
,
, ,

..
•

Installed
',User
Program

. " SH20-6168-1

Pas caiNS
Language Reference Manual

Program Number: 5796-PNO

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level program­
ming language to teach computer programming by
N. Wirth (circa 1968), Pascal has emerged as an
influential and well accepted user language in today's
data processing environment. Pascal provides the user
with the ability to· produce very reliable code by perfor­
ming many error detection checks automatically.

The compiler adheres to the currently proposed ISO
standard and includes many important extensions.
The language extensions include: separate compilation,
dynamic character strings and extended I/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual describes the implementation of the lan­
guage by this compiler, and is intended as a reference
guide for the Pascal programmer .

--- ------ - ---- ---- - ---- - - -----------,,-

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of six months
notice prior to the discontinuance of Central Service.

During the Central Service period. IBM through the program sponsor(s) will, without additional charge,
respond to an error in the current unaltered release of the program by issuing known error correction
information to the customer reporting the problem and/or issuing corrected code or notice of avail­
ability of corrected code. However, IBM does not guarantee service results or represent or warrant that
all errors will be corrected.

Anyon-site program service or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, CA 95150
Attention: J. David Pickens
Telephone: (408) 4634394
Tieline: 8-5434394

IBM Corporation
DPD, Western Region
3424 Wilshire Boulevard
Los Angeles, CA 90010
Attention: Mr. Keith J. Warltier
Telephone: (213) 7364645
Heline: 8-2854645

Second Edition (Apri11981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler (lUP Program Number 5796·PNQ).

Refercnccs in this publication to IBM products, programs, or serviccs do not imply that
IUM intends to make these available outside the United States.

Publications are not stocked at the address givcn below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for rcaders' commcnts has bcen provided at the back of this publication. If
this form has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

\"

•

..... -4U .. 1I :s ,' ..
"

",,~ '," """,I

PREFACE

This document is the reference manual to the Pascal/VS programming language. The
Pascal/VS Programmer's Guide, SH20~6162, is also available from IBM to help write
programs in Pascal/VS.

It is assumed that you are already familiar with Pascal and programming in a high
level programming language. There are many text books available on Pascali the fol­
lowing list of books was taken from the Pascal User's Group Pascal News, December
1978 NUMBER 13 and September 1979 NUMBER 15. You may wish to check later editions of
Pascal Hews and your library for more recent books.

• The Design of Well-Structured and Correct Programs by S. Alagic and M.A. Arbib,
Springer-Verlag, Hew York, 1978, 292 pp.

• Microcomputer Problem Solving by K.L. Bowles, Springer-Verlag, New York, 1977,
563 pp.

• A Structured Programming Approach to Data by D. Coleman, MacMillan Press Ltd,
Lon r;:' n, 1 9 7 8, 222 p p .

• A Primer on Pascal by R.W. Conway, D. Gries and E.C. Zimmerman, Winthrop Pub­
lishers Inc., Cambridge Mass., 1976, 433 pp.

• PASCAL: An Introduction to Methodical Programming by W. Findlay and D. Watt,
Computer Science Press, 1978, 306 PP.i UK Edition by Pitman International Text,
1978.

• Programming in PASCAL by Peter Grogono, Addison-Wesley, Reading Mass., 1978,
357pp.

• Pascal Users Manual and Report by K. Jensen and N. Wirth, Springer-Verlag, Hew
York, 1978, 170 pp.

• Structured Programming and Problem-Solving with Pascal by R.B. Kieburtz,
Prentice-Hall Inc., 1978, 365 pp.

• Programming via Pascal by J.S. Rohl and Barrett, Cambridge University Press.

• An Introduction to Programming and Problem-Solving with Pascal by G.M.
Schneider, S.W. Weingart and D.M. Perlman, Wiley & Sons Inc., New York, 394 pp.

• Introduction to Pascal by C.A.G. Webster, Heyden, 1976, 129 pp.

• Introduction to Pascal by J. Welsh and J. Elder, Prentice-Hall Inc., Englewood
Cliffs, 220 pp.

• A Practical Introduction to Pascal by I.P. Wilson and A.M. Addyman,
Springer-Verlag Hew York, 1978, 145pPi MacMillan, London, 1978.

• Systematic Programming: An Introduction by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1973 169 pp.

• Algorithms + Data Structures = Programs by N. Wirth, Prentice-Hall Inc.,
Englewood Cliffs, 1976 366 pp.

This reference manual considers ISO/TC 97/SC 5 N595 as the Pascal Standard although
N565 is a proposed standard and subject to further modification.

STRUCTURE OF THIS MANUAL

This manual is divided into the following major topics

Chapter 1 is a summary of the language.

Chapter 2 is a description of the ba5ic units (lexical) of Pascal/VS.

Chapters 3 through 9 are a top-down presentation of the language.

Chapter 10 describes the I/O procedures and functions.

Preface iii

Chapter 11 describes the predefined procedures and functions.

Chapter 12 describes the compiler directives.

Appendices provide supplemental information about Pascal/VS.

PASCAL/VS SYNTAX DIAGRAMS

The syntax of Pascal/VS will be described with the aid of syntax diaQrams. These
diagrams are essentially 'road maps'~ by traversing the diagram in the direction of
the arrows you can identify every possible legal Pascal/VS program.

Within the syntax diagram, the names of other diagrams are printed in lower case and
surrounded by braces ('{}'). When you traverse the name of another diagram you can
consider it a subroutine call (or more precisely a 'subdiagram call'). The names of
reserved words are always in lower case. Special symbols (i .e. semicolons, commas,
operators etc) appear as they appear in a Pascal/VS program.

The diagram traversal starts at the upper left and completes with the arrow on the
right. Every horizontal line has an arrowhead to show the direction of the trav­
ersal on that line. The direction of traversal on the vertical lines can be deduced
by looking at the horizontal lines to which it connects. Dashed lines (i .e. ,----')
indicate constructs which are unique to Pascal/VS and are not found in standard
Pascal.

Identifiers may be classified according to how they are declared. For the sake of
clarity, a reference in the syntax diagram for lid} is further specified with a one
or two word description indicating how the identifier was declared. The form of the
reference is '{id:description}'. For example {id:type} references an identifier
declared as a type; {id:function} references an identifier declared as a function
name.

REVISION CODES

The convention used in this document is that all changes in the current version from
the previous edition are flagged with a vertical bar in the left margin.

Extensions to Pascal are marked with a plus sign in the margin.

iv Pascal/VS Reference Manual

J

J

L

TNL SN20-4446 (31 December 81) to SH20-6168-1

SUMMARY OF AMENDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

• A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at the
outermost nesting level of a module has been removed.

• Two new opti ons may be appl i ed to fi les when they are opened: UCASE and NOCC.

• Rules have been relaxed in passing fields of packed records by var to a routine.

• The "STACK" and "HEAP" run time options have been added to control the amount at
which the stack and heap are extended when an overflow occurs.

• The syntax of a "structured constant" which contains non-simple constituents has
been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

• Pascal/VS now supports single precision floating point (32 bit) as well as dou­
ble precision floating point (64 bit).

• Files may be opened for updating with the UPDATE procedure.

• Files may be opened for terminal input (TERMIN) and terminal output CTERMOUT) so
that I/O may take place directly to the user's terminal without going through
the DDNAME interface.

• The MAIN directive permits you to define a procedure that may be invoked from a
non-Pascal environment. A procedure that uses this directive is not reentrant.

• The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen­
trant.

• A new predefined type, STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the invo­
cation of NEW.

• A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

•
•
•

•
•
•
•
•

The maximum size of a string has been increased to 32767 characters_

The Pascal/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not modi­
fied.

Pascal/VS programs may contain source lines up to 100 characters in length.

Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the user's program.

Run time diagnostics have been improved.

Pascal/VS will flag extensions when the option "LANGLVLCSTD)" is used.

Summary of Amendments v

TNL SN204446 (31 December 81) to SH20-6168·1

•

•

A mechanism has been provided 50 that Pascal/VS routines may be called from oth­
er languages.

All record formats acceptable to QSAM are now supported by the Pascal/VS 1/0
facilities.

• A procedure or function may now be exited by means of the goto statement.

• You may nOL.J declare an array vari able where each element of the array is a fi Ie.

• You may define a file to be a field of a record structure.

• Files may now be allocated in the heap (as a dynamic variable) and accessed via a
pointer.

• You may
storage.

now defi ne a subrange of INTEGER whi ch is allocated to 3 bytes of
Control over signed or unsigned values is determined by the subrange.

• Variables may be declared in the outermost scope of a SEGMENT. These variables
are defined to overlay the variables in the outermost scope of the main program.

• The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

• The PDSOUT procedure opens a member of a library file (partitioned dataset) for
output.

• A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

• The CPAGE percent(%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

• The MAXlENGTH function returns the maximum length that a string variable can
assume.

• The %CHECK TRUNCATE option enables (or disables) the checking for truncation of
strings.

• The PASCALVS exec for invoking the compiler under CMS has been modified so that
the specification of the operands allows greater flexability.

• New compiler options have been added, namely: lINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

• The catalogued procedures for invoking Pascal/VS in as Batch have been simpli­
fied.

• The format of the output listing has been modified so that longer source lines
may be accomodated.

• Multiple debugger commands may be entered on
(;) as a separator.

single line by using a semicolon

• The format of the Pascal File Control Block has been modified.

• Support is now provided for ANSI and machine control characters on output files.

• Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

• The debugger now supports breakpoints at the end of a procedure or function.

• The Trace mode in the debugger provides information on when procedures are being
exited.

• The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

•
•

The Equate command of the debugger has been enhanced.

The debugger will print "uninitialized" when displaying a variable that has not
been assigned.

vi Pascal/VS Reference Manual

L

L

1.0 Introduction to Pascal/VS
1.1 Pascal Language Summary

1.1.1 Syntax
1.1. 2 Modules ..
1.1.3 Declarations
1.1.4 Data-Types
1.1.5 Parameters
1.1.6 Statements
1.1.7 Expressions
1.1.8 Operands ..
1.1.9 Special Symbols
1.1.10 Identifiers .
1.1.11 The Not Operator .
1.1.12 Multiplying Operators
1.1.13 Adding Operators
1.1.14 Relational Operators
1.1.15 Reserved Words
1.1.16 Predefined Constants
1.1.17 Predefined Types
1.1.18 Predefined Variables
1.1.19 Predefined Functions
1.1.20 Predefined Procedures
1.1.21 Y. Include Statements

2.0
2.1
2.2
2.3
2.4
2.5
2.6

The Base Vocabulary ••••
Identifiers . .
Lexical Scope of Identifiers
Reserved Words
Special Symbols
Comments
Constants .

+ 2.7 Structured Constants

3.0

4.0
4.1
4.2
4.3
4.4

+ 4.5
+ 4.6
+ 4.7

structure of a Module

Pascal/VS Declarations
The Label Declaration
The Const Declaration
The Type Declaration
The Var Declarati on .
The Static Declaration
The Def/Ref Declaration
The Value Declaration

5.0 Types ••••••••••••••••••
+ 5.1 A Note about Strings

+

+

5.2 Type Compat i bil i ty ..•••
5.2.1 Implicit Type Conversion
5.2.2 Same Types
5.2.3 Compatible Types ..
5.2.4 Assignment Compatible Types

5.3 The Enumerated Scalar
5.4 The Subrange Scalar
5.5 Predefined Scalar Types

5.5.1 The Type INTEGER
5.5.2 The Type CHAR
5.5.3 The Type BOOLEAN
5.5.4 The Type REAL
5.5.5 The Type SHORTREAL

5.6 The Array Type
5.6.1 Array Subscripting

5.7 The Record Type
5.7.1 Naming of a Field
5.7.2 Fixed Part
5.7.3 Variant Part
5.7.4 Packed Records
5.7.5 Offset Qualification of Fields

5.8 The Set Type ..•..
5.9 The File Type
5.10 Predefined Structure Types

5.10.1 The Type STRING

CONTENTS

1
1
1
2
2
3
3
4
5
5
6
6
7
7
7
8
8
8
8
9
9

10
11

13
13
13
15
16
17
18
20

21

23
23
24
25
26
27
28
29

31
31
31
31
32
32
32
34
35
36
36
38
39
40
41
42
42
44
44
45
45
46
46
48
50
51
51

Contents vii

+ 5.10.2 The Type ALFA
+ 5.10.3 The Type ALPHA

5.10.4 The Type TEXT
5.11 The Pointer Type
5.12 The Type STRINGPTR
5.13 Storage, Packing, and Alignment

6.0 Rout;n!!s ••••••••••••••
6.1 Routine Declaration
6.2 Routi ne Parameters

6.2.1 Pass by Value Parameters
6.2.2 Pass by Var Parameters

+ 6.2.3 Pass by Const Parameters
6.2.4 Formal Routine Parameters
6.2.5 Conformant String Parameters

I
+

I

6.3 Routine Composition
6.3.1 Internal Routines
6.3.2 FORWARD Routines
6.3.3 EXTERNAL Routines
6.3.4 FORTRAN Routines
6.3.5 MAIN Procedures .
6.3.6 REENTRANT Procedures
6.3.7 Examples of Routines

6.4 Function Results
6.5 Predefined Procedures and Functions

7.0 Varhbles •••••
7.1 Array Referencing
7.2 Field Referencing
7.3 Pointer Referencing
7.4 File Referencing

8.0
8.1

+ 8.2
8.3

+ 8.4
8.5

+ 8.6
I 8.7

9.0
+ 9.1

9.2
9.3
9.4

+ 9.5
9.6
9.7
9.8
9.9

+ 9.10
9.11
9.12

+ 9.13
9.14
9.15

10.0
10.1
10.2
10.3
10.4
10.5
10.6
10.7

+ 10.8
10.9
10.10
10.11
10.12
10.13
10.14
10.15
10.16

Expressions
Operators .
Constant Expressions
Boolean Expressions
Logical Expressions
Function Call
Scalar Conversions
Set Constructor

statem~nts •••••••••
The Assert Statement .
The Assignment Statement
The Case Statement .
The Compound Statement
The Continue Statement
The Empty Statement
The For Statement
The Goto statement
The If Statement

The Leave Statement
The Procedure Call
The Repeat Statement
The Return Statement
The Whi Ie Statement
The With Statement

I/O Facil i ti es
RESET Procedure
REWRITE Procedure
TERMIN Procedure
TERMOUT Procedure
PDSIN Procedure
PDSOUT Procedure
UPDATE Procedure
CLOSE Procedure
GET Procedure

PUT Procedure
SEEK Procedure
EOF Function
READ and READlH (TEXT Files)
READ (Non-TEXT Files)
WRITE and WRITELN (TEXT Files)
WRITE (Non-TEXT Files)

vi i i Pascal/VS Reference Manual

54
55
56
57
58
59

61
62
62
62
62
62
62
62
63
63
63
63
64
64
64
65
65
65

67
67
68
68
68

71
74
76
77
78
79
80
81

83
84
85
86
88
89
90
91
93
94
95
96
97
98
99

100

103
103
104
104
105
105
106
106
107
107
108
108
109
109
111
112
114

J

J

10.17 EOLN function 115
10.18 PAGE Procedure 115

+ 10.19 eOLS Function 116

11.0 Execution Library Facilities · . . · · · · · · · · · · 117
11.1 Memory Management Routines 118

+ 11.1.1 MARK Procedure 118
+ 11.1.2 RELEASE Procedure 118

11.1.3 NEW Procedure 119
11.1.4 DISPOSE Procedure 120

11.2 Data Movement Routines 121
11.2.1 PACK Procedure 121
11.2.2 UNPACK Procedure 121

11. 3 Data Access Routines 122
+ 11.3.1 LO~JEST Fundi on 122
+ 11.3.2 HIGHEST Function . . . · 122
+ 11.3.3 LBOUND Function 123
+ 11.3.4 HBOUND Function 123
+ 11.3.5 SIZEOF Funct ion 124

11.4 Conversion Routines 125
11.4.1 ORD Function 125
11.4.2 CHR Function · 125

+ 11.4.3 Scalar Conversion 126
+ 11.4.4 FLOAT Function 126

11.4.5 TRUNC Function 127
11.4.6 ROUND Function 127

+ 11.4.7 STR Function . · 128
11.5 Mathematical Routines 129

+ 11.5.1 MIN Function 129
+ 11.5.2 MAX Function 129

11.5.3 PRED Function 130
11.5.4 SUCC Function 130
11.5.5 ODD Function · · · · 131
11.5.6 ABS Function 131
11.5.7 SIN Function 132
11.5.8 COS Function 132
11.5.9 ARCTAN Function 133
11.5.10 EXP Function 133
11.5.11 LN Function 134
11.5.12 SQRT Function 134
11.5.13 SQR Function 135

+ 11.5.14 RANDOM Function 135
11.6 STRING Routines 136

+ 11.6.1 LENGTH Function 136
I 11.6.2 MAXLENGTH Function 136
+ 11.6.3 SUBSTR Function 137
+ 11.6.4 DELETE Function 137
+ 11.6.5 TRH1 Functi on 138
+ 11.6.6 LTR1M Function 138
+ 11.6.7 COMPRESS Function · · · · 139
+ 11.6.8 INDEX Function 139
+ 11.6.9 TOKEN Procedure 140

I 11.6.10 READSTR 140
11.6.11 J..JRITESTR 141

11.7 General Routines · · · · 142
+ 11.7.1 TRACE Procedure 142
+ 11.7.2 HAL T Procedure · · · 142

11.8 System Interface Routines 143
+ 11.8.1 DATETIME Procedure 143
+ 11.8.2 CLOCK Function 143
+ 11.8.3 PARMS Function 144
+ 11.8.4 RET CODE Procedure 144

+ 12.0 The % Feature · · . . · · · · · · 145
+ 12.1 The %INCLUDE Statement 146
+ 12.2 The %CHECK Statement 146
+ 12.3 The %PRINT Statement 146
+ 12.4 The %LIST Statement 146
+ 12.5 The %PAGE Statement · · · · 146
I 12.6 The %CPAGE Statement · 146
+ 12.7 The "TITLE Statement 146

L + 12.8 The "SKIP Statement 146

APPENDIXES 147 · · · · · . . · · . . · · · ·
Contents i x

+ A.O
+ A.l
+ A.2

The Space Type
The Space Declaration
Space Referencing

B.O Standard Identifiers in Pasca!/VS

C.O Syntax Diagrams

D.O Index to Syntax Diagrams

E.O Glossary

Index

x Pascal/VS Reference Manual

149
149
149

151 J
153

165

167

169

J

J

"The language Pascal was desi gned by
Professor Niklaus Wirth to satisfy two
principal aims:

•

•

to make available a language suit­
able for teaching programming as a
systematic discipline based on cer­
tal n fundamental concepts clearly
and naturally reflected by the lan­
guage.

to define a language whose implemen­
tations could be both reliable and
efficient on then available comput­
ers."

(Pascal Draft Proposal ISO/TC 97/SC 5
N595, January, 1981)

Pascal/VS is an extension to standard
Pascal. The purpose of extending Pascal
is to facilitate application program­
ming requirements. Among the extensions
are such features as separately compil­
able external routi nes, internal and
external static data, and varying length
character strings.

Pascal is of interest as a hi gh level
programming language for the following
reasons:
1.1 PASCAL LANGUAGE SUMMARY

•

•

•

•

•

•

•

•

1.0 INTRODUCTION TO PASCAL/VS

It provides constructs for defining
data structures in a clear manner.

It is suitable for applying struc­
tured programming techniques .

The language is relatively
machine-independent.

Its syntax and semantics allow
extensi ve error diagnosti cs duri ng
compilation.

A program wri tten in the language
can have extensive execution time
checks.

Its semantics allow efficient
object code to be generated.

Its syntax allows relatively easy
compilation.

The language is relatively well
known and is growing in popularity.

This section of the manual is meant to be a capsule summary of Pascal/VS. It should
serve as a brief outline to the language. The details are explained in the remainder
of th is document.

1.1. 1 Syntax

The syntax is described with an example-like format that summarizes the important
features of the item. The following rules are the conventions used.

11
[]

indicates that the item preceding this symbol may be repeated an
arbitrary number of times.

encloses items which are optional.

denote the standard square brackets of Pascal.

item-comma-list indicates that the item may be repeated, separating each occurrence
wi th a comma.

digit-list

binary-digits

hex-digits

id

label

directive

refers to a sequence of one or more digits ("0" .. "9").

refers to a sequence of one or more binary digits ("0" or "1").

refers to a sequence of one or more hexadecimal digits ("0" .. "9" or
"A" .. "F").

refers to an identifier.

refers to either an identifier or an integer number in the range
O •• 9999.

refers to anyone of: FORWARD, EXTERNAL, FORTRAN, MAIN, or
REEIHRANT.

Introduction to Pascal/VS 1

field-list

1.1. 2 Modules

program

SEGMENT

refers to the list of fields that compose the body of a record data
type.

is a self-contained and independently executable unit of code.

program id ! (id-comma-list) 1 ;
declaration ..•
compound-statement •

is a shell in which procedures and functions may be separately com­
piled.

SEGMENT i d ;
declaration ..••

1.1.3 Declarations

label is used to declare a label in a program, procedure or function.

const

type

val'

def

ref

static

value

label
label-comma-list

declares an identifier that becomes synonymous with a compile time
computable value.

const
id = constant-expression

! id = constant-expression 1· ..
declares an identifier which is a user-defined data type.

type
id = data-type

1 id = data-type

declares a local variable.

val"

1 ...

id-comma-list : data-type;
1 id-comma-list : data-type; 1 ...

declares a variable which is defined in one module and may be refer­
enced in other modules.

def
id-comma-list : data-type;

! id-comma-list : data-type; 1 ...

declares a variable which is defined in another module.

ref
id-comma-list : data-type;

! id-comma-list : data-type; 1 ...
declares a variable which persists for the entire execution of the
program.

static
id-comma-list

! id-comma-list
data-type ;
data-type ; 1 ...

assigns a value to a def or static variable at compile time.

value
variable .- constant-assignment-statement

! variable .- constant-assignment-statement 1· ..

2 Pascal/VS Reference Manual

J

procedure

function

defines a unit of a module which may be invoked as a statement.

procedure id 1 (parameter 1; parameterl···) 1
directive;

or
procedure id [(parameter 1; parameterl.·.) 1

declaration~ •.
compound-statement ;

defines a unit of a module which may be invoked and returns a value.

function id [(parameter 1; parameterl ...) 1 id
directive;

or
function id 1 (parameter 1; parameterl ...) 1 id

declaration •..
compound-statement ;

1.1.4 Data-Types

id is an identifier that was previously declared as a type.

enumeration

subrange

array

record

set

file

pointer

is a list of constants of a user-defined scalar data type.

(id-comma-list)

is a continuous range of a scalar type.

1 packed 1 constant .. constant-expression

is a data structure composed of a list of homogeneous elements.

1 packed 1 array [data-type] of data-type

is a data structure composed of a list of heterogeneous fields.

1 packed 1 record
1 id-comma-list : data-type; 1 ...
[c~se lid :] id of
- constant=comma-list (field-list);
1 constant-comma-list : (field-list 1 ... 1

end

is a collection of zero or more scalar values.

1 packed 1 set of data-type

is a sequence of data to be read or written by a Pascal program.

file of data-type

is a reference to a variable that is created by the programmer.

~ id

1.1.S Para~eters

value designates a pass-by-value parameter.

var

canst

id-comma-list : id

designates a pass-by-reference (read/write) parameter.

var id-comma-list : id

designates a pass-by-reference (read-only) parameter.

canst id-comma-list : id

Introduction to Pascal/VS 3

procedure

function

is the mechanism whereby a procedure may be passed to the called
procedure (function) and executed from there.

procedure id 1 (parameter 1; parameterl···) 1 ;
is the mechanism whereby a function may be passed to the called pro­
cedure (function) and executed from there.

function id 1 (parameter 1; parameterl ... 1 id

1.1.6 statements

Every statement may be preceded with one label:

1 label: 1 statement

assert

assignment

case

compound

continue

e~pty

for

goto

if

leave

tests a condition that should be true and if not causes a runtime
error to be produced.

assert bool-expression

assigns a value to a variable.

variable := expression

causes anyone of a list of statements to be executed based upon the
value of an expression.

case expression of
[constant-comma-list : statement
T otherwise
- statement 1 ; statement 1 ... 1

end

1· ..

is a series of statements enclosed within begin/end brackets.

begin
statement 1 ; statement 1 ...

end

resumes execution of the next iteration of the innermost loop. The
termination condition is tested to determine if the loop should con­
tinue.

continue

contains no executable code.

is a loop statement that modifies a control variable for each iter­
ation of the loop.

for variable := expression to expression do
statement

or
for variable .- expression down to expression do

statement

changes the flow of your program.

goto label

causes one of two statements to be executed based on the evaluation
of an expression.

if bool-expression then
statement

1 else
statement 1

terminates the execution of the innermost loop. Execution resumes
as if the loop termination condition were true.

4 Pascal/VS Reference Manual

J

J

J

call

repeat

return

while

with

leave

invokes a procedure. At the conclusion of the procedure. execution
continues at the next statement.

id 1 (expression-comma-list) 1

is a loop statement with the termination test occurring at the end
of the loop.

repeat
statement [; statement 1 ...

until bool-expression

terminates the executing procedure (function) and returns control
to the caller.

return

is a loop statement wi th the termi nati on test occurri ng at the
beginning of the loop.

while bool-expression do
statement

permi ts compl i cated references to fi elds wi thi n a record to be
treated as simple variables within a a statement.

with variable-comma-list do
statement

1.1.7 Expressions

An expression is composed of operands combined with operators. The operators have
the following precedence:

1.1.8 Operands

variable

constant

not operator (highest)
multiplying operators
adding operators
relational operators (lowest)

represents a unit of storage which may be referenced and altered.

simple variable: id
array: variable [expression
field: variable. id
pointer: variable a

represents a literal value.

INTEGER

REAL

BOOLEAN
CHAR
string

array

record

digit-list
, hex-digits 'X
, binary-digits 'B

digit-list. digit-list lE+/- digit-listl
, hex-digits 'XR

FALSE/TRUE
EBCDIC character in single quotes
EBCDIC characters in single quotes

, hex-digits 'XC
id (expression [: expression]

1 , expression 1: expressionl 1 ...
id expression 1, expressionl ...)

set-constructor refers to an operand that describes the values of a set.

expression [.. expression]
1 , expression 1 .. expression I I ... 1

Introduction to Pascal/VS 5

function-call refers to the invocation of a function.

id ! (expression-comma-list) 1

parenthesized-expression is used to override the normal precedence of operators.

(expression)

1.1.9 Special Symbols

symbol

+
-
* / -
I
&
&&

=
<
<=
>=
>
<> or --»
«
II
· -
· ,
:
;

· . ,
~ or ->
(
)
[or <.
] or .)
{ or OE
} or *)
1*
*/

1.1.10 Identifiers

meaning

addition and set union operator
subtraction and set difference operator
multiplication and set intersection operator
division operator, REAL results only
BOOLEAN not, one's complement on INTEGER

or set complement
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER
BOOLEAN xor operator, logical xor on INTEGER

and set exclusive union
equality operator
less than operator
less than or equal operator
greater than or equal operator
greater than operator
not equal operator
right logical shift on INTEGER
left logical shift on INTEGER
catenation operator
assignment symbol
period to end a module
field separator in a record
comma. used as a list separator
colon. used to specify a definition
semicolon, used as a statement separator
subrange notation
quote, used to begin and end string constants
pointer symbol
left parenthesis
right parenthesis
left square bracket
right square bracket
comment left brace (standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

Identifiers are composed of the letters "a" through HZ". the digits "0" through "9"
and the special characters h_" and "$". An identifier must begin with a letter or
"$" and must be unique in the first 16 positions. There is no distinction between
the an upper case letter and its lower case equivalent.

6 Pascal/VS Reference Manual

J

J

1.1.11 The Not Operator

operator operation operands result

~ (not) boolean not BOOLEAN BOOLEAN
~ (not) logical one's INTEGER INTEGER

complement
~ (not) complement set of T set of T

1.1.12 Multiplying Operators

operator operation operands result

* multiplication INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

/ real division INTEGER REAL
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

div integer division INTEGER INTEGER
mod modulo INTEGER INTEGER
& (and) boolean and BOOLEAN BOOLEAN
& (and) logical and INTEGER INTEGER

* set intersection s~t of t set of t
II string catenation STRING STRING
« logical left shi ft INTEGER INTEGER
» logical right INTEGER INTEGER

shi ft

1.1.13 Adding Operators

operator operation operands result

+ addition INTEGER INTEGER
SHORTREAL SHORTREAL
REAL REAL
mixed REAL

+ set union set of t set of t
- subtraction INTEGER INTEGER

SHORT REAL SHORTREAL
REAL REAL
mixed REAL

- set difference set of t set of t
I (or) boolean or BOOLEAN BOOLEAN
I (or) logical or HlTEGER INTEGER
&& (xor) boolean xor BOOLEAN BOOLEAN
&& (xor) logical xor INTEGER INTEGER
&& (xor) exclusive union set of t set of t

Introduction to Pascal/VS 7

1.1.14 Relational operators

operator operation

= compare equal

<> c-=) not equal

< less than
<= compare < or =
<= subset
> compare greater
>= compare > or =
>= superset
in set membership

1.1.lS Reserved Uords

and
array
~ss~rt
beg;n
case
const
continue
daf
div
do
downto
else

end
file
for
function
goto
if
in
label
leClve
mod
nil
not

1.1.16 Predefined Constants

ALFALEN length of type

ALPHALEN length of type

operands

any set. scalar. pointer
or string

any set, scalar, pointer
or string

scalar type or
scalar type or
set of t
scalar type or
scalar type or
set of t
t and set of

of
or
otherwise
packed
procedure
prcgrc:m
range
record
ref
repeat
return
set

ALFA, value is 8

t

ALPHA, value is 16

string
string

string
string

space
static
then
to
type
until
value
VClr
while
with
xor

FALSE constant of type BOOLEAN, FALSE < TRUE

MAXI NT maximum value of type INTEGER: 2147483647

MININT minimum va!ue of type INTEGER: -2147483648

TRUE constant of type BOOLEAN, TRUE> FALSE

1.1.17 Predefined Types

ALFA packed array[1 .. ALFALEN J of CHAR

ALPHA packed array[1 .. ALPHALEN] of CHAR

result

BOOLEAN

BOOLEAN

BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN
BOOLEAN

BOOLEAN data type composed of the values FALSE and TRUE

CHAR character data type

INTEGER integer data type

REAL floating point represented in a 64 bit value

8 Pasca!/VS Reference Manua!

J

J

L
SHORTREAL

STRINGPTR

TEXT

floating point represented in a 32 bit value

is a predefined type that points to a STRING whose maximum length is
determi ned when the STRING is allocated wi th NEW

fi Ie of CHAR

1.1.18 Predefined Variables

INPUT default input file

OUTPUT default output file

1.1.19 Predefined Functions

The following symbols represent parameters in the descriptions
of the predefined functions and procedures.

ABS(X)

ARCTAN(x)

CHRCn)

CLOCK

COLSCf)

COMPRESS(s)

COSCx)

a = an array variable
f = a file variable
n = a positive integer expression
p = pointer valued variable
s = a string expression
v = a variable
x = any arthimetic expression

computes the absolute value "x"
returns the arctangent of "x"

returns the EBCDIC character whose ordinal value is "n"

returns the number of micro-seconds of execution

returns current column of file "f"

replaces multiple blanks in "s" with one blank

returns the cosi ne of "x"

DELETECs,nl,n21 returns "s" with characters "n1" through "n2" removed

EOF(f)

EOLNCf)

EXPCx)

FLOAT(n)

HBOUtm (al. n1)

HIGHEST(xl

INDEX(sl,s2)

LBOUNOCa!.n!)

LENGTHCs)

LN(x)

LOWEST(x)

LTRIM(s)

MAX(x!,x1···)

MAXLENGTHCs)

tests file "f" for end-of-file condition

tests file "f" for end-of-line condition

computes the base of the natural log (e) raised to to the power "x"

converts "n" to a floating point value

determi nes the upper bound of array "a"

determi nes the maxi mum value the type of a scalar "x"

returns the location. if present. of "52" in "51"

determines the lower bound of array "a"

determines the current length of string Its"

returns the natural logari thm of the "x"

determines the minimum value the type of a scalar "x"

returns "s" with leading blanks removed

determines the maximum value of a list of scalar expressions

determines the maximum length of string "s"

Introduction to Pascal/VS 9

I1IN(xl.xl.·.)

