
GC33-0001-2 
File No. S360/S370-29 

OS 
PL/I Optimizing Compiler: 

Program Product General Information 

Program Number 5734-PL 1 
(This program product is available 
as part of composite package 5734-PL3) 



Reiised June~ 1973 
By TNL: GN33-6095 

Preface 

This publication gives general information 
about the Q§ !:!!L! QE:£!!!!iz!!!g £2!!lE!!~!:" a 
processing program of the IBM Operating 
:System. 

The information provided is to be used 
as a planning aid only, and is intended to 
introduce installation managers, systems 
.analysts, and programmers to the facilities 
available with this compiler. The reader 
is assumed to be conversant with the IBM 
operating System and with the PL/I language 
as implemented by version 5 of the PL/I (F) 
compiler. 

Chapter 1 discusses how the performance 
of the OS PL/I Optimizing Compiler compares 
with that of version 5 of the PL/I (F) 
Compiler; the compiler options that are 
available; the debugging aids designed to 
increase programmer productivity; the 
degree to which the compiler is compatible 
with version 5 of the PL/I (F) Compiler; 
and the features designed to allow 

I communication with assembler programs and 
Iwith programs written in COBOL or FORTRAN. 

Chapter 2 is a discussion of the methods 
used for the optimization process;, such as 
expression simplification or the 

Third Edition (December 1972) 

substitution of in-line code in place of 
calls to library subroutines. 

Chapter 3 is about the PL/I language 
itself, including the features that can be 
used with this compiler, and a comparison 
of the language imple~ented by the 
optimizing compiler with that implemented 
by version 5 of the PL/I (F) compiler. 

Chapter 4 briefly describes both the 
machine and the operating system 
requirements of the optimizing compiler. 

Appendix A is a list of the PL/I and the 
implementation-defined keywords used by 
this compiler. 

Appendix B documents the most 
significant incompatibilities that might 
cause a program written for version 5 of 
the PL/I (F) Compiler to give errors when 
run on the optimizing compiler. 

Appendix C is a bibliography of related 
IBM publications and their order numbers. 

Appendix 0 provides planning information 
for the use of the optimizing compiler 
under CMS. 

This is a major revision of, and obsoletes, GC33-0001-1 and 
Technical Newsletters GN33-6069, GN33-6057, GN33-6044. 
GN33-6034, and GN33-6024. Changes or additions to the text 
and figures are indicated by a vertical line to the left 
of the change. 

This edition applies to Version 1, Release 2, Modification 0 
of the OS PL/I Optimizing Compiler, Program Product 
5734-PL1, and to all subsequent versions, releases, or 
modifications until otherwise indicated in new editions or 
technical newsletters. Changes are continually made to 
the information herein; before using this pUblication in 
connection with the operation ot IBM Systems, consult the 
latest IBM System/360 and System/370 Bibliography, Order No. 
GA22-6822, and associated technical newsletters, for the 
editions that are applicable and current. 

VSAM material in this publication is for planning purposes 
only. CMS material in this publication applies to Release 1, 
PLC5(Program Level Change 5) of the Virtual Machine 
Facility/370 (VM/370). 

Requests for copies of IBM publications should be made to 
your IBM representative or the IBM branch office serving 
your locality. 

A form for readers' comments is provided at the back of this 
publication. If the form has been removed, comments may be 
addressed to IBM united Kingdom Laboratories Ltd. 
Publications Department, Hursley Park, Winchester' 
Hampshire, England. Comments become the property'of IBM. 

ecopyright International Business Machines Corporation 
1970,1971,1972 

ii 



INTRODUCTION 

CHAPTER 1: THE OS PL/I OPTIMIZING 
COMPILER • 

Compilation Speed • • 
Execution Speed • • • • • • • • • • • 
Space Requirements 
Debugging Aids 
Compiler Options 

. . . . 
Compatibility with the (F) Compiler • 
compatibility Between Releases • • • 
compatibility Between OS and DOS 
Interlanguage Communication 

CHAPTER 2: OPTIMIZATION 
Common Expression Elimination 
Transfer of Expressions from Loops 
Redundant Expression Elimination 
Simplification of Expressions • • 

Modification of Loop Control 
Variables • • • • • • • 

Defactorization • • • • 
Replacement of constant 

Expressions • • • • • • 
Replacement of Constant 
Multipliers and Exponents • 

Initialization of Arrays and 
Structures • • • • • • • • • 

In-line Code for Conversions 
In-line Code for RECORD I/O • • • 
Rey Handling for REGIONAL Data Sets • 
Matching Format Lists With Data Lists 
In-line Code for String Manipulation 
In-line Code for Built-In Functions • 
Special-case Code for DO Statements • 
structure and Array Assignments • 
Library Subroutines • • • • • • • • • 
Elimination of Common Constants • • • 
Elimination of Common Control Data 
Use of Registers 
Code for Program Branches • • • • • • 

CHAPTER 3: THE PL/I LANGUAGE 
IMPLEMENTED • • • • 

Language Feature s • • • • • • 
Data Types • • • 
Operations • • • • • • • 
Data Aggregates 
Program Management • 
Input/Output •• 

Language Extensions • • • 
optimization • • • • 
Program Checkout • 
DEFAULT Statement 
preprocessing Facilities • 
Listing Control Statements 
storage Control •••••• 
ENVIRONMENT Attribute 
Record-Oriented Transmission • • 
ASCII Data Sets 
File Names • • • • • • • • • 

1 

3 
3 
3 
3 
3 
4 
5 
5 
5 
5 

7 
7 
8 
8 
8 

9 
9 

9 

9 

9 
10 
10 
10 
10 
10 
10 
10 
11 
11 
11 
11 
11 
11 

13 
13 
13 
13 
13 
13 
14 
15 
15 
15 
15 
15 
16 
16 
16 
17 
17 
18 

Contents 

Data Aggregates • • • • 
String Handling • • • • • 
Data Attributes 
Extended Precision Floating 
Point • • • • • • • • • • • 

Subroutines and Functions 
Mathematical Built-In Functions 
comparison Operators • • • • 
Interlanguage Communication 

CHAPTER 4: SYSTEM REQUIREMENTS • 
Machine Requirements 

Compilation . . . . 
Execution •••• 
Auxiliary Storage 
Input/Output Devices • 

. . . . 
Operating System Requirements 

Control Programs • • • • • • • 
Data Management Facilities • • 
Sort Facilities •••••• 
Checkpoint/Restart Facilities 

System/370 Facilities 

APPENDIX A: KEYWORDS AND THEIR 
ABBREVIATIONS 

APPENDIX B: COMPATIBILITY WITH (F) 
COMPILER • 

Areas ••••••••• 
Arrays and structures • • • • • 
Built-In Functions • • 
The DISPLAY Statement 
Dumps from PL/I Programs • • 
Entry Names, Parameters, and 

Returned Values • • • • • • • • 
The ENVIRONMENT Attribute 
Error Correction • 
INITIAL Attribute 
LIKE Attribute • 
Link-Editing • • • 
Operating System Facilities 
Pictures • • • • 
Preprocessor • • 
Pseudovariables 
Record I/O ••• 
Redundant Expression Elimination 
REWIND Option 
SORT/MERGE Program • 
Statements • • • • • • • • • 
Statement Labels • • • • • • 
statement Lengths 
Stream Transmission 
Varying-length strings • • • • • 

APPENDIX C: BIBLIOGRAPHY. 

APPENDIX D: PLANNING INFORMATION FOR 
CMS • • • • • 

INDEX • 

18 
18 
18 

19 
19 
20 
20 
20 

21 
21 
21 
21 
21 
21 
22 
22 
23 
23 
23 
23 

25 

31 
31 
31 
31 
31 
31 

31 
32 
32 
32 
32 
32 
32 
33 
33 
33 
33 
33 
33 
33 
33 
33 
33 
34 
34 

35 

37 

39 

iii 



Figures 

Figure 1. 
Figure 2. 

iv 

Differences in implementation restrictions 
Compiler input/outputdevices •••••• 

14 
22 



The OS PL/I Optimizing Compiler is designed 
for the compilation of programs written in 
PL/I into efficient object programs. It 
requires a minimum of 50K bytes of main 
storage on an IBM System/360 or System/370 
with the universal instruction set and is 
intended to meet the requirements of the 
PL/I user of medium-sized or larger 
installations. Good all-round performance 
is aChieved by a compiler design that 
incorporates the best design features of a 
number of well-proven compilers, including 
the PL/I (D)~ PL/I (F), FORTRAN IV(G), 
FORTRAN IV(H), and COBOL (F) compilers. 
The main features include: 

• Extensive Optimization - if optional 
optimization is specified, the machine 
instructions generated will be optimized 
using the features described in chapter 
2, to produce a very efficient object 
program. some optimization is always 
performed even if the option is not 
specified. A secondary effect of 
optimization could be a reduction in the 
amount of main storage required for the 
object program during execution. If 
optional optimization is not specified" 
compilation time will be reduced. 

• Advanced Level of PL/I - an 
implementation of PL/I with language 
extensions beyond the language 
implemented by the PL/I (F) Compiler. 
New features for os users include: 

DEFAULT statement 

Entry variables 

File variables 

• Extensive Debugging Aids - time and 
effort required for program checkout are 
minimized by: 

Extensive implementation of on-units 

support of the CHECK condition 

Data-directed input/output 

Comprehensive range of compiler options 

Clear and precise compile-time and 
execution-time diagnostic messages 

Optional statement number trace 
facilities 

optional statement frequency counting 
facility. 

--~- -- ---- ---- -
Revised June, 1973 
By TNL: GN33-6095 

Introduction 

The OS PL/I Optimizing Compiler 
translates PL/I source statements into 
machine instructions. However, it does not 
generate all the machine instructions 
required to represent the source program; 
in some cases it inserts references to 
subroutines that are stored in the resident 
library. During link-editing, subroutines 
from the resident library are included in 
the object module. These subroutines may 
contain references to other subroutines 
stored in the transient library; during 
execution, subroutines from the transient 
library are loaded, executed, and discarded 
as required. 

The functions provided by the resident 
library are as follows: 

• mathematical subroutines. 

• data type conversions. 

• edit-, list-, and data-directed I/O 
(stream-oriented transmission). 

• program initialization. 

• storage management. 

• display. 

• timer facilities. 

• error handling. 

The functions provided by the transient 
library are as follows: 

• print and message subroutines of the 
error and interrupt handling 
subroutines. 

• opening and closing files. 

• record-oriented and stream-oriented 
transmission. 

These libraries are not an integral part 
of the OS PL/I Optimizing Compiler; they 
consist of the following separate IBM 
program products: 

• OS PL/I Resident Library, Program Number 
5734-LM4 

• as PL/I Transient Library, Program 
Number 5734-LM5 

Throughout this publication the terms 
"resident library" and "transient library" 
refer to these IBM program products. 

Introduction 1 





Page of GC33-0001-2 
Revised June, 1973 
By TNL: GN33-6095 

Chapter 1: The OS PL/I Optimizing Compiler 

The os PL/I Optimizing Compiler allows the 
programmer the choice of fast compilation 
of his source program or fast execution of 
the resulting object program. It does so 
by means of a compiler option specifying 
the type of optimization required. 

The compiler provides debugging aids to 
minimize the time and effort required for 
program checkout. Options are provided for 
use by the programmer to specify 
information or to request optional compiler 
facilities. The compiler is compatible 
with version 5 of the PL/I(F) compiler in 
terms of source language, except for a few 
minor differences~ and there are features 
that allow programs compiled by the 
optimizing compiler to communicate with 
programs written in other languages. 

Compila tion Speed 

compilation speed varies with the machine 
configuration, the version of the operating 
system, data set disposition, partition or 
region size. the complexity of the program. 
and the language features and compiler 
options employed. In general, faster 
compilation will be achieved with larger 
partitions or regions and minimum 

luse of compiler options. Use of the IBM 
13330 Disk storage for compiler residence 
land the compiler spill file can decrease 
Icompilation time. 
I 
I For programs that use the MACRO option 
lonly to include text from a source 
Istatement library, the INCLUDE option may 
Ibe used instead. giving a decrease in 
Icompilation time. 

When optimization is requested, 
compilation times will increase by an 
average of 25%; in some cases. the increase 
may be as much as 100%. 

Execution Speed 

IDuring testing of the compiler with release 
120.1 of the operating system, the total CPU 
time during the execution steps of a sample 
of scientifically-oriented programs that 
had been optimized was 50% less than that 
of the same sample compiled by version 5 of 
the PL/I (F) Compiler with a range 
of saving on individual jobs betw~en 
0% and 63%. 

The total CPU time of a sample of 
commercially-oriented programs that had 
been optimized was 30% less than that of 
the same sample compiled by version 5 of 
the PL/I (F) Compiler with a range of 
saving on individual jobs between 0% and 
59%. 

Within the samples, the least 
improvement was typically shown by the 
shortest programs. The amount of 
improvement for any particular program 
depends on factors such as the overheads 
for initialization and input/output and the 
nature of the internal processing of the 
program. Programs most likely to show 
appreciable imfrovements in execution speed 
are those that contain features mentioned 
in chapter 2. 

Space Requirements 

The main storage requirements of the object 
prog~ams produced by the optimizing 
compiler depend on the PL/I facilities 
used. Space is required not only for the 
object code generated by the compiler, but 
also for the resident library subroutines 
that will be link-edited with it to form a 
load module and for the transient library 
subroutines that are called when this load 
module is executed. If optimization is 
specified, the object code will usually 
require less space. 

Debugging Aids 

The optimizing compiler provides the 
following debugging aids to minimize the 
time and effort needed for program 
checkout: 

Qi~g!!os!:i£§: Comprehensive dia9nostic 
messages are provided during both 
compilation and execution. In processing 
an erroneous statement, the compiler may 
attempt to correct the error ry making an 
assumption about the intention of the 
statement. Messages produced during 
compilation will be for errors in the 
categories of unrecoverable, severe error, 
error, warning, and informatory. The 
messages will be listed in category groups 
in ascending statement number order. Each 

Chapter 1: The OS PL/I Optimizing Compiler 3 



Page of GC33-0001-2 
Revised June, 1913 
By TNL: GN33-6095 

message will indicate the number of the 
erroneous statement and, when applicable, 
the part of the statement involved, the 
exact nature of the error, and any 
assumptions made and action taken by the 
compiler. 

~lo~~ra£~: The flow trace facility can be 
used to produce a record of the changes in 
sequential flow prior to an interrupt. The 
trace is included as part of the diagnostic 
output produced by the SNAP option of the 
ON statement or by the PLIDUMP built-in 
subroutine. It contains a list of branch
out/branch-in pairs of statement numbers. 
The associated control block name (up to 8 
characters) is also given. The number of 
statements to be included in the flow trace 
is given by the user in requesting the 
option. This feature is in addition to the 
optional inclusion of the statement number 
in diagnostic messages produced at 
E!xecution time. 

1§!:.~!:.~H1~!!t_:E~~g!!~!!£L£Q!!u!:,;iug: This facility 
lean be used to identify those parts of a 
I program that are most heavily used and 
Ithose statements that are never used. The 
Istatement count is given at program 
Itermination on the PLIDUMP file. If the 
IPLIDUMP file does not exist, SYSPRINT is 
lused. 

