
Installed
User
Program

SH20-6162-1

Pascal/VS
Programmer's Guide

Program Number: 5796-PNQ

Pascal/VS is a Pascal compiler operating in MVS and
VM/CMS. Originally designed as a high level programming
language to teach computer programming by N. Wirth
(circa 1968), Pascal has emerged as an influential and well
accepted user language in today's data processing environ­
ment. Pascal provides the user with the ability to produce
very reliable code by performing many error detection
checks automatically.

The compiler adheres to the currently proposed ISO
standard and includes many important extensions. Th()
language extensions include: separate compilation,
dynamic character strings and extended 1/0 capabilities.
The implementation features include: fast compilation,
optimization and a symbolic terminal oriented debugger
that allows the user to debug a program quickly and
efficiently.

This manual is a guide to the use of the compiler in the
MVS and VM/CMS operating environments.

--- ------ - - --- ---- - ---- - - ------ --___ ,,_

PROGRAM SERVICES

Central Service will be provided until otherwise notified. Users will be given a minimum of
six months notice prior to the discontinuance of Central Service.

During the Central Service period, IBM through the program sponsor(s) will, without addi­
tional charge, respond to an error in the current unaltered release of the program by issuing
known error correction information to the customer reporting the problem and/or issuing
corrected code or notice of availability of corrected code. However, IBM does not guarantee
service results or represent or warrant that all errors will be corrected.

Any on-site program service or assistance will be provided at a charge.

WARRANTY

EACH LICENSED PROGRAM IS DISTRIBUTED ON AN 'AS IS' BASIS WITHOUT WAR­
RANTY OF ANY KIND EITHER EXPRESS OR IMPLIED.

Central Service Location: IBM Corporation
555 Bailey Avenue
P.O. Box 50020
San Jose, CA. 95150
Attention: Mr. Larry B. Weber
Telephone: (408) 463-3159
Tieline: 8-543-3159

IBM Corporation
DPD, Western Region
3424 Wilshire Boulevard
Los Angeles, California 90010
Attention: Mr. Keith J. Warltier
Telephone: (213) 736-4645
Tieline: 8-285-4645

Second Edition (April 1981)

This is the second edition of SH20-6162, a publication that applies to release 2.0
of the Pascal/VS Compiler (IUP Program Number 5796-PNQ).

References in this publication to IBM products, programs, or services do not imply
that IBM intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch office
serving your locality.

A form for readers' comments has been provided at the back of this publication. If
the form has been removed, address comments to: The Central Service Location.
IBM may use or distn"bute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1980, 1981

•

PREFACE

This manual is a guide to the use of the Pascal/VS compiler. It explains how to
compile and execute Pascal/VS programs, and describes the compiler and the operat­
ing system features which may be required by the Pascal/VS programmer. It does
not describe the language implemented by the compiler.

RELATED PUBLICATIONS

I • Pascal/VS Language Reference Manual, order number SH20-6168. This manual
describes the Pascal/VS language.

• IBM Virtual Machine Facility/370: CMS Command and Macro Reference, order num­
ber GC20-1818. This manual describes the commands of the Conversational Moni­
tor System (CMS) component of the IBM Virtual Machine Facility/370 with
detailed reference information concerning command syntax and usage.

• IBM Virtual Machine Faci 1 i ty/370: CP Command Reference for General Users,
order number GC20-1820. This manual describes the control processor commands
of the IBM Virtual Machine Facility/370.

• OSIVS2 TSO Command Language Reference Manual, order number GC28-0646. This
manual describes the commands of the Time Sharing Option of OSIVS2.

• OS/VS2 JCL, order number GC28-0692. This is a reference manual for the job
control language of OS/VS2.

• OS/VS Linkage Editor and Loader, order number GC26-3813.
describes how to use the OS/VS2 linkage editor and loader.

This manual

• Time Sharing Option Display Support and Structured Programming Facility Ver­
sion 2.2: Installation and Customization Guide, order number SH20-2402. This
manual describes how to install and modify menus and command procedures of the
Structured Programming Facility CSPF>. Knowledge of the content of this manu­
al is required to install the Pascal/VS SPF menus and procedures.

• OS/VS2 MVS Data Management Services Guide, order number GC26-3875. This manu­
al describes the various data set access methods utilized by OS/VS2 and the OS
simulation of CMS - VM/370.

• Pascal/VS Reference Summary, order number GX20-2365. This reference summary contains basic information
from the Pascal/VS Reference Manual and Pascal/VS Programmer's Guide.

Preface i ii

iv

TNL SN20-4445 (31December1981) to SH20-6162-l

SUMMARY OF AMENDMENTS

RELEASE 2.1

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.1.

• A procedure (or function) at any nesting level may now be passed as a routine
parameter. The previous restriction which required such procedures to be at
the outermost nesting level of a module has been removed.

• Two new options may be applied to fi !es when they are opened: UCASE and NOCC.

• Rules have been relaxed in passing fields of packed records by va~ to a rou­
tine.

• The "STACK" and "HEAP" run time options have been added to control the amount
at which the stack and heap are extended when an overflow occurs.

• The syntax of a "structured constant" which contains non-simple constituents
has been simplified.

RELEASE 2.0

The following is a list of the functional changes that were made to Pascal/VS for
Release 2.0.

• Pascal/VS now supports single precision floating point (32 bit) as well as
double precision floating point (64 bit).

• Files may be opened for updating with the UPDATE procedure.

• Files may be opened for terminal input CTERMIN> and terminal output CTERMOUT>
so that I/O may take place directly to the user's terminal without going
through the DDNAME interface.

• The MAIN directive permits you to define a procedure that may be invoked from
a non-Pascal environment. A procedure that uses this directive is not reen­
trant.

• The REENTRANT directive permits you to define a procedure that may be invoked
from a non-Pascal environment. A procedure that uses this directive is reen­
trant.

• A new predefined type, STRINGPTR, has been added that permits you to allocate
strings with the NEW procedure whose maximum size is not defined until the
invocation of NEW.

• A new parameter passing mechanism is provided that allows strings to be passed
into a procedure or function without requiring you to specify the maximum size
of the string on the formal parameter.

• The maximum size of a string has been increased to 32767 characters.

• The Pascal/VS compiler is now fully reentrant.

• Code produced from the compiler will be reentrant if static storage is not
modified.

• Pascal/VS programs may contain source lines up to 100 characters in length.

• Files may be accessed based on relative record number (random access>.

• Run time errors may be intercepted by the user's program.

• Run time diagnostics have been improved.

• Pascal/VS will flag extensions when the option "LANGLVLCSTD>" is used.

Summary of Amendments v

TNL SNl0-4445 (31 December 1981) to SH20-6162-1

• A mechanism has been provided so that Pascal/VS routines may be called from
other languages.

• All record formats acceptable to QSAM are now supported by the Pascal/VS I/O
facilities.

• A procedure or function may now be exited by means of the goto statement.

• You may now declare an array variable where each element of the array is a
file.

• You may define a file to be a field of a record structure.

• Files may now be allocated in the heap (as a dynamic variable) and accessed
via a pointer.

• You may now define a subrange of INTEGER which is allocated to 3 bytes of stor­
age. Control over signed or unsigned values is determined by the subrange.

• Variables may be declared in the outermost scope of a SEGMENT. These vari­
ables are defined to overlay the variables in the outermost scope of the main
program.

• The PDSIN procedure opens a member of a library file (partitioned dataset) for
input.

• The PDSOUT procedure opens a member of a library file (partitioned dataset)
for output.

• A procedure or function that is declared as EXTERNAL may have its body defined
later on in the same module. Such a routine becomes an entry point.

• The CPAGE percent(%) statement conditionally does a page eject if less than a
specified number of lines remain on the current listing page.

• The MAXLENGTH function returns the maximum length that a string variable can
assume.

• The %CHECK TRUNCATE option enables Cor disables) the checking for truncation
of strings.

• The PASCALVS exec for invoking the compiler under CMS has been modified so
that the specification of the operands allows greater flexability.

• New compiler options have been added, namely: LINECOUNT, PXREF, PAGEWIDTH, and
LANGLVL.

• The catalogued procedures for invoking Pascal/VS in OS Batch have been simpli­
fied.

• The format of the output listing has been modified so that longer source lines
may be accomodated.

• Multiple debugger commands may be entered on a single line by using a semico­
lon C;) as a separator.

• The format of the Pascal File Control Block has been modified.

• Support is now provided for ANSI and machine control characters on output
files.

• Execution of a Pascal/VS program will terminate after a user determined number
of non-fatal run time errors.

• The debugger now supports breakpoints at the end of a procedure or function.

• The Trace mode in the debugger provides information on when procedures are
being exited.

• The TRACE procedure now permits you to specify the file on which the traceback
is to be written.

• The Equate command of the debugger has been enhanced.

vi Pascal/VS Programmer's Guide

(

TNL SN20-4445 (31December1981) to SH20-6162-1

1.0
1.1
1.2
1.3
1.4
1.5
1. 6
1. 7
1.8
1. 9
1.10
1.11

Introduction •••••••••••••
Invoking the Compiler under CMS: PASCALVS EXEC
Building a Load Module under CMS: PASCMOD EXEC
Invoking the Load Module under CMS
Invoking the Compiler under TSO: PASCALVS CLIST
Building a Load Module under TSO: PASCMOD CLIST .
Invoking the Load Module under TSO: The CALL command
Interactive Debugger
Compiler Options
Run Time Options .
Cataloged Procedures
Sample Batch Job

2.0 Running a Program under CMS
2.1 How to Compile a Program

2.1.1 Invoking the Compiler
2.1.2 The PASCALVS Command
2.1.3 The %INCLUDE Maclibs
2.1.4 Passing Compiler Options
2.1.5 The Compiler Listing
2.1.6 Compiler Diagnostics
2.1.7 Sample Compilation

2.2 How to Build a Load Module
2.2.1 Module Generation Options
2.2.2 Run time Libraries

2.3 How to Define Files
2.4 How to Invoke the Load Module

3.0 Running a Program under TSO
3.1 How to compile a program

3.1.1 Invoking the Compiler ..
3.1.2 Using the %INCLUDE Facility
3.1.3 Compiler Diagnostics

3.2 How to Build a Load Module
3.3 How to Define Files
3.4 Invoking the Load Module
3.5 Sample TSO Session

4.0 Running a Program under OS Batch
4.1 Job Control Language•
4.2 How to Compile and Execute a Program
4.3 Cataloged Procedures
4.4 IBM Supplied Cataloged Procedures

4.4.l Compile Only CPASCC)•
4.4.2 Compile, Load, and Execute CPASCCG>
4.4.3 Compile and Link Edit CPASCCL)
4.4.4 Compile, Link Edit, and Execute CPASCCLG)

4.5 How to Access an %INCLUDE Library
4.6 How to Access Data Sets
4.7 Example of a Batch Job

5.0
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5 • .13
5.14

compiler Options
CHECK/HOCH ECK
DEBUG/NODEBUG
GOSTMT/HOGOSTMT
LAHGL VLC)
L IHECOUHTC n)
LIST/NOLIST
MARGINSCm,n> ..
OPTIMIZE/NOOPTIMIZE
PAGEWIDTHCn)

PXREF/NOPXREF
SEQCm,n)/NOSEQ
SOURCE/HOSOURCE
WARNING/NOWARNING
XREF/NOXREF

6.0 Run Time Options

7.0 How to Read Pascal/VS Listings

TABLE OF CONTENTS

. ~

1
1
1
2
2
4
5
5
6
6
7
7

9
9
9
9

10
10
10
10
11
12
12
12
13
13

15
15
15
17
17
18
20
20
21

23
23
23
24
24
25
26
27
28
29
29
30

31
31
32
32
32
32
32
32
33
33
33
33
33
33
33

35

37

Table pf Contents vii

TNL SN204445 (31December1981) to SH20-6162-1

7.1 Source listings
7.1.1 Page Headers
7.1.2 Nesting Information
7.1.3 Statement Numbering ..
7.1.4 Page Cross Reference Field
7.1.5 Error Summary
7.1.6 Option List
7.1.7 Compilation Statistics

7.2 Cross-reference Listing
7.3 Assembly Listing
7.4 External Symbol Dictionary
7.5 Instruction Statistics

8.0 Using Input/Output Facilities
8.1 J/O Implementation
8.2 DDNAME Association .
8.3 Data Set DCB Attributes
8.4 Text Files ...•.
8.5 Record Files
8.6 Opening a File for Input - RESET
8.7 Opening a File for Interactive Input
8.8 Opening a file for output - REWRITE
8.9 Terminal Input/Output
8.10 Opening a File for UPDATE
8.11 Procedure GET

8.11.1 GET operation on text files
8.11.2 GET operation on record files

8.12 PUT procedure •......
8.12.1 PUT Operation on Text Files
8.12.2 PUT Operation on Record Files

8.13 Text File Processing
8.13.1 Text File READ
8.13.2 The READLH Procedure
8.13.3 Text File WRITE
8.13.4 The WRITELH Procedure
8.13.5 The PAGE Procedure
8.13.6 End of Line Condition ..•..
8.13.7 End of File Condition - text files

8.14 Record File Processing
8.14.1 Record File READ•
8.14.2 Record File WRITE .•..•
8.14.3 End of File Condition - Record Files

8.15 Closing a File•..
8.16 Relative Record Access •••••
8.17 Partitioned Data Sets

8.17.1 Opening a Partitioned Data Set
8.17.2 PDS Access in a CMS Environment

8.18 The Open Options
8.19 Appending to a File

9.0
9.1
9.2
9.3
9.4
9.5

Runtime Error Reporting
Reading a Pascal/VS Trace Back
Run Time Checking Errors
Execution Error Handling •
User Handling of Execution Errors
Symbolic Variable Dump

10.0 Pascal/VS Interactive Debugger
10.1 Qualification
10.2 Commands .•..

10.2.1 BREAK Command
10.2.2 CLEAR Command
10.2.3 CMS Command
10.2.4 DISPLAY Command •.
10.2.5 DISPLAY BREAKS Command
10.2.6 DISPLAY EQUATES Command
10.2.7 END Command
10.2.8 EQUATE Command
10.2.9 GO Command
10.2.10 Help Command
10.2.11 LISTVARS Command .
10.2.12 Qualification Command
10.2.13 QUIT Command
10.2.14 RESET Command

viii Pascal/VS Programmer's Gui de

37
38
38
38
38
38
39
39
40
42
43
43

45
45
45
45
46
46
46
46
47
47
47
48
48
48
49
49
49
50
50
51
52
53
53
53
54
54
54
54
54
55
55
56
56
56
56
58.f

59
59
61
61
62
63

65
65
65
66
66
67
67
68
68
69
69
7(1.
71
71
72
72
73

TNL SN204445 (31December1981) to SH20-6162-1

10.2.15 SET ATTR Command
10.2.16 SET COUNT Command
10.2.17 SET TRACE Command
10.2.18 TRACE Command .
10.2.19 Viewing Variables
10.2.20 Viewing Memory
10.2.21 WALK Command .

10.3 Debug Terminal Session

11.0 storage Mapping
11.1 Automatic Storage .
11.2 Internal Static Storage
11.3 DEF Storage
11.4 Dynamic Storage
11.5 RECORD Fields
11.6 Data Size and Boundary Alignment

11.6.1 The Predefined Types
11.6.2 Enumerated Scalar
11.6.3 Subrange Scalar
11.6.4 RECORDs
11.6.5 ARRAYs
11.6.6 FILEs
11. 6. 7 S ETs
11.6.8 SPACEs

12.0 Code Generation for the IBM/370
12.1 Linkage Conventions
12.2 Register Usage
12.3 Dynamic Storage Area
12.4 Routine Invocation
12.5 Parameter Passing

12.5.1 Passing by Read/Write Reference
12.5.2 Passing by Read-Only Reference
12.5.3 Passing by Value
12.5.4 Passing Procedure or Function Parameters
12.5.5 Function Results

12.6 Procedure/Function Format
12. 7 PC~JA
12.8 PCB - Pascal file Control Block

13.0 Inter Language Communication
13.l Linking to Assembler Routines

13.1.1 Writing Assembler Routine with Minimum Interface
13.1.2 Writing Assembler Routine with General Interface
13.1.3 Receiving Parameters From Routines
13.1.4 Calling Pascal/VS Routine from Assembler Routine
13.1.5 Sample Assembler Routine
13.1.6 Calling a Pascal/VS Main Program from Assembler Routine

13.2 Pascal/VS and FORTRAN
13.2.1 Pascal/VS as the Caller to FORTRAN
13.2.2 FORTRAN as the Caller to Pascal/VS

13.3 Pascal/VS and COBOL
13.3.1 Pascal/VS as the Caller to COBOL
13.3.2 COBOL as the Caller to Pascal/VS

13.4 Pascal/VS and PL/I
13.4.1 Pascal/VS as the Caller to PL/I
13.4.2 PL/I as the Caller to Pascal/VS

13.5 Data Types Comparison

14.0
14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9

15.0
15.1
15.2
15.3

Runtime Environment overview
Program Initialization
The Main Program
Execution Support Routines
Input/Output Routines
Error Handling
Conversion Routines
Mathematical Routines
String Routines ..
Memory Management Routines

comparison to Pascal
Pascal/VS Restrictions
Modified Features
New Features

73
74
74
75
75
76
77
78

87
87
87
87
87
87
87
87
88
88
88
89
89
89
90

91
91
91
92
94
95
95
95
95
96
96
97
98

101

103
104
104
105
107
107
107
109
112
112
113
114
114
115
116
116
117
118

121
121
121
121
122
123
123
124
124
125

127
127
127
127

Table of Contents ix

TNL SN20444S (31Decemqer1981) to SH2~162-l

Implementation Specifications •••••• 16.0
16.1
16.2
16.3

System Description ...•.•......•.
Memory Requirements•..•
Implementation Restrictions and Dependencies

17.0
17.1
17.2
17.3
17.4

Pascal/VS Messages ••••
Pascal/VS Compiler Messages
Execution Time Messages
Messages from DEBUG
Messages from PASCALVS exec

APPENDIXES

Appendix A. command syntax Notation

Appendix B. Installation Instructions
B.1 Installing Pascal/VS under CMS

B.1.1 Regenerating Compiler Modules
B.2 Installing Pascal/VS under VS2 .

B.2.1 Loading Files from Distribution
B.2.2 The TSO Clists
B.2.3 Cataloged Procedures

B.3 Loading the Source under CMS
B.4 Loading the Source under VS2

. . .
Tape

. . .•

Appendix c. Additional
C.1 CMS Procedure

Library Procedures and Functions

C.2 ITOHS Function
C.3 LPAD Procedure
C.4 RPAD Procedure
C.5 PICTURE Function

Index

x Pascal/VS Programmer's Guide

129
129
129
129 '·

131
131
152
157
159

161

163

165
166
166
167
167
170
170
170
171

175
176
176
177
177
178

181

., /

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
figure 6.
figure 7.
figure 8.
Figure 9.
Figure 10.
figure 11.
figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
figure 19.
Figure 20.
Figure 21.
figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
figure 27.
figure 28.
Figure 29.
Figure 30.
figure 31.
Figure 32.
Figure 33.
Figure 34.
figure 35.
Figure 36.
Figure 37.
Figure 38.
figure 39.
figure 40.
Figure 41.
Figure 42.
figure 43.
Figure 44.
Figure 45.
Figure 46.
figure 47.
figure 48.
Figure 49.
Figure 50.
figure 51.
Figure 52.
Figure 53.
Figure 54.
Figure 55.
figure 56.
Figure 57.
Figure 58.
Figure 59.
Figure 60.
Figure 61.
Figure 62.
Figure 63.
Figure 64.
Figure 65.
Figure 66.
Figure 67.
Figure 68.
Figure 69.
Figure 70.
Figure 71.

LIST OF ILLUSTRATIONS

The PASCALVS command of CMS
Sample compilation under CMS ..
The PASCMOD command . . .
Examples of CMS file definition commands
PASCALVS CLIST syntax. . .
The TSO PASCMOD CLIST description. .
Examples of TSO data set allocation commands
The TSO CALL command to invoke a load module .
Sample TSO session of a compile, link-edit, and execution.
Sample JCL to run a Pascal/VS program
Cataloged procedure PASCC . . .
Cataloged procedure PASCCG . . .
Cataloged procedure PASCCL .
Sample JCL to perform multiple compiles and a link edit.
Cataloged procedure PASCCLG
Example of a batch job ..
Sample source listing ..
Sample cross-reference listing
Sample assembly listing
Sample ESD table
Using RESET on a text file
Opening a file for interactive input
Opening a text file with REWRITE
Opening a record file with REWRITE
Terminal input/output example.
Updating a record file
Using GET on a text file
Using GET on record files
Using PUT on a text file
Using PUT on record files
Using -READ with length qua! i fi ers.
Using READ on text files.
Using the procedure READLH
Using WRITE on text files
Using the WRITELN procedure
Using the PAGE procedure
Using the EOLN function .
Using the EDF function on a text file
Using READ and WRITE on record files.
Example of using CLOSE
Example of using SEEK to access records randomly
Syntax of open options ..
Usihg the open options
Trace called by a user program
Trace call due to program error
Trace call due to checking error
Trace call due to I/O error
Contents of '%INCLUDE ONERROR'
Example of User Error Handling
Sample program for Debug session . . .
Compiling, linking and executing a program with DEBUG
The HELP command of DEBUG
Setting Breakpoints and Stat~ment Walking
The LISTVARS command - list all variables
The Trace Mode of DEBUG ...
Walking when the Trace Mode is On
Miscellaneous DEBUG Commands
Commands to Di splay a Variable . . .
Using Multiple commands on one Line and other commands
The Reset Breakpoint Command
Statement Counting Summary
Storage mapping for predefined types
Storage mapping of subrange scalars
Alignment of records
Storage mapping of SETS
Register usage
DSA format
DSA DSECT • • • •.......••..
Snapshot of stack and relevant r·egi sters at start of routine
Passing by Read/Write reference
Passing by Read-only reference

9
11
12
13
15
18
20
20
21
23
25
26
27
28
28
30
37
40
42
43
46
47
47
47
47
48
48
48
49
49
51
51
52
52
53
53
53
54
54
55
56
57
58
60
60
60
60
62
63
78
79
79
80
80
81
82
83
83
84
85
85
87
88
88
89
91
92
93
94
95
95

List of Illustrations xi

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
figure
Figure
Figure
Figure
Figure
Figure
Figure
figure
Figure
figure
Figure
figure
figure
Figure
Figure
Figure

72. Passing by value
73. Passing routine parameters
74. Function results
75. Routine format
76. Pascal Communications Work Area .
77. Pascal file Control Block CPCB> format
78. Inter Language Communication .
79. Minimum interface to an assembler routine
80. PROLOG/EPILOG macros
81. General interface to an assembler routine
82. Pascal/VS description of assembler routine
83. Sample assembler routine
84. Example of calling a Pascal/VS program from an assembler routine
85. Example of Assembler as the caller to Pascal/VS
86. Example of Pascal/VS as the c.aller to Assembler
87. Example of Pascal/VS as the caller to FORTRAN
88. Example of FORTRAN as the caller to Pascal/VS
89. Example of Pascal/VS as the caller to COBOL
90. Example of COBOL as the caller to Pascal/VS
91. Example of Pascal/VS as the caller to PL/I
92. Example of PL/I as the caller to Pascal/VS
93. Example of PL/I as the caller to Pascal/VS
94. Data Type Comparisons ..••.............
95. Characteristics of Systern/370 floating point arithmetic
96. Sample JCL to retrieve first file of distribution tape.
97. Sample installation job
98. Sample installation job
99. Sample installation job •
10 0. Li sting of the JCL to copy source files from tape
101. Listing of the JCL to copy source files from tape

xii Pascal/VS Programmer's Gui de

95
96
96
97
98

101
103
104
105
106
108
108
109
110
111
112
113
114
115
116
117
117
119
130
168
169
170
171
173
174

f
\.

1.0 INTRODUCTION

The Pascal/VS compiler is a processing program which translates Pascal/VS source
programs, diagnosing errors as it does so, into IBM System/370 machine
instructions.

The compiler may be executed under the following operating system environments:

I •

•

OS/370 Batch CVSl and VS2 R3.7)

Time Sharing Option CTSO) of OS/VS2

I . Conversational Monitor System <CMS) of Virtual Machine Facility/370 CVM/370)
Release 5 PLC 2 and latter.

1.1 INVOKING THE COMPILER UNDER CMS: PASCALVS EXEC

fn

ft

PASCAL VS

fm

macli bs

options

PRrnT

NO PRINT

DISK

CONSOLE

NOOBJ

fn [ft Cfmll [c [options! [PRINT]
HO PRINT
DISK

is the file name of the source program.

CLIBCmaclibsJJ
[CONSOLE] C)J
[NOOBJJ l

is the file type of the source program; the assumed file type is
"PASCAL".

is the file mode of the source program.

are optional macro libraries required by the %INCLUDE facility. Up to
eight libraries may be specified.

are compiler options.

specifies that the listing is to be spooled to the virtual printer.

specifies that the listing is to be suppressed.

specifies that the listing is to be stored as a file named "fn
LISTING". This is the default.

specifies that the console messages produced by the compiler are be
stored as a file named "fn CONSOLE". If CONSOLE is not specified,
then the messages will be displayed on the terminal console.

suppresses the production of an object module.

1.2 BUILDING A LOAD MODULE UNDER CMS: PASCHOD EXEC

PASCMOD main [names ••• J C C options ••• CJJJ

main is the name of the main program module.

names ••• are the names of segment modules and text libraries CTXTLIB's) which
are to be included.

Introduction 1

options ••• is a list of options.

The resulting load module will be given the name "main MODULE A". The load map of
the module will be stored in "main MAP A".

The following are recognized as options to the PASCMOD command.

DEBUG

NAME name

links the debugging routines into the load module so that the interac­
tive debugger can be used.

specifies an alternate name for the load module. The resulting load
module and map will have the name "name MODULE A" and "name MAP A".

1.3 INVOKING THE LOAD MODULE UNDER CMS

A Pascal/VS load module is invoked as follows:

modname C Crtparms ••• 11 Cparms ••• l J

where "modname" is the name of the load module; "rtparms" are run time options
(separated by blanks>; and "parms" are the parameters (if any) being passed.

1.4 INVOKING THE COMPILER UNDER Tso: PASCALVS CLIST

CLIST NAME OPERANDS

PASCAL VS data-set-name
Ccompiler-options-listl

[OBJECTCdsnamel] NOOBJECT

[PRINT C JE)] PRINTCdsname)
SYSPRINTCsysout-classJ
NO PRINT

[CONSOLE(JE)] COUSOLECdsnamel

[LIBCdsname-listJ] NOLIB

data-set-name is the name of the primary inpuk data set.

compiler-options-list is one or more compiler options separated by blanks

OBJECTCdsnamel specifies the data set to contain the object module.

NOOBJECT specifies that no object module is to be produced.

PRINTC•l specifies that the compiler listing is to be displayed on the ter­
minal.

PRINTCdsnamel specifies the data set to contain the complier listing.

SYSPRIHTCsysout-classl specifies the sysout class to where the compiler listing
is to be produced.

NO PRINT

CONSOLECJEJ

suppresses the compiler listing.

specifies that compiler messages are to be displayed on the termi­
nal.

2 Pascal/VS Programmer's Gui de

•

CONSOLECdsnamel specifies the data set to contain compiler messages.

LIBC'dsname-list'l specifies a list of %INCLUDE libraries.

NO LIB specifies that no %INCLUDE libraries are required.

Introduction 3

1.5 BUILDING A LOAD MODULE UNDER TSO: PASCMOD CLIST

CLIST NAME

PASCMOD

data-set-name

OPERANDS

data-set-name or *
[OBJECTC'dsname-list'Jl
[DEBUG]
[LOADCdsnameJl

[PRINTOEJ] PRINTCdsnameJ [LET] [XCAL] NO PRINT NOLET NDXCAL

CLIBC'dsname-list'JJ [FORTLIBJ [COBLIBJ

[MAP] [NCAL] [LIST] NDMAP NONCAL NOLI ST

[XREF] [REUS] [REFR] NOXREF NOREUS NOREFR

[SCTR] [OVLY] [RENT]
NOS CTR NOOVLY NOR ENT

[NE] [OL] [DC] NONE HOOL NODC

[TEST
NOT EST] [NOTERH]

TERH

CSIZEC'integerl integer2'Jl
CDCBSCblocksizeJJ
CACCauthorization-codeJJ

is the data set;containing a Pascal/VS object module and/or link­
age editor control cards.

OBJECTC'dsname-list'J specifies a list of data sets which·contain additional
object modules to be included in the link-edit.

LIBC'dsname-li5t'J specifies a list of libraries to be searched.

DEBUG specifies that the Pascal/VS interactive debugger is to be uti­
lized.

All other operands of the PASCMOD CLIST are identical to their counterparts in the
LINK command as described in the TSO Command Language Reference Manual.

4 Pascal/VS Programmer's Gui de

•

(

TNL SN20-4445 (31December1981) to SH20.0162-1

1.6 INVOKING THE LOAD MODULE UNDER Tso: THE CALL COMMAND

CALL dsnameCCmemberJl C 'Copt i ons/l Cparms l' l

dsnameCmemberJ specifies the name of a partitioned data set and the member where
the load module to be invoked is stored.

options

parms

is one or more run time options separated by either a comma or a
blank.

a parameter string which is to be passed to the program.

The total length of the quoted string Captions plus parms) must not exceed 100
characters.

1.7 INTERACTIVE DEBUGGER

In order to use Debug, you must follow these four steps:

• Compile the module to be debugged with the DEBUG option.

• When link-editing your program, include the debug library.

• When executing the load module, specify 'DEBUG' as a run time option.

command name

?
,variable
Break
CLEAR
Cms
Display
Display Breaks
Display Equates

END
Equate
Go
Listvars

Qual
QUIT
Reset
Set Attr
Set Count
Set Trace
I race
Walk

Description (Abbreviation in capital letters)

List all debug commands
Display the value of a variable
Set a break point
Remove all break points
Enter CMS subset mode
Display status
Display the location of all break points
Display all equate symbols with their current

definitions
Terminate the program Csame as QUIT)
Define an equate symbol
Begin or resume execution of probram
List the values of all variables that are local

to the active routine
Redefine the "current" qualification
Terminate the program (same as END)
Remove a break point
Display attributes when variables are viewed
Initiate/terminate statement counting
Activate/deactive program tracing
Display a trace back
Execute a single statement and then prompt for

another command

Introduction 5

TNL SN20-4445 (31December1981) to SH20-6162-1

1.8 COMPILER OPTIONS

compiler Option Abbreviated Name Default

CHECK/NOCHECK --- CHECK
DEBUG/NODEBUG --- NODEBUG
GOSTMT/NOGOSTMT GS/NO GS GOSTMT
LINECOUNTCn) LC LINECOUNTC60)
LIST/NOLIST --- NOLI ST
LANGLVLCSTD/EXTEND) --- LANGLVLC EXTEND)
MARGINSCm,n) MARCm,n) MARGINSCl,72)

I OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
UAGEWIDTH(nl Pl~ PAGEWIDTHC 128)

PXREF/NOPXREF --- PX REF
SEQUENCECm,n)/NOSEQUENCE SEQCm,n)/NOSEQ SEQUENCEC73,80)
SOURCE/NOSOURCE S/NOS SOURCE
WARNING/NOWARNING W/NOW WARNING
XREF/NOXREF X/NOX XREFC SHORT>

1.9 RUN TIME OPTIONS

The following options enable features in the Pascal/VS run time environment in
which your program will be executing.

COUNT generates a statement count table and writes it to OUTPUT.

DEBUG activates the interactive debugger.

SETMEM initializes local storage of a routine to a specific value on each invoca­
tion of the routine.

NOSPIE suppresses the interception of program exceptions.

NOCHECK causes all checking errors to be ignored.

ERRFILE = ddname specifies the file to which error diagnostics are to be written.

ERRCOUNT =number specifies the number of non-fatal run time errors that will be
permitted prior to terminating the program. The default number is 20.

STACK= number specifies the number of kilobytes by which the run time stack is to
be extended when a stack overflow occurs.

HEAP= number specifies the number of kilobytes by which the heap is to be extended
when a heap overflow occurs.

6 Pascal/VS Programmer's Guide

1.10 CATALOGED PROCEDURES

PASCC Cornpi le only -- step name: PASC

PASCCG Compile, load and execute -- step names: PASC, GO

PASCCL Compile and link-edit -- step name: PASC, LKED

PASCCLG Compile, link-edit, and execute -- step names: PASC, LKED, GO

Data set description stepname.ddname

source program input PASC.SYSIN 1

%INCLUDE library CPDS> PASC. SYS LIB
source listing,

cross-reference listing, PASC.SYSPRINT
pseudo assembly listing and
external symbol table listing

object module PASC. SYS LIN
load module LKED. SYSLMOD
linkage-editor control cards LKED.SYSINl
linkage-editor load library LKED. SYS LIB
loader input GO.SYSLIN
loader library GO. SYS LIB
file OUTPUT GO.OUTPUT

l This DDname is not defaulted and must be
explicitly defined.

1.11 SAMPLE BATCH JOB

//jobname JOB
//STEPl EXEC PASCCLG,OPTIONS='XREF(LONGJ,LIST'
//PASC.SYSIN DD *

{Program to be compiled goes here}

/*
//LKED.SYSIN DD *

ENTRY PASCALVS
/*
//GO.IHPUT DD •••

Introduction 7

•

•

This section applies only to those who
are using Pascal/VS under the Conversa­
tional Monitor System CCMS) of Virtual
Machine Facility/370 CVM/370). If you
are not using CMS then you may skip
this entire section.

For a description of the syntax nota­
tion used to describe commands, see
"Command Syntax Notation" on page 163.

There are four steps to running a
Pascal/VS program under CMS .

2.1 HOW TO COMPILE A PROGRAM

2.0 RUNNING A PROGRAM UNDER CMS

1. The program is compiled to produce
an object module;

2. A load module is generated from the
object module;

3. All files used within the program
are defined using the FILEDEF com­
mand;

4. The load module is invoked.

PASCAL VS fn !ft lfml I [c [DISK]
[options •••] PRINT [CONSOLE] [NOOBJJ

NOPRINT

CLIBCmaclibs ••• ll

Figure 1. The PASCALVS command of CMS: invokes the Pascal/VS compiler.

2.1.1 Invoking the compiler

The standard method of invoking
Pascal/VS compiler under CMS is
means of an EXEC·called PASCALVS.

the
by

To compile a Pascal/VS program, the
EXEC may be invoked in its simplest
form by the command

PASCALVS fn

where "fn" is the file name of the pro­
gram. If the file type is not explic­
itly specified, the type "PASCAL" will
be assumed.

The compiler translates a source pro­
gram into object code, which it stores
in a file. The name of this file is
identical to the name of the source
program. Its file type is "TEXT".

For example, to compile a program which
resides in a file called "SORT PASCAL",
the command would be:

PASCALVS SORT

If the compilation completes without
errors, then the file named "SORT TEXT"
will contain the resulting object code.

2.1.2 The PASCALVS Command

The generalized form of the PASCAL VS
command is illustrated in Figure 1.
The operands of the command are defined
as follows:

fn ft fm
is the file name, file type, and
file mode of the source program.
The file type and file mode are
optional. The default file type is
"PASCAL" and the default file mode
is "ilE".

maclibs •••
are optional macro libraries
required by the ~INCLUDE facility.
Up to eight may be specified.

options •••
are compiler options, see "Compil­
er Options" on page 31.

The command options DISP, PRINT, and
NOPRINT specify where the compiler
listing is to be placed.

DISK
specifies that the listing is to be
stored as a file on your A disk.

Running a Program under CMS 9

The file is named "fn LISTING",
where "fn" is the file name of the
source program. This option is the
default.

PRINT
specifjes that the listing is to be
spooled to your virtual printer.

NOPRINT
specifies that the listing is to be
suppressed. Thi~ option automati­
cally forces the following three
compiler options to become active:

- HOSOURCE
- HOXREF
- NOLIST

CONSOLE
specifies that the console mes­
sages produced by the compiler are
be stored as a file on your A disk.
The name assigned to the file is
"fn COHSDLE". If CONSOLE is not
specified, then the messages will
be displayed on your terminal con­
sole.