OOO(n)

ORO(x)

PARI1S

PRED(x)

RANDOM(n)

ROUNO(x)

SIN(x)

SIZEOF(x)

SQRT(x)

SQR(x)

STR(a)

determines the minimum value of a list of scalar expressions

returns TRUE if integer "n" is odd

converts a scalar value "x" to an integer

returns the system dependent invocation parameters

obtains the predecessor of scalar expression "x"

returns a pseudo-random number. "n" is the seed value or zero

converts a floating point value to an integer value by rounding

returns the sine of "x"

determines the memory size of a variable or type

returns the square root of "x"

returns the square of "x"

converts array of characters "a" to a string

SUBSTR(s.nl.n2) returns the substring of "s" from "nl" to "n2"

SUCC(x) obtains the successor of scalar "x"

TRII1{s) returns "s" with trai ling blanks removed

TRUNC(x) converts floating point expression "x" to an integer by truncating

1.1.20 Predefined Procedures

CLOSE(f) closes a fi Ie

OATETIHE(al.a2) returns the current date in Hal" and time of day in "a2"

OISPOSE(p) deal locates a dynamic variable

GET(f) advances file pointer to the next element of input file "f"

HALT halts the programs execution

MARK(p) creates a new heap. "pH designates the heap

NE~(p.I.xl •••) allocates a dynamic variable from the most recent heap

PACK(a1,x.a2) copies array "al" starting at index "n" to packed array "a2"

PAGEI(f 11 sk ips to the top of the next page

PDSIN(f.s) opens fi Ie "f" for input. "5" designates the open options which must
specify the member name

POSOUT (f, s)

PUT(f)

opens file Iff" for output. "5" designates the open options which
must specify the member name

advances the file pointer to the next element of output file "f"

REAO(lf,lvl,vl •••) reads data from fi Ie "f" into variable "v"

READLN([f.lv[.vl •••) reads variable "v" and then skips to end-of-line of TEXT file
- - - -"f"

READSTR(s,vl,vl .••) reads data from string "5" into variable "v"

RELEASE(P)

RESET(fl,slJ

destroys one or more heaps, "p" desi gnates the last heap to be
destroyed

opens file "f" for input, "5" designates the optional open options

10 Pascal/VS Reference Manual

J

L

L

TNL SN204446 (31 December 81) to SH20~168-1

RETCODE(nl sets the system return code

REWRITE(fl,sll opens file "f" for output, "s" designates the optional open options

SEEK(f,nl

TERMIN(fl,sll

TERMOUT(fl,sll

TOKEN(s,v)

TRACE(fl

modifies the current position of file "f' so that next GET (or PUT)
reads (or writes) record number "n", where r~cord 1 is the first
record of the file

opens file "f"for input from the users terminal, "s" designates the
optional open opti ons

opens file "f"for output from the users terminal, " sot designates the
optional open options

extracts tokens from string "s" updating starting position "v"

writes the procedure and function invocation history to file Iff"

UNPACK(al,a2.n) copies packed array "a1" to array "a2" beginning at index "n"

UPDATE(fl,sl) opens file "f" for update, a PUT immediately following a GET of a
record of the file replaces that record, "s" designates the optional
open options

WRITE(lf.lxl,xl •••) writes the value of "x" to file "f"

WRITELN(lf.lxl,xl •••) writes the value of "x" and then writes an end-of-line to TEXT
fi Ie Iff"

WRITESTR(s,xl,xl •••) writes the value of "x" to string "s"

1.1.21 % Include stat~ments

%CHECK

%CPAGE n

%INCLUDE

%LIST ON/OFF

%MARGINS n m

%PAGE

%PRINT ON/OFF

%SKIP n

%TITLE

enables or disables execution time checking features.

skips to the next page if less than "n" lines remain on the current
page

includes source code from a library.

enables or disables the pseudo-assembler listing.

resets the left margin of the source program to "n" and the right
margi n to "m".

forces the source listing to start on a new page.

enables or disables the source listing.

inserts "n" blank lines into the source listing.

specifies a title for the listing.

Introduction to Pascal/VS 11

.j

2.0 THE BASE VOCABULARY

2.1 IDENTIFIERS

Syntax:

i d:

>

-->Uetterl

L
r--->{digit} >!---

>{letter} > >
--->{underscore}--> 1

where:
{letter} is ' A' , 'B' , ... , 'Z','a','b', ' z' or '$,
{digit} is ' 0 ' , , 1 ' , ... , , 9'
underscore i s , , -

Identifiers are names given to vari­
ables, data types, procedures, func­
tions, named constants and modules.

correct:

I
K9
New York
AMOUNT$

incorrect:

5K
NEW JERSEY

Valid and Invalid Identifiers

Pascal/VS permits identifiers of up to
16 characters in length. You may use
longer names but Pascal/VS will ignore
the portion of the name longer than 16
characters. You must assure identifiers
are unique within the first 16
positions.

There is no di st i nct i on between lower
and upper case letters within an identi­
fier name. For example, the names
'ALPHA', 'alpha', and 'Alpha' are equiv­
alent.

There is an implementation restrictions
on the naming of external variables and

external routines. You must make sure
that identifiers used as external names
are unique in the first 8 characters.

2.2 LEXICAL SCOPE OF IDENTIFIERS

The area of the module where a partic­
u lar i dent i fi er can be referenced is
called the lexical scope of the identi­
fier (or simply scope).

In general, scopes are dependent on the
structure of routine declarations.
Since routines may be nested within oth­
er routines, a lexical level is associ­
ated with each routine. In addition,
record definitions define a lexical
scope for the fi elds of the record.
Within a lexical level, each identifier
can be defi ned only once. A program
module ; s at level 0, rout; nes defi ned
w; thi n the module are at level 1; in
general, a routi ne defi ned in level i
would be at level (i+1). The following
diagram illustrates a nesting
structure.

The Base Vocabulary 13

program M (level 0)

procedure A (level 1)

procedure B (level 2)

type
R =

record
R 1 : •••
R2: •••

end;

I function C I
Clevel 3)

procedure D (level 2)

function X (level 1)

procedure Y (level 2)

procedure Z (level 2)

The scope of an identifier is the entire
routine (or module) in which it was
declared; this includes all routines
defined within the routine. The follow­
ing table references the preceding dia­
gram.

14 Pascal/VS Reference Manual

identifiers
declared in:

Module M
procedure A
procedure B
type R
function C
procedure D
function X
procedure Y
procedure Z

are accessible in:

M,A,B,C,D,X,Y,Z
A,B,C,D
B.C
8,C
C
D
X,Y,Z
Y
Z

If an identifier is declared in a rou­
tine whi ch is nested in the scope of
another identifier with the same name,
then the new identifier will be the one
recognized when its name appears in the
routine. The first identifier becomes
inaccessible in the routine. In other
words, the i dent i fi er declared at the
inner most level is the one accessi ble.

The scope of a field identifier defined
within a record definition is limited to
the record i tsel f. The scope of a
record may be accessed by either field
referencing (see "Field Referencing" on
page 68) or with the with-statement (see
"The With Statement" on page 100).

The Pascal/VS compiler effectively
inserts a prelude of declarations at the
beginning of every module it compiles.
These declarations consist of the prede­
fined types, constants, and routines.
The scope of the prelude encompasses the
entire module. You may re-declare any
identifier that is predefined if you
would like to use the name for another
purpose.

J

2.3 RESERVED WORDS

Reserved

and end
array file

+ assert for
begin function
case goto
canst if

+ continue in
+ def label

div + leave
do mod
downto nil
else not

note! those words marked by ,+ ' are not

Pascal/VS reserves the identifiers
shown above for expressing the syntax of
the language. These reserved words may
never be declared by you. Reserved
words must be separated from other
reserved words and identifiers by a spe-

Words

of + space
or + stntic

+ otherwise then
packed to
procedure type
progrnm until

+ rc1ngt! + value
record vnr

+ ref while
repeat with

+ return + xor
set

reserved in standard Pascal

cial symbol, a comment, or at least one
blank.

A lower case letter is treated as equiv­
alent to the correspond; ng upper case
letter in a reserved word.

The Base Vocabulary 15

+
+

+
+
+

+
+

2.4 SPECIAL SYMBOLS

symbol

+
-
lE
/

~

I
&
&&

=
<
<=
>=
>
<> or ~-

»
«
II
. -

,
:
;
.. ,
{ or ->

(
)
[or C.
] or .)
{ or (lE
} or lE)

I /lE
lE/

Special Symbols

meaning

addition and set union operator
subtraction and set difference operator
multiplication and set intersection operator
division operator, REAL result only

BOOLEAN not, one's complement on INTEGER or set complement
BOOLEAN or, logical or on INTEGER
BOOLEAN and, logical and on INTEGER
BOOLEAN xor operator, logical xor on INTEGER
and set exclusive union

equality operator
less than operator
less than or equal operator
greater than or equal operator
greater than operator
not equal operator

right logical shift on INTEGER
left logical shift on INTEGER
catenation operator

assignment symbol
period to end a module
field separator in a record
comma, used as a list separator

colon, used to specify a definition
semicolon, used as a statement separator
subrange notation
quote, used to begin and end string Constants
pointer symbol

left parenthesis
right parenthesis
left square bracket
right square bracket

comment left brace <standard)
comment right brace (standard)
comment left brace (alternate form)
comment right brace (alternate form)

Symbol Reserved Word
Speci al symbol s used by Pascal/VS are
listed above. Several special symbols
may also be written as a reserved word.
These symbols are shown in the following
table.

I
&
&&

not
or
and
xor

16 Pascal/VS Reference Manual

J

J

L
2.5 COMMENTS

Pascal/VS supports two forms of
comments: '{ ... }' and 'nc .. lV'. The
curved braces are the standard comment
symbol in Pascal. The symbols '(*' and
'*)' are considered by the compiler to
identical to left and right braces. The
form of comment using '/*' and '*/' is
considered to be distinct from the form
usi ng braces.

When the compiler encounters the symbol
'{', it will bypass all characters,
including end-of-line, until the symbol
'}' is encountered. Likewise, all
characters following '/*' will be
bypassed until the symbol ,*/' is detec­
ted. As a result, either form may be
used to enclose the other; for example
FtC • • {. •• } ••• 'IV is one comment. One use
of these two forms of comments is to use

one for ordi nary comments and use the
other to block out temporary sections of
code: a '/* ... */' comment could be used
to indicate a temporary piece of code,
or perhaps debugging statements.

A comment may be placed anywhere
module where a blank would
acceptable.

/*

in a
be

if A = 10 then { this statement is
for program
debugging }

WRITE('A IS EQUAL TO TEN');
*/

Example of a nested Comment

The Base Vocabulary 17

+
+
+
+

+
+

+
+

2.6 CONSTANTS

Syntax:

unsigned-integer:

---'I--'L-<==> __ {d_i_9_i_t_}::~.-------------------------rI----------------------->

r---> ' ---I~==~~~~~~~~_~~~~:~===J---> 'B --->1

L ___ > ' ---I~::~~~~~:~~~~:::::J---> 'x ------>~

real-number:

~---> ' ---I~==~~~~~=~~~~:~===J---> 'XR ----------------->1

L< >{digit} I I >. L< >{digit} I >1

E~ > E .
>T--~--->{dig;tJ--~----------

t=:=~ + ::::~j L< ____________ ~

>

unsigned-number:

~>{unsigned-integer}--->Tj-->
L--->{real-number} >

string:

--__ 1..----> ' l<---{character}<-=:J >, --------~I---------------------------->
L ___ > '

---I~==~~~~~=~~~~:~===J---> 'XC ------>~

unsigned-constant:

1 >{unS;gned-nUmberJ---.,-->

>{string} »>j
>{id:constantJ------

> nil

constant:

>{unsigned-constant}---------------------jr--------------------------------->
I > + j >{unsigned-numberJ---> L---> ____ >

where:
{binary-digit} is '0' or '1'.
{digit} is '0' through '9';
{hex-digit} is '0' through '9' and 'A' through 'F';
{character} is any EBCDIC character.

Constants can be di vi ded into several
categories according to the predefined
type to which they belong. An unsigned
number will conform to either a REAL or
an INTEGER. Strings will conform to the
type STRING or packed arr~y[l .. n] of
CHAR. In addition, if the string is one
character in length, it will conform to
the type CHAR.

18 Pascal/VS Reference Manual

If a single quote is to be used within a
string, then the quote must bE written
twice. Lower case and upper c~se let­
ters are di sti nct wi thi n stri ng con­
stants. String literals are not
permitted to extend past the end of line
of a source line. Longer strings can be
formed by catenating shorter strings.

J

J

J

Nil is of a special type which will con­
form to any pointer type. It represents
a unique pointer value which is not a
val i d address.

The constants TRUE and FALSE are prede­
fi ned in the language and are of the
standard type BOOLEAN.

+ Integer hexadecimal
+ enclosed in quotes and
+ 'X' or 'x'. Integer
+ are enclosed in quotes
+ a 'B' or 'b'.

constants are
suffixed with an
binary constants

and suffixed with

+
+ Hexadecimal constants may be used in any
+ context where an integer constant is
+ appropri ate. If you do not speci fy 8
+ hexadecimal digits (i .e. 4 bytes), Pas­
+ cal/VS assumes that the digits not sup­
+ plied are zeros on the left. For
+ example, 'F'x is the value 15.
+
+ Floating point hexadecimal constants
+ are enclosed in quotes and suffixed with
+ an 'XR' or 'xr'. Such constants may be
+ used in any context where a real con­
+ stant is appropri ate. If you do not
+ specify 16 hexadecimal digits (i .e. 8
+ bytes), Pascal/VS assumes that the dig­
+ its not supplied are zeros on the right.
+ For example, '4110'xr is the same as
+ '411000000000000'xr.
+
+ Stri ng hexadeci mal constants are
+ enclosed in quotes and suffixed with an
+ 'XC' or 'xc'. Such constants may be
+ used in any context where a string con­
+ stant is appropriate. There must be an

TNL SN204446 (31 December 81) to SH20-6168·1

+ even number of digits within a hexadeci­
+ mal string constant; that is, y~u must
+ specify each character fully that is to
+ be in the string.

The symbol 'E' or 'e' when used in a
real-number expresses 'ten to the power
of' .

+ Pascal/VS permi ts constant expressi ons
+ in places where the Pascal standard only
+ permits constants. Constant expres­
+ si ons are evaluated and replaced by a
+ single result at compile time. See
+ "Constant Expressions" on page 76 for a
+ description of constant expressions.

constant matches
o
-500
1.0
314159E-5
OEO
1. 0 E1 0
TRUE
'FF'X
, A '
'ABC'
'CIC2C2'xc
'4E800000FFFFFFFF'xr
'abc' , ,
, , , ,
, ,

'Thats"s all'

standard
INTEGER
INTEGER
REAL
REAL
REAL
REAL
BOOLEAN
INTEGER
CHAR
STRING
STRING
REAL
STRING
STRING
CHAR
CHAR
STRING
STRING

Examples of Constants

type

The Base Vocabulary 19

TNL SN204446 (31 December 81)to SH20-6168·1

+ 2.7
+
+
+
+
+
+

STRUCTURED CONSTANTS

Syntax:

+ structured-constant:
+
+
+
+
+

---1--->{record-structure}---J--->
--->{array-structure}--->

+ record-structure:
+
+
+
+
+

--->{id:type}---> (---T---1===~~:~~~~~~~=~~~~~==;J---T--->) -------------> L<____________ , < _____________ J

+
array-structure: +

+
+
+
+
+
+
+
+
+

--->~~~~:~~:~===~-~-===~]
[--T--T-->{constant-expr}--1==~-~-~~:~::~:~~~~=;J--T--T--->) ----------> I L ___ >J I

L<___________________ , < __________________________ J

+ repetition:
+
+ --->{constant-expr}---.------------->
+
+
+
+

note: must evaluate to positive integer.

+
+
I Structured constants are constants
+ whi ch are of a structured type. The
+ type of the constant is determi ned by'
+ the type identifier which is used in its
+ definition. These constants may be used
+ inconstant declarat ions, value dec la­
+ rations or in executable statements.
+ I There are two kinds of structured con­

stants: one is used for arrays and the
+ second is used to specify records.
+
+ Array constants are specified by a list
+ of constant expressions where each
+ expressi on defi nes one element of the
+ array. See "Constant Expressi ons" on
+ page 76 for a description
+ of constant expressions. You may omit
+ an element of the array within the list
+ in which case the value of that element
+ is not defined. Elements may be omitted
+ at the end of the array in whi ch case
+ the value of those elements are also not
+ defi ned. You may follow the constant
+ expression with a colon and a repetition
+ expression; this is used to specify that
+ the first constant expression is to be
+ repeated.

I The second kind of structured constant
+ is used to specify records. Record con­
+ stants are specified by a list of con­
+ stant expressions where each expression

defines one field of the record in the
order declared. You may omit a field of
the record within the list by specifying
nothing between two commas, in which

+ case the value of that fi eld is not
+ defined.
+

Values within the list may correspond to
fields of a re~ord's variant part. In
order for the compi ler to kno", whi ch
va r i ant i s be i ng referenced, the ta g
field value must be specified immediate­
ly pri or to those values whi ch are to be
assigned to the variant fields. (See the
examples below.) The tag field must be
specified even if it does not exist as a
field. (This occurs when only a tag type
is specified.)l

The type i denti fi er that begi ns a struc­
tured constant may be omi tted if the
structured constant is imbedded wi thi n
another structured constant. This sim­
plifies the syntax for structured con­
stants which are multidimensional

If the tag field is a "refer-back" type (see "Variant Part" on page 45) then
it will need to be specified twice in the list: once to be assigned a value,
and again to identify the variant being referenced.

20 Pascal/VS Reference Manual

J

L:
+
+
+
+
+
+
+
+

I
+
+
+
+
+

+
+
+
+

L+
+
+

arrays or records wi th structured
fields.

type
COMPLEX = record

VECTOR
CARRAY
TETRA

const

RE,IM: REAL
end;

= array[1 .. 7] of INTEGER;
= array[O .. 9] of COMPLEX;
= array[1 .. 3,1 ... 2,1 .. 4]

of INTEGER;

{ structured Constants }
THREEFOUR = COMPLEX(3.0,4.0);
VECTOR 1 = VECTOR(7,O:5,1);
VECTOR-2 = VECTOR(2,3,,4);
ZEROTETRA =

TETRA(
((0:4):2),
((0:4),(0:4)),
((0,0,0,0),(0,0,0,0)));

{the following two declarations
are equivalent }

VECTOR_3 = CARRAY(
COMPLEX(l.O,O.O),
COMPLEX(1.0,1.0):8,
COMPLEX(O.O,l.O»;

VECTOR_4 = CARRAY(
(1.0,0.0),
(1.0,1.0):8,
(0.0,1.0»;

Examples of structured Constants

TNL SN20-4446 (31 December 81) to SH20-6168-1

type
FORM = (FCHAR,FIHTEGER,FREAL,

FSTRING) ;
KONST =
record

SIZE: INTEGER;
case F: FORM of

FCHAR: (C: CHAR);
FINTEGER: (I: INTEGER);
FREAL: (R: REAl);
FSTRING: (

case BOOLEAN of
TRUE: (

LEN: packed 0 .. 32767;
A : ALPHA);

FALSE:(S: STRING(16»;
end

const
A = KONSTCl,FCHAR,'A');
PI = KONST(8,FREAL,3.14159);
BLANK =

KONSTCl,FSTRIHG,FALSE,' ');
STARS =

KOHST(4,FSTRI~G,TRUE,4,'****');

Structured constants with
variant record fields

The Base Vocabulary 20.1

TNL SN204446 (31 December 81) to SH20-6168-1

J

J

20.2 Pascal/VS Reference Manual

L

+
+
+
+
+

+
+
I
+
+
+
+
+
+
+

I
+
+
+
+
+
+
+
+
+

3.0 STRUCTURE OF A l10DULE

Syntax:

module:

l > {program-modulel----,J:-->
--->{segment-module1--->

program-module:

---> program --->{idl---T---> (< ______ >_{_i_d_1 _________ > __ > _________ >J l __________ ~~===_~_~~ _________ >J _

§ < >{declaration1--->]

> {compound-statementl---> -->
declaration:

---T---> {label-del 1------->

---->{constant-dcIJ---->

---->{type-dcI1-------->

---->{var-dcIJ---------->

--->{def-dcIJ--------->

--->{static-dcl}------>

t--->{VaIUe-dcll------->1

>{routine-dcl}----->~--->

segment-module:

---> SEGMENT --->{id}---> ; --->1

r<----------------------T----J

~--->{eonstant-dell---->1

i--->{t y pe-dcll-------->1

i--->{var-dell--------->1

i--->{def-dcll--------->1

i--->{static-dcll------>1

i--->{value-dcll------->1

i--->{routine-dclJ----->J
L ___ > • __ >

A module is an independently eompilable
un it of code. There are two types of
modules in Pascal/VS: the program module
and the segment module.

The program is the module whi ch ga ins
initial control when the compiled pro­
gram is invoked from the system loader.
It is effectively a procedure that the
loader invokes. The body of a program

Structure of a Module 21

module is identical to the body of a
procedure.

+ A segment module may be compi led as a
+ unit independent of the program module.
+ It consists of routines that are to be
+ linked into the final program prior to
+ execution. Data is passed to routines
+ through parameters and external vari­
+ abIes. Segments are useful in breaking
+ up large Pascal/VS programs into smaller
+ units.

The global automatic variables of the
program module may be accessed in a seg­
ment module. See "The Var Declaration"
on page 26 for an explanation.

The identifier follol.Jing the reserved
word "program" must be a unique external
name. The identifier following the word
"SEGMENT" may be the same as one of the
EXTERNAL routines in the segment or may
be a un i que external name. Thus, a
function called SIN could be in a seg­
ment called SIN. An external name is an
i dent i fi er for a program, segment, def
or ref variable, EXTERNAL routine, MAIN
procedure or a REENTRANT procedure.

Pascal/VS program

The optional
the program
Pascal/VS.
ignored.

identifier list following
identifier is not used by

The identifiers will be

A program is formed by linking a program
module with segment modules (if any) and
with the Pascal/VS execution library and
libraries that you may supply.

+ Pascal/VS allows declarations to be giv­
+ en in any order. This is an extension
+ to Pascal and is provided primarily to
+ permi t source that is INCLUDEd dur i ng
+ comp i lat i on to be independent of any
+ ordering already established in the mod­
+ ule. The standard ordering for
+ declarations is shown in the diagram for
+ declarations. (For a description of the
+ INCLUDE facility see "The XINCLUDE
+ Statement" on page 146.)

Every identifier must be predefined or
declared by you before it is used.
There is one exception to this rule: a
definition of a pointer may refer to an
identifier before it is declared. The
identifier must be declared later or a
compile-time' diagnostic will be
produced.

modules

~-s-e~g-m-e-n-t----m-o-d-u-I-e--s--~ program-module

program EXAMPLE;
VClr

I : INTEGER;
begin

for 1:=0 to 1000 do
if I mod 7 = 0 then

WRITELNe 1:5,

execution-library

, IS DIVISIBLE BY SEVEN')
end.

Example of a Program Module

22 Pascal/V5 Reference Manual

SEGMENT COSINE;
function COSINE

ex : REAL) REAL; EXTERNAL;
function COSINE;
va ... 5: REAL;
begin

S := SIN(X)i
COSINE := 5QRT(1.0 - 5*5)

end; .

Example of a Segment Module

J

J

J

+

Pascal/VS provides you with 10 types of
declarations:

• label

• const

• type

• var

4.1 THE LABEL DECLARATION

Syntax:

IClbel-dcl:

--> label

label:

[>{label~--.--->;
<--- , <

4.0 PASCAL/VS DECLARATIONS

+ • def
+
+ • ref
+
+ • static
+
+ • value

• procedure

• funct ion.

-->

[___ ~~~~}~~~=~=~~:=~=~~----->~]r--->

Note: the values of the unsigned integer must be in the subrange 0 .. 9999.

A label declaration is used to declare
labels which will appear in the routine
and will be referenced by a goto state­
ment within the routine. All labels
defi ned I"i thi n a rout i ne must be
declared in a label declaration within
the rout i ne.

A label ~ay be either an unsigned inte­
ger or an identifier. If the value is
an unsi gned integer it must be in the
range 0 to 9999.

label
10,
Label_A,
1 ,
2,
Error_exit;

A label Declaration

Pascal/VS Declarations 23

4.2 THE CONST DECLARATION

Syntax:

constant-del:

+ --> canst ---.-->{id}--> = -->{constant-expr}--> --,------------------>
l< _____________ -'

A constant declaration allows you to
+ assign identifiers that are to be used
+ as synonyms for constant expressi ons.

The type of a constant i dent i fi er is
determined by the type of the expression
in the declaration.

24 Pascal/VS Reference Manual

canst
BLANK
BLANKS

= , ';
=' , ;

FIFTY = 50;
A = FIFTY;
B = FIFTY * 10/(3+2);
C SQUARED = A*A + B*B;
ORO OF A = ORD('A');
PI - - = 3.14159265358;
MASK = '8000'X I '0400'X;
ALFAlEN = 8;
AlPHALEH = 16;
LETTERS = ['A' .. 'Z','a' .. 'z']
MAXREAL = '7FFFFFFFFFFFFFFF'xr;

Constant Declarations

J

J

L
4.3 THE TYPE DECLARATION

Syntax:

type-del:

-> type --~--->{id}---> = --->{type}---> ---,--------------------------->

L----------------'

A type declaration allows you to define
a data type and associate a name to that
type. Once declared, such a name may be
used in the same way as a predefi ned
type name.

type

{ all of the following types }
{ are predefined in Pascal/VS }

INTEGER = MININT .. MAXINT;
BOOLEAN = (FALSE, TRUE);
ALFA = packed array[l .. ALFALENJ

of CHAR;
ALPHA = p~cked array[l .. ALPHALENl

of CHAR;
TEXT = file of CHAR;

Type Declarations

Pascal/VS Declarations 25

4.4 THE VAR DECLARATION

Syntax:

var-dcl:

l L< ___ >{!d~---~--> --->{typel---> --~------------------>

<--~

--> va ...

The var declaration is used to declare
automatic variables. Automatic vari­
ables are allocated when the routine is
invoked, and are de-allocated when the
correspondi ng return is made. If the
routine is invoked a second time, before
an initial invocation completes (a
recursive call), the local automatic
variables will be allocated again in a
stack-like manner. The variables allo­
cated for the fi rst i nvocati on become
i naccessi ble unt i I the recursi ve call
completes.

Commas are used in the declarat i on to
separate two or more identifiers that
are bei ng declared of the same type.
Th is is a shorthand notat i on for two
separate declarations.

val'
I
SYSIN
X,

INTEGER;
TEXT;

Y,
Z
CARD

: REAL;

record
RANK
SUIT

end;

1. .13;
(SPADE,HEART,DIAMOND,CLUB)

Example of a Var Declaration

Variables which are to be accessed
across modules should be declared as dgf
variables (see "The Def/Ref
Declaration" on page 28), but if
reentrancy is required, then a mechanism
is required that does not rely on static
storage.

The global automati c vari abIes of the
ma in program l may be accessed from a
segment module. The storage for auto­
matic variables declared in the outer­
most level of a segment are mapped
directly on top of the main program
global variables. Therefore, to access
the main program globals, a segment mod­
ule must have an identical copy of the
mai n program's vari able declarati ons.
Thi s mechani sm is not as safe 2 and as
conveni ent as usi ng def variables.

If the variables of the main program are
to be accessable across modules then the
%INCLUDE facility should be used so that
identical copies of the variable's dec­
larations can be included in all
modules. (See "The %INCLUDE Statement"
on page 146).

program MAIN;
val'

I
X,
Y
J

ItHEGER;

REAL;
INTEGER;

{remainder of program module}

SEGMENT SEG;
val'

I INTEGER;
X,
Y REAL;
J INTEGER;

{remainder of segment module}

Example of a Var Declarations
Shared between Programs and Segments

1 That is, those variables declared with the va ... construct in the outermost
nesting level of the main program.

2 That is, unpredictable errors can occur when the variables declared in a
segment do not match those in the associated main program. The compiler has
no way of checking the integrity.

26 Pascal/VS Refer~nce Manual

J

J

+ 4.5 THE STATIC DECLARATION
+
+
+
+ Syntax:
+
+
+ static-dcl:
+

TNL SN204446 (31 December 81) to SH20~168-1

+
+
+
+
+

---> static ---T---l--->{idJ---r---> : --->{typel---> ; ---T~-------------->
<--- , ----

I I L< __ J

+
+
+
+ The static declaration is used to
+ declare static variables. The variables
+ declared in this way are allocated prior
+ to program execution and exist for the
+ life of the program's execution.
+
+ Static variables can be referenced
+ according to the lexical scoping rules_
+ Two static variables in different scopes
+ are different variables even though they
+ have the same name.
+

+ Static variables may be initialized at
+ compile-time by the use of a value dec­
+ laration.
+ I Programs which modify static variables

are not reentrant.

+
+
+ static
+ SYSPRIHT
+ X,y:

TEXT;
REAL;

+ Data in static variables that are local +
+ to a routine will be preserved over sep- +
+ arate invocations of the routine. Such +
+ a routine called recursively will access +
+ the same instance of each static vari-

Example of a Static Declaration

+ able.

Pascal/VS Declarations 27

TNL SN20-4446 (31 December 81) to SH20~168-1

+ 4.6
+

THE DEF/REF DECLARATION

+
+
+ Syntax:
+
+
+ def-dcl:
+
+ ---1---> def
+ ---> ref

----J---T---1--->{id}---J---> : --->{type)---> i ---T--------->
---> <--- , ----

+ I I
+ L< _______ ~----------------------------------J
+
+
+
+
+ The def/ref declarat ions are used to
+ declare external variables. External
+ variables are allocated prior to exe­
+ cut i on and can be accessed from more
+ than one module. All identifiers that
+ are to be used as external names must be
+ unique in the first eight characters.

+ same storage; however, the variables X
+ declared in segment P and procedure D
+ each refer to storage that is separate
+ from the external variable X.
+

+

+ Def variables may be initialized at com­
+ pile-time by the use of a value declara­
+ tion.
+ + If an external variable with a partic­

+ ular name is declared in several
+ modules, a single common storage
+ location will be associated with each
+ such vari able. An· external vari able
+ must be declared with identical types in
+ each module; the programmer is responsi­
+ ble for assuring that the types are the

I Programs which modify def, ref, or stat­
i c vari abIes are not reentrant.

+
+
+
+

+ same. +
+ +
+ The def declaration specifies that the +
+ program loader is responsible for gener- +
+ ating the common storage for the vari- +
+ able. The ref declaration specifies +
+ that storage for the variable is defined +
+ in another module (or in the runtimE! +
+ env ironment) . Ref declared vari abIes +
+ will remain unresolved until the encom- +
+ passing module is compiled and linked +
+ with a module in which the variable is +
+ declared as a def variable or defined in +
+ a non-Pascal CSECT or in an assembly +
+ language COM. The expected use of ref +
+ vari abIes is to access external data +
+ declared in non-Pascal/VS programs such +
+ as those wri tten in assembly language. +
+ +
+ A def or ref vari able may be declared +
+ local to a routine; the same scope rules +
+ apply as for any other declared identi- +
+ fier. However, if the name of the vari- +
+ able is declared in another scope (even +
+ in another module) as a def or ref vari- +
+ able, both occurrences of the variable +
+ will reference the same storage. +
+ +
+ In the following example, the variable X +
+ in procedures A, B, and C references the +

28 Pascal/VS Reference Manual

SEGMENT Mi
procedure A;

def X: REAli { same as X in B }
begin

end;

procedure Bi
def X: REAL; { same as X in A }
begin

end; .

SEGMENT Pi
static X: REAli{ local to P }
procedure c;

ref X: REALi { same as X in A,B}
begin

end;

procedure Di
var X: REAL; { local to D }
begin

end; .

Examples of Def and Ref Declarations

J

L

+ 4.7 THE VALUE DECLARATION
+
+
+
+ Syntax:
+
+
+ value-del:

value-assignment:

TNL SN204446 (31 December 81) to SH20-6168-1

+
+
+
+
+
+
+
+
+
+

--->{variable}---> := ---1--->{constant-expression}----J----~-------------->
--->{structured-constant}--->

+ note: If the variable contains subscripts, the subscripts are limited
+ to constant expressions.
+
+
+
+
+ The value declaration is used to specify
+ an initial value for static and def var­
+ iables. The declaration is composed of
+ ali st of value-assi gnment statements
+ separated by semicolons. The assignment
+ statements in a value declaration are of
+ the same form as the assignment state­
+ ments in the body of a rout i ne except
+ that all subscripts and expressions must
+ be able to be evaluated at compile time.
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

type
COMPLEX = record

RE,IM: REAL
end;

VECTOR = array[1 .. 7] of INTEGER;

static
C: COMPLEX;
V: VECTOR;
VI: VECTOR;

def
I INTEGER;
Q array[1 .. 10] of COMPLEX;

{ the followi ng assignments wi 11
{ take place at compile time
value

C · - COMPLEX(3.0,4.0);
V · - VECTOR(1,0:5,7);
VI · - VECTOR(",4);
V[2] · - 2;
V[3] · - 3*4-1;
I · - 0;
Q[ll.RE · - 3.1415926 / 2;
Q[1J.IM · - 1.414;

}
}

Example of a Value Declaration

+ If a def variable is initialized with a
+ value declaration in one module, you may
+ not use a value declaration on that var­
+ iable in another module. The compiler
+ will not check this violation, however a
+ di agnost i c wi 11 be generated when you
+ combine the modules into a single load
+ module by the system loader.
+
+
+

I
+
+
+
+
+
+
+
I
+
+
+
+
+

type
CUBE = array[l. .10,1. .10,1. .10]

of REAL;

static
BLOCK : CUBE:

{ the following assignments will}
{ take place at compile time }
value

BLOCK
CUBE(((0.0:10):10):10);

Example of Intializing
a 3 Dimensional Array

Pascal/VS Declarations 29

L'
Syntax:

~

>{id:type}

--->{enumerated-scalar-type}

--->{subrange-scalar-type}

--->{array-type}

--->{record-type}

1---> {set-type}

I--->{file-type}

L--->{pointer-type}

A data type determines the kind of val­
ues that a vari able of that type can
assume. Pascal/VS allows you to define
new data types with the type
declaration. The data type mechanism is
a very important part of Pascal/VS.
With it you can describe your data with
great clarity.

There are several mechanisms that can be
used to defi ne a type; each mechani sm
allows the new data type to have certain
properties. All data types can be clas­
sified as either scalar, pointer, or
structured.

You define the data type of a variable
when the variable is declared. A previ­
ous type declaration allows an identifi­
er to be associated with that type. Such
an identifier can be used wherever a
type definition is needed: in a variable
declaration (var, static, def, or ref),
as a parameter, in a procedure or func­
tion. in a field declaration within a
record definition, or in another type
declaration.

+ Sol A NOTE ABOUT STRINGS
+
+

Standard Pascal defines the term
"string" as a variable or constant which
has an associated type of
"p~cked array[1 .. n] of CHAR", where n is
a positive integer constant.

Pascal/VS supports varying length
strings; that is. strings which have
lengths that vary at execution time. A
vari able may be declared as a varyi ng
length string with the predefined type
STRING (see "The Type STRING" on page
51).

500 TYPES

>

>

>

>

>

>

>

> >

Throughout this manual the term "string"
shall refer to an object of the prede­
fined type STRING.

502 TYPE COMPATIBILITY

Pascal/VS supports strong typing of
data. The strong typing permits
Pascal/VS to check the validity of many
operations at compile time; this helps
to produce reI i able programs at exe­
cution time. Strong typing puts strict
rules on what data types are ccnsidered
to be the same. These rules, called
type compatibility, requires you to
carefully declare data.

50201 Implicit Type Conversion

In general, Pascal/VS does not perform
implicit type conversions on data. The
only implicit conversions that
Pascal/VS permits are:

1. An INTEGER wi 11 be converted to a
REAL (SHORTREAl) when one operand of
a binary operation is an INTEGER and
the other is a REAL (SHORTREAL).