Qn=Yn!!:.§: Program condition-handling is 
facilitated by the provision of on-units 
for all PL/I conditions. On-units permit 
either programmer-defined or system-defined 
action to take place when a particular 
interrupt occurs during execution. The 
range of conditions covers all arithmetic 
interrupts, input/output errors" and 
special program-checkout conditions such as 
CHECK, SOBSCRIPTRANGE, STRINGRANGE, SIZE, 
and STRINGSIZE. 

(~ompiler Options 

A number of compiler options are available 
for use by the programmer to specify 
information or to request optional compiler 
1:acili ties. 

The options available may be used to: 

Q Specify whether the source program is 
coded in the PL/I 48-character set or 
60-character set, or punched in BCD or 
EBCDIC format. 

• Specify the margins for source 
statements. 

• Specify a margin indicator character for 
source statements. 

4 

• Control progress into syntax checking 
depending upon the severity of the 
diagnostics from previous processing. 

• Control progress beyond syntax checking 
depending on the severity of the 
diagnostics from previous processing. 

• Specify whether full or short diagnostic 
messages are to be printed. 

• List statement numbers of declarations 
(if applicable) and all attributes 
assigned to all identifiers in the 
program. 

• List the external symbol dictionary. 

• List implementation dependent 
information (for example, the length of 
structures). 

• Specify the number of lines to be 
printed on each page of output. 

• Print block-levels and do-levels on the 
source program listing. 

• List the options used by the compiler. 

• List the source program. 

• specify the minimum severity level at 
which source program diagnostic messages 
will be printed. 

• List statement numbers of declarations 
and of statements in which reference is 
made to all identifiers in the program. 

• specify that an object module is to be 
produced in a form suitable for input to 
the linkage editor. 

• specify that a NAME statement is to be 
produced for an object module. 

• Indicate that the source program 
requires preprocessing. 

• List source input to the preprocessor. 

• specify that the output from the 
preprocessor is to be generated in a 
card image format suitable for punching. 

• Print the contents of registers and main 
storage in the event of compiler 
failure. 

• specify the amount of main storage 
available for compilation. 

• specify whether statement numbers are to 
be obtained by counting semicolons, or 
derived from line numbers. 

• specify that selected output from the 



for a particular compilation. 

- Specify that the output from the 
compiler is to be generated in a card 
image format suitable for punching. 

• List the numbers of the last "n W 

disc(,ntinuities (for example CALL or GO 
TO) executed prior to an interrupt. 
These numbers are included in the output 
produced by the SNAP option. 

• specify that diagnostic messages 
produced during execution are to contain 
source program line numbers. 

• Produce additional coding that will 
allow statement numbers from the source 
program to be included in messages 
produced during execution. 

• Print tables showing the organization of 
static storage for the object module. 

• Print statement numbers for statements 
internal to each procedure with their 
offsets relative to the primary entry 
point of the procedure. 

- specify optional optimization or not. 

- Print a table giving the storage 
requirements for the object module. 

I- Count the number of times that 
I statements are executed. 
I 
I- Indicate that the %INCLUD~ statement is 
I the only PL/I preprocessor statement 
I used, permitting faster compilation 
I without the use of the preprocessor. 
I 
I- List the generated code for the whole 
I program or for a specified range of 
I statements. 

Compatibility with the (F) Compiler 

Source programs written for version 5 of 
the PL/I (F) Compiler can be compiled by 
the Optimizing Compiler and will be 
executed correctly without modification, 
except for a few minor differences between 
the implementations of the PL/I language 
for the two compilers. These differences 
are described in appendix B. 

Object modules produced by version 5 of 
the PL/I (F) compiler, and modules from the 
PL/I (F) Compiler subroutine library, 
cannot be incorporated into programs 
compiled by the optimizing compiler. All 
PL/I source modules must be recompiled with 
the Optimizing Compiler, and all library 

subroutines used must be called from the 
resident or transient library as 
appropriate. 

Compatibility between Releases 

Different release levels of the Optimizing 
Compiler and its libraries will produce 
compatible execution, provided that: 

1. The release level of the transient 
library is equal to or greater than 
that of the resident library. 

2. The release level of the resident 
library is equal to or greater than 
that of the compiler. 

Compatibility between OS and DOS 

Because the OS Optimizing Compiler 
implements more of the PL/I language than 
the DOS Optimizing Compiler, all source 
programs compiled on the DOS Optimizing 
compiler can be compiled on the OS 
Optimizing Compiler, thus aiding the 
conversion from DOS to OS. 

Interlanguage Communication 

Facilities are available which allow 
procedures compiled by the Optimizing 
Compiler to communicate at execu,tion time 
with programs compiled by any of the 
following COBOL or FORTRAN compilers 
produced by IBM for the operatinq' system. 

COBOL Compilers: 

COBOL (E) 
COBOL (F) 
COBOL ANS(FULL) 

FORTRAN Compilers: 

Level E 
Level F 
Level F 

FORTRAN IV(Basic) Level E 
FORTRAN IV Levels G and H 

Existing COBOL and FORTRAN uSI::!rs can 
write new applications in PL/I while still 
using existing libraries of COBOL and 
FORTRAN programs; in addition, existing 
applications can be modified by 1:he use of 
PL/I procedures. 

Communication between PL/I programs and 
programs written in different languages is 
specified in the usual way, by a CALL 
statement. A FORTRAN program cml be called 

Chapter 1: The OS PL/I Optimizing Compiler 5 



a.lso by a function reference. 

The interlanguage communication 
facilities are obtained by specifying 

I ASSEMBLER, COBOL, or FORTRAN as an option 
in a PROCEDURE, ENTRY, or DECLARE 
statement. (See "Interlanguage 
communication," in chapter 3.> 

6 



The main aim of the optimizing compiler is 
to generate object programs that can be 
executed as fast as possible and that 
occupy as little space as possible during 
execution. In many cases this will involve 
generating efficient code for statements in 
the sequence written by the programmer; in 
other cases, however, the compiler may 
alter the sequence of statements or 
operations to improve the performance while 
producing the same result. 

The following types of optimization are 
carried out by the compiler: 

• Common expression elimination 

• Transfer of expressions from loops 

• Redundant expression elimination 

• Simplification of expressions 

• Initialization of arrays and structures 

• In-line code for conversions 

• In-line code for RECORD I/O 

• Key handling for REGIONAL data sets 

• Matching format lists with data lists 

• In-line code for string manipulation 

• In-line code for built-in functions 

• Special-case code for DO statements 

• Structure and array assignments 

• Library subroutines 

• Elimination of common constants 

• Elimination of common control data 

• Use of registers 

• Code for program branches 

Common Expression Elimination 

An expression can occur twice or more in 
such a way that the flow of control always 
passes through the first occurrence of the 
expression to reach a subsequent 
occurrence. A common expression is an 
expression that occurs more than once in a 
program but is obviously intended to result 

Chapter 2: Optimization 

in the same value each time it is 
evaluated, that is, an expression that is 
identical to another, with no intervening 
modification to any operand. The compiler 
eliminates a common expression by saving 
the value of the first occurrence of the 
expression either in a temporary (compiler
generated) variable, or in the program 
variable to which the result of the 
expression is assigned. For example: 

Xl = A1 * Bl; 

Yl = Al * Bl; 

Provided that the values of Ai, Bl, and Xl 
do not change between the execut~ion of 
these statements, the statements: can be 
optimized to the equivalent of t.he 
following PL/I statements: 

Xl = Al * Bl; 

Yl = Xli 

If the first occurrence of the common 
expression involves the assignment of the 
value to a variable that is modified prior 
to the occurrence of the later expression, 
the value is assigned to a temporary 
variable. The example given above would 
become: 

TEMP = Al * Bl; 
Xl TEMP; 

Xl Xl + 2; 

Yl = TEMP; 

Also, if the common expression occurs as a 
subexpression within a larger expression, a 
temporary variable is created to hold the 
value of the common subexpression. For 
example, in the expression Cl + Al * Bl a 
temporary variable would be created to hold 
the value of Ai * Bl if this were a common 
subexpression. 

An important application of this 
technique occurs in statements containing 
subscripted variables where the same 
subscript value is used for each variable. 
For example: 

PAYTAX(MNO)=PAYCODE(MNO)*WKPMNT(MNO); 

Chapter 2: Optimization 7 



The value of the subscript MNO is computed 
once only when the statement is executed. 
('rhe computation would involve the 
conversion of a value from decimal to 
binary if MNO were declared a decimal 
v,ariable. ) 

Transfer of Expressions from Loops 

Where it is possible to produce error-free 
execution without affecting the results of 
a program, the optimization process moves 
invariant expressions or statements from 
inside a loop to a pOint which immediately 
precedes the loop. An expression or 
statement occurring within a loop is said 
to be invariant if the compiler can detect 
that the value of the expression or the 
action of the statement would be identical 
for each iteration of the loop. A loop can 
be either a do-loop or a loop in a program 
that can be detected by the analysis of the 
flow of control within the program. For 
example: 

DO I = 1 TO Ni 
B(I) = C(I) • SQRT(N); 
P = N • J; 
END; 

This loop can be optimized to produce 
object code corresponding to the following 
statements: 

TEMP = SQRT(N)i 
P = N • J; 
DO I = 1 TO N; 
B(I) = C(I) • TEMP; 
END; 

If the programmer wishes this type of 
optimization to be carried out, he must 
specify the optimization option REORDER for 
a BEGIN or PROCEDURE block which contains 
the loop. If the option is not specified, 
the default option, ORDER, is assumed, and 
optimization is inhibited. 

E,rogramming Considerations: 

1. The transfer of expressions from 
inside a loop is performed on the 
assumption that every expression in 
the loop is executed more frequently 
than expressions immediately outside 
the loop. Occasionally this 
assumption fails, and expressions can 
be moved out of loops to positions 
ltlhere they are executed more 
frequently than they would have been 
if they had remained inside the loop. 
1?or example: 

8 

DO I = J TO K WHILE(X(I)=O); 
XCI) Y(l) * SQRT(N); 
END; 

The expression SQRT(N) can be moved 
out of the loop to a position where it 
is possible for the expression to be 
executed more frequently than it would 
be in its original position inside the 
loop. This undesired effect of 
optimization can be prevented by the 
use of the ORDER option for the block 
in which the loop occurs. 

2. Loops are detected by a flow-analysis 
process. This process can fail to 
recognize a loop, owing to the 
existence of flowpaths which the 
programmer knows will never be used. 
For example, the use of label 
variables can inadvertently cause 
optimization to be inhibited by making 
the recognition of a desired loop 
impossible. 

Redundant Expression Elimination 

A redundant expression is an expression 
that need not be evaluated for a program to 
be executed correctly. For example, the 
logical expression: 

(A=D) I (C=O) 

contains the subexpressions (A=D) and 
(C=O), the second of which need not be 
evaluated if the first is true. The effect 
of this optimization is to make the use of 
a compound logical expression in a single 
IF statement more efficient than an 
equivalent series of nested IF statements. 

Simplification of Expressions 

Simplification of an expression involves 
its conversion into a form that can be 
translated into more efficient object code. 
Where applicable, multiplication and 
division operations are converted into 
addition and subtraction operations, which 
can be performed by faster machine 
instructions. For example: 

DO I = 1 TO N BY 2; 

A(I) I • 4; 

END; 

This loop can be optimized to produce 



object code corresponding to the following 
statements: 

G: 

I = 1; /* LOOP INITIALIZATION */ 
IF I > N THEN GO TO F; 
TEMP = 4 * I~ 

A(I) = TEMP; 

I = I + 2; 
TEMP=TEMP + 8; 

/* LOOP ENTRY POINT */ 

/* EXPRESSION AFTER */ 
/* SIMPLIFICATION */ 

IF I < N THEN GO TO G; 
/* END-OF-LOOP TEST */ 

F: /* LOOP EXIT POINT */ 

Modification of Loop Control Variables 

Where possible, the expression
simplification process will modify both the 
control variable and the iteration 
specification of a do-loop to achieve more 
efficient processing when the control 
variable is used as a subscript. The 
calculation of addresses of array elements 
can be made faster by replacing 
multiplication operations by addition 
operations. For example, the loop: 

DO I 1 TO N BY 1; 
A(I) = B(I); 

Base(A) + TEMP for array A, and 

Base(B) + TEMP for array B. 

A loop control variable and its iteration 
specification can be optimized only when 
the control variable used as a subscript is 
incremented by a constant value. The value 
of the control variable must not be 
required outside the loop in which it is 
specified. 

Defactorization 

Where possible, a constant in an array 
subscript expression is used as ,an offset 
in the address calculation. For example, 
the address of a four-byte element: 

A(I+I0) 

would be calculated as: 

(Base(A)+4*10)+I*4. 

Replacement of Con~tant Expressions 

The expression-simplification process 
replaces constant expressions of the form 
A+ B or A*B, where A and Bare in·teger 
constants, with the equivalent constant. 
For example the expression 2+5 is replaced 
by 1. 

END; Replacement of Con~tant Multiplil~rs and 
Exponents 

causes N element values from array B to be 
assigned to corresponding elements in array 
A. On the assumption that each element is 
four bytes in length, the address 
calculations used for each iteration of the 
loop are: 

Base(A)+(4*I) for array A, and 

Base(B)+(4*I) for array B, 

where RBase R represents the base address of 
the array in storage. The repeated 
multiplication of the control variable by a 
constant representing the length of an 
element can be converted to faster addition 
operations. The optimized DO statement 
above is converted into object code 
equivalent to the following statement: 

DO TEMP = 4 BY 4 TO 4*N; 

The element address calculations are 
converted to the equivalent of: 

The expression-simplification process 
replaces certain constant multipliers and 
exponents. For example: 

A*2 becomes A+A, 

and 

A**2 becomes A*A. 

Initialization of Arrays and Structures 

When arrays and some structures which have 
the BASED, AUTOMATIC, or CONTROLI~ED storage 
class are to be initialized by a constant 
specified in the INITIAL attribu1:e, the 
first element of the variable is 
initialized by the constant, and the 
remainder of the initialization consists of 

Chapter 2: Optimiza1:ion 9 



a single move which propagates the value 
through all the elements of the variable. 
For example: 

DCL A(20,20) FIXED BINARY INIT«400)0): 

The array A would be initialized in this 
way. 

In-Line Code for Con versions 

Most conversions are performed by in-line 
code, rather than by calls to the resident 
or transient library. The exceptions are: 

• Conversions between character and 
arithmetic data. 

• Conversions from numeric character 
(PICTURE) data where the picture 
includes characters other than 9, V, Z, 
or a single sign or currency cha.racter. 

• Conversions to numeric character 
(PICTURE) data where the picture 
includes scale factors or floating point 
picture characters. 

For example, conversions to 'ZZ9V99' will 
be done in-line. 

In-Line Code for Record I/O 

For consecutive buffered files under 
certain conditions, the input/output 
transmission statements READ, WRITE, and 
LOCATE are implemented by in-line code 
rather than by calls to the resident or 
transient libraries. 