NOOBJ
suppresses the production of an
object module by disabling the code
generation phase of the compiler.
This option is useful when you are
using the compiler only as an error
diagnoser.

For an explanation of the possible
error messages and return codes
produced from the EXEC, see "Messages
from PASCALVS exec" on page 159.

2.1.3 The %INCLUDE Hacl;bs

The macro libr~ries Cmaclibs) that may
be specified when invoking the PASCALVS
command are those required by the
%INCLUDE facility. When the compiler
encounters an %INCLUDE statement with­
; n your program it wi 11 search the
maclibs Cin the order in which they
were specified in the PASCALVS command)
for the member named. When found, the
maclib member becomes the input stream
for the compiler. After the compiler
has read the entire member, it will
continue reading in the previous input
stream (immediately following the
%INCLUDE statement).

The default maclib named PASCALVS need
not be specified. It is always implic­
itly provided as the last maclib in the
search order.

10 Pascal/VS Programmer's Guide

2.1.4 Passing Compiler Options

Compile time options (see "Compiler
Options" on page 31) are parameters
that are passed to the compiler which
specify whether or not a particular
feature is to be active. A list of
compi !er options may be specified in
the PASCAL VS parameter 1 i st. The
options list must be preceded by a left
parenthesis "C".

For instance, to compile the program
"TEST PASCAL" with the debug feature
enabled and without a cross reference
table, you would invoke the following
command:

PASCALVS TEST C DEBUG NOXREF

2.1.s The compiler Listing

The compiler generates a listing of the
source program with such information as
the lexical nesting structure of the
program and cross reference tables.
For a detailed description of the
information on the source listing see
"Source Listings" on page 37.

2.1.6 compiler Diagnq~ttcs

Any compi !er-detected errors in your
program will be displayed on your ter­
minal console (or written to a disk
file if the CONSOLE options is speci­
fied). The errors will also be indi­
cated on your source listing at the
lines where the errors were detected.
The diagnostics are summarized at the
end of the listing.

When an error is detected, the source
line that was being scanned by the com­
piler is di splayed on your console.
Immediately underneath the printed
line a dollar symbol C']') is placed at
each location where an error was detec­
ted. This symbol serves as a pointer
to the approximate location where the
error occurred within the source
record.

Accompanying each error indicator is an
error number. Beginning with the fol­
lowing line of your console a diagnos­
tic message is produced for each error
number.

For a synopsis of the compiler-gener­
ated messages see "Pascal/VS Compiler
Messages" on page 131.

•

(
"'·

2.1.7 sample compilation

edit copy pascal
NEW FILE:

program copy;
var

infile,
outfile : text;
buffer : string;

begin
resetc i nfi le);
rewrite(outfile);
while not eof(infile) do

begin
readln(infile,buffer);
writelnCoutfile buffer)

end;
end.

EDIT:

file
FILE SAVED

R; T=0.25/0.62 06:56:44

pascalvs copy

INVOKING PASCAL/VS R2.0

WRITELNCOUTFILE BUFFER)
$41

ERROR 41: Comma ','expected
1 ERROR DETECTED.

SOURCE LINES: 16; COHPILE TIHE: 0.16 SECONDS; COMPILE RATE: 6109 LPM

RETURN CODE: 8
RC00008J; T:0.34/0.67 06:56:59

Figure 2. Sample compilation under CMS

Running a Program under CMS 11

2. 2 HOW TO BUILD A LOAD MODULE

PASCMOD main [names ••• J [C options ••• [JJJ

Figure 3. The PASCMOD command: generates a Pascal/VS load module.

The PASCMOD EXEC generates load modules
from Pascal/VS object code. If your
program consists of just one source
module (that is, you have no segment
modules), a load module can be genera­
ted by simply invoking PASCMOD with the
name of the program. For example, if a
program named SORT was successfully
compiled (which implies that "SORT
TEXT" exists), then a load module may
be generated with:

PASCNOD SORT

The resulting
"SORT MODULE".
"SORT MAP".

module would be called
A load map is stored in

The general form of the PASCMOD command
is shown in Figure 3.

The operands of the command are defined
as follows:

main
is the name of the main program
module.

names •••
are the names of segment modules
and text 1 i brari es CTXTLIB' s)
which are to be included. If a
name "n" is specified and there are
two files named n TEXT and n
TXTLIB, then the TEXT file will be
included and the TXTLIB wi 11 be
searched.

options •••
is a list of options. (see "Module
Generation Options.")

The resulting load module will be given
the name "main MODULE A". The load map
of the module will be stored in "main
MAPA".

The Pascal/VS run time library resides
in "PASCALVS TXTLIB"; PASCMOD implic­
itly appends this library to the list
that you specify.

12 Pascal/VS Programmer's Guide

As an example, let us build a load mod­
ule for a pre-compiled program which
resides in three source modules: MAIN,
ASEG, and BSEG. This program calls
routines that reside in a txtlib called
UTILITY. The following command would
generate a load module called MAIN
MODULE:

PASCMOD MAIN ASEG BSEG UTILITY

2.2.1 Module Generation Options

The following are recognized as options
to the PASCMOD command.

DEBUG
specifies that the debugging rou­
tines are to be 1 inked into the
load module so that the interactive
debugger can be used. (See
"Pascal/VS Interactive Debugger"
on page 65.)

NAME name
specifies an alternate name for the
load module. The resulting load
module and map will have the name
"name MODULE A" and "name HAP A".

2.2.2 Run time Libraries

Routines which make up the Pascal/VS
runtime environment reside in a text
1 i brary called "PASCAL VS TXTL IB". It
must be present in order to resolve the
1 i nkages from the program being pre­
pared for execution.

The name of the txtlib which contains
the runtime Debug support is "PASDEBUG
TXTLIB". (see "Pascal/VS Interactive
Debugger" on page 65 for a description
of Debug).

2.3 HOW TO DEFINE FILES

FILEDEF SYSIN DISK INPUT DATA
FILEDEF SYSPRINT PRINTER CLRECL 133 RECFM VA
FILEDEF OUTPUTFI DISK OUTPUT DATA CRECFM F LRECL 4
FILEDEF OUTPUT TERMINAL CRECFM F LRECL 80
FILEDEF INPUT TERMINAL CRECFM V LRECL 80

Figure 4. Examples of CMS file definition commands

Before you invoke the generated load
module, you must first define the files
that your program requires. This is
done with the FILEDEF command.

The first parameter of the FILEDEF com­
mand is the file's ddname. The ddname
to be associated with a particular file
variable in your program is normally
the name of the file variable itself,
truncated to eight characters.

For example, the ddnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYS IN,
SYSPRINT
OUTPUTFIL E

TEXT;
file of

INTEGER;

If a particular file is to be opened
for input, attributes such as LRECL,
BLKSIZE, and RECFM are obtained from
the (presumably) already existing
file. Note: A file that is being
defined to the terminal requires you to
explicitly specify RECFM and LRECL on
the FILEDEF command.

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified. For a description of the
defaults see "Data Set DCB Attributes"
on page 45.

The FILEDEF commands required for each
of the three file variables in the

example above and for INPUT and OUTPUT
could be as shown in Figure 4.

2.4 HOW TO INVOKE THE LOAD MODULE

After the module has been created and
the fi !es defined, you are ready to
execute the program. This is done by
invoking the module.

If your program expects to read a
parameter list via the PARMS function,
the list must follow the module name:

modname Cparms .•. l

where "modname" is the name of the load
module and "Parms" are the parameters
(if any) being passed.

Run time options are also passed as a
parameter list. To distinguish runtime
parameters being passed to the
Pascal/VS environment from those that
your program will read Cvia the PARMS
function), the runtime parameter list
must be terminated with a slash "I".
The program parameters, if any, must
follow the "I".

modname C Crtparms ••• /l Cparms .•. l l

For a description of the run time
options see "Run Time Options" on page
35.

Running a Program under CMS 13

..

This section describes how to compile
and execute a Pascal/VS program under
the Time Sharing Option CTSO> of
OSIVS2. If you are not using TSO to
run the compiler, you may skip this
section.

Refer to "Command Syntax Notation" on
page 163 for a description of the syn­
tax notation used to describe commands.

There are four steps to running a
Pascal/VS program .

3.1 HOW TO COMPILE A PROGRAM

CLIST NAME

3.0 RUNNING A PROGRAM UNDER TSO

1. The program is compiled to form an
object module;

2. A load module is generated from the
object module;

3. All data sets used within the pro­
gram are allocated;

4. The load module is invoked.

OPERANDS

PASCAL VS data-set-name

Ccompiler-options-listl

[

[

[

[
Figure 5. PASCALVS CLIST syntax.

3.1.1 Invoking the compiler

The Pascal/VS compiler is invoked under
TSO by means of a CLIST. A sample
CLIST named PASCALVS is provided to
compile a Pascal/VS program.

data-set-name
specifies the name of the primary
input data set in which contains
the source program to be
compiled. This can be either a
fully qualified name C enclosed
in single quotation marks) or a
simple name Cto which the user

OBJECTCdsnamel] NOOBJECT

PRINT OE l
PR INT (dsname l l SYSPRINTCsysout-class)
NO PRINT

CONSOLE OE)
CONSOLECdsname)]
LIBCdsname-listl] NO LIB

i dent i fi cation will be prefixed
and the qualifier "PASCAL" will
be suffixed). This must be the
first operand specified.

compiler-options-list
specifies one or more compiler
options. See "Compiler Options"
on page 31.

OBJECTCdsnamel
specifies that the object module
produced by the compiler is to be
written to the data set named in
the parentheses. This can be
either a fully qualified name

Running a Program under TSO 15

(enclosed within triple quota­
tion marks '''···''') 1 or a
simple name Cto which the iden­
ti fi cation qualifier will be
prefixed and the qualifier "OBJ"
suffixed).

NOOBJECT
specifies that no object module
is to be produced. The compiler
will diagnose errors only.

If neither OBJ nor NOOBJ is spec­
ified then object module
produced by the compiler will be
written to a default data set.
If the data set specified in the
first operand contains a
descriptive qualifier of
"PASCAL", the CL IST Ni 11 form a
data set name for the object mod­
ule by replacing the descriptor
qualifier of the input data set
with "OBJ". If the descriptive
qualifier is not "PASCAL", then
you will be prompted for the
object module data set name.

If the first operand of PASCALVS
specifies the member of a parti­
tioned data set, then the name of
the associated object module
wi 11 be generated as just
described. If the object module
data set is a partitioned data
set, then the object module will
become a member within the PDS
and wi 11 have the same name as
the member name of the input data
set.

As an example, given that the
user identification is ABC, the
following commands wi 11 produce
object modules Nith the name
shoMn.

PRINT(~)

PASCAtVS SORT
object module: 'ABC.SORT.OBJ'

PASCALVS 'DEF.PDS.PASCALCHAINl'
object module:

'DEF.PDS.OBJCMAIH>'

PASCALVS 'ABC.PROG.PAS'
user prompted for object
module name

specifies that the compiler
listing is to be displayed on the
terminal; no other copy will be
available.

PRINTCdsnameJ
specifies that the compiler
listing is to be written on the

data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
'''···''') 2 or a simple name Cto
which the identification qual­
ifier Nill be prefixed and the
qualifier "LIST" suffixed).

SYSPRINTCsysout-classJ
specifies that the compiler
listing is to be written to the
sysout class named in parenthe­
ses.

NO PRINT
specifies that the compiler
1 i sting is not to be produced.
This operand activates the fol­
lowing compiler options:

NOSOURCE, HOXREF, HOLIST

CONSOLE OE)
specifies that the compiler gen­
erated messages are to be dis­
played on the terminal console.
This is the default.

CONSOLECdsnameJ
specifies that the compiler gen­
erated messages are to be written
to the data set named in the
parentheses. This can be either
a fully qualified name (enclosed
within triple quotation marks
'''···''') or a simple name (to
which the identification qual­
ifier wi 11 be prefixed and the
qualifier "CONSOLE" suffixed).

LIBCdsname-listJ

NO LIB

specifies that the %INCLUDE
facility is being utilized.
Within the parentheses is a list
of the names of one or more par­
titioned data sets that are to be
searched for members to be
included within the input
stream.

If the list contains more than
one name, the entire list must be
enclosed within quotes. Any ful­
ly qualified name within the
quoted list must be enclosed in
double quotes '' ''

See "Using the
Facility" on page 17.

specifies that no
libraries are required.
the default.

%INCLUDE

%INCLUDE
This is

Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

2 Triple quotes are required because the CLIST processor removes the outer
quotes within a keyword sub-operand list.

16 Pascal/VS Programmer's Guide

Example 1

Operation: Invoke the Pascal/VS com-
pi !er to process a
Pascal/VS program

Known: User-identification is ABC

Data set containing the pro­
gram is named ABC.SORT.PASCAL

The compiler listing is to be
directed to the printer.

Default options and data set
names are to be used.

PASCALVS SORT SYSPRINTCA)

i::xamole 2

Operation: Invoke the Pascal/VS com-
pi !er to process a
Pascal/VS program

Known: User-identification is XYZ

Data set containing the pro­
gram is named ABC.TEST.PASCAL

The compiler listing is to be
directed to a data set named
XYZ.TESTLIST.LIST.

The long version of the cross
reference 1 i sting is pre­
ferred.

Default options and data set
names are to be used for the
rest.

PASCALVS 'ABC.TEST.PASCAL'+
XREFCLONG>,PRINTCTESTLIST>

3.1.2 Using the %INCLUDE Facility

If the %INCLUDE facility is used within
the source program, then the names of
the library or libraries to be searched
must be listed within the LIB parameter
of the PASCALVS CLIST.

The standard include library supplied
by IBM is called 3

"SYSl.PASCALVS.HACLIB"

This library must be specified in the
LIB list if your program contains an
%INCLUDE statement for one of the IBM
supplied members.

When the compiler encounters an
%INCLUDE statement within the source
program, it will search the partitioned

data set(s) in the order specified for
the member named within the statement.
When found, the member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue reading from
the previous input stream immediately
following the %IHCLUDE statement.

Example 1

Operation: Invoke the
pi ler to
Pascal/VS
utilizes
facility.

Pascal/VS com­
process a

program which
the %INCLUDE

Known: User-identification is Pl23

Data set containing the pro­
gram is named

'Pl23.MAIN.PASCAL'

The source to be included is
stored in two partitioned
data sets by the names of

'P123. PAS LIB'
'SYSl.PASCALVS.MACLIB'.

Default options and data set
names are to be used for the
rest.

PASCALVS MAIN LIBC'PASLIB,+
''SYSl.PASCALVS.MACLIB''')

3.1.3 compiler Diagnostics

By default, compiler diagnostics are
di splayed on your terminal. If the
CONSOLECdsnameJ operand appears on the
PASCALVS command, then the diagnostics
wi 11 be stored in a data set. The
errors will also be indicated on your
source listing at the lines where the
errors were detected. The diagnostics
are summarized at the end of the list­
ing.

When an error is detected, the source
line that was being scanned by the com­
piler is printed on your terminal Cor
to the CONSOLE data set). Immediately
underneath the printed line, a dollar
symbol ('$') is placed at each location
where an error was detected. This sym­
bol serves as a pointer to indicate the
approximate location where the error
occurred within the source record.

Accompanying each error indicator is an
error number. Beginning with the fol­
lowing line of your console a diagnos­
tic message is produced for each error
number.

The high-level qualifier name CSYSl> may be different at your
installation.

Running a Program under TSO 17

For a synopsis of the compiler genera­
ted messages see "Pascal/VS Compiler
Messages" on page 131.

3.2 HOW TO BUILD A LOAD MODULE

CLIST NAME OPERANDS

PASCMOD data-set-name 01' *

COBJECTC'dsname-list'll
[DEBUG]

J CLOADCdsnamell

[PRINT C*)] PRINT C dsname l [LET] [XCAL] NO PRINT NOLET NOXCAL

CLIBC'dsname-list'll CFORTLIBl [COBLIBl

[MAP] [NCAL] [LIST] NOMAP NONCAL NOLI ST

[XREF] [REUS] [REFR] NOXREF NOREUS NORE FR

[SCTR] [OVLY] [RENT] NOS CTR NOOVLY NOR ENT

[NE] [OL] [DC] NONE HOOL NODC

[TEST] [NOT ERM] NOT EST TERM

[SIZEC'integerl integer2'Jl
CDCBSCblocksizell
CACCauthorization-codeJl

Figure 6. The TSO PASCMOD CLIST description.

To generate a load module from a
Pascal/VS object module, you may use
either the TSO LINK command or a CLIST
named "PASCMOD" <Figure 6). The CLIST
performs the same function as the LINK
command except that it will automati­
cally include the Pascal/VS runtime
library in generating the load module.
Also, if the debugger is to be
utilized, the CLIST will include the
Pascal/VS debug library. CA complete
description of the LINK command is con­
tained in the TSO Command Language
Reference Manual.)

Every Pascal/VS object module contains
references to the runtime support rou­
tines. These routines are stored in a
1 i brary called 4

"SYSl.PASCALVS.LOAD"

This library must be linked into a
Pascal/VS object module in order to
resolve all external references prop­
er'ly. If the PASCMOD CLIST is used,
this library is included
automatically.

If the interactive debugger is to be
utilized, then the library containing
the debug environment must be included
in the linking. The name of this
library is 4

"SYSl.PASDEBUG.LOAD"

This library must appear ahead of the
runtime library in search order. If
the PASCMOD CLIST is used, this library

4 The high-level qualifier name CSYS!) may be different at your
installation.

18 Pascal/VS Programmer's Gui de

will be included if the option DEBUG is
specified.

If more than one object module is, being
linked together, then an entry point
should be specified by means of a link­
age editor control card. The name of
the entry point for any Pascal/VS pro­
gram is PASCALVS.

data-set-name
specifies the name of a data set
containing a Pascal/VS object mod­
ule and/or linkage editor control
cards. If more than one object
module is to be linked, then their
names should appear in the OBJECT
sub-parameter list.

You may substitute an asterisk C*>
for the data set name to indicate
that you will enter control state­
ments from your terminal. The sys­
tem wi 11 prompt you to enter the
control statements. A null 1 i ne
indicates the end of your control
statements.

OBJECTC'dsname-list'l
specifies a list of data sets which
contain object modules to be
included in the link edit. Because
of CLIST restrictions, the list
must be enclosed in single quotes;
fully qualified names within the
1 i st must be enclosed in double
quot es C ' ' ••• ' ') •

LIBC'dsname-list'l
specifies one or more names of
library data sets to be searched by
the linkage editor to locate load
modules referred to by the module
being processed, that is, to
resolve external references. The
name of the Pascal/VS runtime
library is implicitly appended to
the end of this list; you need not
specify it.

Because of CLIST restrictions, the
1 i st must be enclosed in single

quotes; fully qualified names
within the list must be enclosed in
double quotes C'' ... '').

DEBUG
specifies that the Pascal/VS
interactive debugger is to be uti­
lized on the resultant load module.
This will cause the Pascal/VS debug
1 i brary to be included among the
libraries to be searched to resolve
external references.

All other operands of the PASCMOD CLIST
are identical to their counterparts in
the LINK command as described in the
TSO Command Language Reference Manual.

Example

Operation: Create a load module from
a compiled Pascal/VS pro­
gram cons i sting of three
object modules.

Known: User-identification is ABC.
Data sets containing the
three object modules:

ABC.SORT.OBJ
ABC.SEGl.OBJ
ABC. S EG2 .-OBJ

The resulting load module is
to be stored as a member named
SORT in a data set named
ABC.PROGS.LOAD

(The user's input is in lower case;
the system replies are
high-lighted.>

pascmod * load(progs(sort)) +
object('sort,segl,seg2')

ENTER CONTROL CARDS
entry pascalvs

READY

Running a Program under TSO 19

3.3 HOW TO DEFINE FILES

ATTR F80 LRECLC80) BLKSIZEC80J RECFMCF)
ALLOC DDNAMECSYSIN> DSNAMECINPUT.DATA> SHR
ALLOC DDNAMECSYSPRINT> SYSOUTCA>
ALLOC DDNAMECOUTPUTFI> DSNAMECOUTPUT.DATA) NEW SPACEC100) BLOCKC3120)
ALLOC DDNAMECOUTPUT> DSNAMEC*> USINGCF80)
ALLOC DDNAMECINPUT> DSNAMEC*) USINGCF80)

Figure 7. Examples of TSO data set allocation commands

Before you invoke the generated load
module, you must first define the files
that your program requires. This is
done with the ALLOC command.

The ddname to be associated with a par­
ticular file variable in your program
is normally the name of the variable
itself, truncated to eight characters.

For example, the ddnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYS IN I
SYSPRINT
OUTPUTFILE

TEXT;
file of

INTEGER;

3.4 INVOKING THE LOAD MODULE

For the case of files to be opened for
output, the LRECL, BLKSIZE, or RECFM
will be assigned default values if not
specified via the ATTR command. For a
description of the defaults see "Data
Set DCB Attributes" on page 45.

The ALLOC commands required for each of
the three file variables in the example
above and for INPUT and OUTPUT could be
as shown in Figure 7.

CALL dsnameCCmemberJJ c '[options/] Cparmsl' J

Figure 8. The TSO CALL command to invoke a load module

After the module has been created and
the files defined, you are ready to
execute the program. This is done by
the CALL command <see Figure 8). The
operands of the CALL command are as
follows.

name of a partitioned
the member where the
to be invoked is

the member name is

dsnameCmemberJ
specifies the
data set and
load module
stored. If
omitted,
"TEMPNAME"
invoked.

then the member
will be the load module

dsname may be either a simple name
Cto which the user identification
is prefixed and the qualifier
"LOAD" is suffixed), or a fully
~ualified name in quotes.

20 Pascal/VS Programmer's Guide

options
specifies one or more run time
options separated by either a comma
er a blank. CSee "Run Time Options"
on page 35.).

parms
specifies a parameter string which
is to be passed to the program.
The parameter string is retrieved
from within the program by the
PARMS function.

The total length of the quoted string
<options plus parms> must not exceed
100 characters.

3.5 SAMPLE TSO SESSION

READY

pascalvs lander sysprint(a) list

IHVOKIHG PASCAL/VS R2.0
HO COMPILER DETECTED ERRORS
SOURCE LINES: 47; COMPILE TIME: 0.19 SECONDS; COMPILE RATE: 15032

READY

pascmod lander load(programs(lander))
READY

alloc ddname(input) dsname(*)
READY

alloc ddname(output) dsname(*)
READY

call programs(lander) 'parms go here'

Figure 9. Sample TSO session of a compile, link-edit, and execution.

Figure 9 is an example of a TSO session
which compiles an already existing

. source module, link edits it, and exe-
cutes it. The commands entered from

the terminal are in lower case; those
produced by the system are in upper
case and high-lighted .

Running a Program under TSO 21

This section describes how to compile
and execute Pascal/VS programs in an OS
Batch environment. If you are not
using the compiler under OS Batch then
you may skip this section.

4.1 JOB CONTROL LANGUAGE

Job control language CJCL> is the means
by which you define your jobs and job
steps to the operating system; it
allows you to describe the work you
want the operating system to do, and to
specify the intput/output facilities
you require.

The JCL statements which are essential
to run a Pascal/VS job are as follows:

• JOB statement, which identifies
the start of the job.

• EXEC statement, which identifies a
job step and, in particular, speci-

//EXAMPLE JOB
//STEP! EXEC PASCCG,PARH='LIST'
/IPASC.SVSIN DD *

program EXAMPLECINPUT,OUTPUT);
var

A, B: REAL;
begin

RESETCINPUT>;
while not EOFCINPUTl do

begin
READLNCA,B>;
WRITELNC' SUM = ',A+B>;
WRITELNC' PRODUCT= '•A*Bl;

end
end.

/'If~.

//GO.INPUT DD 3E
3.0 4.0
3.14159 1.414
1.0E-10 2.0E-10
-10.0 102.0

I*

•

4.0 RUNNING A PROGRAM UNDER OS BATCH

fies the program to be executed,
either directly or by means of a
cataloged procedure (described
subsequently).

DD (data definition) statement,
which defines the input/output
facilities required by the program
executed in the job step.

• /* (delimiter) statement, which
separates data in the input stream
from the job control statements
that follow this data.

A full description of job control lan­
guage is given in the publication
OS/VS2 JCL CGC28-0692).

4.2 HOW TO COMPILE AND EXECUTE A PRO­
GRAM

Figure 10. Sample JCL to run a Pascal/VS program

The job control statements shot-Jn in
Figure 10 are sufficient to compile and
execute a Pascal/VS program consisting
of one module. This program uses only
the star1dard files INPUT and OUTPUT.
For a more generalized description of
input/output refer to "How to Access
Data Sets" on page 29 and "Using
Input/Output Facilities" on page 45.

Any options to be passed to the compil­
er are placed within the PARM string of
the EXEC statement.

In the sample JCL, "EXAMPLE" is the
name of the job. The job name identi­
fies the job within the operating sys­
tem; it is essential. The parameters
required in the JOB statement depend on
the conventions established for your
installation.

The EXEC statement invokes the IBM sup­
plied cataloged procedure named
PASCCG. When the operating system
encounters this name, it replaces the

Running a Program under OS Batch 23

EXEC statement with a set of JCL state­
ments that have been written previously
and cataloged in a system library. The
cataloged procedure contains two
steps:

PASC

GO

invokes the Pascal/VS compiler
to produce an object module;

invokes the LOADER to process
the object module by loading it
into memory and including the
appropriate runtime library
routines. The resulting exe­
cutable program is immediately
executed.

The DD statement named "PASC.SYSIN"
indicates that the program to be proc­
essed in procedure step PASC follows
immediately in the card deck. "SYSIN"
is the name that the compiler uses to
refer to the data set or device on
which it expects to find the program.

The delimiter statement /lE i ndi cat es
the end of the data.

The DD statement named "GO.INPUT" indi­
cates that the data to be processed by
the program Cin procedure step GO) fol­
lows immediately in the card deck.

4.3 CATALOGED PROCEDURES

Regularly used sets of job control
statements can be prepared once, given
a name, stored in a system library, and
the name entered in the catalog for
that library. Such a set of statements
is termed a cataloged procedure. A
cataloged procedure comprises one or
more job steps Cthough it is not a job,
because it must· not contain a JOB
statement). It is included in a job by
specifying its name in an EXEC state­
ment instead of the name of a program.

Several IBM-supplied cataloged proce­
dures are available for use with the
Pascal/VS compiler. It is primarily by
means of these procedures that a
Pascal/VS job will be run.

The use of cataloged procedures saves
time and reduces errors in coding fre­
quently used sets of job control state­
ments. If the statements in a
cataloged procedure do not match your
requirements exactly, you can easily
modify them or add new statements for
the duration of a job.

It is recommended that each installa­
tion review these procedures and modify
them to obtain the most efficient use
of the facilities available and to
allow for installation conventions.

24 Pascal/VS Programmer's Guide

4.4 IBH SUPPLIED CATALOGED PROCEDURES

The standard cataloged procedures sup­
plied for use with the Pascal/VS com­
piler are:

PAS CC Compile only

PASCCG Compile, load-and-execute

PASCCL Compile and link edit

PASCCLG Compile, l~nk edit, and exe­
cute

These cataloged procedures do not
include a DD statement for the source
program; you must always provide one.
The DDname of the input data set is
SYS IN; the procedure step name which
reads the input data set is PASC. For
example, the JCL statements that you
might use to compile, link edit, and
execute a Pascal/VS program is as fol­
lows:

//JOBNAME JOB
//STEPl EXEC PASCCLG
//PASC.SYSIN DD *

.
(insert Pascal/VS program here
to be compiled)

The listings and diagnostics produced
by the compiler are directed to the
device or data set associated with the
DDname SYSPRINT. Each cataloged proce­
dure routes DDname·SYSPRINT to the out­
put class where the system messages are
produced CSYSOUT;lE).

The object module produced from a com­
pilation is normally placed in a tempo­
rary data set and erased at the end of
the job. If you wish to save it in a
cataloged data set or punch it to cards
then the DDname SYS LIN in procedure
step PASC must be overridden. For
example, to compile a program stored in
data set

"T123.SORT.PASCAL"

and to store the resulting object mod­
ule in a data set named

"1123.SORT.OBJ"

the following JCL might be employed:

//JOBNAME JOB
//STEPl EXEC PASCC
//PASC.SYSIN DD DSN;T123.SORT.PASCAL,
// DISP;SHR
//PASC.SYSLIN DD DSN;Tl23.SORT.OBJ,
// UNIT=TSOPACK,
// DISP;CNEW,CATLG>

•

4.4.1 Compile Only CPASCCJ

//PASCC PROC SYSOUT='*',INCLLIB='SYSl.PASCALVS.MACLIB'
//*
//* INVOKE
II*
//PASC EXEC
//OUCODE DD
//OUTPUT DD
//STEPLIB DD
/ ISYSL IB DD
// DD
l/SYSLIN DD
II
II
//SYSLIST DD
//
//SYSMSGS DD
//SYSOIN DD
II
//SYSPRINT DD
//SYS TERM DD
//SYSTIH DD
/I
I /SYSUTl DD
II
I/.
//SYSUT2 DD
I/
/I
//SYSXREF DD
//
//UCODE DD

PASCAL/VS COMPILER

PGM=PASCALI,PARM=,REGION=512K
SYSOUT=&SYSOUT
SYSOUT=&SYSOUT
DSN=SYSl.PASCALVS.LINKLIB,DISP=SHR
DSN=&INCLLIB,DISP=SHR
DSN=SYSl.PASCALVS.MACLIB,DISP=SHR
DSNAME=&&LOADSET,UNIT=SYSDA,DISP=CMOD,PASS),
SPACE=CTRK,(2,5)),
DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS)
UNIT=SYSDA,DISP=CNEW,DELETE),
SPACE=CTRK,(2,5))
DSN=SYSl.PASCALVS.MESSAGES,DISP=SHR
UNIT=SYSDA,DISP=CNEW,DELETE),
SPACE=CTRK,C2,5))
SYSOUT=&SYSOUT,DCB=CRECFM=VBA,LRECL=l33,BLKSIZE=685)
DUMMY
UNIT=SYSDA,DISP=CNEW,DELETE),
SPACE=CTRK,C2,5))
UNIT=SYSDA,DISP=CNEW,DELETE>,
SPACE=CTRK,C2,5)),
DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS>
UNIT=SYSDA,DISP=CNEW,DELETE),
SPACE=CTRK,(2,5)),
DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DSORG=PS>
UNIT=SYSDA,DISP=CNEW,DELETE),
SPACE=CTRK,(2,5))
SYSOUT=&SYSOUT

Figure 11. Cataloged procedure PASCC

This cataloged procedure (figure 11)
compiles one Pascal.IVS source module
and produces an object module. It con­
sists of one step, PASC, which is com­
mon to all of the cataloged procedures
described in this chapter.

Step PASC reads in the source module,
diagnoses errors, produces a 1 i sting,
and generates an object module to the
data set associated with DDname SYSLIN.

The DD statement for the object module
defines a temporary data set named
&&LOADSET. The term MOD is specified
in the DISP parameter and as a result,
if the procedure PASCC is invoked
several times in succession for differ­
ent source modules, &&LOADSET will
contain a concatenation of object mod­
ules. The 1 i nkage editor and loader
will accept such a data set as input.

Running a Program under OS Batch 25

4.4.2 compile, Load, and Execute
(PASCCGJ

//PASCCG
//
//
//PASC

PROC SYSOUT=*,INCLLIB='SYSl.PASCALVS.MACLIB',
LKLBDSN='SYSl.PASCALVS.LOAD',
LINKLIB='SYSl.PASCALVS.LINKLIB'

EXEC PGM=PASCALI,PARM=,REGION=512K

Cthis step is identical to the PASC step in procedure PASCC>

EXEC
DD
DD
DD
DD

//GO
//OUTPUT
//SYSLIB
//
//SYSLIN
//SYSLOUT
//SYSPRINT

PGM=LOADER,COND=C8,LE,PASC>,PARM='EP=PASCALVS'
SYSOUT=&SYSOUT,DCB=CRECFM=VBA,LRECL=l33,BLKSIZE=685)
DSN=&LKLBDSN,DISP=SHR
DSN=SYSl.PASCALVS.LOAD,DISP=SHR
DSN=&&LOADSET,DISP=COLD,DELETE>

DD
DD

SYSOUT=&SYSOUT
SYSOUT=&SYSOUT,DCB=CRECFM=VBA,LRECL=l33)

Figure 12. Cataloged procedure PASCCG

In this cataloged procedure
(Figure 12), the first two steps com­
pile a Pascal/VS source module to
produce an object module. In the third
step (named GO), the loader is
executed; this program processes the
object module produced by the compiler
and executes the resultant executable
program immediately.

The DD statement labeled SYSLIB in step
GO describes the libraries from which
external references are to be resolved.
If you have a library of your own from
which you would like external refe.r­
ences to be resolved, then pass its
name in the LKLBDSN operand.

Object modules from previous compila­
tions may also be included in the load­
er's input stream by concatenating them
in the SYSLIN DD statement.

26 Pascal/VS Programmer's Guide

As an example, a program in a data set
named "DOE.SEARCH.PASCAL" needs to be
compiled and then loaded with an object
module named "DOE.SORT.OBJ". In addi­
tion, several external routines are
cal led from within the program which
reside in a library named
"DOE. MISC. OBJ LIB". The following JCL
statements would compile the program
and execute it.

//DOE JOB
//STEP! EXEC PASCCG,
// LKLBDSN='DOE.MISC.OBJLIB'
//PASC.SYSIN DD DSN=DOE.SEARCH.PASCAL,
// DISP=SHR
//GO.SYSLIN DD
// DD DSN=DOE.SORT.OBJ,
// DISP=SHR

•

4.4.3 Compile and Link Edit CPASCCL)

//PASCCL
//
//
//PASC

PROC SYSOUT=M,INCLLIB='SYSl.PASCALVS.MACLIB',
LKLBDSN='SYSl.PASCALVS.LOAD',
LINKLIB='SYSl.PASCALVS.LINKLIB'

EXEC PGM=PASCALI,PARM=,REGIOH=512K

(this step is identical to the PASC step in procedure PASCC)

//M
//M
//M

L K E D

EXEC
DD
DD
DD
DD
DD

//LKED
//SYS LIB
//
//SYSLIN
//
//SYSLMOD
//
//SYSPRINT
//SYSUTl

PGM=IEWL,PARM='LIST,MAP',COND=C8,LE,PASC)
DSN=&LKLBDSN,DISP=SHR
DSN=SYSl.PASCALVS.LOAD,DISP=SHR
DSH=&&LOADSET,DISP=COLD,DELETE)
DDNAME=SYSIN
DSN=&&GOSETCGO>,UNIT=SYSDA,DISP=C,PASS),
SPACE=CTRK,(5,3,1))

DD
DD

SYSOUT=&SYSOUT
UNIT=SYSDA,SPACE=CCYL,Cl,l>>

Figure 13. Cataloged procedure PASCCL

In this cataloged procedure
CFigure 13), a Pascal/VS source module
is compiled to produce an object module
and then the linkage editor is executed
to produce a load module.

The linkage editor step is named LKED.
The DD statement with the name SYSLIB
within this step specifies the library,
or libraries, from which the linkage
editor will obtain appropriate modules
for inclusion in the load module. The
linkage editor always places the load
modules it creates in the standard data
set defined by the DD statement with
the name SYSLMOD. This statement in
the cataloged procedure specifies a new
temporary library &&GOSET, in which the
load module wi 11 be placed and given
the member name GO.

In specifying a temporary library, it
is assumed that you wi 11 execute the
load module in the same job; if you
want to retain the module, you must
substitute your own statement for the
DD statement with the name SYSLMOD.

When linking multiple modules
together, you must supply an entry
point. The name of the entry point may

be either the name of your main
program, or the name PASCAL VS. To
define an entry point, a linkage editor
ENTRY control card must be processed by
the linkage editor. This may be done
conveniently with a DD statement named
SYS IN for step LKED which references
instream data:

//LKED.SYSIN DD *
ENTRY PASCALVS

/M

Multiple invocations of the PASCC cata­
loged procedure concatenates object
modules. This permits several modules
to be compiled and link edited conven­
iently in one job. The JCL shown in
Figure 14 on page 28 compiles three
source modules and then link edits them
to produce a single load module. With­
in the example, each source module is a
member of a partitioned data set named

"DOE.PASCAL.SRCLIBl".

