

Program Product

5C33-0006-7
File No. 5370-29

OS PL/I Optimizing Compiler:
Programmer's Guide

Optimizing Compiler
Resident Library
Transient Library

5734-PL1
5734-LM4
5734-LM5

(These program products are also available
as composite package 5734-PL3)

Release 4.0
Release 5.0
Release 5.1

--..- ------- - - ------- -. ---- -----------------, -

Seventh Edition (September 1985)

This is a major revision of, and makes obsolete, SC33-0006-6.

This edition applies to Releases 4.0, 5.0, and 5.1 of the OS
PL/I Optimizing Compiler, Program Product 5734-PL1, the OS PL/I
Resident Library, Program Product 5734-LM4, the OS PL/I
Transient Library, Program Product 5734-LM5, and composition
package, Program Product 5734-PL3, and to any subsequent
releases until otherwise indicated in new editions or technical
newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the preface. Specific changes are
indicated by a vertical bar to the left of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this publication; before using
this pUblication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1971,
1972, 1973, 1974, 1976, 1981, 1983, 1985

PREFACE

This pUblication explains how to use the compile~ to execute
PL/I programs and describes the operating system features that
can be required by a PL/I programmer. It is a guide to the use
of the as PL/I Optimizing Compiler (Program No. 5734-PLI) in a
batch environment of your operating system. It does not
describe the language implemented by the compiler, nor does it
explain hO\.1/ to use the compiler in an operating system with the
Time Sharing Option (TSO), or with the Conversational Monitor
System (CMS) of VM/370; these are the functions of the manuals
listed under "Associated Publications" on page iv.

For execution of a PL/I program, the optimizing compiler employs
subroutines from the OS Pl/I Resident Library (Program No.
5734-LM4) and the OS PL/I Transient Library (Program No.
5734-lM5), and this programmer's guide assumes the availability
of these program products.

Different release levels of the as PL/I Optimizing Compiler and
the PL/I Resident and Transient libraries will be compatible in
execution provided that the following conditions are satisfied:

1. The release and service level of the transient library is
equal to or greater than the release and service level of
the resident library.

2. The release and service level of the resident library is
equal to or greater than the release and service level of
the compiler.

ORGANIZATION OF THIS BOOK

Chapter 1, "Introduction" explains how to run a PL/I program.
The rest of the manual contains more detailed information on the
optimizing compiler., and provides guidance and reference
information on operating system features that are likely to be
required by the PL/I applications programmer. Most of this
information is equally relevant to the use of the compiler in a
batch or conversational (TSO or CMS) environment.

Chapter 2, "The Compiler" describes the optimizing compiler, the
data sets it requires, its optional facilities, and the listings
it produces.

Chapter 3, "The linkage Editor and the loader" contains
information for the linkage editor and loader that is similar to
Chapter 2, "The Compiler." Either the linkage editor or the
loader is needed in addition to the compiler to prepare a PL/I
program for execution.

Chapte~ 4, "Data Sets and Files" through Chapter 7, "Using VSAM
Data Sets from PL/I" on page 222 are concerned with the various
types of data sets that can be created and accessed by a Pl/I
program, and explains how to define these data sets.

Chapter 8, "Libraries of Data Sets" describes libraries of data
sets.

Chapter 9, "Cataloged Procedures" describes the cataloged
procedures provided by IBM for the optimizing compilerl and
explains how to modify them.

Chapter 10, "Program Checkout" deals with the facilities
available for debugging Pl/I programs.

Chapter 11, "Communicating between PL/I and Assembler-Language
Modules" and Chapter 14, "lnterlanguage Communication with COBOL
and FORTRAN" describe the language implemented by the optimizing

Preface iii

compiler to facilitate communication between programs written in
PL/land those written in FORTRAN, COBOL, and Assembler
language.

Chapter 12, "The Sort Program" and
Chapter 13, "Checkpoint/Restart" are concerned with the use of
built-in subroutines included in the resident library to provide
direct interface between PL/I programs and the operating system
sort/merge and checkpoint/restart facilities.

Chapter 15, "Using Pl/I on CICS" tells how to use PL/I under
CICS. The user who is running a PL/I application under CICS
must read Chapter 15, nUsing PL/I on CICS." The chapter lists
restrictions for running under CICS, and describes the
differences from batch operation that exist when running under
CICS.

A series of appendixes supplies sundry reference information.

ASSOCIATED PUBLICATIONS

as PL/I

• OS and DOS Pl/I language Reference Manual, GC26-3977

Describes the language implemented by the optimizing
compiler.

• OS Pl/I Optimizing Compiler: General Information, OC33-0001

Gives an overview of the optimizing compiler.

• OS Pl/I Optimizing Compiler: TSO User's Guide, SC33-0029

Describes how to use the optimizing compiler in a TSO
environment.

• OS Pl/I Optimizing Compiler: CMS User's Guide, SC33-0047

Describes how to use the optimizing compiler in a CMS
environment.

• OS Pl/I Optimizing Compiler: Messages, SC33-0027

Contains the diagnostic messages issued by the compiler and
the transient library. It also contains any necessary
explanation of the message with the suggested programmer
response.

• OS and DOS PL/I Optimizing Compilers: Debug Guide, SY26-3990

Aids in problem determination.

• OS Pl/I Optimizing Compiler: Execution logic, SC33-0025

Describes how a compiled program is executed.

• OS Pl/I Optimizing Compiler: Installation Guide, SC33-0026.
(For OS Pl/I Release 4)

• OS Pl/I Optimizing Compiler: Installation Guide for MVS,
SC26-412l.

• OS Pl/I Optimizing Compiler: Installation Guide for CMS,
SC26-4122. (For as PL/I Release 5.1)

Explains how to install the compiler.

• OS PL/I Checkout Compiler: Programmer's Guide, SC33-0007

iv OS PL/I Optimizing Compiler: Programmer's Guide

CICS

COBOL

VS FORTRAN

IMS/VS

IBM DATABASE2

MVS

Contains information about the OS PL/! Checkout Compiler and
about combining modules from the optimizing and checkout
compilers.

• Customer Information Control System/ Virtual Storage
(CICS/VS) Version I Release 6: Application Programmer's
Reference Manual (Macro Level), SC33-0079. (For as PL/I
Release 4 only)

• Customer Information Control Svstem/ Virtual Storage
(CICS/VS) Version 1 Release 6: Application Programmer's
Reference Manual (Command level), SC33-0077. (For as PL/I
Release 4 only)

• CICS/OS/VS Version I Release 6 Modification I Application
Programmer's Reference Manual (Command Level), SC33-0161.

• OS/VS COBOL Compiler and library Programmer's Guide,
SC28-6483.

• VS COBOL II Application Programming Guide, GC26-4G4S.

• VS FORTRAN Application Programming: Guide, SC26-3985.

• VS FORTRAN Application Programming: Library Reference,
SC26-3989.

• IMS/VS Version 1 Application Programming, SH20-9026.

• IMS/VS Version 1 Data Base Administration Guide, SH20-902S.

• IBM DATABASE2 Applicatioo Programming Guide for CI~S/OS/V~
Users .. SC26-4080

• IBM DATABASE~ Application
Users,SC26-4079

Programming Guide for IMS/VS

• IBM DATABASE2 Appl;i~alion Progrimming Guidi for TSO Users,
SC26-4081

• IBM DATABASE2 Introduction to S~L, GC26-4082

MVS/system Product Vl.2.1

• OS/VS linkage Editor and Loader, GC26-3813.

Preface v

MVS/Extended Architecture

DFSORT

• MVS/Extended Architecture Conversion Notebook, GC28-1143.

• MVS/Extended Architecture linkage Editor and loader,
GC26-4011 .

• MVS/Extended Architecture System Programming Library:
System Modifications,CG28-1152.

• MVS/Extended Architecture System Programming library: User
Exits, GC28-1147.

• MVS/Extended Architecture System Programming library:
31-Bit Addressing, GC28-1158.

• DFSORT Application Programming: Guide, SC33~4035.

• Getting Started with DFSORT, SC26-4109.

OS/VS Sort/Merge (Sort/Merge Release 5 only)

VSAM

• OS/VS Sort/Merge Programmer's Guide, SC33-4035.

• MVS/Extended Architecture VSAM Administration Guide,
GC26-4015

• PS/VS Virtual Storage Access Method (VSAM) Programmer's
Guide, GC26-3838.

RELATED RECOMMENDED PUBLICATIONS

Syt~TAX NOTATION

A number of system publications are referred to throughout the
manual by generic names such as "the linkage editor manuals. ft
The actual manual you require will depend on your installation.

When using this manual, you should have the job control language
(JCl) reference manual for your operating system, and the
linkage editor manual.

For informat.ion on the 3800 Printing Subsystem, see the IBM 3800
Printing Subsystem Pro9rammer's,Guide, GC26-3846.

For defini tions o·F terms used in this manual, see the IBM
Vocabulary for Data Processing, Telecommunications, and Office
Systems, GC20-1699.

Throughout this publication, whenever a Pl/! statement-or some
other combination of elements-is discussed, the manner of
writing that statement or phrase is illustrated with a uniform
system of notation. This notation is not a part of Pl/I; it is
merely a notation that is used to describe the syntax, or
construction, of the language.

For the syntax notation used in this publication, see the
ftSyntax Notationft section of the QS and DOS Pl/I language
Reference Manual.

vi OS Pl/! Optimizing Compiler: Programmer's Guide

INDUSTRY STANDARDS

The as PL/I Optimizing Compiler is designed according to the
specifications of the following industry standards as understood
and interpreted by IBM as of May, 1979:

• American National Standard Code for Information Interchange
(ASCII), X3.4 - 1977.

• American National Standard Representation of Pocket Select
Characters in Information Interchange, levell, X3.77 - 1980
(proposed to ISO, March I, 1979)

• The draft proposed American National Standard Representation
of Vertical Carriage Positioning Characters in Information
Interchange, level 1, dpANS Xl.78 (Also proposed to ISO,
March 1, 1979)

Preface vii

SUMMARY OF AMENDMENTS

I SEPTEMBER 1985

I NEW PROGRAMMING SUPPORT

SERVICE CHANGES

OCTOBER 1984

Information on using the 3l-bit addressing capability of MVS/XA
for PL/I Release 5.1 running under CICS/OS/VS Version I, Release
6, Modification I, with upgrade, has been added in
Chapter 15, "Using PL/I on CICS" on page 360. That chapter has
been rewritten to include information that formerly appeared in
a separate appendix.

Support of as Pl/I Release 5.1 for VM/SP and VM/PC is also
provided.

Miscellaneous corrections have been made throughout the manual.

EXTENDED ARCHITECTURE SUPPORT

SERVICE CHANGES

Information on running the optimizing compiler, its generated
object code, and libraries in an MVS Extended Architecture
(MVS/XA) environment has been added in a new Appendix.

The new ISAINC, HEAP, and TASKHEAP execution-time options have
been added to the "The Compiler" chapter.

Enhanced error-handling support for OS PL/I transactions under
IMS/VS Releases 1.2 and 1.3, and support for the 31-bit
addressing capabilities of MVS/XA, with IMS/VS Release 1.3, are
described in another new Appendix.

Note: OS Pl/I Optimizing Compiler and libraries Release
5.0 will not support VM/CMS and CICS/VS. Users of these
products will continue to be supported on OS Pl/I Release
4.0.

Release 4 of the Pl/I Optimizing Compiler and libraries is
the last release to support VSl.

For Release 5.0, the storage size of the compiler is
increased to 128K.

Figures have been renumbered to enhance retrievability of
information. Page numbers have also been added to the heading
and figure references to improve clarity and retrievability.

viii as Pl/I Optimizing Compiler: Programmer's Guide

SEPTEMBER 1981

NEW PROGRAMMING SUPPORT

SERVICe: CHANGES

JULY 1979

SERVICE CHANGES

For Extended Graphic Character Set support, the GRAPHIC compiler
option and the GRAPHIC ENVIRONMENT option are described.

This edition is for use with the new OS and DOS Pl/I language
Reference Manual, order number GC26-3977.

Information moved from the old OS Pl/I Checkout and Optimizing
Compilers: Language Reference Manual into this edition includes:

• "The ENVIRONMENT Attribute," data transmission statements,
and related topics.

• Chapter 4, "Data Sets and Files" on page 100

• Chapter 14, "Interlanguage Communication with COBOL and
FORTRAN" on page 343

Chapter 15, "Using pt/I on CICS" on page 360 has been added. It
updates and adds to information formerly in Appendix H.
Appendix H now contains "Pl/I-CICS System Information."

Appendix A, "VSAM Background" on page 383 has been added. It
contains information formerly in Chapter 9.

The appendix on "Running Under a Virtual Storage Operating
System (OS/VS)" has been deleted.

Other miscellaneous corrections have been made throughout the
publication.

For Release 3, Modification 1, the storage size in which the
compiler runs has been increased.

Parts of Chapter I that were outdated have been deleted, and the
former Chapter 2 has been merged into Chapter 1. Chapter 3 has
been deleted, because the information on how to create and
access a data set is elsewhere (such as in the job control
language manual for your system),

Appendix A, which describes DCB subparameters, has been deleted.
Your job control language reference manual contains more
up-to-date information on the DCB subparameters.

Appendix B, which described compatibility with the Pl/I (F)
compiler, has been deletedi this information is in OS Pl/I
Optimizing Compiler. General Information.

Other miscellaneous corrections have been made throughout the
manual.

Summary of Amendments ix

JUNE 1978

SERVICE CHANGES

A new section has been added to Chapter 5 on link-editing
multiple object modules. Various maintenance corrections have
been made.

x OS PL/I Optimizing Compiler: Programmer's Guide

CONTENTS

Chapter 1. Introduction 1

Chapter 2. The Compiler 3
Description of the Compiler 4
Job Control statements for Compilation 8

EXEC Statement 8
DD statements For The Standard Data Sets 8

Input (SYSIN, OR SYSCIN) 8
Output CSYSLIN, SYSPUNCH) 9

Temporary Workfile (SYSUT1) 9
Statement Lengths 9

Listing (SYSPRINT) 10
Source statement Library (SYSlIB) 10
Example Of Compiler JCl 11

Compiler Options 11
Specifying Compiler Options 11
Specifying Compiler Options in the EXEC Statement 12
Specifying Compiler Options in the *PROCESS Statement 13
Compiler Option Types 13
AGGREGATE Option 18
ATTRIBUTES [(FULLISHORT)] Option 18
CHARSET Option 18
COMPILE Option 18
COUNT Option 19
DECK Option 19
ESD Option 19
FLAG Option 19
FLOW Option 19
GONUMBER Option 20
GOSTMT Option 20
GRAPHIC Option 20
IMPRECISE Option 20
INCLUDE Option 21
INSOURCE Option 21
INTERRUPT Option 21
lINECOUNT Option 21
LIST Option 21
LMESSAGE Option 22
MACRO Option 22
MAP Option 22
MARGINI Option 22
MARGINS Option 22
MDECK Option 23
NAME Option 23
NEST Option 24
NUMBER Option 24
OBJECT Option 24
OFFSET Option 25
OPTIMIZE Option 25
OPTIONS Option 25
SEQUENCE Option 25
SIZE Option 26
SMESSAGE Option 27
SOURCE Option 27
STMT Option 27
STORAGE Option 27
SYNTAX Option 27
TERMINAL Option 28
XREF [(SHORTIFULL)] Option 28

Specifying Execution-Time Options 28
Specifying Execution-Time Options in the PlIXOPT String 29
Specifying Execution-Time Options and Main Procedure

Parameters in the EXEC Statement 30
Execution-Time Options 31

Execution-Time ISASIZE Option 35
Execution-Time ISAINC Option (Release 5 Only) 36
Execution-Time HEAP Option (Release 5 OnlY) 36

Contents xi

Using PLIXHD to Identify COUNT and REPORT Output 37
Execution-Time Storage Requirements for Nonmultitasking

Programs 37
Using the REPORT Option 40
Finding the Optimum Region Size 42
Execution-Time Storage for Multitasking Programs 43
Using the REPORT Option 43
Execution-Time COUNT Option 44
Execution-Time FLOW Option 45

Compiler Listing 46
Heading Information 46
Options Used For The Compilation 46
Preprocessor Input 46
SOURCE Program 47
Statement Nesting level 47
ATTRIBUTE and Cross-Reference Table 47
Attribute Table 48
Cross-Reference Table 48
Aggregate length Table 49
storage Requirements 50
statement Offset Addresses 50
External Symbol Dictionary 51
ESD Entries 52
Other ESD Entries 53
Static Internal Storage Map 54
Object listing 54
Messages 54
Return Codes 55

Batched Compilation 55
SIZE Option 56
NAME Option 56
Return Codes in Batched Compilation 57
Job Control language For Batched Processing 57
Examples of Batched Compilations 58

Compile-Time Processing (Preprocessing) S9
Invoking The Preprocessor 59
The Y.INCLUDE Statement 60

Dynamic Invocation of the Compiler 62
Option list 63
DDNAME List 63
Page Number 64
Using Fast Path Initialization/Termination (Pl/I Release
4) 64

Chapter 3. The Linkage Editor and the Loader 6S
Basic Differences 6S

Choice of Program 65
linkage Editor 66
loader 66
Performance Considerations 66

Module Structure 66
Text 67
External Symbol Dictionary 67
Relocation Dictionary 67
END Instruction 68

Linkage Editor· 68
linkage Editor Processing 69

Job Control Language for the linkage Editor 70
EXEC Statement 70
DD Statements For The Standard Data Sets 70
Primary Input (SYSlIN) 71
Output (SYSlMOD) 71
Temporary Workspace (SYSUTI) 72
Automatic Call library (SYSlIB) 72
Listing (SYSPRINT) 73
Example of Linkage Editor JCl 73

Optional Facilities 74
lET Option 74
LIST Option 74
MAP Option 74
NCAl Option 74
RENT Option 75
REUS Option 7S
SIZE Option 75

xii OS PL/I Optimizing Compiler: Programmer's Guide

XCAL Option 75
XREF Option 75

Listing Produced by the Linkage Editor 75
Diagnostic Messages and Control Statements 76

Diagnostic Message Directory 77
Module Map 77
Cross-Reference Table 78
Return Code 78

Additional Processing 79
Format of Control Statements 79
Module Name 79
Alternative Names 80
Additional Input Sources 81
INCLUDE Statement 81
LIBRARY Statement 81
Overlay Structures 82
Design of the Overlay Structure 82
Control Statements 84
Creating an Overlay Structure 84
Link Editing Multiple Object Modules 86
Link-Editing Fetchable load Modules 87
Multitasking Considerations 89
Extended Architecture Considerations 89
Combining PL/I Modules From the Optimizing and Checkout

Compilers 89
Loader 90

Loader Processing 90
Main storage Requirements 91

Job Control Language for the Loader 93
EXEC Statement 93
DD Statements for the Standard Data Sets 93
Primary Input (SYSLIN) 93
Automatic Call Library (SYSLIB) 94
listing (SYSlOUT) 94
listing (SYSPRINT) 94
Examples of loader JCl 94

Optional Facilities of the Loader 96
CAll Option 97
EP Option 97
LET Option 97
MAP Option 97
PRINT Option 97
RES Option 98
SIZE Option 98

Listing Produced by the Loader 98
Module Map 98
Explanatory and Diagnostic Messages 99

Chapter 4. Data sets and Files 100
Data Sets 100

Data Set Names 100
Blocks and Records 101
Record Formats 101

Fixed-Length Records 102
Variable-Length Records 102
Undefined-Length Records 104

Data Set Organization 104
Labels 105
Data Definition (DD) Statement 105

Use of the Conditional Subparameters 106
Auxiliary Storage Devices 107

IBM 2520 and 2540 Card Reader and Punch 107
IBM 3505 and 3525 Card Reader and Punch 108

Basic Card Reading and Punching 108
EBCDIC or Column Binary Modes 108
Stacker Selection 109
Optical Mark Read 109
Read Column Eliminate 110
Punch Interpret 111
Printing on Cards 111
Multiple Operations 112
Data Protection 113

Paper Tape Reader 113
Line Printers 114

Contents xiii

3800 Printing Subsystem 114
Magnetic Tape 114
Direct-Access Devices 114

Operating System Data Management 115
Buffers 115
Access Methods 116
Data Control Block 117
Opening a File 118
Closing a File 119

Associating Data Sets With Files 119
Associating Several Files with One Data Set 121
Concatenating Several Data Sets 121

The ENVIRONMENT Attribute 122
Data Set Organization Options 122
Other ENVIRONMENT Options 125

Record Format Options for Record-Oriented Data
Transmission 125

Record Format Options for Stream-Oriented Data
Transmission 126

RECSIZE Option 126
BLKSIZE Option 127
Record Format, BLKSIZE, and RECSIZE Defaults 129
BUFFERS Option 129
GENKEY Option--Key Classification 129
NCP Option--Number of Channel Programs 131
TRKOFL Option--Track Overflow 131
COBOL Option--Data Interchange 132
SCALARVARYING Option--Varying-Length Strings 132
KEYlENGTH Option 133

Chapter 5. Defining Data Sets for stream Files 134
Defining Files for Stream-Oriented Data Transmission 134
ENVIRONMENT Options 135

CONSECUTIVE Option 135
Record Format Options 135
RECSIZE Option 136
Record Format, BLKSIZE, and RECSIZE Defaults 136
GRAPHIC Option 136

Creating a Data Set for Stream-Oriented Data Transmission 137
Essential Information 137
Examples 138

Accessing a Data Set for Stream-Oriented Data Transmission 140
Essential Information 141

Magnetic Tape Without IBM StandRrd labels 142
Record Format 142

Example 143
Print Files 143

Record Format 144
Example 144
Tab Control Table 146

SYSIN and SYSPRINT Files 147

Chapter 6. Using Consecutive, Indexed, Regional, and
Teleprocessing Data sets 149

Consecutive Data Sets 149
Consecutive Organization 150
Defining a Consecutive Data Set 151
ENVIRONMENT Options for Consecutive Data Sets 151

CONSECUTIVE Option 151
TOTAL Option -- In-line Code Optimiza-tion 152
CTlASA and CTl360 Options - Printer and Punch Control 154
LEAVE and REREAD Options - Magnetic Tape Handling 154
ASCII Option 155
BUFOFF Option and Block Prefix Fields 155
BUFOFF Defaults 156
D-format and DB-format Records 156

Creating a Consecutive Data Set 157
Essential Information 158

Accessing and Updating a C~nsecutive Data Set 158
Essential Information 160
Magnetic Tape Without IBM Standard Labels 161
Record Format 161

Example of Consecutive Data Sets 161
Punching Cards and Printing 163

xiv OS PL/I Optimizing Compilera Programmer's Guide

Example 165
Device-Associated Files CIBM 3525 Card Punch) 166

Indexed Data Sets 167
Indexed Organization 167

Keys 169
Embedded Keys 169
Indexes 170
Dummy Records 172

Defining an Indexed Data Set 172
ENVIRONMENT Options for Indexed Data Sets 173

INDEXED Option 173
KEYLOC Option -- Key Location 113
INDEXAREA Option 176
NOWRITE Option 176
ADDBUFF Option 176

Creating an Indexed Data Set 176
Essential Information 177
Name of the Data Set 179
Record Format and Keys 180
Overflow Area 182
Master Index 183

Accessing an Indexed Data Set 183
Sequential Access 183
Direct Access 184
Essential Information 185

Reorganizing an Indexed Data Set 185
Examples of Indexed Data Sets 186

Regional Data Sets 189
Regional Organization 189
Defining a Regional Data Set 191
ENVIRONMENT Options for Regional Data Sets 192

REGIONAL Option 192
Keys 193
REGIONAL(1) Organization 194

Dummy Records 194
Creating a REGIONALCl) Data Set 194
Accessing a REGIONALCl) Data Set 195

REGIONAL(2) Organization 195
Source Keys 196
Dummy Records 197
Creating a REGIONAL(2) Data Set 197
Accessing a REGIONAL(2) Data Set 198
Sequential Access 198

REGIONAL(3) Organization 199
Dummy Records 199
Creating a REGIONAL(3) Data Set 199
Accessing a REGIONAL(3) Data Set 200

Essential Information for Creating and Accessing Regional Data
Sets 201

Examples of Regional Data Sets 204
REGIONALCl) Data Sets 204
REGIONAL(2) Data Sets 204
REGIONAL(3) Data Sets 205

Teleprocessing Data Sets 214
Message Control Program (MCP) 214
Message Processing Program (MPP) 214
Teleprocessing Organization 215
Defining a Teleprocessing Data Set 215
ENVIRONMENT Options for Teleprocessing Data Sets 215

TP Option 216
RECSIZE Option 216
BUFFERS Option 216

Statements and Options for Teleprocessing 217
Condition Handling 219
Essential Information 220
Example of a PL/I MPP 220

Chapter 7. using VSAM Data sets from PL/I 222
VSAM Organization 222

Keys for VSAM Data Sets 224
Keys for Indexed VSAM Data Sets 224
Relative Byte AddressesCRBA) 224
Relative Record Numbers 226

Choice of Data Set Type 227

Contents xv

Defining a VSAM Data Set to PL/I 228
ENVIRONMENT Options for VSAM Data Sets 229

VSAM Option 229
PASSWORD Option 230
GENKEY Option 230
REUSE Option 230
BKWD Option 231

Performance Options 231
SKIP Option 231
SIS Option 232
BUFND Option 232
BUFNI Option 232
BUFSP Option 233

Files for Both VSAM and Non-VSAM Data Sets 233
CONSECUTIVE Files 233
INDEXED Files 234

The VSAM Compatibility Interface 234
Adapting Existing Programs for VSAM Data Sets 235

CONSECUTIVE Files 235
INDEXED Files 235
REGIONAL(1) Files 235

Associating Several VSAM Files with One Data Set 235
Shared Data Sets 236
How to Execute a Program Using VSAM Data Sets 236

Associating an Alternate Index Path with a File 237
Entry-Sequenced Data Sets 237

loading an ESDS 237
Sequential Access 237

Key-Sequenced and Indexed Entry-Sequenced Data Sets 239
Loading a KSDS 239
Sequential Access 239
Direct Access 239
SAMEKEY Built-In Function 240

Relative Record Data Sets 243
loading an RRDS 243
Sequential Access 243
Direct Ac~ess 244

Examples 246
Examples with Entry-Sequenced Data Sets 246

Defining and Loading an Entry-Sequenced Data Set 246
Updating an Entry-Sequenced Data Set 248
Creating a Unique Alternate Index P~th for an ESDS 249
Creating a Nonunique Key Alternate Index Path for an

ESDS 249
Using Alternate Indexes and Backward Reading on an ESDS 250

Examples with Key-Sequenced Data Sets 253
Defining and Loading a Key-Sequenced Data Set 256
Updating a Key-Sequenced Data Set 256
Creating a Unique Alternate Index Path for a KSDS 257
Using a Unique Alternate Index Path with a KSDS 258

Examples with Relative Record Data Sets 260
Defining and Loading a Relative Record Data Set 260
Updating a Relative Record Data Set 262

Chapter 8. Libraries oT Data sets 264
Types of Library 264
How to Use a Library 264

By the Linkage Editor or loader 264
By the Operating System 265
By Your Program 265

Creating a Library 266
SPACE Parameter 266

Creating a Library Member 267
Examples 267
Library Structure 270

Chapter 9. Cataloged Procedures 273
Invoking a Cataloged Procedure 273

Multiple Invocation of Cataloged Procedures 274
Multitasking Using Cataloged Procedures 274

Modifying Cataloged Procedures 275
EXEC Statement 275
DD statement 276

IBM-Supplied Cataloged Procedures 277

xvi OS PL/I Optimizing Compiler: Programmer's Guide

Compile Only (PLIXC) 278
Compile and link-Edit (PLIXCl) 278
Compile, Link-Edit and Execute (PLIXCLG) 280
Link-Edit and Execute (PLIXLG) 280
Compile, Load, and Execute CPLIXCG) 280
Load and Execute (PLIXG) 281

Chapter 10. Program Checkout 282
Conversational Program Checkout 282
Compile-Time Checkout 282
linkage Editor Checkout 283
Execution-Time Checkout 283

Logical Errors in Source Programs 284
Invalid Use of PL/I 284
Unforeseen Errors 284
Operating Error 284
Invalid Input Data 285
Unidentified Program Failure 285
Compiler or library Subroutine Failure 286
System Failure 286

Statement Numbers and Tracing 286
Dynamic Checking Facilities 287
Control of Conditions 287

Use of the PL/I Preprocessor in Program Checkout 288
Condition Codes 288
Dumps 288

Example 290
Trace Information 290
File Information 290
Hexadecimal Dump 290

Execution-time Return Codes 290
Abend Codes 292

The Abend Facility 292
When You Really Need an Abend 292
Pl/I Action When the ERROR Condition is Raised 292
Getting a System-Issued Abend 293

Chapter 11. Communicating between PL/I and Assembler-Language
Modules 294

Overview 294
Parameter Passing 294
Environment 294
How To Write Your Routines 295

The PL/I Environment 295
Establishing The PL/I Environment 296
Use of PLIMAIN to Invoke a PL/I Procedure 296
The Dynamic Storage Area CDSA) and Save Area 300

Calling Assembler Routines from PL/! 300
Invoking a NonRecursive and NonReentrant Assembler
Routine 300

Invoking a Recursive or Reentrant Assembler Routine 301
Use of Register 12 303

Calling PL/I Procedures from Assembler Language 303
Establishing the PL/I Environment for Multiple
Invocations 303

PL/! Calling Assembler Calling PL/I 304
Assembler Calling PL/I Calling Assembler 306

Overriding and Restoring PL/I Error-Handling 306
Arguments, Parameters, Returned Values and Return Codes 308

Receiving Arguments in an Assembler-Language Routine 308
Assembler Routine Entry Point Declared with the ASSEMBLER

Option 308
Assembler Routine Entry Point Declared without the ASSEMBLER

Option 308
Passing Arguments from an Assembler-Language Routine 309
Arguments from Assembler when PL/I Environment set up 309
Arguments from Assembler When PL/I Environment is not set

up 310
Return Codes 314

Chapter 12. The Sort Program 315
The Sort Programs Available 315
Background-How the Sort Program Works 316

Using the Sort Program 318

Contents xvii

What You Need to Know Before Using Sort 318
The CAll PlISRT Statement 319
Examples of Calls to PlISRT 319

Example 1 319
Example 2 319
Example 3 319
Example 4 320
Example 5 320

Testing the Return Code 320
Writing the Input and Output Routines 321

The Input-Handling Routine (SORT EXIT E15) 321
The Output-Handling Routine (SORT EXIT E35) 322

Data Sets for Sort 324
Storage for Sort 328

Main Storage 328
Auxiliary Storage 328

Chapter 13. Checkpoint/Restart 339
Writing a Checkpoint Record 339
Checkpoint Data Set 340
Performing a Restart 341

Automatic Restart After a System Failure 341
Automatic Restart From Within the Program 341
Deferred Restart 341
Modifying Checkpoint/Restart Activity 342

Chapter 14. Interlanguage Communication with COBOL and
FORTRAN 343

Invoking COBOL from Pl/I 344
Arguments and Parameters 344

Passing Arguments to COBOL or FORTRAN Routines 344
Invoking COBOL or FORTRAN Routines 347
Passing Arguments from COBOL or FORTRAN Routines 349

Data Mapping 349
Invoking Pl/I Routines from COBOL or FORTRAN 350
Matching COBOL Arguments/Parameters 351
Matching FORTRAN Arguments/Parameters 351
Compile-Time Return Codes 353
Using Common Storage 355

Interlanguage Environment 356
Establishing the Pl/! En~ironment 356
Establishing the FORTRAN Environment 357
Handling Interrupts 357
GO TO Statement 358
Terminating FORTRAN and COBOL Routines 359
Execution-Time Return Codes 359

Chapter 15. Using PL/I on CICS 360
Pl/I-Supplied vs. CICS-Supplied Interface 363
Pl/I-CICS Transactions 364

Macro-level Interface 365
Command-level Interface 365
Compatibility 366

Pl/I Storage 367
lifetime of Storage Acquired from CICS/OS/VS 367
Storage Classes 368

"Read-Only" Pl/I-CICS Transactions 368
Output to SYSPRINT 369

Declaration of SYSPRINT 369
CHECK and PUT DATA 370
Execution-Time Options 370
Error Handling 372

Abend Codes Used by Pl/I Under CICS 374
IBMBEERA 375

Use of PlIDUMP 375
Interlanguage Communication--OPTIONS ASSEMBLER 376
STORAGE and CURRENTSTORAGE 376
Pl/I Program Termination 377
Pl/I Shared library for CICS/OS/VS 377
Link-Editing PL/I-CICS Applications 378
PL/I-CICS/OS/VS Interface Components 379

Pl/I-CICS/OS/VS Application Program Interface CDFHPLIOI) 380
Pl/I CICS/OS/VS Nucleus Interface Module (DFHSAP) 381

xviii OS Pl/I Optimizing Compiler: Programmer's Guide

Appendix A. VSAM Background 383
The VSAM Catalog 383
VSAM Data Sets 383
Access Method Services 384
Password Protection 385
The Life of a VSAM Data Set 385
Defining a VSAM Data Set 385

DEFINE CLUSTER Command 386
Using the Access Method Services Program 389

Sharing VSAM Data Sets 389
Sharing a Data Set between Jobs 390
Sharing within a Job 390

Deleting a VSAM Data Set 390
Alternate Index Paths 391

How to Build and Use Alternate Index Paths 392
Terminology 392

Planning and Coding with Alternate Indexes 392
Passwords 394
Performance 394

How to Build an Alternate Index 394
DEFINE ALTERNATEINDEX Command 395
BLDINDEX Command 396
DEFINE PATH Command 397

Executing the Access Method Service Commands to Create an
Alternate Index Path 397

Deleting an Alternate Index 398

Appendix B. Requirements For Problem Determination And APAR
Submission 400

General Information 400
Machine-Readable Information 400

Original Source 400
Load Libraries 401
Input Data Sets 401

Listings 401
Compiler Listing 401
JCL Listing 401
CMS Terminal Session Log 402
Linkage Editor Listing 402
Execution-Time Dump 402
Applied Fixes 402

Materials Checklist 403

Appendix C. Shared Library Cataloged Procedures 404
Execution whe.n Using the Shared Library 404
Multitasking Considerations 404
Using standard IBM Cataloged Procedures 405

Appendix D. Sample Program 406

Appendix E. Using the as PL/I Optimizer Under VM/PC 447
Methods of Using the OS PL/I Optimizer Under VM/PC 447
Downloading the OS PL/I Optimizer Into VM/PC 447
Invoking The OS PL/I Optimizer Under VM/PC 450
os PL/! Optimizer Programming Tips 451
OS PL/I Optimizer Restrictions 452

Appendix F. MVS/Extended Architecture (MVS/XAl
Considerations 453

System 370 and 370/XA Differences 453
Compatibility Considerations 454

Considerations for Release 4 Programs 455
AMODE RMODE Exceptions to Defaults 456
AMODE and RMODE Summary 456
Use of MVS/XA Facilities by PL/I Release 5 457
Characteristics of Release 5 Modules 457
Assembler Routine to Mode-Switch 457
BIT Data Type Restriction 459
Unusual Array Declarations 459
Interlanguage Communication 460
Limits on Sizes 461
Object Code and Library Modules Compatibility 461
Other Characteristics of Release 5 in MVS/XA 461

Contents xix

TOTAL Option 462
LOCATE Mode I/O 462
FETCH/RELEASE Considerations 462

The PL/I NULL Pointer and MVS/XA 463

Appendix G. IMS Considerations for PL/I Release 5 465
Background for Enhanced PL/I-IMS Error Handling 465
PL/I Release 5, IMS 1.3, and MVS/XA 468

Index 469

xx OS PL/I Optimizing Compiler: Programmer's Guide

FIGURES

1. Example of Running a PL/I Program 2
2. Simplified Flow Diagram of the Compiler 5
3. Compiler Standard Data Sets 6
4. Job Control Statements for Compiling a PL/I Program Not

Using Cataloged Procedures . 11
5. Compiler Options, Abbreviations, and Defaults in Batch

Mode 14
6. Compiler Options Arranged by Function 16
7. Execution Time Options Listed by Function 30
8. Storage Arrangements in Multitasking and Nonmultitasking

Programs 39
9. REPORT Output and Its Meaning (Release 5 Example) 41

10. Selecting the Lowest Severity of Messages to be Printed,
Using the FLAG Option 55

11. Return Codes from Compilation of a PL/I Program 55
12. Use of the NAME Option in Batched Compilation 57
13. Example of Batched Compilation, Including Execution 58
14. Example of Batched Compilation, Excluding Execution 58
15. Format of the Preprocessor Output 59
16. Using the Preprocessor to Produce a Source Deck That Is

Placed on a Source Program Library 60
17. Including Source Statements from a Library 61
18. The Sequence of Entries in the DDname List 63
19. The CSECT IDR Information 68
20. Basic Linkage Editor Processing 69
21. Linkage Editor Standard Data Sets 70
22. Typical Job Control Statements for Link-Editing a PL/I

Program 73
23. Linkage Editor Listings and Associated Options 76
24. Diagnostic Message Severity Codes 77
25. Return Codes from the Linkage Editor 79
26. Processing Additional Data Sources 81
27. Overlay Structure and Its Tree 83
28. Creating and Executing the Overlay Structure of Figure

27 85
29. Link-Editing PL/I with Other High Level Languages 87
30. Control Sections to be Deleted for Optimum Space-Saving 88
31. Example of Link-Editing a Fetchable Load Module 88
32. Main Storage Requirements for the Loader 91
33. Basic Loader Processing 91
34. Loader Processing, link-Pack Area and SYSLIB Resolution 92
35. Loader Standard Data Sets 92
36. Job Control Language for Load-and-Go 95
37. Object and Load Modules in Load-and-Go 95
38. Contents of SYSlOUT and SYSPRINT Data Sets 98
39. Fixed-length Records 102
40. Variable-Length Records 103
41. IBM 2540 Card Read Punch: Stacker Numbers 107
42. The Access Methods Used by the Compiler 116
43. Access Methods for Record-Oriented Data Transmission 117
44. How the Operating System Completes the DCB 118
45. Attributes and Options of PL/! File Declarations 123
46. Equivalent ENVIRONMENT Options and DCB Subparameters 125
47. Creating a Data Set for Stream-Oriented Data Transmission:

Essential Parameters of DD Statement 138
48. Creating a Data Set with Stream-Oriented Data

Transmission 139
49. Writing Graphic Data to a Stream File 140
50. Accessing a Data Set: Essential Parameters of DD

Statement 141
51. Accessing a Data Set with Stream-Oriented Data

Transmission 142
52. Creating a Data Set Using a PRINT File 145
53. PL/I Structure PLITABS for Modifying the Preset Tab

Settings 147
54. A Comparison of Data Set Types Available to PL/I Record

I/O 149

Figures xxi

55.

56.

57.
58.

59.
60.

61.
62.

63.
64.
65.
66.
67.
68.

69.
70.
71.

72.

73.
74.
75.
76.

77.
78.
79.

80.

81.
82.

83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.

97.

98.

99.

100.
101.

102 ..

103.

104.
105.
106.
107.
108.

statements and Options Permitted for Creating and Accessing
Consecutive Data Sets 150
Conditions Under Which I/O Statements Are Handled In-Line
(TOTAL Option Used) 153
Effect of LEAVE and REREAD options 155
Creating a Consecutive Data Set: Essential Parameters of DD
Statement 157
DCB Subparameters for Consecutive Data Sets 159
Accessing a Consecutive Data Set: Essential Parameters of
DD Statement 160
Creating and Accessing a Consecutive Data Set 162
American National Standard Print and Card Punch Control
Characters (CTLASA) 163
IBM Machine Code Print Control Characters (CTL360) 164
2540 Card Read Punch Control Characters (CTL360) 164
3525 Card Printer Control Characters (CTl360) 164
3525 Card Printer Control-Characters (CTlASA) 165
Printing with Record-Oriented Data Transmission 166
Statements and Options Permitted for Creating and Accessing
Indexed Data Sets 168
Index Structure of An Indexed Data Set 171
Adding Records to an Indexed Data Set 174
Effect of KEYLOC and RKP Values on Establishing Embedded
Keys in-Record Variables or Data Sets 175
Creating an Indexed Data Set: Essential Parameters of DD
Statement 178
DCB Subparameters for an Indexed Data Set 179
Record Formats in an Indexed Data Set 181
Record Format Information for an Indexed Data Set 182
Accessing an Indexed Data Set: Essential Parameters of DD
statement 186
Creating an Indexed Data Set 187
Updating an Indexed Data Set 188
Statements and Options Permitted for Creating and Accessing
Regional Data Sets 190
Creating a Regional Data Set: Essential Parameters of DD
Statement 202
DCB Subparameters for a Regional Data Set 203
Accessing a Regional Data Set: Essential Parameters of DD
Statement 20S
Creating a REGIONAl(1) Data Set 206
Updating a REGIONAlCl) Data Set 207
Creating a REGIONAL(2) Data Set 208
Updating a REGIONAL(2) Data Set Directly 209
Updating a REGIONAl(2) Data Set Sequentially 210
Creating a REGIONALeS) Data Set 211
Updating a REGIONAl(3) Data Set Directly 212
Updating a REGIONAl(3) Data Set SequentiallY 213
Statements and Options Permitted for TRANSIENT Files 218
PL/I Message Processing Program 221
Types and Advantages of VSAM Data Sets 225
VSAM Data Sets and Permitted File Attributes 228
Processing Allowed on Alternate Index Paths 228
Statements and Options Permitted for loading and Accessing
VSAM Entry-sequenced Data Sets 237
Statements and Options Permitted for loading and Accessing
VSAM Indexed Data sets 240
Statements and Options Permitted for loading and Accessing
VSAM Relative-Record Data Sets 244
Defining and loading an Entry-Sequenced Data Set
(ESDS) 247
Updating an ESDS 248
Creating a Unique Key Alternate Index Path for an
ESDS 249
Creating a Nonunique Key Alternate Index Path for an
ESDS 250
Alternate Index Paths and Backward Reading with an
ESDS 251
Defining and loading a Key-Sequenced Data Set (KSDS) 254
Updating a KSDS 255
VSAM Methods of Insertion into a KSDS 257
Creating an Alternate Index Path for a KSDS 258
Using a Unique Alternate Index Path to Access a KSDS 259

xx~i OS PL/I Optimizing Compiler: Programmer's Guide

109. Defining and Loading a Relative Record Data Set
(RRDS) 261

110. Updating an RRDS 263
Ill. Information Required When Creating a Library 266
112. Creating New Libraries for Compiled Object Modules 268
113. Placing a Load Module in an Existing Library 268
114. Creating a Library Member in a PL/I Program 269
115. Updating a Library Member 269
116. structure of a Library 271
117. listing Names of the Members of a library 272
118. Invoking a Cataloged Procedure 277
119. Modifying a Cataloged Procedure to Produce a Punched Card

Output 277
120. Cataloged Procedure PLIXC 278
121. Cataloged Procedure PLIXCL 279
122. Cataloged Procedure PlIXCLG 279
123. Cataloged Procedure PlIXlG 280
124. Cataloged Procedure PLIXCG 281
125. Cataloged Procedure PLIXG 281
126. Inserting a PL/I Entry Point Address in PLIMAIN and

Calling the Entry 296
127. Skeletal Code for an Assembler Program that Calls PL/I

Subroutines a Number of Times 297
128. Invoking PL/I Procedures from an Assembler Routine 298
129. Skeletal Code for a Non-Recursive Assembler Routine to be

Invoked from PL/I 301
130. Skeletal Code for a Recursive or Reentrant Assembler

Routine to be Invoked from PL/I 302
131. Passing Parameters from Pl/I to Assembler to PL/I. 305
132. Method of Overriding and Restoring PL/I

Error-Handling 307
133. Use of PLISTART for ATTACH 310
134. Use of PLISTART Passing Null Parameter String 311
135. Use of PLICALLA 311
136. Use of PLICALLB 312
137. Overview of the Sorting Process 317
138. Skeletal Code for an Input Procedure 322
139. Flowcharts for Input and Output Handling Subroutines 323
140. Skeletal Code for an Output Handling Procedure 323
141. The Entry Points and Arguments to PLISRT 326
142. The SORT Statement, the First Argument to PLISRT 329
143. The RECORD STATEMENT--The Second Argument to Sort 331
144. Example of Sorting from Data Set to Data Set

(PLISRTA) 333
145. Example of Sorting from Input Handling Routine to Dataset

(PLISRTB) 334
146. Example of Sorting from Data Set to Output Handling

Routine (PLISRTC) 335
147. Sorting from Input Handling Routine to Output Handling

Routine (PLISRTD) 336
148. Example of Sorting Varying length Records Using Input and

Output Handling Routines 337
149. COBOL--PL/I Data Equivalents 346
150. Declaration of a Data Aggregate in COBOL and PL/I 352
151. FORTRAN-PL/I Data Equivalents 353
152. Return Codes Produced by PL/I Data Types 354
153. Extent of PL/I Environment 356
154. Restrictions on PL/I when Used with CICS 361
155. DFHPLI01 link-Edited into Transaction 364
156. Valid Combinations of PL/I Releases with CICS/OS/VS

Release 1.6 367
157. Format of Records Sent to SYSPRINT 369
158. Base Cluster, Alternate Indexes, and Paths 393
159. The Commands Required to Create an Alternate Index

Path 399
160. Summary of Requirements for APAR Submission 403
161. OS PL/I Optimizer Modules Needed for Downloading 448
162. CMS Commands to Download the OS PL/I Optimizer 451
163. Example of Code for Mode-Switching 458

Figures xxiii

CHAPTER 1. INTRODUCTION

The process of executing a PL/I program requires a minimum of
two job steps.

A compilation job step is always required. In this step the
optimizing compiler translates the PL/I source program into a
set of machine instructions called an object module. This
object module does not include all the machine instructions
required to represent the source program. In many instances the
compiler merely inserts references to subroutines that are
stored in the as PL/I Resident Library.

To include the required subroutines from the resident library,
the object module must be processed by one of two processing
programs, the linkage editor or the loader.

When using the linkage editor, two further job steps are
required after compilation. In the first of these steps, the
linkage editor converts the object module into a form suitable
for execution, and includes subroutines, referred to by the
compiler, from the resident library. The program in this form
is called a load module. In the final job step, this load
module is loaded into main storage and executed.

When using the loader, only one more job step is required after
compilation. The loader processes the object module, includes
the appropriate resident library subroutines, and executes the
resultant executable program immediately.

Both the linkage editor and the loader can combine separately
produced object modules and previously processed load modules.
However, they differ in one important respect: the linkage
editor produces a load module, which it always places in a
library, where it can be permanently stored and called whenever
it is required; the loader creates only temporary executable
programs in main storage, where they are executed immediately.

The linkage editor also has several facilities that are not
provided by the loader; for example, it can divide a program
that is too large for the space available in main storage, so
that it can be loaded and executed segment by segment.

The loader is intended primarily for use when testing programs
and for processing programs that will be executed only once.

Subroutines from the resident library may contain references to
other subroutines stored in the as PL/I Transient Library. The
subroutines from the transient library do not become a permanent
part of a load module; they are loaded into main storage when
needed during execution of the PL/I program, and the storage
they occupy is released when they are no longer needed.

The job control statements shown in Figure I on page 2 are
sufficient to compile and execute a Pl/I program that comprises
only one external procedure.

This program uses only punched-card input and printed output.
The listing produced includes only the default items. Many
other items can be included by specifying the appropriate
compiler options in the EXEC statement. The compiler listing
and all the compiler options are described in Chapter 2, "The
Compiler" on page 3. The linkage editor listing and the linkage
editor options are described in Chapter 3, "The Linkage Editor
and the Loader" on page 65. Appendix D, "Sample Program" on
page 407 is a sample PL/I program that includes most of the
listing items discussed in these two chapters.

Chapter 1. Introduction 1

The example in Figure 1 uses the cataloged procedure PLIXCLG.
Several other cataloged procedures are supplied by IBM for use
with the optimizing compiler (for example, for compilation
only). The use of these other cataloged procedures is described
in Chapter 9, "Cataloged Procedures" on page 273.

An alternative method of specifying compiler options is by use
of the PROCESS statement, which is described in "Specifying
Compiler Options in the *PROCESS Statement" on page 13. An
example of a PROCESS statement is:

* PROCESS MACRO, OPTCTIME);

JOB statement

EXAMPLE is the name of the job. You can use any name
that does not have more than eight alphameric or national
characters; the first character must not be numeric. The
job name identifies the job within the operating system; it
is essential. The parameters required in the JOB statement
depend on the conventions established for your installation.

EXEC statement

PLlXCLG is the name of a cataloged procedure supplied by
IBM. When the operating system meets this name, it replaces
the EXEC statement with a set of JCL statements that have
been written previously and cataloged in a system library.
The cataloged procedure contains three procedure steps:

PLI The compiler processes the PUI program and translates
it into a set of machine instructions called an object
module.

LKED The linkage editor produces a load module from the
object module produced by the compiler.

GO The load module produced by the linkage editor is
loaded into main storage and executed.

DO statement

This statement indicates that the statements to be processed
in procedure step PLI follow immediately in the card deck.
SYSIN is the name that the compiler uses to refer to the
device on which it expects to find this data. (In this case,
the device is the card reader, and the data is the PUI program.)

DO statement

This statement indicates that the data to be processed by the
program (in procedure step GO) follows immediately in the
card deck.

Null statement

This statement indicates the end of this job.

r PUI source statements! --_

~ IIEXAMPLE JOB (6487,N14),JONES,MSGLEVEL=1
//STEPl EXEC PLlXCLG

r---"'" //PLI.SYSIN DO *

EX001: PROCEDURE OPTIONS(MAIN);
DECLARE (A,B,C) fiXED DECIMAL(3);
ON ENDFILE(SYSIN) GO TO FINISH;

NEXT: GET FILE(SYSIN) DATA(A,B);
C=A+B;
PUT FILE(SYSPRINT)SKIP DATA(A,B,C);
GO TO NEXT;

FINISH: END;

//GO.SYSIN DO *

A=131 B=75;
A=2 B=907;
A=--14 B=14;
A= 341 B=429;
A=245 B=102;

II

Data to be processed
by the P UI program

Figure 1. Example of Running a PL/I Program

2 OS PL/I Optimizing Compiler: Programmer's Guide

CHAPTER 2. THE COMPILER

This chapter describes the optimizing compiler and the job
control statements required to invoke it, and defines the data
sets it uses. It describes the compiler options, the listing
produced by the compiler, batched compilation, and the
preprocessor, all of which are introduced briefly below.

The optimizing compiler translates the PL/I statements of the
source program into machine instructions. A set of machine
instructions such as is produced for an external PL/I procedure
by the compiler is termed an object module. If several sets of
Pl/I statements, each set corresponding to an external procedure
and separated by appropriate control statements, are present,
the compiler can create two or more object modules in a single
job step.

However, the compiler does not generate all the machine
instructions required to represent the source program. Instead,
for frequently used sets of instructions such as those that
allocate main storage or those that transmit data between main
storage and auxiliary storage, it inserts into the object module
references to standard subroutines. These subroutines are
stored either in the OS PL/I Resident Library or in the OS PL/I
Transient Library.

An object module produced by the compiler is not ready for
execution until the appropriate subroutines from the resident
library have been included; this is the task of either one of
two processing programs, the linkage editor or the loader,
described in Chapter 3, "The Linkage Editor and the Loader" on
page 65. An object module that has been processed by the
linkage editor is referred to as a load module; an object module
that has been processed by the loader is referred to as an
executable program.

Subroutines from the transient library do not form a permanent
part of the load module or execut,~ble prosram. Instead, they
are loaded as required during execution, and the storage they
occupy is released when they are no longer needed.

While it is processing a PL/I program, the compiler produces a
listing that contains information about the program and the
object module derived from it, together with messages relating
to errors or other conditions detected during compilation. Much
of this information is optional, and is supplied either by
default or by specifying appropriate options when the compiler
is invoked.

The compiler also includes a preprocessor (or compile-time
processor) that enables you to modify source statements or
insert additional source statements before compilation
commences.

Compiler options, discussed further in "Compiler Options" on
page 11, can be used for purposes other than to specify the
information to be listed. For example, the preprocessor can be
used independently to process source programs that are to be
compiled later, or the compiler can be used merely to check the
syntax of the statements of the source program. Also,
continuation of processing through syntax checking and
compilation can be made conditional on successful preprocessing.

Chapter 2. The Compiler 3

DESCRIPTION OF THE COMPILER

The compiler consists of a number of load modules, referred to
as phases, each of which can be loaded individually into main
storage for execution. A simplified flow diagram is shown in
Figure 2 on page 5. The first phase to be loaded is a resident
control phase, which remains in main storage throughout
compilation. This phase consists of a number of service
routines that provide facilities required during execution of
the remaining phases. One of these routines communicates with
the supervisor program of the operating system for the
sequential loading of the remaining phases, which are referred
to as processing phases.

The resident control phase also causes a transient control phase
to be loaded, the function of which is to initialize the
operating environment in accordance with your options.

Each processing phase performs a single function or a set of
related functions. Some of these phases must be loaded and
executed for every compilation; the requirement for other phases
depends on the content of the source program or on the optional
facilities selected. Apart from the phases that provide
diagnostic information, each phase is executed once only.

Input to the compiler is known throughout all stages of the
compilation process as tex't. Initially, this text comprises the
Pl/I statements of the source program. At the end of
compilation, it comprises the machine instructions substituted
by the compiler for the source text, together with the inserted
references to resident library subroutines for use by the
linkage editor or by the loader.

The source text must be in the form of a data set defined by a
DD statement with the name SYSIN. The source text is passed to
the syntax-analysis stage either directly or after processing by
one of the following preprocessor phases:

1. If the source text is in the Pl/I 48-character set or in
BCD, the 48-character-set preprocessor translates it into
the 60-character set. To use the 48-character-set
preprocessor, specify the CHARSET(48) or CHARSETCBCD)
options.

2. If the source text contains preprocessor statements, the
preprocessor executes these statements in order to modifY
the source text or to introduce additional statements.
Also, if the source text is in the Pl/I 48-character set or
in BCD (as specified by the CHARSET(48) or CHARSETCBCD)
options), the preprocessor translates it into the
60-character set. To use the preprocessor, specify the
MACRO compiler option.

4 OS Pl/I Optimizing Compiler: Programmer's Guide

48-
CHARACTER­
SET
PROCESSOR

BCD or CHARSET(48)

SO-CHARACTE R-SET
TEXT VIA SYSUTl

SOURCE TEXT
(FROM SYSIN)

EBCDIC or
CHARSET(SO)

SYNTAX­
ANALYSIS
STAGE

DICTIONARY­
BUILD
STAGE

TRANSLATION
STAGES

FINAL­
ASSEMBLY
STAGE

OBJECT MODULE
(TO SYSLIN OR SYSPUNCH)

Figure 2. Simplified Flow Diagram of the Compiler

COMPILE­
TIME PRE­
PROCESSOR

PROCESSED SOURCE
TEXT VIA SYSUTl

Chapter 2. The Compiler 5

Standard
ddname

SYSIN
(or
SYSCIN)4

SYSLIN

SYSPUNCH

SYSUT12

SYSPRINT

Both preprocessor phases store the translated source text in the
data set defined by the DD statement with the name SYSUTI.

The syntax-analysis stage takes its input either from this data
set or from the data set defined by the DD statement with the
name SYSIN. This stage analyzes the syntax of the PL/I
statements and removes any comments and non-significant blank
characters.

After syntax analysis, the dictionary-build stage creates a
dictionary containing entries for all identifiers in the source
text. The compiler uses this dictionary to communicate
descriptions of the elements of the source text and the object
module between phases. The dictionary-build stage of the
compiler replaces all identifiers and attribute declarations in
the source text with references to dictionary entries.

Further processing of the text involves several compiler stages,
known as translation stages, which:

• Translate the text from the PL/I syntactic form into an
internal syntactic form.

• Rearrange the text to facilitate further translation (for
example, by replacing array assignments with do-loops that
contain element assignments).

• Map arrays and structures to ensure correct boundary
alignment.

• Translate the text into a series of fixed-length tables,
each with a format that can be used to define machine
instructions.

• Allocate main storage for static variables and generate
inline code to allow storage to be allocated during
execution. (In certain cases resident library subroutines
may also be called to allocate storage during execution.)

Possible Record Record
contents of Device Format Size BUFNO BLKSIZE
Data Set Classes1 (RECFt·1l 3 (LRECL)5 Buffers Buffers

Input to the SYSSQ F,FB,Q <101(100) 2 200
compiler VB,V <105(104)

Object SYSSQ FB 80 2 80
Module

Preprocessor SYSSQ FB 80 2 80
Output, SYSCP
Compiler
Output

Temporary SYSDA f 1091, 1691, - -
l~orkfi Ie 3491, or

4051
according to
available
space

Listing, SYSSQ VBA 125 2 129
including
messages

Figure 3 (Part 1 of 2). Compiler Standard Data Sets

6 OS PL/I Optimizing Compiler: Programmer's Guide

Possible Record Record
Standard contents of Device Format Size BUFNO BLKSIZE
ddname Data Set Classes1 (RECFM)3 (LRECL)S Buffers Buffers

SYSLIB2 Source SYSDA f,FB,U <101 - -
statements V,VB <105
for
preprocessor

Figure 3 (Part 2 of 2). Compiler Standard Data Sets

Notes to Figure 3:

1

2

5

The possible device classes are:

SYSSQ
SYSDA
SYSCP

Magnetic-tape or direct-access device
Direct-access device
Card-punch device

Any block size can be specified except for SYSLIB and SYSUTI. Block size for
SYSLIB depends on the options specified. If the INCLUDE option is specified,
the maximum block size is 4260 bytes. If MACRO is specified, the block size
maximum is eleven bytes less than the value of LRECL for SYSUTI. The block size
for SYSUTI is always provided by the compiler. The relationship between
available space and the LRECL for SYSUTI is given under "Temporary Workfile
(SYSUTI)" on page 9.

If the record format is not specified in a DD statement, the default value
(underlined) is provided by the compiler.

The compiler will attempt to obtain source input from SYSCIN if a DD statement
for this data set is provided. Otherwise it will obtain it's input from SYSIN.

The numbers in parentheses in the "Record size" column are the defaults which
can be overridden by the user.

The final-assembly stage translates the text tables into machine
instructions, and creates the external symbol dictionary (ESD)
and relocation dictionary (RlD) required by the linkage editor
and by the loader.

The external symbol dictionary includes the names o·f subroutines
that are referred to in the object module but are not part of
the module and that are to be included by the linkage editor or
by the loader; these names~ which are termed external
references, include the names of all the PL/I resident library
subroutines that will be required when the object module is
executed. (These resident library subroutines may, in their
turn, contain external references to other resident library
subroutines required for execution).

The relocation dictionary contains information that enables
absolute storage addresses to be assigned to locations within
the load module when it is loaded for execution.

The external symbol dictionary and the relocation dictionary are
described in Chapter 3, "The Linkage Editor and the Loader" on
page 65, which also explains how the linkage editor and the
loader use them.

Chapter 2. The Compiler 7

JOB CONTROL STATEMENTS FOR COMPILATION

EXEC STATEMENT

Although you will probably use cataloged procedures rather than
supply all the job control required for a job step that invokes
the compiler, you should be familiar with these statements so
that you can make the best use of the compiler, and if
necessary, override the statements of the cataloged procedures.

The IBM-supplied cataloged procedures that include a compilation
procedure step are as foilowsl

PlIXC Compile only.

PlIXCL Compile and link-edit.

PlIXCLG Compile, link-edit, and execute.

PlIXCG Compile, load, and execute.

The following paragraphs describe the job control statements
needed for compilation. The IBM-supplied cataloged procedures
des~ribed in Chapter 9, "Cataloged Procedures" on page 273
contain these statements. You will not therefore have to code
them yourself unless you are not using the cataloged procedures.

The basic EXEC statement is:

//stepname EXEC PGM=IElOAA

The PARM parameter of the EXEC statement can be used to specify
one or more of the optional facilities provided by the compiler.
These facilities are described under "Specifying Compiler
Options in the EXEC Statement" on page 12.

DD STATEMENTS FOR THE STANDARD DATA SETS

The compiler requires several standard data sets, the number
depending on the optional facilities specified. You must define
these data sets in DD statements with the standard ddnames which
are shown, together with other characteristics of the data sets,
in Figure 3 on page 6. The DD statements SYSIN, SYSUTI, and
SYSPRINT are always required.

You can store any of the standard data sets on a direct-access
device, in which case, you must include the SPACE parameter in
the DD statement that defines the data set to specify the amount
of auxiliary storage required. The amount of auxiliary storage
allocated in the IBM-supplied cataloged procedures should
suffice for most applications.

Input (SVSIN, OR SVSCINl

Input to the compiler must be a data set defined by a DD
statement with the name SYSIN or SYSCIN; this data set must have
CONSECUTIVE organization. The input must be one or more
external PL/I procedures; if you want to compile more than one
external procedure in a single job or job step, precede each
procedure, except possibly the first, with a PROCESS statement.
For further detail, see "Batched Compilation" on page 55.

Eighty-column punched cards are commonly used as the input
medium for PL/I source programs. However, the input data set
may be on a direct-access device, magnetic tape, or paper tape.
The input data set may contain ei thet'" fixed-length records,
blocked or unblocked, variable-length records, or
undefined-length records; the maximum record size is 100 bytes.
The compiler always reserves 200 bytes of main storage (100
bytes each) for two buffers for this data set; however, you may
specify a block size of more than 100 bytes, provided that

8 as PL/I Optimizing Compiler: Programmer's Guide

sufficient main storage is available to the compiler. (For
further details of the SIZE compiler option under "SIZE Option"
on page 26.)

When data sets are concatenated for input to the compiler, the
concatenated data sets must have similar characteristics (for
example, block size and record format).

output (SYSlIN, SYSPUNCHl

Output (that is, one or more object modules) from the compiler
can be stored in either the data set defined by the DD statement
with the name SYSlIN (if you specify the OBJECT compiler option)
or in the data set defined by the DD statement with the name
SYSPUNCH (if you specify the DECK compiler option). You may
specify both options in one program, when the output will be
stored in both data sets.

The object module is always in the form of 80-byte fixed-length
records, blocked or unblocked. The compiler always reserves two
buffers of 80 bytes each; however, you may specify a block size
of more than 80 bytes, provided that sufficient main storage is
available to the compiler. (For further details see the
discussion of the SIZE compiler option under "SIZE Option" on
page 26.) The data set defined by the DD statement with the
name SYSPUNCH is also used to store the output from the
preprocessor if you specify the MDECK compiler option.

TEMPORARY WORI<FILE (SVSUTll

statement Lengths

The compiler requires a data set for use as a temporary
workfile. It is defined by a DD statement with the name SYSUTI,
and is known as the spill file. It must be on a direct-access
device, and must not be allocated as a multi-volume data set.
The spill file is used as a logical extension to main storage
and is used by the compiler and by the preprocessor to contain
text and dictionary information.

The record size used depends on the amount of storage available
to the compiler and whether or not the storage device is a 3330,
3340, 3350, or 3380.

Note that the DD statements given in this publication and in the
cataloged procedures for SYSUTI request a space allocation in
blocks of 1024 bytes; this is to insure adequate secondary
ailocations of direct-access storage space are acquired.

The optimizing compiler has a restriction that any statement
must fit into the compiler's work area. The maximum size of
this work area varies with the amount of space available to the
compiler. The maximum length of a statement is 3400 characters.

The DECLARE statement is an exception in that it can be regarded
as a sequence of separate statements, each of which starts
wherever a comma occurs that is not contained within
parentheses. For example:

DCl I A,
2 BCIO,IO) INITCI,2,3, ...),
2 CCIO,lOO) INIT(CIOOO)CO),
(D,E) CHAR(20) VAR , ...

In this example, each line can be treated by the compiler as a
separate DECLARE statement in order to accommodate it in the
work area. The compiler will also treat in the same way the
INITIAL attribute when it is followep by a list of items
separated by commas that are not con~ained within parentheses.
Each item may contain initial valuesi that, when expanded, do not

Chapter 2. The Compiler 9

LISTING (SYSPRINT)

exceed the maximum length. The above also applies to the use of
the INITIAL attribute in a DEFAULT statement.

It is possible that programs with large DECLARE statements will
not compile successfully on the optimizing compiler although
they had compiled successfully on another compiler. The
following techniques are suggested to overcome this problem:

• Increase the main storage available to the compiler, unless
it already exceeds 128K bytes.

• Simplify the DECLARE statement so that the compiler can
treat the statement in the manner described above.

• ModifY any lists of items following the INITIAL attribute so
that individual items are smaller and separated by commas
not contained in parentheses. For example, the following
declaration is followed by an expanded form of the same
declaration. The compiler can more readily accommodate the
second declaration in its work area:

1.' DCl Y (1000) CHAR(S)
INIT «1000) (8)'Y');

2. DCl Y (1000) CHAR(S) INIT
«250)(8)'Y',(250)(8)'Y',
(250)(8)'Y',(250)(8)'Y');

The compiler generates a listing that includes all the source
statements that it processed, information relating to the object
module, and, when necessarY, messages. Most of the information
included in the listing is optional, and you can specify ~hose
parts that you require by including the appropriate compiler
options. The information that may appear, and the associated
compiler options, are described under "Compiler Listing" on
page 46.

You must define the data set in which you wish the compiler to
store its listing in a DD statement with the name SYSPRINT.
This data set must have CONSECUTIVE organization. Although the
listing is usually printed, it can be stored on any
magnetic-tape or direct-access device. For printed output, the
following statement will suffice if your installation follows
the convention that output class A refers to a printer:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes of main storage (129
bytes each) for two buffers for this data set; however, you may
specify a block size of more than 129 bytes, provided that
sufficient main storage is available to the compiler. (For
further details of the SIZE compiler option, see "SIZE Option"
on page 26.)

SOURCE STATEMENT LIBRARY (SYSLIB)

If you use the preprocessor XINClUDE statement to introduce
source statements into the PL/I program from a library, you can
either define the library in a DD statement with the name
SYSlIB, or you can choose your own ddname (or ddnames) and
specify a ddname in each XINClUDE statement. (For further
information on the preprocessor, see "Compile-Time Processing
(Preprocessing)" on page 59.)

10 as Pl/I Optimizing Compilers Programmer's Guide

EXAMPLE OF COMPILER JCL

COMPILER OPTIONS

A typical sequence of job control statements for compiling a
PL/I program is shown in Figure 4. The DECK and NOOBJECT
compiler options, described below, have been specified to obtain
an object module as a card deck only. Job control statements
for link editing an object module in the form of a card deck are
shown in Chapter 3, "The Linkage Editor and the Loader" on
page 65.

//OPT414 JOB
//STEP EXEC PGM=IELOAA,PARM='DECK,NOOBJECT'
//SYSPUNCH DD SYSOUT=B
//SYSUTI DD UNIT=SYSDA,SPACE=(1024,(60,60)"CONTIG)
//SYSPRINT DD SYSQUT=A
//SYSIN DD *
/*

Figure 4. Job Control statements for Compiling a PL/I Program
Not Using Cataloged Procedures.

The compiler provides a number of options, both at compile time
and at execution time. Options that can be specified at compile
time are known as compiler options. Options that can b~
specified at execution time are known as execution-time options.

Compiler options, their abbreviated syntax, and their defaults
(as supplied by IBM) are shown in Figure 5 on page 14 and
Figure 6 on page 16. An installation can modify defaults or
delete options according to local requirements; check for any
modified defaults at your installation. Deleted compiler
opiions can be reinstated for a compilation by means of the
CONTROL compiler option.

Also provided is the ability tv pass an argument to the Pl/I
main procedure. This facility is described under "Specifying
Execution-Time Options and Main Procedure Parameters in the EXEC
Statement" on page 30.

SPECIFYING COMPILER OPTIONS

For each compilation, the IBM or installation default for a
compiler option will apply unless it is overridden by specifying
the option in a PROCESS statement or in the PARM parameter of an
EXEC statement.

An option specified in the PARM parameter overrides the default
value, and an option specified in a PROCESS statement overrides
both that specified in the PARM parameter and the default value.

When conflicting attributes are specified either explicitly or
implicitly by the specification of other options, the latest
implied or explicit option is accepted. No diagnostic message
is issued to indicate that any options are overridden in this
way.

Chapter 2. The Compiler 11

SPECIFYING COMPILER OPTIONS IN THE EXEC STATEMENT

To specify options in the EXEC statement, code PARM= followed by
the list of options, in any order (except that CONTROL, if used,
must be first) separating the options with commas and enclosing
the list within single quotation marks, for example:

//STEPl EXEC PGM=IELOAA,PARM='OBJECT,LIST'

Any option that has quotation marks, for example MARGINIC'c'),
must have the quotation marks duplicated. The length of the
option list must not exceed 100 characters, including the
separating commas. However, many of the options have an
abbreviated syntax that you can use to save space. If you need
to continue the statement onto another line, you must enclose
the list of options in parentheses (instead of in quotation
marks) enclose the options list on each line in quotation marks,
and ensure that the last comma on each line except the last line
is outside of the quotation marks. An example covering all the
above points is as followsl

//STEPI EXEC PGM=IELOAA,PARM=C'AG,A',
// 'C,ESD,FCI),FLOWClO,l)',
// 'M,MIC"X"),NEST,STG,X')

If you are using a cataloged procedure, and wish to specify
options explicitly, you must include the PARM paranleter in the
EXEC statement that invokes it, qualifying the keyword PARM with
the nanle of the procedure step that invokes the compiler, for
example:

//STEPI EXEC PLIXCLG,PARM.PLI='A,LIST,ESD'

12 OS PL/I Optimi~i~g Compiler: Programmer's Guide

SPECIFYING COMPILER OPTIONS IN THE .PROCESS STATEMENT

To specify options in the PROCESS statement, code as follows:

* PROCESS options;

where "options" is a list of compiler options. The list of
options must be terminated with a semicolon and should not
extend beyond the default right-hand source margin. The
asterisk must appear in the first data byte of the record. If
the records are F format, the asterisk must be in column 1. If
the records are V or U format, the asterisk must be as far left
as possible, that is column I if possible, or immediately
following the sequence numbers if these are on the extreme left.
The keyword PROCESS may follow in the next byte (column) or
after any number of blanks. Option keywords must be separated
by a comma and/or at least one blank.

Blanks are permitted before and after any non-blank delimiter in
the list, with the exception of strings within quotation marks,
for example MARGINIC'*'), in which padding blanks should not be
inserted.

The number of characters is limited only by the length of the
record. If you do not wish to specify any options, codel

* PROCESS;

Should it be necessary to continue the PROCESS statement onto
the next card or record, terminate the first part of the list
after any delimiter, up to the default right-hand margin, and
continue on the next card or record. Option keywords or keyword
arguments may be split, if required, when continuing onto the
next record, provided that the keyword or argument string
terminates in the right-hand source margin, and the remainder of
the string starts in the same column as the asterisk. A PROCESS
statement may be continued in several statements, or a new
PROCESS statement started. For use of the PROCESS statement
with batched compilation, see "Batched Compilation" on page SSe

COMPILER OPTION TYPES

The compiler options are of the following types I

1. Simple pairs of keywords: a positive form (for example,
NEST) that requests a facility, and an alternative negative
form (for example, NONEST) that rejects that facility.

2. Keywords that permit you to provide a value-list that
qualifies the option (for example, FlAG(W».

3. A combination of I and 2 above (for example, NOCOMPILE(E».

The following paragraphs describe the options in alphabetic
order. For those options that specify that the compiler is to
list information, only a brief description is included; the
generated listing is described under "Compiler listing" on
page 46.

Chapter 2. The Compiler 13

Figure S lists all the compiler options with their abbreviated
syntax and their default values for batch mode. Defaults under
TSO and CMS are given in the TSO User's Guide, and eMS User's
Guide, respectively for this compiler.

Figure 6 on page 16 lists the options by function so that you
can, for example, determine the preprocessing.

Compiler Option Abbreviated Name IBM Default

AGGREGATE I NOAGGREGATE AGINAG NOAGGREGATE

ATTRIBUTES[(FULLISHORT»)I A[(FIS)]INA NOATTRIBUTES
NOATTRIBUTES [(FULLl)]

CHARSET([48160)[EBCDICIBCD]) CS([48160][EBIB]) CHARSETC60 EBCDIC)

COMPILE/NOCOMPILE[(WIEtS)] CINC[(WIEIS)] NOCOMPILE(S)

CONTROl('password') - -
COUNTINOCOUNT cTINcr NOCOUNT

DECKINODECK DIND NODECK

ESDINOESD - NOESD

FlAG[CIIWIEIS») F[(IIWIEIS)] FLAG(I)

FLOW[(n,m)]INOFLOW - NOFLOW

GONUMBERINOGONUMBER GNINGN NOGONUMBER

GOSTMTINOGOSTMT GSINGS NOGOSTMT

GRAPHICINOGRAPHIC - NOGRAPHIC

IMPRECISEINOIMPRECISE IMPINIMP NOIMPRECISE

INCLUDEINOINCLUDE INCININC NOINCLUDE

INSOURCEINOINSOURCE ISINIS INSOURCE

INTERRUPTI NOINTERRUPT INTININT NOINTERRUPT

LINECOUNT(n) le(n) l!NECQUNT(SS)

LIST[(m[,n])]INOLIST - NOlIST

lMESSAGEISMESSAGE LMSGISMSG LMESSAGE

MACRO I NOMACRO MINM NOMACRO

MAPINOMAP - NOMAP

MARGINI('c')INOMARGINI MIC'c')INMI NOMARGINI

MARGINS(m,n[,c) MARCm,n[,c]) MARGINS(2,72) or
MARGINS{lO,lOO)
Csee text)

MDECKINOMDECK MDINMD NOMDECK

NAME('name') NC'name') -
NESTINONEST - NON EST

NUMBERINONUMBER NUMINNUM NONUMBER

Figure 5 (Part 1 of 2). Compiler Options, Abbreviations, and Defaults in Batch Mode

14 OS PL/I Optimizing Compiler. Programmer's Guide

Compiler Option Abbreviated Name IBM Default

OBJECTINOOBJECT OBJINOBJ OBJECT

OFFSETiNOOFFSET OFINOF NOOFFSET

OPTIMIZE(TIMEIOI2)1 OPTCTIMEIOI2)NOPT NOOPTIMIZE
NOOPTIMIZE

OPTIONSINOOPTIONS OPINOP OPTIONS

SEQUENCE(m,n)INOSEQUENCE SEQ{m,n)INSEQ F-format:
SEQUENCE{73,SO)
V-format:
SEQUENCE(I,S)

SIZE([-]yyyyyyyyl SZ([-]yyyyyyyyl SIZE{MAX)
[-]yyyyyKIMAX) [-]yyyyyKIMAX)

SOURCEINOSOURCE SINS SOURCE

STMTINOSTMT - STMT

STORAGEINOSTORAGE STGINSTG NOSTORAGE

SYNTAXINOSYNTAX[CWIEIS)] SYNINSYN[CWIEIS)] NOSYNTAX(S)

TERMINAL[(opt-list)]1 TERM[(opt-list)]INTERM NOTERMINAL
NOTERMINAL

XREF[(FULLISHORT)]INOXREF X[CFIS)]INX NOXREF[CFUlll)]

Figure 5 (Part 2 of 2), Compiler Options, Abbreviations, and Defaults in Batch Mode

Note to Figure 5:

FULL is the default suboption if the sUboption is omitted with ATTRIBUTES or
XREF

Chapter 2. The Compiler 15

LISTING OPTIONS

Control listings
produced

Improve readability
of source listing

Control lines per
page of listing

INPUT OPTIONS

OPTIONS TO PREVENT
UNNECESSARY
PROCESSING

AGGREGATE
list of aggregates and their size

ATTRIBUTES[(SHORTIFULL1]
list of attributes of identifiers

ESD
list of external symbol dictionary

INSOURCE
list of preprocessor input

FLAG(IIWIEIS)

LIST

MAP

suppress diagnostic messages below a certain
severity

list compiled code produced by compiler

lists offsets of variables in static control
section and DSAs

OPTIONS
list of options used

SOURCE
list of source program or preprocessor output

STORAGE
list of storage used

XREF[(SHORTIFULL)]

NEST

list of statements in which each identifier
is used

indicates do-group and block level by
numbering in margin

MARGINI
highlights any source outside margins

LINECOUNT
specifies number of lines per page on listing

GRAPHIC
specifies that graphics are used in source

CHARSET
identifies the character set used in source

MARGINS
identifies position of PL/I source and a
carriage control character

SEQUENCE
specifies the columns used for sequence
numbers

NOSYNTAXlWIEISl
stop processing after errors are found in
preprocessing

NOCOMPILE(WIEIS)
stop processing after errors are found in
syntax checking

Figure 6 (Part I of 2). Compiler Options Arranged by Function

16 OS PL/I Optimizing Compiler: Programmer's Guide

OPTIONS FOR
PREPROCESSING

OPTIONS TO IMPROVE
PERFORMANCE

OPTIONS TO USE WHEN
PRODUCING AN OBJECT
MODULE

OPTIONS TO CONTROL
STORAGE USED

OPTIONS TO IMPROVE
USABILITY AT A
TERMINAL

OPTIONS TO SPECIFY
STATEMENT NUMBERING
SYSTEM USED

OPTIONS FOR USE
WHEN DEBUGGING

OPTION TO CONTROL
EFFECT OF ATTENTION
INTERRUPTS

Figure 6 (Part 2 of 2).

INCLUDE
allows secondary input to be included without
using preprocessor

MACRO
allows preprocessor to be used

MDECK
produces a source deck from preprocessor
output

OPTIMIZE/NOOPTIMIZE
improves execution performance but increases
compilation time. NOOPTIMIZE does the
reverse

OBJECT

NAME

DECK

SIZE

produce an object module from compiled output

specify the name of the object module
produced

produce an object module in punched card
format

controls the amount of storage used by the
compiler

TERMINAL
specifies how much of listing is transmitted
to terminal

LMESSAGE/SMESSAGE
specifies concise or full message format

NUMBER & GONUMBER
numbers statements according to line in which
they start

STMT & GOSTMT
numbers statements sequentially

OFFSET

COUNT

FLOW

specifies that a listing associating
statement numbers with offsets will be
generated

generate code that, if execution-time COUNT
is specified, will result in a count of the
number of times each statement is executed

generate code that, if execution-time FLOW is
specified, will result in a trace of
statements executed being retained

INTERRUPT
specifies that the ATTENTION condition will
be raised after interrupt is caused

Compiler Options Arranged by Function

Chapter 2. The Compiler 17

AGGREGATE OPTION

The AGGREGATE option specifies that the compiler is to include
in the compiler listing an aggregate length table, giving the
lengths of all arrays and major structures in the source
program.

ATTRIBUTES [(FULLISHORT1] OPTION

CHARSET OPTION

COMPILE OPTION

The ATTRIBUTES option specifies that the compiler is to include
in the compiler listing a tabl~ of source-program identifiers
and their attributes. If both ATTRIBUTES and XREF apply, the
two tables are combined.

If SHORT is specified, unreferenced identifiers are omitted,
making the listing more manageable.

If both ATTRIBUTES and XREF apply, and there is a conflict
between SHORT and FUll, the usage is determined by the last
option found. For example, ATTRIBUTES(SHORT) XREF(FUll) results
in FULL applying to the combined listing.

The suboption default FUll means that FUll applies if the option
is specified with no sub-option.

The CHARSET option specifies the character set and data code
that you have used to create the source program. The compiler
will accept source programs written in the 60-character set or
the 48-character set, and in the Extended Binary Coded Decimal
Interchange Code (EBCDIC) or Binary Coded Decimal (BCD).

60- OR 48-CHARACTER SET: If the source program is written in
the 60-character set, specify CHARSET(60); if it is written in
the 48-character set, specify CHARSET(48). The language
reference manual for this compiler lists both of these character
sets. (The compiler will accept source programs written in
either character set if CHARSET(48) is specified, however, if
the reserved keywords, for example, CAT or lE are used as
identifiers, errors may occur.)

BCD OR EBCDIC: If the source program is written in BCD, specify
CHARSETCBCD); if it is written in EBCDIC, specify
CHARSETCEBCDIC). The language reference manual for this
compiler lists the EBCDIC representation of both the
48-character set and the 60-character set.

If both arguments (48 or 60, EBCDIC or BCD) are specified, they
may be in any order and should be separated by a blank or by a
comma.

The COMPILE option specifies that the compiler is to compile the
source program unless an unrecoverable error was detected during
preprocessing or syntax checking. The NOCOMPIlE option without
an argument causes processing to stop unconditionally after
syntax checking. With an argument, continuation depends on the
severity of errors detected so far, as follows:

NOCOMPIlE(W) No compilation if a warning, error, severe error,
or unrecoverable error is detected.

NOCOMPIlE(E) No compilation if error, severe error, or
unrecoverable error is detected.

NOCOMPIlE(S) No compilation if a severe error or unrecoverable
error is detected.

18 OS Pl/I Optimizing Compiler: Programmer's Guide

COUNT OPTION

DECK OPTION

ESD OPTION

FLAG OPTION

FLOW OPTION

If the compilation is terminated by the NOCOMPILE option, the
cross-reference listing and attribute listing may be produced;
the other listings that follow the source program will not be
produced.

The COUNT option specifies (1) that the compiler is to produce
code that, when the execution-time COUNT (or FLOW) option is
specified, counts and lists the number of times each statement
is executed, and (2) the the default execution-time option for
COUNTINOCOUNT be set to COUNT.

The COUNT option implies the G05TMT opti9n if the 5TMT option
applies, or the GO NUMBER option if the NUMBER option applies.

The DECK option specifies that the compiler is to produce an
object module in the form of SO-column card images and store it
in the data set defined by the DD statement with the name
SYSPUNCH. Columns 73-76 of each card contain a code to identify
the object module; this code comprises the first four characters
of the first label in the external procedure represented by the
object module. Columns 77-80 contain a 4-digit decimal numbers
the first card is numbered 0001, the second 0002, and so on.

The ESD option specifies that the external symbol dictionary
CE5D) is to be listed in the compiler listing.

The FLAG option specifies the mlnlmum severity of error that
requires a message to be listed in the compiler listing. The
format of the FLAG option is shown below.

FLAGCI) List all messages.

FLAGCW) List all except informatory messages. If you specify
FLAG, FLAG(W) is assumed.

FLAGCE) List all except warning and informatory messages.

FLAGCS) List only severe error and unrecoverable error messages.

The FLOW option specifies (1) that the compiler is to produce
code that, when the execution-time FLOW option is specified,
lists the flow of control when the program is executed, and (2)
that the default execution-time option for FLOWINOFLOW be set to
FLOW. The format of the FLOW option iss

FLOW[(n,m)]

where In'

'm'

is the maximum number of entries to be included in
the lists. It should not exceed 32767.

is the maximum number of procedures for which the
lists are to be generated. It should not exceed
32767.

The IBM default, if (n,m) is not specified, is C25,10).

The output produced by the FLOW option is described under
"Execution-Time FLOW Option" on page 45.

Chapter 2. The Compiler 19

GONUMBER OPTION

GOSTMT OPTION

GRAPHIC OPTION

IMPRECISE OPTION

The GONUMBER option specifies that the compiler is to produce
additional information that will allow line numbers from the
source program to be included in execution-time messages.
Alternatively, these line numbers can be derived by using the
offset address, which is always included in execution-time
messages, and the table produced by the OFFSET option. (The
NUMBER option must also apply.)

Use of the GONUMBER option implies NUMBER, NOSTMT, and NOGOSTMT.
If NUMBER applies, GONUMBER is forced by the COUNT option.

The GOSTMT option specifies that the compiler is to produce
additional information that will allow statement numbers from
the source program to be included in execution-time messages.

Alternatively, these statement numbers can be derived by using
the offset address, which is always included in execution-time
messages, and the table produced by the OFFSET option. (The
STMT option must also apply.)

Use of the GOSTMT option implies STMT, NONUMBER, and NOGONUMBER.
If STMT applies, GOSTMT is forced by the COUNT option.

The GRAPHIC option specifies that either:

• You have graphics within comments in your source program

• You use the MACRO option and your source program contains
graphics within comments or graphic constants

(You need not specify GRAPHIC if you use graphic constants and
do not use the preprocessor.)

If you do not require graphic support, specify NOGRAPHIC. The
default is NOGRAPHIC.

When using the GRAPHIC compiler option, ensure that all comments
within your program use the hexadecimal value 'DE' (or whatever
value your installation has defined as the left delimiter) only
as a left delimiter to begin a graphic string.

You must use the compiler option CHARSET=(EBCDIC,60) when the
GRAPHIC compiler option is specified.

To print graphic data (including your source program), your data
must be in a format acceptable for a printer with graphic
support or for a print utility program such as the Kanji print
utility.

The IMPRECISE option specifies that the compiler is to include
extra text in the object module to localize imprecise interrupts
when executing the program with an IBM System/360 Model 91 or an
IBM System/370 Model 165 or 195. This extra text is generated
for ON statements (to ensure that, if interrupts occur, the
correct on-units will be entered), for null statements, and for
ENTRY statements. The correct line or statement numbers will
not necessarily appear in execution-time messages. If you need
more accurate identification of the statement in error, insert
null statements at suitable points in your program.

20 OS PL/I Optimizing Compiler. Programmer's Guide

INCLUDE OPTION

INSOURCE OPTION

INTERRUPT OPTION

LINECOUNT OPTION

LIST OPTION

The INCLUDE option requests the compiler to handle the inclusion
of PL/I source statements for programs that use the xINCLUDE
statement. For programs that use the XINCLUDE statement but no
other PL/I preprocessor statements, this method is faster than
using the preprocessor. If the MACRO option is also specified,
the INCLUDE option has no effect.

The INSOURCE option specifies that the compiler is to include a
listing of the source program (including preprocessor
statements) in the compiler listing. This option is applicable
only when the preprocessor is used; therefore, the MACRO option
must also apply.

This option de~ermines the effect of attention interrupts when
the compiled PL/I program is being executed under an interactive
system. (If specified on a batCh system, INTERRUPT may cause an
abend.)

If INTERRUPT was in effect during compilation, an established
ATTENTION on-unit will be executed when one attention interrupt
is caused during execution. If there is no such on-unit,
processing will continue.

If NOINTERRUPT was in effect during compilation, one attention
interrupt during execution will end the execution of the program
and cause control to return to the interactive system.

It should be noted that if any procedUre within a load module
was compiled with the INTERRUPT option, an attention interrupt
will lead to the ATTENTION condition being raised if polling is
carried out, and execution continuing with no apparent effect if
polling is not carried out regardless of which option was used
for the procedure in which the interrupt occurs. Polling is
carried out during the execution of stream I/O for all modules,
and, additionally, at branching points for modules compiled with
the INTERRUPT option. Because the ATTENTION condition is raised
when polling is done, an attention interrupt in a program partly
compiled with the INTERRUPT option can lead to unexpected
results.

The LINECOUNT option specifies the number of lines to be
included in each page of the compiler listing, including heading
lines and blank lines. The syntax of the LINECOUNT option iSI

LINECOUNTCn)

where 'n' is the number of lines. It must be in the range 1
through 32767, but only headings are generated if
you specify less than 7.

The LIST option specifies that the compiler is to include a
listing of the object module (in a syntax similar to assembler
language instructions) in the compiler listing. The syntax of
the LIST option is:

LIST[(m[,n])]

where 'm' is the number of the first, or only, source statement
for which an object listing is required and 'n' is the number of
the last source statement for which an object listing is

Chapter 2. The Compiler 21

LMESSAGE OPTION

MACRO OPTION

MAP OPTION

MARGINI OPTION

MARGINS OPTION

required. If In' is omitted, only statement 'm' is listed. If
the,option NUMBER applies, 'm' and In' must be specified as line
numbers.

If LIST is used in conjunction with MAP, additional listings of
static storage are produced. (For further information on the
MAP compiler option, see "MAP Option.")

The LMESSAGE and SMESSAGE options specify that the compiler is
to produce messages in a long form (specify lMESSAGE) or in a
short form (specify SMESSAGE).

The MACRO option specifies that the source program is to be
processed by the preprocessor.

The MAP option specifies that the compiler is to produce tables
showing the organization of the static storage for the object
module. A table showing the mapping of static and automatic
variables with offsets from their defining bases is always
produced. If the LIST option (described abovel is also used, a
map of the static internal and external control sections is also
generated.

The MARGINI option specifies that the compiler is to include a
specified character in the column preceding the left-hand
margin) and in the column following the right-hand margin of the
listings resulting from the INSOURCE and SOURCE options. Any
text in the source input which precedes the left-hand m~rgin
will be shifted left one column, and any text that follows the
right-hand margin will be shifted right one column. For
variable-length input records that do not extend as far as the
right-hand margin, the character is inserted in the column
following the end of the record. Thus text outside the source
margins can be easily detected.

The MARGINI option has the syntax:

MARGINIC'c')

~here "c" is the character to be printed as the margin
indicator.

The MARGINS option specifies the part of each input record that
contaihs Pl/I statements. The compiler will not process data
that is outside these limits (but it will include it in the
source listings).

The option can also specify the position of an American National
Standard CANS) printer control character to format the listing
produced if the SOURCE option applies. This is an alternative
to using Y.PAGE and Y.SKIP statements (described in the language
reference manual for this compiler). If you do not use either
method, the input records will be listed without any intervening
blank lines. The syntax of the MARGINS option is:

MARGINS(m,n[,c])

22 as PL/I Optimizing Compiler: Programmer's Guide

MDECK OPTION

NAME OPTION

where 'm'

'n'

'c'

(blank)

a

+

1

is the column number of the leftmost character that
will be processed by the compiler .. It should not
exceed 100.

is the column number of the rightmost character that
will be processed by the compiler. It should be
greater than m, but not greater than 100.

is the column number of the ANS printer control
character. It should not exceed 100 and should be
outside the values specified. for m and n. Only the
following control characters can be used.

Skip one line before printing.

Skip two lines before printing.

Skip three lines before printing.

No skip before printing.

Start new page.

The IBM-supplied default for fixed-length records is
MARGINS(2,72); that for variable-length and undefined-length
records is MARGINS (10,100). This specifies that there is no
printer control character.

The MARGINS option allows you to override the default for the
primary input in a program. The secondary input must have
either the same margins as the primary input if it is the same
type of record, or default margins if it is a different type.

The MDECK option specifies that the preprocessor is to produce a
copy of its output (see also "MACRO Option" on page 22) and
store it in the data set defined by the DD statement with the
name SYSPUNCH. The last four bytes of each record in SYSUTl are
not copied, thus this option allows you to retain the output
from the preprocessor as a deck of aO-column punched cards.

The NAME option specifies that the compiler is to place a
linkage editor NAME statement as the last statement of the
object module. When processed by the linkage editor, this NAME
statement indicates that primary input is complete and causes
the specified name to be assigned to the load module created
from the preceding input (since the last NAME statement).

It is required if you want the linkage editor to create more
than one load module from the object modules produced by batched
compilation (see also "Batched Compilation" on page 55).

If you do not use this option, the linkage editor will use the
member name specified in the DD statement defining the load
module data set. You can also use the NAME option to cause the
linkage editor to substitute a new load module for an existing
load module with the same name in the library. The format of
the NAME option is:

NAME('name')

where "name" has from one through eight characters, and begins
with an alphabetic character. The linkage editor NAME statement
is described in Chapter 3, "The Linkage Editor and the Loadern

on page 65.

Chapter 2. The Compiler 23

NEST OPTION

NUMBER OPTION

OBJECT OPTION

The NEST option specifies that the listing resulting from the
SOURCE option will indicate, for each statement, the block level
and the do-group level.

The NUMBER option specifies that the numbers specified in the
sequence fields in the source input records are to be used to
derive the statement numbers in the listings resulting from the
AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE and XREF options.

If NONUMBER is specified, STMT and NOGONUMBER are implied.
NUMBER is implied by NOSTMT or GONUMBER.

The position of the sequence field can be specified in the
SEQUENCE option. Alternatively the following default positions
are assumed:

• First 8 columns for undefined-length or variable-length
source input records.

• last 8 columns for fixed-length source input records.

These defaults are the positions used for line-numbers generated
by TSO; thus it is not necessary to specify the SEQUENCE option,
or change the MARGINS defaults, when using line numbers
generated by TSO. Note that the preprocessor output has
fixed-length records irrespective of the original primary input.
Any sequence numbers in the primary input are repositioned in
columns 73-80.

The line number is calculated from the five right-hand
characters of the sequence number (or the number specified, if
less than five). These characters are converted to decimal
digits if necessary. Each time a sequence number is found that
is not greater than the preceding line number, a new line number
is formed by adding the minimum integral multiple of 100,000
necessary to produce a line number that is greater than the
preceding one. If the sequence field consists only of blanks,
the new line number is formed by adding 10 to the preceding one.
The maximum line number permitted by the compiler is
134,000,000, or, when FLOW/COUNT is specified, the maximum
becomes 33,000,000; numbers that would normally exceed this are
set to this maximum value, Only eight digits are printed in the
source listing; line numbers of 100,000,000 or over will be
printed without the leading "1" digit.

If there is more than one statement on a line, a suffix is used
to identify the actual statement in the messages. For example,
the second statement beginning on the line numbered 40 will be
identified by the number 40.2. The maximum value for this
suffix is 31. Thus the thirty-first and subsequent statements
on a line have the same number.

The OBJECT option specifies that the compiler is to store the
object module that it creates in the data set defined by the DD
statement with the name SYSlIN.

24 OS Pl/I Optimizing Compiler: Programmer's Guide

OFFSET OPTION

OPTIMIZE OPTION

OPTIONS OPTION

SEQUENCE OPTION

The OFFSET option specifies that the compiler is to print a
table of statement or line numbers for each procedure with their
offset addresses relative to the primary entry point of the
procedure. This informati~n is of use in identifying the
statement being executed when an error occurs and a listing of
the object module Cobtained by using the LIST option) is
available. If GOSTMT applies, statement numbers, as well as
offset addresses, will be included in execution-time messages.
If GONUMBER applies, line numbers, as well as offset addresses,
will be included in execution-1ime messages.

A method of determining statement or line numbers from the
offsets given in error messages is given under "Statement Offset
Addresses" on page 50.

The OPTIMIZE option specifies the type of optimization required:

NOOPTIMIZE
specifies fast compilation speed, but inhibits
optimization for faster execution and reduced main
storage requirements.

OPTIMIZECTIME)
specifies that the compiler is to optimize the machine
instructions generated to produce a very efficient
object program. A secondary effect of this type of
optimization can be a reduction in the amount of main
storage required for the object module. Th~ use of
OPTIMIZECTIME) could result in a substantial increase
in compile time over NOOPTIMIZE.

OPTIMIZECO)
is the equivalent of NOOPTIMIZE.

OPTIMIZE(2)
is the equivalent of OPTIMIZE(TIME).

The language reference manual for this compiler includes a full
discussion of optimization.

The OPTIONS option specifies that the compiler is to include in
the compiler listing, a list showing the compiler options, to be
used during this compilation. This list includes all those
applied by default, those specified in the PARM parameter of an
EXEC statement, and those specified in a PROCESS statement.

The SEQUENCE option specifies the extent of the part of each
input line or record that contains a sequence number. This
number is included in the source listings produced by the
INSOURCE and SOURCE option. Also, if the NUMBER option applies,
line numbers will be derived from these sequence numbers and
will be included in the source listings in place of statement
numbers. No attempt is made to sort the input lines or records
into the specified sequence. The SEQUENCE option has the
syntax:

SEQUENCECrn,n)

where 'm'

'n'

specifies the column number of the left-hand margin.

specifies the colu~n number of the right-hand
margin.

Chapter 2. The Compiler 25

SIZE OPTION

The extent specified should not overlap with the source program
(as specified in the MARGINS option).

The IBM-supplied default for fixed-length records is SEQUENCE
(73,80); that for variable-length and undefined-length records
is SEQUENCE (1,8).

If the SEQUENCE option is in effect, an external procedure
cannot contain more than 32,767 lines. To be able to compile an
external procedure containing more that 32,767 lines, the
NOSEQUENCE option must be specified provided that the actual
number of statements is no more than 32,767. Because NUMBER and
NONUMBER imply SEQUENCE, these options also should not be
specified.

This option can be used to limit the amount of main storage used
by the compiler. This is of value, for example, when
dynamically invoking the compiler, to ensure that space is left
for other purposes. The SIZE option can be expressed in five
forms:

SIZECyyyyyyyy)
specifies that yyyyyyyy bytes of main storage are to
be requested. Leading zeros are not required.

SIZECyyyyyK)
specifies that yyyyyK bytes of main storage are to be
requested (lK=1024). Leading zeros are not required.

SIZE(-yyyyyy)
specifies that the compiler is to obtain as much main
storage as it can, and then release yyyyyy bytes to
the operating system. Leading zeros are not required.

SIZEC-yyyK)

SIZECMAX)

specifies that the compiler is to obtain as much main
storage as it can, and then release yyyK bytes to the
operating system (lK=1024). Leading zeros are not
required.

specifies that the compiler is to obtain as much main
storage as it can.

The IBM default is SIZE(MAX), which permits the compiler to use
as much main storage in the partition or region as it can.

When a limit is specified, the amount of main storage used by
the compiler depends on how the operating system has been
generated, and the method used for storage allocation. The
compiler assumes that buffers, data management routines, and
processing phases take up a fixed amount of main storage, but
this amount can vary unknown to the compiler.

The negative forms can be useful when a certain amount of space
must be left free and the maximum size is unknown, or can vary
because the job is run in regions of different sizes.

After the compiler has loaded its initial phases and opened all
files, it attempts to allocate space for working storage.

If SIZE(MAX) is specified, it obtains all space remaining in the
region or partition (after allowance for subsequent data
management storage areas). If a limit is specified, then this
amount is requested. If the amount available is less than
specified, but is more than the minimum workspace required,
compilation proceeds. If insufficient storage is available,
compilation is terminated. This latter situation should arise
only if the region or partition is too small, that is, less than
128K bytes, or if too much space for buffers has been requested.

26 OS PL/I Optimizing Compiler: Programmer's Guide

SMESSAGE OPTION

SOURCE OPTION

5TMT OPTION

STORAGE OPTION

SYNTAX OPTION

The value cannot exceed the main storage available for the job
step and cannot be changed after processing has begun.

This means that, in a batched compilation, the value established
when the compiler is invoked cannot be changed for later
programs in the batch. Thus it is ignored if specified in a
PROCESS statement.

In a TSO environment, an additional 10K to 30K bytes must be
allowed for 150. The actual size required for TSO depends on
which routines are placed in the link-pack area (a common main
storage pool available to all regions).

For details on the use of the SIZE option under CMS, see the CMS
User's Guide for this compiler.

See "lMESSAGE Option" on page 22.

The SOURCE option specifies that the compiler is to include in
the compiler listing a listing of the source program. The
source program listed is either the original source input or, if
the MACRO option applies, the output from the preprocessor.

The STMT option specifies that statements in the source program
are to be counted, and that this "statement number" is used to
identify statements in the compiler listings resulting from the
AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE, and XREF options.
ISTMT is implied by NONUMBER or GOSTMT. If NOSTMT is specified,
NUMBER and NOGOSTMT are implied.

The STORAGE option specifies that the compiler is to include in
the compiler listing a table giving the main storage
requirements for the object module.

The SYNTAX option specifies that the compiler is to continue
into syntax checking after initialization (or after
preprocessing if the MACRO option applies) unless an
unrecoverable error is detected. The NOSYNTAX option without an
argument causes processing to stop unconditionally after
initialization Cor preprocessing). With an argument,
continuation depends on the severity of errors detected so far,
as followsl

NOSYNTAXCW)
No syntax checking if a warning, error, severe error,
or unrecoverable error is detected.

NOSYNTAXCE)
No syntax checking if an error, severe error, or
unrecoverable error is detected.

NOSYNTAXCS)
No syntax checking if a severe error or unrecoverable
error is detected.

If the SOURCE option applies, the compiler will generate a
source listing even if syntax checking is not performed.

Chapter 2. The Compiler 27

TERMINAL OPTION

If the compilation is terminated by the NOSYNTAX option, the
cross-reference listing, attribute listing, and other listings
that follow the source program will not be produced.

The use of this option can prevent wasted runs when debugging a
Pl/I program that uses the preprocessor.

The TERMINAL option is applicable only in a conversational
environment. It specifies that a subset of or all of the
compiler listing produced during compilation is to be printed at
the terminal. If TERMINAL is specified without an argument,
diagnostic and informatory messages are printed at the terminal.
You can add an argument, which takes the form of an option list,
to specify other parts of the compiler listing that are to be
printed at the terminal.

The listing at the terminal is independent of that written on
SYSPRINT. However, if SYSPRINT is associated with the terminal,
only one copy of each option requested will be printed even if
it is requested in the TERMINAL option and also as an
independent option. The following option keywords, their
negative forms, or their abbreviated forms, can be specified in
the option list:

AGGREGATE, ATTRIBUTES, ESD, INSOURCE,
LIST, MAP, OPTIONS, SOURCE, STORAGE,
and XREF.

If the option does not apply to the SYSPRINT listing, specifying
it in the TERMINAL option has no effect. The other options that
relate to the listing (that is, FLAG, GONUMBER, GOSTMT,
lINECOUNT, LMSESSAGE/SMESSAGE, MARGINI, NEST, NUMBER, and the
SHORT and FULL suboptions of ATTRIBUTES and XREF) will be the
same as for the SYSPRINT listing.

XREF [(SHORTIFULL)] OPTION

The XREF option specifies that the compiler is to include in the
compiler listing a cross-reference table of names used in the
program together with the numbers of the statements in which
they are declared or referenced. For a description of the
format and content of the cross-reference table, see
"Cross-Reference Table" on page 48.

If the sUboption SHORT is specified, un referenced names are not
listed.

The default sUboption FULL means ·that FULL applies if the option
is specified with no suboption.

If both XREF and ATTRIBUTES are specified, the two listings are
combined. If there is a conflict between SHORT and FULL, the
usage is determined by the last option specified. For example,
ATTRIBUTES(SHORT) XREF(FUlL) results in FULL applying to the
combined listing.

SPECIFYING EXECUTION-TIME OPTIONS

Each execution of a PL/I program requires that values be
established for a set of PL/I execution-time options. These
options determine many of the properties of a PL/I program's
execution, including its performance, its error-handling
characteristics, and its production of debugging and tuning
information.

Generally, it is unwise to rely on default settings (whether
IBM-supplied or supplied by your local system programming
staff). Inappropriate settings of these options can adversely
affect both the function and the performance of your program.

28 OS Pl/I Optimizing Compiler: Programmer's Guide

The correct settings of these options should be established for
all PL/I programs that you execute on a production basis.

You should understand in particular that almost no action you
can take can do more to optimize the performance of a PL/I
program than the correct setting of these options. Conversely,
inappropriate settings of them can seriouslY degrade the
performance of even a well-coded PL/I program.

It is a waste of time to undertake serious performance
measurement or performance-oriented modification of a PL/I
program until the execution-time options have been set
appropriately.

This fact is not new with Release 5; it is true of all prior
releases of the OS PL/I Optimizing Compiler and Libraries as
well.

If you are already aware of the importance of these options, and
have already undertaken to establish the proper value for
ISASIZE, for example, for some or all of your programs, then you
should take note of the fact that Release 5 adds three new
options related to storage management: ISAINC, HEAP, and
TASKHEAP. These options are described below along with the
other options provided prior to Release 5.

In most cases, a setting of ISASIZE which resulted in efficient
execution of your PL/I program on Release 4 will continue to do
so on Release 5, although this should be verified for programs
the performance of which is of critical importance.

If proper execution-time options are being determined for the
first time for a program, if the program is to exploit 51-bit
addressing, or if the program is one which exhibits widely
varying storage requirements depending on its input data, then
the new storage-related execution-time options should be taken
into account. (See the section below entitled, "Execution-Time
Storage Requirements".)

For each execution, the IBM or installation default for an
execution-time option will apply unless it is overridden by a
PLIXOPT string in the source program or by the PARM parameter of
the EXEC statement for the execution step.

An option specified in the PLIXOPT string overrides the default
value, and an option specified in the PARM parameter overrides
that specified in the PLIXOPT string.

When execution-time options are not passed as parameters at
execution time, the ISA is acquired and used instead of internal
work areas. This provides faster execution but adds the
requirement that enough storage be available for the ISA. If
any execution options are passed at execution time, execution
will be slower.

SPECIFYING EXECUTION-TIME OPTIONS IN THE PLIXOPT STRING

Execution-time options can be specified in a source program by
means of the following declaration:

DCl PlIXOPT CHARClen) VAR INIT('strg')
STATIC EXTERNAL;

where "strg" is a list of options separated by commas or blanks,
and "len" is a constant equal to or greater than the length of
"strg." The maximum length of "strgn is 250 characters.

If more than one external procedure in a job declares PLIXOPT as
STATIC EXTERNAL, only the first string will be link-edited and
available at execution time.

The PLIXOPT string is ignored in a Checkout Compiler/Optimizing
Compiler mixture environment.

Chapter 2. The Compiler 29

OPTION Applies to
(default USE Release
underlined)

Storage Control HEApl Control storage for 5
allocated variables.

ISAINCI Size of increments of 5
storage added to
initial allocation.

ISASIZE Control initial 4 and 5
allocation of working
storage.

REPORTINOREPORT Generate report of 4 and 5
storage usage.

TASKHEApl Control HEAP storage 5
for each subtask for
multitasking,

Debugging COUNT 21NOCOUNT list number of times 4 and 5
each statement is
executed.

FlOWCn,m)2INOFlOW list last n branches 4 and 5
and m changes of
procedure.

Error Handling SPIEINOSPIE Allow program check 4 and 5
interrupts to be
handled by Pl/I (SPIE)
or passed to system
(NOSPIE).

STAEINOSTAE Allow ABENDS to be 4 and 5
handled" if possible,
by Pl/I (STAE), or by
system (NOSTAE).

Figure 7. Execution Time Options Listed by Function

Notes to Figure 7:

May be used only if all of the application is Release 5.

2 Only worl{s if the FLOW or COUNT option was specified at compile time. Default
is what was specified at compile time.

SPECIFYING EXECUTION-TIME OPTIONS AND MAIN PROCEDURE PARAMETERS IN THE EXEC
STATEMENT

The method of coding the PARM parameter in an EXEC statement is
described under "Specifying Compiler Options in the EXEC
Statement" on page 12.

If you are using a cataloged procedure, you must qualify the
keyword PARMwith the name of the execution step; for examplel

//STEP
//

EXEC PlIXClG,
PARM.GO='ISASIZECIOK)'

30 OS Pl/I Optimizing Compiler: Programmer's Guide

You can also use the PARM field to pass an argument to the PL/I
main procedure. To do so, place the argument, preceded by a
slash, after the execution-time options. For examples

//00 EXEC PGM=OPT,
// PARM='ISASIZE(lOK)/ARGUMENT'

If you wish to pass an argument without specifying options, it
should be preceded by a slash. For example:

//GO EXEC PGM=OPT,PARM='/ARGUMENT'

If you omit the slash, your program may execute correctly, but
it will incur extra overhead and cause a message regarding
"invalid optionsn to be sent to SYSPRINT.

The method of coding the PARM parameter in an EXEC statement is
given under "Specifying Compiler Options in the EXEC statement"
on page 12. See also "Execution-Time Options."

EXECUTION-TIME OPTIONS

The following paragraphs describe the execution-time options,
which can be specified in the EXEC statem~nt or in the PLIXOPT
string. The values of all parameters are filled in successively
from the system defaults, the PlIXOPT string, and the PARM
parameter of the EXEC statement. Figure 7 on page 30 lists the
options by function.

COUNT

NOCOUNT

FLO~H(n,m)]

NOFLOW

HEAP

specifies that a count is to be kept of the number
of times each statement in the program is executed
and that the results are to be printed when the
program terminates. This option is discussed in
greater detail under "Execution-Time COUNT Option"
on page 44.

specifies that statement counting is not to be
performed.

specifies that a list of the most recent transfers
of control in the execution of the program is to
be generated. This option is discussed in greater
detail under ftExecution-Time FLOW Option" on
page 45.

specifies that a flow list is not to be produced.

Release 5 Only) separates storage for allocated
(that is , CONTROLLED and dynamically allocated
BASED) variables from all other PL/I storage and
specifies how that storage is to be handled. In a
multitasking environment, HEAP option values apply
only to the major task; subtask allocated storage
is governed by the TASKHEAP option. The HEAP
option is discussed in greater detail under
"Execution-Time HEAP Option (Release 5 Only)" on
page 36.

The HEAP option has four parameters. These
include one or two positional parameters, both
optional, which must be numeric. If one or more
of the positional parameters is omitted, then one
or two keyword parameters can still be specified.
No leading commas are required to specify only the
keyword parameters. If the second positional
parameter is specified but the first omitted, then
a leading comma would be required to indicate the
missing first positional parameter.

Chapter 2. The Compiler 31

ISAINC

The syntax of the HEAP option is:

HEAP(size,increment,ANYWHEREIBELOW,KEEPIFREE)

where:

size

increment

ANYWHERE

BELOW

FREE

is optional. If specified, it
determines the minimum initial size of
heap storage, and is specified in
bytes or as nnnK or as nnM. Storage
is acquired in multiples of 4K. If
not specified, no heap area is used.
The IBM-supplied default is HEAP(O),
that is, the HEAP option is not in
effect. ---

is optional. If specified, it
determines the minimum size of any
subsequent increment to the heap area.
Storage is acquired in multiples of
4K. The IBM-supplied default value
for the HEAP increment is 4K.

specifies that Pl/I can allocate the
heap area anywhere in storage. In an
MVS/XA environment, this allows PL/I
to locate heap storage either above or
below 16 megabytes; Pl/I will usually
place it above 16 megabytes. In a
non-MVS/XA environment, use of
ANYWHERE necessarily places heap
storage below 16 megabytes. ANYWHERE
is the IBM-supplied default.

specifies that Pl/I must allocate heap
storage below 16 megabyte, in storage
accessible to 24-bit addressing.

specifies that storage allocated to
HEAP increments will not be released
when a FREE statement in the program
deal locates the last variable stored
there. This is the IBM-supplied
default.

specifies that storage allocated to
HEAP increment will be released when
the last variable occupying it is
FREEd.

(Release 5 Only) specifies the minimum size of an
increment to the ISA.

If ISAINC is not specified, when the storage
currently allocated to the ISA is not large enough
to handle all of a program's storage requests,
only that amount of storage needed at the time of
the request is obtained. When ISAINC is used, the
amount of storage allocated when the ISA is too
small for the current request is the larger of the
ISAINC size or the requested size, rounded up to
the next higher multiple of 4K. Thus the use of
the ISAINC option can save the increased execution
time caused by frequent GETMAINS of small amounts
of storage.

32 OS PL/I Optimizing Compiler: Programmer's Guide

ISASIZE

The syntax of the ISAINC option iSI

ISAINC(size1,size2)

where:

sizel

size2

specifies the minimum amount by which
the ISA for the major task will be
incremented, and is specified in bytes
or as nnnk or nnM. The IBM-supplied
default is ISAINC=O.

specifies the minimum amount by which
the ISA for any subtask will be
incremented, and is specified in bytes
or as nnnk or nnM. "size2" is ignored
in a nontasking environment.

specifies the storage sizes and number of
subtasks.

The syntax of the ISASIZE option is:

ISASIZE(sizel,size2,tasks)

where:

sizel

size2

specifies the length of the initial
storage area.

This specifies the main (or only) task
size, in bytes or as nnnK or as nnM.
It can be preceded by a minus sign.
The storage will be contiguous.

A size of '0' causes PL/I to issue a
GETMAIN request for the largest block
of contiguous storage in the region;
PL/I then returns half of that block
to the system and retains the other
half as its ISA.

The minus sign is used when stating
the amount of storage in the region or
partition that must be left outside
the resident load module and the ISA.
This storage will be contiguous. A
value of 1-0' should not be specified
unless the largest possible ISA is
required and no files, including
SYSPRINT, will be used, and no
subtasks may be allocated. Otherwise
an ABEND may occur because of lack of
system storage.

ISASIZE=O is the IBM-supplied default
in a nontasking environment. In a
multitasking environment, the default
is 8192 bytes.

specifies the length of each subtask
initial storage area. This is an
unsigned integer, n bytes, nnnK, or
nnM.

"size2" is ignored in a nontasking
environment.

Chapter 2. The Compiler 33

REPORT

NOREPORT

SPIE

NOSPIE

STAE

NOSTAE

TASKHEAP

tasks is a decimal integer that is the
maximum number of subtasks. The
IBM-supplied default is 20.

"tasks" is ignored in a nontasking
environment.

Commas must be provided if "size2" or
"tasks" is used and earlier arguments
are omitted.

specifies that a report of the use of storage by a
program will be generated and placed on the file
with the ddname PLIDUMP or PlIDUMP at the end of
execution. A description of the output and how to
make use of it is given in "Execution-Time Storage
Requirements for Nonmultitasking Programs" on
page 37.

REPORT output is headed by the name of the main
procedure and the time and date of the end of
execution. You can also supply your own
identifier using the PlIXHD string. For more
information on PLIXHD~ see "Using PlIXHD to
Identify COUNT and REPORT Output" on page 37.

If no DD statement is provided for PlIDUMP or
PLIDUMP, a message is generated and the report is
not given.

The use of the REPORT option downgrades
performance.

specifies that no program management report is
required. This option may be abbreviated to NR.

specifies that when a program interrupt occurs,
the PL/I error handler is to be used. Under
certain circumstances the ERROR condition will be
raised.

specifies that on program initialization, Pl/I
will not issue the SPIE or ESPIE macro to request
control after a program check. Unless running
under MVS/XA, do not use NOSPIE when extended
precision variables are used in the Pl/I source
program.

specifies that when an ABEND occurs, the PL/I
library routines are to attempt to raise the ERROR
conditions or to produce a diagnostic message and
a PLIDUMP.

specifies that on program initialization, Pl/I
will not issue the STAE or ESTAE macro to request
control after an ABEND.

(Release 5 Only) specifies that a separate heap
storage area is to be created for each subtask in
a multitasking environment. This separates
storage for CONTROllED and dynamically allocated
BASED variables in a subtask from all other Pl/I
storage and specifies how that storage is to be
handled.

34 OS Pl/I Optimizing Compiler: Programmer's Guide

EXECUTION-TIME ISASIZE OPTION

The syntax of the TASKHEAP option is:

TASKHEAP(size,increment,ANYWHEREIBELOW,~IFREE)

where:

size

increment

ANYWHERE

BELOW

FREE

is optional. If specified, it
determines the minimum initial size of
taskheap storage, and is specified in
bytes or as nnnK or as nnM. storage
is acquired in multiples of 4K. If
not specified, no taskheap area is
used. The IBM-supplied default is
TASKHEAP(O), that is, the TASKHEAP
option is OR! in effect.

is optional. If specified, it
determines the minimum size of any
subsequent increment to the taskheap
areas. Storage is acquired 1n
multiples of 4K. The IBM-supplied
default value for the TASKHEAP
increment is 4K.

specifies that PL/I can allocate the
taskheap areas anywhere in storage.
In an MVS/XA environment, this allows
PL/I to locate taskheap storage either
above or below 16 megabytes; PL/I will
usually place it above 16 megabytes.
In a non-MVS/XA environment, use of
ANYWHERE necessarily places taskheap
storage below the line. ANYWHERE is
the IBM-supplied default.

specifies that PL/I must allocate
taskheap storage below 16 megabytes,
in storage accessible to 24-bit
addressing,

specifies that storage allocated to
TASKHEAP increments will n2! be
released when a FREE statement in the
program deal locates the last variable
stored there. This is the
IBM-supplied default.

specifies that storage allocated to
TASKHEAP increments will be released
when the last variable occupying it is
FREEd.

The types of information kept in the ISA vary depending on
whether or not the HEAP option applies to the execution of your
current PL/I program.

The values you specify for ISASIZE and for the related ISAINC,
HEAP, and TASKHEAP options determine the method used to acquire
storage for your program and, consequently, the time and space
that it uses.

It is important to set these values appropriately for each Pl/I
program. Appropriate values for ISASIZE and ISAINC can
significantly reduce the number of GETMAINs and FREEMAINs
required for execution of your Pl/I program.

Your major source of input for proper specification of options
generally is the PL/I storage management report, produced using
the REPORT option.

Chapter 2. The Compiler 3S

Storage associated with the ISA (and increments to the ISA) is
acquired below 16 megabytes on MVS/XA, so it is always
addressable in 24-bit mode.

On MVS/XA, since the !SA resides below 16 megabytes, the
residual storage requested by a negative value of IsAsIZE is
residual storage below 16 megabytes.

Note that the load module containing the PL/! program is not
always located in the user's region below 16 megabytes. For
example, the load module may be loaded above 16 megabytes on
MVS/XA, or it can be located in the link pack area of the
operating system.

EXECUTION-TIME ISAINC OPTION (RELEASE 5 ONLY)

Whether or not the !SAINC option is used, both the ISA and all
increments added to it reside in storage below 16 megabytes, so
tha-t the ISA and all increments to it are addressable in 24-bit
addressing mode under MVS/XA.

EXECUTION-TIME HEAP OPTLON (RELEASE 5 ONLY)

If the value of the initial heap allocation results in zero,
then the HEAP option is not active. In this case, no separate
heap area is utilized, and all storage goes into the ISA or into
increments to the ISA. Such areas reside below 16 megabytes on
MVS/XA.

The HEAP option performs these functions:

1. It separates storage allocated to PL/I variables which you
allocate with PL/I ALLOCATE statements, (that is, CONTROLLED
variables and dynamically allocated BASED variables), from
all other PL/I storage. !t causes such variables to be
placed in a separate "heap" area, rather than in the ISA or
an increment to the ISA. You may control both the minimum
initial size of the heap area and the minimum sizes of
subsequent increments to the heap area. You can improve
performance by picking values for both HEAP and ISASIZE that
will minimize the number of times PL/I must acquire storage
from the operating system.

Neither the original heap area nor any increment to it is
acquired until your program executes an ALLOCATE statement
which requires storage not currently available in the heap
area.

Each acquisition of storage for the heap area is in
multiples of 4K bytes aligned on a 4K-byte page boundary.
The first eight bytes of each such area contains PL/I
housekeeping information. Thus a 4K-byte heap increment
occupies 4096 bytes, but provides 4088 bytes of space to
hold your data.

PL/I will place as many of your CONTROLLED or dynamically
allocated BASED variables in a unit of the heap area as will
fit.

A based variable requires no additional space beyond itself,
although all allocations are begun on double-word
boundaries. A controlled variable requires a PL/I control
and possibly a PL/! string or aggregate descriptor in
addition to the variable itself.

2. It allows you to specify whether PL/! should free an
increment of heap storage when FREE statements issued by
your program leave a unit of the heap area empty.

The initial heap allocation is retained until program or
task termination.

36 OS PL/I Optimizing Compiler: Programmer's Guide

3. In the MVS/XA environment, it allows you to specify whether
the heap area must be kept below 16 megabytes, or whether
the heap area can go anywhere. If the latter is specified,
and your program is being executed in 31-bit addressing
mode, PL/I will normally put the heap area above 16
megabytes on MVS/XA. If you are executing your program in
24-bit addressing mode on MVS/XA or if you are executing
your program on a non-MVS/XA system, either BELOW or
ANYWHERE may be specified, but the heap area will
necessarily be acquired in storage below 16 megabytes.

USING PLIXHD TO IDENTIFY COUNT AND REPORT OUTPUT

When COUNT or REPORT output is generated and your program
contains a static external character variable called PLIXHD, the
value in PLIXHD is printed at the head of the output after the
name of the main procedure and the date and time of execution.
This allows you to supply an identifier for such output.

To do this, PLIXHD must be declared as STATIC EXTERNAL CHARACTER
VARYING. (STATIC may be omitted because all EXTERNAL data is
STATIC by default). For example:

DCL PLIXHD EXTERNAL CHARACTER(50) VARYING
INITC'THIS IS A PlIXHD MESSAGE')

The printed output of PLIXHD is limited to one line and is
truncated if necessary. The result of using PLIXHD as shown
above would be:

STORAGE MANAGEMENT REPORT FOR PROCEDURE P
DATE 26 NOVEMBER 1981 TIME 13.15.16.00
THIS IS A PLIXHD MESSAGE
(Report Output goes here)

If PLIXHD is declared EXTERNAL but not CHARACTER VARYING, a
diagnostic message is generated during compilation. If PLIXHD
is CHARACTER but not VARYING, its value is printed as shown
above. In other cases, it will normally be ignored but could
lead to execution time errors.

EXECUTION-TIME STORAGE REQUIREMENTS FOR NONMULTITASKING PROGRAMS

During the execution of a nonmultitasking program, the region
used by your PL/I program is divided into three areas; the load
module, the ISA (Initial Storage Area), and the remainder,
called for convenience during the rest of this discussion
residual storage. If you have used the HEAP execution-time
option, a fourth area, heap storage, will be established in the
residual area when your program uses the ALLOCATE statement.
See Figure 8 on page 39.

The load module is used for the compiled code, constants, and
storage for STATIC variables. The ISA is used for storage of
all variables that are not STATIC and certain housekeeping
fields. Heap storage is used for controlled and dynamically
allocated BASED variables. These are referred to as PL/I
storage. Residual storage is used for I/O buffers and
transiently loaded routines from the PL/I and system libraries.
It is also used as an overflow area for the ISA and heap and,
consequently, may be used for PL/I storage.

The ISA is acquired by the PL/! program at the start of
execution and retained until termination. Consequently,
obtaining and freeing of storage within it can be managed by the
PL/I program without resorting to system facilities. Thus the
overheads of obtaining and freeing storage within the ISA are
small compared with using the residual area where GETMAIN and
FREEMAIN macro instructions have to be used. Execution is,
therefore, faster if all PL/I storage is contained in the ISA.
However, if significant parts of the ISA remain unused
throughout long periods during the execution of a program, space

Chapter 2. The Compiler 37

is wasted because storage within the ISA cannot be used for
buffers or transient routines which must use the residual area.
Appropriate choice of the value of ISAINC can help reduce system
overheads if it is impractical to specify an ISASIZE large
enough to hold all PL/I storage. The fact that ISA storage is
quickly acquired and freed, but conversely may only be used for
certain items makes the choice of ISA size a critical factor in
determining both the time and space requirements of your
program.

Heap storage is acquired when the first ALLOCATE is encountered
during program execution. Increments to heap storage are
obtained when there is not enough space in the existing heap
storage to satisfy an ALLOCATE request and freed when all
variables within the increment have been freed. The initial
heap storage segment is retained until the main PL/I procedure
terminates.

By using the REGION parameter in JCl in systems other than MFT,
you can control the total size of the storage available to your
program, and by using the ISASIZE execution time option you can
control how much of the region is included in the ISA. Output
from the REPORT option will indicate the best ISASIZE. This,
together with installation accounting information, will help to
determine the minimum practical region size.

When the REPORT option is in force, the use of storage is
monitored and a report generated at the end of the program. The
report is transmitted to the file with the ddname of PlIDUMP or
PllDUMP and is identified by the name of the main procedure and
the date and time of execution. Optionally, the user can
generate a further report identifier by use of PlIXHD. The
REPORT option should only be used while the ISA size is being
determined. It involves a considerable time overhead and should
be removed as soon as possible. REPORT should be used after
COUNT and FLOW have been removed, because COUNT and FLOW use
extra storage and so make the report inaccurate.

38 OS PL/I Optimizing Compiler. Programmer's Guide

LAYOUT OF REGION FOR NONMULTITASKING

Load Module

Compiled code,
link-edited
library modules,
STATIC variables,
constants

ISA
(Initial Storage Area)

LIFO SORAGE
AUTOMATIC variables
and block-dependant
housekeeping fields

~~111!!~1!!~!~!~
TttllTfiliillll1

NON-LIFO STORAGE
BASED & CONTROLLED
variables (if HEAP is
not used) + other block
independent storage

LAYOUT OF REGION FOR MULTITASKING

LOAD MODULE ISA for MAIN TASK
(use as above) (use as ISA for

nonmultitasking)

Residual Storage

I/O buffers,
transiently loaded
routines, overflow
for ISA and heap
storage, if HEAP
is used.

ISAs for
active subtasks
(use as ISA for
nonmultasking)

Residual Storage
(use as above)

Figure 8. Storage Arrangements in Multitasking and Nonmultitasking Programs

Chapter 2. The Compiler 39

USING THE REPORT OPTION

When using the REPORT option, the best strategy to ensure
satisfactory results is to specify a very large ISASIZE so that
the chances of all PL/I storage being within the ISA are high.
This gives the most accurate estimate of PL/I storage used, and
so the most accurate indication of the ISA size required. The
ISA size should then be set to the size of the PL/I storage used
and the program run again with the REPORT option to see if the
ISA size is satisfactory. It should be born in mind that
different data, or different paths through tha program may
result in different storage requirements. If it is impractical
to specify a large ISA, an alternative is to specify a value of
1 and an ISAINC value of O. This results in the minimum
acceptable ISASIZE being used. This minimum is such that PL/I
storage for the first and all subsequent blocks will be met from
residual storage. The disadvantage of this method is that it
tends to slightly overestimate the total amount of PL/I storage
used. Because of the method of measurement used, an ISASIZE
where PL/I storage is partly inside and partly outside the ISA
gives the least satisfactory result.

The output caused by the REPORT option for a nonmultitasking
program is shown with explanatory notes in Figure 9 on page 41.

40 OS PL/I Optimizing Compiler: Programmer's Guide

STORAGE MANAGEMENT REPORT FOR MAIN PROCEDURE TEST
DATE 13 AUG 84 TIME 16.59.13.00

ISASIZE SPECIFIED 102400 BYTES The size specified in the
ISASIZE option. If the option
is not used, for nonmultitasking,
o is given. For multitasking, 8192
bytes is given.

ISAINC SPECIFIED 0 BYTES The size specified in the
ISAINC option. If this option
is not used, 0 is given.

LENGTH OF INITIAL STORAGE AREA (ISA) 102400 BYTES
length used.
Normally this is the length specified
or the default (half of what's left
when the load module is loaded.) However,
if this is not large enough for the
requirements of the first block,
another value is used.

AMOUNT OF PL/I STACK STORAGE REQUIRED 3074048 BYTES
This is the maximum amount of storage
that could have used the ISA.
It is the optimum ISASIZE in most
conditions but see text for provisos.

AMOUNT OF STORAGE OBTAINED OUTSIDE ISA 3074048 BYTES

NUMBER OF STACK GETMAINS 3
NUMBER OF STACK FREEMAINS 0

Overflow of ISA, if any. 0 means none.

Number of times ISA overflowed.
Number of times ISA overflow was freed.

NUMBER OF GET NON-LIFO REQUESTS 4
Number of times non-LIFO storage was
requested.

NUMBER OF FREE NON-LIFO REQUESTS I

HEAP SIZE SPECIFIED 0 BYTES

Number of times freeing of non-LIFO
storage was requested.
Non-lIFO storage is storage that is
not attached to a block, for example,
BASED and CONTROLLED storage, as opposed
to AUTOMATIC storage that is.
For a full description, see the
Execution Logic Manual.

The size specified in the HEAP option.
If the option is not specified, 0 is given.

HEAP INCREMENT SPECIFIED 4096 BYTES
The minimum size of subsequent increments
to HEAP storage, specified in a HEAP
option parameter. If the parameter is
not used, 4K is given.

AMOUNT OF PL/I HEAP STORAGE REQUIRED 0 BYTES
This is the maximum amount of storage that
heap could have used.

NUMBER OF HEAP GETMAINS 0 Number of times heap overflowed.

NUMBER OF HEAP FREEMAINS 0 Number of times heap overflow was freed.

NUMER OF GET HEAP REQUESTS 0 Number of times heap storage was requested.
NUMBER OF FREE HEAP REQUESTS 0 Number of times freeing of heap storage was

requested.

Figure 9. REPORT Output and Its Meaning (Release 5 Example)

Chapter 2. The Compiler 41

Figure 9 on page 41 shows the output from the REPORT option. An
ISA size equal to the "Amount of PL/I storage Required" value in
the report will give the fastest execution time, because it will
allow all PL/I storage to be obtained within the ISA. However,
it may increase overall size requirements}' for example}' if a
program uses large BASED or CONTROLLED variables for a short
time during execution when HEAP is not used, or if a little used
subroutine contains a number of large variables, use of an
ISASIZE equal to the "PL/I Storage Required" figure may be
uneconomic as it will lead to the need for an unnecessarily
large region. Where space is critical, increase of ISA size
without increasing the REGION size may lead to the program
terminating because of lack of space.

The most important line items on the report other than "Amount
of PL/I Storage Required" are those which specify numbers of
GETMAIN and FREEMAIN requests. Those associated with the ISA and
its increments are identified as "stack" GETMAIN's and
FREEMAIN's. Those associated with the HEAP area are identified
as IIheap" GETMAIN's and FREEMAIN's. These counts are important
because they show the cost associated with non-optimal ISASIZE
and HEAP values. If the size of the ISA can be cut in half at a
cost of a few extra GETMAIN and FREEMAIN requests, then that may
be acceptable or even desirable in some circumstances. If the
cost is thousands or millions of extra GETMAIN and FREEMAIN
requests, then it is probably unacceptable. The goal of the
ISASIZE, ISAINC, and HEAP options is to permit a trade-off to be
made between the amount of storage required and the cost of the
GETMAIN and FREEMAIN requests required to manage storage.

If a program has to run in the smallest possible area, it is
normally best to use an ISA size of 1. This results in all
storage requests being made within the residual area, thus all
spare storage is available for all purposes. This method does
have a disadvantage, however, where a large number of small
items, such as based variables, have to be allocated, because
each item requires eight additional bytes for chaining,

When optimum sizes for ISASIZE, ISAINC, and HEAP have been
determined, the program should be rerun with these sizes
specified and the REPORT option still in force so that the
results can be checked. When they are satisfactory the REPORT
option should be removed.

FINDING THE OPTIMUM REGION SIZE

When the optimum storage options have been determined, the
optimum region size can be determined using the System
Management Facilities (SMF) of the system. These will tell you
the region size used by your program. You should then specify
the size used as the REGION size for subsequent runs. The SMF
facilities are described in the operating system publications.

SMF does not give meaningful information about a PL/I program's
use of storage unless a positive ISASIZE value is specified. If
you want SMF storage data to be meaningful for a PL/I program,
you should not let ISASIZE default to the IBM value of half the
region excluding the load module, and you should avoid using a
negative number for ISASIZE. The implementation of either of
these values for ISASIZE requires that PL/I acquire the entire
region via GETMAIN and then release part of it via FREEMAIN. The
system accounting information provided by SMF in either case
will always show the entire region being used. This is not
useful for determining anything about the program's actual
storage requirements}' and it may cause inflated billing charges
if SMF data is used to charge for storage~

42 OS PL/I Optimizing Compiler: Programmer's Guide

EXECUTION-TIME STORAGE FOR MULTITASKING PROGRAMS

During the execution of a multitasking program, the region is
divided into the load module area, an ISA for every task (each
having the lifetime of its task), and the residual area that
reabsorbs the ISA of a task when it is detached. See Figure 8 on
page 39. The HEAP option, if in effect, provides a HEAP area for
the major task. If it is desired to provide separate heap areas
for the subtasks, then the TASKHEAP option can be specified to
accomplish this. On MVS/XA the load modules (and thus STATIC
storage) may reside above 16 megabytes, and the heap areas
associated with the HEAP and TASKHEAP options may reside above
or below 16 megabytes. The various types of storage are used for
the same purposes as they are for nonmultitasking programs,
except that ISAs of subtasks (and the TASKHEAP areas if they are
required) are taken from the residual area, and later returned
to the residual area when the subtask terminates.

You should review the discussion above concerning storage
management for nonmultitasking. The various considerations
discussed there concerning ISASIZE, ISAINC, and HEAP apply to
ISASIZE, ISAINC, HEAP, and TASKHEAP for multitasking programs.

Every time a task is attached, an ISA is acquired. Because ISAs
can only be used for certain types of storage, there is a danger
of the free area for transient routines and other storage items
that cannot use ISAs becoming too small. Consequently, the
desirability of keeping all PL/I storage within the ISA is
considerably reduced when compared with nonmultitasking
programs.

USING THE REPORT OPTION

For multitasking programs, the REPORT option generates a report
of storage use that can be used to determine the optimum size
for the ISA of the main task, and the optimum size for the ISAs
of all subtasks. It can in addition be used to evaluate the
need for and effectiveness of values used for the ISAINC, HEAP,
and TASKHEAP options. The report contains the information shown
in Figure 9 on page 41 above-for the main task, plus a combined
listing for all subtasks containing the information shown below.

• Larg~st and smallest ISA sizes used by subtasks.

• Largest and smallest amounts of PL/I storage obtained by
subtasks.

• Largest and smallest amounts of PL/I storage obtained
outside the ISA as increments to the ISA by any subtask.

• Largest and smallest amounts of PL/I storage obtained as
heap storage by any subtask, provided that the TASKHEAP
option is active.

• Total number of GETMAINand FREEMAIN requests issued by all
subtasks to acquire and release increments to ISAs,
identified as "stack" GETMAINs and FREEMAINs in the report.

• Total number of GETMAIN and FREEMAIN requests issued by all
subtasks to acquire and release TASKHEAP areas, identified
as "heap" GETMAINs and FREEMAINs in the report.

• Maximum number of subtasks attached at anyone time.

As with nonmultitasking programs, the fastest execution will be
achieved if all tasks obtain all their PL/I storage from within
their own ISA. To achieve this result, the first figure in the
ISASIZE option should be set to the amount of PL/I storage
obtained for the main task, and second to the largest amount of
PL/I storage obtained for any subtask. Whether or not this is
practical depends on the number of tasks active at anyone time,
the difference in the storage usage of the subtasks, and the
storage use within each task.

Chapter 2. The Compiler 43

When an ISA size has been determined, a further run with the
REPORT option should be tried to ensure that the expected
results have been achieved. When they are satisfactory, the
REPORT option should be removed.

The third argument to ISASIZE (maximum number of active tasks>
is used to determine the number of subtask control blocks that
will be allocated. This figure is not critical as far as
storage use is concerned because the control blocks are not
large. However, if the figure specified (or defaulted) is
exceeded, execution will terminate. A generous figure should,
therefore, be specified for this argument.

When the optimum storage options have been established, the
optimum region size can be calculated using the System
Management Facilities (SMF) of the system. See "Finding the
Optimum Region Size" on page 42.

EXECUTION-TIME COUNT OPTION

Statement count information can be obtained at execution time
only if one of the compiler options COUNT or FLOW was specified
at compile time. For further details, see "COUNT Option" on
page 19, and "FLOW Option" on page 19. If FLOW but not COUNT
was specified at compile time, COUNT must be specified at
execution to obtain count information. If COUNT was specified
at compile time, count information will be produced unless
NOCOUNT is specified at execution time.

Count information can be produced only when a statement number
table exists. If COUNT is specified at compile time, a table is
automatically produced. If only FLOW is specified at compile
time, and COUNT is specified at execution time, then to obtain
count information, GOSTMT or GONUMBER must also be specified at
compile time. .

Count output is written on the PlIDUMP file, or on the SYSPRINT
file if no dump file is provided. The output has the following
format:

PROCEDURE name
FROM

1
21

200

TO
20
30

210

COUNT
1

10

1

Three such columns are printed per page.

To draw attention to statements that have not been executed,
ranges for which the count is zero are listed separately after
the main tables.

The count tables are printed when the program terminates. If a
procedure is invoked with one of the multitasking options, the
count table for the invocation is printed when the task
terminates.

Count output is headed by the name of the main procedure and the
time and date the output was generated. You can also supply
your ~wn identifier for the output using the PLIXHD string. For
more information on PlIXHD, see "Using PlIXHD to Identify COUNT
and REPORT Output" on page 37.

If no DD statement is provided for PlIDUMP or PLIDUMP, a message
is generated and COUNT output is written onto SYSPRINT if it has
a suitable format.

Under CICS, COUNT output is sent to SYSPRINTi for further
discussion see Chapter IS, "Using Pl/I on CICS" on page 360.

44 OS Pl/I Optimizing Compiler: Programmer's Gvide

If an invocation is terminated as a result of the termination of
another task, its count table cannot be printed, because it is
impossible to determine the point at which it terminated. In
these circumstances, only the count table for the first task to
terminate can be printed. For example, although a STOP
statement will cause all tasks to be terminated, only the count
table for the task containing the statement will be printed.

Count and flow output can be produced only for the main
procedure and inner procedures compiled with it. When control
is passed to a separate external PL/I procedure, any COUNT or
FLOW options in force are suspended until control is returned to
the main procedure. Only the compiler options that applied for
compilation of the main procedure have any effect on
execution-time COUNT and FLOW facilities.

EXECUTION-TIME FLOW OPTION

Flow information can be obtained at execution time only if one
of the compiler options COUNT or FLOW was specified at compile
time. For further details on these options, see "COUNT Option"
on page 19, and "FLOW Option" on page 19. If FLOW was not
specified at compile time, it must be specified at execution
time to obtain flow information. If FLOW was specified at
compile time, flow information will be produced unless NOFLOW is
specified at execution time.

