Installed
User
Program

SH20-6162-1

Pascal/VS
Programmer’s Guide

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level programming
language to teach computer programming by N. Wirth
(circa 1968), Pascal has emerged as an influential and well
accepted user language in today’s data processing environ-
ment. Pascal provides the user with the ability to produce
very reliable code by performing many error detection
checks automatically.

The compiler adheres to the currently proposed ISO
standard and includes many important extensions. The
language extensions include: separate compilation,
dynamic character strings and extended I/O capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual is a guide to the use of the compiler in the
MVS and VM/CMS operating environments.

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of
six months notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without addi-
tional charge, respond to an error in the current unaltered release of the program by issuing
known error correction information to the customer reporting the problem and/or issuing
corrected code or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

Any on-site program service or assistance will be provided at a charge.
WARRANTY

EACH LICENSED PRGGRAM IS DISTRIBUTED ON AN °‘AS IS’ BASIS WITHOUT WAR-
RANTY OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.0O. Box 50020
San Jose, CA. 95150
Attention: Mr. Larry B. Weber
Telephone: (408) 463-3159
Tieline: 8-543-3159

IBM Corporation

DPD, Western Region

3424 Wilshire Boulevard

Los Angeles, California 90010
Attention: Mr. Keith J. Warltier
Telephone: (213) 736-4645
Tieline: 8-285-4645

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler (IUP Program Number 5796-PNQ).

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers® comments has been provided at the back of this publication. If
the form has been removed, address comments to: The Central Service Location.
IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/V$S programs, and describes the compiler and the operat-
ing system features which may be required by the Pascals/VS programmer. It does
not describe the language implemented by the compiler.

RELATED PUBLICATIONS

. Pascal/VS lLanquage Reference Manual, order number SH20-6168. This manual
describes the Pascals/VS language.

L3 IBM Virtual Machine Facilitys/370: CMS Command and Macro Reference, order num-
ber GC20-1818. This manual describes the commands of the Conversational Moni-
tor System (CMS) component of the IBM Virtual Machine Facility/370 with
detailed reference information concerning command syntax and usage.

. IBM _Virtual Machine Facilitys/370: CP Command Reference for General Users,
order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facilitys/370. :

o 05/VS2 TS0 Command Language Reference Manual, order number G6GC28-0646. This
manual describes the commands of the Time Sharing Option of 05/VS52.

. 0S5,svVS2 JCL, order number GC28-0692. This is a reference manual for the job
control language of 05/V52.

. 0S5/VS _lLinkage Editor and Loader, order number GC26-3813. This manual
describes how to use the 05/V52 linkage editor and loader.

. Time Sharing Option Display Support and Structured Programming Facility Ver—
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modify menus and command procedures of the
Structured Programming Facility (SPF). Knowledge of the content of this manu-
al is required to install the Pascal/VS SPF menus and procedures.

L 0S/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu-
al describes the various data set access methods utilized by 05/V52 and the 0S5
simulation of CMS - VM/370.

° Pascal/VS Reference Summary, order number GX20-2365. This reference summary contains basic information
from the Pascal/VS Reference Manual and Pascal/VS Programmer’s Guide.

Preface ifi

F

AR

TNL SN20-4445 (31 December 1981) to SH20-6162-1

SUMMARY OF AMEMDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.1.

A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at
the outermost nesting level of a module has been removed.

Two new options may be applied to files when they are opened: UCASE and NOCC.

Rules have been relaxed in passing fields of packed records by var to a rou-
tine.

The "STACK" and "HEAPY™ run time options have been added to control the amount
at which the stack and heap are extended when an overflow occurs.

The syntax of a "structured constant™ which contains non-simple constituents
has been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascals/VS for
Release 2.0.

Pascal/VS now supports single precision floating point (32 bit) as well as
double precision floating point (64 bit).

Files may be opened for updating with the UPDATE procedure.

Files may be opened for terminal input (TERMIN) and terminal output (TERMOUT)
so that I/70 may take place directly to the user's terminal without going
through the DDNAME interface.

The MAIN directive permits you to define a procedure that may be invoked from
a non-Pascal environment. A procedure that uses this directive is not reen-
trant.

The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen-
trant.

A new predefined type, STRINGPTR, has been added that permits vou to allocate
strings with the NEW procedure whose maximum size is not defined until the
invocation of NEW.

A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

The maximum size of a string has been increased to 32767 characters.

The Pascal/VS compiler is now fully reentrant.

Code produced from the compiler will be reentrant if static storage is not
modified.

Pascal/VS programs may contain source lines up to 100 characters in length.
Files may be accessed based on relative record number (random access).

Run time errors may be intercepted by the user's program.

Run time diagnostics have been improved.

Pascals/VS will flag extensions when the option "LANGLVL(STD)" is used.

Summary of Amendments v

TNL SN20-4445 (31 December 1981) to SH20-6162-1

vi

A mechanism has been provided so that Pascal/VS routines may be called from
other languages.

All record formats acceptable to QS5AM are now supported by the PascalsVs 1/0
facilities.

A procedure or function may now be exited by means of the goto statement.

You may nowWw declare an array variable where each element of the array is a
file.

You may define a file to be a field of a record structure.

Files may now be allocated in the heap (as a dynamic variable) and accessed
via a pointer.

You may now define a subrange of INTEGER which is allocated to 3 bytes of stor-
age. Control over signed or unsigned values is determined by the subrange.

Variables may be declared in the outermost scope of a SEGMENT. These vari-
ables are defined to overlay the variables in the outermost scope of the main
program.

The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

The PDSOUT procedure opens a member of a library file (partitioned dataset)
for output.

A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

The CPAGE percent(%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

The MAXLENGTH function returns the maximum length that a string variable can
assume.

The %CHECK TRUNCATE option enables (or disables) the checking for truncation
of strings.

The PASCALVS exec for invoking the compiler under CMS has been modified so
that the specification of the operands allows greater flexability.

New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

The catalogued procedures for invoking Pascals/VS in 05 Batch have been simpli-
fied.

The format of the output listing has been modified so that longer source lines
may be accomodated.

Multiple debugger commands may be entered on a single line by using a semico-
lon (;) as a separator.

The format of the Pascal File Control Block has been modified.

Support is now provided for ANSI and machine control characters on output
files.

Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

The debugger now supports breakpoints at the end of a procedure or function.

The Trace mode in the debugger provides information on when procedures are
being exited.

The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

The Equate command of the debugger has been enhanced.

Pascal/VS Programmer's Guide

« s e
= o

NN P s b bt 2 2
o e

N

Ui NN

. e Y

O O RHRRHERPOUBNCOUAUNKFHO NOULALPLPLLPUNFO UDLUNUWUWRG DURNNNNNIUNONNNRO PR Oo0NOUAUN—O

PP HUWWW

e e 0

o .

. « e e e e
PSUNRFRO

OO vunuUTUTLTVTLTULTULTULBTULTLIUTL AR P

Introduction . c e e e .

Invoking the Compller under CMS PAS&AEV%
Building a Load Module under CMS: PASCMOD

Invoking the Load Module under CMS

Invoking the Compiler under TSO: PASCA[Vé
Building a Load Module under TS0: PASCMOD .
The CALL command

Invoking the Load Module under TS0:
Interactive Debugger .
Compiler Options

Run Time Options

Cataloged Procedures

Sample Batch Job

Running a Program under CHMS o o o
How to Compile a Program e e e .
Invoking the Compiler
The PASCALVS Command
The %ZINCLUDE Maclibs
Passing Compiler QOptions .
The Compiler Listing e e e .
Compiler Diagnostics .
Sample Compilation .
w to Build a Load Module
Module Generation Options
Run time Libraries
How to Define Files .
How to Invoke the Load Module

o e e e “ e e
N)—'O NN P UN

.
IVN e Y =
.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

TABLE OF CONTENTS

e o o e e e e o e e e o e o o

EXEC c e e
EXEC .

CLIST
CLIST

.
[e e e e e
WUNNVNNVROOOOOOVWVOYO NNOGOOOUTUNTENN -

Running a Program under TS0 « . e e e e o o e« e s e s s e e o . 15
How to compile a program e e . . . 15
.1.1 Invoking the Compiler 15
.1.2 Using the %XINCLUDE FaC|11ty . 17
.1.3 Compiler Diagnostics . 17
How to Build a Load Module . . . 18
How to Define Files . . 20
Invoking the Load Nodule . 20
Sample TS0 Session . . 21
Running a Program under 0S Batch e o o o o o s o o o o o & o . 23
Job Control Language . 23
How to Compile and Execute a Program . . . 23
Cataloged Procedures . . . e e . 2%
IBM Supplied Cataloged Procedures . . . 24
.4.1 Compile Only (PASCC) 25
4.2 Compile, Load, and Execute (PASCCG) . . . 26
4.3 Compile and Link Edit (PASCCL) . e . . 27
4.4 Compile, Link Edit, and Execute (PASCCLG) 28
How to Access an %INCLUDE lerary . . « e . . 29
How to Access Data Sets « e e e . 29
Example of a Batch Job 30
compiler Options c e e s e e e . - 4 |
CHECK/NOCHECK . e e e e e e 31
DEBUG/NODEBUG e e e e e e e e e . 32
GOSTMT/NOGOSTMT e e e e e . e e e e 32
LANGLVL () 32
LINECOUNT(n) e e e e e e e e 32
LIST/NOLIST e e e e e e e e e e 32
MARGINS(m,n) e e e e e e 32
OPTIMIZE/NOOPTIMIZE e e e e 33
PAGEWIDTH(n) e e e e e e e 33
PXREF/NOPXREF e e e e e e e e e e . 33
SEQ(m,n)/NOSEQ e e e e e e e e . . 33
SOURCE/NOSOQURCE e e e e e e e e e . . 33
WARNING/NOWARNING . e 33
XREF/NOXREF 33
Run Time Options e e e e s e e e e o o o o o o o o o s o o« +» 35
Hou to Read Pascals/Vvs Listings . e

Table of Contents vii

TNL SN20-4445 (31 December 1981) to SH20-6162-1

7 Source Listings e e e e
.1.1 Page Headers . e e e e
.1.2 Nesting Informat1on . e e
.1.3 Statement Numbering . .
.1.4 Page Cross Reference Fleld
.1.5 Error Summary .
.1.6 Option List . e e e
.1.7 Compilation Statlstlcs . .
. Cross-reference Listing .
. Assembly Listing . .
External Symbol Dvct1onary
Instruction Statistics e e e .

Using Inputsoutput Fac111t1es .« .
I70 Implementation . e .
DDNAME Association .

Data Set DCB Attr1butes
Text Files . . .
Record Files
Opening a File for Input - RESET
Opening a File for Interactive Input
Opening a file for output - REWRITE
Terminal Input/Qutput . e e e .
Opening a File for UPDATE
Procedure GET .. .
11, GET operation on text files
L11. 2 GET operation on record files
PUT procedure e e e e e e e
.12.1 PUT Operation on Text Files
.12.2
e
13.1

A)

oo 0000000000000 000000 NI
. . PP o e .
l—‘0000OOOOQOOOOHWOOHOOOOHH\OOO‘\IO\UIJ-‘MNHO UTD UWN NN NI N SN N
o

N

PUT Operation on Record Files

8 3 Text File Processing e e e e e .
. Text File READ e e e e
.13.2 The READLN Procedure

.13.3 Text File WRITE e e e e e e
.13.4 The WRITELN Procedure « e .
.13.5 The PAGE Procedure e e e .
.13.6 End of Line Condition

m

Record File Processing
8 14.1 Record File READ
8.14.2 Record File WRITE

13.7 End of File Condition - text files

8.164.3 End of File Condition - Record Files

8.15 Closing a File .- . e e e e e
8.16 Relative Record Access e e e e e
8.17 Partitioned Data Sets

8.17.1 Opening a Partxtloned Data Set
8.17.2 PDS Access in a CMS Environment

8.18 The Open Options e e e e

8.19 Appending to a File . .

9.0 Runtime Error Reporting e e e e e

9.1 Reading a Pascals/VS Trace Back

9.2 Run Time Checking Errors . .

9.3 Execution Error Handling .

9.4 User Handling of Execution Errors

9.5 Symbolic Variable Dump e e e

10.0 Pascalsvs Interactlve Debugger .

10.1 Qualification

10.2 Commands . e e e e e e
10.2.1 BREAK Command e e e e e
10.2.2 CLEAR Command e e e e e
10.2.3 CMS Command e e e e e e
10.2.4 DISPLAY Command . e
10.2.5 DISPLAY BREAKS Command . .
10.2.6 DISPLAY EQUATES Command .
10.2.7 END Command e e e . ..
10.2.8 EQUATE Command e e e e e .
10.2.9 GO Command e e e e e e e
10.2.10 Help Command e e e e
10.2.11 LISTVARS Command e e e .
10.2.12 Qualification Command e e .
10.2.13 QUIT Command e e e e e e .
10.2.14 RESET Command e e e e e .

viii Pascal/VS Programmer's Guide

o ¢ o e e o

D A)

T T T T B

B e e T o)
. e e
NNNNNI\)N

¢« o @

A e b
Pt et e O
« .
R R R R = NP UNNRO WOOOOO0OO
.« . o e e e

Y e e S e T S R

A,

SET ATTR Command
SET COUNT Command
SET TRACE Command
TRACE Command .
Viewing Variables
Viewing Memory
WALK Command

Debug Terminal Session

storage Mapping e o e e .
Automatic Storage . .
Internal Static Storage

DEF Storage e e e e e e
Dynamic Storage e e e e .
RECORD Fields

.

« e e e e
(e W e e W e e We
PR S

NI UWN -

The Predefined Types
Enumerated Scalar
Subrange Scalar
RECORDs

ARRAYs

FILEs e e e e e
SETs e e e e e e e
SPACEs e e e .

TNL SN20-4445 (31 December 1981) to SH20-6162-1

Data Size and Boundary Allgnment) : : : : . : : :

Ccode Generation for thea IBM/370 e e o s o s o o
Linkage Conventions
Register Usage e e e e
Dynamic Storage Area
Routine Invocation
Parameter Passing

U'lU'lU‘lU'lU‘

- - - . - . -

- -

1 Passing by Read/erte Reference e e e e e e .
2 Passing by Read-Only Reference e e e e . .
3 Passing by Value e e e
4 Passing Procedure or Functlon Parameters . .
.5 Function Results . . . “ e
Procedure/Functlon Format . e .
PCUA . e e e e e e e e
PCB - Pascal flle Control Block e e e e e e

Inter Language Communication
Linking to Assembler Routines

.1
,;

2
3
4
5
6
as
.1
.2
Pas
.1
.2
Pa
.1
.2
a

Writing Assembler Routine
Writing Assembler Routine
Receiving Parameters From
Calling Pascal/VS Routine
Sample Assembler Routine

Calling a Pascal/VS Main Program from Assembler Routi
scal’/VS and FORTRAN e e e . .
Pascals/VS as the Caller to FORTRAN ..
FORTRAN as the Caller to Pascals/Vs . .
scals/VS and COBOL .
Pascal/VS as the Caller to COBOL
COBOL as the Caller to Pascal/V$s
calsVsS and PL/I . . . e .
Pascal/VS as the Caller to PL/I e e e .

with Minimum Interface
with General Interface

Routines .
from Assembler Routlne

« ¢ e e
.
.

PL/I as the Caller to Pascals/V$s e e e : :
D ta Types Comparison

Runtime Environment Overview
Program Initialization

The Main Program . .
Execution Support Routlnes
Input/0Output Routines

Error Handling e e e e e
Conversion Routines « e .
Mathematical Routines . .
String Routines .

Memory Management Rout1nes

Comparison to Pascal .
Pascal/VS Restrictions
Modified Features

New Features e e e .

¢ e o o
.

- - - .

.
-
-

P A I T 1
e o e ¢ o ¢ e @
L A I R)
.
.

-
.
.

« s s e

o« e e

* e s e

* o e 0
.

Table

D)

D S T A

e ¢ ¢ o ¢ o 0 s e
¢ e e 0 e e @

o ¢ o e s o e
I)

.
.

* ¢ 00
o ¢ o @
« e e »
DR)
* ¢ o @
« ¢ o @
¢ e o 0

of Contents

73
76
76
75
75

77
78

87

87
87
87
87
87
87

88
&8
89
39

90
91

91
92
94

95
95
95
96
96
97
98
101

103
104
104
105
107
107
107
109
112
112
113
114
114
115
116
116
117
118

121
121
121
121
122
123
123
124
124
125

127
127
127
127

ix

TNL SN20-4445 (31 December 1981) to SH20-6162-1

16.0
16.1
16.2
16.3

17.0
17.1
17.2
17.3
17.4
APPEN
Appen
Appen
B.

.1,
.2.

2.
.2.

o

p

COOOO0O» ww
VIPUN-T -&‘(NDUWWN@H

. .

Indax

Implemantation Spec1f1catlons
System Description
Memory Requirements

-

Implementation Restrlct1ons and Dependen01es

Pascalsvs Messages o o s »
Pascal/VS Compiler Messages
Execution Time Messages
Messages from DEBUG . .
Massages from PASCALVS exec

DIXES e 4 e e e e e e e e .

dix A. command syntax Notation

dix B. Installation Instructions

Installing Pascal/VS under CMS

.

1 Regenerating Compiler Modules

Installing Pascal/VS under VS2

1 Loading Files from Distributioé

2 The TS50 Clists

3 Cataloged Procedures
Loading the Source under CMS
Loading the Source under V52

CMS Procedure
ITOHS Function
LPAD Procedure
RPAD Procedure e e e e e
PICTURE Function e e e e

. e ® e e e e e o e *o s o

Pascal/VS Programmer's Guide

.

-

.

-

o o o mfe s o @

.

ape

endix €. Additional lerary Procedures and

.

.

e o ° e

Functions

D I R I }

129
129
129
129

131
131
152
157
159

16l
163

165
166
166
167
167
170
170
170
171

175
176
176
177
177
178

181

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

LSESESTN
WN =~ O

NP w
- O\

S ppp
NN D

=3
O

50.

ot e ot fea et ot b ok b b
VOO NAMNINPDUNROOR AU D UN -
e o o o o 8 s e & € 8 s s e 8 e a4 v 4

NN
~Noun

HWHUHUWHWWHUHENN
BNV PAUNR OO
* o o s s 4 o e s e a8 o @

-
N
AP

N
(>

LIST OF JLLUSTRATIONS

The PASCALYS command of CMS

Sample compilation under CMS

The PASCMOD command

Examples of CMS file def1n1t1on commands

PASCALVS CLIST syntax.

The TS0 PASCMOD CLIST descr!ptIOn e e e e e e
Examples of TS0 data set allocation commands e e e e e .
The TS0 CALL command to invoke a load module

Sample TS0 session of a compile, link-edit, and executlon.

Sample JCL to run a Pascal/VS program
Cataloged procedure PASCC .

Cataloged procedure PASCCG

Cataloged procedure PASCCL

Sample JCL to perform multiple complles and a llnk edlt
Cataloged procedure PASCCLG e e e e e e e e e e e
Example of a batch job

Sample source listing .

Sample cross-reference 1lstlng

Sample assembly listing

Sample ESD table . .

Using RESET on a text f!le .

Opening a file for interactive 1nput

Opening a text file with REWRITE

Opening a record file with REWRITE

Terminal input/output example.

Updating a record file .

Using GET on a text file

Using GET on record files

Using PUT on a text file

Using PUT on record files .

Using READ with length qualrflers e e e e e e e e e
Using READ on text files. . e e e e e e e e e e e
Using the procedure READLN e e e e e e e e e e e
Using WRITE on text files

Using the WRITELN procedure

Using the PAGE procedure e e e e e e e e e e

Using the EOLN function . e e e e e .

Using the EQF function on a text fvle ..

Using READ and WRITE on record files.

Example of using CLOSE .
Example of using SEEK to access records randomly

Syntax of open options e e e e e

Usihg the open options . e e e e .

Trace called by a user program

Trace call due to program error

Trace call due to checking error e e e e e e e e e e e
Trace call due to I/0 error e e e e e e e e e e e e e e
Contents of '"ZINCLUDE ONERROR'

Example of User Error Handllng

Sample program for Debug session

Compiling, linking and executing a program wlth DEBUG
The HELP command of DEBUG e e e e e e e
Setting Breakpoints and Statement Na1k1ng e e e e
The LISTVARS command - List all variables

The Trace Mode of DEBUG

Walking when the Trace Mode 15 On ..
Miscellaneous DEBUG Commands

Commands to Display a Variable .
Using Multiple commands on one Llne and other commands

The Reset Breakpoint Command e e e e e e e e e e e e
Statement Countlng Summary C e e e e e e e e e
Storage mapplng for predefined types e e e e e e e e e

Storage mapping of subrange scalars
Alignment of records

Storage mapping of SETS e e e e e e e e e e e e e e e e
Register usage .. e e e e e e e e e e e e e e e e e e
DSA format e
DSA DSECT

Snapshot of stack and relevant reglsters at start of rout1ne
Passing by Read/Write reference R
Passing by Read-only reference . e e e e e

List of Illustrations

-

xi

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

xii

72. Passing by value .. e e e e e e e e e e e e e e e e e e
73. Passing routine parameters e e e e e e e e e e e e e e e e e e
74. Function results e
75. Routine format . e e e e e e e e e e e e e e e e
76. Pascal Communlcatlons Nork Area . e e e e e e e e e e e

77. Pascal file Control Block (PCB) format e e e e e e e e

78. Inter Language Communication e e e e e e e

79. Minimum interface to an assembler routlne e e e e e

80. PROLOG/EPILOG macros . e e e e e e e e

81. General interface to an assembler routlne e e e e e e

82. Pascals/VS description of assembler routine

83. Sample assembler routine
84. Example of calling a Pascal/VS program from an assembler routine

85. Example of Assembler as the caller to Pascal/V$ e e e .

86. Example of Pascals/VS as the caller to Assembler . .

87. Example of Pascal/VS as the caller to FORTRAN e e e e e e e e
88. Example of FORTRAN as the caller to Pascal/V$S e e e e e e e
89. Example of Pascal/VS as the caller to COBOL e e e e e e e e e
90. Example of COBOL as the caller to Pascal/VS$s e e e e e e e e e s
91. Example of Pascal/VS as the caller to PL/I e e e e e e e e e e
92. Example of PL/1 as the caller to Pascal/V$s e e e e e e e e e e
93. Example of PL/I as the caller to Pascal/V$s e e e e e e e e e
94. Data Type Comparisons e e e e
95. Characteristics of System/370 floattng p01nt ar1thmet1c . .

96. Sample JCL to retrieve first file of distribution tape.
97. Sample installation job .

98. Sample installation job - : : : :: : : : : : : :: : :
99. Sample installation job . e e e .
100. Listing of the JCL to copy source flles from tape

101. Listing of the JCL to copy source files from tape

Pascal/VS Programmer's Guide

el e S e e e e e e

ON (1t et et b b et it ot et et D O
POOVNNAUVID U Oo 00

[N
~on
o

1.0 INTRODUCTION

The Pascals/VS compiler is a processing program which translates Pascal/VS source
programs, diaghosing errors as it does so, into IBM System/370 machine
instructions. .

The compiler may be executed under the following operating system environments:

° 057370 Batch (VS1 and VS2 R3.7)

° Time Sharing Option (TS0) of 0S/VS2

° Conversational Monitor System (CMS) of Virtual Machine Facilitys/370 (VM/370)
Release 5 PLC 2 and latter.

1.1 INVOKING THE COMPILER UNDER CMS: PASCALVS EXEC

PRINT] [LIB(maclib?}}

PASCALVS fn [ft [fml]l |([optionsl [NOPRINT [CONSOLE]
- "DISK [NOOBJ1

n is the file name of the source program.

ft is the file type of the éource program; the assumed file type is
"PASCALY™,

fm is the file mode of the source program.

maclibs are optional macro libraries required by the ZINCLUDE facility. Up to
eight libraries may be specified.

options are compiler options.

PRINT specifies that the listing is to be spooled to the virtual printer.

NOPRINT specifies that the listing is to be suppressed.

DISK specifies that the listing is to be stored as a file named "fn
LISTING". This is the default.

CONSOLE specifies that the console messages produced by the compiler are be

stored as a file named "fn CONSOLE"™. If CONSOLE is not specified,
then the messages will be displayed on the terminal console.

NOOBJ suppresses the production of an object module.

1.2 BUILDING A LOAD MODULE UNDER CMS: PASCMOD EXEC

PASCHOD main [names... 1 [(options... [)11]
main is the name of the main program module.
names... are the names of segment modules and text libraries (TXTLIB's) which

are to be included.

Introduction 1

options... is a list of options.

The resulting load module will be given the name "main MODULE A". The load map of
the module will be stored in "main MAP AY.

The following are recognized as options to the PASCMOD command.

DEBUG links the debugging routines into the load module so that the interac-
tive debugger can be used.

NAME name specifies an alternate name for the load module. The resulting load
module and map will have the name "name MODULE A™ and "name MAP A".

1.3 INVOKING THE LOAD MODULE UNDER CMS

A Pascal/VS load module is invoked as follows:
modnare [Irtparms.../1 I[parms...]1 1

where "modname”™ is the name of the lecad module; "rtparms” are run time options
(separated by blanks); and "parms" are the parameters (if any) being passed.

1.6 JINVOKING THE COMPILER UNDER TSO: PASCALVS CLIST

CLIST NAME OPERANDS

PASCALVS data-set-name .
[compiler-options-listl

OBJECT(dsname]
[
NOORBJECT

]

PRINT(%)
PRINT (dsname)
SYSPRINT(sysout-class)
NOPRINT

[CONSOLE(%)]
CONSOLE(dsname)

[LIB(dsname-list)]
NOLIB

data-set-name is the name of the primary input data set.
compiler-options-list is one or more compiler options separated by blanks

OBJECT(dsname]) specifies the data set to contain the object module.

NOOBJECT specifies that no object module is to be produced.
PRINT (%) specifies that the compiler listing is to be displayed on the ter-
minal.

PRINT(dsname) specifies the data set to contain the compiler listing.

SYSPRINT(sysout-class) specifies the sysout class to where the compiler listing
is to be produced.

NOPRINT suppresses the compiler listing.
CONSOLE(x%) specifies that compiler messages are to be displayed on the termi-
nal.

2 Pascal/VS Programmer®s Guide

CONSOLE(dsname) specifies the data set to contain compiler messages.
LIB('dsname-list') specifies a list of XINCLUDE libraries.

NOLIB specifies that no ¥INCLUDE libraries are required.

Introduction

3

1.5 BUILDING A LOAD MODULE UNDER TS0: PASCMOD CLIST

CLIST NAME OPERANDS
PASCMOD data-set-name or %

[OBJECT("dsname-list')]

[DEBUG]

[LOAD(dsname)]
PRINT (%)

[PRINT (dshame)] [LET] [XCAL]
NOFRINT NOLET NDOXCAL

[LIB("dsname~list')] [FORTLIBI] [COBLIB]
MAP NCAL LIST

[NOMAP] [NONCAL] [NOLIST]
XREF REUS REFR

[NOXREF] [NOREUS] [NOREFR]
SCTR OVLY RENT

[NOSCTR] [NOOVLY] [NORENT]
NE oL DC

[NONE] ‘ [NOOL] [NODC]
TEST NOTERM

[NOTEST] [JERM]

[SIZE('integerl integer2')]

[DCBS(blocksize])l

[AC(autherization-code)l

data-set-name is the data set containing a Pascal/VS object module and/Zor link-

age editor control cards.

OBJECT('dsname-list') specifies a list of data sets which-contain additional
object modules to be included in the link-edit.

LIB('dsname-1ist') specifies a list of libraries to be searched.

DEBUG specifies that the Pascal/VS interactive debugger is to be uti-
lized.

All other operands of the PASCMOD CLIST are identical to their counterparts in the
LINK command as described in the TS0 Command Lanquage Reference Manual.

4 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

1.6 INVOKING THE LOAD MODULE UNDER TSO: THE CALL COMMAND

CALL dsnamel (member)1] ['loptionss/) I[parmsl' 1
dsname(member) specifies the name of a partitioned data set and the member where
the load module to be invoked is stored.
options is one or more run time options separated by either a comma or a
blank.
parms a parameter string which is to be passed to the program.

The total length of the quoted string (options plus parms) must not exceed 100

characters.

1.7 INTERACTIVE DEBUGGER

In order to use Debug, you must follow these four steps:

. Compile the module to be debugged with the DEBUG option.

. When link-editing your program, include the debug library.

U When executing the load module, specify 'DEBUG' as a run time option.

Command name Description (Abbreviation in capital letters)

? List all debug commands

svariable Display the value of a variable

Break Set a break point

CLEAR Remove all break points

Cms Enter CMS subset mode

Display Display status

Display Breaks Display the location of all break points

Display Equates Display all equate symbols with their current
definitions

END Terminate the program (same as QUIT)

Equate Define an equate symbol

Go Begin or resume execution of probram

Listvars List the values of all variables that are local
to the active routine

Qual Redefine the "current" qualification

QUIT Terminate the program (same as END)

Reset Remove a break point

Set Attr Display attributes when variables are vieuwed

Set Count Initiatesterminate statement counting

Set Trace Activate/deactive program tracing

Trace Display a trace back

Walk Execute a single statement and then prompt for
another command

Introduction 5

TNL SN20-4445 (31 December 1981) to SH20-6162-1

1.8 COMPILER OPTIONS

Compiler Option Abbraeviated Name Dafault
CHECK/NOCHECK —— CHECK
DEBUG/NODEBUG -——- NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LINECOUNT(n) LC LINECOUNT(60
LIST/NOLIST —-—— NOLIST
LANGLVL(STD/EXTEND) -—- LANGLVL(EXTEND)
MARGINS(m,n) MAR(m, n) MARGINS(1,72)
OPTIMIZE/NCOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) Pl PAGEWIDTH(128)
PXREF/NOPXREF -—- PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSOURCE S/NOS SOURCE
WARNING/NOWARNING W/HOW WARNING
XREF/NOXREF X/NOX XREF(SHORT)

1.9 RUN TIME OPTIONS

The following options enable fea
which vour program will be executi

COUNT

DEBUG activates the interactive debugger.

SETMEM initializes local storage of a routine to a specific value on each invoca-
tion of the routine.

NOSPIE suppresses the interception of program exceptions.

tures in the Pascal/VS run time environment in

ng.

NOCHECK causes all checking errors to be ignored.

generates a statement count table and writes it to OUTPUT.

ERRFILE = ddname specifies the file to which error diagnostics are to be written.

ERRCOUNT = number specifies the number of non-fatal run time errors that will be
permitted prior to terminating the program. The default number is 20.

STACK = number specifies the number of kilobytes by which the run time stack is to
be extended when a stack overflow occurs.

HEAP = number specifies the number of kilobytes by which the heap is to be extended
when a heap overflow occurs.

6 Pascal/VS Programmer's Guide

1.10 CATALOGED PROCEDURES

PASCC Compile only —- step name: PASC

PASCCG Compile, load and execute —- step names: PASC, GO
PASC, LKED

PASCCL Compile and link-edit ——- step name:
PASCCLG Compile, link-edit, and execute —-

step names:

PASC, LKED, GO

Data set description stepname.ddname
source proaram input PASC.SYSIN?
%INCLUDE library (PDS) PASC.SYSLIB
source listing,

cross-reference listing, PASC.SYSPRINT

pseudo assembly listing and

external symbol table listing
object module PASC.SYSLIN
load module LKED.SYSLMOD
linkage-editor control cards LKED.SYSIN?
linkage-editor load library LKED.SYSLIB
loader input GO.SYSLIN
loader library GO.SYSLIB
file OQUTPUT GO.OUTPUT
1 This DDname is not defaulted and must be

explicitly defined.

1.11 SAMPLE BATCH JOB

//jobname JOB

//STEPL EXEC PASCCLG,OPTIONS="XREF(LONG),LIST"

//7PASC.SYSIN DD %
{Program to be compiled goes herel

/%

//LKED.SYSIN DD %
ENTRY PASCALVS

/%

//GO.INPUT DD...

Introduction

7

)

This section applies only to those who
are using Pascal/V¥S under the Conversa-
tional Monitor System (CMS) of Virtual
Machine Facilitys370 (VMr370). If you
are not using CMS then you may skip
this entire section.

For a description of the syntax nota-

tion used to describe commands, see
"Command Syntax Notation"™ on page 163.

There are four steps to running a
Pascal/VS program under CMS.

2.1 HOW TO COMPILE A PROGRAM

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the

object module;

3. All files used within the program
are defined using the FILEDEF com-
mand;

4. The load module is invoked.

PASCALVS

fn [ft [fm] 1 |([options...] ['ﬁ‘ﬁﬁr] [CONSOLE] [NOOBJ1 [)]

[LIB(maclibs...)]

DISK
NOPRINT

Figure 1. The PASCALVS command of CMS:

2.1.1 Invoking the Compiler

The standard method of invoking the
Pascal/VS compiler under CMS is by
means of an EXEC-called PASCALVS.

To compile a Pascals/VS program, the
EXEC may be invoked in its simplest
form by the command

PASCALVS fn

where "fn" is the file name of the pro-
gram. If the file type is not explic-
itly specified, the type "PASCAL" will
be assumed.

The compiler translates a source pro-
gram into object code, which it stores
in a file. The name of this file is
identical to the name of the source
program. Its file type is "TEXT".

For example, to compile a program which
resides in a file called "SORT PASCAL",
the command would be:

PASCALVS SORT
If the compilation completes without

errors, then the file named "SORT TEXT"
will contain the resulting object code.

invokes the Pascal/VS compiler.

2.1.2 The PASCALVS Command

The generalized form of the PASCALVS
command is illustrated in Figure 1.
The operands of the command are defined
as follows:

fn ft fm
is the file name, file type, and
file mode of the source program.
The file type and file mode are
optional. The default file type is
"PASCAL" and the default file mode
i 5 "*" .

maclibs...
are optional macro libraries
required by the XINCLUDE facility.
Up to eight may be specified.

options...
are compiler options, see "Compil-
er Options"™ on page 31.

The command options DISP, PRINT, and
NOPRINT specify where the compiler
listing is to be placed.

DISK

specifies that the listing is to be
stored as a file on your A disk.

Running a Program under CMS 9

The file is named "fn LISTING",
where "fn" is the file name of the
source program. This option is the
default.

PRINT
specifies that the listing is to be
spooled to your virtual printer.

NOPRINT
specifies that the listing is to be
suppressed. This option automati-
cally forces the following three
compiler options to become active:

- NOSOURCE
- NOXREF
- NOLIST

CONSOLE

specifies that the console mes-
sages produced by the compiler are
be stored as a file on your A disk.
The name assigned to the file is
"fn CONSOLE"™. If CONSOLE is not
specified, then the messages will
be displayed on vour terminal con-
sole.

NOOBJ
suppresses the production of an
object module by disabling the code
generation phase of the compiler.
This option is useful when you are
using the compiler only as an error
diagnoser.

For an explanation
error messages and return codes
produced from the EXEC, see "Messages
from PASCALVS exec"™ on page 159.

2.1.3 The %INCLUDE Maclibs

The macro libraries (maclibs) that may
be specified when invoking the PASCALVS
command are those required by the
%INCLUDE facility. When the compiler
encounters an %INCLUDE statement with-
in your program it will search the
maclibs (in the order in which they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, it will
continue reading in the previous input
stream (immediately following the
%INCLUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic-
itly provided as the last maclib in the
search order.

10 Pascal/VS Programmer's Guide

of the possible

2.1.%4 Passing Compiler Options

Compile time options (see "Compiler
Options" on page 31) are parameters
that are passed to the compiler which
specify whether or not a particular
feature is to be active. A list of
compiler options may be specified in
the PASCALVS parameter list. The
options list must be preceded by a left
parenthesis "(".

For instance, to compile the program
"TEST PASCAL" with the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCALVS TEST (DEBUG NOXREF

2.1.5 The Compiler Listing

The compiler generates a listing of the
source program with such information as
the lexical nesting structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source Listings™ on page 37.

2.1.6 Compiler Diagnostics

Any compiler-detected errors in your
program will be displaved on your ter-
minal console (or written to a disk
file if the CONSOLE options is speci-
fied). The errors will also be indi-
cated on your source listing at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com-
piler is displaved on your console.
Immediately underneath the printed
line a dollar symbol ('1') is placed at
each location where an error was detec-
ted. This symbol serves as a pointer
to the approximate location where the
error occurred within the source
record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-
tic message is produced for each error
number.

For a synopsis of the compiler-gener-
ated messages see "Pascal/VS Compiler
Messages" on page 131.

2.1.7 sSample Compilation

edit copy pascal
NEW FILE:
program copy;
var
infile,
outfile : text;
buffer t string;
begin
reset(infile);
rewrite(outfile);
while not eof(infile) do
begin

end;
end.
EDIT:

file
FILE SAVED

R; T=0.25/0.62 06:56:%4
pascalvs copy

INVOKING PASCAL/VS R2.0

1 ERROR DETECTED.

RETURN CODE: 8

readln(infile,buffer);
writeln(outfile buffer)

WRITELN(OUTFILE BUFFE%%1
ERROR f1: Comma ',' expected

SOURCE LINES: 16; COMPILE TIME:
R(00008); T=0.34/0.67 06:56:59

Figure 2. Samplie compilation under CMS

0.16 SECONDS; COMPILE RATE: 6109 LPM

Running a Program under CMS

11

2.2 HOW TO BUILD A LOAD MODULE

PASCMOD

main [hames ... 1 [(options... [)1]

Figure 3. The PASCMOD command:

The PASCMOD EXEC generates load modules
from Pascal/V5 object code. If vour
program consists of Jjust one source
module (that is, you have no segment
modules), a load module can be genera-
ted by simply invoking PASCMOD with the
name of the program. For example, if a
program named SORT was successfully
compiled (which implies that "SORT
TEXT" exists), then a load module may
be generated with:

PASCMOD SORT
The resulting module would be called
"SORT MODULE"™. A load map is stored in
"SORT MAP".

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the main program
module.

names...
are the names of segment modules
and text libraries (TXTLIB's)
which are to be included. If a

name "N" is specified and there are
two files named N TEXT and n
TXTLIB, then the TEXT file will be
included and the TXTLIB will be
searched.

options...
is a list of options. .(see "Module
Generation Options.™)

The resulting load module will be given
the name "main MODULE A". The load map
of the module will be stored in "main
MAP A",

The Pascals/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD implic-
itly appends this library to the list
that you specify.

12 Pascal/VS Programmer's Guide

generates a Pascal/VS load module.

As an example, let us build a load mod-
ule for a pre-compiled program which
resides in three source modules: MAIN,
ASEG, and BSEG. This program calls
routines that reside in a txtlib called
UTILITY. The following command would
generate a load module called HMAIN
MODULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation Options

The following are recognized as options
to the PASCMOD command.

DEBUG
specifies that the debugging rou-
tines are to be linked into the
load module so that the interactive
debugger can be used. (See
"Pascal/VS Interactive Debugger”
on page 65.)

NAME name
specifies an alternate name for the
load module. The resulting load
module and map will have the name
"hame MODULE A™ and "name MAP A".

2.2.2 Run time Libraries

Routines which make up the Pascal’/V$s
runtime environment reside in a text
library called "PASCALVS TXTLIB™. It
must be present in order to resolve the
linkages from the program being pre-
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTLIB". (see "Pascals/VS Interactive
Debugger™ on page 65 for a description
of Debug).

2.3 HOW TO DEFINE FILES

FILEDEF SYSIN DISK INPUT DATA

Figure 4.

FILEDEF SYSPRINT PRINTER (LRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA (RECFM F LRECL &
FILEDEF QUTPUT TERMINAL (RECFM F LRECL 80

FILEDEF INPUT TERMINAL (RECFM V LRECL 80

Examples of CMS file definition commands

Before you invoke the generated load
module, you must first define the files
that vyour program requires. This is
done with the FILEDEF command.

The first parameter of the FILEDEF com-
mand is the file's ddname. The ddname
to be associated with a particular file
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnhames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT TEXT;
OUTPUTFILE file of
INTEGER;

If a particular file is to be opened
for input, attributes such as LRECL,
BLKSIZE, and RECFM are obtained from
the (presumably) already existing
file. Note: A file that 1is being
defined to the terminal requires you to
explicitly specify RECFM and LRECL on
the FILEDEF command.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified. For a description of the
daefaults see "Data Set DCB Attributes"
on page 45.

The FILEDEF commands required for each
of the three file variables in the

example above and for INPUT and OUTPUT
could be as shown in Figure 4.

2.4 HOW TO INVOKE THE LOAD MODULE

After the module has been created and
the files defined, you are ready to
execute the program. This is done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname [parms...]

where "modnama"™ is the name of the load

. module and "parms" are the parameters

(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascal/VS environment from those that
your program will read (via the PARMS
function), the runtime parameter list
must be terminated with a slash "/".
The program parameters, if any, must
follow the "/".

modname [[rtparms...s/1 I[parms...1 1
For a description of the run time

options see "Run Time Options" on page
35.

Running a Program under CMS 13

This section describes how to compile
and execute a Pascal/VS program under
the Time Sharing Option (1Ts0) of
0sS/vVs2. If you are not using TS0 to
run the compiler, you may skip this
section.

Refer to "Command Syntax Notation" on
page 163 for a description of the syn-
tax notation used to describe commands.
running a

There are four steps to

Pascal/VS program.

3.1 HOW TO COMPILE A PROGRAM

3.0 RUMNING A PROGRAM UNDER TSO

1. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro-
gram are allocated;

4. The load module is invoked.

CLIST NAME

OPERANDS

PASCALVS

.

data-set-name

[compiler-options-listl

OBJECT (dsname)

NOOBJECT

PRINT (%)
PRINT(dsname)
SYSPRINT(sysout-class)
NOFRINT

CONSOLE (%)
CONSOLE(dsname)

LIB(dsname-list)
NOLIB

Figure 5. PASCALVS CLIST syntax.

