link edit

PLIXCLG Compile, link edit, and execute

PLIXLG Link edit and execute

The following paragraphs describe the essential JCL statements
for link editing. The IBM-supplied cataloged procedures are

described in Chapter 9, "Cataloged Procedures" on page 273, and
include examples of these statements. ,

The name of the linkage edltor is HEWL.

The aliases IEHWL or LINKEDIT are often used for the linkage
editor.

The basic EXEC statement is:

//stepname EXEC PGM=IEHWL
By using the PARM parameter of the EXEC statement, you can
select one or more of the optional facilities provided by the

linkage editor; these facilities are descrlbed under "Optional
Facilities™ on page 74.

FOR THE STANDARD DATA SETS

The linkage editor always requires four standard data sets. You
must define these data sets in DD statements with the ddnames
SYSLIN, SYSLMOD, SYSUT1l, and SYSPRINT.

A fifth data set, defined by a DD statement with the name
SYSLIB, is necessary if you want to use automatic library call.
The five data set names, together with other characteristics of
the data sets, are shown in Figure 21.

ddname Contents Possible device classesl

SYSLIN Primary input data, normally UNIT SYSSQ or input job stream
the compiler output (specified by DD %)

SYSLMOD Load module ~ UNIT=SYSDA

SYSUT1 Temporary workspace) UNIT=SYSDA

SYSPRINT Listing, including messages UNIT=5YSSQ (or SYSOUT=)

Figure 21 (Part 1 of 2). Linkage Editor Standard Data Sets

70 0S PL/I Optimizing Compiler: Programmer's Guide

ddname - Contents Possible device classes?

SYSLIB | Automatic call library UNIT=SYSDA
: (normally the PL/I resident
library)

Figure 21 (Part 2 of 2). Linkage Editor Standard Data Sets

1 SYSSQ Magnetic tape or direct-access device
SYSDA Direct access device

PRIMARY INPUT (SYSLIN)

OUTPUT (SYSLMOD)

Primary input to the linkage editor must be a standard data set
defined by a DD statement with the name SYSLIN; this data set
must have consecutive organization. The input must comprise one
or more object modules and/or linkage editor control statements;
a load module cannot be part of the primary input, although it
can be introduced by the control statement INCLUDE. For a PL/I
program the primary input is usually a data set containing an
object module produced by the compiler. This data set may be on
magnetlc tape or on a direct-access device, or you can 1nc1ude
it in the input job stream. In all cases, the input must be in
the form of 80-byte F-format records.

The IBM-supplied cataloged procedure PLIXLG includes the DD
statement:

//SYSLIN DD DDNAME=3YSIN

This statement specifies that the primary input data set may be
defined in a DD statement with the name SYSIN. If you use this
cataloged procedure, specify this DD statement by using the
qualified ddname LKED.SYSIN. For example, to link edit and
execute an object module placed in the input stream, vou can use
the following statements:

//LEGO JOB
//STEP1 EXEC PLIXLG
/7/LKED.SYSIN DD *

Einsert here the object module to be
link edited and executed)

/%

If object modules with identically named control sections appear
in the primary input, the linkage editor processes only the
first appearance of that control section.

You can include load modules or object modules from one or more
libraries in the primary input by using a linkage editor INCLUDE
statement as described under "Additional Processing™ on page 79.

Output (that is, one or more load modules) from the linkage
editor is always stored in a data set defined by the DD
statement with the name SYSLMOD, unless you specify otherwise.
This data set is usually called a library; libraries are fully
described in Chapter 8, "lLibraries of Data Sets™ on page 264.

Chapter 3. The Linkage Editor and the Loader 71

The IBM-supplied cataloged procedures include the following DD
statement:

//3YSLMOD DD DSNAME=&&GOSET(GQ),
/7 UNIT=SYSDA,

7/ DISP=(MOD,PASS),

/7 SPACE=(1024,(50,20,1))

This statement defines a temporary library named &&GOSET and
assigns the member name GO to the load module produced by the
linkage editor. To retain the load module after execution of
the job, replace this DD statement with one that defines a
permanent library. For example, assume that vou have a
permanent library called USLIB on 3330 disk pack serial number
373; to name the load module MODl and place it in this library,
code:

//LKED.SYSLMOD DD DSNAME=USLIB(MOD1),
Vs UNIT=3330,V0L=SER=371,BISP=0LD

The SPACE parameter in the DD statement with the name SYSLMOD
used in the IBM-supplied cataloged procedures allows for an
initial allocation of 50K byvtes and, if necessary, 15 further
allocations of 20K bytes (a total of 350K bytes); this should
suffice for most applications.

TEMPORARY WORKSPACE (SYSUT1)

The linkage editor requires a data set for use as temporary
workspace. It is defined by a DD statement with the name
SYSUT1. This data set must be on a direct-access device. The
following statement contains the essential parameters:

#7/SYSUT1 DD UNIT=3SYSDA,
/7 SPACE=(1024,(200,20))

You should normally never need to alter the DD statement with
the name SYSUT1 in an IBM-supplied cataloged procedure, except
to increase the SPACE allocation when processing very large
programs.

If your installation supports dedicated workfiles, these can be
used to provide temporary workspace for the link-edit job step,
as described under "Compile and Link-Edit (PLIXCL3}"™ on page 278.

AUTOMATIC CALL LIBRARY (SYSLIB)

Unless you specify otherwise, the linkage editor will alwavys
attempt to resolve external references by automatic library call
(see "Linkage Editor Procezssing™ on page 69). To enable it to
do this, you must define the data set or data sets to be
searched in a DD statement with the name SYSLIB. (To define
second and subsequent data sets, include additional, unnamed, DD
statements immediately after the DD statement SYSLIB; the data
sets so defined will be treated as a single continuous data set
for the duration of the job step.)

For a PL/I program, the DD statement SYSLIB will normally define
the PL/I resident library. The subroutines of the resident
library are stored in two data sets, SYS1.PLIBASE (the base
library) and SYS1.PLITASK (the multitasking library). The base
library contains all the resident library subroutines required
by a nonmultitasking program. The multitasking library contains
subroutines that are peculiar to multitasking, together with
multitasking variants of some of the base library subroutines.

For link editing a nonmultitasking program, specify only the
base library in the SYSLIB DD statement. The following DD
statement will usually suffice: .

//SYSLIB DD DSN=5YS1.PLIBASE,DISP=SHR

72 0S PL/I Optimizing Compiler: Programmer's Guide

LISTING (SYSPRINT)

For link editing a multitasking program, specify both the
multitasking library and the base library. When attempting to
resolve an external reference, the linkage editor will first
search the multitasking library; if it cannot find the required
subroutine, it will then search the base library. To ensure
that the search is carried out in the correct sequence, the DD
statements defining the two sections of the library must be in
the correct sequence: multitasking library first, base library
second. The following DD statements will usually suffice:

//SYSLIB DD DSNAME=SYS1.PLITASK,DISP=SHR
/7 DD DSNAME=SYS1.PLIBASE,DISP=SHR

The linkage editor generates a listing that includes reference
tables relating to the load modules that it produces and also,
when necessary, messages. The information that can appear is
descr%bed under "Listing Produced by the Linkage Editor™ on
page 75.

You must define the data set on which you wish the linkage
editor to store its listing in a DD statement with the name
SYSPRINT. This data set must have consecutive organization.
Although the listing is usually printed, it can be stored on any
magnetic~tape or direct-access device. For printed output, the
following statement will suffice:

7/SYSPRINT DD SYSOUT=A

EXAMPLE OF LINKAGE EDITOR JCL

A typical sequence of job control statements for link editing an
object module is shown in Figure 22. The DD statement SYSLIN
indicates that the object module will follow immediately in the
input stream; for example, it might be an object deck created by
invoking the optimizing compiler with the DECK option, as
described under "DECK Option™ on page 19. The DD statement with
the name SYSLMOD specifies that the linkage editor is to name
the load module LKEX, and that it is to place it in a new
library name MODLIB; the keyword NEW in the DISP parameter
indicates to the operating system that this DD statement
specifies the creation of a library.

7/LINK JOB

//STEP1 EXEC PGM=IEWL

//SYSLMOD DD DSNAME=MODLIB(LKEX),UNIT=3330,VOL=SER=D186,
7/ SPACE=(CYL,(10,10,1)),DISP=(NEW, KEEP)
/7/SYSUT1 DD UNIT=SYSDA,SPACE=(1024,(200,20))
//SYSPRINT DD SYSOUT=A

//SYSLIB DD DSNAME=SYS1.PLIBASE,DISP=SHR

77SYSLIN DD *

(insert here {he object module to be link—-edited)

/%

Figure 22. Typical Job Control Statements for Link-Editing a PL/I Program

Chapter 3. The linkage Editor and the Loader 73

OPTIONAL FACILITIES

" The linkage editor provides a number of optional fac111t1es that

LET OPTION

LIST OPTION

MAP OPTION

NCAL OPTION

are selected by including the appropriate keywords in the PARM
parameter of the EXEC statement that invokes it. Some of the
more commonly used options are:

LIST

MAP or XREF

LET or XCAL

NCAL

RENT or REUS
SIZE

Code PARM= followed by the list of options, separating the
options with commas and enclosing the list within single
quotation marks, for example:

//STEPA EXEC PGM=IEWL,PARM="LIST,MAP'

If you are using a cataloged procedure, you must include the
PARM parameter in the EXEC statement that invokes the procedure
and qualify the keyword PARM with the name of the procedure step
that invokes the linkage editor, for example:

//STEPA EXEC PLIXCLG,PARM.LKED="LIST,XREF®

Some of the linkage editor options are described in the
following sections, in alphabetic order. For more detailed
descriptions of these and other options, see the 05/VS Linkage
Edltor and Loader publication.

The LET option specifies that the linkage editor is to mark the
load module as "executable"™ even if slight errors or abnormal
conditions have been found during link editing provided these do
not exceed severity 2.

The LIST option specifies that all linkage editor control
statements processed should be listed in the data set defined by
the DD statement with the name SYSPRINT.

The MAP option specifies that the linkage editor is to produce a
map of the load module showing the relative locations and
lengths of all control sections in the load module.

The NCAL option specifies that no external references are to be
resolved by library call. However, the load module is marked

- "executable" provided that there are no errors.

You can use the NCAL option to conserve auxiliary storage in
private libraries, since, by preventing the resolution of
external references during link editing, you can store load
modules without the relevant library subroutines; the DD
statement with the name SYSLIB is not required. Before
executing these load modules, vou must link edit them again to
resolve the external references, but the load module created
need exist only while it is being executed. You can use this
technique to combine separately compiled PL/I procedures into a
single load module.

74 0S PL/I Optimizing Compiler: Programmer's Guide

As a result of specifying NCAL and thus preventing the
resolution of external references, the warning message I1EW0461,
together with a return code of 0004, may appear in the linkage
editor listing for the PL/I program.

RENT OPTION
The RENT option specifies that the module is reenterable and can
be executed by more than one task at a time.

REUS OPTION
The REUS option specifies that the module is serially reusable
and can be executed by only one task at a time.

SIZE OPTION
The SIZE option specifies the amount of main storage, in bytes,
to be allocated to the linkage editor. The syntax of the SIZE
option is:

SIZE=(ml,n1)

where "m™ is the amount of main storége,iﬁ bytes or K bytes

(where K=1024) to be allocated to the linkage editor;
it must include "n" and it must be greater than "n."

and "n"™ which is optional, is the amount of main storage (in
bytes or K bytes) to be allocated to the load module
buffer. ‘

If you specify SIZE incorrectly, or if you omit it, default
values set at system generation are used. If you specify SIZE
greater than the region or partition size, the maximum amount of
main storage will be used.

XCAL OPTION

The XCAL option specifies that the linkage editor will mark the
load module as "executable™ even if slight errors or abnormal
conditions, including improper branches between control
sections, have been found during link editing. XCAL, which
implies LET, applies only to an overlay structure.

XREF OPTION

The XREF option specifies that the linkage editor is to print a
map of the load module and a cross-reference list of all the
external references in each gontrol section. XREF implies MAP.

LISTING PRODUCED BY THE LINKAGE EDITOR

The linkage editor generates a listing, most of which is
optional, that contains information about the link-editing
process and the locad module that it produces. It places this
listing in the data set defined by the DD statement with the
name SYSPRINT (usually output to a printer). The following
description of the listing refers to its appearance on a printed
page.

Chapter 3. The Linkage Editor and the Loader 75

The listing comprises a small amount of

standard information

that always appears, together with those items of optional
information specified in the PARM parameter of the EXEC
statement that invokes the linkage editor, or that are applied
by default. The optional components of the listing and the
corresponding linkage editor options are as shown in Figure 23.

Listings Options Required
Control statements processed by the LIST

linkage editor

‘Map of the load module MAP or XREF
Cross-reference table XREF

Figure 23. Linkage Editor Listings and

Asso¢iated Options

The first page of the listing is identified by the linkage
editor version and level number followed by a list of the

linkage editor options used.