The format of the execution-time FLOW option is the same as that
of the compile-time FLOW option, that iSI

FLOW[(n,m)]

where 'n' is the maximum number of entries to be made in the
flow output, and 'm' is the maximum number of procedures for
which entries are to be made. Neither 'n' or 'm' may exceed
32,767.

If In' and 'm' are not specified at execution time, they are set
as follows:

• If FLOW was specified or defaulted at compile time, the
values of 'n' and 'm' specified or defaulted at compile time
are used at execution time.

• If FLOW was specified at compile time without the
subparameters (n,m), the IBM default values (25,10) are
used.

• If NOFLOW was specified or defaulted at compile time, the
IBM default values (25,10), are used.

Flow output is written on the SYSPRINT file whenever an on-unit
with the SNAP option is executed. It is also included as part
of PlIDUMP output if "T" is included in the dump options string.

The format of each line of flow output iSI

snl TO sn2 [IN name]

where:

snl

sn2

name

is the number of the statement from which the branch
was made (the branch out point).

is the number of the statement to which the branch was
made (the branch in point).

is the name of the procedure or the type of the
on-unit that contains "sn2" if this is different from
that containing "snl."

Chapter 2. The Compiler 4S

COMPILER LISTING

HEADING INFORMATION

The branches are listed in the order in which they occur. The
last 'n' branch-in/branch-out point and the last 1 m' procedures
or on-units are listed. If more than 'm' procedures or on-units
are entered in the course of In' branchesl changes prior to the
last 'm' procedures or on-units are indicated by printing
"UNKNOWN" for "name."

During compilation, the compiler generates a listingl most of
which is optionall that contains information about the source
programl the compilation, and the object module. It places this
listing in the data set defined by the DD statement with the
name SYSPRINT (usually output to a printer). In a TSO
environment l you can also request a listing at your terminal
(using the TERMINAL option). The following description of the
listing refers to its appearance on a printed page.

An example of the listing produced for a typical Pl/I program is
given in Appendix D, "Sample Program" on page 407.

The first part of Figure 6 on page 16 shows the components that
can be included in the compiler listing. The rest of this
section describes them in detail.

Of course, if compilation terminates before reaching a
particular stage of processing, the corresponding listings will
not appear.

The listing comprises a small amount of standard information
that always appearSI together with those items of optional
information specified or supplied by default. The listing at
the terminal contains only the optional information that has
been requested in the TERMINAL option.

The first page of the listing is identified by the name of the
compiler, the compiler version number, the time compilation
commenced (if the system has the timer feature), and the date;
this page, and subsequent pages are numbered.

The listing either ends with a statement that no errors or
warning conditions were detected during the compilationl or with
one or more messages. The format of the messages is described
under "Messages" on page 54. If the machine has the timer
feature, the listing also ends with a statement of the CPU time
taken for the compilation and the elapsed time during the
compilation; these times will differ only in a multiprogramming
environment.

The following paragraphs describe the optional parts of the
listing in the order in which they appear.

OPTIONS USED FOR THE COMPILATION

PREPROCESSOR INPUT

If the option OPTIONS applies, a complete list of the options
used for the compilationl including the default options, appears
on the first page.

If both the options MACRO and INSOURCE apply, the input to the
preprocessor isrfsted, one record per linel each line numbered
sequentially at the left.

46 OS Pl/I Optimizing Compiler: Programmer's Guide

SOURCE PROGRAM

If the preprocessor detects an error, or the possibility of an
error, it prints a message on the page or pages following the
input listing. The format of these messages is exactly as
described for the compiler messages described under "Messages"
on page 54.

If the option SOURCE applies, the input to the compiler is
listed, one record per line; if the input records contain
printer control characters or XSKIP or XPAGE statements, the
lines will be spaced accordingly. XNOPRINT and Y.PRINT
statements can be used to suppress and restart the printing of
the listing.

If the option NUMBER applies, and the source program contains
line numbers, these numbers are printed to the left of each
line.

If the option STMT applies, the statements in the source program
are numbered sequentiallY by the compiler, and the number of the
first statement in the line appears to the left of each line in
which a statement begins. If the source statements are
generated by the preprocessor, columns 82-84 contain diagnostic
information, as shown in Figure 15 on page 59.

STATEMENT NESTING LEVEL

ATTRIBUTE AND

If the option NEST applies, the block level and the do-level are
printed to the right of the statement or line number under the
headings LEV and NT respectively, for example:

STMT LEV NT

1 0 A: PROC OPTIONSCMAIN)j
2 1 0 B: PROC;
3 2 0 Del K(IO,IO) FIXED BIN (15);
4 2 0 DCl Y FIXED BIN (15) INIT (6);
5 2 0 DO 1=1 TO 10;
6 2 1 DO J=1 TO 10;
7 2 2 KCI,J) = N;
8 2 2 END;
9 2 1 BEGIN;

10 3 1 K{l,l)=Y;
11 3 1 END;
12 2 1 END B;
13 1 0 END A;

CROSS-REFERENCE TABLE

If the option ATTRIBUTES applies, the compiler prints an
attribute table containing a list of the identifiers in the
source program together with their declared and default
attributes. In this context, the attributes include any
relevant options, such as REFER, and also descriptive comments,
such as:

If the option XREF applies, the compiler prints a
cross-reference table containing a list of the identifiers in
the source program together with the numbers of the statements
or lines in which they appear. If both ATTRIBUTES and XREF
apply, the two tables are combined. If the suboption SHORT
applies, un referenced identifiers are not listed.

Chapter 2. The Compiler 47

ATTRIBUTE TABLE

If an identifier is declared explicitly, the number of the
DECLARE statement is listed. An undeclared variable is
indicated by asterisks. (Undeclared variables are also listed
in an error message.) The statement numbers of statement labels
and entry labels are also given.

The attributes INTERNAL and REAL are never included; they can be
assumed unless the respective conflicting attributes, EXTERNAL
and COMPLEX, appear.

For a file identifier, the attribute FILE always appears, and
the attribute EXTERNAL appears if it applies; otherwise, only
explicitly declared attributes are listed.

For an array, the dimension attribute is printed first; the
bounds are printed as in the array declaration, but expressions
are replaced by asterisks and structure levels other than base
elements have their bounds replaced by asterisks.

For a character string or a bit string, the length, preceded by
the word BIT or CHARACTER, is printed as in the declaration, but
an expression is replaced by an asterisk.

If the SHORT suboption applies, un referenced identifiers are not
listed.

CROSS-REFERENCE TABLE

If the cross-reference table is combined with the attribute
table, the numbers of the statements or lines in which a name
appears follow the list of attributes for the name. The order
in which the statement numbers appear is subject to any
reordering of blocks that has occurred during compilation. In
general, the statement numbers for the outermost block are given
first, followed on the next line by the statement numbers for
the inner blocks.

The PL/! text is expanded and optimized to a certain extent
before the cross-reference table is produced. Consequently,
some names that may appear only once within a source statement
may acquire multiple references to the same statement number.
By the same token, other names may appear to have incomplete
lists of references, while still others may have references to
statements in which the name does not appear explicitly.

For example:

• Duplicate references may be listed for items such as do-loop
control variables, and for some aggregates.

• Optimization of certain operations on structures can result
in incomplete listings in the cross-reference table; the
numbers of statements in which these operations are
performed on major or minor structures are listed against
the names of the elements, instead of against the structure
names.

• No references to PROCEDURE or ENTRY statements in which a
name appears as a parameter are listed in the
cross-reference table entry for that name.

• References within DECLARE statements to variables that are
not being declared are not listed. For example, in the
statements:

DCl ARRAY(N);
DCl STRING CHAR(N);

no references to these statements would appear in the
cross-reference table entry for N.

48 OS PL/I Optimizing Compiler: Programmer's Guide

• The number of a statement in which an implicitly
pointer-qualified based variable name appears is included
not only in the list of statement numbers for that name, but
also in the list of statement numbers for the pointer
implicitly associated with it.

• The statement number of an END or LEAVE statement that
refers to a label is not listed in the entry for the label.

• Automatic variables declared with the INITIAL attribute have
a reference to the PROCEDURE or BEGIN statement for the
block containing the declaration included in the list of
statement numbers.

AGGREGATE LENGTH TABLE

An aggregate length table is obtained by using the AGGREGATE
option. The table shows how each aggregate in the program is
mapped. It contains the following information:

• The statement number in which the aggregate is declared.

• The name of the aggregate and the element within the
aggregate.

• The level number of each item in a structure.

• The number of dimensions in an array.

• The byte offset of each element from the beginning of the
aggregate. (The bit offset for unaligned bit-string data is
not given). As a word of caution, be careful when
interpreting the data offsets indicated in the data length
table. An odd offset does not necessarily represent a data
element without halfword, fullword, or even double word
alignment. If the aligned attribute is specified or
inferred for a structure or its elements, the proper
alignment requirements will be consistent with respect to
other elements in the structure, even though the table does
not obviously indicate the proper alignment relative to the
beginning of the table.

• The length of each element.

• The total length of each aggregate, structure and
sub-structure.

If there.is padding between two structure elements, a
/*PADDING*/ comment appears, with appropriate diagnostic
information.

The table is completed with the sum of the lengths of all
aggregates that do not contain adjustable elements.

The statement or line number identifies either the DECLARE
statement for the aggregate, or, for a controlled aggregate, an
ALLOCATE statement for the aggregate. An entry appears for each
ALLOCATE statement involving a controlled aggregate, as such
statements can have the effect of changing the length of the
aggregate during execution. Allocation of a based aggregate
does not have this effect, and only one entry, which is that
corresponding to the DECLARE statement, appears.

When passing an aggregate to a subroutine, the length of an
aggregate may not be known during compilation, either because
the aggregate contains elements having adjustable lengths or
dimensions, or because the aggregate is dynamically defined. In
these cases, the word "adjustable" or "defined" appears in the
the "offset" column while "paramO for parameter appears in the
"element length" and/or "total length" columns. Because the
length of an aggregate may not be known during compilation,
padding information cannot be printed.

Chapter 2. The Compiler 49

STORAGE REQUIREMENTS

An entry for a COBOL mapped structure, that is, for a structure
into which a COBOL record is read or from which a COBOL record
is written, or for a structure passed to or from a COBOL
program, has the word "COBOL" appended. Such an entry will
appear only if the compiler determines that the COBOL and PL/I
mapping for the structure is different, and creation of a
tempor'ary structure mapped according to COBOL synchronized
structure rules is not suppressed by one of the options NOMAP,
NOMAPIN, and NOMAPOUT.

An entry for a FORTRAN mapped array, that is, an array passed to
or from a FORTRAN program, has the word "FORTRAN" appended.

If a COBOL or FORTRAN entry does appear it is additional to the
entry for the PL/! mapped version of the structure.

A separate entry will be made in the aggregate table for every
aggregate dummy argument or FORTRAN mapped array or COBOL mapped
structure.

If the option STORAGE applies, the compiler lists the following
information under the heading "Storage Requirements" on the page
following the end of the aggregate length table:

• The storage area in bytes for each procedure.

• The storage area in bytes for each begin block.

• The storage area in bytes for each on-unit.

• The dynamic storage area in bytes for each procedure, begin
block, and on-unit. The dynamic storage area is acquired at
activation of the block.

• The length of the program control section. The program
control section is the part of the object that contains the
executable part of the program.

• The length of the static internal control section. This
control section contains all storage for variables declared
STATIC INTERNAL.

STATEMENT OFFSET ADDRESSES

If the option OFFSET applies, the compiler lists, for each
primary entry point, the offsets at which statements occur.
This information is found, under the heading "Table of Offsets
and Statement Numbers," following the end of the storage
requirements table.

Offsets given in error messages can be compared with this table
and the erroneous statement discovered. The statement is
identified by finding the section of the table that relates to
the procedure or on-unit named in the message and then finding
the largest entry in the table that is less than the offset in
the message. If the procedure or on-unit name specified in the
message is the same as that in the table (as it will be unless a
secondary entry point is used), the statement will have been
found.

If a secondary entry point is used the correct offset must be
calculated.

The offset figure in the message is taken from the entry point
used by the program and mentioned in the message. The offset
used in the table is taken from the primary entry point of the
procedure. If the entry points are not the same, the offset of
the entry point must be added to the figure given in the
execution time message and this figure used to establish the
statement number.

50 as PL/I Optimizing Compiler: Programmer's Guide

In the program whose listing is shown below, the error message
gives an offset of X'50' from the entry point A2. Entry point
A2 is not th~ primary entry point. From the listing it can be
seen that entry point A2 (statement 5) is at offset X'78'. To
get the true offset, it is necessary to add the two figures and
arrive at an offset of X'C8'. From the table it is clear that
this offset is within statement 6.

SOURCE LISTING

I M:PROC OPTIONSCMAIN);
2 CALL A2;
3 Al:PROC;
4 N=3;
5 A2:ENTRY;
6 N=N/O;
7 END;
8 END;

TABLES OF OFFSETS AND STATEMENT NUMBERS
WITHIN PROCEDURE M

OFFSET (HEX)
STATEMENT NO.

o
I

WITHIN PROCEDURE Al

OFFSET (HEX)
STATEMENT NO.

Message:

o
3

56
2

78
5

SE
8

A8
4

IBM301I 'ONCODE'=0320 'ZERODIVIDE'
CONDITION RAISED AT OFFSET +000050 IN
PROCEDURE WITH ENTRY A2

B4
6

If a BEGIN block is involved, the offset to the BEGIN statement
must be added before the process begins.

EXTERNAL SYMBOL DICTIONARY

If the option ESD applies, the compiler lists the contents of
the external symbol dictionary (ESD1.

The ESD is a table containing all the external symbols that
appear in the object module. (The machine instructions in the
object module are grouped together in what are termed control
sections; an external symbol is a name that can be referred to
in a control section other than the one in which it is defined.)
The contents of an ESD appear under the following headings:

SYMBOL An 8-character field that identifies the external
symbol.

TYPE Two characters from the following list to identify the
type of entry:

SD Section definition: the name of a control
section within the object module.

CM Common areal a type of control section that
contains no data or executable instructions.

ER External reference: an external symbol that is
not defined in the object module.

WX Weak external reference: an external symbol that
is not defined in this module and that is not to
be resolved unless an ER entry is encountered
for the same reference.

Chapter 2. The Compiler 51

ESD ENTRIES

PR Pseudoregister: a field in a communications
areal the task communications area (TCA)1 used
by the compiler and by the library subroutines
for handling files and controlled variables.

LD Label definition: the name of an entry point to
the external procedure other than that used as
the name of the program control section.

ID Four-digit hexadecimal number: all entries in the ESDI
except LD-type entries, are numbered sequentiallYI
commencing from 0001.

ADDR Hexadecimal representation of the address of the
external symbol.

LENGTH The hexadecimal length in bytes of the control section
(SD I CM and PR entries only).

The external symbol dictionary always starts with the standard
entries shown in the table belowl which assumes the existence of
an external procedure called NAME.

External Symbol Dictionary

Symbol Type ID Address
PLISTART SD 0001 000000
***NAMEI SD 0002 000000
***NAME2 SD 0003 000000
PLITABS WX 0004 000000
PLIXOPT WX 0005 000000
IBMBPOPT WX 0006 000000
PLIXHD WX 0007 000000
IBMBEATA WXl 0008 000000
PlIFlOW WX 0009 000000
PLICOUNT WX OOOA 000000
IBMBPIRA ER OOOB 000000
IBMBPIRB ER OOOC 000000
IBMBPIRC ER OOOD 000000
PlICAllA lD 000006
PLICAlLB LD OOOOOA
PlIMAIN SD OOOE 000000

An ER type entry for IBMBEATA is
produced if the INTERRUPT compiler
option is specified.

PLISTART

Length
000050
014538
004F40

000008

SD-type entry for PLISTART. This control section transfers
control to the initialization routine IBMBPIR. When
initialization is completel control passes to the address
stored in the control section PLIMAIN. (Initialization is
required only once during the execution of a Pl/I program,
even if it calls another external procedure; in such a
case, control passes directly to the entry point named in
the CALL statement l and not to the address contained in
PLIMAIN.)

)EJE)Enamel
SD-type entry for the program control section (the control
section that contains the executable instructions of the
object module). This name is the first label of the
external procedure, padded on the left with asterisks to 7
characters if neceSsarYI and extended on the right with the
character 1.

52 OS PL/I Optimizing Compiler: Programmer's Guide

OTHER ESD ENTRIES

••• name2
SD-type entry for the static internal control section
(which contains main storage for all variables declared
STATIC INTERNAL). This name is the first label of the
external procedure, padded on the left with asterisks to 7
characters if necessary, and extended on the right with the
character 2.

IBMBPIRA
ER-type entry for IBMBPIRA, the entry point of the PL/I
resident library subroutine that handles program
initialization and termination.

The remaining entries in the external symbol dictionary vary,
but generally include the following:

• SD-type entry for the 4-byte control section PLIMAIN, which
contains the address of the primary entry point to the
external procedure. This centrol section is present only if
the procedure statement includes the option MAIN.

• Weak external reference to a number of housekeeping control
sections as follows:

PLITABS A control section based on a structure that may be
declared in the PL/I program to control formatting
of stream files.

PLIXOPT Execution time options string control section.

IBMBEATA A module in the PL/I library used to set the
attention exit for use in procedures compiled with
the INTERRUPT option. This is an ER type entry if
the procedure was compiled with the INTERRUPT
option.

PLIFLOW A control section used to hold information
generated by the FLOW option.

PLICOUNT A control section used to hold information
generated by the COUNT option.

• lD-type entries for all names of entry points to the
external procedure.

• ER-type entries for all the library subroutines and external
procedures called by the source program. This list includes
the names of resident library subroutines called directly by
compiled code (first-level subroutines), and the names of
other resident library subroutines that are called by the
first-level subroutines.

• CM-type entries for nonstring element variables declared
STATIC EXTERNAL without the INITIAL attribute.

• SD-type entries for all other STATIC EXTERNAL variables and
for external file names.

• PR-type entries for all file names. For external file
names, the name of the pseudo register is the same as the
file name; for internal file names, the compiler generates
pseudoregister names.

• PR-type entries for all controlled variables. For external
variabiesl the n~me of the variable is used for the
pseudoregister name; for internal variables, the compiler
generates names.

Chapter 2. The Compiler 53

STATIC INTERNAL STORAGE MAP

OBJECT LISTING

MESSAGES

The MAP option produces a Variable Offset Map. This map shows
how PL/I data items are mapped in main storage. It names each
PL/I identifier, its level, its offset from the start of the
storage area in both decimal and hexadecimal form, its storage
class, and the name of the PL/I block in which it is declared.

If the LIST option is also specified a map of the static
internal and external control sections is also produced.

If the option LIST applies, the compiler generates a listing of
the machine instructions of the object module, including any
compiler-generated subroutines, in a form similar to Assembler
language.

Both a static internal storage map and the object listing
contain information that cannot be fully understood without a
knowledge of the structure of the objec·t module. This is beyond
the scope of this manual, but a full description of the object
module, the static internal storage map, and the object listing
can be found in OS Pl/I Optimizing Compiler: Execution l09i9.

If the preprocessor or the compiler detects an error, or the
possibility of an error, they generate messages. Messages
generated by the preprocessor appear in the listing immediately
after the listing of the statements processed by the
preprocessor. You can generate your own messages in the
preprocessing stage by use of the ~NOTE statement. Such
messages might be used to show how many times a particular
replacement had been made. Messages generated by the compiler
appear at the end of the listing. All messages are graded
according to their severity, as follows:

I An informatory message that calls attention to a possible
inefficiency in the program or gives other information
generated by the compiler that may be of interest to you.

W A warning message that calls attention to a possible error,
although the statement to which it refers is syntactically
valid.

E An error message that describes an error detected by the
compiler for which the compiler has applied a "fix-up" with
confidence. The resulting program will execute and will
probably give correct results.

S A severe error message that specifies an error detected by
the compiler for which the compiler cannot apply a "fix-up"
with con~idence. The resulting program will executa but
will not give correct results.

U An unrecoverable error message that describes an error that
forces termination of the compilation.

The compiler lists only those messages with a severity equal to
or greater than that specified by the FLAG option, as shown in
Figure 10 on page 55.

Each message is identified by an a-character code of the form
IElnnnnI, where:

• The first three characters "IEl" identify the message as
coming from the optimizing compiler.

• The next four characters are a 4-digit message number.

5405 Pl/I Optimizing Compiler: Prognammer's Guide

RETURN CODES

BATCHED COMPILATION

• The last character "I" is an operating system code for the
operator indicating that the message is for information
only.

The text of each message1 an explanation, and any recommended
programmer response, are given in the messages publica-tion for
this compiler.

Type of message

Informatory
Warning

Option

FLAG(I)
FLAG(W)
FLAG(E)
FLAGCS)
Always listed

Error
Severe Error
Unrecoverable Error

Figure 10. Selecting the Lowest Severity of Messages to be
Printed, Using the FLAG Option

For every compilation job or job step, the compiler generates a
return code that indicates to the operating system the degree of
success or failure it achieved. This code appears in the "end
of step" message that follows the listing of the job control
statements and job scheduler messages for each step. The
meanings of the codes are given in Figure 11.

Return
Code

0000

0004

0008

0012

0016

Meaning

No error detectedi compilation completed; successful
execution anticipated.

Possible error (warning) detected; compilation
completed; successful execution probable.

Error detected; compilation completed; successful
execution probable.

Severe error detected; compilation may have been
completed; successful execution improbable.

Unrecoverable error detected; compilation terminated
abnormally; successful execution impossible.

Figure 11. Return Codes from Compilation of a Pl/I Program

Batched compilation allows the compiler to compile more than one
external PL/I procedure in a single job step. The compiler
creates an object module for each external procedure and stores
it sequentially either in the data set defined by the DD
statement with the name SYSPUNCH, or in the data set defined by
the DD statement with the name SYSLIN. Batched compilation can
increase compiler throughput by reducing operating system and
compiler initialization overheads.

Chapter 2. The Compiler 55

SIZE OPTION

NAME OPTION

To specify batched compilation, include a compiler PROCESS
statement as the first statement of each external procedure
except possibly the first. The PROCESS statements identify the
start of each external procedure and allow compiler options to
be specified individually for each compilation. The first
procedure may require a PROCESS statement of its own, because
the options in the PARM parameter of the EXEC statement apply to
all procedures in the batch, and may conflict with the
requirements of subsequent procedures.

The method of coding a PROCESS statement and the options that
may be included are described under "Specifying Compiler Options
in the *PROCESS Statement" on page 13. The options specified in
a PROCESS statement apply to the compilation of the source
statements between that PROCESS statement and the next PROCESS
statement. Options other than these, either the defaults or
those specified in the PARM field, will also apply to the
compilation of these source statements. Two options, the SIZE
option and the NAME option have a particular significance in
batched compilations, and are discussed below. Furthermore,
OBJECT, MDECK, and DECK may cause problems if they are specified
on second or subsequent compilations but not on the first. This
is because they require the opening of SYSLIN or SYSPUNCH and
there may not be room for the associated data management
routines and control blocks. When this happens compilation ends
with aOA ABEND.

In a batched compilation, the SIZE specified in the first
procedure of a batch (by a PROCESS or EXEC statement, or by
default) is used throughout. If SIZE Is specified in subsequent
procedures of the batch, it is diagnosed and ignored. The
compiler does not reorganize its storage between procedures of a
batch.

The NAME option specifies that the compiler is to place a
linkage editor NAME statement as the last statement of the
object module. The use of this option in the PARM parameter, of
the EXEC statement, or in a PROCESS statement determines how the
object modules produced by a batched compilation will be handled
by the linkage editor. When the batch of object modules is
link-edited, the linkage editor combines all the object modules
between one NAME statement and the preceding NAME statement into
a single load module; it takes the name of the load module from
the NAME statement that follows the last object module that is
to be included. When combining two object modules into one load
module, the NAME option should not be used in the EXEC
statement. An example of the use of the NAME ~ption is given in
Figure 12 on page 57.

56 OS PL/I Optimizing Compiler: Programmer's Guide

// EXEC PLIXC,PARM.PLI='LIST'

* PROCESS NAMEC'A');
ALPHA: PROC OPTIONSCMAIN);

END ALPHA; * PROCESS;
BETA: PROC;

END BETA; * PROCESS NAMEC'B');
GAMMA: PROC;

END GAMMA;

Figure 12. Use of the NAME Option in Hatched Compilation

Compilation of the PL/I procedures ALPHA, BETA, and GAMMA, would
result in the following object modules and NAME statements:

Object module for ALPHA
NAME A (R)

Object module for BETA
Object module for GAMMA

NAME B (R)

From this sequence of object modules and control statements, the
linkage editor would produce two load modules, one named A
containing the object module for the external PL/I procedure
ALPHA, and the other named B containing the object modules for
the external PL/I procedures BETA and GAMMA.

You should not specify the option NAME if you intend to process
the object modules with the loader. The loader processes all
object modules into a single load module; if there is more than
one name, the loader recognizes the first one only and ignores
the others.

RETURN CODES IN BATCHED COMPILATION

The return code generated by a batched compilation is the
highest code that would be returned if the procedures were
compiled separately.

JOB CONTROL LANGUAGE FOR BATCHED PROCESSING

The only special consideration relating to JCL for batched
processing refers to the data set defined by the DD statement
with the name SYSLIN. If you include the option OBJECT, ensure
that this DD statement contains the parameter DISP=CMOD,KEEP) or
DISP=CMOD,PASS). (The IBM-supplied cataloged procedures specify
DISP=CMOD,PASS).) If you do not specify DISP=MOD, successive
object modules will overwrite the preceding modules.

Chapter 2. The Compiler 57

EXAMPLES OF BATCH ED COMPILATIONS

If the external procedures are components of a large program ~nd
need to be executed together, they can be link-edited together
and executed in subsequent job steps. Cataloged procedure
PLIXCG can be used, as shown in Figure 13.

//OPT4#13 JOB
//STEPI EXEC PLIXCG
//PLI.SYSIN DD 3(

First PL/I source module
3(PROCESS;

3(PROCESSi
Second Pl/I source module

Third PL/I source module
/3(

//GO.SYSIN DD *
Data processed by combined
PL/I modules

Figure 13. Example of Hatched Compilation, Including Execution

If the external procedures are independent programs to be
invoked individually from a load module library, cataloged
procedut-e PLIXCL can be used. For example, a job that contains
three compile-and-link-edit operations can be run as a single
batched compilation, as shown in Figure 14.

//OPT4#14 JOB
//STEPI EXEC PLIXCL,
// PARM.PLI='NAMEC"PROGl")',
// PARM.LKED=LIST
//PLI.SYSIN DD *

First Pl/I source program * PROCESS NAMEC'PROG2')j
Second PL/I source program

3(PROCESS NAMEC'PROGS')i
Third PL/I source program

/3(

//LKED.SYSlMOD DD DSN=PUBPGM,
// DISP=OLD

Figure 14. Example of Batched Compilation, Excluding Execution

One of these programs, such as PROG2, can be invoked from the
load module librar'y as follows:

//OPTEX JOB
//JOBLIB DD DSNAME=PUBPGM,DISP=SHR
//J2 EXEC PGM=PROG2
//SYSIN DD 3(

Data processed by program PROG2

58 OS PL/I Optimizing Compiler: Programmer's Guide

COMPILE-TIME PROCESSING (PREPROCESSING)

The preprocessing facilities of the compiler are described in
the language reference manual for this compiler. You can
include in a PL/I program statements that, when executed by the
preprocessor stage of the compiler, modify the source program or
cause additional source statements to be included from a
library. The following discussion supplements the information
contained in the language reference manual by providing some
illustrations of the use of the preprocessor and explaining how
to establish and use source statement libraries.

INVOKING THE PREPROCESSOR

The preprocessor stage of the compiler is executed if you
specify the compiler option MACRO. The compiler and the
preprocessor use the data set defined by the DD statement with
the name SYSUTI during processing. They also use this data set
to store the preprocessed source program until compilation
begins. The IBM-supplied cataloged procedures for compilation
all include a DD statement with the name SYSUTI.

The term MACRO owes its origin to the similarity of some
applications of the preprocessor to the macro language available
with such processors as the IBM OS/VS-DOS/VSE-VM/370 Assembler.
Such a macro language allows you to write a single instruction
in a program to represent a sequence of instructions that have
previously been defined.

The format of the preprocessor output is given in Figure 15.

Column 1 Printer control character, if any, transferred from the position
specified in the MARGINS option.

Columns 2-72 Source program. If the original source program used more than 71
columns, then additional lines are included for any lines that need
continuation. If the original source program used less than 71
columns, then extra blanks are added on the right.

Columns 73-80 Sequence number, right-aligned. If either SEQUENCE or NUMBER apply,
this is taken from the sequence number field. Otherwise, it is a
preprocessor generated number, in the range 1 through 99999. This
sequence number will be used in the listing produced by the INSOURCE
and SOURCE options, and in any preprocessor diagnostic messages.

Column 81 blank

Columns 82,83 Two-digit number glvlng the maximum d~pth of replacement by the
preprocessor for this line. If no replacement occurs, the columns
are blank.

Column 84 "E" signifying that an error has occurred while replacement is being
attempted. If· no error has occurred, the column is blank.

Figure IS. Format ~f the Preprocessor Output

Three other compiler options, MDECK, INSOURCE, and SYNTAX, are
meaningful only when you also specify the MACRO option. All are
described in detail under "Compiler Options" on page 11.

A simple example of the use of the preprocessor to produce a
source deck for a procedure SUB FUN is shown in Figure 16 on
page 60; according to the value assigned to the preprocessor
variable USE, the source statements will represent either a
subroutine or a function. The DSNA~1E used for SYSPUNCli
specifies a source program library on which the preprocessor

, output will be placed. ,NormallY compilation would continue and
the preprocessor output would be compiled.

Chapter 2. The Compiler 59

THE %INCLUDE STATEMENT

The language reference manual for this compiler describes how to
use the ~INClUDE statement to incorporate source text from a
library into a Pl/I program. (A library is a partitioned data
set that can be used for the storage of other data sets, termed
members.) Source text that you may wish to insert into a Pl/I
program by means of a ~INClUDE statement must exist as a member
within a library. Defining a source statement library to the
compiler is described further under "Source Statement library
(SYSlIB)n on page 10.

//STEPl EXEC PlIClG
//PlI.SYSIN DD *

MAKEIN: PROC OPTIONS(MAIN);
DCl IN FILE RECORD;
DCl 1 CARDl,

2 NAME CHARCIO),
2 NUMBER CHAR(7),
2 GARBAGE CHAR(63);

DCl 1 CARD2,
2 NAME CHARCIO),
2 NUMBER FIXED DEC(7),
2 GARBAGE CHAR(66);

ON ENDFIlE (SYSIN) GO TO PRINT;
OPEN FIlE(IN) OUTPUT;

NEXT: READ FILECSYSIN) INTO(CARD1);
CARD2 = CARDI, BY NAME;
WRITE FILE(IN) FROMCCARD2);
GO TO NEXT;

PRINT: CLOSE FILE(IN);
PUT FILE(SYSPRINT) PAGE;
OPEN FIlE(IN) SEQUENTIAL INPUT;
ON ENDFILE(IN) GO TO FINISH;

PRINTINz READ FILECIN) INTO(CARD2);
PUT FILECSYSPRINT) SKIP EDIT (CARDZ) (A);
GO TO PRINTIN;

FINISH: CLOSE FILECIN);
END MAKEINi

/* •
//GO.IN DD DSN=HPU8.NEWLIBCIN),DISP=CNEW,KEEP),UNIT=SYSDA,
// SPACE=CTRK,Cl,1,1»,DCB=CRECFM=FB,LRECL=80,BLKSIZE=400)
//GO.SYSIN DD *
LOS ANGLESI234567
BUFFLO 0000000
PORTLAND 0000036
SAN FRAN 0001234
ST PAUL 9873640
SACRAMENT00069872
COLUMBUS 0000000
DENVER 567000
SEATTLE 34
ROME 1234590
/*

Figure 16 (Part I of 2). Using the Preprocessor to Produce a Source Deck That Is
Placed on a Source Program Library

60 OS Pl/I Optimizing Compiler: Programmer's Guide

//OPT4#8 JOB
//STEP2 EXEC PLIXC,PARM.PLI='MACRO,MDECK'
//PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIBCFUN),DISP=CNEW,KEEP),UNIT=SYSDA,
// SPACE=(TRK,C1,1,1»,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)
//PLI.SYSIN DD *

SUBFUN: PROCCCITY)
RETURNSCFIXED DEC(7»;

DCL IN FILE RECORD,
1 DATA,

2 NAME CHAR(lO),
2 POP FIXED DEC(7),
2 GARBAGE CHAR(66);

DCl CITY CHAR(lO);
Y.DCL USE CHAR;
Y.USE='FUN'; /* FOR SUBROUTINE, SUBSTITUTE y.USE='SUB' */

OPEN FILE(IN);
NAME=' •• ,

NEXT: READ FILECIN) INTO(DATA);

Y.Ll:;

Y.L 2: ;

PUT FILECSYSPRINT) SKIP EDIT (DATA) (A);
IF NAME=CITY THEN DO;

CLOSE FILECIN);
Y.IF USE=WFUN' Y.THEN Y.GOTO Ll;
PUT FILE(SYSPRINT) SKIP LIST(DATA);

END;
Y.GO TO L2;

RETURNCPOP)j
END;

ELSE
GO TO NEXTj

END SUBFUNj

Figure 16 (Part 2 of 2). Using the Preprocessor to Produce a Source Deck That Is
Placed on a Source Program Library

//OPT419 JOB
//STEP3 EXEC PLIXC,PARM.PLI='M,INC,IS'
//PLI.SYSLIB DD DSNAME=HPU8.NEWLIBCFUN),DISP=(OlD,KEEP),UNIT=SYSDA,
// VOL=SER=nnnnnn,DCB=CRECFM=FB,lRECl=80,BLKSIZE=400)
//PlI.SYSIN DD *

/*

TEST: PROC OPTIONS(MAIN)j
DCL NAME CHAR(10),

NO FIXED DEC(7);
ON ENDFIlECSYSIN) GO TO FINISH;

AGAIN: GET FILECSYSIN) EDITCNAME) (COLUMNC1),ACIO»j
NO=SUBFUNCNAME);
PUT FILECSYSPRINT) SKIP EDITC'FOUND',NAME,NO)

(A(6),A(lO),FC7»;
GO TO AGAIN;

Y.INCLUDE FUN;
FINISH: END TESTj

//GO.IN DD DSN=HPU8.NEWLIBCIN),DISP=COLD,KEEP),UNIT=SYSDA,
// VOL=SER=nnnnnn,DCB=(RECFM=FB,lRECL=80,BlKSIZE=400)
//GO.SYSIN DD *
LOS ANGLES
SACRAMENTO
COLUMBUS
/*

Figure 17. Including Source Statements from a Library

Chapter 2. The Compiler 61

The Y.INCLUDE statement may include one or more pairs of
identifiers. Each pair of identifiers specifies the name of a
DD statement that defines a library and, in parentheses, the
name of a member of the library, For example, the statement.

Y.INClUDE DDI (INVERT),DD2(lOOPX);

specifies that the source statements in member INVERT of the
library defined by the DD statement with the name DOl, and those
in member lOOPX of the library defined by the DO statement with
the name DD2, are to be inserted consecutivelY into the source
program. The compilation job step must include appropriate DD
statements.

If you omit the ddname from any pair of identifiers in a
y.INClUOE statement, the ddname SYSlIB will be assumed. In such
a case, you must include a OD statement with the name SYSlIB.
(The IBM-supplied cataloged procedures do not include a DD
statement with this name in the compilation procedure step.)

A PROCESS statement in source text included by a Y.INClUDE
statement will result in an error in the compilation.

The use of a Y.INCLUDE statement to include the source statements
for SUB FUN in the procedure TEST is shown in Figure 17 on
page 61. The library HPU8.NEWlIB is defined in the DD statement
with the qualified name PLI.SYSLIB, which is added to the
statements of the cataloged procedure PLIXCl for this job.
Since the source statement library is defined by a DD statement
with the name SYSLIB, the Y.INClUDE statement need not include a
ddname.

It is not necessary to invoke the preprocessor if your source
program, and any text to be included, contains no preprocessor
statements other than Y.INClUDE. Under these circumstances,
faster inclusion of text can be obtained by specifying the
INCLUDE compiler option.

DYNAMIC INVOCATION OF THE COMPILER

You can invoke the optimizing compiler from an Assembler
language program by using one of the macro instructions ATTACH,
CAll, lINK, or XCTl. The following information supplements the
description of these macro instructions given in the supervisor
and data management manual.

To invoke the compiler specify IElOAA as the entry point name.

You can pass three address parameters to the compiler:

1. The address of a compiler option list.

2. The address of a list of ddnames for the data sets used by
the compiler.

3. The address of a page number that is to be used for the
first page of the compiler listing on SYSPRINT. •

These addresses must be in adjacent fullwords, aligned on a
fullword boundary. Register 1 must point to the first address
in the list, and the first Cleft-hand) bit of the last address
must be set to 1, to indicate the end of the list.

Note: If you want to pass parameters in an XCTl macro
instruction, you must use the execute (E) form of the macro
instruction. Remember also that the XCTl macro instruction
indicates to the control program that the load module containing
the XCTl macro instruction is completed. Thus the parameters
must be established in a portion of main storage outside the
load module containing the XCTl macro instruction, in case the
load module is deleted before the compiler can use the
parameters.

62 OS Pl/I Optimizing Compiler: Programmer's Guide

OPTION LIST

DDNAME LIST

The format of the three parameters for all the macro
instructions is described below.

The option list must begin on a halfword boundary, The first
two bytes contain a binary count of the number of bytes in the
list (excluding the count field). The remainder of the list can
comprise any of the compiler option keywords, separated by one
or more blanks, a comma, or both of these.

The ddname list must begin on a halfword boundary. The first
two bytes contain a binary count of the number of bytes in the
list (excluding the count field). Each entry in the list must
occupy an 8-byte field; the sequence of entries is given in
Figure 18.

Entry

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 18.

standard ddname

SYSLIN

not applicable

not applicable

SYSLIB

SYSIN

SYSPRINT

SYSPUNCH

SYSUTl

not applicable

not applicable

not applicable

not applicable

not applicable

SYSCIN

The Sequence of Entries in the DDname List

If a ddname is shorter than 8 bytes, fill the field with blanks
on the right. If you omit an entry, fill its field with binary
zeros; however, you may omit entries at the end of the list
entirely.

Chapter 2. The Compiler 63

PAGE NUMBER

The page number is contained in a 6-byte field beginning on a
halfword boundary. The first halfword must contain the binary
value 4 (the length of the remainder of the field). The last
four bytes contain the page number in binary form.

The compiler will add 1 to the last page number used in the
compiler listing and put this value in the page-number field
before returning control to the invoking routine. Thus, if the
compiler is reinvoked, page numbering will be continuous.

USING FAST PATH INITIALIZATION/TERMINATION (PL/I RELEASE 4)

The fast path initialization/termination feature reduces the
time taken for initialization and termination of a Pl/I program
at the expense of a slight additional storage overhead in the
load module. It is intended for installations where a large
number of small programs are in use, such as IMS or other
transaction oriented systems. (It is not intended for use with
eIeS where initialization and termination is handled in a
different way; see Chapter 15 .. "Using Pl/I on eIeS" on page 360
for information on CICS.)

The feature can be installed during installation of the compiler
and libraries. If it is installed, it applies to all programs.
Your system programmer will tell you whether fast path
initialization/termination is installed in your installation.

If the feature is installed, the following points should be
borne in mind to make the best use of it:

• Execution time options should either be specified in the
PlIXOPT string or be taken from installation defaults. Do
not pass them as parameters.

• ISASIZE should be specified as a positive figure large
enough to hold at least the initial storage requirements of
the first block.

• NOSTAE and NOSPIE should be specified. (Using NOSTAE gives
greater savings than using NOSPIE but both should be used
where possible.)

• ON FINISH on-units should not be used.

An example of a suitable PlIXOPT string might bel

~L PlIXOPT CHARCSO) VAR EXTERNAL INIT
('NOSTAE NOSPIE ISASIZE(SOOO)');

The REPORT option will help you to determine the ISA size that
you need. To determine the minimum figure you should specify an
ISASIZE of 1 and run with the REPORT option. The figure given
in report output for "Length of Initial Storage Area" will then
give you the minimum requirements for fast initialization. This
will not, however, necessarily give the optimum performance;
(see "Execution-Time Options" on page 31 for a full discussion
on ISASIZE.)

In most installations using fast path
initialization/termination, ISA size will not be critical as the
Pl/I programs will be small, and there will probably be enough
space to make the installation default ISA size large enough to
handle most programs.

64 OS Pl/I Optimizing Compiler: Programmer's Guide

CHAPTER 3. THE LINKAGE EDITOR AND THE LOADER

BASIC DIFFERENCES

CHOICE OF PROGRAM

This chapter describes two processing programs of the operating
system, the linkage editor and the loader. It explains the
basic differences between them, describes the processing done by
them, the JCL required to invoke them and, for the linkage
editor, the additional processing it can do. Both processing
programs are fully described in linkage editor and loader
manuals.

The object module produced by the compiler from a PL/I program
always requires further processing before it can be executed.
This further processing, the resolution of external references
inserted by the compiler, is performed either by the linkage
editor or by the loader, both of which convert an object module
into an executable program, which in the case of the linkage
editor, is termed a load module.

The linkage editor and the loader require the same type of
input, perform the same basic processing, and produce a similar
type of output. The basic differences between the two programs
lie in the subsequent form and handling of this output.

The linkage editor converts an object module into a load module,
and stores it in a program library in auxiliary storage. The
load module becomes a permanent member of that library and can
be retrieved at any time for execution in either the job that
created it, or in any other job.

The loader, on the other hand, processes the object module,
loads the processed output directly into main storage, and
executes it immediately. The loader is essentially a one-shot
program checkout facility; once the load module has been
executed, it cannot be used again without reinvoking the loader.
To keep a load module for later execution, or to provide an
overlay structure, you must use the linkage editor.

When using the linkage editor, three job steps are
required--compilation, link editing, and execution. When using
the loader, only two job steps are required--compilation and
execution.

If your installation includes both programs, the choice of
program will depend on whether or not you want to retain a
permanent copy of the load module, and on whether you want to
use one of the facilities provided only by the linkage editor.
All object modules acceptable to the linkage editor are
acceptable to the loader; all load modules produced by the
linkage editor, except those produced with the NE (not editable)
attribute,l are also acceptable to the loader. The differences
between the two programs are summarized below.

1 The NE attribute is given to a load module that has no
external symbol dictionary (ESD); a load module without an
ESD cannot be processed again, either by the linkage editor
or by the loader.

Chapter 3. The Linkage Editor and the Loader 65

LINKAGE EDITOR

LOADER

• The linkage editor converts an object module into a load
module and stores it in a partitioned data set (program
library) in auxiliary storage.

• The linkage editor can produce one or more load modules in a
single step (for example, output from batch compilation).

• The linkage editor can accept input from other sources as
well as from its primary input source and from the call
library (SYSLIB).

• The linkage editor can provide an overlay structure for a
program.

• The loader converts an object module into an executable
program in main storage and executes it immediately.

• The loader can produce only one load module in a single job
step no matter how many object modules are produced (for
example, the output from a batched compilation).

• The loader can accept input from its primary input source
and from the call library (SYSLIB).

PERFORMANCE CONSIDERATIONS

MODULE STRUCTURE

If you use the loader, you will gain the advantage of a
considerable saving in both time and auxiliary storage when
running your PL/I program. Although the execution time will be
unchanged, both the scheduling time and the processing time will
be reduced, and much less auxiliary storage will be needed.
These savings are achieved as follows:

Scheduling Time: Scheduling time for the loader is much less
than that for link editing and execution because the loader
needs only one job step.

Processing Time: The time taken to process an object module by
the loader is approximately half that taken by the linkage
editor to process the same module. This is achieved by the
elimination of certain input/output operations required by the
linkage editor, and by a reduction in module access time by the
use of chained scheduling and improved buffering in the loader
program.

Auxiliary storage: The amount of auxiliary storage required by
the loader when your job is compiled, loaded, and executed as a
single job step, is much less than that required by the linkage
editor because two of the standard data sets used by the linkage
editor are not needed. If the loader input is to consist of
existing load modules the auxiliary storage required for these
can be reduced by storing them with unresolved external
references. These external references are resolved by the
loader.

Object and load modules have very similar structures; they
differ only in that a load module that has been processed by the
linkage editor contains certain descriptive information required
by the operating system; in particular, the module is marked as
"executable" or "not executable." A module comprises the
following information:

• Text (TXT)

• External symbol dictionary (ESD)

66 as PL/I Optimizing Compiler: Programmer's Guide

TEXT

• Relocation dictionary (RlD)

• END instruction

The text of an object or load module consists of the machine
instructions'that represent the Pl/I statements of the source
program. These instructions are grouped together in what are
termed control sections; a control section is the smallest group
of machine instructions that can be processed by the linkage
editor. An object module produced by the optimizing compiler
includes the following control sectionsl

• Program control sections contains the executable
instructions of the object module.

• Static internal control section: contains storage for all
variables declared STATIC INTERNAL and for constants and
static system blocks.

• Control sections termed common areas: one common area is
created for each EXTERNAL file name or for each non-string
element variable declared STATIC EXTERNAL without the
INITIAL attribute.

• PLISTART: execution of a Pl/I program always starts with
this control section, which passes control to the
appropriate initialization subroutine; when initialization
is complete, control passes to the address stored in the
control section PLIMAIN.

• Control sections for all PL/I library subroutines to be
included with the program.

EXTERNAL SYMBOL DICTIONARY

The external symbol dictionary (ESD) is a table containing all
the external symbols that appear in the object module. An
external symbol is a name that can be referred to in a control
section other than the one in which it is defined.

The names of the control sections are themselves external
symbols, as are the names of variables declared with the
EXTERNAL attribute and entry nantes in the external procedure of
a PL/I program. References to external symbols defined
elsewhere are also considered to be external symbols; they are
known as external references. Such external references in an
object module always include the names of the subroutines from
either the as PL/I Resident Library or the OS PL/I Transient
Library that will be required for execution. They may also
include calls to your own subroutines that are not part of the
PL/I subroutine library, nor already included within the object
module. The linkage editor or loader locates all the
subroutines referred to, and includes them in the load module,
or executable program respectively.

RELOCATION DICTIONARY

At execution time, the machine instructions in a load module use
the following two methods of addressing locations in main
storage:

1. Names used only within a control section have addresses
relative to the starting point of the control section.

2. Other names (external names) have absolute addresses so that
any control section can refer to them.

Chapter 3. The Linkage Editor and the Loader 67

END INSTRUCTION

LINKAGE EDITOR

The relocation dictionary (RLD) contains information that
enables absolute addresses to be assigned to locations within
the load module when it is loaded into main storage for
execution. These addresses cannot be determined earlier because
the starting address is not known until the module is loaded.
The relocation dictionaries from all the input modules are
combined into a single relocation dictionary when a load module
is produced.

This specifies the compiler-generated control section PLISTART
as the entry point for the object module. It also contains
"CSECT IDR" information for processing by the linkage editor.
The CSECT IDR information is given in Figure 19.

Column Information

33 The number of IDR entries that follow.
This is always "1" for the optimizing compiler.

34 to 41 The program number of the compiler.
(S734-PLl for the optimizing compiler.)

44 to 47 The release number of the compiler.
For example, '0102' indicates Release 1.2.

48 to S2 The date in year-day form (that is, yyddd).

Figure 19. The CSECT IDR Information

The linkage editor is an operating system processing program
that produces load modules. It always stores the load modules
in a library, from which the job scheduler can call them for
execution.

The input to the linkage editor can include object modules, load
modules, and control statements that specify how the input is to
be processed. The output from the linkage editor comprises one
or more load modules.

In addition to its primary function of converting object modules
into load modules, the linkage editor can also be used to:

• Combine previously link-edited load modules.

• Modify existing load modules.

• Construct an overlay structure.

A load module constructed as an overlay structure can be
executed in an area of main storage that is not large enough to
contain the entire module at one time. The linkage editor
divides the load module into segments that can be loaded and
executed in turn.

68 OS PL/I Optimizing Compiler: Programmer's Guide

LINKAGE EDITOR PROCESSING

SYSlIN
(primary input)

PL/I object
module

Pl/I library
(SYSl.PlIBASE)

SYSLIB
(call library)

A Pl/I program, compiled by the optimizing compiler, cannot be
executed until the appropriate library subroutines have been
included. These subroutines are included in two ways:

1. By inclusion in the load module during link editing.

2. By dynamic call during execution.

The first method is used for most of the Pl/I resident library
subroutines; the following paragraphs describe how the linkage
editor locates them. The second is u~ed for the Pl/I transient
library subroutines, for example those concerned with input and
output (including those used for opening and closing files), and
those that generate execution-time messages.

In basic processing, as shown in Figure 20, the linkage editor
accepts from its primary input source a data set defined by the
OD statement with the name SYSLIN. For a Pl/! program, this
input is the object module produced by the compiler. The
linkage editor uses the external symbol dictionary in this
object module to determine whether the module includes any
external references for which there are no corresponding
external symbols in the module: it attempts to resolve such
references by a method termed automatic library call.

linkage
editor

SYSLMOO (load)
module library)

Figure 20. Basic Linkage Editor Processing

External symbol resolution by automatic library call involves a
search of the data set defined by the DO statement with the name
SYSlIB; for a PL/I program, this will be the PL/! resident
library. The linkage editor locates the subroutines in which
the external symbols are defined (if such subroutines exist),
and includes them in the load module.

The linkage editor always places its output (that is, the load
module) in the data set defined by the DD statement with the
name SYSLMOD.

Any linkage editor processing additional to the basic processing
described above must be specified by linkage editor control
statements placed in the primary input. These control statement
are described under "Additional Processing" on page 79.

Chapter 3. The Linkage Editor and the loader 69

JOB CONTROL LANGUAGE FOR THE LINKAGE EDITOR

EXEC STATEMENT

Although you will probably use cataloged procedures rather than
supply all the job control language (JCL) required for a job
step that invokes the linkage editor" you should be familiar
with these JCL statements so that you can make the best use of
the linkage editor and" if necessary" override the statements of
the cataloged procedures.

The IBM-supplied cataloged procedures that include alink-~dit .
procedure step are:

PLIXCL Compile and link edit

PLIXCLG Compile, link edit, and execute

PLIXlG Link edit and execute

The following paragraphs describe the essential JeL statements
for link editing. The IBM-supplied cataloged prricedures are
described in Chapter 9" "Cataloged Procedures"'on page 273, and
include examples of these statements.

The name of the linkage editor is HEWL.

The aliases IEWL or LINKEDIT are often used for the linkage
editor.

The basic EXEC statement is:

//stepname EXEC PGM=IEWL

By using the PARM parameter of the EXEC statement, you can
select one or more of the optional facilities provided by the
linkage editor; these facilities are described under "Optional
Facilities" on page 74.

DD STATEMENTS FOR THE STANDARD DATA SETS

ddniune

SYSLIN

SYSLMOD

SYSUTI

SYSPRINT

The linkage editor always requires four standard ·data sets. You
must define these data sets in DD statements with the ddnames
SYSLIN" SYSLMOD, SYSUTl" and SYSPRINT.

A fifth data set, defined by a DD stat~ment with the name
SYSLIB, is necessary if you want to use automatic library call.
The five data set names, together with other characteristics of
the data sets, are shown in Figure 21.

Contents Possible device classes1

Primary input data, normally UNIT=SYSSQ or input job stream
the compiler output (specified by DD ~E)

Load module UNIT=SYSDA

Temporary workspace UNIT=SYSDA

Listing" including messages UNIT=SYSSQ (or SYSOUT=)

Figure 21 (Part 1 of 2). Linkage Editor Standard Data Sets

70 OS Pl/I Optimizing Compiler: Programmer's Guide

ddname ' Contents Possible device classes1

SYSLIB Automatic call library UNIT=SYSDA
(normally the PL/I resident
library)

Figure 21 (Part 2 of 2). Linkage Editor Standard Data Sets

1 SYSSQ Magnetic tape or direct-access device
SYSDA Direct access device

PRIMARY INPUT (SYSLINl

OUTPUT (SYSLMODl

Primary input to the linkage editor must be a standard data set
defined by a DD statement with the name SYSLIN; this data set
must have consecutive organization. The input must comprise one
or more object modules and/or linkage editor control sta'tements;
a load module cannot be part of the primary input 1 although it
can be introduced by the control statement INCLUDE. For a Pl/I
program the primary input is usually a data set containing an
object module produced by the compiler. This data set may be on
magnetic tape or on a direct-access device1 or you can include
it in the input job stream. In all cases, the input must be in
the form of 80-byte F~format records.

The IBM-supplied cataloged procedure PLIXLG includes the DD
statement:

//SYSLIN DD DDNAME=SYSIN

This statement specifies that the primary input data set may be
defined in a DD statement with the name SYSIN. If you use this
cataloged procedure, specify this DD statement by using the
qualified ddname LKED.SYSIN. For example, to link edit and
execute an object module placed in the input stream, you can use
the following statements:

//LEGO
//STEPI
//LKED.SYSIN

JOB
EXEC PLIXLG
DD *

(insert here the object module to be
link edited and executed)

If object modules with identically named control sections appear
in the primary input, the linkage editor processes only the
first appearance of that control section.

You can include load modules or object modules from one or more
libraries in the primary input by using a linkage editor INCLUDE
statement as described under "Additional Processing" on page 79.

Output (that iS1 one or more load modules) from the linkage
editor is always stored in a data set defined by the DD
statement with the name SYSlMOD, unless you specify otherwise.
This data set is usually called a library; libraries are fully
described in Chapter 8 1 "Libraries of Data Sets" on page 264.

Chapter 3. The Linkage Editor and the Loader 71

The IBM-supplied cataloged procedures include the following DD
statement:

//SYSLMOD DD DSNAME=&&GOSETCGO),
// UNIT=SYSDA,
// DISP=(MOD,PASS),
// SPACE=(1024,(SO,20,I»

This statement defines a temporary library named &&GOSET and
assigns the member name GO to the load module produced by the
linkage editor. To retain the load module after execution of
the job, replace this DD statement with one that defines a
permanent library. For example, assume that you have a
permanent library called USlIB on 3330 disk pack serial number
371; to name the load module MODI and place it in this library,
code:

//LKED.SYSlMOD DD DSNAME=USlIBCMODl)1
// UNIT=3330,VOl=SER=371,DISP=OlD

The SPACE parameter in the DD statement with the name SYSlMOD
used in the IBM-supplied cataloged procedures allows for an
initial allocation of SOK bytes and, if necessary, IS further
allocations of 20K bytes (a total of 350K bytes); this should
suffice for most applications.

TEMPORARY WORKSPACE (SYSUT1J

The linkage editor requires a data set for use as temporary
workspace. It is defined by a DD statement with the name
SYSUTI. This data set must be on a direct-access device. The
following statement contains the essential parameters:

//SYSUTI DD UNIT=SYSDA,
// SPACE=CI024,(200,20»

You should normally never need to alter the DD statement with
the name SYSUTI in an IBM-supplied cataloged procedure, except
to increase the SPACE allocation when processing very large
programs.

If your installation supports dedicated workfiles, these can be
used to provide temporary workspace for the link-edit job step,
as described under "Compile and Link-Edit (PLIXCL)" on page 278.

AUTOMATIC CALL LIBRARY (SYSLIBJ

Unless you speci fy otherwise, the linkage edi tor will ah"ays
attempt to resolve external references by automatic library call
(see "linkage Editor Processing" on page 69). To enable it to
do this, you must define the data set or data sets to be
searched in a DD statement with the name SYSlIB. (To define
second and subsequent data sets, include additional, unnamed, DD
statements immediately after the DD statement SYSlIB; the data
sets so defined will be treated as a single continuous data set
for the duration of the job step.)

For a PL/I program, the DD statement SYSLIB will normally define
the PL/I resident library. The subroutines of the resident
library are stored in two data sets, SYSl.PlIBASE (the base
library) and SYSI.PlITASK (the multitasking library). The base
library contains all the resident library subroutines required
by a nonmultitasking program. The multitasking library contains
subroutines that are peculiar to multitasking, together with
multitasking variants of some of the base library subroutines.

For link editing a nonmultitasking program, specify only the
base library in the SYSlIB DD statement. The following DD
statement will usually sufficel

//SYSlIB DD DSN=SYSI.PlIBASE,DISP=SHR

72 as Pl/I Optimizing Compiler: Programmer's Guide

For link editing a multitasking program1 specify both the
multitasking library and the base library. When attempting to
resolve an external reference, the linkage editor will first
search the multitasking library; if it cannot find the required
subroutine1 it will then search the base library. To ensure
that the search is carried out in the correct sequence1 the DD
statements defining the two sections of the library must be in
the correct sequence: multitasking library first1 base library
second. The following DD statements will usually suffice:

//SYSLIB DO DSNAME=SYS1.PLITASK1DISP=SHR
// DO DSNAME=SYS1.PLIBASE1DISP=SHR

LISTING (SYSPRINTl

The linkage editor generates a listing that includes reference
tables relating to the load modules that it produces and als01
when necessarY1 messages. The information that can appear is
described under "Listing Produced by the Linkage Editor" on
page 75.

You must define the data set on which you wish the linkage
editor to store its listing in a DD statement with the name
SYSPRINT. This data set must have consecutive organization.
Although the listing is usually printed1 it can be stored on any
magnetic-tape or direct-access device. For printed output 1 the
following statement will suffice:

//SYSPRINT DD SYSOUT=A

EXAMPLE OF LINKAGE EDITOR JCL

//LINK
//STEPI
//SYSLMOD
//
//SYSUTI
//SYSPRINT
//SYSLIB
//SYSLIN

JOB

A typical sequence of job control statements for link editing an
object module is shown in Figure 22. The DD statement SYSLIN
indicates that the object module will follow immediately in the
input stream; for example, it might be an object deck created by
invoking the optimizing compiler with the DECK option, as
described under "DECK Option" on page 19. The DD statement with
the name SYSLMOD specifies that the linkage editor is to name
the load module LKEX, and that it is to place it in a new
library name MODLIB; the keyword NEW in the DISP parameter
indicates to the operating system that this DD statement
specifies the creation of a library.

EXEC PGM=IEWL
DD DSNAME=MODLIBCLKEX),UNIT=3330,VOL=SER=D186,

SPACE=CCYL,CIO,lO,l»,DISP=CNEW,KEEP)
DD UNIT=SYSDA,SPACE=CI024 1C200,20»
DD SYSOUT=A
DD DSNAME=SYS1.PLIBASE,DISP=SHR
DD *

Cinsert here the object module to be link-edited)

Figure 22. Typical Job Control Statements for Link-Editing a PL/I Program

Chapter 3. The Linkage Editor and the Loader 73

OPTIONAL FACILITIES

lET OPTION

lIST OPTION

MAP OPTION

NCAl OPTION

The linkage editor provides a number of optional facilities that
are selected by including the appropriate keyWords in the PARM
parameter of the EXEC statement that invokes it. Some of the
more commonly used options are:

LIST
MAP or XREF
lET or XCAL
NCAl
RENT or REUS
SIZE

Code PARM= followed by the list of options, separating the
options with commas and enclosing the list within single
quotation marks, for example:

//STEPA EXEC PGM=IEWl,PARM='lIST,MAP'

If you are using a cataloged procedure, you must include the
PARM parameter in the EXEC statement that invokes the procedure
and qualify the keyword PARM with the name of the procedure step
that invokes the linkage editor, for example:

//STEPA EXEC PlIXCLG,PARM.lKED='LIST,XREF'

Some of the linkage editor options are described in the
following sections, in alphabetic order. For more detailed
descriptions of these and other options, see the OS/VS Linkage
Editor and Loader publication.

The LET option specifies that the linkage editor is to mark the
load module as "executable" even if slight errors or abnormal
conditions have been found during link editing provided these do
not exceed severity 2.

The LIST option specifies that all linkage editor control
statements processed should be listed in the data set defined by
the DD statement with the name SYSPRINT.

The MAP option specifies that the linkage editor is to produce a
map of the load module showing the relative locations and
lengths of all control sections in the load module.

The NCALoptionspecifies that no external references are to be
resolved by library call. However, the load module is marked
"executable" provided that there are no errors.

You can use the NCALoption to conserve auxiliary storage in
private. libraries, since, by preventing the resolution of
external references during link editing, you can store load
modules without the relevant library subroutines; the DD
statement with the name SYSlIB is not required. Before
executing these load modules, you must link edit them again to
resolve the external references, but the load module created
need exist only while it is being executed. You can use this
technique to combine separately compiled PL/I procedures into a
single load module.

74 OS ~L/I Optimizing Compiler: Programmer's Guide

RENT OPTION

REUS OPTION

SIZE OPTION

XCAL OPTION

XREF OPTION

As a result of specifying NCALand thus preventing the
resolution of external references, the warning message IEW0461,
together with a return code of 0004, may appear in the linkage
editor listing for the PL/I program.

The RENT option specifies that the module is reenterable and can
be executed by more than one task at a time.

The REUS option specifies that the module is serially reusable
and can be executed by only one task at a time.

The SIZE option specifies the amount of main storage, in bytes,
to be allocated to the linkage editor. The syntax of the SIZE
option is:

SIZE=(m[,n])

where "m" is the amount of main storage .in bytes or K bytes
(where K=1024) to be allocated to the linkage editor;
it must include Un" and it must be greater than "n."

and Un" which is optional, is the amount of main storage (in
bytes or K bytes) to be allocated to the load module
buffer.

If you specify SIZE incorrectly, or if you omit it, default
values set at system generation are used. If you specify SIZE
greater than the region or partition size, the maximum amount of
main storage will be used.

The XCAL option specifies that the linkage editor will mark the
load module as "executable" even if slight errors or abnormal
conditions, including improper branches between control
sections, have been found during link editing. XCAL, which
implies LET, applies only to an overlay structure.

The XREF option specifies that the linkage editor is to print a
map of the load module and a cross-reference list of all the
external references in each control section. XREF implies MAP.

LISTING PRODUCED BY THE LINKAGE EDITOR

The linkage editor generates a listing, most of which is
optional, that contains information about the link-editing
process and the load module that it produces. It places this
listing in the data set defined by the DD statement with the
name SYSPRINT (usually output to a printer). The following
description of the listing refers to its appearance on a printed
page.

Chapter 3. The Linkage Editor and the Loader 75

The listing comprises a small amount of standard information
that always appears, together with those items of optional
information specified in the PARMparameter of the EXEC
statement that invokes the linkage· editor, or that are applied
by default. The optional components of the listing and the
corresponding linkage editor options are as shown in Figure 23.

Listings Options Required

Control statements processed by the LIST
linkage editor

Map of the load module MAP or XREF

Cross-reference table XREF

Figure 23. Linkage Editor Listings and Associated Options

The first page of the listing is identified by the linkage
editor version and level number followed by a list of the
linkage editor options used.

The following paragraphs describe the optional components of the
llst1ng 1n the order in which they appear.

An example of the listing produced for a typical PL/I program is
given in Appendix D, "Sample Program" on page 406

DIAGNOSTIC MESSAGES AND CONTROL STATEMENTS

The linkage editor generates messages, describing errors or
conditions, detected during link editing, that may lead to
error. These messages are listed immediately after the heading
information on page 1 of the linkage editor listing. They are
listed again at the end of the l~nkage editor listing under
"Diagnostic Message Directory" o~ page 77.

If you have specified the option'LIST, the names of all control
statements processed by the linkage editor are listed
immediately preceding the messages, and are identified by the
7-character code IEWOOOO.

Each message is identified by a similar 7-character code of the
form IEWnnnx, where:

• The first three characters "lEW" identify the message as
coming from the linkage editor.

• The next three characters are a 3-digit message number.

• The last character "x" is a severity code. The possible
severity codes and their meanings are given in Figure 24 on
page 77.

76 OS PL/I Optimi~ihg Compiler: Prosr.~merr$ G~ide

Severity
Code Meaning

o A condition that will not cause an error during execution.
The load module is marked as "executable."

I A condition that may cause an error during execution.
The load module is marked as "executable."

2 An error that could make execution impossible.
The load module is marked as "not executable" unless
you have specified the option LET.

3 An error that will make execution impossible.
The load module is marked as "not executable."

4 An error that makes recovery impossible.
linkage editor processing is terminated, and no output
other than messages is produced.

Figure 24. Diagnostic Message Severi.ty Codes

At the end of the listing, immediately preceding the nDiagnostic
Message Directory,n the linkage editor places a statement of the
disposition of the load module. See also nDiagnostic Message
Directory.n The disposition statements, with one exception, are
self-explanatory; the exception is:

****modulename DOES NOT EXIST BUT HAS
BEEN ADDED TO DATA SET

This appears when the NAME statement has been used to add a new
module to the data set defined by the DD statement with the name
SYSLMOD. Th~ use of the NAME statement is described under
"Module Name-" on page 79. If you name a new module by including
its name in ~he DSNAME parameter of the DD statement with the
name SYSLMOD', the linkage edi tor assumes that YOU want to
replace an existing module (even if the data set is new).

DIAGNOSTIC MESSAGE DIRECTORY

MODULE MAP

When processing of a load module has been completed, the linkage
editor lists in full all the messages whose numbers appear in
the preceding list. The text of each message, an explanation,
and any recommended programmer response, are given in the
linkage editor and loader pUblication.

The linkage editor listing includes a module map only if you
specify the options MAP or XREF. The map lists all the control
sections in the load module and all the entry point names in
each control section. The control sections are listed in order
of appearance in the load module; alongside each control section
name is its address relative to the start of the load module
(address 0) and its length in bytes. The entry points within
the load module appear on the printed listing below and to the
right of the control sections in which they are defined; each
entry point name is accompanied by its address relative to the
start of the load module.

Chapter 3. The Linkage Editor and the Loader 77

Each control section that is included by automatic library call
is indicated by an asterisk. For an overlay structure, the
control sections are arranged by segment in the order in which
they are specified.

After the control sections, the module map lists the
pseudo-registers established by the compiler. Pseudo-registers
are fields in a communications area, the task communications
area CTCA), used by PL/I library subroutines and compiled code
during execution of a PL/I program. The main storage occupied
by the TCA is not allocated until the start.of execution of a
PL/I program; it does not form part of the load module. The
addresses given in the list of pseudo-registers are relative to
the start of the TCA.

At the end of the module map, the linkage editor supplies the
following informations

• The total length of the pseudo-registers.

• The relative address of the instruction with which execution
of the load module will commence (ENTRY ADDRESS).

• The total length of the load module. For an overlay
structure, the length is that of the longest path.

All th~ ~dd~~~~~~ ~~d l~~~th~ ~i~~~ i~ thu ~~J~l~ rn~~ dfld

associated information are in hexadecimal.

CROSS-REFERENCE TABLE

RETURN CODE

The linkage editor listing includes a "Cross-Reference Table"
only if you specify the option XREF. This option produces a
listing that comprises all the information described under
"Module Map" on page 77, together with a cross-reference table
of external references. The table gives the location of each
reference within the load module, the symbol to which the
reference refers, and the name of the control section in which
the symbol is defined.

For an overlay structure, a cross-reference table is provided
for each segment. It includes the number of the segment in
which each symbol is defined.

Unresolved symbols are identified in the cross-reference table
by the entries $UNRESOLVED or $NEVER-CALL. An unresolved weak
external reference (WXTRN) is identified by the entry
$UNRESOLVEDCW).

For every linkage editor job or job step, the linkage editor
generates a return code that indicates to the operating system
the degree of success or failure it achieved. This code appears
in the "end of step" message and is derived by multiplying the
highest severity code by four, as shown in Figure 25 on page 79.
(See also "Diagnostic Message Directory" on page 77.)

78 OS PL/I Optimizing Compiler: Programmer's Guide

Return Meaning
Code

0000 No messages issued; link editing completed without error;
successful execution anticipated.

0004 Warning messages only issued; link editing completed;
successful execution probable.

0008 Error messages only issued; link editing completed;
execution may fail.

0012 Severe error messages issued; link editing may have
been completed, but with errors; successful execution
improbable.

0016 Unrecoverable error message issued; link editing
terminated abnormally; successful execution impossible.

Figure 25. Return Codes from the Linkage Editor

ADDITIONAL PROCESSING

Basic processing by the linkage editor produces a single load
module from the data that it reads from its primary input, but
it has several other facilities that you can call upon by using
linkage editor control statements. The use of those statements
of particular relevance to a PL/I program is described below.
All the linkage editor control statements are fully described in
the linkage editor and loader publication.

FORMAT OF CONTROL STATEMENTS

MODULE NAME

A linKage editor control statement is an aD-byte record that
contains two fields. The operation field specifies the
operation required of the linkage editor; it must be preceded
and followed by at least one blank character. The operand field
names the control sections, data sets, or modules that are to be
processed, and it may contain symbols to indicate the manner of
processing; the field consists of one or more parameters
separated by commas. Some control statements may have multiple
operand fields separated by commas.

The position of a control statement in the linkage editor input
depends on its function.

In the following descriptions of the control statements, items
within brackets [] are optional.

A load module must have a name so that the linkage editor and
the operating system can identify it. A name comprises up to
eight characters, the first of which must be alphabetic.

You can name a load module in one of two ways:

1. If you are producing a single load module from a single
link-edit job step, it is sufficient to include its name as
a member name in the DSNAME parameter of the DD statement
with the name SYSLMOD.

Chapter~. The Linkage Editor and the Loader 79

ALTERNATIVE NAMES

2. If you are producing two or more load modules from a single
link-edit job step, you will need to use the NAME statement.
(The optimizing compiler can supply the NAME statements when
you use batch compilation as described in "NAME Option" on
page 23).

The syntax of the NAME statement is:

NAME name[(R)]

where "name" is any name of up to eight characters; the first
character must be alphabetic. The NAME statement serves the
following functions:

• It identifies a load module. The name specified will be
given to the load module. "(R)," if present, specifies that
the load module is to replace an existing load module of the
same name in the data set defined by the DD statement with
the name SYSLMOD.

• It acts as a delimiter between input for different load
modules in one link-edit step.

The NAME statement must appear in the primary input to the
linkage editor (the standard data set defined by the DD
statement SYSLIN); if it appears elsewhere, the linkage editor
..i.~lIun~:::t ..i. t. The 5iaiemeni must foiiow immeciiai:eiy after the
last object module that will form part of the load module it
names (or after the INCLUDE control statement that specifies the
last object module).

You can use the ALIAS statement to give a load module an
alternative name; a load module can have as many as sixteen
aliases in addition to the name given to it in a DD statement
with the name SYSLMOD, or by a NAME statement.

The syntax of the ALIAS statement is:

ALIAS name

where "name" is any name of up to eight characters; the first
character must be alphabetic. You can include more than one
name in an ALIAS statement, separating the names by commas, for
example:

ALIAS FEE, FIE, FOE, FUM

An ALIAS statement can be placed before, between, or after
object modules and control statements that are being processed
to form a load module, but it must precede the NAME statement
that specifies the primary name of the load module.

To execute a load module, you can include an alias instead of
the primary name in the PGM parameter of an EXEC statement.

Aliases can be used for external entry points in a Pl/I
procedure. Hence a CALL statement or a function reference to
any of the external entry names will cause the linkage editor to
include the module containing the alias entry names without the
need to use the INCLUDE statement for this module.

80 OS PL/I Optimizing Compiler: Programmer's Guide

ADDITIONAL INPUT SOURCES

INCLUDE STATEMENT

LIBRARY STATEMENT

The linkage editor can accept input from sources other than the
primary input defined in the DD statement with the name SYSLIN.
For example, automatic library call enables the linkage editor
to include modules from a data set (a library) defined by the DD
statement with the name SYSLIB. You can name these additional
input sources by means of the INCLUDE statement, and you can
direct the library call mechanism to alternative libraries by
means of the LIBRARY statement.

The INCLUDE statement causes the linkage editor to process the
module or modules indicated. After the included modules have
been processed, the linkage editor continues with the next item
in the primary input. If an included sequential data set also
contains an INCLUDE statement, that statement is processed as if
it were the last item in the data set, as shown in Figure 26.

Primary Input
Data Set

end
INCLUDE

end

Sequential
Data Set

end
INCLUDE

end

not
processed

Library
Member

end

Figure 26. Processing Additional Data Sources

The syntax of the INCLUDE statement is:

INCLUDE ddname[(membername)]

where "ddname" is the name of a DD statement that defines either
a sequential data set or a library that contains the modules and
control statements to be processed. If the DD statement defines
a library, replace "membername" with the names of the modules to
be processed, separated by commas. You can specify more than
one ddname, each of which may be followed by any number of
member names in a single INCLUDE statement. For example:

INCLUDE DICMEMI,MEM2),D2(MODA,MODB)

specifies the inclusion of the members MEMI and MEM2 from the
library defined by the DD statement with the name DI, and the
members MODA and MODB from the library defined by the DD
statement with the name D2.

The basic function of the LIBRARY statement is to name call
libraries in addition to those named in the DD statement SYSLIB.
The syntax of the LIBRARY statement is:

LIBRARY ddnameCmembername)

where "ddname" is the name of a DD statement that defines the
additional call library, and "membername" is the name of the
module to be examined by the call mechanism. More than one
module can be specified; separate the module names with commas.

Chapter 3. The Linkage Editor and the Loader 81

OVERLAY STRUCTURES

A load module constructed as an overlay structure can be
executed in an area of main storage that is not large enough to
contain the entire module at one time. The linkage editor
divides the load module into segments that can be loaded and
executed in turn. To construct an overlay structure, you must
use linkage editor control statements to specify the
relationship between the segments. One segment, termed the root
segment must remain in main storage throughout the execution of
the program.

In an overlay environment the addressing of a static external
structure element, array, or string may be incorrect if used in
a data-directed I/O statement or CHECK statement. This error
will arise if the control section containing the symbol table of
the identifier, and the corresponding static internal control
section are not in the same overlay segment. This is because
the symbol table contains the address of a locator th~t is iri
static internal storage. The difficulty can be avoided by
ensuring that the procedure in the root segment contains a
reference to the identifier in a data-directed I/O or CHECK
context. The statement containing the identifier need'not be
executed, but you must ensure that it is not removed by
optimization; its presence ensures that the symbol table for the
identifier addresses the locator in the static internal control
section of the root segment.

The descriptor for a controlled external aggregate with fixed
extents is stored in the static internal control section of the
procedure that allocates it. This prevents references to the
external variable being made in other procedures that overlay
the segment in which it was allocated. A controlled external
variable must be allocated in one of two ways:

1. The variables can be allocated in the root phase. A
convenient technique to use would be to have a subroutine,
containing the ALLOCATE statement, which could be called
from any segment.

2. The variable can be allocated with adjustable extents,so
that the descriptor will be copied into the controlled
storage area when allocation takes place. Note that this
method uses more storage.

DESIGN OF THE OVERLAY STRUCTURE

Before preparing the linkage e9itor control statements, you must
design the overlay structure for your program. A tree is a
graphic representation of an overlay structure that shows which
segments occupy main storage at different times. The design of
trees is discussed in the linkage editor and loader publication,
but for the purposes of this chapter, Figure 27 on page 83
contains a simple example. The program comprises six
procedures: A, B, C, D, E, and F. Procedure B calls procedure C
which, in turn, calls procedures D and E. (Only procedure A
requires the option MAIN.)

82 OS PL/I Optimizing Compiler: Programmer's Guide

AI PROC OPTIONSCMAIN);

CAll Bj

CAll F;

END A;

B: PROC;
Procedure A

CAll C;

END B;

x
C. PROC; Procedure B Procedure F

CAll Di

CALL E;

END C;
Procedure C

ID:
PROC;

END D; Procedure E

Y

Procedure D

E: PROC;

.
END EJ

Fa PROC;

END F;

Figure 27. Overlay Structure and Its Tree

The main procedure CA) must be in main storage throughout the
execution of the program. Since the execution of procedure B
will be completed before procedure F is called, the two
procedures can occupy the same storage; this is depicted by the
lines representing the two procedures in Figure 26 on page 81
starting from the common point (node) X. Procedure B must
remain in storage while procedures C, D, and E are executed, but
procedures D and E can occupy the same storage; thus the lines
representing procedures D and E start from node Y.

The degree of segmentation that can be achieved can be clearly
seen from the figure. Since procedure A must always be present,
it must be included in the root segment. Procedures F, D and E
can usefully be placed in individual segments, as can procedures
Band C be plac$d together; there is nothing to be gained by
separating procedures Band C, since they must be present
together at some time during execution.

Chapter 3. The linkage Editor and the loader 83

CONTROL STATEMENTS

Two linkage editor control statements, OVERLAY and INSERT,
control the relationship of the segments in the overlay
structure. The OVERLAY statement specifies the start of a
segment and the INSERT statement specifies the positions of
control sections in a segment. You must include the attribute
OVLY in the PARM parameter of the EXEC statement that invokes
the linkage editor, otherwise the linkage editor will ignore the
control statements.

The syntax of the OVERLAY statement is:

OVERLAY symbol

where nsymbol n is the node at which the segment starts (for
example, X in Figure 27 on page 83). You must specify the start
of every segment, except the root segment, in an OVERLAY
statement.

The syntax of the INSERT statement is:

INSERT control-section-name

where ncontrol-section-namen is the name of the control section
(that is, the derivative of the procedure name that is found in
the linkage editor map) that is to be placed in the segment.
More than one control section can be specified, separate the
names with commas. The INSERT statements that name the control
sections in the root segment must precede the first OVERLAY
statement.

CREATING AN OVERLAY STRUCTURE

The most efficient method of defining an overlay structure, and
the simplest for a PL/I program, is to group all the OVERLAY and
INSERT statements together and place them in the linkage editor
input (SYSLIN) after the object modules that form the program.
The linkage editor initially places all these object modules in
the root segment, and then moves those control sections that are
referred to in INSERT statements into other segments.

This method has the advantage that you can use batched
compilation to process all the procedures in one job step and
place the object modules in a temporary data set; this data set
must have consecutive organization. You can then place the
linkage editor control statements in the input stream,
concatenating them with the data set that contains the object
modules. '(Do not use the NAME compiler option to name the
object modules; if you do, the NAME statements inserted by the
compiler will cause the linkage editor to attempt to create
separate load modules rather than a single overlay structure.)

The use of the IBM-supplied cataloged procedure PLIXCLG to
create and execute the overlay structure of Figure 27 on page 83
is shown in Figure 28 on page 85.

84 OS PL/I Optimizing Compiler: Programmer's Guide

//OPT5#12
//STEPI
//
//PLI.SYSIN

JOB
EXEC PLIXCLG,
PARM.LKED='OVLY'
DD 3E

(insert here source statements for procedure A)

3(PROCESS;

(insert here source statements for procedure B)

3E PROCESS;

(insert here source statements for procedure C)

* PROCESS;

(insert here source statements for procedure D)

3E PROCESS;

(insert here source statements for procedure E)

* PROCESS;

(insert here source statements for procedure F)

/3E
//LKED.SYSIN DD *

OVERLAY X

/*

INSERT ******Bl,******Cl
OVERLAY Y
INSERT ******Dl
OVERLAY Y
INSERT ******El
OVERLAY X
INSERT ******Fl

Figure 28. Creating and Executing the Overlay structure of
Figure 27.

An alternative approach instead of batched compilation is to
compile the procedures independently and store them as object
modules in a private library. You can then use an INCLUDE
st~tement to place them in the input to the linkage editor
(SYSLIN).

If an INSERT statement contains the name of an external
procedure, the linkage editor will move only the related program
control section that has the same name. All other control
sections established by the compiler, and all the PL/I library
subroutines, will remain in the root segment.

It is important that the Pl/I library subroutines be in the root
segment, since the optimizing compiler does not support
exclusive calls (calls between segments that do not lie in the
same path). For example,-in Figure 27 on page 83, procedures in
the segment containin~ D could call procedures in the segments
containing A, B, C, and D, but not in the segments containing E
or F. Procedures in the segments containing B or C could call
procedures in the segments containing A, B, C, D, and E, but not
in the segment containing F. A procedure in the segment
containing B may not call a procedure in the segment containing
A if thi~ latter procedure calls a p~o~edure in the segment
containing F. .

However, certain library subroutines may not be required by all
segments, in which case you can move them into a lower segment.

Chapter 3. - The Linkage Editor and the Loader 85

To do this, compile the procedures using the compiler option
ESD, and examine the resulting external symbol dictionary. For
example, if in Figure 27 on page 83, a library subroutine is
called only by the segment containing E, you can move it into
that segment by placing an INSERT statement, specifying the
subroutine name, immediately after the statement INSERT
*30UOOEEI.

Similarly, you can move control sections from the root segment
to lower segments. For example, to move the static internal
control section for procedure F into the segment containing F,
place the statement INSERT ******F2 after the statement INSERT
******Fl. Values assigned to static data items are not retained
when a segment is overlaid. Do not move static data from the
root segment· unless it comprises onlya

• Values set by the INITIAL attribute and then unchanged (that
is, read-only data).

• Values that need not be retained between different loadings
of the segment.

Care must be taken to ensure that the static external control
sections for all the Pl/I files used in an overlay program are
placed in the root segment. If this is not done, failures may
occur when the ERROR condition is raised and the PL/I error
routines attempt to close the files. In particular, the static
external control section for SYSPRINT mus·t always be placed in
the root s.gment.

When using the COUNT option, ensure that all procedures for
which count information is required have their static internal
control sections in the root segment, or the count information
will .be rendered invalid.

LINK EDITING MULTIPLE OBJECT MODULES.

When a PL/I MAIN procedure is link-edited with other object
modules produced by the PL/I compiler, the entry point of the
resulting load module will be resolved to the external symbol
PLISTART. This will happen automatically, because the PlISTART
CSECT is generated first in the PL/I object module output and is
nominated in the END statement of the object module.
Execution-time errors will occur if the load module entry point
is forced to some other symbol by use of the linkage editor
ENTRY control statement. See Chapter 5 of the Execution Logi~
Manual for d~tails on the initialization of a PL/I MAIN
procedure.

If a PL/I MAIN procedure is link-edited with object modules
produced by other language processors or by the assembler and is
the first module to receive control, the user must ensure that
the entry point of the resulting load module is resolved to the
external symbol PlISTART. This may be done most convenientlY by
ensuring that the PL/I object module is first in the input to
the linkage editor. Alternatively, the following linkage editor
ENTRY control statement may be included in the input to the
linkage editor:

,ENTRY PLISTART

If you want to pre-link Pl/I subroutines, store them in a load
library, and later "INCLUDE" them with main procedures, the
subroutines must be linked with the NCAl linkage editor option.
The NeAL option will. cause unresolved external reference error
messages from the link~ge editor, but these will be resolved
when the PL/I main procedure is linked with the subroutines.
The NeAL option is needed because, in a Pl/I load module, all
the resident madul~s must be at the same level, and not
resolving external references until the final link will ensure
this. .

86 OS PL/I Optimizing Compiler: Programmer's Guide

Figure 29 shows an example of link-editing a Pl/I object module
with FORTRAN and COBOL object modules.

//JOBNAME JOB
//* **
//* LINK-EDITING PL/I WITH FORTRAN AND COBOL */
//* PLl INVOKES FORTRAN WHICH INVOKES COBOL */

//* ** //PLI EXEC PLIXC,
// PARM.PLI='OBJECT'
//PLI.SYSLIN DD DSN=&&LOADSET,SPACE= .. .
//PLI.SYSIN DD DSN=STEPl.TEST.PLl .. .
//* **
//* CALL A FORTRAN SUBPROGRAM STEP2.TEST.FORT */
//* ** //FORT2 EXEC FTGIC
//FORT.SYSLIN DD DSN=&&lOADSET, ...
//FORT.SYSIN DD DSN=STEP2.TEST.FORT, ...
//* **
//* CALL A COBOL SUBPROGRAM STEP3.TEST.COBOL */

//* **
//COBOL3 EXEC COBUC,PARM.COB='NODECK,LOAD,APOST'
//COB.SYSLIN DD DSN=&&LOADSET, ...
//COB.SYSIN DD DSN=STEP3.TEST.COBOL, ...
//* **************************
//* LINK-EDIT STEP */

//* **************************
//LKEDAlL EXEC PLIXlG
//LKED.SYSLIB DD
// DD DSN=SYSl.FORTlIB,DISP=SHR
// DD DSN=SYSI.COBlIB,DISP=SHR
// DD DSN=SYSl.PPlINK,DISP=SHR
//lKED.SYSIN DD DSN=&&LOADSET,DISP=(OlD,DELETE)
//GO.OUT DD SYSOUT=A, .. .
//GO.SPACE DD UNIT=SYSDA, .. .
//GO.SYSOUT DD SYSOUT=A

Figure 29. Link-Editing PL/I with Other High Level Languages

LINK-EDITING FETCHABLE LOAD MODULES

The PL/I FETCH and RELEASE statements permit the dynamic loading
of separate load modules which can be subsequently invoked from
the Pl/I object program. There are a number of restrictions on
the PL/I statements that can be used in fetched procedures.
These are described in the Language Reference Manual for this
compiler.

Fetchable (or dynamically-loaded) modules should be link-edited
into a load module library which is subsequently made available
for the job step by means of a JOBLIB or STEPLIB DD statement.

The step which link-edits a fetchable load module into a library
requires the following linkage editor control statements:

• An ENTRY statement to define the entry-point into the PL/I
program.

• A NAME statement to define the name used for the fetchable
load module. This statement is required if the compiler
option NAME is not used and if the name is not specified in
the DSN parameter in the SYSLMOD DD statement used to define
the load module library.

• Optionally, for optimum space saving, REPLACE statements to
delete the control sections shown in Figure 30 on page 88,
if they are present in the object module.

Chapter 3. The Linkage Editor and the Loader 87

Control
section Present In

PLISTART All programs

IBMBJWTl Programs that use the WAIT statement

IBMTJWTl Multitasking programs that use the WAIT statement

IBMBTOCI Programs that use the COMPLETION built-in function or
pseudovariable

IBMTTOCI Multitasking programs that use the COMPLETION built-in
function or pseudovariable

IBMBTPRI Programs that use the PRIORITY pseudovariable

IBMTTPRI Multitasking programs that use the PRIORITY pseudovariable

IBMBEFLI Programs compiled with the FLOW or COUNT options

Figure 30. Control Sections to be Deleted for Optimum
Space-Saving

The name or any alias by which the fetchable load module is
identified in the load module library must appear in a FETCH or
RELEASE statement within the scope of the invoking procedure.

COBOL or FORTRAN modules cannot be loaded dynamically by the
PL/I FETCH statement.

The job control statements and the linkage editor statements to
link-edit a fetchable load module into a library called PRVLIB
are given in Figure 31. The cataloged procedure PLIXCL is used
to illustrate these statements by sharing a job that includes
both the compilation and the link-editing of the fetchable PL/I
module.

//FETCH JOB
//STP EXEC PLIXCL
//PLI.SYSIN DD *

PL/I source(fetchable)

/*
//LKED.SYSLMOD DD DSN=PRVLIB, ...
//LKED.SYSLIN DD *

/*

ENTRY procedure-name
REPLACE PLISTART
REPLACE IBMBJWTl
REPLACE IBMBTOCI
REPLACE IBMBTPRI
INCLUDE OBJMOD
NAME FETCHI

//LKED.OBJMOD DD DSN=&&LOADSET,DISP=(OLD, ...

Figure 31. Example of Link-Editing a Fetchable Load Module

88 OS PL/I Optimizing Compiler: Programmer's Guide

MULTITASKING CONSIDERATIONS

When fetchable load modules are called as tasks, certain library
routines are assumed to be available in the main task load
module. Therefore, if a fetchable task uses one of them, and
the main does not, then that library routine must be added to
the main task load module via a link-edit INCLUDE statement.

The affected functions and their required library routines are:

Function

GOTO out of block

WAIT

EVENT pseudovariable

COMPLETION pseudovariable

PRIORITY pseudovariable

EXCLUSIVE file attribute

EXTENDED ARCHITECTURE CONSIDERATIONS

Library Routine

IBMBPGOA

IBMBJWTA

IBMBTOCA

IBMBTOCA

IBMBTPRA

IBMBPQDA

If only Release 5 object modules and resident library routines
are link-edited together, then the resulting load module is
RMODECANY) and AMODEC3l); no linkage editor parameters or
control statements are required for this result. This load
module is compatible with 3l-bit execution on MVS/Extended
Architecture, and is also compatible with execution on MVS/SP
1.3.

If you require changes to the modes of the load module, then you
specify parameters using the linkage editor JCL or using a
linkage editor control statement.

JCL parameters are specified as

PARM=' ... [,RMODE={24IANY},AMODE={24131IANY},]

and control statement as

MODE AMODEC24131IANY),RMODE(24IANY)

For more information on OS PL/I and Extended Architecture, see
Appendix F, "MVS/Extended Architecture (MVS/XA) Considerations"
on page 453. For more information on the linkage editor, see
MVS/Extended Architecture Linkage Editor and Loader User's
Guide.

COMBINING PL/I MODULES FROM THE OPTIMIZING AND CHECKOUT COMPILERS

For information about combining PL/I modules from the optimizing
and checkout compilers,. see the OS PL/I Ch,eckout Compiler:
Programmer's Guide. OS PL/I Release 5 object code and Release 5
transient library routines will execute with the OS PL/I Checker
Release 3.0. The Release 5 object modules must not use the
resident library routines that are part of the Checker
(PLICMIX).

Chapter 3. The Linkage Editor and the Loader 89

LOADER

LOADER PROCESSING

The loader is a program that produces and executes load modules.
It always stores the load nlodu:les directly in main storage where
they are executed immediately.

The input to the loader can include ~ingle object modules or
load modules, several object modules ~r load modules, or a
mixture of both. The output from the loader always comprises an
executable program that is loaded into main storage from where
it will be executed.

Unlike the linkage editor you cannot use any control statements
with the loader. If any linkage editor control statements are
used, they will be ignored, and their presence in the input
stream will not be treated as an error. Your job will continue
to be processed, a message will be generated and, if you have
included a DD statement with the name SYSlOUT, this message and
the name of the control statement will be printed on your
listing.

The loader compensates for the absence of the facilities
provided by control statements by ~llowing the concatenation of
both object and load modules in the data set defined by the DD
statement with the name SYSlIN, and by allowing an entry point
to be specified by means of the EP option, as described under
"Optional Facilities of the loader" on page 96.

A Pl/I program CDnnot be executed until the appropriate Pl/I
library subroutines have been included. All library subroutines
are included during loading. In basic processing, as shown in
Figure 33 on page 91, the loader accepts data from its primary
input source, a data set defined by the DD statement with the
name SYSlIN. For a Pl/I program, this data is the object module
produced by the compiler. The loader uses the external symbol
dictionary in this object module to determine whether the module
includes any external references for which there are no
corresponding external symbols in the module: it attempts to
resolve such references by a method termed automatic library
call as described in "linkage Editor Processing" on page 69.

The loader locates the subroutines in which the external symbols
are defined (if such subroutines exist) and includes them in 'the
load module. If all external references are resolved
satisfactorily the load module is executed.

The loader will always search the link-pack area before
searching the Pl/I resident library, as shown in Figure 34 on
page 92. The link-pack area is an area of main storage in which
frequently used load modules are stored permanently. If there
is more than one copy of an object module in the data set
defined by the DD statement with the name SYSlIN, the loader
will load the first and ignore the r~st.

90 OS Pl/I Optimizing Compiler: Programmer's Guide

MAIN STORAGE REqUIREMENTS

SYSLIN
(primary input)

PL/I object A

The minimum main storage requirements for the loader are shown
in Figure 32.

storage Required for: Amount (min)
in Bytes

Loader program 10K

Data management access routines 4K

Buffers and tables used by loader 3K

PL/I program to be executed variable

Figure 32. Main storage Requirements for the Loader

This amounts to at least 17K bytes for the loader and its
associated routines and data areas plus the main storage
required for the program that is to be executed. If the loader
program and the data management access routines were stored in
the link-pack area, the amount of main storage required would be
3K bytes for the loader data area plus that required by the
program that is to be executed.

and/or B~--~
load modules C

A

SYSLIB
(call library) -~---»l. ______________ ... ~ loader ~-----> main storage D

E
F
G

PL/I resident D
library EI---'"
(SYSl.PLIBASE F

G

Figure 33. Basic Loader Processing

Chapter 3. The Linkage Editor and the Loader 91

SYSlIN
(primary input)

Main
storage

A

B

> C

P_L_/_I __ O_b_J_.e_c_t ____ A~~<~~>r---------------,I----------and/or load
modules

SYSLIB
(call library)

PL/I resident D
library E
(SYSl.PLIBASE)F

H

loader
Does not load
H as it is
in link pack
area

Figure 34. loader Processing, link-Pack Area and SYSLIB

ddname contents of Data set

SYSLIN Primary input (normally the output from
the compiler)

SYSLOUT Loader messages and module map listing

SYSPRINT PL/I execution-time messages and problem
output listing

SYSLIB Automatic call library

Figure 35. Loader Standard Data Sets

Note to Figure 35:
1 Magnetic tape or direct-access device

Direct-access device

D

E

F

G

link-pack
area

contains
copy of
module H

Resolution

Possible Device Classes!

SYSSQ or the input job
stream (specified by DD *)

SYSSQ, SYSDA, or SYSOUT=A

SYSSQ, SYSDA, or SYSOUT=A

SYSDA

SYSSQ

SYSDA

SYSOUT=A Normal printed output class for system output

92 OS PL/I Optimizing Compiler: Programmer's Guide

JOB CONTROL LANGUAGE FOR THE LOADER

EXEC STATEMENT

Although you will probably use cataloged procedures rather than
supply all the job control language (JCL) required for a job
step that invokes the loader, you should be familiar with these
JCL statements so that you can make the best use of the loader
'and, if necessary, override statements of the cataloged
procedures.

The IBM-supplied cataloged procedures that include a loader
procedure step are as follows:

PLIXCG

PLIXG

Compile, load-and-execute

Load-and-execute

The following paragraphs describe the essential JCL statements
for the loader. The IBM-supplied cataloged procedures are
described under Chapter 9, "Cataloged Procedures" on page 273,
and include examples of these statements.

The name of the loader is IEWLDRGO. It also has the alias
LOADER, which is used in the IBM-supplied cataloged procedures,
and will be used to refer to the loader program in the rest of
this chapter. The basic EXEC statement is:

//stepname EXEC PGM=LOADER

By using the PARM parameter of the EXEC statement, you can
select one or more of the optional facilities provided by the
loader; these are described under "Optional Facilities of the
Loader" on page 96.

DD STATEMENTS FOR THE STANDARD DATA SETS

The loader always requires one standard data set; that defined
by the DD statement with the name SYSLIN. Three other standard
data sets are optional and if you use them you must define them
in DD statements with the names SYSLOUT, SYSPRINT, and SYSLIB.
The four data sets, their names, and other characteristics of
the data sets, are shown in Figure 35 on page 92.

The data sets defined by the DD statements with the names
SYSLIN, SYSLIB, and SYSLOUT are those specified at system
generation for you installation. Other ddnames may have been
specified at your installation; if they have, your JCL
statements must use them in place of those given above. In a
similar manner the IBM-supplied cataloged procedures PLIXCG and
PLIXG use names as shown above; your systems programmer will
have to modify these procedures if the names at your
installation are different.

PRIMARY INPUT (SYSLIN)

Primary input to the loader must be a standard data set defined
by a DD statement with the name SYSLINi this data set must have
consecutive organization. The input can comprise one or more
object modules, one or more load modules, or a mixture of object
modules and load modules.

For a PL/I program the primary input is usually a data set
containing an object module produced by the compiler. This data
set may be on magnetic tape or on a direct-access device, or you
can include it in the input job stream. In all cases the input
must be in the form of 80-byte F-format records.

Chapter 3. The Linkage Editor and the Loader 93

The IBM-supplied cataloged procedure PLIXCG includes the DD
statemeht:

//SYSLIN DD DSN=&&LOADSET,DISP=COLD,DELETE)

This statement specifies that the data set &&LOADSET is
temporary. If you want to modify this statement you must refer
to it by the qualified ddname GO.SYSLIN.

The IBM-supplied cataloged procedure PLIXG does not include a DD
statement for the input data set; you must always supply one
specifying the characteristics of your input data set using the
qualified ddname GO.SYSLIN.

AUTOMATIC CALL LIBRARY (SYSLIBJ

LISTING (SYSLOUTJ

LISTING (SYSPRINTJ

Unless you specify otherwise, the loader will normally attempt
to resolve external references by automatic library call. The
automatic call library (SYSLIB), and how to specify it, is
described under "Linkage Editor" on page 66.

The loader generates a listing that includes a module map (if
you have specified the MAP option) and, if errors have been
detected during processing, messages referring to these. The
information that can appear is described under "Listing Produced
by the loader" on page 98.

You must define the data set in which you want this listing to
be stored by a DD statement with the name SYSlOUT and it must
have consecutive organization. Although the listing is usually
printed it can be stored on any magnetic-tape or direct-access
device. For printed output the following DD statement will
suffice:

//SYSLOUT DD SYSOUT=A

As well as the information listed in the data set defined by the
DD statement with the name SYSLOUT certain information produced
by the loader is always stored in the data set defined by the DD
statement with the name SYSPRINT. This data set, which must
have consecutive organization, holds messages that refer to
errors that have occurred during execution of your program, as
well as the results produced by your program. The information
that may appear is described under "Listing Produced by the
Loader" on page 98. For printed output the following DD
statement will suffice'

//SYSPRINT DD SYSOUT=A

EXAMPLES OF LOADER JCL

A sequence of job control language for the loader is shown in
Figure 36 on page 95. A Pl/I program has been compiled in a job
step with the step name PlI; the resultant object module has
been placed in the data set defined by the DD statement with the
name SYSLIN. Because this module is to be loaded and executed
in the same job as the compile step, this DD statement can use
the backward reference, indicated by the asterisk, as shown. If
the compile and load-and-go steps were in different jobs, the DD
~tatement would have to specify a permanent data set, cataloged
or uncataloged.

The IBM-supplied cataloged procedure PLIXCG includes a DD
statement with the name SYSLIN in both the compile and
load-and-go procedure steps; you do not need to specify this
statement unless you want to modify it. The IBM-supplied

94 OS Pl/I Optimizing Compiler: Programmer's Guide

/ILOAD

//STEPl
/ISYSlIN
II
II
//SYSlIB
//
I/SYSLOUT
//SYSPRINT
//SYSIN

JOB

cataloged procedure PLIXG does not include a DD statement with
the name SYSLIN; you must supply one, using the qualified name
GO.SYSLIN.

Typical job control language statements for the loader are shown
in Figure 37. The example illustrates how to include, in the
input stream, both an object module for input to the loader, and
data to be used by your program during execution.

IILOAD

//STEPl
//SYSLIN
//SYSlIB
//SYSLOUT
//SYSPRINT

Figure 36.

JOB

EXEC PGM=LOADER
DD DSN=*.PlI.SYSLIN,DISP=(OLD,DELETE)
DD DSN=SYSl.PLIBASE,DISP=SHR
DD SYSOUT=A
DD SYSOUT=A

Job Control Language for Load-and-Go

EXEC PGM=LOADER
DD DSN=OBJECT,UNIT=SYSSQ,VOL=SER=nnnnnn,DISP=(OLD,KEEP)
DD DSN=MODlIB(MoD55),DISP=SHR
DD DDNAME=IN
DD DSN=SYSl.PLIBASE,DISP=SHR
DD DSN=PRIVLIB,DISP=SHR
DD SYSoUT=A
DD SYSoUT=A

DD *

(insert here the object module to be included)

/*
//Go.SYSIN DD *

(insert here the execution data, if any)
1*

Figure 37. Object and Load Modules in Load-and-Go

Chapter 3. The Linkage Editor and the loader 9S

The DD statement with the name SYSlIN and the two following
unnamed DD statements define three data sets that are to be
concatenated into one data set to be used as input to the
loader. The first data set is named OBJMOD and contains an
object module. This data set could be the output of the
optimizing compiler that has just processed your Pl/I program.
The second data set is named MODlIBCMOD55) containing a load
module that has been given the name MOD55 and stored in the
library called MODlIB. The third data set is an object module
defined by the DD statement with the name IN. This DD statement
appears further on and has the asterisk notation that indicates
that the data set defined by this statement follows in the input
stream.

The DD statement with the name SYSlIB and the unnamed DD
statement immediately following it define two data sets that are
to be concatenated so that they can be searched for unresolved
external references by automatic library call. The first data
set is the Pl/I resident library (SYSl.PlIlIB) and the second is
a private library called PRIVlIB.

OPTIONAL FACILITIES OF THE LOADER

The loader provides a number of optional facilities that are
selected by including the appropriate keywords from the
following list in the PARM parameter of the EXEC statement that
invokes it:

CAll
EP
lET
MAP
PRINT
RES
SIZE

Code the PARM parameter as follows:

PARM='[loader-optionsJ [/execution-options]
[/pgmparmJ'

where "loader-options" is a list of loader options,
"execution-options" is a list of execution-time options Cas
described in "Execution-Time Options" on page 31), and "pgmparm"
is a parameter to be passed to the main procedure of the Pl/I
program to be executed. In the examples given below, the
program parameter is referred to as PP.

If loader-options and either execution-options or a program
parameter (or both) occur in the PARM parameter, the
loader-options are given first and are separated from the
execution-options for program parameter by a slash. If there
are loader-options but no execution-options or program
parameter, the slash is omitted, but if there are only
execution-options or program parameters, the slash must be
coded. If there is more than one option, the option keywords
are separated by commas.

The PARM field can have one of three formats:

1. If the special characters / or = are used, the field must be
enclosed in single quotes. For example:

PARM='MAP,EP=FIRST/PP'
PARM='MAP,EP=FIRST'
PARM='/PP'

2. If these characters are not included, and there is more than
one loader option, the options must be enclosed in
parentheses. For example:

PARM=(MAP,lET)

96 OS Pl/I Optimizing Compiler: Programmer's Guide

CALL OPTION

EP OPTION

LET OPTION

MAP OPTION

PRINT OPTION

3. If these characters are not included, and there is only one
loader option, neither quotes nor parentheses are required.
For example:

PARM=MAP

To override the PARM parameter options specified in a cataloged
procedure, you must refer to the PARM parameter by the qualified
name PARM.procstepname. For example: PARM.GO

The loader options are of two types:

1. Simple pairs of keywords: a positive form (for example,
CALL) that requests a facility, and an alternative negative
form (for example, NOCALL) that rejects that facility.
CALL, LET, MAP, PRINT, and RES are of this type.

2. Keywords that permit you to assign a value to a function
(for example, SIZE=lOK). EP and SIZE are of this type.

The loader options are described in the following sections, in
alphabetic order.

The CALL option specifies that the loader will attempt to
resolve external references by automatic library call. To
preserve compatibility with the linkage editor, the negative
form of this option can be specified as NCAL as well as by
NOCALL.

The EP option specifies the entry point name of the program that
is to be executed. The syntax of the EP option is:

EP=name

where "name" is an external name. If all input modules are load
modules you must specify EP=PLISTART.

The LET option specifies that the loader will try to execute the
problem program even if a severity 2 error has been found.

The MAP option specifies that the loader is to print a map of
the load module giving the relative locations and lengths of
control sections in the module. You must specify the data set
defined by the DD statement with the name SYSLOUT to have this
map printed. The module map is described in "Listing Produced
by the Loader" on page 98.

The PRINT option specifies that the data set defined by the DD
statement with the name SYSLOUT is to be used for messages, the
module map, and other loader information.

Chapter 3. The Linkage Editor and the loader 97

RES OPTION

SIZE OPTION

The RES option specifies that the loade~ will attempt to ~esolve
exte~nal ~efe~ences by a search of the link-pack area of main
storage. This search will be made after the p~imary input to
the loader has been processed but befo~e the data set defined by
the DD statement with the name SYSLIB is opened.

The SIZE option specifies the amount of main storage, in bytes,
to be allocated to the loader. The syntax of the SIZE option
is:

SIZE=yyyyyy

SIZE=yyyK

specifies that yyyyyy bytes of main storage a~e to be
allocated to the loader.

specifies that yyyK bytes of main storage are to be
allocated to the loade~ (lK=1024).

The values can be enclosed, optionally, in pa~entheses.

LISTING PRODUCED BY THE LOADER

MODULE MAP

The loade~ can provide a listing on the SYSLOUT data set; the
SYSPRINT data set is used by the problem program. The contents
of each is given in Figure 38.

Data set Contents

SYSLOUT Loader explanatory messages and diagnostic messages,
and optionally, a module map.

SYSPRINT PL/I execution-time messages, and problem program
output.

Figure 38. Contents of SYSlOUT and SYSPRINT Data Sets

The SYSLOUT listing is described here; the SYSPRINT listing is
described under "Listing (SYSPRINT)" on page 10.

The items in the SYSlOUT listing appear in the following
sequence:

1. Statement identifying the loader.

2. Module map (if specified).

3. Explanatory, erro~, or warning messages.

4. Diagnostic messages.

If the MAP option is specified, a module map is printed in the
SYSlOUT listing. The map lists all the control sections in the
load module and all the entry point names (other than the fi~st)
in each cont~ol section. The information for each reference isz

• The cont~ol section or entry point name.

• An aste~isk, if the control section is included by library
call.

98 OS PL/I Optimizing Compiler: Programmer's Guide

• An identifier, as followss

SD Section definition: the name of the control section.

LR Label reference: identifying an entry point in the
control section other than the primary entry point.

CM Common areas an external file, or a non-string element
variable declared STATIC EXTERNAL.

• Absolute address of the control section or entry point.

Each reference is printed left to right across the page and
starts at a preset position. This gives the impression that the
references are arranged in columns, but the correct way to read
the map is line by line, across the page, not down each column.

The module map is followed by a similar listing of the
pseudoregisters. The identifier used here is PR, and the
address is the offset from the beginning of the pseudo register
vector (PRV). The total length of the PRY is given at the end.

The total length of the module to be executed, and the absolute
address of its primary entry point, are given after the
explanatory messages and before the diagnostic messages.

EXPLANATORY AND DIAGNOSTIC MESSAGES

The loader generates messages describing errors or conditions,
detected during processing by the loader, that may lead to
error. The format of these messages is given under "Diagnostic
Message Directory" on page 77.

When the module to be executed has been processed, the loader
prints out in full all the messages referred to above. The text
of each message, an explanation, and any recommended programmer
response, are given in OS/VS Message Library: linkage Editor and
Loader Messages.

Chapter 3. The Linkage Editor and the Loader 99

CHAPTER 4. DATA SETS AND FILES

DATA SETS

DATA SET NAMES

This chapter describes briefly the nature and organization of
data sets, the data management services provided by the
operating system, the record formats acceptable for auxiliary
storage devices, and the way in which data sets are associated
with Pl/I files. It also describes some ENVIRONMENT options
used in file declarations to describe the data set to Pl/I.
Methods of creating and accessing data sets are given in
Chapter 5, "Defining Data Sets for Stream Files" on page 134,
Chapter 6, "Using Consecutive, Indexed, Regional, and
Teleprocessing Data Sets" on page 149, and Chapter 7, "Using
VSAM Data Sets from Pl/I" on page 222.

Chapter 7, "Using VSAM Data Sets fromPl/In on pa~e 222
describes VSAM data sets. These differ signifidarttly from other
data set types; VSAM users will find that much of t~e
information in this chapter is irrelevant.

A data set is any collection of data that can be created by a
program and accessed by the same or another program. A data set
may be a deck of punched cards, it may be a series of items
recorded on magnetic tape, or it may be recorded on a
direct-access device (as well as being input from, or output to,
your terminal). A printed listing produced by a program is a
data set, but it cannot be accessed by a program.

A volume is a physical unit of auxiliary storage (for example, a
reel of magnetic tape or a disk pack) that can be written on or
read by an input/output device; a serial number identifies each
volume (other than a magnetic-tape volume either without labels
or with nonstandard labels).

A magnetic-tape or direct-access volume can contain more than
one data set; conversely, a single data set can span two or more
magnetic-tape or direct-access volumes.

A data set on a direct-access device must have a name so that
the operating system can refer to it. If you do not supply a
name, the operating system will supply a temporary one. A data
set on a magnetic-tape device must have a name if the tape has
IBM standard labels (see "labels" on page 105). Names can be
unqualified, qualified, temporary, or generation names, as
described in your JCl manual. Data sets on punched cards, paper
tape, unlabeled magnetic tape, or nonstandard labeled magnetic
tape do not have names.

You can place the name of a data set, with information
identifying the volume on which it resides, in a catalog. Such
a data set is termed a cataloged data set. To catalog a data
set, use the CATlG subparameter of the DISP parameter of the DD
statement. To retrieve a cataloged data set, you need only
specify the name of the data set and its disposition. The
operating system searches the catalog for information associated
with the name and uses this information to request the operator
to mount the volume containing your data set.

100 OS Pl/I Optimizing Compiler: Programmer's Guide

BLOCKS AND RECORDS

RECORD FORMATS

The items of data in a data set are arranged in blocks separated
by interblock gaps (IBG). (Some manuals refer to these as
interrecord gaps.)

A block is the unit of data transmitted to and from a data set.
Each block contains one record, part of a record, or several
records. A block could also contain a prefix field of up to 99
bytes in length depending on the information interchange code
(ASCII or EBCDIC) in which the data is recorded (see
"Information Interchange Codes"). Specify the block size in the
BlKSIZE parameter of the DD statement or in the BlKSIZE option
of the ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program.
When writing a Pl/I program, you need consider only the records
that you are reading or writing; but when you describe the data
sets that your program will create or access, you must be aware
of the relationship between blocks and records.

If a block contains two or more records, the records are said to
be blocked. Blocking conserves storage space in a volume
because it reduces the number of interblock gaps, and it may
increase efficiency by reducing the number of input/output
operations required to process a data set. Records are blocked
and deblocked by the data management routines.

Specify the record length in the lRECl parameter of the DD
statement or in the RECSIZE option of the ENVIRONMENT attribute.

INFORMATION INTERCHANGE CODES: The normal code in which data is
recorded is the Extended Binary Coded Decimal Interchange Code
(EBCDIC), although source input can optionally be coded in
Binary Coded Decimal (BCD). However, for magnetic tape only,
the system accepts data recorded in the American Standard Code
for Information Interchange (ASCII). Use the ASCII and BUFOFF
options of the ENVIRONMENT attribute if you are reading or
writing data sets recorded in ASCII.

A prefix field up to 99 bytes in length may be present at the
beginning of each block in an ASCII data set. The use of this
field is controlled by the BUFOFF option of the ENVIRONMENT
attribute. For a full description of the options used for ASCII
data sets, see "Consecutive Data Sets" on page 149.

Each character in the ASCII code is represented by a 7-bit
pattern and there are 128 such patterns. The ASCII set includes
a substitute character (the SUB control character) that is used
to represent EBCDIC characters having no valid ASCII code. The
ASCII substitute character is translated to the EBCDIC SUB
character, which has the bit pattern 00111111.

The records in a data set must be one of the following:

• Fixed-length

• Variable-length

• Undefined-length

Records can be blocked if required, but only fixed-length and
variable-length records are deblocked by the system;
undefined-length records must be deblocked by your program.

Chapter 4. Data Sets and Files 101

Fixed-Length Records

You can specify the following formats for fixed-length records.

F Fixed-length, unblocked
FB Fixed-length, blocked
FS Fixed-length, unblocked, standard
FBS Fixed-length, blocked, standard

In a data set with fixed-length records, as shown in Figure 39~
all records have the same length. If the records are blocked,
each block usually contains an equal number of fixed-l~ngth
records (although a block may be truncated). If the records are
unblocked, each record constitutes a block.

Unblocked Records (F-format):

I Record [IBGI Record I ... IBG Record

Blocked Records (FB-format):

------------Block----------~

Record Record Record IBG Record

Figure 39. Fixed-length Records

Because it can base blocking and deblocking on a constant record
length, the operating system can process fixed-length records
faster than it can variable-length records.

The use of "standard" (FS-format and FBS-format) records further
optimizes the sequential processing of a data set on a
direct-access device. A standard format data set must contain
fixed-length records and must have no emb~dded empty tracks or
short blocks (apart from the last block). With a standard
format data set, the operating system can predict whether the
next block of data will be on a new track and, if necessary, can
select a new read/write head in anticipation of the transmission
of that block. A PL/I program never places embedded short
blocks in a data set with fixed-length records. A data set
containing fixed-length records can be processed as a standard
data set even if it is not created as such, providing it
contains no embedded short blocks or empty tracks.

Variable-Length Records

You can specify the following formats for variable-length
records:

V Variable-length, unblocked

VB Variable-length, blocked

VS Variable-length, unblocked, spanned

VBS Variable-length, blocked, spanned

D Variable-length, unblocked, ASCII

DB Variable-length, blocked, ASCII

102 OS PL/I Optimizing Compiler: Programmer's Guide·

V-format:

Record I

VB-format:

VS-format:

Record I
(entire)

VBS-format:

Record I
(entire)

V-format permits both variable-length records and
variable-length blocks. The first 4 bytes of each record and of
each block contain control information for use by the operating
system (including the length in bytes of the record or block).
Because of these control fields, variable-length records cannot
be read backward. Illustrations of variable-length records are
shown in Fi~ure 40.

IBG

Record 2
IBG

Record 2
(first segment)

Record 3

Spanned record

lBG Record 2
(last segment)

lBG

Spanned record

Record 2 lBG
(fi rst segment')

Record 2
(last se~ment)

Record 3

CI: Block control information
C2: R~co~d or segment control information

Figure 40., Variable-Length Records

V-format ~ignifies unblocked variable-length records. Each
record is treated as a block containing only one record, the
first 4 bytes of the block contain block control information,
and the next 4 contain record control information.

VB-format signifies blocked variable-length records. Each block
contains as many complete records as it can accommodate. The
first 4 bytes of the block contain block control information,
and the first 4 bytes of each record contain record control
information.

SPANNED RECORDS: A spanned record is a variable-length record
in which the length of the record can exceed the size of a
block~ If this occurs, the record is divided into segments and
accommodated in two or more consecutive blocks by specifying the
record format ~s either VS or VBS. Segmentation and reassembly
are handled by the operating system. The use of spanned records
allows you to select a block size, independently of record
length, that will combine optimum use of auxiliary storage with
maximu. efficiency of transmission.

Chapter 4. Data Sets and Files 103

VS-format is similar to V-format. Each block contains only one
record or segment of a record. The first 4 bytes of the block
contain block control information, and the next 4 contain record
or segment control information (including an indication of
whether the record is complete or is a first, intermediate, or
last segment).

With REGIONAL(3) organization, the use of VS-format removes the
limitations on block size imposed by the physical
characteristics of the direct-access device. If the record
length exceeds the size of a track, or if there is no room left
on the current track for the r~cord, the record will be spanned
over one or more tracks.

VBS-format differs from VS-format in that each block contains as
many complete records or segments as it can accommodate; each
block is, therefore, approximately the same size (although there
can be a variation of up to 4 bytes, since each segment must
contain at least 1 byte of data).

ASCII RECORDS: For data sets that are recorded in ASCII, use
D-format as follows:

• D-format records are similar to V-format, except that the
data they contain is recorded in ASCII.

• DB-format records are similar to VB-format, except that the
data they contain is recorded in ASCII.

Undefined-Length Records

U-format permits the processing of records that do net cenform
to F- and V-formats. The operating system and the compiler
treat each block as a record; your program must perform any
required blocking or deblocking.

DATA SET ORGANIZATION

The data management routines of the operating system can handle
a number' of types of data sets, which differ in the way data is
stored within them and in the permitted means of access to the
data. The three main types of non-VSAM data sets and the
corresponding keywords describing their PL/I organization2 are
as follows:

Type of Data Set

Sequential
Indexed sequential
Direct

PL/I organization

CONSECUTIVE
INDEXED
REGIONAL

The compiler recognizes a fourth type, teleprocessing, by the
file attribute TRANSIENT.

A fifth type, partitioned, has no corresponding Pl/I
organization. VSAM also provides a number of alternatives.

In a seguential (or CONSECUTIVE) data set, records are placed in
physical sequence. Given one record, the location of the next
record is determined by its physical position in the data set.
Sequential organization is used for all magnetic tapes, and may
be selected for direct-access devices. Paper tape, punched
cards, terminal, and printed output are sequentially organized.

2 Do not confuse the terms "sequential" and "direct" with the
Pl/I file attributes SEQUENTIAL and DIRECT. The attributes
refer to how the file is to be processed, and not to the way
the corresponding data set is organized.

104 as Pl/I Optimizing Compiler: Programmer's Guide

LABELS

An indexed sequential (or INDEXED) data set must reside on a
direct-access volume. An index or set of indexes maintained by
the operating system gives the location of certain principal
records. This permits direct retrieval, replacement, addition,
and deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct-access
volume. The records within the data set can be organized in
three ways: REGIONAL(l), REGIONAL(2), and REGIONAl(S); in each
case, the data set is divided into regions, each of which
contains one or more records. A key that specifies the region
number and, for REGIONAl(2) and REGIONAl(S), identifies the
record, permits direct-access to any record; sequential
processing is also possible.

A teleprocessing data set (associated with a TRANSIENT file in a
PL/I program) must reside in storage. Records are placed in
physical sequence.

In a partitioned data set, independent groups of sequentially
organized data, each called a member, reside in a direct-access
data set. The data set includes a directory that lists the
location of each member. Partitioned data sets are often called
libraries. The compiler includes no special facilities for
creating and accessing partitioned data sets. Each member can
be processed as a CONSECUTIVE data set by a Pl/I program. The
use of partitioned data sets as libraries is described under
Chapter 8, "libraries of Data Sets" on page 264.

The operating system uses labels to identify magnetic-tape and
direct-access volumes, and to store data set attributes (for
example, record length and block size). The attribute
information must originally come from a DD statement or from
your program. Once the label is written you need not specify
the information again.

Magnetic-tape volumes can have IBM standard or nonstandard
labels, or they can be unlabeled. IBM standard labels have two
parts: the initial volume label, and header and trailer labels.
The initial volume label identifies a volume and its owner; the
header and trailer labels precede and follow each data set on
the volume. Header labels contain system information,
device-dependent information (for example, recording technique),
and data-set characteristics. Trailer labels are almost
identical with header labels, and are used when magnetic tape is
read backward.

Direct-access volumes have IBM standard labels. Each volume is
identified by a volume label, which is stored on the volume.
This label contains a volume serial number and the address of a
volume table of contents (VTOC). The table of contents, in
turn, contains a label, termed a data set control block (DSCB),
for each data set stored on the volume.

DATA DEFINITION (DD) STATEMENT

A data definition (DD) statement is a job control statement that
defines a data set to the operating system, and is a request to
the operating system for the allocation of input/output
resources. Each job step must include a DD statement for each
data set that is processed by the step.

Your JCl manual describes the syntax of job control statements.
The operand field of the DD statement can contain keyword
parameters that describe the location of the data set (for
example, volume serial number and identification of the unit on
which the volume will be mounted) and the attributes of the data
itself (for example, record format).

Chapter 4. Data Sets and Files 105

The DD statement enables you to write Pl/I source programs that
are independent of the data sets and input/output devices they
will use. You can modify the parameters of a data set or
process different data sets without recompiling your program;
for example, you can cause a program that originally read
punched cards to accept input from magnetic tape by changing the
DD statement.' .

The following paragraphs describe the relationship of some
operands of the DD statement to your PL/I program.

The LEAVE and REREAD options of the ENVIRONMENT attribute allow
you to use the DISP parameter to control the action taken when
the end of a magnetic-tape volume is reached or when a
magnetic-tape data set is closed. The lEAVE and REREAD options
are described under "Consecutive Data Sets" on page 149, and are
also described under "CLOSE Statement" in the OS and DOS PL/I
language Reference Manual.

Use of the Conditional Subparameters

If you use the conditional subparameters of the DISP parameter
for data sets processed by Pl/I programs, the step abend
facility must be used. The step abend facility is obtained as
follows:

1. The ERROR condition should be raised or signaled whenever
the program is to terminate execution after a failure that
requires the application of the conditional subparameters.

2. The resident library subroutine IBMBEER must be changed to
return a nonzero return code. The method of doing this is
described in OS Pl/I Optimizing Compiler Installation Guide
for MVS.

DATA .SET CHARACTERISTICS: The DCB (data control block)
parameter of the DD statement allows you to describe the
characteristics of the data in a data set, and the way it will
be processed, at execution time. Whereas the other parameters
of the DD statement deal chiefly with the identity, location,
and disposal of the data set, the DCB parameter specifies
information required for the processing of the records
themselves. The subparameters of the DCB parameter are
described in your JCl manual. For DCB use, see "Data Control
Block" on page 117.

The DCB parameter contains subparameters that describe:

• The organization of the data set and how it will be accessed
(CYlOFl, DSORG, lIMCT, NCP, NTM, and OPTCD subparameters)

• Device-dependent information such as the recording technique
for magnetic tape or the line spacing for a printer (CODE,
DEN, FUNC, MODE, OPTCD=J, PRTSP, STACK, and TRTCH
subparameters)

• The record format (BlKSIZE, KEYLEN, lRECl, RECFM, and RKP
subparameters)

• The number of buffers that are to be used (BUFNO
subparameter)

• The printer or card punch control characters (if any) that
will be inserted in the first byte of each record (RECFM
subparameter)

You can specify BLKSIZE, BUFNO, lRECl, KEYLEN, NCP, RECFM, RKP,
and TRKOFl (or their equivalents) in the ENVIRONMENT attribute
of a file declaration in your PL/I program instead of in the DCB
parameter.

You cannot use the DCB parameter to ov~rride information already
established for the data set in your Pl/I program (by the file

106 as Pl/I Optimizing Compiler: Programmer's Guide

attributes declared and the other attributes that are implied by
them). DCB subparameters that attempt to change information
already supplied are ignored.

An example of the DCB parameter is:

DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

which specifies that fixed-length records, 40 bytes in length,
are to be grouped together in a block 400 bytes long.

AUXILIARY STORAGE DEVICES

The following paragraphs summarize the salient operational
features of various types of auxiliary storage devices.

IBM 2520 AND 2540 CARD READER AND PUNCH

Both the card reader and card punch accept F-format, V-format,
and U-format records; the control bytes of V-format records are
not punched. Any attempt to block records is ignored.

Each punched card corresponds to one record; you should
therefore restrict the maximum record length to 80 bytes (EBCDIC
mode) or 160 bytes (column-binary mode). To select the mode,
use the MODE subparameter of the DCB parameter of the DD
statement; if you omit this subparameter, EBCDIC is the default.
(The column-binary mode increases the packing density of
information on a card, punching 2 bytes in each column. Only 6
bits of each byte are punched; on input, the 2 high-order bits
of each byte are set to zero; on output, the 2 high-order bits
are lost.) The IBM 2540 Card Read Punch has five stackers into
which cards are fed after reading or punching. Two stackers
accept only cards that have been read, and two others accept
only those that have been punched; the fifth (center) stacker
can accept either cards that have been read or those that have
been punched. The two stackers in each pair are numbered 1 and
2 and the center stacker is numbered 3, as shown in Figure 41.

r------READI--------~

~-----PUNCH------~

Figure 41. IBM 2540 Card Read Punch: Stacker Numbers

The IBM 2520 Card Read Punch has two stackers, into which cards
can be read or punched. The IBM 2501 Card Reader has only one
stacker.

Cards are normally fed into the appropriate stacker 1 after
reading or punching. You can use the STACK subparameter of the
DCB parameter of the DD statement to select an alternative
stacker for reading or punching. For punching only, you can
select the stacker dynamically by inserting an American National
Standard or machine code control character in the first byte of

Chapter 4. Data Sets and Files 107

each record; you must indicate which you are using in the RECFM
subparameter of the DD statement or in the ENVIRONMENT option.
The control character is not punched.

IBM 3505 AND 3525 CARD READER AND PUNCH

The IBM 3505 Card Reader and the IBM 3525 Card Punch are
functionally separate and operate independently of each other.

The 3505 reads 80-column cards, and provides; in addition to
normal card reading, the following facilities:

• Optical Mark Read (in EBCDIC or column binary mode)

• Read Column Eliminate (in EBCDIC or column binary mode)

• Stacker selection

The 3525 is basically an 80-column card punch, and can have the
following additional facilities:

• Card reading facilities that optionally include:

Reading in EBCDIC or column binary mode

Read Column Eliminate

• Card punching in EBCDIC or column binary mode

• Card printing facilities that include either:

Two-line printing, or

Multiline printing (up to 25 lines)

• Punch Interpretation

• Stacker selection

The various operations of the 3505 and the 3525 are described in
the following sections. In general, the operations to be
performed are selected by the FUNC, MODE, and STACK
subparameters of the DCB parameter. The formats of these
subparameters are described in your JCL manual.

Basic Card Reading and Punching

Card reading or punching on a 3525 is selected by specifying
DCB=(FUNC=R) for reading or DCB=(FUNC=P) for punching. If the
FUNC subparameter is not specified, the default is FUNC=R for
input files and FUNC=P for output files that do not have the
PRINT attribute.

Apart from this function selection for the 3525, support for the
3505 as a simple card reader and the 3525 as a card reader or
punch is identical to that for the 2540 described under "IBM
2520 and 2540 Card Reader and Punch" on page 107.

EBCDIC or Column Binary Modes

Cards processed by a 3505 or a 3525 can hold data coded in
either EBCDIC or column binary mode. If EBCDIC is used, each
card can contain UP to 80 characters. If column binary mode is
used, each card can contain up to 160 binary characters, two per
card column. EBCDIC and column binary data cannot be
intermixed.

In column binary mode, each card column holds two 6-bit
characters. The first character appears in rows 12 through 3 on
the card, and the second in rows 4 through 9. The binary values
of characters are transmitted to successive bytes in main

108 OS PL/! Optimizing Compiler: Programmer's Guide

stacker Selection

Optical Mark Read

storage. The 2 high-order bits of each byte are set to zero
(these bits are not represented in the 6-bit code). The
characters are transmitted in the orderz first (top) character,
second (bottom) character, and so on for each column in the
card, from column 1 to column 80.

The details of the coding and conversion technique used for
column binary data are left to the program designer. The
TRANSLATE built-in function may provide a convenient method of
converting data to or from column binary form.

Rules for using column binary mode arez

• The MODE subparameter of the DCB parameter must specify
column binary (MODE=C).

• The PL/I file must have the RECORD attribute.

• The punch-interpret feature must not be used.

• The file must be either an input file or an output punch
file. It cannot be a print file.

• A column binary output file must have a record size of 160
bytes.

The stacker selection feature is optionally available on the
3505 and is a standard feature on a 3525. There are two methods
of selecting a stackerz

• The stacker can be selected permanently for all cards in the
file. This method involves the STACK subparameter of the
DCB parameter.

• For record-oriented data transmission to a 3525, the first
byte of the record can contain a stacker control character
to select the required stacker dynamically. The use of such
codes is specified by the CTLASA or CTL360 ENVIRONMENT
options.

The optical mark read (OMR) feature is a~ailable only on the
3505 card reader. This feature enables preprinted or
pencil-written marks on a punched card to be read as data. The
following rules applyz

• Optical Mark Read is specified by MODE=EO (EBCDIC mode) or
MODE=CO (column binary mode) in the DCB parameter.

• The associated PL/I file must have the RECORD and INPUT
attributes, and must not have the TOTAL attribute.

• Records must be F-format with a RECSIZE of 80 (EBCDIC mode)
or 160 (column binary mode).

• Up to 40 columns of EBCDIC data or 80 characters of column
binary data can be read optically from a single card.
Optical and punched data can be read from the same card
although there are some restrictions, given below, on how
the data is recorded on the card.

• Optical mark data can appear only in alternate card columns
and must be separated by blank columns. Optical mark and
punched hole columns must also be separated by at least one
blank column. When the record is read in, the data is
compressed by removing the blank column following each
optical mark column, and the record is padded with blanks.

Chapter 4. Data Sets and Files 109

• The columns containing optically-readable marks must be
specified to the program at execution time by a format
descriptor card. This card must be the first card in the
deck of cards to be read by the file each time the program
is run. Operating procedures for running jobs that use OMR
should ensure that this point is not overlooked.

• The OMR descriptor card has the following format:

FORMAT (nl,n2),(n3,n4) ...

where n1 is the first column in a group to be read in OMR
mode, n2 is the last column in the group, n3 is the first
column in the next group, n4 is the last column in this
group, and so on. Remember that only every other column
between nl and n2 or n3 and n4 can be read in OMR mode. A
maximum of 40 columns of OMR data can be accommodated on an
aO-column card. nl and n2 (and similarly n3 and n4) must be
either both even or both odd, and n3 must be at least 2
greater than n2.

The forma·t descriptor record must begin in column 2 and can
continue through column 71. If a continuation is required,
punch any character in column 72 and start the continuation
in column 16 of the following card.

A blank must follow the keyword FORMAT. Operands must be
separated by commas. For example:

FORMAT (1,9),(70,80)

This specifies that columns I to 10 and 70 to 80 are
reserved for OMR use and, of these, columns 1, 3, 5, 7, 9,
70, 12, 74, 76, 78, and 80 will be scanned for optical mark
data.

• Column 1 of the card always corresponds with the first byte
of the data in main storage. Consequently, if an optical
mark appears in column 2, column 1 must be blank and the
first byte of storage will also be blank.

• If a marginal mark, weak markJ or poor erasure is detected
on a column, the corresponding byte and the last byte of the
record are set to X'3F'. The TRANSMIT condition is raised
once only for all errors found in a card. The card itself
is stacked in the alternative stacker to that normally used
by the file.

• When an optical mark read file is closed , the last card is
fed and stacked in the same stacker as the previous card.
This feed operation resets the device into unformatted mode,
ready for the next file opening.

• Optical Mark Read is not supported on SYSIN. The 3505 must
be allocated exclusively to the user's job by specifying the
device type of the unit address in the UNIT parameter of the
DD statement.

• When a file is opened for optical mark reading, the value of
the BUFFERS option (for BUFFERED files) or the NCP option
(for UNBUFFERED files) is set to 1.

Read Column Eliminate

The Read Column Eliminate (RCE) feature is optionally available
on the 3505 and on a 3525 with card reading facilities. This
feature permits the selective reading of card columns. The
columns to be ignored when the card is read are specified in a
format descriptor card. The ignored columns are replaced by
blanks in EBCDIC mode or zeros in column binary mode before the
record is transmitted.

The following rules apply:

110 OS PL/I Optimizing Compiler: Programmer's Guide

Punch Interpret

Printing on Cards

• Read Column Eliminate is specified by MODE=ER (EBCDIC mode)
or MODE=CR (column binary mode) in the DCB parameter.

• An RCE format descriptor card must be supplied. This card
must be the first card in the deck of cards to be read by
the program each time it is executed. Operating procedures
for running jobs that use RCE should ensure that this point
is not overlooked.

• The RCE descriptor card has the following format:

FORMAT (nl,n2),(n3,n4) ...

where n1 is the first column in a group of columns to be
ignored and n2 is the last column in the group, n3 is the
first column in the next group to be ignored, n4 is the last
column in this group, and so on.

The format descriptor card must begin in column 2 and
continue through to column 71. If a continuation is
required, punch any character in column 72 and start the
continuation in column 16 of the following card.

A blank must follow the keyword FORMAT. Operands must be
separated by commas. For example:

FORMAT (20,30),(52,76)

This specifies that columns 20 through 30 and columns 52
through 76 are to be ignored when the card is read.

• The PL/I file can have either the STREAM or the RECORD
attribute. Records must be F-format.

• When an RCE file is closed, a card feed operation is
executed by the reader. If several files are to be read
consecutively -- either for successive programs in a single
batch, or for several files in a single program -- a nondata
card must separate the files.

• Read Column Eliminate is not supported on SYSIN. The 3505
or 3525 must be allocated exclusively to the user's job by
specifying the device type of the unit address in the UNIT
parameter of the DD statement.

A single file can be used to punch and interpret cards by
specifying DCB=(FUNC=I). Cards are punched normally, and the
same data is printed on lines 1 and 3 of the card. The first 64
characters are printed on line 1; the remaining 16 characters
are right-justified on line 3.

A punch interpret file may have the STREAM or RECORD and the
BUFFERED or UNBUFFERED attributes. Records must be F-format,
with a record size of 80, or 81 if control characters are being
used for stacker selection.

The card printing feature of the 3525 is available in two forms:

• Two-line printing

• Multiline printing (up to 25 lines)

Printing can be performed either as the only operation on the
card, or as one of a number of operations on the same card. The
following rules apply to print-only files. The additional
requirements for printing after reading or punching a card are
described under "Multiple Operations" on page 112.

Chapter 4. Data Sets and Files III

Multiple Operations

• The FUNC subparameter of the DCB parameter must specify "W"
if the 3525 has the multiline print feature, or "WT" if it
has the two-line print feature. If FUNC is omitted, FUNC=W
is defaulted for Pl/I PRINT files.

• The PL/I file may have either the RECORD or the STREAM
attribute.

• The maximum number of characters that can be printed on each
line is 64. You must ensure that this limit is not
exceeded; in particular, on PRINT files, lINESIZE should not
exceed 64 or data will be lost.

• If the 3525 has the two-line print feature, and is used by a
file with the PRINT attribute or by a file using CTlASA or
CTl360 control characters, you must ensure that no attempt
is made to print on any line other than lines 1 and 3. Such
an attempt will terminate the program without raising the
PL/I ERROR condition. If a PRINT file is used, and a
PAGESIZE of more than 3 is specified, the page size is set
to 3 when the file is opened.

If the file is a non-PRINT file, and control characters are
not used, records are printed on lines I and 3.

• If a 3525 with the multiple print feature is used, the file
should have a maximum page size of 25. If a PAGESIZE of
greater than 25 is specified on a PRINT file, the page size
is set to 25 when the file is opened. Whatever the page
size, a PUT PAGE statement for a PRINT file will always
cause the file to be positioned at line I of the next card.
Any attempt to print beyond line 25 will terminate the
program without raising the PL/I ERROR condition.

• All the American National Standard control characters can be
used, with the exception of "+" (suppress space before
printing). The use of the "+" control character, or of
SKIP(O) on a PRINT file, will terminate the program without
raising the PL/I ERROR condition.

Odd-numbered lines on a card can be reached using "skip to
channel" control characters, with channel numbers being
defined as:

channel number = (line number + 1)/2

Only channels 1 through 12 are valid. Other lines can be
reached by using "space and print" control characters. All
lines can be reached by executing sufficient WRITE or PUT
operations.

Two or three files may be used in association with each other to
enable more than one of the operations "read," "punch," and
"print" to be performed on a single card during one pass through
a 3525. A DD statement is required for each operation that the
device is to perform, and the association of these data sets is
specified by means of the unit affinity (AFF) parameter,
together with the FUNC subparameter of the DCB parameter.

For example, for a set of files that are to perform the
operations read-punch-print, the association of the data sets
and the set of operations is specified as follows:

//CARDIN DD UNIT=3525,DCB=(FUNC=RPW)
//PUNCH DD UNIT=AFF=CARDIN,
// DCB=(FUNC=RPW)
//PRINT DD UNIT=AFF=PUNCH,
// DCB=(FUNC=RPWX)

Valid FUNC options are listed in your JCl manual. Note that the
FUNC option must specify the complete set of associated

112 OS Pl/I Optimizing Compiler: Programmer's Guide

Data Protection

PAPER TAPE READER

operations. "X" must be added to the FUNC option of the print
data set. If the 3525 has the two-line print feature, "T" must
also be coded on the FUNC option of the print data set.

The following rules apply to multiple operations:

• All the device-associated files must have the RECORD
attribute, and must be all BUFFERED or all UNBUFFERED. None
of the files can have the TOTAL option. Records must be
F-format.

• If stacker selection is required, it can only be specified
on the punch file, if there is one. Either stacker-select
control characters or static stacker selection by means of
the STACK subparameter can be used.

• An associated data set cannot be allocated to SYSIN or
SYSPRINT. The 3525 must be allocated exclusively to your
job by specifying the device type of the unit address in the
UNIT parameter of the DD statement.

• Data delimiter cards should not be punched or printed on, or
the first card of the following job will be lost.

Details of how to open and close associated files, and of the
sequences of operations that can be performed, are given in the
OS and DOS PL/I Language Reference Manual.

To avoid erroneous punching into card columns that already
contain data, a "data protection" option can be used on a punch
file which is in association with a read file. Data protection
is specified by a "D" in the FUNC option of the DD statement for
the punch data set. You must provide an aO-byte data protection
image (DPI) and link-edit it into SYSl.IMAGELIB with a member
name of the form FORMxxxx. The DPI contains blanks in columns
that are to be protected, and any alphameric character in
columns that can be punched. An assembler language program is
used to link-edit the DPI. For example:

IIUP EXEC ASMFCL
IIASM.SYSIN DD *
FORMDPI CSECT

1*

DC X'40' (protected column)
DC X'40' (protected column)
DC C'3456789A' (punch columns)
DC 70X'40' (protected columns)
END

IILKED.SYSLMOD DD DISP=OLD,
II DSNAME=SYSl.IMAGELIB(FORMxxxx)

A particular DPI is selected by means of the FCB parameter of
the DD statement for the punch file. For example:

IIPUNCH
II
II

DD UNIT=AFF=CARDIN,
DCB=(FUNC=RPWD),
FCB=xxxx

Data protection cannot be specified for column binary cards.