2. An INTEGER wi 11 be converted to a
REAL (SHORTREAL) when assigning an
INTEGER to a REAL (SHORTREAL) vari­
able.

3. An INTEGER wi 11 be converted to a
REAL if it is used in a floating
point divide operation ('/').

Types 31

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

4. An INTEGER wi 11 be converted to a
REAL (SHORTREAl) if it is passed by
value or passed by const to a param­
eter requiring a REAL (SHORTREAU
value.

5. A SHORTREAl will be converted to a

5.2.3 Compatible Types

Operations can be performed between two
values that are of compatibte tvpes.
Two types are said to be compatible if:

REAL when one operand of a bi nary • the types are the same;
operat ion is a SHORTREAL and the
other is a REAL. • one type is a subrange of the other

or they are both subranges of the
same type; 6. A SHORTREAL will be converted to a

REAL when assigning a SHORTREAL to a
REAL variable. • both types are stri ngs;

7. A SHORTREAL will be converted to a +. one value is a stri ng 1 i teral and
the other is a 'packed array[l .. n]
of CHAR';

8.

9.

REAL if it is passed by value or +
passed by const to a parameter +
requiring a REAL value.

A stri ng wi 11 be converted to a
'packed arraytl. .n] of CHAR' on
assignment. The string will be pad­
ded with blanks on the right if it
is shorter than the array to which
it is being assigned. Truncation
will raise a runtime error if check­
ing is enabled.

A stri ng bei ng passed by value or
passed by const to a formal parame­
ter that requires a
'packed array[l .. n] of CHAR' will
be converted. The string will be
padded with blanks on the right if
it is shorter than the array to
which it is being passed. Trun­
cation will raise a runtime error if
checking is enabled.

5.2.2 Same Types

Two variables are said to be of the same
~ if the declaration of the
variables:

• refer to the same type identifier;

• or, refer to different type identi­
fi ers whi ch have been de'fi ned as
equivalent by a type definition of
the form:

type T1 = T2

32 Pascal/VS Reference Manual

•

•

•

one value is a string literal of one
character and the other is a CHAR;

they are set types with compatible
base types;

or, they are both
'packed array[l .. n] of CHAR' with
the same number of elements.

Furthermore, any object whi ch is of a
set type is compatible with the empty
set. And, any object which is a pointer
type is compat i ble wi th the value ni 1.

5.2.4 Assignment Compat;ble Types

A value may be assigned to a variable if
the types are gp5ignment compatible. An
expression E is said to be assignment
compatible with variable V if:

•

•

•

•

the types are same type and neither
is a fi Ie type;

V is of type REAL and E is compat­
ible with type INTEGER;

V is a compatible subrange of E and
the value to be assigned is within
the allowable subrange of V;

V and E have compat; ble set types
and all members of E are permissible
members of V; or,

• V is a 'packed array[l .• n] of CHAR'
and E is a string.

J

type

X = array[1 .• 10] of
INTEGER;

DAYS = (MON, TUES, WED, THURS,
FRI, SAT, SUN);

WEEKDAY = MON .. FRI;

var

A array[1. .10
INTEGER;

8 array[1. .10
INTEGER;

C,
D array[1. .10

CHAR;
E : X;
F : X;
WI: DAYS;
W2: WEEKDAY

is compatible
with

A A
B B
C C, D
D D, C
E E, F
F F, E
WI WI, W2
W2 W2, WI

] of

] of

] of

Examples of Compatibility

Types 33

5.3 THE ENUMERATED SCALAR

Syntax:

enumerated-scalar-type:

--> ([> {i d} -==:I---,r--->) --->
<-- , <

An enumerated scalar is formed by list­
ing each value that is permitted for a
vari able of thi s type. Each value is an
identifier which is treated as a
self-defining constant. This allows a
mean i ngful name to be associ ated wi th
each value of a variable of the type.

type
DAYS

MONTHS

var
SHAPE

REC

MONTH

= (MON, TUES, WED, THURS,
FRI, SAT, SUN) ;

= (JAN, FEB,
MAY, JUN,
SEP, OCT,

MAR, APR,
JUL, AUG,
NOV, DEC);

(TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

record
SUIT: (SPADE, HEART,

DIAMOND, CLUB);
~,JEEK: DAYS

end;

~'ONTHS ;

Enumerated Scalars

An enumerated scalar type definition
declares the identifiers in the enumer­
at ion list as constants of the scalar

34 Pascal/VS Reference Manual

+
+

+
+

type being defined. The lexical scope
of the newly defi ned constants is the
same as that of any other identifier
declared explicitly at the same lexical
level.

These constants are ordered such that
the first value is less than the second,
the second less than the thi rd and so
forth. In the first example, MON < TUES
< WED < ••• < SUN. There is no value
less than the first or greater than the
last.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Function Page
ORO 125
MAX 129
MIN 129
PRED 130
SUCC 130
LOWEST 122
HIGHEST 122

Notes:

1. Two enumerated scalar type defi­
nitions must not have any elements
of the same name in the same lexical
scope.

2. The standard type BOOLEAN is defined
as (FALSE, TRUE).

J I

+

+

+
+

+
+

TNL SN204446 (31 December 81) to SH20-6168-1

5.4 THE SUBRAHGE SCALAR

Syntax:

subrange-scalar-type:

t~::~-~~~~~~_:::~l
>{constant}---> .. --->{constant-expr}----------------------~I------>

~---> range --->{constant-expr}---> .. --->{constant-exprl--->J

The subrange type is a subset of consec­
uti ve values of a previ ously defi ned
scalar type. Any operation which is
permi ssi ble on a scalar type is also
permissible on any sub range of it.

A sub range is defined by specifying the
minimum and maximum values that will be
permi Hed for data declared wi th that
type. For 5ubranges that are packed,
Pascal/VS will assign the smallest num­
ber of bytes requ i red to represent a
value of that type.

If the reserved word range is used in
the subrange def in it i on I then both the
mInImum and maximum values may be any
expression that can be computed at com­
pi Ie time. If the range prefix is not
employed then the minimum value of the
range must be a simple constant.

The following predefined functions
operate on expressions of a scalar type
(see the indicated section for more
details):

Function Page
ORD 126
MAX 130
MIN 130
PRED 131
SUCC 131
LOWEST 123
HIGHEST 123

Notes:

1. A subrange of the standard type REAL
is not permitted.

2. The number of values in a subrange
of type CHAR is determi ned by the
collating sequence of the EBCDIC
character set.

3. The lower bound of a subrange defi­
ni ti on that is not prefi xed wi th

'range' must be a simple constant
instead of a generalized constant
expression.

canst
SIZE

type
DAYS

MONTHS

UPPER CASE
ONE HUNDRED
CODES

INDEX

var
WORK DAY
SUMnER
sr1ALLINT
YEAR

=

=
=

=
=
=
=

1000;

(SU, MO, TU, WE,
TH, FR, SA);

(JAN, FEB, MAR, APR,
MAY, JUN, JUL, AUG,
SEP, OCT, NOV, DEC) ;

, A ' .. 'Z' ;
0 .. 99;

range
CHR(0) .. CHR(255);

p~cked 1 .. SIZE+1;

MO .. FR;
JUN .. AUG;
packed 0 .. 255;
1900 .. 2000;

Sub range Scalars

The following example illustrates that
two subrange types may be defined over
the same base type. Operat ions are per­
mitted between these two variables
because they have the same base type.

var
NEG
POS

: MININT .. -1;
: 1 .. MAXINIT;

Subranges with the Same Base Type

Types 35

TNL SN204446 (31 December 81) to SH20-6168·1

+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+
I

5.5 PREDEFINED SCALAR TYPES

5.5.1 The Type INTEGER

The following table describes the oper­
ations and predefined functions that

apply to values which are the standard
type INTEGER.

operation

+
+

* I

div
mod

=
<> or -­
<
<=
>=
>

I
&
&&
«

»

CHR(x)
PREO(x)
SUCC(x)
OOO(x)
ABS(x)
SQR(x)
FLOA T<x)
MIN()
MAX()
LOWEST<x)

HIGHESHx)

SIZEOFCx)

form

unary
binary
unary
binary
binary
binary

binary
binary

binary
binary
binary
binary
binary
binary

unary
binary
binary
binary
binary

binary

function
function
function
function
function
function
function
function
function
function

function

function

INTEGER

description

returns the unchanged result of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
converts the operands to REAL and produces

the REAL quotient
forms the integer quotient of the operands
forms the integer modulus of the operands

(same as remainder if the arguments are positive)

compares for equality
compares for inequality
compares for less than
compares for less than or equal to
compares for greater than or equal to
compares for greater than

returns one's complement on the operand
returns 'logical or' on the operands
returns 'logical and' on the operands
returns 'logical xor' on the operands
returns the left operand value shifted

left by the right operand value
returns the left operand value shifted

right by the right operand value

returns a CHAR whose EBCDIC representation is x
returns x-I
returns x+1
returns TRUE if x is odd and FALSE otherwise
returns the absolute value of x
returns the square of x
returns a REAL whose value is x
returns the minimum value of two or more operands
returns the maximum value of two or more operands
returns MININT or the minimum value of the range

if x is a sub range of INTEGER
returns MAXINT or the maximum value of the range

if x is a subrange of INTEGER
returns the number of ~ytes required for a value

of the type of x, which is always 1, 2, 3, or 4

The type INTEGER is provided as a
pre-defined type in Pascal/VS. This
type represents the subset of whole num­
bers as defined below:

whose value is 2147483647. That is, the
predefi ned type INTEGER represents 32
bit values in 2's complement notation.

type
INTEGER = MININT .. MAXINTi

where MININT is a predefi ned INTEGER
constant whose value is -2147483648 and
MAXINT is a predefined INTEGER constant

36 Pascal/VS Reference Manual

Type definitions representing integer
subranges may be prefixed with the
reserved word "packed".' For vari abIes
declared wi th such a type, Pascal/VS
will assign the smallest number of bytes
requi red to represent a value of that
type. The following table defines the

J

number of bytes required for different
ranges of integers. For ranges other
than those 1 i sted, use the fi rst range
that encloses the desired range. Given
a type definition T as:

type T = packed i .. j;

Range of Size in Alignment
i .. j bytes

o .. 255 1 BYTE

-128 .. 127 1 BYTE

-32768 .. 32767 2 HALFWORD

O .. 65535 2 HALFWORD

-8388608 .. 8388607 3 BYTE

O .. 16777215 3 BYTE

otherwise 4 FULLWORD

TNL SN204446 (31 December 81) to SH20-6168-1

Notes:

1. The operations of div and mod are
defi ned as:

A div B = TRUNCCA/B), B<>O

A mod B = A-B*CA div B), A>=O,B>O
A mod B = B-absCA) mod B, A<O,B>O

B=O when doing a div operation or
B<=O when doing a mod operation
is defined as an error and wi 11
cause a runt i me error message to
be produced.

2. The followi ng operators perform
logical operations:

« shift left logical
» shift right logical

l' s complement
I logi cal i :1clusi ve or
& logi cal and
&& log; cal exclusi ve or

The operands are treated as unsi gned
strings of binary digits. See "Logical
Expressions" on page 78 for more details
on logical expressions.

Types 37

TNL SN20-4446 (31 December 81) to SH20-6168·1

+
+
+
+
+
+
+
+
+

5.5.2 The Type CHAR

The following table describes the oper­
ations and predefined functions that
apply to the standard type CHAR.

operation form description

= binary compares for
<> or ~- binary compares for
< binary compares for

CHAR

equality
inequality
left less than right

<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right

ORD(x) function converts operand to an INTEGER based on ordering
sequence of underlying character set.

PRED(x) function

SUCC(x) function

STR(x) function
MIIH) function
MAX() function
LOWESTex) function

returns the preceding character
in collating sequence

returns the succeeding character
in collating sequence

converts the operand to a
returns the minimum value
returns the maximum value
returns the minimum value

character x

STRING
of two
of two
of the

or more operands
or more operands
range of the

HIGHESTex) function returns the maximum value of the range of the
character x

SIZEOF(x) function returns the number of bytes required for a value
of the type of a CHAR. which is always 1

CHAR is a scalar type that consists of
all of the values of the EBCDIC charac­
ter set. Variables of this type occupy
one byte of memory and will be aligned
on a byte boundary.

A single-character string constant will
be regarded as a CHAR constant if the
context so di ctates. For example, the
assi gnment statement shown below sets

38 Pascal/VS Reference Manual

vari able C to the EBCDIC code for the
letter A.

val'" C: CHAR;
begin

C := 'A';

end

J

+

+
+
+
+
+
+

TNL SN20-4446 (31 December 81) to SH20-6168-1

5.5.3 The Tvpe BOOLEAN

The following table describes the oper­
ations and predefined functions that
apply to the standard type BOOLEAN.

BOOLEAN

operation form description

~ unary returns TRUE if the operand is FALSE,
otherwise it returns FALSE

& binary returns TRUE if both operands are TRUE
I binary returns TRUE if either operand is TRUE
&& binary returns TRUE if either, but not both operands are TRUE

= binary compares for equality
<> or ~- binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right

ORD(x) function returns 0 if x is FALSE and 1 if x is TRUE
MHH) function returns TRUE if all operands are TRUE
MAX() function returns FALSE if all oporands are FALSE
LOWEST(x) function returns the FALSE by definition
HIGHEST(x) function returns the TRUE by definition
SIZEOF(x) function returns the number of bytes required for a value

of the type of a BOOLEAN, which is always 1

Binary Operations on BOOLEAN

FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE Name

= TRUE FALSE FALSE
<> FALSE TRUE TRUE
< FALSE TRUE FALSE
<= TRUE TRUE FALSE
>= TRUE FALSE TRUE
> FALSE FALSE TRUE
& FALSE FALSE FALSE
I FALSE TRUE TRUE
&& FALSE TRUE TRUE

The type BOOLEAN is de~ined as a scalar
whose values are FALSE and TRUE as
though declared with the following type
declaration:

type
BOOLEAN=(FALSE,TRUE);

Variables of this type will occupy one
byte of memory and wi 11 al i gned on a
byte boundary. The relational operators

TRUE Equivalence
FALSE Exclusive Or
FALSE
TRUE Implication
TRUE
FALSE
TRUE And
TRUE Inclusive Or
FALSE Exclusive Or

form valid boolean functions as shown in
the table of binary operations.

Pasco!/VS will optimize the evaluation
of BOOLEAN expressions involving '&'
(and) and 'I' (or) such that tl,e rig:lt
operand expression will not be evaluated
if the result of the operat i on can be
determined by evaluating the left oper­
and. For more details see "Boolean
Expressions" on page 77.

Types 39

TNL SN204446 (31 December 81) to SH20-6168-1

+
+
+
+

5.5.4 The Type REAL

The following table describes the oper­
at ions and predefi ned funct ions that
apply to the standard type REAL.

REAL
~-------------r-----------r--

operation

+
+
-
-
* /

=
<> or -=
<
<=
>=
>

TRUNC(x)
ROUND(x)
ABS(x)
SIN(x)
COS(x)
ARCTAN(x)
LN(x)
EXP(x)
SQRHx)
SQR(x)
MIN()

MAX()

SIZEOF(x)

form

unary
binary
unary
binary
binary
binary

binary
binary
binary
binary
binary
binary

function
function
function
function
function
function
function
function
function
function
function
function
function

description

returns the value of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
forms the REAL quotient of the operands

compares for equality
compares for inequality
compares for left less than right
compares for left le=s than or equal to right
compares for left gre~ter than or equal to right
compares for left greater than right

returns the operand value truncated to an INTEGER
returns the operand vclue rounded to an INTEGER
returns the absolute value of the operand
returns the trigonometric sine of x (in radians)
returns the trigonometric cosine of x (in radians)
returns (in radians) the arc tangent of x
returns the natural logarithm of x
returns natural log base raised to the x power
returns square root of x
returns the square of x
returns the minimum value of the operands
returns the maximum value of the operands
returns the number of bytes required for a value

of the type of a REAL, which is always 8

The type REAL represents floating point
data. Variables of this type will occu­
py ei ght bytes of memo·y and wi 11 be
aligned on a double word boundary. All
RE.!\l arithmetic is done using double
precision floating point. See "Implicit
Type Conversion" on page 31.

The type REAL has restrictions that oth­
er scalar types do not have. You may
not take a subrange of REAL nor index an
array by REAL. The predefined functions
SUCC, PRED, ORO, HIGHEST and LOWEST are
not defined for type REAL.

40 Pascal/VS Reference Manual

J

J

L

~

5.5.5 The Type SHORTREAl

The following table describes the oper­
at ions and predefi ned funct ions that
apply to the standard type SHORTREAL.

operation

+
+
-
-
* /

=
<> or --<
<=
>=
>

TRUNC(x)
ROUND(x)
ABS(x)
SIN(x)
COS(x)
ARCTAIHx)
LN(x)
EXP(x)
SQRTex)
SQR(x)
MIN()
MAX()
SIZEOF(x)

form

unary
binary
unary
binary
binary
binary

binary
binary
binary
binary
binary
binary

function
function
function
function
function
function
function
function
function
function
function
function
function

SHORTREAL

description

returns the value of the operand
forms the sum of the operands
negates the operand
forms the difference of the operands
forms the product of the operands
forms the SHORTREAL quotient of the operands

compares for equality
compares for inequality
compares for left less than right
compares for left less than or equal to right
compares for left greater than or equal to right
compares for left greater than right

returns the operand value truncated to an INTEGER
returns the operand value rounded to an INTEGER
returns the absolute value of the operand
returns the trigonometric sine of x (in radians)
returns the trigonometric cosine of x (in radians)
returns (in radians) the arc tangent of x
returns the natural logarithm of x
returns natural log base raised to the x power
returns square root of x
returns the square of x
returns the minimum value of the operands
returns the maximum value of the operands
returns the number of bytes required for a value

of the type of a SHORTREAL, which is always 4

The type SHORTREAL represents floating
point data. Variables of this type will
occupy four bytes of memory and will be
aligned on a word boundary. All
SHORTREAL arithmetic is done using sin­
gle precIsIon floating point
instructions.

a function or procedure that expects its
parameter to be of type REAL if the
parameter passi ng mechan ism for that
parameter is value or const. See "Im­
plicit Type Conversion" on page 31.

The type SHORTREAL has restrictions that
other scalar types do not have. You may
not take a subrange of SHORTREAL nor
index an array by SHORTREAL. The prede­
fined functions SUCC, PRED, ORO, HIGHEST
and LOt.JEST are not defined for type
SHORTREAL.

Operations between data of type REAL and
SHORTREAL will be performed using double
precIsIon floating point instructions.
The SHORTREAL operand will be implicitly
converted to a value of type REAL. A
SHORTREAL may be passed as an operand to

Types 41

5.6 THE ARRAY TYPE

Syntax:

array-type:

~< > packed ~
~------> array [--~--->{index-type}----~--> 1 of --->{type} l<______ , < ________ ~ ----->

index-type:

E>{enumerated-scalar-type}--->~
---+------->{id:scalar-type} >+--->

> {subrange-scalar-type}----->

The array type defines a list of homoge­
neous elements; each element is paired
with one value of the index. An element
of the array is selected by a subscript.
The number of elements in the array is
the number of values potentially
assumable by the index. Each element of
the array is of the same type, which is
called the element type of the array.
Ent ire arrays may be assi gned if they
are of the same type.

Pascal/VS uses square brackets, '[' and
'1', in the declaration of arrays.
Because these symbols are not directly
available on many 1/0 devices, the sym­
bols '(.' and '.)' may be used as an
equivalent to square brackets.

Pascal/VS will align each element of the
array, if necessary, to make each ele­
ment fallon an appropriate boundary. A
packed array will not observe the bound­
ary requirements of its elements. Ele­
ments of packed arrays may not be passed
as var parameters to routines.

An array which is defined with more than
one index is sa i d to be a
multi-dimensional array. A
multi-dimensional array is exactly
equivalent to an array of arrays. In
short, an array definition of the form

a r ray [1 , j , . ..] of T

is an abbrev i ated form of

array[i] of
array[j] of

••• T

where i and j are scalar type defi­
nitions. Thus, the first and second
type declarations in the example below
are alternatives to the same structure.

42 Pascal/VS Reference Manual

type

MATRIX = array[1 •• 10, 1 .. 10] of
REAL;

MATRIXO = array[1 .. 10] of
array[1 .. 10 lof

REAL;

ABLE = array[BOOLEANl of INTEGER;

COLOR = (RED, YEllOW, BLUE);

INTENSITY = packed array[COlORl
of REAL;

AlFA = packed array[1 .. ALFALENl of
CHAR;

Examples of Array Declarations

There are two procedures available for
conversion between a packed array and a
similar but unpacked array. The prede­
fined procedures PACK (see "PACK Proce­
dure" on page 121) and UNPACK (see
"UNPACK Procedure" on page 121) are pro­
vided for this purpose.

5.6.1 Array Subscripting

Array subscripting is performed by plac­
ing an expression in square brackets
following an array variable. The
expressi on must be of a type that is
compatible with the index type and eval­
uate to one of the values of the index.
See "Compat i ble Types" on page 32 The
index may be any scalar type except
REAL.

J

J

J

val"
M
HUE

begin

MATRIX;
INTENSITY;

{ assign ten element array}
M[l] := M[2];

{ assign one element of a two}
{ dimensional array two ways }
M[l.l] := 3.14159;
M[l][l] := 3.14159;

{ this is a
HUE[REO]
HUE[YEllOW]
HUE[BlUE]

end

reddish orange
.- 0.7;
.- 0.3;
:= 0.0;

Examples of Array Indexing

}

Types 43

+

+

+

+
+

5.7 THE RECORD TYPE

Syntax:

record-type:

----,----------------~---> record --->{field-listl---> end
'--> packed _>J

field-list:

----------------->

>]
--~--->{fixed-partl--~---> ---T--->{variant-part)--~-----r---> ---T---> I--_____________ >J I--____ >J

fixed-part:

[< ___ l_-_--_-_[~_--_-=:~~~:_~_~_~_~_~~-----;-r~~-~>~J_I~~~> __ ~~_>_{_ty_p_e_l_-_-~~---------------------->

variant-part:

---> case
[----------------->]

--~~-_-_-_> __ {f __ ie_l_d_l_-_-_-_> _________ >J >{id:type} > of --->]

~>{range}--~--->
<---- , <------'

<

field:

(--~--->{field-list}---~->) I--________ >J --~------>
i < ________________________________ -J

->{id}--~------------------------------------r_----------------------->
l ___ > (--->{constant-expr}--->) ___ >J

range:

--->{constant-expr}---,,---------------------------------,---------------------->
l ___ > --->{constant-exprl--->J

A record is a data structure whi ch is
composed of heterogeneous components;
each element may be of a different type.
Components of a record are called
fields.

5.7.1 Naming of a Field

A fi eld is referred to by the name of
the field. The scope of the identifiers

44 Pascal/VS Reference Manual

used as names is the record type itself.
That is, every field name within a
record must be unique, even if that name
appears in a variant part.

+ A field of a record need not be named;
+ that is, the field identifier may be
+ missing. In such a case, the field only
+ serves as padding; it can not be refer­
+ enced.

J

J

J

type
REC = record

A,
B ItHEGER;

CHAR;
C CHAR
end;

1. .31;
1. .12;

{unnamed}

DATE = record
DAY
MONTH
YEAR
end;

1900 .. 2100

PERSON = record
LAST NAME,
FIRST NAME
MIDDLE INITIAL
AGE -
EMPLOYED
end;

ALFA;
CHAR;
O •• 99;
BOOLEAN

Simple Record Decla~ations

5.7.2 Fixed Part

The fixed part of a record is a series
of fields that exist in every variable
that is declared to be of that record
type. The fixed part, if present, is
always before the variant part.

5.7.3 Variant Part

The variant part of a record permits the
defining of an alternative structure to
the record. The record structure adopts
one of the variants at a time.

The variant part of a record is denoted
with the case symbol. A tag field iden­
tifier may follow. This field is a sca­
lar value that indicates which variant
is intended to be act i ve.

The tag fi eld is a fi eld in the fi xed
part of the record. When the tag field
is followed by a type identifier, then
the tag field defines a new field within
the record.

+ If the type identifier is missing, then
+ the tag field name must be one which was
+ previously defined within the record.
+ This allows you to place the tag field
+ anywhere in the fixed part of the
+ record.

A variant part of a record need not have
a tag fi eld at all. In thi s case, only a
type identifier is specified in the case

TNL SN204446 (31 December 81) to SH20-6168·1

construct. You still refer to the vari­
ant fields by their names but it is your
responsi bi Ii ty to keep track of whi ch
variant is 'active' (i .e. contains valid
data) during execution.

In short, tag fi elds may be defi ned in
the following ways:

•

•

•

"case I : INTEGER of" results in I
bei ng a tag fi eld of type INTEGER.

"case INTEGER of" means no tag field
; s present, the vari ants are denoted
by integer values in the variant
declaration.

"case I: of" means that lis the tag
field and it must have been declared
in the fixed part, the type of I is
as given in the field definition of
1.

The followi ng examples illustrate the
three tag fields in complete record
definitions.

type

SHAPE = (TRIANGLE, RECTANGLE,
SQUARE, CIRCLE);

COORDINATES =
{ fixed part: }

record
X,Y
AREA
case S

REAL;
REAL;
SHAPE of

{ variant part: }
TRIANGLE:

(SIDE: REAL;
BASE : REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE: REAL);

CIRCLE:
(RADIUS

end;
REAL)

A Record With a Variant Part

The record defined as COORDINATES in the
example above contains a variant part.
The tag fi eld isS, its type is SHAPE,
and its value (whether TRIANGLE, RECTAN­
GLE, SQUARE, or CIRCLE) indicates which
variant is in effect. The fields SIDE,
SIDEA, EDGE, and RADIUS would all occupy
the same offset within the record. The
following diagram illustrates how the
record would look in storage.

Types 45

TNL SN20-4446 (31 December 81) to SH20-6168-1

fixed part:
x

Y

AREA

tag field: S

variant part:

SIDE SIDEA EDGE I RADIUSI

BASE SIDEB

Each column in the variant represents
one alternative for the variant.

+ If you preferred the tag field to be the
+ first field instead of the fourth, you
+ could define it as follows:
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

COORDINATES =
record

S
X,Y
AREA
case S

SHAPE;
REAL;
REAL;
of

{ variant part: }
TRIANGLE:

(SIDE : REAL;
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB

SQUARE:
(EDGE

CIRCLE:

REAl) ;

(RADIUS: REAL)

REAl) ;

+ end;
+
+ Record with Back Reference
+ Tag Field
+
+

If you preferred the tag fi eld to be
absent altogether you could define the
record as follows:

46 Pascal/VS Reference Manual

COORDINATES =
record

X,Y : REAL;
AREA : REAL;
case SHAPE of

{ variant part: }
TRIANGLE:

(SIDE: REAL;
BASE: REAL);

RECTANGLE:
(SIDEA,SIDEB : REAL);

SQUARE:
(EDGE : REAl);

CIRCLE:
(RADIUS: REAL)

end;

Record Variant with No Tag Field

5.7.4 Packed Records

The fi elds ina record are normally
assigned offsets sequentially, padding
where necessary for boundary alignment.
In packed records, however, no such pad­
ding is done. This may saVEl storage
within the record, but may degrade per­
formance of the program. Fi elds of
packed records may not be passed as var
parameters to a routine.

+ 5.7.5 Offset Qualification of Field~
+
+
+ Pascal/VS provides you a method of forc­
+ ing the fields of a record to begin at a
+ specified byte offset in the record. A
+ field name may be follow2d by a integer
+ constant expression enclosed in paren­
+ theses which represents the byte offset
+ within the record that the field is to
+ represent. All fields so specified must
+ be in consecuti ve orde:r elccordi ng to
+ offsets. If the offset is not
+ specified, the field will be assigned
+ the next offset that is requi red for
+ boundary alignment. If an offset spec­
+ ification attempts to assiqn ~n
+ incorrect boundary for a field ~nd the
+ record is not packed, a compi Ie ti me
+ error will be raised.
+
+ As an example of offs~t qualified fields
+ within a record, consid~r a large con­
+ trol block of 100 bytes, in I~hich four
+ fi elds at vari ous offsets need to be
+ referenced.
+

J

J

J

+ byte
+ displacement information
+ ------------ -----------------
+ 0 field A (integer)
+ 36 field B (8 chars)
+ 80 field C (4 flags)
+ 92 field D (integer)

+ The control block might be represented
+ in Pascal/VS as follows:
+
+
+
+ type
+ FLAGS = set of
+ (Fl,F2,F3,F4);
+ PADDING = p~cked array[1 .. 4] of
+ CHAR;
+ CB = packed record
+ A INTEGER;
+ B(36) ALFA;
+ C(80) FLAGS;
+ 0(92) INTEGER;
+ PADDING
+
+
+
+

vear
BLOCK

end;

CB;

+ A Record with Offset Qual~fied
+ Fields
+
+

Types 47

+
+
+

5.8 THE SET TYPE

Syntax:

set-type:

---.------------------~--> set of --->{base-scalar-type}--------------------->
L--> packed _>J

base-scalar-type:

E>{enumerated-scalar-type}--->]
---+------->{ld:scalar-type} >~]-->

> {subrange-scalar-type}----->

A varlable whose type is a set may con­
taln any comblnation of values taken
from the base scalar type. A value ls
elther ln the set or lt ls not in.

Note: Pascal/VS sets can be used ln many
of the same ways as blt strlngs (which
often tend to be machl ne dependent).
Each blt corresponds to one element of
the base type and is set to a binary one
when that element ls a member of the
set. For example, a set operation such
as lntersectlon (the operator ls '*') ls
the same as taking the 'boolean and' of
two bit strlngs.

type
CHARS = set of
DAYSOFMON = packed
DAYSOFWEEK = set of
FLAGS = set of

CHAR;
set of 1. .31;
MONDAY .. FRIDAY;

(A,B,C,D,E,F,G,H);

Set Declarations

The following table descrlbes the oper­
atl0ns that apply to the variables of a
set type.

Set Operators

operation form description

- unary returns the complement of the operand

= binary compares for equality
<> or -- binary compares for inequality
<= binary returns TRUE if first operand is subset of

second operand
>= binary returns TRUE if flrst operand is superset of

second operand
in binary TRUE if flrst operand (a scalar) is a member in

the set represented by the second operand

+ binary forms the union of two sets

* binary forms the intersection of two sets
- binary forms the difference between two sets
&& binary forms an 'exclusive' union of two sets
SIZEOF(x) function returns the number of bytes required for a value

of the type

Set union produces a set which contains
all of the elements whi ch are members of
the two operands. Set intersect 1 on
produces the set that contains only the
elements common to both sets. Set dif­
ference produces the set which includes
all elements from the left operand
except those elements which are members
of the rl ght operand. Set exclusi ve
un 1 on produces the set whi ch conte! ins
all elements from the two operands
except the elements which are common to

48 Pascal/VS Reference Manual

of x

both operands. The in operator tests
for membership of a scalar within a set;
if the scalar is not a permissible value
of the set and checking is enabled, then
a runtime diagnostic will result.

The storage and alignment required for a
set variable is dependent on the scalar
type on whi ch the set is based. The
amount of storage requlred for a packed
set wlll be the mlnlmum number of bytes
needed so that every member of the set

J

J

L
may be assigned to a unique bit. Given
a set definition:

type S = set of BASE;

where BASE is a scalar type which is
not a subrange

the ordinal value of the last member M
which can be contained on the set is:

M := ORD(HIGHEST(BASE»

The following table indicates the map­
ping of a set variable as a function of
M.

Range of Size in Alignment
M Bytes

0 <= M <= 7 1 BYTE

8 <= M <= 15 2 HAlFWORD

16 <= M <= 23 3 BYTE

24 <= M <= 31 4 FUllWORD

32 <= M <= 255 (M+7) BYTE
div 8

Unpacked sets based upon integer (or
subranges of integers) wi 11 occupy 32
bytes. The maximum value of a member of
a set of integer may not exceed 255.

The storage is the same for all unpacked
sets of subranges of a base scalar type.
The following illustrates this point.

Given:
type

T = set of t;
S = set of s;

Where:
t is a subrange of s.

The types T and S have identical storage
mappings.

Types 49

5.9 THE FILE TYPE

Syntax:

file-type:

---> file of --->{type}-->

All input and output in Pascal/VS use
the fi Ie type. A fi Ie is a structure
consisting of a sequence of components
where each component is of the same
type. Variables of this type reference
the components with pointers called file
pointers. A file pointer could be
thought of as a poi nter into an
input/output buffer.

The association of a file variable to an
actual file of the system is implementa­
tion dependent and will not be described
in this manual. Refer to the Program­
mer's Guide for this information.

type
TEXT = file of CHAR;
LINE = file of

packed array[1 .. 80] of
CHAR;

PFIlE = file of
record

NAME: packed
array[1 .. 25] of

CHAR;
PERSON NO:INTEGER;
DATE EMPLOYED:DATE;
WEEKLY SALARY : INTEGER

end; -

File Declarations

You access the file through predefined
procedures and functions (see "I/O
Facilities" on page 103). They are:

•

•

•

GET (see "GET Procedure" on page
107)

PUT (see "PUT Procedure" on page
108)

EOF (see "EOF Function" on page 109)

• EOLH (see "EOLH functi on" on page
115)

50 Pascal/VS Reference Manual

•

•

•

•

•

RESET (see "RESET Procedure" on page
103)

REWRITE (see "REWRITE Procedure" on
page 104)

READ (see "READ and READLN nEXT
Files)" on page 109)

WRITE (sea "WRITE and WRITELN (TEXT
Fi les)" on page 112)

TERMIN (see "TERMIN Procedure" on
page 104)

• TERMOUT (see "TERMOUT Procedure" on
page 105)

•

•

•

•

PDSIN (see "PDSIN Procedure" on page
105)

PDSOUT (see "PDSOUT Procedure" on
page 106)

UPDATE (see "UPDATE Procedure" on
page 106)

SEEK (see "SEEK Procedure" on page
108)

+ •
+

COLS (see "COLS Function" on page
116)

+
+ • PAGE (see "PAGE Procedure" on page

115) +
+
+. CLOSE (see "CLOSE Procedure" on page
+ 107)

OUTPUT and INPUT are predefi ned TEXT
files. Pascal/VS enforces the following
restri ct ions on the fi Ie type:

1. A fi Ie may be passed by var o,r
passed by const, but never by value
to a procedure or function.

2. A file may not be contained within a
file.

J

J

L
5.10 PREDEFINED STRUCTURE TYPES

+ 5.10.1 The Type STRING
+
+
+
+
+
+ Syntax:
+
+
+ stri n9-t~me:
+
+ ---> STRING
+
+
+
+
+
+ The type STRING is defi ned as a
+ 'packed array[1 .. n] of CHAR' whose
+ length varies at execution time up to a
+ compile time specified maximum. The
+ length of the array is obtained during
+ execut i on by the LENGTH funct ion (see
+ "LENGTH Functi on" on page 137). The
+ length is managed implicitly by the
+ operators and functions which apply to
+ STRINGs. The maximum length of the
+ array is obtained during execution by
+ the MAXLENGTH function (see "MAXLENGTH
+ Functi on" on page 137). The length of a
+ STRING variable is determined when the
+ variable is assigned. By definition,
+ string constants belong to the type
+ STRING.
+

A STRING vari Clble may be subscri pted
with an integer expression to reference
individual characters. A subscript of 1
will reference the first character. The
subscript value must not be less than 1
nor exceed the string's length.