The following paragraphs describe the optional components of the
listing in the order in which they appear.

An example of the listing produced for a typical PL/I program is
given in Appendix D, "Sample Program™ on page 406

DIAGNOSTIC MESSAGES AND CONTROL STATEMENTS

The linkage editor generates messages, describing errors or
conditions, detected during link editing, that may lead to
error. These messages are listed immediately after the heading
information on page 1 of the linkage editor listing. They are
listed again at the end of the linkage editor listing under
"Diagnostic Message Directory™ on page 77.

If you have specified the option LIST, the names of all control
statements processed by the linkage editor are listed
immediately preceding the messages, and are identified by the

7-character code IEW0000.

Each message is identified by a similar
form IEWnnnx, where:

7¥character code of the

. The first three characters "IEW" identify the message as

coming from the linkage editor.

. The next three characters are a 3-digit message number.

. The last character "x" is a severity co@e. The possible
severity codes and their meanings are given in Figure 24 on

page 77.

76 0S5 PL/I Optimizing Compiler: Programmer's Guide

Severity
Code Meaning

0 A condition that will not cause an error during execution.
The load module is marked as "executable.™

1 A condition‘that may cause an error during execution.
The load module is marked as "executable.™

2 An error that could make execution impossible.
The load module is marked as "not executable™ unless
vou have specified the option LET.

3 An error that will make execution impossible.
The load module is marked as "not executable.™

G An error that makes recovery impossible.
Linkage editor processing is terminated, and no output
other than messages is produced.

Figure 24. Diagnostic Message Severity Codes

At the end of the listing, immediately preceding the "Diagnostic
Message Directory,™ the linkage editor places a statement of the
disposition of the load module. See also "Diagnostic Message
Directory."™ The disposition statements, with one exception, are
self-explanatory; the exception is:

xxxXXmodulename DOES NOT EXIST BUT HAS
BEEN ADDED TO DATA SET

This appears when the NAME statement has been used to add a new
module to the data set defined by the DD statement with the name
SYSLMOD. The use of the NAME statement is described under
"Module Name™ on page 79. If you name a new module by including
its name in the DSNAME parameter of the DD statement with the
name SYSLMOD, the linkage editor assumes that you want to
replace an existing module (even if the data set is new).

DIAGNOSTIC MESSAGE DIRECTORY

MODULE MAP

When processing of a load module has been completed, the linkage
editor lists in full all the messages whose numbers appear in
the preceding list. The text of each message, an explanation,
and any recommended programmer response, are given in the
linkage editor and loader publication.

The linkage editor listing includes a module map only if you
specify the options MAP or XREF. The map lists all the control
sections in the load module and all the entry point names in
each control section. The control sections are listed in order
of appearance in the load module; alongside each control section
name is its address relative to the start of the load module
(address 0) and its length in bytes. The entry points within
the load module appear on the printed listing below and to the
right of the control sections in which they are defined; each
entry point name is accompanied by its address relative to the
start of the load module.

Chapter 3. The Linkage Editor and the Loader 77

Each control section that is included by automatic library call
is indicated by an asterisk. For an overlay structure, the
control sections are arranged by segment in the order in which
they are specified.

After the control sections, the module map lists the
pseudo-registers established by the compiler. Pseudo-registers
are fields in a communications area, the task communications
area (TCA), used by PL/I library subroutines and compiled code
during execution of a PL/]I program. The main storage occupied
by the TCA is not allocated until the start of execution of a
PL/1 program; it does not form part of the load module. The
addresses given in the list of pseudo-registers are relative to
the start of the TCA. .

At the end of the module map, the linkage editor supplies the
following information:

U The total length of the pseudo-registers.

. The relative address of the instruction with which execution
of the load module will commence (ENTRY ADDRESS).

The total length of the load module. For an overlay
structure, the length is that of the longest path.

tf GrES565 and Lengind given in e ioduie map and
c

1l S aa A 1 1 1
ssociated information are in hexadecimal.

o 3>

CROSS~-REFERENCE TABLE

RETURN CODE

The linkage editor listing includes a "Cross—-Reference Table"
only if vou specify the option XREF. This option produces a
listing that comprises all the information described under
"Module Map™ on page 77, together with a cross-reference table
of external references. The table gives the location of each
reference within the load module, the symbol to which the
reference refers, and the name of the control section in which
the symbol is defined. i

For an overlay structure, a cross-reference table is provided

for each segment., It includes the number of the segment in
which each symbol is defined.

Unresolved symbols are identified in the cross-reference table
by the entries $UNRESOLVED or $NEVER-CALL. An unresolved weak
external reference (WXTRN) is identified by the entry
$UNRESOLVEDCHW) .

For every linkage editor job or job step, the linkage editor
generates a return code that indicates to the operating system
the degree of success or failure it achieved. This code appears
in the "end of step™ message and is derived by multiplying the
highest severity code by four, as shown in Figure 25 on page 79.
(See also "Diagnostic Message Directory™ on page 77.)

78 0S PL/I Optimizing Compiler: Programmer's Guide

Return Meaning

Cade

0000 No messages issued; link editing completed without error;
successful execution anticipated.

0004 Warning messages only issued; link editing completed;
successful execution probable.

00038 Error messages only issued; link editing completed;
execution may fail.

0012 Severe error messagdes issued; link editing may have
been completed, but with errors; successful execution
improbable.

0016 Unrecoverable error message issued; link editing

terminated abnormally; successful execution impossible.

Figure 25. Return Codes from the Linkage Editor

ADDITIONAL PROCESSING

Basic processing by the linkage editor produces a single load
module from the data that it reads from its primary input, but
it has several other facilities that you can call upon by using
linkage editor control statements. The use of those statements
of particular relevance to a PL/I program is described below.
All the linkage editor control statements are fully described in
the linkage editor and loader publication.

FORMAT OF CONTROL STATEMENTS

A linkage editor control statement is an 80-byte record that
contains two fields. The goperation field specifies the
operation required of the linkage editor; it must be preceded
and followed by at least one blank character. The operand field
names the control sections, data sets, or modules that are to be
processed, and it may contain symbols to indicate the manner of
processing; the field consists of one or more parameters
separated by commas. Some control statements may have multiple
operand fields separated by commas.

The position of a control statement in the linkage editor input
depends on its function.

In the following descriptions of the control statements, items
within brackets [] are optional.
MODULE NAME

A load module must have a name so that the linkage editor and

the operating system can identify it. A name comprises up to

eight characters, the first of which must be alphabetic.

You can name a load module in one of two ways:

1. If you are producing a single load module from a single
link-edit job step, it is sufficient to include its name as

a member name in the DSNAME parameter of the DD statement
with the name SYSLMOD.

Chapter 3. The Linkage Editor and the Loader 79

ALTERNATIVE NAMES

2. If you are producing two or more load modules from a single
link-edit job step, you will need to use the NAME statement.
(The optimizing compiler can supply the NAME statements when
vou ugg)batch compilation as described in "NAME Option™ on
page .

The syntax of the NAME statement is:
NAME namel(R)]

where "pname" is any name of up to eight characters; the first
character must be alphabetic. The NAME statement serves the
following functions:

. It identifies a load module. The name specified will be
given to the load module. ™(R),"™ if present, specifies that
the load module is to replace an existing load module of the
same name in the data set defined by the DD statement with
the name SYSLMOD.

. It acts as a delimiter between input for different load
modules in one link-edit step.

The NAME statement must appear in the primary input to the
linkage editor (the standard data set defined by the DD
statement SYSLIN), 1f it appears elsewhere, the linkage editor
LYnures 1i. The statement must Tollow 1mmecua1:ely atter the
last object module that will form part of the load module it
names (or after the INCLUDE control statement that specifies the
last object module).

You can use the ALIAS statement to give a load module an
alternative name; a load module can have as many as sixteen
aliases in addition to the name given to it in a DD statement
with the name SYSLMOD, or by a NAME statement.

The syntax of the ALIAS statement is:
ALIAS name

where "name"™ is any name of up to eight characters; the first
character must be alphabetic. You can include more than one
name in an ALIAS statement, separating the names by commas, for
example:

ALIAS FEE,FIE,FOE,FUM

An ALIAS statement can be placed before, between, or after
object modules and control statements that are being processed
to form a load module, but it must precede the NAME statement
that specifies the primary name of the load module.

To execute a load module, you can include an alias instead of
the primary name in the PGM parameter of an EXEC statement.

Aliases can be used for external entry points in a PL/I
procedure. Hence a CALL statement or a function reference to
any of the external entry names will cause the linkage editor to
include the module containing the alias entry names without the
need to use the INCLUDE statement for this module.

80 O0S PL/I Optimizing Compiler: Programmer's Guide

ADDITIONAL INPUT SOURCES

INCLUDE STATEMENT

LIBRARY STATEMENT

The linkage editor can accept input from sources other than the
primary input defined in the DD statement with the name SYSLIN.

For example,

automatic library call enables the linkage editor

to include modules from a data set (a library) defined by the DD
statement with the name SYSLIB.
input sources by means of the INCLUDE statement, and you can

direct the library call mechanism to alternative libraries by
means of the LIBRARY statement.

You can name these additional

The INCLUDE statement causes the linkage editor to process the

module or modules indicated.
been processed,

contains an INCLUDE statement,

After the included modules have

the linkage editor continues with the next item
in the primary input.

If an included sequential data set also
that statement is processed as if

it were the last item in the data set, as shown in Figure 26.

Primary Input Sequential Library
Data Set Data Set Member
end - -

INCLUDE end -
——— INCLUDE -
-— ——— not -—
- -=-=- processed ——
end end end

Figure 26. Processing Additional Data Sources

The syntax of the INCLUDE statement is:
INCLUDE ddnamel (membername)l

where "ddname" is the name of a DD statement that defines either
a sequential data set or a library that contains the modules and
control statements to be processed. If the DD statement defines
a library, replace "membername™ with the names of the modules to
be processed, separated by commas. You can specify more than
one ddname, each of which may be followed by any number of
member names in a single INCLUDE statement. For example:

INCLUDE D1(MEM1,MEM2),D2(MODA,MODB)

specifies the inclusion of the members MEM1 and MEM2 from the
library defined by the DD statement with the name D1, and the
members MODA and MODB from the library defined by the DD
statement with the name D2.

The basic function of the LIBRARY statement is to name call
libraries in addition to those named in the DD statement SYSLIB.
The syntax of the LIBRARY statement is:

LIBRARY ddname(membername)
where "ddname™ is the name of a DD statement that defines the
additional call library, and "membername™ is the name of the

module to be examined by the call mechanism. More than one
module can be specified; separate the module names with commas.

Chapter 3. The Linkage Editor and the Loader 81

OVERLAY STRUCTURES

A load module constructed as an overlay structure can be ;
executed in an area of main storage that is not large enough to
contain the entire module at one time. The linkage editor
divides the load module into segments that can be loaded and
executed in turn. To construct an overlay structure, you must
use linkage editor control statements to specify the
relationship between the segments. One segment, termed the root
s§gment must remain in main storage throughout the execution of
the program.

In an overlay environment the addressing of a static external
structure element, array, or string may be incorrect if used in
a data-directed I/0 statement or CHECK statement. This error
will arise if the control section containing the symbol table of
the identifier, and the corresponding static internal control
section are not in the same overlay segment. This is because
the symbol table contains the address of a locator that is in
static internal storage. The difficulty can be avoided by
ensuring that the procedure in the root segment contains a
reference to the identifier in a data-directed I/0 or CHECK.
context. The statement containing the identifier need not be
executed, but you must ensure that it is not removed by
optimization; its presence ensures that the symbol table for the
identifier addresses the locator in the static internal control
section of the root segment.

The descriptor for a controlled external aggregate with fixed
extents is stored in the static internal control section of the
procedure that allocates it. This prevents references to the

external variable being made in other procedures that overlay

the segment in which it was allocated. A controlled external
variable must be allocated in one of two ways:

1. The variables can be allocated in the root phase. A -
convenient technique to use would be to have a subroutine,
containing the ALLOCATE statement, which could be called
from any segment.

2. The variable can be allocated with adjustable extents, so
that the descriptor will be copied into the controlled
storage area when allocation takes place. Note that this
method uses more storage.

DESIGN OF THE OVERLAY STRUCTURE

Before preparing the linkage editor control statements, yvou must
design the overlay structure for your program. A tree is a
graphic representation of an overlay structure that shows which
segments occupy main storage at different times. The design of
trees is discussed in the linkage editor and loader publication,
but for the purposes of this chapter, Figure 27 on page 83
contains a simple example. The program comprises six
procedures: A, B, C, D, E, and F. Procedure B calls procedure C
which, in turn, calls procedures D and E. (Only procedure A
requires the option MAIN.)