Key Handling for REGIONAL Data Sets 

In certain circumstances, key handling for 
regional data sets is simplified by 
avoiding unnecessary conversions between 
fixed binary and character-string data 
types, as follows: 

REGIONAL(l): If the key is supplied as a 
fixed binary integer with precision (12,0) 
through (23,0), there is no conversion from 
fixed binary to character-string and back 
again. 

REGIONAL(2) and REGIONAL(3): If the key is 
supplied in the form Kill, where K is a 
character string and I is fixed binary with 
preC1S10n (12,0) through (23,0), the 
rightmost eight characters of the resultant 

10 

string are not reconverted to fixed binary. 
(This conversion would otherwise be 
necessary to obtain the region number.> 

Matching Format Lists with Data Lists 

Where possible, format and data lists of 
edit-directed input/output statements are 
matched at compile-time. This is possible 
only when neither list contains repetition 
factors that are expressions whose values 
are unknown at compile-time. This permits 
conversion to or from the data list item to 
be performed by in-line code. Also, on 
input the item can be taken directly from 
the buffer or on output placed directly in 
the buffer. Library calls are eliminated 
except when it is necessary to transmit a 
block of data between the input/output 
device and the buffer, for example: 

DCL (A,B,X,Y,Z) CHAR(25); 
GET FILE(SYSIN) EDIT(X,Y,Z) (A(25»: 
PUT FlLE(SYSPRINT) EDIT(A,B) (A(25»; 

In this example, format list matching is 
performed at compile time; at execution 
time, library calls will be required only 
when the buffer contents are to be 
transmitted to or from the input/outout 
device. 

In-Line Code for String Manipulation 

Operations on many character strings (such 
as concatenation and assignment of 
adjustable, varying length, and fixed
length strings) are performed in-line. 
Similar operations on many aligned bit 
strings are performed by in-line code. 

In-Line Code for Built-In Functions 

Many built-in functions are executed by in
line code. INDEX and SUBSTR are examples 
of functions for which in-line code is 
usually generated. TRANSLATE, VERIFY, and 
REPEAT are examples where in-line code is 
generated for simple cases. 

Special-Case Code for DO Statements 

Where possible, for a do-loop, the 
Optimizing Compiler will generate code in 
which the value of the control variable and 
the values used in the iteration 



specification are held in registers 
throughout execution of the loop. For 
example, the compilerrwill attempt to 
maintain in registers the values of the 
variables I, K, and L in the following 
statement: 

DO I = A TO K BY L; 

This form of optimization permits the most 
efficient loop control instructions to be 
used. 

Structure and Array Assignments 

structure and array assignment statements 
are implemented by single move instructions 
whenever possible. Otherwise the 
assignment is performed by the simplest 
loop possible for the operands specified in 
the assignment. For example: 

DCL A(10),B(10), 1 S(10), 2 T, 2 U; 

A=B; 

A=T; 

The first assignment statement will be 
implemented by a single move instruction, 
while the second will be implemented by a 
loop, since array T is interleaved with 
array U, thereby making a single move 
impossible. 

Library Subroutines 

The resident and transient libraries have 
been designed as sets of subroutines 
containing logically-related functions. 
These functions are distributed among the 
library subroutines in such a manner that a 
link-edited object program will contain 
only code likely to be necessary for the 
functions used in that program. 

The groups of functions particularly 
concerned with this efficient structuring 
include record-oriented input/output, 
stream-oriented input/output, conversions, 
and error handling. 

Elimination of Common Constants 

If a constant is used more than once in a 
program, a single copy of that constant is 
kept. For example, in the following 
statements: 

WEEK NO = WEEK NO + 1; 
RECORD_COUNT =-RECORD_COUNT + 1; 

the 1 is stored once only provided that 
WEEK NO and RECORD COUNT have t:he same 
attrIbutes. -

Elimination of Common Control Data 

The optimizing Compiler generat:es control 
information to describe certain program 
elements such as arrays. If there are two 
or more similar arrays, this de!scripti ve 
information is generated once only. 

Use of Registers 

More efficient execution of loc,ps can be 
achieved by maintaining in registers the 
values of variables that are su.bject to 
frequent modification during execution of 
the loops. When program flow clf control 
permits, values can be kept in registers, 
and considerable efficiency can be achieved 
by dispensing with time-consuming load-and
store operations to reset the values of 
variables in their storage locations. If 
the latest value of a variable is known not 
to be required after a loop has been 
executed, the value is not assigned to the 
storage location of the variable when 
control passes out of the loop. 

Register allocation can be more 
significantly optimized if REORDER is 
specified for the block. However, the 
values of variables that are reset in the 
block are not guaranteed to be the latest 
assigned values when a computational 
interrupt occurs, since the latest value of 
a variable may be present in a register but 
not in the storage location of the 
variable. If ORDER is specified, 
optimization of register allocation is 
impeded by the requirement that all values 
of variables reset in the block are 
guaranteed, and must therefore be assigned 
immediately to the storage locations of 
their respective variables. 

Code for Program Branches 

Base registers for branch instructions in 
the object program are allocated. in 
accordance with the logical structure of 
the program. This minimizes the occurrence 
of program-addressing load instructions in 
the middle of deeply nested loops. 

Chapter 2: Optimization 11 



Also, the branch instructions generated 
for IF statements are arranged by the 
compiler to be as efficient as possible. 
For example, a statement such asz 

IF condition THEN GOTO label; 

is defined by the PL/I language as being a 
test of the condition followed by a branch 
on false to the statement following the 
THEN clause. However, when the THEN clause 
consists only of a GOTO statement, the 
statement is compiled as a branch on true 
to the label specified in the THEN clause. 

12 



Chapter 3: The PL/I Language Implemented 

New language features, together with a 
number of extensions to the language 
implemented by version 5 of the PL/I (F) 
Compiler, have been included in the 
language implemented by the optimizing 
compiler. A list of the PL/I keywords 
implemented by the new compiler is given in 
appendix A. 

In general, a PL/I source program 
written for version 5 of the PL/I (F) 
Compiler will produce identical results 
when compiled by the Optimizing Compiler. 
In a few cases, results may differ because 
the Optimizing Compiler restricts some 
language features to a different degree, 
and because there are minor 
incompatibilities between the 
implementations of the language by the two 
compilers. The most significant 
differences in implementation restrictions 
are given in figure 1, and the 
incompatibilities are listed in appendix B. 

Language Features. 

The language implemented by the optimizing 
compiler includes the following features: 

Data Types 

• Character-string and bit-string data. 

• Fixed-point binary and fixed-point 
decimal data (real and complex). 

• Floating-point binary and floating-point 
decimal data (real and complex). 

• Character and (real and complex) decimal 
picture data. 

• Label and entry data. 

• File data. 

• Task and event data. 

• Pointer and offset data. 

• Area data. 

operations 

• Assignment, with automatic cI::>nversion if 
necessary, between data vari.ables. 

• Element, array, and structure 
expressions. 

• Arithmetic, comparison, logical 
(boolean), and string-manipulation 
operators. 

• Built-in functions for mathematical and 
arithmetic computation, string 
manipulation, manipulation of based and 
controlled storage, manipulation of 
arr ays, mul ti tasking, and erlC'or 
handling. 

• Pseudovariables for computation and 
error handling. 

• Facilities for creating progl~ammer
defined functions. 

Data Aggregates 

• Arrays of data elements 

• Structures of data elements 

• Arrays of structures 

Program Management 

• Preprocessing. 

• separate compilation of extel~nal 
procedures of the same progrctm. 

• Structuring of program into blocks to 
limit the scope of names and to permit 
flexible allocation of storage. 

• Recursive invocations of a pl~ocedure 
with stacking and unstacking of 
generations of automatic datal. 

• Multitasking facilities. 

• Maintenance of external procE~dures in 
auxiliary storage for dynamic loading 
into, and deletion from main storage 
during program execution. 

Chapter 3: The PL/ I Language Impleme~nted 13 



r---------------------------------------------------------------------------------------, I Feature I PL/I (P) Compiler I PL/I Optimizing Compiler I 
I I (Version 5) I J 
1---------------------------- -----.-----------------------------------------------------
I 

AREA size 

Arrays, max. number of 
dimensions 

Structures 

Floating-point data 

Factored attributes: 
DECLARE statement 

Attribute factorization: 
nesting levels 

Block nesting 

storage limitations: 
STATIC INTERNAL 
and AUTOMATIC 

string repetition factor 
maximum number 
of characters: 
maximum value of 
factor: 

32,168 

32 

63 levels 

short, long precision 
decimal, binary and 
numeric character 

I modes 
I 
INO limit 
I 
I 
I 
Imax.number: 13 
I 
Imax.depth: 50 
I 
I 
maximum: 16M bytes 

5 

16,310 

Depth of nesting of max. number: 49 
descriptor list in ENTRY 
statement 

Identifiers in check list max. number: 510 

Elements in data list I max. number: 320 
I 

Length of string in REPLY Imax.length: 100 
option of DISPLAY statement I 

16,111,216 

15 

15 levels 

short, long, or extended~ 
precision decimal, binary, and 
numeric character modes 

max. number: 16 

max. number: 16 

max. depth: 502 

No limit 

15 

32,161 

max. number: 2 

limited only by size of statement 

max. number: 250 

max. length: 12 

~ Facilities will be provided for the simulation of the extended" floating-point 
instruction set; the user can employ these simulation facilities should the 
system at his installation not contain the instruction set. 

2 There is a limit on the depth of block nesting imposed by the length of the block 
labels given by the user. If the average length of the labels exceeds eight 
characters, the maximum number of available nesting levels is reduced. 

L----------------------------------·-----------------------------------------------------J 
Figure 1. Differences in implementation restrictions 

• Dynamic storage allocation. 

• processing of interrupts and error 
conditions. 

Input/Output 

• stream-oriented input/output with 
automatic conversion to and from 

14 

internal and external forms of data 
representation. 

• Record-oriented input/output with both 
move and locate modes of operation. 

• Sequential and direct-access processing 
modes. 

• Message processing (teleprocessing) 
mode. 



• Asynchronous input/output data 
transmission. 

Language Extensions 

Language features implemented by the 
optimizing Compiler that are only partially 
implemented or not implemented at all by 
version 5 of the PL/I CF) Compiler are 
described in outline below. 

Optimization 

The Optimizing Compiler carries out 
extensive optimization of PL/I programs. 
Optimization is controlled by a compiler 
option and the use within the PL/I program 
of the ORDER and REORDER options for 
program blocks. Optimization is discussed 
in chapter 2. 

Program Checkout 

CHECK Condition Prefix: Variables 
specified in the name-list of the CHECK 
condition may be of any problem data type. 
They must not be iSUB defined variables or 
explicitlY'-qualified based variables. They 
may also be parameters. For example: 

(CHECK CA,B,C,D»: 
F: PROC OPTIONS(MAIN); 

DCL A FIXED STATIC, 
B FLOAT AUTO, 
C CHARCI0) CONTROLLED, 
D FIXED DECIMAL BASEDCP); 

CALL XeD); 

eCHECK(E»: 
X: PROCCE); 

DCL E FIXED DECIMAL; 

iSUB Beyond Range: The SUBSCRIPTRANGE 
condition is raised when an iSUB variable 
is outside the range given in the 
declaration of the iSUB-defined array. For 
example: 

DCL A(24) CHAR(4), 
B(5) CHAR(4) DEF A(4*lSUB); 

SUBSCRIPTRANGE would be raised on reference 
to B (6). 

DEFAULT Statement 

Identifiers which are declared with only a 
partial set of attributes,. or which are not 
explicitly declared, can derive: any other 
attributes required from two sources: 

The standard default attributes 
supplied by PL/l. 

The default attributes specified in 
a DEFAULT statement. 

A DEFAULT statement can supplement, but 
not override, the attributes of selected 
groups of: 

Explicitly. contextually, or 
implicitly declared identifiers. 

Parameter descriptors in ENTRY 
descriptor lists. 

Values returned by functions. 

If there is no DEFAULT statement, or if 
a set of required attributes is still 
incomplete after the DEFAULT statement has 
been applied, a.ny attributes required are 
supplied by the standard defaults. 

The DEFAULT statement cannot be used to 
specify a structure, although the 
attributes of structure elements can have 
defaults applied according to a RANGE 
specification. 

External entry names cannot be specified 
in a DEFAULT statement; they must be 
declared explicitly. 

Note: A DEFAULT statement may .be given a 
label, but the label will be tr(~ated as if 
it were on a null statement. 

Preprocessing Facilities 

Assignment to Values: The RESC1\N and 
NORESCAN options may be specifiE~d on 
%ACTIVATE and %DEACTIVATE staternents. The 
NORESCAN option enables the pro~Jrarnmer to 
specify that an activated preprocessor 
character-string variable or en1:ry name 
appearing in the source text is to be 
replaced by its actual value; that is. the 
usual rescanning process does not take 
place. If the RESCAN option is specified, 
the variable is activated as though no 
option were specified; rescanning takes 
place at each replacement level. For 
example: 

%DCL WRITE CHARACTER; 

Chapter 3: The PL/I Language Implemented 15 



~WRITE = 'WRITE EVENT(E)'; 

~ACTIVATE WRITE NORESCAN; 

WRITE FILE(F) FROM(X); 

The WRITE statement will be modified to: 

WRITE EVENT(E) FILE(F) FROM(X); 

If the %ACTIVATE statement were omitted, 
replacement of WRITE would continue 
indefinitely, and the program would be 
meaningless. 

LENGTH and INDEX: The LENGTH and INDEX 
built-in functions may be used within a 
preprocessor statement. 

Listing Control Statements 

The listing control statements, %SRIP and 
IPAGE, allow the programmer to control the 
formatting and line spacing of the printed 
listing of his program. Although both 
these statements have the initial % sign, 
neither of them necessitates the use of the 
preprocessor. 

%PAG~: The statement following the %PAGE 
statement in the program listing is printed 
on the first line of the next page. The 
statement is applied to both the insource 
listing (the input to the preprocessor) and 
the source listing (the preprocessed text). 

%SKIP(n)]: The specified number of lines 
following a %SKIP statement in the program 
listing are left blank. nnw may be any 
integer from 1 through 99. Omission of a 
value for wnw is equivalent to specifying 
the value of 1. The statement is applied 
to both the insource listing (the input to 
the preprocessor) and the source listing 
(the preprocessed text). 

Storage Control 

subscripted or Based Locator: The pointer 
and offset variables associated with based 
variables can be subscripted, or based, or 
both. 

self-defining structures: Many of the 
restrictions imposed by the PL/I (F) 
implementation of the REFER option have 
been removed or modified in the language 
implemented by the Optimizing Compiler. 
The main changes are: 

• The REFER option can be used more than 
once in a based structure. 

16 

• If used only once in such a structure, 
it need not be used with the last 
element. 

• The REFER object need not be fixed 
binary. 

