IBM PL/I for MVS & VM
Programming Guide
Release 1.1

Document Number SC26-3113-01

— Note!

Before using this information and the product it supports, be sure to read the general information under “Notices”
on page Xii.

Second Edition (June 1995)

This edition applies to Version 1 Release 1.1 of IBM PL/I for MVS & VM (named IBM SAA AD/Cycle PL/I MVS & VM for Release
1.0), 5688-235, and to any subsequent releases until otherwise indicated in new editions or technical newsletters. Make sure you
are using the correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality. Publications are not stocked at the
address below.

A form for readers' comments is provided at the back of this publication. If the form has been removed, address your comments to:

IBM Corporation, Department J58
P.O. Box 49023

San Jose, CA, 95161-9023
United States of America

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1964, 1995. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Contents

Notices Xi
Programming Interface Information, Xii
Trademarks Xii
Part 1. Introduction Xiii
About thisbook Xiv
Run-time Environment for PL/I for MVS & VM Xiv
Debugging Facility for PL/I for MVS & VM L Xiv
Using Your Documentation Xiv
Where to Look for More Information Xiv
What Is New in PL/I for MVS & VM XV
Notation Conventions Used in thisBook XVii
Conventions Used XViii
How to Read the Syntax Notation Xviii
How to Read the Notational Symbols Xix
Part 2. Compiling your program 1
Chapter 1. Using Compile-Time Options and Facilites 5
Compile-Time Option Descriptions 5
AGGREGATE 8
ATTRIBUTES e 8
CMPAT . 8
COMPILE e 10
CONTROL e 10
DECK . . 10
ESD . . . 11
FLAG . . 11
GONUMBER e 11
GOSTMT . . . 12
GRAPHIC . . . 12
IMPRECISE 12
INCLUDE e 13
INSOURCE 13
INTERRUPT 13
LANGLVL 14
LINECOUNT e 14
LIST o 14
LMESSAGE 15
MACRO . . . 15
MAP . e 15
MARGINI . .. 16
MARGINS . . . 16
MDECK 17
NAME . . . e 17
NEST . . 18
NOT o 18
NUMBER 18

© Copyright IBM Corp. 1964, 1995 ili

iv

OBJECT . . . 19

OFFSET 19
OPTIMIZE e 20
OPTIONS 20
OR 21
SEQUENCE 21
SIZE . . 22
SMESSAGE 23
SOURCE 23
STMT . . 23
STORAGE e 23
SYNTAX o 24
SYSTEM . . . e 24
TERMINAL e 25
TEST . e 26
XREF . e 27
Input Record Formats 28
Specifying Options in the %PROCESS or *PROCESS statements 28
Using the Preprocessor 29
Invoking the Preprocessor 29
Using the %INCLUDE Statement 30
Using the PL/I Preprocessor in Program Testing 31
Using % Statements 32
Invoking the Compiler from an Assembler Routine 32
Option List 33
DDNAME List 33
Page Number 33
Using the Compiler Listing 33
Heading Information 34
Options Used for the Compilation 34
Preprocessor Input 34
SOURCE Program e 34
Statement Nesting Levelo 36
ATTRIBUTE and Cross-Reference Table 36
Aggregate Length Table 38
Storage Requirements 39
Statement Offset Addresses 40
External Symbol Dictionary 41
Static Internal Storage Map 43
Object Listing 44
Messages 44
Return Codes 45
Chapter 2. Using PL/I Cataloged Procedures under MVS 46
IBM-Supplied Cataloged Procedures 46
Compile Only (IEL1C) 47
Compile and Link-Edit (IEL1CL) 48
Compile, Link-Edit, and Run (IELICLG) 50
Compile, Load and Run (IEL1CG) 51
Invoking a Cataloged Procedure, 52
Specifying Multiple Invocations L. 52
Link-Editing Multitasking Programs 53
Modifying the PL/I Cataloged Procedures 54
EXEC Statement 54

PL/I for MVS & VM Programming Guide

DD Statement 55

Chapter 3. Compiling under MVS 56
Invoking the Compiler under TSO, 56
Allocating Data Sets 57
Using the PLI Command 59
Compiler Listings 62
Running Jobs in a Background Region 63
Using JCL during Compilation 64
EXEC Statement 64
DD Statements for the Standard Data Sets 64
Temporary Workfile (SYSUT1) 66
Listing (SYSPRINT) 67
Source Statement Library (SYSLIB) 67
Example of Compiler JCL 67
Specifying Options 68
Specifying Options in the EXEC Statement 68
Compiling Multiple Procedures in a Single Job Step 69
SIZE Option 69
NAME Option 69
Return Codes in Batched Compilation 70
Job Control Language for Batched Processing 70
Examples of Batched Compilations 71
Correcting Compiler-Detected Errors 71
The PL/I Compiler and MVS/ESA 71
Compiling for CICS 72
Chapter 4. Compiling under VM 73
Using the PLIOPT Command, 73
Compiler Output and Its Destination 73
Compile-Time Options 74
Files Used by the Compiler 74
PLIOPT Command Options, 75
PL/I Batched Compilation 78
Correcting Compiler-Detected Errors 78
Chapter 5. Link-Editing and Running 80
Selecting Math Results at Link-Edit Time 80
VM Run-Time Considerations 80
Separately Compiled PL/I MAIN Programs 81
Using Data Setsand Files 81
Restrictions Using PL/l under VM 85
PL/I Conventions under VM 86
MVS Run-Time Considerations 89
Formatting Conventions for PRINT Files 89
Changing the Format on PRINT Files 89
Automatic Prompting 90
Punctuating Long Input Lines 91
Punctuating GET LIST and GET DATA Statements 91
ENDFILE 92
SYSPRINT Considerations 92

Contents V

Part 3. Using I/O facilities 95

Chapter 6. Using Data Sets and Files 99
Associating Data Sets with Files 99
Associating Several Files with One Data Set 101
Associating Several Data Sets with One File 102
Concatenating Several Data Sets 102
Establishing Data Set Characteristics 102
Blocks and Records 103
Record Formats 103
Data Set Organization 106
Labels 107
Data Definition (DD) Statement L. 107
Associating PL/I Files with Data Sets 109
Specifying Characteristics in the ENVIRONMENT Attribute 110
Data Set Types Used by PL/I Record I/O 121
Chapter 7. Using Libraries 123
Types of libraries 123
Howto Use alLibrary 123
Creating a Library 124
SPACE Parameter 124
Creating and Updating a Library Member 125
Examples 125
Extracting Information from a Library Directory 128
Chapter 8. Defining and Using Consecutive Data Sets 129
Using Stream-Oriented Data Transmission 129
Defining Files Using Stream /O 130
Specifying ENVIRONMENT Options 130
Creating a Data Set with Stream I/O 132
Accessing a Data Set with Stream /O, 136
Using PRINT Files with Stream I/O 138
Using SYSIN and SYSPRINT Files 142
Controlling Input from the Terminal 143
Controlling Output to the Terminal 145
Example of an Interactive Program L. 146
Using Record-Oriented Data Transmission 149
Defining Files Using Record 11O 150
Specifying ENVIRONMENT Options 150
Creating a Data Set with Record I/O 156
Accessing and Updating a Data Set with Record I/O 157
Chapter 9. Defining and Using Indexed Data Sets 163
Indexed Organization 163
Using keys 163
Using Indexes 166
Defining Files for an Indexed Data Set 169
Specifying ENVIRONMENT Options 169
Creating an Indexed Data Set 172
Essential Information 172
Name of the Data Set 175
Record Formatand Keys 175

Vi PL/I for MVS & VM Programming Guide

Overflow Area 177

Master Index 178
Accessing and Updating an Indexed Data Set 179
Using Sequential Access 180
Using Direct AcCess 181
Reorganizing an Indexed Data Set 184
Chapter 10. Defining and Using Regional Data Sets 185
Defining Files for a Regional Data Set 188
Specifying ENVIRONMENT Options 188
Using Keys with REGIONAL Data Sets 190
Using REGIONAL(1) Data Sets 190
Creating a REGIONAL(1) Data Set 191
Accessing and Updating a REGIONAL(1) Data Set 192
Using REGIONAL(2) Data Sets 195
Using Keys for REGIONAL(2) and (3) Data Sets 195
Creating a REGIONAL(2) Data Set 197
Accessing and Updating a REGIONAL(2) Data Set 198
Using REGIONAL(3) Data Sets 202
Creating a REGIONAL(3) Data Set 202
Accessing and Updating a REGIONAL(3) Data Set 204
Essential Information for Creating and Accessing Regional Data Sets 208
Chapter 11. Defining and Using VSAM Data Sets 211
Using VSAM Data Sets e 211
How to Run a Program with VSAM Data Sets 211
VSAM Organization 212
Keys for VSAM Data Sets 215
Choosing a Data Set Type 216
Defining Files for VSAM Data Sets 218
Specifying ENVIRONMENT Options 219
Performance Options L 223
Defining Files for Alternate Index Paths 223
Using Files Defined for non-VSAM Data Sets 224
CONSECUTIVE Files o 224
INDEXED Files 224
Using the VSAM Compatibility Interface 225
Adapting Existing Programs for VSAM 225
Using Several Files in One VSAM Data Set 226
Using Shared Data Sets 227
Defining VSAM Data Sets 227
Entry-Sequenced Data Sets 228
Loadingan ESDS 229
Using a SEQUENTIAL File to Accessan ESDS 229
Key-Sequenced and Indexed Entry-Sequenced Data Sets 232
Loading a KSDS or Indexed ESDS 234
Using a SEQUENTIAL File to Access a KSDS or Indexed ESDS 236
Using a DIRECT File to Access a KSDS or Indexed ESDS 236
Alternate Indexes for KSDSs or Indexed ESDSs 239
Relative-Record Data Sets 247
Loadingan RRDS 249
Using a SEQUENTIAL File to Accesssan RRDS 251
Using a DIRECT Fileto Accessan RRDS 252

Contents Vil

Chapter 12. Defining and Using Teleprocessing Data Sets 255
Message Control Program (MCP) 255
TCAM Message Processing Program (TCAM MPP) 256
Teleprocessing Organization 256
Essential Information 257

Defining Files for a Teleprocessing Data Set 257
Specifying ENVIRONMENT Options 257

Writing a TCAM Message Processing Program (TCAM MPP) 258
Handling PL/I Conditions 260
TCAM MPP Example 261

Part 4. Improving your program 263

Chapter 13. Examining and Tuning Compiled Modules 265

Activating Hooks in Your Compiled Program Using IBMBHKS 265
The IBMBHKS Programming Interface 265

Obtaining Static Information about Compiled Modules Using IBMBSIR .. 266
The IBMBSIR Programming Interface 267

Obtaining Static Information as Hooks Are Executed Using IBMBHIR .. 271
The IBMBHIR Programming Interface 271

Examining Your Program's Run-Time Behavior 272
Sample Facility 1: Examining Code Coverage 272
Sample Facility 2: Performing Function Tracing 284
Sample Facility 3: Analyzing CPU-Time Usage 288

Chapter 14. Efficient Programming 305

Efficient Performance 305
Tuning a PL/I Program 305
Tuning a Program for a Virtual Storage System 307

Global Optimization Features, 308
Expressions 309
LOOPS e 312
Arrays and Structures 313
In-Line Code 314
Key handling for REGIONAL datasets 314
Matching Format Lists with Data Lists 315
Run-time Library Routines 315
Use of Registers 315

Program Constructs that Inhibit Optimization 315
Global Optimization of Variables 316
ORDER and REORDER Options 316
Common Expression Elimination 318
Condition Handling for Programs with Common Expression Elimination . . 320
Transfer of Invariant Expressions 321
Redundant Expression Elimination 322
Other Optimization Features 322

Assignments and Initialization o oo 323

Notes about Data Elements 323

Notes about Expressions and References 326

Notes about Data Conversion 329

Notes about Program Organization 331

Notes about Recognition of Names 332

Notes about Storage Control 332

viii

PL/I for MVS & VM Programming Guide

Notes about Statements 334

Notes about Subroutines and Functions 338
Notes about Built-In Functions and Pseudovariables 338
Notes about Input and Output 339
Notes about Record-Oriented Data Transmission 340
Notes about Stream-Oriented Data Transmission 341
Notes about Picture Specification Characters 343
Notes about Condition Handling 344
Notes about multitaskingo 345
Part 5. Using interfaces to other products 347
Chapter 15. Using the Sort Program 348
Preparing to Use Sort 348
Choosing the Type of Sort 349
Specifying the Sorting Field 352
Specifying the Records to be Sorted, . 354
Determining Storage Needed for Sort 355
Calling the Sort Program 355
Determining Whether the Sort Was Successful 358
Establishing Data Sets for Sort 358
Sort Data Input and Output 360
Data Input and Output Handling Routines 360
E15 — Input Handling Routine (Sort Exit E15) 361
E35 — Output Handling Routine (Sort ExitE35) 364
Calling PLISRTA Example 365
Calling PLISRTB Example 366
Calling PLISRTC Example 367
Calling PLISRTD Example 368
Sorting Variable-Length Records Example 369
Part 6. Specialized programming tasks 371
Chapter 16. Parameter Passing and Data Descriptors 373
PL/I Parameter Passing Conventions, 373
Passing Assembler Parameters 374
Passing MAIN Procedure Parameters 376
Options BYVALUE 378
Descriptors and Locators 380
Aggregate Locator 381
Area Locator/Descriptor 381
Array Descriptor 382
String Locator/Descriptor 383
Structure Descriptor 384
Arrays of Structures and Structures of Arrays 385
Chapter 17. Using PLIDUMP 386
PLIDUMP Usage Notes 387

Chapter 18. Retaining the Run-Time Environment for Multiple
Invocations 389
Preinitializable Programs 389

Contents X

The Interface for Preinitializable Programs 390

Preinitializing a PL/l Program 393
Invoking an Alternative MAIN Routine 398
Using the Service Vector and Associated Routines 402
User Exits in Preinitializable Programs 419
The SYSTEM Option in Preinitializable Programs 419
Calling a Preinitializable Program under VM 419
Calling a Preinitializable Program under MVS 419
Establishing an Language Environment for MVS & VM-Enabled Assembler
Routine as the MAIN Procedure 421
Retaining the Run-Time Environment Using Language Environment for MVS &
VM-Enabled Assembleras MAIN 421
Chapter 19. Multitasking in PL/l 422
PL/I Multitasking Facilities 422
Creating PL/l Tasks 423
The TASK Option of the CALL Statement 423
The EVENT Option of the CALL Statement 423
The PRIORITY Option of the CALL Statement 424
Synchronization and Coordination of Tasks 424
Sharing Data between Tasks 425
Sharing Files between Tasks 425
Producing More Reliable Tasking Programs 426
Terminating PL/l Tasks 426
Dispatching Priority of Tasks 427
Running Tasking Programs 428
Sample Program 1. Multiple Independent Processes 428
Multiple Independent Processes: Nontasking Version 429
Multiple Independent Processes: Tasking Version 430
Sample Program 2: Multiple Independent Computations 432
Multiple Independent Computations: Nontasking Version 433
Multiple Independent Computations: Tasking Version 434
Chapter 20. Interrupts and Attention Processing 436
Using ATTENTION ON-Units 437
Interaction with a Debugging Tool 437
Chapter 21. Using the Checkpoint/Restart Facility 438
Requesting a Checkpoint Record 439
Defining the Checkpoint Data Set 440
Requesting a Restart 440
Automatic Restart after a System Failure 440
Automatic Restart within a Program, 441
Getting a Deferred Restart 441
Modifying Checkpoint/Restart Activity 441
Part 7. Appendix 443
Appendix. Sample Program IBMLSO1 444
Bibliography 500
PL/I for MVS & VM Publications 500
Language Environment for MVS & VM Publications 500

X PL/I for MVS & VM Programming Guide

PL/I for OS/2 Publications

CoOperative Development Environment/370

IBM Debug Tool
Softcopy Publications
Other Books You Might Need

Glossary

Contents

Xi

Notices

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.
Any reference to an IBM product, program, or service is not intended to state or
imply that only that IBM product, program, or service can be used. Any functionally
equivalent product, program, or service that does not infringe any of the intellectual
property rights of IBM might be used instead of the IBM product, program, or
service. The evaluation and verification of operation in conjunction with other
products, except those expressly designated by IBM, are the responsibility of the
user.

IBM might have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Licensing, IBM Corporation, 500 Columbus Avenue, Thornwood, NY 10594, U.S.A.

Programming Interface Information

This book is intended to help the customer write programs using IBM PL/I for MVS
& VM. This book documents General-use Programming Interface and Associated
Guidance Information provided by IBM PL/I for MVS & VM.

General-use programming interfaces allow the customer to write programs that
obtain the services of IBM PL/I for MVS & VM.

Macros for Customer Use
IBM PL/I for MVS & VM provides no macros that allow a customer installation to
write programs that use the services of IBM PL/I for MVS & VM.

Warning: Do not use as programming interfaces any IBM PL/I for MVS & VM

macros.

Trademarks

Xii

The following terms are trademarks of the IBM Corporation in the United States or

other countries or both:

3090 MVS/ESA

AD/Cycle MVS/SP

Cics MVS/XA

VM 0Ss/2

COBOL/370 Presentation Manager
DB2 SAA

IBM System/390
Language Environment VM/ESA

MVS/DFP VM/XA

© Copyright IBM Corp. 1964, 1995

Part 1. Introduction

About this book Xiv
Run-time Environment for PL/I for MVS & VM Xiv
Debugging Facility for PL/l for MVS & VM Xiv
Using Your Documentation Xiv
Where to Look for More Information Xiv
PL/l Information Xiv
Language Environment Information L XV
What Is New in PL/I for MVS & VM XV
Notation Conventions Used in this Book XVii
Conventions Used Xviii
How to Read the Syntax Notation Xviii
How to Read the Notational Symbols XiX
Example of Notation XX

© Copyright IBM Corp. 1964, 1995 Xiii

About this book

This book is for PL/I programmers and system programmers. It helps you
understand how to use PL/I for MVS & VM to compile PL/I programs. It also
describes the operating system features that you might need to optimize program
performance or handle errors.

Run-time Environment for PL/I for MVS & VM

PL/I for MVS & VM uses Language Environment as its run-time environment. It
conforms to Language Environment architecture and can share the run-time
environment with other Language Environment-conforming languages.

Language Environment provides a common set of run-time options and callable
services. It also improves interlanguage communication (ILC) between high-level
languages (HLL) and assembler by eliminating language-specific initialization and
termination on each ILC invocation.

Debugging Facility for PL/I for MVS & VM

PL/I for MVS & VM uses the IBM Debug Tool as its debugging facility on MVS and
VM. Debug Tool utilizes the common run-time environment, Language
Environment, to provide the ILC debugging capability among Language
Environment-conforming languages. It also provides debugging capability under
CICS. Debug Tool is compatible with INSPECT for C/370 and PL/I debugging
facility. It provides equivalent functions that PLITEST as for OS PL/I Debug Tool
provides the compatibility support for OS PL/I Version 2 and the same level of
toleration that PLITEST used to provide for OS PL/I Version 1.

Using Your Documentation

The publications provided with PL/I for MVS & VM are designed to help you do PL/I
programming under MVS or VM. Each publication helps you perform a different
task.

Where to Look for More Information

Xiv

The following tables show you how to use the publications you receive with PL/I for
MVS & VM and Language Environment. You'll want to know information about
both your compiler and run-time environment. For the complete titles and order
numbers of these and other related publications, such as the IBM Debug Tool, see
the “Bibliography” on page 500.

PL/I Information
Table 1 (Page 1 of 2). How to Use Publications You Receive with PL/I for MVS & VM

To... Use...
Understand warranty information Licensed Programming Specifications
Plan for, install, customize, and maintain PL/I Installation and Customization under MVS

Program Directory under VM

© Copyright IBM Corp. 1964, 1995

Table 1 (Page 2 of 2). How to Use Publications You Receive with PL/I for MVS & VM

To...

Use...

Understand compiler and run-time changes and adapt
programs to PL/I and Language Environment

Compiler and Run-Time Migration Guide

Prepare and test your programs and get details on
compiler options

Programming Guide

Get details on PL/I syntax and specifications of
language elements

Language Reference
Reference Summary

Diagnose compiler problems and report them to IBM

Diagnosis Guide

Get details on compile-time messages

Compile-Time Messages and Codes

Language Environment Information

Table 2. How to Use Publications You Receive with Language Environment for MVS & VM

To...

Use...

Evaluate Language Environment

Fact Sheet
Concepts Guide

Understand warranty information

Licensed Program Specifications

Understand the Language Environment program models

and concepts

Concepts Guide
Programming Guide

Plan for, install, customize, and maintain Language
Environment on MVS

Installation and Customization under MVS
Program Directory under VM

Migrate applications to Language Environment

Run-Time Migration Guide
Your language migration guide

Find syntax for run-time options and callable services

Programming Reference

Develop your Language Environment-conforming
applications

Programming Guide and your language
programming guide

Find syntax for run-time options and callable services

Programming Reference

Develop interlanguage communication (ILC)
applications

Writing Interlanguage Communication
Applications

Debug your Language Environment-conforming
application and get details on run-time messages

Debugging Guide and Run-Time Messages

Diagnose problems with Language Environment

Debugging Guide and Run-Time Messages

Find information in the Language Environment library
quickly

Master Index

What Is New in PL/I for MVS & VM

PL/I for MVS & VM enables you to integrate your PL/I applications into Language
Environment for MVS & VM. In addition to PL/I's already impressive features, you
gain access to Language Environment's rich set of library routines and enhanced
interlanguage communication (ILC) with COBOL for MVS & VM, C/370, and C/C**
for MVS/ESA. Differences between OS PL/I and Language Environment's support
of PL/I for MVS & VM are described in the PL/I for MVS & VM Compiler and

Run-Time Migration Guide.

PL/I for MVS & VM Release 1.1 provides the following enhancements:

e Language Environment support of the PL/I multitasking facility

¢ Language Environment compatibility support for the following OS PL/I features:

About this book XV

— OS PL/I PLICALLA entry support extended to OS PL/I applications that
have been recompiled with PL/I for MVS & VM

— OS PL/I PLICALLB entry support with some differences in handling storage

¢ Object and/or load module support for OS PL/I expanded to Version 1 Release
3.0-5.1 with some restrictions

e Support for OS PL/I load modules invoking PLISRTx

e Expanded support and rules for OS PL/I Shared Library

e OS PL/I coexistence with Language Environment

e Enhanced SYSPRINT support

e OS PL/I-Assembler clarifications

e Compatibility for location of heap storage

e Help to relink your object and load modules with Language Environment

e Help to relink your OS PL/I-COBOL ILC load modules with Language
Environment

e Help to relink your OS PL/I load modules using PLISRTx with Language
Environment

e Help to relink your OS PL/I Shared Library
e Enhanced ILC support for PL/I and C/370

Release 1.0 provided the following functions:
¢ |IBM Language Environment for MVS & VM support including:
— ILC support with COBOL for MVS & VM and C/370.
- Object code produced by PL/I for MVS & VM Version 1 Release 1

- Object code produced by all releases of OS PL/I Version 2 and Version
1 Release 5.1

- Object code produced by LE/370-conforming compilers (all releases)

- PL/I load modules can be fetched by COBOL/370 and C/370 load
modules

- Load modules from other LE/370 Version 1 Release 1 and Release 1.1
conforming languages. Some load module support for
non-LE/370-conforming languages See the PL/I for MVS & VM
Compiler and Run-Time Migration Guide for details.

- Object code from VS COBOL Il Version 1 Release 3 and C/370
Version 1 and Version 2 as provided by each respective Language
Environment-conforming products)

Note: PL/I for MVS & VM does not support ILC with FORTRAN or OS/VS
COBOL.

— Support for PL/I and C/370 ILC is enhanced.

- Pointer data type now supports the null value used by C/370 and
programs via the SYSNULL built-in function.

— Under VM, the source listings for PL/I compilations can now be directed to
the printer by modifying an IBM-supplied EXEC.

XVi PL/I for MVS & VM Programming Guide

CEESTART is the entry point for all environments (including CICS).
Support for FETCH in CICS and VM.

Procedure OPTIONS option FETCHABLE can be used to specify the
procedure that gets control within a fetched load module.

Implicit LE/370 enclave is created if the PL/I load module containing a
MAIN procedure is fetched or is dynamically called.

CEETDLI is supported in addition to PLITDLI, ASMTDLI, and EXEC DLI.

By default, only user-generated output is written to SYSPRINT. All run-time
generated messages are written to MSGFILE.

Automatic storage can now be above the 16-megabyte line.

All PL/I MVS & VM Version 1 Release 1 resident library routines are in a
LIBPACK, and packaged with LE/370. The transient routines remain
transient and are not packaged as part of the LIBPACK.

At link-edit time, you have the option of getting math results that are
compatible with LE/370 or with OS PL/I.

e Support for DFP Version 3 system-determined blocksize.

e DATETIME and TIME return milliseconds in all environments, including VM and
CICs.

e VM terminal 1/O is unblocked and immediate.

¢ ERROR conditions now get control of all system abends. The PL/I message is
issued only if there is no ERROR on-unit or if the ERROR on-unit does not
recover from the condition via a GOTO.

e Selected items from OS/2 PL/I are implemented to allow better coexistence
with PL/I Package/2.

Limited support of OPTIONS(BYVALUE and BYADDR)

Limited support of EXTERNAL (environment-name) allowing alternate
external name

Limited support of OPTIONAL arguments/parameters
Support for %PROCESS statement
NOT and OR compiler options

 Installation enhancements are provided to ease product installation and
migration.

Note:
& VM

You cannot use INSPECT for C/370 and PL/l or PLITEST with PL/l for MVS

Notation Conventions Used in this Book

This book uses the conventions, diagramming techniques, and notation described
in “Conventions Used” on page xviii and “How to Read the Notational Symbols” on
page xix to illustrate PL/I and non-PL/l programming syntax.

About this book XVii

Conventions Used
Some of the programming syntax in this book uses type fonts to denote different
elements:

Items shown in UPPERCASE letters indicate key elements that must be typed
exactly as shown.

Items shown in lowercase letters indicate user-supplied variables for which you
must substitute appropriate names or values. The variables begin with a letter
and can include hyphens, numbers, or the underscore character ().

The term digit indicates that a digit (0 through 9) should be substituted.
The term do-group indicates that a do-group should be substituted.
Underlined items indicate default options.

Examples are shown in monocase type.

Unless otherwise indicated, separate repeatable items from each other by one
or more blanks.

Note: Any symbols shown that are not purely notational, as described in “How to
Read the Notational Symbols” on page xix, are part of the programming syntax
itself.

For an example of programming syntax that follows these conventions, see
“Example of Notation” on page Xxx.

How to Read the Syntax Notation
Throughout this book, syntax is described using the following structure:

XVviii

Read the syntax diagrams from left to right, from top to bottom, following the
path of the line. The following table shows the meaning of symbols at the
beginning and end of syntax diagram lines.

Symbol Indicates

»— the syntax diagram starts here

—> the syntax diagram is continued on the next line

— the syntax diagram is continued from the previous line
—>< the syntax diagram ends here

Required items appear on the horizontal line (the main path).
FFSTATEMENT_reqUired—itcm

A\
A

Optional items appear below the main path.

»»>—STATEMENT
|—opt‘ional—itfem—l

\4
A

Keywords appear in uppercase (for example, STATEMENT). They must be
spelled exactly as shown. Variables appear in all lowercase letters and in
italics (for example, item). They represent user-supplied names or values.

If punctuation marks, parentheses, arithmetic operators, or other symbols are
shown, you must enter them as part of the syntax.

PL/I for MVS & VM Programming Guide

e When you can choose from two or more items, the items appear vertically, in a
stack. If you must choose one of the items, one item of the stack appears on
the main path. The default, if any, appears above the main path and is chosen
by the compiler if you do not specify another choice. In some cases, the
default is affected by the system in which the program is being run or the
environmental parameters specified.

Because choice 1 appears on the horizontal bar, one of the items must be
included in the statement. If you don't specify either choice 1 or choice 2, the
compiler implements the default for you.

default—item—
»—STATEMENT—Echoice 1
choice 2

\ 4
A

If choosing one of the items is optional, the entire stack appears below the
main path.

»—STATEMENT t

\ 4
A

optional-choice 1
optional-choice 2

e An arrow returning to the left above the main line is a repeat arrow, and it
indicates an item that can be repeated.

»—STATEMENT—Lrepeatable—item |

\ 4
A

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single choice.

e |f there is a comma as part of the repeat arrow, you must use a comma to
separate items in a series.

° .
»»—STAT EMENT—Erepeatab le-item

\4
A

If the comma appears below the repeat arrow line instead of on the line as
shown in the previous example, the comma is optional as a separator of items
in a series.

* A syntax fragment is delimited in the main syntax diagram by a set of vertical
lines. The corresponding meaning of the fragment begins with the name of the
fragment followed by the syntax, which starts and ends with a vertical line.
»»>—STATEMENT—| fragment |

fragment:
F—syntax items I

\4
A

How to Read the Notational Symbols

Some of the programming syntax in this book is presented using notational
symbols. This is to maintain consistency with descriptions of the same syntax in
other IBM publications, or to allow the syntax to be shown on single lines within a
table or heading.

e Braces, { }, indicate a choice of entry. Unless an item is underlined, indicating
a default, or the items are enclosed in brackets, you must choose at least one
of the entries.

About this book ~ XiX

XX

* |tems separated by a single vertical bar , |, are alternative items. You can
select only one of the group of items separated by single vertical bars. (Double
vertical bars, ||, specify a concatenation operation, not alternative items. See
the PL/I for MVS & VM Language Reference for more information on double
vertical bars.)

¢ Anything enclosed in brackets , [], is optional. If the items are vertically
stacked within the brackets, you can specify only one item.

¢ An ellipsis , ..., indicates that multiple entries of the type immediately preceding
the ellipsis are allowed.

Example of Notation
The following example of PL/I syntax illustrates the notational symbols described In
“How to Read the Notational Symbols” on page xix:

DCL file-reference FILE STREAM
INPUT | {OUTPUT [PRINT]}
ENVIRONMENT (option ...);

Interpret this example as follows:

e You must spell and enter the first line as shown, except for file-reference, for
which you must substitute the name of the file you are referencing.

¢ In the second line, you can specify INPUT or OUTPUT, but not both. If you
specify OUTPUT, you can optionally specify PRINT as well. If you do not
specify either alternative, INPUT takes effect by default.

e You must enter and spell the last line as shown (including the parentheses and
semicolon), except for option ..., for which you must substitute one or more
options separated from each other by one or more blanks.

PL/I for MVS & VM Programming Guide

Part 2. Compiling your program

Chapter 1. Using Compile-Time Options and Facilites 5
Compile-Time Option Descriptions 5
AGGREGATE 8
ATTRIBUTES 8
CMPAT . 8
COMPILE e 10
CONTROL . . . 10
DECK . . 10
ESD . . e 11
FLAG . . 11
GONUMBER 11
GOSTMT . . . 12
GRAPHIC . . . 12
IMPRECISE 12
INCLUDE 13
INSOURCE 13
INTERRUPT e 13
LANGLVL 14
LINECOUNT e 14
LIST 14
LMESSAGE e 15
MACRO 15
MAP 15
MARGINI . . . 16
MARGINS 16
MDECK . . . 17
NAME 17
NEST . . 18
NOT . . e 18
NUMBER 18
OBJECT 19
OFFSET 19
OPTIMIZE 20
OPTIONS 20
OR 21
SEQUENCE 21
SIZE . . . 22
SMESSAGE 23
SOURCE e 23
STMT . . 23
STORAGE 23
SYNTAX o 24
SYSTEM . . . 24
TERMINAL e 25
TEST . . 26
XREF . 27
Input Record Formats 28
Specifying Options in the %PROCESS or *PROCESS statements 28
Using the Preprocessor 29
Invoking the Preprocessor 29

© Copyright IBM Corp. 1964, 1995 1

Using the %INCLUDE Statement 30

Using the PL/I Preprocessor in Program Testing 31
Using % Statements 32
Invoking the Compiler from an Assembler Routine 32

Option List 33

DDNAME List 33

Page Number 33
Using the Compiler Listing 33

Heading Information 34

Options Used for the Compilation 34

Preprocessor Input 34

SOURCE Program e 34

Statement Nesting Level 36

ATTRIBUTE and Cross-Reference Table 36

Attribute Table 37
Cross-Reference Table 37

Aggregate Length Table 38

Storage Requirements 39

Statement Offset Addresses 40

External Symbol Dictionary 41

ESD Entries 42

Static Internal Storage Map 43

Object Listing 44

Messages e 44

Return Codes L 45
Chapter 2. Using PL/I Cataloged Procedures under MVS 46
IBM-Supplied Cataloged Procedures 46

Compile Only (IEL1C) a7

Compile and Link-Edit (IEL1CL) 48

Compile, Link-Edit, and Run (IELACLG) 50

Compile, Load and Run (IEL1ICG) 51
Invoking a Cataloged Procedure 52

Specifying Multiple Invocations oL 52

Link-Editing Multitasking Programs 53
Modifying the PL/I Cataloged Procedures 54

EXEC Statement 54

DD Statement 55
Chapter 3. Compiling under MVS 56
Invoking the Compiler under TSO 56

Allocating Data Sets 57

Using the PLI Command 59

Example 1 61
Example 2 62
Compiler Listings 62
Using %INCLUDE under TSO, ... 62
Allocating Data Sets in %INCLUDE 63

Running Jobs in a Background Region 63
Using JCL during Compilation 64

EXEC Statement 64

DD Statements for the Standard Data Sets 64

Input (SYSIN or SYSCIN) 65
Output (SYSLIN, SYSPUNCH) 65

2 PL/I for MVS & VM Programming Guide

Temporary Workfile (SYSUT1) 66

Statement Lengths 66
Listing (SYSPRINT) 67
Source Statement Library (SYSLIB) 67
Example of Compiler JCL 67
Specifying Options 68
Specifying Options in the EXEC Statement 68
Compiling Multiple Procedures in a Single Job Step 69
SIZE Option 69
NAME Option 69
Return Codes in Batched Compilation 70
Job Control Language for Batched Processing 70
Examples of Batched Compilations 71

Correcting Compiler-Detected Errors 71
The PL/I Compiler and MVS/ESA 71
Compiling for CICS 72
Chapter 4. Compiling under VM 73
Using the PLIOPT Command, 73

Compiler Output and Its Destination 73
Compile-Time Options 74
Files Used by the Compiler 74
PLIOPT Command Options 75

%INCLUDE Statement 75

Example of Using %INCLUDE 76

PLIOPT Command Format 76

Examples: 76

Special Action Will Be Required: 77
PL/I Batched Compilation 78

Correcting Compiler-Detected Errors 78
Chapter 5. Link-Editing and Running 80
Selecting Math Results at Link-Edit Time 80
VM Run-Time Considerations 80
Separately Compiled PL/I MAIN Programs 81
Using Data Setsand Files 81

Using VM Files — Example 82

Using VSAM Data Sets — Example 83

Using OS Data Sets — Example 84
Restrictions Using PL/l under VM 85

Using Record I/O at the Terminal 85
PL/I Conventions under VM 86

Formatting onventions for PRINT Files 86

Changing the Format on PRINT Files 86

Automatic Prompting 86

Punctuating Long Input Lines 87

Punctuating GET LIST and GET DATA Statements 88

ENDFILE 88

DISPLAY and REPLY under VM 89

MVS Run-Time Considerations 89
Formatting Conventions for PRINT Files 89
Changing the Format on PRINT Files 89
Automatic Prompting 90
Punctuating Long Input Lines 91

Part 2. Compiling your program 3

4

Punctuating GET LIST and GET DATA Statements

ENDFILE

SYSPRINT Considerations

PL/I for MVS & VM Programming Guide

Chapter 1. Using Compile-Time Options and Facilities

This chapter describes the options that you can use for the compiler, along with
their abbreviations and IBM-supplied defaults. It's important to remember that PL/I
requires access to Language Environment run time when you compile your
applications.

Most compile-time options have a positive and negative form. The negative form is
the positive with 'NO"' added at the beginning (as in TEST and NOTEST). Some
options have only a positive form (as in SYSTEM).

Your installation can change the IBM-supplied defaults when this product is
installed. Therefore, the defaults listed in this chapter might not be the same as
those chosen by your installation. You can override most defaults when you
compile your PL/I program.

Compile-Time Option Descriptions
There are three types of compile-time options:

1. Simple pairs of keywords: a positive form that requests a facility, and an
alternative negative form that inhibits that facility (for example, NEST and
NONEST).

2. Keywords that allow you to provide a value list that qualifies the option (for
example, FLAG(W)).

3. A combination of 1 and 2 above (for example, NOCOMPILE(E)).

Table 3 lists all compile-time options with their abbreviated syntax and their
IBM-supplied default values. Table 4 on page 7 lists the options by function so that
you can, for example, determine the preprocessing options.

The paragraphs following Table 3 and Table 4 describe the options in alphabetical
order. In the accompanying syntax diagrams, defaults are not highlighted because
that information is provided Table 3. For those options that specify that the
compiler is to list information, only a brief description is included; the generated
listing is described under “Using the Compiler Listing” on page 33.

Note: Under VM, use only the abbreviated form of the compile-time option if the
option name is longer than eight characters.

Table 3 (Page 1 of 2). Compile-Time Options, Abbreviations, and IBM-Supplied Defaults

Compile-time option Abbreviated name MVS default TSO default VM default
AGGREGATE|NOAGGREGATE AG|NAG NAG NAG NAG
ATTRIBUTES[(FULL|SHORT)]| A[(FIS)IINA NA [(FULL)]L NA [(FULL)]L NA [(FULL)]L
NOATTRIBUTES
CMPAT(V1|V2) CMP(V1|V2) CMP(V2) CMP(V2) CMP(V2)
COMPILE|NOCOMPILE[(WIE|S)] CINC[(WIE|S)] NC(S) NC(S) NC(S)
CONTROL("'password"') - - - -
DECK|NODECK DIND ND ND ND
ESD|NOESD - NOESD NOESD NOESD
FLAG[(IIWIE|S)] FINIWIEIS)] F(1) F(W) F(W)
GONUMBER|NOGONUMBER GN|NGN NGN NGN NGN

© Copyright IBM Corp. 1964, 1995 5

Table 3 (Page 2 of 2). Compile-Time Options, Abbreviations, and IBM-Supplied Defaults

Compile-time option Abbreviated name MVS default TSO default VM default
GOSTMT|NOGOSTMT GSINGS NGS NGS NGS
GRAPHIC|NOGRAPHIC GR|NGR NGR NGR NGR
IMPRECISE|NOIMPRECISE IMP|NIMP NIMP NIMP NIMP
INCLUDE|NOINCLUDE INC|NINC NINC NINC NINC
INSOURCE|NOINSOURCE ISINIS IS NIS NIS
INTERRUPT|NOINTERRUPT INTININT NINT NINT NINT
LANGLVL({OS,SPROG|NOSPROG}) - LANGLVL LANGLVL LANGLVL

(OS,NOSPROG) (OS,NOSPROG) (OS,NOSPROG)
LINECOUNT(n) LC(n) LC(55) LC(55) LC(55)
LIST[(m[,n])]INOLIST - NOLIST NOLIST NOLIST
LMESSAGE|SMESSAGE LMSG|SMSG LMSG LMSG LMSG
MACRO|NOMACRO MINM NM NM NM
MAP|NOMAP - NOMAP NOMAP NOMAP
MARGINI('c')I]NOMARGINI MI(*c")INMI NMI NMI NMI
MARGINS(m,n[,c]) MAR(m,n[,c]) MAR MAR MAR

F-format: (2,72) F-format: (2,72) F-format: (2,72)

V-format: (10,100) V-format: (10,100) V-format: (10,100)
MDECK|NOMDECK MD|NMD NMD NMD NMD
NAME('name") N('name') - - -
NOT - NOT('-") NOT('-") NOT('-")
NEST|NONEST - NONEST NONEST NONEST
NUMBER|NONUMBER NUM|NNUM NNUM NUM NUM
OBJECT|NOOBJECT OBJ|NOBJ OBJ OBJ OBJ
OFFSET|NOOFFSET OF|NOF NOF NOF NOF
OPTIMIZE(TIME|0|2)[INOOPTIMIZE OPT(TIME|0|2)INOPT NOPT NOPT NOPT
OPTIONS|NOOPTIONS OP|NOP OoP NOP NOP
OR - OR(']") OR(']") OR('|")
SEQUENCE(m,n)INOSEQUENCE SEQ(m,n)|NSEQ SEQ SEQ SEQ

F-format: (73,80)
V-format: (1,8)

F-format: (73,80)
V-format: (1,8)

F-format: (73,80)
V-format: (1,8)

SIZE([-lyyyyyyyyl[-lyyyyyKIMAX) SZ([-lyyyyyyyyl SZ(MAX) SZ(MAX) SZ(MAX)
[-lyyyyyKIMAX)
SOURCE|NOSOURCE SINS S NS NS
STMT|NOSTMT - STMT NOSTMT NOSTMT
STORAGE|NOSTORAGE STGINSTG NSTG NSTG NSTG
SYNTAX|NOSYNTAX[(W|E|S)] SYNINSYN[(WIEIS)] NSYN(S) NSYN(S) NSYN(S)
SYSTEM(CMS|CMSTPL|MVS|TSO| - MVS MVS VM
CICS|IMS)
TERMINAL[(opt-list)]INOTERMINAL TERM[(opt-list)]INTERM NTERM TERM TERM
TEST[([ALL|BLOCK|NONE|PATH]| - NOTEST NOTEST NOTEST
STMT][,SYM|,NOSYM])][NOTEST [(NONE,SYM)]2 [(NONE,SYM)]2 [(NONE,SYM)]2
XREF[(FULL|SHORT)]|NOXREF XI(FIS)IINX NX [(FULL)]L NX [(FULL)]L NX [(FULL)]L

Notes:

1. FULL is the default suboption if the suboption is omitted with ATTRIBUTES or XREF.

2. (NONE,SYM) is the default suboption if the suboption is omitted with TEST.

6 PL/ for MVS & VM Programming Guide

Table 4 (Page 1 of 2). Compile-Time Options Arranged by Function

Options for use when
testing or debugging

TEST

specifies which debugging tool capabilities are available for testing programs.

Listing options
Control listings produced

AGGREGATE lists aggregates and their size.
ATTRIBUTES lists attributes of identifiers.

ESD lists external symbol dictionary.
FLAG suppresses diagnostic messages below a certain severity.
INSOURCE lists preprocessor input.
LIST lists object code produced by compiler.
MAP lists offsets of variables in static control section and DSAs.
OFFSET lists statement numbers associated with offsets.
OPTIONS lists options used.
SOURCE lists source program or preprocessor output.
STORAGE lists storage used.
XREF lists statements in which each identifier is used.
Improve regd_ability MARGINI highlights any source outside margins.
of source listing NEST indicates do-group and block level by numbering in margin.
Control lines per page LINECOUNT specifies number of lines per page on listing.
Input options GRAPHIC specifies that shift codes can be used in source.
MARGINS identifies position of PL/I source and a carriage control character.
NOT used to specify up to seven alternate symbols for the logical NOT operator.
OR used to specify up to seven alternate symbols for the logical OR operator and
the string concatenation operator.
SEQUENCE specifies the columns used for sequence numbers.
Options to prevent COMPILE stops processing after errors are found in syntax checking.
unnecessary processing SYNTAX stops processing after errors are found in preprocessing.
Options for preprocessing INCLUDE allows secondary input to be included without using preprocessor.
MACRO allows preprocessor to be used.
MDECK produces a source deck from preprocessor output.
Option to improve OPTIMIZE improves run-time performance or specifies faster compile time.
performance
Options to use when CMPAT controls level of compatibility with previous releases.
producing an object module DECK produces an object module in punched card format.
OBJECT produces object code.
NAME specifies the TEXT file will be given a particular external name.
SYSTEM specifies the parameter list format that is passed to the main procedure.
Option to control storage SIZE controls the amount of storage used by the compiler.
Options to improve usability at LMESSAGE/SMESSAGE specifies full or concise message format.
a terminal TERMINAL specifies how much of listing is transmitted to terminal.

Options to specify statement
numbering system

NUMBER & GONUMBER numbers statements according to line in which they start.

STMT & GOSTMT

numbers statements sequentially.

Option to control effect of
attention interrupts

INTERRUPT

specifies that the ATTENTION condition will be raised after an interrupt is
caused.

Option for use on imprecise IMPRECISE allows imprecise interrupts to be handled correctly.
interrupt machines
Option to control compile-time CONTROL specifies that any compile-time options previously deleted are available.

options

Chapter 1. Using Compile-Time Options and Facilities

Table 4 (Page 2 of 2). Compile-Time Options Arranged by Function

Option to control language LANGLVL defines the level of language supported.
level

AGGREGATE

NOAGGREGATE
>>—|:AGGREGATE |

A\
A

The AGGREGATE option specifies that the compiler includes an aggregate-length
table that gives the lengths of all arrays and major structures in the source program
in the compiler listing.

ATTRIBUTES

NOATTRIBUTES |

> ATTRIBUTES t
FULL- J
(—sHorT—1—)

A\
A

The ATTRIBUTES option specifies that the compiler includes a table of
source-program identifiers and their attributes in the compiler listing. If you include
both ATTRIBUTES and XREF, the two tables are combined. However, if the
SHORT and FULL suboptions are in conflict, the last option specified is used. For
example, if you specify ATTRIBUTES(SHORT) XREF(FULL), FULL applies to the
combined listing.

FULL
All identifiers and attributes are included in the compiler listing. FULL is the
default.

SHORT
Unreferenced identifiers are omitted, making the listing more manageable.

CMPAT

A\
A

V2
»»—CMPAT—([y)

The CMPAT option specifies whether object compatibility with OS PL/I Version 1 is
maintained for those programs sharing arrays, AREAs, or aggregates.

CMPAT(V1)
If you use CMPAT(V1), you can use arrays, AREAs, and aggregates in exactly
the same way that they were used in OS PL/I Version 1 as long as other
external procedures sharing them are not compiled with CMPAT(V2).

8 PL/ for MVS & VM Programming Guide

If any procedures in an application load module (MAIN or FETCHed) are
recompiled (and therefore relink-edited), object code compatibility with OS PL/I
Version 1 Release 5.1 is provided under the following guidelines:

e |If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
1 Release 5.1 object code and PL/I MVS & VM object code, PL/I MVS &
VM compilations must use CMPAT(V1).

 If arrays, aggregates, or AREAs are to be shared between PL/I| MVS & VM
object code only, PL/I MVS & VM compilations must use either CMPAT(V1)
or CMPAT(V2), but not both.

¢ Using CMPAT(V2) is required for larger arrays, aggregates, or AREAs and
is recommended even if you do not use larger arrays, aggregates, or
AREAs.

e If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
1 Release 5.1 object code only, no precautions need to be taken.

CMPAT(V2)
In general, you should compile PL/I programs with CMPAT(V2).

CMPAT(V2) does not provide object compatibility with OS PL/I Version 1.
Therefore, if you are migrating OS PL/I Version 1 applications or OS PL/I
Version 2 applications compiled with CMPAT(V1), you must make code
changes if:

e You want to use fullword subscripts.

¢ You have any expressions that rely on precision and scale values returned
from the BUILTIN functions HBOUND, LBOUND, DIM, or ALLOCATION.

If you do not have either of the above requirements you do not need to make
code changes to use CMPAT(V2) as long as all external procedures sharing
the same array or aggregate are also compiled with CMPAT(V2).

If all of your existing object code was produced by OS PL/I Version 2 with the
compiler option CMPAT(V2), your object code is fully compatible with object
code produced by PL/I MVS & VM, provided you continue to use CMPAT(V2)
compiler option. (Other factors can affect object code compatibility. For a list
of these factors, see PL/I for MVS & VM Compiler and Run-Time Migration
Guide.)

If some or all of your existing object code was produced by OS PL/I Version 2
with the compiler option CMPAT(V1) or by OS PL/I Version 1 Release 5.1, the
following considerations apply when mixing with object code produced by PL/I
MVS & VM:

 If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
1 Release 5.1 or OS PL/I Version 2 (compiled with CMPAT(V1)) object
code and PL/I MVS & VM object code, PL/l MVS & VM compilations must
use CMPAT(V1).

e If arrays, aggregates, or AREAs are to be shared between OS PL/I Version
2 (compiled with CMPAT(V2)) object code and PL/I MVS & VM object
code, PL/I MVS & VM compilations must use CMPAT(V2).

Using CMPAT(V?2) is required for larger arrays, aggregates, or AREAs and
is recommended even if you do not use larger arrays, aggregates, or
AREAs.

Chapter 1. Using Compile-Time Options and Facilities 9

COMPILE

CONTROL

DECK

NOCOMPILE

L({E})J

> COMPILE

\4
A

The COMPILE option specifies that the compiler compiles the source program
unless it detects an unrecoverable error during preprocessing or syntax checking.
Whether the compiler continues or not depends on the severity of the error
detected, as specified by the NOCOMPILE option in the list below. The
NOCOMPILE option specifies that processing stops unconditionally after syntax
checking.

NOCOMPILE(W)
No compilation if a warning, error, severe error, or unrecoverable error is
detected.

NOCOMPILE(E)
No compilation if an error, severe error, or unrecoverable error is detected.

NOCOMPILE(S)
No compilation if a severe error or unrecoverable error is detected.

If the compilation is terminated by the NOCOMPILE option, the cross-reference
listing and attribute listing can be produced; the other listings that follow the source
program will not be produced.

\ 4
A

»»—CONTROL— (—'—password—'—)

The CONTROL option specifies that any compile-time options deleted for your
installation are available for this compilation. Using the CONTROL option alone
does not restore compile-time options you have deleted from your system. You still
must specify the appropriate keywords to use the options. The CONTROL option
must be specified with a password that is established for each installation. If you
use an incorrect password, processing will be terminated. If you use the
CONTROL option, it must be specified first in the list of options.

password
is a character string not exceeding eight characters.

Under VM: You cannot use a right or left parenthesis or include lower case
characters on a password if you use CONTROL in the PLIOPT command.

NODECK
»—EDECK 1

\ 4
A

The DECK option specifies that the compiler produces an object module in the form
of 80-character records and store it in the SYSPUNCH data set. Columns 73-76 of
each record contain a code to identify the object module. This code comprises the

10 PL/ for MVS & VM Programming Guide

ESD

FLAG

GONUMBER

first four characters of the first label in the external procedure represented by the
object module. Columns 77-80 contain a 4-digit decimal number: the first record is
numbered 0001, the second 0002, and so on.

NOESD
»—EESD 1

\ 4
A

The ESD option specifies that the external symbol dictionary (ESD) is listed in the
compiler listing.

\4
A

FLAG
> |_(:)J

The FLAG option specifies the minimum severity of error that requires a message
listed in the compiler listing.

FLAG(I)
List all messages.

FLAG(W)
List all except information messages. If you specify FLAG, FLAG(W) is
assumed.

FLAG(E)
List all except warning and information messages.

FLAG(S)
List only severe error and unrecoverable error messages.

NOGONUMBER
>>—|:GONUMBER |

\ 4
A

The GONUMBER option specifies that the compiler produces additional information
that allows line numbers from the source program to be included in run-time
messages.

Alternatively, these line numbers can be derived by using the offset address, which
is always included in run-time messages, and the table produced by the OFFSET
option. (The NUMBER option must also apply.)

The GONUMBER option implies NUMBER, NOSTMT, and NOGOSTMT. If
NUMBER applies, GONUMBER is forced by the ALL, STMT, and PATH suboptions
of the TEST option. The OFFSET option is separate from these numbering options
and must be specified if required.

Chapter 1. Using Compile-Time Options and Facilites 11

GOSTMT

GRAPHIC

IMPRECISE

NOGOSTMT
»»—I:GOSTMT]

A\
A

The GOSTMT option specifies that the compiler produces additional information
that allows statement numbers from the source program to be included in run-time
messages.

These statement numbers can also be derived by using the offset address, which is
always included in run-time messages, and the table produced by the OFFSET
option. (The STMT option must also apply.)

The GOSTMT option implies STMT, NONUMBER, and NOGONUMBER. If STMT
applies, GOSTMT is forced by the ALL, STMT, and PATH suboptions of the TEST
option. The OFFSET option is separate from these numbering options and must be
specified if required.

NOGRAPHIC
>>—|:G RAPHIC 1

A\
A

Using GRAPHIC option specifies that the source program can contain double-byte
characters. The hexadecimal codes 'OE' and 'OF' are treated as the shift-out and
shift-in control codes, respectively, wherever they appear in the source program.
This includes occurrences in comments and string constants.

The GRAPHIC compile-time option must be specified if the source program uses
any of the following:

» DBCS identifiers

e Graphic string constants

e Mixed string constants

» Shift codes anywhere else in the source

For more information see the discussion of the DBCSOS Ordering Product and the
SIZE option on page 22.

NOIMPRECISE
>>—|:IMPRECISE |

\4
A

The IMPRECISE option specifies that the compiler includes extra text in the object
module to localize imprecise interrupts when executing the program with an IBM
System/390 Model 165 or 195. This extra text is generated for ON statements (to
ensure that the correct ON-units are entered if interrupts occur), for null statements,
and for ENTRY statements. The correct line or statement numbers do not
necessarily appear in run-time messages. If you need more accurate identification
of the statement in error, insert null statements at suitable points in your program.

12 PL/ for MVS & VM Programming Guide

INCLUDE

INSOURCE

INTERRUPT

NOINCLUDE
INCLUDE

A\
A

The INCLUDE option specifies that %INCLUDE statements are handled without
using the full preprocessor facilities and incurring more overhead. This method is
faster than using the preprocessor for programs that use the %INCLUDE statement
but no other PL/I preprocessor statements. The INCLUDE option has no effect if
preprocessor statements other than %INCLUDE are used in the program. In these
cases, the MACRO option must be used.

If you specify the MACRO option, it overrides the INCLUDE option.

INSOURCE
NOINSOURCE

A\
A

The INSOURCE option specifies that the compiler should include a listing of the
source program before the PL/I macro preprocessor translates it. Thus, the
INSOURCE listing contains preprocessor statements that do not appear in the
SOURCE listing. This option is applicable only when the MACRO option is in
effect.

NOINTERRUPT
INTERRUPT

\4
A

This option determines the effect of attention interrupts when the compiled PL/I
program runs under an interactive system. (If specified on a batch system,
INTERRUPT can cause an abend.)

The INTERRUPT option causes the compiled program to respond to attention
requests (interrupts). If you have written a program that relies on raising the
ATTENTION condition, you must compile it with the INTERRUPT option.

The INTERRUPT option allows attention interrupts to become an integral part of
programming. This gives you considerable interactive control of the program.

If you specify the INTERRUPT option, an established ATTENTION ON-unit gets
control when an attention interrupt occurs. When the execution of an ATTENTION
ON-unit is complete, control returns to the point of interrupt unless directed
elsewhere by means of a GOTO statement. If you do not establish an ATTENTION
ON-unit, the attention interrupt is ignored.

If you specify NOINTERRUPT, an attention interrupt during a program run does not
give control to any ATTENTION ON-units.

If you require the attention interrupt capability purely for testing purposes, you need

not use the INTERRUPT option. The TEST option provides this capability. For
more information See “TEST” on page 26.

Chapter 1. Using Compile-Time Options and Facilites 13

LANGLVL

LINECOUNT

LIST

See Chapter 20, “Interrupts and Attention Processing” on page 436 for more
information about the INTERRUPT option.

» NOSPROG
s SPROG——I—
»»—| ANGLVL— NOSPROG

~
\4
A

SPROG
Ls—OSJ

The LANGLVL option specifies the level of PL/I language supported, including
whether pointers in expressions are to be supported.

oS
specifies the level of PL/I language the compiler is to support. OS is the only
level currently supported.

NOSPROG
specifies that the compiler is not to allow the additional support for pointers
allowed under SPROG.

SPROG
specifies that the compiler is to allow extended operations on pointers,
including arithmetic, and the use of the POINTERADD, BINARYVALUE, and
POINTERVALUE built-in functions.

For more information on pointer operations, see the PL/I for MVS & VM
Language Reference book.

»»>—L INECOUNT—(—n—)

A\
A

The LINECOUNT option specifies the number of lines included in each page of the
compiler listing, including heading lines and blank lines.

n is the number of lines. It must be in the range 1 through 32,767, but only
headings are generated if you specify less than 7. When you specify less than
100, the static internal storage map and the object listing are printed in double
column format. Otherwise, they are printed in single column format.

NOLIST |
> LIST
Cm -

\ 4
A

I

The LIST option specifies that the compiler includes a listing of the object module
(in a syntax similar to assembler language instructions) in the compiler listing. If
both m and n are omitted, the compiler produces a listing of the whole program.

m is the number of the first, or only, source statement for which an object listing is
required.

14 PL/ for MVS & VM Programming Guide

LMESSAGE

MACRO

MAP

n is the number of the last source statement for which an object listing is
required. If nis omitted, only statement m is listed.

If the option NUMBER applies, m and n must be specified as line numbers. If the
STMT option applies, m and n must be statement numbers.

If you use LIST in conjunction with MAP, it increases the information generated by
MAP. (See “MAP” for more information on the MAP compile-time option.)

Under TSO: Use the LIST(m[,n]) option to direct a listing of particular statements to
the terminal in either of the following ways:

e Use the LIST option, with no statement numbers, within the TERMINAL option.
e Use the PRINT(*) operand in the PLI command.

LMESSAGE
SMESS/—\GE

A\
A

The LMESSAGE and SMESSAGE options produce messages in a long form
(specify LMESSAGE) or in a short form (specify SMESSAGE).

NOMACRO
MACRO!

A\
A

The MACRO option specifies that the source program is to be processed by the
preprocessor. MACRO overrides INCLUDE if both are specified.

NOMAP

A\
A

The MAP option specifies that the compiler produces tables showing the
organization of the static storage for the object module. These tables show how
variables are mapped in the static internal control section and in DSAs, thus
enabling STATIC INTERNAL and AUTOMATIC variables to be found in PLIDUMP.
If LIST (described under “LIST” on page 14) is also specified, the MAP option
produces tables showing constants, control blocks and INITIAL variable values.
LIST generates a listing of the object code in pseudo-assembler language format.

If you want a complete map, but not a complete list, you can specify a single
statement as an argument for LIST to minimize the size of the LIST. For example:

%PROCESS MAP LIST(1);

Chapter 1. Using Compile-Time Options and Facilites 15

MARGINI

MARGINS

NOMARGIN I—|
»»—I:MARGINI (—'—c—'—)

A\
A

The MARGINI option specifies that the compiler includes a specified character in
the column preceding the left-hand margin, and also in the column following the
right-hand margin of the listings that the compiler produces when you use the
INSOURCE and SOURCE options. The compiler shifts any text in the source input
that precedes the left-hand margin left one column. It shifts any text that follows
the right-hand margin right one column. Thus you can easily detect text outside the
source margins.

c Is the character to be printed as the margin indicator.

A\
A

C

The MARGINS option specifies which part of each compiler input record contains
PL/I statements, and the position of the ANS control character that formats the
listing, if the SOURCE and/or INSOURCE options apply. The compiler does not
process data that is outside these limits, but it does include it in the source listings.

The PL/I source is extracted from the source input records so that the first data
byte of a record immediately follows the last data byte of the previous record. For
variable records, you must ensure that when you need a blank you explicitly insert
it between margins of the records.

m is the column number of the leftmost character (first data byte) that is
processed by the compiler. It must not exceed 100.

n is the column number of the rightmost character (last data byte) that is
processed by the compiler. It should be greater than m, but not greater than
100.

For variable-length records, nis interpreted as the rightmost column, or the last
data byte if the record has less than n data bytes. Thus, the last character of a
variable-length record is usually a nonblank character and is immediately
followed (without any intervening blank) by the first data byte (m) of the next
record. If you do not intend to have continuation, be sure that at least one
blank occurs at the beginning (m) of the next record.

¢ is the column number of the ANS printer control character. It must not exceed
100 and should be outside the values specified for m and n. A value of O for ¢
indicates that no ANS control character is present. Only the following control
characters can be used:

(blank) Skip one line before printing

0 Skip two lines before printing
- Skip three lines before printing
+ No skip before printing

1 Start new page

16 PL/ for MVS & VM Programming Guide

MDECK

NAME

Any other character is an error and is replaced by a blank.

Do not use a value of c that is greater than the maximum length of a source
record, because this causes the format of the listing to be unpredictable. To
avoid this problem, put the carriage control character to the left of the source
margins for variable length records.

Specifying MARGINS(,,c) is an alternative to using %PAGE and %SKIP
statements (described in the PL/I for MVS & VM Language Reference).

The IBM-supplied default for fixed-length records is MARGINS(2,72). For
variable-length and undefined-length records, the IBM-supplied default is
MARGINS(10,100). This specifies that there is no printer control character.

Use the MARGINS option to override the default for the primary input in a program.
The secondary input must have either the same margins as the primary input if it is
the same type of record, or default margins if it is a different type. (See “Input
Record Formats” on page 28.)

NOMDECK:
>>—J:MDECK |

\4
A

The MDECK option specifies that the preprocessor produces a copy of its output on
the file defined by the SYSPUNCH DD statement. The MDECK option allows you
to retain the output from the preprocessor as a file of 80-column records.

The compiler ignores MDECK if NOMACRO is in effect.

»»—NAME— (—'—name—'—)

\ 4
A

The NAME option specifies that the TEXT file created by the compiler is given the
specified external name that you specify. This allows you to create more than one
TEXT file while doing batched compilation. It also allows you to produce text files
that can be included in a text library. You can also use the NAME option to cause
the linkage editor to substitute a new load module for an existing load module with
the same name in the library.

name
has from one through eight characters, and begins with an alphabetic
character. NAME has no default.

For more uses of the NAME option, see either “Compiling a Program to be Placed

in a TXTLIB” on page 77 for compiling under VM, or “NAME Option” on page 69
for compiling under MVS.

Chapter 1. Using Compile-Time Options and Facilites 17

NEST

NOT

NUMBER

NONEST
>>—|:NEST |

A\
A

You can use the NEST option to specify that the listing resulting from the SOURCE
option indicates the block level and the do-group level for each statement.

>>—NOT—(—'_m_l_)

A\
A

The NOT option specifies up to seven alternate symbols, any one of which can be
used as the logical NOT operator.

char
is a single SBCS character.