The paper tape reader accepts F-format and U-format records;
each U-format record is followed by an end-of-record character.
Use the CODE subparameter of the DCB parameter of the DD
statement to request translation of data from one of the six
standard paper-tape codes to EBCDIC. Any character found to
have a parity error is not transmitted.

Chapter 4. Data Sets and Files 113

LINE PRINTERS

The printer accepts F-format~ V-format~ and U-format records;
the control bytes of V-format records are not printed. Each
line of print corresponds to one record; you should therefore
restrict your record length to the length of one printed line.
Any attempt to block records is ignored.

You can use the PRTSP subparameter of the DCB parameter of the
DD statement to request the line spacing of your output~ or you
can control the spacing dynamically by inserting an American
National Standard or a machine-code print control character in
the first byte of each record; you must indicate which you are
using in the RECFM subparameter of the DD statement or in the
ENVIRONMENT option. The control character is not printed. If
you do not specify the line spacingl single spacing (no blanks
between lines) is the default.

3800 PRINTING SUBSYSTEM

MAGNETIC TAPE

The IBM 3800 Printing Subsystem can be used in a manner that is
compatible with IBM line printers. Howeverl it can do more than
line printers. For information on using its added capabilities~
see your IBM 3800 Printing Subsystem Programmer's Guide.

Magnetic-tape devices accept ASCII, fixed-length l
variable-length, and undefined-length records for both 9-track
and 7-track magnetic tape, with the one exception that 7-track
magnetic tape will not accept variable-length records unless the
data conversion feature is available. (The data in the control
bytes of variable-length records is in binary form; in the
absence of the data conversion feature, only 6 of the 8 bits in
each byte are transmitted to 7-track tape.)

Nine-track magnetic tape is used in IBM operating systems, but
some 2400 series magnetic-tape drives incorporate features that
facilitate reading and writing 7-track tape. The translation
feature changes character data from EBCDIC (8-bit code) to BCD
(the 6-bit code used on 7-track tape) or vice versa. The data
conversion feature treats all data as if it were in the form of
a bit string, breaking the string into groups of 8 bits for
reading into main storage, or into groups of 6 bits for writing
on 7-track tape; the use of this feature precludes reading the
tape backward. To use translation or data conversion, include
the TRTCH (tape recording technique) subparameter in the DCB
parameter of the DD statement.

The maximum recording density available depends on the model
number of the tape drive. You can use the subparameter DEN
(density) of the DD statement to specify the recording density.

When a data check occurs on a magnetic-tape device with short
length records (12 bytes on a read and 18 bytes on a write),
these records will be treated as noise.

DIRECT-ACCESS DEVICES

Direct-access devices accept fixed-, variable-, and
undefined-length records.

The storage space on these devices is divided into conceptual
cylinders and tracks. A cylinder is usually the amount of space
that can be accessed without movement of the access mechanism,
and a track is that part of a cylinder that is accessed by a
single read/write head. For example, an IBM 3380 Direct Access
Storage device has 15 recording surfacesl each of which has 885
concentric tracks; thus, it contains 885 cylinders, each of
which includes 15 tracks.

114 OS PL/I Optimizing Compiler: Programmer's Guide

When you create a data set on a direct-access device, you must
always indicate to the operating system how much auxiliary
storage the data set requires. Use the SPACE parameter of the
DD statement to allocate space in terms of blocks, tracks, or
cylinders. If you request space in terms of tracks or
cylinders, bear in mind that space in a data set on a
direct-access device is occupied not only by blocks of data, but
by control information inserted by the operating system; if you
use small blocks, the control information can result in a
considerable space overhead.

OPERATING SYSTEM DATA MANAGEMENT

BUFFERS

The compiler compiles each input or output statement in a Pl/I
program into machine instructions that request the operating
system data management routines to perform the required input or
output operation. (For more information on Pl/I data
management, see the OS Pl/I Optimizing Compiler: Execution logic
manual,)

The data management routines create and maintain data set
labels, indexes, and catalogs; they transmit data between main
storage and auxiliary storage; they use the system catalog to
locate data sets; and they request the operator to mount and
demount volumes as required.

The data management routines can provide areas of main storage,
termed buffers, in which data can be collected before it is
transmitted to auxiliary storage, or into which it can be read
before it is made available to a program. The use of buffers
permits the blocking and deblocking of records, and may allow
the data management routines to increase the efficiency of
transmission of data by anticipating the needs of a program.
Anticipatory buffering requires at least two buffers; while the
program is processing the data in one buffer, the next block of
data can be read into another. Anticipatory buffering can only
be used for data sets being accessed sequentially.

The operating system can further increase the efficiency of
transmission in a program that involves many input/output
operations by using chained scheduling. In chained scheduling,
a series of read or write operations are chained together and
treated as a single operation. For chained scheduling to be
effective, at least three buffers are necessary. For more
information on chained scheduling, see your Data Management
Services Guide.

Chained scheduling should not be used for certain filetypes in
multitasking programs. See OPTCD in your JCl manual.

Record-oriented data transmission has two modes of handling
data:

• In move mode, you can process data by having the data moved
into or out of the variable, either directly or via a
buffer.

• In locate mode, you can process data while it remains in a
buffer. The execution of a data transmission statement
assigns to a pointer variable the location of the storage
allocated to a record in the buffer. locate mode is
applicable only to BUFFERED files; the file must be either a
SEQUENTIAL file or an INPUT or UPDATE file associated with a
VSAM data set.

For more information, see "Processing Modes" in the OS and DOS
Pl/I language Reference Manual.

Chapter 4. Data Sets and Files 115

ACCESS METHODS

The access methods used by the compiler are shown in Figure 42.

A queued access method deals with individual records, which it
blocks and deblocks. The data management routines place a block
of records in an input buffer and pass a single record to the
program for each retrieval request from the program (that is,
they deblock the records); each succeeding retrieval passes
another record to the program. When the input buffer is empty,
it is refilled with another block. SimilarlY, on output, the
data management routines place records in an output buffer and,
when the buffer is full, write out the records. Since the
queued access technique brings records into main storage before
they are requested, it can be used only for records that have
been organized sequentially.

A basic access method moves blocks, not records. When a request
is issued to retrieve a block, the data management

Access
Method

QSAM

QISAM

BSAM

BISAM

BDAM

TCAM

VSAM

Explanation

Queued sequential access method. This combines the
queued access technique with sequential organization.

Queued indexed sequential access method. This combines
the queued access technique with indexed sequential
organization.

Basic sequential access method. This combines the
basic access technique with sequential organization.

Basic indexed sequential access method. This combines
the basic access technique with indexed sequential
organization.

Basic direct-access method. This combines the basic
access technique with direct organization.

Telecommunications access method. This combines the
queued access technique with teleprocessing
organization.

Virtual Storage Access Method. This access method is
described in Chapter 7, "Using VSAM Data Sets from
PL/!" on page 222.

Figure 42. The Access Methods Used by the Compiler

routines pass a block of data to the program that issued the
request; they do not deblock the records. Similarly, an output
request transmits a block to auxiliary storage.

The PL/! library subroutines use QSAM for stream-oriented data
transmission; for record-oriented data transmission, they use
the access methods shown in Figure 43 on page 117. They
implement PL/! GET and PUT statements by transferring the
appropriate number of characters from or to the buffers, and use
GET and PUT macro instructions in the locate mode to fill or
empty the buffers. (For paper tape, the library subroutines use
move mode to permit translation of the transmitted characters
before passing them to the PL/! program.)

116 OS PL/! Optimizing Compilerz Programmer's Guide

DATA CONTROL BLOCK

Data Set Access
Organization File Attributes Methods

CONSECUTIVE SEQUENTIAL INPUT BUFFERED QSAM
OUTPUT
UPDATE UNBUFFERED BSAM

INDEXED SEQUENTIAL INPUT BUFFERED
OUTPUT or QISAM
UPDATE UNBUFFERED

DIRECT INPUT BISAM
UPDATE

REGIONAL SEQUENTIAL INPUT BUFFERED
OUTPUT or BSAM
UPDATE UNBUFFERED

DIRECT INPUT
OUTPUT BDAM
UPDATE

TELEPROCESSING TRANSIENT INPUT BUFFERED TCAM
OUTPUT

VSAM ESDS SEQUENTIAL INPUT BUFFERED
OUTPUT or VSAM
UPDATE UNBUFFERED

VSAM KSDS and SEQUENTIAL INPUT BUFFERED
RRDS OUTPUT or VSAM

UPDATE UNBUFFERED

DIRECT INPUT BUFFERED
OUTPUT or VSAM
UPDATE UNBUFFERED

Figure 43. Access Methods for Record-Oriented Data Transmission

A data control block (DCB), or an access method control block
(ACH) for VSAM, is an area of storage that contains information
about a data set and the volume that contains it. The data
management routines refer to this information when they are
processing a data set; no data set can be processed unless there
exists a corresponding DCB. For a PL/I program, a PL/I library
subroutine creates a DCB for the data set when a file is opened.

A data control block contains two types of information: data
set characteristics and processing requirements. The
characteristics include record format, record length, block
size, and data set organization. The processing information may
specify the number of buffers to be used, and it may include
device-dependent information (for example, printer line spacing
or magnetic tape recording density), and special processing
options that are available for some data set organizations.

The information in the DCB comes from three sources:

• The file attributes declared implicitly or explicitly in the
PL/I program

• The data definition (DD) statement for the data set

• If the data set exists, the data set labels

Chapter 4. Data Sets and Files 117

OPENING A FILE

PUI PROGRAM

DO STATEMENT

The execution of a Pl/I OPEN statement associates a file with a
data set. This requires the merging of the information
describing the file and the data set. If any conflict is
detected between file attributes and data set characteristics,
the UNDEFINEDFIlE condition is raised.

Subroutines of the Pl/I library create a skeleton data control
block for the data set, and use the file attributes from the
DECLARE and OPEN statements, and any attributes implied by the
declared attributes, to complete the data control block as far
as possible, as shown in Figure 44. They then issue an OPEN
macro instruction, which calls the data management routines to
check that the correct volume is mounted and to complete the
data control block. The data management routines examine the
data control block to see what information is still needed and
then look for this information, first in the DD statement, and
finally, if the data set exists and has standard labels, in the
data'set labels. For new data sets, the data management
routines begin to create the labels (if they are required) and
to fill them with information from the data control block.

Neither the DD statement nor the data set label can override
information provided by the PL/I program; nor can the data set
label override information provided by the DD statement.

When the DCB fields have been filled in from these sources,
control returns to the PL/I library subroutines. If any fields
have still not been filled in, the PL/I OPEN subroutine provides
default information for some of them; for example, if LRECL has
not been specified, it is now provided from the value given for
BLKSIZE.

OPEN FI LE(MASTER);

DATA CONTROL BLOCK

Record format FB

Block size 400

Record length 40

Device type 2400

Number of buffers 3

Recording density 1600

DATA SET LABEL Record format=F
Record length= 1 00
Blocking factor=4
Recording density=1600

Note: I nformation from the PL/I program overrides that from the DO statement and the data set label.
I nformation from the DO statement overrides that from the data set la bel.

Figure 44. How the Operating System Completes the DCB

118 OS PL/IOptimizing Compiler: Programmer's Guide

CLOSING A FILE

The execution of a PL/I CLOSE statement dissociates a file from
the data set with which it was associated. The PL/I library
subroutines first issue a CLOSE macro instruction and, when
control returns from the data management routines, release the
data control block that was created when the file was opened.
The data management routines complete the writing of labels for
new data sets and update the labels of existing data sets.

ASSOCIATING DATA SETS WITH FILES

With batch processing, the association of a file with a specific
data set is accomplished using job control language, outside the
PL/I program. At the time a file is opened, the PL/I file is
associated with the name (ddname) of a data definition statement
(DD statement), which defines a specific data set. The
association is with the name of a DD statement, not with the
name of the data set itself.

A ddname is associated with a PL/I file through the character
value of the expression in the TITLE option of the OPEN
statement.

If a file is opened implicitly, or if no TITLE option is
included in the OPEN statement that explicitly opens the file,
the ddname defaults to the file name. If the file name is
longer than 8 characters, the default ddname is composed of the
first 8 characters of the file name.

The character set of the job control language does not contain
the break character (). Consequently, this character cannot
appear in ddnames. Do not use break characters among the first
8 characters of file names, unless the file is to be opened with
a TITLE option with a valid ddname as its expression. The
alphabetic extender characters $, ~, and I, however, are valid
for ddnames, but the first character must be one of the letters
A through Z.

Since external names are limited to 7 characters, an external
file name of more than 7 characters is shortened into a
concatenation of the first 4 and the last 3 characters of the
file name. Such a shortened name is not, however, the name used
as the ddname in the associated DD statement.

Consider the following statements:

1. OPEN FILE(MASTER);

2. OPEN FIlECOlDMASTER);

3. READ FIlECDETAIL) ... j

When statement number 1 is executed, the file name MASTER is
taken to be the same as the ddname of a DD statement in the
current job step. When statement number 2 is executed, the name
OlDMASTE is taken to be the same as the ddname of a DD statement
in the current job step. (The first 8 characters of a file name
form the ddname. If OlDMASTER is an external name, it will be
shortened by the compiler to OLDMTER for use within the
program.) If statement number 3 causes implicit opening of the
file DETAIL, the name DETAIL is taken to be the same as the
ddname of a DD statement in the current job step.

Chapter 4. Data Sets and Files 119

In each of the above cases, a corresponding DD statement must
appear in the job stream; otherwise, the UNDEFINEDFILE condition
would be raised. The three DD statements would appear, in part,
as follows:

1. //MASTER DD

2. //OLDMASTE DD

3. //DETAIl DD

If the file reference in the statement which explicitly or
implicitly opens the file is not a file constant, then the DD
statement name must be the same as the value of the file
reference. The following example illustrates how a DD statement
should be associated with the value of a file variable:

DCL PRICES FILE VARIABLE,
RPRICE FILE;

PRICES = RPRICE;
OPEN FILECPRICES);

The DD statement should associate the data set with the file
constant RPRICE, which is the value of the file variable PRICES,
thus:

//RPRICE DD DSNAME= ...

Use of a file variable also allows a number of files to be
manipulated at various times by a single statement. For
example:

DECLARE F FILE VARIABLE,
A FILE,
B FILE,
C FILE;

DO F=A,B/C;
READ FILE (F) ... ,

END;

The READ statement is used to read the three files A, B, and C,
each of which may be associated with a different data set. The
files A, B, and C remain open after the READ statement has been
executed in each instance.

The following OPEN statement illustrates use of the TITLE
option:

OPEN FILE(DETAIL) TITLE('DETAILl');

If this statement were executed, there must be a DD statement in
the current job step with DETAILl as its ddname. It might
appear, in part, as follows:

//DETAILl DD DSNAME=DETAILA, ...

Thus, the data set DETAILA is associated with the file DETAIL
through the ddname DETAILI.

The file name can, at different times, represent entirely
different data sets. In the above example of the OPEN
statement, the file DETAILI is associated with the data set
named in the DSNAME parameter of the DD statement DETAILI. If
the file were closed and reopened, a TITLE option specifying a
different ddname could be used, and then the file could be
associated with a different data set.

120 OS PL/I Optimizing Compiler: Programmer's Guide

Use of the TITLE option allows you to choose dynamically, at
open time, one among several data sets to be associated with a
particular file name. Consider the following example:

DO IDENT='A', 'B', 'C';
OPEN FILE(MASTER)

TITLE('MASTER1'IIIDENT);

CLOSE FILECMASTER);
END;

In this example, when MASTER is opened during the first
iteration of the do-group, the associated ddname is taken to be
MASTERlA. After processing, the file is closed, dissociating
the file name and the ddname. During the second iteration of
the do-group, MASTER is opened again. This time, MASTER is
associated with the ddname MASTERIB. Similarly, during the
final iteration of the do-group, MASTER is associated with the
ddname MASTERlC.

ASSOCIATING SEVERAL FILES WITH ONE DATA SET

The TITLE option can be used to associate two or more PL/I files
with the same external data set at the same time. This is
illustrated in the following example, where INVNTRY is the name
of a DD statement defining a data set to be associated with two
files:

OPEN FILE (FILEI) TITLE('INVNTRY');
OPEN FILE (FILE2) TITLE('INVNTRY');

If you do this, be careful. These two files access a common
data set through separate control blocks and data buffers. When
records are written to the data set from one file, the control
information for the second file will not record that fact.
Records written from the second file could then destroy records
written from the first file. PL/I does not protect against data
set damage that might occur. If the data set is extended, the
extension is reflected only in the control blocks associated
with the file that wrote the data; this can cause an abend when
other files access the data set.

CONCATENATING SEVERAL DATA SETS

Under OS, for input only, you can concatenate two or more
sequential or partitioned data sets (that is, link them so that
they are processed as one continuous data set) by omitting the
ddname from all but the first of the DD statements that describe
them. For example, the following DD statements cause the data
sets LISTl, LIST2, and LIST3 to be treated as a single data set
for the duration of the job step in which the statements appear:

//GO.LIST DD DSNAME=LISTI,DISP=OLD
// DD DSNAME=LIST2,DISP=OLD
// DD DSNAME=LIST3,DISP=OLD

When read from a PL/I program, the concatenated data sets need
not be on the same volume, but the volumes must be on the same
type of device, and the data sets must have similar
characteristics (for example, block size and record format).
You cannot process concatenated data sets backward.

Chapter 4. Data Sets and Files 121

THE ENVIRONMENT ATTRIBUTE

The ENVIRONMENT attribute of the PL/I file declaration specifies
information about the physical organization of the data set
associated with a file, and other related information. The
information is contained in a parenthesized option list; the
syntax is:

~ Syntax
ENVIRONMENT(Option-list)

Abbreviation: ENV

The options may appear in any order, and are separated by blanks
or commas.

The following example illustrates the syntax of the ENVIRONMENT
attribute in the context of a complete file declaration (the
options specified are for VSAM and are discussed in
Chapter 7, "Using VSAM Data Sets from PL/I" on page 222).

DCl FILENAME FILE RECORD SEQUENTIAL
INPUT ENV(VSAM GENKEY);

Figure 45 on page 123 summarizes the ENVIRONMENT options and
file attributes. Certain qualifications on their use are
presented in the notes and comments for that figure. Those
options that apply to more than one data set organization are
described below. In addition, in the following chapters, each
option is described with each data set organization to which it
applies.

DATA SET ORGANIZATION OPTIONS

The options that specify data set organization are:

CONSECUTIVE
INDEXED
REGIONAl({1 I 2 I 3})
TP({M I R})
VSAM

Each is described in the discussion of the data set organization
it applies to.

If the data set organization option is not specified in the
ENVIRONMENT attribute, a default is obtained when the file is
opened:

• If the merged attributes from the DECLARE and OPEN
statements do not include TRANSIENT, the default is
CONSECUTIVE.

• If the attributes include TRANSIENT, the default is TPCM).

122 OS Pl/I Optimizing Compiler: Programmer's Guide

Record Key:
Types

of Sequential
File

Consecutive T
e

U I
n e

B b p
u u r I

S f f 0 n
File t f f c d
Attributes r e e , e

and e r r i x
ENVIRONMENT a e e n e
Options m d d g d

FILE I I I I I
INPUTl D D D D D
OUTPUT 0 0 0 0 0
ENVIRONMENT I I I S S
STREAM D
PRINTl 0
RECORD I I I I
UPDATE2 0 0 0
SEQUENTIAL D D D
BUFFERED D I D
UNBUFFERED S
BACKWARDS3 0 0

TRANSIENT I
KEYED4 I 0
DIRECT
EXCLUSIVE

F I FB rs I FBS I V I I S S
VB VS VBS U

FIFB DIDBIU S S
F VIVS U

Notes:

Direct
Regional

U
n

B b
u u I
f f n
f f d
e e V V e
r r S S x
e e A A e
d d M M d

I I I I I
D D D D D
0 0 0 0 0
S S S S S

I I I I I
0 0 0 0 0
D D D D
D D S

S S D D

0 0 0 0 I
S S S

0

N N

N N
S S N N

R
e
g
i
0
n
a
I

I
D
0
S

I
0

D

I
S
0

S

I Must be specified
or implied

C Checked for VSAM
D Defaul t
N Ignored for VSAM
o Optional
S Must be specified

Invalid

Attributes Implied

FILE
FILE
FILE
FILE
FILE STREAM OUTPUT
FILE
FILE RECORD
FILE RECORD
FILE RECORD
FILE RECORD
FILE RECORD

SEQUENTIAL INPUT
FILE
FILE RECORD
FILE RECORD KEYED
FILE RECORD DIRECT

KEYED UPDATE

Comments

VS and VBS are invalid
with STREAM

ASCII data sets only
Only F for REGIONAL(l)

and (2)

1 A file with the INPUT attribute cannot have the PRINT attribute.

2 UPDATE is invalid for tape files.

3 BACKWARDS is valid only for input tape files.

4 KEYED is required for INDEXED and REGIONAL output.

Figure 45 (Part 1 of 2). Attributes and Options of PL/I File Declarations

Chapter 4. Data Sets and Files 123

Record
Types

of Sequential
File

Consecutive T Regional
e

U 1 U
n e n

B b p n b
u u r I u u

S f f 0 n f f
r'ile t f f c d f f
;3ttributes r e e , e e e V V

and e r r i x r r S S
ENVIRONMENT a e e n e e e A A
Options m d d g d d d M M
..... "

FiFBIVIVB S N N
~}ECSIZECn) I I I S I I I C C
f:',cKSIZECn) I I I I I I N N

f\'.:r C n) 0 0 0 0 0 N N

"r:'<KOFl 0 0 0 0
F,Z.Yl ENGTH(n) S S S C C

COBOL 0 0 0 0 0 0 0
l\UFFERSCn) I I I I I N N
~CALARVARYING 0 0 0 0 0 0 0

CONSECUTIVE D D D 0 0
TJTAl 0
L:,:'AVE 0 0 0
L'~READ 0 0 0
r~.)CII 0 0

UFOFFCn) 0 0
C:TLASA I CTl36 0 0 0

(;RAPHIC 0
-iP ({M I R}) S
JHDEXED S 0 0
Kf:YlOCCn) 0
INDEXAREACn)
i\iJDBUFF
HOHRITE
UENKEY 0 0 0

F;:~GIONAL S S
({II213})

V:3.l\M S S
P?\SSWORD 0 0
SIS 0
SKIP 0
HKWD 0
ru.::USE 0 0

UFND(n) 0 0
:JFNI (n) 0 0

EUFSPCn) 0 0

Figure 45 (Part 2 of 2). Attributes and Options of

124 OS PL/I Optimizing Compiler: Programmer's Guide

Direct

R
I e
n g
d i
e 0
x n
e a
d 1

S
I I
I I

0 0

0
S S

0 0

0 0

S
0
0
0
0
0

S

PL/I File

Key:

I Must be specified
or implied

C Checked for VSAM
D Default
N Ignored for VSAM
o Optional
S Must be specified

Invalid

Comments

VS invalid with UNBUF
One or both must be
specified for consecu-
tive., indexed, and
regional files

NCP>l for VSAM
specifies ISAM
compatibility

Invalid for REGIONAleS)
For REGIONAL(2) and (3)

OUTPUT only

Invalid for ASCII data
sets

Allowed for VSAM ESDS

Invalid for ASCII data
sets

Allowed for VSAM ESDS

UPDATE files only
INPUT or UPDATE files
only; KEYED is required

OUTPUT file only

Declarations

OTHER ENVIRONMENT OPTIONS

A constant or variable can be used with those ENVIRONMENT
options that require integer arguments, such as block sizes and
record lengths. The variable must be unsubscripted,
unqualified, and have attributes FIXED BINARY(31,O) and STATIC.

Some of the information that can be specified in the options of
the ENVIRONMENT attribute can also be specified, when TOTAL is
not specified, in the subparameters of the DCB parameter of a DD
statement. Figure 46 gives a list of equivalents.

ENVIRONMENT
Option
Record format
RECSIZE
BLKSIZE
BUFFERS
CTLASAICTL360
NCP
TRKOFL
KEYLENGTH
KEYLOC
ASCII
BUFOFF

DCB Subparameter
RECFMl
LRECL
BLKSIZE
BUFNO
RECFM
NCP
RECFM
KEYLEN
RKP
ASCII
BUFOFF

1 VS must be specified as an ENVIRONMENT
option, not in the DCB.

Figure 46. Equivalent ENVIRONMENT Options and DCB Subparameters

Record Format Options for Record-Oriented Data Transmission

Record formats supported depend on the data set organization.

~ Syntax
FtFBIFSIFBS1VIVBIVSIVBSIDIDBIU

Records can have one of the following formats:

Fixed-length F unblocked
FB blocked
FS unblocked, standard
FBS blocked, standard

Variable-length V unblocked
VB blocked
VS spanned
VBS blocked, spanned
D unblocked, ASCII
DB blocked, ASCII

Undefined-length U (cannot be blocked)

When U-forrnat raccrds are read into a varying-length string,
PL/I sets the length of the string to the block length of the
retrieved data.

These record format options do not apply to VSAM data sets. If
a record format option is specified for a file associated with a
VSAM data set, the option is ignored.

Chapter 4. Data Sets and Files 125

VS-format records can be specified for data sets with
consecutive or REGIONAL(3) organization only.

Record Format Options for stream-Oriented Data Transmission

RECSIZE Option

The record format options for stream-oriented data transmission
are discussed in Chapter 5, "Defining Data Sets for Stream
Files" on page 134.

The RECSIZE option specifies the record length.

r= Syntax

I RECSIZECrecord-length)

For files other than transient files and files associated with
VSAM data sets, "record-length" is the sum of:

1. The length required for data. For variable-length and
undefined-length records, this is the maximum length.

2. Any control bytes required. Variable-length records require
4, for the record length; fixed-length and undefined-length
records do not require any.

For a transient file, it is the sum of:

1. The 4 V-format control bytes

2. One flag byte

3. Eight bytes for the key (origin or destination identifier)

4. The maximum length required for the data

For VSAM data sets, the maximum and average lengths of the
records are specified to the Access Method Services utility when
the data set is defined. If the RECSIZE option is included in
the file declaration for checking purposes, the maximum record
size should be specified. If RECSIZE is specified and conflicts
with the values defined for the data set, the UNDEFINEDFIlE
condition is raised.

The "record-length" can be specified as an integer or as a
variable with the attributes FIXED BINARY(31,O) STATIC.

The value is subject to the following conventions:

Maximum:
Fixed-length, and undefined (except ASCII data sets):
32,760 bytes

V-format, and VS- and VBS-format with UPDATE files: 32,756
bytes

VS- and VBS-format with INPUT and OUTPUT files: no limit

ASCII data sets: 9999

VSAM data sets: 32,761 for nonspanned records. For
spanned records, the maximum is the size of the control
area.

For VS- and VBS-format records longer than 32,756 bytes, the
length must be specified in the RECSIZE option of ENVIRONMENT,
and the DCB subparameter of the DD statement must specify
lRECl=X.

126 OS Pl/I Optimizing Compiler: Programmer's Guide

BLKSIZE Option

Zero value:
A search for a valid value is made (in the following order)
in the:

• DD statement for the data set associated with the file

• Data set label

If neither of these can provide a value, default action is
taken (see "Record Format, BLKSIZE, and RECSIZE Defaults"
on page 129).

Negative Value:
The UNDEFINEDFILE condition is raised.

The BLKSIZE option specifies the maximum block size on the data
set. r-:: Syntax

BLKSIZE(blOCk-SiZe)

The "block-size" is the sum of:

1. The total lengthCs) of one of the following:

A single record

A single record and either one or two record segments

Several records

Several records and either one or two record segments

Two record segments

A single record segment

For variable-length records, the length of each record or
record segment includes the 4 control bytes for the record
or segment length.

The above list summarizes all the possible combinations of
records and record segments options: fixed- or
variable-length blocked or unblocked, spanned or nonspanned.
When specifying a block size for spanned records, you must
be aware that each record and each record segment requires 4
control bytes for the record length, and that these
quantities are in addition to the 4 control bytes required
for each block.

2. Any further control bytes required. Variable-length blocked
records require 4, for the block size; fixed-length and
undefined-length records do not require any.

or

Any block prefix bytes required CASCII data sets only).

"block-size" can be specified as an integer, or as a variable
with the attributes FIXED BINARYC3l,O) STATIC.

"block-size" is subject to the following conventions:

Maximum:
32,760 bytes Cor 9999 for an ASCII data set for which
BUFOFF without a prefix-length value has been specified).

Chapter 4. Data Sets and Files 127

In regional 3 files, the maximum DECLAREd blocksize must
not exceed 32,680 bytes. This is because the 32,760 byte
maximum for blocksize consists of the declared blocksize
plus the key length plus the length of the IOCB. If
'BLKSIZE=32760' is declared, when the keylength and IOCB
length are added to it, the maximum will be exceeded and an
"UNDEFINED FILE" error message will be issued.

Zero value:
A search for a valid value is made (in the following order)
in the:

• DD statement for the data set associated with the file

• Data set label

If neither of these can provide a value, default action is
taken (see "Record Format, BLKSIZE, and RECSIZE Defaults"
on page 129)

Negative value:
The UNDEFINEDFIlE condition is raised

The relationship of the "block-size" to the "record-length"
depends on the record format:

FB-format or FBS-format:
The block size must be a multiple of the record length

VB-format:
The block size must be equal to or greater than the sum of:

1. The maximum length of any record
2. Four control bytes

VS-format or VBS-format:
The block size can be less than, equal to, or greater than
the record length.

DB-format:
The block size must be equal to or greater than the sum ofl

1. The maximum length of any record

2. The length of the block prefix (if block is prefixed)

Notes:

• The BlKSIZE option can be used with unblocked (F-, V-, or
D-format) records, as follows:

The BLKSIZE option, but not the RECSIZE option, is
specified. The record length is set equal to the block
size (minus any control or prefix bytes), and the record
format is unchanged.

Both the BlKSIZE and the RECSIZE options are specified,
and the relationship of the two values is compatible
with blocking for the record format used. The record
format is set to FB, VB, or DB, whichever is
appropriate.

• If, for FB-format or FBS-format records, the block size
equals the record length, the record format is set to F.

• For REGIONAL(3) data sets with VS format, record length
cannot be greater than block size.

• The BLKSIZE option does not apply to VSAM data sets, and is
ignored if it is specified for one.

128 OS PL/I Optimizing Compiler: Programmer's Guide

Record Format, BLKSIZE, and RECSIZE Defaults

BUFFERS Option

If, for a non-VSAM data set, either the record-format, BLKSIZE,
or RECSIZE option is not specified, the following action is
taken:

Record format:
A search is made in the associated DD statement or data set
label. If the search does not provide a value, the
UNDEFINEDFILE condition is raised, except for files
associated with dummy data sets or the foreground terminal,
in which case the record format is set to U.

Block-size or record-length:
If one of these is specified, a search is made for the
other in the associated DD statement or data set label. If
the search provides a value, and if this value is
incompatible with the value in the specified option, the
UNDEFINEDFILE condition is raised. If the search is
unsuccessful, a value is derived from the specified option
(with the addition or subtraction of any control or prefix
bytes). If neither is specified, the UNDEFINEDFIlE
condition is raised, except for files associated with dummy
data sets, in which case a "block-size" is set to 121 for
F-format or U-format records and to 129 for V-format
records. For files associated with the foreground
terminal, the "record-length" is set to 120.

A buffer is a storage area that is used for the intermediate
storage of data transmitted to and from a data set. The use of
buffers can speed up processing of SEQUENTIAL files. Buffers
are essential for the blocking and deblocking of records and for
locate-mode transmission.

The option BUFFERS(n) in the ENVIRONMENT attribute specifies,
for CONSECUTIVE and INDEXED data sets, the number, n, of buffers
to be allocated for a data set; this number must not exceed 255
(or such other maximum as was established at system generation).

~ Syntax
BUFFERs(n)

If the number of buffers is not specified for a BUFFERED file or
is specified as zero, two buffers are used by the optimizing
compiler, and one buffer is used by the checkout compiler. A
REGIONAL data set is always allocated two buffers.

In teleprocessing, the BUFFERS option specifies the number of
buffers available for a particular message queue; that is, for a
particular TRANSIENT file. The buffer size is specified in the
message control program for the installation. The number of
buffers specified should, if possible, be sufficient to provide
for the longest message to be transmitted.

The BUFFERS option is ignored for VSAM; you use the BUFNI,
BUFND, and BUFSP options instead.

GENKEV option--Key Classification

The GENKEY (generic key) option applies only to INDEXED and VSAM
key-sequenced data sets. It enables you to classify keys
recorded in a data set and to use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to
their key classes.

Chapter 4. Data Sets and Files 129

r-:: Syntax
GENKEV

A generic key is a character string that identifies a class of
keys; all keys that begin with the string are members of that
class. For example, the recorded keys 'ABCD', 'ABCE', and
'ABDF' are all members of the classes identified by the generic
keys 'A' and 'AB', and the first two are also members of the
class 'ABC'; and the three recorded keys can be considered to be
unique members of the classes 'ABCD', 'ABCE', and 'ABDF',
respectively.

The GENKEY option allows you to start sequential reading or
updating of a VSAM data set from the first record that has a key
in a particular class, and for an INDEXED data set from the
first nondummy record that has a key in a particular class. The
class is identified by the inclusion of its generic key in the
KEY option of a READ statement. Subsequent records can be read
by READ statements without the KEY option. No indication is
given when the end of a key class is reached.

Although the first record having a key in a particular class can
be retrieved by a READ with the KEY option, the actual key
cannot be obtained unless the records have embedded keys, since
the KEYTO option cannot be used in the same statement as the KEY
option.

In the following example, a key length of more than 3 bytes is
assumed:

DCl IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY);

READ FILE(IND) INTO(INFIElD)
KEY ('ABC');

NEXT: READ FILE (IND) INTO (INFIELD);

GO TO NEXT;

The first READ statement causes the first nondummy record in the
data set whose key begins with 'ABC' to be read into INFIELD;
each time the second READ statement is executed, the nondummy
record with the next higher key is retrieved. Repeated
execution of the second READ statement could result in reading
records from higher key classes, since no indication is given
when the end of a key class is reached. It is your
responsibility to check each key if you do not wish to read
beyond the key class. Any subsequent execution of the first
READ statement would reposition the file to the first record of
the key class 'ABC'.

If the data set contains no records with keys in the specified
class, or if all the records with keys in the specified class
are dummy records, the KEY condition is raised. The data set is
then positioned either at the next record that has a higher key
or at the end of the file.

Note how the presence or absence of the GENKEY option affects
the execution of a READ statement that supplies a source key
that is shorter than the key length specified in the KEYLEN
subparameter of the DD statement that defines the indexed data
set. GENKEY causes the key to be interpreted as a generic key,
and the data set is positioned to the first nondummy record in
the data set whose key begins with the source key. For a READ

130 OS PL/I Optimizing Compiler: Programmer's Guide

statement, if the GENKEY option is not specified, a short source
key is padded on the right with blanks to the specified key
length, and the data set is positioned to the record that has
this padded key (if such a record exists). For a WRITE
statement, a short source key is always padded with blanks.

The use of the GENKEY option does not affect the result of
supplying a source key whose length is greater than or equal to
the specified key length. The source key, truncated on the
right if necessary, identifies a specific record (whose key can
be considered to be the only member of its class).

NCP Option--Number of Channel Programs

The NCP option specifies the number of incomplete input/output
operations with the EVENT option that can be handled for the
file at anyone time.

~ Syntax
NCPCn)

The integer, n, specified with NCP must have a value in the
range I through 99; otherwise the default is 1.

For consecutive and regional sequential files, it is an error to
allow more than the specified number of events to be
outstanding.

For indexed files, any excess operations are queued, and no
condition is raised. However, specification of the number of
channel programs required may aid optimization of I/O with an
indexed file. The NCP option has no effect with a regional
direct file.

A file declared with ENVIRONMENT(VSAM) can never have more than
one incomplete input/output operation at anyone time. If the
NCP option is specified for such a file, it is ignored. For
information about the NCP option for VSAM with the ISAM
compatibility interface, see "The VSAM Compatibility Interface"
on page 234.

TRKOFL Option--Track Overflow

Track overflow is a feature of the operating system that can be
incorporated at system generation time; it requires the record
overflow feature on the direct-access storage control unit.
Track overflow allows a record to overflow from one track to
another. It is useful in achieving a greater data packing
efficiency, and allows the size of a record to exceed the
capacity of a track.

~ Syntax
TRKOFL

Track overflow is not available for REGIONAL(3) or INDEXED data
sets.

Chapter 4. Data Sets and Files 131

COBOL Option--Data Interchange

The COBOL option specifies that structures in the data set
associated with the file will be mapped as they would be in a
COBOL compiler. The COBOL structures can be synchronized or
unsynchronized; it is your responsibility to ensure that the
associated PL/I structure has the equivalent alignment
stringency; that is, it must be ALIGNED or UNALIGNED,
respectively.

~ Syntax
COBOL

The following restrictions apply to the handling of a file with
the COBOL option:

• A file with the COBOL option can be used only for READ INTO,
WRITE FROM, and REWRITE FROM statements.

• The file name cannot be passed as an argument or assigned to
a file variable.

• The variable to be transmitted must be subscripted.

• If a condition is raised during the execution of a READ
statement, the variable named in the INTO option cannot be
used in the on-unit. If the completed INTO variable is
required, there must be a normal return from the on-unit.

• The EVENT option can be used only if the compiler can
determine that the PL/I and COBOL structure mappings are
identical (that is, all elementary items have identical
boundaries). If the mappings are not identical, or if the
compiler cannot tell whether they are identical, an
intermediate variable is created to represent the level-l
item as mapped by the COBOL algorithm. The PL/I variable is
assigned to the intermediate variable before a WRITE
statement is executed, or assigned from it after a READ
statement has been executed.

For supported COBOL compilers ~nd for Pl/I equivalents of COBOL
data types, see Chapter 14, "Interlanguage Communication with
COBOL and FORTRAN" on page 343.

SCALARVARYING Optian--Varying-Length Strings

The SCALARVARYING option is used in the input/output of
varying-length strings, and can be specified with records of any
format.

~ Syntax
SCALARVARYING

When storage is allocated for a varying-length string, the
compiler includes a 2-byte prefix that specifies the current
length of the string. For an element varying-length string,
this prefix is included on output, or recognized on input, only
if SCALARVARYING is specified for the file.

When locate mode statements (LOCATE and READ SET) are used to
create and r~ad a data set with element varying-length strings,
SCAlARVARYING must be specified to indicate that a length prefix
is present, since the pointer that locates the buffer is always
assumed to point to the start of the length prefix.

132 as Pl/I Optimizing Compiler: Frogrammer'~ Guide

KEYLENGTH Option

When SCAlARVARYING is specified and element varying-length
strings are transmitted, you must allow 2 bytes in the record
length to include the length prefix.

A data set created using SCALARVARYING should be accessed only
by a file that also specifies SCAlARVARYING.

SCALARVARYING and CTLASA/CTL360 must not be specified for the
same file, as this causes the first data byte to be ambiguous.

The KEYlENGTH option specifies the length, n, of the recorded
key for KEYED files. KEYLENGTH can be specified for INDEXED or
REGIONAL(3) files.

r-= Syntax

L ____ K_E_Y_L_E_N_G_T_H_(_n_) _______________________ j

If the KEYLENGTH option is included in a VSAM file declaration
for checking purposes, and the key length specified in the
option conflicts with the value defined for the data set, the
UNDEFINEDFILE condition is raised.

Chapter 4. Data Sets and Files 133

CHAPTER 5. DEFINING DATA SETS FOR STREAM FILES

This chapter describes how to define data sets for use with PL/I
files that have the STREAM attribute. It lists the ENVIRONMENT
options that can be used and explains how to create and access
data sets. The essential parameters of the DD statements used
in creating and accessing these data sets are summarized in
tables, and several examples of PL/I programs are included to
illustrate the text.

Data sets with the STREAM attribute are processed by
stream-oriented data transmission, which allows the Pl/I program
to ignore block and record boundaries and treat a data set as a
continuous stream of data values in character or graphic form.

Data sets for stream-oriented data transmission are created and
accessed using the list-, data-, and edit-directed input and
output statements described in Chapter 13 of the OS and DOS Pl/I
Language Reference Manual.

For output, PL/I converts the data items from the program
variables into character form if necessary, and builds the
stream of characters or graphics into records for transmission
to the data set.

For input, PL/I takes records from the data set and separates
them into the data items requested by the program, converting
them into the appropriate form for assignment to the program
variables.

Optimizing Compiler Only ------------------~

Stream-oriented data transmission can be used to read or write
graphic data. There are terminals, printers, and data-entry
devices that, with the appropriate programming support, can
display, print, and enter graphics. You must be.sure that your
data is in a format acceptable for the device or for a print
utility program such as the Kanji print utility.3 For example,
the Kanji print utility does not allow graphic strings to be
continued onto another line.

End of Optimizing Compiler Only ----------------

DEFINING FILES FOR STREAM-ORIENTED DATA TRANSMISSION

Files for stream-oriented data transmission are defined by a
file declaration with the following attributes:

DCL filename FILE STREAM
INPUT I {OUTPUT [PRINT]}
ENVIRONMENTCoptions)j

Default file attributes are shown in Figure 45 on page l23j the
FILE attribute is described in the OS and DOS PL/I Language
Reference Manual. The PRINT attribute is described further in
"Print Files" on page 143. Options of the ENVIRONMENT attribute
are discussed below.

Details on processing Japanese or Chinese graphics are
available through the IBM World Trade Americas/Far East
Corporation.

134 OS PL/I Optimizing Compiler: Programmer's Guide

ENVIRONMENT OPTIONS

CONSECUTIVE Option

The options applicable to stream-oriented data transmission are
as follows. The options are described in this chapter, except
for BLKSIZE and BUFFERS, which are described in "Data Set
Organization Options" on page 122, and LEAVE, REREAD, ASCII, and
BUFOFF, which are described under "Consecutive Data Sets" on
page 149.

CONSECUTIVE
FIFBIFSIFBSIVIVBIDIDBIU
RECSIZE(record-length)
BLKSIZE(block-size)
BUFFERS(n)
GRAPHIC

LEAVE
REREAD
ASCII
BUFOFF[(n)]

For more information, see Figure 45 on page 123.

STREAM files must have CONSECUTIVE data set organization;
however, it is not necessary to specify this in the ENVIRONMENT
options since CONSECUTIVE is the default data set organization.
The CONSECUTIVE option for STREAM files is the same as that
described in "Consecutive Data Sets" on page 149. j: Syntax

CONSECUTIVE

Record Format Options

Although record boundaries are ignored in stream-oriented data
transmission, record format is important when a data set is
being created, not only because it affects the amount of storage
space occupied by the data set and the efficiency of the program
that processes the data, but also because the data set may later
be processed by record-oriented data transmission. Having
specified the record format, you need not concern yourself with
records and blocks as long as you use stream-oriented data
transmission. You can consider your data set as a series of
characters or graphics arranged in lines, and can use the SKIP
option or format item (and, for a PRINT file, the PAGE and LINE
options and format items) to select a new line.

~ Syntax
:FBIFBSIFSIVIVBIDIDBIU

Records can have one of the following formats, as described in
Chapter 4, "Data Sets and Files" on page 100.

Blocking and deblocking of records are performed automatically.

Fixed-length F unblocked
FB blocked

Variable-length

FBS blocked, standard
FS unblocked, standard

V
VB
D
DB

unblocked
blocked
unblocked ASCII
blocked ASCII

Undefined-length U (cannot be blocked)

Chapter 5. Defining Data Sets for Stream Files 135

RECSIZE option

RECSIZE for stream-oriented data transmission is the same as
that described in "Data Set Organization Options" on page 122.
Additionally, a value specified by the LINESIZE option of the
OPEN statement overrides a value specified in the RECSIZE
option. LINESIZE is discussed in the OS and DOS PL/I Language
Reference Manual.

Additional record-size considerations for list- and
data-directed transmission of graphics are given in Chapter 13
of the OS and DOS Pl/I language Reference Manual.

Record Format, BLKSIZE, and RECSIZE Defaults

GRAPHIC Option

If the record format, BlKSIZE, or RECSIZE option is not
specified in the ENVIRONMENT attribute, or in the associated DD
statement or data set label, the following action is taken:

INPUT files:

Defaults are applied as for record-oriented data transmission,
described under "Record Format, BLKSIZE, and RECSIZE Defaults"
on page 129.

Output Files:

Record format:
Set to VB-format, or if ASCII option specified, to
DB-format

Record length:
The specified or default lINESIZE value is used:

PRINT files:
F, FB, FBS, or U: line size + 1
V, VB, D, or DB: line size + 5

Non-PRINT files:
F, FB, FBS, or U: linesize
V, VB, D, or DB: linesize + 4

Block size:
F, FB, or FBS: record length
V or VB: record length + 4
D or DB: record length + block

prefix (see note)

Optimizing Compiler Only

The GRAPHIC option of the ENVIRONMENT attribute must be
specified if you use graphic variables or graphic constants in
GET and PUT statements for list- and data-directed input/output,
and can be specified for edit-directed input/output.

r-:: Syntax

GRAPHIC

For list- and data-directed input/output, if you have graphics
in input or output data and do not specify the GRAPHIC option,
the ERROR condition is raised.

For edit-directed input/output, the GRAPHIC option specifies
that left and right delimiters are to be added to graphic

136 OS PL/I Optimizing Compiler: Programmer's Guide

variables and constants on output, and that input graphics will
have left and right delimiters. If the GRAPHIC option is not
specified, left and right delimiters will not be added to output
data, and input graphics do not require left and right
delimiters. When the GRAPHIC option is specified, the ERROR
condition is raised if left and right delimiters are missing
from the input data.

For information on the graphic data type, and on the G-format
item for edit-directed input/output, see the OS and DOS PL/I
Language Reference Manual.

End of Optimizing Compiler Only ----------------~

CREATING A DATA SET FOR STREAM-ORIENTED DATA TRANSMISSION

To create a data set, you must give the operating system certain
information either in your PL/I program or in the DD statement
that defines the data set. The following paragraphs indicate
the essential information, and discuss some of the optional
information you may supply.

ESSENTIAL INFORMATION

You must supply the following information, summarized in
Figure 47 on page 138, when creating a data set:

• Device that will write or punch your data set (UNIT, SYSOUT,
or VOLUME parameter of DD statement).

• Block size: You can specify the block size either in your
PL/I program (ENVIRONMENT attribute or LINESIZE option of
the OPEN statement) or in the DD statement (BLKSIZE
subparameter). If you do not specify a record length,
unblocked records are the default and the record length is
determined from the block size. If you do not specify a
record format, U-format is the default (except for PRINT
files when V-format is the default; see nPrint Filesn on
page 143).

If you want to keep a magnetic-tape or direct-access data set
(that is, you do not want the operating system to delete it at
the end of your job), the DD statement must name the data set
and indicate how it is to be disposed of (DSNAME and DISP
parameters). The DISP parameter alone will suffice if you want
to use the data set in a later step but will not need it after
the end of your job.

When creating a data set on a direct-access device, you must
specify the amount of space required for it (SPACE parameter of
DD statement).

If you want your data set stored on a particular magnetic-tape
or direct-access device, you must indicate the volume serial
number in the DD statement (SER or REF subparameter of VOLUME
parameter). If you do not supply a serial number for a
magnetic-tape data set that you want to keep, the operating
system will allocate one, inform the operator, and print the
number on your program listing.

If your data set is to follow another data set on a
magnetic-tape volume, you must use the LABEL parameter of the DD
statement to indicate its sequence number on the tape.

Chapter 5. Defining Data Sets for Stream Files 137

storage Device

All

Direct access
only

Magnetic tape
only

Direct access
and standard
labeled
magnetic tape

Parameters o~ DD statement

When Required

Always

Always

Data set not first
in volume and for
magnetic tapes that
do not have
standard labels

Data set to be used
by another job step
but is not required
after end of job

Data set to be kept
after end of job

Data set to be on
particular volume

What You Must state

Output device

Block size l

Storage space
required

Sequence number

Disposition

Disposition

Name of data set

Volume serial
number

Parameters

UNIT= or SYSOUT=
or VOLUME=REF=

DCB=(BLKSIZE= .•.)

SPACE=

LABEL=

DISP=

DISP=

DSNAME=

VOLUME=SER or
VOLUME=REF=

lAlternatively, you can specify the block size in your PL/I program
by using either the ENVIRONMENT attribute or the LINESIZE option.

Figure 47. Creating a Data Set for Stream-Oriented Data Transmissions Essential
Parameters of DD Statement

EXAMPLES

The use of edit-directed stream-oriented data transmission to
create a data set on an IBM 3330 Disk Storage is shown in
Figure 48 on page 139. The data read from the input stream by
the file SYSIN includes a field VREC that contains five unnamed
7-character subfields; the field NUM defines the number of these
subfields that contain information. The output file WORK
transmits to the data set the whole of the field FREC and only
those subfields of VREC that contain information.

138 OS PL/I Optimizing Compiler: Programmer's Guide

//EX712 JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

PEOPLE: PROC OPTIONSCMAIN);
DCL WORK FILE STREAM OUTPUT,

1 REC, -
2 FREC,

3 NAME CHAR(19),
3 NUM CHAR(1),
3 PAD CHARC2S),

2 VREC CHARC3S),
IN CHAR(80) DEF REC;

ON ENDFILECSYSIN) GO TO FINISH;
OPEN FILECWORK) LINESIZE(400);

MORE: GET FILECSYSIN) EDITCIN)(AC80»;
PUT FILE(WORK) EDIT(IN)CA(45+7*NUM»;
GO TO MORE;

FINISH: CLOSE FILE(WORK);
END PEOPLE;

/*
//GO.WORK DD DSN=HPU8.PEOPLE,UNIT=SYSDA,SPACECTRK,C1,l»,
// DISP=CNEW,CATLG),VOL=SER=nnnnnn

VICTOR HAZEL

//GO.SYSIN DD *
R.C.ANDERSON
B.F.BENNETT
R.E.COLE
J.F.COOPER
A.J.CORNELL
E.F.FERRIS

o 202848
2 771239
5 698635
5 418915
3 237837
4 158636

DOCTOR
PLUMBER
COOK
LAWYER
BARBER
CARPENTER

ELLEN VICTOR JOAN ANN OTTO

/*

FRANK CAROL DONALD NORMAN BRENDA
ALBERT ERIC JANET
GERALD ANNA MARY HAROLD

Figure 48. Creating a Data Set with Stream-Oriented Data Transmission

Figure 49 on page 140 shows an example of a program using
list-directed output to write graphics to a stream file. It
assumes that you have an output device that can print graphic
data. The program reads employee records and selects persons
living in a certain area. It then edits the address field,
inserting one graphic blank between each address item, and
prints the employee number, name, and address.

Chapter 5. Defining Data Sets for Stream Files 139

XAMPLE1:

READ:

NEXT1:

NEXT2:

LAST:

PROC OPTIONSCMAIN);
DCL INFILE FILE INPUT RECORD,

OUTFILE FILE OUTPUT STREAM ENV(GRAPHIC);
/* GRAPHIC OPTION MEANS */

DCl /* DELIMITERS WILL BE */
1 IN, /* INSERTED ON OUTPUT */

3 EMPNO CHAR(6), /* FILES. */
3 NAME,

5 LAST G(7), /* THIS DATA REQUIRES */
5 FIRST G(7) , /* SPECIAL INPUT DEVICE */

3 ADDRESS, /* TO INPUT GRAPHIC */
5 ZIP CHAR(6), /* CHARACTER. */
5 DISTRICT G(5),
5 CITY G(,5) ,
5 OTHER G(10);

DCL ADDRWK G(22);
ON ENDFILE(INFILE) GO TO LAST;

READ FILE(INFILE) INTOCIN);
IF SUBSTRCZIP,1,3)-='300'

THEN GO TO READ;
L=O;
ADDRWK=DISTRICT; /* ASSIGNMENT STATEMENT */
DO 1=1 TO 5;

IF SUBSTRCDISTRICT,I,l)= ~lJ lJ @:li /* SUBSTR BIF PICKS UP */

/* THE ITH GRAPHIC CHAR */
/* IN DISTRICT. */

THEN GO TO NEXT1;
END;
L=L+I+l;
SUBSTRCADDRWK,L,S)=CITY;
DO 1=1 TO 5;

IF SUBSTRCCITY,I,l)= ~lJ lJ @:li
THEN GO TO NEXT2;

END;
L=L+I;
SUBSTRCADDRWK,L,lO)=OTHER;
PUT FILECOUTFILE) SKIP
EDITCEMPNO,IN.LAST,FIRST,ADDRWK)

(A(8),G(7),GC7),X(4),G(22»;
GO TO READ;

END XAMPLE1;

/* THIS DATA SET */
/* REQUIRES UTILITY */
/* TO PRINT GRAPHIC */
/* DATA. */

Figure 49. Writing Graphic Data to a Stream File

ACCESSING A DATA SET FOR STREAM-ORIENTED DATA TRANSMISSION

A data set accessed using stream-oriented data transmission need
not have been created by stream-oriented data transmission, but
it must have CONSECUTIVE organization, and all the data in it
must be in character or graphic form. You can open the
associated file for input, and read the records the data set
contains; or you can open the file for output, and extend the
data set by adding records at the end.

To access a data set, you must identify it to the operating
system in a DD statement. The following paragraphs, which are
summarized in Figure 50 on page 141, indicate the essential
information you must include in the DD statement, and discuss
some of the optional information you may supply. The
discussions do not apply to data sets in the input stream.

140 OS Pl/I Opti~izing Compiler: Programmer's Guide

ESSENTIAL INFORMATION

When Required

Always

If data set
not
cataloged

If the data set is cataloged, you need supply only the following
information in the DD statement I

• The name of the data set (DSNAME parameter). The operating
system will locate the information describing the data set
in the system catalog, and, if necessary, will request the
operator to mount the volume containing it.

• Confirmation that the data set exists (DISP parameter). If
you open the data set for output with the intention of
extending it by adding records at the end, code DISP=MOD;
otherwise, opening the data set for output will result in it
being overwritten.

If the data set is not cataloged, you must, in addition, specify
the device that will read the data set and, for magnetic-tape
and direct-access devices, give the serial number of the volume
that contains the data set (UNIT and VOLUME parameters).

If the data set is on paper tape or punched cards, you must
specify the block size either in your PL/I program (ENVIRONMENT
attribute) or in the DD statement (BLKSIZE subparameter).

If the data set follows another data set on a magnetic-tape
volume, you must use the LABEL parameter of the DD statement to
indicate its sequence number on the tape.

Parameters of DD Statement

All devices

Standard labeled
magnetic tape
and direct access

What You Must State

Name of data set

Disposition of data
set

Input device

Volume serial number

Parameters

DSNAME=

DISP=

UNIT= or VOLUME=REF=

VOLUME=SER=

Magnetic tape: if data set
not first in volume or which
does not have standard labels

Sequence number LABEL=

If data set does not have
standard labels

Block size l DCB=(BLKSIZE= ••.)

1 Alternatively, you can specify the block size in your PL/I
program by using either the ENVIRONMENT attribute or the LINESIZE option.

Figure 50. Accessing a Data Set: Essential Parameters of DD Statement

Chapter 5. Defining Data Sets for stream Files 141

Magnetic Tape Without IBM Standard Labels

Record Format

If a magnetic-tape data set has nonstandard labels or is
unlabeled , you must specify the block size either in your PL/I
program (ENVIRONMENT attribute) or in the DD statement CBLKSIZE
subparameter). The DSNAME parameter is not essential if the
data set is not cataloged.

PL/I includes no facilities for processing nonstandard labelsl
which , to the operating System, appear as data sets preceding or
following your data set. You can either process the labels as
independent data sets or use the LABEL parameter of the DD
statement to bypass them. To bypass the labelsl code
LABEL=(2 , NL) or LABEL=C , BLP).

//EX7IS JOB
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

PEOPLE: PROC OPTIONSCMAIN);
DCL WORK FILE STREAM INPUT ,

1 REC ,
2 FREC,

3 NAME CHAR(19),
3 NUM CHARCl),
3 SERNO CHAR(7),
3 PROF CHARCl8),

2 VREC CHARC3S),
IN CHAR(80) DEF REC;

ON ENDFILECWORK) GO TO FINISH;
OPEN FILECWORK);

MORE: GET FILECWORK) EDITCIN,VREC)CAC4S),AC7*NUM»;
PUT FILECSYSPRINT) SKIP EDITCIN)CA);
GO TO MORE;

FINISH: CLOSE FILECWORK);
END PEOPLE;

/*
//GO.WORK DD DSN=HPU8.PEOPLE,DISP=(OLD,DELETE)

Figure 51. Accessing a Data Set with Stream-Oriented Data
Transmission

When using stream-oriented data transmission to access a data
set you do not need to know the record format of the data set
(except when you must specify a block size); each GET statement
transfers a discrete number of characters or graphics to your
program from the data stream.

If you do give record-format information, it must be compatible
with the actual structure of the data set. For example, if a
data set is created with F-format records, a record size of 600
bytes, and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of
3600 bytes; but if you specify a block size of 3500 bytes, your
data will be truncated.

142 OS PL/I Optimizing Compiler: Programmer's Guide

EXAMPLE

PRINT FILES

The program in Figure 51 on page 142 reads the data set created
by the program in Figure 48 on page 139 and uses the file
SYSPRINT to list the data it contains. (For details on SYPRINT,
see "SYSIN and SYSPRINT Filesn on page 147.) Each set of data
is read, by the GET statement, into two variables: FREC, which
always contains 45 characters; and VREC, which always contains
35 characters. At each execution of the GET statement, VREC
consists of the number of characters generated by the expression
7*NUM, together with sufficient blanks to bring the total number
of characters to 35. The DISP parameter of the DD statement
could read simply DISP=OLD; if DELETE is omitted, an existing
data set will not be deleted.

Both the operating system and the PL/I language include features
that facilitate the formatting of printed output. The operating
system allows you to use the first byte of each record for a
print control character; the control characters, which are not
printed, cause the printer to skip to a new line or page.
Tables of print control characters are given in Figure 62 on
page 163 and Figure 63 on page 164. In a PL/I program, the use
of a PRINT file provides a convenient means of controlling the
layout of printed output from stream-oriented data transmission;
the compiler automatically inserts print control characters in
response to the PAGE, SKIP, and LINE options and format items.

You can apply the PRINT attribute to any STREAM OUTPUT file,
even if you do not intend to print the associated data set
directly. When a PRINT file is associated with a magnetic-tape
or direct-access data set, the print control characters have no
effect on the layout of the data set, but appear as part of the
data in the records.

The compiler reserves the first byte of each record transmitted
by a PRINT file for an American National Standard print control
character, and inserts the appropriate characters automaticallY.
A PRINT file uses only the following five print control
characters:

Character Action

b (blank) Space I line before printing
o Space 2 lines before printing

Space 3 lines before printing
+ No space before printing
1 Start new page

The compiler handles the PAGE, SKIP, and LINE options or format
items by padding the remainder of the current record with blanks
and inserting the appropriate control character in the next
record. If SKIP or LINE specifies more than a 3-line space, the
compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the
absence of a print control option or format item, when a record
is full the compiler inserts a blank character (single line
space) in the first byte of the next record.

If a PRINT file is being transmitted to a terminal, the PAGE,
SKIP, and LINE options will never cause more than 3 lines to be
skipped, unless formatted output is specified (see the CMS
User's Guide or TSO User's Guide).

Chapter 5. Defining Data Sets for Stream Files 143

RECORD FORMAT

EXAMPLE

You can limit the length of the printed line produced by a PRINT
file either by specifying a record length in your PL/I program
(ENVIRONMENT attribute) or in a DD statement, or by giving a
line size in an OPEN statement (LINESIZE option). The record
length must include the extra byte for the print control
character, that is, it must be I byte larger than the length of
the printed line (5 bytes larger for V-format records). The
value you specify in the LINESIZE option refers to the number of
characters in the printed line; the compiler adds the print
control character.

The blocking of records has no effect on the appearance of the
output produced by a PRINT file, but it does result in more
efficient use of auxiliary storage when th~ file is associated
with a data set on a magnetic-tape or dirsct-access device. If
you use the LINESIZE option, ensure that your line size is
compatible with your block size; for F-format records, block
size must be an exact multiple of (line size + 1); for V-format
records, block size must be at least 9 bytes greater than line
size.

Although you can vary the line size for a PRINT file during
execution by closing the file and opening it again with a new
line size, you must do so with caution if you are using the
PRINT file to create a data set on a magnetic-tape or
direct-access device; you cannot change the record format
established for the data set when the file is first opened. If
the line size specified in an OPEN statement conflicts with the
record format already established~ the UNDEFINEDFILE condition
will be raised; to prevent this, either specify V-format records
with a block size at least 9 bytes greater than the maximum line
size you intend to use, or ensure that the first OPEN statement
specifies the maximum line size. (Output destined for the
printer may be stored temporarily on a direct-access device,
unless you specify a printer by using UNIT=, even if you intend
it to be fed directly to the printer.)

Since PRINT files have a default line size of 120 characters,
you need not give any record format information for them. In
the absence of other information, the compiler assumes V-format
records; the complete default information is:

BLKSIZE=129

LRECL=125

RECFM=VBA

Figure 52 on page 145 illustrates the use of a PRINT file and
the printing options of stream-oriented data transmission
statements to format a table and write it onto a direct-access
device for printing on a later occasion. The table comprises
the natural sines of the angles from 00 to 359 0 54' in steps of
6' .

The statements in the ENDPAGE on-unit insert a page number at
the bottom of each page, and set up the headings for the
following page.

The DD statement defining the data set created by this program
includes no record-format information; the compiler infers the
following from the file declaration and the line size specified
in the statement that opens the file TABLE:

Record format =
V (the default for a PRINT file).

144 as PL/I Optimizing Compiler: Programmer's Guide

Record size =
98 (line size + 1 byte for print control character + 4
bytes for record control field).

Block size =
102 (record length + 4 bytes for block control field).

The program in Figure 67 on page 166 uses record-oriented data
transmission to print the table created by the program in
Figure 52.

//OPT715 JOB
//STEP1 EXEC PlIXClG
//PlI.SYSIN DD *

SINE: PROC OPTIONS(MAIN)i

/*

DCl TABLE FILE STREAM OUTPUT PRINT,
DEG FIXED DEC(5,1) INIT(O), /* INITCO) FOR TEST IN ENDPAGE */
MIN FIXED DEC(3,l), /* INCREMENTS TO 1.0 IN DO-lOOP*/
PGNO FIXED DEC(2) INITCO);

ON ENDPAGE(TABlE) BEGIN;
DCl Ii
IF PGNO -= 0 THEN /* ! FOOTING */

PUT FIlE(TABlE) EDIT
C'PAGE',PGNO) ClINE(55),COl(80),A,F(3»i

IF DEG ~= 360 THEN /* ! HEADING */
DO;
PUT FIlE(TABLE) PAGE EDIT

('NATURAL SINES') (A)i
IF PGNO -= 0 THEN /* ! HEADING CONTINUED */

PUT FILE(TABLE) EDIT
(I (CONT"D)') (A);

PUT FILE(TABLE) EDIT
«I DO I = 0 TO 54 BY 6» (SKIP(3),10 F(9»;

PGNO = PGNO +1;
END;
ELSE PUT FIlE(TABlE) PAGE;

ENDi

OPEN FILECTABLE) PAGESIZE(52) lINESIZE(93);
SIGNAL ENDPAGE(TABLE); /* HEADING - FIRST PAGE */

PUT FILE(TABLE) EDIT
CCDEG,CSIND(DEG+MIN) DO MIN = 0 TO .9 BY .1) DO DEG = 0 TO 359»)

(SKIPC2), 5 (COL(I), F(3), 10 F(9,4) »;
PUT FILE(TABLE) SKIP(52)i

END SINE;

/* FORCE LAST PAGE FOOTING
(SIGNAL ENDPAGE CANNOT BE USED,

WHEN PRINTING FOOTING PAST
PAGESIZE-SEE ENDPAGE COND.) */

//GO.TABlE DD DSN=HPU8.SINES,DISP=(NEW,CATlG,DElETE),
// UNIT=SYSDA,SPACE=(TRK,(l,l»,VOl=SER=nnnnnn

Figure 52. Creating a Data Set Using a PRINT File

Chapter 5. Defining Data Sets for stream Files 145

TAB CONTROL TABLE

Data-directed and list-directed output to a PRINT file are
aligned on preset tabulator positions. The preset tab positions
are given in the OS and DOS PL/I Language Reference Manual. The
tab settings are stored in a table in the transient library
modulel IBMBSTAB. The definitions of the fields in the table
are as follows:

OFFSET OF TAB COUNT:

PAGESIZE:

LINESIZE:

Halfword binary integer that gives the offset of "Tab
countl" the field that indicates the number of tabs to
be used.

Halfword binary integer that defines the default page
size. This page size is used for dump output to the
PLIDUMP data set as well as for stream output.

Halfword binary integer that defines the default line
size.

PAGELENGTH:

FILLERS:

Tab count:

Halfword binary integer that defines the default page
length for printing at a terminal. For use with TSO
and CMS. The value 0 indicates unformatted output.

Three halfword binary integers; reserved for future
use.

Halfword binary integer that defines the number of tab
position entries in the table (maximum 255). If tab
count = 01 any specified tab positions are ignored.

Tabl-Tabn:
n halfword binary integers that defines the tab
positions within the print line. The first position
is numbered 11 and the highest position is numbered
255. The value of each tab should be greater than
that of the tab preceding it in the table; otherwisel
it is ignored. The first data field in the printed
output begins at the next available tab position.

The preset PL/I tab settings can be overridden for your program
by causing the linkage editor to resolve an external reference
to PLITABS. To cause the reference to be resolved, supply a
table with the name PLITABS I in the format described above.

There are two methods of supplying the tab table. One method is
to include a Pl/! structure in your source program with the name
PLITABS I which must be declared STATIC EXTERNAL. An example of
the PL/I structure is shown in Figure 53 on page 147. This
example creates three tab settings, in positions 30 1 60, and 90 1
and uses the defaults for page size and line size. Note that
TABI identifies the position of the second item printed on a
line; the first item on a line always starts at the left margin.
The first item in the structure is the offset to the NO OF TABS
field; FILLI, FILL21 and FILL3 can be omitted by adjustIng-the
offset value by -6.

146 OS PL/I Optimizing Compiler: Prcgr'animer's Guide

DCL 1 PLITABS STATIC EXT,
2 (OFFSET INIT(14),

PAGESIZE INIT(60),
LINESIZE INIT(120),
PAGELENGTH INIT(O),
FILLI INIT(O),
FILL2 INIT(O),
FILLS INIT(O),
NO_OF_TABS INIT(3),
TABI INIT(SO),
TAB2 INIT(60),
TABS INIT(90» FIXED BIN(15,O);

Figure 53. PL/I Structure PLITABS for Modifying the Preset Tab
Settings

The second method is to create an assembler language control
section named PLITABS, equivalent to the structure shown above,
and to include it when link-editing your PL/I program.

SYSIN AND SYSPRINT FILES

If your program includes a GET statement that does not include
the FILE option, the compiler inserts the file name SYSIN; if it
includes a PUT statement without the FILE option, the compiler
inserts the name SYSPRINT.

Optimizing Compiler Only ------------------­

If you do not declare SYSPRINT, the compiler gives the file the
attribute PRINT in addition to the normal default attributes;
the complete set of attributes will be:

FILE STREAM OUTPUT PRINT EXTERNAL

Since SYSPRINT is a PRINT file, the compiler also supplies a
default line size of 120 characters and a V-format record. You
need give only a minimum of information in the corresponding DD
statement; if your installation uses the usual convention that
the system output device of class A is a printer, the following
is sufficient:

//SYSPRINT DD SYSOUT=A

You can override the attributes given to SYSPRINT by the
compiler by explicitly declaring or opening the file. If you do
so, bear in mind that this file is also used by the
error-handling routines of the compiler, and that any change you
make in the format of the output from SYSPRINT will also apply
to the format of execution-time error messages. When an error
message is printed, eight blanks are inserted at the start of
each line except the first. If you specify a line size of less
than 72 characters, the messages will not be output to SYSPRINT.

End of Optimizing Compiler Only --------------~

Checkout Compiler Only ------------------~

The SYSPRINT file is always required by the compiler, so is
defined in the compiler program. There is no need for you to
declare it in the PL/I program, because you cannot open or close
the SYSPRINT file in your program; this is done by the compiler.

A DD statement defining the data set for SYSPRINT should be
supplied. SYSPRINT must have VBA record format, and the record
size (LRECl) must be in the range 125 through 137 (corresponding
to line sizes 120 through 132). lRECl can be specified on a DD
statement in the usual way, and will be accepted by the compiler

Chapter S. Defining Data Sets for Stream Files 147

provided it is within these limits. If you wish to change the
line size of SYSPRINT during your Pl/I program, you can close
the file and then open it with the lINESIZE option. The line
size, however, cannot be increased beyond the value implied by
lRECl.

If an OPEN statement attempts to exceed this value, the line
size will not be changed. The compiler sets the default for
lRECl to 125 and then opens the file. Therefore, if you wish to
use a line size greater than 120, the DD statement for SYSPRINT
must contain DCB information defining LRECl as the largest line
size required plus S.

The default line size value for SYSPRINT is chosen as follows:

• If lRECl is specified on the DD statement, then line size
equals lRECl-5 (regardless of the PlITABS value, if any).

• If no lRECl is specified, then the default for lRECl is set
to 125 and the line size for SYSPRINT is the smaller of 120
and the value in PLITABS.

End of Checkout Compiler Only --------------~

If you use one of the IBM-supplied cataloged procedures to
execute your program, the SYSPRINT DD statement is not required,
since it is included in the GO procedure step.

The compiler does not supply any special attributes for the
input file SYSIN; if you do not declare it, it receives only the
default attributes. The data set associated with SYSIN is
usually in the input stream; if it is not in the input stream,
you must supply full DD information.

148 OS Pl/I Optimizing Compiler: Programmer's Guide

CHAPTER 6. USING CONSECUTIVE, INDEXED, REGIONAL, AND TELEPROCESSING DATA SETS

This chapter describes how to use consecutive, indexed, and
regional data sets using the SAM, QSAM, ISAM and DAM access
methods, and how to use teleprocessing data sets.

Figure 54 shows the facilities that are available with the
various types of data sets that can be used with PL/I.

Data sets with the RECORD attribute are processed by
record-oriented data transmission in which data is transmitted
to and from auxiliary storage exactly as it appears in the
program variables; no data conversion takes place. A record in
a data set corresponds to a variable in the program.

CONSECUTIVE DATA SETS

VSAM
KSDS

SEQUENCE Key
Order

DEVICES DASD

ACCESS
1 By Key
2 Sequential 123
3 Backward

Alternate
index 123
Access as
above

How With
Extended new

keys

SPANNED Yes
RECORDS

DELETION
1 Space Yes,

reusable
2 Space

not
reusable

This section describes consecutive data set organization and the
ENVIRONMENT options that define consecutive data sets. It then
describes how to create, access, and update consecutive data
sets.

VSAM VSAM REGIONAL REGIONAL REGIONAL
ESDS RRDS INDEXED CONSECUTIVE (1) (2) (3)

Entry Num- Key Entry By By By
Order bered Order Order Region Region Region

DASD DASD DASD DASD, tape, DASD DASD DASD
card, etc.

123 123 12 2 12 12 12
3 tape only

123 No No No No No No

At In With At In With With
end empty new end empty new new

slots keys slots keys keys

Yes No Yes Yes No No Yes

1 No Yes, 1 Yes, 2 No Yes, 2 Yes, 2 Yes, 2

Figure 54. A Comparison of Data Set Types Available to PL/I Record I/O

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 149

CONSECUTIVE ORGANIZATION

File
declaration1

SEQUENTIAL OUTPUT
BUFFERED

SEQUENTIAL OUTPUT
UNBUFFERED

SEQUENTIAL INPUT
BUFFERED3

SEQUENTIAL INPUT
UNBUFFERED3

SEQUENTIAL UPDATE
BUFFERED

SEQUENTIAL UPDATE
UNBUFFERED

In a data set with consecutive organization, records are
organized solely on the basis of their successive physical
positions; when th~ data set is created, records are written
consecutively in the order in which they are presented. The
records can be retrieved only in the order in which they were
written or in the reverse order when using the BACKWARDS
attribute. The associated file must have the SEQUENTIAL
attribute.

Figure SS lists the data transmission statements and options
that you can use to create and access a consecutive data set.

Valid statementsZ with options Other options that
that must appear can also be used

WRITE FILECfile-reference)
FROMCreference);

LOCATE based-variable SET(pointer-
FILECfile-reference); reference

WRITE FILECfile-reference) EVENTCevent-
FROMCreference)j reference)

READ FILECfile-reference)
INTROCreference)j

READ FILECfile-reference)
SET(pointer-reference);

READ FILECfile-reference)
IGNORECexpression)j

READ FILECfile-reference) EVENTCevent-
INPUTCreference); reference)

READ FILECfile-reference) EVENTCevent-
IGNORECexpression)j reference)

READ FILECfile-reference)
INTOCreference);

READ FILECfile-reference)
SETCpointer-reference)j

READ FILECfile-reference)
IGNORECexpression)j .

REWRITE FILECfile-reference); . FROMCreference)

READ FILECfile-reference) EVENTCevent-
INTOCreference); reference)

READ FILECfile-reference) EVENTCevent-
IGNORECexpression); reference)

REWRITE FILECfile-reference) EVENTCevent-
FROMCreference); reference)

Figure 55. Statements and Options Permitted for Creating and Accessing Consecutive
Data Sets

Notes to Figure 55:

1 The complete file declaration would include the attributes
FILE, RECORD and ENVIRONMENT.

150 OS PL/I Optimizing Compiler: Programmer's Guide

2 The statement READ FILE (file-reference); is a valid
statement and is equivalent tOI READ FILE(file-reference)
IGNORE (1);

3 The BACKWARDS attribute may be specified for files on
magnetic tape.

DEFINING A CON.SECUTIVE DATA SET

A consecutive data set is defined by a file declaration with the
following attributes:

DCL filename FILE RECORD
INPUT I OUTPUT I UPDATE
SEQUENTIAL
BUFFERED I UNBUFFERED

[BACKWARDS]
ENVIRONMENT(options);

Default file attributes are shown in Figure 45 on page 123. The
file attributes are described in the OS and DOS PL/I Language
Reference Manual. Options of the ENVIRONMENT attribute are
discussed below.

ENVIRONMENT OPTIONS FOR CONSECUTIVE DATA SETS

CONSECUTIVE Option

The ENVIRONMENT options applicable to consecutive data sets are:

FIFBIFSIFBSIVIVBIVSIVBSIDIDBIU
RECSIZECrecord-length)
BLKSIZE(block-size)
SCALARVARYING
COBOL
BUFFERSCn)
NCPCn)
TRKOFL

CONSECUTIVE
TOTAL
LEAVE or REREAD
ASCII
BUFOFF[(n)]
CTLASA or CTL360

The options above the blank line are described in "Data Set
Organization Options" on page 122, and those below the blank
line are described below. D- and DB-format records are also
described below.

See Figure 45 on page 123 to find which options must be
specified, which are optional, and which are defaults.

The CONSECUTIVE option may be specified for a STREAM or RECORD
file. It defines a file with consecutive data set organization,
which is described above.

~ Syntax
CONSECUTIVE

CONSECUTIVE is the default when the merged attributes from the
DECLARE and OPEN statements do not include the TRANSIENT
attribute.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets lSI

TOTAL Option -- In-Line Code Optimization

In general, I/O operations are performed by library subroutines
called from compiled code. Under certain conditions, however,
the Optimizing Compiler can, when requested, provide in-line
code to carry out these operations, thus saving the overhead of
library calls. This gives faster execution of the I/O
statements.

The TOTAL option aids the Optimizing Compiler in the production
of efficient compiled code. In particular, it requests the
compiler to use in-line code for certain I/O operations. It
specifies that no attributes will be merged from the OPEN
statement or the I/O statement or the DCB parameter; if a
complete set of attributes can be built up at compile time from
explicitly declared and default attributes, then in-line code
will be used for certain I/O operations.

~ Syntax
TOTAL

The UNDEFINEDFIlE condition is raised if any attribute that was
not explicitly declared appears on the OPEN statement, or if the
I/O statement implies a file attribute that conflicts with a
declared or default attribute.

The Checkout Compiler accepts and checks the TOTAL option but
does not perform any optimization.

The TOTAL option cannot be specified for device-associated files
or files reading Optical Mark Read data.

The use of in-line input/output code may result in reduced
error-handling capability, In particular, if a program-check
interrupt or an abend occurs during in-line input/output, the
error message produced may contain incorrect offset and
statement number information. Also, execution of a GO TO
statement in an ERROR on-unit for such an interrupt may cause a
further program check.

There are some differences in the optimized code that is
generated under Release 5. The Release 5 implementation
generates code to call modules in the Pl/I Transient library so
that mode-switching can be performed if necessary. This
implementation results in a longer instruction path than on
prior releases, but is still faster than not using the TOTAL
option.

Figure 56 on page 153 shows the conditions under which I/O
statements are handled in-line.

When in-line code is employed to implement an I/O statement, the
compiler gives an informational message.

152 OS Pl/I Optimizing Compiler: Programmer's Guide

statement1

READ SET

READ INTO

WRITE FROM
(fixed string)

WRITE FROM
(varying string)

WRITE FROM
Area 2

LOCATE A

Record Variable Requirements

None

Length known at compile time,
maximum length for a varying
string or area 2

Length known at compile time

Length known at compile time,
maximum length for a varying
string or area 2

File Attribute3 or ENVIRONMENT
Option Requirements~

Not BACKWARDS for record types
U, V, VB

RECSIZE known at compile
time. 5 SCALARVARYING option
if varying string

RECSIZE known at compile time5

RECSIZE known at compile
time. 5 SCALARVARYING option
used

RECSIZE known at compile time5

RECSIZE known at compile
time. 5 SCALARVARYING if
varying string

Figure 56. Conditions Under Which I/O Statements Are Handled In-Line (TOTAL Option
Used)

Notes to Figure 56:

1 All statements must be found to be valid during compilation.
File parameters or file variables are never handled by
in-line code.

2 Including structures whose last element is an unsubscripted
area.

3

4

5

File attributes are SEQUENTIAL BUFFERED, INPUT or OUTPUT.

Data set organization must be CONSECUTIVE; allowable record
formats are F, FB, FS , FBS, U, V, or VB.

BLKSIZE may be specified instead of RECSIZE for unblocked
record formats F, FS, V and U.

Chapter 6. Using Consecutive, In~~xad, R~gional, and Teleprocessing Data Sets 153

CTLASA and CTL360 Options - Printer and Punch Control

The printer/punch control options CTLASA and CTL360 apply only
to OUTPUT files associated with consecutive data sets. They
specify that the first character of a record is to be
interpreted as a control character.

~ Syntax
CTLASA I CTL360

The CTLASA option specifies American National Standard Vertical
Carriage Positioning Characters or American National Standard
Pocket Select Characters CLevel 1). The CTL360 option specifies
IBM machine-code control characters.

The control characters that can be used with these options are
listed with their actions in "Punching Cards and Printing" on
page 163.

LEAVE and REREAD Options - Magnetic Tape Handling

The magnetic tape handling options allow you to specify the
action to be taken when the end of a magnetic tape volume is
reached, or when a data set on a magnetic tape volume is closed.
The LEAVE option prevents the tape from being rewound. The
REREAD option rewinds the tape to permit reprocessing of the
data set. If neither of these is specified, the action at end
of volume or on closing of a data set is controlled by the DISP
parameter of the associated DD statement. r-:: Syntax

LEAVE I REREAD

If a data set is first read or written forward and then read
backward in the same program, specify the LEAVE option to
prevent rewind when the file is closed (or, with a multivolume
data set, when volume switching occurs).

LEAVE and REREAD can also be specified on the CLOSE statement,
as described in the OS and DOS PL/I Language Reference Manual.

The effects of the LEAVE and REREAD options are summarized in
Figure 57 on page 155.

154 OS PL/I Optimizing Compiler: Programmer's Guide

ENVIRONMENT DISP
Option Parameter Action

REREAD - Positions the current volume to reprocess the
data set. Repositioning for a BACKWARDS file is
at the physical end of the data set.

lEAVE - Positions the current volume at the logical end
of the data set. Repositioning for a BACKWARDS
file is at the physical beginning of the data
set.

Neither PASS Positions the volume at the end of the data set
REREAD nor
lEAVE

DELETE Rewinds the current volume

KEEP, CATlG, Rewinds and unloads the current volume
UNCATlG

Figure 57. Effect of lEAVE and REREAD options

ASCII Option

The ASCII option specifies that the code used to represent data
on the data set is ASCII.

r-:= Syntax

~CII

Data sets on magnetic tape using ASCII may be created and
accessed in Pl/I. The implementation supports F, FB, U, D, and
DB record formats. F, FB, and U formats are treated in the same
way as with other data sets; D and DB formats, which correspond
to V and VB formats with other data sets, are described below.

Only character data may be written onto an ASCII data set; when
the data set is created, transmission must be from a character
variable. This variable may have the attribute VARYING as well
as CHARACTER, but the 2 length bytes of a varying-length
character string cannot be transmitted; in other words,
varying-length character strings cannot be transmitted to an
ASCII data set using a SCAlARVARYING file. Also, data
aggregates containing varying-length strings may not be
transmitted.

Since an ASCII data set must be on magnetic tape, it must be of
consecutive organization. The associated file must be BUFFERED.
The BUFOFF ENVIRONMENT option may be specified for ASCII data
sets.

If ASCII is not specified in either the ENVIRONMENT option or
the DD statement, but one of BUFOFF, D, or DB is specified, then
ASCII is the default.

BUFOFF Option and Block Prefix Fields

At the beginning of each block in an ASCII data set, there may
be a field known as the block prefix field. It may be from 1 to
99 bytes long. The buffer offset option, BUFOFF, specifies the
length of this field to data management, so that the accessing
or creation of data is started at this offset from the beginning
of each physical block. Pl/I does not support access to this
field, and in general it does not contain information that is
used in these implementations. There is one situation in which

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 155

BUFOFF Defaults

data management does use information in the block prefix: with
variable-length records (that is, D- or DB-format records), the
block prefix field may be used to record the length of the
block. In this case, it is 4 bytes long and contains a
right-aligned, decimal character value that gives the length of
the block in bytes, including the block prefix field itself. It
is then exactly equivalent to a block length field.

r-= Syntax

LFOFF[(n)]

A numeric value equal to the length of the prefix may be
specified for Un". It may be specified as either an integer or
as a variable with the attributes FIXED BINARY(31,O) STATIC.
Its minimum value is 0 and its maximum is 99. The absence of a
prefix length specification indicates that the block prefix is
to be used as a block length field; it implies that the field is
4 bytes long. The length of the block is inserted in the prefix
by data management.

On input, any ASCII data set may be accessed if it has a block
prefix field of length 1 to 99 bytes, or no block prefix field
at all; and it may be accessed whether or not the block prefix
field is used as a block length field.

On output, a data set using anyone of the valid record formats
may be created without a block prefix, but the only situation in
which the creation of a block prefix is supported by PL/I is
when it is used as a block length field. The only permissible
buffer offset specification on output is therefore BUFOFF, with
no prefix length specification.

The BUFOFF option may be used with ASCII data sets only.

For output files, if you do not specify BUFOFF, the default is:

BUFFER offset:
F, FB, or U: 0
D, or DB: 4

With DB-format records on output files, the length of the block
prefix (that is, the buffer offset) must always be either 0 or
4.

D-format and DB-format Records

The data contained in D- and DB-format records is recorded in
ASCII. Each record may be of a different length. The two
formats are:

D-format:
The records are unblocked; each record constitutes a single
block. Each record consists of:

Four control bytes
Data bytes

The 4 control bytes contain the length of the record; this
value is inserted by data management and requires no action
by you. In addition, there may be, at the start of the
block, a block prefix field, which may contain the length
of the block.

DB-format:
The records are blocked. All other information given for
D-format applies to DB-format.

156 OS PL/I Optimizing Compiler: Programmer's Guide

storage Device

All

Direct access
only

Magnetic tape
only

Direct access
and standard
labeled
magnetic tape

Parameters of DD statement

When Required

Always

Always

Data set not
first in
volume and for
magnetic tapes
that do not
have standard
labels

Data set to be
used by another
job step but
not required
at end of job

Data set to be
kept after end
of job

Data set to be
on particular
device

What You Must state

Output device

Block size l

storage space
required

Sequence number

Disposition

Disposition

Name of data set

Volume serial
number

Parameters

UNIT= or
SYSOUT= or
VOLUME=REF=

DCB=(BLKSIZE= ...

SPACE=

LABEL=

DISP=

DISP=

DSNAME=

VOLUME=SER=
or
VOLUME=REF=

1 Alternatively, you can specify the block size in your PL/I program by
using the ENVIRONMENT attribute.

Figure 58. Creating a Consecutive Data Set: Essential Parameters of DD Statement

CREATING A CONSECUTIVE DATA SET

When you create a consecutive data set, the associated file must
be opened for SEQUENTIAL OUTPUT. Either the WRITE or LOCATE
statement may be used to write records. Figure 55 on page 150
shows the statements and options for creating a consecutive data
set.

When creating a data set, you must identify it to the operating
system in a DD statement. The following paragraphs, summarized
in Figure 58, tell what essential information you must include
in the DD statement and discuss some of the optional information
you may supply.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 157

Essential Information

When you create a consecutive data set you must specify the:

• Device that will write or punch your data set (UNIT, SYSOUT,
or VOLUME parameter of DD statement). A data set with
consecutive organization can exist on any type of auxiliary
storage device.

• Block size: you can specify the block size either in your
PL/I program (ENVIRONMENT attribute) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record
length, unblocked records are the default and the record
length is determined from the block size. If yoU do not
specify a record format, U-format is the default.

If you want to keep a magnetic-tape or direct-access data set
(that is, you do not want the operating system to delete it at
the end of your job), the DD statement must name the data set
and indicate how it is to be disposed of (DSNAME and DISP
parameters). The DISP parameter alone will suffice if you want
to use the data set in a later step but will not need it after
the end of your job.

When creating a data set on a direct-access device, you must
specify the amount of space required for it (SPACE parameter of
DD statement).

If you want your data set stored on a particular magnetic-tape
or direct-access device, you must specify the volume serial
number in the DD statement (SER or REF subparameter of VOLUME
parameter). If you do not specify a serial number for a
magnetic-tape data set that you want to keep, the operating
system will allocate one, inform the operator, and print the
number on your program listing.

If your data set is to follow another data set on a
magnetic-tape volume, you must use the LABEL parameter of the DD
statement to indicate its sequence number on the tape.

The DCB subparameters of the DD statement that apply to
consecutive data sets are listed in Figure 59 on page 159; they
are described in your JeL manual. Figure 45 on page 123 shows
which options of the ENVIRONMENT attribute you can specify for
consecutive data sets.

ACCESSING AND UPDATING A CONSECUTIVE DATA SET

Once a consecutive data set has been created, the file that
accesses it can be opened for sequential input, for sequential
output, or, for data sets on direct-access devices, for ypdate.
If you open the file for output, and extend the data set by
adding records at the end, DISP=MOD must be specified in the DD
statement. If DISP=MOD is not specified, the data set will be
overwritten. If you open a file for update, records can be
updated only in their existing sequence, and if records are to
be inserted, a new data set must be created. Figure 55 on
page 150 shows the statements and options for accessing and
updating a consecutive data set.

158 OS PL/I Optimizing Compiler: Programmer's Guide

Subparameter Specifies

BLKSIZE Maximum number of bytes per block

BUFNO Number of data 111anagement buffers

CODE Paper tape: code in which the tape is punched

DEN Magnetic tape: tape recording density

FUNC Card reader or punch: function to be performed

LRECL Maximum number of bytes per record

MODE Card reader or punch: mode or operation (column
binary or EBCDIC and Read Column Eliminate or
Optical Mark Read)

OPTCD Optional data-management services and data-set
attributes

PRTSP Printer line spacing (0, 1, 2, or 3)

RECFM Record format and characteristics

STACK Card reader or punch: stacker selection

TRTCH Magnetic tape: tape recording technique for
7-track tape

Figure 59. DCB Subparameters for Consecutive Data Sets

When a consecutive data set is accessed by a SEQUENTIAL UPDATE
file, a record must be retrieved with a READ statement before it
can be updated by a REWRITE statement; however, every record
that is retrieved need not be rewritten. A REWRITE statement
will always update the last record read.

Consider the following:

READ FILE(F) INTO(A);

READ FIlECF) INTOeB);

REWRITE FIlE(F) FROMCA);

The REWRITE statement updates the record that was read by the
second READ statement. The record that was read by the first
statement cannot be rewritten after the second READ s'tatement
has been executed.

The operating system does not permit updating a consecutive data
set on magnetic tape except by adding records at the end. To
replace or insert records, you must read the data set and write
the updated records into a new data set.

A consecutive data set on magnetic tape can be read forward or
backward. If the data set is to be read backward, the
associated file must have the BACKWARDS attribute. The
BACKWARDS attribute cannot be specified when a data set has V-,
VB-, VS-, VBS-, D-, or DB-format records.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 159

When Required

Always

If data set
not cataloged

Magnetic tape:
if data set
not first in
volume or which
does not have
standa rd labels

If data set does
not have standard
labels

Parameters o~ DD Statement

storage Device

All devices

Standard labeled
magnetic tape
and direct­
access

What You Must State

Name of data set

Disposition of data
set

Input device

Volume serial
number

Sequence number

Block size l

Parameters

DSNAME=

DISP=

UNIT= or
VOLUME=REF=

VOLUME=SER=

LABEL=

DCB=(BLKSIZE= •..)

Alternatively, you can specify the block size in your PL/I program by
using either the ENVIRONMENT attribute or the LINESIZE option.

Figure 60. Accessing a Consecutive Data Set: Essential Parameters of DD Statement

To access a data set, you must identify it to the operating
system in a DD statement. The following paragraphs, which are
summarized in Figure 60, indicate the essential information you
must include in the DD statement, and discuss some of the
optional information you may supply. The discussions do not
apply to data sets in the input stream.

Essential In~ormation

If the data set is cataloged, you need supply only the following
information in the DD statement:

• The name of the data set (DSNAME parameter). The operating
system will locate the information describing the data set
in the system catalog, and, if necessary, will request the
operator to mount the volume containing it.

• Confirmation that the data set exists (nISP parameter). If
you open the data set for output with the intention of
extending it by adding records at the end, code DISP=MOD;
otherwise, to open the data set for output will result in it
being overwritten.

If the data set is not cataloged, you must, in addition, specify
the device that will read the data set and, for magnetic-tape
and direct-access devices, give the serial number of the volume
that contains the data set (UNIT and VOLUME parameters),

If the data set is on paper tape or punched cards, you must
specify the block size either in your PL/I program (ENVIRONMENT
attribute) or in the DD statement (BLKSIZE subparameter),

160 OS PL/I Optimizing Compiler: Programmer's Guide

If the data set follows another data set on a magnetic-tape
volume, you must use the LABEL parameter of the DD statement to
indicate its sequence number on the tape.

Magnetic Tape Without IBM Standard Labels

Record Format

If a magnetic-tape data set has nonstandard labels or is
unlabeled, you must specify the block size either in your PL/I
program (ENVIRONMENT attribute) or in the DD statement (BLKSIZE
subparameter). The DSNAME parameter is not essential if the
data set is not cataloged.

PL/I includes no facilities for processing nonstandard labels
which to the operating system appear as data sets preceding or
following your data set. You can either process the labels as
independent data sets or use the LABEL parameter of the DD
statement to bypass them. To bypass the labels, code
LABEL=(2,NL) or LABEL=(,BLP).

If you give record-format information, it must be compatible
with the actual structure of the data set. For example, if you
create a data set with F-format records, a record size of 600
bytes, and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of
3600 bytes; but if you specify a block size of 3500 bytes, your
data will be truncated.

EXAMPLE OF CONSECUTIVE DATA SETS

Creating and accessing consecutive data sets are illustrated in
the program of Figure 61 on page 162. The program merges the
contents of two data sets, in the input stream, and writes them
onto a new data set, HPU8.DS3i each of the original data sets
contains I5-byte fixed-length records arranged in EBCDIC
collating sequence. The two input files, INl and IN2, have the
default attribute BUFFERED, and locate mode is used to read
records from the associated data sets into the respective
buffers.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 161

//EX8IS JOB
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

MERGE: PROC OPTIONSCMAIN);
DCL (INl,IN2,OUT) FILE RECORD SEQUENTIAL,

(ITEMI BASED(A),ITEM2 BASED(B» CHAR(lS);

NEXT2:

NEXTl:

NEXT:

ON ENDFILECINl) BEGIN;
ON ENDFILE(IN2) GO TO FINISH;
WRITE FILECOUT) FROMCITEM2);
PUT FILE(SYSPRINT) SKIP EDIT ('2',ITEM2) (A(2),A);
READ FILECIN2) SET(B);
GO TO NEXT2;

END;

ON ENDFIlECIN2) BEGIN;
ON ENDFIlECINl) GO TO FINISH;
WRITE FILECOUT) FROMCITEMl)j
PUT FILE(SYSPRINT) SKIP EDIT ('l',ITEMl) (A(2),A);
READ FILE(INl) SET(A);
GO TO NEXTl;

END;

OPEN FILE(INl) INPUT,FILECIN2) INPUT,FILE(OUT) OUTPUT;
READ FILECINl) SETCA);
READ FIlECIN2) SETeB);
IF ITEMl>ITEM2 THEN DO;

WRITE FIlE(OUT) FROM(ITEM2)j
PUT FILECSYSPRINT) SKIP EDIT C'l>2',ITEMl,ITEM2)
(ACS),A,A);
READ FILE(IN2) SETCB);

END;
ELSE DO;

WRITE FIlECOUT) FROM(ITEMl);
PUT FILE(SYSPRINT) SKIP EDIT ('l<2',ITEMl,ITEM2)
(A(S),A,A);
READ FIlE(INl) SETCA);

END;
GO TO NEXTj

FINISH: CLOSE FILECINl),FILECIN2),FILECOUT);
PUT FILECSYSPRINT) PAGE;
OPEN FILE(OUT) SEQUENTIAL INPUT;
ON ENDFILECOUT) GO TO FINISHPRT;

PRINTIN: READ FIlECOUT) INTOCITEMl);
PUT FILECSYSPRINT) SKIP EDIT (ITEMl) (A);
GO TO PRINTINj

FINISHPRT: CLOSE FILECOUT);
END MERGE;

/*
//GO.INI DD *
AAAAAA
CCCCCC
EEEEEE
GGGGGG
111111
/*
//GO.IN2 DO *
BBBBBB
DDDDDD
FFFFFF
HHHHHH
JJJJJJ
KKK KKK
/*
//GO.OUT DD DSN=HPU8.DS3,DISP=CNEW,CATLG),UNIT=SYSDA,
// DCB=CRECFM=FB,BLKSIZE=lSO,LRECL=lS),SPACE=(TRK,(l,l»

Figure 61. Creating and Accessing a Consecutive Data Set

162 OS PL/I Optimizing Compiler: Programmer's Guide

PUNCHING CARDS AND PRINTING

You cannot use a PRINT file for record-oriented data
transmission. You can still exercise some control over the
layout of printed output by including a print control character
as the first byte of each of your output records; you can also
use similar control characters to select the stacker to which
cards punched by your program are fed.

The operating system recognizes two types of control characters
for printer and card punch commands -- American National
Standard control characters and machine code control characters.
You must indicate which control character you are using, either
in your PL/I program (ENVIRONMENT attribute CTL360 or CTLASA
option), or in the DD statement (RECFM subparameter). If you
specify one of these characters, but transmit your data to a
device other than a printer or a card punch, the operating
system transmits the control characters as part of your records.
If you use an invalid control character, "Space 1 line" or
"Select stacker 1" is the default.

The American National Standard control characters, which are
listed in Figure 62, cause the specified action to occur before
the associated record is printed or punched.

The machine code control characters differ according to the type
of device. The IBM machine code control characters for printers
are listed in Figure 63 on page 164.

Code
b

o
+
1
2
3
4
5
6
7
8
9
A
B
C
V
W

Action
Space 1 line before printing
(blank code)
Space 2 lines before printing
Space 3 lines before printing
Suppress space before printing
Skip to channel 1
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to channel 5
Skip to channel 6
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12
Select stacker 1
Select stacker 2

Figure 62. American National Standard Print and Card Punch
Control Characters (CTLASA)

Figure 64 on page 164 gives control codes for the IBM 2540 Card
Read Punch. Control codes for the IBM 3525 Card Printer are
given in Figure 65 on page 164 and Figure 66 on page 165.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 163

Print and
Then Act

Code Byte
00000001
00001001
00010001
00011001
10001001
10010001
10011001
10100001
10101001
10110001
10111001
11000001
11001001
11010001
11011001
11100001

Figure 63.

Code Byte
00000001
01000001
10000001

Figure 64.

Code byte
00001101
00010101
00011101
00100101
00101101
00110101
00111101
01000101
01001101
01010101
01011101
01100101
01101101
01110101
01111101
10000101
10001101
10010101
10011101
10100101
10101101
10110101
10111101
11000101
11001101

Figure 65.

Action Act Immediately
(no printing)

Code Byte
Print only (no space)
Space 1 line 00001011
Space 2 lines 00010011
Space 3 lines 00011011
Skip to channel 1 10001011
Skip to channel 2 10010011
Skip to channel 3 10011011
Skip to channel 4 10100011
Skip to channel 5 10101011
Skip to channel 6 10110011
Skip to channel 7 10111011
Skip to channel 8 11000011
Skip to channel 9 11001011
Skip to channel 10 11010011
Skip to channel 11 11011011
Skip to channel 12 11100011

IBM Machine Code Print Control Characters (CTl360)

Action
Select stacker 1
Select stacker 2
Select stacker 3

2540 Card Read Punch Control Characters (CTL360)

Action
Print on line 1
Print on line 2
Print on line 3
Print on line 4
Print on line 5
Print on line 6
Print on line 7
Print on line 8
Print on line 9
Print on line 10
Print on line 11
Print on line 12
Print on line 13
Print on line 14
Print on line 15
Print on line 16
Print on line 17
Print on line 18
Print on line 19
Print on line 20
Print on line 21
Print on line 22
Print on line 23
Print on line 24
Print on line 25

3525 Card Printer Control Characters (CTl360)

164 OS Pl/I Optimizing Compiler: Programmer's Guide

Example

Code
b
o

1
2
3
4
5
6
7
8
9
A
B
C

Action
Space 1 line and print
Space 2 lines and print
Space 3 lines and print
Skip to channel 1 and print
Skip to channel 2 and print
Skip to channel 3 and print
Skip to channel 4 and print
Skip to channel 5 and print
Skip to channel 6 and print
Skip to channel 7 and print
Skip to channel 8 and print
Skip to channel 9 and print
Skip to channel 10 and print
Skip to channel 11 and print
Skip to channel 12 and print

Figure 66. 3525 Card Printer Control-Characters (CTlASA)

There are two types of machine-code control characters for the
printer -- one causing the action to occur after the record has
been transmitted, and the other producing immediate action but
transmitting no data (include the second type only in a blank
record).

The essential requirements for producing printed output or
punched cards are exactly the same as those for creating any
other consecutive data set (described above). For a printer, if
you do not use one of the control characters, all data will be
printed sequentially, with no spaces between records; each block
will be interpreted as the start of a new line. When you
specify a block size for a printer or card punch, and are using
one of the control characters, allow for the control character
in your block size; for example, if you want to print lines of
100 characters, specify a block size of 101.

The program in Figure 67 on page 166 uses record-oriented data
transmission to read and print the contents of the data set
SINES, created by the PRINT file in Figure 52 on page 145.
Since the data set SINES is cataloged, only two parameters are
required in the DD statement that defines it. The output file
PRINTER is declared with the ENVIRONMENT option CTlASA,
specifying that the first byte of each record will be
interpreted as an American National Standard print control
character. The other information given in the ENVIRONMENT
attribute could alternatively have been given in the DD
statement, as follows:

DCB=(RECFM=VA,BlKSIZE=102)

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 165

//EX8#11 JOB
//STEPI EXEC PlIXCLG
//PLI.SYSIN DD *

PRT: PRoe OPTIONSCMAIN);
DCl TABLE FILE RECORD INPUT SEQUENTIAL,

PRINTER FILE RECORD OUTPUT SEQl ENV(V BlKSIZE(102) CTLASA),
LINE CHAR(94) VAR;

ON ENDFILECTABLE) GO TO FINISH;
OPEN FIlECTABlE),FIlECPRINTER);

NEXT: READ FILE(TABLE) INTOClINE);
WRITE FIlECPRINTER) FROM(LINE);
GO TO NEXT;

FINISH: CLOSE FILECTABLE),FILECPRINTER);
END PRT;

/*
//GO.TABlE DD DSNAME=HPU8.SINES,DISP=COLD,DELETE),UNIT=SYSDA,
// SPACE=(TRK,CI,I»,VOl=SER=nnnnnn
//GO.PRINTER DD SYSOUT=A

Figure 67. Printing with Record-Oriented Data Transmission

DEVICE-ASSOCIATED FILES (IBM 3525 CARD PUNCH)

The IBM 3525 is an 80-column card punch, available to IBM
System/370 users, that can also read cards and print on them.
The CTLASA and CTl360 control characters for the device are
given earlier in "Punching Cards and Printing" on page 163.

You can use the multiple capabilities of the device by
associating two or three files together with the device so that
more than one of the operations read, punch, and print can be
performed on the same card during one pass through the device.
Details of the use of the device, together with the IBM 3505
card reader, are given in "IBM 3505 and 3525 Card Reader and
Punch" on page 108. However, you must consider the following
restrictions at the time you write the program.

• Device-associated files must have the RECORD attribute and
must be either all BUFFERED or all UNBUFFERED.

• The records must be F-format. The maximum record size is 80
for read and punch files and 64 for print files, plus 1 byte
for punch/print control characters.

• ENVIRONMENTCTOTAL) cannot be used.

• When a read or punch associated file is opened, the value of
the BUFFERS option (for BUFFERED files) or of NCP (for
UNBUFFERED files) will be set to one.

• Device-associated files may be opened in any order, but all
of the files must be open before any transmission takes
place to or from anyone of them.

• Depending on the files associated, the appropriate
input/output operations on each card must strictly follow
the order read-punch-print. If the sequence rules are not
followed, the ERROR condition is raised. Only the print
operation can be omitted or repeated.

• A print-associated file that uses control characters for
line positioning must not attempt to feed a card. Such an
attempt would occur if an instruction to print beyond the
maximum line number (2 or 25) for the card were used, or if
a control character that implied a new record were used.
For example, the control character ili specifies printing on
the first line of the next card.

166 OS PL/I Optimizing Compiler: Programmer's Guide

INDEXED DATA SETS

INDEXED ORGANIZATION

• Device-associated files can normally be closed in any order,
but no transmission can take place after anyone of the
files has been closed. As a result, care is needed if the
LOCATE statement is used for BUFERED OUTPUT files. The
output from a LOCATE statement does not actuallY take place
until the next LOCATE, WRITE, or CLOSE statement for the
file. If the LOCATE statement is used on both print- and
punch-associated files, a multiple CLOSE statement must be
used, specifying the punch file before the print file. For
example:

LOCATE A FILECPUNCHOUT);
LOCATE B FILECPRINTOUT);
CLOSE
FILECPUNCHOUT),FILECPRINTOUT);

• The American National Standard print control character ,+,
Cor SKIP(O» is not allowed with the IBM 3525.

• Files associated with column binary or Optical Mark Read
data sets must be RECORD files.

This section describes indexed data set organization and the
data transmission statements and ENVIRONMENT options that define
indexed data sets. It then describes how to create, access, and
reorganize indexed data sets.

A data set with indexed organization must be on a direct-access
device. Its records, which can be either F-format or V-format·
records, blocked or unblocked, are arranged in logical sequence
according to keys that are associated with each record. A key
is a character string that can identify each record uniquely.
Logical records are arranged in the data set in ascending key
sequence according to the EBCDIC collating sequence. Indexes
associated with the data set are used by the operating system
data-management routines to locate a record when the key is
supplied.

Unlike consecutive organization, indexed organization does not
require every record to be accessed in sequential fashion. An
indexed data set must be created sequentially; but, once it has
been created, the associated file may be opened for SEQUENTIAL
or DIRECT access, as well as INPUT or UPDATE. When the file has
the DIRECT attribute, records may be retrieved, added, deleted,
and replaced at random.

Sequential processing of an indexed data set is slower than that
of a corresponding consecutive data set, because the records it
contains are not necessarily retrieved in physical sequence;
furthermore, random access is less efficient for an indexed data
set than for a regional data set, because the indexes must be
searched to locate a record. An indexed data set requires more
external storage space than a consecutive data set, and all
volumes of a multivolume data set must be mounted, even for
sequential processing.

Figure 68 on page 167 list the data-transmission statements and
options that can be used to create and access an indexed data
set.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 167

File Valid statements with other options that
declaration1 options that must appear can also be used

SEQUENTIAL WRITE FILE(file-reference)
OUTPUT FROM(reference)

KEYFROM(expression);

LOCATE based-variable SETCpointer-reference)
FILE(file-reference)
KEYFROMCexpression);

SEQUENTIAL READ FILE(file-reference) KEYCexpression) or
INPUT INTO(reference); KEYTOCreference)

READ FILECfile-reference) KEY(expression) or
SETCpointer-reference); KEYTOCreference)

READ FILECfile-reference)
IGNORECexpression);

SEQUENTIAL READ FILE(file-reference) KEYCexpression) or
UPDATE INTO(reference); KEYTO(reference)

READ FIlE(file-reference) KEY(expression) or
SET(pointer-reference)j KEYTO(reference)

READ FILECfile-reference)
IGNORECexpression);

REWRITE FILECfile-reference); FROMCreference)

DELETE FILE(file-reference)jZ KEY(expression)

DIRECT INPUT READ FILE(file-reference) EVENTCevent-reference)
INTO(reference)
KEYCexpression);

DIRECT UPDATE READ FILE(file reference) EVENTCevent-reference)
INTO(reference)
KEY(expression)j

REWRITE FILE(file-reference) EVENT(event-reference)
FROM(reference)
KEYCexpression);

WRITE FILE(rile-reference) EVENT(event-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference) EVENTCevent-reference)
KEY(expression);Z

Figure 68 (Part 1 of 2), Statements and Options Permitted for Creating and
Accessing Indexed Data Sets

168 OS PL/I Optimizing Compiler: Programmer's Guide

File Valid statements with Other options that
declaration1 options that must appear can also be used

DIRECT UPDATE READ FILECfile-reference) EVENTCevent-reference)
EXCLUSIVE INTOCreference) and/or

KEYCexpression)i NOLOCK

REWRITE FILE(file-reference) EVENT(event-reference)
FROM(reference)
KEY(expression);

WRITE FILECfile-reference) EVENT(event-reference)
FROMCreference)
KEYFROMCexpression);

DELETE FILECfile-reference) EVENTCevent-reference)
KEY(expression);Z

UNLOCK FILECfile-reference)
KEYCexpression)

Figure 68 (Part 2 of 2). Statements and Options Permitted for Creating and
Accessing Indexed Data Sets

Keys

Embedded Keys

Notes to Figure 68:

1 The complete file declaration would include the attributes
FILE, RECORD, and ENVIRONMENT. If any of the options KEY,
KEYFROM, or KEYTO are used, the file declaration must also
include the attribute KEYED. The attribute BUFFERED is the
default, and UNBUFFERED is ignored for INDEXED SEQUENTIAL
and SEQUENTIAL files.

Z Use of the DELETE statement is invalid if OPTCD=L CDCB
subparameter) was not specified when the data set was
created or if the RKP subparameter is 0 for FB records, or 4
for V and VB records.

There are two kinds of keys--recorded keys and source keys. A
recorded key is a character string that actually appears with
each record in the data set to identify that record; its length
cannot exceed 255 characters and all keys in a data set must
have the same length. The recorded keys in an indexed data set
may be separate from, or embedded within, the logical records.
A source key is the character value of the expression that
appears in the KEY or KEYFROM option of a data transmission
statement to identify the record to which the statement refers;
for direct access of an indexed data set, each transmission
statement must include a source key.

Note: All VSAM key-sequenced data sets have embedded keys, even
if they have been converted from ISAM data sets with non embedded
keys.

The use of embedded keys avoids the need for the KEYTO option
during sequential input, but the KEYFROM option is still
required for output. (However, the data specified by the
KEYFROM option may be the embedded key portion of the record
variable itself.) In a data set with unblocked records, a
separate recorded key precedes each record, even when there is
already an embedded key. If the records are blocked, the key of
only the last record in each block is recorded separately in
front of the block.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 169

Indexes

During the execution of a WRITE statement that adds a record to
a data set with embedded keys, the value of the expression in
the KEYFROM option is assigned to the embedded key position in
the record variable. Note that a record variable can be
declared as a structure with an embedded key declared as a
structure member, but that such an embedded key must not be
declared as a VARYING string.

For a LOCATE statement, the KEYFROM string is assigned to the
embedded key when the next operation on the file is encountered.

To provide faster access to the records in the data set, the
operating system creates and maintains a system of indexes to
the records in the data set. The lowest level of index is the
track index. There is a track index for each cylinder in the
data set; it occupies the first track (or tracks) of the
cylinder, and lists the key of the last record on each track in
the cylinder. A search can then be directed to the first track
that has a key that is higher than or equal to the key of the
required record.

If the data set occupies more than one cylinder, the operating
system develops a higher-level index called a cylinder index.
Each entry in the cylinder index identifies the key of the last
record in the cylinder. To increase the speed of searching the
cylinder index, you can request in a DD statement that the
operating system develop a master index for a specified number
of cylinders; you can have up to three levels of master index;
Figure 69 on page 171 illustrates the index structure. The part
of the data set that contains the cylinder and master indexes is
termed the index area.

170 OS PL/I Optimizing Compiler: Programmer's Guide

200 300

500 600

1000 1200

Track
> 100 100 200 200 Index

Data Data Data Data Prime
10 20 40 100 Data

Data Data Data Data Prime
150 175 190 200 Data

375

700

1500

'-

Overflow

450 <

900 <

<
2000

Cylinder 11 Cylinder 12

> I 1500 --->

Figure 69. Index structure of An Indexed Data Set

When an indexed data set is created, all the records are written
in what is called the prime data ares. If more records are
added later, the operating system does not rearrange the entire
data set; it inserts each new record in the appropriate position
and moves up the other records on the same track. Any records
forced off the track by the insertion of a new record are placed
in an overflow area. The overflow area can consist either of a
number of tracks set aside in each cylinder for the overflow
records from that cylinder (cylinder overflow area), or a
separate area for all overflow records (independent overflow
~).

Records in the overflow area are chained together to the track
index so as to maintain the logical sequence of the data set;
this is illustrated in Figure 70 on page 174. Each entry in the
track index consists of two parts:

• The normal entry, which points to the last record on the
track

• The overflow entry, which contains the key of the first
record transferred to the overflow area and also points to
the last record transferred from the track to the overflow
area

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 171

Dummy Records

If there are no overflow records from the track, both index
entries point to the last record on the track. An additional
field is added to each record that is placed in the overflow
area. It points to the previous record transferred from the
same trackj the first record from each track is linked to the
corresponding overflow entry in the track index.

Records within an indexed data set are either actual records
containing valid data or dummy records. A dummy record,
identified by the constant (8)'I'B in its first byte, can be one
that you insert or it can be created by the operating system.
You insert dummy records by setting the first byte to (8)'I'B
and writing the records in the usual way. The operating system
creates dummy records by placing (8)'I'B in a record that is
named in a DELETE statement.

When creating an indexed data set, you may wish to insert dummy
records to reserve space in the prime data area. Dummy records
can later be replaced by valid data records having the same key.

The operating system removes dummy records when the data set is
reorganized, as described later in this section, and removes
those forced off the track during an update.

If the DCB subparameter OPTCD=l is included in the DD statement
that defines the data set when it is created, dummy records will
not be retrieved by READ statements and the operating system
will write the dummy identifier in records being deleted.

DEFINING AN INDEXED DATA SET

A sequential indexed data set is defined by a file declaration
with the following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT UPDATE
SEQUENTIAL
BUFFERED

[KEYED]
ENVIRONMENT(options)j

A direct indexed data set is defined by a file declaration with
the following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT , UPDATE
DIRECT
UNBUFFERED
KEYED

[EXCLUSIVE]
ENVIRONMENT(options)j

Default file attributes are shown in Figure 45 on page 123. The
file attributes are described in the OS and DOS Pl/I language
Reference Manual. Options of the ENVIRONMENT attribute are
discussed below.

172 OS PL/I Optimizing Compiler: Programmer's Guide

ENVIRONMENT OPTIONS FOR INDEXED DATA SETS

INDEXED Option

The ENVIRONMENT options applicable to indexed data sets aret

FIFBIVIVB
RECSIZECrecord-length)
BlKSIZE(block-size)
SCAlARVARYING
COBOL
BUFFERSCn)
KEYlENGTHCn)
NCP(n)
GENKEY

INDEXED
KEYlOC(n)
INDEXAREA[Cindex-area-size)]
NOWRITE
ADDBUFF

The options above the blank line are described in "Data Set
Organization Options" on page 122, and those below the blank
line are described below.

The INDEXED option defines a file with indexed organization
(which is described above). It is usually used with a data set
created and accessed by the Indexed Sequential Access Method,
but may also be used in some cases with VSAM data sets Cas
described in Chapter 9).

r-== Syntax

I INDEXED

KEVLOC Option -- Key Location

The KEYlOC option can be used with indexea data sets, when the
data set is created, to specify the starting position of an
embedded key in a record.

~ Syntax
K£VLOCCn)

The position, n, must be within the limitsl

1 ~ n ~ recordsize - keylength +1

That is, the key cannot be larger than the record, and must be
contained completely within the record.

If the keys are embedded within the records, either the
KEYlOCCn) option should be specified, or the DCB subparameter
RKP must be included in the DD statement for the associated data
set.

If KEYlOC is not specified, the value specified with RKP is
used. If this subparameter is not specified, then RKP=O is the
default.

The KEYlOC option specifies the absolute position of an embedded
key from the start of the data in a record, while the RKP
subparameter specifies the position of an embedded key relative
to the start of the record.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 173

10

101

100

10

101

Track
1

200

20

150

20

150

Track
2

2S

175

25

175

Figure 70. Adding Records to an Indexed Data Set

174 OS Pl/I Optimizing Compiler. Programmer's Guide

Track
Index

40

Prime
Data

190

Over"f1ow

Track
Index

26 I Pr-ime
Data

190

Overflow

Thus the equivalent KEYLOC and RKP values for a particular byte
are affected by the following:

• The KEYLOC byte count starts at 1; the RKP count starts at 0

• The record format

For example, if the embedded key begins at the tenth byte of a
record variable, then the specifications are:

Fixed length: KEYLOCClO)
RKP=9

Variable-length: KEYLOCClO)
RKP=13

If KEYLOC is specified with a value equal to or greater than 1,
embedded keys exist in the record variable and on the data set.
If KEYLOC is equal to zero, or is not specified, the RKP value
is used; when RKP is specified, the key is part of the variable
only when RKP~I. As a result, embedded keys may not always be
present in the record variable or the data set. If KEYLOCCl) is
specified, it must be specified for every file that accesses the
data set. This is necessary because KEYLOCCl) cannot be
converted to an unambiguous RKP value. CIts equivalent is RKP=O
for fixed format, which in turn implies non embedded keys.) The
effect of the use of both options is shown in Figure 71.

If SCALARVARYING is specified, the embedded key must not
immediately precede or follow the first byte; hence, the value
specified for KEYLOC must be greater than 2.

If the KEYLOC option is included in a VSAM file declaration for
checking purposes, and the key location specified in the option
conflicts with the value defined for the data set, the
UNDEFINEDFILE condition is raised.

Data set Data set
Record Unblocked Blacked

KEYLOC(n) RKP Variable Records Records

n>1 RKP equivalent = Key Key Key
n-I+Cl

n=1 No equivalent Key Key2 Key

n=O RKP=Cl No Key No Key Key3

or not
specified RKP>Cl Key Key Key

Figure 71. Effect of KEYLOC and RKP Values on Establishing
Embedded Keys in-Record Variables or Data Sets

Nates to Figure 71:

1 C = number of control bytes, if any:

2

3

C=O for fixed-length records
C=4 for variable-length records

In this instance the key is not recognized by data
management.

Each logical record in the block has a key.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 175

INDEXAREA Option

NOWRITE Option

ADDBUFF Option

The INDEXAREA option improves the input/output speed of a DIRECT
INPUT or DIRECT UPDATE file with indexed data set organization,
by having the highest level of index placed in main storage. r-:: Syntax

I:DEXAREA[CindeX-area-SiZe)]

The "index-area-size" enables you to limit the amount of main
storage allowed for an index area. The size, when specified,
must be an integer or a variable with attributes FIXED
BINARYCSl,O) STATIC whose value lies within the range 0 through
64,000. If the "index-area-size" is not specified, the highest
level index is moved unconditionally into main storage. If an
"index-area-size" is specified, the highest level index is held
in main storage, provided that its size does not exceed that
specified. If the specified size is less than 0 or greater than
64,000, unpredictable results will occur.

The NOWRITE option is used for DIRECT UPDATE files. It
specifies that no records are to be added to the data set and
that data management modules concerned solely with adding
records are not required; it thus allows the size of the object
program to be reduced. r-:: Syntax

NOWRITE

The ADDBUFF option can be specified for a DIRECT INPUT or DIRECT
UPDATE file with indexed data set organization and F-format
records to indicate that an area of internal storage is to be
used as a workspace in which records on the data set can be
rearranged when new records are added. The size of the
workspace is equivalent to one track of the direct-access device
used. The option need not be specified for DIRECT INDEXED files
with V-format records, as the workspace is automatically
allocated for such files. r-:: Syntax

ADDBUFF

CREATING AN INDEXED DATA SET

When you create an indexed data set, the associated file must be
opened for SEQUENTIAL OUTPUT, and the records must be presented
in the order of ascending key values. (If there is an error in
the key sequence, the KEY condition is raised.) A DIRECT file
cannot be used for the creation of an indexed data set.

Figure 68 on page 167 shows the statements and options for
creating an indexed data set.

An indexed data set consisting of fixed-length records can be
extended by adding records sequentially at the end, until the
original space allocated for the prime data is filled. The
corresponding file must be opened for SEQUENTIAL OUTPUT and you
must include DISP=MOD in the DD statement.

176 OS Pl/I Optimizing Compiler: Programmer's Guide

You can use a single DD statement to define the whole of the
data set (index area, prime area, and overflow area), or you can
use two or three statements to define the areas independently.
If you use two DD statements, you can define either the index
area and the prime area together, or the prime area and the
overflow area together.

If you want the whole of the data set to be on a single volume,
there is no advantage to be gained by using more than one DD
statement except to define an independent overflow area (see
"Overflow Area" on page 182). But, if you use separate DD
statements to define the index and/or overflow area on volumes
separate from that which contains the prime area, you will
increase the speed of direct-access to the records in the data
set by reducing the number of access mechanism movements
required.

When you use two or three DD statements to define an indexed
data set, the statements must appear in the order: index area;
prime area; overflow area. The first DD statement must have a
name (ddname), but the name fields of a second or third DD
statement must be blank. The DO statements for the prime and
overflow areas must specify the same type of unit (UNIT
parameter). You must include all the DCB information for the
data set in the first DD statement; DCB=DSORG=IS will suffice in
the other statements.

Essential Information

To create an indexed data set, you must give the operating
system certain information either in your PL/I program or in the
DD statement that defines the data set. The following
paragraphs indicate the essential information, and discuss some
of the optional information you may supply.

You must supply the following information when creating an
indexed data set:

• Direct-access device that will write your data set (UNIT or
VOLUME parameter of DD statement). Do not request DEFER.

• Block size: You can specify the block size either in your
PL/I program (ENVIRONMENT attribute or LINESIZE option) or
in the DD statement (BLKSIZE subparameter). If you do not
specify a record length, unblocked records are the default
and the record length is determined from the block size.

• Space requirements: Include space for future needs when you
specify the size of the prime, index, and overflow areas.
Once you have created an indexed data set, you cannot change
its specification.

If you want to keep a direct-access data set (that is, you do
not want the operating system to delete it at the end of your
job), the DD statement must name the data set and indicate how
it is to be disposed of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to use the data set in
a later step but will not need it after the end of your job.

If you want your data set stored on a particular direct-access
device, you must specify the volume serial number in the DD
statement (SER or REF subparameter of VOLUME parameter). If you
do not specify a serial number for a data set that you want to
keep, the operating system will allocate one, inform the
operator, and print the number on your program listing. All the
essential parameters required in a DD statement for the creation
of an indexed data set are summarized in Figure 72 on page 178.
Figure 73 on page 179 lists the DCB subparameters needed. See
your JCL manual for a description of the DCB subparameters.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 177

When Required

Always

More than one DD
statement

Parameters of DD statement

What You Must state

Output device

storage space required

Data control block
informationt see
Figure 73 on page 179.

Name of data set and
area (index, prime,
overflow)

Parameters

UNIT= or VOLUME=REF=

SPACE=

DCB=

DSNAME=

Data set to be used Disposition DISP=
in another job step
but not required after
end of job

Data set to be kept
after end of job

Disposition DISP=

Data set to be on
particular volume

Name of data set

Volume serial number

DSNAME=

VOlUME=SER= or
VOlUME=REF=

Figure 72. Creating an Indexed Data Set: Essential Parameters of DD Statement

You must request space for the prime data area in the SPACE
parameter. You cannot specify a secondary quantity for an
indexed data set. Your request must be in units of cylinders
unless you place the data set in a specific position on the
volume (by specifying a track number in the SPACE parameter).
In the latter case, the number of tracks you specify must be
equivalent to an integral number of cylinders, and the first
track must be the first track of a cylinder other than the first
cylinder in the volume. You can also use the SPACE parameter to
specify the amount of space to be used for the cylinder and
master indexes (unless you use a separate DD statement for this
purpose). If you do not specify the space for the indexes, the
operating system will use part of the independent overflow area;
if there is no independent overflow area, it will use part of
the prime data area.

You must always specify the data set organization (DSORG=IS
subparameter of the DCB parameter), and in the first (or only)
DD statement you must also specify the length of the key (KEYLEN
subparameter of the DCB parameter) unless it is specified in the
ENVIRONMENT attribute.

If you want the operating system to recognize dummy records, you
must code OPTCD=L in th~ DCB subparameter of the DD statement.
This will 'cause the operating system to write the dummy
identifier in deleted records and to ignore dummy records during
sequential read processing. Do not specify OPTCD=L when using
blocked or variable-length records with nonembedded keys; if you
do, the dummy r~cord id~ntifier (8)'I'B will overwrite the key
of del~ted records.

178 OS PL/I Optimizing Compiler: Programmer's Guide

When Required

These are always
required Z

Include at least one
of these if overflow
is required

These are optional

DCB Sub parameters
To Specify

Record format!

Block size l

Data set organization

Key length l

Cylinder overflow area
and number of tracks
per cylinder for
overflow records

Independent overflow
area
Record length l

Embedded key (relative
key position)l

Master index

Automatic processing
of dummy records

Number of data
management buffers l

Number of tracks in
cylinder index for
each master index entry

Subparameters

RECFM=F, FB, V,
or VB

BLKSIZE=

DSORG=IS

KEYLEN=

OPTCD=Y and CYLOFL=

OPTCD=I

LRECL=

RKP= 2

OPTCD=M

OPTCD=L

BUFNO=

NTM=

1 Alternatively, can be specified in ENVIRONMENT attribute.

Z RKP is required if the data set has embedded keys, unless the KEYLOC option
of ENVIRONMENT is specified instead.

Note: Full DCB information must appear in the first, or only, DD statement.
Subsequent statements require only DSORG=IS.

Figure 73. DCB Subparameters for an Indexed Data Set

Name of the Data Set

You cannot place an ihdexed data set on a system output (SYSOUT)
device.

If you use only one DD statement to define your data set, you
need not name the data set unless you intend to access it in
another job. But, if you include two or three DD statements,
you must specify a data set name, even for a temporary data set.

The DSNAME parameter in a DD statement that defines an indexed
data set not only gives the data set a name, but it also
identifies the area of the data set to which the DD statement
refers:

DSNAME=name(INDEX)
DSNAME=name(PRIME)
DSNAME=nameCOVFLOW)

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 179

If you use one DD statement to define the prime and index or one
DD statement to define the prime and overflow area, code
DSNAME=name(PRIME). If you use one DD statement for the entire
file (prime, indexl and overflow), code DSNAME=name(PRIME) or
simply DSNAME=name.

Record Format and Keys

An indexed data set can contain either fixed- or variable-length
records, blocked or unblocked. You must always specify the
record format, either in your PL/I program (ENVIRONMENT
attribute) or in the DD statement (RECFM subparameter).

The key associated with each record can be contiguous with or
embedded within the data in the record.

If the records are unblocked, the key of each record is recorded
in the data set in front of the record even if it is also
embedded within the record, as shown in (a) and (b) of Figure 74
on page 181. If blocked records do not have embedded keys, the
key of each record is recorded within the block in front of the
record, and the key of the last record in the block is also
recorded just ahead of the block, as shown in (c) of Figure 74
on page 181. When blocked records have embedded keys, the
individual keys are not recorded separately in front of each
record in the block; the key of the last record in the block is
recorded in front of the block, as shown in (d) of Figure 74 on
page 181.

180 OS PL/I Optimizing Compiler: Programmer's Guide

(a) Unblocked records, nonembedded keys

(c) Blocked records, nonembedded keys r 1 st record ---r- 2nd record --r- last record I

I ~:~orded I Key Data I Key Data Key Data I ~:~orded I Key

• same key •

(d) Blocked records, embedded keys

~---------------------samekey--------------------~

(e) Unblocked variable-length records, RKP>4

[Key IBLIRLI Data I Key I Data

L-- same key---1

(f) Blocked variable-length records, RKP>4

.~----------------------samekey----------------------.

(g) Unblocked variable-length records, RKP=4

I Key IBLIRLI Key I Data

Lsame keyJ

(h) Blocked variable-length records, RKP=4

·~--------------samekey------------~·

Figure 74. Record Formats in an Indexed Data Set

B L = Block length
R L = Record length

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 181

Overflow Area

If you use blocked records with nonembedded keys, the record
size that you specify must include the length of the key, and
the block size must be a multiple of this combined length.
Otherwise, record length and block size refer only to the data
in the record. Record format information is shown in Figure 75.

RECORDS

Blocked

Unblocked

RKP

Not zero

Zero or
omitted

Not zero

Zero or
omitted

LRECL

R

R + K

R

R

R = Size of data in record

BLKSIZE

R * B

B*(R+K)

R

R

K = Length of keys (as specified in
KEYLEN subparameter)

B = Blocking factor

Example:
For blocked records,
nonembedded keys, 100 bytes of
data per record, 10 records per
block, key length = 20:
LRECL=120,BLKSIZE=1200,RECFM=FB

Figure 75~ Record Format Information for an Indexed Data Set

If you use records with embedded keys, you must include the DCB
subparameter RKP to indicate the position of the key within the
record. For fixed-length records the value specified in the RKP
subparameter is 1 less than the byte number of the first
character of the key; that is, if RKP=l, the key starts in the
second byte of the record. The default value if you omit this
subparameter is RKP=O, which specifies that the key is not
embedded in the record but. is separate from it.

For variable-length records, the value specified in the RKP
subparameter must be the relative position of the key within the
record plus 4. The extra 4 bytes take into account the 4-byte
control field used with variable-length records. For this
reason, you must never specify RKP less than 4. When deleting
records, you must always specify RKP equal to or greater than 5,
since the first byte of the data is used to indicate deletion.

For unblocked records, the key, even if embedded, is always
recorded in a position preceding the actual data. Consequently,
the RKP subparameter need not be specified for unblocked
records.

If you intend to add records to the data set on.a future
occasion, you must request either a cylinder overflow area or an
independent overflow area, or both.

For a cylinder overflow area, include the DCB subparameter
OPTCD=Y and use the subparameter CYLOFL to specify the number of
tracks in each cylinder to be reserved for overflow records. A
cylinder overflow area has the advantage of a short search time
for overflow records, but the amount of space available for
overflow records is limited, and much of the space may be unused

182 OS PL/I Optimizing Compiler: Programmer's Guide

Master Index

if the overflow records are not evenly distributed throughout
the data set.

For an independent overflow area, use the DCB subparameter
OPTCD=I to indicate that overflow records are to be placed in an
area reserved for overflow records from all cylinders, and
include a separate DD statement to define the overflow area.
The use of an independent area has the advantage of reducing the
amount of unused space for overflow records, but entails an
increased search time for overflow records.

It is good practice to request cylinder overflow areas large
enough to contain a reasonable number of additional records and
an independent overflow area to be used as the cylinder overflow
areas are filled.

If the prime data area is not filled during creation, you cannot
use the unused portion for overflow records, nor for any records
subsequently added during direct-access (although you can fill
the unfilled portion of the last track used). You can reserve
space for later use within the prime data area by writing dummy
records during creation (see "Dummy Records" on page 172).

If you want the operating system to create a master index for
you, include the DCB subparameter OPTCD=M, and indicate in the
NTM subparameter the number of tracks in the cylinder index you
wish to be referred to by each entry in the master index. The
operating system will create up to three levels of master index,
the first two levels addressing tracks in the next lower level
of the master index.

ACCESSING AN INDEXED DATA SET

sequential Access

Once an indexed data set has been created, the file that
accesses it can be opened for SEQUENTIAL INPUT or UPDATE, or for
DIRECT INPUT or UPDATE. In the case of F-format records, it can
also be opened for OUTPUT to add records at the end of the data
set. The keys for these records must have higher values than
the existing keys for that data set and must be in ascending
order. Figure 68 on page 167 shows the statements and options
for accessing an indexed data set.

Sequential input allows you to read the records in ascending key
sequence, and in sequential update you can read and rewrite each
record in turn. Using direct input, you can read records using
the READ statement, and in direct update you can read or delete
existing records or add new ones. Sequential and direct-access
are discussed in further detail below.

A sequential file that is used to access an indexed data set may
be opened with either the INPUT or the UPDATE attribute. The
data transmission statements need not include source keys, nor
need the file have the KEYED attribute. Sequential access is in
order of ascending recorded-key values; records are retrieved in
this order, and not necessarily in the order in which they were
added to the data set. Dummy records are not retrieved if the
DD statement that defined the data set included the subparameter
OPTCD=l.

Except that the EVENT option cannot be used, rules governing the
relationship between the READ and REWRITE statements for a
SEQUENTIAL UPDATE file that accesses an indexed data set are
identical to those for a consecutive data set (described above).

Embedded keys in a record to be updated must not be altered.
The modified record must always overwrite the update record in
the data set.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 183

Direct Access

Additionally, records can be effectively deleted from the data
set; a DELETE statement marks a record as a dummy by putting
(8)'1'B in the first byte. The DELETE statement should not be
used to process a data set with F-format blocked records and
either KEYLOC=l or RKP=O, or V- or VB-format records and either
KEYLOC=1 or RKP=4. (The code (8)'I'B would overwrite the first
byte of the recorded key.) Note that the EVENT option is not
supported for SEQUENTIAL access of indexed data sets.

INDEXED KEYED files opened for SEQUENTIAL INPUT and SEQUENTIAL
UPDATE may be positioned to a particular record within the data
set either by a READ KEY or a DELETE KEY operation that
specifies the key of the desired record. Thereafter, successive
READ statements without the KEY option will access the following
records in the data set sequentially. A subsequent READ
statement without the KEY option causes the record with the next
higher recorded key to be read (even if the keyed record has not
been found).

The length of the recorded keys in an indexed data set is
defined by the KEYLENGTH ENVIRONMENT option or the KEYLEN
subparameter of the DD statement that defines the data set. If
the length of a source key is greater than the specified length
of the recorded keys, the source key is truncated on the right.

The effect of supplying a source key that is shorter than the
recorded keys in the data set differs according to whether or
not the GENKEY option is specified in the ENVIRONMENT attribute.
In the absence of the GENKEY option, the source key is padded on
the right with blanks to the length specified in the KEYLENGTH
option of the ENVIRONMENT attribute, and the record with this
padded key is read (if such a record exists). If the GENKEY
option is specified, the source key is interpreted as a generic
key, and the first record with a key in the class identified by
this generic key is read. (For further details see, "GENKEY
Option--Key Classification" on page 129.)

A direct file that is used to access an indexed data set may be
opened with either the INPUT or the UPDATE attribute. All data
transmission statements must include source keys; the DIRECT
attribute implies the KEYED attribute.

A DIRECT UPDATE file can be used to retrieve, and delete, or
replace records in an indexed data set according to the
following conventions:

• Retrieval: If the DD statement that defined the data set
included the subparameter OPTCD=L, dummy records are not
made available by a READ statement (the KEY condition is
raised) .

• Addition: A WRITE statement that includes a unique key
causes a record to be inserted into the data set. If the
key is the same as the recorded key of a dummy record, the
new record replaces the dummy record. If the key is the
same as the recorded key of a record that is not marked as
deleted, or if there is no space in the data set for the
record, the KEY condition is raised.

• Deletion: The record specified by the source key in a DELETE
statement is retrieved, marked as deleted, and rewritten
into the data set. The effect of the DELETE statement is to
insert the value (8)'I'B in the first byte of the data in a
record. Deletion is possible only if OPTCD=l was specified
in the DD statement that defined the data set when it was
created. If the data set has F-format blocked records with
RKP=O or KEYlOC=l, or V-format records with RKP=4 or
KEYlOC=I, records cannot be deleted. (The code (8)'1'B
would overwrite the embedded keys.)

184 OS Pl/I Optimizing Compiler: Programmer's Guide

• Replacement: The record specified by a source key in a
REWRITE statement is replaced by the new record. If the
data set contains F-format blocked records l a record
replaced with a REWRITE statement causes an implicit READ
statement to be executed unless the previous 1/0 statement
was a READ statement that obtained the record to be
replaced. If the data set contains V-format records and the
updated record has a length different from that of the
record read l the whole of the remainder of the track will be
removed? and may cause data to be moved to an overflow
track.

Essential Information

To access an indexed data setl you must define it in one, twol
or three DD statements; the DD statements must correspond with
those used when the data set is created. The following
paragraphs indicate the essential information you must include
in each DD statement; Figure 76 summarizes this information.

If the data set is cataloged l you need supply only the following
information in each DD statement:

• The name of the data set (DSNAME parameter). The operating
system will locate the information that describes the data
set in the system catalog and, if necessary, will request
the operator to mount the volume that contains it.

• Confirmation that the data set exists (DISP parameter).

• Full DCB information for the first, or only, DD statement.
Subsequent statements require only DSORG=IS to be coded.

If the data set is not cataloged, you must, in addition, specify
the device that will process the data set and give the serial
number of the volume that contains it (UNIT and VOLUME
parameters).

REORGANIZING AN INDEXED DATA SET

It is necessary to reorganize an indexed data set periodically
because the addition of records to the data set results in an
increasing number of records in the overflow area. Thereforel
even if the overflow area does not eventually become full, the
average time required for the direct retrieval of a record will
increase. The frequency of reorganization depends on how often
the data set is updated l on how much storage is available in the
data setl and on your timing requirements.

Reorganizing the data set also eliminates records that are
marked as "deleted l " but are still -present within the data set.

There are two ways to reorganize an indexed data set:

• Read the data set into an area of main storage or onto a
temporary consecutive data set, and then re-create it in the
original area of auxiliary storage.

• Read the data set sequentially and write it into a new area
of auxiliary storage; you can then release the original
auxiliary storage.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 185

When Required

Always

If data set not
cataloged

Parameters of DD statement

What You Must state

Name of data set

Disposition of data set

Data control block
information

Input device

Volume serial number

Parameters

DSNAME=

DISP=

DCB=

UNIT= or VOLUME=REF=

VOLUME=SER=

Figure 76. Accessing an Indexed Data Set: Essential Parameters of DD statement

EXAMPLES OF INDEXED DATA SETS

The creation of a simple indexed data set is illustrated in
Figure 77 on page 187. The data set contains a telephone
directory, using the subscribers' names as keys to the telephone
numbers.