For example: 

DCL 1 X BASED, 
2 M, 
2 N, 
2 Y(10 REFER (M): 

S REFER (N», 
2 (I,J), 
2 K, 

3 A AREA(S REFER (I», 
3 STR CHAR(L REFER (J» VAR, 

S FLOAT BINARY INIT(2000), 
L FIXED DECIMAL INIT(50); 

Loading procedures dynamically: A 
procedure invoked by a CALL statement, by a 
CALL option of an INITIAL attribute, or by 
a function reference, is normally resident 
in main storage throughout the execution of 
the entire program. External procedures 
(other than main procedures) may, however, 
be maintained in auxiliary storage. Copies 
of such procedures can be dynamically 
loaded into, and deleted from, main storage 
as required by the program. Fetching and 
releasing of the procedures are initiated 
by the new PL/I statements, FETCH and 
RELEASE. The new feature is particularly 
use"fulwhen a called procedure is not 
necessarily invoked every time the calling 
procedure is executed, and when 
conservation of main storage is important. 

ENVIRONMENT Attribute 

Changes and extensions to the options of 
the ENVIRONMENT attribute specifying record 
format, block size, and record size, are as 
follows: 

Record format: 

Block size: 

Record size: 

(FIFBIFBSIUIVIVBIVBSIVSI 
DIDB] 

[BLKSIZE(blocksize)] 

[RECSIZE(recordsize)] 

The ENVIRONMENT attribute need not 
necessarily specify any of the above 
options. Missing information may be 
supplied in a data-set label, a DD 
statement, or by default (at OPEN time'. 
This means, for instance, that the 
programmer can specify record size in his 
source program while leaving specification 
of block size until the program is actually 
executed, when the I/O devices are known. 



The Optimizing compiler will recognize 
and convert the previously-implemented 
forms of the above options as shown below, 
and will issue a message stating that they 
are obsolete. 

Old form 

F(b) 
F(b,r) 
U(b) 
V(b) 
V(b,r) 
VBS(b,r) 
VS(b,r) 

converted to 

F BLKSIZECb) RECSIZE(b) 
F BLKSIZE(b) RECSIZE(r) 
U BLKSIZE(b) RECSIZE(b) 
V BLKSIZE(b) RECSIZE(b-4) 
V BLKSIZE(b) RECSIZECr) 
VBS BLKSIZECb) RECSIZE(r) 
VS BLRSIZECb) RECSIZE(r) 

There are two new data-set organizations, 
TP(M) and TP(R), associated with 
teleprocessing. TP(M) implies the 
transmission of whole messages; TP(R) 
implies the transmission of records. Both 
are valid only for TRANSIENT files. These 
data-set organizations are equivalent to 
the options GCm) and R(r) available in 
version 5 of the PL/I (F) Compiler. The 
optimizing Compiler will recognize and 
convert as follows: 

Old form 

G(m) 
R(r) 

Converted to 

V TP(M) RECSIZE(m) 
V TP(R) RECSIZE(r) 

variables in Options: Whenever a numeric 
value is required to complete the 
specification of an ENVIRONMENT option, the 
value may be expressed as a decimal integer 
constant or a static fixed binary variable 
of precision (31,0). The variable, if 
used, must be assigned a value before the 
file is opened. 

REREAD Option: The REREAD option 
backspaces a magnetic tape to the start of 
the data set when the associated file is 
closed. 

ASCII Option: The ASCII option specifies 
that American standard code for information 
interchange is used to represent data on 
the data set. 

BUFOFF option: The BUFOFF option specifies 
the length of the block prefix fields that 
may be associated with records of an ASCII 
data set. 

SCALARVARYING Option: When storage is 
allocated for a varying-length string 
variable, the Optimizing Compiler adds two 
bytes, containing the current length of the 
string, to the declared length of the 
variable. The SCALARVARYING option 
determines how varying-length strings are 
transmitted to and from a data set. 

The option must be specified when locate 
mode statements (LOCATE and READ SET) are 

used to create or access a data set with 
records of this type. During creation, the 
length field is transmitted wit.h the 
string~ when being accessed, the first two 
bytes of the record are recogni.zed as a 
length field. 

For a non-element varying-length string, 
for example, one that is an array or a 
member of a structure that is transmitted 
as a whole, the length field will always be 
transmitted both while being created and 
while being accessed. 

The option must not be specified for use 
with varying-length string records in data 
sets created by version 5 of the PL/I (F) 
Compiler, as this compiler neither creates 
nor recognises such a length field. 

The SCAI,ARVARYING and CTLASA/CTL360 
options cannot be specified for the same 
data set. 

Record-Oriented Transmission 

Record I/O Statements: The record variable 
specified in an INTO or FROM option can be 
DEFINED, or a parameter, provided the 
reference is to connected storage. The 
CONNECTED attribute is discusse~ later in 
this chapter. The reference may be a 
structure or array which contains varying
length strings. For example: 

DCL A (10) CHAR (6) VAR, 
1 B, 

2 C CHAR (3) VAR, 
2 D CHAR (16) VAR, 

E(10) CHAR(6) DEFINElD A; 

READ FILE (X) INTO (A); 
READ FILE (X) INTO (B); 
WRITE FILE (X) FROM (E); 

CALL ZeAl; 

Z: PROC (Y); 

DCL Y (10) CHAR (6) VAR; 
READ FILE (X) INTO (Y); 

ASCII Data Sets 

Data sets on magnetic tape whos4~ data is 
represented in American standard code for 
information interchange (ASCII) may be 
created and accessed by a PL/I program. 
The implementation supports F, !i'B, U, D, 
and DB record formats. F, FB, and U 

Chapter 3: The PL/I Language ImplemE~nted 17 



formats are treated in the same way as data 
sets whose data is represented in EBCDIC 
(extended binary coded decimal interchange 
code). The 0 and DB formats are equivalent 
to V and VB records. With the exception of 
the ENVIRONMENT attribute the same PL/I 
program may be used to handle an ASCII data 
set as would be used for a data set in 
EBCDIC form. (See, wENVIRONMENT Attribute W 

earlier in this chapter.) 

Only character data may be written onto 
an ASCII data set. Varying-length strings 
cannot be transmitted to a data set using a 
SCALARVARYING file. Since an ASCII data 
set must be on magnetic tape it must be of 
CONSECUTIVE organization. 

File Names 

File-Name Expressions: File names can be 
specified, in input/output statements, as 
expressions: 

For example: 

DCL B(10) FILE, 
X(Q) FILE; 

GET FILE (FILEA) •••• ; 
PUT FILE (B(6» •••• ; 
READ FILE (X(N*3» •••• ; 

File-Name Constants and Variables: File 
names can be declared as file constants or 

file variables. An identifier is assumed 
to be a file constant if: 

1. It is declared with any file attribute 
other than FILE. 

2. It is not explicitly declared but 
appears in the FILE option of an 
input/output statement, or in an ON 
statement for an input/output 
condition. 

It is assumed to be a file variable if: 

1. It has the FILE attribute and is an 
element of a structure. 

2. It has the FILE attribute and any of 
the following additional attributes: 

18 

STATICIAUTOMATICIBASEDICONTROLLED 
Dimension 
Parameter 
ALIGNED I UNALIGNED 
DEFI-NED 
INITIAL 
VARIABLE 

Data Aggregates 

Array and Structure Operations: A 
reference can be made to both an array and 
a structure in the same expression or 
assignment provided that the target is an 
array of structures. 

String Handling 

STRINGSIZE Condition: If a string is 
assigned to a string shorter than itself, 
the source string is truncated on the right 
to the length of the target string, and the 
STRINGSIZE condition is raised. For 
example: 

(STRINGSIZE): P: PROe; 
DCL A CHAR (20), 

BeHAR (14); 
B = Ai /* STRINGSIZE IS RAISED, A IS 

TRUNCATED ON ASSIGNMENT TO B */ 

BASED or DEFINED with a VARYING Attribute: 
A variable declared with the BASED or 
DEFINED attribute may also be given the 
VARYING attribute. For example: 

DCL e CHAR(10) BASED(P) VARYING, 
B CHAR(12) VARYING, 
D CHAR(12) VARYING DEFINED B; 

Data Attributes 

The CONNECTED Attribute: This is a storage 
attribute of non-controlled data aggregate 
parameters. It specifies that the storage 
associated with the aggregate is 
contiguous, that is, not interleaved with 
storage for other variables. This allows 
the aggregate to be designated as a record 
variable or a base in string overlay 
defining. For example: 

Q: PRoe (X,Y); 
DCL A FILE RECORD ENVIRONMENT 
(F BLKSIZE(40)RECSIZE(40», 
X (10) CHAR (4) CONNECTED, 
1 Y CONNECTED UNALIGNED, 

2 R, 
2 S, 
3 T, 
3 U, 

G CHAR (40) DEF X; 

READ FILE (A) INTO (X); 

SUBSTR (G,28,8)= •••• ; 



WRITE FILE (A) FROM (X); 

CALL B (Y); 

B: PROC (Z) RErURNS (DECIMAL); 
DCL 1 Z CONNECTED UNALIGNED, 

2 RR, 
2 SS, 
3 TT, 
3 UU; 

END Q; 

Igiti~li~~iiQ~_Qy_~~~~g~~i2~_2~_~g~£t12n: 
The initial value of a non-STATIC variable 
declared with the INITIAL attribute can be 
derived from sources other than a constant. 
The source may be an expression or a 
function reference; on evaluation, the 
value derived is the initial value of the 
variable. For example: 

DCL B AUTOMATIC INITIAL(F(X», 
C INITIALCSQRT(3»; 

variables and function references used in 
these expressions must be known in the 
block in which the initialized item is 
declared. 

Where the extended precision feature is 
available, the maximum precisions are: 

Binary floating-point data 109 

Decimal floating-point data 33 

The default precision for floating-point 
data remains as for version 5 of the PL/I 
(F) Compiler, that is binary 21~ decimal 6. 

There is greater flexibility in the use of 
entry names. An entry name can be either 
an entry constant or an entry variable. 

§nt~Y_£Qg2~~~~: An identifier specified as 
a label prefix to a PROCEDURE or ENTRY 
statement is an entry constant. For 
example: 

X: PROC; 

Y: ENTRY; 

X and Yare entry constants. They can be 
explicitly declared with the ENTRY 
attribute only if external. 

~ni~Y_Y~~i~£1~: An identifier specified 
with the ENTRY attribute and any of the 
following attributes, which must be 
explicitly declared, is an entry variable. 

VARIABLE 
STATIC I AUTOMATIC I BASED I CONTROLLED 
Dimension 
Parameter 
ALIGNEDIUNALIGNED 
DEFINED 
INITIAL 

For example: 

DCL X ENTRY (FIXED,BINARY,DECIMAL) 
VARIABLE, 

Y ENTRY (CHAR) AUTO, 
Z flO) ENTRY; 

Entry variables may be assigned, passed as 
arguments, and used in CALL statements and 
function references. 

~ni~y-~~mg2_~~g_~~~~~!£_~~m~2: rhe GENERIC 
attribute has been altered to permit the 
entry names specified in a generic 
declaration to be dissociated from the 
generic name. The specification of an 
identifier as an alternative in a generic 
declaration does not constitute a 
declaration of the identifier; the 
occurrence of the identifier is regarded 
simply as an entry ~~~gssiQg that 
describes the entry name of the 
corresponding 2~Q£~Q~~~. For each entry 
expression alternative, a descriptor list 
is specified by means of a WHEN clause. 
Defaults are not applied to the descriptors 
in WHEN clauses. As a result the generic 
specification is much more flexible in 
that: 

1. An identifier can be specified as more 
than one alternative in a GENERIC 
declaration, or in more than one 
GENERIC declaration. 

2. The descriptor list need only 
partially describe the argument that 
must be matched in the generic 
reference. It can indicate that any 
argument is acceptable. 

For example: 

DCL X GENERIC (A WHEN (FIXED, FIXED»; 

If the arguments to the generic reference X 
are both FIXED, then A is selected. If the 
specification had been 

A WHEN (,FIXED) 

Chapter 3: The PL/I Language Implemented 19 



R~~is~d J~~~, -1973-
By TNL: GN33-6095 

then any type of argument would be 
acceptable as the first argument, but the 
second would have to be FIXED. 

Generic selection is performed thus: 

1. The alternatives are scanned from left 
to right until a WHEN clause is found 
which matches the arguments in the 
generic reference. "Matching" occurs 
when there are the same number of 
descriptors in the WHEN clause as 
there are arguments, and when each 
descriptor in the WHEN clause 
specifies a subset of the attributes 
of the corresponding argument. 

2. The entry expression in the 
alternative that contains the 
appropriate WHEN clause is then 
invoked with the arguments in the 
generic reference. The invocation may 
involve the conversion of arguments 
and the creation of dummy arguments. 

For example: 

DCL X GENERIC (A WHEN (FIXED,FLOAT), 
A WHEN (FIXED,FIXED), 
B WHEN (FLOAT~COMPLEX», 

Y GENERIC (A WHEN (FLOAT, FLOAT) " 
A WHEN (,FLOAT) " 
C WHEN ( , ) ) , 

Z GENERIC (A WHEN (FIXED"FIXED), 
B WHEN (FLOAT,COMPLEX», 

(Ll,L2) FIXED, 
(Ml,M2) FLOAT, 
S COMPLEX; 

CALL X (Ll,Ml); /* A IS SELECTED */ 
CALL X (Ll,L2); /* A IS SELECTED */ 
CALL X (M2,S) ; /* B IS SELECTED */ 
CALL X (Ml,M2); /* NO MATCHING ARGUMENTS, 

NO SELECTION. 
PROGRAM IS ERRONEOUS*/ 

CALL Y (Ml,M2) ; /* A IS SELECTED */ 
CALL Y (Ll,Ml); /* .A IS SELECTED */ 
CALL Y (S,Ll) ; /* C IS SELECTED */ 

20 

Ml = Z (Ll,L2); /* A IS SELECTED ./ 
M2 = Z (Ll,M2); /. NO MATCHING ARGUMENT, 

NO SELECTION. 
PROGRAM IS ERRONEOUS./ 

Ml = Z (M2,S); /* B IS SELECTED */ 

New mathematical built-in functions, 
ASIN(x) and ACOS(x)~ are available for 
computing arc sines and arc cosines. Only 
real arguments are allowed. 

The = and A= operators may be used to 
compare any data type other than area, 
condition, event~ or task type. 

~h~_Qf~JQ~§_~~~f!£~~e/Q2~!Qn: The 
interlanguage communication facilities are 
requested in a PL/I procedure by specifying 
the COBOL or FORTRAN option in the 
PROCEDURE or ENTRY statement or in the 
OPTIONS attribute in a DECLARE statement. 

I OPTIONS (ASSEMBLER) can be specified in a 
IDECLARE statement. 

The rema~ping of COBOL structures, and 
the transposing of FORTRAN arrays, can be 
completely or partially suppressed by the 
NOMAP~ NOMAPIN, or NOMAPOUT options. 

The INTER option is used to specify that 
the assembler-language, COBOL and FORTRAN 
interrupts that would normally be handled 
by the operating system are to be handled 
by the PL/I interrupt handling facilities. 