You cannot specify any of the alphabetic characters, digits, and special
characters defined in the PL/I for MVS & VM Language Reference, except for
the logical NOT symbol (-).

If you specify the NOT option, the standard NOT symbol is no longer
recognized unless you specify it as one of the characters in the character
string.

For example, NOT('™') means that the tilde character, X'Al', will be
recognized as the logical NOT operator, and the standard NOT symbol, '-"',
X'5F', will not be recognized. Similarly, NOT('"=") means that either the tilde
or the standard NOT symbol will be recognized as the logical NOT operator.

The IBM-supplied default code point for the NOT symbol is X'5F'. The logical
NOT sign might appear as a logical NOT symbol (=) or a caret symbol () on your
keyboard.

\4
A

> NUMBER .
NONUMBER:

The NUMBER option specifies that numbers in the sequence fields in the source
input records are used to derive the statement numbers in the listings resulting from
the AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE and XREF options.

You can specify the position of the sequence field in the SEQUENCE option.
Otherwise the following default positions are assumed:
¢ First eight columns for undefined-length or variable-length source input records
e Last eight columns for fixed-length source input records
Note: The preprocessor output has fixed-length records regardless of the format

of the primary input. The sequence numbers are in columns 73-80 in the source
listing.

18 PL/ for MVS & VM Programming Guide

OBJECT

OFFSET

The compiler calculates the line number from the five right-hand characters of the
sequence number (or the number specified, if less than five). These characters are
converted to decimal digits if necessary. Each time the compiler finds a line
number that is not greater than the preceding line number, it forms a new line
number by adding the minimum integral multiple of 100,000 to produce a line
number that is greater than the preceding one. The compiler issues a message to
warn you of the adjustment, except when you specify the INCLUDE option or the
MACRO option.

If there is more than one statement on a line, the compiler uses a suffix to identify
the actual statement in the messages. For example, the second statement
beginning on the line numbered 40 is identified by the number 40.2. The maximum
value for this suffix is 31. Thus the thirty-first and subsequent statements on a line
have the same number.

If the sequence field consists only of blanks, the compiler forms the new line
number by adding 10 to the preceding one. The maximum line number allowed by
the compiler is 134,000,000. Numbers that would normally exceed this are set to
this maximum value. Only eight digits print in the source listing; line humbers of
100,000,000 or over print without the leading 1 digit.

If you specify NONUMBER, STMT and NOGONUMBER are implied. NUMBER is
implied by NOSTMT or GONUMBER.

0BJECT
> NOOBJ ECT‘

A\
A

The OBJECT option specifies that the compiler creates an object module and
stores it in a TEXT file (VM) or in a data set defined by the DD statement with the
name SYSLIN (MVS).

NOOFFSET
>>—J:OFFS ET]

\ 4
A

The OFFSET option specifies that the compiler prints a table of statement or line
numbers for each procedure with their offset addresses relative to the primary entry
point of the procedure. You can use this table to identify a statement from a
run-time error message if the GONUMBER or GOSTMT option is not in effect.

If GOSTMT applies, the run-time library includes statement numbers, as well as
offset addresses, in run-time messages. If GONUMBER applies, the run-time
library includes line numbers, as well as offset addresses, in run-time messages.

For more information on determining line numbers from the offsets given in error
messages, see “Statement Offset Addresses” on page 40.

Chapter 1. Using Compile-Time Options and Facilites 19

OPTIMIZE

OPTIONS

A\
A

NOOPTIMIZE—‘
>>—|:OPTIMIZE—(TIME)
a)

Lo 1

The OPTIMIZE option specifies the type of optimization required:

OPTIMIZE(TIME)
specifies that the compiler optimizes the machine instructions generated to
produce a more efficient object program. This type of optimization can also
reduce the amount of main storage required for the object module. The use of
OPTIMIZE(TIME) could result in a substantial increase in compile time over
NOOPTIMIZE. During optimization the compiler can move code to increase
run-time efficiency. As a result, statement numbers in the program listing
cannot correspond to the statement numbers used in run-time messages.

OPTIMIZE(O)
is the equivalent of NOOPTIMIZE.

OPTIMIZE(2)
is the equivalent of OPTIMIZE(TIME).

NOOPTIMIZE
specifies fast compilation speed, but inhibits optimization.

For a full discussion of optimization, see Chapter 14, “Efficient Programming” on
page 305.

> OPTIONS u
NOOPTIONS

A\
A

The OPTIONS option specifies that the compiler includes a list showing the
compile-time options to be used during this compilation in the compiler listing. This
list includes all options applied by default, those specified in the PARM parameter
of an EXEC statement or in the invoking command (PLI or PLIOPT), and those
specified in a %PROCESS statement.

Under TSO: If the PRINT(*) operand of the PL/I command applies, the list of
options prints at the terminal. This can show the negative forms of the options that
cause listings to be produced, even where the positive forms apply. The positive
form is shown within the TERMINAL option. This is because the PRINT(*) operand
is implemented by generating a TERMINAL option containing a list of options
corresponding to those listings that are printed at the terminal. Specifying the
TERMINAL option after the PRINT(*) operand overrides the TERMINAL option
generated by the PRINT(*) operand.

20 PL/ for MVS & VM Programming Guide

OR

SEQUENCE

»»—0R—(—' v har '—)

C

A\
A

The OR option specifies up to seven alternate symbols, any one of which is
interpreted as the logical OR operator (|). These symbols are also used as the
concatenation operator, which is defined as two consecutive logical OR symbols.

char
is a single SBCS character.

You cannot specify any of the alphabetic characters, digits, and special
characters defined in the PL/I for MVS & VM Language Reference, except for
the logical OR symbol (|).

If you specify the OR option, the standard OR symbol is no longer recognized
unless you specify it as one of the characters in the character string.

For example, OR('\') means that the backslash character, X'EQ', will be
recognized as the logical OR operator, and two consecutive backslashes will be
recognized as the concatenation operator. The standard OR symbol, '|',
X'4F', will not be recognized as either operator. Similarly, OR('\|') means that
either the backslash or the standard OR symbol will be recognized as the
logical OR operator, and either symbol or both symbols Can be used to form
the concatenation operator.

The IBM-supplied default code point for the OR symbol (]) is X'4F".

A\
A

SEQUENCE— (—m—,—n—)
»—ENOS EQUENCE]

The SEQUENCE option defines the section of the input record from which the
compiler takes the sequence numbers. These numbers are included in the source
listings produced by the INSOURCE and SOURCE option.

The compiler uses sequence numbers to calculate statement numbers if the
NUMBER option is in effect. The compiler does not sort the input lines or records
into the specified sequence.

m specifies the column number of the left-hand margin.

n specifies the column number of the right-hand margin.

The extent specified should not overlap with the source program (as specified in
the MARGINS option).

The IBM-supplied default for fixed-length records is SEQUENCE (73,80); for
variable-length and undefined-length records. The default is SEQUENCE (1,8).

If the SEQUENCE option is used, an external procedure cannot contain more than
32,767 lines. To Compile an external procedure containing more than 32,767 lines,
you must specify the NOSEQUENCE option. Because NUMBER and GONUMBER
imply SEQUENCE, you should not specify the SEQUENCE or NOSEQUENCE
options.

Chapter 1. Using Compile-Time Options and Facilites 21

SIZE

You can use the SEQUENCE option to override the default margin positions that
are set up during compiler installation by the FSEQUENCE and VSEQUENCE
options (see “Input Record Formats” on page 28).

The FSEQUENCE default applies to F-format records and the VSEQUENCE
default applies to V-format or U-format records. Only one of these defaults is
overridden by the SEQUENCE option. If the first input record to the compiler is
F-format, the FSEQUENCE default is overridden. If the first input record is a
V-format or a U-format record, the VSEQUENCE default is overridden. The
compiler assumes default values if it encounters a record with a different type of
format. The compiler includes numbers that it finds in the sequence field in the
source listings produced by the FORMAT, INSOURCE, and SOURCE options.

Under VM: Note: The preprocessor output has F-format records regardless of
the format of the primary input. The sequence numbers are in columns 73-80 in
the source listing.

—MAX
»—SIZE—(——l_—_,—yyyyyyy‘y)

—l_—_,—yyyyy K—

\4
A

You can use this option to limit the amount of main storage the compiler uses.
This is of value, for example, when dynamically invoking the compiler, to ensure
that space is left for other purposes. There are five forms of the SIZE option:

SIZE(yyyyyyyy)
specifies that yyyyyyyy bytes of main storage are requested. Leading zeros
are not required.

SIZE(yyyyyK)
specifies that yyyyyK bytes of main storage are requested (1K=1024). Leading

zeros are not required.

SIZE(MAX)
specifies that the compiler obtains as much main storage as it can.

SIZE(-yyyyyy)
specifies that the compiler obtains as much main storage as it can, and then

releases yyyyyy bytes to the operating system. Leading zeros are not required.

SIZE(-yyyK)
specifies that the compiler obtains as much main storage as it can, and then
releases yyyK bytes to the operating system (1K=1024). Leading zeros are not
required.

The IBM-supplied default, SIZE(MAX), allows the compiler to use as much main
storage in the region as it can.

The negative forms of SIZE can be useful when a certain amount of space must be
left free and the maximum size is unknown, or can vary because the job is run in
regions of different sizes.

22 PL/ for MVS & VM Programming Guide

SMESSAGE

SOURCE

STMT

STORAGE

Under MVS: If you use the DBCSOS Ordering Product under MVS (a utility to sort
DBCS characters), you must reserve storage for the operating system to load it.
Specify SIZE(-n) to reserve sufficient storage, where n is at least 128K. See
“ATTRIBUTE and Cross-Reference Table” on page 36.

Note: Specifying both a region size that gives the job or job step all the available
storage below the line and the compile-time option SIZE(MAX) can cause storage
problems.

Under TSO: 10K to 30K bytes of storage must be reserved for the operating
system to load TSO routines. The exact amount of storage required depends on
which routines are in the link pack area. Specify SIZE(-n) to reserve sufficient
storage space, where nis at least 10K bytes. For TSO edit mode, n must be at
least 30K bytes.

Under VM: You should always use SIZE(MAX) in VM unless it is essential to limit
the space used. If you set a limit in the SIZE option, the value used exceeds that
which is specified. That is because storage is handled by a VM/compiler interface
routine and not directly by the compiler.

The LMESSAGE and SMESSAGE options produce messages in a long form
(specify LMESSAGE) or in a short form (specify SMESSAGE). See “LMESSAGE”
on page 15 for the syntax.

\4
A

> SOURCE
NOSOURCE—I

The SOURCE option specifies that the compiler includes a listing of the source
program in the compiler listing. The source program listed is either the original
source input or, if the MACRO option applies, the output from the preprocessor.

A\
A

> STMT
NOSTMTJ

The STMT option specifies that statements in the source program are counted, and
this statement number is used to identify statements in the compiler listings
resulting from the AGGREGATE, ATTRIBUTES, LIST, OFFSET, SOURCE, and
XREF options. STMT is implied by NONUMBER or GOSTMT. If NOSTMT is
specified, NUMBER and NOGOSTMT are implied.

NOSTORAGE
>>—|:STORAGE il

\4
A

The STORAGE option specifies that the compiler includes a table giving the main
storage requirements for the object module in the compiler listing.

Chapter 1. Using Compile-Time Options and Facilites 23

SYNTAX

SYSTEM

NOSYNTAX

g

> SYNTAX

\4
A

The SYNTAX option specifies that the compiler continues into syntax checking after
preprocessing when you specify the MACRO option, unless an unrecoverable error
has occurred. Whether the compiler continues with the compilation depends on the
severity of the error, as specified by the NOSYNTAX option.

NOSYNTAX
Processing stops unconditionally after preprocessing.

NOSYNTAX(W)
No syntax checking if a warning, error, severe error, or unrecoverable error is
detected.

NOSYNTAX(E)
No syntax checking if the compiler detects an error, severe error, or
unrecoverable error.

NOSYNTAX(S)
No syntax checking if the compiler detects a severe error or unrecoverable
error.

If the SOURCE option applies, the compiler generates a source listing even if it
does not perform syntax checking.

If the NOSYNTAX option terminates the compilation, the compiler does not produce
the cross-reference listing, attribute listing, and other listings that follow the source
program.

You can use this option to prevent wasted runs when debugging a PL/I program
that uses the preprocessor.

»»—SYSTEM—(CMS
CMSTPL—
MVS——
TS0—
CICS—
IMS——

~
\ 4
A

The SYSTEM option specifies the format used to pass parameters to the MAIN PL/I
procedure, and generally indicates the host system under which the program runs.
MVS, CMS, CMSTPL, CICS, IMS, and TSO are the subparameters recognized.
This option allows a program compiled under one system to run under another.

For example, a program compiled under VM can run under MVS, and parameters
are passed according to MVS conventions.

Table 5 on page 25 shows the type of parameter list you can expect, and how the
program runs under the specified host system. It also shows the implied settings of
NOEXECOPS.

24 PL/ for MVS & VM Programming Guide

Table 5. SYSTEM Option Table

SYSTEM option Type of parameter list Program runs NOEXECOPS For more
as implied information
SYSTEM(MVS) Single varying character string MVS application NO See Language Environment for
or no parameters. program MVS & VM Programming Guide.
Otherwise, arbitrary YES
parameter list.
SYSTEM(CMS) Single varying character string VM application NO See Language Environment for
or no parameters. program MVS & VM Programming Guide.
Otherwise, arbitrary YES
parameter list.
SYSTEM(CMSTPL) Single varying character string VM application NO See Language Environment for
or no parameters. program MVS & VM Programming Guide.
SYSTEM(CICS) Pointer(s) CICs YES See Language Environment for
transaction MVS & VM Programming Guide.
SYSTEM(IMS) Pointer(s) IMS application YES See Language Environment for
program MVS & VM Programming Guide.
SYSTEM(TSO) Pointer to CCPL TSO command YES See Language Environment for
processor MVS & VM Programming Guide.

\ 4
A

> TERMINAL
|—(—opt-list—)J

NOTERMINAL

The TERMINAL option is applicable only in a conversational environment. It
specifies that a subset of, or all of, the compiler listing produced during compilation
prints at the terminal. If you specify TERMINAL without an argument, the compiler
prints diagnostic and information messages at the terminal. You can add an
argument, which takes the form of an option list, to specify other parts of the
compiler listing that the compiler prints at the terminal.

The listing at the terminal is independent of that written on SYSPRINT for TSO, or
the LISTING file for VM. However, if you associate SYSPRINT in TSO, or LISTING
in VM, with the terminal, only one copy of each option requested is printed.

opt-list

You can specify the following option keywords, their negative forms, or their
abbreviated forms, in the option list:

AGGREGATE

ATTRIBUTES
ESD
INSOURCE
LIST

MAP

OFFSET
OPTIONS
SOURCE
STORAGE
XREF

The other options that relate to the listing (FLAG, GONUMBER, GOSTMT,
LINECOUNT, LMESSAGE/SMESSAGE, MARGINI, NEST, NUMBER, and the
SHORT and FULL suboptions of ATTRIBUTES and XREF) are the same as for

the SYSPRINT listing.

Chapter 1. Using Compile-Time Options and Facilites 25

TEST

NOTEST |
NONE
(|—_BLOCE_—|
STMT SYM
=2t -

~
L]

A\

A

ALL
SYM
L yosy-L
NONE
—, BLOCK

STMT
PATH
ALL

The TEST option specifies the level of testing capability that the compiler generates
as part of the object code. It allows you to control the location of test hooks and to
control whether or not the symbol table will be generated.

The TEST option can imply GONUMBER or GOSTMT, depending on whether
NUMBER or STMT is in effect.

Because the TEST option can increase the size of the object code and can affect
performance, you might want to limit the number and placement of hooks.

BLOCK
tells the compiler to insert hooks at block boundaries (block entry and block
exit).

STMT
Specifies that the compiler inserts hooks at statement boundaries and block
boundaries. STMT causes a statement table to be generated.

PATH
tells the compiler to insert hooks:

» Before the first statement enclosed by an iterative DO statement
e Before the first statement of the true part of an IF statement
» Before the first statement of the false part of an IF statement

e Before the first statement of a true WHEN or OTHERWISE statement of a
SELECT group

o Before the statement following a user label

e At CALLs or function references—both before and after control is passed to
the routine

e At block boundaries.
When PATH is specified, the compiler generates a statement table.

ALL
tells the compiler to insert hooks at all possible locations and to generate a
statement table.

NONE
tells the compiler not to put hooks into the program.

26 PL/ for MVS & VM Programming Guide

XREF

SYM
tells the compiler to create a symbol table that will allow you to examine
variables by name.

NOSYM
tells the compiler not to generate a symbol table.

NOTEST
suppresses the generation of all testing information.

Any TEST option other than NOTEST and TEST(NONE,NOSYM) will automatically
provide the attention interrupt capability for program testing.

If the program has an ATTENTION ON-unit that you want invoked, you must
compile the program with either of the following:

e The INTERRUPT option
e A TEST option other than NOTEST or TEST(NONE,NOSYM).

NOXREF |

XREF-
» L(igﬂékﬁ—)J

\ 4
A

The XREF option specifies that the compiler includes a cross-reference table of
names used in the program together with the numbers of the statements in which
they are declared or referenced in the compiler listing. (The only exception is that
label references on END statements are not included. For example, assume that
statement number 20 in the procedure PROCL1 is END PROC1;. In this situation,
statement number 20 does not appear in the cross reference listing for PROC1.)

FULL
is the default suboption. All identifiers and attributes are included in the
compiler listing.

SHORT
Unreferenced identifiers are omitted from the compiler listing.

For a description of the format and content of the cross-reference table, see
“Cross-Reference Table” on page 37.

For more information about sorting identifiers and storage requirements with DBCS
Ordering Support Product, see “ATTRIBUTE and Cross-Reference Table” on
page 36.

If the suboption SHORT is specified, unreferenced identifiers are omitted.

The default suboption FULL means that FULL applies if you specify the option with
no suboption.

If you specify both the XREF and ATTRIBUTES options, the two listings are
combined. If there is a conflict between SHORT and FULL, the usage is
determined by the last option specified. For example, ATTRIBUTES(SHORT)
XREF(FULL) results in the FULL option for the combined listing.

Chapter 1. Using Compile-Time Options and Facilites 27

Input Record Formats

The compiler accepts both F-format and V-format records; the primary and
secondary input data sets can have different formats.

The compiler determines the positions, within each record, of the PL/I source code
and the sequence numbers from the following options:

Option Specifying IBM-supplied default
FMARGINS Positions of source and sequence FMARGINS(2,72)
FSEQUENCE Numbers for F-format records FSEQUENCE(73,80)
VMARGINS Positions of source text and sequence VMARGINS(10,100)
VSEQUENCE Numbers for V-format records VSEQUENCE(1,8)
MARGINS Overriding values for above options —

SEQUENCE Overriding values for above options —

You can set the values of FMARGINS, FSEQUENCE, VMARGINS and
VSEQUENCE only when you install the compiler. If you do not set values at this
time, the IBM-supplied default values apply. You can specify MARGINS and
SEQUENCE when you invoke the compiler. When specified, they override either
FMARGINS and FSEQUENCE or VMARGINS and VSEQUENCE, depending on
whether the first input data set read by the syntax-checking stage of the compiler is
F-format. The overriding values also apply if the compiler reads records of the
same format as secondary input. If the records of the other format are read as the
compiler installation values, the values for that format apply.

Specifying Options in the %PROCESS or *PROCESS statements

28

The compiler uses the %PROCESS statement to identify the start of each external
procedure and to allow compile-time options to be specified for each compilation.
The options you specify in adjacent %PROCESS statements apply to the
compilation of the source statements to the end of input, or the next %PROCESS
statement.

To specify options in the %PROCESS statement, code as follows:
%PROCESS options;

where options is a list of compile-time options. You must end the list of options
with a semicolon, and the options list should not extend beyond the default
right-hand source margin. The asterisk must appear in the first data byte of the
record. If the records are F format, the asterisk must be in column 1. If the
records are V or U format, the asterisk must be as far left as possible, that is
column 1 if possible, or immediately following the sequence numbers if these are
on the extreme left. The keyword %PROCESS can follow in the next byte (column)
or after any number of blanks. You must separate option keywords by a comma or
at least one blank.

The number of characters is limited only by the length of the record. If you do not
wish to specify any options, code:

%PROCESS;;
If you find it necessary to continue the %PROCESS statement onto the next record,

terminate the first part of the list after any delimiter, and continue on the next
record. You can split option keywords or keyword arguments when continuing onto

PL/I for MVS & VM Programming Guide

the next record, provided that the keyword or argument string terminates in the
right-hand source margin, and the remainder of the string starts in the same column
as the asterisk. You can continue a %PROCESS statement on several lines, or
start a new %PROCESS statement. An example of multiple adjacent %PROCESS
statements is as follows:

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;
%PROCESS LIST TEST ;

For information about using the %PROCESS statement with batched compilation,
see “Compiling Multiple Procedures in a Single Job Step” on page 69.

Compile-time options, their abbreviated syntax, and their IBM-supplied defaults are
shown in Table 3 on page 5 and Table 4 on page 7. Your site might have
changed the IBM-supplied defaults or deleted options. Be sure to check for any
changes before using compile-time option defaults. You can reinstate deleted
compile-time options for a compilation by using the CONTROL compile-time option.

Using the Preprocessor

The preprocessing facilities of the compiler are described in the PL/I for MVS & VM
Language Reference. You can include statements in your PL/I program that, when
executed by the preprocessor stage of the compiler, modify the source program or
cause additional source statements to be included from a library. The following
discussion provides some illustrations of the use of the preprocessor and explains
how to establish and use source statement libraries.

Invoking the Preprocessor

If you specify the compile-time option MACRO, the preprocessor stage of the
compiler is executed. The compiler and the preprocessor use the data set defined
by the DD statement with the name SYSUT1 during processing. They also use this
data set to store the preprocessed source program until compilation begins. The
IBM-supplied cataloged procedures for compilation include a DD statement with the
name SYSUTL1.

The format of the preprocessor output is given in Table 6.

Table 6. Format of the Preprocessor Output

Column 1 Printer control character, if any, transferred from the position specified in
the MARGINS option.

Columns 2-72 Source program. If the original source program used more than 71
columns, additional lines are included for any lines that need continuation.
If the original source program used fewer than 71 columns, extra blanks
are added on the right.

Columns 73-80 Sequence number, right-aligned. If either SEQUENCE or NUMBER
applies, this is taken from the sequence number field. Otherwise, it is a
preprocessor generated number, in the range 1 through 99999. This
sequence number will be used in the listing produced by the INSOURCE
and SOURCE options, and in any preprocessor diagnostic messages.

Column 81 blank

Columns 82, 83 Two-digit number giving the maximum depth of replacement by the
preprocessor for this line. If no replacement occurs, the columns are
blank.

Column 84 E signifying that an error occurred while replacement was being attempted.

If no error occurred, the column is blank.

Chapter 1. Using Compile-Time Options and Facilites 29

Three other compile-time options, MDECK, INSOURCE, and SYNTAX, are
meaningful only when you also specify the MACRO option. For more information
about these options, see MDECK on page 17, INSOURCE on page 13, and
SYNTAX on page 24.

A simple example of the use of the preprocessor to produce a source deck is
shown in Figure 1. According to the value assigned to the preprocessor variable
USE, the source statements will represent either a subroutine (CITYSUB) or a
function (CITYFUN). The DSNAME used for SYSPUNCH specifies a source
program library on which the preprocessor output will be placed. Normally
compilation would continue and the preprocessor output would be compiled.

//0PT4#8 JOB
//STEP2 EXEC IEL1C,PARM.PLI='MACRO,MDECK,NOCOMPILE,NOSYNTAX'
//PLI.SYSPUNCH DD DSNAME=HPU8.NEWLIB(FUN),DISP=(NEW,CATLG),UNIT=SYSDA,

// SPACE=(TRK, (1,1,1)),DCB=(RECFM=FB, LRECL=80,BLKSIZE=400)
//PLI.SYSIN DD =
/* GIVEN ZIP CODE, FINDS CITY */
%DCL USE CHAR;
%USE = 'FUN' /* FOR SUBROUTINE, %USE = 'SUB' */ ;
%IF USE = '"FUN' %THEN %DO;
CITYFUN: PROC(ZIPIN) RETURNS(CHAR(16)) REORDER; /+ FUNCTION */
%END;
%ELSE %D0;
CITYSUB: PROC(ZIPIN, CITYOUT) REORDER; /* SUBROUTINE */
DCL CITYOUT CHAR(16); /* CITY NAME */
%END;
DCL (LBOUND, HBOUND) BUILTIN;
DCL ZIPIN PIC '99999'; /* ZI1P CODE */
DCL 1 ZIP_CITY(7) STATIC, /* ZIP CODE - CITY NAME TABLE */

2 ZIP PIC '99999' INIT(

95141, 95014, 95030,

95051, 95070, 95008,

0), /* WILL NOT LOOK AT LAST ONE */
2 CITY CHAR(16) INIT(

"SAN JOSE', 'CUPERTINO', 'LOS GATOS',

"SANTA CLARA', 'SARATOGA', 'CAMPBELL',

"UNKNOWN CITY'); /* WILL NOT LOOK AT LAST ONE =/

DCL I FIXED BIN(31);

DO I = LBOUND(ZIP,1) TO /* SEARCH FOR ZIP IN TABLE */
HBOUND(ZIP,1)-1 /* DON'T LOOK AT LAST ELEMENT =/
WHILE(ZIPIN —= ZIP(I));

END;

%IF USE = 'FUN' %THEN %DO0;
RETURN(CITY(I)); /* RETURN CITY NAME */
%END;
%ELSE %D0;
CITYOUT=CITY(I); /* RETURN CITY NAME */
%END;
END;

Figure 1. Using the preprocessor to Produce a Source Deck That Is Placed on a Source
Program Library

Using the %INCLUDE Statement

30

The PL/I for MVS & VM Language Reference describes how to use the %INCLUDE
statement to incorporate source text from a library into a PL/I program. (A library is
an MVS partitioned data set or a VM MACLIB that can be used to store other data
sets called members.) Source text that you might want to insert into a PL/I
program using a %INCLUDE statement must exist as a member within a library.
“Source Statement Library (SYSLIB)” on page 67 further describes the process of
defining a source statement library to the compiler.

PL/I for MVS & VM Programming Guide

The statement:
%INCLUDE DD1 (INVERT);

specifies that the source statements in member INVERT of the library defined by
the DD statement with the name DD1 are to be inserted consecutively into the
source program. The compilation job step must include appropriate DD statements.

If you omit the ddname, the ddname SYSLIB is assumed. In such a case, you
must include a DD statement with the name SYSLIB. (The IBM-supplied cataloged
procedures do not include a DD statement with this name in the compilation
procedure step.)

A %PROCESS statement in source text included by a %INCLUDE statement
results in an error in the compilation.

Figure 2 shows the use of a %INCLUDE statement to include the source
statements for FUN in the procedure TEST. The library HPU8.NEWLIB is defined
in the DD statement with the qualified name PLI.SYSLIB, which is added to the
statements of the cataloged procedure IEL1CLG for this job. Since the source
statement library is defined by a DD statement with the name SYSLIB, the
%INCLUDE statement need not include a ddname.

It is not necessary to invoke the preprocessor if your source program, and any text
to be included, does not contain any macro statements. Under these
circumstances, you can obtain faster inclusion of text by specifying the INCLUDE
compile-time option.

//0PT4#9 JOB
//STEP3 EXEC IEL1CLG,PARM.PLI="INC,S,A,X,NEST'
//PLI.SYSLIB DD DSN=HPU8.NEWLIB,DISP=0LD
//PLI.SYSIN DD *
TEST: PROC OPTIONS(MAIN) REORDER;

DCL ZIP PIC '99999'; /* ZI1P CODE */

DCL EOF BIT INIT('0'B);

ON ENDFILE(SYSIN) EOF = '1'B;

GET EDIT(ZIP) (COL(1), P'99999');

DO WHILE(-~EOF);

PUT SKIP EDIT(ZIP, CITYFUN(ZIP)) (P'99999', A(16));
GET EDIT(ZIP) (COL(1), P'99999');

END;

%PAGE ;

%INCLUDE FUN;

END; /* TEST */

//GO.SYSIN DD =
95141
95030
94101
//

Figure 2. Including Source Statements from a Library

Using the PL/I Preprocessor in Program Testing
You can use the %INCLUDE PL/I preprocessor statement to include
program-testing statements from the source statement library in your program when
you test it. You can use these statements in conjunction with program checkout
statements to help track your program's operation and handle errors that occur.

Chapter 1. Using Compile-Time Options and Facilites 31

Using % Statements

Statements that direct the operation of the compiler, begin with a percent (%)
symbol. These statements must not have label or condition prefixes, and cannot
be a “unit” of a compound statement.

The % statements allow you to control the source program listing and to include
external strings in the source program. These control statements, %INCLUDE,
%PRINT, %NOPRINT, %PAGE, and %SKIP, are listed below and described fully in
the PL/I for MVS & VM Language Reference.

%INCLUDE Directs the compiler to incorporate external strings of characters
and/or graphics into the source program.

%PRINT Directs the compiler to resume printing the source and insource
listings.

%NOPRINT Directs the compiler to suspend printing the source and insource
listings until a %PRINT statement is encountered.

%PAGE Directs the compiler to print the statement immediately after a
%PAGE statement in the program listing on the first line of the next
page.

%SKIP Specifies the number of lines to be skipped.

Note: You should place each % statement on a line by itself.

Invoking the Compiler from an Assembler Routine

32

You can invoke the compiler from an assembler language program by using one of
the macro instructions ATTACH, CALL, LINK, or XCTL. The following information
supplements the description of these macro instructions given in the supervisor and
data management manual.

You cannot dynamically invoke the compiler under VM from an assembler routine
running in a user area.

To invoke the compiler specify IEL1AA as the entry point name.

You can pass three address parameters to the compiler:

1. The address of a compile-time option list

2. The address of a list of ddnames for the data sets used by the compiler

3. The address of a page number that is to be used for the first page of the
compiler listing on SYSPRINT

These addresses must be in adjacent fullwords, aligned on a fullword boundary.
Register 1 must point to the first address in the list, and the first (left-hand) bit of
the last address must be set to 1, to indicate the end of the list.

Note: If you want to pass parameters in an XCTL macro instruction, you must use
the execute (E) form of the macro instruction. Remember also that the XCTL
macro instruction indicates to the control program that the load module containing
the XCTL macro instruction is completed. Thus the parameters must be
established in a portion of main storage outside the load module containing the
XCTL macro instruction, in case the load module is deleted before the compiler can
use the parameters.

PL/I for MVS & VM Programming Guide

Option List

DDNAME List

Page Number

The format of the three parameters for all the macro instructions is described
below.

The option list must begin on a halfword boundary. The first two bytes contain a
binary count of the number of bytes in the list (excluding the count field). The
remainder of the list can comprise any of the compile-time option keywords,
separated by one or more blanks, a comma, or both of these.

The ddname list must begin on a halfword boundary. The first two bytes contain a
binary count of the number of bytes in the list (excluding the count field). Each
entry in the list must occupy an 8-byte field; the sequence of entries is given in
Table 7.

If a ddname is shorter than 8 bytes, fill the field with blanks on the right. If you omit
an entry, fill its field with binary zeros; however, you can omit entries at the end of
the list entirely.

Table 7. Entry Dequence in the

DDNAME List

Entry Standard DDNAME
1 SYSLIN

2 not applicable
3 not applicable
4 SYSLIB

5 SYSIN

6 SYSPRINT

7 SYSPUNCH
8 SYSUT1

9 not applicable
10 not applicable
11 not applicable
12 not applicable
13 not applicable
14 SYSCIN

The compiler adds 1 to the last page number used in the compiler listing and put
this value in the page-number field before returning control to the invoking routine.
Thus, if the compiler is invoked again, page nhumbering is continuous.

Using the Compiler Listing

During compilation, the compiler generates a listing, most of which is optional, that
contains information about the source program, the compilation, and the object
module. It places this listing in the data set defined by the DD statement with the
name SYSPRINT (usually output to a printer). In a conversational environment,
you can also request a listing at your terminal (using the TERMINAL option). The
following description of the listing refers to its appearance on a printed page.

The first part of Table 4 on page 7 shows the components that can be included in
the compiler listing. The rest of this section describes them in detail.

Chapter 1. Using Compile-Time Options and Facilites 33

Of course, if compilation terminates before reaching a particular stage of
processing, the corresponding listings do not appear.

The listing comprises a small amount of standard information that always appears,
together with those items of optional information specified or supplied by default.
The listing at the terminal contains only the optional information that has been
requested in the TERMINAL option.

Heading Information

The first page of the listing is identified by the product number, the compiler version
number, and the date and the time compilation commenced. This page and
subsequent pages are numbered.

Near the end of the listing you will find either a statement that no errors or warning
conditions were detected during the compilation, or a message that one or more
errors were detected. The format of the messages is described under “Messages”
on page 44. The second to the last line of the listing shows the CPU time taken
for the compilation. The last line of the listing is “END OF COMPILATION OF xxxx”
where “xxxx” is the external procedure name. If you specify the NOSYNTAX
compile-time option, or the compiler aborts early in the compilation, the external
procedure name “xxxx” is not included and the line truncates to “END OF
COMPILATION.”

The following paragraphs describe the optional parts of the listing in the order in
which they appear.

Options Used for the Compilation

If the option OPTIONS applies, a complete list of the options specified for the
compilation, including the default options, appears on the first page.

Preprocessor Input

If both the options MACRO and INSOURCE apply, the compiler lists input to the
preprocessor, one record per line, each line numbered sequentially at the left.

If the preprocessor detects an error, or the possibility of an error, it prints a
message on the page or pages following the input listing. The format of these
messages is the same as the format for the compiler messages described under
“Messages” on page 44.

SOURCE Program

34

If the option SOURCE applies, the input to the compiler is listed, one record per
line. If the input records contain printer control characters or %SKIP or %PAGE
statements, the lines are spaced accordingly. You can use %NOPRINT and
%PRINT statements to stop and restart the printing of the listing.

If the MACRO option applies, the source listing shows the included text in place of
the %INCLUDE statements in the primary input data set.

If the MACRO option does not apply but the INCLUDE option does, the included
text is bracketed by comments indicating the %INCLUDE statement that caused the
text to be included. Each nested %INCLUDE has the comment text indented two
positions to the right.

PL/I for MVS & VM Programming Guide

Assume the following source input on SYSIN:

MAIN: PROC REORDER;
%INCLUDE MEMBERI;
END;

and the following content of MEMBERZ1.:

J=K;
%INCLUDE DSALIBI(DECLARES);
L=M;

and the following content of DECLARES:
DCL (NULL,DATE) BUILTIN;
produces in the source listing:

MAIN: PROC REORDER;

/*BEGIN %INCLUDE SYSLIB (MEMBER1)##*xskwxx/
J=K;

/***BEGIN %INCLUDE DSALIB1 (DECLARES)*x%%xx/
DCL (NULL,DATE) BUILTIN;

/*%*END %INCLUDE DSALIB1 (DECLARES)*%x%%x/

L=M;
/*END %INCLUDE SYSLIB (MEMBER1)x##xwkwxx/
END;

If the STMT compile-time option applies, the statement numbers are derived from a
count of the number of statements in the program after %INCLUDEs have been
processed.

If the NUMBER option applies, the compiler derives statement numbers from the
sequence numbers of the statements in the source records after %INCLUDE
statements have been processed. Normally the compiler uses the last five digits as
statement numbers. If, however, this does not produce a progression of statements
with successively higher numbers, the compiler adds 100000 to all statement
numbers starting from the one that would otherwise be equal to or less than its
predecessor.

For instance, if a V-format primary input data set had the following lines:

00001000 A:PROC;
00002000 %INCLUDE B;
00003000 END;

and member B contained:

00001000 C=D;
00002000 E=F;
00003000 G=H;

Chapter 1. Using Compile-Time Options and Facilites 35

then the source listing would be as follows:

SOURCE LISTING
NUMBER

1000 00001000 A:PROC;
00002000 /*BEGIN %INCLUDE SYSLIB (B) xkksk |
101000 00001000 C=D;
102000 00002000 E=F;
103000 00003000 G=H;
/*END %INCLUDE SYSLIB (B) FHHHHx [
203000 00003000 END;

The additional 100000 has been introduced into the statement numbers at two
points:

1. Beginning at the first statement of the included text (the statement C=D;)

2. Beginning with the first statement after the included text (the END statement)

If the source statements are generated by the preprocessor, columns 82-84 contain
diagnostic information, as shown in Table 6 on page 29.

Statement Nesting Level

If the option NEST applies, the block level and the DO-level are printed to the right
of the statement or line number under the headings LEV and NT respectively, for

example:
STMT LEV NT
1 0 A: PROC OPTIONS(MAIN);
2 1 0 B: PROC;
3 2 0 DCL K(10,10) FIXED BIN (15);
4 2 0 DCL Y FIXED BIN (15) INIT (6);
5 2 0 DO I=1 TO 10;
6 2 1 DO J=1 TO 10;
7 2 2 K(I,Jd) = N;
8 2 2 END;
9 2 1 BEGIN;
10 3 1 K(1,1)=Y;
11 3 1 END;
12 2 1 END B;
13 1 0 ENDA;

ATTRIBUTE and Cross-Reference Table

If the option ATTRIBUTES applies, the compiler prints an attribute table containing
a list of the identifiers in the source program together with their declared and
default attributes. In this context, the attributes include any relevant options, such
as REFER, and also descriptive comments, such as:

/*STRUCTURE*/

If the option XREF applies, the compiler prints a cross-reference table containing a
list of the identifiers in the source program together with the numbers of the
statements in which they appear. If both ATTRIBUTES and XREF apply, the two
tables are combined. If the suboption SHORT applies, unreferenced identifiers are
not listed.

36 PL/ for MVS & VM Programming Guide

If the following conditions apply:

¢ GRAPHIC compile-time option is in effect

e Compilation is being done under MVS

* At least one DBCS identifier is found in the compilation unit
e ATTRIBUTES and/or XREF are in effect

then the PL/I compiler uses the DBCS Ordering Support Product to perform the
sorting of the DBCS identifiers for the XREF listing.

The types of ordering available are the Total Stroke Count (KS), Radical Stroke
Count (KR), and the IBM Unique Pronunciation (KU). The default is KU. To select
the other types you must supply a special AKSLDFLT CSECT specifying the
desired ordering type.

All sorted DBCS identifiers appear in the listing before the SBCS identifiers, which
are sorted in collating sequence.

The DBCSOS Ordering Product requires 128K of free storage. For information
about reserving storage, see the SIZE option, “Under MVS” on page 23.

Attribute Table

If you declare an identifier explicitly, the compiler lists the number of the DECLARE
statement. The compiler indicates an undeclared variable by asterisks. (The
compiler also lists undeclared variables in error messages.) It also gives the
statement numbers of statement labels and entry labels.

The compiler never includes the attributes INTERNAL and REAL. You can assume
them unless the respective conflicting attributes, EXTERNAL and COMPLEX,
appear.

For a file identifier, the attribute FILE always appears, and the attribute EXTERNAL
appears if it applies; otherwise, the compiler only lists explicitly declared attributes.

The compiler prints the dimension attribute for an array first. It prints the bounds as
in the array declaration, but it replaces expressions with asterisks. Structure levels
other than base elements also have their bounds replaced by asterisks.

For a character string or a bit string, the compiler prints the length, preceded by the
word BIT or CHARACTER, as in the declaration, but it replaces an expression with
an asterisk.

Cross-Reference Table

If you combine the cross-reference table with the attribute table, the numbers of the
statements or lines in which a name appears follow the list of attributes for the
name. The order in which the statement numbers appear is subject to any
reordering of blocks that has occurred during compilation. In general, the compiler
gives the statement numbers for the outermost block first, followed on the next line
by the statement numbers for the inner blocks.

The compiler expands and optimizes PL/I text before it produces the
cross-reference table. Consequently, some names that appear only once within a
source statement can acquire multiple references to the same statement number.
By the same token, other names can appear to have incomplete lists of references,

Chapter 1. Using Compile-Time Options and Facilites 37

while still others can have references to statements in which the name does not
appear explicitly.

For example:

e Duplicate references can be listed for items such as do-loop control variables,
and for some aggregates.

» Optimization of certain operations on structures can result in incomplete listings
in the cross-reference table. The numbers of statements in which these
operations are performed on major or minor structures are listed against the
names of the elements, instead of against the structure names.

* No references to PROCEDURE or ENTRY statements in which a name
appears as a parameter are listed in the cross-reference table entry for that
name.

» References within DECLARE statements to variables that are not being
declared are not listed. For example, in the statements:

DCL ARRAY(N);
DCL STRING CHAR(N);

no references to these statements would appear in the cross-reference table
entry for N.

e The number of a statement in which an implicitly pointer-qualified based
variable name appears is included not only in the list of statement numbers for
that name, but also in the list of statement numbers for the pointer implicitly
associated with it.

¢ The statement number of an END or LEAVE statement that refers to a label is
not listed in the entry for the label.

¢ Automatic variables declared with the INITIAL attribute have a reference to the
PROCEDURE or BEGIN statement for the block containing the declaration
included in the list of statement numbers.

Aggregate Length Table
An aggregate length table is obtained by using the AGGREGATE option. The table
shows how the compiler maps each aggregate in the program. It contains the
following information:

e The statement number in which the aggregate is declared.

e The name of the aggregate and the element within the aggregate.
e The level number of each item in a structure.

e The number of dimensions in an array.

¢ The byte offset of each element from the beginning of the aggregate. (The
compiler does not give bit offsets for unaligned bit-string data). As a word of
caution, be careful when interpreting the data offsets indicated in the data
length table. An odd offset does not necessarily represent a data element
without halfword, fullword, or even double word alignment. If you specify or
infer the aligned attribute for a structure or its elements, the proper alignment
requirements are consistent with respect to other elements in the structure,
even though the table does not indicate the proper alignment relative to the
beginning of the table.

e The length of each element.

38 PLI/I for MVS & VM Programming Guide

* The total length of each aggregate, structure, and substructure.

If there is padding between two structure elements, a /*PADDING*/ comment
appears, with appropriate diagnostic information.

The table is completed with the sum of the lengths of all aggregates that do not
contain adjustable elements.

The statement or line nhumber identifies either the DECLARE statement for the
aggregate, or, for a controlled aggregate, an ALLOCATE statement for the
aggregate. An entry appears for each ALLOCATE statement involving a controlled
aggregate, as such statements can have the effect of changing the length of the
aggregate during run time. Allocation of a based aggregate does not have this
effect, and only one entry, which is that corresponding to the DECLARE statement,
appears.

When passing an aggregate to a subroutine, the length of an aggregate might not
be known during compilation, either because the aggregate contains elements
having adjustable lengths or dimensions, or because the aggregate is dynamically
defined. In these cases, the compiler prints the word adjustable or defined in the
offset column and param for parameter in the element length and total length
columns. Because the compiler might not know the length of an aggregate during
compilation, it does not print padding information.

An entry for a COBOL mapped structure has the word COBOL appended. COBOL
mapped structures are structures into which a program reads or writes a COBOL
record, or a structure that can be passed between PL/I programs and COBOL
programs. The COBOL entry appears if the compiler determines that the COBOL
and PL/I mapping for the structure is different, and the creation of a temporary
structure mapped according to COBOL synchronized structure rules is not
suppressed by NOMAP, NOMAPIN, or NOMAPOUT.

If a COBOL entry does appear it is additional to the entry for the PL/I mapped
version of the structure.

The compiler makes a separate entry in the aggregate table for every aggregate
dummy argument or COBOL mapped structure.

Storage Requirements

If the option STORAGE applies, the compiler lists the following information under
the heading Storage Requirements on the page following the end of the aggregate
length table:

¢ The length of the program control section. The program control section is the
part of the object that contains the executable part of the program.

¢ The length of the static internal control section. This control section contains all
storage for variables declared STATIC INTERNAL.

¢ The storage area in bytes for each procedure.
e The storage area in bytes for each begin-block.
* The storage area in bytes for each ON-unit.

e The dynamic storage area in bytes for each procedure, begin-block, and
ON-unit. The dynamic storage area is acquired at activation of the block.

Chapter 1. Using Compile-Time Options and Facilites 39

Statement Offset Addresses

If the option LIST applies, the compiler includes a pseudo-assembler listing in the
compiler listing. You can use the offset given in run-time error messages to
discover the erroneous statement, because the offsets in both run-time messages
and the pseudo-assembler listing are relative to the start of the external procedure.
Simply match the offset given in the error message with the offset in the listing to

find the erroneous statement.

In the example shown in Figure 3, compile unit offset +17E occurs in the object
listing under statement 6. Statement 6 is the erroneous statement.

SOURCE LISTING

- OBJECT LISTING

= STATEMENT NUMBER 6

00016C 58 70 D 0CO
000170 48 60 3 02A
000174 48 80 7 OB8
000178 1B 99
00017A 8E 80 0 010
00017E 1D 86
000180 12 99
000182 47 BO 2 02A
000186 5A 90 3 034
00018A

00018A 8A 90 0 010
00018E 40 90 7 0B8

Message:

A2 :ENTRY;
N=N/0;

1

2 CALL A2;
3 Al:PROC;
4 N=3;

5

6

7 END;

8 END;

M:PROC OPTIONS (MAIN);

CL.13

LH
LH
SR
SRDA
DR
LTR
BNM

EQU
SRA
STH

7,192(0,13)
6,42(0,3)
8,N
9,9
8,16

8,6

9,9

CL.13
9,52(0,3)
*
9
9,N

,16

9

IBMO301S ONCODE=320 The ZERODIVIDE condition was raised.
From compile unit M at entry point A2 at compile
unit offset +0000017E at address 000201FE.

Figure 3. Finding Statement Number from a Compile Unit Offset in an Error Message

If the OFFSET option applies, the compiler lists for each primary entry point the
offsets at which statements occur.
under the heading, “Table of Offsets and Statement Numbers.”

This information is found in the compiler listing

Entry offsets given in dump and on-unit SNAP error messages can be compared
with this table and the erroneous statement discovered. The statement is identified
by finding the section of the table that relates to the block hamed in the message
and then finding the largest offset less than or equal to the offset in the message.
The statement number associated with this offset is the one needed.

If a secondary entry point is used, first find the name of the block that contains this
entry and the corresponding section of the offset table that relates to this name.
Next, add the offset given in the message to the offset of the secondary entry point
in the table. This will convert the message offset so that it is relative to the primary
entry point versus the secondary entry point, which was entered during execution.

40 PL/I for MVS & VM Programming Guide

Use this converted offset to search the section of the offset table for the largest
offset as described above.

In the example in Figure 4, secondary entry point P2 is contained in procedure
block P1 at offset X'78'. Adding X'78' to the message entry offset of X'44'
yields a value of X'BC'. The largest offset table entry less than or equal to X'BC'
is X'B4', which corresponds to statement number 7.

SOURCE LISTING

STMT
1 Q: PROC OPTIONS(MAIN);
2 ON ERROR SNAP GOTO L;
3 CALL P2;
4 P1: PROC;
5 N=1;
6 P2: ENTRY;
7 SIGNAL ERROR;
8 END;
9 L: END;
TABLE OF OFFSETS AND STATEMENT NUMBERS
WITHIN PROCEDURE Q
OFFSET (HEX) 0 A8 co CA
STATEMENT NO. 1 2 3 9
WITHIN PROCEDURE P1
OFFSET (HEX) 0 78 A8 B4 BE
STATEMENT NO. 4 6 5 7 8
Messages:

'"ERROR' condition was raised

Traceback of user routines:

Compile Unit Entry Statement CU offset Entry offset Address
Q P2 +000001A0 +00000044 00020220
Q Q +000000CC +000000C8 0002014C

Figure 4. Finding Statement Number from an Entry Offset in an Error Message

External Symbol Dictionary

If the option ESD applies, the compiler lists the contents of the external symbol
dictionary (ESD).

The ESD is a table containing all the external symbols that appear in the object
module. (The machine instructions in the object module are grouped together in
control sections; an external symbol is a name that can be referred to in a control
section other than the one in which it is defined.) The contents of an ESD appear
under the following headings:

SYMBOL An 8-character field that identifies the external symbol.
TYPE Two characters from the following list to identify the type of entry:

SD Section definition: the name of a control section within the
object module.

CM Common area: a type of control section that contains no data
or executable instructions.

Chapter 1. Using Compile-Time Options and Facilites 41

42

ER External reference: an external symbol that is not defined in
the object module.

WX Weak external reference: an external symbol that is not
defined in this module and that is not to be resolved unless an
ER entry is encountered for the same reference.

PR Pseudoregister: a field used to address files, controlled
variables, and FETCHed procedures.

LD Label definition: the name of an entry point to the external
procedure other than that used as the name of the program
control section.

ID Four-digit hexadecimal number: all entries in the ESD, except LD-type
entries, are numbered sequentially, beginning with 0001.

ADDRESS Hexadecimal representation of the address of the external symbol.

LENGTH The hexadecimal length in bytes of the control section (SD, CM and
PR entries only).

ESD Entries
The external symbol dictionary usually starts with the standard entries shown in
Figure 5, which assumes the existence of an external procedure called NAME.

SYMBOL TYPE 1D ADDRESS LENGTH
CEESTART SD 0001 000000 000080
*x*NAME1 SD 0002 000000 0000A8
*x*NAME2 SD 0003 000000 00005C
CEEMAIN WX 0004 000000
CEEMAIN SD 0005 000000 000010
IBMRINP1 ER 0006 000000
CEEFMAIN WX 0007 000000
CEEBETBL ER 0008 000000
CEEROOTA ER 0009 000000
CEESGO10 ER 000A 000000
NAME LD 000008

Figure 5. External Symbol Dictionary

***namel
SD-type entry for the program control section (the control section that contains
the executable instructions of the object module). This name is the first label of
the external procedure, padded on the left with asterisks to 7 characters if
necessary, and extended on the right with the character 1.

***name2
SD-type entry for the static internal control section (which contains main
storage for all variables declared STATIC INTERNAL). This name is the first
label of the external procedure, padded on the left with asterisks to 7
characters if necessary, and extended on the right with the character 2.

CEESTART
SD-type entry for CEESTART. This control section transfers control to
CEEROOTA, the initialization routine for the library environment. When
initialization is complete, control passes to the address stored in the control
section CEEMAIN. (Initialization is required only once while a PL/I program is
running, even if it calls another external procedure. In such a case, control

PL/I for MVS & VM Programming Guide

passes directly to the entry point named in the CALL statement, and not to the
address contained in CEEMAIN.)

CEEROOTA, CEESGO010, CEEBETBL, IBMRINP1
These ER-type entries are generated to support environment initialization for
the program.

The other entries in the external symbol dictionary vary, but can include the
following:

e SD-type entry for the control section CEEMAIN, which contains the address of
the primary entry point to the external procedure. This control section is
present only if the procedure statement includes the option MAIN. A WX-type
entry for CEEMAIN is always generated to support environment initialization for
the program.

¢ Reference to a number of control sections as follows:

CEEFMAIN A control section used in fetch processing. It indicates the
presence of a fetchable entry point within the load module.

IBMSEATA A module in the PL/I library used to set the attention exit for
use in procedures compiled with the INTERRUPT option.
This is an ER type entry if the procedure was compiled with
the INTERRUPT option.

CEEUOPT A control section that contains the run-time options specified
at compile time.

PLIXOPT Run-time options string control section.
* LD-type entries for all names of entry points to the external procedure.

* ER-type entries for all the library subroutines and external procedures called by
the source program.

e CM-type entries for variables declared STATIC EXTERNAL without the INITIAL
attribute.

e SD-type entries for all other STATIC EXTERNAL variables and for external file
names.

* PR-type entries for all file names. For external file names, the name of the
pseudoregister is the same as the file name; for internal file names, the
compiler generates pseudoregister names.

* PR-type entries for all controlled variables. For external variables, the name of
the variable is used for the pseudoregister name; for internal variables, the
compiler generates names.

¢ PR-type entries for fetched entry names.

Static Internal Storage Map
The MAP option produces a Variable Offset Map. This map shows how PL/I data
items are mapped in main storage. It names each PL/I identifier, its level, its offset
from the start of the storage area in both decimal and hexadecimal form, its storage
class, and the name of the PL/I block in which it is declared.

If the LIST option is also specified a map of the static internal and external control
sections is also produced.

Chapter 1. Using Compile-Time Options and Facilites 43

Object Listing

Messages

For more information about the static internal storage map and an example, see the
Language Environment for MVS & VM Debugging Guide and Run-Time Messages.

If the option LIST applies, the compiler generates a listing of the machine
instructions of the object module, including any compiler-generated subroutines, in
a form similar to assembler language.

For more information about the object listing and an example, see the Language
Environment for MVS & VM Debugging Guide and Run-Time Messages.

If the preprocessor or the compiler detects an error, or the possibility of an error,
they generate messages. Messages generated by the preprocessor appear in the
listing immediately after the listing of the statements processed by the
preprocessor. You can generate your own messages in the preprocessing stage
by use of the %NOTE statement. Such messages might be used to show how
many times a particular replacement had been made. Messages generated by the
compiler appear at the end of the listing. All messages are graded according to
their severity, as follows:

I An information message that calls attention to a possible inefficiency in the
program or gives other information generated by the compiler.

W A warning message that calls attention to a possible error, although the
statement to which it refers is syntactically valid.

E An error message that describes an error detected by the compiler for which
the compiler applied a fix-up with confidence. The resulting program will run,
and it will probably give correct results.

S A severe error message that specifies an error detected by the compiler for
which the compiler cannot apply a fix-up with confidence. The resulting
program will run but will not give correct results.

U An unrecoverable error message that describes an error that forces
termination of the compilation.

The compiler only lists messages that have a severity equal to or greater than that
specified by the FLAG option, as shown in Table 8 on page 45.
Each message is identified by an eight-character code of the form IELnnnnl, where:

* The first three characters /IEL identify the message as coming from the
compiler.

e The next four characters, nnnn, are a four-digit message number.
e The last character, /, is an operating system code for the operator indicating
that the message is for information only.

The text of each message, an explanation, and any recommended programmer
response, are given in the PL/I for MVS & VM Compile-Time Messages and Codes.

44 pL/I for MVS & VM Programming Guide

Return Codes

Table 8. Using the FLAG Option To
Select the Lowest Message Severity

Listed

Type of Message Option
Information FLAG(l)
Warning FLAG(W)
Error FLAG(E)
Severe Error FLAG(S)
Unrecoverable Error Always listed

For every compilation job or job step, the compiler generates a return code that

indicates to the operating system the degree of success or failure it achieved. For

MVS, this code appears in the end-of-step message that follows the listing of the

job control statements and job scheduler messages for each step. The meaning of

the codes are given in Table 9.

Table 9. Return Codes from Compilation of a PL/I Program

Return

code Description

0000 No error detected; compilation completed, successful execution anticipated.

0004 Warning; possible error detected; compilation completed, execution probable.

0008 Error detected; compilation completed; successful execution probable.

0012 Severe error detected; compilation not necessarily completed; successful execution
improbable.

0016 Unrecoverable error detected; compilation terminated abnormally; successful execution
impossible.

Chapter 1. Using Compile-Time Options and Facilities

45

Chapter 2. Using PL/I Cataloged Procedures under MVS

This chapter describes the standard cataloged procedures supplied by IBM for use
with the IBM PL/I for MVS & VM compiler. It explains how to invoke them, and
how to temporarily or permanently modify them. You must be linked to Language
Environment befor using any of the catalogued procedures described in this
chapter.

A cataloged procedure is a set of job control statements stored in a library. A
cataloged procedure includes one or more EXEC statements, each of which can be
followed by one or more DD statements. You can retrieve the statements by
naming the cataloged procedure in the PROC parameter of an EXEC statement in
the input stream.

You can use cataloged procedures to save time and reduce Job Control Language
errors. If the statements in a cataloged procedure do not match your requirements
exactly, you can easily modify them or add new statements for the duration of a
job. You should review these procedures and modify them to obtain the most
efficient use of the facilities available and to allow for your own conventions.

IBM-Supplied Cataloged Procedures

The PL/I cataloged procedures supplied for use with the IBM PL/I for MVS & VM
are:

IEL1C Compile only

IELICL Compile and link-edit
IELICLG Compile, link-edit, and run
IELICG Compile, load and run

The information in this section describes the procedure steps of the different
cataloged procedures. For a description of the individual statements for compiling
and link editing, see “Using JCL during Compilation” on page 64 and the Language
Environment for MVS & VM Programming Guide. These cataloged procedures do
not include a DD statement for the input data set; you must always provide one.
The example shown in Figure 6 on page 47 illustrates the JCL statements you
might use to invoke the cataloged procedure IEL1CLG to compile, link-edit, and run
a PL/I program.

Note: The IBM PL/I for MVS & VM requires a minimum REGION size of 512K.
Large programs require more storage. If you do not specify REGION on the EXEC
statement that invokes the cataloged procedure you are running, the compiler uses
the default REGION size for your site. The default size might or might not be
adequate, depending on the size of your PL/I program. For an example of
specifying REGION on the EXEC statement, see Figure 6 on page 47.

46 © Copyright IBM Corp. 1964, 1995

//COLEGO JOB
//STEP1 EXEC IEL1CLG, REGION.PLI=1M
//PLI.SYSIN DD =

(insert PL/I program to be compiled here)

/*

Figure 6. Invoking a Cataloged Procedure

Compile Only (IEL1C)

This cataloged procedure, shown in Figure 7 on page 48, includes only one
procedure step, in which the options specified for the compilation are OBJECT and
NODECK. (IEL1AA is the symbolic name of the compiler.) In common with the
other cataloged procedures that include a compilation procedure step, IEL1C does
not include a DD statement for the input data set; you must always supply an
appropriate statement with the qualified ddname PLI.SYSIN.

The OBJECT option causes the compiler to place the object module, in a syntax
suitable for input to the linkage editor, in the standard data set defined by the DD
statement with the name SYSLIN. This statement defines a temporary data set
named &&LOADSET on a sequential device; if you want to retain the object module
after the end of your job, you must substitute a permanent name for &&LOADSET
(that is, a name that does not start with &&) and specify KEEP in the appropriate
DISP parameter for the last procedure step that used the data set. You can do this
by providing your own SYSLIN DD statement, as shown below. The data set name
and disposition parameters on this statement will override those on the IEL1C
procedure SYSLIN DD statement. In this example, the compile step is the only
step in the job.

//PLICOMP EXEC IEL1C
//PLI.SYSLIN DD DSN=MYPROG,DISP=(MOD,KEEP)
//PLI.SYSIN DD ...

The term MOD in the DISP parameter in Figure 7 on page 48 allows the compiler
to place more than one object module in the data set, and PASS ensures that the
data set is available to a later procedure step providing a corresponding DD
statement is included there.

The SYSLIN SPACE parameter allows an initial allocation of 250 eighty-byte
records and, if necessary, 15 further allocations of 100 records (a total of 1750
records).

Chapter 2. Using PL/I Cataloged Procedures under MvS 47

//IELIC PROC LNGPRFX='IEL.VIRIM1',6LIBPRFX='CEE.V1R4MO', 00010000

// SYSLBLK=3200 00020000
/1* 00030000
/l 00040000
/1% * 00050000
//* LICENSED MATERIALS - PROPERTY OF IBM * 00060000
/1% * 00070000
//* 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 * 00080000
//* ALL RIGHTS RESERVED * 00090000
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, * 00100000
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA * 00110000
//* ADP SCHEDULE CONTRACT WITH IBM CORP. * 00120000
/1 * 00130000
//* SEE COPYRIGHT INSTRUCTIONS * 00140000
/1 * 00150000
// 00160000
/1 00170000
//* IBM PL/I FOR MVS & VM 00180000
/1% 00190000
//* COMPILE A PL/I PROGRAM 00200000
/1 00210000
//* RELEASE LEVEL: 01.01.01 (VERSION.RELEASE.MODIFICATION LEVEL) 00220000
/1 00230000
//* PARAMETER DEFAULT VALUE USAGE 00240000
//* LNGPRFX IEL.V1RIM1 PREFIX FOR LANGUAGE DATA SET NAMES 00250000
//* LIBPRFX CEE.V1R4MO PREFIX FOR LIBRARY DATA SET NAMES 00260000
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET 00270000
/1 00280000
//PLI EXEC PGM=IEL1AA,PARM="'0BJECT,NODECK',REGION=512K 00290000
//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR 00300000
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR 00310000
//SYSPRINT DD SYSOUT=+ 00320000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00330000
/l SPACE=(80, (250,100)) ,DCB=(BLKSIZE=&SYSLBLK) 00340000
//SYSUTL DD DSN=&&SYSUT1,UNIT=SYSDA, 00350000
// SPACE=(1624, (200,50), ,CONTIG,ROUND) ,DCB=BLKSIZE=1024 00360000

Figure 7. Cataloged Procedure IEL1C

Compile and Link-Edit (IEL1CL)

This cataloged procedure, shown in Figure 8 on page 49, includes two procedure
steps: PLI, which is identical to cataloged procedure IEL1C, and LKED, which
invokes the linkage editor (symbolic name IEWL) to link-edit the object module
produced in the first procedure step.

Input data for the compilation procedure step requires the qualified ddname
PLI.SYSIN. The COND parameter in the EXEC statement LKED specifies that this
procedure step should be bypassed if the return code produced by the compiler is
greater than 8 (that is, if a severe or unrecoverable error occurs during
compilation).