3.1.1 Invoking the Compiler

The Pascal/VS compiler is invoked under
TS0 by means of a CLIST. A sample
CLIST named PASCALVS is provided to
compile a Pascal/VS program.

data-set-name
specifies the name of the primary
input data set in which contains
the source program to be
compiled. This can be either a
fully qualified name (enclosed
in single quotation marks) or a
simple name (to which the user

identification will be prefixed
and the qualifier "PASCAL"™ will
be suffixed). This must be the
first operand specified.

compiler-options-list
specifies one or more compiler
options. See "Compiler Options"
on page 31.

OBJECT (dsname)
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parentheses. This can be
either a fully aqualified name

Running a Program under TSO 15

(enclosed within triple quota-
tion marks '''...''")1 or a
simple name (to which the iden-
tification qualifier will be
prefixed and the qualifier "0BJ"
suffixed).

NOOBJECT
specifies that no object module

data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
Tvr L '")2 or a simple name (to
which the identification qual-
ifier wWwill be prefixed and the
qualifier "LIST" suffixed).

is to be produced. The compiler SYSPRINT (sysout-class)

will diagnose errors only.

If neither OBJ nor NDOBJ is spec-
ified then object module
produced by the compiler will be

specifies that the compiler
listing is to be written to the
sysout class named in parenthe-
ses.

specifies that the compiler
listing is not to be produced.

written to a default data set. NOPRINT
If the data set specified in the
first operand contains a
descriptive qualifier of

"PASCAL", the CLIST will form a
data set name for the object mod-
ule by replacing the descriptor

This operand activates the fol-
lowing compiler options:
NOSOURCE, NOXREF, NOLIST

qualifier of the input data set CONSOLE(%)

with "0BJ". If the descriptive
qualifier is not "PASCAL"™, then
you will be prompted for the
object module data set name.

specifies that the compiler gen-
erated messages are to be dis-
plaved on the terminal console.
This is the default.

If the first operand of PASCALVS CONSOLE(dsname)

specifies the member of a parti-
tioned data set, then the name of
the associated object module
will be generated as just
described. If the object module
data set is a partitioned data
set, then the object module will
become a member within the PDS
and will have the same name as
the member name of the input data
set.

specifies that the compiler gen-
erated messages are to be written
to the data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
rrr L") or a simple name (to
which the identification qual-
ifier will be prefixed and the
qualifier "CONSOLE" suffixed).

LIB(dsname-list)

As an example, given that the
user identification is ABC, the
following commands will produce
object modules with the name
shown.

PASCALYS SORT
object module: "ABC.SORT.OBJ'

PASCALVS 'DEF.PDS.PASCAL(MAIN)"'
object module:
'DEF.PDS.0BJ(MAIN)"

PASCALVS 'ABC.PROG.PAS'
user prompted for object
module name

PRINT (%)
specifies that the compiler
listing is to be displayed on the NOLIB
terminal; no other copy will be
available.

PRINT (dsname)
specifies that the compiler
listing is to be written on the

specifies that the %INCLUDE
facility is being utilized.
Within the parentheses is a list
of the names of one or more par-
titioned data sets that are to be
searched for members to be
included within the input
stream.

If the list contains more than
one name, the entire list must be
enclosed within quotes. Any ful-
ly qualified name within the
quoted list must be enclosed in
double quotes "'...'"'.

See "Using the %INCLUDE
Facility" on page 17.

specifies that no %INCLUDE
libraries are required. This is
the default.

1 Triple quotes are required because the CLIST processor removes the outer

quotes within a keyword sub-operand list.

2 Triple quotes are required because the CLIST processor removes the outer

quotes within a keyword sub-operand list.

16 Pascal’/VS Programmer's Guide

EX&MEIE 1
Operation: Invoke the Pascals/VS com-
piler to process a
Pascal/VS program
Known: User-identification is ABC

Data set containing the pro-
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINT(A)

Example 2

Operation: Invoke the Pascals/VS com-
piler to process a
Pascal/VS program

Known: User-identification is XYZ

Data set containing the pro-
gram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TESTLIST.LIST.

The long version of the cross
reference listing is pre-
ferred.

Default options and data set
names are to be used for the
rest.

PASCALVS "ABC.TEST.PASCAL"' +
XREF(LONG) ,PRINT(TESTLIST)

3.1.2 Using the %INCLUDE Facility

If the INCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standard include library supplied
by IBM is called?

"SYS1.PASCALVS.MACLIB"

This library must be specified in the
LIB list if your program contains an
%INCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an
%INCLUDE statement within the source
program, it will search the partitioned

3 The high-level
installation.

qualifier name

(SYS1) may be

data set(s) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it wWwill continue reading from
the previous input stream immediately
following the %ZINCLUDE statement.

Example 1

Operation: Invoke the Pascal/VS5S com-

piler to process a
Pascal/VS program which
utilizes the %ZINCLUDE
facility.

Known: User-identification is P123

Data set containing the pro-
gram is named

'P123.MAIN.PASCAL'

The source to be included is
stored in two partitioned
data sets by the names of

'P123.PASLIB'
'SYS1.PASCALVS.MACLIB'.

Default options and data set
names are to be used for the
rest.

PASCALYVS MAIN LIB('PASLIB,+
'YSYS1.PASCALVS.MACLIB"''")

3.1.3 compiler Diagnostics

By default, compiler diagnostics are
displayed on vyour terminal. If the
CONSOLE(dsname) operand appears on the
PASCALVS command, then the diagnostics
will be stored in a data set. The
errors will also be indicated on vour
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list-
ing.

When an error is detected, the source
line that was being scanned by the com-
piler is printed on vour terminal (or
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol ('$') is placed at each location
where an error was detected. This sym-
bol serves as a pointer to indicate the
approximate location where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol-
lowing line of your console a diagnos-
tic message is produced for each error
number.

different at vyour

Running a Program under TS0 17

For a synopsis of the compiler genera-
ted messages see "Pascal/VS Compiler
Messages"™ on page 131.

3.2 HOW TO BUILD A LOAD MODULE

CLIST NAHME OPERANDS
PASCMOD data-set-name or x

[OBJECT("'dsname-list')]

[DEBUGI

[LOAD(dsname])]
PRINT (%)

[PRINT (dsname)] LET] [XCAL]
NOPRINT NOLET NOXCAL

[LIB("dsname-list')] [FORTLIB] [COBLIBI]
MAP NCAL LIST

[NOMAP] [NONCAL] [NOLIST]
XREF REUS REFR

[NOXREF] [NOREUS] [NOREFR]
SCTR OvLY RENT

[NOSCTR] [NOOVLY] [NORENT]
NE oL DC

[NONE] [NOOL] ’ [NODC]
TEST NOTERM

[NOTEST] [TERM]

[SIZE('integerl integer2')]

[DCcBS(blocksize)]

[AC(authorization-code)l

Figure 6. The TS50 PASCMOD CLIST description.

To generate a load mwmodule from a
Pascals/VS object module, you may use
either the TS0 LINK command or a CLIST
named "PASCMOD"™ (Figure 6). The CLIST
performs the same function as the LINK
command except that it will automati-
cally include the Pascals/VS runtime
library in generating the load module.
Also, if the debugger is to be
utilized, the CLIST will include the
Pascal/VS debug library. (A complete
description of the LINK command is con-
tained in the IS0 Command language
Reference Manual.)

Every Pascals/VS object module contains
references to the runtime support rou-
tines. These routines are stored in a
library called?®

4 The high-level
installation.

qualifier name

18 Pascal/VS Programmer's Guide

(S5YS1) may be

"S5YS1.PASCALVS.LOAD"

This library must be linked into a
Pascal/VS object module in order to
resolve all external references prop-
erly. If the PASCMOD CLIST is used,
this library is included
automatically.

If the interactive debugger is to be
utilized, then the library containing
the debug environment must be included
in the 1linking. The name of this
library is*

"SYS1.PASDEBUG.LOAD"
This library must appear ahead of the

runtime library in search order. If
the PASCMOD CLIST is used, this library

different at your

will be included if the option DEBUG is
specified.

If more than one object module is being
linked together, then an entry point
should be specified by means of a link-
age editor control card. The name of
the entry point for any Pascals/VS pro-
gram is PASCALVS.

data-set-name

specifies the name of a data set
containing a Pascal/VS object mod-
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk (¥)
for the data set name to indicate
that yvou will enter control state-
ments from your terminal. The sys-
tem wWill prompt you to enter the
control statements. A null line
indicates the end of your control
statements.

OBJECT('dsname-list')
specifies a list of data sets which
contain object modules to be
included in the link edit. Because
of CLIST restrictions, the list
must be enclosed in single quotes;
fully qualified names within the
list must be enclosed in double
quotes (''..."'").

LIB('dsname-list')

specifies one or more names of
library data sets to be searched by
the linkage editor to locate load
modules referred to by the module
being processed, that is, to
resolve external references. The
name of the Pascal/VS runtime
library is implicitly appended to
the end of this list; vou need not
specify it.

Because of CLIST restrictions, the
list must be enclosed in single

quotes; fully qualified names
within the list must be enclosed in
double quotes ("'..."").

DEBUG

specifies that the Pascal/V$s
interactive debugger is to be uti-
lized on the resultant load module.
This will cause the Pascal/VS debug
library to be included among the
libraries to be searched to resolve
external references.

All other operands of the PASCMOD CLIST
are identical to their counterparts in
the LINK command as described in the
150 Command Lanquage Reference Manual.

Example

Operation: Create a load module from
a compiled Pascal/VS pro-
gram consisting of three
object modules.

Known: User-identification is ABC.
Data sets containing the
three object modules:

ABC.SORT.OBJ
ABC.SEG1.0BJ
ABC.SEG2.0BJ

The resulting load module is
to be stored as a member named
SORT in a data set .named
ABC.PROGS.LOAD

(The user's input is in lower case;
the system replies are
high-lighted.)
pascmod ¥ load(progs(sort)) +
object('sort,segl,seg2')
ENTER CONTROL CARDS
entry pascalvs

READY

Running a Program under TS0 19

3.3 HOW TO DEFINE FILES

ALLOC DDNAMEC(SYSPRINT) SYSOUT(A)

Figure 7.

ATTR F80 LRECL(80) BLKSIZE(80) RECFM(F)
ALLOC DDNAME(SYSIN) DSNAMECINPUT.DATA) SHR

ALLOC DDNAME(OUTPUTFI) DSNAME(COUTPUT.DATA) NEW SPACE(100) BLOCK(3120)
ALLOC DDNAME(COQOUTPUT) DSNAME(%) USING(F80)
ALLOC DDNAMECINPUT) DSNAME(x) USING(F80)

Examples of TS0 data set allocation commands

Before you invoke the generated load
module, you must first define the files
that your program requires. This is
done with the ALLOC command.

The ddname to be associated with a par-
ticular file variable in your program
is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYSIN,
SYSPRINT : TEXT;
OUTPUTFILE : file of
INTEGER;

3.4 INVOKING THE LOAD MODULE

| For the case of files to be opened for

output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes" on page 45.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

CALL

dsnamel (member)] ["loptions/] [parms]' 1

Figure 8.

After the module has been created and
the files defined, vyou are ready to
execute the program. This is done by
the CALL command (see Figure 8). The
operands of the CALL command are as
follows.

dsname(member)
specifies the name of a partitioned
data set and the member where the

load module to be invoked is
stored. If the member name is
omitted, then the member
"TEMPNAME"™ will be the load module
invoked.

dsname may be either a simple name
(to which the user identification
is prefixed and the qualifier
"LOAD" is suffixed), or a fully
qualified name in quotes.

20 Pascal/VS Programmer's Guide

The TS0 CALL command to invoke a load module

options
specifies one or more run time
options separated by either a comma
er a blank. (See "Run Time Options"”
on page 35.).

parms
specifies a parameter string which
is to be passed to the program.
The parameter string is retrieved
from within the program by the
PARMS function.

The total length of the quoted string
(options plus parms) must not exceed
100 characters.

3.5 SAMPLE TSO SESSION

READY
pascalvs lander sysprint(a) list
INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRCORS
SOURCE LINES: 67; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032
READY

pascmod lander load(programs(lander))
READY

alloc ddname(input) dsname(¥)
READY

alloc ddname(output) dsname(x)
READY

call programs(lander) 'parms go here'

Figure 9. Sample TS50 session of a compile, link-edit, and execution.

Figure 9 is an example of a TS0 session the terminal are in lower case; those
which compiles an already existing produced by the system are in upper
source module, link edits it, and exe- case and high-lighted.
cutes it. The commands entered from

Running a Program under TS0 21

This section describes how to compile
and execute Pascal/VS programs in an 0S
Batch environment. If you are not
using the compiler under 05 Batch then
vou may skip this section.

5.1 JOB CONTROL LANGUAGE

Job control language (JCL) is the means
by which you define your jobs and job
steps to the operating system; it
allows you to describe the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascals/VS job are as follows:

. JOB statement, which
the start of the job.

identifies

. EXEC statement, which identifies a
job step and, in particular, speci-

§.0 RUNNING A PROGRAM UNDER 0S BATCH

fies the program to be executed,
either directly or by means of a

cataloged procedure (described
subsequently).

. DD (data definition) statement,
which defines the input/output

facilities required by the program
executed in the job step.

L /7% (delimiter) statement, which
separates data in the input stream
from the job control statements
that follow this data.

A full description of job control lan-
guage 1is given in the publication
0S5/7V¥S2 JCL (GC28-0692).

.2 HOW TO COMPILE AND EXECUTE A PRO-
GRAM

/7/7EXAHMPLE JOB
/7/STEP1 EXEC PASCCG, PARM='LIST'
//PASC.SYSIN DD %
program EXAMPLECINPUT,QUTPUT);
var
A, B: REAL;
begin
RESETC(INPUT);
while not EOFC(INPUT) do
begin
READLN(A,B);

WRITELNCY SUM = ',A+B);
WRITELN(CY PRODUCT = ',A%B);
end
end.
/¥
/7/GO.INPUT DD ¥
3.0 4.0

3.14159 1.41¢4
1.0E-10 2.0E-10
-10.0 102.0

/%

Figure 10.

Sample JCL to run a Pascal/VS program

The job control statements shown in
Figure 10 are sufficient to compile and
execute a Pascal/VS program consisting
of one module. This program uses only
the standard files INPUT and OUTPUT.
For a more generalized description of
input/output refer to "How to Access
Data Sets"™ on page 29 and "Using
Input/0Qutput Facilities" on page 45.

Any options to be passed to the compil-
er are placed within the PARM string of
the EXEC statement.

In the sample JCL, "EXAMPLE™ is the
name of the job. The job name identi-
fies the job within the operating sys-
tem; it is essential. The parameters
required in the JOB statement depend on
the conventions established for your
installation.

The EXEC statement invokes the IBM sup-
plied cataloged procedure named
PASCCG. When the operating system
encounters this name, it replaces the

Running a Program under 0S Batch 23

EXEC statement with a set of JCL state-
ments that have been written previously
and cataloged in a system library. The

cataloged procedure contains two
steps:
PASC invokes the Pascal/VS compiler

to produce an object module.

GO invokes the LOADER to process
the object module by loading it
into memory and including the
appropriate runtime - library
routines. The resulting exe-
cutable program is immediately
executed.

The DD statement named "PASC.SYSIN®
indicates that the program to be proc-
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or device on
which it expects to find the program.

The delimiter statement /% indicates
the end of the data.

The DD statement named "GO.INPUTY indi-
cates that the data to be processed by
the program (in procedure step G0) fol-
lows immediately in the card deck.

%.3 CATALOGED PROCEDURES

Regularly used sets of 3job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged procedure comprises one or
more job steps (though it is not a job,
because it must not contain a JOB
statement). It is included in a job by
specifying its name in an EXEC state-
ment instead of the name of a program.

Several IBM-supplied cataloged proce-
dures are available for use with the
Pascals/VS compiler. It is primarily by
means of these procedures that a
Pascals/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre-
quently used sets of job control state-
ments. If the statements in a
cataloged procedure do not match your
requirements exactly, vyou can easily
modify them or add new statements for
the duration of a job.

It is recommended that each installa-
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

24 Pascal/VS Programmer's Guide

.4 IBM SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup-
plied for use with the Pascal/VS com-
piler are:

PASCC Compile only

PASCCG Compile, load~and-execute

PASCCL Compile and link edit

PASCCLG Compile, link edit, and exe-
cute

-These cataloged procedures do not

include a DD statement for the source
program; vyou must always provide one.
The DDname of the input data set is
SYSIN; the procedure step name which
reads the input data set is PASC. For
example, the JCL statements that you
might use to compile, link edit, and
execute a Pascal/VS program is as fol-
lows:

77/JOBNAME JOB
//75TEP1 EXEC PASCCLG
//PASC.SYSIN DD x

(insert Pascai/VS program here
to be compiled)

/%

The listings and diagnostics produced
by the compiler are directed to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce-
dure routes DDname-SYSPRINT to the out-
put class where the system messages are
produced (SYSOUT=x).

The object module produced from a com-—
pilation is normally placed in a tempo-—
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYSLIN in procedure
step PASC must be overridden. For
example, to compile a program stored in
data set

"T123.SORT.PASCAL"™

and to store the resulting object mod-
ule in a data set named

"T123.SORT.OBJ"
the following JCL might be emploved:
77JOBNAME JOB

//STEP1 EXEC PASCC

//7PASC.SYSIN DD DSN=T123.SORT.PASCAL,
/77 DISP=SHR
//PASC.SYSLIN DD DSN=T123.SORT.0BJ,

4 UNIT=TSOPACK,

/77 DISP=(NEW,CATLG)

%.6.1 compi

le Only (PASCC)

//PASCC PROC SYSOUT="%',INCLLIB="SYS1.PASCALVS.MACLIB'
/7%
Vs INVOKE PASCAL/VS COMPILER
/7 /%
//PASC EXEC PGM=PASCALI,PARM=,REGION=512K
/770UCODE DD SYSQUT=&SYSOUT
//70UTPUT DD SYSOUT=&SYSOUT
//STEPLIB DD DSN=5YS1.PASCALVS.LINKLIB,DISP=SHR
//7S5YSLIB DD DSN=&INCLLIB,DISP=SHR
77/ DD DSN=5YS1.PASCALVS.MACLIB,DISP=SHR
/7/7SYSLIN DD DSNAME=-&&LOADSET,UNIT=SYSDA,DISP=(MOD,PASS),
7/ SPACE=(TRK, (2,5)),
V4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
/7/75YSLIST DD UNIT=SYSDA,DISP=(NEW,DELETE),
/7 SPACE=(TRK,(2,5))
/77S5YSMSGS DD DSN=SYS1.PASCALVS.MESSAGES,DISP=SHR
//75YS0OIN DD UNIT=SYSDA,DISP=(NEW,DELETE),
V4 SPACE=(TRK,(2,5))
//7SYSPRINT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
//7SYSTERM DD DUMMY
//7SYSTIN DD UNIT=SYSDA,DISP=(NEW,DELETE),
V4 SPACE=(TRK,(2,5))
/7/75YSUT1 DD UNIT=SYSDA,DISP=(NEW,DELETE),
77 SPACE=(TRK,(2,5)),
/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
/7/75Y5UT2 DD UNIT=SYSDA,DISP=(NEW,DELETE),
V4 SPACE=(TRK,(2,5)),
/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
/7/SYSXREF DD UNIT=SYSDA,DISP=(NEW,DELETE),
77 SPACE=(TRK, (2,5))
//7UCODE DD SYSOUT=&SYSOUT
Figure 11. Cataloged procedure PASCC
This cataloged procedure (Figure 11) The DD statement for the object module

compiles one Pascals/V$s
and produces an object module.

defines a set

&&LOADSET.

temporary data
The term MOD

source module
It con-

named
is specified

sists of one step, PASC, which is com- in the DISP parameter and as a result,
mon to all of the cataloged procedures if the procedure PASCC is invoked
described in this chapter. several times in succession for differ-

ent source modules, &&LOADSET will

Step PASC reads in the source module,
diagnoses errors, produces a listing,
and generates an object module to the
data set associated with DDname SYSLIN.

contain a concatenation of object mod-
ules. The linkage editor and loader
will accept such a data set as input.

Running a Program under 0S Batch 25

4.4.2 Compile, Load, and Execute
(PASCCG)

//PASC EXEC

//G0 EXEC
//70UTPUT DD
//SYSLIB DD
s DD
//SYSLIN DD
//SYSLOUT DD
//SYSPRINT DD

DSN=&LKLBDSN, DISP=SHR

SYSOUT=&SYSOUT

Figure 12.

//7PASCCG PROC SYSOUT=»,INCLLIB="SYS1.PASCALVS.MACLIB',

7/ LKLBDSN='SYS1.PASCALVS.LOAD"',

Va4 LINKLIB="SYS1.PASCALVS.LINKLIB'
PGM=PASCALI,PARM=,REGION=512K

(this step is idegtical to the PASC step in procedure PASCC)

PGM=LOADER, COND=(8,LE,PASC),PARM="EP=PASCALVS'
SYSOUT=&SYSOUT,DCB=(RECFM= VBA LRECL=133, BLKSIZE 685)

DSN=5YS1.PASCALVS.LOAD,DISP=SHR
DSN=&&LOADSET,DISP=(OLD,DELETE)

SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133)
Cataloged procedure PASCCG

In this cataloged procedure
(Figure 12), the first two steps com-
pile a Pascals/VS source module to
produce an object module. In the third
step (named G0), the loader is
executed; this program processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
G0 describes the libraries from which
external references are to be resolved.
If you have a library of your own from
which you would like external refer-
ences to be resolved, then pass its
name in the LKLBDSN operand.

Object modules from previous compila-
tions may also be included in the load-
er's input stream by concatenating them
in the SYSLIN DD statement.

26 Pascal/VS Programmer's Guide

As an example, a program in a data set
named "DOE.SEARCH.PASCAL™ needs to be
compiled and then loaded with an object
module named "DOE.SORT.O0BJ"™. In addi-
tion, several external routines are
called from Wwithin the program which
reside a library named
"DOE.MISC. OBJLIB" The following JCL
statements would compile the program
and execute it.

//DOE JOB
//STEP1 EXEC PASCCG,
V4 LKLBDSN='DOE.MISC.OBJLIB'

/7/7PASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,

77 DISP=SHR
//G0O.SYSLIN DD

a4 DD DSN=DOE.SORT.O0BJ,
77 DISP=SHR

4.4.3 Compile and Link Edit (PASCCL)

//LKED EXEC

//7SYSLIB DD DSN=&LKLBDSN,DISP=SHR

//SYSPRINT DD
/75YSUT1 DD

SYSOUT=&SYSOUT

Figure 13.

/7/7PASCCL PROC SYSOUT=,INCLLIB="SYS1.PASCALVS.MACLIB"',
Vo4 LKLBDSN="SYS1.PASCALVS.LOAD',
/7 LINKLIB="SYS1.PASCALVS.LINKLIB'
/7/PASC EXEC PGM=PASCALI,PARM=,REGION=512K
(this step is identical to the PASC step in procedure PASCC)
V43
7/ % LKED
/7%

PGM=IEWL,PARM="LIST,MAP',COND=(8,LE,PASC)

s DD DSN=SYS1.PASCALVS.LOAD,DISP=SHR
//SYSLIN DD DSN=&&LOADSET,DISP=(OLD,DELETE)

7/ DD DDNAME=SYSIN

/7SYSLMOD DD DSN=&&GOSET(GO),UNIT=SYSDA,DISP=(,PASS),
7/ SPACE=(TRK, (5,3,1))

UNIT=SYSDA,SPACE=(CYL,(1,1))>
Cataloged procedure PASCCL

In this cataloged procedure
(Figure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
within this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defined by the DD statement with
the name SYSLMOD. This statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the
load module will be placed and given
the member name GO.

In specifying a temporary library, it
is assumed that vou will execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOD.

When linking multiple modules
together, you must supply an entry
point. The name of the entry point may

be either the name of vyour main
program, or the name PASCALVS. To
define an entry point, a linkage editor
ENTRY control card must be processed by
the linkage editor. This may be done
conveniently with a DD statement named
SYSIN for step LKED which references
instream data:

//LKED.SYSIN DD x
ENTRY PASCALVS
Ve

Multiple invocations of the PASCC cata-
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven-
iently in one job. The JCL shown in
Figure 14 on page 28 compiles three
source modules and then link edits them
to produce a single load module. With-
in the example, each source module is a
member of a partitioned data set named

"DOE.PASCAL.SRCLIB1".

The member names are MAIN, SEGl, and
SEG2. The resulting load module is to
be placed in a preallocated library
named "DOE.PROGRAMS.LOAD" as a member
named MAIN.

Running a Program under 0S Batch 27

//JOBNAME JOB (DOE),'JOHN DOE’
//STEP1 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(MAIN),DISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG1),DISP=SHR
/7/STEP3 EXEC PASCCL
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG2),DISP=SHR
//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOAD(MAIN),DISP=0LD
//LKED.SYSIN DD x

ENTRY PASCALVS
/%

Figure 14. Sample JCL to perform multiple compiles and a link edit.

6.4.%4 Compile, Link Edit, and Execute
(PASCCLG)

//PASCCLG PROC SYSOUT=x,INCLLIB="SYS1.PASCALVS.MACLIB"',

V4 LKLBDSN='SYS1.PASCALVS.LOAD',
7/ LINKLIB='SYS1.PASCALVS.LINKLIB'
/7/7PASC EXEC PGM=PASCALI,PARM=,REGION=512K

(this step is identical to the PASC step in procedure PASCC)
EXEC PGM=IEWL,PARM='LIST,MAP',COND=(8,LE,PASC)

(this step is identical to the LKED step in procedure PASCCL)
7/G0 EXEC PGM=x.LKED.SYSLMOD,COND=((8,LE,PASC),(8,LE,LKED))

//0UTPUT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133,BLKSIZE=685)
//SYSPRINT DD SYSOUT=&SYSOUT,DCB=(RECFM=VBA,LRECL=133)

//LKED

Figure 15. Cataloged procedure PASCCLG

This cataloged procedure (Figure 15)
performs a compilation, invokes the
linkage editor to form a load module
from the resulting object module, then
the load module is executed.

28 Pascal/VS Programmer's Guide

The first two steps of this procedure
are identical to those of the PASCCL
procedure. An additional third step
(named GO0) executes your program.

%.5 HOW TO ACCESS AN %INCLUDE LIBRARY

The DD statement named SYSLIB in proce-
dure step PASC defines the libraries
from which included source is to be
retrieved.

When the compiler encounters an %IN-
CLUDE statement within the source mod-
ule, it will search the library or
libraries specified by SYSLIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an %ZINCLUDE library by
means of the INCLLIB parameter of the
cataloged procedures, or by overriding
the SYSLIB DD statement by specifying a
DD statement with the name PASC.SYSLIB.

Example

//JOBNAME JOB

/77 EXEC PASCCG

//PASC.SYSLIB DD DSN=...,DISP=SHR
/7/PASC.SYSIN DD ¥

..

/%

4.6 HOW TO ACCESS DATA SETS

Every file variable operated upon in
your program must have an associated DD

TNL SN20-4445 (31 December 1981) to SH20-6162-1

statement for the GO0 step which exe-
cutes your program. The DDname to be
associated with a particular file vari-
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari-
ables declared within the Pascal decla-
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var .
SYSIN, ‘
SYSPRINT: TEXT;
OUTPUTFILE: file of
- INTEGER;

The file named OUTPUT need not be
explicitly defined by you if you use
the cataloged procedures. Both cata-
loged procedures which execute a
Pascals/VS program (PASCCG and PASCCLG)
contain a DD statement for OQUTPUT.
OUTPUT is assigned to the output class
where the system messages and compiler
listings are produced (SYSOUT=%).

If the Pascals/VS input/output manager
attempts to open a data set which has
an incomplete data control block (DCB),
it will assign default values to the
DCB as described in "Data Set DCB
Attributes" on page 45. If you prefer
not to rely on the defaults, then the
LRECL, BLKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associated DD statement for a
newly created data set (that is, one
whose DISP operand is set to NEW).

Running a Program under 0S5 Batch 29

TNL SN20-4445 (31 December 1981) to SH20-6162-1

4.7 EXAMPLE OF A BRATCH JOB

/7/JOBNAME JOB

/7/STEP1 EXEC PASCC,PARM="'NOXREF"'
//7PASC.SYSIN DD %

program COPYFILE;

type
F&0 = file of
packed arrayll1..80]1 of CHAR;
var

- INFILE, OUTFILE: F80;
procedure COPY(var FIN,FOUT: F80);
external;
begin
RESETC(INFILE);
REWRITE(COUTFILE);
COPY(INFILE,QUTFILE);
end.
7%
/7/STEP2 EXEC PASCCLG, PARM='NOXREF'
//7PASC.SYSIN DD %
segment I0;
type
F80 = file of
packed arrayll..80] of CHAR;
procedure COPY(var FIN,FOUT: F80);
external;

procedure COPY;
begin
while not EOF(FIN) do
begin
FOUTQ := FIN3;
PUTC(FOUT);
GET(FIN)
end
end; .
/¥
//LKED.SYSIN DD x
ENTRY PASCALVS
V4 .
7/GO.INFILE DD %

(data té.Be copied into data set goes here)

PR

/%
//GO.OUTFILE DD DSN=P123456.TEMP.DATA,UNIT=TSOUSER,

7/ DISP=(NEW,CATLG),
77 DCB=(RECFM=FB, LRECL=80,BLKSIZE=3120),
V4 SPACE=(3120,(1,1))

Figure 16. Example of a batch job

30 Pascal/VS Programmer's Guide

Compile time options indicate what fea-
tures are to be enabled or disabled

5.0 COMPILER OPTIONS

lowing table lists all compiler options
with their abbreviated forms and their

when the compiler is invoked. The fol- default values.
Compiler Option Abbreviated Name Default
CHECK/NOCHECK - CHECK
DEBUG/NODEBUG —-—— NODEBUG
GOSTMT/NOGOSTMT GS/NOGS GOSTMT
LANGLVL(STANDARD)/ LANGLVL(STD)/ LANGLVL(EXTENDED)

LANGLVL (EXTENDED) LANGLVLCEXT)

LINECOUNT(n) LC(n) LINECOUNT(60)
LIST/NOLIST -——- NOLIST
MARGINS(m,n) MAR(m,n) MARGINS(1,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH(n) PW(n) PAGEWIDTH(128)
PXREF/NOPXREF -—- PXREF
SEQUENCE(m,n)/NOSEQUENCE SEQ(m,n)/NOSEQ SEQUENCE(73,80)
SOURCE/NOSOURCE S/N0S SOURCE
WARNING/NOWARNING W/7NOW WARNING
XREF/NOXREF X/NOX - XREF(SHORT)

5.1 CHECK/NOCHECK

If the CHECK option is enabled, the
Pascal/VS$s compiler wWwill generate
inline code to perform runtime error
checking. The X%CHECK feature can be
used to enable or disable particular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
?hich may be checked are listed as fol-
OWS:*

CASE statements
Any case statement that does not

contain an otherwise clause is
checked to make sure that the
selector expression has a value

equal to one of the case label val-
ues.

Function routines »
A call to a function routine is
checked to verify that the called
function returns a value.

Pointers
A reference to an object which is
based upon a pointer variable is
checked to make sure that the
pqinter does not have the value
nil.

Subrange scalars
Variables which are declared as
subrange scalars are tested when
they are assigned a value to guar-
antee that the value lies within
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment

statement or immediately after a
routine call in which the variable
was passed as a var parameter.
(This latter case also includes a

call to the READ procedure).

For the sake of efficiency, the

compiler may suppress checking
when it is able to determine that
it is semantically unnecessary.

For example, the compiler will not
generate code to check the first
three assignment statements below;

however, the last three will be
checked.
var
A : -10..10;
B : 0..20;
A= B - 105 (¥no checkX)
B := ABS(A); (¥no checkX)
A := B DIV 2; (¥no checkX)
A.:= B; (¥check *)
B := A%10; (¥check *¥)
A = -B; (¥check *)

The compiler makes no explicit
attempt to diagnose the use of
uninitialized variables; houwever,
to help you detect such errors, the
SETMEM runtime option has been pro-

vided (see "Run Time Options" on
page 35).

subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie

within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress
checks that are semantically
unnecessary.

Compiler Options 31

string truncation
Assignments to varying length
strings are checked to make sure
that the destination string vari-
able is declared large enough to
contain the source string.

When a runtime checking error occurs, a
diagnostic message will be displayed on
vour terminal followed by a traceback
of the routines which were active when
the error occurred. If the program is
invoked from 0S5 Batch, the diagnostic
message and traceback will be sent to
the data set or device associated with
DDname SYSPRINT. You may direct the
error diagnostics to any file of your
choice with the "ERRFILE"™ option (see
"Run Time Options" on page 35).

See "Reading a Pascal/VS Trace Back" on
page 59 for an example of a traceback
due to a checking error.

"User Handling of Execution Errors" on

page 62 describes how checking errors
may be intercepted by your program.

5.2 DEBUG/NODEBRUG

An interactive debugging facility is
available to debug Pascal/VS programs.
The debugger is described in "Pascal/V$s
Interactive Debugger”" on page 65. If
the option DEBUG is enabled, the com-
piler will produce the necessary infor-
mation that Debug needs in order to
operate.

The DEBUG option also implies that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GOSTMT/NOGOSTMT

The GOSTMT option enables the inclusion
of a statement table within the object
coda. The entries within this table
allow the run-time environment to iden-
tify the source statement causing an
execution error. This statement table
also permits the interactive debugger
to place breakpoints based on source
statement numbers. For a description
of the debugger see "Pascals/VS Interac-
tive Debugger"” on page 65.

The inclusion of the statement table
does not affect the execution speed of
the compiled program.

NOGOSTMT will prevent the statement
table from being generated. .

32 Pascal/VS Programmer's Guide

S5.% LANGLVL()

If LANGLVL(STANDARD) is specified, the
compiler will diagnose all constructs
and features which do not conform to
"standard" Pascal. Violations of the
standard will appear as warnings. In
addition, many of the predeclared iden-
tifiers which are unique to Pascal/Vs$s
will not be recognized when
LANGLVL(STANDARD) is specified.

LANGLVL (EXTENDED), which is the

default, specifies that the full
Pascals/VS language is to be supported.

5.5 LINECOUNT(N)

The LINECOUNT option specifies the num-
ber of lines to appear on each page of
the output listing. The maximum number
of lines to fit on a page depends on
the form to which the output is being
printed.

The default is 60 lines to the page.

5.6 LIST/NOLIST

The LIST/NOLIST option controls the
generation or suppression of the trans-
lator pseudo-assembler listing (see
"Assembly Listing™ on page 42).

Note: The NOLIST option will cause any
%LIST statement within the source pro-
gram to be ignored.

5.7 MARGINS(M,N)

The MARGINS(m,n) option sets the left
and right margin of vour program. The
compiler scans each line of your pro-
gram starting at column m and ending at
column n. Any data outside these mar-
gin limits is ignored. The maximum
right margin allowed is 100 The speci-
fied margins must not overlap the
sequence field.

The default is MARGINS(1,72).

Note: When the PASCALVS clist is being
invoked under TS50, the subparameters of
the MARGINS option must be enclosed in
quotes. For example,

MARGINS('1,72")

5.8 OPTIMIZE/NOOPTIMIZE

The OPTIMIZE option indicates that the
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

5.9 PAGEWIDTHI(N)

The PAGEWIDTH option specifies the max-
imum number of characters3 that may
appear on a single line of the output
listing. This number depends on the
page form and the printer model.

The default page width is 128 charac-
ters.

5.10 PXREF/NOPXREF

The PXREF option specifies that the
right margin of the output listing is
to contain cross reference entries (see
"Page Cross Reference Field" on page
38). HNOPXREF suppresses these entries.

5.11 SEQ(M,N)/NOSEQ

The SEQ(m,n) option specifies which
columns within the program being com-
piled are reserved for a sequence
field. The starting column of the
sequence field is m; the last column of
the field is n.

The compiler 'does not process sequence
fields; but serve only to identify
lines in the source listing. If the
sequence field is blank, the compiler
will insert a line number in the cor-
responding area in the source listing.

NOSEQ indicates that there is to be no
sequence field.

The default is SEQ(73,80).
NOTES :

° The sequence field must not overlap
the source margins.

® When the PASCALVS clist is being
invoked under TS0, the subparame-

control characters.

ters of the SEQ option must be
enclosed in quotes. For example,

SEQ('73,80")

5.12 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generation or suppression of the
compiler source listing.

Note: The NOSOURCE option will cause
any %PRINT statement within the source
program to be ignored.

5.13 UWARNING/NOWARNING

This option controls the generation or
suppression of warning messages. The
NOWARNING specification will suppress
warning messages from the compiler.

5.14 XREF/NOXREF

The XREF/NOXREF option controls the
generation or suppression of the
cross-reference portion of the source
listing. (See "Cross—reference List-
ing" on page 40).

Either a short or long cross-reference
listing can be generated. A long
cross-reference listing contains all
identifiers declared in the program. A
short listing consists of only those
identifiers which were referenced.

To specify a particular listing mode,
either the word LONG or SHORT is placed
after the XREF specification and
enclosed within parentheses. If no
such specification exists, SHORT is
assumed. For example, the specifica-
tion

XREF(LONG)

would cause a long cross-reference

table to be generated.

Note: If the PASCALVYS clist is being
invoked under TS0, a subparameter
(SHORT or LONG) must be specified with

| the XREF option; there are no defaults.

The number specified in the PAGEWIDTH option does not include carriage

Compiler Options 33

Features within the Pascal/VS run time
environment may be enable or disabled
by passing options to the Pascals/Vs
program. These options are passed to a
Pascals/VS program through the parame-
ter passing mechanism. To distinguish
run time options from the parameter
string intended to be processed by the
program, the options must preceed the
parameter string (if any) and be termi-
nated with a slash ("/").

The following i1s a list of supported
run time options.

COUNT
specifies that instruction fre-
quency information is to be col-
lected during program execution.
After the program is completed,
this information is written to file
OUTPUT.

This option will only have an
effect if the program was both com-
piled and link-edited with the
DEBUG option.

DEBUG

specifies that +the interactive
debugger (see "Pascal/VS Interac-
tive Debugger"™ on page 65) is to
gain initial control when vyou
invoke your program. Note: this
option is valid only if the load
module was generated with the DEBUG
option (see "Module Generation
Options™ on page 12).

ERRCOUNT=N

ERRCOUNT(n)
specifies how many non-fatal
errors are allowed to occur before
the program is abnormally termi-
nated. The default is 20.

Note to CMS wusers: due to the
8-character tokenization conven-—
tion of CMS, a blank must precede
the '=' symbol 1in the ERRCOUNT spe-
cification.

Example:
modname ERRCOUNT =1/
ERRFILE=ddname

ERRFILE(ddname)
specifies the DDname of the file to
which all run time diagnostics are
to be written. Under CMS and TSO,
diagnostics are displayed on your
terminal by default. Under 0S5

TNL SN20-4445 (31 December 1981) to SH20-6162-1

6.0 RUN TIME OPTIONS

batch, the default error file is
SYSPRINT.

Note +to CMS users: due to the
8-character tokenization conven-
tion of CMS, the '"=' symbol must be
surrounded with blanks.

Example:
modname ERRFILE = OUTPUT/

HEAP = n

specifies the number of kilobytes?®
that the heap is to be "extended"
each time the heap overflows. The
heap is where memory is allocated
when the procedure NEW is called.
When the end of the heap 1is
reached, the GETMAIN supervisor
call 1is invoked to allocate more
memory for the heap. If the length
of the space being required by NEW
1is greater than "n", then the
amount to be allocated will be the
length of the space rounded up to
the next kilobyte (1024 bytes).

There is a significant overhead
penalty for each invocation of GET-
MAIN. If "n" is too small, GETMAIN
will be invoked freaquently and the
execution speed of the program will
be affected. If "n" is too large,
the heap will contain memory that
is never used.

The default HEAP attribute is 12
kilobytes.

MAINT

specifies that when a run time
error occurs, the trace back is to
list active run time support rou-
tines. These routines begin with a
AMP prefix and are normally sup-
pressed from the trace back
listing. This option is used to
locate bugs within the run time
environment.

NOCHECK
specifies that any checking errors
detected within the program are to
be ignored.

NOSPIE
specifies that the Pascals/VS run
time enviroment is not to issue a
SPIE request and therefore will not
intercept program interrupts.

STACK = n
specifies the number of kilobytes3
that the run time stack is to be
"extended" each time the stack
overflows. The run time stack is

A "kilobyte"™ is defined as 1024 bytes in the context of this manual.

Run Time Options 35

TNL SN20-4445 (31 December 1981) to SH20-6162-1

36

where the dynamic storage area
(DSA) of a routine is allocated
when the routine is invoked. When
the end of the stack is reached,
the GETMAIN supervisor call is
invoked to allocate more memory for
the stack. If the length of the
DSA being required is greater than
"n", then the amount to be allo-
cated will be the length of the DSA
rounded up to the next kilobyte
(1024 bytes).

There is a significant overhead
penalty for each invocation of GET-
MAIN. If "n™ is too small, GETMAIN
mill be invoked frequently and the
execution speed of the program will

Pascal/VS Programmer's Guide

be affected. If "n"™ is too large,
the stack will occupy more memory
than is necessary.

The default STACK attribute is 12
kilobytes.