Machine Requirements 

COMPILATION 

The minimum machine requirements for the os 
PL/I optimizing compiler are supplied by an 
IBM System/360 Model 40 with a main storage 
capacity of 128K bytes. The compiler will 
operate in a 50K partition 

I under MFT., in a 52K region under MVT1, or in 
la 72K region with the Time sharing option 
I (TSO). Under VSl and VS2, the partition or 
Iregion sizes are rounded up to a multiple 
lof 64K. The compiler will also operate 
lunder the control of the Conversational 
IMonitor System (CMS) of the Virtual Machine 
IFacility/370 (VM/370) and needs 320K bytes 
lof virtual storage for the CMS virtual 
I machine. 

The central processing unit of the 
machine must have the decimal and floating
point instruction sets. If timing 
information is required. the central 
processing unit must have the timer 
feature~ and use of this feature must be 
specified at system generation. 

EXECUTION 

IThe storage requirements, either real or 
Ivirtual. for the execution of a PL/I 
Iprogram compiled by the optimizing compiler 
Idepend on the size and content of the 
Isource program. The real storage 
Irequirements may be reduced either by the 
luse of the VS1 or VS2 control programs or 
Iby use of the overlay facilities for 
Ihandling segmented object programs. 

The machine must have the decimal 
instructi on set.. Where the extended 
precision floating point feature is 
available it must have also the floating
point instruction set. If timing 
information is required, the machine must 
have the timer feature, and use of this 
feature must be specified at system 
generation. (If the DELAY statement is 
used, the ability to handle the interval 
timer from the application program must 
also be specified at system generation.) If 
the DATE built-in function is used, the os 
control program should have date facilities 
incorporated at system generation. 

Full details of system generation are 

r~y~ UL U~JJ-UUU~-~ 

Revised June, 1973 
By TNL: GN33-6095 

Chapter 4: System Requirements 

given in the publication §y§~~m Generatign, 
Order No. GC28-6554. 

AUXILIARY STORAGE 

Direct-access storage space is required in 
the link library for the optimizing 
compiler and its libraries as follows: 

I- Compiler: approximately 430 tracks on 
I a 2311, 240 tracks on a 2314, or 130 
I tracks on a 3330. 
I 
I- Resident library: approximately 60 
I tracks on a 2311, 33 tracks on a 2314, 
I or 20 tracks on a 3330. 
I 
I- Transient library: approximately 60 
I tracks on a 2311~ 31 tracks on a 2314, 
I or 18 tracks on a 3330. 

The Optimizing Compiler requires 
direct-access storage space for working
storage only when adequate main storage is 
not available. The amount required depends 
upon the size of the source program and the 
amount of main storage available to the 
compiler. The data set identified by 
SYSUT1 is used for this auxiliary storage. 
This data set is also used when the 
preprocessor is invoked and when the PL/I 
48-character set is used in the source 
program. 

INPUT/OUTPUT DEVICES 

At compile time and during subsequent link
editing, devices are required for the 
following types of input/output: 

Source program input 

Printed listings 

Object module in relocatable format 

Object module in relocatable card-image 
format 

The ddname associated with a particular 
class of compiler input/output, and the 
permitted device types for each, are shown 
in figure 2. 

Chapter 4: system Requirements 21 



Re~ised June~ 1973 
By TNL: GN33-6095 

r---------------------------------------------------------------------------------------, Function I ddname I Device Type I When Required 

Input SYSIN DASD Always 
Magnetic tape 
Card reader 
Paper-tape reader 

Print SYSPRINT DASD Always 
Magnetic tape 
Printer 

SYSLIN DASD Output to 
Linkage Editor Magnetic tape 

When link-editing 
follows compilation in 
the same job. 

SYSPUNCH DASD output to 
Linkage Editor 
(card deck) 

Magnetic tape 
Card Punch 

When link-editing 
takes place in a 
subsequent job. 

Compiler Spill 
File 

Source 
statement 
Library 

SYSUTl DASD 

SYSLIB DASD 

When adequate main 
storage is not available 

When preprocessor 
%INCLUDE is used with 
either MACRO or INCLUDE 
option l--------_____________________________________________ ----------------------------------J 

Figure 2. Compiler input/output devices 

Operating System Requirements 

The Optimizing Compiler is a component of 
the IBM Operating system. The control 
programs that the compiler will run under, 
and the data management facilities that may 
be required~ are detailed below. 

CONTROL PROGRAMS 

The Optimizing Compiler can be used 
under the following control programs: 

~~!~iprQiramm!n~_wi~h_~_f!~~9_n~mQ~!_Q! 
Tasks (MFT): The number of tasks that can 
be processed at anyone time is determined 
by the number of partitions (segments of 
main storage) that exist at that time. 
Each task is associated with one partition, 
and receives a share of the available 
resources. 

M~!t!P!Qg!~mm!ng_~!£b_~_Var!~Q!~_llYmbe!_of 
Tasks (MVT): The number of tasks that can 
be-processed at anyone time is determined 
by the number of regions (segments of main 
storage) plus the number of tasks created 
dynamically in all the regions. Each 
region is associated with a task and with 
all the subtasks it creates dynamically. 
Each task receives a share of the 
resources; subtasks use the resources 
allocated to the task that created them. 

l~i!£~~!_§~Q!~g~_lY2~1: This control 
Iprogram is the virtual-storage equivalent 
lof the MVT control prcgram described above. 
lIn general, a source ~rogram that compiles 
land executes successfully under MVT will do 
Ithe same under VS2. 

Other operating system options under 
which the compiler can run are: 

!im~_2h~!!ng_QE~!Qn_J~§QL: This option is 
available only to MVT or Vs2 users and 
requires a region approximately 20K bytes 
larger than for MVT. The option provides: 

IY!!£g~!_~torag~_1~2!1: This control 
Iprogram is the virtual-storage equivalent 
lof the MFT control program described above. 
lIn general, a source program that compiles 
tand executes successfully under MFT will do 
I; the same under VS1. 

• The ability to use subcommands that 
allow interaction with a PL/I program 
during processing. 

• Facilities for several users to share a 
region of main storage for the 
concurrent execution of their programs. 
Each terminal in session is granted 
exclusive use of the region for a series 

I' 
I The PL/I multitasking facilities should 
~not be used under an MFT or vsl control 
program. 

22 



of short time slices. 

Mul~!E~2£~2!ng_1M&2~~L: Provides support 
for multiprocessing with two Model 658. 

IConversational Monito!_~~2~~m_l~2L: see 
lappendix D for further details. 

DATA MANAGEMENT FACILITIES 

Object programs compiled by the optimizing 
compiler make use of the operating system 
data management facilities. These 
facilities are dependent on the I/O 
statements used and include: 

Basic Sequential Access Method (BSAM) 

Queued Sequential Access Method (QSAM) 

Basic Indexed sequential Access Method 
(BISAM) 

Queued Indexed Sequential Access Method 
(QISAM) 

Basic Direct Access Method (BDAM) 

Telecommunication Access Method (TCAM) 

Virtual Storage Access Method (VSAM) 

SORT FACILI'I'IES 

The PL/I program may contain statements to 
invoke the operating system Type 1 
sort/Merge program (360S-SM-023) or the 
program product Sort/Merge program (5734-

Page of GC33-0001-2 
Revised June, 1973 
By TNL: GN33-6095 

SM1) and pass records to be sorted, or 
receive sorted records~ or both pass and 
receive records. 

CHECKPOINT/RESTART FACILITIES 

The PL/I program may contain a statement to 
invoke the checkpoint facility to record 
the current status of a program and its 
data in auxiliary storage. The checkpoint 
data can be used by the restart facility to 
restart the program at the point in 
execution when the checkpoint was taken. 

System/370 Facilities 

IThe following control programs, operating 
I systems, input/output devices, and access 
method can be used only with System/370: 

VS1 (Virtual Storage) control program. 

VS2 (Virtual Storage) control program. 

Conversational Monitor System (eMS). 

The 3330 Direct-Access Storage Device. 

The 3505 Card Device. 

The 3525 Card Device. 

VSAM (Virtual Storage Access Method). 

The availability of the optimizing 
compiler with these features is stated in 
the publication IBM-E!Qg~~!!L~!Qf!uct~2!gn 
QQj~ct!Y~2' Order No. GC33-0036. 

Chapter 4: System Requirements 23 





Appendix A: Keywords and their Abbreviations 

The following is a complete list of the PL/I and implementation-defined keywords 
implemented, with exceptions, by both the OS PL/I optimizing Compiler and the OS PL/I 
Checkout Compiler. The keywords not implemented by the Optimizing compiler are indicated 
by an asterisk. Each of the keywords is described in detail in the publication 
OS PL/I Checkout and optimizing Compilers: Language Reference Manual. 

Reyword 

A[ (w)] 

ABS ex) 
ACOSex) 
%ACTIVATE 
ADDex1,x2,x3['x~]) 
ADD BUFF 
ADDRex) 
ALIGNED 
ALL [e character-

string-expression)] * 
ALL ex) 
ALLOCATE 
ALLOCATIONex) 
ANY ex) 
AREA 
AREA [ (size)] 
ARGn 
ASCII 
ASINex) 

I ASSEMBLER 
ATANex1.[,x2]) 
ATAND e Xd. [ , X2] ) 
ATANHex) 
ATTENTION * 
AUTOMATIC 
B [ ew) ] 
BACKWARDS 
BASED [elocator-

expression) ] 
BEGIN 
BINARY 
BINARyex1.[,x2[,x3]]) 
BIT [elength)] 
BITex1.[,x2]) 
BLKSIZEeblock-size) 
BOOLex1.,X2,X3) 
BUFFERED 
BUFFERS en) 
BUFOFF [ (n) ] 
BUILTIN 
BY 

BY NAME 
C(real-format-item 

[,real-format-item]) 
CALL 
CEIL(x) 
CHAR (X1. [, X2 ] ) 
CHARACTER[(length)] 
CHECK * 
CHECK[(name-list)] 
CLOSE 

Abbreviation 

%ACT 

ALLOe 
ALLOCN 

ASM 

ATTN 
AUTO 

BIN 
BINex1.[,x2[,x3]]) 

BUF 

CHAR [( length)] 

Us~ of Keyword 

format item 
built-in function 
built-in function 
preprocessor statement 
built-in function 
option of ENVIRONMENT attribute 
built-in function 
attribute 
option of PUT statement 

built-in function 
statement 
built-in function 
built-in function 
condition 
attribute 
option of NOMAP, NOMAPIN, NOMAPOUT options 
option of the ENVIRONMENT attr:ibute 
built-in function 
option of OPTIONS option/attribute 
built-in function 
built-in function 
built-in function 
condition 

attribute 
format item 
attribute, option of OPEN statt:!ment 
attribute 

statement 
attribute 
built-in function 
attribute 
built-in function 
option of ENVIRONMENT attributE~ 
built-in function 
attribute 
option of ENVIRONMENT attributt~ 
option of ENVIRONMENT attributE~ 
attribute 
option of DO statement, option of 

repetitive input/output specification 
option of assignment statement 
format item 

statement, option of INITIAL a1:.tribute 
built-in function 
built-in function 
attribute 
statement 

condition, condition prefix 
statement 

Appendix A: Keywords and their Abbreviat:ions 25 



COBOL 

COLUMN(n) 
COMPLETION (x) 
COMPLEX 
COMPLEX(x~,x2) 
CONDITION 
CONDITION (name) 
CONJG(x) 
CONNECTED 
CONSECUTIVE 
"CONTROL * 
CONTROLLED 
CONVERSION 
COPY[(file-expression)] 
COS (x) 
COSD (x) 
COSH(x) 
COUNT (file-expression) 
CTLASA 
CTL360 
D 
DATA 
DATAFIELD 
DATE 
DB 
"DEACTIVATE 
DECIMAL 
DECIMAL(x~[,x2[,x3]]) 
DECLARE 
"DECLARE 
DEFAULT 
DEFINED 
DELAY 
DELETE 
DESCRIPl'ORS 
DIM(x~,x2) 
DIRECT 
DISPLAY 
DIVIDE(x1,x2,x3[,x4]) 
DO 

"DO 
E(w,d[,s]) 
EDIT 
ELSE 
"ELSE 
EMPTY 
END 
"END 
ENDFILE(file-expression) 
ENDPAGE(file-expression) 
ENTRY 
ENVIRONMENT 
ERF(x) 
ERFC(x) 
ERROR 
EVENT 

EXCLUSIVE 
EXIT 
EXP(x) 

26 

Abbreviation 

COL(n) 
CPLN(x) 
CPLX 
CPLX(x1,x2) 
COND 
COND(name) 

CONN 

CTL 
CONV 

%DEACT 
DEC 
DEC(x1[,x2[,x3]]) 
DCL 
%DCL 
DFT 
DEF 

ENV 

EXCL 

Use of Reyword 

option of ENVIRONMENT attribute, or 
OPTIONS option/attribute 

format item 
built-in function, pseudovariable 
attribute 
built-in function, pseudovariable 
attribute 
condition 
built-in function 
attribute 
option of ENVIRONMENT attribute 
listing control statement 

attribute 
condition, condition prefix 
option of GET statement 
built-in function 
built-in function 
built-in function 
built-in function 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
option of GET or PUT statement 
built-in function 
built-in function 
option of ENVIRONMENT attribute 
preprocessor statement 
attribute 
built-in function 
statement 
preprocessor statement 
statement 
attribute 
statement 
statement 
option of DEFAULT statement 
built-in function 
attribute 
statement 
built-in function 
statement, repetitive input/output data 

specification 
preprocessor statement 
format item 
option of GET or PUT statement 
clause of IF statement 
clause of %IF statement 
built-in function 
statement 
preprocessor statement 
condition 
condition 
attribute, statement 
attribute, option of CLOSE statement 
built-in function 
built-in function 
condition 
attribute, option of CALL, DELETE, 

DISPLAY, READ, REWRITE, and WRITE 
statements 

attribute 
statement 
built-in function 



EXTERNAL EXT 
F (W r, [ , d [, s] ] ) 
F 
FB 
FBS 
FETCH 
FILE 
FILE (file-expression) 

FINISH 
FIXED 
FIXED(x1[,x2[,x3]]) 
FIXEDOVERFLOW FOFL 
FLOAT 
FLOAT (X1 ["X2] ) 
FLOOR (x) 
FLOW1 
FORMAT 
FORTRAN 
FREE 
FROM (variable) 
FS 
GENERIC 
GENKEY 
GET 
GO TO GOTO 
%GO TO %GOTO 
HALT1 
HBOUND(x1,x2) 
HIGH(x) 
IF 
"IF 
IGNORE(n) 
IMAG(x) 
IN (element-area-variable) 
%INCLUDE 
INDEX(x1,x2) 
INDEXAREA [(index-

area-size)] 
INDEXED 
INITIAL INIT 
INPUT 
INTER 
INTERNAL INT 
INTO (variable) 
IRREDUCIBLE IRRED 
KEY (file-expression) 
KEY (x) 

KEYED 
KEYFROM(x) 
KEYLENGTH(n) 
KEYLOC(n) 
KEYTO(variable) 
LABEL 
LBOUND(x1,x2) 
LEAVE 
LENGTH (x) 
LIKE 
LINE(n) 
LINENO(x) 
LINESIZE(expression) 

attribute 
format item 
option of ENVIRONMENT attribut:e 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribut:e 
statement 
attribute 
option of CLOSE, DELETEw GET, LOCATE, 

