Installed
User
Program

SH20-6162-1

Pascal/VS
Programmer’s Guide

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level programming
language to teach computer programming by N. Wirth
(circa 1968), Pascal has emerged as an influential and well
accepted user language in today’s data processing environ-
ment. Pascal provides the user with the ability to produce
very reliable code by performing many error detection
checks automatically.

The compiler adheres to the currently proposed ISO
standard and includes many important extensions. The
language extensions include: separate compilation,
dynamic character strings and extended 1/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual is a guide to the use fo the compiler in the
MVS and VM/CMS operating environments.

TNL SN20-4607 (9 December 1983) to SH20-6162-1

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of six months
notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without additional charge,
respond to an error in the current unaltered release of the program by issuing known error correction
information to the customer reporting the problem and/or issuing corrected code or notice of avail-
ability of corrected code. llowever, IBM does not guarantee service results or represent or warrant that
all errors will be corrected.

Any on-site program service or assistance will be provided at a charge.
WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN ‘AS IS’ BASIS WITHOUT WARRANTY
OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: 1BM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, CA 95150
Attention: Mr. Luis C. Tan
Telephone: (408)463-4392
IBM Tieline: 8/543-4392

IBM Corporation

Informations Systems Group
Department 873

1241 Stamford, CT 06902
Attention: Mr. Keith J. Warltier
Telephone: (203)359-7261
IBM Tieline: 8/772-7261

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler IUP Program Number 5796-PNQ).

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available outside the United States.

Publications are not stocked at the address given below; requests for copics of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers’ comments has been provided at the back of this publication. If
this formn has been removed, address comments to: The Central Service Location.
IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any cbligation to you.

© Copyright International Business Machines Corporation 1980, 1981

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat-
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

R

LATED PUBLICATIONS

Pascal/VS lLanquage Reference Manual, order number SH20-6168. This manual
describes the Pascal/VS language.

IBM Virtual Machine Facilitys/370: CMS Command and Macro Reference, order num-
ber GC20-1818. This manual describes the commands of the Conversational Moni~-
tor System (CMS) component of the IBM Virtual Machine Facilitys/370 with
detailed reference information concerning command syntax and usage.

IBM Virtual Machine Facilitys/370: CP Command Reference for General Users,

order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facilitys370.

0S5/VS2 TS50 Command_ Language Reference Manual, order number GC28-0646. This
manual describes the commands of the Time Sharing Option of 05/VS2.

05/VS2 JCL, order number GC28-0692. This is a reference manual for the job
control language of 0S5/VS2.

05/VS Linkage Editor and Lloader, order number GC26-3813. This manual
describes how to use the 05/VS2 linkage editor and loader.

Time Sharing Option Display Support and Structured Programming Facility Ver-
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modify menus and command procedures of the
Structured Programming Facility (SPF). Knowledge of the content of this manu-
al is required to install the Pascal/VS SPF menus and procedures.

0S/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu-

al describes the various data set access methods utilized by 05/V52 and the 0S
simulation of CMS - VM/370.

Pascal/VS Reference Summary, order number GX20-2365. This reference summary contains basic information
from the Pascal/VS Reference Manual and Pascal/VS Programmer’s Guide.

Preface iii

TNL SN20-4445 (31 December 1981) to SH20-6162-1

SUMMARY OF AMEMDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at
the outermost nesting level of a module has been removed.

Two new options may be applied to files when they are opened: UCASE and NOCC.

Rules have been relaxed in passing fields of packed records by var to a rou-
tine.

The "STACK™ and "HEAP"™ run time options have been added to control the amount
at which the stack and heap are extended when an ovarflow occurs.

The syntax of a "structured constant™ which contains non-simple constituents
has been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

Pascal/VS now supports single precision floating point (32 bit) as well as
double precision floating point (64 bit).

Files may be opened for updating with the UPDATE procedure.

Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT)
so that I/0 may take place directly to the user's terminal without going
through the DDNAME interface.

The MAIN directive permits you to define a procedure that may be invoked from
a non-Pascal environment. A procedure that uses this directive is not reen-
trant.

The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen-
trant.

A new predefined type, STRINGPTR, has been added that permits vou to allocate
strings with the NEW procedure whose maximum size is not defined until the
invocation of NEW.

A new parameter passing mechanism is provided that allows strings to be passed
into a procedura or function without requiring vyou to specify the maximum size
of the string on the formal parameter.

The maximum size of a string has been increased to 32767 characters.

The Pascal/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not
modi fied.

Pascal/VS programs may contain source lines up to 100 characters in length.
Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the usar's program.

Run time diagnostics have been improved.

Pascals/VS will flag extensions when the option "LANGLVL(STD)"™ is used.

Summary of Amendments v

TNL SN20-4445 (31 December 1981) to SH20-6162-1

vi

A mechanism has been provided so that Pascal/VS routines may be called from
other languages.

All record formats acceptable to QSAM are now supported by the Pascals/VS I/0
facilities.

A procedure or function may now be exited by means of the goto statement.

You may now declare an array variable where each element of the array is a
file.

You may define a file to be a field of a record structure.

Files may now be allocated in the heap (as a dynamic variable) and accessed
via a pointer.

You may now define a subrange of INTEGER which is allocated to 3 bytes of stor-
age. Control over signed or unsigned values is determined by the subrange.

Variables may be declared in the outermost scope of a SEGMENT. These vari-
ables are defined to overlay the variables in the outermost scope of the main
program.

The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

The PDSOUT procedure opens a member of a library file (partitioned dataset)
for output.

A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

The CPAGE percent(%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

The MAXLENGTH function returns the maximum length that a string variable can
assume.

The %XCHECK TRUNCATE option enables (or disables) the checking for truncation
of strings.

The PASCALVS exec for invoking the compiler under CMS has been modified so
that the specification of the operands allows greater flexability.

New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

The catalogued procedures for invoking Pascal/VS in 0S Batch have been simpli-
fied.

The format of the output listing has been modified so that longer source lines
may be accomodated.

Multiple debugger commands may be entered on a single line by using a semico-
lon (;) as a separator.

The format of the Pascal File Control Block has been modified.

Support is now provided for ANSI and machine control characters on output
files.

Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

The debugger now supports breakpoints at the end of a procedure or function.

The Trace mode in the debugger provides information on when procedures are
being exited.

The TRACE procedure now permits you to specify the file on which thae traceback
is to be written.

The Equate command of the debugger has been enhanced.

Pascal/VS Programmer's Guide

e e e o o o o @

. e

. e

NN o o e bt bt (b ot e ot et et et

N

LW NN
O O HEEEEREROONOUVIAUWUNFHO NOUIRRLLLPLPUNKFHO UVLAUNUUHURO PUNNNNNVNNNNNNNNNEO 2R O0NOUVIAUN—O

e

HHLPLH HUUUL

.

¢« o e

e o o o o o o

N 0 vTuTUTUTUITULTUTUTUTULTULTULITUTILDYT S AP

o« o

TNL SN20-4607 (9 December 1983) to SH20-6162-1

TABLE OF CONTENTS

Introduction . . e o o o o s o s e o e e 1
Invoking the Compller under CMS PASCALVS EXEC . e e e e e e e e 1
Building a Load Module under CMS: PASCMOD EXEC e e e e e e e e 1
Invoking the Load Module under CMS . e e e e e e e e e e e 2
Invoking the Compiler under T7S0: PASCALVS CLIST e e e e e e e e . 2
Building a Load Module under T7S50: PASCMOD CLIST e e e e e e e e . 4
Invoking the Load Module under T7S50: The CALL command e e e . . . 5
Interactive Debugger . e e e e e e e e e e e e e e . . . 5
Compiler Options e e e e e e e e e e e e e . . . e . . 6
Run Time Options e . e . 6

0 Cataloged Procedures e e e e e e e e e e e e . . . e . . . 7
1 Sample Batch Job e e e e e e e . . . e e 7
Running a Program under CMS e o o o s s o o s s s s s e e s s s e e 9
How to Compile a Program . e e . e e e e e e e e e e e e 9
1.1 Invoking the Compiler e e e e e . . e e e e e . . . 9
1.2 The PASCALVS Command e e e . . e e e e e e e e e e . 9
1.3 The %INCLUDE Maclibs . e . e e e . e e e e e P
1.4 Passing Compiler Options e e e e e e e e e e . . . 10
1.5 The Compiler Listing e e e e e e e e e . . . P)
1.6 Compiler Diagnostics e e e e e e e e e e e e e e e e . . . < 10
1.7 Sample Compilation e e e e e e e e . e e e 11
How to Build a Load Module e e e e e e . e e e . .. 12
.2.1 Module Generation Options . e e . 12
.2.2 Run time Libraries e e e e e e e e e e . . e . R 4
How to Define Files . e e e e . . . e e e . e . 13
How to Invoke the Load Module e e e . e e e e e e e e e . . 13
Running a Program under TSO e o o o s o o o s o s s s o s o s e s o o 15
How to compile a program e e e e e e e e e e e e e e e e e . . .« 15
.1.1 Invoking the Compiler . e e e e e e e e 15
.1.2 Using the %INCLUDE Fac111ty . . e e e e17
.1.3 Compiler Diagnostics e e e e . e e e e e e e . e . 17
How to Build a Load Module e e e e e e e e e e e e . . 18
How to Define Files e e e e e “ e e e e e e e e e . 20
Invoking the Load Module . e . e e e e e e e e e e . e . . 20
Sample TS0 Session e e e e e e e e e e e e e e 21
Running a Program under 0S Batch e o o o s s s s s s s s s e e e s . 23
Job Control Language . e e e e e e e e e 23
How to Compile and Execute a Program e e e e e e e e e e e o« . 23
Cataloged Procedures . e e e e e e . e e . e e e e « . 26
IBM Supplied Cataloged Procedures . e . . e e e e e e e e 24
.4.1 Compile Only (PASCC) . e e e e e e e e e e e« <« . 25
4.2 Compile, Load, and Execute (PASCCG) 4
.4.3 Compile and Link Edit (PASCCL) e e e e e e e e e e e e e e e .27
4.4 Compile, Link Edit, and Execute (PASCCLG) . e . . . 28
How to Access an %ZINCLUDE Library e e e e e e e e e e e e 29
How to Access Data Sets e e e e e e e e e e e e e e e . 29
Example of a Batch Job e e e e e e e e e e e e e e e . . 30
compiler Options e o o o o o o o s o o e e e e s e s e s e e e e s . 3
CHECK/NOCHECK e e e e e e e e e e e e e e e e . . . 31
DEBUG/NODEBUG e e e e . e e e e e e e e e . . 32
GOSTMT/NOGOSTMT . e . e e e e e e e e e e e e e 32
LANGLVL () e e e e e e e e e e e . . e e e e e . 32
LINECOUNT(n) e .. 32
LIST/NOLIST e . .. 32
MARGINS(m,n) e e e e e e e e e e e e e e e e e . . 32
OPTIMIZE/NOOPTIMIZE e e e e e e e e e e e e e e e e . e e . . 33
PAGEWIDTH(n) e e e e e e . . . e e e e e . . 33

0 PXREF/NOPXREF e e e e e e e e e e 33
1 SEQ(m,n)/NOSEQ C e e e e e e e e e e e e e e . . . 33
2 SOURCE/NOSOURCE e . 33
3 WARNING/NOWARNING e 1
4 XREF/NOXREF T)
Run Time Options e o o o o o o s o o o s s s s s e s e s s s e e e s 35
How to Read Pascals/vs Listings e o o o s s s s o s s s e e e e s o o 37
Source Listings e .37

Table of Contents vii

TNL SN20-4607 (9 December 1983) to SH20-6162-1

0000000000000 00000000 N~~~
NLUNFHO HHE000—=—0000=00000000 <0000 ~~ORNANIAUNFO UVIARWNSNSNSNSNSNSNN

[+] [+]
e e N s O
bt

.....
Pt et ot ot ot et et
HUHUHH W W W
e+ s 6 o & 4
SN WWN =

(o]

4
.1
|
1

o0 00 00
~NOoNUte

.1
1

o 00

i OOV VOVVO e

[~ X-N -]

el S e T e e e LY
0000000000000 ON~O
.

viii

.
et ot ot et et et
P .

NANANNNNNNNANNNNNNN

Page Headers . e e e e e e
Nesting Informatron . e .
Statement Numbering .
Page Cross Reference Freld
Error Summary

Option List .

Compilation Statlstlcs
Cross reference Listing
Assembly Listing

External Symbol chtlonary
Instruction Statistics

\lOU’!-&\UNH

Using Input/output FaC|1it|es e . .
I70 Implementation e e e .
DDNAME Association

Data Set DCB Attrlbutes

Text Files

Record Files

Opening a File for Input - RESET
Opening a File for Interactive Input
Opening a file for output - REWRITE
Terminal Input/Output e e e .
Opening a File for UPDATE

Procedure GET

1.1 GET operation on text flles
1.2 GET operation on record files
PUT procedure .

2.1 PUT Operation on Text F11es
2.2 PUT Operation on Record Files

Text File Processing

Text File READ . .
The READLN Procedure
Text File WRITE .- .
The WRITELN Procedure
The PAGE Procedure
End of Line Condition

Record File Processing
4.1 Record File READ
4.2 Record File WRITE

4.3 End of File Condition.-.Récord ﬁiieé

Closing a File .

Relative Record Access

Partitioned Data Sets .
7.1 Opening a Partitioned Data Set
7.2 PDS Access in a CMS Environment
The Open Options

Appending to a File

Runtime Error Reporting e+ e s o .
Reading a Pascal/VS Trace Back

Run Time Checking Errors

Execution Error Handling

User Handling of Execution Errors
Symbolic Variable Dump

Pascals/vs Interactive Debugger . .
Qualification . . e
Commands .

BREAK Command

CLEAR Command

CMS Command

DISPLAY Command

DISPLAY BREAKS Command

DISPLAY EQUATES Command

END Command . .

EQUATE Command

. GO0 Command .

.10 Help Command

.11 LISTVARS Command .

.12 Qualification Command

.13 QUIT Command

.14 RESET Command .

.15 SET ATTR €Command .

.16 SET COUNT Command .

VOONANDUWN -

Pascal/VS Programmer's Guide

End of File Condition - text files

581

38
38
38
38
38
39
39
40
42
43
43

&5
45
45
45
46
46
46
46
47
47
47
48
48
48
49
49
49
49
49
51
52
53
53
53
54
54
564
54
54
55
55
56
56
56

59
59
61
61
62
63

65
65
65
66
66
67
67
68
68
69
69
70

71
72
72
73

74

10.2.17 SET TRACE Command e e e e e
10.2.18 TRACE Command e e e e e e
10.2.19 Viewing Variables e e e e e
10.2.20 Viewing Memory e e e e e .
10.2.21 WALK Command e e e e e e .
10.3 Debug Terminal Session e e e e e
11.0 storage Mapping e s e e e e e e
11.1 Automatic Storage e e e e e
11.2 1Internal Static Storage e e e .
11.3 DEF Storage e e e e e e e e e
11.4 Dynamic Storage e e e e e e e e
11.5 RECORD Fields . e e e e
11.6 Data Size and Boundary Allgn ment
11.6.1 The Predefined Types e e e e
11.6.2 Enumerated Scalar e e e e e
11.6.3 Subrange Scalar e e e o e .
11.6.4 RECORDs e e e e e e e e e e
11.6.5 ARRAYs e e e e e e e e e e
11.6.6 FILEs e e e e e e e e e e
11.6.7 SETs e e e e e e e e e e
11.6.8 SPACEs e e e e e e e e e e
12.0 code Generation for the IBM/370
12.1 Linkage Conventions e e e e e .
12.2 Register Usage e e e e e e e e .
12.3 Dynamic Storage Area e e e e
12.4 Routine Invocation e e e e e e e
12.5 Parameter Passing .
12.5.1 Passing by Read/erte Reference

12.5.2 Passing by Read-Only Reference

12.5.3 Passing by Value .

12.5.4 Passing Procedure or Functlon Param

12.5.5 Function Results . e .
12.6 Procedure/Function Format
12.7 PCWA . .
12.8 PCB - Pascal flle Control Block
13.0 Inter Language Communication
13.1 Linking to Assembler Routines

13.1.1 MWriting Assembler Routine
13.1.2 MWriting Assembler Routine
13.1.3 Receiving Parameters From

13.1.4

Calling Pascal/VS Routine

13.1.5 Sample Assembler Routine

13.1.6

13.2 PascalsVS and FORTRAN .

13.2.1
13.2.2

13.3 Pascals/VS and COBOL

13.3.1

13.4 Pascals/V¥S and PL/I .

13.4.1 Pascals/VS as the Caller to PL/I
13.4.2 PL/1 as the Caller to Pascal/VS$s

13.5 Data Types Comparison . .

14.0 Runtime Environment Overview

14.1 Program Initialization . .

14.2 The Main Program e e e e .

14.3 Execution Support Routines

14.4 Input/Output Routines . .

14.5 Error Handling e e e e e e

14.6 Conversion Routines e . .

14.7 Mathematical Routines . .

14.8 String Routines . .

14.9 Memory Management Rout1nes

15.0 00mparison to Pascal e o

15.1 Pascals/VS Restrictions . .

15.2 Modified Features e e e

15.3 New Features e e e e e e

16.0 Implementation Specifications

16.1 System Description e e e

with Minimum
with General

Routines
from Assembler Routlne

e e o o o o o o @

e e o @

Pascals/VS as the Caller to COBOL
13.3.2 COBOL as the Caller to Pascal/V$s

Pascal/VS as the Caller to FORTRAN
FORTRAN as the Caller to Pascal/VS$S

e e o ¢ o ¢ o ¢ o @ e e e ¢ o o o

.

e e o o @ e e e e o e o o o o

e o o o o

TNL SN20-4607 (9 December 1983) to SH20-6162-1

e ¢ e ¢ o o o o @
¢ ¢ ¢ e e e ¢ ¢ o o o o o @
e ¢ ¢ o o o o ¢ o o o o o @
e ¢ o e e ¢ e ¢ o o o o o @
e e e e & & ¢ o ¢ e o ¢ o @
e ¢ ¢ e e e e o o ¢ o o o @

e ¢ o o e e o e o e o o @

.

interface
Interface

Calling a Pascal/V¥S Main Program from Assembler Rou i

e e o o o o ¢ o o o (e o o o o o @

e e e o o o o o o o
e ¢ ¢ o e o o o o
e ¢ ¢ o o o o o o
e o o o e e ¢ o o o
e e o ¢ o o o o o

e o o o o o o o o @
¢ e ¢ e e ¢ o o o o
e e o o e o o ¢ o @
e e e o ¢ o o o o

¢ ¢ o ¢ ¢ o o o o @
e ¢ e ¢ o ¢ o @

e o ¢ e ¢ ¢ e o ¢ ¢ JFe e o o o o @
[}

e ¢ o o o o @

e o o o o o @

e o o o o o o @

¢ o o e e e o ¢ e e ¢ o o e o o o @
¢ o o ¢ e e e o e ¢ e o o e o o o @

e o ¢ o e o o o
¢« e

¢ ¢ ¢ ¢ o o o o o @
e o o e o o o o o @
e e ¢ e ¢ o o s o o
¢ e e ¢ ¢ o o o o @

e o ¢ o ¢ o o o

of Contents

118

121
121
121
121
122
123
123
124
124
125

127
127
127
127

129
129

ix

TNL SN20-4607 (9 December 1983) to SH20-6162-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Xii

72.

Passing by value . e . e e e e e e e e s e e e e e e e e
Passing routine parameters e e e e e e e e e e e e e e
Function results e e e e e e e e e e e e e e e e e e
Routine format e e e e e e e e e e e e e e e
Pascal Commun1cat1ons Nork Area . e e e e e e e e e e e
Pascal file Control Block (PCB) format e e e e e

Inter Language Communication e e e e e

Minimum interface to an Assembler routlne
PROLOG/EPILOG macros e e e e e e e e .
General interface to an Assembler routlne e e e e e e e e e
Pascal/VS description of Assembler routine c e e e e e e e
Sample Assembler routine

Example of calling a Pascal/VS program from an Assembler routlne
Example of Assembler as the caller to Pascal/V$s e e e .
Example of Pascal/VS as the caller to Assembler e e e e e e
Example of Pascal/VS as the caller to FORTRAN e e e .

Example of FORTRAN as the caller to Pascal/V$s e e e .

Example of Pascal/VS as the caller to COBOL - e .

Example of COBOL as the caller to Pascal/V$s

Example of Pascal/VS as the caller to PL/I

Example of PL/I as the caller to Pascal/V$s

Example of PL/l as the caller to Pascal/V$s e e e e .
Data Type Comparisons . - e .
Characteristics of System/370 float1ng p01nt arlthmetlc
Sample JCL to retrieve first file of distribution tape
Sample installation job e e e . . - e . e e e
Sample installation job e e e e e e e e e e e e e e e e e
Sample installation job

Listing of the JCL to copy source flles from tape

Listing of the JCL to copy source files from tape

Examples of using the PICTURE function . e e e e e

CMS Command Summary e e e e e e e
Pascal/VS Modules Needed for Downloadlng . .

CMS Commands to Download Pascal/VS From a Local Se551on

CMS Commands to Access Pascal/VS From a Local Session as a

Pascal/VS Programmer's Guide

95
96
96

98
101
103
104
105
106
108
108
109
110
111
112
113
114
115
116
117
118
119
130
168
169
170
171
173
174

178.1
178.4
178.6
178.6
178.7

1.0 INTRODUCTION

The Pascal/VS compiler is a processing program which translates Pascal/VS source
programs, diagnosing errors as it does so, into IBM System/370 machine
instructions.

The compiler may be executed under the following operating system environments:

. 057370 Batch (VS1 and VS2 R3.7)

. Time Sharing Option (TS0) of 05/VS2

° Conversational Monitor System (CMS) of Virtual Machine Facilitys/370 (VM/370)
Release 5 PLC 2 and latter.

1.1 INVOKING THE COMPILER UNDER CMS5: PASCALVS EXEC

PRINT] [LIB(maclib?;}

PASCALVS fn [ft [fml] |([optionsl [NOPRINT [CONSOLE]
DISK [NOOBJ]

n is the file name of the source program.

ft is the file type of the source program; the assumed file type is
"PASCAL"™.

fm is the file mode of the source program.

maclibs are optional macro libraries required by the %ZINCLUDE facility. Up to
eight libraries may be specified.

options are compiler options.

PRINT specifies that the listing is to be spooled to the virtual printer.

NOPRINT specifies that the listing is to be suppressed.

DISK specifies that the listing is to be stored as a file named "fn
LISTING". This is the default.

CONSOLE specifies that the console messages produced by the compiler are be

stored as a file named "fn CONSOLE". If CONSOLE is not specified,
then the messages will be displayed on the terminal console.

NOOBJ suppresses the production of an object module.

1.2 BUILDING A LOAD MODULE UNDER CMS: PASCMOD EXEC

PASCMOD main [names... 1 [(options... [)1]
mafin is the name of the main program module.
names... are the names of segment modules and text libraries (TXTLIB's) which

are to be included.

Introduction 1

options... is a list of options.

The resulting load module will be given the name "main MODULE A"™. The load map of
the module will be stored in "main MAP A",

The following are recognized as options to the PASCMOD command.

DEBUG links the debugging routines into the load module so that the interac-
tive debugger can be used.

NAME name specifies an alternate name for the load module. The resulting load
module and map will have the name "name MODULE A"™ and "name MAP A".

1.3 INVOKING THE LOAD MOCDULE UNDER CHMS

A Fascal/VS load module is invoked as follows:
modname [[rtparms.../) [parms...)]

where "modname" is the name of the load module; "rtparms" are run time options
(separated by blanks); and "parms" are the parameters (if any) being passed.

1.4 INVOKING THE COMPILER UNDER TSO: PASCALVS CLIST

CLIST NAME OPERANDS

PASCALVS data-set-name
[compiler-options-list]

[OBJECT(dsnama)]
NOOBJECT

PRINT(x)
PRINT (dsname)
SYSPRINT(sysout-class)
NOPRINT

[CONSOLE(3%)]
CONSOLE(dsname)

[LIB(dsname-list)]
NOLIB

data-set-name is the name of the primary input data set.
compiler-options-list is one or more compiler options separated by blanks

OBJECT(dsname) specifies the data set to contain the object module.

NOOBJECT specifies that no object module is to be produced.
PRINT (%) specifies that the compiler listing is to be displayed on the ter-
minal.

PRINT(dsname) specifies the data set to contain the compiler listing.

SYSPRINT(sysout-class) specifies the sysout class to where the compiler listing
is to be produced.

NOPRINT suppresses the compiler listing.
CONSOLE(x) specifies that compiler messages are to be displayed on the termi-
nal.

2 Pascal/VS Programmer's Guide

J

C

CONSOLE(dsname) specifies the data set to contain compiler messages.

LIB('dsname~1list') specifies a list of XINCLUDE libraries.

NOLIB specifies that no ¥INCLUDE libraries are required.

Introduction

3

1.5 BUILDING A LOAD MODULE UNDER TSO: PASCMOD CLIST

CLIST NAME OPERANDS
PASCMOD data-set-name or x
[OBJECT('dsname-list']}]
[DEBUG]
[LOAD(dsname])]l
PRINT (%]

[PRINT(dsnama)] [LET] [XCAL]
NOFPRINT NOLET NOXCAL
[LIB('dsname-list")] [FORTLIBI] [COBLIBI
[MAP] [NCAL] LIST]
NOMAP NONCAL NOLIST
[XREF] [REUS] REFR]
NOXREF NOREUS NOREFR
[SCTR] [OVLY] RENT]
NOSCTR NOOVLY NORENT

NE oL DC
[NONE] [NOOL] NODC]
TEST NOTERM
[NOTEST] [TERM]
[SIZE('integerl integer2')]
[DCBS(blocksize]l]
[aC(authorization-coda)]

data-saet-name is the data set containing a Pascal/VS object module and/or link-

age editor control cards.

OBJECT('dsname-1ist’') specifies a list of data sets which-contain additional
object modules to be included in the link-edit.

LIB('dsname-1ist") specifies a list of libraries to be searched.

DEBUG specifies that the Pascal/VS interactive debugger is to be uti-
lized.

All other operands of the PASCMOD CLIST are identical to their counterparts in the
LINK command as described in the TS0 Command Language Reference Manual.

4 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

1.6 INVOKING THE LOAD MODULE UNDER TSO: THE CALL COMMAND

CALL dsnamel (member)] ["[options/] [parmsl' 1
dsnhame(member) specifies the name of a partitioned data set and the member where
the load module to be invoked is stored.
options is one or more run time options separated by either a comma or a
blank.
parms a parameter string which is to be passed to the program.

The total length of the quoted string (options plus parms) must not exceed 100

characters.

1.7 INTERACTIVE DEBUGGER

In order to use Debug, vou must follow these four steps:

U Compile the module to be debugged with the DEBUG option.

U When link-editing your program, include the debug library.

° When executing the load module, specify "DEBUG' as a run time option.

Command name Description (Abbreviation in capital letters)

? List all debug commands

svariable Display the value of a variable

Break Set a break point

CLEAR Remove all break points

Cms Enter CMS subset mode

Display Display status

Display Breaks Display the location of all break points

Display Equates Display all equate symbols with their current
definitions

END Terminate the program (same as QUIT)

Equate Define an equate symbol

Go Begin or resume execution of probram

Listvars List the values of all variables that are local
to the active routine

Qual Redefine the "current" qualification

QUIT Terminate the program (same as END)

Reset Remove a break point

Set Attr Display attributes when variables are viewed

Set Count Initiatesterminate statement counting

Set Trace Activates/deactive program tracing

Trace Display a trace back

Walk Execute a single statement and then prompt for
another command

Introduction 5

TNL SN20-4445 (31 December 1981) to SH20-6162-1

1.8 COMPILER OPTIONS

compiler Option Abbraviated Name Default
CHECK/NOCHECK —-——- CHECK
DEBUG/NODEBUG ~-—- NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LINECOUNT(n) LC LINECOUNT(60)
LIST/NOLIST —-—— NOLIST
LANGLVL(STD/EXTEND) —-——- LANGLVLCEXTEND)
MARGINS(m,n) MAR(m,n) MARGINS(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) Pl PAGEWIDTH(128)
PXREF/NOPXREF —-—— PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,>n)/NOSERQ SEQUENCE(73,80)
SOURCE/NQOSQURCE S/N0OS SOURCE
WARNING/NOWARNING W/7HOW WARNING
XREF/NOXREF X/NOX XREF(SHORT)

1.9 RUN TIME OPTIONS

The following options enable features

which your program will be executi

COUNT

DEBUG activates the interactive
SETMEM

tion of the routine.
NOSPIE

ng.

debuggar.