The member names are MAIN, SEGl, and
SEG2. The resulting load module is to
be placed in a preallocated 1 i brary
named "DOE.PROGRAMS.LOAD" as a member
named MAIN.

Running a Program under OS Batch 27

//JOBNAME JOB CDOE),'JOHN DOE'
//STEP! EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBlCMAIN),OISP=SHR
//STEP2 EXEC PASCC
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIBlCSEGl>,DISP=SHR
//STEP3 EXEC PASCCL
//PASC.SYSIN DD DSN=DOE.PASCAL.SRCLIB1(SEG2),DISP=SHR
//LKED.SYSLMOD DD DSN=DOE.PROGRAMS.LOADCMAINJ,DISP=OLD
//LKED.SYSIN DD *

ENTRY PASCALVS
/*

Figure 14. Sample JCL to perform multiple compiles and a link edit.

4.4.4 Cpmpile, Link Edit, and Execute
{PASCCLGJ

//PASCCLG PROC SYSOUT=*,INCLLIB='SYSl.PASCALVS.MACLIB',
// LKLBDSN='SYSl.PASCALVS.LOAD',
// LINKLIB='SYSl.PASCALVS.LINKLIB'
//PASC EXEC PGM=PASCALI,PARM=,REGION=512K

... Cthis step is identical to the PASC step in procedure PASCC>

//LKED EXEC PGM=IEWL,PARM='LIST,MAP',COND=C8,LE,PASC)

... <this step is identical to the LKED step in procedure PASCCL)

//GO EXEC PGM=*.LKED.SYSLMOD,COND=CC8,LE,PASC>,C8,LE,LKED>>
//OUTPUT DD SYSOUT=&SYSOUT,DCB=CRECFM=VBA,LRECL=l33,BLKSIZE=685)
//SYSPRINT DD SYSOUT=&SYSOUT,DCB=CRECFM=VBA,LRECL=133)

Figure 15. Cataloged procedure PASCCLG

This cataloged procedure (Figure 15)
performs a compilation, invokes the
1 i nkage editor to form a load module
from the resulting object module, then
the load module is executed.

28 Pascal/VS Programmer's Gui de

The first two steps of this procedure
are identical to those of the PASCCL
procedure. An additional third step
(named GO> executes your program.

4.S HOW TO ACCESS AN %INCLUDE LIBRARY

The DD statement named SYSLIB
dure step PASC defines the
from which included source
retrieved.

in proce-
1 i brari es
is to be

When the compiler encounters an Y.IN­
CLUDE statement within the source mod­
ule, it will search the library or
libraries specified by SYSLIB for the
member named in the statement. When
found, the library member becomes the
input stream for the compiler. After
the compiler has read the entire
member, it will continue where it left
off in the previous input stream.

You may specify an Y.INCLUDE library by
means of the INCLLIB parameter of the
cataloged procedures, or by overriding
the SYSLIB DD statement by specifying a
DD statement with the name PASC.SYSLIB.

Example

//JOBNAME JOB
// EXEC PASCCG
//PASC.SYSLIB DD DSN= .•• ,DISP=SHR
//PASC.SYSIH DD *

4.6 HOW TO ACCESS DATA SETS

Every file variable operated upon in
your program must have an associated DD

TNL SN20-4445 (31December1981) to SH20-6162-1

statement for the GO step which exe­
cutes your program. The DDname to be
associated with a particular file vari­
able in your program is normally the
name of the variable itself, truncated
to eight characters.

For example, the DDnames for the vari­
ables declared within the Pascal decla­
ration below would be SYSIN, SYSPRINT,
and OUTPUTFI, respectively.

var
SYS IN,
SYSPRINT: TEXT;
OUTPUTFILE= file of

. INTEGER;

The file named OUTPUT need not be
explicitly defined by you if you use
the cataloged procedures. Both cata­
loged procedures which execute a
Pascal/VS program CPASCCG and PASCCLG)
contain a DD statement for OUTPUT.
OUTPUT is assigned to the output class
where the system messages and compiler
listings are produced CSYSOUT=*>.

If the Pascal/VS input/output manager
attempts to open a data set which has
an incomplete data control block CDCB),
it wi 11 assign default values to the
DCB as described in "Data Set DCB
Attributes" on page 45. If you prefer
not to rely on the defaults, then the
LRECL, BLKSIZE, and RECFM should be
explicitly specified in the DCB operand
of the associated DD statement for a
newly created data set Cthat is, one
whose DISP operand is set to NEW>.

Running a Program under OS Batch 29

TNL SN20-444S (31December1981) to SH20-6162-l

4.7 EXAMPLE OF A BATCH JOB

//JOBNAHE JOB
//STEP! EXEC PASCC,PARH='NOXREF'
//PASC.SYSIN DD •
program COPYFILE;
type

F80 =file of
packed array[l •• 80] of CHAR;

var
· INFILE, OUTFILE: F80;

procedure COPYCvar FIN,FOUT: F80);
external;

begin
RES ETC IN FILE>;
REWRITECOUTFILE>;
COPYCINFILE,OUTFILE>;

end.
/.
//STEP2 EXEC PASCCLG,PARH='NDXREF'
//PASC.SYSIN DD •
segment IO;
type

F80 = fl le of
packed array[l .. 80] of CHAR;

procedure COPYCvar FIN,FOUT: F80);
external;

procedure COPY;
begin

while not EOFCFIN> do
begin

FOUTO) : = FINO);
PUTCFOUT);
GETC FIN>

end
end;.
/.
//lKED.SYSlH DD •

ENTRY PASCALVS
/'IE
//GO.lNFILE DD 'IE

(data to be copied into data set goes here>

/'IE
//GO.OUTFlLE
//
//
//

Figure 16.

DD DSN=Pl23456.TEHP.DATA,UNlT=TSOUSER,
DISP=CNEW,CATLG),
DCB=CRECFM=FB,LRECL=80,BLKSlZE=3120),
SPACE=C3120,Cl,l)J

Example of a batch job

30 Pascal/VS Programmer's Guide

Compile time options indicate what fea­
tures are to be enabled or di sabled
when the compiler is invoked. The fol-

5.0 COMPILER OPTIONS

lowing table lists all compiler options
with their abbreviated forms and their
default values.

Compiler Option Abbreviated Name Default

CHECK/NOCHECK --- CHECK
DEBUG/NODEBUG --- NODEBUG
GOSTMT/NOGOSTMT GS/NO GS GOSTMT
LANGLVLCSTANDARD)/ LANGLVL<STD)/ LANGLVLCEXTENDED>

LANGLVLCEXTENDED> LANGL VLC EXT>
LINECOUNTC n > LCCn> LINECOUNTC60)
LIST/NOLIST --- NOLI ST
MARGINSCm,n) MARCm,n) MARGINSCl,72)
OPTIMIZE/NOOPTIMIZE OPT/NOOPT OPTIMIZE
PAGEWIDTH<n> PWCn> PAGEWIDTH< 128)
PXREF/NOPXREF --- PXREF
SEQUENCECm,n)/NOSEQUENCE SEQCm,n)/NOSEQ SEQUENCEC73,80)
SOURCE/NOSOURCE S/NOS
WARNING/NOWARNING W/NOW
XREF/NOXREF X/NOX

5.1 CHECK/NOCHECK

If the CHECK option is enabled, the
Pascal/VS compiler will generate
i nl i ne code to perform runtime error
checking. The %CHECK feature can be
used to enable or disable particular
checking code at specific locations
within the source program. If NOCHECK
is specified, all runtime checking will
be suppressed and all %CHECK statements
will be ignored. The runtime errors
which may be checked are listed as fol­
lows:

CASE statements
Any case statement that does not
contain an otherwise clause is
checked to make sure that the
selector expression has a value
equal to one of the case label val­
ues.

Function routines
A call to a function routine is
checked to verify that the called
function returns a value.

Pointers
A reference to an object which is
based upon a pointer variable is
checked to make sure that the
pointer does not have the value
ni 1.

Subrange scalars
Vari ables which are declared as
subrange scalars are tested when
they are assigned a value to guar­
antee that the value lies within
the declared bounds of the
variable. This checking may occur
when either the variable appears on
the left side of an assignment

SOURCE
WARNING

- XREFCSHORT>

statement or immediately after a
routine call in which the variable
was passed as a var parameter.
CThis latter case also includes a
call to the READ procedure).

For the sake of efficiency, the
compiler may suppress checking
when it is able to determine that
it is semantically unnecessary.
For example, the compiler will not
generate code to check the first
three assignment statements below;
however, the last three wi 11 be
checked.

var
A : -10 .. 10;
B : 0 .. 20;

A ·- B - 10; (*no check*)
B := ABSCA); C*no check*)
A == B DIV 2; (*no check*)

A • - B;
B ·- A*lO;
A := -B;

<*check
(*check
(*check

The compiler makes no explicit
attempt to diagnose the use of
uninitialized variables; however,
to help you detect such errors, the
SETMEM runtime option has been pro­
vided (see "Run Ti me Options" on
page 35).

subscript ranges
Subscript expressions within
arrays or spaces are tested to
guarantee that their values lie
within the declared array or space
bounds. As in the case of subrange
checks, the compiler will suppress
checks that are semantically
unnecessary.

Compiler Options 31

String truncation
Assignments to varying length
strings are checked to make sure
that the destination string vari­
able is declared large enough to
contain the source string.

When a runtime checking error occurs, a
diagnostic message wi 11 be di splayed on
your terminal followed by a traceback
of the routines which were active when
the error occurred. If the program is
invoked from OS Batch, the diagnostic
message and traceback will be sent to
the data set or device associated with
DDname SYSPRINT. You may direct the
error diagnostics to any file of your
choice with the "ERRFILE" option (see
"Run Time Options" on page 35).

See "Reading a Pascal/VS Trace Back" on
page 59 for an example of a traceback
due to a checking error.

"User Handling of Execution Errors" on
page 62 describes how checking errors
may be intercepted by your program.

5.2 DEBUG/NODEBUG

An interactive debugging faci 1 i ty is
available to debug Pascal/VS programs.
The debugger is described in "Pascal/VS
Interactive Debugger" on page 65. If
the option DEBUG is. enabled, the com­
piler will produce the necessary infor­
mation that Debug needs in order to
operate.

The DEBUG option also implies that the
GOSTMT option is active.

NODEBUG indicates that Debug cannot be
used for this segment.

5.3 GDSTMT/NOGOSTHT

The GOSTMT option enables the inclusion
of a statement table within the object
code. The entries within this table
allow the run-time environment to iden­
tify the source statement causing an
execution error. This statement table
also permits the interactive debugger
to place breal<poi nts based on source
statement numbers. For a description
of the debugger see "Pascal/VS Interac­
tive Debugger" on page 65.

The inclusion of the statement table
does not affect the execution speed of
the compiled program.

NOGOSTMT will prevent the statement
table from being generated.

32 Pascal/VS Programmer's Guide

5. 4 LANGLVL()

If LANGLVLCSTANDARD) is specified, the
compiler will diagnose all constructs
and features which do not conform to
"standard" Pascal. Violations of tha
standard will appear as warnings. In
addition, many of the predeclared iden­
tifiers which are unique to Pascal/VS
will not be recognized when
LANGLVLCSTANDARD> is specified.

LANGLVLCEXTENDEDl, which is tha
default, specifies that the full
Pascal/VS language is to be supported.

5.5 LINECOUNTCNJ

The LINECOUNT option specifies the num­
ber of lines to appear on each page of
the output listing. The maximum number
of lines to fit on a page depends on
the form to which the output is being
printed.

The default is 60 lines to the page.

5.6 LIST/NOLIST

The LIST/NOLIST option controls the
generation or suppression of the trans­
lator pseudo-assembler listing (see
"Assembly Listing" on page 42).

Note: The NOLIST option will cause any
%LIST statement within the source pro­
gram to be ignored.

5.7 HARGINSCM,NJ

The MARGINSCm,n) option sets tha left
and right margin of your program~ The
compiler scans each line of your pro­
gram starting at column m and ending at
column n. Any data outside these mar­
gin 1 i mi ts is ignored. The maxi mum
right margin allowed is 100 The speci­
fied margins must not overlap the
sequence field.

The default ls MARGIHSCl,72).

Note: When the PASCALVS clist is being
invoked under TSO, the subparameters of
the MARGINS option must be enclosed in
quotes. For example,

MARGINSC'l,72')

•

5.8 OPTIMIZE/NOOPTIMIZE ters of the SEQ option must be
enclosed in quotes. For example,

The OPTIMIZE option indicates that the SEQC'73,80')
compiler is to generate optimized code.
NOOPTIMIZE indicates that the compiler
is not to optimize.

5.9 PAGEWIDTHCNJ

The PAGEWIDTH option specifies the max­
i mum number of characters 5 that may
appear on a single line of the output
listing. This number depends on the
page form and the printer model.

The default page width is 128 charac­
ters.

5.10 PXREF/NOPXREF

The PXREF option specifies that the
right margin of the output listing is
to contain cross reference entries (see
"Page Cross Reference Field" on page
38). NOPXREF suppresses these entries.

S.11 SEQ(M,NJ/NOSEQ

The SEQCm,n) option specifies which
columns within the program being com­
piled are reserved for a sequence
field. The starting column of the
sequence field ism; the last column of
the field is n.

The compiler 'does not process sequence
fields; but serve only to identify
lines in the source listing. If the
sequence field is blank, the compiler
will insert a line number in the cor­
responding area in the source listing.

NOSEQ indicates that there is to be no
sequence field.

The default is SEQC73,80l.

NOTES:

•

•

The sequence field must not overlap
the source margins.

When the PASCALVS clist is being
invoked under TSO~ the subparame-

5.12 SOURCE/NOSOURCE

The SOURCE/NOSOURCE option controls
the generation or suppression of the
compiler source listing.

Note: The NOSOURCE option wi 11 cause
any %PRINT statement within the source
program to be ignored.

5.13 WARNING/NOWARNING

This option controls the generation or
suppression of warning messages. The
NOWARNING specification will suppress
warning messages from the compiler.

5.14 XREF/NOXREF

The XREF/NOXREF option controls the
generation or suppression of the
cross-reference portion of the source
1 i sting. (See "Cross-reference Li st­
ing" on page 40).

Either a short or long cross-reference
listing can be generated. A long
cross-reference listing contains all
identifiers declared in the program. A
short listing consists of only those
identifiers which were ~eferenced.

To specify a particular listing mode,
either the word LONG or SHORT is placed
after the XREF speci fi cation and
enclosed within parentheses. If no
such specification exists, SHORT is
assumed. For example, the specifica­
tion

XREFCLONG)

would cause a long cross-reference
table to be generated.

Note: If the PASCALVS clist is being
invoked under TSO, a subparameter
CSHORT or LONG) must be specified with
the XREF option; there are no defaults.

The number specified in the PAGEWIDTH option does not include carriage
control characters.

Compiler Options 33

Features within the Pascal/VS run time
environment may be enable or disabled
by passing options to the Pascal/VS
program. These options are passed to a
Pascal/VS program through the parame­
ter passing mechanism. To distinguish
run ti me options from the parameter
string intended to be processed by the
program, the options must preceed the
parameter string (if any) and be termi­
nated with a slash ("/").

The following is a list of supported
run time options.

COUNT
specifies that instruction fre­
quency information is to be col­
lected during program execution.
After the program is completed,
this information is written to file
OUTPUT.

This option will only have an
effect if the program was both com­
piled and link-edited with the
DEBUG option.

DEBUG
specifies that the interactive
debugger (see "Pascal/VS Interac­
tive Debugger" on page 65) is to
gain initial control when you
invoke your program. Note: this
option is valid only if the load
module was generated with the DEBUG
option (see "Module Generation
Options" on page 12).

ERRCOUNT=n

ERRCOUNTCnl
specifies how many non-fatal
errors are allowed to occur before
the program is abnormally termi­
nated. The default is 20.

Note to CMS users: due to the
8-character tokenization conven­
tion of CMS, a blank must precede
the •=• symbol in the ERRCOUNT spe­
cification.

Example:

modname ERRCOUNT =l/

ERRFILE=ddname

ERRFILECddnarne)
specifies the DDname of the file to
which all run time diagnostics are
to be written. Under CMS and TSO,
diagnostics are di splayed on your
terminal by default. Under OS

TNL SN204445 (31December1981) to SH20-6162-1

6.0 RUN TIME OPTIONS

batch, the default error file is
SYSPRINT.

Note to CMS users: due to the
8-character tokenization conven­
tion of CMS, the •=• symbol must be
surrounded with blanks.

Example:

modname ERRFILE = OUTPUT/

HEAP : n
specifies the number of kilobytes 5

that the heap is to be "extended"
each time the heap overflows. The
heap is where memory is allocated
when the procedure NEW is called.
When the end of the heap is
reached, the GETMAIN supervisor
cal 1 is invoked to al locate more
memory for the heap. If the length
of the space being required by NEW
is greater than "n", then the
amount to be allocated will be the
length of the space rounded up to
the next kilobyte (1024 bytes).

There is a significant overhead
penalty for each invocation of GET­
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will
be affected. If "n" is too large,
the heap will contain memory that
is never used.

The default HEAP attribute is 12
kilobytes.

MA INT
specifies that when a run time
error occurs, the trace back is to
list active run time support rou­
tines. These routines begin with a
AMP prefix and are normally sup­
pressed from the trace back
listing. This op1:1on is used to
locate bugs within the run time
environment.

NOCHECK
specifies that any checking errors
detected within the program are to
be ignored.

NOS PIE
specifies that the Pascal/VS run
time enviroment is not to issue a
SPIE request and therefore will not
intercept program interrupts.

STACK : n
specifies the number of kilobytes 5

that the run ti me stack is to be
"extended" each time the stack
overflows. The run time stack is

I 5 A "kilobyte" is defined as 1024 bytes in the context of this manual.

Run Time Options 35

1NL SN204445 (31 December 1981) to SH20-6162-i

where the dynamic storage area
CDSA> of a routine is allocated
when the routine is invoked. When
the end of the stack is reached,
the GETMAIN supervisor call is
invoked to allocate more memory for
the stack. If the length of the
DSA being required is greater than
"n", then the amount to be allo­
cated will be the length of the DSA
rounded up to the next kilobyte
(1024 bytes).

There is a significant overhead
penalty for each invocation of GET­
MAIN. If "n" is too small, GETMAIN
will be invoked frequently and the
execution speed of the program will

36 Pascal/VS Programmer's Gui de

be affected. If "n" is too large,
the stack will occupy more memory
than is necessary.

The default STACK attribute is 12
kilobytes.

SETMEM
specifies that upon entry to each
Pascal/VS routine, each byte of
memory in which the routine's local
variables are allocated wi 11 be set
to a specific value, namely 'FE'
(hexadecimal). This option aids in
locating the source of i ntermi t­
tent errors which occur because of
the use of uninitialized
variables.

TNL SN204445 (31December1981) to SH20-6162-1

7.0 HOW TO READ PASCAL/VS LISTINGS

7.1 SOURCE LISTINGS

PASCAL/VS RELEASE 2.0 UTILITY: PAGE 5

B p c I STMT # SOURCE PROGRAM
INCLUDE 1 FROM SYSLIB CGLOBALS

V---+----1----+----2----+----3---//--7-V
1:
1: type
1: NAMEPTR = <i!NAMEREC;
1: NAt"iEREC =
1: record
1: NAME STRINGC30);
1: LEFT_LINK,
1: RIGHT LINK: NAMEPTR;
1: end;
1:
1 : def
1: TREETOP : NAMEPTR;

1 !procedure SEARCH(
1 I con st ID: STRING;
1 I var PTR: NAMEPTR);
1 I EXTERNAL;

I
1 !procedure SEARCH;
1 Ivar
1 I LPTR = NAMEPTR;

==========ERROR=> $17
1 I begin
1 1 I PTR :=nil;
1 2 I LPTR := TREETOP;
1 1 3 I while LPTR <>nil do
1 1 I begin

1 1 1 4 I with LPTR<il do
1 1 1 1 5 I if NAME = ID then
1 1 1 1 I begin
2 1 1 1 6 I PTR . - LPTR
2 1 1 1 7 I return

==========ERROR=> $8
1 1 1 1 I end
1 1 1 1 I else
1 1 2 1 8 I if ID < NAME then
1 1 2 1 9 I LPTR . -
1 1 2 1 I else
1 1 2 1 10 I LPTR . -

1 1 I end (*while*)
lend;.

NUMBER OF ERRORS DETECTED: 2

DIAGNOSTIC MESSAGES ON PAGECS): 5

ERROR
ERROR

8: SEMICOLON ";" EXPECTED
17: ":II EXPECTED

LEFT LINK -
RIGHT LINK -

PARAMETERS PASSED: DISK NOXREF LIB C MACLIB)

PAGE
)

SEQ NO
00000100
00000200 R
00000300 * *
00000400 * 00000500 R
00000600 * p
00000700 *
00000800 * 5
00000900 R
00001000
00001100 R
00001200 * 5
00000180
00000190 R *
00000200 R *
00000210 R *
00000220 *
00000221
00000222 R *
00000230 R
00000240 * 5

00000250 R
00000260 5 p
00000270 5 5
00000280 R 5
00000290 R
00000300 R 5
00000310 R 5
00000320 R
00000330 5 5
00000340 R

00000350 R
00000360 R
00000370 R 5
00000380 5 5
00000390 R
00000400 5 5
00000410 R
00000420 R

OPTIONS IN EFFECT: MARGINSCl,72), SEQC73,80), LINECOUNTC60), CHECK,
GOSTMT, OPTIMIZE, PXREF, SOURCE, WARNING

XREF

p
5

p R

R
5 R

5 R

SOURCE LINES: 53; COMPILE TIME: 0.43 SECONDS; COMPILE RATE: 7441 LPM

Figure 17. Sample source listing

How to Read Pascal/VS Listings 37

TNL SN204445 (31 December 1981) to SH20~162-1

The source 1 i sting contains i nforma­
t ion about the source program including
nesting information of blocks and cross
reference information.

7.1.1 Page He;ders

The first line of every page contains
the title, if one exists. The title is
set with the %TITLE statement and may
be reset whenever necessary. If no
title has been specified, then the line
wi 11 be blank.

The second line begins with npASCAL/VS
RELEASE x". This line lists informa­
tion in the following order.

1. The PROGRAM/SEGMENT name is given
before a colon. This name becomes
the name of the control section
CCSECT) in which the generated
object code will reside.

2. Following the colon may be the name
of the procedure/function defi­
nition which was being compiled
when the page boundary occurred.

3. The time and date of the compile.

4. The page number.

The third line contains column
headings. If the source being compiled
came from a library Ci.e. %INCLUDE),
then the last line of the heading iden­
tifies the library and member.

7.1.2 Nesting Information

The left margin contains nesting infor­
mation about the. program. The depth of
nesting is represented by a number.
The heading over this margin is:

B P C I STMT

B indicates the depth of 'B' EGIN
block nesting.

P - indicates the depth of 'P'rocedure
nesting.

C indicates the nesting of
'C'onditional statements. Conditional
statements are if and case.

I indicates the nesti~g of
'I'terative statements. Iterative
statements are for, repeat and while.

STMT is the heading of a column that
numbers the executable statements of
each routine. If the source line orgi­
nated from an INCLUDE file, the include

38 Pascal/VS Programmer's Guide

number and a colon C': ') precede the
statement number.

7.1.3 statement Numbering

Pascal/VS numbers the statements of a
routine. These numbers are referenced
when a run ti me error occurs· (see
"Reading a Pascal/VS Trace Back" on
page 59) and when break points are spe­
cified in the interactive debugger (see
"Pascal/VS Interactive Debugger" on
page65).

All non-empty statements are numbered
except the repeat statement. However,
the until portion of a repeat statement
il numbered.

A begin/end statement is not numbered
because it serves only as a bracket for
a sequence of statements and has no
executable code associated with it.

7.1.4 Page cross Reference Field

If the PXREF compiler option is active,
the right margin of the listing con­
tains a cross reference field. This
field contains an indicator for each
identifier that appears in the associ­
ated line. The i ndi cat ors have the
following meanings:

• A number indicates a page number on
which the corresponding identifier
was declared.

• A '*' indicates that the correspon­
ding identifier is being declared.

•

•

•

A 'P' indicates that the correspon­
ding identifier is predefined.

A 'R' indicates that the correspon­
ding identifier is a reserved key
word.

A '?' indicates that the correspon­
ding identifier is either unde­
clared, or will be declared further
on in the program. This latter
occurrence arises often in pointer
type definitions.

7.1.S Error summary

Toward the end of the l~~l~ng is th~
error summary. It contains the diag­
nostic messages corresponding to the
compilation errors detected in the pro­
gram.

(

7.1.6 option List

The option list summarizes the options
that were enabled for the compilation.

7.1.7 compilation statistics

The compiler prints summary statistics
which tell the number of lines

TNL SN20-4445 (31 December 1981) to SH20-6162-1

compiled, the time required, and compi­
lation rate in 1 i nes per minute of
(virtual) CPU time.

These statistics are divided between
two phases of the compiler: the syn­
tax/semantic phase and the code gener­
ation phase. Also printed is the total
time and accumulative rate for the sum
of the phases.

How to Read Pascal/VS listings 39

TNL SNl0-4445 (31 December 1981) to SH20-6162-l

7.2 CRO~S-REFERENCE LISTING

C R 0 S S R E F E R E N C E L I S T I N G

INCLUDE 1 CAME FROM MEMBER GLOBALS

IDENTIFIER

ID

LEFT_LINK

LPTR

NAME

NAMEPTR

NAMER EC

NIL

PTR

RIGHr_LIHK

SEARt H

STRI .. G

DEFINITION

5/20

5/1:7

5/24

5/1:6

5/1:3

ATTRIBUTES <PAGE #>/<INCLUDE l>:<LINE I>

IN SEARCH, CLASS = CONST PARAMETER,
TYPE = STRING, OFFSET : 144
5/31 5/37

IN NAMEREC, CLASS = FIELD, TYPE : POINTER,
OFFSET = 32, LENGTH = 4

5/38

IN SEARCH, CLASS = LOCAL VAR, TYPE = POINTER,
OFFSET = 152, LENGTH : 4
5/27 5/28 5/30 5/33
5/38 5/40

IN NAMEREC, CLASS = FIELD, TYPE = STRING,
OFFSET = O, LENGTH = 32

5/31 5/37

CLASS : TYPE, TYPE = POINTER, LENGTH : 4
5/1:8 5/1:12 5/21 5/24

5/1:4 CLASS = TYPE, TYPE : RECORD, LENGTH = 40
5/1:3

PREDEFINED CLASS = CONSTANT, TYPE : POINTER

5/21

5/1 :g

5/26 S/28

IN SEARCH, CLASS = VAR PARAM, TYPE = POINTER,
OFFSET = 148, LENGTH = 4

5/26 5/33

IN NAMEREC, CLASS = FIELD, TYPE = POINTER,
OFFSET = 36, LENGTH = 4

5/40

5/19 CLASS = ENTRY PROCEDURE

PREDEFINED CLASS = TYPE, TYPE : STRING

5/1: 12

5/1 :6 5/20

CLASS = DEF VAR, TYPE : POINTER, LENGTH : 4
5/27

Figur~ 18. Sa~ple cross-reference li~ting

The cross reference listing lists
alphabetically every identifier used
in the program giving its attributes
and both the page number and the source
line number of each reference.

where p is the page number on which the
reference occurred; i is the number of
the include-member if the reference
took place within the member; 1 is the
line number within the program or
include-member at which the ~eference
occurred. If the ~INCLUDE facility was used, the

cross reference listing will begin by
listing all of the include-members by
name with a reference number.

Each reference specification is of the
following form:

pl' H :J 1

40 Pasr.al/VS Programmer's Guide

The reference immediately following
the identifier is the place in the
source program where the identifier was
declared.

The attribute specifications have the
following meaning.

IN name
If the identifier is a record
field, then this attribute speci­
fies the name of the record in
which the identifier was declared;
otherwise, it specifies the name of
the routine in which the identifier
was declared.

CLASS = class
This attribute gives the class of
the identifier:

CONSTANT declared constant

CONST PARAMETER

DEF VAR

pass-by-canst parame­
ter

external def variable

ENTRY FUNCTION
function routine
declared as an ENTRY
point

ENTRY PROCEDURE
procedure routine
declared as an ENTRY
point

EXTERNAL FUNCTION
external function rou­
tine

EXTERNAL PROCEDURE
external
routine

procedure

FIELD record field

FORMAL FUNCTION
function passed as a
parameter

FORMAL PROCEDURE
procedure passed as a
parameter

FORTRAN FUNCTION
external FORTRAN
ti on

FORTRAN SUBROUTINE

FUNCTION

external FORTRAN
routine

a user-defined
standard function

statement label

func-

sub-

or

LABEL

LOCAL VAR automatic variable

PROCEDURE a user-defined or
standard procedure

REF VAR external ref variable

STATIC VAR static variable

TYPE type identifier

VAR PARAMETER pass-by-var parame­
ter

UNDECLARED undeclared identifier

TYPE : type
This attributes gives the type of
the identifier:

ARRAY an array type

BOOLEAN boolean type

CHAR character

FILE a file type

INTEGER fixed point numeric

POINTER a pointer type

REAL floating point numeric

RECORD a record type

SCALAR enumerated scalar or
subrange

SET a set type

SPACE a space type

STRING a string type

OFFSET : n
This attribute specifies the byte
offset Cin decimal) within the
dynamic storage area CDSA> of an
automatic variable or parameter;
the displacement of a record field
within the associated record; or,
the offset in the static area of a
static variable.

LENGTH : n
This attribute specifies the byte
length of a variable or the storage
required for an instance of a type.

VALUE : n
This attribute specifies the
ordinal value of an integer or enu­
merated scalar constant.

How to Read Pascal/VS Listings 41

7.J ASSEMBLY LISTING

PASCAL/VS RELEASE 2.0 UTILITY 01/27/81 10:18:00 PAGE 2

LOC OBJECT CODE STMT PSEUDO ASSEMBLY LISTING

* LPl := FHEAD;
000090 5830 D090 8 L 03,144(,13)
000094 5840 3000 9 L 04,0C,03)
000098 5040 0094 10 ST 04,148(,13)

* LP2 := NIL;
00009C 1B33 11 SR 03,03
00009E 5030 D098 12 ST 03,152(,13)

* WHILE LPl <> NIL DO
OOOOA2 13 0!4Ll DS OH
OOOOA2 5830 0094 14 L 03,148(,13)
OOOOA6 1233 15 LTR 03,03
OOOOA8 4780 **** 16 BE 0!4L2

* WITH LPl-> DO
OOOOAC 45EO C860 17 BAL 14,2144(,12)
OOOOBO 5030 DOAO 18 ST 03,160(,13)

* BEGIN
* LP3 := NEXT;

OOOOB4 5840 3010 19 L 04,16(,03)
OOOOB8 5040 D09C 20 ST 04,156(,13)

* NEXT := LP2;
OOOOBC 5850 D098 21 L 05,152(,13)
ooooco 5050 3010 22 ST 05,16(,03)

* LP2 := LP!;
OOOOC4 5030 0098 23 ST 03,152(,13)

* LPl := LP3;
OOOOC8 5040 0094 24 ST 04,148(,13)
oooocc 47FO 2016 25 B Ol4Ll
000000 26 0!4L2 OS OH

* EHD;
* FHEAD . - LP2;

000000 5830 0090 27
OOOOD4 5840 0098 28
000008 5040 3000 29

Figure 19. Sample assembly listing

The compiler produces a pseudo assembly
listing of your program if you specify
the LIST option. The information pro­
vided in this listing include:

LDC
location relative to the beginning
of the module in bytes
(hexadecimal).

OBJECT CODE
up to 6 bytes per line of the gen­
erated text. If the line refers to
a symbol or 1 i teral not yet
encountered in the 1 i sting (for-

42 Pascal/VS Programmer's Guide

L 03.144(,13)
L 04,152(,13)
ST 04,0C,03)

ward reference) the base displace­
ment format of the instruction is
shown as four asterisks C '****').

PSEUDO ASSEMBLY
basic assembly language
description of generated i nstruc­
t ion.

Annotation
intermixed with the assembly
instructions is the source line
from which the instructions were
generated. The source lines appear
as comments in the listing.

7.4 EXTERNAL SYMBOL DICTIONARY

PASCAL/VS RELEASE 2.0 AMPLXREF:

E X T E R N A L s y M

NAME TYPE ID ADDR LENGTH

AMPLXREF SD 1 000000 002EOC
XREFEOF LD 0 000808 000001
XREFREF LD 0 OOOA80 000001
O)STATIC PC 2 000000 000009
AMPXPUT ER 4 000000
CHARPTR CM 6 000000 000004
BOOLPTR CM 8 000000 000004
INCL LEVE CM 10 000000 000004
PROCP CM 12 000000 000004
LIHECOUN CM 14 000000 000004
AMPXGET ER 16 000000
SYS PRINT CM 18 000000 000040
AMPXl.JCHR ER 20 000000
OPTION CM 22 000000 000014
TRIM ER 24 000000

Figure 20. Sample ESD table

The External Symbol Dictionary (ESD)
provides one entry for each name in the
generated program that is an external.
This information is required by the
1 inker/ loader to resolve inter-module
linkages. The information in this ta­
ble is:

NAME the name of the symbol.

TYPE the classification of the

ID

symbol:

SD - Symbol Definition

LD - Local Definition

ER - External Reference

CM - Common

PC - Private Code.

is the number provided to the
loader in order to relocate
address constants correctly.

B 0

0 l/27/80 13:07:27 PAGE 1

L D I C T I 0 N A R y

NAME TYPE ID ADDR LENGTH

XREFDUMP LD 0 OOOFC4 000001
XREFINCL LD 0 000964 000001
XREFLIST LD 0 002C40 000001
SYSXREF CM 3 000000 000040
INTPTR CM 5 000000 000004
REALPTR CM 7 000000 000004
PA GENO CM 9 000000 000002
INCL NUMB CM 11 000000 000001
AMPXRSET ER 13 000000
AMPXHEW ER 15 000000
PAGEHEAD ER 17 000000
AMPXWLIN ER 19 000000
AMPXWTXT ER 21 000000
AMPXWIHT ER 23 000000
AMPXWSTR ER 25 000000

ADDR is the offset in the CSECT for an
LD entry.

LENGTH the size in bytes of the SD or
CM entry.

The SD classi fi ca ti on corresponds to
the name of the module; the LD classi­
fications are entry routines; ER names
are external routines; CM names corre­
spond to def variables. The private
code section is where static variables
are located.

7.5 INSTRUCTION STATISTICS

If Pascal/VS is requested to produce an
assembly listing, it will also summa­
rize the usage of 370 instructions gen­
erated by the compiler. The table is
sorted by frequency of occurrence.

How to Read Pascal/VS Listings 43

(

8.1 I/O IMPLEMENTATION

Pascal/VS employs OS access methods to
implement its input/output facilities.
Pascal/VS file variables are associ -
ated with a data set by means of a
DDname. The Queued Sequential Access
Method CQSAM> is used for sequential
data sets. The Basic Partitioned
Access Method CBPAM) is used for parti­
tioned data sets CMACLIBs in CMS
terminology). The Basic Direct Access
Method CBDAM) is used for random record
access.

8.2 DDNAME ASSOCIATION

For any identifier declared as a simple
file variable the first eight charac­
ters of the identifier's name serves as
the DDname of the file. As a conse­
quence, the first eight characters of
all file variables declared within a
module should be unique. You must also
be careful not to allow one of the
first eight characters to be an under­
score C' ') since this is not a valid
character to appear in a DDNAME.

An explicit DDname may be associated
with a file variable by means of the
DDNAME option when the file is opened.
(see "The Open Options" on page 56).

DDnames should be explicitly specified
for files which are elements of arrays,
fields of records, or pointer
qualified. If the DDname is not
explicitly specifi~d for such files, a
DDname of the form "PASCALnn" will be
assigned to the file, where "nn" is a
two digit integer.