48 PL/ for MVS & VM Programming Guide

//IELICL PROC LNGPRFX='IEL.VIRIM1',6LIBPRFX='CEE.V1R4MO', 00010000

// SYSLBLK=3200,GOPGM=G0 00020000
/1* 00030000
/l 00040000
/1% * 00050000
//* LICENSED MATERIALS - PROPERTY OF IBM * 00060000
/1% * 00070000
//* 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 * 00080000
//* ALL RIGHTS RESERVED * 00090000
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, * 00100000
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA * 00110000
//* ADP SCHEDULE CONTRACT WITH IBM CORP. * 00120000
/1 * 00130000
//* SEE COPYRIGHT INSTRUCTIONS * 00140000
/1 * 00150000
// 00160000
/1 00170000
//* IBM PL/I FOR MVS & VM 00180000
/1% 00190000
//* COMPILE AND LINK EDIT A PL/I PROGRAM 00200000
/1 00210000
//* RELEASE LEVEL: 01.01.01 (VERSION.RELEASE.MODIFICATION LEVEL) 00220000
/1 00230000
//* PARAMETER DEFAULT VALUE USAGE 00240000
//* LNGPRFX IEL.V1RIM1 PREFIX FOR LANGUAGE DATA SET NAMES 00250000
//* LIBPRFX CEE.V1R4MO PREFIX FOR LIBRARY DATA SET NAMES 00260000
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET 00270000
//* GOPGM GO MEMBER NAME FOR LOAD MODULE 00280000
/1 00290000
//PLI EXEC PGM=IEL1AA,PARM="'0BJECT,NODECK',REGION=512K 00300000
//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR 00310000
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR 00320000
//SYSPRINT DD SYSOUT=* 00330000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00340000
// SPACE=(80, (250,100)) ,DCB=(BLKSIZE=&SYSLBLK) 00350000
//SYSUTL DD DSN=8&SYSUT1,UNIT=SYSDA, 00360000
// SPACE=(1024, (200,50), ,CONTIG,ROUND) ,DCB=BLKSIZE=1024 00370000
//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=512K 00380000
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR 00390000
//SYSPRINT DD SYSQUT=x 00400000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00410000
// DD DDNAME=SYSIN 00420000
//SYSLMOD DD DSN=8&GOSET (&GOPGM) ,DISP=(MOD,PASS) ,UNIT=SYSDA, 00430000
// SPACE=(1024, (50,20,1)) 00440000
//SYSUT1 DD DSN=8&SYSUT1,UNIT=SYSDA,SPACE=(1024, (200,20)), 00450000
// DCB=BLKSIZE=1024 00460000
//SYSIN DD DUMMY 00470000

Figure 8. Cataloged Procedure IEL1CL

The linkage editor always places the load modules it creates in the standard data
set defined by the DD statement with the name SYSLMOD. This statement in the
cataloged procedure specifies a new temporary library &&GOSET, in which the
load module will be placed and given the member name GO (unless you specify
the NAME compile-time option for the compiler procedure step). In specifying a
temporary library, the cataloged procedure assumes that you will run the load
module in the same job; if you want to retain the module, you must substitute your
own statement for the DD statement with the name SYSLMOD.

The SYSLIN DD statement in Figure 8 shows how to concatenate a data set
defined by a DD statement named SYSIN with the primary input (SYSLIN) to the
linkage editor. You could place linkage editor control statements in the input
stream by this means, as described in the Language Environment for MVS & VM
Programming Guide.

Chapter 2. Using PL/I Cataloged Procedures under MvS 49

Compile, Link-Edit, and Run (IEL1CLG)

This cataloged procedure, shown in Figure 9, includes three procedure steps: PLI,
LKED, and GO. PLI and LKED are identical to the two procedure steps of IEL1CL,
and GO runs the load module created in the step LKED. The GO step is executed
only if no severe or unrecoverable errors occurred in the preceding procedure
steps.

Input data for the compilation procedure step should be specified in a DD statement
with the name PLI.SYSIN, and for the GO step in a DD statement with the name

GO.SYSIN.

//TELICLG PROC LNGPRFX='IEL.VIRIMI1',LIBPRFX='CEE.VIR4MO', 00010000
// SYSLBLK=3200,GOPGM=G0 00020000
/1 00030000
// 00040000
/1% * 00050000
//* LICENSED MATERIALS - PROPERTY OF IBM * 00060000
/1% * 00070000
//* 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 * 00080000
//* ALL RIGHTS RESERVED * 00090000
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, * 00100000
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA * 00110000
//+ ADP SCHEDULE CONTRACT WITH IBM CORP. * 00120000
/1% * 00130000
//* SEE COPYRIGHT INSTRUCTIONS * 00140000
/1 * 00150000
// 00160000
/1 00170000
//* 1BM PL/I FOR MVS & VM 00180000
/1* 00190000
//* COMPILE, LINK EDIT AND RUN A PL/I PROGRAM 00200000
/1% 00210000
//* RELEASE LEVEL: 01.01.01 (VERSION.RELEASE.MODIFICATION LEVEL) 00220000
/1% 00230000
//* PARAMETER DEFAULT VALUE USAGE 00240000
//* LNGPRFX IEL.VIRIM1 PREFIX FOR LANGUAGE DATA SET NAMES 00250000
//* LIBPRFX CEE.V1R4MO PREFIX FOR LIBRARY DATA SET NAMES 00260000
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET 00270000
//* GOPGM GO MEMBER NAME FOR LOAD MODULE 00280000
/1% 00290000
//PLI EXEC PGM=IEL1AA,PARM="'0BJECT,NODECK',REGION=512K 00300000
//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR 00310000
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR 00320000
//SYSPRINT DD SYSOUT=+ 00330000
//SYSLIN DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00340000
// SPACE=(80, (250,100)),DCB=(BLKSIZE=&SYSLBLK) 00350000
//SYSUTL DD DSN=&&SYSUT1,UNIT=SYSDA, 00360000
// SPACE=(1624, (200,50), ,CONTIG,ROUND) ,DCB=BLKSIZE=1024 00370000
//LKED EXEC PGM=IEWL,PARM='XREF,LIST',COND=(9,LT,PLI),REGION=512K 00380000
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR 00390000
//SYSPRINT DD SYSOUT=+ 00400000
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE) 00410000
// DD DDNAME=SYSIN 00420000
//SYSLMOD DD DSN=&&GOSET (&GOPGM) ,DISP=(MOD,PASS) ,UNIT=SYSDA, 00430000
// SPACE=(1024, (50,20,1)) 00440000
//SYSUT1 DD DSN=8&SYSUT1,UNIT=SYSDA,SPACE=(1024, (200,20)), 00450000
// DCB=BLKSIZE=1024 00460000
//SYSIN DD DUMMY 00470000
//6G0 EXEC PGM=+.LKED.SYSLMOD,COND=((9,LT,PLI), (9,LT,LKED)), 00480000
// REGION=2048K 00490000
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR 00500000
//SYSPRINT DD SYSOUT=* 00510000
//CEEDUMP DD SYSOUT=* 00520000
//SYSUDUMP DD SYSOUT=+ 00530000

Figure 9. Cataloged Procedure IEL1CLG

50 PL/ for MVS & VM Programming Guide

Compile, Load and Run (IEL1CG)

This cataloged procedure, shown in Figure 10, achieves the same results as
IEL1CLG but uses the loader instead of the linkage editor. However, instead of
using three procedure steps (compile, link-edit, and run), it has only two (compile
and load-and-run). The second procedure step runs the loader program. The
loader program processes the object module produced by the compiler and runs
the resultant executable program immediately. Input data for the compilation
procedure step requires the qualified ddname PLI.SYSIN.

The use of the loader imposes certain restrictions on your PL/l program; before
using this cataloged procedure, see Language Environment for MVS & VM
Programming Guide, which explains how to use the loader.

//IEL1CG PROC LNGPRFX='IEL.V1RIM1',LIBPRFX='CEE.V1R4MO', 00010000
// SYSLBLK=3200 00020000
/1% 00030000
// 00040000
/1 * 00050000
//* LICENSED MATERIALS - PROPERTY OF IBM * 00060000
/1% * 00070000
//* 5688-235 (C) COPYRIGHT IBM CORP. 1964, 1995 * 00080000
//* ALL RIGHTS RESERVED * 00090000
//* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, * 00100000
//* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA * 00110000
//* ADP SCHEDULE CONTRACT WITH IBM CORP. * 00120000
/1 * 00130000
//* SEE COPYRIGHT INSTRUCTIONS * 00140000
/1* * 00150000
// 00160000
/1% 00170000
//* IBM PL/I FOR MVS & VM 00180000
/1% 00190000
//* COMPILE, LOAD AND RUN A PL/I PROGRAM 00200000
/1 00210000
//* RELEASE LEVEL: 01.01.01 (VERSION.RELEASE.MODIFICATION LEVEL) 00220000
/1% 00230000
//* PARAMETER DEFAULT VALUE USAGE 00240000
//* LNGPRFX IEL.VIRIMI PREFIX FOR LANGUAGE DATA SET NAMES 00250000
//* LIBPRFX CEE.V1R4MO PREFIX FOR LIBRARY DATA SET NAMES 00260000
//* SYSLBLK 3200 BLKSIZE FOR OBJECT DATA SET 00270000
//* GOPGM GO MEMBER NAME FOR LOAD MODULE 00280000
/1 00290000
//PLI EXEC PGM=IEL1AA,PARM="'0BJECT,NODECK',REGION=512K 00300000
//STEPLIB DD DSN=&LNGPRFX..SIELCOMP,DISP=SHR 00310000
// DD DSN=&LIBPRFX..SCEERUN,DISP=SHR 00320000
//SYSPRINT DD SYSOUT=+ 00330000
//SYSLIN DD DSN=8&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, 00340000
// SPACE=(80, (250,100)) ,DCB=(BLKSIZE=&SYSLBLK) 00350000
//SYSUT1 DD DSN=&&SYSUT1,UNIT=SYSDA, 00360000
// SPACE=(1024, (200,50), ,CONTIG,ROUND) ,DCB=BLKSIZE=1024 00370000
//G0 EXEC PGM=LOADER,PARM='MAP,PRINT',COND=(9,LT,PLI), 00380000
// REGION=2048K 00390000
//STEPLIB DD DSN=&LIBPRFX..SCEERUN,DISP=SHR 00400000
//SYSLIB DD DSN=&LIBPRFX..SCEELKED,DISP=SHR 00410000
//SYSPRINT DD SYSOUT=+ 00420000
//SYSLIN DD DSN=&&LOADSET,DISP=(0LD,DELETE) 00430000
//SYSLOUT DD SYSOUT=+ 00440000
//CEEDUMP DD SYSQUT=x 00450000
//SYSUDUMP DD SYSOUT=* 00460000

Figure 10. Cataloged Procedure IEL1CG

For more information on other cataloged procedures, see the Language
Environment for MVS & VM Programming Guide.

Chapter 2. Using PL/I Cataloged Procedures under MvS 51

Invoking a Cataloged Procedure

To invoke a cataloged procedure, specify its name in the PROC parameter of an
EXEC statement. For example, to use the cataloged procedure IEL1C, you could
include the following statement in the appropriate position among your other job
control statements in the input stream:

//stepname EXEC PROC=IEL1C

You do not need to code the keyword PROC. If the first operand in the EXEC
statement does not begin PGM= or PROC=, the job scheduler interprets it as the
name of a cataloged procedure. The following statement is equivalent to that given
above:

//stepname EXEC IEL1C

If you include the parameter MSGLEVEL=1 in your JOB statement, the operating
system will include the original EXEC statement in its listing, and will add the
statements from the cataloged procedure. In the listing, cataloged procedure
statements are identified by XX or X/ as the first two characters; X/ signifies a
statement that was modified for the current invocation of the cataloged procedure.

You might be required to modify the statements of a cataloged procedure for the
duration of the job step in which it is invoked, either by adding DD statements or by
overriding one or more parameters in the EXEC or DD statements. For example,
cataloged procedures that invoke the compiler require the addition of a DD
statement with the name SYSIN to define the data set containing the source
statements. Also, whenever you use more than one standard link-edit procedure
step in a job, you must modify all but the first cataloged procedure that you invoke
if you want to run more than one of the load modules.

Specifying Multiple Invocations

52

You can invoke different cataloged procedures, or invoke the same cataloged
procedure several times, in the same job. No special problems are likely to arise
unless more than one of these cataloged procedures involves a link-edit procedure
step, in which case you must take the following precautions to ensure that all your
load modules can be run.

When the linkage editor creates a load module, it places the load module in the
standard data set defined by the DD statement with the name SYSLMOD. In the
absence of a linkage editor NAME statement (or the NAME compile-time option), it
uses the member name specified in the DSNAME parameter as the name of the
module. In the standard cataloged procedures, the DD statement with the name
SYSLMOD always specifies a temporary library &&GOSET with the member name
GO.

If you use the cataloged procedure IEL1CLG twice within the same job to compile,
link-edit, and run two PL/l programs, and do not name each of the two load
modules that the linkage editor creates, the first load module runs twice, and the
second one not at all.

PL/I for MVS & VM Programming Guide

To prevent this, use one of the following methods:

¢ Delete the library &&GOSET at the end of the GO step. In the first invocation
of the cataloged procedure at the end of the GO step, add a DD statement with
the syntax:

//GO.SYSLMOD DD DSN=&&GOSET,
// DISP=(OLD,DELETE)

e Modify the DD statement with the name SYSLMOD in the second and
subsequent invocations of the cataloged procedure so as to vary the names of
the load modules.

For example:

//LKED.SYSLMOD DD DSN=&&GOSET(GO1)
and so on.

¢ Use the NAME compile-time option to give a different name to each load
module and change each job step EXEC statement to specify the running of
the load module with the name for that job step.

» Use the NAME linkage editor option to give a different name to each load
module and change each job step EXEC statement to specify the running of
the load module with the name for that job step.

Note: To assign a membername to the load module, you can use either the
compile-time or linkage editor NAME option with the DSNAME parameter on the
SYSLMOD DD statement. When you use this procedure, the membername must
be identical to the name on the NAME option if the EXEC statement that runs the
program refers to the SYSLMOD DD statement for the name of the module to be
run.

Another option is to give each program a different name by using GOPGM on the
EXEC procedure statement. For example:

// EXEC IEL1CLG,GOPGM=G02

Link-Editing Multitasking Programs
When you use a cataloged procedure to link-edit a multitasking program, the load
module must include the multitasking versions of the PL/I library subroutines.

To ensure that the multitasking library (SYS1.SIBMTASK) is searched before the
base library, include the parameter LKLBDSN='SYS1.SIBMTASK' in the EXEC
statement that invokes the cataloged procedure.

For example:
//STEPA EXEC IELICLG,LKLBDSN='SYS1.PLITASK'

In the standard cataloged procedures the DD statement SYSLIB is always followed
by another, unnamed, DD statement that includes the parameter
DSNAME=SYS1.SCEELKED. The effect of this statement is to concatenate the
base library with the multitasking library. When LKLBDSN=SYS1.SIBMBASE is
specified, the second DD statement has no effect.

Chapter 2. Using PL/I Cataloged Procedures under MVvS 53

Modifying the PL/I Cataloged Procedures

You can modify a cataloged procedure temporarily by including parameters in the

EXEC statement that invokes the cataloged procedure, or by placing additional DD
statements after the EXEC statement. Temporary modifications apply only for the
duration of the job step in which the procedure is invoked. They do not affect the

master copy of the cataloged procedure in the procedure library.

Temporary modifications can apply to EXEC or DD statements in a cataloged
procedure. To change a parameter of an EXEC statement, you must include a
corresponding parameter in the EXEC statement that invokes the cataloged
procedure. To change one or more parameters of a DD statement, you must
include a corresponding DD statement after the EXEC statement that invokes the
cataloged procedure. Although you cannot add a new EXEC statement to a
cataloged procedure, you can always include additional DD statements.

EXEC Statement

54

If a parameter of an EXEC statement that invokes a cataloged procedure has an
unqualified name, the parameter applies to all the EXEC statements in the
cataloged procedure. The effect on the cataloged procedure depends on the
parameters, as follows:

* PARM applies to the first procedure step and nullifies any other PARM
parameters.

e COND and ACCT apply to all the procedure steps.

e TIME and REGION apply to all the procedure steps and override existing
values.

For example, the statement:
//stepname EXEC IEL1CLG,PARM='SIZE(MAX)',REGION=512K
¢ Invokes the cataloged procedure IEL1CLG.

e Substitutes the option SIZE(MAX) for OBJECT and NODECK in the EXEC
statement for procedure step PLI.

¢ Nullifies the PARM parameter in the EXEC statement for procedure step LKED.

e Specifies a region size of 512K for all three procedure steps.

To change the value of a parameter in only one EXEC statement of a cataloged
procedure, or to add a new parameter to one EXEC statement, you must identify
the EXEC statement by qualifying the name of the parameter with the name of the
procedure step. For example, to alter the region size for procedure step PLI only in
the preceding example, code:

//stepname EXEC PROC=IEL1CLG,PARM='SIZE(MAX)',REGION.PLI=512K

A new parameter specified in the invoking EXEC statement overrides completely
the corresponding parameter in the procedure EXEC statement.

You can nullify all the options specified by a parameter by coding the keyword and
equal sign without a value. For example, to suppress the bulk of the linkage editor
listing when invoking the cataloged procedure IEL1CLG, code:

//stepname EXEC IEL1CLG,PARM.LKED=

PL/I for MVS & VM Programming Guide

DD Statement

To add a DD statement to a cataloged procedure, or to modify one or more
parameters of an existing DD statement, you must include a DD statement with the
form “procstepname.ddname” in the appropriate position in the input stream. If
“ddname” is the name of a DD statement already present in the procedure step
identified by “procstepname,” the parameters in the new DD statement override the
corresponding parameters in the existing DD statement; otherwise, the new DD
statement is added to the procedure step. For example, the statement:

//PLI.SYSIN DD =

adds a DD statement to the procedure step PLI of cataloged procedure IEL1C and
the effect of the statement:

//PLI.SYSPRINT DD SYSOUT=C

is to modify the existing DD statement SYSPRINT (causing the compiler listing to
be transmitted to the system output device of class C).

Overriding DD statements must appear after the procedure invocation and in the
same order as they appear in the cataloged procedure. Additional DD statements
can appear after the overriding DD statements are specified for that step.

To override a parameter of a DD statement, code either a revised form of the
parameter or a replacement parameter that performs a similar function (for
example, SPLIT for SPACE). To nullify a parameter, code the keyword and equal
sign without a value. You can override DCB subparameters by coding only those
you wish to modify; that is, the DCB parameter in an overriding DD statement does
not necessarily override the entire DCB parameter of the corresponding statement
in the cataloged procedures.

Chapter 2. Using PL/I Cataloged Procedures under MVvS 55

Chapter 3. Compiling under MVS

This chapter describes how to invoke the compiler under TSO and the job control
statements used for compiling under MVS. You must be linked to Language
Environment before you can compile your program.

Invoking the Compiler under TSO

56

The usual method of invoking the compiler is with the PLI command. In its simplest
form the command consists of the keyword and the name of the TSO data set
holding the PL/I source program. For example:

PLI CALTROP

In addition to the data set name, you can specify the PRINT operand to control the
compiler listings, and the LIB operand to specify secondary input data sets for the
%INCLUDE statements. You can also specify compile-time options as operands of
the PLI command.

The command processor for the PLI command is a program known as the PL/I
prompter. When you enter the command, this program checks the operands and
allocates the data sets required by the compiler. Then, it passes control to the
compiler and displays a message.

If the source data set has a conventional TSO data set name, you can use the
simple name, as in the example above. If not, you need to specify the full name
and enclose it in single quotation marks:

PLI 'DIANTHUS'
or
PLI 'JJONES.ERICA.PLI'

The compiler translates the source program into object modules, which it stores on
external data sets. You can link-edit and run these object modules
conversationally.

If you use an unqualified data set name, as in the example at the start of this
section, the system generates a name for the object module data set. It takes the
simple name of the source data set—CALTROP in the example—and adds your
user-identification and the descriptive qualifier OBJ. Hence, if the user who entered
the example PLI command had the identification WSMITH, the object module would
be written onto a data set called WSMITH.CALTROP.OBJ.

You can make your own choice of name for the object module data set by including
the OBJECT compile-time option as an operand of the PLI command. For
example:

PLI CALTROP OBJECT(TRAPA)
The system adds the same qualifiers to this name as it does to the source data set

simple name, so the object module is written onto a data set, in this example,
called WSMITH.TRAPA.OBJ.

© Copyright IBM Corp. 1964, 1995

You can specify the full name of the object module data set by enclosing it in
quotation marks. For example:

PLI CALTROP OBJECT('NATANS')

The system in this case adds no qualifiers, so the object module is stored on a
data set called NATANS.

You can specify a full name to store the object module with another user's
user-identification. For instance, the following command would store the object
module using the user-identification JJONES:

PLI CALTROP OBJECT('JJONES.CALTROP.0BJ')

An alternative to the PLI command is the RUN command or subcommand.

Allocating Data Sets

The compiler requires the use of a number of data sets in order to process a PL/I
program. These are listed in Table 10 on page 58. The following data sets are
always required by the compiler:

e The data set holding the PL/l program
* A data set for the compiler listing.

Up to six data sets, including the above two, can be required, depending on which
compile-time options have been specified.

These data sets must be allocated before the compiler can use them. If you use
the PLI command or the RUN command or subcommand, you invoke the compiler
via the prompter, and the prompter allocates the necessary data sets. If you invoke
the compiler without the prompter, you must allocate the necessary data sets
yourself.

When the prompter allocates compiler data sets, it uses ddnames generated by
TSO rather than the ddnames that are used in batch mode. Table 10 on page 58
includes the batch-mode ddnames of the data sets. If the compiler is invoked via
the prompter, you cannot refer to the data sets by these names. To control the
allocation of compiler data sets, you need to use the appropriate operand of the PLI
command. For instance, to allocate the standard output file (ddname SYSPRINT in
batch mode) to the terminal, you should use the PRINT(*) operand of the PLI
command. You cannot make the allocation by using the ALLOCATE command with
FILE(SYSPRINT) and DATASET(*) operands. Table 10 on page 58 shows which
operands to use for those data sets whose allocation you can control.

When the prompter is not invoked, the batch-mode ddnames are recognized as
referring to the compiler data sets.

Chapter 3. Compiling under MVS 57

Table 10. Compiler Data Sets

Data set (and When required Where to Descriptive Allocated Parameters Parameters
batch-mode specify data qualifier by used by used by
ddname) set in PLI prompter 1 prompter 1
command SPACE=2 DISP=3
Primary input Always 1st operand PLI Prompter —4 SHR
(SYSCIN or
SYSIN)
Temporary work When large Cannot — Prompter (1024,(60,60)) (NEW,DELETE)
data set (SYSUT1) program spills specify
internal text
pages
Compiler listing Always Argument of LIST Prompter (629,(n,m)) (OLD,KEEP) or>
(SYSPRINT) PRINT (NEW,CATLG)
operand
Object module When OBJECT 1st OBJ Prompter, (400,(50,50)) (OLD,KEEP) or
(SYSLIN) option applies argument of when (NEW,CATLG)
OBJECT required®
operand
Object module or When either Argument of DECK or Prompter, (400,(50,50)) (OLD,KEEP) or
preprocessor DECK or MDECK MACRO when (NEW,CATLG)
output in card MACRO and DECK and requiredé
format MDECK operand MDECK
(SYSPUNCH) options apply
Secondary input to When Arguments INCLUDE Prompter, —7 SHR
preprocessor &INCLUDE of LIB or MACRO when
(SYSLIB)? files are used operand required
Notes:

1. Unit is determined by entry in User Attribute Data Set.

2. These space allocations apply only if the data set is new. The first argument of the SPACE parameter establishes the block
size. For the SYSUT1, SYSPRINT, SYSLIN, and SYSPUNCH data sets, the record format, record length, and number of buffers
are established by the compiler when it opens the data sets.

3. The prompter first tries to allocate the SYSPRINT, SYSLIN, and SYSPUNCH data sets with DISP=(OLD,KEEP). This will cause
any existing data set (or partitioned data set member) with the same name to be replaced with the new one. If the data set
name cannot be found in the system catalog, the data set is allocated with DISP=(NEW,CATLG).

4. The data set already exists; therefore, SPACE (and also UNI T) are already established.

5. DISP parameter used only if PRINT(dsname) operand applies. Otherwise, prompter supplies the following parameters:

TERM=TS if PRINT(*) operand applies
DUMMY if NOPRINT operand applies
SYSOUT if SYSPRINT operand applies.

6. Except when the associated option has been specified by means of a %PROCESS statement. In this case, the data set(s) must
be allocated by the user.

7. If any ddnames are specified in %INCLUDE statements, allocate the data sets with the ALLOCATE statement.

58 PL/I for MVS & VM Programming Guide

Using the PLI Command

Use the PLI command to compile a PL/I program. The command invokes the PL/I
prompter to process the operands and call the compiler, according to the syntax
shown in the following table:

Table 11. Syntax of the PLI Command

COMMAND

OPERANDS

PLI

data-set-name
[option-Tist]
PRINT[(*) |
(dsname[, [n] [,m]1)]
SYSPRINT[(sysout-class[,[n][,m]])]
NOPRINT
[LIB(dslist)]

data-set-name

option-list

specifies the name of the primary input data set for the compiler.
This can be either a fully qualified name (enclosed in single
guotation marks) or a simple name (for which the prompter adds
the identification qualifier, and the descriptive qualifier PLI). This
must be the first operand specified.

specifies one or more compile-time options that apply for this
compilation.

The compile-time options that you can specify in a TSO
environment are described later in this section. Programmers
familiar with batch processing should note that defaults are altered
for TSO, and that the DECK, MDECK, and OBJECT options are
extended to allow specific names of data sets onto which the
output is written.

Separate the options by at least one blank or one comma; you can
add any number of extra blanks. The order of the options is
unimportant. In fact, the PRINT/NOPRINT and LIB operands can
be interspersed in the option-list since they are recognized by their
keywords. If two contradictory options are specified, the last is
accepted and the first ignored.

Options specified in the PLI command can be overridden by
options specified on the %PROCESS compiler control statements
in the primary input. If the DECK, MDECK, and OBJECT options
are required for any program in a batched compilation, the option
should be specified in the PLI command so that the prompter
allocates the required data sets. The negative forms can then be
used on the %PROCESS statements for the programs that do not
require the option. The options are described below.

DECK][(dsname)]: This can be a fully qualified hame (enclosed in
single quotation marks) or a simple name (to which the user
identification and descriptive qualifier DECK is added). If dsname
is not specified, the user-supplied name is taken from the first
operand of the PLI command, and the user-identification and
descriptive qualifier DECK is added. If dsname is not specified and
the first operand of the PL/I command specifies a member of a
partitioned data set, the member name is ignored—the generated

Chapter 3. Compiling under MVS 59

60

PRINT(*)

data set name is based on the name of the partitioned data set.
For more information on this option see DECK on page 10.

MDECK](dsname)]: This can be a fully qualified nhame (enclosed
in single quotation marks) or a simple name (to which the user
identification and descriptive qualifier MDECK is added). If dsname
is not specified, the user-supplied name is taken from the first
operand of the PLI command, and the user-identification and
descriptive qualifier MDECK are added. If dsname is not specified
and the first operand of the PL/I command specifies a member of a
partitioned data set, the member name is ignored—the generated
data set name is based on the name of the partitioned data set.
For more information on this option, see MDECK on page 17.

OBJECT [(dsnhame)]: This can be a fully qualified nhame (enclosed
in single quotation marks) or a simple name (to which the user
identification and the descriptive qualifier OBJ is added). If dsname
is not specified, the user-supplied name is taken from the first
operand of the PLI command, and the user-identification and
descriptive qualifier OBJ are added. If dsname is not specified and
the first operand of the PL/I command specifies a member of a
partitioned data set, the member name is ignored—the generated
data set name is based on the name of the partitioned data set.
For more information on this option, see OBJECT on page 19.

specifies that the compiler listing, on the SYSPRINT file, is written
at the terminal; no other copy will be available. The PRINT(*)
operand is implemented by generating a TERMINAL option with a
list of options which correspond to the listings printed at the
terminal. If you specify the TERMINAL option after the PRINT(*)
operand, this overrides the TERMINAL option generated by the
PRINT(*) operand.

PRINT(dsname[,[n][,m]])

PL/I for MVS & VM Programming Guide

specifies that the compiler listing, on the SYSPRINT file, is written
on the data set named in parentheses. This can be either a fully
qualified name (enclosed in single quotation marks) or a simple
name (for which the prompter adds the identification qualifier, and
the description qualifier LIST).

If you do not specify a dsname argument for the PRINT operand,
the prompter adds the identification and descriptive qualifiers to the
data set name specified in the first operand, producing a data set
name of the form:

user-identification.user-supplied-name.LIST

If dsname is not specified and the first operand of PLI specifies a
member of a partitioned data set, the member name is
ignored—the generated data set name is based on the name of the
partitioned data set.

In this command, n and m specify the space allocation in lines for
the listing data set. They should be used when the size of the
listing has caused a B37 abend during compilation.

n specifies the number of lines in the primary allocation.

m specifies the number of lines in the secondary allocation.

If nis omitted, the preceding comma must be included. For
example, to enter only the size of the secondary allocation and
accept the default for the primary, you would enter:

PRINT (printds,,500)

The space allocation used if n and m are not specified is the
allocation specified during compiler installation.

SYSPRINT [(sysout-class[,[n][,m]])]

NOPRINT

LIB(dslist)

Example 1

specifies that the compiler listing, on the SYSPRINT file, is to be
written to the sysout class named in parentheses. If no class is
specified, the output is written to a default sysout class. The
IBM-supplied standard for this default is class A. For an
explanation of the n and m see the “PRINT” operand above.

specifies that the compiler listing is not produced on the SYSPRINT
file. You can still get most of the listing written at the terminal by
using the TERMINAL compile-time option.

specifies one or more data sets that are used as the secondary
input to the preprocessor. These data sets are concatenated in the
order specified and then associated with the ddname in the
%INCLUDE statement in the PL/I program. You must allocate the
data sets associated with that ddname yourself.

The data set names can be either fully qualified (each enclosed in
single quotation marks) or simple names (for which the prompter
adds the identification qualifier, but no descriptive qualifier).

Separate the data set names by at least one blank or one comma;
you can add any number of extra blanks.

If you use the LIB operand, either the INCLUDE or the MACRO
compile-time option must also apply.

The following examples give an operation to be performed and the
known variables, and show you how to enter the command to
perform that particular function.

Operation: Invoke the compiler to process a PL/I program.

Known:

User-identification is ABC.

Data set containing the program is named
ABC.UPDATE.PLI.

SYSPRINT file is to be directed to the terminal.

Default options and data set names are to be used.

Command: PLI UPDATE PRINT(%*)

Chapter 3. Compiling under MVS 61

Example 2
Operation: Invoke the compiler to process a PL/I program.
Known: — User-identification is XYZ.

— Data set containing the program is named
ABC.MATRIX.PLI.

— SYSPRINT file is to be written on a data set named
MATLIST.

— MACRO and MDECK options are required, with the
associated output to be written on a data set named
MATCARD.

— Secondary input to preprocessor to be read from
a library named XYZ.SOURCE.

— Otherwise default options and data set names
are to be used.
Command: PLI 'ABC.MATRIX.PLI' +
PRINT('MATLIST'),MACRO,MDECK('MATCARD"'), +
LIB(SOURCE)

Compiler Listings

62

In conversational mode, as in batch mode, compile-time options control which
listings the compiler produces (see Chapter 1, “Using Compile-Time Options and
Facilities” on page 5). You can specify the options as operands of the PLI
command.

In addition to specifying which listings are to be produced, you need to indicate
where they are to be transmitted. If you wish to have them displayed at the
terminal, you can specify either the PRINT(*) operand, which allocates the compiler
listing file to the terminal, or the TERMINAL option. The latter should contain a list
of the options corresponding to the listings you require at the terminal. For
instance, to produce a source listing at the terminal, you could enter either:

PLI CALTROP PRINT(*) SOURCE
or:
PLI CALTROP TERM(SOURCE)

Compiler listings can be directed to a data set by specifying the PRINT operand
with the data set's name, or to a SYSOUT class by specifying the SYSPRINT
operand. For further details see “Using the Compiler Listing” on page 33 and
“Listing (SYSPRINT)” on page 67.

Using %INCLUDE under TSO

In conversational mode, as in batch mode, you can incorporate PL/I source code
into your program by means of the %INCLUDE statement. This statement names
members of partitioned data sets that hold the code to be included. You can create
these secondary input data sets either under TSO or in batch mode.

To use %INCLUDE you must specify the MACRO or INCLUDE compile-time option.

PL/I for MVS & VM Programming Guide

The %INCLUDE statement can specify simply the name of the data set member
that holds the text to be included. For instance:

%INCLUDE RECDCL;

It can also specify a ddname that is associated with the member. For example:
%INCLUDE STDCL (F726);

STDCL is the ddname, and F726 is the member name. A single %INCLUDE
statement can specify several data set members, and can contain both forms of
specification. For example:

%INCLUDE SUBA(READ5),SUBC(REPORT1),DATEFUNC;

Allocating Data Sets in %INCLUDE

All data sets containing secondary input must be allocated before the compiler is

invoked. If a data set member is specified in an %INCLUDE statement without a
ddname, the data set can be allocated by specifying the data set name in the LIB
operand of the PLI command. (This operand is the equivalent of the batch-mode
SYSLIB DD statement.) The necessary allocation is made by the PL/I prompter.

If a ddname has been specified in the %INCLUDE statement, the corresponding
data set must be allocated by means of either an ALLOCATE command or the
logon procedure.

Suppose the data set members specified in the %INCLUDE statements in the
preceding section are held on data sets as follows (the ddname used in the
%INCLUDE statement is also shown):

Member: Data Set Name: DDNAME :
RECDCL LDSRCE none
F726 WPSRCE STDCL
READ5 JESRCE SUBA
REPORT GHSRCE SUBC
DATEFUNC DRSRCE none

Then the necessary data sets could be allocated by the following commands:

ALLOCATE FILE(STDCL) DATASET(WPSRCE)
ALLOCATE FILE(SUBA) DATASET(JESRCE)
ALLOCATE FILE(SUBC) DATASET(GHSRCE)
PLI MNTHCOST LIB(LDSRCE,DRSRCE) INCLUDE

Running Jobs in a Background Region

If you have the necessary authorization, you can submit jobs for processing in a
background region. Your installation must record the authorization in your UADS
(User Attribute Data Set) entry.

Chapter 3. Compiling under MVS 63

Jobs are submitted by means of the SUBMIT command. The command must
include the name of the data set holding the job or jobs to be processed, and the
data set must contain the necessary Job Control Language statements. Jobs will
run under the same version of the operating system as is used for TSO. Output
from the jobs can be manipulated from your terminal.

Further details about submitting background jobs are given in the manual TSO
Terminal User's Guide.

Using JCL during Compilation

Although you will probably use cataloged procedures rather than supply all the job
control required for a job step that invokes the compiler, you should be familiar with
these statements so that you can make the best use of the compiler and, if
necessary, override the statements of the cataloged procedures.

The IBM-supplied cataloged procedures that include a compilation procedure step
are:

IEL1C Compile only

IEL1CL Compile and link-edit
IEL1CLG Compile, link-edit, and run
IEL1CG Compile, load and run

The following paragraphs describe the job control statements needed for
compilation. The IBM-supplied cataloged procedures described in “IBM-Supplied
Cataloged Procedures” on page 46 contain these statements. Therefore, you need
to code them yourself only if you are not using the cataloged procedures.

EXEC Statement

The basic EXEC statement is:
//stepname EXEC PGM=IEL1AA

512K is required for the REGION parameter of this statement. The PARM
parameter of the EXEC statement can be used to specify one or more of the
optional facilities provided by the compiler. These facilities are described under
“Specifying Options in the EXEC Statement” on page 68. See Chapter 1, “Using
Compile-Time Options and Facilities” on page 5 for a description of the options.

DD Statements for the Standard Data Sets

64

The compiler requires several standard data sets, the number of data sets depends
on the optional facilities specified. You must define these data sets in DD
statements with the standard ddnames which are shown, together with other
characteristics of the data sets, in Table 12 on page 65. The DD statements
SYSIN, SYSUT1, and SYSPRINT are always required.

You can store any of the standard data sets on a direct-access device, but you
must include the SPACE parameter in the DD statement. This parameter defines
the data set to specify the amount of auxiliary storage required. The amount of
auxiliary storage allocated in the IBM-supplied cataloged procedures should suffice
for most applications.

PL/I for MVS & VM Programming Guide

Table 12. Compiler Standard Data Sets

Possible Record Record
Standard Contents of device format size BLKSIZE
DDNAME data set classes 1 (RECFM)2 (LRECL)3
SYSIN (or Input to the compiler SYSSQ F,FB,U <101(100) —
SYSCIN)4 VB,V <105(104)
SYSLIN Object module SYSSQ FB 80 80
SYSPUNCH Preprocessor output, SYSSQ FB 80 80
compiler output SYSCP
SYSUT1 Temporary workfile SYSDA F 4051 —
SYSPRINT Listing, including SYSSQ VBA 125 129
messages
SYSLIB Source statements SYSDA FFB,U <101 —
for preprocessor V,VB <105

Notes:
The only value for compile-time SYSPRINT that can be overridden is BLKSIZE.

1. The possible device classes are:

SYSSQ Sequential device
SYSDA Direct-access device
SYSCP Card-punch device.

Block size can be specified except for SYSUT1. The block size and logical record length for
SYSUT1 is chosen by the compiler.

2. If the record format is not specified in a DD statement, the default value is provided by the compiler.
(Default values are shown in italics.)

3. The numbers in parentheses in the “Record Size” column are the defaults, which you can override.

4. The compiler will attempt to obtain source input from SYSCIN if a DD statement for this data set is
provided. Otherwise it will obtain its input from SYSIN.

Input (SYSIN or SYSCIN)

Input to the compiler must be a data set defined by a DD statement with the name
SYSIN or SYSCIN. This data set must have CONSECUTIVE organization. The
input must be one or more external PL/l procedures. If you want to compile more
than one external procedure in a single job or job step, precede each procedure,
except possibly the first, with a %PROCESS statement. For further detail, see
“Compiling Multiple Procedures in a Single Job Step” on page 69.

80-byte records are commonly used as the input medium for PL/I source programs.
The input data set can be on a direct-access device, magnetic tape, or some other
sequential media. The input data set can contain either fixed-length records
(blocked or unblocked), variable-length records (coded or uncoded), or
undefined-length records. The maximum record size is 100 bytes.

When data sets are concatenated for input to the compiler, the concatenated data
sets must have similar characteristics (for example, block size and record format).

Output (SYSLIN, SYSPUNCH)

Output in the form of one or more object modules from the compiler can be stored
in either of two data sets. You can store it in the data set SYSLIN (if you specify
the OBJECT compile-time option) or in the data set SYSPUNCH (if you specify the
DECK compile-time option). Both of these data sets are defined by the DD
statement. You can specify both the OBJECT and DECK options in one program,
if the output will be stored in both data sets.

Chapter 3. Compiling under MVS 65

The object module is always in the form of 80-byte fixed-length records, blocked or
unblocked. The data set defined by the DD statement with the name SYSPUNCH
is also used to store the output from the preprocessor if you specify the MDECK
compile-time option.

Temporary Workfile (SYSUT1)

66

The compiler requires a data set for use as a temporary workfile. It is defined by a
DD statement with the name SYSUT1, and is known as the spill file. 1t must be on
a direct-access device, and must not be allocated as a multi-volume data set.

The spill file is used as a logical extension to main storage and is used by the
compiler and by the preprocessor to contain text and dictionary information. The
LRECL and BLKSIZE for SYSUT1 is chosen by the compiler based on the amount
of storage available for spill file pages.

The DD statements given in this publication and in the cataloged procedures for
SYSUT1 request a space allocation in blocks of 1024 bytes. This is to insure that
adequate secondary allocations of direct-access storage space are acquired.

Statement Lengths

The compiler has a restriction that any statement must fit into the compiler's work
area. The maximum size of this work area varies with the amount of space
available to the compiler. The maximum length of a statement is 3400 characters.

The DECLARE statement is an exception in that it can be regarded as a sequence
of separate statements, each of which starts wherever a comma occurs that is not
contained within parentheses. For example:

DCL 1 A,
2 B(10,10) INIT(1,2,3,...),
2 C(10,100) INIT((1000)(0)),
(D,E) CHAR(20) VAR,...

In this example, each line can be treated by the compiler as a separate DECLARE
statement in order to accommodate it in the work area. The compiler will also treat
the INITIAL attribute in the same way when it is followed by a list of items
separated by commas that are not contained within parentheses. Each item can
contain initial values that, when expanded, do not exceed the maximum length.
The above also applies to the use of the INITIAL attribute in a DEFAULT
statement.

If a DECLARE statement cannot be compiled, the following techniques are
suggested to overcome this problem:

¢ Simplify the DECLARE statement so that the compiler can treat the statement
in the manner described above.

PL/I for MVS & VM Programming Guide

* Modify any lists of items following the INITIAL attribute so that individual items
are smaller and separated by commas not contained in parentheses. For
example, the following declaration is followed by an expanded form of the same
declaration. The compiler can more readily accommodate the second
declaration in its work area:

1. DCL Y (1000) CHAR(8)
INIT ((1000) (8)'Y');

2. DCL Y (1000) CHAR(8) INIT
((250) (8) "Y', (250) (8)'Y",
(250) (8) "Y', (250) (8)'Y');

Listing (SYSPRINT)

The compiler generates a listing that includes all the source statements that it
processed, information relating to the object module, and, when necessary,
messages. Most of the information included in the listing is optional, and you can
specify those parts that you require by including the appropriate compile-time
options. The information that can appear, and the associated compile-time options,
are described under “Using the Compiler Listing” on page 33.

You must define the data set, in which you wish the compiler to store its listing, in a
DD statement with the name SYSPRINT. This data set must have CONSECUTIVE
organization. Although the listing is usually printed, it can be stored on any
sequential or direct-access device. For printed output, the following statement will
suffice if your installation follows the convention that output class A refers to a
printer:

//SYSPRINT DD SYSOUT=A

The compiler always reserves 258 bytes of main storage (129 bytes each) for two
buffers for this data set. However, you can specify a block size of more than 129
bytes, provided that sufficient main storage is available to the compiler. (For further
details of the SIZE compile-time option, see SIZE on page 22.)

Source Statement Library (SYSLIB)

If you use the preprocessor %INCLUDE statement to introduce source statements
into the PL/I program from a library, you can either define the library in a DD
statement with the name SYSLIB, or you can choose your own ddname (or
ddnames) and specify a ddname in each %INCLUDE statement. (For further
information on the preprocessor, see “Using the Preprocessor” on page 29.)

If the statements are included from a SYSLIB, they must have a form that is similar
to the %INCLUDE statement. For example, they must have the same record
format (fixed, variable, undefined), the same logical record length, and matching left
and right margins.

The BLOCKSIZE of the library must be less than or equal to 32,760 bytes.

Example of Compiler JCL

A typical sequence of job control statements for compiling a PL/I program is shown
in Figure 11 on page 68. The DECK and NOOBJECT compile-time options,
described below, have been specified to obtain an object module as a card deck
only.

Chapter 3. Compiling under MVS 67

//O0PT4#4 JOB

//STEP EXEC PGM=IEL1AA,PARM="'DECK,NOOBJECT'
//STEPLIB DD DSN=IEL.V1RIM1.SIELCOMP,DISP=SHR

// DD DSN=CEE.V1R2MO.SCEERUN,DISP=SHR
//SYSPUNCH DD SYSOUT=B

//SYSUT1 DD UNIT=SYSDA,SPACE=(1024, (60,60),,CONTIG)
//SYSPRINT DD SYSOUT=A

//SYSIN DD =

/*

Figure 11. Job Control Statements for Compiling a PL/I Program Not Using Cataloged
Procedures

Specifying Options

For each compilation, the IBM-supplied or installation default for a compile-time
option applies unless it is overridden by specifying the option in a %PROCESS
statement or in the PARM parameter of an EXEC statement.

An option specified in the PARM parameter overrides the default value, and an
option specified in a %PROCESS statement overrides both that specified in the
PARM parameter and the default value.

Note: When conflicting attributes are specified either explicitly or implicitly by the
specification of other options, the latest implied or explicit option is accepted. No
diagnostic message is issued to indicate that any options are overridden in this
way.

Specifying Options in the EXEC Statement

68

To specify options in the EXEC statement, code PARM= followed by the list of
options, in any order (except that CONTROL, if used, must be first) separating the
options with commas and enclosing the list within single quotation marks, for
example:

//STEP1 EXEC PGM=IEL1AA,PARM='0BJECT,LIST'

Any option that has quotation marks, for example MARGINI('c'), must have the
guotation marks duplicated. The length of the option list must not exceed 100
characters, including the separating commas. However, many of the options have
an abbreviated syntax that you can use to save space. If you need to continue the
statement onto another line, you must enclose the list of options in parentheses
(instead of in quotation marks) enclose the options list on each line in quotation
marks, and ensure that the last comma on each line except the last line is outside
of the quotation marks. An example covering all the above points is as follows:

//STEP1 EXEC PGM=IEL1AA,PARM=('AG,A',
// 'C,ESD,F(I)',
[/ 'M,MI(''X'"),NEST,STG,X")

If you are using a cataloged procedure, and want to specify options explicitly, you
must include the PARM parameter in the EXEC statement that invokes it, qualifying
the keyword PARM with the name of the procedure step that invokes the compiler.
For example:

//STEP1 EXEC IEL1CLG,PARM.PLI='A,LIST,ESD'

PL/I for MVS & VM Programming Guide

Compiling Multiple Procedures in a Single Job Step

SIZE Option

NAME Option

Batched compilation allows the compiler to compile more than one external PL/I
procedure in a single job step. The compiler creates an object module for each
external procedure and stores it sequentially either in the data set defined by the
DD statement with the name SYSPUNCH, or in the data set defined by the DD
statement with the name SYSLIN. Batched compilation can increase compiler
throughput by reducing operating system and compiler initialization overheads.

To specify batched compilation, include a compiler %PROCESS statement as the
first statement of each external procedure except possibly the first. The
%PROCESS statements identify the start of each external procedure and allow
compile-time options to be specified individually for each compilation. The first
procedure might require a %PROCESS statement of its own, because the options
in the PARM parameter of the EXEC statement apply to all procedures in the
batch, and can conflict with the requirements of subsequent procedures.

Note: The options specified in the %PROCESS statement override those specified
in the PARM parameter of the EXEC statement.

The method of coding a %PROCESS statement and the options that can be
included are described under “Specifying Options in the %PROCESS or
*PROCESS statements” on page 28. The options specified in a %PROCESS
statement apply to the compilation of the source statements between that
%PROCESS statement and the next %PROCESS statement. Options other than
these, either the defaults or those specified in the PARM field, will also apply to the
compilation of these source statements. Two options, the SIZE option and the
NAME option have a particular significance in batched compilations, and are
discussed below.

Note: OBJECT, MDECK, and DECK can cause problems if they are specified on
second or subsequent compilations but not on the first. This is because they
require the opening of SYSLIN or SYSPUNCH and there might not be room for the
associated data management routines and control blocks. When this happens,
compilation ends with a storage abend.

In a batched compilation, the SIZE specified in the first procedure of a batch (by a
%PROCESS or EXEC statement, or by default) is used throughout. If SIZE is
specified in subsequent procedures of the batch, it is diagnosed and ignored.

The NAME option specifies that the compiler places a linkage editor NAME
statement as the last statement of the object module. The use of this option in the
PARM parameter of the EXEC statement, or in a %PROCESS statement,
determines how the object modules produced by a batched compilation are handled
by the linkage editor. When the batch of object modules is link-edited, the linkage
editor combines all the object modules between one NAME statement and the
preceding NAME statement into a single load module. It takes the name of the
load module from the NAME statement that follows the last object module that is
included. When combining two object modules into one load module, the NAME
option should not be used in the EXEC statement. An example of the use of the
NAME option is given in Figure 12 on page 70.

Chapter 3. Compiling under MVS 69

// EXEC IEL1C,PARM.PLI='LIST'

% PROCESS NAME('A');
ALPHA: PROC OPTIONS(MAIN);

END ALPHA;
PROCESS;
BETA: PROC;

N

END BETA;
% PROCESS NAME('B');
GAMMA: PROC;

END GAMMA;

Figure 12. Use of the NAME Option in Batched Compilation

Compilation of the PL/I procedures ALPHA, BETA, and GAMMA, results in the
following object modules and NAME statements:

OBJECT MODULE FOR ALPHA
NAME A (R)

OBJECT MODULE FOR BETA

OBJECT MODULE FOR GAMMA
NAME B (R)

From this sequence of object modules and control statements, the linkage editor
produces two load modules, one nhamed A containing the object module for the
external PL/I procedure ALPHA, and the other named B containing the object
modules for the external PL/I procedures BETA and GAMMA.

Note: You should not specify the option NAME if you intend to process the object
modules with the loader. The loader processes all object modules into a single
load module. If there is more than one name, the loader recognizes the first one
only and ignores the others.

Return Codes in Batched Compilation

The return code generated by a batched compilation is the highest code that is
returned if the procedures are compiled separately.

Job Control Language for Batched Processing

70

The only special consideration relating to JCL for batched processing refers to the
data set defined by the DD statement with the name SYSLIN. If you include the
option OBJECT, ensure that this DD statement contains the parameter
DISP=(MOD,KEEP) or DISP=(MOD,PASS). (The IBM-supplied cataloged
procedures specify DISP=(MOD,PASS).) If you do not specify DISP=MOD,
successive object modules will overwrite the preceding modules.

PL/I for MVS & VM Programming Guide

Examples of Batched Compilations
If the external procedures are components of a large program and need to be run
together, you can link-edit them together and run them in subsequent job steps.
Cataloged procedure IEL1CG can be used, as shown in Figure 13.

//0PT4#13 JOB
//STEP1 EXEC IELICG
//PLI.SYSIN DD =*
First PL/I source program
% PROCESS;
Second PL/I source program
% PROCESS;
Third PL/I source program
/*
//GO.SYSIN DD *
Data processed by combined
PL/I programs

/*

Figure 13. Example of Batched Compilation, Including Execution

If the external procedures are independent programs to be invoked individually from
a load module library, cataloged procedure IEL1CL can be used. For example, a
job that contains three compile and link-edit operations can be run as a single
batched compilation, as shown in Figure 14.

//OPT4#14 JOB
//STEP1 EXEC IEL1CL,
// PARM.PLI='NAME(''PROG1'')",
// PARM.LKED=LIST
//PLI.SYSIN DD =*
First PL/I source program
% PROCESS NAME('PR0OG2');
Second PL/I source program
% PROCESS NAME('PR0G3');
Third PL/I source program
/*
//LKED.SYSLMOD DD DSN=PUBPGM,
// DISP=0LD

Figure 14. Example of Batched Compilation, Excluding Execution

Correcting Compiler-Detected Errors

At compile time, both the preprocessor and the compiler can produce diagnostic
messages and listings. For information on correcting errors, see “Correcting
Compiler-Detected Errors” on page 78 in Chapter 4, “Compiling under VM.”

| The PL/I Compiler and MVS/ESA

Care should be taken when using large region sizes with the SIZE(MAX) compiler
option. SIZE(MAX) indicates that the compiler obtains as much main storage in the
region as it can. Since the compiler runs below the line, the storage obtained will
be below the line. This can cause unpredictable problems as there will not be
enough storage left for the system to use.

Chapter 3. Compiling under MVS 71

Compiling for CICS

When coding a CICS transaction in PL/I, prior to compiling your transaction, you
must invoke the CICS Command Language Translator. You can find information
on the CICS Command Language Translator in the CICS/ESA Application
Programmer's Reference Manual. After the CICS translator step ends, compile
your PL/I program with the SYSTEM(CICS) option. NOEXECOPS is implied with
this option. For a description of the SYSTEM compile-time option, see “SYSTEM”
on page 24.

72 PL/ for MVS & VM Programming Guide

Chapter 4. Compiling under VM

This chapter explains how to use the PLIOPT command to compile your program
under VM. You must be linked to Language Environment before using PLIOPT, or
your program will not compile. Language Environment must always be present
when the PL/I compiler is active. The information in the chapter includes where the
compiler stores its output, the types of files the compiler uses, and how to use the
compile-time options. There is also information on special cases. The chapter
describes how to include previously written PL/l statements with your program,
compile your program to be run under MVS, and how to have your output placed in
a TXTLIB. At the end of the chapter there are examples of PL/I batched
compilation and information on compiler-detected errors.

To compile a program under VM, use the PLIOPT command followed by the name
of the file that contains the source program. If the file type is not PLIOPT or PLI,
you must specify the file type. If the file is not on the A disk, you must also specify
the filemode naming the disk where the file is stored.

“PLIOPT Command Format” on page 76 shows the syntax for the PLIOPT
command. If you want to specify any compile-time or PLIOPT options, these must
follow the file name, file type, or file mode, whichever is the last you specified. You
must put a left parenthesis before these options. Options are separated from each
other by blanks, and you should use the abbreviated form of options.

During compilation, two new disk files are produced with the file types TEXT and
LISTING and the same file name as the file specified in the PLIOPT command.

The TEXT file contains the object code. The LISTING file contains the listings
produced during compilation. Any error messages produced are transmitted to your
terminal and contained in your listing.

If compilation reveals source program errors, you can alter the PLIOPT file that
contains the source by use of the VM editor. You can then reissue the PLIOPT
command. This results in the creation of new TEXT and LISTING files
corresponding to the newly edited source programs. If previous versions were
available they are overwritten. When you have a satisfactory compilation, you can
run the program, which is now in the form of a TEXT file.

Using the PLIOPT Command

Invoke the compiler by issuing the PLIOPT command. The compiler creates two
output files. One file contains the object code, and the other file contains the
listing. Refer to Table 3 on page 5 for a listing of compile-time options and their
IBM-supplied defaults.

Compiler Output and Its Destination

The compiler creates two new files and places them on VM disks by default.
These files have the same file name as the file that contains the source type TEXT
and the listing has the file type LISTING. Thus, if you compiled a PLIOPT file
called ROBIN you would, by default, create two more files called ROBIN TEXT
which contains the object code and ROBIN LISTING which contains the listing
information. These files would be placed on your VM disks according to the rules

© Copyright IBM Corp. 1964, 1995 73

shown in Table 13. (The relationship between VM disks is explained in the
VM/ESA: CMS User's Guide.)

It is possible to specify a name for the TEXT file other than that of the file compiled
in the PLIOPT command by specifying a filename with the OBJECT option.

The creation of the LISTING file can be suppressed by use of the NOPRINT option
of the PLIOPT command. (See “PLIOPT Command Options” on page 75.) The
creation of the TEXT file can be suppressed by use of the NOOBJECT option of
the PLIOPT command.

Table 13. The disks on Which the Compiler Output Is Stored

If the disk that contains the then the disk that contains the

PL/I source file is accessed... output files (TEXT, LISTING) is:
Read/Write... the disk that holds the PL/I source.
as an extension of a Read/Write disk... the Read/Write Disk.

as an extension of a Read-only Disk and the A-disk the A-disk.

is accessed Read/Write...

as an extension of a Read-only Disk and the A-disk ERROR DMSPLIOO6E — program terminates.
is accessed Read Only...

Compile-Time Options

The PLIOPT command expects all options to be a maximum of eight characters
long. You should always use the abbreviated form of the options. All options and
suboptions must be separated by blanks. Parentheses need not be separated from
options or suboptions even if the option has a total length of more than eight
characters. Thus TERMINAL(XREF) is acceptable, although the total length is
greater than eight characters.

Where options of the PLIOPT command contradict those of the %PROCESS
statement, the options in the %PROCESS statement override those in the PLIOPT
command. For options whose length is greater than eight characters, the
abbreviation for that option must be used in the PLIOPT command.

Files Used by the Compiler

74

During compilation the compiler uses a number of files. These files are allocated
by the interface module that invokes the compiler. The files used are shown in
Table 14. At the end of the compilation, the interface module will issue a
FILEDEF * CLEAR command to clear the definition of these files. As a result, all
your file definitions without the PERM option active prior to the compilation will also
be cleared.

Table 14 (Page 1 of 2). Files That Can Be Used by the Compiler

FILE TYPE FUNCTION DEVICE TYPE WHEN REQUIRED
PLIOPT or PLI Input DASD, magnetic tape, Always
card reader
LISTING Print DASD, magnetic tape, Optional
printer
TEXT Object module DASD, magnetic tape When object module is to be created
output

PL/I for MVS & VM Programming Guide

Table 14 (Page 2 of 2). Files That Can Be Used by the Compiler

FILE TYPE FUNCTION DEVICE TYPE WHEN REQUIRED
SYSPUNCH System punch DASD, magnetic tape, When MDECK and/or DECK is in effect
card punch
SYSUT1 Spill DASD When insufficient main storage is
available

MACLIB Preprocessor DASD When %INCLUDE is used from VM
%INCLUDE disks

SYSLIB Preprocessor DASD When %INCLUDE is used from PL/I
%INCLUDE Library

PLIOPT Command Options

The PLIOPT command compiles a PL/I program or a series of PL/I programs into
machine language object code. If the file type is missing, the file type defaults to
PLIOPT or PLI.

The following options are applicable only to the PLIOPT command and cannot
appear on the %PROCESS statement in the PL/I source file.

PRINT—The listing file is directed to the PRINTER and is not placed on a disk.

DISK—The listing file is placed on a disk. To determine which disk, see
Table 13 on page 74.

TYPE—The listing file is displayed at your terminal and is not placed on a disk.
NOPRINT—A listing file is not produced.

OBJECT—An additional facility, OBJECT](file name)], allows you to specify a
different file name for your file.

In the OBJECT option specification, (file name) is the name that will be given to
the text file. If it is omitted, the text file will be given the same name as the file
specified in the PLIOPT command. The TEXT file will be placed on one of
your disks in accordance with the rules shown in Table 13 on page 74.

%INCLUDE Statement
If you want to use the %INCLUDE statement within your PL/l program, you must
take the following steps:

Create the file that you want to INCLUDE into your PL/I program. The file type
must be COPY.

Put the COPY file into an existing or new macro library (MACLIB).
Use the %INCLUDE statement in your PL/I program.

Issue a FILEDEF for the MACLIB that contains the COPY file you want
included.

If you have only %INCLUDE and no other preprocessor statements, compile
your program using the compile-time option INC. If you have other
preprocessor statements, use the compile time option MACRO.

The syntax of %INCLUDE is:

%INCLUDE DDNAME (member name)

The following example demonstrates the use of the %INCLUDE statement.

Chapter 4. Compiling under VM 75

76

Example of Using %INCLUDE
The COPY file called PLIXOPT COPY is created:

DCL PLIXOPT CHAR(255) VAR STATIC EXTERNAL
INIT ('STACK(4K),HEAP(4K),RPTSTG(ON)"');
The COPY file PLIXOPT is added to the MACLIB called MYLIB:
MACLIB ADD MYLIB PLIXOPT

If a MACLIB does not exist, use the command MACLIB GEN instead of MACLIB
ADD. This will generate a MACLIB called MYLIB.

In the PL/I source file, the following %INCLUDE statement is included:
%INCLUDE PLICOPY(PLIXOPT);

A FILEDEF is issued for the ddname specified in the %INCLUDE statement to tell
PL/I where to obtain the member PLIXOPT within a library:

FILEDEF PLICOPY DISK MYLIB MACLIB

The PL/I program is compiled. The program has no other preprocessor statements,
so the INC option is used:

PLIOPT EXAMPLE (INC

For complete information on the VM Commands which are used above, see the
VM/ESA: CMS Command Reference.

PLIOPT Command Format
The format of the PLIOPT command is:

PLIOPT filename[filetype[filemode]] [(options-Tist [)]]

where filename[filetype[filemode]] is the identification of the file that contains
the PL/I source program. If filetype is omitted, a search will be made first for
PLIOPT files of the specified filename and then for PLI files of the specified
filename. If filemode is omitted, A will be assumed.

If the options list is (optionl option2 option3... then the options must be
separated from each other by at least one blank. The right hand parenthesis is
optional. If contradicting options are specified, the rightmost option applies. See
Table 3 on page 5 for information on options and their correct syntax.

Examples:
To compile a PLIOPT or PLI file called RABBIT on the A-disk with the OPTIONS
and SOURCE options:

PLIOPT RABBIT (OPTIONS SOURCE
To compile a file with the name RABBIT and the type FORMAT on the B-disk with
the options PRINT, XREF, and ATTRIBUTES:

PLIOPT RABBIT FORMAT B (PRI X A

Note that the abbreviations are used for these options.

PL/I for MVS & VM Programming Guide

Special Action Will Be Required:
1. If your source uses the %INCLUDE statement to incorporate secondary input
text.

2. If you intend to run your program under MVS.

3. If you want to place the compiled program into a TXTLIB. You might want to
do this if you want to use separately compiled subroutines.

The following paragraphs describe the actions required in each of these
circumstances.

Using %INCLUDE under VM: If your program uses %INCLUDE statements to
include previously written PL/I statements or procedures, the libraries on which they
are held must be made available to VM before issuing the PLIOPT command. To
do this you must insert the statements into a VM MACLIB using the MACLIB
command. You then issue a GLOBAL command taking the form “GLOBAL
MACLIB filename.”

For example, if your secondary input text was held in MACLIB called “MYLIB” you
would enter:

GLOBAL MACLIB MYLIB

before issuing the PLIOPT command. The PLIOPT command must specify either
the INCLUDE or the MACRO option.

If your %INCLUDE statement takes the form %INCLUDE MYLIB (CUCKOO), as
opposed to %INCLUDE CUCKOO, you will also need to specify a FILEDEF
command for MYLIB. This should take the form:

FILEDEF MYLIB DISK MYLIB MACLIB

If in the MACLIB the LRECL is not 80 and the BLOCKSIZE not 400, format
information must be included in the FILEDEF command.

Compiling a Program to Run under MVS: If you intend to run your program
under MVS, you should specify the SYSTEM(MVS) option:

PLIOPT RABBIT (SYSTEM(MVS)

An attempt to run a program compiled without the SYSTEM(MVS) option under
MVS results in an OS linkage editor error of severity level 8.

Compiling a Program to be Placed in a TXTLIB: If you intend to include the
compiled TEXT file as a member of a TXTLIB it is necessary to use the NAME
option when you specify the PLIOPT command. This is because members of a
TXTLIB file are given the name of their primary entry point if they have no external
name. The primary entry point of every TEXT file produced by the compiler is the
same, consequently only one compiled program can be included in a TXTLIB if the
NAME option is not used. (The NAME option gives the TEXT file an external
name.)

Commands required to create a TEXT file suitable for including in a TXTLIB are
shown below. This code gives the file the external name used in the PLIOPT
command. However, any other name can be used provided that it does not exceed
six characters.

Note: If the name exceeds six characters, the NAME option is ignored.