NOCHECK causes all checking errors to be ignored.

ERRFILE = ddname specifies the file to which error diagnostics are to be written.

ERRCOUNT = number specifies the number of non-fatal run time errors that will be
permitted prior to terminating the program.

S8TACK = number specifies the number of kilobytes by which the run time stack is to

be extended when a stack overflow occurs.

HEAP = number specifies the number of kilobytes by which the heap is to be extended

when a heap ovaerflow occurs.

6 Pascal/VS Programmer's Guide

in the Pascals/VS run time environment in

genarates a statement count table and writes it to QUTPUT.

initializes local storage of a routine to a specific value on each invoca-

suppresses the interception of program exceptions.

The default number is 20.

1.10 CATALOGED PROCEDURES

PASCC Compile only ——- step name: PASC
PASCCG Compile, load and execute -- step names: PASC, GO
PASCCL Compile and link-edit -- step name: PASC, LKED

PASCCLG Compile, link-edit, and execute —-

step names: PASC, LKED, GO

Data set description stepname.ddname
source program input PASC.SYSIN?
%ZINCLUDE library (PDS) PASC.SYSLIB
source listing,

cross-reference listing, PASC.SYSPRINT

pseudo assembly listing and

external symbol table listing
object module PASC.SYSLIN
load module LKED.SYSLMOD
linkage-editor control cards LKED.SYSIN?
linkage-editor load library LKED.SYSLIB
loader input GO.SYSLIN
loader library GO.SYSLIB
file OUTPUT GO.OUTPUT
1 This DDname is not defaulted and must be

explicitly defined.

1.11 SAMPLE BATCH JOB

//jobname JOB

//STEP1 EXEC PASCCLG,OPTIONS="XREF(LONG),LIST'

/7/PASC.SYSIN DD %
{Program to be compiled goes here}

/%

//LKED.SYSIN DD ¥
ENHTRY PASCALVS

/%

/7/G0.INFUT DD...

Introduction

7

This section applies only to those who
are using Pascal/V5 under the Conversa-
tional Monitor System (CMS) of Virtual
Machine Facilitys370 (VM/370). If you
are not using CMS then you may skip
this entire section.

For a description of the syntax nota-
tion used to describe commands, see
"Command Syntax Notation" on page 163.
There are four steps to running a
Pascal/VS program under CMS.

2.1 HOW TO COMPILE A PROGRAM

2.0 RUNNING A PROGRAM_UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object module;

3. All files used within the program
are defined using the FILEDEF com-
mand;

4. The load module is invoked.

DISK
PASCALVS fn [ft [fm]l 1 |([options...] [PRINT] [CONSOLE] [NOOBJ]1 [)1
NOPRINT
[LIB{maclibs...)]
Figure 1. The PASCALVS command of CMS: invokes the Pascal/VS compiler.

2.1.1 Invoking the compiler

The standard method of invoking the
Pascal/VS compiler under CMS is by
means of an EXEC-called PASCALVS.

To compile a Pascals/VS program, the
EXEC may be invoked in its simplest
form by the command

PASCALVS fn

where "fn" is the file name of the pro-
gram. If the file type is not explic-
itly specified, the type "PASCAL"™ will
be assumed.

The compiler translates a source pro-
gram into object code, which it stores
in a file. The name of this file is
identical to the name of the source
program. Its file type is "TEXT".

For example, to compile a program which
resides in a file called "SORT PASCAL",
the command would be:

PASCALVS SORT
If the compilation completes without

errors, then the file named "SORT TEXT"
Wwill contain the resulting object code.

2.1.2 The PASCALVS Command

The generalized form of the PASCALVS
command is illustrated in Figure 1.
The operands of the command are defined
as follows:

fn ft fm
is the file name, file type, and
file mode of the source program.
The file type and file mode are
optional. The default file type is
"PAPCAL" and the default file mode
is "M,

maclibs...
are optional macro libraries
required by the XINCLUDE facility.
Up to eight may be specified.

options...
are compiler options, see "Compil-
er Options™" on page 31.

The command options DISP, PRINT, and

NOPRINT specify where the compiler
listing is to be placed.
DISK

specifies that the listing is to be
stored as a file on your A disk.

Running a Program under CMS 9

The file is named "fn LISTING",
where "fn" is the file name of the

source program. This option is the
default.

PRINT
specifies that the listing is to be
spooled to your virtual printer.

NOPRINT
specifies that the listing 1s to be
suppressed. This option automati-
cally forces the following three
compiler options to become active:

- NOSOURCE
- NOXREF
- NOLIST

CONSOLE

specifies that the console mes-
sages produced by the compiler are
be stored as a file on your A disk.
The name assigned to the file is
"fn CONSOLE". If CONSOLE is not
specified, then the messages will
be displayed on your terminal con-
sole.

NOOBJ
suppresses the production of an
object module by disabling the code
generation phase of the compiler.
This option is useful when you are
using the compiler only as an error
diagnoser.

For an explanation of the possible
error messages and return codes
produced from the EXEC, see "Messages
from PASCALVS exec" on page 159.

2.1.3 The %INCLUDE Maclibs

The macro libraries (maclibs) that may
be specified when inveking the PASCALVS
command are those required by the
%INCLUDE facility. When the compiler
encounters an %INCLUDE statement with-
in your program it will search the
maclibs (in the order in which they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, it will
continue reading in the previous input
stream (immediately following the
%INCLUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic-
itly provided as the last maclib in the
search order.

10 Pascal/VS Programmer's Guide

2.1.4 Passing Compiler Options

Compile time options (see "Compiler
Options" on page 31) are parameters
that are passed to the compiler which
specify whether or not a particular
feature is to be active. A list of
compiler options may be specified in
the PASCALVS parameter list. The
options list must be preceded by a left
parenthesis "(".

For instance, to compile the program
"TEST PASCAL" with the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCALVS TEST (DEBUG NOXREF

2.1.5 The Compiler Listing

The compiler generates a listing of the
source program with such information as
the lexical nesting structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source Listings” on page 37.

2.1.6 compiler Diagnostics

Any compiler-detected errors in your
program will be displaved on your ter-
minal console (or written to a disk
file if the CONSOLE options is speci-
fied). The errors will also be indi-
cated on your source listing at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com-
piler is displayed on vyour console.
Immediately wunderneath the printed
line a dollar symbol (']') is placed at
each location where an error was detec-
ted. This symbol serves as a pointer
to the approximate location where the
error occurred within the source
record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-
tic message is produced for each error
number.

For a synopsis of the compiler—gener-
ated messages see "Pascals/VS Compiler
Messages" on page 131.

2.1.7 Sample Compilation

edit copy pascal
NEW FILE:
program copy;
var
infi ley
cutfile : text;
buffer ¢ string;
begin
reset(infile);
rewrite(outfile);
while not eof(infile) do
begin
readln(infile,buffer);
writeln(outfile buffer)
end;
end.

EDIT:

file
FILE SAVED

R; T7=0.25/0.62 06:56:4%

pascalvs copy

INVOKING PASCAL/VS R2.0
WRITELN(OUTFILE BUFFE%%I

ERROR 41: Comma ',' expected
1 ERROR DETECTED.

SOURCE LINES: 16; COMPILE TIME: 0.16 SECONDS;

RETURN CODE: 8
R(00008); T=0.34/0.67 06:56:59

Figure 2. Sample compilation under CMS

COMPILE RATE:

6109 LPM

Running a Program under CMS

11

2.2 HOW TO BUILD A LOAD MODULE

PASCMOD

main [names ... 1 [(options... [J)]11]

Figure 3. The PASCMOD command:

The PASCMOD EXEC generates load modules
from Pascals/VS object code. If your
program consists of just one source
module (that 1is, you have no segment
modules), a load module can be genera-
ted by simply invoking PASCMOD with the
name of the program. For example, if a
program named SORT was successfully
compiled (which implies that "SORT
TEXT" exists), then a load module may
be generated with:

PASCHOD SORT

The resulting module would be called
"SORT MODULE"™. A load map is stored in
"SORT MAP".

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the main program
module.

names...

are the names of segment modules
and text libraries (TXTLIB's)
which are to be included. If a
name "nN" i1s specified and there are
two files named n TEXT and n
TXTLIB, then the TEXT file will be
included and the TXTLIB will be
searched.

options...
is a list of options. (see "Module
Generation Options.™)

The resulting load module will be given
the name "main MODULE A". The load map
of the module will be stored in "main
MAP A",

The Pascals/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD implic-
itly appends this library to the list
that you specify.

12 Pascal/VS Programmer's Guide

generates a Pascal/VS load module.

As an example, let us build a load mod-
ule for a pre-compiled program which
resides in three source modules: MAIN,
ASEG, and BSEG. This prooram calls
routines that reside in a txtlib called
UTILITY. The following command would
generate a load module called HMHAIN
MODULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation Options

The following are recognized as options
to the PASCMOD command.

DEBUG
specifies that the debugging rou-
tines are to be linked into the
load module so that the interactive
debugger can be used. (See
"Pascal/VS Interactive Debugger”
on page 65.)

NAME name
specifies an alternate name for the
load module. The resulting load
module and map will have the name
"name MODULE A"™ and "name MAP A".

2.2.2 Run time Libraries

Routines which make up the Pascal/VS
runtime environment raeside in a text
library called "PASCALVS TXTLIB". It
must be present in order to resolve the
linkages from the program being pre-
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTLIBY. (see "Pascal/VS Interactive
Debugger” on page 65 for a description
of Debugl.

2.3 HOW TO DEFINE FILES

FILEDEF SYSIN DISK INPUT DATA

Figure 6.

FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL 4
FILEDEF GUTPUT TERMINAL (RECFM F LRECL 80

FILEDEF INPUT TERMINAL (RECFM V LRECL 80

Examples of CMS file definition commands

Before vou invoke the generated load
module, vou must first define the files
that your program requires. This is
done with the FILEDEF command.

The first parameter of the FILEDEF com-
mand is the file's ddname. The ddname
to be associated with a particular file
variable 1n your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT TEXT;
OCUTPUTFILE file of
INTEGER;

If a particular file is to be opened
for input, attributes such as LRECL,
BLKSIZE, and RECFM are obtained from
the (presumably) already existing
file. Hote: A file that is being
defined to the terminal requires vou to
explicitly specify RECFM and LRECL on
the FILEDEF command.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
Wwill be assigned default values if not
specified. For a description of the
defaults see "Data Set DCB Attributes"
on page 45.

The FILEDEF commands required for each
of the three file variables in the

example above and for INPUT and OUTPUT
could be as shown in Figure §.

2.4 HONW TO INVOKE THE LOAD MODULE

After the module has been created and
the files defined, vou are ready to
execute the program. This is done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms...]

whare "modnama" is the name of the load
module and "parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascals/VS environment from those that
vour program wWill read (via the PARMS
function), the runtime parameter 1list
must be terminated with a slash "/".
The program parameters, if any, must
follow the "/",

modname [[rtparms...s]1 [parms...]]
For a description of the run time

options see "Run Time Options™" on page
35.

Running a Program under CMS 13

C

This section describes how to compile
and execute a Pascal/VS program under
the Time Sharing Option (TS0 of
0ssvse. If vou are not using TS0 to
run the compiler, vyou may skip this
section.

Refer to "Command Syntax Notation"™ on
page 163 for a description of the syn-
tax notation used to describe commands.

There are four steps to running a
Pascal/VS program.

3.1 HOW TO COMPILE A PROGRAM

3.0 RUMNING A PROGRAM UNDER TSO

1. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

J. All data sets used within the pro-
gram are allocated;

4. The load module is invoked.

CLIST NAME

OPERANDS

PASCALVS

data-set-name

[compiler-options-list]

OBJECT(dshama) W
NOOBJECT
PRINT (%)]

PRINT(dsname)
SYSPRINT(sysout-class)
NOFRINT

CONSOLE(x)
CONSOLE(dsname)

LIB(dsname-1list) W
NOLIB

Figure 5. PASCALVS CLIST syntax.

3.1.1 1Invoking the Compiler

The Pascal/VS compiler is invoked under
TS50 by means of a CLIST. A sample
CLIST named PASCALVS is provided to
compile a Pascal/V5S program.

data-set-name
specifies the name of the primary
input data set in which contains
the source program to be
compiled. This can be either a
fully qualified name (enclosed
in single quotation marks) or a
simple name (to which the user

identification will be prefixed
and the qualifier "PASCAL"™ will
be suffixed). This must be the
first operand specified.

compiler-options-list
specifies one or more compiler
options. See "“Compiler Options"
on page 31.

OBJECT (dsname)
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parentheses. This can be
either a fully aqualified name

Running a Program under TSO 15

(enclosed within triple quota-
tion marks '"''...''"")! or a
simple name (to which the iden-
tification qualifier will be
prefixed and the qualifier "0BJ"
suffixed).

NOOBJECT
specifies that no object module
is to be produced. The compiler
will diagnose errors only.

If neither OBJ nor NDOBJ is spec-
ified then object module
produced by the compiler will be
written to a default data set.
If the data set specified in the
first operand contains a
descriptive qualifier of
"PASCALY, the CLIST will form a
data set name for the object mod-
ule by replacing the descriptor
qualifier of the input data set
with "0BJ". If the descriptive
qualifier is not "PASCAL", then
yvou will be prompted for the
object module data set name.

If the first operand of PASCALVS
specifies the member of a parti-
tioned data set, then the name of
the associated object module
will be generated as just
described. If the object module
data set is a partitioned data
set, then the object module will
become a member within the PDS
and will have the same name as
the member name of the input data
set.

As an example, given that the
user i1dentification is ABC, the
following commands will produce
object modules with the name
shown.

PASCALVYS SORT
object module: 'ABC.SORT.OBJ

PASCALVS 'DEF.PDS.PASCAL(MAIN)
object module:
'DEF.PDS.0BJ(MAIN)"'

PASCALVS 'ABC.PROG.PAS’
user prompted for object
module name

data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
TYY O ..'"")2 or a simple name (to
which the identification qual-
ifier will be prefixed and the
qualifier "LIST" suffixed).

SYSPRINT(sysout-class)
specifies that the compiler
listing is to be written to the
sysout class named in parenthe-
se5.

NOPRINT
specifies that the compiler
listing is not to be produced.
This operand activates the fol-
lowing compiler options:
NOSOURCE, NOXREF, NOLIST

CONSOLE(%)
specifies that the compiler gen-
erated messages are to be dis-
played on the terminal console.
This is the default.

CONSOLE(dsnama)

specifies that the compiler gen-
erated messages are to be written
to the data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
Y.L TYY) or a simple name (to
which the identification qual-
ifier will be prefixed and the
qualifier "CONSOLE"™ suffixed).

LIB(dsnama-list)

specifies that the %INCLUDE
facility is being utilized.
Within the parentheses is a list
of the names of one or more par-
titioned data sets that are to be
searched for members to be
included within the input
stream.

If the list contains more than
one nhame, the entire list must be
enclosed within quotes. Any ful-
ly qualified name within the
quoted list must be enclosed in
double quotes *',..'",

See "Using the ZINCLUDE
PRINT(X%) Facility"™ on page 17.
specifies that the compiler
listing 1s to be displaved on the NOLIB
terminal; no other copy wWill be specifies that no %INCLUDE
available. libraries are required. This is
the default.
PRINT (dsname)
specifies that the compiler
listing is to be written on the
1 Triple quotes are required because the CLIST processor removes the outer
aquotes within a keyword sub-operand list.
2 Triple quotes are required because the CLIST processor removes the outer

quotes within a keyword sub-operand list.

16 Pascal/VS Programmer's Guide

9

9

Example 1

Operation: Invoke the Pascals/VS com-
piler to process a
Pascals/VS program

Known: User-identification is ABC

Data set containing the pro-
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINT(A)

Example 2

Operation: Invoke the Pascal/VS com-
piler to process a
Pascal/VS program

Known: User-identification is XYZ

Data set containing the pro-
gram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TESTLIST.LIST.

The long version of the cross
reference listing is pre-
ferred.

Default options and data set
names are to be used for the
rest.

PASCALVS "ABC.TEST.PASCAL"' +
XREFCLONG),PRINT(TESTLIST)

3.1.2 Using the %INCLUDE Facility

If the INCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standard include library supplied
by IBM is called?

"SYS1.PASCALVS.MACLIB"

This library must be specified in the
LIB list if your program contains an
%ZINCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an
%INCLUDE statement within the source
program, it will search the partitioned

3 The high-level
installation.

qualifier name

(5YS51) may be

data set(s) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue reading from
the previous input stream immediately
following the IMCLUDE statement.

Example 1
Operation: Invoke the Pascal/VS com-
piler to process a
Pascal/VS program which
utilizes the ZINCLUDE
facility.

Known: User-identification is P123

Data set containing the pro-
gram is named

'P123.MAIN.PASCAL"'

The source to be included is
stored in two partitioned
data sets by the names of

'P123.PASLIB'
'SYS1.PASCALVS .MACLIB'.

Default options and data set
names are to be used for the
rest.

PASCALVS MAIN LIB('PASLIB,+
'"'SYS1.PASCALVS.MACLIB''")

3.1.3 compiler Diagnostics

By default, compiler diagnostics are
displayed on your terminal. If the
CONSOLE(dsname) operand appears on the
PASCALVS command, then the diagnostics
will be stored in a data set. The
errors will also be indicated on your
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list-
ing.

When an error is detected, the source
line that was being scanned by the com-
piler is printed on your terminal (or
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol ('$') is placed at each location
where an error was detected. This sym-
bol serves as a pointer to indicate the
approximate location where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-—
tic message is produced for each error
number.

di fferent at vyour

Running a Program under TSO 17

For a synopsis of the compiler genera-
ted messages see "Pascal/VS Compiler
Messages" on page 131.

3.2 HOW TO BUILD A LOAD MODULE

CLIST NAHE OPERANDS
PASCMOD data-set-name or x

[OBJECT('dsname-1list"')]

[DEBUSG]

[LOAD(dsname]}]
PRINT (%)

[PRINT(dsname)] [LET] [XCAL]
NOPRINT NOLET NOXCAL

[LIB('dsname-list")] [FORTLIB] [COBLIB]
MAP NCAL LIST

[NOHAP] [NONCAL] [MOLIST]
XREF REUS REFR

[MNOXREF] [NOREUS] [NOREFR]
SCTR OVLY RENT

[NOSCTR] [NOOVLY] [NORENT]
NE oL DC

[NONE] [NOOL] [NODC]

[TEST] [NOTERM
NOTEST TERM

[SIZE('integerl integer2')l

[DCBS(blocksize)l

[AC(authorization-code)l

Figure 6. The TS0 PASCMOD CLIST description.

To generate a load module from a
Pascals/VS object module, you may use
either the TS50 LINK command or a CLIST
named "PASCMOD"™ (Figure 6). The CLIST
performs the same function as the LINK
command except that it will automati-
cally include the Pascal/VS runtime
library in generating the load module.
Also, if the debugger is to be
utilized, the CLIST will include the
Pascal/VS debug library. (A complete
description of the LINK command is con-
tained in the TS0 Command Langquage

Reference Manual.)

Every Pascal/VS object module contains
references to the runtime support rou-
tines. These routines are stored in a
library called*

4 The high-level
installation.

qualifier name

18 Pascal/VS Programmer's Guide

(S5YS1) may be

"S5YS1.PASCALVS.LOAD"

This library must be linked into a
Pascal’/VS object module in order to
resolve all external references prop-
erly. If the PASCMOD CLIST is used,
this library is included
automatically.

If the interactive debugger is to be
utilized, then the library containing
the debug environment must be included
in the 1linking. The name of this
library is?®

"SYS1.PASDEBUG.LOAD"
This library must appear ahead of the

runtime library in search order. 1If
the PASCMOD CLIST is used, this library

di fferent at vyour

Wwill be included if the option DEBUG is
specified.

If more than one object module is being
linked together, then an entry point
should be specified by means of a link-
age editor control card. The name of
the entry point for any Pascal/VS pro-
gram 1s PASCALVS.

data-set-name

specifies the name of a data set
containing a Pascal/VS object mod-
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk (%)
for the data set name to indicate
that you will enter control state-

ments from your terminal. The sys-
tem wWill prompt you to enter the
control statements. A null line

indicates the end of your control
statements.

OBJECT('dsname-list"')
specifies a list of data sets which

contain object modules to be
included in the link edit. Because
of CLIST restrictions, the list

must be enclosed in single quotes;
fully qualified names within the
list must be enclosed in double
quotes (''..."'").

LIB('dsname-list"')

specifies one or more names of
library data sets to be searched by
the linkage editor to locate load
modules referred to by the module
being processed, that is, to
rasolve external references. The
name of the Pascals/VSs runtime
library 1s implicitly appended to
the end of this list; vou need not
specify it.

Because of CLIST restrictions, the
list must be enclosed in single

fully qualified

quotes; names
within the list must be enclosed in
double quotes ('"'..."").

DEBUG

specifies that the Pascal/V$s
interactive debugger is to be uti-
lized on the resultant load module.
This will cause the Pascal/VS debug
library to be included among the
libraries to be searched to resolve
external references.

All other operands of the PASCMOD CLIST
are identical to their counterparts in
the LINK command as described in the
TS50 Command Language Reference Manual.

Example

Operation: Create a load module from
a compiled Pascal/VS pro-
gram consisting of three
object modules.

Known: User-identification is ABC.
Data sets containing the
three object modules:

ABC.SORT.O0BJ
ABC.SEG1.0BJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a data set named
ABC.PROGS.LOAD

(The user's input is in lower case;
the . system replies are
high-lighted.)

pascmod ¥ load(progs(sort)) +
object('sort,segl,seg2')

ENTER CONTROL CARDS

entry pascalvs

READY

Running a Program under TS0 19

3.3 HOW TO DEFINE FILES

ALLOC
ALLOC
ALLOC
ALLOC
ALLOC

DDNAMEC(SYSPRINT) SYSOUT(A)

Figure 7.

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
DDNAME(SYSIN) DSNAMECINPUT.DATA) SHR

DDNAMECOUTPUTFI) DSNAME(OUTPUT.DATA) NEW SPACE(100) BLOCK(3120)
DDNAME(OUTPUT) DSNAME(x%) USING(F80)
DDNAMECINPUT) DSNAME(X%) USING(F80)

Examples of TS0 data set allocation commands

Before vou invoke the generated load
module, vou must first define the files
that your program requires. This is
done with the ALLOC command.

The ddname to be associated with a par-
ticular file variable in vour program
is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration belowt would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT TEXT;
OUTPUTFILE file of
INTEGER;
3.4 INVOKING THE LOAD MODULE

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes™ on page 45.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and QUTPUT could be
as shown in Figure 7.

CALL dsnamel (member)l [

"[options/] I[parmsl' 1

Figure 8.

After the module has been created and
the files defined, you are ready to
execute the program. This is done by
the CALL command (see Figure 8). The
operands of the CALL command are as
follows.

dsname(member)
specifies the name of a partitioned
data set and the member where the

load module to be invoked 1is
stored. If the member name is
omitted, then the member
"TEMPNAME" will be the load module
invoked.

dsname may be either a simple name
(to which the user identification
is prefixed and the qualifier
"LOAD" is suffixed), or a fully
qualified name in quotes.

20 Pascal/VS Programmer's Guide

The TS0 CALL command to invoke a load module

options
specifies one or more run time
options separated by either a comma
er a blank. (See "Run Time Options"”
on page 35.).

parms
specifies a parameter string which

is to be passed to the program.
The parameter string is retrieved
from within the program by the
PARMS function.

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

3.5 SAMPLE TSD SESSION

READY
pascalvs lander sysprint(a) list
INVOKING PASCAL/VS R2.0
NQ CONPILER DETECTED ERRORS
READY

pascmod lander load(programs(lander))
READY

alloc ddname(input) dsname(¥)
READY

alloc ddname(output) dsname(¥)
READY

call programs(lander) 'parms go here'

SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

Figure 9. Sample TS50 session of a compile, link-edit, and execution.

Figure 9 is an example of a TS50 session
which compiles an already existing
source module, link edits it, and exe-
cutes it. The commands entered from

the terminal are in lower case;

those

produced by the system are in upper

case and high-lighted.

Running a Program under TSO

21

This section describes how to compile
and execute Pascal/VS programs in an 0S5
Batch environment. If you are not
using the compiler under 0S Batch then
you may skip this section.

5.1 JOB CONTROL LANGUAGE

Job control language (JCL) is the means
by which you define your jobs and job
steps to the operating system; 1t
allows vyou to describe the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascal/VS job are as follows:

. JOB statement, which
the start of the job.

identifies

. EXEC statement, which identifies a
job step and, in particular, speci-

.0 RUNNING A PROGRAM UNDER 0S BATCH

fies the program to be executed,
either directly or by means of a
cataloged procedure (described
subsequently).

. DD (data definition) statement,
which defines the input/output
facilities required by the program
executed in the job step.

. 7% (delimiter) statement, which
separates data in the input stream
from the 3Jjob control statements
that follow this data.

A full description of job control lan-
guage 15 given in the publication
05/7VS2 JCL (GC28-069%2).

2 HOW TO COMPILE AND EXECUTE A PRO-
A

/77EXANMPLE JOB
/7/STEP1 EXEC PASCCG,PARM="LIST"
/7/7PASC.SYSIN DD ¥
program EXAMPLECINPUT,OUTPUT);
var
A, B: REAL;
begin
RESET(INPUT);
while not EOFCINPUT) do
begin
READLNC(CA,B);

WRITELNC'Y SUM = 'L,A+B);
WRITELNC' PRODUCT = ',AXB);
end
end.
/¥
/7/7GO.INPUT DD %
3.0 4.0

3.14159 1.414
1.0E~10 2.0E-10
-10.0 102.0

/%

Figure 10.

Sample JCL to run a Pascal/VS program

The job control statements shown in
Figure 10 are sufficient to compile and
execute a Pascal/VS program consisting
of one module. This program uses only
the standard files INPUT and QUTPUT.
For a more generalized description of
input/output refer to "How to Access
Data Sets" on page 29 and "Using
Input/Qutput Facilities" on page 45.

Any options to be passed to the compil-
er are placed within the PARM string of
the EXEC statement.

In the sample JCL, "YEXAMPLE"™ is the
name of the job. The job name identi-
fies the job within the operating sys-
tem; 1t is essential. The parameters
required in the JOB statement depend on
the conventions established for your
installation.

The EXEC statement invokes the IBM sup-
plied cataloged procedure named
PASCCG. When the operating system
encounters this name, it replaces the

Running a Program under 0S Batch 23

EXEC statement with a set of JCL state-
ments that have been written previously
and cataloged in a system library. The

cataloged procedure contains two
steps:
PASC invokes the Pascal/VS compiler

to produce an object module.

G0 invokes the LOADER to process
the object module by loading it
into memory and including the
appropriate runtime library

routines. The resulting exe-
cutable program is immediately
executed.

The DD statement named "PASC.SYSIN"
indicates that the program to be proc-
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or device on
which it expects to find the program.

The delimiter statement /¥ indicates
the end of the data.

The DD statement named "GO0.INPUT" indi-
cates that the data to be processed by
the program (in procedure step 60) fol-
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of 3job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged procedure comprises one or
more job steps (though it is not a job,
because it must not contain a JOB
statement). It is included in a job by
specifying its name in an EXEC state-
ment instead of the name of a program.

Several IBM-supplied cataloged proce-
dures are available for use with the
Pascals/V5S compiler. It is primarily by
means of these procedures that a
Pascal/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre-
quently used sets of job control state-
ments. If the statements in a
cataloged procedure do not match your
requirements exactly, you can easily
modify them or add new statements for
the duration of a job.

It is recommended that each installa-
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

24 Pascal/VS Programmer's Guide

%.% IBM SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup-
plied for use with the Pascal/VS com-
piler are:

PASCC Compile only
PASCCG Compile, load-and-execute
PASCCL Compile and link edit

PASCCLG Compile, link edit, and exe-
cute

These cataloged procedures do not
include a DD statement for the source
program; you must always provide one.
The DDname of the input data set is
SYSIN; the procedure step name which
reads the input data set is PASC. For
example, the JCL statements that you
might use to compile, link edit, and
execute a Pascal/VS program is as fol-
lows:

//JOBNAME JOB
7/STEP1 EXEC PASCCLG
7/PASC.SYSIN DD ¥

(insert Pascai/VS program here
to be compiled)

/¥

The listings and diagnostics produced
by the compiler are directed to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce-
dure routes DDname-SYSPRINT to the out-
put class where the system messages are
produced (SYSOUT=%).