186 OS PL/I Optimizing Compiler: Programmer's Guide

//EX8#19 JOB
//STEPI EXEC PlIXClG
//PlI.SYSIN DD *

TElNOS: PROC OPTIONS(MAIN);
DCl DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),

CARD CHAR(80),
NAME CHAR(20) DEF CARD,
NUMBER CHAR(3) DEF CARD POS(21),
IOFIElD CHAR(3);

ON ENDFIlECSYSIN) GO TO FINISH;
OPEN FIlECDIREC) OUTPUT;

NEXTIN: GET FIlECSYSIN) EDITCCARD)(A(80»;
PUT FIlE(SYSPRINT) SKIP EDIT (CARD) (A);
IOFIElD=NUMBER;
WRITE FILE(DIREC) FROMCIOFIELD) KEYFROMCNAME);
GO TO NEXTIN;

FINISH: CLOSE FIlE(DIREC);
END TEL NOS;

//*
//GO.DIREC DD
//

DSN=HPU8.TELNOCINDEX),UNIT=SYSDA,VOL=SER=nnnnnn,
DCB=CRECFM=F,BLKSIZE=3,DSORG=IS,KEYlEN=20,OPTCD=lIY,
CYLOFL=2),SPACE=CCYL,I),DISP=(NEW,CATlG) //

//
//
//
//

DD DSN=HPU8.TElNO(PRIME),UNIT=SYSDA,VOl=SER=nnnnnn,
DISP=CNEW,KEEP),DCB=DSORG=IS,SPACE=CCYL,l)

DD DSN=HPU8.TElNOCOVFLOW),UNIT=SYSDA,VOl=SER=nnnnnn,
DISP=(NEW,KEEP),DCB=DSORG=IS,SPACE=(CYl,l)

//GO.SYSIN DD
ACTION,G.
BAKER,R.
BRAMLEy,O.H.
CHEESEMAN,D.
CORY,G.
ELLIOTT,D.
FIGGINS,S.
HARVEy,C.D.W.
HASTINGS,G.M.
KENDALl,J.G.
lANCASTER,W.R.
MILES,R.
NEWMAN,M.W.
PITT,W.H.
ROlF,D.E.
SHEERS,C.D.
SUTCLIFFE,M.
TAYLOR,G.C.
WILTON,L.W.
WINSTONE,E.M.
/*

* 162
152
248
141
336
875
413
205
391
294
624
233
450
515
114
241
472
407
404
307

Figure 77. Creating an Indexed Data Set

The program in Figure 78 on page 188 updates this data set and
prints out its new contents. The input data includes the
following codes to indicate the operations required:

A: Add a new record
C: Change an existing record
D: Delete an existing record

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 187

//EX8#20 JOB
//STEPI EXEC PLIXCLG
//PlI.SYSIN DD '*

DIRUPDT: PROC OPTIONS(MAIN);
DCl DIREC FILE RECORD KEYED ENV(INDEXED),

NUMBER CHAR(3),NAME CHAR(20),CODE CHAR(2),ONCODE BUILTIN;
ON ENDFIlECSYSIN) GO TO PRINT;

NEXT:

PRINT:

NEXTIN:

FINISH:
/*

ON KEYCDIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT

('NOT FOUND:',NAME)(AClS),A);
IF ONCODE=S2 THEN PUT FIlE(SYSPRINT) SKIP EDIT

('DUPLICATE:',NAME)CA(lS),A);
END;

OPEN FIlE(DIREC) DIRECT UPDATE;
GET FIlE(SYSIN) EDIT(NAME,NUMBER,CODE)

(COlUMNCl),A(20),A(3),A(1»;
PUT FILECSYSPRINT) SKIP EDIT (I ',NAME,"',NUMBER,'

(A(1),A(20),A{1),A(3),A(1),ACl);
IF CODE='A' THEN

WRITE FIlE(DIREC) FROM(NUMBER) KEYFROM(NAME);
ELSE IF CODE='C' THEN

REWRITE FILECDIREC) FROMCNUMBER) KEYCNAME);
ELSE IF CODE='D' THEN

DELETE FILECDIREC) KEY(NAME);
ELSE PUT FILE(SYSPRINT) SKIP

EDIT('INVALID CODE:',NAME)CAClS),A);
GO TO NEXT;
CLOSE FIlE(DIREC);
PUT FIlE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;
ON ENDFILECDIREC) GO TO FINISH;
READ FIlE(DIREC) INTO(NUMBER) KEYTOCNAME);
PUT FIlECSYSPRINT) SKIP EDIT(NAME,NUMBER)(A);
GO TO NEXTIN;
CLOSE FIlE(DIREC); END DIRUPDT;

//GO.DIREC DD DSN=MY.TElNO(INDEX),DISP=(OLD,KEEP),UNIT=SYSDA,
// VOl=SER=nnnnnn
// DD DSN=MY.TELNO{PRIME),DISP=(OLD,KEEP),UNIT=SYSDA,
// VOL=SER=nnnnnn

, ,CODE)

// DD DSN=MY.TElNOCOVFlOW),DISP=(OlD,KEEP),UNIT=SYSDA,
// VOL=SER=nnnnnn
//GO.SYSIN DD '*
NEWMAN,M.W.
GOODFElLOW,D.T.
MILES,R.
HARVEy,C.D.W.
BARTLETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROlF,D.E.
ELlIOTT,D.
HASTINS,G.M.
BRAt·1LEY,0. H.
/'*

S16C
889A

D
209A
183A

D
OOlA

D
29lC

D
439

Figure 78. Updating an Indexed Data Set

188 as Pl/I Optimizing Compiler: Programmer's Guide

REGIONAL DATA SETS

This section describes regional data set organization, the data
transmission statements, and the ENVIRONMENT options that define
regional data sets. It then describes, for each type of
regional organization in turn, how to create and access regional
data sets.

REGIONAL ORGANIZATION

A data set with regional organization is divided into regions,
each of which is identified by a region number, and each of
which may contain one record or more than one record, depending
on the type of regional organization. The regions are numbered
in succession, beginning with zero, and a record may be accessed
by specifying its region number, and perhaps a key, in a data
transmission statement.

Regional data sets are confined to direct-access devices.

Regional organization of a data set permits you to control the
physical placement of records in the data set, and to optimize
the access time for a particular application. Such optimization
is not available with consecutive or indexed organization, in
which successive records are written either in strict physical
sequence or in logical sequence depending on ascending key
values; neither of these methods takes full advantage of the
characteristics of direct-access storage devices.

A regional data set can be created in a manner similar to a
consecutive 'or indexed data set, records being presented in the
order of ascending region numbers; alternatively, direct-access
can be used, in which records can be presented in random
sequence and inserted directly into preformatted regions. Once
a regional data set has been created, it can be accessed by a
file with the attributes SEQUENTIAL or DIRECT as well as INPUT
or UPDATE. Neither a region number nor a key need be specified
if the data set is associated with a SEQUENTIAL INPUT or
SEQUENTIAL UPDATE file. When the file has the DIRECT attribute,
records can be retrieved, added, deleted, and replaced at
random.

Records within a regional data set are either actual records
containing valid data or dummy recorJs. The nature of the dummy
records depends on the type of regional organization; the three
types of regional organization are described below.

The major advantage of regional organization over other types of
data set organization is tha·t it allows you to control the
relative placement of records; by judicious programming, you can
optimize record access in terms of device capabilities and the
requirements of particular applications.

Direct access of regional data sets is quicker than that of
indexed data sets, but they have the disadvantage that
sequential processing may present records in random sequence;
the order of sequential retrieval is not necessarily that in
which the records were presented, nor need it be related to the
relative key values.

Figure 79 lists the data transmission statements and options
that can be used to create and access a regional data set.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 189

File Valid statementsZ with options other options that
declaration1 that must appear can also be used

SEQUENTIAL OUTPUT WRITE FILECfile-reference)
BUFFERED FROMCreference)

KEYFROMCexpression);

LOCATE based-variable SETCpointer-reference)
FROMCfile-reference)
KEYFROMCexpression);

SEQUENTIAL OUTPUT WRITE FILECfile-reference)
UNBUFFERED FROMCreference)

KEYFROM(expression); EVENT(event-reference)

SEQUENTIAL INPUT READ FILE(file-reference) KEYTO(reference)
BUFFERED INTO(reference);

READ FIlECfile-reference) KEYTOCreference)
SETCpointer-reference);

READ FILECfile-reference)
IGNORECexpression);

SEQUENTIAL INPUT READ FILECfile-reference) EVENTCevent-reference)
UNBUFFERED INTOCreference); and/or

KEYTOCreference)

READ FIlECfile-reference) EVENT(event-reference)
IGNORE(expression);

SEQUENTIAL UPDATE READ FILECfile-reference) KEYTOCreference)
BUFFERED INTOCreference);

READ FILECfile-reference) KEYTOCreference)
SET(pointer-reference);

READ FILECfile-reference)
IGNORECexpression);

REWRITE FILECfile-reference); FROMCreference)

SEQUENTIAL UPDATE READ FILECfile-reference) EVENTCevent-reference)
UNBUFFERED INTOCreference); and/or

KEYTOCreference)

READ FILECfile-reference) EVENTCevent-reference)
IGNORECexpression);

REWRITE FIlECfile-reference) EVENTCevent-reference)
FROMCreference)j

DIRECT OUTPUT WRITE FILECfile-reference) EVENTCevent-reference)
FROM(reference)
KEYFROMCexpression);

DIRECT INPUT READ FIlE(file-reference) EVENTCevent-reference)
INTOCreference)
KEYCexpression);

Figure 79 (Part 1 of 2). Statements and Options Permitted for Creating and
Accessing Regional Data Sets

190 OS Pl/I Optimizing Compilerz Programmer's Guide

File Valid statementsZ with options Other options that
declaration1 that must appear can also be used

DIRECT UPDATE READ FILECfile-reference) EVENTCevent-reference)
INTOCreference)
KEYCexpression);

REWRITE FILE(file-reference) EVENT(event-reference)
FROM(reference)
KEYCexpression)i

WRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference)
KEYFROMCexpression);

DELETE FILECfile-reference) EVENTCevent-reference)
KEYCexpression);

DIRECT INPUT READ FILE(file-reference) EVENT(event-reference)
EXCLUSIVE INTO(reference) and/or

KEY(expression); NOLOCK

DIRECT UPDATE READ FILECfile-reference) EVENTCevent-reference)
EXCLUSIVE INTO(reference) and/or

KEY(expression)i NOLOCK

REWRITE FILE(file-reference)
FROMCreference) EVENT(event-reference)
KEY(expression);

WRITE FILECfile-reference)
FROM(reference) EVENT(event-reference)
KEYFROM(expression);

DELETE FILECfile-reference)
KEY(expression); EVENT(event-reference)

UNLOCK FILECfile-reference)
KEY(expression)i

Figure 79 (Part 2 of 2), Statements and Options Permitted for Creating and
Accessing Regional Data Sets

Notes to Figure 79:

The complete file declaration would include the attributes
FILE, RECORD, and ENVIRONMENT; if any of the options KEY,
KEYFROM, or KEYTO is used, it must also include the
attribute KEYED.

2 The statement: READ FILE(file-reference); is equivalent to
the statement: READ FILE(file-reference) IGNORE(1):

DEFINING A REGIONAL DATA SET

A sequential regional data set is defined by a file declaration
with the following attributes:

DCL filename FILE RECORD
INPUT I OUTPUT I UPDATE
SEQUENTIAL
BUFFERED I UNBUFFERED

[KEYED]
ENVIRONMENTCoptions)i

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 191

A direct regional data set is defined by a file declaration with
the following attributes:

DCL filename FILE RECORD
INPUT I OUTPUT I UPDATE
DIRECT
UNBUFFERED
KEYED

[EXCLUSIVE]
ENVIRONMENTCoptions);

Default file attributes are shown in Figure 4S on page 123. The
file attributes are described in the OS and DOS PL/I Languagt
Reference Manual. Options of the ENVIRONMENT attribute are
discussed below.

ENVIRONMENT OPTIONS FOR REGIONAL DATA SETS

REGIONAL Option

The ENVIRONMENT options applicable to regional data sets arta

REGIONAL({lI213})
FIVIVSIU
RECSIZECrecord-length)
BLKSIZECblock-size)
SCAlARVARYING
COBOL
BUFFERSCn)
KEYlENGTHCn)
NCP(n)
TRKOFL

All the options except REGIONAL are described in
Chapter 4, "Data Sets and Files" on page 100, while REGIONAL is
described below.

The REGIONAL option defines a file with regional organization.

~ Syntax
REGIONALC{lI2IS})

1 I 2 I 3
specifies REGIONALCl), REGIONAL(2), or REGIONAL(3),
respectively.

REGIONAL(lJ
specifies that the data set contains F-forrnat records that
do not have recorded keys. Each region in the data set
contains only one record; therefore, each region number
corresponds to a relative record within the data set (that
is, region numbers start with 0 at the beginning of the
data set).

Although REGIONAL(l) data sets have no recorded keys,
REGIONALCl) DIRECT INPUT or UPDATE files can be used to
process data sets that do have recorded keys. In
particular, REGIONAl(2) and REGIONAl(S) data sets can be
accessed by a file declared with REGIONAL(l) or.ganization.

REGIONAL(2J
specifies that the data set contains F-format records that
have recorded keys. Each region in the data set contains
only one record.

REGIONAL(2) differs from REGIONAL(1) in that REGIONAL(2)
records contain recorded keys and that records are not
necessarily in the specified region; the specified region
identifies a starting point.

192 OS PL/I Optimizing Compiler: Programmer's Guide

KEYS

For files that are created sequentially, the record is
written in the specified region.

For files with the DIRECT attribute, a record is written in
the first vacant space on, or after, the track that
contains the region number specified in the WRITE
statement. For retrieval, the region number specified in
the source key is employed to locate the specified region.
The method of search is described further in the
REGIONAL(2) discussion below.

REGIONAL(31
specifies that the data set contains F-format, V-format,
VS-format, or U-format records with recorded keys. Each
region in the data set corresponds with a track on a
direct-access device and can contain one or more records.

REGIONAL(3) organization is similar to REGIONAL(2) in that
records contain recorded keys, but differs in that a region
for REGIONAL(3) corresponds to a track and not a record
position.

Direct access of a REGIONAL(3) data set employs the region
number specified in a source key to locate the required
region. Once the region has been located, a sequential
search is made for space to add a record, or for a record
that has a recorded key identical with that supplied in the
source key.

VS-format records may span more than one region. With
REGIONAL(3) organization, the use of VS-format removes the
limitations on block size imposed by the physical
characteristics of the direct-access device. If the record
length exceeds the size of a track, or if there is no room
left on the current track for the record, the record will
be spanned over one or more tracks.

REGIONALCI) organization is most suited to applications where
there are no duplicate region numbers, and where most of the
regions will be filled (reducing wasted space in the data set).
REGIONAL(2) and REGIONAL(3) are more appropriate where records
are identified by numbers that are thinly distributed over a
wide range. You can include in your program an algorithm that
derives the region number from the number that identifies a
record in such a manner as to optimize the use of space within
the data set; duplicate region numbers may occur but, unless
they are on the same track, their only effect might be to
lengthen the search time for records with duplicate region
numbers.

The examples at the end of this section illustrate typical
applications of all three types of regional organization.

There are two kinds of keys, recorded keys and source keys. A
recorded ke~ is a character string that immediately precedes
each record in the data set to identify that record; its length
cannot exceed 255 characters. A ~~ is the character
value of the expression that appears in the KEY or KEYFROM
option of a data transmission statement to identify the record
to which the statement refers. When a record in a regional data
set is accessed, the source key gives a region number, and may
also give a recorded key.

The length of the recorded keys in a regional data set is
specified by the KEYLENGTH option of the ENVIRONMENT attribute,
or the KEYLEN subparameter on the DD statement. Unlike the keys
for indexed data sets, recorded keys in a regional data set are
never ~mbedded within the record.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 193

REGIONAL(ll ORGANIZATION

Dummy Records

In a REGIONAL(l) data set, since there are no recorded keys, the
region number serves as the sole identification of a particular
record. The character value of the source key should represent
an unsigned decimal integer that should not exceed 16777215
(although the actual number of records allowed may be smaller,
depending on a combination of record size, device capacity, and
limits of your access method). If the region number exceeds
this figure, it is treated as modulo 16777216; for instance,
16777226 is treated as 10. Only the characters 0 through 9 and
the blank character are valid in the source key; leading blanks
are interpreted as zeros. Embedded blanks are not permitted in
the number; the first embedded blank, if any, terminates the
region number. If more than 8 characters appear in the source
key, only the rightmost 8 are used as the region number; if
there are fewer than 8 characters, blanks (interpreted as zeros)
are inserted on the left.

Records in a REGIONALCl) data set are either actual records
containing valid data or dummy records. A dummy record in a
REGIONALCl) data set is identified by the constant (8)'1'B in
its first byte. Although such dummy records are inserted in the
data set either when it is created or when a record is deleted,
they are not ignored when the data set is read; the PL/I program
must be prepared to recognize them. Dummy records can be
replaced by valid data. Note that if you insert (8)'1'B in the
first byte, the record will be lost if the file is copied onto a
data set whose dummy records are not retrieved.

Creating a REGIONAl(l) Data set

A REGIONAL(l) data set can be created either sequentially or by
direct-access. Figure 79 on page 189 shows the statements and
options for creating a regional data set.

When a SEQUENTIAL OUTPUT file is used to create the data set,
the opening of the file causes all tracks on the data set to be
cleared, and a capacity record to be written at the beginning of
each track to record the amount of space available on that
track. Records must be presented in ascending order of region
numbers; any region that is omitted from the sequence is filled
with a dummy record. If there is an error in the sequence, or if
a duplicate key is presented, the KEY condition is raised. When
the file is closed, any space remaining at the end of the
current extent is filled with dummy records.

If a data set is created using a buffered file, and the last
WRITE or LOCATE statement before the file is closed attempts to
transmit a record beyond the limits of the data set, the CLOSE
statement may raise the ERROR condition.

If a DIRECT OUTPUT file is used to create the data set, the
whole of the primary extent allocated to the data set is filled
with dummy records when the file is opened. Records can be
presented in random order; if a duplicate key is presented, the
KEY condition is raised.

For sequential creation, the data set can have up to 15 extents,
which may be on more than one volume. For direct creation, the
data set can have only one extent, and can therefore reside on
only one volume.

194 OS PL/I Optimizing Compiler: Programmer's Guide

Accessing a REGIONAL(l) Data Set

Once a REGIONAL(l) data set has been created, the file that
accesses it can be opened for SEQUENTIAL INPUT or UPDATE, or for
DIRECT INPUT or UPDATE. It can be opened for OUTPUT only if the
existing data set is to be overwritten. Figure 79 on page 189
shows the statements and options for accessing a regional data
set.

SEQUENTIAL ACCESS: A SEQUENTIAL file that is used to process a
REGIONALCl) data set may be opened with either the INPUT or
UPDATE attribute. The data transmission statements must not
include the KEY option; but the file may have the KEYED
attribute, since the KEYTO option can be used. If the target
character string referenced in the KEYTO option has more than 8
characters, the value returned (the 8-character region number)
is padded on the left with blanks. If the target string has
fewer than 8 characters, the value returned is truncated on the
left.

Sequential access is in the order of ascending region numbers.
All records are retrieved, whether dummy or actual, and the PL/I
program should be prepared to recognize dummy records.

Using sequential input with a REGIONALCI) data set, you can read
all the records in ascending region-number sequence, and in
sequential update you can read and may rewrite each record in
turn.

The rules governing the relationship between READ and REWRITE
statements for a SEQUENTIAL UPDATE file that accesses a
REGIONAL'l) data set are identical to those for a consecutive
data set. Consecutive data sets are discussed in detail in
"Consecutive Data Sets" on page 149.

DIRECT ACCESS: A DIRECT file that is used to process a
REGIONALCl) data set may be opened with either the INPUT or the
UPDATE attribute. All data transmission statements must include
source keys; the DIRECT attribute implies the KEYED attribute.

A DIRECT UPDATE file can be used to retrieve, add, delete, or
replace records in a REGIONALCl) data set according to the
following conventions:

• Retrieval: All records, whether dummy or actual, are
retrieved. The program must be prepared to recognize dummy
records.

• Addition: A WRITE statement substitutes a new record for the
existing record Cactual or dummy) in the region specified by
the source key.

• Deletion: The record specified by the source key in a DELETE
statement is converted to a dummy record.

• Replacement: The record specified by the source key in a
REWRITE statement, whether dummy or actual, is replaced.

REGIONAL(2) ORGANIZATION

In a REGIONAL(2) data set, each record is identified by a
recorded key that immediately precedes the record. The actual
position of the record in the data set relative to other records
is determinad not by its recorded key, but by the region number
that is supplied in the source key of the WRITE statement that
adds the record to the data set.

When a record is added to the data set by direct-access, it is
written with its recorded key in the first available space after
the beginning of the track that contains the region specified.
When a record is read by direct-access, the search for a record
with the appropriate recorded key begins at the start of the
track that contains the region specified. Unless it is limited

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 195

Source Keys

by the lIMCT subparameter of the DD statement that defines the
data set, the search for a record or for space to add a record
continues right through to the end of the data set and then from
the beginning until the whole of the data set has been covered.
The closer a record is to the specified region, the more quickly
it can be accessed.

The character value of the source key can be thought of as
having two logical parts--the region number and a comparison
key. On output, the comparison key is written as the recorded
key; for input, it is compared with the recorded key.

The rightmost 8 characters of the source key make up the region
number, which must be the character representation of a fixed
decimal integer that does not exceed 16777215 (although the
actual number of records allowed may be smaller, depending on a
combination of record size, device capacity, and limits of your
access method). If the region number exceeds this figure, it is
treated as modulo 16777216; for instance, 16777226 is treated as
10. The region specification can include only the characters 0
through 9 and the blank character; leading blanks are
interpreted as zeros. Embedded blanks are not permitted in the
number; the first embedded blank, if any, terminates the region
number. The comparison key is a character string that occupies
the left hand side of the source key, and may overlap or be
distinct from the region number, from which it can be separated
by other, nonsignificant, characters. The length of the
comparison key is specified by either the KEYlEN subparameter of
the DD statement for the data set or the KEYlENGTH option of the
ENVIRONMENT attribute.If the source key is shorter than the
specified key length, it is extended on the right with blanks.
To retrieve a record, the comparison key must exactly match the
recorded key of the record. The comparison key can include the
region number, in which case the source key and the comparison
key are identical; alternatively, part of the source key may not
be used. The length of the comparison key is always equal to
KEYlENGTH or KEYlEN; if the source key is longer than KEYlEN+8,
the characters in the source key between the comparison key and
the region number are ignored.

When generating the key, the rules for arithmetic to character
string conversion should be considered. For example, the
following group would be in error:

DCl KEYS CHAR(8);
DO 1=1 TO 10;

KEYS=I;
WRITE FIlE(F) FROM (R)

KEYFROM (KEYS);
END;

The default for I is FIXED BINARY(15,0), which requires not 8
but 9 characters to contain the character string representation
of the arithmetic values.

Consider the following examples of source keys (the character
"b" represents a blank):

KEY ('JOHNbDOEbbbbbb12363251')

The rightmost 8 characters make up the region specification, the
relative number of the record. Assume that the associated DD
statement has the subparameter KEYlEN=14. In retrieving a
record, the search begins with the beginning of the track that
contains the region number 12363251, until the record is found
having the recorded key of JOHNbDOEbbbbbb.

If the subparameter were KEYlEN=22, the search still would begin
at the same place, but since the comparison and the source key
are the same length, the search would be for a record having the
recorded key 'JOHNbDOEbbbbbb12363251'.

196 OS Pl/! Optimizing Compiler: Programmer's Guide

Dummy Records

KEY('JOHNbDOEbbbbbbDIVISIONb423bbbb34627')

In this example, the rightmost 8 characters contain leading
blanks, which are interpreted as zeros. The search begins at
region number 00034627. If KEYLEN=14 is specified, the
characters DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED BINARY(21) and NAME is
declared CHARACTERCIS). The key might be specified as:

KEY (NAME I I COUNTER)

The value of COUNTER will be converted to a character string of
11 characters. (The rules for conversion specify that a binary
value of this length, when converted to character, will result
in a string of length 11--3 blanks followed by 8 decimal
digits.) The value of the rightmost 8 characters of the
converted string is taken to be the region specification. Then
if the keylength specification is KEYLEN=IS, the value of NAME
is taken to be the comparison specification.

A REGIONAL(2) data set can contain dummy records. A dummy
record consists of a dummy key and dummy data. A dummy key is
identified by the constant (8)'I'B in its first byte. The first
byte of the data contains the sequence number of the record on
the track.

Dummy records can be replaced by valid data. They are inserted
either when the data set is created or when a record is deleted,
and they are ignored when the data set is read.

Creating a REGIONAL(21 Data set

A REGIONAl(2) data set can be created either sequentially or by
direct-access. In either case, when the file associated with
the data set is opened, the data set is initialized with
capacity records specifying the amount of space available on
each track. Figure 79 on page 189 shows the statements and
options for creating a regional data set.

When a SEQUENTIAL OUTPUT file is used to create the data set,
records must be presented in ascending order of region numbers;
any region that is omitted from the sequence is filled with a
dummy record. If there is an error in the sequence, including
an attempt to place more than one record in the same region, the
KEY condition is raised. When the file is closed, any space
remaining at the end of the current extent is filled with dummy
records.

If a data set is created using a buffered file, and the last
WRITE or LOCATE statement before the file is closed attempts to
transmit a record beyond the limits of the data set, the CLOSE
statement may raise the ERROR condition.

If a DIRECT OUTPUT file is used to create the current extent of
a data set, the whole of the primary extent allocated to the
data set is filled with dummy records when the file is opened.
Records can be presented in random order, and no condition is
raised by duplicate keys. Each record is substituted for the
first dummy record on the track that contains the region
specified in the source key; if there are no dummy records on
the track, the record is substituted for the first dummy record
encountered on a subsequent track, unless the LIMCT subparameter
specifies that the search cannot reach beyond this track. (Note
that it is possible to place records with identical recorded
keys in the data set).

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 197

For sequential creation, the data set can have UP to 15 extents,
which may be on more than one volume. For direct creation, the
data set can have only one extent, and can therefore ~eside on
only one volume.

Accessing a REGIONAL(2) Data set

sequential Access

Once a REGIONAL(2) data set has been c~eated, the file that
accesses it can be opened for SEQUENTIAL INPUT or UPDATE, o~ for
DIRECT INPUT o~ UPDATE. It cannot be opened fo~ OUTPUT.
Fi9u~e 79 on page 189 shows the statements and options fo~
accessing a regional data set.

A SEQUENTIAL file that is used to process a REGIONAL(2) data set
may be opened with either the INPUT or the UPDATE att~ibute.
The data transmission statements must not include the KEY
option, but the file may have the KEYED attribute since the
KEYTO option can be used. The KEYTO option specifies that the
recorded key o~ is to be assigned to the specified variable.
If the character string referenced in the KEYTO option has more
cha~acters than are specified in the KEYLEN subparameter, the
value returned (the recorded key) is extended on the ~ight with
blanks; if it has fewer characters than specified by KEYLEN, the
value ~eturned is truncated on the right.

Sequential access is in the physical order in which the records
exist on the data set, not necessarily in the order in which
they were added to the data set. The recorded keys do not
affect the order of sequential access. Dummy records are not
ret~ieved.

The rules governing the relationship between READ and REWRITE
statements for a SEQUENTIAL UPDATE file that accesses a
REGIONAL(2) data set are identical with those for a CONSECUTIVE
data set (described above).

DIRECT ACCESS: A DIRECT file that is used to process a
REGIONAL(2) data set may be opened with either the INPUT or the
UPDATE att~ibute. All data transmission statements must include
sou~ce keys; the DIRECT att~ibute implies the KEYED attribute.
The search for each record is commenced at the start of the
track containing the ~egion number indicated by the key.

Using direct input, you can ~ead any record by supplying its
region numbe~ and its ~eco~ded key; in direct update, you can
read or delete existing records o~ add new ones.

• Retrieval: Dummy ~ecords are not made available by a READ
statement. The KEY condition is raised if a record with the
specified recorded key is not found.

• Addition: A WRITE statement substitutes the new record for
the first dummy record on the track containing the region
specified by the source key. If the~e are no dummy records
on this track, and an extended search is permitted by the
LIMCT subparamete~, the new record ~eplaces the first dummy
record encounte~ed du~ing the search.

• Deletion: The record specified by the source key in a DELETE
statement is converted to a dummy record.

• Replacement: The record specified by the source key in a
REWRITE statement must exist; a REWRITE statement cannot be
used to replace a dummy record. If it does not exist, the
KEY condition is raised.

198 OS PL/! Optimizing Compiler: Programmer's Guide

REGIONAL(3) ORGANIZATION

Dummy Records

A REGIONAL(3) data set differs from a REGIONAL(2) data set
(described above) only in the following respects:

• Each region number identifies a track on the direct-access
device that contains the data set; the region number should
not exceed 32767. A region in excess of 32767 is treated as
modulo 32768; for example, 32778 is treated as 10.

• A region can contain one or more records, or a segment of a
VS-format record.

• The data set can contain F-format, V-format, VS-format, or
U-format records. Dummy records can be created, but a data
set that has V-format, VS-format, or U-format records is not
preformatted with dummy records because the lengths of
records cannot be known until they are written; however, all
tracks in the primary extent are cleared and the operating
system maintains a capacity record at the beginning of each
track, in which it records the amount of space available on
that track.

Source keys for a REGIONAL(3) data set are interpreted exactly
as those for a REGIONAL(2) data set are, and the search for a
record or space to add a record is conducted in a similar
manner.

Dummy records for REGIONAL(3) data sets with F-format records
are identical with those for REGIONAL(2) data sets.

V-format, VS-format, and U-format dummy records are identified
by the fact that they have dummy recorded keys «8)'1'B in the
first byte). The 4 control bytes in each V-format and VS-format
dummy record are retained, but otherwise the contents of
V-format, VS-format, and U-format dummy records are undefined.
V-format, V$-format, and U-format records are converted to dummy
records only when a record is deleted; they cannot be
reconverted to valid records.

Creating a REGIONAL(31 Data set

A REGIONAL(3) data set can be created either sequentially or by
direct-access. In either case, when the file associated with
the data set is opened, the data set is initialized with
capacity records specifying the amount of space available on
each track. Figure 79 on page 189 shows the statements and
options for creating a regional data set.

When a SEQUENTIAL OUTPUT file is used to create the data set,
records must be presented in ascending order of region numbers,
but the same region number can be specified for successive
records. For F-format records, any record that is omitted from
the sequence is filled with a dummy record. If there is an
error in the sequence, the KEY condition is raised. If a track
becomes filled by records for which the same region number was
specified, the region number is incremented by one; an attempt
to add a further record with the same region number raises the
KEY condition (sequence error).

If a data set is created using a buffered file, and the last
WRITE or LOCATE statement before the file is closed attempts to
transmit a record beyond the limits of the data set, the CLOSE
statement may raise the ERROR condition.

If a DIRECT OUTPUT file is used to create the data set, the
whole of the primary extent allocated to the data set is
initialized when the data set is opened; for F-format records,
the space is filled with dummy records, and for V-format,
VS-format, and U-format records, the capacity record for each

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 199

track is written to indicate empty tracks. Records can be
presented in random order, and no condition is raised by
duplicate keys or duplicate region specifications. If the data
set has F-format records, each record is substituted for the
first dummy record in the region (track) specified on the source
key; if there are no dummy records on the track, and an extended
search is permitted by the lIMCT subparameter, the record is
substituted for the first dummy record encountered during the
search. If the data set has V-format, VS-format, or U-format
records, the new record is inserted on the specified track, if
sufficient space is available; otherwise, if an extended search
is permitted, the new record is inserted in the next available
space.

Note that for spanned records, space may be required for
overflow onto subsequent tracks.

For sequential creation, the data set can have up to 15 extents,
which may be on more than one volume. For direct creation, the
data set can have only one extent, and can therefore reside on
only one volume.

Accessing a REGIONAL(3) Data set

Once a REGIONAl(S) data set has been created, the file that,
accesses it can be opened for SEQUENTIAL INPUT or UPDATE, or for
DIRECT INPUT or UPDATE. It can only be opened for OUTPUT if the
entire existing data set is to be deleted and replaced.
Figure 79 on page 189 shows the statements and options for
accessing a regional data set.

SEQUENTIAL ACCESS: A SEQUENTIAL file that is used to access a
REGIONAl(S) data set may be opened with either the INPUT or
UPDATE attribute. The data transmission statements must not
include the KEY option, but the file may have the KEYED
attribute since the KEYTO option can be used. The KEYTO option
specifies that the recorded key onl~ is to be assigned to the
specified variable. If the character string referenced in the
KEYTO option has more characters than are specified in the
KEYlEN subparameter, value returned (the recorded key) is
extended on the right with blanks; if it has fewer characters
than specified by KEYlEN, the value returned is truncated on the
right.

Sequential access is in the order of ascending relative tracks.
Records are retrieved in this order, and not necessarily in the
order in which they were added to the data set; the recorded
keys do not affect the order of sequential access. Dummy
records are not retrieved.

The rules governing the relationship between READ and REWRITE
statements for a SEQUENTIAL UPDATE file that accesses a
REGIONAl(S) data set are identical with those for a CONSECUTIVE
data set (described above).

DIRECT ACCESS: A DIRECT file that is used to process a
REGIONAl(S) data set may be opened with either the INPUT or the
UPDATE attribute. All data transmission statements must include
source keys; the DIRECT attribute implies the KEYED attribute.

Using direct input, you can read any record by supplying its
region number and its recorded key; in direct update, you can
read or delete existing records or add new ones.

• Retrieval: Dummy records are not made available by a READ
statement. The KEY condition is raised if a record with the
specified recorded key is not found.

• Addition: In a data set with F-format records, a WRITE
statement substitutes the new record for a dummy record in
the region (track) specified by the source key. If there srs
no dummy records on the specified track, and an extended
search is permitted by the LIMCT subparameter, the new

200 OS PL/I Optimizing Compiler: Programmer's Guide

record replaces the first dummy record encountered during
the search. If the data set has V-format, VS-format, or
U-format records, a WRITE statement inserts the new record
after any records already present on the specified track if
space is available; otherwise, if an extended search is
permitted, the new record is inserted in the next available
space.

• Deletion: A record specified by the source key in a DELETE
statement is converted to a dummy record. The space
formerly occupied by an F-format record can be re-used;
space formerly occupied by V-format, VS-format, or U-format
records is not available for re-use.

• Replacement: The record specified by the source key in a
REWRITE statement must exist; a REWRITE statement cannot be
used to replace a dummy record. When a VS-format record is
replaced, the new one must not be shorter than the old.

Note: If a track contains records with duplicate recorded keys,
the record farthest from the beginning of the track will never
be retrieved during direct-access.

ESSENTIAL INFORMATION FOR CREATING AND ACCESSING REGIONAL DATA SETS

To create a regional data set, you must give the operating
system certain information, either in your Pl/I program or in
the DD statement that defines the data set. The following
paragraphs indicate the essential information, and discuss some
of the optional information you may supply.

You must supply the following information when creating a
regional data set:

• Device that will write your data set (UNIT or VOLUME
parameter of DD statement).

• Block size: You can specify the block size either in your
Pl/I program (in the BlKSIZE option of the ENVIRONMENT
attribute) or in the DD statement (BlKSIZE subparameter).
If you do not specify a record length, unblocked records are
the default and the record lerigth is determined from the
block size.

If you want to keep a data set (that is, you do not want the
operating system to delete it at the end of your job), the DD
statement must name the data set and indicate how it is to be
disposed of (DSNAME and DISP parameters). The DISP parameter
alone will suffice if you want to use the data set in a later
step but will not need it after the end of your job.

If you want your data set stored on a particular direct-access
device, you must indicate the volume serial number in the DD
statement (SER or REF subparameter of VOLUME parameter). If you
do not supply a serial number for a data set that you want to
keep, the operating system will allocate one, inform the
operator, and print the number on your program listing. All the
essential parameters required in a DD statement for the creation
of a regional data set are summarized in Figure 80 on page 202;
and Figure 81 on page 203 lists the DCB subparameters needed.
See your JCL manual for a description of the DCB subparameters.

You cannot place a regional data set on a system output (SYSOUT)
device.

In the DCB parameter, you must always specify the data set
organization as direct by coding DSORG=DA. You cannot specify
the DUMMY or DSN=NUllFIlE parameters in a DD statement for a
regional data set. For REGIONAL(2) and REGIONAl(3), you must
also specify the length of the recorded key (KEYlEN) unless it
is specified in the ENVIRONMENT attribute; see "Source Keys" on
page 196 for a description of how the recorded key is derived
from the source key supplied in the KEYFROM option.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 201

When Required

Always

Parameters of DD statement

What You Must state

Output device l

Storage space required2

Data control block
information: see
Figure 81 on page 203.

Parameters

UNIT= or VOLUME=REF

SPACE=

DCB=

Data set to be used in another job Disposition
step but not required in another

DISP=

job

Data set to be kept after end of Disposition DISP=
job

Name of data set

Data set to be on particular
volume

Volume serial number

DSNAME=

VOLUME=SER= or
VOLUME=REF=

1 Regional data sets are confined to direct-access devices.

2 For sequential access, the data set can have up to 15 extents, which
may be on more than one volume.
For creation with DIRECT access, the data set can have only one extent.

Figure 80. Creating a Regional Data Set: Essential Parameters of DD Statement

For REGIONAL(2) and REGIONAL(3), if you want to restrict the
search for space to add a new record, or the search for an
existing record, to a limited number of tracks beyond the track
that contains the specified region, use the LIMeT subparameter
of the DCB parameter. If you omit this parameter, the search
will continue to the end of the data set, and then from the
beginning of the data set back to the starting point.

To access a regional data set, you must identify it to the
operating system in a DD statement. The following paragraphs
indicate the minimum information you must include in the DD
statement; this information is summarized in Figure 82 on
page 203.

If the data set is cataloged, you need supply only the following
information in your DD statement:

• The name of the data set (DSNAME parameter). The operating
system will locate the information that describes the data
set in the system catalog and, if necessary, will request
the operator to mount the volume that contains it.

• Confirmation that the data set exists (DISP parameter).

If the data set is not cataloged, you must, in addition, specify
the device that will read the data set and give the serial
number of the volume that contains the data set (UNIT and VOLUME
parameters).

Unlike indexed data sets, regional data sets do not require the
subparameter OPTCD=L in the DD statement.

When opening a multiple volume regional data set for sequential
update, the ENDFILE condition is raised at the end of the first
vulume.

202 OS PL/I Optimiiing Compiler: Programmer's Guide

When required

These are always
required

These are
optional

DCB Subparameters

To specify

Record format!

Block size l

Data set organization

Key length (REGIONAL(2)
and (3) only)!

Limited search for a
record or space to add
a record (REGIONAL(2)
and (3) only)

Number of data
management buffers l

Subparameters

RECFM=F
or
RECFM=V2 REGIONAL(3) only
or
RECFM=U REGIONAL(3) only

BLKSIZE=

DSORG=DA

KEYLEN=

LIMCT=

BUFNO=

1

2

Alternatively, can be specified in ENVIRONMENT attribute.

RECFM=VS must be specified in the ENVIRONMENT attribute
for sequential input or update.

Figure 81. DCB Subparameters for a Regional Data Set

Parameters of DD statement

When Required

Always

If data set not
cataloged

What You Must State

Name of data set

Disposition of data set

Input device

Volume serial number

Parameters

DSNAME=

DISP=

UNIT= or
VOLUME=REF=

VOLUME=SER=

Figure 82. Accessing a Regional Data Set: Essential Parameters of DD Statement

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 203

EXAMPLES OF REGIONAL DATA SETS

REGIONALll) Data Sets

Creating a REGIONAL(l) data set is illustrated in Figure 83 on
page 206. The data set is a list of telephone numbers with the
names of the subscribers to whom they are allocated. The
telephone numbers correspond with the region numbers in the data
set, the data in each occupied region being a subscriber's name.

Updating a REGIONAL(l) data set is illustrated in Figure 84 on
page 207. Like the program in Figure 78 on page 188, this
program updates the data set and lists its contents. Before
each new or updated record is written, the existing record in
the region is tested to ensure that it is a dummy; this is
necessary because a WRITE statement can overwrite an existing
record in a REGIONALCl) data set even if it is not a dummy.
Similarly, during the sequential reading and printing of the
contents of the data set, each record is tested and dummy
records are not printed.

REGIONAL(2) Data Sets

The use of REGIONAL(2) data sets is illustrated in Figure 85 on
page 208, Figure 86 on page 209, and Figure 87 on page 210. The
programs in these figures perform the same functions as those
given for REGIONAL(3), with which they can be compared.

The programs depict a library processing scheme, in which loans
of books are recorded and reminders are issued for overdue
books. Two data sets, &&STOCK and &&LOANS are used. &&STOCK
contains descriptions of the books in the library, and uses the
4-digit book reference numbers as recorded keys; a simple
algorithm is used to derive the region numbers from the
reference numbers. (It is assumed that there are about 1000
books, each with a number in the range 1000-9999.) &&LOANS
contains records of books that are on loan; each record
comprises two dates, the date of issue and the date of the last
reminder. Each reader is identified by a 3-digit reference
number, which is used as a region number in &&LOANS; the reader
and book numbers are concatenated to form the recorded keys.

In Figure 85 on page 208, the data sets &&STOCK and &&LOANS are
created. The file LOANS, which is used to create the data set
&&LOANS, is opened for direct output to format the data set; the
file is closed immediately without any records being written
onto the data set. Direct creation is also used for the data
set &&STOCK because, even if the input data is presented in
ascending reference number order, identical region numbers might
be derived from successive reference numbers.

Updating of the data set &&LOANS is illustrated in Figure 86 on
page 209. Each item of input data, read from a punched card,
comprises a book number, a reader number, and a code to indicate
whether it refers to a new issue (I), a returned book CR), or a
renewal CAl. The date is written in both the issue-date and
reminder-date portions of a new record or an updated record. To
make the example self-contained it is assumed that several days'
entries will be presented at one time and that daily entries are
separated by a record starting with asterisks. Thus the
deletion function can be tested.

204 OS PL/I Optimizing Compiler: Programmer's Guide

The program in Figure 87 on page 210 uses a sequential update
file (LOANS) to process the records in the data set &&LOANS, and
a direct input file (STOCK) to obtain the book description from
the data set &&STOCK for use in a reminder note. Each record
from &&LOANS is tested to see whether the last reminder was
issued more than a month ago; if necessary, a reminder note is
issued and the current date is written in the reminder-date
field of the record.

REGIONALl31 Data Sets

The use of REGIONAL(3) data sets, illustrated in Figure 88 on
page 211, Figure 89 on page 212, and Figure 90 on page 213. is
similar to the REGIONAL(2) figures, above; only the important
differences are discussed here.

In Figure 88 on page 211, the data set &&STOCK is created
sequentially; duplicate region numbers are acceptable, because
each region can contain more than one record.

In Figure 89 on page 212, the region number for the data set
&&LOANS is obtained simply by testing the reader number.

Figure 90 on page 213 is very much like Figure 87 on page 210,
the REGIONAL(2) example.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 205

//EX9 JOB
//STEPl EXEC PlIXClG,PARM.PlI='NOP,MAR(1,72)',PARM.lKED='lIST'
//PlI.SYSIN DD *

CRRl: PROC OPTIONS(MAIN);
/* CREATING A REGIONAl(l) DATA SET - PHONE DIRECTORY */

DCl NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAl(l»;
DCl SYSIN FILE INPUT RECORD~
DCl SYSIN_REC BIT(l) INIT('I'B)i
DCl 1 CARD,

2 NAME CHAR(20),
2 NUMBER CHAR(2),
2 CARD_l CHAR(S8);

DCl IOFIElD CHAR(20)i

ON ENDFIlE CSYSIN) SYSIN_REC = 'O'B;
OPEN FIlECNOS);
READ FIlECSYSIN) INTOCCARD)i

DO WHIlECSYSIN REC);
IOFIElD = NAMEj
WRITE FIlECNOS) FROMCIOFIElD) KEYFROMCNUMBER)j
PUT FIlE(SYSPRINT) SKIP EDIT (CARD) CAli
READ FIlE(SYSIN) INTOCCARD)j

END;

CLOSE FIlE(NOS)j
END CRR1;

/*
//GO.SYSlMOD DD DSN=&&GOSET,DISP=COlD,DElETE)
//GO.NOS DD DSN=NOS,UNIT=SYSDA,SPACE=(20,100),
// DCB=CRECFM=F,BlKSIZE=20,DSORG=DA),DISP=CNEW,KEEP)
//GO.SYSIN DD *
ACTION,G. 12
BAKER,R. 13
BRAMlEy,O.H. 28
CHEESNAME,l. 11
CORY,G. 36
ELLIOTT,D. 85
FIGGINS,E.S. 43
HARVEY,C.D.W. 25
HASTINGS,G.M. 31
KENDAll,J.G. 24
lANCASTER,W.R. 64
MIlES,R. 23
NEWMAN,M.W. 40
PITT,W.H. SS
ROlF,D.E. 14
SHEERS,C.D. 21
SURClIFFE,M. 42
TAYLOR,G.C. 41
WIlTON,l.W. 44
WINSTONE,E.M. 37
/* .

Figure 83. Creating a REGIONAl(l) Data Set

206 OS Pl/I Optimizing Compiler: Programmer's Guide

//EXI0 JOB
//STEP2 EXEC PlIXClG,PARM.PlI='NOP,MARCl,72)',PARM.lKED='lIST'
//PlI.SYSIN DD *

ACRl: PROC OPTIONSCMAIN);

/*

/* UPDATING A REGIONAlCl) DATA SET PHONE DIRECTORY */
DCl NOS FILE RECORD KEYED ENVCREGIONAlCl»;
DCl SYSIN FILE INPUT RECORD; .
DCl CSYSIN_REC,NOS_REC) BIT(l) INITC'l'B);
DCl 1 CARD,

2 NAME CHAR(20),
2 (NEWNO,OlDNO) CHARC 2),
2 CARD 1 CHARC 1),
2 CODE- CHARC I),
2 CARD 2 CHAR(54);

DCl IOFIElD CHAR(20);
DCl BYTE CHARCl) DEF IOFIElD;

ON ENDFIlECSYSIN) SYSIN REC = 'O'B;
OPEN FILE CNOS) DIRECT UPDATE;
READ FIlECSYSIN) INTOCCARD);

DO WHILECSYSIN REC);
SElECTCCODE);

WHENC'A','C') DO;
IF CODE = 'C' THEN

DELETE FILECNOS) KEYCOLDNO);
READ FIlECNOS) KEYCNEWNO) INTOCIOFIElD);
IF UNSPECCBYTE) = (8)'1'B

THEN WRITE FIlECNOS) KEYFROMCNEWNO) FROM(NAME);
ELSE PUT FIlECSYSPRINT) SKIP lIST C'DUPlICATE:',NAME)j

END;
WHENC'D') DELETE FILECNOS) KEYCOLDNO);

OTHERWISE PUT FILECSYSPRINT) SKIP LIST C'INVALID CODE:',NAME);
END;
READ FILECSYSIN) INTOCCARD);

END;

CLOSE FILECSYSIN),FILECNOS);
PUT FIlECSYSPRINT) PAGE;
OPEN FILECNOS) SEQUENTIAL INPUT;
ON ENDFIlECNOS) NOS REC = 'O'B;
READ FILECNOS) INTO(IOFIELD) KEYTOCNEWNO);
DO WHILECNOS REC);

IF UNSPEC(BYTE) = (8)'1'B
THEN PUT FILECSYSPRINT) SKIP EDIT (NEHNO,IOFIELD)(AC2),XC3),A)j

PUT FILECSYSPRINT) SKIP EDIT CIOFIELD) (A);
READ FILECNOS) INTOCIOFIElD) KEYTOCNEWNO)j

END;
CLOSE FIlECNOS);
END ACRl;

//GO.NOS DD DSN=NOS,DISP=COLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
//GO.SYSIN DD *
NEWMAN,M.W.
GOODFELLOW,D.T.
MIlES,R.
HARVEY,C.D.W.
BARTLETT,S.G.
CORy,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMlEY,O.H.

5640 C
89 A

23 D
29 A
13 A

36 D
01 A

55
14 D

4285 C
31 D

4928 C

Figure 84. Updating a REGIONAlCl) Data Set

Chapter 6. Using Consecutive, Indexed, Re~ional, and Teleprocessing Data Sets 207

//EXII JOB
//STEPI EXEC PlIXClG,PARM.PlI='NOP',PARM.lKED='LIST'
//PlI.SYSIN DD *
*PROCESS MARC1,72);
CRR2: PROC OPTIONSCMAIN);
/* CREATING A REGIONAL(2) DATA SET - LIBRARY LOANS */

DCl ClOANS,STOCK) FILE RECORD KEYED ENVCREGIONAl(2»;
DCl 1 BOOK,

2 AUTHOR CHARC2S),
2 TITLE CHARCSO),
2 QTY FIXED DEC(3);

DCl NUMBER CHAR(4);
DCl INTER FIXED DECCS);
DCL REGION CHAR(8);

/* INITIALIZE CFORMAT) lOANS DATA SET */
OPEN FILEClOANS) DIRECT OUTPUTj
CLOSE FIlECLOANS);
ON ENDFIlECSYSIN) GO TO FINISH;
OPEN FILECSTOCK) DIRECT OUTPUT;

NEXT: GET FILECSYSIN) SKIP lISTCNUMBER,BOOK);
INTER = CNUMBER-IOOO)/9j /* REGIONS 0 TO 999 */
REGION = INTER;
WRITE FILECSTOCK) FROM CBOOK) KEYFROMCNUMBERIIREGION);
PUT FILECSYSPRINT) SKIP EDIT CBOOK) (A);
GO TO NEXT;

FINISH: CLOSE FILECSTOCK)j
END CRR2;
/*
//GO.SYSlMOD DD DSN=&&GOSET,DISP=COlD,DElETE)
//GO.LOANS DD DSN=LOANS,UNIT=SYSDA,SPACE=C12,1000),DISP=(NEW,KEEP),
// DCB=CRECFM=F,BlKSIZE=12,DSORG=DA,KEYlEN=7),
//GO.STOCK DD DSN=STOCK,UNIT=SYSDA,SPACE=C77,10S0),DISP=(NEW,KEEP),
// DCB=CRECFM=F,BlKSIZE=77,DSORG=DA,KEYLEN=4),
//GO.SYSIN DD *
'lOIS' IW.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1
'1214' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
'3083' 'V.M.HUGO' 'LES MISERABLES' 2
'308S' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'429S' 'W.LANGlAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'S999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3
'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR lIFE IN THE WOODS' 1
'9795' 'H.G.WElLS' 'THE TIME MACHINE' 3
/*

Figure 85. Creating a REGIONAl(2) Data Set

208 OS PL/I Optimizing Compiler: Programmer's Guide

//EX12 JOB
//STEP2 EXEC PlIXClG,PARM.PlI='NOP',PARM,lKED='lIST'
//PlI.SYSIN DD *
*PROCESS MARC1,72);
DUR2: PROC OPTIONSCMAIN);
/* UPDATING A REGIONAl(2) DATA SET DIRECTLY - lIBRARY lOANS*/

DCl lOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAl(2»;
DCl 1 RECORD,

2 CISSUE,REMINDER) CHAR(6);
DCl SYSIN FILE RECORD INPUT SEQUENTIAL;
DCl SYSIN_REC BIT(l) INITC'l'B) STATIC;
DCl 1 CARD,

2 BOOK CHAR(4),
2 CARD 1 CHARCS),
2 READER CHAR(S),
2 CARD 2 CHAR(7),
2 CODE- CHAR(1),
2 CARD_3 CHAR(1),
2 DATE CHAR(6), /3E YYMMDD 3E/
2 CARD_4 CHARCSS);

DCl REGION CHAR(8) INITC' ,) ;

ON ENDFIlECSYSIN) SYSIN REC = 'O'B;
OPEN FIlECSYSIN), FIlEClOANS);
READ FIlE(SYSIN) INTO(CARD);

DO WHIlECSYSIN REC);
SUBSTRCREGION,6) = CARD. READER;
ISSUE,REMINDER = CARD. DATE;
PUT FIlE(SYSPRINT) SKIP EDIT (CARD) (A);
SELECT(CODE);

WHENC'I') WRITE FILEClOANS) FROMCRECORD)
KEYFROMCREADERlrBOOKIIREGION);

WHENC'R') DELETE FIlEClOANS)
KEY (READERIIBOOKIIREGION);

WHENC'A') REWRITE FILECLOANS) FROMCRECORD)
KEY CREADERIIBOOKIIREGION);

OTHERWISE PUT FILE(SYSPRINT) SKIP lIST
C'INVALID CODE:',BOOK,READER)j

END;
READ FILECSYSIN) INTOCCARD)j

END;

CLOSE FIlE(SYSIN),FIlE(lOANS)j
END DUR2;
/*
//GO.SYSLMOD DD DSN=&&GOSET,DISP=(OlD,DElETE)

/3E NEW ISSUE */

/3E RETURNED 3E/

/3E RENEWAL 3E/

/* INVALID CODE 3E/

//GO.LOANS DD DSN=LOANS,DISP=(OLD,KEEP),UNIT=SYSDA,VOL=SER=nnnnnn
//GO.SYSIN DD 3E
5999 003
3083 091
1214 049
5999 003
3083 091
3517 095
/3E

I 781221
I 790104
I 790205
A 790212
R 790212
X 790213

Figure 86. Updating a REGIONAL(2) Data Set Directly

Chapter 6. Using Consecutive, Indexed, R~ginnal, and Teleprocessing Data Sets 209

//EXI3 JOB
//STEP3 EXEC PLIXCLG,PARM.PLI='NOP',PARM.LKED='LIST',PARM.GO='/790308'
//PLI.SYSIN DD *
*PROCESS MARCl,72);
SUR2: PROC OPTIONSCMAIN);

/* UPDATING A REGIONAL(2) DATA SET SE~UENTIALLY - LIBRARY LOANS */

/*

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(2»;
DCL LOANS REC BIT(I) INIT('I'B) STATIC;
DCL 1 RECORD,

2 (ISSUE, REMINDER) CHAR(6);
DCL LOANKEY CHAR(7),

READER CHAR(3) DEF LOANKEY,
BKNO CHAR(4) DEF LOANKEY POS(4);

DCL STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(2»;
DCL 1 BOOK,

2 AUTHOR CHARC2S),
2 TITLE CHARCSO),
2 QTY FIXED DEC(3);

DCL TODAY CHAR(6); 1* YY/MM/DD */
DCL INTER FIXED DEC(S);
DCL REGION CHAR(8);

TODAY = '790210';
OPEN FILE(LOANS),

FILECSTOCK);
ON ENDFILECLOANS) LOANS REC = 'O'B;
READ FILECLOANS) INTOCRECORD) KEYTOCLOANKEY);

X = 1;

DO WHILECLOANS REC);
PUT FILECSYSPRINT) SKIP EDIT
CX,'REM DATE ',REMINDER,' TODAY ',TODAY) CA(3),A(9),A,AC7),A);

X = X+l;

IF REMINDER < TODAY THEN
DO;
INTER = (BKNO-IOOO)/9;
REGION = INTER;

/* 1 LAST REMINDER ISSUED */
/* MORE THAN A MONTH AGO*/
/* YES, PRINT NEW REMINDER*/

READ FILECSTOCK) INTOCBOOK) KEYCBKNOIIREGION);
REMINDER = TODAY; /* UPDATE REMINDER DATE
PUT FILECSYSPRINT) SKIP EDIT

('NEW REM DATE',REMINDER,READER,AUTHOR,TITLE)
(ACI2),A,X(2),A,XC2),A,X(2),A);

REWRITE FILE(LOANS) FROMCRECORD);
END;

READ FILECLOANS) INTOCRECORD) KEYTO(LOANKEY);
END;

CLOSE FILECLOANS),FILE(STOCK);
END SUR2;

//GO.SYSLMOD DD DSN=&&GOSET,DISP=COLD,DELETE)
//GO.LOANS DD DSN=LOANS,DISP=COLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
//GO.STOCK DD DSN=STOCK,DISP=(OLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
/*

Figure 87. Updating a REGIONAL(2) Data Set Sequentially

210 OS PL/I Optimizing Compiler: Programmer's Guide

A(3),A)

//EX14 JOB
//STEPI EXEC PlIXClG,PARM.PlI='NOP',PARM.LKED='lIST'
//PlI.SYSIN DD *
*PROCESS MAR(l,72);
CRR3: PROC OPTIONS(MAIN);
/* CREATING A REGIONAl(3) DATA SET - LIBRARY LOANS

DCL LOANS FILE RECORD KEYED ENV(REGIONAL(3»;
DCl STOCK FILE RECORD KEYED ENV(REGIONAL(3»;
DCl 1 BOOK,

2 AUTHOR CHAR(2S),
2 TITLE CHAR(SO),
2 QTY FIXED DEC(3);

DCl NUMBER CHAR(4);
DCL INTER FIXED DEC(S);
DCL REGION CHAR(S);

/* INITIALIZE (FORMAT) LOANS DATA SET
OPEN FILE(LOANS) DIRECT OUTPUT;
CLOSE FIlE(LOANS);
ON ENDFILE(SYSIN) GOTO FINISH;
OPEN FILE(STOCK) SEQUENTIAL OUTPUT;

NEXT: GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

3E/

*/

INTER = (NUMBER-I000)/22S0; /* REGIONS = 0,1,2,3,4 FOR A DEVICE */
/* HOLDING 200 (OR MORE) BOOKS/TRACK*/

REGION = INTER;
WRITE FILE(STOCK) FROMCBOOK) KEYFROMCNUMBERIIREGION);
GOTO NEXT;

FINISH: CLOSE FIlECSTOCK);
END CRRS;
/*
//GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)
//GO.LOANS DD DSN=LOANS,UNIT=SYSDA,SPACE=CTRK,3),DISP=(NEW,KEEP),
// DCB=(RECFM=F,BlKSIZE=12,DSORG=DA,KEYlEN=7),
//GO.STOCK DD DSN=&&STOCK,UNIT=SYSDA,SPACE=(TRK,S),DISP=(NEW,KEEP),
// DCB=(RECFM=F,BLKSIZE=77,DSORG=DA,KEYlEN=4),
//GO.SYSIN DD *
'lOIS' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1
'1214' Il.CARROll' 'THE HUNTING OF THE SNARK' 1
'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1
'3083' 'V.M.HUGO' 'LES MISERABlES' 2
'308S' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2
'429S' 'W.lANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'S999' 'O.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAVYAM' 3
'6S91' 'F.RABElAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1
'979S' 'H.G.WELlS' 'THE TIME MACHINE' 3
/*

Figure 88. Creating a REGIONAL(S) Data Set

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 211

//EXl5 JOB
//STEP2 EXEC PlIXClG,PARM.PlI='NOP',PARM.lKED='LIST'
//PlI.SYSIN DD *
*PROCESS MAR(l,72);
DUR3: PROC OPTIONS(MAIN);
/* UPDATING A REGIONAl(3) DATA SET DIRECTLY - LIBRARY lOANS */

DCl lOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAlC3»;
DCl 1 RECORD,

2 (ISSUE,REMINDER) CHAR(6);
DCl SYSIN FILE RECORD INPUT SEQUENTIAL;
DCl SYSIN_REC BITCl) INITC'l'B);
DCl 1 CARD,

2 BOOK CHAR(4),
2 CARD_l CHARCS),
2 READER CHAR(3),
2 CARD_2 CHAR(7),
2 CODE CHAR(1),
2 CARD_3 CHAR(l),
2 DATE CHAR(6),
2 CARD_4 CHARCS3);

DCl REGION CHARCS);

ON ENDFILECSYSIN) SYSIN REC= 'O'B;
OPEN FILE(SYSIN),FILE(LOANS);
READ FIlECSYSIN) INTO(CARD);

DO WHIlECSYSIN REC);
ISSUE,REMINDER = DATE;

SELECT;
WHEN(READER < '034') REGION = '00000000';
WHEN(READER < '067') REGION = '00000001';
OTHERWISE REGION = '00000002';

END;
SElECTCCODE) ;

WHENC'I') WRITE FIlEClOANS) FROM(RECORD)
KEYFROM(READERI IBOOKI IREGION);

WHENC'R') DELETE FILEClOANS)
KEY (READERIIBOOKIIREGION);

WHEN('A') REWRITE FILE(lOANS) FROM(RECORD)
KEY (READERIIBOOKIIREGION);

OTHERWISE PUT FIlE(SYSPRINT) SKIP LIST
('INVALID CODEz ',BOOK,READER);

END;
PUT FILECSYSPRINT) SKIP EDIT (CARD) (A);
READ FIlECSYSIN) INTO(CARD);
END;

CLOSE FILE(SYSIN),FIlE(lOANS);
END DUR3;
/*
//GO.SYSlMOD DD DSN=&&GOSET,DISP=(OlD,DElETE)
//GO.lOANS DD DSN=lOANS,DISP=(OlD,KEEP),UNIT=SYSDA,VOl=SER=nnnnnn
//GO.SYSIN DD *
5999 003
30S3 091
1214 049
5999 003
30S3 091
3517 095
/*

I 781221
I 790104
I 790205
A 790212
R 790212
X 790213

Figure 89. Updating a REGIONAl(3) Data Set Directly

212 OS Pl/I Optimizing Compilers Programmer's Guide

//EX16 JOB
//STEP3 EXEC PLIXCLG,PARM.PLI='NOP',PARM.LKED='LIST',PARM.GO='/7903OS'
//PLI.SYSIN DD *
*PROCESS MAR(1,72);
SUR3: PROC OPTIONS(MAIN);
/* UPDATING A REGIONAL(3) DATA SET SEQUENTIALLY - LIBRARY LOANS */

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENVCREGIONAL(3»;
DCL LOANS REC BIT(l) INITC'l'B);
DCL 1 RECORD,

2 CISSUE,REMINDER) CHAR(6);
DCL LOANKEY CHAR(7),

READER CHAR(3) DEF LOANKEY,
BKNO CHAR(4) DEF LOANKEY POS(4);

DCL STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONALC3»;
DCL 1 BOOK,

2 AUTHOR CHARC2S),
2 TITLE CHARCSO),
2 QTY FIXED DEC(3);

DCL TODAY CHAR(6)j/*YYMMDD*/
DCL INTER FIXED DEC(S),

REGION CHARCS);

TODAY = '790210';
OPEN FILE CLOANS), FILECSTOCK)j
ON ENDFILECLOANS) LOANS REC = 'orB;
READ FILE(LOANS) INTO(RECORD) KEYTOCLOANKEY);

X = 1;

DO WHILE(LOANS REC);
PUT FILE(SYSPRINT) SKIP EDIT
(X, 'REM DATE ',REMINDER,' TODAY ',TODAY) (A(3),AC9),A,AC7),A);

X = X+1i

IF REMINDER < TODAY THEN
DO;
INTER = (BKNO-lOOO)/22S0j
REGION = INTERj
READ FILE(STOCK) INTOCBOOK) KEY(BKNOIIREGION);
REMINDER = TODAY;
PUT FILE{SYSPRINT) SKIP EDIT

('NEW REM DATE',REMINDER,READER,AUTHOR,TITLE)
(AC12),A,X(2),A,X(2),A,X(2),A)i

REWRITE FILE(LOANS) FROM(RECORD)j
END;

READ FILECLOANS) INTOCRECORD) KEYTOCLOANKEY);
ENDi

CLOSE FILECLOANS),FILE(STOCK)j
END SUR3j

/*
//GO.LOANS DD DSN=LOANS,DISP=COLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
//GO.STO.CK DD DSN=STOCK,DISP=COLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn

Figure 90. Updating a REGIONAL(3) Data Set Sequentially

A(3),A)

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 213

TELEPROCESSING DATA SETS

Teleprocessing in PL/I is supported by record-oriented data
transmission using the Telecommunications Access Method (TCAM)
and PL/I files declared with the TRANSIENT attribute. A
teleprocessing data set is a queue of messages originating from
or destined for remote terminals (or application programs). A
PL/I TRANSIENT file allows a PL/I program to access a
teleprocessing data set as an INPUT file for retrieving messages
or as an OUTPUT file for writing messages.

In a teleprocessing system using TCAM, the user must write a
message control program (Mep) and may write one or more message
processing programs (MPPs). The Mep is part of TCAM and must be
written in assembler language using macros supplied by TeAM. The
MPPs are application programs and may be written in PL/I.

This section briefly describes the message control program
(Mep), and the message processing program eMPP). It then
describes teleprocessing organization, ENVIRONMENT options for
teleprocessing, and condition handling for teleprocessing.

A TCAM overview is given in OS/VS TCA~cepts and Applications
(GC30-2049). If you want more detailed information about TCAM
programming facilities, see the OS/VS TCAM Application
Programmer's Guide (GC30-3036) and the OS/VS2 TCAM Programmer's
Guide (GC30-2041).

MESSAGE CONTROL PROGRAM (MCP)

A TCAM message control program (MCP) controls the routing of
messages originating from and destined for the remote terminals
and message processing programs in your TCAM installation. Each
origin or destination associated with a message is identified by
a name known in the MCP, and carried within the message. The
Mep routes messages to and from message processing programs and
terminals by means of in-storage queues. The queues may also be
on disk storage when the in-storage queue is full; this support
is provided by TCAM. TCAM queues may also be simulated by
sequential data sets on direct-access devices; however~ the data
sets cannot be accessed by your PL/I program, since PL/I
supports only the use of queues.

A message may be transmitted in one of several formats~ only two
of which are supported by PL/I. The message format is specified
in theMCP and must also be specified in your PL/I program by
means of the ENVIRONMENT attribute, described later in this
section.

NOTE FOR SYSTEM PROGRAMMERS. Of the several message formats
allowed by a TCAM MCP, PL/I supports those represented by:

• DCBOPTCD=WUC,DCBRECFM=V for PL/I ENVIRONMENT option TPCM)

• DCBOPTCD=WC,DCBRECFM=V for PL/I ENVIRONMENT Option TPCR)

MESSAGE PROCESSING PROGRAM (MPP)

A message processing program eMPp) is an application program
that retrieves messages from TCAM queues and/or writes messages
to TeAM queues. An MPP allows you to provide data to a problem
program from a terminal and to receive output from the program
with a minimum of delay. MPPs can be written in PL/I and can
perform other data processing functions in addition to
teleprocessing.

An MPP for reading or writing TCAM queues is not mandatory for
teleprocessing installations. If the messages you transmit do
not require processing, because they are simply switched between
terminals, an MPP is not required.

214 OS PL/I Optimizing Compiler: Programmer's Guide

The following sections describe Pl/I teleprocessing data sets
and the Pl/I language features that are used to write MPPs.

TELEPROCESSING ORGANIZATION

A teleprocessing data set comprises a queue of messages that
constitute the input to a Pl/I message processing program. The
messages are written and retrieved sequentially; keys are used
to identify the terminal or application associated with the
message. The TRANSIENT attribute is required in the Pl/I file
declaration to specify access type. TRANSIENT indicates that
the contents of the data set associated with the file are
reestablished each time the data set is accessed. Records can be
continually added to the data set by one program during the
execution of another program that continually removes records
from the data set. Thus the data set can be considered to be a
continuous first-in/first-out queue through which the records
pass in transit between the message control program and the
message processing program.

A data set associated with a TRANSIENT file differs from one
associated with a DIRECT or SEQUENTIAL file in the following
ways:

• Its contents are dynamic; reading a record removes it from
the data set.

• The ENDFIlE condition is not defined for a TRANSIENT file.
Instead, the PENDING condition is raised when the input
queue is empty. This does not imply the queue will remain
empty since records can be continually added.

In addition to TRANSIENT access, a teleprocessing queue may be
accessed for input as a SEQUENTIAL file with consecutive
organization Cunless you use a READ statement option, such as
EVENT, that is invalid for a TRANSIENT file). This support is
provided by TCAM when it detects a request from a sequential
access method (BSAM or QSAM). Your program is unaware of the
fact that a TCAM queue is the source of input; you will not
receive terminal identifiers in the character string referenced
in the KEYTO option of the READ statement and the PENDING
condition will not be raised. A teleproc~ssing data set can be
created only by a file with TRANSIENT access.

DEFINING A TELEPROCESSING DATA SET

A teleprocessing file is defined with the attributes shown in
the following declaration:

DCl filename FILE TRANSIENT RECORD
INPUT I OUTPUT
BUFFERED KEYED
ENVIRONMENTCoption-list);

The file attributes are described in the OS and DOS PL/I
Language Reference Manual. Required attributes and defaults are
shown in Figure 45 on page 123.

ENVIRONMENT OPTIONS FOR TELEPROCESSING DATA SETS

For teleprocessing applications, the ENVIRONMENT options that
can be specified are TPCMIR), RECSIZECrecord-length), and
BUFFERSCn).

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 215

TP Option

RECSIZE Option

BUFFERS option

TP specifies that the file is associated with a teleprocessing
data set. A message can consist of one logical record or
several logical records on the teleprocessing data set.

r-.:: Syntax
~(M I R)

TP(Ml

TP(R)

specifies that each data transmission statement in the PL/I
program transmits a complete message (which may be several
logical records) to or from the data set.

specifies that each data transmission statement in the PL/I
program transmits a single logical record, which is a
segment of a complete message.

One or more PL/I data transmission statements are required
to completely transmit a message. On input, the PL/I
application program must determine the end of message by
its own means; this may be from information embedded in the
message. On output, the PL/I program must provide, for
each logical record, its segment position within the
message. You indicate the position by a code in the first
byte of the KEYFROM value~ preceding the destination ID.
The valid codes and their meanings are:

I

blank

2

3

First segment of a message

Intermediate segment of a message

last segment in a message

Only segment in a message

Selection of TPCM) or TP(R) is dependent on the message format
specified in your MCP. Your sys"tem programmer can tell you
which to use.

The RECSIZE option specifies the size of the record variable (or
input or output buffer, for locate mode) in the PL/I program.
If the TPCM) option is used, this size should be equal to the
length of all the logical records that constitute the message.
If it is smaller, part of the message will be lost. If it is
greater, the contents of the last part of the variable (or
buffer) are undefined. If the TP(R) option is specified, this
size must be the same as the logical record length.

RECSIZE must be specified.

The BUFFERS option specifies the number of intermediate buffers
required to contain the longest message to be transmitted. The
buffer size is defined in the message control program. If a
message is too long for the buffers specified, extra buffers
must be obtained before processing can continue, which increases
execution time. The extra buffers are obtained by the operating
system; you need not take any action.

216 as PL/I Optimizing Compilerc Programmer's Guide

STATEMENTS AND OPTIONS FOR TELEPROCESSING

A TRANSIENT file can be accessed by READ, WRITE, and LOCATE
statements. The EVENT option cannot be used.

The READ statement is used for input, with either the INTO
option or the SET option; the KEYTO option must be given. The
origin name is assigned to the variable referenced in the KEYTO
option. If the origin name is shorter than the character string
referenced in the KEYTO option, it is padded on the right with
blanks. If the KEYTO variable is a varying-length string, its
current length is set to that of the origin name. The origin
name should not be longer than the KEYTO variable (if it is, it
is truncated), but in any case will not be longer than 8
characters. The data part of the message or record is assigned
to the variable referenced in the INTO option, or the pointer
variable referenced in the SET option is set to point to the
data in the READ SET buffer.

A READ statement for the file will take the next message (or the
next record from the current message) from the associated queue,
assign the data part to the variable referenced in the READ INTO
option (or set a pointer to point to the data in a READ SET
buffer), and assign the character-string origin identifier to
the variable referenced in the KEYTO option. The PENDING
condition is raised if the input queue is empty when a READ
statement is executed.

Either the WRITE or the LOCATE statement may be used for output;
either statement must have the KEYFROM option--'for files
declared with the TP(M) option, the first 8 characters of the
value of the KEYFROM expression are used to identify the
destination, which must be a recognized terminal or program
identifier. For files declared with the TP(R) option,
indicating multiple-segment messages, the first character of the
value specified in the KEYFROM expression must contain the
message segment code as discussed above; the next 8 characters
of the value are used to identify the destination. The data
part of the message is transmitted from the variable referenced
in the FROM option of the WRITE statement; or, in the case of
LOCATE, a pointer variable is set to point to the location of
the data in the output buffer.

The statements and options permitted for TRANSIENT files are
given in Figure 91. Some examples follow:

DECLARE (IN INPUT,OUT OUTPUT) FILE
TRANSIENT ENVCTP(M) RECSIZE(124»,
CINREC, OUTREC) CHARACTERCI20)
VARYING, TERM CHARACTER(S);

READ FILECIN) INTO(INREC) KEYTOCTERM);

WRITE FILE(OUT) FROMCOUTREC)
KEYFROMCTERM)j

The above example illustrates the use of move mode in
teleprocessing applications. The files IN and OUT are given the
attributes KEYED and BUFFERED because TRANSIENT implies these
attributes. The TP(M) option indicates that a complete message
will be transmitted. The input buffer for file IN contains the
next message from the input queue.

The READ statement moves the message or record from the input
buffer into the variable INREC. The character string
identifying the origin is assigned to TERM. If the buffer is
empty when the READ statement is executed (that is, if there are
no messages in the queue), the PENDING condition is raised. The
implicit action for the condition is described under "Condition
Handling" on page 219.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 217

File Valid statements~ with options other options that
declaration1 that must appear can also be used

TRANSIENT READ FILECfile-reference)
INPUT INTOCreference)

KEYTOCreference);

READ FILECfile-reference)
SETCpointer-reference)
KEYTOCreference);

TRANSIENT WRITE FILECfile-reference)
OUTPUT FROMCreference)

KEYFROMCexpression)

LOCATE based-variable SETCpointer-
FILECfile-reference) reference)
KEYFROMCexpression);

Note to Figure 91:

IThe complete file declaration would include the attributes
FILE, RECORD, KEYED, BUFFERED, and the ENVIRONMENT attribute with
either the TP(M) or the TP(R) option.

Figure 91. Statements and Options Permitted for TRANSIENT Files

After processing, the message or record is held in OUTREC. The
WRITE statement moves it to the output buffer, together with the
value of TERM (which still contains the origin name unless
another name has been assigned to it during processing). From
the buffer, the message is transmitted to the correct queue for
the destination, as specified by the value of TERM.

The next example is similar to the previous one, except that
locate mode input is used.

DECLARE (IN INPUT,OUT OUTPUT) FILE
TRANSIENT ENV(TP(M) RECSIZE(124»,
MESSAGE CHARACTER(120) VARYING
BASEDCINPTR),
TERM CHARACTER(8);

READ FILE(IN) SET(INPTR) KEYTOCTERM);

WRITE FILE(OUT) FROM(MESSAGE)
KEYFROM(TERf1) ;

The message data is processed in the input buffer, using the
based variable MESSAGE, which has been declared with the pointer
reference INPTR. (The variable MESSAGE will be aligned on a
doubleword boundary.) The WRITE statement moves the processed
data from the input to the output buffer; otherwise its effect
is as described for the WRITE statement in the first example.

The technique used in this example would be useful in
applications where the differences between processed and
unprocessed messages were relatively simple, since the maximum
size of input and output messages would be the same. If the
length and structure of the output message could vary widely,
depending on the text of the input message, locate mode output

218 OSPL/I Optimizing Compiler: Programmer's Guide

CONDITION HANDLING

could be used to advantage; after the input message had been
read in, a suitable based variable could be located in the
output buffer (using the LOCATE statement), where further
processing would take place. The message would be transmitted
immediately before execution of the next WRITE or LOCATE
statement for the file.

Although the EVENT option is not permitted, data transmission
could be overlapped with processing in an operating system that
supports multitasking by means of the PL/I multitasking
facilities (described in the OS and DOS PL/I Language Reference
Manual). For example, the processing program could consist of a
number of subtasks, each associated with a different queue.
Each subtask processes the input from its associated queue, and
transmits output to the required destination.

The conditions that can be raised during teleprocessing
transmission are TRANSMIT, KEY, RECORD, ERROR, and PENDING.

The TRANSMIT condition can be raised on input or output, as
described for other types of transmission. In addition, for a
TRANSIENT OUTPUT file, TRANSMIT can be raised in the following
circumstances:

• The destination queue is full; TCAM rejected the message.

• For a file declared with the TPCR) ENVIRONMENT option,
message segments were presented out of sequence.

The RECORD condition is raised in the same circumstances as for
other types of transmission. The messages and records are
treated as V-format records.

The ERROR condition is raised as for other types of
transmission; it is also raised when the expression in the
KEYFROM option is missing or detectably invalid.

The KEY condition is raised if the expression in the KEYFROM
option is syntactically valid but does not represent an origin
or a destination name recognized by the MCP.

The PENDING condition is raised only during execution of a READ
statement for a TRANSIENT file. When the PENDING condition is
raised, the value returned by the ONKEY built-in function is a
null string. The PL/I implicit action for the PENDING condition
is as follows:

• If there is no ON-unit for the PENDING condition, the PL/I
transmitter module waits for a message.

• If there is an ON-unit for the PENDING condition, and it
executes a normal return, the transmitter waits for a
message.

• If there is an ON-unit for the PENDING condition, and it
does not return normally, the next execution of a READ
statement again raises PENDING if no records have been added
to the queue.

There is no PL/I condition associated with the occurrence of the
last segment of a message. When the TPCR) option is specified,
indicating multiple-segment messages, the user is responsible
for arranging the recognition of the end of the message.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 219

ESSENTIAL INFORMATION

To access a teleprocessing data set, the file name or value of
the TITLE option on the OPEN statement must be the name of a DD
statement that identifies the message queue in the QNAME
parameter. For example:

//PLIFILE nn QNAME=process name

Process name is the symbolic name of the TPROCESS macro, coded
in your MCP, that defines the destination queue through which
your messages will be routed. Your system programmer can
provide the queue names to be used for your application.

For TRANSIENT OUTPUT files, the element expression specified in
the KEYFROM option must have as its value a terminal or program
identifier known to your MCP. When the TPCR) ENVIRONMENT option
has been specified, indicating multiple-segment messages, the
position of record segments within a message must be indicated,
as described above.

EXAMPLE OF A PL/I MPP

An example of an MPP and the job control language required to
run it is shown in Figure 91. The EXEC statement in the first
part of the figure invokes the cataloged procedure PLIXCL to
compile and link-edit the PL/I message processing program. The
load module is stored in the library SYSI.MSGLIB under the
member name MPPROC.

220 OS PL/I Optimizing Compiler: Programmer's Guide

Part 1. Compiling and Link Editing the MPP

//JOBNAME JOB
// EXEC PLIXCL
//PLI.SYSIN DD *

MPPROC: PROC OPTIONS(MAIN);
DCL INMSG FILE RECORD KEYED TRANSIENT ENV(TP(M) RECSIZEClOO»,

OUTMSG FILE RECORD KEYED TRANSIENT ENVCTP(M) RECSIZECSOO»,
INDATA CHAR(lOO),
OUTDATA CHAR(SOO),
TKEY CHAR(6);

OPEN FILE(INMSG) INPUT,FILE(OUTMSG) OUTPUT;

READ FILE(INMSG) KEYTO(TKEY) INTO(INDATA)j

WRITE FILECOUTMSG) KfYFROM(TKEY) FROM(OUTDATA);

ENDTP: CLOSE FILECMPP),FILECOUTMSG);
END MPPROC;

/*
//LKED.SYSLMOD DD DSNAME=SYSl.MSGLIBCMPPROC),DISP=OLD

//JOBNAME
//JOBLIB
//
//INMSG
//OUTMSG

Part 2. Executing the MPP

JOB
DD DSNAME=SYSl.MSGLIB(MPROC),DISP=SHR
EXEC PGM=MPPROC

DD QNAME=CINQUIRY)
DD QNAME=CRESPONSE)

Figure 92. PL/I Message Processing Program

In the PL/I program, INMSG is declared as a teleprocessing file
that can process messages up to 100 bytes long. Similarly,
OUTMSG is declared as a teleprocessing file that can process
messages up to 500 bytes long.

The READ statement gets a message from the queue. The terminal
identifier, which is passed as a key by TCAM, is inserted into
TKEY, the character string referenced in the KEYTO option. The
record is placed in the INDATA variable for processing. The
appropriate READ SET statement could also have been used here.
The statements that process the data and place it in OUTDATA are
omitted to simplify the example.

The WRITE statement moves the data from OUTDATA into the
destination queue; the terminal identifier is taken from the
character string in TKEY. An appropriate LOCATE statement could
also have been used.

The MPP is executed in the second part of the example; the INMSG
and OUTMSG DD statements associate the PL/I files MPP and OUTMSG
with their respective main storage queues, that is, INQUIRY and
RESPONSE.

Chapter 6. Using Consecutive, Indexed, Regional, and Teleprocessing Data Sets 221

CHAPTER 7. USING VSAM DATA SETS FROM PL/I

VSAM ORGANIZATION

This chapter describes VSAM (the Virtual storage Access Method)
organization for record-oriented data transmission, the VSAM
ENVIRONMENT options, compatibility with other PL/I data set
organizations, and describes the statements used to load and
access the three types of VSAM data sets--entry-sequenced,
key-sequenced, and relative record. The chapter is concluded by
a series of examples showing the PL/! statements, Access Method
Services commands, and JCL statements necessary to create and
access VSAM data sets.

Appendix A, "VSAM Background" on page 383 gives an introduction
to VSAM and Access Method Services. It briefly describes the
commands for defining and deleting data sets and for building
alternate indexes. If you are not familiar with VSAM and its
facilities, you may wish to read Appendix A, "VSAM Background"
on page 383 before proceeding.

For additional information about the facilities of VSAM, the
structure of VSAM data sets and indexes, the way in which they
are defined by Access Method Services, and the required JCL
statements, see the VSAM publications for your system.

VSAM provides three types of data sets:

• Key-sequenced data sets (KSDS)

• Entry-sequenced data sets (ESDS)

• Relative record data sets (RRDS)

These correspond roughly to PL/I indexed, consecutive, and
regional data set organizations, respectively. They are all
ordered, and they can all have keys associated with their
records. Both sequential and key~d access are therefore possible
with all three types.

Although only key-sequenced data sets have keys as part of their
logical records, keyed access is also possible for
entry-sequenced data sets (using relative-byte addresses) and
relative record data sets (using relative record numbers),

All VSAM data sets are held on direct-access storage devices,
and a virtual storage operating system is required to use them.

The physical organization of VSAM data sets differs from those
used by other access methods. VSAM does not use the concept of
blocking, and, except for relative record data sets, records
need not be of a fixed length. In data sets with VSAM
organization, the data items are arranged in control intervals,
which are in turn arranged in control areas. For processing
purposes, the data items within a control interval are arranged
in logical records. A control interval may contain one or more
logical records, and a logical record may span two or more
control intervals. Concern about blocking factors and record
length is largely removed by VSAM although records cannot, of
course, exceed the maximum specified size. VSAM allows access
to the control intervals, but this type of access is not
supported by PL/I.

VSAM data sets can have two types of indexes--prime and
alternate. A prime index is the index to a KSDS that is
established when the data set is defined; it always exists and
may be the only index for a KSDS. You can have one or mora
alternate indexes on a KSDS or an ESDS. An alternate index on an
ESDS enables it to be treated, in general, as a KSDS, An

222 OS PL/I Optimizing Compiler: Programmer's Guide

alternate index on a KSDS enables a field in the logical record
different from that in the prime index to be used as the key
field. Alternate indexes may be either nonunigue, in which
duplicate keys are allowed, or unique, in which they are not.
The prime index can never have duplicate keys.

Any change in a data set that has alternate indexes must be
reflected in all the indexes if they are to remain useful. This
activity is known as index upgrade, and is done by VSAM for any
index in the index upgrade set of the data set. (For a KSDS,
the prime index is always a member of the index upgrade set.)
You, however, must avoid making changes in the data set that
would cause duplicate keys in the prime index or in a unique
alternative index.

Before a VSAM data set is used for the first time, its structure
is defined to the system by the DEFINE command of Access Method
Services. The definition completely defines the type of the
data set, its structure, and the space it requires. If the data
set is indexed, its indexes (together with their key lengths and
locations) and the index upgrade set are also defined. A VSAM
data set is thus "created" by Access Method Services.

The operation of writing the initial data into a newly-created
VSAM data set is referred to as loading in this publication.

The three different data set types provide for three different
types of data:

• Entry-sequenced data sets should be used for data that will
be primarily accessed in the order in which it was created
(or the reverse order).

• Key-sequenced data sets should be used when a record will
normally be accessed through a key within the record (for
example, a stock control file where the part number can be
used to access the record).

• Relative record data sets are suitable for data in which
each item has a particular number and the relevant record
will normally be accessed by that number. An example might
be a telephone system with a record associated with each
number.

Records in all types of VSAM data sets can be accessed directly
by means of a key, sequentially (either backward or forward), or
in a combination of the two ways. That is, by selecting a
starting point by means of a key and then reading forward or
backward from that point.

Key-sequenced and entry-sequenced data sets can both have
alternate indexes created for them. Thus they can be accessed
in many sequences or by one of many keys. For example, a data
set held or indexed in order of employee number could be indexed
by name in an alternate index and could then be accessed in
alphabetic order, in reverse alphabetic order, or directly using
the name as a key, as well as in the same kind of combinations
by employee number.

Figure 93 on page 225 shows how the same data could be held in
the three different types of VSAM data sets and illustrates
their respective advantages and disadvantages.

Chapter 7. Using VSAM Data Sets from PL/I 223

KEYS FOR VSAM DATA SETS

All VSAM data sets can have keys associated with their records.
For key-sequenced data sets l and for entry-sequenced data sets
accessed via an alternate indexl the key is a defined field
within the logical record. For entry-sequenced data sets l the
key is the relative byte addres~ (RDA) of the record. For
relative-record data sets, the key is a relative record number.

Keys for Indexed VSAM Data sets

Keys for key-sequenced data sets and for entry-sequenced data
sets accessed via an alternate index are part of the logical
records recorded on the data set. The length and location of the
keys are defined when the data set is created.

The ways in which the keys may be referenced in the KEY,
KEYFROM, and KEYTO options are as described under
"KEYCexpression) Option," "KEYFROMCexpression) Option,n and
"KEYTOCreference) Option" in Chapter 12 of the OS and DOS PL/I
Language Referenc@ Manual. See also "Embedded Keys" on
page 169.

Relative Byte Addresses (RBA)

Relative byte addresses allow you to use keyed access on an ESDS
associated with a KEYED SEQUENTIAL file. The RBAs, or keys, are
character strings of length 4, and their values are defined by
VSAM. RBAs cannot be constructed or manipulated in PL/I; their
values, however, can be compared in order to determine the
relative positions of records within the data set. RBAs are not
normally printable.

The RBA for a record can be obtained by means of the KEYTO
option, either on a WRITE statement when the data set is being
loaded or extended, or on a READ statement when the data set is
being read. An RDA obtained in either of these ways can
subsequently be used in the KEY option of a READ or REWRITE
statement.

An RBA must not be used in the KEYFROM option of a WRITE
statement.

VSAM allows use of the relative byte address as a key to a KSDS,
but this use is not supported by PL/I.

224 OS PL/I Optimizing'Compiler: Programmer's Guide

The diagrams show how the information contained in the family tree below could
be held in VSAM data sets of different types.

ANDREW M SMITH &
VALERIE SUZIE ANN MORGAN (1967)

I

FRED (1969) ANDY (1970)

Key-Sequenced Data Set

Prime
Index

ANDY

FRED

JANE

SUZAN

Entry-Sequenced Data Set

Relative byte

addresses can be

accessed and used

as keys

r-----'
I ~------~
I------~

I
t------~

I
r------i
I L.. _____ J

Relative Record Data Set

Relative record

numbers can be

accessed and

used as keys

Each slot corresponds to a year

Slot

4

6

8

Data component

ANDY

empty space

FRED

empty space

JANE

empty space

SUZAN

Data component

FRED

ANDY

SUZAN

JANE

Data component

FRED

ANDY

empty space for 71

SUZAN

empty space for 73

empty space for 74

JANE

empty space for 76

SUZAN (1972) JANE (1975)

70 M

69 M

75 F

72F

Alternate Indexes
By Birthdate (unique)

69

70

72

75

\

\ \ By sex (non-unique)

-- -__ '.2.--\----fEBj-----
-- -- \ F

- - - --- -- -- -- \\ '\- -- -
\\

" " M ,:::::-_/ -,/'
....... _-,."...

Alternate Indexes
Alphabetically by name
(unique)

ANDY

69Mr----------~~~------ FRED

70 M JANE

72F SUZAN

\
75 F '- \ \ By sex (non-unique) --- '-- \ \

--- ------ \" -\- - - - -- - - "'
-\~\----ttE-<-

\. "
"" M " " '-. ---

........ _----

69 M No Alternate Indexes

70 M

72 F

75 F

Figure 93 (Part 1 of 2). Types and Advantages of VSAM Data Sets

Chapter 7. Using VSAM Data Sets from PL/! 225

Method of Loading Method of Reading Method of Updating Pros and Cons

Key-Sequenced Data Set Sequentially in order of prime KEYED by sPElcifying key of KEYED specifying a unique Advantages
index which must be unique record in prime or unique key in any index Complete access and updating

alternate index SEQUENTIAL following Disadvantages
SEQUENTIAL backwards or positioning by unique key Records must be in order of
forwards in order pf any index Deletion of records allowed prime index before loading
Positioning by key followed Insertion of records allowed Uses
by sequential reading either For uses where access will be
backwards or forward related to key

Entry-Sequenced Data Set Sequentially (forwards only) SEQUENTIAL backwards or New records at end only Advantages
The R BA of each record can forwards Existing records cannot have Simple fast creation. No
be obtained and used as a key KEYED using unique aiternate length changed requirement for a unique index

index or RBA Access may be sequential or Disadvan tages
Positioning by key followed KEYED using alternate index Limited updating facilities
by sequential either backwards Deletion of records not Uses
or forwards allowed For uses where data will

primarily be accessed

sequentially

Relative Record Data Set Sequentially starting from KEYED specifying numbers Sequentially starting at a Advantages
slot 1 as key specified slot and continuing Speedy access to record by

KEYED specifying number Sequential forwards or with next slot number

of slot backwards omitting empty Keyed specifying numbers as Disadvantages
Positioning by key followed records key Structure tied to numbering

by sequential writes Deletion of records allowed sequences

Insertion of records into No alternate index

empty slots allowed Fixed length records
Uses
For use where records will be
accessed by number

Figure 93 (Part 2 of 2). Types and Advantages of VSAM Data Sets

Relative Record Numbers

Records in an RRDS are identified by a relative record number
that starts at 1 and is incremented by 1 for each succeeding
record. These relative records numbers may be used as keys to
allow keyed access to the data set.

Keys used as relative record numbers are character strings of
length 8. The character value of a source key used in the KEY
or KEYFROM option must represent an unsigned integer. If the
source key is not 8 characters long, it is truncated or padded

226 OS PL/I Optimizing Compiler: Programmer's Guide

with blanks (interpreted as zeros) on the 1ef!. The value
returned by the KEYTO option is a character string of length 8,
with leading zeros suppressed.

CHOICE OF DATA SET TYPE

When planning your program1 the first decision to be made is
which type of data set to use. As discussed in
Chapter 61 "Using Consecutive, Indexed, Regional, and
Teleprocessing Data Sets" on page 149, there are three types of
VSAM data sets and five types of non-VSAM data sets available to
you. VSAM data sets can provide all the function of the other
types of data sets, plus additional function available only in
VSAM. VSAM can usually match other data set types in
performance, and often improve upon it. However, VSAM is more
subject to performance degradation through misuse of function.

The comparison of all eight types of data sets given in
Figure 54 on page 149 is helpful; however, many factors'in the
choice of data set type for a large installation are beyond the
scope of this book.

Figure 93 on page 225 shows you the possibilities available with
the types of VSAM data sets. When choosing between the VSAM
data set types, you should base your choice on the most common
sequence in which you will require your data. You should follow
a procedure similar to the one suggested below to help ensure a
combination of data sets and indexes that provide the function
you require.

1. Determine the type of data and how it will be accessed.

a. Primarily sequentially--favors ESDS

b. Primarily by key-favors KSDS

c. Primarily by number--favors RRDS

2. Determine how the data set will be loaded. Note that a KSDS
must be loaded in key sequence; thus an ESDS with an
alternate index path may be ~ more practical alternative for
some applications.

3. Determine whether you require access through an alternate
index path. These are only supported on KSDS and ESDS. If
you do, determine whether the alternate index will have
unique or nonunique keys. Use of nonunique keys may limit
key processing. Conversely, the prediction that all future
records will have unique keys may not be practical, and an
attempt to insert a record with a nonunique key in an index
that has been created for unique keys will cause an error.

4. When you have determined the data sets and paths that you
require, ensure that the operations you have in mind are
supported. Figure 94 on page 228 and Figure 95 on page 228
may be helpful.

Do not try to access a dummy VSAM data set, because you will
receive an error message indicating that you have an undefined
file.

Figure 96 on page 237, Figure 97 on page 240, and Figure 98 on
page 244 show the statements permitted for entry-sequenced data
sets, indexed data sets, and relative record data sets,
respectively.

Chapter 7. Using VSAM Data Sets from Pl/I 227

INPUT

OUTPUT

UPDATE

SEQUENTIAL

ESDS
KSDS
RRDS
PathCN)
PathCU)

ESDS
RRDS

ESDS
KSDS
RRDS
PathCN)
PathCU)

KEVED SEQUENTIAL

ESDS
KSDS
RRDS
PathCN)
PathCU)

ESDS
KSDS
RRDS

ESDS
KSDS
RRDS
PathCN)
PathCU)

DIRECT

KSDS
RRDS
PathCU>

KSDS
RRDS
Path(U)

KSDS
RRDS
PathCU)

Key: ESDS
KSDS
RRDS
PathCN)

Entry-sequenced data set
Key-sequenced data set
Relative record data set
Alternate index path with nonunique keys

PathCU)
(See "Alternate Index Paths" on page 391 for details.>

Alternate index path with unique keys

The attributes on the left can be combined with those at the top of the
figure for the data sets and paths shown. For example, only an ESDS
and an RRDS may be SEQUENTIAL OUTPUT.

PL/I does not support dummy VSAM data sets.

Figure 94. VSAM Data Sets and Permitted File Attributes

Base
Cluster
Type

KSDS

ESDS

Alternate
Index
Key Type

Unique key
Nonunique key

Unique key

Nonunique key

Processing Restrictions

As normal KSDS May not modify key of access.
Limited keyed access May not modify key of access.

As KSDS No deletion. May not modify
key of access.

Limited keyed access No deletion. May not modify
key of access.

Figure 95. Processing Allowed on Alternate Index Paths

DEFINING A VSAM DATA SET TO PL/I

A sequential VSAM data set is defined by a file declaration with
the following attributes:

DCl filename FILE RECORD
INPUT I OUTPUT I UPDATE
SEQUENTIAL
BUFFERED

[KEYED]
ENVIRONMENTCoptions);

228 OS PL/I Optimizing Compiler: Programmer's Guide

A direct VSAM data set is defined by a file declaration with the
following attributes:

Del filename FILE RECORD
INPUT I OUTPUT I UPDATE
DIRECT
UNBUFFERED

[KEYED]
ENVIRONMENTCoptions);

Figure 45 on page 123 shows the default attributes. The file
attributes are described in the OS and DOS PL/I Langua~
Reference Manual. Options of the ENVIRONMENT attribute are
discussed below.

Some combinations of the file attributes INPUT or OUTPUT or
UPDATE and DIRECT or SEQUENTIAL or KEYED SEQUENTIAL are allowed
only for certain types of VSAM data sets. Figure 94 on page 228
shows the compatible combinations.

ENVIRONMENT OPTIONS FOR VSAM DATA SETS

VSAM Option

Many of the options of the ENVIRONMENT attribute affecting data
set structure are superfluous for VSAM data sets. If they are
specified, they are either ignored or are used for checking
purposes. If those that are checked conflict with the values
defined for the data set, the UNDEFINEDFIlE condition is raised
when an attempt is made to open the file.

The ENVIRONMENT options applicable to VSAM data sets are:

VSAM
BKWD
BUFNDCn)
BUFNICn)
BUFSP(n)
PASSWORDCpassword-specification)
REUSE
SIS
SKIP
COBOL
GENKEY
SCALARVARYING

COBOL, GENKEY, and SCAlARVARYING have the same effect as for
non-VSAM data sets.

The options that are checked for a VSAM data set are RECSIZE
and, for a key-sequenced data set, KEYLENGTH and KEYLOC. NCP
has meaning when using the ISAM compatibility interface.
Figure 45 on page 123 shows which options are ignored for VSAM.
Figure 45 on page 123 also shows the required and default
options.

Specify the VSAM option for VSAM data sets, unless the file may
also access non-VSAM data sets (if this is the case, see "The
VSAM Compatibility Interface" on page 234).

r= Syntax

LAM

Chapter 7. Using VSAM Data Sets from PL/I 229

PASSWORD Option

GENKEY Option

REUSE Option

When a VSAM data set is defined to the system (using the DEFINE
command of Access Method Services), READ and UPDATE passwords
can be associated with it. From that point on, the appropriate
password must be included in the declaration of any Pl/I file
used to access the dataset. The syntax of the option iSI r-:: Syntax

PASSWORD(paSSWOrd-specificationl

password-specification
is a character constant or character variable that
specifies the password for the type of access your program
requires. If the specification is a constant, it must not
contain a repetition factor; if it is a variable, it must
be level-I, element, static, and unsubscripted.

The character string is padded or truncated to 8 characters and
passed to VSAM for inspection. If the password is incorrect,
the system operator is given a number of chances to specify the
correct password. The number of chances to be allowed is
specified when the data set is defined. After this number of
unsuccessful tries, the UNDEFINEDFILE condition is raised.

The three levels of password supported by PL/I are:

• Master

• Update

• Read

These three levels are defined in Appendix A, "VSAM Background"
on page 383. Specify the highest level of password needed for
the type of access that your program will perform.

For the description of this option, see UGENKEY Option--KeY
Classification" on page 129.

The REUSE option specifies that an OUTPUT file associated with a
VSAM data set is to be used as a workfile.

r-::. Syntax
REUSE

The data set is treated as an empty data set each time the file
is opened. Any secondary allocations for the data set are
released, and the data set is treated exactly as if it were
being opened for the first time.

A file with the REUSE option must not be associated with a data
set that has alternate indexes or the BKWD option, and must not
be opened for INPUT or UPDATE.

The REUSE option takes effect only if REUSE was specified in the
Access Method Services DEFINE CLUSTER command.

230 OS PL/I Optimizing Compiler: Programmer's Guide

BKWD opt ian

PERFORMANCE OPTIONS

SKIP opt ian

The BKWD option specifies backward processing for a SEQUENTIAL
INPUT or SEQUENTIAL UPDATE file associated with a VSAM data set.

~ Syntax

~WD

Sequential reads (that is, reads without the KEY option)
retrieve the previous record in sequence. For indexed data
sets, the previous record is, in general, the record with the
next lower key. However, if the data set is being accessed via
a nonunique alternate index, records with the same key are
recovered in their normal sequence. For example, if the records
are:

A B Cl C2 C3 D E

where Cl, C2, and C3 have the same key, they are recovered in
the sequence:

E D Cl C2 C3 B A

When a file with the BKWD option is opened, the data set is
positioned at the last record. ENDFILE is raised in the normal
way when the start of the data set is reached.

The BKWD option must not be specified with either the REUSE
option or the GENKEY option. Also, the WRITE statement is not
allowed for files declared with the BKWD option.

SKIP, SIS, BUFND, BUFNI, and BUFSP are options you can specify
to optimize VSAM's performance. The buffer options can also be
specified in the AMP parameter of the DD statement; they are
explained in your Access Method Services manual.

The SKIP option of the ENVIRONMENT attribute specifies that the
VSAM OPTCD "SKP" is to be used wherever possible. It is
applicable to key-sequenced data sets accessed by means of a
KEYED SEQUENTIAL INPUT or UPDATE file.

~ syntax

~IP

If the application program is designed to access individual
records scattered throughout the data set, but the access will
be primarily in ascending key order, the SKIP option should by
specified for the file.

If the program is designed to read large numbers of records
sequentially, without the use of the KEY option, or if it is
designed to insert large numbers of records at specific points
in the data set (mass sequential insert), the SKIP option should
be omitted.

It is never an error to specify (or omit) the SKIP option; its
effect on performance is significant only in the circumstances
described.

Chapter 7. Using VSAM Data Sets from PL/I 231

SIS Option

BUFND Option

BUFNI Option

The SIS option is applicable to key-sequenced data sets accessed
by means of a DIRECT file.

r-=: Syntax

L S

If mass sequential insert is used for a VSAM data set, that is,
if records with ascending keys are inserted, a KEYED SEQUENTIAL
UPDATE file is normally appropriate. In this case, however,
VSAM delays writing the records to the data set until a complete
control interval has been built. If DIRECT is specified, VSAM
writes each record as soon as it is presented. Thus, in order
to achieve immediate writing and faster access with efficient
use of disk space, a DIRECT file should be used and the SIS
option should be specified.

The SIS option is intended primarily for use in online
applications.

It is never an error to specify (or omit) the SIS option; its
effect on performance is significant only in the circumstances
described.

The BUFND option specifies the number of data buffers required
for a VSAM data set. The syntax of the option is:

~ Syntax

I :FND(nl

n
specifies an integer, or a variable with the attributes
FIXED BINARY(3l) STATIC.

Multiple data buffers help performance when the file has the
SEQUENTIAL attribute and long groups of contiguous records are
to be processed sequentially.

The BUFNI option specifies the number of index buffers required
for a VSAM key-sequenced data set. The syntax of the option is:

~ Syntax

I :FNIlnl

n
specifies an integer, or a variable with the attributes
FIXED BINARY(31) STATIC.

Multiple index buffers help performance when the file has the
KEYED attribute. Specify at least as many index buffers as
there are levels in the index.

232 OS PL/I Optimizing Compiler: Programmer's Guide

BUFSP Option

The BUFSP option specifies, in bytes, the total buffer space
required for a VSAM data set (for both the data and index
components). The syntax of the option is: r-:: Syntax

SUFSP(nl

n
specifies an integer, or a variable with the attributes
FIXED BINARY(3l) STATIC.

It is usually preferable to specify the BUFNI and BUFND options
rather than BUFSP.

FILES FOR BOTH VSAM AND NON-VSAM DATA SETS

CONSECUTIVE Files

In most cases, existing PL/I programs using files declared with
ENVIRONMENT (CONSECUTIVE) or ENVIRONMENTCINDEXED) or with no
ENVIRONMENT are able to access VSAM data sets without
alteration. Programs using REGIONAL files must be altered and
recompiled before they can use VSAM data sets. PL/I can detect
that a VSAM data set is being opened, and can provide the
correct access, either directly or by use of a compatibility
interface. This support is provided under TSO on OS/VS2 MVS.
This support is not provided in the TSO environment under OS/VS2
SVS in those cases in which DD information is supplied by the
ALLOCATE command.

Existing PL/I programs that use REGIONAL(l) files cannot be used
unaltered to access VSAM relative-record data sets.

The aspects of compatibility that affect the VSAM user who has
data sets or programs created for other access methods are as
follows:

• The re-creation of existing data sets as VSAM data sets.
The Access Method Services REPRO command re-creates data
sets in VSAM format. This command is described in the
Access Method Services manual.

• All VSAM key-sequenced data sets have embedded keys, even if
they have been converted from ISAM data sets with
nonembedded keys.

• JCL DD statement changes.

• The use of programs written for non-VSAM data sets with VSAM
data sets without alteration of the programs. This is
described in the following section.

• The alteration of existing programs to allow them to use
VSAM data sets. A brief discussion of this is given later
in this section.

For CONSECUTIVE files, compatibility depends on the ability of
the PL/I routines to recognize the data set type and use the
correct access method.

It should be realized, however, that there is no concept of
fixed-length records in VSAM. Therefore, if the program relies
on the RECORD condition to detect incorrect length records, it
will not function in the same way using VSAM data sets as it
does with non-VSAM data sets.

Chapter 7. Using VSAM Data Sets from PL/I 233

INDEXED Files

Complete compatibility is provided for INDEXED files. For files
declared with the INDEXED ENVIRONMENT option, the PL/I library
routines recognize a VSAM data set and will process it as VSAM.

However, because ISAM record handling differs in detail from
VSAM record handling, use of VSAM processing may not always give
the required result. To ensure complete compatibility with PL/I
ENVCINDEXED) files, VSAM provides the compatibility interface--a
program that simulates ISAM-type handling of VSAM data sets.

Because VSAM does not support EXCLUSIVE files, programs that
rely on this feature will not be compatible on VSAM and ISAM.

THE VSAM COMPATIBILITY INTERFACE

The compatibility interface simula"tes ISAM-type handling on VSAM
key-sequenced data sets. This allows compatibility for any
program whose logic depends on ISAM-type record handling.

The compatibility interface is used when the RECFM or OPTCD
keyword is specified in a DD statement associated with a file
declared with the INDEXED ENVIRONMENT option, or when an NCP
value greater than I is used in the ENVIRONMENT option. These
conditions are taken by the Pl/I library routines to mean that
the compatibility interface is required. The RECFM value,
either F, V, or VS, should be chosen to match the type of record
that would be used by an ISAM data set. The OPTCD value
"OPTCD=I," which is the default, should be used if complete ISAM
compatibility is required (see 3).

The compatibility interface cannot be used for a data set having
a nonzero RKP (KEYlOC) and RECFM=F. Programs using such files
must be recompiled to change the INDEXED file declaration to
VSAM.

The compatibility interface is needed in the following
circumstances:

1. If your program uses non embedded keys.

2. If your program relies on the raising of the RECORD
condition when an incorrect-length record is encountered.

3. If your program relies on checking for deleted records. In
ISAM, deleted records remain in the data set but are flagged
as deleted. In VSAM, they become inaccessible to you, and
their space is available for overwriting.

Note on Deletion: If you want the compatibility interface
but want deletion of records handled in the VSAM manner, you
must use OPTCD='IL' in the DD statement.

An example of DD statements that would result in the
compatibility interface being used when accessing a VSAM data
set is:

//PLIFILE DD DSNAME=VSAMl,
// DISP=OLD,AMP='RECFM=F'

or, to use the compatibility interface with VSAM-type deletion
of records:

//PLIFILE DD DSNAME=VSAMl,
// DISP=OLD,AMP='OPTCD=IL'

234 OS PL/I Optimizing Compiler: Programmer's Guide

ADAPTING EXISTING PROGRAMS FOR VSAM DATA SETS

CONSECUTIVE Files

INDEXED Files

REGIONAL(ll Files

Existing programs with indexed, consecutive, or REGIONAlCl)
files can readily be adapted for use with VSAM data sets. As
indicated above, programs with consecutive files may need no
alteration, and there is never any necessity to alter programs
with indexed files unless you wish to avoid the use of the
compatibility interface or if the logic depends on EXCLUSIVE
files. Programs with REGIONAlCl) data sets require only minor
rev~s~on. Programs with REGIONAl(2) or REGIONAL(3) files will
need restructuring before they can be used with VSAM data sets.

If the logic of the program depends on the ra~s1ng of the RECORD
condition when a record of an incorrect length is found, you
will have to write your own code to check for the record length
and take the necessary action. This is because records of any
length up to the maximum specified are allowed in VSAM data
sets.

Programs using indexed Cthat is, ISAM) files need only be
changed if you wish to avoid using the compatibility interface.

Dependence on the RECORD condition should be removed, and your
own code inserted to check for record length if this is
necessary.

Any checking for deleted records should be removed.

Programs using REGIONAlCl) data sets can be altered to use VSAM
relative record data sets.

REGIONAlCl) and any other non-VSAM ENVIRONMENT options should be
removed from the file declaration and be- replaced by ENVCVSAM).

Any checking for deleted records should be removed, because VSAM
deleted records are not accessible to you.

ASSOCIATING SEVERAL VSAM FILES WITH ONE DATA SET

Multiple files are associated with one VSAM data set in the
following ways:

• The files are associated with a common DD statement. The
TITLE option of the OPEN statement can be used for this
purpose, as described in "Associating Data Sets With Files"
on page 119.

• The files are associated with separate DD statements, the DD
statements reference the same data set name, and MACRF=DSN
was specified in the VSAM OPEN request. Pl/I opens all VSAM
data sets with MACRF=DSN, which specifies VSAM is to share
control blocks based on a common data set name.

In both cases, Pl/I creates one set of control blocks---an Access
Method Control Block and a Request Parameter list CRPl)---for
each file and does not provide for associating multiple RPls
with a single ACB. These control blocks are described in the
VSAM Programmer's Guide and normally need not concern you.

Chapter 7. Using VSAM Data Sets from Pl/I 235

SHARED DATA SETS

Multiple files may perform retrievals against a single data set
with no difficulty. However, if one or more files perform
updates, the following may occur:

• There is a risk that other files will retrieve down-level
records. This can be avoided by having all files open with
the UPDATE attribute.

• When more than one file is open with the UPDATE attribute,
retrieval of any record in a control interval makes all the
other records in that control interval unavailable until the
update is complete. This raises the ERROR condition with
condition code 1027 if a second file attempts to access one
of the unavailable records. Your application could be
designed to retry the retrieval after completion of the
other file's data transmission, or the error can be avoided
by not having two files associated with the same data set at
one time.

• When one or more of the multiple files is an alternate index
path, an update through an alternate index path may update
the alternate index before the data record is written,
resulting in a mismatch between the index and the data.

Pl/I does not support cross-region or cross-system sharing of
data sets. These types of sharing are discussed in
Appendix A, "VSAM Background" on page 383 and further described
in your Access Method Services manual.

HOW TO EXECUTE A PROGRAM USING VSAM DATA SETS

Before you execute a program that accesses a VSAM data set, you
need to know: .

• The name of the VSAM data set.

• The name of the Pl/I file.

• Whether you intend to share the data ~et with other users
(see the discussion of "Sharing a Data Set between Jobs n on
page 390).

You can then write the required DD statement to access the data
set:

//filename DD DSNAME=dsname,DISP=OLDISHR

For example, if your file was called PllFIlE, your data set
VSAMDS, and you wanted exclusive control of the data set, you
would enter:

//PlIFIlE DD DSNAME=VSAMDS,DISP=OlD

If you wanted to share your data set, you would use DISP=SHR.

If you are using a Pl/I program that was originally written for
ISAM data sets and requires a simulation of ISAM data set
handling, you need to use the AMP parameter of the DD statement.
You may also wish to use it to optimize VSAM's performance.

If you wish to optimize VSAM's performance by controlling the
number of VSAM buffers used for your data set, read the section
nOptimizing VSAM's Performancen in the OS/VS Virtual Stora9~
Access Method (VSAM) Programmer's Guide.

236 OS Pl/I Optimizing Compiler: Programmer's Guide

ASSOCIATING AN ALTERNATE INDEX PATH WITH A FILE

When using an alternate index, you simply specify the name of
the path in the DSNAME parameter of the DD statement associating
the base data set/alternate index pair with your PL/I file.
Before using an alternate index, you should be aware of the
restrictions on processing; these are summarized in Figure 95 on
page 228. The method used for defining a path and building an
alternate index is given in "Alternate Index Paths" on page 391.

Assuming that a PL/I file was called PllFILE and the alternate
index path was called PERSAlPH, the DD statement required would
be:

//PLIFllE DD DSNAME=PERSAlPH,DISP=OlD

ENTRY-SEQUENCED DATA SETS

Loading an ESDS

Sequential Access

File
declaration1

SEQUENTIAL OUTPUT
BUFFERED

The statements and options allowed for files associated with an
ESDS are shown in Figure 96.

When an ESDS is being loaded, the associated file must be opened
for SEQUENTIAL OUTPUT. The records are retained in the order in
which they are presented.

The KEYTO option may be used to obtain the relative byte address
of each record as it is written. The keys thus obtained may
subsequently be used to achieve keyed access to the data set.

A SEQUENTIAL file that is used to access an ESDS may be opened
with either the INPUT or the UPDATE attribute. If either of the
options KEY or KEYTO is used, the file must also have the KEYED
attribute.

Sequential access is in the order in which the records were
originally loaded into the data set. The KEYTO option may be
used on the READ statements to recover the RBAs of the records
that are read. If the KEY option is used, the record that is
recovered is the one with the specified RBA. Subsequent
sequential access continues from the new position in the data
set.

For an UPDATE file, the WRITE statement adds a new record at the
end of the data set. With a REWRITE statement, the record
rewritten is the one with the specified RBA if the KEY option is
used; otherwise, it is the record accessed on the previous READ.
A REWRITE statement must not attempt to change the length of the
record that is being replaced.

The DELETE statement is not allowed for entry-sequenced data
sets.

Valid statements, with options Other options that can
that must appear also be used

WRITE FILE(file-reference) KEYTOCreference)
FROMCreference)j

LOCATE based-variable SET(pointer-reference)
FILECfile-reference);

Figure 96 (Part I of 2). Statements and Options Permitted for loading and Accessing
VSAM Entry-sequenced Data Sets

Chapter 7. Using VSAM Data Sets from Pl/I 237

File Valid statements, with options other options that can
declaration1 that must appear also be used

SEQUENTIAL OUTPUT WRITE FIlECfile-reference) EVENTCevent-reference)
UNBUFFERED FROMCreference)j and/or

KEYTO(reference)

SEQUENTIAL INPUT READ FIlE(file-reference) KEYTO(reference) or
BUFFERED INTO(reference); KEY(expression).3

READ FIlECfile-reference) KEYTOCreference) or
SETCpointer-reference); KEYCexpression).3

READ FIlECfile-reference); IGNORECexpression)

SEQUENTIAL INPUT READ FIlECfile-reference) EVENTCevent-reference)
UNBUFFERED INTOCreference); and/or either

KEYCexpression)3 or
KEYTO(reference)

READ FIlECfile-reference);2 EVENTCevent-reference)
and/or
IGNORE(expression)

SEQUENTIAL UPDATE READ FIlECfile-reference) KEYTOCreference) or
BUFFERED INTOCreference); KEY(expression)3

READ FIlECfile-reference) KEYTOCreference) or
SET(pointer-reference); KEY(expression)3

READ FIlECfile-reference)2 IGNORECexpression)

WRITE FIlECfile-reference) KEYTOCreference)
FROMCreference);

REWRITE FIlECfile-reference); FROM(reference)
and/or
KEYCexpression)3

SEQUENTIAL UPDATE READ FllECfile-reference) EVENTCevent-reference)
UNBUFFERED INTOCreference); and/or either

KEYCexpression)3 or
KEYTOCreference)

READ FIlECfile-reference);2 EVENTCevent-reference)
and/or
IGNORECexpression)

WRITE FILE(file-reference) EVENTCevent-reference)
FROMC reference) j and/or

KEYTOCreference)

REWRITE FIlE(file-reference) EVENT(event-reference)
FROM(reference); and/or

KEY(expression)3

Figure 96 (Part 2 of 2). Statements and Options Permitted for loading and Accessing
VSAM Entry-sequenced Data Sets

Notes to Figure 96:

The complete file declaration would include the attributes
FILE, RECORD, and ENVIRONMENT; if either of the options KEY
or KEVTO is used, it must also include the attribute KEYED.

2 The statement READ FIlECfile-reference); is equivalent to
the statement READ FIlE(file-reference) IGNORE (1);

.3 The expression used in the KEY option must be a relative
byte address, previously obtained by means of the KEYTO
option.

238 OS Pl/! Optimizing Compiler: Programmer's Guide

KEY-SEQUENCED AND INDEXED ENTRY-SEQUENCED DATA SETS

Loading a KSDS

Sequential Access

Direct Access

The statements and options permitted for indexed VSAM data sets
are shown in Figure 97 on page 240. An indexed data set may be
a KSDS with its prime index, or either a KSDS or an ESDS with an
alternate index. Except where otherwise stated, the following
description applies to all indexed VSAM data sets.

When a KSDS is being loaded, the associated file must be opened
for KEYED SEQUENTIAL OUTPUT. The records must be presented in
ascending key order, and the KEYFROM option must be used. Note
that the prime index must be used for loading the data set; no
VSAM data set can be loaded via an alternate index.

If a KSDS already contains some records, and the associated file
is opened with the SEQUENTIAL and OUTPUT attributes, records may
be added only at the end of the data set. The rules given in
the previous paragraph apply; in particular, the first record
presented must have a key greater than the highest key present
on the data set.

A SEQUENTIAL file that is used to access a KSDS may be opened
with either the INPUT or the UPDATE attribute.

For READ statements without the KEY option, the records are
recovered in ascending key order (or in descending key order if
the BKWD option is used). The key of a record recovered in this
way can be obtained by means of the KEYTO option.

If the KEY option is used, the record recovered by a READ
statement is the one with the specified key. Such a READ
statement positions the data set at the specified record;
subsequent sequential reads will recover the following records
in sequence.

WRITE statements with the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. Insertions can be made anywhere in the
data set, irrespective of the position of any previous access.
If the data set is being accessed via a unique index, the KEY
condition is raised if an attempt is made to insert a record
with the same key as a record that already exists on the data
set. For a nonunique index, subsequent retrieval of records
with the same key is in the order in which they were added to
the data set.

REWRITE statements with or without the KEY option are allowed
for UPDATE files. If the KEY option is used, the record that is
rewritten is the first record with the specified key; otherwise,
it is the record that was accessed by the previous READ
statement. When a record is rewritten using an alternate index,
the prime key of the record must not be changed.

A DIRECT file that is used to access an indexed VSAM data set
may be opened with the INPUT, OUTPUT, or UPDATE attribute. A
DIRECT file must not be used to access the data set via a
nonunique index.

If a DIRECT OUTPUT file is used to add records to the data set,
and if an attempt is made to insert a record with the same key
as a record that already exists, the KEY condition is raised.

If a DIRECT INPUT or DIRECT UPDATE file is used, records may be
read, written, rewritten, or deleted in the same way as for a
KEYED SEQUENTIAL file.

Chapter 7. Using VSAM Data Sets from Pl/I 239

SAMEKEV Built-In Function

File
declaration1

SEQUENTIAL OUTPUT
BUFFERED3

SEQUENTIAL OUTPUT
UNBUFFERED3

SEQUENTIAL INPUT
BUFFERED

SEQUENTIAL INPUT
UNBUFFERED

SEQUENTIAL UPDATE
BUFFERED

If a VSAM data set is being accessed via an alternate index
path, the presence of nonunique keys can be detected by means of
the SAMEKEY built-in function. After each retrieval, SAMEKEY
indicates whether any further records exist with the same
alternate index key as the record just retrieved. Hence it is
possible to stop at the last of a series of records with
nonunique keys without having to read beyond the last record.
SAMEKEY (file-reference) returns 'liB if the input/output
statement has completed successfully and the accessed record is
followed by another with the same key; otherwise, it returns
'0' B.

Valid statements~ with options other options that
that must appear can also be used

WRITE FILECfile-reference)
FROMCreference)
KEYFROMCexpression);

LOCATE based-variable SET(pointer-reference)
FILECfile-reference)
KEYFROMCexpression);

WRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference)
KEYFROMCexpression)j

READ FILECfile-reference) KEYCexpression) or
INTOCreference); KEYTO(reference)

READ FILECfile-reference) KEYCexpression) or
SETCpointer-reference)j KEYTOCreference)

READ FILECfile-reference);2 IGNORE(expression)

READ FILECfile-reference) EVENTCevent-reference)
INTOCreference)j and/or either

KEYCexpression) or
KEYTOCreference)

READ FILECfile-reference);2 EVENT(event-reference)
and/or
IGNORECexpression)

READ FILE(file-reference) KEY(expression) or
INTO(reference); KEYTOCreference)

READ FILECfile-reference) KEYCexpression) or
SET(pointer-reference); KEYTOCreference)

READ FILECfile-reference)j2 IGNORE(expression)

WRITE FILECfile-reference)
FROMCreference)
KEYFROMC expression) j

REWRITE FILECfile-reference)j FRot1(reference)
and/or
KEYCexpression)

DELETE KEYCexpression)
FILECfileCfile-reference)5

Figure 97 CPart 1 of 3). statements and Options Permitted for Loading and Accessing
VSAM Indexed Data sets

240 OS PL/I Optimizing Compiler: Programmer's Guide

File
declaration1

SEQUENTIAL UPDATE
UNBUFFERED

DIRECT~ INPUT
BUFFERED

DIRECT~ INPUT
UNBUFFERED

DIRECT OUTPUT
BUFFERED

DIRECT OUTPUT
UNBUFFERED

DIRECT~ UPDATE
BUFFERED

Valid statements, with options
that must appear

READ FIlE(file-referencel
INTO(reference);

READ FILE(file-reference);Z

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression)j

REWRITE FIlECfile-reference)
FROMCreference)j

DELETE FILECfile-referencel;5

READ FIlECfile-reference)
INTOCreference)
KEY(expression);

READ FIlECfile-reference)
SETCpointer-reference)
KEYCexpression);

READ FILECfile-reference)
INTO(reference)
KEYCexpression);

WRITE FIlE(file-reference)
FROMCreference)
KEYFROM(expression);

WRITE FIlE(file-reference)
FROMCreference)
KEYFROMCexpression);

READ FILECfile-reference)
INTO(reference)
KEYCexpression);

READ FILECfile-reference)
SETCpointer-reference)
KEYCexpression);

REWRITE FIlE(file-reference)
FROM(reference)
KEYCexpression);

DELETE FILECfile-reference)
KEYCexpression);5

WRITE FllECfile-reference)
FROMCreference)
KEYFROM(expression)j

other options that
can also be used

EVENTCevent-reference)
and/or either
KEYCexpression) or
KEYTO(reference)

EVENT(event-reference)
and/or
IGNORECexpression)

EVENT(event reference)

EVENT(event-reference)
and/or
KEY(expression)

KEYCexpression)
and/or
EVENT(event-reference)

EVENTCevent-reference)

EVENTCevent-reference)

Figure 97 (Part 2 of 3). Statements and Options Permitted for loading and Accessing
VSAM Indexed Data sets

Chapter 7. Using VSAM Data Sets from Pl/I 241

File Valid statements, with options Other options that
declaration1 that must appear can also be used

DIRECT4 UPDATE READ FILE(file-reference) EVENT(event-reference)
UNBUFFERED INTOCreference)

KEY(expression);

REWRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference)
KEYCexpression);

DELETE FILECfi1e-reference) EVENTCevent-reference)
KEYCexpression);5

WRITE FIlECfile-reference) EVENTCevent-reference)
FROMCreference)
KEYFROM(expression);

Figure 97 (Part 3 of 3). Statements and Options Permitted for Loading and Accessing
VSAM Indexed Data sets

Notes to Figure 97:

1 The complete file declaration would include the attributes
FILE and RECORD. If any of the options KEY, KEYFROM, or
KEYTO is used, the declaration must also include the
attribute KEYED.

The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files,
the UNLOCK statement for DIRECT UPDATE filesl or the NOLOCK
option of the READ statement for DIRECT INPUT files are
ignored if they are used for files associated with a VSAM
KSDS.

2 The statement READ FILECfile-reference); is equivalent to
the statement READ FILECfile-reference) IGNORE(l);

3 A SEQUENTIAL OUPUT file must not be associated with a data
set accessed via an alternate index.

4 A DIRECT file must not be ~ssociated with a data set
accessed via a nonunique alternate index.

5 DELETE statements are not allowed for a file associated with
an ESDS accessed via an alternate index.

242 OS PL/I Optimizing Compiler: rrogrammer's Guide

RELATIVE RECORD DATA SETS

Loading an RRDS

Sequential Access

The statements and options permitted for VSAM relative record
data sets (RRDS) are shown in Figure 98 on page 244.

When an RRDS is being loaded, the associated file must be opened
for OUTPUT. Either a DIRECT or a SEQUENTIAL file may be used.

For a DIRECT OUTPUT file, each record is placed in the position
specified by the relative record number (or key) in the KEYFROM
option of the WRITE statement (see "Keys for VSAM Data Sets" on
page 224).

For a SEQUENTIAL OUTPUT file l WRITE statements with or without
the KEYFROM option may be used. If the KEYFROM option is
specified, the record is placed in the specified slot; if it is
omitted l the record is placed in the slot following the current
position. There is no requirement for the records to be
presented in ascending relative record number order. If the
KEYFROM option is omitted, the relative record number of the
written record can be obtained by means of the KEYTO option.

If an RRDS is to be loaded sequentially, without use of the
KEYFROM or KEYTO options, the file is not required to have the
KEYED attribute.

It is an error to attempt to load a record into a position that
already contains a record: if the KEYFROM option is used, the
KEY condition is raised; if it is omitted, the ERROR condition
is raised.

A SEQUENTIAL file that is used to access an RRDS may be opened
with either the INPUT or the UPDATE attribute. If any of the
options KEY, KEYTO, or KEYFROM is usedl the file must also have
the KEYED attribute.

For READ statements without the KEY option, the records are
recovered in ascending relative record number order. Any empty
slots in the data set are skipped.

If the KEY option is used, the record recovered by a READ
statement is the one with the specified relative record number.
Such a READ statement positions the data set at the specified
record; subsequent sequential reads will recover the following
records in sequence.

WRITE statements with or without the KEYFROM option are allowed
for KEYED SEQUENTIAL UPDATE files. Insertions can be made
anywhere in the data set, irrespective of the position of any
previous access. For WRITE with the KEYFROM option, the KEY
condition is raised if an attempt is made to insert a record
with the same relative record number as a record that already
exists on the data set. If the KEYFROM option is omitted, an
attempt is made to write the record in the next slot, relative
to the current position. The ERROR condition is raised if this
slot is not empty.

The KEYTO option may be used to recover the key of a record that
is added by means of a WRITE statement without the KEYFROM
option.

REWRITE statements, with or without the KEY option, are allowed
for UPDATE files. If the KEY option is used, the record that is
rewritten is the record with the specified relative record
number; otherwise, it is the record that was accessed by the
previous READ statement.

Chapter 7. Using VSAM Data Sets from PL/I 243

Direct Access

File
declaration1

SEQUENTIAL OUTPUT
BUFFERED

SEQUENTIAL OUTPUT
UNBUFFERED

SEQUENTIAL INPUT
BUFFERED

SEQUENTIAL INPUT
UNBUFFERED

SEQUENTIAL UPDATE
BUFFERED

DELETE statements, with or without the KEY option, may be used
to delete records from the data set.

A DIRECT file used to access an RRDS may have the OUTPUT, INPUT~
or UPDATE attribute. Records may be read, written, rewritten,
or deleted exactly as though a KEYED SEQUENTIAL file were used.

Valid statements. with options other options that
that must appear can also be used

WRITE FILECfile-reference) KEYFROMCexpression) or
FROMCreference); KEYTOCreference)

LOCATE based-variable SETCpointer-reference)
FILE(file-reference);

WRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference); and/or either

KEYFROMCexpression) or
KEYTOCreference)

READ FILECfile-reference) KEY(expression) or
INTOCreference)j KEYTO(reference)

READ FILE(file-reference) KEYCexpression) or
SET(pointer-reference)j KEYTOCreference)

READ FILE(file-reference)jZ IGNORECexpression)

READ FILECfile-reference) EVENTCevent-reference)
INTO(reference); and/or either

KEY(expression) or
KEYTO(reference)

READ FILECfile-reference);2 EVENTCevent-reference)
and/or
IGNORE(expression)

READ FILECfile-reference) KEY(expression) or
INTOCreference); KEYTO(reference)

READ FILECfile-reference) KEY(expression) or
SET(pointer-reference); KEYTO(reference)

READ FILE(file-reference);2 IGNORECexpression)

WRITE FILE(file-reference) KEYFROM(expression) or
FROMCreference); KEYTOCreference)

REWRITE FILE(file-reference)j FROM(reference)
and/or
KEY(expression)

DELETE FILE(file-reference); KEY(expression)

Figure 98 CPart 1 of 3). Statements and Options Permitted for Loading and Accessing
VSAM Relative-Record Data Sets

244 OS PL/I Optimizing Compiler: Programmer's Guide

File Valid statements, with options other options that
declaration1 that must appear can also be used

SEQUENTIAL UPDATE READ FILECfile-reference) EVENTCevent-reference)
UNBUFFERED INTO(reference); and/or either

KEYCexpression) or
KEYTOCreference)

READ FILECfile-expression);2 EVENTCevent-reference)
and/or
IGNORECexpression)

EVENTCevent-reference)
WRITE FILECfile-reference) and/or either
FROMCreference)j KEYFROMCexpression) or

KEYTOCreference)

EVENTCevent-reference)
REWRITE FILECfile-reference) and/or
FROMCreference)j KEYCexpression)

EVENTCevent-reference)
DELETE FILE(file-reference); and/or

KEYCexpression)

DIRECT OUTPUT WRITE FILECfile-reference)
BUFFERED FROMCreference)

KEYFROMCexpression);

DIRECT OUTPUT WRITE FILECfile-reference) EVENTCevent-reference)
UNBUFFERED FROt-1C reference)

KEYFROMCexpression);

DIRECT INPUT READ FILE(file-reference)
BUFFERED INTO(reference)

KEYCexpression);

READ FILECfile-reference)
SETCpointer-reference)
KEYCexpression);

DIRECT INPUT READ FILECfile-reference) EVENTCevent-reference)
UNBUFFERED KEYCexpression);

DIRECT UPDATE READ FILECfile-reference)
BUFFERED INTOCreference)

KEY(expression);

READ FILE(file-reference)
SET(pointer-reference)
KEYCexpression);

REWRITE FILECfile-reference)
FROMCreference)
KEY(expression);

DELETE FILECfile-reference)
KEY(expression);

WRITE FIlE(file-reference)
FROMCreference)
KEYFROMCexpression);

Figure 98 (Part 2 of 3). Statements and Options Permitted for Loading and Accessing
VSAM Relative-Record Data Sets

Chapter 7. Using VSAM Data Sets from PL/I 245

File Valid statements, with options other options that
declaration1 that must appear can also be used

DIRECT UPDATE READ FILECfile-reference) EVENTCevent-reference)
UNBUFFERED INTOCreference)

KEYCexpression);

REWRITE FILECfile-reference) EVENTCevent-reference)
FROMCreference)
KEYCexpression);

DELETE FILE(file-reference) EVENTCevent-reference)
KEYCexpression);

WRITE FIlECfile-reference) EVENT(event-reference)
FROM(reference)
KEYFROM(expression);

Figure 98 CPart 3 of 3). Statements and Options Permitted for loading and Accessing
VSAM Relative-Record Data Sets

EXAMPLES

Nates to Figure 98:

The complete file declaration would include the attributes
FILE and RECORD. If any of the options KEY, KEYFROM, or
KEYTO is used, the declaration must also include the
attribute KEYED.

The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files,
the UNLOCK statement for DIRECT UPDATE files, or the NOlOCK
option of the READ statement for DIRECT INPUT files are
ignored if they are used for files associated with a VSAM
KSDS.

2 The statement READ FILECfile-reference)j is equivalent to
the statement READ FILECfile-reference) IGNORECl)j

EXAM~LES WITH ENTRY-SEQUENCED DATA SETS

The examples in Figure 99 on page 247 through Figure 103 on
page 251 for ESDS are based on the family tree shown in
Figure 93 on page 225.

Defining and Loading an Entry-Sequenced Data Set

In Figure 99 on page 247, the data set is defined with the
DEFINE CLUSTER command and given the name PlIVSAM.AJCl. The
NONINDEXED keyword causes an ESDS to be defined.

246 OS PL/I Optimizing Compiler: Programmer's Guide

//OPT917 JOB
//STEPI EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/*

DEFINE CLUSTER -
(NAMECPlIVSAM.AJCl.BASE) -
VOLUMESCnnnnnn) -
NONINDEXED -
RECORDSIZE(80 80) -
TRACKS(2 2» -
CATALOGCcatalog.name)

//STEP2 EXEC PLIXClG
//PLI.SYSIN DD *

CREATE: PROC OPTIONS (MAIN);

DCL
FAMFILE FILE SEQUENTIAL OUTPUT ENV(VSAM),
IN FILE RECORD INPUT,
STRING CHAR(80);

ON ENDFIlE(IN) GOTO FINITO;

DO 1=1 BY 1;
READ FILE(IN) INTO (STRING);
PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
WRITE FIlECFAMFILE) FROM (STRING);

END;

FINITO:
PUT SKIP EDIT{I-l,' RECORDS PROCESSED'){A);

END CREATE;
//LKED.SYSLMOD DD DSN=HPU8.MYDS(PGMA),DISP={NEH,CATlG),
// UNIT=SYSDA,SPACE=(CYl,(l,l,l»
//GO.SYSLMOD DD DUMMY
//GO.FAMFILE DD DSNAME=PLlVSAM.AJCl.BASE,DISP=OlD
//GO.IN DD *
FRED 69 M
ANDY 70 M
SUZAN 72 F
//

Figure 99. Defining and Loading an Entry-Sequenced Data Set
(ESDS)

The PL/I program writes the data set using a SEQUENTIAL OUTPUT
file and a WRITE FROM statement. The DD statement for the file
contains the DSNAME of the data set given in the NAME parameter
of the DEFINE CLUSTER command.

The RBA of the records could have been obtained during the
writing for subsequent use as keys in a KEYED file. To do this,
a suitable variable would have to be declared to hold the key
and the WRITE ... KEYTO statement used. For example&

DCl CHARS CHAR(4);
WRITE FILE(FAMFIlE) FROM (STRING)

KEYTO(CHARS);

Note that the keys would not normally be printable, but could be
retained for subsequent use.

The cataloged procedure PlIXClG is used. Because the same
program can be used for adding records to the data set, it is
retained in a library. Its use is shown in the next example.

Chapter 7. Using VSAM Data Sets from Pl/I 247

Updating an Entry-Sequenced Data set

Figure 100 shows the addition of a new record on the end of an
ESDS. This is done by reexecuting the program shown in
Figure 99 on page 247. A SEQUENTIAL OUTPUT file is used and the
data set associated with it by use of the DSNAME parameter
specifying the name PllVSAM.AJCl.BASE specified in the DEFINE
command shown in Figure 99 on page 247.

//OPT918 JOB
//STEPI EXEC PGM=PGMA
//STEPlIB DD DSN=HPU8.MYDS(PGMA),DISP=(OlD,KEEP),UNIT=SYSDA,
// VOl=SER=nnnnnn
//SYSPRlNT DD SYSQUT=A
//FAMFIlE DD DSN=PLIVSAM.AJCl.BASE,DISP=SHR
//IN DD *
JANE 75 F
//

Figure 100. Updating an ESDS

Existing records can be rewritten in an ESDS, provided that the
length of the record is not changed. A SEQUENTIAL or a KEYED
SEQUENTIAL update file can be used to do this. If keys are
used, they can be the RBAs or keys of an alternate index path.

Delete is not allowed for ESDS.

248 OS Pl/I Optimizing Compilert Programmer's Guide

Creating a Unique Alternate Index Path for an ESDS

//OPT9#9 JOB
//STEPI EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/*

DEFINE ALTERNATEINDEX -
(NAMECPLIVSAM.AJCl.ALPHIND) -
VOLUMES(nnnnnn) -
TRACKS(4 1) -
KEYSC15 0) -
RECORDSIZEC20 40) -
UNIQUEKEY -

RElATECPlIVSAM.AJCl.BASE» -
CATAlOGCcatalog.name)

//STEP2 EXEC PGM=IDCAMS,REGION=512K
DSNAME=PLlVSAM.AJCl.BASE,DISP=SHR
DSNAME=PLIVSAM.AJCl.ALPHIND,DISP=SHR
AMP='AMORG',DISP=SHR,VOL=SER=nnnnnn,UNIT=SYSDA
AMP='AMORG',DISP=SHR,VOL=SER=nnnnnn,UNIT=SYSDA

//DDI DD
//DD2 DD
//IDCUTI DD
//IDCUT2 DD
//SYSPRINT DD
//SYSIN DD * SYSQUT=A

//

BLDINDEX INFIlECDDl) OUTFILE(DD2)­
CATALOG(catalog.name)

DEFINE PATH -
(NAMECPLIVSAM.AJCl.AlPHPATH) -
PATHENTRY(Pl1VSAM.AJC1.AlPHIND)­

CATALOG(catalog.name)

Figure 101. Creating a Unique Key Alternate Index Path for an
ESDS

Figure 101 shows the creation of a unique key alternate index
path for the ESDS defined and loaded in Figure 99 on page 247.
Using this path, the data set is indexed by the name of the
child in the first 15 bytes of the record. Three Access Method
Services commands are used. These are:

DEFINE ALTERNATEINDEX
defines the alternate index as a data set to VSAM.

BLDINDEX
places the pointers to the relevant records in the
alternate index.

DEFINE PATH
defines an entity that can be associated with a PL/I file
in a DD statement.

DD statements are required for the INFILE and OUTFILE operands
of BLDINDEX and for the sort files. Care should be taken that
the correct names are specified a"t the various points. A fuller
description of defining an alternate index is given in
"Alternate Index Paths" on page 391.

Creating a Nonunique Key Alternate Index Path for an ESDS

Figure 102 on page 250 shows thp. creation of a nonunique key
alternate index path for an ESDS. The alternate index enables
the data to be selected by the sex of the children. This
enables the girls or the boys to be accessed separately and
every member of each group to be accessed by use of the key.

Chapter 7. Using VSAM Data Sets from PL/! 249

//OPT9#10 JOB
//STEPI EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/*

/*care must be taken with record size */
DEFINE AlTERNATEINDEX -

(NAME(PlIVSAM.AJCl.SEXIND) -
VOLUMES(nnnnnn) -
TRACKS(4 1) -
KEYS(l 37) -
NONUNIQUEKEY -
RElATECPllVSAM.AJCl.BASE» -
RECORDSIZE(20 400» -

CATAlOG(HB0009.VSAMCAT)

//STEP2 EXEC PGM=IDCAMS,REGION=5l2K
//DDI DD DSNAME=PLIVSAM.AJC1.BASE,DISP=OLD
//DD2 DD DSNAME=PlIVSAM.AJC1.SEXIND,DISP=OLD
//IDCUTl DD AMP='AMORGw,DISP=SHR,VOL=SER=nnnnnn,UNIT=SYSDA
//IDCUT2 DD AMP='AMORG',DISP=SHR,VOl=SER=nnnnnn,UNIT=SYSDA
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

//

BLDINDEX INFILE(DDl) OUTFILE(DD2)­
CATAlOGCcatalog.narne)

DEFINE PATH -
(NAME(PLlVSAM.AJCl.SEXPATH) -

PATHENTRYCPLIVSAM.AJCl.SEXIND»­
CATALOG(catalog.name)

Figure 102. Creating a Nonunique Key Alternate Index Path for an ESDS

The three commands and the DD statement are as described in
Figure 101 on page 249. The fact that the index has nonunique
keys is specified by the use of the NONUNIQUEKEY operand. When
creating an index with nonunique keys, care should be taken to
ensure that the RECORDSIZE specified will be large enough. In a
nonunique alternate index, each alternate index record contains
pointers to all the records that have the associated alternate
index key. The pointer takes the form of an RBA for an ESDS and
the prime key for a KSDS. When a large number of records may
have the same key, a large record will be required.