Chapter 4. Compiling under VM 77

The commands below compile a PLIOPT file RABBIT with the external name
RABBIT and add it to an existing text library called BIOLIB.

PLIOPT RABBIT (NAME('RABBIT'
[compiler messages etc.]
TXTLIB ADD BIOLIB RABBIT

If the BIOLIB TXTLIB does not exist yet, use the command TXTLIB GEN instead of
TXTLIB ADD.

PL/I Batched Compilation

An example of VM batched compilation is shown in Figure 15.

PLIOPT FIRST

where FIRST and SECND are a single file that looks Tike:
first: proc;

end;
%process;
secnd:proc;

end;

Figure 15. Example of Batched Compilation under VM

Correcting Compiler-Detected Errors

78

At compile time, both the preprocessor and the compiler can produce diagnostic
messages and listings according to the compile-time options selected for a
particular compilation. The listings and the associated compile-time options are
discussed in Chapter 1, “Using Compile-Time Options and Facilities” on page 5.
The diagnostic messages produced by the compiler are identified by a number with
an “IEL” prefix. These diagnostic messages are available in both a long form and a
short form. The short messages are obtained by specifying the SMESSAGE
compiler option. Each message is listed in PL/I for MVS & VM Compile-Time
Messages and Codes. This publication includes explanatory notes, examples, and
any action to be taken.

Always check the compilation listing for occurrences of these messages to
determine whether the syntax of the program is correct. Messages of greater
severity than warning (that is, error, severe error, and unrecoverable error) should
be acted upon if the message does not indicate that the compiler has been able to
“fix” the error correctly. You should be aware that the compiler, in making an
assumption as to the intended meaning of any erroneous statement in the source
program, can introduce another, perhaps more severe, error which in turn can
produce yet another error, and so on. When this occurs, the compiler produces a
number of diagnostic messages which are all caused either directly or indirectly by
the one error.

PL/I for MVS & VM Programming Guide

Other useful diagnostic aids produced by the compiler are the attribute table and
cross-reference table. The attribute table, specified by the ATTRIBUTES option, is
useful for checking that program identifiers, especially those whose attributes are
contextually and implicitly declared, have the correct attributes. The
cross-reference table is requested by the XREF option, and indicates, for each
program variable, the number of each statement that refers to the variable.

To prevent unnecessary waste of time and resources during the early stages of
developing programs, use the NOOPTIMIZE, NOSYNTAX, and NOCOMPILE
options. The NOOPTIMIZE option suppresses optimization unconditionally, and the
remaining options suppress compilation, link-editing, and execution if the
appropriate error conditions are detected.

Chapter 4. Compiling under VM 79

Chapter 5. Link-Editing and Running

After compilation, your program consists of one or more object modules that
contain unresolved references to each other, as well as references to the Language
Environment for MVS & VM run-time library. These references are resolved during
link-editing or during execution (dynamically).

So after you compile your PL/I program, the next step is to link and run your
program with test data to verify that it produces the results you expect.

Language Environment for MVS & VM provides the run-time environment and
services you need to execute your program. For instructions on linking and running
PL/I and all other Language Environment for MVS & VM-conforming language
programs, refer to the Language Environment for MVS & VM Programming Guide.
For information about migrating your existing PL/I programs to Language
Environment for MVS & VM, see the PL/I for MVS & VM Compiler and Run-Time
Migration Guide.

This chapter contains the following sections:

Selecting math results at link-edit time
VM run-time considerations

MVS run-time considerations
SYSPRINT Considerations

Selecting Math Results at Link-Edit Time

You can select math results that are compatible with Language Environment for
MVS & VM or with OS PL/l. When you link your load module, you select the math
results by linking in the stubs for the Language Environment for MVS & VM math
routines or the OS PL/I math routines. You select the results on a load module
basis; a load module that uses the Language Environment for MVS & VM results
can fetch a load module that uses the OS PL/I results.

Because the Language Environment for MVS & VM routines are defaults, if you
relink an OS PL/I application, you receive the Language Environment for MVS &
VM results. To maintain the OS PL/I results, you need to ensure that the stubs for
the PL/I math routines are linked into the application. You can do so by overriding
the linkedit library SYSLIB data set name with the name of the PL/I math link-edit
library data set, SIBMMATH.

Use the following JCL or equivalent:

//SYSLIB DD DSN=CEE.V1R2MO.SIBMMATH,DISP=SHR
// DD DSN=CEE.V1R2MO.SCEELKED,DISP=SHR

VM Run-Time Considerations

Various special topics are covered in this section, including PL/I restrictions under
VM.

80 © Copyright IBM Corp. 1964, 1995

Separately Compiled PL/I MAIN Programs
You can load separately compiled procedures with the MAIN option into one
executable program in PL/I. The PL/I procedure that you want to receive control
first must be specified first on the LOAD command. For example, if you have two
MAIN PL/I procedures CALLING and CALLED (see Figure 16 and Figure 17) and
you want CALLING to receive control first, you issue these VM commands:

global txtlib plilib sceelked cmslib /* make the libraries available */

Ready;

pliopt calling (system(cms) /* compile the one of the procs */

Ready;

pliopt called (system(cms) /* compile the other one */

Ready;

global loadlib sceerun /* make the libraries available */

Toad calling called (nodup /* CALLING will receive control =/

Ready; /* ...first. NODUP suppresses =*/
/* ...duplicate identifier msgs */

start /* invoke the program */

Ready;

%PROCESS F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE LIST ;
Calling: Proc Options(Main);
Dc1 Sysprint File Output;
Dcl Called External Entry;

Put Skip List ('CALLING - started');
Call Called;
Put Skip List ('CALLING - Ended');

END Calling;

Figure 16. PL/I Main Calling Another PL/I Main

%PROCESS F(I) AG A(F) ESD MAP OP STG TEST X(F) SOURCE LIST ;
Called: Proc Options(Main);
Dc1 Sysprint File ;

Put Skip List ('CALLED - started');
Put Skip List ('CALLED - ended');

END Called;

Figure 17. PL/I Main Called by Another PL/I Main

Using Data Sets and Files

VM files and other OS data sets can be written and read by programs run under
VM, with varying restrictions.

VM files are completely accessible for read, write, and update to programs running
under VM. You can make these files available to a number of virtual machines, but
they are not accessible from outside the VM system except by copying and
recreation.

Only sequential OS data sets are available, on a read-only basis, to VM programs.

Chapter 5. Link-Editing and Running 81

82

Within a program, a file is identified by the declared name or the name given in the
title option. Outside the program, the FILEDEF command, or the DLBL command
for VSAM, binds a file hame to a particular data set.

VSAM data sets are different from other types of files because their management is
handled by a set of programs known as Access Method Services. The services are
available to the VM user by the AMSERV command. This command uses a
previously created file containing Access Method Services statements to specify the
required services.

VM uses the DOS data management routines which must be installed during VM
program installation. Your program is not affected by the use of DOS routines, but
certain OS Access Method Services functions are not available for data set
handling. Full details of this and other aspects of VM VSAM are given in the
VM/ESA CMS User's Guide.

To test programs that create or modify OS data sets, you can write “OS-Simulated
data sets.” These are VM files that are maintained on VM disks in OS format,
rather than in VM format. You can perform any VM file operation on these files.
However, since they are in the OS-Simulated format, files with variable-blocked
records can contain block and record descriptor words, so that the access methods
can manipulate the files properly. If you specify the flemode number as 4, VM
creates a file that is in OS-Simulated data set format.

The following three examples show the PL/I statements and the CMS commands
necessary to access VM files, VSAM data sets, and non-VSAM OS data sets,
respectively.

Using VM Files — Example
To access a VM file, issue a FILEDEF command associating a PL/I file name with
particular VM file(s).

In the example that follows, the PL/I program reads the file known in the program
as “OLDFILE”. This refers to the VM file “INPUT DATA B”. The program creates
the file known in the program as “NEWFILE”, which corresponds to the VM file
“OUTPUT DATA A”. A third file, PL/I file “HISTORY?", is assigned to the virtual
printer.

PL/I Program Statements

DCL OLDFILE FILE RECORD INPUT ENV (F RECSIZE(40)),
NEWFILE FILE RECORD OUTPUT ENV (F RECSIZE(40)),
HISTORY FILE STREAM PRINT;

PL/I for MVS & VM Programming Guide

VM Commands

filedef oldfile disk input data b Associates OLDFILE with the file INPUT
DATA B.

filedef newfile disk output data a Associates NEWFILE with the file OUTPUT
DATA A.

filedef history printer Associates the file HISTORY with the virtual
printer.

The full syntax of the FILEDEF and other commands is given in VM/ESA CMS
Command Reference.

Using VSAM Data Sets — Example

VSAM data sets differ from other data sets because they are always accessed
through a catalog and because they have their routine management performed by
Access Method Services. Use the AMSERY command to invoke Access Method
Services functions and the DLBL command to associate an actual VSAM data set
with the file identifier in a PL/I program.

To use the AMSERV command, a file of the filetype AMSERV must be created that
contains the necessary Access Method Services commands. An AMSERYV
command, specifying the name of this file, is then issued and the requested Access
Method Services are performed. Such services must always be used for cataloging
and formatting purposes before creating a VSAM data set. They are also used for
deleting, renaming, making portable copies, and other routine tasks.

For VSAM data sets, catalog entries are created by the DEFINE statement of
Access Method Services. They contain information such as the space used or
reserved for the data set, the record size, and the position of a key within the
record. The catalog entry also contains the address of the data set.

To use a VSAM data set, you must identify the catalog to be searched and
associate the PL/I file with the VSAM data set. The DLBL command is used for
both these purposes. Where the data set is being newly created, you must specify
the AMSERV command to catalog and define the data set before the PL/I program
is executed. Details of how to use VSAM under VM are given in the VM/ESA CMS
User's Guide.

The relevant PL/I statements and VM commands to access an existing VSAM data
set and to create a new VSAM data set are shown in the example that follows.

The PL/I program reads the file OLDRAB from the VSAM data set called RABBIT1
on the VM B-disk. It writes the fle NEWRAB onto the data set RABBIT2, also on
the VM B-disk. RABBIT2 is defined using an AMSERV command. In the example,
this master catalog is already assigned and the VSAM space is also already
assigned.

PL/I File Declaration
DCL OLDRAB FILE RECORD SEQUENTIAL KEYED INPUT ENV(VSAM);
DCL NEWRAB FILE RECORD SEQUENTIAL KEYED OUTPUT ENV(VSAM);

VM Commands: A file with the filetype of AMSERV must be created with the
appropriate Access Method Services commands, and is named 'AMSIN
AMSERV'. For this example, the file must contain the following information:

Chapter 5. Link-Editing and Running 83

84

DEFINE CLUSTER(NAME(RABBIT2.C) VOL(VOLSER)) -
DATA (CYL(4,1) KEYS(5,5) RECSZ(23,23) -
FREESPACE(20,30)) -

INDEX(CYL(1,1))

The VM commands that you need to issue are:
d1bl ijsyscat b dsn mastca (perm Issue a DLBL for the master catalog. Note that

this need only be done once for terminal session
if PERM is specified.

amserv amsin Execute statements in the AMSERY file to
catalog and format data set.

d1b1 oldrab b dsn rabbitl (vsam) Issue DLBL commands to associate PL/I files

d1b1 newrab b dsn rabbit2 (vsam) with the VSAM data sets.

Notes:

1. The closing parenthesis is optional in VM commands but required in Access
Method Services commands.

2. PL/ MVS & VM programs with files declared with ENV(INDEXED) can, in
certain instances, operate correctly if the data set being accessed is a VSAM
data set.

Using OS Data Sets — Example

Before you can access an OS data set that resides on an OS formatted disk, it
must be made available to your virtual machine. Using the ACCESS command,
you can access the OS formatted disk as one of your VM minidisks. Once this has
been done, you can use a FILEDEF command to access the disk in the usual
manner.

In the example that follows, the PL/I file OLDRAB is used to access the OS data
set RABBIT.OS.DATA. The disk containing the data set has been mounted and is
known to the user as virtual disk number 196.

PL/I Statement
DCL OLDRAB FILE RECORD ENV (F RECSIZE(40));

VM Commands

access 196 g Connect disk containing data set to your virtual
DMSACP723I G (196) R/0 machine.
filedef oldrab g dsn rabbit os data Associate PL/I file OLDRAB with OS data set

RABBIT.OS.DATA.

Using Tapes with Standard Labels: VM assumes that tapes do not have
standard labels. If you want to process a standard label tape, you can use the VM
commands LABELDEF, FILEDEF, and/or TAPE. More information can be found in
the VM/ESA CMS Command Reference.

PL/I for MVS & VM Programming Guide

Restrictions Using PL/I under VM

PL/I features that are not available under VM are:

¢ ASCII data sets

e BACKWARDS attribute with magnetic tapes
* INDEXED Files (except for use with VSAM)
e PL/I checkpoint restart facilities (PLICKPT)

e Tasking

* Regional(2) and Regional(3) files
» Teleprocessing* files (TCAM)
e VS or VBS record formats.

PL/I features that have restricted use under VM are:

Regional(1) files

READ

Blanks

TIME

VSAM

Regional(1) files can be used with the following restrictions:

e More than one regional file with keys cannot be open at the
same time.

¢ KEY(TRACKID/REGION NUMBER) must not be
incremented unless 255 records are written on the first
logical track, and 256 records on each subsequent logical
track.

¢ Files must not be written with a dependency on the
physical track length of a direct access device.

¢ When a file is created, the XTENT option of the FILEDEF
command must be specified, and it must be equal to the
number of records in the file to be created.

This can only be used if the NCP parameter is included in the
ENVIRONMENT option of the PL/I file.

Blanks cannot be passed in the parameter string to the main
procedure using SYSTEM(CMSTPL). The blanks are removed
from the string and the items separated by them are
concatenated. Use of SYSTEM(CMS) does not have this
restriction.

The TIME built-in function returns values calculated to the
nearest second.

VSAM data sets can be used only if DOS/VS VSAM was
incorporated into VM during PL/I VM installation. DOS VSAM
is used and any features not available to DOS VSAM cannot
be used. CMS/DOS must also be generated into VM. For
details of how to do this, see VM/ESA Installation.

Environment options: SIS cannot be used, SKIP cannot be
used on ESDS.

Using Record 1/O at the Terminal

There is no provision for input prompting or synchronization of output for RECORD
files assigned to the terminal. Terminal interaction logic is generally easier to write
using stream I/O, but when you use record I/O at the terminal, keep the following

points in mind:

Chapter 5. Link-Editing and Running 85

Output: Output files should be declared with BUFFERS(1) if you must
synchronize input with output.

Use V-format records; otherwise trailing blanks are transmitted.

Input: Use V-format records, as doing otherwise raises the RECORD condition
unless the record is filled out with trailing blanks. Note than when V-format records
are used and the data is read into a fixed length string, the string is not padded
with blanks. By default, RECORD files assigned to the terminal are given F-format
records with the record length the same as the linesize for the terminal.

PL/I Conventions under VM

86

Two types of conventions apply to PL/l when used under VM. The first type is
adopted to make input/output simpler and more efficient at the terminal. The
second type results from the terminal being considered as the console of a virtual
machine. These affect the DISPLAY statement and the REPLY option.

Stream I/O Conventions at the Terminal: To simplify input/output at the terminal,
various conventions have been adopted for stream files that are assigned to the
terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input.

Formatting onventions for PRINT Files

When a PRINT file is assigned to the terminal, it is assumed that it will be read as
it is being printed. Spacing is therefore reduced to a minimum to reduce printing
time. The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:

e PAGE options or format items result in three lines being skipped.

e SKIP options or format items large than SKIP (2) result in three lines being
skipped. SKIP (2) or less is treated in the usual manner.

e The ENDPAGE condition is never raised.

Changing the Format on PRINT Files

If you want normal spacing to apply to output from a PRINT file at the terminal, you
must supply your own tab table for PL/I. This is done by declaring an external
structure called PLITABS in the program and initializing the element PAGELENGTH
to the number of lines that can fit on your page. This value differs from
PAGESIZE, which defines the number of lines you want to be printed on the page
before ENDPAGE is raised. (See Figure 18 and Figure 19 on page 90 in “MVS
Run-Time Considerations.”)

Automatic Prompting

When the program requires input from a file that is associated with a terminal, it
issues a prompt. This takes the form of printing a colon on the next line and then
skipping to column 1 on the line following the colon. This gives you a full line to
enter your input, as follows:

(space for entry of your data)

This type of prompt is referred to as a primary prompt.

PL/I for MVS & VM Programming Guide

Overriding Automatic Prompting: It is possible to override the primary prompt
by making a colon the last item in the request for the data. The secondary prompt
cannot be overridden. For example, the two PL/I statements:

PUT SKIP EDIT ('ENTER TIME OF PERIHELION') (A);
GET EDIT (PERITIME) (A(10));

result in the terminal printing:

ENTER TIME OF PERIHELION
: (automatic prompt)
(space for entry of data)

However, if the first statement has a colon at the end of the output, as follows:
PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

the sequence is:
ENTER TIME OF PERIHELION: (space for entry of data)

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is again
overridden.

Punctuating Long Input Lines

Line Continuation Character: To transmit data that requires 2 or more lines of
space at the terminal as one data-item, type an SBCS hyphen as the last character
in each line except the last line. For example, to transmit the sentence “this data
must be transmitted as one unit.” you enter:

'this data must be transmitted -

as one unit.'

Transmission does not occur until you press ENTER after “unit.'” The hyphen is
removed. The item transmitted is called a “logical line.”

Note: To transmit a line whose last data character is a hyphen or a PL/I minus
sign, enter two hyphens at the end of the line, followed by a null line as the next
line.

Chapter 5. Link-Editing and Running 87

88

For example:

Xyz--
(press ENTER only, on this Tine)

Punctuating GET LIST and GET DATA Statements

For GET LIST and GET DATA statements, a comma is added to the end of each
logical line transmitted from the terminal, if the programmer omitted it. Thus there
is no need to enter blanks or commas to delimit items if they are entered on
separate logical lines. For the PL/I statement GET LIST(A,B,C); you can enter at
the terminal:

This rule also applies when entering character-string data. A character string must
therefore transmit as one logical line. Otherwise, commas are placed at the break
points. For example, if you enter:

"COMMAS SHOULD NOT BREAK
+-

UP A CLAUSE.'

the resulting string is “COMMAS SHOULD NOT BREAK, UP A CLAUSE.” The
comma is not added if a hyphen was used as a line continuation character.

Automatic Padding for GET EDIT: For a GET EDIT statement, there is no need
to enter blanks at the end of the line. The data will be padded to the specified
length. Thus, for the PL/I statement:

GET EDIT (NAME) (A(15));

you can enter the 5 characters SMITH. The data will be padded with ten blanks so
that the program receives the fifteen characters:

"SMITH '

Note: A single data item must transmit as a logical line. Otherwise, the first line
transmitted will be padded with the necessary blanks and taken as the complete
data item.

Use of SKIP for Terminal Input: All uses of SKIP for input are interpreted as
SKIP(1) when the file is allocated to the terminal. SKIP(1) is treated as an
instruction to ignore all unused data on the currently available logical line.

ENDFILE

The end-of-file can be entered at the terminal by keying in a logical line that
consists of the two characters “/*”. Any further attempts to use the file without
closing it result in the ENDFILE condition being raised.

PL/I for MVS & VM Programming Guide

DISPLAY and REPLY under VM

Because your terminal is the console of the virtual machine, you can use the
DISPLAY statement and the REPLY option to create conversational programs. The
DISPLAY statement transmits the message to your terminal, and the REPLY option
allows you to respond. For example, the PL/I statement:

DISPLAY ('ENTER NAME') REPLY (NAME);

results in the message “ENTER NAME” being printed at your terminal. The
program then waits for your response and places your data in the variable NAME
after you press ENTER. The terminal display looks like:

ENTER NAME
Esther Summers

The reply can contain DBCS characters but they must be processable as a mixed
string.

Note: File I/O can be buffered if the file is directed to the terminal. If you are
using I/O directed to the terminal as well as the DISPLAY statement, the order of
the lines written cannot be the same as the program intended.

MVS Run-Time Considerations

To simplify input/output at the terminal, various conventions have been adopted for
stream files that are assigned to the terminal. Three areas are affected:

1. Formatting of PRINT files
2. The automatic prompting feature
3. Spacing and punctuation rules for input.

Note: No prompting or other facilities are provided for record 1/O at the terminal,
S0 you are strongly advised to use stream I/O for any transmission to or from a
terminal.

Formatting Conventions for PRINT Files
When a PRINT file is assigned to the terminal, it is assumed that it will be read as
it is being printed. Spacing is therefore reduced to a minimum to reduce printing
time. The following rules apply to the PAGE, SKIP, and ENDPAGE keywords:

* PAGE options or format items result in three lines being skipped.

e SKIP options or format items larger than SKIP (2) result in three lines being
skipped. SKIP (2) or less is treated in the usual manner.

e The ENDPAGE condition is never raised.

Changing the Format on PRINT Files
If you want normal spacing to apply to output from a PRINT file at the terminal, you
must supply your own tab table for PL/I. This is done by declaring an external
structure called PLITABS in the program and initializing the element PAGELENGTH
to the number of lines that can fit on your page. This value differs from
PAGESIZE, which defines the number of lines you want to print on the page before
ENDPAGE is raised (see Figure 19 on page 90). If you require a PAGELENGTH
of 64 lines, declare PLITABS as shown in Figure 18 on page 90. For information
on overriding the tab table, see “Overriding the Tab Control Table” on page 140.

Chapter 5. Link-Editing and Running 89

DCL 1 PLITABS STATIC EXTERNAL,
(2 OFFSET INIT (14),

2 PAGESIZE INIT (60),

2 LINESIZE INIT (120),

2 PAGELENGTH INIT (64),

2 FILLL INIT (0),

2 FILL2 INIT (0),

2 FILL3 INIT (0),

2 NUMBER_OF TABS INIT (5),

2 TAB1 INIT (25),

2 TAB2 INIT (49),

2 TAB3 INIT (73),

2 TAB4 INIT (97),

2 (

TAB5 INIT (121)) FIXED BIN (15,0);

Figure 18. Declaration of PLITABS. This declaration gives the standard page size, line size
and tabulating positions

PAGESIZE — — PAGELENGTH

19

PAGELENGTH: the number of lines that can be printed on a page

PAGESIZE: the number of lines that will be printed on a page
before the ENDPAGE condition is raised

Figure 19. PAGELENGTH and PAGESIZE. PAGELENGTH defines the size of your paper,
PAGESIZE the number of lines in the main printing area.

Automatic Prompting

90

When the program requires input from a file that is associated with a terminal, it
issues a prompt. This takes the form of printing a colon on the next line and then
skipping to column 1 on the line following the colon. This gives you a full line to
enter your input, as follows:

(space for entry of your data)

This type of prompt is referred to as a primary prompt.

Overriding Automatic Prompting: You can override the primary prompt by
making a colon the last item in the request for the data. You cannot override the
secondary prompt. For example, the two PL/I statements:

PUT SKIP EDIT ('ENTER TIME OF PERIHELION') (A);
GET EDIT (PERITIME) (A(10));

result in the terminal displaying:

PL/I for MVS & VM Programming Guide

ENTER TIME OF PERIHELION
: (automatic prompt)
(space for entry of data)

However, if the first statement has a colon at the end of the output, as follows:
PUT EDIT ('ENTER TIME OF PERIHELION:') (A);

the sequence is:
ENTER TIME OF PERIHELION: (space for entry of data)

Note: The override remains in force for only one prompt. You will be
automatically prompted for the next item unless the automatic prompt is again
overridden.

Punctuating Long Input Lines
Line Continuation Character: ~ To transmit data that requires 2 or more lines of
space at the terminal as one data-item, type an SBCS hyphen as the last character
in each line except the last line. For example, to transmit the sentence “this data
must be transmitted as one unit.” you enter:

:'this data must be transmitted -
+:as one unit.'

Transmission does not occur until you press ENTER after “unit.'”. The hyphen is
removed. The item transmitted is called a “logical line.”

Note: To transmit a line whose last data character is a hyphen or a PL/I minus
sign, enter two hyphens at the end of the line, followed by a null line as the next
line. For example:

Xyz--
(press ENTER only, on this Tine)

Punctuating GET LIST and GET DATA Statements

For GET LIST and GET DATA statements, a comma is added to the end of each
logical line transmitted from the terminal, if the programmer omits it. Thus there is
no need to enter blanks or commas to delimit items if they are entered on separate
logical lines. For the PL/I statement GET LIST(A,B,C); you can enter at the
terminal:

:1
+:2
+:3

This rule also applies when entering character-string data. Therefore, a character
string must transmit as one logical line. Otherwise, commas are placed at the
break points. For example, if you enter:

: 'COMMAS SHOULD NOT BREAK
+:UP A CLAUSE.'

the resulting string is: “COMMAS SHOULD NOT BREAK, UP A CLAUSE.” The
comma is not added if a hyphen was used as a line continuation character.

Automatic Padding for GET EDIT: For a GET EDIT statement, there is no need
to enter blanks at the end of the line. The data will be padded to the specified
length. Thus, for the PL/I statement:

GET EDIT (NAME) (A(15));

Chapter 5. Link-Editing and Running 91

ENDFILE

you can enter the 5 characters SMITH. The data will be padded with ten blanks so
that the program receives the fifteen characters:

'SMITH '

Note: A single data item must transmit as a logical line. Otherwise, the first line
transmitted will be padded with the necessary blanks and taken as the complete
data item.

Use of SKIP for Terminal Input: All uses of SKIP for input are interpreted as
SKIP(1) when the file is allocated to the terminal. SKIP(1) is treated as an
instruction to ignore all unused data on the currently available logical line.

The end-of-file can be entered at the terminal by keying in a logical line that
consists of the two characters “/*”. Any further attempts to use the file without
closing it result in the ENDFILE condition being raised.

SYSPRINT Considerations

The PL/I standard SYSPRINT file is shared by multiple enclaves within an
application. You can issue I/O requests, for example STREAM PUT, from the
same or different enclaves. These requests are handled using the standard PL/I
SYSPRINT file as a file which is common to the entire application. The SYSPRINT
file is implicitly closed only when the application terminates, not at the termination
of the enclave.

The standard PL/I SYSPRINT file contains user-initiated output only, such as
STREAM PUTs. Run-time library messages and other similar diagnostic output are
directed to the Language Environment MSGFILE. See the Language Environment
for MVS & VM Programming Guide for details on redirecting SYSPRINT file output
to the Language Environment MSGFILE.

To be shared by multiple enclaves within an application, the PL/I SYSPRINT file
must be declared as an EXTERNAL FILE constant with a file name of SYSPRINT
and also have the attributes STREAM and OUTPUT as well as the (implied)
attribute of PRINT, when OPENed. This is the standard SYSPRINT file as
defaulted by the compiler.

There exists only one standard PL/I SYSPRINT FILE within an application and this
file is shared by all enclaves within the application. For example, the SYSPRINT
file can be shared by multiple nested enclaves within an application or by a series
of enclaves that are created and terminated within an application by the Language
Environment preinitialization function. To be shared by an enclave within an
application, the PL/I SYSPRINT file must be declared in that enclave. The
standard SYSPRINT file cannot be shared by passing it as a file argument between
enclaves. The declared attributes of the standard SYSPRINT file should be the
same throughout the application, as with any EXTERNALIy declared constant. PL/I
does not enforce this rule.

Having a common SYSPRINT file within an application can be an advantage to
applications that utilize enclaves that are closely tied together. However, since all
enclaves in an application write to the same shared data set, this might require
some coordination among the enclaves.

92 PL/ for MVS & VM Programming Guide

The SYSPRINT file is opened (implicitly or explicitly) when first referenced within an
enclave of the application. When the SYSPRINT file is CLOSEd, the file resources
are released (as though the file had never been opened) and all enclaves are
updated to reflect the closed status.

If SYSPRINT is utilized in a multiple enclave application, the LINENO built-in
function only returns the current line number until after the first PUT or OPEN in an
enclave has been issued. This is required in order to maintain full compatibility with
old programs.

The COUNT built-in function is maintained at an enclave level. It always returns a
value of zero until the first PUT in the enclave is issued. If a nested child enclave
is invoked from a parent enclave, the value of the COUNT built-in function is
undefined when the parent enclave regains control from the child enclave.

When opened, the TITLE option can be used to associate the standard SYSPRINT
file with different operating system data sets. This association is retained across
enclaves for the duration of the open.

PL/I condition handling associated with the standard PL/I SYSPRINT file retains its
current semantics and scope. For example, an ENDPAGE condition raised within a
child enclave will only invoke an established on-unit within that child enclave. It
does not cause invocation of an on-unit within the parent enclave.

The tabs for the standard PL/I SYSPRINT file can vary when PUTs are done from
different enclaves, if the enclaves contain a user PLITABS table.

OS PL/I I/O FETCH/RELEASE restrictions continue to apply to the SYSPRINT file.
If SYSPRINT is declared as a file constant in a load module, the declared
SYSPRINT file information is statically and locally bound to that load module and
the following rules apply:

» If the load module has been released from storage, explicit use of this file
constant by the user program can cause unpredictable results.

« |f file comparison or 1/O on-units are involved, the use of these language
features is scoped to the load module.

For example, if SYSPRINT is declared in load module A and also in load
module B, a file comparison of the two SYSPRINTSs will not compare equal.
Similarly, if an ENDPAGE on-unit for SYSPRINT is established in load module
A and a PUT is done in load module B, the ENDPAGE on-unit might not gain
control if the PUT overflows a page.

The scoping rules for file comparison and 1/O units can be avoided if you declare
SYSPRINT as a file constant in a particular load module and use a file variable
parameter to pass that SYSPRINT declaration to other load modules for file
comparison or PUTSs. In this case, the load module boundary scoping rules do not

apply.

When the PL/I SYSPRINT file is used with the PL/I multitasking facility, the
task-level file-sharing rules apply. This maintains full compatibility for old PL/I
multitasking programs.

Chapter 5. Link-Editing and Running 93

If the PL/I SYSPRINT file is utilized as a RECORD file or as a STREAM INPUT file,
PL/I supports it at an individual enclave or task level, but not as a sharable file
among enclaves. If the PL/I SYSPRINT file is open at the same time with different
file attributes (e.g. RECORD and STREAM) in different enclaves of the same
application, results are unpredictable.

94 PL/ for MVS & VM Programming Guide

Part 3. Using I/O facilities

Chapter 6. Using Data Sets and Files 99
Associating Data Sets with Files 99
Associating Several Files with One Data Set 101
Associating Several Data Sets with One File 102
Concatenating Several Data Sets 102
Establishing Data Set Characteristics 102
Blocks and Records 103
Record Formats 103
Fixed-Length Records 104
Variable-Length Records 104
Undefined-Length Records 106
Data Set Organization 106
Labels 107
Data Definition (DD) Statement 107
Use of the Conditional Subparameters 108
Data Set Characteristics 108
Associating PL/I Files with Data Sets 109
Specifying Characteristics in the ENVIRONMENT Attribute 110
Data Set Types Used by PL/I Record I/O 121
Chapter 7. Using Libraries 123
Types of libraries 123
Howto Use alLibrary 123
Creating a Library 124
SPACE Parameter 124
Creating and Updating a Library Member 125
Examples 125
Extracting Information from a Library Directory 128
Chapter 8. Defining and Using Consecutive Data Sets 129
Using Stream-Oriented Data Transmission 129
Defining Files Using Stream I/O 130
Specifying ENVIRONMENT Options 130
CONSECUTIVE e, 130
Record format options 130
RECSIZE 131
Defaults for Record Format, BLKSIZE, and RECSIZE 131
GRAPHIC Option 132
Creating a Data Set with Stream I/O 132
Essential Information 132
Examples 133
Accessing a Data Set with Stream /O 136
Essential Information 136
Record Format 137
Example 137
Using PRINT Files with Stream I/O 138
Controlling Printed Line Length 139
Overriding the Tab Control Table 140
Using SYSIN and SYSPRINT Files 142
Controlling Input from the Terminal 143

© Copyright IBM Corp. 1964, 1995 95

96

Using Files Conversationally 143

Formatof Data 143
Stream and Record Files 144
Capital and Lowercase Letters 145
End-of-File 145
COPY Option of GET Statement 145
Controlling Output to the Terminal 145
Format of PRINT Files 145
Stream and Record Files 146
Capital and Lowercase Characters 146
Output from the PUT EDIT Command 146
Example of an Interactive Program 146
Using Record-Oriented Data Transmission 149
Using Magnetic Tape without Standard Labels 150
Specifying Record Format 150
Defining Files Using Record 11O 150
Specifying ENVIRONMENT Options 150
CONSECUTIVE e, 151
TOTAL . . 151
CTLASA|CTL360 e 152
LEAVE|IREREAD 153
ASCIlL 154
BUFOFF 155
D-Format and DB-Format Records 155
Creating a Data Set with Record I/O 156
Essential Information 156
Accessing and Updating a Data Set with Record I/O 157
Essential Information o 159
Example of Consecutive Data Sets 159
Chapter 9. Defining and Using Indexed Data Sets 163
Indexed Organization 163
Using keys 163
Using Indexes 166
Dummy Records 167
Defining Files for an Indexed Data Set 169
Specifying ENVIRONMENT Options 169
ADDBUFF Option 169
INDEXAREA Option 170
INDEXED Option 170
KEYLOC Option — Key Location 170
NOWRITE Option 172
Creating an Indexed Data Set 172
Essential Information 172
Name of the Data Set 175
Record Formatand Keys 175
Overflow Area 177
Master Index 178
Accessing and Updating an Indexed Data Set 179
Using Sequential Access 180
Using Direct Access 181
Essential Information o 181
Example 182
Reorganizing an Indexed Data Set 184

PL/I for MVS & VM Programming Guide

Chapter 10. Defining and Using Regional Data Sets 185

Defining Files for a Regional Data Set 188
Specifying ENVIRONMENT Options 188
REGIONAL Option e 188
Using Keys with REGIONAL Data Sets 190
Using REGIONAL(1) Data Sets 190
Dummy Records 190
Creating a REGIONAL(1) Data Set 191
Example 191
Accessing and Updating a REGIONAL(1) Data Set 192
Sequential Access 193
DireCt ACCESS o o 193
Example 193
Using REGIONAL(2) Data Sets, 195
Using Keys for REGIONAL(2) and (3) Data Sets 195
Dummy Records 196
Creating a REGIONAL(2) Data Set 197
Example 197
Accessing and Updating a REGIONAL(2) DataSet 198
Sequential Access 199
Direct ACCESS 199
Example 199
Using REGIONAL(3) Data Sets 202
Dummy Records 202
Creating a REGIONAL(3) Data Set 202
Example 203
Accessing and Updating a REGIONAL(3) DataSet 204
Sequential Access 204
Direct ACCESS 205
Example 205

Essential Information for Creating and Accessing Regional Data Sets 208

Chapter 11. Defining and Using VSAM Data Sets 211
Using VSAM Data Sets 211
How to Run a Program with VSAM Data Sets 211
Pairing an Alternate Index Path witha File 211
VSAM Organization 212
Keys for VSAM Data Sets 215
Keys for Indexed VSAM Data Sets 216
Relative Byte Addresses (RBA) 216
Relative Record Numbers L 216
Choosing a Data Set Type 216
Defining Files for VSAM Data Sets 218
Specifying ENVIRONMENT Options 219
BKWD Option 220
BUFND Option 220
BUFNI Option 220
BUFSP Option 221
GENKEY Option 221
PASSWORD Option 221
REUSE Option 221

SIS Option 222
SKIP Option 222
VSAM Option, 223

Part 3. Using I/O facilies 97

Performance Options 223

Defining Files for Alternate Index Paths 223
Using Files Defined for non-VSAM Data Sets 224
CONSECUTIVE Files 224
INDEXED Files 224
Using the VSAM Compatibility Interface 225
Adapting Existing Programs for VSAM 225
CONSECUTIVE Files 226
INDEXED Files 226
REGIONAL(1) Files 226
Using Several Files in One VSAM Data Set 226
Using Shared Data Sets 227
Defining VSAM Data Sets 227
Entry-Sequenced Data Sets 228
Loadingan ESDS 229
Using a SEQUENTIAL File to Accessan ESDS 229
Defining and Loading an ESDS 230
Updating an Entry-Sequenced Data Set 231
Key-Sequenced and Indexed Entry-Sequenced Data Sets 232
Loadinga KSDS or Indexed ESDS 234
Using a SEQUENTIAL File to Access a KSDS or Indexed ESDS 236
Using a DIRECT File to Access a KSDS or Indexed ESDS 236
Alternate Indexes for KSDSs or Indexed ESDSs 239
Unique Key Alternate Index Path 239
Nonunique Key Alternate Index Path 240
Detecting Nonunique Alternate Index Keys 242
Using Alternate Indexes with ESDSs 242
Using Alternate Indexes with KSDSs 243
Relative-Record Data Sets 247
Loadingan RRDS 249
Using a SEQUENTIAL File to Accesssan RRDS 251
Using a DIRECT Fileto Accessan RRDS 252
Chapter 12. Defining and Using Teleprocessing Data Sets 255
Message Control Program (MCP) 255
TCAM Message Processing Program (TCAM MPP) 256
Teleprocessing Organization 256
Essential Information 257
Defining Files for a Teleprocessing Data Set 257
Specifying ENVIRONMENT Options 257
TP Option 257
RECSIZE Option 258
BUFFERS Option 258
Writing a TCAM Message Processing Program (TCAM MPP) 258
Handling PL/I Conditions 260
TCAM MPP Example 261

98 PLI/I for MVS & VM Programming Guide

Chapter 6. Using Data Sets and Files

Your PL/I programs process and transmit units of information called records. On
MVS systems, a collection of records is called a data set. On VM, a collection of
records is called a file. Data sets, and VM files, are physical collections of
information external to PL/l programs; they can be created, accessed, or modified
by programs written in PL/I or other languages or by the utility programs of the
operating system.

Your PL/I program recognizes and processes information in a data set by using a
symbolic or logical representation of the data set called a file. (Yes, in VM there
are files defined within your program that are symbolic representations of files
external to your program.) This chapter describes how to associate data sets or
VM files with the files known within your program. It introduces the five major types
of data sets, how they are organized and accessed, and some of the file and data
set characteristics you need to know how to specify.

Associating Data Sets with Files

A file used within a PL/I program has a PL/I file name. The physical data set
external to the program has a nhame by which it is known to the operating system:
under MVS or TSO it is a data set name or dsname, and on VM it is a VM file
name. In some cases the data set or file has no name; it is known to the system
by the device on which it exists.

The operating system needs a way to recognize which physical data set is referred
to by your program, so you must provide a statement, external to your program,
that associates the PL/I file name with a dsname or a VM file name:

e Under MVS batch, you must write a data definition or DD statement. For
example, if you have the following file declaration in your program:
DCL STOCK FILE STREAM INPUT;
you should create a DD statement with a data definition name (ddname) that

matches the name of the PL/I file. The DD statement specifies a physical data
set name (dsname) and gives its characteristics:

//G0.STOCK DD DSN=PARTS.INSTOCK, . . .

You'll find some guidance in writing DD statements in this manual, but for more
detail refer to the job control language (JCL) manuals for your system.

e Under TSO, you must write an ALLOCATE command. In the declaration
shown above for the PL/I file STOCK, you should write a TSO ALLOCATE
statement that associates the PL/I file name with the MVS data set name:

ALLOCATE FILE(STOCK) DATASET(PARTS.INSTOCK)

e Under VM, you must write a FILEDEF command. For the same STOCK file
declaration, a VM FILEDEF should look something like this:

FILEDEF STOCK DISK INSTOCK PARTS fm
There is more than one way to associate a data set with a PL/I file. You associate

a data set with a PL/I file by ensuring that the ddname of the DD statement that
defines the data set is the same as either.

© Copyright IBM Corp. 1964, 1995 99

100

e The declared PL/I file name, or

¢ The character-string value of the expression specified in the TITLE option of
the associated OPEN statement.

You must choose your PL/I file names so that the corresponding ddnames conform
to the following restrictions:

e If a file is opened implicitly, or if no TITLE option is included in the OPEN
statement that explicitly opens the file, the ddname defaults to the file name. If
the file name is longer than 8 characters, the default ddname is composed of
the first 8 characters of the file name.

* The character set of the job control language does not contain the break
character (_). Consequently, this character cannot appear in ddnames. Do not
use break characters among the first 8 characters of file names, unless the file
is to be opened with a TITLE option with a valid ddname as its expression.

The alphabetic extender characters $, @, and #, however, are valid for
ddnames, but the first character must be one of the letters A through Z.

Since external names are limited to 7 characters, an external file name of more
than 7 characters is shortened into a concatenation of the first 4 and the last 3
characters of the file name. Such a shortened name is not, however, the name
used as the ddname in the associated DD statement.

Consider the following statements:
1. OPEN FILE(MASTER);

2. OPEN FILE(OLDMASTER);

3. READ FILE(DETAIL) ...;

When statement number 1 is run, the file name MASTER is taken to be the same
as the ddname of a DD statement in the current job step. When statement number
2 is run, the name OLDMASTE is taken to be the same as the ddname of a DD
statement in the current job step. (The first 8 characters of a file name form the
ddname. If OLDMASTER is an external name, it will be shortened by the compiler
to OLDMTER for use within the program.) If statement number 3 causes implicit
opening of the file DETAIL, the name DETAIL is taken to be the same as the
ddname of a DD statement in the current job step.

In each of the above cases, a corresponding DD statement or an equivalent TSO
allocate or VM FILEDEF must appear in the job stream; otherwise, the
UNDEFINEDFILE condition is raised. The three DD statements could start as
follows:

1. //MASTER DD ...

2. //OLDMASTE DD ...

3. //DETAIL DD ...
If the file reference in the statement which explicitly or implicitly opens the file is not
a file constant, the DD statement name must be the same as the value of the file

reference. The following example illustrates how a DD statement should be
associated with the value of a file variable:

PL/I for MVS & VM Programming Guide

DCL PRICES FILE VARIABLE,
RPRICE FILE;
PRICES = RPRICE;
OPEN FILE(PRICES);

The DD statement should associate the data set with the file constant RPRICE,
which is the value of the file variable PRICES, thus:

//RPRICE DD DSNAME=...

Use of a file variable also allows you to manipulate a number of files at various
times by a single statement. For example:

DECLARE F FILE VARIABLE,
A FILE,
B FILE,
C FILE;

DO F=A,B,C;
READ FILE (F) ...;

END;

The READ statement reads the three files A, B, and C, each of which can be
associated with a different data set. The files A, B, and C remain open after the
READ statement is executed in each instance.

The following OPEN statement illustrates use of the TITLE option:
OPEN FILE(DETAIL) TITLE('DETAIL1');

For this statement to be executed successfully, you must have a DD statement in
the current job step with DETAIL1 as its ddname. It could start as follows:

//DETAIL1 DD DSNAME=DETAILA,...

Thus, you associate the data set DETAILA with the file DETAIL through the
ddname DETAILL.

Associating Several Files with One Data Set

You can use the TITLE option to associate two or more PL/I files with the same
external data set at the same time. This is illustrated in the following example,
where INVNTRY is the name of a DD statement defining a data set to be
associated with two files:

OPEN FILE (FILE1l) TITLE('INVNTRY');
OPEN FILE (FILE2) TITLE('INVNTRY');

If you do this, be careful. These two files access a common data set through
separate control blocks and data buffers. When records are written to the data set
from one file, the control information for the second file will not record that fact.
Records written from the second file could then destroy records written from the
first file. PL/I does not protect against data set damage that might occur. If the
data set is extended, the extension is reflected only in the control blocks associated
with the file that wrote the data; this can cause an abend when other files access
the data set.

Chapter 6. Using Data Sets and Files 101

Associating Several Data Sets with One File

The file name can, at different times, represent entirely different data sets. In the
above example of the OPEN statement, the file DETAIL1 is associated with the
data set named in the DSNAME parameter of the DD statement DETAILL. If you
closed and reopened the file, you could specify a different ddname in the TITLE
option to associate the file with a different data set.

Use of the TITLE option allows you to choose dynamically, at open time, one
among several data sets to be associated with a particular file name. Consider the
following example:
DO IDENT='A','B','C';
OPEN FILE(MASTER)
TITLE('MASTER1'| | IDENT);

CLOSE FILE(MASTER);
END;

In this example, when MASTER is opened during the first iteration of the do-group,
the associated ddname is taken to be MASTER1A. After processing, the file is
closed, dissociating the file name and the ddname. During the second iteration of
the do-group, MASTER is opened again. This time, MASTER is associated with
the ddname MASTER1B. Similarly, during the final iteration of the do-group,
MASTER is associated with the ddname MASTER1C.

Concatenating Several Data Sets

Under MVS, for input only, you can concatenate two or more sequential or regional
data sets (that is, link them so that they are processed as one continuous data set)
by omitting the ddname from all but the first of the DD statements that describe
them. For example, the following DD statements cause the data sets LIST1,
LIST2, and LIST3 to be treated as a single data set for the duration of the job step
in which the statements appear:

//GO.LIST DD DSNAME=LIST1,DISP=0LD
// DD DSNAME=LIST2,DISP=0LD
// DD DSNAME=LIST3,DISP=0LD

When read from a PL/I program, the concatenated data sets need not be on the
same volume. You cannot process concatenated data sets backward.

Establishing Data Set Characteristics

102

A data set consists of records stored in a particular format which the operating
system data management routines understand. When you declare or open a file in
your program, you are describing to PL/I and to the operating system the
characteristics of the records that file will contain. You can also use JCL, TSO
ALLOCATEs, or CMS FILEDEFs, to describe to the operating system the
characteristics of the data in data sets or in the PL/I files associated with them.

You do not always need to describe your data both within the program and outside
it; often one description will serve for both data sets and their associated PL/I files.
There are, in fact, advantages to describing your data's characteristics in only one
place. These are described later in this chapter and in following chapters.

PL/I for MVS & VM Programming Guide

To effectively describe your program data and the data sets you will be using, you
need to understand something of how the operating system moves and stores data.

Blocks and Records

The items of data in a data set are arranged in blocks separated by interblock gaps
(IBG). (Some manuals refer to these as interrecord gaps.)

A block is the unit of data transmitted to and from a data set. Each block contains
one record, part of a record, or several records. You can specify the block size in
the BLKSIZE parameter of the DD, ALLOCATE, or FILEDEF statement or in the
BLKSIZE option of the ENVIRONMENT attribute.

A record is the unit of data transmitted to and from a program. You can specify the
record length in the LRECL parameter of the DD, ALLOCATE, or FILEDEF
statement or in the RECSIZE option of the ENVIRONMENT attribute.

When writing a PL/I program, you need consider only the records that you are
reading or writing; but when you describe the data sets that your program will
create or access, you must be aware of the relationship between blocks and
records.

Blocking conserves storage space in a magnetic storage volume because it
reduces the number of interblock gaps, and it can increase efficiency by reducing
the number of input/output operations required to process a data set. Records are
blocked and deblocked by the data management routines.

Information Interchange Codes: The normal code in which data is recorded is
the Extended Binary Coded Decimal Interchange Code (EBCDIC). However, for
magnetic tape only, the operating system accepts data recorded in the American
Standard Code for Information Interchange (ASCII). You use the ASCII and
BUFOFF options of the ENVIRONMENT attribute if your program will read or write
data sets recorded in ASCII.

A prefix field up to 99 bytes in length might be present at the beginning of each
block in an ASCII data set. The use of this field is controlled by the BUFOFF
option of the ENVIRONMENT attribute. For a full description of the ASCII option,
see “ASCII" on page 154.

Each character in the ASCII code is represented by a 7-bit pattern and there are
128 such patterns. The ASCII set includes a substitute character (the SUB control
character) that is used to represent EBCDIC characters having no valid ASCII
code. The ASCII substitute character is translated to the EBCDIC SUB character,
which has the bit pattern 00111111.

Record Formats
The records in a data set have one of the following formats:
Fixed-length

Variable-length
Undefined-length.

Records can be blocked if required. The operating system will deblock fixed-length

and variable-length records, but you must provide code in your program to deblock
undefined-length records.

Chapter 6. Using Data Sets and Files 103

104

You specify the record format in the RECFM parameter of the DD, ALLOCATE, or
FILEDEF statement or as an option of the ENVIRONMENT attribute.

Fixed-Length Records

You can specify the following formats for fixed-length records:

F Fixed-length, unblocked

FB Fixed-length, blocked

FS Fixed-length, unblocked, standard
FBS Fixed-length, blocked, standard.

In a data set with fixed-length records, as shown in Figure 20, all records have the
same length. If the records are blocked, each block usually contains an equal
number of fixed-length records (although a block can be truncated). If the records
are unblocked, each record constitutes a block.

Unblocked records (F—format):

‘ Record ‘ IBG ‘ Record ‘ ... IBG

Blocked records (FB—format):

I Block]

‘ Record ‘ Record ‘ Record ‘ 1BG ‘ Record ‘ Record ‘ Record ‘

Figure 20. Fixed-Length Records

Because it bases blocking and deblocking on a constant record length, the
operating system processes fixed-length records faster than variable-length records.

The use of “standard” (FS-format and FBS-format) records further optimizes the
sequential processing of a data set on a direct-access device. A standard format
data set must contain fixed-length records and must have no embedded empty
tracks or short blocks (apart from the last block). With a standard format data set,
the operating system can predict whether the next block of data will be on a new
track and, if necessary, can select a new read/write head in anticipation of the
transmission of that block. A PL/I program never places embedded short blocks in
a data set with fixed-length records. A data set containing fixed-length records can
be processed as a standard data set even if it is not created as such, providing it
contains no embedded short blocks or empty tracks.

Variable-Length Records
You can specify the following formats for variable-length records:

\% Variable-length, unblocked

VB Variable-length, blocked

VS Variable-length, unblocked, spanned
VBS Variable-length, blocked, spanned

D Variable-length, unblocked, ASCII
DB Variable-length, blocked, ASCII.

V-format allows both variable-length records and variable-length blocks. A 4-byte
prefix of each record and the first 4 bytes of each block contain control information
for use by the operating system (including the length in bytes of the record or

PL/I for MVS & VM Programming Guide

block). Because of these control fields, variable-length records cannot be read
backward. lllustrations of variable-length records are shown in Figure 21 on
page 105.

V-format signifies unblocked variable-length records. Each record is treated as a
block containing only one record. The first 4 bytes of the block contain block
control information, and the next 4 contain record control information.

VB-format signifies blocked variable-length records. Each block contains as many
complete records as it can accommodate. The first 4 bytes of the block contain
block control information, and a 4-byte prefix of each record contains record control
information.

V-format:

C1|{C2| Record 1 IBG [C1|{C2| Record 2 | IBG [Cl|C2

VB—format:

C1|{C2| Record 1 |C2| Record 2 IBG (C1|C2| Record 3

VS—format:
T Spanned record———
C1({C2| Record 1 IBG (Cl|C2 Record 2 IBG (Cl|C2 Record 2 IBG
(entire) (first segment) (last segment)
VBS—format:
T Spanned record——
C1|C2| Record 1 [C2 Record 2 IBG |Cl|C2 Record 2 C2| Record 3

(entire) (first segment) (last segment)

Cl: Block control information
C2: Record or segment control information

Figure 21. Variable-Length Records

Spanned Records: A spanned record is a variable-length record in which the
length of the record can exceed the size of a block. If this occurs, the record is
divided into segments and accommodated in two or more consecutive blocks by
specifying the record format as either VS or VBS. Segmentation and reassembly
are handled by the operating system. The use of spanned records allows you to
select a block size, independently of record length, that will combine optimum use
of auxiliary storage with maximum efficiency of transmission.

VS-format is similar to V-format. Each block contains only one record or segment
of a record. The first 4 bytes of the block contain block control information, and the
next 4 contain record or segment control information (including an indication of
whether the record is complete or is a first, intermediate, or last segment).

With REGIONAL(3) organization, the use of VS-format removes the limitations on
block size imposed by the physical characteristics of the direct-access device. If

Chapter 6. Using Data Sets and Files 105

the record length exceeds the size of a track, or if there is no room left on the
current track for the record, the record will be spanned over one or more tracks.

VBS-format differs from VS-format in that each block contains as many complete
records or segments as it can accommodate; each block is, therefore,
approximately the same size (although there can be a variation of up to 4 bytes,
since each segment must contain at least 1 byte of data).

ASCII Records: For data sets that are recorded in ASCII, use D-format as
follows:

e D-format records are similar to V-format, except that the data they contain is
recorded in ASCII.

e DB-format records are similar to VB-format, except that the data they contain is
recorded in ASCII.

Undefined-Length Records

U-format allows the processing of records that do not conform to F- and V-formats.
The operating system and the compiler treat each block as a record; your program
must perform any required blocking or deblocking.

Data Set Organization

The data management routines of the operating system can handle a number of
types of data sets, which differ in the way data is stored within them and in the
allowed means of access to the data. The three main types of non-VSAM data
sets and the corresponding keywords describing their PL/I organization® are as

follows:
Type of data set PL/I organization
Sequential CONSECUTIVE
Indexed sequential INDEXED
Direct REGIONAL

The compiler recognizes a fourth type, teleprocessing, by the file attribute
TRANSIENT.

A fifth type, partitioned, has no corresponding PL/I organization.

PL/I also provides support for three types of VSAM data organization: ESDS,
KSDS, and RRDS. For more information about VSAM data sets, see Chapter 11,
“Defining and Using VSAM Data Sets” on page 211.

In a sequential (or CONSECUTIVE) data set, records are placed in physical
sequence. Given one record, the location of the next record is determined by its
physical position in the data set. Sequential organization is used for all magnetic
tapes, and can be selected for direct-access devices.

An indexed sequential (or INDEXED) data set must reside on a direct-access
volume. An index or set of indexes maintained by the operating system gives the

1 Do not confuse the terms “sequential” and “direct” with the PL/I file attributes SEQUENTIAL and DIRECT. The attributes refer to
how the file is to be processed, and not to the way the corresponding data set is organized.

106 PL/I for MVS & VM Programming Guide

Labels

location of certain principal records. This allows direct retrieval, replacement,
addition, and deletion of records, as well as sequential processing.

A direct (or REGIONAL) data set must reside on a direct-access volume. The
records within the data set can be organized in three ways: REGIONAL(1),
REGIONAL(2), and REGIONAL(3); in each case, the data set is divided into
regions, each of which contains one or more records. A key that specifies the
region number and, for REGIONAL(2) and REGIONAL(3), identifies the record,
allows direct-access to any record; sequential processing is also possible.

A teleprocessing data set (associated with a TRANSIENT file in a PL/I program)
must reside in storage. Records are placed in physical sequence.

In a partitioned data set, independent groups of sequentially organized data, each
called a member, reside in a direct-access data set. The data set includes a
directory that lists the location of each member. Partitioned data sets are often
called libraries. The compiler includes no special facilities for creating and
accessing partitioned data sets. Each member can be processed as a
CONSECUTIVE data set by a PL/I program. The use of partitioned data sets as
libraries is described under Chapter 7, “Using Libraries” on page 123.

The operating system uses internal labels to identify magnetic-tape and
direct-access volumes, and to store data set attributes (for example, record length
and block size). The attribute information must originally come from a DD
statement or from your program.

Magnetic-tape volumes can have IBM standard or nonstandard labels, or they can
be unlabeled. IBM standard labels have two parts: the initial volume label, and
header and trailer labels. The initial volume label identifies a volume and its owner;
the header and trailer labels precede and follow each data set on the volume.
Header labels contain system information, device-dependent information (for
example, recording technique), and data-set characteristics. Trailer labels are
almost identical with header labels, and are used when magnetic tape is read
backward.

Direct-access volumes have IBM standard labels. Each volume is identified by a
volume label, which is stored on the volume. This label contains a volume serial
number and the address of a volume table of contents (VTOC). The table of
contents, in turn, contains a label, termed a data set control block (DSCB), for each
data set stored on the volume.

Data Definition (DD) Statement

A data definition (DD) statement is a job control statement that defines a data set to
the operating system, and is a request to the operating system for the allocation of
input/output resources. If the data sets are not dynamically allocated, each job step
must include a DD statement for each data set that is processed by the step.

Your MVS/ESA JCL User's Guide describes the syntax of job control statements.
The operand field of the DD statement can contain keyword parameters that
describe the location of the data set (for example, volume serial number and
identification of the unit on which the volume will be mounted) and the attributes of
the data itself (for example, record format).

Chapter 6. Using Data Sets and Files 107

108

The DD statement enables you to write PL/I source programs that are independent
of the data sets and input/output devices they will use. You can modify the
parameters of a data set or process different data sets without recompiling your
program.

The following paragraphs describe the relationship of some operands of the DD
statement to your PL/I program.

The LEAVE and REREAD options of the ENVIRONMENT attribute allow you to use
the DISP parameter to control the action taken when the end of a magnetic-tape
volume is reached or when a magnetic-tape data set is closed. The LEAVE and
REREAD options are described under “LEAVE|REREAD” on page 153, and are
also described under “CLOSE Statement” in PL/I for MVS & VM Language
Reference.

Write validity checking, which was standard in PL/l Version 1, is no longer
performed. Write validity checking can be requested through the OPTCD
subparameter of the DCB parameter of the JCL DD statement. See the OS/VS2
TSO Command Language Reference and OS/VS2 Job Control Language manuals.

Use of the Conditional Subparameters

If you use the conditional subparameters of the DISP parameter for data sets
processed by PL/I programs, the step abend facility must be used. The step abend
facility is obtained as follows:

1. The ERROR condition should be raised or signaled whenever the program is to
terminate execution after a failure that requires the application of the conditional
subparameters.

2. The PL/I user exit must be changed to request an ABEND.

Data Set Characteristics

The DCB (data control block) parameter of the DD statement allows you to
describe the characteristics of the data in a data set, and the way it will be
processed, at run time. Whereas the other parameters of the DD statement deal
chiefly with the identity, location, and disposal of the data set, the DCB parameter
specifies information required for the processing of the records themselves. The
subparameters of the DCB parameter are described in your MVS/ESA JCL User's
Guide.

The DCB parameter contains subparameters that describe:

e The organization of the data set and how it will be accessed (CYLOFL,
DSORG, LIMCT, NCP, NTM, and OPTCD subparameters)

¢ Device-dependent information such as the recording technique for magnetic
tape or the line spacing for a printer (CODE, DEN, FUNC, MODE, OPTCD=J],
PRTSP, STACK, and TRTCH subparameters)

e The record format (BLKSIZE, KEYLEN, LRECL, RECFM, and RKP
subparameters)

e The number of buffers that are to be used (BUFNO subparameter)

e The ASA control characters (if any) that will be inserted in the first byte of each
record (RECFM subparameter).

PL/I for MVS & VM Programming Guide

You can specify BLKSIZE, BUFNO, LRECL, KEYLEN, NCP, RECFM, RKP, and
TRKOFL (or their equivalents) in the ENVIRONMENT attribute of a file declaration
in your PL/l program instead of in the DCB parameter.

You cannot use the DCB parameter to override information already established for
the data set in your PL/I program (by the file attributes declared and the other
attributes that are implied by them). DCB subparameters that attempt to change
information already supplied are ignored.

An example of the DCB parameter is:
DCB=(RECFM=FB,BLKSIZE=400,LRECL=40)

which specifies that fixed-length records, 40 bytes in length, are to be grouped
together in a block 400 bytes long.

Associating PL/I Files with Data Sets

Opening a File: The execution of a PL/I| OPEN statement associates a file with a
data set. This requires merging of the information describing the file and the data
set. If any conflict is detected between file attributes and data set characteristics,
the UNDEFINEDFILE condition is raised.

Subroutines of the PL/I library create a skeleton data control block for the data set.
They use the file attributes from the DECLARE and OPEN statements and any
attributes implied by the declared attributes, to complete the data control block as
far as possible. (See Figure 22 on page 110.) They then issue an OPEN macro
instruction, which calls the data management routines to check that the correct
volume is mounted and to complete the data control block.

The data management routines examine the data control block to see what
information is still needed and then look for this information, first in the DD
statement, and finally, if the data set exists and has standard labels, in the data set
labels. For new data sets, the data management routines begin to create the
labels (if they are required) and to fill them with information from the data control
block.

Neither the DD statement nor the data set label can override information provided
by the PL/I program; nor can the data set label override information provided by the
DD statement.

When the DCB fields are filled in from these sources, control returns to the PL/I
library subroutines. If any fields still are not filled in, the PL/I OPEN subroutine
provides default information for some of them. For example, if LRECL is not
specified, it is provided from the value given for BLKSIZE.

Chapter 6. Using Data Sets and Files 109

PL/I PROGRAM

DD STATEMENT

DATA SET LABEL

DCL MASTER FILE ENV(FB BLKSIZE(400),
RECSIZE(40));

OPEN FILE(MASTER);

/IMASTER DD UNIT=2400 \
VOLUME=SER= 1791,

DSNAME=LIST,
DCB=(BUFNO=3,

RECFM=F, \
BLKSIZE=400,

LRECL=100)
Record format=F
Record length=100
Blocking factor=4
Recording density=1600

DATA CONTROL BLOCK

Record format FB
Block size 400
Record length 40
Device type 2400
Number of buffers 3
Recording density 1600

Note: Information from the PL/lI program overrides that from the DD statement and the data set label.
Information from the DD statement overrides that from the data set label.

Figure 22. How the Operating System Completes the DCB

Closing a File: The execution of a PL/I CLOSE statement dissociates a file from
the data set with which it was associated. The PL/I library subroutines first issue a
CLOSE macro instruction and, when control returns from the data management
routines, release the data control block that was created when the file was opened.
The data management routines complete the writing of labels for new data sets and

update the labels of existing data sets.

Specifying Characteristics in the ENVIRONMENT Attribute

You can use various options in the ENVIRONMENT attribute. Each type of file has
different attributes and environment options, which are listed below.

The ENVIRONMENT Attribute: You use the ENVIRONMENT attribute of a PL/I
file declaration file to specify information about the physical organization of the data
set associated with a file, and other related information. The format of this

information must be a parenthesized option list.

»»—ENVIRONMENT—(—option-list—)

Abbreviation: ENV

You can specify the options in any order, separated by blanks or commas.

\ 4
A

The following example illustrates the syntax of the ENVIRONMENT attribute in the
context of a complete file declaration (the options specified are for VSAM and are
discussed in Chapter 11, “Defining and Using VSAM Data Sets” on page 211).