8.3 DATA SET DCB ATTRIBUTES

At runtime, associated with every Pas­
cal/VS file variable is a Data Control
Block CDCB) which contains information
describing specific attributes of the
associated data set. Among these
attributes are

•
•
•

the logical record length CLRECL>;

the physical block size CBLKSIZE);

the record format CRECFM>.

Pascal/VS supports all of the record
formats that are supported by QSAM,
such as, F, V, U, FB, VB, FBA, VBM,
etc.

TNL SN20-4445 (31December1981) to SH20-6162-1

A Pascal/VS program will process a file
that contains ANSI or machine control
characters at the beginning of each
logical record Cin which case the
record format would be specified as
RECFM= ... A or RECFM= ... M). Each log­
ical record written to such files will
be prefixed with the appropriate con­
trol character. Thus, the first
character position of each record is
not directly accessable from the
Pascal/VS program. <If the NOCC option
is specified when the file is opened,
no control character will be prefixed
and the first character is accessable.
See "The Open Options" onpage 56.)

Newly allocated (empty) data sets, that
is, data sets intended for output might
not have these attributes assigned. As
far as Pascal/VS is concerned, there
are two ways to specify the DCB attri­
butes for such data sets:

• by being specified in the associ­
ated DDname definition Cin CMS: the
FILEDEF command; in Tso: the
ALLOC/ATTR commands; in OS batch:
the DD card>;

• by being specified when the file is
open by means of the options
string. (see "The Open Options" on
page 56).

If any of these attributes are unas­
signed for a particular data set to
which a Pascal/VS program will be writ­
ing, the Pascal/VS I/O manager wil 1
assign defaults according to whether
the data set is being managed as a file
of type "TEXT" or as a non-text file.

For the case of text files, if neither
LRECL, BLKSIZE, nor RECFM are
specified, then the following d~faults
wi 11 apply:

• LRECL=256

• BLKSIZE=260

• RECFM=V

For the case of non-text files, if
ther LRECL, BLKSIZE, nor RECFM are
cified then the following defaults
apply.

nei­
spe­
wi 11

• LRECL="length of file component"

•
•

BLKSIZE=LRECL

RECFM=F

If some of the attributes are specified
and some are not then defaults will be
applied using the following criteria:

Using Input/Output Facilities 45

TNL SN20-4445 (31 December 1981) to SH20-6162-1

• RECFM of V is preferred over F for
text files.

• RECFM of F is preferred over V for
non-text files.

• If RECFM is F then the BLKSIZE is
to be equal to the LRECL or to be a
multiple thereof.

• If RECFM is V then the BLKSIZE is
to be at least four bytes greater
than the LRECL.

8. 4 TEXT FILES

Text files contain character data
grouped into logical records. From a
Pascal/VS language viewpoint, the log­
ical records are lines of characters.
Pascal/VS supports both fixed length
and variable length record formats for
text files. Characters are stored in
EBCDIC.

The predefined type text is used to
declare a text file ,Vari able in
Pascal/VS. The pointer associated with
each file variable points to positions
within a physical I/O buffer.

8.5 RECORD FILES

All non-text files in Pascal/VS are
record files by definition. Input and
output operations on record files are
done on a logical record basis instead
of on a character basis.

The logical record length CLRECL) of a
file must be at least large enough to
contain the file's base component; oth­
erwise, an execution time error will
occur when the file is opened. For
example, a file variable declared as
'file of INTEGER' will require the
associated physical file to have a log­
ical record length of at least 4 bytes.

If a file has fixed length records
CRECFM=F> and the logical record length
is larger than necessary to contain the
files component type, then the extra
space in each logical record is wasted.

8.6 OPENING A FILE FOR INPUT - RESET

To explicitly open a file for input,
the procedure RESET is used. A call to
RESET has the forms:

46 Pascal/VS Programmer's Guide

RESETCf>
or

RESETCf,options)

where "f" is a file variable and
"options" is a string which contains
the open opti ens C see "The Open
Options" on page 56). The "options"
parameter may be omitted.

Normally, RESET allocates a buffer,
reads in the first logical record of
the file into the buffer, and positions
the file pointer at the beginning of
the buffer. Therefore, given a text
file F, the execution of the statement
"RESETCF>" would imply that "F~" would
reference the first character of the
file.

If a RESET operation is performed on an
open file, the file is closed and then
reopened.

program EXAMPLE;
var

SYS IN : TEXT;
C : CHAR;

begin
(*open SYSIN for input *)
RES ETC SYS IN>;
C*get first character of file*>
C :: SYSIN~;

end.

Figure 21. Using RESET on a text
file

8.7 OPENING A FILE FOR INTERACTIVE
INPUT

Since RESET performs an implicit read
operation to fill a file buffer, it is
not well suited for files intended to
be associated with interactive input.
For example, if the file being opened
is assigned to your terminal, you will
be prompted for data when the file is
opened. This may not be preferable if
your program is suppose to write out
prompting messages prior to reading.

To alleviate this problem, a file may
be opened for interactive input by spe­
cifying "INTERACTIVE" in the opti ens
string of RESET. No initial read oper­
ation is performed on files opened in
this manner. The file pointer has the
value ni 1 unti 1 the the first file
operation is performed (namely GET or
READ). The end-of-line condition (see
"End of Line Condition" on page 53) is
initially set to TRUE.

I{)
'

program EXAMPLE;
var

SYS IN : TEXT;
DATA : STRINGC80);

begin
(Mopen SYSIN for interactive *>
(*input *)
RESETCSYSIN,'INTERACTIVE'>;
(Mprompt for response *)
(Mread in response M)
WRITELNC' ENTER DATA:');
READLNCSYSIN,DATA>;

end.

Figure 22. Opening a file for
interactive input

8.8 OPENING A FILE FDR OUTPUT -
REWRITE

The procedure REWRITE is used to open a
file for output. A call to the proce­
dure has the forms:

REWRITE Cf>
or

REWRITECf,options)

where "f" is a file variable and
"options" is a string which contains
the open options (see "The Open
Options" on page 56). The "options"
parameter may be omitted.

REWRITE positions the file pointer at
the beginning of an empty buffer. If
the file is already open it is closed
prior to being reopened.

program EXAMPLE;
var

SYSPRINT : TEXT;
begin

REWRITECSYSPRINT>;
WRITELNCSYSPRINT,'MESSAGE');

end.

Figure 23. Opening a text file
with REWRITE

program EXAMPLE;
var

OUTFILE : file of INTEGER;
I : INTEGER;

begin
REWRITECOUTFILE,
'BLKSIZE=l600,LRECL=4,RECFM=F'>;

OUTFIL EO) : = I;
PUTCOUTFILE>;

end.

Figure 24. Opening a record file
with REWRITE

TNL SN204445 (31December1981) to SH20-6162-1

8.9 TERMINAL INPUT/OUTPUT

Two procedures are provided for doing
input and output directly to your ter­
minal without going through the normal
DDname interface. Calls to these pro­
cedures have the forms:

TERMINCf> or TERMINCf,options)
TERMOUTCf) or TERMOUTCf,options)

where "f" is a text file variable and
"options" is a string which contains
the open options (see "The Open
Options" on page 56). The "options"
parameter may be omitted.

The TERMIN procedure opens a text file
for interactive input from your termi­
nal. Likewise, the TERMOUT procedure
opens a text file for terminal output.

There is no concept of an end-of-file
condition for files opened with TERMIN.
The EOF function always returns FALSE
for such files.

Note: The TERMIN procedure opens the
file with the INTERACTIVE attribute as
was described in "Opening a File for
Interactive Input" on page 46.

program EXAMPLE;
var

TTYIN, TTYOUT: text;
I : INTEGER;

begin
TERMINCTTYIN>; TERMOUTCTTYOUT);
WRITELNCTTYOUT,'ENTER DATA:');
READLNCTTYIN,I);

end.

Figure 25. Terminal input/output
example.

8.10 OPENING A FILE FOR UPDATE

The UPDATE procedure is provided for
opening a record file for updating. In
this mode, records may be read, modi­
fied, and then replaced. A call to the
procedure has the forms:

UPDATE< fl
or

UPDATECf,options)

where "f" is a record file variable and
"options" is a string which contains
the open options C see "The Open
Options" on page 56). The "options"
parameter may be omitted.

Using Input/Output Facilities 47

1NL SN20-4445 (31 December 1981) to SH20-616.2-1

Upon calling UPDATE, a file buffer is
allocated and the first record of the
file is read into it. If a subsequent
PUT o-perati on is performed on the file,
the contents of the buffer wi 11 be
stored back into the file at the
location from which it was read.

Each GET operation reads in the next
subsequent record of the file. A PUT
operation wi 11 write the record back
from where the last GET operation
obtained it.

program EXAMPLE;
var·

F file of
record

begin
UPDATECF>;

NAME: STRINGC30);
AGE 0 •• 99;

end;

(*update each record *>
(* by incrementing age *>
while not EOFCF> do

begin
F~.AGE :: F~.AGE + 1;
PUTC F>;
GETC F>

end;
end.

Figure 26. Updating a record file

8.11 PROCEDURE GET

The GET procedure is the means by which
a basic read operation is performed on
a file. A call to the procedure has
the form:

GETCfl

where "f" is a file variable.

8.11.1 GET operation on text ff les

When applied to an input text file, GET
causes the file pointer to be i ncre­
mented by one character position. If
the file pointer is positioned at the
last position of a logical record, the
GET operation wi 11 cause the end-of-

48 Pascal/VS Programmer's Guide

line condition to become true (see "End
of Line Condition" on page 53) and the
file pointer will be positioned to a
blank. If, prior to the call, the
end-of-line condition is true, then the
file pointer will be positioned to the
beginning of the next logical record.

If, prior to the call to GET, the file
pointer is positioned to the end of the
last logical record of a text file (in
which case the end-of-Ii ne condition
will be true) then the end-of-file con­
dition will become true. CSee "End of
Fi le Condi ti on - text files" on page
54).

If GET is attempted on a text file that
has not been opened, it will be implic­
itly opened for input (as if RESET had
been called).

program EXAMPLE;
var

INFILE text;
Cl,C2 : CHAR;

begin
(*get first char of file*)
RES ETC IN FILE>;
Cl : = INFILE~;
(*get second char of file*)
GETC INFILE>;
C2 : = INFILE~;

end.

Figure 27. Using GET on a text
file

8.11.2 GET operation on record files

Each call to GET for the case of record
files reads the next sequential logical
record into the buffer referenced by
the file pointer. The end-of-file con­
dition will become true if there are no
more records within the file, in which
case, the file pointer will be set to
nil.

A record file must be opened for input
or update prior to executing a GET
operation, otherwise, a runtime diag­
nostic will be generated.

(

program EXAMPLE;
var

F : file Of

begin

record
NAME : STRINGC25>;
AGE : 0 .. 99;
WEIGHT: REAL;
SEX : CMALE,FEMALE>

end;

RES ETC F);
while not EOFCF> do

begin
WRITEC' Name : '

F<ll.NAME);
WRITE<' Age : ',

FO'l.AGE:3);

WRITELN;
GET< F)

end
end.

Figure 28. Using GET on record
files

8.12 PUT PROCEDURE

The PUT procedure is the means by which
a basic write operation is performed on
a file. A call to the procedure has
the form:

PUTCfl

where "f" is a file variable.

The file must be opened for output or
update prior to calling PUT 6 ;
otherwise, a runtime diagnostic will
occur.

8.12.1 PUT Operation on Text Files

The PUT procedure, when applied to a
text file opened for output, causes the
file pointer to be incremented by one
character position. If, prior to the
call, the number of characters in the
current logical record is equal to the
file's logical record length CLRECL),
the file pointer will be positioned
within the associated buffer to begin a
new logical record.

When the file buffer is filled to
capacity, the buffer is written to the
associated physical file. The file

TNL SN204445 (31December1981) to SH20-6162-1

pointer is then positioned to the
beginning of the buffer so that it may
be refilled on subsequent calls to PUT.
The capacity of the buffer is equal to
the file's physical block size
CBLKSIZE>.

To terminate a logical record before it
is full requires a call to WRITELN (see
"The WRITELN Procedure" on page 53).

program EXAMPLE;
var

OUTFILE text;
C : CHAR;

begin
REWRITECOUTFILE>;

OUT FIL EOI : = C;
<*Write out value of C*>
PUTCOUTFILE>;

end.

Figure 29. Using PUT on a text
file

8.12.2 PUT Operation on Record Files

The PUT procedure causes the file
record that was assigned to the output
buffer via the file pointer to be
effectively written to the associated
physical file. Each call to PUT for
the case of record files produces one
logical record.

program EXAMPLE;
var

F : file of
record

NAME : STRINGC25);
AGE : 0 .. 99;
WEIGHT: REAL;
SEX : CMALE,FEMALE>

end;
begin

REWRITE< F);
F<ll.NAME ·- 'John F. Doe';
FOi.AGE ·- 36;
FOi.WEIGHT :: 160.0;
F<ll.SEX :: MALE;
PUTCF>;

end.

Figure 30. Using PUT on record
files

6 Prior to a PUT operation, the associated output buffer must contain the
data to be written. If the file is not open when the PUT operation is
attempted, then no output buffer exists. CThe file pointer will have the
value nil.)

Using Input/Output Facilities 49

TNL SN20-4445 (31December1981) to SH20-6162-l

8.13 TEXT FILE PROCESSING

8.13.1 Text File READ

The READ procedure fetches data from a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:

READCf,v)
er

READCf,v:n)

where "f" is a file variable and "v" is
a variable which must be of one of the
following types:

CHAR Cor a subrange thereof)

INTEGER (or a subrange thereof)

packed array[] of CHAR

REAL Cor SHORTREAU

STRING

"n" is an optional field length Can
integer expression). The file variable
"f" may be omitted, in which case, the
file INPUT is assumed.

A call of the form

READCf,vl,v2, ... vn)

is executed as

begin
READCf,vl);
READCf,v2>;

READCf,vn);
end

If READ is called for a closed file,
the file is opened for input by an
implicit call to RESET.

Upon executing READ, if the file point­
er is not yet set, an initial GET oper­
ation is performed. This case occurs
when a file is opened INTERACTIVEly.

50 Pascal/VS Programm~'s Guide

(see "Opening a File for Interactive
Input" on page 46.).

When reading INTEGER or REAL data via
the READ procedure, and no field length
is specified, all blanks preceding the
data are skipped. In addition, logical
record boundaries will be skipped. If
the end-of-file condition should occur
before a nonblank character is
detected, an error diagnostic will be
produced.

Integer data begins with an optional
sign C'+' or 1 ~') followed by all dig­
its up to, but not including, the first
non-digit or up to the end of the log­
ical record.

For example, given an input file posi­
tioned at the beginning of a logical
record with the following contents:

95123SAN JOSE,CA

an integer read operation would bring
in the value 95123. After the read,
the file pointer would be positioned to
the first 'S' character.

Real data begins with an optional sign
('+' or '-') and includes all of the
following nonblank characters until
one is detected that does not conform
to the syntax of a real number.

For example, given an input file posi­
tioned at the beginning of a logical
record with the following contents:

3.14159/2

a floating point read operation would
bring in the floating point value
3 .14159. After the read, the file
pointer would be positioned to the '/'
character. ·

If a field length value is specified,
as many characters as are indicated by
the value will be consumed by the read
operation. The variable will be
assigned from the beginning of the
field. If the field is not exhausted
after the variable has been assigned
the data, the rest of the field will be
skipped.

(

program EXAMPLE;
var

ZIP 0 .• 99999;
MAN : 0 .. 999999;
BALANCE: REAL;

begin
READCZIP:5,MAN:6,BALANCE:9);
WRITELNC'ZIP = ',ZIP>;
WRITELNC'MAN = ',MAN>;
WRITELNC'BALANCE = ',BALANCE:8:2)

end.

Given the following input stream
from file INPUT:

951239999991000.00JUNK

This program produces the following
on file OUTPUT:

ZIP =
MAN =
BALANCE =

95123
999999

1000.00

Immediately after the READ state­
ment was executed, file INPUT was
positioned to the 'N' character.

Figure 31. Using READ with length
qualifiers.

When reading data into variables
declared as packed array of CHAR or
STRING, data is read until one of the
following three conditions occurs:

•

•

the variable is filled to its
declared capacity;

an end-of-line condition is detec­
ted;

• the field length (if specified) is
exhausted.

The length of a STRING variable will be
set to the number of characters read.
A variable declared as packed array of
CHAR will be padded if necessary with
blanks up to its declared length.

TNL SN20-4445 (31 December 1981) to SH20-6162-1

program DOREAD;
var

IN FILE
R

text;
arrayCl. .101 of

I

record
NAME: STRINGC25>;
AGE : 0 •• 99;
WEIGHT: REAL

end;
1. .10 i

begin
RESETCINFILE>;
for I := 1 to 10 do

with RCil do

end.

begin
READCINFILE,NAME,AGE>;
READCINFILE,WEIGHT>;
READLNC INFILE)

end;

Figure 32. Using READ
files.

on text

8.13.2 The READLN Procedure

A call to READLN has the same form as a
call to READ and performs the same
function except that after the data has
been read, all remaining characters
within the logical record are skipped.
The procedure is applicable to text
files only.

Normally, READLN causes the next log­
ical record to be read Cun less the
end-of-file is reached} and the file
pointer is positioned to the beginning
of the buffer that contains the record •

In the case of text files opened with
the INTERACTIVE attribute, the file
pointer is positioned after the end of
the logical record and the end-of-line
condition is set to TRUE.

If the end-of-line condition is true
for an interactive file prior to a call
to READLN and the condition was not the
result of a previous call to READLN,
then the call is ignored. Two calls to
READLN in succession wi 11 cause the
following logical record to be skipped
in its entirety.

If READLN is called for a closed file,
the file is opened implicitly for input
as though RESET had been called.

Using Input/Output Facilities 51

TNL SN204445 (3t'December 1981).to SH20-6162-1

Pl"'Ogl"'am COPY;
val"'

IN FILE,
OUTFILE : text;
BUF : STRINGC100);

begin
RESETCINFILE>;
REWRITECOUTFILE>;
while not EOFCINFILE> do

begin
READCINFILE,BUF>;
WRITELNCOUTFILE,BUF>;
(*ignore characters after

column 100 in each line *>
READLNC IN FILE>

end
end.

Figure 33. Using the
READLN

8.13.3 Text File WRITE

procedure

The WRITE procedure writes data to a
text file beginning at the current
position of the file pointer. A call
to the procedure has the forms:

WRITECf,e)
or

WR IT EC f, e: n >
or

WRITECf,e:nl=n2>

where "f" is a file variable and "e" is
an expression which must be of one of
the following types:

BOOLEAN

CHAR (or a subrange thereof)

INTEGER Cor a subrange thereof)

packed array[] of CHAR

REAL Cor SHORTREAL>

STRING

"n","nl", and "n2" are optional field
lengths Ci nteger expressions). The
file variable "f" may be omitted, in
which case, the file OUTPUT is assumed.

A call of the form

WRITECf,el,e2, .•• en)

is executed as

begin
WRITECf,el>;
WRITECf,e2);

WRITECf, en>;
end

52 Pascal/VS Programmer's Guide

If WRITE is called for a closed file,
the file is opened implicitly for out­
put.

If during a call to WRITE, the length
of the logical record being produced
becomes equal to the logical record
length CLRECL> of the text file, a run
time error diagnostic will be
generated.

If a field length is specified for an
expression to be written and its value
is positive, the data will appear right
justified in the output field. If the
specified length is negative, the data
will appear left justified. CThe field
width will be the absolute value of the
specified length.)

String data that is being written with
a specified field length will be trun­
cated on the right if the field length
is too small.

If no field length is specified, a
default wi 11 be used that depends on
the data's type:

data tyee
BOOLEAN
CHAR
INTEGER
REAL
SHORTREAL

default field length
10

1
12
20
20

In addition, expressions of type STRING
have a default field length equal to
their current length. Fixed length
strings <packed al"'l"'ay of CHAR> have a
default equal to their declared length.

progl"'am DOWRITE;
val"'

OUT FILE text;
R

I

al"'l"'ay[1. .10 J of
l"'eCOl"'d

NAME: STRINGC25);
AGE : 0 •• 99;
WEIGHT: REAL

end;
1. .10;

begin
REWRITECOUTFILE>;

fol"' I := 1 to 10 do

end.

with R[I J do
begin

WRITECOUTFILE,NAME:-30,
AGE:3,' '>;

WRITECOUTFILE,WEIGHT:3:Q);
WRITELNCOUTFILE>

end;

Figure 34. Using WRITE on text
fi !es

\ /

1/

8.13.4 The WRITELN Procedure

The WRITELN procedure is applicable
only to text files intended for output.
It causes the current logical record
being produced to be completed so that
the next output operation will begin a
new logical record.

If the record format of the file is
fixed CRECFM=F>, WRITELN will fill the
remainder of the current record with
blanks. For variable length records
CRECFM=V), the record length is set to
the number of bytes currently occupied
by the record.

If WRITELN is called for a closed file,
the file is opened implicitly for out­
put.

program DOUBLESPACE;
var

FIL EIN I

FILEOUT : text;
BUF : STRING;

begin
REWRITECFILEOUT);
RESETCFILEIN>;
while not EOFCFILEIN) do

begin
READLNCFILEIN,BUF);
WRITELNCFILEOUT,BUF);
(*insert blank line *)
WRITELNCFILEOUT)

end;
end.

Figure 35. Using the WRITELN pro­
cedure

8.13.S The PAGE Procedure

The PAGE procedure causes a page eject
to occur on a text output file which is
to be associated with a printer Cor to
a disk file which will eventually be
printed). A call to the procedure has
the following form:

PAGECfl

where "f" i s a variable of type TEXT
which has been opened for output.

If a logical record is partially
filled, an imp! i cit WRITELN will be
performed prior to the page eject.

For this procedure to produce any
affect, the first character of each
logical record of the file must be
reserved for carriage control. This is
done by specifying either A CANS! con­
trol) or M Cmachi ne control) in the
RECFM attribute for the file.

TNL SN204445 (31December1981) to SH20-6162-1

If the record format specifies ANSI
control, then the character '1' will be
inserted in the first character posi­
tion of the record. For machine con­
trol, a single record is written that
contains the hexadecimal value of '8B'
in its first character position.

program EXAMPLE;
var

PRINT: text;
begin

(*start new page*)
PAGECPRINT>;

end.

Figure 36. Using the PAGE proce­
dure

8.13.6 End of Line condition

The end-of-line condition occurs on a
text file opened for input when the
file pointer is positioned after the
end of a logical record. To test for
this condition, the EOUI function is
used.

The end-of-line condition becomes true
when GET is executed for a file posi­
tioned at the last character of a log­
ical record, or if a call to READ
consumes all of the characters of the
current logical record.

The file pointer will always point to a
blank character Ci n EBCDIC, hexadeci -
mal 40) when the end-of-line condition
occurs.

The EOLN function is only applicable to
text files.

program EXAMPLE;
var

SYSIN: text;
CNT : 0 •• 32767;

begin
C* compute length of first

logical record of SYSIN *)
RES ETC SYS IN>;
CNT : = 0;
while not EOLNCSYSIN) do

begin
CNT :: CNT + 1;
GETCSYSIN>;

end;
WRITELNCCNT>

end.

Figure 37. Using the EOLN func­
tion

Using Input/Output Facilities 53

TNL SN20-4445 (31 December 1981) to SH20-6162·1

8.13.7 End of Ffle condition - text
f1les

The end-of-file condition becomes true
for a text file when one of the follow­
ing occurs:

• RESET
empty.

is called and the file is

•
•

•

The file is open for output .

GET is called when the file pointer
is positioned at the end of the
last logical record of the file Cin
which case the end-of-line condi­
tion is true).

READ is called and all characters
of the last logical record were
consumed.

When the end-of-file condition occurs,
the file pointer has the value nfl.

To test for this condition, the EOF
function is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will beignored.

program EXAMPLE;
var

SYS IN: TEXT;
CNT : 0 •. 32767;

begin
(* compute number of logical

records in file SYSIN *>
RESETCSYSIN);
CNT : = 0; .
while not EOFCSYSIN> do

begin
CNT :: CNT + 1;
READLNCSYSIN>

end;
WRITELNCCNT>

end.

Figure 38. Using the EOF function
on a text file

8.14 RECORD FILE PROCESSING

8.14.1 Record File READ

As documented in the language manual,
the statement

READCF,V>

is equivalent to

54 Pascal/VS Programmer's Guide

begin
V : = FO'l;
GETC F>

end

where F and V are declared as follows:

var f: file of t;
v: t;

If file F is not open when READ is
called, an error diagnostic wi 11 be
generated at run time.

8.14.2 Record File WRITE

As documented in the language manual,
the statement

WRITECF, V>

is equivalent to

begf n
FO'l : = V;
PUTC F>

end

where F and V are declared as follows:

var F: file of t;
v: t;

If file F is not open when WRITE is
called, an error diagnostic will be
generated at run time.

program EXAMPLE;
type

REC = record
NAME
AGE
SEX

end;
var

IN FILE,
OUT FILE:

STRINGC25>;
0 •• 99;
CMALE,FEMALE>

file of REC;
BUFFER : REC;

begin
RES ETC INFILE>;
REWRITECOUTFILE>;
while not EOFCINFILE> do

begin
READCINFILE,BUFFER>;
WRITECOUTFILE,BUFFER>

end
end.

Figure 39. Using READ and WRITE
on record files.

8.14.3 End of File Condition - Record
Files

The end-of-file condition becomes true

•

(

for a record file when:

•
•
•

RESET is called for an empty file .

The file is opened for output.

GET is executed for a file in which
no more records remain.

When the end-of-file condition occurs,
the file pointer has the value nt l. To
test for this condition, the EOF func­
tion is used.

Any calls to GET or READ for a file for
which the end-of-file condition is true
will produce an error diagnostic.

8.15 CLOSING A FILE

The procedure CLOSE is provided to
close a file explicitly. A call to
this procedure has the form

CLOSECf>

where "f" is a ft le variable.

All open files which are declared in
the body of a routine as simple vari­
ables are closed i mpl i ci tly when the
routine returns to its invoker. All
files which are open when the program
terminates, wi 11 be closed automati­
cally by the Pascal/VS runtime
environment.

If the variable associated with an open
file is destroyed prior to program ter­
mination, the results could be disas­
trous when Pascal/VS attempts to close
the file. This problem could occur in
the following cases:

• the file variable is an element of
an array.

• the file variable is a field of a
record.

• the file variable is pointer quali­
fied (exists on the heap).

• a routine which contains local file
variables is exited with a goto
statement.

In these cases, the file variable must
be closed explicitly with a call to
CLOSE. .

TNL SN20-4445 (31December1981) to SH20-6162-l

program EXAMPLE;
type
var

FSTK

DDNAME:
I

begin

arrayU .. 8l of
TEXT;

STRINGC8);
1. .8;

RESETCFSTKCIJ,'DDNAME='I IDDNAME>;

for I := 1 to 8 do
CLOSECFSTKCil>;

end.

Figure 40. Example of using CLOSE

8.16 RELATIVE RECORD ACCESS

Pascal/VS permits records of a record
file to be accessed in a random order
by means of the SEEK procedure. A call
to SEEK has the form

SEEKCf,n)

where "f" is a record file that was
previously opened with RESET, REWRITE,
or UPDATE; "n" is a positive integer
expression which corresponds to a
record number. The the number of the
first record is 1.

A subsequent call to GET or PUT wi 11
operate on the "nth" record of the
file. Each call to GET or PUT there­
after wi 11 operate on subsequent
records. SEEK does not perform an I/O
operation.

At the first call to SEEK, the file is
implicitly closed and reopened for ran­
dom access using the Basic Direct
Access Method CBDAM>. The file that is
to be accessed in this manner must have
unblocked, fixed-length records; that
is, the RECFM attribute for the file
must be "F".

Under TSO and OS Batch, the first SEEK
operation on a file opened with REWRITE
will cause dummy records to be written
to the associated data set unt i l the
file's primary space allocation is
filled. The record number specified
must not exceed the number of blocks in
the file's primary space allocation.

Under CMS, the corresponding FILEDEF of
a file being accessed with SEEK must
have the XTENT attribute speci fi ed 7 •
This attribute specifies the largest
record number that may be accessed;
however, it has nothing to do with the
space occupied by the file. Thus, a
FILEDEF specification of the form

I 7 If the XTENT attribute is not specified, CMS will default it to SO.

Using Input/Output Facilities SS

TNL SN204445 (31 December 1981) to SH20-6162-1

FILEDEF F DISK FILE DATACXTENT 65535

will permit any record in file F to be
referenced with SEEK, regardless if it
actually exists. If a record is being
read that does not exist, CMS will
return a buffer of zeroes.

program EXAMPLE;
type

REC = record
NAME
AGE
SEX

end;
IDX = record

RECNO:
.end

var

STRINGC25);
0 •• 99;
CMALE,FEMALE>

0 •. MAXINT;

RECFILE: file of REC;
IDXFILE: file of IDX;

begin
RES ETC IDXFIL E>;
RES ETC REC FILE>;
(*write out names in order of

index *>
while .not EOFCIDXFILE) do

begin
SEEKCRECFILE,IDXFILE~.RECNO>;
GETCRECFILE>;
WRITELNCOUTPUT,RECFILE~.NAME>
GETC IDXFILE>;

end
end.

Figure 41. Example of using SEEK
to access records ran­
domly

8.17 PARTITIONED DATA SETS

8.17.1 opening a Partitioned Data set

To open a partitioned data set CPDS) 8 ,
the procedures PDSIN and PDSOUT are
provided. Calls to these procedures
are of the form

PDSINCf,options)
PDSOUTCf,options)

where "F" is a file variable and
"options" is a string expression which
contains open options C see "The Open
Options"). Unlike the other procedures
whfch open files, the options string is
required and must specify a member name
CMEMBER=name).

PDSIN opens the specified member in the
PDS for input. As in the case of
RESET, the file pointer is made to

point to a buffer containing the first
logical record of the file.

PDSOUT creates a member in the PDS and
opens it for output. If the member
already exists, it will be erased and
then recreated.

See Figure 43 on page 58 for an example
of opening a partitioned data set.

8.17.2 PDS Access in a CMS Environ­
ment

In a CMS environment, members of
MACLIBs may be accessed as partitioned
data sets via the OS simulation facili­
ties. A DDname is assigned to the
MACLIB file with the FILEDEF command;
the file name of the maclib must then
appear in a "GLOBAL MACLIB" command.

For example, in order to access the
file "MYLIB MACLIB A" as a partitioned
data set with ddname "LIB" from a Pas­
cal/VS program, the following commands
would be executed prior to executing
the program.

FILEDEF LIB DISK MYLIB MACLIB A
GLOBAL MACLIB MYLIB

Two or more MACLIBs may be accessed as
though they were concatenated by using
the CONCAT option of the FILEDEF com­
mand. For example, in order to access
the MACLIBs "Ml", "M2", and "M3" as a
concatenated partitioned data set with
ddname "LIB", the following commands
would be executed prior to executing
the Pascal/VS program.

FILEDEF LIB DISK Ml MACLIB A
FILEDEF LIB DISK M2 MACLIB A CCONCAT
FILEDEF LIB DISK M3 MACLIB A CCONCAT
GLOBAL MACLIB Ml M2 M3

8.18 THE OPEN OPTIONS

All Pascal/VS procedures which open
files are defined with an optional
string parameter which contains
options pertaining to the file being
opened. These options determine how
the file is to be opened and what
attributes it is to have.

The data in the string parameter has
the syntax shown in the following fig­
ure:

8 All operations that may be applied to "partition data sets" under OS may
be applied to MACLIB's and TXTLIB's under CMS.

56 Pascal/VS Programmer's Guide

•

•

option-string:

L >{option}~>,-->
<--- <__J ,

option:

----->
> BLKSIZE = n ------>
> LRECL = n

> NOCC

------->

> RECFM = c ------->

> INTERACTIVE ------>
> MEMBER=name ------>
> NAME=fn.ft.fm ----->
> UCASE ---------->

Figure 42. Syntax of open options

Not all of these options apply to all
open procedures. If the option is spe­
cified for a procedure that is not
applicable, the option will be ignored.

The following is a description of each
option and the context in which it
applies.

DDNAME=name
This attribute signifies that the
physical file to be associated with
the file variable has the DDname
indicated by "name". This new
DDname will remain associated with
the file variable even if the file
is closed and then re-opened. It
can only be changed by another call
to a file open routine with the
DDNAME attribute specified.

If this option is not specified,
then the DDname to be associated
with the file is derived according
to the following rules:

•

•

If the file variable is a sim­
ple variable then the default
DDname will be the name of the
variable itself, truncated to
8 characters.

If the file variable is an ele­
ment of an array, a field of a
record, or is pointer quaU­
fi ed, then a DDname wi 11 be
generated of the following
form: PASCALnn, where "nn" is a
two digit integer.

TNL SN20-4445 (31December1981) to SH20-6162-1

The DDNAME option is applicable to
the following procedures:

RESET, REWRITE, UPDATE, PDSIN, and
PDSOUT.

BLKSIZE=n
This attribute is used to specify a
physical block size to be associ­
ated with an output file. This
value (indicated by "n"> will over­
ride a BLKSIZE specification on the
DDname definition.

This option is applicable to the
procedure REWRITE only.

LRECL=n

NOCC

This attribute is used to specify a
logical record length to be associ­
ated with an output file. This
value (indicated by "n") will over­
ride a LRECL specification on the
DDname definition.

For files with variable length
records CRECFM=V>, the logical
record length must include a 4 byte
length descri ptor 9 • Thus, if text
is being written to such a file,
the LRECL must be 4 bytes longer
than the longest 1 i ne to be
written.

The LRECL attribute may also be
used in the TERMIN and TERMOUT pro­
cedures to specify the length of
the I/O buffer. CT his wi 11 deter­
mine the maximum length of the line
to be read from, or written to,
your terminal.)

This option is applicable to the
procedures REWRITE, TERMIN, and
TERMOUT.

Normally, the first character
position of an output file which
contains ANSI or machine control
characters (as determined by the
RECFM> is not directly accessable
to the user program. The data in
such files is placed at the second
character position of each record.

The NOCC option causes such files
to be treated as though control
characters are not significant;
that is, data will be placed within
each record at the first character
position. This option allows con­
trol characters to be generated
explicitly.

This option is applicable the pro­
cedure REWRITE.

RECFtt=c

The 4 byte length descriptor for each record of a V-record file is an OS
convention.

Using Input/Output Facilities 57

TNL SN20-444S (31December1981) to SH20-6162·1

This attribute is used to specify a
record format to be associated with
an output file. This specification
(indicated by "C") will override a
RECFM specification on the DDname
definition.

Pascal/VS supports all record for­
mats that QSAM supports:

u en [A]

8
s

F T
BS

V BT
BST

(A]

D [8] CAl

For an explanation of each of these
record formats, consult the publi­
cation OS/VS2 MVS Data Management
Services Guida Corder number
GC26-3875).

The RECFM specification applies to
procedure REWRITE.

INTERACTIVE
This attribute indicates that the
file is to be opened for input as
an interactive file. See "Opening
a Fi le for Interactive Input" on
page 46 for a description of inter­
active files.

program EXAMPLE;
var

PDS TEXT;
MEMBER : STRINGC8);
BUF : packed arrayC1 •• 80l

begin
RESETCINPUT,'INTERACTIVE');

of CHAR;

This option applies to the proce­
dures RESET and PDSIN. CThis
attribute is implied for TERMIN.>

HEMBER=name
This attribute specifies a member
name of a partitioned data set
CPDS). The member to be accessed
is indicated by "name".

The MEMBER specification is
required for the procedures PDSIN
and PDSOUT C see "Partitioned Data
Sets" on page 56).

NAME=fn.ft.fm (CMS only)
This attribute specifies the name
of a CMS file which is to associ­
ated with the file variable. This
option has no affect if the program
is not running under CMS.

"fn", "ft", "fm" are the file name,
file type and file mode, respec­
tively, of the CMS file. Each must
be separated by a period('.'). A
file mode of'*' is permitted.

The NAME specification is applica­
ble to the following procedures:
RESET, REWRITE, UPDATE, PDSIH, and
PDSOUT.