Using Alternate Indexes and Backward Reading on an ESDS

Figure 103 on page 251 shO\AlS the use of alternate indexes and
backward reading on an ESDS. The program has four files:

BASEFlE reads the base data set forward.

BACKFlE reads the base data set backward.

ALPHFLE is the alphabetic alternate index path indexing the
children by name.

SEXFLE is the alternate index path that corresponds to the sex
of the children.

250 OS PL/I Optimizing Compiler: Programmer's Guide

//PLI.SYSIN DD *
READIT: PROC OPTIONSeMAIN);

DCL BASEFLE FILE SEQUENTIAL INPUT ENV(VSAM),
/*file to read base data set forward */

BACKFLE FILE SEQUENTIAL INPUT ENVeVSAM BKWD),
/*file to read base data set backward */

ALPHFLE FILE DIRECT INPUT ENVeVSAM),
/*file to access via unique alternate index path */

SEXFILE FILE KEYED SEQUENTIAL INPUT ENV(VSAM),
/*file to access via nonunique alternate index path */

STRING CHAR(80), /*string to be read into */
1 STRUC DEF (STRING),

2 NAME CHARC2S),
2 DATE_OF_BIRTH CHAR(2),
2 FILL CHARCIO),
2 SEX CHAR(l);
DCL NAMEHOLD CHARC2S),SAMEKEY BUILTIN;

/*print out the family eldest first*/
ON ENDFILECBASEFLE) GOTO YPRINT;
PUT EDITC'FAMILY ELDEST FIRST')CA);

DO WHILEC'l'B);
READ FILEeBASEFLE) INTO CSTRING);
PUT SKIP EDIT(STRING)eA)j

END;
YPRINT:

CLOSE FILECBASEFlE)j
PUT SKIP(2);

/*close before using data set from other file not
necessary but good practice to prevent potential
problems*/

ON ENDFIlE(BACKFlE) GOTO AGEQUERYj
PUT SKIP(3) EDIT('FAMILY YOUNGEST FIRST')(A);

DO WHIlE('l'B);
READ FILECBACKFlE) INTO CSTRING);
PUT SKIP EDIT(STRING)(A);

END;
AGEQUERY: CLOSE FILECBACKFLE);

PUT SKIP(2);

/*print date of birth of child specified in the file sysin*/
ON KEYCALPHFLE) BEGIN;

PUT SKIP EDIT
(NAMEHOLD,' NOT A MEMBER OF THE SMITH FAMILY') (A);

GOTO SPRINT;
END;

ON ENDFILECSYSIN) GOTO SPRINT;

DO WHILEC'l'B);
GET SKIP EDITCNAMEHOLD)(A(2S»;

END;

SPRINT:

READ FILE(ALPHFlE) INTO (STRING) KEYCNAMEHOLD);
PUT SKIP (2) EDITCNAMEHOLD,' WAS BORN IN '

DATE_OF_BIRTH)CA,XCl),A,XCl),A);

CLOSE FILECALPHFlE);
PUT SKIP(I);

Figure 103 (Part 1 of 2). Alternate Index Paths and Backward Reading with an ESDS

Chapter 7. Using VSAM Data Sets from PL/I 251

/*use the alternate index to print out all the females in the
family*/

ON ENDFILECSEXFILE) GOTO FINITOj
PUT SKIP(2) EDITC'ALL THE FEMALES')CA);

READ FILE(SEXFILE) INTO (STRING) KEYC'F')j
PUT SKIP EDIT(STRING)CA);
DO WHILECSAMEKEYCSEXFILE»i

READ FILECSEXFILE) INTO (STRING);
PUT SKIP EDITCSTRING)CA)j

END;
FINITO:

CLOSE FILECSEXFILE);
END READIT;

GO.BASEFLE
GO.BACICFLE
GO.AlPHFLE
GO.SEXFILE
GO.SYSIN
ANDY
/*

DD
DD
DD
DD
DD

DSN=PlIVSAM.AJCl.BASE,DISP=SHR
DSN=PLIVSAM.AJCl.BASE,DISP=SHR
DSN=PLIVSAM.AJCl.ALPHPATH,DISP=SHR
DSN=PLlVSAM.AJCl.SEXPATH,DISP=SHR

*
//STEP2
//SYSPRINT
//SYSIN

EXEC PGM=IDCAMS,REGION=5l2K
DD SYSQUT=A
DD *

DELETE -
PLIVSAM.AJCl.BASE -
CATALOGCcatalog.name)

//

Figure 103 (Part 2 of 2). Alternate Index Paths and Backward Reading with an ESDS

There are DD statements for all the files. They connect BASEFLE
and BACKFLE to the base data set by specifying the name of the
base data set in the DSNAME parameter, and connect ALPHFLE and
SEXFLE by specifying the names of the paths given in Figure 101
on page 249 and Figure 102 on page 250.

The program uses SEQUENTIAL files to access the data and print
it first in the normal orderl then in the reverse order. At the
label AGEQUERY, a DIRECT file is used to read the data
associated with an alternate index key in the unique alternate
index.

Finally, at the label SPRINT, a KEYED SEQUENTIAL file is used to
print a list of the girls in the family, using the nonunique key
alternate index path. The SAMEKEY built-in function is used to
read all the records with the same key, The girls will be
accessed in the order in which they were originally enterede
This will happen whether the file is read forward or backward.
For a nonunique key path, the BKWD option only affects the order
in which the keys are read; the order o'f i tents wi th the same key
remains the same as it is when the file is read forward.

DELETION: At the end of the example, the Access Method Services
DELETE command is used to delete the base data set. When this
is done, the associated alternate indexes and paths will also be
deleted. They can also be deleted separately, as described in
"Using the Access Method Services Program" on page 389.

252 OS PL/I Optimizing Compiler: Programmer's Guide

EXAMPLES WITH KEY-SEQUENCED DATA SETS

The examples in Figure 104 on page 254 through Figure 107 on
page 258 show the use of a key-sequenced data set to hold a
telephone directory. The prime index is by the name of the
subscriber. In Figure 104 on page 254, the data set is defined
and loaded. In Figure 105 on page 255, it is altered by means
of a prime index. In Figure 107 on page 258, a unique key
alternate index path is created using the numbers as the
alternate key. In Figure 108 on page 259, use of the alternate
index path is shown to update the base data set using the number
as a key and to print out the data in order of the numbers.
These examples can be compared with the "Examples of Indexed
Data Sets" on page 186.

Chapter 7. Using VSAM Data Sets from Pl/l 253

//OPT9112 JOB
// EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/*

DEFINE CLUSTER -
(NAME(PLIVSAM.AJC2.BASE) -
VOLUMESCnnnnnn) -
INDEXED -
TRACKS(3 1) -
KEYS(20 0) -
RECORDSIZE(23 80» -
CATALOG(catalog name)

// EXEC PlIXClG
//PlI.SYSIN DD *

TELNOS: PROC OPTIONSeMAIN);

DCl DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENVeVSAM),
CARD CHAR(80),
NAME CHAR(20) DEF CARD POSel),
NUMBER CHAReS) DEF CARD POS(21),
OUTREC CHAR(23) DEF CARD POS(I);

ON ENDFILECSYSIN) GOTO FINISH;

OPEN FILEeDIREC) OUTPUT;

NEXTIN: GET FIlECSYSIN) EDITCCARD)(AC80»;
WRITE FILECDIRECT) FROMCOUTREC) KEYFROMCNAME);
GOTO NEXTIN;

FINISH: CLOSE FILECDIREC);

END TEL NOS;
//GO.DIREC DD DSNAME=PlIVSAM.AJC2.BASE,DISP=OLD
//GO.SYSIN DO *
ACTION,G. 162
BAKER,R. 152
BRAMLEY,O.H. 248
CHEESEMAN,D. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEY,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
LANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE,E.M. 307
//

Figure 104. Defining and Loading a Key-Sequenced Data Set (KSDS)

254 OS PL/I Optimizing Compiler: Programmer's Guide

//OPT9'13 JOB
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

DIRUPDT: PROC OPTIONSCMAIN);

DCL DIREC FILE RECORD KEYED ENVeVSAM),
ONCODE BUILTIN,
OUTREC CHAR(23),
NUMBER CHAR(3) DEF OUTREC POS(21),
NAME CHAR(20) DEF OUTREC,
CODE CHAR(2);

ON ENDFILECSYSIN) GO TO PRINT;
ON KEYCDIREC) BEGIN;

IF ONCODE=Sl THEN PUT FILECSYSPRINT) SKIP EDIT
('NOT FOUND: ',NAME)(ACIS),A);

IF ONCODE=S2 THEN PUT FILECSYSPRINT) SKIP EDIT
C'DUPLICATE: ',NAME)CAClS),A);

END;

OPEN FILECDIREC) DIRECT UPDATE;

NEXT: GET FI1E(SYSIN) EDIT (NAME,NUMBER,CODE)
CCOLUMN(1),A(20),AC3),A(1»;

PUT FILE(SYSPRINT) SKIP EDIT C' ',NAME,"',NUMBER,' ',CODE)
(ACl),A(20),A(1),AC3),A(1),ACl»;

IF CODE='A' THEN
WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);

ELSE IF CODE~'C' THEN
REWRITE FILE(DIREC) FROMCOUTREC) KEYCNAME);

ELSE IF CODE='D' THEN
DELETE FILECDIREC) KEY(NAME);

ELSE
PUT FILE(SYSPRINT) SKIP EDIT

('INVALID CODE: ',NAME) CA(15),A);
GO TO NEXT;

PRINT: CLOSE FILE(DIREC);
PUT FILECSYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;
ON ENDFILE(DIREC) GO TO FINISH;

NEXTIN: READ FILECDIREC) INTOCOUTREC);
PUT FILE(SYSPRINT) SKIP EDITCOUTREC)(A)j
GO TO NEXTIN;

FINISH: CLOSE FILECDIREC);
END DIRUPDT;

/*
//GO.DIREC DD DSNAME~PLIVSAM.AJC2.BASE,DISP=OLD
//GO.SYSIN DD *
NEWMAN,M.W.
GOODFELLOW,D.T.
MILES,R.
HARVEy,C.D.W.
BARTLETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEY,O.H.
//

S16C
889A

D
209A
l83A

D
OOIA

D
29lC

D
439C

Figure lOS. Updating a KSDS

Chapter 7. Using VSAM Data Sets from PL/I 25S

Defining and Loading a Key-Sequenced Data Set

Figure 104 on page 254 shows the DEFINE command used to define a
KSDS. The data set is given the name PL1VSAM.AJC2.BASE and
defined as a KSDS because of the use of the INDEXED operand.
The position of the keys within the record is defined in the
KEYS operand.

Within the PL/I program, a KEYED SEQUENTIAL OUTPUT file is used
with a WRITE ... FROM ... KEYFROM statement. The data is presented
in ascending key order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DD statement which
uses the name given in the DEFINE command as the DSNAME
parameter.

Updating a Key-Sequenced Data Set

Figure 105 on page 255 shows one method by which a KSDS can be
updated using the prime index.

A DIRECT update file is used and the data is altered according
to a code that is passed in the records in the file SYSIN.

A Add a new record
C Change the number of an existing

name
D Delete a record

At the label NEXT, the name, number, and code are read in and
action taken according to the value of the code. A KEY on-unit
is used to handle any incorrect keys. When the updating is
finished (at the label PRINT), the file DIREC is closed and
reopened with the attributes SEQUENTIAL INPUT. The file is then
read sequentially and printed.

The file is associated with the data set by a DD statement that
uses the DSNAME PLIVSAM.AJC2.BASE defined in the Access Method
Services DEFINE CLUSTER command in Figure 104 on page 254.

METHODS OF UPDATING A KSDS: There are a number of methods of
updating a KSDS. The method shown using a DIRECT file is
suitable for the data as it is shown in the example. If the
data had been presented in ascending key order (or even
something approaching it), performance may have been improved by
use of the SKIP ENVIRONMENT option. For mass sequential
insertion, a KEYED SEQUENTIAL UPDATE file should be used. This
gives faster performance because the data is written onto the
data set only when strictly necessary and not after every write
statement, and because the balance of free space within the data
set is retained.

Statements to achieve effective mass sequential insertion would
be:

DCl DIREC KEYED SEQUENTIAL UPDATE
ENVeVSAM)j

WRITE FIlEeDIREC) FROMCOUTREC)
KEYFROMCNAME);

The PL/I input/output routines would detect that the keys were
in sequence and make the correct requests to VSAM. If the keys
were not in sequence, this too would be detected and no error
would occur, although the performance advantage would be lost.
VSAM in fact provides three methods of insertion as shown in
Figure 106 on page 257.

256 OS PL/! Optimizing Compiler: Programmer's Guide

Method

SEQ

SKP

DIR

DIReMACRF
=SIS)

Figure 106.

Requirements Freespace When Written PL/I Attl'ibutes
onto Data set Required

Keys in sequence Kept Only when KEYED SEQUENTIAL UPDATE
necessary

Keys in sequence Used Only when KEYED SEQUENTIAL UPDATE
necessary ENVeVSAM SKIP)

Keys in any Used After every DIRECT
order statement

Keys in any Kept After every DIRECT ENV(VSAM SIS)
order statement

VSAM Methods of Insertion into a KSDS

SKIP means that the sequence must be followed but that records
may be omitted. Absolute sequence or order need not be
maintained if SEQ or SKIP is used because the PL/I routines
determine which type of request to make to VSAM for each
statement, first checking on the keys to see which would be
appropriate. The retention of free space ensures that the
structure of the data set at the point of mass sequential
insertion is not destroyed, enabling further normal alterations
to be made in that area without loss of performance. To
preserve free space balance when immediate writing of the data
set is required during mass sequential insertion, as it may be
on interactive systems, the SIS ENVIRONMENT option should be
used with DIRECT files.

Creating a Unique Alternate Index Path for a KSDS

Figure 107 on page 258 shows the creation of a uniqu~ key
alternate index path for a KSDS. The data set is indexed by the
telephone number, enabling the number to be used as a key to
discover the name of person on that extension. The fact that
keys are to be unique is specified by UNIQUEKEY. Also, the data
set will be able to be listed in numerical order to show which
numbers are not used. Three Access Method Services commands are
used:

DEFINE ALTERNATEINDEX
defines the data set that will hold the alternate index
data.

BlDINDEX
places the pointers to the relevant records in the
alternate index.

DEFINE PATH
defines the entity that can be associated with a PL/! file
in a DO statement.

DD statements are required for the INFILE and OUTFIlE of
BLDINDEX and for the sort files. Care should be taken not to
confuse the names involved. See the discussion in "BLDINDEX
Command" on page 396.

When creating an alternate index with a unique key, you should
ensure that no further records could be included with the same
alternate key. In practice, a unique key alternate index would
not be entirely satisfactory for a telephone directory as it
would not allow two people to have the same number. Similarly,
the prime key would prevent one person having two numbers. A
solution would be to have an ESDS with two nonunique key
alternate indexes, or to restructure the data format to allow
more than one number per person and to have a nonunique key

Chapter 7. Using VSAM Data Sets from PL/I 257

alte~nate index fo~ the numbe~s. 3ee Figure 101 on page 249 for
an example of creation of an alternate index with nonunique
keys.

//OPT9#14 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=S12K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

/*

DEFINE ALTERNATEINDEX -
CNAME(PLIVSAM.AJC2.NUMIND) -
VOLUMESCnnnnnn) -
TRACKS(4 4) -
KEYSC3 20) -
RElATE(PlIVSAM.AJC2.BASE) ~
UNIQUEKEY -
RECORDSIZEC24 48» -

CATALOGCcatalog.name)

//STEP2 EXEC PGM=IDCAMS , REGION=S12K
//SYSPRINT DD SYSOUT=A
//DDI DD DSN=PLIVSAM.AJC2.BASE,DISP=OLD
//DD2 DD DSN=PLIVSAM.AJC2.NUMIND , DISP=OlD
//IDCUTI DD AMP='AMORG',DISP=OlD,UNIT=SYSDA,VOL=SER=nnnnnn
//IDCUT2 DD AMP='AMORG',DISP=OLD,UNIT=SYSDA,VOl=SER=nnnnnn
//SYSIN DD *

//

BlDINDEX INFIlECDDl) OUTFIlECDD2)­
CATAlOGCcatalog.name)

DEFINE PATH -
CNAMECPLIVSAM.AJC2.NUMPATH) -
PATHENTRY(PLIVSAM.AJC2.NUMIND»­

CATALOGCcatalog.name)

Figure 107. Creating an Alternate Index Path for a KSDS

Using a Unique Alternate Index Path with a KSDS

Figure 108 on page 259 shows the use of a path with a unique
alternate index key to update a KSDS and then to access and
print it in the order of the alternate index.

258 OS PL/I Optimizing Compiler: Programmer's Guide

//OPT9116 JOB
//STEPI EXEC PLIXCLG,REGION.GO=256K
//PLI.SYSIN DD *

ALTER: PROC OPTIONSCMAIN);
DCL NUMFLEI FILE RECORD DIRECT OUTPUT ENV(VSAM),

NUMFLE2 FILE RECORD SEQUENTIAL INPUT ENVeVSAM),
IN FILE RECORD,
STRING CHAR(80),
NAME CHAR(20) DEF STRING,
NUMBER CHARCS) DEF STRING POS(2l),
DATA CHAR(23) DEF STRING;

ON KEY (NUMFLEl) BEGIN;
PUT SKIP EDITC'DUPLICATE NUMBER')CA);

END;
ON ENDFILECIN) GOTO PRINTIT;

DO WHILEC'l'B)j
READ FILECIN) INTO (STRING);
PUT FILECSYSPRINT) SKIP EDIT CSTRING) (A);
WRITE FILE(NUMFLEl) FROM (STRING) KEYFROMCNUMBER)j

END;

PRINTIT:
CLOSE FILECNUMFLEl)j
ON ENDFILECNUMFLE2) GOTO FINALEj

DO WHILE('l'B);
READ FILE(NUMFLE2) INTO (STRING);
PUT SKIP EDIT(DATA)CA);

END;

FINALE:
PUT SKIP(S) EDITC'****SO ENDS THE PHONE DIRECTORY****')(A);

END ALTER;
/*
//GO.IN DD
RIERA L l2S
/*

DD DSN=PL1VSAM.AJC2.NUMPATH,DISP=OLD
DD DSN=PllVSAM.AJC2.NUMPATH,DISP=OLD

EXEC PGM=IDCAMS,COND=EVEN

//NUMFLEI
//NUMFLE2
//STEP2
//SYSPRINT
//SYSIN DD

DD SYSOUT=A
* DELETE -

PLlVSAM.AJC2.BASE -
CATALOGCcatalog.name)

//

Figure 108. Using a Unique Alternate Index Path to Access a KSDS

The alternate index path is associated with the PL/I file by a
DD statement that specifies the name of the path
CPL1VSAM.AJC2.NUMPATH, given in the DEFINE PATH command in
Figure 107 on page 258) as the DSNAME.

In the first section of the program, a DIRECT OUTPUT file is
used to insert a new record using the alternate index key. Note
that any alteration made with an alternate index must not alter
the prime key or the alternate index key of access of an
existing record or add a duplicate key in the prime index or any
unique key alternate index.

In the second section of the program (at the label PRINTIT), the
data set is read in the order of the alternate index keys using
a SEQUENTIAL INPUT file. It is then printed onto SYSPRINT.

Chapter 7. Using VSAM Data Sets from Pl/I 259

EXAMPLES WITH RELATIVE RECORD DATA SETS

These examples show the defining and loading of an RRDS and its
subsequent updating. The examples correspond with the
REGIONAL(l) examples in "REGIONAL(l) Data Sets" on page 204.
They use the same telephone directory data, but use the number
as the key to the record. The record contains only the name.

Defining and Loading a Relative Record Data Set

In Figure 109 on page 261, the data set is defined with a DEFINE
CLUSTER command and given the name PlIVSAM.AJC3.BASE. The fact
that it is an RRDS is determined by the NUMBERED keyword. In
the PL/I program, it is loaded with a DIRECT OUTPUT file and a
WRITE ... FROM ... KEYFROM statement is used.

If the data had been in order and the keys in sequence, it would
have been possible to use a SEQUENTIAL file and write into the
data set from the start. The records would then have been
placed in the next available slot and given the appropriate
number. The number of the key for each record could have been
returned using the KEYTO option.

The Pl/I file is associated with the data set by the DD
statement, which uses as the DSNAME the name given in the DEFINE
CLUSTER command.

260 OS PL/I Optimizing Compiler: Programmer's Guide

//OPT9117 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

DEFINE CLUSTER -
(NAMECPLIVSAM.AJC3.BASE) -
VOLUMESCnnnnnn) -

/*

NUMBERED -
TRACKS(2 2) -
RECORDSIZE(20 20» -

CATAlOG(catalog.name)

//STEP2 EXEC PLIXCLG
//PLI.SYSIN DD *

CRRl: PROC OPTIONS(MAIN);
DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENVeVSAM),

CARD CHAR(80),
NAME CHAR(20) DEF CARD,
NUMBER CHAR(2) DEF CARD POS(21),
IOFIELD CHAR(20);

ON ENDFILE (SYSIN) GO TO FINISH;
OPEN FILE(NOS);

NEXT: GET FILE(SYSIN) EDITCCARD)(AC80»;
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
IOFIELD=NAME;
WRITE FILECNOS) FROMCIOFIELD) KEYFROMeNUMBER)i
GO TO NEXT;

FINISH: CLOSE FILECNOS);
END CRR1;

/*
/IGO.NOS DD DSN=PL1VSAM.AJC3.BASE,DISP=OLD
/IGO.SYSIN DD *
ACTION,G. 12
BAKER,R. 13
BRAMLEY,O.H. 28
CHEESNAME,l. 11
CORY,G. 36
ELlIOTT,D. 85
FIGGIN~,E.S. 43
HARVEY,~.D.H. 25
HASTINGS,G.M. 31
KENDAll,J.G. 24
lANCASTER,W.R. 64
MllES,R. 23
NEWMAN,M.W. 40
PITT,H.H. 55
ROlF,D.E. 14
SHEERS,C.D. 21
SURCLIFFE,M. 42
TAYLOR,G.C. 47
WILTON,L.W. 44
WINSTONE,E.M. 37
II

Figure 109. Defining and Loading a Relative Record Data Set CRRDS)

Chapter 7. Using VSAM Data Sets from PL/I 261

Updating a Relative Record Data set

Figure 110 on page 263 shows an RRDS being updated. A DIRECT
UPDATE file is used and new records are written by key. There
is no need to check for the records being empty, because the
empty records are not available under VSAM.

In the second half of the program, starting at the label PRINT,
the updated file is printed out. Again there is no need to
check for the empty records as there is in REGIONAL(I).

The PL/I file is associated with the data sets by a DD statement
that specifies the DSNAME PllVSAM.AJC3.BASE, the name given in
the DEFINE CLUSTER command in Figure 109 on page 261.

At the end of the example, the DELETE command is used to delets
the data set.

262 OS Pl/I Optimizing Compiler: Programmer's Guide

//OPT9#18 JOB
//STEPI EXEC PlIXClG
//PLI.SYSIN DD *

ACRl: PROC OPTIONS(MAIN);
DCl NOS FILE RECORD KEYED ENV(VSAM),NAME CHAR(20),

(NEWNO,OlDNO) CHAR(2),CODE CHAR(l),IOFIElD CHAR(20),
BYTE CHAR(l) DEF IOFIElD;

ON ENDFIlE(SYSIN) GO TO PRINT;
OPEN FILECNOS) DIRECT UPDATE;
ON KEY(NOS) BEGIN;

IF ONCODE=5l THEN PUT FILECSYSPRINT) SKIP EDIT
('NOT FOUND:',NAME)(AC15),A);

IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
(IDUPLICATE:',NAME)(A(15),A)i

END;

NEXT: GET FILECSYSIN) EDIT(NAME,NEWNO,OLDNO,CODE)
CCOLUMN(1),A(20),A(2),A(2),A(1»;

PUT FILECSYSPRINT) SKIP EDIT (I ',NAME,II',NEWNO,OLDNO,' ',CODE)
(A(1),A(20),A(1),2(A(2»,X(S),2(ACl»)j

IF CODE='A' THEN
WRITE FILECNOS) KEYFROM(NEWNO) FROM(NAME)j

ELSE IF CODE='C' THEN
DO;

DELETE FILE(NOS) KEY(OlDNO);
REWRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);

END;
ELSE IF CODE='D' THEN

DELETE FILE(NOS) KEY(OLDNO)j
ELSE PUT FILECSYSPRINT) SKIP EDIT

('INVALID CODE: ',NAME)(ACl5),A);
GO TO NEXT;

PRINT: CLOSE FIlE(NOS);
PUT FIlE(SYSPRINT) PAGE;
OPEN FILECNOS) SEQUENTIAL INPUT;
ON ENDFILE(NOS) GO TO FINISH;

NEXTIN: READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
PUT FILE(SYSPRINT) SKIP EDIT(NEWNO,IOFIELD)(A(5),A);
GO TO NEXTIN;

FINISH: CLOSE FILE(NOS);
END ACRl;

/*
DD DSN=PLIVSAM.AJC3.BASE,DISP=OLD
DD *

//GO.NOS
//GO.SYSIN
NEW~1AN, M. W.
GOODFELLOW,D.T.
MILES,R.
HARVEy,C.D.W.
BARTlETT,S.G.
CORY,G.
READ,K.M.
PITT,W.H.
ROLF,D.F.
ELLIOTT,D.
HASTINGS,G.M.
BRAMLEy,O.H.
/*

5640C
89 A

23D
29 A
13 A

36D
01 A

55
14D

4285C
31D

4928C

//STEP3 EXEC PGM=IDCAMS,REGION=512K,COND=EVEN
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

//

DELETE -
PLlVSAM.AJC3.BASE -
CATALOG(catalog.name)

Figure 110. Updating an RRDS

Cha .. d:er 7. Using VSAM Data Sets from PL/I 263

CHAPTER 8. LIBRARIES OF DATA SETS

TYPES OF LIBRARY

Within the IBM operating system, the terms "partitioned data
set" and "library" are used synonymously to signify a type of
data set that can be used for the storage of other data sets
(usually programs in the form of source, object or load
modules). A library must be stored on direct-access storage and
be wholly contained in one volume. It contains independent,
consecutively-organized, data sets, called members. Each member
has a unique name, not more than 8 characters long, which is
stored in a directory that is part of the library. All the
members of one library must have the same data characteristics
because only one data set label is maintained.

Members can be created individually until there is insufficient
space left for a new entry in the directory, or until there is
insufficient space for the member itself. Members can be
accessed individually by specifying the member name.

DD statements or their conversational mode equivalent are used
to create and access members.

Members can be deleted by means of the IBM utility program
IEHPROGM. This deletes the member name from the directory so
that the member can no longer be accessed; but the space
occupied by the member itself cannot be used again unless the
library is recreated using, for example, the IBM utility program
IEBCOPY. An attempt to delete a member by using the DISP
parameter of a DD statement will cause the whole data set to be
deleted.

The following types of library may be used with a PL/I program:

• The system program library SYSI.lINKLIB or its equivalent.
This can contain all system processing programs such as
compilers and the linkage editor.

• Private program libraries. These usually contain
user-written programs. It is often convenient to create a
temporary private library to store the load module output
from the linkage editor until it is executed by a later job
step in the same job. The library will be deleted at the
end of the job. Private libraries are also used for
automatic library call by the linkage editor and the loader.

• The system procedure library SYSl.PROClIB or its equivalent.
This contains the job control procedures that have been
cataloged for your installation.

HOW TO USE A LIBRARY

The ways in which the libraries described above can be used are
described in the following sections.

BY THE LINKAGE EDITOR OR LOADER

The output from the linkage editor is usually placed on a
private program library.

The call library used as input to the linkage editor or loader
(see also Chapter 3, "The Linkage Editor and the Loader" on
page 65) can be SYSl.lINKLIB, a private program library, or a
subroutine library.

264 OS Pl/I Optimizing Compiler: Programmer's Guide

In each casel the processing of directory entries is performed
by the operating system.

When you are adding a member to a librarYI you must specify the
member name as follows:

• When a single module is produced as output from the linkage
editorl the member name can be specified as part of the data
set name (see also "Creating a Library Member n on page 267).

• When more than one module is produced as output from the
linkage editorl the member name for each module must be
specified in the NAME option or the NAME control statement.
The member name can not be specified as part of the data set
name.

BY THE OPERATING SYSTEM

BY YOUR PROGRAM

When you request the execution of a load module in an EXEC
statement or CALL command, the operating system must be able to
retrieve the load module from a library. For a CALL command l
this library is specified explicitly or implicitly in the
command. For an EXEC statement l the following rules apply.

The operating system will assume the load module is a member of
SYSl.LINKlIB, and will search in the directory for that library
for the name you have specified, unless you have also specified
that the load module is in a private library, in one of the
following ways.

If the load module has been added to the private library in a
previous step of the job (usually a link-edit step) and the
member name was specified as part of the data set name, then you
can refer, in the EXEC statement, to the DD statement defining
the library instead of specifying the load module name. The
library must have been given the disposition PASS.

If the load module exists on the private library before the job
starts, than you have several ways of defining the library.

You can define the library in a DD statement, with the ddname
JOBLIB, immediately after the JOB statement. This library will
be used in place of SYSl.lINKLIB for all the steps of the job.
If any load module is not found on the private library, the
system will then look for in on SYSl.LINKLIB.

You can define the library in a DD statement with the ddname
STEPLIB, at any point in the job control procedure. The private
library will be used in place of SYS1.LINKLIB, or any library
specified in a JOBlIB DD statement, for the job step in which it
appears (though it can also be "passed" to subsequent job steps
in the normal way). If any load module is not found on the
private library, the system will look for in on the library
specified on SYSl.LINKLIBi any JOBLIB will be ignored. The
STEPLIB DD statement can be used in a cataloged procedure.

Alternatively, if you specify SYSl.LINKLIB in the JOBlIB or
STEPlIB DD statements, and then concatenate the private library
to it, the private library will be used only if a load module
cannot be first found on SYSl.LINKLIB.

libraries can be used directly by a PL/I program.

If you are adding a new member to a library, its directory entry
will be made by the operating system when the associated file is
closedl using the member name specified as part of the data set
name.

Chapter 8. Libraries of Data Sets 265

CREATING A LIBRARY

SPACE PARAMETER

If you are accessing a member of a library, its directory entry
can be found by the operating system from the member name that
you specify as part of the data set name.

More than one member of the same library can be processed by the
same PL/I program, but only one such output file can be open at
anyone time. Different members are accessed by giving the
member name in a DD statement.

To create a library include in your job step a DD statement
containing the information given in Figure Ill. The information
required is similar to that for a consecutively-organized data
set (see "Defining a Consecutive Data Set" on page 151) except
for the SPACE parameter.

Information
Required

Type of device that will be used

Serial number of the volume that
will contain the library
Name of the library

Amount of space required for the
library

Disposition of the library

Parameter of
DD statement

UNIT=

VOLUME=SER

DSNAME=

SPACE=

DISP=

Figure Ill. Information Required When Creating a Library

The SPACE parameter in a DD statement that defines a library
must always be of the form:

SPACE=(units,(quantity,
increment,directory»

Although you can omit the third term (increment), indicating its
absence by a comma, the last term, specifying the number of
directory blocks to be allocated, must always be present.

The amount of auxiliary storage required for a library depends
on the number and sizes of the members to be stored in it and on
how often members will be added or replaced. (Space occupied by
deleted members is not released.) The number of directory
blocks required depends on the number of members and the number
of aliases. Although you can specify an incremental quantity in
the SPACE parameter that will allow the operating system to
obtain more space for the data set if necessary, both at the
time of creation and when new members are added, the number of
directory blocks is fixed at the time of creation and cannot be
increased.

The number of directory entries that a 256-byte directory block
can contain depends on the amount of user data included in the
entries. The maximum length of an entry is 74 bytes, but the
entries produced by the linkage editor vary in length between 34
bytes and 52 bytes, which is equivalent to between four and
seven entries per block.

266 OS PL/I Optimizing Compilers Programmer's Guide

For example, the DD statements

//PDS DD UNIT=3330,VOLUME=SER=3412,
// DSNAME=ALIB,
// SPACE=(CYL,(S"lO»,
// DISP=(,CATLG)

requests the job scheduler to allocate 5 cylinders of the 3330
disk pack with serial number 3412 for a new partitioned data set
name ALIB, and to enter this name in the system catalog. The
last term of the SPACE parameter requests that part of the space
allocated to the data set be reserved for ten directory blocks.

CREATING A LIBRARY MEMBER

EXAMPLES

The members of a library must have identical characteristics.
Otherwise, you may subsequently have difficulty retrieving them.
This is necessary because the volume table of contents (VTOe)
will contain only one data set control block (DSCB) for the
library and not one for each member. When using a PL/! program
to create a member, the operating system creates the directory
entry; you cannot place information in the user data field.

When creating a library and a member at the same time, the DD
statement must include all the parameters listed under "Creating
a Library" on page 266, (although you can omit the DISP
parameter if the data·set is to be temporary). The DSNAME
parameter must include the member name in parentheses. For
example, DSNAME=ALIBCMEMl) names the member MEMI in the data set
ALIB. If the member is placed in the library by the linkage
editor, you can use the linkage editor NAME statement or the
NAME compiler option instead of including the member name in the
DSNAME parameter. You must also describe the characteristics of
the member (record format, etc.) either in the DCB parameter or
in your Pl/I program; these characteristics will also apply to
other members added to the data set.

When creating a member to be added to an existing library, you
will not need the SPACE parameter; the original space allocation
applies to the whole of the library and not to an individual
member. Furthermore, you will not need to describe the
characteristics of the member, since these are already recorded
in the DSCB for the library.

To add two more members to a library in one job step, you must
include a DD statement for each member, and you must close one
file that refers to the library before you open another.

The use of the cataloged procedure PLIXC to compile a simple
Pl/I program and place the object module in a new library named
EXlIB is shown in Figure 112 on page 268. The DD statement that
defines the new library and names the object module overrides
the DD statement SYSLIN in the cataloged procedure. (The PL/I
program is a function procedure that, given two values in the
form of the character string produced by the TIME built-in
function, returns the difference in milliseconds.)

The use of the cataloged procedure PlIXCl to compile and
link-edit a PL/! program and place the load module in the
existing library HPU8.CClM is shown in Figure 113 on page 268.

Chapter 8. Libraries of Data Sets 267

//OPTlOll JOB
//TR EXEC PlIXC
//PLI.SYSLIN DD UNIT=SYSDA,DSNAME=HPU8.EXLIBCELAPSE),
// SPACE=(TRK,(l"l»,DISP=(NEW,CATlG)
//PLI.SYSIN DD *

ELAPSE: PROC(TIMEl,TIME2);
DCl (TIMEl,TIME2) CHAR(9),

HI PIC '99' DEF TIMEl,
Ml PIC '99' DEF TIMEl POS(3),
MSl PIC '99999' DEF TIMEI POSeS),
H2 PIC '99' DEF TIME2,
M2 PIC '99' DEF TIME2 POS(3),
MS2 PIC '99999' DEF TIME2 POses),
ETIME FIXED DEC(7);

IF H2<Hl THEN H2=H2+24;
ETIME=(CH2*60+M2)*600000+MS2)-CCHl*60+Ml)*600000+MSl)j
RETURNCETIME);

END ELAPSEj

Figure 112. Creating New Libraries for Compiled Object Modules

//OPTlOI2 JOB
//TRLE EXEC PLIXCL
//PLI.SYSIN DD *

MNAME: PROC OPTIONSCMAIN);

program

END MNAMEj
/*
//LKED.SYSLMOD DD DSNAME=HPU8.CCLMCDIRLIST),DISP=OLD

Figure 113. Placing a load Module in an Existing Library

268 as PL/I Optimizing Compiler: Programmer's Guide

//OPT1013 JOB
//TREX EXEC PlIXClG
//PlI.SYSIN DD *

NMEM: PROC OPTIONSCMAIN);
DCl IN FILE RECORD SEQUENTIAL INPUT,

OUT FILE RECORD SEQUENTIAL OUTPUT,
IOFIElD CHAR(80) BASEDCA);

OPEN FIlECIN)~FIlECOUT);
ON ENDFIlECIN) GO TO FINISH;

NEXT: READ FIlECIN) SETCA);
PUT FIlECSYSPRINT) SKIP EDIT CIOFIElD) (A);
WRITE FIlECOUT) FROMCIOFIELD);
GO TO NEXT;

FINISH: CLOSE FIlECIN),FIlE(OUT);
END NMEM;

//GO.OUT DD UNIT=SYSDA,DSNAME=HPU8.AlIBCNMEM),
// DISP=(NEW,CATlG),SPACE=(TRK,(l,l,l»,
// DCB=(RECFM=FB,BLKSIZE=3600,LRECL=80)
//GO.IN DD *
// MEM8COLON.PROC OPTIONSCMAIN);

/* this is a dummy library member*/

Figure 114. Creating a Library Member ina Pl/I Program

To use a PL/I program to add or delete one or more records
within a member of a library, you must rewrite the entire member
in another part of the library; this is rarely an economic
proposition, since the space originally occupied by the member
cannot be used again. You must use two files in your Pl/I
program, but both can be associated with the same DD statement.
The program shown in Figure 115 updates the member created by
the program in Figure 114; it copies all the records of the
original member except those that contain only blanks.

//OPT1014 JOB
//TREX EXEC PlIXClG
//PlI.SYSIN DD *

UPDTM: PROC OPTIONSCMAIN);
DCl (OLD, NEW) FILE RECORD SEQUENTIAL,

DATA CHAR(80);
ON ENDFIlECOLD) GO TO FINISH;
OPEN FILECOlD) INPUT,FIlECNEW) OUTPUT TITlEC'OlD');

NEXT: READ FIlECOLD) INTOCDATA);
PUT FIlECSYSPRINT) SKIP EDIT (DATA) (A);
IF DATA=' , THEN GO TO NEXT;
WRITE FILE(NEW) FROMCDATA);
GO TO NEXT;

FINISH: CLOSE FILECOLD),FIlECNEW);
END UPDTM;

/*
//GO.OLD DD DSNAME=HPU8.AlIBCNMEM),DISP=(OlD,DElETE),
// UNIT=SYSDA,VOl=SER=nnnnnn

Figure 115. Updating a library Member

Chapter 8. libraries of Data Sets 269

LIBRARY STRUCTURE

The structure of a library is illustrated in Figure 116 on
page 271. The directory of a library is a series of records
(entries) at the beginning of the data set; there is at least
one directory entry for each member. Each entry contains a
member name, the relative address of the member within the
library, and a variable amount of user data. The entries are
arranged in ascending alphameric order of member names.

A directory entry can contain up to 62 bytes of user data
(information inserted by the program that created the member>.
An entry that refers to a member (load module> written by the
linkage editor includes user data in a standard format,
described in the systems manuals.

270 as PL/I Optimizing Compiler: Prc:;waa.ililer's Guide

bit o

o name
1 alias

I
Note: I
pointers contain relative l.
addresses of locations
within member.

......

byte 0 7

2 '3

number of ptrs in
user data field

.......
.......

......
.......

......
I

8 9 10 I
rei block

4 5 6

number of halfwords in user
data field (inc pointers)

11 12

7

I
I

)

byte 11 of
directory entry

61

track no. relative
member name

to start of d.s.
no. on optional variable user data (max 62 bytes)
track

I
contents of a directory entry - --- --- -- .-- .--- -- .-- .--- -

256 byte directory block -I-------------tl-11111

Directory entry Directory entry Directory entry Directory entry
for member A for member B for member C for member K

space from
member C deleted members

member B member K

-

member K (cont'd)

member K (cont'd) member A

member A (cont'd) available area

Figure 116. Structure of a Library

Chapter 8. Libraries of Data Sets 271

If you use a Pl/I program to create a member, the operating
system creates the directory entry for you and you cannot write
any user data. However, you can use assembler language macro
instructions to create a member and write your own user data;
the method is described in the data management manuals.

Directory entries are stored in fixed-length blocks of 256
bytes, each containing a 2-byte count field specifying the
number of active bytes in a block and as many complete entries
as will fit into the remaining 254 bytes. The directory is in
effect a sequential data set that contains fixed-length
unblocked records, and can be read as such.

The program illustrated in Figure 117 demonstrates a method of
extracting information from directory entries. The program
lists the names of all the members of a library; the library
must be defined, when the program is executed, in a DD statement
with the name LINK.

// EXEC PlIXCLG,PARM.PLI='MARCl,72)'
//PLI.SYSIN DD *
MNAME: PROC OPTIONSCMAIN);

DCl LINK FILE RECORD SEQUENTIAL INPUT,
1 DIRBlK,

2 COUNT BIT(16),
2 ENTRIES CHAR(254),

I ENTRY BASEDCP),
2 NAME CHAR(B),
2 TTR CHAR(S),
2 INDIC,
SAllAS BITCl),
3 TTRS BIT(2),
3 USERCT BIT(5);

DCl lINK_EOF BIT(l) INIT('O'B) STATIC;

ON ENDFILE(LINK) LINK EOF = 'l'B;
READ FILE(LINK) INTOCDIRBLK);

DO WHILE(~LINK EOF);
DO UNSPEC(P) = UNSPEC(ADDRCENTRIES»

REPEAT UNSPEC(UNSPECCP) + 12 + 2*USERCT)
WHILE

(UNSPEC(P) «UNSPEC(UNSPECCADDR(ENTRIES»+COUNT»);
PUT FILECSYSPRINT) SKIP lIST(NAME);
END;

READ FIlEClINK) INTOCDIRBLK);
END;

END MNAMEj
//GO.lINK DD DSN=C.TEST.ASM,
// DCB=CRECFM=U,BLKSIZE=256),
// DISP=SHR
//

Figure 117. Listing Names of the Members of a library

272 OS Pl/I Optimizing Compiler: Programmer's Guide

CHAPTER 9. CATALOGED PROCEDURES

This chapter describes the standard cataloged procedures
supplied by IBM for use with the OS Pl/I Optimizing Compiler,
explains how to invoke them, and how to make temporary or
permanent modifications to them.

A cataloged procedure is a set of job control statements stored
in a system library, the procedure library. It includes one or
more EXEC statements, each of which may be followed by one or
more DD statements. You can retrieve the statements by naming
the cataloged procedure in the PROC parameter of an EXEC
statement in the input stream. When the operating system
processes this EXEC statement, it replaces it in the input
stream with the statements of the cataloged procedure.

The use of cataloged procedures saves time and reduces errors in
coding frequently used sets of job control statements. If the
statements in a cataloged procedure do not match your
requirements exactly, you can easily modify them or add new
statements for the duration of a job. It is recommended that
each installation review these procedures and modify them to
obtain the most efficient use of the facilities available and to
allow for installation conventions.

INVOKING A CATALOGED PROCEDURE

To invoke a cataloged procedure, specify its name in the PROC
parameter of an EXEC statement. For example, to use the
cataloged procedure PlIXC, you could include the following
statement in the appropriate position among your other job
control statements in the input stream:

//stepname EXEC PROC=PLIXC

You need not code the keyword PROCj if the first operand in the
EXEC statement does not begin PGM= or PROC=, the job scheduler
interprets it as the name of a cataloged procedure. The
following statement is equivalent to that given above:

//stepname EXEC PlIXC

When the operating system meets the name of a cataloged
procedure in an EXEC statement, it extracts the statements of
the cataloged procedure from the procedure library and
substitutes them for the EXEC statement in the input job stream.
If you include the parameter MSGlEVEl=1 in your JOB statement,
the operating system will include the original EXEC statement in
its listing, and will add the statements of the cataloged
procedure. In the listing, cataloged procedure statements are
identified by XX or X/ as the first two characters; X/ signifies
a statement that has been modified for the current invocation of
the cataloged procedure.

An EXEC statement identifies a job step, which can require
either the execution of a program or the invocation of a
cataloged procedure. A cataloged procedure includes one or more
EXEC statements, which identify procedure steps. However, an
EXEC statement in a cataloged procedure cannot invoke another
cataloged procedure; it must request the execution of a program.

It may be necessary for you to modify the statements of a
cataloged procedure for the duration of the job step in which it
is invoked, either by adding DD statements or by overriding one
or more parameters in the EXEC or DD statements. For example,
cataloged procedures that invoke the compiler require the
addition of a DD statement with the name SYSIN to define the
data set containing the source statements. Also, whenever you
use more than one standard link-edit procedure step in a job,

Chapter 9. Cataloged Procedures 273

you must modify all but the first cataloged procedure that you
invoke if you want to execute more than one of the load modules.

MULTIPLE INVOCATION OF CATALOGED PROCEDURES

You can invoke different cataloged procedures, or invoke the
same cataloged procedure several times, in the same job. No
special problems are likely to arise unless more than one of
these cataloged procedures involves a link-edit procedure step,
in which case you must take the following precautions to ensure
that all your load modules can be executed.

The linkage editor always places a load module that it creates
in the standard data set defined by the DD statement with the
name SYSlMOD. In the absence of a linkage editor NAME statement
(or the NAME compiler option), it uses the member name specified
in the DSNAME parameter as the name of the module. In the
standard cataloged procedures, the DD statement with the name
SYSLMOD always speci fies a temporai"'y library named &&GOSET, and
gives the load module the member name GO.

Consider what will happen if, for example, you use the cataloged
procedure PLIXCLG twice in a job to compile, link edit, and
execute two PL/I programs, and do not name each of the two load
modules that will be created by the linkage editor. The linkage
editor will name the first load module GO, as specified in the
first DD statement with the name SYSLMOD. It will not be able
to use the same name for the second load module since the first
load module still exists in the library &&GOSET; it will
allocate a temporary name to the second load module (a name that
is not available to your program). Step GO of the cataloged
procedure requests the operating system to initiate execution of
the load module named in the first DD statement with the name
SYSlMOD in the step LKED, that is, to execute the module named
GO from the library &&GOSET. Consequently, the first load
module will be executed twice and the second not at all.

To prevent this, use one of the following methods:

• Delete the library 88GOSET at the end of the step GO of the
first invocation of the cataloged procedure by adding a DD
statement with the syntax:

//GO.SYSLMOD DD DSN=&8GOSET,
// DISP=(OLD,DElETE)

• Modify the DD statement with the name SYSlMOD in the second
and subsequent invocations of the cataloged procedure so as
to vary the names of the load modules. For example:

//LKED.SYSLMOD DD DSN=8&GOSETCGOl)

and so on.

• Use the NAME compiler option to give a different name to
each load module and change your job control statements to
specify the execution of the load modules with these names.

MULTITASKING USING CATALOGED PROCEDURES

When you use a cataloged procedure to link edit a multitasking
program, you must ensure that the load module includes the
multitasking versions of the PL/I resident library subroutines.
To enable you to select the appropriate library, the cataloged
procedures that invoke the linkage editor and the loader include
a symbolic parameter C&lKlBDSN) in the DSNAME parameter of the
DDstatement SYSlIB, which defines the data set to be used as
the call library. This data set is described in "Automatic Call
library CSYSLIB)" on page 72. The default value of this
symbolic parameter is SYSI.PlIBASE, which is the name of the
nonmultitasking ("base") library.

274 OS Pl/I Optimizing Compiler: Programmer's Guide

To ensure that the multitasking library (SYSl.PLITASK) is
searched before the base library, include the parameter
LKLBDSN='SYSl.PLITASK' in the EXEC statement that invokes the
cataloged procedure; for example:

//STEPA EXEC PLIXCLG,LKLBDSN='SYSl.PLITASK'

The DD statement SYSLIB is always followed in the standard
cataloged procedures by another, unnamed, DD statement that
includes the parameter DSNAME=SYSl.PLIBASE. The effect of this
statement is to concatenate the base library with the
multitasking library, if the latter is used; the base library
can then be searched for any subroutine common to multitasking
and nonmultitasking and therefore not included in the
multitasking library. When the nonmultitasking library is
selected, the second DD statement has no effect.

The use of the symbolic parameter &LKLBDSN means that for
nonmultitasking programs, SYSl.PLIBASE is concatenated with
itself. This has no effect other than a very small increase in
job scheduling time, but does avoid the need for different
cataloged procedures for link editing multitasking and
nonmultitasking programs.

MODIFYING CATALOGED PROCEDURES

EXEC STATEMENT

You can modify a cataloged procedure temporarily by including
parameters in the EXEC statement that invokes the cataloged
procedure or by placing additional DD statements after the EXEC
statement. Temporary modifications apply only for the duration
of the job step in which the procedure is invoked; they do not
affect the master copy of the cataloged procedure stored in the
procedure library.

Temporary modifications can apply to EXEC or DD statements in a
cataloged procedure. To change a parameter of an EXEC
statement, you must include a corresponding parameter in the
EXEC statement that invokes the cataloged procedure; to change
one or more parameters of a DD statement, you must include a
corresponding DD statement after the EXEC statement that invokes
the cataloged procedure. Although you may not add a new EXEC
statement to a cataloged procedure, you can always include
additional DD statements.

If a parameter of an EXEC statement that invokes a cataloged
procedure has an unqualified name, the parameter applies to all
the EXEC statements in the cataloged procedure. The effect on
the cataloged procedure depends on the parameters, as follows,

• PARM applies to the first procedure step and nullifies any
other PARM parameters.

• COND and ACCT apply to all the procedure steps.

• TIME and REGION apply to all the procedure steps and
override existing values.

For example, the statement:

//stepname EXEC PLIXCLG,PARM='SIZECMAX)',
REGION=144K

invokes the cataloged procedure PLIXCLG, substitutes the option
SIZE(MAX) for OBJECT and NODECK in the EXEC statement for
procedure step PLI, and nullifies the PARM parameter in the EXEC
statement for procedure step LKED; it also specifies a region
size of 144K for all three procedure steps.

Chapter 9. Cataloged Procedures 275

DD STATEMENT

To change the value of a parameter in only one EXEC statement of
a cataloged procedure, or to add a new parameter to one EXEC
statement, you must identify the EXEC statement by qualifying
the name of the parameter with the name of the procedure step.
For example, to alter the region size for procedure step PLI
only in the preceding example, code:

//stepname EXEC PROC=PLIXCLG,
PARM='SIZE(MAX) ',REGION.PLI=144K

A new parameter specified in the invoking EXEC statement
overrides completely the corresponding parameter in the
procedure EXEC statement.

You can nullifY all the options specified by a parameter by
coding the keywurd and equal sign without a value. For example,
to suppress the bulk of the linkage editor listing when invoking
the cataloged procedure P1IXCLG, code:

//stepname EXEC PLIXCLG,PARM.LKED=

To add a DD statement to a cataloged procedure, or to modify one
or more parameters of an existing DD statement, you must
include, in the appropriate position in the input stream, a DD
statement with a name of the form "procstepname.ddname." If
"ddname" is the name of a DD statement already present in the
procedure step identified by "procstepname," the parameters in
the new DD statement override the corresponding parameters in
the existing DD statement; otherwise, the new DD statement is
added to the procedure step. For example, the statement:

//PLI.SYSIN DD *
adds a DD statement to the procedure step PLI of cataloged
procedure PLIXC and the effect of the statement:

//PLI.SYSPRINT DD SYSOUT=C

is to modify the existing DD statp.ment SYSPRINT (causing the
compiler listing to be transmitted to the system output device
of class C).

Overriding DD statements must follow the EXEC statement that
invokes the cataloged procedure in the same order as the
corresponding DD statements of the cataloged procedure. DD
statements that are being added must follow the overriding DD
statements for procedure step in which they are to appear.

To override a parameter of a DD statement, code either a revised
form of the parameter or a replacement parameter that performs a
similar function (for example, SPLIT for SPACE). To nullify a
parameter, code the keyword and equal sign without a value. You
can override DCB subparameters by coding only those YOU wish to
modify; that is, the DCB parameter in an overriding DD statement
does not necessarily override the entire DCB parameter of the
corresponding statement in the cataloged procedures.

276 OS PL/I Optimizing Compiler: Programmer's Guide

IBM-SUPPLIED CATALOGED PROCEDURES

The PL/I cataloged procedures supplied for use with the
optimizing compiler area

Compile only PLIXC

PLIXCL

PLIXCLG

PLIXLG

PLIXCG

PLIXG

Compile and link edit

Compile, link edit, and execute

Link edit and executB

Compile, load-and-execute

Load-and-execute

The individual statements of the cataloged procedures are not
fully described, since all the parameters are discussed
elsewhere in this publication. These cataloged procedures do
not include a DD statement for the input data set; you must
always provide one. The example shown in Figure 118 illustrates
the JeL statements you might use to invoke the cataloged
procedure PLIXCLG to compile, link edit, and execute, a PL/I
program.

//COLEGO JOB
//STEP1 EXEC PLIXCLG
//PLI.SYSIN DD *

(insert here PL/I program to be
compiled)

Figure 118. Invoking a Cataloged Procedure

No IBM-supplied cataloged procedure is provided to produce an
object module on punched cards. You can temporarily modify any
of the cataloged procedures that have a compile step to produce
a punched card output; as example is shown in Figure 119.

//stepname EXEC PLIXCLG,
// PARM.PLI='OBJECT,DECK'
//PLI.SYSPUNCH DD SYSQUT=B
//PLI.SYSIN DD ...

Figure 119. Modifying a Cataloged Procedure to Produce a
Punched Card Output

Chapter 9. Cataloged Procedures 277

COMPILE ONLY (PLIXC)

//PlIXC PROC

This cataloged procedure, shown in Figure 120, includes only one
procedure step, in which the options specified for the
compilation are OBJECT and NODECK. (IElOAA is the symbolic name
of the compiler.) In common with the other cataloged procedures
that include a compilation procedure step, PlIXC does not
include a DD statement for the input data set; you must always
supply an appropriate statement with the qualified ddname
PlI.SYSIN.

The OBJECT option causes the compiler to place the object
module, in a syntax suiiable for input to the linkage editor, in
the standard data set defined by the DD statement with the name
SYSlIN. This statement defines a temporary data set name
&&LOADSET on a magnetic=tape ur dire~t-access device; if you
want to retain the object module after the end of your job, you
must substitute a permanent name for &&lOADSET (that is, a name
that does not commence &&) and specify KEEP in the appropriate
DISP parameter for the last procedure step in which the data set
is used.

The term MOD in the DISP parameter allows the compiler to place
more than one object module in the data set, and PASS ensures
that the data set will be available to a later procedure step
providing a corresponding DD statement is included there.

The SPACE parameter allows an initial allocation of 250
eighty-byte records and, if necessary, 15 further allocations of
100 records (a total of l75U records, which should suffice for
most applications).

//PlI EXEC PGM=IELOAA,PARM='OBJECT,NODECK,COMPIlE',REGION=128K
//SYSPRINT DD SYSOUT=A
//SYSlIN DD DSN=&&LOADSET,DISP=(MOD,PASS)IUNIT=SYSSQ,
// SPACE=(80,(250,lOO»)
//SYSUTI DD DSN=&&SYSUTl,UNIT=SYSDA,DCB=BlKSIZE=1024
// SPACE=(1024,(200,50)"CONTIG,ROUND)

Figure 120. Cataloged Procedure PLIXC

COMPILE AND LINK-EDIT (PLIXCL)

This cataloged procedure, shown in Figure 121 on page 279,
includes two procedure steps: PlI, which is identical with
cataloged procedure PLIXC, and lKED, which invokes the linkage
editor (symbolic name IEWl) to link edit the object module
produced in the first procedure step.

Input data for the compilation proc~dure step requires the
qualified ddname PlI.SYSIN. The CONn parameter in the EXEC
statement LKED specifi~s that this procedure step should be
bypassed if the return code produced by the compiler is greater
than 9 (that is, if a severe or unrecoverable error occurs
during compilation).

The DD statement with the name SYSlIB specifies the Pl/I
resident library, from which the linkage editor will obtain
appropriate modules for inclusion in the load module. The
linkage editor always places the load modules it creates in the
standard data set defined by the DD statement with the name
SYSlMOD. This statement in the cataloged procedure specifies a
new temporary library &&GOSET, in which the load module will be
placed and given the member name GO (unless you specify the NAME
compiler option for the compiler procedure step). In specifying
a temporary library, the cataloged procedure assumes that you

278 OS Pl/I Optimizing Compiler: Programmer's Guide

will execute the load module in the same job; if you want to
retain the module, you must substitute your own statement for
the DD statement with the name SYSLMOD .

••
//PLIXCL PROC LKLBDSN='SYS1.PLIBASE'
//PLI EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=128K
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(80,(250,100»
//SYSUTI DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BlKSIZE=1024,
// SPACE=(1024,(200,50)"CONTIG,ROUND),
//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=256K
//SYSLIB DD DSN=&LKLBDSN,DISP=SHR
// DD DSN=SYS1.PLIBASE,DISP=SHR
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,(SO,20,1»
//SYSUT1 DD DSN=&&SYSUTl,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50)"CONTIG,ROUND),
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSIN DD DUMMY

Figure 121. Cataloged Procedure PLIXCL

//PLIXCLG PROC LKLBDSN='SYS1.PLIBASE'
//PLI EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=128K
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(80,(250,lOO»
//SYSUTI DD DSN=&&SYSUTl,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(20Q,50)"CONTIG,ROUND),
//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=256K
//SYSLIB DD DSN=&LKlBDSN,DISP=SHR
// DD DSN=SYSl.PLIBASE,DISP=SHR
//SYSLMOD DD DSN=&&GOSET(GO),DISP=(MCD,PASS),UNIT=SYSDA,
// SPACE=(1024,(SO,20,1»
//SYSUTI DD DSN=&&SYSUT1,UNIT=SYSDA,SPACE=(1024,(200,20»,
// DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
// DD DDNAME=SYSIN
//SYSIN DD DUMMY
//GO EXEC PGM=*.LKED.SYSLMOD,COND=«9,LT,PLI),(9,LT,LKED»,
// REGION=lOOK
//SYSPRINT DD SYSOUT=A

Figure 122. Cataloged Procedure PLIXCLG

The last statement, DDNAME=SYSIN, illustrates how to concatenate
a data set defined by a DD statement with the name SYSIN with
the primary input (SYSLIN) to the linkage editor. You could
place linkage editor control statements in the input stream by
this means, as described in "Primary Input (SYSLIN)" on page 71.

Chapter 9. Cataloged Procedures 279

COMPILE. LINK-EDIT AND EXECUTE (PLIXCLGl

This cataloged procedure, shown in Figure 122 on page 279,
includes three procedure steps, PlI and lKED, which are
identical with the two procedure steps of PlIXCl, and GO, in
which the load module created in the step LKED is executed. The
third procedure step will be executed only if no severe or
unrecoverable errors occur in the preceding procedure steps.

Input data for the compilation procedure step should be
specified in a DD statement with the name PLI.SYSIN, and for the
execution procedure step in a DD statement with the name
GO.SYSIN.

LINK-EDIT AND EXECUTE (PLIXLG)

This cataloged procedure, shown in Figure 123, includes two
procedure steps, lKED and GO, which are similar to the procedure
steps of the same names in PlIXClG.

//PlIXLG PROC LKlBDSN='SYSl.PlIBASE'
//LKED EXEC PGM=IEWL,PARM='XREF,LIST',REGION=256K
//SYSLIB DD DSN=&LKlBDSN,DISP=SHR
// DD DSN=SYSl.PlIBASE,DISP=SHR
//SYSLMOD DD DSN=&&GOSETCGO),DISP=(MOD,PASS),UNIT=SYSDA,
// SPACE=(1024,CSO,20,1))
//SYSUTI DD DSN=&&SYSUTl,UNIT=SYSDA,SPACE=(1024,(200,20)),
// DCB=BLKSIZE=1024
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DDNAME=SYSIN
//SYSIN DD DUMMY
//GO EXEC PGM=*.lKED.SYSlMOD,COND=(9,lT,lKED),REGION=100K
//SYSPRINT DD SYSOUT=A

Figure 123. Cataloged Procedure PlIXlG

In the procedure step lKED, the DD statement with the name
SYSlIN does not define a data set, but merely refers the
operating system to the DD statement SYSIN, which you must
supply with the qualified ddname lKED.SYSIN. This DD statement
defines the data set from which the linkage editor will obtain
its primary input. Execution of the procedure step GO is
conditional on successful execution of the procedure step lKED
only.

COMPILE, LOAD, AND EXECUTE (PLIXCG)

This cataloged procedure, shown in Figure 124, achieves the same
results as PlIXClG but uses the loader instead of the linkage
editor. However, instead of using three procedure steps
(compile, link edit, and execute), it has only two (compile, and
load-and-execute). In the second procedure step, the loader
program is executed; this program processes the object module
produced by the compiler and executes the resultant executable
program immediately. Input data for the compilation procedure
step requires the qualified ddname PlI.SYSIN.

The REGION parameter of the EXEC statement GO specifies lOOK
bytes. Since the loader requires about 17K bytes of main
storage, there are about 83K bytes for your program; if this is
likely to be insufficient, you must modify the REGION parameter.
The use OT the loader imposes certain restrictions on your Pl/I
program; before using this cataloged procedure, see "loader" on
page 66, which explains how to use the loader.

280 as Pl/I Optimizing Compiler: Programmer's Guide

//PLIXCG PROC LKLBDSN='SYSl.PLIBASE'
//PlI EXEC PGM=IELOAA,PARM='OBJECT,NODECK',REGION=l28K
//SYSPRINT DD SYSOUT=A
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSSQ,
// SPACE=(80,(250,100))
//SYSUTl DD DSN=&&SYSUT1,UNIT=SYSDA,DCB=BLKSIZE=1024,
// SPACE=(1024,(200,50)"CONTIG,ROUND)
//GO EXEC PGM=LOADER,PARM='MAP,PRINT',REGION=324K,
// COND=(9,lT,PlI)
//SYSlIB DD DSN=&lKlBDSN,DISP=SHR
// DD DSN=SYS1.PLIBASE,DISP=SHR
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)
//SYSlOUT DD SYSOUT=A
//SYSPRINT DD SYSQUT=A

Figure 124. Cataloged Procedure PLIXCG

LOAD AND EXECUTE (PLIXG)

This cataloged procedure, shown in Figure 125, achieves the same
results as PlIXLG but uses the loader instead of the linkage
editor. However, instead of using two procedure steps (link
edit and execute), it has only one. In this procedure step, the
loader program is executed. This program processes and executes
an object module placed in the data set defined by a DD
statement with the name SYSlIN; you must supply this statement
with the qualified name GO.SYSlIN.

//PLIXG PROC lKLBDSN='SYSl.PLIBASE'
//GO EXEC PGM=LOADER,PARM='MAP,PRINT',REGION=324K
//SYSLIB DD DSN=&LKlBDSN,DISP=SHR
// DD DSN=SYSl.PLIBASE,DISP=SHR
//SYSLOUT DD SYSOUT=A
//SYSPRINT DD SYSOUT=A

Figure 125. Cataloged Procedure PLIXG

The REGION parameter of the EXEC statement GO specifies lOOK
bytes. Since the loader requires about 17K bytes of main
storage, there are about 83K bytes for your program; if this is
likely to be insufficient, you must modify the REGION parameter.
The use of the loader imposes certain restrictions on your PL/I
program; before using this cataloged procedure, see "loader" on
page 66, which explains how to use the loader.

Chapter 9. Cataloged Procedures 281

CHAPTER 10. PROGRAM CHECKOUT

Program checkout is the application of diagnostic and test
processes to a program. You should give adequate attention to
program checkout during the development of a program so that:

• A program becomes fully operational after the fewest
possible test runs, thereby minimizing the time and cost of
program development.

• A program is proved to have fulfilled all the design
objectives before it is released for production work.

• A program has complete and clear documentation to enable
both operators and program maintenance personnel to use and
maintain the program without assistance from the original
programmer.

The data used for the checkout of a program should be selected
to test all parts of the program. While the data should be
sufficiently comprehensive to provide a thorough test of the
program, it is easier and more practical to monitor the behavior
of the program if the volume of data is kept to a minimum.

CONVERSATIONAL PROGRAM CHECKOUT

The optimizing compiler can be used in conversational mode when
writing and testing programs at the terminal. The
conversational features are available to users where the TSO
(Time Sharing Option) facilities of the operating system or CMS
(Conversational Monitor System) are present. The conversational
facilities enable you to enter a PL/! program from a terminal,
through which you will receive diagnostic messages for the
compilation. You can also communicate with the program during
execution using PL/I files associated with the terminal. Thus a
PL/I program can be checked out during its construction, thereby
saving a substantial amount of elapsed time that can occur
between test compilation and execution runs in batched
processing. Attention on-units can be incorporated to put out
debugging information when an attention interrupt is caused from
the terminal.

The PL/I program is entered and processed using the commands and
features described in the: PS PL/I Optimizing CompiJ_er: TSO
User's Guide, and the OS PL/! Optimizing Compiler: eMS User's
Guide.

COMPILE-TIME CHECKOUT

At compile time, both the preprocessor and the compiler can
produce diagnostic messages and listings according to the
compiler options selected for a particular compilation. The
listings and the associated compiler options are discussed in
"Compiler Options" on page 11. The diagnostic messages produced
by the optimizing compiler are identified by a number prefixed
"IEL." These diagnostic messages are available in both a long
form and a short form. The long messages are designed for
reproduction at a terminal when the compiler is being used in a
T50 environment. The short messages are obtained by specifying
the SMESSAGE compiler option. Each message is reproduced in the
publication: OS PL/I Optimizing Compiler Messages. This
publication includes explanatory notes, examples, and any action
to be taken.

Always check the compilation listing for occurrences of these
messages to determine whether the syntax of the program is
correct. Messages of greater severity than warning (that is,
error, severe error, and unrecoverable error) should be acted

282 OS Pl/I Optimizing Compiler: Programmer's Guide

upon if the message does not indicate that the compiler has been
able to "fix" the error correctly. You should appreciate that
the compiler, in making an assumption as to the intended meaning
of any erroneous statement in the source program, can introduce
a further, perhaps more severe, error which in turn can produce
yet another error, and so on. When this occurs, the result is
that the compiler produces a number of diagnostic messages which
are all caused either directly or indirectly by the one error.

Other useful diagnostic aids produced by the compiler are the
attribute table and cross-reference table. The attribute table,
specified by the ATTRIBUTES option, is useful for checking that
program identifiers, especially those whose attributes are
contextually and implicitly declared, have the correct
attributes. The cross-reference table is requested by the XREF
option, and indica·~es, for each program variable, the number of
each statement that refers to the variable.

To prevent unnecessary waste of time and resources during the
early stages of developing programs, use the NOOPTIMIZE,
NOSYNTAX, and NOCOMPILE options. The NOOPTIMIZE option will
suppress optimization unconditionally, and the remaining options
will suppress compilation, link editing, and execution should
the appropriate error conditions be detected.

The NOSYNTAX option specified with the severity level OW," "E,"
or "5" will cause compilation of the output from the Pl/I
preprocessor, if used, to be suppressed prior to the
syntax-checking stage should the preprocessor issue diagnostic
messages at or above the severity level specified in the option.

The NOCOMPILE option specified with the severity level OW," nE,"
or US" will cause compilation to be suppressed after the
syntax-checking stage if syntax checking or preprocessing causes
the compiler to issue diagnostic messnges at or above the
severity level specified in the option.

LINKAGE EDITOR CHECKOUT

When using the linkage editor, check particularly that any
required overlay structuring and incorporation of additional
object and load modules have been performed correctly.
Diagnostic messages produced by the linkage editor are prefixed
"lEW." These messages are fully documented in the publication:
OS Linkage Editor and Loader Messaaes.

When checking the processing performed by the linkage editor,
refer to the module map produced by the linkage editor showing
the structure of the load module. The module map names the
modules that have been incorporated into the program. The
compiler produces an external symbol dictionary (ESD) listing if
requested by the ESD option. The ESD listing indicat~s the
external names that the linkage editor is to resolve in order to
create a load module. The linkage editor is described in
Chapter 3, "The Linkage Editor and the Loader" on page 65.

EXECUTION-TIME CHECKOUT

At execution time, errors can occur in a number of different
operations associated with running a program. For instance, an
error in the use of a job control statement can cause a job to
fail. Most errors that can be detected are indicated by a
diagnostic message. The diagnostic messages for errors detected
at execution time are also listed in the messages publication
for this compiler and identified by the prefix "IBM." The
messages are always printed on the SYSPRINT file.

Chapter 10. Program Checkout 283

A failure in the execution of a PL/I program could be caused by
one of the following:

• Logical errors in source programs.

• Invalid use of PL/I.

• Unforeseen errors.

• Operating error.

• Invalid input data.

• Unidentified program failure.

• A compiler or library subroutine failure.

• System failure.

LOGICAL ERRORS IN SOURCE PROGRAMS

INVALID USE OF PL/I

UNFORESEEN ERRORS

OPERATING ERROR

Logical errors in source programs can often be difficult to
detect. Such errors can sometimes cause a compiler or library
failure to be suspected. The more common errors are the failure
to convert correctly from arithmetic datal incorrect arithmetic
operations and string manipulation operationsl and failure to
match data lists with their format lists.

It is possible that a misunderstanding of the language or the
failure to provide the correct environment for using PL/I I

results in an apparent failure of a PL/I program. For example,
the use of uninitialized variables, the use of controlled
variables that have not been allocated l reading records into
incorrect structures, the misuse of array subscripts, the misuse
of pointer variables, conversion errors, incorrect arithmetic
operations, and incorrect string manipulation operations can
cause this type of failure.

If an error is detected during execution of a PL/I program in
which no on-unit is provided to terminate execution or attempt
recovery, the job will be terminated abnormally. However, the
status of a program executed in a batch-processing environment,
at the point where the error occurred l can be recorded by the
use of an ERROR on-unit that contains the statements:

ON ERROR BEGINi
ON ERROR SYSTEM;
PUT DATAi
END;

The statement ON ERROR SYSTEMi contained in the on-unit ensures
that further errors caused by attempting to transmit
uninitialized variables do not result in a permanent loop.

A job could fail because of an operating error, such as running
a job twice so that a data set becomes overwritten or
erroneously deleted. Other operating errors include getting
card decks into the wrong order and the failure to give
operators correct instructions for running a job.

284 OS PL/I Optimizing Compiler: Programmer's Guide

INVALID INPUT DATA

A program should contain checks to ensure that any incorrect
input data is detected before it can cause the program to fail.

Use the COpy option of the GET statement if you wish to check
values obtained by stream-oriented input. The values will be
listed on the file named in the COpy option. If no file name is
given, SYSPRINT is assumed.

UNIDENTIFIED PROGRAM FAILURE

In most circumstances, an unidentified program failure should
not occur when using the optimizing compiler. Exceptions to
this could include the following:

• When the program is execuied in conjunction with non-PL/I
modules, such as FORTRAN or COBOL.

• When the program obtains, by means of record-oriented
transmission, incorrect values for use in label, entry,
locator, and file variables.

• Errors in job control statements, particularly in defining
data sets.

If execution of a program terminates abnormally without an
accompanying PL/I execution-time diagnostic message, ii is
probable that the error that caused the failure also inhibited
the production of a message. In this situation, it is still
possible to check the PL/I source program for errors that could
result in overwriting areas of the main storage region that
contain executable instructions, particularly the communications
region, which contains the address tables for the execution-time
error-handling routine. These errors may a Iso be presen"t in
modules compiled by the checkout compiler with NODIAGNOSE and
COMPATIBLE and executed in conjunction with the modules produced
by the optimizing compiler. The types of Pl/I program that
might cause the main storage to be overwritten erroneously are:

• Assignment of a value to a non-existent array element. For
example:

DCl ARRAY(10);

DO I = 1 TO 100;
ARRAYCI) = VALUE;

To detect this type of error in a module compiled by the
optimizing compiler, enable the SUBSCRIPTRANGE condition.
For each attempt to access an element outside the declared
range of subscript values, the SUBSCRIPTRANGE condition will
be raised. If there is no on-unit for this condition a
diagnostic message will be printed and the ERROR tion
raised. This facility, although expensive in execution time
and storage space, is a valuable program-checkout aid.

• The use of incorrect locator values for locator (pointer and
offset) variables. This type of error is possible if a
locator value is obtained by means of record-oriented
transmission. Check that locator values created in a
program, transmitted to a data set, and subsequently
retrieved for use in another program, are valid for use in
the second program. .

Chapter 10. Program Checkout 285

An error could also be caused by attempting to free a
non-based variable. This could be caused by freeing a based
variable when its qualifying pointer value has been changed.
For example:

DCL A STATIC,B BASED CP);
ALLOCATE B;
P = ADDRCA);
FREE B;

• The use of incorrect values for label, entry, and file
variables. Errors similar to those described above for
locator values are possible for label, entry, and file
values that are transmitted and subsequently retrieved.

• The use of the SUBSTR pseudovariable to assign a string to a
position beyond the maximum length of the target string.
For example:

DCl X CHAR(3);
1=3
SUBSTReX,2,I) = 'ABC';

The STRINGRANGE condition can be used to detect this type of
error in a module compiled by the optimizing compiler.

COMPILER OR LIBRARY SUBROUTINE FAILURE

SYSTEM FAILURE

If you are absolutely convinced that the failure is caused by a
compiler failure or a library subroutine failure, you should
notify your management, who will initiate the appropriate action
to correct the error. This could mean calling in IBM personnel
for programming support to re6tify the problem. Before calling
IBM for programming support, refer to the instructions for
providing the correct information to be used in diagnosing the
problem. These instructions are given in
Appendix B, "Requirements For Problem Determination And APAR
Submission" on page 400. Meanwhile, you can attempt to find an
alternative way to perform the operation that is causing the
trouble. A bypass is often feasible, since the PL/I language
frequently provides an alternative method of performing a given
operation.

System failures include machine malfunctions and operating
system errors. These failures should be identified to the
operator by a system message.

STATEMENT NUMBERS AND TRACING

The compiler FLOW option provides a valuable program-checkout
aid. The FlOWCn,m) option creates a table of the numbers of the
last "n" branch-out and branch-in statements, and the last BmB
procedures and on-units to be entered. eA 'branch-out'
statement is a statement that transfers control to a statement
other than that which immediately follows it, such as a GOTO
statement. A branch-in statement is a statement that receives
control from a statement other than that which immediately
precedes it, such as a PROCEDURE, ENTRY, or any other labeled
statement.) The figure you choose for In' should be large
enough to provide a usable trace of the flow of control through
the program. Alternatively, if you do not specify nand m
explicitly, defaults for the FLOW option will be used.

The trace table can be obtained by any of the methods described
below.

The trace is printed whenever an on-unit with the SNAP option is
encountered. It gives both the statement numbers and the names
of the containing procedures or on-units. For example, an ERROR

286 OS PL/I Optimizing Compiler: Programmer's Guide

on-unit that results in both the listing of the program
variables and the statement number trace can be included in a
Pl/I program as follows:

ON ERROR SNAP BEGIN;
ON ERROR SYSTEM;
PUT DATA:
END;

A flow trace can be specified as part of the output from the
Pl/I dump facility PlIDUMP, discussed later in "Dumps" on
page 288.

If the OPTIMIZE and REORDER options are used when compiling, the
numbers produced by COUNT and FLOW may be useful but they are
not accurate.

DYNAMIC CHECKING FACILITIES

It is possible for a syntactically-correct program to produce
incorrect results without raising any PL/I error conditions.
This can be attributed to the use of incorrect logic in the PL/I
source program or to invalid input data. Detection of such
errors from the resultant output (if any) can be a difficult
task. It is sometimes helpful to have a record of each of the
values assigned to a variable, particularly label, entry, loop
control, and array subscript variables. This can be obtained by
using the CHECK prefix option. Note that, unless care is
exercised, the indiscriminate use of the facilities described
below will result in a flood of unwanted and unusable printout.

A CHECK prefix option can specify program variables in a list.
Whenever a variable that has been included in a check-list is
assigned a new value, the CHECK condition is raised. The
implicit action for the CHECK condition is to print the name and
new value of the variable that caused the CHECK condition to be
raised. An example of a CHECK prefix option list is:

(CHECKCA,B,C,L)):/* CHECKOUT PREFIX LIST */
TEST: PROCEDURE OPTIONS(MAIN);

DECLARE A etc.,

If the CHECK condition is to be raised for all the variables
used in a program, the CHECK prefix option can be more simply
specified without a list of items. For example:

(CHECK): TEST: PROCEDURE;

CONTROL OF CONDITIONS

During execution of a PL/I object program, a number of
conditions can be raised, either as a result of program-defined
action, or as a result of exceeding a hardware limitation. PL/!
contains facilities for detecting such conditions. These
facilities can be used to determine the circumstances of an
unexpected interrupt, perform a recovery operation, and permit
the program to continue to run. AlternativelYI the facilities
can be used to detect conditions raised during normal
processing, and initiate program-defined actions for the
condition. Note that some of the PL/! conditions are enabled by
default , some cannot be disabled, and others have to be enabled
explicitly in the program. Refer to the OS and DOS PL/I
LanQuage Reference Manual for a full description of each
condition.

Note that the SIGNAL statement can be used to raise any of the
PL/I conditions. Such use permits anyon-units in the program
to be tested during debugging.

Chapter 10. Program Checkout 287

The implicit action for the ERROR condition for which there is
no on-unit, is, in batched processing, to raise the FINISH
condition, and in interactive processing, to give control to the
terminal. The FINISH condition is also raised for the
followings

• When a SIGNAL FINISH statement is executed.

• When a PL/I program completes execution normally.

• On completion of an ERROR on-unit that does not return
control to the PL/I program by means of a GOTO statement.

• When a STOP statement is executed or when an EXIT statement
is executed in a major task.

The implicit action for the FINISH condition in batched
processing is to terminate the task, and, in interactive
processing, to give control to the terminal.

USE OF THE PL/I PREPROCESSOR IN PROGRAM CHECKOUT

CONDITION CODES

During program checkout, it is often necessary to use a number
of the PL/I conditions (and the on-units associated with them)
and subsequently to remove them from the program when it is
found to be satisfactory. The PL/I preprocessor can be used to
include program-checkout statements from the source statement
library. When the program is fully operational, the Y.INClUDE
statement can be removed, and the resultant object program
compiled for execution.

PL/I program checkout statements would include both the enabling
of any conditions that are disabled by default and the provision
of the appropriate on-units. The Y.INCLUDE statement that causes
the inclusion of the program checkout statements would usually
be placed after anyon-units that must remain in the program
permanently in order to cancel their effect during program
checkout.

Condition codes can indicate more precisely what type of error
has occurred where a condition can be raised by more than one
error. For example, the ERROR condition can be raised by a
number of different errors, each of which is identified by a
condition code. You can obtain the condition code by using the
ONCODE built-in function in the on-unit. The condition codes
are described in the OS and DOS PL/I language Reference Manual.

Should the checks given above fail to reveal the cause of the
error, it may be necessary to obtain a printout, or dump, of all
or part of the storage used by the program. The as PL/I
Optimizing Compiler allows you to obtain an execution-time dump
only by calling PLIDUMP.

See as Pl/I Optimizing Compiler: Execution logic, for
information about the organization of the object programs
produced by the optimizing compiler, and how to interpret the
PLIDUMP outputs.

A DD statement with the name PLIDUMP or PLIDUMP must be supplied
to define the data set for the dump.

The data set defined by the PlIDUMP DD statement must have
DSORG=PS specified or assumed by default, and must have one of
the following attributes:

• It must be allocated to SYSOUT.

288 as Pl/I Optimizing Compiler: Programmer's Guide

• It must be allocated to the terminal or unit-record device.

• DISP=MOD must be specified.

The page size of the PLIDUMP output is taken from the PAGESIZE
field of PLITABS.

To obtain a formatted PL/I dump, you must call PLIDUMP. PLIDUMP
can be invoked with two optional arguments. The format of the
CALL PLIDUMP statement is:

CALL PLIDUMP[(options-list
[,user-identification])];

The first argument, option-list, is a character-string
expression that specifies the type of information to be included
in the dump. The options-list may include the following:

T To request a trace of active procedures, begin blocks,
on-units, and library modules.

NT To suppress the output produced by T above.

F To request a complete set of attributes for all files that
are open, and the contents of the buffers used by the files.

NF To suppress the output produced by F above.

S To request the termination of the program after the
completion of the dump. Note: The FINISH condition is not
raised.

C To request continuation of execution after completion of the
dump.

H To request a hexadecimal dump of the storage used by the
program.

NH To suppress the hexadecimal dump.

B If T is specified, to produce a separate hexadecimal dump of
control blocks such as the TCA and the DSA chain that are
used in the trace analysis. If F is specified, to produce a
separate hexadecimal dump of control blocks used in the file
analysis, such as the FCB.

NB To suppress hexadecimal dumps of control blocks.

A To request information relevant to all tasks in a
multitasking program.

E To request that an exit be made from the current task of a
multitasking program and that execution of the program
continues after the completion of the requested dump.

o To request information relevant only to the current task in
a multitasking program.

The defaults assumed for the above options not specified
explicitly are:

T F C A NH NB

The second argument, user-identification, specifies the
identification to be printed at the head of the dump. It can be
a character-string expression of up to 90 characters or a
decimal constant.

Chapter 10. Program Checkout 289

EXAMPLE

TRACE INFORMATION

FILE INFORMATION

HEXADECIMAL DUMP

An example of the CALL PLIDUMP statement is:

CALL PLIDUMP C'TFCNH',
'DUMP AFTER READ');

Trace information produced by PLIDUMP includes a trace through
all the active DSAs. CDSAs will be present for compiled blocks,
such as procedures and on-units, and for library routines.) For
on-units, the dump gives the values of any condition built-in
functions that could be used in the on-unit, regardless of
whether the on-unit actuallY used the condition built-in
function. If a hexadecimal dump is also requested, the trace
information will also include:

• The address of each DSA (Dynamic Storage Area).

• The address of the TCA (Task Communications Area).

• The contents of the registers on entry to the Pl/I
error-handler module (IBMCERR).

• The PSW or the address from which the PL/I error handler
module (IBMBERR) was invoked.

• The addresses of the library module DSAs back to the most
recently-used compiled code DSA.

DSAs and the TCA are described in the as PL/I Optimizing
Compiler: Execution lQ..9ic. A table of statement numbers
indicating the flow of control through the program is produced
if the FLOW option is in effect.

File information produced by PlIDUMP includes the attributes of
all open files, and the contents of all buffers that are
accessible to the dump ."'outine. The information is given in
EBCDIC notation, and, in hexadecimal notation also. The address
and contents of the FCB are then printed. For varying length
records, the RECSIZE is the length of the last processed record.

To use a hexadecimal storage dump, you should understand object
program organization. The hexadecimal dump is a dump of the
region of storage containing the program. The dump is given as
three columns of printed output. The left-hand and middle
columns contain the contents of storage in hexadecimal notation.
The third column contains a EBCDIC translation of the first two
columns. For hexadecimal characters that cannot be represented
by a printable EBCDIC character, a period is printed.

EXECUTION-TIME RETURN CODES

It is possible to pass a return code from a PL/I program to the
program that invoked the Pl/I program. For example, if the PL/I
program is invoked by the operating system, a return code can be
passed either for examination in a subsequent job step if
execution of that step is conditional upon the value of the code
returned, or merely to indicate conditions that were encountered
during execution. Conditional execution of a job step is
determined by use of the COND parameter of the JOB or EXEC
statement.

The return code generated by a Pl/I program consists of 2
elements. One element is specified if the program calls PLIRETC

290 OS Pl/I Optimizing Compiler: Programmer's Guide

or is set to zero by default. The other is specified by the
program management routines of the PL/I library and indicates
the way in which your program terminated. Unless an error is
detected which prevents the PL/I program management routines
from operating correctly, the two elements are added together to
form a total in which the thousands digit indicates the way in
which your program terminated and the hundreds, tens, and units
are set by your program when PLIRETC is called, and can be used
to allow conditional execution of the next step or for any other
purpose you require.

When a PL/I program calls PLIRETC, the argument (return code
value) can be either a constant or a variable with the
attributes FIXED BINARY(31,O). If a return code greater than
999 is specified, the return code is set to 999 and a diagnostic
message is issued.

The meaning of the thousands digit generated by the PL/I program
management routines is as follo;"s:

0000 Normal termination.

1000 STOP or EXIT statement, or a call to PLIDUMP with the S or
E option, or insufficient storage in the ISA.

2000 ERROR condition raised and program terminated without
return from ERROR or FINISH on-unit.

3000 Abends in the 3000-3999 range can be issued by a
user-written IBMBEER module. For further details, see
"The Abend Facility" on page 292.

4000 Error prevented program management routines from
functioning correctly. In this situation the remaining
digits are used to further identify the error as shown
below, and any set by a call to PLIRETC are ignored.

4004 Code returned if the PRY (pseudo register vector) is too
large. Suggested Corrective Action:

Reduce the number of files and/or controlled variables in
the program.

4008 Code returned if PL/I program has no main procedure.
Suggested Corrective Action:

Supply a main procedure.

4012 Not enough main storage available. Suggested Corrective
Action:

Run the program in a larger region.

4020 Code returned if the program is about to enter a permanent
wait state. Suggested Corrective Action:

Check for a WAIT for I/O where no READ or WRITE was
requested, or a HAlT for an EVENT not known to another
active TASK.

4024 Code returned if a task in a multitasking program has
terminated without use of the PL/I termination routines.
Suggested Corrective Action:

Check assembler language subroutines.

4028 Excessive fragmentation of storage. PL/I's working
storage is in 255 fragments, and more is needed.
Suggested Corrective Action:

Chapter 10. Program Checkout 291

ABEND CODES

THE ABEND FACILITY

A larger ISA may help, or change the logic of the program
so that files are closed in (more nearly) inverse order to
the order in which they were opened and that controlled
variables are freed in (more nearly) the inverse of the
order in which they were allocated.

4032 The DSA chain fields have been overlaid. Suggested
Corrective Action:

Run with the SUBSCRIPTRANGE, STRINGRANGE, and STRINGSIZE
conditions enabled. Also, check for logic errors in the
use of POINTER variables and CONTROLLED storage.

4036 A program check occurred during an IMS call statement.
Register 2 points to the PIE/EPIE. Suggested Corrective
Action:

Follow IMS problem determination procedures for program
checks.

If a return code in the 4000-4028 range is encountered and the
cause cannot be traced to a source program error, it may be
necessary to call in IBM program support personnel.
Appendix B, "Requirements For Problem Determination And APAR
Submission" on page 400, describes the materials that will be
required for examination by IBM in such circumstances.

Note that 4000, 4024, 4028, 4032 and 4036, included in the above
listing of return codes, are also abend codes.

I WHEN YOU REALLY NEED AN ABEND

PL/I error handlers attempt to trap most abends and issue a
return code instead. Although this works well for batch
applications, applications running with a database program such
as IMS or CICS often rely on a system-issued abend to initiate a
transaction backout. It is possible to get an abend when the
ERROR condition is raised by modifying a user exit, IBMBEER,
that PL/I supplies.

I PL/I ACTION WHEN THE ERROR CONDITION IS RAISED

When the ERROR Condition is raised, PL/I attempts to enter an
ERROR on-unit.

The PL/I user exit is taken in these cases: The program
terminates with the standard system action and an abend is not
issued by the system. This occurs if the ERROR on-unit ends
with the END statement or if there is no ERROR on-unit.

The PL/I user exit is not taken in these cases: The program
does not terminate with the standard system action and a special
return code is issued. This occurs if the ERROR on-unit is
terminated by a GOTO, STOP, EXIT, or a call to PLIDUMP with the
S or E option. It is assumed that the ERROR on-unit has either
corrected the ERROR condition or has itself initiated the
transaction backout.

292 OS PL/I Optimizing Compiler: Programmer's Guide

I GETTING A SYSTEM-ISSUED ABEND

PL/I supplies the IBMBEER user exit to help with database
applications that rely on a system-issued abend.

The IBMBEER exit is entered if an ERROR on-unit ends with the
standard system action or if no ERROR on-unit is present. You
can replace the IBM-supplied IBMBEER with a user-coded IBMBEER
to cause an abend. For an example of a user-coded IBMBEER
module see OS PL/I Optimizing Compiler Installation Guid~ for
your system.

The IBMBEER user~coded exit should not contain an ABEND macro.
If the exit contains an ABEND macro, PL/! termination will not
complete. Storage and other resources will be lost to the
database system.

Chapter 10. Program Checkout 293

CHAPTER 11. COMMUNICATING BETWEEN PL/I AND ASSEMBLER-LANGUAGE MODULES

OVERVIEW

PARAMETER PASSING

ENVIRONMENT

Writing Assembler language subroutines for Pl/I and calling Pl/I
subroutines from Assembler programs are simple operations,
provided that a set of conventions are carefully followed.
There are two reasons for the need for these conventions I

1. PL/I parameter passing conventions: These are adopted by
Pl/I to allow the length of nonarithmetic data items to be
passed to a called routine.

2. The PL/I environment: This is an arrangement of registers
and control blocks used by Pl/! to simplify error handling,
storage management, and other housekeeping tasks.

If an Assembler routine is called from Pl/I, the parameter
problem can be overcome by using the ASSEMBLER option thus:

DCl ASMSUB ENTRY OPTIONS(ASSEMBlER),
CHARSTRING CHAR(25);

CAll ASMSUBCCHARSTRING)i

This results in the address of the argument being passed
directly rather than the address of a control block that
contains the length and address of the arguments.

If an Assembler routine is to call Pl/I or if Pl/I is to use an
Assembler routine as a function reference, either the Pl/I
conven-tions must be followed or some method must be found of
circumventing them. (See also "Arguments, Parameters, Returned
Values and Return Codes" on page 308.)

Assembler subroutines called from PL/I; The Pl/! environment
causes problems to Assembler subroutines that are called from
PL/I mainly because a SPIE/ESPIE macro is used in Pl/I to set up
an error exit that depends on having register 12 pointing to a
PL/ I contt'ol block known as the TCA (Task Communications Area)
and register 13 pointing at a save area following normal save
area chaining conventions. When PL/I calls an Assembler
subroutine, the subroutine must either forego the use of
register 12 or cancel and reissue the SPIE/ESPIE macro
instruction, either retaining PL/I error handling or setting up
its own. It is normally better to retain PL/I error handling,
because the issuing of two SPIE/ESPIE macro instructions is a
considerable overhead and PL/I error handling normally gives a
useful message when a program check occurs.

For a recursive routine, the PL/I environment provides a ready
made LIFO (last-in first-out) storage stack and an overflow
mechanism. Assembler routines can use this, but must not use
register 12 and should carefully follow the code and
instructions in the examples.

PL/I subroutines called from Assembler: When Pl/I is called
from Assembler, the PL/I envi~onment must be set up before the
Pl/I subroutine is executed. If the Pl/I subroutine is called
only once this can be done in the same manner as it is done when
a Pl/I program is called from the system. To do this the Pl/I
subroutine should be given the MAIN option and the Assembler
subroutine should branch on register 15 to an entry point called

294 OS Pl/I Optimizing Compiler: Programmer's Guide

PlICAllA. If the Pl/I routine is called a number of times, some
device must be employed to prevent the PL/I environment being
discarded at the end of each call. This is because setting it
up is a significant time overhead. The suggested method is to
call a Pl/I procedure which has the MAIN option and for this in
turn to re-call the Assembler program. In this way the Pl/I
environment remains available to PL/I subroutines without time
overhead. If the Assembler routine was itself called from PL/I,
no problems exist because the PL/I environment will already be
in existence.

HOW TO WRITE YOUR ROUTINES

THE PL/I ENVIRONMENT

Examples in this chapter show the code required to interface
between Pl/I and Assembler. Provided you bear in mind the notes
in the examples, you can use the code as it stands together with
your Assembler routines. If you wish to make consistent use of
Assembler-PL/I programming you should, however, read the
remaining sections of the chapter to understand the reasoning
behind the code.

ASSEMBLER ROUTINE CALLED FROM PL/I: Unless you have good
reasons for wanting to do your own error handling, you should
use the code in Figure 129 on page 301 for non-recursive and
non-reentrant routine and the code in Figure 130 on page 302 for
a recursive and reentrant routine. If the routine is to receive
parameters or to return values, study the section "Arguments,
Parameters, Returned Values and Return Codes" on page 308.

ASSEMBLER CALLING PL/I SUBROUTINE: If your PL/I subroutine is
invoked only once, it should, if possible, be given the MAIN
option and called via entry point PlICALLA thus:

l 15,=V(PlICAllA)
BAlR 14,15

Note that PLICALLA is a standard entry point, not the name of a
PL/I routine.

If is impractical to compile the program with the MAIN option,
(it might for example, already be compiled as a Pl/I subroutine)
you can insert its address in PLIMAIN as shown in Figure 126 on
page 296 and then call PlICALlA.

If PL/I routines are to be called a number of times you should
follow the complete scheme shown in Figure 128 on page 298. If
parameters are to be passed or values returned see the
"Arguments, Parameters, Returned Values and Return Codes" on
page 308.

The remainder of this chapter covers the points summarized above
in more detail.

The Pl/I environment is the term used to describe a number of
control blocks created by routines that are provided by the OS
PL/I Resident and Transient libraries to satisfy the
storage-management and error-handling requirements of a PL/!
procedure.

When a PL/I program invokes an Assembler-language routine, the
invoked routine must ensure that the PL/I environment is
preserved. The Pl/I environment is preserved by observing the
standard OS/VS linkage conventions, which include the storing of
register values in a save area, and by ensuring that the content
of register 12"is not modified by the Assembler routine if PL/I
is to handle interrupts that occur during execution of the
Assembler routine. (It is normally best to allow PL/I to manage
error handling. Allowing Assembler language routines to handle
their own errors involves a considerable time overhead--the very
thing Assembler routines are intended to avoid.) Register 13

Chapter 11. Communicating between PL/I and Assembler-language Modules 295

must be set to the address of a new save area established by the
Assembler routine.

In a mixed environment of Pl/I and Assembler-language routines,
if SYSPRINT is to be used anywhere, it should be declared and
opened in the first Pl/I program that gets control. Otherwise,
the results are unpredictable.

ESTABLISHING THE PL/I ENVIRONMENT

The Pl/I environment is established by the OS PL/I Resident
Library routine IBMBPIR and the OS PL/I Transient Library
routine IBMBPII for a nonmultitasking program and by IBMTPIR and
IBMTPII for a multitasking program. An Assembler-language
routine that invokes a PL/I procedure for which the PL/I
environment has not been established can use one of three
standard entry points to establish the environment. The routine
IBMBPIR or IBMTPIR (with IBMBPII or IBMTP!I) is entered through
a control section which has three standard entry points,
PlISTART, PlICAllA, and PLICALLB; which is further described in
"Calling PL/I Procedures from Assembler language" on page 303.

USE OF PLIMAIN TO INVOKE A PL/I PROCEDURE

LA
L
L
ST
L
BALR

Once IBMBPIR or IBMTP!R (with IBMBP!I or IBMTPII) has created
the environment, it transfers control to the PL/! procedure
whose address is contained in the compiler-generated control
section PLIMAIN. Normally, after link editing, PlIMAIN will
contain the entry point address of the first, or only, PL/I main
procedure in the program.

PL/I provides three standard entry points for calling PL/I via
the initialization routines and PLIMAIN. They differ in the
arguments that can be passed, see "Arguments, Parameters,
Returned Values and Return Codes" on page 308.

If an Assembler subroutine calls Pl/I by one of the standard
entry points, control is passed to the initialization routines
which, when they have set up the PL/I environment, pass control
to the address in PLIMAIN. Thus, if any of the standard entry
points are used, the Assembler program must ensure that tile
address of the required PL/I routine is in PLIMAIN. This will
happen if the required procedure has the MAIN option and is the
first or only MAIN procedure in the load module. Where this is
not the case the address must be set in PLIMAIN as in
Figure 126. A PLIMAIN control section will always be available
enabling this scheme to be used.

I,ARGLIST
2,=V{PLIMAIN)
3,=V(MYPROG)
3,O(2)
15,=V(PLICAlLA)
14,15

POINT Rl at ARGLIST
CHANGE ADDRESS IN PLIMAIN
TO THAT OF
MYPROG
BRANCH TO ADDRESS IN PLIMAIN VIA
PLICALLA WHICH SETS UP PL/I ENVIRONMENT

ARGLIST DC A(argl) FIRST ARGUMENT PASSED TO MYPROG
DC A(X'80000000' + arg2) LAST ARGUMENT PASSED TO MYPROG

Figure 126. Inserting a PL/I Entry Point Address in PLIMAIN and Calling the Entry

296 OS PL/I Optimizing Compiler: Programmer's Guide

ASM1 CSECT
DC C'ASMMAIN',All(7)

MAINPROC EQU * 'MAIN' ENTRY POINT
STM 14,12,12(13) SAVE REGS
BALR 11,0 GET
USING *,11 ADDRESSABILITY

GET STORAGE FOR A NEW DSA
LA 0,104 LENGTH REQUIRED 104 BYTES
L 1 .. 76(13) ADDRESS OF START OF CURRENTlY-
ALR 0,1 AVAILABLE STORAGE
Cl 0 .. 12(12) IS THERE ENOUGH SPACE LEFT?
BNH ENOUGH YES
L 15,116(12) LOAD ADDR. OF OVERFLOW ROUTINE
BALR 14,15 AND BRANCH TO IT.

ENOUGH EQU *
ST 0,76(1) STORE ADDRESS OF START OF

* REMAINING AVAILABLE STORAGE
* IN NEW DSA AT OFFSET 76

ST 13,4(1) SET BACK CHAIN
ST 1,8(13) SET FORWARD CHAIN
MVC 72(4,1),72(13) COpy ADDRESS OF WORKSPACE FOR

USE BY THE PL/! LIBRARY
LR 13,1 POINT 13 AT NEW DSA
MVI O(13),X'80' SET FLAGS IN THE DSA TO
MVI 1(13),X'OO' PRESERVE PL/I
MVI 86CI3),X'91' ERROR HANDLING
MVI 87CI3),X'CO' IN THE ASSEMBLER ROUTINE

(Your Assembler routine goes here. Register 12 must not be altered.
PL/I subroutines are called as shown below,)

* CALL PL/I
L
BALR

SUBROUTINE
15,=V(GETREC)
14,15

PL/I INPUT ROUTINE

* TERMINATE * RETURN TO
L
LM

TERMINATE PL/I ENV
13,4(13)

LR
BR
ENTRY

PLIMAIN DC
END

14 .. 12,12{I3)
0,13
14
PLIMAIN
ACMAINPROC)

RESTORE REGS.
GET A{TERMINATING DSA)
RETURN TO Pl/! TERMINATION ROUTINES
MAKE NAME 'KNOWN' EXTERNALLY
'f1AIN PROCEDURE'

Note: This code results in the entire program running in the PL/! environment.
It is an alternative to the scheme in Figure 128 on page 298. The load module
entry point invoked by the system is PlISTART which passes control via
PLIMAIN to MAINPROC.

Figure 127. Skeletal Code for an Assembler Program that Calls PL/I Subroutines a
Number of Times

Once the PL/I environment has been established, it can, as shown
in Figure 127 and Figure 128 on page 298, be preserved, and any
PL/I procedure can be invoked subsequently by loading the
address of its entry point into register 15, and executing a
branch-and-link-register instruction to it.

Chapter 11. Communicating between Pl/I and Assembler-Language Modules 297

//OPT13#3 JOB
//STEP1 EXEC ASMHC,PARM.C='OBJECT,NODECK'
//C.SYSLIN DD DSN=&&LOADSET,UNIT=SYSDA,DISP=(NEW,PASS),
// SPACE=(80,(200,100»,DCB=BLKSIZE=80
//C.SYSGO DD DUMMY
//C.SYSIN DD *
MYPROG CSECT

*
* * * '*

'* * '*

'*
ASSEM

ENOUGH

'* *

'*
* *
'*
'* '*

ENTRY ASSEM
STM 14,12,12(13)
BALR 10,0
USING *,10
LA 4,SAVEAREA
ST 13,4(4)
5T 4,8(13)
LR 13,4

SR

L 15,=V(PLICALLA)
BALR 14,15

L 13,4(13)
L 14,12(13)
LM 1,12,24(13)
BR 14

DC C'ASSEM'
DC AL1(5)
DS OH
STM 14,12,12(13)
BALR 10,0
USING *,10

LA 0,104
L 1,76(13)
ALR 0,1
CL 0,12(12)
BNH ENOUGH
L 15,116(12)
BALR 14,15
EQU '*. ST 0,76(1)

ST 13,4(1)
ST 1,8(13)
MVC 72(4,1),72(13)

LR 13,1
MVI 0(13),X'80'
MVI 1(13),X'00'
MVI 86(13),X'91'
MVI 87(13),X'CO'

SR 5,5

SR

ESTABLISH SUPERVISOR REGISTERS
ESTABLISH ADDRESSABILITY

CURRENT SAVE AREA ADDRESS
STORE CHAINBACK ADDRESS
STORE CHAIN FORWARD ADDRESS
STORE CURRENT SAVE AREA ADDRESS

SET REGISTER 1 TO ZERO WHEN
A PARAMETERLESS ENTRY POINT TO
PROCEDURE THAT DOES NOT RETURN
A VALUE IS TO BE INVOKED

CALL THE PL/I PROCEDURE THAT
HAS OPTIONS{MAIN) AND SO SET
UP THE PL/I ENVIRONMENT AND
THEN CALL ASSEM.

ON RETURNING FROM PL/I
RESTORE REGISTERS
AND
RETURN TO THE SUPERVISOR.

THE NAME IN PL/I FORMAT

STORE PL/I REGISTERS
FOR PROCEDURE nMAIN"
ESTABLISH ADDRESSABILITY
GET STORAGE FOR A NEW DSA
LENGTH REQUIRED 104 BYTES
ADDRESS OF START OF CURRENTLY­
AVAILABLE STORAGE
IS THERE ENOUGH SPACE LEFT!
YES
LOAD ADDR. OF OVERFLOW ROUTINE
AND BRANCH TO IT.

STORE ADDRESS OF START OF
REMAINING AVAILABLE STORAGE
IN NEW DSA AT OFFSET 76
SET BACK CHAIN
SET FORWARD CHAIN
COpy ADDRESS OF WORKSPACE FOR
USE BY THE Pl/I LIBRARY
POINT 13 AT NEW DSA
SET FLAGS IN THE DSA TO
PRESERVE PL/I
ERROR-HANDLING
IN THE ASSEMBLER ROUTINE

R5 MUST BE ZERO WHEN CALLING
AN EXTERNAL PL/I PROCEDURE.

SET REGISTER 1 TO ZERO WHEN
A PARAMETERLESS ENTRY POINT TO
PROCEDURE THAT DOES NOT RETURN
A VALUE IS TO bE INVOKED

Figure 128 (Part 1 of 2). Invoking Pl/I Procedures from an Assembler Routine

298 OS PL/I Optimizing Compiler: Programmer's Guide

* LOOP

*

L 15,=V(HEAD)
BALR 14,15

EQU
LA
L
BALR

L
LTR
BM

LA
L
BALR
B

* I,ARGTLST1
15,=V(PlIN)
14,15

3,RESUlT
3,3
OUTLOOP

1,ARGTLST2
15,=VCPlOUT)
14,15
LOOP

OUTLOOP EQU 3E

3E

SR
L
BAlR

l
LM
BR

1,1
l5,=VCFOOT)
14,15

13,4(13)
14 .. 12,12(13)
14

ACDATA)

CALL PL/I TO 'HEAD' PAGE

CALL PL/I TO READ AND ADD

TEST RESULT A.ND
BRANCH OUT IF IT IS NEGATIVE.

CALL PL/I TO OUTPUT RESULT

SET REGISTER 1 TO ZERO
CALL PL/I TO 'FOOT' PAGE

RETURN TO THE PL/I PROC WITH
OPTIONS(MAIN).

ARGTlST1 DC
ARGTLST2 DC
DATA DC
RESULT DC
SAVEAREA DC

A(X'80000000' + RESULT)
F I 123'
FlO'
18F 1 0'

END MYPROG
/*
//STEP2 EXEC PLIXClG
//PLI.SYSIN DD * * PROCESS;

MAIN: PROC OPTIONSCMAIN);
DCL ASSEM ENTRY;
CALL ASSEM;
END;

* PROCESS;
PLIN: PROC(I) RETURNS(FIXED BIN(Sl»;

DCl (I,J) FIXED BIN(31)j
GET LIST(J);
RETURNCI+J);

HEAD: ENTRY;
PUT lIST('THE FIRST LINE OF OUTPUT AT THE TOP OF THE PAGE')

PAGE;
PUT SKIP(2);
END;

3E PROCESS;

/3E

PLOUT: PROC(K);
DCL K FIXED BINeSl);
PUT LISTCK);
RETURN;

FOOT: ENTRY;
PUT LISTC'END OF THE OUTPUT FOR THIS JOB') SKIP(2);
END;

//GO.SYSIN DD 3E
50 77 123 234 345 456 -23 -100 -123 -234

/3E

Figure 128 (Part 2 of 2). Invoking PL/I Procedures from an Assembler Routine

Chapter 11. Communicating between PL/! and Assembler-language Modules 299

THE DYNAMIC STORAGE AREA (DSAl AND SAVE AREA

Whenever a PL/I procedure is invoked, it requires for its own
use a block of storage known as a dynamic storage area (DSA). A
DSA for a PL/I procedure consists of a save area for the
contents of registers, a backchain address that points to the
save area for the previous routine, and storage for variables
and miscellaneous housekeeping items.

An Assembler routine invoked from PL/I should take one of the
following actions to allow the PL/I DSA chain to function. The
choice depends on whether the Assembler routine needs to set up
its own error exit and whether or not it, in turn, calls furthe~
PL/I routines.

1. If the Assembler routine is not to set up its own erro~
exit, it must store the contents of all registers in the
existing Pl/I DSA and establish its own save area in which
the backchain address of the PL/I DSA must be stored. The
first byte of the save area must be set to zero unless the
save area is in Pl/I's storage (see "Invoking a Recursive or
Reentrant Assembler Routine" on page 301). The second word
of the save area is the backchain address. The remainder of
the save area would only be used by a routine invoked from
the Assembler routine or by the Pl/I error handler, if used,
for saving the Assembler routine's registers.

2. If the Assembler routine is going to set up its own error
exit and does not invoke a further Pl/I routine, the
SPIE/ESPIE macro must be used to reset the interrupt handler
but only those registers that it modifies must be stored.
The SPIE macro is also discussed in "Overriding and
Restoring PL/I Error-Handling" on page 306.

CALLING ASSEMBLER ROUTINES FROM Pl/I

INVOKING A NONRECURSIVE AND NONREENTRANT ASSE~IBLER ROUTINE

When a Pl/I program invokes a nonrecursive and nonreentrant
Assembler-language routine, the Assembler-language routine must
follow OS/VS linkage conventions and save the registers for use
by Pl/I on return from the Assembler-language routine. The
register values are stored in the Pl/I DSA, the address of which
is contained in register 13 on entry to the Assembler-language
routine. This address must then be stored in the backchain word
in a save area defined by the Assembler routine itself. The
appropriate Assembler instructions should be executed
immediately when the Assembler routine is invoked in order to
achieve the given objectives. Before returning to the Pl/I
routine, the Assembler routine must restore the registers to the
values held when the PL/I routine invoked the Assembler routine.

If register 13 does not point to a valid DSA, Pl/I error
handling may not work properly while the Assembler routine is
executing. If register 13 does not point to a valid DSA, the
Assembler routine must replace Pl/! error handling as described
in "Overriding and Restoring PL/I Error-Handling" on page 306.

Figure 127 on page 297, Figure 128 on page 298, and Figure 130
on page 302, give examples of how to create a valid DSA. For an
example of a program that assumes no interrupts, see Figure 129
on page 301. The example in Figure 129 on page 301 also assumes
that the Assembler routine uses register 10 as its base
register. If you insert your Assembler instructions at the
point indicated in the figure your Assembler subroutine can be
called by a Pl/I CALL statement and you need have no knowledge
of the Pl/I environment.

300 OS Pl/I Optimizing Compiler: Programmer's Guide

To be valid for error handling purposes, the DSA pointed to by
register 13 must:

• Be 88 bytes long

• Begin on a double word boundary

• Bytes 0 and 1 must contain x'8000'

• The word at offset 72 must point to an available library
work space (the word at offset 72 in the previous DSA does
this)

• The word at offset 76 must contain the address of the next
available byte of PL/I storage, which must be the address of
a double word

• Bytes 86 and 87 must contain x'91CO'

• The PL/I LIFO stack storage management scheme should be used

INVOKING A RECURSIVE OR REENTRANT ASSEMBLER ROUTINE

DUMREC CSECT
ENTRY
DC
DC

SRCH DS
STM
BAlR
USING
LA
5T
ST
LA

L
LM
BR

SAVEAREA DC

SRCH

A recursive or reentrant Assembler routine invoked from PL/I
must obtain a separate save area for each invocation, and so
cannot use the method of having a static save area illustrated
in Figure 129. The suggested method, described in Figure 128 on
page 298, is to make use of the PL/I storage management scheme.
This obtains storage in a LIFO (last in/first out) stack and can
use the PL/I storage overflow routine to attempt to obtain
further storage when the storage initially available for dynamic
use by the program is used up. This method is referred to as
obtaining a DSA.

The first byte of a DSA set up using the Pl/I storage scheme is
used in PL/I error handling. Consequently, it must be set to a
special value depending on whether you wish to use Pl/I error
handling in the Assembler routine.

C' SRCH'
AL1(5)
OH
14,11,12(13) STORE PL/I REGISTERS IN PL/I DSA
10 .. 0 ESTABLISH BASE REGISTER
*,10
4,SAVEAREA
13 .. 5AVEAREA+4 STORE PL/I DSA ADDRESS IN SAVE AREA
4,8(13)
13 .. SAVEAREA LOAD SAVE AREA ADDRESS

ASSEMBLER
ROUTINE

13,4(13) RESTORE PL/I REGISTERS
14,11,12(13) AND
14 RETURN TO PL/I
20F'O' ALLOCATE 80 BYTE SAVE AREA

Figure 129. Skeletal Code for a Non-Recursive Assembler Routine to be Invoked from
PL/I

Chapter 11. Communicating between PL/I and Assembler-Language Modules 301

DUMREC

REC

*

*

*

ENOUGH

*'
*'
*

The DSA can be used in the PL/I manner to obtain storage that
will be unique to each invocation. See Figure 130.

Additional storage can be obtained within the DSA for use by
each invocation of the Assembler routine. The total length of
the DSA must be a multiple of 8 bytes.

CSECT
ENTRY REC
DC C'REC'
DC AL1(3)
DS OH
STM 14,11,12(13)
BALR 10,0
USING *,10
LR 4,1

LA
L

ALR
CL

BNH
L
BALR
EQU
ST

ST

0,96
1,76(13)

0,1
0,12(12)

ENOUGH
15,116(12)
14,15

* 0,76(1)

13,4(1)

STORE CALLER'S REGISTERS IN CALLER'S DSA
ESTABLISH BASE REGISTER

SAVE ANY PARAMETER LIST ADDRESS
PASSED FROM CALLING ROUTINE
PUT THE LENGTH OF THE REQUIRED DSA IN REG 0
LOAD THE ADDRESS OF THE NEXT AVAILABLE
BYTE OF STORAGE AFTER THE CURRENT DSA
ADD ADDRESSES
COMPARE RESULT WITH ADDRESS OF LAST AVAILABLE
BYTE IN STORAGE THAT CAN BE USED

LOAD AND BRANCH TO THE PL/I STORAGE OVERFLOW
ROUTINE TO ATTEMPT TO OBTAIN MORE STORAGE

STORE THE ADDRESS OF THE NEXT AVAILABLE
BYTE IN STORAGE AFTER THE NEW DSA
STORE THE CHAIN-BACK ADDRESS OF THE PREVIOUS
DSA IN THE CURRENT DSA

MVC 72(4,1),72(13) COpy ADDRESS OF LIBRARY

LR
MVI
MVI
MVI
MVI

13,1
O(13),X'80'
1(13),X'00'
86(13),X'91'
87(13),X'CO'

WORKSPACE
STORE THE ADDRESS OF THE NEW DSA IN REGISTER 13
SET FLAGS IN DSA TO
PRESERVE PL/I
ERROR-HANDLING
IN THE ASSEMBLER ROUTINE

ASSEMBLER
ROUTINE

L 13,4(13) RELEASE CURRENT DSA
LM 14,11,12(13) RESTORE CALLER'S REGISTERS
BR 14

DSA Length: In addition to its use as a save area,
the DSA can be used for working storage that will be unique
to each invocation.
Such sto.rage starts at offset 88 and must be acquired in
multiples of 8 bytes so that total DSA length is a multiple of 8.
The routine above uses 8 bytes giving a total DSA length of 96.

Figure 130. Skeletal Code for a Recursive or Reentrant Assembler Routine to be
Invoked from PL/I

Also the entry point should be preceded by the name of the
Assembler program, so that the name can be printed in error
messages and PLIDUMP. This should be aligned so that the
character string name immediately precedes a l-byte length field
(containing the length of the name in hex), which immediately
precedes the entry point of the Assembler routine.

302 OS PL/I Optimizing Compiler: Programmer's Guide

USE OF REGISTER 12

If an Assembler routine that modifies register 12 is to be
invoked by a PL/I procedure, any program-check interrupts will
result in an unpredictable program failure unless the routine
establishes its own error handling for program-check interrupts.
Consequently, the routine should be amended to use a register
other than register 12 so that the PL/I error-handler can be
used, or it can issue a supervisor SPIE/ESPIE or STAE/ESTAE
macro to establish its own program interrupt or abnormal
termination handling facilities. The routine must subsequently
restore PL/I error-handling facilities before returning to Pl/I.
This is discussed further in "Overriding and Restoring Pl/I
Error-Handling" on page 306. (A routine that changes the
content of register 12 should also store it on entry and restore
it on return.)

CALLING PL/I PROCEDURES FROM ASSEMBLER LANGUAGE

The simplest way to invoke a single external PL/I procedure from
an Assembler-language routine is to give the PL/I procedure the
MAIN option and invoke it using entry point PLICALlA. All that
is required is to load the address of PLICALLA into register IS
and then to branch and link to it. When PLICALLA is used in
this way, the PL/I environment is created and control is then
passed by way of PLIMAIN to the first (or only) main PL/I
procedure in the program. Use of this technique will cause the
PL/I environment to be established separately for each
invocation. If the routine you require is not the first or only
MAIN procedure, you can put its address in PLIMAIN using the
code shown in Figure 126 on page 296.

ESTABLISHING THE PL/I ENVIRONMENT FOR MULTIPLE INVOCATIONS

If the Assembler routine is to invoke either a number of PL/I
routines or the same PL/I routine repeatedly, the creation of
the PL/I environment for each invocation will be unnecessarily
inefficient. The solution is to create the PL/I environment
once only for use by all invocations of PL/I procedures. This
can be achieved by invoking a main PL/I procedure which
immediately reinvokes the Assembler routine. The Assembler
routine must preserve the PL/I environment and is then able to
invoke any number of PL/! procedures directly. The example in
Figure 128 on page 298 contains an Assembler-language routine
that establishes the PL/I environment once only for multiple
invocations of Pl/I procedures. An alternative is to establish
the Assembler routine as a 'main procedure' as shown in
Figure 127 on page 297. The code in this figure, used around
your Assembler routine will allow PL/I subroutines to be called
with the minimum overhead.

In Figure 128 on page 298, the Assembler routine MYPROG receives
control initially from the supervisor, and invokes the PL/I main
procedure MAIN using the entry point PlICALLA to the PL/I
initialization routine. The PL/I procedure MAIN immediately
reinvokes the same Assembler routine at the entry point ASSEM.
Note that, in this example, this name must be an odd number of
characters to ensure that the next instruction is halfword
aligned. At this entry point, the PL/I environment is stored,
and a new DSA, 104 bytes in length, is created in a manner
similar to that previously given for creating a DSA in a
recursive or reentrant Assembler-language routine. If there is
insufficient room for the new DSA, the PL/I overflow routine is
invoked to attempt to obtain storage for the DSA elsewhere in
storage.

The instructions in the Assembler routine following the label
ENOUGH through to the instruction that loads the address of the
Pl/I entry point HEAD are concerned with setting up the DSA so
that the correct environment exists when the routine invokes the
external PL/I procedures PLIN and PlOUT and the secondary entry
points within them. These instructions should always be present

Chapter 11. Communicating between PL/! and Assembler-language Modules 303

in order to preserve the PL/I environment set up by the main
procedure for subsequent use by any Assembler-invoked PL/I
procedures.

Note that when an external PL/I procedure is invoked, register 5
must be set to zero, and that a PL/I procedure, such as PLIN in
this example, that returns a value will assign the value to the
last address in the argument list, ARGTLSTI. This address is
the address of the Assembler-defined storage for RESULT. The
high-order bit of the fullword containing the address of RESULT
in ARGTLSTI indicates that it is the last fullword in the
argument list.

If an Assembler-language routine invokes a PL/I procedure
without passing any parameters to it and without expecting any
value to be returned from it, register 1 must be set to zero.
In this example, the procedure PlIN contains a RETURN
(expression) statement, but when invoked through the
parameterless entry point HEAD, does not return a value to the
invoking routine. Similarly, the procedure PLOUT contains the
parameterless entry point FOOT and does not return a value.

An alternative is to set up and discard the PL/I environment for
each call to PL/I by calling PlICALlA, PlICAllB, or PLISTART.
If this is necessary and the procedure to be called is a Pl/I
procedure that is not the first (or only) main procedure in the
program, the user must insert in PlIMAIN the address of the
appropriate entry point to the required Pl/I procedure. The
example in Figure 126 on page 296 sets the address in PlIMAIN to
that of the external entry name MYPROG.

PL/I CALLING ASSEMBLER CALLING PL/I

The information given in the preceding sections should be
sufficient to write programs that include a PL/I procedure that
invokes an Assembler-language routine that invokes a further
PL/I procedure. Figu~e 128 on page 298 contains an example of a
program that performs this type of processing.

A PL/I procedure can invoke an Assembler routine, which in turn
invokes a PL/I procedure, that was passed as a parameter to the
Assembler routine. The second PL,I proceciure can reference
variables within the first PL/I procedure, which is the
statically containing block. To accomplish this referencing,
the Assembler routine must load register 5 from the second word
of the Entry Data Control Block, which was passed as a
parameter. Register 5 must be loaded before calling the PL/I
routine. Figure 131 on page 305 demonstrates this process; the
assignment statement in P2 modifies the same variable X which
was declared in PI, the staticallY encompassing block.

304 OS PL/! Optimizing Compiler: Programmer's Guide

//STEPI EXEC ASMFC,PARM.ASM='OBJECT,NODECK'
//ASM.SYSGO DD DSN=&&LOADSET,UNIT=SYSSQ,DISP=(NEW,PASS),
// SPACE=(80,(200,100»,DCB=BLKSIZE=80
//ASM.SYSIN DD *
A CSECT

REC

* *

* ENOUGH

/*

ENTRY REC
B 8(0,15) ADDED TO BRANCH AROUND THE DECLARATIONS
DC C'REC'
DC ALl(3)
DS OH
STM 14,11,12(13) STORE CALLER'S REGISTERS IN CALLER'S DSA
BALR 10,0 ESTABLISH BASE REGISTER
USING *,10
LR 4,1

LA

L

ALR
CL

BNH
L
BALR

0,96

1,76(13)

0,1
0,12(12)

ENOUGH
15,116(12)
14,15

*

SAVE ANY PARAMETER LIST ADDRESS
PASSED FROM CALLING ROUTINE
PUT THE LENGTH OF THE REQUIRED
DSA IN REG 0
LOAD THE ADDRESS OF THE NEXT AVAILABLE
BYTE OF STORAGE AFTER THE CURRENT DSA
ADD ADDRESSES
COMPARE RESULT WITH ADDRESS OF LAST
AVAILABLE BYTE IN STORAGE
THAT CAN BE USED

LOAD AND BRANCH TO THE PL/I STORAGE
OVERFLOW ROUTINE TO ATTEMPT TO OBTAIN
MORE STORAGE

EQU
ST 0,76(1) STORE THE ADDRESS OF THE NEXT AVAILABLE

BYTE IN STORAGE AFTER THE NEW DSA
ST

MVC

LR

MVI
MVI
MVI
MVI

13,4(1) STORE THE CHAIN-BACK ADDRESS OF THE
PREVIOUS DSA IN THE CURRENT DSA

72(4,1),72(13) COpy ADDRESS OF LIBRARY
WORKSPACE

13,1 STORE THE ADDRESS OF THE NEW DSA IN
REGISTER 13

O(13),X'80' SET FLAGS IN DSA TO
1(13),X'OO' PRESERVE PL/I
86(13),X'91' ERROR-HANDLING
87(13),X'CO' IN THE ASSEMBLER ROUTINE

L 4,4(13)
L 4,24(4)
L 4,0(4)

L 15,0(4)
L 5,4(4)

SR 1,1
BALR 14,15

ADDRESS OF CALLER'S DSA
ADDRESS OF PARMlIST PASSED TO ROUTINE A
ADDR OF THE PARAMETER, I.E. THE
CONTROL BLOCK
ADDRESS OF THE ENTRY POINT
DSA ADDRESS OF THE STATICALLY
ENCOMPASSING BLOCK
INDICATE NO PARMLIST
CALL THE ROUTINE

L 13,4(13) RELEASE CURRENT DSA
LM 14,11,12(13) RESTORE CALLER'S REGISTERS
BR 14
END

Figure 131 (Part 1 of 2). Passing Parameters from PL/I to Assembler to Pl/I.

Chapter 11. Communicating between PL/I and Assembler-Language Modules 305

//STEP2 EXEC PLIXCLG
//PlI.SYSIN DD * * PROCESS;

PI: PROC OPTIONSCMAIN);
DeL X BIN FIXED;
DCL A EXTERNAL ENTRY (ENTRY) OPTIONS(ASSEMBLER INTER);

X=O;
PUT FILE(SYSPRINT) SKIP EDIT ('X=',X) (A(2),A);
CALL A(P2);

GO TO FINISH;

P2: PROC;
X=l;

END P2;

FINISH: PUT FIlECSYSPRINT) SKIP EDIT C'X=',X) CA(2),A);
END PI;

/*

Figure 131 (Part 2 of 2). Passing Parameters from PL/I to Assembler to Pl/I.

ASSEMBLER CALLING PL/I CALLING ASSEMBLER

The information given in the preceding sections should be
sufficient to write programs that include an Assembler-language
routine that invokes a PL/I procedure that in turn invokes an
Assembler-language routine. Figure 123 on page 298 contains an
example of a program that performs this type of processing.

OVERRIDING AND RESTORING PL/I ERROR-HANDLING

An Assembler-language routine invoked from Pl/I can override
Pl/I error-handling by issuing its own SPIE/ESPIE macro to
handle program interrupts or STAE/ESTAE macro to handle abnormal
terminations. Normally there is little advantage in doing this
as the Pl/I error handler produces meaningful messages when an
interrupt occurs in an Assembler routine, and furthermore, PL/I
on-units in the calling program can be used.

Under MVS/XA , PL/I Release 5 uses the ESPIE and ESTAE macros.
The SPIE and STAE macros are used by Pl/I Release 4 and SPIE and
ESTAE by Pl/I Release 5 under MVS/SP Release 1.

If the Assembler subroutine needs its own error exit, a
SPIE/ESPIE macro must be issued. When the SPIE/ESPIE is issued
the address of the PL/I PICA or fake PICA must be saved. A
routine that cancels PL/I error-handling must restore the Pl/I
error-handling facilities before returning to the PL/I program.
It does this by issuing either a STAE/ESTAE macro with an
operand of zero or an execute form of the SPIE/ESPIE macro
restoring the saved PL/I PICA or fake PICA, according to the
macros used to cancel the PL/I error-handling. The example in
Figure 132 on page 307 shows how these macros are used to cancel
and subsequently restore PL/I error-handling. The code can be
incorporated into your routines if you want to specify your own
error exit.

306 OS Pl/I Optimizing Compiler: Programmer's Guide

//STEPI EXEC ASMFC,PARM.ASM='LOAD,NODECK'
//ASM.SYSGO DD DUMMY
//ASM.SYSIN DD *
ASSEMl
* * *

*** NOTE

* *

PRINT NOGEN
CSECT

SPACE
L
TM
BNZ

3
4,16
116(4),X'80'
DOXACODE

ASSEMBLER conE FOR INITIALIZING PL/I
ENVIRONMENT GOES HERE 1

GET CVT ADDRESS
IS IT AN XA SYSTEM!

*** ESTAE
eMS MUST STILL USE STAE MACRO

ESTAEXIT,PURGE=NONE,ASYNCH=YES,TERM=NO
STAE MACROS ARE STACKED

SPIE SPIEEXIT,((1,13),1S)
ST 1,SPIETOOK NEED TO REMEMBER TOKEN
B MAINLINE
SPACE

DOXACODE EQU * FOR XA ERROR HANDLING
SPLEVEL SET=2 USE XA MACROS
ESTAE ESTAEXIT,PURGE=NONE,ASYNCH=YES,TERM=NO
ESPIE SET,ESPIEXIT,(Cl,13),1S)
ST l,SPIETOOK
SPLEVEL SET=l USE OLD LEVEL MACROS

MAINLINE EQU *
* * THIS IS WHERE THE CODE WILL GO
*
STOPRUN

UNDOXACD

ALDONE
* * * ESPIEXIT

EQU
ESTAE
L
L
TM
BO
SPIE
B
EQU
ESPIE
ESTAE

* o
l,SPIETOOK

4,16
l16(4),X'80'
UNDOXACD

MF=CE,(1»
ALDONE

* RESET,(1)
o

EQU *
BR 14

XA AND NON-XA SAME FOR RESET OPTIONS
PRE-LOAD TOKEN
GET CVT ADDRESS
IS IT AN XA SYSTEM?

RESET TO PL/I ERROR HANDLER
POP OFF ESTAE ENVIRONMENT
RETURN TO COMPILED CODE

ASSEMBLER CODE FOR TERMINATING PL/I
ENVIRONMENT GOES HERE 1

SPIEEXIT EQU *
BR 14

ESTAEXIT EQU *
SETRP WKAREA=Cl),DUMP=NO,RC=4,RETADDR=STOPRUN
BR 14

SPIETOOK DC F'O' SAVE AREA FOR SPIE/ESPIE TOKENS
IHASDWA DSECT=YES,VRAMAP=NO

END
//

lFor an example of this code, see Figure 127 on page 297.

Figure 132. Method of Overriding and Restoring PL/I Error-Handling

Chapter 11. Communicating between PL/I and Assembler-Language Modules 307

ARGUMENTS. PARAMETERS, RETURNED VALUES AND RETURN CODES

Arguments are passed between PL/I and Assembler routines by
means of lists of addresses known as "parameter lists." Each
address in a parameter list occupies a fullword in main storage.
The last fullword in the list has its high-order bit turned on
to enable it to be recognized. If the parameter list is being
passed to a function reference, then the last word corresponds
to the return value field in the function.

Each address in a parameter list is either the address of a data
item or the address. of a control block that describes a data
item. Data items themselves are never placed directly in
parameter lists.

RECEIVING ARGUMENTS IN AN ASSEMBLER-LANGUAGE ROUTINE

When an Assembler routine is invoked by a PL/I routine by means
of a CALL statement or a function reference, the Assembler
routine will receive the address of a parameter list in register
1. The meaning of the addresses in the parameter list depends
upon whether or not the entry point of the Assembler routine has
been declared with the ASSEMBLER option. These two cases are
discussed separately in the following paragraphs. The ASSEMBLER
option is fully described in the language reference manual for
this compiler.

ASSEMBLER ROUTINE ENTRY POINT DECLARED WITH THE ASSEMBLER OPTION

The ASSEMBLER option is provided to simplify the passing of
arguments from PL/I to Assembler routines. It specifies that
the parameter list set up by PL/I is to contain the addresses of
actual data items, rather than the addresses of control blocks,
ir~espective of the types of data that are being passed. Thus
if, for example, an array is passed from PL/I to an Assembler
routine, the address in the parameter list is that of the first
element of the array.

Note that if a particular data item is not byte-aligned (for
example, an unaligned bit string), the address in the parameter
list is that of the byte that contains the start of the data
item. Also, varying length character and bit strings are
preceded in storage by a 2-byte field specifying the current
length of the string, and it is the address of this prefix that
is placed in the parameter list.

An Assembler routine whose entry point has been declared with
the ASSEMBLER option can be invoked only by means of a CALL
statement. It cannot be used as a function reference.

ASSEMBLER ROUTINE ENTRY POINT DECLARED WITHOUT THE ASSEMBLER OPTION

If the entry point of the Assembler routine has not been
declared with the ASSEMBLER option, each address in the
parameter list is either the address of a data item or the
address of a control block, depending on the type of data that
is being passed.

For arithmetic element variables, the address in the parameter
list is that of the variable itself. For all other problem data
types, the address in the parameter list is that of a control
block known as "locator/descriptor." For program control data,
the address in the parameter list is that of a control block.
The formats of locator/descriptors and of control blocks for
program control data are given in as Pl/I Optimizing Compiler:
Execution loaic.

It is recommended that the use of this type of linkage is
avoided wherever possible. Access to locator descriptors is
normally only necessary when the full attributes of the
arguments are not known by the Assembler routine. The use of

308 as PL/I Optimizing Compiler: Programmer's Guide

function references (which cannot be used with the ASSEMBLER
option) can be avoided by passing the receiving field as a
parameter to the Assembler routine.

PASSING ARGUMENTS FROM AN ASSEMBLER-LANGUAGE ROUTINE

Arguments can be passed from Assembler to Pl/I either when the
PL/! environment is active, or when it is not. When the
environment is not active execution time options can be passed
to the Pl/I initialization routines, as well as arguments to the
Pl/I programs. When it is active, arguments can be passed with
their addresses in a list addressed from register 1 provided
Pl/I conventions are followed.

ARGUMENTS FROM ASSEMBLER WHEN PL/I ENVIRONMENT SET UP

In order to pass one or more arguments to a Pl/I routine when
the Pl/! environment is active, an Assembler routine must create
a parameter list and set its address in register 1. The last
fullword in the parameter list must have its high-order bit
turned on. If the PL/I routine executes a RETURN(expression)
statement, the last address in the parameter list must be that
of the field to which PL/I is to assign the returned value.

Each address in the parameter list must be either the address of
a data item or the address of a control block that describes a
data item, depending upon the type of data that is being passed.
For arithmetic element variables, the address in the parameter
list must be that of the variable itself. For all other problem
data types, the address in the parameter list must be that of a
locator/descriptor. For program control data, the address in
the ~arameter list must be that of a control block. The formats
of locator descriptors and of control blocks for program control
data are given in the execution logic manual for this compiler.
Information on what is passed between routines for arguments of
various data types is indexed in OS PL/I Optimizing Compiler:
Execution logic, under "arguments."

In some cases, it is possible to avoid the use of
locator/descriptors when passing aggregates or strings by
pretending that the data is an arithmetic variable. Suppose,
for example, that an Assembler routine is required to pass a
fixed-length character string of 20 characters to a PL/I
routine. The Assembler routine can place the address of the
character string itself in the parameter list, and the PL/I
routine can be written thus:

PP:PROC(X);
DCl X FIXED,

A CHAR(20) BASED(P);
P = ADDR(X);

Because X is declared to be arithmetic, the address in the
parameter list is interpreted as the start of the data that is
being passed. This address is assigned to P, and is
subsequently used as a locator for the based character string A,
which has the attributes of the data that has actually been
passed.

This technique will work for all data types except unaligned bit
strings. Note that the dummy arithmetic parameter need not have
the same length as the data that is actually being passed; it is
used simply to enable the passed address to be identified as the
start of the data.

Chapter 11. Communicating between Pl/I and Assembler-Language Modules 309

ARGUMENTS FROM ASSEMBLER WHEN PL/I ENVIRONMENT IS NOT SET UP

.

When the PL/I environment is not set up, one of three standard
entry points PLICALLA, PLICALLB, or PLISTART is used to set up
the environment and call the PL/I program. These thr~e differ
in whether execution time options as well as PL/I arguments can
be passed and the conventions used for passing the arguments and
options.

In essence, the differences are as follows:

PLISTART
Execution time options can be passed plus I character
string argument as for a PL/I main procedure.

PLICALlA
No execution time options arguments can be passed. Other
arguments can be passed as to a normal PL/I subroutine.

PLICALL.B
Execution time options and a number of arguments can be
passed but the linkage is more complex.

Details are as follows:

For PLISTART, the Assembler language routine must insert in
register I the address of a fullword which in turn contains the
address of a halfword prefix to a character string. The
character string, which must start on a fullword boundary, can
contain a parameter string similar to that which can be
specified in the PARM field of a JCL EXEC statement; for
example, 'ISASIZE(4K),R/INPUT'. The halfword prefix must
contain the number of characters in the string excluding the
halfword prefix. This entry point is useful when a PL/! routine
is "attached" by an Assembler routine, because the entry point
of the PL/I routine does not have to be changed. The use of
PLISTART is illustrated in Figure 133 and Figure 134 on
page 311 .

LA 1,PLISTHWD GET PLIST ADDRESS
ATTACH EP=PLIPROG ATTACH PL/I PROGRAM

3(

PLISTHWD DS
DC

PLISTHW DC
PLISTCH DC

Figure 133.

OF
AeX'80000000' + PLISTHW) FLAG LAST WORD OF PLIST
AL2eL'PLISTCH) LENGTH OF PARM STRING
C'ISASIZE(8K),R/INPUT' PARM DATA

Use of PLISTART for ATTACH

310 OS PL/I Optimizing Compiler. Programmer's Guide

LA
L
BALR

DS
PLISTHWD DC
PLISTHW DC
PLISTCH DC

l,PLISTHWD
15,=V(PLISTART)
14,15

OF

GET PLIST ADDRESS
GET PL/I ENTRY POINT
CALL PL/I ROUTINE

A(X'80000000' + PLISTHW) FLAG LAST WORD OF PLIST
H'O'
AL2(O) NUll PARM STRING

Figure 134. Use of PLISTART Passing Null Parameter String

For PLICALLA, the Assembler-language routine must insert in
register 1 the address of the argument list that contains the
addresses of any arguments to be passed to the PL/I procedure.
These must follow the rules described in "Arguments from
Assembler when Pl/I Environment set up" on page 309. An example
is in Figure 135. If no arguments are passed, register 1 should
be set to O.