The object module produced from a com-
pilation is normally placed in a tempo-
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYSLIN in procedure
step PASC must be overridden. For
example, to compile a program stored in
data set

"T123.S0RT.PASCAL"™

and to store the resulting object mod-
ule in a data set named

"T123.S50RT.0BJ"
the following JCL might be employed:

/7 JOBNAME JOB

//5TEP1 EXEC PASCC

/7/PASC.SYSIN DD DSN=T123.SORT.PASCAL,
Y4 DISP=SHR
/7/PASC.SYSLIN DD DSN=T123.SORT.0BJ,

77 UNIT=TSOPACK,

77 DISP=(NEW, CATLG)

9

6.6.1 Compile Only [(PASCC)

/70UCODE DD
/70UTPUT DD
//STEPLIB DD
//5YSLIB DD

SYSQUT=&SYSOUT
SYSOUT=&SYSOUT

DSN=&INCLLIB,DISP=SHR

//SYSLIST DD
/7 SPACE=(TRK, (2,5))
//5YSMSGS DD
/75YS0IN DD
/7 SPACE=(TRK,(2,5))
/75YSPRINT DD
//SYSTERM DD
//SYSTIN DD

DUMMY

//SYSXREF DD
/7 SPACE=(TRK,(2,5))
/7UCODE DD SYSOUT=&SYSOUT

Figure 11. Cataloged procedure PASCC

//7PASCC PROC SYSOUT="%"',INCLLIB="SYS1.PASCALVS.MACLIB'
/7%

/7% INVOKE PASCAL/VS COMPILER

/ /%

//PASC EXEC PGM=PASCALI,PARM=,REGION=512K

DSN=SYS51.PASCALVS.LINKLIB,DISP=SHR

4 DD DSN=S5YS1.PASCALVS.MACLIB,DISP=SHR

//75YSLIN DD DSNAME=&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
7/ SPACE=(TRK,(2,5)),

/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSQRG=PS)

UNIT=SYSDA,DISP=(NEW,DELETE),

DSN=SYS51.PASCALVS.MESSAGES, DISP=5SHR
UNIT=SYSDA,DISP=(NEW,DELETE),

SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
UNIT=SYSDA,DISP=(NEW,DELETE),

/7 SPACE=(TRK, (2,5))

/75YS5UT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),

/7 SPACE=(TRK, (2,5)),

/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSQRG=PS)
/75YSUT2 DD UNIT=SYSDA,DISP=(NEW,DELETE),

/7 SPACE=(TRK, (2,5)),

/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSQRG=PS)

UNIT=SYSDA,DISP=(NEW,DELETE),

This cataloged procedure (Figure 11)
compiles one Pascal/VS source module
and produces an object module. It con-
sists of one step, PASC, which is com-
mon to all of the cataloged procedures
described in this chapter.

Step PASC reads in the source module,
diagnoses errors, produces a listing,
and generates an object module to the
data set associated with DDname SYSLIN.

The DD statement for the object module
defines a temporary data set named
&8 LOADSET. The term MOD is specified
in the DISP parameter and as a result,
if the procedure PASCC is invoked
several times in succession for differ-
ent source modules, &&LOADSET will
contain a concatenation of object mod-
ules. The linkage editor and loader
will accept such a data set as input.

Running a Program under 0S5 Batch 25

%9.4.2 compile, Load, and Execute
(PASCCG)

//PASC EXEC

/7/G0 EXEC
//70UTPUT DD
/7/5YSLIB DD
/77 DD
//SYSLIN DD
//SYSLOUT DD
//SYSPRINT DD

DSN=&LKLBDSHN,DISP=SHR

SYSOUT=&SYSOUT

Figure 12.

//PASCCG PROC SYSOUT=»,INCLLIB='SYS1.PASCALVS.MACLIB",
7/ LKLBDSN="SYS1.PASCALVS.LOAD',
/77 LINKLIB="S5YS1 .PASCALVS.LINKLIB'

PGM=PASCALI,PARM=,REGION=512K
(this step is identical to the PASC step in procedure PASCC)

PGM=LOADER,COND=(8,LE,PASC),PARM="EP=PASCALVS"
SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)

DSN=SYS1.PASCALVS.LOAD,DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)

SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133)
Cataloged procedure PASCCG

In this cataloged procedure
(Figure 12), the first two steps com-
pile a Pascal/VS source module to
produce an object module. In the third
step (named G0>, the loader is
executed; this program processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
G0 describes the libraries from which
external references are to be resolved.
If you have a library of your own from
which vou would like external refer-
ences to be resolved, then pass its
name in the LKLBDSN operand.

Object modules from previous compila-
tions may also be included in the load-
er's input stream by concatenating them
in the SYSLIN DD statement.

26 Pascal/VS Programmer's Guide

As an example, a program in a data set
named "DOE.SEARCH.PASCAL" needs to be
compiled and then loaded with an object
module named "DOE.SORT.0BJ". In addi-
tion, several external routines are
called from within the program which
reside in a library named
"DOE.MISC.OBJLIB"™. The following JCL
statements would compile the program
and execute it.

//D0OE JOB

/7/STEP1 EXEC PASCCG,

/7 LKLBDSN='DOE.MISC.OBJLIB®
//PASC.SYSIN DD DSN=DOE SEARCH.PASCAL,
/7 DISP=SHR

/7/7G0.SYSLIN DD

/7 DD DSN=DOE.SORT.0BJ,

/7 DISP=SHR

%.4.3 compile and Link Edit (PASCCL)

//LKED EXEC

//5YSLIB DD DSN=&LKLBDSN,DISP=SHR

//SYSPRINT DD
//75YSUT1 DD

SYSOUT=&SYSOUT

Figure 13.

/7/7PASCCL PROC SYSOUT=%,INCLLIB="SYS1.PASCALVS.MACLIB',
V4 LKLBDSN='SYS1.PASCALVS.LOAD’',
7/ LINKLIB='S5YS]1.PASCALVS.LINKLIB'
/7/PASC EXEC PGM=PASCALI,PARM=,REGION=512K
(this step is identical to the PASC step in procedure PASCC)
/7 ¥
/7% L KED
/7%

PGM=IEWL,PARM="LIST,MAP',COND=(8,LE,PASC)

77 DD DSN=SYS1.PASCALVS.LOAD,DISP=SHR

//SYSLIN DD DSH=&&LOADSET,DISP=(OLD,DELETE)

77 DD DDMHAME=SYSIN

//SYSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
7/ SPACE=(TRK, (5,3,1))

UNIT=SYSDA,SPACE=(CYL,(1,1))
Cataloged procedure PASCCL

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
Wwithin this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defined by the DD statement with
the name SYSLMOD. This statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the
load module will be placed and given
the member name GO.

In specifying a temporary library, 1t
is assumed that you will execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOD.

When linking
together,
point.

multiple modules
you must supply an entry
The name of the entry point may

be either the name of your main
program, or the name PASCALVS. To
define an entry point, a linkage editor
ENTRY control card must be processed hy
the linkage editor. This may be done
conveniently with a DD statement named
SYSIN for step LKED which references
instream data:

//LKED.SYSIN DD ¥
ENTRY PASCALVS
/¥

Multiple invocations of the PASCC cata-
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven-
iently in one job. The JCL shown in
Figure 14 on page 28 compiles three
source modules and then link edits them
to produce a single load module. With-
in the example, each source module 15 a
member of a partitioned data set named

"DOE.PASCAL .SRCLIBI1".

The member names are MAIN, SEG]l, and
SEG2. The resulting load module is to
be placed in a preallocated library
named "DOE.PROGRAMS.LOAD" as a member
named MAIN.

Running a Program under 0S Batch 27

//JOBNAME JOB (DOE),'JOHN DOE’
//STEP]1 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(MAIN),DISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG1),DISP=SHR
//STEP3 EXEC PASCCL
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG2),DISP=SHR
/7/LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=0LD
//LKED.SYSIN DD ¥

ENTRY PASCALVS
7/ %

Figure 14. Sample JCL to perform multiple compiles and a link edit.

$.4.4 Compile, Link Edit, and Execute

(PASCCLG)
//PASCCLG PROC SYSOQUT=x,INCLLIB="SYS1.PASCALVS.MACLIB"',
Vo4 LKLBDSN='SYS1.PASCALVS.LOAD"',
/7 LINKLIB="SYS]1.PASCALVS.LINKLIB"®
//PASC EXEC PGM=PASCALI,PARM=,REGION=512K
(this step is identical to the PASC step in procedure PASCC)
//7LKED EXEC PGM=IEWL,PARM="LIST,MAP',COND=(8,LE,PASC)
(this step is identical to the LKED step in procedure PASCCL)
/77G0 EXEC PGM=x_ LKED.SYSLMOD,COND=((8,LE,PASC),(8,LE,LKED))
/7/70UTPUT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
//7S5YSPRINT DD SYSQUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133)
Figure 15. Cataloged procedure PASCCLG
This cataloged procedure (Figure 15) | The first two steps of this procedure
performs a compilation, invokes the are identical to those of the PASCCL
linkage editor to form a load module | procedure. An additional third step
from the resulting object module, then (named G0) executes your program.

the load module is executed.

28 Pascal/VS Programmer's Guide

¢

6.5 HOW TO ACCESS AN X%INCLUDE LIBRARY

The DD statement named SYSLIB in proce-
dure step PASC defines the libraries
from which included source is to be
retrieved.

When the compiler encounters an %IN-
CLUDE statement within the source mod-
ule, it wWill search the library or
libraries specified by SYSLIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an %ZINCLUDE library by
means of the INCLLIB parameter of the
cataloged procedures, or by overriding
the SYSLIB DD statement by specifying a
DD statement with the name PASC.SYSLIB.

Example
s7JOBNAME JOB
/77 EXEC PASCCG
//PASC.SYSLIB DD DSN=...,DISP=SHR
/7/7PASC.SYSIN DD

/%

.6 HOW TO ACCESS DATA SETS

Every file variable operated upon in
your program must have an associated DD

TNL SN20-4445 (31 December 1981) to SH20-6162-1

statement for the GO0 step which exe-
cutes your program. The DDname to be
associated with a particular file vari-
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT: TEXT;
QUTPUTFILE: file of
INTEGER;

The file named OUTPUT need not be
explicitly defined by you if you use
the cataloged procedures. Both cata-
loged procedures which execute a
Pascal’/VS program (PASCCG and PASCCLG)
contain a DD statement for OQUTPUT.
QUTPUT is assigned to the output class
where the system messages and compiler
listings are produced (SYSOUT=%) .

If the Pascal/VS input/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it will assign default values to the
DCB as described in "Data Set DCB
Attributes™ on page 45. If you prefer
not to rely on the defaults, then the
LRECL, BLKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program undar 05 Batch 29

TNL SN20-4445 (31 December 1981) to SH20-6162-1

%.7 EXAMPLE OF A BATCH JOB

7/7JOBNAME JOB

7/7STEP1 EXEC PASCC, PARM="NOXREF'
7/7PASC.SYSIN DD x

program COPYFILE;

type
F80 = file of
packed arrayl[l1..80] of CHAR;
var

INFILE, OUTFILE: F80;
procedure COPY(var FIN,FOUT: F80);
external;
begin
RESETCINFILE);
REWRITECOUTFILE);
COPY(INFILE,OUTFILE);
end.
/%
7/STEPR2 EXEC PASCCLG, PARM="NOXREF"'
/7/7PASC.SYSIN DD x
segment I0;
type
F80 = file of
packed arrayll..80] of CHAR;
procedure COPY(var FIN,FOUT: F80);
external;

procedure COPY;
begin
while not EOF(FIN) do
begin
FOUTQ := FINa;
PUT(FOUT);
GET(FIN)
end
end; .
/%
7/LKED.SYSIN DD
ENTRY PASCALVS
/%
77GO.INFILE DD %

(data té.se copied into data set goes here)

/%

//GO.OUTFILE DD DSN=P123456.TEMP.DATA,UNIT=TSOUSER,
7/ DISP=(NEW,CATLG),

7/ DCB=(RECFM=FB,LRECL=80,BLKSIZE=3120]),
7/ SPACE=({3120,(1,1))

Figure 16. Example of a batch job

30 Pascal/VS Programmer's Guide

C

Compile time options indicate what fea-
tures are to be enabled or disabled

5.0 COMPILER OPTIONS

lowing table lists all compiler options
with their abbreviated forms and their

when the compiler is invoked. The fol- default values.
Compiler Option Abbreviated Name Default
CHECK/NOCHECK - CHECK
DEBUG/NODEBUG - NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LANGLVL(STANDARD)/ LANGLVL(STD)/ LANGLVL (EXTENDED)

LANGLVL CEXTENDED) LANGLVLCEXT)

LINECOUNT(n) LC(n) LINECOUNT(60)
LIST/NOLIST -—- NOLIST
MARGINS(m,n) MAR(m,n) MARGINS(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWIDTH(128)
PXREF/NOPXREF -—- PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSOURCE S/NOS SOURCE
WARNING/NOWARNING W/NOW WARNING
XREF/NOXREF X/N0OX XREF(SHORT)

5.1 CHECK/NOCHECK

If the CHECK option is enabled, the
Pascal/VS compiler will generate
inline code to perform runtime error
checking. The %CHECK feature can be
used to enable or disable particular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
which may be checked are listed as fol-
lows:

CASE statements
Any case statement that does not
contain an otherwise clause is
checked to make sure that the
selector expression has a value
equal to one of the case label val-
ues.

Function routines
A call to a function routine is
checked to verify that the called
function returns a value.

Pointers
A reference to an object which is
based upon a pointer variable is
checked to make sure that the
pg}nter does not have the value
nii.

Subrange scalars
Variables which are declared as
subrange scalars are tested when
they are assigned a value to guar-
antee that the value lies within
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment

statement or immediately after a
routine call in which the variable
was passed as a var parameter.
(This latter case also includes a
call to the READ procedure).

For the sake of efficiency, the
compiler may suppress checking
when it is able to determine that
it is semantically unnecessary.
For example, the.compiler will not
generate code to check the first
three assignment statements below;
however, the last three will be

checked.
var
A : -10..10;
B : 0..20;

B - 10; (¥no checkX)
ABS(A); (¥no checkX)
B DIV 2; (¥no checkX)

imuu

> >

= B; (¥check %)
= A%10; (%¥check %)
= -B; (¥check ¥)

The compiler makes no explicit
attempt to diagnose the use of
uninitialized variables; however,
to help vou detect such errors, the
SETMEM runtime option has been pro-
vided (see "Run Time Options"™ on
page 35).

subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie
within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress
checks that are semantically
unnecessary.

Compiler Options 31

string truncation
Assignments to varying length
strings are checked to make sure
that the destination string vari-
able is declared large enough to
contain the source string.

When a runtime checking error occurs, a
diagnhostic message will be displayed on
your terminal followed by a traceback
of the routines which were active when
the error occurred. If the program is
invoked from 0S Batch, the diagnhostic
message and traceback will be sent to
the data set or device associated with
DDname SYSPRINT. You may direct the
error diagnostics to any file of your
chnice with the "ERRFILE" option (see
"Run Time Options™ on page 35).

See "Reading a Pascal/VS Trace Back" on
page 59 for an example of a traceback
due to a checking error.

"User Handling of Execution Errors" on

page 62 describes how checking errors
may be intercepted by your program.

5.2 DEBUG/NODEBUG

An interactive debugging facility is
available to debug Pascal/VS programs.
The debugger is described in "Pascal/V$S
Interactive Debugger"™ on page 65. If
the option DEBUG is enabled, the com-
piler will produce the necessary infor-
mation that Debug needs in order to
operate.

The DEBUG option also implies that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GOSTMT/NOGOSTMT

The GOSTMT option enables the inclusion
of a statement table within the object
code. The entries within this table
allow the run-time environment to iden-
tify the source statement causing an
execution error. This statement table
also permits the interactive debugger
to place breakpoints based on source
statement numbers. For a description
of the debugger see "Pascal/VS Interac-
tive Debugger™ on page 65.

The inclusion of the statement table
does not affect the execution speed of
the compiled program.

NOGOSTMT will prevent the statement
table from being generated.

32 Pascal/VS Programmer's Guide

5.% LANGLVL()

If LANGLVL(STANDARD) is specified, the
compiler will diagnose all constructs
and features which do not conform to
"standard" Pascal. Violations of the
standard will appear as warnings. In
addition, many of the predeclared iden-
tifiers which are unique to Pascal/Vs
will not be recognized when
LANGLVL(STANDARD) is specified.

LANGLVL(EXTENDED), which is the

default, specifies that the full
Pascal/VS language is to be supported.

5.5 LINECOUNT(N)

The LINECOUNT option specifies the num-
ber of lines to appear on each page of
the output listing. The maximum number
of lines to fit on a page depends on
the form to which the output is being
printed.

The default is 60 lines to the page.

5.6 LIST/NOLIST

The LIST/NOLIST option controls the
generation or suppression of the trans-
lator pseudo-assembler listing (see
"Assembly Listing" on page 42).

Note: The NOLIST option will cause any

%LIST statement within the source pro-
gram to be ignored.

5.7 MARGINS(M,N)

The MARGINS(m,n) option sets the left
and right margin of your program. The
compiler scans each line of your pro-
gram starting at column m and ending at
column n. Any data outside these mar-
gin limits 1is ignored. The maximum
right margin allowed is 100 The speci-
fied margins must not overlap the
sequence field.

The default is MARGINS(1,72).

Note: When the PASCALVS clist is being
invoked under 750, the subparameters of
the MARGINS option must be enclosed in
quotes. For example,

MARGINS('1,72")

J

5.8 OPTIMIZE/NOOPTIMIZE

The OPTIMIZE option indicates that the
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

5.9 PAGEWIDTHI(N]

The PAGEWIDTH option specifies the max-—
imum number of characters® that may
appear on a single line of the output
listing. This number depends on the
page form and the printer model.

The default page width is 128 charac-

ters.
5.10 PXREF/NOPXREF
The PXREF option specifies that the

right margin of the output listing is
to contain cross reference entries (see

"Page Cross Reference Field" on page
3J8). NOPXREF suppresses these entries.
5.11 SEQ(M,NJ)/NOSEQ

The SEQ(m,n) option specifies which
columns within the program being com-
piled are reserved for a sequence
field. The starting column of the

sequence field is m; the last column of

the field is n.

The compiler 'does not process sequence

fields; but serve only to identify
lines in the source listing. If the
sequence field is blank, the compiler

Wwill insert a line number in the cor-
responding area in the source listing.

NOSEQ indicates that there
sequence field.

is to be no

The default is SEQ(73,80).
NOTES:

U The sequence field must not overlap
the source margins.

U When the PASCALVS clist
invoked under TS50,

is being
the subparame-

The number specified
control characters.

in the PAGEWIDTH option does not

ters of the SEQ
enclosed in quotes.

option must be
For example,

SEQ('73,80")

5.12 SOURCE/NOSOURCE
The SOURCE/NOSOURCE option controls
the generation or suppression of the

compiler source listing.

Note: The NOSOURCE option will cause
any %PRINT statement within the source
program to be ignored.

5.13 UWARNING/NOWARNING

This option controls the generation or
suppression of warning messages. The
NOWARNING specification will suppress
Wwarning messages from the compiler.

5.14 XREF/NOXREF

The XREF/NOXREF option controls the
generation or suppression of the
cross-reference portion of the source
listing. (See "Cross-reference List-
ing" on page 40).

Either a short or long cross-reference
listing can be generated. A long
cross-reference listing contains all
identifiers declared in the program. A
short listing consists of only those
identifiers which were referenced.

To specify a particular listing mode,
either the word LONG or SHORT is placed
after the XREF specification and
enclosed within parentheses. If no
such specification exists, SHORT is
assumed. For example, the specifica-
tion

XREFC(LONG)

would cause a long cross-reference

table to be generated.
Note: If the PASCALVS clist is being
invoked under TS0, a subparameter

(SHORT or LONG) must be specified with
the XREF option; there are no defaults.

include carriage

Compiler Options 33

Features within the Pascal/VS run time
environment may be enable or disabled
by passing options to the Pascals/V$s
program. These options are passed to a
Pascals/VS program through the parame-
ter passing mechanism. To distinguish
run time options from the parameter
string intended to be processed by the
program, the options must preceed the
parameter string (if any) and be termi-
nated with a slash ("/").

The following is a list of supported
run time options.

COUNT
specifies that instruction fre-
quency information is to be col-

lected during program execution.
After the program is completed,
this information is written to file
QUTPUT.

This option will only have an
effect if the program was both com-
piled and link-edited with the
DEBUG option.

DEBUG

specifies that the interactive
debugger (see "Pascal/VS Interac-
tive Debugger”" on page 65) is to
gain initial control when vyou
invoke vyour program. Note: this
option is valid only if the load
module was generated with the DEBUG
option (see "Module Generation
Options™ on page 12).

ERRCOUNT=Nn

ERRCOUNT(n)
speci fies how many non-fatal
errors are allowed to occur before
the program is abnormally termi-
nated. The default is 20.

Note to CMS users: due to the
8-character tokenization conven-
tion of CMS, a blank must precede
the '=' symbol in the ERRCOUNT spe-
cification.

Example:
modname ERRCOUNT =1/
ERRFILE=ddname

ERRFILE(ddname)
specifies tha DDnamae of the file to
which all run time diagnostics are
to be written. Under CMS and TS0,
diagnostics are displayed on your
terminal by default. Under 0S5

TNL SN20-4445 (31 December 1981) to SH20-6162-1

6.0 RUN TIME OPTIONS

batch, the default error file is
SYSPRINT.

Note to CMS users: due to the
8-character tokenization conven-
tion of CMS, the "=' symbol must be
surrounded with blanks.

Example:
modname ERRFILE = QUTPUT/

HEAP = n

specifies the number of kilobytes?
that the heap i1s to be "extended”
each time the heap overflows. The
heap is where memory is allocated
when the procedure NEW is called.
When the end of the heap is
reached, the GETMAIN supervisor
call is invoked to allocate more
memory for the heap. If the length
of the space being required by NEW
is greater than ™"n", then the
amount to be allocated will be the
length of the space rounded up to
the next kilobyte (1024 bytes).

There is a significant overhead
penalty for each invocation of GET-
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affected. If "n" is too large,
the heap will contain memory that
is never used.

The default HEAP attribute is 12
kilobytes.

MAINT

specifies that when a run time
error occurs, the trace back is to
list active run time support rou-
tines. These routines begin with a
AMP prefix and are normally sup-
pressed from the trace back
listing. This option is used to
locate bugs within the run time
environment.

NOCHECK
specifies that any checking errors
detected within the program are to
be ignored.

NOSPIE
specifies that the Pascals/VS run
time enviroment is not to issue a
SPIE request and therefore will not
intercept program interrupts.

STACK = n
spacifies the number of kilobytes®
that the run time stack is to be
"extended™ each time the stack
overflows. The run time stack is

A "kilobyte" is defined as 1024 bytas in the context of this manual.

Run Time Options 35

TNL SN20-4445 (31 December 1981) to SH20-6162-1

36

where the dynamic storage area
(DSA) of a routine is allocated
when the routine is invoked. When
the end of the stack is reached,
the GETMAIN supervisor call is
invoked to allocate more memory for
the stack. If the length of the
DSA being required is greater than
"n", then the amount to be allo-
cated will be the length of the DSA
rounded up to the next kilobyte
(1024 bytes).

There is a significant overhead
penalty for each invocation of GET-
MAIN. If "n"™ is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will

Pascals/VS Programmer's Guide

be affected. If "n"™ is too large,
the stack will occupy more memory
than is necessary.

The default STACK attribute is 12
kilobytes.

SETMEM

specifies that upon entry to each
Pascal/VS routine, each byte of
memory in which the routine's local
variables are allocated will be set
to a specific value, namely 'FE!
(hexadecimal). This option aids in
locating the source of intermit-
tent errors which occur because of
the use of uninitialized
variables.

C

TNL SN20-4445 (31 December 1981) to SH20-6162-1

7.0 HOW TO READ PASCAL/VS LISTINGS

7.1 SOURCE LISTINGS
PASCAL/YS RELEASE 2.0 UTILITY: 01727781 14:48:54% PAGE 5
BPCI STMT # SOURCE PROGRAM PAGE XREF
INCLUDE 1 FROM SYSLIB (GLOBALS)
V-——t-—-=-]----+--=--2--=-4--=-3---//--7-V SEQ NO
1: 00000100
1: type 00000200 R
1: NAMEPTR = QJNAMEREC; 00000300 % x
1: NAMEREC = 00000400 x
1: record 00000500 R
1: NAME ¢ STRING(30); 00000600 * P
1: LEFT_LINK, 00000700 x
1: RIGHT_LINK: NAMEPTR; 00000800 * 5
1: end; 00000900 R
1: 00001000
1: def 00001100 R
1: TREETOP : NAMEPTR; 00001200 % 5
00000180
1 procedure SEARCH(00000190 R X
1 const ID: STRING; 000002060 R * P
1 var PTR: NAMEPTR); 00000210 R % 5
1 EXTERNAL; 00000220
00000221
1 procedure SEARCH; 00000222 R x*
1 var 00000230 R
1 LPTR = NAMEPTR; 00000240 x 5
===z==z====ERRQOR=> $17
1 begin 60000250 R
1 1 PTR = nil; 00000260 5 P
1 2 LPTR := TREETOP; 00000270 5 5
1 1 3 while LPTR <> nil do 00000280 R 5 P R
1 1 begin 00000290 R
11 1 4 with LPTRa do 00000300 R 5 R
1111 5 if NAME = ID then 00000310 R 5 5 R
1111 begin 00000320 R
2111 6 PTR := LPTR 00000330 5 5
2111 7 return 00000340 R
=====z=z===FERROR=> $8
1111 end 000600350 R
1111 else 00000360 R
1121 8 if ID < NAME then 00000370 R 5 5 R
1121 9 LPTR := LEFT_LINK 00000380 5 5
1121 else 00000390 R
1121 10 LPTR := RIGHT_LINK 00000400 5 5
1 1 end (X¥whileX) 00000410 R
end; . 00000420 R
NUMBER OF ERRORS DETECTED: 2
DIAGNOSTIC MESSAGES ON PAGE(S): 5
ERROR 8: SEMICOLON "™;™ EXPECTED
ERROR 17: w:" EXPECTED
PARAMETERS PASSED: DISK NOXREF LIB (MACLIB)
OPTIONS IN EFFECT: MARGINS(1,72), SEQ(73,80), LINECOUNT(60), CHECK,
GOSTMT, OPTIMIZE, PXREF, SOURCE, WARNING
SOURCE LINES: 53; COMPILE TIME: 0.43 SECONDS; COMPILE RATE: 7441 LPM
Figure 17. Sample source listing

How to Read Pascals/VS Listings 37

TNL SN20-4445 (31 December 1981) to SH20-6162-1

The source listing contains informa-
tion about the source program including
nesting information of blocks and cross
reference information.

7.1.1 Page Headers

The first line of every page contains
the title, if one exists. The title is
set With the XTITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
will be blank.

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa-
tion in the following order.

1. The PROGRAM/SEGMENT name is given
before a colon. This name b=comes
the name of the control section
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defi-
nition which was being compiled
when the page boundary occurred.

3. The time and date of the compile.
4. The page number.

The third line contains column
headings. If the source being compiled
came from a library (i.e. %INCLUDE),

then the last line of the heading iden-
tifies the library and member.

7.1.2 Nasting Information

The left margin contains nesting infor-
mation about the program. The depth of
nesting is represented by a number.
The heading over this margin is:

BPCI STMT

B - indicates the depth of 'B'EGIN
block nesting.

P - indicates the depth of 'P'rocedure
nesting.

C - indicates the nesting of

'C'onditional statements. Conditional

statements are if and case.

I - indicates the nesting of
"I'terative statements. Iterative
statements are for, repeat and while.

STMT is the heading of a column that
numbers the executable statements of
each routine. If the source line orgi-
nated from an INCLUDE file, the include

38 Pascal/VS Programmer's Guide

number and a colon (':') precede the
statement number.