+ The constant expressi on whi ch follows
+ the STRING qualifier in the type defi­
+ nition is the maximum length that the
+ string may obtain and must be in the
+ range of '1 .. 32767'.
+
+ Any variable of a STRING type is compat­
+ ible with any other variable of a STRING
+ type; that is, the maximum length field
+ of a type definition has no bearing in
+ type compatibility tests.
+
+ Implicit conversion is performed when
I assigning a STRING to a variable whose

type is' packed array[1 .. n] of CHAR'.
+ All other conversion must be done
+ explicitly.

TNL SN204446 (31 December 81) to SH20-6168-1

+ The assignment of one string to another
+ may cause a run time error if the actual
+ length of the source string is greater
+ then the maximum length of the target.
+ Pascal/VS will never truncate implicit­
+ ly.
+
+
+
+ function GETCHAR(
+ const S : STRING;
+ lOX : INTEGER) : CHAR;
+ begin
I { Subscripted string variable}
+ GETCHAR := S[IOX]
+ end;
+
+
+ val'
+ 51:
+ 52:
+ C:
+ begin

STRING(10);
STRING(S);
CHAR;

+ 51:= 'MESSAGE:';
+ C := GETCHAR(S1,4);
+ {C assigned'S' }
+ . +
+ S2 := 'FIVE';
+ C .- GETCHAR(S2,2);
+ {C assigned 'I')
+ end;
+
+
+
+

Usage of STRING Variables

+ The following table describes the oper­
+ ations and predefined functions that
+ apply to the variables of type STRING.

Types 51

TNL SN20-4446 (31 December 81) to SH20·6168·1

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

operation

=
<> or --
<
<=
>=
>

" LENGTH

MAXLENGTH

LBOUND

HBOUND

SUBSTR

DELETE

TRIM

LTRIM

COMPRESS

INDEX

SIZEOF(x)

READSTR

WRITESTR

form

binary
binary
binary
binary
binary
binary
binary
function

function

function

function

function

function

function

function

function

function

function

procedure

procedure

STRING

description

compares for equality*
compares for inequality*
compares for left less than right+*
compares for left less than or equal to right+*
compares for left greater than or equal to right+*
compares for left greater than right+*
catenates the operands
returns the length of the STRING
(see "LENGTH Function" on page 137).

returns the declared length of a STRING
(see "MAXLENGTH Function" on page 137).

returns the value I, STRINGS always have a lower
bound of one (see "LBOUND Function" on page 124).

returns the declared maximum number of elements of
the string (see "HBOUND Function" on page 124).

returns a specified portion of a STRING
(see "SUBSTR Function" on page 138).

returns a STRING with a portion removed
(see "DELETE Function" on page 138).

returns a STRING with trailing blanks removed
(see "TRIM Function" on page 139).

returns a STRING with leading blanks removed
(see "LTRIM Function" on page 139).

returns a STRING with multiple blanks removed
(see "COMPRESS Function" on page 140).

locates a STRING in another STRING
(see "INDEX Function" on page 140).

returns the number of bytes required for a value
of the type of x

converts a STRING to values by assigning variables
(see "READSTR" on page 142).

produces a STRING by converting the internal
values of a list of expressions
(see "WRITESTR" on page 142).

+ * If two STRINGs being compared are of different lengths, the
+ shorter is assumed to be padded with blanks on the right
+ until the lengths match.
+ + Relative magnitude of two strings is based upon the collating
+ sequence of EBCDIC.
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

L
E
F
T

0
P
E
R
A
N
D

STRING

relational
operations

CHAR

packed
array[I .. n] of

CHAR

STRING

Conversions with Relational Operators

RIGHT OPERAND
packed

array[1 .. n] of
CHAR CHAR STRING

allowed not permitted use STR·on
the CHAR

not permitted okay if the use STR on
types are the array
compatible

use STR on use STR on allowed
the CHAR the array

52 Pascal/VS Reference Manual

J

+
+ STRING Conversions on Assignment

~
+
+
+ FRO M
+
+ packed
+ array[l .. n] of
+ assignment CHAR CHAR STRING
+
+ T CHAR allowed not permitted use string
+ indexing to
+ 0 obtain char
+
+ packed not permitted okay if the okay, STRING is
+ array[l. .n] of types are converted. If
+ CHAR compatible truncation is
+ required, then
+ an error results.
+
+ STRING use STR to use STR to allowed
+ convert CHAR convert array
+ to a STRING to a STRING
+
+

Types 53

+ 5.10.2 The Tvpe ALFA
+
+
+
+ The standard type AlFA is defined as:
+
+ const
+ AlFAlEN = 8;
+
+ type
+ AlFA = packed
+ array[l .. AlFAlENlof
+ CHAR;
+

+ Any 'packed array[l .. nl of CHAR',
+ including AlFA, may be converted to type
+ STRING by the predefined function STR.
+ The following table describes the oper­
+ ations and predefined functions that
+ apply to the variables of the predefined
+ type AlFA.

AlFA
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

operation form description

= binary compares for equality
<> or ~- binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for left greater than right
STRex) function converts the AlFA to a STRING
SIZEOF(x) function returns the number of bytes required for a value

of the type of an AlFA, which is always 8

54 Pascal/VS Refer~nce Manual

J

L
+ S.10.3 The Type ALPHA
+
+
+
+ The standard type ALPHA is defined as:
+
+ const
+ ALPHALEN = 16;
+
+ type
+ ALPHA = packed
+ array[I .. ALPHALENl of
+ CHAR;
+

+ Any 'packed array[I .. nl of CHAR',
+ i ncludi ng ALPHA, may be converted to
+ type STRING by the predefined function
+ STR. The following table describes the
+ operations and predefined functions
+ that apply to the variables of the pre­
+ defined type ALPHA.

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

ALPHA

operation form description

= binary compares for equality
<> or -- binary compares for inequality
< binary compares for left less than right
<= binary compares for left less than or equal to right
>= binary compares for left greater than or equal to right
> binary compares for le.ft greater than right
STR(x) function converts the ALPHA to a STRING
SIZEOF(x) function returns the number of bytes required for a value

of the type of an ALPHA, which is always 16

Types 55

5.10.4 The Type TEXT

The standard type TEXT is defined as:

type
TEXT = file of CHAR;

In addition to the predefined procedures
to do input and output, Pascal/VS
defines several procedures which oper­
ate only on fi les of type TEXT. These
procedures perform character to
internal representation (EBCDIC) con­
versions and gives you some contro! over
output fi eld !engths. The predefi ned
routines that may be used on TEXT files
are:

• GET ("GET Procedure" on page 107)

• PUT ("PUT Procedure" on page 108)

• EOF ("EOF Function" on page 109)

• EOLN ("EOlN function" on page 115)

• RESET ("RESET Procedure" on page
103)

•

•

•

REWRITE ("REWRITE Procedure" on
page 104)

READ ("READ and READlH (TEXT Files)"
on page 109)

READLN ("READ and READLN (TEXT
Files)" on page 109)

56 Pascal/VS Reference Manual

• WRITE ("WRITE and WRITElH nEXT
Files)" on page 112)

• WRITELN ("WRITE and WRITElN nEXT
Fi les)" on page 112)

• PAGE ("PAGE Procedure" on page 115)

+ • CLOSE ("CLOSE Procedure" on page
+ 107)
+
+ • COLS ("COlS Function" on page 116)

• PDSIN ("PDSIN Procedure" on page
105)

• PDSOUT ("PDSOUT Procedure" on page
106)

• TERMIH ("TERMIN Procedure" on page
104)

• TERMOUT ("TERMOUT Procedure" on
page 105)

• UPDATE ("UPDATE Procedure" on page
106)

Pasca!/VS predefines two TEXT variables
named OUTPUT and INPUT. You may use
these fi las wi thout declari ng them in
your program.

J

J

J

5.11 THE POINTER TYPE

Syntax:

pointer-type:

---> ~ --->{id:type}-->

Pascal/VS allows variables to be created
during program execution under your
explicit control. These variables,
which are called dynamic variables, are
generated by the predefi ned procedure
NEW. NEW creates a new variable of the
appropriate type and assigns its address
to the argument of NEW. You must
explicitly deallocate a dynamic vari­
able; the predefined procedures DISPOSE
and RELEASE are provided for this pur­
pose.

+ Dynamic variables are created in an area
+ of storage called a heap. A new heap is
+ created with the MARK predefined proce­
+ dure; a heap is released with the
+ RELEASE predefined procedure. A initial
+ heap is allocated by Pascal/VS. All
+ variables that were allocated in a heap
+ are deallocated when the heap is
+ released. An attempt to use a dynamic
+ variable that has been deallocated (ei­
+ ther via DISPOSE or RELEASE) is an
+ error.

Pascal/VS po inters are constra i ned to
point to a particular type. This means
that on declaration of a pointer, you
must speci fy the type of the dynami c
variable that will be generated by NEW
or referenced.

Pascal/VS defines the named constant n;1
as the value of a po inter whi ch does not
point to any dynamic variable (empty
pointer). Nil is type compatible to
every pointer type.

The only operators that can be applied
to variables of pointer type are the

test for equality and inequality. The
predefined function ORD may be applied
to a pointer variable; the result of the
function is an integer value which is
equal to the address of the dynami c var­
iable referenced by the pointer. There
is no function in Pascal/VS to convert
an integer into a pointer.

type
PTR = ~ ELEMENT;
ELEMENT = record

PARENT
CHILD
SIBLING:

end;

PTR;
PTR;
PTR

A Pointer Declaration

Thi s example illustrates a data types
that can be used to build a tree. With
this structure the parent node contains
a pointer to the eldest child, the
eldest points to the next sibling who
points to the next, and so forth.

In the above example type ELEMENT was
used before it was declared. Referenc­
ing an identifier prior to its declara­
tion is generally not permitted in
Pascal/VS. However, a type identifier
whi ch is used as the base type to a
pointer declaration is an exception to
thi s rule.

Types 57

5.12 THE TYPE STRINGPTR

Variables of type STRING have two
lengths associated with them:

• The current length which defines the
number of characters in the string
at any instant in time.

• The maximum length which defines the
storage required for the string.

The predefined type STRINGPTR defines a
pointer to a string which has no "maxi­
mum length" associated with it until
execution time. The procedure NEW is
used to allocate storage for this type
of po inter; an integer express ion is
passed to the procedure that specifies
the maximum length of the allocated
stri ng. See "NEW Procedure" on page
119.

58 Pascal/VS Reference Manual

var
P
Q
I

begin

STRINGPTR;
STRINGPTR;
O •• 32767;

I .- 59;
NEW(P,(I+1) div 2);
WRITElN(MAXlENGTH(P));

{writes '30' to output}
NEW(Q,5);
Q~ .- '1234567890';

end

{causes a truncation }
{error at execution }

Using the Predefined type STRINGPTR

J

J

J

5.13 STORAGE, PACKING, AND ALIGNMENT

For each variable declared with a par­
ticular type, Pascal/VS allocates a spe­
cific amount of storage on a specific
alignment boundary. The Programmer's
Guide describes implementation
requirements and defaults.

Pascal/VS provides the packed record
feature in which all boundary alignment

is suppressed. Fields of a packed
record are allocated on the next byte,
ignoring alignment requirements.

Packed data occupies less space and is
more compact but may increase the exe­
cution time of the program. Moreover, a
field of a packed record or an element
of a packed array may not be passed by
read/write reference (var) to a routine.

Types 59

J

J

L

L +
+
+
+
+
+
+

6.0 ROUTINE!!.

Syntax:

routine-del:

c:==>{procedure-headingl

~l >{function-heading}

< j <

--->{directive}---> ;

>] ~>{declaration}--->]
~>{compound-statementl---> ; >

erocedure-heading:

---> procedure --->{i dl---> {formal-parameters} >

function-heading:

---> function --->{id}--->{formal-parameters}---> : ---> {j d: type} >

directive:

> FORWARD > >

---> EXTERNAL -------------------------------------->

---> FORTRAN --------------------------------------->

---> MAIN -->

---> REENTRANT ------------------------------------->

formal-earameters:

> ([> {formal} >)

I I <----- ; <

formal:

f---~
var [{i d}::::J

I const -->1 <--- , <
>J

~>{proc.dur.-h.ad;ngJ
>{function-heading}

There a re two cat ego r i es of rout i nes:
procedures and funct ions. Procedures
should be thought of as addi ng new
statements to the language. These new
statements effect i vely increase the
language to a superset language contain­
ing statements tailored to your
specialized needs. Functions should
a I so be thought of as i ncreasi ng the

J
>

> : --->{id:type} >

>

>

flexibility of the language: functions
add to your abi Ii ty to express data
transformation in expressions.

Routines can return data to the caller
by al teri ng the var parameters or by
assigning to variables that are common
to both the invoker and the invoked rou­
tine. In addition, functions also

Routines 61

+

I

return a value to the invoker upon
return from the function.

6.1 ROUTINE DECLARATION

Routines must be declared prior to their
use. The routine declaration consists
of the routine heading, declarations and
one compound statement.

The heading defines the name of the rou­
tine and binds the formal parameters to
the routine. The heading of a function
declaration also binds the function name
to the type of value returned by the
function. Formal parameters specify
data that is to be passed to the routine
when it is invoked. The declarations
are described in chapter 4. The com­
pound statement wi 11 be executed when
the routine is invoked.

6.2 ROUTINE PARAMETERS

Formal parameters are bound to the rou­
tine when the routine is defined. The
formal parameters defi ne what kind of
data may be passed to the routine when
it is invoked. These parameters also
specify how the data will be passed.

When the routine is invoked, a parameter
list is built. At the point of invoca­
t i on the parameters are called the actu­
al parameters. -----

Pascal/VS permits parameters to be
passed in following ways:

• pass by value

• pass by read/write reference (val"'>

• pass by read only reference (const>

• pass by conformant string (val"' or
const)

• formal routine parameter

6.2.1 Pass by Value Pal"'ameters

Pass by value parameters can be thought
of as local variables that are initial­
ized by the caller. The called routine
may change the value of thi ski nd of
parameter but the change is never
reflected back to the caller. Any
expression, variable or constant (ex­
cept of file type) may be passed with
thi s mechani sm.

62 Pascal/VS Reference Manual

6.2.2 Pass by Val' Parameters

Pass by Var (vari able) is also called
pass by reference. Parameters that are
passed by var reflect modifications to
the parameters back to the caller.
Therefore you may use thi s parameter
type as both an input and output parame­
ter. The use of the val' symbol in a
parameter indicates that the parameter
is to be passed by read/write reference.
Only vari abIes may be passed by thi s
mechanism; expressions and constants
may not. Al so, fi elds of a packed
record or elements of a packed array may
not be passed as var parameters.

+ 6.2.3 Pass by Const Parameters
+
+
+ Parameters passed by const may not be
+ altered by the called routine. Also you
+ should not modify the actual parameter
+ value while the call to the routine has
+ not yet completed. If you attempt to
+ alter the actual parameter while it is
+ being passed by const, the result is not
+ defi ned. Thi s method could be called
+ pass by read only reference. The param­
+ eters appear to be constants from the
+ called routine's point of view. Any
+ expression, variable or constant may be
+ passed by const (fi elds of a packed
+ record and elements of a packed array
+ may also be passed). The use of the
+ "const" reserved word ina parameter
+ i ndi cates that the parameter is to be
+ passed by this mechanism. With parame­
+ ters which are structures (such as
+ strings), passing by const is usually
+ more efficient than passing by value.

6.2.4 Formal Routine Parameters

A procedure or function may be passed to
a routine as a formal parameter. Within
the called routine the formal parameter
may be used as if it were a procedure or
function.

6.2.5 Conformant stl"'inq Parameters

It is often desirable to call a proce­
dure or function and pass in a string
whose declared length does not match
that of the formal parameter. The
conformant string parameter is used for
thi s purpose.

The conformant str i ng parameter is a
pass by const or pass by val' parameter
with a type specified as STRING without
a length qual i fi er. Stri ngs of any
declared length will conform to such a
parameter. You can use the MAXlENGTH

J

J

J

pa rameter. You can use the MAXL ENGTH
function to obtain the declared length.
See "MAXLENGTH Function" on page 137.

procedure TRANSLATE
(var S : STRING;
const TABLE: STRING);

var
I O .. 32767;
J : 1 .. 0RD(HIGHEST(CHAR»+I;

begin
for I := 1 to LENGTHCS) do

begin

end;

J := ORD(S[I])+I;
if J > LENGTH(TABLE) then

S[Il .- , ,
else

S[I] := TABLE[J];
end;

Example of a Conformant Strings

6.3 ROUTINE COMPOSITION

There are six kinds of routines:

• internal

• FORWARD

+ • EXTERNAL
+
+ • FORTRAN
+
+ • REENTRANT
+
+ • MAIN

The directive used to identify each kind
of declarati on is shown in upper case
above.

Note:

• A routine must be declared before it
can be referenced. This allows the
compi ler to assure the val i di ty of a
call by checking parameter compat­
ibility.

6.3.1 Internal Routines

An internal routine may be invoked only
from within the lexical scope that con­
tains the routine definition.

6.3.2 FORWARD Routines

A routine declared FORWARD is the means
by whi ch you can declare the rout i ne

TNL SN204446 (31 December 81) to SH20-{)168-1

headi ng before declari ng the declara­
tions and compound statement. The rou­
tine heading is declared followed by the
symbol 'FORWARD'. Thi 5 allows you to
have a call to a routine prior to defin­
ing the routine's body. If two routines
are to be mutually recursive and are at
the same nesting level. one of the rou­
tines must be declared FORWARD.

To declare the body of the FORWARD rou­
tine, you declare the rout i ne leav i ng
off the formal parameter definition.

6.3.3 EXTERNAL Routines

An EXTERNAL rout i ne is a procedure or
function that can be invoked from out­
side of its lexical scope (such as,
another module). The EXTERNAL directive
is used to specify the heading of such a
routine. While many modules may call an
EXTERNAL routine, only one module wHI
actually conted n the body of the
routine. The formal parameters defined
in the EXTERNAL routine declaration must
match those in the module where the rou­
tine is defined. An EXTERNAL routine
declarat i on may refer to a Pascal/VS
routine which is located later in the
same module or located in another module
or it may refer to code produced by oth­
er means (such as assembler code).

The followi ng example illustrates two
modules (a program module and a segment
module) that share a single EXTERNAL
rout i ne. Both modules may invoke the
routine but only one contains the defi­
nition of the routine.

program TEST;
function SQUARE(X : REAL)

EXTERNAL;
begin

WRITELN(SQUARE(44»;
end .

SEGMENT S;
function SQUARE(X

EXTERNAL;
function SQUARE;
begin

SQUARE .- X * X
end; •

REAL)

REAL;

REAL;

Example of an EXTERNAL Function

The body of an EXTERNAL routine may only
be defined in the outermost nesting lev­
el of a module; that is, it must not be

+ nested within another routine.

Routines 63

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ 6.3.4 FORTRAN Routines
+
+
+ A FORTRAN routine is similiar to an
+ EXTERNAL routine in that it specifies a
+ routine that is defined outside the mod­
+ ule being compiled. In addition, it
+ specifies that the routine is a FORTRAN
+ subprogram and therefore the con­
+ vent ions of FORTRAN are to be used. A
+ FORTRAN routine is never defined within
+ a Pascal/VS module. If you pass a
+ literal constant to a FORTRAN subprogram
+ by CONST, then you must assure that the
+ FORTRAN subprogram does not alter the
+ contents of parameter. In order to meet
+ the requi rements of FORTRAN you must
+ obey the following restrictions:
+
+. All parameters may be only var or
+ const parameters.
+
+. If the routine is a function, it may
+ only return a scalar result (thi s
+ includes REAL and SHORTREAL).
+
+. Routines may not be passed.
+
+. Multi-dimensional arrays are not
+ remapped to conform to FORTRAN
+ indexing, that is, an element of an
+ array A[n,m] in Pascal will be ele-
+ ment ACm,n) in FORTRAN.
+
+
+
+ 6.3.5 MAIN Procedures
+
+
+ The MAIN directive is used to identify a
+ Pascal procedure that may be invoked as
+ if it were a main program. It is some­
+ ti mes desi rable to invoke a Pascal/VS
+ procedure from a non-Pascal routine, for
+ example FORTRAN or assembler language.
+ In this case it is necessary for certain
+ initializing operations to be performed
+ prior to actually executing the Pascal
+ procedure. The MAIN directive specifies
+ that these actions are to be performed.
+
+ There are several restrictions on the
+ use of the MAIN directive.
+
+. only procedures may have the MAIN
+ directive;

64 Pascal/VS Reference Manual

+. a procedure that is declared to be
+ MAIN must have its body located in
+ the same module;
+
+. the executi on of a MAIN procedure
+ will not be reentrant;
+
+. the MAIN directive may only be
+ applied to procedures in the outer-
+ most nesting level.
+
+ Consult Pascal/VS Programmer's Guide,
+ order number SH20-6162 for further
+ details on using MAIN.
+
+
+
+ 6.3.6 REENTRANT Procedures
+
+
+ The REENTRANT directive is used to iden­
+ t i fy a Pascal procedLlre that may be
+ invoked as if it were a main program
+ like a MAIN procedure. In addition,
+ invocations of these procedures will be
+ reentrant.
+
+ In order to achieve this addition fea­
+ ture, some help is required from you.
+ The first parameter of a procedure
+ defined with the REENTRANT directive
+ must be an INTEGER passed by var. Prior
+ to the very fi rst call from a
+ non-Pascal/VS program you must initial­
+ ize this variable to zero (0), On
+ subsequent calls you must pass the same
+ variable back unaltered (Pascal/VS sets
+ the variable on the first call and needs
+ that value on the subsequent
+ i nvocati ons). You need not call the
+ same procedure each time, you may call
+ different procedures - just continue to
+ pass thi s variable on each call.
+
+ Consult Pascal/VS Proaramm~r's Guide,
+ order number SH20-6162- for further
+ details on using REENTRANT.
+
+ Note: All Pascal/VS internal procedures
+ and functions are reentrant. The REEN­
+ TRANT di recti ve is used to speci fy a
+ procedure that is both reentrant and
+ invokable from outside the Pascal/VS
+ execution environment.

J

6.3.7 Examples of Routines

static
C: CHAR;

function GETCHAR:CHAR;
EXTERNAL;

procedure EXPR(var VAL: INTEGER);
EXTERNAL;

procedure FACTOR(var VAL: INTEGER);
EXTERNAL;

procedure FACTOR;
begin

C := GETCHAR;
if C = '(' then

begin
C := GETCHAR;
EXPR(VAL)

end
else

end;

procedure EXPR {var VAL: INTEGER};
begin

FACTOR(VAL);

end;

Examples of Routine Declarations

function CHAR FOUND
(const S: STRING;

C: CHAR): BOOLEAN;
var I: 1. .255;
begin

for I := 1 to LENGTHCS) do
if S [I] = C then

begin
CHARFOUND := TRUE;
return

end;
CHARFOUND := FALSE;

end;

Example of Const Parameter

6.4 FUNCTION RESULTS

A value is returned from a function by
assigning the value to the name of the
function prior to leaving the function.
This value is inserted within the

expressi on at the poi nt of the call.
The value must be assignment conformable
to the type of the function.

If the funct i on name is used on the
right side of an assignment. it will be
interpreted as a recursive call.

function FACTORIAL
(X: INTEGER): INTEGER;

begin
U X <= 1 then

FACTORIAL .- 1
else

FACTORIAL := X * FACTORIAL(X-l)
end;

Example of Recursive Function

Standard Pascal permi ts a funct i on to
return only a scalar value. Pascal/VS
provi des for a functi on to return any
type except a fi Ie. Thi s means that you
can write a Pascal/VS function that
returns a record structure as its result
(such as you might wish to do for imple­
menting a complex arithmetic library).
A function may also return a string,
however you must specify the maximum
length of the string to be returned.

type
COMPLEX = record

R,I REAL
end

function CADD
(const A.B : COMPLEX)
var

C : COMPLEX;
begin

C.R := A.R + B.R;
C.I := A.I + B.li
CADD := C

end;

COMPLEX;

Example of a Function Returning a Record

6.S PREDEFINED PROCEDURES AND FUNC­
TIONS

Pascal/VS predefines a number of proce­
dures and functions that you may find
valuable. Details of the predefined
procedures and funct ions are gi ven in
section titled "I/O Facilities" on page
103.

Routines 65

J

Syntax:

variable:

-->{id}-->
<

-> [[> {expr}
<-- ,

'---> . -->{id:field}

i-> Ol

Pascal/VS di vi des variables
classes depending on how
declared:

into five
they are

• automatic (var variables)

•

+ •
+
+ •

•

dynamic
abIes)

(pointer-qualified

static (static variables)

external (def/ref variables)

vari-

parameter (declared on a routine
declaration)

A variable may be referenced in several
ways depending on the variable's type.
You may always refer to the entire vari­
able by specifying its name. You may
refer to a component of a structured
vari able by usi ng the syntax shown in
the syntax diagram.

If you simply specify the name of the
variable, then you are referring to the
entire variable. If that variable is
declared as an array, then you are
referring to the entire array. You may
assign an entire array. Similarly, you
may also deal with record and set vari­
ables as uni ts.

I >

TNL SN20-4446 (31 December 81) to SH20-6168-1

7.0 VARIABLES

notes:

] ---> subscripted variable

> field reference

> pointer reference

va ...
LINEl,
LINE2 : packed

array[1 .. 80) of
CHAR;

{ assign all 80 characters
{ of the array
LINEI . - LINE2;

}
}

>

Using Variables in their entirety

7.1 SUBSCRIPTED VAnIABLE

An element of an array is selected by
placing an indexing expression enclosed
within square brackets, after the name
of the array. The indexing expression
must be of the same type as declared on
the corresponding array index defi­
nition.

A multi-dimensional array may be refer­
enced as an array of arrays. For exam­
ple, let variable A be declared as
follows:

A: a ay [a .. b,c .. d] of T

As explained in "The Array Type" on page
42, this declaration is exactly equiv­
alent to:

A: a ay [a •. b] of
array [c .. d] of T

Variables 67

TNL SN204446 (31 December 81) to SH20~168·1

A reference of the form A[I] would be a
variable of type:

array [c .. d] of T

and would represent a si ngle row in
array A. A reference of the form
A[I][J) would be a variable of type T
and would represent the Jth element of
the Ith row of array A. Thi slatter
reference would customarily be abbrevi­
ated as

A[I,J]

Any array reference wi th two or more
subscript indicies can be abbreviated by
writing the subscripts in a comma sepa­
rated list. That is, A[I][Jl. .. could
be written as A[I.J, ... J.

If the '%CHECK SUBSCRIPT' option is ena­
bled, the index expression will be
checked at execution time to make sure
its value does not 1 i e outsi de of the
subscri pt range of the array. An exe­
cution time error diagnostic will occur
if the value lies outside of the pre­
scribed range. (For a description of
the CHECK feature see "The %CHECK State­
ment" on page 148.)

A vari able of type STRING may be sub­
scripted with an integer expression to
reference individual characters. The
value of the subscript must not be less
than 1 or greater than the length of the
string. String subscripts are checked
at run time if %CHECK SUBSCRIPT is ena­
bled.

A[12]
A[I]
A [I+J]
DECK[CARD-FIFTY]
MATRIX[ROW[I], COLUMN[J]

Subscripted Variables

7.2 FIELD REFERENCING

A field of a record is selected by fol­
lowing the record variable by a period
and by the name of the field to be ref­
erenced.

68 Pascal/VS Reference Manual

._---_._------_._--_._---
var

PERSON:
record

FIRST NAME,
LAST NAME: STRING(lS);

end; -

DATE:
record

DAY: 1. .31;
MONTH: 1 .. 12;
YEAR: 1900 •. 2000

end;

DECK:
~rray[1 .. 52] of

record
CARD: 1..13;
SUIT :

end;

(SPADE, HEART,
DIAMOND, CLUB)

PERSON.LAST NAME := 'SMITH';
DATE.YEAR :: 1978;
DECK[I J.CARD := 2;
DECK[I].SUIT := SPADE;

Field Referencing Examples

7.3 POINTER REFERENCING

A dynami c vari able is created by the
predefined procedure NEW or by an imple­
mentation provided routine which
assi gns an address to a poi nter
variable. You may refer either to the
pointer or to the dynamic variable; ref­
erencing the dynamic variable requires
using the pointer notatio~.

For example

var P : 0) R;

P refers to the pointer
Po) refers to the dynamic variable

If the '%CHECK POINTER' option is ena­
bled, any attempt to reference a pointer
that has not been assigned the address
of an allocated variable will result in
an execution time error diagnostic.
(For a description of the CHECK feature
see "The %CHECK Statement" on page 148.)

J

J

J

If the '~CHECK POINTER' option is ena­
bled, any attempt to reference a fi Ie
pointer which has no value will result
in an execution time error diagnostic.
(For a description of the CHECK feature
see "The ~CHECK Statement" on page 146.)

TEXT;
TEXT;

var
INPUT
OUTPUT
LINE1 array [1 .. 80] of CHAR;

{ scan off blanks }
{ from a file of CHAR }
GET(INPUT) ;
whi Ie INPUT;') = , , do

GET(INPUT>;

{ transfer a line to the }
{ OUTPUT file }
for I := 1 to 80 do

begin
OUTPUT;') := LINE1[Il;
PUHOUTPUT>

end;

File Referencing Examples

Vari abIes 69

J

J

J

L

+

+
+
+

+

8.0 EXPRESSIONS

Syntax:

constant-expr:
expr:

--->{simple-expression}----r---~--------->

> = [>{SimPle-expreSSion}--->
> <> --->
> < --->
> <= --->
> >= --->
> > ---->
> in --->

simple-expression:

---T~--~--~--=--=-~~~~~l-<~~_>_{_te_r_m_}_-_-_-_T~_--_--_--_-~_-_;-,_&~=~_-~=_-~~-l---------------------------->

---.---> {factor}---.-->
> * ------>
> / ---->
> div --->
> mod --->

---> » ---->
---> « ---->
---> I I ---->

> & ----->
<------------------------------~

factor:

---.---> {functi on-call}---r------------->

> {variable}--->

> {set-constructor}--->

> (--->{expr}--->) ----------------------------------->
---> {structured-constant}-------------------------------->

> not --->{factor}-------------------------------------->

>{unsigned-constant}--------------------------------------->

Pascal/VS expressions are similar in
function and form to expressions found
1 n other hi gh level programmi ng lan­
guages. Expressions permit you to com­
bine data according to specific
computational rules. The type of compu­
tat i on to be performed is di rected by
operators whi ch are grouped into four
classes according to precedence:

the not operator (highest)
- the multiplying operators

the addi ng operators
- the relational operators (lowest)

An expression is evaluated by performing
the operators of highest precedence
first, operators of the next precedence
second and so forth. Operators of equal
precedence are performed ina left to
right order. I f an operator has an
operand whi ch 1 s a parenthesi zed sub-

Expressions 71

expression, the
evaluated prior
operator.

sub-expression
to applying

1S
the

The operands of an expressi on may be
evaluated in either order; that is, you
should not expect the left operand of
dyadic operator to be evaluated before
the ri ght operand. If ei ther operand
changes a global variable through a
function call, and if the other operand

72 Pascal/VS Reference Manual

uses that value, then the value used 1S
not specified to be the updated value.
The only exception is in boolean expres­
sions involving the logical operations
of 'and' (&) and 'or' (I); for these
operations the right operand will not be
evaluated if the result can be deter­
mi ned from the left operand. See
"Boolean Expressions" on page 77.