SETMEM

specifies that upon entry to each
Pascals/VS routine, each byte of
memory in which the routine’s local
variables are allocated will be set
to a specific value, namely 'FE'
(hexadecimal). This option aids in
locating the source of intermit-
tent errors which occur because of
the use of uninitialized
variables.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

7.0 HOW TO READ PASCAL/VS LISTINGS

7.1 SOURCE LISTINGS

PASCAL/VS RELEASE 2.0 UTILITY: 01727781 14:48:54 PAGE 5
BPCI STMT # SOURCE PROGRAM PAGE XREF
INCLUDE 1 FROM SYSLIB (GLOBALS)
V---4--—-l----t-—--2---—+4----3-—-//--7-V SEQ NO
1: 00000100
1: type 00000200 R
1: NAMEPTR = QNAMEREC; 00000300 * x
1: NAMEREC = 00000400 ¥
1: record 00000500 R
1: NAME : STRING(30); 00000600 % P
1: LEFT_LINK, 00000700 %
1: RIGHT_LINK: NAMEPTR; 00000800 % 5
1: end; 00000900 R
1: 00001000
1: def 00001100 R
1: TREETOP : NAMEPTR; 00001200 % 5
00000180
1 procedure SEARCH(00000190 R X
1 const ID: STRING; 00000200 R *x P
1 var PTR: NAMEPTR); 00000210 R * 5
1 EXTERNAL; 00000220 %
00000221
1 procedure SEARCH; 00000222 R X
1 var 00000230 R
1 LPTR = NAMEPTR; 00000240 * 5
=z=z======FRRQOR=> $17
1 begin 00000250 R
1 1 PTR := nil; 00000260 5 P
1 2 LPTR := TREETOP; 00000270 5 5
1 1 3 while LPTR <> nil do 00000280 R 5 P R
1 1 begin 00000290 R
11 1 4 with LPTRa do 00000300 R 5 R
1111 5 if NAME = ID then 00000310 R 5 5 R
1111 begin 00000320 R
2111 6 PTR := LPTR 00000330 5 5
2111 7 return 00000340 R
zzzz======ERRQR=> $8
1111 end 00000350 R
1111 else 00000360 R
1121 8 if ID < NAME then 00000370 R 5 5 R
1121 9 LPTR := LEFT_LINK 00000380 5 5
1121 else 00000390 R
1121 10 LPTR := RIGHT_LINK 00000400 5 5
1 1 end (XwhileX) 00000410 R
end; . 00000420 R
NUMBER OF ERRORS DETECTED: 2
DIAGNOSTIC MESSAGES ON PAGE(S): 5
ERROR 8: SEMICOLON "™;"™ EXPECTED
ERROR 17: w:» EXPECTED
PARAMETERS PASSED: DISK NOXREF LIB (MACLIB)
OPTIONS IN EFFECT: MARGINS(1,72), SEQ(73,80), LINECOUNT(60), CHECK,
GOSTMT, OPTIMIZE, PXREF, SOURCE, WARNING
SOURCE LINES: 53; COMPILE TIME: 0.43 SECONDS; COMPILE RATE: 7441 LPM
Figure 17. Sample source listing

How to Read Pascals/VS Listings 37

TNL SN204445 (31 December 1981) to SH20-6162-1

The source listing contains informa-
tion about the source program including
nesting information of blocks and cross
reference information.

7.1.1 Page Headers

The first line of every page contains
the title, if one exists. The title is
set With the %TITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
Wwill be blank.

The second line begins with "PASCAL/VS
RELEASE x". This line lists informa-
tion in the following order.

1. The PROGRAM/SEGMENT name is given
before a colon. This name bacomes
the name of the control section
(CSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defi-
nition which was being compiled
when the page boundary occurred.

J. The time and date of the compile.
¢, The page number.

The third line contains column
headings. If the source being compiled
came from a library (i.e. %ZINCLUDE),

then the last line of the heading iden-
tifies the library and member.

7.1.2 Nosting Information

The left margin contains nesting infor-
mation about the program. The depth of
nesting is represented by a number.
The heading over this margin is:

BPCI STMT

B - indicates the depth of
block nesting.

'BYEGIN

P - indicates the depth of "P'rocedure
nesting.

C - indicates the
'C'onditional statements.
statements are 1f and case.

I - indicates the nesting of
'I'terative statements. Iteqative
statements are for, repeat and while.

nesting of
Conditional

STMT is the heading of a column that
numbers the executable statements of
each routine. If the source line orgi-
nated from an INCLUDE file, the include

38 Pascal/VS Programmer's Guide

number and a colon (':') pirecede the
statement number.

7.1.3 statemont Numbering

Pascal/VS numbers the statements of a
routine. These numbers are referenced
when a run time error occurs. (see
"Reading a Pascals/VS Trace Back" on
page 59) and when break points are spe-
cified in the interactive debugger (see
“"Pascal/VS Interactive Debugger" on
page 65).

All non-empty statements are numbered
except the repeat statement. However,
the until portion of a repeat statement
is numbered.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.

7.1.4 Page Cross Reference Field

If the PXREF compiler option is active,
the right margin of the listing con-
tains a cross reference field. This
field contains an indicator for each
identifier that appears in the associ-
ated line. The indicators have the
following meanings:

] A number indicates a page_numbgr.on
which the corresponding identifier
was declared.

. A "' indicates that the corraespon-
ding identifier is being declared.

. A '"P'" indicates that the correspon-
ding identifier is predefined.

i A 'R' indicates that the correspon-
ding identifier is a reserved key
word.

. A '?' indicates that the correspon-

- ding identifier 1is either unde-

clared, or will be declared further

on in the program. This latter

occurrence arises often in pointer
type definitions.

7.1.5 Error summary

Toward the end of the licling is tha
error summary. It contains the diag-
nostic messages corresponding to the
compilation errors detected in the pro-
gram.

e

7.1.6 Option List

The option list summarizes the options
that were enabled for the compilation.

7.1.7 compilation Statistics

The compiler prints summary statistics
which tell the number of lines

TNL SN20-4445 (31 December 1981) to SH20-6162-1

compiled, the time required, and compi-
lation rate in lines per minute of
(virtual) CPU time.

These statistics are divided between
two phases of the compiler: the syn-
tax/semantic phase and the code gener-
ation phase. Also printed is the total
time and accumulative rate for the sum
of the phases.

How to Read Pascal/VS Listings 39

TNL SN20-4445 (31 December 1981) to SH20-6162-1

7.2 _CRO:S-REFERENCE LISTING

CROSS REF
INCLUDE 1 CAME FROM MEMBER
IDENTIFIER DEFINITION ATTRIBUT
ID 5720 IN SEARC
TYPE = §
5/31
LEFT_LINK 5/1:7 IN NAMER
OFFSET =
5738
LPTR 5/24% IN SEARC
OFFSET =
5727
5738
NAME 5/71:6 IN NAMER
OFFSET =
5/31
NAMEPTR 5/1:3 CLASS =
5/1:8
NAMEREC 5/1:4 CLASS =
571:3
NIL PREDEFINED CLASS =
5/26
PTR 5721 IN SEARC
OFFSET =
5726
RIGHY _LINK 571:8 IN NAMER
OFFSET =
5740
SEARtH 5719 CLASS =
STRIMG PREDEFINED CLASS =
571:6
TREEYOP 5/71:12 CLASS =
' 5727
Figure 18. Sample cross-reference 1

ERENTCE LISTING
GLOBALS
ES <PAGE #>/<INCLUDE #>:<LINE %>
H, CLASS = CONST PARAMETER,
TRING, OFFSET = 144
5/37
EC, CLASS = FIELD, TYPE = POINTER,
32, LENGTH = 4
H, CLASS = LOCAL VAR, TYPE = POINTER,
152, LENGTH = 4
5728 5730 5733
5760
EC, CLASS = FIELD, TYPE = STRING,
0, LENGTH = 32
5/37
TYPE, TYPE = POINTER, LENGTH = ¢
5/1:12 5721 5724
TYPE, TYPE = RECORD, LENGTH = 40
CONSTANT, TYPE = POINTER
5728
H, CLASS = VAR PARAM, TYPE = POINTER,
148, LENGTH =
5733
EC, CLASS = FIELD, TYPE = POINTER,
36, LENGTH = ¢4
ENTRY PROCEDURE
TYPE, TYPE = STRING
5720
DEF VAR, TYPE = POINTER, LENGTH = 4
isting

The cross reference listing lists
alphabetically every identifier used
in the program giving its attributes
and both the page number and the source
line number of each reference.

If the ZINCLUDE facility was used, the
cross reference listing will begin by
listing all of the include-members by
name with a reference number.

Each reference specification is of the
following form:

ps [i:l1 1

40 Pascal/VS Programmer's Guide

where p is the page number on which the
reference occurred; is the number of
the include-member if the reference
took place within the member; 1 is the
line number within the program or
include-member at which the reference
occurred.

The reference immediately following
the identifier is the place in the
source program where the identifier was
declared.

The attribute specifications have the
following meaning.

IN name PROCEDURE a user—-defined or

If the identifier is a record standard procedure
field, then this attribute speci-
fies the name of the record in REF VAR external ref variable
which the identifier was declared;
otherwise, it specifies the name of STATIC VAR static variable
the routine in which the identifier
was declared. TYPE type identifier

CLASS = class VAR PARAMETER pass-by-var parame-
This attribute gives the class of ter .

the identifier:
UNDECLARED undeclared identifier
CONSTANT declared constant

TYPE = type
CONST PARAMETER This attributes gives the type of
pass-by-const parame- the identifier:
ter
ARRAY an array type
DEF VAR external def variable

BOOLEAN boolean type
ENTRY FUNCTION

function routine CHAR character
declared as an ENTRY
point FILE a file type
ENTRY PROCEDURE INTEGER fixed point numeric
procedure routine
declared as an ENTRY POINTER a pointer type
point
REAL floating point numeric
EXTERNAL FUNCTION
external function rou- RECORD a record type
tine
SCALAR enumerated scalar or
EXTERNAL PROCEDURE subrange
external procedure
routine SET a set type
FIELD record field SPACE a space type
FORMAL FUNCTION STRING a string type
function passed as a
parameter OFFSET = n
This attribute specifies the byte
FORMAL PROCEDURE offset (in decimal) within the
procedure passed as a dynamic storage area (DSA) of an
parameter automatic variable or parameter;
the displacement of a record field
FORTRAN FUNCTION within the associated record; or,
external FORTRAN func- the offset in the static area of a
tion static variable.
FORTRAN SUBROUTINE LENGTH = n
external FORTRAN sub- This attribute specifies the byte
routine length of a variable or the storage

required for an instance of a type.
FUNCTION a user—-defined or

standard function VALUE = n
This attribute specifies the
LABEL statement label ordinal value of an integer or enu-

merated scalar constant.
LOCAL VAR automatic variable

How to Read Pascal/VS Listings 41

7.3 ASSEMBLY LISTING

PASCAL/VS RELEASE 2.0 UTILITY :
LoC 0OBJECT CODE STMT
*
000090 5830 D090 8
000094 5840 3000 9
000098 5040 D094 10
*
00009C 1B33 11
0000%9E 5030 D098 12
*
0000A2 13
0000A2 5830 D094 14
0000A6 1233 15
0000A8 4780 %xxx 16
*
0000AC 45E0 C860 17
0000B0 5030 DOAO 18
¥
%
0000B4 5840 3010 19
0000B8 5040 DO09C 20
*
0000BC 5850 D098 21
0000C0 5050 3010 22
%
0000C4 5030 D098 23
*
0000C8 5040 D094 24
0000CC 47F0 2016 25
0o000DO 26
*
¥
0000D0 5830 D090 27
0000D4 5840 D098 28
0000D8 5040 3000 29
Figure 19. Sample assembly listing

LP1 := FHEAD;

L 03,164(,13)

L 04,0(,03)

ST 04,148(,13)
LP2 := NIL;

SR 03,03

WHILE LP1 <> NIL DO
a4Ll

aGL2

L 05,152(,13)
ST 05,16(,03)
LP2 := LP1;
ST 03,152(,13)
LP1 := LP3;
ST 04,168(,13)
B AqL1
DS OH
END;

FHEAD := LP2;
L 03,1464(,13)
L 04,152(,13)
ST 04,0(,03)

01,2781 10:18:00
PSEUDO ASSEMBLY LISTING

PAGE 2

ST 03,152(,13)

DS OH

L 03,148(,13)
LTR 03,03

BE AasGL2

WITH LP1-> DO
BAL 14,2144(,12)
ST 03,160(,13)

BEGIN
LP3 := NEXT;
L 04,16(,03)

ST 04,156(,13)
NEXT := LP2;

The compiler produces a pseudo assembly
listing of vour program if you specify
the LIST option. The information pro-
vided in this listing include:

Loc
location relative to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen-
erated text. If the line refers to
a symbol or literal not vyet
encountered in the listing (for-

42 Pascal/VS Programmer's Guide

ward reference) the base displace-
ment format of the instruction is
shown as four asterisks ("%xX%x'),

PSEUDO ASSEMBLY

basic assembly language
description of generated instruc-
tion.

Annotation
intermixed with the assembly

instructions is the source line
from which the instructions were
generated. The source lines appear

as comments in the listing.

7.4 EXTERNAL SYMBOL DICTIONARY

PASCAL/VS RELEASE 2.0 AMPLXREF: 01727780 13:07:27 PAGE 1
EXTERNAL SYMBOL DI CTIONARY

NAME TYPE 1ID ADDR LENGTH NAME TYPE ID ADDR LENGTH
AMPLXREF SD 1 000000 002EOC XREFDUMP LD 0 000FC4 000001
XREFEOF LD 0 0008D38 000001 XREFINCL LD 0 000964 000001
XREFREF LD 0 000A80 000001 XREFLIST LD 0 002C40 000001
ASTATIC PC 2 000000 000009 SYSXREF cM 3 000000 000040
AMPXPUT ER 4 000000 INTPTR cM 5 000000 000004
CHARPTR CM 6 000000 000004 REALPTR CM 7 000000 000004
BOOLPTR cM 8 000000 000004 PAGENO CM 9 000000 000002
INCLLEVE CM 10 000000 000004 INCLNUMB M 11 000000 000001
PROCP cM 12 000000 000004 AMPXRSET ER 13 000000

LINECOUN CM 14 000000 000004 AMPXNEW ER 15 000000

AMPXGET ER 16 000000 PAGEHEAD ER 17 000000

SYSPRINT CcM 18 000000 000040 AMPXWLIN ER 19 000000

AMPXWCHR ER 20 000000 AMPXWTXT ER 21 000000

OPTION cM 22 000000 000014 AMPXWINT ER 23 000000

TRIM ER 24 000000 AMPXWSTR ER 25 000000

Figure 20. Sample ESD table

The External Symbol Dictionary (ESD)
provides one entry for each name in the
generated program that is an external.
This information 1is required by the
linker/loader to resolve inter-module
linkages. The information in this ta-
ble is:

NAME the name of the symbol.

TYPE the classification of the
symbol:
SD - Symbol Definition
LD - Local Definition
ER - External Reference
CM - Common
PC - Private Code.
ID is the number provided to the

loader in order to relocate
address constants correctly.

ADDR is the offset in the CSECT for an
LD entry.

LENGTH the size in bytes of the SD or
CM entry.

The SD classification corresponds to
the name of the module; the LD classi-
fications are entry routines; ER names
are external routines; CM names corre-
spond to def variables. The private
code section is where static variables
are located.

7.5 INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa-
rize the usage of 370 instructions gen-
erated by the compiler. The table is
sorted by frequency of occurrence.

How to Read Pascal/VS Listings 43

8.1 1s/0 IMPLEMENTATION

Pascal/VS employs 0S access methods to
implement its input/output facilities.
Pascal/VS file variables are associ-
ated with a data set by means of a
DDname. The Queued Sequential Access
Method (QSAM) is used for sequential
data sets. The Basic Partitioned
Access Method (BPAM) is used for parti-
tioned data sets (MACLIBs in CMS
terminology). The Basic Direct Access
Method (BDAM) is used for random record
access.

8.2 DDNAME ASSOCIATION

For any identifier declared as a simple
file variable the first eight charac-
ters of the identifier's name serves as
the DDname of the file. As a conse-
quence, the first eight characters of
all file variables declared within a
module should be unique. You must also
be careful not to allow one of the
first eight characters to be an under-
score ('_') since this is not a valid
character to appear in a DDNAME.

An explicit DDname may be associated
with a file variable by means of the
DDNAME option when the file is opened.
(see "The Open Options" on page 56).

DDnames should be explicitly specified
for files which are elements of arrays,
fields of records, or pointer
qualified. If +the DDname is not
explicitly specified for such files, a
DDname of the form "PASCALnn" will be
assigned to the file, where "nn" is a
two digit integer.

8.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every Pas-
cals/VS file variable is a Data Control
Block (DCB) which contains information
describing specific attributes of the
associated data set. Among these
attributes are

. the logical record length (LRECL);
. the physical block size (BLKSIZE);
] the record format (RECFM).
Pascal/VS supports all of the record
formats that are supported by QSAM,

such as, F, V, U, FB, VB, FBA, VBM,
etc.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

8.0 USING YNPUT/OUTPUT FACILITIES

A Pascal/VS program will process a file
that contains ANSI or machine control
characters at the beginning of each
logical record (in which case the
record format would be specified as
RECFM=...A or RECFM=...M). Each log-
ical record written to such files will
be prefixed with the appropriate con-
trol character. Thus, the first
character position of each record is
not directly accessable from the
Pascal/VS program. (If the NOCC option
is specified when the file is opened,
no control character will be prefixed
and the first character is accessable.
See "The Open Options"™ on page 56.)

Newly allocated (empty) data sets, that
is, data sets intended for output might
not have these attributes assigned. As
far as Pascals/VS is concerned, there
are two ways to specify the DCB attri-
butes for such data sets:

J by being specified in the associ-
ated DDname definition (in CMS: the
FILEDEF command; in TS0: the
ALLOC/ATTR commands; in 0S batch:
the DD card);

. by being specified when the file is
open by means of the options
string. (see "The Open Options" on
page 56).

If any of these attributes are unas-
signed for a particular data set to
which a Pascal/VS program will be writ-
ing, the Pascals/V¥S I/0 manager will
assign defaults according to whether
the data set is being managed as a file
of type "TEXT" or as a non-text file.

For the case of text files, if neither
LRECL, BLKSIZE, nor RECFM are
specified, then the following defaults
will apply:

. LRECL=256

U BLKSIZE=260

. RECFM=V

For the case of non—-text files, if nei-
ther LRECL, BLKSIZE, nor RECFM are spe-
cified then the following defaults will
apply.

. LRECL="]1ength of file component”

. BLKSIZE=LRECL

. RECFM=F

If some of the attributes are specified

and some are not then defaults will be
applied using the following criteria:

Using Input/Output Facilities 45

TNL SN20-4445 (31 December 1981) to SH20-6162-1

. RECFM of V is preferred over F for
text files.

. RECFM of F is preferred over V for
non-text files.

. If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

. If RECFM is V then the BLKSIZE is
to be at least four bytes greater
than the LRECL.

8.4 TEXT FILES

Text files contain character data
grouped into logical records. From a
Pascal/VS language vieuwpoint, the log-
ical records are lines of characters.
Pascal/VS supports both fixed length
and variable length record formats for
text files. Characters are stored in
EBCDIC.

The predefined type text is used to
declare a text file wvariable 1in
Pascal/VS. The pointer associated with
each file variable points to positions
within a physical I/0 buffer.

8.5 RECORD FILES

All non-text files in PascalsVS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length (LRECL) of a
file must be at least large enough to
contain the file's base component; oth-
ernwise, an execution time error will
occur when the file is opened. For
example, a file variable declared as
'file of INTEGER' will require the
associated physical file to have a log-
ical record length of at least 4 bytes.

If a file has fixed length records
(RECFM=F) and the logical record length
is larger than necessary to contain the
files component type, then the extra
space in each logical record is wasted.

8.6 OPENING A FILE FOR INPUT - RESET

To explicitly open a file for input,
the procedure RESET is used. A call to
RESET has the forms:

46 Pascal/VS Programmer's Guide

RESET(F)
or

RESET(f,options)
where "f" is a file variable and
Y"options™ is a string which contains
the open options (see "The Open
Options™ on page 56). The "options"
parameter may be omitted.

Normally; RESET allocates & buffer,
reads in the first logical record of
the file into the buffer, and positions
the file pointer at the beginning of
the buffer. Therefore, given a text
file F, the execution of the statement
YRESET(F)" would imply that "Fa" would
;gference the first character of the
ile.

If a RESET operation is performed on an
open file, the file is closed and then
reopened.

program EXAMPLE;

var
SYSIN TEXT;
C. : CHAR;
begin
(¥open SYSIN for input %)
RESET(SYSIN);

(¥get first character of fileX)
C := SYSINQ;
end.

Using RESET on
file

Figure 21. a text

8.7 OPENING A FILE FOR INTERACTIVE
INPUT

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
For example, if the file being opened
is assigned to your terminal, you will
be prompted for data when the file is
opened. This may not be preferable if
your program is suppose to write out
prompting messages prior to reading.

To alleviate this problem, a file may
be opened for interactive input by spe-
cifying Y“INTERACTIVE"™ in the options
string of RESET. No initial read oper-
ation is performed on files opened in
this manner. The file pointer has the
value nil until the the first file
operation is performed (namely GET or
READ). The end-of-line condition (see
"End of Line Condition" on page 53) is
initially set to TRUE.’

program EXAMPLE;
var
SYSIN : TEXT;
DATA : STRING(80);

begin
(Xopen SYSIN for interactive ¥)
(¥input ¥)
RESET(SYSIN, "INTERACTIVE");
(Xprompt for response %*)
(¥read in response %)

WRITELNC" ENTER DATA: ');
READLN(SYSIN,DATA);
end.
Figure 22. Opening a file for
interactive input

8.8 OPENING A FILE FOR OUTPUT -
REURITE

The procedure REWRITE is used to open a
file for output. A call to the proce-
dure has the forms:

REWRITEC(F)
or
REWNRITE(f,options)
where "f" Jis a file variable and
"options™ is a string which contains
the open options (see "The Open

Options™ on page 56). The "options"
parameter may be omitted. :

REWRITE positions the file pointer at
the beginning of an empty buffer. If
the file is already open it is closed
prior to being reopened.

program EXAMPLE;
va

r
SYSPRINT : TEXT;

begin
REWRITE(SYSPRINT);
WRITELN(SYSPRINT, "MESSAGE');

end.

text file

Figure 23. Opening a

with REWRITE

program EXAMPLE;

var
QUTFILE : file of INTEGER;
I INTEGER;

begin

REWRITE(OUTFILE,
'BLKSIZE=1600,LRECL=4,RECFM=F");

OUTFILER := I;

PUTC(OUTFILE);
end.
Figure 24. Opening a record file

with REWRITE

TNL SN20-4445 (31 December 1981) to SH20-6162-1

8.9 TERMINAL INPUT/OUTPUT

Two procedures are provided for doing
input and output directly to vour ter-
minal without going through the normal
DDname interface. Calls to these pro-
cedures have the forms:

TERMIN(F) or TERMIN(f,options)
TERMOUT(Ff) or TERMOUT(f,options)

where "f" is a text file variable and
"options™ 1is a string which contains
the open options (see "The Open
Options™ on page 56). The "options"
parameter may be omitted.

The TERMIN procedure opens a text file
for interactive input from your termi-
nal. Likewise, the TERMOUT procedure
opens a text file for terminal output.

There is no concept of an end-of-file
condition for files opened with TERMIN.
The EOF function always returns FALSE
for such files.

Note: The TERMIN procedure opens the
file with the INTERACTIVE attribute as
was described in "Opening a File for
Interactive Input™ on page 4%6.

program EXAMPLE;

var
TTYIN, TTYOUT: text;
I : INTEGER;
begin

TERMINCTTYIN); TERMOUT(TTYOUT);
WRITELNCTTYOUT, "ENTER DATA:');

READLNCTTYIN,I);
end. T
Figure 25. Terminal input/output
example.

8.10 OPENING A FILE FOR UPDATE

The UPDATE procedure is provided for
opening a record file for updating. In
this mode, records may be read, modi-
fied, and then replaced. A call to the
procedure has the forms:

UPDATE(F)
or
UPDATE(f,options)
where "f" is a record file variable and
"options™ is a string which contains
the open options (see "The Open

Options™ on page 56). The "options"”
parameter may be omitted.

Using Input/Output Facilities 47

TNL SN20-4445 (31 December 1981) to SH20-6162-1

Upon calling UPDATE, a file buffer is
allocated and the first record of the
file is read into it. If a subsequent
PUT operation is performed on the file,
the contents of the buffer will be
stored back into the file at the
location from which it was read.

Each GET operation reads in the next
subsequent record of the file. A PUT
operation will write the record back
from where the last GET operation

| obtained it.

program EXAMPLE;

var
F : file of
record
NAME: STRING(30);
AGE : 0..99;
. end;
begin
UPDATE(F);
(¥update each record %)

(¥ by incrementing age X)
while not EOF(F) do
begin
F3.AGE := Fa.AGE + 1;
PUT(F);
GET(F)
end;
end.

Figure 26. Updating a record file

8.11 PROCEDURE GET

The GET procedure is the means by which
a basic read operation is performed on
a file. A call to the procedure has
the form:

GET(f)

where "f" is a file variable.

8.11.1 GET operation on text files

When applied to an input text file, GET
causes the file pointer to be incre-
mented by one character position. If
the file pointer is positioned at the
last position of a logical record, the
GET operation will cause the end-of-

48 Pascal’/VS Programmer's Guide

line condition to become true (see "End
of Line Condition”™ on page 53) and the
file pointer will be positioned to a
blank. If, prior to the call, the
end-of-line condition is true, then the
file pointer will be positioned to the
beginning of the next logical record.

If, prior to the call to GET, the file
pointer is positioned to the end of the
last logical record of a text file (in
which case the end-of-line condition
will be true) then the end-of-file con-
dition will become true. (See "End of
F;le Condition - text files" on page
56).

If GET is attempted on a text file that
has not been opened, it will be implic-
itly opened for input (as if RESET had
been called).

program EXAMPLE;
var

INFILE text;
c1,C2 CHAR;
begin

(¥get first char of fileX)
RESETC(INFILE);

Cl := INFILEQ;

(¥get second char of fileX)
GET(INFILE);

C2 := INFILEQ;

end.

Using GET on a text

file

Figure 27.

8.11.2 GET operation on record files

Each call to GET for the case of record
files reads the next sequential logical
record into the buffer referenced by
the file pointer. The end-of-file con-
dition will become true if there are no
more records within the file, in which
cgie, the file pointer will be set to
nili.

A record file must be opened for input
or update prior to executing a GET
operation, otherwise, a runtime diag-
nostic will be generated.

=

program EXAMPLE;

var
F : file of
record
NAME : STRING(25);
AGE = 0..99;
WEIGHT: REAL;
SEX : (MALE,FEMALE)
. end;
begin

RESET(F);
khile not EOF(F) do

begin
WRITE(' Name : ',
Fa.NAME);
WRITE(' Age : ',
Fa.AGE:3);
WRITELN;
GET(F)
end

end.

Figure 28. Using GET on record
files

8.12 PUT PROCEDURE

The PUT procedure is the means by which
a basic write operation is performed on
a file. A call to the procedure has
the form:

PUT(F)
where "f" is a file variable.
The file must be opened for output or
update prior to calling PUT®;

otherwise, a runtime diagnostic will
occur.

8.12.1 PUT Opsration on Text Files

The PUT procedure, when applied to a
text file opened for output, causes the
file pointer to be incremented by one
character position. If, prior to the
call, the number of characters in the
current logical record is equal to the
file's logical record length (LRECL),
the file pointer will be positioned
within the associated buffer to begin a
new logical record.

When the file buffer is filled to
capacity, the buffer is written to the
associated physical file. The file

data to be written. If the file

TNL SN20-4445 (31 December 1981) to SH206162-1

pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
(BLKSIZE).

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure"™ on page 53).

program EXAMPLE;

var
OQUTFILE : text;
Cc : CHAR;
beé%ﬁ

REWRITECOUTFILE);
OUTFILEa := C;
(%¥Write out value of CX)
PUT(OUTFILE);

end.

Figure 29. Using PUT on a text
file

8.12.2 PUT Operation on Record Files

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physical file. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
var
F : file of
record
NAME : STRING(25);
AGE = 0..99;
WEIGHT: REAL;
SEX *: (MALE,FEMALE)
. end;
begin
REWRITE(F);
Fa.NAME 'John F. Doe';
Fa.AGE 36;
FA.WEIGHT := 160.0;
FQ.5EX 1= MALE;
PUT(F);

nu

end.
Figure 30. Using PUT on record
files

Prior to a PUT operation, the associated output buffer must contain the
is not open when the PUT operation is

attempted, then no output buffer exists. (The file pointer will have the

value nil.)

Using Input/Output Facilities 49

TNL SN20-4445 (31 December 1981) to SH20-6162-1

8.13 TEXT FILE PROCESSING

8.13.1 Text File READ

The READ procedure fetches data from a

text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:
READ(f,v)
or
READ(f,v:in)
where "f" is a file variable and "v" is

a variable which must be of one of the
following types:

CHAR (or a subrange thereof)
INTEGER (or a subrange thereof)
packed arrayll of CHAR
REAL (or SHORTREAL)
STRING
"™M" is an optional field length (an
integer expression). The file variable
"f' may be omitted, in which case, the
file INPUT is assumed.
A call of the form
READ(f,Vl,VZ,...vn)
is executed as
begin
READ(f,v1);
READ(f,v2);

READCE,vn);
end

If READ is called for a closed file,
the file is opened for input by an
implicit call to RESET.

Upon executing READ, if the file point-
er is not yet set, an initial GET oper-
ation is performed. This case occurs
when a Tile is opened INTERACTIVEly.

50 Pascal/VS Programmer's Guide

(see "Opening a File for Interactive
Input" on page 46.).

When reading INTEGER or REAL data via
the READ procedure, and no field length
is specified, all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a nonblank character is
detected; an error diagnostic will be
produced.

Integer data begins with an optional
sign ('+' or '-') followed by all dig-
its up to, but not including, the first
non-digit or up to the end of the log-
ical record.

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

95123SAN JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first 'S' character.

Real data begins with an optional sign
('+' or '-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi-
tioned at the beginning of a logical
record with the following contents:

3.1415972

a floating point read operation would
bring in the floating point value
3.14159. After the read, the file
pointer would be positioned to the '/!
character. :

If a field length value is specified,
as many characters as are indicated by
the value wWill be consumed by the read
operation. The variable will be
assigned from the beginning of the
field. If the field is not exhausted
after the variable has been assigned
the data, the rest of the field will be
skipped.

program EXAMPLE;

var
Z1P : 0..99999;
MAN : 0..999999;
BALANCE: REAL;
begin

READ(ZIP:5,MAN:6,BALANCE:9);

WRITELN(C'ZIP = ',ZIP);

WRITELNC'MAN = ',MAN);

gRITELN('BALANCE = ',BALANCE:8:2)
enda.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file OUTPUT:

ZIP = 95123
MAN = 999999
BALANCE = 1000.00

Immediately after the READ state-
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 31. Using READ with length
qualifiers.
When reading data into variables

declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

. the variable is filled to its
declared capacity;

L an end-of-line condition is detec-
ted;

. the field length (if specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

program DOREAD;
var
INFILE text;
R : arrayll..10] of
record
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I :1..10;
begin
RESETC(INFILE);
for I := 1 to 10 do
Wwith RII] do
begin
READ(INFILE,NAME, AGE);
READCINFILE,WEIGHT);
READLNCINFILE)
end;
end.
Figure 32. Using READ on text
files.

8.13.2 The READLN Procedure

A call to READLN has the same form as a
call to READ and performs the same
function except that after the data has
been read, all remaining characters
within the logical record are skipped.
The procedure is applicable to text
files only.

Normally, READLN causes the next log-
ical record to be read (unless the
end-of-file is reached) and the file
pointer is positioned to the beginning
of the buffer that contains the record.

In the case of text files opened with
the INTERACTIVE attribute, the file
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to TRUE.

If the end-of-line condition is true
for an interactive file prior to a call
to READLN and the condition was not the
result of a previous call to READLN,
then the call is ignored. Two calls to
READLN in succession wWill cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,

the file is opened implicitly for input
as though RESET had been called.

Using Input/0Output Facilities 51

TNL SN20-4445 (31 December 1981).to SH20-6162-1

program COPY;
var
INFILE,
OUTFILE : text;
BUF : STRING(100);
bagin
RESET(INFILE);
REWRITE(QUTFILE);
khile not EOF(INFILE) do
begin
READCINFILE,BUF);
WRITELN(OUTFILE,BUF);
(Xignore characters after
column 100 in each line %)
READLNC(INFILE)
end
end.
Usina the procedure
READLN

Figure 33.

8.13.3 Text File WRITE

The WRITE procedure writes data to a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:
WRITE(f,e)
or
WRITE(f,e:n)
or
WRITE(f,e:nl:n2)
where "f" is a file variable and "e" is
an expression which must be of one of
the following types:
BOOLEAN
CHAR (or a subrange thereof)
INTEGER (or a subrange thereof)
packed arrayl] of CHAR
REAL (or SHORTREAL)
STRING
"M, "nl1", and "n2" are optional field
lengths (integer expressions). The
file variable "f" may be omitted, in
which case, the file OUTPUT is assumed.
A call of the form
WRITE(f,el,e2,...en)
is executed as
begin
WRITE(f,el);
WRITE(f,e2);

WRITECF,en);
end

52 Pascal/VS Programmer's Guide

If WRITE is called for a closed file,
the file is opened implicitly for out-
put.

If during a call to WRITE, the length
of the logical record being produced
becomes equal to the logical record
length (LRECL) of the text file, a run
time error diagnostic will be
generated.

If a field length is specified for an
expression to be written and its value
is positive, the data will appear right
justified in the output field. If the
specified length is negative, the data
will appear left justified. (The field
width will be the absolute value of the
specified length.)

String data that is being written with
a specified field length will be trun-
cated on the right if the field length
is too small.

If no field length is specified, a
default will be used that depends on
the data's type:

data tvype default field length
BOOLEAN 10
CHAR 1
INTEGER 12
REAL 20
SHORTREAL 20

In addition, expressions of type STRING
have a default field length equal to
their current length. Fixed length
strings (packed array of CHAR) have a
default equal to their declared length.

program DOWRITE;

var
OUTFILE : text;
R : arrayll..10]1 of
reconrd
NAME: STRING(25);
AGE : 0..99;
WEIGHT: REAL
end;
I, t1..10;
begin
REWRITE(QUTFILE);

for I := 1 to 10 do
With RLI] do

begin
WRITE(QOUTFILE,NAME:-30,

- AGE:3,' *');
WRITE(OUTFILE,WEIGHT:3:0);
WRITELN(OUTFILE)

end;
end.
Figure 34. Using WRITE on text

files

A

8.13.%4 The WRITELN Procedure

The WRITELN procedure is applicable
only to text files intended for output.
It causes the current logical record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the file is
fixed (RECFM=F), WRITELN will fill the
remainder of the current record with
blanks. For variable length records
(RECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out-
put.

program DOUBLESPACE;
var
FILEIN,
FILEOUT : text;
BUF : STRING;
begin
REWRITECFILEQUT);
RESET(FILEIN);
Khile not EOF(FILEIN) do
begin
READLN(FILEIN,BUF);
WRITELNCFILEOUT,BUF);
(¥insert blank line ¥%)
WRITELN(FILEOUT)
end;
end.

Figure 35. Using the WRITELN pro-
cedure

8.13.5 The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer (or to
a disk file which will eventually be
printed). A call to the procedure has
the following form:

PAGE(F)

where "f" is a variable of type TEXT
which has been opened for output.

If a logical record is partially
filled, an implicit WRITELN will be
performed prior to the page eject.

For this procedure to produce any
affect, the first character of each
logical record of the file must be
reserved for carriage control. This is
done by specifying either A (ANSI con-
trol) or M (machine control) in the
RECFM attribute for the file.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

If the record format specifies ANSI
control, then the character '1' will be
inserted in the first character posi-
tion of the record. For machine con-
trol, a single record is written that
contains the hexadecimal value of '8B'
in its first character position.

program EXAMPLE;
var

PRINT: text:;
begin

E;étart new page)
PAGE(PRINT);

end.

Figure 36. Using the PAGE proce-
dure

8.13.6 End of Line Condition

The end-of-line condition occurs on a
text file opened for input when the
file pointer is positioned after the
end of a logical record. To test for
this condition, the EOLN function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi-
tioned at the last character of a log-
ical record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character (in EBCDIC, hexadeci-
mal 40) when the end-of-line condition
occurs.

The EOLN function is only applicable to
text files.

program EXAMPLE;
var
SYSIN: text;
CNT : 0..32767;
begin
(¥ compute length of first
logical record of SYSIN X)
RESET(SYSIN);
CNT := 0;
while not EOLN(SYSIN) do
begin
CNT := CNT + 1;
GET(SYSIN);
end;
WRITELN(CNT)
end.

Figure 37. Using the EOLN func-
tion

Using Input/Output Facilities 53

TNL SN20-4445 (31 December 1981) to SH20-6162-1

8.13.7 End of File condition - text
files

The end-of-file condition becomes true
for a text file when one of the follow-—
ing occurs:

° RESET
empty.

is called and the file is

. The file is open for output.

o GET is called when the file pointer
is positioned at the end of the
last logical record of the file (in
which case the end-of-line condi-
tion is true). ‘

. READ is called and all characters
of the last logical record were
consumad.

When the end-of-file condition occurs,
the file pointer has the value nil.

To test for this condition, the EOF
function is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will be ignored.

program EXAMPLE;

var
SYSIN: TEXT;
CNT : 0..32767;
begin

(¥ compute number of logical
records in file SYSIN %)
RESET(SYSIN);
CNT = 0;
while not EOF(SYSIN) do
begin
CNT := CNT + 1;
READLN(SYSIN)
end;
WRITELNC(CNT)
end.
Figure 38. Using the EOF function
on a text file

8.16 RECORD FILE PROCESSING

8.14.1 Record File READ

As documented in the language manual,
the statement

READ(F,V)

is equivalent to

54 Pascal/VS Programmer's Guide

begin
V := F3a;
GET(F)
end

where F and V are declared as follows:

var F: file of t;

t;
If file F is not open when READ is

called, an error diagnostic wWill be
generated at run time.

8.14.2 Record File WRITE
As documented in the language manual,
the statement
WRITE(F,V)
is equivalent to

begin
Fa := V;

where F and V are declared as follows:

var F: file of t;

V: t;
If file F is not open when WRITE is
called, an error diagnostic will be

generated at run time.

program EXAMPLE;
type
REC = record
NAME : STRING(25); .
AGE ¢ 0..99;
SEX : (MALE,FEMALE)
end;
var
INFILE,
OUTFILE:
file of REC;
BUFFER : REC;
begin
RESET(INFILE);
REWRITE(QUTFILE)};
while not EOFC(INFILE) do
beagin
READCINFILE,BUFFER);
WRITECOUTFILE,BUFFER)
end
end.
WRITE

Figure 39. Using READ and

on record files.

8.16.3 End of File Condition - Record
Files

The end-of-file condition becomes true

for a record file when:
) RESET is called for an empty file.
. The file is opened for output.

. GET is executed for a file in which
no more records remain.

When the end-of-file condition occurs,
the file pointer has the value nil. To
test for this condition, the EOF func-
tion is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will produce an error diagnostic.

8.15 CLOSING A FILE

The procedure CLOSE is provided to
close a file explicitly. A call to
this procedure has the form

CLOSE(F)
where "f" is a file variable.

All open files which are declared in
the body of a routine as simple vari-
ables are closed implicitly when the
routine returns to its invoker. All
files which are open when the program
terminates, will be closed automati-
cally by the Pascal/Vs runtime
environment.

If the variable associated with an open
file is destroved prior to program ter-
mination, the results could be disas-
trous when Pascals/VS attempts to close
the file. This problem could occur in
the following cases:

. the file variable is an element of
an array.

. the file variable is a field of a
record.

. the file variable is pointer quali-
fied (exists on the heap).

. a routine which contains local file
variables is exited with a goto
statement. .

In these cases, the file variable must
be 5%IOSEd explicitly with a call to
CLOSE.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

program EXAMPLE;

type
var
FSTK : arrayll..8] of
TEXT;
DDNAME: STRING(8);
I 0 1..8;
begin

RESETC(FSTKLI], "DDNAME="| | DDNAME);
for I := 1 to 8 do
CLOSE(FSTKLII);
end.

Figure 40. Example of using CLOSE

8.16 RELATIVE RECORD ACCESS

Pascals/VS permits records of a record
file to be accessed in a random order
by means of the SEEK procedure. A call
to SEEK has the form

SEEK(f,n)

where "f" is a record file that was
previously opened with RESET, REWRITE,
or UPDATE; "n" is a positive integer
expression which corresponds to a
record number. The the number of the
first record is 1.

A subsequent call to GET or PUT will
operate on the "nth" record of the
file. Each call to GET or PUT there-
after will operate on subsequent
records. SEEK does not perform an I1/0
operation.

At the first call to SEEK, the file is
implicitly closed and reopened for ran-
dom access using the Basic Direct
Access Method (BDAM). The file that is
to be accessed in this manner must have
unblocked, fixed-length records; that
is, the RECFM attribute for the file
must be "F".

Under TS0 and 0S Batch, the first SEEK
operation on a file opened with REWRITE
will cause dummy records to be written
to the associated data set until the
file's primary space allocation is
filled. The record number specified
must not exceed the number of blocks in
the file's primary space allocation.

Under CMS, the corresponding FILEDEF of
a file being accessed with SEEK must
have the XTENT attribute specified’.
This attribute specifies the largest
record number that may be accessed;
however, it has nothing to do with the
space occupied by the file. Thus, a
FILEDEF specification of the form

| 7 If the XTENT attribute is not specified, CMS will default it to 50.