110 PL/I for MVS & VM Programming Guide

DCL FILENAME FILE RECORD SEQUENTIAL
INPUT ENV(VSAM GENKEY);

Table 15 summarizes the ENVIRONMENT options and file attributes. Certain
qualifications on their use are presented in the notes and comments for the figure.
Those options that apply to more than one data set organization are described in
the remainder of this chapter. In addition, in the following chapters, each option is
described with each data set organization to which it applies.

Table 15 (Page 1 of 2). Attributes of PL/I File Declarations

S
t
Data set r Record
type e
a
m Legend:
Sequential Direct C Checked for VSAM
Consecutive Regional T D Default
e
| I Must be specified or implied
c e N Ignored for VSAM
[¢] U U p X
File n n n r O Optional
Type s B b B b o R S Must be specified
e u u u u c | e | "
c f f f f e n g n - Invalid
u f f f f s d i d
t e e e e s e \ [¢] e \2
i r r r r i X S n X S
\Y e e e e n e A a e A
e d d d d g d M | d M
File attributes 1 Attributes implied
File | | | | | | | | | | |
Inputl D D D D D D D D D D D File
Output o (e} o] 0] o (0] (0] (0] (o) o o File
Environment | | | S S S S S S S S File
Stream D - - - - File
Print [¢] - - - - - - - - File stream output
Record | | | | | | | | [| File
Update: [e] (¢] o o] - [e] [e] [e] (o] (o] File record
Sequential D D D D - D D - D File record
Buffered - D - D - | D D S File record
Unbuffered - - S - S - - S D D D File record
Backwards - o (e] - - - - - - - - File record sequential input
Transient - - | - File
Keyed4 - - - o o I o o I I o File record
Direct - - - - S S S S File record keyed
Exclusive - - - - - - - - [e] (o] - File record direct keyed update
ENVIRONMENT options Comments
F|FB|FS|FBS|V| I s S - - - N N VS and VBS are invalid with STREAM
VB||VS|VBS|U
F|FB|D|DB|U S S - - - - - N - N ASCII data sets only
FIVIVS|U - - - s S - - N S - N Only F for REGIONAL(1) and (2)
F|FB|V|VB - - - - - - S N - S N VS invalid with UNBUF
RECSIZE(n) | | | | | S | C | | C RECSIZE and/or BLKSIZE must be specified
BLKSIZE(n) | | | | | - | N | | N for consecutive, indexed, and regional files
NCP(n) - [e] o o [} - [e] N [e] (e} N NCP>1 for VSAM specifies ISAM compatibility
TRKOFL (o] o o o] - - - (o] - - Invalid for REGIONAL(3)
KEYLENGTH(n) - - S S - S C S S C For REGIONAL(2) and (3) OUTPUT ONLY
COBOL - (e} (o} (o} o - (¢} (e} (e} o o
BUFFERS(n) | | - | | | N - - N
SCALARVARYING - o (o} o o - o o (e} o o Invalid for ASCII data sets
CONSECUTIVE D D D - - - [e] - (o] Allowed for VSAM ESDS
TOTAL - [e] - - - - -
LEAVE (o] o o - -
REREAD (o] [e] (0] - -
ASCII 0] [¢] - - -
BUFOFF(n) o o - - - - - - - - -
CTLASA|CTL360 - [e] o - - - - - - - - Invalid for ASCII data sets
GRAPHIC o - - - - - - -
TP({MIR}) - - - - - S - - - -
INDEXED - - - - - - S [e] S (o] Allowed for VSAM ESDS
KEYLOC(n) - - - - - - o - o -
INDEXAREA(n) - - - - - - - o
ADDBUFF - - - - - - - (o)
NOWRITE - - - - - - - 0] - UPDATE files only
GENKEY - - - - - - [e] [e] - (e} [} INPUT or UPDATE files only; KEYED is required
REGIONAL({1]2|3}) - - - S S - - - S - -
VSAM - - - - - - - S - - S

Chapter 6. Using Data Sets and Files 111

Table 15 (Page 2 of 2). Attributes of PL/I File Declarations

S
t
Data set r Record
type e
a
m Legend:
Sequential Direct C Checked for VSAM
Consecutive Regional T D Default
e
| I Must be specified or implied
c e N Ignored for VSAM
[¢] U U p .
File n n n r O Optional
Type s B b B b o R S Must be specified
e u u u u c | e | i
c f f f f e n g n Invalid
u f f f f s d i d
t e e e e s e \Y o e \Y
i r r r r i X S n X S
\Y e e e e n e A a e A
e d d d d g d M | d M
PASSWORD o [¢]
SIS - (o]
SKIP o) -
BKWD o [¢]
REUSE [e] (o] OUTPUT file only
BUFND(n) l¢])
BUFNI(n) o o
BUFSP(n) o o
Notes:

1. A file with the INPUT attribute cannot have the PRINT attribute.

2. UPDATE is invalid for tape files.

3. BACKWARDS is valid only for input tape files.
4. Keyed is required for INDEXED and REGIONAL output.

Data Set Organization Options:
are:

The options that specify data set organization

CONSECUTIVE
INDEXED————————
REGIONAL—(——1——)—
Ez}
3
TP—(——M
()
VSAM

\ 4
A

Each option is described in the discussion of the data set organization to which it
applies.

If you don't specify the data set organization option in the ENVIRONMENT
attribute, it defaults in the following manner when the file is opened:

TRANSIENT, the default is CONSECUTIVE.

112 PL/I for MVS & VM Programming Guide

¢ |If merged attributes from DECLARE and OPEN statements do not include

¢ |f the attributes include TRANSIENT, the default is TP(M).

Other ENVIRONMENT Options: You can use a constant or variable with those
ENVIRONMENT options that require integer arguments, such as block sizes and
record lengths. The variable must not be subscripted or qualified, and must have
attributes FIXED BINARY(31,0) and STATIC.

Some of the information that can be specified in the options of the ENVIRONMENT
attribute can also be specified—when TOTAL is not specified—in the
subparameters of the DCB parameter of a DD statement. The list of equivalents
for ENVIRONMENT options and DCB parameters are:

ENVIRONMENT option

Record format
RECSIZE
BLKSIZE
BUFFERS
CTLASA|CTL360
NCP

TRKOFL
KEYLENGTH
KEYLOC
ASCII
BUFOFF

DCB subparameter

RECFM?
LRECL
BLKSIZE
BUFNO
RECFM
NCP
RECFM
KEYLEN
RKP
ASCII
BUFOFF

Note: 1VS must be specified as an ENVIRONMENT option, not in the DCB.

Record Formats for Record-Oriented Data Transmission:

Record formats

supported depend on the data set organization.

v
\
n

\ 4
A

Chapter 6. Using Data Sets and Files 113

114

Records can have one of the following formats:

Fixed-length F unblocked
FB blocked
FS unblocked, standard
FBS blocked, standard
Variable-length \% unblocked
VB blocked
VS spanned
VBS blocked, spanned
D unblocked, ASCII
DB blocked, ASCII
Undefined-length U (cannot be blocked)

When U-format records are read into a varying-length string, PL/I sets the length of
the string to the block length of the retrieved data.

These record format options do not apply to VSAM data sets. If you specify a
record format option for a file associated with a VSAM data set, the option is
ignored.

You can only specify VS-format records for data sets with consecutive or
REGIONAL(3) organization.

Record Formats for Stream-Oriented Data Transmission: The record format
options for stream-oriented data transmission are discussed in “Using
Stream-Oriented Data Transmission” on page 129.

RECSIZE Option: The RECSIZE option specifies the record length.

»»—RECSIZE—(—record-length—)

A\
A

For files other than TRANSIENT files and files associated with VSAM data sets,
record-length is the sum of:

1. The length required for data. For variable-length and undefined-length records,
this is the maximum length.

2. Any control bytes required. Variable-length records require 4 (for the
record-length prefix); fixed-length and undefined-length records do not require
any.

For a TRANSIENT file, it is the sum of:

1. The four V-format control bytes

2. One flag byte

3. Eight bytes for the key (origin or destination identifier)
4. The maximum length required for the data.

For VSAM data sets, the maximum and average lengths of the records are
specified to the Access Method Services utility when the data set is defined. If you
include the RECSIZE option in the file declaration for checking purposes, you
should specify the maximum record size. If you specify RECSIZE and it conflicts
with the values defined for the data set, the UNDEFINEDFILE condition is raised.

PL/I for MVS & VM Programming Guide

You can specify record-length as an integer or as a variable with attributes FIXED
BINARY(31,0) STATIC.
The value is subject to the following conventions:

Maximum:
Fixed-length, and undefined (except ASCII data sets): 32760

V-format, and VS- and VBS-format with UPDATE files: 32756
VS- and VBS-format with INPUT and OUTPUT files: 16777215
ASCII data sets: 9999

VSAM data sets: 32761 for unspanned records. For spanned records, the
maximum is the size of the control area.

Note: For VS- and VBS-format records longer than 32,756 bytes, you must
specify the length in the RECSIZE option of ENVIRONMENT, and for the DCB
subparameter of the DD statement you must specify LRECL=X. If RECSIZE
exceeds the allowed maximum for INPUT or OUTPUT, either a record
condition occurs or the record is truncated.

Zero value:
A search for a valid value is made first.

¢ In the DD statement for the data set associated with the file, and second
¢ In the data set label.

If neither of these provides a value, default action is taken (see “Record
Format, BLKSIZE, and RECSIZE Defaults” on page 117).

Negative Value:
The UNDEFINEDFILE condition is raised.

BLKSIZE Option: ~ The BLKSIZE option specifies the maximum block size on the
data set.

A\
A

»»—BLKSIZE—(—block-size—)

block-size is the sum of:
1. The total length(s) of one of the following:

e A single record

¢ A single record and either one or two record segments
e Several records

e Several records and either one or two record segments
e Two record segments

¢ A single record segment.

For variable-length records, the length of each record or record segment
includes the 4 control bytes for the record or segment length.

The above list summarizes all the possible combinations of records and record
segments options: fixed- or variable-length blocked or unblocked, spanned or
unspanned. When specifying a block size for spanned records, you must be
aware that each record and each record segment requires 4 control bytes for
the record length, and that these quantities are in addition to the 4 control bytes
required for each block.

Chapter 6. Using Data Sets and Files 115

116

2. Any further control bytes required.

¢ Variable-length blocked records require 4 (for the block size).
e Fixed-length and undefined-length records do not require any further control
bytes.

3. Any block prefix bytes required (ASCII data sets only).

block-size can be specified as an integer, or as a variable with attributes FIXED
BINARY(31,0) STATIC.

The value is subject to the following conventions:

Maximum:
32760 (or 9999 for an ASCII data set for which BUFOFF without a prefix-length
value has been specified).

In regional 3 files, the maximum declared block size must not exceed 32,680
bytes. This is because the 32,760 byte maximum for block size consists of the
declared block size plus the key length plus the length of the IOCB. If you
declare “BLKSIZE=32760", when the keylength and IOCB length are added to
it, the maximum is exceeded and an “UNDEFINED FILE” error message is
issued.

Zero value:
If you set BLKSIZE to 0, under MVS, the Data Facility Product sets the block
size. For an elaboration of this topic, see “Record Format, BLKSIZE, and
RECSIZE Defaults” on page 117. BLKSIZE defaults.

Negative value:
The UNDEFINEDFILE condition is raised.
The relationship of block size to record length depends on the record format:

FB-format or FBS-format:
The block size must be a multiple of the record length.

VB-format:
The block size must be equal to or greater than the sum of:

1. The maximum length of any record
2. Four control bytes.

VS-format or VBS-format:
The block size can be less than, equal to, or greater than the record length.

DB-format:
The block size must be equal to or greater than the sum of:

1. The maximum length of any record
2. The length of the block prefix (if block is prefixed).

Notes:

e Use the BLKSIZE option with unblocked (F-, V-, or D-format) records in either
of the following ways:

— Specify the BLKSIZE option, but not the RECSIZE option. Set the record
length equal to the block size (minus any control or prefix bytes), and leave
the record format unchanged.

PL/I for MVS & VM Programming Guide

— Specify both BLKSIZE and RECSIZE and ensure that the relationship of
the two values is compatible with blocking for the record format you use.
Set the record format to FB, VB, or DB, whichever is appropriate.

 |f for FB-format or FBS-format records the block size equals the record length,
the record format is set to F.

e For REGIONAL(3) data sets with VS format, record length cannot be greater
than block size.

* The BLKSIZE option does not apply to VSAM data sets, and is ignored if you
specify it for one.

Record Format, BLKSIZE, and RECSIZE Defaults: If you do not specify either
the record format, block size, or record length for a non-VSAM data set, the
following default action is taken:

Record format:
A search is made in the associated DD statement or data set label. If the
search does not provide a value, the UNDEFINEDFILE condition is raised,
except for files associated with dummy data sets or the foreground terminal, in
which case the record format is set to U.

Block size or record length:
If one of these is specified, a search is made for the other in the associated
DD statement or data set label. If the search provides a value, and if this
value is incompatible with the value in the specified option, the
UNDEFINEDFILE condition is raised. If the search is unsuccessful, a value is
derived from the specified option (with the addition or subtraction of any control
or prefix bytes).

If neither is specified, the UNDEFINEDFILE condition is raised, except for files
associated with dummy data sets, in which case BLKSIZE is set to 121 for
F-format or U-format records and to 129 for V-format records. For files
associated with the foreground terminal, RECSIZE is set to 120.

If you are using MVS with the Data Facility Product system-determined block
size, DFP determines the optimum block size for the device type assigned. If
you specify BLKSIZE(O) in either the DD assignment or the ENVIRONMENT
statement, DFP calculates BLKSIZE using the record length, record format,
and device type.

BUFFERS Option: A buffer is a storage area that is used for the intermediate
storage of data transmitted to and from a data set. The use of buffers can speed
up processing of SEQUENTIAL files. Buffers are essential for blocking and
deblocking records and for locate-mode transmission.

Chapter 6. Using Data Sets and Files 117

118

Use the BUFFERS option in the ENVIRONMENT attribute to specify buffers to be
allocated for CONSECUTIVE and INDEXED data sets, according to the following
syntax:

\ 4
A

»»—BUFFERS—(—n—)

where n is the number of buffers you want allocated for your data set, not to
exceed 255 (or such other maximum as is established for your PL/I installation).

If you specify zero, PL/I uses two buffers. A REGIONAL data set is always
allocated two buffers.

In teleprocessing, the BUFFERS option specifies the number of buffers available for
a particular message queue; that is, for a particular TRANSIENT file. The buffer
size is specified in the message control program for the installation. The number of
buffers specified should, if possible, be sufficient to provide for the longest message
to be transmitted.

The BUFFERS option is ignored for VSAM; you use the BUFNI, BUFND, and
BUFSP options instead.

GENKEY Option — Key Classification: The GENKEY (generic key) option
applies only to INDEXED and VSAM key-sequenced data sets. It enables you to
classify keys recorded in a data set and to use a SEQUENTIAL KEYED INPUT or
SEQUENTIAL KEYED UPDATE file to access records according to their key
classes.

»>—GENKEY

A\
A

A generic key is a character string that identifies a class of keys; all keys that begin
with the string are members of that class. For example, the recorded keys “ABCD”,
“ABCE”", and “ABDF" are all members of the classes identified by the generic keys
“A” and “AB”, and the first two are also members of the class “ABC”; and the three
recorded keys can be considered to be unique members of the classes “ABCD”,
“ABCE”", and “ABDF", respectively.

The GENKEY option allows you to start sequential reading or updating of a VSAM
data set from the first record that has a key in a particular class, and for an
INDEXED data set from the first nondummy record that has a key in a particular
class. You identify the class by including its generic key in the KEY option of a
READ statement. Subsequent records can be read by READ statements without
the KEY option. No indication is given when the end of a key class is reached.

Although you can retrieve the first record having a key in a particular class by using
a READ with the KEY option, you cannot obtain the actual key unless the records
have embedded keys, since the KEYTO option cannot be used in the same
statement as the KEY option.

PL/I for MVS & VM Programming Guide

In the following example, a key length of more than 3 bytes is assumed:

DCL IND FILE RECORD SEQUENTIAL KEYED
UPDATE ENV (INDEXED GENKEY);

READ FILE(IND) INTO(INFIELD)
KEY ('ABC');

NEXT: READ FILE (IND) INTO (INFIELD);

GO TO NEXT;

The first READ statement causes the first nondummy record in the data set whose
key begins with “ABC” to be read into INFIELD; each time the second READ
statement is executed, the nondummy record with the next higher key is retrieved.
Repeated execution of the second READ statement could result in reading records
from higher key classes, since no indication is given when the end of a key class is
reached. It is your responsibility to check each key if you do not wish to read
beyond the key class. Any subsequent execution of the first READ statement
would reposition the file to the first record of the key class “ABC”.

If the data set contains no records with keys in the specified class, or if all the
records with keys in the specified class are dummy records, the KEY condition is
raised. The data set is then positioned either at the next record that has a higher
key or at the end of the file.

The presence or absence of the GENKEY option affects the execution of a READ
statement which supplies a source key that is shorter than the key length specified
in the KEYLEN subparameter. This KEYLEN subparameter is found in the DD
statement that defines the indexed data set. If you specify the GENKEY option, it
causes the source key to be interpreted as a generic key, and the data set is
positioned to the first nondummy record in the data set whose key begins with the
source key. If you do not specify the GENKEY option, a READ statement's short
source key is padded on the right with blanks to the specified key length, and the
data set is positioned to the record that has this padded key (if such a record
exists). For a WRITE statement, a short source key is always padded with blanks.

Use of the GENKEY option does not affect the result of supplying a source key
whose length is greater than or equal to the specified key length. The source key,
truncated on the right if necessary, identifies a specific record (whose key can be
considered to be the only member of its class).

NCP Option — Number of Channel Programs: The NCP option specifies the

number of incomplete input/output operations with the EVENT option that can be
handled for the file at any one time.

»»—NCP—(—n—)

\ 4
A

Chapter 6. Using Data Sets and Files 119

120

For n you specify an integer in the range 1 through 99. If you do not specify
anything, n defaults to 1.

For consecutive and regional sequential files, it is an error to allow more than the
specified number of events to be outstanding.

For indexed files, any excess operations are queued, and no condition is raised.
However, specifying the number of channel programs required can aid optimization
of I/O with an indexed file. The NCP option has no effect with a regional direct file.

A file declared with ENVIRONMENT(VSAM) can never have more than one
incomplete input/output operation at any one time. If you specify the NCP option
for such a file, it is ignored. For information about the NCP option for VSAM with
the ISAM compatibility interface, see “Using the VSAM Compatibility Interface” on
page 225.

TRKOFL Option — Track Overflow: Track overflow is a feature of the operating
system that can be incorporated at PL/I installation time; it requires the record
overflow feature on the direct-access storage control unit. Track overflow allows a
record to overflow from one track to another. It is useful in achieving a greater
data-packing efficiency, and allows the size of a record to exceed the capacity of a
track.

A\
A

»»—TRKOFL

Track overflow is not available for REGIONAL(3) or INDEXED data sets.

COBOL Option — Data Interchange: =~ The COBOL option specifies that
structures in the data set associated with the file will be mapped as they would be
in a COBOL compiler. The COBOL structures can be synchronized or
unsynchronized; it is your responsibility to ensure that the associated PL/I structure
has the equivalent alignment stringency; that is, it must be ALIGNED or
UNALIGNED, respectively.

\4
A

»—COBOL:

The following restrictions apply to the handling of a file with the COBOL option:

e You can only use a file with the COBOL option for READ INTO, WRITE FROM,
and REWRITE FROM statements.

e You cannot pass the file name as an argument or assign it to a file variable.
¢ You must subscript any array variable to be transmitted.

e |f a condition is raised during the execution of a READ statement, you cannot
use the variable named in the INTO option in the ON-unit. If the completed
INTO variable is required, there must be a normal return from the ON-unit.

e You can use the EVENT option only if the compiler determines that the PL/I
and COBOL structure mappings are identical (that is, all elementary items have
identical boundaries). If the mappings are not identical, or if the compiler
cannot tell whether they are identical, an intermediate variable is created to
represent the level-1 item as mapped by the COBOL algorithm. The PL/I

PL/I for MVS & VM Programming Guide

Data Set Types

variable is assigned to the intermediate variable before a WRITE statement is
executed, or assigned from it after a READ statement has been executed.

SCALARVARYING Option — Varying-Length Strings: You use the
SCALARVARYING option in the input/output of varying-length strings; you can use
it with records of any format.

»—SCALARVARYING

A\
A

When storage is allocated for a varying-length string, the compiler includes a 2-byte
prefix that specifies the current length of the string. For an element varying-length
string, this prefix is included on output, or recognized on input, only if
SCALARVARYING is specified for the file.

When you use locate mode statements (LOCATE and READ SET) to create and
read a data set with element varying-length strings, you must specify
SCALARVARYING to indicate that a length prefix is present, since the pointer that
locates the buffer is always assumed to point to the start of the length prefix.

When you specify SCALARVARYING and element varying-length strings are
transmitted, you must allow two bytes in the record length to include the length
prefix.

A data set created using SCALARVARYING should be accessed only by a file that
also specifies SCALARVARYING.

You must not specify SCALARVARYING and CTLASA/CTL360 for the same file, as
this causes the first data byte to be ambiguous.

KEYLENGTH Option: Use the KEYLENGTH option to specify the length of the
recorded key for KEYED files where n is the length. You can specify KEYLENGTH
for INDEXED or REGIONAL(3) files.

»»—KEYLENGTH— (—n—)

A\
A

If you include the KEYLENGTH option in a VSAM file declaration for checking
purposes, and the key length you specify in the option conflicts with the value
defined for the data set, the UNDEFINEDFILE condition is raised.

Used by PL/I Record I/O

Data sets with the RECORD attribute are processed by record-oriented data
transmission in which data is transmitted to and from auxiliary storage exactly as it
appears in the program variables; no data conversion takes place. A record in a
data set corresponds to a variable in the program.

Table 16 on page 122 shows the facilities that are available with the various types
of data sets that can be used with PL/I Record 1/O.

The following chapters describe how to use Record 1/0O data sets for different types
of data sets:

e Chapter 8, “Defining and Using Consecutive Data Sets” on page 129
e Chapter 9, “Defining and Using Indexed Data Sets” on page 163

Chapter 6. Using Data Sets and Files 121

e Chapter 10, “Defining and Using Regional Data Sets” on page 185
e Chapter 11, “Defining and Using VSAM Data Sets” on page 211
e Chapter 12, “Defining and Using Teleprocessing Data Sets” on page 255

Table 16. A Compatrison of Data Set Types Available to PL/I Record I/O

VSAM VSAM VSAM REGIONAL REGIONAL REGIONAL
KSDS ESDS RRDS INDEXED CONSECUTIVE 1) 2) 3)
SEQUENCE Key Entry Num- Key Entry By By By
order order bered order order region region region
DEVICES DASD DASD DASD DASD DASD, tape, DASD DASD DASD
card, etc.
ACCESS
1 By key
2 Sequential 123 123 123 12 2 12 12 12
3 Backward 3 tape only
Alternate
index 123 123 No No No No No No
access
as above
How With At In With At In With With
extended new end empty new end empty new new
keys slots keys slots keys keys
SPANNED Yes Yes No Yes Yes No No Yes
RECORDS
DELETION
1 Space Yes, 1 No Yes, 1 Yes, 2 No Yes, 2 Yes, 2 Yes, 2
reusable
2 Space
not
reusable

122 PL/I for MVS & VM Programming Guide

Chapter 7. Using Libraries

Within the MVS operating system, the terms “partitioned data set” and “library” are
synonymous and refer to a type of data set that can be used for the storage of
other data sets (usually programs in the form of source, object or load modules). A
library must be stored on direct-access storage and be wholly contained in one
volume. It contains independent, consecutively organized data sets, called
members. Each member has a unique name, not more than 8 characters long,
which is stored in a directory that is part of the library. All the members of one
library must have the same data characteristics because only one data set label is
maintained.

You can create members individually until there is insufficient space left for a new
entry in the directory, or until there is insufficient space for the member itself. You
can access members individually by specifying the member name.

Use DD statements or their conversational mode equivalent to create and access
members.

You can delete members by means of the IBM utility program IEHPROGM. This
deletes the member name from the directory so that the member can no longer be
accessed, but you cannot use the space occupied by the member itself again
unless you recreate the library or compress the unused space using, for example,
the IBM utility program IEBCOPY. If you attempt to delete a member by using the
DISP parameter of a DD statement, it causes the whole data set to be deleted.

PL/I does not support VM MACLIBS as libraries.

Types of libraries
You can use the following types of libraries with a PL/I program:

e The system program library SYS1.LINKLIB or its equivalent. This can contain
all system processing programs such as compilers and the linkage editor.

» Private program libraries. These usually contain user-written programs. It is
often convenient to create a temporary private library to store the load module
output from the linkage editor until it is executed by a later job step in the same
job. The temporary library will be deleted at the end of the job. Private
libraries are also used for automatic library call by the linkage editor and the
loader.

e The system procedure library SYS1.PROCLIB or its equivalent. This contains
the job control procedures that have been cataloged for your installation.

How to Use a Library

A PL/I program can use a library directly. If you are adding a new member to a
library, its directory entry will be made by the operating system when the
associated file is closed, using the member name specified as part of the data set
name.

If you are accessing a member of a library, its directory entry can be found by the

operating system from the member name that you specify as part of the data set
name.

© Copyright IBM Corp. 1964, 1995 123

More than one member of the same library can be processed by the same PL/I
program, but only one such output file can be open at any one time. You access
different members by giving the member name in a DD statement.

Creating a Library

To create a library include in your job step a DD statement containing the
information given in Table 17. The information required is similar to that for a
consecutively organized data set (see “Defining Files Using Record I/O” on
page 150) except for the SPACE parameter.

Table 17. Information Required When Creating a Library

Information Parameter of
required DD statement
Type of device that will be used UNIT=

Serial number of the volume that will contain the library VOLUME=SER
Name of the library DSNAME=
Amount of space required for the library SPACE=
Disposition of the library DISP=

SPACE Parameter

124

The SPACE parameter in a DD statement that defines a library must always be of
the form:

SPACE=(units, (quantity,increment,directory))

Although you can omit the third term (increment), indicating its absence by a
comma, the last term, specifying the number of directory blocks to be allocated,
must always be present.

The amount of auxiliary storage required for a library depends on the number and
sizes of the members to be stored in it and on how often members will be added or
replaced. (Space occupied by deleted members is not released.) The number of
directory blocks required depends on the number of members and the number of
aliases. You can specify an incremental quantity in the SPACE parameter that
allows the operating system to obtain more space for the data set, if such is
necessary at the time of creation or at the time a new member is added; the
number of directory blocks, however, is fixed at the time of creation and cannot be
increased.

For example, the DD statement:

//PDS DD UNIT=SYSDA,VOL=SER=3412,
// DSNAME=ALIB,

/] SPACE=(CYL,(5,,10)),

// DISP=(,CATLG)

requests the job scheduler to allocate 5 cylinders of the DASD with a volume serial
number 3412 for a new library name ALIB, and to enter this name in the system
catalog. The last term of the SPACE parameter requests that part of the space
allocated to the data set be reserved for ten directory blocks.

PL/I for MVS & VM Programming Guide

Creating and Updating a Library Member

Examples

The members of a library must have identical characteristics. Otherwise, you might
later have difficulty retrieving them. Identical characteristics are necessary because
the volume table of contents (VTOC) will contain only one data set control block
(DSCB) for the library and not one for each member. When using a PL/I program
to create a member, the operating system creates the directory entry; you cannot
place information in the user data field.

When creating a library and a member at the same time, your DD statement must
include all the parameters listed under “Creating a Library” on page 124 (although
you can omit the DISP parameter if the data set is to be temporary). The DSNAME
parameter must include the member name in parentheses. For example,
DSNAME=ALIB(MEM1) names the member MEML1 in the data set ALIB. If the
member is placed in the library by the linkage editor, you can use the linkage editor
NAME statement or the NAME compile-time option instead of including the member
name in the DSNAME parameter. You must also describe the characteristics of the
member (record format, etc.) either in the DCB parameter or in your PL/l program.
These characteristics will also apply to other members added to the data set.

When creating a member to be added to an existing library, you do not need the
SPACE parameter. The original space allocation applies to the whole of the library
and not to an individual member. Furthermore, you do not need to describe the
characteristics of the member, since these are already recorded in the DSCB for
the library.

To add two more members to a library in one job step, you must include a DD
statement for each member, and you must close one file that refers to the library
before you open another.

The use of the cataloged procedure IEL1C to compile a simple PL/I program and
place the object module in a new library named EXLIB is shown in Figure 23 on
page 126. The DD statement that defines the new library and names the object
module overrides the DD statement SYSLIN in the cataloged procedure. (The PL/I
program is a function procedure that, given two values in the form of the character
string produced by the TIME built-in function, returns the difference in milliseconds.)

The use of the cataloged procedure IEL1CL to compile and link-edit a PL/I program

and place the load module in the existing library HPU8.CCLM is shown in
Figure 24 on page 126.

Chapter 7. Using Libraries 125

126

//0PT10#1 JOB

//TR EXEC IELIC
//PLI.SYSLIN DD UNIT=SYSDA,DSNAME=HPUS.EXLIB(ELAPSE),
// SPACE=(TRK, (1,,1)),DISP=(NEW,CATLG)

//PLI.SYSIN DD =*
ELAPSE: PROC(TIMEL,TIME2);
DCL (TIME1,TIME2) CHAR(9),
H1 PIC '99' DEF TIMEIL,
M1 PIC '99' DEF TIMEL POS(3),
MS1 PIC '99999' DEF TIMEL POS(5),
H2 PIC '99' DEF TIME2,
M2 PIC '99' DEF TIME2 POS(3),
MS2 PIC '99999' DEF TIME2 POS(5),
ETIME FIXED DEC(7);
IF H2<H1 THEN H2=H2+24;
ETIME=((H2%60+M2)*60000+MS2) - ((H1*60+M1) *60000+MS1) ;
RETURN(ETIME);
END ELAPSE;
/*

Figure 23. Creating New Libraries for Compiled Object Modules

//0PT10#2 JOB
//TRLE EXEC IELICL
//PLI.SYSIN DD =*

MNAME: PROC OPTIONS(MAIN);

program

END MNAME;
/*
//LKED.SYSLMOD DD DSNAME=HPU8.CCLM(DIRLIST),DISP=0LD

Figure 24. Placing a Load Module in an Existing Library

To use a PL/I program to add or delete one or more records within a member of a
library, you must rewrite the entire member in another part of the library. This is
rarely an economic proposition, since the space originally occupied by the member
cannot be used again. You must use two files in your PL/l program, but both can
be associated with the same DD statement. The program shown in Figure 26 on
page 127 updates the member created by the program in Figure 25 on page 127.
It copies all the records of the original member except those that contain only
blanks.

PL/I for MVS & VM Programming Guide

//0PT10#3 JOB
//TREX EXEC IELICLG
//PLI.SYSIN DD *
NMEM: PROC OPTIONS(MAIN);
DCL IN FILE RECORD SEQUENTIAL INPUT,
OUT FILE RECORD SEQUENTIAL OUTPUT,
P POINTER,
IOFIELD CHAR(80) BASED(P),
EOF BIT(1) INIT('0'B);
OPEN FILE(IN),FILE (OUT);
ON ENDFILE(IN) EOF='1'B;
READ FILE(IN) SET(P);
DO WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
WRITE FILE(OUT) FROM(IOFIELD);
READ FILE(IN) SET(P);
END;
CLOSE FILE(IN),FILE(OUT);
END NMEM;
/*
//GO.OUT DD UNIT=SYSDA,DSNAME=HPU8.ALIB(NMEM),
// DISP=(NEW,CATLG) ,SPACE=(TRK, (1,1,1)),
// DCB=(RECFM=FB,BLKSIZE=3600,LRECL=80)
//GO.IN DD =
MEM: PROC OPTIONS(MAIN);
/* this is an incomplete dummy library member */

Figure 25. Creating a Library Member in a PL/I Program

//0PT10#4 JOB
//TREX EXEC IEL1CLG
//PLI.SYSIN DD *
UPDTM: PROC OPTIONS(MAIN);
DCL (OLD,NEW) FILE RECORD SEQUENTIAL,
EOF BIT(1) INIT('0'B),
DATA CHAR(80);
ON ENDFILE(OLD) EOF = '1'B;
OPEN FILE(OLD) INPUT,FILE(NEW) OUTPUT TITLE('OLD');
READ FILE(OLD) INTO(DATA);
DO WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT (DATA) (A);
IF DATA=' ' THEN ;
ELSE WRITE FILE(NEW) FROM(DATA);
READ FILE(OLD) INTO(DATA);
END;
CLOSE FILE(OLD),FILE(NEW);
END UPDTM;
/*
//GO.OLD DD DSNAME=HPU8.ALIB(NMEM),DISP=(0LD,KEEP)

Figure 26. Updating a Library Member

Chapter 7. Using Libraries

127

Extracting Information from a Library Directory

128

The directory of a library is a series of records (entries) at the beginning of the data
set. There is at least one directory entry for each member. Each entry contains a
member name, the relative address of the member within the library, and a variable
amount of user data.

User data is information inserted by the program that created the member. An
entry that refers to a member (load module) written by the linkage editor includes
user data in a standard format, described in the systems manuals.

If you use a PL/I program to create a member, the operating system creates the
directory entry for you and you cannot write any user data. However, you can use
assembler language macro instructions to create a member and write your own
user data. The method for using macro instructions to do this is described in the
data management manuals.

PL/I for MVS & VM Programming Guide

Chapter 8. Defining and Using Consecutive Data Sets

This chapter covers consecutive data set organization and the ENVIRONMENT
options that define consecutive data sets for stream and record-oriented data
transmission. It then covers how to create, access, and update consecutive data
sets for each type of transmission.

In a data set with consecutive organization, records are organized solely on the
basis of their successive physical positions; when the data set is created, records
are written consecutively in the order in which they are presented. You can retrieve
the records only in the order in which they were written, or, for RECORD I/O only,
also in the reverse order when using the BACKWARDS attribute. See Table 15 on
page 111 for valid file attributes and ENVIRONMENT options for consecutive data
sets.

VM supports consecutive data set organization, and you can use PL/I to access
these types of files. The examples in this chapter are given using JCL. However,
the information presented in the JCL examples is applicable to the FILEDEF VM
command you issue. For more information on the FILEDEF command, see the
VM/ESA CMS Command Reference and the VM/ESA CMS User's Guide.

Using Stream-Oriented Data Transmission

This section covers how to define data sets for use with PL/I files that have the
STREAM attribute. It covers the ENVIRONMENT options you can use and how to
create and access data sets. The essential parameters of the DD statements you
use in creating and accessing these data sets are summarized in tables, and
several examples of PL/I programs are included to illustrate the text.

Data sets with the STREAM attribute are processed by stream-oriented data
transmission, which allows your PL/I program to ignore block and record
boundaries and treat a data set as a continuous stream of data values in character
or graphic form.

You create and access data sets for stream-oriented data transmission using the
list-, data-, and edit-directed input and output statements described in the PL/I for
MVS & VM Language Reference.

For output, PL/I converts the data items from program variables into character form
if necessary, and builds the stream of characters or graphics into records for
transmission to the data set.

For input, PL/I takes records from the data set and separates them into the data
items requested by your program, converting them into the appropriate form for
assignment to program variables.

You can use stream-oriented data transmission to read or write graphic data.
There are terminals, printers, and data-entry devices that, with the appropriate
programming support, can display, print, and enter graphics. You must be sure
that your data is in a format acceptable for the intended device, or for a print utility
program.

© Copyright IBM Corp. 1964, 1995 129

Defining Files Using Stream 1/O

You define files for stream-oriented data transmission by a file declaration with the
following attributes:

DCL filename FILE STREAM
INPUT | {OUTPUT [PRINT]}
ENVIRONMENT (options);

Default file attributes are shown in Table 15 on page 111; the FILE attribute is
described in the PL/I for MVS & VM Language Reference. The PRINT attribute is
described further in “Using PRINT Files with Stream 1/0” on page 138. Options of
the ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options

130

Table 15 on page 111 summarizes the ENVIRONMENT options. The options
applicable to stream-oriented data transmission are:

CONSECUTIVE
F|FB|FS|FBS|V|VB|D|DB|U
RECSIZE (record-length)
BLKSIZE(block-size)
BUFFERS (n)

GRAPHIC

LEAVE

REREAD

ASCII

BUFOFF[(n)]

BLKSIZE and BUFFERS are described in Chapter 6, “Using Data Sets and Files,”
beginning on page 115. LEAVE, REREAD, ASCII, and BUFOFF are described
later in this chapter, beginning on page 153. Descriptions of the rest of these
options follow immediately below.

CONSECUTIVE

STREAM files must have CONSECUTIVE data set organization; however, it is not
necessary to specify this in the ENVIRONMENT options since CONSECUTIVE is

the default data set organization. The CONSECUTIVE option for STREAM files is
the same as that described in “Data Set Organization” on page 106.

»>—CONSECUTIVE

\ 4
A

Record format options

Although record boundaries are ignored in stream-oriented data transmission,
record format is important when creating a data set. This is not only because
record format affects the amount of storage space occupied by the data set and the
efficiency of the program that processes the data, but also because the data set
can later be processed by record-oriented data transmission.

PL/I for MVS & VM Programming Guide

Having specified the record format, you need not concern yourself with records and
blocks as long as you use stream-oriented data transmission. You can consider
your data set a series of characters or graphics arranged in lines, and you can use
the SKIP option or format item (and, for a PRINT file, the PAGE and LINE options
and format items) to select a new line.

A4
\ 4
\ 4
A

—FBS—

—D——

Records can have one of the following formats, which are described in “Record
Formats” on page 103.

Fixed-length F unblocked

FB blocked

FBS blocked, standard

FS unblocked, standard
Variable-length \Y, unblocked

VB blocked

D unblocked ASCII

DB blocked ASCII
Undefined-length U (cannot be blocked)

Blocking and deblocking of records are performed automatically.

RECSIZE

RECSIZE for stream-oriented data transmission is the same as that described in
“Specifying Characteristics in the ENVIRONMENT Attribute” on page 110.
Additionally, a value specified by the LINESIZE option of the OPEN statement
overrides a value specified in the RECSIZE option. LINESIZE is discussed in the
PL/I for MVS & VM Language Reference.

Additional record-size considerations for list- and data-directed transmission of
graphics are given in the PL/I for MVS & VM Language Reference.

Defaults for Record Format, BLKSIZE, and RECSIZE

If you do not specify the record format, BLKSIZE, or RECSIZE option in the
ENVIRONMENT attribute, or in the associated DD statement or data set label, the
following action is taken:

Input files:
Defaults are applied as for record-oriented data transmission, described in
“Record Format, BLKSIZE, and RECSIZE Defaults” on page 117.

Output files:

Record format:
Set to VB-format, or if ASCII option specified, to DB-format.

Chapter 8. Defining and Using Consecutive Data Sets 131

Record length:
The specified or default LINESIZE value is used:

PRINT files:
F, FB, FBS, or U: line size +1
V, VB, D, or DB: line size +5

Non-PRINT files:
F, FB, FBS, or U: linesize

V, VB, D, or DB: linesize + 4

Block size:

F, FB, or FBS: record length

V or VB: record length + 4

D or DB: record length + block prefix

(see “Information Interchange Codes” on page 103)

GRAPHIC Option

You must specify the GRAPHIC option of the ENVIRONMENT attribute if you use
DBCS variables or DBCS constants in GET and PUT statements for list- and
data-directed 1/0. You can also specify the GRAPHIC option for edit-directed 1/O.

»»>—GRAPHIC

\ 4
A

The ERROR condition is raised for list- and data-directed 1/O if you have graphics
in input or output data and do not specify the GRAPHIC option.

For edit-directed 1/0, the GRAPHIC option specifies that left and right delimiters are
added to DBCS variables and constants on output, and that input graphics will have
left and right delimiters. If you do not specify the GRAPHIC option, left and right
delimiters are not added to output data, and input graphics do not require left and
right delimiters. When you do specify the GRAPHIC option, the ERROR condition
is raised if left and right delimiters are missing from the input data.

For information on the graphic data type, and on the G-format item for edit-directed
I/0, see the PL/I for MVS & VM Language Reference.

Creating a Data Set with Stream /O

132

To create a data set, you must give the operating system certain information either
in your PL/I program or in the DD statement that defines the data set. The
following paragraphs indicate the essential information, and discuss some of the
optional information you can supply.

Essential Information
You must supply the following information, summarized in Table 18 on page 133,
when creating a data set:

¢ Device that will write your data set (UNIT, SYSOUT, or VOLUME parameter of
DD statement).

* Block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE option of the OPEN statement) or in the
DD statement (BLKSIZE subparameter). If you do not specify a record length,

PL/I for MVS & VM Programming Guide

unblocked records are the default and the record length is determined from the
block size. If you do not specify a record format, U-format is the default
(except for PRINT files when V-format is the default; see “Controlling Printed
Line Length” on page 139).

If you want to keep a magnetic-tape or direct-access data set (that is, you do not
want the operating system to delete it at the end of your job), the DD statement
must name the data set and indicate how it is to be disposed of (DSNAME and
DISP parameters). The DISP parameter alone will suffice if you want to use the
data set in a later step but will not need the data set after the end of your job.

Table 18. Creating a data set with stream I/O: essential parameters of the DD statement

What you must

Storage device When required state Parameters
All Always Output device UNIT= or SYSOUT=
or VOLUME=REF=
Block sizel DCB=(BLKSIZE=...)
Direct access only Always Storage space SPACE=
required
Magnetic tape only Data set not first in volume and Sequence LABEL=
for magnetic tapes that do not number
have standard labels
Direct access and Data set to be used by another Disposition DISP=
standard labeled job step but not required at end
magnetic tape of job
Data set to be kept after end of Disposition DISP=
job
Name of data set DSNAME=
Data set to be on particular Volume serial VOLUME=SER or
volume number VOLUME=REF=

1Alternatively, you can specify the block size in your PL/I program by using either the ENVIRONMENT
attribute or the LINESIZE option.

When creating a data set on a direct-access device, you must specify the amount
of space required for it (SPACE parameter of DD statement).

If you want your data set stored on a particular magnetic-tape or direct-access
device, you must indicate the volume serial number in the DD statement (SER or
REF subparameter of VOLUME parameter). If you do not supply a serial number
for a magnetic-tape data set that you want to keep, the operating system will
allocate one, inform the operator, and print the number on your program listing.

If your data set is to follow another data set on a magnetic-tape volume, you must
use the LABEL parameter of the DD statement to indicate its sequence number on
the tape.

Examples

The use of edit-directed stream-oriented data transmission to create a data set on a
direct access storage device is shown in Figure 27 on page 134. The data read
from the input stream by the file SYSIN includes a field VREC that contains five
unnamed 7-character subfields; the field NUM defines the number of these
subfields that contain information. The output file WORK transmits to the data set

Chapter 8. Defining and Using Consecutive Data Sets 133

134

the whole of the field FREC and only those subfields of VREC that contain

information.

//EX7#2 JOB

//STEP1 EXEC IELICLG
//PLI.SYSIN DD *
PEOPLE: PROC OPTIONS(MAIN);
DCL WORK FILE STREAM OUTPUT,

1 REC,

2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(1),
3 PAD CHAR(25),
2 VREC CHAR(35),
EOF BIT(1) INIT('0'B),
IN CHAR(80) DEF REC;
ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(WORK) LINESIZE(400);
GET FILE(SYSIN) EDIT(IN)(A(80));
DO WHILE (-EOF);

PUT FILE(WORK) EDIT(IN) (A(45+7%NUM));

GET FILE(SYSIN) EDIT(IN)(A(80));

END;

CLOSE FILE(WORK);

END PEOPLE;

//GO.WORK DD DSN=HPU8.PEOPLE,DISP=(NEW,CATLG),UNIT=SYSDA,

R.C.ANDERSON 0 202848 DOCTOR
B.F.BENNETT 2 771239 PLUMBER

J.F.COOPER 5 418915 LAWYER
A.J.CORNELL 3 237837 BARBER
E.F.FERRIS 4 158636 CARPENTER
/

/*

// SPACE=(TRK, (1,1))
//GO.SYSIN DD =*

R.E.COLE 5 698635 COOK
*

VICTOR HAZEL

ELLEN VICTOR JOAN ANN 0TT0

FRANK CAROL
ALBERT ERIC
GERALD ANNA

DONALD NORMAN BRENDA
JANET
MARY HAROLD

Figure 27. Creating a Data Set with Stream-Oriented Data Transmission

Figure 28 on page 135 shows an example of a program using list-directed output
to write graphics to a stream file. It assumes that you have an output device that

can print graphic data. The program reads employee records and selects persons
living in a certain area. It then edits the address field, inserting one graphic blank
between each address item, and prints the employee number, name, and address.

PL/I for MVS & VM Programming Guide

//EX7#3 JOB
//STEP1 EXEC IEL1CLG
//PLI.SYSIN DD *
% PROCESS GRAPHIC;
XAMPLE1: PROC OPTIONS(MAIN);
DCL INFILE FILE INPUT RECORD,
OUTFILE FILE OUTPUT STREAM ENV(GRAPHIC);
/* GRAPHIC OPTION MEANS DELIMITERS WILL BE INSERTED ON OUTPUT FILES. */
DCL
1IN,
3 EMPNO CHAR(6),
3 SHIFT1 CHAR(1),
3 NAME,
5 LAST G(7),
5 FIRST G(7),
3 SHIFT2 CHAR(1),
3 ADDRESS,
5 ZIP CHAR(6),
5 SHIFT3 CHAR(1),
5 DISTRICT G(5),
5 CITY G(5),
5 OTHER G(8),
5 SHIFT4 CHAR(1);
DCL EOF BIT(1) INIT('0'B);
DCL ADDRWK G(20);
ON ENDFILE (INFILE) EOF = '1'B;
READ FILE(INFILE) INTO(IN);
DO WHILE(-~EOF);
DO;
IF SUBSTR(ZIP,1,3)-="'300"
THEN LEAVE;
L=0;
ADDRWK=DISTRICT;
DO I=1 TO 5;
IF SUBSTR(DISTRICT,I,1)= <7 et
THEN LEAVE; /* SUBSTR BIF PICKS UP =/
END; /* THE ITH GRAPHIC CHAR */
L=L+I+1; /* IN DISTRICT */
SUBSTR (ADDRWK, L,5)=CITY;
DO I=1 TO 5;
IF SUBSTR(CITY,I,1)= < ek
THEN LEAVE;
END;
L=L+I;
SUBSTR (ADDRWK, L,8)=0THER;
PUT FILE(OUTFILE) SKIP /* THIS DATA SET */
EDIT(EMPNO,IN.LAST,FIRST,ADDRWK) /* REQUIRES UTILITY x/
(A(8),G(7),6(7),X(4),6(20)); /* TO PRINT GRAPHIC */

/* DATA */
END; /* END OF NON-ITERATIVE DO */

READ FILE(INFILE) INTO (IN);
END; /* END OF DO WHILE(-EOF) =/

END XAMPLE1;
/*
//GO.OUTFILE DD SYSOUT=A,DCB=(RECFM=VB,LRECL=121,BLKSIZE=129)
//GO.INFILE DD =

ABCDEFS 1y iy it B H H H B B 5>300099< 3

33333 >
yw<mmmm HHEH >300011< 33 >

3
3

Figure 28. Writing Graphic Data to a Stream File

Chapter 8. Defining and Using Consecutive Data Sets 135

Accessing a Data Set with Stream 1/O

136

A data set accessed using stream-oriented data transmission need not have been
created by stream-oriented data transmission, but it must have CONSECUTIVE
organization, and all the data in it must be in character or graphic form. You can
open the associated file for input, and read the records the data set contains; or
you can open the file for output, and extend the data set by adding records at the
end.

To access a data set, you must identify it to the operating system in a DD
statement. Table 19 summarizes the DD statement parameters needed to access
a consecutive data set.

Table 19. Accessing a Data Set with Stream I/O: Essential Parameters of the DD Statement

When required What you must state Parameters
Always Name of data set DSNAME=
Disposition of data set DISP=
If data set not cataloged (all devices) Input device UNIT= or VOLUME=REF=
If data set not cataloged (standard Volume serial number VOLUME=SER=
labeled magnetic tape and direct access)
Magnetic tape (if data set not first in Sequence number LABEL=
volume or which does not have standard
labels)
If data set does not have standard labels Block sizel DCB=(BLKSIZE-=.

10r you could specify the block size in your PL/I program by using either the ENVIRONMENT attribute
or the LINESIZE option.

The following paragraphs describe the essential information you must include in the
DD statement, and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

Essential Information
If the data set is cataloged, you need supply only the following information in the
DD statement:

e The name of the data set (DSNAME parameter). The operating system locates
the information describing the data set in the system catalog, and, if necessary,
requests the operator to mount the volume containing it.

¢ Confirmation that the data set exists (DISP parameter). If you open the data
set for output with the intention of extending it by adding records at the end,
code DISP=MOD; otherwise, opening the data set for output results in it being
overwritten.

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and, for magnetic-tape and direct-access devices, give the serial
number of the volume that contains the data set (UNIT and VOLUME parameters).

If the data set follows another data set on a magnetic-tape volume, you must use
the LABEL parameter of the DD statement to indicate its sequence number on the
tape.

PL/I for MVS & VM Programming Guide

Magnetic Tape without IBM Standard Labels: If a magnetic-tape data set has
nonstandard labels or is unlabeled, you must specify the block size either in your
PL/I program (ENVIRONMENT attribute) or in the DD statement (BLKSIZE
subparameter). The DSNAME parameter is not essential if the data set is not
cataloged.

PL/I includes no facilities for processing nonstandard labels, which appear to the
operating system as data sets preceding or following your data set. You can either
process the labels as independent data sets or use the LABEL parameter of the
DD statement to bypass them. To bypass the labels, code LABEL=(2,NL) or
LABEL=(,BLP)

Record Format

When using stream-oriented data transmission to access a data set, you do not
need to know the record format of the data set (except when you must specify a
block size); each GET statement transfers a discrete number of characters or
graphics to your program from the data stream.

If you do give record-format information, it must be compatible with the actual
structure of the data set. For example, if a data set is created with F-format
records, a record size of 600 bytes, and a block size of 3600 bytes, you can access
the records as if they are U-format with a maximum block size of 3600 bytes; but if
you specify a block size of 3500 bytes, your data will be truncated.

Example

The program in Figure 29 on page 138 reads the data set created by the program
in Figure 27 on page 134 and uses the file SYSPRINT to list the data it contains.
(For details on SYSPRINT, see “Using SYSIN and SYSPRINT Files” on page 142.)
Each set of data is read, by the GET statement, into two variables: FREC, which
always contains 45 characters; and VREC, which always contains 35 characters.
At each execution of the GET statement, VREC consists of the nhumber of
characters generated by the expression 7*NUM, together with sufficient blanks to
bring the total number of characters to 35. The DISP parameter of the DD
statement could read simply DISP=OLD; if DELETE is omitted, an existing data set
will not be deleted.

Chapter 8. Defining and Using Consecutive Data Sets 137

//EX7#5 JOB
//STEP1 EXEC IELICLG
//PLI.SYSIN DD *
PEOPLE: PROC OPTIONS(MAIN);
DCL WORK FILE STREAM INPUT,
1 REC,
2 FREC,
3 NAME CHAR(19),
3 NUM CHAR(1),
3 SERNO CHAR(7),
3 PROF CHAR(18),
2 VREC CHAR(35),
IN CHAR(80) DEF REC,
EOF BIT(1) INIT('0'B);
ON ENDFILE(WORK) EOF='1'B;
OPEN FILE(WORK);
GET FILE(WORK) EDIT(IN,VREC) (A(45),A(7*NUM));
DO WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT(IN)(A);
GET FILE(WORK) EDIT(IN,VREC)(A(45),A(7*NUM));
END;
CLOSE FILE(WORK);
END PEOPLE;
/*
//GO.WORK DD DSN=HPU8.PEOPLE,DISP=(OLD,DELETE)

Figure 29. Accessing a Data Set with Stream-Oriented Data Transmission

Using PRINT Files with Stream 1/O

138

Both the operating system and the PL/I language include features that facilitate the
formatting of printed output. The operating system allows you to use the first byte
of each record for a print control character. The control characters, which are not
printed, cause the printer to skip to a new line or page. (Tables of print control
characters are given in Figure 33 on page 153 and Figure 34 on page 153.)

In a PL/I program, the use of a PRINT file provides a convenient means of
controlling the layout of printed output from stream-oriented data transmission. The
compiler automatically inserts print control characters in response to the PAGE,
SKIP, and LINE options and format items.

You can apply the PRINT attribute to any STREAM OUTPUT file, even if you do
not intend to print the associated data set directly. When a PRINT file is
associated with a magnetic-tape or direct-access data set, the print control
characters have no effect on the layout of the data set, but appear as part of the
data in the records.

The compiler reserves the first byte of each record transmitted by a PRINT file for
an American National Standard print control character, and inserts the appropriate
characters automatically.

PL/I for MVS & VM Programming Guide

A PRINT file uses only the following five print control characters:

Character Action
Space 1 line before printing (blank character)

0 Space 2 lines before printing
- Space 3 lines before printing
+ No space before printing

1 Start new page

The compiler handles the PAGE, SKIP, and LINE options or format items by
padding the remainder of the current record with blanks and inserting the
appropriate control character in the next record. If SKIP or LINE specifies more
than a 3-line space, the compiler inserts sufficient blank records with appropriate
control characters to accomplish the required spacing. In the absence of a print
control option or format item, when a record is full the compiler inserts a blank
character (single line space) in the first byte of the next record.

If a PRINT file is being transmitted to a terminal, the PAGE, SKIP, and LINE
options will never cause more than 3 lines to be skipped, unless formatted output is
specified. (For information about TSO see “Using the PLI Command” on page 59,
and for information about VM see “PLIOPT Command Options” on page 75.)

Controlling Printed Line Length

You can limit the length of the printed line produced by a PRINT file either by
specifying a record length in your PL/I program (ENVIRONMENT attribute) or in a
DD statement, or by giving a line size in an OPEN statement (LINESIZE option).
The record length must include the extra byte for the print control character, that is,
it must be 1 byte larger than the length of the printed line (5 bytes larger for
V-format records). The value you specify in the LINESIZE option refers to the
number of characters in the printed line; the compiler adds the print control
character.

The blocking of records has no effect on the appearance of the output produced by
a PRINT file, but it does result in more efficient use of auxiliary storage when the
file is associated with a data set on a magnetic-tape or direct-access device. If you
use the LINESIZE option, ensure that your line size is compatible with your block
size. For F-format records, block size must be an exact multiple of (line size+1);
for V-format records, block size must be at least 9 bytes greater than line size.

Although you can vary the line size for a PRINT file during execution by closing the
file and opening it again with a new line size, you must do so with caution if you
are using the PRINT file to create a data set on a magnetic-tape or direct-access
device. You cannot change the record format that is established for the data set
when the file is first opened. If the line size you specify in an OPEN statement
conflicts with the record format already established, the UNDEFINEDFILE condition
is raised. To prevent this, either specify V-format records with a block size at least
9 bytes greater than the maximum line size you intend to use, or ensure that the
first OPEN statement specifies the maximum line size. (Output destined for the
printer can be stored temporarily on a direct-access device, unless you specify a
printer by using UNIT=, even if you intend it to be fed directly to the printer.)

Since PRINT files have a default line size of 120 characters, you need not give any

record format information for them. In the absence of other information, the
compiler assumes V-format records. The complete default information is:

Chapter 8. Defining and Using Consecutive Data Sets 139

140

BLKSIZE=129
LRECL=125
RECFM=VBA.

Example: Figure 30 on page 141 illustrates the use of a PRINT file and the
printing options of stream-oriented data transmission statements to format a table
and write it onto a direct-access device for printing on a later occasion. The table
comprises the natural sines of the angles from 0° to 359° 54" in steps of 6'.

The statements in the ENDPAGE ON-unit insert a page number at the bottom of
each page, and set up the headings for the following page.

The DD statement defining the data set created by this program includes no
record-format information. The compiler infers the following from the file declaration
and the line size specified in the statement that opens the file TABLE:

Record format= V
(the default for a PRINT file).
Record size = 98

(line size + 1 byte for print control character + 4 bytes for
record control field).

Block size = 102
(record length + 4 bytes for block control field).

The program in Figure 36 on page 162 uses record-oriented data transmission to
print the table created by the program in Figure 30 on page 141.

Overriding the Tab Control Table

Data-directed and list-directed output to a PRINT file are aligned on preset tabulator
positions. See Figure 18 on page 90 and Figure 31 on page 142 for examples of
declaring a tab table. The definitions of the fields in the table are as follows:

OFFSET OF TAB COUNT:
Halfword binary integer that gives the offset of “Tab count,” the field
that indicates the number of tabs to be used.

PAGESIZE:
Halfword binary integer that defines the default page size. This page
size is used for dump output to the PLIDUMP data set as well as for
stream output.

LINESIZE: Halfword binary integer that defines the default line size.

PAGELENGTH:
Halfword binary integer that defines the default page length for printing
at a terminal. For TSO and VM, the value 0 indicates unformatted
output.

FILLERS: Three halfword binary integers; reserved for future use.

TAB COUNT:
Halfword binary integer that defines the number of tab position entries
in the table (maximum 255). If tab count = 0, any specified tab
positions are ignored.

PL/I for MVS & VM Programming Guide

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

SINE: PROC OPTIONS(MAIN);

DCL TABLE FILE STREAM OUTPUT PRINT;
DCL DEG FIXED DEC(5,1) INIT(0); /* INIT(Q) FOR ENDPAGE */
DCL MIN FIXED DEC(3,1);
DCL PGNO FIXED DEC(2) INIT(0);
DCL ONCODE BUILTIN;
ON ERROR
BEGIN;
ON ERROR SYSTEM;
DISPLAY ('ONCODE = '|| ONCODE);
END;
ON ENDPAGE (TABLE)
BEGIN;
DCL I

IF PGNO —-= 0 THEN
PUT FILE(TABLE) EDIT ('PAGE',PGNO)
(LINE(55),C0L(80),A,F(3));
IF DEG —= 360 THEN
DO;
PUT FILE(TABLE) PAGE EDIT ('NATURAL SINES') (A);
IF PGNO —-= 0 THEN
PUT FILE(TABLE) EDIT ((I DO I = 0 TO 54 BY 6))
(SKIP(3),10 F(9));
PGNO = PGNO + 1;
END;
ELSE
PUT FILE(TABLE) PAGE;
END;

OPEN FILE(TABLE) PAGESIZE(52) LINESIZE(93);
SIGNAL ENDPAGE(TABLE);

PUT FILE(TABLE) EDIT
((DEG, (SIND(DEG+MIN) DO MIN = 6 TO .9 BY .1) DO DEG = 0 TO 359))
(SKIP(2), 5 (COL(1), F(3), 10 F(9,4)));
PUT FILE(TABLE) SKIP(52);
END SINE;

Figure 30. Creating a Print File Via Stream Data Transmission. The example in Figure 36
on page 162 will print the resultant file.

Tabl-Tabn:
n halfword binary integers that define the tab positions within the print
line. The first position is numbered 1, and the highest position is
numbered 255. The value of each tab should be greater than that of
the tab preceding it in the table; otherwise, it is ignored. The first data
field in the printed output begins at the next available tab position.

You can override the default PL/I tab settings for your program by causing the
linkage editor to resolve an external reference to PLITABS. To cause the reference
to be resolved, supply a table with the name PLITABS, in the format described
above.

There are two methods of supplying the tab table. One method is to include a PL/I
structure in your source program with the name PLITABS, which you must declare
to be STATIC EXTERNAL. An example of the PL/I structure is shown in Figure 31
on page 142. This example creates three tab settings, in positions 30, 60, and 90,
and uses the defaults for page size and line size. Note that TAB1 identifies the
position of the second item printed on a line; the first item on a line always starts at

Chapter 8. Defining and Using Consecutive Data Sets 141

the left margin. The first item in the structure is the offset to the NO_OF_TABS
field; FILL1, FILL2, and FILL3 can be omitted by adjusting the offset value by —6.

The second method is to create an assembler language control section named
PLITABS, equivalent to the structure shown in Figure 31, and to include it when
link-editing your PL/I program.

DCL 1 PLITABS STATIC EXT,
2 (OFFSET INIT(14),

PAGESIZE INIT(60),
LINESIZE INIT(120),
PAGELENGTH INIT(0),
FILL1 INIT(0),
FILL2 INIT(0),
FILL3 INIT(0),
NO_OF_TABS INIT(3),
TABL INIT(30),
TAB2 INIT(60),
TAB3 INIT(90)) FIXED BIN(15,0);

Figure 31. PL/I Structure PLITABS for Modifying the Preset Tab Settings

Using SYSIN and SYSPRINT Files

142

If you code a GET statement without the FILE option in your program, the compiler
inserts the file name SYSIN. If you code a PUT statement without the FILE option,
the compiler inserts the name SYSPRINT.

If you do not declare SYSPRINT, the compiler gives the file the attribute PRINT in
addition to the normal default attributes; the complete set of attributes will be:

FILE STREAM OUTPUT PRINT EXTERNAL

Since SYSPRINT is a PRINT file, the compiler also supplies a default line size of
120 characters and a V-format record. You need give only a minimum of
information in the corresponding DD statement; if your installation uses the usual
convention that the system output device of class A is a printer, the following is
sufficient:

//SYSPRINT DD SYSOUT=A

Note: SYSIN and SYSPRINT are established in the User Exit during initialization.
IBM-supplied defaults for SYSIN and SYSPRINT are directed to the terminal.

You can override the attributes given to SYSPRINT by the compiler by explicitly
declaring or opening the file. For more information about the interaction between
SYSPRINT and the Language Environment for MVS & VM message file option, see
the Language Environment for MVS & VM Programming Guide.

The compiler does not supply any special attributes for the input file SYSIN; if you
do not declare it, it receives only the default attributes. The data set associated
with SYSIN is usually in the input stream; if it is not in the input stream, you must
supply full DD information.

For more information about SYSPRINT, see “SYSPRINT Considerations” on
page 92.