82 0S PL/I Optimizing Compiler: Programmer's Guide

CALL B;
CALL F;
END A;

A: PROC OPTIONSCMAIN);

B: PROC;
CALL C;
END B;

Procedure A

C: PROC;
CALL D;
CALL E;
END C;

Procedure B Procedure F

Procedure C

D: PROC;

END D;

Procedure D Procedure E

E: PROC;

END E;

F: PROC;

END F;

Figure 27.

Overlay Structure and Its Tree

The main procedure (A) must be in main storage throughout the
execution of the program. Since the execution of procedure B
will be completed before procedure F is called, the two
procedures can occupy the same storage; this is depicted by the
lines representing the two procedures in Figure 26 on page 81
starting from the common point (node) X. Procedure B must
remain in storage while procedures C, D, and E are executed, but
procedures D and E can occupy the same storage; thus the lines
representing procedures D and E start from node Y.

The degree of segmentation that can be achieved can be clearly
seen from the figure. Since procedure A must always be present,
it must be included in the root segment. Procedures F, D and E
can usefully be placed in individual segments, as can procedures
B and C be placad together; there is nothing to be gained by
separating procedures B and C, since they must be present
together at some time during execution.

Chapter 3. The Linkage Editor and the Loader 83

CONTROL STATEMENTS

CREATING AN OVERLAY

Two linkage editor control statements, OVERLAY and INSERT,
control the relationship of the segments in the overlay
structure. The OVERLAY statement specifies the start of a
segment and the INSERT statement specifies the positions of
control sections in a segment. You must include the attribute
OVLY in the PARM parameter of the EXEC statement that invokes
the linkage editor, otherwise the linkage editor will ignore the
control statements.

The syntax of the OVERLAY statement is:
OVERLAY symbol

where "symbol™ is the node at which the segment starts (for
example, X in Figure 27 on page 83). You must specify the start
of every segment, except the root segment, in an OVERLAY
statement.

The syntax of the INSERT statement is:
INSERT control-section—name

where "control—-section—name"™ is the name of the control section
(that is, the derivative of the procedure name that is found in
the linkage editor map) that is to be placed in the segment.
More than one control section can be specified, separate the
names with commas. The INSERT statements that name the control
s:ctionstin the root segment must precede the first OVERLAY
statement.

STRUCTURE

The most efficient method of defining an overlay structure, and
the simplest for a PL/I program, is to group all the OVERLAY and
INSERT statements together and place them in the linkage editor
input (SYSLIN) after the object modules that form the program.
The linkage editor initially places all these object modules in
the root segment, and then moves those control sections that are
referred to in INSERT statements into other segments.

This method has the advantage that you can use batched
compilation to process all the procedures in one job step and
place the object modules in a temporary data set; this data set
must have consecutive organization. You can then place the
linkage editor control statements in the input strean,
concatenating them with the data set that contains the object
modules. (Do not use the NAME compiler option to name the
object modules; if you do, the NAME statements inserted by the
compiler will cause the linkage editor to attempt to create
separate load modules rather than a single overlay structure.)

The use of the IBM-supplied cataloged procedure PLIXCLG to
create and execute the overlay structure of Figure 27 on page 83
is shown in Figure 28 on page 85

84 O0S PL/I Optimizing Compiler: Programmer's Guide

//70PT5%#12 JOB

//STEP1 EXEC PLIXCLG,

/7 PARM.LKED='0QVLY"
//PLI.SYSIN DD x

(insert here source statements for procedure A)
¥ PROCESS;

(insert here source statements for procedure B)
¥ PROCESS;

(insert here source statements for procedure C)
¥ PROCESS;

(insert here source statements for procedure D)
¥ PROCESS;

(insert here source statements for procedure E)
¥ PROCESS;

(insert here source statements for procedure F)

7%

//LKED.SYSIN DD %
OVERLAY X
INSERT 2x%%x%%B1, X%¥%¥X%C1
OVERLAY Y
INSERT »x%x%%D1
OVERLAY Y
INSERT %%X%%X%E1
OVERLAY X
INSERT *x%x%%F1

/%

Figure 28. Creating and Executing the Overlay Structure of
Figure 27.

An alternative approach instead of batched compilation is to
compile the procedures independently and store them as object
modules in a private library. You can then use an INCLUDE
?§$§f?ﬁ?t to place them 1n the input to the linkage editor

If an INSERT statement contains the name of an external
procedure, the linkage editor will move only the related program
control section that has the same name. All other control
sections established by the compiler, and all the PL/I library
subroutines, will remain in the root segment.

It is important that the PL/I library subroutines be in the root
segment, since the optimizing compiler does not support
exclusive calls (calls between segments that do not lie in the
same path). For example, -in Figure 27 on page 83, procedures in
the segment containing D could call procedures in the segments
containing A, B, C, and D, but not in the segments containing E
or F. Procedures in the segments containing B or C could call
procedures in the segments containing A, B, C, D, and E, but not
in the segment containing F. A procedure in the segment
containing B may not call a procedure in the segment containing
A if this latter procedure calls a procedure in the segment
containing F.

However, certain library subroutines may not be required by all
segments, in which case you can move them into a lower segment.

Chapter 3. The Linkage Editor and the Loader 85

To do this, complle the procedures using the compiler option
ESD, and examine the resulting external symbol dictionary. For
example, if in Figure 27 on page 83, a library subroutine is
called only by the segment cohtaining E, you can move it into
that segment by placing an INSERT statement, specifying the
sub;o:éine name, immediately after the statement INSERT

XX .

Similarly, you can move control sections from the root segment
to lower segments. For example, to move the static internal
control section for procedure F into the segment containing F,
place the statement INSERT %x%xxXF2 after the statement INSERT
xXX%%%%X%Fl, Values assigned to static data items are not retained
when a segment is overlaid. Do not move static data from the
root segment . unless it comprises only:

) Values set by the INITIAL attribute and then unchanged (that
is, read-only data).

. Values that need not be retained between different loadings
of the segment.

Care must be taken to ensure that the static external control
sections for all the PL/I files used in an overlay program are
placed in the root segment. If this is not done, failures may
occur when the ERROR condition is raised and the PL/I error
routines attempt to close the files. In particular, the static
external control section for SYSPRINT must always be placed in
the root segment.

When using the COUNT option, ensure that all procedures for
which count information is required have their static internal
control sections in the root segment, or the count information
will .be rendered invalid.

LINK EDITING MULTIPLE OBJECT MODULES .

When 'a PL/I MAIN procedure is link~edited with other object
modules produced by the PL/I compiler, the entry point of the
resulting load module will be resolved to the external symbel
PLISTART. This will happen automatically, because the PLISTART
CSECT is generated first in the PL/I object module output and is
nominated in the END statement of the object module.
Execution—-time errors will occur if the load module entry point
“is forced to some other symbol by use of the linkage editor
ENTRY control statement. See Chapter 5 of the Execution Logic
Manual for details on the initialization of a PL/I MAIN
procedure.

If a PL/I MAIN procedure is link-edited with object modules
produced by other language processors or by the assembler and is
the first module to receive control, the user must ensure that.
the entry point of the resulting load module is resolved to the
external symbal PLISTART. This may be done most conveniently by
ensuring that the PL/I object module is first in the input to
the linkage editor. Alternatively, the following linkage editor
ENTRY control statement may be included in the input to the
linkage editor:

' ENTRY PLISTART

If vou want to pre-link PL/I subroutines, store them in a load
library, and later "INCLUDE"™ them with main procedures, the
subroutines must be linked with the NCAL linkage editor option.
The NCAL option will cause unresolved external reference error
messages from the linkage editor, but these will be resolved
when the PL/I main procedure is linked with the subroutines.
The NCAL option is needed because, in a PL/I load module, all
the resident modules must be at the same level, and not
2ﬁ$°1Vi"9 external references until the final link will ensure
is. .

86 0S PL/I Optimizih§ Compiler: Pfogrammer's'Guide

Figure 29 shows an example of link-editing a PL/I object module
with FORTRAN and COBOL object modules.

//JOBNAME JOB

/ /% FEHIE NI HEIEI K IEIE I I IEIE I I 2636 26 363 36 36 6 IE 26 36 2 HEH M HHEH K

/7% LINK-EDITING PL/I WITH FORTRAN AND COBOL x/

//% PL1 INVOKES FORTRAN WHICH INVOKES COBOL %/

7 /% IR EENIEIIENEE I I NN IEIEIEKIEIEE K I K X FEIENIENH I I I I XXX HH KK
/7/PL1 EXEC PLIXC,

4 PARM.PLI="OBJECT"

//PLI.SYSLIN DD DSN=&&LOADSET,SPACE=...

//PLI.SYSIN DD DSN=STEP1.TEST.PL1...

/ /3% Y666 IEEE I XX IE I I HEHEIE 36 326 26 36 6 2696 26 3 2 2626 363 26 26 96 3 I,)X

//% CALL A FORTRAN SUBPROGRAM STEP2.TEST.FORT X/
/7% RRHENENNEHIEN I HIEIEN I I I I I I I I K KK XKWWK I KK
//FORT2 EXEC FTG1C

//FORT.SYSLIN DD DSN=&&LOADSET, ...

//FORT.SYSIN DD DSN=STEP2.TEST.FORT,...

T4 W 1333333233323 333 333333 TTEETTIEILELITTI T2
/7% CALL A COBOL SUBPROGRAM STEP3.TEST.COBOL x/
/7% KKK 656 I 2636 360 NI I3 3 I 3 36 6 636 3 3 3, K K HHH X X
7/COBOL3 EXEC COBUC,PARM.COB="'NODECK,LOAD,APOST"
//COB.SYSLIN DD DSN=&&LOADSET,...

//COB.SYSIN DD DSN=STEP3.TEST.COBOL,...

/7% HHHHNNNKR KNI N K I WK HHHH I KK

/% LINK-EDIT STEP x/

14 333333333333 33333323T33ETT

//LKEDALL EXEC PLIXLG

7//LKED.SYSLIB DD ...

/77 DD DSN=SYS1.FORTLIB,DISP=SHR

/77 DD DSN=SYS1.COBLIB,DISP=SHR

7/ DD DSN=SYS1.PPLINK,DISP=SHR
//LKED.SYSIN DD DSN=&&LOADSET,DISP=(O0OLD,DELETE)
/7G0.0UT DD SYSOUT=A,...

/7/7G0.SPACE DD UNIT=SYSDA,...
//G0.3YSOUT DD SYS50UT=A

Figure 29. Link-Editing PL/I with Other High Level Languages

LINK-EDITING FETCHABLE LOAD MODULES

The PL/I FETCH and RELEASE statements permit the dynamic loading
of separate load modules which can be subsequently invoked from
the PL/I object program. There are a number of restrictions on
the PL/I statements that can be used in fetched procedures.
Thesglare described in the Language Reference Manual for this
compiler.

Fetchable (or dynamically-loaded) modules should be link-edited
into a load module library which is subsequently made available
for the job step by means of a JOBLIB or STEPLIB DD statement.

The step which link-edits a fetchable load module into a library
requires the following linkage editor control statements:

. An ENTRY statement to define the entry-point into the PL/I
program.

. A NAME statement to define the name used for the fetchable
load module. This statement is required if the compiler
option NAME is not used and if the name is not specified in
the DSN parameter in the SYSLMOD DD statement used to define
the load module library.

L Optionally, for optimum space saving, REPLACE statements to

delete the control sections shown in Figure 30 on page 88,
if they are present in the object module.

Chapter 3. The Linkage Editor and the Loader 87

Control
Section Present In

PLISTART All programs
IBMBJWT]1 Programs that use the WAIT statement
IBMTJWT]1 Multitasking programs that use the WAIT statement

IBMBTOC1 Programs that use the COMPLETION built-in function or
pseudovariable

IBMTTOC1 Multitasking programs that use the COMPLETION built-in
function or pseudovariable

IBMBTPR1 Programs that use the PRIORITY pseudovariable
IBMTTPR1 Multitasking programs that use the PRIORITY pseudovariable
IBMBEFL1 Programs compiled with the FLOW or COUNT options

Figure 30. Control Sections to be Deleted for Optimum
Space-Saving

The name or any alias by which the fetchable load module is
identified in the load module library must appear in a FETCH or
RELEASE statement within the scope of the invoking procedure.

COBOL or FORTRAN modules cannot be loaded dynamically by the
PL/I FETCH statement.

The job control statements and the linkage editor statements to
link-edit a fetchable load module into a library called PRVLIB
are given in Figure 31. The cataloged procedure PLIXCL is used
to illustrate these statements by sharing a job that includes
boshlthe compilation and the link-editing of the fetchable PL/I
module.

//FETCH JOB
7/3TP EXEC PLIXCL
7/PLI.SYSIN DD %

PL/1 source(fetchable)

/%
//LKED.SYSLMOD DD DSN=PRVLIB,...
7/7/LKED.SYSLIN DD
ENTRY procedure—-name
REPLACE PLISTART
REPLACE IBMBJWTI1
REPLACE IBMBTOC1
REPLACE IBMBTPR1
INCLUDE O0BJMOD
NAME FETCH1
/%
/7/LKED.OBJMOD DD DSN=&&LOADSET,DISP=(OLD,...