7.1.3 Statemont Numhering

Pascal/VS numbers the statements of a
routine. These numbers are referenced
when a run time error occurs (see
"Reading a Pascals/V¥S Trace Back" on
page 59) and when break points are spe-
cified in the interactive debugger (see
"Pascal/VS Interactive Debugger™ on
page 65).

All non-empty statements are numbered
except the repeat statement. However,
the until portion of a repeat statement
1S numbered.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.

7.1.%4 Page Cross Reference Field

If the PXREF compiler option is active,
the right margin of the listing con-
tains a cross reference field. This
field contains an indicator for each
identifier that appears in the associ-
ated line. The indicators have the
following meanings:

. A number indicates a page number on
which the corresponding identifier
was declared.

. A "' indicates that the correspon-
ding identifier is being declared.

. A 'P' indicates that the correspon-
ding identifier is predefined.

° A 'R'" indicates that the correspon-
ding identifier is a reserved key
word.

° A '"?' indicates that the correspon-

ding identifier is either unde-
clared, or will be declared further
on in the program. This latter
occurrence arises often in pointer
type definitions.

7.1.5 Error Summary

Toward the end of the licling is the
error summary. It contains the diag-
nostic messages corresponding to the
compilation errors detected in the pro-
gram.

C

IN name

If the identifier is a record
field, then this attribute speci-
fies the name of the record in
which the identifier was declared;
otherwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class

This attribute gives the class of
the identifier:

CONSTANT declared constant

CONST PARAMETER
pass-by-const parame-

ter
DEF VAR external def variable
ENTRY FUNCTION
function routine
declared as an ENTRY
point
ENTRY PROCEDURE
procedure routine
declared as an ENTRY
point

EXTERNAL FUNCTION
external function rou-
tine

EXTERNAL PROCEDURE
external procedure
routine

FIELD record field

FORMAL FUMCTION
function passed as a
parameter

FORMAL PROCEDURE
procedure passed as a
parameter

FORTRAN FUNCTION
external FORTRAN func-
tion

FORTRAN SUBROUTINE
external FORTRAN sub-
routine

FUNCTION a user-defined or
standard function

LABEL statement label
LOCAL VAR automatic variable

PROCEDURE a user-defined or
standard procedure

REF VAR external ref variable
STATIC VAR static variable
TYPE type identifier

VAR PARAMETER pass-by-var parame-
ter

UNDECLARED undeclared identifier

TYPE = type

This attributes gives the type of
the identifier:

ARRAY an array type
BOOLEAN boolean type

CHAR character

FILE a file type

INTEGER fixed point numeric
POINTER a pointer type

REAL floating point numeric

RECORD a record type

SCALAR enumerated scalar or
subrange

SET a set type

SPACE a space type

STRING a string type

OFFSET = n

This attribute specifies the byte
offset (in decimal) within the
dynamic storage area (DSA) of an
automatic variable or parameter;
the displacement of a record field
within the associated record; or,
the offset in the static area of a
static variable.

LENGTH = n

This attribute specifies the byte
length of a variable or the storage
required for an instance of a type.

VALUE = n

This attribute specifies the
ordinal value of an integer or enu-
merated scalar constant.

How to Read Pascals/V5 Listings 41

7.3 ASSEMBLY LISTING

PASCAL/VS RELEASE 2.0 UTILITY 01,27,81 10:18:00
LOC OBJECT CODE STMT PSEUDO ASSEMBLY LISTING
¥ LP1 := FHEAD;
000090 5830 D090 8 L 03,1646(,13)
000094 5840 3000 9 L 04,0(,03)
000098 5040 D094 10 ST 04,148(,13)
¥ LP2 := NIL;
00009C 1B33 11 SR 03,03
00009E 5030 D098 12 ST 03,152(,13)
¥ WHILE LP1 <> NIL DO
0000A2 13 4Ll DS OH
0000A2 5830 D094 14 L 03,148¢(,13)
0000A6 1233 15 LTR 03,03
0000A8 4780 *xxx 16 BE AGL2
¥ WITH LP1-> DO
B000AC 45E0 C860 17 BAL 14,214464(,12)
0000B0 5030 DOAO 18 ST 03,160¢,13)
b BEGIN
b LP3 := NEXT;
0000B4 5840 3010 19 L 04,16(,03)
0000B8 5040 DO9C 20 ST 04,156(,13)
b NEXT := LP2;
0000BC 5850 D098 21 L 05,152(,13)
0000C0 5050 3010 22 ST 05,16(,03>
b LP2 := LP1;
0000C4 5030 D098 23 ST 03,152(,13>
¥ LP1 := LP3;
0000C8 5040 D094 24 ST 04,148(,13)
0000CC 47F0 2016 25 B 4Ll
0000DO 26 Qd6L2 DS OH
* END;
¥ FHEAD := LP2;
0000D0 5830 D090 27 L 03,144(,13)
0000D4 5840 D098 28 L 04,152(,13>
0000D8 5040 3000 29 ST 04,0(,03)
Figure 19. Sample assembly listing

The compiler produces a pseudo assembly
listing of your program if you specify
the LIST option. The information pro-
vided in this listing include:

LOC
location relative to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen-
erated text. If the line refers to
a symbol or literal not vet
encountered in the listing (for-

62 Pascal/V¥5 Programmer's Guide

ward reference) the base displace-
ment format of the instruction is
shown as four asterisks ("*%%x'),

PSEUDO ASSEMBLY

basic assembly language
description of generated instruc-
tion.

Annotation
intermixed with the assembly
instructions is the source line

from which the instructions were
generated. The source lines appear
as comments in the listing.

7.4 EXTERNAL SYMBOL DICTIONARY

PASCAL/VS RELEASE 2.0 AMPLXREF: 01,27,80 13:07:27 PAGE 1
EXTERNAL SYMBOL DI CTIONARY

NAME TYPE ID ADDR LENGTH NAME TYPE ID ADDR LENGTH
AMPLXREF SD 1 000000 002EOC XREFDUMP LD 0 000FC4 000001
XREFEQF LD 0 0008D8 000001 XREFINCL LD 0 000964 000001
XREFREF LD 0 000A80 000001 XREFLIST LD 0 002C40 000001
aSTATIC PC 2 000000 000009 SYSXREF CM 3 000000 000040
AMPXPUT ER 4 000000 INTPTR CM 5 000000 000004
CHARPTR CM 6 000000 000004 REALPTR cM 7 000000 000004
BOOLPTR CcM 8 000000 000004 PAGENO cM 9 000000 000002
INCLLEVE CM 10 000000 000004 INCLNUMB cM 11 000000 000001
PROCP cM 12 000000 000004 AMPXRSET ER 13 000000

LINECOUN CM 14 000000 000004 AMPXNEW ER 15 000000

AMPXGET ER 16 000000 PAGEHEAD ER 17 000000

SYSPRINT CM 18 000000 000040 AMPXVILIN ER 19 000000

AMPXWCHR ER 20 000000 AMPXINTXT ER 21 000000

OPTION cM 22 000000 000014 AMPXININT ER 23 000000

TRIM ER 2% 000000 AMPXWSTR ER 25 000000

Figure 20. Sample ESD table

The External Symbol Dictionary (ESD)
provides one entry for each name in the
generated program that is an external.
This information 1is required by the
linker/loader to resolve inter-module
linkages. The information in this ta-
ble i1s:

NANME the name of the symbol.

TYPE the classification of the
symbol:
SD - Symbol Definition
LD - Local Definition
ER - External Reference
CM - Common
PC - Private Code.
ID is the number provided to the

loader in order to relocate
address constants correctly.

ADDR is the offset in the CSECT for an
LD entry.

LENGTH the size in bytes of the SD or
CM entry.

The 5D classification corresponds to
the name of the module; the LD classi-
fications are entry routines; ER names
are external routines; CM names corre-
spond to def variables. The private
code section is where static variables
are located.

7.5 INSTRUCTION STATISTICS

If Pascals/VS is requested to produce an
assembly listing, it will also summa-
rize the usage of 370 instructions gen-
erated by the compiler. The table is
sorted by frequency of occurrence.

How to Read Pascals/VS Listings %3

8.1 1I/0 IMPLEMENTATION

Pascals/VS employs 05 access methods to
implement its input/output facilities.
PascalsVS file variables are associ-
ated with a data set by means of a

DDname. The Queued Sequential Access
Method (QSAM) 1is used for sequential
data sets. The Basic Partitioned

Access Method (BPAM) is used for parti-
tioned data sets (MACLIBs in CMS
terminology). The Basic Direct Access
Method (BDAM) is used for random record
access.

8.2 DDNAME ASSOCIATION

For any identifier declared as a simple
file variable the first eight charac-
ters of the identifier's name serves as
the DDname of the file. As a conse-
quence, the first eight characters of
all file variables declared within a
module should be unique. You must also
be careful not to allow one of the
first eight characters to be an under-
score ('_') since this is not a valid
character to appear in a DDNAME.

An explicit DDname may be associated
with a file variable by means of the
DDNAME option when the file is opened.
(see "The Open Options" on page 56).

DDnames should be explicitly specified
for files which are elements of arrays,
fields of records, or pointer
qualified. If the DDname is not
explicitly specified for such files, a
DDname of the form "PASCALnNn" will be
assigned to the file, where "nn" is a
two digit integer.

8.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every
Pascal/VS file variable is a Data Con-
trol Block (DCB) which contains infor-
mation describing specific attributes
of the associated data set. Among
these attributes are

] the logical record length (LRECL);
. the physical block size (BLKSIZE);
. the record format (RECFM).

Pascal/VS supports all of the record
formats that are supported by QSAM,

such as, F, v, U, FB, VB, FBA, VBM,
etc.

8.0 USING INPUT/OUTPUT FACILITIES

A Pascals/VS program will process a file
that contains ANSI or machine control
characters at the beginning of each
logical record (in which case the
record format would be specified as
RECFM=...A or RECFM=...M). Any read
operation on such files will begin at
the second character position of each
record. Each logical record written to
such files will be prefixed with the
appropriate control character. Thus,
the first character position of each
record is not directly accessable from
the Pascal/VS program; however, the
PAGE procedure may be used to insert a
page eject. (see "The PAGE Procedure”
on page 53)

Newly allocated (empty) data sets, that
is, data sets intended for output might
not have these attributes assigned. As
far as Pascal/VS is concerned, there
are two ways to specify the DCB attri-
butes for such data sets:

U by being specified in the associ-
ated DDname definition (in CMS: the
FILEDEF command; in T50: the
ALLOC/ATTR commands; in 0S batch:
the DD card);

U by being specified when the file is
open by means of the options
string. (see "The Open Options" on
page 56).

If any of these attributes are unas-
signed for a particular data set to
which a Pascal/VS program will be writ-
ing, the Pascals/VS I/0 manager will
assign defaults according to whether
the data set is being managed as a file
of type "TEXT"™ or as a non—-text file.

For the case of text files, if neither
LRECL, BLKSIZE, nor RECFM are
specified, then the following defaults
will apply:

U LRECL=256

U BLKSIZE=260

U RECFM=V

For the case of non—-text files, if nei-
ther LRECL, BLKSIZE, nor RECFM are
specified then the following defaults
will apply.

U LRECL="1ength of file component™

. BLKSIZE=LRECL

U RECFM=F

If some of the attributes are specified

and some are not then defaults will be
applied using the following criteria:

Using Input/0Output Facilities 45

. RECFM of V is preferred over F for
text files.

° RECFM of F is preferred over V for
non-text files.

° If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

. If RECFM is V then the BLKSIZE is

to be at least four bytes greater
than the LRECL.

8.9 TEXT FILES

Text files contain character data
agrouped into logical records. From a
Pascals/VS language viewpoint, the log-
ical records are lines of characters.
PascalsVS supports both fixed length
and variable length record formats for
text files. Characters are stored in
EBCDIC.

The predefined type text is used to
declare a text file variable in
PascalsVS. The pointer associated with
each file variable points to positions
within a physical 170 buffer.

8.5 RECORD FILES

All non-text files in Pascals/VS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (LRECL) of a
file must be at least large enough to
contain the file's base component; oth-
erwise, an execution time error will
occur when the file 1is opened. For
example, a file variable declared as
'file of INTEGER' will require the
associated physical file to have a log-
ical record length of at least 4 bytes.

If a file has fixed length records
(RECFM=F) and the logical record length
is larger than necessary to contain the
files component type, then the extra
space in each logical record is wasted.

8.6 OPENING A FILE FOR INPUT - RESET

To explicitly open a file for input,
the procedure RESET is used. A call to
RESET has the forms:

46 Pascal/VS Programmer's Guide

RESET(F)
or
RESET(f,options)

where "f" is a file variable and
"options" is a string which contains
the open options (see "The Open
Options" on page 56). The "options"
parameter may be omitted.

Normally, RESET allocates a buffer,
reads in the first logical record of
the file into the buffer, and positions
the file pointer at the beginning of
the buffer. Therefore, given a text
file F, the execution of the statement
"RESET(F)" would imply that "Fa" would
reference the first character of the
file.

If a RESET operation is performed on an
open file, the file is closed and then
reopened.

program EXAMPLE;

var
SYSIN TEXT;
C : CHAR;
begin
(¥open SYSIN for input %)

RESET(SYSIN);
(%¥get first character of fileX)

C := SYSINQ;
end.
Figure 21. Using RESET on a text
file

8.7 OPENING A FILE FOR INTERACTIVE
INPUT

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
For example, if the file being opened
is assigned to your terminal, yvou will
be prompted for data when the file is
opened. This may not be preferable if
your program 15 suppose to write out
prompting messages prior to reading.

To alleviate this problem, a file may
be opened for interactive input by
specifying "INTERACTIVE" in the
options string of RESET. No initial
read operation 1is performed on files
opened in this manner. The file point-
er has the value nil until the the
first file operation is performed
(namely GET or READ). The end-of-line
condition (see "End of Line Condition"
on page 53) is initially set to TRUE.

program EXAMPLE;

var
SYSIN TEXT;
DATA : STRING(80);

begin
(¥open SYSIN for interactive %)
(¥input ¥*)
RESET(SYSIN, "INTERACTIVE");
(¥prompt for response %)
(¥read in response ¥)

WRITELNC' ENTER DATA: ');
READLN(SYSIN,DATA);
end.
Figure 22. Opening a file for
interactive input

8.8 OPENING A FILE FOR QUTPUT -
REWRITE

The procedure REWRITE is used to open a
file for output. A call to the proce-
dure has the forms:

REWRITEC(F)
or
REWRITE(f,options)

where "f" is a file variable and
"options"” is a string which contains
the open options (see "The Open
Options” on page 56). The "options”
parameter may be omitted.

REWRITE positions the file pointer at
the beginning of an empty buffer. If
the file is already open it is closed
prior to being reopened.

program EXAMPLE;
var
SYSFRINT
begin
REWRITE(SYSPRINT);
WRITELNCSYSPRINT, "MESSAGE');
end.

TEXT;

Figure 23. Opening a text file

with REWRITE

program EXAMPLE;

var
OUTFILE file of INTEGER;
I INTEGER;

begin
REWRITE(OUTFILE,
"BLKSIZE=1600,LRECL=4,RECFM=F"');
QUTFILE? := I;
PUT(OUTFILE);

end.

Figure 24. Opening a record file

with REWRITE

8.9 TERMINAL INPUT/OUTPUT

Two procedures are provided for doing
input and output directly to your ter-
minal without going through the normal
DDname interface. Calls to these pro-
cedures have the forms:

TERMIN(f) or TERMIN(f,options)
TERMOUT(f) or TERMOUT(f,options)

where "f" is a text file variable and
"options™ is a string which contains
the open options (see "The Open
Options" on page 56). The "options"
parameter may be omitted.

The TERMIN procedure opens a text file
for interactive input from your termi-
nal. Likewise, the TERMOUT procedure
opens a text file for terminal output.

Note: The TERMIN procedure opens the
file with the INTERACTIVE attribute as
was described in "0Opening a File for
Interactive Input” on page 46.

program EXAMPLE;

var
TTYIN, TTYOUT: text;
I : INTEGER;
begin

TERMINCTTYIN); TERMOUTC(TTYOUT);
WRITELNCTTYOUT, 'ENTER DATA:'");
READLN(TTYIN, I);

end.

Terminal input/Zoutput

example.

Figure 25.

8.10 OPENING A FILE FOR UPDATE

The UPDATE procedure is provided for
opening a record file for updating. In
this mode, records may be read, modi-
fied, and then replaced. A call to the
procedure has the forms:

UPDATEC(f)
or
UPDATE(f,options)

where "f" is a record file variable and
"options” is a string which contains
the open options (see "The Open
Options” on page 56). The "options”
parameter may be omitted.

Upon calling UPDATE, a file buffer is
allocated and the first record of the
file is read into it. If a subsequent
PUT operation is performed on the file,

Using Input/0utput Facilities 47

the contents of the buffer will be
stored back into the file at the
location from which it was read.

Each GET operation reads in the next
subsequent record of the file. A PUT
operation will write the record back
from where the last GET operation
obtained it. If the next operation is
another PUT, the next subsequent record
will be overwritten.

program EXAMPLE;

var
F : file of
record
NAME: STRING(30);
AGE * 0..99;
. end;
begin
UPDATEC(F);
(¥update each record %)

(¥ by incrementing age X)
whila not EOF(F) do
beain
FAd.AGE := FQ.AGE + 1;
PUT(F);
GET(F)
end;
end.

Figure 26. Updating a record file

8.11 PROCEDURE GET

The GET procedure is the means by which
a basic read operation is performed on
a file. A call to the procedure has
the form:

GET(f)

where "f" is a file variable.

8.11.1 GET operation on text files

When applied to an input text file, GET
causes the file pointer to be incre-
mented by one character position. If
the file pointer is positioned at the
last position of a logical record, the
GET operation will cause the end-of-
line condition to become true (see "“End
of Line Condition”™ on page 53) and the
file pointer wWill be positioned to a
blank. If, prior to the call, the
end-of-line condition is true, then the
file pointer Wwill be positioned to the
beginning of the next logical record.

If, prior to the call to GET, the file
pointer is positioned to the end of the
last logical record of a text file (in
Wwhich case the end-of-line condition
will be true) then the end-of-file
condition will become true. (See "End

48 Pascal/VS Programmer's Guide

of File Condition - text files™ on page
54).

If GET is attempted on a text file that
has not been opened, it will be implic-
itly opened for input (as if RESET had
been called).

program EXAMPLE;

var
INFILE text;
cl,C2 CHAR;
beéiﬁ

(¥get first char of fileX)
RESET(INFILE);

Cl := INFILEd;

(¥get second char of file¥X)
GET(INFILE);

C2 := INFILE3;

end.'

Figure 27. Using GET on

file

a text

8.11.2 GET operation on record files

Each call to GET for the case of record
files reads the next sequential logical
record into the buffer referenced by
the file pointer. The end-of-file
condition will become true if there are
no more records within the file, in
which case, the file pointer will be
set to nil.

A record file must be opened for input
or update prior to executing a GET
operation, otherwise, a runtime diag-
nostic will be generated.

program EXAMPLE;
var
F : file of
record
NAME : STRING(25);
AGE : 0..99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)
end;
begin
RESET(F);
while not EOF(F) do
begin
WRITE(' Name : ',
Fa.NAME);
WRITE(* Age : ',
Fa.AGE:3);
WRITELN;
GET(F)
end
end.
Figure 28. Using GET on
files

record

8.12 PUT PROCEDURE

The PUT procedure is the means by which
a basic write operation is performed on
a file. A call to the procedure has
the form:

PUT(F)
where "f" is a file variable.
The file must be opened for output or
update prior to calling PUTS®;

otherwise, a runtime diagnostic will
occur,

8.12.1 PUT Operation on Text Files

The PUT procedure, when applied to a
text file opened for output, causes the
file pointer to be incremented by one
character position. If, prior to the
call, the number of characters in the
current logical record is equal to the
file's logical record length (LRECL),
the file pointer will be positioned
within the associated buffer to begin a
new logical record.

When the file buffer is filled to
capacity, the buffer is written to the
associated physical file. The file
pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
(BLKSIZE).

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure"™ on page 53).

program EXAMPLE;

var
OUTFILE text;
C CHAR;
beéiﬁ

REWRITECOUTFILE);

OUTFILER := C;
(XWrite out value of Cx)

PUT(OUTFILE);
end.
Figure 29. Using PUT on a text

file

data to be written. If the file

8.12.2 PUT Operation on Record Files

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physical file. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
var
F : file of
record
NAME : STRING(25);
AGE : 0..99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)
end;
begin
REWRITEC(F);
Fa.NAME = 'John F. Doe';
Fa.AGE = 36;
F3.WEIGHT := 160.0;
Fa.SEX = MALE;
PUT(F);
end.
Figure 30. Using PUT on record
files

8.13 TEXT FILE PROCESSING

8.13.1 Text File READ

The READ procedure fetches data from a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:
READ(f,v)
or
READ(f,v:n)
where "f" is a file variable and "v" is
a variable which must be of one of the
following types:
CHAR (or a subrange thereof)
INTEGER (or a subrange thereof)
packed arrayl[]l of CHAR

REAL (or SHORTREAL)

Prior to a PUT operation, the associated output buffer must contain the
is not open when the PUT operation is

attempted, then no output buffer exists. (The file pointer will have the

value nil.)

Using Input/0Qutput Facilities 49

STRING

"n" is an optional field length (an
integer expression). The file variable
"f" may be omitted, in which case, the
file INPUT is assumed.

A call of the form
READ(f,vl,v2,...vn)
is executed as

begin
READ(f,vl1);
READ(f,v2);

READCF,vn);
end

If READ i1s called for a closed file,
the file is opened for input by an
implicit call to RESET.

Upon executing READ, if the file point-
er is not yet set, an initial GET oper-
ation is performed. This case occurs
when a file is opened INTERACTIVEly.
(see "Opening a File for Interactive
Input™ on page 46.)

When reading INTEGER or REAL data via
the READ procedure, and no field length
is specified, all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a nonblank character is dete-
cted, an error diagnostic wWwill be
produced.

Integer data begins with an optional
sign ('+' or '-') followed by all dig-

50 Pascal/VS Programmer's Guide

its up to, but not including, the first
non-digit or up to the end of the log-
ical record.

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

951235AN JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first 'S' character.

Real data begins with an optional sign
('+' or '-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

3.14159/72

a floating point read operation would
bring in the floating point value
3.14159. After the read, the file
pointer would be positioned to the '/!
character.

If a field length value is specified,
as many characters as are indicated by
the value will be consumed by the read

operation. The variable will be
assigned from the beginning of the
field. If the field is not exhausted

after the variable has been assigned
the data, the rest of the field will be
skipped.

program EXAMPLE;

var
ZIP © 0..99999;
MAN ©0..999999;
BALANCE: REAL;
begin
READ(ZIP:5,MAN:6,BALANCE:9);
WRITELN(C'ZIP = ',ZIP);
WRITELNC'™MAN = Y,MAN);
gRITELN(‘BALANCE = ',BALANCE:8:2)
end.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file QUTPUT:

ZIP = 95123
MAN = 999999
BALANCE = 1000.00

Immediately after the READ state-
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 31. Using READ with length
qualifiers.
When reading data into variables

declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

. the variable is filled to its
declared capacity;

. an end-of-line condition is detec-
ted;

° the field length (if specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

program DOREAD;
var
INFILE text;
R :arrayll..10] of
record
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I ¢ 1..10;
begin
RESET(INFILE);
for I := 1 to 10 do
With R[I] do
begin
READ(CINFILE,NAME, AGE);
READCINFILE,WEIGHT);
READLN(INFILE)
end;
end.
Figure 32. Using READ on text
files.
8.13.2 The READLN Procedure

A call to READLN has the same form as a
call to READ and performs the same
function except that after the data has
been read, all remaining characters
within the logical record are skipped.
The procedure is applicable to text
files only.

Normally, READLN causes the next log-
ical record to be read (unless the
end-of-file is reached) and the file
pointer is positioned to the beginning
of the buffer that contains the record.

In the case of text files opened with
the INTERACTIVE attribute, the file
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to TRUE.

If the end-of-line condition is true
for an interactive file prior to a call
to READLN and the condition was not the
result of a previous call to READLN,
then the call is ignored. Two calls to
READLN in succession will cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,

the file is opened implicitly for input
as though RESET had been called.

Using Input/0Output Facilities 51

program COPY;

var

INFILE,

OUTFILE text;

BUF : STRING(100);
begain

RESET(INFILE);
REWRITE(QUTFILE);
while not EOF(INFILE) do
begin
READ(CINFILE,BUF);
WRITELN(OUTFILE,BUF);
(X¥Xignore characters after
column 100 in each line %)
READLNCINFILE)
end
end.

Using the
READLN

Figure 33. procedure

8.13.3 Text File WRITE

The WRITE procedure writes data to a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:
WRITE(f,e)
or
WRITE(f,e:n)
or
WRITE(f,e:nl:n2)
where "f" is a file variable and "e" is
an expression which must be of one of
the following types:
BOOLEAN
CHAR (or a subrange thereof)
INTEGER (or a subrange thereof)
packed arrayl] of CHAR
REAL (or SHORTREAL)
STRING
"N","nl", and "n2" are optional field
lengths (integer expressions). The
file variable "f" may be omitted, in
which case, the file OUTPUT is assumed.
A call of the form
WRITE(f,el,e2,...en)
1s executed as
begin
WRITE(f,el);
WRITE(f,e2);

WRITECF,en);
end

52 Pascals/VS Programmer's Guide

If WRITE is called for a closed file,
the file is opened implicitly for out-
put.

If during a call to WRITE, the length
of the logical record being produced
becomes equal to the logical record
length (LRECL) of the text file, the
record is completed and the remaining
data is placed on a new record.

If a field length is specified for an
expression to be written and its value
is positive, the data will appear right
justified in the output field. If the
specified length is necative, the data
Will appear left justified. (The field
width will be the absolute value of the
specified length.)

String data that is being written with
a specified field length will be trun-
cated on the right if the field length
is too small.

If no field length is specified, a
default will be used that depends on
the data's type:

data type default field length
BOOLEAN 10

CHAR 1

INTEGER 12

REAL 20

SHORTREAL 20

In addition, expressions of type STRING
have a default field length equal to
their current length. Fixed length
strings (packed array of CHAR) have a
default equal to their declared length.

program DOWRITE;

var
OUTFILE text;
R arrayl1l..10] of
record
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I 0 1..10;
begin
REWRITE(OQUTFILE);
for I := 1 to 10 do
Wwith RII1 do
begin

WRITE(OUTFILE,NAME:-30,
AGE:3," ");
WRITECOUTFILE,WEIGHT:3:03;

WRITELNC(OUTFILE)
end;
end.
Figure 34. Using WRITE on text

files

8.13.4 The HRITELN Procedure

The WRITELN procedure 1is applicable
only to text files intended for output.
It causes the current logical record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the file 1is
fixed (RECFM=F), BLIRITELN will fill the
remainder of the current record with
blanks. For variable length records
(RECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out-
put.

program DOUBLESPACE;

var
FILEIN,
FILEQUT text;
BUF ¢t STRING;
begin

REWRITECFILEOUT);
RESET(FILEIN);
while not EDF(FILEIN) do
begin
READLN(FILEIN,BUF);
WRITELNCFILEDOUT,BUF);
(¥insert blank line X)
WRITELNC(FILEDUT)
end;
end.
WRITELN

Figure 35. Using the

procedure

8.13.5 The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer (or to
a disk file which will eventually be
printed). A call to the procedure has
the following form:

PAGE(T)

where "f" is a variable of type TEXT
which has been opened for output.

If a logical record is partially
filled, an implicit WRITELN will be
performed prior to the page eject.

For this procedure to produce any
affect, the first character of each
logical record of the file must be
reserved for carriage control. This is
done by specifying either A (ANSI con-
trol) or M ((machine control) in the
RECFM attribute for the file.

If the record format specifies ANSI
control, then the character '1' will be
inserted in the first character posi-
tion of the record. For machine con-
trol, a single record is written that
contains the hexadecimal value of '8B'
in its first character position.

program EXAMPLE;

var
PRINT:

begin

text;

Eiétart new pageX)
PAGE(PRINT);

end.
Figure 36. Using the PAGE
procedure
8.13.6 End of Line Condition

The end-of-line condition occurs on a
text file opened for input when the
file pointer is positioned after the
end of a logical record. To test for
this condition, the EOLN function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi-
tioned at the last character of a log-
ical record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character (in EBCDIC, hexadeci-
mal 40) when the end-of-line condition
occurs.