LA l,ARGLIST
L 15 , =V{PLICALLA)
BALR 14,15

ARGLIST DC
DC

ACARG1)
ACARG2)

ADDRESS OF FIRST ARGUMENT PASSED TO PL/I
ADDRESS OF SECOND ARGUMENT PASSED TO PL/I

DC A(X'80000000 + argn or return-value)
ADDRESS OF LAST ARGUMENT
OR RETURNED VALUE

Figure 135. Use of PLICALLA

END OF ARGUMENT LIST FLAG

Chapter 11. Communicating between PL/I and Assembler-language Modules 311

ALIST

* LENGTH
ISA
HEAP
HEAPEND
HPSIZE
HEAPINC
ISAINC
OPTIONS
* * REPORT
NOREPORT
SPIE
NOSPIE
STAE
NOSTAE
COUNT
NOCOUNT

* FLOW
NOFLOW
KEEPHEAP
FREEHEAP
ANYHEAP
BELHEAP
MKEPHEAP
MFREHEAP
* MANYHEAP
MBELHEAP

* * ARGLIST

* ARGILCT

*

LA
L
BALR

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

DC
DC
DC
EQU *
DC
DC
DC
DC

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

EQU
EQU

DC
DC

DC
DC
DC

REPLCT DC
DC
DC

ARGDATA DC
ARGI DC
RETVAL DC
REP DC
ISASTOR DC

I .. ALIST
15,=V(PLICALLB)
14 .. 15

GET MY PARAMETER LIST
CALL PL/I LOAD MODULE

ACARGLIST) ADDRESS OF ARGUMENT lIST
A(LENGTH) LENGTH OF STORAGE FOR PL/I
A(ISA) ADDRESS OF ISA POINTER
A(O) TASK ISA - NOT USED
A(O) NUMBER OF CONCURRENT SUBTASKS - NONE
ACOPTIONS) ADDRESS OF OPTIONS WORD
A(HPSIZE) ADDRESS OF SIZE OF HEAP
A(HEAP) ADDRESS OF HEAP AREA
A(HEAPINC) ADDRESS OF HEAP INCREMENT
A(O) ADDRESS OF SUBTASK HEAP INCREMENT
ACX'80000000'+ISAINC) END OF LIST + ISA INCREMENT

A(1024*8)
A(ISASTOR)
256D'O'

LENGTH OF ISA (8K)
ADDRESS OF ISA
ROUTINES HEAP STARTS HERE

ACHEAPEND-HEAP) LENGTH OF HEAP STORAGE
F'8192' 8K HEAP INCREMENTS.
F'4096' 4K ISA INCREMENTS
ALICREPORT+STAE,FREEHEAP+BELHEAP , O,O)

DEFINITIONS OF BITS IN OPTIONS BYTES
X'80' IN FIRST BYTE
X'40' IN FIRST BYTE
X'201 IN FIRST BYTE
X'lO' IN FIRST BYTE
X'08' IN FIRST BYTE
X'04' IN FIRST BYTE
X'02' IN FIRST BYTE
X'OI' IN FIRST BYTE

X'80' IN SECOND BYTE
X'40' IN SECOND BYTE
X'20' IN SECOND BYTE
X'lO' IN SECOND BYTE
X'08' IN SECOND BYTE
X'04' IN SECOND BYTE
X'02' IN SECOND BYTE
X'Ol' IN SECOND BYTE

X'80' IN THIRD BYTE
X'40' IN THIRD BYTE

(HEAP KEEP)
(HEAP FREE)
C HEAP ANYWHERE)
(HEAP BELOW)
(MINOR TASK HEAP KEEP)
(MINOR TASK HEAP FREE)

(MINOR TASK HEAP ANYWHERE)
(MINOR TASK HEAP BELOH)

ARGUMENTS TO BE PASSED TO PL/I
ACARGlLCT)
A(X'80000000'+REPLCT)

LOCATOR FOR PARMI
AL4CARGDATA) ADDRESS OF DATA
H'8' MAX LENGTH OF DATA
X'8000' VARYING ATTRIBUTE

LOCATOR FOR RETURNED VALUE
AL4{REP)
H'8'
X'OOOO'
AL2(L'ARGl)
C'PARMIN'
eL8'PARMOUT'
CL8' ,
l024D'O'

ADDRESS OF REPLY AREA
LENGTH OF DATA
NON-VARYING ATTRIBUTE

INPUT PARAMETER
SPACE FOR RETURNED VALUE

ROUTINES ISA STARTS HERE

Figure 136. Use of PLICALLB

312 OS PL/I Optimizing Compiler: Programmer's Guide

For PLICALLB, the Assembler-language routine must insert in
register 1 the address of an argument list that contains the
items shown below. An example is in Figure 136 on page 312.

• The address of the argument list containing addresses of
arguments to be passed to the PL/I routine, and optionally,

• The address of the length of storage to be made available to
the program in a nonmultitasking program or the major task
in a multitasking program. The default for this length is
half the available storage for a nonmultitasking program or
8K bytes for the major task in a multitasking program. The
length of the initial storage area (ISA) passed must be a
multiple of 8 bytes, so that the ISA both starts and ends on
a double-word boundary,

• The start address of the initial storage area (ISA) to be
used by the PL/I program. This storage must be aligned on a
double word. For further information, refer to the
discussion of the ISASIZE option under "Execution-Time
Options" on page 31. If this argument is not specified, the
ISA will be obtained dynamically with a GETMAIN macro
instruction.

• The address of the length of storage to be made available to
each of the subtasks in a multitasking program. The default
for this length is 8K bytes for each subtask. This value is
ignored for a nonmultitasking program. The length of the
ISA must be multiple of 8 bytes.

• The address of the maximum number ~f concurrent subtasks
that can be attached at anyone time. This value is ignored
in a nonmultitasking program. The default for this value is
20.

• The address of the options word, in which the execution-time
options for a program compiled by the optimizing compiler
are specified. These options are: REPORT; STAE; SPIE;
COUNT; and FLOW. They are described under "Execution-Time
Options" on page 31. The hexadecimal value for each option
is given in Figure 136 on page 312.

• The address of the HEAP size. This value is used for a main
program in a non-tasking environment; it is also used in a
multitasking program as the size of heap for the main task.
If this word points to a full word of zeros, then all
storage requests will be made from the ISA.

• The address of the area to be be used as a separate HEAP
storage area. This area, if supplied, will be used to
satisfy programmer allocations for storage of BASED,
CONTROLLED, and AREA storage. HEAP should be allocated in
doublewords.

• The address of the HEAP increment. This value, when
supplied, is used when a storage request cannot be
satisfied within the current HEAP allocation. Storage
management will use this value in determining how much more
system storage to request. The value used will be the
larger of the actual storage size requested or the KEAP
increment. The HEAP increment will be rounded to a 4K
multiple.

• The address of the subtask HEAP increment. This field is
like the HEAP increment described above except that it is
used only for subtasks. The value is ignored in a
non-tasking environment. The subtask HEAP increment will be
rounded to a 4K multiple.

Chapter 11. Communicating between PL/I and Assembler-Language Modules 313

RETURN CODES

• The address of a number to be used for ISA increment. This
value will be used when the ISA is full. On an ISA
overflow, the larger of ISAINC and the requested amount of
storage will be used to request storage for the system. The
ISA increment will be rounded to a 4K multiple.

• The address of a number which should be used for subtask ISA
overflow conditions. The previously stated rule applies.

The argument list may be variable in length, but a field may not
be skipped. The user who does not wish to specify a skipped
field should include a fullword of zeros. The normal convention
for the end of a parameter list is followed. The last entry
should have the high order bit turned on.

The examples in Figure 135 on page 311 and Figure 136 on
page 312 sho~ the use of PlICAllA and PlICAllB to invoke the
first (or only) main PL/I procedure in the program. The Pl/I
programs in these cases do not perform multitasking.

Return codes can be passed by Assembler subroutines to the PL/I
program in register 15. If the Assembler subroutine is declared
with OPTIONSCRETCODE), the value passed will be saved by the
PL/I program and will be accessed when the built-in function
PlIRETV is called. PL/I statements might take the following
form:

DCl ASMSUBOPTIONSCRETCODE,ASSEMBlER);
CALL ASMSUB;
/*(ASMSUB could set value in register

IS indicating whether or not
continuation was worthwhile)*/

IF PlIRETV ~=O THEN STOP;

If the entry is not declared with OPTIONSCRETCODE), any return
code will be ignored.

Pl/I routines set a return code in register IS only when the
Pl/I environment is destroyed. The return code is the value
specified in PLIRETC plus a value generated by the PL/I
housekeeping routines if the program terminated because of an
error. (For full details of return codes from PL/I, see under
the heading "Return Codes" in Chapter 12.) If you wish to pass
return code information between subroutines and Assembler
language callers and the environment is required for re-use,
some mechanism other than PLIRETC should be employed.

314 OS Pl/I O~timizing Compiler l Programmer's Guide

CHAPTER 12. THE SORT PROGRAM

The PL/I compilers provide an interface called PlISRT that
allows you to make use of the IBM-supplied sort programs. Thus,
a ready-made high-performance sort is available in Pl/I without
the effort of hand coding.

To use the sort program, you must:

1. Include a call to one of the entry points of the sort
interface passing it the information on the fields to be
sorted, the length of the records, the amount of storage
used, the name of a variable to be used as a return code and
other information required to carry out the sort.

2. Specify the data sets required by the sort program in JeL DD
statements or by use of the ALLOCATE command on TSO.

When used from Pl/I, the sort program will sort records. of all
normal lengths on a large number of sorting fields. Data of
most types can be sorted into ascending or descending order.
The source of the data to be sorted may either be a dataset or a
PL/I procedure written by the programmer that the sort program
will call each time a record is required for the sort.
Similarly, the destination of the sort may be a data set or a
PL/I procedure that handles the sorted records.

The use of Pl/I procedures allows processing to be done before
or after the sort itself, thus allowing a complete sorting
operation to be totally handled by a call to the sort interface.
It is important to understand that the PL/I procedures handling
input or output are called from the sort program itself and will
effectively become part of it.

THE SORT PROGRAMS AVAILABLE

PL/I can operate with various sort products, such as OS/VS
Sort/Merge, its follow on DFSORT, or a program with the same
interface. Both OS/VS Sort/Merge and DFSORT, are releases of
the same program product: 5740-SMl.

The following material applies to DFSORT. Because you may use
programs other than DFSORT, the actual capabilities and
restrictions vary. For these capabilities and restrictions, see
the DFSORT Application Programming: Guide, or the equivalent
publication for your sort product.

When using these publications, you must be aware that the sort
program is called from PL/I by a LINK macro instruction and that
this imposes some restrictions. Furthermore, the SORT and the
RECORD statements are the only two statements that can be passed
to the sort program directly from PL/I. However, all valid
control statements can be passed to DFSORT using a SORTCNTl data
set. By using these control statements, you can increase the
flexibility and efficiency of your sort application. For more
detail on how to use control statemellts, see "Chapter 2,
'Program Control statements'" in the DFSORT Application
Programming: Guide. Bearing these points in mind, it is a
simple operation to discover the capabilities and restrictions
that will apply to your use of sort. The points at which
restrictions may apply are given in "What You Need to Know
Before Using Sort" on page 318.

Chapter 12. The Sort Program 3is

BACKGROUND-HOW THE SORT PROGRAM "JORKS

If you want to make the best use of the sort program, it is
important to understand something of how it works. In your PL/I
program you specify a sort by using a CALL statement to the sort
interface subroutine PlISRT. This subroutine has four entry
points; A, B, C, and D. Each specifies a different source for
the unsorted data and destination for the data when it has been
sorted. Thus, for example, a call to PlISRTA specifies that the
unsorted data (the input to sort) is on a data set, and that the
sorted data (the output form sort) is to be placed on another
data set. The CAll PlISRT statement must contain an argument
list giving the Sort program information about the data set to
be sorted, the fields on which it is to be sorted, the amount of
space available, the name of a variable into which sort will
place a return code indicating the success or failura of the
sort, and the name of any output or input handling procedure
that may be used.

The sort interface routine builds an argument list for Sort from
the information supplied by the PlISRT argument list and the
choice of PLISRT entry point. Control is then transferred to
the sort program. If an output or input handling routine has
been specified, this will be called by the sort program as many
times as is necessary to handle each of the unsorted or sorted
records. When the sort operation is complete, the sort program
returns to the Pl/! calling procedure communicating its success
or failure in a return code placed in one of the arguments
passed to the interface routine. The return code can then be
tested in the Pl/I routine to discover whether processing should
continue. Figure 137 on page 317 is a simplified flowchart
showing this operation.

316 as Pl/I Optimizing Compiler: Programmer's Guide

PLlSRTA

Get records from
data set till end
of file

Place sorted
records on
data set

CALL PLlSRTx

PLlSRTB PLlSRTC

SORT PROGRAM

Call PL/I sub­
routine receiving
one record on
each call

Get records from
data set till end
of file

Place sorted
records on
data set

Call PL/I sub­
routine passing
one record on
each call

Set up return
code to indicate
success or failure
of sort

Continue with
PL/I program

Figure 137. Overview of the Sorting Process

PLlSRTD

Call PL/I sub­
routine receiving
one record on
each call

Call PL/I sub­
routine passing
one record on
each call

Within the sort program itselfl the flow of control between the
sort program proper and output- and input-handling routines is
controlled by return codes. The sort program calls these
routines at the appropriate point in its processing. (Within
the sort programl and its associated documentationl these
routines are known as user exits. The routine that passes input
to be sorted is the E15 exit. The routine that processes sorted
input is the E35 exit.) From the routines, Sort expects a
return code indicating either that it should call the routine

again, or that it should continue with the next stage of
processing.

The important points to remember about Sort are that it is a
self-contained program that handles the complete sort operation,
and that it communicates with the caller, and with the user
exits that it calls, by means of return codes.

The remainder of this chapter gives detailed information on how
to use sort from PL/I. First the PL/I statements required are
described and then the data set requirements. The chapter is
completed by a series of examples, showing the use of the four
entry points of the sort interface routine.

USING THE SORT PROGRAM

To use the sort program you must include the correct PL/I
statements in your source program and specify the correct data
sets in your JCl or in TSO ALLOCATE commands. (The sort
interface is not available to PL/! on eMS.)

WHAT YOU NEED TO KNOW BEFORE USING SORT

Before using Sort, you must determine the type of sort you
require, the length and format of the sorting fields in the
data, the length of your data records, and the amount of
auxiliary and main storage you will require.

To determine the entry point of PlISRT that you will use, you
must decide the source of your unsorted data, and the
destination of your sorted data. The choice is between data
sets and PL/I subroutines. Using data sets is simpler to
understand and gives faster performance. Using PL/I subroutines
gives you more flexibility and more function, enabling you to
manipulate or print the data before it is sorted, and to make
immediate use of it in its sorted form. If yoU decide to use an
input or output handling subroutine, you will need to read
"Writing the Input and Output Routines" on page 321.

The entry points and the source and destination of data are as
follows:

Ent J~y po int

PLISRTA
PLISRTB
PLISRTC
PLISRTD

Source

Data set
Subroutine
Data set
Subroutine

Destination

Data set
Data set
Subroutine
Subroutine

Having determined the entry point you are using, you must now
determine a number of things about your data set as follows:

• The position of the sorting fields, these may either be the
complete record or any part or parts of it.

• The type of data these fields represent, for example,
character or binary.

• Whether you want the sort on each field to be in ascending
or descending order.

• Whether you want equal records to be retained in the order
of the input, or whether their order may be altered during
sorting.

318 OS PL/I Optimizing Compiler: Programmer's Guide

These are all options of the SORT statement which is the first
argument to PLISRT. Having determined these, you must determine
two things about the records to be sorted:

• Whether the record format is fixed or varying.

• The length of the record (maximum length for varying).

These are options of the RECORD statement, which is the second
argument to PLISRT.

Finally, you must decide on the amount of main and auxiliary
stdrage you must allow for the Sort program. For further
details, see "Storage for Sort" on page 328.

THE CALL PLISRT STATEMENT

When you have determined the points described above, you are in
a position to write the CALL PLISRT statement. This should be
done with some care and the full syntax is given and explained
in Figure 141 on page 326 through Figure 143 on page 331. The
examples below indicate the form it normally takes.

EXAMPLES OF CALLS TO PlISRT

Example 1

Example 2

Example 3

A call to PLISRTA sorting SO-byte records from SORTIN to SORTOUT
using 256000 bytes of storage, and a return code, RETCODE,
declared as FIXED BINARY (31,0).

CALL PLISRTA
(' SORT FIELDS=(1,80,CH,A) •

, RECORD TYPE=F,LENGTH=(80) ,
256000,
RETCODE)j

As above but the input, output, and work data sets are called
TASKIN, TASKOUT, and TASK1~KOl etc. This might occur if Sort was
being called twice in one job step.

CALL PLISRTA
(' SORT FIELDS=(1,80,CH,A) "

• RECORD TYPE=F,LENGTH=(80) •
256000,
RETCODE,
'IASK');

As example'1 but the sort is to be undertaken on two fields.
First, bytes 1 to 10 which are characters, and then, if these
are equal, bytes 11 and 12 which contain a binary field, both
fields are to be sorted in ascending order.

CAll PlISRTA
(. SO~T FIELDS=(l,10,CH,A,11,2,BI,A) .,
• RECORD TYPE=F,LENGTH=(80) ,
256000,
RETCODE);

Chapter 12. The Sort Program 319

Example 4

Example 5

A call to PlISRTB. The input is to be passed to Sort by the
Pl/I routine PUTIN, the sort is to be carried out on characters
1 to 10 of an 80 byte fixed length record. Other information as
above.

CALL PLISRTB
(I SORT FIElDS=(1,10,CH,A) I,

1 RECORD TYPE=F,lENGTH=(80) ,
256000
RETCODE,
PUTIN);

A call to PLISRTD. The input is to be supplied by the PL/I
routine PUTIN and the output is to be passed to the Pl/I routine
PUTOUT. The record to be sorted is 84 bytes varying (including
the length prefix). It is to be sorted on bytes 1 through 5 of
the data in ascending order, then if these fields are equal, on
bytes 6 through 10 in descending order. (Note that the 4-byte
length prefix is included so that the actual values used are 5
and 10 for the starting points.) If both these fields are the
same, the order of the input is to be retained. (The EQUALS
option does this.)

CALL PLISRTD
(' SORT FIELDS=(5,5,CH,A,10,5,CH,D),EQUALS "
• RECORD TYPE=V,lENGTH=(84) I,

256000,
RETCODE,
PUTIN, /*input routine (sort exit 15)*/
PUTOUT); /*output routine (sort exit 35)*/

TESTING THE RETURN CODE

When the sort completes, Sort sets a return code in the variable
named in the fourth argument of the call to PlISRT. It then
returns control to the statement that follows the CAll PlISRT
statement. The value returned indicates the success or failure
of the sort as follows:

o Sort successful
16 Sort failed
20 Sort message data set missing

The variable to which the return code is passed must be declared
as FIXED BINARY (31,0). It is standard practice to test the
value of the return code after the CAll PlISRT statement and
take appropriate action according to the success or failure of
the operation.

For example (assuming the return code was called RETCODE):

IF RETCODE-=O THEN DOi
PUT DATA(RETCODE)j
SIGNAL ERROR;

END;

If the job step that follows the sort depends on the success or
failure of the sort, the value returned in the sort program
should be set as the return code from the Pl/I program. This
return code is then available for the following job step. See
"Execution-time Return Codes" on page 290. The Pl/I return code
is set by a call to PlIRETC. PLIRETC can be called with the
value returned from Sort thus:

CALL PLIRETCCRETCODE);

320 as Pl/I Optimizing Compiler: Programmer's Guide

This call to PLIRETC should not be confused with the calls made
in the input and output routines, where a return code is used
for passing control information to Sort.

WRITING THE INPUT AND OUTPUT ROUTINES

The input-handling and output-handling routines are called by
Sort when PLISRTB, PLISRTC, or PLISRTD is used. They must be
written in PL/I, and can be either internal or external
procedures. If they are internal to the routine that calls
PLISRT, they will behave in the same way as ordinary internal
procedures in respect of scope of names. The input and output
procedure names must themselves be known in the procedure that
makes the call to PLISRT.

It should be remembered that the routines will be called
individually for each record required by, or passed from Sort.
Therefore, each routine must be written to handle one record at
a time. Variables declared as AUTOMATIC within the procedures
will not retain their values between calls. Consequently, items
such as counters, which need to be retained from one call to the
next should either be declared as STATIC or be declared in the
containing block.

THE INPUT-HANDLING ROUTINE (SORT EXIT E15)

Input routines are normally used to process the data in some way
before it is sorted. This may be to print it, as in example
Figure 143 on page 331, or may be to generate or manipulate the
sorting fields so that the correct results are achieved.

The input handling routine is used by Sort when a call is made
to either PLISRTB or PLISRTD. When Sort requires a record, it
calls the input routine which should return a record in
character string format, and a return code of 12, which means
the record passed is to be included in the sort. Sort continues
to call the routine until a return code of 8 is passed. This
means that all records have already been passed, and that Sort
is not to call the routine again. If a record is returned when
the return code is 8, it is ignored by Sort.

The data returned by the routine must be a character string. It
can be fixed or varying. If it is varying, V should normally be
specified as the record format in the RECORD statement which is
the second argument in the call to PLISRT. However, F can be
specified, in which case the string will be padded to its
maximum length with blanks. The record is returned with a
RETURN statement, and the RETURNS attribute must be specified in
the PROCEDURE statement. The return code is set in a call to
PLIRETC. A flowchart for a typical input routine is shown in
Figure 139 on page 323, and skeletal code in Figure 138 on
page 322. Examples of an input routine are given in Figure 145
on page 334 and Figure 147 on page 336.

In addition to the return codes of 12 (include current record in
sort) and 8 (all records sent), Sort allows the use of a return
code of 16. This ends the Sort and sets a return code from Sort
to your PL/I program of l6-$ort failed.

It should be noted that a call to PLIRETC sets a return code
that will be passed by your Pl/I program, and will be available
to any job steps that may follow it. When an output-handling
routine has been used, it is good practice to reset the return
code with a call to PLIRETC after the call to PLISRT to avoid
receiving a nonzero completion code. By calling PLIRETC with
the return code from Sort as the argument, it is possible to
make the PL/I return code reflect the success or failure of the
sort. This practice is shown in Figure 146 on page 335.

Chapter 12. The Sort Program 321

THE OUTPUT-HANDLING ROUTINE (SORT EXIT E35)

Output-handling routines are normally used for any processing
that is necessary after the sort. This could be to print the
sorted data, as in Figure 146 on page 335 and Figure 147 on
page 336, or could be to use the sorted data to ~enerate further
information. The output-handling routine is used by Sort when a
call is made to PLISRTC or PLISRTD. When the records have been
sorted, Sort passes them, one at a time, to the output-handling
routine. The output routine then processes them &s required.
When all the records have been passed, Sort sets UP its return
code and returns to the statement after the CAll PLISRT
statement. There is no indication from Sort to the output
handling routine that the last record has been reached. Any
end-of-data handling must therefore be done in the procedure
that calls PLISRT.

E15:PROC RETURNS (CHAR(80»;
/*RETURNS attribute must be used specifying length of data to be

sorted, maximum length if varying strings are passed to Sort.*/
DCL STRING CHAR(80)j /*A character string variable will normally be

required to return the data to Sort*/

IF LAST_RECORD_SENT THEN DO;
/*A test must be made to see if all the records have been sent,

if they have, a return code of 8 is set up and control returned
to Sort*/
CALL PlIRETC(8); /*Set return code of 8, meaning last record

already sent.*/
GOTO FINAL;

END;

ELSE DO;
/*If another record is to be sent to Sort, do the

necessary processing, set a return code of 12
by calling PlIRETC, and return the data as a
character string to Sort*/

****(The code to do your processing goes here)

CAll PlIRETC (12);

RETURN (STRING);
END;

/*Set return code of 12, meaning this
record is to be included in the sort*/

/*Return data with RETURN statement*/

FINAL:
END; /*End of the input procedure*/

Figure 138. Skeletal Code for an Input Procedure

The record is passed from Sort to the output routine as a
character string and a character string parameter must be
declared in the output-handling subroutine to receive the data.
The output-handling subroutine must also pass a return code of 4
to Sort to indicate that it is ready for another record. The
return code is set by a call to PLIRETC.

The sort can be stopped by passing a return code of 16 to Sort.
This will result in Sort returning to the calling program with a
return code of 16-Sort failed.

The record passed to the routine by Sort is a character string
parameter. If the record type was specified as F in the second
argument in the call to PLISRT, the parameter should be declared
with the length of the record. If the record type was specified
as V, the parameter should be declared as adjustable, for
example DCl STRING CHAR(*>;

Skeletal code for a typical output handling routine is shown in
Figure 140, and a flowchart given in Figure 139.

322 OS PL/I Optimizing Compiler: Programmer's Guide

Input Handling Subroutine Output Handling Subroutine

Your code to
process record

CALL
PLiRETC(12)

RETURN
RECORD

CALL
PLiRETC(8)

RECEIVE
RECORD
PARAMETER

Your code to
process record

CALL
PLiRETC(4)

Figure 139. Flowcharts for Input and Output Handling
Subroutines

E35:PROC(STRING); /*-The procedure must have a character string
parameter to receive the record from Sort*-/

DCl STRING CHAR(80); /*Declaration of parameter*-/

(Your code goes here)

CAll PlIRETC(4); /*-Pass return code to Sort indicating that the
next sorted record is to be passed to this
procedure.*-/

ENDVE35; /*End of procedure returns control to Sort*-/

Figure 140. Skeletal Code for an Output Handling Procedure

Chapter 12. The Sort Program 323

DATA SETS FOR SORT

It should be noted that a call to PlIRETC sets a return code
that will be passed by your Pl/I program, and will be available
to any job steps that may follow it. When an output-handling
routine has been used, it is good practice to reset the return
code with a call to PlIRETC after the call to PlISRT to avoid
receiving a nonzero completion code. By calling PLIRETC with
the return code from Sort as the argument, it is possible to
make the Pl/I return code reflect the success or failure of the
sort. This practice is shown in the examples at the end of this
chapter.

When you call Sort from your Pl/I program, it is necessary to
specify in your JCl, or through ALLOCATE commands, the data sets
required by your Sort. like Pl/I library routines, Sort is a
member of the SYSl.LINKlIB or a private library. These Sort
data sets must not be open when Sort is called.

These are:

SORTLIB
This library is only required if your working data sets
(see below) are on magnetic tape. You must discover the
name of this data set fr'om your system programmer.

SYSOUT
A data set (normally the printer) on which messages from
the Sort program will be written.

Sort Work data sets

SORTWK01-S0RTWK16

Note: I~ more than 16 are specified~ only the first
16 will be used by DFSORT •

• **.WK01-***~WK16
From 1 to 16 working data sets used in the sorting process.
These may be direct-access or on magnetic tape. The
numbers chosen must be sequential starting from 01. For a
discussion of space required and number of data sets, see
"Storage for Sort" on page 328.

**** represents the 4 characters that can be specified as
the data set prefix argument in calls to PlISRT, and allows
data sets other than SORTWK to be used. They must start
with an alphabetic character and must not be the names
PEER, BAlN, CRCX, OSCL, POLY, LIST, or DIAG.

111PUt data set

SORTIN

JBOOEIN
The input data set used when PLISRTA and PLISRTC are
called.

**** represents the 4 characters that can be specified as
the data set prefix argument to PLISRT and allow input data
sets other than SORTIN to·be used. See fuller description
under SORTWK above.

324 OS PL/I Optimizing Compiler: Programmer's Guide

output data set

SORTOUT

*~**OUT
The output data set used when PLISRTA and PLISRTB are
called.

**** represents the 4 characters that can be specified as
the data set prefix argument to PlISRT and allows output
data sets other than SORTOUT to be used. See fuller
description under SORTWK above.

Checkpoint data set

SORTCKPT

***~CKPT
Data set used to hold checkpoint data, if CKPT or CHKPT
option was used in the SORT statement argument. See the
DFSORT Application Pro~raMlmin9: Guide, or the OS/VS
Sort/Merge Programmer's Guide, for information on this
program DD statement.

**** See the description under SORTWK.

SORTCNTL

* •• *CNTL
Dataset from which additional or changed control statements
can be read (optional). For additional information on this
program DD statement, see DFSORT Application Programming:
Guide, or the OS/VS Sort/Merge Programmer's Guide.

**** See the description under SORTWK.

Chapter 12. The Sort Program 325

Entry Point

PLISRTA

Sort input: dataset
Sort output: dataset

Arguments

(sort statement,record statement,storage,return
code, [dataset prefix, message level, sort tecniquel)

PLISRTB (sort statement,record statement,storage,return
code, input routine, [dataset prefix,message
level,sort technique])

Sort input: Pl/I subroutine
Sort output: dataset

PLISRTC

Sort input: dataset

(sort statement, record statement,storage,return
code,output routine, [dataset prefix,message
level,sort technique])

Sort output: PL/I subroutine

PLISRTD (sort statement, record statement,storage,return
code,input routine,output routine,[dataset
prefix,message level,sort technique])

Sort input: Pl/I subroutine
Sort output: PL/I subroutine

Sort statement

Record statement

Storage

Return code

Input routine

Output routine

Character string expression containing the sort
program SORT statement. Describes sorting fields and
format. See Figure 142 on page 329.

Character string expression containing the sort
program RECORD statement. Describes the length and
record format of data. See Figure 143 on page 331.

Fixed binary expression giving amount of main
storage to be made available to the sort program.
Must be >54K bytes for OS/VS Sort/Merge and
>83K bytes for DFSORT.
See als~ "Storage for Sort" on page 328.

Fixed binary variable of precision (31,0) in which
sort will place a return code when it has completed.
The meaning of the return code is as follows:

O=Sort successful
16=Sort failed
20=Sort message data set missing

(PLISRTB and PLISRTD only.) Name of the PL/I
external or internal procedure that will be used
to supply the records for the sort program at sort
exit 15.

(PLISRTC and PlISRTD only.) Name of the PL/I
external or internal procedure that will be passed
the sorted records by the sort program from sort
exit 35.

Figure 141 (Part 1 of 2). The Entry Points and Arguments to PLISRT

326 OS .PL/I Optimizing Compiler: Programmer's Guide

Entry Points

Dataset prefix

Message level

Sort technique

Arguments

Character string expression of four characters that
will replace the default prefix of 'SORT' in the
names of the sort datasets SORTIN,SORTOUT,SORTWKOl­
SORTWKnn, SORTCNTl, and SORTCKPT if used.
Thus if the argument
was 'TASK', the datasets rASKIN, TASKOUT,TASKWK01-
TASKWKnn, TASKCNTl and TASKCKPT could be used.
This facility
enables multiple invocations of sort to be made in
the same job step. The four characters must start
with an alphabetic character and must not be the
reserved names PEER, BAlN, CRCX, OSCl,
POLY, DIAG and LIST. A null string must be coded for
this argument if either of the following arguments is
required but this is not.

Character string expression of 2 characters
indicating how Sort's diagnostic messages are to be
handled as follows:

NO No messages to SYSOUT
AP All messages to SYSOUT
CP Critical messages to SYSOUT

SYSOUT will normally be allocated to the printer,
hence the use of the mnemonic letter ·P'. Other
codes are also allowed for certain of the sort
programs. For further details on these codes, see the
OS/VS Sort/Merge Programmer's Guide. A null
string must be coded far this argument if the
following argument is required and this argument is
not required.

(This is not used by DFSORT; it appears for
compatibility reasons only.)
Character string of length 4 that indicates the type
of sort to be carried out as followsl

PEER
BALN
CRCX
OSCl
POLY

Peerage sort
Balanced
Criss-cross sort
Oscillating
Polyphase sort

Normally the sort program will analyze the amount of
space available and choose the most effective
technique wi thout any ac·tion from you. This argument
should only be used as a bypass for sorting proble~s
or when you are certain that performance could be
improved by another technique. See Sort Programmer's
guides for further information.

Figure 141 (Part 2 of 2). The Entry Points and Arguments to PLISRT

Chapter 12. The Sort Program 327

STORAGE FOR SORT

Main Sto~age

Auxilia~y Sto~age

As indicated earlier, Sort requires both main and auxiliary
storage. The minimum main storage for DFSORT is 88K bytes, but
for best performance, more storage (on the order of 1 megabyte)
is recommended. You can specify that Sort use the maximum
amount of storage available by passing a storage parameter in
the following manner:

Del MAXSTOR FIXED BINARY (31,0);
UNSPECCMAXSTOR)='OOOOOOOO'BIIUNSPECC'MAX');
CALL PlISRTA

('SORT FIElDS=Cl,80,CH,A) I,

'RECORD TYPE=F,LENGTH=(80) I

MAXSTOR,
RETCODE,
'TASK');

If files are opened in E15 or E35 exit routines, enough residual
storage should be allowed for the files to open successfully.

Because the mlnlmum auxiliary storage for a particular sorting
operation is a complex business, to achieve maximum efficiency,
use direct access storage devices (DASDs) when possible, and
read the the sections on "Improving Program Efficiency" in the
DFSORT Applic?tion Programming: Guide or in the OS/VS Sort/Merge
Programmer's Guide.

If you are interested only in providing enough storage to ensure
the sort will work, make the total size of the SORTWK data sets
large enough to hold three sets of the records being sorted.
(There is no advantage in specifying more than three if
sufficient space can be obtained on three data sets.)

It should be stressed that this is an approximation and will
normally result in wasted space. In addition, you cannot be
certain that it will always work, so recourse to the sort
manuals is advised.

328 as Pl/I Optimizing Compiler: Programmer's Guide

THE SORT STATEMENT - The first Argument to PLISRT

Syntax:

The SORT statement must be a character string expression that takes
the form:

'bSORTbFIELDS=(startl,lengthl,forml,seql, ... startn,lengthn,formn,seqn)
[,other optionslb'

For example:

, SORT FIELDS=(l,lO,CH,A) ,

where:
b represents one or more blanks. Blanks shown are mandatory.

No other blanks are allowed.

start,length,form,seq
define the sorting fields. Any number of such fields can
be specified. However there is a limit on the total length
of the fields. If more than one field is to be sorted on,
the records are sorted first according to the first field,
and then, those that are of equal value, are sorted
according to the second field and so on. If all the
sorting values are equal, the order of equal records will
be arbitrary unless the EQUALS option is used. (See later
in this figure.) Fields may overlay each other. The
maximum total length of the sorting fields is restricted.
The current allowed lengths are 256 bytes for all except
OS/VS Sort Merge (5740-SMI) where 4092 bytes are allowed.
All sorting fields must be within 256 bytes (4092 for OS/VS
Sort Merge) of the start of the record.

start is the starting position within the record. The
value is given in bytes except for binary data
where it is given in a "byte.bit" notation. The
first byte in a string is considered to be byte
1, the first bit bit o. (Thus the second bit in
byte 2 is referred to as 2.1.) For varying
length records the 4-byte length prefix must be
included, making 5 the first byte of data.

length is the length of the sorting field. This is
given in bytes except for binary where a
"byte. bit" notation can be used. The length of
sorting fields is restricted according to their
data type, see below.

form is the format of the data. This is the format
assumed for the purpose of sorting. All data
passed between PL/! routines and Sort must be in
the form of character strings. The main data
types and the restrictions on their length are
shown below. Additional data types are available
for special purpose sorts, see your Sort
Programmer's Guide.

Figure 142 (Part 1 of 2). The SORT Statement, the First Argument to PLISRT

Chapter 12. The Sort Program 329

THE SORT STATEMENT - The first Argument to PLISRT (cont.>

seq

Code Format Length

CH character 1-256 (1-4096 OS/VS Sort
Merge)

ZD zoned decimal signed
1-32

PD packed decimal signed
1-32

FI fixed point, signed
1-256

BI binary, unsigned
1 bit to 256 bytes (4092

OS/VS Sort Merge)
FL floating-point, signed

1-256

The sum of the lengths of all fields must not
exceed 256 bytes (4092 for OS/VS Sort Merge).

is the sequence in which the data will be sorted
as follows:

A
D

ascending
descending

that is: 1,2,3 etc.
that is: 3,2,1 etc.

Note that E cannot be specified as Pl/I does not
provide a method of passing a user supplied
sequence.

other options

FILSZ=y

A number of other options can be specified depending on
your sort program. These must be separated from the FIELDS
operand and from each other by commas. Blanks are not
allowed between operands.

specifies the number of records in the sort and so allows
for optimization by Sort. If y is only approximate, it
should be preceded by E.

SKIPREC=y specifies that y records at the start of the input file are
to be ignored, before sorting the remaining records.

CKPT or CHKPT

EQUALS

specifies that checkpoints are to be taken. If this option
is used a SORTCKPT dataset must be provided.

NOEQUALS specifies whether the order of equal records will be
preserved as it was in the input (EQUALS) or will be
arbitrary (NOEQUALS). Use of the NOEQUALS option may
improve Sort performance. The default option is chosen
when Sort is installed. The IBM recommended default is
NOEQUALS.

DYNALLOC=(d,n)
(OS/VS Sort only) specifies that the program dynamically
allocates intermediate storage.

d is the device type (3330, 2314) etc.
n is the number of work areas

Figure 142 (Part 2 of 2). The SORT Statement, the First Argument to PLISRT

330 OS PL/I Optimizing Compiler: Programmer's Guide

RECORD STATEMENT - The second argument to PLISRT

Syntax:
The RECORD statement must be a character string expression which,
when evaluated, takes the syntax shown below:

'bRECORDbTYPE=rectype[,LENGTH=(II,[,,14,ISJ)Jb '

For example:

, RECORD TYPE=F,LENGTH=(80) ,

where:

b represents one or more blanks. Blanks shown are mandatory.
No other blanks are allowed.

TYPE specifies the type of record as follows:

F fixed length
V varying length EBCDIC
D varying length ASCII

Even when you use input and output routines to handle the
sorted and unsorted data, the record type must be specified
as it applies to the work datasets used by Sort.

If varying length strings are passed to Sort from an input
routine (E15 exit), V should normally be specified as
record format, however if F is specified, the records are
padded to the maximum length with blanks.

LENGTH specifies the length of the record to be sorted.
LENGTH can be omitted if PlISRTA or PLISRTC is used,
because the length will be taken from the input dataset.
Note that there is a restriction on the maximum and minimum
length of the record that can be sorted, see below.
For varying length records, the four byte prefix must be
included.

11

1 1

14

15

is the length of the record to be sorted. For
VSAM datasets sorted as varying records it is
the maximum record size+4.

represent two arguments that a~e not applicable
to Sort when called from PL/I. The commas must
be included if the arguments that follow are
used.

specifies the minimum length of record when
varying length records are used. If supplied,
it is used by Sort for optimization purposes.

specifies the modal (most common) length of
record when varying length records are used. If
supplied, it is used by Sort for optimization
purposes.

Figure 143 (Part 1 of 2). The RECORD STATEMENT--The Second Argument to Sort

Chapter 12. The Sort Program 331

RECORD STATEMENT - The second argument to PlISRT (cant.)

Maximum Record Lengths
The length of the records that the program can handle depends on the
amount of main storage available. The length of a record can never
exceed the maximum length specified by the user. The maximum record
length with variable length records is 32756 bytes, and for fixed
length records it is 32760 bytes.

For spanned records, maximum lengths are similar. Conditions such
as control fields of different formats, large numbers of control
fields, or large numbers of work data sets reduce the length of
the records that may be sorted using a given amount of storage.
The minimum block length for tape work units is 18 bytes; the
minimum record length is 14 bytes.

Note that the actual maximum depends on storage
availability and the track length of the device. See
"Calculating Storage Requirements" in the DFSORT Release 6.0
Application Programming: Guide.

Figure 143 (Part 2 of 2). The RECORD STATEMENT--The Second Argument to Sort

332 as Pl/I Optimizing Compiler: Programmer's Guide

//OPT14#7 JOB ...
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

EXI06: PROC OPTIONSCMAIN)j

DCL RETURN_CODE FIXED BINC31,0);

CALL PLISRTA (' SORT FIELDS=C7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(SO) "

256000,
RETURN_CODE);

SELECT (RETURN_CODE);
WHEN(O) PUT SKIP EDIT

('SORT COMPLETE RETURN CODE 0') (A);
WHEN(16) PUT SKIP EDIT -

('SORT FAILED, RETURN_CODE 16') (A);
WHEN(20) PUT SKIP EDIT

('SORT MESSAGE DATASET MISSING ') (A);
OTHER PUT SKIP EDIT (

'INVALID SORT RETURN CODE = " RETURN_CODE) (A,F(2»;
END /* select */; -
CALL PLIRETCCRETURN CODE);

/*set PL/I return code to reflect success of sort*/
END EXI06;

//GO.SORTIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOlTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SYSPRINT DD SYSOUT=A,DCB=(RECFM=F,BLKSIZE=80)
//GO.SORTOUT DD SYSOUT=A,DCB=(RECFM=F,BLKSIZE=80)
//GO.SYSOUT DD SYSOUT=A
//GO.SORTWKOI DD UNIT=SYSDA,SPACE=(CYL,2)
/*

Figure 144. Example of Sorting from Data Set to Data Set (PLISRTA)

Chapter 12. The Sort Program 333

//OPTI418 JOB ...
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

EXI07: PROC OPTIONS(MAIN);

DCL RETURN_CODE FIXED BIN(31,O);

CALL PLISRTB (' SORT FIELDS=(7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(80) "
256000,
RETURN_CODE,
EI5X);

SELECT(RETURN CODE);
WHEN(O) PUT SKIP EDIT

('SORT COMPLETE RETURN_CODE 0') (A);
WHENCI6) PUT SKIP EDIT

('SORT FAILED, RETURN CODE 16') (A);
WHEN(20) PUT SKIP EDIT -

('SORT MESSAGE DATASET MISSING ') (A);
OTHER PUT SKIP EDIT

('INVALID RETURN_CODE = ',RETURN_CODE)(A,F(2»;
END /* select */j
CALL PLIRETC(RETURN CODE)j
/*set Pl/I return code to reflect success of sort*/

EI5X: /* INPUT HANDLING ROUTINE GETS RECORDS FROM THE INPUT STREAM
AND PUTS THEM BEFORE THEY ARE SORTED*/

PROC RETURNS (CHAR(80»;
Del SYSIN FILE RECORD INPUT,

INFIELD CHAR(80);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT')(A);
CALL PLIRETC(8); /* signal that last record has

already been sent to sort*/
GOTO ENDE15;
END;

READ FILE (SYSIN) INTO (INFIELD);
PUT SKIP EDIT (INFIELD)(A(80»; /*PRINT INPUT*/
CALL PLIRETC(12)j /* request sort to include current

record and refutn for more*1
RETURN(INFIELD);

ENDEI5:
END E15X;

END EXI07;
/*
//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE, SATCHHELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBlEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOlTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SYSPRINT DD SYSOUT=A,DCB=(RECMF=F,BLKSIZE=80)
//GO.SORTOUT DD SYSOUT=A,DCB=(RECMF=F,BLKSIZE=80)
//GO.SYSOUT DD SYSQUT=A
/*
//GO.SORTCNTl DD *

OPTION DYNALLOC=(3380,Z),SKIPREC=2

Figure 145. Example of Sorting from Input Handling Routine to Dataset (PlISRTB)

334 OS PL/I Optimizing Compiler: Programmer's Guide

//OPTI419 JOB ...
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

EXI08: PROC OPTIONSCMAIN);

DCL RETURN_CODE FIXED BIN(3I,O);

CALL PLISRTC C' SORT FIELDS=(7,74,CH,A) "
, RECORD TYPE=F,LENGTH=(SO) "
256000,
RETURN_CODE,
E35X)j

SELECTCRETURN CODE);
WHENCO) PUT SKIP EDIT
WHEN~~~~R~U¥O~k~~T~D~fTURN_CODE 0'> CA);

WHEN~~~~R~U~A~ki~'E~i+URN_CODE 16') (A);
('SORT MESSAGE DATASET MISSING ') CAl;

OTHER PUT SKIP EDIT
('INVALID RETURN_CODE = " RETURN_CODE) CA,F(2»;

END /* select */;
CALL PRLRETC (RETURN_CODE);
/*set PL/I return code to reflect success of sort*/

E35X, /* output handling ro~tine prints sorted records*/
PROC (INREC);

Del INREC CHAR(80)j
PUT SKIP EDIT (INREC) (A);
CAll PLIRETC(4); /*request next record from sort*/

END E35X;
END EXI08j

/*
//GO.STEPLIB DD DSN=SYS1.S0RTlINK,DISP=SHR
//GO.SYSPRINT DD SYSOUT=A
//GO.SYSOUT DD SYSOUT=A
//GO.SORTIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOlTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SORTCNTL DD *

OPTION DYNALlOC=C3380,2),SKIPREC=2

Figure 146. Example of Sorting from Data Set to Output Handling Routine CPLISRTC)

Chapter 12. The Sort Program 335

//OPT14#10 JOB ...
//STEPl EXEC PLIXClG
//PlI.SYSIN DD *

EXl09: PROC OPTIONS(MAIN)j
DCl RETURN CODE FIXED BIN(31,O);
CAll PlISRTD ('SORT FIElDS=(7,74,CH,A) I,

, RECORD TYPE=F,lENGTH=(SO) "
256000,
RETURN_CODE,
E15X,
E35X);

SELECT(RETURN CODE);
WHEN(O) PUT SKIP EDIT

('SORT COMPLETE RETURN CODE 0') (A);
WHEN(20) PUT SKIP EDIT -

('SORT MESSAGE DATASET MISSING .) (A);
OTHER PUT SKIP EDIT

('INVALID RETURN CODE = " RETURN_CODE) (A,F(2»;
END /* select */j -

CAll PLIRETCCRETURN CODE)j
/*set Pl/I return code to reflect success of sort*/

EI5X: /* Input handling routine prints input before sorting*/
PROC RETURNS(CHAR(80»;

ENDEI5:

DCl INFIELD CHAR(80);

ON ENDFILE(SYSIN) BEGIN;
PUT SKIP(3) EDIT ('END OF SORT PROGRAM INPUT. "

'SORTED OUTPUT SHOULD FOLlOW')(A)j
CAll PlIRETC(S)j /* Signal end of input to sort*/
GOTO ENDE15;

END;

GET FILE (SYSIN) EDIT (INFIELD) CACaO»~;
PUT SKIP EDIT (INFIELD)(A);
CALL PLIRETCCI2); /*Input to sort continues*/

RETURN(INFIELD);

END EI5X;

E35X: /* Output handling routine prints the sorted records*/
PROC (INREC);

DCl INREC CHAR(aO);
PUT SKIP EDIT (INREC) (A);

NEXT: CALL PLIRETC(4); /* Request next record from sort*/
END E35X;

END EXI09;
/*
//GO.SYSOUT DD SYSOUT=A
//GO.SYSPRINT DD SYSOUT=A
//GO.SORTWKOI DD UNIT=SYSDA,SPACE=(CYL,1)
//GO.SORTWK02 DD UNIT=SYSDA,SPACE=(CYl,l)
//GO.SORTWK03 DD UNIT=SYSDA,SPACE=(CYL,l)
//GO.SYSIN DD * .
003329HOOKER S.W. RIVERDALE, SATCHWElL LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, LINKEDGE LANE, TOBLEY
003077ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
073872HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*

Figure 147. Sorting from Input Handling Routine to Output Handling Routine
(PLISRTD)

336 OS PL/I Optimizing Compiler: Programmer's Guide

//OPT14111 JOB ...
//STEPI EXEC PLIXCLG
//PLI.SYSIN DD *

/* PL/I EXAMPLE USING PLISRTD TO SORT VARIABLE-LENGTH RECORDS */

EX1306: PROC OPTIONSCMAIN);
DCL RETURN CODE FIXED BINC31,O);
CALL PLISRTD C' SORT FIELDS=(11,14,CH,A) I,

, RECORD TYPE=V,LENGTH=(34",24,44) "
/*NOTE THAT LENGTH IS MAX AND INCLUDES 4 BYTE

LENGTH PREFIX*/
256000,
RETURN CODE,
PUTIN,-
PUTOUT);

SELECTCRETURN_CODE)j
WHEN(O) PUT SKIP EDIT C

'SORT COMPLETE RETURN CODE 0') (A);
WHENCI6) PUT SKIP EDIT (-

'SORT FAILED, RETURN CODE 16') CA)j
WHEN(20) PUT SKIP EDIT (-

'SORT MESSAGE DATASET MISSING I) (A);
OTHER PUT SKIP EDIT (

'INVALID RETURN_CODE = " RETURN_CODE) (A,FC2»j
END /* SELECT */;

CALL PLIRETCCRETURN_CODE);
/*SET PL/I RETURN CODE TO REFLECT SUCCESS OF SORT*/
PUTIN: PROC RETURNS CCHAR(SO) VARYING);

/*OUTPUT HANDLING ROUTINE*/
/*NOTE THAT VARYING MUST BE USED ON RETURNS ATTRIBUTE WHEN USING

VARYING LENGTH RECORDS*/
DCL STRING CHARCSO) VAR;

ON ENDFILECSYSIN) BEGIN;
PUT SKIP EDIT C'END OF INPUT')CA);
CALL PLIRETCCS);
GOTO ENDPUT;
ENDj

GET EDITCSTRING)(ACSO»;
I=INDEXCSTRINGII' I,' ')-1; /*RESET LENGTH OF THE */
STRING = SUBSTRCSTRING,I,I); /* STRING FROM SO TO LENGTH*/

/* OF TEXT IN EACH INPUT */
/* RECORD. */

PUT SKIP EDITCI,STRING) CF(2),X(3),A)j
CALL PLIRETC(12)j
RETURNCSTRING);

ENDPUT: END;
PUTOUT:PROCCSTRING);

/*OUTPUT HANDLING ROUTINE OUTPUT SORTED RECORDS*/
DCl STRING CHAR C*)j
/*NOTE THAT FOR VARYING RECORDS THE STRING

PARAMETER FOR THE INPUT HANDLING ROUTINE
SHOULD BE DECLARED ADJUSTABLE BUT MAY NOT BE
DECLARED VARYING*/

PUT SKIP EDITCSTRING)CA); /*PRINT THE SORTED DATA*/
CALL PLIRETC(4);
END; /*ENDS PUTOUT*/

END;

Figure 148 (Part 1 of 2). Example of Sorting Varying Length Records Using Input and
Output Handling Routines

Chapter 12. The Sort Program 337

//GO.SYSIN DD *
003329HOOKER S.W. RIVERDALE, SATCHWELl LANE, BACONSFIELD
002886BOOKER R.R. ROTORUA, lINKEDGE LANE, TOBLEY
003011ROOKER & SON, LITTLETON NURSERIES, SHOLTSPAR
059334HOOK E.H. 109 ELMTREE ROAD, GANNET PARK, NORTHAMPTON
013812HOME TAVERN, WESTLEIGH
000931FOREST, IVER, BUCKS
/*
//GO.SYSPRINT DD SYSOUT=A,DCB=(RECFM=V,BLKSIZE=88)
//GO.SORTOUT DD SYSQUT=A,DCB=(RECFM=V,BLKSIZE=88)
//GO.SYSOUT DD SYSOUT=A
//GO.SORTWKOI DD UNIT=SYSDA,SPACE=(CYL,l)
//GO.SORTWK02 DD UNIT=SYSDA,SPACE=(CYl,l)
//*

Figure 148 (Part 2 of 2). Example of Sorting Varying Length Records Using Input and
Output Handling Routines

338 OS PL/I Optimizing Compiler: Programmer's Guide

CHAPTER 13. CHECKPOINT/RESTART

The Pl/I Checkpoint/Restart feature provides a convenient method
of taking checkpoints during the execution of a long-running
program in a batch environment. It cannot be used in a T50
environment.

At points specified in the program, information about the
current status of the program is written as a record on a data
set. If the program terminates due to a system failure~ this
information can be used to restart the program close to the
point where the failure occurred, avoiding the need to rerun the
program completelY.

This restart can be either automatic or deferred. An automatic
restart is one that takes place immediately (provided the
operator authorizes it when requested by a system message). A
deferred restart is one that is performed later as a new job.

You can request an automatic restart from within your program
without a system failure having occurred.

Pl/I Checkpoint/Restart uses the Advanced Checkpoint/Restart
Facility of the operating system. This is fully described in
the publication Advanced Checkeoint/Restart.

To use checkpoint/restart you must do the following:

• Request, at suitable points in your program, that a
checkpoint record is written. This is done with the
built-in subroutine PlICKPT.

• Provide a data set on which the checkpoint record can be
written.

• Also, to ensure the desired restart activity, you may need
to specify the RD parameter in the EXEC or JOB statement
(see the publication JCl Reference).

Note: You should be aware of the restrictions affecting data
sets used by your program. These are detailed in the
publication Advanced Checkpoint/Restart.

WRITING A CHECKPOINT RECORD

Each time you want a checkpoint record to be written, you must
invoke, from your Pl/I program, the built-in subroutine PlICKPT.

The CAll statement has the form:

CALL PLICKPT [Cddname[,check­
id[,org[,code]l])]j

The four arguments are all optional. If an argument is not
used, it need not be specified unless another argument that
follows it in the given order is specified. In this case, the
unused argument must be specified as a null string. The
following paragraphs describe the arguments.

"ddname" is a character string constant or variable specifying
the name of the DD statement defining the data set that is to be
used for checkpoint records. If this argument is omitted, the
system will use the default ddname 5Y5CHK.

"check-id" is a character string constant or variable specifying
the name that you want to assign to the checkpoint record so
that you can identify it later, if required. If this argument
is omitted, the system will supply a unique identification and
print it at the operator's console.

Chapter 13. Checkpoint/Restart 339

CHECKPOINT DATA SET

"org" is a character string constant or variable with the
attributes CHARACTER(2) whose value indicates, in operating
system terms, the organization of the checkpoint data set. PS
indicates sequential (that is, CONSECUTIVE) organization; PO
represents partitioned organization. If this argument is
omitted, PS is assumed.

"code" is a variable with the attributes FIXED BINARY (31),
which can receive a return code from PLICKPT. The return code
has the following values.

o A checkpoint has been successfully taken.

4 A restart has been successfully made.

a A checkpoint has not been taken. The PlICKPT statement
should be checked.

12 A checkpoint has not been taken. Check for a missing DD
statement, a hardware error, or insufficient space in the
data set. A checkpoint will fail if taken while a DISPLAY
statement with the REPLY option is still incomplete or if
the program is using multitasking.

16 A checkpoint has been taken, but ENQ macro calls are
outstanding and will not be restored on restart. This
situation will not normally arise for a PL/I program.

A DD statement defining the data set on which the checkpoint
records are to be placed, must be included in the job control
procedure. This data set can have either CONSECUTIVE or
partitioned organization. Any valid ddname can be used. If you
use the ddname SYSCHK, you do not need to specify the ddname
when invoking PLICKPT.

A data set name need be specified only if you want to keep the
data set for a deferred restart. The I/O device can be any
magnetic-tape or direct-access device.

If you want to obtain only the last checkpoint record, then
specify status as NEW (or OLD if the data set already exists),
This will cause each checkpoint record to overwrite the previous
one.

If you want to retain more than one checkpoint record, specify
status as MOD. This will cause each checkpoint record to be
added after the previous one.

If the checkpoint data set is a library, then "check-id" is used
as the member-name. Thus B checkpoint will delete any
previously-taken checkpoint with the same name.

For direct-access storage, enough primary space should be
allocated to store as many checkpoint records as you will
retain. You can specify an incremental space allocation, but it
will not be used. A checkpoint record is approximately 5000
bytes longer than the area of main storage allocated to the
step.

No DCB information is required, but you can include any of the
following, where applicable:

OPTCD=W, OPTCD=C, RECFM=UT, NCP=2, TRTCH=C

These subparameters are described in your JCL manual.

340 OS PL/I Optimizing Compiler: Programmer's Guide

PERFORMING A RESTART

A restart can be automatic or deferred. Automatic restarts can
be made after a system failure or from within the program
itself. All automatic restarts need to be authorized by the
operator when requested by the system.

AUTOMATIC RESTART AFTER A SYSTEM FAILURE

If a system failure occurs after a checkpoint has been taken,
the automatic restart will occur at the last checkpoint if you
have specified RD=R (or omitted the RD parameter) in the EXEC or
JOB statement.

If a system failure occurs before any checkpoint has been taken;
then an automatic restart, from the beginning of the job step,
can still occur if you have specified RD=R in the EXEC or JOB
statement.

After a system failure occurs, you can still force automatic
restart from the beginning of the job step by specifying RD=RNC
in the EXEC or JOB statement. By specifying RD=RNC, you are
requesting an automatic step restart without checkpoint
processing should another system failure occur.

AUTOMATIC RESTART FROM WITHIN THE PROGRAM

DEFERRED RESTART

A restart can be requested at any point in your program. The
rules applying to the restart are the same as for a restart
after a system failure. To request the restart, you must
execute the statement:

CALL PLIREST;

To effect the restart, the compiler terminates the program
abnormally, with a system completion code of 4092. Therefore,
to use this facility, the system completion code 4092 must not
have been deleted from the table of eligible codes at system
generation.

To ensure that automatic restart activity is canceled, but that
the checkpoints are still available for a deferred restart,
specify RD=NR in the EXEC or JOB statement when the program is
first executed.

If a deferred restart is subsequently required, the program must
be submitted as a new job, with the RESTART parameter in the JOB
statement. The RESTART parameter specifies the job step at
which the restart is to be made and, if you want to restart at a
checkpoint, the name of the checkpoint record. The RESTART
parameter has the form:

RESTART=(stepname[,check-id)

For a restart from a checkpoint, you must also provide,
immediatelY before the EXEC statement for the job step, a DD
statement, with the name SYSCHK, defining the data set
containing the checkpoint record.

Chapter l3~ Checkpoint/Restart 341

MODIFYING CHECKPOINT/RESTART ACTIVITY

You can cancel automatic restart activity from any checkpoints
taken in your program by executing the statement:

CALL PLICANC;

However, if you have specified RD=R or RD=RNC in the JOB or EXEC
statement, automatic restart can still take place from the
beginning of the job step.

Also, any checkpoints already taken will still be available for
a deferred restart.

You can cancel any automatic restart, and also the taking of
checkpoints, even if requested in your programj by specifying
RD=NC in the JOB or EXEC statement.

342 OS PL/I Optimizing Compiler: Programmer's Guide

CHAPTER 14. INTERLANGUAGE COMMUNICATION WITH COBOL AND FORTRAN

The PL/I interlanguage facilities permit communieatioh, at
execution time, between programs compiled by the Pl/I Checkout
and Optimizing Compilers and programs compiled by one of the
following compilers, and executed using the corresponding
library:

OS FORTRAN IV Compiler
(H Extended)

as FORTRAN Library Mod II

OS/VS COBOL Compiler and
Library
(Library only)

In addition, such programs compiled by the PL/I Optimizing
Compiler can communicate with programs compiled by one of the
following compilers, and executed using the corresponding
library:

VS FORTRAN Compiler and Library
(Library only)

VS COBOL II
Compiler and Library

(Library only)

Communication between a PL/I program and a program compiled by
one of the FORTRAN or COBOL compilers can be achieved in two
ways:

• By using a common data set for the PL/I and COBOL/FORTRAN
routines.

• By invoking a COBOL/FORTRAN routine from a PL/I routine, or
vice versa, and by passing data either as arguments or in
the form of static storage.

If a common data set is used to communicate between a PL/I and a
COBOL routine, the COBOL option of the ENVIRONMENT attribute may
be required. Although this option initiates remapping of PL/I
structures, it is in no way associated with the interlanguage
facilities described here; a file with this option cannot be
used as a file argument or a file parameter. For use of the
COBOL option of the ENVIRONMENT attribute, see "COBOL
Option-Data Interchange" on page 132.

A Pl/I procedure can invoke a COBOL routine by use of the CALL
statement, or can invoke a FORTRAN routine by use of the CALL
statement or a function reference. Alternatively, a PL/I
procedure can be invoked by use of the corresponding language
features in a COBOL or a FORTRAN main program or routine.
Arguments can be passed on invocation, and a value can be
returned for function references.

Interlanguage calls to COBOL and/or FORTRAN cannot be made from
PL/I FETCHed procedures. COBOL dynamic CALL statements may not
be used in an interlanguage environment.

A PL/I procedure cannot invoke a COBOL or a FORTRAN routine as a
task. Only one task of a PL/I program can have active COBOL or
FORTRAN routines at anyone time. If a PL/I program has more
than one task active at the same time, then, if one of these
tasks has invoked a COBOL or a FORTRAN routine, you must ensure
that the other tasks wait until control has returned to the Pl/I
program before another non-Pl/I routine is invoked.

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 343

A COMMON block in FORTRAN (other than dynamic common; dynamic
common must be passed as arguments) has storage equivalent to
that of a STATIC EXTERNAL variable in Pl/I. If a COMMON block
and a STATIC EXTERNAL variable are given the same name, then
they will be allocated the same block of storage, in the same
way as two identical STATIC EXTERNAL variables in Pl/I.
Assigning a value to one variable causes the same value to be
assigned to the other. There is no similar equivalence in
COBOl--no COBOL variable can have common storage with a PL/I
variable other than as an argument or parameter.

Tha interlanguage facilities are entirely provided by the Pl/I
compiler; they are obtained by specifying the appropriate
language items in the invoking or invoked PL/I procedure.
Existing COBOL or FORTRAN programs or routines generally do not
need modification or recompiling for interlanguaga use; new
programs or routines can be written in these languages and
compiled as before, without the need to anticipate interlanguage
communication. Thus existing COBOL or FORTRAN application
programs can be extended by the use of Pl/I procedures, while
COBOL or FORTRAN libraries can be made available to new or
existing PL/I procedures.

In the context of this chapter, nroutinen includes a COBOL
subprogram, or a FORTRAN subroutine or function, including a
FORTRAN library function. The conventions that exist in these
languages for handling subroutines and functions apply normally,
and are not modified for interlanguage use. In particular, the
restriction that a FORTRAN function cannot be invoked without
passing an argument or arguments still applies when the
invocation is from a Pl/I routine.

Facilities are provided to extend Pl/I interrupt handling to
cover invoked COBOL or FORTRAN routines.

INVOKING COBOL FROM PL/I

If you invoke a COBOL routine after a Pl/I on-unit has
intercepted an abend, unpredictable results may occur. You
should also consider the effects of the INTERRUPT option, as
discussed in "INTERRUPT Optionn on page 21, when determining
what will occur in the event of an abnormal termination.

COBOL programs should specify the COBOL NOSTAE option to allow
Pl/I to handle abands unless you require COBOL debugging
facilities. In that case, specify the PL/I NOSTAE option. If
COBOL ESTAE error handling is invoked before PL/I STAE handling,
you may encounter unpredictable results.

ARGUMENTS AND PARAMETERS

While a detailed knowledge of COBOL or FORTRAN is not essential
for use of the interlanguage facilities, you may need to be
aware of the equivalents in data organization in PL/I and the
other two languages. These equivalents must be understood in
order to achieve argument/parameter matching.

The interlanguage facilities resolve differences in the mapping
for equivalent data organizations, when matching arguments and
parameters; you can, if you wish, override this action.

PASSING ARGUMENTS TO COBOL OR FORTRAN ROUTINES

When an argument is passed to a COBOL or a FORTRAN routine, the
data type is determined in the normal Pl/I manner; that is, from
the parameter descriptor list of the associated entry
declaration, or from the argument itself. The interlanguage
facilities ensure, however, that the addressing mechanism for
the argument is that used by the invoked language, and unless
otherwise required, the mapping of any aggregates passed is that
used by the invoked language. Since the interlanguage

344 OS Pl/I Optimizing Compiler: Programmer's Guide

facilities provided by PL/I cannot look at the parameter in the
invoked routine, it is your responsibility to ensure that the
parameter in the invoked routine corresponds in data type and
organization to the argument description in PL/I.

If the PL/I compiler can determine, at compile-time, that the
mapping of a structure or array argument is the same in PL/I as
in the invoked language, the argument is passed directly to the
invoked routine. However, where such mapping equivalence does
not exist, the interlanguage facilities provide for a du~my
argument to be passed, where the dummy is mapped according to
the rules of the invoked language. See the section on
"structure Mapping" in the OS and DOS PL/I Lannuage Reference
Manual.

If the PL/I data types of arguments passed to FORTRAN or COBOL
have no equivalents in these languages, a warning message is
produced at compile-time. At execution-time the results are
undefined, and may include abnormal termination.

DATA TYPES: PL/I has more data types than either COBOL or
FORTRAN; some have no equivalents in these languages. The
extent to which PL/I data types have equivalents in COBOL or
FORTRAN, and therefore can be passed as arguments, is summarized
here.

PROBLEM DATA: Most of the PL/I data types have equivalents in
either COBOL or FORTRAN. Tables of data equivalents for
PL/I-COBOL and PL/I-FORTRAN are given in Figure 149 on page 346
and Figure 151 on page 353, respectively.
PROGRAM-CONTROL DATA: Arguments of any program-control data
type can be passed to an invoked COBOL or FORTRAN routine. An
entry argument can be passed and used within the invoked
routine, and then only if the routine is a FORTRAN routine.
Arguments of any other data type should not be used in the
invoked routine except to be passed in turn to a PL/I procedure.

DATA-MAPPING: In order that an argument can be successfully
passed to a COBOL or FORTRAN routine, the mapping of the actual
argument passed must correspond to the mapping assumed for the
parameter by COBOL or FORTRAN.

For an element argument, the only requirement is that the
alignments of argument and parameter are compatible. In PL/I
the alignment of variables is determined by the ALIGNED and
UNALIGNED attributes. The equivalent specifications in COBOL
and FORTRAN are:

PL/I
ALIGNED
UNALIGNED

COBOL
SYNCHRONIZED
Unsynchronized

FORTRAN
Normal alignment
No equivalent

The alignment of a PL/I argument is deduced, like the data type,
from the parameter descriptor list or from the argument itself.
Only ALIGNED elements may be passed to SYNCHRONIZED COBOL
parameters, or to FORTRAN parameters. Either ALIGNED or
UNALIGNED elements can be passed to COBOL unsynchronized
parameters. It is your responsibility to ensure that these
alignments are compatible.

The problem is more complicated for data aggregates. A PL/I or a
COBOL structure, for example, can have either of the alignment
stringencies given above. In addition, each member can have its
own alignment stringency or all members can have the same
alignment stringency. Padding bytes are inserted by the mapping
algorithm for the particular language, in order to preserve the
required alignment for each member. In a PL/I structure, the
alignments are adjusted, where possible, to minimize the amount
of padding required; this adjustment does not occur in a COBOL
structure. The result is that a structure mapped with the Pl/I
mapping algorithm may not have the same layout in main storage
as a structure mapped with the 'COBOL algorithm.

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 345

COBOL PL/I

Alignment Alignment

Length Synch. Unsynch. Length
Data Type (bytes) (aligned) (unaligned) Data Type (bytes) Aligned Unaligned

~------------~------~--------~.----------~~----~----~.------~------~~------~
COMPUTA­
TIONALl

dec length:
1-4

5-9

10-18

COMPUTA­
TIONAL-13

CO~1PUTA"'"
TIONAL-2 3

COMPUTA­
TIONAL-3

DISPLAY

2 Halfword

4 Fullword

8 Fullword

4 Fullword

8 Double-
word

any Byte

Byte

Byte

Byte

Byte

Byte

Byte

Byte

FIXED
BINARY(15,O)
Chalfword
integer)

FIXED
BINARY(3l,O)
(fullword
integer)

No equiva­
lent

FLOAT DEC(6)
(short
float)

FLOAT
DEC(16)
(long"float)

FIXED DEC

CHARACTER

2

4

4

8

any

1 Decimal length is equal to the number of 9s ih the picture.

Half­
word

Full­
word

Full"':"
word

Double­
word

Byte

Byte

2 The length of 1 byte applies to the smallest fixed decimal value
(i.e., 1 digit). For other values, the length is given by
CEIL((number of digits + 1)/2) bytes.

3 OS VS COBOL Release 2.4 only, not VS COBOL II.

Byte

Byte

Byte

Byte

Byte

Byte

Figure 149. COBOL--PL/I Data Equivalents

Similarly, the mapping of arrays is different in PL/I and
FORTRAN. PL/I stores arrays of more than one dimension in
row-major-order, while FORTRAN stores them in
column-major-order. Hence, for arrays with more than one
dimension, a reference to an element in Pl/I is obtained by
reversing the order of the subscripts that would be used in
FORTRAN to refer to the same element.

The interlanguage facilities resolve these problems by creating
dummy arguments for PL/! data aggregates passed as arguments to
COBOL or FORTRAN routines. When a PL/I ALIGNED structure is
passed as an argument to a COBOL routine, the algorithm used for
mapping the argument in both languages is considered. If the
compiler can determine that the mappings are identical, the
argument is passed directly to the COBOL routine.

How~ver, if the compiler cannot determine that the mappings are
identical, a dummy argument is created, mapped according to the
COBOL SYNCHRONIZED mapping algorithm. The values of the members
of the PL/I structure are assigned to the corresponding members
in the dummy argumenti the dummy is then passed as an argument
to the COBOL routine. On return to the Pl/I procedure, the
values in the dummy argument (which mayor may not have been

346 OS PL/I Optimizing Compiler: Programmer's Guide

changed) are assigned to the corresponding members of the
original PL/I argument.

Similarly, when a PL/I array is passed as an argument to a
FORTRAN routine, the mapping of the array in both languages is
considered. If the arrays are unidimensional, and are in
connected storage and are aligned identically, the argument is
passed directly to the invoked FORTRAN routine. If either the
arrays are unidimensional and do not meet the above conditions,
or are multidimensional, a dummy argument is created and mapped
according to FORTRAN array handling. (In effect, this means the
subscripts are reversed.) The values of the PL/I array elements
are assigned to the corresponding elements in the dummy
argument. The dummy is then passed as an argument to the FORTRAN
routine. On return to the PL/I procedure, the values in the
dummy argument (which mayor may not have been changed) are
assigned to the appropriate elements of the Pl/I argument.

You can specify certain options that inhibit or restrict the
effect of the interlanguage facilities for remapping data
aggregates. If several are passed at an invocation, you can, for
example, inhibit the facilities for one argument, allow them for
another argument, or restrict them for a third argument.

INVOKING COBOL OR FORTRAN ROUTINES

Invocation of a COBOL or FORTRAN routine is performed by a CALL
statement or (in the case of a FORTRAN routine only) function
reference that specifies an entry constant or variable whose
value corresponds to the entry point of a COBOL or FORTRAN
routine. The entry point must not be that of a FORTRAN main
program. ·The entry constant or variable must be identified as
invoking COBOL or FORTRAN by use of the appropriate options in
the OPTIONS attribute in the declaration of the entry in the
PL/I program. You may also specify, in this declaration, options
that suppress remapping of data aggregates and an option that
allows PL/I to deal with certain interrupts in the COBOL or
FORTRAN routine.

The options are:

COBOL
This specifies that the designated entry point is in a
COBOL routine.

FORTRAN

NOMAP

This specifies that the designated entry point is in a
FORTRAN routine.

This specifies that a dummy argument is not created; the
aggregate argument is passed directly to the invoked
routine.

NOMAPIN
This specifies that, if a dummy argument is created, it is
not initialized with the values of the aggregate argument.

NOMAPOUT

INTER

This specifies that, if a dummy argument is created, then,
on return, the values in the dummy argument are not
assigned to the aggregate argument.

This specifies that any interrupts occurring during the
execution of a COBOL or FORTRAN routine that are not dealt
with by the COBOL or FORTRAN interrupt-handling facilities
are dealt with by the PL/I interrupt-handling facilities
(see also "Handling Interrupts" on page 357).

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 347

ARGn

The NOMAPIN and NOMAPOUT 4ptions should be used if
initialization is not required whenever program efficiency
is important, because they allow the compiler to omit
unnecessary initialization code.

This is an option of NOMAP, NOMAPIN, and NOMAPOUT that
specifies which arguments the option applies to. If no
ARGn is specified, the option is applied to all arguments.

The following points should be noted in the declaration of the
entry name:

• Either COBOL or FORTRAN (but not both) can appear in the
declaration. One or more of the options NOMAP, NOMAPIN and
NOMAPOUT can appear in the same declaration.

• The RETURNS attribute cannot be used with the COBOL option,
as COBOL does not provide function subprograms.

• An entry variable or a parameter can be declared with the
interlanguage options.

• An entry name with the interlanguage options can appear in a
GENERIC attribute specification.

• The entry constant name of the COBOL or FORTRAN routine may
have 1 through 8 characters. If more than 8 characters are
specified, only the leftmost 8 are taken.

• Specifying NOMAPIN and NOMAPOUT for the same argument is
equivalent to speci fying NOf1ftP 'for that argument; that is,
no dummy argument is created.

• NOMAP, NOMAPIN, and NOMAPOUT are effective only for
structures passed to COBOL and arrays passed to FORTRAN.

Examples

1. DCl COBOL ENTRY (CHAR(S»
OPTIONS(COBOL INTER),

COBOlB ENTRY (I, 2 FIXED, 2 FLOAT)
OPTIONS(COBOL NOMAPIN),

COBOlBX OPTIONS(COBOl) EXTERNAL
ENTRY(...);

2. DCL. FORTA ENTRY(FIXED BINARY)
OPTIONS(FORTRAN) RETURNS
(FLOAT (5);

3. DCl A EXTERNAL ENTRY(...) VARIABLE
OPTIONS (FORTRAN),

B OPTIONSCFORTRAN);

A=B;
CALL A-(...);

4. DCl A GENERIC (COBOlZ
H~EN(CHARACTER),

FORTZ HHEN(FIXED BINARY»,

COBOlZ OPTIONS(COBOL),

FORTZ OPTIONS(FORTRAN);

348 OS Pl/I Optimizing Compiler: Programmer"s Guide

S. DCl A ENTRY;

CAll X(A)i

.
X: PROCCD);
DCl D OPTIONSCCOBOl);

6. DCl COBSUB ENTRYC .. ., ... , ... ,)
OPTIONSCCOBOL,NOMAPCARGl,ARG3»;

CALL COBSUBCA,B,C);

CALL COBSUBCX,Y,Z);

PASSING ARGUMENTS FROM COBOL OR FORTRAN ROUTINES

Data Mapping

When an argument is passed to a PL/I procedure from COBOL or
FORTRAN, the data type is determined in the normal PL/I manner;
that is, from the declaration of the parameter. The
interlanguage facilities ensure that the addressing mechanism
used for the parameter is that used by PL/I, and that, unless
otherwise required, the mapping of any aggregate parameters
passed is also that used by PL/I. Since the interlanguage
facilities provided by PL/I cannot look at the argument in the
routine invoking Pl/I, it is your responsibility to ensure that
the argument passed to PL/I corresponds in data type and
organization to the parameter declared in PL/I.

The situation is similar to that which occurs on invocation of
COBOL or FORTRAN by PL/I. The mapping of the argument on entry
to the PL/I procedure must correspond to the mapping used by
PL/I in addressing the parameter.

For element arguments and parameters, this means that a FORTRAN
or a synchronized or unsynchronized COBOL argument may be passed
to an UNALIGNED PL/I parameter, or that a synchronized COBOL
argument or a FORTRAN argument can be passed to an ALIGNED PL/I
parameter.

For aggregate arguments and parameters where the mapping of the
argument in COBOL (synchronized) or FORTRAN differs from the
mapping of the parameter in Pl/I, the interlanguage facilities
resolve the problem by creating a dummy argument which is passed
to the PL/I procedure.

The dummy argument is mapped according to PL/I rules, and,
before invocation of the PL/I procedure, the values of the
members of the COBOL or FORTRAN argument are assigned to the
corresponding members of the dummy argument. On return from the
PL/I procedure, the values of the members of the dummy argument
are assigned back to the original argument.

If the compiler can recognize that the mapping in COBOL or
FORTRAN and PL/I are equivalent, no such dummy is created.

Alternatively, you can inhibit the creation of the dummy, or the
assignments between the original argument and the created dummy,
by means of options.

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 349

INVOKING PL/I ROUTINES FROM COBOL OR FORTRAN

The entry points in a PL/I procedure that are to be invoked from
COBOL or FORTRAN must be identified by the appr~priate options
in the corresponding PROCEDURE or ENTRY statement. You may also
specify options that suppress remapping of data aggregates.

Because of the way the Pl/I environment is preserved, the COBOL
DYNAM and ENDJOB options may not be used when invoking a Pl/I
PROCEDURE.

COBOL
This specifies that the entry point can only be invoked by
a COBOL routine.

FORTRAN

NOMAP

This specifies that the entry point can only be invoked by
a FORTRAN routine.

This specifies that a dummy argument is not created; the
COBOL or FORTRAN aggregate argument is passed directly to
Pl/I.

NOMAPIN
This specifies that, if a dummy argument is created, it is
not initialized with the values of the aggregate argument.

NOMA POUT
This specifies that, if a dummy argument is created its
values are not assigned back to the aggregate argument on
return. The NOMAPIN and NOMAPOUT options should be used,
if initializations are not required, whenever program
efficiency is important, since they allow the compiler to
omit unnecessary initialization code.

Parameter list
The parameter or parameters to which the NOMAP, NOMAPIN, or
NOMAPOUT options apply can be specified in a list. If no
list is specified, the option is applied to all parameters.

The following points should be noted when coding the PROCEDURE
or ENTRY statement:

• OnlY one of the options MAIN, COBOL, or FORTRAN can appear
in the same statement. One or more of the options NOMAP,
NOMAPIN, or NOMAPOUT can appear in the same statement.

• If the parameters for the procedure include strings, areas,
or arrays; the lengths, sizes, or bounds for these must be
specified as integers.

• The RETURNS option cannot be specified for any entry point
invoked by a COBOL routine.

• Specifying NOMAPIN and NOMAPOUT for the same argument is
equivalent to specifying NOMAP for that argument; that is,
no dummy argument is created.

• NOMAP, NOMAPIN, and NOMAPOUT are effective only for
structures passed "from COBOL and arrays passed from FORTRAN.

Examples:

1. PI: PROC(A,B,C) OPTIONSCFORTRAN
NOMAPINCC) NOMAPOUT(A»;

DCl AC3,4) FLOAT BIN(20),
B FIXED BIN(31),
C(S,6) FLOAT DEC(6);

2. P2: PROC(R,S,T) OPTIONS (FORTRAN
NOMAP);

3S0 OS Pl/I Optimizing Compiler: Programmer's Guide

3. P3: PROC(X,Y) OPTIONS(COBOL NOMAPIN(X)
NOMAPOUTCY»;

DCl 1 X, 2 ... 2 ... 3 ... 1

1 Y, 2 ••• 2 ••• 3 •• .;

MATCHING COBOL ARGUMENTS/PARAMETERS

Argument/parameter matching across a Pl/I-COBOl interface
requires a knowledge of the equivalence of data types and of
data organization in the two languages. The Pl/I equivalents of
the COBOL data types are shown in Figure 149 on page 346. These
are the Pl/I data types that should appear in PL/I parameter
descriptors associated with COBOL arguments or parameters,
respectively.

While a knowledge of equivalent data types is sufficient for
specifying COBOL items in terms of Pl/I element variables, the
specification of equivalent data aggregates (group items in
COBOL, structures or arrays in Pl/I) requires a knowledge of the
data-organization descriptions of the two languages. The
example given in Figure 150 on page 352 shows how a COBOL data
aggregate is described in PL/I terms.

In COBOL, the OCCURS clause cannot be nested to more than three
levels. This imposes a restriction on any Pl/I array within a
structure passed as an argument to a COBOL routine. Also, the
OCCURS clause cannot appear on a level-Ol entry. This precludes
the use of a level-Ol array in a PL/I structure passed to or
from a COBOL routine.

A PL/I structure that contains an area or a bit variable should
not be passed as an argument to a COBOL routine. If it is, a
diagnostic message is produced ahd the structure is not
remapped.

A bit or character string with the VARYING attribute may be
passed to a COBOL routine, although there is no equivalent
attribute in COBOL. The address of the start of the 2-byte
length prefix is passed, so that the prefix constitutes the
first 2 bytes of the COBOL string. Conversely, when COBOL data
is passed to a PL/I string parameter with the VARYING attribute,
the first 2 bytes of the argument form the parameter's length
prefix.

MATCHING FORTRAN ARGUMENTS/PARAtIETERS

Argument/parameter matching across a PL/I-FORTRAN interface, and
the use of common storage for Pl/I and FORTRAN variables,
requires a knowledge of the equivalence of data types and of
data organizations in the two languages. The PL/I equivalents
of the FORTRAN data types are shown in Figure 151 on page 353.
These are the Pl/I data types that should appear in PL/I
parameters or parameter descriptors associated with FORTRAN
arguments or parameters respectively, and in the declaration of
STATIC EXTERNAL variables with the same names as FORTRAN COMMON
blocks.

Specification of equivalent data aggregates in Pl/I and FORTRAN
is simpler than in Pl/I and COBOL, as the only data aggregates
that exist in FORTRAN are arrays. Problenls arise when using
unconnected unidimensional arrays or multidimensional arrays as
PL/I arguments.

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 351

COBOL

01 A.

Generally, when passing arguments between PL/I and FORTRAN, the
interlanguage facilities pass a unidimensional array directly to
the invoked routine, without the creation of a dummy argument.
However, if a PL/I unidimensional array in unconnected storage
is passed as an argument to a FORTRAN routine, the interlanguage
facilities create a dummy argument into which the unconnected
array is mapped. The dummy is then passed as the argument. On
return, the values in the dummy are assigned to the
corresponding elements in the array.

A dummy argument is always created for a multidimensional array
passed between PL/I and FORTRAN routines, unless the NOMAP
option is specified.

PL/I

1 A ALIGNED,
02 B OCCURS 3 TIMES. 2 B(3),

03 C OCCURS 4 TIMES. 3 C(4),
04 D OCCURS S TIMES USAGE COMP-3 4 D(S) FIXED DECIMAL(7,3),

PIC S9999V999.
02 E USAGE DISPLAY. 2 E,

03 F PIC XeS). 3 F CHAR(S),
03 G PIC 9(8). 3 G PIC '(8)9',

02, DUMMY OCCURS 6 TIMES. 2 H(6,7) FIXED BH~ARY(15,0);
03 H OCCU~S 7 TIMES USAGE COMP

PIC S9999 SYNCHRONIZED.

Figure 150. Declaration of a Data Aggregate in COBOL and PL/I

3S2 OS PL/I Optimizing Compiler: Programmer's Guide

FORTRAN PL/I

Alignment

Data Type Length Alignment 1

(bytes)
Data Type Length

(bytes) Aligned Unaligned

INTEGER*2

INTEGER*4

REAL*4

REAL*8

REAL*16

Cor~PL EX*8

COMPLEX
*16

COMPLEX
*32

LOGICAL*l

LOGICAUE4

2

4

4

8

16

8

16

32

1

4

Halfword

Fullword

Fullword

REAL FIXED BINARYCI5,O)

REAL FIXED BINARY(3I,O)

REAL FLOAT DEC(6)
(real short float)

Doubleword REAL FLOAT DECCI6)
(real long float)

Doubleword REAL FLOAT DEC(33)
Creal extended float)

Fullword COMPlEX FLOAT DEC(6)
(complex short float)

Doubleword COMPLEX FLOAT DEC(16)
(complex long float)

Doubleword COMPLEX FLOAT DEC(33)
(complex extended)
float)

Byte

Fullword

BIT(8)

BIT(32)

2

4

4

8

16

8

16

32

I

4

Half­
word

Full­
word

Full­
word

Byte

Byte

Byte

Double- Byte
word

Double- Byte
word

Full- . Byte
word

Double- Byte
word

Double- Byte
word

Byte

Byte

Bit2

Byte

IGenerally, FORTRAN data is held in main storage with thes~ alignments.
COMMON data, however, is always byte-aligned. This could cause a specifica­
tion interrupt if the items in the COMMON area are not stored in order of
decreasing stringency.

2The fact that the alignment required of unaligned bit strings is bit
rather than byte does not affect PL/I-FORTRAN data interchange, since the
FORTRAN string will always take up an integral number of bytes.

Figure 151. FORTRAN-PL/I Data Equivalents

If a PL/I array of bit strings is passed as an argument to a
FORTRAN routine, only 8 or 32 should be specified for the string
lengths. If values other than these are specified, a diagnostic
message is produced and the array is not remapped. Similarly,
only these lengths should be used for PL/I variables having
storage common with FORTRAN variables.

COMPILE-TIME RETURN CODES

As part of the interlanguage facilities of PL/I, diagnostic
messages are produced, and the return code is set appropriately,
if you specify arguments or parameters whose attributes are such
that errors may occur at execution time. The compiler never
prevents data being passed, nor does it attempt to correct
errors; although it produces messages to indicate likely sources
of error, it always allows you to attempt to pass any type of
data you specify.

Figure 152 on page 354 shows the return codes generated by
various types of PL/I data.

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 353

For further information on compile-time return codes, see
Figure 11 on page 55.

PL/I COBOL COBOL FOR1'RAN FORTRAN
Attribute Argument Parameter Argument Parameter

ALIGNED 0000 0000 0000 0000

AREA Note 1 Note 1 Note 1 Note 1

BINARY 0000 0000 0000 0000

BIT Note 1 Note 1 Note 2 Note 2.

CHARACTER 0000 0000 0004 0004

COMPLEX 0004 0004 Note 4 Note 4

CONNECTED 0000 0000 0000 0000

CONTROLLED 0000 0012 0000 0012

DECH1Al 0000 0000 Note 3 Note 3

DEFINED 0000 - 0000 -
Dimension Note 8 Note 8 0000 0000

ENTRY 0004 0004 0004 0004

EVENT 0004 0004 0004 0004

FILE 0004 0004 0004 0004

FIXED 0000 0000 0000 0000

FLOAT 0000 0000 0000 0000

LABEL 0004 OOO~ 0004 0004

OFFSET 0004 0004 0{)04 0004

PICTURE 0000 0000 0004 0004

POINTER 0004 0004 0004 0004

Precision Note 6 Note 6 Note 7 Note 7

REAL 0000 0000 0000 0000

structure 0000 0000 N()'b~ 1 Note 1

TASK 0004 0004 0004 0004

l,INAlIGNED Note 9 0000 Note 9 0000

Unconnected Note 5 0000 Note 5 0000

VARYING 0004 0004 0004 0004

Figure 152. Return Codes Produced by PL/I Data Types

Notes to Figure 152:

1 Checkout compiler: 0004
Optimizi~9 compiler: 0008
In both cases, creation of a dummy argument is suppressed.

2 BITeS) or BIT(32): 0000
Any other length: OOOS
In latter case, creation of a dummy argument is suppressed.

354 OS PL/I Optimizing Compiler: Programmer's Guide

USING COMMON STORAGE

3 FLOAT DECIMAL; 0000
FIXED DECIMAL: 0004

4 FLOAT COMPLEX: 0000
FIXED COMPLEX: 0008

5 If creation of temporary suppressed by NOMAP option: 0012
If no NOMAP option: 0000

6 Variable is FIXED (p,O), or is short or long FLOAT: 0000
Variable is BINARY FIXED (p/q) with q~=O or is extended
FLOAT: 0004

7 Variable is FLOAT, or is FIXED BINARY with precision (p/O):
0000
Variable is FIXED DECIMAL, or is BINARY (p,q) with q~=O:
0004

8 If item is element of a structure or is a minor structure:
0000
All other cases: 008

9 If argument is an aggregate and creation of temporary is
suppressed by NOMAP, Gr if argument is scalar: 0012
If argument is an aggregate and no NOMAP: 0000

A variable in a PL/I program can be allocated the same block of
storage as a group of variables in a FORTRAN routine. This
storage can then be used to communicate between the two
routines. Allocation of common storage is achieved by declaring
a PL/I variable to be STATIC EXTERNAL and to have the same name
as a COMMON block in the FORTRAN routine. The STATIC EXTERNAL
variable and the COMMON block will then be equivalent to two
declarations of a STATIC EXTERNAL variable in different external
PL/I procedures. The number of variables using common storage
is not limited to two. Any number of identical STATIC EXTERNAL
variables in different Pl/I procedures may be used together with
any number of identical COMMON blocks in different FORTRAN
routines, if all the procedures and routines are link-edited
into a single program. Methods of link-editing are given in
Chapter 3, "The Linkage Editor and the loader" on page 65.

The STATIC EXTERNAL variables must follow the normal PL/I rules
relating to these attributes, and they must be of a data type
that corresponds to the data type of the COMMON variables (see
Figure 151 on page 353 for a table of corresponding data types).
Also, the PL/I variables must be aligned to meet the
requirements of the corresponding FORTRAN data type.

The PL/I variables may be initialized using the INITIAL
attribute, and the FORTRAN variables may be initialized using a
block data subprogram. If the PL/I variables on the one hand
and the FORTRAN variables on the other are not initialized to
the same value, the procedure or routine encountered first by
the linkage-editor determines the initial value of all the
variables. It is not an error to initialize a PL/I variable to
a different value from a corresponding FORTRAN variable, or to
initialize one and not the other.

The PL/I variable may have further variables overlaid upon it by
means of the DEFINED attribute, provided that the defined
variable meets the data type and alignment requirements of the
FORTRAN variable. If the requirements are not met, execution
errors may occur.

Common storage cannot be used for a PL/I variable and a COBOL
variable. The only facility provided by PL/I for communication
of data between a PL/I procedure and a COBOL routine is that for
paSSing arguments.

Chapter 14. Inter1anguage Communication with COBOL and FORTRAN 355

INTERLANGUAGE ENVIRONMENT

For a program to be executed, a suitable environment must first
be established. If the program contains a Pl/I main procedure,
the Pl/I environment is established when the program is first
entered. If the main routine is COBOL or FORTRAN, the
interlanguage facilities will establish the required PL/I
environment when necessary. This section describes the
conventions and restrictions in the interlanguage context.

ESTABLISHING THEPL/I ENVIRONMENT

PROC8
FORTRAN

If the main routine of the program is a PL/I main procedure, the
Pl/I environment is established on entrY to the program. Even
if this program contains a mixture of PL/! and COBOL or FORTRAN
routines, the normal rules for freeing Pl/I storage and closing
PL/I files apply.

If the main routine of the program is not a Pl/I main procedure,
the PL/I environment is established when the first PL/I
procedure is invoked. The extent of this environment includes
the routine that invoked the Pl/I procedure (see Figure 153),
and the environment remains in existence until that routine is
terminated. The environment can be re-established and
terminated as frequently as required. Whenever the Pl/I
environment is destroyed, all Pl/I controlled and based storage
is released, and all Pl/I files are closed.

PROCI (MAIN)
FORTRAN

PROC2
FORTRAN

PROC3
Pl/I

PROC4
COBOL

V

PROC5
FORTRAN

PROC6
FORTRAN

PROC7
Pl/I

Bounaaries of Pl/! environments <--------~

Figure 153. Extent ofPL/! Environment

356 OS PL/I Optimizing Compiler: Programmer's Guide

For reasons of efficiency and of programming convenience, the
Pl/I environment should be destroyed as infrequently as possible
during execution of a program. This can be ensured if the main
routine is a PL/I main procedure, or if a PL/I procedura, no
matter what it contains, is invoked from the main routine. The
latter alternative, however, has the disadvantage that if the
main routine is in FORTRAN, the Pl/I environment will not be
ended normally when the final FORTRAN RETURN is executed to
return control .to the operating system (see "Terminating FORTRAN
and COBOL Routines" on page 359).

Note, however, that there must not be two concurre~t PL/I
environments; this means, for example, that a COBOL program may
not call two PL/I main proced~res.

ESTABLISHING THE FORTRAN ENVIRONMENT

HANDLING INTERRUPTS

Before a FORTRAN routine can be executed, a suitable environment
must be established. The extent of this environment includes
the Pl/I procedure that invokes the FORTRAN routine, and this
environm~nt remains in existence until the PL/I procedure is
terminated.

On each call to FORTRAN a test is made to determine whether a
FORTRAN environment has been established. If it has not,
FORTRAN initialization routines are invoked. Among other
housekeeping tasks performed, the message file, FT06FOOl, is
opened in preparation for FORTRAN error handling. When the
FORTRAN environment is terminated, the file is closed.

Since the FORTRAN environment remains in effect only as long as
the invoking Pl/I procedure is active, considerable overhead can
accrue opening and closing FT06FOD1, if the invoking PL/I
program is itself invoked repeatedly,

For reasons of efficiency then, the FORTRAN environment should
be destroyed as infrequently as possible during the execution of
a program. If VS FORTRAN subroutines or functions are used, VS
FORTRAN cannot be called for initialization a second time after
it has gone through termination. This is ensured if the PL/I
procedure that calls the FORTRAN routine is not terminated until
all the FORTRAN calls have been executed, or if the FORTRAN
environment is extended to include the outer Pl/I procedure by
invoking a FORTRAN routine (no matter what it contains, a
"RETURN" statement is sufficient) from the outer PL/I procedure.

COBOL and FORTRAN routines handle certain hardware interrupts
that may occur during their execution, but there are some that
they do not handle. The interlanguage communication facilities
of Pl/! allow any interrupt not dealt with by a COBOL or FORTRAN
routine to be handled by any PL/I procedure from which that
routine is dynamically descendent.

Specify the INTER option of the OPTIONS attribute when declaring
the COBOL or FORTRAN entry name. (See also the INTER option
under "Invoking COBOL or FORTRAN Routines" on page 347.) This
allows the interrupts not dealt with by the invoked COBOL or
FORTRAN routine to be handled by either a PL/I on-unit or by
Pl/I implicit action. (Except that Pl/I cannot handle a
ZERODIVIDE interrupt in a division of COMPUTATIONAL-3 data in a
routine compiled by a COBOL compiler. Such an interrupt will
cause termination of the program.) In Pl/I, an on-unit, while
established, applies not only to the procedure in which it was
created, but also to all procedures that are dynamically
descendent from it. If there occurs, during the execution of a
COBOL Dr FORTRAN routine, an interrupt that will not b~ handled
by that routine, and if the routine was invoked by a Pl/I
procedure in which the INTER option was specified for the COBOL
or FORTRAN entry name, then a search is made through all
invoking procedures for an appropriate on-unit. If none is

Chapter 14. Interlanguage Communication with COBOL and FORTRAN 357

GO TO STATEMENT

found, implicit action for the condition is taken. If INTER is
not specified, no search is made, and the interrupt is dealt
with by the operating system control program.

The search passes through all routines ~in the invoking chain, as
far as the limit of the PL/1 environment. It is, therefore,
possible for the search to include COBOL and FORTRAN routines.
Such routines have no effect on the results of the search, since
only PL/I on-units are searched for. The operating system may
convert some interrupts to an abend, and a PL/I ERROR on-unit
may get control to process the abend.

The GO TO statement must not be used to transfer control across
more than one interlanguage boundary, where an interlanguage
boundary is defined as an invocation in which one routine calls
another of a di fferent language. Such transfers of control nlay
be initiated inadvertently if you use a GO TO statement in an
on-unit. (Execution of a statement that causes entry to an
on-unit is not considered as transferring control outside the
block or routine. The on-unit may be regarded as being appended
to the procedure or routine from which it is entered. This
applies even if the on-unit is entered from a COBOL or FORTRAN
routine.) Consider the following e~amplel

P: PROCEDURE;
DECLARE LAB LABEL(Ll,L2) EXTERNAL,
FORT ENTRY OPTIONS(FORTRAN INTER);

ON ERROR GO TO LAB; .

CAll FORT;

ll: ;

END P;

Q: PROCEDURE OPTIONS(FORTRAN);
DECLARE LAB LABEL(Ll,l2)
EXTERNAL j

l2: ;

EI~D Q;

Assume that the CALL FORT; statem~nt is executed, and that FORT
then calls Q. Assume further that an error occurs in Q which
initiates entry to the on-unit established in P. At this stage
control is still with procedure Q, because the on-unit is
regarded as being appended to the p~ocedu~e f~om which it was
entered. If LAB has the value Ll, then the GO TO b~anch is in
error, because it transfers control back to procedure P and in
doing so c~osses the interlanguage boundaries between Q and FORT
and between FORT and P. If LAB has the value l2, the GO TO is
not in error because control remains in procedure Q. If an
interrupt in FORT caused the on-unit to be entered befo~e Q was
called, then the GO TO would not have been in error, if LAB had
the value Ll; only one interlanguage boundary would be c~ossed,
namely the FORTRAN-Pl/I boundary between FORT and P. (LAB
should not have the value L2 in this case, because procedure Q
is not active.)

358 OS Pl/I Optimizing Compiler: Programmer's Guide

TERMINATING FORTRAN AND COBOL ROUTINES

A rautine may be terminated by either executing a statement that
terminates the whole program, or by handing control back to the
calling routine.

The statements that terminate the whole program are STOP in
FORTRAN and STOP RUN in COBOL. They are equivalent to the PL/I
STOP statement. The effects of these sts·l:ements are unchanged
in a mixed language program; they still terminate the whole
program.

If a FORTRAN STOP is executed in a routine within a PL/I
environment, that environment is not ended in the normal way.
If a COBOL STOP RUN is executed in a routine within a PL/!
environment, that environment is ended in the nOI~mal way only if
it includes the main r»utine of the program; otherwise the
termination is abnormal. The main difference, from your point
of view, between a normal and an abnormal ending is that open
files in PL/I procedures are not closed in an abnormal ending.
This could cause output data to be lost. Considering the
example in Figure 153 on page 356, a STOP in PROC2 or a STOP RUN
in PROC4 would not close any files that may be open in PROC3,
and a STOP in PROC6 would not close any files in PROC7.

A RETURN executed in a FORTRAN subroutine or function that is
inside a PL/I environment and which returns control to a routine
outside that environment, ends the PL/I environment and causes
all files in dynamically descendent PL/I procedures to be closed
(in other words, a RETURN statement in a FORTRAN routine that
directly invokes a PL/I routine, but which is not dynamically
descendent from any PL/I routine). However1 a RETURN statement
in a FORTRAN main routine is effectively a STOP statement;
control is passed to the operating system without any files
being closed.

When a COBOL main routine within a PL/! environment returns
control to the operating system, the environment ends normally.

EXECUTION-TIME RETURN CODES

The value of the PL/I return code may be set in a PL/I routine
by means of the PLIRETC built-in subroutine (see "Execution-time
Return Codes" on pags 290).

The return code of a non-PL/I routine may be obtained by
declaring the entry point with OPTIONSCRETCODE). This option
causes the value of the Pl/I return code to be set to the value
returned by the non-PL/I routine in the lower half of register
15.

The latest value of the PL/I return code can be read by means of
the PLIRETV built-in function.

For example:

DECLARE AR ENTRY OPTIONS(COBOL,RETCODE);

CA1LAR;
IF PLIRETV() = 0 THEN ;

Chapter 14. Interlangtiage Communication with COBOL and FORTRAN 359

I CHAPTER 15. USING PL/I ON CICS

PL/I can be used in conjunction with CICS facilities to write
application programs (transactions) for CICS/OS/VS. When this
is done, CICS provides facilities to the PL/I program that would
normally be provided directly by the operating system. These
facilities include most data management facilities and all job
and task management facilities.

With PL/I Release 4.0, PL/I macro-level and command-level
application programs (transactions) running under eICS use
24-bit addressing mode. These transactions cannot use the
31-bit addressing capabilities of the MVS/XA Operating System.

With OS PL/I Version 1 Release 5.1, PL/I command level
application programs (transactions) running under CICS are able
to use the 31-bit addressing capabilities of the MVS/XA
Operating System. Release 5.1 programs will remain compatible
for non-MVS/XA systems.

PL/I transactions can reside above 16 megabytes and address data
above or below 16 megabytes. They can ALLOCATE BASED and
CONTROLLED variables above 16 megabytes by using the HEAP
execution-time option.

Release 5.1 provides support for Pl/I programs using the CICS
Command-Level Interface (in both 24-bit and 31-bit addressing
mode) and CICS Macro-Level Interface (in 24-bit addressing mode
only) to run with CICS/OS/VS Version I Release 6.1 with upgrade
and subsequent releases.,

This chapter describes the PL/I-supplied PL/I-CICS interface,
and the restrictions and features that apply to PL/I programs
compiled on Release 5.1 of the OS Pl/I Optimizing Compiler,
link-edited with Release 5.1 of the PL/I Resident Library, and
executed with Release 5.1 of the PL/I transient libraries,
under CICS/OS/VS Release 1.6.1.

NOTE: CICS Release 1.6.1 with upgr'sde (PTF UP90207 and PTF
UP9020S) is required in order to run PL/I application programs
using Release 5.1 of the PL/I Optimizing Compiler or Libraries.
This upgrade supports the functional characteristics of OS PL/I
Release 5.1.

PL/I restrictions in the CICS/OS/VS environment when the
PL/I-supplied PL/I-CICS/OS/VS interface is in use are shown in
Figure 154 on page 361.

360 OS PL/I Optimizing Compiler: Programmer's Guide

Input/Output

OPEN/CLOSE
Record I/O
Stream Input
Stream Output

DISPLAY
DELAY
DATE
TIME

Other Statements

STOP
WAIT
FETCH
RELEASE

Multitasking

PL/I RESTRICTIONS UNDER CICS

Only for SYSPRINT
No record I/O statements are allowed.
No stream input is allowed.
No stream output is allowed except to the SYSPRINT file.
This is intended for debugging purposes only and, for
performance reasons, should not be included in production
programs.
The DISPLAY statement cannot be used.
The DELAY statement cannot be used.
The DATE built-in function cannot be used.
The TIME built-in function cannot be used.

The STOP statement cannot be used.
The WAIT statement cannot be used.
The FETCH statement cannot be used.
The RELEASE statement cannot be used.

No PL/I tasking statements are allowed.

COMPLETION, STATUS, and PRIORITY built-in functions can not be used.

PRIORITY, TASK, and EVENT options can not be used.

Interlanguage Communication

No communication with FORTRAN or COBOL using PL/I's interlanguage
facilities is allowed.

Execution-Time Options

Execution-time options can only be specified in the PLIXOPT string.

Specifying the SPIE option has no effect.

ISASIZE, ISAINC and HEAP sizes are limited under CICS.
See "Execution-Time Options" on page 370.

Built-In Subroutines

PLISRT, PLICKPT, and PLICANC cannot be used.

PLIDUMP has certain restrictions and additional functions. See
"Use of PLIDUMP" on page 375.

PLIRETC and PLIRETV can be used to communicate between user-written programs
link-edited together, but not to communicate with CICS.

I Figure 154 (Part 1 of 2). Restrictions on PL/I when Used with CICS

Chapter 15. Using PL/I on eICS 361

Debugging Facilities

FLOW, COUNT, REPORT, GONUMBER, GOSTMT, and CHECK/NOCHECK can all be used
without restriction under the CICS command-level interface, but are
subject to restrictions under the macro-level interface.
See pages 371 and 370.

External Calls

External calls to other PL/I routines or to assembler language routines
declared with OPTIONS (ASSEMBLER) can be made without restriction.
Called subroutines can invoke CICS services, provided the appropriate
CICS control blocks were passed to them by their callers.

Floating Point Arithmetic

Floating point arithmetic is usable without restriction, except that
extended precision floating point is not supported.
- Floating point registers are saved and restored by the PL/I library
where necessary.
- Floating point registers are printed by PLIDUMP.
- Floating point overflow and underflow can be handled in OVERFLOW and
UNDERFLOW on-units. The program mask is set for PL/I and CICS/OS/VS,
respectively, as appropriate.

Variable Names

Names for variables used in CICS/OS/VS macros cannot exceed
8 characters.

Object Program Size

The load module resulting from a PL/I application program must not
occupy more than 524,152 bytes of main storage, except that an
RMODE=ANY program on MVS/XA can be up to 16 megabytes in length
(although this is not recommended).

Static storage

Static storage is not alterable if reentrancy is to be maintained.

static External Variables

STATIC EXTERNAL variables must have the INITIAL attribute
because CICS/OS/VS cannot handle common CSECTs.

I Figure 154 (Part 2 of 2), Restrictions on PL/I when Used with CICS

362 OS PL/I Optimizing Compiler: Programmer's Guide

In addition to the restrictions listed in Figure 154 on
page 361, the following topics are discussed in this chapter:

• PL/I-supplied vs. CICS-supplied interface

• PL/I-CICS transactions

• Macro-level interface

• Command-level interface

• Compatibility

• PL/I storage

Lifetime of storage acquired from CICS/OS/VS
Storage classes
CONTROLLED storage

• "Read-Only" PL/I-CICS transactions

• Output to SYSPRINT

• CHECK and PUT DATA

• Execution-time options

• Error handling

• Use of PLIDUMP

• Interlanguage communications - OPTIONS (ASSEMBLER)

• STORAGE and CURRENTSTORAGE

• PL/I program termination

• PL/I shared library

• Link-editing PL/I-CICS applications.

I PL/I-SUPPLIED VS. CICS-SUPPLIED INTERFACE

In the early versions of OS CICS-Standard and CICS/OS/VS (prior
to CICS/OS/VS Release 1.5), CICS itself provided an interface
between your PL/I program and CICS. This interface consisted of
modified PL/I library modules that requested such services as
the acquisition and release of storage from CICS. This
interface supported PL/I programs, but it imposed restrictions
on the PL/I program facilities available to a PL/I transaction
program. This interface still exists and is described in many
of the CICS manuals related to CICS macro-level coding, such as
CICS/VS Application Pro9rammer ws Reference Manual (Macro Level).
These manuals document PL/I-CICS/OS/VS restrictions, which are
associated only with the PL/I-CICS interface that is supplied by
OS CICS-Standard and CICS/OS/VS to PL/I-CICS users.

Since OS Pl/I Release 3.1 and in subsequent releases, PL/I has
supplied an interface between PL/lprograms and the current
release of CICS. This interface, like its CICS-supplied
predecessor, consists of PL/I library modules (primarily from
the PL/I Transient Library) modified for use in the CICS/OS/VS
environment. It makes substantially more of the PL/I language
usable in a CICS/OS/VS transaction program.

Note: Many of the restrictions listed in CICS macro-level
documentation as applying to PL/I apply only to Pl/I
programs using the old CICS-supplied interface, not to
PL/I programs using the Pl/I-supplied interface.

Each of the two Pl/I-CICS interfaces supplies a module (DFHSAP)
to be loaded as a part of the CICS/OS/VS nucleus and a module
(DFHPLIOI) to be link-edited with your program. These modules

Chapter 15. Using PL/I on CICS 363

DFHSAP
in

CICS/VS
Nucleus

CICS-
Supplied

PL/I-
Supplied

must match; that is, the CICS-supplied DFHSAP will not work with
the Pl/I-supplied version of DFHPLlOI and vice versa. A single
execution of CICS/OS/VS can load only one DFHSAP; therefore~ all
Pl/I-CICS transaction programs in a single execution of
CICS/OS/VS (for instance, within a single region or address
space) must use either the CICS-supplied interface or the
Pl/I-supplied interface, but no intermixing of the two is
permitted. Under the current version of CICS/OS/VS, you might
use one PL/I interface in one region or address space and the
other Pl/I interface in another, even though the CICS/OS/VS
systems are not being executed independently of each other. If
mixing should inadvertently occur, the results are as shown in
Figure 155.

Your system programmer should ensure that the proper DFHSAP
module is loaded with the eIeS nucleus, and that th~ prop$r
DFHPLIOI module is link-edited into transaction programs. It is
sometimes helpful, however, to be able to tell which version of
these modules is present. This can be done as follows:

• For DFHSAP, look at its link-edit listing (or a listing
produced by AMBLIST) to see if it contains external names
beginning with IBMF. If it does, it is the PL/I-supplied
DFHSAP. If no such names are found, it is the eICS-supplied
DFHSAP.

• For DFHPllOI, look at its link-edit listing (or a listing
produced by AMBLIST) to see what addresses are represented
by entry-point names DFHPllI, DFHPLlN, and DFHPLIC. If each
points to a different location in DFHPLlOI, it is the Pl/I­
supplied DFHPLI0I. If they all point to the same location
in DFHPLlOI, it is the CICS-supplied DFHPLIOI.

CICS-Supplied Pl/I-Supplied

Supported - PL/I Not Supported -
Function and Unpredictable CICS
restrictions as transaction abend,
documented in but probably ASRA
CICS macro-level for program check.
documentation.

Not supported - Supported - PL/I
CICS ASRA function and
(program check) restrictions as
transaction abend documented in this
results. pUblication.

Figure 155. DFHPLI0I Link-Edited into Transaction

I PL/I-CICS TRANSACTIONS

Because CICS supplies many facilities that would ordinarily be
supplied by interactions between Pl/I statements and the
operating system, there must be ways of addressing CICS
functional control blocks and requesting these services. Under
the Pl/I-supplied interface to CICS, some services (such as
explicit allocation of BASED or CONTROLLED storage) are
performed by the PL/I library using CICS/OS/VS facilities, but
appear to you as the same ALLOCATE or FREE statements as would
be used in a non-CICS program. Other services (such as I/O
services similar to PL/I READ, WRITE, or REWRITE statements) are
represented in the PL/I program as requests directed to CICS
itself.

364 OS PL/I Optimizing Compiler: Programmer's Guide

To implement these requests, CICS must define application
program interface protocols. These protocols occur in two
forms:

• Macro-level interface
• Command-level interface

Users are encouraged to use the CICS command-level interface,
which is the newer and more flexible interface, for all new
PL/I-CICS transactions. The command-level interface is required
for all transactions that take advantage of th~ 3l-bit
addressing capabilities of MVS/XA.

I MACRO-LEVEL INTERFACE

The macro-level interface has been supported by CICS since its
earliest versions. It is invoked by including Pl/I declarations
for various CICS control blocks via YoINCLUDE statements, coding
user-supplied statements to access and alter these control
blocks, and embedding CICS statements (in the form of assembler
language macros) in the PL/I program. The program is then
processed, in turn, by a CICS-supplied utility (called the CICS
Preprocessor), the system assembler, and the PL/I compiler to
produce an object module.

The effect of processing by the CICS preprocessor and the
assembler is to convert the assembler macros into PL/I
assignment statements that store values into CICS control blocks
(in addition to any such statements already coded by the user),
and a PL/I CALL DFHPLlI statement to convey the request to
CICS/OS/VS. Incorrect addressing of CICS control blocks,
erroneous or incomplete specification of requests, and use of
incorrect data types cannot be diagnosed by PL/I at compile
time, and, in many cases, cannot be diagnosed by PL/I or CICS at
execution time. Such errors can cause application program
errors, transaction abends, or even damage to CICS itself.

The detailed protocols for CICS macro-level coding can be found
in CICS/VS Application Programmer's Reference Manual (Macro
Level).

I COMMAND-LEVEL INTERFACE

CICS/OS/VS has provided a set of programming protocols for CICS
programming. This interface is invoked by coding statements in
your application program and executing a CICS/OS/VS utility
program called the CICS Translator. The statements are of this
format:

EXEC CICS function [option[(arg)]] ;

The Translator supplies a control block (DFHEIB) for receipt of
information from CICS/OS/VS, and a set of PL/I ENTRY
declarations with parameter-list descriptors. It generates one
PL/I CALL statement for each EXEC CICS command in the program.
The program does not directly reference internal CICS control
blocks and, in most cases, you do not need to address or
manipulate such control blocks. All required parameters are
present and of the correct data type for each CICS request, and
request validation can be performed at execution time. This
interface is called the command-level interface, or the
High-Level Programming Interface (HLPI). It provides a simple
and reliable way to code CICS transaction programs in PL/I.

Chapter 15. Using PL/I on CICS 365

I COMPATIBILITY

Note: In the following special cases, the CICS command should
be delineated by PL/I BEGIN and END statements:

1. When the CICS command is the on-unit portion of an ON
statement. For examplel

ON ERROR BEGIN;
EXEC eICS DUMP;

END;

2. When the CICS command is coded with one or more condition
prefixes.

Using the PL/I-supplied interface permits either macro-level or
command-level programs, or mixtures of the two, to be written in
PL/I fer CICS/OS/VS. It is strongly recommended that only
command-level coding be used for new CICS/OS/VS-PL/I
programming.

Although the command-level coding protocols permit extensive
validation of EXEC eICS commands, neither PL/I nor CICS has any
real way, under either set of CICS protocols, to diagnose use of
the PL/I features listed as restrictions in Figure 154 on
page 361. For example, the compiler would regard syntactically
valid PL/I statements, such as READ, WRITE, or REWRITE, or calls
to PlICKPT or PlISRTC, as perfectly valid, and would generate
its usual object code for them. Execution of such restricted
statements might have a serious impact on the integrity or
performance of CICS/OS/VS, including termination of eICS itself,
unpredictable transaction abends, system waits, and so on.
Avoidance of restricted Pl/I facilities in a CICS/OS/VS
environment is your responsibility.

With the issues concerning macro-level versus command-level
coding, and the CICS-supplied versus PL/I-supplied PL/I-CICS
interfaces addressed by the above text and Figure 154 on
page 361, the remainder of this chapter is devoted entirely to
the PL/I-supplied interface.

Existing 24-bit addressing mode PL/I application programs (using
CICS macro-level or command-level interface) can run with the
PL/I Release 5.1 transient library on CICS Release 1.6.1 under
MVS/XA without any changes. These programs can also be
re-compiledand/or relink-edited with PL/I Release 5.1 compiler
and libraries. However, PL/I application programs that use CICS
macto-level coding must force AMODE 24 during link-editing with
PL/I Release 5.1 libraries.

A PL/I application program already being executed using the PL/I
interface from PL/I Release 3.1, or Release 4 and the CICS
Command-Level interface stub from eIes Release 1.5.0, Release
1.6.0, or Release 1.6.1 will continue to execute on eICS Release
1.6.1 with PL/I Release 5.1 transient libraries. However, as
soon as such a program is relink-edited with PL/I Release 5.1
eICS interface modules, it will no longer execute on eIeS
Release 1.6.0 or prior releases and it will no longer work with
a PL/I release prior to Release 5.1.

Figure 156 on page 367 describes the valid combinations of
different releases of PL/I with CICS/OS/VS Release 1.6.1.

Program check interruptions which raise the PL/I OVERFLOW,
UNDERFLOW, FIXEDOVERFLOW, or ZERODIVIDE conditions will be
handled with the PL/I Release 5.1 error handler under the STAE
or NOSTAE options. These conditions were handled by Pl/I
Release 4.0 only under the STAE option.

366 OS PL/I Optimizing Compiler: Programmer's Guide

Pl/I Release Pl/I Release CICS Release
3.1 or 4.0 5.1 1.6.1

Notes Compile link Run Compile link Run

1 * * * With or without upgrade

2 * * * * With upgrade

2 * * * With upgrade

* * * With upgrade

Figure 156. Valid Combinations of Pl/I Releases with CICS/OS/VS Release 1.6.

I PL/I STORAGE

Notes to Figure 156
1

z

3

A program compiled, link edited, and run on Pl/I Release 3.1
or 4.0 will continue to run as is on CICS Release 1.6.1,
either with or without upgrade.

A program compiled and link-edited on Pl/I Release 3.1 or
4.0, or a program compiled on Release 3.1 or 4.0 but
relink-edited with the Release 5.1 resident library, can be
run with the Release 5.1 PL/I transient library on CICS
Release 1.6.1 with upgrade.

An existing program can be recompiled on Release 5.1,
relink-edited with the PL/I Release 5.1 resident library,
and run with the Pl/! Release 5.1 transient library. New
application programs will also be in this category.
Execution of a PL/! Release 5.1 program requires CICS/OS/VS
Release 1.6.1 with upgrade.

I LIFETIME OF STORAGE ACQUIRED FROM CICS/OS/VS

When storage is acquired from CICS/OS/VS via a CICS GETMAIN
request, that storage has a type (for example, USER, TERMINAL)
that determines how CICS storage management will manage it.
Storage acquired by a user directly from CICS/OS/VS via DFHSC
TYPE=GETMAIN or EXEC CICS GETMAIN normally has a scope that
spans the whole CICS task, not just the program. The storage
remains allocated until it is freed, or until the CICS task
ends. PL/I places storage acquired by the PL/I library, for
either PL/I's Initial Storage Area (ISA) or a Secondary Storage
Area (SSA), on a storage management queue associated with the
current invocation of the program, not the task. When the
program terminates, whether or not via PL/I termination, the
program's PL/I storage will be freed, even though the task may
still be active.

This distinction has major implications for storage passed back
and forth between programs. Suppose, for a certain CICS
transaction, Pl/I program A links to PL/I program B, and a TWA
or COMMAREA is available to hold a PL/I pointer to be
communicated between the two. The TWA, since it is a part of
the CICS task-related control block structure, remains available
to both programs. CICS tries to ensure that a COMMAREA can be
passed back and forth successfully, as described in the CICS/VS
command-level coding documentation. Supposel however, that the
program tries to pass a pointer, via the TWA or COMMAREA, to
some other storage area not in the TWA or COMMAREA. If B were
to acquire the storage via a PL/I ALLOCATE statement, the
storage would be released when B terminated, and thus could
never be passed back to A. Any pointer in a TWA or COMMAREA

Chapter 15. Using PL/I on CICS 367

I STORAGE CLASSES

that pointed to such storage would be invalid, and the result of
using it is unpredictable.

If A acquired the storage by issuing a PL/I ALLOCATE statement
for a PL/I based variable, then A can convey the address of the
storage to B, and B can use or alter the storage; however, B
cannot free the storage. If B issued a PL/I FREE statement for
the storage, PL/I storage management would not find it on its
storage management chain for B. If B issued a CICS FREEMAIN,
CICS would discover that it was PL/I storage, not user storage.
Either of these requests would be in error.

If A acquired the storage by CICS GETMAIN, then A could convey
the address of the storage to Band B could use, alter, or free
the storage, since it would be user storage owned by the task,
not by program A or B.

If the processing scenario called for B to acquire the storage
and pass it back to A, then B would have to acquire the storage
by CICS GETMAIN.

The CICS user should avoid writing into STATIC storage, since
changing STATIC storage violates reentrancy. Most or all user
variables that are actually changed during program execution
should be AUTOMATIC. User variables that have initial values,
and whose values never change, should be declared STATIC
INITIAL, and any variable declared EXTERNAL must have the
INITIAL attribute to preclude generation of common CSECTs.
Although AUTOMATIC storage provides reentrancy and should
suffice for most purposes, you can allocate and free storage via
ALLOCATE and FREE statements. BASED and CONTROLLED variables
can be allocated and freed in this way.

CONTROLLED storage can be used on CICS/OS/VS. CONTROLLED
variables are consistent with reentrancy. User references to
based storage are handled via the pointer set by the ALLOCATE
statement. The pointer can be AUTOMATIC.

The intent of CONTROLLED storage is to permit you to explicitly
manage a push-down stack of multiple generations of variables.
If you just want to explicitly allocate and free a piece of
storage via PL/I ALLOCATE and FREE statements, BASED storage is
more efficient than CONTROLLED storage.

I "READ-ONLY" PL/I-CICS TRANSACTIONS

Under Release 5.1 of the PL/I Optimizing Compiler, the reentrant
PL/I-CICS application programs are "Read-Only" and eligible to
reside in the Link Pack Area (LPA) and Extended Link Pack Area
(ELPA).

When PL/I application programs are placed in the LPA/ELPA, the
overall performance will increase when they are shared by two or
more CICS systems in the same processor. Integrity of these
application programs and savings in the amount of storage use
are other advantages of placing PL/I application programs in the
LPA/ELPA.

See the CICS/OS/VS Version 1 Release 6 Modification 1
Installation and Operation Guide for information on placing a
PL/I application program in the LPA/ELPA.

368 OS PL/I Optimizing Compiler: Programmer's Guide

I OUTPUT TO SYSPRINT

Ll 00

2 2

SYSPRINT can be used for any type of stream output. It is also
used for error messages generated by the program and REPORT,
FLOW, and COUNT output. Because eIeS provides all normal I/O
facilities, SYSPRINT is intended primarily for debugging.
Performance may not be satisfactory for production programs.
SYSPRINT is the only file that PL/I can write to. However, if
another file is specified, the program may behave as if SYSPRINT
had been specified.

SYSPRINT output is assigned to the CPlI transient data queue.
The actual type of queue (Intra or Extra Partition) is
determined during eIeS installation. To learn the queue type in
your installation, ask your system programmer.

Records sent to SYSPRINT take the form of the message, preceded
by a terminal identification and a transaction identification.
The whole record is preceded by an American National Standard
control character to determine the format of the printing. The
records are V-format with a maximum record length of 133. The
lengths of the various fields are shown in Figure 157.

Because SYSPRINT output is transmitted to one queue from all
transmitters, the queue may contain output from more than one
PL/I program, and the records may be intermixed. Whether this
occurs depends on how CIes is set up in your installation. In a
debugging system that executes one transaction at a time, the
queue contains output from only one PL/I program. In a system
executing many transactions, output records from different PL/I
programs are intermixed. If output records are intermixed, you
must use an application program to sort the outputs of the
various programs using the terminal and transaction identifiers
as keys.

1

terminal
id

4

transaction
id

4

output data

120

where LL is the length of the record, including the length bytes
00 is hex '00'
ASA is the American National Standard carriage control character

Note: LLOO part of the record is not printed.

Figure 157. Format of Records Sent to SYSPRINT

I DECLARATION OF SYSPRINT

SYSPRINT need not be declared in your application program, but
if it is, it should be declared as STREAM PRINT OUTPUT. Any
ENVIRONMENT options that are specified are ignored. The
PAGESIZE and lINESIZE option of OPEN can be used; all other
options of OPEN are ignored. The maximum LINESIZE is 120;
larger values are truncated.

SYSPRINT need not be explicitly opened or closed. However, if
you are using eICS macro-level coding, it should be explicitly
closed before the execution of any CIes facility that may result
in control not returning to the PL/I program. For example,
SYSPRINT should be explicitly closed before the use of a DFHPC
macro with TYPE=XCTL, RETURN, or ABEND. If this is not done,
the record being built at the time can not be transmitted.

Chapter 15. Using PL/I on CICS 369

I CHECK AND PUT DATA

The lINENO and COUNT built-in functions of Pl/I stream I/O can
be used against SYSPRINT, and return their proper values under
OS. In the CICS/DOS/VS environment, however, they return zero.
Thus, use of these built-in functions should be avoided if
transaction portability between OS and DOS is to be maintained.

Because of the extensive use of BASED storage in CICS/OS/VS
transactions, you should remember the following restrictions on
CHECK and PUT DATA.

In Pl/I, it is not permissible to write:

PUT DATA CP -> VAR);

If VAR was declared as BASED (P), then the value of the
generation of VAR to which P points can be written out by PUT
DATA (VAR);.

CHECK cannot be raised for a based variable without a pointer
specified in its declaration. In the case of VAR above, the
value of VAR to which P points is supplied when CHECK is .raised
for VAR, even if some other pointer is used in the statement
that raises CHECK. For example:

DCl P PTR,
VAR BASEDCP);

P -> VAR = 5; /*prints VAR = 5 */
Q -> VAR = 8; /*prints VAR = 5 */

No compile- or execution-time message will tell that the wrong
generation of VAR is being printed out. CHECK must not be
raised for variables in CICS control blocks used with the
macro-level interface. If assigning to a variable in one of
those control blocks raises CHECK for that variable, then in
attempting to output the CHECK information by Pl/I SYSPRINT
transmitter, the value set by the user program may be destroyed.
Since all the control blocks associated with command-level
coding are read-only (from the user's point of view), CHECK can
never be raised for them.

I EXECUTION-TIME OPTIONS

Under CICS, execution-time options can be specified only in the
PLIXOPT string. The PlIXOPT string is used in the manner
described under "Specifying Execution-Time Options" on page 28.
For example:

DCl PLIXOPT CHAR(20) VAR STATIC EXTERNAL
INIT('ISASIZE(3000) NOSTAE');

The following options can be used. IBM recommended defaults are
underlined.

FLOW I NOFLOW
COUNT I NOCOUNT
REPORT I NOREPORT
STAE I NOSTAE
ISASIZECsize)
ISAINC(size)
HEAP(size,increment,ANYWHEREIBElOW,KEEPIFREE)

FLOW, COUNT, and REPORT depend for their correct execution on
Pl/I termination being properly performed. See the discussion
on "Pl/I Program Termination" on page 377.

FLOW output is written on the SYSPRINT file whenever an on-unit
with the SNAP option (for example, ON FINISH SNAP;) is executed.
It is also included as part of PLIDUMP output if "T" is included
in the dump option string.

370 as Pl/I Optimizing Compiler: Programmer's Guide

CICS/OS/VS macro-level interface is incompatible with FLOW,
COUNT, and REPORT (as well as with compiler options GONUMBER and
GOSTMT). When an on-unit is entered and control is passed from a
CICS/OS/VS macro, then linkage to FLOW, COUNT, REPORT, and
statement-number tables is not available. This, with GONUMBER
and GOSTMT, causes the statement identification in a message or
PLIDUMP to be meaningless. With FLOW, COUNT, or REPORT, storage
may be overlaid.

If an option is not specified, or if PLIXOPT is not specified,
then the default options (except for FLOW and COUNT) are taken
from the IBMBXOPT module gene~ated during installation of the
Transient Library. See your system programmer for these
defaults. The default options fo~ COUNT and FLOW are taken from
the options specified at compile time (as for non-CICS systems).
To avoid exposure to inappropriate non-CICS defaults for these
options, it is a good practice to set all the options via a
PlIXOPT string in each main procedure.

The SPIE option has no effect when used under CICS.

The STAE option specifies that PL/I error handling will be used
for hardware-detected interrupts as well as CICS abends. See
also, "Error Handling" on page 372.

Only the nonmultitasking arguments of ISASIZE apply and only
positive values can be used. If too small a value is specified
for ISASIZE, the minimum acceptable is acquired. This differs
from OS practice. If the ISASIZE option is not specified, then
an attempt is made to allocate an ISA sufficiently large to
include both the standard control blocks and the initial
allocation (DSA) for the main procedure. Such an attempt may
fail if the FLOW option applies. This means that the minimum
storage will be acquired, and any storage obtained other than
that for static and the main procedure's variables will have to
be requested from eICS. This may result in slow execution.

If too large a value is specified for ISASIZE, the allocation
may fail, causing CleS to terminate the program.

To determine the optimum ISASIZE, you should use the REPORT
option. The fastest initialization will be achieved if a
positive ISASIZE is specified that is large enough to hold the
storage requirements of the first block. The fastest execution
will be achieved if all PL/I storage can be obtained from tho
ISA, and this is the meaningful goal in most cases. For further
details, see "Execution-Time Storage Requirements for
Nonmultitasking Programs" on page 37.

If ISAINC is specified, for storage requests not satisfied
within ISA, the larger of ISAINC size or the requested size will
be acquired as increments. The maximum ISAINC size is 65,496
and will be rounded up to the next multiple of 8 bytes.

Appropriate values for ISASIZE and ISAINC can significantly
reduce the number of CICS GETMAINs and FREEMAINs required for
execution of your PL/I program.

When HEAP is specified, a separate heap area is utilized for
CONTROLLED and dynamically allocated BASED variables. The
maximum HEAP size and increment if specified is 65,496 for below
and 1,073,741,816 for above the 16M line. Heap size and
increments will be rounded up to the next multiple of 8 bytes.

Chapter 15. Using PL/I on CICS 371

I ERROR HANDLING

Provided the STAE option is in effect, PL/I error handling is
the same as under OS. The only exception is that it is
possible, under CICS, to override the generation of an error
message when the ERROR condition arises. This can be useful in
a production program where the transmission of a message to the
CPLI queue may be an inappropriate reaction to an error.

The error message is suppressed if an on-unit for the ERROR
condition is supplied. If you require both the on-unit and the
message, you should specify SNAP in the on-unit. For examples

ON ERROR SNAP
BEGIN;

ON ERROR SYSTEM;
PUT DATA (A,B,C);
EXEC CICS DUMP ...
CALL PLIDUMP C •••);

END;

All error messages are transmitted to the SYSPRINT file, which,
as described above, is attached to the CPLI queue.

If the NOSTAE option is in effect, program check interruptions
which raise the PL/I OVERFLOW, UNDERFLOW, FIXEDOVERFLOW, or
ZERODIVIDE conditons will be handled with the PL/I Release 5.1
error handler. CICS abends are handled by CICS. The default
CICS action is to produce a dump and terminate the transaction.

STAE allows PL/I interrupts that arise from either hardware
interrupts or CICS/OS/VS transaction abends to be handled by the
user in on-units; otherwise, such errors cause a CICS task
abend. Software-detected PL/I interrupts (for example,
CONVERSION, or ERROR because a negative argument was supplied to
the real square root function) cause PL/I conditions to be
raised whether or not STAE is in effect. Software-detected PL/I
conditions can be raised even if NOSTAE is in effect.

PL/I does not issue SPIE/ESPIE or STAE/ESTAE macros in the CICS
environment. If the STAE option is requested, an EXEC CICS
HANDLE ABEND command is issued by PL/I initialization. If a
program check occurs, the CICS SPIE routine (DFHSRP) gets
control and, if the program check occurred in user code in a
PL/I transaction prograln, invokes the PL/I error handler. Thus,
the STAE option does not affect CICS/OS/VS itself or any other
CICS transaction. It uses CICS/OS/VS error handling; it does
not override it.

If STAE is specified, CICS/OS/VS control program services
address the CICS version of the PL/I error handler as an exit
routine to CICS/OS/VS control program services. As such an exit
routine, the PL/I error handler handles any CICS/OS/VS abends
(whether initiated by program checks or by software elsewhere in
CICS) that occur in the PL/I program or associated CICS
services.

Use of the DFHPC TYPE=SETXIT macro or EXEC CICS HANDLE ABEND,
while the STAE option is in effect, will remove the Pl/I error
handling facilities; that is, the effect is as if NOSTAE were
specified. However, interrupts may result in CICS receiving
control with an incorrect program mask that could lead to
unexpected program check interrupts in other transactions. If
you wish to use CICS facilities to set your own error exit, you
should use the NOSTAE option. Use of the STAE option results in
PL/I specifying its own error exit, and the respecifying of such
an exit leads to unpredictable results.

PL/I error-handling facilities function in a way that is
compatible with CICS's own error-handling facilities. For
example, CICS/OS/VS Dynamic Transaction Backout may be needed to
back out updates already done by a transaction that has failed,
even though the error may have been detected internally within
the program, not by CICS/OS/VS (for example, a Pl/I software

372 OS PL/I Optimizing Compiler: Programm~rls Guide

interrupt raised ERROR), or a CICS-initiated transaction abend
was temporarily intercepted but not successfully handled by a
Pl/I on-unit. Furthermore, if program A links to program B, and
B abends, A must be able to obtain that information and make use
of it.

To meet these requirements, the Pl/I error handler under
CICS/OS/VS does several things:

• If STAE is in effect so that the Pl/I error handler gets
control after a CICS-initiated abend, the on-units (if
present) in the user program mayor may not successfully
effect recovery from the error condition. If they do not,
the ultimate effect in the PI/I program is to raise ERROR.
If there is no ERROR on-unit, or if the program takes normal
return from the ERROR on-unit, then Pl/I termination issues
a CICS abend using the original CICS abend code (or using
APlS if the original code was ASRA). Thus, the temporary
but ineffectual interception of the CICS abend will not keep
the transaction from abending, and will not keep Dynamic
Transaction Backout (for example) from functioning. If code
in Pl/I on-units successfully recovers from the problem, the
transaction continues and no abend occurs.

• Whether or not STAE is in effect, Pl/I software interrupts
as well as hardware interrupts such as OVERFLOW, UNDERFLOW,
FIXEDOVERFlOW, and ZERODIVIDE interrupts can occur and cause
appropriate Pl/I conditions to be raised. If not corrected
in appropriate on-units, the software interrupt eventuallY
causes ERROR to be raised. If there is no ERROR on-unit, or
if the program takes normal return from the ERROR on-unit,
then Pl/I termination communicates to CICS/OS/VS this
termination-in-error of the transaction by issuing a
CICS/OS/VS aband with abend code APlS. Thus, Dynamic
Transaction Backout (for example) can proceed just as though
CICS/OS/VS had initiated the abend.

• When program A links to program B, and program B abends,
then upon completion of CICS/OS/VS termination of B
(possibly after some attempt at error recovery in B has been
unsuccessful), CICS initiates the abend of A (as the program
that linked to B). If A is a Pl/I program being executed
with the STAE option, then ERROR will be raised in A with
condition code 9050, meaning "An abend has occurred." If A
has some way of making the transaction continue, it may do
so by exiting from the ERROR on-unit via a GO TO statement
rather than by normal return.

The support for Pl/I error handling makes it quite possible for
you to cope with computational interrupts, CONVERSION errors,
and other non-I/O-related conditions using the same Pl/I
facilities that would be used in programs executed directly
under OS.

For conditions associated with CICS/OS/VS abends (including ASRA
abends for program checks), eICS itself provides a facility
(DFHPC TYPE=SETXIT or EXEC CICS HANDLE ABEND;). This facility
allows branching to either a program external to the currently
executing program or to a routine located within the current
program. Pl/I issues an EXEC CICS HANDLE ABEND that identifies
the Pl/I error handler as a routine to establish linkage from
CICS to the Pl/I error handler, so your use of this facility
will necessarily destroy Pl/! error handling. In Pl/I programs,
CICS/OS/VS does not support a SETXIT identifying the label of a
routine in the current program. This is not really a
restriction, since Pl/I ON, SIGNAL, and REVERT statements give
you all the facilities of Pl/I to do so anyway.

Pl/I error-handling facilities do not include I/O-related
conditions like RECORD, TRANSMIT, ENDFIlE, KEY, and so on,
because I/O is not performed using Pl/I files and Pl/I I/O
statements, but by CICS file-handling facilities. (SYSPRINT is
the sole exception to this rule.) Conditions detected by
CICS/OS/VS during the processing of your macro or command are

Chapter 15. Using Pl/I on CICS 373

reflected to you via CICS-defined prQtocols. These are
described in the CICS manuals.

In command-level programs, such conditions are reflected to you
based on previously executed EXEC CICS HANDLE statements.

The EXEC CICS HANDLE facility semantically resembles a PL/I
on-unit with the syntax:

ON condition GO TO label;

The HANDLE command can be coded wherever you could code the
ON ... GO TO ... statement. The label to be branched to can be
located in some other active block and the condition can arise
in some still later block. HANDLE will terminate intervening
PL/I blocks by invoking PL/I's out-of-block GO TO facilities.

HANDLE is not semantically identical to the "ON condition GO TO
label;" statement. A PL/I on-unit disappears when the block
containing it terminates; a CICS HANDLE disappears when it is
explicitly overridden by another one. Thus a HANDLE command
could specify a branch to a label in a block no longer active.
Since HANDLE is implemented by forcing a PL/! out-af-block GO
TO, this is like assigning a label constant to a PL/I label
variable and then branching to the label variable after the
block containing the label constant has terminated. This is an
invalid GO TO. The Pl/I out-of-block GO TO mechanism attempts
to detect this error and raises ERROR when it detects it. If
PL/I out-of-block GO TO fails to detect such an invalid GO TO,
however, the GO TO becomes a wild branch that will cause some
unpredictable failure. Thus, upon return from a PL/I block that
established HANDLE for some particular condition, your program
should issue a resetting HANDLE for that condition (provided, of
course, that there is still some possibility of the condition
arising). This resetting is unnecessary for a PL/I on-unit.

I ABEND CODES USED BY PL/I UNDER CICS

Certain error conditions result in the PL/I library routines
issuing CICS abends. Such abends are not caught by the Pl/I
error handling facilities, even if the STAE option is in effect,
since the PL/I aband exit is canc~lled. They will, therefore,
normally terminate the transaction and produce a dump. Abend
codes used are:

APLC The shared library facilities are required by the
application program, but were not included in the CICS
system during initialization/installation. See your
system programmer.

APLE An error occurred during Pl/I program management
(equivalent to a 4000 abend on non-CICS systems).

APLI An error was detected by CICS on transmission of a record
to the CPLI queue. See your system programmer.

APLM No main procedure.

APLD An error was detected by CICS on transmission of a record
to the CPLD queue. See your system programmer.

APLG A get storage request to the storage allocation routine
specified a size greater than the CICS/OS/VS permitted
maximum of 65,496 (or a maximum of 1,073,741,816 under
MVS/XA). This error is caused by having either a based or
controlled variable that is too large in an ALLOCATE
statement, or too many large AUTOMATIC variables.

APLS This abend is issued on termination, if termination is
caused by the ERROR condition, and the ERROR condition was
not caused by an abend (other than an ASRA abend).

374 OS PL/I Optimizing Compiler: Programmer's Guide

I IBMBEERA

I USE OF PLIDUMP

This is the abend code issued by PL/I when a transaction
terminates in error due to a PL/I software interrupt
(CONVERSION, for example), and there is no ERROR on-unit,
or the program takes normal return from the ERROR on-unit.
Since the program failed, the failure must be reflected to
CICS/OS/VS as an abend so that Dynainic Transaction
Backout, and so on, can occur if necessary. Since there
was no CICS/OS/VS abend to be reissued, Pl/I termination
must supply an abend code.

APLS is also the abend code issued by PL/I termination
when a program check (CICS ASRA abend) is intercepted by
the PL/I error handler, but the condition cannot be
resolved by the user. For instance, the program was
terminated due to normal return from an on-unit. PL/I
cannot re-issue the abend with code ASRA, because a
program that linked to this failing program would be
abended with an abend code (ASRA) that implies that a PSW
and registers are being supplied that permit some sort of
fixup or retry; in fact, the PSW is that of a program that
is no longer active, and the registers point to storage
locations that are no longer meaningful. For more
information on ASRA, refer to CICS Message and Codes.

APLX The total possible LIFO storage segments have been
exhausted. Check the pro~ram for loops or increase the
ISASIZE or ISAINC.

XXXX An abend is issued with the original abend code if an
abend other than ASRA caused the ERROR condition to be
raised and this caused termination, and no IBMBEER module
was included to cause user-specified action for the ERROR
condition.

When IMBEERA is included in the DFHSAP module, the sbend
facility will be available under CICS.

IBMBEER's return code indicates whether a simple return or an
abend is to be issued. IBMBEER is described in OS PL/!
Optimizing Compiler: Installation Guide for MVS.

The CALL PlIDUMP statement is used to obtain a dump of PL/I
storage areas in PL/I terms. Areas to be dumped can be
specified via an options list in the same way as on non-CICS
systems. Most of the code involved is dynamically loaded, so
the resident storage requirements are small, although a larger
amount of storage is required when the statement is executed.
This means that CALL PLIDUMP statements may be included in
production programs to be executed if unexpected errors arise.

The following options are available:

I Trace of active procedures, etc.
NT No trace
S Terminate execution
C Continue execution
l Produce a hexadecimal dump

of PL/! control blocks
(DSAs, Pl/I TCA, etc.)
NOTE: This option is effective
only with "T" option.

NB No dump of Pl/! blocks
K Produce a haxaJ&cimal dump

of the CICS Transaction Work
Area (TWA)

NK No dump of CICS TWA block.

The default values are T, C, NB, and NK.

Chapter 15. Using PL/I on eICS 375

The dump information is built up into records, suitable for
printing, that are transmitted to a transient data queue with a
destination ID of CPlD.

Each record consists of a I-byte American National Standard
control character followed by up to 120 bytes of data. The
first record transmitted by a CAll PlIDUMP statement is an
identification record that contains the terminal ID, transaction
ID, transaction numbe~, date, and time.

Prior to transmitting this record, an ENQ is issued. The
corresponding DEQ is issued after the last record to be produced
by the CALL PlIDUMP statement has been transmitted. This means
that, at anyone time, no more than one transaction will be
producing a PlIDUMP, and that all the records for each PlIDUMP
are together on the queue. Therefore, this queue can be sent
directly to a printer, if desired. For details about how a dump
is printed, contact your system programmer.