Figure 31. Example of Link-Editing a Fetchable Load Module

88 0S PL/I Optimizing Compiler: Programmer's Guide

MULTITASKING CONSIDERATIONS

When fetchable load modules are called as tasks, certain library
routines are assumed to be available in the main task load
module. Therefore, if a fetchable task uses one of them, and
the main does not, then that library routine must be added to
the main task load module via a link-edit INCLUDE statement.

The affected functions and their required library routines are:

Function Library Routine
GOTO out of block IBMBPGOA
WAIT IBMBJWTA
EVENT pseudovariable IBMBTOCA
COMPLETION pseudovariable IBMBTOCA
PRIORITY pseudovariable IBMBTPRA
EXCLUSIVE file attribute IBMBPQDA

EXTENDED ARCHITECTURE CONSIDERATIONS

If only Release 5 object modules and resident library routines
are link-edited together, then the resulting load module is
RMODECANY) and AMODE(31); no linkage editor parameters or
control statements are required for this result. This load
module is compatible with 31-bit execution on MVS/Extended
?rghitecture, and is also compatible with execution on MVS/SP

If vou require changes to the modes of the load module, then you
specify parameters using the linkage editor JCL or using a
linkage editor control statement.

JCL parameters are specified as

PARM=7, . .[,RMODE={24]|ANY}, AMODE={24]|31|ANY},]
and control statement as

MODE AMODE(24]31]ANY),RMODE(24]ANY)

For more information on 0S PL/I and Extended Architecture, see

Appendix F, "MVS/Extended Architecture (MVS/XA) Considerations™
on page 453. For more information on the linkage editor, see

EV$;Extended Architecture Linkage Editor and Loader User's
uide.

COMBINING PL/I MODULES FROM THE OPTIMIZING AND CHECKOUT COMPILERS

For information about combining PL/I modules from the optimizing
and checkout compilers, see the 0S5 _PL/I Checkout Compiler:
Programmer's Guide. O0S PL/I Release 5 object code and Release 5
transient library routines will execute with the 0S PL/I Checker
Release 3.0. The Release 5 object modules must not use the
ngigﬁ?§)library routines that are part of the Checker

Chapter 3. The Linkage Editor and the Loader 89

LOADER

LOADER PROCESSING

The loader is a program that produces and executes load modules.
It always stores the load modules directly in main storage where
they are executed immediately.

The input to the loader can include single object modules or
load modules, several object modules or load modules, or a
mixture of both. The output from the loader always comprises an
executable program that is loaded into main storage from where
it will be executed.

Unlike the linkage editor vou cannot use any control statements
with the loader. If any linkage editor control statements are
used, they will be ignored, and their presence in the input
stream will not be treated as an error. Your job will continue
to be processed, a message will be generated and, if you have
included a DD statement with the name SYSLOUT, this message and
Ibetpame of the control statement will be printed on your
isting.

The loader compensates for the absence of the facilities
provided by control statements by allowing the concatenation of
both object and load modules in the data set defined by the DD
statement with the name SYSLIN, and by allowing an entry point
to be specified by means of the EP option, as described under
"Optional Facilities of the Loader™ on page 96.

A PL/I program cannot be executed until the appropriate PL/I
library subroutines have been included. All library subroutines
are included during loading. In basic processing, as shown in
Figure 33 on page 91, the loader accepts data from its primary
input source, a data set defined by the DD statement with the
name SYSLIN. For a PL/I program, this data is the object module
produced by the compiler. The loader uses the external symbol
dictionary in this object module to determine whether the module
includes any external references for which there are no
corresponding external symbols in the module: it attempts to
resolve such references by a method termed automatic library
call as described in "Linkage Editor Processing"™ on page 69.

The loader locates the subroutines in which the external symbols
are defined (if such subroutines exist) and includes them in the
load module. If all external references are resolved
satisfactorily the load module is executed.

The loader will always search the link-pack area before
searching the PL/I resident library, as shown in Figure 34 on
page 92. The link-pack area is an area of main storage in which
frequently used load modules are stored permanently. If there
is more than one copy of an object module in the data set
defined by the DD statement with the name SYSLIN, the loader
will load the first and ignore the rest.

90 0S PL/I Optimizing Compiler: Programmer's Guide

MAIN STORAGE REQUIREMENTS

The minimum main storage requirements for the loader are shown
in Figure 32.

Storage Required for: Amount (min)
in Bytes

Loader program 10K

Data management access routines 4K

Buffers and tables used by loader 3K

PL/I program to be executed variable

Figure 32. Main Storage Requirements for the Loader

This amounts to at least 17K bytes for the loader and its
associated routines and data areas plus the main storage
required for the program that is to be executed. If the loader
program and the data management access routines were stored in
the link-pack area, the amount of main storage required would be
3K bytes for the loader data area plus that required by the
program that is to be executed.

SYSLIN

(primary input)

PL/1I object A
and/or B
load modules C

SYSLIB
(call library)

PL/I resident D
library E
(SYS1.PLIBASE 5

loader l————>main storage

ommoOw>

Figure 33. Basic Loader Processing

' Chabter 3. The Linkage Editor and the Loader 91

SYSLIN

(primary input)

Main
storage
PL/I object Ai<
and/or load B <EE]—-—— A
modules C|<
B
> > (o
loader
Does not load D
SYSLIB H as it is
(call library) ——>] in link pack E
area
F
PL/I resident D|<
library E <EE}~*- G
(SYS1.PLIBASE)F]<
H link—pack
area
contains
copy of
module H
Figure 34. Loader Processing, Link-Pack Area and SYSLIB Resolution
ddname Contents of Data Set Possible Device Classes?t
SYSLIN Primary input (normally the output from SYSSQ or the input job
the compiler) stream (specified by DD %)
SYSLOUT Loader messages and module map listing SYSSQ, SYSDA, or SYSOUT=A
SYSPRINT PL/I execution—-time messages and problem SYSSQ, SYSDA, or SYSOUT=A
output listing
SYSLIB ‘Automatic call library SYSDA

Figure 35. Loader Standard Data Sets

Note to Figure 35:

1 SYS3Q
SYSDA
SYSOUT=A

Magnetic tape or direct-access device

Direct-access device

Normal printed output class for system output

92 0S5 PL/I Optimizing Compiler: Programmer's Guide

JOB CONTROL LANGUAGE FOR THE LOADER

EXEC STATEMENT

Although vou will probably use cataloged procedures rather than
supply all the job control language (JCL) required for a job
step that invokes the loader, you should be familiar with these
JCL statements so that you can make the best use of the loader

‘and, if necessary, override statements of the cataloged

procedures.

The IBM-supplied cataloged procedures that include a loader
procedure step are as follows:

PLIXCG Compile, load—-and-execute
PLIXG Load-and-execute

The following paragraphs describe the essential JCL statements
for the loader. The IBM-supplied cataloged procedures are
described under Chapter 9, "Cataloged Procedures™ on page 273,
and include examples of these statements.

The name of the loader is IEWLDRGDO. It also has the alias
LOADER, which is used in the IBM-supplied cataloged procedures,
and will be used to refer to the loader program in the rest of
this chapter. The basic EXEC statement is:

s/stepname EXEC PGM=LOADER

By using the PARM parameter of the EXEC statement, you can
select one or more of the optional facilities provided by the
loader; these are described under "Optional Facilities of the
Loader™ on page 96.

DD STATEMENTS FOR THE STANDARD DATA SETS

The loader always requires one standard data set; that defined
by the DD statement with the name SYSLIN. Three other standard
data sets are optional and if vou use them you must define them
in DD statements with the names SYSLOUT, SYSPRINT, and SYSLIB.
The four data sets, their names, and other characteristics of
the data sets, are shown in Figure 35 on page 92.

The data sets defined by the DD statements with the names
SYSLIN, SYSLIB, and SYSLOUT are those specified at system
generation for you installation. Other ddnames may have been
specified at your installation; if they have, your JCL
statements must use them in place of those given above. In a
similar manner the IBM-supplied cataloged procedures PLIXCG and
PLIXG use names as shown above; your systems programmer will
have to modify these procedures if the names at your
installation are different.

PRIMARY INPUT (SYSLIN)

Primary input to the loader must be a standard data set defined
by a DD statement with the name SYSLIN; this data set must have
consecutive organization. The input can comprise one or more
object modules, one or more load modules, or a mixture of object
modules and load modules.

For a PL/I program the primary input is usually a data set
containing an object module produced by the compiler. This data
set may be on magnetic tape or on a direct-access device, or vou
can include it in the input job stream. In all cases the input
must be in the form of 80-byte F-format records.

Chapter 3. The Linkage Editor and the Loader 93

The IBM-supplied cataloged‘procedure PLIXCG includes fhe DD
statement:

7/SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

This statement specifies that the data set &&LOADSET is
temporary. If you want to modify this statement you must refer
to it by the qualified ddname GO.SYSLIN.

The IBM-supplied cataloged procedure PLIXG does not include a DD
statement for the input data set; you must always supply one
specifying the characteristics of your input data set using the
qualified ddname GO.SYSLIN.

AUTOMATIC CALL LIBRARY (SYSLIB)

LISTING (SYSLOUT)

LISTING (SYSPRINT)

Unless you specify otherwise, the loader will normally attempt
to resolve external references by automatic library call. The
automatic call library (SYSLIB), and how to specify it, is
described under "Linkage Editor™ on page 66.

The loader generates a listing that includes a module map (if
you have specified the MAP option) and, if errors have been
detected during processing, messages referring to these. The
information that can appear is described under "Listing Produced
by the Loader™ on page 938.

You must define the data set in which you want this listing to
be stored by a DD statement with the name SYSLOUT and it must
have consecutive organization. Although the listing is usually
printed it can be stored on any magnetic-tape or direct-access
de¥ige. For printed output the following DD statement will
suffice: »

//SYSLOUT DD SYSOUT=A

As well as the information listed in the data set defined by the
DD statement with the name SYSLOUT certain information produced
by the loader is always stored in the data set defined by the DD
statement with the name SYSPRINT. This data set, which must
have consecutive organization, holds messages that refer to
errors that have occurred during execution of your program, as
well as the results produced by vour program. The information
that may appear is described under "Listing Produced by the
Loader™ on page 98. For printed output the following DD
statement will suffice:

//SYSPRINT DD SYSOUT=A

EXAMPLES OF LOADER JCL

A sequence of job control language for the loader is shown in
Figure 36 on page 95. A PL/]l program has been compiled in a job
step with the step name PLI; the resultant object module has
been placed in the data set defined by the DD statement with the
name SYSLIN. Because this module is to be loaded and executed
in the same job as the compile step, this DD statement can use
the backward reference, indicated by the asterisk, as shown. If
the compile and load-and-go steps were in different jobs, the DD
statement would have to specify a permanent data set, cataloged
or uncataloged.

The IBM-supplied cataloged procedure PLIXCG includes a DD
statenent with the name SYSLIN in both the compile and
load-and-go procedure steps; you do not need to specify this
statement unless you want to modify it. The IBM-supplied

96 0S PL/I Optimizing Compiler: Programmer's Guide

cataloged procedure PLIXG does not include a DD statement with
éhe $§m§ SYSLIN; you must supply one, using the qualified name
0.SYSLIN.

Typical job control language statements for the loader are shown
in Figure 37. The example illustrates how to include, in the
input stream, both an object module for input to the loader, and
data to be used by vour program during execution.

//LOAD JOB

//STEP1 EXEC PGM=LOADER

//SYSLIN DD DSN=%.PLI.SYSLIN,DISP=(OLD,DELETE)
//SYSLIB DD DSN=5YS1.PLIBASE,DISP=SHR

//75YSLOUT DD SYSQUT=A
/7 SYSPRINT DD SYSOUT=A

Figure 36. Job Control language for Load-and-Go

//L0AD

//STEP1
//SYSLIN
/7

/7
//SYSLIB
Va4
//SYSLOUT
//SYSPRINT
/7/SYSIN

JOB

EXEC PGM=LOADER

DSN=0BJECT,UNIT=SYSSQ, VOL=SER=nnnnnn, DISP=(0LD, KEEP)
DSN=MODLIB(MOD55), DISP=SHR

DDNAME=IN

DSN=SYS1.PLIBASE,DISP=SHR

DSN=PRIVLIB,DISP=SHR

SYSO0UT=A

SYSOUT=A

DD x

(insert hére the object module to be included)

/%
//GO0.SYSIN

DD x

(insert hére the execution data, if any)

/%

Figure 37.