J

TNL SN20-4446 (31 December 81) to SH20-6168-1

Examples of Expressions

Assume the following d~clarations:

const
ACME = 'acme';

type
COLOR
SHADE
DAYS
MONTHS

= (RED, YELLOW, BLUE);
= set of COLOR;
= (SUN, MON, TUES, WED, THUR, FRI, SAT>;
= (JAN, FEB, MAR, APR, MAY, JUH,

JUL, AUG, SEP, OCT, NOV, DEC);

val'
A COLOR -A SET
BaaL
MON
I,
J

factors:

I
15
(HEB+J)
[RED]
[]
OOD(HEJ)
not BaaL
COLOR(1)
ACME

terms:

I
I * J
I div J

: COLOR;
: SHADE;
: BOOLEAN;
: MONTHS

: INTEGER;

ACME II ' TRUCKING'
A SET * [RED]
1-& 'FFOO'X
BOOL & oooe I)

simple expression:

I * J
I + J
I I 'BOOOOOOO'X
A_SET + [BLUE]
- I

expression:

I + J
RED = A COLOR
RED in A_SET

variable
unsigned constant
parenthetical expression
set of one element
empty set
funct ion ca 11
complement expression
scalar type converter
constant reference

factor
multiplication
integer division
catenation
set intersection
logical and on integers
boolean and

term
addition
logical or on integers
set union
unary minus on an integer

simple expression
relational operations
test for set inclusion

Expressions 73

TNL SN20-4446 (31 December 81) to SH20-{i168-1

8.1 OPERATORS

Multiplying Operators

+

+
+
+
+
+

+

+
+
+

operator operation

* multiplication

/ real division

div integer division

mod modulo

& (and) boolean and

& (and) logical and

* set intersection

II string catenation

« logical left shift

» logical right shift

Adding

operator operation

+ addition

- subtraction

- set difference

I (.... r) boolean or

I (or) logical or

+ set union

&& (xor) exclusive or

&& (xor) 'exclusive' union

74 Pascal/VS Reference Manual

operands

INTEGER
REAL
REAL, INTEGER
SHORTREAL
SHORTREAL, INTEGER
SHORTREAL, REAL

INTEGER
REAL
REAL, INTEGER
SHORTREAL
SHORTREAL, INTEGER
SHORTREAL, REAL

INTEGER

INTEGER

BOOLEAN

INTEGER

set of t

STRING

INTEGER

INTEGER

Operators

operands

INTEGER, INTEGER
REAL, REAL
REAL, INTEGER
SHORTREAL, SHORTREAL
SHORTREAL, INTEGER
SHORTREAL, REAL

INTEGER, INTEGER
REAL, REAL
REAL, INTEGER
SHORTREAL, SHORTREAL
SHORTREAL, INTEGER
SHORTREAL, REAL

set of t

BOOLEAN

INTEGER

set of t

INTEGER

set of t

J
result

INTEGER
REAL
REAL
SHORTREAL
SHORTREAL
REAL

REAL
REAL
REAL
SHORTREAL
SHORTREAL
REAL

INTEGER

INTEGER

BOOLEAN

INTEGER

set of t

STRING

INTEGER

INTEGER J

result

INTEGER
REAL
REM
SHORTREAL
SHORTREAL
REAL

INTEGER
REAL
REAL
SHORTREAL
SHORTREAL
REAL

set of t

BOOLEAN

INTEGER

S!!t of t

INTEGER

set of t

+
+

operator

~ (not)

- (not)

- (not)

operator

=

<> (-=)

<

<=

<=

>

>=

>=

;n

The Hot

operation

boolean not

logical one's
complement

set complement

Relational

operation

compare equal

compare not equal

compare less than

compare < or =

subset

compare greater

compare > or =

superset

set membership

TNL SN204446 (31 December 81) to SH20.{j168-1

---- .. ---_._-
Operator

operand result

BOOLEAN BOOLEAN

INTEGER INTEGER

set of T set of ,.

Operators

operands result

any set, scalar type, BOOL.EAN
pointer or string

any set, scalar typ~, BOOLEAN
pointer or string

scalar type or string BOOLEAN

scalar type, string BOOLEAN

set of t BOOLEAN

scalar type, string BOOLEAN

scalar type, string BOOLEAN

set of t BOOLEAN

t and set of t BOOLEAN

Expressions 75

TNL SN204446 (31 December 81) to SH20-6168-1

+ 8.2 CONSTANT EXPRESSIONS
+
+
+ Constant expressions are expressions
+ which can be evaluated by the compiler
+ and replaced wi th a result at compi Ie
+ time_ By its nature, a constant expres­
+ sion may not contain a reference to a
+ variable or to a user-defined function.
+ Constant expressions may appear in con­
+ stant declarations.
+
+ The following predefined functions are
+ permitted in constant expressions:
+
+ Function Page
+
+ ABS 132
+ CHR 126
+ HIGHEST 123
+ LENGTH 137
+ L01~EST 123
+ MAX 130
+ MAXLENGTH 137
+ MIN 130
I ODD 132
+ ORO 126
+ PRED 131
+ scalar conversion
+ functions 127
+ SIZEOF 125
+ SUCC 131

76 Pascal/VS Reference Manual

+
+
+ constant
+ expression type
+
+
+ ORDC'A') INTEGER
+ SUCC(CHR('FO'X» CHAR
+ 256 div 2 INTEGER
+ 'TOKEN'IISTR(CHR(O» STRING
+ '8000'X I 'OOOl'X ItHEGER
+ ['0'._'9'] set of CHAR
+ 32768*2-1 INTEGER
+
+ Examples of Constant Expressions
+
+

J

L

8.3 BOOLEAN EXPRESSIONS

You should recognize that Pascal assigns
the operat ions of "&" (and) and "I" a
hi gher precedence than the relati onal
operators. This means that the expres­
sion:

A<B & C<D

will be evaluated as

(A < (BgC» < D

Thus, it is advisable to use parenthesis
when writing expressions of this sort.

Pascal/VS will optimize the evaluation
of BOOLEAN expressions involving 'I'
(and) and 'I' (or) such that the ri ght
operand of the expression wi 11 not be
evaluated if the result of the operation
can be determined by evaluating the left
operand. For example, given that A, B,
and C are boolean expressions and X is a
boolean variable, the evaluation of

X : = A Dr B or C

would be performed as

if A then
X := TRUE

else
if B then

X := TRUE
else

X := C

The evaluation of

X : = A and Band C

would be performed as

if -A then
X := FALSE

else
if -B then

X := FALSE
else

X := C

The evaluati on of the expressi on wi 11
always be left to right.

The following example demonstrates log­
ic which depends on the conditional
evaluation of the right operand of the
"and" operator.

type
RECPTR = OlREC;
REC = record

val"

NAME: ALPHA;
NEXT: RECPTR;

end;

P RECPTR;
LNAME : ALPHA;

begin

while (P<>nil) and
(POl.NAME <> LNAME)

do
P := POl.NEXT;

end;

Example of a BOOLEAN Expression
that Depends on Order of Evaluation

Notes:

• If you use a function in the right
operand of a boolean expression,
then you must be aware that the
function may not be evaluated. Fur­
ther, you should note that relying
on si de-effects from funct ions is
considered a bad programming prac­
tice.

• Not all Pascal compilers support
thi s i nterpretati on of BOOLEAN
expressions. If you wish to assure
portabi 1 i ty between Pascal/VS and
other Pascal implementations you
should write the compound tests in a
form that uses nested
if-statements.

Expressions 77

+ 8.4 LOGICAL EXPRESSIONS
+
+

+ •
+
+

+ Many of the integer operators provided +.
+ in Pascal/VS perform logical operations +
+ on their operands; that is, the operands +
+ are treated as unsigned strings of bina- +
+ ry digits instead of signed arithmetic +
+ quantities. For example, if the integer +.
+ value of -1 was used as an operand of a +
+ logical operation, it would be viewed as +
+ a string of binary digits with a +
+ hexadecimal value of 'FFFFFFFF'X. +
+ +
+ The logi cal operati ons are defi ned to
+ apply to 32 bit values. Such an opera­
+ tion on a subrange of an INTEGER could
+ yield a result outside the subrange.
+
+ The following operators perform logical
+ operations on integer operands:
+
+. '&' (and) performs a bi t-wi se and of
+ two integers.
+
+. 'I' (or) performs a bit-wise inclu-
+ siva or.
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+. '&&' (xOr) performs a bi t-wi se +
+ exclusi ve or.

78 Pascal/VS Reference Manual

' .. ' (not) performs a one's comple­
ment of an integer.

,«, shifts the left operand value
left by the amount indicated in the
right operand. Zeroes are shifted in
from the right.

,», shi fts the left operand value
right by the amount indicated in the
right operand. Zeroes are shifted in
from the left.

257 & 'FF'X
2 I 4 I 8

yields
yields
yields
yields
yields
yields
yields
yields
yields
yields

1
14

4 « 2
-4 « 1
8 » 1
-8 » 1
'FFFF'X » 3
~1 & 'FF'X
.. 0
'FF'X && 8

16
-8
4
'7FFFFFFC'X
'IFFF'X
'FE 'X
-1
'F7' X

Examples of Logical Operations

J

+

8.5 FUNCTION CALL

Syntax:

function-call:

--->{id:functionJ--->{actual-parametersJ-->

actual-parameters:

--~~ ___ -_> __ (_____ l_-_-_-_~_~~-_-~:~~_::_':_~_~_-~ __ -_-__ -~-~-~>~J~~~_> __) __ -_-->].-------------------------->

A function returns a value to the
invoker. A call to a function passes
the actual parameters to the correspon­
di ng formal parameters. Each actual
parameter must be of a type that is
conformable to the corresponding formal
parameter. You may not pass a field of
a packed record as a var parameter. You
also may not pass an element of a packed
array as a var parameter.

The parenthesis list may be dropped if
the function requires no parameters.
However, if you wi sh to draw attent ion
to a function call that has no parame­
ters and make it appear different from a
variable reference, you can follow the
function name with an empty set of
parenthesis.

var A,B,C: IHTEGERi

function SUM
(A,B: IHTEGER): IHTEGER;

begin
SUM := A+B

end;

begin

C := SUM(A,B) * 2

end;

Function Example

Expressions 79

+ 8.6 SCALAR CONVERSIONS
+
+
+ Pascal/VS predefi nes the functi on ORO
+ that converts any scalar value into an
+ integer. The scalar conversi on func­
+ tions convert an integer into a speci­
+ fied scalar type. An integer expression
+ is converted to another scalar type by
+ enclosing the expression within paren­
+ theses and prefi xi ng it wi th the type
+ identifier of the scalar type. If the
+ operand is not in the range 0
+ ORO(HIGHEST(scalar type», then a sub­
+ range error will result. The conversion
+ is performed in such a way as to be the
+ inverse of the ORO functi on. See
+ "Scalar Conversion" on page 126.
+
+ The definition of any type identifier
+ that specifies a scalar type (enumerated
+ scalars or subrClnges) forms a scalar

80 Pascal/VS Reference Manual

+ conversion function. By definition, the
+ expression CHAR(x) is equivCllent to
+ CHRex) j INTEGER(x) is equi valent to Xi
+ and ORO(type(x» is equivalent to x.
+
+
+
+ type
+ WEEK =
+ eSUN,MON,TUE,WEO,THU,FRI,SAT)j
+ va ..
+ DAY: WEEK;
+
+
+ {The following assigns SAT to DAY}
+ OAY:= WEEK(6)j
+
+
+
+
+

Scalar Conversion Functions

J

J

J

8.7 SET CONSTRUCTOR

Syntax:

set-contructor:

----> ---r--'[--->{expr}---rc==--->----~~-->-{e-x-p-r-}~---->~J--~---Jr-->]

~----<=================----'--<====================~--->
--> [

A set constructor is used to compute a
value of a set type within an
expression.

The set constructor is list of comma
separated expressions or expression
pairs within square brackets. An
expression pair designates that all val­
ues from the fi rst expressi on through
the last expression are to be included
in the resulting set; the evaluation of
the first expression must produce a val­
ue less than or equal to the value
computed by the second expression. Each
expressi on must be of the same type;
this type becomes the base scalar type
of the set. If the set specifies INTE­
GER valued expressions, then there is an
implementation restriction of 256 ele­
ments permitted in the set.

type
DAYS = set of

(SUN,MON,TUES,WED,THU.FRI,SAT);
CHARSET= set of CHAR;

va ...
WORKDAYS,
WEEKEND: DAYS
NONLETTERS: CHARSET;

.
WORKDAYS .- [MON .. FRI];
WEEKEND .- - WORKDAYS;

.
NONlETTERS : =

- ['a' .. 'z','A' .. 'Z'J;

Set Constructor

Expressions 81

J

J

J

+

+

+

+

9.0 STATEMENTS

Syntax:

statement:

>UabeU--> : ->]
<

--->{assert-statement}------------------------------------->

r---> {assi gnment-statement} >

r--->{case-statement} >

r--->{compound-statement} >

--->{continue-statement}----------------------------------->

r--->{empty-statement} >

r--->{for-statement} >

r--->{goto-statement} >

--->{if-statement} >

--->{leave-statement}-------------------------------------->

--->{procedure-call} >

--->{repeat-statement} >

--->{return-statement}------------------------------------->

--->{while-statement} >

--->{with-statement} > >

Statements are your directions to per­
form specific operations based on the
data. The statements are si mi lar to

those found in most high level program­
ming languages.

Statements 83

+ 9.1 THE ASSERT STATEMENT
+
+
+
+
+
+

Syntax:

+ assert-statement:
+
+ ---> assert --->{expr}--->
+
+
+
+
+ The assert-statement is used to check
+ for a specific condition and signal a
+ runtime error if the condition is not
+ met. The condition is specified by the
+ expression which must evaluate to a
+ BOOLEAN value. If the condition is not
+ TRUE then the error is raised. The com­
+ piler may remove the statement from the
+ program if it can be determined that the
+ assertion is always true.
+

84 Pascal/VS Reference Manual

+
+
+ Example:
+
+ assert A >= B
+
+ The Assert Statement
+
+
+

J

J

9.2 THE ASSIGNMENT STATEMENT

Syntax:

assignment-statement:

----TI--->{variable}------~J---> .- --->{expr}-------------------------------->
~>{id:function}--->

The assignment-statement is used to
assi gn a value to a vari able. Thi s
statement is composed of a reference to
a vari able follol.Jed by the assi gnment
symbol (':='), followed by an expression
which when evaluated is the new value.
The variable must be conformable to the
expressi on. The rules for expressi on
conformability are given in "Type Com­
patibility" on page 31.

You may make array assignments (assign
one array to another array) or record
assignments (assign one record to anoth­
er). When doing this, the entire array
or record is assigned.

A result is returned from a function by
assigning the result to the function
name prior to leaving the function. See
"Function Results" on page 65

Pascal/VS will not permit the assignment
of a value to a pass by const parameter.

Example:

type
CARD : record

SUIT : (SPADE,
HEART,
DIAMOND,
CLUB);

RANK 1. .13
end;

val"
X, y, Z : REA l ;

LETTERS,
DIGITS,
LETTER_OR_DIGIT

: set of CHAR;

I, J, K : INTEGER;

DECK: al"l"ay[1 .. 52] of
CARD;

X :: YlEZ;
LETTERS
DIGITS
LETTER OR DIGIT
DECK[I l-:-SUIT
DECK[J J

.- ['A' .. 'Z' J;

.- ['0' .. '9' 1;

.- LETTERS + DIGITS;

.- HEART;

.- DECK[K J;

Assignment Statements

Statements 85

9.3 THE CASE STATEMENT

Syntax:

case-statement:

--> c:se --->{expr}---> of --->]

L [>{range~---T--->
<----- , <

<--------
-<=~->-{-s-t-a_t-e-m-e-n-t_}~~~~-->l

<------------------~[-<=-------;--<-=:=J--~----------------~

+
+
+

---> otherwise ---I~==~~:~~t~m~~~~===J--->l < ___ J

-> end -->

The case-statement provides you with a
mul t i pIe branch based upon the evalu­
ation of an expression. This statement
consi sts of an expressi on called the
selector and a list of statements. The
selector must be of scalar type (except
type REAL). Each statement is prefixed
with one or more ranges of the same type
as the selector; each range is separated
by a comma. Each range designates one
or more values called case labels.

Pascal/VS evaluates the expression and
executes the statement whose case label
equals the value of the expression. If
no case label equal s the value of the
express ion, then the otherwi se state-

+ ment is executed if it is present; if
+ there is no otherwise statement and the
+ %CHECK CASE option is on, then a runtime
+ error will result. If the checking is
+ not enabled the results will not be pre­
+ di dable.

The range values of a case-statement may
be written in any order. However, you
may not designate the same case label on
more than one statement.

86 Pascal/VS Reference Manual

Example:

type
SHAPE = (TRIANGLE, RECTANGLE,

SQUARE, CIRCLE);
COORDINATES =

record
X,Y : REAL;
AREA : REAL;
case S : SHAPE of

end;
var

COORD

TRIANGLE:
(SIDE : REAL;

BASE : REAL);
RECTANGLE:

(SIDEA,SIDEB : REAL);
SQUARE:

(EDGE : REAL>;
CIRCLE:

(RADIUS : REAL>

COORDINATES;

with COORD do
case S of
TRIANGLE:

AREA := 0.5 M SIDE M BASE;
RECTANGLE:

AREA := SIDEA M SIDEB;
SQUARE:

AREA := SQRCEDGE);
CIRCLE:

AREA .- 3.14159 M SQRCRADIUS)
end;

The Case Statement

J

J

L
Example:

type
RANK = (ACE. TWO,

FIVE, SIX,
NINE. TEN,
KING) ;

THREE.FOUR,
SEVEN.EIGHT.
JACK. QUEEN.

SUIT = (SPADE.HEART,DIAMOND.ClUB);
CARD = record

var

R RANK;
S : SUIT
end;

POINTS : INTEGER;
A_CARD : CARD;

case A_CARD.R of
ACE:

POINTS : = 11;
TWO .. TEH:

POINTS := ORD(A_CARD.R)+l
+ otherw;se
+ POINTS .- 10

end;

The Case Statement with otherwise

Statements 87

9.4 THE COMPOUND STATEMENT

Syntax:

compound-statement:

--> begin -~-->{statement}-~--> end ----------------------------------> l<_____ ; < ______ ~

The compound-statement serves to brack­
et a seri es of statements that are to be
executed sequentially. The reserved
words "begin" and "end" delimit the
statement. Semicolons are used to sepa­
rate each statement in the list of
statements.

88 Pascal/VS Reference Manual

Example:

if A > B then
begin (swap A and B }

TEMP .- Ai
A .- B;
B .- TEMP

end

Compound Statement

J

J

+ 9.S THE CONTINUE STATEMENT
+
+
+
+
+
+

Syntax:

+ continue-statement:
+

TNL SN204446 (31 December 81) to SH20-6168-1

+ ---> continue --.--->
+
+
+
+

The continue statement causes a jump to
the loop-continuation portion of the
inner-most enclosing for, while, or
repeat statement. In other words, it is
a goto to the end of the loop.

The followi ng examples illustrate how
the continue statement functions in each
of the loop constructs.

while expr do begin

continue

(*continue jumps to here*)
end

for i := exprl to expr2 do
begin

continue

(*continue jumps to here*)
end

repeat

continue

(*continue jumps to here*)
unt il expr;

Statements 89

TNL SN204446 (31 December 81) to SH20-6168-1

9.6 THE EMPTY STATEMENT

Syntax:

empty-statement:

-->

The empty-statement is used as a place
holder and has no effect on the exe­
cution of the program. This statement
is often useful when you wish to place a
label in the program but do not want it
attached to another statement (such as.
at the end of a compound-statement).
The empty-statement is also useful to
avoid the ambiguity that arises in nest­
ed if-statements. You may force a
single else-clause to be paired with the

90 Pascal/VS Reference Manual

outer nested if-statement (see page 94)
by using an empty-statement.

if bl then
if b2 then

51
else

else
52

{ empty-statement }

J

J

9.7 THE FOR STATEMENT

Syntax:

for-statement:

---> for --->{id}---> .- --->{expr}--~~---» to J
L--- down to --->

[~<-------------> do --->{statement}---------------------->

The for-statement repeatedly executes a
statement while the control variable is
assigned a series of values. The value
of the control variable is incremented
(to) or decremented (downto) for each
iteration of the loop. The increment
(decrement) is computed by the SUCC
(PRED) function. That is, the control
var i able is changed to the succeedi ng
(precedi ng) value of the type of the
control variable.

The for-statement initializes the con­
trol variable to the first expression.
Prior to each execution of the component
statement, the control variable is com­
pared less than or equal to (to), or
greater than or equal to (downto) the
second expressi on. Pascal/VS computes
the value of the second expressi on at
the beginning of the for-statement and
uses the result for the duration of the
statement. Thus the endi ng value
expression is computed once and can not
be changed during the for-statement.

The control variable must be an automat­
ic variable which is declared in the
immediately enclosing routine. Also, it
may not be subscripted, field qualified
or referenced through a po inter. The
type of the control variable must be a
scalar type.

The executed statement must not alter
the control vari able. If the control
variable is altered within the loop, the
resultant loop execution is not predict­
able. The value of the control variable
after the for-statement is executed is
undefi ned (you should not expect the
control variable to contain any partic­
ular value).

Given the following statement

fo~ I := exprl to expr2 do stmt

where I is an automatic scalar variable;
exprl and expr2 are scalar expressions
which are type-compatible with Ii and

'stmt' is any arbitrary statement. The
followi ng compound statement is func­
tionallyequivalent:

begin
TEMPI .- exprl;
TEMP2 .- expr2;
if TEMPI <= TEMP2 then

begin

end

I : = TEMPI i
repeat

stmt;
if I = TEMP2 then

leave;
I := SUCC(l)

unti 1 FALSE; {forever}
end

where 'TEMPI' and 'TEMP2' are compiler
generated temporary variables.

And given the following statement

for I := exprl downto expr2 do stmt

where I is an automatic scalar variable;
exprl and expr2 are scalar expressions
whi ch are type-compat i ble wi th I; and
'stmt' is any arbitrary statement. The
followi ng compound statement is func­
tionallyequivalent:

begin
TEMPI .- exprli
TEMP2 .- expr2;
if TEMPI >= TEMP2 then

begin

end

I : = TEMP 1;
repeat

stmt;
if I = TEMP2 then

leave;
I := PRED(l)

unti 1 FALSE; {forever}
end

where 'TEMPI' and 'TEMP2' are compiler
generated temporary variables.

Statements 91

Examples:

{ find the maximum INTEGER in
{ an array of INTEGERs
MAX : = AU J;
LARGEST := 1;
for I := 2 to SIZE OF A do
if A[I] < MAX then

begin
LARGEST := I;
MAX :: A[I)

end

}
}

{ matrix multiplication: C<-AM8 }

for I :: 1 to N do
for J:: 1 to N do

begin
X :: 0.0;
for K :: 1 to N do

X :: A[I,K] * B[K,Jl + X;
C[I,Jl := X

end

{ sum the hours worked this week)

SUM :: 0;
for DAY:: MON to FRI do

SUM :: SUM + TIMECARD[DAY]

The For Statement

92 Pascal/VS Reference Manual

J

J

J

9.8 THE GOTO STATEMENT

Syntax:

goto-statement:

--------> go to --->{label)--->

The goto-statement changes the flow of
control within the program.

Examples:

goto 10
go to ERROR_EXIT

The Goto statement

The label must be declared wi thi n the
routine that contains the
goto-statement.

The following restrictions apply to the
use of the goto statement:

• You may not branch into a compound
statement from a goto-statement
whi ch is not contai ned wi thi n the
statement.

• You may not branch into the then­
clause or the else-clause from a
goto-statement that is outside the
if-statement. Further, you may not
branch between the then-clause and
the else-clause.

• You may not branch into a case-al­
ternative from outside the
case-statement or between case-al­
ternative statements in the same
case-statement.

• You may not branch into a for,
repeat, or whi Ie loop from a goto
statement that is not contained
wi thi n the loop.

•

•

You may not
with-statement
goto-statement
with-statement.

branch into
from

outside of

a
a

the

For a goto-statement that specifies
a label that is defined in an outer
routine. the target label may not be
defined within a compound statement
or loop.

The following example illustrates legal
and illegal goto-statements.

procedure
label

GOTO_EXAMPLE;

Ll. L2. L 3. L4

procedure INNER;
begin

goto L4; { permitted)
goto L3; { not permitted)

end;
begin

goto L3; { not permitted)
begin

L3:
goto L4; { permitted)
go to L3; { permitted)

end;
L4:if expr then

L1: goto L2 { not permitted)
else

L2: goto Ll { not permitted)
end;

Goto Target Restrictions

Statements 93

9.9 THE IF STATE"EHT

Syntax:

if-statement:

--> if -->{expr}--> then -->{statement}--'-----------------------------r----->

~> else -->{statementJ-->J

The if-statement allows you to specify
that one of two statements is to be exe­
cuted depending on the evaluation of a
boolean expression. The if-statement is
composed of an expressi on and a then­
clause and an optional else-clause.
Each clause contains one statement.

The expression must evaluate to a
BOOLEAN value. If the result of the
expressi on is TRUE, then the statement
in the then-clause is executed. If the
expression evaluates to FALSE and there
is an else-clause, then the statement in
the else-clause is executed; if there is
no else-clause, control passes to the
next statement.

Example:

if A <= B then
A := (A+l.O)/2.0

if ODD(1) then
J:=J+I

else
J:=J div 2 + 1

The If statement

Nest i ng of an if-statement wi thi n an
if-statement could be interpreted with
two different meanings if only one
statement had an else-clause. The fol­
lowi ng example illustrates the condi­
tion that produces the ambiguity.
Pascal/VS always assumes the first
interpretation. That is, the
else-clauses are paired with the inner­
most if-statement.

94 Pascal/VS Reference Manual

The following line could be
interpreted two ways.

if bl then if b2 then stmtl else stmt2

Interpretation 1
(assumed by Pascal/VS)

if bl then
begin

if b2 then
stmtl

else
stmt2

end

Interpretation 2
(incorrect interpretation)

if bl then
begin

if b2 then
stmtl

end
else

stmt2

If the second interpretation is desired
you could code it as shown or you could
take advantage of the empty-statement.

if bl then
if b2 then

stmtl
else

else
stmt2

{ empty statement }

+ 9.10 THE LEAVE STATEMENT
+
+
+
+
+
+

Syntax:

+ leave-statement:
+

TNL SN20-4446 (31 December 81) to SH20-6168-1

+ ---> leave -->
+
+
+
+

The leave statement causes an immediate,
unconditional exit from the inner-most
enclosi ng for, whi Ie or repeat loop.
For example, the following two code seg­
ments are functionally equivalent:

while expr do
begin

leave
end;

while expr do
begin

gate lab;
end;

lab; ;

+
+
+ Example:
+
+ P:=FIRST;
+ while P<>nil do
+ if P~.HAME = 'JOE SMITH' then
+ leave
+ else
+ P:=P~.HEXT;
+ {P either points to the desired}
+ {data or is nil }
+
+
+
+
+

The leave Statement

Statements 95

TNL SN20-4446 (31 December 81) to SH20-6168-1

9.11 THE PROCEDURE CALL

Syntax:

procedure-call:

--->{id:procedure}-----r--~----------------->
~> [>{expr~---~--» ___ >J

<---- , <

The procedure-statement causes the
invocation of a procedure. When a pro­
cedure is ;nvoked, the actual parameters
are subst; tuted for the correspond; ng
formal parameters. The actual parame­
ters must be conformable to the formal
parameters. The rules for expressi on
conformability are given in "Type Com­
patibility" on page 31_

Parameters which are passed by
read/write reference (var) may only be
variables, never expressions or con­
stants. Also, fields of a packed record
may not be passed by var. Parameters
passed by value or read-only reference
(canst) may be any expression.

A procedure invocation that requires no
parameters does not use the 1 i st of
operands.

96 Pascal/VS Reference Manual

Example:

TRANSPOSE{AN_ARRAY,
NUM':'OF ROWS,
NUM-OF:COLUMNS);

MATRIX_ADD(A_ARRAY,
B ARRAY,
C-ARRAY,
N-;-M) ;

XYZ(l+J, K*L>

Procedure Invocations

L
9.12 THE REPEAT STATEMENT

Syntax:

~epeat-5tatement:

--> repeat ----~-->{5tatQment}--~--> until -->{expr}---------------> l<______ ; < ______ ~

The 5tatQmQnts containQd bQtween thQ
statQment del i mi ters repeat and unt t 1
are executed until the control expres­
si on evaluates to TRUE. ThQ control
expression must evaluatQ to type
BOOLEAN. Because the termination test
is at the end of the loop, the body of
the loop is always executed at least
once. The structure of the
repeat-statement allows it to act like a
compound statement in that it Qncloses a
list of statements.

ExamplQ:

repeat
K := I mod J;
I : = J;
J : = K

until J = 0

ThQ RQPQat statement

StatemQnts 97

+ 9.13 THE RETURN STATEMENT
+
+
+
+
+
+

Syntax:

+ return-statement:
+
+ ---> return --->
+
+
+
+
+ The return-statement permits an exit
+ from a procedure or funct ion. Thi s
+ statement is effecti vely a goto to an
+ imaginary label after the last statement
+ within the routine being executed. If
+ the ~CHECK FUNCTION option is enabled.

98 Pascal/VS Reference Manual

+ Pascal/VS will insure that a funct i on
+ has been assigned a value prior to the
+ return from the function. If a value
+ has not been assignad. a runtime error
+ wi 11 occur.

J

J

9.14 THE WHILE STATEMENT

Syntax:

while-statement:

----> while --->{expr}---> do --->{statement}------------------------------->

The while-statement allows you to speci­
fy a statement that is to be executed
while a control expression evaluates to
TRUE. The control expression must eval­
uate to type BOOLEAN. The expression is
evaluated prior to each execution of the
statement.

Example:

{ Compute the decimal size of H }
{ assume H >= 1 }
I .- 0;
J . - 1 ;
while N > 10 do

begin
I · - I + 1;
J · - J * 10;
N · - N div 10

end
(I is the power of ten of the }
(original N)
(J is ten to the I power }
(1 <= N <= 9 }

The While Statement

Statements 99

9.15 THE WITH STATEMENT

Syntax:

with-statement:

--> with --T-->{variable}--T--> do --->{statement}---------------------> L<_____ , < ______ ~

The with-statement is used to simplify
references to a record variable by elim­
inating an addressing description on
every reference to a fi eld. The
wi th-statement makes the fi elds of a
record available as if the fields were
variables within the nested statement.

The with-statement effectively computes
the address of a record variable upon
executing the statement. Any modifica­
tion to a variable which changes the
address computation will not be
reflected in the pre-computed address
during the execution of the with state­
ment. The following example illustrates
this point.

val' A al'l'ay[1 .. 10 J of
I'ecord

FIELD : INTEGER
end;

1:=1;
with A[I] do

begin
K : = FIElD;
I : = 2;
K := FIELO;
end;

{K: =A [1] • FI EL D}

{K: =A[l]. FIELD}

The Address of A is Computed
on Entry to the Statement

The comma notation of a with-statement
is an abbreviation of nested
with-statements. The names within a
with-statement are scoped such that the
last wi th statement wi 11 take
precedence. A local variable with the
same name as a field of a record becomes

100 Pascal/VS Reference Manual

unavailable in a with statement that
specifies the record.

Example:

type
EMPLOYEE =

val'

recol'd
NAME
MAN_NO
SALARY
ID_NO

end;

STRING(20);
O •• 999999;
INTEGER;
O •• 999999

FATHER : ~ EMPLOYEE;

with· FATHEROl do
begin

NAME .- 'SMITH';
MAN_NO .- 666666;
SALARY .- WEEKLY SALARY;
10 NO .- MAN_NO-

end -

is equivalent to:

begin
FATHERaL NAME
FATHEROt.MAN_NO
FATHEROl.SALARY
FA THEROl. ID_NO

end

:= 'SMITH';
:= 666666;
:= WEEKLY_SALARY;

:= FATHEROt.MAN_NO

Note: The variable FATHER is of type
pointer to EMPLOYEE, thus the pointer
notation must be used to specify the
record pointed to by the pointer.

The With Statement

j

J

L
Example:

V : record
V2 : INTEGER;
VI : record A
A : INTEGER

REAL end;

end;
A : CHAR;

with V,V1
begin

V2 · -
A · -
V.A · -

end;
A . - , A ' ;

do

1 ;
1. 0;
1

With Statements

(V.V2 . - 1 }
{ V.V1.A . - 1.0 }
{ V.A . - 1 }
{ CHAR A is not }
(available here}

{ CHAR A is now }
{ available }

Can Hide a Variable

Statements 101

J

J

Input and output are done using the file
data structure. The Pascal/VS Program­
mer's Guide provides more detail on how
to use the I/O facilities in a specific
operating system. Pascal/VS provides
predefined routines which operate on
variables of a file type. The routines
are:

• RESET

• REWRITE

• READ

• WRITE

• GET

• PUT

• EOF

+ • CLOSE

• UPDATE

• TERMIN

• TERMOUT

• PDSHI

• PDSOUT

• SEEK

To fac iIi tate input and output oper­
at ions that requ ire conversi on to and
from a character representation, the
predefined file type TEXT is provided.
The type TEXT is predefi ned as a fi Ie of
CHAR. Each GET and PUT transfers one
CHAR of i nformat ion. There are addi­
tional predefined routines that may be
executed on variables of type TEXT that
perform the required conversions.

• READlN

• WRITElN

• EOlH

• PAGE

+. COlS

10.0 I/O FACILITIES

10.1 RESET PROCEDURE

Open a File for Input

Definition:

procedure RESET(
F filetype;

canst S : STRING);

Where:

F is a variable of a file type
S is an optional string value that

specifies options

RESET positions the file pointer to the
beginning of the file and prepares the
fi Ie to be used for input. After you
invoke RESET the file pointer is point­
i ng to the fi rst data element of the
file. If the file is associated with a
termi nal, the termi nal user would be
prompted for data when the RESET is exe­
cuted. This procedure can be thought of
as:

1. Closing the file (if open) .

2. Rewinding the file.

3. Opening the fi Ie for input.

4. Getting the first component of the
file.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS Programmer's Gui de, order
number SH20-6162 which describes the
opt ions that are ava i lable.

I/O Facilities 103

10.2 REWRITE PROCEDURE

Open a File for Output

Definition:

procedure REWRITEC
F : filetype;

canst S : STRING);

Where:

F is a variable of a file type
S ;s an optional string value that

specifies options

REWRITE positions the file pointer to
the beginning of the file and prepares
the fi Ie to be used for output. Thi s
procedure can be thought of as:

1. Closing the file (if open).

2. Rewinding the file.

3. Opening the file for output.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS Programmer's Gui de. order
number SH20-6l62 which describes the
options that are available.

104 Pascal/VS Reference Manual

10.3 TERHIN PROCEDURE

Open a File for Input from the Terminal

Definition:

procedure TERMIN(
F : TEXT;

canst S : STRING);

Where:

F is a variable of type TEXT
S is an optional string value that

specifies options

TERMIN opens the des; gnated fi Ie for
input from the users termi nal. The
string parameter is used to specify any
special file dependent options to be
used in opening the file. Consult the
PClscal/VS Programmer's Gui de, order
number SH20-6162 which describes the
options that are available and operating
system dependencies on this procedure.

J

J

10.4 TERMOUT PROCEDURE

Open a File for Output from the Terminal

Defi nit ion:

procedure TERMOUT(
F : TEXT;

canst S : STRING);

Where:

F is a variable of type TEXT
S is an optional string value that

specifies options

TERMOUT opens the desi gnated fi Ie for
output to the users termi nal. The
string parameter is used to specify any
spec; al fi Ie dependent opt ions to be
used in opening the file. Consult the
Pascal/VS Programmer's Gui de, order
number SH20-6162 which describes the
options that are available and operating
system dependencies on this procedure.