Using Input/0Output Facilities 55

TNL SN20-4445 (31 December 1981) to SH20-6162-1

FILEDEF F DISK FILE DATA(XTENT 65535

will permit any record in file F to be
referenced with SEEK, regardless if it
actually exists. If a record is being
read that does not exist, CMS will
return a buffer of zeroes.

program EXAMPLE;
tyvpe
REC = record
NAME : STRING(25);

AGE : 0..99;
SEX : (MALE,FEMALE)
end;
IDX = record
RECNO: 0..MAXINT;
.end

var
RECFILE: file of REC;
IDXFILE: file of 1IDX;

begin
RESETC(IDXFILE);
RESET(RECFILE);
(¥write out names in order of

index *)
while .not EOF(IDXFILE) do
begin
SEEK(RECFILE,IDXFILEa.RECNO);
GET(RECFILE);
WRITELN(OUTPUT,RECFILEQ.NAME)
GET(IDXFILE);
end
end.
Figure 41. Example of wusing SEEK

to access records ran-
domly

8.17 PARTITIONED DATA SETS

8.17.1 oOpening a Partitioned Data Set

To open a partitioned data set (PDS)?®,
the procedures PDSIN and PDSOUT are
provided. Calls to these procedures
are of the form

PDSIN(f,options)
PDSOUT(f,options)

where "F" is a file variable and
"options" is a string expression which
contains open options (see "The Open
Options™). Unlike the other procedures
which open files, the options string is
required and must specify a member name
(MEMBER=name).

PDSIN opens the specified member in the
PDS for input. As in the case of
RESET, the file pointer is made to

8

point to a buffer containing the first
logical record of the file.

PDSOUT creates a member in the PDS and
opens it for output. If the member
already exists, it will be erased and
then recreated. '

See Figure 43 on page 58 for an example
of opening a partitioned data set.

8.17.2 PDS Access in a CHS Environ-
mant

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the 0S5 simulation facili-
ties. A DDname 1is assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB"™ command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a Pas-
cal/VS program, the following commands
would be executed prior to executing
the program.

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEDEF com-
mand. For example, in order to access
the MACLIBs "M1", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB", the following commands
would be executed prior to executing
the Pascal/V5 program.

FILEDEF LIB DISK M1 MACLIB A

FILEDEF LIB DISK M2 MACLIB A (CONCAT
FILEDEF LIB DISK M3 MACLIB A (CONCAT
GLOBAL MACLIB M1 M2 M3

8.18 THE OPEN OPTIONS

All Pascal/VS procedures which open
files are defined with an optional
string parameter which contains
options pertaining to the file being
opened. These options determine how
the file is to be opened and what
attributes it is to have.

The data in the string parameter has
the syntax shouwn in the following fig-
ure:

All operations that may be applied to "partition data sets™ under 0S5 may

be applied to MACLIB's and TXTLIB's under CMS.

56 Pascal/VS Programmer's Guide

option—-string:

———T:——>(opt:og}———)T———>

option:

——T1—> DDN&ME = name — >
——> BLKSIZE = n —mm™>
——> LRECL = n >
——> NOCC >

> RECFM = ¢ >
——> INTERACTIVE ——mMm™™>
> MEMBER=name —mM8————>
——> NAME=fn.ft.fm —m >

——> UCASE >

Figure 42. Syntax of open options

Not all of these options apply to all
open procedures. If the option is spe-
cified for a procedure that is not
applicable, the option will be ignored.

The following is a description of each
option and the context in which it
applies.

DDNAME=nzame

This attribute signifies that the
physical file to be associated with
the file variable has the DDname
indicated by "name". This new
DDname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to a file open routine with the
DDNAME attribute specified.

If this option is not specified,
then the DDname to be associated
with the file is derived according
to the following rules:

. If the file variable is a sim-
ple variable then the default
DDname will be the name of the
variable itself, truncated to
8 characters.

. If the file variable is an ele-
ment of an array, a field of a
record, or is pointer quali-
fied, then a DDname will be
generated of the following
form: PASCALNnn, where "nn" is a
two digit integer. :

TNL SN204445 (31 December 1981) to SH20-6162-1

The DDMNAME option is applicable to
the following procedures:

RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

BLKSIZE=n

This attribute is used to specify a
physical block size to be associ-
ated with an output file. This
value (indicated by "n™) will over-
ride a BLKSIZE specification on the
DDname definition.

This option is applicable to the
procedure REWRITE only.

LRECL=n

This attribute is used to specify a
logical record length to be associ-
ated with an output file. This
value (indicated by "n") will over-
ride a LRECL specification on the
DDname definition.

For files with variable length
records (RECFM=V), the 1logical
record length must include a % byte
length descriptor?. Thus, if text
is being written to such a file,
the LRECL must be 4 bytes longer
than the longest line to be
written.

The LRECL attribute may also be
used in the TERMIN and TERMOUT pro-
cedures to specify the length of
the I/70 buffer. (This will deter-
mine the maximum length of the line
to be read from, or written to,
vour terminal.)

This option is applicable to the
procedures REWRITE, TERMIN, and
TERMOUT.

Normally, the first character
position of an output file which
contains ANSI or machine control
characters (as determined by the
RECFM) 1is not directly accessable
to the user program. The data in
such files is placed at the second
character position of each record.

The NOCC option causes such files
to be treated as though control
characters are not significant;
that is, data will be placed within
each record at the first character
position. This option allows con-
trol characters to be generated
explicitly.

This option is applicable the pro-
cedure REWRITE.

RECFM=c

° The 4 byte length descriptor for each record of a V-record file is an 0S

convention.

Using Input/Output Facilities 57

TNL SN20-4445 (31 December 1981) to SH20-6162-1

IN

This attribute is used to specify a
racord format to be associated with
an output file. This specification
(indicated by "c") will override a
RECFM specification on the DDname
definition.

Pascal/VS supports all record for-
mats that QS5AM supports:

u [Tl |A
M
B
S
F T A
BS M
vV |BT
BST
D [B1 [Al

For an explanation of each of these
record formats, consult the publi-
cation 05/V¥52 MVS Data Management
Services Guide (order number
GC26-3875).

The RECFM specification applies to
procedure REWRITE.

TERACTIVE
This attribute indicates that the
file is to be opened for input as
an interactive file. See "Opening
a File for Interactive Input" on
page %6 for a description of inter-
active files.

This option applies to the proce-
dures RESET and PDSIN. (This
attribute is implied for TERMIN.)

MEMBER=name

This attribute specifies a member
name of a partitioned data set
(PDS). The member to be accessed
is indicated by "name".

The MEMBER specification is
required for the procedures PDSIN
and PDSOUT (see "Partitioned Data
Sets" on page 56).

NAME=fn.ft.fm (CMS only]

This attribute specifies the name
of a CMS file which is to associ-
ated with the file variable. This
option has no affect if the program
is not running under CMS.

"', "ft", "fm" are the file name,
file type and file mode, respec-
tively, of the CMS file. Each must
be separated by a period ('.'). A
file mode of "¥' is permitted.

The NAME specification is applica-
ble to the following procedures:
RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

UCASE (CMS only)

This option causes text that is
being read from a file opened by
TERMIN to be translated to upper
case. This option applies only to
programs running under CMS; it is
ignored otheruwise.

program EXAMPLE;
var .

PDS : TEXT;

MEMBER : STRING(8);

BUF : packed arrayll..80] of CHAR;
begin

RESETC(INPUT, "INTERACTIVE'");

READLN(MEMBER);
while not EOF(INPUT) do
begin
PDSIN(PDS, "DDNAME=SYSLIB,MEMBER="'
while not EOF(PDS) do
begin
READLN(PDS,BUF);
WRITELN(BUF);
end;
READLN(MEMBER)
end
end.

Figure 43. Using the open options

(¥open INPUT for interactive ¥%)
(% input. *¥)
(¥read lst member name %)
(%Xloop until no more members ¥)
(¥open member for input *)
|1 MEMBER);
(¥Xcopy each line of the *)
(¥ member to file OUTPUT *)
(¥read next member name %)

58

Pascal/VS Programmer's Guide

8.19 APPENDING TO A FILE

Data may be appended to an existing
file by opening it for output with a
call to REWRITE and specifying a dispo-
sition of "MOD" on the corresponding
DDname definition.

The following examples illustrate hou

such a disposition is specified under
the various operating system environ-

TNL SN20-4445 (31 December 1981) to SH20-6162-1

ments. The DDname of the file is
"LOG"; the file name is "LOG.DATA"Y.
CMS:

FILEDEF LOG DISK LOG DATA (DISP MOD

T150:
ALLOC DDN(LOG) DSN(LOG.DATA) MOD

0S Batch:
/771.0G DD DSN=ABC.LO0G.DATA,DISP=MOD

Using Input/Output Facilities 58.1

TNL SN20-4445 (31 December 1981) to SH20-6162-1

58.2 Pascal/VS Programmer's Guide

9.1 READING A PASCAL/VS TRACE BACK

The Pascal/VS trace facility provides
useful information while debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa-
tion is given.

. The name of the routine.

. The statement number of the last
statement to be executed in the
routine (i.e. the statement number
of the call to the next routine in
the chain).

. The address in storage where the
generated code for the statement
begins.

. The name of the module in which the

routine is declared.

The trace routine may be invoked in
four different ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 44 on page 60. In the example
starting at the bottom we see that
Pascals/VS called the user's main pro-
gram in the module named HASHASEG.
Statement 24 of the main program con-
tains the call to READ_ID, statement 3
of READ_ID contains the call to
SEARCH_ID, and so on.

A trace will be produced when a program
error occurs. An example is given in

9.0 RUNTIME ERROR REPORTING

Figure 45 on page 60. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check-
ing error occurs. A checking error
occurs when code produced by the com-
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/NOCHECK" on page 31 for a
description of compiler generated
checks.) Figure 46 on page 60 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 in routine
TRANSLATE.

A trace will be produced when an I/0
error occurs. Figure 47 on page 60 is
an example of this. In this case,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDNAME definition existed.

Due to optimization performed by the
compiler, the code which tests for an
error condition may be moved back
several statements. Thus, when a
runtime error occurs, the statement
number indicated in the traceback might
be slightly less than the number of the
statement from which the error was gen-
erated.

Runtime Error Reporting 59

Trace back of called routines

Routine stmt at address in module
TRACE 4 02028C AMPXSENV
HASHKEY 9 02018C HASHCSEG
GET_HASH_PTR 2 021208 HASHBSEG
SEARCH_ID 9 0213C8 HASHBSEG
READ_ID 3 021550 HASHBSEG
<MAIN-PROGRAM> 24 020278 HASHASEG
PASCAL/VS 02048C
Figure 44. Trace called by a user program

AMPX018E Fixed Point Overflow
Trace back of called routines

Figure 47. Trace call due to I/0 error’

Routine stmt at address in module
FACTORIAL 3 02014C TEST
FACTORIAL 3 02014C TEST
FACTORIAL 3 02014C TEST
<MAIN-PROGRAM> 17 020298 TEST
PASCAL/VS 02048C
Figure 45. Trace call due to program error
AMPX032E High Bound Checking Error
Trace back of called routines
Routine stmt at address in module
TRANSLATE 4 020154 CONVERT
TO_ASCII 10 02024C CONVERT
<MAIN-PROGRAM> 17 020338 CONVERT
PASCAL/VS 02048C
Figure 46. Trace call due to checking error
AMPX0401S File could not be opened: SYSIN
Trace back of called routines
Routine stmt at address in module
INITIALIZE 3 020154 COPY
<MAIN-PROGRAM> 2 020218 COPY
PASCAL/VS 02048C

60 Pascal/VS Programmer's Guide

9.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
checking errors that may occur in a
Pascal/VS program at run time.

Low bound
Either the value of an array sub-
script, or the value being assigned
to a subrange type variable is less
than the minimum allowed for the
subscript or subrange.

High bound
Either the value of an array sub-
script, or the value being assigned
to a subrange type variable 1is
greater than the maximum allowed
for the subscript or subrange.

Nil pointer
an attempt was made to reference a
variable from a pointer which has
the value nil.

Case label
the expression of a case-statement
has a value other than any of the
speciftied case labels and there i1s
no otheruise clause.

string truncation

the concatenation of two strings
results in a string greater than
32767 characters in length, or
there was an attempt to assign to a
string a value which has more char-
acters than the maximum length of
the string.

Assertion failure
an assert statement was executed in

which its , associated boolean
expression evaluated to the value
FALSE.

string subscript out of bounds
there was an indexing operation on
a string which was greater than the
current length of the string.

Function value
a function routine returned to its
invoker without being assigned a
result.

9.3 EXECUTION ERROR HANDLING

Pascal/VS detects many kinds of errors
during program execution; upon
detection of an error, the Pascals/V$s

runtime library will provide error han-
dling.

Certain errors are considered fatal by
the runtime library. Examples of these
errors are operation exception and pro-
tection exception. When a fatal error
occurs the following happens:

1. Pascals/Vs produces a message
describing the error; the message
is displayed on your terminal if
you are executing in VM/CMS or TS50,
or written to DDname SYSPRINT oth-
erwisa.

2. A trace back is displaved.

3. The program execution is termi-
nated.

Other errors such as checking errors
will not stop program execution. You
must determine the extent to which the
non-fatal errors affect your program
results. Pascal/VS performs the fol-
lowing actions when a non-fatal error
occurs.

1. A message describing the error is
produced; the message is displayed
on your terminal if you are execut-
ing in VM/CMS or TS0, or written to
DDname SYSPRINT otherwise.

2. A trace back is generated.

J. If the program was compiled and
linked with the '"DEBUG' option and
the program was not executed with
the 'DEBUG' run time option, then a
symbolic dump of the variables in
the procedure experiencing the
error will be produced; the dump is
displayed on your terminal if you
are executing in VM/CMS or TS0, or
written to DDname SYSPRINT other-
Wwise.

4. If the program was compiled and
linked with the 'DEBUG' option and
the program was executed with the
'"DEBUG' run time option then the
interactive symbolic debugger will
be invoked as if a breakpoint had
been encountered.

Pascal/VS will allow a specific number
of non-fatal errors to occur before the
program is terminated. This number is
set by the ERRCOUNT run time option
(see "Run Time Options" on page 35).
The default is 20.

Runtime Error Reporting 61

9.4 USER HANDLING OF EXECUTION ERRORS

(*

(%

type
ERRORTYPE =1 .. 90;

(€3333.3.3331333333338333333880)

(¥ RUNTIME ERROR INTERCEPTION ROUTINE

€.33.33.3333.3333 33 3383.33333333.3.333333333333333333333.33333333333833333383)

ERRORACTIONS = ((*¥action to be performed %)
XHALT, (¥terminate program %)
XPMSG, (¥print pascal diagnostic X))
XUMSG, (%¥print user's message *)
XTRACE, (Xproduce a trace back %)
XDEBUG, (¥invoke the debugger *)
XDECERR, (¥decr error counter *)
XRESERVEDG6, (XRESERVED %)
XRESERVED?, (XRESERVED %)
XRESERVEDS, (XRESERVED : *)
XRESERVEDSY, (XRESERVED %)
XRESERVEDA, (XRESERVED %)
XRESERVEDB, (¥RESERVED %)
XRESERVEDC, (XRESERVED %)
XRESERVEDD, (XRESERVED %)
XRESERVEDE, (¥RESERVED %)
XRESERVEDF); (XRESERVED ¥)

ERRORSET = set of ERRORACTIONS;

procedure ONERROR(
const FERROR ERRORTYPE; (XERROR NUMBER ¥)
const FMODNAME ALPHA; (XMODULE NAME WHERE OCCURRED %)
const FPROCNAME ALPHA; (xPROCEDURE WHERE OCCURRED %)
const FSTMTNO INTEGER; (XSTATEMENT NO *)
var FRETMSG STRING; (XRETURNED USER'S MESSAGE %)
var FACTION ERRORSET); (XACTIONS TO BE PERFORMED %)

EXTERNAL;

Figure 48. Contents of "XINCLUDE ONERROR®

%)
%)
%)

(¥number of execution errors %)

Pascal/VS provides a mechanism for you
to gain control when an execution time
error occurs. When such an error
occurs, a procedure called "ONERROR!' is
called to perform any necessary action
prior to generating a diagnostic. A
default ONERROR routine is provided in
the Pascals/VS library which does noth-
ing.

You may write your own version of
ONERROR and declare it as an EXTERNAL
procedure. The procedure will be
invoked when an error occurs; thus you
may decide how the error should be han-
.dled. Figure 48 shows the contents of
the IBM-supplied include file that con-
tains the information relevant to
producing vour own ONERROR routine.

Upon entry to ONERROR -the parameter
FERROR contains the number of the error
that has been encountered. See "Exe-
cution Time Messages" on page 150 to
determine the message number corres-—
ponding to a particular error.

FMODNAME, FPROCNAME, and FSTMTNO con-
tain the name of the module, the name
of the routine, and the source state-
ment number, respectively, of the
location where the error occurred.

FACTION is a set variable which deter-
mines what action is to be taken. Upon
invocation of ONERROR, FACTION will
describe the default action that will
take place after ONERROR returng. You
should examine this information and
decide whether you would like to handle

Each error intercepted by the Pascal/V¥S run time environment consists of a

unique 3 digit number. A diagnostic message corresponding to the error
will begin with the error number prefixed with the characters AMPX and
suffixed with the character 'I', 'E' or 'S' (Informational, Error, Severe

error).

62 Pascal/VS Programmer's Guide

the error or let the default action
take place.

You may modify the FACTION parameter as
you desire. If you set the XUMSG mem-

ber of FACTION then you must also set
FRETMSG with the text of the message.
Figure 49 is an example of a user
interception of execution time errors.

% INCLUDE ONERROR;
procedure ONERROR;
begin

if FERROR in [19, 21, 25] then

(¥do nothing if fixed, decimal or floating divide by zero %)
(¥and diagnose fixed-point overflow in procedure HASHFNC %)

'HASHFNC') then

FACTION := [1]
else ,
if (FERROR = 18) & (FPROCNAME
begin
FACTION := [XUMSG];
FRETMSG := "INPUT DATA CONTAINS GARBAGE';
end;
end;
Figure 49. Example of User Error Handling

9.5 SYMBOLIC VARIABLE DUMP

When a program error or checking error
eccurs, a symbolic dump of all vari-
ables which are local to the routine in
which the error occurred may be
produced. This dump will be produced
if two conditions are met:

. The source module containing the
code from which the error occurred
was compiled with the DE3UG option.

. The Pascal/VS debug library was
included in the generation of the
associated load module.

The variable dump is placed on your
terminal if vou are executing in VM/CMS
or TS50, or written to DDname SYSPRINT
otherwise.

Runtime Error Reporting 63

| The Pascal/VS interactive debugger is a
tool that allows programmers to quickly
debug Pascal/VS programs without hav-
ing to write debug statements directly
into their source code. Basic func-
tions include tracing program
execution, viewing the runtime values
of program variables, breaking at
intermediate points of execution, and
displaying statement frequency count-
ing information. The programmer uses
Pascal/VS source names to reference
statements and data.

Under TS0 and CMS, debugger commands
are read directly from your terminal;
likewise, the output is written direct-
ly to your terminal. If the debugger
is being run in 0SS batch, then the
input is read from DDname SYSIN; the
output is sent to SYSPRINT.

In order to use the debugger, you must
follow these three steps:

° Compile the module to be debugged
with the DEBUG option. Modules
that have been compiled with the
DEBUG option can be linked with
modules that have not been compiled
with the DEBUG option.

. When link editing vyour program,
include the debug library. (It
must be located ahead of the
runtime library in search order).?®

° When executing the load module,
specify 'DEBUG' as a run time
option.1% This will cause the debug
environment to become active and
vou w®Will be immediately prompted
for a debugger command.

In the debugger environment the user
may 1issue debug commands and examine

10.0 PASCAL/VS INTERACTIVE DEBUGGER

variables in those modules which were
compiled with the DEBUG option.

10.1 QUALIFICATION

A qualification consists of a module
name and a routine name. The debugger
uses the current qualification as the
default to retrieve information for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger gained
control.

At the start of a debug session, the
current qualification is the name of
the module containing the main program,
and the main program itself.

10.2 COMMANDS

This section describes the commands
that a user may issue with the debug
facility. Every command may be abbre-
viated to one letter if desired except
the QUIT and CLEAR commands which have
no abbreviation. Square brackets ('[?
and 'J') are used in the command
description to indicate optional parts
of the command.

Semicolons are used to separate multi-
ple commands on each line.

® Under CMS, the debug library is included if the DEBUG option is specified

when invoking PASCMOD.

(see "How to Build a Load Module™ on page 12.)

Under 750, the debug library is included by specifying the DEBUG keyword
operand when invoking the PASCMOD clist. (see "How to Build a Load

‘o Module”™ on page 18.)

Options" on page 35.

Run time options must be terminated with a slash ('/').

See "Run Time

Pascal/VS Interactive Debugger 65

10.2.1 BREAK Command

10.2.2 CLEAR Command

Command Format:
stmt]

BREAK [I[modulers] [routinel,l} [
END

stmt]

B [Imodulers] Ifroutinel/l} [
END

B
Where:

module is the name of a Pascal/VSs
module.
routine is the name of a procedure
or function in the module.
stmt is a number of a statement
in the designated routine.
END is a keyvword which denotes the
end of the routine.

This command causes a breakpoint to be
set at the indicated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit-
ted in which case the defaults are tak-
en from the current qualification.
stmt is the number of the statement on
which to stop in the specified routine
of the specified module. The statement
numbers are found on the source
listing. END specifies that the break-
point is to ecccur in the epilogue of
the routine immediately prior to the
routine's return.

A maximum of 8 breakpoints may be set
at any one time. The following table
illustrates the meaning of the various
forms.

Input Module Procedure

B S current current

B /S current main program
B P/S current P

B M/7/S M main program
B M/P/S M P

Where:

current - means currently qualified
module or procedure,

M,P - are the names of a module
or procedure
S - is either a statement

number or END

66 Pascal/VS Programmer's Guide

Command Format:
CLEAR
Minimum Abbreviation:

CLEAR

There are no operands.

The CLEAR command is used to remove all
breakpoints.

10.2.3 CMS Command

10.2.4 DISPLAY Command

Command Format:

cHs

Minimum Abbreviation:

C

There are no operands.

Command Format:

DISPLAY
Minimum Abbreviation:

D

This command activates the CMS subset
mode. If the program is not being run
under CMS, the command is ignored.

The DISPLAY command is used to display
information about the current debugger
session at the user's terminal. The
information displayed is:

the current qualification,

where the wuser's program will
resume execution upon the GO com-
mand,

the current status of Counts,

the current status of Tracing.

Pascal/VS Interactive Debugger 67

10.2.5 DISPLAY BREAKS Command 10.2.6 DISPLAY EQUATES Command

Command Format: Command Format:
DISPLAY BREAKS DISPLAY EQUATES
Minimum Abbreviation: Minimum Abbreviation:
DB DE

There are no operands. There are no operands.

The DISPLAY BREAKS command is used to The DISPLAY EQUATE command is used to
produce a list of all breakpoints which produce a list of all equate symbols
are currently set. and their current definitions.

68 Pascal/VS Programmer's Guide

S,

10.2.7 END Command

10.2.8 EQUATE Command

Command Format:

END

Minimum Abbreviation:

END

The END command causes the program to
immediately terminate. This command is
synonymous wWith QUIT.

11
equated to a data string.

Command Format:

EQUATE identifier [datal

Minimum Abbreviation:

E identifier [datal

Where:

identifier is a Pascals/Vs
identifier.

data is a command which the
identifier is to represent.

The EQUATE command equates an identifi-
er name to a data string. When the
identifier name appears in a command,
it will be expanded inline prior to
executing the command.

As an example, the command
EQUATE X ,BI1I1}

will cause the variable "BIL[I1" to be
viewed when "X" is entered as a
command. The commands

EQUATE Y RA.FI61.J
»BLY]

will cause the variable "BIRA.F[61.J1"
to be viewed.

A semicolon may not terminate the
EQUATE command; a semicolon will be
treated as part of the data string.
For example, the command

EQUATE Z GO;LISTVARS

will cause the "GO0" and "LISTVARS"™ com-
mands to be executed in succession when
"Z" is entered as a command.

An equate command may be used to rede-
fined the meaning of a debugger
command: 11!

EQUATE GO HWALK

makes the command "GO"™ function as the
command "WALK"™.

An equate command may be cancelled by
equating the previously defined iden-
tifier to an empty data string:

EQUATE Z

There is one exception: the name EQUATE (and its abbreviations) may not be

Pascal/VS Interactive Debugger 69

removes the symbol "Z" from the
debugger's equate table.

Equates may be equated to strings which
contain other equates. All substi-
tution will take place after expansion.
The commands

EQUATE A P3.1
EQUATE B ,XYZIA]

will cause the symbol "B" +to be
expanded to ",XYZIP3.I1v.

70 Pascal/VS Programmer's Guide

10.2.9 GO Command

Command Format:
GO
Minimum Abbreviation:

G

There are no operands.

This command causes the program to
either start or resume executing. The
program will continue to execute until
one of the following events occurs:

. breakpoint
. program error
. normal program exit

A breakpoint or program error will
return the user to the Debug environ-
ment.

10.2.10 Help command 10.2.11 LISTVARS Command

Command Format: Command Format:

? LISTVARS

Minimum Abbreviation: Minimum Abbreviation:

? L

There are no operands. There are no operands.
The Help command lists all Debug com-— This command displays the values of all
mands. variables which are local to the cur-

rently active routine.

Pascal/VS Interactive Debugger 71

10.2.12 Qualification Command

Command Format:

QUAL [module /1] [routinel

Minimum Abbreviation:

Q@ Imodule /1 I[routinel
Where:

module is the name of a Pascal/V$
module.

routing is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qualification.
The defaults are applied as follows:

. the module name defaults to the
current qualification.

. the routine defaults to the main
program if the associated module is
a program module, or to the outer-
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The

current qualification provides the
basis on which program names are
resolved. If there is no activation of

the routine available (no invocations)
the user may not display local vari-
ables for that routine.

Qualification may be changed at any
time during a Debug session. When a
breakpoint is encountered, the quali-
fication is automatically set to the
module and the routine in which the
breakpoint was set.

72 Pascal/V5 Programmer's Guide

10.2.13 QUIT Command

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

10.2.14 RESET Command

10.2.15 SET ATTR Command

Command Format:

stmt
RESET [Imodules] [routinel/] []
END

Minimum Abbreviation:

stmt]

R [I[modules] [routinel/l [
END

Where:

module is the name of a Pascal/Vs
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

Command Format:

ON
SET ATTR []
OFF

Minimum Abbreviation:

ON
sa |]
OFF

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF
parameter specifies that variable
attribute information will not be dis-
played by default. The default may be
overridden on the variable viewing com-
mand.

Pascal/VS Interactive Debugger 73

10.2.16 SET COUNT Command

10.2.17 SET TRACE Command

Command Format:

ore]
OFF

Minimum_ Abbreviation:

ON
s C []
OFF

SET COUNT [

The SET COUNT command is used to initi-
ate and terminate statement counting.
Statement counting is used to produce a
summary of the number of times every
statement i1s executed during program
execution. The summary is produced at
the end of program execution and is
written to the standard file OUTPUT.
Statement counting may also be initi-
ated with the runtime COUNT option.

76 Pascal/VS Programmer's Guide

Command Format:

ON
SET TRACE [OFF]
T0 ddname
Minimum Abbreviation:

ON
ST [OFF]
T0 ddname

Where:

" ddname is the name of a DDname
uheze the trace output is to be
sent. '

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user with a list of every statement
executed in the the program. This is
useful for following the execution flow
during execution.

The output from the program trace nor-
mally will go to vour terminal, by
using the TO0 option vou may direct the
output to a specific file.

10.2.18 TRACE Command

10.2.19 Vieuwing variables

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca-
tion chain are listed along with the
most recently executed statement in
each.

“according to their data type.

Command Format:

[(option [}11]

, variable
Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascal/VS$
Reference Manual for the
. syntax of a variable.
option is either ATTR or NOATTR.

This command allows the user to obtain
the contents of a variable during pro-
gram execution.

The static scope rules that apply to
the current qualification are applied
to the specified variable. If the var-
iable is found to be a valid reference,
then its value is displayed. If the
name cannot be resolved within the cur-
rent qualification, the user is
informed that the name i1s not found.
If the name resolves to an automatic
variable for which no activation cur-
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam-
ples, array elements, record fields,
and dynamic variables may all be
viewed. Variables are formatted
Entire
records, arrays and spaces are dis-
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen-
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or NOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
default is NOATTR. If the user gives
ATTR as an option, attributes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine uwhere the
variable was declared.

Note: a subscripting expression may
only be a variable or constant; that
is, it may contain no operators. Thus,
such a reference as

+albalill

is valid (at least syntactically), but
the reference

;a[i+3]

Pascal’/VS Interactive Debugger 75

is not a valid reference because the
subscripting expression is not a vari-
able or constant.

Examples

»a

}Pa

;pa.b

ybl1,x].int (ATTR
»PACx,v].ba.alll

If the variable being viewed has not
been assigned a value then the results
depend on the variable's type:

. If the variable is of a simple type
(integer, char, real, etc.), then
the word "uninitialized” will be
printed.

° If the variable is of a structured
type (array, record), then the con-
tents will be printed in
hexadecimal; each byte of the the
variable which 1is uninitialized
will have the value 'FE'
(hexadecimal).

76 Pascal/VS Programmer's Guide

10.2.20 Viewing Memory

Command Format:

» hex-string [: length 1
Where:
hex-string is a number in

hexadecimal notation.
length is an integer.

This command is used to display the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex string is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
dump is in both hex and character for-
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an 'x' (eg. '35D05'X). The
length is specified in decimal.

Examples

»120000'X
»'66cf0'X : 100

10.2.21 WALK Command

Command Format:

WALK

Minimum Abbreviation:

W

There are no operands.

This command causes the program to
either start executing or resume exe-
cuting. The program execution will
continue for exactly one statement and
then the user will be returned to
Debug. This command is useful for sin-
gle stepping through a section of code.

Pascal/VS Interactive Debugger 77

10.3 DEBUG TERMINAL SESSION

program Primgen;
type i
PrimeRange = 1..100; (XSpecify limits for the %)
(¥ number of prime numbers %)
var
Prime : arrayl PrimeRange] of Integer;
(%¥This array stores the resultx)
NotUsed : PrimeRange; (¥Used test preceeding primes X)
Savelndex : PrimeRange; (¥Used to remember last used %)
(¥ spot in Prime ¥)
TestNumber : Integer; (¥Test value for primeness *)
function IsPrime(Testval : INTEGER) : BOOLEAN;
var .
Quotient, (¥Testval div prime %)
Remainder : Integer:; (XTest value for primeness ¥)
PrimeIndex : PrimeRange; (XUsed test preceeding primes %)
begin (¥IsPrime %)
1 PrimeIndex := Lowest(PrimeRange); (%XTest each previous prime %)
repeat (¥Starting with the first one %)
2 PrimeIndex := Succ(Primelndex); (%Get next prime %)
(¥Compute relative primeness of Testval and a known prime %)
3 Quotient := Testval div PrimelPrimelndex];
4 Remainder := Testval - Quotient ¥ PrimelPrimelIndex]
5 until (Remainder=0) | (Quotient <= PrimelPrimelndex]l);
6 if Remainder = 0 then (XIf the number was divided byx)
7 IsPrime := FALSE (¥any known Prime, then this %)
else (¥is not prime %)
8 IsPrime := TRUE;
end; (¥IsPrime %)
begin
1 Primell] = 2; (¥First three primes %)
2 Primel2] = 3; (% ditto %)
3 Primel3] 1= 5; (% ditto %)
4 TestNumber = 5; (xStart canidates at 5 ¥)
5 Savelndex = 3; (¥Last used prime entry %)
repeat
6 TestNumber := TestNumber + 2; (%¥Test each odd number %)
(¥ starting with the first %)
7 if IsPrime(TestNumber) then (¥If canidate is a prime %)
begin (¥Save it in the next entry *)
8 Savelndex:= Succ(Savelndex); (¥ of the prime table %)
9 PrimelSavelndex] := TestNumber
end
10 until Savelndex = Highest(PrimeRange);
(¥Print results at ten to a line %)
11 for Primelndex := Lowest(PrimeRange) to Highest(PrimeRange) do
begin
12 Write(PrimelPrimelndex]:7); (¥Print one prime number %)
13 if (PrimeIndex mod 10) = 0 then (%If ten have been printed ¥)
Writeln (¥ then skip to next line *)
14 end;
end. (%¥Primgen %)
Figure 50. Sample program for Debug session

The following series of figures is a commands are high lighted and under
sample Debug terminal session that dem- lined. The program being executed is
onstrates breakpoints, viewing vari- shown in Figure 50.

ables and other DEBUG commands. User

78 Pascal/VS Programmer's Guide

pascalvs primaen

{dobug

INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRORS

Source lines:

62; Total time: 1.20 seconds; Total rate: 3092

R; 7T=1.73/3.05 16:13:54

pascrmod primgen (debug

R; 7=0.90/2.19 16:14:51

filedef output terminal
R; 7T=0.0370.05 16:14:52

primgen _debuq count /

Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 51. Compi

ling, linking and executing a program with DEBUG

LPM

b d
Name (abbreviati
2

Break

CLEAR

Cms

Display
Display Break
Display Equate
END

Equate

Go

Listvars

Qual

QUIT

Reset

Set Attr

Set Count

Set Trace
Trace

Walk

on is in capital letters)

This command list

Display a variable

Set a breakpoint

Remove all breakpoints

Enter CMS subset mode

Display currently resume point
Display currently set breakpoints
Display currently set equates

Halt your program

Set an identifier to a literal value
Continue executing yvour program

List all variables

Set default module/routine

Halt your program

Remove a specific breakpoint

Set default viewing information ON/OFF
Turn statement counting ON/OFF

Turn tracing ON/OFF/T0 fileid
Display invocation chain of routines
Execute one statement of current routine

Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 52. The HELP command of DEBUG

Pascal/VS Interactive Debugger

79

brezk 8
PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

g0 .
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN <MAIN~PROGRAM>):

walk

Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN~PROGRAM>):

Figure 53. Setting Breakpoints and Statement Walking

listvars
Variables for procedure: <MAIN-PROGRAM>
PRIME
(0003CA28)
000060 00000002 00000003 00000005 FEFEFEFE °
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE ".......cccceen..
(00000020 through 0000018F is the same as above)
NOTUSED = wuninitialized
SAVEINDEX = 3
TESTNUMBER = 7
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 54. The LISTVARS command - List all variables

80 ‘Pascal/Vs Programmer's(Guide

TN

set trace on

Program trace in on -- output to

Debug(PRIMGEN <MAIN-PROGRAM>):

L]

a0
Resuming

Returning
Resuming

Returning
Resuming

PRIMGEN <MAIN-PROGRAM>
6-7

PRIMGEN ISPRIME

1

2-5

6

7

from ISPRIME

1PRIMGEN <MAIN-PROGRAM>
0

6-7
PRIMGEN ISPRIME
1

2-5
6

from ISPRIME
gRgMGEN <MAIN-PROGRAM>

Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 55.

The Trace Mode of DEBUG

'<TERMINAL>"

Pascals/VS Interactive Debugger

81

6-7
Executing PRIMGEN ISPRIME
1

1

1

1

|

|

]

v
WOW?N
v

Returning from ISPRIME

Resuming PRIMGEN <MAIN-PROGRAM>
—zz=z===> &-9

Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
Debug(PRIMGEN <MAIN-PROGRAM>):

z=====> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

zTZ====> 6-7
Stopped at PRIMGEN/<MAIN-PROGRAM>/6
Debug(PRIMGEN <MAIN-PROGRAM>):

ualk
Stopped at PRIMGEN/<MAIN-PROGRAM>/7
Debug(PRIMGEN <MAIN-PROGRAM>):

walk
Executing PRIMGEN ISPRIME
===z===> 1
—=zz===> 2-5
TZzZzzT=> 6
TZTTT==> 7

Returning from ISPRIME

Resuming PRIMGEN <MAIN-PROGRAM>
s=z=z=z==> 10

Stopped at PRIMGEN/<MAIN-PROGRAM>/10
Debug(PRIMGEN <MAIN-PROGRAM>):

90
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 56. Walking when the Trace Mode is On

82 Pascal/VS Programmer's Guide

™

display qualification

Currently qualified to PRIMGEN <MAIN-PROGRAM>

Will resume at PRIMGEN <MAIN-PROGRAM> 8
Counts are on

Trace is on

Trace output to <TERMINAL>
Debug(PRIMGEN <MAIN-PROGRAM>):

display breaks
Module Routine Stmt
PRIMGEN <MAIN-PROGRAM> 8
Debug(PRIMGEN <MAIN-PROGRAM>):

equate tn , testnumber
Debug(PRIMGEN <MAIN-PROGRAM>):

tn
» TESTNUMBER
TESTNUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

display equate
TN ==> ,TESTNUMBER
Debug(PRIMGEN <MAIN-PROGRAM>):

set trace off
Program trace is off
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 57. Miscellaneous DEBUG Commands

2testoumber

TESTNUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

; testnumber (attr
DATA TYPE: INTEGER
MEMORY CLASS LOCAL AUTOMATIC
DECLARED 1IN <MAIN-PROGRAM>
TESTNUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

2primal10]
PRIMEL10] = wuninitialized
Debug(PRIMGEN <MAIN-PROGRAM>):

2primel5]
PRIMEL5] = 11
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 58. Commands to Display a Variable

Pascal/V¥S Interactive Debugger

83

break isprimesend

PRIMGEN/ISPRIME/ZEND
Debug(PRIMGEN <MAIN-PROGRAM>):

g0
Stopped at PRIMGEN/ISPRIME/ZEND
Debug(PRIMGEN ISPRIME):

trace
Trace back of called routines
Routine stmt at address in module
ISPRIME 8 020138 PRIMGEN
<MAIN-PROGRAM> 7 020260 PRIMGEN
PASCAL/VS 02055A

Debug(PRIMGEN ISPRIME):

set trace on
Program trace in on -- output to '<TERMINAL>'
Debug(PRIMGEN ISPRIME):

equate next aojlistvars
Debug(FRIMGEN ISPRIME):

; LISTVARS
suming PRIMGEN <MAIN-PROGRAM>

Returning from ISPRIME

Stopped at PRIMGEN/ISPRIME/END
Variables for procedure: ISPRIME
PRIMEINDEX = 2

QUOTIENT = 13

REMAINDER = 0

TESTVAL = 39

Debug(PRIMGEN ISPRIME):

set trace off
Program trace is off
Debug(PRIMGEN <MAIN-PROGRAM>):

Figure 59. Using Multiple commands on one Line and other commands

84 Pascal/VS Programmer's Guide

PN

reset 8

Breakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed
Debug(PRIMGEN <MAIN-PROGRAM>):

q0
Stopped at PRIMGEN/ISPRIME/END
Debug(PRIMGEN ISPRIME):

listvars

Variables for procedure: ISPRIME
PRIMEINDEX = 2

QUOTIENT = 11

REMAINDER = 0

TESTVAL

= 33

Debug(PRIMGEN ISPRIME):

reset end
Breakpoint at PRIMGEN/ISPRIME/END has

Debug(PRIMGEN ISPRIME):

been removed

g0
2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113
127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229
233 239 241 251 257 263 269 271 277 281
283 293 307 311 313 317 331 337 3647 349
353 359 367 373 379 383 389 397 401 409
419 421 431 433 439 443 449 457 461 463
467 479 487 491 499 503 509 521 523 541
Figure 60. The Reset Breakpoint Command
PASCAL/VS STATEMENT COUNTING SUMMARY PAGE 1
<MAIN-PROGRAM> IN PRIMGEN CALLED 1 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT
1-5 :1 6-7 :268 8-9 :97 10 :268
11 :1 12-13 :100 14 :10
ISPRIME IN PRIMGEN CALLED 268 TIME(S)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO: COUNT FROM-TO:COUNT
1 :268 2-5 :910 6 :268 7 :171
8 :97
Figure 61. Statement Counting Summary

Pascal/VS Interactive Debugger

85

This section describes the rules that
the Pascal/VS compiler employs in map-
ping variables to storage locations.

11.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off-
sets within the routine's dynamic stor-
age area (DSA). There is a DSA
associated with every invocation of a
routine plus one for the main program
itself. The DSA of a routine is allo-
cated when the routine is called and is
deallocated when the routine returns.

11.2 INTERNAL STATIC STORAGE

For source modules that contain va-

riables declared STATIC, a single
unnamed control section ("private
code') is associated with the source

module in the resulting text deck.
Each variable declared via the STATIC
construct, regardless of its scope, is
assigned a unique offset within this
control =ection.

11.3 DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control section
(csect). Each def variable which is
not initialized will generate a named

| COMMON section.!2 The name of the sec-

tion is derived from the first eight
characters of the variable's name.

11.0 STORAGE MAPPING

11.4 DYNAMIC STORAGE

Pointer qualified variables are allo-
cated dynamically from heap storage by
the procedure 'NEW'. Such variables
are always aligned on a doubleword
boundary.

11.5_ RECORD FIELDS

Fields of records are assigned consec-
utive offsets within the record in a
sequential manner, padding where nec-
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

11.6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in an Pascal/V$s
source module is assigned storage and
aligned according to its declared type.

11.6.1 The Predefined Types

The table in Figure 62 displays the
storage occupancy and boundary align-
ment of variables declared with a pre-
defined type.

STORAGE MAPPING OF DATA

DATA TYPE SIZE in bytes BOUNDARY ALIGHNMENT
ALFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
SHORTREAL 4 FULL WORD
REAL 8 DOUBLE WORD
STRING(len) lent+2 HALF WORD
STRINGPTR 8 FULL WORD
Figure 62. Storage mapping for predefined types

12
| nicate with FORTRAN subroutines.