OPEN, PUT, READ, REWRITE, UNLOCK, and 
WRITE statements 

condition 
attribute 
built-in function 
condition, condition prefix 
attribute 
built-in function 
built-in function 
statement, option of PUT statement 
statement, option of %CONTROL statement 
option of OPTIONS option/attribute 
statement 
option of WRITE or REWRITE statements 
option of ENVIRONMENT attribut:e 
attribute 
option of ENVIRONMENT attribute 
statement 
statement 
preprocessor statement 
statement 
built-in function 
built-in function 
statement 
preprocessor statement 
option of READ statement 
built-in function, pseudovariable 
option of ALLOCATE and FREE statements 
preprocessor statement 
built-in function 
option of ENVIRONMENT attribute 

option of ENVIRONMENT attribute 
attribute 
attribute, option of OPEN stat~ement 
option of OPTIONS option/attribute 
attribute 
option of READ statement 
attribute 
condition 
option of READ, DELETE, and REWRITE 

statements 
attribute, option of OPEN statement 
option of WRITE statement 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
option of READ statement 
attribute 
built-in function 
option of ENVIRONMENT attribute 
built-in function 
attribute 
format item, option of PUT statement 
built-in function 
option of OPEN statement 

Appendix A: Keywords and their Abbreviations 27 



~Q~~ ~~ U~JJ-VVV~-~ 

Revised June~ 1973 
By TNL: GN33-6095 

LIST 
]~OCATE 

J~OG (x) 
LOG2(x) 
['OG10(x) 
LOW(x) 
l"1AIN 
r>1AX (X:l., X2 ••• xn) 
l"1IN (X:l., X2 ••• xn) 
1>10D (X:l., X2) 
MULTIPLY(x:l.~X2~X3[IX~]) 
NAME(file-expression) 
NCP(n) 
I~OCHECK * 
NOCHECK [(name-list)] 
iNOCONVERSION 
NOFIXEDOVERFLOW 
NOFLOW * 
NOFORMAT 
NOLOCK 
NOMAP[(arg-list)] 
NOMAPIN[(arg-list)] 
NOMAPOUT[(arg-list)] 
NOOVERFLOW 
NORESCAN 
NOSIZE 
NOSTRINGRANGE 
NOSTRINGSIZE 
NOSUBSCRIPTRANGE 
NOUNDERFLOW 
NOWRI'I'E 
NOZERODIVIDE 
NULL 
OFFSET[(area-name)] 
OFFSET (X:l.,x2 ) 
ON 
ONCHAR 
ONCODE 
ONCOUNT 
ONFILE 
ONKEY 
ONLoe 
ONSOURCE 
OPEN 
OPTIONS(list) 

ORDER 
OUTPUT 
OVERFLOW 
P 'picture specification' 
PAGE 
%PAGE 
PAGESIZE(w) 

I PASSWORD 
PENDING (file-expression) 
PICTURE 
POINTER 
POINTER (X:l.,X2) 
POLY(x:l."x2) 
POSITION (expression) 
PRECISION (X:l.,X2[,X3]) 
PRINT 
PRIORITY(x) 
PRIORITY [ (x)] 

28 

NOCONV 
NOFOFL 

NOOFL 

NOSTRG 
NOSTRZ 
NOSUBRG 
NOUFL 

NOZDIV 

OFL 

PIC 
PTR 
PTR(x:l.,X2) 

POS (expression) 
PREC(x:l.,X2[,X3 ]) 

Q§.~ of_!S~Y~Q~g 

option of GET or PUT statement 
statement 
built-in function 
built-in function 
built-in function 
built-in function 
option of OPTIONS option 
built-in function 
built-in function 
built-in function 
built-in function 
condition 
option of ENVIRONMENT attribute 

statement 
condition prefix 
condition prefix 
condition prefix 
statement 

option of %CONTROL statement 
option of READ statement 
option of OPTIONS attribute 
option of OPTIONS attribute 
option of OPTIONS attribute 
condition prefix 
option of %ACTIVATE statement 
condition prefix 
condition prefix 
condition prefix 
condition prefix 
con'dition prefix 
option of ENVIRONMENT attribute 
condition prefix 
built-in function 
attribute 
built-in function 
statement 
built-in function, pseudovariatle 
built-in function 
built-in function 
built-in function 
built-in function 
built-in function 
built-in function, pseudovariable 
statement 
attribute, option of ENTRY and 

PROCEDURE statements 
option of BEGIN and PROCEDURE statements 
attribute, option of OPEN statement 
condition, condition prefix 
format item 
format item, option of PUT statement 
listing control statement 
option of OPEN statement 
option of ENVIRONMENT attribute 
condition 
attribute 
attribute 
built-in function 
built-in function 
attribute 
built-in function 
attribute, option of OPEN statement 
option of CALL statement 
built-in function, pseudovariable 



PROCEDURE 
%PROCEDURE 
PROD(x) 
PUT 
R(x) 
RANGE 
READ 
REAL 
REAL(x) 
RECORD 
RECORD (file-expression) 
RECSIZE(record-length) 
RECURSIVE 
REDUCIBLE 
REENTRANT 
REFER (element-variable) 
REGIONAL(1121 3 ) 
RELEASE 
REORDER 
REPEAT(x1 ,X2) 
REPLY(c) 
REREAD 
RESCAN 
RETURN 
RETURNS (attribute-list) 
REVERT 
REWRITE 
ROUND(x1,x2) 
SCALARVARYING 
SEQUENTIAL 
SET (locator-variable) 

SIGN (x) 
SIGNAL 
SIN (x) 
SIND(x) 
SINH{x) 
SIZE 
SKIP [ en) ] 

%SKIP 
SNAP * 
SQRT(x) 
STATIC 
STATUS (x) 
STOP 
STREAM 
STRING(x) 
STRING (string-name) 
STRINGRANGE 
STRINGSIZE 
iSUB 
SUBSCRIPrRANGE 
SUBSTR(x1,x2[,x3]) 
SUM (x) 
SYSIN 
SYSPRINT 
SYSTEM 
TAN (x) 
TAND{x) 
TANH (x) 
TASK 
TASK[(task-name)] 

PROC 
%PROC 

RED 

SEQL 

STRG 
STRZ 

SUBRG 

statement 
preprocessor statement 
built-in function 
statement 
format item 
option of DEFAULT statement 
statement 
attribute 
built-in function, pseudovariable 
attribute, option of OPEN statement 
condition 
option of ENVIRONMENT attribute 
option of PROCEDURE statement 
attribute 
option of OPTIONS option 
option of BASED attribute 
option of ENVIRONMENT attributE~ 
statement 
option of BEGIN and PROCEDURE statements 
built-in function 
option of DISPLAY statement 
option of ENVIRONMENT attribute 
option of %ACTIVATE statement 
statement, preprocessor statement 
attribute, option of PROCEDURE statement 
statement 
statement 
built-in function 
option of ENVIRONMENT attribute 
attribute 
option of ALLOCATE" LOCATE, and 

READ statements 
built-in function 
statement 
built-in function 
built-in function 
built-in function 
condition 
format item, option of GET and 

PUT statements 
listing control statement 
option of ON and PUT statements 

built-in function 
attribute 
built-in function, pseudovariable 
statement 
attribute, option of OPEN statement 
built-in function, pseudovariable 
option of GET and PUT statements 
condition, condition prefix 
condition, condition prefix 
dummy variable of DEFINED attribute 
condition 
built-in function, pseudovariable 
built-in function 
name of standard system input file 
name of standard system output file 
option of ON or DECLARE statements 
built-in function 
built-in function 
built-in function 
attribute, option of OPTIONS option 
option of CALL statement 

Appendix A: Keywords and their Abbreviations 29 



Page of GC33-0001-2 
Revised June, 1973 
By TNL: GN33-6095 

'rHEN 
:ITHEN 
'rIME 
'rITLE (element-expression) 
'ro 

'TOTAL 
'TP(M I R) 
TRANSIENT 
TRANSLATE(x~,x2[,x3]) 
TRANSMIT(file-expression) 
'TRKOFL 
'TRUNC(x) 
U 
UNALIGNED 
UNBUFFERED 
UNDEFINED FILE 

(file-expression) 
UNDERFLOW 
UNLOCK 
UNSPEC(x) 
UPDATE 
V 
VALUE 
VARIABLE 
VARYING 
VB 
VBS 
VERIFY(x.1.,x2) 
VS 

\VSAM 
WAIT 
WHEN (generic-

descriptor-list) 
WHILE 
WRITE 
X(w) 
ZERODIVIDE 

30 

UNAL 
UNBUF 
UNDF 

(file-expression) 
UFL 

VAR 

ZDIV 

clause of IF statement 
clause of %IF statement 
built-in function 
option of OPEN statement 
option of DO statement, option of repetiti 
input/output specification 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
attribute 
built-in function 
condition 
option of ENVIRONMENT attribute 
built-in function 
option of ENVIRONMENT attribute 
attribute 
attribute, option of OPEN statement 
condition 

condition, condition prefix 
statement 
built-in function, pseudovariable 
attribute, option of OPEN statement 
option of ENVIRONMENT attribute 
option of DEFAULT statement 
attribute 
attribute 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
built-in function 
option of ENVIRONMENT attribute 
option of ENVIRONMENT attribute 
statement 
option in GENERIC declaration 

option of DO statement 
statement 
format item 
condition, condition prefix 



Appendix: B: Compatibility with (F) Compiler 

Some features of the PL/I optimizing 
compiler implementation are incompatible 
with version 5 of the PL/I (F) Compiler 
implementation. The most significant 
incompatibilities are listed below. Except 
where stated, the description given is of 
the optimizing Compiler implementation. 
Programs which were written for the (F) 
compiler and which use any of these 
features should be reviewed before 
compiling them with the optimizing Compiler 
to ensure that they will return the same 
results. 

These, and other differences, are also 
given in the programmer·s guide for this 
compiler. This general information manual 
also gives some of the implementation 
limitations and restrictions of this 
compiler. The language refer~nce manual 
for this compiler gives full details of the 
implementation of each language feature. 

The (F) compiler holds the length of an 
area in the first 16 bytes of the area. 
The optimizing compiler holds the length of 
the area in a descriptor outside the area. 

Arrays and structures 

• The maximum number of dimensions in an 
array is 15. 

• The maximum depth of a structure is 15. 

Built-In Functions 

• Built-in functions are recognized on the 
basis of context only, so that all 
programmer-defined external procedures 
must be declared explicitly. Built-in 
functions without arguments, such as 
TIME and DATE, must also be declared 
explicitly with the BUILTIN attribute, 
or contextually with a null argument 
list, for example: TIME(). 

• For a variable to be a valid argument to 
the ADDR built-in function it must be 
connected and its left extremity must 
not lie within bytes that contain data 

belonging to other variables. 

• The ALLOCATION built-in func,tion returns 
a fixed-binary value giving 'the number 
of generations of the argument that 
exist in the current task. 

• The NULLO built-in function is not 
implemented in the Optintizin.g Compiler. 
The NULL built-in function can be used 
for offset variables as well as for 
pointer variables. 

• The PROD built-in function accepts 
arguments that are arrays of either 
fixed-point or floating-point elements. 
The value returned has the same scale as 
the argument given, except for 
fractional fixed-point argum(~nts for 
which the result is in floating-point. 

• The SUBSTR built-in function returns a 
non-varying string. 

• The SUM built-in function accepts 
arguments that are arrays of either 
fixed-point or floating-point elements. 
The value returned has the same scale as 
the argument given. 

The DISPLAY Statement 

• The maximum length of the reply is 72 
characters. 

Dumps from PL/I Programs 

• The object-time dump facility of the (F) 
compiler, IHEDUMP, requires a DO 
statement with the ddname PL1DUMP. Its 
equivalent in the Optimizing Compiler, 
PLIDUMP, requires a DO statement with 
the ddname PLIDUMP. The optimizing 
Compiler will attempt to use PL1DUMP if 
PLIDUMP is not available. 

Entry Names, Parameters, and Returned 
Values 

• In general, an entry name in parentheses 
causes a dummy variable to bE' created; 
for the function to be invoked, a null 
argument list is required. However, an 

Appendix B: Compatibility with (F) Compiler 31 



entry name argument in parentheses, or 
an entry name without arguments, will be 
invoked if passed to a procedure whose 
parameter descriptor for the 
corresponding argument specifies an 
attribute other than ENTRY. 

• External entry names must always be 
explicitly declared. 

• Area and string extents in the RETURNS 
attribute or option must be represented 
by a decimal integer constant. 

• The maximum depth of nesting in a 
descriptor list in the ENTRY attribute 
is 2. 

• An aggregate expression involving 
strings may not be passed as an argument 
unless there is a corresponding 
parameter descriptor in which all string 
lengths are specified as decimal integer 
constant::;. 

• An internal entry constant cannot be 
declared in a DECLl·,EE statemer~t. 
REDUCIBLE and IRREDUCIBLE may b€ 
specified on PROCEDURE and ENTRY 
statements. A scalar cannot be passed 
t.o an array parameter of an internal 
E'ntry constant if the parameter' s bounds 
are specified by asterisks. 

The ENVIRONMENT Attribute 

• For changes in the ENVIRONMENT attribute 
see "The ENVIRONMENT Attribute" in 
chapter 3. 

• The error corrcc~ion logic differ9 from 
tJ:at used by th(; PL/I (F) --:ompilcr. 
Invalid programs that are compiled and 
corrected by the (F) compiler may not 
give the same results on the optimizing 
cornriler. 

• ']~he limitations on the length of DECLARE 
statements impose some restrictions on 
t:he use of the INITIAL attribute. These 
restrictions are described under 
'''Statement Length" later in this 
section. 

32 

LIKE Attribute 

• The Optimizing Compiler does not permit 
a substructure to have the LIKE 
attribute when another substructure 
within the major structure is the object 
of a further LIKE attribute. For 
example: 

DCL 1 A LIKE C, 
1 B, 

2 C, 
3 0, 
3 E, 

2 (F) LIKE X, 
1 X, 

2 Y, 
2 Z; 

In this example, the structure A has the 
LIKE attribute which refers to ~ubstructur~ 
C in structure B. B also contuins 
substructure (F) with the LIKE attribute. 

Link-Editing 

• Programs compiled by the optimizing 
compiler cannot be link-edited with 
object modules produced by the PL/I (F) 

compiler. 

operating system Facilities 

• The operating system facilities for 
sorting, for checkpoint/restart, for 
generating a return code, and for 
obtaining a dump are all invoked by 
means of a CALL statement with the 
dpproprjate entry-point name; tor 
l'xdIT.f;le CALL PLISRTt.. 'Tne entry-puinl.. 
names, which are listed below, have the 
BUILTIN attribute and need not be 
declared explicitly. 

sort 
Checkpoint/Restart 

Return Code 
Dump 

PLISRTx 
PLICKPT 
PLIREST 
PLICANC 
PLIRETC 
PLIDUMP 

The Optimizing Compiler does not 
recognize the entry names used by the PL/I 
(F) compiler, that is, IHESRTx, IHESARC, 
IHETSAC, IHEDUMx, IHECKPx, and IHERESx. 