The EOLN function is only applicable to
text files.

program EXAMPLE;

var
SYSIN: text;
CNT : 0..32767;
begin

(¥ compute length of first
logical record of SYSIN %)
RESET(SYSIN);
CNT := 0;
while not EOLN(SYSIN) do
begin
CNT := CNT + 1;
GET(SYSIN);
end;
WRITELN(CNT)
end.
Using the EOLN func-
tion

Figure 37.

Using Input/0Output Facilities 53

8.13.7 End of File Condition - text
files

The end-of-file condition becomes true
for a text file when one of the foll-
owing occurs:

® RESET is called and the file 1is
empty.

. The file is open for output.

. GET is called when the file pointer
is positioned at the end of the
last logical record of the file (in
which case the end-of-line cond-
ition is true).

° READ is called and all characters
of the last logical record were
consumed.

When the end-of-file condition occurs,
the file pointer has the value nil.

To test for this condition, the EOF
function is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
Wwill be ignored.

program EXAMPLE;

var
SYSIN: TEXT;
CNT : 0..32767;
begin

(¥ compute number of logical
records in file SYSIN *)
RESET(SYSIN);
CNT := 0;
mhile not EOF(SYSIN) do
begin
CNT := CNT + 1;
READLN(SYSIN)
end;
WRITELNCCNT)
end.
Figure 38. Using the EOF function
on a text file

8.1% RECORD FILE PROCESSING

8.14.1 Record File READ

As documented in the language manual,
the statement

READC(F, V)

is equivalent to

54 Pascal/VS Programmer's Guide

begin
V := F3;
GET(F)
end

where F and V are declared as follows:

var F: file of t;

L4

If file F is not open when READ is
called, it will be opened implicitly
for input.

8.14.2 Record File WRITE

As documented in the language manual,
the statement

WRITECF, V)
15 equivalent to
begin
Fa := V;
PUTC(F)
end

where F and V are declared as follows:

var F: file of t;

V: t;
If file F is not open when WRITE is
called, it will be opened implicitly

for output.

program EXAMPLE;
type
REC = record
NAME : STRING(25);
AGE : 0..99;
SEX : (MALE,FEMALE)
end;
var
INFILE,
OUTFILE:
file of REC;
BUFFER : REC;
begin
RESETC(INFILE);
REWRITE(OUTFILE);
Khile not EOF(INFILE) do
begin
READCINFILE,BUFFER);
WRITE(OUTFILE,BUFFER)

end
end.
Figure 3%. Using READ and WRITE
on record files.
8.14.3 End of File condition - Record
Files

The end-of-file condition becomes true

for a record file when:
0 RESET 15 called for an empty file.
0 The file is opened for output.

0 GET is executed for a file in which
no more records remain.

When the end-of-file condition occurs,
the file pointer has the value nil. To
test for this condition, the EOF func-
tion 1s used.

Any calls to GET or READ for a file for

which the end-of-file condition is true
Wwill produce an error diagnostic.

8.15 CLOSING A FILE

The procedure CLOSE is provided to
close a file explicitly. A call to
this procedure has the form

CLOSE(T)
where "f" is a file variable.

All open files which are declared in
the body of a routine as simple vari-
ables are closed implicitly when the
routine returns to its invoker. All
files which are open when the program
terminates, will be closed automati-
cally by the Pascal/VS$s runtime
environment.

If the variable associated with an open
file is destroyed prior to program ter-
mination, the results could be disas-
trous when Pascal/VS attempts to close
the file. This problem could occur in
the following cases:

U the file variable is an element of
an array.

U the file variable is a field of a

record.

. the file variable is pointer quali-
fied (exists on the heap).

U a routine which contains local file
variables is exited with a gaoto
statement.

In these cases, the fjle variable must
be closed explicitly with a call to
CLOSE.

program EXAMPLE;

type
var
FSTK : arrayl(l..81 of
TEXT;
DDNAME: STRING(8);
I 0 1..8;
begin

RESET(FSTK[I1, *'DDNAME="||DDNAME);

for I := 1 to 8 do
CLOSEC(FSTKI[I1);
end.
Figure 40. Example of using CLOSE

8.16 RELATIVE RECORD ACCESS

Pascals/V¥S permits records of a record
file to be accessed in a random order
by means of the SEEK procedure. A call
to SEEK has the form

SEEK(f,n)

where "f" 3is a record file that was
previously opened with RESET, REWRITE,
or UPDATE; "n" is a positive integer
expression which corresponds to a
record number.

A subsequent call to GET or PUT will
operate on the "nth"™ record of the
file. Each call to GET or PUT there-
after will operate on subsequent
records. SEEK does not perform an I1/0

operation.

At the first call to SEEK, the file is
implicitly closed and reopened for ran-
dom access wusing the Basic Direct
Access Method (BDAM). The file that is
to be accessed in this manner must have
unblocked, fixed-length records; that
is, the RECFM attribute for the file
must be "F".

Under TS0 and 0S Batch, the first SEEK
operation on a file opened with REWRITE
Will cause dummy records to be written
to the associated data set until the
first extent is filled. The record
number specified must not exceed the
size of the first extent.

Using Input/0utput Facilities 55

program EXAMPLE;
type
REC = record
NAME : STRING(25);
AGE : 0..99;
SEX : (MALE,FEMALE)
end;
IDX = record
RECNQO: 0..MAXINT;
end
var .
RECFILE: file of REC;
IDXFILE: file of IDX;
begin
RESETCIDXFILE);
RESET(RECFILE);
(¥write out names in order of
index)
while .not EQOF(IDXFILE) do
begin
SEEK(RECFILE,IDXFILEQ.RECNO);
GET(RECFILE);
WRITELN(OUTPUT,RECFILEQ.NAME)
GET(IDXFILE);

end
end.
Figure 41. Example of using SEEK
to access records
randomly

8.17 PARTITIONED DATA SETS

8.17.1 opening a Partitioned Data Set

To open a partitioned data set (PDS)7?,
the procedures PDSIN and PDSOUT are
provided. Calls to these procedures
are of the form

PDSIN(f,options)
PDSOUT(f,options)

where "F" is a file variable and
"options" is a string expression which
contains open options (see "The Open
Options"). Unlike the other procedures
which open files, the options string is
required and must specify a member name
(MEMBER=name).

PDSIN opens the specified member in the
PDS for input. As in the case of
RESET, the file pointer is made to
point to a buffer containing the first
logical record of the file.

7

PDSOUT creates a member in the PDS and
opens it for output. If the member
already exists, it will be erased and
then recreated.

See Figure 43 on page 58 for an example
of opening a partitioned data set.

8.17.2 PDS Access in a CHMS Environment

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the 0S5 simulation facili-
ties. A DDname 1is assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a
Pascals/VS program, the following com-
mands would be executed prior to exe-
cuting the program.

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEDEF com-
mand. For example, in order to access
the MACLIBs "M1l", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB", the following commands
would be executed osrior to executing
the Pascals/VS program.

FILEDEF LIB DISK M1 MACLIB A
FILEDEF LIB DISK M2 MACLIB A (CONCAT
FILEDEF LIB DISK M3 MACLIB A (CONCAT

GLOBAL MACLIB M1 M2 M3

8.18 THE OPEN OPTIONS

All Pascals/VS. procedures which open
files are defined with an optional

string parameter which contains
options pertaining to the file being
opened. These options determine how

the file is to be opened and what
attributes it is to have.

The data in the string parameter has
the syntax shown in the following fig-
ure:

All operations that may be applied to "partition data sets™ under 05 may

be applied to MACLIB's and TXTLIB's under CMS.

56 Pascal/VS Programmer's Guide

3

option-string:

—L—z——> {Optjog}——>‘[——>

option:

——> DDNAME = name ——M>
——> BLKSIZE = n —>
——> LRECL = n >
——> RECFM = ¢ >
——> INTERACTIVE —mm >
——> MEMBER=name —m™ >
——> NAME=fn.ft.fm ——>

Figure 42. Syntax of open options

Not &all of these options apply to all
open procedures. If the option is
specified for a procedure that is not
applicable, the option will be ignored.

The following is a description of each
option and the context in which it
applies.

DDNAME=name

This attribute signifies that the
physical file to be associated with
the file variable has the DDname
indicated by "name". This new
DDname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to a file open routine with the
DDNAME attribute specified.

If this option is not specified,
then the DDname to be associated
with the file is derived according
to the following rules:

. If the file variable is a sim-
ple variable then the default
DDname will be the name of the
variable itself, truncated to
8 characters.

U If the file variable is an ele-
ment of an array, a field of a
record, or is pointer quali-
fied, then a DDname will be
generated of the following
form: PASCALnn, where "nn" is a
two digit integer.

The DDNAME option is applicable to
the following procedures:

RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

BLKSIZE=n

This attribute is used to specify a
physical block size to be associ-
ated with an output file. This
value (indicated by "n") will over-
ride a BLKSIZE specification on the
DDname definition.

This option is applicable to the
procedure REWRITE only.

LRECL=n

This attribute is used to specify a
logical record length to be associ-
ated with an output file. This
value (indicated by "n") will over-
ride a LRECL specification on the
DDname definition.

This attribute may also be used in
the TERMIN and TERMOUT procedures
to specify the length of the I/0
buffer. (This will determine the
maximum length of the line to be
read from, or written to, yvour ter-
minal.)

This option is applicable to the
procedures REWRITE, TERMIN, and
TERMOUT.

RECFM=c

This attribute is used to specify a
record format to be associated with
an output file. This specification
(indicated by "¢") will override a
RECFM specification on the DDname
definition.

Pascals/VS supports all record for-
mats that QSAM supports:

U LTl |A
LM
B
S
F T A
BS M
v BT
BST
D [B] [A]

For an explanation of each of these
record formats, consult the publi-
cation 05/VS52 MVS Data Management
Services Guide (order number
GC26-3875).

The RECFM specification applies to
procedure REWRITE.

INTERACTIVE

This attribute indicates that thae
file is to be opened for input as
an interactive file. See "Opening
a File for Interactive Input"™ on
page 46 for a description of inter-
active files.

Using Input/0Output Facilities 57

This option applies to the proce-
dures RESET and PDSIN. (This
attribute is implied for TERMIN.)

MEMBER=nama
This attribute specifies a member
name of a partitioned data set
(PDS). The member to be accessed
is indicated by "name™.

The MEMBER specification is
required for the procedures PDSIN
and PDSOUT (see "Partitioned Data
Sets" on page 56).

NAME=fn.ft.fm

This attribute specifies the name
of a CMS file which is to associ-
ated with the file variable. This
option has no affect if the program
is not running under CMS.

"fn", "ft", "fm"™ are the file name,
file type and file mode, respec-
tively, of the CMS file. Each must
be separated by a period ('.'). A
file mode of "' is permitted.

The NAME specification is applica-

ble to the following procedures:
RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

program EXAMPLE;

var

PDS TEXT;

MEMBER STRING(8);

BUF packed arrayll..80]1 of CHAR;
begin

RESETCINPUT, "INTERACTIVE');

READLN(MEMBER);
while not EOF(INPUT) do
begin
PDSIN(PDS, 'DDNAME=SYSLIB,MEMBER="
while not EOF(PDS) do
begin
READLN(PDS,BUF);
WRITELN(BUF);
end;
READLN(MEMBER)
end
end.

Figure 43. Using the open options

(Xopen INPUT for interactive x)

(¥ input. ¥)
(¥read 1st member name *¥)
(¥loop until no more members ¥)
(¥open member for input ¥)
|| MEMBER);
(¥copy each line of the ¥)
(¥ member to file OUTPUT ¥)
(¥read next member name ¥)

58 Pascal/VS Programmer's Guide

8.19 APPENDING TO A FILE

Data may be appended to an existing
file by opening it for output with a
call to REWRITE and specifying a dispo-
sition of "MOD"™ on the corresponding
DDname definition.

The follpwing examples illustrate how
such a qlspositlon is specified under
the various operating system environ-

TNL SN204445 (31 December 1981) to SH20-6162-1

ments. Thae DDname of the Ffile is
"LOG"; the file nama is "LOG.DATAY.

CMS:
FILEDEF LOG DISK LOG DATA (DISP MOD

T150:
ALLOC DDN(LOG) DSN(LOG.DATA) MOD

0S Batch:
/7L0G DD DSN=ABC.LOG.DATA,DISP=MOD

Using Input/Output Facilities 58.1

TNL SN20-4445 (31 December 1981) to SH20-6162-1

58.2 Pascals/VS Programmaer's Guide

9.1 READING A PASCAL/VS TRACE BACK

The Pascal/VS trace facility provides
useful information while debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa-
tion is given.

. The name of the routine.

U The statement number of the last
statement to be executed in the
routine (i.e. the statement number
of the call to the next routine in
the chain).

. The address in storage where the
generated code for the statement
begins.

° The name of the module in which the

routine is declared.

The trace routine may be invoked in
four different ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 44 on page 60. In the example
starting at the bottom we see that
Pascal/VS called the user's main pro-
gram in the module named HASHASEG.
Statement 24 of the main program con-
tains the call to READ_ID, statement 3
of READ_ID <contains the call to
SEARCH_ID, and so on.

A trace will be produced when a program
error occurs. An example is given in

9.0 RUNTIME ERROR REPORTING

Figure 45 on page 60. There 1is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check-
ing error occurs. A checking error
occurs when code produced by the com-
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NOCHECK" on page 31 for a
description of compiler generated
checks.) Figure 46 on page 60 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 in routine
TRANSLATE.

A trace will be produced when an 1/0
error occurs. Figure 47 on page 60 is
an example of this. In this case,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimization performed by the
compiler, the code which tests for an

error condition may be moved back
several statements. Thus, when a
runtime error occurs, the statement

number indicated in the traceback might
be slightly less than the number of the
statement from which the error was gen-
erated.

Runtime Error Reporting 59

Trace back of called routines

Routine stmt at address in module
TRACE 4 02028C AMPXSENV
HASHKEY 9 02018C HASHCSEG
GET_HASH_PTR 2 021208 HASHBSEG
SEARCH_ID 9 0213C8 HASHBSEG
READ_ID 3 021550 HASHBSEG
<MAIN-PROGRAM> 264 020278 HASHASEG
PASCAL/VS 02048C
Figure 44. Trace called by a user program

AMPX018E Fixed Point Overflow
Trace back of called routines

Routine stmt at address in module
FACTORIAL 3 02014C TEST
FACTORIAL 3 02014C TEST
FACTORIAL 3 02014C TEST
<MAIN-PROGRAM> 17 020298 TEST
PASCAL/VS 02048C

Figure 45. Trace call due to program error

AMPX032E High Bound Checking Error
Trace back of called routines

Routine stmt at address in module
TRANSLATE 4 020154 CONVERT
TO_ASCII 10 02024C CONVERT
<MAIN-PROGRAM> 17 020338 CONVERT
PASCAL/VS 020648C

Figure 46. Trace call due to checking error

AMPX0401S File could not be opened: SYSIN
Trace back of called routines

Routine stmt at address in module
INITIALIZE 3 020154 COPY
<MAIN-PROGRAM> 2 020218 COPY
PASCAL/VS 02048C

Figure 47. Trace call due to I/0 error

60 Pascal/VS Programmer's Guide

9.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
checking errors that may occur in a
Pascal/VS program at run time.

Low bound
Either the value of an array sub-
script, or the value being assigned
to a subrange type variable is less
than the minimum allowed for the
subscript or subrange.

High bound
Either the value of an array sub-
script, or the value being assigned
to a subrange type variable 1is
greater than the maximum allowed
for the subscript or subrange.

Nil pointer
an attempt was made to reference a
variable from a pointer which has
the value nil.

Case label
the expression of a case-statement
has a value other than any of the
specified case labels and there is
no otherwise clause.

string truncation

the concatenation of two strings
results in a string greater than
32767 characters in length, or
there was an attempt to assign to a
string a value which has more char-
acters than the maximum length of
the string.

Assertion failure
an assert statement was executed in
which its |, associated boolean
expression evaluated to the value
FALSE.

String subscript out of bounds
there was an indexing operation on
a string which was greater than the
current length of the string.

Function value
a function routine returned to its
invoker without being assigned a
result.

9.3 EXECUTION ERROR HANDLING

Pascal/VS detects many kinds of errors
during program execution; upon
detection of an error, the Pascal/V$s

runtime library will provide error han-
dling.

Certain errors are considered fatal by
the runtime library. Examples of these
errors are operation exception and pro-
tection exception. When a fatal error
occurs the following happens:

1. PascalsVvs produces a message
describing the error; the message
is displayed on your terminal if
you are executing in VM/CMS or TS50,
or written to DDname SYSPRINT oth-
erwise.

2. A trace back i1s displayed.
is termi-

3. The program execution
nated.

Other errors such as checking errors
Wwill not stop program execution. You
must determine the extent to which the
non-fatal errors affect your program
results. Pascal/VS performs the fol-
lowing actions when a non-fatal error
occurs.

1. A message describing the error is
produced; the message is displayed
on your terminal if you are execut-
ing in VM/CMS or TS0, or written to
DDname SYSPRINT otherwise.

2. A trace back is generated.

3. If the program was compiled and
linked with the 'DEBUG' option and
the program was not executed with
the 'DEBUG' run time option, then a
symbolic dump of the variables in
the procedure experiencing the
error will be produced; the dump is
displayed on your terminal if you
are executing in VM/CMS or TS0, or
written to DDname SYSPRINT other-
wise.

4. If the program was compiled and
linked with the 'DEBUG' option and
the program was executed with the
'DEBUG' run time option then the
interactive symbolic debugger will
be invoked as if a breakpoint had
been encountered.

Pascal/VS will allow a specific number
of non-fatal errors to occur before the
program is terminated. This number is
set by the ERRCOUNT run time option
(see "Run Time Options" on page 35).
The default is 20.

Runtime Error Reporting 61

9.4 USER HANDLING OF EXECUTION ERRORS

2636 36 36 6 3 26 36 2 3 3 3 3 36 I 2 3 3 3 36 I 2 3 3 36 26 36 I 2 3 26 36 I 2 3 3 26 36 I I I 3 J6 36 I 2 I 3 36 36 36 I 3 3 26 36 36 2 6 3 3 2 D X H M X X %)
(% *)
(¥ RUNTIME ERROR INTERCEPTION ROUTINE *)
(% %)
(36 56 56 36 36 3 X 3 26 I 36 I 3 3 36 I I 2 3 3 3 36 I I I 3 X 26 36 I 3 3 J 26 I I I 3 3 J 36 3 I 3 36 36 36 36 I 3 3 26 26 I I 3 36 36 36 36 6 2 3 3 2 X % ¥ %)
type
ERRORTYPE =1 .. 90; (¥number of execution errors %)
ERRORACTIONS = ((¥action to be performed *¥)
XHALT, (¥terminate program ¥)
XPMSG, (¥print pascal diagnostic LX)
XUMSG, (¥print user's message %)
XTRACE, (¥produce a trace back *)
XDEBUG, (¥invoke the debugger ¥)
XDECERR, (¥decr error counter ¥)
XRESERVEDS, (XRESERVED *)
XRESERVED?7, (¥RESERVED ¥)
XRESERVEDS, (¥RESERVED ¥)
XRESERVEDSY, (XRESERVED %)
XRESERVEDA, (¥RESERVED %)
XRESERVEDB, (XRESERVED *)
XRESERVEDC, (XRESERVED %)
XRESERVEDD, (¥RESERVED %)
XRESERVEDE, (¥RESERVED *)
XRESERVEDF); (XRESERVED *)
ERRORSET = set of ERRORACTIONS;
procedure ONERROR(
const FERROR ERRORTYPE; (¥ERROR NUMBER *)
const FMODNAME ALPHA; (XMODULE NAME WHERE OCCURRED %)
const FPROCNAME ALPHA; (¥PROCEDURE WHERE OCCURRED ¥)
const FSTMTNO INTEGER; (XSTATEMENT NO %)
var FRETMSG STRING; (XRETURNED USER'S MESSAGE %)
var FACTION ERRORSET); (¥ACTIONS TO BE PERFORMED %)
EXTERNAL;
Figure 48. Contents of "%INCLUDE ONERROR'
Pascal/VS provides a mechanism for you Upon entry to ONERROR the parameter

to gain control when an execution time
error occurs. When such an error
occurs, a procedure called "ONERROR' is
called to perform any necessary action
prior to generating a diagnostic. A
default ONERROR routine is provided in
the Pascal/VS library which does noth-
ing.

You may write vyour own version of
ONERROR and declare it as an EXTERNAL
procedure. The procedure will be
invoked when an error occurs; thus you
may decide how the error should be han-
dled. Figure 48 shows the contents of
the IBM-supplied include file that con-
tains the information relevant to
producing your own ONERROR routine.

FERROR contains the number of the error
that has been encountered. See "Exe-
cution Time Messages" on page 150 to
determine the message number corres-
ponding to a particular error.®

FMODNAME, FPROCNAME, and FSTMTNO con-
tain the name of the module, the name
of the routine, and the source state-
ment number, respectively, of the
location where the error occurred.

FACTION is a set variable which deter-
mines what action is to be taken. Upon
invocation of ONERROR, FACTION will
describe the default action that will
take place after ONERROR returns. You
should examine this information and
decide whether you would like to handle

8 Each error intercepted by the Pascal/VS run time environment consists of a

unique 3 digit number.

A diagnostic message corresponding to the error

will begin with the error number prefixed with the characters AMPX and

suffixed with the character 'I’,

error).

62 Pascal/VS Programmer's Guide

'E' or 'S'" (Informational, Error, Severe

the error or let the default action

take place.

You may modify the FACTION parameter as
you desire. If you set the XUMSG mem-

ber of FACTION then you must also set
FRETMSG with the text of the message.
Figure 49 is an example of a user
interception of execution time errors.

% INCLUDE ONERROR;
procedure ONERROR;
begin

if FERROR in [19, 21, 251 then

(¥do nothing if fixed, decimal or floating divide by zero ¥)
(¥and diagnose fixed-point overflow in procedure HASHFNC)

FACTION := [1
else
if (FERROR = 18) & (FPROCNAME
begin
FACTION := [XUMSGI;
FRETMSG := 'INPUT DATA CONTAINS GARBAGE?';
end;
end;
Figure 49. Example of User Error Handling

'HASHFNC') then

9.5 SYMBOLIC VARIABLE DUMP

When a program error or checking error
occurs, a symbolic dump of all vari-
ables which are local to the routine in
which the error occurred may be
produced. This dump will be produced
if two conditions are met:

L The source module containing the
code from which the error occurred
was compiled with the DE3UG option.

U The Pascals/VS debug library was
included in the generation of the
associated load module.

The variable dump is placed on your
terminal if you are executing in VM/CMS
or TS50, or written to DDname SYSPRINT
otheruwise.

Runtime Error Reporting 63

C

The Pascal/VS interactive debugger is a
tool that allows programmers to quickly
debug Pascal/VS programs without hav-
ing to write debug statements directly
into their source code. Basic func-
tions include tracing program
execution, viewing the runtime values
of program variables, breaking at
intermediate points of execution, and
displaying statement frequency count-
ing information. The programmer uses
Pascal/VS source names to reference
statements and data.

Under TS0 and CMS, debugger commands
are read directly from your terminal;
likewise, the output is written direct-
ly to your terminal. If the debugger
is being run in 05 batch, then the
input is read from DDname SYSIN; the
output is sent to SYSPRINT.

In order to use the debugger, you must
follow these three steps:

° Compile the module to be debugged
with the DEBUG option. Modules
that have been compiled with the
DEBUG option can be linked with
modules that have not been compiled
with the DEBUG option.

U When 1link editing vyour program,
include the debug library. (It
must be located ahead of the
runtime library in search order).?

. When executing the load module,
specify ‘'DEBUG' as a run time
option.1'? This will cause the debug
environment to become active and
vou Will be 1immediately prompted
for a debugger command.

In the debugger environment the user
may 1issue debug commands and examine

10.0 PASCAL/VS INTERACTIVE DEBUGGER

variables in those modules which were
compiled with the DEBUG option.

10.1 QUALIFICATION

A qualification consists of a module
name and a routine name. The debugger
uses the current qualification as the
default to retrieve 1i1nformation for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger gained
control.

At the start of a debug session, the
current qualification is the name of
the module containing the main program,
and the main program itself.

10.2 COMMANDS

This section describes the commands
that a user may issue with the debug
facility. Every command may be abbre-
viated to one letter if desired except
the QUIT and CLEAR commands which have
no abbreviation. Square brackets ('['
and ']l') are wused in the command
description to indicate optional parts
of the command.

Semicolons are used to separate multi-
ple commands on each line.

? Under CMS, the debug library is included if the DEBUG option is specified

when invoking PASCMOD.

(see "How to Build a Load Module”™ on page 12.)

Under TS50, the debug library is included by specifying the DEBUG kevword
operand when invoking the PASCMOD clist. (see "How to Build a lLoad

Module"™ on page 18.)

Options" on page 35.

Run time options must be terminated with a slash ('/'). See "“Run Time

Pascal/VS Interactive Debugger 65

10.2.1 BREAK Command

10.2.2 CLEAR Command

Command Format:

stmt
BREAK [Imodules] I[routinelrsl] []
END
stmt
B [Imodulers] [routinel/] []
END
B
Where:

module is the name of a Pascal/VS$
module.
routine is the name of a procedure
or function in the module.
stmt is a number of a statement
in the designated routine.
END is a keyword which denotes the
end of the routine.

This command causes a breakpoint to be
set at the indicated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit-
ted in which case the defaults are tak-
en from the current qualification.
stmt is the number of the statement on
which to stop in the specified routine
of the specified module. The statement
numbers are found on the source
listing. END specifies that the break-
point is to occur in the epilogue of
the routine immediately prior to the
routine's return.

A maximum of 8 breakpoints may be set
at any one time. The following table
illustrates the meaning of the various
forms.

Input Module Procedure
B S current current
B /S current main program
B P/S current P
B Ms7/S M main program
B M/P/S M P
Where:
current - means currently qualified
module or procedure,
M,P - are the names of a module

or procedure
S - is either a statement
number or END

66 Pascal/V5 Programmer's Guide

Command Format:

CLEAR

Minimum Abbreviation:

CLEAR

There are no operands.

The CLEAR command is used to remove all
breakpoints.

10.2.3 CMS Command 10.2.4 DISPLAY Command

Command Format: Command Format:

CMs DISPLAY

Minimum Abbreviation: Minimum Abbreviation:
C D

There are no operands.

This command activates the CM5 subset The DISPLAY command is used to display
mode. If the program is not being run information about the current debugger
under CMS, the command is ignored. session at the user's terminal. The

information displayed is:

o the current qualification,

o where the user's program will
resume execution upon the GO com-
mand,

L) the current status of Counts,

L) the current status of Tracing.

Pascal/VS Interactive Debugger 67

10.2.5 DISPLAY BREAKS Command 10.2.6 DISPLAY EQUATES Command

Command Format: Command_Format:
DISPLAY BREAKS DISPLAY EQUATES
Minimum Abbreviation: Minimum Abbreviation:
DB D E

There are no operands. There are no operands.

The DISPLAY BREAKS command is used to The DISPLAY EQUATE command is used to
produce a list of all breakpoints which produce a list of all equate symbols
are currently set. and their current definitions.

68 Pascal/VS Programmer's Guide

C

10.2.7 END Command

10.2.8 EQUATE Command

Command Format:

END

Minimum Abbreviation:

END

The END command causes the program to
immediately terminate. This command is
synonymous wWith QUIT.

Command Format:

EQUATE identifier [datal

Minimum Abbreviation:

E identifier [datal

Where:

identifier is a Pascal/V$s
identifier.

data is a command which the
identifier is to represent.

The EQUATE command equates an identifi-
er name to a data string. When the
identifier name appears in a command,
it will be expanded inline prior to
executing the command.

As an example, the command
EQUATE X ,BII]

will cause the variable "BI[II" to be
viewed when "X" 1is entered as a
command. The commands

EQUATE Y Ra.FI[61.J
»BLY]

will cause the variable "BI[Ra.F[61.J1"
to be viewed.

A semicolon may not terminate the
EQUATE command; a semicolon will be
treated as part of the data string.
For example, the command

EQUATE Z GO;LISTVARS

will cause the "GO0" and "LISTVARS"™ com-
mands to be executed in succession when
"Z" is entered as a command.