Each def variable becomes a named COMMON block which may be used to commu-

Storage Mapping 87

11.6.2 Enumerated Scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar defines
more than 256 values then it will occu-
py a half word and will be aligned on a
half word boundary.

11.6.3 Subrange Scalar

A subrange scalar that is not specified
as packed will be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
indicated in the table of Figure 63.
Given a type definition T as:

type
T = packed i..j;
and
const
I = ORD(i);
J = 0ORD(3);
Range of SIZE in]ALIGNMENT
I .. J bytes
0..255 1 BYTE
-128..127 1 BYTE
-32768..32767 2 HALF WORD
0..65535 2 HALF WORD
0..16777215 3 BYTE
-8388608..8388607 3 BYTE
otherwise 4 FULL NORD

its required boundary. That is,
records are aligned on the boundary
required by the field with the largest
boundary requirement.

record A below will be
aligned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of

For example,

-type REAL; record C will be aligned on

a byte.

type .
A= record (%¥full word alignedx)
Al : INTEGER;

A2 : CHAR
end;

B= record (¥double word alignedx)
B2 : REAL;
B3 : BOOLEAN

C= record (xbyte alignedx)
Cl : packed 0..255;

C2 : ALPHA
end;
Figure 64. Alignment of records

Packed records are always aligned on a
byte boundary;

11.6.5 ARRAYS

Storage mapping of
subrange scalars

Figure 63.

Each entry in the first column in the
above table is meant to include all
possible sub-ranges within the spec-
ified range. For example, the range
100..250 would be mapped in the same
way as the range 0..255.

11.6.4 RECORDS

An unpacked record is aligned on a
boundary in such a way that every field
of the record is properly aligned on

88 Pascal/VS Programmer's Guide

Consider the following type

definition:

type '
A =-array [s 1 of t

where type s is a simple scalar
and t is any type.

A variable declared with this type
definition would be aligned on the
boundary required for data type 't'.
With the exception noted below, the
amount of storage occupied by this var-
iable is computed by the following
expression:

(ORD(HIGHEST(S))—ORD(LONEST(S))+1)
¥ SIZEOF(t)

The above expression is not necessarily
applicable if "t represents an
unpacked record type. In this case,
padding will be added, if necessary,
between each element so that each ele-
ment will be aligned on a boundary
which meets the requirements of the
record type.

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev-
er inserted between elements.

A multi-dimensional array is mapped as
an array of array(s). For example the
following tuwo array definitions would
be mapped identically in storage.

array [i..j, m..n] of t

array [i..j3 1 of
array [m..n 1 of t

11.6.6 FILES

File variables occupy 64 bytes and are
aligned on a full word boundary.

11.6.7 SETs

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequately explain how sets are
mapped, two terms will need to be
defined: The base tvpe is the type tp
which all members of the set must
belong. The fundamental base type
represents the non-subrange scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of '0'..'9"

has the base type defined by '0'..'9';
and a fundamental base type of CHAR.

Any two unpacked sets which have the
same fundamental base type will be
mapped identically (that is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type -
S = set of s;
T = set of t;

where s is a non-subrange scalar type
and t is a subrange of s: both S and T
will bhave the same length and will be
aligned in the same manner.

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though this value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contain
the largest value of the fundamental
base_type. Packed sets occupy the min-
imum number of bytes to contain the
largest valid value of the base tvpe.
Thus, variables A and B below will both
occupy 256 bits.

var
A : sat of CHAR;
B : set of '0'..'9"';

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
¢ : set of (C1,C2,C3,C4,C5,C6,
c7,c8,€9,C10,C11,C12
C12,C13,C14,C15,Cl16);
D : set of C1..C8;
E : packed set of Cl1..C8;

A set type with a fundamental base type

of INTEGER is restricted so that the
largest member to be contained in the

set may not exceed the value 255;

gherefore, such a set will occupy 256
its.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bits; variable X will occupy 32
bits.

var
U : set of 0..255;
vV : set of 10..20;
W : packed set of 10..20;
X : packed set of 0..31;

Given that M is the number of bits
required for a particular set, the
table in Figure 65 indicates how the
set will be mapped in storage.

Range of SIZE ALIGNMENT
M BYTES
1 <=M <=8 1 BYTE
9 <= M <= 16 2 HALF WORD
17 <= M <= 24 3 BYTE
25 <= M <= 32 4 FULL WORD
33 <= M <= 256 (M+7) BYTE
div 8
Figure 65. Storage mapping of
SETS

Storage Mapping 89

11.6.8 SPACES

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes indicated in the

90 Pascal/VS Programmer's Guide

length specifier of the type
definition. For example, the variable
S declared below occupies 1000 bytes of
storage.

var 5: space [1000] of INTEGER;

AN

12.1 LINKAGE CONVENTIONS

Pascal/VS uses standard 0S linkage con-
ventions with several additional
restrictions. The result is that
Pascals/VS may call any program that
requires standard conventions and may
be called by any program that adheres
to the additional Pascal/V$S restric-
tions.

On entry to a Pascal/VS routine the
contents of relevant registers are as
follows:

. Register 1 - points to the parame-

ter list

. Register 12 - points to the
Pascals/VS Communication Work Area
(PCWA)

. Register 13 - points to the save

area provided by the caller
] Register 14 - return address

. Register 15 - entry point of called
routine

Pascal/V5 requires that the parameter
register (Rl) be pointing into the
Dynamic Storage Area (DSA) stack in
such a way that 144 bytes prior to the
Rl address is an available save area.

12.0 CODE GENERATION FOR THE IBM/370

12.2 REGISTER USAGE

The table in Figure 66 describes how
each general register is used within a
Pascal/VS program. The floating point
registers are used for computation on
data of type REAL.

register(s) purpose(s)
0,1
- temporary work registers
for the compiler
- standard linkage usage
on calls

3,4,5,6,7,8,9
- registers assigned by the
compiler for computation
and for data base
registers

- code base registers
of the currently
executing routine

11 '
- address of the DSA of the
main program

12
- always points to Pascal’s/Vs
Communication Work Area

13
- always points to the local
DSA

14,15
- temporary work registers
for the compiler
- standard linkage usage
on calls

Figure 66. Register usage

Code Generation for the IBM/370 91

12.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storage
Area (DSA) is allocated. This area is
used to contain save areas, local vari-
ables and compiler generated tempo-
raries. A Pascal/VS routine requires a
DSA of at least 144 bytes; if the rou-
tine has parameters or local variables,
more space is needed.

The first 72 bytes are generally used
according to standard 0S linkage con-
ventions. The first word is used to
copy the previous data base register at
the current procedure nesting level.

Figure 67 illustrates the structure of
the DSA. Figure 68 on page 93 shows
the DSECT expansion of the DSA. (A
copy of this DSECT may be found in mem-
ber DSA of the standard include
library!3.)

register 13—->
0: Register
Save area

72: 177777777777 777777

—80:—

— | —86:—

— | —|—88:—

92:

96] \z7r7777777

100: reserved for
error handling

112: flcating point
registers
FO - F6
144: parameter
list

local variables
and compiler
temporaries

translator
temporaries

144 byte save area

parameter list
to be built here

144 byte save area

16 byte rte parms

>

Figure 67. DSA format

7777 = indicates that the field is not presently used.

reserved for future use

pointer to translator temporaries
pointer to parameter list build area
pointer to the end of the DSA
pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

if the routine requires no translator
temporaries, then this space is not
present

The following areas only in last DSA

for the next routine to be called

for runtime environment in case of
error

room for parameters if required by
error recovery

13 Under MVYS, the name of this library is sysl.PASCALVS.MACLIB. Under CMS,

it is PASCALVS MACLIB.

92 Pascal/VS Programmer's Guide

AN

DSA
DSASDIS
DSALSVA

DSARETA
DSAEPAD
DSARGO
DSAPREG
DSACODE
DSARG3
DSARG%
DSARG5
DSARG6
DSARG7Y
DSARGS
DSARG
DSACOD2
DSAL1B
DSAPCUA
DSAAKEY
DSARES4
DSATPTR
DSAPPTR
DSARPTR
DSACNTS
DSARAID
DSAFUNX
DSARES1
DSACKSAl
DSACKSA2
DSACKSA3
DSAFLO
DSAFL2
DSAFL4
DSAFL6
DSALEN

DSAPRM1
DSAPRM2
DSAPRM3
DSAPRM4
DSAPRM5
DSADATA

Figure 68.

EQU
SPACE
DS

DS

DS

DS

DS

DS

TMOTMTMTM N XODUOUTTTINNXXTTTTMTM T T T T T MMM

DSA DSECT:

Save space for display level

Pointer to last save area

(reserved for future use)

Return address

Entry point address

Save area for register 0

Save area for parameter list pointer (reg 1)
Save area for base register for code (reg 2)
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for register
Save area for 2nd base register for code (reg 10)
Save area for register 11 (main DSA address)

Save area for register 12 (PCWA pointer)

Used by attention processor

Reserved

Address of temporary section of DSA

Address of parameter list build area

Address of runtime parameter list build area
Address of count table

Interactive debugger flags

Function assignment check flag
Reserved

Save area utilized by error recovery
Save area utilized by error recovery
Save area utilized by error recovery
Save area for floating point register
Save area for floating point register
Save area for floating point register
Save area for floating point register
Length of DSA header

wo~NOU P U

asrNvO

Start of parameters and/or local variables

anchored off of register 13.

Code Generation for the IBM/370

93

12.% ROUTINE INVOCATION

Each invocation of a Pascal’/VS routine
must acquire a dynamic storaqe area
(DSA) (see "Dynamic Storage Area"™ on
page 92). This storage is allocated
and deallocated in a LIFO (last
in/first out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt

In general, the DSA of a routine con-
sists of five sections:

1. The local save area (144 bytes).
2. Parameters passed in by the caller.

3. Local variables
routine.

required by the

4. A save area required by any routine

to obtain another

stack from which

storage is to be allocated.

Every DSA must be at least 144 bytes

long; this

offset 144.
Upon entering a
points 144 bytes

DSA, which is
passed

called,

portion of storage

routine,
into
where
in by the caller reside.
implies that the calling
responsible for allocating a portion of
the DSA required by the routine being
namely 144 bytes plus enough
storage for the parameter list.
is actually an

is the storage required by
PascalsVS for a save area.
tine's local variables and parameters
are mapped within the DSA starting at

The rou-

that will be called.

Storage for the largest parameter
list to be built for a call.

Sections 1 and 2 are allocated by the
calling routine;
are allocated by the prologue of the

sections 3, 4, and 5

routine to which the DSA belongs.

register 1
the routine's
the parameters

This
routine is

This

extension of the caller's DSA.

Upon invocation,
the base of the DSA of the caller,
which
is located.
13 may be computed by subtracting 144
from
Figure 69 illustrates the condition of
the stack and relevant registers imme-
diately at the start of a routine.

register 13 points to

is where the caller's save area
The new value of register
the

value in register 1.

REG 13 >

REG 13

caller's save area

local save area
(144 bytes)

Parameters

top of stack >

[reg 1]---->
set here |
l for callsj

next stack top -->

Figure 69.

save area
of any routines
vet to be invoked
parameter list to
be built for calls
to other routines

Snapshot of stack and relevant registers at start of routine

start of DSA of caller

start of DSA of called routine

144 bytes into DSA

storage yet to be allocated

start of DSA of routine yet
to be called

144 bytes into this DSA

94 Pascal/VS Programmer's Guide

12.5 PARAMETER PASSING

Pascal/VS passes parameters in several
different ways depending on how the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter 1list is aligned on a
doubleword boundary and each parameter
is aligned on its proper boundary.
Addresses are aligned on word bounda-
ries.

Passing by Reads/Urite Refer-

This mechanism is indicated by use of
the reserved word var in the routine
heading. Actual parameters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(var I:INTEGER);

Routine Invocation:

PROC(J);

Parameter list:

address of J

Passing by Read/Urite

reference

Figure 70.

12.5.2 Passing by Read-Only Reference

This mechanism is indicated by use of
the reserved word const in the routine
heading. Actual parameters passed in
this way may not be modified by the
invoked routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROC(const I: INTEGER);

Routine Invocation:

PROC(J+5);

Parameter list:

address of a memory location
which contains the value of
J+5.

Passing by Read-only

reference

Figure 71.

12.5.3 Passing by Value

This mechanism is the default way in
which parameters are passed. Parame-
ters passed in this wnay are treated as
if they are pre-initialized local
variables in the invoked routine. Any
modification to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter is a scalar, pointer, or set,
then the parameter list will contain
the value of the actual parameter. If
the actual parameter is an array,
record, space, or string, then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure will copy
the parameter into its local storage.

Routine Heading:

procedure PROC(
I : INTEGER;
A : ALPHA);

Routine Invocation:

PROCC(J, 'alpha');

Parameter list:

value of J
address of 'alpha

Figure 72. Passing by value

Code Generation for the IBM/370 95

12.5.4 Passing Procedure or Function
Paramaters

For procedures or functions which are
being passed as parameters, the address
of the routine is placed in the parame-
ter list.

Note: As a Pascals/VS restriction, a
routine passed as a parameter must not
be nested within another routine.

Routine Heading:

procedure PROC(
function X(Y: REAL): REAL);

Routine Invocation:

PROCCCOS);

Parameter list:

address of CO0S routine

Passing routine

parameters

Figure 73.

96 PascalsVS Programmer's Guide

12.5.5 Function Results

Pascal/V¥S functions have an implicit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the function result is to be
placed.

Routine Heading:

function FUNC(C: CHAR):INTEGER;

Routine Invocation:

I = FUNCC'L");

Parameter list:

- address of returned integer
result
- value of character 'L'

Figure 74. Function results

AN

12.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or function
is arranged in the order shown below.
Register 2 is the code base register
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, register 10 is used as
the code base register for the second
4K bytes. If a routine exceeds 8K
bytes of storage, the compiler will
diagnose it as a terminal error.

DEBUG control
Entry Pt 1 block
Reg 2 >

entry prologue

body
of
routine

This must be
<= 8192
exit epilogue

literals:

ACONS, VCONS,

and small literals
1 to 16 bytes long

STRING and SET
literals longer
than 16 bytes

statement table
(if present)

Figure 75. Routine format

Code Generation for the IBM/370

97

12.7 PCHA

PCWA =
record

PCWAENDS ¢ INTEGER; (%¥Ptr to end of current stack ¥)
PCWACURS : INTEGER; (¥Ptr to start of current stack x)
PCWASELF : INTEGER; (xSelf identifing flag "PCWA")
PCWAFL2 : PCWA_FLG_SET; (Xcompiler runtime flag flags %)
PCHARC(16) : INTEGER; (¥Return code %)
PCWAFILE : PCBP; (X¥pointer to open files %)
PCWAPARM : SYSPARMP; (%Xparms string %)
PCWAMODS : DBCBP; (¥module header chain (debugger))
PCAESAP : INTEGER; (¥ptr to external save area ¥)
PCLIADISP :arrayl0..7]1 of DSAP; (XDISPLAY %)
PCLHADTMP : INTEGER; (%¥Debugger temporary %)
PCWARTMP : REAL; (¥floating point temporary %)
PCWARD : REAL; (%¥"6EQ00000000000000'X %)
PClLA2231 * REAL; (¥'GE00000010000000'X ¥)
PCWAMASK : ALFA; (%'8040201008040201°'X %)
PCWAMFIX : ALFA; (¥temp for first 8 bytes of DSA %)
PCWASAVE :arrayll..36]1 of INTEGER; (¥Extra save area %)
PCWAPLST : arrayll..161 of INTEGER; (¥parm list build %)
PCWAFIN ¢ INTEGER; (X¥Pointer to the HALT address *)
PCHAALLC : INTEGER; (¥address of memory allocator *¥)
PCWADLLC ¢ INTEGER; (¥address of memory deallocator %)
PCWADFLT ¢ INTEGER; (¥default allocation size ¥*)
PCWACHKR : INTEGER; (¥address of checker routine %)
PCWADSAS ¢t INTEGER; (¥size of DSA in bytes (144) %)
PCWAMEMF ¢ INTEGER; (¥addr of memory fixup routine ¥)
PCWAFLAG : INTEGER; (¥Inter-language communication ¥)
PCWAPICA : ALFA; (XPICA save area %)
PCWASEED : INTEGER; (¥seed of '"RANDOM' function %)
PCUWAXEND : INTEGER; (¥end of stack for SETMEM %)
PCWAECNT ¢ INTEGER; (Xerror count until abend ¥)
PCWACHK : INTEGER; (¥address of check routine)
PCWACMEM ¢ INTEGER; (¥current memory in use ¥* 3
PCWASTAX : spacel20] of CHAR; (xS5TAX list form *)
PCWAEOPN : BOOLEAN; (XTRUE if PCWAEQUT is open %)
PCWADINT : BOOLEAN; (XTRUE if debugger initializied %)
PCWATSO : BOOLEAN; (XTRUE 1f TS0 environment %)

: BOOLEAN; (¥reserved ¥)
PCWAATTN : INTEGER; (¥address of attn handling *)
PCWAFCNT : INTEGER; (¥cnt of files without DDnames %)
PCWASIZE : INTEGER; (¥size of initial alloc for pcuwaX)
PCWADINA : INTEGER; (¥Address of AMPDINIT or nil %)
PCWABOPA ¢ INTEGER; (¥Address of AMPDIBOP or nil ¥)
PCWABBA ¢ INTEGER; (¥Address of AMPDIBB or nil ¥)
PCWAERAD : INTEGER; (¥Error address - CHKR or DIAG x)
PCWAFSTK : INTEGER; (¥Chain of free dsa stack elems %)
PCWAENDA : INTEGER; (¥Address of AMPDEPIL or nil %)
PCWAPROC(1200) : spacel64] of CHAR; (¥Work area for PROCESS %)
PCWAUSER(1264) : spacel64] of CHAR; (¥Area reserved for user %)
PCWAEOUT(1328) : TEXT; (¥ERROR QUTPUT PCB *)
PCWAOUT(1392) : PCB; (¥QUTPUT PCB %)
PCWAINC(146456) : PCB; (*¥INPUT PCB ¥)
PCWAPDAT(1520) : STRING(25%); (¥actual parm list after format %)
PCWAERSA(1776) : SPIEDSA; (¥savearea for error routines *)
PCWAPIE ¢ PSW; (XPSW from PIE %)
PCWASPIE : INTEGER;
PCWAMEMA(1984%)

arrayI[MEM_LEVELS] of SPACE_DESC;
(¥space for memory allocator %)
end;
Figure 76. Pascal Communications Work Area
The Pascal Communications Work Area is global information about the execution
always addressable from register 12. of the program.

This area of memory is used to contain

98 Pascal/VS Programmer's Guide

P

The area is divided into two parts,
each 1s 2048 bytes in length. The
first part contains data that needs to
be addressahble; the second is composed
of the small routines used to augment
the generated code (such as string con-
catenation). Figure 76 on page 98
shows the structure of the first half
of the PCWA. Each field is described
below:

PCHAENDS
a pointer to the end of the current
DSA stack.

PCUACURS
a pointer to the top of the current
DSA stack.

PCHASELF
a self defining field that is set
to "PCWA'.

PCUHAFLZ2
flags used to enable runtime fea-
tures.

PCHARC
the value assigned by the last exe-
cution of RETCODE or =zero if
RETCODE has not been called.

PCHAFILE
a pointer to the first file (PCB)
that has been opened but not
closed.

PCHAPARM
a pointer to the parameter string
passed to the program.

PCHAMODS
a pointer to the head of a chain
that 1links modules together as
required by the interactive
debugger.

PCUHAESAP
contains the pointer to the save
area for the caller of the Pascal
program.

PCHADISP
the runtime display - a stack of 8
base registers that contains the
address of the DSAs that are avail-
able to the executing routine.

PCUADTMP
a temporary used by the interactive
debugger.

PCHARTMP
a temporary used in conversion
between floating point numbers and
integers.

PCHARO
a constant that contains the float-
ing point value zero.

PCHA2231

a constant that contains the float-
ing point value of 2 raised to the
31 power minus 1 in an unnormalized
form.

PCHAMASK
eight bytes that contain masks
which are used in set operations.

PCHAMFIX
a temporary used during runtime
error recovery.

PCHASAVE
used as a register save area when a
program error or checking error
occurs.

PCHAPLST
used when a program error or check-
ing error occurs to build a parame-
ter list in order to invoke a
recovery procedure.

PCHAFIN
address of a procedure which termi-
nates the program no matter what

state it is in. This procedure is
normally HALT.

PCHAALLC
address of a system dependent rou-
tine which is responsible for allo-
cating blocks of storage.

PCHADLLC
address of a system dependent rou-
tine which releases blocks of stor-
age.

PCHADFLT
the default number of bytes of
storage that the allocation rou-
tine will allocate when called.

PCHACHKR
the address of the routine which is
invoked to diagnose a checking
error.

PCUADSAS
the size of the smallest DSA. Its
value is 144.

PCHAMEMF
contains the address of the memory
fixup routine, which is called when
the DSA stack overflows.

PrHAFLAG
a flag used when communicating
between different languages.

PCHAPICA
is used for a save area for the
PICA.

PCHASEED
contains the current seed for the
RANDOM function.

PCHAXEND
contains the true end of the cur-
rent stack, PCWAENDS may not be
correct, PCWAENDS is made incor-

Code Generation for the IBM/370 99

rect in order to force a call to
AMPXMEMF so that a DSA may be ini-
tialized (if SETMEM option is ena-
bled).

PCUAECNT
contains the number of non-fatal
errors which will be tolerated
before the program will be abended.

PCHACHK
contains the address of the routine
which gains control when a checking
error occurs. This routine is nor-
mally AMPXCHKR.

PCWACHEM
defines which heap is in use, nor-
mally the value is one, which indi-
cates that the wusers heap is
available.

PCHASTAX
contains the list form of the STAX
macro.

PCHAEOPN
a flag that indicates whether the
error file, PCWAEOUT has been
opened.

PCWADINT
is a flag indicating whether
AMPDCOM (debugger common area) has
been initialized yet.

PCHATSOD
is a flag indicating whether we are
executing in a TS0 environment.

PCUHAATTN
contains the address of the termi-
nal attention routine.

PCWAFCNT
contains the number of the next
generated DDname.

PCUASIZE
contains the size of the initial
allocation of the PCKHA.

PCUADINA
contains the address of the
AMPDINIT routine, which initial-

izes the interactive debugger.

PCUHABOPA
contains the address of the
AMPDIBOP routine, which is invoked
at each procedure entry when the
debugger is active.

100 Pascal/VS Programmer's Guide

PCHABBA
contains the address of the AMPDIBB
routine, which is invoked at each
basic block of code when the
debugger is active.

PCHAERAD
contains the offending address
when a checking error or a program
error occurs.

PCHAFSTK
points to the beginning of a chain
of all free blocks of storage.

PCHAENDA
address of the AMPDEPIL routine,
which is invoked from the epilogue
of each routine when the debugger
is active.

PCHAFROC
reserved for future use.

PCUHAUSER
reserved for Pascal/VS users.

PCHAEQUT
the file (PCB) to where execute
time error diagnostics is sent.

PCHAQUT
the PCB for the standard file OQUT-
PUT.

PCHAIN
the PCB for the
INPUT.

PCWAPDAT
a string that contains the passed
in symbolic parameter list after it
it has been formatted.

standard file

PCHAERSA
a small save area used when a SPIE
exit is invoked.

PCHAPIE
a place to save certain information
from the SPIE.

PCHASPIE
spie work area

PCHAMEMA
descriptors used to control the
allocation and deallocation poli-
cies of dynamic storage and 1I/0
buffers.

12.8 PCB - PASCAL FILE CONTROL BLOCK

PCB = (¥Pascal Control Block *)
record

PCBFILEP BUFFERP; (%¥file pointer ¥)
PCBFLAGS FILEFLAGS; (%Xfile flags %)
PCBELEM HALFWORD; (¥length of file component %)
PCBHAME ALFA; (¥file-variable name %)
PCBCODE : MagicNumber; (¥initialization test *)
PCBBUFIDX: HALFWORD; (Xbuffer index %)
PCBBUFLEN: HALFWORD; (¥buffer length %)
PCBBUFP BUFFERP; (Xpointer to start of buffer x)
PCBOPTP OPTP; (¥ptr to OPTIONs descriptor %)
PCBLAST PCBP; (*¥link to last PCB of chain %)
PCBNEXT PCBP; (¥link to next PCB of chain %)
PCBICBP ICBP; (¥ptr to Implem. Ctrl Block *)
PCBSTART HALFWORD; (¥initial value of PCBBUFIDX x)
PCBSTAT I0OSTATUS; (¥status of last open %)
CHAR; (¥<not-used> %)

INTEGER; (¥<not-used> %)

INTEGER; (¥<not-used>)

INTEGER; (¥<not-used> *)

INTEGER; (¥<not-used> %)

end;
Figure 77. Pascal file Control Block (PCB) format

Every Pascal/VS file is represented by
a Pascal control block (PCB) An PCB is
composed of 64 bytes of space.

The fields are defined as:

PCBFILEP
points to
the file.

PCBFLAGS
set of file flags (16 bits). The
flags are:

FINPUT

the current element of

indicates that
open for input.

FOUTPUT indicates that
open for output.

file s

file 1is

FTEXT the file is of type TEXT.

FEOLN end-of-line condition is
true.

FEOF end-of-file condition 1is
true.

FFIXED file has fixed length
records.

FINTER the file was opened as an

interactive file.

FSTATUS the user will check
PCBSTAT and report the
errors.

FFEOL end-of-line condition is
true, but not as a result

of READLN.

FOPTS an options string was
specified in the last
open.

PCBELEM
the length of one component of the
file.

PCBNAME

the DDNAME of the file.

PCBCODE
an encoded value that is used to
test whether the PCB has been ini-
tialized; this is not required for
files which are local variables but
is needed for files that are allo-
cated dynamically (NEW).

PCBBUFIDX
byte index
(PCBBUFP).

into the I/0 buffer

PCBBUFLEN
total length of buffer in bytes.

PCBBUFP
address of the beginning of the
buffer.

PCBOPTP
address of the control block that
describes the information passed
through the options string as the
file is being opened. The proce-
dures which open a file and pass an

options string are: RESET,
REWRITE, UPDATE, TERMIN, TERMOUT,
PDSIN or PDSOUT.

PCBLAST

Code Generation for the IBM/370 101

back chain of currently open PCBs.

PCBNEXT

forward chain of currently open
PCBs.

PCBICBP

102

points to a system dependent con-
trol block to be used by the lowest
level of interface to the I0 access
methods.

Pascal/VS Programmer's Guide

PCBSTART

contains the initial value of
PCBBUFIDX, which is used to deter-
mine if the current buffer contains
any data that needs processing pri-
or to closing the file.

PCBSTAT

status of the file.

It is sometimes desirable to invoke
subprograms (procedures) written in
other programming langauges: this is
useful to obtain services not available
directly in Pascals/Vs. It is also
desirable to have a Pascal/VS procedure
called from a non-Pascal program: this
would allow vyou to take advantage of
Pascal in an existing application with-
out rewriting the entire application.
This chapter will discuss the options
available to you and what you must do
in order to have this flexibility.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.0 JINTER LANGUAGE COMMUNICATION

We can divide inter-language communi-
cation into two classes:

U The Pascal procedure is the calling
procedure and the non-Pascal pro-
cedure is being called.

. The Pascal procedure is called from
a non-Pascal calling procedure.
Your options are summarized in

Figure 78.

Pascal as the calling language Pascal as the called language
FORTRAN
Define procedures and functions Use a call statement in FORTRAN
in Pascal using the FORTRAN to call the Pascal procedure.
directive. This enables you to The Pascal procedure must be
call a subprogram written in defined with the MAIN directive.
FORTRAN. After the last call to a Pascal
procedure you must call PSCLHX
(Pascal halt execution).
Assembler
Define procedures and functions Use a V-type constant in the
in Pascal using the FORTRAN or Assembler routine to define the
the EXTERNAL directive. If vou Pascal entry point. You must
use EXTERNAL you will be able to |define the Pascal procedure as
specify an arbitary Pascal EXTERNAL, MAIN, or REENTRANT.
parameter list. After the last call to a Pascal
procedure you must call PSCLHX.
COBOL
Define procedures and functions Use a call statement in COBOL
in Pascal using the FORTRAN to call the Pascal procedure.
directive. This enables you COBOL should be compiled with
to call a subprogram uwritten in the 'NODYNAM' option and the
COBOL. You may desire to call call must be a call of a
ILBOSTPO prior to calling a literal. The Pascal procedure
COBOL program. Consult the must be defined with the MAIN
COBOL Programmer's guide for directive. After the last call
details. to a Pascal procedure you must
call PSCLHX.
PL/I
Define procedures and functions Use a call statement in PL/I to
in Pascal using the FORTRAN call a Pascal procedure. The
directive. This enables you PL/1 procedure should specify the
to call a subprogram written in [Pascal as an EXTERNAL. After the
PL/I. You should define the PL/I |last call to a Pascal procedure
procedure with the FORTRAN you must call PSCLHX.
option. Consult the PL/I 0S
Programmer's guide for further
details.
Figure 78. Inter Language Communication

Inter Language Communication 103

TNL SN20-4445 (31 December 1981) to SH20-6162-1

The details of Pascal/VS linkage con-
ventions are discussed in the chapter
"Code Generation for the IBM/370"™ on
page 91. You should familiarize your-
self with this section - especially if
you plan to use Assembler language.

13.1 LINKING TO ASSEMBLER ROUTINES

Writing an Assembler language routine
for Pascal/VS is a simple operation
provided that a set of conventions are
carefully followed. There are two rea-
sons for the need for these
conventions:

1. Pascals/VS parameter passing con-
ventions: As described in "Parame-

ter Passing™ on page 95, Pascal/V$s
parameters are passed in a variety
of ways, depending on their attri-
butes.

2. JThe Pascal/VS environment: This is
an arrangement of registers and
control blocks used by Pascal/VSs to
handle storage management and run-
time error recovery. (see "Regis-
ter Usage" on page 91.)

13.1.1 Uriting Assembler Routine With
Minimum Interface

Writing an Assembler routine with the
minimum interface requires the least
khowledge of the runtime environment.
However, such a routine has the follow-
ing deficiencies:

. It may not <call a Pascal/vs
routine;

. It must be non-recursive;

. If a program error should occur

(such as divide by zero), the Pas-
cals/VS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascal/VS program invokes an
Assembler language routine, register
14 contains the return address and reg-
ister 15 contains the starting address
of the routine. The routine must fol-
low the System/370 linkage conventions
and save the registers that will be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
will contain the address of the regis-
ter save area provided by the caller,
and register 1 will point to the first
of a list of parameters being passed
(if such a list exists). Once the reg-
ister values are stored in the caller's
save area, the save area address (reg-
ister 13) must be stored in the
backchain word in a save area defined
by the Assembler routine itself.
Before returning to the Pascal/VS rou-
tine, the registers must be restored to
the values that they contained when the
Assembler routine was invoked.

If you insert your Assembler
instructions at the point indicated in
the skeletal code shown in Figure 79,
your Assembler routine can be called
from a Pascal/VS routine and you need
have no knowledge of the Pascal/Vs
environment.

anyname CSECT
ENTRY procname
procname DS 0

H
STM 14,12,12(13)
BALR basereg,0
USING ¥,basereg
ST 13,5AVEAREA+4
LA 13,SAVEAREA

invoked from Pascal/Vs

declare routine name as an entry point
entry point to routine
save Pascal/VS registers in Pascal/VS save area
establish base register

store Pascal/VS save area address
load address of local save area

body of Assembler routine

* : restore the floating point registers if
* they were saved
L 13,64(13) restore Pascal/VS registers
LM 14,12,12(13)
BR 14 return to Pascal/VS$s
SAVEAREA DC 20F'0" local save area
END
Figure 79. Minimum interface to an Assembler routine: skeletal code to be

104 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.1.2 Uriting Assembler Routine with General Interface

YES
EPILOG DROP=]

NO

where:

passed-in parameters.

defaults:
LASTREG=12
VARS=0
PARNS=0

DROP=YES
Figure 80. PROLOG/EPILOG macros

procname PROLOG LASTREG=r,VARS=n,PARMS=p

procname is the entry point name of the routine.

LASTREG is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.

VARS is the number of bytes required for any local data, including
PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

DROP indicates whether register 2
ter after the epilogue is executed.

is to be dropped as a base regis-

If an Assembler routine has at least
one of the following characteristics,
the general interface must be used:

] It calls a Pascals/VS routine;
. It is recursive;

L Program errors must be intercepted
and diagnosed by the Pascal/VS run-
time environment.

Two Assembler macros are available
which are used to generate the prologue
and epilogue of an Assembler routine
with a general Pascal/VS interface.
The macro names are PROLOG and EPILOG
and their forms are described in the
figure above.

The PROLOG macro preserves any regis-
ters that are to be modified and allo-
cates storage for the DSA. It also
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4096 bytes
of code.

Upon entering a routine prior to exe-
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

. Register 1 - address of the parame-
ter list built by the caller, which

is 144 bytes into the DSA to be
used by the called routine.

. Register 12 - address of the Pascal
Communication Work Area (PCHA).

. Register 13 - address of the DSA of
the calling routine.

. Register 14 - return address.

. Register 15 - address of the start
of the called routine.

Upon executing the code generated by
the PROLOG macro, the registers are as
follows:

° Register 0 - unchanged

L Register 1 - address of an area of
storage in which parameter lists
may be built to pass to other rou-
tines.

. Register 2 - base register for the
first 4096 bytes of code within the
invoked routine.

U Registers 3 through 11 - unchanged.

L Register 12 - unchanged

. Register 13 - address of the local

DSA of the routine just invoked.
The first 144 bytes is the register

Inter Language Communication 105

TNL SN20-4445 (31 December 1981) to SH20-6162-1

save area for the invoked routine.
Following the save area is where
the parameters passed in by the
caller are located. Immediately
after the parameters is storage for
local variables followed by a
parameter list build area.

. Register 14 - unchanged.
. Register 15 - unpredictable.

The EPILOG macro restores the saved
registers, then branches back to the
calling routine. In order for the epi-
logue to execute properly, register 13
must have the same contents as was

established by the prologue. The macro
Wwill cause register 2 to be dropped as
a base register unless DROP=NO is spec-
ified.

The contents of the floating point reg-
isters are not saved by the PROLOG mac-
ro. If the floating point registers
are modified, they must be restored to
their original contents prior to
returning from the routine.

A skeleton of a general-interface
Assembler language routine which may be
called by a Pascal/VS program is given
belouw.

XK XK XK XK XK X XXX

csectnam CSECT

invoked from Pascals/Vs$s

The following names have the indicated meaning

'csectnam' is the name of the csect in which the routine resides

"procname' is the name of the routine.

'parmsize' is the length of the passed-in parameters

'varsize' is the storage required for the local variables

'lastreg' is the highest register (up to 12) which will be modified

'plist' is the length of the largest parameter list required for calls
to other routines from "procname"

<== insert code here

*
procname PROLOG LASTREG=lastreg,VARS=varsizetparmsize,PARMS=plist
y .
EPILOG
END
Figure 81. General interface to an Assembler

routine: skeletal code to be

106 Pascal/VS Programmer's Guide

13.1.3 Receiving Parameters From Rou-
tines

Parameters received from a Pascals/VS

routine are mapped within a list in the

manner described in "Parameter

Passing” on page 95. At invocation

iggister 1 contains the address of this
ist.

If the general interface (see "Writing
Assembler Routine with General Inter-
face" on page 105) is used in writing
the Assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

13.1.4 Calling Pascalsvs Routine from
Assembler Routine

An Assembler language routine that was
invoked from a Pascal program may call
a Pascal procedure provided that:

. the general Pascal/VS interface
was incorporated within the Assem-
bler routine, and

. the Pascal/VS routine to be called
is declared as external.

See Figure 83 on page 108 as an
example.

If the Assembler routine was not
invoked from a Pascal/VS routine, then
the Pascals/VS run time environment must
be set up prior to entering the
Pascals/VS routine. To do this, the

TNL SN20-4445 (31 December 1981) to SH20-6162-1

Pascal procedure must be declared with
the MAIN or REENTRANT directive. (See
Figure 85 on page 110 for an example.)
When such a procedure is invoked for
the first time, a minimum environment
is created. On subsequent calls, this
environment is restored prior to exe-
cuting the procedure. To remove the
environment (free stack space, etc.),
the procedure PSCLHX is provided.

Prior to making the call to a Pascal
procedure from Assembler language,
register 1 must contain the value
assigned to it within the PROLOG code.
Parameters to be passed are stored into
appropriate displacements from regis-
ter 1 as described in "Parameter
Passing" on page 95.

At the point of call, register 12 must
contain the address of the Pascal Com-
munications Work Area (PCWA). This
Wwill be the case if the Assembler rou-
tine was invoked from a Pascal/VS rou-
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into register 15 and then the
instruction "BALR 14,15' is executed.

13.1.5 sample Assembler Routine

In Figure 82 on page 108 and Figure 83
on page 108, a sample Assembler routine
is listed which may be called from a
Pascals/VS program. This routine exe-
cutes an 0S TPUT macro to write a line
of text to a user's terminal.

Inter Language Communication 107

TNL SN204445 (31 December 1981) to SH20-6162-1

type
BUFINDEX

procedure TPUT(

procedure ERROR(

0..80;
BUFFER = packed array[1..801 of CHAR;

(¥this routine is called from the assembly

(¥this routine is in assembly languageX)

const BUF : BUFFER;
LEN : BUFINDEX);
EXTERNAL;

language routineX)

RETCODE: INTEGER;
const MESSAGE: STRING);
ENTRY;
begin
gRITELN(OUTPUT, MESSAGE, ', RETURN CODE = ', RETCODE)
enag;
Figure 82. Pascal/VS description of Assembler routine: the Assembler rou-
tine is shown in Figure 83.
TIOSEG CSECT
TPUT PROLOG LASTREG=%,VARS=8 only registers 3 and % are modified
*
L 3,164(13) load address of '"BUF' parameter
L 4,148(13) laod value of 'LEN' parameter
TPUT (3),(4) write content of 'BUF' to terminal
LTR 15,15 check return code
BZ TPUTRET if no error then return
* build parm list for call to 'ERROR'
ST 15,0(1) assign to "RETCODE' parameter
LA 3, TPUTMSG load address of message
ST 3,6(1) assign to 'MESSAGE' parameter
L 15, =V(ERROR) load address of 'ERROR' procedure
BALR 14,15 call '"ERROR'
* .
TPUTRET EPILOG
*
TPUTMSG DC AL2C(L"TPUTTEXT) halfword length of string
TPUTTEXT DC C'TPUT ERROR! message text
END
Figure 83. Sample Assembler routine: this routine is invoked by a
Pascal/VS routine and, within itself, invokes a Pascal/VS rou-
tine.
108 Pascal/VS Programmer's Guide

13.1.6 Calling a Pascalsvs Main Pro-
gram from Assembler Routine

A Pascal/VS program may be invoked from
an assembler language routine by load-
ing a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

The convention employed in passing
parameters to a program is dependent on
whether vyou are running under CMS or
under TS0 (or 0S Batch). Both con-
ventions require that register 1 be set
to the address of the parameter data.

Program to be called:
program test;
beéiﬁ

end.

LA~ 1,PLIST
L 15,=V(TEST)
BALR 14,15

PLIST DS OF
DC CL8'TEST'
DC CL8"token 1"
DC CL8"token 2"

DC CL8'token n'
DC 8X'FF'

LA~ 1,PLIST
L 15,=V(TEST)
BALR 14,15

PLIST DS OF
DC XL1'80°"
DC AL3(PARMS)

PARMS DC FL2'length'

Figure 84.

Assembler instructions to perform the call under CMS:

Assembler instructions to perform the call under V52 (and TS0):

set first bit of address

length of parameter string
DC C'parm string goes here'

Example of calling a Pascal/VS program from an assembler routine

Inter Language Communication 109

T0SQ

ZERO

Figure 85.

SEGMENT SQUARE;

procedure SQUARE(var X : REAL);

MAIN;
procedure SQUARE;
begin
X = X % X
end;

CSECT

USING ¥%,15

STM 14,12,12(13)
ST 13,S5SAVEAREA+4
BALR 2,0

USING %,2

LA 13,5AVEAREA
LA 1,PLISTI]

L 15, =V(SQUARE)
BALR 14,15

LA 1,PLIST2

L 15,=V(PSCLHX)
BALR 14,15

L 13,SAVEAREA+4
LM 14,12,12(13)
BR 14

PLIST1 DC A(X)
X

DC D'4.0"

PLISTZ2 DC A(ZERO)

DC Fror

SAVEAREA DS 18F

END

establish addressability

save callers
save address

registers
of callers save area

establish addressability

set new save
REG 1 POINTS
load address
call SQUARE

REG 1 POINTS
LOAD ADDRESS
call SQUARE

return

area
TO PARAMETER LIS
of Pascal procedure

TO PARAMETER LIST
OF PASCAL PROCEDURE

PARAMETER LIST
PARAMETER LIST

Example of Assembler as the caller to Pascals/V$s

110

Pascal/VS Programmer's Guide

SUM

program FROMPSCL;
procedure SUM(var I

(¥Pascal program heading
INTEGER;
INTEGER);

(¥Define two local variables

(XSet running sum to zero
(¥loop through ten values

(¥compute the next sum

I,J);
WRITELN('The current running sum is ',1:0);

const J
FORTRAN;
var
I,J :INTEGER;
begin
I :=0;
for J := 1 to 10 do
begin
SUM(
end;
end .
CSECT
USING *,15

STM 14,12,12(13)

ST 13,SAVEAREA+4

BALR 5,0
USING X,
LA 13
L 2,
L 3,
L 4,
A 3,
ST 3,
L 13
LM 14,12,12(13)
BR 14

SAVEAREA DS 18F

Figure 86.