Since PlIDUMP does not print the program or its static storage,
and since there are many CICS/OS/VS control blocks that it does
not print, it may be appropriate to request a CICS dump in
addition to PlIDUMP.

Under CICS/OS/VS, output from the FLOW, COUNT, or REPORT options
goes to SYSPRINT, not PLIDUMP.

PlIDUMP copes with program checks that arise during its own
execution; however, it is unable to cope with program checks in
the CICS/OS/VS environment unless the program being dumped was
being executed with the STAE option in effect.

I INTERLANGUAGE COMMUNICATION--OPTIONS ASSEMBLER

The OPTIONS attribute with ASSEMBLER can be used under CICS,
allowing assembler language subroutines to be called from a PL/I
routine and the arguments passed in an assembler language
manner. See'pS and DOS PL/ I LS...!1.9.Y.age Reference Manual for
details. No other interlanguage communication is allowed.

If CICS facilities are requested from a macro-level assembler
language program, the registers must be set to the CICS
conventions before the facility is used, and reset to Pl/I
conventions afterward. For this reason, it is inadvisable to
use ercs facilities from a macro-level assembler language
subroutine. Similarly, it is inadvisable to call any other
system facilities. Macro-level assembler language routines
should only be used for computational purposes.

See CICS/VS documentation for use of CICS/OS/VS command-level
facilities in an assembler language subroutine.

I STORAGE AND CURRENTSTORAGE

The STORAGE and CURRENTSTORAGE built-in functions return the
length of an item to your Pl/I program. This is useful with
CICS, where functions often require the length of an argument as
well as its address. In particular, these functions can be used
with the command-level interface to get lengths of Pl/I
aggregates without your having to count or compute such lengths
or specify length fields in the CICS commands.

376 OS PL/I Optimizing Compiler: Programmer's Guide

I PL/I PROGRAM TERMINATION

From your point of view, most PL/I programs terminate by simply
returning from your main procedure, and you may even regard this
as a return to the operating system. In fact, it is a return to
PL/I initialization/termination to perform various cleanup
functions.

If errors occur during program execution, the ERROR condition
may be raised. If there is no ERROR on-unit (or if there is an
ERROR on-unit and control exits via normal return, not via a
GOTO statement), the PL/I program will terminate, via Pl/I
termination facilities. A small percentage of PL/I programs
terminate via a STOP statement or a SIGNAL FINISH statement
(although SIGNAL FINISH is not an operative statement if a
FINISH on-unit (even a null one) has not been established). All
of these, however, cause the program to terminate via Pl/I
termination facilities.

In the CICS/OS/VS environment, PL/I programs may terminate in
any of the above ways, or they may terminat~ via CICS/OS/VS
statements.

Using command-level coding, the commands EXEC CICS RETURN, EXEC
CICS XCTL, or EXEC CICS ABEND terminate the PL/I program via
PL/I termination facilities, because the CICS EXEC Interface
Program (DFHEIP) branches into the PL/I termination routine to
ensure that PL/I termination processing occurs.

Using the CICS macro-level coding interface, however, the macros
DFHPC TYPE=RETURN, DFHPC TYPE=ABEND, and DFHPC TYPE=XCTL cause
branches directly into CICS Program Control Program (DFHPCP),
terminating the Pl/I program without executing PL/I termination
code. Thus, nothing dependent on Pl/! termination processing
can work. This means that, in a macro-level program terminated
by the above DFHPC macros:

• SYSPRINT output is lost unless you insert a CLOSE statement
for SYSPRINT.

• Output from the FLOW, COUNT, and REPORT options is lost.

For straightforward termination, the DFHPC TYPE=RETURN macro can
usually be changed to a Pl/I RETURN or SIGNAL FINISH statement,
reinstating normal PL/I termination. There is no comparable way
to convert DFHPC TYPE=XCTl, except to approximate it by DFHPC
TYPE=LINK followed by a PL/! RETURN or SIGNAL FINISH to end the
PL/I program. This may be an undesirable circumvention from a
CICS point of view. The long-range solution is to convert the
program to use the command-level interface.

When a PL/I program terminates via normal PL/I facilities or
CICS commands, the following occurs:

1. Any requested FLOW, COUNT, or REPORT output is written to
SYSPRINT.

2. SYSPRINT is closed (if it is open).

3. All storage acquired by the PL/I libraries is freed before
control is returned to CICS.

I PL/I SHARED LIBRARY FOR CICS/OS/VS

The Shared Library facility is available to CICS/OS/VS PL/I
Optimizing Compiler users. When the PL/I Shared Library is
installed, all the Pl/! programs must be re-link-edited to
include the PlISHRE module.

CICS/OS/VS initialization issues system LOAD macros to load the
two shared library load modules, IBMBPSLA and IBMBPSMA. Their
addresses are saved by CICS/OS/VS. Thereafter, whenever Pl/I
initialization (IBMFPIRA) initializes a PL/I program, it checks

Chapter 15. Using PL/I on CICS 377

the PLISTART parameter list in DFHPL10l to see whether IBMBPSRA
is resolved, that is, if the uSer included PLISHRE. If the
answer is "yes," it looks to see if the shared library modules
have been loaded by CICS/OS/VS.

If the shared library modules have not been loaded, the
transaction is abended since it cannot be executed. If they have
been, then their addresses are moved into the slots in the Pl/I
TCA where the code in the link-edited shared library bootstrap
module expects to find them. Thereafter, the shared library is
used by the CICS/OS/VS transaction just as it can be used by any
Pl/I program executed directly under OS. The idea, normally, is
that the shared library modules are in the link pack area; if,
however, no PL/I modules were being used except under
CICS/OS/VS, the shared library could be loaded into the
CICS/OS/VS address space or region.

Use of the PL/I shared library results in a smaller composite
load module and may increase performance. This is especially
important in CICS environments with virtual storage constraints
and slow performance. For information on how to create a shared
library which most suits your requirements, see the OS PL/I
Optimizing Compiler: Installation Guide for MVS.

CICS/OS/VS SYSGEN provides a step related to a data set called
DFHSHRE and the Pl/I Shared Library. A function commonly placed
in the shared library is PL/I Initialization/Termination, and in
this case the Pl/I initialization/termination entry points are
resolved by PlISHRE. In a eICS environment, they must be
resolved in DFHPlIOI. Therefore the CICS/OS/VS SYSGEN creates a
private CICS/OS/VS version of PlISHRE in ~hich those entry
points have been disabled. CICS/VS transactions are linked with
the CICS/OS/VS version of PlISHRE in DFHSHRE. Non-CICS/OS/VS
Pl/I programs are linked with the unmodified PlISHRE.

I LINK-EDITING PL/I-CICS APPLICATIONS

Pl/I-CICS application programs must be link-edited in a
different way than non-eICS applications. This is because the
normal entry point, control section PlISTART, is not required on
eICS systems. Instead, the module DFHPllOI is provided, which
acts as the entry point to the program and must be link-edited
with the application program. The CICS loader requires that
DFHPllOI be positioned at the head of the load module.

See CICS/OS/VS InstallatioQ a'l!;L .. Q.e.!,!ration Guide for inforlnation
about installing your Pl/I application prog ... 'ams.

Assuming the Pl/I application is made up of members PLIAPP and
EXTSUB, which reside in the library defined by ddname LI, and
that the SYSLIB data set contains DFHPllOI, then the following
linkage-editor statements should be used:

INCLUDE SYSLIB (DFHPLIOI)
Ensure that DFHPLIOI is at the
head of the load module

REPLACE PLISTART
Delete unwanted CSECTs from
following INCLUDE

INCLUDE II (PLIAPP)
Application procedure (1)

REPLACE PlISTART
Delete unwanted CSECTs from
following INCLUDE

INCLUDE LI (EXTSUB)
Application procedure (2)

INCLUDE DFHSHRE (PLISHRE)
Optional. Use if shared library
is to be used.

NAME APROG (R)
Optional. Defines name of
resident load module.

378 OS PL/I Optimizing Compiler: Programmer's Guide

If the PL/I application uses IMS while running under CICS, add
the following statements after the REPLACE PLISTART statements
abovel

• For interface via CALL PLITDLI, add

REPLACE IBMBDLIA (PLITDLI)

• For interface via CALL ASMTDLI, add

REPLACE IBMBDLIB (ASMTDLI)

• For interface via EXEC DLI, add

REPLACE IBMBDlIC (DFHEIOl)

If the PL/I application uses EXEC CICS commands, add the
following statement after the REPLACE PLISTART statements above:

REPLACE IBMBDLIC (DFHEIOl)

I PL/I-CICS/OS/VS INTERFACE COMPONENTS

PL/I supplies a program interface module called DFHPLI01 and a
nucleus interface module called DFHSAP. DFHSAP is a part of the
PL/I product (supplied in the Transient Library), not of
CICS/OS/VS, but it is loaded during CICS/OS/VS initialization to
become part of the CICS nucleus.

DFHSAP's initialization module establishes Pl/I execution
options for each CICS-PL/I program. Its PL/I error handler is a
proper PL/I error handler. It contains modified versions of
various OS PL/I modules.

Certain other functions, normally required only in a debugging
environment, are implemented by loading PL/I transients into
CICS/OS/VS storage via an EXECCICS LOAD command. Such
transients include the STREAM OUTPUT PRINT transmitter for
SYSPRINT; the PLIDUMP transients, the storage management module
required for the REPORT option, and two versions of the PL/I
execution-time messages module (one version for GONUMBER/GOSTMT,
the other for NOGONUMBER/NOGOSTMT1. Just as all the modules in
DFHSAP are tailored for CICS, so these PL/!-CICS/OS/VS
transients are all CICS-tailored modules, although they are very
similar to their OS PL/I Transient library counterparts.

There is no compile-time CICS option; however, Pl/I library
modules can tell whether or not they are being executed in the
CICS environment by testing a bit, TTKK, in the PL/I TCA, and
some of them make use of a CICS implementation appendage, built
in the PL/I Program Management Area right after the Pl/I TCA and
TIA. It is principally used by the modules in DFHSAP, but
various other library modules have sections of code for the CICS
environment that test this bit and use the CICS appendage.

The CICS appendage is described in OS Pl/I Optimizing Compiler:
Execution L09icManual.

Chapter 15. Using PL/I on CICS 379

I PL/I-CICS/OS/VS APPLICATION PROGRAM INTERFACE (DFHPL10IJ

The link-edited CICS/OS/VS interface module (DFHPLlOI) replaces
the batch-mode PLISTART CSECT, and contains what amounts to a
CICS/OS/VS-tailored version of the PlISTART parameter list.

Execution of your PL/I transaction program commences when DFHPCP
calls DFHPllOI at its entry point DFHPLlN. DFHPLIN immediately
calls Pl/I initialization in DFHSAP, passing it the following.

The addresses of:

PlIMAIN Address of MAIN procedure.

PLIFLOW Flow trace initialization module (if FLOW option).

PLICOUNT Count initialization module (if COUNT option).

PLIXHD User's heading for COUNT and REPORT output.

PLITCIC Entry to CICS/OS/VS HLPI.

IBMBPSRA Shared library transfer vector.

IBMBPOPT Compiler-parsed PlIXOPT options.

IBMBERCA CHECK module.

plus the length of pseudo-register vector (PRV).

Any of the above parameter addresses except PLIMAIN can be zero
if the related entity or option does not exist for the program
being initialized.

In addition to the code at entry point DFHPLIN to pass the above
parameter list to PL/I initialization in DFHSAP, DFHPLlOI also
contains the following functional entry points:

DFHPL1I

DFHPl.1C

IBMBOCLA
IBMBOCLB
IBMBOCLC

IBMBKD~IA

Bootstrap to CICS services for
the macro-level interface

Entry point to return CSA
address to caller.

Entry points to branch through
DFHSAP to OPEN/CLOSE code in
STREAM PRINT transmitter for
SYSPRINT.
Bootstrap to PLIDUMP

It also provides LOAD and RELEASE services for the resident
libraries.

380 OS PL/I Optimizing Compiler: Programmer's Guide

I PL/I CICS/OS/VS NUCLEUS INTERFACE MODULE (DFHSAP)

The PL/I interface module in the CICS/OS/VS nucleus is a
PL/I-provided module that supports PL/I Optimizing Compiler
programs only. It consists of bootstrap code plus OS PL/I
library modules modified for the CICS/OS/VS environment. These
modules have names that begin IBMF instead of IBMB in batch.

DFHSAP contains the following library modules:

IBMFPCCA
Bootstrap to library modules in DFHSAP.

IBMBOCLA, B, C
IBMBSTVA, B, C

Bootstrap code to invoke (via CICS LOAD the first time) the
STREAM OUTPUT PRINT transmitter for SYSPRINT (plus
OPEN/CLOSE).

IBMFPIRA
PL/I initialization/termination code.

IBMFPGRA
Storage management without REPORT option.

IBMFERRA
PL/I error handler.

IBMBXOPT
Default execution-time options CSECT created when user
installed as PL/I Transient Library.

Note the presence of IBMBXOPT. If an execution-time option is
not set via PLIXOPT, it is set to its batch mode default as
specified during installation of the PL/I Transient Library.
These batch default options may not be well-suited to the CICS
environment. It is good coding practice to set all of these
options explicitly in a PLIXOPT string.

The modules in DFHSAP supply all the initialization/termination,
storage management, and error-handling function required in a
debugged production program. In the testing and tuning
environment, however, the SYSPRINT facility, PLIDUMP, FLOW,
COUNT, REPORT, and CHECK may be desired, and error messages
concerning failing programs will likely be produced on SYSPRINT.
These functions require transients that are part of the PL/I
Transient Library, but are tailored for the CICS environment and
are loaded into CICS storage by an EXEC CICS LOAD command.
CICS/OS/OS regards them as ordinary transaction programs, and
macros for their PPT entries are on the PL/I distribution tape.
They are:

IBMFSTVA
STREAM OUTPUT PRINT transmitter, altered to handle only the
CICS/OS/VS version of SYSPRINT, but with OPEN/CLOSE support
added.

IBMFPGDA
Storage management with REPORT option.

IBMFPMRA
Module to generate storage report for REPORT option.

IBMFEFCA
Module to produce COUNT output.

IBMFESMA, IBMFESNA, IBMBEOCA, IBMBETxA
Messages modules.

IBMFKMRA, KPTA, KTCA, KTRA, KTBA, KCSA
PLIDUMP modules.

Chapter 15. Using PL/I onCICS 381

Two PL/I Resident Library modules test the CICS bit in the PL/I
TCA and take slightly different paths based on it. Howeverl
they do not interface with CICS directly. They area

IBMBSIOA
The stream initialization output module that, while
building a PL/l block called the SIOCB, has to get the
address of the PL/I File Control Block (FCB). This address
is obtained differently for the CICS SYSPRINT file than for
ordinary batch STREAM OUTPUT files. Subsequent stream I/O
modules address the file via the SIOeB and thus require no
modification to run in the eICS environment.

IBMBCCSA
The complex string director module uses the load service in
DFHPLID! to load the necessary modules under CICSc

382 OS PL/I Optimizing Compiler: Programmer's Guide

APPENDIX A. VSAM BACKGROUND

THE VSAM CATALOG

VSAM DATA SETS

This appendix gives an introduction to the facilities of VSAM
and Access Method Services. The commands for creating and
deleting data sets, and for creating alternate indexes, are
described. Other housekeeping tasks are described in your
Access Method Services manual. If you have complex requirements
or are going to be a frequent user of VSAM, you should review
the VSAM pUblications for your operating system.

PL/I does not support all VSAM function.

VSAM data sets must be defined and cataloged in a VSAM catalog
before they are loaded with data: Each VSAM data set's name and
physical attributes are recorded in the catalog. A hierarchy of
catalogs is possible, in which you have your own private
catalog, which in turn is cataloged in the master catalog.
Alternatively, you may catalog your data sets directly in the
master catalog.

Data sets are defined and cataloged by using the Access Method
Services program.

By having all data sets cataloged, close control of your data
sets is possible and JCL can be restricted to simply associating
the name of the data set with the file name in the PL/I program.
Any other information necessary to use the data set will be
found in the catalog. Thus, when using VSAM, essential JeL is
reduced to the use of the DSNAME parameter and the DISP
parameter. Other information can be supplied but it is merely
used to override defaults and tailor VSAM's processing to suit
your needs in matters such as buffer size.

The three types of VSAM data sets are;

• A key-sequenced data set, which consists of a data component
containing records with embedded keys, and an index
component relating key values to relative locations of the
records. The index, created and maintained by VSAM when
data is written, is called the prime index.

You may retrieve records directly, by supplying a key value
as a search argument, or sequentially. Records retrieved
sequentially are returned in order of their key values, and
not their location in the data set.

To create a key-sequenced data set, records must be
presented in order of key values. Once a key-sequenced data
set has been created, VSAM permits a full range of
operations upon the data -- retrieval, insertion, deletion,
and changing the length of a record -- with either
sequential or direct-access.

For a key-sequenced data set, VSAM also permits access to
control intervals and access by relative byte address;
however, PL/I does not support these types of access.

• An entrY-sequenced data set, in which the records are in the
order in which they were presented for storage (that is,
each new record is stored at the end). Once you have
created an entry-sequenced data set, records cannot be
inserted, deleted, shortened, lengthened, or moved from one
location to another. They may, however, be replaced with
records of the same data length.

Appendix A. VSAM Background 383

An entry-sequenced data set is essentially a sequential data
set, but one whose records can be updated and can be
retrieved either sequentially or at random by direct-access.
The search argument for direct retrieval is a record's
relative byte address eRBA), that is, its displacement from
the start of the data set. To retrieve records randomly,
your program must keep track of records' RBAs and associate
RBAs with the contents of records. VSAM makes the RBA
available after each record is written.

• A relative record data set, which is a string of
fixed-length record slots, each of which is identified by a
relative-record number from 1 to n, where n is the maximum
number of records that can be stored in the data set. Each
record occupies a single slot and is stored and retrieved by
an argument which is the relative-record number of the slot.
The size of each slot is the record length you specified
when you defined the data set.

All VSAM data sets must be on direct-access storage devices.
Under VSAM it is therefore possible to access records in all
types of data sets by means of a key.

VSAM's use of catalogs to hold information about the physical
attributes of all data sets, and the use of a separate service
program (Access Method Services) for data set management,
results in a reduced dependence on JCL compared with other
access methods. It has the advantage that operations on data
sets are more explicitly specified using VSAM. This has the
corresponding disadvantage that temporary data sets cannot be so
easily created for the length of the execution of a program. To
compensate for this, the REUSE option of the DEFINE CLUSTER
command specifies data sets that are to be used as temporary
work areas. REUSE is further described later in this appendix.

The physical organization of VSAM data sets differs considerably
from those used by other access methods. VSAM does not use the
concept of blocking, and, except for relative record data sets,
records need never be of a fixed length. VSAM data sets are
held in control intervals and control areas; the size of these
is normally determined by the access method and the way in which
they are used is not visible to you. Consequently, concern
about blocking factors and record length is largely removed by
VSAM although records cannot, of course, exceed the maximum
specified size.

ACCESS METHOD SERVICES

Access Method Services is a multifunction service program that
carries out utility tasks on VSAM data sets. It is used to
define them (that is, to record them in a catalog), to delete
them. to generate alternate indexes from them, and to carry out
many other routine tasks. You request tasks that you want by
coding the appropriate Access Method Services commands and
executing the Access Method Services program.

Access Method Services may be used in a separate job or job step
in a batch system, called from a PL/I user program, or specified
by command in an interactive system. In a batch system, the
EXEC statement

//STEP EXEC PGM=IDCAMS

is used and the commands placed in the file SYSIN. On TSO, you
enter the commands as if they were TSO ~ommands. On CMS, you
include the commands in a file with the filetype AMSERV, and
specify the name of the file in the AMSERV command.

To create a data set you use the DEFINE CLUSTER command of
Access Method Services. A ~luster can be a key-sequenced data
set, which consists of a data component and an index component,
or it can be an entry-sequenced or relative record data set,
which consists of only a data component. The command specifies

384 OS PL/I Optimizing Compiler: Programmer's Guide

PASSWORD PROTECTION

the name to be used for the data setl the amount of space
required l the volume on which it will be placed l the record
length l the position of any keYI the catalog in which it will be
recorded, and, optionallYI a number of other physical
attributes. For example:

DEFINE CLUSTER (NAME (BLOGGS) -
VOL(HUR137) CYlCI 1) -

RECSIZE(20 80) KEYS(lO 0»

This defines a key sequence data set called BLOGGS on the volume
HURl37. One cylinder is to be allocated as a primary space
allocation and secondary allocations are to be in increments of
one cylinder. The record size varies with a maximum of 80 bytes
and an average of 20. The key is 10 bytes long and starts in
the first byte (offset 0).

VSAM data sets can have password protection, allowing access to
be limited to those who know the password. Various levels of
password can be provided to give different degrees of access to
the data set.

The ~aster password allows complete access to read, write, and
delete the data set. Access to alter the contents of the data
set but not to delete it is given in the ul?date password.
Access to read the data set, but not to alter it, is given in
the read password. These three are the only levels of password
that concern you as a PL/I user. However, there is a fourth
level between the master password and the update password that
allows the data set to be accessed at the control interval
level, but does not allow the data set to be deleted; this is
the control password. PL/I does not support control interval
processing.

Passwords are set when the data set is defined using Access
Method Servicesl and can be altered using the ALTER command of
Access Method Services. For a data set to be protected, it is
necessary for the catalog that contains it, and the master
catalog, to be protected.

THE LIFE OF A VSAM DATA SET

A VSAM data set passes through four stages during its life:

1. Definition with the DEFINE command of Access Method
Services.

2. Initial loading. Before a newly-defined key-sequenced data
set is used for UPDATE or INPUT I it must be loaded by
writing the initial data. This can be done from a Pl/I
program. After this point an alternate index may be defined
and a path built, using Access Method Services.

3. Updating and reading, when the data is read from the data
set or the original data is altered. Again this can be done
from the PL/I program.

4. Deletion with the DELETE command of Access Method Services.

DEFINING A VSAM DATA SET

VSAM data sets are defined and cataloged using the DEFINE
CLUSTER command of Access Method Services. To use the DEFINE
command, you need to know:

• If the master catalog is password protected, the name and
password of the master catalog or the name and password of
the VSAM private catalog you are using if you are not using
the master catalog

Appendix A. VSAM Background 385

• Whether VSAM space for your data set is available

• The type of VSAM data set you are going to create

• The volume on which your-data set is to be placed

• The aver"age and maximum record size in your data set

• The position and length of the key for an indexed data set

• The space to be allocated for your data set

• How to code the DEFINE command

e How to use the Access Methud Services program

When you have the information, you are in a position to code the
DEFINE command and then define and catalog the data set using
Access Method Services.

If the space is not available for your data set, you must use
the DEFINE command to define space before you define your data
set. The method of defining space is fully explained in the
Access Method Services manual. Your system programmer will be
able to tell you if space has been defined.

DEFINE CLUSTER COMMAND

The DEFINE CLUSTER command is the command that defines and
catalogs your data set. The simplified syntax of the command
is:

Syntax

DEFINE CLUSTER (NAME(data-set-name) -
VOLUMES(volserl [voisern]) -
[FILECddname)] -
[REUSEINOREUSEl -
INDE~E~TNoNINDEXEDINUMBERED -
[KEYSClength offset)] -
[FREESPACECci7. ca%)] -
TRACKS I CYLINDERS I RECORDS -

(primary-alloc secondary-alloc) -
RECORDSIZECaverage maximum) -
password-options -
[SHAREOPTIONSCn[m])] -
other-options) -

[DATA (options)] -
[INDEX Coptions)] -
[CATALOG (catname/password)]

Items in uppercase (capital letters) must be coded as shown.
Items in lowercase must be replaced by the information YOU
require. Alternatives are separated by the vertical stroke, I.
Items enclosed in square brackets are optional. Underscored
items are the default. If the command exceeds one line, the
continuation marker - must be used on each line except the last.

The DATA and INDEX operands of the DEFINE CLUSTER command allow
different attributes to be specified for the data component of
the data set and the index component. This cannot usefully be
done without more information than is available in this manual,
and consequently the discussion is limited to the options of
CLUSTER. However, separate specification of data and index
components is important for VSAM operational control and
efficient performance:

• Good VSAM data set naming conventions usuallY dictate
separate names specified for the data and index components
of a cluster, and this convention is especially useful with
the Data Facility/Extended Function program product

386 as PL/I Optimizing Compiler: Programmer's Guide

installed (and extended-function catalogs in use), because
in this case it is the component name(s) for which VTOC
entries are created for VSAM. These VTOC entries are for
the components -- not the cluster.

• VSAM calculates control interval sizes for your data set,
but it does so with the goal of optimizing disk space, not
performance. It uses its calculated CI size for both data
and index, when in fact the best values for the two types of
CI size usually differ.

Thus most DEFINE CLUSTER commands should supply the DATA operand
(for all types of clusters) and the INDEX operand (for a KSDS)
with a user-supplied name and a value for CI-size for each
component.

For more information, you should refer to the Access Method
Services manual.

NAME(data-set-namel
The name may contain from 1 through 44 alphameric
characters (A through Z, 0 through 9, 3, I, and $), and two
special characters (the hyphen and the 12-0 overpunch).
Names containing more than 8 characters must be segmented
by periods; 1 to 8 characters may be specified between
periods. The first character of any name or name segment
must be alphabetic.

VOLUMES(volserl [volsernll
specifies the volume, or volumes on which your data set is
to reside. For example, VOlUMESCHUR137 HURI38).

FILE(ddnamel
specifies the name of the DD statement that identifies the
device and volume to be used for space allocation. The DD
statement you specify must have this syntax:

//ddname DD UNIT=(devtype[,unitcount]),
// VOL=SER=(volserl,volser2, ...), ...

REUSE I NOREUSE
specifies whether the cluster can be opened again and again
as a temporary, or reusable, cluster. REUSE allows you to
create an entry-sequenced, key-sequenced, or
relative-record workfile.

When you create a reusable cluster, you cannot build an
alternate index to support it. Also, you cannot create a
reusable cluster with key ranges or with its own data
space. Reusable data sets may be multivolumed and are
restricted to 16 physical extents per volume.

INDEXED I NON INDEXED I NUMBER£D
specifies the type of VSAM data set as follows:

INDEXED
NONINDEXED
NUMBERED

Key-sequenced data set
Entry-sequenced data set
Relative record data set

INDEXED is the default.

KEYS(length offset)
applies to key sequenced data sets only and specifies the
position and length of the key. In VSAM , all keys are
within the record.

length
is the length of the key in bytes.

offset
is the offset from the start of the record.

For example, KEYS(lO 0) means that the first 10 characters
(bytes) of the record are to be used as a key.

Appendix A. VSAM Background 387

FREESPACE(ci% ca%)
specifies the amount of space that will be left empty in a
key sequenced data set. Free space can be left to allow
for expansion of the data set in a way that will not
degrade the speed of sequential access.

ci%

ca%

is the percentage of each control interval that is to
be left empty.

is the percentage of control intervals in each control
area to be left empty.

Control intervals are collections of records. Control
areas are collections of control intervals. The sizes are
determined by VSAM to suit the devices used, or the control
interval size can be specified in the DEFINE command (see
the Access Method Services manual)).

The default is FREESPACECO 0).

TRACKS I CYLINDERS I RECORDS
(primary-alloe secondary-alloe)

specifies the space that is to be reserved for your data
set, in either tracks, cylinders, or records. The primary
allocation is reserved when the DEFINE CLUSTER command is
executed. The secondary allocation is reserved when the
primary allocation has been filled. Up to 16 secondary
allocations can be made.

RECORDSIZE(average maximum)
specifies the size of records. Average size and maximum
size must be specified in bytes. For relative record data
sets, fixed-length records are required; consequently
average and maximum must be the same. For other types of
data sets, records can be any length less than or equal to
the maximum length.

password-options
specify the password or passwords for your data set. The
options are as follows:

MASTERPW(passwordl
gives complete access to data set.

CONTROlPW(passwordJ
is irrelevant to Pl/I users.

UPDATEPW(passwordl
gives access to alter contents.

READPWCpasswordJ
gives read-only access.

Password is 1 to 8 EBCDIC characters.

If only a low level password, such as READPW, is specified,
the read pass\OlOrd is propagated upwards so that i 1: also
becomes the other passwords. If only a high-level password
is specified, lower level passwords will not be required.

SHAREOPTIONS(n[m])
is described below, under "Sharing a Data Set between Jobs"
on page 390.

other-options
Numerous other options can be specified that control the
physical structure, data integrity, and protection of VSAM
data sets. See the Access Method Services manual.

388 OSPl/I Optimizing Compiler: Programmer's Guide

CATAlOG(catname/passwordl
specifies the name and password, if any, of the catalog in
which the data set is to be defined. If CATALOG is
omitted, the mast~r catalog is the default. If you have
not yet defined your catalog, see the Access Method
Services manual.

An example of the use of the DEFINE CLUSTER command is:

DEFINE CLUSTER (NAMECBOB) -
VOLUMESCHURI36) -
INDEXED -
KEYS(lO 20) -
FREESPACE(20 10) -
RECORDSIZE(SO 80) -
TRACKS(20 5») -

CATAlOGCCRIPPEN/BORDEN)

This defines a key sequenced data set called BOB on the volun,e
HUR136. The key is 10 bytes long and starts at offset 20 (the
21st character). 20X of each control interval, and 10~ of the
control intervals in each control area will be kept empty for
new records. The primary space allocation is 20 tracks and
secondary allocations will be in increments of 5 tracks. The
catalog in which the data set is to be defined is called CRIPPEN
and the password is BORDEN.

Complete examples of Pl/I statements, JCL, and Access Method
Services commands are given in Chapter 7, "Using VSAM Data Sets
from PL/I" on page 222.

USING THE ACCESS METHOD SERVICES PROGRAM

How you use the Access Method Services program depends on
whether you work in a batch or interactive system. In a batch
environment, you execute the program as a separate job or job
step, supplying the command in the SYSIN data set, and providing
a SYSPRINT data set for printing any messages. For example:

SHARING VSAM DATA SETS

//FRED JOB
// EXEC PGM=IDCAMS
//SYSPRINT DD SYSQUT=A
//SYSIN DD *

DEFINE CLUSTER (NAME(FRED) -
VOLUMES(HURl37) -
TRACKS(lO 5) -
RECORDSIZE(SO 100) -
NONINDEXED) -

CATALOG(~1ASTCAT)

VSAM data sets can be shared within a job, between jobs
(cross-region sharing), and between two or more operating
systems (cross-system sharing). The extent to which ·they may be
shared depends upon the SHAREOPTIONS specified in the DEFINE
command when the data set is defined. For information on
sharing data sets between systems, read the Access Method
Services manual, bearing in mind that PL/I does not enable you
to issue the RESERVE, RELEASE, ENQ, or DEQ macro instructions.
A short description of sharing between jobs and sharing within a
job follows. Again, full information is given in the Access
Method Serv~ces manual. ------

Appendix A. VSAM Background 389

SHARING A DATA SET BETWEEN JOBS

When issuing the DEFINE CLUSTER command~ it is possible to use
the SHAREOPTIONS parameter to specify the amount of sharing that
will be allowed on the data set. The option is specified with a
number, n, or two numbers, nand m, separated by a blank, with
the syntax shown above, where:

n specifies cross-region sharing and has the following meanings:

n=l

n=2

n=3

n=4

specifies that any number of users can share the component
or cluster being defined if only read operations are being
performed. When a write operation is being performed, only
one user at a time can use the ~ompone~t or cluster.

specifies that any number of users can use the component or
cluster for read operations even if one user is using it
for a write operation.

specifies that any number of 'users can share the component
or cluster for both read and write operations. Data
integrity is the users'responsibility, and VSAM provides
no assistance in maintaining it.

specifies that any number of users can share the component
or cluster for both read and write operations. Data
integrity is the users' responsibility, but VSAM provides
some assistance. This option requires your prograln to use
the ENQ and DEQ macros to maintain data integrity while
sharing the data set. PL/! does not issue ENQ or DEQ.

m specifies cross-system sharing, as described in the.Access
Method Services manual. .

SHARING WITHIN A JOB

When a data set is opened, VSAM checks to see if it is being
shared and if it is, whether the type of sharing is allowed in
the SHAREOPTIONS. If it is not allowed, the file is not opened.
To sl,are a data set, each user must specify DISP=SHR in the data
set's DD statement. The use of DISP=OLD in the DD statement
causes the share options to be set to 1 3, to ensure that you
have sole control of the data set except for the case of
cross-system sharing.

Data sets can be shared within a job by having a number of DD
statements specifying the same data set, or by opening the data
set by a number of alternate index paths, or by both methods at
once. Generally speaking, there are no restrictions on this
type of use. However, it is possible for errors to occur when
one file is holding a control interval and the same control
interval is required by another file. Such errors can be
avoided by not having two files associated with the same data
set at one time.

DELETING A VSAM DATA SET

To delete a VSAM data set you need to know:

• The name of the data set

• Its master password, if any, or the master password of the
catalog that contains it

• The name of the catalog in which it is placed if it is not
in the master catalog

• How to code and use the DELETE subcommand

390 OS PL/I Optimizing Compiler: Programmer's Guide

VSAM data sets are deleted by the DELETE command of Access
Method Services:

Syntax

DELETE (data-set-name[/masterpw) -
[CATAlOG(catname[/masterpw]) -
[other-options]

data-set-name
is the name of the data set that you want to delate.
masterpw is the master password for the data set.

CATALOG(catname[/masterpw])
specifies the name of the catalog on which the data set is
cataloged. If it is the master catalog, CATALOG can be
omitted.

masterpw is the master password of the catalog and is
required only if the data set is password protected and the
data set password is not specified with the data set name.

other-options
specify other facilities of the DELETE command. These are
described in the Access Method Services manual.

An example of deleting a data set in a batch programming
environment is:

//DELET JOB
// EXEC PGM=IDCAMS
//SYSPRINT DD SYSDUT=A
//SYSIN DD *

DELETE FRED CATALOG(MASTCAT)

This deletes the data set FRED defined in the example of the
DEFINE command shown earlier in this section. See "Using ·the
Access Method Services Program" on page 3S9 for a fuller
description of using Access Method Services, including
descriptions of interactive environments.

ALTERNATE INDEX PATHS

VSAM allows alternate indexes to be defined on key sequenced and
entry sequenced data sets. This enables key sequenced data sets
to be accessed in a number of ways apart from use of the prime
index, and allows ~ntry sequenced data sets to be indexed and
accessed by key or sequentially in order of the keys.
Consequently, data created in one form can be accessed in a
large number of different ways. For example, an employee file
might be indexed by personnel number, by name, and also by
department number.

When an alternate index has been built, you actually access the
data set through a third object known as an alternate index path
that acts as a connection between the alternate index and the
data set.

Two types of alternate indexes are allowed -- unique key and
non-unique key. For a unique key alternate index, each record
must have a different key. For a non-unique key alternate
index, any number of records can have the same key. In the
example suggested above, the alternate index using the names
could be a unique key alternate index (provided each person had
a different name), and the alternate index using the department
number would be a non-unique key alternate index because more
than one person would be in each department. An example of
alternate indexes applied to a family tree is giv~n in Figure 93
on page 225.

Appendix A. VSAM Background 391

A data set accessed through a unique key alternate index path
can be treated, in most respects, like a KSDS accessed through
its prime index. The records may be accessed by key or
sequentially, records may be updated, and new records may be
added. If the data set is a KSDS, records may be deleted and
the length of updated records altered. Restrictions and allowed
processing are shown in Figure 95 on page 228. When records are
added or deleted, all indexes associated with the data set are
by default altered to reflect the new situation.

In data sets accessed through a non-unique key alternate index
path, the record accessed is dete~mined by the key and the
sequence. The key can be used to establish positioning so that
sequential access may follow. The use of the key accesses the
first record with that key. When the data set is read
backwards, only the order of the keys is reversed. The order of
the records with the same key remains the same whichever way the
data set is read.

HOW TO BUILD AND USE ALTERNATE INDEX PATHS

Terminology

If you are using alternate indexes, knowledge of how to use them
is required at four stages of the programming process, as it is
with normal data sets. These stages area

1. When planning and coding the program

2. When creating the alternate indexes

3. When executing the program that accesses the data set
through the alternate indexes

4. When deleting the alternate index, if you wish to delete it
at a different time from the associated data set

Discussions of what to do at these stages follow, but are
preceded by a short section on the terminology used with
alternate indexes.

An alternate index is, in practice, a VSAM data set that
contains a series of pointers to the keys (or their equivalent)
of a VSAM data set. When you use an alternate index to access a
data set you should use a third entity known as an alternat~
index path or simply a path, that establishes the relationship
between the index and the data set.

The data set to which the alternate index gives you access is
known as the base data set, or more usually in the VSAM manuals
as the base cluster.

The indexes of a base cluster are, by default, connected to it
in such a way that alteration to the data will be reflected in
the indexes. All indexes so connected are known as the index
upgrade se-t of the base cluster. The relationship between the
items is shown in Figure 158 on page 393.

PLANNING AND CODING WITH ALTERNATE INDEXES

When planning to use an alternate index you must know:

• The type of base data set with which the index will be
associated

• Whether the keys will be unique or non-unique

• Whether the index is to be password protected

• Some of the per-formance aspects of using alternate indexes

3.92. OS PL/I Optimizing Compiler: Programmer's Guide

r------------- --,

DATA

BASE CLUSTER I
I
I

-~------i---~~~~~;:O;~;---------:

PRIME I ALTERNATE ALTERNATE II

INDEX I INDEX 1 INDEX 2 I
I I

I :
I I
I I ---------r------ _____ J

I
L __________ _ PATH 1

Base Cluster

Prime index

Alternate Indexes

Paths

Index upgrade set

PATH 2

Accesses data by prime index (except for ESDS).

Is the index used in creating the data set and used when access is made through the base cluster.

Are other indexes to the same base data.

Establish a path through the base data other than that implied by the prime index in a KSDS and
the sequence in an ESDS. Paths connect the alternate index with the base data.

That set of indexes (always including the prime index) that will be automatically updated when
the data is changed. Note that indexes can exist outside this set.

Figure 158. Base Cluster" Alternate Indexes" and Paths

The type of the base cluster and the use of unique or non-unique
keys determine the type of processing that you can carry out
with the alternate index, and so determine the PL/I statements
you may use. Figure 94 on page 228 and Figure 95 on page 228
s~ow respectively ~he basic file attributes that you can use
wlth an alternate lndex path and the types of processing that
you can use.

Appendix A. VSAM Background 393

Passwords

Performance

Broadly, you use an alternate index path just like any other
data set. In fact, a PL/I file could be used to access a data
set directly in one execution and used to access a data set via
an alternate index path in another.

The alternate index may be password protected, as for a normal
VSAM data set.

Performance with alternate indexes is not significantly worse
than performance using the prime index. However, as the use of
alternate indexes introduces an additional level of indirection
into the access of a record, access cannot be as fast.

When updating 'a data set with more than one index, the resulting
index upgrade also degrades performance.

When opening a data set with a ~umber of indexes, the indexes
are by default opened at the same time as the data set to allow
for possible upgrade. This overhead can be avoided when the
data set is being used for read-only processing by specifying
the NOUPDATE attribute on the DEFINE PATH command. By
specifying NOUPDATE, only the base cluster, which is the
key-sequenced or entry-sequenced data set, is changed. The
method of defining such a path is described in the MVS/Extended
Architecture VSAM Administration Guide. When using the DEFINE
PATH command, be careful not to alter the data set. One way to
avoid changing the data set is to use the UPDATEPW attribute.

HOW TO BUILD AN ALTERNATE INDEX

To build and use an alternate index, you issue three Access
Method Services commands:

DEFINE ALTERNATEINDEX
BLDINDEX
DEFINE PATH

DEFINE AlTERNATEINDEX defines and catalogs the data set that
will hold the alternate index, and associates it with the base
cluster. BlDINDEX reads the base cluster, extracts the keys,
sorts them, and builds the alternate index by inserting pointers
to the records. DEFINE PATH establishes a path that you will be
able to associate with your Pl/I file when you want to access
the base data set through the alternate index. An alternate
index cannot be built unless there are records in the data set.

To use these commands you will need to know:

• The name of the base data set

• The password for the base data set, if any

• The position and length of the alternate index key in the
record

• The approximate size of the base cluster

• Whether the keys will be unique or non-unique

• If the keys will be non-unique, the approximate maximum
number of records with the same key

• The catalog on which the alternate index is to be placed

When you have established these facts, you are in a position to
code and execute the commands.

394 as PL/I Optimizing Compiler: Programmer's Guide

The commands must be issued in the order shown. A separate job
step must be used for BLDINDEX and DEFINE PATH. An example
showing the commands in one jobste~ is given at the end of this
section.

DEFINE ALTERNATEINDEX Command

The simplified syntax of the DEFINE ALTERNATEINDEX command
follows:

Syntax

DEFINE ALTERNATEINDtX -
(NAM!(indexname) -
VOlUMES(volser) -
TRACJ(S I CYL.INDERS I RECORDS -

(primary-alloc secondary-alloc)­
KEYSClength offset) -
UNIQUEKEVINONUNIQUEKEV -
U~GRADEINOUPGRADE -
RE.lAl;"ECbase-data-set/masterp\A/) -
RECORDSIZE(aversge maximum) -
[MASTERPW(password) -
CONTROLPWCpasswordl -
UPDATEPW(password) - I'

L..

___ R_'E_A_D_._Pw __ '_p_a_s_s_w_O_r_d_) __ -____________________________ -----------~ other-options]) -
CATALOGCcatnarne/password)

Nete: Only those options that are different from those of the
DEFINE CLUSTER command ar~ explainsci below. If in doubt about
the others~ see "DEFINE CLUSTER Command" on page 386.

NA~1E (inde)o"iame 1
specifies the name of the alternate index. It can be any
name allowed for an OS data set. (See DEFINE CLUSTER
cor.1mand.)

KEYS(length offset]
specifies the position of the alternate index key in the
record. They may be anY\.<fnere wi thin tha record. (For
spanned records, all keys must be in the first section of
the record.)

UNIQUEKEY!NONUNIQUEKEV
specifies whether the keys will be unique. I"f duplicate
keys are found when building an alternate index that has
been given the UNIQUEKEY attribute, an error occurs and the
execution of BLDINDEX is halted.

UPGRADE I NOUPGRll.DE
specifies whether the alternate index is to be part of the
index upgrade set far the data set. If it is, it is
updated whenever the base data set is altered (using this
index or any other index). If NOUPGRADE is specified, the
index is not altered with the data set.

RELATE (basa-data-set/masterpw)
specifies the base data set with which the alternate index
will be associated.

RECORDSIZE(average maximum)
specifies the size of the record in the alternate index.
If the path is non-unique, each index record will have to
refer to many data records. Consequently, if the key is
non-unique, the maximum should be a large figure. The
default values are large; see the Access Method Services
manual.

Appendix A. VSAM Background 395

BLDINDEX Command

MASTERPW, CONTROLPW, UPDATEPW, READPW
specify the password options of the alternate index. See
DEFINE CLUSTER command for details.

other-options
are described in the Access Method Services manual.

CATALOG(catname/password)
specifies the catalog in which the alternate index will be
defined. It must be the same as the catalog of the base
data set.

An example of the DEFINE ALTERNATEINDEX command is:

DEFINE AlTERNATEINDEX -
(NAMECALPHINDX) -
VOLUMESCHUR137) -
KEYS(lO 0) -
NONUNIQUEKEY -
RELATE(PERSNOS) -
RECORDSIZE(20 2000)) -

CATAlOG(CRIPPEN/BORDEN)

This defines an alternate index called AlPHINDX on the data set
called PERSNOS. The keys are non-unique and are in the first 10
bytes of the record. It is ca~aloged in the catalog called
CRIPPEN with the master password BORDEN.

The BLDINDEX command extracts keys from the base data set, sorts
them into order, and places the necessary information in the
alternate index. DD statements, or their equivalentl are
required for the base cluster, the alternate index, and two work
files that may be needed if the necessary sorting cannot be
carried out in main storage.

Syntax

BlDINDEX INFIlE(ddnamel[/read-passwordl)­
OUTFILECddname2[/update-password]) -
CATALOGCcatname[/update-password])

where ddnamel is the ddname of the base data set and ddname2 is
the ddname of the alternate index. For example:

BLDINDEX INFIlECBASE) -
OUTFIlECALTIND) -
CATALOGCCRIPPEN/BORDEN)

The DD statements use the following syntax:

Base Cluster:

//ddnamel DD DSNAME=base cluster,
// DISP=OLD

For example:

//BASE DD DSNAME=PERSNOS,DISP=OlD

Alternate Index:

//ddname2 DD DSN=alternate index name,
// DISP=OlD

For example:

//ALTIND DD DSNAME=ALPHIND,DISP=OLD

396 OS Pl/I Optimizing Compiler: Programmer's Guide

DEFINE PATH Command

Sort Workfiles:

//IDCUTl DD DISP=OlD,AMP='AMORG',
// VOl=SER=volno,UNIT=device type
//IDCUT2 DD DISP=OlD,AMP='AMORG',
// VOL=SER=volno,UNIT=device type

Note that UNIT must specify the generic device type of the
volume or a unit address CSYSDA is not allowed). The volume
must be a VSAM volume and space will be allocated for the
workfiles by VSAM. AMP='AMORG' is required to indicate that
space will be acquired by VSAM.

A combined example showing all the commands and job control
statements to create an alternate index is given in Figure 159
on page 399.

The DEFINE PATH command defines a name of the alternate
index/base cluster combination, and enables it to be used from a
PL/I program.

Syntax

DEFINE PATH (NAMECpathname) -
PATHENTRY -
(alternate-index-name[/masterpw]) -
(MASTERPW(password) -
CCNTROLPW(password) -
UPDATEPW(password) -
READPW(password) -
other-options]) -

[CATALOG(catname{/masterpw])]

other-options are described in the Access Method Services
manual.

The master password of the catalog, which must be the same
catalog as that used by the base cluster and the alternate
index, is an alternative to the use of the master password of
the base cluster.

An example of the DEFINE PATH command is:

DEFINE PATH -
(NAME(AlPHPERS) -

PATHENTRYCALPHIND» -
CATAlOGCMASTCAT)

EXECUTING THE ACCESS METHOD SERVICE COMMANDS TO CREATE AN ALTERNATE INDEX PATH

The example in Figure 159 on page 399 shows the use of Access
Method Services in a batch system. If you use TSO, the Access
Method Services commands are issued as TSO commands with
ALLOCATE commands used instead of DD statements. If you use
CMS, the Access Method Services Commands are written in a file
with the file type AMSERV, and the name of the file specified in
an AMSERV command.

Appendix A. VSAM Background 397

In the example, the existence of a data set PERSNOS which
contains data records is assumed. It is a data set keyed by
personnel numbers. An alternate index called AlPHIND is being
generated on the data set keyed by the first 25 characters of
the records that contain the name. The path that specifies the
base data set/alternate index pair is to be called PERSALPH.
The catalog used by all items is NMCAT, and the volume HUR137.

The example is commented to simplify understanding.
Method Services comments are delimited by /* and */.
comments are one line in length and start with //*.
the allowed syntaxes for comments.

DELETING AN ALTERNATE INDEX

Access
JCL

These are

Alternate indexes and alternate index paths are deleted when the
associated base data set is deleted. If you want to delete them
separately without deleting the base data set, you specify them
in the DELETE command. For examples

To delete an alternate indexi

DElETE(ALTIND/SESAME)

where ALTIND is the name of the alternate index and SESAME is
the master password.

To delete a path:

DELETECALTPATH/SESAME)

where AlTPATH is the name of the path and SESAME is the
password.

398 OS PL/I Optimizing Compiler: Programmer's Guide

//AlT JOB
//STEPI EXEC PGM=IDCAMS
//SYSIN DD 3E

DEFINE AlTERNATEINDEX -
CNAMECALPHIND)

VOLUMESCHURI37)
TRACKS(10,l)
NONUNIQUEKEY
RECSIZE(20 1000)

/3EDSNAME of alternate index3E/ -
/3Evolume on which it is placed3E/ -
/3Espace used by alternate index3E/ -
/3Ekeys will not be unique3E/ -
/ 3Eaverage will be one personnel -

number per name but some names will have -
many numbers so large maximum raquired3E/ -

RELATECPERSNOS)) /3Ename of associated data set3E/ -
CATALOGCNMCAT) /3Ecatalog name must be same as base data set's3E/

//STEP2 EXEC PGM=IDCAMS
//3E DD statements for BlDINDEX command follow
//3E first the alternate index
//ALTIND DD DSNAME=ALPHIND~DISP=OlD
//3E then the base data set
//BASEDS DD DSNAME=PERSNOS , DISP=OLD
//3E the DD statements for BLDINDEX sort files follow
//IDCUTI DD DISP=OLD,AMP='AMORG',VOL=SER=HUR137 , UNIT=3330
//IDCUT2 DD DISP=OLD,AMP='AMORG',VOL=SER=HUR137,UNIT=3330
//SYSPRINT DD SYSOUT=A
//SYSIN DD *

BLDINDEX -
/*this command loads the data into the alternate -

index created in the previous command 3E/ -
INFIlECBASEDS) /*dd name of base data set*/ -
OUTFILECALTIND) /*dd name of alternate index3E/ -

CATALOGCNMCAT)

DEFINE PATH -
/*this command enables you to use alternate index -

base cluster pair from your program */ -
(NAMECPERSALPH) /*name of alternate index path to be used -

as DSNAME in DD statement PL/I program*/ -
PATHENTRYCALPHIND)) /*name of alternate index3E/ -

CATALOGCNMCAT)

In this example there are five names involved:

1. The DSNAME of the base data set--PERSNOS. Used in the RELATE operand of the
DEFINE ALTERNATEINDEX command, and as the DSNAME in the DD statement for the
INFILE of the BLDINDEX command.

2. The dd name of the base data set--BASEDS. Used in the INFILE operand of the
BLDINDEX command and as the dd name in the DD statement for the INFILE.

3. The DSNAME of the alternate index--ALPHIND. Giv~n in the NAME operand of the
DEFINE ALTERNATEINDEX command, an~used as the DSNAME in the DD statement for
the BLDINDEX OUTFILE, and in the PATHENTRY operand of the DEFINE PATH command.

4. The dd name of the alternate index----ALTIND. Used in the OUTFILE operand of the
BlDINDEX command and as the dd name in the DD statement for the OUTFIlE.

5. The name of the alternate index path--PERSALPH. Given in the NAME operand of
DEFINE PATH and that will be used as the DSNAME when the base data set is
accessed through the alternate index paths.

Figure 159. The Commands Required to Create an Alternate Index Path

Appendix A. VSAM Background 399

APPENDIX B. REQUIREMENTS FOR PROBLEM DETERMINATION AND APAR SUBMISSION

GENERAL INFORMATION

To enable IBM programming service personnel to analyze a
problem, we must be able to reproduce it at the IBM programming
service location. It is therefore essential to supply the
source program with the APAR to enable the problem to be
reprodYced and analyzed. Faster resolytion of the problem will
be possible if the source program is reduced to the smallest,
least complex form that still contains the problem.

If the APAR is being submitted as a result of a previous APAR
that was returned, supply the additional requested documentation
and be sure to indicate the number of the previous APAR.

If the APAR is an original APAR, the materials that are required
to be submitted with the APAR are listed below; they fall into
two categories: machine-readable information and listings.
Submission of all the required materials will normally eliminate
any need to return the APAR for additional information,
resulting in a faster resolution of the problem.

MACHINE-READABLE INFORMATION

ORIGINAL SOURCE

The machine-readable information must be supplied on a
nonlabelled tape. Use IEBGENER to copy sequential data sets to
the tape and IEBCOPY to place partitioned data sets on the tape;
the JCL used to create the tape must accompany the APAR.
Alternatively, if only one small sequential data set is
involved, the machine-readable information may be supplied as a
deck of punched cards.

The machine-readable information should be carefully packed and
clearly identified. As a minimum, ensure that the APAR number
is present on the tape reel or card deck. This will allow the
tape or deck to be identified should it become separated from
the remainder of the material submitted with the APAR.

Three types of machine-readable information may be required, as
detailed in the following sections.

The term "original source" (as used here) is defined in one of
the following three ways, depending on the type of problem:

1. If the compilation is performed with the NOINCLUDE and
NOMACRO compiler options, the "original source" is the data
set assigned to SYSIN for the compile step.

2. If the compilation is performed with either the INCLUDE or
MACRO compiler options in effect and the problem is a
preprocessor failure, the "original source" is the data set
assigned to SYSIN for the compile step and the source
statement library or libraries referenced in Y.INCLUDE
statements in the program.

3. If the compilation is performed with either the INCLUDE or
MACRO compiler options in effect and the problem is not a
preprocessor failure, the "original source" is the SYSPUNCH
data set produced by the compiler when the MDECK compiler
option is specified.

400 OS PL/I Optimizing Compiler: Programmer's Guide

LOAD LIBRARIES

INPUT DATA SETS

LISTINGS

COMPILER LISTING

JCL LISTING

The "original source" should have no XNOPRINT statements, unless
they are relevant to the problem.

If the "original source," as defined above, is not supplied in
the original submission of the APAR, the APAR will normally be
returned.

If the failure occurs at execution-time and the source supplied
calls one or more previously compiled modules, the load
libraries containing these modules must be supplied in
machine-readable form.

If the failure occurs at execution-time, provide enough input
data to allow the re-creation of the failure.

All listings that are supplied must relate to a particular
execution of the compiler, in the case of a suspected compiler
failure, or to the relevant link-editing and execution steps, in
the case of an execution-time failure. Listings derived from
separate compilations or executions are of no value and may, in
fact, be misleading to,the programming support personnel.

Six types of listings may be required, as detailed in the
following sections.

The listing which results from the compilation of the original
source must accompany every APAR. Unless the opposite option is
required to show the failure or unless the option masks the
failure, the compilation must be performed with the following
compiler options in effect:

ATTRIBUTES
DUMP
FLAG (1)
LIST

LMESSAGE
MAP
MARGINI ('I')

NEST
OPTIONS
SOURCE
XREF

If the original source is the second type defined above, the
INSOURCE compiler option must also be specified.

If the problem is an execution-time problem, the GOSTMT compiler
option must also be specified.

(If any of the compiler options listed above have been deleted
at system generation, they may be restored for temporary use by
means of the CONTROL compiler option.)

Listings of job control statements used to run the program must
be supplied. For batch jobs, any cataloged procedures must be
shown in expanded form by specifying MSGLEVEL=(I,I) in the JOB
statement.

Appendix B. Requirements For Problem Determination And APAR Submission 401

CMS TERMINAL SESSION LOG

If the failure occurs while compiling or executing a program
under CMS, full details of the virtual machine environment must
be supplied. This can best be done as follows:

1. Immediately before invoking the compiler to reproduce the
problem, issue the following commands:

QUERY SET
QUERY TERMINAL
QUERY VIRTUAL
QUERY SEARCH
QUERY DISK *
QUERY FILEDEF
QUERY LIBRARY
QUERY INPUT
QUERY OUTPUT

2. Invoke the compiler using the PLIOPT command, specifying the
compiler options listed in the previous section, "Compiler
Options" on page 11., and any other options required to
produce the relevant output, preferably on a line printer,
or, alternatively, at a typewriter terminal.

The entire terminal listing, from LOGON to LOGOFF, should be
submitted. If a display terminal is used, spool console
input/output using the

CP SPOOL CONSOLE START

command to provide the full details of all input entered and of
all responses received.

LINKAGE EDITOR LISTING

EXECUTION-TIME DUMP

APPLIED FIXES

If the problem is an execution-time failure, a linkage editor
map produced when the copy of the program that fails was
link-edited is essential for the analysis of the storage dump
that must also be obtained.

If the problem occurs during the execution of a PL/I program, a
storage dump must be supplied. If at all possible, a formatted
PL/I dump produced by the PL/I error-handling facilities should
be provided by including the following statement in an ERROR
on-unit that will be entered when the program fails:

CALL PLIDUMP ('TFHB');

If, for some reason, a formatted PL/I dump cannot be obtained,
supply a storage dump obtained by using the system SYSUDUMP or
SYSABEND facilities or by using a stand-alone dump program.

A list of any program temporary fixes (PTFs) and local fixes
applied to either the compiler or to its libraries must be
supplied with the APAR. If no such fixes have been applied,
please so indicate specifically.

402 OS PL/I Optimizing Compiler: Programmer's Guide

MATERIALS CHECKLIST

The following checklist is provided to summarize the materials
that must accompany an APAR,

Material Required

*Machine-readable Information

Original Source

Load Libraries

Input Data Sets

Listings:

Compiler listing

JCL Listing

eMS Terminal Session log

Linkage Editor Listing

Execution-Time Dump

Applied PTFs and Fixes

When Required

Always

1 Execution-time problems only

Execution-time problems only

Always

Alwaysl except TSO or CMS

CMS only

Execution-time problems only

Execution-time problems only

Always

Figure 160. Summary of Requirements for APAR Submission

Note:

* If the machine-readable material is supplied on a tape reel, a listing of the JeL
used to build the tape must also be submitted~

Appendix B. Requirements For Problem Determination And APAR Submission 403

APPENDIX C. SHARED LIBRARY CATALOGED PROCEDURES

The shared library is a PL/I facility that allows an
installation to load PL/I resident library modules into the link
pack area (LPA) so that they are available to all PL/I programs.
This reduces space overheads.

The resident library subroutines to be included in the shared
library can be chosen by the installation; they must include the
initialization routine, the error-handling routine, the open
file routine, and all modules addressed from the TCA that are
not identical for multitasking and nonmultitasking programs.
Further details of the shared library are given in OS PL/I
Optimizing Compiler: Execution Logic, OS Pl/I Optimizing
Compiler: Installation Gyide, and OS PL/I Optimizing Compilers
Installation Guide fo~.

The routines in the shared-library are held in link-pack-area
modules. Each of the link-pack modules contains a number of
library routines, and is headed by an addressing control block
known as a transfer vector.

You can use the shared library by using standard IBM-supplied
cataloged procedures and overriding the link-edit and loader
procedure steps.

EXECUTION WHEN USING THE SHARED LIBRARY

Use of the shared library is specified by the linkage editor
statement INCLUDE SYSLIB(PLISHRE).

A load module created for use with one shared library will not
execute with a different shared library. You will have to
link-edit the object module again, including the dummy transfer
vector module for the different shared library.

If the FETCH statement is used, both load modules must use (or
neither can use) the shared library option.

Remember that the linkage editor or loader require a large
amount of main storage for external symbol dictionary tables
while processing the dummy transfer vector module. If you
specify SIZE=200K in the PARM field of your EXEC statement for
the linkage editor or loader (and use a region or partition of
equivalent size), you will get sufficient main storage for
processing with the largest possible shared library.

Your PL/I program may take slightly longer to execute when using
a shared library, because all library calls have to pass through
the transfer vectors. However, your main storage requirements
for a region will be greatly reduced if you have carefully
selected your shared library modules to suit the operating
environment.

MULTITASKING CONSIDERATIONS

An installation can specify that it does not require either the
multitasking or the nonmultitasking modules in the shared
library. However, both multitasking and nonmultitasking
versions of the program region module will still be created.
The module for the unwanted environment will be a dummy. This
prevents problems should an INCLUDE PLISHRE statement be
included in a program that is intended to run in the environment
with no shared library. If this process was not carried out,
such a statement could result in the incorrect environment being
initialized.

404 OS PL/I Optimizing eompilerz Programmer's Guide

USING STANDARD IBM CATALOGED PROCEDURES

Standard IBM-supplied cataloged procedures that use the linkage
editor or loader (see Chapter 9, nCataloged Proceduresn on
page 273) can be used to specify the shared library. This is
done by overriding the SYSLIN DD statement in the link-edit or
load-and-go procedure steps to ensure that the shared library
addressing module is included.

For example, the cataloged p~ocedure PLIXCL requires the
following statements to make use of the shared library.

//STEPI
//LKED.SYSIN

INCLUDE

ENTRY

EXEC PlIXCl
DD *
SYSLIB(PLISHRE)

PLISTART

(add further input here)

You can add other linkage-editor control statements by placing
them as indicated. For example, to give the resulting load
module the name MINE, add the statement:

NAME MINEeR)

between the ENTRY and /* statements.

Appendix C. Shared library Cataloged Procedures 405

APPENDIX D. SAMPLE PROGRAM

This appendix, consisting of a PL/I sample program, illustrates
all the components of the listings produced by the compiler and
the linkage editor. You may also use this sample program to
verify that Pl/I has been installed correctly on your system.

The listings themselves are described in Chapter 2, "The
CDmpiler" on 3 and Chapter 3, "The linkage Editor and the

oeder" on page 5.

The function of the program is fully documented in both the
preprocessor input and the source listing by means of PL/I
comments. These comments consist of lines of text each preceded
by /* and followed by */. Note that the /* must not appear in
columns 1 and 2 of the input record because it will be taken as
a job control end of file statement.

Most pages of the listings contain brief notes explaining the
contents of the pages.

406 OS PL/! Optimizing Compiler; Programmer's Guide

>

" " CD
j
Q. ..,.
X
~

(I)
OJ
ill

"
CD

"'0 .,
o
IQ .,
OJ
ill

~
C)

.....

PL/I OPTIMIZING COMPILER

OPTIONS SPECIFIED ~
OBJECT,ND;

VERSION 1 RELEASE 5.1 TIME: 14.23.46

*PROCESS AG,A,C,ESD,GS,IS,LIST,M,MAP,MAR(2,72,1),NEST,OF,STG,SYN,X; 00050000

OPTIONS USED ~
AGGREGATE
COMPILE
ESD
GOSTMT
INSOURCE
LIST
LMESSAGE
MACRO
MAP
NEST
OBJECT
OFFSET
OPTIONS
SOURCE
STMT
STORAGE
SYNTAX

NOCOUNT
NOOECK
NOFLOW
NOGONUMBER
NOGRAPHIC
NOIt1PRECISE
NOINClUOE
NOINTERRUPT
NOMARGINI
NOtiOECK
NONUr1BER
NOOPTIMIZE
NOTERHINAL

ATTRIBUTES(FUlL)
CHARSET(60,EBCOIC)
FLAG(I}
LINECOUNT(S5)
MARGINS(2,72,1)
SEQUENCE(73,80)
SIZE(2087812)
XREF(FUll)

Start of the compiler listing.

~

~

List of options specified in the
PARM parameter of the EXEC
statement.

List of options used, whether
obtained by default, or by being
specified explicitly.

DATE: 1 MAY 85 PAGE 1

~
Q

co

o
V)

" r-

"
o

" ti-..,.
:I ..,.
N ..,.
:J
Ie

(")
o
:I

" ..,.
(D .,

" .,
o
Ie .,
IV
:I
:I
(D ., ..
fJ)

C)
C ..,.
c..
(D

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ PAGE 2

LINE
1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

PREPROCESSOR INPUT

/***** PL/I SAMPLE PROGRAM. *****/ 00100000

/./***/
/* */
/* USES COMPILE-TIME PREPROCESSOR TO MODIFY PL/I (F) SOURCE FOR */
/* USE WITH THIS COMPILER. THE PREPROCESSOR STATEMENTS FOLLOWING */
/* COULD BE PLACED ON A LIBRARY AND USEO TO MODIFY SEVERAL SOURCE */
1* PROGRAMS BY MEANS OF THE PREPROCESSOR /.INCLUDE STATEMENT. THEY */

00150000
00200000
00250000
00300000
00350000
00400000
00450000
00500000

1* PERFORM THE FOLLOWING FUNCTIONS: */
/* */
1*
/*
/*
/*
/*
1*
1*
1*
1*
1*
/*
/*
1*
/*
1*
1*
1*
1*
1*
1*
1*
1*
/*
/*
1*

1. CONVERT CALLS TO FOllOHING PL/I (F) IHE ••. ROUTINES TO THE
EQUIVALENT NEW PL/I ... ROUTINES­

IHEDUtlPI J/C/T TO PLIDUt1P,
IHESRTA/B/C/D TO PLISRTA/B/C/D,
IHECKPS/T TO PlICKPT,
IHERESN/T TO PLIREST/PLICANC,
IHESARC/IHETSAC TO PLIRETC.

2. CHANGE FIRST DECLARE/DCL STATEMENT FOUND TO INCLUDE
BUILTIN ATTRIBUTE FOR FOLLOWING BUILT-IN FUNCTIONS(WHICH
00 NOT TAKE ARGUr~NTS, AND SO ARE NOT IMPLICITLY DECLARED
BUILTIN FOR THIS COMPILER - AS THEY WOULD BE FOR PL/I (F»-

DATE, TIME, onCODE, ONCHAR, ONSOURCE, ONLOC,
ONFILE, ONKEY, EMPTY, NULl.

NOTE: THE OtiCOUNT SIF IS OMITTED FROM THIS LIST, & IS USED
LATER TO SHOW THE EFFECT OF NOT DECLARING IT BUILTIN.
ANY REFERENCES TO IHE--- ROUTINES MUST BE REMOVED
FROM DECLARE STATEMENTS BEFORE THE SOURCE PROGRAM IS
PREPROCESSED, OTHERWISE F AI LURES t1AY OCCUR WHEN THE
CONVERTED PROGRAM IS LINK-EDITED.

3. CHANGE 'NULLO' TO 'NULL' - THERE IS NO NULLO BUILTIN
FUNCTION FOR THIS COMPILER; NULL MUST BE USED BOTH WITH
POINTER AND OFFSET VARIABLES.

*/ 00550000
*/ 00600000
*/ 00650000 Source statements for the sample program,
*/ 00700000 exactly as they appear in the input stream .
*/ 00750000 These statements foml the input data for the
*/ 00800000 preprocessor. Preprocessor statements are
*1 00850000 identified by the % symbol.
*1 00900000
*/ 00950000 1. The first line of the input is included as
*/ 01 000000 part of the heading for all pages of
* 1 01 050000 the preprocessor and compiler listing.
*/ 01100000 . .
*/ 01150000 2. Each mp~t record IS numbered
*1 01200000 sequentially .

*1 01250000 3. If an input record has a sequence number,
*/ 01300000 this number is printed
*/ 01350000 .
*/ 01400000
*/ 01450000
*1 01500000
*/ 01550000
*/ 01600000
*1 01650000
*/ 01700000
*1 01750000

1***/;01800000

l>
"0
"tf
CD
:::J
a. ...
)(

Ct

CA
III
3.
"'Q
CD

." .,
o
Ul .,
IU
3

~
C
IQ

PLII OPTIMIZING COMPILER 1***** PLII SAMPLE PROGRAM. *****1

LINE
36 /.
37

38 /.
39

40 /.

41 /.

42 /.
43 /.
44

DCl (IHEDUMP, IHEDUMJ, IHEDUMC, IHEDUMT, DECLARE, DCL,
ItiECKPT, IBECKPS) ENTRY;

DCL (IHESRTA, IHESRTB, IHESRTC, IHESRTD, IHEREST,
IHERESN, IHESARC, IHETSAC, NULLO) CHAR;

DCL COUNT FIXED;

COUNT = 0 1* FIRST-TIME-IN SWITCH.

01850000
11900000

01950000
02000000

02050000

*1;02100000

DEACTIVATE DECLARE, DCl
ACTIVATE DECLARE,

DCL NORESCAN

1* ENSURE MODIFIED STATEMENTS *1;02150000
1* ARE NOT RESCANNED DURING *1 02200000
1* PREPROCESSOR REPlACEt1ENT. *1;02250000

PAGE 3

....
Q

o
(/)

" r-,
1-4

o
'tJ
t+ '"',
;! '"',
N '"',
::::1
\Q

(')
o
;!
'tJ '"',
CD ,

" , o
\Q ,
Q)

:I
;!
CD , .
UJ
C)
c '"',
Q.
CD

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/

LINE
45
46
47
48
49
50
51
52
53

54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69
70

71
72
73
74
75
76
77
78

79
80

Yo DECLARE: DCL: /* GENERATE BUILTIN DECLARES. */ 02300000
02350000 PROC RETURNS(CHAR);

COUNT = COUNT + 1 /* COUNT = 1 IF 1ST TIME IN.
IF COUNT = 1

THEN RETURN('DCL (DATE,TIME,m~CHAR,ONSOURCE,ONCODE,' II
'otJlOC,ONFILE,ONKEY,EHPTY,NULU BUILTIN, , II
'CKPT_RETC FIXED BIN(31),');

ELSE RETURN('DCL');
Yo END;

*/;02400000
02450000
02500000
02550000
02600000
02650000
02700000

Yo IHEDUMP: IHEDUMJ: IHEDUHC: IHEDUHT: /* REPLACED BY CALL TO */ 02750000
PROC(IDI) RETURNS(CHAR) /* PLIDUMP ROUTINE, INCLUDING */;02800000
DCL 101 CHAR /* ORIGINAL ID(IF PRESENT). */;02850000
IF 10# = " THEN RETURN('PLIDUMP'); 02900000

ELSE RETURN(' PLIDUtIP(• • TFCA' • , , •• II 10# It "')'); 02950000
Yo END; 03000000

Yo IHECKPS: IHECKPT: /* CHANGE TO PLICKPT. Pl/I(F) */ 03050000

Yo
Yo
Yo
%
Yo
Yo
Yo
Yo

7.1*

PROC(ARGl, ARG2, ARG3, ARG4) /* DEFAULTS GEt~ERATED WHERE */ 03100000
RETURNS(CHAR) /* NO ARGUMENTS ORIGINALLY. */;03150000

DCL (ARGI, ARG2, ARG3, ARG4) CHAR; 03200000
IF ARGI = THEN ARGI = "'SYSCHK"'; 03250000
IF ARG2 = ,. THEN ARG2 = • ""'; 03300000
If ARG3 = " THEN ARG3 = · "PS"'; 03350000
If ARG4 = " THEN ARG4 = ' CKPT RETC'; 03400000
RETURN('PLICKPT(' II ARGI II ',7 II ARG2 II I,' 03450000

II ARG3 II ., I II ARG4 II ')'); 03500000
m; 03550000

/* REPLACE
/* CALLS TO
/* IHE':'--
/* ROUTINES
/* BY
/* CALLS TO
/* PLI---
/* ROUTINES.

THERE IS NO NULLO BUILTIN FUNCTION FOR THIS COMPILER;
NULL MUST BE USED INSTEAD.

*/;03600000
*/;03650000
*/;03700000
*/;03750000
*/;03800000
*/;03850000
*/;03900000
*/;03950000

04000000
*/;04050000

PAGE 4

J>
"C
"C
CD
j
c..
~.

X
tj

(J)
Q)

:I
"C
CD

." .,
0
IC .,
Q)

3

~

PL/I OPTIMIZING COMPILER 1***** PL/I SAMPLE PROGRAM. *****/

LINE
81

82

83
84

85

86

87
88
89

90
91
92
93
94

95
96
97

98
99

100
101
102

103
104
105
106
107
108

XI* END OF PREPROCESSOR STATEMENTS; SOURCE STATEMENTS FOLLOW HERE: */;04100000

X NULLO = 'NULL';

SAMPLE:
PROC OPTIONS(MAIN);

DECLARE (PDATE, PTIME) CHAR(6);

DECLARE CVAR CHAR(255) VAR;

DCL 1 BINVAR,
2 RETCODE FIXED BIN(31,O),
2 rBVAR FIXED BIN;

PDATE = DATE;
PTIME = TIME;
PUT SKIP EDIT('SAMPLE PROGRAM: DATE = " PDATE, " TIME = 't

PTIt1E) (AI 23), P' 99/99/99', A(9), P' Z9. 99. 99');
RETCOOE = 0101;

ON ERROR
BEGIN;

CALL IHEDUMP;

1* THESE STATEMENTS ILLUSTRATE PREPROCESSOR REPLACEMENT AND USE OF
BUILTIN FUNCTIONS. THEY WILL NEVER BE EXECUTED.

CALL IHEDUMJ(127);
CALL IHEDUMC(RETCODE);
CALL IHEDUMT;

FBVAR = ONCODE;
CVAR = OUCHAR;
CVAR = ON50URCE;
CVAR = ONlOC;
CVAR = otIFILE;
CVAR = ONKEY;

04150000

04200000
04250000

04300000

04350000

04400000
04450000
04500000

04550000
04600000
04650000
04700000
04750000

04800000
04850000
04900000

04950000
*/05000000

05050000
05100000
05150000

05200000
05250000
05300000
05350000
05400000
05450000

PAGE 5

~
N

o
(J)

."
r­,
o
"C
t+
:I
N
j
IQ

(")
o
::I
"C
CD ,
." ,
o
IQ ,
G>
:I
:I
CD , ..
(I)

G)
C
c..
CD

PL/I OPTIMIZUIG COMPILER /***** PL/I SAMPLE PROGRAM. *****/

LINE
109
110
111

112
113

114
115
116

117
118

119
120
121
122

123
124
125

126
127
12S
129
130
131
132
133
134

135
136
137

13S

139
140

141

/* THIS STATEMENT, WHICH ~ILL NEVER BE EXECUTED, USES 'ONCOUNT' WHICH 05500000
IS NEITHER EXPLICITLY NOR IMPLICITLY DECLARED BUILTIN. THE EFFECT 05550000
IS SHOWN IN THE ATTRIBUTE LISTING AND DIAGNOSTIC MESSAGES. */05600000

FBVAR = ONCOUNT;
END;

05650000
05700000

/* THIS IS A DUf1MY PROCEDURE TO IllUSTRATE OTHER PREPROCESSOR
REPLACEMENTS/NON-H1PLICITlY DECLARED BUILTIN FUNCTIONS.

05750000
05800000

*/05850000 IT WIll NEVER BE EXECUTED.

DUMMY:

A:

B:

PROC;

DCl AVAR AREA BASED(PVAR),
OVAR OFFSET(AVAR),
A ENTRY RETURNS(CHAR(SO)),
SIZE FIXED BIN(31,0);

AVAR = Et1PTY;
PVAR = NULL;
OVAR = NULLO;

CALL IHESRTA('ARGl'. 'ARG2', SIZE, RETCODE);
CAllIHESRTB('ARGl', 'ARG2', SIZE, RETCODE, A);

. CALL IHESRTC('ARGl', 'ARG2', SIZE, RETCODE, B);

/*
/*
/*

CALL IHESRTD('ARGI I, 'ARG2 ' , SIZE. RETCODE, A, BH /*

S
0

R

CALL IHECKPS('ARG1', 'ARG2', 'PS', RETCOOE); /* CHECKPOINT
CALL IHECKPT; /*CHECKPOINT */

T

05900000
05950000

06000000
06050000
06100000
06150000

06200000
06250000
06300000

*/06350000
*/06400000
*/06450000
*/06500000
*/06550000

06600000
CAll IHEREST; /* FORCE RESTRT */06650000
CALL IHERESNj /* CANCEL CKPT */06700000
CALL IHETSAC(RETCODE); /* SET RETURN CODE(TASKING) */06750000

PROC RETURNS(CHAR(SO)); END; /* DUMMY EXIT */06800000
/* PROCEDURES */06850000

PROC(RECORD); DCl RECORD CHAR(SO); END; /* FOR SORT. */06900000

END DUMMY; 06950000

CALL IHESARC(RETCODE); /* SET RETURN CODE(NONTASKING) */07000000
PUT SKIP lIST('END SAMPLE PROGRAM'); 07050000

END SAMPLE; 07100000

PAGE 6

:I>
"'0
"'0
I'D
::J
a..
X

c

tn
OJ
:I
"'0
I'D

"'U .,
o
I.Q .,
OJ
:I

""
(101

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/

PREPROCESSOR DIAGNOSTIC MESSAGES

CD 00
ERROR ID L LINE MESSAGE DESCRIPTION

WARNING DIAGNOSTIC MESSAGES

IEL0184I W 97 TOO FEW ARGUMENTS TO FUNCTION 'IHEDUMP'. NULL STRINGS PASSED AS MISSING ARGUMENTS.

IEL0217I W 97 ARGUMENT LIST FOR PROCEDURE 'IHEDUMP' IS MISSING. PROCEDURE INVOKED WITHOUT ARGUMENTS.

IEL0184I W 102 TOO FEW ARGUMENTS TO FUNCTION 'IHEDUMT'. NULL STRINGS PASSED AS MISSING ARGUMENTS.

IEL0217I W 102 ARGUMENT LIST FOR PROCEDURE 'IHEDUMT' IS MISSING. PROCEDURE INVOKED WITHOUT ARGUMENTS.

IEL0184I W 131 TOO FEW ARGUMENTS TO FUNCTION 'IHECKPT'. NULL STRINGS PASSED AS MISSING ARGUMENTS.

IEL0217I W 131 ARGUMENT LIST FOR PROCEDURE 'IHECKPT' IS MISSING. PROCEDURE INVOKED WITHOUT ARGUMENTS.

END OF PREPROCESSOR DIAGNOSTIC MESSAGES

Diagnostic messages generated by the
preprocessor. All messages generated
by the optimizing compiler (including
the preprocessor) are documented in
the publication OS Optimizing Compiler:
Messages.

CD

o
o

"ERROR ID" This identifies the
message as originating from the
optimizing compiler (IEL), and
gives the message number.

"L" This is the severity level of
the message .

"LINE" This gives the number of
the line in which the error
occurred .

PAGE 7

.p.

.....
~

o
CJ)

-U
r-
"­
H

o

" r+-....
:I
N
:;,
IQ

n
o
:I

"
.....
ID .,
-0 .,
o
IQ ..,
D>
:I
:3
CO .,
II)

C)
£:
1-1'
n.
W

PL/I OPTIMIZING COMPILER 1***** PL/I SAMPLE PROGRAM. *****/

SOURCE LISTING

5TMT LEV NT

1***** PL/I SAMPLE PROGRAM. *****1

o SAMPLE:
PROC OPTIONS(II1AIN);

00100000

04200000
04250000

CD
R

2 1 o DCL (DATE ,TIME ,ONCHAR,ONSOURCE,ONCODE ,ONLOC,ONFILE ,ONKEY,EMPTY,0430 0000 2
1

3

4

5
6
7

8

1

1

1
1
1

1

o

o

o
o
o

o

910

10 2~O

11 2 0
12 2 0
13 2 0

14 2 0
IS 2 0
16 2 0
17 2 0
18 2 0
19 2 0

NULL) BUILTIN, CKPT_RETC fIXED BIN(31), (PDATE, PTIME) CHAR(6); 04300000

DCL CVAR CHAR(2SS) VARj

DCl 1 BINVAR,
2 RETCODE FIXED BIN(31,0),
2 rBVAR FIXED BIN;

PDATE = DATE;
PTIME = TIME;
PUT SKIP ED.IH 'SAMPlE PROGRAM: DATE = " PDATE, • TIME = "

PTIME) (A(23), P'99/99/99', A(9), P'Z9.99.99');
RETCODE =0101;

ON ERROR"
BEGIN;

CALL PLIDUMP;

1* THESE STATEMENTS ILLUSTRATE PREPROCESSOR REPLACEMENT AND USE OF
BUILTIN FUNCTIONS. THEY WIll NEVER BE EXECUTED.

CALL PLIDUf-1P('TFCA' J "127')j
CALL PLIDUf'1P('TFCA' ,'RETCODE");
CALL PLIDUHP;

FBVAR= ONCODE;
CVAR = OUCHAR;
CVAR = ONSOURCE;
CVAR = ONlOC;
CVAR = OHFILEiI
CVAR = ONKEY;

04350000

04400000
04450000
04500000

04550000
04600000
04650000
04700000
04750000

2

1

04800000
04850000
04900000 1

04950000
*105000000

05050000 1
05100000 1
05150000 1

05·200000
05250000
05300000
05350000"
05400000
05450000

PAGE 8

Source listing. This is the output from the
preprocessor and the input to the compiler.
All the preprocessor statements have been
executed and all preprocessor comments have
been deleted.

CI) Maximum depth of replacement.

PL/I OPTIMIZING COMPILER 1***** PlII SAMPLE PROGRAM. *****1 PAGE 9

STMT LEV NT R

1* THIS STATEMENT, WHICH WILL NEVER, BE EXECUTED, USES 'ONCOUNT' WHICH 05500000
IS NEITHER EXPLICITLY NOR IMPLICITLY DECLARED BUILTIN. THE EFFECT 05550000
IS SHm.:N IN THEATTRIBUT£ LISTING AND DIAGUOSTIC MESSAGES.' */05600000

20 2 0 FBVAR = ONCOUNT; 05650000
21 2 0 END; 05700000

1* THIS IS A DUMMY PROCEDURE TO ILLUSTRATE OTHER PREPROCESSOR 05750000
REPLACEHENTS/NON-It1PLICITLY DECLARED BUILTIN FUNCTIONS. 05800000
IT WILL NEVER BE EXECUTED. */05850000

22 1 0 DUt1t1Y: 05900000
PROC; 05950000

23 2 0 DCL AVAR AREA BASEDlPVAR), 06000000 1
OVAR OFFSET(AVAR) , 06050000
A ENTRY RETURNS(CHAR(SO), 06100000
SIZE FIXED BIN(31,0); 06150000

24 2 0 AVAR = EMPTY; 06200000
25 2 0 PVAR = NULL; 06250000
26 2 0 OV-AR = NULL; 06300000 1

27 2 0 CALL PLISRTA('ARGl', 'ARG2', SIZE, RETCOOE); 1* S */06350000 1
28 2 0 CALL PlISRTB(IARGI', 'ARG2 1

, SIZE, RETCOOE, A); 1* 0 */06400000 1
29 2 0 CALL PLISRTC('ARGI', 'ARG2', SIZE, RETCOOE, B); 1* R */06450000 I
30 2 0 CALL PlISRTO('ARGl', "ARG2', SIZE, RETCOOE, A, B); 1* T */06500000 1

:x:- 31 2 0 CAll PlICKPT('ARGI', 'ARG2', 'PS', RETCOOE); /* CHECKPOINT */06550000 1
"C 32 2 0 CAll PlICKPT('SYSCHK', II, 'PS', CKPT_RETC); /* CHECKPOINT */06600000 1

" 06600000 CD
::s 33 2 0 CALL PLIREST; /* FORCE RESTRT */06650000 1
Q. 34 2 0 CALL PlICANC; /* CANCEL CKPT */06700000 1
X 35 2 0 CAll PlIRETC(RETCODE); /* SET RETURN CODE(TASKING) */06750000 1
C . 36 2 0 A: PROC RETURNS(CHAR(80)); END; 1* DUMMY EXIT */06800000

1* PROCEDURES */06850000
CJ) 38 2 0 B: PROC(RECORO); DCl RECORD CHAR(SO); END; 1* FOR SORT. */06900000 1
Q)

:I
"C 41 2 0 END DUMMY; 06950000
CD

." 42 1 0 CAll PlIRETC(RETCOOE); 1* SET RETURN CODE(NONTASKING) */07000000 1 ..,
0 43 1
10

0 PUT SKIP LIST('END SAMPLE PROGRAM'); 07050000 ,
Q)

:I 44 1 0 END SAMPLE; 07100000

~
\11

,.1:\ PL/I OPTIMIZING COMPILER
0\

0

CD eD (I)

" r- DCL NO. IDENTIFIER ,
M

0 36 A " r+o
~.

:I
~. 23 AVAR
N
~.

:::J
10 38 B
n
0
:I

" 4 BINVAR
~
I'D 2 CKPT_RETC , ..
" 3 CVAR ,
0
Ie ,
I» 2 DATE
:I
:I
I'D ,

22 DUMMY -til
Q 2 EMPTY
C
~.

a.
I'D 4 FBVAR

2 NULL

2 ONCHAR

2 ONCOD.E

******** ONCOUNT

CD
2 ONFILE

1***** PL/I SAMPLE PROGRAM. *****1 PAGE 10

CD

ATTRIBUTE AND CROSS-REFERENCE TABLE (FULL)

ATTRIBUTES AND REFERENCES o
ENTRY RETURNS(CHARACTER (80»
28,30

BASED (PVAR) ALIGNED AREA (1000)
24

ENTRY RETURNS(DECIMAL 1* SINGLE *1 FLOAT (6»
29,30

AUTOMATIC 1* STRUCTURE *1

AUTOMATIC ALIGNED BINARY FIXED (31,0)
32

AUTOMATIC UNALIGNED CHARACTER (255) VARYING
15,16,17,18,19

BUILTIN
5

ENTRY RETURNS(DECIMAL 1* SINGLE *1 FLOAT (6»

BUILTIN
24

Attributes and Cross-Reference Table.

CD Number of the statement in the source
listing in which the identifier is
explicitly declared.

CDAsteriSkS indicate an undeclared identifier;
. all of its attributes are implied or

supplied by default.

eD All identifiers used in the program listed in
alphabetic order. o Declared and default attributes are listed.
This list also includes descriptive
comments.

CD Cross references. These are the numbers
of all other statements in which the
identifier appears.

1* IN BINVAR *1 AUTOMATIC ALIGNED BINARY FIXED (15,0)
14,20

BUILTIN
25,26

BUILTIN
15

BUILTIN
14

AUTOMATIC ALIGNED DECIMAL 1* SINGLE *1 FLOAT (6)
20

BUILTIN
18

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ PAGE 1l

DCL NO. IDENTIFIER ATTRIBUTES AND REFERENCES

2 ONKEY BUILTIN
19

2 ONlOC BUILTIN
17

2 ONSOURCE BUILTIN
16

23 OVAR AUTOMATIC ALIGNED OFFSET (AVAR)
26

2 PDATE AUTOMATI~ UNALIGNED CHARACTER (6)
5,7

******** PLICANC BUILTIN
34

******** PLICKPT BUILTIN
31,32

******** PLIDUMP BUILTIN
10,11,12,13

******** PLIREST BUILTIN
33

******** PLIRETC BUILTIN
42

l> 35 "C
"C
(1)

******** PLISRTA BUILTIN :::J
Q.. 27
X

******** PLISRTB BUILTIN
t=' 28

en ******** PLISRTC BUILTIN
OJ
::I

29
"C ******** PLISRTD BUILTIN
(1) 30
"'D .,

2 PTIME AUTOMATIC UNALIGNED CHARACTER (6) 0
ID 6,7 .,
OJ
::I ******** PVAR AUTOMATIC ALIGNED POINTER

24,25

+'
00

c
en

" r-,
t-I

c
"C
t+
:3
N
:I
IQ

n
0
:3
"C
CD ., -
" .,
0
IQ .,
OJ
a
:I
tD ., ..
CIt

C)
C
Q.
CD

PlII OPTIMIZING COMPILER

DCL NO. IDENTIFIER

39 RECORD

4 RETCODE

SAMPLE

23 SIZE

******** SYSPRINT

2 TIME

1***** 'PL/I SAMPLE PROGRAM. *****1

ATTRIBUTES AND REFERENCES

1* PARAMETER *1 UNALIGNED CHARACTER (80)

1* IN BINVAR *1 AUTOMATIC ALIGNED BINARY FIXED (31,0)
8,42
27,28,29,30,31,35

EXTERNAL ENTRY RETURNS(DECIMAL 1* SINGLE *1 FLOAT (6»

AUTOMATIC ALIGNED BINARY FIXED (31,0)
27,28,29,30

EXTERNAL FILE PRINT
7,43

BUILTIN
6

PAGE 12

l>
'tJ
'tJ
(I)

:::J
Q.
X

t::f

en
0.1
::I
'tJ
~

tD

-C ,
o
IQ ,
0.1
::I

~
~

~

PL/I OPTIMIZING COMPILER

CD
DCL NO.

4

0)
IDENTIFIER

BINVAR
RETCODE
FBVAR

1***** PL/I SAMPLE PROGRAM. *****/

AGGREGATE LENGTH TABLE

LVL DIMS

1
2
2

CD
OFFSET ELEMENT

LENGTH.

6
4

4 2

TOTAL
LENGTH.

6

SUM OF CONSTANT LENGTHS 6

CD

Aggregate Length Table.

f1\ -Number of the statement in which
\V the aggregate is declared, or, for

a controlled aggregate, the number
of the associated ALLOCATE
statement.

o The elements of the aggregate as
declared.

CD Length of each element of the
aggregate.

f4\ 'Sum of the lengths of aggregates
\:!.) whose lengths are constant.

PAGE 13

"

J:!Io
N
o

o
CJ)

"'0
r-

"
o
'0
t+
51,
N
!J
to

n
o
:9

"
tD

" ~ o
Ul , .,
51
51
tD , -fIJ
Q
s:
a.
(I)

PL/I OPTIMIZING COMPILER /****~ PL/I SAMPLE PROGRAM. *****/

STORAGE REQUIREMENTS

CD
BLOCK, JECTION OR STATEMENT

*SAMPlEl
*SAMPLE2
SAMPLE
9
DUMMY
A
B

CD CD
TYPE LENGTH (HEX)

PROGRAM CSECT 2256
STATIC CSECT 876
PROCEDURE BLOCK 522
ON UNIT 666
PROCEDlJlRE BLOCK 832
PROCEDURE BLOCK 106
PROCEDURE BLOCK 124

Storage requirements. This table gives
the main storage requirements for the
program. These quantities do not
include the main storage that will be
required by the resident and transient
library subroutines that will be
included by the linkage editor or
loaded dynamically during execution.

CD
CD
CD

CD

Name of the block, section, or
number of the statement in the
program.

Description of the block, section,
or statement.

Length in bytes of the storage
areas in both decimal and hexa­
decimal notation.

Length in bytes of the dynamic
storage area (DSA) in both
decimal and hexadecimal notation.

800
36C
20A
29A
340

6A
7C

PAGE 14

CD
DSA SIZE (HEX)

576 240
272 110
240 FO
192 CO
200 C8

PL/I OPTIMIZING COMPILER /***** Pl/I SAMPLE PROGRAM. *****/ PAGE 15

EXTERNAL SYMBOL DICTIONARY

CD CD 0) CD CD
SYMBOL TYPE ID ADDR LENGTH

PLISTART SD 0001 000000 000050
*S.6,MPLEI SD 0002 000000 000800
*SAMPLE2 SD 0003 000000 00036C

External symbol dictionary. PLITABS WX 0004 000000
PLIXOPT WX 0005 000000
IBMBPOPT WX 0006 000000 CD "SYMBOL" A list of all the
PLIXHO WX 0007 000000 external symbols that make up the
IBttBEATA WX 0008 000000 object module.
PLIFLOW WX 0009 000000
PLICOUNT WX OOOA 000000 o "TYPE" Type of external symbol as
IBf1BPIRA ER OOOB 000000 follows:
IBMBPIRB ER OOOC 000000 CM Common area.
IBMOPIRC ER 0000 000000 ER External reference. PLICAlLA LD 000006
PLICALLB LD OOeOOA LD Label definition.

PlIMAIN SO OOOE 000000 000008 PR Pseudo-register.

IBMBKCPC ER OOOF 000000 SD Section definition.
IBHBKCPA ER 0010 000000 WX Weak external reference.
IBMBKCPB ER 0011 000000 Full definitions of all these
IBt1BKCPA ER 0012 000000 terms are given in Chapter 4.
IBMBKCPA ER 0013 000000
IBtiBKSTD ER 0014 000000 0) "ID" All entries, except LD-type
IBMBKSTA ER 0015 000000
IBM8KSTC ER 0016 000000

entries, are identified by a

IBHBKSTA ER 0017 000000 hexadecimal number.

IBHBKSTB ER 0018 000000 CD "ADDR" Address (in hexadecimal)
>- IBMBKSTA ER 0019 000000

11 IBHBKSTA ER OOlA 000000 of LD-type entries only.
11 IBMBKOMA ER 001B 000000 .. IBt1BPRCA ER OOIC 000000 CD "LENGTH" Length in bytes (in j

a. IELCGOG SO OOlD 000000 0000B6 hexadecimal) of SD, CM, and PR
.... <

X IE LCGOH SD OOIE 000000 0000A4 type entries only.
,0:

IBt1BSEOA ER OOIF 000000
IBMBSIOA ER 0020 000000
IBMBCCCA ER 0021 000000

(J) IBMBCCSA ER 0022 000000
I» IBMBCEOB ER 0023 000000
3

"0 IBMBCHFO ER 0024 000000
to- IBt1BCOOE ER 0025 000000
iD IBHBCTHO ER 0026 000000

" IBNBCUID ER 0027 000000 ,
0 IBt1BEOCA ER 0028 000000
IQ IBMBEOLA ER 0029 000000 .,
I» IBHBJOTA ER 002A 000000
:I IBt1BJTTA ER 002B 000000

IBttBOCLA ER 002C 000000
.,c. IBNBOCLC WX 0020 000000
N ...

-'='
N
N

o
(I)

-0
r-

" foot

o
"0
t+ ..,.
:I ..,.
N ..,.
j
10

n
o
:I
"0 ..,
(I) ,
-a ,
o
Ul ,
l»
:I
:I
(I) , ..
lIJ
C')
c: ..,.
a..
(I)

PL/I OPTIMIZING COMPILER

IBNBSAOA
IBNBSEDB
IE3NDSEOA
IONOSIOE
IBNnSIOT
IBt!8Sl0A
IBttBSPLA
IBf'1aSPOA
IBf18CKDD
IBttr3SXCA
IBMBSXCB
IBtfBSIST
SAMPLE
SYSPINT

/***** PL/I SAMPLE PROGRAM. *****/ PAGE 16

ER 002E 000000
WX 002F 000000
ER 0030 000000
~~X 0031 000000
WX 0032 000000
ER 0033 000000
ER 0034 000000
ER 0035 000000
ER 0036 000000
WX 0037 000000
WX 0038 000000
UX 0039 000000
LO 000008
SO 003A 000000 000020

PL/I OPTIMIZING COMPILER /***** Pl/I SAMPLE PROGRAM. *****/ PAGE 17

CD CD STATIC INT~Al STORAGE HAP 00740000
OOOODA 0001 CONSTANT

000000 AOOO0368 PROGRA ADCON OOOODC
000004 00000008 PROGRAM AD CON OOOOEO 0000021800170000 LOCATOR
000008 00000078 PROGRAM ADCON 0000E8 0000000000060000 LOCATOR •• PDATE
OOOOOC 00000096 PROGRAM ADCON OOOOFO 00OO022FOO090000 LOCATOR
000010 0000020C PROGRAM ADCON 0000F8 0000023800120000 LOCATOR
000014 00000Z6A PROGRAM AD CON 000100 0000000000040000 LOCATOR Static Internal Storage Map. This is a storage
000018 000004BO PROGRAM ADCON 000108 0000000000030000 LOCATOR map of the static control section for the
00001C 0000050E PROGRAM ADCON 000110 0000000000070000 LOCATOR
000020 000007EC PROGRAM ADCON 000118 0000000000020000 LOCATOR

program. This control section is the third

000024 00000842 PROGRAM ADCON 000120 0000000000000000 lOCATOR standard entry in the external symbol

000028 00000858 PROGRAM ADCON 000128 91E091EO CONSTANT dictionary .

00002C 000008CO PROGRAM ADCm .. 00012C 00000001 CONSTANT CD Six-digit offset (in hexadecimal).
000030 000008CO PROGRAM ADCON 000130 00000065 CONSTANT
000034 000008CO PROGRAM ADCON 000134 46000000 CONSTANT CD Text (in hexadecimal).
000038 000008CO PROGRAM ADCON 000138 00000010 CONSTANT @ Comment indicating type of item to which 00003C 000008CO PROGRAM ADCm .. 00013C FFOOOOOO CONSTANT
000040 000008CO PROGRAM ADCON 000140 00000000 A .• DCLCB the text refers. A comment appears
000044 000008CO PROGRAM ADCON 000144 80000000 A •• PDATE only against the first line of the text
000048 00000000 A •• IELCGOG 000148 80000000 A •• TEMP for an item.
OOOO(+C 00000000 A •• IE LCGOH 00014C 00000000 A •• DClCB
000050 00000000 A •• IBMBCCCA 000150 00000000 A •• TEMP
000054 00000000 A •• IBMBCCSA 000154 8000012C A •• CONSTANT
000058 00000000 A •• IBt1CCEDB 000158 80000000 A •• RETCODE
00005C 00000000 A •• IBHBCHFD 00015C 00000000 A •• ENTRY PLIRETC
000060 00000000 A •• IBMBCODE 000160 00000000 A •• DCLCB
000064 00000000 A •• IBt1BCTHD 000164 00000000 A •• TEMP
000068 00000000 A •• IBMBCUID 000168 8000012C A •. CONSTANT
00006C 00000000 A •• IBtIDEOCA 0OO16C 00000000 A •• ENTRY PLIDUMP
000070 00000000 A •• IBt1BEOLA 000170 00000000 A •• TEMP
000074 00000000 A .• IBMBJDTA 000174 80000000 A •• TEt1P

> 000078 00000000 A •• IBMBJTTA 000178 00000000 A •• TEMP
"tJ 00007C 00000000 A •• IBt1BOClA 00017C 80000000 A .• TEMP "tJ
(D 000080 00000000 A •• IBt1BOC LC 000180 80000000 A •• FBVAR
::::J 000084 00000000 A •• IBMBSAOA 000184 80000000 A •• TEMP 0..
.." 000088 00000000 A •• IBMBSEDB 000188 00000000 A •• TEMP
X 00008C 00000000 A •• IBMBSEOA 00018C 00000000 A •• TEMP
t=' 000090 00000000 A •• IBMBSIOE 000190 00000000 A •. SIZE

000094 00000000 A •• IBt1BSIOT 000194 80000000 A •• RETCODE
000098 00000000 A •• IBMBSLOA 000198 00000000 A •• ENTRY PLISRTA

(/) 00009C 00000000 A •• IBMBSPlA 00019C 00000000 A .• TEMP Q.I
3 OOOOAO 00000000 A •• IBt1BSPOA OOOIAO 00000000 A .. TEMP
"tJ 0000A4 00000000 A •• IBt10CKDD 0001A4 00000000 A •. SIZE
(D OOOOA8 2000 OED 0001A8 00000000 A .. RETCODE
." OOOOAA 58000017 FED 0001AC 80000000 A •• TEMP ., OOOOAE 5400000814040680 FED 0001BO 00000000 A .• ENTRY PLISRTB
0 0808000000006800 000184 00000000 A •• TEf1P 10 ., 00680000 000188 00000000 A •• TEMP
IU 0000C2 58000009 FED 0001BC 00000000 A •• SIZE 3

0000C6 5400000814040680 FED 0001CO 00000000 A .• RETCODE

""
0808000008007400 0001C4 80000000 A •• TEMP

N

"'"

.c-
N
.c-

O
(/)

-0
r-,
Jooo4

0
"D
t+
:I
N
j
IQ

("')
0
:I
"D
(1) , ..
-0 ,
0
1.0 ,
Q)

:I
:I
(1) , ..
(J)

G')
c
a.
(1)

PL/I OPTIMIZING COMPILER

000lC8 00000000
OOOICC 00000000
000100 00000000
000104 00000000
000108 00000000
OOOIOC 00000000
OOOlEO 80000000
0001E4 00000000
0001E8 00000000
OOOlEC 00000000
OOOIFO 00000000
OOOlF4 80000000
OOOlF8 00000000
OOOlfC 00000000
000200 00000000
000204 00000000
000208 80000000
00020C 00000000
000210 00000000
000214 80000000
000218 E2CI040703C540D7

0906C709CI047A40
C4CIE3C5407E40

00022F 6B40E3C9D4C5407E
40

000238 C505C440E2CI0407
03C540070906C709
Cl04

00024A E3C6C3Cl
00024E F IF2F7
000251 09C5E3C306C4C5
000258 CI09C7Fl
00025C CID9C7F2
000260 07E2
000262 E2E8E2C3C802
000268 OC1600000000020C

000000 FFFFFFFC41201000
02070FOOOOOOOOOO
000000140008E2E8
E20709C905E30000

/***** PL/I SAMPLE PROGRAM. *****/ PAGE 18

A •• ENTRY PLISRTC
A •• lEMP
A .. TEt1P
A •. SIZE
A .• RETCOOE
A .• TEMP
A •. TEMP
A .. ENTRY PLISRTO
A •• TEt1P
A •• TEt1P
A •• TEt1P
A •. RETCCOE
A •• ENTRY PLICKPT
A •• TEt1P
A •• TEMP
A •• TEUP
A •• CKPT_RETC
A •• ENTRY PLIREST
A •. ENTRY PLICANC
A •• RETCOOE
CONSTANT

CONSTANT

CONSTANT

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
COHSTANT
STATIC ONCB

STATIC EXTERNAL CSECTS

OClCB

l>
"C
"C
(1)
:J
a.
X

o

C.I)
Q)

:3
"C
(1)

"'0 ..,
o
IQ ..,
Q)

Sf

~
N
V'I

PL/I OPTIMIZING COMPILER

IDENTIFIER

BINVAR
RETCODE
FBVAR
CVAR
CKPT_RETC
PDATE
PTIr1E
OVAR
SIZE
PVAR
ONCOUNT

/***** PL/I SAMPLE PROGRAM. *****/ PAGE 19

VARIABLE STORAGE MAP

LEVEL OFFSET (HEX) CLASS BLOCK

1 208 00 AUTO SAt1PLE
1 208 00 AUTO SAMPLE
1 212 04 AUTO SJ'J1PLE
1 240 FO AUTO SAMPLE
1 216 08 AUTO SAMPLE
1 228 E4 AUTO SAMPLE
1 234 EA AUTO SAMPLE
2 184 B8 AUTO OUt1~1Y

2 188 BC AUTO DUt1t1Y
1 220 DC AUTO SAt1PLE
1 224 EO AUTO SAf1PLE

,z:.
N
0\

o
CJ)

."
r­,
~

o
"0
t+
a
N
j
IQ

(')
0,
S
"0
to .,
." .,
o
to .,
OJ
a
:I
to ., ..
(IJ

C')
c
G;.,' ,

;

pur· OPTltfIZINGCOMPI lER . ./***** PUI SAMPLE PROGRAM. *****/

TABLES OF OFFSETS AND STATEMENT NUMBERS

WITHIN PROCEDURE SAMPLE

OFFSET (HEX) 0 8E A4 CO 190, 198 19C IB4
STATEMENT NO. 1 5 6 7 8 9 42, 43

WITHIN. ON ~IT

. OFFSET' «HEX) 0 5E 68 ' 80 F8 102 118 142
STATEMENT NO. 9 10 11 12 13 14 15 16

WITHIN PROCEDURE DUHtIy

OFFSET (HEX) 0 5E 6E 76. 7A 02 13E lAA
STATEMENT NO.' 22 24 2S 26 27 28 29 30 .

WITHIN PROCEDURE. A

OFFSET (HEX) 0 56
,STATEMENT NO. 36 37

. ',MITHIN ,PROCEDURE B

: OFFSET (HEX) 0 68
STATEMENT NO. . 38 40

PAGE 20

IF2
44

18C 108 222 26C 28A
17 18 19 20 21

22A 296 2FC 306 310 328
31 32 33 34 35 41

~
~
~

cu
c
o .,..

ofJ
C
Q)

ofJ
C .,..
Q)
CI
CU
C.

Ul .,..
.t:.
I-

~ PLII OPTIMIZING COMPILER 1***** PLII SAMPLE PROGRAM. *****1 PAGE 21
N
()O

OBJECT LISTING OOOOBO 00000002 DC X'OOOOOO02'
0

CD CD 0000B4 DC AL2(7)
(/)

~
r- * COMPILER GENERATED SUBROUTINE IELCGOG * END OF COMPILER GENERATED SUBROUTINE , 000000 50 EO 1 OOC ST 14,12(0,1)
I-f 000004 58 FO 1 014 L 15,20(0,1) * COMPILER GENERATED SUBROUTINE IELCGOH

0 000008 91 10 1 011 TM 17(IJ,X'10' 000000 94 FB C 002 NI 2 (12) , X' FB'

" OOOOOC 47 10 7 014 BO *+8 000004 91 40 1 010 TM 1M 1)'X'40'
ri- 000010 96 04 C 002 01 2(12) ,X'04' 000008 47 10 7 084 BO *+124
3 000014 02 03 1 008 F 04C MVC 8(4,1)'76(15) OOOOOC 58 FO 1 014 L 15,20(0,1) 00001A 02 00 1 01C F 026 MVC 28(1,1),38(15) 000010 50 50 1 01C ST 5,28(0,1)
N 000020 48 FO F 050 LH 15,80(0,15) 000014 58 EO 1 OOC L 14,12(0,1)
=s 000024 4B FO E 002 SH 15,2(0,14) 000018 48 50 F 050 LH 5,80(0,15)
III 000028 91 CO E 001 TM l(14)'X'CO' 00001C 46 50 E 002 SH 5,2(0,14)
n 00002C 47 EO 7 040 BtiD *+20 000020 91 CO E 001 TM l(14) ,X' CO'
0 000030 4B FO E 002 SH 15,2(0,14) 000024 47 EO 7 038 BNO *+20
3

" 000034 91 40 1 01C TM 28(1),X'40' 000028 4B 50 E 002 SH 5,2(Otl4) 000038 47 80 7 040 BZ *+8 00002C 91 40 F 026 TM 38(15),X'40'
(1) 00003C 06 FO BCTR 15,0 000030 47 80 7 [;38 BZ *+8 .,

00003E 06 FO BCTR 15,0 000034 06 50 BCTR 5,0
000040 12 FF LTR 15,15 000036 06 50 BCTR 5.0

~ 000042 07 B6 BCR 11 ,6 000038 40 50 F 050 STH 5,80(0,15) .,
0000l.4 96 40 1 010 01 16(1),X'40' 0OO03C 58 50 F 04C L 5, 76(0,15)

0
III 000048 53 FO 0 04C l 15,76(0,13) 000040 4A 50 E 002 AH 5,2(Otl4) .,

00004C 50 FO 1 008 ST 15,8(0,1) 000044 91 CO E 001 TM l(14) , X' CO '
OJ
3 000050 BE F8 1 022 STCM 15,8,34(1) 000048 47 EO 7 05C BND ~f+20

3 000054 4A FO E 002 AH 15,2(Otl4) 00004C 4A 50 E 002 AH 5,2(Otl4)
(1) ., 000058 911:0 E 001 TM 1(14),X'CO' 000050 91 40 F 026 TM 38(15) ,X'40' .. 00005C 47 EO 7 070 BND *+20 000054 47 80 7 05C BZ *+8
(I)

000060 4A FO E 002 AH 15.2(0,14) 000058 41 55 0 002 LA 5,2(5,0)
G') 000064 91 40 1 OIC TM 28(I)'X'40' 00005C 50 50 F 04C ST 5, 76(0,15)
C 000068 47 80 7 070 BZ *+8 000060 48 EO 1 020 LH 14, 32(0,1)
c.. 00006C 5A FO 7 OBO A 15, 17M 0,7) 000064 41 EO E 001 LA 14,1(0,14)
(1) 000070 4A FO 7 084 AH 15,180(0,7) 000068 40 EO 1 020 STH 14,32(0,1)

000074 54 FO 7 OAC N 15,172(0,7) 00006C 40 EO F 052 STH 14,82(0,15)
000078 55 FO C OOC Cl 15,12(0,12) 000070 58 50 1 01C L 5,28(0,1)
00007C 47 20 7 086 Bli *+10 000074 91 10 1 010 TM 16(1),X'10'
000080 50 FO 0 04C ST 15,76(0,13) 000078 07 86 BCR 8.6
000084 07 F6 BR 6 00007A 58 FO 7 09C L 15 , 156 (0 , 7)
000086 50 00 01C ST 0,28(0,1) 00007E 18 E6 LR 14,6
00008A 18 n LR 7,1 000080 07 FF BR 15
0OO08C 18 OF LR 0,15 000082 07 F6 BR 6
OOOOSE 58 10 0 04C L 1, 76(0,13) 000084 58 FO 7 OAO L 15,160(0,7)
000092 58 FO C 048 l 15,72(0,12) 000088 05 EF BAlR 14,15
000096 05 EF BALR 14,15 00008A 58 EO 008 l 14,8(0,1)
000098 50 00 0 04C ST 0, 76(0,13) 0OO08E BF E8 1 022 ICM 14,8,34(1)
0OO09C 50 10 7 008 ST 1,8(0,7) 000092 50 EO 0 04C ST 14, 76(0, 13)
COOOAO BE 08 1 022 STCM 0,8,34(1) 000096 94 BF 1 010 NI 1M 1),X' BF'
OOOOA4 18 17 LR 1,7 00009A 07 F6 BR 6
OOOOA6 58 00 1 01C L 0,28(0,1) 0OO09C DC Al4(0)
OOOOAA 07 F6 BR 6 OOOOAO DC AL4(0)
OOOOAC FFFFFFF8 DC X'FFFFFFF8'

r Sec note on next page. I

}IIIo

'0

" • ::::J
:Q.
,)(

CJ

'en
:tD
3:
'0
CD

"'tI ,
'0
Ul

.1
3

J:to
N
"\00

Object listing. This is a listing of the machine
instructions generated by the optimizing
compiler from the PL/I source program.

CD Machine instructions (in hexadecimal).

(!) Asse~bler-l~nguage form of the machine
mstructlons.

'" PL/I OPTIMIZING COMPILER 1***** PL/I SAMPLE PROGRAM. *****1 PAGE 22
~
0

0
* END OF COtlPILER GENERATED SUBROUTINE

(I)

* STATEMENT NUMBER 5
." * STATEMENT NUMBER 000096 41 70 D OE4 LA 7,PDATE r-

" 000000 DC C' SAMPLE' 00009A 50 70 3 144 ST 7,324(0,3)
000007 DC ALl(6) 00009E 96 80 3 144 01 324(3) ,X'SO'

0 OOOOA2 41 10 3 144 LA 1, 324(0,3)

" * PROCEDURE SAMPLE OOOOA6 58 Fa 3 074 L 15 , A •• I Bf"1BJDT A
" OOOOAA 05 EF BALR 14,15
:I * REAL ENTRY
N 000008 90 EC D OOC STM 14,12,12(13)

OOOOCC 47 FO F 014 B ;*+16 * STATEMENT NUMBER 6 j
\Q 000010 00000000 DC ,~(STMT. NO. TABLE) OOOOAC 41 FO D 230 LA 15,560(0,13)
("') 000014 00000240 DC 1F'576' OOOOBO 50 FO 3 148 ST 15,328(0,3)
0 000018 00000000 DC ,ft(STATIC CSECT) 0000B4 96 80 3 148 or 328(3),X'SO'
:I 00001C 58 30 F 010 L 3,16(0,15) 000088 41 10 3 148 LA 1,32S(0,3)

" 000020 58 10 0 04C L 1,76(0,13) OOOOBC 58 FO 3 078 L 15 , A •. IBr18JTT A
000024 58 00 F OOC L 13,12(0,15) OOOOCO 05 EF BALR 14,15 m ., 000028 IE 01 ALR 10,1 000OC2 02 05 0 OEA 0 230 MVC PTItlE(6), 560(13)
00002A 55 00 C ~OC CL 0,12(0,12)

." 00002E 47 DO F 030 BNH ,HI0 .,
000032 58 Fa C 074 L 15,116(0,12) * STATEMENT HUMBER 7 0

IQ 000036 05 EF BALR 14,15 OOOOCS 41 70 0 20S LA 7,520{0,13) .,
000038 58 EO 0 04S L 14,72(0,13) OOOOCC 50 70 3 150 ST 7,336(0,3) Q)

:I 00003C 18 FO LR 15,0 000000 41 10 0 20S LA 1,520(0,13)
3 00003E 90 EO 1 048 STM 14,0,72(1) 000004 50 10 0 200 ST 1,512(0,13) CD ., 000042 50 DO 1 004 ST 13,4(0,1) 000008 92 20 D 219 NVI 537(13),X'20' - 000046 41 01 ° 000 LA 13,0(1,0) OOOOoc 41 10 3 14C LA 1,332(0,3) In
Q

OOOQ(tA 50 50 D 058 ST 5,88(0,13) ooaOEO 58 FO 3 090 L 15,A •• IBMlBSIOE

c 00004E 41 60 0 OB8 LA 6 ,184(0,1 3) OOOOE4 05 EF BALR 14,15 000052 50 60 0 070 ST 6,112(0,13) 0000E6 41 AD 2 094 LA 10,CL.7
D.. 000056 D7 00 0 OB8 0 OBS XC 184(1,13),IS4(13) OOOOEA 41 EO 3 OEO LA 14,224(0,3) (1)

00005C 92 01 0 089 NVI 185(13),X'OI' OOOOEE 41 FO 3 OA8 LA 15,168(0,3)
000060 92 co 0 000 HVI O(13) ,X'CO I 000OF2 58 10 0 200 L 1,512(0.13)
000064 92 24 D 001 NVI l(13), X I 2(+' 0000F6 90 EF 1 000 STH 14,15,O{I)
000068 41 80 3 268 LA 8,616(0,3) OOOOFA 05 AA BAlR 10,10
00006C 50 80 0 OSC ST 8.92(0,13) OOOOFC 41 EO 0 OCO LA 14,192(0,13)
000070 02 03 0 054 3 128 HVC 84 (4 , 1 3) , 296 (3) 000100 41 FO 3 OAS LA 15 ,OED •• POATE
000076 as 20 BALR 2,0 000104 90 EF 1 000 STH 14,15,0(1)

00010S 05 AA BALR 10,10
* PROLOGUE BASE 00010A 41 EO 3 OFO LA 14,240(0,3)
00007S 02 07 0 OCO 3 OE8 NVC LOCATOR •• PDATE(8), OOOIOE 41 FO 3 OA8 LA 15,168(0,3)

232(3) 000112 90 EF 1 000 STH 14,15,0(1)
00007E 41 90 D OE4 LA 9,FOATE 000116 05 AA BALR 10,10
000082 50 90 0 oco ST 9,LOCATOR •• POATE 00011S 41 EO 0 OC8 LA 14,200(0,13)
ooooe6 02 07 0 OC8 3 OE8 NVC LOCATOR •• PTIHE(S), OOOIlC 41 FO 3 OA8 LA 15,OEo •• PTIME

232(3) 000120 90 EF 1 000 STH 14,15,0(1)
ooooec 41 AO 0 OEA LA 10,PTINE 000124 05 AA BALR 10,10
000090 50 AO D OC8 ST 10,LOCATOR .• PTIME 000126 47 FO 2 OF8 B CL.S
000094 05 20 BALR 2,0 OOOI2A CL. 7 EQU * 0OO12A 41 EO 3 OAA LA 14,170(0,3)
* PROCEDURE BASE 00012E 58 10 0 200 L 1,512(0,13)

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ PAGE 23

000132 58 70 3 048 L 7 ,A •• IELCGOG
00013,S 05 67 BALR 6,7
000138 S8 FO 3 084 L 15,A •• IBHBSAOA * STATEMENT NUMBER 43
00013C OS EF BALR 14,15 0001BC 41 FO 0 208 LA 15,520(0,13)
00013E 58 70 3 04C L 7,A •• IELCGOH 0001CO 50 FO 3 164 ST 15,356(0,3)
000142 05 67 BAlR 6,7 0001C4 41 10 0 208 lA 1,520(0,13)
000144 05 AA BALR 10,10 0001C8 50 10 0 200 ST 1,512(0,13)
000146 41 EO 3 OAE LA 14,174(0,3) 0001CC 92 40 0 219 tWI 537(13),X'40'
00014A 58 10 0 200 L 1,512{0,13) 000100 41 10 3 160 LA 1,352(0,3)
00014E 50 EO 1 OOC 5T 14,12{0,1) 000ID4 58 FO 3 090 L 15,A .. IBMB5IOE
000152 58 FO 3 088 L 15,A .• IBMBSEOB 000108 05 EF BAlR 14,15
000156 05 EF BALR 14,15 00010A 41 EO 3 OF8 LA 14,248(0,3)
000158 05 AA BAlR 10,10 OOOIDE 41 FO 3 OA8 LA 15,168(0,3)
00015A 41 EO 3 OC2 LA 14 ,1 94 (0 , 3) 0001E2 58 10 0 200 L 1,512(0,13)
00015E 58 10 0 200 L 1,5U~(0,13) 0001E6 90 EF 1 000 STM 14,15,0(1)
000162 58 70 3 048 L 7 , A .. IE LCGOG OOOIEA 58 FO 3 098 L 15, A •• IBHBSlOA
000166 05 67 BALR 6,7 0001EE 05 EF BALR 14,15
000168 58 FO 3 084 L 15,A •. IBMBSAOA OOOIFO 58 10 0 200 L 1,512(0,13)
00016C 05 EF BALR 14,15 0001F4 58 FO 3 094 L 15,A .. IBMBSIOT
00016E 58 70 3 04C L 7 ,A .. IELCGOH 0001F8 05 EF BALR 14,15
000172 05 67 BALR 6,7
000174 05 AA BALR 10,10
000176 41 EO 3 OC6 LA 14,198(0,3) * STATEMENT NUMBER 44
00017A 58 10 0 200 L 1,512(0,13) 0001FA 18 00 LR 0,13
00017E 50 EO 1 OOC ST 14,12(0,1) 0001FC 58 DO 0 004 L 13,4(0,13)
000182 58 FO 3 088 L 15,A •• IBMBSEOB 000200 58 EO 0 OOC L 14,12(0,13)
000186 05 EF BALR 14,15 000204 98 2C 0 01C LM 2,12,28(13)
000188 05 AA BALR 10,10 000208 05 IE ,BALR 1,14
00018A 47 FO 2 094 B Cl. 7
00018E CL.8 EQU * * END PROCEDURE
00018E 58 10 0 200 L 1,512(0,13) 0OO20A 07 07 NOPR 7
000192 58 FO 3 094 L 15,A •• IBMBSIOT

J> 000196 05 EF BALR 14,15
"C * STATEMENT NUMBER 9
"C
(I)

::::I * STATEMENT NUMBER 8 c.. 000198 58 FO 3 130 L 15,304(0,3) * ON UNIT BLOCK
X 00019C 50 FO 0 000 5T 15,BINVAR.RETCOOE 00020C 90 EC 0 OOC STM 14,12,12(13)
~ 000210 47 FO F 014 B 20(0,15)

000214 00000000 DC A(STMT. NO. TABLE)
* STATEMENT NUMBER 9 000218 00000110 DC F'272'

CJ) 0001AO 92 OC 0 OB8 MVI 184(13l,X'OC' 00021C 00000000 DC A(STATIC CSECT)
Q)

:I 000220 58 30 F 010 L 3,16(0,15)
"C 000224 58 10 0 04C L 1, 76(0,13)
(I) * STATEMENT NUMBER 42 000228 58 00 F OOC L 0,12(0,15)

'"0
0001A4 41 70 0 000 LA 7,8INVAR.RETCOOE 00022C IE 01 ALR 0,1 , 0OO1A8 50 70 3 158 ST 7,344(0,3) 00022E 55 00 C OOC CL 0,12(0,12)

0 OOOlAC 96 80 3 158 OI 344{ 3) ,X'80' 000232 47 DO F 030 BNH 48(0,15)
\Q , 0001BO IB 55 SR 5,5 000236 58 FO C 074 L 15tl16(O,12)
Q) 0001B2 41 10 3 158 LA 1,344(0,3) 00023A 05 EF BALR 14,15 a

0001B6 58 FO 3 15C L 15,348(0,3} 00023C 58 EO 0 048 L 14,72(0,13)

""
0001BA 05 EF BALR 14,15 000240 18 FO LR 15,0

(,N

-'=' PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****/ PAGE 24
(.,0.1

N

000242 90 EO 1 048 STM 14,0,72(1) OOOlEC 41 90 0 104 LA 9,260(0,13)
0 000246 50 DO 1 004 ST 13,4(0,1) 0002FO 50 90 3 17C ST 9,380(0,31
(J)

00024A 41 01 0 000 LA 13,0(1,0) 0002F4 96 80 3 17C OI 380(3),X'80'
." 00024E 50 50 0 058 ST S,88(0,13) 0002F8 IB 55 SR 5,5
r-
"- 000252 92 8C 0 000 MVI o (13) , X ' 8C ' 0002FA 41 10 3 178 LA 1,376(0,3)
1-'1 000256 92 24 0 001 MVI l(13) , X' 2(+ ' 0002FE 58 FO 3 16C L 15,364(0,;0
0 00025A 58 60 0 058 L 6,88(0,13) 000302 05 EF BALR 14,15
"0 00025E 50 60 0 OCO ST 6,192(0,13)
t+
1-1- 000262 02 03 0 054 3 128 MVC 84 (4 , 13) , 296 (3)
::I 000268 05 20 BALR 2,0 * STATEMENT NUMBER 13
1-1-
N 000304 IB 11 SR 1,1
1-1- * PROCEDURE BASE 000306 IB 55 SR 5,5
;:,
10 00030S. 58 FO 3 16C L 15,364(0,3)

n 00030C 05 EF BAlR 14,15
0 * STATEMENT NUttBER 10
:I 00026A IB 11 SR 1,1
"0
1-1- 00026C IB 55 SR 5,5 * STATEMENT NUMBER 14 00026E 58 FO 3 16C L 15,364(0,3) 00030E 41 70 6 004 LA 7,BINVAR.FBVAR
II) ., 000272 05 EF BALR 14,15 000312 50 70 3 180 ST 7,384(0,3!r .. 000316 96 80 3 180 01 384(3),X'60'
." 0003lA 41 10 3 180 LA 1,384{0,3J ., * STATEMENT NUMBER 11 00031E 58 FO 3 06C L 15,A •• IBNE>EOCA
0
10 000274 02 03 0 OFO 3 24A MVC 240(4,13),586(3) 000322 05 EF BALR 14,15 .,

00027A 02 07 0 OF4 3 100 MVC 244(8,13),256(3) Il)

::I 000280 41 80 0 OFO LA 8,240(0,13)
::I 000284 50 80 0 OF4 ST 8,244(0,13) * STATEMENT NUMBER 15
II) ., 000288 41 90 0 OF4 LA 9,244(0,13) 000324 58 40 0 048 l 4,72(0,13) .. 00028C 50 90 3 170 ST 9,368(0,3) 000328 4A 40 4 002 AH 4,2(0,4)
In

000290 02 02 0 OFC 3 24E MVC 252(3, 13) ,590(3) 0OO32C CL.23 EQU * C') 000296 02 07 0 100 3 108 MVC 25M 8, 13) ,264 (3) 00032C 58 40 4 000 L 4,0(0,4) c
1-1- 00029C 41 EO 0 OFC LA 14,252(0,13) 000330 91 40 4 006 TM 6(4) ,X'40'
Q. 0002AO 50 EO 0 100 ST 14,256(0,13) 000334 47 80 2 OC2 BZ CL.23
('I)

0002A4 41 90 0 100 LA 9,256(0,13) 000338 58 FO 4 010 L 15,16(0,4)
0002A8 50 90 3 174 ST 9,372(0,3} 00033C 50 FO 0 OC8 ST 15,200(0,13)
0002AC 96 80 3 174 OI 372(3),X' 80' 000340 48 70 3 OOA LH 7,218(0,3)
0002BO IB 55 SR 5,5 000344 40 70 6 OFO STH 7,CVAR
0002B2 41 10 3 170 LA 1,368(0,3) 000348 02 00 6 OF2 F 000 MVC CVAR+2(1),0(15)
000286 58 FO 3 16C L 15,364(0,3)
0002BA 05 EF BALR 14,15

* STATEMENT NUMBER 16
00034E 58 90 0 048 L 9,72(0,13)

* STATEMENT NUMBER 12 000352 4A 90 9 002 AH 9,2(0,9)
0002BC 02 03 0 OFO 3 24A MVC 240(4,13) ,586(3) 000356 CL.24 EQU *
0002C2 02 07 0 OF4 3 100 MVC 244(8,13),256(3) 000356 58 90 9 000 L 9,0(0,9)
0002C8 41 80 0 OFO LA 8,240(0,13) 00035A 91 40 9 006 TM 6(9),X'40'
0002CC 50 80 0 OF4 ST 8,244(0,13) 00035E 47 80 2 OEC BZ CL.24
000200 41 90 0 OF4 LA 9,244(0,13) 000362 58 40 9 018 L 4,24(0,9)
000204 50 90 3 178 ST 9,376(0,3) 000366 48 80 9 01C LH 8,28(0,9)
000208 02 06 0 OFC 3 251 MVC 252 (7,13) , 593(3) 00036A 50 40 0 000 ST 4,208(0,13)
00020E 02 07 0 104 3 110 MVC 260(8, 13) ,272(3) 00036E 50 80 0 OCC ST 8,204(0,13)
0002E4 41 80 0 OFC LA 8,252 (0, 13) 000372 41 90 ° OFF LA 9,255(0,0)
0002E8 50 80 0 104 ST 8,260(0,13) 000376 19 98 CR 9,8

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****1 PAGE 25

000378 47 00 2 114 BNH CL.25 000408 41 40 0 OFF LA 4,255(0,0)
00037C 18 98 LR 9,8 00040C 19 49 CR 4,9
00037E CL.2S EQU * 00040E 47 DO 2 lAA BNH CL.34
00037E 40 90 6 OFO 5TH 9,CVAR 000412 18 49 LR 4,9
000382 46 90 3 OOA 5H 9,218(0,3) 000414 CL.34 EQU * 000386 47 40 2 12E BM Cl.26 000414 40 40 6 OFO 5TH 4,CVAR
00038A 44 90 2 128 EX 9,Cl. 27 000418 4B 40 3 OOA 5H 4,218(0,3)
00038E 47 FO 2 12E B CL.28 00041C 47 40 2 lC4 BM CL.35
000392 CL.27 EQU * 000420 44 40 2 IBE EX 4,CL.36
000392 02 00 6 OF2 4 000 MVC CVAR+2(1),OC4) 000424 47 FO 2 lC4 B CL.37
000398 CL.26 EQU * 000428 CL.36 EQU * 000398 CL.28 EQU * 000428 02 00 6 OF2 E 000 MVC CVAR+2Cl),0(14)

00042E CL.35 EQU * 00042E CL.37 EQU * * STATEMENT NUMBER 17
000398 41 EO 0 OFO LA 14,2(.. 0 (0 , 13)
00039C 50 EO 3 184 ST 14,388(0,3) * STATEMENT NUMBER 19
0003AO 96 80 3 184 01 38S(3) ,X'80' 00042E 58 40 0 048 L 4, 72(0 tl3)
0OO3A4 41 10 3 184 LA 1,388(0,3) 000432 4A 40 4 002 AH 4,2(0,4)
0003A8 58 FO 3 070 L 15,A .• IBMBEOLA 000436 CL.38 EQU *
0003AC 05 EF BALR 14,15 000436 58 40 4 000 L 4,0(0,4)
0003AE 58 80 0 OFO L 8,240(Otl3} 00043A 91 10 4 006 TM 6(4),X'10'
0003B2 50 80 0 004 5T 8,212(0,13) 00043E 47 80 2 ICC BZ CL.38
0003B6 48 EO 0 OF4 LH 14,244(0,13) 000442 58 EO 4 020 L 14,32(0,4)
0003BA 50 EO 0 008 5T 14,216(0,13) 000446 48 90 4 024 LH 9,36(0,4)
0003BE 41 90 0 OFF LA 9,255(0,0) 00044A 50 EO 0 OE8 5T 14,232(0,13)
0003C2 19 9E CR 9,14 00044E 50 90 0 OE4 ST 9,228(0,13)
0003C4 47 00 2 160 BNH Cl.29 OOoc.52 41 40 0 OFF LA 4,255(0,0)
0003C8 18 9E LR 9,14 000456 19 49 CR 4,9
,0003CA Cl.29 EQU * 000458 47 DO 2 IF4 BNH CL.39
!0003CA 40 90 6 OFO 5TH 9,CVAR 0OO45C 18 49 LR 4,9
0003CE 48 90 3 ODA SH 9,218(0,3) 00045E CL.39 EQU * .000302 47 40 2 17A BM CL.30 00045E 40 40 6 OFO STH 4,CVAR

I

000306 44 90 2 174 EX 9,CL. 31 000462 4B 40 3 OOA SH 4,218(0,3) >
'tJ 00030A 47 FO 2 17A B Clo32 000466 47 40 2 20E BM CL.40
'tJ 00030E Cl.31 EQU * 00046A 44 40 2 208 EX 4,Clo41
(1)

00030E 02 00 6 OF2 8 000 MVC CVAR+2(1)'0(8} 00046E 47 FO 2 20E B CL.42 J
C. 0003E4 Cl.30 EQU * 000472 CL.41 EQU *

0003E4 Cl.32 EQU * 000472 02 00 6 OF2 E 000 MVC CVAR+2(1),OCI4) X
000478 Cl.40 EQU * t:1 000478 CL.42 EQU * * STATEMENT NUMBER 18

(I) 0003E4 58 40 0 048 L 4,72(0,13)
OJ 0003E8 4A 40 4 002 AH 4,2(0,4) * STATEMENT NUMBER 20
:l 0003Ee CL.33 EQU * 000478 78 00 6 OEO LE O,ONCOUNT

" 0003EC 58 40 4 000 L 4,0(0,4) 00047C 7E 00 3 134 AU 0,308(0,3)
CD' 0003FO 91 80 4 006 TM 6(4) ,X'80' 000480 70 00 0 OFO STE 0,240(0,13)

." 0003F4 47 80 2 182 BZ CL.33 000484 91 80 D OFO Ttl 240(13) ,X'80' , 0003F8 58 EO 4 008 L 14,8(0,4} 000488 48 80 0 OF2 LH 8,242(0,13)
0 0003FC 48 90 4 OOC LH 9,12(0,4) 00048C 47 80 2 228 BZ CL.43
UJ , 000400 50 EO 0 OEO ST 14,224(0,13) 000490 13 88 LCR 8,8
CD 000404 50 90 0 OOC ST 9,220(0,13) 000492 CL.43 EQU * :l

.s:.
(.1'1 ,....

~
PL/I OPTIMIZING' COMPILER 1***** PL/I SAMPLE PROGRAM. *****1 PAGE 26 (,.t.I

~

0 -000492 40 80 6 004 5TH 8,BINVAR.FBVAR 000512 92 00 7 000 MVI AVAR,X'OO'
V)

000516 58 EO 3 138 L 14,312(0,3)
-0 0005lA 50 EO 7 004 ST 14,AVAR+4
r-

" * STATEMENT NUMBER 21 000496 18 00 lR 0,13
0 000498 58 DO 0 004 L 13,4(0,13) * STATEMENT NUMBER 25
"'D 00049C 58 EO 0 OOC l 14,12(0,13) 00051E 58 40 3 13C L 4,316(0,3)
t+ 0004AO 98 2C 0 01C LM 2,12,28(13) 000522 50 40 6 OoC ST 4,PVAR
:J 0004A4 05 IE BALR 1,14
N * ON UNIT BLOCK END * STATEMENT HUMBER 26
j
IQ 0004A6 07 07 NOPR 7 000526 50 40 0 OB8 ST 4,OVAR

(")
0
:J * STATEMENT NUMBER 22 * STATEMENT NUMBER 27

" 0004A8 DC C' DUMMY' 00052A 02 03 0 OC8 3 258 MVC 200(4,13),600(3)
..... 0004AF DC AL1(5) 000530 02 07 0 OCC 3 100 MVC 204(8,13), 256(3)
(I
"'l 000536 41 80 0 OC8 LA 8,200(0',13)

* PROCEDURE OUMMY 00053A 50 80 0 OCC ST 8,204(0,13)

-0 00053E 41 BO 0 OCC LA 11,204(0,13)
"'l * REAL ENTRY 000542 50 BO 3 188 ST 11 ,392 (0,3)
0 000480 90 EC 0 DOC STM 14,12,12(13) 000546 02 03 0 004 3 25C MVC 212 (4, 13) ,604 (3) IQ .., 0004B4 47 FO F 014 B *+16 00054C 02 07 0 008 3 100 MVC 216(8,13) ,256(3)
OJ
:J 0004B8 00000000 OC A(STMT. NO. TABLE) 000552 41 90 0 004 LA 9,212(0,13)
:I 0004BC OOOOOOFO DC F'240' 000556 50 90 0 008 ST 9,216(0,13)
(I

0004CO 00000000 OC A(STATIC CSECT) 00055A 41 BO 0 008 LA 11,216(0,13)
"'l .. 0004C4 58 30 F 010 L 3,16(0,15) 00055E 50 BO 3 18C ST 11,396(0,3)
UJ 0004C8 58 10 0 04C L 1,76(0,13) 000562 41 BO 0 OBC LA 11 ,SIZE
C') 0004CC 58 00 F OOC L 0,12(0,15) 000566 50 BO 3 190 ST 11 ,400(0,3)
c 000400 IE 01 AlR 0, 1 00056A 41 90 6 000 LA 9,BINVAR.RETCOOE
C. 000{t02 55 00 C OOC Cl 0,12(0,12) 00056E 50 90 3 194 ST 9,404(0,3)
(I

000406 47 00 F 030 BNH *+10 000572 96 80 3 194 01 404(3),X'80'
00040A 58 FO C 074 L 15,116(0,12) 000576 1B 55 SR 5,5
OOO(~OE 05 EF BALR 14,15 000578 41 10 3 188 LA 1,392(0,3)
0004EO 58 EO 0 Olt8 l 14,72(0,13) 00057C 58 FO 3 198 L 15,408(0,3)
0004E4 18 FO LR 15,0 000580 05 EF BALR 14,15
0004E6 90 EO 1 048 STH 14,0,72(1)
0004EA 50 DO 1 004 ST 13,4(0,1)
OOO(tEE 41 01 0 000 LA 13,0(1,0) * STATEMENT NUMBER 28
0004F2 50 50 0 058 ST 5,88(0,13) 000582 02 03 0 OC8 3 258 HVC 200(4,1.3),600(3)
0004F6 92 80 0 000 MVI O(13),X' 80' 000588 02 07 0 OCC 3 100 NVC 204(8,1.3),256(3)
0004FA 92 24 0 001 MVI l(13) , X ' 24 ' 00058E 41 80 0 OC8 LA 8,200(0,13)
0004FE 58 60 0 058 L 6,88(0,13) 000592 50 80 0 OCC ST 8,204(0,13)
000502 50 60 0 OCO ST 6,192(0,13) 000596 41 BO 0 OCC LA 11 ,204(0,13)
000506 02 03 0 054 3 128 MVC 84 (4 , 13) , 296 (3) 00059A 50 BO 3 19C ST 11,412(0,3)
OOOSOC 05 20 BALI? 2,0 00059E 02 03 0 004 3 25C MVC 212{ 4, I3) ,604(3)

0005A4 02 07 0 008 3 100 MVC 216(8,1[3),256(3)
* PROCEDURE BASE 0005AA 41 EO 0 004 LA 14,212(0,13)

0005AE 50 EO 0 008 ST 14 ,216,~ 0 , 13)
000562 41 BO 0 008 LA 1l,216{0,13l

* STATEMENT NUMBER 24 0005B6 50 BO 3 lAO ST 11,416(0,3)
00050E 58 70 6 OOC L 7,PVAR 0005BA 41 BO 0 OBC LA 11 ,SIZE

PL/I OPTIMIZING COMPILER /***** PL/I SAMPLE PROGRAM. *****1 PAGE 27

0005BE 50 BO 3 lA4 ST 11,420(0,3) 00067C 02 07 0 008 3 100 MVC 216(8,13),256(3)
0005C2 41 90 6 000 LA 9,SINVAR.RETCOOE 000682 41 EO 0 004 LA 14,212(0,13)
0005C6 50 90 3 1A8 ST 9,424(0,3) 000686 50 EO 0 008 ST 14,216(0,13)
0005CA 50 DO 0 OE4 ST 13,228(0,13) 00068A 41 BO 0 008 LA 11,216(0,13)
0005CE 58 FO 3 020 L 15,32(0,3) 00068E 50 BO 3 100 ST 11 ,464(0,3)
000502 50 FO 0 OEO ST 15,224(0,13) 000692 41 BO 0 OBC LA 11 ,SIZE
000506 41 BO 0 OEO LA 11,224(0,13) 000696 50 BO 3 104 ST 11,468(0,3)
00050A 50 BO 3 lAC ST 11,428(0,3) 00069A 41 90 6 000 LA 9,BINVAR.RETCOOE
00050E 96 80 3 lAC 01 428(3) ,X'80' 00069E 50 90 3 108 ST 9,472(0,3)
0005E2 IB 55 SR 5,5 0006A2 50 DO n- OE4 ST 13,228(0,13)
0005E4 41 10 3 19C LA 1,412(0,3) 0OO6A6 58 FO 3 020 L 15,32(0,3)
0005E8 58 FO 3 IBO L 15,432(0,3) 0006AA 50 FO 0 OEO ST 15,224(0,13)
0005EC 05 EF BALR 14,15 0006AE 41 BO 0 OEO LA 11,224(0,13)

0006B2 50 BO 3 10C ST 11 ,476 (0,3)
0006B6 50 DO 0 OEC ST 13,236(0,13)

* STATEMENT NUMBER 29 0006BA 58 FO 3 028 L 15,40(0,3)
0005EE 02 03 0 OC8 3 258 MVC 200(4,13),600(3) 0006BE 50 FO 0 OE8 ST 15,232(0,13)
0005f4 02 07 0 OCC 3 100 MVC 204(8,13),256(3) 0006C2 41 BO 0 OE8 LA 11 ,232 (0 , 13)
0005FA 41 80 0 OC8 LA 8,200(0,13) 0006C6 50 BO 3 lEO ST 11 ,480(0,3)
0005FE 50 80 0 OCC ST 8,204(0,13) 0006CA 96 80 3 lEO 01 480(3) ,X'80'
000602 41 SO 0 OCC LA 11 ,204(0, 13) 0006CE IB 55 SR 5,5
000606 50 BO 3 IB4 ST 11 ,436(0,3) 000600 41 10 3 ICC LA 1,460(0,3)
00060A 02 03 0 004 3 25C MVC 212(4,13),604(3) 000604 58 FO 3 lE4 L 15,484(0,3)
000610 02 07 0 008 3 100 MVC 216(8,13),256(3) 000608 05 EF BALR 1(+,15
000616 41 EO 0 004 LA 14,212(0,13)
00061A 50 EO 0 008 ST 14,216(0,13)
00061E 41 BO 0 008 LA 11,216(0,13) * STATEMENT NUMBER 31
000622 50 BO 3 IB8 ST 11 ,440(0,3) 00060A 02 03 0 OC8 3 258 MVC 200(4,13),600(3)
000626 41 BO 0 OBC LA 11 ,SIZE 0006EO 02 07 0 OCC 3 100 MVC 204(8,13),256(3)
00062A 50 BO 3 IBC ST 11 ,444(0,3) 0006E6 41 80 0 OC8 LA 8,200(0,13)
00062E 41 90 6 000 LA 9,BINVAR.RETCOOE 0006EA 50 80 0 OCC ST 8.204(0.13)
000632 50 90 3 1CO ST 9,448(0,3) 0006EE 41 BO 0 OCC LA 11 , 204(0,13)

l> 000636 50 DO 0 OE4 ST 13,228(0,13) 0006F2 50 BO 3 lE8 ST 11 ,488(0,3)
'0 00063A 58 FO 3 028 L 15.40(0,3) 0006F6 02 03 0 004 3 25C MVC 212(4,13),604(3) '0
(I) 00063E 50 FO 0 OEO ST 15,224(0,13) 0006FC 02 07 0 008 3 100 MVC 216(8,13),256(3)
:l 000642 41 BO 0 OEO LA 11 ,224(0,13) 000702 41 EO 0 004 LA 14,212(0,13) Q. ..,. 000646 50 BO 3 lC4 ST 11 ,452(0,3) 000706 50 EO 0 008 ST 14,216(0,13)
X 0OO64A 96 80 3 lC4 01 452(3) ,X'80' 00070A 41 BO 0 008 LA 11,216(0,13)
t=' 00064E IB 55 SR 5,5 00070E 50 BO 3 lEC ST 11 ,492(0,3) .