Object and Load Modules in Load-and-Go

Chapter 3. The Linkage Editor and the Loader 95

OPTIONAL FACILITIES

The DD statement with the name SYSLIN and the two following
unnamed DD statements define three data sets that are to be
concatenated into one data set to be used as input to the
loader. The first data set is named OBJMOD and contains an
object module. This data set could be the output of the
optimizing compiler that has just processed your PL/I program.
The second data set is named MODLIB(MOD55) containing a load
module that has been given the name MOD55 and stored in the
library called MODLIB. The third data set is an object module
defined by the DD statement with the name IN. This DD statement
appears further on and has the asterisk notation that indicates
t?at the data set defined by this statement follows in the input
streanm,

The DD statement with the name SYSLIB and the unnamed DD
statement immediately following it define two data sets that are
to be concatenated so that they can be searched for unresolved
external references by automatic library call. The first data
set is the PL/I resident library (SYS1.PLILIB) and the second is
a private library called PRIVLIB.

OF THE LOADER

The loader provides a number of optional facilities that are
selected by including the appropriate kevwords from the
followingtlist in the PARM parameter of the EXEC statement that
invokes it:

CALL
EP
LET
MAP
PRINT
RES
SIZE

Code the PARM parameter as follows:

PARM='[loader-options] [/execution—-options]l
[/pgmparml®

where "loader-options™ is a list of loader options,
"execution-options"™ is a list of execution-time options (as
described in "Execution-Time QOptions™ on page 31), and "pgmparm®
is a parameter to be passed to the main procedure of the PL/I
program to be executed. In the examples given below, the
program parameter is referred to as PP.

If loader-options and either execution-options or a program
parameter (or both) occur in the PARM parameter, the
loader-options are given first and are separated from the
execution-options for program parameter by a slash. If there
are loader-options but no execution-options or program
parameter, the slash is omitted, but if there are only
execution-options or program parameters, the slash must be
coded. If there is more than one option, the option keywords
are separated by commas.

The PARM field can have one of three formats:

1. If the special characters 7 or = are used, the field must be
enclosed in single quotes. For example:

PARM="MAP, EP=FIRST/PP"'
PARM="MAP, EP=FIRST'
PARM='/PP"

2. If these characters are not included, and there is more than
one loader option, the options must be enclosed in
parentheses. For example:

PARM=(MAP, LET)

96 O0S PL/I Optimizing Compiler: Programmer's Guide

CALL OPTION

EP OPTION

LET OPTION

MAP OPTION

PRINT OPTION

3. If these characters are not included, and there is only one
loader option, neither quotes nor parentheses are required.
For example:

PARM=MAP

To override the PARM parameter options specified in a cataloged
procedure, vou must refer to the PARM parameter by the qualified
name PARM.procstepname. For example: PARM.GO

The loader options are of two types:

1. Simple pairs of keywords: a positive form (for example,
CALL) that requests a facility, and an alternative negative
form (for example, NOCALL) that rejects that facility.
CALL, LET, MAP, PRINT, and RES are of this type.

2. Keywords that permit vyou to assign a value to a function
(for example, SIZE=10K). EP and SIZE are of this type.

The loader options are described in the following sections, in
alphabetic order.

The CALL option specifies that the loader will attempt to
resolve external references by automatic library call. To
preserve compatibility with the linkage editor, the negative
fSEKLff this option can be specified as NCAL as well as by

N .

The EP option specifies the entry point name of the program that
is to be executed. The syntax of the EP option is:

EP=name

where "name"™ is an external name. If all input modules are load
modules vou must specify EP=PLISTART.

The LET option specifies that the loader will try to execute the
problem program even if a severity 2 error has been found.

The MAP option specifies that the loader is to print a map of
the load module giving the relative locations and lengths of
control sections in the module. You must specify the data set
defined by the DD statement with the name SYSLOUT to have this
map printed. The module map is described in "lListing Produced
by the Loader™ on page 98.

The PRINT option specifies that the data set defined by the DD
statement with the name SYSLOUT is to be used for messages, the
module map, and other loader information.

Chapter 3. The Linkage Editor and the Loader 97

RES OPTION

SIZE OPTION

LISTING PRODUCED BY

The RES option specifies that the loader will attempt to resolve
external references by a search of the link—-pack area of main
storage. This search will be made after the primary input to
the loader has been processed but before the data set defined by
the DD statement with the name SYSLIB is opened.

The SIZE option specifies the amount of main storage, in bytes,
to be allocated to the loader. The syntax of the SIZE option
is:
SIZE TYVYVYVY
. specifies that yyvvyy bytes of main storage are to be
allocated to the loader.
SIZE=yyyK ,
specifies that yyyK bytes of main storage are to be
allocated to the loader (1K=1024).

The values can be enclosed, optionally, in parentheses.

THE LOADER

MODULE MAP

The loader can prov1de a listing on the SYSLOUT data set; the
SYSPRINT data set is used by the problem program. The contents
of each is given in Figure 38.

Data Set Contents

SYSLOUT Loader explanatory messages and diagnostic messages,
and optionally, a module map.

SYSPRINT PL/I execution-time messages, and problem program
output.

Figure 38. Contents of SYSLOUT and SYSPRINT Data Sets

The SYSLOUT listing is described here; the SYSPRINT listing is
described under "Listing (SYSPRINT)™ on page 10.

The items in the SYSLOUT listing appear in the following
sequence:

1. Statement identifying the loader.

2 Module map (if specified).

3. Explanatory, error, or warning messages.
G

Diagnostic messages.

If the MAP option is specified, a module map is printed in the

SYSLOUT listing. The map lists all the control sections in the
load module and all the entry point names (other than the first)
in each control section. The information for each reference is:

. The control section or entry point name.

. An ?sterisk, if the control section is included by library
call.

98 \OS PL/I Optimizing Compiler: Programmer's Guide

. An identifier, as follows:
SD Section definition: the name of the control section.

LR Label reference: identifying an entry point in the
control section other than the primary entry point.

CM Common area: an external file, or a non-string element
variable declared STATIC EXTERNAL.

. Absolute address of the control section or entry point.

Each reference is printed left to right across the page and
starts at a preset position. This gives the impression that the
references are arranged in columns, but the correct way to read
the map is line by line, across the page, not down each column.

The module map is followed by a similar listing of the
pseudoregisters. The identifier used here is PR, and the
address is the offset from the beginning of the pseudoregister
vector (PRV). The total length of the PRV is given at the end.

The total length of the module to be executed, and the absolute
address of its primary entry point, are given after the
explanatory messages and before the diagnostic messages.

EXPLANATORY AND DIAGNOSTIC MESSAGES

The loader generates messages describing errors or conditions,
detected during processing by the loader, that may lead to
error. The format of these messages is given under "Diagnostic
Message Directory™ on page 77.

When the module to be executed has been processed, the loader
prints out in full all the messages referred to above. The text
of each message, an explanation, and any recommended programmer
response, are given in 0S/VS Message Library: lLinkage Editor and
Loader Messages.

Chapter 3. The Linkage Editor and the Loader 99

CHAPTER 4. DATA SETS AND FILES

DATA SETS

DATA SET NAMES

This chapter describes briefly the nature and organization of
data sets, the data management services provided by the
operating system, the record formats acceptable for auxiliary
storage devices, and the way in which data sets are associated
with PL/I files. It also describes some ENVIRONMENT options
used in file declarations to describe the data set to PL/I.
Methods of creating and accessing data sets are given in
Chapter 5, "Defining Data Sets for Stream Files™ on page 134,
Chapter 6, "Using Consecutive, Indexed, Regional, and
Teleprocessing Data Sets™ on page 149, and Chapter 7, "Using
VSAM Data Sets from PL/I™ on page 222.

Chapter 7, "Using VSAM Data Sets from PL/I"™ on page 222
describes VSAM data sets. These differ significdantly from other
data set types; VSAM users will find that much of the
information in this chapter is irrelevant.

A data set is any collection of data that can be created by a
program and accessed by the same or another program. A data set
may be a deck of punched cards, it may be a series of items
recorded on magnetic tape, or it may be recorded on a
direct-access device (as well as being input from, or output to,
vour terminal). A printed listing produced by a program is a
data set, but it cannot be accessed by a program.

A volume is a physical unit of auxiliary storage (for example, a
reel of magnetic tape or a disk pack) that can be written on or
read by an input/output device; a serial number identifies each
volume (other than a magnetic-tape volume either without labels
or with nonstandard labels).

A magnetic-tape or direct-access volume can contain more than
one data set; conversely, a single data set can span two or more
magnetic—tape or direct-access volumes.

A data set on a direct-access device must have a name so that
the operating system can refer to it. If you do not supply a
name, the operating system will supply a temporary one. A data
set on a magnetic-tape device must have a name if the tape has
IBM standard labels (see "Labels™ on page 105). Names can be
unqualified, qualified, temporary, or generation names, as
described in your JCL manual. Data sets on punched cards, paper
tape, unlabeled magnetic tape, or nonstandard labeled magnetic
tape do not have names.

You can place the name of a data set, with information
identifying the volume on which it resides, in a catalog. Such
a data set is termed a cataloged data set. To catalog a data
set, use the CATLG subparameter of the DISP parameter of the DD
statement. To retrieve a cataloged data set, you need only
specify the name of the data set and its disposition. The
operating system searches the catalog for information associated
with the name and uses this information to request the operator
to mount the volume containing your data set.

100 0S5 PL/I Optimizing Compiler: Programmer's Guide

BLOCKS AND RECORDS

RECORD FORMATS

The items of data in a data set are arranged in blocks separated
by interblock gaps (IBG). (Some manuals refer to these as
interrecord gaps.)

A block is the unit of data transmitted to and from a data set.
Each block contains one record, part of a record, or several
records. A block could also contain a prefix field of up to 99
bytes in length depending on the information interchange code
(ASCII or EBCDIC) in which the data is recorded (sece
"Information Interchange Codes™). Specify the block size in the
BLKSIZE parameter of the DD statement or in the BLKSIZE option
of the ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program.
When writing a PL/I program, yvou need consider only the records
that vyou are reading or writing; but when you describe the data
sets that vour program will create or access, vou must be aware
of the relationship between blocks and records.

If a block contains two or more records, the records are said to
be blocked. Blocking conserves storage space in a volume
because it reduces the number of interblock gaps, and it may
increase efficiency by reducing the number of input/ocutput
operations required to process a data set. Records are blocked
and deblocked by the data management routines.

Specify the record length in the LRECL parameter of the DD
statement or in the RECSIZE option of the ENVIRONMENT attribute.

INFORMATION INTERCHANGE CODES: The normal code in which data is
recorded is the Extended Binary Coded Decimal Interchange Code
(EBCDIC), although source input can optionally be coded in
Binary Coded Decimal (BCD). However, for magnetic tape only,
the system accepts data recorded in the American Standard Code
for Information Interchange (ASCII). Use the ASCII and BUFOFF
options of the ENVIRONMENT attribute if you are reading or
writing data sets recorded in ASCII.

A prefix field up to 99 bvtes in length may be present at the
beginning of each block in an ASCII data set. The use of this
field is controlled by the BUFOFF option of the ENVIRONMENT
attribute. For a full description of the options used for ASCII
data sets, see "Consecutive Data Sets™ on page 149.

Each character in the ASCII code is represented by a 7-bit

pattern and there are 128 such patterns. The ASCII set includes
a substitute character (the SUB control character) that is used
to represent EBCDIC characters having no valid ASCII code. The

ASCII substitute character is translated to the EBCDIC SUB
character, which has the bit pattern 00111111.

The records in a data set must be one of the following:

. Fixed~-length

. Variable-length

. Undefined-length

Records can be blocked if required, but only fixed-length and

variable~length records are deblocked by the system;
undefined—-length records must be deblocked by your program.

Chapter 4. Data Sets and Files 101

Fixed-Length Records

You can specify the following formats for fixed-length records:

F Fixed-length, unblocked

FB Fixed-length, blocked

FS Fixed~length, unblocked, standard
FBS F1xed length, blocked, standard

In a data set with fixed-length records, as shown in Flgure 39,..
all records have the same length. If the records are blocked,
each block usually contains an equal number of fixed~length
records (although a block may be truncated). If the records are
unblocked, each record constitutes a block. : ') .

Unblocked Records (F—format):

Record |IBG| Record ... IBG Record

Blocked Records (FB—format):

r—*——~——~——~B1ock-—f~——~—-—]

Record Record Record IBG Record .

Figure 39. Fixed-length Records

Because it can base blocking aﬁd deblocking on a constant record
length, the operating system can process fixed-length records
faster than it can variable~length records.

The use of "standard™ (FS-format and FBS-format) records further
optimizes the sequential processing of a data set on a
direct-access device. A standard format data set must contain
fixed-length records and must have no embedded empty tracks or
short blocks (apart from the last block). With a standard
format data set, the operating system can predict whether the
next block of data will be on a new track and, if necessary, can
select a new read/write head in anticipation of the transmission
of that block. A PL/I program never places embedded short
blocks in a data set with fixed-length records. A data set
containing fixed-length records can be processed as a standard
data set even if it is not created as such, providing it
contains no embedded short blocks or empty tracks.