END

(¥FROMPSCL

establish addressability
save callers registers
save address of callers save area

establish addressability
set new save area
get address of I

get I

get address of J

I =1+ J

return the new value of 1
return

Example of Pascal/VS as the caller to Assembler

%)

Inter Language Communication

111

13.2 PASCAL/VS AND FORTRAN

Communication between FORTRAN and
Pascal/VS is accomplished by use of the
MAIN directive (FORTRAN to PascalsV$s)
and the FORTRAN directive (Pascal/VS to
FORTRAN) .

13.2.1 Péscal/vs as the Ccaller to
FORTRAN

Data may be passed between FORTRAN and
PascalsVS through the parameter list or
FORTRAN COMMON. If you choose to COM-
MON specify the name of the COMMON
block as a PascalsVS daf variable.

proaram FROMPSCL;
procedure SUM(var I : INTEGER;
const J : INTEGER);
FORTRAN;
var
I,J :INTEGER;
begin
I := 0;
for J := 1 to 10 do
begin
SUM(I,J);
WRITELN('The current running
end;
end .

SUBROUTINE SUM(I,J)
I =1+

RETURN

END

Figure 87. Example of Pascal/VS as the

(¥Pascal program heading *)

(¥Define two local variables x)

(%¥Set running sum to zero ¥)
(Xloop through ten values x)
(¥compute the next sum %)

sum is ",I1:0);
 (XFROMPSCL *)

caller to FORTRAN

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by
FORTRAN. This restricts the form of
the parameter list, namely you may not
pass a parameter by value; you may pass
a parameter by var or by const. If you
choose the latter machanisnm, the
FORTRAN subprogram must not modify the
parameter.

112 Pascal’/V5S Programmer's Guide

Execution errors that occur during the
execution of the FORTRAN program will
be handled by the Pascal runtime sup-
port routines. If you desire to enable
the error handling of FORTRAN vou
should invoke "VSCOM#" at the appropri-
ate entry point. Consult the VS
FORTRAN Application Programming Guide

5C26-3985 for details

e

13.2.2 FORTRAN as the Caller to Pas-

calsvs

TNL SN20-4445 (31 December 1981) to SH20-6162-1

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);
MAIN;
procedure SQUARE;
begin
X 1= X ¥ X
end; .

Pascal/VS procedure to be called from FORTRAN program:

AREAL = 4.0
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL
CALL SQUARE(AREAL)
PRINT 1, AREAL

1 FORMAT (F10.4)

c TERMINATE PASCAL ENVIRONMENT
CALL PSCLHX(0)
STOP
END

FORTRAN program that invokes Pascal procedure:

Figure 88. Example of FORTRAN as the caller to Pascal/V$s

Pascal/VS permits a FORTRAN program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ-
ment for 1its execution. Subsequent

calls will use the same environment
that was set up on the first call.

It is your responsibility to clean up
the Pascal environment; this is done by
invoking the procedure "PSCLHX".

If Pascal is not the main program, then

Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 113

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.3 PASCAL/VS AND COBOL

Communication between COBOL and
Pascal/VS is accomplished by use of the

13.3.1 Pascalsvs as the Caller to
COBGCL

MAIN directive (COBOL to Pascal/VS) and
the FORTRAN directive
COBOL).

(Pascals/VS +to

program FROMPSCL:;
procedure SUMX(var I

FORTRAN;
var
I,J :INTEGER;
begin
I := 0;
for J := 1 to 10 do
begin
SUMX(I,J);

end;
end .

Pascal program that calls a COBOL subprogram:

INTEGER;
const J : INTEGER);

WRITELN('The current running

(XPascal program heading *)

(¥Define two local variables)

(%XSet running sum to zero %)
(¥loop through ten values %)
(¥compute the next sum *x)

sum is ',I:1);

(XFROMPSCL %)

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.

LINKAGE SECTION.

PROCEDURE DIVISION USING I J.
ADD J TO I.
GOBACK.

Figure 89.

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.

Example of Pascals/VS as the caller to COBOL

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by FOR-
TRAN which is also equivalent to COBOL.
This restricts the form of the parame-
ter list, namely you may not pass a
parameter by value; you may pass a
parameter by var or by const. If you
choose the latter machanism, the COBOL
:ubprogram must not modify the parame-
er.

Execution errors that occur during the

execution of the COBOL program will be
handled by the Pascal runtime support

114 Pascal/VS Programmer's Guide

routines. Pascal will not issue a call
to ILBOSTPO0 (which sets up the COBOL
error recovery). You may call this
routine if you would like the "STOP
RUN" statement of COBOL to treat the
Pascal calling procedure as a main
entry point of a COBOL program. Con-
sult the 0S/VS_COBOL Compiler and
Library Programmer's Guide, SC28-6483

for details.

A COBOL program which is communicating
with Pascal/VS must not use the dynamic
loading feature.

A,

13.3.2 COBOL as the Caller to

PascalsVvs

TNL SN204445 (31 December 1981) to SH20-6162-1

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);
MAIN;
procedure SQUARE;
begin
X 1= X ¥ X
end;

Pascal procedure that is to be called from COBOL:

IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.

PROCEDURE DIVISION.
MOVE 2 TO AREAL.
CALL "SQUARE™ USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX"™ USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

COBOL program which calls a Pascal procedure:

77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.

Figure 90. Example of COBOL as the caller to Pascals/V$s

Pascal/VS permits a COBOL program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc-
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ-
ment for its execution. Subsequent

calls will use the same environment
that was created in the first call.

It is your responsibility to clean up
the Pascal environment, this is done by
invoking the procedure "PSCLHX". If
Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 115

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.4 PASCAL/VS AND PL/I

Communication between PL/1 and
Pascal/VS is accomplished by use of the
MAIN directive (PL/I to PascalsVS) and
the FORTRAN directive (Pascals/VS to

13.4.1
PL/I

Pascal/sVs as the Caller to

PL/I). In addition, you may use the
REENTRANT directive instead of the MAIN
directive in order to develop a REEN-
TRANT call to Pascal.

program FROMPSCL;

FORTRAN;
var
I,J :INTEGER;
begin
I :=0;
for J := 1 to 10 do
begin
SUM(I,J);
end;
end .

Pascal program which calls a PL/I procedure:

procedure SUM(var I : INTEGER;
const J : INTEGER);

WRITELN('The current running sum is ',I:0);

(XPascal program heading %)

(¥Define two local variables X)

(%¥Set running sum to =zero *)
(%Xloop through ten values Xx)
(Xcompute the next sum %)

(XFROMPSCL ¥)

PL/I procedure that is invoked from

SUM: PROC (I,J) OPTIONS(FORTRAN);
DCL (I,J) FIXED BINARY(31,0);
I =1+ J;
RETURN;
END;

Figure 91. Example of Pascals/V$S as

Pascal:

the caller to PL/I

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions emploved by FOR-
TRAN. PL/I will employ FORTRAN calling
conventions if "FORTRAN" is specified
in the OPTIONS clause. Consult the
PL/I Programmer's Guide,
SC33-0037(CMS) and SC33-0006(0S) for
details.

116 Pascal/VS Programmer's Guide

The FORTRAN directive restricts the
form of the parameter list, namely you
may not pass a parameter by value; you
may pass a parameter by either var or
const. If you choose to latter mech-
anism, the PL/1 procedure must not
modify the parameter.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.4.2 PL/I as the Caller to
PascalsVvs

Pascal procedure which is called from PL/I:

SEGMENT SQUARE;
procedure SQUARE(var X : REAL);
MAIN;
procedgre SQUARE;
begin
X 1= X ¥ X
end; .

PL/I program which calls a Pascal procedure:

T0SQ: PROC OPTIONS(MAIN);
DCL SQUARE ENTRY EXTERNAL;
DCL PSCLHX ENTRY(FIXED BINARY(31,0)) EXTERNAL;
DCL ZERO FIXED BINARY(31,0);
AREAL = 4.0;
CALL SQUAREC(AREAL);
PUT LIST(CAREAL);
CALL SQUAREC(AREAL);
PUT LISTCAREAL);
CALL SQUARE(AREAL);
PUT LIST(AREAL);
CALL SQUAREC(CAREAL);
PUT LISTCAREAL);

ZERD = 0;
CALL PSCLHX(ZERO);
END;

Figure 92. Example of PL/I as the caller to Pascals/V$s

Inter Language Communication

117

TNL SN20-4445 (31 December 1981) to SH20-6162-1

SEGMENT SQUARE;
precedure SQUARE(var E
REENTRANT;
procedure SQUARE;

begin
X 1= X ¥ X
end;

Pascal procedure which is called from a reentrant PL/I program:

INTEGER; var X

REAL);

TOSQ: PROC OPTIONS(MAIN REENTRANT);
DCL SQUARE ENTRY EXTERNAL;

‘DCL SAVE FIXED BINARY(31,0);
AREAL = 4.0;

SAVE = 0;

CALL SQUARE(SAVE,AREAL);
PUT LISTCAREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTC(AREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTC(AREAL);

CALL SQUARE(SAVE,AREAL);
PUT LISTC(AREAL);

CALL PSCLHX(SAVE);

END;

TRANT directive

Reentrant PL/I program which invokes a Pascal procedure:

DCL PSCLHX ENRTRY(FIXED BINARY(31,0)) EXTERNAL;

Figure 93. Example of PL/I as the caller to Pascals/VS: Use of the REEN-

Pascal/VS permits a PL/I program to

call a Pascal procedure as a

subprogram. To do this you specify the

igscal procedure with the MAIN direc-
ive.

The first invocation of any procedure
that has a MAIN directive associated
with it will cause Pascal to establish
the appropriate environment for its
execution. Subsequent calls will use
the same environment that was created
on the first call.

A call to PSCLHX will dispose of the
Pascal environment and release all mem-
ory that it utilizes.

The Pascals/VS run time support will
not attempt to handle any errors during
execution, unless the main program is
in Pascal.

The REENTRANT directive may be used in
place of the MAIN directive if the pro-
gram must be reentrant. In this case
you must assist Pascal/VS in keeping
track of the location of the Pascals/V$s
execution environment. The first
parameter to a REENTRANT procedure must
be an integer passed by var. The first
call to the procedure must pass as its
first parameter, a FIXED BIN(31,0) var-
iable which has been set to the value
zero. Upon return from the first call,

118 Pascal/VS Programmer's Guide

this variable will contain an address
which refers to the newly created Pas-
cals/Vvs environment. This variable
should be passed unaltered to subse-
quent calls so that the PascalsVs
environment may be reentered.

To terminate the Pascals/VS environment
that was set up by the REENTRANT proce-
dure, the "PSCLHX" should be called
with the variable that contains the
address. See Figure 93 for an example.

13.5 DATA TYPES COMPARISON

Every language has numerous data types
that are suited for the applications
for which the language was intended.
When passing data between programs
written in different languages vou must
be aware which data types are the same
and where there is no equivalent repre-
sentation.

Some data types in other languages have
no direct equivalent in Pascal;
however, you can often create new user
data types in Pascal that will simulate
some of the data types found in other
languages. For example, vyou could
define a record type that is identical
to FORTRAN's COMPLEX type.

Figure 94 compares Pascal data types
with the equivalent
and PL/I.

in FORTRAN,

Pascal/VS makes no attempt to remap any
| storage when an inter-language call is

TNL SN20-4445 (31 December 1981) to SH20-6162-1

made. This means that beause FORTRAN
stores its arrays in column-major order
and Pascal stores its arrays in
row-major order, a call between FORTRAN
and Pascal/VS procedures appears to
transpose the array.

Data Type Equivalences Between Different Langauges

Pascal/Vs FORTRAN COBOL PL/I

CHAR CHARACTERX1 PIC X CHAR

BOCLEAN LOGICALX*1 na . FIXED BINARY(1,0)

INTEGER INTEGERX¢4 PIC 5999999999 FIXED BINARY(31,0)

USAGE IS COMP

packed INTEGERX*2 PIC 59999 USAGE FIXED BINARY(15,0)
~32768..32767 IS COMPUTATIONAL

packed na na na
0..65536

packed -128..127 na na FIXED BINARY(7,0)

packed 0..255 na na na

REAL REAL X8 COMPUTATIONAL-2 REAL FLOAT DEC(16)

SHORTREAL REALX4 COMPUTATIONAL-1 REAL FLOAT DEC(6)

packed CHARACTER*n PIC X(n) or CHAR(n)
arrayll..n] of PIC X OCCURS n

CHAR TIMES

STRING(m) na na CHAR(m) VARYING

set of 0..n na na BIT(n+1)

a id na na POINTER

array dimensioned 0CCURS dimensioned

variable variable

record na record structure

space na na AREA

Figure 94. Data Tvype Comparisons

Inter Language Communication

119

14.1 PROGRAM INITIALIZATION

Upon invoking a Pascal/VS program, the
routine which is responsible for estab-
lishing the Pascal/VS execution time
environment gains control and performs
the following functions:

1. Memory is obtained in which dynamic
storage areas (DSA) are allocated
and deallocated.

2. The Pascal Communication Work Area
(PCWA) 1s created and initialized.

3. An environment is set up to inter-
cept program interrupts (fixed
point overflow, divide by =zero,
etc.)

14.3 EXECUTION SUPPORT ROUTINES

14.0 RUNTIME ENVIRONMENT OVERVIEH

4. The main program is called.

5. Upon return from the main program
any open files are closed.

6. Acquired memory is freed.

7. Control is returned to the system.

14.2 THE MAIN PROGRAM

The main program is called as an ordi-
nary procedure from the environment
setup routine (PASCALVS). The entry
point name of the main program is
AMPXBEGN.

Execution Support Routines

Procedure name Action Performed

AMPXBCLK Initializes the execution clock

AMPXCHKS Checks a set for membership

AMPXCLCK Interogate the execution clock

AMPXCRTE Initialize the PCHWA

AMPXDATE DATETIME procedure

AMPXDATI System date and time

AMPXDBCB Obtains a procedures DBCB pointer

AMPXECLK Ends the the execution clock

AMPXGOTO Handles goto out of block

AMPXGTOK Obtains a token from user's execution parameters

AMPXG12 Returns the contents of register 12

AMPXG13 Returns the contents of register 13

AMPXHALT HALT procedure

AMPXINIT Initializes prior to execution of a Pascal program

AMPXMAIN Interface for calling Pascal for other languages

AMPXMOVE Memory to memory move

AMPXMUS Adds elements to a set

AMPXNAME Obtains a procedures name

AMPXPAD Memory fill memory with blanks

AMPXPARM PARMS function

AMPXRETC RETCODE procedure

AMPXSETV Memory fill of with a value

AMPXSPAR Intialize for PARMS function

AMPXTERM Termination after execution of a Pascal program

AMPXTOK TOKEN procedure

AMPXTRAC TRACE procedure

AMPZABND Abnormal termination routine

AMPZCVD Convert to decimal

CMS CMS procedure

PASCALVS Main entry point for a Pascal/VS main program

PSCLHX Terminates execution for interlanguage calls
These routines provide miscellanaous tion and low 1level routines such as

functions such as program initializa-

fast memory move.

Runtime Environment Overview 121

% _INPUT/OUTPUT ROUTINES

16,

Internal Input/Qutput Routines

Procedure name

Action Performed

AMPXCLOS
AMPXCOLS
AMPXGET
AMPXGETR
AMPXOPEN
AMPXOPN1
AMPXOPN2
AMPXPARS
AMPXPCBC
AMPXPDS
AMPXPUT
AMPXRCHR
AMPXRINT
AMPXRLIN
AMPXRR
AMPXRRDY
AMPXRREC
AMPXRSTR
AMPXRTXT
AMPXSEEK
AMPXSTAT
AMPXTIO
AMPXWB
AMPXWCHR
AMPXWCHS
AMPXWINT
AMPXWLIN
AMPXIWR
AMPXWRDY
AMPXWREC
AMPXWSTR
AMPXWTXT
AMPYCLOS
AMPYDFLT
AMPYGET
AMPYOPEN
AMPYPAGE
AMPYPDS
AMPYPUT
AMPYSEEK
AMPZDAMR
AMPZDAMW
AMPZDCBC
AMPZDCBO
AMPZFIND
AMPZGET
AMPZPUT
AMPZPUTX
AMPZSAMR
AMPZSAMW
AMPZSTOW
AMPZTGET
AMPZTPUT

CLOSE procedure

COLS function

GET procedure (TEXT files)

GET procedure

RESET, REWRITE or UPDATE procedures
Initializes a PCB prior to opening
Sets a PCB after opening

Analyze the optional string on RESET or REWRITE
Closes a file (PCB)

PDS support routines (PDSIN and PDSOUT)
PUT procedure

Reads into a CHAR

Reads into an INTEGER

Reads to end of line (TEXT file)
Reads a REAL value

Prepares a TEXT file for input
Reads one record (non TEXT files)
Reads into a STRING

Reads into an array of CHAR

SEEK procedure

Obtains the status of a file
Terminate I/0 processing

Writes a BOOLEAN value

Moves data to an I/0 output buffer
Writes @ CHAR to a TEXT file

Writes an INTEGER to a TEXT file
Writes an end-of-line to a TEXT file
Writes a REAL value

Prepares a TEXT file for output
Writes one record (non TEXT files)
Writes a string to a TEXT file
Writes an array of CHAR to a TEXT file
System dependent Q5AM close

Applies System dependent defaults to a file
System dependent get procedure
System dependent QSAM open

PAGE procedure

System dependent PDS interface
System dependent put procedure
System dependent seek procedure
Issues a READ for a BDAM data set
BDAM write procedure

Close on an 0S DCB

Open on an 0S5 DCB

Issues 0S5 FIND

Issues a Q5AM GET

Issues a QSAM PUT

Issues a QSAM PUTX

Issues a READ for a BSAM data set
BSAM write procedure

Issues 0S5 STOW

Issues a TGET (0S) or RDTERM (CMS)
Issues a TPUT (0S) or WRTERM (CMS)

The 1/0 operations

cal

122

(which appear as internal procedures ithin the runtime

ls to predefined procedures in environment.
Pascal/VS) are implemented as calls to

Pascal/VS Programmer's Guide

14.5 ERROR HANDLING

Error

Handling

Procedure name Action Performed

AMPXCHKR Intercepts execut
AMPXDIAG

AMPXERR General execution
AMPXIOER I7/0 error interce
ONERROR Default ONERROR p

Intercepts program exceptions

ion time checking errors

time error handler
pt routine
rocedure

When the runtime environment detects an
error condition, it calls a routine to
handle the error. There are several
different routines, one routine for
each of class of error (e.g. 1/0 error,

AMPXERR is the central routine; it is
always called from the other routines:
it then calls ONERROR, the user pro-
vided error handler, and then completes
the error handling.

program exception etc). The routine
16.6 CONVERSION ROUTINES
Conversion Routines
Procedure name Action Performed
AMPTTOR Converts a REAL (EBCDIC) to REAL
AMPXBTOS BOOLEAN to string conversion
AMPXCTOS Converts a CHAR to a string
AMPXGTOS Converts a string to a string
AMPXITOS Converts an INTEGER to a string
AMPX0TOS Converts an offset in a procedure to a statement number
AMPXPACK PACK procedure
AMPXRTOS Conversion for a REAL to a STRING
AMPXSTOC Conversion for a STRING to a CHAR
AMPXSTOG Conversion for a STRING to a STRING
AMPXSTOI Conversion for a STRING to an INTEGER
AMPXSTOR Converts a REAL (EBCDIC) to REAL
AMPXSTOT Conversion for a STRING to an array of CHAR
AMPXTTOS Appends an array of CHAR to a string
AMPXUCAS Lower case to upper case conversion
AMPXUNPK UNPACK procedure
ITOHS Integer to hexadecimal string conversion
There are several places where doing I/0 on TEXT files and when you

Pascal/VS must perform data conver-
sions. They take place when you are

use READSTR and WRITESTR.

Runtime Environment Overview 123

14.7 MATHEMATICAL ROUTINES

Mathematical Routines

Procedure name Action Performed
AMPXATAN ARCTAN function
AMPXCOS C0S function
AMPXEXP EXP function
AMPXLN LN function
AMPXRAND RANDOM procedure
AMPXSIN SIN function
AMPXSQRT SQRT

The predefined functions are provided
as Pascals/VS functions. The Pascals/V$s
compiler changes the user provided name

14.8 STRING ROUTINES

(e.g. SIN)

to an internal name (e.g.
AMPXSIN).

String Routines
Procedure name Action Performed
AMPX$COM COMPRESS function (long strings)
AMPX$DEL DELETE function (long strings)
AMPXSLTR LTRIM procedure (long strings)
AMPX$SUB SUBSTR function (long strings)
AMPXS$TRI TRIM function (long strings)
AMPXCAT Concatenates 2 to 9 strings
AMPXCOMP COMPRESS function (short strings)
AMPXDELE DELETE function (short strings)
AMPXINDX INDEX procedure
AMPXLTRI LTRIM procedure (short strings)
AMPXSUBS SUBSTR function (short strings)
AMPXTRIM TRIM function (short strings)
LPAD LPAD procedure
RPAD RPAD procedure

The predefined functions and proce-
dures are provided as Pascal/VS func-
tions and procedures.
compiler changes the user provided name
(e.g. SUBSTR) to an internal name (e.g.
Several routines are pro-
forms:

AMPXSUBS) .

vided in two

ble. In order to use the short form
the Pascal/VS compiler must determine
that the resulting string will be less
than 1000 bytes long. If the size
can't be limited by compiler analysis,
the compiler uses the long form which
passes the results through the heap.

The Pascal/V$s

long and short.

The short form is always used if possi-

124 Pascal/VS Programmer's Guide

A

14.9 MEMORY MANAGEMENT ROUTINES

Memory Management Routines

Procedure name Action Performed

AMPXALOC Basic storage allocator

AMPXDISP DISPOSE procedure

AMPXFREE Basic storage de-allocator

AMPXIDSP Dispose for the I/0 routines

AMPXINEW New for the I/0 routines

AMPXMARK MARK procedure

AMPXNEW NEW preocedure

AMPXRLSE RELEASE procedure

AMPXTMEM Termination processing for memory management
The NEW procedure generates a call to quent calls to AMPXNEW will obtain
the internal procedure AMPXNEW. This storage.
procedure allocates storage within a
heap. If a heap has not yet been cre- The RELEASE procedure generates a call
ated, NEW will obtain memory from the to the procedure AMPXRLSE. This proce-
operating system to create a heap. dure frees a heap that was previously

created via the AMPXMARK procedure.

The DISPOSE procedure generates a call Subsequent calls to AMPXNEL will obtain
to the procedure AMPXDISP. This proce- storage from the heap which was active

dure deallocates

acquired by a
AMPXHEW.

the heap storage prior to the call of AMPXMARK.
preceding call to

The I/0 routines have access to a sepa-
rate heap i1s controlled with the rou-

The MARK procedure generates a call to tines AMPXINEW and AMPXIDSP. Thus, I/0
the procedure AMPXMARK. This procedure buffers and file control blocks are in
creates & new heap from which subse- a distinct area from the users area.

Runtime Environment Overview 125

/4@\/‘ ®

| Release 2.1 of Pascals/VS has several

di fferences from ‘'standard' Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have suitable
facilities.

15.1 PASCAL/VS RESTRICTIONS

PascalsVs contains the following
restrictions that are not in standard
Pascal.

conformant array parameters
The conformant array mechanism for
passing array variables to rou-
tines is not supported.

Note: In Release 2.0, procedures which

are passed as parameters were
restricted to the outer most nesting
level. In Release 2.1, this restric-

tion was removed.

15.2 MODIFIED FEATURES

Pascal/VS has modified the meaning of a
negative length field qualifier on an
operand within the WRITE statement.

15.3 NEW FEATURES

Pascal/VS provides a number of exten-
sions to Pascal.

. Separately compilable modules are
supported with the SEGMENT defi-
‘nition.

. 'internal static' data is sup-
ported by means of the static dec-
larations.

. 'external static' data is sup-
ported by means of the def and ref
declarations.

. Static and external data may be
initialized at compile time by
means of the value declaration.

L Constant expressions are permitted
wherever a constant is permitted
except as the lower bound of a sub-
range type definition.

L The keyword "range™ may be prefixed
to a subrange type definition to
permit the lower value to be a con-
stant expression.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

15.0 COMPARISON TO PBASCal

A varying length character string
is provided. It is called STRING.
The maximum length of a STRING is
32767 characters.

The STRING operators and functions
are concatenate, LLENGTH, STR,
SUBSTR, DELETE, TRIM, LTRIM, COM-
PRESS and INDEX.

A new predefined type, STRINGPTR,
has been added that permits you to
allocate strings with the NEW pro-
cedure whose maximum size is not
defined until the invocation of
NEW.

A new parameter passing mechanism
is provided that allows strings to
be passed into a procedure or func-
tion without requiring you to spec-
ify the maximum size of the string
on the formal parameter.

The MAXLENGTH function returns the
maximum length that a string vari-
able can assume.

Calls to FORTRAN subroutines and
functions are provided for.

The MAIN directive permits you to
define a procedure that may be
invoked from a non Pascal environ-—
ment. A procedure that uses this
directive is not reentrant.

The REENTRANT directive permits
yvou to define a procedure that may
be invoked from a non Pascal envi-
ronment. A procedure that uses
this directive is reentrant.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the optional string
parameter on the procedures:
RESET, REWRITE, UPDATE, TERMIN,
TERMOUT, PDSIN and PDSOUT.

The parameters of the text file
READ procedure may be
length-qualified.

Files may be opened for updating
with the UPDATE procedure.

Input files may be opened as "IN-
TERACTIVE"™ so that I/0 may be done
conveniently from a terminal.

Files may be opened for terminal
input (TERMIN) and terminal output
(TERMOUT) so that I/0 may take
place directly to the user's termi-
nal without going through the
DDname interface.

Comparison to Pascal 127

TNL SN20-4445 (31 December 1981) to SH20-6162-1

128

Files may be accessed based on rel-
ative record number (random
access).

The PDSIN procedure opens a parti-
tioned dataset (or MACLIB) for
input. The PDSOUT procedure opens
a partitioned dataset (or MACLIB)
for output. A string parameter is
required to set the member name.

The space structure is provided for
processing packed data.

Records may be packed to the byte.

The tagfield in the variant part of
a record may be anywhere within the
fixed part of the record.

Fields of a record may be unnamed.

Tag specifications on record vari-
ants may be ranges (x..y).

Integers may be declared to occupy
bytes and halfwords in addition to
full words, as a result of the
packed qualifier.

Sets permit the operations of set
complement and set exclusive
union.

A function may return any type of
data except a file.

The operators '|', '&', '&&' and
'-' may be applied to data of type
integer. When applied to integers,
the operators act on a bit by bit
basis. Shift operations on data
are also provided.

Integer constants may be expressed
in hexadecimal digits.

Real constants (floating point)

may be expressed in hexadecimal
digits.

Pascal/VS Programmer's Guide

string constants may be expressed
in hexadecimal digits.

The Z%INCLUDE facility provides a
means to include source code from a
library.

A parameter passing mechani sm
(const) has been defined which
guarantees that the actual parame-
ter is not modified yvet does not
require the copy overhead of a pass
by value mechanism.

leave, continue and return are neuw
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val-
ue or an identifier.

case statements may have a range
notation on the component state-
ments.

An otherwise clause is provided for
the case statement.

The variant labels in records may
be written with a range notation.

The assert statement permits run-
time checks to be compiled into the
program.

interface
HALT,

The following system
procedures are supported:
CLOCK, and DATETIME.

Constants may be of a structured
type (hamely arrays and records).

To control the compiler listing,
the following listing directives
are supported: X%PAGE, %SKIP, and
%TITLE.

16.1 SYSTEM DESCRIPTION

The Pascal/VS compiler runs on the IBM
System/370 to produce object code for
the same system. System/370 includes
all models of the 370, 303x, and 4¢3xx
computers providing one of the follow-
ing operating environments:

. VM/CMS
. 0Ss7vVs2 TSO
. 0S5/VS2 Batch

16.2 MEMORY REQUIREMENTS

Under CMS, Pascal/VS requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro-
gram can be performed in a 256K CMS
machine.

The compiler requires a minimum region
size of 512K under V52 (MVS). A com-
piled and link-edited program can exe-
cute in a 128K region.

The compiler is reentrant and may be
loaded in a shared area in MVS or
mapped to a shared segment in CMS.

16.3 IMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean expressions

Pascals/VS "short circuits" boo-
lean expressions involving the
and and or operators. For exam-
ple, given that A and B are boo-
lean expressions and X 1is a
boolean variable, the evaluation
of

X = AorBoOrCcC
would be performed as

if A then
X = TRUE

The evaluation of

X := A and B and C

16

TNL SN20-4445 (31 December 1981) to SH20-6162-1

16.0 IMPLEMENTATION SPECIFICATIONS

would be performed as

if -A then
X := FALSE
else
if -B then
X := FALSE
else
X = C

See the section entitled "Boole-
an Expressions" in the Pascals/V$S
Language Reference Manual for
more details.

Floating-point
Some commonly required charac-
teristics of System/370 float-
ing-point arithmetic are shouwn
in Figure 95 on page 130.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the compiler encounters a lon-
ger name, it will ignore that
portion of the name longer than
16 characters.

Names of external variables and
external routines must be unique
within the first 8 characters.
Such names may not contain an
underscore "_' within the first 8
characters.

Integers
The largest integer that may be
represented is 21647683667 .16

This is the value of the prede-
fined constant MAXINT.

The most negative integer that
may be represented is
-2147683648. This is the value
of the predefined constant MIN-
INT.

Routine nasting
Routines may be nested up to
eight levels deep.

Routines passed as parameters
The follouwing standard routines
may not be passed as parameters
to another routine:

ABS, CHR, CLOSE, DISPOSE, EOF,
EOLN, FLOAT, GET, HBOUND, HIGH-
EST, LBOUND, LENGTH, LOWEST,
MARK, MAX, NEW, 0ODD, ORD, PACK,
PAGE, PDSIN, PDSOUT, PRED, PUT,
READ, READLN, READSTR, RELEASE,
RESET, REWRITE, ROUND, SIZEOF,
SQR, STR, SUCC, TERMIN, TERMOUT,
TRUNC, UNPACK, UPDATE, WRITE,
WRITELN, WRITESTR

This is the highest signed value that may be represented in a 32 bit word.

Implementation Specifications 129

TNL SN20-4445 (31 December 1981) to SH20-6162-1

Floating-point cCharacteristics

Characteristic Decimal approximation Exact Representationl
Maxreal? 7.23700557733226E+75 '7FFFFFFFFFFFFFFF'XR
Minreals 5.39760534693403E-79 '0010000000000000°XR
Epsilon® 1.38777878078145E-17 *3310000000000000"XR

The syntax "...'XR is the way hexadecimal floating-point numbers are
represented in Pascal/VS. See the section entitled "Constants" in the
Pascal/VS lLanguage Reference Manual.

Maxreal 1is the largest finite floating-point number that may be
represented.

Minreal is the smallest positive finite floating-point number that
may be represented.

Epsilon is the smallest positive floating-point number such that the
following condition holds:

1.0+epsilon > 1.0

This value is often needed in numerical computations involving con-
verging series.

Figure 95. Characteristics of System/370 floating point arithmetic

Sets

130

A FORTRAN function or subroutine . ORD(a) >= 0
may not be passed as a parameter
to a Pascal/VS routine. . ORD(b) <= 255
Size limitations
Given a set type of the form The size of a single procedure or
function must not exceed 8192
set of a..b bytes of generated code. 8192
bytes represent approximately
where "a" and "b" express the 400 Pascal statements, depending
lower and upper bounds of the on the complexity of the state-
base scalar type, the following ments. The compiler will
conditions must hold: generate a diagnostic if this

limit is reached.

Pascal/VS Programmer's Guide

17.0 PASCAL/VS MESSAGES

17.1 PASCAL/VS COMPILER MESSAGES

No. Message and Explanation

0 Not yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 Source continues after end of program

The compiler detected text after the logical end of the program.
This error is often caused by mismatched beginsend brackets.

3 "END" expected

G Character in quoted string is not displayable

The indicated character within a quoted string does not correspond
to a valid displayable EBCDIC character. If the string is printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results.

If a control character 1is intended, then the string should be
represented in hexadecimal form.

5 symbol invalid or out of context

The indicated symbol is not part of the syntax of the construct
being scanned. The symbol should be deleted or changed.

6 EOF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program was detected. This error is often caused by
mismatched beginsend brackets.

7 "BEGIN" expected

' 8 semicolon ';' expected

11 Ambiguous proceduresfunction specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination is contradictory.

I 12 Multiply declared label

. . The indicated 1label has been previously declared within the sur-
rounding routine.

13 Label identifier expected

Within the indicated 1label definition, a label identifier is
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

Pascal/VS Messages 131

14

The characters *$' and *_" are not valid in standard Pascal

This is a warning message that can occur when the LANGLVL(STANDARD)
compile option is specified. An identifier is being declared which
has a name containing characters which are not recognizable in
"standard”™ Pascal.

15 'z' expected

16 Identifier required to be a type in tag field specification
Within a record definition, a tag field is being declared, but the
indicated identifier which is supposed to represent the tag field's
tvpe was not declared as a type.

17 ":' expected

18 Parameters on forwarded routine not necessary
A routine declaration which has been previously declared as FORWARD
or EXTERNAL must not specify any formal parameters. Any formal
parameters are assumed to have been specified previously on the
associated declaration that contained the FORWARD/EXTERNAL direc-
tive.

19 Files passed by value not permitted
The indicated formal value parameter is of a file type. A file var-
jable may be passed to a routine only by the var or const mechanism;
never by value.

20 string literal constant is too long: exceeds 3190
Because of an implementation restriction, a string constant may not
exceoed 3190 characters in length.

21 "1' expacted

22 Foruarded routine class conflict
A procedure declaration was previously declared as a forwarded func-
tion; or a function declaration was previously declared as a for-
warded procedure.

23 Routine nesting exceeds maximum
The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of 8.

2% Too many nested WITH statements or RECORD definitions
This error occurs when to many lexical scopes are active. This can
occur is multiply nested With statements and record definitions.

25 Type not needed on forwarded function
A function declaration which has been previously FORWARDed must not
specify a return type. The type specification is assumed to have
been specified previously on the associated declaration that con-
tained the FORWARD directive.

26 Missing type specification for function

The indicated fdnction header did not specify a return type.

132

Pascal/VS Programmer®s Guide

27

PROCEDURE/FUNCTION previously FORWARDed

The indicated routine declaration that contains the FORWARD or
EXTERNAL directive was already previously forwarded.

28 Additional errors in this line were not diagnosed
The indicated construct contained more errors, but were not diag-
nosed due to space considerations.
29 Illegal hexadecimal or binary digit
An invalid hexadecimal digit was detected within a hexadecimal con-
stant specification of the form
Yoou™X, Y.L 'XC, or Y.L .'XR;
or, an invalid binary digit was detected within a binary constant
specification of the form
'..."B.
The following characters are valid hexadecimal digits:
o, 1, 2, 3, 4%, 5, 6, 7, 8, 9, A, B, C, D, E, F,
a, b, ¢, d, e, f
The following characters are valid binary digits:
0, 1
30 Unidentifiable character
The indicated character is not recognized as a valid token.
31 Digit expected
A decimal digit was expected but missing at the indicated location.
32 Real constant has too many digits
The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should occur, please
notify the compiler maintenance group at IBM.
33 Integer constant too large
The indicated integer constant is not within the range -21647483647
to 2147683647.
36 End of string not seen
A string constant may not <cross a line boundary. This error is
often the result of mismatched quotes.
If a string constant 1is too large to fit on one line, it must be
broken up into multiple strings and concatenated with the || opera-
tor. (Concatenation of string constants is performed at compile
ime).
35 Hexadecimal integer constant may not exceed 8 digits
The indicated hexadecimal constant exceeds the maximum allowed num-
ber of digits.
36 Char string is too large

The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con-
stants are concatenated.

Pascal/VS Messages

133

37

standard routines not permitted as parameters

Standard routines which generate in line code may not be passed as
parameters to other routines. The following is a list of such rou-
tines:

ABS, CHR, CLOSE, DISPOSE, EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, INTERACTIVE, LBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
0DD, ORD, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN,

PDSIN, PDSOUT, READSTR, TERMIN, TERMOUT, UPDATE, WRITESTR

38 Variable must be of type file
The indicated variable is required to be of a file type.
39 Must be of type TEXT
The indicated variable 1is required to have been declared with the
predefined type TEXT.
40 Required parameters are missing
The indicated READ or WRITE statement contains no parameter from
which to reference data.
41 Comma ',"' expected
42 User defined scalars not permitted
Expressions which are of a user defined enumerated tvype may not be
directly read from or written to a text file.
43 operand of READ/HRITE not of a valid type
Any parameter passed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:
- INTEGER
- REAL
- SHORTREAL
- CHAR
- BOOLEAN
- STRING
- packed arrayll..n] of CHAR
where n is a positive integer constant.
4% Field length must be integer
The indicated length qualifier expression in a READ or WRITE state-
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.
%5 set contains constant member(s) which are out of range

The indicated set constant contains members which are not valid for
the set variable to which the constant is being assigned.

For example,

var § : set of 10..20;
begin '

3 = [1,2]; (%<== this statement would produce error 645%)
enga;

This error may also occur when a set constant is being passed as a
parameter.)

134

Pascal/VS Programmer's Guide

%46

2nd field length applicable only to REAL data

In the procedure WRITE (text file case), only expressions of type
REAL are permitted to have two length field qualifications.

47 Array reference contains too many subscripts
An array variable of dimension 'ﬁ' is being subscripted with more
than "'n' number of subscripts.

48 Associated variable of subscript must be of an array type
An attempt is being made to subscript a variable which was not
declared as an array.

%9 Expression must be of a simple scalar type
The indicated expression should be of a simple scalar type within
the context in which it is being used.

50 No max length specified on STRING type - 255 assumed
A type definition of the form "STRING" does not contain a length
specification to indicate the maximum length of the string variable.
255 is the default length.

51 variable must be of a pointer type
The indicated variable is being used as a pointer; however, the var-
iable was not declared as being of a pointer type.

52 corresponding variant declaration missing
Within a call to the procedure NEW or to the function SIZEOF, the
indicated tag field specification fails to correspond to a variant
within the associated record variable; or, the associated variable
was not of a record type.

53 | Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-—-
tenance group at IBM. This is a compiler error.

54 Expression must be numeric
Expressions which are prefixed with a sign ('+' or "-') must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

55 Expression must be of type real
The indicated call to ROUND or TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

56 Expression must be of type integer
The indicated expression must be of a type that is compatible with
INTEGER.

57 Paramater type does not match formal parameter
Within a procedure or function call, an expression or variable is
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.

58 Expression must be a variable

An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass-by-var parameter.

Pascal/VS Messages

135

59 Number of parameters does not agree

Within a procedure or function call, the number of parameters being
passed does not correspond with the number required.

60 "(' expected

61 constant expected

62 | Type specification expected

At the place indicated, a type definition 1is expected but is
missing.

63 '.."' expected

64 Expression's type is incorrect or incompatible within context

This error is caused by a number of reasons:

. A unary or binary operator is being applied to an expression
which is of a type that is not valid for the operator.

L Two expressions being joined by a binary operator are of incom-
patible types.

. The parameters of the MIN/MAX functions are not of consistent
tvpes.

. Members of a set constructor have inconsistent types.

65 Subrange lower bound > upper bound

66 Assignment to ptr qualified variant record invalid

The indicated statement attempts to assign to the whole of a pointer
qualified record with variant fields. Such an assignment is not
valid under Pascal/Vs. This restriction is necessary because the
pointer qualified record may have been allocated with a size that is
specific to its active variant.

Example of violation:

type
R = record
case BOOLEAN of
TRUE: (C:CHAR);
FALSE: (A: ALPHA)
end;
var P : QR;
RR : R;
begin
NEW(P, TRUE);
ga 1= RR (X<===jnvalid assignmentx)
en

67 Real type not valid here

The indicated expression is of type REAL. An expression of this
type is not valid within the associated context.

68 "OF" expected

136 Pascal’/VS Programmer's Guide

) s ‘\\

69

Tag constant does not match tag field type

Within a record definition, a variant tag is being defined which is
of a type that is not compatible with the corresponding tag field
type.

Within a call to NEW or SIZEOF, a tag value is specified which is of
a type that is not compatible with the corresponding tag field type
of an associated record variable.

70 Duplicate variant field
Within a record definition, a variant tag is being defined more than
once.

71 Not applicable to "PACKED" qualifier
The indicated type definition was qualified with the word "packed".
Such a qualification within the associated context is not valid.

72 '[' expected

73 Array has too many elements
The length of the indicated array definition exceeds the address-
ability of the computer.

74 '1' expected

76 File of files not supported

77 Illegal reference of function name
The indicated identifier 1i1s the name of a function. It is being
used in a way that i1s incorrect.

78 subscript type not compatible uwith index type
The indicated subscript expression is not of a type that is compat-
ible with the declared subscript type for the array.

79 Associated variable must be of a record type.
A variable associated with the indicated statement or expression is
required to be of a record type according to context; but such is
not the case.

80 Record field qualifier not defined
The indicated record field does not exist for the associated record.

81 Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

82 Associated variable must be of a pointer or file type
The indicated arrow qualified variable 1is not of a pointer or file
type.

83 set element out of range

The indicated set member of a set constructor exceeds the allowed
range for the set.

Pascal/V¥S Messages

137

84

Expression must be of a set type

The indicated expression is required to be of a set type in the con-
text in which it is being used.

85

Must be positive integer constant

The indicated expression fails to evaluate to a positive integer
constant, which 1is required in the context in which it is being
used.