UCASE (CMS only)
This option causes text that is
being read from a file opened by
TERMIN to be translated to upper
case. This option applies only to
programs running under CMS; it is
ignored otherwise.

(Mopen INPUT for interactive~)
<* input. *)

READLNCMEMBER>; (Mread 1st member name M)
while not EOFCINPUT> do (Mloop until no more members M)

begin (Mopen member for input M)
PDSINCPDS,'DDNAME=SYSLIB,MEMBER=' II MEMBER>;
while not EOFCPDS> do CMcopy each line of the

end.

begin
READLNCPDS,BUF>;
WRITELNCBUF>;

end;
READLNCMEMBER)

end

Figure 43. Using the open options

58 Pascal/VS Programmer's Guide

OE member to file OUTPUT

(Mread next member name

M)

M)

*)

\

8.19 APPENDING TO A FILE

Data may be appended to an existing
file by opening it for output with a
call to REWRITE and specifying a dispo­
sition of "MOD" on the corresponding
DDname definition.

The following examples illustrate how
such a disposition is specified under
the various operating system environ-

TNL SN204445 (31December1981) to SH20~162-1

ments. The DDname of the filn is
"LOG"; the file name is "LOG.DATA".

CMS:
FILEDEF LOG DISK LOG DATA CDISP MOD

Tso:
ALLOC DDNCLOG> DSNCLOG.DATA> MOD

OS Batch:
//LOG DD DSN=ABC.LOG.DATA,DISP=MOD

Using Input/Output Facilities 58.1

TNL SN20444S (31December1981) to SH20-6162-1

58·2 Pascal/VS Programmer's Guide

9.1 READING A PASCAL/VS TRACE BACK

The Pascal/VS trace facility provides
useful information while debugging
programs. It gives you a list of all
of the routines in the procedure chain.

For each routine the following informa­
tion is given.

• The name of the routine.

• The statement number of the last
statement to be executed in the
routine Ci.e. the statement number
of the call to the next routine in
the chain).

• The address in storage where the
generated code for the statement
begins.

• The name of the module in which the
routine is declared.

The trace routine may be invoked in
four different ways. You may invoke
trace by placing in your source program
a call to the pre-defined routine
called TRACE. An example is given in
Figure 44 on page 60. In the example
starting at the bottom we see that
Pascal/VS called the user's main pro­
gram in the module named HASHASEG.
Statement 24 of the main program con­
tains the call to READ ID, statement 3
of READ ID contains - the call to
SEARCH_IO, and so on.

A trace will be produced when a program
error occurs. An example is given in

9.0 RUNTIME ERROR REPORTING

Figure 45 on page 60. There is an
error message indicating a fixed point
overflow. The traceback tells us the
routine and the statement number where
the error occurred. Looking at the
trace we see that the error occurred at
statement 3 in routine FACTORIAL on the
third recursive call.

A trace will be produced when a check­
ing error occurs. A checking error
occurs when code produced by the com­
piler detects an invalid condition such
as a subscript range error. (See
"CHECK/HOCHECK" on page 31 for a
description of compiler generated
checks.) Figure 46 on page 60 is an
example of a traceback that occurred
from a checking error. The first line
of the trace identifies the particular
checking error that occurred. Looking
at the trace we see that the error
occurred at statement 4 in routine
TRANSLATE.

A trace wi 11 be produced when an I/O
error occurs. Figure 47 on page 60 is
an example of this. In this case,
statement 3 of routine INITIALIZE
attempted to open a file for which no
DDHAME definition existed.

Due to opt i mi zat ion performed by the
compiler, the code which tests for an
error condition may be moved back
several statements. Thus, when a
runtime error occurs, the statement
number indicated in the traceback might
be slightly less than the number of the
statement from which the error was gen­
erated.

Runtime Error Reporting 59

Trace back
Routine
TRACE
HASHKEY
GET HASH PTR
SEARCH ID
READ ID
<MAIN-PROGRAM>
PASCAL/VS

of called
stmt at

4
9
2
9
3

24

routines
address in
02028C
02018C
021208
0213C8
021550
020278
02048C

Figure 44. Trace called by a user program

AMPX018E Fixed Point Overflow
Trace back of called routines

Routine stmt at address in
FACTORIAL 3 02014C
FACTORIAL 3 02014C
FACTORIAL 3 02014C
<MAIN-PROGRAM> 17 020298
PASCAL/VS 02048C

Figure 45. Trace call due to program error

AMPX032E High Bound Checking Error
routines

module
AMPXSENV
HASHCSEG
HASHBSEG
HASHBSEG
HASHBSEG
HASHASEG

module
TEST
TEST
TEST
TEST

Trace back
Routine
TRANSLATE

of called
stmt at

4
address in module

TO ASCII
<MAIN-PROGRAM>
PASCAL/VS

10
17

020154 CONVERT
02024C CONVERT
020338 CONVERT
02048C

Figure 46. Trace call due to checking error

AMPX0401S File
Trace back

Routine
INITIALIZE
<MAIN-PROGRAM>
PASCAL/VS

could not
of called

stmt at
3
2

Figure 47. Trace call due to I/O error

60 Pascal/VS Programmer's Guide

be opened:
routines

SYS IN

address in module
020154 COPY
020218 COPY
02048C

9.2 RUN TIME CHECKING ERRORS

The following is a list of the possible
checking errors that may occur in a
Pascal/VS program at run time.

Low bound
Either the value of an array sub­
script, or the value being assigned
to a subrange type variable is less
than the minimum allowed for the
subscript or subrange.

High bound
Either the value of an array sub­
script, or the value being assigned
to a subrange type variable is
greater than the maximum allowed
for the subscript or subrange.

Ni 1 pointer
an attempt was made to reference a
variable from a pointer which has
the value ni 1.

case label
the expression of a case-statement
has a value other than any of the
specified case labels and there is
no otherwise clause.

string truncation
the concatenation of two strings
results in a string greater than
32767 characters in length, or
there was an attempt to assign to a
string a value which has more char­
acters than the maximum length of
the string.

Assertion failure
an assert statement was executed in
which its , associated boolean
expression evaluated to the value
FALSE.

string subscript out of bounds
there was an indexing operation on
a string which was greater than the
current length of the string.

Function value
a function routine returned to its
invoker without being assigned a
result.

9.3 EXECUTION ERROR HANDLING

Pascal/VS detects many kinds of errors
during program execution; upon
detection of an error, the Pascal/VS

runtime library will provide error han­
dling.

Certain errors are considered fatal by
the runtime library. Examples of these
errors are operation exception and pro­
tection exception. When a fatal error
occurs the following happens:

1. Pascal/VS produces a message
describing the error; the message
is di splayed on your terminal if
you are executing in VM/CMS or TSO,
or written to DDname SYSPRINT oth­
erwise.

2. A trace back is displayed.

3. The program execution is termi­
nated.

Other errors such as checking errors
will not stop program execution. You
must determine the extent to which the
non-fatal errors affect your program
results. Pascal/VS performs the fol­
lowing actions when a non-fatal error
occurs.

1. A message describing the error is
produced; the message is displayed
on your terminal if you are execut­
ing in VM/CMS or TSO, or written to
DDname SYSPRINT otherwise.

2. A trace back is generated.

3. If ·the program was compiled and
linked with the 'DEBUG' option and
the program was not executed with
the 'DEBUG' run time option, then a
symbolic dump of the variables in
the procedure experiencing the
error will be produced; the dump is
displayed on your terminal if you
are executing in VM/CMS or TSO, or
written to DDname SYSPRINT other­
wise.

4. If the program was compiled and
linked with the 'DEBUG' option and
the program !::!!ta executed with the
'DEBUG' run ti me option then the
interactive symbolic debugger will
be invoked as if a breakpoint had
been encountered.

Pascal/VS will allow a specific number
of non-fatal errors to occur before the
program is terminated. This number is
set by the ERRCOUNT run ti me option
C see "Run Ti me Options" on page 35).
The default is 20.

Runtime Error Reporting 61

9.4 USER HANDLING OF EXECUTION ERRORS

(***)

'* *' C* RUNTIME ERROR INTERCEPTION ROUTINE *)

'* *' '***)

type
ERRORTYPE = 1 .. 90;
ERRORACTIONS = (

XHALT,
XPMSG,
XUMSG,
XTRACE,
XDEBUG,
XDECERR,
XRESERVED6,
XRESERVED7,
XRESERVED8,
XRESERVED9,
XRESERVEDA,
XRESERVEDB,
XRESERVEDC,
XRESERVEDD,
XRESERVEDE,
XRESERVEDF>;

ERRORSET = set of ERRORACTIONS;

procedure
canst
canst
canst
canst
var
var

EXTERNAL;

ONERRORC
FERROR
FMODNAME
FPROCNAME
FSTMTNO
FRETMSG
FACTION

ERRORTYPE;
ALPHA;
ALPHA;
INTEGER;
STRING;
ERRORSET>;

(*number of execution errors *)
(*action to be performed *)
(*terminate program *)
(*print pascal diagnostic .*)
(*print user's message *)
(*produce a trace back *)
(*invoke the debugger *>
<*deer error counter *)
(*RESERVED *>
<*RESERVED *)
<*RESERVED *)
<*RESERVED *)
<*RESERVED *>
<*RESERVED *>
<*RESERVED *>
<*RESERVED *>
<*RESERVED *>
(*RESERVED *>

<*ERROR NUMBER
(*MODULE NAME WHERE OCCURRED
(*PROCEDURE WHERE OCCURRED
(*STATEMENT NO
<*RETURNED USER'S MESSAGE
(*ACTIONS TO BE PERFORMED

*>
*)
*>
*)
*)
*)

Figure 48. Contents of '%INCLUDE ONERROR'

Pascal/VS provides a mechanism for you
to gain control when an execution time
error occurs. When such an error
occurs, a procedure called 'ONERROR' is
called to perform any necessary action
prior to generating a diagnostic. A
default ONERROR routine is provided in
the Pascal/VS library which does noth­
ing.

You may write your own version of
ONERROR and declare it as an EXTERNAL
procedure. The procedure wi 11 be
invoked when an error occurs; thus you
may decide how the error should be han-
dled. Figure 48 shows the contents of
the IBM-supplied include file that con­
tains the information relevant to
producing your own ONERROR routine.

Upon entry to ONERROR ·the parameter
FERR OR contains the number of the error
that has been encountered. See "Exe­
cution Ti me Messages" on page 150 to
determine the message number corres­
ponding to a particular error. 8

FMODNAME, FPROCNAME, and FSTMTNO con­
tain the name of the module, the name
of the routine, and the source state­
ment number, respectively, of the
location where the error occurred.

FACTION is a set variable which deter­
mines what action is to be taken. Upon
invocation of ONERROR, FACTION will
describe the default action that will
take place after O~ERR~R retur~I· You
should exam1 ne th1 s 1nformat1 on and
decide whether you would like to handle

8 Each error intercepted by the Pascal/VS run time environment consists of a
unique 3 digit number. A diagnostic message corresponding to the error
will begin with the error number prefixed with the characters AMPX and
suffixed with the character 'I', 'E' or 'S' Cinformational, Error, Severe
error).

62 Pascal/VS Programmer's Guide

/
(

"'

the @rror or let the default action
take place.

You may modify the FACTION parameter as
you desire. If you set the XUMSG mem-

X INCLUDE ONERROR;
procedure ONERRDR;
begin

ber of FACTION then you must also set
FRETMSG with the text of the message.
Figure 49 is an example of a user
interception of execution time errors.

C*do nothing if fixed. decimal or floating divide by zero *>
(*and diagnose fixed-point overflow in procedure HASHFNC *)
if FERROR in [19. 21. 25] then

FACTION := [l
else

end;

if CFERROR = 18) & CFPROCHAME = 'HASHFHC') then
begin

FACTION ·- [XUMSGJ;
FRETMSG := 'INPUT DATA CONTAINS GARBAGE';

end;

Figure 49. Example of User Error Handling

9.5 SYMBOLIC VARIABLE DUMP • The Pascal/VS debug library was
included in the generation of the
associated load module.

When a program error or checking error
occurs. a symbolic dump of all vari­
ables which are local to the routine in
which the error occurred may be
produced. This dump will be produced
if two conditions are met:

• The source module containing the
code from which the error occurred
was compiled with the DE!UG op ti on.

The variable dump
terminal if you are
or TSO, or written
otherwise.

is placed on your
executing in VM/CMS
to DDname SYSPRINT

Runtime Error Reporting 63

The Pascal/VS interactive debugger is a
tool that allows programmers to quickly
debug Pascal/VS programs without hav­
ing to write debug statements directly
into their source code. Basic func­
tions include tracing program
execution, viewing the runtime values
of program variables, breaking at
intermediate points of execution, and
displaying statement frequency count­
; ng information. The programmer uses
Pascal/VS source names to reference
statements and data.

Under TSO and CMS, debugger commands
are read directly from your terminal;
likewise, the output is written direct­
ly to your terminal. If the debugger
is being run in OS batch, then the
input is read from DDname SYS IN; the
output is sent to SYSPRIHT.

In order to use the debugger, you must
follow these three steps:

•

•

•

In
may

Compile the module to be debugged
with the DEBUG option. Modules
that have been cornpi led with the
DEBUG option can be 1 inked with
modules that have not been compiled
with the DEBUG option.

When link editing your program,
include the debug library. Cit
must be located ahead of the
runtime library in search order). 9

When executing the load module,
specify 'DEBUG' as a run time
option. 10 This will cause the debug
environment to become active and
you wi 11 be immediately prompted
for a debugger command.

the debugger environment the user
issue debug commands and examine

10.0 PASCAL/VS INTERACTIVE DEBUGGER

variables in those modules which were
compiled with the DEBUG option.

10.1 QUALIFICATION

A qualification consists of a module
name and a routine name. The debugger
uses the current gualification as the
default to retrieve information for
commands. The current qualification
consists of the name of the routine and
associated source module which was last
interrupted when the debugger gained
control.

At the start of a debug session, the
current qua! i fi cation is the name of
the module containing the main program,
and the main program itself.

10.2 COMMANDS

This section describes the commands
that a user may issue with the debug
facility. Every command may be abbre­
viated to one letter if desired except
the QUIT and CLEAR commands which have
no abbreviation. Square brackets C'['
and ']') are used in the command
description to indicate optional parts
of the command.

Semicolons are used to separate multi­
ple commands on each line.

9 Under CMS, the debug library is included if the DEBUG option is specified
when invoking PASCMOD. (see "How to Build a Load Module" on page 12.>

I 10

Under TSO, the debug library is included by specifying the DEBUG keyword
operand when invoking the PASCMOD clist. (see "How to Build a Load
Module" on page 18.)
Run time options must be terminated with a slash C'/ 1). See "Run Time
Options" on page 35.

Pascal/VS Interactive Debugger 65

10.2.1 BREAK Command 10.2.2 CLEAR Command

Command Format:
Command Format:

CLEAR
[stmt] BREAK [[module/] CroutineJ/J

END
Minimum Abbreviation:

CLEAR
[stmt] B [[module/] CroutineJ/J

END
There are no operands.

B

Where: The CLEAR command is used to remove all
breakpoints.

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

END is a keyword which denotes the
end of the routine.

This command causes a breakpoint to be
set at the indicated statement. The
program is stopped before the statement
is executed.

The module and/or routine may be omit­
ted in which case the defaults are tak­
en from the current qualification.
stmt is the number of the statement on
which to stop in the specified routine
of the specified module. The statement
numbers are found on the source
listing. END specifies that the break­
point is to occur in the epilogue of
the routine immediately prior to the
routine's return.

A maximum of 8 breakpoints may be set
at any one time. The following table
illustrates the meaning of the various
forms.

Input
B S
B /S
B P/S
B M//S
B M/P/S

Where:

Module
current
current
current
M
M

Procedure
current
main program
p
main program
p

current - means currently qualified
module or procedure,

M,P - are the names of a module
or procedure

S - is either a statement
number or END

66 Pascal/VS Programmer's Guide

10.2.3 CMS Co_mmand

~-----------

Command Format:

CMS

Mif)imum Abbreviatio_n:

c
There are no operands.

This command activates the CMS subset
mode. If the program is not being run
under CMS, the command is ignored.

10.2.4 DISPLAY Command

Command Format:

DISPLAY

Minimum Abbreviation:

D

The DISPLAY
information
session at
information

command is used to display
about the current debugger
the user's terminal. The
displayed is:

• the current qualification,

• where the user's program wi 11
resume execution upon the GO com­
mand,

• the current status of Counts,

• the current status of Tracing.

Pascal/VS Interactive Debugger 67

10.2.s DISPLAY BREAKS Command

Command Format:

DISPLAY BREAKS

Minimum Abbreviation:

D B

There are no operands.

The DISPLAY BREAKS command is used to
produce a list of all breakpoints which
are currently set.

68 Pascal/VS Programmer's Guide

10.2.6 DISPLAY EQUATES Command

Command Format:

DISPLAY EQUATES

Minimum Abbreviation:

D E

There are no operands.

The DISPLAY EQUATE command is used to
produce a list of all equate symbols
and their current definitions.

/

10.2.7 END comman~

Command Format:

END

Minimum Abbreviation:

END

The EHD command causes the program to
immediately terminate. This command is
synonymous with QUIT.

10.2.8 EQUATE Command

Command Format:

EQUATE identifier Cdatal

Minimum Abbreviation:

E identifier Cdatal

Where:

identifier is a Pascal/VS
identifier.

data is a command which the
identifier is to represent.

The EQUATE command equates an identifi­
er name to a data string. When the
identifier name appears in a command,
it I.Ji 11 be expanded i nl i ne prior to
executing the command.

As an example, the command

EQUATE X ,B[Il

will cause the variable "B[Il" to be
viewed when "X" is entered as a
command. The commands

EQUATE Y R~.FC6l.J
,B[Y]

will cause the variable "B[R~.F[6].J]"
to be viewed.

A semicolon may not terminate the
EQUATE command; a semi colon wi 11 be
treated as part of the data string.
For example, the command

EQUATE Z GO;LISTVARS

will cause the "GO" and "LISTVARS" com­
mands to be executed in succession when
"Z" is entered as a command.

An equate command may be used to rede­
fined the meaning of a debugger
command: 11

EQUATE GO WALK

makes the command "GO" function as the
command "WALK".

An equate command may be cancelled by
equating the previously defined iden­
tifier to an empty data string:

EQUATE Z

There is one exception: the name EQUATE (and its abbreviations) may not be
equated to a data string.

Pascal/VS Interactive Debugger 69

removes the symbol "Z"
debugger's equate table.

from the

Equates may be equated to strings which
contain other equates. All substi­
tution will take place after expansion.
The commands

EQUATE A PG>.I
EQUATE B ,XYZCAJ

10.2.9 GO command

Command Format:

GO

Minimum Abbreviation:

will cause the symbol "B" to be G
expanded to ",XYZ[P~.Il".

70 Pascal/VS Progr~mmer's Guide

There are no operands.

This command causes the program to
either start or resume executing. The
program will continue to execute until
one of the following events occurs:

• breakpoint

• program error

• normal program exit

A breakpoint or program error will
return the user to the Debug environ­
ment.

(
\

10.2.10 Help command

Command Format:

'?

Minimum Abbreviation:

?

There are no operands.

The Help command lists all Debug com­
mands.

10.2.11 LISTVARS Command

Command Format:

LISTVARS

Minimum Abbreviation:

L

There are no operands.

This command di splays the values of all
variables which are local to the cur­
rently active routine.

Pascal/VS Interactive Debugger 71

10.2.12 Qualification command

Command Format:

QUAL Cmodule /J Croutinel

Minimum Abbreviation:

Q [module /] Croutinel

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

If the user does not specify a module
and/or a routine name the defaults are
taken from the current qualification.
The defaults are applied as follows:

• the module name defaults to the
current qualification.

• the routine defaults to the main
program if the associated module is
a program module, or to the outer­
most lexical level if the module is
a segment module.

The lexical scope rules of Pascal are
applied when viewing variables. The
current qualification provides the
basis on which program names are
resolved. If there is no activation of
the routine available Cno invocations)
the user may not di splay local vari -
ables for that routine.

Qualification may be changed at any
time during a Debug session. When. a
breakpoint is encountered, the quali­
fication is automatically set to the
module and the routine in which the
breakpoint was set.

72 Pascal/VS Programmer's Gui de

10.2.13 QUIT command

Command Format:

QUIT

Minimum Abbreviation:

QUIT

There are no operands.

This command causes the· program to end.
It is similar to a normal program exit.
The user is returned to the operating
system.

10.2.14 RESET Command

Command Format:

RESET CCmodule/l Croutinel/l [stmt]
END

Minimum Abbreviation:

[st mt] R [[module/] Croutinel/J
END

Where:

module is the name of a Pascal/VS
module.

routine is the name of a procedure
or function in the module.

stmt is a number of a statement
in the designated routine.

The RESET command is used to remove a
breakpoint. The defaults are the same
as the BREAK command.

10.2.15 SET ATTR Command

Command Format:

SET ATTR [ON

OFF
]

Minimum Abbreviation:

S A [ON

OFF
]

The SET ATTR command is used to set the
default way in which variables are
viewed. The ON parameter specifies
that variable attribute information
will be displayed by default. The OFF
parameter specifies that variable
attribute information will not be dis­
played by default. The default may be
overridden on the variable viewing com­
mand.

Pascal/VS Interactive Debugger 73

10.2.16 SET COUNT Command

Command Format:

SET COUNT [ON

OFF
]

Minimum Abbreviation:

s c [ON

OFF
]

The SET COUNT command is used to initi­
ate and terminate statement counting.
Statement counting is used to produce a
summary of the number of times every
statement is executed during program
execution. The summary is produced at
the end of program execution and is
written to the standard file OUTPUT.
Statement counting may also be initi­
ated with the runtime COUNT option.

74 Pascal/VS Programmer's Guide

10.2.17 SET TRACE Command

Command Format:

SET TRACE [ON] OFF
TO ddname

Minimum Abbreviation:

S T [
Where:

ON
OFF
TO ddname

]

ddname is the name of a DDname
where the trace output ts to be
sent.

The SET TRACE command is used to either
activate or deactivate program
tracing. Program tracing provides the
user with a 1 i st of every statement
executed in the the program. This is
useful for following the execution flow
during execution.

The output from the program trace nor­
mally will go to your terminal, by
using the TO option you may direct the
output to a specific file.

10.2.18 TRACE Command

Command Format:

TRACE

Minimum Abbreviation:

T

This command has no operands.

The TRACE command is used to produce a
routine trace at the user's terminal.
The procedures on the current invoca­
tion chain are listed along with the
most recently executed statement in
each.

10.2.19 Viewing variables

Command Format:

, variable [C option [Jl J

Where:

variable is a Pascal variable.
See the chapter entitled
"Variables" in the Pascal/VS
Reference Manual for the
syntax of a variable.

option is either ATTR or HOATTR.

This command allows the user to obtain
the contents of a variable during pro­
gram execution.

The static scope rules that apply to
the current qualification are applied
to the specified variable. If the var­
iable is found to be a valid reference,
then its value is di splayed. If the
name cannot be resolved within the cur­
rent qualification, the user is
informed that the name is not found.
If the name resolves to an automatic
variable for which no activation cur­
rently exists the user is informed that
the variable cannot be displayed.

As can be seen from the following exam­
ples, array elements, record fields,
and dynamic variables may all be
viewed. Variables are formatted
according to their data type. Entire
records, arrays and spaces are dis­
played as a hexadecimal dump. The user
may view an array slice by specifying
fewer indices than the declared dimen­
sion of the array. The missing indices
must be the rightmost ones.

The options ATTR or HOATTR can follow a
left parenthesis. The default is taken
from the SET ATTR command. The initial
def au 1 t is HOATTR. If the user gives
ATTR as an option, attributes of the
variable are displayed along with the
value of the variable. The attributes
are the data type, memory class, length
if relevant, and the routine where the
variable was declared.

Note: a subscripting expression may
only be a variable or constant; that
is, it may contain no operators. Thus,
such a reference as

, a [b<il [j]]

is valid Cat least syntactically), but
the reference

,a[i+3]

Pascal/VS Interactive Debugger 75

is not a valid reference because the
subscripting expression is not a vari­
able or constant.

Exameles

,a
, pi!)
,pG).b
,b[l,xl.int CATTR
, pi!) [x, y l . bGl. a [ll

If the variable being viewed has not
been assigned a value then the results
depend on the variable's type:

•

•

If the variable is of a simple type
(integer, char, real, etc.), then
the word "uninitialized" will be
printed.

If the variable is of a structured
type (array, record), then the con­
tents will be printed in
hexadecimal; each byte of the the
variable which is uninitialized
will have the value 'FE'
(hexadecimal).

76 Pascal/VS Programmer's Gui de

10.2.20 Viewing Memory

Command Format:

, hex-string [: length l

Where:

hex-string is a number in
hexadecimal notation.

length is an integer.

This command is used to di splay the
contents of a specific memory location.
Memory beginning at the byte specified
by the hex string is dumped for the
number of bytes specified by the length
field. If the length is not specified
memory is dumped for 16 bytes. The
dump is in both hex and character for­
mats.

The hex string must be an hexadecimal
number surrounded by single quotes and
followed by an 'x' (eg. '35D05'X>. The
length is specified in decimal.

Examples

,'20000'X
,'46cf0'X 100

10.2.21 WALK command

Command Format:

WALK

Minimum Abbreviation:

w
There are no operands.

This command causes the program to
either start executing or resume exe­
cuting. The program execution will
continue for exactly one statement and
then the user will be returned to
Debug. This command is useful for sin­
gle stepping through a section of code.

Pascal/VS Interactive Debugger 77

10.J DEBUG TERMINAL SESSION

1

2

3
4
5

6
7

8

1
2
3
4
5

6

7

8
9

10

11

12
13

14

program Primgen;
type

PrimeRange = 1 .. 100; (*Specify limits for the
C* number of prime numbers

var
Prime array[PrimeRange] of Integer;

(*This array stores the result*)
Not Used
Saveindex

PrimeRange; (*Used test preceeding primes *)
PrimeRange; C*Used to remember last used *)

C* spot in Prime *>
Test Number Integer; (*Test value for primeness *)

function IsPrimeC Testval
var

Quotient,
Remainder
Primeindex

begin

Integer;
PrimeRange;

INTEGER>

Primeindex :: LowestCPrimeRange);
repeat

Primeindex :: SuccCPrimeindex);

BOOLEAN;

C*Testval div prime *)
(*Test value for primeness *)
(*Used test preceeding primes *>
C*IsPrime *)

C*Test each previous prime *)
(*Starting with the first one *>
C*Get next prime *)

(*Compute relative primeness of Testval and a known prime
Quotient :: Testval div Prime[Primeindex];
Remainder :: Testval - Quotient * Prime[Primeindex]

until CRemainder=O> I (Quotient<= Prime[Primeindex]);

if Remainder = 0 then
IsPrime ·- FALSE

else
IsPrime ·- TRUE;

end;

begin
Prime[l] . - 2;
Prime[2] . - 3;
Prime[3] . - 5;
TestNumber . - 5;
Save Index . - 3;

repeat
TestNumber :: TestNumber + 2;

if IsPrimeCTestNumber) then
begin

Saveindex:= SuccCSaveindex);
Prime[Saveindexl :: TestNumber

end

C*If the number was divided by*)
(*any known Prime, then this *)
C*is not prime *>

C*IsPrime *)

C*First three primes *)
C* ditto *>
C* ditto *)
(*Start canidates at 5 *>
<*Last used prime entry *)

C*Test each odd number
C* starting with the first
C*If canidate is a prime
(*Save it in the next entry
C* of the prime table

*)
*)
*)
*>
*)

until Savelndex = HighestCPrimeRange);

<*Print results at ten to a line
for Primelndex := LowestCPrimeRange)

begin

end.

Write(Prime[Primelndex]:7);
if CPrimeindex mod 10) = 0 then

Writeln
end;

to HighestCPrimeRange) do

C*Print one prime number
C*If ten have been printed
C* then skip to next line

C*Primgen

*>

*)
*)
*>

*)

Figure 50. Sample program for Debug session

The following series of figures is a
sample Debug terminal session that dem­
onstrates breakpoints, viewing vari­
ables and other DEBUG commands. User

78 Pascal/VS Programmer's Guide

I commands are high liqhted and under­
lined. The program being executed is
shown in Figure 50.

/

pascalvs pri~qen (d~bug
INVOKING PASCAL/VS R2.0
NO COMPILER DETECTED ERRORS

Source lines: 62; Total time: 1.20 seconds; Total rate:
R; T=l.73/3.05 16:13:54

pascmod primgen Cdebug
R; T=0.90/2.19 16:14:51

filedef output terminal
R; T=0.03/0.05 16:14:52

pr i mgg_•.L~~_!Jug_count_L
DebugCPRIMGEN <MAIN-PROGRAM>):

Figure 51. Compiling, linking and executing a program with DEBUG

'>
.LName (abbreviation is in capital letters)

?
,
Break
CLEAR
Cms
Display
Display
Display
END
Equate
Go
listvars
Qua!
QUIT
Reset
Set Attr

This command list
Display a variable
Set a breakpoint
Remove all breakpoints
Enter CMS subset mode
Display currently resume point

Break Display currently set breakpoints
Equate Display currently set equates

Halt your program
Set an identifier to a literal value
Continue executing your program
List all variables
Set default module/routine
Halt your program
Remove a specific breakpoint

Set Count
Set Trace
Trace

Set default viewing information ON/OFF
Turn statement counting ON/OFF
Turn tracing OH/Off/TO fileid
Display invocation chain of routines
Execute one statement of current routine Walk

DebugCPRIMGEN <MAIN-PROGRAM>):

figure 52. The HELP command of DEBUG

3092 LPM

'
Pascal/VS Interactive Debugger 79

bre;,k 8
PRIMGEN/<MAIN-PROGRAM>/8
DebugCPRIMGEN <MAIN-PROGRAM>):

gg .
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
DebugCPRIMGEN <MAIN-PROGRAM>):

walk
-stopped at PRIMGEN/<MAIN-PROGRAM>/9

DebugCPRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
DebugCPRIMGEN <MAIN-PROGRAM>):

Figure 53. Setting Breakpoints and Statement Walking

1 istvars
Variables for procedure: <MAIN-PROGRAM>

PRIME
C0003CA28)
000000 00000002 00000003 00000005 FEFEFEFE '················
000010 FEFEFEFE FEFEFEFE FEFEFEFE FEFEFEFE '················
(00000020 through 0000018F is the same as above)

NOTUSED = uninitialized
SAVEIHDEX = 3
TESTNUMBER = 7

DebugCPRIMGEN <MAIN-PROGRAM>):

Figure 54. The LISTVARS command - List all variables

80 Pascal/VS Programmer•s'Guide

set trace on
Program-trace in on -- output to '<TERMINAL>'
DebugCPRIMGEN <MAIN-PROGRAM>):

9.Q
Resuming PRIMGEN <MAIN-PROGRAM>
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 6
======> 7
Returning from ISPRIME
Resuming PRIMGEH <MAIN-PROGRAM>
======> 10
======> 6-7
Executing PRIMGEN ISPRIME
======> 1
======> 2-5
======> 6
======> 8
Returning from ISPRIME
Resuming PRIMGEH <MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEN/<MAIH-PROGRAM>/8
DebugCPRIMGEH <MAIN-PROGRAM>):

Figure 55. The Trace Mode of DEBUG

Pascal/VS Interactive Debugger 81

~ ======> 10 ======> 6-7
Executing PRIMGEN ISPRIME
======> 1 ======> 2-5 ======> 2-5 ======> 6 ======> 8
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 8-9
Stopped at PRIMGEH/<MAIN-PROGRAM>/8
DebugCPRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/9
DebugCPRIMGEN <MAIN-PROGRAM>):

walk
======> 10
Stopped at PRIMGEN/<MAIH-PROGRAM>/10
DebugCPRIMGEN <MAIN-PROGRAM>):

walk
======> 6-7
Stopped at PRIMGEH/<MAIN-PROGRAM>/6
DebugCPRIMGEN <MAIN-PROGRAM>):

walk
Stopped at PRIMGEN/<MAIN-PROGRAM>/7
DebugCPRIMGEN <MAIN-PROGRAM>):

walk
Executing PRIMGEN ISPRIME
======> 1 ======> 2-5 ======> 6 ======> 1
Returning from ISPRIME
Resuming PRIMGEN <MAIN-PROGRAM>
======> 10
Stopped at PRIMGEN/<MAIN-PROGRAM>/10
DebugCPRIMGEN <MAIN-PROGRAM>):

~
Stopped at PRIMGEN/<MAIN-PROGRAM>/8
DebugCPRIMGEH <MAIN-PROGRAM>):

Figure 56. Walking when the Trace Mode is On

82 Pascal/VS Programmer's Guida

'" /

d;splay qualif;cation
Currently qualified to PRIMGEN <MAIN-PROGRAM>
Will resume at PRIMGEN <MAIN-PROGRAM> 8
Counts are on
Trace is on
Trace output to <TERMINAL>
Debug(PRIMGEN <MAIN-PROGRAM>):

displ~y breaks
Module
PRIMGEN
Debug(PRIMGEN

Routine
<MAIN-PROGRAM>

<MAIN-PROGRAM>):

~quate tn ,testnum~er
DebugCPRIMGEN <MAIN-PROGRAM>):

tn
-;fESTNUMBER

TES TNUMBER = 19
Debug(PRIMGEN <MAIN-PROGRAM>):

d;_?elay equate
TN ==> ,TESTNUMBER
Debug(PRIMGEN <MAIN-PROGRAM>):

set trace off
Program trace is off
DebugCPRIMGEN <MAIN-PROGRAM>):

Stmt
8

Figure 57. Miscellaneous DEBUG Commands

.Lt~stn.illlber
TESTNUMBER = 19

DebugCPRIMGEN <MAIN-PROGRAM>):

, testnumber Cat~r
DATA TYPE: INTEGER

MEMORY CLASS : LOCAL AUTOMATIC
DECLARED IN : <MAIN-PROGRAM>

TES TNUMBER = 19
DebugCPRIMGEN <MAIN-PROGRAM>):

i.ru:l!r.e C 1 O l
PRIME[lO] = uninitialized

DebugCPRIMGEN <MAIN-PROGRAM>):

,primeCSl
PRIME[5] = 11

DebugCPRIMGEN <MAIN-PROGRAM>):

Figure 58. Commands to Display a Variable

Pascal/VS Interactive Debugger 8~

brg~_k i spr i l!'e/end
PRIMGEH/ISPRIME/END
DebugCPRIMGEN <MAIN-PROGRAM>):

9.Q
Stopped at PRIMGEN/ISPRIME/END
DebugCPRIMGEN ISPRIME):

Trace back
Routine
ISPRIME
<MAIN-PROGRAM>
PASCAL/VS

of called
stmt at

8
7

DebugCPRIMGEN ISPRIME):

set trace on

routines
address in module
020138 PRIMGEN
020260 PRIMGEN
02055A

Program trace in on -- output to '<TERMINAL>'
DebugCPRIMGEN ISPRIME):

~quate next go;listvars
DebugCPRIMGEN ISPRIME):

next
GO; LISTVARS

Resuming PRIMGEN <MAIN-PROGRAM>
======> 8-9
======> 10 ======> 6-7
Executing PRIMGEN ISPRIME
======> 1 ======> 2-5
======> 6
======> 7
Returning from ISPRIME
Stopped at PRIMGEN/ISPRIME/END
Variables for procedure: ISPRIME

PRIMEINDEX = 2
QUO TI ENT = 13
REMAINDER = 0
TESTVAL = 39

DebugCPRIMGEN ISPRIME):

set trace off
Program trace is off

DebugCPRIMGEN <MAIN-PROGRAM>):

Figure 59. Using Multiple commands on one line and other commands

84 Pascal/VS Programmer's Guide

'"" /

(
\

reset 8
-Sreakpoint at PRIMGEN/<MAIN-PROGRAM>/8 has been removed

DebugCPRIMGEN <MAIN-PROGRAM>):

9.Q
Stopped at PRIMGEN/ISPRIME/END
DebugCPRIMGEN ISPRIME>:

1 istvars
Variables for procedure: ISPRIME

PRIMEINDEX = 2
QUOTIENT = 11
REMAINDER = 0
TESTVAL = 33

DebugCPRIMGEN ISPRIME):

reset end
Breakpo1nt at PRIMGEN/ISPRIME/END has been removed
DebugCPRIMGEN ISPRIME):

9.Q
2 3 5 7 11 13

31 37 41 43 47 53
73 79 83 89 97 101

127 131 137 139 149 151
179 181 191 193 197 199
233 239 241 251 257 263
283 293 307 311 313 317
353 359 367 373 379 383
419 421 431 433 439 443
467 479 487 491 499 503

Figure 60. The Reset Breakpoint Command

PASCAL/VS STATEMENT COUNTING SUMMARY

<MAIN-PROGRAM> IN PRIMGEN CALLED 1 TIMECS>

17
59

103
157
211
269
331
389
449
509

FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT
1-5 :1 6-7 :268 8-9 :97

11 :1 12-13 :loo 14 :lo

ISPRIME IN PRIMGEN CALLED 268 TIMECS)
FROM-TO:COUNT FROM-TO:COUNT FROM-TO:COUNT

1 :268 2-5 :910 6 :268
8 : 97

Figure 61. Statement Counting Summary

19 23 29
61 67 71

107 109 113
163 167 173
223 227 229
271 277 281
337 347 349
397 401 409
457 461 463
521 523 541

PAGE 1

FROM-TO:COUNT
10 : 268

FROM-TO:COUNT
7 :i 71

Pascal/VS Interactive Debugger 85

This section describes the rules that
the Pascal/VS compiler employs in map­
ping variables to storage locations.