PL/I for MVS & VM Programming Guide

Controlling Input from the Terminal
You can enter data at the terminal for an input file in your PL/I program if you:

1. Declare the input file explicitly or implicitly with the CONSECUTIVE
environment option (all stream files meet this condition), and

2. Allocate the input file to the terminal.

You can usually use the standard default input file SYSIN because it is a stream
file and can be allocated to the terminal. In TSO, you can allocate SYSIN to the
terminal in your logon procedure. In VM, SYSIN is allocated to the terminal by the
IBM-supplied User Exit.

You are prompted for input to stream files by a colon (). You will see the colon
each time a GET statement is executed in the program. The GET statement
causes the system to go to the next line. You can then enter the required data. If
you enter a line that does not contain enough data to complete execution of the
GET statement, a further prompt, which is a plus sign followed by a colon (+:), is
displayed.

By adding a hyphen to the end of any line that is to continue, you can delay
transmission of the data to your program until you enter two or more lines. The
hyphen is an explicit continuation character in TSO.

If you include output statements that prompt you for input in your program, you can
inhibit the initial system prompt by ending your own prompt with a colon. For
example, the GET statement could be preceded by a PUT statement such as:

PUT SKIP LIST('ENTER NEXT ITEM:');

To inhibit the system prompt for the next GET statement, your own prompt must
meet the following conditions:

1. It must be either list-directed or edit-directed, and if list-directed, must be to a
PRINT file.

2. The file transmitting the prompt must be allocated to the terminal. If you are
merely copying the file at the terminal, the system prompt is not inhibited.

Using Files Conversationally

TSO allows you to interact conversationally with your own programs, as well as the
computing system as a whole. You can perform nearly all your operations from a
terminal in TSO: compile PL/I source programs, print the diagnostic messages at
the terminal, and write the object modules onto a data set. These object modules
can then be conversationally link-edited and run.

While the object modules are running, you can use the terminal as an input and
output device for consecutive files in the program. Conversational /O needs no
special PL/I code, so any stream file can be used conversationally.

Format of Data
The data you enter at the terminal should have exactly the same format as stream
input data in batch mode, except for the following variations:

e Simplified punctuation for input: If you enter separate items of input on
separate lines, there is no need to enter intervening blanks or commas; the
compiler will insert a comma at the end of each line.

Chapter 8. Defining and Using Consecutive Data Sets 143

144

For instance, in response to the statement:
GET LIST(I,J,K);

your terminal interaction could be as follows:

2
:3

+ 4 e

with a carriage return following each item. It would be equivalent to:
1,2,3

If you wish to continue an item onto another line, you must end the first line
with a continuation character. Otherwise, for a GET LIST or GET DATA
statement, a comma will be inserted, and for a GET EDIT statement, the item
will be padded (see next paragraph).

e Automatic padding for GET EDIT: There is no need to enter blanks at the end
of a line of input for a GET EDIT statement. The item you enter will be padded
to the correct length.

For instance, for the PL/I statement:
GET EDIT(NAME) (A(15));

you could enter the five characters:
SMITH

followed immediately by a carriage return. The item will be padded with 10
blanks, so that the program receives a string 15 characters long. If you wish to
continue an item on a second or subsequent line, you must add a continuation
character to the end of every line except the last; the first line transmitted would
otherwise be padded and treated as the complete data item.

e SKIP option or format item: A SKIP in a GET statement asks the program to
ignore data not yet entered. All uses of SKIP(n) where n is greater than one
are taken to mean SKIP(1). SKIP(1) is taken to mean that all unused data on
the current line is ignored.

Stream and Record Files

You can allocate both stream and record files to the terminal. However, no
prompting is provided for record files. If you allocate more than one file to the
terminal, and one or more of them is a record file, the output of the files will not
necessarily be synchronized. The order in which data is transmitted to and from
the terminal is not guaranteed to be the same order in which the corresponding
PL/I I/O statements are executed.

Also, record file input from the terminal is received in upper case letters because of

a TCAM restriction. To avoid problems you should use stream files wherever
possible.

PL/I for MVS & VM Programming Guide

Capital and Lowercase Letters
For stream files, character strings are transmitted to the program as entered in
lowercase or uppercase. For record files, all characters become uppercase.

End-of-File

The characters /* in positions one and two of a line that contains no other
characters are treated as an end-of-file mark, that is, they raise the ENDFILE
condition.

COPY Option of GET Statement
The GET statement can specify the COPY option; but if the COPY file, as well as
the input file, is allocated to the terminal, no copy of the data will be printed.

Controlling Output to the Terminal
At your terminal you can obtain data from a PL/I file that has been both:

1. Declared explicitly or implicitly with the CONSECUTIVE environment option. All
stream files meet this condition.

2. Allocated to the terminal.

The standard print file SYSPRINT generally meets both these conditions.

Format of PRINT Files

Data from SYSPRINT or other PRINT files is not normally formatted into pages at
the terminal. Three lines are always skipped for PAGE and LINE options and
format items. The ENDPAGE condition is normally never raised. SKIP(n), where n
is greater than three, causes only three lines to be skipped. SKIP(0) is
implemented by backspacing, and should therefore not be used with terminals that
do not have a backspace feature.

You can cause a PRINT file to be formatted into pages by inserting a tab control
table in your program. The table must be called PLITABS, and its contents are
explained in “Overriding the Tab Control Table” on page 140. You must initialize
the element PAGELENGTH to the length of page you require—that is, the length of
the sheet of paper on which each page is to be printed, expressed as the maximum
number of lines that could be printed on it. You must initialize the element
PAGESIZE to the actual number of lines to be printed on each page. After the
number of lines in PAGESIZE has been printed on a page, ENDPAGE is raised, for
which standard system action is to skip the number of lines equal to
PAGELENGTH minus PAGESIZE, and then start printing the next page. For other
than standard layout, you must initialize the other elements in PLITABS to the
values shown in Figure 18 on page 90. You can also use PLITABS to alter the
tabulating positions of list-directed and data-directed output. You can use PLITABS
for SYSPRINT when you need to format page breaks in ILC applications. Set
PAGESIZE to 32767 and use the PUT PAGE statement to control page breaks.

Although some types of terminals have a tabulating facility, tabulating of

list-directed and data-directed output is always achieved by transmission of blank
characters.

Chapter 8. Defining and Using Consecutive Data Sets 145

Stream and Record Files

You can allocate both stream and record files to the terminal. However, if you
allocate more than one file to the terminal and one or more is a record file, the files'
output will not necessarily be synchronized. There is no guarantee that the order in
which data is transmitted between the program and the terminal will be the same
as the order in which the corresponding PL/I input and output statements are
executed. In addition, because of a TCAM restriction, any output to record files at
the terminal is printed in uppercase (capital) letters. It is therefore advisable to use
stream files wherever possible.

Capital and Lowercase Characters

For stream files, characters are displayed at the terminal as they are held in the
program, provided the terminal can display them. For instance, with an IBM 327x
terminal, capital and lowercase letters are displayed as such, without translation.
For record files, all characters are translated to uppercase. A variable or constant
in the program can contain lowercase letters if the program was created under the
EDIT command with the ASIS operand, or if the program has read lowercase
letters from the terminal.

Output from the PUT EDIT Command

The format of the output from a PUT EDIT command to a terminal has different
forms depending on whether the TSO session manager is on or off. Decide
whether you want to have it on or off, because if you are using the PUT EDIT
command, and change output devices, you will have to rewrite the output
procedure. The results of setting TSO session manager on or off are:

ON PUT EDIT is converted to full screen TPUTs. The output looks exactly the
same as on a disk data set or SYSOUT file.

OFF PUT EDIT is converted to line mode TPUTs. “Start of field” and “end of
field” characters are added which appear as blanks on the screen.

Note: If TSO session manager is not available, format of output will be the same
as session manager being off.

Example of an Interactive Program

146

The example program in Figure 32 on page 148 prints a report based on
information retrieved from a database. The content of the report is controlled by a
list of parameters that contains the name of the person requiring the report and a
set of numbers indicating the information that is to be printed. In the example, the
parameters are read from the terminal. The program includes a prompt for the
name parameter, and a message confirming its acceptance. The report is printed
on a system output device.

The program uses four files:

SYSPRINT Standard stream output file. Prints prompt and confirmation at the
terminal.

PARMS Stream input file. Reads parameters from terminal.

INBASE Record input file. Reads database, namely, member MEM3 of data
set BDATA.

REPORT Sends report to SYSOUT device.

PL/I for MVS & VM Programming Guide

SYSPRINT has been allocated to the terminal by the logon procedure. The other
three files are allocated by ALLOCATE commands entered in TSO submode.

The example program in Figure 32 is called REPORTR, and it is held on a
conventionally named TSO data set whose user-supplied name is REPORTER.
The compiler is invoked with the SOURCE option to provide a list of the PL/I
source code.

Chapter 8. Defining and Using Consecutive Data Sets 147

148

READY
pli reporter print(x) source

“print(x)” allocates
source Tisting to terminal

15668-910 IBM 0S PL/I OPTIMIZING COMPILER VER 2 REL 2 MOD 0

OPTIONS SPECIFIED
S;
SOURCE LISTING
NUMBER
10 000OOO10 REPORTR: PROC OPTIONS(MAIN);

180 00000180 ON ENDFILE(PARMS) GO TO READER;

1000 00001000 PUT LIST('ENTER NAME:');
1010 00001010 GET FILE(PARMS) LIST(NAME);

1050 00001050 PUT LIST('NAME ACCEPTED');

print prompt at terminal
read name parameter from
terminal

confirmation message

2000 00002000 GET FILE(PARMS) LIST((A(I) DO I=1 TO 50));

2010 00002010 READER:
00002020 READ FILE(INBASE) INTO(B);

4010 00004010 PRINTER:

read other parameters
from terminal

read database

00004020 PUT FILE(REPORT) EDIT(HEADI||NAME) (A);

5000 00005000 END REPORTR;

NO MESSAGES PRODUCED FOR THIS COMPILATION

COMPILE TIME 0.30 MINS SPILL FILE:

END of COMPILATION of REPORTR

READY

alloc file(parms) dataset(x)

READY

alloc file(inbase) dataset('bdata(mem3)') old
READY

alloc file(report) sysout

READY

loadgo reporter plibase

ENTER NAME: 'F W Williams'
NAME ACCEPTED
135710141519

+:1/*

READY

print Tine of report
on system printer

0 RECORDS, SIZE 4051

file to read parameters
from terminal
file to read database

file to print report on
system printer

prompt & name parameter
confirmation message
automatic prompt for
parameters

parameters entered
prompt for further
parameters

end-of-file entered

Figure 32. Example of an Interactive Program

PL/I for MVS & VM Programming Guide

Using Record-Oriented Data Transmission

PL/I supports various types of data sets with the RECORD attribute (see Table 23
on page 156). This section covers how to use consecutive data sets.

Table 20 lists the statements and options that you can use to create and access a
consecutive data set using record-oriented data transmission.

Table 20. Statements and Options Allowed for Creating and Accessing Consecutive Data

Sets

File declaration 1

Valid statements, 2 with
Options you must specify

Other options you
can specify

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)
FROM(reference);

LOCATE based-variable
FILE(file-reference);

SET(pointer-reference)

SEQUENTIAL OUTPUT

WRITE FILE(file-reference)

EVENT (event-reference)

UNBUFFERED FROM(reference);
SEQUENTIAL INPUT READ FILE(file-reference)
BUFFERED3 INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE (expression);

SEQUENTIAL INPUT
UNBUFFEREDS3

READ FILE(file-reference)
INPUT (reference);

READ FILE(file-reference)

EVENT (event-reference)

EVENT (event-reference)

IGNORE (expression);
SEQUENTIAL UPDATE READ FILE(file-reference)
BUFFERED INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE (expression);

REWRITE FILE(file-reference);

FROM(reference)

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE (expression);

REWRITE FILE(file-reference)

FROM(reference);

EVENT (event-reference)

EVENT (event-reference)

EVENT (event-reference)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD and ENVIRONMENT.

2. The statement READ FILE (file-reference); is a valid statement and is equivalent to READ
FILE(file-reference) IGNORE (1);

3. You can specify the BACKWARDS attribute for files on magnetic tape.

Chapter 8. Defining and Using Consecutive Data Sets

149

Using Magnetic Tape without Standard Labels

If a magnetic-tape data set has nonstandard labels or is unlabeled, you must
specify the block size either in your PL/I program (ENVIRONMENT attribute) or in
the DD statement (BLKSIZE subparameter). The DSNAME parameter is not
essential if the data set is not cataloged.

PL/I includes no facilities for processing nonstandard labels which to the operating
system appear as data sets preceding or following your data set. You can either
process the labels as independent data sets or use the LABEL parameter of the
DD statement to bypass them. To bypass the labels, code LABEL=(2,NL) or
LABEL=(,BLP).

Specifying Record Format

If you give record-format information, it must be compatible with the actual structure
of the data set. For example, if you create a data set with FB-format records, with
a record size of 600 bytes and a block size of 3600 bytes, you can access the
records as if they are U-format with a maximum block size of 3600 bytes. If you
specify a block size of 3500 bytes, your data is truncated.

Defining Files Using Record I/O
You define files for record-oriented data transmission by using a file declaration
with the following attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED | UNBUFFERED
[BACKWARDS]
ENVIRONMENT (options);

Default file attributes are shown in Table 15 on page 111. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options

The ENVIRONMENT options applicable to consecutive data sets are:

F|FB|FS|FBS|V|VB|VS|VBS|D|DB|U
RECSIZE (record-length)
BLKSIZE(block-size)
SCALARVARYING

COBOL

BUFFERS (n)

NCP(n)

TRKOFL

CONSECUTIVE
TOTAL
CTLASA|CTL360
LEAVE | REREAD
ASCII
BUFOFF[(n)]

The options above the blank line are described in “Specifying Characteristics in the
ENVIRONMENT Attribute” on page 110, and those below the blank line are
described below. D- and DB-format records are also described below.

150 PL/I for MVS & VM Programming Guide

See Table 15 on page 111 to find which options you must specify, which are
optional, and which are defaults.

CONSECUTIVE
The CONSECUTIVE option defines a file with consecutive data set organization,
which is described in this chapter and in “Data Set Organization” on page 106.

»»—CONSECUTIVE

A\
A

CONSECUTIVE is the default when the merged attributes from the DECLARE and
OPEN statements do not include the TRANSIENT attribute.

TOTAL

In general, run-time library subroutines called from object code perform I/O
operations. Under certain conditions, however, the compiler can, when requested,
provide in-line code to carry out these operations. This gives faster execution of
the 1/0O statements.

Use the TOTAL option to aid the compiler in the production of efficient object code.
In particular, it requests the compiler to use in-line code for certain 1/O operations.
It specifies that no attributes will be merged from the OPEN statement or the I/O
statement or the DCB parameter; if a complete set of attributes can be built up at
compile time from explicitly declared and default attributes, in-line code will be used
for certain I/O operations.

»»—TOTAL

A\
A

The UNDEFINEDFILE condition is raised if any attribute that was not explicitly
declared appears on the OPEN statement, or if the 1/0O statement implies a file
attribute that conflicts with a declared or default attribute.

You cannot specify the TOTAL option for device-associated files or files reading
Optical Mark Read data.

The use of in-line I/O code can result in reduced error-handling capability. In
particular, if a program-check interrupt or an abend occurs during in-line 1/O, the
error message produced can contain incorrect offset and statement number
information. Also, execution of a GO TO statement in an ERROR ON-unit for such
an interrupt can cause a second program check.

There are some differences in the optimized code generated under OS PL/I Version
1 Release 5 and later releases. The implementation of these releases generates
code to call modules in the run-time library so that mode-switching can be
performed if necessary. This implementation results in a longer instruction path
than it does with prior releases, but it is still faster than not using the TOTAL option.

Table 21 on page 152 shows the conditions under which I/O statements are
handled in-line.

When in-line code is employed to implement an I/O statement, the compiler gives
an informational message.

Chapter 8. Defining and Using Consecutive Data Sets 151

152

Table 21. Conditions under Which I/O Statements Are Handled In-Line (TOTAL Option
Used)

Statement 1 Record variable File attribute 3 or
requirements ENVIRONMENT option
requirements 4
READ SET None Not BACKWARDS for record types
u,V, VB
READ INTO Length known at compile time, RECSIZE known at compile time.5
maximum length for a varying SCALARVARYING option if varying
string or area.2 string.
WRITE FROM Length known at compile time. RECSIZE known at compile time.5
(fixed string)
WRITE FROM (varying RECSIZE known at compile time.5
string) SCALARVARYING option used.
WRITE FROM AreaZ RECSIZE known at compile time.5
LOCATE A Length known at compile time, RECSIZE known at compile time.5
maximum length for a varying SCALARVARYING if varying string.

string or area.2

Notes:

1. All statements must be found to be valid during compilation. File parameters or file variables are
never handled by in-line code.

2. Including structures wherein the last element is an unsubscripted area.
3. File attributes are SEQUENTIAL BUFFERED, INPUT, or OUTPUT.

4. Data set organization must be CONSECUTIVE; allowable record formats are F, FB, FS, FBS, U, V,
or VB.

5. You can specify BLKSIZE instead of RECSIZE for unblocked record formats F, FS, V, and U.

CTLASA|CTL360

The printer control options CTLASA and CTL360 apply only to OUTPUT files
associated with consecutive data sets. They specify that the first character of a
record is to be interpreted as a control character.

> CTLASA
CTL360

\ 4
A

The CTLASA option specifies American National Standard Vertical Carriage
Positioning Characters or American National Standard Pocket Select Characters
(Level 1). The CTL360 option specifies IBM machine-code control characters.

The American National Standard control characters, listed in Figure 33 on
page 153, cause the specified action to occur before the associated record is
printed or punched.

The machine code control characters differ according to the type of device. The
IBM machine code control characters for printers are listed in Figure 34 on
page 153.

PL/I for MVS & VM Programming Guide

Code

S<OW>OONOU A WNE+

Action

Space 1 line before printing (blank code)
Space 2 lines before printing

Space 3 lines before printing

Suppress space before printing

Skip to channel 1
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to channel 5
Skip to channel 6
Skip to channel 7
Skip to channel 8
Skip to channel 9

Skip to channel 10
Skip to channel 11
Skip to channel 12

Select stacker 1
Select stacker 2

Figure 33. American National Standard Print and Card Punch Control Characters (CTLASA)

Print and
Then Act

Code byte
00000001
00001001
00010001
00011001
10001001
10010001
10011001
10100001
10101001
10110001
10111001
11000001
11001001
11010001
11011001
11100001

Action

Print only (no space)

Space 1 line
Space 2 lines
Space 3 lines
Skip to channel 1
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to channel 5
Skip to channel 6
Skip to channel 7
Skip to channel 8
Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12

Act immediately
(no printing)

Code byte
00001011
00010011
00011011
10001011
10010011
10011011
10100011
10101011
10110011
10111011
11000011
11001011
11010011
11011011
11100011

Figure 34. IBM Machine Code Print Control Characters (CTL360)

LEAVE|REREAD
The magnetic tape handling options LEAVE and REREAD allow you to specify the
action to be taken when the end of a magnetic tape volume is reached, or when a

data set on a magnetic tape volume is closed. The LEAVE option prevents the

tape from being rewound. The REREAD option rewinds the tape to allow

reprocessing of the data set. If you do not specify either of these, the action at

end-of-volume or on closing of a data set is controlled by the DISP parameter of

the associated DD statement.

> LEAVE

REREAD

]

Chapter 8. Defining and Using Consecutive Data Sets

\ 4
A

153

154

If a data set is first read or written forward and then read backward in the same
program, specify the LEAVE option to prevent rewinding when the file is closed (or,
with a multivolume data set, when volume switching occurs).

You can also specify LEAVE and REREAD on the CLOSE statement, as described
in the PL/I for MVS & VM Language Reference.

The effects of the LEAVE and REREAD options are summarized in Table 22.

Table 22. Effect of LEAVE and REREAD Options

ENVIRONMENT DISP Action
option parameter
REREAD — Positions the current volume to reprocess the data set.

Repositioning for a BACKWARDS file is at the physical
end of the data set.

LEAVE — Positions the current volume at the logical end of the data
set. Repositioning for a BACKWARDS file is at the
physical beginning of the data set.

Neither PASS Positions the volume at the end of the data set.
REREAD
nor DELETE Rewinds the current volume.
LEAVE
KEEP, Rewinds and unloads the current volume.
CATLG,
UNCATLG
ASCII

The ASCII option specifies that the code used to represent data on the data set is
ASCII.

»»—ASCII

A\
A

You can create and access data sets on magnetic tape using ASCII in PL/l. The
implementation supports F, FB, U, D, and DB record formats. F, FB, and U
formats are treated in the same way as other data sets; D and DB formats, which
correspond to V and VB formats in other data sets, are described below.

Only character data can be written to an ASCII data set; therefore, when you create
the data set, you must transmit your data from character variables. You can give
these variables the attribute VARYING as well as CHARACTER, but you cannot
transmit the two length bytes of varying-length character strings. In other words,
you cannot use a SCALARVARYING file to transmit varying-length character strings
to an ASCII data set. Also, you cannot transmit data aggregates containing
varying-length strings.

Since an ASCII data set must be on magnetic tape, it must be of consecutive
organization. The associated file must be BUFFERED. You can also specify the
BUFOFF ENVIRONMENT option for ASCII data sets.

If you do not specify ASCII in either the ENVIRONMENT option or the DD
statement, but you specify BUFOFF, D, or DB, then ASCII is the default.

PL/I for MVS & VM Programming Guide

BUFOFF

You need not concern yourself with the BUFOFF option unless you are dealing with
ASCII data sets.

The BUFOFF (buffer offset) option specifies a block prefix field n bytes in length at
the beginning of each block in an ASCII data set, according to the following syntax:

A\
A

BUFOFF
> L(_n_)J

n is either:

¢ An integer from O to 99
¢ A variable with attributes FIXED BINARY(31,0) STATIC having an
integer value from O to 99.

When you are accessing an ASCII data set for input to your program, specifying
BUFOFF and n identifies to data management how far into the block the beginning
of the data is. Specifying BUFOFF without n signifies to data management that the
first 4 bytes of the data set comprise a block-length field.

When you are creating an ASCII data set for output from your program, PL/I does
not allow you to create a prefix field at the beginning of the block using BUFOFF,
unless it is for data management's use as a 4-byte block-length indicator. In this
case, you do not need to specify the BUFOFF option anyway, because for D- or
DB-formats PL/l automatically sets up the required field. You can code BUFOFF
without n (though it isn't needed), but that is the only explicit specification of the
BUFOFF option that PL/I accepts for output. Therefore, by not coding the BUFOFF
option you allow PL/I to set the default values needed for creating your output
ASCII data set (4 for D- and DB-formats, O for other acceptable formats).

D-Format and DB-Format Records
The data contained in D- and DB-format records is recorded in ASCIl. Each record
can be of a different length. The two formats are:

D-format:
The records are unblocked; each record constitutes a single block. Each
record consists of:

Four control bytes
Data bytes.

The four control bytes contain the length of the record; this value is inserted by
data management and requires no action by you. In addition, there can be, at
the start of the block, a block prefix field, which can contain the length of the
block.

DB-format:
The records are blocked. All other information given for D-format applies to
DB-format.

Chapter 8. Defining and Using Consecutive Data Sets 155

Creating a Data Set with Record 1/O

When you create a consecutive data set, you must open the associated file for
SEQUENTIAL OUTPUT. You can use either the WRITE or LOCATE statement to
write records. Table 20 on page 149 shows the statements and options for
creating a consecutive data set.

When creating a data set, you must identify it to the operating system in a DD
statement. The following paragraphs, summarized in Table 23, tell what essential
information you must include in the DD statement and discuss some of the optional
information you can supply.

Table 23. Creating a Consecutive Data Set with Record I/O: Essential Parameters of the DD Statement

Storage device

When required

What you must state Parameters

All Always Output device UNIT= or SYSOUT=
or
VOLUME=REF=
Block sizel
DCB=(BLKSIZE=...
Direct access only Always Storage space required SPACE=
Magnetic tape only Data set not first in volume and for magnetic tapes Sequence number LABEL=
that do not have standard labels
Direct access and Data set to be used by another job step but not Disposition DISP=
standard labeled required at end of job
magnetic tape
Data set to be kept Disposition DISP=

Data set to be on particular device

after end of job

Name of data set DSNAME=

Volume serial number VOLUME=SER= or

VOLUME=REF=

10r you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

Essential Information
When you create a consecutive data set you must specify:

e The device that will write your data set (UNIT, SYSOUT, or VOLUME
parameter of DD statement): A data set with consecutive organization can
exist on any type of auxiliary storage device.

¢ The block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute) or in the DD statement (BLKSIZE subparameter). If
you do not specify a record length, unblocked records are the default and the
record length is determined from the block size. If you do not specify a record
format, U-format is the default. If you specify a record size and either specify a
block size of zero or omit a specification for it, under MVS/ESA, DFP calculates
a block size.

If you want to keep a magnetic-tape or direct-access data set (that is, you do not
want the operating system to delete it at the end of your job), the DD statement
must name the data set and indicate how it is to be disposed of (DSNAME and
DISP parameters). The DISP parameter alone will suffice if you want to use the
data set in a later step but will not need it after the end of your job.

156 PL/I for MVS & VM Programming Guide

When creating a data set on a direct-access device, you must specify the amount
of space required for it (SPACE parameter of DD statement).

If you want your data set stored on a particular magnetic-tape or direct-access

device, you must specify the volume serial number in the DD statement (SER or
REF subparameter of VOLUME parameter). If you do not specify a serial number
for a magnetic-tape data set that you want to keep, the operating system will

allocate one, inform the operator, and print the number on your program listing.

If your data set is to follow another data set on a magnetic-tape volume, you must
use the LABEL parameter of the DD statement to indicate its sequence number on

the tape.

The DCB subparameters of the DD statement that apply to consecutive data sets
are listed below. They are described in your MVS/ESA JCL User's Guide.
Table 15 on page 111 shows which options of the ENVIRONMENT attribute you
can specify for consecutive data sets.

Subparameter Specifies

BLKSIZE
BUFNO
CODE
DEN
FUNC
LRECL
MODE

OPTCD
PRTSP
RECFM
STACK
TRTCH

Maximum number of bytes per block

Number of data management buffers

Paper tape: code in which the tape is punched
Magnetic tape: tape recording density

Card reader or punch: function to be performed
Maximum number of bytes per record

Card reader or punch: mode or operation (column binary or
EBCDIC and Read Column Eliminate or Optical Mark Read)

Optional data-management services and data-set attributes
Printer line spacing (0, 1, 2, or 3)

Record format and characteristics

Card reader or punch: stacker selection

Magnetic tape: tape recording technique for 7-track tape

Accessing and Updating a Data Set with Record I/O

Once you create a consecutive data set, you can open the file that accesses it for
sequential input, for sequential output, or, for data sets on direct-access devices,
for updating. See Figure 35 on page 160 for an example of a program that
accesses and updates a consecutive data set. If you open the file for output, and
extend the data set by adding records at the end, you must specify DISP=MOD in
the DD statement. If you do not, the data set will be overwritten. If you open a file

for updating, you can only update records in their existing sequence, and if you
want to insert records, you must create a new data set. Table 20 on page 149

shows the statements and options for accessing and updating a consecutive data

set.

When you access a consecutive data set by a SEQUENTIAL UPDATE file, you
must retrieve a record with a READ statement before you can update it with a

REWRITE statement; however, every record that is retrieved need not be rewritten.
A REWRITE statement will always update the last record read.

Chapter 8. Defining and Using Consecutive Data Sets

157

158

Consider the following:
READ FILE(F) INTO(A);

READ FILE(F) INTO(B);

REWRITE FILE(F) FROM(A);

The REWRITE statement updates the record that was read by the second READ
statement. The record that was read by the first statement cannot be rewritten
after the second READ statement has been executed.

The operating system does not allow updating a consecutive data set on magnetic
tape except by adding records at the end. To replace or insert records, you must
read the data set and write the updated records into a new data set.

You can read a consecutive data set on magnetic tape forward or backward. If you
want to read the data set backward, you must give the associated file the
BACKWARDS attribute. You cannot specify the BACKWARDS attribute when a
data set has V-, VB-, VS-, VBS-, D-, or DB-format records.

To access a data set, you must identify it to the operating system in a DD
statement. Table 24 summarizes the DD statement parameters needed to access
a consecutive data set.

Table 24. Accessing a Consecutive Data Set with Record I/O: Essential Parameters of the
DD Statement

When required What you must state Parameters
Always Name of data set DSNAME=
Disposition of data set DISP=
If data set not cataloged (all devices) Input device UNIT= or VOLUME=REF=
If data set not cataloged (standard Volume serial number VOLUME=SER=
labeled magnetic tape and direct
access)
Magnetic tape (if data set not first in Sequence number LABEL=

volume or which does not have
standard labels)

If data set does not have standard Block sizel DCB=(BLKSIZE=.
labels

10r you could specify the block size in your PL/I program by using the ENVIRONMENT attribute.

The following paragraphs indicate the essential information you must include in the
DD statement, and discuss some of the optional information you can supply. The
discussions do not apply to data sets in the input stream.

PL/I for MVS & VM Programming Guide

Essential Information
If the data set is cataloged, you need to supply only the following information in the
DD statement:

¢ The name of the data set (DSNAME parameter). The operating system will
locate the information describing the data set in the system catalog, and, if
necessary, will request the operator to mount the volume containing it.

¢ Confirmation that the data set exists (DISP parameter). If you open the data
set for output with the intention of extending it by adding records at the end,
code DISP=MOD; otherwise, opening the data set for output will result in it
being overwritten.

If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and, for magnetic-tape and direct-access devices, give the serial
number of the volume that contains the data set (UNIT and VOLUME parameters).

If the data set follows another data set on a magnetic-tape volume, you must use
the LABEL parameter of the DD statement to indicate its sequence number on the
tape.

Example of Consecutive Data Sets

Creating and accessing consecutive data sets are illustrated in the program in
Figure 35 on page 160. The program merges the contents of two data sets, in the
input stream, and writes them onto a new data set, &&TEMP; each of the original
data sets contains 15-byte fixed-length records arranged in EBCDIC collating
sequence. The two input files, INPUT1 and INPUT2, have the default attribute
BUFFERED, and locate mode is used to read records from the associated data
sets into the respective buffers. Access of based variables in the buffers should
not be attempted after the file has been closed; in MVS/XA DFP has released the
buffer, and a protection error might result.

Chapter 8. Defining and Using Consecutive Data Sets 159

//EXAMPLE JOB

//STEP1 EXEC IEL1CLG

//PLI.SYSIN DD *

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

MERGE: PROC OPTIONS(MAIN);

DCL (INPUTL, /* FIRST INPUT FILE */
INPUT2, /* SECOND INPUT FILE */
ouT) FILE RECORD SEQUENTIAL; /+ RESULTING MERGED FILEx/

DCL SYSPRINT FILE PRINT; /* NORMAL PRINT FILE */

DCL INPUT1_EOF BIT(1) INIT(H /* EOF FLAG FOR INPUT1 =/

5 '0'B)

DCL INPUT2_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR INPUT2 =%/
DCL OUT_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR OUT */
DCL TRUE BIT(1) INIT('1'B); /* CONSTANT TRUE */
DCL FALSE BIT(1) INIT('0'B); /% CONSTANT FALSE */
DCL ITEM1 CHAR(15) BASED(A); /% ITEM FROM INPUT1 */
DCL ITEM2 CHAR(15) BASED(B); /% ITEM FROM INPUT2 */
DCL INPUT_LINE CHAR(15); /% INPUT FOR READ INTO */
DCL A POINTER; /* POINTER VAR */
DCL B POINTER; /% POINTER VAR */
ON ENDFILE(INPUT1) INPUT1_EOF = TRUE;
ON ENDFILE(INPUT2) INPUT2_EOF = TRUE;
ON ENDFILE(OUT) ~ OUT_EOF = TRUE;
OPEN FILE(INPUTL) INPUT,

FILE(INPUT2) INPUT,

FILE(OUT) OUTPUT;
READ FILE(INPUT1) SET(A); /* PRIMING READ */

READ FILE(INPUT2) SET(B);

DO WHILE ((INPUT1_EOF = FALSE) & (INPUT2_EOF = FALSE));
IF ITEM1 > ITEM2 THEN
DO;
WRITE FILE(OUT) FROM(ITEM2);
PUT FILE(SYSPRINT) SKIP EDIT('1>2', ITEM1, ITEM2)

(A(5),A,A);
READ FILE(INPUT2) SET(B);
END;
ELSE
DO;

WRITE FILE(OUT) FROM(ITEM1);
PUT FILE(SYSPRINT) SKIP EDIT('l<2', ITEM1, ITEM2)
(A(5),A,A);
READ FILE(INPUT1) SET(A);
END;
END;

Figure 35 (Part 1 of 2). Merge Sort—Creating and Accessing a Consecutive Data Set

160 PL/I for MVS & VM Programming Guide

DO WHILE (INPUT1 EOF = FALSE); /* INPUT2 IS EXHAUSTED =/
WRITE FILE(OUT) FROM(ITEM1);
PUT FILE(SYSPRINT) SKIP EDIT('1', ITEM1) (A(2),A);
READ FILE(INPUT1) SET(A);

END;

DO WHILE (INPUT2_EOF = FALSE); /% INPUT1 IS EXHAUSTED */
WRITE FILE(OUT) FROM(ITEM2);
PUT FILE(SYSPRINT) SKIP EDIT('2', ITEM2) (A(2),A);
READ FILE(INPUT2) SET(B);

END;

CLOSE FILE(INPUT1), FILE(INPUT2), FILE(OUT);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(OUT) SEQUENTIAL INPUT;

READ FILE(OUT) INTO(INPUT_LINE); /* DISPLAY OUT FILE */
DO WHILE (OUT_EOF = FALSE);
PUT FILE(SYSPRINT) SKIP EDIT(INPUT_LINE) (A);
READ FILE(OUT) INTO(INPUT_LINE);
END;
CLOSE FILE(OUT);

END MERGE;
/*
//GO.INPUT1 DD =
AAAAAA
ceeeee
EEEEEE
GGGGGG
IIIII1
/*
//GO.INPUT2 DD =
BBBBBB
DDDDDD
FFFFFF
HHHHHH
JJJJIJ
KKKKKK
/*
//GO.0UT DD DSN=&&TEMP,DISP=(NEW,DELETE),UNIT=SYSDA,
// DCB=(RECFM=FB,BLKSIZE=150,LRECL=15),SPACE=(TRK, (1,1))

Figure 35 (Part 2 of 2). Merge Sort—Creating and Accessing a Consecutive Data Set

The program in Figure 36 on page 162 uses record-oriented data transmission to
print the table created by the program in Figure 30 on page 141.

Chapter 8. Defining and Using Consecutive Data Sets 161

162

%PROCESS INT F(I) AG A(F) ESD MAP OP STG NEST X(F) SOURCE ;
%PROCESS LIST;

PRT: PROC OPTIONS(MAIN);
DCL TABLE FILE RECORD INPUT SEQUENTIAL;
DCL PRINTER FILE RECORD OUTPUT SEQL
ENV(V BLKSIZE(102) CTLASA);

DCL LINE CHAR(94) VAR;

DCL TABLE_EOF BIT(1) INIT('0'B); /* EOF FLAG FOR TABLE
DCL TRUE BIT(1) INIT('1'B); /* CONSTANT TRUE

DCL FALSE BIT(1) INIT('0'B); /* CONSTANT FALSE

ON ENDFILE(TABLE) TABLE_EOF = TRUE;

OPEN FILE(TABLE),
FILE(PRINTER);

READ FILE(TABLE) INTO(LINE); /* PRIMING READ

DO WHILE (TABLE_EOF = FALSE);
WRITE FILE(PRINTER) FROM(LINE);
READ FILE(TABLE) INTO(LINE);

END;

CLOSE FILE(TABLE),
FILE(PRINTER);
END PRT;

%/
%/
%/

Figure 36. Printing Record-Oriented Data Transmission

PL/I for MVS & VM Programming Guide

Chapter 9. Defining and Using Indexed Data Sets

This chapter describes indexed data set organization (ISAM), data transmission
statements, and ENVIRONMENT options that define indexed data sets. It then
describes how to create, access, and reorganize indexed data sets. Use of ISAM
is discouraged for new data sets because VSAM gives better performance with
PL/I. ISAM is retained for compatibility with existing data sets.

Under VM, PL/I supports the use of Indexed Data Sets through VSAM. See “Using
Data Sets and Files” on page 81 for more information on VSAM data sets under
VM.

Indexed Organization

Using keys

A data set with indexed organization must be on a direct-access device. Its
records can be either F-format or V-format records, blocked or unblocked. The
records are arranged in logical sequence, according to keys associated with each
record. A key is a character string that can identify each record uniquely. Logical
records are arranged in the data set in ascending key sequence according to the
EBCDIC collating sequence. Indexes associated with the data set are used by the
operating system data-management routines to locate a record when the key is
supplied.

Unlike consecutive organization, indexed organization does not require you to
access every record in sequential fashion. You must create an indexed data set
sequentially; but once you create it, you can open the associated file for
SEQUENTIAL or DIRECT access, as well as INPUT or UPDATE. When the file
has the DIRECT attribute, you can retrieve, add, delete, and replace records at
random.

Sequential processing of an indexed data set is slower than that of a corresponding
consecutive data set, because the records it contains are not necessarily retrieved
in physical sequence. Furthermore, random access is less efficient for an indexed
data set than for a regional data set, because the indexes must be searched to
locate a record. An indexed data set requires more external storage space than a
consecutive data set, and all volumes of a multivolume data set must be mounted,
even for sequential processing.

Table 25 on page 164 lists the data-transmission statements and options that you
can use to create and access an indexed data set.

There are two kinds of keys—recorded keys and source keys. A recorded key is a
character string that actually appears with each record in the data set to identify
that record. The length of the recorded key cannot exceed 255 characters and all
keys in a data set must have the same length. The recorded keys in an indexed
data set can be separate from, or embedded within, the logical records. A source
key is the character value of the expression that appears in the KEY or KEYFROM
option of a data transmission statement to identify the record to which the
statement refers. For direct access of an indexed data set, you must include a
source key in each transmission statement.

© Copyright IBM Corp. 1964, 1995 163

Note: All VSAM key-sequenced data sets have embedded keys, even if they have
been converted from ISAM data sets with nonembedded keys.

Table 25 (Page 1 of 2). Statements and Options Allowed for Creating and Accessing

Indexed Data Sets

File Valid statements, with Other options you can
declaration 1 options you must include include
SEQUENTIAL WRITE FILE(file-reference)
OUTPUT FROM(reference)
KEYFROM(expression);
LOCATE based-variable SET(pointer-reference)
FILE(file-reference)
KEYFROM(expression);
SEQUENTIAL READ FILE(file-reference) KEY (expression) or
INPUT INTO(reference); KEYTO(reference)
READ FILE(file-reference) KEY (expression) or
SET(pointer-reference); KEYTO(reference)
READ FILE(file-reference)
IGNORE(expression);
SEQUENTIAL READ FILE(file-reference) KEY (expression) or
UPDATE INTO(reference); KEYTO(reference)
READ FILE(file-reference) KEY (expression) or
SET(pointer-reference); KEYTO(reference)
READ FILE(file-reference)
IGNORE(expression);
REWRITE FILE(file-reference); FROM(reference)
DELETE FILE(file-reference);2 KEY (expression)
DIRECT INPUT READ FILE(file-reference) EVENT (event-reference)
INTO(reference)
KEY (expression);
DIRECT UPDATE READ FILE(file reference) EVENT (event-reference)
INTO(reference)
KEY (expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY (expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY (expression);2

EVENT (event-reference)

EVENT (event-reference)

EVENT (event-reference)

PL/I for MVS & VM Programming Guide

Table 25 (Page 2 of 2). Statements and Options Allowed for Creating and Accessing
Indexed Data Sets

File Valid statements, with Other options you can
declaration 1 options you must include include
DIRECT UPDATE READ FILE(file-reference) EVENT (event-reference)
EXCLUSIVE INTO(reference) and/or
KEY (expression); NOLOCK
REWRITE FILE(file-reference) EVENT (event-reference)
FROM(reference)
KEY (expression);
WRITE FILE(file-reference) EVENT (event-reference)
FROM(reference)
KEYFROM(expression);
DELETE FILE(file-reference) EVENT (event-reference)

KEY (expression);2

UNLOCK FILE(file-reference)
KEY (expression)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT. If
you use any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED
in the file declaration. The attribute BUFFERED is the default, and UNBUFFERED is ignored for
INDEXED SEQUENTIAL and SEQUENTIAL files.

2. Use of the DELETE statement is invalid if you did not specify OPTCD=L (DCB subparameter) when
the data set was created or if the RKP subparameter is O for FB records, or 4 for V and VB records.

The use of embedded keys avoids the need for the KEYTO option during
sequential input, but the KEYFROM option is still required for output. (However,
the data specified by the KEYFROM option can be the embedded key portion of
the record variable itself.) In a data set with unblocked records, a separate
recorded key precedes each record, even when there is already an embedded key.
If the records are blocked, the key of only the last record in each block is recorded
separately in front of the block.

During execution of a WRITE statement that adds a record to a data set with
embedded keys, the value of the expression in the KEYFROM option is assigned to
the embedded key position in the record variable. Note that you can declare a
record variable as a structure with an embedded key declared as a structure
member, but that you must not declare such an embedded key as a VARYING
string.

For a REWRITE statement using SEQUENTIAL files with indexed data set
organization, you must ensure that the rewritten key is the same as the key in the
replaced record.

For a LOCATE statement, the KEYFROM string is assigned to the embedded key
when the next operation on the file is encountered.

Chapter 9. Defining and Using Indexed Data Sets 165

Using Indexes

To provide faster access to the records in the data set, the operating system
creates and maintains a system of indexes to the records in the data set.

The lowest level of index is the track index. There is a track index for each cylinder
in the data set. The track index occupies the first track (or tracks) of the cylinder,
and lists the key of the last record on each track in the cylinder. A search can then
be directed to the first track that has a key that is higher than or equal to the key of
the required record.

If the data set occupies more than one cylinder, the operating system develops a
higher-level index called a cylinder index. Each entry in the cylinder index identifies
the key of the last record in the cylinder.

To increase the speed of searching the cylinder index, you can request in a DD
statement that the operating system develop a master index for a specified number
of cylinders. You can have up to three levels of master index.

Figure 37 illustrates the index structure. The part of the data set that contains the
cylinder and master indexes is termed the index area.

450(900|2000

200| 300| 375| 450 | «——

A

500| 600| 700| 900

1000|1200|1500 (2000

Cylinder 11 Cylinder 12

Track
| 100| 100| 200| 200| Index 1500 > 2000

Data|Data|Data|Data| Prime
10| 20| 40| 100| Data

Data|Data|Data|Data| Prime
150 175| 190| 200| Data

Overflow

Figure 37. Index Structure of an Indexed Data Set

166 PL/I for MVS & VM Programming Guide

When you create an indexed data set, all the records are written in what is called
the prime data area. If you add more records later, the operating system does not
rearrange the entire data set; it inserts each new record in the appropriate position
and moves up the other records on the same track. Any records forced off the
track by the insertion of a new record are placed in an overflow area. The overflow
area can be either a number of tracks set aside in each cylinder for the overflow
records from that cylinder (cylinder overflow area), or a separate area for all
overflow records (independent overflow area).

Records in the overflow area are chained together to the track index so as to
maintain the logical sequence of the data set. This is illustrated in Figure 38 on
page 168. Each entry in the track index consists of two parts:

e The normal entry, which points to the last record on the track

e The overflow entry, which contains the key of the first record transferred to the
overflow area and also points to the last record transferred from the track to the
overflow area.

If there are no overflow records from the track, both index entries point to the last
record on the track. An additional field is added to each record that is placed in the
overflow area. It points to the previous record transferred from the same track.

The first record from each track is linked to the corresponding overflow entry in the
track index.

Dummy Records

Records within an indexed data set are either actual records, containing valid data,
or dummy records. A dummy record, identified by the constant (8)'1'B in its first
byte, can be one that you insert or it can be created by the operating system. You
insert dummy records by setting the first byte to (8)'1'B and writing the records in
the usual way. The operating system creates dummy records by placing (8)'1'B in
a record that is named in a DELETE statement.

When creating an indexed data set, you might want to insert dummy records to
reserve space in the prime data area. You can replace dummy records later with
actual data records having the same key.

The operating system removes dummy records when the data set is reorganized,
as described later in this section, and removes those forced off the track during an
update.

If you include the DCB subparameter OPTCD=L in the DD statement that defines
the data set when you create it, dummy records will not be retrieved by READ
statements and the operating system will write the dummy identifier in records
being deleted.

Chapter 9. Defining and Using Indexed Data Sets 167

168

100 Track | 100 Track 200 Track | 200 Track
1 1 2 2
10 20 40 100
150 175 190 200
40 Track |100 Track 3 190 Track | 200 |Track 3
1 record 1 2 record 2
10 20 25 40
101 150 175 190
100 Track | 200 Track
1 2
26 Track | 100 |Track 3 190 Track | 200 |Track 3
1 record 3 2 record 4
10 20 25 26
101 150 175 190
100 Track | 200 Track 40 |Track 3 | 199 |[Track 3
1 2 record 1 record 2

Track
Index

Prime
Data

Overflow

Track
Index

Prime
Data

Overflow

Track

Index

Prime

Data

Overflow

Figure 38. Adding Records to an Indexed Data Set

PL/I for MVS & VM Programming Guide

Defining Files for an Indexed Data Set

You define a sequential indexed data set by a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED
[KEYED]
ENVIRONMENT (options);

You define a direct indexed data set by a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
DIRECT
UNBUFFERED
KEYED
[EXCLUSIVE]
ENVIRONMENT (options);

Default file attributes are shown in Table 15 on page 111. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options
The ENVIRONMENT options applicable to indexed data sets are:

FIFB|V|VB

RECSIZE (record-length)
BLKSIZE(block-size)
SCALARVARYING

COBOL

BUFFERS (n)
KEYLENGTH(n)

NCP(n)

GENKEY

ADDBUFF

INDEXAREA[(index-area-size)]
INDEXED

KEYLOC(n)

NOWRITE

The options above the blank line are described in “Specifying Characteristics in the
ENVIRONMENT Attribute” on page 110, and those below the blank line are
described below.

ADDBUFF Option

Specify the ADDBUFF option for a DIRECT INPUT or DIRECT UPDATE file with
indexed data set organization and F-format records to indicate that an area of
internal storage is used as a workspace in which records on the data set can be
rearranged when new records are added. The size of the workspace is equivalent
to one track of the direct-access device used.

Chapter 9. Defining and Using Indexed Data Sets 169

170

You do not need to specify the ADDBUFF option for DIRECT INDEXED files with
V-format records, as the workspace is automatically allocated for such files.

»—ADDBUF

A\
A

INDEXAREA Option

With the INDEXAREA option you improve the input/output speed of a DIRECT
INPUT or DIRECT UPDATE file with indexed data set organization, by having the
highest level of index placed in main storage.

\ 4
A

»»—INDEXAREA— (—index-area-size—)

index-area-size enables you to limit the amount of main storage allowed for an
index area. The size you specify must be an integer or a variable with attributes
FIXED BINARY(31,0) STATIC from 0O to 64,000 in value. If you do not specify
index-area-size, the highest level index is moved unconditionally into main storage.
If you do specify index-area-size, the highest level index is held in main storage,
provided that its size does not exceed that specified. If you specify a size less than
0 or greater than 64,000, unpredictable results will occur.

INDEXED Option

Use the INDEXED option to define a file with indexed organization (which is
described above). It is usually used with a data set created and accessed by the
Indexed Sequential Access Method (ISAM), but you can also use it in some cases
with VSAM data sets (as described in Chapter 11, “Defining and Using VSAM Data
Sets”).

»—INDEXED

\ 4
A

KEYLOC Option — Key Location
Use the KEYLOC option with indexed data sets when you create the data set to
specify the starting position of an embedded key in a record.

»»—KEYLOC

A\
A

The position, n, must be within the limits:
1 < n = recordsize - keylength + 1

That is, the key cannot be larger than the record, and must be contained
completely within the record.

If the keys are embedded within the records, either specify the KEYLOC option, or
include the DCB subparameter RKP in the DD statement for the associated data
set.

If you do not specify KEYLOC, the value specified with RKP is used. If you specify
neither, then RKP=0 is the default.

PL/I for MVS & VM Programming Guide

The KEYLOC option specifies the absolute position of an embedded key from the
start of the data in a record, while the RKP subparameter specifies the position of
an embedded key relative to the start of the record.

Thus the equivalent KEYLOC and RKP values for a particular byte are affected by
the following:

¢ The KEYLOC byte count starts at 1; the RKP count starts at 0.
e The record format.

For example, if the embedded key begins at the tenth byte of a record variable, the
specifications are:

Fixed-length: KEYLOC(10)
RKP=9

Variable-length: KEYLOC(10)
RKP=13

If KEYLOC is specified with a value equal to or greater than 1, embedded keys
exist in the record variable and on the data set. If KEYLOC is equal to zero, or is
not specified, the RKP value is used. When RKP is specified, the key is part of the
variable only when RKP=1. As a result, embedded keys might not always be
present in the record variable or the data set. If you specify KEYLOC(1), you must
specify it for every file that accesses the data set. This is necessary because
KEYLOC(1) cannot be converted to an unambiguous RKP value. (Its equivalent is
RKP=0 for fixed format, which in turn implies nonembedded keys.) The effect of
the use of both options is shown in Table 26.

Table 26. Effect of KEYLOC and RKP Values on Establishing Embedded Keys in
Record Variables or Data Sets

Data set Data set
Record unblocked blocked

KEYLOC(n) RKP variable records records
n>1 RKP equivalent Key Key Key

=n-1+Cl
n=1 No equivalent Key Key2 Key
n=0 RKP=C1 No Key No Key Key3
or not specified

RKP>C1 Key Key Key

Notes:

1. C = number of control bytes, if any:

C=0 for fixed-length records.

C=4 for variable-length records.
2. In this instance the key is not recognized by data management
3. Each logical record in the block has a key.

If you specify SCALARVARYING, the embedded key must not immediately precede
or follow the first byte; hence, the value specified for KEYLOC must be greater
than 2.

If you include the KEYLOC option in a VSAM file declaration for checking purposes,

and the key location you specify in the option conflicts with the value defined for the
data set, the UNDEFINEDFILE condition is raised.

Chapter 9. Defining and Using Indexed Data Sets 171

NOWRITE Option

Use the NOWRITE option for DIRECT UPDATE files. It specifies that no records
are to be added to the data set and that data management modules concerned
solely with adding records are not required. Thus, it allows the size of the object
program to be reduced.

»»—NOWRITE

A\
A

Creating an Indexed Data Set

When you create an indexed data set, you must open the associated file for
SEQUENTIAL OUTPUT, and you must present the records in the order of
ascending key values. (If there is an error in the key sequence, the KEY condition
is raised.) You cannot use a DIRECT file for the creation of an indexed data set.

Table 25 on page 164 shows the statements and options for creating an indexed
data set.

You can extend an indexed data set consisting of fixed-length records by adding
records sequentially at the end, until the original space allocated for the prime data
is filled. You must open the corresponding file for SEQUENTIAL OUTPUT and you
must include DISP=MOD in the DD statement.

You can use a single DD statement to define the whole data set (index area, prime
area, and overflow area), or you can use two or three statements to define the
areas independently. If you use two DD statements, you can define either the
index area and the prime area together, or the prime area and the overflow area
together.

If you want the entire data set to be on a single volume, there is no advantage to
be gained by using more than one DD statement except to define an independent
overflow area (see “Overflow Area” on page 177). But, if you use separate DD
statements to define the index and/or overflow area on volumes separate from that
which contains the prime area, you will increase the speed of direct-access to the
records in the data set by reducing the number of access mechanism movements
required.

When you use two or three DD statements to define an indexed data set, the
statements must appear in the order: index area; prime area; overflow area. The
first DD statement must have a name (ddname), but the name fields of a second or
third DD statement must be blank. The DD statements for the prime and overflow
areas must specify the same type of unit (UNIT parameter). You must include all
the DCB information for the data set in the first DD statement. DCB=DSORG=IS
will suffice in the other statements.

Essential Information

172

To create an indexed data set, you must give the operating system certain
information either in your PL/I program or in the DD statement that defines the data
set. The following paragraphs indicate the essential information, and discuss some
of the optional information you can supply.

PL/I for MVS & VM Programming Guide

You must supply the following information when creating an indexed data set:

e Direct-access device that will write your data set (UNIT or VOLUME parameter
of DD statement). Do not request DEFER.

¢ Block size: You can specify the block size either in your PL/I program
(ENVIRONMENT attribute or LINESIZE option) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record length, unblocked
records are the default and the record length is determined from the block size.

e Space requirements: Include space for future needs when you specify the size
of the prime, index, and overflow areas. Once you have created an indexed
data set, you cannot change its specification.

If you want to keep a direct-access data set (that is, you do not want the operating
system to delete it at the end of your job), the DD statement must name the data
set and indicate how it is to be disposed of (DSNAME and DISP parameters). The
DISP parameter alone will suffice if you want to use the data set in a later step but
will not need it after the end of your job.

If you want your data set stored on a particular direct-access device, you must
specify the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not specify a serial number for a data set that
you want to keep, the operating system will allocate one, inform the operator, and
print the number on your program listing. All the essential parameters required in a
DD statement for the creation of an indexed data set are summarized in Table 27.
Table 28 on page 174 lists the DCB subparameters needed. See the MVS/370
JCL User's Guide for a description of the DCB subparameters.

You must request space for the prime data area in the SPACE parameter. You
cannot specify a secondary quantity for an indexed data set. Your request must be
in units of cylinders unless you place the data set in a specific position on the
volume (by specifying a track number in the SPACE parameter). In the latter case,
the number of tracks you specify must be equivalent to an integral number of
cylinders, and the first track must be the first track of a cylinder other than the first
cylinder in the volume.

You can also use the SPACE parameter to specify the amount of space to be used
for the cylinder and master indexes (unless you use a separate DD statement for
this purpose). If you do not specify the space for the indexes, the operating system
will use part of the independent overflow area. If there is no independent overflow
area, it will use part of the prime data area.

Table 27 (Page 1 of 2). Creating an Indexed Data Set: Essential Parameters of DD
Statement

When required What you must state Parameters
Always Output device UNIT= or
VOLUME=REF=
Storage space required SPACE=
Data control block DCB=
information: see Table 28 on
page 174

Chapter 9. Defining and Using Indexed Data Sets 173

Table 27 (Page 2 of 2). Creating an Indexed Data Set: Essential Parameters of DD

Statement
When required What you must state Parameters
More than one DD statement Name of data set and area DSNAME=
(index, prime,
overflow)
Data set to be used in another Disposition DISP=
job step but not required at end
of job
Data set to be kept Disposition DISP=
after end of job
Name of data set DSNAME=
Data set to be on Volume serial number VOLUME=SER= or
particular volume VOLUME=REF=

Table 28. DCB Subparameters for an Indexed Data Set

When required To specify Subparameters

These are always required? Record formatl RECFM=F, FB, V, or VB
Block sizel BLKSIZE=
Data set organization DSORG=IS
Key lengthl KEYLEN=

Include at least one of these if Cylinder overflow OPTCD=Y and

overflow is required area and number of CYLOFL=

tracks per cylinder
for overflow records

Independent overflow area OPTCD=I
These are optional Record lengthl LRECL=

Embedded key RKP= 2

(relative key position)1

Master index OPTCD=M

Automatic processing OPTCD=L

of dummy records

Number of data BUFNO=
management buffersl

Number of tracks in NTM=
cylinder index for each master
index entry

Notes:

Full DCB information must appear in the first, or only, DD statement. Subsequent statements require
only DSORG=IS.

1. Or you could specify BUFNO in the ENVIRONMENT attribute.

2. RKP is required if the data set has embedded keys, unless you specify the KEYLOC option of
ENVIRONMENT instead.

174 PL/ for MVS & VM Programming Guide

You must always specify the data set organization (DSORG=IS subparameter of
the DCB parameter), and in the first (or only) DD statement you must also specify
the length of the key (KEYLEN subparameter of the DCB parameter) unless it is
specified in the ENVIRONMENT attribute.

If you want the operating system to recognize dummy records, you must code
OPTCD-=L in the DCB subparameter of the DD statement. This will cause the
operating system to write the dummy identifier in deleted records and to ignore
dummy records during sequential read processing. Do not specify OPTCD=L when
using blocked or variable-length records with nonembedded keys. If you do this,
the dummy record identifier (8)'1'B will overwrite the key of deleted records.

You cannot place an indexed data set on a system output (SYSOUT) device.

Name of the Data Set
If you use only one DD statement to define your data set, you need not name the
data set unless you intend to access it in another job. But if you include two or
three DD statements, you must specify a data set name, even for a temporary data
set.

The DSNAME parameter in a DD statement that defines an indexed data set not
only gives the data set a name, but it also identifies the area of the data set to
which the DD statement refers:

DSNAME=name(INDEX)
DSNAME=name(PRIME)
DSNAME=name(OVFLOW)

If you use one DD statement to define the prime and index or one DD statement to
define the prime and overflow area, code DSNAME=name(PRIME). If you use one
DD statement for the entire file (prime, index, and overflow), code
DSNAME=name(PRIME) or simply DSNAME=name.

Record Format and Keys

An indexed data set can contain either fixed- or variable-length records, blocked or
unblocked. You must always specify the record format, either in your PL/l program
(ENVIRONMENT attribute) or in the DD statement (RECFM subparameter).

The key associated with each record can be contiguous with or embedded within
the data in the record.

If the records are unblocked, the key of each record is recorded in the data set in
front of the record even if it is also embedded within the record, as shown in (a)
and (b) of Figure 39 on page 176.

If blocked records do not have embedded keys, the key of each record is recorded
within the block in front of the record, and the key of the last record in the block is
also recorded just ahead of the block, as shown in (c) of Figure 39.

When blocked records have embedded keys, the individual keys are not recorded

separately in front of each record in the block: the key of the last record in the
block is recorded in front of the block, as shown in (d) of Figure 39.

Chapter 9. Defining and Using Indexed Data Sets 175

a) Unblocked records, nonembedded keys

Recorded
Key

Data

Key

Recorded | Data

Recorded
Key

Data

b) Unblocked records, embedded keys

—logical record——

—logical record——

Recorded | Data | Embedded | Data Recorded | Data | Embedded | Data
Key Key Key Key
T same key T
c) Blocked records, nonembedded keys
—1st record——2nd record—r—Tlast record—
Recorded Key Data Key Data Key Data Recorded Key
Key Key
T same key T
d) Blocked records, embedded keys

—1st record————2nd record———last record———

Recorded | Data | Embedded | Data | Data | Embedded | Data | Data | Embedded | Data Recorded | Data
Key Key Key Key Key
T same key T
e) Unblocked variable-length records, RKP>4
' Key 'BL'RL' Data ‘ Key ‘ Data l
T same key T
f) Blocked variable-length records, RKP>4
' Key 'BL'RL' Data ‘ Key ‘ Data IRLI Data ' Key ' Data ‘RL‘ Data l Key l Data '
T same key T
g) Unblocked variable-length records, RKP=4
' Key 'BL'RL' Key ' Data ‘
t—same key——I
f) Blocked variable-length records, RKP=4
' Key 'BL'RL' Key ' Data ‘RL‘ Key ‘ Data IRLI Key l Data '
T BL = Block length

f

same key

RL

Record Tength

Figure 39. Record Formats in an Indexed Data Set

176 PL/I for MVS & VM Programming Guide

Overflow Area

If you use blocked records with nonembedded keys, the record size that you
specify must include the length of the key, and the block size must be a multiple of
this combined length. Otherwise, record length and block size refer only to the
data in the record. Record format information is shown in Figure 40.

If you use records with embedded keys, you must include the DCB subparameter
RKP to indicate the position of the key within the record. For fixed-length records
the value specified in the RKP subparameter is 1 less than the byte number of the
first character of the key. That is, if RKP=1, the key starts in the second byte of
the record. The default value if you omit this subparameter is RKP=0, which
specifies that the key is not embedded in the record but is separate from it.

For variable-length records, the value you specify in the RKP subparameter must
be the relative position of the key within the record plus 4. The extra 4 bytes take
into account the 4-byte control field used with variable-length records. For this
reason, you must never specify RKP less than 4. When deleting records, you must
always specify RKP equal to or greater than 5, since the first byte of the data is
used to indicate deletion.

For unblocked records, the key, even if embedded, is always recorded in a position
preceding the actual data. Consequently, you do not need to specify the RKP
subparameter for unblocked records.

RECORDS RKP LRECL BLKSIZE

Blocked Not zero R R *B
Zero or R+ K B (R+K)
omitted

Unblocked Not zero R R
Zero or R R
omitted

Size of data in record
Length of keys (as specified in KEYLEN subparameter)
Blocking factor

=~
n o n

Example: For blocked records, nonembedded keys, 100 bytes of

data per record, 10 records per block, key Tength = 20:

LRECL=120,BLKSIZE=1200,RECFM=FB

Figure 40. Record Format Information for an Indexed Data Set

If you intend to add records to the data set on a future occasion, you must request
either a cylinder overflow area or an independent overflow area, or both.

For a cylinder overflow area, include the DCB subparameter OPTCD=Y and use
the subparameter CYLOFL to specify the number of tracks in each cylinder to be
reserved for overflow records. A cylinder overflow area has the advantage of a
short search time for overflow records, but the amount of space available for
overflow records is limited, and much of the space might be unused if the overflow
records are not evenly distributed throughout the data set.

Chapter 9. Defining and Using Indexed Data Sets 177

Master Index

For an independent overflow area, use the DCB subparameter OPTCD=I to
indicate that overflow records are to be placed in an area reserved for overflow
records from all cylinders, and include a separate DD statement to define the
overflow area. The use of an independent area has the advantage of reducing the
amount of unused space for overflow records, but entails an increased search time
for overflow records.

It is good practice to request cylinder overflow areas large enough to contain a
reasonable number of additional records and an independent overflow area to be
used as the cylinder overflow areas are filled.

If the prime data area is not filled during creation, you cannot use the unused
portion for overflow records, nor for any records subsequently added during
direct-access (although you can fill the unfilled portion of the last track used). You
can reserve space for later use within the prime data area by writing dummy
records during creation (see “Dummy Records” on page 167).