10.5 PDSIN PROCEDURE

Open a File for Input from a PDS

Definition:

procedure PDSIN(
F : filetype;

canst S : STRING);

Where:

F is a variable of a file type
S is a string value that specifies

options

PDSIN opens a member in a library (par­
titioned) fila for input.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/YS Programmer's Guide, order
number SH20-6l62 which describes the
options that are available.

I/O Facilities 105

10.6 PDSOUT PROCEDURE

Open a File for Output to a PDS

procedure PDSOUT(
F : filetype;

const S : STRING);

Where:

F is a variable of a file type,
5 is a string value that specifies

options.

PDSOUT opens a member in a library (par­
titioned) file for output.

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS Progr~mmer's Guide, order
number SH20-6162 which describes the
options that are available.

106 Pasca1/VS Reference Manual

10.7 UPDATE PROCEDURE

Open a File for Input and Output

Definition:

procedure UPDATE(
F : filetype;

canst S : STRING);

Where:

F is a variable of a file type,
S is a string value that specifies

options.

UPDATE opens a file for both input and
output (updating). A PUT operation
replaces a file component obtained from
a preceding GET operation. The exe­
cution of UPDATE causes an implicit GET
of the first file component (as in
RESET). The following program fragment
illustrates the use of UPDATE.

var
FILEVAR : file of record

CNT : INTEGER;

end;

UPDATE(FILEVAR); {open and get }
while not EOF(FILEVAR) do

begin
FIlEVAR~.CNT := FILEVAR~.CNT+lj
PUT(FILEVAR)j {update last elem}
GET(FILEVAR)j {get next elem J

end;

The string parameter is used to specify
any special file dependent options to be
used in opening the file. Consult the
Pascal/VS Programmer's Guide, order
number SH20-6162 which describes the
options that are available.

J

J

+ 10.8 CLOSE PROCEDURE
+
+
+
+

+
+
+
+
+
+
+
+

Close a File

Definition:

procedure CLOSE(
F : filetype)j

Where:

+ F is a variable of a file type
+
+
+

+ CLOSE closes a file; all processing to
+ the fi Ie is completed. You must open
+ the file prior to using it again.

10.9 GET PROCEDURE

Position a File to Next Element

Definition:

procedure GET(F fi 1etype);

Where:

F is a variable of a file type.

GET positions the file pointer of a file
(previously opened for input) to the
next component in the fi Ie. For
example, if the file is defined as an
array of 80 characters, then each GET
returns the next 80 character record. A
GET i nvocat i on on a fi Ie of type TEXT
returns a single character.

I/O Facilities 107

10.10 PUT PROCEDURE

Position a File to Next Element

Definition:

procedure PUTC F filetype);

Where:

F is a variable of a file type.

PUT releases the current component of
the file variable by effectively writing
the component to the associated physical
fi Ie. A call to PUT wi th a fi Ie of type
TEXT transfers a single character. The
fi Ie must have been previ ously opened
for output.

108 Pascal/VS Reference Manual

10.11 SEEK PROCEDURE

Position a File to a Specified Element

Definition:

procedure SEEK(

Where:

F filetype;
N : INTEGER);

F is a variable of a file type,
N is an component number of

the file.

SEEK speci fi es the number of the next
fi Ie component to be operated on by a
GET or PUT operation. File components
are origined at 1. The SEEK procedure
is not supported for TEXT fi les. The
fi Ie speci fi ed in the SEEK procedure
must have been opened by RESET, REWRITE
or UPDATE. For more infomation, consult
the Pascal/VS Programmer's Guide, order
number SH20-6162.

J

10.12 EOF FUNCTION

Test File for End Of File

Definition:

function EOF(F:filetype):BOOLEAN;

function EOF:BOOLEAN.

Where:

F is a variable of a file type.

EOF is a BOOLEAN valued function which
returns TRUE if the end-of-fi Ie cond­
ition is true for the file. This condi­
t1 on occurs in an input file when an
attempt is made to read past the last
record element of the file. If the file
is open for output, this function always
returns TRUE.

If the file variable F is omitted, then
the function assumes the predefined file
INPUT.

Example:

{ The following will read all of }
{ the records from File SYSIN }
{ and write then out to SYSOUT }

type FREC =
record

A,B INTEGER
end;

val"
SYSIN,
SYSOUT: file of FREC;

begin
RESEHSYSIN);
REWRITECSYSOUT> ;
while not EOFCSYSIN) do

begin
SYSOUT~ :: SYSIN~;
PUHSYSOUT> ;
GEHSYSIN)

end;
end;

10.13 READ AND READLN (TEXT FILES)

Read Data from TEXT File

Definition:

procedure READ(
f : TEXT;
v : see below);

procedure READLNC
f TEXT;
v : see below);

Where:

f is an optional text file
that is to be used for input.

v is one or more variables,
each must be one of the
following types:
- INTEGER (or subrange)
- CHAR (or subrange)
- REAL
- SHORTREAL
- STRING
- packed array of CHAR

The READ procedure reads character data
from the TEXT fi Ie f. READ converts
character data to conform to the type of
the operand. The file parameter is
optional; the default file is INPUT.

READlN positions the file at the begin­
ning of the next line. You may use more
than one variable on each call by sepa­
rating each with a comma. The effect is
the same as mult i pIe calls to READ.

READCf,vl,v2)

is equivalent to:

and

begin
READCf,vl);
READCf,v2)

end

READLNCf,vl,v2,v3)

is equivalent to:

begin
READCf,vl) ;
READCf,v2) ;
READCf,v3) ;
READlNC f);

end

Multiple Variables on READ or READlN

I/O Facilities 109

Reading INTEGER Data

INTEGER data from a TEXT file is read by
scanning off leading blanks, accepting
an optional sign and converting all
characters up to the first non-numeric
character or end-of-line.

Reading CHAR Data

A variable of type CHAR is assigned the
next character in the file.

Reading STRING Data

Characters are read into a STRING vari­
able until the variable has reached its
maximum length or until the end of the
line is reached.

Reading REAL (SHORTREAl) Data

REAL (SHORTREAl) data is read by scan­
ning off leading blanks, accepting an
optional sign and converting all charac­
ters up to the first non-numeric charac­
ter not conformi ng to the syntax of a
REAL number.

+ Reading packed array of CHAR Data
+
+ If the variable is declared as a
+ 'packed array[l .. n] of CHAR', charac­
+ ters are stored into each element of the
+ array. This is equivalent to a loop
+ rang! ng from the lower bound of the
+ array to the upper bound, performing a
+ read operation for each element. If the
+ end-of-line condition should become
+ true before the variable is filled, the
+ rest of the variable is filled with
+ blanks.
+
+ Consult the Programmer's Guide for more
+ detai Is on the use of READ and READlN.

110 Pascal/VS Reference Manual

var
I,J: INTEGER;
5: STRING(100);
CH: CHAR;
CC: packed array[1 .. 10] of CHAR;
F: TEXT;

READlN(F,I,J,CH,CC,S);

assume the data is:

36 24 ABCDEFGHIHKlMNOPQRSTUVWXYZ

the variables would be assigned:

I
J
CH
CC
S
lENGTH(S)

36
24 , ,
'ABCDEFGHIJ'
'KlMNOPQRSTUVWXYZ'
16

The READ Procedure

Reading Variables with a length

You may optionally qualify a variable of
READ with a field length expression:

READCf,v:n)

where "v" is the variable being read and
"n" is the field length expression.

Thi s expressi on denotes the number of
characters in the input line to be proc­
essed for that variable. If the number
of characters i ndi cated by the field
length is exhausted during a read opera­
tion, then the reading operation will
stop 50 that a subsequent read wi 11
begin at the first character following
the field. If the reading completes
pri or to processi ng all characters of
the field then the rest of the field is
skipped.

J

val"
I,J: INTEGER;
S: STRING(100);
CH: CHAR;
CC: packed arl"ay[1 .. 101 of CHAR;
F: TEXT;

assume the data is:

36 24 ABCDEFGHIKlMNOPQRSTUVWXYZ

the variables would be assigned:

I
J
CH
CC
S
LENGTH(S)

36
4
, I'
'NOPQRSTUVW'
'XYZ'
3

The READ Procedure with Lengths

10.14 READ (NON-TEXT FILES)

Read Data from Non-TEXT Files

Definition:

procedure READ(

Where:

f file of t;
v : t);

f is an arbitrary file variable.
v is a variable whose type matches

the file component type of f

Each call to READ wi 11 read one fi Ie
element from file 'f' and assign it to
variable 'v,. If the file is not open,
the READ procedure will open it prior to
assigning to the argument.

REAO(f,v) is functionally equivalent to
the following compound statement:

begin v : = f4l; GEHf) end

For more detai Is consult the Program­
mer's Gui de.

I/O Facilities III

10.15 URITE AND URITELN (TEXT FILES)

Write Data to FIle

Definition:

procedure WRITE(
f : TEXT;
e : see below);

procedure WRITELN(
f TEXT;
e : see below);

Where:
f is an optional TEXT file

variable.
e is an expression of one of the

following types:
- INTEGER Cor subrange)
- CHAR (or subrange)
- REAL
- SHORTREAL
- BOOLEAN
- STRING
- packed array[l .. n] of CHAR

Pascal/VS accepts a special para­
meter format which is only
allowed in the WRITE routine
for TEXT files.
See the following description.

The WRITE procedure writes character
data to the TEXT file specified by f.
The data is obtained by converting the
expression e into an external form. The
file parameter is optional; if not spec­
ified, the default file OUTPUT is used.

WRITELN positions the file to the begin­
ning of the next line. WRITELN is only
applicable to TEXT files. You may use
more than one expression on each call by
separating each with a comma. The
effect is the same as multiple calls to
WRITE.

112 Pascal/VS Reference Manual

WRITE(f,el,e2)

is equivalent to:

and

begfn
WRITE(f,el)i
WRITE(f,e2)

end

WRITELN{f,el,e2,e3)

is equivalent to:

begin
WRITE(f,el) ;
WRITECf,e2) ;
WRITECf,e3) ;
WRITELNC f);

end

Multiple Expressions on WRITE

Pascal/VS supports a speci al i zed form
for specifying actual parameters on
WRITE and WRITELN to TEXT files. This
provides a means by which you can speci­
fy the length of the resulting output.
Each expression in the WRITE procedure
call may be represented in one of three
forms:

1. e

2. e: lenl

3. e: lenl : len2

The expressi on e may be of any of the
types outlined above and represents the
data to be placed on the file. The data
is converted to a character represen­
tation from the internal form. The
expressions lenl and len2 must evaluate
to an INTEGER value.

The expression lenl supplies the length
of the fi eld into whi ch the data is
wr i tten. The data is placed in the
field justified to the right edge of the

+ field. If lenl specifies a negative
+ value, the data is justified to the left I within a field whose length is

ABSClenl) •

The len2 expression (form 3) may be
specified only if e is an expression of
type REAL.

If lenl is unspecified (form 1) then a
default value is used according to the
table below.

J

J

L

+

type of
expression e

INTEGER
REAL
SHORTREAL
CHAR
BOOLEAN
STRING

default value
of lert!

12
20 (E notation)
20
1
10
LENGTH(expression)

array of CHAR length of array

Default Field Width on WRITE

Writing INTEGER Data

The expression lenl represents the mlnl­
mum width of the field in which the
integer is to be placed. The value is
converted to character format and placed
in a field of the specified length. If
the field is shorter than the size
requi red to represent the value, the
length of the field will be extended.

Examples:

Call : Result:

WRITE(1234: 6) 1234'

WRITE(1234:-6) '1234

WRITE(1234: 1) '1234'

WRITE(1234) 1234'

WRITE(1234: -3) '1234'

Writing CHAR Data

The value of lenl is used to i ndi cate
the wi dth of the fi eld in whi ch the
character is to be placed. If lenl is
not speci fi ed, a fi eld wi dth of 1 is
assumed. If lenl is greater than 1 then

+ the character will be padded on the left
+ with blanks; if lenl is negative, then
+ the character wi 11 be padded on the
+ right.

Example:

call:

WRITEC'a':6)
WRITE('a' :-6)

Writing REAL Data

Result:

a'
'a

REAL expressions may be printed with any
one of the three operand formats. If

TNL SN204446 (31 December 81) to SH20-6168-1

lenl is not specified (form 1), the
result will be in scientific notation in
a 20 character field.

If lenl is specified and len2 is not
(form 2), the result will be in scien­
tific notation but the number of charac­
ters in the field will be the value of
lenl.

If both lenl and len2 are speci fi ed
(form 3), the data will be written in
fixed point notation in a field with
length lenl i len2 speci fi es the number
of digits that will appear to the right
of the decimal point. The REAL expres­
sion is always rounded to the last digit
to be pri nted.

If lenl is not large enough to fully
represent the number, it will be
extended appropriately.

Examples:

Call: Result:

WRITE(3.14159:10)
, 3.142E+OO'

WRITE(3 .14159)
, 3.1415900000000E+OO'

WRITE(3.14159:10:4)
3.1416'

Writing BOOLEAN Data

The expression lenl is used to indicate
the width of the field in which the boo­

+ lean is to be placed. If the wi dth is
+ less than 6, then either a 'T' or 'F'
+ will be printed. Otherwise, 'TRUE' or
+ 'FALSE' wi 11 be sent to the fi Ie. The
+ data is placed in the field and justi­
+ fied according to the previously stated
+ rules.

+
+
+

Examples:

Call: Result:

WRITECTRUE:I0) TRUE'

WRITE(TRUE:-I0) 'TRUE

WRITECFALSE:2) , F'

Writing STRING Data

The second expression is used to indi­
cate the width of the field in which the
string is to be placed. The data is
placed in the field and justified
according to the previously stated
rules.

I/O Facilities 113

TNL SN20-4446 (31 December 81) to SH20-6168-1

+

+

Examples:

Call : Result:

WRITE('abed' :6) abed'

WRITE('abed' :-6) 'abed

WRITE('abcd':2) 'ab'

WRITE('abed') 'abed'

Writing Packed Array of CHAR Data

The second expression is used to indi­
cate the width of the field in which the
array is to be placed _ The data is
placed in the field and justified
according to the previously stated
rules.

Examples:

var
A pClcked

arrClY[1 .. 4] of CHAR;

A .- 'abed';

Call:

WRITE(A:6)

WRlTE(A:-6)

WRITE(A:2)

WRITE(A)

Result:

abed'

'abed

'ab'

'abed'

114 Pascal/VS Reference Manual

10.16 WRITE (NON-TEXT FILES)

Write Data to Non-TEXT Files

Definition:

procedure WRITE(

Where:

f file of t;
e : t);

f is an arbitrary file variable.
e is an expression whose type

matches the file component
type of f

Each call to WRITE will write the value
of expression e to file 'f'.

WRITE(f, e) is funct i onally equ i valent
to the following compound statement:

begin f41 := e; PUHf) end

For more detai Is consult the Program­
mer's Guide.

J

L
10.17 EOLN FUNCTION

Test a File for End of Line

Definition:

function EOLN(f: TEXT):BOOLEAN;

function EOLN:BOOLEANi

Where:

f is a TEXT file set to
input.

The EOlN function returns
result of TRUE if TEXT file
tioned to an end-of-line
otherwise, it returns FALSE.

a BOOLEAN
f is posi­
character;

If EOLN(f) is true, then f~ has the val­
ue of a blank. That is, when EOlN is
TRUE the file is positioned to a blank.
Thi s character is not in the fi Ie but
will appear as if it were. In many
applications the extra blank will not
affect the result; in those instances
where the physical layout of the data is
significant you must be sensitive to the
EOLN condition.

If the file variable F is omitted, then
the function assumes the predefined file
INPUT.

10.18 PAGE PROCEDURE

Force Skip to Next Page

Definition:

procedure PAGE(var f: TEXT);

Where:

f is a TEXT file set to
output.

This procedure causes a skip to the top
of the next page when the text-file is
printed. The file parameter is optional
and defaults to the standard file vari­
able OUTPUT.

I/O Facilities 115

+ 10.19 COLS FUNCTION
+
+
+ Determine Current Column
+

+ Dgfinition:
+
+
+
+
+
+

function COLS(
va ... f: TEXT)

Where:

INTEGER;

+ f is ~ TEXT file set to
+ output.
+
+

116 Pascal/VS Reference Manual

+ This function returns the current column
+ number (position of the next character
+ to be written) on the output file desig­
+ nated by the file variable. You may
+ force the output to a speci fi c column
+ with the following code:
+
+
+
+
+

if TAB> COLSCF) then
WRITECF,' ':TAB-COLSCF»;

+ The file name is never defaulted on the
+ COLS'procedure.

J

+
+
+
+

+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

+
+
+
+
+
+
+
+

L

The runtime library consists of those +.
routines that are predefined in +
Pascal/VS. In addition to the routines +.
described in this chapter, Pascal/VS
provides routines with which to do input •
and output. Consult the I/O chapter for
a description of those routines. The •
predefined procedures and functions
are: •

• ABS Function •
+

• ARCTAN Function + •
• CHR Function •

+
• CLOCK Function + •

+
• COMPRESS Function + •

+
• COS Function + •

+
• DATETIME Procedure + •
• DELETE Fundi on •

+
• DISPOSE Procedure + •
• EXP Function •

+
• FLOAT Function + •
• INDEX Function •
• HALT Procedure •

+
• HBOUND Function + •

+
• HIGHEST Function + •
• LBOUND Function •
• LENGTH Function •

+
• LN Functio-n + •

+
• LOWEST Fundion + •
• LTRIM Fundion •
• MARK Procedure •
• MAX Function •

TNL 8N204446 (31 December 81) to 8H20-6168-1

11.0 EXECUTION LIBRARY FACILITIES

MAXLENGTH Function

MIN Function

NEW Procedure

ODD Function

ORO Funct ion

PACK Procedure

PARMS Function

PRED Function

RANDOM Fund ion

READSTR Procedure

RELEASE Procedure

RETCODE Procedure

ROUND Function

Scalar Conversion

SIN Function

SIZEOF Function

SQR Function

SQRT Function

STR Function

SUBSTR Fundion

SUCC Function

TRUNC Fundion

TRIM Function

TOKEN Function

TRACE Procedure

UNPACK Procedure

WRITESTR Procedure

Execution Library Facilities 117

TNL SN20-4446 (31 December 81) to SH20-<i168-1

11.1 MEMORY MANAGEMENT ROUTINES

These routines provide means by which you can control the allocation of dynamic var­
iables.

+ 11.1.1 MARK Procedure
+

+ 11.1.2 RELEASE Procedure
+

+ +
+ Mark Heap + Release Heap
+

+
+
+
+
+
+
+
+
+
+
+

Definition:

procedure MARK(
var P : pointer);

Where:

P is a pointer to any type

The MARK procedure allocates a new area
of me~ory from where dynamic variables
are to be allocated. Such an area is
called a heap .. The predefined proce­
dure NEW allocates a dynamic variable
from the most recently created heap.
The predefined procedure DISPOSE
de-allocates a dynamic variable from the
heap.

REL EASE is the complementary procedure
which destroys a heap. Heaps are cre­
ated and destroyed in a stack-like fash­
ion.

MARK does not allocate dynamic
variables. The pointer variable passed
as parameter P is set to the address of
the associated heap control block; thus,
the returned pointer must not be used as
the base of a dynamic variable.

+ ---------------,

+
+
+
+
+
+
+
+
+
+
+

Definition:

procedure RELEASEe
var P : pointer);

Where:

P is a pointer to any type.

RELEASE frees one or more heaps that
were previ ously allocated by calls to
MARK. (See the description of MARK for
a definition of "heap".) The parameter
of RELEASE must contain the address
returned by a previous call to MARK; it
is through this parameter that the h~ap
is identdied.

RELEASE frees all heaps that were allo­
cated since the corresponding MARK was
executed. Thus, heaps are created and
destroyed in a stack-like manner.

When a heap is freed, all of the dynamic
variables which were allocated from the
heap are also freed. As a result,
RELEASE is a means for disposing of many
dynamic variables at one time. 4

RELEASE sets its parameter variable (P)

to "i 1.

Pointers which reference dynamic variables of a heap are no longer defined
when the heap is freed. Subsequent uses of such pointer values may cause
unpredictable results.

118 Pascal/VS Reference Manual

+
+
+ type
+ MARKP = ~INTEGER;
+ LINKP = @LINK;
+ LINK = record
+ NAME: STRING(30);
+ NEXT: LINKP
+ end;
+ var
+ p MARKP;
+ Q1,
+ Q2,
+ Q3 LIHKP;
+ begin
+
+ MARK(P);
+
+ HHHQl);
+ NEW(Q2);
+ NEW(Q3);
+
+
+
+

{ Frees Q1, Q2 and Q3
RELEASE(P) ;

+ end;
+

}

+ Example of MARK and RELEASE
+
+

TNL SN204446 (31 December 81) to SH20-6168-1

Execution Library Facilities 118.1

TNL SN20-4446 (31 December 81) to SH20-6168-1

118~2 PascallVS Reference Manual

11.1.3 NEW Procedure

Allocate Dynamic Variable

Definition:

form 1:
procedure NEW(

val" P pointer);

form 2:
procedure NEW(

val" PI pointer;
tl,t2 .•. : scalar);

form 3:
procedure NEW(

val" SP
LEN

Where:

STRIHGPTR;
INTEGER;

P is a pointer to any type
except a dynamic array.

PI is a pointer to a record
type with variants

SP is a STRINGPTR
tl,t2 ... are scalar constants

representing tag fields
LEN is an integer valued expression

The HEW
variable
sets the
able.

form 1

procedure allocates a dynamic
from the most recent heap and
pointer to point to the vari-

The fi rst form of procedure NEW allo­
cates the amount of storage that is nec­
essary to represent a value of the type
to which the pointer refers. If the
type of the dynamic variable is a record
with a variant part, the space allocated
is the amount requi red for the record
when the largest variant is active.

type
LINKP = OlLINK;
LINK = record

NAME: STRING(30);
NEXT: LINKP

end;
va ...

P,
HEAD LINKP;

begin

NEW(P);
with POI do

begin
NAME : =
NEXT :=

end;
HEAD := P;

end;

, , . ,
HEAD;

Example of using Simple Form
of Procedure NEW

form 2

The second form is used to allocate a
variant record when it is known which
variant (and sub-variants) wi 11 be
active, in which case the amount of
storage allocated will be no larger than
necessary to contain the variant speci­
fi ed. The scalar constants are tag
field values. The first one indicates a
particular variant in the record which
will be active; subsequent tags indicate
active sub-variants, sub-sub-variants,
and so on.

Note: This procedure does not set tag
fi elds. The tag 1 i st only serves to
indicate the amount of storage required;
it is the programmer's responsibility to
set the tag fields after the record is
allocated.

Execution Library Facilities 119

type
AGE = O •• 100;
RECP = OlREC;
REC =

var

record
NAME: STRING(30)j
case HOW OLD: AGE of

o .. 18: -
(FATHER: RECP);

19 •. 100:

end;

(case MARRIED: BOOLEAN of
TRUE: (SPOUSE: RECP);
FALSE: ()

P : RECP;

begin

NEW(P,18);
with POl do begin

NAME := 'J. B. SMITH, JR'
HOW OLD := 18;
NEW(FATHER,54,TRUE);
with FATHEROl do begin

NAME : = 'J. B. SMITH';
HOW OLD := 54;
MARRIED := TRUE;
NEW(SPOUSE,50,TRUE);

end {with fatherOl};
end {with pOl};

end;

form 3

Using NEW for Allocating
Records with Variants

The thi rd form is used to allocate a
string whose maximum length is known
only during program execution. The
amount of storage to be ava; lable for
the string is defined by the required
second parameter. See "The Type
STRINGPTR" on page 58.

120 Pascal/VS Reference Manual

11.1.4 DISPOSE Procedure

De-allocate Dynamic Variable

Definition:

procedure DISPOSE(
var P : pointer);

Where:

P is any pointer type.

DISPOSE returns storage for a dynami c
variable. You may de-allocate a dynamic
variable from any heap. This procedure
only returns the storage referred to by
the poi nter and does not return any
storage which the dynamic variable ref­
erences. That is, if the dynamic
variable is part of a linked list, you
must explicitly DISPOSE of every element
of the list. DISPOSE sets the pointer
to ni 1. If you have other poi nters
which reference the same DISPOSEd dyna­
mic variable, then it is your
responsibility not to use these pointers
because the dynamic variable which they
represented is no longer allocated.

J

J

J

11.2 DATA MOVEMENT ROUTINES

These routines provide you with convenient ways to handle large amounts of data
movement efficiently.

11.2.1 PACK Procedure

Copy Unpacked Array to Packed Array

Definition:

procedure PACKC
canst SOURCE

INDEX
var TARGET :

Where:

array-type;
index_of_source;
pack_array_type)

SOURCE is an array.
INDEX is an expression which is

compatible with the index
of SOURCE.

TARGET is a variable of type packed
array.

This procedure fills the target array
with elements from the source array
starting with the index I where the tar­
get array is packed. The types of the
elements of the two arrays must be iden­
t; cal. Thi s procedure operates as:

Given:
A : array[m .• n] of T;
Z : packed array[u .. v] of T;

Call:
PACK(A. I, Z);

Operation:
k : = 1;
for j := lBOUNDCZ) to HBOUNDCZ) do

begin
Z[j] := A[k];
k := SUCCCk)
end;

Where:
j and k are temporary variables.

It is an error if the number of elements
in Z is greater than the number of ele­
ments in A starting with the Ith element
to the end of the array.

11.2.2 UNPACK Procedure

COpy Packed Array to Unpacked Array

Definition:

procedure UNPACKC
var SOURCE : pack_array_type;

canst TARGET array-type;

Where:

SOURCE
TARGET
INDEX

INDEX : index_of_target);

is a packed array.
is a variable of type array.
is an expression which is
compatible with the index
of TARGET.

Thi s procedure fi lIs the target array
with elements from the source array
where the source array is packed. The
type of the elements of the two arrays
must be identical. This procedure oper­
ates as:

Given:
A : array[m .. n] of T;
Z : packed array[u •. v] of T;

Call:
UNPACKCZ. A, 1);

Operation:
k : = I;
for j := lBOUNDCZ) to HBOUNDCZ) do

begin
A[k] := Z[j];
k := SUCCCk)
end;

Where:
j and k are temporary variables.

It is an error if the number of elements
in Z is greater than the number of ele­
ments in A starting with the Ith element
to the end of the array.

Execution library Facilities 121

11.3 DATA ACCESS ROUTINES

These routines provide you a means to inquire about compile and run time bounds and
values.

+ 11.3.1 LO~EST Function
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Lowest Value of a Scalar

Definition:

function LOWESH
S

Where:

scalar-type)
scalar;

S is an identifier that has been
declared as a scalar type, or
a variable which is of a scalar
type.

+ This function returns the lowest value
+ that is in the scalar type. The operand
+ may be either a type identifier or a
+ variable. If the operand is a type
+ identifier, the value of the function is
+ the lowest value that a variable of that
+ type may be assigned. If the operand is
+ a variable. the value of the function is
+ the lowest value that the variable may
+ be ass; gned.
+
+ If the argument S refers to a
+ record-type whi ch has a vari ant part.
+ and if no tag values are specified. then
+ the storage required for the record with
+ the largest variant will be returned.
+
+
+
+ Example:
+
+ type
+ DAYS
+

= (SUN, MON, TUES. WED,
SAT> ;

+ SMALL
+ var

THU. FRI,
= 0 •• 31;

+ I INTEGER;
+ J o .• 255;
+
+ .
+ LOWESH DAYS) is SUN
+ LOWESHBOOLEAN) is FALSE
+ LOWEST<SMALU is 0
+ LOWESHI> is MININT
+ LOWES T< J) is 0
+
+ The LOWEST Function
+
+

122 Pascal/VS Reference Manual

+ 11.3.2 HIGHEST Function
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Highest Value of a Scalar

Definition:

function HIGHEST(
S scalar-type)

scalar;

Where:

S is an identifier that has been
declared as a scalar type, or
a variable which is of a scalar
type.

+ This function returns the highest value
+ that is in the scalar type. The operand
+ may be either a type identifier or a
+ vari able. If the operand is a type
+ identifier, the value of the function is
+ the hi ghest value that a vari able of
+ that type may be assigned. If the oper­
+ and is a variable. the value of the
+ function is the highest value that the
+ variable may be assigned.
+
+
+
+ Example:
+
+ type
+ DAYS = (SUN, MON, TUES. WED,
+ THU, FRI. SAT> ;
+ SMAll = 0 .. 31;
+ var
+ I INTEGER;
+ J 0 .. 255;
+
+ .
+ HIGHESH DAYS) is SAT
+ HIGHESTCBOOLEAN) is TRUE
+ HIGHESHSMALU is 31
+ HIGHEST< I) is MAXINT
+ HIGHESHJ) is 255
+
+ The HIGHEST Function
+
+

J

J

~

+ 11.3.3 LBOUND Function
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Lower Bound of Array

Definition:

function LBOUNDC
V
I

function LBOUND(
T
I

Where:

arraytype;
integer-const)
scalar;

type-identifier;
integer-const)
scalar;

V is a variable which is declared
as an array type.

T is an type identifier declared
as an array.

I is an positive integer valued
constant expression and is
optional.

+ The LBOUND function returns the lower
+ bound of an index to an array. The
+ array may be specified in two ways:
+
+ • an identifier which was declared as
+ an array type via the type
+ construct;
+
+ • a variable which is of an array
+ type.
+
+ The value returned is of the same type
+ as the type of the index. The second
+ parameter defines the dimension of the
+ array for which the lower bound is
+ returned. It is assumed to be "1" if it
+ is not specified.
+
+
+
+ Example:
+
+ type
+ GRID =
+
+ var
+ A
+ B
+
+
+
+
+
+
+
+
+
+
+

.
lBOUND(
LBOUND(
lBOUND(
LBOUND(

array[-10 .. 10,-10 .. 10] of
REAL;

array[1 .. 100] of ALFA;
array[1 .. 100] of

of array[0 .. 9] of CHAR;

A) is 1
GRID, 1) is -10
B, 2) is 0
B[1]) is 0

The LBOUND Function

+ 11.3.4 HBOUND Function
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Upper Bound of Array

Definition:

function HBOUNDC
V
I

function HBOUND(
T
I

Where:

arraytype;
integer-const)
scalar;

type-identifier;
integer-const)
scalar;

V is a variable which is declared
as an array type.

T is an type identifier declared
as an array.

I is an positive integer-valued
constant expression and is
optional.

+ The HBOUND funct i on returns the upper
+ bound of an index to an array. The
+ array may be specified in two ways:
+
+. an identifier which was declared as
+ an array type via the type
+ construct;
+
+. a vari able whi ch is of an array
+ type.
+
+ The value returned is of the same type
+ as the type of the index. The second
+ parameter defines the dimension of the
+ array for which the upper bound is
+ returned. It is assumed to be "1" if it
+ is not specified.
+
+
+
+ Example:
+
+ type
+ GRID =
+
+
+ var
+ A
+ B
+
+
+
+
+
+
+
+
+
+
+

.
HBOUND(
HBOUND(
HBOUND(
HBOUND(

array[-10 .. 10,-10 .. 10] of
REAL;

GRID;
array[1 .. 100] of

of array[0 .. 9] of CHAR;

A) is 10
GRID) i s 10
B, 2) is 9
B[1]) is 9

The HBOUND Function

Execution library Facilities 123

+ 11.3.S SIZEOF Function
+
+
+ Allocation Size of Data
+

+ Definition:
+
+
+
+
+
+
+
+
+
+

function SIZEOF(
S

function SIZEOF(
5

tl.t2 •...

+ Where:
+

anytype)
INTEGER;

recordtype;
tags);
INTEGER;

+ S is an identifier that has been
+ declared as a type. or any
+ variable.
+
+
+

124 Pascal/VS Reference Manual

+ The SIZEOF function returns the amount
+ of storage in bytes required to contain
+ the variable or a variable of the type
+ specified.
+
+ If Sis a record vari able or a type
+ identifier of a record. it may be fol­
+ lowed by tag list which defines a par­
+ ticular variant configuration of the
+ record. In thi s case the funct i on wi 11
+ return the amount of storage requ ired
+ within the record to contain that vari­
+ ant configuration.

J

J

TNL SN20-4446 (31 December 81) to SH20-6168·1

11.4 CONVERSION ROUTINES

This section documents predefined routInes which preform conversions from one data
type to another. Refer to "WRITESTR" on page 141 and "READSTR" on page 141 for char­
acter string conversions.

11.4.1 ORO Function

Ordinal Value of Scalar

Definition:

function ORD(
S

Where:

scalar)
ItHEGER;

S is may be any scalar type or
a pointer.

Thi s funct i on returns an integer that
corresponds to the ordinal value of the
scalar. If the operand is of type CHAR
then the value returned is the position
in the EBCDIC character set for the
character operand. If the operand is an
enumerated scalar, then it returns the
position in the enumeration (beginning
at zero); for example, if COLOR = (RED,
YElLOLoJ, BLUE), then ORD(RED) is 0 and
ORD(BLUE) is 2.

If the operand is a pointer, then the
function returns the machine address of
the dynamic variable referenced by the
pointer. Although pointers can be con­
verted to INTEGERs, there is no function
provi ded to convt:rt an INTEGER to a
pointer.

11. 4", 2 CHR c:u 11 t, t i on

Integer to Ch~racter Conversion

Definition:

function CHRC
I

Where:

INTEGER)
CHAR;

I is an INTEGER expression that is
to be interpreted as a character.

This function is the inverse function to
ORD for characters. That is,
'ORDCCHRCI»=I' if I is in the subrange:

ORDCLOWESTCCHAR» .. ORDCHIGHESTCCHAR»

If the operand is not within this range
and checking is enabled then a runtime
error will result, otherwise the result
is unpredictable.

Execution Library Facilities 125

TNL SN204446 (31 December 81) to SH20-6168·1

+ 11.4.3 Scalar Conversion
+
+
+ Integer to Scalar Conversion
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

Definition:

function type-ide
I

Where:

ItHEGER)
scalar-type;

I is an integer valued expression
that is to be converted to an
enumerated scalar.