000650 41 10 3 IB4 LA 1,436(0,3) 000712 02 01 0 OE2 3 260 MVC 226(2,13),608(3)
000654 58 FO 3 lC8 l 15,456(0,3) 000718 02 07 0 OE4 3 118 MVC 228(8,13),280(3)

(J)
000658 05 EF BAlR 14,15 00071E 41 80 0 OE2 LA 8,226(0,13) OJ

5 000722 50 80 0 OE4 ST 8, 228(0,13)
'0 000726 41 BO 0 OE4 LA 11,228(0,13) I-'
(I) * ST A TEMEtH NUt1BER 30 00072A 50 BO 3 IFO ST 11,496(0,3)

." 00065A 02 03 0 OC8 3 258 MVC 200(4,13),600(3) 00072E 41 90 6 000 LA 9 ,BItWAR .RETCOOE , 000660 02 07 0 OCC 3 100 MVC 204(8,13),256(3) 000732 50 90 3 IF4 ST 9,500(0,3)
0 000666 41 80 0 OC8 LA 8,200(0,13) 000736 96 80 3 IF4 01 500(3),X'80' IQ , 00066A 50 80 0 OCC ST 8,20(.(0,13) 00073A 1B 55 SR 5,5
OJ 00066E 41 BO 0 OCC LA 11 , 204 (0 , 1 3) 00073C 41 10 3 lEa LA 1,488(0,3) :I

000672 50 BO 3 ICC ST 11 ,460{ 0,3) 000740 58 FO 3 IF8 L 15,504(0,3)

-'" 000676 02 03 0 004 3 25C MVC 212(4,13),604(3) 000744 05 EF SALR 14,15

"" U1

.I:' Pl/I OPTIMIZING COMPILER /***** Pl/I SAMPLE PROGRAM. *****/ PAGE 28
(JIoI
0\

0
(I) * STATEMENT NUMBER 41

-0 * STATEMENT NUMBER 32 000708 18 00 lR 0,13
r- 000746 02 05 0 OCA 3 262 MVC 202(6,13),610(3) 00070A 58 00 0 004 L 13,4(0,13)

" 00074C 02 07 0 000 3 OE8 NYC 208(8,13),232(3) 00070E 58 EO 0 OOC L 14,12(0,13}
000752 41 EO 0 OCA LA 14,202(0,13) 0007E2 98 2C D 01C lit 2,12,28(13)

0 000756 50 EO DODO ST 14,208(0,13) 0007E6 05 IE 8AlR 1,14

" t+ 00075A 41 80 0 000 lA 11 , 208 (0 , 13) 00075E 5080 3 IFC ST 11,508(0,3) * END PROCEDURE
:I 000762 02 07 0 008 3 120 NYC 216(8,13),288(3)
N 000768 41 EO D 008 LA 14,216(0,13)
:::J 00076C 50 EO 0 008 ST 14,216(0,13) * STATEMENT NUMBER 36
to 000770 41 BO 0 008 LA 11,216(0,13) 0007E8 DC C' A'
(') 000774 50 80 3 200 ST 11,512(0,3) e007EB DC All(1)
0 000778 D2 01 0 OE2 3 260 tlVC 226(2,13),608(3)
:I

" 00077E D2 07 D OE4 3 118 NYC 228C 8, 131 ,280(3) * PROCEDURE A 000784 41 80 0 OE2 LA 8,226 (0, 13) ...
CD 000788 50 80 0 OE4 ST 8,228(0,13) * REAL ENTRY .,

00078C 41BO D OE4 LA 1l,228{0,13) 0007£C 90EC 0 OOC STH 14,12,I:tU]) - 000790 50 BO 3 204 ST 11,516(0,3) 0007FO 47 FOF 014 8 *+16
"V 000794 41 90 6 008 LA 9,CKPT_RETC 0007F4 00000000 DC A(STMT. NO. TABLE) .,
0 000798 50 90 3 208 ST 9,520(0,3) 0007F8 OOOOOOCO DC F'192'
to 00079C 96 80 3 208 01 520(3),X'SO' 0007FC 00000000 DC A(STATI!: CSECT) .,
IJ . 0007AO 18 55 SR 5,5 000800 58 30 F 010 l 3,16(0,15)
:I 0007A2 41 10 3 1FC LA 1.50S(0,]) 000S04 58 10 0 04C L 1,76(0,13)
:I
CD 0007A6 58FO 3 IF8 L 15,504(0,3) 000808 58 00 F OOC L 0,12(0,15) .,

0007AA 05 EF BALR 14,15 00080C IE 01 AlR 0,1 -In 00080E 55 00 C OOC CL 0,12(Od2)

C)
000812 47 DO F 030 BNH *+10

C * STATEMENT NUMBER 33 000816 58 FO C 074 l 15,116(0,12) 0007AC IB 11 SR 1,1 00081A 05 EF BALR 14,15
a.
CD 0007AE 18 55 5R 5,5 00081C 58 EO D 048 L 14,72(0)13)

000780 58 FO] 20C L 15,524(0,3) 000820 18 FO lR 15,0
000784 05EF BAlR 14,15 000822 90 EO 1 048 5TH 14,0,72(1)

000826 50 DO 1 004 ST 13,4(0,ll)
00082A 41 01 0 000 lA 13,0(1,0)

* STATEMENT NUMBER 34 00082E 50 50 D 058 5T 5, 8S(0, Jl3)
0007B6 18 11 SR 1,1 000S32 92 80 0 000 MVI o (13), X t, 80 '
000788 18 55 SR 5,5 000836 92 24 D 001 NYI l(13),X" 24'
0007BA 58 FO 3 210 l 15,528(0,3) 00083A 02 03 D 054 3 128 MVC 84(4,13),296(3)
0007BE 05 EF BALR 14,15 000840 05 20 BALR 2,0

* PROCEDURE BASE
* STATEMENT NUMBER 35
0007CO 41 90 6 000 LA 9,BINVAR.RETCOOE
0007C4 50 90 3 214 ST 9,532(0,3) * STATEMENT NUMBER 37
0007C8 96 80 3 214 01 532 (3) , X • 80 I 000842 18 00 lR 0,13
0007CC 18 55 SR 5,5 000844 58 00 0 004 L 13,4(0,13}
0007CE 41 10 3 214 LA 1,532(0,3) 000848 58 EO 0 OOC l· 14,12(0.13)
000702 58 FO 3 15C L 15,348(0,3) 00084C 98 2C 0 01C LM 2,12,28(13)
000706 05 EF BAlR 14,15 000850 05 IE BALR 1,14

PL/I OPTIMIZING COMPILER 1***** PL/I SAMPLE PROGRAM. ***~·I PAGE 29

* END PROCEDURE
000852 07 07 NOPR 7

* STATEMENT NUMBER 38
000854 DC C' B'
000857 DC ALl(1)

* PROCEDURE B

* REAL ENTRY
000858 90 EC 0 OOC STM 14,12,12(13)
00085C 47 FO F 014 B *+16
000860 00000000 DC A(STMT. NO. TABLE)
000864 000000C8 DC F'200'
000868 00000000 DC A(STATIC CSECT)
00086C 58 30 F 010 L 3,16(0,15}
000870 58 10 0 04C L 1, 76(0,13)
000874 58 00 F OOC L 0,12(0,15)
000878 IE 01 ALR 0,1
00087A 55 00 C OOC CL 0,12(0,12)
000B7E 47 DO F 030 BNH *+10
000882 58 FO C 074 L 15,116(0,12)
000886 05 EF BA!.R 14,15
000888 58 EO 0 048 '- 14,72(0,13)
00088C 18 FO LR 15,0
00088E 90 EO 1 048 STH 14,0,72(1)
000892 50 DO 1 00 /• ST 13,4(0.,1)
000896 41 01 0 000 LA 13,0(1,0)
00089A 50 50 0 058 ST 5,88(0,13)
00089E 92 80 0 000 MVI O(13),X'80'
0008A2 92 24 0 001 HVI 1 (13) ,X '24'

l>
0008A6 02 03 0 054 3 128 MVC 84 (4 , 13 ») 2 96 (3)

"0 0008AC 58 10 0 004 L 1,4(0,13)
1"0 000880 58 10 1 018 L 1,24(0,1)

CD 000884 02 03 0 OCO 1 000 MVC 192 (4,13) ,0 { 1 } j

c.. ooeeSA 94 7F 0 OCO NI 192(13),X'7F'
~.

)(00088E 05 20 BALR 2,0

0 * PROCEDURE BASE

V)
Il) * STATEMENT NUMBER 40
:I 0008CO 18 00 lR 0,13 "0 0008C2 58 DO D 004 L 13,4(0,13)
CD 0008C6 58 EO D OOC L 14,12(0,13)
." oooaCA 98 2C D 01C LM 2,12,28(13) .,

0008CE 05 IE BAlR 1,14 0
1.0 .,

* END PROCEDURE D.I
:I

* END PROGRAM
~
V4

"" f.IoI
00

~
." ,...

" IoIit .•..
Q

1
iI'J!
a'
..-;-
N'
~.

:;,
IQ

i? .

(")

g
",

" , o
IQ ,
II)

:J
:J
CD , .
fII

(i)
c
a..
CD

PL/I OPTIMIZING COMPILER 1***** PLII SAMPLE PROGRAM. *****1

COMPILER DIAGNOSTIC MESSAGES

00·0
ERROR 10 L .STHT MESSAGE DESCRIPTION

SEVERE AND ERROR DIAGNOSTIC MESSAGES

CD
IEL0413I E 23 DECLARATION OF INTERNAL ENTRY NOT ALLOWED. DECLARATION OF 'A' IGNORED.

WARNING DIAGNOSTIC MESSAGES

IEL0892I W 6 TARGET STRING SUOIHER THAN SOURCE. RESULT TRUNCATED ON ASSIGNMENT.

IEL0518I W 20 • ONCOUNT , IS THE NAME OF A BUILTIN FUNCTION BUT ITS IMPLICIT DECLARATION DOES NOT IMPLY
'BUILTIN'.

COMPILER INFORMATORY MESSAGES

IEL0533I I NO 'DECLARE' STATEMENT(S) FOR 'SYSPRINT','PLISRTB','PLIRETC','PLIDUHP','PLICKPT','PLIR~ST',
'PLICANC','PVAR',fPLISRTA','ONCOUNT','PLISRTC','PLISRTD'.

END OF COMPILER DIAGNOSTIC MESSAGES

CD CD
COMPILE TIME 0.02 MINS SPILL FILE:

. Diagnostic messages and an end of compile step message
generated by the compiler. All diagnostic messages
generated by the optimizing compiler are documelllted in the
publication OS Optimizing Compiler: Messages.

CD "ERROR 10". This identifies the message as
originating from the optimizing compiler (IEL), and
gives the message number. o "L" This is the severity level of the message.

-: ~

o RECORDS, SIZE 4051

'3' "STMT" This gives the number of the statement in
\!.) which the error occurred.

f4\ The "E" level message is expected and will cause the
\.;J return code of "8" from the compiler.

's' Compile time in minutes. This time includes the
\:!./ preprocessor.

CD This gives the number of records "spilled" into auxiliary
storage and the size in bytes of the spill file.

PAGE 30

)I
.....
cu
c
o
+'
C
QI
+'
C
QI
D\
cu
Do

Ul
.J:.
I-

Appendix.D. Sample Program 439

~ H96-LEVEL LINKAGE EDITOR OPTIONS SPECIFIED XREF,LIST ~
~ DEF AUL T OPTION(S) USED - SIlE=(262144,49152) 1
0

0
(J) ~ CROSS REFERENCE TABLE
." 0) r-,
l-f CONTROL SECTION ENTRY
0

" NAt1E ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
r+ PLISTART 00 50 ..,.
:3 PLICALLA 6 PLICALLB A ..,.

PLIMAIN 50 8
N ..,. SYSPINT 58 20
j *SAt1PLE2 78 36C

f,Q
IElCGOG 3E8 B6

n IElCGOH 4AO A4
0 *SAMPlEI 548 800 :=
" SAMPLE 550 IBNBKCPl* EI8 242
fI) IBNBKCPA EI8 IBMBKCPB EIA IBMBKCPC EIC ., IBMBKSTl* 1060 6F8 - IBNBKSTA 1060 IBMBKSTB 1062 IBMBKSTC 1064 IBMBKSTD 1066
." IBMBPIRl* 1758 45C .,

Im1BPIRA 17A8 IBMBPIRB 17AA IBMBPIRC 17AC 0
to IBf'1BPGRI* IBB8 666 .,. IBNBPGRA IBB8 lit
:= IBtlBPIIl* 2220 1418
:= IBMBPIIA 2220
fI) ., IBNBPITl* 3638 268 - IBNBPITA 3638
til IBt1BXOPT* 38AO 40
C') IBM13CCCl* 38EO 120
c IBMBCCCB 38EO IBMBCCCC 38E2 IBMBCCCA 38E6
a. IBMBCCSl* 3AOO 19C • IBMBCCSA 3AOO

IBNBCEOl* 3BAO 32E
IBMBCElB 3BAO IBt1BCEDB 3BA8 IBMBCEDX 3BBO IBMBCEDF 3BBO
IB11BCEFX 3BBO IBMBCElF 38BO IBr1BCElX 3BBO

IBMBCHOl* 3EDO IF2
IBt1BCHXE 3EDO IBf1BCHFE 3EDO IBNBCHXP 3ED8 IBHBCHFP 3ED8
IBMBCHXY 3EEO IBMBCHFY 3EEO IBMBCHFH 3EE8 IBt1BCHXH 3EE8
IBtlEOIFD 3EFO IBtmCHXD 3EFO IBt-lBCHXF 3EF8

18MBCOOl* 40C8 44C
IBMBCODE 40C8 IBMBCOlE 40C8 IBMBCODP 40C8

IBttBCT01* 4518 2AO
IBt1BCTHD 4518 IBMBCTHZ 4518 IBMBCTHX 4520 IBMBCTHF 4528
IBt!3CTHP 4530 IBMBCTHE 4538

IB~BKDMl* 47B8 108
I Bt1BKDMA 4788

IBMBPRCl* 48CO 58
IBMBPRCA 48CO

18MBSEDl* 4918 558
I8MBSEDA 4928 IBHBSEDB 4928

I See noteon ncx t page. I

l>
"D
"D
~
j

a..
1-1-
x
t:I

(J)
III
3

"
(1)

"'U
'"1
o
IQ
'"1
III
:I

.r:­
~

The linkage editor listing.

1. Statement identifying the version
and level of the linkage editor
and giving the options as
specified in the P ARM parameter of
the EXEC statement that invokes
the cataloged procedure.

2. Cross reference table. This table
consists of a module map and the
cross-reference table.

3. The module map shows each control
section and its associated entry
points, if any, listed across the
page. Art asterisk after the name
means that these are library
subroutines obtained by automatic
library call.

4. The cross-reference table gives
all the locations in a control
section at which a symbol is
referenced. $UNRESOL VED (W)
identifies a weak external
reference that has not been
resolved. See next page.

"'"
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME lOCATION

"'" IBMBSIOl* 4E70 284
N IBMBSIOA 4E70 IBHBSIOB 4E72 IBHBSIOC 4E74 IBMBSIOO 4E76

IBMBSIOE 4E78 IBHBSIOT 5052
0

IBMBf"U~l* 50FG 308 CJ)

IBMBCUIX 50F8 IBHBCUIO 5100 IBHBCUIP 5108 IBHBCUIE 5110
." IBNBCUIF 5118 r-
"- IBHBEOCl* 5400 100
t-I IBMBEOCA 5400
0 IBHBEOll* 5500 BO
"tI IBMBEOlA 5500 t+ ..,. IBHBJOTl* 55BO AO
:I IBMBJOTA 55BO ..,.
N IBMBJTTl* 5650 78 ..,.

IBHBJTTA 5650 :::;
III IBHBOCll* 56C8 IBO
n IBHBOClA 56C8 IBHBOClB 56CA IBHBOClC 56CC IBHBOClO 56CE
0 IBMBSAOl* 5878 100
:I IBHBSAOA S878 "tI .., . IBMBSE01* 5978 10C IBMBSEOA 5978 (I) ., IBMBSLOI* SA88 879 .. IBHBSlOA SASS I8HBSlO8 5A8A
." IBMBSPll* 6308 2EO .,

IBt18SPLA 6308 IBMBSPlB 630A IBMBSPlC 630C 0
III IBMBCGTl* 6SE8 88 .,

IBMBCGTA 6SE8 IU
:I IBMBCKOl* 6670 19A
:I IBMBCKOP 6670 IBMBCKZP 6670 IBMBCKOO 6678 IBMBCKZD 6678 (I) ., IBHBEERl* 6810 4 - IBMBEERA 6810 III

IBMBERRl* 6818 A7D
C') IBMBERRA 6818 I8MBERRB 691E IBHBERRC 7144 c ..,. IBMBSCVl* 7298 2S0
a. IBHBSCVA 7298 (I)

IBMBSPOl* 74E8 130
IBMBSPOA 74E8

IBMBEEFl* 7618 ISO
IBMBEEFA 7618

LOCATION REFERS TO SYMBOL IN~OL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION
10 PLIMAIN PLIII1AIN 14 SYSPINT SYSPINT
18 PLIFLOW 4 . $UNRESOlVED(W) lC PlITABS $UNRESOLVEDCW)
2C PLICOUNT $UHRESOLVED(W) 30 PLIXOPT $UNRESOLVEO(W)
34 IBMBPOPT $UNR~ESOLVEO(W) 38 PlIXHO $UNRESOlVED(W)
3C IBMBEATA $UNR:ESOlVED(W) 44 IBMBPIRA IBHBPIRI
48 IBMBPIRB IBMBPIRI 4C IBMBPIRC IBMBPIRI
SO *SAMPlEI *SAt'1PlEI 7C *SAHPLEI *SAMPlEl
80 *SAMPLEI *SAMPlEI 84 *SAMPLEI *SAMPlEl
88 *SAMPlEl *SANPlEI 8C *SAMPlEl *SAMPlEl
90 *SAMPlEl *SAMPlEl 94 *SAMPlEl *SAHPlEI

lOCATION REFERS TO SYMBOL IN CONTROL SECTION lOCATION REFERS TO SYMBOL IN CONTROL SECTION
98 *SAMPlEl *SAHPlEl 9C *SAHPlEl *SAHPlEl
AO *SAHPlEl *SAHPlEI A4 *SAtlPlEl *SAt1PLEI
A8 *SAMPlEI *SAt1PLEl AC *SAMPlEl *SAMPlEl
BO *SAt1PLEI *SAHPLEI B4 *SAMPlEI *SAflPlEI
B8 *SAf1PlEl *SAHPlEI BC *SAtlPLEl *SAMPlEI
CO IElCGOG IElCGOG C4 IElCGOH IELCGOH
C8 IBtIBCCCA IE~nBCCCl CC IBMBCCSA IBNBCCSI
DO IBf13CEOB 18:18CEOI 04 IBtt8CHFD IBM3CHOl
08. I8flDCODE IBt1BCOOI DC IBMBCTHD IBMBCTOI
EO IBtIBCUIO IBtfBCUOl E4 IBl18EOCA IBtlBEOCI
E8 IBttBEOlA IBt18EOll EC IBMBJDTA IBM8JOT1
FO IBt-IBJTTA IBtlBJTTl F4 IBt1£30CLA 18rmOCll
F8 IBflBOCLC IBtlBOCll FC I8t18SAOA I8MGSAOl

100 I8tmSEDB 18118SEOI 104 IBtlBSEOA IBNSSEOI
108 18rIBS1OE IBt18S101 10C 1Bt1BS1OT 1Bt1£lSIOI
110 1BtlBSlOA IBt18Sl01 114 IBtlBSPlA IBt1BSPll
118 IBtIDSPOA IBt18SFOl llC IBr-mCKDO IBtlBCKOl
1B8 SYSP1NT SYSP1NT 1C4 SYSPINT SYSPINT
104 IBtlBPRCA IBt13PRCl 108 SYSPINT SYSPINT
1E4 18t:3KOMA IBttBKOMl 210 IBNnKSTA IBt13KSTl
228 IBtIBKSTB IUt1BKSTl 240 IBMBKSTC IBt18KSTl
25C IBtIBKSTO IBrlBKSTl 270 IBt1BKCPA IBt1BKCP1
284 IBttBKCP8 IF3MBKCPl 288 IBtmKCPC IBHnKCPl
2E4 *SAf1PlEI *SAHPlEl 2EC *SAt1PLEl *SAMPlEl
320 *SAMPlEl *SAHPlEl 364 *SAt1PlEl *SAtlPlEl
3AC *SAMPlEl *SAHPlEI 3C4 *SAMPlEl *SAMPLE1
53C IBHBSIST $UNRESOlVEO(W) 540 IBt1BSEOA IBtlBSEOl
558 *SM1PLE2 *SAt1PLE2 560 *SAt1PlE2 *SAMPLE2
75C *SAMPlE2 *SAt1PlE2 764 *SAf'lPLE2 *SAt1PlE2
AOO *SAtlPlE2 *SAMPlE2 A08 *SAMPLE2 *SAtlPLE2
03C *SAt1PLE2 *SA~1PLE2 044 *SAMPLE2 *SAt1PlE2
OA8 *SAMPLE2 *SAMPLE2 DBO *SAMPlE2 *SAMPLE2

1750 IBtlCKEXA $UtlRESOl VEO(W) 1754 IBtlCKEXB $UNRESOLVEO(W)
lB28 IB1iBJWTA $UtlRESOlVEO(W) IB2C IBflBTOCA $UHRESOlVEO(W)

» lB30 rBti3TOCB $UtlRESOlVEO(W) 1834 IBMBTPRA $UNRESOlVEO(W) ,.,
lAOO IBt!BCClB IBt~BOCll 1AE4 IBt1BOCLB 1BI1DOCLl ,.,

I'D 1B18 IBtlBOCLO IBtlBOCLl 1B20 IBMBERRB 1Bt13ERRI
:J 1824 Im!3PGOA $UtmESOLVEO(W) IB38 IBt1BPQOA $ut~RESOLVED(W) a. "", IB50 IBtt3ERRC IBtl8ERRl lAD4 IBtlBOCLC IB!1DOCLl
X IB68 1B:1BPGR1 Im:SPGRl 1B70 IStlBPIIA IBt13PIIl
I::' 1B74 IBW3PITA IBt1l3PIT 1 lAD8 IBMBOClA IBnBCCLl

IB14 IBt:BOClA lBi150Cll lBlC 1Bt1BERRA IBMBERRI
1B58 IBMBEERA n~r1BEERl 303C IBl1BPIRA 1BtlBPIRl

V> 3040 1BI~BXOPT IBtmXOPT 3ADO IBt18CHXD 1Bt:SCHOl OJ
3 3A04 ImmCHXF IBt:BCHOI 3AEO ImmCHXP IBtmCHOl ,.,

3AE4 IBtmCHXY IBt1BCHOl 3AE8 IBneCHXE IBt13CHOl
I'D 3BI0 IBt18CKOO IBt~BCKOI 3B20 ImmCKDP IBt13CKOl

.." 3B50 IBt:8CHFO Im!8CHOl 3B5C IBlIBCHFH 1BtlBCUOl ., 31360 IBMDCHFP IUtlBCHOl 3B64 1BtmCHFY IBtlBCHOl
0 3B68 1Bt:BCHFE ImmCUOl 3BOC IBMDCEDX IBt1BCEOl
III ., 3B14 IBt:SCEOF rmmCEOl 3B4C 1BnSCEFX 18M3CEOl
OJ 3ACC 1mmCYXX $UtiRESOlVED(W) 3B54 IBt1BCYFF $U!~RESOlVED(W)
3

-'='
-'='

"'"

.,co. LOCATION REFERS TO SYMBOL IN CONTROL SECTION LOCATION REFERS TO SYMBOL IN CONTROL SECTION

.,co. 3B8C IBM8CMPX $UtmESOLVED(W) 3B90 IBt1BCt1PO $UNRESOLVEO(W)
.,co. 3B94 IBtlBCMPF $UtJRESOLVED(W) 3B80 IBMBCUIX IBMBCUOI

3B88 IBMBCUIF H3tlBCUOl 3B40 IBMDCTHX IBt1BCTOl
0 3B44 IBtlBCTHD IBtlDCTOl 3B48 IBttBCTHF ICMaCTOl
(I)

3828 ImmCODE ImmCOOl 3B24 IBMBCVDY $Ut~RESOLVED(W)
""0 3AFO IBtlBCRXB $UNRESOLVEDCW) 3AF8 IBtmCRXB $UtJRESOLVEO{ W) r-
"- 3870 IBl18CRXB $UtJRESOLVED(W) 3878 IBMBCRXB $UURESOLVEO(W)
1-1 3BlC ImmCWDH $UNRESOLVED(Wl 3B04 18!':BCGZA $UHRESOLVEO(W)
0 3B08 IBI"mCGPA $UtlRESOLVEO(W) 3AEC IBt18CACA $UtJRESOlVED(W)

" 3AF4 18M8CACA $UtJRESOlVEO(W) 3AFC IBMBCACA $UNRESOlVED(W)
t+
1-1- 3B2C IBMBCACA $UllRESOlVEO(W) 3B34 IBtmCACA $UNRESOlVEO(W)
3 3B3C IBr-mCACA $WmESOlVEO(W) 3B6C IBMBCACA $UNRESOLVED(W)
1-1-
N 3B74 IBt1BCACA $UNRESOlVEO(W) 3B7C IBt1BCACA $Ut~RESOlVEO(W)
1-1- 3898 IBt:3CPBF $U~~RESOlVEO(W) 3ADC IBt1BCHXH IBMBCHOl
::J
10 3B30 IBI1BCEDB IBtl8CEOl 3B38 IBtlBCEDB IBt18CEOl

n 3800 ImmSCVA ImmSCVl 3BA4 ISMBCRFB $UNRESOLVEO(W}
0 38AC IB~IBCRXB $U~mESOLVED(W) 3EC4 IBt1BCGTA ImmCGTl
3 3E04 IBIIBCOZE Im:r:COOl 3EDC ImmCKZP IBt1SCKOl
" 1-1- 3EE4 IBtmCVZY $Ut:RESOLVEO(W) 3EEC IBHBO~ZH $U~~RESOLVEOO.n 3EF4 IBMBCKZO IBtiBCI<Ol 40A4 IBt1BCGTA Im:3CGTl
!D .., 451C IBtiBCKZO IBtmCKOl 453C IB~tBCOZE IBt!BCOOl .. 452C IBr-mCEZF IBrmCEOl 4534 IBMBCKZP IBt!8CKOl
""0 4524 IBI!BCEZX IBt1l3CEOI 47B4 IBM8SCVA IBt18SCVl ..,

4E54 IBt18SAIA $Ut:RESOLVEO(W) 4E64 IBt1nSAOA Im~8SAOI
0
10 4E4C IBttBSFIA $UtIRESOlVEO(W) 4E5C ImmSFOA $UNRESOLVEO(Wl ..,

4E50 IBH3SPIA $UNRESOlVEO(W) 4E60 IBHBSPOA IBI'mSPOl m
3 4E58 IBtlBSCIA $UNRESOLVEO(W) 4E68 IBHBSCOA $UnRESOlVEO(Wl
3 4E6C IBttBSnOA $UNRESOlVEO{W) 4E48 IBtmSIST $UURESOLVEO(Wl
CD .., 50E8 IBtmSPLA IBtIOSPLl 50EC IBMnSPLB IBHBSPLI .. 50FO IBftBSPLC IBt1BSPLl 50E4 ImmOCLA IBI'mOCLl en

50 Fe IBtiBCEFX ImmCEOl 5104 IBtlBCHFO I 8r'13CH 0 1
C') 5l0C IBMBCHFP IBtlBCHOl 5114 IBtmCHFE IBt!BCHOI c
1-1- 53F4 IBt1BSCVA IBtmSCVl 5860 IBtiBSCPA $UNRESOLVEO(W)
a.. 5964 IBMBCCCA IBt~DCCCl 5968 IBt13CBCA $UNRESOlVEO(W)
CD

596C IBt1l3CACA $UtlRESOLVEO(W) 5970 IBt18CXOA $UNRESOlVED(W)
5974 IBHBCGGB $UtlRESOLVEO(W) 5A80 IBtlBSIST $UNRESOlVEO(W)
62F4 I Bt1l3CACA $UNRESOLVEO(W) 62FO IBt1BCBCA $UflR ESOLVED (W;l
62EC IB:mCZCA $UNRESOLVEO(W) 62E8 IBtmcXOA $UNRESOlVEO(W)
62E4 IBt1BSIST $UNRESOLVED(W) 62F8 IBt1XGRAP $Ut-lRESOL YEO (W II
6674 Im1BCODP 1st-mCOOl 7254 1Bt1BERCA $UNRESOLVEO(W)
7258 IBr"lBEEFA 1BUBEEFl 7508 IBt13CHXP IBHBCHOI
75DC 1Bt1BCKDP IBt~BCKOI 75EO IBt13CHFP IBHSCHOI
75EC IBtlBCHPP $UNRESOLVEOCW) 75F4 IBMBCt1PP $l'tmEsOLVEO(W)1
75F8 IBM8CHXE IBtmCHOl 75FC IBt1BCOOE Im13COOl
7600 IBt!BCHFE IBtf3CHOI 760C IBttBCt1PE $UNRESOLVED(Wll
7614 IBt:BCMPE $UNRESOLVEO(W) 7604 IBHBCFBP $UNRESOLVEO(W I:
7608 IBMBCPBE $UNRESOLVEO(W) 7610 IBMBCCSA 18t1BCCSI

LOCATION 20 REQUESTS CUMULATIVE PSEUDO REGISTER LENGTH
ENTRY ADORESS 00

TOTAL LENGTH 7778

....
~

UJ
o o
:t:
<

I­
LU
If)

<
I-
< o
o
I-

o
LU
o
c «
Z
UJ
UJ
CO
(f)
c(
X

I-
::l 0
CO

I-
CIl
1-1
X
LIJ

I-o If)
:z 1-1

C/) UJ
LIJ C o 0 o u

Z
>-0
2:
<I-«
If)N

o ~
C)UJO
*C:r:
*01-
*:C::l
*~«

Appendix D. Sample Program 445

~ SAMPLE PROGRAM: DATE = 85/05/01, TIME = 14.24.09
~ END SAMPLE PROGRAM

o
V)

."
r­,
.....
o
"C
ti-... '
3 ... '
N ... '
::s
10

("')
o
3
"C ... '
f-I
(\) ,
." ,
o
10 .,
Q)
3
:3
(\) .., ..
(t)

C')
C ... '
c..
~ ..

Execution of the sample program
produces a return code of 0101.

APP~NDtx E. USING THE OS PL/I OPTIMIZER UNDER VM/PC

This section describes how to use the OS PL/I Optimizing
Compiler under Virtual Machine/Personal Computer (VM/PC).

VM/PC is an IBM licensed program that runs on the IBM XT/370
Personal Computer, as an IBM Personal Computer Disk Operating
System application. VM/PC gives you an interactive system that
has the characteristics of a VM/SP Release 2 system: command
entry, command formats, messages, screen formats, file naming
conventions, key functions, and application interfaces.

To use the OS PL/I Optimizing Compiler under VM/PC, a host
system must be available; this is because you must copy
(download) Pl/I from the host system into your local VM/PC
storage. After you have done this, you can use Pl/I either
independently of the host system, or ih connection with the host
system.

VM/PC lets you set up a local System/370 environment in which to
do your work, known as a local session. After you have
downloaded Pl/I into your local storage, you can use it in local
sessions.

VM/PC also lets you set up an IBM 3277 or 3101 terminal
connection with a host system on a remote computer, so that your
personal computer acts as a terminal on the host system; such a
connection is known as a remote session. You can use the
product in remote sessions as well as in local sessions.

To develop OS Pl/I optimizing programs with VM/PC, you'll use
both types of sessions. For further details on VM/PC see
Virtual Machine/Personal Computer User's Guide Supplement for
SYstem/370 languages.

METHODS OF USING THE OS PL/I OPTIMIZER UNDER VM/PC

There are two different methods you follow to use the OS PL/I
Optimizer under VM/PC:

1. COpy (download) the OS Pl/I Optimizer modules onto local
disk files and then invoke the OS Pl/I Optimizer in local
sessions. (You need download only when you first access the
OS Pl/I Optimizer, or when a new release has been installed
on the host system.)

2. link to the host-system minidisk containing the OS Pl/I
Optimizer and then access it from the local session as a
remote minidisk. (You must do this after every Initial
Program load (IPl) of CMS, and whenever the link to the host
system fails.)

Depending on your link with the system and on the system
load, this often is not an efficient way to operate.
Therefore, it is not further described in this book.

DOWNLOADING THE OS PL/I OPTIMIZER INTO VM/PC

To use the OS Pl/I Optimizer under VM/PC in local sessions, you
can copy (download) certain OS Pl/I Optimizer modules into your
local files. The modules you must copy are listed in Figure 161
on page 448.

Appendix E. Using the OS PL/I Optimizer Under VM/PC 447

CMSLIB TXTLIB
IEAXPALL MODULE
IEAXPDXR MODULE
IEAXPSIM MODULE
IELOAC
IELOAE
IELOAI
IELOAT
IELOBA
IELOCA
IELOCAI
IELOCB
IELoee
IELoeE
IElOCI
IELOEA
IELOEC
IELOEE
IELOEI
IELOGA
IELOGE
IELOGI
IELOGM
IElOIA
IELOID
IELOIE
IElOII
IElOIK
IELOIM
IElOIQ
IElOKA
IElOKE
IELOKI
IELOKK
IELOKM
IElOKQ
IELOKT
IELOKV
IELOKX
IElOOA
IElooe
IELOOE
IElOOI
IELOOM
IELOOX

MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE

(needed for execution only)
(extended precision module)
(extended precision module)
(extended precision module)

Figure 161 (Part 1 of 2). OS PL/I Optimizer Modules Needed for
Downloading

448 OS Pl/I Optimizing Compile~: P~og~amme~'s Guide

IELOPA
IELOPALI
IELOPAL2
IELOPAl3
IELOPAl4
IELOPAl5
IELOPC
IELOPE
IElOPI
IELOQA
IELOQE
IELOSA
IELOSC
IELOSD
IElOSI
IELOSK
IElOSM
IELOSQ
IELOQI
IELOUA
IELOUAC
IELOUAE
IELOUAS
IELOUAT
IELOUAY
IELOUE
PLILIB
PLIOPT

MODULE
MODULE
t10DUL E
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
MODULE
TXTLIB
MODULE

(needed for execution only)

Figure 161 (Part 2 of 2). OS PL/I Optimizer Modules Needed for
Downloading

Downloading is necessary only when you first access the OS PL/I
Optimizer, or after a new release has been installed on the host
system.

In your local VM/PC system, in order to avoid the following
warning message:

DMS PLI074W ERROR RESETTING AUXILIARY DIRECTORY

you should make sure that the R disk is the minidisk containing
the OS PL/I Optimizer. Figure 162 on page 451 shows you the
commands you must issue.

The procedure is as follows:

1. Link (if necessary) and access the local minidisk that is
the target minidisk for the copy operation. If the target
minidisk is your own minidisk, the link is not required.

2. Link and access the host minidisk that contains the OS PL/I
Optimizer modules.

3. COpy the OS PL/I Optimizer modules from the host minidisk to
the local minidisk. (This is known as downloading.)

4. Release the host OS PL/I Optimizer minidisk; it is no longer
required.

5. If you are compiling AND executing, link and access the host
minidisk that contains the file 'CMSlIB TXTLIB', if not
previously downloaded.

6. Copy 'CMSLIB TXTlIB' (if not previously downloaded) to the
local minidisk.

7. Release the host CMS minidisk; it is no longer required.

Appendix E. Using the OS PL/I Optimizer Under VM/PC 449

VIRTUAL STORAGE REQUIREMENTS: Approximately 1.0M bytes

MINIDISK STORAGE REQUIREMENTS: Approximately 3.0M bytes

Notes:

1. These storage requirements are for the OS PL/I Optimizer
compiler and library only; addition~l storage is needed for
the source and/or object program files.

2. Files PLILIB TXTLIB and CMSLIB TXTLIB take approximately
one third of the space requirement given above.

If you are going to do only compilations under VM/PC, these
two files may be omitted.

If you are going to do both compilations and executions
under VM/PC, all of the files listed in Figure 160 on
page 448, except for the optional extended precision
modules, are required.

INVOKING THE as PL/I OPTIMIZER UNDER VM/PC

You must first make the OS PL/I Optimizer available on a
minidisk you can access. For example:

CP LINK vm/pc-id ttt aaa RR read-password
ACCESS aaa R
GLOBAL TXTLIB PLILIB CMSLIB

Because you must issue these commands each time you log on to
VM/PC, it's a good idea to put the commands you need in your
profile EXEC.

Next, you can invoke the OS PL/I Optimizer through the following
command:

PLIOPT PLISAMP

where PLISAMP is the name of your source program. (Its filetype
is PLIOPT or PLI.)

You can also specify compiler options. For example:

PLIOPT PLISAMP (options

which allows you to modify the default compiler options in force
for your organization.

450 OS PL/I Optimizing Compiler: Programmer's Guide

**
* * 1) Link and access the target minidisk.
* CP LINK vm/pc-id ttt aaa W write-password
ACCESS aaa filemodel

* * 2) Link and access the host minidisk that contains the OS PL/I * Optimizer modules.

* CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemode2

* * 3) COpy the files you need.

* COPYFILE filename fil~type filemode2 = = filemodel

* * 4) Release the OS PL/! Optimizer host minidisk.

* RELEASE filemode2 (DET

* * 5) Link and access the host minidisk that contains CMSLIB TXTLIB
* (if not previously downloaded).

* CP LINK host-id ccc bbb RR read-password REMOTE
ACCESS bbb filemode3

* * 6) Copy CMSLIB TXTLIB (if not previously downloaded) to the local
VM/PC target minidisk.

* COPYFILE CMSLIB TXTLIB filemode3 = = filemodel

* * 7) Release the CMS host minidisk.

* RELEASE filemode3 (DET

* * * Where:
* ttt - is the virtual address of the local target minidisk that

will store the OS PL/I Optimizer modules. * * * * * * * * * * * *

aaa - is an unused virtual address on the local VM/PC machine.
hhh - is the virtual address of the host minidisk that contains

the as PL/I Optimizer modules.
bbb - is the virtual disk address YOU use to refer to the host disk.
ccc - is the virtual address of the host minidisk that contains

CMSLIB TXTLIB.
filemodel - is the filemode of the local VM machine. To avoid a
warning message, specify filemode R.
filemode2 - is the filemode of the host minidisk that contains

the OS PL/I Optimizer modules.
filemode3 - is the filemode of the host CMS TXTLIB minidisk.

* **

Figure 162. CMS Commands to Download the OS PL/I Optimizer

OS PL/I OPTIMIZER PROGRAMMING TIPS

You can improve processing time if you specify OS PL/I Optimizer
compiler options that do not request printed listings:
NOAGGREGATE, NOATTRIBUTES, NOESD, NOINSOURCE, NOLIST, NOMAP,
NOOPTIONS, NOSOURCE, NOSTORAGE, and NOXREF.

Appendix E. Using the OS PL/I Optimizer Under VM/PC 451

OS PL/I OPTIMIZER RESTRICTIONS

The following processing capabilities are not available when you
are executing an object program in a local session:

• VSAM file processing is not available.

• Magnetic tape processing is not available.

• The Graphical Data Display Manager (GDDM) is not available.

452 OS Pl/I Optimizing Compiler: Programmer's Guide

APPENDIX F. MVS/EXTENDED ARCHITECTURE (MVS/XA) CONSIDERATIONS

This section serves as a general introduction to MVS/XA and its
facilities. Fo~ more specific details~ see ~~~/XA COQversioQ
Notebook and MVS/XA System Programming Library: 31-Bit
Addressing. The content of those books, with which the reader
should be familiar, is not repeated here. Readers who
understand MVS/XA and such concepts as the MVS/XA machine's
current addressing mode (AMODE) and the AMODE and RMODE
attributes of load modules may wish to skip to the section
entitled "Use of MVS/XA Facilities by PL/! Release 5" on
page 457.

System/370 Extended Architecture (sometimes shortened to 370/XA)
represents a set of changes and enhancements to the architecture
of the IBM System/370.

Pre-Release 5 PL/I object modules, pre-Release 5 PL/I library
modules, and the PL/I Checkout Compiler's interpreter facilities
all contain instruction sequences that are incompatible with
31-bit addressing on ~'VS/XA, .but th~re sup-ported on ~'VS/XA in
24-bit addressing mode so that YOU can continue to use them.

If only Release 5 object modules and resident libraries are
linked together, the resulting load module is RMODECANY) and
AMODE(31), and is compatible with 3l-bit addressing on MVS/XA.
This load module is also compatible with MVS/SP 1.3 execution.

SYSTEM 370 AND 370/XA DIFFERENCES

The areas of difference between System/370 and 370/XA are as
follows:

1. 370/XA permits virtual storage addresses to be 31-bit binary
numbers, whereas System/370 treated them as 24-bit binary
numbers.

This fact is of di rect import:c.'nce to you as a PL/!
programmer. The storage which your program "sees" and for
which you code your program is virtual storage. PL/!
Release 5 offers you ways to control and utilize the
capability of 370/XA to address more virtual storage by the
use of 31-bit addresses.

While the largest storage address which can be utilized on
System/370 is 16 megabytes, the largest such address on
370/XA is 128 times greater: 2 gigabytes, or 2048
megabytes.

Most of the material in this Appendix and all of the MV$/XA
support in PL/I Release 5 are related to 31-bit addressing
of virtual storage on MVS/XA.

2. 370/XA permits real storage addresses to be 31-bit binary
numbers, whereas System/370 treated them as 24-bit binary
numbers (or for certain purposes on certain processor
models, 25-bit or 26-bit binary numbers).

This fact is only of indirect importance to you as a PL/!
programmer. The storage your program "sees" is virtual
storage. Your PL/! program cannot "see" real storage or
affect the way real storage is used to implement virtual
storage for your program.

The amount of real storage available to support the
execution of your program may, of course, impact your
program's performance by determining the amount of paging
required to execute your program.

Appendix F. MVS/Extended Architecture (MVS/XA) Considerations 453

3. 370/XA provides a new interface between a central processor
and the I/O devices attached to it. This interface, called
the Dynamic Channel Subsystem, supersedes the channel
architecture defined by System/370.

This facility is only of indirect importance to you as a
Pl/I programmer. Your program probably performs I/O
operations, but the details of how this is done are handled
by the hardware and the operating system, not by your PL/I
program.

Your specification of a Pl/I file declaration or a PL/I
environment option is not affected by the Dynamic Channel
Subsystem.

4. 370/XA provides a facility called.the Interpretive Execution
Facility which supersedes the coding techniques and hardware
assists employed on System/370 to support "virtual
machines". This facility of 370/XA is supported by the
VM/XA Migration Aid.

This facility is of interest only indirectly to you as a
Pl/! programmer. Your program might be executed under MVS
or MVS/XA in a virtual machine provided by the 370/XA
Interpretive Execution Facility and the VM/XA Migration Aid,
but you would not be able ~o control or influence this fact,
and nothing you coded in your Pl/I program would depend on
this fact.

The rest of this appendix will be devoted to describing the
3l-bit addressing of virtual storage, and how this relates to
your PL/! program under PL/I Release 5.

COMPATIBILITY CONSIDERATIONS

Pre-Release 5 Pl/I object modules, pre-Release 5 Pl/I library
modules, and the PL/I Checkout Compiler's interpreter facilities
all contain instruction sequences that are incompatible with
31-bit addressing on MVS/XA, but !hey are s~pported on MVS/XA in
24-bit addressing mode so that you can continue to use them.

The fact that a computer implements 370/XA architecture and is
being controlled by the MVS/XA operating system does not
automatically mean that any program written for System/370 can
run on that computer and obtain the benefits of 31-bit
addressing of virtual storage.

In fact, many, if not most, programs written for System/370
contain instruction sequences that are incompatible with 370/XA.
The most common area of difficulty (though not the only one)
relates to the use of the high-order byte of a binary word which
is to be used as a storage address to hold some unrelated
entity. This was a common and appropriate programming technique
when storage was a much scarcer resource than it is today.

Very few of System/370 application programs running today are
suitable for exploitation of 31-bit addressing. Since these
programs must continue to function, however, 370/XA was equipped
with the capability to operate in "24-bit addressing mode".

Practically all System/370 programs that run on MVS (or VSl)
today can run on MVS/XA in 24-bit addressing mode. In
particular, this includes your Pl/I programs that have been
compiled bv Release 5 of the PL/I Optimizing Compiler or prior
releases or by Release 3 of the Pl/I Checkout Compiler.

At anyone time, a computer which is executing in 370/XA mode is
using either 3l-bit addressing mode or 24-bit addressing mode.
This addressing mode is implemented by generating storage
addresses from the instructions that comprise a program and then
using either the last 31 bits or the last 24 bits as the
effective generated address.

454 OS Pl/I Optimizing Compiler: Programmer's Guide

Which interpretation, (that is, which addressing mode) is used
depends on a bit (the "AMODE" bit) in a control word of the
computer called the Program status Word or PSW.

When the addressing mode is 24-bit, the program cannot address
data or branch to an instruction at any address higher than the
largest 24-bit binary number: 16M or 16,777,215 bytes. This
address value represents an addressing boundary that a program
cannot cross as long as the current addressing mode remains
24-bit.

When the addressing mode is 31-bit, the program can address data
or branch to an instruction at any address up to the largest
31-bit binary number: 2 gigabytes, 2048 megabytes, or
2,147,483,647 bytes. A program which is executing with 31-bit
as the current addressing mode can reference data or branch to
an instruction at any address up to the above limit, including,
of course, data and instructions located at addresses below 16
megabytes.

370/XA supplies instructions which can be executed by any
program to switch the setting of the AMODE bit, and thus switch
the machine to a different addressing mode. This process is
called mode switching, and the mode of operation it permits,
that of alternating between 24-bit addressing mode and 31-bit
addressing mode, is called ubi-modal operation". Both modes are
entirely native modes of operation for a 370/XA processor. The
MVS/XA operating system itself uses both of these modes of
operation for different portions of its own code.

CONSIDERATIONS FOR RELEASE 4 PROGRAMS

When you execute one of your old programs on MVS/XA, for example
one compiled by Release 4 of the PL/I Optimizing Compiler, there
are instruction sequences embedded within it which cannot work
correctly in 31-bit addressing mode. Therefore, the MVS/XA
operating system must set the addressing mode to 24-bit before
it calls your program.

For your program to be able to access its own instructions and
data, in fact, MVS/XA must have loaded your program into storage
below 16 megabytes. These facts imply that MVS/XA must have
been able to tell ahead of time that your program was restricted
to operate in 24-bit addressing mode.

MVS/XA addresses this requirement by assigning attributes to
load modules. These attributes define two things:

• Where MVS/XA is to place the load module wi,en it loads it
into storage. This property is called "residency mode", or
"RMODE".

• What addressing mode MVS/XA is to establish in the computer
before it branches to the load module. This attribute of a
load module is called the "addressing mo~e", or "AMODE".

AMODE in this context is a load module attribute, not the
current addressing mode of the computer. RMODE and AMODE are
simply attributes given to load modules by the linkage editor
and honored by the operating system when it loads the load
module into storage and branches to it. If the load module
thereafter switches to a different AMODE, that is its business,
presuming that it is coded correctly to accomplish what it needs
to do.

A PL/I Release 4 load module has by default the attributes
RMODE(24) and AMODE(24). Thus MVS/XA knows to load it into
storage below 16 megabytes and knows to establish 24-bit
addressing mode as the current addressing mode before branching
to it.

Appendix F. MVS/Extended Architecture (MVS/XA) Considerations 455

These default values of AMODE 24 and RMODE 24 apply in general
unless specific action is taken to override them, and they
should not be overridden unless it is certain that a particular
load module is capable of executing successfully in AMODE 31.

AMODE RMODE EXCEPTIONS TO DEFAULTS

If only Release 5 object modules and resident libraries are
linked together, the resulting load module is AMODE(31) and
RMODE(ANY) and is compatible with 31-bit addressing on MVS/XA.
This load module is also compatible with MVS/SP 1.3 execution.

Other settings of AMODE and RMODE can arise in two different
ways:

1. A language processor other than the PL/I Release 5 compiler
may introduce output object modules flagged with an
indication such as AMODE(ANY) and RMODE(ANY). The linkage
editor, when it finds that all such load modules or object
modules that it combines into a load module have these
attributes, will assign AMODE(31) and RMODECANY) to the
resultant load module. A single RMODE(24) suffices to
"demote" the resultant load module to RMODE(24). An object
module flagged AMODE(24) produces an entry point with the
attributes AMODE(24) and RMODE(24).

Note: Early versions of the operating system assigned
an AMODE corresponding to the entry.

2. You can supply linkage editor parameter specifications to
force the linkage editor to supply specific attributes to a
load module. This is safely and commonly done to force
either RMODE(24) or the combination of RMODE(24) and
AMODE(24).

AMODE AND RMODE SUMMARY

If you use this facility to force the linkage editor to
assign attributes indicating that 31-bit addressing mode is
acceptable when this is not what the object module
information supplied to the linkage editor would normally
imply, it is your responsibility to establish that the
program can actually be executed with your specifications.

Summarizing somewhat more precisely the AMODE and RMODE
attributes of load modules:

• AMODE can be set to any of the following values:

AMODE 24. The program is designed to receive control in
24-bit addressing mode.

AMODE 31. The program is designed to receive control in
3l-bit addressing mode.

AMODE ANY. The program is designed to receive control
in either addressing mode.

• RMODE can be set to any of the following values:

RMODE 24. The program is design to reside below 16
megabytes in virtual storage. MVS/XA will always place
the program below 16 megabutes.

RMODE ANY. The program is designed to reside at any
virtual storage location, either above or below 16
megabytes. MVS/XA places the program above 16 megabytes
unless there is no suitable virtual storage above 16
megabytes.

456 OS PL/I Optimizing Compiler: Programmer's Guide

USE OF MVS/XA FACILITIES BY PL/I RELEASE 5

The MVS/XA concepts of current addressing mode and the load
module attributes of AMODE and RMODE imply the following general
characteristics of program execution under MVS/XA.

1. If a program is ever to execute in 24-bit addressing mode,
it must reside below 16 megabytes. A load module containing
such a program must be given the RMODE(24) attribute to
cause MVS/XA to load it into storage below 16 megabytes.

2. If a program is to refer to data located at addresses above
16 megabytes, then it must at that moment be executing in
31-bit addressing mode.

3. Since the implementation mechanism used by overlay load
modules is incompatible with 3l-bit addressing, MVS/XA
supports overlay modules in, and only in, 24-bit addressing
mode.

CHARACTERISTICS OF RELEASE 5 MODULES

Object modules and load modules produced by PL/I Release 5 and
the Pl/I Resident Library Release 5 have the following specific
characteristics:

1. Object modules produced by PL/! Release 5 have the
attributes AMODECANY) and RMODECANY). The library modules
that comprise the Release 5 Pl/I Resident Library also have
the attributes AMODECANY) and RMODECANY). As a result, a
load module comprised entirely of PL/! Release 5 object code
and Pl/I Release 5 Resident library code will be given by
default the attributes AMODEC3l) and RMODECANY) by the
MVS/XA linkage editor. Such load modules can be loaded into
storage above 16 megabytes and can be executed entirely in
31-bit addressing mode. In this case, PL/! STAT!C storage,
since it is link edited with the load module, also resides
above 16 megabytes.

You can override the default load module attributes when you
link edit your load module if you wish to do so.

2. Pl/I Release 5 load modules may utilize the HEAP option to
separate CONTROLLED variables and dynamically allocated
BASED variables from the storage associated with the ISA.
If the HEAP option is used and the PL/! Release 5 program is
being executed in 31-bit addressing mode, then PL/I
variables allocated with a PL/I ALLOCATE statement may
reside above 16 megabytes.

3. The control blocks that comprise the PL/! execution-time
environment and the PL/I execution-time stack, including all
AUTOMATIC storage, reside below 16 megabytes, regardless of
the program's AMODE and regardless of whether or not the
HEAP option is used.

ASSEMBLER ROUTINE TO MODE-SWITCH

No mode-switching between PL/I programs link edited into a
single load module is provided by PL/I Release 5. You may
insert calls to an Assembler language program to switch modes
provided that you conform to the general MVS/XA constraints
described above.

An example of a linkage assist routine to switch from a caller's
3l-bit or 24-bit addressing mode to 24-bit addressing mode and
back upon return appears in Figure 163 on page 458. The example
shows only the code necessary for mode-switching. The following
are not shown in the figure:

1. register saving

Appendix F. MVS/Extended Architecture CMVS/XA) Considerations 457

2. save area chaining

3. acquiring a PL/I DSA or a save area

Figure 127 on page 297 gives an example of this omitted code.

A PL/I program would call this linkage assist routine to
transfer control to an AMODE(24) routine in the same load
module. The linkage assist routine would switch to 24-bit
addressing mode and transfer control to the AMODE(24) routine.
The AMODE(24) routine would return control to the linkage assist
routine, which would switch back to the caller's addressing mode
before returning control to the caller.

Variations of the code sequence in Figure 163 can be used to
switch modes within a Pl/I procedure or to switch from 24-bit or
31-bit addressing mode to 31-bit addressing mode and back. To
switch modes within a Pl/I procedure, a linkage assist routine
could switch addressing mode and return to the caller, allowing
the caller to process in a different addressing mode. A similar
linkage assist routine could be called to return to the original
addressing mode. When switching to 31-bit addressing mode, the
leftmost bit of the target address register must be on before
the BASSM or BSM instruction is executed.

GLUEMOD CSECT,
GLUEMOD AMODE ANY
GLUEMOD RMODE 24

USING *,R15 now executing AMODE 31 or 24
* Testing the CVT for MV5/XA is necessary only if the
* program must be portable between XA and non-XA systems

*
5T Rn,SAVERn save caller's register content

L
USING
TM
BO
L
L
BR

(use a DSA for reentrant code)
Rn,16(O,O) locate CVT
CVT,Rn addressability for CVT
CVTDCB,CVTMVSE are we on MVS/XA !
MVSXA yes, go switch AMODE
Rn,SAVERn restore caller's register content
R15,=V(COBOLRTN) call COBOL
R15 branch to COBOL routine

* MVSXA DS
L
5T

OH
Rn,SAVERn
R14,SAVER14

and COBOL will go back to PL/!

* *

* *

*

restore caller's register content
save caller's return addr
some place (a D5A is needed for
reentrant code)

L
BASSM

R15,=V(COBOLRTN) call COBOL routine
R14,R15 switching to AMODE(24) and

need to reestablish base
DROP Rl5
USING *,RI4
L RI4,SAVERI4
BSM O,RI4

CVT D5ECT=YES

saving old AMODE
register when control returns

Return address
Return to caller restoring
caller's AMODE

Note: BASSM and BSM are valid only on MVS/XA machines.
The program executing a mode switch must be RMODE(24)
unless the BASSM or BSM target instruction is in an
RMODE(24) module.

Reference documents:

• MVS/XA Conversion Notebook - GC28-1143

• MVS/XA System Programming Library:
31-Bit Addressing - GC28-11S8

Figure 163. Example of Code for Mode-Switching

458 as PL/I Optimizing Compiler: Programmer's Guide

BIT DATA TYPE RESTRICTION

User variables with the BIT data type must reside at virtual
storage addresses below 256 megabytes. This requirement arises
because certain code sequences generated by the PL/I Optimizing
Compiler form "bit-level" data addresses. Such an address is
obtained by generating in a general purpose register of the
computer the address of the byte of storage which contains the
first bit of the bit string or bit array and then multiplying by
8 (shifting that address left three bits) and inserting the bit
offset of the first bit.

If the byte address was a 3l-bit address, then the resultant
bit-level address would be 34 bits long. Such an address will
not fit within the 32-bit general purpose registers of
System/370 or 370/XA. This problem will not arise if the
current addressing mode is 24-bit or if the byte address of the
bit variable contains no more than 28 significant bits (256
meg).

If this problem arises at execution time and either the PL/I
SPIE or STAE option is in effect, the PL/! error condition may
be raised. Output could be erroneous or some unpredictable
error could result. In most cases, this problem can be
circumvented in one or more of the following ways:

1. Restricting the region size to less than 256 megabytes.

a. Restrict the PL/I program to less than 256 megabytes.

• See MVS/XA System Programming library: System
Modifications

• See MVS/XA System Programming Library: User Exits.

b. With MVS/SP 2.1.2, use the REGION parameter by:

• Finding the system "high water mark" above 16
megabytes.

• Setting REGION = 256M - "high water mark".

2. In the case of variables which would be in a heap area if
the HEAP option were to be used, either refraining from use
of the HEAP option or using it with the BELOW sub-option.

3. In the case of STATIC variables, giving the load module the
RMODE(24) attribute regardless of its AMODE attribute.

4. In cases where the above circumventions are infeasible,
making sure that all bit variables have the AUTOMATIC
attribute, since all AUTOMATIC storage is located below 16
megabytes.

5. Reserve space using a character field. Move the character
field to an AUTOMATIC character field that can then be
redefined as bit.

UNUSUAL ARRAY DECLARATIONS

Certain relatively unusual array declarations, in particular
declarations in which both the lower and upper subscript bounds
are negative numbers, may fail in 31-bit addressing mode on
MVS/XA if the arrays happen to be allocated at very high address
values in virtual storage.

PL/I addresses arrays by generating an address called the
virtual origin. Regardless of addressing mode, the virtual
origin is neither a 24-bit address nor a 51-bit address; it is a
signed binary full-word. It i~ never used as a storage address;
it is only a term in the computation of a storage address. The
virtual origin is that address at which the array element whose

Appendix F. MVS/Extended Architecture (MVS/XA) Considerations 459

subscript values are all zero would be located, whether or not
such an array element actually exists.

If the lower and upper subscripts of an array are both positive,
then the virtual origin lies at a lower address than any actual
array element. In fact the value of the virtual origin address
may be negative, and PL/I object code and the PL/I library are
designed to handle this eventuality.

If the lower bound is negative and the upper bound is positive,
then the virtual origin is within the array, and thus
addressable without difficulty.

If the lower bound and the upper bound are both negative
numbers, then the virtual origin lies at an address higher than
any actual element of the array, Such an address could
potentially lie above the highest address defined by 31-bit
addressing. (The 24-bit addressing mode counterpart, that the
address lies above 2**24, is not a problem since the virtual
origin address is a signed binary full-word.)

This problem is extremely unlikely to arise, since few arrays
are declared with both lower and upper subscript bounds
negative, and the array would have to be located at a very high
virtual address.

If the problem arises and either the SPIE or STAE execution-time
option is in effect, the PL/I error condition could be raised
when object code or library code attempts to compute the address
of the virtual origin. Output could be erroneous or some
unpredictable error could result.

One circumvention would be to force the array to be located at a
lower address in virtual storage. This could be done by one or
more of the following techniques:

• Changing the order in which ALLOCATE statements for
different variables in the program are issued.

• Refraining from the use of the HEAP option, or using the
HEAP option with the BELOW sub-option.

• Giving the load module the RMODE(24) attribute.

• Giving the array in question the AUTOMATIC attribute.

If the above approaches are inadequate, undesirable, or
infeasible, then it will be necessary to change the declaration
of the array so that at least the upper bounds of the array have
non-negative values and to adjust the subscript expressions
accordingly.

INTERLANGUAGE COMMUNICATION

PL/I Release 5 supports interlanguage communication with both
COBOL and FORTRAN. The language products supported include OS
FORTRAN-CH) Extended, VS FORTRAN, OS/VS COBOL, and VS COBOL II.
As has been the case in the past, interlanguage calls to COBOL
and/or FORTRAN cannot be made from FETCHed procedures.

If all the object modules concerned were compiled by PL/I
Release 5, VS FORTRAN, or VS COBOL II, then the resultant load
module can have the AMODECANY) and RMODECANY) attributes.

PL/! STATIC EXTERNAL variables can be bound to the same storage
locations as FORTRAN named COMMON whether the RMODE of the load
module is RMODE(24) or RMODE(3l), provided that the FORTRAN
COMMON is not VS FORTRAN "dynamic COMMON".

460 OS PL/I Optimizing Compiler: Programmer's Guide

LIMITS ON SIZES

Limits on subscript sizes and string sizes are unchanged in PL/I
Release 5. Subscripts are still restricted to FIXED BINARY
(15). However, the actual size of a multi-dimensional array can
be much greater on PL/I Release 5 by making use of the storage
available above 16 megabytes.

OBJECT CODE AND LIBRARY MODULES COMPATIBILITY

The requirements for mixtures of different levels of object
code, resident library modules, and transient library modules
have not been changed by Release 5. Neither object modules nor
resident library modules can be later than the transient
library, and all the transient library modules must be at the
same level. No object module can be at a later level than the
resident library, and all the resident library modules must be
at the same level.

Thus if even one procedure in a load module has been compiled on
Release 5, then the Release 5 Resident Library and Transient
Library are required.

In addition, Release 5 adds the requirement that when Release 5
object modules are link edited with object modules produced by
the PL/I Checkout Compiler R3, the load module must be link
edited with the PL/I Resident Library R5; that is, PLICMIX
cannot be used.

PL/I object modules compiled by prior releases of the PL/I
Optimizing Compiler and/or the PL/I Checkout Compiler Release 3
can be link edited with PL/I Release 5 object modules and/or
PL/I Release 5 Resident Library modules.

Since the pre-Release 5 object modules, however, contain
instruction sequences which are incompatible with execution in
31-bit addressing mode, load modules containing pre-Release 5
object modules must be given the attributes AMODE(24) and
RMODE(24).

OTHER CHARACTERISTICS OF RELEASE 5 IN MVS/XA

The general constraints imposed by MVS/XA and the specific
characteristics of PL/I Release 5 define additional
characteristics of PL/I Release 5 in the MVS/XA environment:

1. The PL/I Transient Library interfaces to a number of system
service and data management facilities which must be invoked
in 24-bit addressing mode. This is made possible by giving
most of the modules in the Transient Library the attributes
AMODECANY) and RMODE(24), thus meeting the first general
MVS/XA constraint described under "Use of MVS/XA Facilities
by PL/I Release 5" on page 457. The mode switches to and
from 24-bit addressing mode are not directly visible to your
program. The XA instructions that perform these
mode-switches are bypassed, of course, on non-XA systems.

2. As is the case with prior releases of the PL/I Transient
Library, the modules that comprise it are reentrant and can
be made resident in your system. The RMODE(24) attribute
will force them to reside in the link pack area below 16
megabytes.

3. The PL/I Shared Library is supported by PL/I Release 5 on
both XA and non-XA systems; however the load modules which
actually contain the shared Resident Library modules must
reside below 16 megabytes on MVS/XA unless all users of the
shared library have the AMODE(ANY) attribute.

For most PL/I Release 5 users, at least initially, these
load modules will require the attributes AMODE(ANY) and

Appendix F. MVS/Extended Architecture (MVS/XA) Considerations 461

TOTAL OPTION

LOCATE MODE I/O

RMODE(24), and will reside in the MVS pageable link pack
area below 16 megabytes.

If all users of the shared library have the AMODECANY)
attribute, then the shared library load modules can be given
the RMODECANY) attribute and placed in the extended link
pack area above 16 megabytes. This situation results from
the fact that no mode-switching is done within the PL/I
Resident Library.

The TOTAL option of RECORD I/O, which under earlier releases of
the PL/I Optimizing Compiler caused in-line code to be generated
for certain I/O statements for certain types of files and
datasets, has been given a different implementation on PL/I
Release 5.

The code formerly generated directly accessed data management
control blocks and directly called OS data management. These
functions must generally be performed in 24-bit addressing mode
on MVS/XA.

The Release 5 implementation generates code to call special
"fast path" modules in the PL/I Transient Library, so that
mode-switching can be performed if necessary. This
implementation results in a longer instruction path than on
prior releases, but is still significantly faster than not using
the TOTAL option.

The use of PL/I LOCATE mode I/O may require the use of extra
buffers under MVS/XA. Extra buffers are required when the data
is located above 16 megabytes, and data management requires that
it be below 16 megabytes.

FETCH/RELEASE CONSIDERATIONS

PL/I Release 5 supports the PL/I FETCH/RELEASE facility. No
special considerations apply to this support when both the
fetching load module and the fetched load modules have the
AMODE(ANY) attribute or both have the AMODE(24) attribute.
However, PL/I Release 5 supports the fetching of a load module
which has a different AMODE attribute than that of the fetching
load module. PL/I will perform the mode-switches in this case,
and the following constraints apply:

1. If any fetched module is to execute in 24-bit addressing
mode. then the fetching module must be loaded into storage
below 16 megabytes, and thus must have the RMODE(24)
attribute regardless of its AMODE attribute.

2. It is your responsibility as the programmer to ensure that
any variables passed as parameters to a fetched procedure
are addressable in the AMODE of the fetched procedure. Thus
for any fetched load module which is to be executed in
24-bit addressing mode:

• If any parameter resides in a HEAP area because the HEAP
option is in effect, then the BELOW sub-option of the
HEAP option must be specified.

• If any parameter resides in STATIC storage of the
fetching load module, then the fetching load module must
have the RMODE(24) attribute so that its STATIC storage
will be below 16 megabytes.

• No special considerations apply to parameters with the
AUTOMATIC attribute, since AUTOMATIC storage for all
procedures resides below 16 megabytes. If the first two

462 OS PL/I Optimizing Compiler: Programmer's Guide

constraints cause problems, then one solution is to copy
the variable to a like variable with the AUTOMATIC
attribute and pass the copy to the fetched AMODE(24)
procedure.

3. PL/! Release 5 object modules may be link edited into
overlay load modules and executed as overlay load modules on
either XA or non-XA systems, but such modules have the
attributes AMODE(24) and RMODE(24).

When a Pl/I program fetches another Pl/I procedure, it is
possible for a condition to arise in the fetched procedure for
which a Pl/I ON-unit was established in the fetch~ng procedure.

PL/I Release 5 imposes the restriction that if an ON-unit is
established while the current addressing mode is 24-bit, and the
condition is raised while the addressing mode is 3l-bit, then
the ON-unit will not be entered. This is because PL/I must
invoke the ON-unit in the addressing mode in which it was
established.

If the ON-unit was established in 24-bit addressing mode but the
condition arose in 3l-bit addressing mode, the code and data
required to process the error may not even be addressable in
24-bit addressing mode.

THE PL/I NULL POINTER AND MVS/XA

Pl/I provides two data types that point to other user variables:
pointers and offsets. Pointer variables and offset variables are
similar in function but not identical.

Pointers point to data items in storage for a particular
execution of a PL/I program. A pointer value may be set to
point to an already existing variable by use of the ADDR
built-in function, set via READ or LOCATE statements with the
SET option, or set via an ALLOCATE statement which allocates a
BASED variable.

Offset variables point to, and only to, PL/I variables which are
allocated within PL/I AREA variables by use of the ALLOCATE
statement with the IN (area-name) option. If the entire area
variable is written via a PL/I WRITE statement, then the record
thus written may be read and processed by either the same or a
different execution of the program, or read and processed by
some other program. The value of an offset variable is
meaningful with respect to the beginning of the area, not
storage in general.

For a more detailed discussion of pointers, offsets, and based
storage in general, see the Pl/I Language Reference Manual.

While it is clear that the value of a pointer (or offset) that
points to a variable is the storage address of the variable (or
the relative address within a PL/I area of the variable), there
is a need to have a way to indicate that a pointer or offset
does not point to anything at all.

This is accomplished by assigning to a pointer or offset
variable the value provided by the PL/I NULL built-in function.
This value is called the nnull pointer" or nnull offset".

While a non-null value of a pointer or offset variable points to
a storage location, the null pointer is merely a token which
means, "This pointer (or offset variable) does not point to
anythingn .

The valid uses of NULL are:

1. To assign NULL to a pointer or offset variable which does
not point to a storage location

Appendix F. MVS/Extended Architecture (MVS/XA) Considerations 463

2. To compare the current value of a pointer or offset variable
to NULL to determine whether or not the pointer or offset
variable currently points to a storage location.

It is a programming error to use the null pointer as though it
were the address of something.

As a matter of implementation, programs compiled by the PL/I
Optimizing Compiler have always used the hexadecimal value
"FFOOOOOO" for the null pointer and the null offset variable.
This is the value returned by the NULL built-in function. This
implementation is retained in PL/I Release 5.

The convention defined by MVS/XA for use of the high-order bit
to indicate addressing mode applies to branch addresses which
are to be used in 370/XA mode-switching branch instructionsr not
to data addresses. Pl/I pointers point to data; they do not
represent branch addresses.

Any non-null pointer or offset value generated by PL/I has the
high-order bit off (zero). Therefore, no pointer or offset
value generated by PL/I can ever be confused with the null
pointer.

If you provide to Pl/I a pointer value which might have the
high-order bit on and is intended to be used in 3l-bit
addressing mode, you should ensure that the high-order bit is
turned off, at least before you compare it to the null pointer.

Note that there is no reason to compare a pointer to NULL if you
know the pointer or offset variable points to something in
storage.

As a matter of good programming practice, if you pass a based
variable in a subroutine call, and it is possible that the based
variable may not exist, you should pass a pointer to the based
variable, not the based variable itself. Then the parameter
list constructed by Pl/I will contain the address of the
pointer, and the called program can compare the pointer to the
NUll built-in function to see if the based storage exists.

If you pass the based variable itself, and the based variable
does not exist, then any value in the parameter list for the
non-existent based variable is garbage, and any reference to the
non-existent based variable is in error.

Such a program is inherently invalid in either 24-bit addressing
mode or 3l-bit addressing mode, and would be invalid no matter
what value is used for the null pointer.

Pl/! pointers or offset values that do not point to an actual
variable in storage are not initialized to NULL by PL/I. Any
such initialization must be done by you. Initializing such
pointers or offset variables to NULL is good programming
practice.

464 OS PL/I Optimizing Compiler: Programmer's Guide

APPENDIX G. IMS CONSIDERATIONS FOR PL/I RELEASE 5

Many IBM customers use PL/I as an application programming
language in the IMS environment. The interface between PL/I and
IMS has traditionally resided entirely within IMS, and the
documentation of how a programmer would write either a batch IMS
program or an online IMS/DC transaction in PL/I has been
provided entirely by IMS documentation. PL/I releases prior to
PL/I Release 5 provided neither special support nor special
documentation for the IMS user.

PL/I Release 5 provides some special support in the IMS/VS
Release 1.2 and IMS/VS Release 1.3 environments, including
enhanced PL/I - IMS error handling support for both these
releases and support (with IMS Release 1.3 only) for the 31-bit
addressing capabilities of MVS/XA.

BACKGROUND FOR ENHANCED PL/I-IMS ERROR HANDLING

The IMS environment, especially the IMS/DC environment, is very
sensitive to errors and error handling issues, since a failing
IMS transaction or program can potentially contaminate an IMS
database. For this reason, it is essential that IMS know about
the failure of a transaction or program that has been updating a
database so that it can back out any updates made by that
failing program.

PL/I provides extensive error handling facilities to the
application programmer, but in the absence of coordination of
error handling facilities between IMS and PL/I, the IMS
implementers have found it necessary to recommend to PL/I
programmers writing IMS programs that they disable much of the
PL/I error handling function available in the PL/I language.

This recommendation has taken the form of instructing the PL/I
programmer tOI

• Execute PL/I programs with the NOSPIE and NOSTAE execution
time options in effect rather the SPIE and STAE options.
(This means that it has not been possible (or at least,
supported) to get control in user-coded PL/I ON-units after
any error other than a PL/I software-detected condition.)

• Provide an installation-modified version of a PL/I module
called IBMBEERA, described in the PL/I Installation Manual,
so as to cause any PL/I program terminated in error to be
terminated via an operating system ABEND request. (Such a
termination in error could only arise from a PL/I
software-detected condition anyway.)

These injunctions sought to prevent these problems:

1. If a PL/I program was executed with the STAE option, then
PL/I would have issued an operating system STAE request to
try to get control after an abend occurred. What would
happen then depended on the release of IMS and the version
of the operating system in use, as foilowsl

• If the release of IMS and the version of the operating
system were such that IMS was also using an operating
system STAE request to get control after an error, then
the PL/I STAE request and the IMS STAE request would
interfere with ~ach other.

IMS would in this case re-issue its own STAE macro each
time the PL/I program called IMS. This required in turn
that IMS re-instate the PL/I STAE request before
returning to PL/I.

Appendix G. IMS Considerations for PL/I Release 5 465

This represents enormous execution-time overhead, but it
ensured that if the abend arose when IMS was in control,
IMS could get control to terminate the transaction and
back out any updates that the failing program had made
to IMS databases.

If the PL/I program itself was in control when the abend
occurred, then the PL/I error handler (and thereafter
some PL/I ON-unit if one had been established) would get
control.

If the user at that point repaired the error or issued a
roll-back call to IMS to back out updates by the
transaction, then no harm was done.

If the user did not repair the error, however, but took
normal return from an ERROR ON-unit (or executed the
program with the STAE opti6n and did not even establish
an ERROR ON-unit), then the program would appear to IMS
to have terminated normally when in fact it had failed
and might have contaminated a database.

• If the operating system was MVS/370 or MVS/XA, and the
IMS release was a fairly recent one, then IMS had
established its own error handling environment not by
use of a STAE request but by use of the newer MVS ESTAE
request. PL/I, of course, had issued its usual STAE
request.

If both STAE and ESTAE requests are in effect
simultaneously, then the ESTAE requestor gets control,
not the STAE requestor, when an abend occurs. In this
situation, therefore, even if the abend arose while the
PL/I program was in control, the PL/I error handler
would never get control. Thus no code that you put into
your PL/I error ON-unit could ever get control either.

Since a program written to be executed with the STAE
option could very well contain code intended to be
executed in case of error, and that code could be
important to the integrity of the overall application,
the fact that this code would no longer be executed
represents a profound and potentially dangerous change
in the "semantics" of your program and the IMS
application of which it is a part. Moreover, this
change in semantics could be well hidden and quite
unexpected, occurring after a change of IMS releases or
a change from VSI to MVS.

To resolve these problems, the advice was given to execute
the PL/I program with the HOSTAE option.

2. If the PL/I program was being executed with the Pl/I SPIE
option in effect, then it was intended by IMS that the IMS
region controller be told that SPIE was in effect so that
IMS could alternately reinstate its own SPIE request and
PL/I's SPIE request.

As was the case with STAE above, this represented enormous
overhead. Furthermore, it opened up some of the same
integrity exposures described above for STAE.

To resolve these problems, the advice was given to execute
the PL/I program with the NOSPIE option.

3. In any case a PL/I software-detected error (e.g.,
CONVERSION) could arise in the program and represent an
error. This condition, if not corrected, could cause ERROR
to be raised and could then cause the program to terminated
in error.

IMS would not ordinarily know that the program had
terminated in error, and thus could not back out updates
made by the failing program.

466 OS PL/I Optimizing Compiler: Programmer's Guide

To resolve this problem the advice was given to provide an
installation-modified version of IBMBEERA to force any
non-normal termination of a PL/I program to result in a
system ABEND request.

Pl/I Release 5 provides support to give back to the Pl/I
programmer the error handling facilities of PL/I in those cases
in which the ABEND or program check occurs within the Pl/I
program as opposed to IMS. Specifically, on Pl/I Release 5 with
IMS Release 1.2 or 1.3:

• You may execute your Pl/I program with the STAE and/or SPIE
options, provided that it interfaces to IMS by calling
PlITDLI or ASMTDlI or EXECDLI (as opposed to calling some
private IMS interface) and provided that you recompile every
PL/I program in the transaction load module using Pl/I
Release 5. This implies, of course, that you must then
re-link-edit the load module with the Release 5 PL/I
Resident library and execute it with the Release 5 Pl/I
Transient library.

• If you use the SPIE option, you need not tell the IMS region
controller that your program is issuing SPIE macros.

• Pl/I will route calls to (and returns from) PlITDLI and
ASMTDlI through a Pl/I library routine and keep track of
transfers of control between your PL/I program and IMS.
Thus if an abend or program check occurs and the Pl/I error
handler gets control, it can tell if the problem arose on
the IMS side of the interface or on the PL/I side of it.

• If a program check or abend occurs in IMS, then when the
PL/I exception handler gets control it will immediately
npercolaten the error back to IMS. No Pl/I condition will
be raised, no Pl/I ON-unit will get control, no PL/I message
will be produced, and IMBEERA will not get control.

• If a program check occurs in the Pl/I program rather than in
IMS, then all the facilities of Pl/I error handling apply,
provided that you meet the certain conditions when you code
your program. For any error condition that arises, you must
do one of the following:

1. Resolve the error completely so that the application can
continue, or

2. You must tell IMS to back out the program's updates by
issuing a rollback call to IMS and then terminate the
program, or

3. You must make sure that the program terminates in error
and that an installation-modified IBMBEERA applies which
will cause any non-normal Pl/I program termination to
result in an operating system ABEND request.

The kinds of errors you are most likely to be able to fix in
your program are Pl/I software-detected conditions such as
CONVERSION, program check interruptions which raise the Pl/I
OVERFLOW, UNDERFLOW, FIXEDOVERFlOW, or ZERODIVIDE
conditions, and a program check interruption for a data
exception (which raises ERROR with ONCODE 8097). It is
relatively unlikely that you can resolve other types of
program checks or system abends in your program.

Any IMS program which invokes IMS via some private interface or
which you do not choose to recompile and re-link-edit on Pl/I
Release 5 should be executed with NOSPIE and NOSTAE in effect.
Even so, it should either contain code to issue a rollback call
to IMS before terminating after an error, or it should be
executed with an installation-modified IBMBEERA which ensures
that any non-normal Pl/I program termination results in an
operating system ABEND request.

Appendix G. IMS Considerations for Pl/I Release 5 467

PL/I RELEASE 5, IMS 1.3, AND MVS/XA

When PL/I programs compiled by PL/I Release 5 are executed with
IMS 1.3 or SUbsequent, the PL/I programs can be executed in
either 24-bit or 31-bit addressing mode. Such programs can have
load module attributes of RMODE(24) and AMODE(24), of course,
but they can also have the attribute of AMODE(ANY). With
AMODECANY), the RMODE attribute can be either RMODE(24) or
RMODECANY).

IMS imposes the restriction that all parameters passed to IMS in
a call to PLITDLI or ASMTDLI except the parameter count must be
located below 16 megabytes. All storage areas that are referred
to in the paramater list of a COBOL, PL/I, or Assembler
application program call to IMS/VS Version 2, Release 1, or
IMS/VS Version I, Release 3, must reside in virtu~l storage
below 16 megabytes. This includes the function, the I/O area,
the SSA(s), the MOD name, and the destination name. The
parameter count field, if present, may optionally reside in the
extended virtual storage area. Note that the names PLITDLI and
ASMTDLI are interpreted to mean IMS interfaces; if they are
being used in any other way in a program, they must be changed.
The PL/I program can meet this condition by using the following
techniques in any combination for the parameters passed to IMS:

• Placing IMS parameters in AUTOMATIC storage. All AUTOMATIC
storage is below 16 megabytes on MVS/XA, regardless of the
RMODE or AMODE of the program.

• Placing IMS parameters in CONTROLLED storage or in BASED
storage which is allocated by PL/I ALLOCATE statements,
provided that such storage is held below 16 megabytes.

Such variables can be forced to reside below the line by
using HEAP(O) to force them to be allocated in the ISA or an
extension to the ISA, or by using a non-zero value for the
HEAP size and supplying the BELOW sub-option of HEAP to
cause the heap area and any extensions to it to be placed
below the line. (Certain IMS variables addressed by the
Pl/I program as BASED variables were actually allocated by
IMS and passed to PL/I by IMS in the first place. These
variables are placed below the line by IMS.)

• Placing IMS parameters in STATIC storage and using a load
module attribute of RMODE(24) to force the load module (and
thus STATIC storage) to be placed below the 16 megabytes.

While the use of RMODE(24) and IMS parameters in STATIC
storage can meet the IMS requirement for IMS parameters to
be below the line, this technique defeats one of the most
attractive possibilities for the IMS user to employ Pl/I
Release 5 in 3l-bit addressing mode on MVS/XA.

For many IMS users, the storage required at execution time for
any particular IMS transaction may be fairly small, and the most
attractive way to use Pl/I Release 5 is actually to code the
PL/I application programs to be reentrant (i.e., to code them so
that they do not alter any STATIC variable and to specify
"OPTIONS(REENTRANT)" on the PROCEDURE statement).

If for the special case of IMS 1.3 and subsequent, the
additional constraint is imposed that STATIC variables not be
passed to IMS via calls to PLITDlI or ASMTDlI, then the Pl/I
programs can be given the load module attributes AMODE(ANY) and
RMODE(ANY) and perhaps placed in the Extended link Pack Area of
MVS/XA.

This can eliminate program loading time, speed up IMS
initialization and restart, and provide the additional integrity
that results from having application programs reside in
protected storage.

468 OS Pl/I Optimizing Compiler: Programmer's Guide

Special Characters

$NEVER-CALL 78
$UNRESOLVED 78 * PROCESS statement 11
XINCLUDE statement 10 .. 60
XNOPRINT statement 47
XNOTE statement 54
XPAGE statement 22 .. 47
XPRINT statement 47
XSKIP statement 22 .. 47

abbreviated syntax of compiler
options 14

abend
See also step abend
codes 292

under CICS 374
during in-line input/output 152
forced 292
handling under IMS 467
in batch compilation 56

absolute addresses 67 .. 99
Access Method Services 384

BLDINDEX command 396
creating alternate index paths 397
DEFINE ALTERNATEINDEX command 395
DEFINE CLUSTER command 384.. 386-389
DEFINE PATH command 397
DELETE command

deleting an alternate index 398_
life of VSAM data sets 385
syntax 390

how to use 389
access methods 116 .. 117
access speed, improving, for indexed
data sets 177

accessing
a consecutive data set

using record I/O 158
using stream I/O 140

a regional data set 189 .. 195-214
an indexed data set 183

ADDBUFF option of ENVIRONMENT 123 .. 176
addressing 67
advanced checkpoint/restart 339
aggregate length table 49
AGGREGATE option 18
ALIAS statement (linkage editor) 80
alignment

of bit strings 309
of data between ASSEMBLER and

PL/I 308
of data in interlanguage

communication 345
alternate index paths 237 .. 391

BLDINDEX command 396
creating 397

for ESDS 249
for KSDS 257

DEFINE ALTERNATEINDEX command 395

DEFINE PATH command 397
DELETE command 398
deleting 398
performance considerations 394
planning and coding with 392
terminology 392
using 392

American National Standard CANS) control
characters

CTLASA chart 163
for source listings 22
printers 143.. 163
punched card devices 163

AMODE (addressing mode) 455
APAR (Authorized Program Analysis

Report) 400-403
APLC abend 374
APLD abend 374
APLE abend 374
APLG abend 374
APLI abend 374
APLM abend 374
APLS abend 374
APLX abend 375
ARGn option in interlanguage

communication 348
arguments

for interlanguage communication 344
in interlanguage communication

and parameters, matching 351
passed to main procedure 30
passing between PL/I and

Assembler 308
passing from COBOL and FORTRAN
routines 349

passing to COBOL and FORTRAN
routines 344

arrays
length table 49
mapping 6

ASCII (American Standard Code for
Information Interchange) 101 .. 104

option of ENVIRONMENT
comparison with DCB
subparameter 125

for consecutive data sets 155
for stream I/O 135
types of files chart 123

records 104
ASSEMBLER

abends under 303
calling ASSEMBLER routines from

PL/I 300
calling PL/I procedures 303
establishing linkage in PL/I

environment 294
invoking a PL/I procedure 295
language listing 54
linkage conventions 295
option 308
overriding and restoring PL/I error
handling 306

use of register 12 303
ASSEMBLER .. OPTIONS 376
associating data sets with files 119
ATTACH macro instruction 62
ATTENTION condition 21
ATTRIBUTES option 18

Index 469

automatic library call
DD statement for 70
introduction 69
main discussion 72
suppressing 97
use of by loader

as default 94
CALL option 97
introduction 90

use of by programmer 264
automatic restart 339

after system failure 341
AUTOMATIC storage

under CICS 368
under MVS/XA 457
with IMS 468

BACKWARDS attribute 159
base library (SYS1.PLIBASE) 72, 274
BASED storage

under CICS 368
under MVS/XA 457
with IMS 468

basic access technique 116
Basic Direct Access Method (BDAM) 116
Basic Indexed Sequential Access Method

(BISAM) 116
Basic Sequential Access Method

(BSAM) 116
batched compilation

main discussion 55
overlaying 84
problems with OBJECT, MDECK, and

DECK 56
BCD (Binary Coded Decimal)

compiler options 18
magnetic tape translation 114

BDAM (Basic Direct Access Method) 116
BISAM (Basic Indexed Sequential Access

Method) 116
BIT data type under MVS/XA 459
BKWD option of ENVIRONMENT 123, 231
blanks, removal of 6
BLDINDEX command 396
BLKSIZE

option of ENVIRONMENT
chart of use with different types
of files 123

comparison with DCB
subparameter 125

for record I/O 127
for stream I/O 135
introduction 101

subparameter of DCB parameter
for consecutive data sets 157,

159 .
for indexed data sets 177, 179
introduction 106

block size
consecutive data sets 158

accessing and updating 160
chart of essential DD

parameters 157
defaults 158
restrictions 161
stream I/O 135

conventions 127
default for print files 144
defined 127

indexed data sets 177
object module 9
PRINT files 144
regional data sets 203
relationship to record length 128
specifying 101

blocking (in general) 101
boundary alignment 6
branching, trace table showing 286
BSAM (Basic Sequential Access

Method) 116
buffers

contents, in dumps 289
default storage allocations 8
general discussion 115
offset option, BUFOFF 155

BUFFERS option of ENVIRONMENT
chart to use with different types of
files 123

comparison with DCB subparameter 125
for stream I/O 135
for teleprocessing data sets 216
main discussion 129

BUFND option of ENVIRONMENT 123, 232
BUFNI option of ENVIRONMENT 123, 232
BUFNO subparameter of DCB parameter

chart for consecutive data sets 159
for indexed data sets 179
introduction 106

BUFOFF option of ENVIRONMENT
comparison with DCB subparameter 125
defaults 156
for consecutive data sets 155
for stream I/O 135
types of files chart 123

BUFSP option of ENVIRONMENT 123, 233
built-in subroutines, restrictions under

CICS 361
bypassing errors 287

CALL
macro instruction 62
option (loader) 97
statement 80

CALL PLICANC statement 342
CALL PLICKPT statement 339

arguments 339
CALL PLIDUMP statement, under CICS 375
CALL PLIREST statement 341
CALL PLISRT statement 316

arguments 316
capacity records

REGIONAL(l) 194
REGIONAL(2) 197
REGIONAL(S) 199

catalog, VSAM 383
cataloged data sets 100, 160
cataloged procedures 273, 281

compile and link-edit 278
compile only 278
compile, link-edit & execute 280
compile, load, & execute 280
IBM-supplied 277
invoking 273
link-edit and execute 280
load and execute 281
modifying 275
multitasking 274
PLIXC 278

470 OS PL/I Optimizing Compiler: Programmer's Guide

PLIXCG 280
PLIXCL 278
PLIXCLG 280
PLIXG 281
PLIXLG 280
shared library 404-405
SYSIN and SYSPRINT files 147

_CATLG subparameter of DISP
parameter 100

chained
records 171
scheduling 115

character set specification 18
CHARSET option 18
CHECK option

restriction under CICS 362, 370
use during program checkout 287

checkout compiler modules 89
checkout, program 282-293

bypassing errors 287
CHECK option 287
compile-time 282-283
condition codes 288
control of conditions 287
dumps 288
dynamic checking facility 287
execution-time 283
file information 290
FLOW compiler option 286
logical errors 284
maehine errors 286
preprocessing 288
return codes 290

checkpoint/restart 339-342
advanced 339
CALL PLICANC statement 342
CALL PLIREST statement 341
checkpoint data set 340
data sets, DD statements for 339
deferred restart 341
modifying activity 342
PLICKPT built-in subroutine 339

arguments 339
RESTART parameter 341
return codes 340
writing a record 339

CHKPT, sort option 330
CICS, PL/I under 360-379, 382

abend codes 374
CICS appendage 379
CICS-supplied interface 363
command-level interface 365
COMMAREA 367
dynamic transaction backout 373
ENVIRONMENT options 369
error handling 372-375
EXEC CICS HANDLE facility 374
IBMBEER 375
interface module 380
interlanguage communication 376
link editing CICS applications 378
macro-level interface 365
nucleus module 381
OPTIONS ASSEMBLER 376
PL/I-supplied interface 363
PLIDUMP 375
program termination 377
restrictions 362

on execution-time options 370
shared library use 377
storage 367
.storage classes 368
SYSPRINT 369
upgrade, CICS Release 1.6.1 360

using CICS facilities 378
writing CICS transactions 364

CKPT, sort option 330
CLOSE statement 119

restriction under CICS 361
closing a file 119
cluster, defining 384
CMS

commands for downloading as PL/I
Optimizer to VM/PC 451

performing program checkout
under 282

CMSLIB TXTLIB
use with VM/PC 450

COBOL
and PL/I, matching
arguments/parameters 351

invoking from PL/I 344
invoking Pl/I routines from 350

examples 350
option of the ENVIRONMENT
attribute 123, 132

with VSAM data sets 229
option, in interlanguage

communication 347, 350
PL/I data type equivalents 345
routines

invoking from PL/I 347, 348
passing arguments from 349
passing arguments to 344
terminating, in interlanguage

communication 359
structures in aggregate length
table 49

CODE subparameter of DCB parameter 106,
159

column binary mode 107-108
combining procedures 74
command-level CICS interface 365
COMMAREA 367
comments, removal of 6
common areas 51, 67
common storage, using in interlanguage

communication 355
communication, interlanguage 343-359

See also interlanguage communication
compatibility of old programs and

MVS/XA 454
compatibility, VSAM-ISAM 234
COMPATIBLE option 285
compilation

batched 55, 84
speed of 25
suppressing 283

COMPILE option 18
compile-time return codes 353
compiler

abbreviations 14
error correction 282
failure

correcting 286
possible causes 283
under CMS 402

general description 2
interface to operating system 4
listing, for APAR 402
listings (SYSPRINT) 10
options 282

defaults 14
introduction 3
main discussion 11
summary table 14
use in checking out program 282
used for compiler listings 46

Index 471

output (SYSLIN, SYSPUNCH) 9
phases 4
temporary workfile (SYSUTl) 9

concatenating
external references 119
libraries 265

condition built-in function values in
trace 290

condition codes 288
See also return codes

condition execution of a job step 290
condition handling

during execution 287
for teleprocessing data sets 219

conditional
compilation 18
subparameter of DISP 106

consecutive data sets
accessing

in record I/O 158
in stream I/O 140

creating 157
defined 149
file attributes and access

methods 117
general description 104
organization 122
record I/O

CONSECUTIVE option of ENVIRONMENT 135,
151

with VSAM 233
continuation line for compiler
options 12

control characters
card devices 163
card punch 164
print

defined 164
types recognized 163

print, effect of on data set 143
specifying in JCL 155

CONTROL option 11
control sections

identification 51
length 50
listing

linkage editor 77
loader 97

control statements 84
linkage editor 79

listing of 74
CONTROLLED storage

under CICS 368
under MVS/XA 457
with IMS 468

conversa'tional checkout 282
CONVERSION error

when using PL/I with IMS 466
conversion feature of 2400-series tape
drives 114

COPY option 285
copying OS PL/I Optimizer modules 451
COUNT option

execution-time 37
main discussion 19
restriction 86
restriction under CICS 362, 371

cross-reference listing
compiler 27, 48
linkage editor 78

CTLASA or CTL360 option of ENVIRONMENT
charts 163-165
comparison with DCB subparameter 125
control codes

for CTLASA 165
for CTL360 165

defined 154
for consecutive data sets 154
for record I/O 109
types of files chart 123
use with SCAlARVARYING 133

CURRENTSTORAGE built-in function under
CICS 376

cylinders
definition 114
index 170
overflow area 171, 182

CYLOFL subparameter of DCB
parameter 106, 179

D option of ENVIRONMENT
for record I/O 125
for stream I/O 135
in summary table 123

D-format records 156
data

conversion feature, magnetic tape
devices 114

for program checkout 282
invalid 285
management 115
on punched cards, protection 113

data alignment in interlanguage
communication 345

data codes
ASCII 101
BCD 18, 101
EBCDIC 18, 101

data sets
access methods 116
accessing

consecutive data sets 140, 158
indexed data sets 183
regional data sets 195-214

ASCII 101, 104
associating with PL/I file 119
blocks 101
cataloged 100
characteristics 106
checkpoint 340
concatenating 121
cylinder

index 170
overflow area 182

DCB (data control block) 117
ddnames 8
defining

consecutive 151
DD statement 105
entry-sequenced 246
key-sequenced 256
relative record 260
stream files 134
VSAM (general) 228

DELETE command, Access Method
Services 390

direct 105
dissociating from PL/I file 119, 121
for sort program 324
independent overflow area 182
index area 170
input, and cataloged procedures 277
labels

472 OS PL/I Optimizing Compiler: Programmer's Guide

general description 105
in library data sets 264
modification by data

management 118
nonstandard 158
nonstandard, on tape 105
nonstandard, specifying block size
with 161

linkage editor 70
loader 93
master index 170, 183
organization

for record I/O 117
options 122
overview 104

overflow area 171
prime data area 171, 183
printer line spacing 106
qualified names 100
record format defaults

for record I/O 125
for stream I/O 136

record formats 101, 135
records 101
sequential 104, 183
source statement library 10
teleprocessing IDS, 214
temporary 9
track index 170
unlabeled 105
unnamed 100
VSAM

See also primary entry for VSAM
(Virtual Storage Access Method)

defining 385
deleting 390
entry-sequenced 383
key-sequenced 383
life of 385
relative record 384
sharing 389

data types in interlanguage
communication 345

DATE, restriction under eICS 361
DB option of ENVIRONMENT

for record I/O 125
for stream I/O 135
in summary table 123

DB-format records 156
DCB (data control block)

defined 117
how operating system completes 118
modifying, in cataloged

procedures 276
overriding in cataloged

procedures 276
parameter of the DD statement 106
subparameters 158-161

chart for consecutive data
sets 159

for indexed data sets 179
for regional data sets 203

DD (data definition) statements
adding, to cataloged procedures 276
creating a library 266
defined 105
for checkpoint/restart data sets 339
for consecutive data sets 158
for input data set in cataloged

procedure 277
for linkage editor data sets 71
for loader data sets 93
for standard data sets 8

modifying, in cataloged
procedures 275

parameters 141
for indexed data sets 178, 186
for regional data sets 202
for stream I/O 137, 138

PL I DU~1P 288
separate, for index, prime, and

overflow areas 176
ddnames

defined 119
for linkage editor data sets 70
for loader data sets 93
for standard data sets 8
in dynamic invocation of compiler 63

deblocking of records 101, 115
DECK option

main discussion 19
problems in batched compilation 56

defaults for record format, BLKSIZE, and
RECSIZE 129, 136

deferred restart 339
DEFINE ALTERNATEINDEX command 395
DEFINE CLUSTER command 384, 386-389
DEFINE PATH command 397
DELAY, restriction under CICS 361
DELETE command 385, 398
DEN subparameter of DCB parameter

chart for consecutive data sets 159
for magnetic tape 114
introduction 106

density, recording, magnetic tape 114
depth of replacement maximum 59
device

classes
for linkage editor data sets 70
for loader data sets 92

description 107-115
independence of source program 106

DFHPC macro 372
DFHPL10I, CICS interface module 363,

380
DFHSAP, eICS nucleus module 363, 381
DFSORT

See sort program
diagnostic aids 283
dictionary-build stage 6
direct data sets

and indexed data sets 176, 184
defined los

direct'-access devices
specifying storage requirements 114
under VSAM

KSDS 239
RRDS 244

directory, library 265, 266
DISP parameter

accessing for record I/O 158
batch processing 57
conditional subparameters 106
for consecutive data sets 157, 160
for stream I/O 138
to delete a data set 264

DISPLAY, restriction under CICS 361
downloading to VM/PC

eMS commands 451
introduction 447
main discussion 447
modules needed for 448

DSA (dynamic storage area)
in ASSEMBLER language linkage 300
trace 290

DSCB (data set control block) 267
DSNAME parameter

Index 473

for consecutive data sets 157, 160
for indexed data sets 179
for retaining data sets 137
for stream I/O 141

DSORG subparameter of DCB
parameter 106, 179

dummy records
indexed data sets 172, 183
regional data sets 189
REGIONAL(l)ddta sets 194
REGIONAl(2) data sets 197
REGIONAL(3) data sets 199
VSAM data sets 227

dumps 288
DYNALLOC, sort option 330
Dynamic Channel Subsystem 454

interpretive Execution Facility 454
dynamic checkout facility 287
dynamic transaction backout 373

EBCDIC (Extended Binary Coded Decimal
Interchange Code)

alternative codes 101
compiler option for source

program . 18
specifying mode for card devices 107
specifying translation to BCD 114

embedded keys 169, 183
END

instruction 68
statement 49

entry 77
address 77
variables 286

entry point listings
linkage editor 77
loader 98

entry points, from ASSEMBLER
PLICALLA 310
PLICALLB 310
PLISTART 310

entry-sequenced data sets 383
ENVIRONMENT attribute

description and syntax 122-129
for consecutive data sets 151-167

options 151-157
for indexed data sets 173-176
for regional data sets 192
for stream I/O files 137, 148

options 135-137
for teleprocessing data sets 215-217
for VSAM data sets 229
options under CICS 369
summary table 123

e~vironment, PL/I, in Assembler language
linkage 295

EP option (loader) 97
EQUALS, sort option 330
error correction by compiler 282
error handling

ASSEMBLER to PL/I linkages 301
forcing abends 292
in IMS environment 465
overriding and restoring 306
under CICS 372-375

errors, operating 284
ESD (external symbol dictionary)

compiler option 19
definition 67

listing 51
ESDS (entry-sequenced data set)

creating nonunique key, alternate
index path 249

creating unique key, alternate index
path 249

introduction 223, 237
loading 237

example 237
sequential access 237

ESTAE, MVS option, with IMS 466
exclusive calls 85
EXCLUSIVE files, non-compatibility with

VSAM 234
EXEC CICS HANDLE facility 374
EXEC statement

for linkage editor 70
for loader 93
introduction 8
modifying, in cataloged

procedures 275
option list maximum length 12
PARM parameter 11
rules 265-266
specifying

compiler options 12
execution-time options 29
main procedure parameters 29

executable load module labeling 74
execution

of a Pl/I program 1
defined 3

of PL/I program 2
suppressing 283
under VSAM 236
with shared library 404

execution-time
dump, for APAR 402
options

COUNT 31
definition 11
FLOW 31
HEAP 31
ISAINC 32
ISASIZE 33
NOCOUNT 31
NOFLOH 31
NOREPORT 34
NOSPIE 34
NOSTAE 34
REPORT 34
restrictions under CICS 361, 370
specifying 29
SPIE 34
STAE 34
TASKHEAP 34

return codes 290
PLIRETC built-in subroutine 359
PLIRETV built-in function 359

extended architecture
considerations 453-464
use of by PL/I Release 5 457

HEAP option 457
external entry point 80
external references

concatenation of names 119
definition 7, 67
in ESD listing 51
in linkage editor listings 78
resolution by linkage editor

automatic library call 72
suppressing automatic library
call 74

unresolved 74, 78

474 OS PL/I Optimizing Compiler: Programmer's Guide

external symbol dictionary (ESD) 7
compiler option 19
definition 67
listing 51

E15 exit routine 317
E35 exit routine 317

F option of ENVIRONMENT
for record I/O 125
for stream I/O 135
in summary table 123

F-format records 102
fast path initialization/termination 64
FB option of ENVIRONMENT

for record I/O 125
for stream I/O 135
in summary table 123

FB-format records 102
FBS option of ENVIRONMENT

for record I/O 125
for stream I/O 135
in summary table 123

FBS-format records 102
FCB (file control block 290
FETCH statement 87
FETCH/RELEASE facility under MVS/XA 462
files

associating with data sets 119
attributes 118
closing 119
information from PLIDUMP 290
opening 118
SYSIN 147
SYSPRINT 147
TRANSIENT lOS, 215
variable, as source of error 286

FILLERS, field in tab set table 146
FILSZ, sort option 330
final-assembly stage 7
fixed-length records 102
fixes for program product failures 402
FLAG option 19
flow of control, tracing 286
FLOW option

as part of trace 290
compile time 19
execution-time 38
for tracing 286
restriction under CICS 362, 371

format descriptor card
optical mark read 110
read column eliminate 110

FORTRAN
and PL/I, matching
arguments/parameters 351

arrays in aggregate length table 50
establishing environment for 357
invoking PL/I routines from 350

examples 350
option, in interlanguage

communication 347, 350
Pl/I data type equivalents 345
routines

invoking from PL/I 347, 3(;3
passing arguments from 349
passing arguments to 344
terminating, in inter1anguage

communication 359
FS option of ENVIRONMENT

for record I/O 125
for stream I/O 135
in summary table 123

FS-format records 102
FULL

suboption of ATTRIBUTES 18
suboption of XREF 28

FUNC subparameter of DCB parameter
chart for consecutive data sets 159
introduction 106
specifying card reading or

punching 108
specifying print features 112

GDDM unavailable 452
GENKEY option of ENVIRONMENT 123

described 129
with VSAM data sets 229

GET
macro instruction 116
sta~ement 142, 285

GLOBAL command, OS PL/I Optimizer
requirements under VM/PC 450

GO TO statement, in inter1anguage
communication 358

GONUM3ER option 20
restriction under CICS 371

GOSTMT option 20
restriction under CICS 371

GRAPHIC
compiler option 20
option of ENVIRONMENT 136, 137

for stream I/O 135
types of files chart 123

graphics, example using 138, 140

HANDLE, eIeS command 374
header label 105
heading information in listing 46
HEAP option 31, 36

address 313
execution-time 31, 36
storage increments 313
with 1M3 468

HEAP option under MVS/XA 457, 462
hexadecimal 52

address representation in ESD 52
dumps 289, 290

IBM programming support 286, 400
IBMBEER 106

modifying to use with IMS 465
to force ahends 293
under eICS 375

IB~1BEERA 465
IBMBPIRA 53
IBMBSTAB 146
identifier listing 47
IELOAA 62

Index 475

lEW messages 76
IEWLDRGO 93
IMPRECISE option 20
IMS considerations for PL/I Release

5 465-468
IMS Release 1.3, using with PL/I Release

5 under MVS/XA 468
in-line code optimization

chart for input/output
conditions 152

main discussion 152
INCLUDE

option 21
statement (linkage editor) 81

including source statements from a
library 59

independent overflow area 171, 183
INDEXAREA option of ENVIRONMENT 123,

176
indexed data sets 104-133, 167-188

accessing 167, 174
adding records to

by UPDATE 183
creating 167
creation 176
defining 172
deleted (dummy) 172
ENVIRONMENT attribute 173
examples 185, 186
file attributes and access

methods 117
index area 170

separate DD statement for 176
introduction 104
master index 170, 183
organization

example 185
introduction 122
main discussion 167

overflow area 171
prime data area 183
requirements

for accessing 185
for creating 177

SYSOUT device restriction 179
INDEXED option of ENVIRONMENT

main discussion 173
types of files chart 123
with VSAM 234

information interchange codes 101
INITIAL attribute 49
initial storage area (ISA) 33
initial volume label 105
input

compiler
data in the input stream 148
data sets 8
in cataloged procedures 278

linkage editor 79
loader 93

input/output
access methods 116
defining data sets for stream
files 134

device independence of source
program 106

in-line code optimization chart 152
locate mode 115
move mode 115
operating system data management 115
routines for sort program 321

E15 user exit 321
E35 user exit 322
skeletal code for 322

SYSIN and SYSPRINT files 147
INSERT statement (linkage editor) 84
INSOURCE option 21
INTER option, in interlanguage

communication 347, 357
interblock gap (IBG) 101
interface, CICS

CICS-supplied 363
command-level 365
macro-level 365
PL/I-supplied 363

interlanguage communication 294-359
alignment of data in 345
ARGn option in 348
arguments and parameters 344
3rguments from ASSEMBL ER "'-Ii thout PLI'!

environment 310
ASS EMBER to PL/I 303
ASSEMBLER to PL/I 303

abends under 303
skeletal code example 296-299

ASSEMBLER to PL/I to ASSEMBLER 306
COBOL option in 347, 350
data alignment, ASSEMBLER and

PL/I 308
data type equivalents 345
establishing ASSEMBLER language

linkages 294
establishing environment 356
execution-time 359
for FORTRAN main routine 357
for PL/I main routine 356
FORTRAN option in 347, 350
GO TO statement in 358
handling interrupts 357
INTER option in 347, 357
invoking

COBOL from Pl/I 344
COBOL or FORTRAN routines 347,

348
PL/I from COBOL or FORTRAN 350

invoking a recursive or reentrant
ASSEMBLER routine 301

mapping data in 349
mapping of structures in 345
matching arguments/parameters in 351
NOMAP option in 347, 350
NOMAPIN option in 347, 350
NOMAPOUT option in 347, 350
overriding and restoring PL/I error
handling 306

parameter list in
passing arguments

FORTRAN routines
PL/I to ASSEMBLER
restriction under
return codes

350
from COBOL or

349
304

CICS 361

compile-time 353
execution-time 359

terminating COBOL and FORTRAN
routines 359

under CICS 376
under MVS/XA 460
using common storage 355

interrupt handling
ASS EMBER to PL/I linkages 300
during execution 287
in interlanguage communication 357

INTERRUPT option 21
invalid use of PL/I 284
ISA (initial storage area) 33, 313
ISAINC option 32, 36

execution-time 32, 36
ISASIZE option 33

476 OS PL/I Optimizing Compiler: Programmer's Guide

execution-time 35
restriction under CICS 361, 371

ISASIZE subparameter 33

job control language (JCl) 57
cataloged procedures 273-281
creating a library 266
DCB subparameters

for consecutive data sets 159
for indexed data sets 179
for regional data sets 203

examples 94
for compilation 8, 11
for linkage editor 70, 73
for loader 93
for regional data sets 189-191
listing, for APAR 401

JOB statement
MSGCLASS parameter 46
MSGLEVEL parameter 46

JOBLIB DD statement 265
message processing program 221

Kanji print utility 134
key-sequenced data sets 383
keyed records

indexed data sets 169
introduction 104-105
regional data sets 192

KEYLEN subparameter of DCB
parameter 179

introduction 106
KEYLENGTH option of ENVIRONMENT

comparison with DCB subparameter 125
main discussion 133
sequential access for indexed data
sets 184

types of files chart 123
KEYLOC option of ENVIRONMENT

comparison with DCB subparameter 125
for indexed data sets 173

chart 175
types of files chart 123

KEYTO option
under VSAM 237
with REGIONAL (2) data sets 198
with REGIONAL (3) data sets 200

KSDS (key-sequenced data set)
creating alternate index path 257
defining 256
direct access 239
introduction 239
loading 239, 256
sequential access 239
updating 256
using alternate index path 258

KSDS (key-sequenced data sets)
loading

example 240

lABEL parameter
for magnetic tape 137, 158

to bypass non-standard labels 161
for stream I/O 138, 141

label variables as source of error 286
labeling volumes 105
labels for data sets 105

creation by data management
routines 118

LEAVE option of ENVIRONMENT
for consecutive data sets 154

summary chart 155
for stream I/O 135
types of files chart 123

length of record, specifying 101
LET option

linkage editor 74
loader 97

libraries
base library (SYS1.PlIBASE) 72
calling additional 81
creating 266
creating members 267-269
definition of 105
directory 266
including source statements from 60
multitasking (SYS1.PLITASK) 72
structure 270-272
system procedure (SYS1.PROCLIB) 264
system program

(SYS1.lINKLIB) 264-266
types of 264
use by

linkage editor or loader 264
PL/I program 265
the operating system 265

LIBRARY statement (linkage editor) 81
library subroutines

control sections for 67
data set for 72
dynamic calling 69
ESD entries for 53
external reference resolution 78
failure 283, 286
in overlay structure 85
introduction 3
link-editing 69
multitasking version and
cataloged 274

LIMCT subparameter of DCB
parameter 106, 203

line numbers
and offsets, table of 24
in messages 20
in source listing 24
preprocessor 46

LINE option of ENVIRONMENT 135
LINE option/format item 143
line size

See also lINESIZE
default 144
specification 144

line spacing, printers 143
control characters 163
specifying in JCL 114

lINECOUNT option 21
lINESIZE

field in tab set table 146
option of the OPEN statement 136,

144

Index 477

LINK macro instruction 62
link-pack area 98

loader processing 92
search order 90
storage requirements 91

linkage editor 65
ALIAS statement 80
checkout 283
choice of linkage editor or

loader 65
control statements 79

listing 76
cross-reference listing 78
data sets 70
DD statements 70
ddnames 70
device classes 70
input 71, 81
job control language for 70
job steps required 1
listing, for APAR 402
listings 75
NAME statement 23
nonmultitasking program 72
optional facilities 74
output 71

and cataloged procedures 274
to a library 264

overview 1
return code 0004 79
specifying storage for 75
suppressing automatic library
call 74

suppressing link-editing 283
system program library

(SYSl.LINKlIB) 265
temporary workspace 71, 72
use by operating system 265

lINKEDIT (program alias) 71
LIST option

compiler 21
linkage editor 74

listings
aggregate lengths 49
attribute 47
cataloged procedures 273
compiler 10
cross-reference 47
dumps 289
external symbol dictionary 51
general discussion 46
identifier 47
linkage editor 75
loader 98
nesting level in 47
object module 54
of compiler options 46
preprocessor

input 46
messages 46

source program 46
statement offset addresses 50
static internal control section 54
table of options 46
use in checking out program 282
with APARs 401

lMESSAGE option 22
load modules

control section listing 98
defined 65
disposition statement 77
location 265
MAP option 97
maximum size 71

naming
compiler 23, 57
linkage editor 79

replacement 80
separation 80
structure 66

loader
choice of linkage editor or

loader 65
data sets 93
DD statements for loader data
sets 93

ddnames 93
device classes 92
external reference resolution 97
general description 90
input 93
job control language for 93
listings 98
messages 98
module map 98
optional facilities 96
overview 1
specifying

entry point of program to 97
storage for 98

storage requirements 91
LOADER (program alias) 93
local session

definition 447
locator variables as source of
error 285

locator/descriptor control block 308
looping, preventing 284
lRECl subparameter of DCB parameter 159

for indexed data sets 179

machine 54
errors 286
instruction listing 54

machine-readable information, with
APAR 400

MACRO option 22
macro-level CICS interface 365
magnetic tape

accessing
BACKWARDS attribute 159
without standard labels 142, 161

ASCII data sets 155
handling options, LEAVE and

REREAD 154
main discussion 114
processing unavailable 452
unlabeled 105
use of the LABEL parameter 158

MAP option
compiler 22
linkage editor 74
loader 97

mapping of data in COBOL and
FORTRAN 345, 349

mapping of structures in COBOL or
FORTRAN 345

margin indicator option 22
MARGINI option 22
MARGINS option 22
mass sequential insert 256
MCP (message control program) 214
MDECK option

478 OS PL/I Optimizing Compiler: Programmer's Guide

main discussion 23
problems in batched compilation 56

message procesing program (MPP) 220
messages

control program (MCP) 214
general discussion 54
incorrect 152
line numbers in 20
linkage editor 76
loader 98
long form option 22
printed format 147
processing program (MPP) 214
severity option 19
short form option 22
statement numbers in 20
use in checking out program, 282

minidisk storage requirements
OS PL/I Optimizer under VM/PC 450

MODE subparameter of DCB parameter
chart for consecutive data sets 159
introduction 106
to select EBCIDIC or column-binary

mode 107
move mode input/output 115
MPP (message processing program) 214,

220
MSGCLASS parameter 46
MSGLEVEL parameter 46
multiple invocations 303
multiple operations on punched
cards 112

multitasking
address length 313
fetchable load modules 89
library (SYS1.PLITASK) 72, 274
options in CALL PLIDUMP 289
restriction under CICS 361
with shared library 404

MVS/Extended Architecture (MVS/XA)
considerations 453-464
use of by PL/I Release 5 457

HEAP option 457
using PL/I Release 5 with IMS Release
1.3 under 468

NAME
option 23, 56

restrictions 265
statement (linkage editor) 23

NCAL option

NCP

linkage editor 74
loader 97

as a subparameter of DCB
pa rameter 106

option of ENVIRONMENT
comparison with DCB
subparameter 125

main discussion 131
types of files chart 123

NE (not editable) attribute 65
NEST option 24
nesting level in listing 47
NOCALL option (loader) 97
NOCHECK option

restriction under CICS 362
NOCOMPILE option 283
NOCOUNT option 31

execution-time 31
NODIAGNOSE option 285
NOEQUALS, sort option 330
NOFLOW option 31

execution-time 31
NOGRAPHIC option 20
NOINTERRUPT option 21
NOMAP option in interlanguage

communication 347, 350
NOMAPIN option in interlanguage
communication 347, 350

NOMAPOUT option in interlanguage
communication 347, 350

non-unique key alternate index 391
NOOPTIMIZE option 283
NOREPORT option 34

execution-time 34
NOREPORT subparameter 34
NOSPIE option 34

execution-time 34
using with IMS 465

NOSPIE subparameter 34
NOSTAE option 34

execution-time 34
under CICS 372
using with IMS 465

NOSTAE subparameter 34
NOSYNTAX option 283
NOWRITE option of ENVIRONMENT 123, 176
NTM subparameter of DCB parameter

for indexed data sets 179
introduction 106
use for creating a master index 183

NULL pointer under MVS/XA 463

object module
combining 54
format 9
listing 54
on punched cards

and cataloged procedures 277
identification 19

output 19, 24
storage requirement listing 27
structure 66

OBJECT option 24, 57
problems in batched compilation 56

object programs, storage needed
OS PL/I Optimizer 450

OFFSET OF TAB COUNT, field in tab set
table 146

OFFSET option 25, 50
offset variables as source of error 285
offsets, table of 25, 50
ON-units

condition built-in function
values 290

during execution 287
use in checking-out program 285

ON-units under MVS/XA 463
ONCODE built-in function 288
OPEN

macro instruction 118
statement 118

implicit open of a file 119
restriction under CICS 361

operating errors 284
operating system

compiler interface 4

Index 479

data management 115
errors 286

OPTCD subparameter of DCB
parameter 106, 159

for indexed data sets 179, 182
optical mark read 109

format descriptor card 110
optimization of code, in-line 152
optimization options 25
OPTIMIZE option 25
option list

compiler 11
dynamic invocation 62

linkage editor 74
loader 96

optional facilities
linkage editor 74
loader 96

OPTIONS ASSEMBLER 376
OPTIONS option 25
options, compiler

See compiler
OS PL/I Optimizer under VM/PC

CMS commands to download 451
commands for profile EXEC 450
invoking 450
making available before

invocation 450
minidisk storage requirements 450
object programs, storage needed 450
programming tips 451
restrictions 452
source programs, storage needed 450
virtual storage requirements 450

OS/VS Sort/Merge
See sort program

output
and input routines for sort

program 321
E15 user exit 321
E35 user exit 322
skeletal code for 322

compiler 9
SEQUENTIAL 157

overflow area
introduction 171
main discussion 182
separate DD statement for 176

OVERLAY statement (linkage editor) 84
overlaying

checkout of 283
creating the structure 84
designing the structure 82
library subroutines 85
linkage editor 75, 77
main discussion 82
mapping 77, 78

OVLY attribute (linkage editor) 84

PAGE
option of ENVIRONMENT 135
print control option 143

page number as parameter for
compiler 62

PAGELENGTH, field in tab set table 146
PAGESIZE, field in tab set table 146
paper tape reader 113

using move mode for library
subroutines 116

parameter list in interlanguage
communication 350

parameters
for inter1anguage communication 344

and arguments, matching 351
passing between PL/I and

ASSEMBLER 304, 308
passing to compiler 62
to main procedure 30

parity error (paper tape
transmission) 113

PARM parameter
for compiler 12
for linkage editor 74
for loader 96
in GO step 30

partitioned data set
See libraries

passing arguments to main procedure 30
PASSWORD option of ENVIRONMENT 230
password protection, VSAM 385
performance, linkage editor and
loader 66

phases, compiler 4
PL/I NULL pointer under MVS/XA 463
PL/I program termination under CICS 377
PL/I Release 5, using with IMS Release
1.3 under MVS/XA 468

PL/I routines, invoking from COBOL or
FORTRAN 350

examples 350
PLICALLA

calling PL/I routine from
Assembler 303

passing parameterr with 304
setting up PL/I environment with 310
use of 311

PLICALLB 304
passing parameters with 304
setting up PL/I environment with 310
use of 312

PlICANC, restriction under CICS 361
PlICKPT built-in subroutine 339

restriction under CICS 361
PLIDUMP

main discussion 288
under CICS 375

restriction 361
PLIlIB TXTLIB

use with VM/PC 450
PlIMAIN 67, 296
PLIRETC built-in subroutine

restriction under CICS 361
return codes for sort 320

PlIRETC facility 291
PLIRETV built-in function

restriction under CICS 361
PLISRT 315-338

arguments
SORT statement . 329

CAll PLISRT statement 316
entry points

and arguments 326
determining which to use 318
main discussion 316

restriction under CICS 361
PlISRTA 318

example 319, 333
PlISRTB 318

example 320, 334
PLISRTC 318

example 335
PLISRTD 318

example 320, 336

480 OS PL/I Optimizing Compiler: Programmer's Guide

PLISTART 304, 310
description 67
null parameter string 311
passing parameters with 304
setting up PL/I environment with 310
specified by END statement 68
use for ATTACH 310

PLITABS 53, 146
PLIXC cataloged procedure (compile
only) 278

PLIXCG cataloged procedure (compile,
load and execute) 280

PLIXCL cataloged procedure (compile and
link-edit) 278

PLIXCLG cataloged procedure (compile,
link-edit and execute) 280

PLIXG cataloged procedure (load and
execute) 281

PLIXHD 37
PLIXLG cataloged procedure (link-edit
and execute) 280

PLIXOPT string 29
pointer variables as source of
error 285

preprocessing
main discussion 59
phases 4
suspected failure in 400
use in program checkout 288

prime data area
defined 171
separate DD statement for 176, 177
use of unused space 183

prime index 383
PRINT files 143
PRINT option (loader) 97
printed output and record I/O 163
printers

control characters 143, 165
essential requirements 165
for source listing 22

control options for consecutive data
sets 154, 163

record format 114
printing on punched cards III
problem determination 400-403
procedure step 273
PROCESS statement 55

specifying compiler options in 13,
55

processing
phases 4
time 66, 167

program control section 52
program product maintenance 402
program status, using
checkpoint/restart 339

program temporary fix (PTF) 402
program-checks during input/output 152
program, automatic restart from
within 341

program, sample 406
programming tips

for running under VM/PC 451
for unidentified program
failures 285

PRTSP subparameter of DCB
parameter 106, 159

PRV (pseudo-register vector)
listings 78

PRV (pseudoregister vector) listings 99
PSW in trace 290
PTF (program temporary fix) 402
punch interpret 111

punched card devices 107-112, 113
control options for consecutive data
sets 154

data protection 113
multiple operations 112
optical mark read 109
printing on cards III
punch interpret III
read column eliminate 110
stacker selection 109
2520 Card Read Punch 107
2540 Card Read Punch 107, 164
3505 Card Reader 108
3525 Card Punch 108, 165

punched card output
and cataloged procedure 277
compiler 9, 19
record I/O 163

PUT DATA
restriction under CICS 370

PUT DATA statement 287
PUT macro instruction 116

QISAM (Queued Indexed Sequential Access
Method) 116

QSAM (Queued Sequential Access
Method) 116

queued access technique 116
Queued Indexed Sequential Access Method

(QISAM) 116
Queued Sequential Access Method

(QSAM) 116
queues 214

RBA (relative byte address) 384
read column eliminate

format descriptor card 110
RECFM subparameter of DCB parameter

chart for consecutive data sets 159
for indexed data sets 179
introduction 106

record
consecutive data sets

defaults 158
stream I/O 135, 142

-format
for consecutive data sets 161
for indexed data sets 179-182
for regional data sets 189
main discussion 101
operating system data

management 115
options for stream I/O 135
PRINT files 144
specifying in JCL 203
using the GET statement 142

length
for indexed data sets 177
PRINT files 144
regional data sets 189
specifying 101, 126
use with checkout compiler 147
variable 182

maximum size for compiler input 8

Index 481

record I/O, restriction under CICS 361
RECORD statement syntax 331
record-oriented input/output

access methods 115
record, checkpoint, writing a 339
recorded keys

in indexed data sets 169
in regional data sets 193
KEYTO option 198, 200
regional data sets 192

records
deleted (dummy)

indexed data sets 172
regional data sets 194

RECSIZE option of ENVIRONMENT
chart of use with different types of
files 123

comparison with DCB subparameter 125
for stream I/O 135-136
for teleprocessing data sets 216
main discussion 126

regional data sets 189, 214
accessing

REGIONAl(l) 195
REGIONAl(2) 198
REGIONAl(3) 200

advantages 189
creating

REGIONAl(l) 194
REGIONAl(2) 197
REGIONAl(3) 199

defining 191
dummy records 194
ENVIRONMENT options 192
examples 204-214
file attributes and access

methods 117
organization 122
under VSAM 235

REGIONAL option of ENVIRONMENT 192
register contents in trace 290
register 12, use of 303
relative byte address (RBA) 224
relative record data sets 384
RELEASE statement 87
relocation dictionary (RLD) 67
remote session

definition 447
RENT option (linkage editor) 75
reorganizing an indexed data set 185
REPORT option 44

description 34
restriction under CICS 362, 371

REPORT subparameter 34
REREAD option of ENVIRONMENT

for consecutive data sets 154
for stream I/O 135
summary chart for consecutive data
sets 155

types of files chart 123
RES option (loader) 98
resident control phase 4
restart

automatic 339
after system failure 341
from within program 341

deferred 339, 341
RESTART parameter 341
restrictions

on Pl/I under CICS 362
on using Sort program 315
Pl/lunder VM/PC 452

return codes
compiler 55

execution-time 290
from ASSEMBLER to Pl/I 314
from checkpoint/restart routine 340
from sort program 316

testing 320
in IBMBEER 106
interlanguage communication

between ASSEMBLER and Pl/I 308
compile-time 353
execution-time 359

Pl/I program 290
return code 0004 from linkage
editor 79

set by PLIRETC 320
return values from Assembler 308
REUS option (linkage editor) 75
REUSE option of ENVIRONMENT 123, 230
RKP subparameter of DCB parameter 173

effect on embedded keys 175
for indexed data sets 179, 182
introduction 106

RlD (relocation dictionary) 67
RMODE (residency mode) 455
root segment 82, 85
RRDS (relative record data set)

direct access 244
examples 246-263
introduction 243
loading 243, 244
sequential access 243
updating 262
VSAM (Virtual Storage Access Method)

SAMEKEY built-in function 240
sample program 406
save areas 295
SCAlARVARYING option of

ENVIRONMENT 132, 229
scheduling time 66
scheduling, chained 115
sequence numbering

compiler options 24
for preprocessor 59

SEQUENCE option 24
sequential access

for indexed data sets 183
under VSAM

ESDS 237
KSDS 239
RRDS 243

severity of messages
compiler 19
linkage editor 77

shared library
cataloged procedures 404-405
use under CICS 377
use under MVS/XA 461

SHORT
suboption of ATTRIBUTES 18
suboption of XREF 28

SIGNAL statement 287
SIS option of ENVIRONMENT 123, 232
SIZE option

compiler 26, 56
linkage editor 75
loader 98

SKIP
format item 143
option of ENVIRONMENT

482 OS PL/I Optimizing Compiler: Programmer's Guide

in stream I/O 135
types of files chart 123
under VSAM 231

SKIPREC, sort option 330
SNAP option 286
sort program 315-338

CALL PLISRT statement 316
coding 319

CHKPT option 330
CKPT option 330
data sets for 324
DYNALLOe option 330
EQUALS option 330
examples 333-338
E15 user exit routine 317, 321
E35 user exit routine 317, 322
FILSZ option 330
flow of control in 317
how it works 316
how to use 318-321
input handling routine, skeletal code
for 322

NOEQUALS option 330
output handling routine, skeletal

code for 323
PLISRT

arguments 326
entry points 318, 326

programs available 315
RECORD statement

passing from PL/I 315
syntax 331
with varying format data 321

restrictions 315
return codes 316, 317

testing 320
RETURN statement 321
SKIPREC option 330
SORT statement 315, 329
storage for 328
writing input/output routines 321

sort work data sets 324
SORTCKPT 325
SORTCNTL 325
SORTIN 324
SORTLIB 324
SORTOUT 325
SORTHK 324, 328
source keys

in indexed data sets 169
in REGIONAL(1) data sets 194
in REGIONAL(2) data sets 196
in REGIONAL(3) data sets 199

SOURCE option 27
source program

character set specification 18
data code specification 18
data set 8
listing

compiler option for 27
nesting level 24
record numbering 21
statement numbering 27, 47

storage needed for, using OS PL/I
Optimizer under VM/PC 450

source statement library 59
SPACE parameter

for direct-access devices 115
for library 266
for linkage editor output 72
for standard data sets 8
for stream I/O 138, 141

spanned records 103
SPIE option 34

execution-time 34
restriction under CICS 361, 371
under MVS/XA 459
using with IMS 465

SPIE subparameter 34
SPIE/ESPIE macro 306
spill file 9
STACK subparameter of DCB parameter

chart for consecutive data sets 159
introduction 106
specifying card reading or

punching 108
stacker selection 109
STAE option 34

execution-time 34
under eICS 372
under MVS/XA 459
using with IMS 465

STAE subparameter 34
STAE/ESTAE macro 306
statement numbers

compiler option 27
in messages 20
method of numbering 47
trace of 286

static internal control section
description 67
length 53
listing 54

STATIC storage
under CICS 368
under MVS/XA 459
with IMS 468

static storage map 21
step abend 106, 290
STEPLIB DD statement 265
STMT option 27
storage

addressing 67
allocation 6
auxiliary, economy

blocking PRINT files 144
suppressing automatic library

call 74
using loader 66

buffers 115
classes under eIeS 368
dumps 288
for ASSEMBLER language linkage 295,

300
for compilation 26
for direct-access devices 114
for execution 33
for indexed data sets 167, 177
for library data sets 266
for linkage editor 72
for loader 91, 98
for sort program 328
for standard data sets 8
insufficient available 26
lifetime under eIeS 367
linkage editor 74
optimization 25
requirements for OS PL/I Optimizer
under VM/PC 451

requirements in general 26
STORAGE built-in function under

eICS 376
STORAGE option 27
STREAM attribute 134
stream-oriented- input/output

access method 116
defining data sets 134
restrictions under CIeS 361

Index 483

STRINGRANGE condition 286
structures

length table 49
mapping 6

SUBSCRIPTRANGE condition 285
SUBSTR pseudovariable as source of
error 286

symbolic parameter in cataloged
procedure 274

syntax checking 27
analysis stage 4
suppression of 283

SYNTAX option 27
SYSCHK 340
SYSCIN 8
SYSIN 8;; 147
SYSLIB

linkage editor 72
multitasking programs 274
preprocessing 10

SYSLIN 57
compiler output 9
loader input 93

SYSLMOD 71, 278
SYSLOUT

compared with SYSPRINT 98
listing generated by loader 94
MAP and PRINT options with 98

SYSOUT 324
SYSOUT parameter 137

indexed data set restriction 179
SYSPRINT

associated with terminal 28
compared with SYSLOUT 98
compiler data set 10
default line size for checkout

compiler 148
linkage editor data set 73
loader data set 98
loader listing 94
PL/I file 147
under CICS 369
use with checkout compiler 147

SYSPUNCH 9
system failure 286

restart after 341
SYSUTI

compiler data set 9
SYS1.LINKLIB (system program
library) 264-266

SYSl.PLIBASE (base library) 72, 274
SYS1.PLITASK (multitasking library) 72
SYSl.PLITASK (multitasking) 274
SYSl.PROCLIB (system procedure
library) 264

tab control table (IBMBSTAB) 146
tab count, field in tab set table 146
tab position specification and
defaults 146-147

tabl through tabn, fields in tab
table 146

task abend 291
TASKHEAP option 34
TCA (task communications area) 290
TCAM (Telecommunications Access

Method) 116, 214
teleprocessing data sets 214, 221

condition handling 219

defining 215
file attributes and access

methods 117
organization 122
statements and options 217
TRANSIENT file attribute 104

messages 215
placement in storage 105

temporary workspace
essential parameters 72
for compiler 9
for linkage editor 72

TERMINAL option 28
termination

of execution, abnormal 286
of execution: by request 289

termination in ASSEMBLER and PL/I
linkage 303

text (TXT), description of 67
text, source (definition) 6
time taken for compilation 46
TIME, restriction under CICS 361
timer feature 46
TITLE option 119
TOTAL option of ENVIRONMENT 123, 152
TOTAL option of RECORD I/O, under

MVS/XA 462
TP(M) or TPCR) option of

ENVIRONMENT 216
trace information

compiler option (FLOW) 19
during execution 289
how to obtain 286

track (definition) 114
track index 170
trailer label 105
transactions, CICS, writing 364
transfer vector 404
transient control phase 4
TRANSIENT files 105, 215
translation stages 6
tree structures 82
TRKOFL option of ENVIRONMENT 125, 131

chart of use with different types of
files 123

TRTCH subparameter of DCB parameter
chart for consecutive data sets 159
introduction 106
to translate EBCDIC to BCD 114

TSO (Time Sharing Option)
conversational checkout 282
line numbers 24
storage requirements 27

U option of ENVIRONMENT
for record I/O 125
for stream I/O 135
in summary table 123

U-format records 104
unblocked records 102

in indexed data sets 182
undefined-length records 104
UNDEFINEDFILE condition

caused by BLKSIZE error 128
caused by DD statement error 119
caused by line size conflict in OPEN
statement 144

caused by OPEN error 152
caused by RECSIZE error 126

484 OS PL/I Optimizing Compiler: Programmer's Guide

example 118
unforeseen errors 284
unique key alternate index 391
UNIT parameter

for consecutive data sets 157~ 160
for stream I/O

accessing data set 137~ 141
creating data set 138

unlabeled magnetic tapes 105
unnamed data sets 100
updating data

consecutive data sets 158
indexed data sets 183
key-sequenced data sets 256
relative record data set 262
VSAM data sets 248

upgrade1 CICS Release 1.6.1 360
user abends 292

V option of ENVIRONMENT
for record I/O 125
for stream I/O 135
in summary table 123

variable-length records 102
variables 54

as source of error 285
storage map 54

VB option of ENVIRONMENT
for record I/O 125
for stream I/O 135
in summary table 123

VB-format records 102
VBS option of ENVIRONMENT

for record I/O 125
in summary table 123

VBS-format records 102
version number of compiler 46
virtual storage requirements

OS PL/I Optimizer under VM/PC 450
VM/PC

description 447
methods of using with PL/! 447

VM/SP, characteristics of system 447
volume

definition of term 100
labeling 105

VOLUME parameter
for consecutive data sets 157

accessing and updating 160
stream I/O 137

for creating a data set 137
for stream I/O 138 1 141

volume serial number
creating consecutive data sets

record I/O 158
stream I/O 137

creating indexed data sets 177
creating regional data sets 201
in volume label 105

VS option of ENVIRONMENT
for record I/O 125
in summary table 123

VS-format records 102
VSAM (Virtual Storage Access

Method) 222~ 263
advantages of 225
alternate index path 237

comparison of VSAM data set
types 227

compatibility 234-235
consecutive files 235
indexed files 235
REGIONAL(I) files 235

consecutive files 233
data set organization 122, 222
defining 228
defining and loading for a relative

record data set 260
dummy data sets 227
ESDS file attributes and access
methods 117

file processing unavailable 452
indexed files 234
KDSS file attributes and access

methods 117
keys 224
mass sequential insert 256
relative byte addressing 224
relative record numbers 226
RRDS file attributes and access

methods 117
running p~ograms under 236
using multiple files 235

VSAM background 382-399
Access Method Services 384
alternate index paths 391
BLDINDEX command 396
catalog 383
data sets

entry-sequenced 383
key-sequenced 383
relative record 384

DEFINE ALTERNATEINDEX command 395
DEFINE CLUSTER command 386-389
DEFINE PATH command 397
defining alternate index paths 394
defining data sets 384, 385
DELETE command

deleting an alternate index 398
life of VSAM data sets 385
syntax 390

deleting a data set 390
life of data sets 385
password protection 385
performance with alternate index
paths 394

sharing data sets 389
VSAM option of ENVIRONMENT 229

weak external reference 51, 78

XCAL option (linkage editor) 75, 77
XCTL macro instruction 62
XREF option

compiler 28
linkage editor 75, 77

Index 485

Numerics

2400-series tape drives, conversion
feature 114

2520 Card Read Punch 107
2540 Card Read Punch 107

control characters 164
3l-bit addressing

considerations 453-464
use of by PL/I Release 5 457

HEAP option 457
3225 Card Punch

restrictions 166
3505 Card Reader 108
3525 Card Punch 108

control characters 166
CTL360 and CTLASA control
characters 165

3800 Printing Subsystem 114
48-character set 4, 18
60-character set 4, 18

486 OS PL/I Optimizing Compiler: Programmer's Guide

E
.E

-.!!!
.-5
iii

)Q)
en
o
Q)

Co
S
'0
Q)

E
E
:::l
Ol ...
Q)

-5
o
o
,~
'iii
c:
~
Q)

a
en
Q) a.
~
:::l

~
III
Q)

a:::

OS PLjI Optimizing Compiler:
Programmer's Guide
SC33-0006-7

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dir~ct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL

Previous TNL

Previous TNL

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC33-0006-7

Reader's Comment Form

Fold and tape

Fold and tape

-~------- - ------- -.. ---- - - - ... ------------, -
®

Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

C
if.
""I:
r -..

\ ... o
co ...
til

3
3
C\l ..,
(11

G
c
6
cc .,
ct
;;::
c
CJ
v ...
c
r.:.
<.t

c
C.
)

c.
C
t
t
C
C
C
~

-------------- ------------ ---------------------

--.... -. .----.- - ---.--- --- --- ~ ---- ---------_ ... -
-~-.-

v SC33-0006-07

--. ,,· .. it :r ' .. '; .:~,!IIIIIIIIIIIII i

a
U>
-u
r
---a
u ::-.
:3
N

:J
to

()
o
:3
u

~

C)
c
Ci
Cll

11

Cll

Z
o
en
w
-.....J
o

'" co

en
(")
w
w
6
o o
en
..:...