An equate command may be used to rede-
fined the meaning of a debugger
command: 11!

EQUATE GO WALK

makes the command "GO0" function as the
command "WALK".

An equate command may be cancelled by
equating the previously defined iden-
tifier to an empty data string:

EQUATE Z

There is one exception: the name EQUATE (and its abbreviations) may not be

11
I equated to a data string.

Pascal/VS Interactive Debugger 69

removes the symbol nzw from the
debugger's equate table.

Eaquates may be equated to strings which
contain other equates. All substi-
tution will take place after expansion.
The commands

EQUATE A P9d.I
EQUATE B ,XYZIA]

will cause the symbol "B" to be
expanded to ",XYZ[Pa.I1".

70 Pascal/VS Programmer's Guide

10.2.9 GO Command

Command Format:

GO

Minimum Abbreviation:

G

There are no operands.

This command causes the program to
either start or resume executing. The
program wWill continue to execute until
one of the following events occurs:

U breakpoint

° program error

. normal program exit

A breakpoint or program error will

return the user to the Debug environ-
ment.

10.2.10 Help Command 10.2.11 LISTVARS Command

Command Format: Command Format:

? LISTVARS

Minimum Abbreviation: Minimum Abbreviation:

? L

There are no operands. There are no operands.
The Help command lists all Debug com- This command displays the values of all
mands. variables which are local to the cur-

rently active routine.

Pascal/VS Interactive Debugger 71

10.2.12 Qualification Command

10.2.13 QUIT Command

Command Format:

QUAL I[module /] [routinel

Minimum Abbreviation:

Q [module /] [routinel
Where:

module is the name of a Pascals/V$s
module.

routine is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qualification.
The defaults are applied as follows:

U the module name defaults to the
current qualification.

° the routine defaults to the main
program if the associated module is
a program module, or to the outer-
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The

current qualification provides the
basis on which program names are
resolved. If there is no activation of

the routine available (no invocations)
the user may not display local vari-
ables for that routine.

Qualification may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali-
fication is automatically set to the
module and the routine in which the
breakpoint was set.

72 Pascals/VS Programmer's Guide

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

10.2.14 RESET Command

10.2.15 SET ATTR Command

Command Format:

stmt
RESET [Imodules] Iroutinels/l] []
END

Minimum Abbreviation:

stmt
R [I[modulers] Iroutinel/l] []
END

Where:

module is the name of a Pascal/V$
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

Command Format:

ON
SET ATTR []
OFF

Minimum Abbreviation:

ON
sa |]
OFF

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF
parameter specifies that variable
attribute information will not be dis-
played by default. The default may be
overridden on the variable viewing com-
mand.

Pascal/VS Interactive Debugger 73

10.2.16 SET COUNT Command

Command Format:

ore]

SET COUNT [
OFF

Minimum Abbreviation:

oN
sc |]
OFF

The SET COUNT command is used to initi-
ate and terminate statement counting.
Statement counting is used to produce a
summary of the number of times every
statement is executed during program
execution. The summary is produced at
the end of program execution and is
written to the standard file OUTPUT.
Statement counting may also be initi-
ated with the runtime COUNT option.

76 Pascal/VS Programmer's Guide

10.2.17 SET TRACE Command

Command Format:

ON
SET TRACE [OFF]
TOo ddname

Minimum Abbreviation:

ON
ST [OFF]
TO ddname

Where:

ddname is the name of a DDname
Nhe;e the trace output is to be
sent.

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user with a list of every statement
executed in the the program. This is
useful for following the execution flow
during execution.

The output from the program trace nor-
mally will go to your terminal, by
using the TO option you may direct the
output to a specific file.

10.2.18 TRACE Command

10.2.19 Viewing Variables

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca-
tion chain are listed along with the
most recently executed statement 1in
each.

Command Format:

[(option [)11]

s, variable
Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascal/V$s
Reference Manual for the
syntax of a variable.

option is either ATTR or NOATTR.

This command allows the user to obtain
the contents of a variable during pro-
gram execution.

The static scope rules that apply to
the current qualification are applied
to the specified variable. If the var-
iable is found to be a valid reference,
then i1ts value is displayed. If the
name cannot be resolved within the cur-
rent qualification, the user is
informed that the name is not found.
If the name resolves to an automatic
variable for which no activation cur-
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam-
ples, array elements, record fields,
and dynamic variables may all be
viewed. Variables are formatted
according to their data type. Entire
records, arrays and spaces are dis-
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen-
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or NOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is NOATTR. If the user gives
ATTR as an option, attributes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

Note: a subscripting expression may
only be a variable or constant; that
is, it may contain no operators. Thus,
such a reference as

yalbaljill

is valid (at least syntactically), but
the reference

,a[i+3]

Pascal/VS Interactive Debugger 75

is not a valid reference because the
subscripting expression is not a vari-
able or constant.

Examples

ya

)Pa

;pa.b

ybll,x].int (ATTR
ypalx,yl.ba.alll

If the variable being viewed has not
been assigned a value then the results
depend on the variable's type:

. If the variable is of a simple type
(integer, char, real, etc.), then
the word "uninitialized" will be
printed.

. If the variable is of a structured
type (array, record), then the con-
tents will be printed in
hexadecimal; each byte of the the
variable uhich 1is uninitialized
will have the value 'FE'
(hexadecimal).

76 Pascal/VS Programmer's Guide

10.2.20 Viewing Memory

Command Format:

» hex-string [: length 1
Where:
hex-string is a number in

hexadecimal notation.
length is an integer.

This command is used to display the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex string is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
dump is in both hex and character for-
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an 'x' (eg. '35D05'X). The
length is specified in decimal.

Examples

»'20000"X
»'G46cf0'X = 100

10.2.21 WALK Command

Command Format:

HALK

Minimum Abbreviation:

W

There are no operands.

This command causes the program to
either start executing or resume exe-
cuting. The program execution will
continue for exactly one statement and
then the wuser will be returned to
Debug. This command is useful for sin-
gle stepping through a section of code.

Pascal/VS Interactive Debugger 77

10.3 DEBUG TERMINAL SESSION

program Primgen;
type
PrimeRange = 1..100; (%XSpecify limits for the %)
(¥ number of prime numbers %)
var
Prime arrayl PrimeRange] of Integer;
(¥This array stores the resultx)
NotUsed PrimeRange; (XUsed test preceeding primes)
Savelndex PrimeRange; (¥Used to remember last used X)
(¥ spot in Prime %)
TestNumber Integer; (¥Test value for primeness ¥)
function IsPrime(Testval INTEGER) BOOLEAN;
var
Quotient, (XTestval div prime ¥)
Remainder Integer; (X¥Test value for primeness %)
Primelndex PrimeRange; (¥Used test preceeding primes ¥)
begin (¥IsPrime ¥)
1 PFrimeIndex := Lowest(PrimeRange); (¥Test each previous prime %)
repeat (%Starting with the first one %)
2 Primelndex := Succ(Primelndex); (%Get next prime %)
(¥Compute relative primeness of Testval and a known prime %)
3 Quotient := Testval div PrimelPrimelndex];
4 Remainder := Testval - Quotient ¥ PrimelPrimelndex]
5 until (Remainder=0) | (Quotient <= PrimelPrimelndexl]);
6 if Remainder = 0 then (¥XIf the number was divided by¥)
7 IsPrime := FALSE (¥any known Prime, then this)
else (¥is not prime *)
8 IsPrime := TRUE;
end; (XIsPrime ¥)
begin
1 Primelll = 2 (XFirst three primes X)
2 Primel2] = 3; (% ditto *)
3 Primel31] = 5; (% ditto %)
4 TestNumber = 5; (¥Start canidates at 5 ¥)
5 Savelndex = 3; (¥Last used prime entry %)
repeat
6 TestNumber := TestNumber + 2; (¥Test each odd number ¥)
(¥ starting with the first %)
7 if IsPrime(TestNumber) then (XIf canidate is a prime %)
begin (%XSave it in the next entry ¥)
8 Savelndex:= Succ(Savelndex); (¥ of the prime table %)
9 PrimelSavelndex] := TestNumber
end
10 until Savelndex = Highest(PrimeRange);
(XPrint results at ten to a line *)
11 for Primelndex := Lowest(PrimeRange) to Highest(PrimeRange) do
begin
12 Write(PrimelPrimelndex]l:7); (¥Print one prime number %)
13 if (Primelndex mod 10) = 0 then (¥If ten have been printed ¥)
Writeln (¥ then skip to next line *)
14 end;
end. (%Primgen *)
Figure 50. Sample program for Debug session
The following series of figures is a commands are high lighted and under

sample Debug terminal session that dem-
onstrates breakpoints, viewing vari-
ables and other DEBUG commands. User

78 Pascals/VS Programmer's Guide

lined. The program being executed
shown in Figure 50.

is

J

pascalys primasn (dobug
INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRORS

Source lines: 62; Total time: 1.20 se¢conds; Total rate: 3092 LPM
R; 7=1.7373.05 16:13:54

pascmod primaen (debugq
R; 7=0.9072.19 16:14:51

filedef output terminal
R; T=0.03/70.05 16:14:52

primgen daebug count /
Debug{(PRIMGEN <MAIN-PROGRAM>):

Figure 51. Compiling, linking and executing a program with DEBUG

o

LName (abbreviation is in capital letters)
? This command list

» Display a variable

Break Set a2 breakpoint

CLEAR Remove all breakpoints

Cms Enter CMS subset mode

Display Display currently resume point

Display Break Display currently set breakpoints
Display Equate Display currently set equates

END Halt your program

Equate Set an identifier to a literal value
Go Continue executing your program
Listvars List all variables

Qual Set default module/routine

QUIT Halt your program

Reset Remove a specific breakpoint

Set Attr Set default viewing information ON/OFF
Set Count Turn statement counting ON/OFF

Set Trace Turn tracing ON/QFF/T0 fileid

Trace Display invocation chain of routines
Walk Execute one statement of current routine

Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 52. The HELP command of DEBUG

PascalsVS Interactive Debugger 79

bresk 8
PRIMGEN/<MAIN-PROGRAM>/8
bug(

Debug(PRIMGEN <MAIN-PROGRAM>):

g0
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 53. Setting Breakpoints and Statement Walking

listvars

Variables for procedure: <MAIN-PROGRAM>

PRIME

(0003CA28)

000000 00000002 00000003 00000005 FEFEFEFE "......ccvivev.nn
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE ".........ccovee.
(00000020 through 0000018F is the same as above)

NOTUSED = wuninitialized

SAVEINDEX = 3

TESTNUMBER = 7

Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 54. The LISTVARS command - List all variables

80 Pascal/VS Programmer's Guide

set trace on

Program trace in on -- output to '<TERMINAL>®

Debug(PRIMGEN <MAIN-PROGRAM>):

a9
Resuming PRIMGEN <MAIN-PROGRAM>
6-7
PRIMGEN ISPRIME
1

2-5

6

7

Returning from ISPRIME

Resuming PRIMGEN <MAIN-PROGRAM>

ISPRIME

Returning from ISPRIME

Resuming PRIMGEN <MAIN-PROGRAM>
====Z==> 8-9

Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 55. The Trace Mode of DEBUG

Pascal/VS Interactive Debugger

81

—=====> 10

—z—=Z=z==> 6-7

Executing PRIMGEN ISPRIME
—==z=z==> 1

—-=-===> 2-5

—ZzZzZ=z=D> 2-5

—==z===> 6

—ZzZz=z=> 8

Returning from ISPRIME

Resuming PRIMGEN <MAIN-PROGRAM>
===z => &8-9

Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN <MAIN~PROGRAM>):

—z=z===> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

—zz==z==> 6-7
topped at PRIMGEN/<MAIN-PROGRAM>/6
ebug(PRIMGEN <MAIN-PROGRAM>):

ow

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/7
Debug(PRIMGEN <MAIN-PROGRAM>):

ualk
Executing PRIMGEN ISPRIME
T=Z====> 1
—==z===> 2-5
s==z===> 6
Sz====> 7

Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
10

Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

ao
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 56. Walking when the Trace Mode is On

82 Pascal/VS Programmer's Guide

display qualification

Currently qualified to PRIMGEN <MAIN-PROGRAM>

Will resume at PRIMGEN <MAIN-PROGRAM> 8

Counts are on

Trace 1s on

Trace output to <TERMINAL>
Debug(PRIMGEN <MAIN-PROGRAM>):

display breaks
Module Routine

PRIMGEN <MAIN-PROGRAM>

Debug(PRIMGEN <MAIN-PROGRAM>):

equate tn , testhumber
Debug(PRIMGEN <MAIN-PROGRAM>):

+

n
S, TESTNUMBER
TESTNUMRER = 19

Debug(PRIMGEN <MAIN-PROGRAM>):

display equate

TN ==> ,TESTNUMBER

Debug(PRIMGEN <MAIN-PROGRAM>):

set trace off
Program trace is off
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 57. Miscellaneous DEBUG Commands

2 testnumber

TESTHUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

, testnumber (attr
DATA TYPE: INTEGER
MEMORY CLASS : LOCAL AUTOMATIC
DECLARED 1IN <MAIN-PROGRAM>
TESTNUMBER = 19

Debug(PRIMGEN <MAIN-PROGRAM>):

yprimall01}
PRIMEL10] = wuninitialized
Debug(PRIMGEN <MAIN-PROGRAM>):

2primel5]
PRIMELS5] = 11
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 58. Commands to Display a Variable

Pascal/V¥S Interactive Debugger

83

k_ispriresend

/ISPRIME/ZEND
PRIMGEN <MAIN-PROGRAM>):

Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

trace
Trace back of called routines
Routine stmt at address in module
ISPRIME 8 020138 PRIMGEN
<MAIN-PROGRAM> 7 020260 PRIMGEN
PASCAL/VS 02055A

Debug(PRIMGEN ISPRIME):

set trace on
Program trace in on -- output to '<TERMINAL>'
Debug(PRIMGEN ISPRIME):

equate next aojlistvars
Debug(FRIMGEN ISPRIME):

t

; LISTVARS

suming PRIMGEN <MAIN-PROGRAM>
8-9

10
6-7
Executing PRIMGEN ISPRIME
====z==> 1
—=====> 2-5
z==z=-z==> 6
—Z=zZz==> 7

Returning from ISPRIME
Stopped at PRIMGEN/ISPRIME/END
Variables for procedure: ISPRIME
PRIMEINDEX = 2
QUOTIENT = 13
REMAINDER = 0
TESTVAL = 39
Debug(PRIMGEN ISPRIME):

set trace off

Program trace is off
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 59. Using Multiple commands on one Line and other commands

84 Pascal/VS Programmer's Guide

reset 8

Breakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed

Debug(PRIMGEN <MAIN-PROGRAM>):

a9
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

listvars
Variables for procedure:
PRIMEINDEX = 2

QUOTIENT = 11

REMAIMDER = 0

TESTVAL = 33
Debug(PRIMGEN ISPRIME):

ISPRIME

Breakpoint at PRIMGEN/ISPRIME/Z/END has
Debug(PRIMGEN ISPRIME):

been removed

90

2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71

73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173

179 181 191 193 197 199 211 223 227 229

233 239 2641 251 257 263 269 271 277 281

233 293 307 311 313 317 331 337 367 3649

353 359 367 373 379 383 389 397 401 409

419 421 431 433 439 443 449 457 461 463

467 479 487 491 499 503 509 521 523 5641
Figure 60. The Reset Breakpoint Command

PASCAL/VS STATEMENT COUNTING SUMMARY PAGE 1

<MAIN-PROGRAM> IN PRIMGEN CALLED 1 TIME(S)

FROM-TO:COUNT FROM-TO:COUNT

1-5 :1 6-7 :268 8-
11 :1 12-13 :100
ISPRIME IN PRIMGEN CALLED 268 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT
1 :268 2-5 :910
8 :97
Figure 61. Statement Counting Summary

FROM-TO:COUNT

FROM-TO:COUNT

FROM-TO:COUNT
9 :97 10 :268
14 :10

FROM-TO:COUNT
6 :268 7

1171

Pascal/VS Interactive Debugger

85"

This section describes the rules that
the Pascal/VS compiler employs in map-
ping variables to storage locations.

11.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off-
sets within the routine's dynamic stor-
age area (DSA). There is a DSA
associated with every invocation of a
routine plus one for the main program
itself. The DSA of a routine is allo-
cated when the routine is called and is
deallocated when the routine returns.

11.2 TINTERNAL STATIC STORAGE

For source modules that contain
riables declared STATIC, a single
unnamed control section ("private
code') is associated with the source
module in the resulting text deck.
Each variable declared via the STATIC
construct, regardless of its scope, is
assigned a unique offset within this
control -=ection.

va-

11.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will

generate a named control section
(csect). Each def variable which is
not initialized will generate a named

| COMMON section.!2 The name of the sec-

tion is derived from the first eight
characters of the variable's name.

11.0 STORAGE MAPPING

11.4 DYNAMIC STORAGE

Pointer qualified variables are allo-
cated dynamically from heap storage by

the procedure 'NEW'. Such variables
are always aligned on a doubleword
boundary.

11.5 RECORD FIELDS

Fields of records are assigned consec-—
utive offsets within the record in a
sequential manner, padding wvhere nec-
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

11.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in an Pascal/V$
source module is assigned storage and
aligned according to its declared type.

11.6.1 The Predefined Types

The table in Figure 62 displays the
storage occupancy and bhoundary align-
ment of variables declared with a pre-
defined type.

STORAGE MAPPING OF DATA
DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT
ALFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
SHORTREAL 4 FULL WORD
REAL 8 DOUBLE WORD
STRING(len) lent2 HALF WORD
STRINGPTR 8 FULL WORD
Figure 62. Storage mapping for predefined types
12

nicate with FORTRAN subroutines.

Each def variable becomes a named COMMON block which may be used to commu-

Storage Mapping 87

11.6.2 Enumerated Scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar defines
more than 256 values then it will occu-
py a half word and will be aligned on a
half word boundary.

11.6.3 subrange Scalar

A subrange scalar that is not specified
as packed will be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
indicated in the table of Figure 63.
Given a type definition T as:

type
T = packed i..j;
and
const
I = ORDCi);
J = ORD(3);
Range of SIZE in|ALIGNMENT
I .. J bytes
0..255 1 BYTE
-128..127 1 BYTE
-32768..32767 2 HALF WORD
0..65535 2 HALF WORD
0..16777215 3 BYTE
-8388608. .8388607 3 BYTE
otheruwise 4 FULL WORD

its required boundary. That is,
records are aligned on the boundary
required by the field with the largest
boundary requirement.

For example, record A below will be
aligned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
@ double word because it has a field of
type REAL; record € will be aligned on
a byte.

type
A= record (¥full word alignedX)
Al : INTEGER;
A2 :+ CHAR
end;
B= record (¥double word aligned¥)
Bl : A;
B2 : REAL;
B3 : BOOLEAN
end;

C= record (%byte alignedx)
Cl : packed 0..255;

C2 : ALPHA
end;
Figure 64. Alignment of records

Packed records are always aligned on a
byte boundary;

11.6.5 ARRAYS

Figure 63. Storage mapping of
subrange scalars

Each entry in the first column in the
above table is meant to include all
possible sub-ranges within the spec-
ified range. For example, the range
100..250 would be mapped in the same
way as the range 0..255.

11.6.4 RECORDs

An unpacked record is aligned on a
boundary in such a way that every field
of the record is properly aligned on

88 Pascal/VS Programmer's Guide

Consider the following type

definition:

type
A =array [s 1 of t

where type s is a simple scalar
and t is any type.

A variable declared with this type
definition would be aligned on the
boundary required for data type 't'.
With the exception noted below, the
amount of storage occupied by this var-
iable is computed by the following
expression:

(ORD(HIGHEST(s))-ORD(LOWEST(s))+1)
¥ SIZEOF(t)

The above expression is not necessarily
applicable if LR represents an
unpacked record type. In this case,
padding will be added, if necessary,
between each element so that each ele-
ment wWwill be aligned on a boundary
which meets the requirements of the
record type.

J

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev-
er inserted between elements.

A multi-dimensional array is mapped as
an array of array(s). For example the
following two array definitions would
be mapped identically in storage.

array [i..j, m..n 1 of t

array [i..j3 1 of
array [m..n 1 of t

11.6.6__FILES

File variables occupy 64 bytes and are
aligned on a full word boundary.

11.6.7 SETs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequately explain how sets are
mapped, two terms will need to be
defined: The base tvpe is the tvpe to
which all members of the set must
belong. The fundamental base type
represents the non-subrange scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0'..'9"

has the base type defined by '0'..'9';
and a fundamental base type of CHAR.

Any two unpacked sets which have the
same fundamental base type will be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
S
T

set of s;
set of t;

where s is a non-subrange scalar type
and t is a subrange of s: both S and T
will have the same length and will be
aligned in the same manner.

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though this value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contain
the largest value of the fundamental
base_tvpe. Packed sets occupy the min-
imum number of bytes to contain the
largest valid value of the base tvpe.
Thus, variables A and B below will both
occupy 256 bits.

var
A : set of CHAR;
B : set of '0'..'9';

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
cC : set of (C1,C2,C3,C4%,C5,C6,
c7,c8,C9,C10,C11,C12
c12,€13,C14,C15,C16);
D : set of C1..C8;
E : packed set of Cl1..C8;

A set type with a fundamental bhase type
of INTEGER 1is restricted so that the
largest member to be contained in the
set may not exceed the value 255;
therefore, such a set will occupy 256
bits.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bits; variable X will occupy 32
bits.

var
U : set of 0..255;
vV : set of 10..20;
W : packed set of 10..20;
X : packed set of 0..31;

Given that M is the number of bits
required for a particular set, the
table in Figure 65 indicates how the
set will be mapped in storage.

Range of SIZE ALIGNMENT
M BYTES
1 <= M= 38 1 BYTE
9 <= M <= 16 2 HALF WORD
17 <= M <= 24 3 BYTE
25 <= M <= 32 4 FULL WORD
33 <= M <= 256 | (M+7) BYTE
div 8
Figure 65. Storage mapping of
SETS

Storage Mapping 89

11.6.8 SPACES length specifier of the type

definition. For example, the variable
S declared below occupies 1000 bytes of
A variable declared as a space is storage. ,)

aligned on a byte boundary and occupies
the number of bytes indicated in the var S: space [1000] of INTEGER;

90 Pascal/VS Programmer's Guide

12.1 LINKAGE CONVENTIONS

Pascal’/VS uses standard 0S linkage con-
ventions with several additional
restrictions. The result is that
Pascals/VS may call any program that
requires standard conventions and may
be called by any program that adheres
to the additional Pascals/VS restric-
tions.

On entry to a Pascals/VS routine the
contents of relevant registers are as
follows:

° Register 1 - points to the parame-
ter list

U Register 12 - points to the
Pascal/VS Communication Work Area
(PCWA)

. Register 1} - points to the save
area provided by the caller

. Register 14 - return address

. Register 15 - entry point of called
routine

Pascals/V5S requires that the parameter
register (R1) be pointing into the
Dynamic Storage Area (DSA) stack in
such a way that 144 bytes prior to the
R1 address is an available save area.

12.0 CODE GENERATION FOR THE IBM/370

12.2 REGISTER USAGE

The table in Figure 66 describes how
each general register is used within a
Pascal/VS program. The floating point
registers are used for computation on
data of type REAL.

register(s) purpose(s)
0,1
- temporary work registers
for the compiler
- standard linkage usage
on calls

3)4)5;6)7)8)9
- registers assigned by the
compiler for computation
and for data base
registers

- code base registers
of the currently
executing routine

11
- address of the DSA of the
main program

12
- always points to Pascal/V$s
Communication Work Area

13
- always points to the local
DSA

14,15
- temporary work registers
for the compiler
- standard linkage usage
on calls

Figure 66. Register usage

Code Generation for the IBM/370 91

12.3 _DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storage
Area (DSA) is allocated. This area is
used to contain save areas, local vari-
ables and compiler generated tempo-
raries. A Pascal/V$S routine requires a
DSA of at least 144 bytes; if the rou-
tine has parameters or local variables,
more space is needed.

The first 72 bytes are generally used
according to standard 0S linkage con-
ventions. The first word is used to
copy the previous data base register at

the current procedure nesting level.

Figure 67 illustrates the structure of
the DSA. Figure 68 on page 93 shows
the DSECT exponsion of the DSA.

copy of this DSECT may be found in mem-—
include

ber DSA of
library!3.)

the standard

register 13—->
0: Register
Save area

72: [0/ 777777777777 777

80;

— | —86:—

o i —

92:

96 : | \777777777

100: reserved for

error handling

112: floating point
registers
FO - F6
144: parameter
list

local variables
and compiler
temporaries

translator
temporaries

144 byte save area

parameter list
to be built here

144 byte save area

16 byte rte parms
>

/7777 = indicates that the field

Figure 67. DSA format

reserved for future use
pointer to translator temporaries
pointer to parameter list build area
pointer to the end of the DSA
pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space 15 not present

if the routine requires no translator

temporaries, then this space is not
present
The following areas only in last DSA

for the next routine to be called

for runtime environment in case of
error
room for parameters

error recovery

if required by

is not presently used.

13 ynder MVS,
it 1s PASCALVS MACLIB.

92 Pascal/VS Programmer's Guide

the name of this library

is sysl.PASCALVS.MACLIB. Under CMS,

DSA
DSASDIS
DSALSVA

DSARETA
DSAEPAD
DSARGO
DSAPREG
DSACODE
DSARG3
DSARG4%
DSARGS
DSARG$6
DSARG7
DSARGS
DSARG:
DSACOD2
DSAL1B
DSAPCWA
DSAAKEY
DSARESG
DSATPTR
DSAPPTR
DSARPTR
DSACNTS
DSARAID
DSAFUNX
DSARES1
DSACKSA1L
DSACKSA2
DSACKSA3
DSAFLO
DSAFL2
DSAFL4
DSAFL$6
DSALEHN

DSAPRM1
DSAPRM2
DSAPRM3
DSAPRI4
DSAPRM5
DSADATA

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
SPACE
DS
DS
DS
DS
DS
DS

TMOMMTAMR XOOUOUO T TMAXXT T TN mTaTaTnmmm

Figure 68. DSA DSECT:

Save space for display level

Pointer to last save area

(reserved for future use)

Return address

Entry point address

Save area for register 0

Save area for parameter list pointer (reg 1)
Save area for base register for code (reg 2)
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for 2nd base register for code (reg 10)
Save area for register 11 (main DSA address)

Save area for register 12 (PCWA pointer)

Used by attention processor

Reserved

Address of temporary section of DSA

Address of parameter list build area

Address of runtime parameter list build area
Address of count table

Interactive debugger flags

Function assignment check flag
Reserved

Save area utilized by error recovery
Save area utilized by error recovery
Save area utilized by error recovery
Save area for floating point register
Save area for floating point register
Save area for floating point register
Save area for floating point register
Length of DSA header

oo~NAUnTD W

PN

Start of parameters and/or local variables

anchored off of register 13.

Code Generation for the IBM/370

93

12.4 ROUTINE INVOCATION

Each invocation of a Pascals/VS routine
must acquire a dynamic storage area
(DSA) (see "Dynamic Storage Area™ on
page 9%2). This storage is allocated
and deallocated in a LIFO (last
in/first out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt
to obtain another stack from which
storage is to be allocated.

Every DSA must be at least 144 bytes
long; this is the storage required by
Pascals/VS for a save area. The rou-
tine's local variables and parameters
are mapped within the DSA starting at
offset 144.

Upon entering a routine, register 1
points 144 bytes into the routine's
DSA, which 1is where the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 144 bytes plus enough
storage for the parameter list. This
portion of storage 1is actually an
extension of the caller's DSA.

In general, the DSA of a routine con-
sists of five sections:

l. The local save area (144 bytes).

2. Parameters passed in by the caller.

3. Local variables required by the
routine.

4. A save area required by any routine

that will be called.

5. Storage for the largest parameter
list to be built for a call.

Sections 1 and 2 are allocated by the
calling routine; sections 3, 4, and 5
are allocated by the prologue of the
routine to which the DSA belongs.

Upon invocation, register 13 points to
the base of the DSA of the caller,
which 1s where the caller's save area

is located. The new value of register
13 may be computed by subtracting 144
from the value in register 1.

Figure 6% illustrates the condition of
the stack and relevant registers imme-
diately at the start of a routine.