• Sterling picture data is not 
implemented. Therefore the following 
picture characters are not allowed: 

G , H, M" P, 6, 7, 8 • 

• Text replaced by preprocessor statements 
does not have blanks appended to either 
end of the replacement value. 

• A parameter descriptor list is not 
allowed in the declaration of a 
preprocessor variable with the ENTRY 
attribute. 

• The RETURNS attribute may not be 
specified in a preprocessor DECLARE 
statement. 

• For a varying string# the first 16 bits 
of the value of the UNSPEC 
pseudovariable represent the current 
length of the string. 

• The pseudovariables COMPLETION, COMPLEX, 
PRIORITY# and STRING are not allowed as 
the control variable of a DO statement. 

• READ J REWRITE, and DELETE statements are 
invalid for REGIONAL DIRECT OUTPUT 
files. 

• There is no default record format for 
RECORD files. If the record format is 
not specified, the UNDEFINEDFILE 
condition is raised. 

• The process of eliminating redundant 
expressions could give rise to an 
incompatibility for programs written for 
the PL/I (F) compiler that are 
recompiled by the optimizing compiler. 
For example~ in the expression: 

IF (A=D) I (C=D) THEN ••• 

Page of GC33-0001-2 
Revised June, 1973 
By TNL: GN33-6095 

if the condition (A=D) is satisfied, the 
condition (C=D) is ignored. This latter 
condition, however, might contain a 
function, which if not evaluated# could 
give rise to error. 

The PL/I(F) compiler return code 
facility (IHESARC or IHETSA) allowed 
values greater than 999 to be set. The 
optimizing compile~facility (PLIRETC) 
allows a maximum of 999 to be set. All 
values above this limit are reduced to 
999 and a warning message issued. 

• The Optimizing Compiler does not 
implement the REWIND option. Programs 
that use this option should be modified. 
Note that the function of the REREAD 
option implemented by the Optimizing 
Compiler is different from that of the 
REWIND option. The main difference is 
that the REREAD option over~ides any 
DISP parameter and controls the 
positioning of the magnetic tape volume, 
whereas the REWIND option specifies that 
the DISP parameter is to control the 
positioning of the magnetic tape volume 
according to the subparameter specified. 

• The approximate maximum number of 
statements in a program is 10,000. 

• A label on a DECLARE statement is 
treated as if it were on a null 
statement. 

• The optimizing compiler has a 
restriction that any statement must fit 
into the work area of the compiler. The 
maximuIT size of this work area varies 
with the amount of space available to 
the compiler. The limitations on the 
length of statements are: 

Appendix B: Compatibility with (F) Compiler 33 



page o~ ~c~~-uuu~-~ 
Revised June~ 1973 
By TNL: GN33-6095 

50K - 60K 
61K - 78K 
Over 78K 

1012 characters 
1600 characters 
3400 characters 

Under VS1 or VS2 or when the 3330 is 
used for the spill file the limitations 
on the length of statements are: 

78K - 83K 
Over 83K 

3400 characters 
3960 characters 

The DECLARE statement is an exception in 
that it can be regarded as a sequence of 
separate statements, each of which 
starts wherever a comma occurs that is 
not contained within parentheses. For 
example: 

DCL 1 A 
2 B(10,10) INIT(1,2,3, ••• ), 
2 C(10,100) INIT«1000) 0), 
2 (D,E) CHAR(20) VAR, ••• 

In this example, each line can be 
treated by the compiler as a separate 
DECLARE statement in order to 
accommodate it in the work area. The 
compiler will also treat in the same way 
the INITIAL attribute when it is 
followed by a list of items separated by 
commas that are not contained within 
parentheses. Each item may contain 
initial values that, when expanded, do 
not exceed the maximum length. The 
above also applies to the use of the 
INITIAL attribute in a DEFAULT 
statement. 

The (F) compiler can use up to 90K bytes 
for its work area. It is possible that 
programs with large DECLARE statements will 
not compile successfully on the optimizing 
compiler although they had compiled 
successfully on the (F) compiler. The 
following techniques are suggested to 
overcome this problem: 

1. Increase the main storage available to 
the compiler, unless the space 
available already gives the largest 
statement length. 

2. Simplify the DECLARE statement so that 
the compiler can treat the statement 
in the manner described above. 

34 

• A filemark (or end of string mark for 
the STRING option) is a valid item 
delimiter for list- and data-directed 
input. An item thus delimited is 
processed intact, and ENDFILE (ERROR for 
string) is raised on attempting to read 
a further item from the file or string. 

• After a GET LIST statement has been 
processed, a file is positioned to the 
next non-blank character or, if this is 
a comma, to the character following the 
comma. A GET EDIT statement following a 
GET LIST on the same file must take into 
account the position of the file. 

• If the variable on the left-hand side of 
an item of data-directed input is based 
or controlled, and is not currently 
allocated, the ERROR condition is 
raised. The NAME condition is raised 
for all other errors (including out of 
range subscripts) detected on the left
hand side of data-directed input items. 

• The following sequence: 

DCL SYSPRINT FILE; 

OPEN FILE(SYSPRINT)i 

will cause the UNDEFINEDFILE condition 
to be raised. Omission of either or 
both statements will result in correct 
execution. The file should be declared 
implicitly or with the attributes STREAM 
and OUTPUT. 

• The (F) compiler initializes a varying
length string to a null string, the 
equivalent of: 

STR ... , 
whenever such a string is allocated. The 
optimizing Compiler does not perform any 
initialization of varying-length 
strings, unless the INITIAL attribute is 
used. 



The following publications describe. in 
more detail. the facilities of the OS PL/I 
optimizing Compiler. the resident library. 
and the transient library. 

The availability of a publication is 
indicated by its use key. the first letter 
in the order number. The use keys are: 

G General: available to users of IBM 
systems, products, and services 
without charge, in quantities to meet 
their normal requirements. can also be 
purchased by anyone through IBM branch 
offices. 

S Sell: can be purchased by anyone 
through IBM branch offices. 

L Licensed: property of IBM; 
available only to licensees of the 
related program products under the 
terms of the license agreement. 

OS PL/I Checkout and optimizing Compilers: 
Language Reference Manual 
Order No. SC33-0009 

The primary source of information on the 
language implemented by the OS PL/I 
Optimizing and Checkout Compilers. It is a 
reference manual rather than a tutorial 
text, and the reader is assumed to have 
some previous knowledge of PL/I. 

The manual contains information on how to 
write a PL/I source program. For 
information on how to compile,- link-edit. 
and execute the program, reference should 
be made to the appropriate programmer's 
guide. 

OS PL/I Checkout and Optimizing compilers: 
Keyword and Terminal Commands Reference 
Card 
Order No. SX33-6002 

contains a full list of the PL/I Keywords 
implemented by the OS PL/I optimizing 
compiler. The keywords are arranged in 
alphabetical order and each has a brief 
description of its use. 

OS PL/I Optimizing Compiler: 
Programmer's Guide 
Order No. SC33-0006 

Appendix C: Bibliography 

Companion volume to OS PL/I Optimizing and 
Checkout Compilers: Language RE~ference 
Manual (Order No. SC33-0009), and TSO: OS 
PL/I optimizing Compiler: User' f~ Guide -
(Order No. SC33-0029). The thrE~e manuals 
form a guide to the writing and execution 
of PL/I programs using the Optimizing 
Compiler and the associated resident and 
transient libraries in the batch and time
sharing environments of the IBM Operating 
System. 

The programmer's guide is concel:ned with 
the relationships between a PL/I program, 
the optimizing Compiler, and thE~ operating 
system. It explains how to compile, link
edit, and execute a PL/I program in a batch 
environment, and it introduces ";job control 
language, the linkage editor, d~ta 
management, and other operating system 
features that may be required by a PL/I 
programmer. 

OS PL/I Optimizing Compiler: 
Messages 
Order No. SC33-0027 

Lists all the messages that may be issued 
by the OS PL/I Optimizing Compiler and the 
associated transient library during 
processing of a PL/I program. Both the 
long and short forms of each message are 
listed where applicable. 

The messages are in three groups: 

• compile-time messages (generalted by the 
compiler during compilation of a PL/I 
source program). 

• Execution-time messages (gene-rated by 
the transient library during execution 
of the compiled program). 

• Prompter messages (generated by the 
compiler when it is used in a time
sharing environment). 

Where appropriate. explanations of the 
messages and suggested programme'r responses 
are included. 

OS PL/I Optimizing Compiler: 
Execution Logic 
Order No. SC33-0025 

Describes the object module produced by the 
OS Optimizing compiler. and explains how 

Appendix C: Bibliography 35 



the compiled code uses subroutines from the 
associated resident and transient 
libraries. 

The topics covered include program 
initialization, storage management, 
input/output, error handling, and 
interlanguage communication. The use of 
storage dumps for debugging is also 
explained. 

The manual is intended primarily for 
programmers concerned with maintenance of 
the compiler and its libraries. It will 
also be useful for applications programmers 
who require an understanding of th1e 
processes of execution. 

OS PL/I Optimizing Compiler: 
Proqram Logic 
Order No. LY33-6007 

The internal design of the OS PL/I 
Optimizing Compiler is described in this 
manual; which is written for use by 
programmers responsible for maintenance of 
the compiler. The manual is intended 
primarily as a guide to analysis of the 
program listings by people who are 
generally familiar with the compiler. 
However, overall and component descriptions 
are provided for use by readers who have no 
prior knowledge of the compiler design. 

OS PL/I Resident Library: 
Proqram Logic 
Order No. LY33-6008 

The OS PL/I Resident Library consists of 
standard subroutines that are linke-edited 
with object programs generated by the OS 
PL/I Optimizing Compiler. The library is 
used in program management, input/output, 
conversion; and inter language 
communication, and also includes many 
computational subroutines. 

This publication is intended primarily for 
use by programmers concerned with the 
maintenance of the resident library. It 
summarizes; under functional headings, the 
internal logic of the libary subroutines, 
and gives brief details of the 
relationships between them. 

OS PL/I Transient Library 
Program Logic 
Order No. LY33-6009 

36 

The OS PL/I Transient Library consists of 
standard subroutines that are loaded during 
execution of programs compiled by the Os 
PL/I Optimizing compiler, or the OS PL/I 
Checkout Compiler. These subroutines are 
used in error handling, program management, 
and input/output, and to provide storage 
dumps. 

This publication is intended primarily for 
use by programmers concerned with the 
maintenance of the transient library. It 
summarizes, under functional headings, the 
internal logic of the library subroutines, 
and gives brief details of the 
relationships between them. 

OS PL/I optimizing Compiler: 
Installation 
Order No. SC33-0026 

Intended primarily for programmers 
responsible for installing the OS PL/I 
Optimizing Compiler and the associated 
resident and transient libraries. It is 
divided into four parts that give detailed 
information on installation procedures and 
storage estimates. 

TSO: 
OS-PL/I Optimizing compiler: User's Guide 
Order No. SC33-0029 

This manual is a companion volume to os 
PL/I Checkout and Optimizing Compilers: 
Language Reference Manual (Order No. SC33-
0009) and OS PL/I Optimizing Compiler: 
Programmer's Guide (Order No. SC33-0006). 
The three manuals form a guide to the 
writing and execution of PL/I programs 
using the Optimizing Compiler and the 
associated resident and transient libraries 
in the batch and time-sharing environments 
of the IBM Operating System. 

The manual comprises two parts: 

• Guide: An explanation of how to use the 
compiler in a time-sharing (TSO) 
environment, and a description of the 
conversational I/O feature of the 
compiler. 

• Command Language: A description of the 
PLI command and its operands. 

The two parts are designed so that it can 
be used independently or its two parts 
included in the TSO publications Terminal 
User's Guide (Order No. GC28-6763) and 
Command Language Reference (Order No. GC28-
6732), respectively. 



Order No. GC33-0001-2, Page Revised by TNL GN33-6085, April 1973 

Appendix D: Planning Information for eMS 

The OS PL/I Optimizing Compiler and its 
libraries can be used with the Conversa
tional Monitor System (CMS) of the Virtual 
Machine Facility/370 (VM/370). 

The optimizing compiler supports those 
I/O d~vices that it supports under the 
operating system, provided that these 
devices are supported by VM/370. A list 
of the devices supported under VM/370 is 
given in the VM/370 Planning and System 
Generation Guide. 

A minimum of 320K bytes of virtual 
storage is required for the CMS virtual 
machine for execution of the optimizing 
compiler under CMS. 

All PL/I source programs that can be 
compiled by the optimizing compiler under 
the IBM Operating System will be accepted 
and compiled by the optimizing compiler 
under CMS. 

However, object programs produced by 
the optimizing compiler to be executed 
under CMS cannot use the following facil
ities: 

• Multitasking 

• Teleprocessi.ng. The TCAM data manage
ment facility and the TRANSIENT file 
attribute are included in this 
restriction. 

• INDEXED and VSAM files. 

• The PL/I sort facility. 

• The PL/I checkpoint/restart facility. 

• ASCII data sets. 

• The BACKWARDS attribute for magnetic 
tape files. 

• Spanned (VS-format or VBS-format) 
records" (BDAM) • 

• PL/I FETCH and RELEASE statements. 

These restrictions are execution-time 
restrictions under CMS; they do not i~pplY' 
to programs compiled under CMS and ex
ecuted under the IBM Operating System. 

For the availability of the optimizing 
compiler under CMS refer to 
IBM Program Product Design Objectives, 
Order No. GC33-0036. 