Variable-Length Records

You can specify the following formats for varlable-length
records:

Vv Variable-length, unblocked
VB Variable-length, blocked

VS Variable-length, unblocked, spanned
VBS Variable-length, blocked, spanned
D Variable-length, unblocked, ASCII

DB Variable-length, blocked, ASCII

102 0S PL/I Optimizing Compiler: Programmer's Guide -

V-format permits both variable-length records and
variable-length blocks. The first 6 bytes of each record and of
each block contain control information for use by the operating
system (including the length in bytes of the record or block).
Because of these control fields, variable-length records cannot
be read backward. Illustrations of variable-length records are
shown in Figure 40.

V—format:

Clic2 Record 1 IBG |Cl1]|C2| Record 2 IBG |ClicC2
VB—format:
IBG
Cl{C2§ Record 1 |C2| Record 2 Cli{C2| Record 3
VS—format:
Spanned record
Cl|C2] Record 1 IBG {Cli|cC2 Record 2 IBG |Cl|C2 Record 2 IBG
(entire) (first segment) (last segment)
VBS—format:
) Spanned record
Cl|C2| Record 1 |C2 Record 2 IBG JCl|cC2 Record 2 C2| Record 3
(entire) (first segment) ‘ ' (last segment)
Cl: Block control information

C2: Record or segment control information

Figure 40. Variable-Length Records

V-format signifies unblocked variable-length records. Each
record is treated as a block containing only one record, the
first 4 bytes of the block contain block control information,
and the next 4 contain record control information.

VB-format signifies blocked variable-lenath records. Each block
contains as many complete records as it can accommodate. The
first 4 bytes of the block contain block control information,
and the first 4 bytes of each record contain record control
information.)

SPANNED RECORDS: A spanned record is a variable-length record
in which the length of the record can exceed the size of a
block. If this occurs, the record is divided into segments and
accommodated in two or more consecutive blocks by specifying the
record format as either VS or VBS. Segmentation and reassembly
are handled by the operating system. The use of spanned records
allows you to select a block size, independently of record
length, that will combine optimum use of auxiliary storage with
maximum efficiency of transmission.

Chapter 4. Data Sets and Files 103

VS-format is similar to V-format. Each block contains only one
record or segment of a record. The first 4 bytes of the block
contain block control information, and the next 6 contain record
or segment control information (including an indication of
whether the record is complete or is a first, intermediate, or
last segment).

With REGIONAL(3) organization, the use of VS-format removes the
limitations on block size imposed by the physical
characteristics of the direct-access device. If the record
length exceeds the size of a track, or if there is no room left
on the current track for the record, the record will be spanned
over one or more tracks.

VBS—-format differs from VS-format in that each block contains as
many complete records or seaments as it can accommodate; each
block is, therefore, approximately the same size (although there
can be a variation of up to 4 bytes, since each segment must
contain at least 1 byte of data).

ASCII RECORDS: For data sets that are recorded in ASCII, use
D-format as follows:

. D-format records are similar to V-format, except that the
data they contain is recorded in ASCII.

. DB-format records are similar to VB-format, except that the
data they contain is recorded in ASCII.

Undefined~Length Records

U~format permits the processing of records that do nct cenform
to F- and V-formats. The operating system and the compiler
treat each block as a record; your program must perform any
required blocking or deblocking.

DATA SET ORGANIZATION

The data management routines of the operating system can handle
a number of tvpes of data sets, which differ in the way data is
stored within them and in the permitted means of access to the
data. The three main types of non-VSAM data sets and the
corresponding keywords describing their PL/I organization? are
as follows:

Type of Data Set PL/I Organization
Sequential CONSECUTIVE
Indexed sequential INDEXED

Direct REGIONAL

The compiler recognizes a fourth type, teleprocessing, by the
file attribute TRANSIENT.

A fifth type, partitioned, has no corresponding PL/I
organization. VSAM also provides a number of alternatives.

In a sequential (or CONSECUTIVE) data set, records are placed in
physical sequence. Given one record, the location of the next
record is determined by its physical position in the data set.
Sequential organization is used for all magnetic tapes, and may
be selected for direct-access devices. Paper tape, punched
cards, terminal, and printed output are sequentially organized.

Do not confuse the terms "sequential™ and "direct"™ with the
PL/I file attributes SEQUENTIAL and DIRECT. The attributes
refer to how the file is to be processed, and not to the way
the corresponding data set is organized.

104 O0S PL/I Optimizing Compiler: Programmer's Guide

An indexed sequential (or INDEXED) data set must reside on a
direct-access volume. An index or set of indexes maintained by
the operating system gives the location of certain principal
records. This permits direct retrieval, replacement, addition,
and deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct-access
volume. The records within the data set can be organized in
three ways: REGIONAL(1), REGIONAL(2), and REGIONAL(3); in each
case, the data set is divided into regions, each of which
contains one or more records. A key that specifies the region
number and, for REGIONAL(2) and REGIONAL(3), identifies the
record, permits direct-access to any record; sequential
processing is also possible.

A teleprocessing data set (associated with a TRANSIENT file in a
PL/1I program) must reside in storage. Records are placed in
physical sequence.

In a partitioned data set, independent groups of sequentially
organized data, each called a member, reside in a direct-access
data set. The data set includes a directory that lists the
location of each member. Partitioned data sets are often called
libraries. The compiler includes no special facilities for
creating and accessing partitioned data sets. Each member can
be processed as a CONSECUTIVE data set by a PL/I program. The
use of partitioned data sets as libraries is described under
Chapter 8, "Libraries of Data Sets"™ on page 26%.

LABELS

The operating system uses labels to identify magnetic-tape and
direct-access volumes, and to store data set attributes (for
example, record length and block size). The attribute
information must originally come from a DD statement or from
vour program. Once the label is written you need not specify
the information again.

Magnetic-tape volumes can have IBM standard or nonstandard
labels, or they can be unlabeled. IBM standard labels have two
parts: the initial volume label, and header and trailer labels.
The initial volume label identifies a volume and its owner; the
header and trailer labels precede and follow each data set on
the volume. Header labels contain system information,
device-dependent information (for example, recording technique),
and data-set characteristics. Trailer labels are almost
identical with header labels, and are used when magnetic tape is
read backward.

Direct-access volumes have IBM standard labels. Each volume is
identified by a volume label, which is stored on the volume.
This label contains a volume serial number and the address of a
volume table of contents (VTOC). The table of contents, in
turn, contains a label, termed a data set control block (DSCB),
for each data set stored on the volume.

DATA DEFINITION (DD) STATEMENT

A data definition (DD) statement is a job control statement that
defines a data set to the operating system, and is a request to
the operating system for the allocation of input/output
resources. Each job step must include a DD statement for each
data set that is processed by the step.

Your JCL manual describes the syntax of job control statements.
The operand field of the DD statement can contain keyword
parameters that describe the location of the data set (for
example, volume serial number and identification of the unit on
which the volume will be mounted) and the attributes of the data
itself (for example, record format).

Chapter 4. Data Sets and Files 105

The DD statement enables vou to write PL/I source programs that
are independent of the data sets and input/output devices they
will use. You can modify the parameters of a data set or
process different data sets without recompiling your program;
for example, you can cause a program that originally read
punched cards to accept input from magnetic tape by changing the
DD statement.

The following paragraphs describe the relationship of some
operands of the DD statement to your PL/I program.

The LEAVE and REREAD options of the ENVIRONMENT attribute allow
yvou to use the DISP parameter to control the action taken when
the end of a magnetic-tape volume is reached or when a
magnetic-tape data set is closed. The LEAVE and REREAD options
are described under "Consecutive Data Sets"™ on page 149, and are
also described under "CLOSE Statement™ in the 0S5 _and DOS PL/I

Language Reference Manual.

Use of the Conditional Subparameters

If vou use the conditional subparameters of the DISP parameter
for data sets processed by PL/I programs, the step abend
;afility must be used. The step abend facility is obtained as
ollows:

1. The ERROR condition should be raised or signaled whenever
the program is to terminate execution after a failure that
requires the application of the conditional subparameters.

2. The resident library subroutine IBMBEER must be changed to
return a nonzero return code. The method of doing this is

described in 0S PL/YI Optimizing Compiler Installation Guide
for MVS.

DATA SET CHARACTERISTICS: The DCB (data control block)
parameter of the DD statement allows yvou to describe the
characteristics of the data in a data set, and the way it will
be processed, at execution time. Mkhereas the other parameters
of the DD statement deal chiefly with the identity, location,
and disposal of the data set, the DCB parameter specifies
information required for the processing of the records
themselves. The subparameters of the DCB parameter are
described in your JCL manual. For DCB use, see "Data Control
Block™ on page 117.

The DCB parameter contains subparameters that describe:

. The organization of the data set and how it will be accessed
(CYLOFL, DSORG, LIMCT, NCP, NTM, and OPTCD subparameters)

. Device-dependent information such as the recording technique
for magnetic tape or the line spacing for a printer (CODE,
DEN, FUNC, MODE, OPTCD=J, PRTSP, STACK, and TRTCH

subparanmeters)

[The record format (BLKSIZE, KEYLEN, LRECL, RECFM, and RKP
subparameters)

. The number of buffers that are to be used (BUFNO
subparameter)

. The printer or card punch control characters (if any) that
will be inserted in the first byte of each record (RECFM
subparameter)

You can specify BLKSIZE, BUFNO, LRECL, KEYLEN, NCP, RECFM, RKP,
and TRKOFL (or their equlvalents) in the ENVIRONMENT attribute
of a file declaration in your PL/I program instead of in the DCB
parameter.

You cannot use the DCB parameter to override information already
established for the data set in your PL/I program (by the file

106 O0S PL/I Optimizing Compiler: Programmer's Guide

attributes declared and the other attributes that are implied by
them). DCB subparameters that attempt to change information
already supplied are ignored.

An example of the DCB parameter is:
DCB=(RECFM=FB,BLKSIZE=400, LRECL=40)

which specifies that fixed—length records, 40 bytes in length,
are to be grouped together in a block 400 bytes long.

AUXILIARY STORAGE DEVICES

The following paragraphs summarize the salient operational
features of various types of auxiliary storage devices.

IBM 2520 AND 2540 CARD READER AND PUNCH

Both the card reader and card punch accept F-format, V-format,
and U-format records; the control bytes of V-format records are
not punched. Any attempt to block records is ignored.

Each punched card corresponds to one record; you should
therefore restrict the maximum record length to 80 bytes (EBCDIC
mode) or 160 bytes (column-binary mode). To select the mode,
use the MODE subparameter of the DCB parameter of the DD
statement; if you omit this subparameter, EBCDIC is the default.
(The column-binary mode increases the packing density of
information on a card, punching 2 bytes in each column. Only 6
bits of each byte are punched; on input, the 2 high—-order bits
of each byte are set to zero; on output, the 2 high—order bits
are lost.) The IBM 2540 Card Read Punch has five stackers into
which cards are fed after reading or punching. Two stackers
accept only cards that have been read, and two others accept
only those that have been punched; the fifth (center) stacker
can accept either cards that have been read or those that have
been punched. The two stackers in each pair are numbered 1 and
2 and the center stacker is numbered 3, as shown in Figure 4l.

READ
l

I PUNCH I

Figure 41. IBM 2540 Card Read Punch: Stacker Numbers

The IBM 2520 Card Read Punch has two stackers, into which cards
can be read or punched. The IBM 2501 Card Reader has only one
stacker.

Cards are normally fed into the appropriate stacker 1 after
reading or punching. You can use the STACK subparameter of the
DCB parameter of the DD statement to select an alternative
stacker for reading or punching. For punching only, you can
select the stacker dynamically by inserting an American National
Standard or machine code control character in the first byte of

Chapter 4. Data Sets and Files 107

each record; you must indicate which vou are using in the RECFM
subparameter of the DD statement or in the ENVIRONMENT option.
The control character is not punched.

IBM 3505 AND 3525 CARD READER AND PUNCH

The IBM 3505 Card Reader and the IBM 3525 Card Punch are
functionally separate and operate independently of each other.

The 3505 reads 80-column cards, and provides, in addition to
normal card reading, the following facilities:

. Optical Mark Read (in EBCDIC or column binary mode)
. Read Column Eliminate (in EBCDIC or column binary mode)
. Stacker selection

The 3525 is basically an 80-column card punch, and can have the
following additional facilities:

. Card reading facilities that optionally include:
- Reading in EBCDIC or column binary mode
- Read Column Eliminate
. Card punching in EBCDIC or column binary mode
. Card printing facilities that include either:
= Two-line printing, or
- Multiline printing (up to 25 lines)
. Punch Interpretation
] Stacker selection

The various operations of the 3505 and the 3525 are described in
the following sections. In general, the operations to be
performed are selected by the FUNC, MODE, and STACK
subparameters of the DCB parameter. The formats of these
subparameters are described in your JCL manual.