REG 13 >

caller's save area

start of DSA of caller

REG 13

local save area
(144 bytes)

start of DSA of called routine

REG 1 > 144 bytes into DSA
Parameters
top of stack >
—————————————————————— W storage yet to be allocated
local variables
————————————————————— start of DSA of routine yet
save area to be called
of any routines
---------- yvet to be invoked
[reg 1\]-———> --------------------- 144 bytes into this DSA
| set here parameter list to

| for calls be built for call

I
e 4

to other routines
next stack top --> t--—----—--——— o
Figure 69. Snapshot of stack and relevant registers at start of routine

S

94 Pascal’/V¥S Programmer's Guide

12.5 PARAMETER PASSING

Pascal/VS passes parameters in several
different ways depending on how the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter 1list is aligned on a
doubleword boundary and each parameter
is aligned on 1its proper boundary.
Addresses are aligned on word bounda-
ries.

Passing by Reads/Urite Refer-

This mechanism is indicated by use of
the reserved word var in the routine
heading. Actual parameters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(var I:INTEGER);

Routine Invocation:

PROC(J);

Parameter list:

address of J

Passing by Read/Write

reference

Figure 70.

12.5.2 Passing hy Read-Only Reference

This mechanism is indicated by use of
the reserved word const in the routine
heading. Actual parameters passed in
this way may not be modified by the
invoked routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(const I: INTEGER);

Routine Invocation:

PROC(J+5);

Parameter list:

address of a memory location
which contains the value of
J5.

Passing by Read-only

reference

Figure 71.

12.5.3 Passing by Value

This mechanism is the default way in
which parameters are passed. Parame-
ters passed in this uvay are treated as
if they are pre-initialized local
variables in the invoked routine. Any
modification to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter is a scalar, pointer, or sat,
then the parameter list will contain
the value of the actual parameter. If
the actual parameter is an array,
record, space, or string, then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure will copy
the parameter into 1ts local storage.

Routine Heading:

procedure PROC(
I : INTEGER;
A : ALPHA);

Routine Invocation:

PROC(J, 'alpha');

Parameter list:

value of J
address of 'alpha

Figure 72. Passing by value

Code Generation for the IBM/370 95

12.5.4 Passing Procedure or Function

12.5.5 Function Results

Paramaters

For procedures or functions which are
being passed as parameters, the address
of the routine is placed in the parame-
ter list.

Note: As a Pascals/VS restriction, a
routine passed as a parameter must not
be nested within another routine.

Routine Heading:

procedure PROC(
function X(Y: REAL): REAL J;

Routine Invocation:

PROC(COS);

Parameter list:

address of C0S routine

Passing routine

parameters

Figure 73.

96 Pascal/VS Programmer's Guide

Pascal/VS functions have an implicit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the function result is to be
placed.

Routine Heading:

function FUNC(C: CHAR):INTEGER;

Routine Invocation:

I = FUNCC(C'L");

Parameter list:

- address of returned integer
result
- value of character 'L"'

Function results

Figure 74.

12.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or function
is arranged in the order shown below.
Register 2 is the code base register
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, register 10 is used as
the code base register for the second
4K bytes. If a routine exceeds 8K
bytes of storage, the compiler will
diagnose it as a terminal error.

DEBUG control
Entry Pt 1 block
Reg 2 >

entry prologue

body
of
routine

This must be
<= 8192
exit epilogue

literals:

ACONS, VCONS,

and small literals
1 to 16 bytes long

STRING and SET
literals longer
than 16 bytes

statement table
(if present)

Figure 75. Routine format

Code Generation for the IBM/370

97

12.7 PCUA
PCWA =
record

PCWAENDS INTEGER; (¥Ptr to end of current stack ¥)
PCWACURS INTEGER; (¥Ptr to start of current stack)
PCLASELF INTEGER; (xSelf identifing flag 'PCWA' ¥)
PCWAFL?2 PCWA_FLG_SET; (¥compiler runtime flag flags %)
PCHARC(16) INTEGER; (xReturn code *)
PCWAFILE PCBP; (¥pointer to open files ¥)
PCWAPARM SYSPARMP; (¥parms string %)
PCWAMODS DBCBP; (¥module header chain (debugger)x)
PCLAESAP INTEGER; (¥ptr to external save area %)
PCLIADISP arraylo0..7] of DSAP; (¥DISPLAY %)
PCLADTMP INTEGER; (¥Debugger temporary %)
PCWARTHMP REAL; (Xfloating point temporary X)
PCWARDO REAL; (X*4E00000000000000°'X %)
PCllA2231 REAL; (%'4E00000010000000'X ¥)
PCWAMASK ALFA; (%'8040201008040201'X *)
PCWAMFIX ALFA; (¥xtemp for first 8 bytes of DSA %)
PCLASAVE arrayll..36] of INTEGER; (%Extra save area %)
PCWAPLST arrayll1..16] of INTEGER; (¥parm list build *)
PCHAFIN INTEGER; (¥Pointer to the HALT address X)
PCIWAALLC INTEGER; (¥address of memory allocator *)
PCWADLLC INTEGER; (¥address of memory deallocator x)
PCLWADFLT INTEGER; (¥default allocation size X)
PCIACHKR INTEGER; (¥address of checker routine ¥)
PCIWADSAS INTEGER; (¥size of DSA in bytes (144) %)
PCWAMEMF INTEGER; (¥addr of memory fixup routine ¥)
PCWAFLAG INTEGER; (¥Inter-language communication X)
PCWAPICA ALFA; (¥XPICA save area ¥)
PCWASEED INTEGER; (¥seed of 'RANDOM' function *)
PCUWAXEND INTEGER; (¥end of stack for SETMEM *)
PCWAECNT INTEGER; (¥error count until abend ¥)
PCWACHK INTEGER; (¥address of check routine %)
PCIHACMEM INTEGER; (¥current memory in use %)
PCWASTAX spacel20] of CHAR; (xSTAX list form %)
PCLHAEOPN BOOLEAN; (XTRUE if PCWAEOUT is open %)
PCWADINT BOOLEAN; (¥TRUE if debugger initializied %)
PCWATSO BOOLEAN; (¥TRUE if TS0 environment %)

BOOLEAN; (¥reserved *)
PCWAATTN INTEGER; (¥address of attn handling *)
PCWAFCNT INTEGER; (¥cnt of files without DDnames X%)
PCWASIZE INTEGER; (%¥size of initial alloc for pcwa¥)
PCWADINA INTEGER; (¥Address of AMPDINIT or nil *)
PCIWWABOPA INTEGER; (¥Address of AMPDIBOP or nil *)
PCWABBA INTEGER; (¥Address of AMPDIBB or nil *)
PCWAERAD INTEGER; (¥Error address - CHKR or DIAG %)
PCWAFSTK INTEGER; (¥Chain of free dsa stack elems %)
PCLIAENDA INTEGER; (¥Address of AMPDEPIL or nil %)
PCWAPROC(1200) spacel64] of CHAR; (¥Work area for PROCESS %)
PCWAUSER(1264) spacel64] of CHAR;(¥Area reserved for user ¥)
PCWAEOUT(1328) TEXT; (¥ERROR OQUTPUT PCB *)
PCWAOUT(1392) PCB; (XOUTPUT PCB %)
PCWAINC(1456) PCB; (XINPUT PCB *)
PCWAPDAT(1520) STRING(254); (¥actual parm list after format %)
PCWAERSA(1776) SPIEDSA; (¥savearea for error routines *)
PCWAPIE PSW; (xPSW from PIE %)
PCWASPIE INTEGER;
PCWAMEMA(198%)

array[MEM_LEVELS] of SPACE_DESC;

(¥space for memory allocator ¥)
end;
Figure 76. Pascal Communications Work Area

The Pascal Communications Work Area is
always addressable from

Th

98

register 12.

is area of memory is used to contain

Pascal/VS Programmer's Guide

global information about the execution

of the program.

9

The area is divided into two parts,
each is 2048 bytes in length. The
first part contains data that needs to
be addressable; the second is composed
of the small routines used to augment
the generated code (such as string con-
catenation). Figure 76 on page 98
shows the structure of the first half
of the PCWA. Each field is described

below:

PCHAENDS
a pointer to the end of the current
DSA stack.

PCUACURS
a pointer to the top of the current
DSA stack.

PCHASELF
a self defining field that is set
to "PCWA'.

PCHAFL2
flags used to enable runtime fea-
tures.

PCHARC

the value assigned by the last exe-
cution of RETCODE or =zero if
RETCODE has not been called.

PCHAFILE
a pointer to the first file (PCB)
that has been opened but not
closed.

PCHAPARM
a pointer to the parameter string
passed to the program.

PCHAMODS
a pointer to the head of a chain

that 1links modules together as
required by the interactive
debugger.

PCHAESAP

contains the pointer to the save
area for the caller of the Pascal
program.

PCHADISP
the runtime display - a stack of 8
base registers that contains the
address of the DSAs that are avail-
able to the executing routine.

PCHADTMP
a temporary used by the interactive
debugger.

PCHARTHMP
a temporary used in conversion
between floating point numbers and
integers.

PCHARO
a constant that contains the float-
ing point value zero.

PCWA2231

a constant that contains the float-
ing point value of 2 raised to the
31 power minus 1 in an unnormalized
form.

PCUAMASK
eight bytes that contain masks
which are used in set operations.

PCUANMFIX)
a temporary used during runtime
error recovery.

PCUASAVE
used as a register save area when a
program error or checking error
occurs.

PCUHAPLST
used when a program error or check-
ing error occurs to build a parame-
ter 1list in order to invoke a
recovery procedure.

PCUWAFIN
address of a procedure which termi-
nates the program no matter what
state it is in. This procedure is
normally HALT.

PCHAALLC
address of a system dependent rou-
tine which is responsible for allo-
cating blocks of storage.

PCUWADLLC
address of a system dependent rou-
tine which releases blocks of stor-
age.

PCWADFLT
the default number of bytes of
storage that the allocation rou-
tine will allocate when called.

PCHACHKR
the address of the routine which is
invoked to diagnose a checking
error.

PCHADSAS
the size of the smallest DSA. Its
value 15 144,

PCHAMEMF
contains the address of the memory
fixup routine, which is called when
the DSA stack overflouws.

PCHAFLAG
a flag used when communicating
between different languages.

PCUHAPICA
is used for a save area for the
PICA.

PCHWASEED
contains the current seed for the
RANDOM function.

PCHWAXEND
contains the true end of the cur-
rent stack, PCWAENDS may not be
correct, PCWAENDS is made incor-

Code Generation for the IBM/370 99

rect in order to force a call to
AMPXMEMF so that a DSA may be ini-
tialized (if SETMEM option is ena-
bled).

PCUAECNT
contains the number of non-fatal
errors Which will be tolerated
before the program will be abended.

PCHACHK
contains the address of the routine
which gains control when a checking
error occurs. This routine is nor-
mally AMPXCHKR.

PCWACHEM
defines which heap is in use, nor-
mally the value is one, which indi-
cates that the users heap is
available.

PCHASTAX
contains the list form of the STAX
macro.

PCUAEQOPN
a flag that indicates whether the
error file, PCWAEQUT has been
opened.

PCUADINT
is a flag indicating whether
AMPDCOM (debugger common area) has
been initialized yet.

PCUATSO
is a flag indicating whether we are
executing in a TS0 environment.

PCHAATTN
contains the address of the termi-
nal attention routine.

PCHAFCNT
contains the number of the next
generated DDname.

PCHASIZE
contains the size of the initial
allocation of the PCWA.

PCUADINA
contains the address of the
AMPDINIT routine, which initial-
izes the interactive debugger.

PCUABOPA
contains the address of the
AMPDIBOP routine, which is invoked
at each procedure entry when the
debugger is active.

100 Pascal/VS Programmer's Guide

PCHABBA
contains the address of the AMPDIBB
routine, which is invoked at each
basic block of code when the
debugger is active.

PCHAERAD
contains the offending address
when a checking error or a program
error occurs.

PCHAFSTK
points to the beginning of a chain
of all free blocks of storage.

PCUAENDA
address of the AMPDEPIL routine,
ihich is invoked from the epilogue
of each routine when the debugger
is active.

PCUAPROC
reserved for future use.

PCLAUSER
reserved for Pascal/VS users.

PCHAEOQUT
the file (PCB) to where execute
time error diagnostics is sent.

PCHAOUT
the PCB for the standard file 0OUT-
PUT.

PCWAIN
the PCB for the standard file
INPUT.

PCHAPDAT
a string that contains the passed
in symbolic parameter list after it
it has been formatted.

PCWAERSA
a small save area used when a SPIE
exit 15 invoked.

PCHAPIE
a place to save certain information
from the SPIE.

PCUASPIE
spie work area

PCHAMEMA
descriptors used to control the
allocation and deallocation poli-
cies of dynamic storage and I/0
buffers.

J

12.8 PCB - PASCAL FILE CONTROL BLOCK

PCB = (¥Pascal Control Block %)
record

PCBFILEP BUFFERP; (¥file pointer ¥)
PCBFLAGS FILEFLAGS; (%file flags %)
PCBELEM HALFWORD; (¥length of file component %)
PCBHAME ALFA; (¥file-variable name *)
PCBCODE : MagicNumber; (¥initialization test %)
PCBBUFIDX: HALFWORD; (¥buffer index *)
PCBBUFLEN: HALFWORD; (Xbuffer length X)
PCBBUFP : BUFFERP; (¥pointer to start of buffer x)
PCBOPTP OPTP; (¥ptr to OPTIONs descriptor *)
PCBLAST PCBP; (¥link to last PCB of chain *)
PCBNEXT PCBP; (¥link to next PCB of chain %)
PCBICBP ICBP; (¥ptr to Implem. Ctrl Block %)
PCBSTART HALFWORD; (¥initial value of PCBBUFIDX x)
PCBSTAT IOSTATUS (¥Xstatus of last open %)
CHAR; (¥<not-used> X)

INTEGER; (¥<not-used> %)

INTEGER; (¥<not-used> %)

INTEGER; (¥<not-used>)

INTEGER; (¥<not-used> %)

end;
Figure 77. Pascal file Control Block (PCB) format

Every PascalsVS file is represented by
a Pascal control block (PCB) An PCB is
composed of 64 bytes of space.

The fields are defined as:
PCBFILEP

points to
the file.

the current element of

PCBFLAGS
set of file flags (16 bits). The
flags are:

FINPUT indicates that

open for input.

file is

FOUTPUT indicates that
open for output.

file 1is

FTEXT the file is of type TEXT.

FEOLN end-of-line condition is
true.

FEOF end-of-file condition 1is
true.

FFIXED file has fixed length
records.

FINTER the file was opened as an
interactive file.

FSTATUS the user will check
PCBSTAT and report the

errors.
FFEOL end-of-line condition is
true, but not as a result
of READLN.

FOPTS an options string was
specified in the last
open.

PCBELEM
the length of one component of the
file.

PCBNAME
the DDNAME of the file.

PCBCODE

an encoded value that is used to
test whether the PCB has been ini-
tialized; this is not required for
files which are local variables but
is needed for files that are allo-
cated dynamically (NEW).

PCBEBUFIDX
byte index
(PCBBUFP).

into the 1I/70 buffer

PCBBUFLEN
total length of buffer in bytes.

PCBBUFP
address of the beginning of the
buffer.

PCBOPTP
address of the control block that
describes the information passed
through the options string as the
file is being opened. The proce-
dures which open a file and pass an

options string are: RESET,
REWRITE, UPDATE, TERMIN, TERMOUT,
PDSIN or PDSOUT.

PCBLAST

Code Generation for the IBM/370 101

back chain of currently open PCBs. PCBSTART

contains the initial value of
PCBNEXT PCBBUFIDX, which is used to deter-
forward chain of currently open mine 1f the current buffer contains ’
PCBs. any data that needs processing pri-
or to closing the file.
PCBICBP
points to a system dependent con- PCBSTAT
trol block to be used by the lowest status of the file.
level of interface to the I0 access
methods.

102 Pascal/VS Programmer's Guide

It is sometimes desirable to invoke
subprograms {(procedures) written in
other programming langauges: this is
useful to obtain services not available
directly in PascalsVs. It is also
desirable to have a Pascals/VS procedure
called from a non-Pascal program: this
would allow you to take advantage of
Pascal in an existing application with-
out rewriting the entire application.
This chapter will discuss the options
available to you and what you must do
in order to have this flexibility.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.0 INTER LANGUAGE COMMUNICATION

We can divide inter-language communi-
cation into two classes:

° The Pascal procedure is the calling
procedure and the non-Pascal pro-
cedure is being called.

. The Pascal procedure is called from
a non-Pascal calling procedure.
Your options are summarized in

Figure 78.

Pascal as the calling language Pascal as the called language
FORTRAN
Define procedures and functions Use a call statement in FORTRAN
in Pascal using the FORTRAN to call the Pascal procedure.
directive. This enables you to The Pascal procedure must be
call a subprogram written defined with the MAIN directive.
FORTRAN. After the last call to a Pascal
procedure you must call PSCLHX
(Pascal halt execution).
Assembler
Define procedures and functions Use a V-type constant in the
in Pascal using the FORTRAN or Assembler routine to define the
the EXTERNAL directive. If you Pascal entry point. You must
use EXTERNAL you will be able to |define the Pascal procedure as
specify an arbitary Pascal EXTERNAL, MAIN, or REENTRANT.
parameter list. After the last call to a Pascal
procedure you must call PSCLHX.
COBOL
Define procedures and functions Use a call statement in COBOL
in Pascal using the FORTRAN to call the Pascal procedure.
directive. This enables you COBOL should be compiled with
to call a subprogram written in the "NODYNAM' option and the
COBOL. You may desire to call call must be a call of a
ILBOSTPO prior to calling a literal. The Pascal procedure
COBOL program. Consult the must be defined with the MAIN
COBOL Programmer's guide for directive. After the last call
details. to a Pascal procedure you must
call PSCLHX.
PL/I
Define procedures and functions Use a call statement in PL/I to
in Pascal using the FORTRAN call a Pascal procedure. The
directive. This enables you PL/I procedure should specify the
to call a subprogram written in Pascal as an EXTERNAL. After the
PL/I. You should define the PL/I |last call to a Pascal procedure
procedure with the FORTRAN you must call PSCLHX.
option. Consult the PL/I 0S
Programmer's guide for further
details.
Figure 78. Inter Language Communication

Inter Language Communication 103

TNL SN20-4445 (31 December 1981) to SH20-6162-1

The details of Pascals/VS linkage con-
ventions are discussed in the chapter
"Code Generation for the IBM/370"™ on
page 91. You should familiarize your-
self with this section - especially if
vou plan to use Assembler language.

13.1 LINKING TO ASSEMBLER ROUTINES

Writing an Assembler language routine
for Pascals/VS is a simple operation
provided that a set of conventions are
carefully followed. There are two rea-
sons for the need for these
conventions:

1. Pascal/VS parameter passing con-
ventions: As described in "Parame-
ter Passing”™ on page 95, Pascal/VSs
parameters are passed in a variety
of ways, depending on their attri-
butes.

2. JThe Pascal/VS environment: This is
an arrangement of registers and
control blocks used by Pascal/VS to
handle storage management and run-
time error recovery. (see "Regis-
ter Usage" on page 91.)

13.1.1 Uriting Assembler Routine uWith
Mininum Interface

Writing an Assembler routine with the
minimum interface requires the least
knowledge of the runtime environment.
However, such a routine has the follow-
ing deficiencies:

L It may not call a PascalsVvs
routine;

. It must be non-recursive;

. If a program error should occur

(such as divide by zero), the Pas-
calsVS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascal/VS program invokes an
Assembler language routine, register
14 contains the return address and reg-
ister 15 contains the starting address
of the routine. The routine must fol-
low the System/370 linkage conventions
and save the registers that will be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
Wwill contain the address of the regis-
ter save area provided by the caller,
and register 1 will point to the first
of a list of parameters being passed
(if such a list exists). Once the reg-
ister values are stored in the caller's
save area, the save area address (reg-
ister 13) must be stored in the
backchain word in a save area defined
by the Assembler routine itself.
Before returning to the Pascal/VS rou-
tine, the registers must be restored to
the values that they contained when the
Assembler routine was invoked.

If you insert your Assembler
instructions at the point indicated in
the skeletal code shown in Figure 79,
your Assembler routine can be called
from a Pascal/VS routine and you need
have no knhouwledge of the Pascals/V$s
environment.

anyname CSECT
ENTRY procname
procname DS OH

STM 14,12,12(13)
BALR basereg,0
USING *,basereg

ST 13,SAVEAREA+4
LA 13,SAVEAREA

-

.

invoked from Pascal/V$s

declare routine name as an entry point
entry point to routine
save Pascals/VS registers in Pascal/VS save area
establish base register

store Pascal/VS save area address
load address of local save area

body of Assembler routine

3 restore the floating point registers if
* they were saved
L 13,4(C13) restore Pascal/VS registers
LM 14,12,12(13)
BR 14 return to Pascal/VS$s
SAVEAREA DC 20F'0°* local save area
END
Figure 79. Minimum interface to an Assembler routine: skeletal code to be

104 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.1.2 Muriting Assembler Routine with General Interface

YES]
NO

EPILOG DROP=

where:

VARS is the
passed-in parameters.

defaults:
LASTREG=12
VARS=0
PARMS=0

DROP=YES
PROLOG/EPILOG macros

Figure 80.

procname PROLOG LASTREG=r,VARS=n,PARMS=p

procname is the entry point name of the routine.

LASTREG is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.

number of bytes required for any
PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

DROP indicates whether register 2 is to
ter after the epilogue is executed.

local data, including

be dropped as a base regis-

If an Assembler routine has at least
one of the following characteristics,
the general interface must be used:

. It calls a Pascals/VS routine;
. It is recursive;

. Program errors must be intercepted
and diagnosed by the Pascal/V$S run-
time environment.

Two Assembler macros are available
which are used to generate the prologue
and epilogue of an Assembler routine
with a general Pascals/VS interface.
The macro names are PROLOG and EPILOG
and their forms are described in the
figure above.

The PROLOG macro preserves any regis-
ters that are to be modified and allo-
cates storage for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4096 bytes
of code.

Upon entering a routine prior to exe-
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

. Register 1 - address of the parame-
ter list built by the caller, which

is 144 bytes into the DSA to be
used by the called routine.

° Register 12 - address of the Pascal
Communication Work Area (PCWA).

° Register 13 - address of the DSA of
the calling routine.

° Register 14 - return address.

° Register 15 - address of the start
of the called routine.

Upon executing the code generated by
the PROLOG macro, the registers are as
follows:

° Register 0 - unchanged

° Register 1 - address of an area of
storage in which parameter lists
may be built to pass to other rou-
tines.

° Register 2 - base register for the
first 4096 bytes of code within the
invoked routine.

U Registaers 3 through 11 - unchanged.

o Register 12 - unchanged

o Register 13 - address of the local

DSA of the routine just invoked.
The first 144 bytes is the register

Inter Language Communication 105

TNL SN20-4445 (31 December 1981) to SH20-6162-1

save area for the invoked routine. established by the prologue. The macro
Following the save area is where Wwill cause register 2 to be dropped as
the parameters passed in by the a base register unless DROP=NQO is spec-
caller are located. Immediately ified.
after the parameters is storage for
local variables followed by a The contents of the floating point reg-
parameter list build area. isters are not saved by the PROLOG mac-
ro. If the floating point registers
o Register 14 - unchanged. are modified, they must be restored to
their original contents prior to
o Register 15 - unpredictable. returning from the routine.
The EPILOG macro restores the saved A skeleton of a general-interface
registers, then branches back to the Assembler language routine which may be
calling routine. In order for the epi- called by a Pascal/VS program is given
logue to execute properly, register 13 below.

must have the same contents as was

The following names have the indicated meaning

'csectnam' is the name of the csect in which the routine resides

'brocname' is the name of the routine.

'parmsize' is the length of the passed-in parameters

'varsize' is the storage required for the local variables

'lastreg' is the highest register (up to 12) which will be modified

'plist' is the length of the largest parameter list required for calls
to other routines from "procname"

KKK XK XK X KX X

csectnam CSECT
*

procname PROLOG LASTREG=lastreg,VARS=varsizetparmsize,PARMS=plist

<== jinsert code here

EPILOG
END

Figure 81. General interface to an Assembler routine: skaeletal code to he
invoked from Pascal/V$S

106 Pascal/VS Programmer's Guide

13.1.3 Recejving Parameters From Rou-
tines

Parameters receivad from a Pascal/V$
routine are mapped within a list in the
manner described in "Paramater
Passing™ on page 95. At invocation
register 1 contains the address of this
list.

If the general interface (sea "Writing
Assembler Routine with Gaeneral Inter-
face"” on page 105) is used in writing
the Assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

13.1.4 calling Pascalsvs Routine from
Assemhler Routine

An Assembler language routine that was
invoked from a Pascal program may call
a Pascal procedure provided that:

. the general PascalsVS interface
was incorporated within the Assem-
bler routine, and

° the Pascal/VS routine to be called
is declared as extaernal.

See Figure 83 on page 108 as an
exampla.

If the Assembler routine was not
invoked from a Pascal/VS routine, then
the Pascal/VS run time environment must
be set up prior to entering the
PascalsVS routinea. To do this, the

TNL SN20-4445 (31 December 1981) to SH20-6162-1

Pascal procedure must be declared with
the MAIN or REENTRANT directive. (See
Figure 85 on page 110 for an example.)
When such & procedure is invoked for
the first time, a minimum environment
is created. On subsequent calls, this
environment is restored prior to exe-
cuting the procedure. To remove the
environmant (free stack space, etc.),
the procedure PSCLHX is provided.

Prior to making the call to a Pascal
procedure from Assembler language,
register 1 must contain the value
assigned to it within the PROLOG code.
Parameters to be passed are stored into
appropriate displacements from regis-
ter 1 as described in "Parameter
Passing™ on page 95.

At the point of call, register 12 must
contain the address of the Pascal Com-
munications Work Area (PCWA). This
will be the case if thae Assembler rou-
tine was invoked from a Pascal/VS rou-
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into register 15 and then the
instruction "BALR 14,15' is executed.

3.1.5 ample Assembler utine

In Figurae 82 on page 108 and Figure 83
on page 108, a sample Assembler routine
is listed which may be called from a
Pascal/VS program. This routine exe-
cutaes an 05 TPUT macro to write a line
of text to a user's taerminal.

Inter Language Communication 107

TNL SN20-4445 (31 December 1981) to SH20-6162-1

type
BUFINDEX = 0..80;
BUFFER = packed arrayll..80] of CHAR;

(¥this routine is in assembly languageX)

procedure TPUT(
const BUF : BUFFER;
LEN = BUFINDEX);
EXTERNAL;

(¥this routine is called from the assambly language routinaX)
procedure ERROR(
RETCODE: INTEGER;
const MESSAGE: STRING);
ENTRY;
bhegin
ﬂRITELN(OUTPUT. MESSAGE, ', RETURN CODE = ', RETCODE)
ena;

Figure 82. Pascal/VS description of Assembler routine: the Assembler rou-
tine is shown in Figure 83.
TIOSEG CSECT
TPUT PROLOG LASTREG=4,VARS=8 only registers 3 and ¢ are modified
*
L 3,144(13) load address of 'BUF' parameter
L 4,148(13) laod value of 'LEN' parameter
TPUT (3),(4) write content of '"BUF' to terminal
LTR 15,15 check return code
BZ TPUTRET if no error then return
* build parm list for call to 'ERROR'
ST 15,0(1)> assign to "RETCODE' parameter
LA 3, TPUTMSG load address of message
ST 3,4(1) assign to "MESSAGE' parameter
L 15, =V(ERROR) load address of 'ERROR' procedure
BALR 14,15 call 'ERROR'
*
TPUTRET EPILOG
%*
TPUTMSG DC AL2CL*TPUTTEXT) halfword length of string
TPUTTEXT DC C'TPUT ERROR’' message text
END
Figure 83. Sample Assembler routine: this routine is invoked by a

Pascal/VS routine and, within itself, invokes a Pascal/VS rou-
tine.

108 Pascal/VS Programmer's Guide

13.1.6 Calling a Pascal/Vs Main Pro-
gram from Assembler Routine

A Pascal/VS program may be invoked from
an assembler language routine by load-
ing a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

The convention employed in passing
parameters to a program is dependent on
whether you are running under CMS or
under TS0 f(or 0S Batch). Both con-
ventions require that register 1 be set
to the address of the parameter data.