11.1 AUTOMATIC STORAGE

Variables declared locally to a routine
via the var construct are assigned off­
sets within the routine's dynamic stor­
age area CDSA). TherE is a DSA
associated with every invocation of a
routine plus one for the main program
itself. The DSA of a routine is allo­
cated when the routine is called and is
deallocated when the routine returns.

11.2 INTERNAL STATIC STORAGE

For source modules that contain va­
riables declared STATIC, a single
unnamed control section ('private
code') is associated with the source
module in the resulting text deck.
Each variable declared via the STATIC
construct, regardless of its scope, is
assigned a unique offset within this
control "ection.

11.J DEF STORAGE

Each def variable which is initialized
by means of the value declaration will
generate a named control section
(csect>. Each def variable which is
not initialized will generate a named
COMMON section. 12 The name of the sec­
tion is derived from the first eight
characters of the variable's name.

11.0 STORAGE MAPPING

11.4 DYNAMIC STORAGE

Pointer qualified variables are allo­
cated dynamically from heap storage by
the procedure 'HEW'. Such variables
are always aligned on a doubleword
boundary.

11.5 RECORD FIELDS

Fields of records are assigned consec­
utive offsets within the record in a
sequential manner, padding where nec­
essary for boundary alignment. Fields
within unpacked records are aligned in
the same way as variables are aligned.
The fields of a packed record are
aligned on a byte boundary regardless
of their declared type.

11. 6 DATA SIZE AND BOUNDARY ALIGNMENT

A variable defined in an Pascal/VS
source module is assigned storage and
aligned according to its declared type.

11.6.1 The Predef;ned Types

The table in Figure 62 di splays the
storage occupancy and boundary align­
ment of variables declared with a pre­
defined type.

STORAGE MAPPING OF DATA

DATA TYPE SIZE in bytes BOUNDARY ALIGNMENT

ALFA 8 BYTE
ALPHA 16 BYTE
BOOLEAN 1 BYTE
CHAR 1 BYTE
INTEGER 4 FULL WORD
SHORTREAL 4 FULL WORD
REAL 8 DOUBLE WORD
STRINGC len> len+2 HALF WORD
STRINGPTR 8 FULL WORD

Figure 62. Storage mapping for predefined types

Each def variable becomes a named COMMON block which may be used to commu­
nicate with FORTRAN subroutines.

Storage Mapping 87

11.6.2 Enumerated scalar

An enumerated scalar variable with 256
or fewer possible distinct values will
occupy one byte and will be aligned on
a byte boundary. If the scalar defines
more than 256 values then it will occu­
py a half word and wi 11 be aligned on a
half word boundary.

11.6.J subrange scalar

A subrange scalar that is not specified
as packed wi 11 be mapped exactly the
same way as the scalar type from which
it is based.

A packed subrange scalar is mapped as
indicated in the table of Figure 63.
Given a type definition T as:

type
T =packed i .. j;

and

const
I = ORDCiJ;
J = ORDCj>;

Range of
I .. J

0 .. 255

-128 •. 127

-32768 .. 32767

0 .. 65535

0 .. 16777215

-8388608 .. 8388607

otherwise

SIZE in ALIGNMENT
bytes

1 BYTE

1 BYTE

2 HALF WORD

2 HALF WORD

3 BYTE

3 BYTE

4 FULL WORD

Figure 63. Storage mapping of
subrange scalars

Each entry in the first column in the
above table is meant to include all
poss; ble sub-ranges within the spec­
ified range. For example, the range
100 .. 250 would be mapped in the same
way as the range 0 .. 255.

11.6.4 RECORDS

An unpacked record is aligned on a
boundary in such a way that every field
of the record is properly aligned on

88 Pascal/VS Programmer's Guide

its required boundary, That is,
records are aligned on the boundary
required by the field with the largest
boundary requirement.

For example, record A below wi 11 be
aligned on a full word because its
field Al requires a full word
alignment; record B will be aligned on
a double word because it has a field of

·type REAL; record C will be aligned on
a byte.

type
A= record (lEfull word aligned*>

Al INTEGER;
A2 : CHAR

end;

8= record <*double word aligned*)
Bl A;
82 REAL;
83 : BOOLEAN

end;

c= record (lEbyte ali gnedlE >
Cl packed 0 .. 255;
C2 ALPHA

end;

Figure 64 .. Alignment of records

Packed records are always aligned on a
byte boundary;

11.6.5 ARRAYS

Consider the following type
definition:

type
A = array C s l of t

where type s is a simple scalar
and t is any type.

A variable declared with this type
definition would be aligned on the
boundary required for data type 't'.
With the exception noted below, tl'le
amount of storage occupied by this var­
iable is computed by the following
expression:

CORDCHIGHESTCs>>-ORDCLOWESTCs>>+!>
* SIZEOFCt>

The above expression is not necessarily
applicable if 't' represents an
unpacked record type. In this ca5e,
padding will be added, if necessary,
between each element so that each ele­
ment wi 11 be aligned on a boundary
which meets the requirements of the
record type.

(

Packed arrays are mapped exactly as
unpacked arrays, except padding is nev­
er inserted between elements.

A multi-dimensional array is mapped as
an array of array(s). For example the
following two array definitions would
be mapped identically in storage.

array i .. j , m •• n l of t

array [i .. j l of
array [m .. n loft

11.6.6 FILES

File variables occupy 64 bytes and are
aligned on a full word boundary.

11.6. 7 SETS

SETs are represented internally as a
string of bits: one bit position for
each value that can be contained within
the set.

To adequately explain how sets are
mapped, two terms will need to be
defined: The base type is the type tp
which all members of the set must
belong. The fundam_?ntal base tyf!.g
represents the non-subrange scalar
type which is compatible with all valid
members of the set. For example, a set
which is declared as

set of 'o' .. '9'

has the base type defined by '0' .. '9';
and a fundamental base type of CHAR.

Any two unpacked sets which have the
same fundamental base type will be
mapped identically Cthat is, occupy the
same amount of storage and be aligned
on the same boundary). In other words,
given a set definition:

type
s = set of s;
T = set of t;

where s is a non-subrange
and t is a subrange of s:
will have the same length
aligned in the same manner.

scalar type
both S and T
and wi 11 be

Sets always have zero origin; that is,
the first bit of any set corresponds to
a member with an ordinal value of zero
(even though this value may not be a
valid set member).

Unpacked sets will contain the minimum
number of bytes necessary to contain
the largest value of the fundamental
base type. Packed sets occupy the min­
i mum number of bytes to contain the
largest valid value of the base type.
Thus, variables A and B below will both
OCClfPY 256 bi ts.

var
A : set Of CHAR;
B : set of '0' .. '9';

Variables C and D will both occupy 16
bits; variable E will occupy 8 bits.

var
c set of cc1,c2,c3,c4,c5,c6,

C7,C8,C9,C10,Cll,C12
Cl2,C13,C14,C15,C16>;

o : set of Cl .. C8;
E: packed set of Cl .. C8;

A set type with a fundamental base type
of INTEGER is restricted so that the
largest member to be contained in the
set may not exceed the v~lue 255;
therefore, such a set will occupy 256
bits.

Thus, variables U and V below will both
occupy 256 bits; variable W will occupy
21 bi ts; variable X wi 11 occupy 32
bits.

var
u set of o .. 255;
v set of 10 .. 20;
W packed set of 10 .. 20;
X packed set of o .. 31;

Given that M is the number of bi ts
required for a particular set, the
table in Figure 65 i ndi cat es how the
set will be mapped in storage.

Range of SIZE
M BYTES

1 <= M <= 8 1

9 <= M <= 16 2

17 <= M <= 24 3

25 <= M <= 32 4

33 <= M <= 256 CM+7)
div

Figure 65. Storage
SETS

ALIGNMENT

BYTE

HALF WORD

BYTE

FULL WORD

BYTE
8

mapping of

Storage Mapping 89

11.6.8 SPACES

A variable declared as a space is
aligned on a byte boundary and occupies
the number of bytes indicated in the

90 Pascal/VS Programmer's Guide

length specifier of
definition. For example,
S declared below occupies
storage.

the type
the variable

1000 bytes of

vars: space ClOOOl of IHTEGER;

•

'--· ..

(

12.1 LINKAGE CONVENTIONS

Pascal/VS uses standard OS linkage con­
ventions with several additional
restrictions. The result is that
Pascal/VS may call any program that
requires standard conventions and may
be called by any program that adheres
to the additional Pascal/VS restric­
tions.

On entry to a Pascal/VS routine the
contents of relevant registers are as
follows:

• Register 1 - points to the parame­
ter 1 i st

•

•

•
•

Register 12 points to the
Pascal/VS Communication Work Area
CPCWA>

Register 13 - points to the save
area provided by the caller

Register 14 - return address

Register 15 - entry point of called
routine

Pascal/VS requires that the parameter
register CRl) be pointing into the
Dynamic Storage Area CDSA> stack in
such a way that 144 bytes prior to the
Rl address is an available save area.

12. 0 CODE GENERATION FOR THE IBM/370

12.2 REGISTER USAGE

The table in Figure 66 describes how
each general register is used within a
Pascal/VS program. The floating point
registers are used for computation on
data of type REAL.

regi sterC s) purpose(s)

0,1
- temporary work registers

for the compiler
- standard linkage usage

on calls

3,4,5,6,7,8,9

2,10

11

12

13

14,15

- registers assigned by the
compiler for computation
and for data base
registers

- code base registers
of the currently
executing routine

- address of the DSA of the
main program

- always points to Pascal/VS
Communication Work Area

- always points to the local
DSA

- temporary work registers
for the compiler

- standard linkage usage
on calls

Figure 66. Register usage

Code Generation for the IBM/370 91

12.3 DYNAMIC STORAGE AREA

On entry to a procedure or function, an
area of memory called a Dynamic Storage
Area CDSA) is allocated. This area is
used to contain save areas, local vari­
ables and compiler generated tempo­
raries. A Pascal/VS routine requires a
DSA of at least 144 bytes; if the rou­
tine has parameters or local variables,
more space is needed.

register 13--> ..--------------..
0 :

72:

r-80:­

r- -84:­

r- - --88:-

92:

96:

10 0:

112:

144:

---->

>

>

Register
Save area

//////////////////

I/////////

reserved for
error handling

floating point
registers
FO F6

parameter
list

local variables
and compiler
temporaries

144

translator
temporaries

byte save area

parameter 1 i st
to be built here

144 byte save area

16 byte rte parms

The first 72 bytes are generally used
according to standard OS linkage con­
ventions. The first word is used to
copy the previous data base register at
the current procedure nesting level.

Figure 67 illustrates the structure of
the DSA. Figure 68 on page 93 shows
the DSECT expansion of the DSA. (A
copy of this DSECT may be found in mem­
ber DSA of the standard include
library 13 .)

reserved for future use

pointer to translator temporaries

pointer to parameter list build area

pointer to the end of the DSA

pointer to the frequency count table

execution flags, check function flag

if the routine has no parameters then
this space is not present

if the routine has no local variables
and requires no compiler temporaries,
then this space is not present

if the routine requires no translator
temporaries, then this space is not
present

The following areas only in last DSA
for the next routine to be called

for runtime environment in case of
error

room for parameters if required by
error recovery

//// = indicates that the field is not presently used.

Figure 67. DSA format

Under MVS, the name of this library is sysl.PASCALVS.HACLIB. Under CMS,
it is PASCALVS MACLIB.

92 Pascal/VS Programmer's Guide

DSA
DSASDIS
DSALSVA

DSARETA
DSAEPAD
DSARGO
DSAPREG
DSACODE
DSARG3
DSARG4
DSARGS
DSARG6
DSARG7
DSARG8
DSARG'
DSACOD2
DSALlB
DSAPC~JA
DSAAKEY
DSARES4
DSATPTR
DSAPPTR
DSARPTR
DSACNTS
DSARAID
DSAFUNX
DSARESl
DSACKSAl
DSACKSA2
DSACKSA3
DSAFLO
DSAFL2
DSAFL4
DSAFL6
DSALEN

DSAPRMl
DSAPRM2
DSAPRM3
DSAPRM4
DSAPRMS
DSADATA

DSECT
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
EQU
SPACE
DS
DS
DS
DS
DS
DS

F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
F
x
x
2X
F
F
F
D
D
D
D
*-DSA
1
F
F
F
F
OF
F

Save space for display level
Pointer to last save area
(reserved for future use)
Return address
Entry point address
Save area for register 0
Save area for parameter list pointer (reg 1)
Save area for base register for code (reg 2)
Save area for register 3
Save area for register 4
Save area for register 5
Save area for register 6
Save area for register 7
Save area for register 8
Save area for register 9
Save area for 2nd base register for code (reg 10)
Save area for register 11 (main DSA address)
Save area for register 12 CPCWA pointer)
Used by attention processor
Reserved
Address of temporary section of DSA
Address of parameter list build area
Address of runtime parameter list build area
Address of count table
Interactive debugger flags
Function assignment check flag
Reserved
Save area utilized by error recovery
Save area utilized by error recovery
Save area utilized by error recovery
Save area for floating point register 0
Save area for floating point register 2
Save area for floating point register 4
Save area for floating point register 6
Length of DSA header

Start of parameters and/or local variables

Figure 68. DSA DSECT: anchored off of register 13.

Code Generation for the IBM/370 93

12.4 ROUTINE INVOCATION

Each invocation of a Pascal/VS routine
must acquire a dynamic storage area
CDSA> (see "Dynamic Storage Area" on
page 92>. This storage is allocated
and deallocated in a LIFO Clast
in/first out) stack. If the stack
should become filled to its capacity, a
storage overflow routine will attempt
to obtain another stack from which
storage is to be allocated.

Every DSA must be at least 144 bytes
long; this is the storage required by
Pascal/VS for a save area. The rou­
tine's local variables and parameters
are mapped within the DSA starting at
offset 144.

Upon entering a routine, register 1
points 144 bytes into the routine's
DSA, which 1s where the parameters
passed in by the caller reside. This
implies that the calling routine is
responsible for allocating a portion of
the DSA required by the routine being
called, namely 144 bytes plus enough
storage for the parameter list. This
portion of storage is actually an
extension of the caller's DSA.

REG 13 1-->

_R_E_G_1 __ l-->

top of stack -->

caller's save area

local save·area
C144 bytes)

Parameters

In general, the DSA of a routine con­
sists of five sections:

1. The local save area (144 bytes).

2. Parameters passed in by the caller.

3. Local variables required by the
routine.

4. A save area required by any routine
that will be called.

5. Storage for the largest parameter
list to be built for a call.

Sections 1 and 2 are allocated by the
calling routine; sections 3, 4, and 5
are allocated by the prologue of the
routine to which the DSA belongs.

Upon invocation, register 13 points to
the base of the DSA of the caller,
which is where the caller's save area
is located. The new value ~f register
13 may be computed by subtracting 144
from the value in register 1.
Figure 69 illustrates the condition of
the stack and relevant registers imme­
diately at the start of a routine.

start of DSA of caller

start of DSA of called routine

144 bytes into DSA

r---------------------1 storage yet to be allocated

r-~=~-~:~:-1----> for callsl
L----------J

next stack top -->

I local variables I

1---------------------1 I save area I
of any routines I

I yet to be invoked I

parameter list to
be built for calls I
to other routines L _____________________ J

start of DSA of routine yet
to be called

144 bytes into this DSA

Figure 69. Snapshot of stack and relevant registers at start of routine

94 Pascal/VS Programmer's Gui de

/

12.5 PARAMETER PASSING

Pascal/VS passes parameters in several
different ways depending on ho1-.1 the
parameter was declared. In every case,
register 1 contains the address of the
parameter list.

The parameter list is aligned on a
doubleword boundary and each parameter
is aligned on its proper boundary.
Addresses are aligned on word bounda­
ries.

12.5.1 Passing by Read1Write Refer­
ence

This mechanism is indicated by use of
the reserved word var in the routine
heading. Actual parameters passed in
this way may be modified by the invoked
routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROCCvar !=INTEGER);

Routine Invocation:

PROCCJ);

Parameter list:

address of J

Figure 70. Passing by Read/Write
reference

12.S.2 Passing by Read-Only Reference

This mechanism is indicated by use of
the reserved word canst in the routine
heading. Actual parameters passed in
this way may not be modified by the
invoked routine.

The parameter list contains the address
of the actual parameter.

Routine Heading:

procedure PROCCconst I: INTEGER);

Routine Invocation:

PROCCJ+5);

Parameter list:

address of a memory location
which contains the value of
J+S.

Figure 71. Passing by Read-only
reference

12.5.3 Passing by Value

This mechanism is the default way in
which parameters are passed. Parame­
ters passed in this way are treated as
if they are pre-initialized local
variables in the invoked routine. Any
modification to these parameters by the
invoked routine will not be reflected
back to the caller. If the actual
parameter is a scalar, pointer, or set,
then the parameter list will contain
the value of the actual parameter. If
the actual parameter is an array,
record, space, or string, then the
parameter list will contain the address
of the actual parameter. In the latter
case, the called procedure wi 11 copy
the parameter into its local storage.

Routine Heading:

procedure PROCC
I INTEGER;
A : ALPHA>;

Routine Invocation:

PROCCJ,'alpha');

Parameter list:

value of J
address of 'alpha

Figure 72. Passing by value

Code Generation for the IBM/370 95

12.5.4 Passing Procedure or Function
Parameters

For procedures or functions which are
being passed as parameters, the address
of the routine is placed in the parame­
ter list.

Note: As a Pascal/VS restriction, a
routine passed as a parameter must not
be nested within another routine.

Routine Heading:

procedure PROCC
function XCY: REAL): REAL);

Routine Invocation:

PROCCCOS);

Parameter list:

address of COS routine

Figure 73. Passing
parameters

routine

96 Pascal/VS Programmer's Gui de

12.5.S Function Results

Pascal/VS functions have an impUcit
parameter which precedes all specified
parameters. This parameter contains
the address of the memory location
where the function result is to be
placed.

Routine Heading:

function FUNC(C: CHAR):INTEGER;

Routine Invocation:

I := FUNCC'L'l;

Parameter list:

- address of returned integer
result

- value of character 'L'

Figure 74. Function results

12.6 PROCEDURE/FUNCTION FORMAT

Every Pascal/VS procedure or function
is arranged in the order shown below.
Register 2 is the code base register
for the first 4K bytes of the routine
body. If the routine occupies more
than 4K bytes, register 10 is used as
the code base register for the second
4K bytes. If a routb1e exceeds 8K
bytes of storage, the compiler wi 11
diagnose it as a terminal error.

Entry Pt -,>
Reg 2 ----1.

This must be
<= 8192

---->

DEBUG control
block

entry prologue

body
of

routine

exit epilogue

literals:
ACOHS, VCONS,
and small literals
1 to 16 bytes long

STRING and SET
literals longer
than 16 bytes

statement table
(if present>

Figure 75. Routine format

Code Generation for the IBM/370 97

12.7 PCWA

PCWA =
record

C*Ptr to end of current stack *)
(*Ptr to start of current stack *)
C*Self identifing flag 'PCWA' *)
(*compiler runtime flag flags *)
<*Return code *>
(*pointer to open files *)
(*parms string *>
(*module header chain (debugger)*)
C*ptr to external save area *>

PCWAEHDS
PCWACURS
PCWASELF
PCWAFL2
PCWARCC16)
PCWAFILE
PCWAPARM
PCWAMOOS
PCL•JAESAP
PCWADISP
PC~JADTMP
PCWARTMP
PCWARO
PC~JA2231
PCWAMASK
PCWAMFIX
PCWASAVE
PCL.JAPLST
PCWAFIN

INTEGER;
INTEGER;
INTEGER;
PCWA_FLG_SET;
INTEGER;
PCBP;
SYSPARMP;
DBCBP;
INTEGER;
array[0 .. 71
INTEGER;
REAL;

of DSAP;C*DISPLAY *)

PCL>JAAL LC
PCL.JADLLC
PC~JADFL T
PCWACHKR
PCL.JADSAS
PCWAMEMF
PCWAFLAG
PCWAPICA
PCWASEED
PC~IAXEHD
PCWAECNT
PCWACHK
PCWACMEM
PCWASTAX
PC~JAEOPN
PCWADINT
PCWATSO

PCWAATTN
PCWAFCNT
PCWASIZE
PCWADINA
PCWABOPA
PCWABBA
PCWAERAD
PCWAFSTK
PCWAENDA
PCWAPROCC1200)
PCWAUSERC1264)
PCL<IAEOUTC 1328>
PCWAOUTC 1392)
PCWAINC1456)
PCWAPDATC1520)
PCWAERSAC1776)
PCWAPIE
PCWASPIE
PCWAMEMAC1984)

REAL;
REAL;
ALFA;
ALFA;
array[!. .361
array[l. .161
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
ALFA;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
space[20l of
BOOLEAN;
BOOLEAH;
BOOLEAN;
BOOLEAN;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
INTEGER;
space[64l of
space[64l of
TEXT;
PCB;
PCB;
STRINGC254);
SPIEDSA;
PSW;
INTEGER;

(*Debugger temporary *>
(*floating point temporary *)
(*'4EOOOOOOOOOOOOOO'X *)
C*'4E00000010000000'X *>
C*'804020100804020l'X *)
(*temp for first 8 bytes of DSA *>

of INTEGER; (*Extra save area *)
of INTEGER; C*parm list build *)

<*Pointer to the HALT address *>
(*address of memory allocator *)
(*address of memory deallocator *>
(*default allocation size *)
(*address of checker routine *>
(*size of DSA in bytes (144) *)
C*addr of memory fixup routine *)
(*Inter-language communication *)
(*PICA save area *>
(*seed of 'RANDOM' function *>
(*end of stack for SETMEM *)
(*error count until abend *)
(*address of check routine *)
(*current memory in use *)

CHAR;C*STAX list form *)
(*TRUE if PCWAEOUT is open *>
<*TRUE if debugger initializied *)
<*TRUE if TSO environment *)
(*reserved *>
(*address of attn handling *>
C*cnt of files without DDnames *)
(*size of initial alloc for pcwa*)
<*Address of AMPDINIT or nil *>
<*Address of AMPDIBOP or nil *)
(*Address of AMPDIBB or nil *)
(*Error address - CHKR or DIAG *)
(*Chain of free dsa stack elems *)
(*Address of AMPDEPIL or nil *)

CHAR;C*Work area for PROCESS *)
CHAR;C*Area reserved for user *)

C*ERROR OUTPUT PCB *>
(*OUTPUT PCB *>
C*IHPUT PCB *>
(*actual parm list after format *>
C*savearea for error routines *>
C*PSW from PIE *>

array[MEM_LEVELS] Of SPACE DESC;
(*space for memory allocator *>

end;

Figure 76. Pascal Communications Work Area

The Pascal Communications Work Area is
always addressable from register 12.
This area of memory is used to contain

98 Pascal/VS Programmer's Guide

I global information about the execution
of the program.

The area is divided into two parts,
each is 2048 bytes in length. The
first part contains data that needs to
be addressable; the second is composed
of the small routines used to augment
the generated code (such as string con­
catenation). Figure 76 on page 98
shows the structure of the first half
of the PCWA. Each field is described
below:

PCUAENDS
a pointer to the end of the current
DSA stack.

PCWACURS
a pointer to the top of the current
DSA stack.

PCWASELF
a self defining field that is set
to 'PCWA'.

PCWAFL2
flags used to enable runtime fea­
tures.

PCWARC
the value assigned by the last exe­
cution of RETCODE or zero if
RETCODE has not been called.

PCWAFILE
a pointer
that has
closed.

PCWAPARH

to the first file <PCB>
been opened but not

a pointer to the parameter string
passed to the program.

PCWAHODS
a pointer to the head of a chain
that links modules together as
required by the interactive
debugger.

PCWAESAP
contains the pointer to the save
area for the caller of the Pascal
program.

PCWADISP
the runtime display - a stack of 8
base registers that contains the
address of the DSAs that are avai !­
able to the executing routine.

PCWADTMP
a temporary used by the interactive
debugger.

PCWARTMP
a temporary used in conversion
between floating point numbers and
integers.

PCWARO
a constant that contains the float­
ing point value zero.

PCWA2231

a constant that contains the float­
ing point value of 2 raised to the
31 power minus 1 in an unnormalized
form.

PCWAMASK
eight bytes that contain masks
which are used in set operations.

PCWANFIX
a temporary used during runtime
error recovery.

PCWASAVE
used as a register save area when a
program error or checking error
occurs.

PCWAPLST
used when a program error or check­
ing error occurs to build a parame­
ter list in order to invoke a
recovery procedure.

PCWAFIN
address of a procedure which termi­
nates the program no matter what
state it is in. This procedure is
normally HALT.

PCWAALLC
address of a system dependent rou­
tine which is responsible for allo­
cating blocks of storage.

PCWADLLC
address of a system dependent rou­
tine which releases blocks of stor­
age.

PCWADFLT
the default number of bytes of
storage that the al location rou­
tine will allocate when called.

PCWACHKR
the address of the routine which is
invoked to diagnose a checking
error.

PCWADSAS
the size of the smallest DSA. Its
value is 144.

PCWAMEMF
contains the address of the memory
fixup routine, which is called when
the DSA stack overflows.

Pr.WA FLAG
a flag used when communicating
between different languages.

PCWAPICA
is used for a save area for the
PICA.

PCWASEED
contains the current seed for the
RANDOM function.

PCWAXEND
contains the true end
rent stack, PCWAENDS
correct, PCWAENDS is

of the cur­
may not be
made incor-

Code Generation for the IBM/370 99

rect in order to force a call to
AMPXMEMF so that a DSA may be 1n1-
tialized (if SETMEM option is ena­
bled).

PCHAECNT
contains the number of non-fatal
errors which will be tolerated
before the program will be abended.

PCWACHK
contains the address of the routine
which gains control when a checking
error occurs. This routine is nor­
mally AMPXCHKR.

PCWACt1EM
defines which heap is in use, nor­
mally the value is one, which indi­
cates that the users heap is
available.

PCWASTAX
contains the list form of the STAX
macro.

PCUAEOPN
a flag that indicates whether the
error file, PCWAEOUT has been
opened.

PC WAD INT
is a flag indicating whether
AMPDCOM (debugger common area) has
been initialized yet.

PCWATSO
is a flag indicating whether we are
executing in a TSO environment.

PCWAATTN
contains the address of the termi­
nal attention routine.

PCWAFCNT
contains the number of the next
generated DDname.

PCWASIZE
contains the size of the initial
allocation of the PCWA.

PCWADINA
contains
AMPDINIT
i zes the

PCWABOPA
contains
AMPDIBOP
at each
debugger

the address of the
routine, which initial­

interactive debugger.

the address of the
routine, which is invoked
procedure entry when the
is active.

100 Pascal/VS Programmer's Guide

PCWABBA
contains the address of the AMPDIBB
routine, which is invoked at each
basic block of code when the
debugger is active.

PCWAERAD
contains the offending address
when a checking error or a program
error occurs.

PCWAFSTK
points to the beginning of a chain
of all free blocks of storage.

PCWAEHDA
address of the AMPDEPIL routine,
which is invoked from the epilogue
of each routine when the debugger
is active.

PCWAPROC
reserved for future use.

PCWAUSER
reserved for Pascal/VS users.

PCWAEOUT
the file C PCB) to where execute
time error diagnostics is sent.

PCWAOUT
the PCB for the standard file OUT­
PUT.

PCWAIN
the PCB for the standard file
INPUT.

PCWAPDAT
a string that contains the passed
in symbolic parameter list after it
it has been formatted.

PCWAERSA
a small save area used when a SPIE
exit is invoked.

PCWAPIE
a place to save certain information
from the SPIE.

PCWASPIE
spi e work area

PCWAMEMA
descriptors used to control the
allocation and deallocation pol i­
c i es of dynamic storage and I/O
buffers.

/

_j

12.8 PCB - PASCAL FILE CONTROL BLOCK

PCB =
record

PCBFILEP
PCBFLAGS
PCB ELEM
PCBHAME
PCBCODE
PCBBUFIDX:
PCBBUFL EH:
PCBBUFP
PCBOPTP
PCB LAST
PCB NEXT
PCBICBP
PCB START
PCBSTAT

end;

BUFFERP;
FILEFLAGS;
HALFWORD;
ALFA;
MagicNumber;
HALFWORD;
HAL FL.JO RD;
BUFFERP;
OPTP;
PCBP;
PCBP;
ICBP;
HALFWORD;
IOSTATUS;
CHAR;
INTEGER;
INTEGER;
INTEGER;
INTEGER;

(*Pascal Control Block *)

C*file pointer *)
(*file flags *>
(*length of file component *)
(*file-variable name *)
(*initialization test *)
(*buffer index *)
(*buffer length *)
(*pointer to start of buffer *)
(*ptr to OPTIONs descriptor *)
(*link to last PCB of chain *)
(*link to next PCB of chain *)
(*ptr to lmplem. Ctr! Block *)
<*initial value of PCBBUFIDX *>
(*status of last open *)
(*<not-used> *)
(*<not-used> *)
(*<not-used> *>
(*<not-used> *)
(*<not-used> *)

Figure 77. Pascal file Control Block CPCB> format

Every Pascal/VS file is represented by
a Pascal control block CPCB) An PCB is
composed of 64 bytes of space.

The fields are defined as:

PCBFILEP
points to the current element of
the file.

PCB FLAGS
set of file flags (16 bits).
flags are:

The

FIHPUT i ndi cab;!s that
open for input.

file is

FOUTPUT indicates that
open for output.

file is

FT EXT the file is of type TEXT.

FEOLN end-of-line condition is
true.

FEOF end-of-file condition is
true.

FFIXED file has fixed length
records.

FINTER the file was opened as an
interactive file.

FSTATUS the user wi 11 check

FFEOL

PCBSTAT and report the
errors.

end-of-line condition is
true, but not as a result
of READLN.

FOPTS

PCBELEH

an options string was
specified in the last
open.

the length of one component of the
file.

PCB NAME
the DDNAME of the file.

PCB CODE
an encoded value that is used to
test whether the PCB has been ini­
tialized; this is not required for
files w!hich are local variables but
is needed for files that are allo­
cated dynamically CNEW).

PCBBUFIDX
byte index into the l/O buffer
CPCBBUFP).

PCBBUFLEN
total length of buffer in bytes.

PCBBUFP
address of the beginning of the
buffer.

PCBOPTP
address of the control block that
describes the information passed
through the options string as the
file is being opened. The proce­
dures which open a file and pass an
options string are: RESET,
REWRITE, UPDATE, TERMIN, TERMOUT,
PDSIN or PDSOUT.

PCB LAST

Code Generation for the IBM/370 101

back chain of currently open PCBs.

PCB NEXT
forward chain of currently open
PCBs.

PCBICBP
points to a system dependent con­
trol block to be used by the lowest
level of interface to the IO access
methods.

102 Pascal/VS Programmer's Guide

PCBSTART
contains the initial value of
PCBBUFIDX, which is used to deter­
mine if the current buffer contains
any data that needs processing pri­
or to closing the file.

PCBSTAT
status of the file.

(

TNL SN204445 (31 December 1981) to SH20-6162·1

13.0 INTER LANGUAGE COMMUNICATION

It is sometimes desirable to invoke
subprograms (procedures) written in
other programming langauges: this is
useful to obtain services not available
directly in Pascal/VS. It is also
desirable to have a Pascal/VS procedure
called from a non-Pascal program: this
would allow you to take advantage of
Pascal in an existing application with­
out rewriting the entire application.
This chapter will discuss the options
available to you and what you must do
in order to have this flexibility.

We can divide inter- language commun i -
cation into two classes:

FORTRAN

Assembler

COBOL

PL/I

• The Pascal procedure is the calling
procedure and the non-Pascal pro­
cedure is being called.

• The Pascal procedure is called from
a non-Pascal calling procedure.

Your options
Figure 78.

are summarized in

Pascal as the calling language

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you to
call a subprogram written in
FORTRAN.

Define procedures and functions
in Pascal using the FORTRAN or
the EXTERNAL directive. If you
use EXTERNAL you will be able to
specify an arbitary Pascal
parameter list.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you
to call a subprogram written in
COBOL. You may desire to call
ILBOSTPO prior to calling a
COBOL program. Consult the
COBOL Programmer's guide for
details.

Define procedures and functions
in Pascal using the FORTRAN
directive. This enables you
to call a subprogram written in
PL/I. You should define the PL/I
procedure with the FORTRAN
option. Consult the PL/I OS
Programmer's guide for further
details.

Pascal as the called language

Use a call statement in FORTRAN
to call the Pascal procedure.
The Pascal procedure must be
defined with the MAIN directive.
After the last call to a Pascal
procedure you must call PSCLHX
(Pascal halt execution).

Use a V-type constant in the
Assembler routine to define the
Pascal entry point. You must
define the Pascal procedure as
EXTERNAL, MAIN, or REENTRANT.
After the last call to a Pascal
procedure you must call PSCLHX.

Use a call statement in COBOL
to call the Pascal procedure.
COBOL should be compiled with
the 'NODYNAM' option and the
call must be a call of a
literal. The Pascal procedure
must be defined with the MAIN
directive. After the last call
to a Pascal procedure you must
call PSCLHX.

Use a call statement in PL/I to
call a Pascal procedure. The
PL/I procedure should specify the

·Pascal as an EXTERNAL. After the
last call to a Pascal procedure
you must call PSCLHX.

Figure 78. Inter Language Communication

Inter Language Communication 103

TNL SN20-4445 (31Decei:nber 1981) to SH20~162-1

The details of Pascal/VS linkage con­
ventions are discussed in the chapter
"Code Generation for the IBM/370" on
page 91. You should familiarize your­
self with this section - especially if
you plan to use Assembler language.

13.1 LINKING TO ASSEMBLER ROUTINES

Writing an Assembler language routine
for Pascal/VS is a simple operation
provided that a set of conventions are
carefully followed. There are two rea­
sons for the need for these
conventions:

1. Pascal/VS parameter Passing con­
ventions: As described in "Parame­
ter Passing" on page 95, Pascal/VS
parameters are passed in a variety
of ways, depending on their attri­
butes.

2. The Pascal/VS environment: This is
an arrangement of registers and
control blocks used by Pascal/VS to
handle storage management and run­
time error recovery. (see "Regis­
ter Usage" on page 91.)

13.1.l Writing Assembler Routine with
Minimum Interface

Writing an Assembler routine with the
minimum interface requires the least
knowledge of the runtime environment.
However, such a routine has the follow­
ing deficiencies:

anyname

•

•
•

It may not call
routine;

a Pascal/VS

It must be non-recursive;

If a program error should occur
(such as divide by zero), the Pas­
cal/VS runtime environment will
not recover properly and the
results will be unpredictable.