Basic Card Reading and Punching

Card reading or punching on a 3525 is selected by specifying
DCB=(FUNC=R) for reading or DCB=(FUNC=P) for punching. If the
FUNC subparameter is not specified, the default is FUNC=R for
input files and FUNC=P for output files that do not have the
PRINT attribute.

Apart from this function selection for the 3525, support for the
3505 as a simple card reader and the 3525 as a card reader or
punch is identical to that for the 2540 described under "IBM
2520 and 2540 Card Reader and Punch™ on page 107.

EBCDIC or Column Binary Modes

Cards processed by a 3505 or a 3525 can hold data coded in
either EBCDIC or column binary mode. If EBCDIC is used, each
card can contain up to 80 characters. If column binary mode is
used, each card can contain up to 160 binary characters, two per
card column. EBCDIC and column binary data cannot be
intermixed.

In column binary mode, each card column holds two 6-bit
characters. The first character appears in rows 12 through 3 on
the card, and the second in rows 4 through 9. The binary values
of characters are transmitted to successive bytes in main

108 O0S PL/I Optimizing Compiler: Programmer's Guide

Stacker Selection

Optical Mark Read

storage. The 2 hich-order bits of each byte are set to zero
(these bits are not represented in the 6-bit code). The
characters are transmitted in the order: first (top) character,
second (bottom) character, and so on for each column in the
card, from column 1 to column 80.

The details of the coding and conversion technique used for
column binary data are left to the program designer. The
TRANSLATE built-in function may provide a convenient method of
converting data to or from column binary form.

Rules for using column binary mode are:

. The MODE subparameter of the DCB parameter must specify
column binary (MODE=C).

. The PL/I file must have the RECORD attribute.
. The punch-interpret feature must not be used.

. The file must be either an input file or an ocutput punch
file. It cannot be a print file.

. A column binary output file must have a record size of 160
bytes.

The stacker selection feature is optionally available on the
3505 and is a standard feature on a 3525. There are two methods
of selecting a stacker:

. The stacker can be selected permanently for all cards in the
file. This method involves the STACK subparameter of the
DCB parameter.

. For record-oriented data transmission to a 3525, the first
byte of the record can contain a stacker control character
to select the required stacker dynamically. The use of such
cozgs is specified by the CTLASA or CTL360 ENVIRONMENT
options. ’

The optical mark read (OMR) feature is available only on the
3505 card reader. This feature enables preprinted or
pencil-written marks on a punched card to be read as data. The
following rules apply:

. Optical Mark Read is specified by MODE=EQ (EBCDIC mode) or
MODE=C0 (column binary mode) in the DCB parameter.

. The associated PL/I file must have the RECORD and INPUT
attributes, and must not have the TOTAL attribute.

. Records must be F-format with a RECSIZE of 80 (EBCDIC mode)
or 160 (column binary mode).

. Up to 40 columns of EBCDIC data or 80 characters of column
binary data can be read optically from a single card.
Optical and punched data can be read from the same card
although there are some restrictions, given below, on how
the data is recorded on the card.

. Optical mark data can appear only in alternate card columns
and must be separated by blank columns. Optical mark and
punched hole columns must also be separated by at least one
blank column. When the record is read in, the data is
compressed by removing the blank column following each
optical mark column, and the record is padded with blanks.

Chapter 4. Data Sets and Files 109

® The columns containing optically-readable marks must be
specified to the program at execution time by a format
descriptor card. This card must be the first card in the
deck of cards to be read by the file each time the program
is run. Operating procedures for running jobs that use OMR
should ensure that this point is not overlooked.

° The OMR descriptor card has the following format:
FORMAT (nl,n2),(n3,n%)...

where nl is the first column in a group to be read in OMR
mode, n2 is the last column in the group, n3 is the first
column in the next group, n% is the last column in this
group, and so on. Remember that only every other column
between nl and n2 or n3 and n4 can be read in OMR mode. A
maximum of 40 columns of OMR data can be accommodated on an
80-column card. nl and n2 (and similarly n3 and n4%) must be
either both even or both odd, and n3 must be at least 2
greater than n2.

The format descriptor record must begin in column 2 and can
continue through column 71. If a continuation is required,
punch any character in column 72 and start the continuation
in column 16 of the following card.

A blank must follow the keyword FORMAT. Operands must be
separated by commas. For example:

FORMAT (1,9),(70,80)

This specifies that columns 1 to 10 and 70 to 80 are
reserved for OMR use and, of these, columns 1, 3, 5, 7, 9,
70, 72, 76, 76, 78, and 80 will be scanned for optical mark
data.

® Column 1 of the card alwavys corresponds with the first byte
of the data in main storage. Consequently, if an optical
mark appears in column 2, column 1 must be blank and the
first bvte of storage will also be blank.

° If a marginal mark, weak mark, or poor erasure is detected
on a celumn, the corresponding byte and the last bvte of the
record are set to X'3F'. The TRANSMIT condition is raised
once only for all errors found in a card. The card itself
is stacked in the alternative stacker to that normally used
by the file.

® When an optical mark read file is closed, the last card is
fed and stacked in the same stacker as the previous card.
This feed operation resets the device into unformatted mode,
ready for the next file opening.

® Optical Mark Read is not supported on SYSIN. The 3505 must
be allocated exclusively to the user's job by specifying the
device type of the unit address in the UNIT parameter of the
DD statement.

® When a file is opened for optical mark reading, the value of
the BUFFERS option (for BUFFERED files) or the NCP option
(for UNBUFFERED files) is set to 1.

Read Column Eliminate

The Read Column Eliminate (RCE) feature is optionally available
on the 3505 and on a 3525 with card reading facilities. This
feature permits the selective reading of card columns. The
columns to be ignored when the card is read are specified in a
format descriptor card. The ignored columns are replaced by
blanks in EBCDIC mode or zeros in column binary mode before the
record is transmitted.

The following rules apply:

110 0S PL/I Optimizing Compiler: Programmer's Guide

Punch Interpret

Printing on Cards

. Read Column Eliminate is specified by MODE=ER (EBCDIC mode)
or MODE=CR (column binary mode) in the DCB parameter.

] An RCE format descriptor card must be supplied. This card
must be the first card in the deck of cards to be read by
the program each time it is executed. Operating procedures
for running jobs that use RCE should ensure that this point
is not overlooked.

L The RCE descriptor card has the following format:
FORMAT (nl1l,n2),(n3,n4)...

where nl is the first column in a group of columns to be
ignored and n2 is the last column in the group, n3 is the
first column in the next group to be ignored, n4 is the last
column in this group, and so on.

The format descriptor card must begin in column 2 and
continue through to column 71. If a continuation is
required, punch any character in column 72 and start the
continuation in column 16 of the following card.

A blank must follow the keyword FORMAT. Operands must be
separated by commas. For example:

FORMAT (20,30),(52,76)

This specifies that columns 20 through 30 and columns 52
through 76 are to be ignored when the card is read.

. The PL/1I file can have either the STREAM or the RECORD
attribute. Records must be F-format.

. When an RCE file is closed, a card fTeed operation is
executed by the reader. If several files are to be read
consecutively — either for successive programs in a single
batch, or for several files in a single program — a nondata
card must separate the files.

. Read Column Eliminate is not supported on SYSIN. The 3505
or 3525 must be allocated exclusively to the user's job by
specifying the device type of the unit address in the UNIT
parameter of the DD statement.

A single file can be used to punch and interpret cards by
specifying DCB=(FUNC=I). Cards are punched normally, and the
same data is printed on lines 1 and 3 of the card. The first 64
characters are printed on line 1; the remaining 16 characters
are right-justified on line 3.

A punch interpret file may have the STREAM or RECORD and the
BUFFERED or UNBUFFERED attributes. Records must be F-format,
with a record size of 80, or 81 if control characters are being
used for stacker selection.

The card printing feature of the 3525 is available in two forms:
. Two-line printing

. Multiline printing (up to 25 lines)

Printing can be performed either as the only operation on the
card, or as one of a number of operations on the same card. The
following rules apply to print-only files. The additional

requirements for printing after reading or punching a card are
described under "Multiple Operations™ on page 112.

Chapter 4. Data Sets and Files 111

Multiple Operations

. The FUNC subparameter of the DCB parameter must specify "H"
if the 3525 has the multiline print feature, or "HT" if it
has the two-line print feature. If FUNC is omitted, FUNC=H
is defaulted for PL/I PRINT files.

. The PL/I file may have either the RECORD or the STREAM
attribute.

. The maximum number of characters that can be printed on each
line is 649. You must ensure that this limit is not
exceeded; in particular, on PRINT files, LINESIZE should not
exceed 64 or data will be lost.

. If the 3525 has the two-line print feature, and is used by a
file with the PRINT attribute or by a file using CTLASA or
CTL360 control characters, you must ensure that no attempt
is made to print on any line other than lines 1 and 3. Such
an attempt will terminate the program without raising the
PL/I ERROR condition. If a PRINT file is used, and a
PAGESIZE of more than 3 is specified, the page size is set
to 3 when the file is opened.

If the file is a non-PRINT file, and control characters are
not used, records are printed on lines 1 and 3.

. If a 3525 with the multiple print feature is used, the file
should have a maximum page size of 25. If a PAGESIZE of
greater than 25 is specified on a PRINT file, the page size
is set to 25 when the file is opened. Whatever the page
size, a PUT PAGE statement for a PRINT file will always
cause the file to be positioned at line 1 of the next card.
Any attempt to print bevond line 25 will terminate the
program without raising the PL/I ERROR condition.

. All the American National Standard control characters can be
used, with the exception of "+" (suppress space before
printing). The use of the "+"™ control character, or of
SKIP(0) on a PRINT file, will terminate the program without
raising the PL/I ERROR condition.

Odd-numbered lines on a card can be reached using "skip to
channel™ control characters, with channel numbers being
defined as:

channel number = (line number + 1)/2

Only channels 1 through 12 are valid. Other lines can be
reached by using "space and print"™ control characters. All
lines can be reached by executing sufficient WRITE or PUT
operations.

Two or three files may be used in association with each other to
enable more than one of the operations "read,™ "punch,™ and
"orint™ to be performed on a single card during one pass through
a 3525. A DD statement is required for each operation that the
device is to perform, and the association of these data sets is
specified by means of the unit affinity (AFF) parameter,
together with the FUNC subparameter of the DCB parameter.

For example, for a set of files that are to perform the
operations read-punch-print, the association of the data sets
and the set of operations is specified as follows:

7//CARDIN DD UNIT=3525, DCB=(FUNC=RPH)
//PUNCH DD UNIT=AFF=CARDIN,

77 DCB=(FUNC=RPH)

//PRINT DD UNIT=AFF=PUNCH,

/7 DCB=(FUNC=RPWX)

Valid FUNC options are listed in your JCL manual. Note that the
FUNC option must specify the complete set of associated

112 0S PL/I Optimizing Compiler: Programmer's Guide

Data Protection

PAPER TAPE READER

operations. "X" must be added to the FUNC option of the print
data set. If the 3525 has the two-line print feature, "T" must
also be coded on the FUNC option of the print data set.

The following rules apply to multiple operations:

. All the device-associated files must have the RECORD
attribute, and must be all BUFFERED or all UNBUFFERED. None
gffthe Iiles can have the TOTAL option. Records must be

-format.

U If stacker selection is required, it can only be specified
on the punch file, if there is one. Either stacker-select
control characters or static stacker selection by means of
the STACK subparameter can be used.

. An associated data set cannot be allocated to SYSIN or
SYSPRINT. The 3525 must be allocated exclusively to your
job by specifying the device type of the unit address in the
UNIT parameter of the DD statement.

. Data delimiter cards should not be punched or printed on, or
the first card of the following job will be lost.

Details of how to open and close associated files, and of the
sequences of operations that can be performed, are given in the
0S and DOS PL/I Language Reference Manual.

To avoid erroneous punching into card columns that already
contain data, a "data protection™ option can be used on a punch
file which is in association with a read file. Data protection
is specified by a D" in the FUNC option of the DD statement for
the punch data set. You must provide an 80-byte data protection
image (DPI) and link-edit it into SYS1.IMAGELIB with a member
name of the form FORMxxxx. The DPI contains blanks in columns
that are to be protected, and any alphameric character in
columns that can be punched. An assembler language program is
used to link-edit the DPI. For example:

/7/7UP EXEC ASMFCL

//ASM.SYSIN DD x

FORMDPI CSECT
DC X'40! (protected column)
DC X'40°" (protected column)
DC C*3456789A' {punch columns)
DC 70X'40' (protected columns)
END

/%

//LKED.SYSLMOD DD DISP=0LD,
V4 DSNAME=SYS1.IMAGEL IBCFORMxxxx)

A particular DPI is selected by means of the FCB parameter of
the DD statement for the punch file. For example:

//PUNCH DD UNIT=AFF=CARDIN,
/7 DCB=(FUNC=RPHWD),
77 FCB=xxxx

Data protection cannot be specified for column binary cards.