Appendix D: Planning Information for CMS 37 





"INCLUDE 
avoiding use of preprocessor 5 

"PAGE statement 16 
"SKIP statement 16 

abbreviations for keywords 25 
access methods required 23 
ACOS built-in functions 20 
ADDR built-in function 

argument, valid 31 
aggregate 

string overlay defining 18 
aggregates 13 
ALLOCATION built-in function 

returned value 31 
area variable 

length field 31 
array 

addressing optimization by 
defactorization 9 

addressing optimization by expression 
simplification 9 

assignment optimized 11 
dimensions, maximum number of 31 
in same expression as structure 18 
initialization optimized 9 
replacement of constant expressions 9 

array/structure operations 
ASCII data sets 17 
ASCII option of ENVIRONMENT attribute 17 
ASIN built-in function 20 
assignment 

array and structure, optimized 11 
attributes, default 

DEFAULT statement 15 
auxiliary storage 

requirement for compiler and 
libraries 21 

based variable 
defined variable 
subscripted or based locator 16 
VARYING attribute 18 

bibliography 35 
block size 

in ENVIRONMENT attribute 16 
branch instructions 

base register allocation optimized 11 
BUFOFF option of ENVIRONMENT attribute 17 
built-in function 

in-line code 10 
built-in functions 31 
BUILTIN attribute 31 

character sets 4 
CHECK condition 

Index 

language extension 15 
checkpoint/restart facilities required 23 
checkpoint/restart facility 32 
CMS (Conversational Monitor system) 37 

optimizing compiler restrictions 37 
COBOL option 20 
commerical programs 

effect of optimization 3 
common constant 

elimination of 11 
common control data 

elimination of 11 
common expression 

definition 7 
elimination of 7 

comparison 
data types allowed 20 

compatibility 
between OS and DOS versions of 
compiler 5 

between releases 5 
library subroutines 5 
with PL/I (F) Compiler 31 

compilation 
input/output devices required 21 
machine requirements 21 
speed 3 

compiler 3,37 
optimization 3 
options 4 
restrictions under CMS 37 
specifying card-image format output 5 
use with CMS 37 

compiler option, deleted 
temporary reinstatement 4 

condition-handling 4 
CONNECTED attribute 18 
constant exponents 

replacement of 9 
constant expressions 

replacement of 9 
constant multipliers 

replacement of 9 
contiguous storage 

CONNECTED attribute 18 
control programs 

MFT 22 
MVT 22 
VS1 22 
VS2 22 

control programs required 22 
control variable of DO statement 

restriction 33 
Conversational Monitor System (CMS) 37 

Index 39 



conversions 
in-line code 10 

data 
aggregates 13 
types 13 

data aggregates 18 
data list 

matching with format list at compile 
time 10 

dat:a management facilities required 23 
data-directed input 

ENDFILE condition 34 
NAME condition 34 
unallocated variable 34 

data-set organization 
for teleprocessing 17 

DATE built-in function 
machine requirement 21 

debugging aids 
condition-handling 4 
diagnostics 3 
flow trace 4 
on-units 4 

DECLARE statement 
label on 33 
maximum length 34 

defactorization 9 
default attributes 

DEFAULT statement 15 
DEFAULT statement 15 

effect of label 15 
DEFINED variable 

record I/O 17 
DEI.AY statement 

machine requirement 21 
depth of structure, maximum 31 
diagnostics 3 

length of messages 4 
severity level 4 
specifying inclusion of line numbers 5 
specifying inclusion of statement 

numbers 5 
dimensions, maximum number of 31 
DISPLAY statement 

length of reply 31 
division operations 

optimization by repeated subtraction 8 
DO statement 

control variable restriction 33 
special case code 10 

documentation 35 
dummy entry variable 31 
dump 

DD statement for 31 
dump facility 32 
dump, specifying 4 
dynamic loading of procedures 16 

edit-directed transmission 
matching of format lists with data 
lists optimized 10 

elimination of common constants 11 
elimination of common control data 11 

40 

ENDFILE condition 34 
data- and list-directed input 34 

ENTRY attribute 
nesting in descriptor list 32 

entry constant 19 
entry expression 

GENERIC attribute 19 
entry name 

as argument 31 
external, explicit declaration 32 
GENERIC attribute 19 
internal, declaration 32 

entry variable 19 
ENVIRONMENT attribute 16 

use of variables to specify values 17 
error correction 

incompatibility with PL/I (F) 
compiler 32 

execution 
machine requirements 21 
restrictions under CMS 37 
speed 3 

expression 
transfer out of loop 8 

extended precision floating point 19 
extensions to language 15 
extent 

in RETURNS attribute/option 32 
external procedure 

dynamiC loading from auxiliary 
storage 16 

FETCH statement 16 
file constant 18 
file variable 18 
file-name expressions 18 
floating-point data 

default precision 19 
extended precision 19 

flow trace 4 
format list 

matching with data list at compile 
time 10 

FORTRAN option 20 
function 19 

effect of entry argument 31 

GENERIC attribute 19 
generic selection 19 

IF statement 
branching optimized 12 
improving efficiency by compound 
expression 8 

implementation restrictions 31 
in-line code 

for built-in function 10 
for record I/O 10 
for string manipulation 10 

in-line code for conversions 10 
incompatibilities with (F) compiler 31 
INDEX built-in function 

within preprocessor statement 16 
INITIAL attribute 

expressions in 19 



INITIAL attribute (CONTINUED) 
maximum length 34 

initialization by expression or 
function 19 

initialization of arrays and structures 
optimized 9 

initialization of varying-length 
strings 34 

input/output 14 
use of file-name expressions in 
statements 18 

input/output devices 
required for compilation and link-
editing 21 

INTER option 20 
interlanguage communication 5,20 
internal procedure 32 
interrupt, imprecise 

specifying processing code generation 4 
iSUB variable 

beyond subscript range 15 

key handling for REGIONAL data sets 10 
keywords and abbreviations, list 25 

label 
on DECLARE statement 33 
on DEFAULT statement 15 

language extensions 15 
language features implemented 13 
LENGTH built-in function 

within preprocessor statement 16 
library subroutines 

compatibility 5 
logically grouped for efficiency 11 

LIKE attribute 
limitation within structure 32 

limitations, implementation 31 
lines per page of compiler output 4 
link-editing 

input/output devices required 21 
restriction, PL/I (F) modules 32 

list 
of declaration numbers 4 
of external symbol dictionary 4 
of implementation dependent 

information 4 
of options used by compiler 4 
of references to identifiers 4 
of source input to preprocessor 4 
of source program 4 
of statement numbers with offsets 5 
of static storage organization 5 
of stora~e requirements for object 

module 5 
list-directed input 

ENDFILE condition 34 
file positioning 34 

listing control statements 16 
loading procedures dynamically 16 
locator variable 

subscripted or based 16 
loop 

modification of control variable 9 
recognition for optimization purposes 8 
special-case code 10 

loop (CONTINUED) 
transfer of expressions 8 
undesired effect of optimization 8 
use of registers for frequently-
modified values 11 

machine requirements 
auxiliary storage 21 
for compilation 21 
for execution 21 
input/output devices 21 

magnetic tape positioning (REREAD 
option) 33 

margin indicator 4 
margins, source statement 4 
matching of format lists with data lists 

optimized 10 
mathematical built-in functions 20 
maximum length of DECLARE statement 34 
maximum length of INITIAL specification 34 
maximum length of statements 33 
maximum number of statements 33 
maximum precision 

extended precision floating point 19 
message length 4 
MFT control program 22 
modification of loop control variables 9 
moving expressions out of loops 8 

undesired effect 8 
multiplication operations 

optimization by repeated addition 8 
multiprocessing (M65MP) 23 
multiprogramming with a fixed number of 
tasks (MFT) 22 

multiprogramming with a variable number of 
tasks (MVT) 22 

MVT control program 22 
M65MP option 23 

nesting level 
printed on source listing 4 

NOMAP option 20 
NOMAPIN option 20 
NOMA POUT option 20 
NORESCAN option 15 
NULLO built-in function 

incompatibility with PL/I (F) 
Compiler 31 

object module 
NAME statement 4 
production 4 

offset var iable 
subscripted or based 16 

on-units 4 
operating system facilities 

entry-point names 32 
operating system options 

M65MP 23 
TSO 22 

operating system requirements 22 
control programs 22 
checkpoint/restart facilities 23 
data management facilities 23 

Index 41 



operating system requirements (CONTINUED) 
sort facilities 23 

optimization 3,7 
effect on commercial programs 3 
effect on scientific programs 3 
specifying for given compilation 5 

options, compiler 4 
ORDER option 

effect on optimization of register 
allocation 11 

inhibits loop optimization 8 
overlay defining 

of aggregates 18 

parameter 
record I/O 17 

picture data 
sterling character disallowed 33 

PL/I keywords and abbreviations 25 
PL/I language implemented 13 
planning information 37 

CMS (Conversational Monitor System) 37 
PLIDUMP built-in subroutine 

flow trace 4 
PLIDUMP ddname 31 
PL1.DUMP ddname 31 
pointer variable 

subscripted or based ~6 
preprocessing facilities 15 

use of LENGTH and INDEX built-in 
functions 16 

preprocessor 
ENTRY attribute 33 
replacement values 33 
RETURNS attribute 33 
specifying card-image format output 4 
specifying use of 4 

preprocessor scan 
programmer control 15 

procedure 
dynamic loading from auxiliary 
storage 16 

internal 32 
PROD built-in function 

arguments 31 
returned value 31 

program branch code 11 
program management 13 
publications 35 

record format 
in ENVIRONMENT attribute 16 

record format specification 
effect of omission 33 

Record I/O 17 
in-line code 10 
incompatibilities with (F) compiler 33 
parameters and DEFINED variables 17 

record size 
in ENVIRONMENT attribute 16 

redundant expression 
definition 8 
elimination of 8 

redundant expression elimination 
possible incompatibility 33 

42 

REFER option 
removal of restrictions imposed by PL/I 

(F) 16 
REGIONAL data sets 10 

key handling optimized 10 
register usage for loops 11 
RELEASE statement 16 
REORDER option 

effect on register allocation 11 
for loop optimization 8 

replacement of constant multipliers and 
exponents 9 

requirements 
machine 21 
operating system 22 
space 3 
system 21 

REREAD option 
compared with REWIND 33 

REREAD option of ENVIRONMENT attribute 17 
RESCAN option 15 
resident library 37 

auxiliary storage requirement 21 
use with CMS 37 

restrictions 
implementation 31 

return code generation 32 
RETURNS attribute/option 

extent in 32 
REWIND option (PL/I (F) Compiler) 

compared with REREAD 33 

SCALARVARYING option of ENVIRONMENT 
attribute 17 

scientific programs 
effect of optimization 3 

self-defining structures 
removal of restriction imposed by PL/I 

(F) 16 
Simplification of expressions 8 
SNAP option 

flow trace 4 
specifying limits 5 

sort facilities required 23 
sort facility 32 
SORT/MERGE program 

varying-length strings 33 
source program 

character sets 4 
control of listing format 16 
margins 4 

space requirements 3 
special-case code for DO statements 10 
speed 

of compilation 3 
of execution 3 

statement 
execution count 5 

statement number 
specifying method of derivation 4 

statements 
maximum lengths 33 
maximum number 33 

sterling picture data, disallowed 33 
storage 

specifying amount available for 
compilation 4 



storage control 16 
stream I/O 

incompatibilities with PL/I (F) 
compiler 34 

string .. 32 
aggregate argument, restr1ct1on 
truncation, detection 18 

string handling 
in-line code 10 

STRINGSIZE condition 18 
structure 

assignment optimized 11 
in same expression as array 18 
initialization optimized 9 
LIKE attribute limitation 32 
maximum depth 31 
self-defining 16 

structure and array assignments 
optimized 11 

subroutine 19 
subscript 

common expressions 7 
SUBSCRIPTRANGE condition 

with iSUB variables 15 
SUBSTR built-in function 

returned value 31 
SUM built-in function 

arguments 31 
returned value 31 

syntax checking 
control of progress into 4 

SYSPRINT 34 
declaration 34 
UND.EFINEDFILE raised 34 

system requirements 21 
for compilation 21 
for execution 21 
System/370 facilities 23 

System/370 facilities 23 
SYSUT1 data set 

uses 21 

tape positioning (REREAD option) 33 
teleprocessing data sets 

specifying data-set organization in 
ENVIRONMENT attribute 17 

terminal 
specifying selected compiler output 
to 4 

Time Sharing Option (TSO) 22 
transient library 

auxiliary storage requirement 21 
use with CMS 37 

TSO 22 
types of optimization 7 

UNDEFINEDFILE condition 33,34 
with SYSPRINT 

UNSPEC pseudovariable 
varying string 33 

VARYING attribute 
with BASED or DEFINED 18 

varying string 
UNSPEC value 33 

varying-length string 
initialization 34 
locate-mode I/O 1.7 

virtual storage (VS1) 22 
virtual storage (VS2) 22 
VSl control program 22 
VS2 control program 22 

Index 43 



Jn~~ / Technical Newsletter 

OS 
PLjI Optimizing Compiler: 
General Information 

© IBM Corp. 1970, 1971, 1972 

This Newsletter No. GN33-6095 

Date June 1973 

Base Publication No. 

File No. 

Previous Newsletters 

GC33-0001-2 

S360/S370-29 

GN33-6085 

This Technical Newsletter, a part of version 1, release 2, modification 0 of the IBM 
Operating System PLjI Optimizing Compiler, Program Product 5734-PL1, provides 
replacement pages for the subject publication. These replacement pages remain in 
effect unless specifically altered. Pages to be inserted and/or removed are: 

Title page, ii 
1,2 
3,4 
5,6 
19,20 

21,22 
23, 24 
27, 28 
29,30 
33,34 

A change to the text is indicated by a vertical line to the left of the change. 

Summary of Amendments 

The attached pages contain minor additions or changes to the announcement 
information published previously for version 1, release 2, modification 0 of the OS PLjI 
Optimizing Compiler. 

Note: Please file this cover letter at the back of the manual to provide a record of changes. 

IBM United Kingdom Laboratories Ltd, Publications Dept, Hursley Park, Winchester, Hants, England. 

© IB~ Corp. 1972 Printed in U.S.A. 



ITrn~ / Technical Newsletter 

OS 
PL/I Optimizing Compiler: 
General Information 

© IBM Corp. 1970,1971,1972 

This Newsletter No. GN33-6085 
Date April1973 

Base Publication No. GC33-0001-2 
System S360/S370~29 

Previous Newsletters None 

This Technical Newsletter provides replacement pages for the subject publication. 
These replacement pages remain in effect unless specifically altered. Pages to be 
inserted and/or removed are: 

Title page, ii 
37 

A change to the text is indicated by a vertical line to the left of the change. 

Summary of Amendments 

Updated planning information for the use of the PL/I Optimizing Compiler under 
CMS is included. 

Note: Please file this cover letter at the back of the manual to provide a record of 
changes. 

IBM United Kingdom Laboratories Ltd, Publications Dept, Hursley Park, Winchester, Hants, England. 

© IBM Corp. 1973 Printed in U.S.A. 



o 
!l 
~ 
." 
o a: 
» 
0' 
:l 

~I 
S" 
• I 

OS 
PLjI Optimizing Compiler: 
General Information 

Order No. GC33-0001-2 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional pUblications will delay response, 
however. For more direct handling of such requestS, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Index Figures Examples Legibility 

READER'S 
COMMENT 
FOAM 

What is your occupation? _____________________________ _ 

Number of latest Technical Newsletter (if any) concerning this publication: ___________ _ 

Please indicate in the space below if you wish a reply. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



GC33·Q001·2 

Your comments, please ••. 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold Fold •••••.•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••.••••••••••••••••••••••••••••••• '1 

Fold 

Business Reply Mail 
No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department 813(HP) 
1133 Westchester Avenue 
White Plains, New York 10604 

International Bu.lne •• Machine. Corporation 
Data Proce •• lng DIvI.lon 
1133 We.tche.ter Avenue, White Plain., New York 10604 
jIU.S.A. only) 

IIBM World Trade Corporation 
1121 United Nation. Plaza, New York, New York 10017 
!(Intemlltlonal) 

First Class 
Permit 40 
Armonk 
New York 

Fold 

o 
en 
"0 
r 
:::;. 
o 
"0 ..... 
3' 
N' 
5' 
to 
(") 
o 
3 
"0 

~ 

:::J 
-+I o 
3 
D.l ..... 
o· 
:::J 

" ro 
z 
? 
en w 
0') 
o en 
w 
-...J 
o 
r\.> 
<0 


	001
	002
	003
	004
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	_1
	_2
	replyA
	replyB