If you want the operating system to create a master index for you, include the DCB
subparameter OPTCD=M, and indicate in the NTM subparameter the number of
tracks in the cylinder index you wish to be referred to by each entry in the master
index. The operating system will create up to three levels of master index, the first
two levels addressing tracks in the next lower level of the master index.

The creation of a simple indexed data set is illustrated in Figure 41 on page 179.
The data set contains a telephone directory, using the subscribers' names as keys
to the telephone numbers.

178 PL/I for MVS & VM Programming Guide

//EX8#19 JOB
//STEP1 EXEC IELICLG
//PLI.SYSIN DD =
TELNOS: PROC OPTIONS(MAIN);
DCL DIREC FILE RECORD SEQUENTIAL KEYED ENV(INDEXED),
CARD CHAR(80),
NAME CHAR(20) DEF CARD,
NUMBER CHAR(3) DEF CARD P0S(21),
IOFIELD CHAR(3),
EOF BIT(1) INIT('0'B);
ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(DIREC) OUTPUT;
GET FILE(SYSIN) EDIT(CARD) (A(80));
DO WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
IOFIELD=NUMBER;
WRITE FILE(DIREC) FROM(IOFIELD) KEYFROM(NAME);
GET FILE(SYSIN) EDIT(CARD) (A(80));
END;
CLOSE FILE(DIREC);
END TELNOS;

/*

//GO.DIREC DD DSN=HPU8.TELNO(INDEX),UNIT=SYSDA,SPACE=(CYL,1),
// DCB=(RECFM=F,BLKSIZE=3,DSORG=IS,KEYLEN=20,0PTCD=LIY,
// CYLOFL=2) ,DISP=(NEW,KEEP)

// DD DSN=HPU8.TELNO(PRIME),UNIT=SYSDA,SPACE=(CYL,1),
// DISP=(NEW,KEEP) ,DCB=DSORG=IS

// DD DSN=HPU8.TELNO(OVFLOW) ,UNIT=SYSDA, SPACE=(CYL,1),
// DISP=(NEW,KEEP) ,DCB=DSORG=IS

//GO.SYSIN DD *

ACTION,G. 162

BAKER,R. 152

BRAMLEY,0.H. 248

CHEESEMAN,D. 141

CORY,G. 336

ELLIOTT,D. 875

FIGGINS,S. 413

HARVEY,C.D.W. 205

HASTINGS,G.M. 391

KENDALL,J.G. 294

LANCASTER, W.R. 624

MILES,R. 233

NEWMAN,M.W. 450

PITT,W.H. 515

ROLF,D.E. 114

SHEERS,C.D. 241

SUTCLIFFE,M. 472

TAYLOR,G.C. 407

WILTON,L.W. 404

WINSTONE,E.M. 307

/*

Figure 41. Creating an Indexed Data Set

Accessing and Updating an Indexed Data Set

Once you create an indexed data set, you can open the file that accesses it for
SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. In the case
of F-format records, you can also open it for OUTPUT to add records at the end of
the data set. The keys for these records must have higher values than the existing
keys for that data set and must be in ascending order. Table 25 on page 164
shows the statements and options for accessing an indexed data set.

Sequential input allows you to read the records in ascending key sequence, and in
sequential update you can read and rewrite each record in turn. Using direct input,

Chapter 9. Defining and Using Indexed Data Sets 179

you can read records using the READ statement, and in direct update you can read
or delete existing records or add new ones. Sequential and direct-access are
discussed in further detail below.

Using Sequential Access

180

You can open a sequential file that is used to access an indexed data set with
either the INPUT or the UPDATE attribute. You do not need to include source keys
in the data transmission statements, nor do you need to give the file the KEYED
attribute. Sequential access is in order of ascending recorded-key values. Records
are retrieved in this order, and not necessarily in the order in which they were
added to the data set. Dummy records are not retrieved if you include the
subparameter OPTCD=L in the DD statement that defines the data set.

Except that you cannot use the EVENT option, rules governing the relationship
between the READ and REWRITE statements for a SEQUENTIAL UPDATE file
that accesses an indexed data set are identical to those for a consecutive data set
(described in Chapter 8, “Defining and Using Consecutive Data Sets” on

page 129).

You must not alter embedded keys in a record to be updated. The modified record
must always overwrite the update record in the data set.

Additionally, records can be effectively deleted from the data set. Using a DELETE
statement marks a record as a dummy by putting (8)'1'B in the first byte. You
should not use the DELETE statement to process a data set with F-format blocked
records and either KEYLOC=1 or RKP=0, or a data set with V- or VB-format
records and either KEYLOC=1 or RKP=4. (The code (8)'1'B would overwrite the
first byte of the recorded key.) Note that the EVENT option is not supported for
SEQUENTIAL access of indexed data sets.

You can position INDEXED KEYED files opened for SEQUENTIAL INPUT and
SEQUENTIAL UPDATE to a particular record within the data set by using either a
READ KEY or a DELETE KEY operation that specifies the key of the desired
record. Thereafter, successive READ statements without the KEY option access
the next records in the data set sequentially. A subsequent READ statement
without the KEY option causes the record with the next higher recorded key to be
read (even if the keyed record has not been found).

Define the length of the recorded keys in an indexed data set with the
KEYLENGTH ENVIRONMENT option or the KEYLEN subparameter of the DD
statement that defines the data set. If the length of a source key is greater than
the specified length of the recorded keys, the source key is truncated on the right.

The effect of supplying a source key that is shorter than the recorded keys in the
data set differs according to whether or not you specify the GENKEY option in the
ENVIRONMENT attribute. In the absence of the GENKEY option, the source key is
padded on the right with blanks to the length you specify in the KEYLENGTH
option of the ENVIRONMENT attribute, and the record with this padded key is read
(if such a record exists). If you specify the GENKEY option, the source key is
interpreted as a generic key, and the first record with a key in the class identified
by this generic key is read. (For further details, see “GENKEY Option — Key
Classification” on page 118.)

PL/I for MVS & VM Programming Guide

Using Direct Access

You can open a direct file that is used to access an indexed data set with either the
INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute.

You can use a DIRECT UPDATE file to retrieve, add, delete, or replace records in
an indexed data set according to the following conventions:

Retrieval If you include the subparameter OPTCD=L in the DD statement that
defines the data set, dummy records are not made available by a
READ statement (the KEY condition is raised).

Addition A WRITE statement that includes a unique key causes a record to
be inserted into the data set. If the key is the same as the recorded
key of a dummy record, the new record replaces the dummy record.
If the key is the same as the recorded key of a record that is not
marked as deleted, or if there is no space in the data set for the
record, the KEY condition is raised.

Deletion The record specified by the source key in a DELETE statement is
retrieved, marked as deleted, and rewritten into the data set. The
effect of the DELETE statement is to insert the value (8)'1'B in the
first byte of the data in a record. Deletion is possible only if you
specify OPTCD-=L in the DD statement that defines the data set
when you create it. If the data set has F-format blocked records with
RKP=0 or KEYLOC=1, or V-format records with RKP=4 or
KEYLOC=1, records cannot be deleted. (The code (8)'1'B would
overwrite the embedded keys.)

Replacement
The record specified by a source key in a REWRITE statement is
replaced by the new record. If the data set contains F-format
blocked records, a record replaced with a REWRITE statement
causes an implicit READ statement to be executed unless the
previous I/O statement was a READ statement that obtained the
record to be replaced. If the data set contains V-format records and
the updated record has a length different from that of the record
read, the whole of the remainder of the track will be removed, and
can cause data to be moved to an overflow track.

Essential Information

To access an indexed data set, you must define it in one, two, or three DD
statements. The DD statements must correspond with those used when the data
set is created. The following paragraphs indicate the essential information you
must include in each DD statement. Table 29 on page 182 summarizes this
information.

Chapter 9. Defining and Using Indexed Data Sets 181

Table 29. Accessing an Indexed Data Set: Essential Parameters of DD Statement

When required What you must state Parameters
Always Name of data set DSNAME=
Disposition of DISP=
data set
Data control block DCB=
information
If data set not cataloged Input device UNIT= or
VOLUME=REF=
Volume serial number VOLUME=SER=

If the data set is cataloged, you need supply only the following information in each
DD statement:

e The name of the data set (DSNAME parameter). The operating system will
locate the information that describes the data set in the system catalog and, if
necessary, will request the operator to mount the volume that contains it.

e Confirmation that the data set exists (DISP parameter).

If the data set is not cataloged, you must, in addition, specify the device that will
process the data set and give the serial number of the volume that contains it
(UNIT and VOLUME parameters).

Example

The program in Figure 42 on page 183 updates the data set of the previous
example (Figure 41 on page 179) and prints out its new contents. The input data
includes the following codes to indicate the operations required:

A Add a new record.
C Change an existing record.
D Delete an existing record.

182 PL/I for MVS & VM Programming Guide

//EX8#20 JOB
//STEP1 EXEC IELICLG
//PLI.SYSIN DD =
DIRUPDT: PROC OPTIONS(MAIN);
DCL DIREC FILE RECORD KEYED ENV(INDEXED),
NUMBER CHAR(3),NAME CHAR(20),CODE CHAR(1),0NCODE BUILTIN,
EOF BIT(1) INIT('0'B);
ON ENDFILE(SYSIN) EOF='1'B;
ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
('NOT FOUND:',NAME) (A(15),A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
('DUPLICATE:',NAME) (A(15),A);
END;
OPEN FILE(DIREC) DIRECT UPDATE;
GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)
(COLUMN(1),A(20),A(3),A(1));
DO WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)
(A(1),A(20) ,A(1) ,A(3),A(1),A(1));
SELECT (CODE);
WHEN('A') WRITE FILE(DIREC) FROM(NUMBER) KEYFROM(NAME);
WHEN('C') REWRITE FILE(DIREC) FROM(NUMBER) KEY(NAME);
WHEN('D') DELETE FILE(DIREC) KEY(NAME);
OTHERWISE PUT FILE(SYSPRINT) SKIP
EDIT('INVALID CODE:',NAME) (A(15),A);
END;
GET FILE(SYSIN) EDIT(NAME,NUMBER,CODE)
(COLUMN(1),A(20),A(3),A(1));
END;
CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;
EOF='0'B;
ON ENDFILE(DIREC) EOF='1'B;
READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);
DO WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT(NAME,NUMBER) (A);
READ FILE(DIREC) INTO(NUMBER) KEYTO(NAME);
END;
CLOSE FILE(DIREC); END DIRUPDT;
/*
//GO.DIREC DD DSN=HPU8.TELNO(INDEX),DISP=(OLD,DELETE),
// VOL=SER=nnnnnn,UNIT=SYSDA

// DD DSN=HPU8.TELNO(PRIME),DISP=(OLD,DELETE),
// VOL=SER=nnnnnn,UNIT=SYSDA
// DD DSN=HPU8.TELNO(OVFLOW),DISP=(OLD,DELETE),

// VOL=SER=nnnnnn,UNIT=SYSDA
//GO.SYSIN DD =

NEWMAN,M.W. 516C
GOODFELLOW,D.T. 889A
MILES,R. D
HARVEY,C.D.W. 209A
BARTLETT,S.G. 183A
CORY,G. D
READ,K.M. 001A
PITT,W.H.

ROLF,D.E. D
ELLIOTT,D. 291C
HASTINS,G.M. D
BRAMLEY,O0.H. 439
/*

Figure 42. Updating an Indexed Data Set

Chapter 9. Defining and Using Indexed Data Sets 183

Reorganizing an Indexed Data Set

It is necessary to reorganize an indexed data set periodically because the addition
of records to the data set results in an increasing number of records in the overflow
area. Therefore, even if the overflow area does not eventually become full, the
average time required for the direct retrieval of a record will increase. The
frequency of reorganization depends on how often you update the data set, on how
much storage is available in the data set, and on your timing requirements.

Reorganizing the data set also eliminates records that are marked as “deleted” but
are still present within the data set.

There are two ways to reorganize an indexed data set:

¢ Read the data set into an area of main storage or onto a temporary
consecutive data set, and then recreate it in the original area of auxiliary
storage.

* Read the data set sequentially and write it into a new area of auxiliary storage.
You can then release the original auxiliary storage.

184 PL/I for MVS & VM Programming Guide

Chapter 10. Defining and Using Regional Data Sets

This chapter covers regional data set organization, data transmission statements,
and ENVIRONMENT options that define regional data sets. How to create and
access regional data sets for each type of regional organization is then discussed.

A data set with regional organization is divided into regions, each of which is
identified by a region number, and each of which can contain one record or more
than one record, depending on the type of regional organization. The regions are
numbered in succession, beginning with zero, and a record can be accessed by
specifying its region number, and perhaps a key, in a data transmission statement.

Regional data sets are confined to direct-access devices.

Regional organization of a data set allows you to control the physical placement of
records in the data set, and to optimize the access time for a particular application.
Such optimization is not available with consecutive or indexed organization, in
which successive records are written either in strict physical sequence or in logical
sequence depending on ascending key values; neither of these methods takes full
advantage of the characteristics of direct-access storage devices.

You can create a regional data set in a manner similar to a consecutive or indexed
data set, presenting records in the order of ascending region numbers; alternatively,
you can use direct-access, in which you present records in random sequence and
insert them directly into preformatted regions. Once you create a regional data set,
you can access it by using a file with the attributes SEQUENTIAL or DIRECT as
well as INPUT or UPDATE. You do not need to specify either a region number or
a key if the data set is associated with a SEQUENTIAL INPUT or SEQUENTIAL
UPDATE file. When the file has the DIRECT attribute, you can retrieve, add,
delete, and replace records at random.

Records within a regional data set are either actual records containing valid data or
dummy records. The nature of the dummy records depends on the type of regional
organization; the three types of regional organization are described below.

The major advantage of regional organization over other types of data set
organization is that it allows you to control the relative placement of records; by
judicious programming, you can optimize record access in terms of device
capabilities and the requirements of particular applications.

Direct access of regional data sets is quicker than that of indexed data sets, but
regional data sets have the disadvantage that sequential processing can present
records in random sequence; the order of sequential retrieval is not necessarily that
in which the records were presented, nor need it be related to the relative key
values.

Table 30 on page 186 lists the data transmission statements and options that you
can use to create and access a regional data set.

© Copyright IBM Corp. 1964, 1995 185

Table 30 (Page 1 of 2). Statements and options allowed for creating and accessing

regional data sets

File
declaration 1

Valid statements, 2 with options

you must include

Other options you
can also include

SEQUENTIAL OUTPUT
BUFFERED

WRITE FILE(file-reference)

FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FROM(file-reference)

SET(pointer-reference)

KEYFROM(expression);
SEQUENTIAL OUTPUT WRITE FILE(file-reference)
UNBUFFERED FROM(reference)

KEYFROM(expression); EVENT (event-reference)
SEQUENTIAL INPUT READ FILE(file-reference) KEYTO(reference)
BUFFERED INTO(reference);

READ FILE(file-reference) KEYTO(reference)

SET(pointer-reference);

READ FILE(file-reference)

IGNORE((expression);
SEQUENTIAL INPUT READ FILE(file-reference) EVENT (event-reference)
UNBUFFERED INTO(reference); and/or

READ FILE(file-reference)
IGNORE(expression);

KEYTO(reference)

EVENT (event-reference)

SEQUENTIAL UPDATES3
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)
IGNORE(expression);

REWRITE FILE(file-reference);

KEYTO(reference)

KEYTO(reference)

FROM(reference)

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
IGNORE (expression);

REWRITE FILE(file-reference)

FROM(reference);

EVENT (event-reference)
and/or
KEYTO(reference)

EVENT (event-reference)

EVENT (event-reference)

DIRECT OUTPUT

WRITE FILE(file-reference)

FROM(reference)
KEYFROM(expression);

EVENT (event-reference)

DIRECT INPUT

READ FILE(file-reference)
INTO(reference)
KEY (expression);

EVENT (event-reference)

PL/I for MVS & VM Programming Guide

Table 30 (Page 2 of 2). Statements and options allowed for creating and accessing

regional data sets

File
declaration 1

Valid statements, 2 with options

you must include

Other options you
can also include

DIRECT UPDATE

READ FILE(file-reference)
INTO(reference)
KEY (expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY (expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY (expression);

EVENT (event-reference)

EVENT (event-reference)

EVENT (event-reference)

EVENT (event-reference)

DIRECT UPDATE
EXCLUSIVE

READ FILE(file-reference)
INTO(reference)
KEY (expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY (expression);

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

DELETE FILE(file-reference)
KEY (expression);

UNLOCK FILE(file-reference)
KEY (expression);

EVENT (event-reference)
and/or
NOLOCK

EVENT (event-reference)

EVENT (event-reference)

EVENT (event-reference)

Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if
you use any of the options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)

IGNORE(L);

3. The file must not have the UPDATE attribute when creating new data sets.

Regional(1) files are supported under VM with the following restrictions:

e More than one regional file with keys cannot be open at the same time.

¢ You must not increment KEY(TRACKID/REGION NUMBER) unless 255 records
are written on the first logical track, and 256 records on each subsequent

logical track.

e You must not write files with a dependency on the physical track length of a
direct access device.

e When you create a file, you must specify the XTENT option of the FILEDEF

command and it must be equal to the number of records in the file to be

created.

The examples in this chapter are given using JCL. However, the information

presented in the JCL examples is applicable to the FILEDEF VM command you

Chapter 10. Defining and Using Regional Data Sets

187

issue. For more information on the FILEDEF command, see the VM/ESA CMS
Command Reference and the VM/ESA CMS User's Guide.

Defining Files for a Regional Data Set

Use a file declaration with the following attributes to define a sequential regional
data set:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED | UNBUFFERED
[KEYED]
ENVIRONMENT (options);

To define a direct regional data set, use a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
DIRECT
UNBUFFERED
[EXCLUSIVE] (cannot be used with INPUT or OUTPUT)
ENVIRONMENT (options);

Default file attributes are shown in Table 15 on page 111. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Specifying ENVIRONMENT Options

188

The ENVIRONMENT options applicable to regional data sets are:

REGIONAL({1]2]3})
FIV|VS|U

RECSIZE (record-length)
BLKSIZE(block-size)
SCALARVARYING

COBOL

BUFFERS (n)
KEYLENGTH(n)

NCP(n)

TRKOFL

REGIONAL Option
Use the REGIONAL option to define a file with regional organization.

\ 4
A

»—REGIONAL—(l:l)
2]
3

11213
specifies REGIONAL(1), REGIONAL(2), or REGIONAL(3), respectively.

REGIONAL(1)
specifies that the data set contains F-format records that do not have recorded
keys. Each region in the data set contains only one record; therefore, each

PL/I for MVS & VM Programming Guide

region number corresponds to a relative record within the data set (that is,
region numbers start with 0 at the beginning of the data set).

Although REGIONAL(1) data sets have no recorded keys, you can use
REGIONAL(1) DIRECT INPUT or UPDATE files to process data sets that do
have recorded keys. In particular, to access REGIONAL(2) and REGIONAL(3)
data sets, use a file declared with REGIONAL(1) organization.

REGIONAL(2)
specifies that the data set contains F-format records that have recorded keys.
Each region in the data set contains only one record.

REGIONAL(2) differs from REGIONAL(1) in that REGIONAL(2) records contain
recorded keys and that records are not necessarily in the specified region; the
specified region identifies a starting point.

For files you create sequentially, the record is written in the specified region.

For files with the DIRECT attribute, a record is written in the first vacant space
on or after the track that contains the region number you specify in the WRITE
statement. For retrieval, the region number specified in the source key is
employed to locate the specified region. The method of search is described
further in the REGIONAL(2) discussion later in this chapter.

REGIONAL(3)
specifies that the data set contains F-format, V-format, VS-format, or U-format
records with recorded keys. Each region in the data set corresponds with a
track on a direct-access device and can contain one or more records.

REGIONAL(3) organization is similar to REGIONAL(2) in that records contain
recorded keys, but differs in that a region for REGIONAL(3) corresponds to a
track and not a record position.

Direct access of a REGIONAL(3) data set employs the region number specified
in a source key to locate the required region. Once the region has been
located, a sequential search is made for space to add a record, or for a record
that has a recorded key identical with that supplied in the source key.

VS-format records can span more than one region. With REGIONAL(3)
organization, the use of VS-format removes the limitations on block size
imposed by the physical characteristics of the direct-access device. If the
record length exceeds the size of a track, or if there is no room left on the
current track for the record, the record will be spanned over one or more tracks.

REGIONAL(1) organization is most suited to applications where there are no
duplicate region numbers, and where most of the regions will be filled (reducing
wasted space in the data set). REGIONAL(2) and REGIONAL(3) are more
appropriate where records are identified by numbers that are thinly distributed over
a wide range. You can include in your program an algorithm that derives the
region number from the number that identifies a record in such a manner as to
optimize the use of space within the data set; duplicate region numbers can occur
but, unless they are on the same track, their only effect might be to lengthen the
search time for records with duplicate region numbers.

The examples throughout this chapter illustrate typical applications of all three types
of regional organization.

Chapter 10. Defining and Using Regional Data Sets 189

Using Keys with REGIONAL Data Sets

There are two kinds of keys, recorded keys and source keys. A recorded key is a
character string that immediately precedes each record in the data set to identify
that record; its length cannot exceed 255 characters. A source key is the character
value of the expression that appears in the KEY or KEYFROM option of a data
transmission statement to identify the record to which the statement refers. When
you access a record in a regional data set, the source key gives a region number,
and can also give a recorded key.

You specify the length of the recorded keys in a regional data set with the
KEYLENGTH option of the ENVIRONMENT attribute, or the KEYLEN subparameter
on the DD statement. Unlike the keys for indexed data sets, recorded keys in a
regional data set are never embedded within the record.

Using REGIONAL(1) Data Sets

190

In a REGIONAL(1) data set, since there are no recorded keys, the region number
serves as the sole identification of a particular record. The character value of the
source key should represent an unsigned decimal integer that should not exceed
16777215 (although the actual number of records allowed can be smaller,
depending on a combination of record size, device capacity, and limits of your
access method. For direct regional(1) files with fixed format records, the maximum
number of tracks which can be addressed by relative track addressing is 65,536.)
If the region number exceeds this figure, it is treated as modulo 16777216; for
instance, 16777226 is treated as 10. Only the characters 0 through 9 and the
blank character are valid in the source key; leading blanks are interpreted as zeros.
Embedded blanks are not allowed in the number; the first embedded blank, if any,
terminates the region number. If more than 8 characters appear in the source key,
only the rightmost 8 are used as the region number; if there are fewer than 8
characters, blanks (interpreted as zeros) are inserted on the left.

Dummy Records

Records in a REGIONAL(1) data set are either actual records containing valid data
or dummy records. A dummy record in a REGIONAL(1) data set is identified by
the constant (8)'1'B in its first byte. Although such dummy records are inserted in
the data set either when it is created or when a record is deleted, they are not
ignored when the data set is read; your PL/I program must be prepared to
recognize them. You can replace dummy records with valid data. Note that if you
insert (8)'1'B in the first byte, the record can be lost if you copy the file onto a data
set that has dummy records that are not retrieved.

PL/I for MVS & VM Programming Guide

Creating a REGIONAL(1) Data Set

You can create a REGIONAL(1) data set either sequentially or by direct-access.
Table 30 on page 186 shows the statements and options for creating a regional
data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, the opening of
the file causes all tracks on the data set to be cleared, and a capacity record to be
written at the beginning of each track to record the amount of space available on
that track. You must present records in ascending order of region numbers; any
region you omit from the sequence is filled with a dummy record. If there is an
error in the sequence, or if you present a duplicate key, the KEY condition is
raised. When the file is closed, any space remaining at the end of the current
extent is filled with dummy records.

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement might raise the ERROR condition.

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent
allocated to the data set is filled with dummy records when the file is opened. You
can present records in random order; if you present a duplicate, the existing record
will be overwritten.

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

Example

Creating a REGIONAL(1) data set is illustrated in Figure 43 on page 192. The
data set is a list of telephone numbers with the names of the subscribers to whom
they are allocated. The telephone numbers correspond with the region numbers in
the data set, the data in each occupied region being a subscriber's name.

Chapter 10. Defining and Using Regional Data Sets 191

//EX9 JOB
//STEP1 EXEC IEL1CLG,PARM.PLI='NOP,MAR(1,72)"',PARM.LKED="LIST"
//PLI.SYSIN DD =
CRR1: PROC OPTIONS(MAIN);
/* CREATING A REGIONAL(1) DATA SET - PHONE DIRECTORY */

DCL NOS FILE RECORD OUTPUT DIRECT KEYED ENV(REGIONAL(1));
DCL SYSIN FILE INPUT RECORD;
DCL SYSIN_REC BIT(1) INIT('1'B);
DCL 1 CARD,
2 NAME CHAR(20),
2 NUMBER CHAR(2),
2 CARD_1 CHAR(58);
DCL IOFIELD CHAR(20);

ON ENDFILE (SYSIN) SYSIN_REC = '0'B;
OPEN FILE(NOS);
READ FILE(SYSIN) INTO(CARD);

DO WHILE(SYSIN_REC);
IOFIELD = NAME;
WRITE FILE(NOS) FROM(IOFIELD) KEYFROM(NUMBER);
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
READ FILE(SYSIN) INTO(CARD);
END;

CLOSE FILE(NOS);
END CRR1;
/*
//GO.SYSLMOD DD DSN=8&GOSET,DISP=(0OLD,DELETE)
//G0.NOS DD DSN=NOS,UNIT=SYSDA,SPACE=(20,100),

// DCB=(RECFM=F,BLKSIZE=20,DSORG=DA) ,DISP=(NEW,KEEP)
//GO.SYSIN DD =
ACTION,G. 12
BAKER,R. 13
BRAMLEY,0.H. 28
CHEESNAME, L. 11
CORY,G. 36
ELLIOTT,D. 85
FIGGINS,E.S. 43
HARVEY,C.D.W. 25
HASTINGS,G.M. 31
KENDALL,J.G. 24
LANCASTER,W.R. 64
MILES,R. 23
NEWMAN ,M.W. 40
PITT,W.H. 55
ROLF,D.E. 14
SHEERS,C.D. 21
SURCLIFFE,M. 42
TAYLOR,G.C. 47
WILTON,L.W. 44
WINSTONE,E.M. 37
/*

Figure 43. Creating a REGIONAL(1) Data Set

Accessing and Updating a REGIONAL(1) Data Set

192

Once you create a REGIONAL(1) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. You can
open it for OUTPUT only if the existing data set is to be overwritten. Table 30 on
page 186 shows the statements and options for accessing a regional data set.

PL/I for MVS & VM Programming Guide

Sequential Access

To open a SEQUENTIAL file that is used to process a REGIONAL(1) data set, use
either the INPUT or UPDATE attribute. You must not include the KEY option in
data transmission statements, but the file can have the KEYED attribute, since you
can use the KEYTO option. If the target character string referenced in the KEYTO
option has more than 8 characters, the value returned (the 8-character region
number) is padded on the left with blanks. If the target string has fewer than 8
characters, the value returned is truncated on the left.

Sequential access is in the order of ascending region numbers. All records are
retrieved, whether dummy or actual, and you must ensure that your PL/I program
recognizes dummy records.

Using sequential input with a REGIONAL(1) data set, you can read all the records
in ascending region-number sequence, and in sequential update you can read and
rewrite each record in turn.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(1) data set are identical
to those for a consecutive data set. Consecutive data sets are discussed in detail
in Chapter 8, “Defining and Using Consecutive Data Sets” on page 129.

Direct Access

To open a DIRECT file that is used to process a REGIONAL(1) data set you can
use either the INPUT or the UPDATE attribute. All data transmission statements
must include source keys; the DIRECT attribute implies the KEYED attribute.

Use DIRECT UPDATE files to retrieve, add, delete, or replace records in a
REGIONAL(1) data set according to the following conventions:

Retrieval All records, whether dummy or actual, are retrieved. Your program
must recognize dummy records.

Addition A WRITE statement substitutes a new record for the existing
record (actual or dummy) in the region specified by the source key.

Deletion The record you specify by the source key in a DELETE statement
is converted to a dummy record.

Replacement The record you specify by the source key in a REWRITE
statement, whether dummy or actual, is replaced.

Example

Updating a REGIONAL(1) data set is illustrated in Figure 44 on page 194. Like
the program in Figure 42 on page 183, this program updates the data set and lists
its contents. Before each new or updated record is written, the existing record in
the region is tested to ensure that it is a dummy; this is necessary because a
WRITE statement can overwrite an existing record in a REGIONAL(1) data set
even if it is not a dummy. Similarly, during the sequential reading and printing of
the contents of the data set, each record is tested and dummy records are not
printed.

Chapter 10. Defining and Using Regional Data Sets 193

//EX10 JOB
//STEP2 ~ EXEC IELICLG,PARM.PLI='NOP,MAR(1,72)"',PARM.LKED="LIST'
//PLI.SYSIN DD =
ACR1: PROC OPTIONS (MAIN);
/* UPDATING A REGIONAL(1) DATA SET - PHONE DIRECTORY */
DCL NOS FILE RECORD KEYED ENV(REGIONAL(1));
DCL SYSIN FILE INPUT RECORD;
DCL (SYSIN_REC,NOS_REC) BIT(1) INIT('1'B);
DCL 1 CARD,
NAME CHAR(20),
(NEWNO,OLDNO) CHAR(2),
CARD_1 CHAR(1),
CODE CHAR(1),
2 CARD_2 CHAR(54);
DCL IOFIELD CHAR(20);
DCL BYTE CHAR(1) DEF IOFIELD;

2
2
2
2

ON ENDFILE(SYSIN) SYSIN_REC = '0'B;
OPEN FILE (NOS) DIRECT UPDATE;
READ FILE(SYSIN) INTO(CARD);

DO WHILE(SYSIN REC);
SELECT(CODE) ;
WHEN('A','C') DO;
IF CODE = 'C' THEN
DELETE FILE(NOS) KEY(OLDNO);
READ FILE(NOS) KEY(NEWNO) INTO(IOFIELD);
IF UNSPEC(BYTE) = (8)'1'B
THEN WRITE FILE(NOS) KEYFROM(NEWNO) FROM(NAME);
ELSE PUT FILE(SYSPRINT) SKIP LIST ('DUPLICATE:',NAME);
END;
WHEN('D') DELETE FILE(NOS) KEY(OLDNO);
OTHERWISE PUT FILE(SYSPRINT) SKIP LIST ('INVALID CODE:',NAME);
END;
READ FILE(SYSIN) INTO(CARD);
END;

CLOSE FILE(SYSIN),FILE(NOS);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(NOS) SEQUENTIAL INPUT;
ON ENDFILE(NOS) NOS_REC = '0'B;
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
DO WHILE(NOS_REC);
IF UNSPEC(BYTE) —-= (8)'1'B
THEN PUT FILE(SYSPRINT) SKIP EDIT (NEWNO,IOFIELD)(A(2),X(3),A);
PUT FILE(SYSPRINT) SKIP EDIT (IOFIELD) (A);
READ FILE(NOS) INTO(IOFIELD) KEYTO(NEWNO);
END;
CLOSE FILE(NOS);
END ACRI;
/*
//GO.NOS DD DSN=J44PLI.NOS,DISP=(OLD,DELETE),UNIT=SYSDA,VOL=SER=nnnnnn
//GO.SYSIN DD =

NEWMAN,M.W. 5640 C
GOODFELLOW,D.T. 89 A
MILES,R. 23D
HARVEY,C.D.W. 29 A
BARTLETT,S.G. 13 A
CORY,G. 36D
READ,K.M. 01 A
PITT,W.H. 55
ROLF,D.F. 14 D
ELLIOTT,D. 4285 C
HASTINGS,G.M. 31D
BRAMLEY,0.H. 4928 C
/*

Figure 44. Updating a REGIONAL(1) Data Set

194 PL/I for MVS & VM Programming Guide

Using REGIONAL(2) Data Sets

In a REGIONAL(2) data set, each record is identified by a recorded key that
immediately precedes the record. The actual position of the record in the data set
relative to other records is determined not by its recorded key, but by the region
number that you supply in the source key of the WRITE statement that adds the
record to the data set.

When you add a record to the data set by direct-access, it is written with its
recorded key in the first available space after the beginning of the track that
contains the region specified. When a record is read by direct-access, the search
for a record with the appropriate recorded key begins at the start of the track that
contains the region specified. Unless it is limited by the LIMCT subparameter of
the DD statement that defines the data set, the search for a record or for space to
add a record continues right through to the end of the data set and then from the
beginning until the entire data set has been covered. The closer a record is to the
specified region, the more quickly it can be accessed.

Using Keys for REGIONAL(2) and (3) Data Sets

The character value of the source key can be thought of as having two logical
parts—the region number and a comparison key. On output, the comparison key is
written as the recorded key; for input, it is compared with the recorded key.

The rightmost 8 characters of the source key make up the region number, which
must be the character representation of a fixed decimal integer that does not
exceed 16777215 (although the actual number of records allowed can be smaller,
depending on a combination of record size, device capacity, and limits of your
access method). If the region number exceeds this figure, it is treated as modulo
16777216; for instance, 16777226 is treated as 10. You can only specify the
characters 0 through 9 and the blank character; leading blanks are interpreted as
zeros. Embedded blanks are not allowed in the number; the first embedded blank,
if any, terminates the region number. The comparison key is a character string that
occupies the left hand side of the source key, and can overlap or be distinct from
the region number, from which it can be separated by other nonsignificant
characters.

Specify the length of the comparison key either with the KEYLEN subparameter of
the DD statement for the data set or the KEYLENGTH option of the
ENVIRONMENT attribute. If the source key is shorter than the key length you
specify, it is extended on the right with blanks. To retrieve a record, the comparison
key must exactly match the recorded key of the record. The comparison key can
include the region number, in which case the source key and the comparison key
are identical; or, you can use only part of the source key. The length of the
comparison key is always equal to KEYLENGTH or KEYLEN; if the source key is
longer than KEYLEN+8, the characters in the source key between the comparison
key and the region number are ignored.

Chapter 10. Defining and Using Regional Data Sets 195

196

When generating the key, you should consider the rules for conversion from
arithmetic to character string. For example, the following group is incorrect:

DCL KEYS CHAR(8);
DO I=1 TO 10
KEYS=1;
WRITE FILE(F) FROM (R)
KEYFROM (KEYS);
END;

The default for I is FIXED BINARY(15,0), which requires not 8 but 9 characters to
contain the character string representation of the arithmetic values. In this example
the rightmost digit is truncated.

Consider the following examples of source keys (the character “b” represents a
blank):

KEY ('JOHNbDOEbbbbbb12363251")

The rightmost 8 characters make up the region specification, the relative number of
the record. Assume that the associated DD statement has the subparameter
KEYLEN=14. In retrieving a record, the search begins with the beginning of the
track that contains the region number 12363251, until the record is found having
the recorded key of JOHNbDOEbbbbbb.

If the subparameter is KEYLEN=22, the search still begins at the same place, but
since the comparison and the source key are the same length, the search would be
for a record having the recorded key 'JOHNbDOEbbbbbb12363251".

KEY (' JOHNbDOEbbbbbbDIVISIONb423bbbb34627 ")

In this example, the rightmost 8 characters contain leading blanks, which are
interpreted as zeros. The search begins at region number 00034627. If
KEYLEN=14 is specified, the characters DIVISIONb423b will be ignored.

Assume that COUNTER is declared FIXED BINARY(21) and NAME is declared
CHARACTER(15). You could specify the key like so:

KEY (NAME || COUNTER)

The value of COUNTER will be converted to a character string of 11 characters.
(The rules for conversion specify that a binary value of this length, when converted
to character, will result in a string of length 11—three blanks followed by eight
decimal digits.) The value of the rightmost eight characters of the converted string
is taken to be the region specification. Then if the keylength specification is
KEYLEN=15, the value of NAME is taken to be the comparison specification.

Dummy Records

A REGIONAL(2) data set can contain dummy records. A dummy record consists of
a dummy key and dummy data. A dummy key is identified by the constant (8)'1'B
in its first byte. The first byte of the data contains the sequence number of the
record on the track.

The program inserts dummy records either when the data set is created or when a
record is deleted. The dummy records are ignored when the program reads the
data set.

However, you can replace dummy records with valid data.

PL/I for MVS & VM Programming Guide

Creating a REGIONAL(2) Data Set

You can create a REGIONAL(2) data set either sequentially or by direct-access. In
either case, when the file associated with the data set is opened, the data set is
initialized with capacity records specifying the amount of space available on each
track. Table 30 on page 186 shows the statements and options for creating a
regional data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, you must
present records in ascending order of region numbers; any region you omit from
the sequence is filled with a dummy record. If you make an error in the sequence,
including attempting to place more than one record in the same region, the KEY
condition is raised. When the file is closed, any space remaining at the end of the
current extent is filled with dummy records.

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement can raise the ERROR condition.

If you use a DIRECT OUTPUT file to create the current extent of a data set, the
whole primary extent allocated to the data set is filled with dummy records when
the file is opened. You can present records in random order, and no condition is
raised by duplicate keys. Each record is substituted for the first dummy record on
the track that contains the region specified in the source key; if there are no dummy
records on the track, the record is substituted for the first dummy record
encountered on a subsequent track, unless the LIMCT subparameter specifies that
the search cannot reach beyond this track. (Note that it is possible to place
records with identical recorded keys in the data set).

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

Example

The use of REGIONAL(2) data sets is illustrated in Figure 45 on page 198,
Figure 46 on page 200, and Figure 47 on page 201. The programs in these
figures perform the same functions as those given for REGIONAL(3), with which
they can be compared.

The programs depict a library processing scheme, in which loans of books are
recorded and reminders are issued for overdue books. Two data sets,
SAMPL.STOCK and SAMPL.LOANS are used. SAMPL.STOCK contains
descriptions of the books in the library, and uses the 4-digit book reference
numbers as recorded keys; a simple algorithm is used to derive the region humbers
from the reference numbers. (It is assumed that there are about 1000 books, each
with a number in the range 1000-9999.) SAMPL.LOANS contains records of books
that are on loan; each record comprises two dates, the date of issue and the date
of the last reminder. Each reader is identified by a 3-digit reference number, which
is used as a region number in SAMPL.LOANS; the reader and book numbers are
concatenated to form the recorded keys.

Figure 45 on page 198 shows the creation of the data sets SAMPL.STOCK and
SAMPL.LOANS. The file LOANS, which is used to create the data set
SAMPL.LOANS, is opened for direct output to format the data set; the file is closed
immediately without any records being written onto the data set. Direct creation is

Chapter 10. Defining and Using Regional Data Sets 197

also used for the data set SAMPL.STOCK because, even if the input data is
presented in ascending reference number order, identical region numbers might be
derived from successive reference numbers.

//EX11 JOB
//STEP1 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST'
//PLI.SYSIN DD =
%PROCESS MAR(1,72);
/* CREATING A REGIONAL(2) DATA SET - LIBRARY LOANS */
CRR2: PROC OPTIONS(MAIN);

DCL (LOANS,STOCK) FILE RECORD KEYED ENV(REGIONAL(2));

DCL 1 BOOK,
2 AUTHOR CHAR(25),
2 TITLE CHAR(50),
2 QTY FIXED DEC(3);

DCL NUMBER CHAR(4);
DCL INTER FIXED DEC(5);
DCL REGION CHAR(8);
DCL EOF BIT(1) INIT('0'B);
/% INITIALIZE (FORMAT) LOANS DATA SET */

OPEN FILE(LOANS) DIRECT OUTPUT;
CLOSE FILE(LOANS);

ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(STOCK) DIRECT OUTPUT;

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

DO WHILE (-EOF);

INTER = (NUMBER-1000)/9; /* REGIONS © TO 999 */
REGION = INTER;

WRITE FILE(STOCK) FROM (BOOK) KEYFROM(NUMBER||REGION);

PUT FILE(SYSPRINT) SKIP EDIT (BOOK) (A);

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

END;
CLOSE FILE(STOCK);
END CRR2;
/*
//GO.LOANS DD DSN=SAMPL.LOANS,UNIT=SYSDA,SPACE=(12,16000),
/1 DCB=(RECFM=F,BLKSIZE=12,KEYLEN=7),
// DISP=(NEW,CATLG)
//G0.STOCK DD DSN=SAMPL.STOCK,UNIT=SYSDA,SPACE=(77,16050),
// DCB=(RECFM=F,BLKSIZE=77 ,KEYLEN=4),
/1 DISP=(NEW,CATLG)

//GO.SYSIN DD *

'1015' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1

'1214"' 'L.CARROLL' 'THE HUNTING OF THE SNARK' 1

'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1

'3083' 'V.M.HUGO' 'LES MISERABLES' 2

'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2

'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5999' '0.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3

'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1

'9795' 'H.G.WELLS' 'THE TIME MACHINE' 3

/*

Figure 45. Creating a REGIONAL(2) Data Set

Accessing and Updating a REGIONAL(2) Data Set

Once you create a REGIONAL(2) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. It cannot
be opened for OUTPUT. Table 30 on page 186 shows the statements and options
for accessing a regional data set.

198 PL/I for MVS & VM Programming Guide

Sequential Access

To open a SEQUENTIAL file that is used to process a REGIONAL(2) data set, use
either the INPUT or UPDATE attribute. The data transmission statements must not
include the KEY option, but the file can have the KEYED attribute since you can
use the KEYTO option. With the KEYTO option you specify that the recorded key
only is to be assigned to the specified variable. If the character string referenced in
the KEYTO option has more characters than are specified in the KEYLEN
subparameter, the value returned (the recorded key) is extended on the right with
blanks; if it has fewer characters than specified by KEYLEN, the value returned is
truncated on the right.

Sequential access is in the physical order in which the records exist on the data
set, not necessarily in the order in which they were added to the data set. The
recorded keys do not affect the order of sequential access. Dummy records are
not retrieved.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(2) data set are identical
with those for a CONSECUTIVE data set (described above).

Direct Access

To open a DIRECT file that is used to process a REGIONAL(2) data set, use either
the INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute. The
search for each record is commenced at the start of the track containing the region
number indicated by the key.

Using direct input, you can read any record by supplying its region number and its
recorded key; in direct update, you can read or delete existing records or add new
ones.

Retrieval Dummy records are not made available by a READ statement. The
KEY condition is raised if a record with the recorded key you
specify is not found.

Addition A WRITE statement substitutes the new record for the first dummy
record on the track containing the region specified by the source
key. If there are no dummy records on this track, and you allow an
extended search by the LIMCT subparameter, the new record
replaces the first dummy record encountered during the search.

Deletion The record you specify by the source key in a DELETE statement is
converted to a dummy record.

Replacement The record you specify by the source key in a REWRITE statement
must exist; a REWRITE statement cannot be used to replace a
dummy record. If it does not exist, the KEY condition is raised.

Example

The data set SAMPL.LOANS, described in “Example” on page 197, is updated
directly in Figure 46 on page 200. Each item of input data, read from a source
input, comprises a book number, a reader number, and a code to indicate whether
it refers to a new issue (l), a returned book (R), or a renewal (A). The date is
written in both the issue-date and reminder-date portions of a new record or an
updated record.

Chapter 10. Defining and Using Regional Data Sets 199

200

A sequential update of the same program is shown in the program in Figure 47 on
page 201. The sequential update file (LOANS) processes the records in the data
set SAMPL.LOANS, and a direct input file (STOCK) obtains the book description
from the data set SAMPL.STOCK for use in a reminder note. Each record from
SAMPL.LOANS is tested to see whether the last reminder was issued more than a
month ago; if necessary, a reminder note is issued and the current date is written in
the reminder-date field of the record.

//EX12 JOB
//STEP2 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST'
//PLI.SYSIN DD =
%PROCESS MAR(1,72);
DUR2: PROC OPTIONS(MAIN);
/* UPDATING A REGIONAL(2) DATA SET DIRECTLY - LIBRARY LOANS*/

DCL LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAL(2));
DCL 1 RECORD,
2 (ISSUE,REMINDER) CHAR(6);
DCL SYSIN FILE RECORD INPUT SEQUENTIAL;
DCL SYSIN_REC BIT(1) INIT('1'B) STATIC;
DCL 1 CARD,
BOOK CHAR(4),
CARD_1 CHAR(5),
READER CHAR(3),
CARD_2 CHAR(7),
CODE CHAR(1),
CARD_3 CHAR(1),
DATE CHAR(6), /* YYMMDD */
2 CARD_4 CHAR(53);
DCL REGION CHAR(8) INIT(' ');

RN NN NN

ON ENDFILE(SYSIN) SYSIN REC = '0'B;
OPEN FILE(SYSIN), FILE(LOANS);
READ FILE(SYSIN) INTO(CARD);

DO WHILE(SYSIN_REC);
SUBSTR(REGION,6) = CARD.READER;
ISSUE,REMINDER = CARD.DATE;
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
SELECT(CODE) ;
WHEN('I') WRITE FILE(LOANS) FROM(RECORD) /* NEW ISSUE =/
KEYFROM (READER | |BOOK| |REGION) ;
WHEN('R') DELETE FILE(LOANS)
KEY (READER| | BOOK| |[REGION) ;
WHEN('A') REWRITE FILE(LOANS) FROM(RECORD) /* RENEWAL */
KEY (READER| | BOOK| |REGION) ;
OTHERWISE PUT FILE(SYSPRINT) SKIP LIST /* INVALID CODE =/
("INVALID CODE:',BOOK,READER);

~

* RETURNED */

END;
READ FILE(SYSIN) INTO(CARD);
END;

CLOSE FILE(SYSIN),FILE(LOANS);

END DURZ;
/*
//GO.SYSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)
//GO.LOANS DD DSN=SAMPL.LOANS,DISP=(0LD,KEEP)
//GO.SYSIN DD *

5999 003 I 781221
3083 091 1 790104
1214 049 I 790205
5999 003 A 790212
3083 091 R 790212
3517 095 X 790213
/*

Figure 46. Updating a REGIONAL(2) Data Set Directly

PL/I for MVS & VM Programming Guide

//EX13
//STEP
//PLI.
%PROCE
SUR2
/% U
DCL
DCL
DCL

DC

=

DCL
DCL

DCL
DCL
DCL

TOD
OPE

ON
REA
X

JoB
3 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED='LIST',PARM.GO="'/790308"
SYSIN DD =
SS MAR(1,72);
: PROC OPTIONS(MAIN);
PDATING A REGIONAL(2) DATA SET SEQUENTIALLY - LIBRARY LOANS */

LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(2));
LOANS_REC BIT(1) INIT('1'B) STATIC;

1 RECORD,

2 (ISSUE,REMINDER) CHAR(6);

LOANKEY CHAR(7),

READER CHAR(3) DEF LOANKEY,

BKNO CHAR(4) DEF LOANKEY POS(4);

STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(2));
1 BOOK,

2 AUTHOR CHAR(25),

2 TITLE CHAR(50),

2 QTY FIXED DEC(3);

TODAY CHAR(6); /% YY/MM/DD #/

INTER FIXED DEC(5);

REGION CHAR(8);

AY = '790210';
N FILE(LOANS),
FILE(STOCK);
ENDFILE(LOANS) LOANS REC = '0'B;
D FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);
=1,

DO WHILE(LOANS_REC);

END;

CLO

END
/*
//60.S

PUT FILE(SYSPRINT) SKIP EDIT
(X, 'REM DATE ',REMINDER,' TODAY ',TODAY) (A(3),A(9),A,A(7),A);
X = X+1;

IF REMINDER < TODAY THEN /* ? LAST REMINDER ISSUED */
DO; /* MORE THAN A MONTH AGOx/
INTER = (BKNO-1000)/9; /* YES, PRINT NEW REMINDER*/

REGION = INTER;
READ FILE(STOCK) INTO(BOOK) KEY(BKNO||REGION);
REMINDER = TODAY; /% UPDATE REMINDER DATE */
PUT FILE(SYSPRINT) SKIP EDIT
("NEW REM DATE',REMINDER,READER,AUTHOR, TITLE)
(A(12) ,A,X(2) ,A,X(2) ,A,X(2),A);
REWRITE FILE(LOANS) FROM(RECORD);
END;
READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);

SE FILE(LOANS),FILE(STOCK);
SUR2;

YSLMOD DD DSN=&&GOSET,DISP=(OLD,DELETE)

//GO.LOANS DD DSN=SAMPL.LOANS,DISP=(0LD,KEEP)

//60.S
/*

TOCK DD DSN=SAMPL.STOCK,DISP=(0OLD,KEEP)

Figure 47. Updating a REGIONAL(2) Data Set Sequentially

Chapter 10. Defining and Using Regional Data Sets

201

Using REGIONAL(3) Data Sets

A REGIONAL(3) data set differs from a REGIONAL(2) data set (described above)
only in the following respects:

e Each region number identifies a track on the direct-access device that contains
the data set; the region number should not exceed 32767. A region in excess
of 32767 is treated as modulo 32768; for example, 32778 is treated as 10.

* A region can contain one or more records, or a segment of a VS-format record.

e The data set can contain F-format, V-format, VS-format, or U-format records.
You can create dummy records, but a data set that has V-format, VS-format, or
U-format records is not preformatted with dummy records because the lengths
of records cannot be known until they are written; however, all tracks in the
primary extent are cleared and the operating system maintains a capacity
record at the beginning of each track, in which it records the amount of space
available on that track.

Source keys for a REGIONAL(3) data set are interpreted exactly as those for a
REGIONAL(2) data set are, and the search for a record or space to add a record is
conducted in a similar manner.

Dummy Records
Dummy records for REGIONAL(3) data sets with F-format records are identical to
those for REGIONAL(2) data sets.

You can identify V-format, VS-format, and U-format dummy records because they
have dummy recorded keys ((8)'1'B in the first byte). The four control bytes in
each V-format and VS-format dummy record are retained, but the contents of
V-format, VS-format, and U-format dummy records are undefined. V-format,
VS-format, and U-format records convert to dummy records only when a record is
deleted, and you cannot reconvert them to valid records.

Creating a REGIONAL(3) Data Set

202

You can create a REGIONAL(3) data set either sequentially or by direct-access. In
either case, when the file associated with the data set is opened, the data set is
initialized with capacity records specifying the amount of space available on each
track. Table 30 on page 186 shows the statements and options for creating a
regional data set.

When you use a SEQUENTIAL OUTPUT file to create the data set, you must
present records in ascending order of region numbers, but you can specify the
same region number for successive records. For F-format records, any record you
omit from the sequence is filled with a dummy record. If you make an error in the
sequence, the KEY condition is raised. If a track becomes filled by records for
which the same region number was specified, the region number is incremented by
one; an attempt to add a further record with the same region number raises the
KEY condition (sequence error).

If you create a data set using a buffered file, and the last WRITE or LOCATE
statement before the file is closed attempts to transmit a record beyond the limits of
the data set, the CLOSE statement can raise the ERROR condition.

PL/I for MVS & VM Programming Guide

If you use a DIRECT OUTPUT file to create the data set, the whole primary extent
allocated to the data set is initialized when the data set is opened. For F-format
records, the space is filled with dummy records, and for V-format, VS-format, and
U-format records, the capacity record for each track is written to indicate empty
tracks. You can present records in random order, and no condition is raised by
duplicate keys or duplicate region specifications. If the data set has F-format
records, each record is substituted for the first dummy record in the region (track)
specified on the source key; if there are no dummy records on the track, and you
allow an extended search by the LIMCT subparameter, the record is substituted for
the first dummy record encountered during the search. If the data set has
V-format, VS-format, or U-format records, the new record is inserted on the
specified track, if sufficient space is available; otherwise, if you allow an extended
search, the new record is inserted in the next available space.

Note that for spanned records, space might be required for overflow onto
subsequent tracks.

For sequential creation, the data set can have up to 15 extents, which can be on
more than one volume. For direct creation, the data set can have only one extent,
and can therefore reside on only one volume.

Example

A program for creating a REGIONAL(3) data set is shown in Figure 48. This
program is similar to creating a REGIONAL(2) data set, discussed in “Example” on
page 197 and illustrated in Figure 45 on page 198. The only important difference
is that in REGIONAL(3) the data set SAMPL.STOCK is created sequentially. In
REGIONAL(3) data sets, duplicate region numbers are acceptable, because each
region can contain more than one record.

//EX14 JOB

//STEP1 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED="'LIST'

//PLI.SYSIN DD

%PROCESS MAR(1,72);

/* CREATING A REGIONAL(3) DATA SET - LIBRARY LOANS */

CRR3: PROC OPTIONS(MAIN);
DCL LOANS FILE RECORD KEYED ENV(REGIONAL(3));

DCL STOCK FILE RECORD KEYED ENV(REGIONAL(3));
DCL 1 BOOK,

2 AUTHOR CHAR(25),

2 TITLE CHAR(50),

2 Qry FIXED DEC(3);

DCL NUMBER CHAR(4);

DCL INTER FIXED DEC(5);
DCL REGION CHAR(8);

DCL EOF BIT(1) INIT('0'B);

Figure 48 (Part 1 of 2). Creating a REGIONAL(3) Data Set

Chapter 10. Defining and Using Regional Data Sets 203

/* INITIALIZE (FORMAT) LOANS DATA SET */

OPEN FILE(LOANS) DIRECT OUTPUT;
CLOSE FILE(LOANS);

ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(STOCK) SEQUENTIAL OUTPUT;

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

DO WHILE (-EOF);

INTER = (NUMBER-1000)/2250; /* REGIONS = 0,1,2,3,4 FOR A DEVICE */
/* HOLDING 200 (OR MORE) BOOKS/TRACKx*/

REGION = INTER;

WRITE FILE(STOCK) FROM(BOOK) KEYFROM(NUMBER||REGION);

PUT FILE(SYSPRINT) SKIP EDIT (BOOK) (A);

GET FILE(SYSIN) SKIP LIST(NUMBER,BOOK);

END;
CLOSE FILE(STOCK);

END CRR3;
/*
//GO.LOANS DD DSN=SAMPL.LOANS,UNIT=SYSDA,SPACE=(TRK,3),
// DCB=(RECFM=F,BLKSIZE=12,KEYLEN=7),
// DISP=(NEW,CATLG)
//G0.STOCK DD DSN=SAMPL.STOCK,UNIT=SYSDA,SPACE=(TRK,5),
// DCB=(RECFM=F ,BLKSIZE=77 ,KEYLEN=4),
// DISP=(NEW,CATLG)

//GO.SYSIN DD *

'1015' 'W.SHAKESPEARE' 'MUCH ADO ABOUT NOTHING' 1

'1214' "L.CARROLL' 'THE HUNTING OF THE SNARK' 1

'3079' 'G.FLAUBERT' 'MADAME BOVARY' 1

'3083' 'V.M.HUGO' 'LES MISERABLES' 2

'3085' 'J.K.JEROME' 'THREE MEN IN A BOAT' 2

'4295' 'W.LANGLAND' 'THE BOOK CONCERNING PIERS THE PLOWMAN' 1
'5999' '0.KHAYYAM' 'THE RUBAIYAT OF OMAR KHAYYAM' 3

'6591' 'F.RABELAIS' 'THE HEROIC DEEDS OF GARGANTUA AND PANTAGRUEL' 1
'8362' 'H.D.THOREAU' 'WALDEN, OR LIFE IN THE WOODS' 1

'9795' "H.G.WELLS' 'THE TIME MACHINE' 3

/*

Figure 48 (Part 2 of 2). Creating a REGIONAL(3) Data Set

Accessing and Updating a REGIONAL(3) Data Set

Once you create a REGIONAL(3) data set, you can open the file that accesses it
for SEQUENTIAL INPUT or UPDATE, or for DIRECT INPUT or UPDATE. You can
only open it for OUTPUT if the entire existing data set is to be deleted and
replaced. Table 30 on page 186 shows the statements and options for accessing
a regional data set.

Sequential Access

To open a SEQUENTIAL file that is used to access a REGIONAL(3) data set, use
either the INPUT or UPDATE attribute. You must not include the KEY option in the
data transmission statements, but the file can have the KEYED attribute since you
can use the KEYTO option.

With the KEYTO option you can specify that the recorded key only is to be
assigned to the specified variable. If the character string referenced in the KEYTO
option has more characters than you specify in the KEYLEN subparameter, the
value returned (the recorded key) is extended on the right with blanks; if it has
fewer characters than you specify by KEYLEN, the value returned is truncated on
the right.

204 PL/ for MVS & VM Programming Guide

Sequential access is in the order of ascending relative tracks. Records are
retrieved in this order, and not necessarily in the order in which they were added to
the data set. The recorded keys do not affect the order of sequential access.
Dummy records are not retrieved.

The rules governing the relationship between READ and REWRITE statements for
a SEQUENTIAL UPDATE file that accesses a REGIONAL(3) data set are identical
with those for a CONSECUTIVE data set (described above).

Direct Access

To open a DIRECT file that is used to process a REGIONAL(3) data set, use either
the INPUT or the UPDATE attribute. You must include source keys in all data
transmission statements; the DIRECT attribute implies the KEYED attribute.

Using direct input, you can read any record by supplying its region number and its
recorded key; in direct update, you can read or delete existing records or add new
ones.

Retrieval Dummy records are not made available by a READ statement. The
KEY condition is raised if a record with the specified recorded key is
not found.

Addition In a data set with F-format records, a WRITE statement substitutes

the new record for a dummy record in the region (track) specified by
the source key. If there are no dummy records on the specified
track, and you use the LIMCT subparameter to allow an extended
search, the new record replaces the first dummy record
encountered during the search. If the data set has V-format,
VS-format, or U-format records, a WRITE statement inserts the new
record after any records already present on the specified track if
space is available; otherwise, if you allow an extended search, the
new record is inserted in the next available space.

Deletion A record you specify by the source key in a DELETE statement is
converted to a dummy record. You can re-use the space formerly
occupied by an F-format record; space formerly occupied by
V-format, VS-format, or U-format records is not available for reuse.

Replacement The record you specify by the source key in a REWRITE statement
must exist; you cannot use a REWRITE statement to replace a
dummy record. When a VS-format record is replaced, the new one
must not be shorter than the old.

Note: If a track contains records with duplicate recorded keys, the record farthest
from the beginning of the track will never be retrieved during direct-access.

Example

Updating REGIONAL(3) data sets is shown in the following two figures, Figure 49
on page 206 and Figure 50 on page 207. These are similar to the REGIONAL(2)
figures, Figure 46 on page 200 and Figure 47 on page 201.

You should note that REGIONAL(3) updating differs from REGIONAL(2) updating in
only one important way. When you update the data set directly, illustrated in
Figure 49 on page 206, the region number for the data set SAMPL.LOANS is
obtained simply by testing the reader number.

Chapter 10. Defining and Using Regional Data Sets 205

Sequential updating, shown in Figure 50 on page 207, is very much like Figure 47
on page 201, the REGIONAL(2) example.

//EX15 JOB

//STEP2 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED="'LIST'
//PLI.SYSIN DD =

%PROCESS MAR(1,72);

DUR3: PROC OPTIONS(MAIN);

/* UPDATING A REGIONAL(3) DATA SET DIRECTLY - LIBRARY LOANS */
DCL LOANS FILE RECORD UPDATE DIRECT KEYED ENV(REGIONAL(3));
DCL 1 RECORD,

2 (ISSUE,REMINDER) CHAR(6);
DCL SYSIN FILE RECORD INPUT SEQUENTIAL;
DCL SYSIN_REC BIT(1) INIT('1'B);
DCL 1 CARD,
BOOK CHAR(4),

CARD_1
READER
CARD_2
CODE

CARD_3
DATE

2 CARD 4

N NN NN NN

CHAR(5),
CHAR(3),
CHAR(7),
CHAR(1),
CHAR(1),
CHAR(6),

CHAR(53) ;

DCL REGION CHAR(8);
ON ENDFILE(SYSIN) SYSIN REC= '0'B;
OPEN FILE(SYSIN),FILE(LOANS);
READ FILE(SYSIN) INTO(CARD);
DO WHILE(SYSIN_REC);
ISSUE,REMINDER = DATE;
SELECT;

WHEN(READER < '034') REGION = '00000000';
WHEN(READER < '067') REGION = '00000001';
OTHERWISE REGION = '00000002"';
END;
SELECT(CODE) ;

WHEN('I') WRITE FILE(LOANS) FROM(RECORD)
KEYFROM(READER | |BOOK | | REGION) ;
WHEN('R') DELETE FILE(LOANS)
KEY (READER| | BOOK | |REGION)
WHEN('A') REWRITE FILE(LOANS) FROM(RECORD)
KEY (READER| | BOOK | | REGION) 3
OTHERWISE PUT FILE(SYSPRINT) SKIP LIST
(*INVALID CODE: ',BOOK,READER);
END;
PUT FILE(SYSPRINT) SKIP EDIT (CARD) (A);
READ FILE(SYSIN) INTO(CARD);
END;
CLOSE FILE(SYSIN),FILE(LOANS);
END DUR3;
/*
//GO.SYSLMOD DD DSN=8&GOSET,DISP=(OLD,DELETE)
//GO.LOANS DD DSN=SAMPL.LOANS,DISP=(OLD,KEEP)
//GO.SYSIN DD =*

5999 003 I 781221
3083 091 I 790104
1214 049 I 790205
5999 003 A 790212
3083 091 R 790212
3517 095 X 790213
/*

Figure 49. Updating a REGIONAL(3) Data Set Directly

206 PL/I for MVS & VM Programming Guide

//EX16 JOB
//STEP3 EXEC IEL1CLG,PARM.PLI='NOP',PARM.LKED="'LIST',PARM.GO="/790308"
//PLI.SYSIN DD =
%PROCESS MAR(1,72);
SUR3: PROC OPTIONS(MAIN);
/* UPDATING A REGIONAL(3) DATA SET SEQUENTIALLY - LIBRARY LOANS */

DCL LOANS FILE RECORD SEQUENTIAL UPDATE KEYED ENV(REGIONAL(3));
DCL LOANS_REC BIT(1) INIT('1'B);
DCL 1 RECORD,
2 (ISSUE,REMINDER) CHAR(6);
DCL LOANKEY CHAR(7),
READER CHAR(3) DEF LOANKEY,
BKNO CHAR(4) DEF LOANKEY POS(4);
DCL STOCK FILE RECORD DIRECT INPUT KEYED ENV(REGIONAL(3));
DCL 1 BOOK,
2 AUTHOR CHAR(25),
2 TITLE CHAR(50),
2 QTY FIXED DEC(3);
DCL TODAY CHAR(6);/*YYMMDD*/
DCL INTER FIXED DEC(5),
REGION CHAR(8);

TODAY = '790210';

OPEN FILE (LOANS), FILE(STOCK);

ON ENDFILE(LOANS) LOANS REC = '0'B;

READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);
X =1

DO WHILE(LOANS_REC);
PUT FILE(SYSPRINT) SKIP EDIT
(X, 'REM DATE ',REMINDER,' TODAY ',TODAY) (A(3),A(9),A,A(7),A);
X = X+1;

IF REMINDER < TODAY THEN
DO;
INTER = (BKNO-1000)/2250;
REGION = INTER;
READ FILE(STOCK) INTO(BOOK) KEY(BKNO||REGION);
REMINDER = TODAY;
PUT FILE(SYSPRINT) SKIP EDIT
('NEW REM DATE',REMINDER,READER,AUTHOR,TITLE)
(A(12) ,A,X(2) ,A,X(2),A,X(2),A);
REWRITE FILE(LOANS) FROM(RECORD);
END;
READ FILE(LOANS) INTO(RECORD) KEYTO(LOANKEY);
END;

CLOSE FILE(LOANS),FILE(STOCK);
END SUR3;
/*
//GO.LOANS DD DSN=SAMPL.LOANS,DISP=(0LD,KEEP)
//G0.STOCK DD DSN=SAMPL.STOCK,DISP=(0OLD,KEEP)

Figure 50. Updating a REGIONAL(3) Data Set Sequentially

Chapter 10. Defining and Using Regional Data Sets 207

Essential Information for Creating and Accessing Regional Data Sets

208

To create a regional data set, you must give the operating system certain
information, either in your PL/I program or in the DD statement that defines the
data set. The following paragraphs indicate the essential information, and discuss
some of the optional information you can supply.