When a Pascal/VS program invokes an
Assembler language routine, register
14 contains the return address and reg­
ister 15 contains the starting address
of the routine. The routine must fol­
low the System/370 linkage conventions
and save the registers that wi 11 be
modified in the routine. It must also
save any floating point register that
is altered in the routine.

Upon entry to the routine, register 13
will contain the address of the regis­
ter save area provided by the caller,
and register 1 will point to the first
of a 1 i st of parameters being passed
Cif such a list exists). Once the reg­
ister values are stored in the caller's
save area, the save area address Creg­
i ster 13) must be stored in the
backchain word in a save area ~efined
by the Assembler routine itself.
Before returning to the Pascal/VS rou­
tine, the registers must be restored to
the values that they contained when the
Assembler routine was invoked.

If you insert your Assembler
instructions at the point indicated in
the skeletal code shown in Figure 79,
your Assembler routine can be called
from a Pascal/VS routine and you need
have no knowledge of the Pascal/VS
environment.

procname

CSECT
ENTRY
DS
STM
BALR
USING
ST

procname
OH

declare routine name as an entry point
entry point to routine

LA

L
LM
BR

SAVEAREA DC
END

14, 12, 12(13)
basereg,O
*,basereg
13,SAVEAREA+4
13,SAVEAREA

13,4(13)
14,12.12(13)
14
20F'0'

save Pascal/VS registers in Pascal/VS save area
establish base register

store Pascal/VS save area address
load address of local save area

body of Assembler routine

restore the floating point registers if
they were saved
restore Pascal/VS registers

return to Pascal/VS
local save area

Figure 79. Minimum interface to an Assembler routine: skeletal code to be
invoked from Pascal/VS

104 Pascal/VS Programmer's Guide

\

TNL SN20-4445 (31December1981) to SH20-6162-1

13.1.2 Writing Assembler Routine with General Interface

procname PROLOG LASTREG=r.VARS=n,PARMS=p

EPILOG DROP=[YES]
NO

where:

procname is the entry point name of the routine.

LASTREG is a number between 3 and 12, inclusive, which indicates the
highest register to be modified by the routine between 3 and 12.

VARS is the number of bytes required for any local data, including
passed-in parameters.

PARMS is the number of bytes required for the largest parameter list
to be built within the routine.

DROP indicates whether register 2 is to be dropped as a base regis­
ter after the epilogue is executed.

defaults:
LASTREG=l2
VARS=O
PARMS=O

DROP= YES

Figure 80. PROLOG/EPILOG macros

If an Assembler routine has at least
one of the following characteristics,
the general interface must be used:

•
•
•

It calls a Pascal/VS routine;

It is recursive;

Program errors must be intercepted
and diagnosed by the Pascal/VS run­
time environment.

Two Assembler macros are available
which are used to generate the prologue
and epilogue of an Assembler routine
with a general Pascal/VS interface.
The macro names are PROLOG and EPILOG
and their forms are ciescri bed in the
figure above.

The PROLOG macro preserves any regis­
ters that are to be modified and allo­
cates storage for the DSA. It al so
includes code to recover from a stack
overflow and program error. The label
of the macro is established as an ENTRY
point; register 2 is established as the
base register for the first 4096 bytes
of code.

Upon entering a routine prior to exe­
cuting the PROLOG code, the following
registers are expected to contain the
indicated data:

• Register 1 - address of the parame­
ter list built by the caller, which

•

•

•

is 144 bytes into the DSA to be
used by the called routine.

Register 12 - address of the Pascal
Communication Work Area CPCWA> .

Register 13 - address of the DSA of
the calling routine.

Register 14 - return address .

• Register 15 - address of the start
of the called routine.

Upon executing the code generated by
the PROLOG macro, the registers are as
follows:

• Register 0 - unchanged

•

•

•
•
•

Register 1 - address of an area of
storage in which parameter lists
may be built to pass to other rou­
tines.

Register 2 - base register for the
first 4096 bytes of code within the
invoked routine.

Registers 3 through 11 - unchanged .

Register 12 - unchanged

Register 13 - address of the local
DSA of the routine just invoked .
The first 144 bytes is the register

Inter Language Communication 105

TNL SN20-444S (31 Decei:nber 1981) to SH20-6162-1

•
•

save area for the invoked routine.
Following the save area is where
the parameters passed in by the
caller are located. Immediately
after the parameters is storage for
local variables followed by a
parameter 1 i st build area.

Register 14 - unchanged.

Register 15 - unpredictable.

established by the prologuQ. The macro
will cause register 2 to be dropped as
a base register unless DROP=NO is spec­
; fi ed.

The contents of the floating point reg­
isters are not saved by the PROLOG mac­
ro. If the floating point registers
are modified, they must be restored to
their original contents prior to
returning from the routine .

The EPILOG macro restores the saved
registers, then branches back to the
calling routine. In order for the epi­
logue to execute properly, register 13
must have the same contents as was

A skeleton of a genera 1- interface
Assembler language routine which may be
called by a Pascal/VS program is given
below.

* The following names have the indicated meaning * 'csectnam' is the name of the csect in which the routine resides * 'procname' is the name of the routine. * 'parmsize' is the length of the passed-in parameters * 'varsize' is the storage required for the local variables * 'lastreg' is the highest register Cup to 12) which will be modified * 'plist' is the length of the largest parameter list required for calls * to other routines from "procname"

* csectnam CSECT

* procname PROLOG LASTREG=lastreg,VARS=varsize+parmsize,PARMS=plist

EPILOG
END

<== insert code here

Figure 81. General interface to an Assembler routine: skeletal code to be
invoked from Pascal/VS

106 Pascal/VS Programmer's Guide

13.1.3 Receiving Parameters From Rou­
tines

Parameters received from a Pascal/VS
routine are mapped within a list in the
manner described in "Parameter
Passing" on page 95. At invocation
register 1 contains the address of this
1 i st.

If the general interface (see "Writing
Assembler Routine with General Inter­
face" on page 105) is used in writing
the Assembler routine, passed-in
parameters start at offset 144 from
register 13 after the prologue has been
executed.

13.1.4 Callin9 Pasc!l/VS Routine from
Assembler Rout1ne

An Assembler language routine that was
invoked from a Pascal program may call
a Pascal procedure provided that:

• the general Pascal/VS interface
was incorporated within the Assem­
bler routine, and

• the Pascal/VS routine to be called
is declared as external.

See Figure 83 on page 108 as
example.

If the Assembler routine was
invoked from a Pascal/VS routine,
the Pascal/VS run time environment
be set up prior to entering
Pascal/VS routine. To do this,

an

not
then
must

the
the

1NL SN20-4445 (31December1981) to SH20-{)162-1

Pascal procedure must be declared with
the MAIN or REENTRANT directive. CSee
Figure 85 on page 110 for an example.)
When such a procedure is invoked for
the first time, a minimum environment
is created. On subsequent calls, this
environment is restored prior to exe­
cuting the procedure. To remove the
environment (free stack space, etc.),
the procedure PSCLHX is provided.

Prior to making the call to a Pascal
procedure from Assembler language,
register 1 must contain the value
assigned to it within the PROLOG code.
Parameters to be passed are stored into
appropriate displacements from regi s­
ter 1 as described in "Parameter
Passing" on page 95.

At the point of call, register 12 must
contain the address of the Pascal Com­
munications Work Area CPCWAL This
will be the case if the Assembler rou­
tine was invoked from a Pascal/VS rou­
tine and has not modified the register.

To perform the call, a V-type constant
address of the routine to be called is
loaded into register 15 and then the
instruction 'BALR 14,15' is executed.

13.1.5 sample Assembler Routine

In Figure 82 on page 108 and Figure 83
on page 108, a sample Assembler routine
is 1 i sted which may be called from a
Pascal/VS program. This routine exe­
cutes an OS TPUT macro to write a line
of text to a user's terminal.

Inter Language Communication 107

TNL SN20-4445 (31December1981). to SH20-6162-1

type
BUFINDEX = 0 .. 80;
BUFFER= packed array[l .. 80] Of CHAR;

(*this routine is in assembly language*)

procedure TPUTC
const BUF : BUFFER;

LEN : BUFINDEXJ;
EXTERNAL;

(*this routine is called from the assembly language routine*>
procedure ERRORC

RETCODE: INTEGER;
const MESSAGE: STRING>;

ENTRY;
begin

WRITELNCOUTPUT, MESSAGE, ' RETURN CODE = ' RETCODEJ
end;

Figure 82. Pascal/VS description of Assembler routine: the Assembler rou­
tine is shown in Figure 83.

CSECT TIOSEG
TPUT PROLOG LASTREG=4,VARS=8 only registers 3 and 4 are modified
*

*

L
L
TPUT
LTR
BZ

ST
LA
ST
L
BALR

TPUTRET EPILOG
* TPUTMSG DC
TPUTTEXT DC

END

3,144(13)
4,148(13)
(3),(4)
15,15
TPUTRET

15,0(1)
3,TPUTMSG
3,4(1)
15,=VCERROR)
14,15

AL2CL 'TPUTTEXT>
C'TPUT ERROR'

load address of 'BUF' parameter
laod value of 'LEN' parameter
write content of 'BUF' to terminal
check return code
if no error then return
build parm list for call to 'ERROR'
assign to 'RETCODE' parameter
load address of message
assign to 'MESSAGE' parameter
load address of 'ERROR' procedure
call 'ERROR'

halfword length of string
message text

Figure 83. Sample Assembler routine: this routine is invoked by a
Pascal/VS routine and, within itself, invokes a Pascal/VS rou­
tine.

108 Pascal/VS Programmer's Guide

(
'"

13.1.6 Calling a Pascal/VS Hain Pro­
gram from-Assembler Routine

A Pascal/VS program may be invoked from
an assembler language routine by load­
ing a V-type address constant of the
main program name into register 15 and
executing a BALR instruction with 14 as
the return register.

Program to be called:

program test;

begin

end.

The convention employed in passing
parameters to a program is dependent on
whether you are running under CMS or
under TSO Cor OS Batch). Both con­
ventions require that register l be set
to the address of. the parameter data.

Assembler instructions to perform the call under CMS:

LA 1, PLIST
L 15, =VCTEST>
BALR 14,15

PUST DS OF
DC CL8'TEST'
DC CL8'token 1'
DC CL8'token 2'

DC CL8'token n'
DC 8X'FF'

Assembler instructions to perform the call under VS2 (and TSQ):

LA 1, PLIST
L 15,=VCTEST>
BALR 14,15

PLIST DS
DC
DC

OF
Xl1'80'
AL3CPARMS>

set first bit of address

PARMS DC
DC

FL2'length' length of parameter string
C'parm string goes here'

Figure 84. Example of calling a Pase-al/VS program from an assembler routine

Inter language Communication 109

TOSQ

SEGMENT SQUARE;
procedure SQUARE<var X

MAIN;
procedure SQUARE;

begin
x := x * x

end; .

CSECT
USING
STM
ST
BALR
USING
LA
LA
L
BALR
LA
L
BALR
L
LM
BR

*,15
14,12,12(13)
13,SAVEAREA+4
2,0
*•2
13,SAVEAREA
1,PLISTl
15,=VCSQUARE>
14,15
1, PLIST2
15,=VCPSCLHX)
14.15
13,SAVEAREA+4
14,12,12(13)
14

PLISTl DC ACX>
x
PLIST2
ZERO
SAVEAREA

DC
DC
DC
OS
EtlD

D'4.0'
AC ZERO>
F'O'
18F

REAL>;

establish addressability
save callers registers
save address of callers save area

establish addressability
set new save area
REG 1 POINTS TO PARAMETER LIST
load address of Pascal procedure
call SQUARE
REG 1 POINTS TO PARAMETER LIST
LOAD ADDRESS OF PASCAL PROCEDURE
call SQUARE
return

PARAMETER LIST

PARAMETER LIST

Figure 85. Example of Assembler as the caller to Pascal/VS

110 Pascal/VS Programmer's Guide

SUM

program FROMPSCL;
procedure SUMCvar I

const J
FORTRAN;

var
I,J :INTEGER;

begin
I : = 0;

do

INTEGER;
INTEGER>;

(*Pascal program heading

(*Define two local variables

C*Set running sum to zero
(*loop through ten values for J := 1 to 10

begin
SUMCI,J);
WRITELNC 'The

end;

(*compute the next sum
current running sum is ',I:O);

end

CSECT
USING
STM
ST
BALR
USING
LA
l
l
l
A
ST
l
LM
BR

*,15
14,12,12(13)
13,SAVEAREA+4
5,0
*•5
13,SAVEAREA
2,0(1)
3,0(2)
4,4(1)
3,0(4)
3,0(2)
13,SAVEAREA+4
14, 12, 12(13)
14

C*FROMPSCL

establish addressability
save callers registers
save address of callers save area

establish addressability
set new save area
get address of I
get I
get address of J
I = I + J
return the new value of I
return

SAVEAREA OS
END

18F

Figure 86. Example of Pascal/VS as the caller to Assembler

*)

Inter language Communication 111

13.2 PASCAL/VS AND FORTRAN

Communication between FORTRAN and
Pascal/VS is accomplished by use of the
MAIN directive CFORTRAN to Pascal/VS>
and the FORTRAN directive (Pascal/VS to
FORTRAN>.

13.2.1 Pasca11vs as the caller to
FORTRAN

program FROMPSCL;
procedure SUMCvar I

canst J
FORTRAN;

var
I,J =INTEGER;

begin
I : = 0;

do

INTEGER;
INTEGER>;

Data may be passed between FORTRAN and
Pascal/VS through the parameter list or
FORTRAN COMMON. If you choose to COM­
MON specify the name of the COMMON
block as a Pascal/VS dC!f variable.

(*Pascal program heading

<*Define two local variables

C*Set running sum to zero
(*loop through ten values

*)

for J == 1 to 10
begin

SUMCI,J>;
WRITELNC 'The

end;

(*compute the next sum
current running sum is ',I:O);

end

SUBROUTINE SUMCI,J>
I = I + J
RETURN
END

C*FROMPSCL

Figure 87. Example of Pascal/VS as the caller to FORTRAN

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by
FORTRAN. This restricts the form of
the parameter list, namely you may not
pass a parameter by value; you may pass
a parameter by var or by canst. If you
choose the latter machan ism, the
FORTRAN subprogram must not modify the
parameter.

112 Pascal/VS Programmer's Guide

Execution errors that occur during the
execution of the FORTRAN program will
be handled by the Pascal runtime sup­
port routines. If you desire to enable
the error handling of FORTRAN you
should invoke "VSCOM#" at the appropri­
ate entry point. Consult the VS
FORTRAN Application Programming Guide
SC26-3985 for details

13.2.2 FORTRAN as th~ Caller to Pas­
cal/VS

TNL SN20-4445 (31December1981) to SH20-6162-1

Pascal/VS procedure to be called from FORTRAN program:

SEGMENT SQUARE;
procedure SQUARECvar X : REAL>;

MAIN;
procedure SQUARE;

begin
x := x * x

end;.

FORTRAN program that invokes Pascal procedure:

AREAL = 4.0
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL
CALL SQUARECAREAL)
PRINT 1, AREAL

1 FORMAT CFl0.4)
C TERMINATE PASCAL EHVIRONMEHT

CALL PSCLHXCO)
STOP
END

Figure 88. Example of FORTRAN as the caller to Pascal/VS

Pascal/VS permits a FORTRAH program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc­
tive.

The first invocation of any procedure
with a MAIH directive will cause Pascal
to establish the appropriate environ­
ment for its execution. Subsequent

calls will use the same environment
that was set up on the first call.

It is your responsibility to clean up
the Pascal environment; this is done by
invoking the procedure "PSCLHX".

If Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 113

TNL SN20-4445 (31December1981) to SH20-6162-1

13.3 PASCAL/VS AND COBOL

Communication between COBOL and
Pascal/VS is accomplished by use of the

13.3.l Pascal/VS as the Caller to
COBOL

MAIN directive <COBOL to Pascal/VS) and
the FORTRAN directive <Pascal/VS to
COBOL).

Pascal program that calls a COBOL subprogram:

program FROMPSCL;
procedure SUMXCvar I : INTEGER;

const J : INTEGER);
FORTRAN;

var
I,J :INTEGER;

begin
I : = 0;

do

(*Pascal program heading

<*Define two local variables

(*Set running sum to zero
(*loop through ten values for J := 1 to 10

begin
SUMXCI,J);
WRITELNC 'The

end;

(*compute the next sum
current running sum is ',I:l);

end

COBOL subprogram:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
LINKAGE SECTION.

C*FROMPSCL

77 I PIC IS 999999999 USAGE IS COMPUTATIONAL.
77 J PIC IS 999999999 USAGE IS COMPUTATIONAL.
PROCEDURE DIVISION USING I J.

ADD J TO I.
GOBACK.

Figure 89. Example of Pascal/VS as the caller to COBOL

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by FOR­
TRAN which is also equivalent to COBOL.
This restricts the form of the parame­
ter list, namely you may not pass a
parameter by value; you may pass a
parameter by var or by const. If you
choose the latter machanism, the COBOL
subprogram must not modify the parame­
ter.

Execution errors that occur during the
execution of the COBOL program will be
handled by the Pascal runtime support

114 Pascal/VS Programmer's Guide

routines. Pascal will not issue a call
to ILBOSTPO Cwhi ch sets up the COBOL
error recovery). You may call this
routine if you would like the "STOP
RUN" statement of COBOL to treat the
Pascal calling procedure as a main
entry point of a COBOL program. Con­
sult the OS/VS COBOL Compiler and
Library Programmer's Guide, SC28-6483
for details.

A COBOL program which is communicating
with Pascal/VS must not use the dynamic
loading feature.

(

13.3.2 COBOL as the Caller to
Pascal/VS

TNL SN204445 (31December1981) to SH20-6162-1

Pascal procedure that is to be called from COBOL:

SEGMENT SQUARE;
procedure SQUARECvar X : REAL>;

MAIN;
procedure SQUARE;

begin
x := x * x

end; .

COBOL program which calls a Pascal procedure:

IDENTIFICATION DIVISION.
PROGRAM-ID. TOSQ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 AREAL USAGE IS COMPUTATIONAL-2.
77 AZERO USAGE IS COMPUTATIONAL PIC IS 999999999.
PROCEDURE DIVISION.

MOVE 2 TO AREAL.
CALL "SQUARE" USING AREAL.
DISPLAY AREAL.
MOVE 0 TO AZERO.
CALL "PSCLHX" USING AZERO.
MOVE 0 TO RETURN-CODE.
STOP RUN.

Figure 90. Example of COBOL as the caller to Pascal/VS

Pascal/VS permits a COBOL program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc­
tive.

The first invocation of any procedure
with a MAIN directive will cause Pascal
to establish the appropriate environ­
ment for its execution. Subsequent

calls wi 11 use the same environment
that was created in the first call.

It is your responsibility to clean up
the Pascal environment, this is done by
invoking the procedure "PSCLHX". If
Pascal is not the main program, then
Pascal will not attempt to handle any
errors during execution.

Inter Language Communication 115

TNL SN20-4445 (31 December 1981) to SH20-6162-1

13.4 PASCAL/VS AND PL/I

Communication between PL/I and
Pascal/VS is accomplished by use of the
MAIN directive CPL/I to Pascal/VS) and
the FORTRAN directive (Pascal/VS to

13.4.1 Pascal/VS as the Caller to
PL/I

PL/IL In addition. you may use the
REENTRANT directive instead of the MAIN
directive in order to develop a REEN­
TRANT call to Pascal.

Pascal program which calls a PL/I procedure:

program FROMPSCL;
procedure SUMCvar I

canst J
FORTRAN;

var

INTEGER;
INTEGER);

(*Pascal program heading *)

I,J =INTEGER; (*Define two local variables *>
begin

I := O; C*Set running sum to zero *)
for J :: 1 to 10 do (*loop through ten values *)

begin
SUMCI,J); (*compute the next sum *)
WRITELNC'The current running sum is ',I:Q);

end;
end C*FROMPSCL

PL/I procedure that is invoked from Pascal:

SUM: PROC CI,J) OPTIONSCFORTRAN>;
DCL CI,J) FIXED BINARYC31,0);
I = I + J;
RETURN;
END;

Figure 91. Example of Pascal/VS as the caller to PL/I

The FORTRAN directive instructs
Pascal/VS to utilize exactly the same
calling conventions employed by FOR­
TRAN. PL/I will employ FORTRAN calling
conventions if "FORTRAN" is specified
in the OPTIONS clause. Consult the
PL/I Programmer's Guide,
SC33-0037CCMS> and SC33-0006COS) for
details.

116 Pascal/VS Programmer's Guide

The FORTRAN directive restricts the
form of the parameter list. namely you
may not pass a parameter by value; you
may pass a parameter by either var or
canst. If you choose to latter mech­
anism, the PL/l procedure must not
modify the parameter.

(

13.4.2 PL/I as the Caller to
Pascal/VS

Pascal procedure which is called from PL/I:

SEGMENT SQUARE;
procedure SQUARECvar X : REAL>;

MAIN;
procedure SQUARE;

begin
x := x * x

end; •

TNL SN204445 (31December1981) to SH20~162-1

PL/I program which calls a Pascal procedure:

TOSQ: PROC OPTIONSCMAIN>;
DCL SQUARE ENTRY EXTERNAL;
DCL PSCLHX ENTRYCFIXED BINARYC31,0)) EXTERNAL;
DCL ZERO FIXED BINARYC31,0);
AREAL = 4.0;
CALL SQUARECAREAL>;
PUT LIS TC A REAU;
CALL SQUARECAREAL>;
PUT LISTCAREAL);
CALL SQUARECAREAL>;
PUT LISTCAREAL>;
CALL SQUARECAREAL>;
PUT LISTCAREAL>;
ZERO = O;
CALL PSCLHXCZERO>;
END;

Figure 92. Example of PL/I as the caller to Pascal/VS

Inter Language Communication 117

TNL SN20-4445 (31December1981) to SH20-6162·1

Pascal procedure which is called from a reentrant PL/I program:

SEGMENT SQUARE;
procedure SQUARECvar E : INTEGER; var x : REAL);

REENTRANT;
procedure SQUARE;

begin
x := x * x

end; .

Reentrant PL/I program which invokes a Pascal procedure:

TOSQ: PROC OPTIONSCMAIN REENTRANT);
DCL SQUARE ENTRY EXTERNAL;
DCL PSCLHX ENTRYCFIXED BINARYC31,0)) EXTERNAL;
DCL SAVE FIXED BINARYC31,0l;
AREAL = 4.0;
SAVE = O;
CALL SQUARECSAVE,AREALJ;
PUT LISTCAREALl;
CALL SQUARECSAVE,AREAL);
PUT LISTCAREAL);
CALL SQUARECSAVE,AREAL);
PUT LISTCAREAL>;
CALL SQUARECSAVE,AREAL);
PUT LISTCAREAL);
CALL PSCLHXCSAVEJ;
END;

Figure 93. Example of PL/I as the caller to Pascal/VS: Use of the REEN­
TRANT directive

Pascal/VS permits a PL/I program to
call a Pascal procedure as a
subprogram. To do this you specify the
Pascal procedure with the MAIN direc­
tive.

The first invocation of any procedure
that has a MAIN directive associated
with it will cause Pascal to establish
the appropriate environment for its
execution. Subsequent calls will use
the same environment that was created
on the first call.

A call to PSCLHX will dispose of the
Pascal environment and release all mem­
ory that it utilizes.

The Pascal/VS run time support wi 11
not attempt to handle any errors during
execution, unless the main program is
in Pascal.

The REENTRANT directive may be used in
place of the MAIN directive if the pro­
gram must be reentrant. In this case
you must assist Pascal/VS in keeping
track of the location of the Pascal/VS
execution environment. The first
parameter to a REENTRANT procedure must
be an integer passed by var. The first
call to the procedure must pass as its
first parameter, a FIXED BINC31,0) var­
iable which has been set to the value
zero. Upon return from the first call,

118 Pascal/VS Programmer's Guide

this variable will contain an address
which refers to the newly created Pas­
cal/VS environment. This variable
should be passed unaltered to subse­
quent calls so that the Pascal/VS
environment may be reentered.

To terminate the Pascal/VS environment
that was set up by the REENTRANT proce­
dure, the "PSCLHX" should be called
with the variable that contains the
address. See Figure 93 for an example.

13.5 DATA TYPES COMPARISON

Every language has numerous data types
that are suited for the applications
for which the language was intended.
When passing data between programs
written in different languages you must
be aware which data types are the same
and where there is no equivalent repre­
sentation.

Some data types in other languages have
no direct equivalent in Pascal;
however, you can often create new user
data types in Pascal that will simulate
some of the data types found in other
languages. For example, you could
define a record type that is identical
to FORTRAN' s COMPLEX type. -

Figure 94 compares Pascal data types
with the equivalent in FORTRAN, COBOL
and PL/I.

Pascal/VS makes no attempt to remap any
storage when an inter-language call is

TNL SN204445 (31December1981) to SH20-6162-1

made. This means that beause FORTRAN
stores its arrays in column-major order
and Pascal stores its arrays in
row-major order, a call between FORTRAN
and Pascal/VS procedures appears to
transpose the array.

Data Type Equivalences Between Different Langauges

Pascal/VS

CHAR

BOOLEAN

INTEGER

packed
-32768 .. 32767

packed
0 •• 65536

packed -128 .. 127

packed o •• 255

REAL

SHORTREAL

packed
array[!. .nl of

CHAR

STRINGCm)

set cf o •• n

OJ id

array

record

space

FORTRAN

CHARACTER*!

LOGICAUH

INTEGERlE4

INTEGER*2

na

na

na

REALlE8

REALlE4

CHARACTER*n

na

na

na

dimensioned
variable

na

na

Figure 94. Data Type Comparisons

COBOL PL/I

PIC x CHAR

na FIXED BINARY(1, 0)

PIC S999999999 FIXED BINARYC31,0)
USAGE IS COMP

PIC S9999 USAGE FIXED BINARYC15, 0)
IS COMPUTATIONAL

na na

na FIXED BINARYC7, 0 >

na na

COMPUTATIONAL-2 REAL FLOAT DECC16 >

COMPUTATIONAL-! REAL FLOAT DECC6>

PIC XCn) or CHARCn)
PIC X OCCURS n

TIMES

na CHARCm> VARYING

na BITCn+l>

na POINTER

OCCURS dimensioned
variable

record structure

na AREA

Inter language Communication 119

•

14.0 RUNTIME ENVIRONMENT OVERVIEW

14.1 PROGRAM INITIALIZATION

Upon invoking a Pascal/VS program, the
routine which is responsible for estab-
1 i shi ng the Pascal/VS execution ti me
environment gains control and performs
the following functions:

1. Memory is obtained in which dynamic
storage areas CDSA) are allocated
and deallocated.

2.

4. The main program is called.

5. Upon return from the main program
any open files are closed.

6. Acquired memory is freed.

7. Control is returned to the system.

14.2 THE MAIN PROGRAM

3.

The Pascal Communication Work Area
CPCWA) is created and initialized.

An environment is set up to inter­
cept program interrupts (fixed
point overflow, divide by zero,
etc.)

The main program is called
nary procedure from the
setup routine CPASCALVS>.
point name of the main
AMPXBEGH.

as an ordi­
environment

The entry
program is

14.3 EXECUTION SUPPORT ROUTINES

Procedure name

AMPXBCLK
AMPXCHKS
AMPXCLCK
AMPXCRTE
AMPXDATE
AMPXDATI
AMPXDBCB
AMPXECLK
AMPXGOTO
AMPXGTOK
AMPXG12
AMPXG13
AMPXHALT
AMPXIHIT
AMPXMAIH
AMPXMOVE
AMPXMUS
AMPXHAME
AMPXPAD
AMPXPARM
AMPXRETC
AMPXSETV
AMPXSPAR
AMPXTERM
AMPXTOK
AMPXTRAC
AMPZABHD
AMPZCVD
CMS
PASCAL VS
PSCLHX

Execution Support Routines

Action Performed

Initializes the execution clock
Checks a set for membership
Interogate the execution clock
Initialize the PCWA
DATETIME procedure
System date and time
Obtains a procedures DBCB pointer
Ends the the execution clock
Handles goto out of block
Obtains a token from user's execution parameters
Returns the contents of register 12
Returns the contents of register 13
HALT procedure
Initializes prior to execution of a Pascal program
Interface for calling Pascal for other languages
Memory to memory move
Adds elements to a ~et
Obtains a procedures name
Memory fill memory with blanks
PARMS function
RETCODE procedure
Memory fill of with a value
lntialize for PARMS function
Termination after execution of a Pascal program
TOKEN procedure
TRACE procedure
Abnormal termination routine
Convert to decimal
CMS procedure
Main entry point for a Pascal/VS main program
Terminates execution for interlanguage calls

These routines provide mi scel lanaous
functions such as program initializa-

ti on and low level routines such as
fast memory move.

Runtime Environment Overview 121

J4.4 INPUT/OUTPUT ROUTINES

Procedure name

AMPXCLOS
AMPXCOLS
AMPXGET
AMPXGETR
AMPXOPEN
AMPXOPNl
AMPXOPN2
AMPXPARS
AMPXPCBC
M1PXPDS
AMPXPUT
AMPXRCHR
AMPXRINT
AMPXRL IN
AMPXRR
AMPXRRDY
AMPXRREC
AMPXRSTR
AMPXRTXT
AMPXSEEK
AMPXSTAT
AMPXTIO
AMPXWB
AMPXWCHR
AMPXWCHS
AMPXWINT
AMPXWLIN
AMPXWR
AMPXWRDY
AMPXWREC
AMPXWSTR
AMPXWTXT
AMPYCLOS
AMPYDFLT
AMPYGET
AMPYOPEN
AMPYPAGE
AMPYPDS
AMPYPUT
AMPYSEEK
AMPZDAMR
AMPZDAMW
AMPZDCBC
AMPZDCBO
AMPZFIND
AMPZGET
AMPZPUT
AMPZPUTX
AMP ZS AMR
AMPZSAMW
AMP ZS TOW
AMPZTGET
AMPZTPUT

Internal Input/Output Routines

Action Performed

CLOSE procedure
COLS function
GET procedure CTEXT files)
GET procedure
RESET, REWRITE or UPDATE procedures
Initializes a PCB prior to opening
Sets a PCB after opening
Analyze the optional string on RESET or REWRITE
Closes a file (PCB)
PDS support routines CPDSIN and PDSOUT>
PUT procedure
Reads into a CHAR
Reads into an INTEGER
Reads to end of line CTEXT file)
Reads a REAL value
Prepares a TEXT file for input
Reads one record (non TEXT files)
Reads into a STRING
Reads into an array of CHAR
SEEK procedure
Obtains the status of a file
Terminate I/O processing
Writes a BOOLEAN value
Moves data to an I/O output buffer
Writes a CHAR to a TEXT file
Writes an INTEGER to a TEXT file
Writes an end-of-line to a TEXT file
Writes a REAL value
Prepares a TEXT file for output
Writes one record (non TEXT files)
Writes a string to a TEXT file
Writes an array of CHAR to a TEXT file
System dependent QSAM close
Applies System dependent defaults to a file
System dependent get procedure
System dependent QSAM open
PAGE procedure
System dependent PDS interface
System dependent put procedure
System dependent seek procedure
Issues a READ for a BDAM data set
BDAM write procedure
Close on an OS DCB
Open on an OS DCB
Issues OS FIND
Issues a QSAM GET
Issues a QSAM PUT
Issues a QSAM PUTX
Issues a READ for a BSAM data set
BSAM write procedure
Issues·os STOW
Issues a TGET COS) or RDTERM CCMSJ
Issues a TPUT COS) or WRTERM CCMS>

The I/O operations Cwhi ch appear as
calls to predefined procedures in
Pascal/VS) are implemented as. calls to

internal procedures ~ithin the runtime
environment.

122 Pascal/VS Programmer's Guide

..

14.5 ERROR HANDLIN~

Error Handling

Procedure name Action Performed

AMPXCHKR Intercepts execution time checking errors
AMPXDIAG Intercepts program exceptions
AMPXERR General execution time error handler
AMPXIOER l/O error intercept routine
ON ERROR Default ON ERROR procedure

When the runtime environment detects an
error condition, it calls a routine to
handle the error. There are several
different routines, one routine for
each of class of error (e.g. I/O error,
program exception etc) . The routine

AMPXERR is the central routine, it is
always called from the other routines:
it then calls ONERROR, the user pro­
vided error handler, and then completes
the error handling.

14.6 CONVERSION ROUTINES

Conversion Routines

Procedure name Action Performed

AMP TT OR Converts a REAL CEBCDIC) to REAL
AMPXBTOS BOOLEAN to string conversion
AMPXCTOS Converts a CHAR to a string
AMPXGTOS Converts a string to a string
AMPXITOS Converts an INTEGER to a string
AMPXOTOS Converts an offset in a procedure to a statement number
AMPXPACK PACK procedure
AMPXRTOS Conversion for a REAL to a STRING
AMPXSTOC Conversion for a STRING to a CHAR
AMPXSTOG Conversion for a STRING to a STRING
AMP XS TOI Conversion for a STRING to an INTEGER
AMPXSTOR Converts a REAL CEBCDIC> to REAL
AMPXSTOT Conversion for a STRING to an array of CHAR
AMPXTTOS Appends an array of CHAR to a string
AMPXUCAS Lower case to upper case conversion
AMPXUNPK UNPACK procedure
ITO HS Integer to hexadecimal string conversion

There are several places where
Pascal/VS must perform data conver­
sions. They take place when you are

doing I/O on TEXT files and when you
use READSTR and WRITESTR.

Runtime Environment Overview 123

14.7 MATHEMATICAL ROUTINES

Mathematical Routines

Procedure name Action Performed

AMPXATAN ARCTAN function
AMPXCOS COS function
AMPXEXP EXP function
AMPXLN LN function
AMPXRAND RANDOM procedure
AMPXSIN SIN function
AMPXSQRT SQRT

The predefined functions are provided
as Pascal/VS functions. The Pascal/VS
compiler changes the user provided name

14.8 STRING ROUTINES

String

Procedure name Action Performed

AMPX$COM COMPRESS function

(e.g. SIN> to an internal name (e.g.
AMPXSIN>.

Routines

<long strings)
AMPX$DEL DELETE function Clong strings)
AMPX$LTR LTRIM procedure Clong strings)
AMPX$SUB SUBSTR function Clong strings)
AMPX$TRI TRIM function Clong strings)
AMPXCAT Concatenates 2 to 9 strings
AMPXCOMP COMPRESS function (short strings)
AMPXDELE DELETE function (short strings)
AMPXINDX INDEX procedure
AMPXLTRI LTRIM procedure (short strings)
AMPXSUBS SUBSTR function (short strings)
AMPXTRIM TRIM function (short
LPAD LPAD procedure
RPAD RPAD procedure

The predefined functions and proce­
dures are provided as Pascal/VS func­
tions and procedures. The Pascal/VS
compiler changes the user provided name
(e.g. SUBSTR> to an internal name (e.g.
AMPXSUBS). Several routines are pro­
vided in two forms: long and short.
The short form is always used if possi-

124 Pascal/VS Programmer's Guide

strings)

ble. In order to use the short form
the Pascal/VS compiler must determine
that the resulting string will be less
than 1000 bytes long. If the size
can't be limited by compiler analysis,
the compiler uses the long form which
passes the results through the heap.

14.9 MEMORY MANAGEMENT ROUTINES

Memory Management Routines

Procedure name Action Performed

AMPXALOC Basic storage allocator
AMPXDISP DISPOSE procedure
AMPXFREE Basic storage de-allocator
AMPXIDSP Dispose for the l/O routines
AMPXINEW HeL-1 for the !10 routines
AMPXMARK MARK procedure
AMPXHEW HEL-1 procedure
AMPXRLSE REL EASE procedure
AMPXTMEM Termination processing for memory management

The HEW procedure generates a call to
the internal procedure AMPXHEL.J. This
procedure al locates storage within a
heap. If a heap has not yet been cre­
ated, HEW will obtain memory from the
operating system to create a heap.

The DISPOSE procedure generates a call
to the procedure AMPXDISP. This proce­
dure deallocates the heap storage
acquired by a preceding call to
AMPXNEW.