+ Every type identifier for an enumerated
+ scalar or subrange scalar can be used as
+ a function that converts an integer into
+ a value of the enumerated scalar. These
+ functi ons are the inverse of ORO.
+
+
+
+ Example:
+
+ type
+ DAYS
+
+
+ .
+ DAYS(O)
+ DAYS(3)
+ DAYS(6)
+ DAYS(])

= (SUN,
THU,

+ BOOLEAN(O)
+ BOOLEAN(!)
+

MON.
FRI,

is
is
is
i s
is
is

TUES,
SAT> ;

SUN
WED
SAT
an error
FALSE
TRUE

WED.

+ The Enumerated Scalar Function
+
+

126 Pascal/VS Reference Manual

+ 11.4.4 FLOAT Function
+
+
+ Integer to Real Conversion
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

1L~finition:

function FLOAT<
I

Where:

INTEGER
REAL;

I is an INTEGER valued expression.

+ This function converts an INTEGER to a
+ REAL. Pascal/VS will convert an INTEGER
+ to a REAL implicitly if one operand of
+ an ar i thmet i c or relat i on operator is
+ REAL and the other is INTEGER. Thi s
+ function is useful in making the conver­
+ sion explicit in the program.

J

J

L

11.4.S TRUNC Function

Real to Integer Conversion

Definition:

function TRUNC(
R

function TRUNC(
S

Where:

REAL)
INTEGER;

SHORTREAL)
INTEGER;

R is a REAL valued expression.
S is a SHORTREAL valued expression.

This function converts a REAL expression
to an INTEGER by truncating the operand
toward zero.

Examples:

TRUHC(1. 0) is 1
TRUNC(1.1) is 1
TRUHC(1. 9) is 1
TRUNC(o . 0) is 0
TRUNC(-1.0) is -1
TRUNC(-1.1) is -1
TRUNC(-1.9) is -1

11.4.6 ROUND Function

Real to Integer Conversion

Definition:

function ROUND(
R

function ROUND(
S

Where:

REAL)
ItHEGER;

SHORTREAL
INTEGER;

R is a REAL valued expression.
S is a SHORTREAL valued expression.

This function converts a REAL expression
to an INTEGER by rounding the operand.
This function equivalent to

if R > 0.0
ROUND .­

else
ROUND .-

Examples:

ROUND(1. 0)
ROUt,W(1.1)
ROUND(1. 9)
ROUND(o . 0)
ROUND(-1.0)
ROUND(-1.l>
ROUND(-1.9)

then
TRUNC(R + 0.5)

TRUNC(R 0.5)

is 1
is 1
is 2
is 0
is -1
is -1
is -2

Execution Library Facilities 127

+ 11.4.7 STR Function
+
+
+
+

Convert to String

+
+
+
+
+
+
+
+
+

Definition:

function STRe
X

+ Where:
+

CHAR or packed
array[l. .n] of

CHAR)
STRING;

+ X is CHAR or packed array[l .• n] of
+ CHAR expression.
+
+
+
+

128 Pascal/VS Reference Manual

+ This function converts either a CHAR or
+ packed array[I .. n] of CHAR to a STRING.
+ Pascal/VS will implicitly convert a
+ STRING to a CHAR or packed array[l .. n]
+ of CHAR on assi gnment, but all other
+ conversi ons requi re you to expl i ci tly
+ state the conversion. You may assign a
+ CHAR to an packed array[I .. n] of CHAR by
+ either:
+
+ va ...
+ AOC ALPHA;
+ CH CHAR;
+
+ AOC . - STReCH);
+ or
+ AOe . - , , . AOC[1] . - CHi ,

J

J

11.5 MATHEMATICAL ROUTINES

These routines defined various mathematical transformations.

+ 11.5.1 MIN Function
+
+
+ MINimum Value of Scalars
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Definition:

functfon MINC
EO,

.
En

Where:

scalar-type)
scalar-type;

Ei is an expression of a scalar
type. All parameters must be
of the same type except where
noted below.

+ The MIN function returns the mlnlmum
+ value of two or more expressions. The
+ parameters may be of any scalar type,
+ including REAL. The parameters may be a
+ mixture of INTEGER and REAL expressions,
+ in whi ch case, the result wi 11 be of
+ type REAl. In all other cases, the
+ parameters must be conformable to each
+ other.

+ 11.5.2 MAX Function
+
+
+ Maximum Value of Scalars
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Definition:

function MAX(
EO,

En

Where:

scalar-type)
scalar-type;

Ei is an expression of a scalar
type. All parameters must be
of the same type except where
noted below.

+ The MAX functi on returns the maximum
+ value of two or more parameters. The
+ parameters may be of any scalar type,
+ including REAL. They may be a mixture
+ of INTEGER and REAL expressions, in
+ which case, the result will be of type
+ REAL. In all other cases, the parame­
+ ters must be conformable to each other.

Execution Library Facilities 129

11.5.3 PRED Function

Predecessor Value of a Scalar

Definition:

function PRED(
S

Where:

scalar)
scalar;

S is any scalar expression.

Thi s functi on returns the predecessor
value of the parameter expression. The
PRED of the first element of an enumer­
ated scalar is an error. If the opti on
%CHECK is ON, a runtime error will be
raised if the PRED of the first element
is attempted. I f the check i ng is not
performed, the results of the PRED of
the first value is not defined.
PREDCTRUE) is FALSE and PRED(' B') is
'A' . The PRED of an INTEGER is equi v­
alent to subtract i ng one. PRED of a
REAL argument is an error.

130 Pascal/VS Reference Manual

11.5.4 suee Function

Successor Value of a Scalar

Definition:

function SUCC(
S

Where:

scalar)
scalar;

S is any scalar expression.

This function returns the successor val­
ue of the parameter expressi on. The
SUCC of the last element of an enumer­
ated scalar is an error. If the opt ion
%CHECK is ON, a runtime error will be
raised if the SUCC of the last element
is attempted. If the check i ng is not
performed, the results of the SUCC of
the last value is not defined.
SUCC(FALSE) is TRUE and SUCC('B') is
'C'. The SUCC of an INTEGER is equiv­
alent to addi ng one. SUCC of a REAL
argument is an error.

J

11.5.5 ODD Function

Test for Integer is Odd

Definition:

function ODD(
I

Where:

INTEGER)
BOOLEAN;

I is an INTEGER to be tested
for being odd.

This function returns TRUE if the param­
eter I is odd, or FALSE if it is even.

11.5.6 ABS Function

Absolute Value

Definition:

function ABS(
I

function ABS(
R

Where:

INTEGER)
INTEGER;

REAL)
REAL;

I is an INTEGER expression.
R is a REAL expression.

The ABS function returns either a REAL
value or an INTEGER value depending the
type of its parameter. The result is
the absolut~ value of the parameter.

Execution Library Facilities 131

11.5.7 SIN Function

Compute Sine

Definition:

function SINe
x

Where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The SIN function computes the sine of
parameter X, where Xis expressed in
radi ans.

132 Pascal/VS Reference Manual

11.5.8 COS Function

Compute Cosine

Definition:

function cose
X

Where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The COS function computes the cosine of
the parameter X, where X is expressed in
radians.

J

J

11.5.9 ARCTAN Function

Compute Arctangent

DefinHion:

function ARCTAN(
X

Where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The ARCTAN function computes the
arctangent of parameter X. The result is
expressed in radians.

11.5.10 EXP Function

Compute Exponential

Definition:

function EXP(
X

Where:

REAL)
REAL;

x is an expression that evaluates
to a REAL value.

The EXP function computes the value of
the base of the natural logarithms, e,
raised to the power expressed by parame­
ter X.

Execution library Facilities 133

11.5.11 LN Function

Compute Natural log

function lH(
X

Where:

REAL)
REAL;

X is an expression that evaluates
to a REAL value.

The IN funct i on computes the natural
logarithm of the parameter X.

134 Pascal/VS Reference Manual

11.5.12 SQRT Function

Compute Square Root

Definition:

function SQRH
X

Where:

REAl)
REAL;

X is an expression that evaluates
to a REAL value.

The SQRT funct i on computes the square
root of the parameter X. If the argu­
ment is less than zero, a run time error
is produced.

J

11.5.13 SQR Function

Compute Square

Definition:

function SQR(
X : REAL): REAL;

function SQR(
X : INTEGER): INTEGER;

Where:

x is an expression that evaluates
to a REAL or INTEGER value.

The SQR function computes the square of
the argument. If the argument is of
type REAL, then a REAL resul tis
returned, otherwise the function
returns an INTEGER.

TNL SN204446 (31 December 81) to SH20-6168·1

+ 11.5.14 RANDOM Function
+
+
+
+

+
+
+
I
+
+
+
+
+
+
+
+
+

Compute a Random Number

Definition:

function RANDOM(
S : INTEGER) REAL;

Where:

S is an expression that evaluates
to an INTEGER value.

+ The RANDOM funct i on returns a pseudo
+ random number in the range >0.0 and
+ <1. o. The parameter 5 is called the
+ seed of the random number and is used to
+ specify the beginning of the sequence.
+ RANDOM always returns the Selme value
+ when called with the same non zero seed.
+ I f you pass a seed value of 0, RANDOM
+ will return the next number as generated
+ from the previous seed. Thus, the gen­
+ eral way to use this function is to pass
+ it a non zero seed on the first invoca­
+ tion and a zero value thereafter.

Execution Library Facilities 135

TNL SN204446 (31 December 81) to SH20-6168-1

J1.6 STRING ROUTINES

These routines provide conven~ent means of operating on string data.

+ 11.6.1 LENGTH Function
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

Length of String

Definition:

function LENGTH(
S

Where:

STRING)
O •• 32767;

S is a STRING valued expression.

+ This function returns the current length
+ of the parameter. The value will be in
+ the range O .. 32767.

136 Pascal/VS Reference Manual

11.6.2 HAXLENGTH Function

Maximum Length of a String

Definition:

function MAXLENGTH(
S

Where:

STRING)
O •• 32767;

S is a STRING valued expression.

This function returns the maximum length
of the parameter string. The value will

+ be in the range 0 .. 32767.

J

L
+ 11.6.3 SUBSTR Function
+
+
+
+

+
+
+
+
+
+
+
+

I
+
+
I
+
+
+
+
+
+
+
+
+
+
+
+

Obtain Substring

Definition:

function SUBSTR(
const SOURCE STRING;

START INTEGER;
LEN : INTEGER) : STRING;

function SUBSTR(
const SOURCE STRING;

START : INTEGER): STRING;

Where:
SOURCE is a STRING expression from

which a substring will be
returned.

START is an INTEGER expression that
designates the first position
in the SOURCE to be returned.

LEN is an INTEGER expression that
defines the number of
characters to be returned.

The SUBSTR function returns a substring
from the specified source string
(SOURCE). The second parameter (START)
specifies the starting position within
the source from where the substring is
to be extracted. (The first character
of the source string is at position 1).
The third parameter (LEN) determines the
length of the substring. If the length
is omitted, the substring returned will
be the remaining portion of the source
string from position START.

The value of START+LEN-1 must be less
than or equal to the current LENGTH of
the string, otherwise, an error diagnos­
tic will be produced at run time.

+ Examples:
+

SUBSTR('ABCDE',2,3) yields 'BCD'
SUBSTR('ABCDE',1,3) yields 'ABC'
SUBSTR('ABCDE',4) yields 'DE'
SUBSTR('ABCDE',1) yields 'ABCDE'
SUBSTR('ABCDE',2,S) is an error

TNL SN204446 (31 December 81) to SH20-{)168-1

+ 1l.6.r. DELETE Function
+
+
+
+

+
+
+
+
+
+
+
+

I
+
+
+
+
I
+
+
I
+
+
I
+
+
+
+

Delete Substring

Definition:

function DELETE(
const SOURCE STRING;

START ItH EGER;
LEN : ItHEGER) : STRING;

function DELETE(
const SOURCE STRING;

START : INTEGER) : STRING;

Where:

SOURCE is a STRING expression from
which a portion will be
deleted.

START is an INTEGER expression that
designates the first position
in the SOURCE to be deleted.

LEN is an INTEGER expression that
defines the number of
characters to be deleted.

The DELETE function returns the source
stri ng (SOURCE) 1--11 th a port i on of the
stri ng removed. The second parameter
(START) specifies the starting position
within the source where characters are
to be deleted. (The first character of
the source string is at position 1).
The third parameter (LEN) specifies the
number of characters to be deleted. If

. the length parameter is omi tted, all
rema in i ng characters are deleted; more
precisely, the string is truncated
beginning at position START.

An attempt to delete a portion of the
source beyond its length is an execution
time error.

+ Examples:
+

DELETE('ABCDE',2,3) yields 'AE'
DELETE('ABCDE',3) yields 'AB'
DELETE('ABCDE',3,1) yields 'ABDE'
DELETE('ABCDE',1) yields "

Execution library Facilities 137

TNL SN20-4446 (31 December 81) to SH20O{)168·1

+ 11.6.S TRIM Function
+
+
+ Remove Trailing Blanks
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+

Definition!

function TRIMC
const SOURCE

Where!

STRING)
! STRING;

SOURCE is the STRING to be trimmed.

+ The TRIM function returns the parameter
+ value with all trailing blanks removed.
+
+ Example:
+
+ TRIM(' A B
+ TRIM('
+

f) yields f A Bf
') yields"

138 Pascal/VS Reference Manual

+ 11.6.6 LTRIM Function
+
+
+ Remove Leading Blanks
+

Definition: +
+
+
+
+
+
+
+
+
+
+
+
+
+

function LTRIM(
canst SOURCE : STRING)

: STRING;

Where:

SOURCE is the STRING to be trimmed.

+ The LTRIM function returns the parameter
+ value with all leading blanks removed.
+
+ Example:
+
+ LTRIMC' A B
+ LTRIM('
+

') yields 'A B
') yields"

J

J

+ 11.6.7 COMPRESS Function
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Remove Multiple Blanks

Definition:

function COMPRESS(
const SOURCE : STRING)

: STRING;

Where:

SOURCE is a the STRING expression
to be compressed.

+ The COMPRESS function replaces multiple
+ blanks with a single blank.
+
+ Example:
+
+ COMPRESS('A B CD ') yields 'A B CD '

TNL SN204446 (31 December 81) to SH20-6168-1

-I- 11. 6.8 :I: HOE'!; f.:r..l:r.Lct i C'1
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

lookup String
.--------

Definition:

function INDEX(
canst SOURCE
const LOOKUP

Where:

STRING;
STRING)
O .• 32767;

SOURCE is a STRING that contains
the data to be compared against.

LOOKUP is the data to be looked
up in the SOURCE.

+ The INDEX function compares the second
+ parameter against the first and returns
+ the starting index of the first instance
+ where LOOKUP begi ns in SOURCE. If there
+ are no occurrences, then a zero is
+ returned.
+
+ Examples:
+
+ val'
+ S
+

STRING;

+ S:= 'ABCABC':
+
+ INDEX(S,'BC') yields 2
+ INDEX(S,'X') yields 0

Execution Library Facilities 139

TNL SN20-4446 (31 December 81) to SH20-6168·1

+ 11.6.9 TOKEN procedure
+
+
+ Find Token

+ trailing blanks are ignored. If there
+ is no token in the string, POS is set to
+ LENGTH(SOURCE)+1 and RESULT is set to
+ all blanks.

+ +

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Definition:
+ A token is defined to be any of:
+

procedure TOKEN(
var P~S : INTEGER;
const SOURCE : STRING;
var RESULT: ALPHA);

Where:

POS is the starting index in SOURCE
of ~~here to look for a token, it
is set to the index of where to
resume the search on the next
use of TOKEN.

SOURCE is a STRING that contains
the data from which a token
is to be extracted.

+ •
+
+
+

I •
+ •
+
+ +
+ =
+ (
+ I
+
+ {
+
+

Pascal/VS identifier 1 to 16
alphanumeri c characters, '$' or an
underscore. The first letter must
be alphabetic ora '$'.

Pascal/VS unsi gned integer see
page 18.

The following special symbols:

)(

<> <
) [
& &&
; . -
} ()(

/
<=
)

II
)()

->
>=

Of

¢

RESULT is the variable which will
be returned with token found. + Example:

+ +
+ +
+ +

+
+ The TOKEN procedure scans the SOURCE +
+ string looking for a token and returns +
+ it as an ALPHA. The starting position +
+ of the scan is passed a!.. the fi rst +
+ parameter. This parameter is changed to +
+ reflect the position which the scan is +
+ to be resumed on subsequent calls. +
+ Leading blanks, multiple blanks and

140 Pascal/VS Reference Manual

I := 2;
TOKENCI,', Token+'. RESULT)

lis set to 8
RESULT is set to 'Token

TOKEN would return the same if
I were set to 3, that is,
leading blanks are ignored.

J

+ 11.6.10 READSTR
+
+
+
+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Read Data from a STRING

Definition:

procedure READSTR(
const s STRING;

v : see below);

Where:

s is a STRING expression that
is to be used for input.

v is a list of one or more
variables, each must be one
of the following types:
- INTEGER (or subrange)
- CHAR (or subrange)
- REAL
- SHORTREAL
- STRING
- packed array of CHAR

+ The READSTR procedure reads character
+ data from a source stri ng into one or
+ more variables. The actions of READSTR
+ are i dent i cal to that of READ except
+ that the source data is extracted from a
+ string expression instead of a text
+ fi Ie. See "READ and READLN (TEXT
+ Files)" on page 109.
+
+ As in the READ procedure, variables may
+ be qualified with a field length expres­
+ sion. See the example below.
+
+
+
+
+ var
+ 1, J: INTEGER;

STRING(100);
STRING(100);
CHAR;

I S
+ Sl
+ CH
of CC
+
+

packed array[1 .. 10] of CHAR;

I S := '36 245ABCDEFGHIJK';
READSTR(S,I,J:3,CH,CC:5,Sl);

+
+
+

+
+
+

the variables would be assigned:

I 36
J 24
CH ' 5'
CC 'ABCDE
Sl 'FGHIJK';
LENGTH(Sl) 6

The READSTR Procedure

TNL SN204446 (31 December 81) to SH20~168-1

+ 11.6.11 WRITESTR
+
+
+
+

+
+
+
I
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

Write Data to a STRING

Definition:

procedure WRITESTR(
var s STRING;

e : see below);

Where:

5 is a STRING variable
e is an expression of one of the

following types:
- INTEGER (or subrange)
- CHAR (or subrange)
- REAL
- SHORTREAL
- BOOLEAN
- STRING
- packed array[l .. n] of CHAR

+ Pascal/VS accepts a special para-
+ meter format which allows you.
+ to specify a length of the result.
+
+

+ The WRITESTR procedure converts expres­
+ sions into character data and stores the
+ data into a string variable. The seman­
+ tics of WRITESTR are identical to WRITE,
+ except that the target of the data is to
+ a STRING rather than to a text fi Ie.
+ See "WRITE and WRITELN (TEXT Files)" on
+ page 112.
+
+ As in the case of WRITE, the expressions
+ being converted may be qualified with a
+ field length expression.
+
+
+
+

+
+
+

var
1, J: INTEGER;

STRING(lOO);
REAL;

S
R
CH CHAR;

I := 10; J := -123;
R := 3.14159;
CH : = '*';
WRITESTR(S,I:3,J:5,'ABC',CH,

R:5:2);

the variable S would be assigned:

, 10 -123ABC* 3.14'

The WRITESTR Procedure

Execution Library Facilities 141

TNL SN20-4446 (31 December 81) to SH20~168-1

11.7 GENERAL ROUTINES

These routines provide several useful features of the Pascal/VS runtime environment.

+ 11.7.1 TR~~E Procedure
+
+
+
+

+
+
+
+
+

Routine Trace

Definition:

procedure TRACE(
var F TEXT);

+ 11.7.2 HALT Procedure
+
+
+
+

+
+
+
+
+

Halt Program Execution

Definition:

procedure HALT;

+ +
+ Where:
+
+
+
+
+
+

F is the file that will receive
the trace listing

+ This procedure displays the current list
+ of procedures and functions that are
+ pending execution (i .e. save chain).
+ Each line of the list i ng conta ins the
+ name of the routine, the statement num­
+ ber where the call took place, the
+ return address in hexadeci mal and the
+ name of the module that conta i ned the
+ calling procedure.
+
+ The file F is the TEXT file to which the
+ information is to be written.

142 Pascal/VS Reference Manual

+ This routine halts execution of an Pas­
+ cal/VS program. That is, thi s can be
+ considered to be a return from the main
+ program.

11.8 SYSTEM INTERFACE ROUTINES

These routines provide interfaces to system facilities: in general they are depend­
ent on the implementation of Pascal/VS.

+ 11.8.1 DATETIME Procedure
+
+
+ Get Date and Time
+

+
+
+
+
+
+
+
+
+
+
+
+
+

Definition:

procedure DATETIME(
var DATE,

TIME : ALFA);

where:

DATE is the returned date.
TIME is the returned time.

+ This procedure returns the current date
+ and time of day as two ALFA arrays. The
+ format of the result is placed in the
+ first and second parameters respective­
+ ly:
+
+
+
+
+ where:
+ mm
+
+ dd
+ yy
+
+ HH
+
+ MM
+ 5S
+

mm/dd/yy
HH:MM:5S

is the month expressed as a two
digit value.
is the day of the month.
is the last two digits of the
year.
is the hour of the day expressed
in a 24 hour clock.
is the minute of the hour.
is the second of the minute.

+ 11.8.2 CLOCK Funct;on
+
+
+ Get Execution Time
+

+
+
+
+
+
+

Definition:

function CLOCK INTEGER;

+ The value returned is the number of
+ microseconds the program has been run­
+ ning. Note: In an MVS system: the time
+ is "TASK" time; and in a CMS system: the
+ time is "CPU virtual" time.

Execution Library Facilities 143

+ 11.8.3 PARMS Function
+
+
+
+

+
+
+
+
+
+

Get Execution Parameters

Definition:

function PARMS STRING;

+ 11.8.4 RETCODE Procedure
+
+
+
+

+
+
+
+
+
+

Set Program Return Code

procedure RETCODE(
RETVALUE : INTEGER);

where:
+

+ The PARMS function returns a string that +
+ was associated with initial invocation +
+ of the Pascal/VS main program. +

RETVALUE is the return code to be
passed to the caller of the
Pascal/VS program. The value

144 Pascal/VS Reference Manual

+
+
+
+

is system dependent.

+ The value of the operand will be
+ returned to system when an exit is made
+ from the main program. If this routine
+ is called several times, only the last
+ value specified will be passed back to
+ the system.

J

J

+
+
+
+
+
+
+ Syntax:
+
+
+ include-statement:
+

TNL SN204446 (31 December 81) to SH20-6168-1

12.0 THE % FEATURE

I ---> ~ ---> INCLUDE ---1===~_~~_~ :~ ~_======:=::::::::::;J--------->

+ check-statement:
+
+
+
+
+
+
+
+
+

---> ~ ---> CHECK

l
===;-P;iNTER-=====;I---T===~ g~F-===;J--------->
---> SUBSCRIPT --->
---> SUBRANGE ---->
---> FUNCTION ---->
---> CASE --------)
---) TRUNCATE ----)

+ print-statement:
+
+
+
+
+
+
+
+
+

---> ~ ---) PRINT ---T===~ g~F-===;J-------------------------------->

list-statement:

---> ~ ---> LIST ---T===~ g~F-===;J--------------------------------->

+ page-statement:
+
+ ---> ~ ---> PAGE --->
+
+ cpaqe-statement:
+
+
+
+
+
+
+
+
+
+
+

---> ~ ---> CPAGE ---> unsigned-integer ---------------------------->
title-statement:

-~-> ~ ---> TITLE ---> any-character-string ------------------------>
skip-statement:

---> ~ ---> SKIP ---> unsigned-integer --------------------,--------->
margins-statement:

I ---> ~ ---> MARGINS ---> unsigned-integer unsigned-integer -------->

+

+ The ~ feature of Pascal/VS is used to
+ enable or disable a number of compiler
+ opti ons and features. The compi ler
+ treats a ~ command as a trigger symbol

+ which caus~s the compiler to ignore all
+ text between the statement and the
+ end-of-line.

The ~ Feature 145

TNL SN204446 (31 December 81) to SH20-6168-1

+ 12.1 THE 'INCLUDE STATEMENt
+
+

The INCLUDE statement causes source from
a library file to be inserted into the
input stream immediately after the cur­
rent line. More precisely, the compiler
is directed to begin reading its input
from a library file; when the end of the
file is reached, the compiler will
resume reading from the previous source.

There are two forms of the INCLUDE
statement:

•
•

7.INCLUDE library-name(member-name)

7.INCLUDE member-name

The first form references a library file
and a specific member in the file. s

The second form references a speci fi c
member from a default library.

program ABC;
canst

%include CONSTS
type

7.include TYPES
var

%include VARS
%include LIBlCPROCS)
begin

end.

Example of 7.INCLUDE statement

+ 12.2 THE 'CHECK STAYEMENT
+
+
+ The CHECK statement gives you the abili­
+ ty to enable or di sable the runtime
+ check i ng features of Pascal/VS. The
+ checking may be enabled for part or all
+ of the program. The compiler will check
+ the followi ng:
+
+ •
+
+
+ •
+
+
+
+ •
+
+

use of a pointer whose value is NIL
(POINTER) .

use of a subscript which is out of
range for the array index
(SUBSCRIPT> .

lack of an assignment of a value to
a function before exiting from the
function (FUNCTION).

+ •
+
+
+
+ •
+
+
+
+
+
+ •
+
+
+
+ •
+
+
+
+

assignment of a val~~ which is not
in the proper rang2 for th~ target
variable (SUBRANGE1.

use of the pred~fined functions PRED
or SUCC where the resul t of thQ
function is not a value ;n the type,
i . e. underflow or overflo~J of thG!
value range (SUBRANGE).

the value of a CASE statement selec­
tor which is not equal to any of the
CASE labels (CASE).

the value
checked to
the target
<TRUNCATE) .

of a string will be
be sure it will fit into
string on an assignemnt

+ If the check option is missing, then all
+ of the above checks wi 11 be assumed
+ applicable. For example, '%CHECK OH'
+ activates all of the checks. '7.CHECK
+ POINTER OFF' will disable the check on
+ pointer references. The default is:
+
+
+

7. CHECK ON

+ The %CHECK statement, 1 ike the other
+ statements in this section, is a direc­
+ tion to the compiler. Its effect is
+ based on where it appears in the text
+ and is not subject to any structuri ng
+ established by the program.
+
+
+
+ 12.3 THE 'PRINT STATEMENT
+
+
+ The PRINT statement is used to turn on
+ and off the printing of source in the
+ listing. The default is:
+
+
+
+
+

7. PRINT ON

+ 12.4 THE %LIST STATEMENT
+
+
+ The LIST statement is used to enable or
+ disable the pseudo-assembler listing of

I the Pascal/VS compi ler. Thi s opt ion
only has affect if the LIST compi ler
options is enabled.

It is often required to view the
pseudo-assembler listing for only a
5~all section of a module, and to have
it suppressed else~"here. Thi s can be
done as follows:

1. Insert ali ne at the begi nn i ng of
the module that consists of

%LIST OFF

Under VM/CMS, as, and MVS/TSO operating environments, the specified library
name is actually the "DO name" of a partitioned data set (which may be con­
catenated). If the library name is omitted, the default is SYSLIB.

146 Pascal/VS Reference Manual

At the beginning of each section of
code for which an assembler listing
is required, insert

%LIST ON

TNL SN204446 (31 December 81) to SH20-6168-1

+ page skip. The title is printed as spe­
+ cified on the statement, there is no
+ change from lower case to upper case.
+ The default is no title.
+
+

3. At the end of each code section +
insert + ! '.8 THE %SKIP STATEMENT

+

4.

%LIST OFF

Compi Ie the module wi th the LIST
option.

+ 12.5 THE %PAGE STATEMENT
+
+
+ The PAGE statement is used to force a
+ sk i p to the next page on the output
+ listing of the source program.
+
+
+
+
+ 12.6 THE "CPAGE STATEMENT
+
+
+ The CPAGE statement is used to force a
+ page eject if there are less than a spe­
+ cified number of lines left on the cur­
+ rent page of the output listing. This
+ is useful to make sure there is suffi­
+ cient room for a unit of code, thereby
+ not having it split across two pages. <.....! Example:

% CPAGE 30

L

+
+
+
+
+ 12.7 THE "TITLE STATEMENT
+
+
+ The TITLE statement is used to set the
+ title in the listing. It also causes a

+
+ The SKIP statement is used to force one
+ or more blank lines to be inserted into
+ the source listing.

12.9 THE %MARGINS STATEMENT

The MARGINS statement redefines the left
and right margins of the compiler input.
The compiler skips all characters that
lie outside the margins. The statement
has the form

%MARGINS m n

where "m" is the new left margin and "n"
is the new right margin.

If the MARGINS statement appears ina
library member which is being "included"
by the %INCLUDE statement, the new mar­
gins will have affect for the duration
of the member only. When the end of the
member is reached and the previous
source is resumed, the margin settings
will revert back to their previous con­
dition.

The % Feature 146. 1

,NL SN204446 (31 December 81) to SH20-6168·1

J

146.2 Pascal/VS Reference Manual

APPENDIXES

• "The Space Type" on page 149

• "Standard Identifiers in Pascal/VS" on page 151

• "Syntax Diagrams" on page 153

• "Index to Syntax Diagrams" on page 165

• "Glossary" on page 167

APPENDIXES 147

+
+
+
+
+ A.l THE SPACE DECLARATION
+
+
+
+
+ Syntax:
+
+
+ space-type:
+

A.O THE SPACE TYPE

+ ---> space ---> [--->{constant-exprl---> 1 ---> of --->{typel------------->
+
+
+
+
+ The need arises to represent data within
+ storage areas which do not have the same
+ fixed offset within each instance of the
+ area. Examples of this include entries
+ within a directory, where each entry may
+ be of variable length, and processing
+ variable length records from a buffer.
+ To solve thi s problem, Pascal/VS pro­
+ vides the space structure.
+
+ A variable declared with the space type
+ has a component which is able to 'float'
+ over a storage area in a byte oriented
+ manner. Space variables are accessed by
+ following the variable's name with an
+ integer index expression enclosed in
+ square brackets. The index represents
+ the offset (in bytes) within the space
+ storage where the data to be accessed
+ resides. The offset is specified with
+ an origin of zero.
+
+ The constant expressi on whi ch follows
+ the space qual i fi er in the type defi­
+ nition represents the size of the stor­
+ age area (in bytes) associated with the
+ type.
+
+ The component type of the space may be
+ of any type except a file type.
+
+ An element of a space may not be passed
+ as a var parameter to a routine. Howev­
+ er, an element may be passed as a const
+ or value parameter.
+
+
+
+ A.2 SPACE REFERENCING
+
+
+ A component of a space is selected by
+ placi ng an index expressi on, enclosed

+ within square brackets, after the space
+ variable (just as in array references).
+ The indexing expression must be of type
+ INTEGER (or a subrange thereof). The
+ value of the index is the offset within
+ the space at which the component is to
+ be accessed. The unit of the index is
+ the byte. The index is always based
+ upon a zero orlgln. The component will
+ be of the space base type.
+
+ If the '~CHECK SUBSCRIPT' option is ena­
+ bled, the index expression will be
+ checked at execution time to make sure
+ that the computed address does not lie
+ outside the storage occupied by the
+ space. An execution time error diagnos­
+ tic will occur if the value is invalid.
+ (For a description of the CHECK feature
+ see "The XCHECK statement" on page 146).
+
+
+
+ var
+ S: space[1001 of
+ record
+ A,B: INTEGER
+ end;
+
+ begin
+ {base record begins
+ at offset 10 within
+ space 1
+ S[101.A·- 26;
+ S[10].B:= 0;
+ end;
+
+
+
+

Space Referencing Examples

The Space Type 149

J

J

+
+
+
+

+
+
+
+

+
+

+

+
+
+
+

+
+

+
+
+
+

I
+
+

B.O STANDARD IDENTIFIERS IN PASCAL/VS

A standard identifier is the name of a
constant, type, variable or routine that
is predefined in Pascal/VS. The name is
declared in every module pri or to the
start of your program. You may redefine

the name if you wish; however, it is
better to use the name according to its
predefined meaning.