You must supply the following information when creating a regional data set:

¢ Device that will write your data set (UNIT or VOLUME parameter of DD
statement).

e Block size: You can specify the block size either in your PL/I program (in the
BLKSIZE option of the ENVIRONMENT attribute) or in the DD statement
(BLKSIZE subparameter). If you do not specify a record length, unblocked
records are the default and the record length is determined from the block size.

If you want to keep a data set (that is, you do not want the operating system to
delete it at the end of your job), the DD statement must name the data set and
indicate how it is to be disposed of (DSNAME and DISP parameters). The DISP
parameter alone will suffice if you want to use the data set in a later step but do not
need it after the end of your job.

If you want your data set stored on a particular direct-access device, you must
indicate the volume serial number in the DD statement (SER or REF subparameter
of VOLUME parameter). If you do not supply a serial number for a data set that
you want to keep, the operating system allocates one, informs the operator, and
prints the number on your program listing. All the essential parameters required in
a DD statement for the creation of a regional data set are summarized in Table 31
on page 209; and Table 32 on page 210 lists the DCB subparameters needed.
See your MVS/ESA JCL User's Guide for a description of the DCB subparameters.

You cannot place a regional data set on a system output (SYSOUT) device.

In the DCB parameter, you must always specify the data set organization as direct
by coding DSORG=DA. You cannot specify the DUMMY or DSN=NULLFILE
parameters in a DD statement for a regional data set. For REGIONAL(2) and
REGIONAL(3), you must also specify the length of the recorded key (KEYLEN)
unless it is specified in the ENVIRONMENT attribute; see “Using Keys for
REGIONAL(2) and (3) Data Sets” on page 195 for a description of how the
recorded key is derived from the source key supplied in the KEYFROM option.

For REGIONAL(2) and REGIONAL(3), if you want to restrict the search for space to
add a new record, or the search for an existing record, to a limited number of
tracks beyond the track that contains the specified region, use the LIMCT
subparameter of the DCB parameter. If you omit this parameter, the search
continues to the end of the data set, and then from the beginning of the data set
back to the starting point.

PL/I for MVS & VM Programming Guide

Table 31. Creating a regional data set: essential parameters of the DD statement

When required What you must state Parameters
Always Output devicel UNIT= or
VOLUME=REF=
Storage space required2 SPACE=
Data control block DCB=
information: see Table 32 on
page 210
Data set to be used in another Disposition DISP=

job step but not required in
another job

Data set to be kept Disposition DISP=
after end of job
Name of data set DSNAME=
Data set to be on Volume serial number VOLUME=SER= or
particular volume VOLUME=REF=

1Regional data sets are confined to direct-access devices.

2For sequential access, the data set can have up to 15 extents, which can be on more than one
volume. For creation with DIRECT access, the data set can have only one extent.

To access a regional data set, you must identify it to the operating system in a DD
statement. The following paragraphs indicate the minimum information you must
include in the DD statement; this information is summarized in Table 33 on

page 210.

If the data set is cataloged, you only need to supply the following information in
your DD statement:

e The name of the data set (DSNAME parameter). The operating system locates
the information that describes the data set in the system catalog and, if
necessary, requests the operator to mount the volume that contains it.

e Confirmation that the data set exists (DISP parameter).
If the data set is not cataloged, you must, in addition, specify the device that will
read the data set and give the serial number of the volume that contains the data
set (UNIT and VOLUME parameters).

Unlike indexed data sets, regional data sets do not require the subparameter
OPTCD-=L in the DD statement.

When opening a multiple-volume regional data set for sequential update, the
ENDFILE condition is raised at the end of the first volume.

Chapter 10. Defining and Using Regional Data Sets 209

210

Table 32. DCB subparameters for a regional data set

When required To specify Subparameters

These are always required Record formatl RECFM=F or
RECFM=V2 REGIONAL(3)
only, or

RECFM=U REGIONAL(3)
only

Block sizel BLKSIZE=
Data set organization DSORG=DA
Key length KEYLEN=
(REGIONAL(2) and (3) only)1

These are optional Limited search for a LIMCT=
record or space to add
a record (REGIONAL(2)
and (3) only)
Number of data management BUFNO=

buffersl

10r you can specify the block size in the ENVIRONMENT attribute.

2RECFM=VS must be specified in the ENVIRONMENT attribute for sequential input or update.

Table 33. Accessing a regional data set: essential parameters of the DD statement

When required What you must state Parameters

Always Name of data set DSNAME=
Disposition of data set DISP=

If data set not Input device UNIT= or

cataloged VOLUME=REF=
Volume serial number VOLUME=SER=

PL/I for MVS & VM Programming Guide

Chapter 11. Defining and Using VSAM Data Sets

This chapter covers VSAM (the Virtual Storage Access Method) organization for
record-oriented data transmission, VSAM ENVIRONMENT options, compatibility
with other PL/I data set organizations, and the statements you use to load and
access the three types of VSAM data sets that PL/I supports—entry-sequenced,
key-sequenced, and relative record. The chapter is concluded by a series of
examples showing the PL/I statements, Access Method Services commands, and
JCL statements necessary to create and access VSAM data sets.

For additional information about the facilities of VSAM, the structure of VSAM data
sets and indexes, the way in which they are defined by Access Method Services,
and the required JCL statements, see the VSAM publications for your system.

PL/I supports the use of VSAM data sets under VM. VSAM under VM has some
restrictions. See the VM/ESA CMS User's Guide for those restrictions.

Using VSAM Data Sets

How to Run a Program with VSAM Data Sets
Before you execute a program that accesses a VSAM data set, you need to know:
e The name of the VSAM data set

e The name of the PL/I file
e Whether you intend to share the data set with other users

Then you can write the required DD statement to access the data set:
//filename DD DSNAME=dsname,DISP=0LD|SHR

For example, if your file is named PL1FILE, your data set named VSAMDS, and
you want exclusive control of the data set, enter:

//PLIFILE DD DSNAME=VSAMDS,DISP=0LD
To share your data set, use DISP=SHR.

For a PL/I program originally written for ISAM data sets that requires a simulation of
ISAM data-set handling, you need to use the AMP parameter of the DD statement.
You might also want to use it to optimize VSAM's performance.

To optimize VSAM's performance by controlling the number of VSAM buffers used
for your data set, see the VSAM publications.

Pairing an Alternate Index Path with a File

When using an alternate index, you simply specify the name of the path in the
DSNAME parameter of the DD statement associating the base data set/alternate
index pair with your PL/I file. Before using an alternate index, you should be aware
of the restrictions on processing; these are summarized in Table 35 on page 218.

© Copyright IBM Corp. 1964, 1995 211

Given a PL/I file called PL1FILE and the alternate index path called PERSALPH,
the DD statement required would be:

//PL1FILE DD DSNAME=PERSALPH,DISP=0LD

VSAM Organization

212

PL/I provides support for three types of VSAM data sets:

» Key-sequenced data sets (KSDS)
e Entry-sequenced data sets (ESDS)
¢ Relative record data sets (RRDS).

These correspond roughly to PL/l indexed, consecutive, and regional data set
organizations, respectively. They are all ordered, and they can all have keys
associated with their records. Both sequential and keyed access are possible with
all three types.

Although only key-sequenced data sets have keys as part of their logical records,
keyed access is also possible for entry-sequenced data sets (using relative-byte
addresses) and relative record data sets (using relative record numbers).

All VSAM data sets are held on direct-access storage devices, and a virtual storage
operating system is required to use them.

The physical organization of VSAM data sets differs from those used by other
access methods. VSAM does not use the concept of blocking, and, except for
relative record data sets, records need not be of a fixed length. In data sets with
VSAM organization, the data items are arranged in control intervals, which are in
turn arranged in control areas. For processing purposes, the data items within a
control interval are arranged in logical records. A control interval can contain one
or more logical records, and a logical record can span two or more control intervals.
Concern about blocking factors and record length is largely removed by VSAM,
although records cannot exceed the maximum specified size. VSAM allows access
to the control intervals, but this type of access is not supported by PL/I.

VSAM data sets can have two types of indexes—prime and alternate. A prime
index is the index to a KSDS that is established when you define a data set; it
always exists and can be the only index for a KSDS. You can have one or more
alternate indexes on a KSDS or an ESDS. Defining an alternate index for an
ESDS enables you to treat the ESDS, in general, as a KSDS. An alternate index
on a KSDS enables a field in the logical record different from that in the prime
index to be used as the key field. Alternate indexes can be either nonunique, in
which duplicate keys are allowed, or unique, in which they are not. The prime
index can never have duplicate keys.

Any change in a data set that has alternate indexes must be reflected in all the
indexes if they are to remain useful. This activity is known as index upgrade, and
is done by VSAM for any index in the index upgrade set of the data set. (For a
KSDS, the prime index is always a member of the index upgrade set.) However,
you must avoid making changes in the data set that would cause duplicate keys in
the prime index or in a unique alternate index.

PL/I for MVS & VM Programming Guide

Before using a VSAM data set for the first time, you need to define it to the system
with the DEFINE command of Access Method Services, which you can use to
completely define the type, structure, and required space of the data set. This
command also defines the data set's indexes (together with their key lengths and
locations) and the index upgrade set if the data set is a KSDS or has one or more
alternate indexes. A VSAM data set is thus “created” by Access Method Services.

The operation of writing the initial data into a newly created VSAM data set is
referred to as loading in this publication.

Use the three different types of data sets according to the following purposes:

e Use entry-sequenced data sets for data that you primarily access in the order
in which it was created (or the reverse order).

e Use key-sequenced data sets when you normally access records through keys
within the records (for example, a stock-control file where the part number is
used to access a record).

» Use relative record data sets for data in which each item has a particular
number, and you normally access the relevant record by that number (for
example, a telephone system with a record associated with each number).

You can access records in all types of VSAM data sets either directly by means of
a key, or sequentially (backward or forward). You can also use a combination of
the two ways: Select a starting point with a key and then read forward or backward
from that point.

You can create alternate indexes for key-sequenced and entry-sequenced data
sets. You can then access your data in many sequences or by one of many keys.
For example, you could take a data set held or indexed in order of employee
number and index it by name in an alternate index. Then you could access it in
alphabetic order, in reverse alphabetic order, or directly using the name as a key.
You could also access it in the same kind of combinations by employee number.

Figure 51 on page 214 and Table 34 on page 215 show how the same data could

be held in the three different types of VSAM data sets and illustrates their
respective advantages and disadvantages.

Chapter 11. Defining and Using VSAM Data Sets 213

The diagrams show how the information contained in the family tree below could
be held in VSAM data sets of different types.

ANDREW M SMITH &

VALERIE SUZIE ANN MORGAN (1967)

FRED (1969)

ANDY (1970)

SUZAN (1972)

\ |
JANE (1975)

Key-Sequenced Data Set Alternate Indexes
By Birthdate (unique)
Data component
69
Prime ANDY 70 M
Index 70
empty space
ANDY /’ FRED 69 M 2
FRED 75
empty space
By sex (non-unique
JANE) JANE 75F y.ﬂﬂf\(ue)
SUZAN =
\ empty space F
SUZAN 72F M
T
//‘ ‘
_ .7 /
~_._ 7~
Entry-Sequenced Data Set
y->equ Alternate Indexes

Relative byte
addresses can be
accessed and used

Data component

FRED 69 M
ANDY 70M
SUZAN 72 F
JANE 75F

Alphabetically by name
(unique)

ANDY
FRED

JANE
SUZAN

: “=-—__ By sex (non-unique)
== TN

——-

Relative Record Data Set

Relative record Data component

numbers can be Slot 1

accessed and FRED 69 M

used as keys 2 | ANDY 70 M
3 | empty space for 71
4 | SUZAN 72F
5 | empty space for 73
6 | empty space for 74
7 | JANE 75E

Each slot corresponds to a year g

empty space for 76

No Alternate Indexes

Figure 51. Information Storage in VSAM Data Sets of Different Types

214

PL/I for MVS & VM Programming Guide

Table 34. Types and Advantages of VSAM Data Sets

Data set type

Method of loading

Method of reading

Method of updating

Pros and cons

Key-Sequenced

Sequentially in order or
prime index which
must be unique

KEYED by specifying
key of record in prime
or unique alternate
index

SEQUENTIAL
backward or forward in
order of any index

Positioning by key
followed by sequential
reading either
backward or forward

KEYED specifying a
unique key in any
index

SEQUENTIAL
following positioning by
unique key

Record deletion
allowed

Record insertion
allowed

Advantages
Complete access and
updating

Disadvantages

Records must be in order
of prime index before
loading

Uses
For uses where access
will be related to key

Entry-Sequenced

Sequentially (forward
only)
The RBA of each

record can be obtained
and used as a key

SEQUENTIAL
backward or forward

KEYED using unique
alternate index or RBA

Positioning by key
followed by sequential
either backward or
forward

New records at end
only

Existing records
cannot have length
changed

Access can be
sequential or KEYED
using alternate index

Record deletion not
allowed

Advantages
Simple fast creation

No requirement for a
unique index

Disadvantages
Limited updating facilities

Uses

For uses where data will
primarily be accessed
sequentially

Relative Record

Sequentially starting
from slot 1

KEYED specifying
number of slot
Positioning by key
followed by sequential
writes

KEYED specifying
numbers as key
Sequential forward or

backward omitting
empty records

Sequentially starting at
a specified slot and
continuing with next
slot

Keyed specifying
numbers as key

Record deletion
allowed

Record insertion into
empty slots allowed

Advantages
Speedy access to record
by number

Disadvantages
Structure tied to
numbering sequences

No alternate index
Fixed length records

Uses

For use where records
will be accessed by
number

Keys for VSAM Data Sets

All VSAM data sets can have keys associated with their records. For
key-sequenced data sets, and for entry-sequenced data sets accessed via an
alternate index, the key is a defined field within the logical record. For
entry-sequenced data sets, the key is the relative byte address (RBA) of the record.
For relative-record data sets, the key is a relative record number.

Chapter 11. Defining and Using VSAM Data Sets

215

Keys for Indexed VSAM Data Sets

Keys for key-sequenced data sets and for entry-sequenced data sets accessed via
an alternate index are part of the logical records recorded on the data set. You
define the length and location of the keys when you create the data set.

The ways you can reference the keys in the KEY, KEYFROM, and KEYTO options
are as described under “KEY (expression) Option,” “KEYFROM(expression) Option,”
and “KEYTO(reference) Option” in Chapter 12 of the PL/I for MVS & VM Language
Reference See also “Using keys” on page 163.

Relative Byte Addresses (RBA)

Relative byte addresses allow you to use keyed access on an ESDS associated
with a KEYED SEQUENTIAL file. The RBAs, or keys, are character strings of
length 4, and their values are defined by VSAM. You cannot construct or
manipulate RBAs in PL/I; you can, however, compare their values in order to
determine the relative positions of records within the data set. RBAs are not
normally printable.

You can obtain the RBA for a record by using the KEYTO option, either on a
WRITE statement when you are loading or extending the data set, or on a READ
statement when the data set is being read. You can subsequently use an RBA
obtained in either of these ways in the KEY option of a READ or REWRITE
statement.

Do not use an RBA in the KEYFROM option of a WRITE statement.

VSAM allows use of the relative byte address as a key to a KSDS, but this use is
not supported by PL/I.

Relative Record Numbers

Records in an RRDS are identified by a relative record number that starts at 1 and
is incremented by 1 for each succeeding record. You can use these relative record
numbers as keys for keyed access to the data set.

Keys used as relative record numbers are character strings of length 8. The
character value of a source key you use in the KEY or KEYFROM option must
represent an unsigned integer. If the source key is not 8 characters long, it is
truncated or padded with blanks (interpreted as zeros) on the left. The value
returned by the KEYTO option is a character string of length 8, with leading zeros
suppressed.

Choosing a Data Set Type

216

When planning your program, the first decision to be made is which type of data
set to use. There are three types of VSAM data sets and five types of hon-VSAM
data sets available to you. VSAM data sets can provide all the function of the other
types of data sets, plus additional function available only in VSAM. VSAM can
usually match other data set types in performance, and often improve upon it.
However, VSAM is more subject to performance degradation through misuse of
function.

The comparison of all eight types of data sets given in Table 16 on page 122 is
helpful; however, many factors in the choice of data set type for a large installation
are beyond the scope of this book.

PL/I for MVS & VM Programming Guide

Figure 51 on page 214 shows you the possibilities available with the types of
VSAM data sets. When choosing between the VSAM data set types, you should
base your choice on the most common sequence in which you will require your
data. The following is a suggested procedure that you can use to help ensure a
combination of data sets and indexes that provide the function you require.

1. Determine the type of data and how it will be accessed.

a. Primarily sequentially — favors ESDS.
b. Primarily by key — favors KSDS.
c. Primarily by humber — favors RRDS.

2. Determine how you will load the data set. Note that you must load a KSDS in
key sequence; thus an ESDS with an alternate index path can be a more
practical alternative for some applications.

3. Determine whether you require access through an alternate index path. These
are only supported on KSDS and ESDS. If you require an alternate index path,
determine whether the alternate index will have unique or nonunique keys.

Use of nonunique keys can limit key processing. However, it might also be
impractical to assume that you will use unique keys for all future records; if you
attempt to insert a record with a nonunique key in an index that you have
created for unique keys, it will cause an error.

4. When you have determined the data sets and paths that you require, ensure
that the operations you have in mind are supported. Figure 52 on page 218
and Table 35 on page 218 might be helpful.

Do not try to access a dummy VSAM data set, because you will receive an error
message indicating that you have an undefined file.

Table 36 on page 228, Table 37 on page 232, and Table 39 on page 247 show
the statements allowed for entry-sequenced data sets, indexed data sets, and
relative record data sets, respectively.

Chapter 11. Defining and Using VSAM Data Sets 217

SEQUENTIAL KEYED SEQUENTIAL DIRECT

INPUT ESDS ESDS KSDS
KSDS KSDS RRDS
RRDS RRDS Path(U)
Path(N) Path(N)
Path(U) Path(U)
OUTPUT ESDS ESDS KSDS
RRDS KSDS RRDS
RRDS Path(U)
UPDATE ESDS ESDS KSDS
KSDS KSDS RRDS
RRDS RRDS Path(U)
Path(N) Path(N)
Path(U) Path(U)

Key: ESDS Entry-sequenced data set
KSDS Key-sequenced data set
RRDS Relative record data set
Path(N) Alternate index path with nonunique keys
Path(U) Alternate index path with unique keys

You can combine the attributes on the left with those at the top of the
figure for the data sets and paths shown. For example, only an ESDS and
an RRDS can be SEQUENTIAL OUTPUT.

PL/I does not support dummy VSAM data sets.

Figure 52. VSAM Data Sets and Allowed File Attributes

Table 35. Processing Allowed on Alternate Index Paths

Base Alternate index Processing Restrictions
cluster type key type
KSDS Unique key As normal KSDS Cannot modify key of access.

Cannot modify key of access.

Nonunique key Limited keyed access
ESDS Unique key As KSDS No deletion.
Cannot modify key of access.
No deletion.
Nonunique key Limited keyed access Cannot modify key of access.

Defining Files for VSAM Data Sets

You define a sequential VSAM data set by using a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
SEQUENTIAL
BUFFERED
[KEYED]
ENVIRONMENT (options);

218 PL/ for MVS & VM Programming Guide

You define a direct VSAM data set by using a file declaration with the following
attributes:

DCL filename FILE RECORD
INPUT | OUTPUT | UPDATE
DIRECT
UNBUFFERED
[KEYED]
ENVIRONMENT (options);

Table 15 on page 111 shows the default attributes. The file attributes are
described in the PL/I for MVS & VM Language Reference. Options of the
ENVIRONMENT attribute are discussed below.

Some combinations of the file attributes INPUT or OUTPUT or UPDATE and
DIRECT or SEQUENTIAL or KEYED SEQUENTIAL are allowed only for certain
types of VSAM data sets. Figure 52 on page 218 shows the compatible
combinations.

Specifying ENVIRONMENT Options

Many of the options of the ENVIRONMENT attribute affecting data set structure are
not needed for VSAM data sets. If you specify them, they are either ignored or are
used for checking purposes. If those that are checked conflict with the values
defined for the data set, the UNDEFINEDFILE condition is raised when an attempt
is made to open the file.

The ENVIRONMENT options applicable to VSAM data sets are:

BKWD

BUFND(n)
BUFNI (n)
BUFSP(n)
COBOL

GENKEY
PASSWORD (password-specification)
REUSE
SCALARVARYING
SIS

SKIP

VSAM

COBOL, GENKEY, and SCALARVARYING options have the same effect as they
do when you use them for non-VSAM data sets.

The options that are checked for a VSAM data set are RECSIZE and, for a
key-sequenced data set, KEYLENGTH and KEYLOC. NCP has meaning when you
are using the ISAM compatibility interface. Table 15 on page 111 shows which
options are ignored for VSAM. Table 15 on page 111 also shows the required and
default options.

For VSAM data sets, you specify the maximum and average lengths of the records
to the Access Method Services utility when you define the data set. If you include
the RECSIZE option in the file declaration for checking purposes, specify the
maximum record size. If you specify RECSIZE and it conflicts with the values
defined for the data set, the UNDEFINEDFILE condition is raised.

Chapter 11. Defining and Using VSAM Data Sets 219

220

BKWD Option
Use the BKWD option to specify backward processing for a SEQUENTIAL INPUT
or SEQUENTIAL UPDATE file associated with a VSAM data set.

»>—BKWD

\4
A

Sequential reads (that is, reads without the KEY option) retrieve the previous record
in sequence. For indexed data sets, the previous record is, in general, the record
with the next lower key. However, if you are accessing the data set via a
nonunique alternate index, records with the same key are recovered in their normal
sequence. For example, if the records are:

ABCI1C2C3DE

where C1, C2, and C3 have the same key, they are recovered in the sequence:
EDCLC2C3BA

When a file with the BKWD option is opened, the data set is positioned at the last
record. ENDFILE is raised in the normal way when the start of the data set is
reached.

Do not specify the BKWD option with either the REUSE option or the GENKEY
option. Also, the WRITE statement is not allowed for files declared with the BKWD
option.

BUFND Option
Use the BUFND option to specify the number of data buffers required for a VSAM
data set.

»»—BUFND—(—n—)

\4
A

n specifies an integer, or a variable with attributes FIXED BINARY(31) STATIC.

Multiple data buffers help performance when the file has the SEQUENTIAL attribute
and you are processing long groups of contiguous records sequentially.

BUFNI Option
Use the BUFNI option to specify the number of index buffers required for a VSAM
key-sequenced data set.

»»—BUFNI—(—n—)

A\
A

n specifies an integer, or a variable with the attributes FIXED BINARY(31)
STATIC.

Multiple index buffers help performance when the file has the KEYED attribute.
Specify at least as many index buffers as there are levels in the index.

PL/I for MVS & VM Programming Guide

BUFSP Option
Use the BUFSP option to specify, in bytes, the total buffer space required for a
VSAM data set (for both the data and index components).

\4
A

»»—BUFSP—(—n—)

n specifies an integer, or a variable with the attributes FIXED BINARY(31)
STATIC.

It is usually preferable to specify the BUFNI and BUFND options rather than
BUFSP.

GENKEY Option
For the description of this option, see “GENKEY Option — Key Classification” on
page 118.

PASSWORD Option

When you define a VSAM data set to the system (using the DEFINE command of
Access Method Services), you can associate READ and UPDATE passwords with
it. From that point on, you must include the appropriate password in the
declaration of any PL/I file that you use to access the data set.

A\
A

»»—PASSWORD— (—password-specification—)

password-specification
is a character constant or character variable that specifies the password for the
type of access your program requires. If you specify a constant, it must not
contain a repetition factor; if you specify a variable, it must be level-1, element,
static, and unsubscripted.

The character string is padded or truncated to 8 characters and passed to VSAM
for inspection. If the password is incorrect, the system operator is given a number
of chances to specify the correct password. You specify the number of chances to
be allowed when you define the data set. After this number of unsuccessful tries,
the UNDEFINEDFILE condition is raised.

The three levels of password supported by PL/I are:

e Master
e Update
e Read.

Specify the highest level of password needed for the type of access that your
program performs.

REUSE Option
Use the REUSE option to specify that an OUTPUT file associated with a VSAM
data set is to be used as a work file.

»»—REUSE

\ 4
A

Chapter 11. Defining and Using VSAM Data Sets 221

222

The data set is treated as an empty data set each time the file is opened. Any
secondary allocations for the data set are released, and the data set is treated
exactly as if it were being opened for the first time.

Do not associate a file that has the REUSE option with a data set that has alternate
indexes or the BKWD option, and do not open it for INPUT or UPDATE.

The REUSE option takes effect only if you specify REUSE in the Access Method
Services DEFINE CLUSTER command.

SIS Option
The SIS option is applicable to key-sequenced data sets accessed by means of a
DIRECT file.

»»—SIS

\4
A

If you use mass sequential insert for a VSAM data set (that is, if you insert records
with ascending keys), a KEYED SEQUENTIAL UPDATE file is normally
appropriate. In this case, however, VSAM delays writing the records to the data set
until a complete control interval has been built. If you specify DIRECT, VSAM
writes each record as soon as it is presented. Thus, in order to achieve immediate
writing and faster access with efficient use of disk space, use a DIRECT file and
specify the SIS option.

The SIS option is intended primarily for use in online applications.

It is never an error to specify (or omit) the SIS option; its effect on performance is
significant only in the circumstances described.

SKIP Option

Use the SKIP option of the ENVIRONMENT attribute to specify that the VSAM
OPTCD “SKP” is to be used wherever possible. It is applicable to key-sequenced
data sets that you access by means of a KEYED SEQUENTIAL INPUT or UPDATE
file.

»»—SKIP

A\
A

You should specify this option for the file if your program accesses individual
records scattered throughout the data set, but does so primarily in ascending key
order.

Omit this option if your program reads large numbers of records sequentially
without the use of the KEY option, or if it inserts large numbers of records at
specific points in the data set (mass sequential insert).

It is never an error to specify (or omit) the SKIP option; its effect on performance is
significant only in the circumstances described.

PL/I for MVS & VM Programming Guide

VSAM Option

Specify the VSAM option for VSAM data sets, unless you also intend to use the file
to access non-VSAM data sets (if this is the case, see “Using the VSAM
Compatibility Interface” on page 225).

»»—V\SAM

\ 4
A

Performance OptiOI’]S
SKIP, SIS, BUFND, BUFNI, and BUFSP are options you can specify to optimize
VSAM's performance. You can also specify the buffer options in the AMP
parameter of the DD statement; they are explained in your Access Method Services
manual.

Defining Files for Alternate Index Paths

VSAM allows you to define alternate indexes on key sequenced and entry
sequenced data sets. This enables you to access key sequenced data sets in a
number of ways other than from the prime index. This also allows you to index and
access entry sequenced data sets by key or sequentially in order of the keys.
Consequently, data created in one form can be accessed in a large number of
different ways. For example, an employee file might be indexed by personnel
number, by name, and also by department number.

When an alternate index has been built, you actually access the data set through a
third object known as an alternate index path that acts as a connection between the
alternate index and the data set.

Two types of alternate indexes are allowed—unique key and nonunique key. For a
unigue key alternate index, each record must have a different alternate key. For a
nonunique key alternate index, any number of records can have the same alternate
key. In the example suggested above, the alternate index using the names could
be a unique key alternate index (provided each person had a different name). The
alternate index using the department number would be a nonunique key alternate
index because more than one person would be in each department. An example of
alternate indexes applied to a family tree is given in Figure 51 on page 214.

In most respects, you can treat a data set accessed through a unique key alternate
index path like a KSDS accessed through its prime index. You can access the
records by key or sequentially, you can update records, and you can add new
records. If the data set is a KSDS, you can delete records, and alter the length of
updated records. Restrictions and allowed processing are shown in Table 35 on
page 218. When you add or delete records, all indexes associated with the data
set are by default altered to reflect the new situation.

In data sets accessed through a nonunique key alternate index path, the record
accessed is determined by the key and the sequence. The key can be used to
establish positioning so that sequential access can follow. The use of the key
accesses the first record with that key. When the data set is read backwards, only
the order of the keys is reversed. The order of the records with the same key
remains the same whichever way the data set is read.

Chapter 11. Defining and Using VSAM Data Sets 223

Using Files Defined for non-VSAM Data Sets

In most cases, if your PL/l program uses files declared with ENVIRONMENT
(CONSECUTIVE) or ENVIRONMENT(INDEXED) or with no ENVIRONMENT, it can
access VSAM data sets without alteration. If your program uses REGIONAL files,
you must alter it and recompile before it can use VSAM data sets. PL/I can detect
that a VSAM data set is being opened and can provide the correct access, either
directly or by use of a compatibility interface.

If your PL/I program uses REGIONAL(1) files, it cannot be used unaltered to
access VSAM relative-record data sets.

The aspects of compatibility that affect your usage of VSAM if your data sets or
programs were created for other access methods are as follows:

e The recreation of your data sets as VSAM data sets. The Access Method
Services REPRO command recreates data sets in VSAM format. This
command is described in the MVS/DFP Access Method Services manual.

e All VSAM key-sequenced data sets have embedded keys, even if they have
been converted from ISAM data sets with nonembedded keys.

e JCL DD statement changes.

e The unaltered use of your programs with VSAM data sets. This is described in
the following section.

e The alteration of your programs to allow them to use VSAM data sets. A brief
discussion of this is given later in this section.

CONSECUTIVE Files

INDEXED Files

For CONSECUTIVE files, compatibility depends on the ability of the PL/I routines to
recognize the data set type and use the correct access method.

You should realize, however, that there is no concept of fixed-length records in
VSAM. Therefore, if your program relies on the RECORD condition to detect
incorrect length records, it will not function in the same way using VSAM data sets
as it does with non-VSAM data sets.

Complete compatibility is provided for INDEXED files. For files that you declare
with the INDEXED ENVIRONMENT option, the PL/I library routines recognize a
VSAM data set and will process it as VSAM.

However, because ISAM record handling differs in detail from VSAM record
handling, use of VSAM processing might not always give the required result. To
ensure complete compatibility with PL/I ENV(INDEXED) files, VSAM provides the
compatibility interface—a program that simulates ISAM-type handling of VSAM data
sets.

Because VSAM does not support EXCLUSIVE files, your program will not be
compatible on VSAM and ISAM if it relies on this feature.

224 PL/I for MVS & VM Programming Guide

Using the VSAM Compatibility Interface
The compatibility interface simulates ISAM-type handling on VSAM key-sequenced
data sets. This allows compatibility for any program whose logic depends on
ISAM-type record handling. The VSAM compatibility interface is VSAM supplied
(See the VSAM publications.)

The compatibility interface is used when you specify the RECFM or OPTCD
keyword in a DD statement associated with a file declared with the INDEXED
ENVIRONMENT option, or when you use an NCP value greater than 1 in the
ENVIRONMENT option. These conditions are taken by the PL/I library routines to
mean that the compatibility interface is required. Choose the RECFM value, either
F, V, or VS, to match the type of record that would be used by an ISAM data set.
Use the OPTCD value “OPTCD=I,” which is the default, if you require complete
ISAM compatibility (see 3 below).

You cannot use the compatibility interface for a data set having a nonzero RKP
(KEYLOC) and RECFM=F. If your program uses such files you must recompile to
change the INDEXED file declaration to VSAM.

You need the compatibility interface in the following circumstances:
1. If your program uses nonembedded keys.

2. If your program relies on the raising of the RECORD condition when an
incorrect-length record is encountered.

3. If your program relies on checking for deleted records. In ISAM, deleted
records remain in the data set but are flagged as deleted. In VSAM, they
become inaccessible to you, and their space is available for overwriting.

Note on Deletion: If you want the compatibility interface but want deletion of
records handled in the VSAM manner, you must use 'OPTCD=IL' in the DD
statement.

An example of DD statements that would result in the compatibility interface being
used when accessing a VSAM data set is:

//PLIFILE DD DSNAME=VSAM1,
// DISP=0LD,AMP="'RECFM=F'

or, to use the compatibility interface with VSAM-type deletion of records:

//PLIFILE DD DSNAME=VSAM1,
// DISP=0LD,AMP="'0PTCD=IL"

Adapting Existing Programs for VSAM
You can readily adapt existing programs with indexed, consecutive, or
REGIONAL(1) files for use with VSAM data sets. As indicated above, programs
with consecutive files might not need alteration, and there is never any necessity to
alter programs with indexed files unless you wish to avoid the use of the
compatibility interface or if the logic depends on EXCLUSIVE files. Programs
with REGIONAL(1) data sets require only minor revision. Programs with
REGIONAL(2) or REGIONAL(3) files need restructuring before you can use them
with VSAM data sets.

Chapter 11. Defining and Using VSAM Data Sets 225

CONSECUTIVE Files

If the logic of the program depends on raising the RECORD condition when a
record of an incorrect length is found, you will have to write your own code to check
for the record length and take the necessary action. This is because records of
any length up to the maximum specified are allowed in VSAM data sets.

INDEXED Files
You need to change programs using indexed (that is, ISAM) files only if you wish to
avoid using the compatibility interface.

You should remove dependence on the RECORD condition, and insert your own
code to check for record length if this is necessary.

Also remove any checking for deleted records.

REGIONAL(1) Files
You can alter programs using REGIONAL(1) data sets to use VSAM relative record
data sets.

Remove REGIONAL(1) and any other non-VSAM ENVIRONMENT options from the
file declaration and replace them with ENV(VSAM).

Also remove any checking for deleted records, because VSAM deleted records are
not accessible to you.

Using Several Files in One VSAM Data Set

226

You can associate multiple files with one VSAM data set in the following ways:

e Use a common DD statement. You can use the TITLE option of the OPEN
statement for this purpose, as described on page spotref refid=assfile..

* Use separate DD statements, ensure that the DD statements reference the
same data set name, or a path accessing the same underlying VSAM data set.
PL/I OPEN specifies the VSAM MACRF=DSN option, indicating that VSAM is
to share control blocks based on a common data set name.

In both cases, PL/I creates one set of control blocks—an Access Method Control
Block and a Request Parameter List (RPL)—for each file and does not provide for
associating multiple RPLs with a single ACB. These control blocks are described in
the VSAM publications. and normally need not concern you.

PL/I for MVS & VM Programming Guide

Multiple files can perform retrievals against a single data set with no difficulty.
However, if one or more files perform updates, the following can occur:

e There is a risk that other files will retrieve down-level records. You can avoid

this by having all files open with the UPDATE attribute.

When more than one file is open with the UPDATE attribute, retrieval of any
record in a control interval makes all other records in that control interval
unavailable until the update is complete. This raises the ERROR condition with
condition code 1027 if a second file tries to access one of the unavailable
records. You could design your application to retry the retrieval after
completion of the other file's data transmission, or you can avoid the error by
not having two files associated with the same data set at one time.

When one or more of the multiple files is an alternate index path, an update
through an alternate index path might update the alternate index before the
data record is written, resulting in a mismatch between index and data.

Using Shared Data Sets

PL/I does not support cross-region or cross-system sharing of data sets.

Defining VSAM Data Sets

Use the DEFINE CLUSTER command of Access Method Services to define and
catalog VSAM data sets. To use the DEFINE command, you need to know:

The name and password of the master catalog if the master catalog is
password protected

The name and password of the VSAM private catalog you are using if you are
not using the master catalog

Whether VSAM space for your data set is available

The type of VSAM data set you are going to create

The volume on which your data set is to be placed

The average and maximum record size in your data set
The position and length of the key for an indexed data set
The space to be allocated for your data set

How to code the DEFINE command

How to use the Access Method Services program.

When you have the information, you are in a position to code the DEFINE
command and then define and catalog the data set using Access Method Services.

Chapter 11. Defining and Using VSAM Data Sets 227

Entry-Sequenced Data Sets

228

The statements and options allowed for files associated with an ESDS are shown in

Table 36.

Table 36 (Page 1 of 2). Statements and Options Allowed for Loading and Accessing
VSAM Entry-Sequenced Data Sets

File Valid statements, with options Other options you can
declaration 1 you must include also include
SEQUENTIAL OUTPUT WRITE FILE(file-reference) KEYTO(reference)

BUFFERED

FROM(reference);

LOCATE based-variable
FILE(file-reference);

SET(pointer-reference)

SEQUENTIAL OUTPUT

WRITE FILE(file-reference)

EVENT (event-reference)

UNBUFFERED FROM(reference); and/or
KEYTO(reference)

SEQUENTIAL INPUT READ FILE(file-reference) KEYTO(reference) or

BUFFERED INTO(reference); KEY (expression)3

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);

KEYTO(reference) or
KEY (expression)3

IGNORE(expression)

SEQUENTIAL INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

EVENT (event-reference)
and/or either

KEY (expression)3
KEYTO(reference)

EVENT (event-reference)
and/or

IGNORE(expression)
SEQUENTIAL UPDATE READ FILE(file-reference) KEYTO(reference) or
BUFFERED INTO(reference); KEY (expression)3

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference)?2

WRITE FILE(file-reference)
FROM(reference);

REWRITE FILE(file-reference);

KEYTO(reference) or
KEY (expression)3

IGNORE(expression)
KEYTO(reference)
FROM(reference)

and/or
KEY (expression)3

PL/I for MVS & VM Programming Guide

Table 36 (Page 2 of 2). Statements and Options Allowed for Loading and Accessing
VSAM Entry-Sequenced Data Sets

File Valid statements, with options Other options you can
declaration 1 you must include also include
SEQUENTIAL UPDATE READ FILE(file-reference) EVENT (event-reference)
UNBUFFERED INTO(reference); and/or either
KEY (expression)3 or
KEYTO(reference)
READ FILE(file-reference);2 EVENT (event-reference)
and/or
IGNORE(expression)
WRITE FILE(file-reference) EVENT (event-reference)
FROM(reference); and/or
KEYTO(reference)
REWRITE FILE(file-reference) EVENT (event-reference)
FROM(reference); and/or
KEY (expression)3
Notes:

1. The complete file declaration would include the attributes FILE, RECORD, and ENVIRONMENT; if
you use either of the options KEY or KEYTO, it must also include the attribute KEYED.

2. The statement “READ FILE(file-reference);” is equivalent to the statement “READ
FILE(file-reference) IGNORE (1);.”

3. The expression used in the KEY option must be a relative byte address, previously obtained by
means of the KEYTO option.

Loading an ESDS

When an ESDS is being loaded, the associated file must be opened for
SEQUENTIAL OUTPUT. The records are retained in the order in which they are
presented.

You can use the KEYTO option to obtain the relative byte address of each record
as it is written. You can subsequently use these keys to achieve keyed access to
the data set.

Using a SEQUENTIAL File to Access an ESDS

You can open a SEQUENTIAL file that is used to access an ESDS with either the
INPUT or the UPDATE attribute. If you use either of the options KEY or KEYTO,
the file must also have the KEYED attribute.

Sequential access is in the order that the records were originally loaded into the
data set. You can use the KEYTO option on the READ statements to recover the
RBAs of the records that are read. If you use the KEY option, the record that is
recovered is the one with the RBA you specify. Subsequent sequential access
continues from the new position in the data set.

For an UPDATE file, the WRITE statement adds a new record at the end of the
data set. With a REWRITE statement, the record rewritten is the one with the
specified RBA if you use the KEY option; otherwise, it is the record accessed on
the previous READ. You must not attempt to change the length of the record that
is being replaced with a REWRITE statement.

The DELETE statement is not allowed for entry-sequenced data sets.

Chapter 11. Defining and Using VSAM Data Sets 229

230

Defining and Loading an ESDS

In Figure 53 on page 231, the data set is defined with the DEFINE CLUSTER
command and given the name PLIVSAM.AJC1.BASE. The NONINDEXED
keyword causes an ESDS to be defined.

The PL/I program writes the data set using a SEQUENTIAL OUTPUT file and a
WRITE FROM statement. The DD statement for the file contains the DSNAME of
the data set given in the NAME parameter of the DEFINE CLUSTER command.

The RBA of the records could have been obtained during the writing for subsequent
use as keys in a KEYED file. To do this, a suitable variable would have to be
declared to hold the key and the WRITE...KEYTO statement used. For example:

DCL CHARS CHAR(4);
WRITE FILE(FAMFILE) FROM (STRING)
KEYTO(CHARS) ;

Note that the keys would not normally be printable, but could be retained for
subsequent use.

The cataloged procedure IEL1CLG is used. Because the same program (in
Figure 53 on page 231) can be used for adding records to the data set, it is
retained in a library. This procedure is shown in the next example.

PL/I for MVS & VM Programming Guide

//0PT9#7 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DEFINE CLUSTER -
(NAME (PLIVSAM.AJC1.BASE) -
VOLUMES (nnnnnn) -
NONINDEXED -
RECORDSIZE (80 80) -
TRACKS (2 2))
/*
//STEP2 EXEC IELICLG
//PLI.SYSIN DD *
CREATE: PROC OPTIONS(MAIN);

DCL
FAMFILE FILE SEQUENTIAL OUTPUT ENV(VSAM),
IN FILE RECORD INPUT,
STRING CHAR(80),
EOF BIT(1) INIT('0'B);

ON ENDFILE(IN) EOF='1'B;

READ FILE(IN) INTO (STRING);

DO I=1 BY 1 WHILE (-EOF);
PUT FILE(SYSPRINT) SKIP EDIT (STRING) (A);
WRITE FILE(FAMFILE) FROM (STRING);
READ FILE(IN) INTO (STRING);

END;

PUT SKIP EDIT(I-1,' RECORDS PROCESSED') (A);

END;
/*
//LKED.SYSLMOD DD DSN=HPU8.MYDS(PGMA),DISP=(NEW,CATLG),
// UNIT=SYSDA,SPACE=(CYL,(1,1,1))
//GO.FAMFILE DD DSNAME=PLIVSAM.AJC1.BASE,DISP=0LD
//GO.IN DD *
FRED 69 M
ANDY 70 M
SUZAN 72 F
/*

Figure 53. Defining and Loading an Entry-Sequenced Data Set (ESDS)

Updating an Entry-Sequenced Data Set

Figure 54 shows the addition of a new record on the end of an ESDS. This is
done by executing again the program shown in Figure 53. A SEQUENTIAL
OUTPUT file is used and the data set associated with it by use of the DSNAME
parameter specifying the name PLIVSAM.AJC1.BASE specified in the DEFINE
command shown in Figure 53.

//0PT9#8 JOB

//STEP1 EXEC PGM=PGMA

//STEPLIB DD DSN=HPU8.MYDS(PGMA),DISP=(OLD,KEEP)
// DD DSN=CEE.V1R2MO.SCEERUN,DISP=SHR
//SYSPRINT DD SYSOUT=A

//FAMFILE DD DSN=PLIVSAM.AJC1.BASE,DISP=SHR
//IN DD =

JANE 75 F

//

Figure 54. Updating an ESDS

You can rewrite existing records in an ESDS, provided that the length of the record
is not changed. You can use a SEQUENTIAL or KEYED SEQUENTIAL update file

Chapter 11. Defining and Using VSAM Data Sets 231

to do this. If you use keys, they can be the RBAs or keys of an alternate index

path.

Delete is not allowed for ESDS.

Key-Sequenced

and Indexed Entry-Sequenced Data Sets

The statements and options allowed for indexed VSAM data sets are shown in
Table 37. An indexed data set can be a KSDS with its prime index, or either a
KSDS or an ESDS with an alternate index. Except where otherwise stated, the
following description applies to all indexed VSAM data sets.

Table 37 (Page 1 of 3). Statements and Options Allowed for Loading and Accessing

VSAM Indexed Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL OUTPUT
BUFFERED3

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

LOCATE based-variable
FILE(file-reference)

SET(pointer-reference)

KEYFROM(expression);
SEQUENTIAL OUTPUT WRITE FILE(file-reference) EVENT (event-reference)
UNBUFFERED3 FROM(reference)

KEYFROM(expression);
SEQUENTIAL INPUT READ FILE(file-reference) KEY (expression) or
BUFFERED INTO(reference); KEYTO(reference)

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2

KEY (expression) or
KEYTO(reference)

IGNORE (expression)

SEQUENTIAL INPUT
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

EVENT (event-reference)
and/or either

KEY (expression) or
KEYTO(reference)

EVENT (event-reference)
and/or
IGNORE (expression)

SEQUENTIAL UPDATE
BUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference)
SET(pointer-reference);

READ FILE(file-reference);2
WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference);

DELETE FILE(file-reference)>

KEY (expression) or
KEYTO(reference)

KEY (expression) or
KEYTO(reference)

IGNORE (expression)

FROM(reference) and/or
KEY (expression)

KEY (expression)

232 PL/ for MVS & VM Programming Guide

Table 37 (Page 2 of 3). Statements and Options Allowed for Loading and Accessing

VSAM Indexed Data Sets

File
declaration 1

Valid statements, with options
you must include

Other options you can
also include

SEQUENTIAL UPDATE
UNBUFFERED

READ FILE(file-reference)
INTO(reference);

READ FILE(file-reference);2

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

REWRITE FILE(file-reference)
FROM(reference);

DELETE FILE(file-reference);5

EVENT (event-reference)
and/or either

KEY (expression) or
KEYTO(reference)

EVENT (event-reference)
and/or IGNORE(expression)

EVENT (event reference)

EVENT (event-reference)
and/or KEY (expression)

KEY (expression) and/or
EVENT (event-reference)

DIRECT4 INPUT
BUFFERED

READ FILE(file-reference)
INTO(reference)
KEY (expression);

READ FILE(file-reference)
SET(pointer-reference)

KEY (expression);
DIRECT4 INPUT READ FILE(file-reference) EVENT (event-reference)
UNBUFFERED INTO(reference)
KEY (expression);
DIRECT OUTPUT WRITE FILE(file-reference)
BUFFERED FROM(reference)
KEYFROM(expression);
DIRECT OUTPUT WRITE FILE(file-reference) EVENT (event-reference)
UNBUFFERED FROM(reference)
KEYFROM(expression);
DIRECT4 UPDATE READ FILE(file-reference)
BUFFERED INTO(reference)
KEY (expression);

READ FILE(file-reference)
SET(pointer-reference)
KEY (expression);

REWRITE FILE(file-reference)
FROM(reference)
KEY (expression);

DELETE FILE(file-reference)
KEY (expression);5

WRITE FILE(file-reference)
FROM(reference)
KEYFROM(expression);

Chapter 11. Defining and Using VSAM Data Sets

233

Table 37 (Page 3 of 3). Statements and Options Allowed for Loading and Accessing
VSAM Indexed Data Sets

File Valid statements, with options Other options you can
declaration 1 you must include also include
DIRECT4 UPDATE READ FILE(file-reference) EVENT (event-reference)
UNBUFFERED INTO(reference)
KEY (expression);
REWRITE FILE(file-reference) EVENT (event-reference)
FROM(reference)
KEY (expression);
DELETE FILE(file-reference) EVENT (event-reference)

KEY (expression);5

WRITE FILE(file-reference) EVENT (event-reference)
FROM(reference)
KEYFROM(expression);

Notes:

1. The complete file declaration would include the attributes FILE and RECORD. If you use any of the
options KEY, KEYFROM, or KEYTO, you must also include the attribute KEYED in the declaration.

The EXCLUSIVE attribute for DIRECT INPUT or UPDATE files, the UNLOCK statement for DIRECT
UPDATE files, or the NOLOCK option of the READ statement for DIRECT INPUT files are ignored if
you use them for files associated with a VSAM KSDS.

2. The statement READ FILE(file-reference); is equivalent to the statement READ FILE(file-reference)
IGNORE(1);

3. Do not associate a SEQUENTIAL OUTPUT file with a data set accessed via an alternate index.
4. Do not associate a DIRECT file with a data set accessed via a nonunique alternate index.

5. DELETE statements are not allowed for a file associated with an ESDS accessed via an alternate
index.

Loading a KSDS or Indexed ESDS

234

When a KSDS is being loaded, you must open the associated file for KEYED
SEQUENTIAL OUTPUT. You must present the records in ascending key order,
and you must use the KEYFROM option. Note that you must use the prime index
for loading the data set; you cannot load a VSAM data set via an alternate index.

If a KSDS already contains some records, and you open the associated file with the
SEQUENTIAL and OUTPUT attributes, you can only add records at the end of the
data set. The rules given in the previous paragraph apply; in particular, the first
record you present must have a key greater than the highest key present on the
data set.

Figure 55 on page 235 shows the DEFINE command used to define a KSDS. The
data set is given the name PLIVSAM.AJC2.BASE and defined as a KSDS because
of the use of the INDEXED operand. The position of the keys within the record is
defined in the KEYS operand.

Within the PL/I program, a KEYED SEQUENTIAL OUTPUT file is used with a
WRITE...FROM...KEYFROM statement. The data is presented in ascending key
order. A KSDS must be loaded in this manner.

The file is associated with the data set by a DD statement which uses the name
given in the DEFINE command as the DSNAME parameter.

PL/I for MVS & VM Programming Guide

//0PT9#12 JOB
// EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DEFINE CLUSTER -
(NAME (PLIVSAM.AJC2.BASE) -
VOLUMES (nnnnnn) -
INDEXED -
TRACKS(3 1) -
KEYS(20 0) -
RECORDSIZE (23 80))
/*
// EXEC IEL1CLG
//PLI.SYSIN DD *
TELNOS: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD SEQUENTIAL OUTPUT KEYED ENV(VSAM),
CARD CHAR(80),
NAME CHAR(26) DEF CARD POS(1),
NUMBER CHAR(3) DEF CARD P0S(21),
OUTREC CHAR(23) DEF CARD POS(1),
EOF BIT(1) INIT('0'B);

ON ENDFILE(SYSIN) EOF='1'B;
OPEN FILE(DIREC) OUTPUT;

GET FILE(SYSIN) EDIT(CARD) (A(80));

DO WHILE (-EOF);

WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
GET FILE(SYSIN) EDIT(CARD) (A(80));

END;

CLOSE FILE(DIREC);

END TELNOS;
/*
//GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=0LD
//GO.SYSIN DD =

ACTION,G. 162
BAKER,R. 152
BRAMLEY,O0.H. 248
CHEESEMAN,D. 141
CORY,G. 336
ELLIOTT,D. 875
FIGGINS,S. 413
HARVEY,C.D.W. 205
HASTINGS,G.M. 391
KENDALL,J.G. 294
LANCASTER,W.R. 624
MILES,R. 233
NEWMAN,M.W. 450
PITT,W.H. 515
ROLF,D.E. 114
SHEERS,C.D. 241
SUTCLIFFE,M. 472
TAYLOR,G.C. 407
WILTON,L.W. 404
WINSTONE,E.M. 307
/1

Figure 55. Defining and Loading a Key-Sequenced Data Set (KSDS)

Chapter 11. Defining and Using VSAM Data Sets 235

Using a SEQUENTIAL File to Access a KSDS or Indexed ESDS

You can open a SEQUENTIAL file that is used to access a KSDS with either the
INPUT or the UPDATE attribute.

For READ statements without the KEY option, the records are recovered in
ascending key order (or in descending key order if the BKWD option is used). You
can obtain the key of a record recovered in this way by means of the KEYTO
option.

If you use the KEY option, the record recovered by a READ statement is the one
with the specified key. Such a READ statement positions the data set at the
specified record; subsequent sequential reads will recover the following records in
sequence.

WRITE statements with the KEYFROM option are allowed for KEYED
SEQUENTIAL UPDATE files. You can make insertions anywhere in the data set,
without respect to the position of any previous access. If you are accessing the
data set via a unique index, the KEY condition is raised if an attempt is made to
insert a record with the same key as a record that already exists on the data set.
For a nonunique index, subsequent retrieval of records with the same key is in the
order that they were added to the data set.

REWRITE statements with or without the KEY option are allowed for UPDATE files.
If you use the KEY option, the record that is rewritten is the first record with the
specified key; otherwise, it is the record that was accessed by the previous READ
statement. When you rewrite a record using an alternate index, do not change the
prime key of the record.

Using a DIRECT File to Access a KSDS or Indexed ESDS

236

You can open a DIRECT file that is used to access an indexed VSAM data set with
the INPUT, OUTPUT, or UPDATE attribute. Do not use a DIRECT file to access
the data set via a nonunique index.

If you use a DIRECT OUTPUT file to add records to the data set, and if an attempt
is made to insert a record with the same key as a record that already exists, the
KEY condition is raised.

If you use a DIRECT INPUT or DIRECT UPDATE file, you can read, write, rewrite,
or delete records in the same way as for a KEYED SEQUENTIAL file.

Figure 56 on page 237 shows one method by which a KSDS can be updated
using the prime index.

PL/I for MVS & VM Programming Guide

//0PT9#13 JOB

//STEP1 EXEC IELICLG
//PLI.SYSIN DD =
DIRUPDT: PROC OPTIONS(MAIN);

DCL DIREC FILE RECORD KEYED ENV(VSAM),
ONCODE BUILTIN,
OUTREC CHAR(23),
NUMBER CHAR(3) DEF OUTREC POS(21),
NAME CHAR(20) DEF OUTREC,
CODE CHAR(1),
EOF BIT(1) INIT('0'B);

ON ENDFILE(SYSIN) EOF='1'B;

ON KEY(DIREC) BEGIN;
IF ONCODE=51 THEN PUT FILE(SYSPRINT) SKIP EDIT
('NOT FOUND: ',NAME) (A(15),A);
IF ONCODE=52 THEN PUT FILE(SYSPRINT) SKIP EDIT
('DUPLICATE: ',NAME)(A(15),A);
END;

OPEN FILE(DIREC) DIRECT UPDATE;
GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)

(COLUMN(1) ,A(20),A(3),A(1));
DO WHILE (=EOF);

PUT FILE(SYSPRINT) SKIP EDIT (' ',NAME,'#',NUMBER,' ',CODE)

(A(1),A(20),A(1),A(3),A(1) ,A(1));3
SELECT (CODE);

WHEN('A") WRITE FILE(DIREC) FROM(OUTREC) KEYFROM(NAME);
WHEN('C') REWRITE FILE(DIREC) FROM(OUTREC) KEY(NAME);

WHEN('D') DELETE FILE(DIREC) KEY(NAME);
OTHERWISE PUT FILE(SYSPRINT) SKIP EDIT
(*INVALID CODE: ',NAME) (A(15),A);
END;
GET FILE(SYSIN) EDIT (NAME,NUMBER,CODE)
(COLUMN(1),A(20),A(3),A(1));
END;

Figure 56 (Part 1 of 2). Updating a KSDS

Chapter 11. Defining and Using VSAM Data Sets

237

238

CLOSE FILE(DIREC);
PUT FILE(SYSPRINT) PAGE;
OPEN FILE(DIREC) SEQUENTIAL INPUT;

EOF='0"B;
ON ENDFILE(DIREC) EOF='1'B;

READ FILE(DIREC) INTO(OUTREC);
DO WHILE(-EOF);
PUT FILE(SYSPRINT) SKIP EDIT(OUTREC) (A);
READ FILE(DIREC) INTO(OUTREC);
END;
CLOSE FILE(DIREC);
END DIRUPDT;
/*
//GO.DIREC DD DSNAME=PLIVSAM.AJC2.BASE,DISP=0LD
//GO.SYSIN DD =

NEWMAN,M.W. 516C
GOODFELLOW,D.T. 889A
MILES,R. D
HARVEY,C.D.W. 209A
BARTLETT,S.G. 183A
CORY,G. D
READ,K.M. 001A
PITT,W.H.

ROLF,D.F. D
ELLIOTT,D. 291C
HASTINGS,G.M. D
BRAMLEY,0.H. 439C
/*

Figure 56 (Part 2 of 2). Updating a KSDS

A DIRECT update file is used and the data is altered according to a code that is
passed in the records in the file SYSIN:

A Add a new record
C Change the number of an existing name
D Delete a record

At the label NEXT, the name, number, and code are read in and action taken
according to the value of the code. A KEY ON-unit is used to handle any incorrect
keys. When the updating is finished (at the label PRINT), the file DIREC is closed
and reopened with the attributes SEQUENTIAL INPUT. The file is then read
sequentially and printed.

The file is associated with the data set by a DD statement that uses the DSNAME
PLIVSAM.AJC2.BASE defined in the Access Method Services DEFINE CLUSTER
command in Figure 55 on page 235.

Methods of Updating a KSDS: There are a number of methods of updating a
KSDS. The method shown using a DIRECT file is suitable for the data as it is
shown in the example. If the data had been presented in ascending key order (or
even something approaching it), performance might have been improved by use of
the SKIP ENVIRONMENT option. For mass sequential insertion, use a KEYED
SEQUENTIAL UPDATE file. This gives faster performance because the data is
written onto the data set only when strictly necessary and not after every write
statement, and because the balance of free space within the data set is retained.

PL/I for MVS & VM Programming Guide

Statements to achieve effective mass sequential insertion are:

DCL DIREC KEYED SEQUENTIAL UPDATE
ENV (VSAM) ;
WRITE FILE(DIREC) FROM(OUTREC)
KEYFROM (NAME) ;

The PL/I input/output routines detect that the keys are in sequence and make the
correct requests to VSAM. If the keys are not in sequence, this too is detected and
no error occurs, although the performance advantage is lost. VSAM provides three
methods of insertion as shown in Table 38.

Table 38. VSAM Methods of Insertion into a KSDS

When written onto PL/I attributes
Method Requirements Freespace data set required
SEQ Keys in Kept Only when KEYED SEQUENTIAL
sequence necessary UPDATE
SKP Keys in Used Only when KEYED SEQUENTIAL
sequence necessary UPDATE
ENV(VSAM SKIP)
DIR Keys in any Used After every DIRECT
order statement
DIR(MACRF=SIS) Keys in any Kept After every DIRECT
order statement ENV(VSAM SIS)

SKIP means that you must follow the sequence but that you can omit records. You
do not need to maintain absolute sequence or order if SEQ or SKIP is used. The
PL/I routines determine which type of request to make to VSAM for each statement,
first checking the keys to determine which would be appropriate. The retention of
free space ensures that the structure of the data set at the point of mass sequential
insertion is not destroyed, enabling you to make further normal alterations in that
area without loss of performance. To preserve free space balance when you
require immediate writing of the data set during mass sequential insertion, as it can
be on interactive systems, use the SIS ENVIRONMENT option with DIRECT files.

Alternate Indexes for KSDSs or Indexed ESDSs

Alternate indexes allow you to access KSDSs or indexed ESDSs in various ways,
using either unique or nonunique keys.

Unigue Key Alternate Index Path

Figure 57 on page 240 shows the creation of a unique key alternative index path
for the ESDS defined and loaded in Figure 53 on page 231. Using this path, the
data set is indexed by the name of the child in the first 15 bytes of the record.

Three Access Method Services commands are used. These are:

DEFINE ALTERNATEINDEX
defines the alternate index as a data set to VSAM.

BLDINDEX
places the pointers to the relevant records in the alternate index.

DEFINE PATH
defines an entity that can be associated with a PL/I file in a DD statement.

Chapter 11. Defining and Using VSAM Data Sets 239

240

DD statements are required for the INFILE and OUTFILE operands of BLDINDEX
and for the sort files. Make sure that you specify the correct names at the various
points.

//0PT9#9 JOB
//STEP1 EXEC PGM=IDCAMS,REGION=512K
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
DEFINE ALTERNATEINDEX -
(NAME (PLIVSAM.AJC1.ALPHIND) -
VOLUMES (nnnnnn) -
TRACKS (4 1) -
KEYS(15 0) -
RECORDSIZE(20 40) -
UNIQUEKEY -
RELATE(PLIVSAM.AJC1.BASE))
/*
//STEP2 EXEC PGM=IDCAMS ,REGION=512K
//0D1 DD DSNAME=PLIVSAM.AJC1.BASE,DISP=SHR
//0D2 DD DSNAME=PLIVSAM.AJC1.ALPHIND,DISP=SHR
//SYSPRINT DD SYSOUT=+
//SYSIN DD *
BLDINDEX INFILE(DD1) OUTFILE(DD2)
DEFINE PATH -
(NAME (PLIVSAM.AJC1.ALPHPATH) -
PATHENTRY (PLIVSAM.AJCI1.ALPHIND))
//

Figure 57. Creating a Unique Key Alternate Index Path for an ESDS

Nonunique Key Alternate Index Path

Figure 58 on page 241 shows the creation of a nonunique key alternate index path
for an ESDS. The alternate index enables the data to be selected by the sex of the
children. This enables the girls or the boys to be accessed separately and every
member of each group to be accessed by use of the key.

The three Access Method Services commands and the DD statement are as
described in “Unigue Key Alternate Index Path