86

LEAVE/CONTINUE not within locp

The indicated leave or continue statement fails to reside within a
loop construct.

87

':=' expected

89

TEXT files may not be updated

An attempt was made to open a text file for updating. Only record
files may be updated.

90

Label not declared

The indicated label did not appear in a label declaration.

92

“THEN" expected

93

Redundant case alternative

The indicated case statement label is equal to a previous label
within the same case statement.

94

Required length expression missing for dynamic string allocation

A pointer variable declared with the type STRINGPTR is being allo-
cgteq with the NEW procedure, but the required length expression is
missing.

95

"UNTIL" expected

96

"pDo" expected

97

FOR-loop index must be simple local variable

A for-loop variable must be declared as a simple automatic (var)
variable, 1local to the routine in which the for loop resides. The
indicated for-loop variable did not meet this criteria.

98

T0" expected

99

Label previously defined

The indicated label identifier was previously defined within the
associated routine.

100

Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101

Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

138

Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

91

Max length of string variable does not match formal parameter

A string variable is being passed to a procedure "by var" and the
corresponding formal parameter is declared with an explicit length.
This error occurs when the declared length of the variable being
passed does not match that of the formal parameter.

Example:

proceadura XyYZ(var S: STRING(100)); EXTERNAL;
var.T= STRING(50);
begin

*?i(T); (XERROR: declared length of T does X)
(% not match that of parameter S X)

end

Pascal/VS Messages 138.1

TNL SN20-4445 (31 December 1981) to SH20-6162-1

102 | Notify compiler maintenancea group
If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

103 Expression must be of type BOOLEAN
The indicated expression which is associated with an if, assert,
while, or repeat statement is required to represent a condition.
Conditional expressions are of type BOOLEAN. The indicated expres-
sion failed to meet this criteria.

1049 constant out of range
The indicated constant expression evaluated to a value which is out-
side the required range of its context.

105 | Identifier was previously declared
The indicated identifier within a declaration was previously
declared within the same lexical scope.

106 Undeclared identifier
The indicated identifier being referenced was not declared.

107 Identifier is not in proper context
The indicated identifier is being used in a way that is not consist-
ent with how it was declared.

108 | Notify compiler maintenance group
If this error should occur, then notify the Pascal/VS compilar main-
tenance group at IBM. This is a compiler error.

109 | casae label tag of urong type
The value of the indicated case statement label is not of a type
that is conformable to the case statement indexing expression.

110 Loop Will never execute
The indicated for loop will not execute at runtime. The compiler has
determined that the terminating condition for the loop is uncondi-
tionally true.

111 Loop ranage exceeds range of index

The indexing variable used for the indicated for loop was declared
with a subrange that does not include the range indicated by the
initial and final index values.

112

'PROGRAM' header missing

113

Pending comment not terminated

A comment starting symbol was detected within a pending comment.

114 Percent "%" statement not found
A '"%' symbol was detected, but with no identifier following.
115 | percent "%" identifier not recognized

A identifier following the '%' symbol is not recognized as a valid
compiler directive.

Pascal/VS Messages

139

TNL SN20-4445 (31 December 1981) to SH20-6162-1

116 "ON™ or "OFF" expected

117 Unrecognizable option in "“%CHECK"

118 | Macnitude of floating point constant tooc large or too small

The indicated floating point constant has a magnitude that is out-
side the range of the IBM/370 double precision representation. The
largest floating point magnitude that can be represented is
7.23700557733226E75

The smallest is

5.39760534693403E~79

119 First paramater of READSTR/KRITESTR must be of typo STRING

120 string constant requires truncation

The indicated string constant, which is being assigned to a variable
or being passed to a routine, requires truncation because of its
excessive length. Implicit truncation of strings is not permitted.

121 peclaration out of order: LABEL,CONST,TYPE,VAR,routine

This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. One or more declara-
tion constructs are not in the order required by standard Pascal.
Standard Pascal requires identifiers to be declared in the following
order:

Labels

Constants (const)

Types (typa)

Variables (var)

Routines (proceduraesfunction)

122 "OTHERWISE'" clause without associated CASE statement

The indicated otherwise statement is not within the context of a
case statement.

123 | Maximum string length exceeded

The indicated expression produced a varying length string which
exceeds 32767 characters in length. 32767 is the maximum allowed
length for a varying length string.

124 construct or operation is not in standard Pascal

This is warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. The indicated lan-
guage construct or arithmetic operation 1is not supported in "stand-
ard" Pascal, but is a Pascal/VS language extension.

125 Real to integer conversion not valid

The indicated expression is of type real, but according to its con-
text, it is required to be of type integer. Implicit real to inte-
ger conversion is not performed.

126 Types not conformable in assignment

The indicated assignment statement attempts to assign an expression
of a particular type to a variable of an incompatible typea.

127 File variable assignment not permitted

The left side of the indicated assignment statement is a variable of
a file type. Assignment to file variables is not permitted.

140 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

128 Not compile-time computable
The indicated expression fails to be a constant expression that can
be evaluated at compile time.

129 Assignment to "CONST™ parameter invalid
The indicated variable declared as a formal const parameter within a
particular routine may not be modified by an assignment.

130 Assignment to FOR-loop index invalid
The indicated variable that is being used as a for loop index may
not be modified by an assignment within the for loop statement.

131 Passing "CONST™ parametér by VAR invalid
The indicated variable declared as a formal const parameter may not
be modified by being passed as an actual var parameter to a routine.

132 | Passing FCGR-loop index by VAR invalid
The indicated variable that is being used as a for loop index may
not be modified by being passed as an actual var parameter to a rou-
tine.

133 Refer-back tagfield must not ha typed
The indicated tag field specification within a record definition was
found to reference a previous field within the record. Such
refer-back references may not contain a type reference.

137 Passing packed record field by VAR not valid
This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. The indicated field
of a packed record 1is being passed as an actual Var parameter to a
routine. Passing fields of packed records as var parameters is not
valid in standard Pascal.

138 Passing SPACE component by VAR not valid
This is a warning message that may be produced when the
LANGLVL(STANDARD) compiler option is specified. Standard Pascal
requires that actual var parameters be properly aligned which is not
necessarily the case with a space component. The indicated parame-
ter is a component of a space variable which is being passed as a
var parameter.

139 | Passing packed array element by VAR not valid
This is a warning message that may be produced when the
LANGLVL(STANDARD) compllgr option is specified. The indicated sub-
scripted variable 1is being passed as an actual var parameter to a
routine. The variable being subscripted is a packed array. Passing
elements of packed arrays as var parameters is not valid in standard
Pascal.

140 Scalar PACKing does not match corresponding VAR parameter
The indicated variable that is being passed as a var parameter is of
a compatible type, bu? has a different length than the corresponding
formal parameter. This was caused by one being packed and the other
unpacked.

141 | Symbol not recognizable in standard pascal

This is a warning message that may result when the LANGLVL(STANDARD)
compiler option is specified. The indicated symbol (or operator) is
not supported 1in "standard" Pascal. The symbol is part of a con-
struct which is a Pascal/VS language extension.

Pascal’/VS Messages

141

TNL SN20-4445 (31 December 1981) to SH20-6162-1

142

162 | variable must be an array variable
The indicated variable is required to be of an array type, but such
is not the case.

143 offset qualified field not on proper boundary
The indicated field in a record definition is qualified with an off-
set which 1is not consistant with the boundary requirement of the
field's type.

144 offset qualification value is too small
The indicated field in a record definition is qualified with an off-
set which causes an overlap with a previous field within the record.

145 Type must be CHAR or PACKED ARRAY OF CHAR
The indicated expression is required by its context to be of type
CHAR or packed arrayll..n] of CHAR.

146 Variables of type POINTER are not permitted
The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declared as function
The indicated identifier is used as though it is a function name,
but is not declared as such.

148 Missing period '."' assumed

149 | Not a valid comparison operation
The indicated expression performs a comparison operation on two
entities for which such comparison is not allowed. Except for
strings, variables of structured types may not be directly compared
with each other. The only valid comparison operators for sets are
l:!, l<>l, '(:" and '):'.

150 Entry routines must be at the outermost nesting level
A routine which is to be called from another module is nested within
another routine which is not permitted. Such routines must be
declared at the outermost nesting level.

151 Fixed Point overflou or divide-by-zero
An integer expression consisting of constant operands causes a pro-
gram error to occur when it is evaluated.

152 | checking error Will inevitably occur at execution time

This error indicates that the compiler has detected a condition
related to a particular construct which will cause an execution time
error.

This error may occur at an assignment or at a routine call in which

parameters are passed. It indicates that the range of the source
expression (a scalar) does not overlap the declared range of the
target. For example, the following assignment would cause this

error to occur:

var I: 1..10;
J: 10..20;

I := J;i; (¥target's range: 1..10; source's range: 11..21 %)

Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

153 LBOUND/HBOUND dimension number is invalid for variable

154 Low bound of subscript range is too large in magnituda

The indicated array definition has an illegal subscript range which
causes addressing code to be outside the range of the target
machine's capability.

155 The ORD of all SET mombers must lie within 0..255

The ordinal value of any valid set member may not be less than 0 nor
greater than 255.

156 Length fialds not applicable to non-TEXT files

A non-text file READ or WRITE contains a length qualified parameter.
Length specifications have no meaning in non-text file 1/0.

Pascal/VS Messages 142.1

157

STRING variable is smaller than file component

The error occurs when an attempt is made to perform a READ operation
from a file of STRINGs into a string variable in which truncation is
possible. The string variable must be declared with at least the
same length as the file component.

158 Routines passed as paramater must be at outermost nesting level
An attempt is being made to pass a routine as a parameter, but the
routine being passed is nested within another. As a Pascal/Vs
restriction, routines being passed as parameters must not be nested
within another routine.
159 Recursive type reference is not permitted
The compiler detected a degenerate type declaration of one of the
following forms:
I. type X = X;
I1. type X = aX;
III. type X = record
FroX;
en&”
160 This SET operation will always produce the NULL set
Two disjoint sets are being intersected. The result will always be
the null set [1. For example,
var Sl: set of 0..10;
52: set of 11..20;
.53: set of 0..20;
begin
éi.== S1 % S52; (¥ <== always produces the NULL set %)
end
161 ELSE clause without associated IF statement
A else symbol was detected that is not part of an if statement.
This error often occurs when the preceding then clause of an if
statement is terminated with a semicolon (;).
162 Must be an unPACKED array
The indicated array variable is erroneously declared as packed when
the context requires it to be unpacked.
163 Must be a PACKED array
The indicated array variable should have been declared as packed,
but was not.
164 Unrecognizable proceduresfunction directive

The indicated identifier was interpreted as a procedure or function
directive but was not recognizable. The following are the only
recognizable directives: .
- FORWARD
EXTERNAL
FORTRAN
MAIN
REENTRANT

Pascal/VS Messages

143

165

FORTRAN subroutines may not be passed as param2ters

Only Pascal/VS routines may be passed as parameters; FORTRAN subrou-
tines may not.

One way to get around this problem is to define a Pascal/VS proce-
dure which does nothing more than call the FORTRAN subroutine. The
Pascal/VS procedure would then be passed in place of the FORTRAN
subroutine.

166

FORTRAN subroutine paramaters may not be passed by value

All formal parameters of a FORTRAN subroutine must be passed by ref-
erence: either by var or by const.

167

FORTRAN functions may return only scalar values

A FORTRAN function may only return values that are scalars (includ-
ing floating point).

168

%INCLUDE member not found in library

The library member which was to be included into the source program
could not be found.

169

Floating point computational error

The indicated floating point expression causes a program error when
evaluated.

170

Data storage exceeds addressability of machine

v
The memory required to contain all declared variables within a rou-
tine or main program exceeds the capacity of the computer; that is,
it exceeds 16 megabytes.

171

Only STATIC/DEF variables may be initialized

The only class of variables which may be initialized at compile time
are def and static variables.

172

vVariable's address is not compile-time computable

The indicated value assignment could not be performed. In order for
a variable to be initialized at compile-time, its address must be
compile time computable.

173

Array structure has too many elements

The indicated array structure contains more elements than was
declared for the array type.

174

Repetition factor applicable to constants only

Within a array structure, only a constant may be qualified with a
repetition factor; a general expression may not.

175

No corresponding record field

The indicated record structure contains more elements than there are
fields within the record type.

176

This identifier is a reserved name

An attempt was made to declare an identifier which is a reserved
name.

1644

Pascal/VS Programmer's Guide

AT

177

Numeric labels must lie within the range 0..9999.

178

Identifier was previously referenced illegally

The indicated identifier that was just declared was referenced pre-
viously within the associated routine. Pascal/VS requires an iden-
tifier to be declared prior to its use.

179

Recursive reference Within constant declaration

A constant declaration of one of the following forms was detected:
const X = X;
or
const X = "some expression involving X"

Such recursion within a constant declaration is not permitted.

180

Repetition factor not applicable to record structures

The indicated record structure contains a component which is quali-
fied with a repetition factor. O0Only array structures are permitted
to have repetition factors.

181

Label previously referenced from a GOTO invalidly

The indicated 1label was previously referenced in a goto statement
that is not a constituent of the statement sequence in which the
label is defined.

Example

begin
goto LABEL1;
for I := 1 to 10 do
begin
LABEL1: ALI] := 0; (%<==label was previously referenced invalidly¥)
end;
end

182

A GOTO may not reference a label wWithin a separate stmt sequence

The indicated goto statement references a label which was previously
defined within a statement sequence of which the 90t0 is not a con-
stituent. Such a reference is not permitted.

Example

begin
for I := 1 to 10 do
begin
LABEL1: A[I] := 0;
end;
goto LABELl; (¥<==invalid reference of label ¥)
en

133

CASE lahel outside range of indexing expression

The indicated case label within a case statement has a value which
is outside the range of the indexing expression. For example,

var I: 0..10;
begin
case Ix2 of (¥range of index is 0..20 x)
0:

1..20% ...
30: ... (¥<== this label is out of range of indexX)
end

end

Pascal/VS Messages

145

184

second operand of MOD operation must be positive integer

The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer.

185

Routine is not defined in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option 1is specified. The indicated call statement refers to a pre-
defined Pascal/VS routine which does not exist in standard Pascal.

186

Directive only applies to procedure, not to a function

The indicated procedure directive ("MAIN" or "REENTRANT") is being
applied to a function declaration. The directive is not supported
for functions.

188

“First parameter of REENTRANT procedure must be an integer by var

The indicated procedure declaration in which the directive
"REENTRANT" was specified, failed to comply with the parameter list
requirement for such a procedure: the first parameter of a
"REENTRANT" procedure must be a pass-by-reference (specified with
the var reserved word) integer in which a pointer to the Pascal/V$
environment is saved between calls.

191

simple constant required

A constant expression which required compile-time computation was
found where a simple constant is required. This is often a warning
message that may be produced when the LANGLVL(STANDARD) compiler
option is specified.

192

%Percent directives are not recognized in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option is specified. All compiler directives which appear in the
source program with the percent (%) prefix are Pascal/VS extensions
and are not supported in standard Pascal.

193

FOR- or WHILE-loop has no statements within its body

This 1is a warning message to indicate that a for-statement or
while-statement loops on an empty statement. Such a case is often
not the programmer's intent.

Examples

while A > 0 do;

for I := 1 to J do ;

194

PACKED subranges not supported in standard Pascal

This warning may be produced when the LANGLVL(STANDARD) compiler
option 1is specified. Subrange type definitions may not be "packed"
in standard Pascal. This feature is a Pascal/VS language extension.

146

Pascal/VS Programmer's Guide

i,

TNL SN20-4445 (31 December 1981) to SH20-6162-1

195 | variable is not properly aligned
The indicated variable is being passed as a var parameter and the
compiler has detected that its address may not be properly aligned.
(For example, passing a full word integer which has an address that
is not on a word boundary.)

On most models of the 370 series, the manipulation of objects which
are not properly align will result in a penalty in execution speed.
This warning will be produced even if the variable is Jjust poten-
tially missaligned (as in the case of a subscripted variable).

500 Recursion datected in "%INCLUDE" procassing lib(mem)

Source text which was included from member "mem" in library "1lib" by
means of the a X%INCLUDE directive contains in itself a X%INCLUDE
directive which directly or indirectly references the same member
recursively. This error causes immediate termination of the compi-
lation.
Example
Source program: Member TYPES:
program EXAMPLE; REC = reconrd
type NAME: STRING(10);

%include TYPES; AGE : 0..99;
begin end

. %include TYPES; (%<===ERROR 500%)

end.

501 | Too many nasting levels in "%INCLUDE" processing lib(mam)

A ZINCLUDE directive was detected which is nested 8 levels deep
within a stack of "includes". "Included" source text may not be
nested beyond 8 levels. This error causes immediate termination of
the compilation.

502 | Unable to open “X%INCLUDE™ library: libname
The include library named "libname" could not be opened. Possible
causes are that the DDname was not assigned or the DCB attributes of
the library are not correct. This error causes immediate termi-
nation of the compilation.

600 Identifier used in type definition at lina nnn is out of context: XxXxxx
The identifier "xxxx' appeared in a pointer type definition of the
form '"->xxxx' at line 'nnn', but the identifier was subsequently
declared as something other than a type.

Example:
type X = ->Y;
var Y=.iﬁTEGER; (% <=== would cause error 600 to be generated ¥)

601 | Type identifier refarenced at line nnn is undaclared: XXxX
The identifier "xxxx' appeared in a pointer type definition of the
form '->xxxx' at line "nnn', but the identifier was not subsequently
declared.

602 Label xxxx Was declared andsor referenced but was not defined
The label named '"xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

603 proceduresfunction xxxx uwas forwarded but not resolved

The procedure or function named 'xxxx' was declared with the direc-
tive "FORWARD', but the body of the routine was not subsequently
declared.

Pascal/VS Messages 147

TNL SN20-4445 (31 December 1981) to SH20-6162-1

No. Message and Explanation
AMPOO0O1S Routine 'name' is too large to compile at stmt n
The indicated routine has too many statements to compile; a
fixed-length table of the compiler has overflowed. The last
statement that was successfully processed was statement "n",
lbe routine should be divided into two or more separate rou-
ines.
AMPTOGI1E Inevitable NIL pointer error Will occur
The code optimizer of the compiler has determined that a nil
pointer checking error will inevitably occur at execution time
at the specified routine and statement. Example:
begin
P := nil
WRITELN(PR.IJ); (%<===AMPTO001E - inevitable errorx)
end;
AMPTOQ2E Inevitable high bound error will occur
The code optimizer of the compiler has determined that a high
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:
var I : 1..10;
J INTEGER;
begin
J = 11; .
I = J; (%<===AMPT002E -~ inevitable errorx)
end;
AMPTO003E Inevitable low bound error will occur
The code optimizer of the compiler has determined that a low
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:
var I : 1..10;
. J * INTEGER;
begin
J = 03
I := J; (%<===AMPTO003E - inevitable error)
end;
AHMPTOO0SE Function routine does not return a value
The code optimizer of the compiler has determined that the spe-
cified function routine does not return a result. Example:
function (var I: INTEGER): INTEGER;
begin
READLN(I);
end; (%X<===AMPT005 function did not return a resultX)
AMPTOO06E Expression is too complicated at stmt nnn of routine xXxXxXxxxxx
The expression in statement "nnn" of routine "xxxxxxxx" is too
complex to compile and should be broken up into multiple state-
ments. If the indicated statement contains a relatively simple
exirgssion, then the Pascal/VS support group should be
notified.

148 Pascal/VS Programmer's Guide

-

TNL SN20-4445 (31 December 1981) to SH20-6162-1

AMPT700S

Routinza "name™ contains too many statements. Max=n

The statement table being generated overflowed in the specified
zgutine. The routine should be divided into two or more rou-
ines.

AMPT7011

Record type contains too many fields

The DEBUG compiler option was specified and a record type defi-
nition was compiled that contains too many fields to be accomo-
dated in the debugger type table. If this error should occur,
the resulting code may not work properly when the interactive
debugger is enabled.

AMPT702S

Routine "name" exceeds 8K limit at stnt n

The specified routine caused more than 8192 bytes of code to be
generated starting at statement number "n". Since Pascal/Vs
only reserves two base registers to address code, 8192 bytes is
the limit. The indicated routine should be divided into two or
more saeparate routines.

AMPT7031I

Field name space pool overfloued

The DEBUG compiler option was specified and a large number of
record type definitions were compiled. The debugger table
which contains the record field names overflowed. If this
error should occur, the resulting code may not work properly
when the interactive debugger is enabled.

AMPT7041

Typa table overflou. Dabug is disabled

The module being compiled with the DEBUG option contains more
than 256 unique data types. The type table being generated for
the interactive debugger may contain no more than 256 entries.
The interactive debugger may not be used on this module.

AMPL999S

compiler error notify Pascals/vs Support

An error was detected in the first pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AMP0999s

Notify Pascals/vs Support - Optimizer Error

An error was detected in the second pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AMPT999S

Motify Pascalsvs Support - Translation error

An error was detected in the third pass of the compiler. If
this error should occur, please notify Pascals/VS support at
IBM.

Pascal/VS Messages 149

TNL SN20-4445 (31 December 1981) to SH20-6162-1

17.2 EXECUTION TIME MESSAGES

No. Message and Explanation

AMPXO011E Operation exception
An operation exception occurred in the program. The error is
probably in an assembly language routine linked with vour Pas-
cal program or due to a 'wild' assignment through an uninitial-
ized pointer.

AMPX012E Privileged exception
A privileged exception occurred in the progrém. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPXO013E Execute exception
An execute exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPXO14E Protection exception
A protection exception occurred in the program. The error is
probably due to a 'wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off).

AMPXO015E Addressing exception
An addressing exception occurred in the program. The error is
probably due to a "wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off).

AMPXO016E specification exception
A specification exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPXO017E Data exception
A data exception occurred in the program. The error is probably
in a non-Pascal routine linked with a Pascal program.

AMPXO018E Fixed point overflou exception
A fixed-point overflow exception occurred in the program. The
error is probably due to an addition, subtraction, or multipli-
cation that resulted in an integer with a magnitude which
exceeds MAXINT.

AMPX019E Fixed point divide by zero exception
A fixed point divide by zero exception occurred in the program.
The error is due to a div operation in which the second operand
(the divisor) has the value zero.

AMPX020E Decimal overflon exception
A decimal overflow exception occurred in the program. The error
is probably occurred in a non-Pascal routine linked to the Pas-
cal program.

150 Pascal/VS Programmer's Guide

N

AMPX021E

Decimal divide by zero exception

A decimal divide by =zero exception occurred in the program.
The error probably occurred in a non-Pascal routine linked to
the Pascal program.

AMPX022E Exponent overflou exception
An exponent overflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude greater than
7.23700557733226E75.

AMPX023E Exponent underflon exception
An exponent underflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude less than
5.39760534693403E-79.

AMPX024GE significance exception
This exception 1is not intercepted by the Pascal/VS run time
environment. If it should occur, then the Pascal/VS run time
environment may have been locally modified. Contact your local
system support.

AMPXO025E Floating point divide by zero exception
A floating point divide by zero exception occurred in the pro-
gram. The error is caused by an attempt to divide by =zero.

AMPX026E seament translation exception
This 1is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX027E Page translation exception
This 1is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AHPXO028E Translation specification exception
This 1i1s a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX029E Special operation exception
This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPXO030E Terminal attention exception
An attention was signaled from the users terminal.

AMPXO031E Low bound checking error
Either the value of an array subscript, or the value being
assigned to a subrange type variable is less than the minimum
allowed for the subscript or subrange. This error may also
result if the mod operation is attempted for which the second
operand (the divisor) is less than or equal to zero.

AMPX032E High bound checking error

Either the value of an array subscript, or the value being
assigned to a subrange type variable is greater than the maxi-
mum allowed for the subscript or subrange.:

Pascal/VS Messages

151

AMPX033E

Nil pointer checking error

An attempt was made to reference a dynamic variable from a
pointer which has the value nil.

AMPXO034E case label checking error
The expression of a case-statement has a value other than any
of the specified tase labels and there is no otharwise clause.
AMPX035E Function value checking error
A function routine returned to its invoker without being
assigned a result.
AMPX036E Assertion failure checking error
The expression of an assert statement computed to the value
FALSE.
AMPX037E string subscript out of bounds checking error
The subscript on a STRING was not in the range 0..LENGTH(s),
where s is the STRING being subscripted.
AMPXO038E Error 38 not assigned
This error number has not been assigned a meaning.
AMPXO039E string truncation checking error
An assignement into a STRING variable could not be performed
because the length of the source string is longer than the max-
imum length of the destination string.
AMPX041S File could not be opened: DDNAME
An error occurred when an attempt was made to open the file
with the indicated DDname. The most probable cause of this
error is a missing DDname definition. Under CMS, this error
will occur when attempting to open a file that does not have a
record format of 'F' or 'V'.
AMPX042E Lrecl size too small for file DDNAME
The logical record length of the file with the indicated DDNAME
is not large enough to contain a single file component.
AMPX043E File is not open for output: DDNAME
An output operation was attempted on a file open for input.
AMPXO044E File is not open for input: DDNAME
An input operation was attempted on a file open for output.
AMPXO045E Logical record is too small in input file
The logical record length of a particular record within a vari-
able receord length file is not large enough to contain a file
component.
ANMPX046E pata larger than lrecl for file
The logical record length of a file is too small to contain the
file's component.
152 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

AMPXO047E Invalid Input/cutput option: xxxxx...

The options string passed to the procedure contains an incor-
rect or invalid option.

AMPXO048E Missing member in file: member library

The indicated member could not be found in the partitioned data
set.

AMPX049E Floating point overflow/underflon

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

AMPXO050E BLKSIZE exceeds 32760 in file DDNAME

A block size was specified that exceeds 32760 which is the max-—
imum length of a block.

AMPXO51E LRECL > BLKSIZE-4 in V format file: DDNAME

The logical record size was too large to permit at least one
record to be fit in a block.

AMPX052E BLKSIZE not integer multiple of LRECL in DDNAME

The specified block size for a fixed-length record file is not
an integer multiple of logical records.

AMPXO053E component lendgth of file exceeds 32760 in DDNAME

A single element must fit in one logical record, therefore its
length is restricted to 32760 bytes.

AMPXO054E GET or READ called after end-of-file in DDNAME

An attempt was made to advance the file beyond the end-of-file.

AMPXOS55E Integer READ operation failed for file DDNAME

An attempt was made to read an integer from a text file, but
either the end-of-file occurred, or unrecognizable character
were detected where the integer should have been.

AMPX056E overflouw/underflow detected in integar READ: DDNAME

An attempt was made to read an integer which has a value that
does not lie within the range -2147483648..2147483647.

AMPXO057E Invalid run tima option:

An invalid option was specified when invoking a Pascals/VS pro-
gram. A runtime option is specified preceeding a slash '/'
when invoking the program.

AMPX0581 OPEN and INTERACTIVE are no longer supported, use READ/WRITE

The procedures OPEN and INTERACTIVE are not supported in Real-
ease 2.0. The Pascal/VS Programmer's Guide SH20-6162-1 and the
Pascal/VS Reference Manual SH20-6168-1 describes the equivalent
operations.

N

Pascal/VS Messages 153

TNL SN20-4445 (31 December 1981) to SH20-6162-1

AMPXO059E Text exceeds logical record length in file "name"

A line of data 1is being written to the text file whose DDname
is "name" and the line exceeded the logical record length of
the file. As a recovery, the line is terminated at the end of
the logical record and the remaining text of the line is placed
in the next logical record.

For each file being written, this error will be diagnosed only
on the first occurrence; subsequent violations will not be
diagnosed.

AMPXO060E crerand to RELEASE does not correspond to MARK
The parameter passed to RELEASE did not have the value returned
by a call to MARK.

AMPXO061E operand to DISPOSE not allocated with NEW
A DISPOSE operation was attempted for a pointer which did not
have a valid value as would have been returned by NEW.

AMPX063E operand to DISPOSE already deallocated
An attempt was made to perform a DISPOSE operation on a pointer
which referenced heap storage which had been previously
released.

AMPXO064E Insufficient space to do NEW
There was not enough storage available to perform the NEW pro-
cedure. You should execute the program in a larger region (0S)
or in a larger virtual machine (CMS). Also, you may not be
calling DISPOSE for storage you no longer need.

AMPX065E storage has been incorrectly assigned prior to DISPOSE
The pointer being disposed of was used incorrectly, namely, the
pointer caused the heap to be modified beyond the size of the
dynamic variable. This could happen if the dynamic variable
was a record that was allccated by specifing tag values and
then it was later used to assigning to a different variant.

AMPXO066E operand to DISPOSE is NIL or undefined.

The operand is not valid for DISPOSE.

AMPX067E Heap incorrect due to previous invalid assignment using a pointer
The heap has been damaged, the cause of the damage was probably
due to a pointer being used incorrectly.

AMPX070E LN: argument <= 0.0
The natural logarithm function (LN) was called with a 0 or neg-
ative argument.

AMPX071E SQRT: argument < 0.0, zero returned as result
The square root function (SQRT) was called with a negative
argument.

AMPX072E EXP: argument too large, exceeds 174.67309
The argument of the EXP function 1is too large; the result of
the call exceeds the largest real number that can be repres-
ented: 7.237e+75.

154 Pascal/V$S Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

AMPXO073E RANDOM: seed is out of range

The function RANDOM was called with an argument which is either
negative or greater than 1048575 (which is the allouwed
maximum).

AMPXO074E SIN/COS: argument too large, exceeds (PI/2)x%x50

A call to SIN or C0S was made with an argument that is too
large for an accurate result to be computed.

AMPX075E SEEK called for a file not opened for DIRECT access

AMPX076E SEEK: bad relative record address

The record number in an invocation of SEEK bhas an invalid
value.

AMPXO077E Direct access file does not have fixed unblocked records: DDNAME

An attempt was made to perform direct access (relative record)
operations on a file that was either not fixed or not
unblocked. The required record format for a file to be manipu-
lated with SEEK is RECFM=F.

AMPXO078E Target string filled to maximum length in WRITESTR call

The target STRING (first parameter) in a call to WRITESTR was
filled to capacity before the data being assigned into the
STRING was exhausted.

AMPXO079E source string exhausted in READSTR call

Prior to reading all data from the the source string (first
parameter), the end of the string was encountered.

AMPX081E LPAD: PADDING exceeds maximum length of string

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter).

AMPXO082E DELETE: Length parameter less than zero

AMPX083E DELETE: starting index is less than 1

AMPX084%E DELETE: substring not contained within source string

AMPXO085E set operation out of bounds

An attempt to perform a set operation in which the resulting
set contained members which are outside the range of a target
set. This can occur in a set assignment in which the source
set contains members which are not valid for the declared type
of the target set.

AMPX086E SUBSTR: Length parameter less than zero

AMPX087E SUBSTR: starting index is less than 1

AMPX088E SUBSTR: substring not contained within source string

155

TNL SN20-4445 (31 December 1981).to. SH20-6162-1

AMPX089E

RPAD: padding exceeds maximum length of string

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter). ‘

AMPX2001I

The module must be linked with DEBUG for debugger features

An attempt was made to invoke the interactive debugger on a
module that was not linked with the debugger library.

AMPX201I

The module must be linked With DEBUG for symbolic dump

An execution time error occurred and a symbolic dump of the
offending routine was attempted, but the module in which the
routine is located was not compiled with the DEBUG option. ‘

AMPX2031

Error occurred while executing ONERROR routine

An execution time error has occurred while ONERROR was execut-
ing. ONERROR 1is a user provided procedure to diagnose exe-
cution errors and determine the correct course of action.

AMPX999s

‘NOTIFY PASCAL/VS SUPPORT: RECURSIVE ERROR IN RUNTIME ENVIRONMENT

A second error was encountered while Pascal/VS was recovering
from the first error. The program is terminated because any
further processing would probably result in a CPU bound loop.
You should notifiy PascalsVS Development if this error
persists.

156 Pascal/Vs Prdgrammer's Guide

17.3 MESSAGES FROM DEBUG

No. Message and Explanation
AMPD500 current module not compiled with Debug option
AMPDS01 No statement %xx in
AMPD502 There is no routine named % in module
AMPD503 Invalid qualification specification:
AMPD504% Missing qualification specification
AMPD505 Module name must be specified
AMPD506 Breakpoint is already set
AMPD507 Maximum number of breakpoints have heen set
AMPD508 specified breakpoint does not exist
AMPD509 is an automatic variable local to a non-active routine
AMPD510 Field qualified variable is not a record
AMPD511 is not a valid record field
AMPD512 Subscripted variable is not an array
AMPD513 Array subscript is not a scalar
AMPD514 Invalid symbol:
AMPD515 Array subscript is out of bounds:
AMPD516 Missing symhol:
AMPD517 Associated variable is not a pointer
AMPD518 Pointer variable does not contain valid address
AMPD519 not found in symbol table
AMPD520 Equate substitution is in infinite recursion

Pascals/VS Messages

157

AMPD521 EQUATE expansion causes command truncation(exceeds 255 characters
AMPD522 You are not in CcHS, command not valid
AMPD523 Debug command not recognized:
AMPD524 Invalid character in hexadecimal string:
AMPD525 Invalid hexadecimal string
AHPb526 Routine is not active
AMPD527 Qualification set to module
AMPD528 The word "EQUATE™ may not be redefined
AMPD529 Maximum number of EQUATE''s have been set
AMPD530 There are no EQUATE''s currently set
AMPD531 statement table missing

Trace requires GOSTMT option
AMPD533 There are no active variables
AMPD534% Routine is not active:

158 Pascal/VS Programmer's Guide

17.4 MESSAGES FROM PASCALVS EXEC

The following messages are given by the

PASCALVS EXEC of CMS to indicate the ated return codes.

They are shown below with their associ-

status of the compiler invocation.
RC | Message and Explanation
1 | File name is missing
The exec was invoked without specifying a file name.
2 | Unable to find "fn' PASCAL
The specified file name could not be found.
16 | Unable to find the "name' HACLIB
The specified maclib file could not be found.
32 | More than 8 maclibs specified
The maximum number of MACLIBS that may be specified when invoking
the PASCALVS EXEC is eight.

Pascal/VS Messages

159

APPENDIXES

"Command Syntax Notation" on page 163
"Installation Instructions” on page 165

"Additional Library Procedures and Functions"™ on page 175

APPENDIXES 161

e RSN

The syntax notation used to illustrate
150 commands is explained in the manual
150 Command Language Reference
(GC28-0646) . The notation wused to
illustrate CM5 commands is explained in
the manual VM/370: CMS Command and Mac-
ro Reference (GC20-1818).

Briefly, the conventions used by both
notations are as follows.

o Items in brackets [] are optional.
If more than one item appears in
brackets, then no more than one of
them may be specified; they are
mutually exclusive.

A.0 COMMAND SYNTAX NOTATION

Items in capital letters are
keywords. The command name and
keywords must be spelled as shoun.

Items in lowercase letters must be
replaced by appropriate names or
values.

Items which are underlined repre-
sent defaults.

The special characters ' () ¥ must
be included where shoun.

Command Syntax Notation 163

\,A(,;

/‘f -

This section describes how to install
PascalsVS under 05/V52 and CMS-VM/370
from the distribution tape.

All VS2 partitioned data sets (other
than the compiler source) were stored
on the tape by using the IEBCOPY utili-
ty program. VS2 sequential data sets
were stored by using the IEBGENER util-
ity program.

The CMS version of the package is
located at file 12 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distribution tape con-
tain the following data sets.

File 1: INSTALL.CNTL
A sample of the job control lan-
guage (JCL) required to install
Pascal/VS under 05/VS52 (MVS).

File 2: LOADSRC.CNTL
A sample of the job control lan-
guage (JCL) required to load the
Pascal/VS source from the dis-
tribution tape.

File 3: PASCALVS.CONTENTS
A sequential data set which lists
the contents of the Pascals/V$s
package.

File §: PASCALVS.LINKLIB
A partitioned data set which con-
tains the modules of the
compiler.

File 5: PASCALVS.LOAD
A partitioned data set which con-
tains the Pascals/VS run time
library.

File 6: PASDEBUG.LOAD
A partitioned data set which con-
tains the Pascal/V$s debug
library.

File 7: PASCALVS.MACLIB
The standard include library.

File 8: PASCALVS.CLIST
A partitioned data set contain-
ing two clists: PASCALVS and
PASCMOD.

File 9: PASCALVS.PROCLIB
A partitioned data set which con-
tains the JCL cataloged proce-
dures for running the compiler as
a batch job under MVS.

File 10: SAMPLE.PASCAL
A partitioned data set contain-
ing sample programs.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

APPENDIX B. INSTALLATION INSTRUCTIONS

File 11: PASCALVS.MESSAGES
A sequential data set which con-
tains the compiler messages.

File 12: CMS dump of the entire
Pascal/Vvs package:

= PASCALVS CONTENTS
A listing of the contents of
the Pascal/VS package.

- PASCALS MODULE
A program that issues all
necessary FILEDEF commands
to CMS prior to invoking the
compiler.

- PASCALL MODULE
The first pass of the compil-
er.

- PASCALO MODULE
The second pass of the com-
piler.

- PASCALT MODULE
The third pass of the compil-
er.

- PASCALL TXTLIB
the txtlib from which PAS-
CALL MODULE was generated.

- PASCALO TXTLIB
the txtlib from which PASCA-
LO MODULE was generated.

- PASCALT TXTLIB
the txtlib from which PAS-
CALT MODULE was generated.

- PASCALVS TXTLIB
The Pascals/V$s run time
library.

- PASDEBUG TXTLIB
The Pascal/VS debug library.

- PASCALVS MACLIB
The standard
library.

- PASCALVS EXEC
CMS EXEC which invokes the
compiler

- PASCALVS CMSHELP
Help file that is accessed
when "PASCALVS (A is
invoked.

- PASCHMOD EXEC
CMS EXEC which creates a load
module from a compiled Pas-
cal/VS program.

- PASCALVS MESSAGES
List of the compiler mes-
sages.

%ZINCLUDE

Appendix B. Installation Instructions 165

TNL SN20-4445 (31 December 1981) to SH20-6162-1

- LOADSRC EXEC
An EXEC which will load the
source of the compiler from
the tape.

- SAMPLE PASCAL
A sample program.

- PRIMGEN PASCAL
A sample program.

File 13: PASCALL.PASCAL
The source of the first pass of
the compiler.

File 14: PASCALO.PASCAL
The source of the second pass of
the compiler.

File 15: PASCALT.PASCAL
The source of the third pass of
the compiler.

File 16: PASCALD.PASCAL
The source of the interactive
debugger.

File 17: PASCALX.PASCAL
The source of the runtime library
routines.

File 18: PASCALX.ASM
The source of the operating sys-
tem interface routines.

File 19: MACLIBL.PASCAL
Include library for first pass of
the compiler.

File 20: MACLIBO.PASCAL
Include library for second pass
of the compiler.

File 21: MACLIBT.PASCAL
Include library for third pass of
the compiler.

File 22: MACLIBD.PASCAL
Include library for interactive
debugger.

File 23: MACLIBX.PASCAL
Include library for runtime rou-
tines.

B.1l TINSTALLING PASCAL/VS UNDER CMS

To install Pascal/VS under CMS perform
the following:

17 800 byte blocks are assumed.

a 3330 disk.
18

ling.

166 Pascal/VS Programmer's Guide

1. Have the distribution tape mounted
at address 181.

2. Link to the mini-disk (in write
mode) where the compiler is to be
stored. This is done with the CP
LINK command. The mini-disk must
have at least 2300 blocks of free
storagel?.

3. Access this disk with the ACCESS
command.

4. Execute the
commands:?

TAPE FSF 11
TAPE LOAD % ¥ m

following two

where "™m" is the single letter file
mode of the disk that was accessed in
the previocus step.

B.1.1 Regenerating Compiler Modules

To fix bugs that are discovered in the
compiler often requires modules of the
compiler to be recompiled.!® To replace
a compiled module (a text deck) of the
compiler, execute the following two
commands:

TXTLIB DEL PASCALx AMPxcccc
TXTLIB ADD PASCALx AMPxcccc

where "PASCALX"™ is either PASCALL, PAS-
CALO, or PASCALT, depending on which
phase of the compiler is being fixed:;
"AMPxccece"™ is the module name being
replaced.

After the appropriate text modules have
been replaced, then the associated load
module will need to be regenerated. To
regenerate PASCALL MODULE, execute the
following:

PASCMOD AMPLMAIN PASCALL (NAME PASCALL

To regenerate PASCALO MODULE, execute
the following:

PASCMOD AMPOMAIN PASCALO (NAME PASCALO

To regenerate PASCALT MODULE, execute
the following:

PASCMOD AMPTMAIN PASCALT (NAME PASCALT

This amount is equivalent to 9 cylinders on

The Pascal/VS compiler is written entirely in Pascal/V$S and is self-compi-

compiler, execute the following two

commands:

TXTLIB DEL PASCALx AMPxcccc
TXTLIB ADD PASCALx AMPxcccc

where "PASCALX" is either PASCALL,
PASCALO, or PASCALT, depending on which
phase of the compiler is being fixed;
"AMPxccece" is the module name being
replaced.

After the appropriate text modules have
been replaced, then the associated load
module will need to be regenerated. To

regenerate PASCALL MODULE, execute the
following:

PASCMOD AMPLMAIN PASCALL (NAME PASCALL

To regenerate PASCALO MODULE, execute
the following:

PASCMOD AMPOMAIN PASCALO (NAME PASCALO

To regenerate PASCALT MODULE, execute
the following:

PASCMOD AMPTMAIN PASCALT (NAME PASCALT

Installation Instructions 167

//JOBNAME JOB ,REGION=50K
/7/STEP1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSQUT=x

//75YSUT1 DD DSN=PASCALVS.INSTALL.CNTL,

//SYSIN DD DUMMY

Vo4 VOL=SER=TAPEVOL,

/77 UNIT=TAPE,LABEL=(1,NL),

/7 . DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
Vo4 DISP=0LD

/7/75YSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL,DISP=(NEW,CATLG),
Vo4 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),

V4 UNIT=3330,VOL=SER=DISKVOL,

7/ SPACE=(TRK,(1,1))

Figure 96. Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER VS2

This section explains how to install
Pascal/VS under an 05/7VS2 system.