The identifiers that are predefined are:

identifier

ABS
ALFA
ALFALEN
ALPHA
ALPHALEN
ARCTAN
BOOLEAN
CHAR
CHR
CLOCK
CLOSE
eOLS
COMPRESS
COS
DATETIME
DELETE
DISPOSE
EOF
EOLN
EXP

FALSE
FLOAT
GET
HALT
HBOUND
HIGHEST
INDEX
INPUT
INTEGER
LBOUND
LENGTH
LN
LOWEST
LTRIM
MARK
MAX
MAXINT
MAXLENGTH
MIN
MININT
NEW

form

function
type
constant
type
constant
function
type
type
function
function
procedure
function
function
function
procedure
function
procedure
function
function
function

constant
function
procedure
procedure
function
function
function
variable
type
function
function
function
function
function
procedure
function
constant
function
function
constant
procedure

Standard Identifiers

description

compute the absolute value of an INTEGER or REAL
array of 8 characters, indexed 1 .. ALFALEN
HBOUND of type ALFA, value is 8
array of 16 characters, indexed 1 .. ALPHALEN
HBOUND of type ALPHA, value is 16
returns the arctangent of the argument
data type composed of the values FALSE and TRUE
character data type
convert an integer to a character value
returns the number of micro seconds of execution
close a file
returns current column on output line
replaces multiple blanks in a string with one blank
returns the cosine of the argument
returns the current date and time of day
returns a string with a portion removed
deallocate a dynamic variable
test file for end of file condition
test file for end of line condition
returns the base of the natural log (e)

raised to the power of the argument
constant of type BOOLEAN, FALSE < TRUE
convert an integer to a floating point value
advance file pointer to next element of input file
halts the programs execution
determine the upper bound of an array
determine the maximum value of a scalar
looks up one string in another
default input file
integer data type
determine the lower bound of an array
determine the current length of a string
returns the natural logarithm of the argument
determine the minimum value of a scalar
returns a string with leading blanks removed
routine to create a new heap
determine the maximum value of a list of scalars
maximum value of type INTEGER
determines the maximum length of a string
determine the minimum value of a list of scalars
minimum value of type INTEGER
allocate a dynamic variable from most recent heap

Standard Identifiers in Pascal/VS 151

+

I
+

+

+

+

+

+
+
+

I
+

+
+
+

identifier

ODD
ORO
OUTPUT
PACK
PAGE
PARMS
PDSIN
PDSOUT
POINTER
PRED
PUT
RANDOM
READ
READLN
READSTR
REAL
RELEASE
RESET
RETCODE
REWRITE
ROUND
SEEK
SHORT REAL
SIN
SIZEOF
SQRT
SQR
STR
STRING

STRINGPTR

SUBSTR
SUCC
TERMIN
TERMOUT
TEXT
TOKEN
TRACE
TRIM
TRUE
TRUHC
UNPACK
UPDATE
WRITE
WRITELN
WRITESTR

form

function
function
variable
procedure
procedure
function
procedure
procedure
type
function
procedure
function
procedure
procedure
procedure
type
procedure
procedure
procedure
procedure
function
procedure
type
function
function
function
function
function
type

type

function
function
procedure
procedure
type
procedure
procedure
function
constant
function
procedure
procedure
procedure
procedure
procedure

Standard Identifiers Continued

description

returns TRUE if integer argument is odd
convert a scalar value to an integer
default output file
copies an array to a packed array
skips to the top of the next page
returns the system dependent invocation parameters
open a file for input from a partitioned data set
open a file for output from a partitioned data set
type to permit passing arbitrary pointers a routine
obtain the predecessor of a scalar
advance file pointer to next element of output file
returns a pseudo-random number
routine to read data from a file
routine to read the end of line character of TEXT file
converts a string to values assigned to variables
floating point represented in 370 long floating point
routine to destroy one or more heaps
open a file for input
sets the system dependent return code
open a file for output
convert a floating point to an integer by rounding
positions an opened file at a specific record
floating point represented in 370 short floating point
returns the sine of the argument
determine the memory size of a variable or type
returns the square root of the argument
returns the square of the argument
convert an array of characters to a string
a type for an array of char whose length varies during

execution up to a maximum length
a type for dynamically allocated strings of an

execution determined length
returns a portion of a string
obtain the successor of a scalar
open a file for input from the terminal
open a file for output from the terminal
file of CHAR
extracts tokens from a string
writes the routine return stack
returns a string with trailing blanks removed
constant of type BOOLEAN. TRUE> FALSE
convert a floating point to an integer by truncating
copies a packed array to an array
opens a file for both input and output
routine to write data to a file
routine to write end of line to a TEXT file
converts a series of expressions into a string

152 Pascal/VS Reference Manual

J

J

+

+
+
+
+
+
+

e,o SYNTAX DIAGRAMS

actual-parameters:

[___ ~~ __ :~:~:~~-_-__ -_r_-_->~J--->) ---Jr------------------------->
L-__ >

--~---> (

array-structure:

array-type:

f< > packed ~
~-----> array [

assert-statement:

) ---------->

--~--->{index-type}----~-->] of --->{type} L<______ < _______ ~ ,
-------->

+ ---> assert --->{expr}--->

+
+
+

assignment-statement:

I >{variable}------~J--->.- --->{expr}------------------------------->
L--->{id:function}--->

base-scalar-type:

E>{enumerated-scalar-type}--->~
---+------->{id:scalar-type} >+--->

> {subrange-scalar-type}----->

case-statement:

---> c:se --->{expr}---> of --->]

[>{range~---~-->
<----- , <

<------------------------
-<==_>_{_s_t_a_t_e_m __ e_n_t_}~~~~--->l

<---------------------,[-<:::--;--<-:::J--,-----------------~

---> otherwise ---1~==~~:~~t~m~~~~===J--->1 < ___ J

> end -->

Syntax Diagrams 153

check-statement:

---> % ---> CHECK
--1===;-POINTER-=====;f---1===~ g~F-===;r---------------->

---> SUBSCRIPT --->
---> SUBRANGE ---->
---> FUNCTION ---->
---> CASE -------->
---> TRUNCATE----->

cpage-statement:

---> % ---> CPAGE ---> unsigned-integer ----------------------------------->

compound-statement:

---> begin --~--->{statementl--~---> end L<_______ ; < ______ ~ ----------------------------------->

constant:

>{unsigned-constantl--------------------Jr------------------------------->
I > + J >{unsigned-number1---> L---> _ ___>

constant-dcl:

+ ---> canst --~--->{id1---> = --->{constant-expr1---> --,-----------------, l< __ ~ /

continue-statement:

+ ---> continue --->

+
+
+
+
+

+
+
+
+

declaration:

--~--->{label-dcl1------->

> {constant-dcl1---->

> {type-del 1-------->

> {var-dcl}---------->

--->{def-dcl}--------->

--->{static-dcll------>

t--->{ValUe-dcl1------->1

>{routine-dcl}----->~-->

def-dcl:

---1---> def ----r---T---1--->{id1---r---> : --->{type}---> ; ---T--------->
---> ref ---> <--- , ----

I I L< __ J

154 Pascal/VS Reference Manual

J

J

,

+
+
+
+
+
+
+

+

+

directive:

--,--> FORWARD -------------------------------------->~------------------->

---> EXTERNAL -------------------------------------->
---> FORTRAN --------------------------------------->
---> MAIN -->
---> REENTRANT ------------------------------------->

empty-statement:

--->

enumerated-scalar-type:

-> ([> {i d} -=-oJ---,r--->)
<--- , < --->

expr:
constant-expr:

--->{simple-expression}--~--~--------->

factor:

> = [>{SimPla-axpraSSion}--->
> <> --->
> < ---->
> <= --->
> >= --->
> > ---->
> in --->

---T--->{function-call}--~------------->

>{variable}--->

> {set-constructor}--------------------------------------->

> (--->{expr}--->) ------------------------------------>
---> {structured-constant}-------------------------------->

> not --->{factor}-------------------------------------->

>{unsigned-constant}------------------------------------->

field:

--->{id}---,--------------------------------------~-------------------------->
l ___ > (--->{constant-exprl--->) ___ >J

field-list:

>]
--~--->{fixed-part}--~---> --~--->{variant-part}--~-----r---> ---T---> ~ __________________________ >J ~ _______ >J

Syntax Diagrams 155

+

+

file-type:

---> file of --->{type}-->

fixed-part:

[< ___ l_-_-_--_[~_--_-=:~~~:_~_~_~_~_~~-----;-~~~_~>~J_I~~~> ____ ~=_>_{_t_y_pe_}_-_-~~---------------------->

for-statement:

---> for --->{id}---> .- --->{expr}--~~---» to J
L-- downto->

> {eXprl--->]

~[<-------------> do --->{statement}--------------------->

formal:

----,--.---> var -----Jr----rl----{i dJ ~
---> const --> <--- , <~

> : --->{id:type}----------~---->

{1 d} ----=-:1--,..--->
<--- , <

------->{id:type}------------------------>

> {procedure-headingJ--->

>function-headingJ--->

formal-parameters:

-~---> (l >(formaIJ--~---» ---J~-------------------------------->
<----- ; <----~

~--------------------->

function-call:

-->{id:function}--->{actual-parametersJ-------------------------------------->

function-heading:

---> function --->{idJ--->{formal-parametersl---> --->{id:type}---------->

goto-statement:

--------> go to -·-->{labell--->

156 Pascal/VS Reference Manual

J

+

+

TNL SN204446 (31 December 81) to SH20-6168-1

r--->

>{digit} >t-

--->{underscore}-->
--->{letter}--~----+--->{letter} > >1

< ______________________________ -J_

if-statement:

--> i1 -->{expr}--> then -->{statement}--'c==--->~.-------------------------J~---->

else -->{statement}-->

include-statement:

index-type:

E>{enumerated-scalar-type}--->~
---+------->{id:scalar-type} >+--->

> {subrange-scalar-type}----->

label:

[---~~~~}~~~:~=~~!:~:~~----->']-->

label-del:

-> label [>Uabel~
<---- , <

leave-statement:

> • , -->

+ ---> leave -->

+

list-statement:

---> X ---> lIST ---1==:~ g~F-:::;J-->

margins-statement:

---> ~ ---> MARGINS ---> unsigned-integer unsigned-integer --------------->

module:

L > {program-module}----'Jr-----------------------·--------------------------->
--->{segment-module}--->

Appendix C. Syntax Diagrams 157

TNL SN20-4446 (31 December 81) to SH20-6168-1

+
+

+
+

+
+
+

paae-statement:

---> X ---> PAGE -->

pointer-type:

---> ~ --->{id:type}-->

print-statement:

---> X ---> PRINT ---1===~ g~F-===;J-----------------------------·---------->

procedure-call:

--->{id:procedure}----~r---------------------------------------~--------------->
L--> L >{expr~ » _>J

<---- , <

procedure-heading:

---> procedure --->{idl--->{formal-parametersl-------------------------------->

program-module:

-> program ---> { i d 1 ---...---> (; < _____ >_{_i_d_l ________ > __ ' _______ ---I>l l___ _ ____ :~:::_~_~:::: _________ >J _

E < >{declarationl--->]

> {compound-statementl---> -->

range:

--->{constant-exprl---.,---------------------------------,,--------------------->
L ___ > --->{constant-exprl--->J

real-number:

~---> ' ---I~==~~~~~=~~~~~~===J---> 'XR ----------------->1

t~ '>{di9itl I I >. L< >{d;gitl----~--r-->-l~----------->

E > > {d ; 9 i t} --"T---------
t:::~ + ===~~ L< ___________ ~

record-structure:

--->{id:typel---> (---1---1:::~~:~~:~~~~=~~~~~==;J---J--->) ------------->

<------------ , <-------------
158 Pascal/VS Reference Manual

J

record-type:

----~-----------------~--> record --->{field-listl---> end
'-> packed _>J

repeat-statement:

----------------->

---> repeat ------T--->{statementl--~---> until --->{exprl-----------------> L<______ ; < ______ ~

repetition:

+ --->{constant-exprJ-->

return-statement:

+ ---> return --->

I
+
+
+
+
+
+
+

I
+
+
+
+
+
+
+
+
+

routine-dcl:

'->{procedure-headingJ-------------------»~
>{function-heading}--------------------- I

<------------------- ; <--------------------~
>{directiveJ---> ;

<----------------------,
>{declarationl--->J

> {compound-statementl--->

segment-module:

---> SEGMENT --->{idl---> ; --->1

r<----------------------T----J

t--->{constant-dcIJ---->1

t--->{type-dcll-------->1

t--->{var-dcll--------->1

t--->{def-dcl}--------->1

t--->{static-dcIJ------>1

t--->{value-dcIJ------->1

t--->{routine-dcIJ----->J
L ___ > • __ >

set-constructor:

---> [--~--~--->{exprJ---,----------------------_.----._--r_-->] l '-> -> {expr}->J J <----------------- • <--------------------~
~---->

------->

Syntax Diagrams 159

+

set-type:

---,r-----------------~--> set of --->{base-scalar-type}--------------------->
L-> packed _>J

simple-expression:

--r-E-> +--=--r->j -r--l >{term}--.-~-+ _->j --->

> - ---> ---~> &&-----~
1->

<----'

skip-statement:

---> r. ---> SKIP ---> unsigned-integer ------------------------------------>

space-type:

+ ---> space ---> [--->{constant-expr}--->] ---> of --->{type}------------->

+

+

+

+

+
+

+

statement:

<
> Uabel}-> : ->,

--->{assert-statement}------------------------------------->

>{assignment-statement}------------------------------------>

> {case-statement}--->

> {compound-statement}-------------------------------------->

--->{continue-statement}----------------------------------->

> {ernpty-statement}-->

> {for-statement}-->

> {goto-statement}--->

>{if-statement}--->

--->{leave-statement}-------------------------------------->

> {procedure-call}--->

> {repeat-statement}-->

--->{return-statement}------------------------------------->

>{while-statement}-->

>{with-statement}--->~--------->

static-dcl:

---> static ---T---l--->{id}---r---> : --->{type}---> ; ---T--------------->
<--- , ----

I I L< __ J

160 Pascal/VS Reference Manual

J

J

+
+

+
+

+
+

+

+

+

+
+
+

string:

I >' l< __ {cha racterl <-=:I >, -------,1-------------->

L ___ > ' ---1~==~~~:~=~~~~2:===y---> 'xc ______ >J

string-type:

structured-constant:

---1---> {record-structure}---y--->
--->{array-structure}--->

subrange-scalar-type:

t~::~-~~~>~{:c~o-n=s=t-a-~n]t}---> I
.. --->{constant-expr}-----------~---->

L ___ > range --->{constant-expr}---> .. --->{constant-expr}--->J

-~--->{factor}--,--->
> * ----->
> / ---->
> div -->
> mod -->

---> » ---->
---> « ---->
---> I I ---->

> & ---->
<-----------------------------~

title-statement:

---> Yo ---> TITLE ---> any-character-string ------------------------------->

~

> {; d: type} >

>{enumerated-scalar-type} >

>{subrange-scalar-type} >

>{array-type} >

>{record-type} >

>{set-type} >

>{file-type} >

L--->{pointer-type} > >

Syntax Diagrams 161

+
+
+
+

+
+

+
+

type-del:

-> type --~--->{idJ---> = --->{typeJ---> --~------------------------->

L---------------'
unsigned-constant:

1 >{UnSi9ned-nUmberJ---,-->

>{stringJ >:J
>{id:constantJ------

> nU

unsigned-integer:

>{di 9 itJ---.------------------------TI-----------------------> I L< ____ ---I

t---> ' ---1~==~~~~~~~~-~~~~~~===J---> '8 --->1

L ___ > ' ---1~==~~~~~=~~~~~~===J---> 'x ------>~

unsigned-number:

~>{unsigned-integer}--->JT-->
~>{real-numberJ >

value-assignment:

--->{variableJ---> .- ---1--->{constant-expressionJ----J------------------->
--->{structured-constantJ--->

value-dcl:

---> value ---1---{value-assi gnmentJ---> ; ---J---------------------------->
<------------------------------

var-dcl:

---> val" [< ___ [_<~~_>_{_!d_~ ________ > ____ ~~_>_{_t_y_p_e_}~~ __ > ___ -_-_-~----------------->

162 Paseal/VS Reference Manual

J

+

variable:

->{id}->
<---------------------------------------,

> [[>{expr}--~--->] ----->
<---- ,

> --->{id:field}---------------->

> ell -------------------------------->
~-->

variant-part:

---> case
[----------------->]

--~~-_-_-_> __ {f_l_·e_l_d_}_-_-_-_> _________ >] >{id:type} > of --->]

~>{range}--~--->
<---- , <-----'

<

while-statement:

(--~--->{field-list}---~->) ~ _______ >J --~------>

; <------------------------------~

----> while --->{expr}---> do --->{statement}------------------------------->

with-statement:

---> with --~--->{variable}--~---> do --->{statement}--------------------> L<______ , < _____ ~

Syntax Diagrams 163

J

J

L
actual-parameters 79
array-structure 20
array-type 42
assert-statement 84
assignment-statement 85

base-scalar-type 48

case-statement•........ 86
check-statement 145
compound-statement 88
constant 18
constant-del•.. 24
constant-expr 71
cont i nue-statement 89
cpage-statement 145

declaration 21
def-dcl 28
directive 61

empty-statement 90
enumerated-scalar-type 34
expr 71

factor 71
fi eld 44
field-list 44
file-type 50
fixed-part 44
for-statement 91
formal 61
formal-paramaters•.•.. 61
function-heading 61
function-call 79

goto-statement 93

i d. .. 13
if-statement 94
include-statement 145
index-type 42

label 23
label-del 23
leave-statement 95
list-statement 145

margi ns-statement•.•.. 145
module '"•.. 21

TNL SN20-4446 (31 December 81) to SH20-6168-1

page-statement 145
pointer-type 57
print-statement 165
procedure-call 96
procedure-he~ding 61
program-module 21

range•......... 44
real-number 18
record-structure 20
record-type•.. 44
repeat-statement 97
repeti ti on 20
return-statement 98
routine-del 61

segment-module 21
set-constructor 81
set-type. • 48
simple-expression 71
skip-statement 145
space-type 149
statement 83
static-del•.. 27
string 18
string-type 51
structured-constant 20
subrange-scalar-type ..•..... 35

term•............ 71
title-statement•...... 145
type•.... 31
type-del. • • • 25

unsi gned-constant 18
unsigned-integer••.. 18
unsigned-number•.. 18

value-assi gnement 29
value-del•.....•...•.... 29
var-dcl••....••.. 26
vari able ..•................. 67
variant-part 44

with-statement•..... ~ ... 100
while-statement 99

Appendix D. Index to Syntax Diagrams 165

L Actual parameter specifies what is to be
passed to a routine.

Array type is the structured type that
consists of a fixed number of elements,
each element of the same type.

Assignment compatible is the term used
to indicate whether a value may be
assigned to a variable.

Automatic variable is a variable which
;s allocated on entry to a routine and
is deallocated on the subsequent return.
An automatic variable is declared with
the var declaration.

Base scalar type is the name of the type
on whi ch another type is based.

Bit is one binary digit.

Byte is the unit of addresability on the
System/370, its length is eight bits.

Compat i bl e types is the term wh i ch is
used to indicate that operations between
values of those types are permited.

Component is the name of a value ina
structured type.

Constant is a value whi ch is ei ther a
literal or an identifier which has been
associated with a value in a const dec­
laration.

Constant expression is an expression
which can be completely evaluated by the
compi ler at compi Ie time.

Dynamic variable is a variable which is
allocated under programmer control.
Explicit allocates and deallocates are
required; the predefined procedures NEW
and DISPOSE are provided for this pur­
pose.

Element is the component of an array.

Entry routine is a procedure or function
wh i ch may be invoked from outs i de the
module in which it is defined. The rou­
tine is called entry in the module in
which is defined. An entry routine may
not be imbedded in another routine; it
must be defined on the outermost level
of a module.

Enumerated scalar type is a scalar that
is defined by enumerating the elements
of the type. Each element is repres­
ented by an identifier.

External routine is a procedure or func­
tion which may be invoked from outside
the module in which the routine is
defined.

Field is the component of a record.

File type is
mechanism to
Pascal/VS.

E.O GLOSSARY

a data type which is the
do input and output in

Fi xed part is that part of a record
which exists in all instances of a par­
ticular record type.

Formal parameter is a parameter as
declared on the routine heading. A
formal parameter is used to specify what
is permitted to be passed to a routine.

Function is a routine, invoked by coding
its name in an expression, which passes
a result back to the invoker through the
rout i ne name.

Identifier is the name of a declared
item.

Index is the selection mechanism applied
~n array to identify an element of
the array.

Internal routine is a routine which can
be used only from wi thi n the lexi cal
scope in which it was declared.

Lexical scope identifies the portion of
a module in whi ch a name is known. An
identifier declared in a routine is
known within that routine and within all
nested rout i nes. I f a nested rout i ne
declares an item with the same name, the
outer item is not available in the
nested routine.

Module is
Pascal/VS.

the compilable unit in

Offset is the selection mechanism of a
space. An element is selected by plac­
i ng an integer value in parenthesi s.
The origin of a space is based on zero.

Packed record type is a record structure
in whi ch fi elds are allocated in the
mi nimum number of bytes. Implementati on
defined alignment of data types will not
be preserved in order to pack the
record. Packed records may not be
passed by read/write reference.

Pass by read only reference is the
parameter passing mechanism by which the
address of a vari able or temporary is
passed to the called routine. The
called routine is not permitted to modi­
fy the formal parameter. If the actual
parameter is an expression, a temporary
will be created and its address will be
passed to the called routine. A tempo­
rary is also created for fields of
packed records.

Pass by readhoJri te reference is the
parameter passing mechanism by which the
address of a variable is passed to the
called routine. If the called routine
modifies the formal parameter, the cor-

Glossary 167

responding actual parameter is changed.
Only variables may be passed via thi s
means. Fi elds of packed records will
not be permi tted to be passed in thi s
way.

Pass by value is the parameter passing
mechanism by which a copy of the value
of the actual parameter is passed to the
called routine. If the called routine
modifies the formal parameter, the cor­
responding actual parameter is not
affected.

Pointer type is used to define variables
that contain the address of dynamic var­
iables.

Procedure is a routine, invoked by cod­
ing its name as a statement, which does
not pass a result back to the invoker.

Program module is the name of the com­
pilable unit which represents the first
unit executed.

Record type is the structured type that
contains a series of fields. Each field
may be of a type di fferent from the
other fields of the record. A field is
selected by the name of the field.

Reserved word is an identifier whose use
is restricted by the Pascal/VS compiler.

Routine is a unit of a Pascal/VS program
that may be called. The two type of
routines are: procedures and functions.

Scalar type defines a variable that may
contain a single value at execution.

Segment module is a compilable unit in
Pascal/VS that is used to contain entry
routines.

Set type is used to defi ne a vari able
that represents all combinations of ele­
ments of some scalar type.

168 Pascal/VS Reference Manual

Space type is used to define a variable
whose components may be posi ti oned at
any byte in the total space of the vari­
able.

Statement is the executable uni tin a
Pascal/VS program.

Stri ng represents an ordered 1 i st of
characters whose size may vary at exe­
cution time. There is a maximum size
for every string.

String constant is a string whose value
is fixed by the compiler.

Structured type is anyone of several
data type mechanisms that defines vari­
ables that have multiple values. Each
value is referred to generally as a com­
ponent.

~S~u~b~r~a~n~g~e~s~c~a~lua~r~~t~y~p~es is used to define a
vari able whose value is restri cted to
some subset of values of a qase scalar
type.

Tag field ;s the field of a record which
defi nes the structure of the vari ant
part.

~ defi nes the permi ss; ble values a
variable may assume.

Type definition is a specification of a
data type. The specification may appear
in a type declaration or in the declara­
tion of a variable.

Type identifier is the name given to a
declared type.

Variant part is that portion of a record
which may vary from one instance of the
record to another. The variant portion
consi sts of a seri es of vari ants that
may share the same physical storage.

J

Special Characters

< operator 36, 37, 39, 40, 41, 52, 54,
55

« operator on INTEGERs 36, 78
<> operator 36, 37, 39,40,41, 48, 52,

54, 55
<= operator 36, 37, 39, 40, 41, 48, 52,

54, 55
+ operator 36, 40, 41, 48
I operator 36, 39
II operator 52
& operator 36, 39
&& operator 36, 39, 48 * operator 36, 40, 41, 48
- operator 36, 39, 48
- operator 36, 40, 41, 48
/ operator 36, 40, 41
~ statements 145

CHECK 146
CPAGE 146
INCLUDE 146
LIST 146
PAGE 146
PRINT 146
SKIP 146
TITLE 146

> operator 36, 37, 40, 41
> operator 39, 52, 54, 55
» operator on INTEGERs 36, 78
>= operator 36, 37, 39, 40, 41, 48, 52,

54, 55
= operator 36, 37, 39, 40, 41, 48, 52,
54, 55

ABS function 36, 37, 40, 41, 131
adding operators 74
ALFA operators 54
ALFA predefined type 54
ALPHA operators 55
ALPHA predefined type 55
and operator on INTEGERs 78
ARCTAN function 40, 41, 133
array referencing 67
array structured constants 20
array subscripting 42
array type 42
assert statement 84
assignment of compatible types 32
assignment of function value 85
assignment statement 85

binary integer constants 18
BOOLEAN expressions 77
BOOLEAN operators 39
boolean predefined type 39

case statement 86
CHAR operators 37
char predefined type 38
CHECK compiler directive 146
CHR function 36, 125
CLOCK function 143
CLOSE procedure 107
COLS function 116
comments 17
COMMON (FORTRAN) 28
compatible types 32
compile time initialization 29
compound statement 88
COMPRESS function 52, 139
conformant STRING parameters 62
const declaration 24
constant declaration
constant expression
constant expressions
constants 18

24
71, 76

18

continue statement 89
conversions 31
conversions on a string 52, 53
COS function 40, 41, 132
CPAGE compiler directive 146

data alignement 59
data storage requriements 59
DATETIME procedure 143
declaration 21, 23
declaration order 22
def variable declaration 28
DELETE function 52, 137
directives 61
DISPOSE procedure 57, 120
div operator 36
div operator defined 37
downto in the for statement 91
dynamic variables 57, 68

EBCDIC 38
empty statement 90
enumerated scalar 34
EOF function 109
EOLN function 115
example of

array declarations 42
array indexing 43
assert statement 84
assignment statement 85
BOOLEAN expressions 77
case statement 86
compound statement 88
COMPRESS function 139
conformant strings 63
const declaration 24
const parameter 65

Index 169

constant expressions 76
constants 19
continue statement 89
def declaration 28
DELETE function 137
enumerated scalar 34
EOF procedure 109
expressions 73
EXTERNAL function 63
fields in a record 68
file decalarations 50
for statement 92
function 79
function returning a record 65
goto statement 93
HBOUND function 123
HIGHEST function 122
if statement 94
INDEX function 139
initializing an array 29
label declaration 23
LBOUND function 123
leave statement 95
logical expressions 78
LOWEST function 122
LTRIM function 138
MARK and RELEASE 118
nested comments 17
NEW procedure 119. 120
offsets in a record 47
otherwise in a case statement 87
procedure invocations 96
procedures and functions 65
program module 22
READ procedure 109. 110. 111
READSTR procedure 140
record declarations 45
recursive function 65
ref declaration 28
repeat statement 97
ROUND function 127
scalar function 126
SEGMENT module 22
set decalaration 48
space type 149
static declaration 27
structured constants 20
subrange sc~lar 35
subscripting an array 68
SUBSTR function 137
TOKEN procedure 140
TRIM function 138
TRUNC function 127
type compatibility 33
type declaration 25
UPDATE procedure 106
usingafile 69
using pointers 68
using STRINGPTR 58
using STRINGs 51
using variables 67
value declaration 29
var declaration 26
variant record 45. 46
while statement 99
with statement 100. 101
WRITE procedure 112. 113
WRITESTR procedure 141

execution time string allocation 58
EXP function 40, 41, 133
expression 71

170 Pascal/VS Reference Mar.ual

EXTERNAL directive 61
EXTERNAL routines 63
external variable 28

factor 71
field 44, 46
field list 44
field referencing 68
file referencing 68
fi Ie type 50
fixed part of a record 44, 45
FLOAT function 36, 126
for statement 91
formal parameter 62
formal parameter list 61, 62
FORTRAN directive 61
FORTRAN routines 63. 64
FORWARD directive 61
FORWARD routines 63
function calls 79
function declarartion 61,'62
function heading 61
function parameters 62
function results 65
functions in constant expressions 76

GET procedure 107
goto statement 93

HALT procedure 142
HBOUND function 52. 123
heap 57
hexadecimal integer constants 18
hexadecimal real constants 18
hexadecimal string constants 18
HIGHEST function 36, 37. 39, 122

identifiers 13
if statement 94
implicit conversions 31
in operator 48
INCLUDE compiler directive 146
INDEX function 52, 139
initialization 29
initializing the Pascal runtime envi-

ronment 64
INTEGER operators 36
INTEGER predefined type 36
INTEGER storage mapping 36, 37
interlanguage communication 64
internal routines 63

J

L label declaration 23
label format 23
LBOUND function 52, 123
leave statement 95
LENGTH function 51, 52, 136
lexical level 13
lexical scope 13
LIST compiler directive 146
LN function 40, 41, 134
logical expressions on INTEGERs 78
logical operations on integers 37
LOWEST function 36. 37, 39, 122
LTRIM function 52, 138

MAIN directive 61
MAIN routines 63, 64
MARK procedure 57. 118
MAX function 36, 37, 39. 40, 41, 129
MAXINT 36
MAXLENGTH function 51, 52, 136
MIN function 36. 37, 39, 40, 41, 129
MININT 36
mod operator 36
mod operator defined 37
module 21
module, structure 21
multi-dimensional array 42
multi-dimensional arrays 67
multiplying operators 74
mutually recursive routines 63

NEW procedure 57, 119
not operator 74
not operator on INTEGERs 78

ODD function 36. 37, 131
offset quailfication 46
operations on

ALFA 54
ALPHA 55
BOOLEAN 39
CHAR 38
INTEGER 36
REAL 40
set 48
SHORTREAL 41
STRING 52

operator precedence 71
operators 74
or operator on INTEGERs 78
ORD function 37, 39, 125
order of evaluation of BOOLEAN expres­
sions 77

order of evaluation of expressions 71

PACK procedure 121
packed array 42
packed record 46
packed set 48
packed sub range 35
PAGE compiler directive 146
PAGE procedure 115
parameter 62
parameters 61
parenthesized expression 71
PARMS function 144
pass by const parameters 62
pass by read-only reference
parameters 62

pass by reference parameters 62
pass by value parameters 62
pass by var parameters 62
PDSIN procedure 105
PDSOUT procedure 106
pointer referencing 68
pointer type 57
PRED function 36, 37, 130
PRINT compiler directive 146
procedure call statement 96
procedure declaration 61
procedure heading 61, 62
procedure parameters 62
program module 21
PUT procedure 108

RANDOM function 135
READ procedure 109, 111
Reading

CHAR Data 110
INTEGER Data 110
packed array of CHAR Data 110
REAL (SHORTREAL) Data 110
STRING Data 110
Variables with a Length 110

READLN procedure 109
READSTR procedure 52, 140
real constants 18
REAL operators 40
real predefined type 40
record structured constants 20
record type 44
REENTRANT directive 61
REENTRANT routines 63, 64
ref variable declaration 28
relational operators 74
RELEASE procedure 57, 118
repeat statement 97
reserved words 15
RESET procedure 103
restrictions on a goto statement 93
restrictions on file type 50
restrictions on routines 63
restrictions using the MAIN
directive 64

restrictions using the REENTRANT direc-
tive 64

RETCODE procedure 144
return statement 98
revision codes iv
REWRITE procedure 104
ROUND function 40, 41, 127

Index 171

routine declarartion 61, 62
routine parameters 62

same type 32
scalar conversion functions 80, 126
scope 13, 44
SEEK procedure 108
SEGMENT module 21
seprate compilation 63
set operators 48
set type 48
short circuiting of BOOLEAN
expressions 77

SHORTREAL operators 41
shortrea1 predefined type 41
simple expression 71
SIN function 40, 41, 132
SIZEOF function 36, 37, 39, 40, 41, 48,

52, 54, 55, 124
SKIP compiler directive 146
space declaration 149
space element referencing 149
special symbols 16
SQR function 36, 40, 41, 135
SQRT function 40, 41, 134
statements 83
static variable declaration 27
storage mapping for a set 48
storage mapping of a record 46
STR function 37, 54, 55, 128
STRING 58
string constants 18
STRING operators 52
STRING parameters 62
stri ng type 51
strings 31
structured constants 20
subrange scalar 35
SUBSTR function 52, 137
SUCC function 36, 37, 130

tag fi eld 45
term 71
TERMIN procedure 104
TERMOUT procedure 105
TEXT predefined type 56
TITLE compiler directive 146

172 Pascal/VS Reference Manual

to in the for statement 91
TOKEN procedure 140
TRACE procedure 142
TRIM function 52, 138
TRUNC function 40, 41, 127
type compatibility 31
type conversions 31
type declaration 25
type identifier 25
type matching 32
types 31
types of routines 63

UNPACK procedure 121
unsigned-integer constants 18
UPDATE procedure 106
user definfed types 31

value declaration 29
var declaration 26
variable declaration 26
variable identifier 26
variables 67
variant part of a record 44, 45

while statement 99
with statement 100
WRITE procedure 112, 114
WRITELN procedure 112
WRITESTR procedure 52, 141
Writing

BOOLEAN Data 113
CHAR Data 113
INTEGER Data 113
Packed Array of CHAR Data 114
REAL Data 113
STRING Data 113

J

SH20·6168·1

J

"'tJ
Q>
en
(')
Q>

.::::
<
CJ)

r-
Q>

:::l
co
c::
~ J <1>

:ll
<1>
~
<1> .,
<1>
:::l
(')
<1>

s:
Q>

:::l
c::
!!!..

"'tJ
::::!.
:::l ...
<1>
C.

::J

C
en
~
en
J:
I\,)
0 en ...
0)

C/O ...

------ -(R; -- ----- --- -. ---- - - ---------

L

.. ~~,§,i {eChnical Newsletter ;/TE

PASCAL/VS
Language Reference Manual

Program Number: S796-PNQ

This Newsletter No. SN20-4446

Date 31 December 1981

Base Publication No. SH20-6168-1
File No.

Prerequisite Newsletters None

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Cover
v/vi
11/12
19/20
20.1/20.2
27/28
29/30
35 - 40
45/46
51/52
63/64
67/68
73/74
75/76
89/90
95/96
113/114
117/118
118.1/118.2
125/126
135/136
137/138
139-142
145/146
146.1/146.2
157/158
165/166

Note: File this cover page at the back o/the manual to provide a record 0/ changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A.

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of
six months notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without addi­
tional charge, respond to an error in the current unaltered release of the program by issuing
known error correction information to the customer reporting the problem and/or issuing
corrected code or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

Anyon-site program service or assistance will be provided at a charge.

WARRA.~TY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WAR·
RANTY OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, CA. 95150
Attention: Mr. Larry B. Weber
Telephone: (408) 463-3159
Tieline: 8-543-3159

IBM Corporation
DPD, Western Region
3424 Wilshire Boulevard
Los Angeles, California 90010·
Attention: Mr. Keith 1. Warltier
Telephone: (213) 7364645
Tieline: 8-2854645

Second Edition (April 1981)

This is the second edition ofSH20.6168, a pUblication that applies to release 2.0
of the Pascal/VS Compiler (!UP Program Number 5796-PNQ).

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below; requests for copies of IBM
pUblications should be made to your IBM representative or to the IBM branch office
serving YOUl locality.

A form for readers' comments has been provided at the back of this publication. If
the form has been removed, address comments to: The Central Service Location.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without inCUlring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

~ : :~,~feChnical Newsletter

~."

This Newsletter No. SN204451
Date 19 Feb 82

PASCAL/VS
Language Reference Manual

Program Number: 5796-PNQ

Base Publication No. SH20-6168-1
File No.

Prerequisite Newsletters SN204446

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Cover - Inside Cover

Note: File this cover page at the back of the manual to provide a record of changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604

Printed in U.S.A

J