The paper tape reader accepts F-format and U-format records;
each U-format record is followed by an end-of-record character.
Use the CODE subparameter of the DCB parameter of the DD
statement to request translation of data from one of the six
standard paper-tape codes to EBCDIC. Any character found to
have a parity error is not transmitted.

Chapter 4. Data Sets and Files 113

LINE PRINTERS

The printer accepts F-format, V-format, and U-format records;
the control bytes of V-format records are not printed. Each
line of print corresponds to one record; you should therefore
restrict vour record length to the length of one printed line.
Any attempt to block records is ignored.

You can use the PRTSP subparameter of the DCB parameter of the
DD statement to request the line spacing of your output, or you
can control the spacing dynamically by inserting an American
National Standard or a machine-code print control character in
the first byte of each record; you must indicate which you are
using in the RECFM subparameter of the DD statement or in the
ENVIRONMENT option. The control character is not printed. If
vou do not specify the line spacing, single spacing (no blanks
between lines) is the default.

3800 PRINTING SUBSYSTEM

MAGNETIC TAPE

The IBM 3800 Printing Subsystem can be used in a manner that is
compatible with IBM line printers. However, i1t can do more than
line printers. For information on using its added capabilities,
see your IBM 3800 Printing Subsystem Programmer's Guide.

Magnetic-tape devices accept ASCII, fixed-length,
variable-length, and undefined-length records for both 9-track
and 7-track magnetic tape, with the one exception that 7-track
magnetic tape will not accept variable-length records unless the
data conversion feature is available. (The data in the control
bytes of variable-length records is in binary form; in the
absence of the data conversion feature, only 6 of the 8 bits in
each byte are transmitted to 7-track tape.)

Nine-track magnetic tape is used in IBM operating systems, but
some 2400 series magnetic—tape drives incorporate features that
facilitate reading and writing 7-track tape. The translation
feature changes character data from EBCDIC (8-bit code) to BCD
(the 6-bit code used on 7-track tape) or vice versa. The data
conversion feature treats all data as if it were in the form of
a bit string, breaking the string into groups of 8 bits for
reading into main storage, or into groups of 6 bits for writing
on 7-track tape; the use of this feature precludes reading the
tape backward. To use translation or data conversion, include
the TRTCH (tape recording technique) subparameter in the DCB
parameter of the DD statement.

The maximum recording density available depends on the model
number of the tape drive. You can use the subparameter DEN
(density) of the DD statement to specify the recording density.

When a data check occurs on a magnetic-tape device with short
length records (12 bytes on a read and 18 bytes on a write),
these records will be treated as noise.

DIRECT~ACCESS DEVICES

Direct-access devices accept fixed—, variable—, and
undefined-length records.

The storage space on these devices is divided into conceptual
cvlinders and tracks. A cvlinder is usually the amount of space
that can be accessed without movement of the access mechanism,
and a track is that part of a cylinder that is accessed by a
single read/write head. For example, an IBM 3380 Direct Access
Storage device has 15 recording surfaces, each of which has 885
concentric tracks; thus, it contains 885 cylinders, each of
which includes 15 tracks.

114 0S PL/I Optimizing Compiler: Programmer's Guide

Hhen you create a data set on a direct-access device, you must
always indicate to the operating system how much auxiliary
storage the data set requires. Use the SPACE parameter of the
DD statement to allocate space in terms of blocks, tracks, or
cvlinders. If you request space in terms of tracks or
cvlinders, bear in mind that space in a data set on a
direct-access device is occupied not only by blocks of data, but
by control information inserted by the operating system; if vou
use small blocks, the control information can result in a
considerable space overhead.

OPERATING SYSTEM DATA MANAGEMENT

BUFFERS

The compiler compiles each input or output statement in a PL/I
program into machine instructions that request the operating
system data management routines to perform the required input or
output operation. (For more information on PL/I data
managfm§nt, see the 0S PL/] Optimizing Compiler: Execution logic
manual.

The data management routines create and maintain data set
labels, indexes, and catalogs; they transmit data between main
storage and auxiliary storage; they use the system catalog to
locate data sets; and they request the operator to mount and
demount volumes as required.

The data management routines can provide areas of main storage,
termed buffers, in which data can be collected before it is
transmitted to auxiliary storage, or into which it can be read
before it is made available to a program. The use of buffers
permits the blocking and deblocking of records, and may allow
the data management routines to increase the efficiency of
transmission of data by anticipating the needs of a progranm.
Anticipatory buffering requires at least two buffers; while the
program is processing the data in one buffer, the next block of
data can be read into another. Anticipatory buffering can only
be used for data sets being accessed sequentially.

The operating system can further increase the efficiency of
transmission in a program that involves many input/output
operations by using chained scheduling. In chained scheduling,
a series of read or write operations are chained together and
treated as a single operation. For chained scheduling to be
effective, at least three buffers are necessary. For more
information on chained scheduling, see vour Data Management
Services Guide.

Chained scheduling should not be used for certain filetypes in
multitasking programs. See OPTCD in vour JCL manual.

5ecord—oriented data transmission has two modes of handling
ata:

U In move mode, vyou can process data by having the data moved
into or ocut of the variable, either directly or via a
buffer.

] In locate mode, vou can process data while it remains in a
buffer. The execution of a data transmission statement
assigns to a pointer variable the location of the storage
allocated to a record in the buffer. Locate mode is
applicable only to BUFFERED files; the file must be either a
SEQUENTIAL file or an INPUT or UPDATE file associated with a
VSAM data set.

For more information, see "™Processing Modes™ in the 0S5 and DOS
PL/I Language Reference Manual.

Chapter 4. Data Sets and Files 115

ACCESS METHODS

The access methods used by the compiler are shown in Figure 42.

A gueued access method deals with individual records, which it
blocks and deblocks. The data management routines place a block
of records in an input buffer and pass a single record to the
program for each retrieval request from the program (that is,
they deblock the records); each succeeding retrieval passes
another record to the program. MWhen the input buffer is empty,
it is refilled with another block. Similarly, on output, the
data management routines place records in an output buffer and,
when the buffer is full, write out the records. Since the
queued access technique brings records into main storage before
they are requested, it can be used only for records that have
been organized sequentially.

A basic access method moves blocks, not records. MWhen a request
is issued to retrieve a block, the data management

Access

Method Explanation

QSAM Queued sequential access method. This combines the
queued access technique with sequential organization.

QISAM Queued indexed sequential access method. This combines
the queued access technique with indexed sequential
organization.

BSAM Basic sequential access method. This combines the
basic access technique with sequential organization.

BISAM Basic indexed sequential access method. This combines
the basic access technique with indexed sequential
organization.

BDAM Basic direct-access method. This combines the basic
access technique with direct organization.

TCAM Telecommunications access method. This combines the
queued access technique with teleprocessing
organization.

VSAM Virtual Storage Access Method. This access method is

described in Chapter 7, "Using VSAM Data Sets from
PL/I"™ on page 222.

Figure 62. The Access Methods Used by the Compiler

routines pass a block of data to the program that issued the
request; they do not deblock the records. Similarly, an output
request transmits a block to auxiliary storage.

. The PL/I library subroutines use QSAM for stream-oriented data

transmission; for record-oriented data transmission, they use
the access methods shown in Figure 43 on page 117. They
implement PL/]I GET and PUT statements by transferring the
appropriate number of characters from or to the buffers, and use
GET and PUT macro instructions in the locate mode to fill or
empty the buffers. (For paper tape, the library subroutines use
move mode to permit translation of the transmitted characters
before passing them to the PL/I program.)

116 0S PL/I Optimizing Compilér: Programmer's Guide

DATA CONTROL BLOCK

Data Set Access

Organization File Attributes Methods
CONSECUTIVE SEQUENTIAL Iﬂ$gBT BUFFERED QSAM
0

UPDATE UNBUFFERED BSAM
INDEXED SEQUENTIAL INPUT BUFFERED
QUTPUT or QISAM
UPDATE UNBUFFERED
DIRECT INPUT - BISAM
UPDATE
REGIONAL SEQUENTIAL INPUT BUFFERED
QUTPUT or BSAM
UPDATE UNBUFFERED
DIRECT INPUT
OUTPUT - BDAM
UPDATE
TELEPROCESSING TRANSIENT INPUT BUFFERED TCAM
OUTPUT
VSAM ESDS SEQUENTIAL INPUT BUFFERED
QUTPUT or VSAM
UPDATE UNBUFFERED
VSAM KSDS and SEQUENTIAL INPUT BUFFERED
RRDS QUTPUT or VSAM
UPDATE UNBUFFERED
DIRECT INPUT BUFFERED
QUTPUT or VSAM
UPDATE UNBUFFERED

Figure 43. Access Methods for Record-Oriented Data Transmission

A data control block (DCB), or an access method control block
(ACB) for VSAM, is an area of storage that contains information
about a data set and the volume that contains it. The data
management routines refer to this information when they are
processing a data set; no data set can be processed unless there
exists a corresponding DCB. For a PL/I program, a PL/I library
subroutine creates a DCB for the data set when a file is opened.

A data control block contains two types of information: data
set characteristics and processing requirements. The
characteristics include record format, record length, block
size, and data set organization. The processing information may
specify the number of buffers to be used, and it may include
device-dependent information (for example, printer line spacing
or magnetic tape recording density), and special processing
options that are available for some data set organizations.

The information in the DCB comes from three sources:

. The file attributes declared implicitly or explicitly in the
PL/I progranm

U The data definition (DD) statement for the data set
. If the data set exists, the data set labels

Chapter 4. Data Sets and Files 117

OPENING A FILE

The execution of a PL/I OPEN statement associates a file with a
data set. This requires the merging of the information
describing the file and the data set. If any conflict is
detected between file attributes and data set characteristics,
the UNDEFINEDFILE condition is raised.

Subroutines of the PL/I library create a skeleton data control
block for the data set, and use the file attributes from the
DECLARE and OPEN statements, and any attributes implied by the
declared attributes, to complete the data control block as far
as possible, as shown in Figure 44. They then issue an OPEN
macro instruction, which calls the data management routines to
check that the correct volume is mounted and to complete the
data control block. The data management routines examine the
data control block to see what information is still needed and
then look for this information, first in the DD statement, and
finally, if the data set exists and has standard labels, in the
data set labels. For new data sets, the data management
routines begin to create the labels (if they are required) and
to fill them with information from the data control block.

Neither the DD statement nor the data set label can override
information provided by the PL/I program; nor can the data set
label override information provided by the DD statement.

When the DCB fields have been filled in from these sources,
control returns to the PL/I libhrary subroutines. If any fields
have still not been filled in, the PL/I OPEN subroutine provides
default information for some of them; for example, if LRECL has
gtﬁsgggn specified, it is now provided from the value given for

PL/I PROGRAM DCL MASTER FILE ENV(FB BLKSIZE(400),
RECSIZE(40));

OPEN FILE(MASTER};

DATA CONTROL BLOCK

Record format FB
DD STATEMENT //MASTER DD UNIT=2400 —— Block si 400
» VOLUME=SER= 1791, Ock size

DSNAME=LIST, Record length 40

DCB=(BUFNO=3, mnssmm—— .
RECFM=F, Device type 2400
BLKSIZE=400, Number of buffers 3

LRECL=100)

- Recording density 1600

\

DATA SET LABEL | Record format=F

" | Record length=100
Blocking factor=4
Recording density=1600

Note: Information from the PL/I program overrides that from the DD statement and the data set fabel.
Information from the DD statement overrides that from the data set label.

Figure 44. How the Operating System Completes the DCB

118 0S PL/I Optimizing Compiler: Programmer's Guide

CLOSING A FILE

The execution of a PL/I CLOSE statement dissociates a file from
the data set with which it was associated. The PL/1 library
subroutines first issue a CLOSE macro instruction and, when
control returns from the data management routines, release the
data control block that was created when the file was opened.
The data management routines complete the writing of labels for
new data sets and update the labels of existing data sets.

ASSOCIATING DATA SETS WITH FILES

With batch processing, the association of a file with a specific
data set is accomplished using job control language, outside the
PL/I program. At the time a file is opened, the PL/I file is
associated with the name (ddname) of a data definition statement
(DD statement), which defines a specific data set. The
association is with the name of a DD statement, not with the
name of the data set itself.

A ddname is associated with a PL/I file through the character
value of the expression in the TITLE opticn of the OPEN
statement,

If a file is opened implicitly, or if no TITLE option is
included in the OPEN statement that explicitly orens the file,
the ddname defaults to the file name. If the file name is
longer than 8 characters, the default ddname is composed of the
first 8 characters of the file name.

The character set of the job control language does not contain
the break character (_).