B.2.1 Loading Files from Distribution
Tape

A sample of the job control language
required to install Pascal/VS under VS2
(MVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program
TIEBGENER must be used. The JCL shouwn
in Figure 96 may serve as a model job
to retrieve this file. DD operands
which are high-lighted will require
modification to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOL" appears in the DD
card named SYSUTI1.

The data set name (DSN=) in the DD card
named SYSUT2 is arbitrary. It is the
name of the data set where the first
file on the tape is to be stored. The
appropriate UNIT and volume serial num-
ber for disk storage must be specified
for DD SYSUT2.

Figure 97 on page 169, Figure 98 on
page 170, and Figure 99 on page 171
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

® The name "TAPEVOL™ must be replaced
with the volume serial number of
the distribution tape in the DD
statement named SYSUT1l in job step
STEP1.

168 Pascal/VS Programmer's Guide

The UNIT specification for tapes
has been given the generic name of
"TAPE"; this should be changed to
the appropriate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which Pascals/V$s
is to be installed must be speci-
fied where indicated ("DISKVOL")
in the following DD statements:
in STEP1: SYSUT2
in STEP2: SYSUT2
in STEP3: DS4%, DS5, DSé6,
DS7, DS8, DS9,
DS10
in STEP4: SYSUT2

The DD statements named SYSUT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener-
ic name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with-
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. If your dis-
tribution tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qualifier of data
set names that are to be cataloged
should be modified to follow
installation conventions. (The
examples in this manual assume a
high level qualifier of "SYS1".)

TNL SN20-4445 (31 December 1981) to SH20-6162-1

//7JOBNAME JOB ,REGION=50K
//STEP1 EXEC PGM=IEBGENER
//7SYSPRINT DD SYSQUT=x

7/ SPACE=(TRK,(1,1))
//SYSIN DD DUMMY

//75YSUT1 DD DSN=PASCALVS.INSTALL.CNTL,

7/ VOL=SER=TAPEVOL,

V4 UNIT=TAPE,LABEL=(1,NL),

7/ DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
V4 DISP=0LD

/7SYSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL DISP=(NEW,CATLG),
Vo4 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),

Va4 UNIT=3330,VOL=SER=BISKVOL,

Figure 96. Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER VS2

This section explains how to install
Pascal/VS under an 05/VS52 system.

B.2.1 Loading Files from Distribution
Tape '

A sample of the job control language
required to install Pascal/VS under VS2
(MVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program IEB-
GENER must be used. The JCL shown in
Figure 96 may serve as a model job to
retrieve this file. DD operands which
are high-lighted will require modifi-
cation to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOL™ appears in the DD
card named SYSUT1.

The data set name (DSN=) in the DD card
named SYSUT2 is arbitrary. It is the
name of the data set where the first
file on the tape is to be stored. The
appropriate UNIT and volume serial num-
ber for disk storage must be specified
for DD SYSUT2.

Figure 97 on page 168, Figure 98 on
page 169, and Figure 99 on page 170
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

° The name "TAPEVOL" must be replaced
with the volume serial number of
the distribution tape in the DD
g¥g;§ment named SYSUT1 in job step

168 Pascal/VS Programmer's Guide

The UNIT specification for tapes
has been given the generic name of
"TAPE"; this should be changed to
the appropriate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which Pascals/Vs
is to be installed must be speci-
fied where indicated ("DISKVOL")
in the following DD statements:
in STEP1: SYSUT2
in STEP2: SYSUT2
in STEP3: DS4, DS5, DS6,
DS7, DS8, DS9,
DS10
in STEP4: SYSUT2

The DD statements named SYSUT3 and
SYSUT% in job step STEP3 represent
temporary work storage. The gener-
ic name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at yvour installation.

The tape density is specified with-
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. If your dis-
tribution tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qualifier of data
set names that are to be cataloged
should be modified to follow
installation conventions. (The
examples in this manual assume a
high level qualifier of "SYS1".)

/7/INSTALL JOB ,REGION=128K

4.

/7% FILE 2 -- SOURCE INSTALLATION JOB
/ /%

//STEP1 EXEC PGM=IEBGENER

//SYSPRINT DD SYSQUT=x%

//75YSUT1 DD DSN=LOADSRC.CNTL,

77 VOL=(,RETAIN,SER=TAPEVOL),

/77 UNIT=TAPE,LABEL=(2,NL),

77 DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3),
7/ DISP=(0OLD,PASS)

/75YS5UT2 DD DSN=SYS1.LOADSRC.CNTL,DISP=(NEW,CATLG),
Vs DCB=(LRECL=80,RECFM=FB,BLKSIZE=3120),
/7 UNIT=3330,VOL=SER=DISKVOL,

s SPACE=(3120,(1,1))

//SYSIN DD DuMMY

/7%

/7% FILE 3 —-- PASCALVS CONTENTS

/7%

//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=x
//5YSUT1 DD DSN=PASCALVS.CONTENTS,

77 VOL=REF=%.STEP1.SYSUT1,

’7 UNIT=TAPE,LABEL=(3,NL),

’7 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120,DEN=3),
/7 DISP=(OLD,PASS)

//5YSUT2 DD DSN=8YS1.PASCALVS.CONTENTS,DISP=(NEW,CATLG),
’7 DCB=(LRECL=80,RECFM=VB,BLKSIZE=3120),

’7 UNIT=3330,VOL=SER=DISKVOL,

’7 SPACE=(3120,(1,1))

/7/5YSIN DD DUMMY

/7%

/7% FILE & -- PASCALVS.LINKLIB

/7% FILE 5 =-- PASCALVS.LOAD

/7% FILE 6 =-- PASDEBUG.LOAD

/7% FILE 7 =-- PASCALVS.MACLIB

/7% FILE 8 -- PASCALVS.CLIST

/7% FILE 9 -- PASCALVS.PROCLIB

/7% FILE 10 -- SAMPLE.PASCAL

/7 *

//STEP3 EXEC PGM=IEBCOPY
//7DS4 DD DSN=SYS1.PASCALVS.LINKLIB,DISP=(NEW,CATLG),

’7 DCB=(BLKSIZE=13030,RECFM=U, DSORG=P0),
’7 UNIT=3330,VOL=SER=DISKVOL,

/7 SPACE=(TRK, (50,10,3))

//FILE4 DD DSN=PASCALVS.LINKLIB,

% VOL=REF=%.STEP1.SYSUT1,

/7 UNIT=TAPE,LABEL=(4,NL),

’7 DCB=BLKSIZE=13030,

’7 DISP=(OLD,PASS)

7/DS5 DD DSN=SYS1.PASCALVS.LOAD,DISP=(NEW,CATLG),
77 DCB=(BLKSIZE=13030,RECFM=U, DSORG= PO),
’7 UNIT=3330,VOL=SER=DISKVOL,

77 SPACE=(TRK, (14,10,36))

//FILES DD DSN=PASCALVS.LOAD,

77 VOL=REF=%.STEP1.5YSUT1,

77 DCB=BLKSIZE=13030,

77 UNIT=TAPE,LABEL=(5,NL),

77 DISP=C(OLD,PASS)

7/D56 DD DSN=5YS1.PASDEBUG.LOAD,DISP=(NEW,CATLG),
77 DCB=(BLKSIZE=13030,RECFM=U,DSORG=P0),
’7 UNIT=3330,VOL=SER=DISKVOL,

77 SPACE=(TRK,(9,1,7))

Figure 97. Sample installation job: (continued in Figure

98 on page 170)

Installation

Instructions

169

//FILE6

//7SYSPR
/7/75YSUT
/7/7SYSUT
/7/SYSIN
COPY
COPY
COPY
COPY
COPY
CoPY
COPY
/%

Figure

DD

DD

DD

DD

DD

DD

DD

DD

INT

3
4

DSN=PASDEBUG.LOAD,

VOL=REF=%_,STEP1.SYSUT1,

DCB=BLKSIZE=13030,

UNIT=TAPE,LABEL=(6,NL),

DISP=(0LD,PASS)
DSN=8YS1.PASCALVS.MACLIB,DISP=(NEW,CATLG),
DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=P0),
UNIT=3330,V0L=SER=DISKVOL,
SPACE=(TRK,(25,2,3))

DSN=PASCALVS.MACLIB,

VOL=REF=%_,STEP1.SYSUT1,

UNIT=TAPE, LABEL=(7,NL),

DCB=BLKSIZE=3120,

DISP=(0OLD,PASS)
DSN=8YS81.PASCALVS.CLIST,DISP=(NEW, CATLG),
DCB=(BLKSIZE=3120,RECFM=VB,LRECL=255,D50RG=P0),
UNIT=3330,V0L=SER=DISKVOL,

SPACE=(TRK,(3,1,5))

DSN=PASCALVS.CLIST,

VOL=REF=%.STEP1.SYSUT1,

DCB=BLKSIZE=3120,

UNIT=TAPE,LABEL=(8,NL),

DISP=(0OLD,PASS)
DSN=8YE1.PASCALVS.PROCLIB,DISP=(NEW,CATLG),
DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=P0O),
UNIT=3330,VOL=SER=DISKVOL,

SPACE=(TRK, (2,2,2))

DSN=PASCALVS.PROCLIB,

VOL=REF=%_.STEP1.S5YSUT1,

UNIT=TAPE, LABEL=(9,NL),

DCB=BLKSIZE=3120,

DISP=(0OLD,PASS)
DSN=8YS1.SAMPLE.PASCAL,DISP=(NEW, CATLG),
DCB=(BLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=P0O),
UNIT=3330,V0L=SER=DISKVOL,
SPACE=(TRK,(5,2,2))
DSN=SAMPLE.PASCAL,
VOL=REF=%_,STEP1.SYSUT1,
UNIT=TAPE,LABEL=(10,NL),
DCB=BLKSIZE=3120,
DISP=(0OLD,PASS)

DD SYSQUT=x%

DD UNIT=SYSDA,SPACE=(TRK, (1)
DD UNIT=SYSDA,SPACE=(TRK, (1)
DD

)
)

OUTDD=DS4%, INDD=FILE%
OUTDD=DS5, INDD=FILES
OUTDD=DS6, INDD=FILE6
OUTDD=DS7, INDD=FILE?
OUTDD=DS8, INDD=FILES
OUTDD=DS9, INDD=FILE9
0UTDD=DS10, INDD=FILE10

98.

Sample installation job: (continued in Figure 99 on

page 171)

170 Pascal/VS Programmer's Guide (

TNL SN20-4445 (31 December 1981) to SH20-6162-1

/7%
24 FILE 11-- PASCALVS MESSAGES

//SYSIN DD DUMMY

Sample installation job:
and Figure 98)

Figure 99.

/7% (Must be stored unblocked because of BDAM access requirements)

7/ %

//STEP4 EXEC PGM=IEBGENER

7//SYSPRINT DD SYSOUT=x

//5YSUT1 DD DSN=PASCALVS.MESSAGES,

’7 VOL=REF=%.STEP1.5YSUT1,

77 UNIT=TAPE,LABEL=(11,NL),

/7 DCB=(LRECL=64,RECFM=FB,BLKSIZE=3200,DEN=3),
77 DISP=(OLD,PASS)

//5YSUT2 DD DSN=SYS1.PASCALVS.MESSAGES,DISP=(NEW,CATLG),
77 DCB=(LRECL=64,RECFM=F,BLKSIZE=64),

77 UNIT=3330,VOL=SER=DISKVOL,

77 SPACE=(TRK, (1,1))

(continued from

Figure 97 on page 168

B.2.2 The TS0 Clists

Distributed with the compiler are two
CLISTs: PASCALVS and PASCMOD. These
CLISTs reside in the partitioned data
set PASCALVS.CLIST (file 8 of the dis-
tribution tape).

These CLISTs should be stored in a pub-
lic CLIST library that is accessable to
750 users through DDname SYSPROC.

Each CLIST must be modified so that the
correct high level qualifier name is
used to reference the Pascals/VS data
sets. In PASCALVS, the symbol named
"FIRSTNAME"™ should be set to the appro-
priate name. In PASCMOD, the symbols
named "LIBRARY"™ and "DEBUGLIB"™ should
be set to the names of the PascalsV$s
run time library and the debug library,
respectively.

B.2.3 Cataloged Procedures

Distributed with the compiler are four
cataloged procedures for invoking the
compiler from a batch job: PASCC,
PASCCG, PASCCL, and PASCCLG. These
procedures reside in the partitioned
data set PASCALVS.PROCLIB (file 9 of
the distribution tape).

These procedures should be stored in a
cataloged procedure library, so that
the names will be recognized when ref-
erenced from a batch job.

Each procedure must be customized to
reflect the data set naming convention
chosen at your installation. For a

19 This is roughly 9400 800-byte blocks.

listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 264.

B.3 LOADING THE SOURCE UNDER CMS

The compiler source is stored on the
distribution tape beginning at file 13;
that is, 12 tape marks from the begin-
ning of the tape. It consists of nine
tape files stored in the IEBUPDTE for-
mat. To read such a format under CMS,
the TAPPDS command must be utilized.

The LOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per-
form the following:

1. Have the distribution tape mounted
at address 181.

2. Access the disk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 35 free cylinders of 3330 stor-
age.l?

3. Make sure that there is the equiv-
alent of at least 2 free cylinders
of 3330 storage on your "AY disk.

4. Invoke the LOADSRC EXEC as follows:
LOADSRC fm
where "fm" is the single letter
file mode of the disk to where the
source files are to be placed. The

EXEC will print out messages as it
processes the tape.

Once the source files have been

installed, you may find it desirable to pack them in order to save disk

storage.

Appendix B. Installation Instructions 171

TNL SN20-4445 (31 December 1981) to SH20-6162-1

172

B.% LOADING THE SOURCE UNDER VS2

The compiler source is stored on the
distribution tape beginning at file 13.
It consists of nine tape files stored
in the IEBUPDTE format.

File 2 of the distribution tape con-
tains the JCL which copies the source
files to disk storage. This file is
unloaded when the compiler is installed
and has bean given the name
"LOADSRC.CNTL"™.

Prior to submitting the job, it must be
customized as follows:

. In ddname SYSIN of jobstep STEP1,
the volume serial number of the
distribution tape should be placed
where the name TAPEVOL is shown.

. The UNIT specification for tapes
has been given the generic name
"TAPE"; this should be changed to
the appropriate generic at your
installation.

Pascal/VS Programmer's Guide

The UNIT specification for disk
storage has been specified as
n3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which the source
files are to be stored must replace
the name "DISKVOL" in the DD state-
ment named SYSUT2 in each job step.

The high level qualifier for the
data set names to be cataloged is
arbitrary. In the supplied JCL,
the name "SOURCE"™ is used.

If you do not want a listing of the
source, then DDname SYSPRINT
should be assigned to DUMMY in each
of the job steps.

The tape density is specified with-
in the DEN suboperand of the DCB
attributes. In the JCL, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other density, then
the DEN operands should be changed
accordingly.

//LOADSRC JOB ,REGION=50K

/7%

7/ % FILE 13 -- PASCALL PASCAL - PASS 1 SOURCE (COMPILER)

/7%

//STEP1 EXEC PGM=IEBUPDTE,PARM=NEW

//75YSUT2 DD DSN=SQURCE.PASCALL.PASCAL,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),

7/ VOL=SER=DISKVOL,SPACE=(TRK,(132,43,5))

//SYSIN DD UNIT=TAPE,VOL=(,RETAIN,SER=TAPEVOL),LABEL=(13,NL),
/7 DISP=(0LD,PASS),

Vs DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//S5YSPRINT DD SYSOUT=x%
/¥

7/ % FILE 14 -- PASCALO PASCAL - PASS 2 SOURCE (OPTIMIZER)
7/ %

//STEP2 EXEC PGM=IEBUPDTE,PARM=NEW

/75YSUT2 DD DSN=SOURCE.PASCALO.PASCAL,DISP=(NEW,CATLG),

/7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
s VOL=SER=DISKVOL,SPACE=(TRK, (40,10,5))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(14,NL),
7/ DISP=(0OLD,PASS),

/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=
/7%

7% FILE 15 -- PASCALT PASCAL - PASS 3 SOURCE (TRANSLATOR)
7/ %

//STEP3 EXEC PGM=IEBUPDTE,PARM=NEW

’7 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
77 VOL=SER=DISKVOL,SPACE=(TRK, (117,39,5))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.S5YSIN,LABEL=(15,NL),

/7 DISP=(OLD,PASS),

/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOQUT=x

/7%

/7% FILE 16 —-- PASCALD PASCAL - DEBUG SOURCE

/7%

//STEP4 EXEC PGM=IEBUPDTE,PARM=NEW

//75YSUT2 DD DSN=SQURCE.PASCALD.PASCAL,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
s VOL=SER=DISKVOL, SPACE=(TRK, (33,9,5))

/7/S5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(16,NL),
7/ DISP=(0LD,PASS),

7/ DCB=(LRECL=80;BLKSIZE=3120,RECFM=FB,DEN=3)
/7/SYSPRINT DD SYSOUT=x
24

/7% FILE 17 -- PASCALX PASCAL - RUN TIME ENVIRONMENT SOURCE
/%

//STEP5 EXEC PGM=IEBUPDTE,PARM=NEW

//5YS5UT2 DD DSN=SQURCE.PASCALX.PASCAL,DISP=(NEW,CATLG),

4 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
77 VOL=SER=DISKVOL,SPACE=(TRK,(69,24,5))

//5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(17,NL),

77 DISP=(0LD,PASS),

7/ DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x

oo

Figure 100. Listing of the JCL to copy source files from tape: this job
stored as file 2 of the distribution tape. (continued
Figure 101 on page 174).

is
in

Installation Instructions

173

/7%

/7% FILE 18 -- PASCALZ ASM - RUN TIME ENVIRONMENT SOURCE
/7%

/7/STEP6 EXEC PGM=IEBUPDTE,PARM=NEW

//5YSUT2 DD DSN=SOURCE.PASCALZ.ASM,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
7/ VOL=SER=DISKVOL,SPACE=(TRK,(16,1,4))

//SYSIN DD UNIT=TAPE,VOL-REF=%.STEP1.SYSIN,LABEL=(18,NL),
7/ DISP=(0OLD,PASS),

V4 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x

s/ %k

7/% FILE 19 -- MACLIBL PASCAL - ZINCLUDE LIBRARY FOR COMPILER
/7%

//STEP7 EXEC PGM=IEBUPDTE,PARM=NEW

//75YSUT2 DD DSN=SOURCE.MACLIBL.PASCAL,DISP=(NEW,CATLG),

4 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),

/7 VOL=SER=DISKVOL, SPACE=(TRK,(21,7,4))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(19,NL),

s DISP=(0LD,PASS),

77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x
/7%

/7% FILE 20 -- MACLIBO PASCAL - X%INCLUDE LIBRARY FOR OPTIMIZER
/7%

//STEP8 EXEC PGM=IEBUPDTE,PARM=NEW

//75YSUT2 DD DSN=SOURCE.MACLIBO.PASCAL,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
Vs VOL=SER=DISKVOL,SPACE=(TRK, (5,2,3))

/7/5YSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(20,NL),
/7 DISP=(0OLD,PASS),

Vs DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)
//SYSPRINT DD SYSOUT=x

7/ /%

/7% FILE 21 -- MACLIBT PASCAL - %INCLUDE LIBRARY FOR TRANSLATOR

/7/STEP9 EXEC PGM=IEBUPDTE,PARM=NEW
//75YSUT2 DD DSN=SOQURCE.MACLIBT.PASCAL,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
Vs VOL=SER=DISKVOL,SPACE=(TRK,(19,7,4%))

/7/5YSIN DD UNIT=TAPE,VOL=REF=%,STEP1.SYSIN,LABEL=(21,NL),
7/ DISP=(0LD,PASS),

7/ DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

/7%

7/ % FILE 22 -- MACLIBD PASCAL - ZINCLUDE LIBRARY FOR DEBUG
Vo4

//STEP10 EXEC PGM=IEBUPDTE,PARM=NEW

//75YSUT2 DD DSN=SQURCE.MACLIBD.PASCAL,DISP=(NEW,CATLG),

7/ UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),

Vs VOL=SER=DISKVOL,SPACE=(TRK,(2,1,1))

/7/SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(22,NL),

7/ DISP=(0OLD,PASS),

/77 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

/7SYSPRINT DD SYSOUT=x

/7%

/7% FILE 23 -- MACLIBX PASCAL - %INCLUDE/MACRO LIBRARY FOR RUN TIME
/7% ENVIRONMENT

/7%

//STEP11 EXEC PGM=IEBUPDTE,PARM=NEW
//5YSUT2 DD DSN=SOQURCE.MACLIBX.PASCAL,DISP=(NEW,CATLG),

/77 UNIT=3330,DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB),
s VOL=SER=DICSKVOL,SPACE=(TRK,(9,1,2))

//SYSIN DD UNIT=TAPE,VOL=REF=%.STEP1.SYSIN,LABEL=(23,NL),
/7 DISP=0LD,

/7 DCB=(LRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3)

//SYSPRINT DD SYSOUT=x%

Figure 101. Listing of the JCL to copy source files from tape: (continued
from Figure 100)

174 Pascal/VS Programmer's Guide

A,

TNL SN20-4445 (31 December 1981) to SH20-6162-1

APPENDIX C. ADDITIONAL LIBRARY PROCEDURES AND FUNCTIONS

In addition to the routines described
in Pascal/VS Reference Manual, order
number SH20-6168-1, there are several
other routines which are not predefined
but are provided in the Pascal/VS exe-
cution library. These routines are :

. ITOHS Procedure

CMS Procedure
LPAD Procedure
RPAD Procedure
PICTURE Function

Appendix C. Additional Library Procedures and Functions 175

TNL SN20-4445 (31 December 1981) to SH20-6162-1

C.1 CMS PROCEDURE

Invoke a CMS Command

C.2 ITOHS FUNCTION

Convert an INTEGER to a hex string

Definition:

procedure CMS(
const S
var RC
EXTERNAL;;

STRING;
INTEGER);

Where:

S is a STRING that is to be
executed.
RC is the return code.

The STRING specified by S will be
passed to CMS (via SVC 202) to be exe-
cuted; the command must be executable
in the transient area or in a shared
segment. You must code the declaration
as shown above, or use the INCLUDE mem-
ber named "CMS™ which is provided in
the Pascal/VS library. This procedure
is applicable under CMS only.

%INCLUDE CMS
CMSC'Q T', RET);

176 Pascal/VS Programmer's Guide

Definition:
function ITOHS(
I INTEGER)
STRING(8);
EXTERNAL;
Where:

I is the value to be converted.

This function converts the parameter I
into a STRING that contains the hexade-
cimal representation of the integer.
You must code the declaration as shoun
above, or use the INCLUDE member named
"CONVERT" which is provided in the Pas-
calsVs library.

%INCLUDE CONVERT
WRITELNC'The value ',I:0,

is ', ITOHS(I),
' in hexadecimal.');

C.3 LPAD PROCEDURE

Pads or truncates a string on the left

Definition:

procedure LPAD(

var $§ ¢ STRING;
L : INTEGER;
Cc : CHAR);
EXTERNAL;
Where:

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure LPAD pads or truncates
string variable S on the left. If
LENGTH(S) is greater than L, then the
effect is to truncate characters on the
left. If LENGTH(S) 1is less than L,
then the effect is to extend S with the
character C on the left. You must code
the declaration as shouwn above, or use
the INCLUDE member named "STRING" which
is provided in the Pascal/VS library.

%INCLUDE STRING;
s = 'ABCDEF';
LPAD(S, 10, '$');
produces '$$$$ABCDEF' in S

S := 'ABCDEF';
LPAD(S, 5, '$');
produces 'BCDEF' in S

TNL SN20-4445 (31 December 1981) to SH20-6162-1

C.% RPAD PROCEDURE

Pads or truncates a string on the
right

Definition:

procedure RPAD(

var § : STRING;
L : INTEGER;
C : CHAR);
EXTERNAL;
Where:

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure RPAD pads or truncates
string variable S on the right. If
LENGTH(S) is greater than L, then the
effect is to truncate characters on the
right. If LENGTH(S) is less than L,
then the effect is to extend S with the
character C on the right. You must
code the declaration as shown above, or
use the INCLUDE member named "STRING"
which is provided in the Pascals/V$s
library.

%ZINCLUDE STRING

:= YABCDEF';
RPAD(S, 106, '$');
produces "ABCDEF$$$$' in S

S := 'ABCDEF';
RPAD(S, 5, '$");
produces 'ABCDE' in S

Appendix C. Additional Library Procedures and Functions 177

TNL SN20-4445 (31 December 1981) to SH20-6162-1

C.5 PICTURE FUNCTION

Formats a floating point value
according to a "picture" format

Definition=

function PICTURE(
const P : STRING;
R : REAL): STRING(100);
EXTERNAL;

Where:

P is a picture specification;
R is the number to be formatted.

The function PICTURE returns the string
representation of a real number format-
ted according to a "picture" specifica-
tion. The characters that make up the
picture specification are similar to
those found in PL/I and COBOL.

A declaration for PICTURE may be
obtained by including the member CON-
VERT from the PascalsV$S library.

A picture specification may consist of
two fields: a decimal field and an
exponent field. The latter is optional;
the first one is always required.

The decimal field may consist of two
subfields: the integer part and the
fractional part. The latter is
optional.

Example of picture specifications:

$9999.V99
9V.999ES99
$222,222,2Z9V.99

A picture character may be grouped into
the following categories. Picture
characters may be specified in lower
case.

. Digit and decimal-point specifier

9 specifies that the associated
position in the data item is to
contain a decimal digit.

V divides the decimal field into
two parts: the integer part and
the fractional part. This char-
acter specifies that a decimal
point is assumed at this posi-
tion in the associated data
item. However, it does not spec-
ify that an actual decimal point
is to be inserted. The integer
and fractional parts of the
assigned value are aligned on
the V character; therefore, an
assigned value may be truncated
or extended with zero digits at

178 Pascal/VS Programmer's Guide

either end. (User beware!) If
no V character appears, a V is
assumed at the right end of of
the decimal field.

Zero suppression characters

Z specifies a conditional digit
position in the character
string value and may cause a
leading zero to be replaced with
a blank.

%*¥ specifies a conditional digit
position in the character
string value and may cause a
leading zero to be replaced with
an asterisk ("'%'),

leading zeros are those that occur
in the leftmost digit positions of
the integer part of floating point
numbers.

Insertion character

Insertion characters are inserted
into corresponding positions in
the output string provided that
zero suppression is not taking
place. If zeros are being sup-
pressed when an insertion
character is encountered, a blank
or an asterisk will be inserted in
the corresponding place in the out-
put string, depending on whether
the zero-suppression character is
a Z or an asterisk (%).

» causes a comma to be inserted
into the associated position of
the output string.

. causes a point (.) +to be
inserted into the associated
position of the output string.
The character never causes
point alignment in the number.
That function is served soley by
the character V.

B causes a blank to be inserted
into the associated position of
the output string.

Signs and currency symbol

The sign and currency characters
('S, "+','=-','$') nmay be used in
elther a statlc or a drifting man-

ner, The static use specifies that

a sign, a currency symbol, or a
blank always appears in the associ-
ated position. The drifting use
specifies that leading zeros are to
be suppressed.

A drifting character is specified
by multiple use of that character
in a picture field.

+ specifies a plus sign character
(+) if the number is >=0, other-
wise it specifies a blank.

- specifies a minus sign charac-
ter (-) if the number is <0,
otherwise it specifies a blank.

8 specifies a plus sign character
(+) if the number is >=0, other-
wise it specifies a minus sign
character (-).

4 specifies a dollar sign charac-
ter ($).

° Exponent specifiers

The characters 'E' and "K' delimit
the exponent field of a picture

TNL SN204445 (31 December 1981) to SH20-6162-1

specification. The exponent field
must always be the last field.

E

specifies that the associated
position contains the letter E,
which indicates the start of the
exponent field.

specifies that the exponent
field appears to the right of
the associated position. It
does not specify a character
data item.

See Figure 102 for examples.

P R PICTURE(P,R)
'99999" 123.0 '00123"
122229 123.0 ' 123
TXXXXG! 123.0 T%X%123"
1222729 0.0 ' 0
vz22222" 6.0 ' '
THRXHXXOY 0.0 YXXXX(0"
TXXXXXT 0.0 TRXHKNXT
59999 123.0 '+0123°
'+9999" 123.0 '+0123"
'+9999" -123.0 ' 0123
'999.99" -123.456 '001.23"
*999vV.99" 123.456 '123.46"
'222,222,229' 123656.0 ' 123,456"
THXKR, KKK, ¥X9? 123456.0 "X%%%123,456°
'-22,222,229' -123456.0 '- 123,456"
Vo =y == 9 -123456.0 ! -123,456"
TOXX, XXX, %X%X9V .99 123456.78 '$%Xx%x123,456.78"
1$6$,$6$5,859v.99" 123456.78 ' $123,456.78"
'S9V.9999ES99" 1.23456 '+1.2346E+00°
'S9V.9999KS99" 1.23456 '+1.2346+00"
'-999.999,V99° 1234 .567 '-001.234,57"
'-9.999E9" -1234.567 '-1.235E3"
'9B9BIBIBIBY"’ 123456.0 1234656
'9.9.9.9.9.9" 12345.0 '0.1.2.3.4.5"
'99999S? -12345.0 '12345-"
'999+! -123.45 r123 *

'999+" +123.45 '123+"
'Z2Z2Z.N99° 0.12 ' 12¢
'2Z22V.99' 0.12 ! .12°
"-9V.999ES9" 1.23E4 ' 1.230E+4"
'S9999VESZ9? -123456.0 '-1235E+ 2"
'"-V.999E-99" 123456.0 ' .123E 086"

Figure 102. Examples of using the PICTURE function

Appendix C. Additional Library Procedures and Functions 178.1

A

access methods 45

BDAM 45

BPAM 45

QSAM 45
arrays

storage mapping of 88
assembler routines, linking
to 104-119
calling Pascal/VS main program

from 109
calling Pascal/VS routines
from 107

general interface 105-106

minimum interface 104

receiving parameters 107
assembly listing 42
automatic variables

storage mapping of 87

batch
See 0S batch
BDAM 45
BLKSIZE 45, 57
block size attribute
See BLKSIZE
BPAM 45

CALL
command of TS0 20
cataloged procedures 2%

PASCC 25
PASCCG 26
PASCCL 27
PASCCLG 28

CHECK compiler option 31
as 1t applies to
CASE statements 31
function routines 31
pointers 31
string truncation 32
subranges 31
subscripts 31
checking errors at run time 61
CLOSE procedure 55
closing a file 55
CMS 9-13
building load module 12
compiling under 9-11
defining files under 13
invoking load module 13
CMS procedure 176
COBOL 114
calling from Pascal/VS 114
calling Pascals/V5 from 115
code generation 91-102
See also DSA,
linkage conventions

parameter passing,
PCB,
PCWA,
register usage,
routine format,
routine invocation
command syntax 163
compilation
under CMS 9-11
under 0S5 batch 23-30
under TS0 15-17
compiler diagnostics
under CMS 10
under TS0 17
compiler listings 37-43
assembly
See assembly listing
cross-reference
See cross-reference listing
ESD
See ESD table
source
See source listing
compiler messages
See messages, compiler
compiler options 31-33
See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LANGLVL compiler option,
LINECOUNT compiler option,
LIST compiler option,
MARGINS compiler option,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option,
NOPXREF compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
PAGEWIDTH compiler option,
PXREF compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option
console input/output 47
CONSOLE option
of PASCALVS CLIST 16
of PASCALVS EXEC 10
COUNT run time option 35
cross—-reference listing ¢0-41

D

data set attributes 45
See also LRECL, RECFM, BLKSIZE
data set definitions
See file definitions
DCB attributes
See data set attributes
DDname
OPEN specification 57
DDname association 45
DEBUG compiler option 32

Index 179

debug facility 65-85
commands 65-77

break 66
clear 66
CMS 67

display 67
display breaks 68
display equates 68
end 69
equate 69
go 70
help 71
listvars 71
qualify 72
quit 72
reset 73
set attr 73
set count 74
set trace 74
trace 75
view memory 76
view variable 75
walk 77
input to 65
output from 65
qualification 65
DEBUG option
of PASCMOD CLIST 19
of PASCMOD EXEC 12
of run time 35
debugging a program
interactive debugger
See debug facility
traceback facility 59
DEF variables
storage mapping of 87

default
BLKSIZE 45
LRECL 45
RECFM 45

DISK option

of PASCALVS EXEC 9
DSA (dynamic storage area) 92
dump

symbolic variable 63
dynamic storage area

See DSA
dynamic variables

storage mapping of 87

end-of-file condition

for record files 54

for text file 54
end-of-line condition 53
enumerated scalar

storage mapping of &8
EOF function 5%
EOLN function 53
EPILOG assembler macro 105
ERRCOUNT run time option 35
ERRFILE run time option 35
errors

execution time

intercepting 62

ESD table 43
executing a program

under 0S batch 23-30
execution error handling 61
execution errors

intercepting 62

180 Pascal/VS Programmer's Guide

external symbol dictionary
See ESD table

file control block
See PCB
file definitions
under CMS 13
under 0S batch 29
under TS0 20
files
See also input/output facilities
See also record files
See also text files
storage mapping of 89
FORTRAN 112
calling from Pascals/Vvs 112
calling PascalsVS from 113
function invocation
See routine invocation

GET procedure 48
record files 48
text files 48
GOSTMT compiler option 32
GS compiler option
See GOSTMT compiler option

I/0 facilities
See input/output facilities
%INCLUDE facility
under CMS 10
under 0S batch 29
under TS50 17
input/output facilities 6¢5-58
implementation 45
record files
See record files
text files
See text files
installation instructions 165-174
compiler source
under CMS 171
under V52 172
for CMS 166
for 05/VS2 168-171
cataloged procedures 171
CLIST customizing 171
loading compiler 168-171
modi fying for CMS R5 166
regenerating compiler under
CMS 166
interactive files 46, 51
INTERACTIVE open option 46, 57
intercepting execution errors 62
interlanguage communication 103-119
assembler 104
COBOL 114
data type equivalencing 118
FORTRAN 112
PL/I 116

ITOHS function 176

JCL 23
job control language 23

LANGLVL compiler option 32
LC compiler option
See LINECOUNT compiler option
LIB option
of PASCALVS CLIST 16
of PASCMOD CLIST 19
LINECOUNT compiler option 32
linkage conventions 91
LIST compiler option 32
listing
See compiler listings
load module
creating under CMS 12
creating under TS0 18
invoking under CMS 13
invoking under TS0 20
logical record length
See LRECL
LPAD procedure 177
LRECL 45, 57

M

MACLIB access

See partitioned data set
MAINT run time option 35
MARGINS compiler option 32
MEMBER open option 58
messages 131-159

compiler 131-149

DEBUG 157

execution time messages 150

PASCALVS exec 159
MVS batch

See 0S batch

N

NAME option

of PASCMOD EXEC 12
NOCHECK compiler option 31
NOCHECK run time option 35
NODEBUG compiler option 32
NOGOSTMT compiler option 32
NOGS compiler option

See NOGOSTMT compiler option
NOLIB option

of PASCALVS CLIST 16
NOLIST compiler option 32
non-text files

See record files
NOOBJ option

of PASCALVS EXEC 10
NOOBJECT option

of PASCALVS CLIST 16
NOOPT compiler option

See NOOPTIMIZE compiler option
NOOPTIMIZE compiler option 33
NOPRINT option

of PASCALVS CLIST 16

of PASCALVS EXEC 10
NOPXREF compiler option 33
NOS compiler option

See NOSOURCE compiler option
NOSEQ compiler option

See NOSEQUENCE compiler option
NOSEQUENCE compiler option 33
NOSOQURCE compiler option 33
NOSPIE run time option 35
NOWARNING compiler option 33
NOX compiler option

See NOXREF compiler option
NOXREF compiler option 33

o)

OBJECT option
of PASCALVS CLIST 15
of PASCMOD CLIST 19
open options 56
INTERACTIVE 46
opening a file
for input 46
for interactive input 66
for output 47
for terminal I/0 47
for update 47
OPT compiler option
See OPTIMIZE compiler option
OPTIMIZE compiler option 33
0S batch 23-30
cataloged procedures 23
compiling under 23
executing under 23

Page cross reference 33
PAGE procedure 53
PAGEWIDTH compiler option 33
parameter passing 95-96
by value 95
function results 96
read-only reference (CONST) 95
read/urite reference (VAR) 95
routine parameters 96
partitioned data set 56, 58
access under CMS 56
opening 56
Pascal communication work area
See PCWA
Pascal, standard
extensions 127
modified features 127
restrictions over 127
PASCALVS
CLIST of TSO 15
DEBUG messages
See messages, PASCALVS exec
exec messages
See messages, PASCALVS exec
exec of CMS 9-10
PASCC cataloged procedure 25, 27

Index

181

PASCCG cataloged procedure 26
PASCCL cataloged procedure 27
PASCCLG cataloged procedure 28
PASCMOD

CLIST of TSO 18

EXEC of CMS 12

PCB 101
PCWA 98
PDS

See partitioned data set
PDSIN procedure 56
PDSQUT procedure 56
PL/7I 116

calling from PascalsVsS 116

calling Pascals/VS from 117
PRINT option

of PASCALVS CLIST .16

of PASCALVS EXEC 10
procedure invocation

See routine invocation
PROLOG assembler macro 105
PUT procedure 49

record files 49

text files 49
PW compiler option

See PAGEWIDTH compiler option
PXREF compiler option 33

Q

QSAM 45

READ procedure
for record file 54
text file 49
integer data 50
length qualifier 50
real data 50
strings 51
READLN procedure 51
RECFM 45, 57
record fields
storage mapping of 87
record files 46
closing 55
GET operation 48
opening for input 66
opening for output 47
processing of 54-55
PUT operation 49
updating 47
record format
See RECFM
rocords

storage mapping of 88

regenerating compiler under CMS 166

register usage- 91
RESET procedure 46
REWRITE procedure 47
routine format 97
routine invocation 94
RPAD procedure 177
run time errors
intercepting 62
run time libraries
under CMS 12
run time options 35

182 Pascal/VS Programmar's Guide

runtime environment 121-125
main program 121
memory management 125
program initialization 121

S compiler option
See SOURCE compiler option
SEQ compiler option
See SEQUENCE compiler option
SEQUENCE compiler option 33
SETMEM option 35
sets
storage mapping of 89
SOURCE compiler option 33
source listing 37-39
compilation statistics 39
error summary 38
nesting information 38
option list 38
page cross reference field 38
page header 38
statement numbering 38
spaces
storage mapping of 90
standard Pascal
See Pascal
static variables
storage mapping of 87
storage mapping 87-90
arrays 88
automatic storage 87
boundary alignment 87-90
data size 87-90
DEF storage 87
dynamic storage 87
enumerated scalar 88
files 89
predefined types 87
record fields 87
records 88
sets 89
spaces 90
static storage 87
subrange scalar 88
subrange scalar
storage mapping of 88
symbolic variable dump 63
syntax notation 163
SYSLIB 27, 29
SYSLIN DDname 24
SYSLMOD 27
SYSPRINT DDname 24
SYSPRINT option
of PASCALVS CLIST 16

TERMIN procedure 47
terminal input/output 47
TERMOUT procedure 47
text files 46
closing 55
GET operation 68
interactive input 66
opening for input 46
opening for output 47
processing of 69-54

PUT operation 49
traceback facility 59-61
750 15-21

building load module 18

compiling under 15-17

defining files under 20

invoking load module 20

UPDATE procedure 47

variable dump 63
VS2 batch
See 0S batch

H

W compiler option

See WARNING compiler option

WARNING compiler option 33
WRITE procedure 52

for record file 54
WRITELN procedure 53

X

X compiler option
See XREF compiler option
XREF compiler option 33

Index

183

SH20-6162-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

1-Z9L9-0ZHS "V'S'N Ul palulld apIng sJawweibold SA/(eoseq

T

Staples can cause problems with automated mail sorting equipment.

Note:

Please use pressure sensitive or other gummed tape to seal this form.

READER'’S
COMMENT
FORM

Pascal/VS: 5796-PNQ
Programmer’s Guide

SH20-6162-1

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author’s department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-6162-1

Reader’'s Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 68Y

P.O. Box 2750

225 John W. Carpenter Freeway, East
Irving, Texas 75062

Fold and tape Please Do Not Staple

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591

IBM Wd/ Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y., U.S.A. 10601

NO POSTAGE
NECESSARY
IF MAILED

IN THE

UNITED STATES

L-2919-0ZHS °V'S'N Ul palulld 8pIng s, Jawwelbold SA/[edsed

-_———————— — — — — — —3UIT BUO|Y PIO4 10 IND = — — ———.

!

Technical Newsletter This Newsletter No. SN20-4445

Date 31 December 1981

Base Publication No. SH20-6162-1
File No.

Prerequisite Newsletters =~ SN20-4117

PASCAL/VS
Programmer’s Guide

Program Number: 5796-PNQ

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Cover

v/vi

vii/viii

ix/x

5/6

29/30
35/36
37-40

45 -58
58.1/58.2
103 -108
113-120
127-130
138.1/138.2
139 -142
142.1/142.2
147 - 150
153-156
165 - 168
171/172
175-178
178.1/178.2

Note: File this cover page at the back of the manual to provide a record of changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N.Y. 10604