Program to be called:
program test;
beéif\

end.

LA~ 1,PLIST
L 15,=V(TEST)
BALR 14,15

PLIST DS OF
DC CLB8'TEST®
DC CL8'token 1°
DC CL8'token 2°

DC CL8'token n'
DC 8X'FF!

LA~ 1,PLIST
L 15,=V(TEST)
BALR 14,15

PLIST DS OF

DC XL1'80"

DC AL3(PARMS)
PARMS DC FL2'length’

Figure 84.

Assembler instructions to perform the call under CMS:

Assembler instructions to perform the call under VS2 (and TS0):

set first bit of address

length of parameter string
DC C'parm string goes here'

Example of calling a Pascals/VS program from an assembler routine

Inter Language Communication 109

SEGMENT SQUARE;
procedure SQUARE(var X REAL);
MAIN;
procedure SQUARE;
begin
X = X ¥ X
end;
1059 CSECT
USING ¥,15 establish addressability
STM 14,12,12(13) save callers registers
ST 13,5SAVEAREA+4 save address of callers save area
BALR 2,0
USING x,2 establish addressability
LA 13,SAVEAREA set new save area
LA 1,PLIST1 REG 1 POINTS TO PARAMETER LIST
L 15, =V(SQUARE) load address of Pascal procedure
BALR 14,15 call SQUARE
LA 1,PLIST2 REG 1 POINTS TO PARAMETER LIST
L 15, =V(PSCLHX) LOAD ADDRESS OF PASCAL PROCEDURE
BALR 14,15 call SQUARE
L 13,S5SAVEAREA+4 return
LM 14,12,12(13)
BR 14
PLISTI DC ACX) PARAMETER LIST
X DC D'4.0"
PLIST2 DC ACZERO) PARAMETER LIST
ZEROD DC Fro’
SAVEAREA DS 18F
END
Figure 85. Example of Assembler as the caller to PascalsVs
110 Pascal/VS Programmer's Guide

program FROMPSCL;
procedure SUM(var I :

(¥Pascal program heading
INTEGER;
INTEGER);

(%¥Define two local variables

(%XSet running sum to zero
(¥loop through ten values

(¥compute the next sum

WRITELN('The current running sum is ',I1:0);

const J
FORTRAN;
var
I,J :INTEGER;
begin
I := 0;
for J 1 to 10 do
begin
SUM(I,J);
end;
end .
SUM CSECT
USING %,15
STM 164,12,12(13)
ST 13,5AVEAREA+4
BALR 5,0
USING ¥,5
LA 13,SAVEAREA
L 2,0(1)
L 3,0(2)
L 4,4(1)
A 3,004)
ST 3,00(2)
L 13,SAVEAREA+4
LM 14,12,12(13)
BR 14
SAVEAREA DS 18F
END
Figure 86.

(¥FROMPSCL

establish addressability
save callers registers
save address of callers save area

establish addressability
set new save area
get address of I

get I

get address of J

I =1+

return the new value of I
return

Example of Pascals/VS as the caller to Assembler

%)

Inter Language Communication

111

13.2 PASCAL/VS AND FORTRAN

Communication between FORTRAN and
Pascals/VS is accomplished by usa of the
MAIN directive (FORTRAN to Pascal/Vs)
and the FORTRAN directive (Pascal/VS to
FORTRAN).

13.2.1 Pascalsvs as the Caller to
FORTRAN

Data may be passed between FORTRAN and
Pascals/VS through the parameter list or
FORTRAN COMMON. 1If you choose to COM-
MON specify the name of the COMMON
block as a Pascals/VS daf variable.

program FROMPSCL;

SUBROUTINE SUM(I,J)
I =1+ J

RETURN

END

procedure SUM(var I INTEGER;
const J INTEGER);
FORTRAN;
var
I,J :INTEGER;
begin
I ‘= 0;
for J := 1 to 10 do
begin
SUMCI,J);
WRITELN('The current running
end;
end .

Figure 87. Example of Pascal/VS as the

(¥Pascal program heading *)

(%XDefine two local variables x)

(%XSet running sum to zero *)
(¥loop through ten values *)
(¥compute the next sum *)

sum is ',I1:0);

(¥FROMPSCL *)

caller to FORTRAN

The FORTRAN directive instructs
Pascals/VS to utilize exactly the same
calling conventions employed by
FORTRAN. This restricts the form of
the parameter list, namely you may not
pass a parameter by value; you may pass
a parameter by var or by const. If you
choose the latter machanism, the
FORTRAN subprogram must not modify the
parameter.

112 Pascal/VS Programmer's Guide

Execution errors that occur during the
exacution of the FORTRAN program will
be handled by the Pascal runtime sup-
port routines. If you desire to enable
the error handling of FORTRAN vyou
should invoke "VSCOM#&"™ at the appropri-
ate entry point. Consult the VS
FORTRAN Application Programming Guide
5C26-3985 for details

J

C

C

13.2.2 FORTRAN as the Caller to Pas-
calsvs

TNL SN204445 (31 December 1981) to SH20-6162-1

SEGMENT SQUARE:;
procedure SQUARE(var X : REAL);
MAIN;
procedure SQUARE;
begin
X 1= X ¥ X
end; .

Pascal/VS procedure to be called from FORTRAN program:

AREAL = 4.0
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUAREC(AREAL)
PRINT 1, AREAL
CALL SQUAREC(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL

1 FORMAT (F10.4)

c TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(0)
STOP
END

FORTRAN program that invokes Pascal procedure:

Figure 88. Example of FORTRAN as the caller to Pascals/V$s

Pascal/VS permits a FORTRAN program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ-
ment for 1its execution. Subsequent

calls will use the same environment
that was set up on the first call.

It is your responsibility to clean up
the Pascal environment; this is done by
invoking the procedure "PSCLHX".

If Pascal is not the main program, then

Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 113

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.3 PASCAL/VS AND COBOL

Communication between COBOL and
Pascals/VS is accomplished by use of the

13.3.1 PascalsvS as the Caller to
COBOL

MAIN directive (COBOL to Pascals/VS) and
the FORTRAN directive (Pascals/VS to
COBOL).

program FROMPSCL;

Pascal program that calls a COBOL subprogram:

procedure SUMX(var I : INTEGER;
const J : INTEGER);

FORTRAN;
var
I,J :INTEGER; (¥Define two local variables X)
begin
I := 03 (XSet running sum to zero x)
for J := 1 to 10 do (Xloop through ten values %)
begin
SUMX(I,J); (¥compute the next sum *)
gRITELN('The current running sum is ',I1:1);
ena;
end . (*¥FROMPSCL *®)

(XPascal program heading x)

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING I J.
ADD J TO I.
GOBACK.

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.

Figure 89. Example of Pascal/VS as the caller to COBOL

The FORTRAN directive instructs
Pascal’/VS to utilize exactly the same
calling conventions employed by FOR-
TRAN which is also equivalent to COBOL.
This restricts the form of the parame-
ter list, namely you may not pass a
parameter by value; you may pass a
parameter by var or by const. If you
choose the latter machanism, the COBOL
:ubprogram must not modify the parame-
er.

Execution errors that occur during the

execution of the COBOL program will be
handled by the Pascal runtime support

114 Pascal/VS Programmer's Guide

routines. Pascal will not issue a call
to ILBOSTPO (which sets up the COBOL
error recovery). You may call this
routine if you would like the "STOP
RUN"™ statement of COBOL to treat the
Pascal calling procedure as a main
entry point of a COBOL program. Con-
sult the 0S/VS COBOL Compiler and
Library Programmer's Guide, 5C28-6483
for details.

A COBOL program which is communicating
with Pascals/VS must pot use the dynamic
loading feature.

9

¢

13.3.2 COBOL as the Caller to

PascalsVvs

TNL SN20-4445 (31 December 1981) to SH20-6162-1

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);
MAIN;
procedure SQUARE;
bheain
X 1= X ¥ X
end;

Pascal procedure that is to be called from COBOL:

IDENTIFICATION DIVISION.
PROGRAM-ID. TO0SQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.

PROCEDURE DIVISION.
MOVE 2 TO AREAL.
CALL "SQUARE™ USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX"™ USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

COBOL program which calls a Pascal procedure:

77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.

Figure 90. Example of COBOL as the caller to Pascal/V$S

Pascal/VS permits a COBOL program to
call a Pascal procedure as a
subprogram. To do this vou specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ-
ment for its execution. Subsequent

calls will use the same environment
that was created in the first call.

It is your responsibility to clean up
the Pascal environment, this is done by
invoking the procedure "PSCLHX". If
Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 115

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.4 PASCAL/VS AND PL/I

Communication between PL/I and
PascalsVS is accomplished by use of the
MAIN directive (PL/I to Pascals/VS) and
the FORTRAN directive (PascalsVS to

13.4.1 PascalsVS as the Caller to

PL/1). In addition, you may use the
REENTRANT directive instead of the MAIN
directive in order to develop a REEN-
TRANT call to Pascal.

program FROMPSCL;
procedure SUM(var I : INTEGER;
const J : INTEGER);

Pascal program which calls a PL/I procedure:

FORTRAN;
var
I,J tINTEGER; (¥Define two local variables X)
begin
I :=0; (%¥Set running sum to zero %)
for J := 1 to 10 do (¥loop through ten values ¥)
begin
SUM(I,J); (¥compute the next sum x)
ﬁRITELN('The current running sum is ',I:0);
ena;
end . (%FROMPSCL ¥)

(XPascal program heading %)

SUM: PROC (I,J) OPTIONSC(FORTRAN);
DCL (I,J) FIXED BINARY(31,0);
I =1+ J;
RETURN;
END;

PL/I procedure that is invoked from Pascal:

Figure %91. Example of Pascals/VS as the caller to PL/I

The FORTRAN directive instructs
Pascals/VS to utilize exactly the same
calling conventions employed by FOR-
TRAN. PL/I will employ FORTRAN calling
conventions if "FORTRAN"™ is specified
in the OPTIONS clause. Consult the
PL/1 Programmer's Guide.,
5C33-0037(CMS) and SC33-0006(0S) for
details.

116 Pascal/VS Programmer's Guide

The FORTRAN directive restricts the
form of the parameter list, namely you
may not pass a parameter by value; you
may pass a parameter by either var or
const. If you choose to latter mech-
anism, the PL/1 procedure must not
modi fy the parameter.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.6.2
.

PL/I as the Caller to
Pascal/vVvs

Pascal procedure which is called from PL/I:

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);
MAIN;
procedure SQUARE;
begin
X 1= X ® X
end;

PL/I program which calls a Pascal procedure:

TOSQ: PROC OPTIONS(MAIN);
DCL SQUARE ENTRY EXTERNAL;
DCL PSCLHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;
DCL ZERO FIXED BINARY(31,0);
AREAL = 64.0;
CALL SQUAREC(CAREAL);
PUT LISTCAREAL);
CALL SQUAREC(AREAL);
PUT LISTCAREAL);
CALL SQUARE(AREAL);
PUT LISTC(AREAL);
CALL SQUAREC(AREAL);
PUT LISTCAREAL);

ZERO = 0;
CALL PSCLHX(ZERD);
END;

Figure 92. Example of PL/I as the caller to Pascals/VS$

Inter Language Communication 117

TNL SN20-4445 (31 December 1981) to SH20-6162-1

SEGMENT SQUARE;
procedura SQUARE(var E
REENTRANT;
procedure SQUARE;

begin
X 1= X ¥ X
end;

Pascal procedure which is called from a reentrant PL/I program:

INTEGER;

var X REAL);

TOSQ: PROC OPTIONS(MAIN REENTRANT);
DCL SQUARE ENTRY EXTERNAL;

DCL SAVE FIXED BINARY(31,0);
AREAL = 6.0;

SAVE = 0;

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL PSCLHX(SAVE);

END;

Example of
TRANT directive

Figure 93.

Reentrant PL/I program which invokes a Pascal procedure:

DCL PSCLHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;

PL/I as the caller

to Pascals/VS: Use of the REEN-

Pascal/VS permits a PL/I program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
that has a MAIN directive associated
with 1t will cause Pascal to establish
the appropriate environment for its
execution. Subsequent calls will use
the same environment that was created
on the first call.

A call to PSCLHX will dispose of the
Pascal environment and release all mem-
ory that it utilizes.

The Pascals/VS run time support will
not attempt to handle any errors during
execution, unless the main program is
in Pascal.

The REENTRANT directive may be used in
place of the MAIN directive if the pro-
gram must be reentrant. In this case
you must assist Pascals/VS in keeping
track of the location of the Pascal/V$
execution environment. The first
parameter to a REENTRANT procedure must
be an integer passed by var. The first
call to the procedure must pass as its
first parametar, a FIXED BIN(31,0) var-
iable which has been set to the value
zero. Upon return from the first call,

118 Pascal/VS Programmer's Guide

this variable will contain an address
which refers to the newly created Pas-
calsvs environment. This variable
should be passed unaltered to subse-
quent calls so that the Pascals/Vs
environment may be reentered.

To terminate the Pascal/VS environment
that was set up by the REENTRANT proce-
dure, the "PSCLHX"™ should be called
with the variable that contains the
address. See Figure 93 for an example.

13.5 DATA TYPES COMPARISON

Every language has numerous data types
that are suited for the applications
for which the language was intended.
When passing data beaetween programs
written in different languages you must
be aware which data types are the same
and where there is no equivalent repre-
sentation.

Some data types in other languages have
no direct equivalent in Pascal;
howaver, you can often create new usar
data types in Pascal that will simulate
some of thae data types found in other
languages. For example, you could
define a record type that is identical
to FORTRAN's COMPLEX type.

Figure 94 compares Pascal data types
with the equivalent in FORTRAN, COBOL
and PL/I.

Pascal/VS makes no attempt to remap any
storage when an inter-language call is

TNL SN20-4445 (31 December 1981) to SH20-6162-1

made. This means that beause FORTRAN
stores its arrays in column-major order
and Pascal stores its arrays in
row—major order, a call between FORTRAN
and Pascals/VS procedures appears to
transpose the array.

Data Type Equivalences Between Different Langauges
Pascal/Vs FORTRAN COBOL PL/I
CHAR CHARACTERX1 PIC X CHAR
BOOLEAN LOGICALx1 na FIXED BINARY(1,0)
INTEGER INTEGER¥4 PIC 5999999999 FIXED BINARY(31,0)
USAGE IS COMP
packed INTEGER¥2 PIC S9999 USAGE FIXED BINARY(15,0)
~32768..32767 IS COMPUTATIONAL
packed na na na
0..65536
packed -128..127 na na FIXED BINARY(7,0)
packed 0..255 na na na
REAL REALX8 COMPUTATIONAL-2 REAL FLOAT DEC(16)
SHORTREAL REAL %4 COMPUTATIONAL-1 REAL FLOAT DEC(6)
packed CHARACTER¥n PIC X{(n) or CHAR(n)
arrayll..n] of PIC X OCCURS n
CHAR TIMES
STRING(m) na na CHAR(m) VARYING
set of 0..n na na BIT(n+l)
a id na na POINTER
array dimensioned O0CCURS dimensioned
variable variable
record na record structure
space na na AREA
Figure 96. Data Type Comparisons

Inter Language Communication

119

C

1.1 PROGRAM INITIALIZATION

Upon invoking a Pascal/VS program, the
routine which is responsible for estab-
lishing the Pascals/VS execution time
environment gains control and performs
the following functions:

1. Memory is obtained in which dynamic
storage areas (DSA) are allocated
and deallocated.

2. The Pascal Communication Work Area
(PCWA) is created and initialized.

3. An environment is set up to inter-
cept program interrupts (fixed
point overflow, divide by =zero,
etc.)

14.3 EXECUTION SUPPDRT _ROQUTINES

14.0 RUNTIME ENVIRONMENT OVERVIEW

4. The main program is called.

5. Upon return from the main program
any open files are closed.

6. Acquired memory is freed.

7. Control is returned to the system.

14.2 THE MAIN PROGRAM

The main program is called as an ordi-
nary procedure from the environment
setup routine (PASCALVS). The entry
point name of the main program is
AMPXBEGN.

Execution Support Routines
Procedure name Action Performed
AMPXBCLK Initializes the execution clock
AMPXCHKS Checks a set for membership
AMPXCLCK Interogate the execution clock
AMPXCRTE Initialize the PCUWA
AMPXDATE DATETIME procedure
AMPXDATI System date and time
AMPXDBCB Obtains a procedures DBCB pointer
AMPXECLK Ends the the execution clock
AMPXGOTO Handles goto out of block
AMPXGTOK Obtains a token from user's execution parameters
AMPXG12 Returns the contents of register 12
AMPXG13 Returns the contents of register 13
AMPXHALT HALT procedure
AMPXINIT Initializes prior to execution of a Pascal program
AMPXMAIN Interface for calling Pascal for other languages
AMPXMOVE Memory to memory move
AMPXMUS Adds elements to a set
AMPXNAME Obtains a procedures name
AMPXPAD Memory fill memory with blanks
AMPXPARM PARMS function
AMPXRETC RETCODE procedure
AMPXSETYV Memory fill of with a value
AMPXSPAR Intialize for PARMS function
AMPXTERM Termination after execution of a Pascal program
AMPXTOK TOKEN procedure
AMPXTRAC TRACE procedure
AMPZABND Abnormal termination routine
AMPZCVD Convert to decimal
CMS CMS procedure
PASCALVS Main entry point for a Pascal/VS main program
PSCLHX Terminates execution for interlanguage calls

These routines provide miscellanaous
functions such as program initializa-

tion and low level routines such as
fast memory move.

Runtime Environment Overview 121

14.

4 INPUT/OUTPUT ROUTINES

Internal Input/0Output Routines

Procedure name Action Performed

AMPXCLOS CLOSE procedure

AMPXCOLS COLS function

AMPXGET GET procedure (TEXT files)

AMPXGETR GET procedure

AFMPXOPEN RESET, REWRITE or UPDATE procedures

AMPXOPN1 Initializes a PCB prior to opening

AMPXOPNZ2 Sets a PCB after opening

AMPXPARS Analyze the optional string on RESET or REWRITE

AMPXPCBC Closes a file (PCB)

AMPXPDS PDS support routines (PDSIN and PDSOUT)

AMPXPUT PUT procedure

AMPXRCHR Reads into a CHAR

AMPXRINT Reads into an INTEGER

AMPXRLIN Reads to end of line (TEXT file)

AMPXRR Reads a REAL value

AMPXRRDY Prepares a TEXT file for input

AMPXRREC Reads one record (non TEXT files)

AMPXRSTR Reads into a STRING

AMPXRTXT Reads into an array of CHAR

AMPXSEEK SEEK procedure

AMPXSTAT Obtains the status of a file

AMPXTIO Terminate I/0 processing

AMPXLIB Writes a BOOLEAN value

AMPXWCHR Moves data to an I/0 output buffer

AMPXWCHS Writes a CHAR to a TEXT file

AMPXWINT Writes an INTEGER to a TEXT file

AMPXUWLIN brites an end-of-line to a TEXT file

AMPXWR Writes a REAL value

AMPXWRDY Prepares a TEXT file for output

AMPXWREC Writes one record (non TEXT files)

AMPXWSTR Writes a string to a TEXT file

AMPXWTXT Writes an array of CHAR to a TEXT file

AMPYCLQS System dependent QSAM close

AMPYDFLT Applies System dependent defaults to a file

AMPYGET System dependent get procedure

AMPYOPEN System dependent QSAM open

AMPYPAGE PAGE procedure

AMPYPDS System dependent PDS interface

AMPYPUT System dependent put procedure

AMPYSEEK System dependent seek procedure

AMPZDAMR Issues a READ for a BDAM data set

AMFZDAMW BDAM write procedure

AMPZDCBC Close on an 0S DCB

AMPZDCBO Open on an 0S DCB

AMPZFIND Issues 0S5 FIND

AMPZGET Issues a QSAM GET

AMPZPUT Issues a QSAM PUT

AMPZPUTX Issues a QS5AM PUTX

AMPZSAMR Issues a READ for a BSAM data set

AMPZSAMW BSAM write procedure

AMPZSTOW Issues 0S5 STOW

AMPZTGET Issues a TGET (0S) or RDTERM (CMS)

AMPZTPUT Issues a TPUT (0S) or WRTERM (CMS)
The I/0 operations (which appear as internal procedures within the runtime
calls to predefined procedures in environment.
Pascals/VS) are implemented as calls to

122

Pascal’/VS Programmer's Guide

14.5 ERROR HANDLING

Error Handling

Procedure name Action Performed
AMPXCHKR Intercepts execution time checking errors
AMPXDIAG Intercepts program exceptions
AMPXERR General execution time error handler
AMPXIODER I/0 error intercept routine
ONERROR Default ONERROR procedure
When the runtime environment detects an AMPXERR i1s the central routine, it is
error condition, 1t calls a routine to aluways called from the other routines:
handle the error. There are several it then calls OHERROR, the user pro-
different routines, one routine for vided error handler, and then completes
each of class of error (e.g. 170 error, the error handling.
program exception etc). The routine
14.6 CONVERSION ROUTINES
Conversion Routines
Procedure name Action Performed
AMPTTOR Converts a REAL (EBCDIC) to REAL
AMPXBTOS BOOLEAN to string conversion
AMPXCTOS Converts a CHAR to a string
AMPXGTOS Converts a string to a string
AMPXITOS Converts an INTEGER to a string
AMPX0TOS Converts an offset in a procedure to a statement number
AMPXPACK PACK procedure
AMPXRTOS Conversion for a REAL to a STRING
AMPXSTOC Conversion for a STRING to a CHAR
AMPXSTOG Conversion for a STRING to a STRING
AMPXSTOI Conversion for a STRING to an INTEGER
AMPXSTOR Converts a REAL (EBCDIC) to REAL
AMPXSTOT Conversion for a STRING to an array of CHAR
AMPXTTOS Appends an array of CHAR to a string
AMPXUCAS Lower case to upper case conversion
AMPXUNPK UNPACK procedure
ITOHS Integer to hexadecimal string conversion
There are several places where doing I/0 on TEXT files and when you
Pascals/VS must perform data conver- use READSTR and WRITESTR.
sions. They take place when you are
Runtime Environment Overview 123

16.7 MATHEMATICAL

ROUTINES

Mathematical Routines

Procedure name Action Performed

AMPXATAN ARCTAN function

AMPXCO0S C0S function

AMPXEXP EXP function

AMPXLN LN function

AMPXRAND RANDOM procedure

AMPXSIN SIN function

AMPXSQRT SQRT
The predefined functions are provided (e.g. SIN) to an internal name (e.g.
as PascalsVS functions. The PascalsVs AMPXSIN).

compiler changes the user provided name

14.8 STRING ROUTINES

String Routines

Procedure name Action Performed

AMPXSCOM COMPRESS function (long strings)

AMPXSDEL DELETE function (long strings)

AMPXSLTR LTRIM procedure (long strings)

AMPX$SUB SUBSTR function (long strings)

AMPXSTRI TRIM function (long strings)

AMPXCAT Concatenates 2 to 9 strings

AMPXCOMP COMPRESS function (short strings)

AMPXDELE DELETE function (short strings)

AMPXINDX INDEX procedure

AMPXLTRI LTRIM procedure (short strings)

AMPXSUBS SUBSTR function (short strings)

AMPXTRIM TRIM function (short strings)

LPAD LPAD procedure

RPAD RPAD procedure
The predefined functions and proce- ble. In order to use the short form
dures are provided as Pascals/VS func- the Pascal/VS compiler must determine
tions and procedures. The Pascals/VSs that the resulting string will be less
compiler changes the user provided name than 1000 bytes 1long. If the size
(e.g. SUBSTR) to an internal name (e.g. can't be limited by compiler analysis,
AMPXSUBS). Several routines are pro- the compiler uses the long form which

vided in two forms:

long and short. passes the results through the heap.

The short form is always used if possi-

124 Pascal/VS Programmer's Guide

14.9 MEMORY MANAGEMENT ROUTINES

Memory Management Routines
Procedure name Action Performed
AMPXALOC Basic storage allocator
AMPXDISP DISPOSE procedure
AMPXFREE Basic storage de-allocator
AMPXIDSP Dispose for the I/0 routines
AMPXINEW New for the I/0 routines
AMPXMARK MARK procedure
AMPXNEW NEW procedure
AMPXRLSE RELEASE procedure
AMPXTMEM Termination processing for memory management

The NEW procedure generates a call to
the internal preocedure AMPXNENW. This
procedure allocates storage within a
heap. If a heap has not yet been cre-
ated, NEW will obtain memory from the
operating system to create a heap.

The DISPOSE procedure generates a call
to the procedure AMPXDISP. This proce-
dure deallocates the heap storage
acquired by a preceding call to
AMPXNEW.

The MARK procedure generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from which subse-

quent calls to AMPXNEW will
storage.

obtain

The RELEASE procedure generates a call
to the procedure AMPXRLSE. This proce-
dure frees a heap that was previously
created via the AMPXMARK procedure.
Subsequent calls to AMPXNEW will obtain
storage from the heap which was active
prior to the call of AMPXMARK.

The I/0 routines have access to a sepa-
rate heap is controlled with the rou-
tines AMPXINEW and AMPXIDSP. Thus, I/0
buffers and file control blocks are in
a distinct area from the users area.

Runtime Environment Overview 125

C

| Release 2.1 of Pascal/VS has several

di fferences from 'standard' Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have suitable
facilities.

15.1 PASCAL/VS RESTRICTIONS

Pascal/VS contains the following
restrictions that are not in standard
Pascal.

conformant array parameters
The conformant array mechanism for
passing array variables to rou-
tines is not supported.

Note: In Release 2.0, procedures which

are passed as parameters were
restricted to the outer most nesting
level. In Release 2.1, this restric-

tion was removed.

15.2 MODIFIED FEATURES

Pascal/VS has modified the meaning of a
negative length field qualifier on an
operand within the WRITE statement.

15.3 NEW FEATURES

Pascal/VS providaes a number of exten-
sions to Pascal.

o Separately compilable modules are
supported with the SEGMENT defi-
nition.

o 'internal static' data 1is sup-

ported by means of the static dec-
larations.

] 'external static' data is sup-
ported by means of the def and ref
declarations.

o Static and external data may be
initialized at compile time by
means of the value declaration.

o Constant expressions are permitted
wherever a constant is permitted
except as the lower bound of a sub-
range type definition.

o The keyword "range™ may be prefixed
to a subrange type definition to
permit the lower value to be a con-
stant expression.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

15.0 COMPARISON TO PASCAL

A varying length character string
is provided. It is called STRING.
The maximum length of a STRING is
32767 characters.

The STRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, LTRIM, COM-
PRESS and INDEX.

A new predefined type, STRINGPTR,
has been added that permits you to
allocate strings with the NEW pro-
cedure whose maximum size is not
defined until the invocation of
NEW.

A new parameter passing mechanism
is provided that allows strings to
be passed into a procedure or func-
tion without requiring you to spec-
ify the maximum size of the string
on the formal parameter.

The MAXLENGTH function returns the
maximum length that a string vari-
able can assume.

Calls to FORTRAN subroutines and
functions are provided for.

The MAIN directive permits you to
define a procedure that may be
invoked from a non Pascal environ-
ment. A procedure that uses this
directive is not reentrant.

The REENTRANT directive permits
you to define a procedure that may
be invoked from a non Pascal envi-
ronment. A procedure that uses
this directive is reentrant.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the optional string
parameter on the procedures:
RESET, REWRITE, UPDATE, TERMIN,
TERMOUT, PDSIN and PDSOUT.

The parameters of the text file
READ procedure may be
length—-qualified.

Files may be opened for updating
with the UPDATE procedure.

Input files may be opened as "IN-
TERACTIVE™ so that I/0 may be done
conveniently from a terminal.

Files may be opened for terminal
input (TERMIN) and terminal output
(TERMOUT) so that I/0 may take
place directly to the user's termi-
nal without going through the
DDname interface.

Comparison to Pascal 127

TNL SN20-4445 (31 December 1981) to SH20-6162-1

128

Files may be accessed based on rel-
ative record number (random
access).

The PDSIN procedure opens a parti-
tioned dataset <(or MACLIB) for
input. The PDSOUT procedure opens
a partitioned dataset (or MACLIB)
for output. A string parameter is
required to set the member name.

The space structure is provided for
processing packed data.

Recor<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>