The MARK procedure generates a call to
the procedure AMPXMARK. This procedure
creates a new heap from which subse-

quent calls to AMPXHEW will obtain
storage.

The RELEASE procedure generates a call
to the procedure AMPXRLSE. This proce­
dure frees a heap that was previously
created via the AMPXMARK procedure.
Subsequent calls to AMPXNEW will obtain
storage from the ~eap which was active
prior to the call of AMPXMARK.

The I/O routines have access to a sepa­
rate heap is controlled with the rou­
tines AMPXHIEW and AMPXIDSP. Thus, I/O
buffers and file control blocks are in
a di st i net area from the users area.

Runtime Environment Overview 125

Release 2 .1 of Pascal/VS has several
differences from 'standard' Pascal.
Most of the deviations are in the form
of extensions to Pascal in those areas
where Pascal does not have suitable
facilities.

15.1 PASCAL/VS RESTRICTIONS

Pascal/VS contains the following
restrictions that are not in standard
Pascal.

Conformant array parameters
The conformant array mechanism for
passing array variables to rou­
tines is not supported.

Note: In Release 2.0, procedures which
are passed as parameters were
restricted to the outer most nesting
level. In Release 2.1, this restric­
tion was removed.

15.2 MODIFIED FEATURES

Pascal/VS has modified the meaning of a
negative length field qualifier on an
operand within the WRITE statement.

15.3 NEW FEATURES

Pascal/VS provides a number of exten­
sions to Pascal.

•

•

•

•

•

•

Separately compi !able modules are
supported with the SEGMENT defi -
nition.

'internal static' data is sup­
ported by means of the static dec­
larations.

'external static' data is sup­
ported by means of the def and ref
declarations.

Static and external data may be
initialized at compile time by
means of the value declaration.

Constant expressions are permitted
wherever a constant is permitted
except as the lower bound of a sub­
range type definition.

The keyword "range" may be prefixed
to a subrange type definition to
permit the lower value to be a con­
stant expression.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

TNL SN20-4445 (31December1981) to SH20.{i162-1

15.0 COMPARISON TO PASCAL

A varying length character string
is provided. It is called STRING.
The maximum length of a STRING is
32767 characters.

The STRING operators and functions
are concatenate, LENGTH, STR,
SUBSTR, DELETE, TRIM, L TRIM, COM­
PRESS and INDEX.

A new predefined type, STRINGPTR,
has been added that permits you to
allocate strings with the NEW pro­
cedure whose maximum size is not
defined until the invocation of
NEW.

A new parameter passing mechanism
is provided that allows strings to
be passed into a procedure or func­
tion without requiring you to spec­
ify the maximum size of the string
on the formal parameter.

The MAXLENGTH function returns the
maximum length that a string vari­
able can assume.

Calls to FORTRAN subroutines and
functions are provided for.

The MAIN directive permits you to
define a procedure that may be
invoked from a non Pascal environ­
ment. A procedure that uses this
directive is not reentrant.

The REENTRANT directive permits
you to define a procedure that may
be invoked from a non Pascal envi­
ronment. A procedure that uses
this directive is reentrant.

Files may be explicitly closed by
means of the CLOSE procedure.

The DDNAME to be associated with a
file may be determined at execution
time with the optional string
parameter on the procedures:
RESET, REWRITE, UPDATE, TERMIN,
TERMOUT, PDSIN and PDSOUT.

The parameters of the text file
READ procedure may be
length-qualified.

Files may be opened for updating
with the UPDATE procedure.

Input files may be opened as "IN­
TERACTIVE" so that I/O may be done
conveniently from a terminal.

Files may be opened for terminal
input CTERMIN) and terminal output
CTERMOUT) so that I/O may take
place directly to the user's termi­
nal without going through the
DDname interface.

Comparison to Pascal 127

TNL SN20-4445 (31December1981) to SH20-6162-1

•

•

•

•
•

Files may be accessed based on rel­
ative record number (random
access).

The PDSIH procedure opens a parti­
tioned dataset Cor MACLIB) for
input. The PDSOUT procedure opens
a partitioned dataset Cor MACLIB>
for output. A string parameter is
required to set the member name.

The space structure is provided for
processing packed data.

Records may be packed to the byte .

The tagfi el.cl in the variant part of
a record may be anywhere within the
fixed part of the record.

• Fields of a record may be unnamed.

•

•

•

•

•

•

Tag specifications on record vari­
ants may be ranges Cx .. y).

Integers may be declared to occupy
bytes and halfwords in addition to
full 1.Jords, as a result of the
packed qualifier.

Sets permit the operations of set
complement and set exclusive
union.

A function may return any type of
data except a file.

The operators 'I','&','&&' and
'-' may be applied to data of type
integer. When applied to integers,
the operators act on a bit by bit
basis. Shift operations on data
are also provided.

Integer constants may be expressed
in hexadecimal digits.

• Real constants (floating point)
may be expressed in hexadecimal
di glts.

128 Pascal/VS Programmer's Guide

•

•

•

•

•

•

•

•

•

•

•

•

string constants may be expressed
in hexadecimal digits.

The %INCLUDE faci 1 i ty provides a
means to include source code from a
library.

A parameter passing mechanism
Cconst> has been defined which
guarantees that the actual parame­
ter is not modified yet does not
require the copy overhead'of a pass
by value mechanism.

leave, continue and return are new
statements that permit a branching
capability without using a goto.

Labels may be either a numeric val­
ue or an identifier.

case statements
notation on the
men ts.

may have a range
component state-

An otherwise clause is provided for
the case statement.

The variant labels in records may
be written with a range notation.

The assert statement permits run­
time checks to be compiled into the
program.

The following system interface
procedures are supported: HALT,
CLOCK, and DATETIME .

Constants may be of a structured
type (namely arrays and records>.

To control the compiler listing,
the following listing directives
are supported: %PAGE, %SKIP, and
%TITLE.

16.1 SYSTEM DESCRIPTION

The Pascal/VS compiler runs on the IBM
System/370 to produce object code for
the same system. System/370 includes
all models of the 370, 303x, and 43xx
computers providing one of the follow­
ing operating environments:

•
•

VM/CMS

OS/VS2 TSO

• OS/VS2 Batch

16.2 MEMORY REQUIREMENTS

Under CMS, Pascal/VS requires a virtual
machine of at least 768K to compile a
program. Execution of a compiled pro­
gram can be performed in a 256K CMS
machine.

The compiler requires a minimum region
size of 512K under VS2 CMVS). A com­
piled and link-edited program can exe­
cute in a 128K region.

The compiler is reentrant and may be
loaded in a shared area in MVS or
mapped to a shared segment in CMS.

16.3 IMPLEMENTATION RESTRICTIONS AND
DEPENDENCIES

Boolean expressions
Pascal/VS "short circuits" boo­
lean expressions involving the
and and or operators. For exam­
ple, given that A and B are boo­
lean expressions and X is a
boolean variable, the evaluation
of

X := A or B or c
would be performed as

if A then
X :: TRUE

else
if B then

X :: TRUE
else

x :: c

The evaluation of

X := A and B and c

TNL SN20-4445 (31December1981) to SH20-6162-1

16.0 IMPLEMENTATION SPECIFICATIONS

would be performed as

if -.A then
X :: FALSE

else
if -.B then

X :: FALSE
else

x :: c

See the section entitled "Boole­
an Expressions" in the Pascal/VS
Languaqe Reference Manual for
more details.

Floating-point
Some commonly required charac­
teristics of System/370 float­
ing-point arithmetic are shown
in Figure 95 on page 130.

Identifiers
Pascal/VS permits identifiers of
up to 16 characters in length.
If the compiler encounters a lon­
ger name, it will ignore that
portion of the name longer than
16 characters.

Names of external variables and
external routines must be unique
within the first 8 characters.
Such names may not contain an
underscore' 'within the first 8
characters.

Integers
The largest integer that may be
represented is 2147483647. 16

This is the value of the prede­
fined constant MAXINT.

The most negative integer that
may be represented is
-2147483648. This is the value
of the predefined constant MIN­
INT.

Routine nesting
Routines may be nested up to
eight levels deep.

Routines passed as parameters
The following standard routines
may not be passed as parameters
to another routine:

ABS, CHR, CLOSE, DISPOSE, EOF,
EOLN, FLOAT, GET, HBOUND, HIGH­
EST, LBOUND, LENGTH, LOWEST,
MARK, MAX, NEW, ODD, ORD, PACK,
PAGE, PDSIN, PDSOUT, PRED, PUT,
READ, READLN, READSTR, RELEASE,
RESET, REWRITE, ROUND, SIZEOF,
SQR, STR, SUCC, TERMIN, TERMOUT,
TRUNC, UNPACK, UPDATE, WRITE,
WRITELN, WRITESTR

16 This is the highest signed value that may be represented in a 32 bit word.

Implementation Specifications 129

TNL SN20-444S (31December1981) to SH20-6162-1

Floating-point Characteristics

Characteristic Decimal approximation Exact Representationl

Maxreal 2 7.23700557733226E+75 '7FFFFFFFFFFFFFFF'XR

Minreal 3 5.39760534693403E-79 '0010000000000000'XR

Epsilon 4 1.38777878078145E-17 '3310000000000000'XR

l The syntax ' ••• 'XR is the way hexadecimal floating-point numbers are
represented in Pascal/VS. See the section entitled "Constants" in the
Pascal/VS Language Reference Manual.

2 Max real is the largest finite floating-point number that m~y be
represented.

3 Minreal is the smallest positive fl ni te floating-point number that
may be represented.

4 Epsilon is the smallest positive floating-point number such that the
following condition holds:

1.0+epsilon > 1. 0

This value is often needed in numerical computations involving con-
verging series.

Figure 95. Characteristics of System/370 floating point arithmetic

Sets

A FORTRAN function or subroutine
may not be passed as a parameter
to a Pascal/VS routine.

Given a set type of the form

set of a .. b

where "a" and "b" express the
lower and upper bounds of the
base scalar type, the following
conditions must hold:

130 Pascal/VS Programmer's Guide

•
•

ORDCa) >= 0

ORDCb) <= 255

Size limitations
The size of a single procedure or
function must not exceed 8192
bytes of generated code. 8192
bytes represent approximately
400 Pascal statements, depending
on the complexity of the state­
ments. The compller will
generate a diagnostic if this
limit is reached.

17.0 PASCAL/VS MESSAGES

17.1 PASCAL/VS COMPILER MESSAGES

No. Message and Explanation

0 Hot yet implemented

The indicated construct is not currently implemented.

1 Identifier expected

2 source continues after end of program

The compiler detected text after the logical end of the program.
This error ls often caused by mismatched begin1end brackets.

3 "EtlD" expected

4 Character in quoted string is not displayable

The indicated character within a quoted string does not correspond
to a valid displayable EBCDIC character. If the string is printed
on a device, the character may be interpreted as a control character
that could cause unpredictable results.

If a control character is intended, then the string should be
represented in hexadecimal form.

5 Symbol invalid or out of context

The indicated symbol is not part of the syntax of the construct
being scanned. The symbol should be deleted or changed.

6 EOF before logical end of program

The compiler came to the end of the source program before the log-
ical end of the program was detected. This error is often caused by
mismatched begin1end brackets.

7 "BEGIN" expected

8 semicolon ' . ' expected ,

11 Ambiguous procedure/function specification

The routine directive EXTERNAL or FORTRAN was applied to the indi-
cated routine declaration that was also declared as an ENTRY
routine. Such a combination is contradictory.

12 Multiply declared label

The indicated label has been previously declared within the sur-
rounding routine.

13 Label identifier expected

Within the indicated label defi n i ti on, a label identifier is
missing. A label identifier is either an alphanumeric identifier or
an integer constant within the range 0 to 9999.

(··.•

'

Pascal/VS Messages 131

14 The characters • $. and • ' are not valid in standard Pascal -
This is a warning message that can occur when the LANGLVLCSTAHDARD)
compile option is specified. An identifier is being declared which
has a name containing characters which are not recognizable in
"standard" Pascal.

15 '=' expected

16 Identifier required to be a type in tag field specification

Within a record definition, a tag field is being declared, but the
indicated identifier which is supposed to represen.t the tag field's
type was not declared as a type.

17 ' : ' expected

18 Parameters on forwuded routine not necessary

A routine declaration 1·1hich has been previously declared as FORWARD
or EXTERNAL must not specify any formal parameters. Any formal
parameters are assumed to have been specified previously on the
associated declaration that contained the FORWARD/EXTERNAL di rec-
tive.

,.,

19 Files passed by value not permitted

The indicated formal value parameter is of a file type. A file var-
iable may be passed to a routine only by the var or const mechanism;
never by value.

20 string l Heral constant is too long: exceeds 3190

Because of an i ementation restriction, a string constant may not
exceed 3190 charac rs in length.

·-------
21 .) . exrH~cted

22 Forwarded routine class conflict

A procedure declaration was previously declared as a forwarded func-
ti on; or a function declaration was previously declared as a for-
wardPd procedure.

-
23 Routine nesting exceeds m<1ximum

The indicated procedure or function declaration exceeds the maximum
allowed nesting level for routines. Routines may be nested to a
maximum depth of 8.

24 Too many nested WITH statements or RECORD definitions

This error occurs when to many lexical scopes are active. This can
occur is multiply nested with statements and record definitions.

25 Type not needed on forwarded function

A fund: ion declaration which has been previously FORWARDed must not
specify a return type. The type specification is assumed to have
been specified previously on the associated declaration that con-
tained the FORLJARD directive.

j--..

26 Missing type specification for function

The indicated function header did not specify a return type.
"'""

'" ___ ,

132 Pascal/VS Programmer's Guide

27 PROCEDURE/FUNCTION previously FORWARDed

The indicated routine declaration that contains the FORWARD or
EXTERNAL directive was already previously forwarded.

28 Additional errors in this line were not diagnosed

The indicated construct contained more errors, but were not diag-
nosed due to space considerations.

29 Illegal hexadecimal or binary digit

An invalid hexadecimal digit was detected within a hexadecimal con-
st ant specification of the form

' ... 'x. ' ... 'xc, or ' ... 'XR;

or, an invalid binary digit was detected within a binary constant
specification of the form

' ... 'B.

The following characters are valid hexadecimal digits:

O, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F,
a, b, c, d, e, f

The following characters are valid binary digits:

0, 1

30 Unidentifiable character

The indicated character is not recognized as a valid token.

31 Digit expected

A decimal digit was expected but missing at the indicated location.

32 Real constant has too many digits

The indicated floating point constant contains more digits than the
compiler allows for in scanning. If this error should occur, please
notify the compiler maintenance group at IBM.

I--·
33 Integer constant too large

The indicated integer constant is not within the range -2147483647
to 2147483647.

34 End of string not seen

A string constant may not cross a line boundary. This error is
often the result of mismatched quotes.

If a string constant is too large to fit on one line, it must be
broken up into multiple strings and concatenated with the 11 opera-
tor. (Concatenation of string constants is performed at compile
time).

35 Hexadecimal integer constant may not exceed 8 digits

The indicated hexadecimal constant exceeds the maximum allowed num-
ber of di glts.

36 Char string is too large

The indicated string constant exceeds 255 characters, which is the
implementation limit. This may happen when multiple string con-
stants are concatenated.

Pascal/VS Messages 133

37 standard routines not permitted as parameters

Standard routines which generate in line code may not be passed as
parameters to other routines. The following is a list of such rou­
tines:

ABS, CHR, CLOSE, DISPOSE, EOF, EOLN, FLOAT, GET, HBOUND,
HIGHEST, INTERACTIVE, LBOUND, LENGTH, LOWEST, MARK, MAX, NEW,
ODD, ORD, PACK, PAGE, PRED, PUT, READ, READLN, RELEASE, RESET,
REWRITE, ROUND, SIZEOF, SQR, STR, SUCC, TRUNC, UNPACK, WRITE,
WRITELN,
PDSIH, PDSOUT, READSTR, TERMIN, TERMOUT, UPDATE, WRITESTR

38 variable must be of type file

The indicated variable is required to be of a file type.

39 Must be of type TEXT

The indicated variable is required to have been declared with the
predefined type TEXT.

40 Required parameters are missing

The indicated READ or WRITE statement contains no parameter from
which to reference data.

41 comma ',' exp~cted

42 user defined scalars not permitted

Expressions which are of a user defined enumerated type may not be
directly read from or written to a text file.

43 Operand of READ/WRITE not of a valid type

Any parameter passed to the procedures READ or WRITE (text file
case) must be compatible with one of the following types:

- INTEGER
REAL
SHORTREAL
CHAR
BOOLEAN
STRING
p~cked array[l .. nl of CHAR
where n is a positive integer constant.

44 Field length must be integer

The indicated length qualifier expression in a READ or WRITE state­
ment is not of type integer. Any length specification within a
text-file READ/WRITE must be of type integer.

45 set contains constant memberCsl which are out of range

The indicated set constant contains members which are not valid for
the set variable to ~hich the constant is being assigned.

For example,

vars : set of 10 •. 20;
begin

S ·- [1,21; C*<== this statement would produce error 45*)
end;

This error may also occur when a set constant is being passed as a
parameter.

134 Pascal/VS Programmer's Gui de

46 2nd field length applicable only to REAL data

In the procedure WRITE (text file case), only expressions of type
REAL are permitted to have two length field qualifications.

47 Array reference contains too many subscripts

An array variable of dimension In I is being subscripted with more
than 'n' number of subscripts.

48 Associated variable of subscript must be of an array type

An attempt is being made to subscript a variable which was not
declared as an array.

49 Expression must be Of a simple scalar type

The indicated expression should be of a simple scalar type within
the context in which it is being used.

so No max length specified on STRING type - 2SS assumed

A type definition of the form "STRING" does not contain a length
specification to indicate the maximum length of the string variable.
255 is the default length.

Sl variable must be of a pointer type

The indicated variable is being used as a pointer; however, the var-
iable was not declared as being of a pointer type.

S2 corresponding variant declaration missing

Within a call to the procedure NEW or to the function SIZEOF, the
indicated tag field specification fails to correspond to a variant
within the associated record variable; or, the associated variable
was not of a record type.

S3 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

S4 Expression must be numeric

Expressions which are prefixed with a sign ('+' or ' - ') must be of a
type that is compatible with INTEGER or REAL. This also applies to
expressions which are operands of such predefined functions as ABS
and SQR.

SS Expression must be of type real

The indicated call to ROUND o.r TRUNC has an argument (actual parame-
ter) of an incorrect type. The predefined functions TRUNC and ROUND
require an expression of type REAL as a parameter.

S6 Expression must be Of type integer

The indicated expression must be of a type that is compatible with
INTEGER.

57 Parameter type does not match formal parameter

Within a procedure or function call, an expression or variable i 5
being passed as an actual parameter which is of a type that is not
compatible with the corresponding formal parameter.

58 Expression must be a variable

An erroneous attempt was made to pass a non-variable as an actual
parameter to a routine which expects a pass-by-var parameter.

Pascal/VS Messages 135

59 Number of parameters does not agree

Within a procedure or function call, the number of parameters being
passed does not correspond with the number required.

60 ' (' expected

61 constant expected

62 Type specification expected

At the place indicated, a type defi ni ti on is expected but is
missing.

63 ' ' expected ..
64 Expression's type is incorrect or incompatible within context

This error is caused by a number of reasons:

• A unary or binary operator is being applied to an expression
which is of a type that is not valid for the operator.

• Two expressions being joined by a binary operator are of incom-
patible types.

• The parameters of the MIN/MAX functions are not of consistent
types.

• Members of a set constructor have inconsistent types .

65 subrange lower bound > upper bound

66 Assignment to ptr qualified variant record invalid

The indicated statement attempts to assign to the whole of a pointer
qualified record with variant fields. Such an assignment is not
valid under Pascal/VS. This restriction is necessary because the
pointer qualified record may have been allocated with a size that is
specific to its active variant.

Example of violation:

type
R = record

case BOOLEAN of
TRUE: cc:CHAR>;
FALSE: CA: ALPHA>

end;
var p : G)R;

RR : R;
begin

NEWCP,TRUE>;
PG1 . - RR (M<===invalid assignmentM)

end

67 Real type not valid here

The indicated expression is of type REAL. An expression of this
type is not valid within the associated context.

68 "OF" expected

136 Pascal/VS Programmer's Guide

69 Tag constant does not match tag field type

Within a record definition, a variant tag is being defined which is
of a type that is not compatible with the corresponding tag field
type.

Within a call to NEW or SIZEOF, a tag value is specified which 1 s of
a type that i s not compatible with the corresponding tag field type
of an associated record variable.

70 Duplicate variant field

Within a record definition, a variant tag 1 s being defined more than
once.

71 Not applicable to "PACKED" qualifier

The indicated type definition ~Jas qualified ~Ii th the word "packed".
Such a quai i fi cation within the cissociated conlex.l 15 nul valid.

72 ' [' expected

73 Array has too mciny elements

The length of the i;idicated array definition exceeds the address-
ability of the computer.

74 '] ' expected

76 File of files not supported

77 I1 legal reference of function name

The indicated identifier 1 s the name of a function. It is being
used 1 n a way that i s incorrect.

78 Subscript type not compatible with index type

The indicated subscript expression is not of a type that is compat-
ible with the declared subscript type for the array.

79 Associated variable must be of a record type.

A variable associated with the indicated statement or expression i s
required to be of a record type according to context; but such is
not the case. ----80 Record field qualifier not defined

The indicated record field does not exist for the associated record.

81 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

82 Associated variable must be of a pointer or file type

The indicated arrow qualified variable i 5 not of a pointer or file
type.

83 Set element out of range

The indicated set member of a set constructor exceeds the allowed
range for the set.

Pascal/VS Messages 137

84 Expression must be of a set type

The indicated expression is required to be of a set type in the con-
text in which it is being used.

85 Hust be positive integer constant

The indicated expression fails to evaluate to a positive integer
constant, which is required in the context in which it is being
used.

86 LEAVE/CONTINUE not within loop

The indicated leave or continue statement fails to reside within a
loop construct.

87 ' : =' expected

89 TEXT files may not be updated

An attempt was made to open a text file for updating. Only record
files may be updated.

90 Label not declared

The indicated label did not appear in a label declaration.

92 "THEH" expected

93 Redundant case alternative

The indicated case statement label is equal to a previous label
within the same case statement.

94 Required length expression missing for dynamic string allocation

A pointer variable declared with the type STRINGPTR is being allo-
cated with the NEW procedure, but the required length expression is
missing.

95 "UNTIL" expected

96 "DO" expected

97 FOR-loop index must be simple local variable

A for-loop variable must be declared as a simple automatic <var>
variable, local to the routine in which the for loop resides. The
indicated for-loop variable did not meet this criteria.

98 "TO" expected

99 Label previously defined

The indicated label identifier was previously defined within the
associated routine.

100 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

101 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main-
tenance group at IBM. This is a compiler error.

138 Pascal/VS Programmer's Guide

TNL SN20-4445 (31December1981) to SH20-6162-1

91 Max length of string v~riable does not match formal parameter

A string variable is being passed to a procedure "by var" and the
corresponding formal parameter is declared with an explicit length.
This error occurs when the declared length of the variable being
passed does not match that of the formal parameter.

Example=

procedure XYZCvar s: STRINGC100)); EXTERNAL;
var T= STRINGC50);
begin

XYZCT); (*ERROR: declared length of T does *)
C* not match that of parameter S *)

end

Pascal/VS Messages 138.1

TNL SN20-4445 (31December1981) to SH20-6162-l

102 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main­
tenance group at IBM. This is a· compiler error.

103 Expression must be of type BOOLEAN

The indicated expression which is associated with an if, assert,
while, or repeat statement is required to represent a condition.
Conditional expressions are of type BOOLEAH. The indicated expres­
sion failed to meet this criteria.

104 constant out of range

The indicated constant expression evaluated to a value which is out­
side the required range of its context.

105 Identifier was previously declared

The indicated identifier within a declaration was previously
declared within the same lexical scope.

106 Undeclared identifier

The indicated identifier being referenced was not declared.

107 Identifier is not in proper context

The indicated identifier is being used in a way that is not consist­
ent with how it was declared.

108 Notify compiler maintenance group

If this error should occur, then notify the Pascal/VS compiler main­
tenance group at IBM. This is a compiler error.

109 case label tag of wrong type

The value of the indicated case statement label is not of a type
that is conformable to the case statement indexing expression.

110 Loop will never execute

The indicated for loop will not execute at runtime. The compiler has
determined that the terminating condition for the loop is uncondi­
tionally true.

111 Loop range exceeds range of index

The indexing variable used for the indicated for loop was declared
with a subrange that does not include the range indicated by the
initial and final index values.

1-------+---1
112 'PROGRAM' header missing

113 Pending comment not terminated

A comment starting symbol was detected within a pending comment.
1------4-----------~--~

114 Percent """ statement not found

A 'X' symbol was detected, but with no identifier following.

115 Percent "%" f dentif ier not recognized

A identifier following the 'X' symbol is not recognized as a valid
compiler directive.

Pascal/VS Messages 139

TNL SN20-4445 (31December 1981) to SH2().6162-1

116 ·"ON" ar "OFF,. expected

117 unrecognizable option in "%CHECK"

118 Magnitude of floating point constant too large or too small

The indicated floating point constant has a magnitude that is out-
side the range of the IBM/370 double precision representation. The
largest floating point magnitude that can be r12presented is

7.23700557733226E75

The smallest is

5.39760534693403E-79

119 First parameter of READSTR/WRITESTR must be of typo STRING

120 String constant requires truncation

The indicated string constant, which is being assigned to a variable
or being passed to a routine, requires truncation because of its
excessive length. Implicit truncation of strings is not permitted.

121 Declaration out of order: LABEL,COHST,TYPE,VAR,routina

This is a warning message that may be produced when the
LANGLVLCSTANDARD> compiler option is specified. One or more declara-
tion constructs are not in the order required by standard Pascal.
St'1ndard Pascal requires identifiers to be declared in the follot..ii ng
order:

Labels
Constants Cconst>
Types <type>
Variables cv~r>
Routines Cproceduro/function>

122 "OTHEr.tUSE" chusc 1.ii thout associated CASE statem:mt

The indicated otherwise statement is not within the context of a
CC1!;1:! statement.

123 Maximum string length exceeded

The indicated expression produced a varying length string which
exceeds 32767 characters in length. 32767 is the tnax i mum a 11 owed
length for a varying length string.

124 construct or operation is not in shndard Pascal

This is a warning message that may be produced when the
LANGLVLCSTANDARD> compiler option is speci fi ad. The indicated !an-
guage construct or arithmetic operation is not supported in "stand-
ard" Pascal, but is a Pascal/VS language extension.

125 Real to integer conversion not valid

The indicated expression is of type real, but according to its con-
text, it is required to be of type integer. Implicit real to inte-
ger conversion is not performed.

126 Types not conforrnable in· ass i gnmcnt

The indicated assignment statement attempts to assign an expression
of a .particular type to a variable of an incompatible type.

·-··
127 File variable assign~ent not permitted

The left side of the indicated assignment statement is a variable of
a file type. Assignment to file variables is not permitted.

140 Pascal/VS Programmer's Guide

1NL SN20-4445 (31 December 1981) to SH20-0162-1

128 Not compile-time computable

The ;nd;cated express;on fails to be a constant express; on that can
be evaluated at compile time.

129 Assignment to "CONST" parameter invalid

The indicated variable declared as a formal canst parameter within a
particular routine may not be modified by an ass;gnment.

130 Assignment to FOR-loop index invalid

The ;ndicated var;able that ;s being used as a for loop index may
·not be modified by an assignment within the for loop statement.

.. 131 Passing "CONST" parameter by VAR inv.nlid

The ;ndicated variable declared as a formal canst parameter may not
be modified by being passed as an actual var parameter to a routine.

132 Passing FOR-loop index by VAR invalid

The ;nd;cated var;able that ;s be;ng used as a for loop ;ndex may
not be mod;fied by being passed as an actual var parameter to a rou-
tine.

133 Refer-back tagfield must not b5! typed

The indicated tag f;eld specification within a record definition was
found to reference a prev;ous field within the record. Such
refer-back references may not contain a type reference.

137 P~ssing packed record field by VAR not valid

This is a warn;ng message that may be produced when the
LANGLVLCSTANDARD> compiler option is specified. The ind;cated field
of a packed record ;s being passed as an actual var parameter to a
routine. Passing fields of packed records as var parameters ; s not
valid in standard Pascal.

138 Passing SPACE component by VAR not valid

This is a warning message that may be produced when the
LANGLVLCSTANDARD) comp;ler opt; on is spec; fi ed. Standard Pascal
requires that actual var parameters be properly aligned wh;ch is not
necessarily the case w;th a space component. The ;nd;cated parame-
ter is a component of a space var;able which is be;ng passed as a
var parameter.

139 Passing packed array element by VAR not valid

This is a warn;ng message that may be produced when the
LANGLVLCSTANDARD) comp;ler opt;on is spec; fi ed. The indicated sub-
scripted var~able is being passed as an actual var parameter to a
routine. The var;able being subscripted is a packed array. Passing
elements of packed arrays as var parameters is not valid in standard
Pascal.

140 Scalar PACKirig does not match correspon~ing VAR parameter

The indicated variable that is being passed as a var parameter is OT
a compatible type, but has a different length than the correspond;ng
formal parameter. Th;s was caused by one being packed and the other
unpacked.

141 symbol not recognizable in standard Pascal

This is a warning message that may result when the LANGLVLCSTANDARD>
compHer opt;on ;s speci fled. The indicated symbol Cor o"perator) is
not supported ;n "standard" Pascal. The symbol is part of a con-
struct which is a Pascal/VS language extension.

Pascal/VS ~essages 141

TNL SN20-4445 (31 December 1981) to SH20-6162-l

142 variable must be an array variable

, The indicated variable is required to be of an array type, but such
is not the case.

143 Off set quaHfied field not on proper boundary

The indicated field in a record definition is qualified with an off-
set which is not consistant with the boundary requirement of the
field's type.

144 Offset qualification value is too small

The indicated field in a record definition is qualified with an off-
set which causes an overlap with a previous field within the record.

145 Type must be CHAR or PACKED ARRAY OF CHAR
..

The indicated expression is required by its context to be of type
CHAR or packed arrayCl .• nl of CHAR.

146 variables of type POINTER are not permitted

The special type 'POINTER' may only be applied to a formal parameter
of a routine.

147 Identifier was not declared as function

The indicated identifier is used as though it is a function name,
but is not declared as such.

148 Hissing period ' ' assumed .
149 Not a valid comparison operation

The indicated expression performs a comparison operation on two
entities for which such compar1son is not allowed. Except for
strings, variables of structured types may not be directly compared
with each other. The only valid comparison operators for sets are
'=' , '<>', '<=', and '>='.

150 Entry routines must be at the outermost nesting level

A routine which is to be called from another module is nested within
another routine which is not permitted. Such routines must be
declared at the outermost nesting level.

151 Fbed Point overflow or divide-by-zero

An integer expression consisting of constant operands causes a pro-
gram error to occur when it is evaluated.

152 Checking error will inevitably occur at execution time

This error indicates that the compiler has detected a condition
related to a particular construct which will cause an execution time
error.

This error may occur at an assignment or at a routine call in which
parameters are passed. It indicates that the range of the source
expression Ca scalar) does not overlap the declared range of the
target. For example, the following assignment would cause this
error to occur:

var I: 1. .10;
J: 10 .• 20; ...

I ·- J+l; (*target's range: 1. .10; source's range: 11. .21 M)

142 Pascal/VS Programmer's Guide

TNL SN204445 (31 December 1981) to SH20-6162-1

153 LBOUND/HBOUND dim~nsion number is invalid for variable

lStt Low bound of subscript range is too large in magnitud2

The indicated array definition has an i !legal subscript range which
causes addressing code to be outside the range of the target
machine's capability.

155 The ORD of all SET ~ambers must lie within 0 •• 255

The ordinal value of any valid set member may not be less than 0 nor
greater than 255.

156 Length fields not applicable to non-TEXT files

A non-text file READ or WRITE contains a length qualified parameter.
Length specifications have no meaning in non-text file l/O.

Pascal/VS Massages 142.1

/

(
""-·

157 STRING variable is smaller than file component

The error occurs when an attempt is made to perform a READ operation
from a file of STRINGs into a string variable in which truncation is
possible. The string variable must be declared with at least the
same length as the file component.

158 Routin~s passed as param9ter must be at outermost nesting level

An attempt is being made to pass a routine as a parameter, but the
routine being passed is nested within another. As a Pascal/VS
restriction, routines being passed as parameters must not be nested
within another routine.

159 Recursive type reference is not permitted

The compiler detected a degenerate type declaration of one of the
following forms:

I. type X = X;
II. type X = ~X;

III. type x =record

F: X;

end

160 This SET operation will always produce the NULL set

Two disjoint sets are being intersected. The result will always be
the null set []. For example,

var s1: set of o .. 10;
s2: set of 11. .20;
53: set of o .. 20;

begin

53 ·- Sl * S2; (* <-- always produces the HULL set *)

end

161 ELSE clause without associated IF statement

A else symbol was detected that is not part of an if statement.
This error often occurs when the preceding then clause of an if
statement is terminated with a semicolon (;).

162 Must be an unPACKED array

The indicated array variable is erroneously declared as packed when
the context requires it to be unpacked.

163 Must be a PACKED array

The indicated array variable should have been declared as packed,
but was not.

164 unrecognizable procedure/function directive

The indicated identifier
directive but was not
recognizable directives:

- FORWARD
- EXTERNAL
- FORTRAN
- MAIN
- REENTRANT

was interpreted as a procedure or function
recognizable. The following are the only

Pascal/VS Messages 143

165 FORTRAN subroutines may not be passed as parameters

Only Pascal/VS routines may be passed as parameters; FORTRAN subrou-
tines may not.

One way to get around this problem is to define a Pascal/VS proce-
du re which does nothing more than call the FORTRAN subroutine. The
Pascal/VS procedure would then be passed in place of the FORTRAN
subroutine.

166 FORTRAN subroutine parameters may not be passed by value

All formal parameters of a FORTRAN subroutine must be passed by ref-
erence: either by var or by const.

167 FORTRAN functions may return only scalar values

A FORTRAN function may only return values that are scalars Cinclud-
ing floating point>.

168 %INCLUDE member not found in library

The library member which was to be included into the source program
could not be found.

169 Floating point computational error

The indicated floating point expression causes a program error when
evaluated.

170 Data storage exceeds addressability of machine
v

The memory required to contain all declared variables within a rou-
tine or main program exceeds the capacity of the computer; that is,
it exceeds 16 megabytes.

171 Only STATIC/DEF variables may be initialized

The only class of variables which may be initialized at compile time
are def and static variables.

172 variable's address is not compile-time computable

The indicated value assignment could not be performed. In order for
a variable to be initialized at compile-time, its address must be
compile time computable.

173 Array structure has too many elements

The indicated array structure contains more elements than was
declared for the array type.

174 Repetition factor applicable to constants only

Within a array structure, only a constant may be qualified with a
repetition factor; a general expression may not.

175 No corresponding record field

The indicated record structure contains more elements than there are
fields within the record type.

176 This identifier is a reserved name

An attempt was made to declare an identifier which is a reserved
name.

144 Pascal/VS Programmer's Gui de

177 Numeric labels must lie within the range 0 •. 9999.

178 Identifier was previously referenced illegally

The indicated identifier that was just declared was referenced pre­
viously within the associated routine. Pascal/VS requires an iden­
tifier to be declared e.r:l..Q.C to its use.

179 Recursive reference within constant declaration

A constant declaration of one of the following forms was detected:
const x = X;

or
canst X = "some expression involving X"

Such recursion within a constant declaration is not permitted.

180 Repetition factor not applicable to record structures

The indicated record structure contains a component which is quali­
fied with a repetition factor. Only array structures are permitted
to have repetition factors.

181 Label previously referenced from a GOTO invalidly

The indicated label was previously referenced in a goto statement
that is not a constituent of the statement sequence in which the
label is defined.

Example

begin
goto LABEL!;
for I ·- 1 to 10 do

begin
LABEL!: A[I) ·- O; (*<==label was previously referenced invalidly*)

end;
end

182 A GOTO may not reference a label within a separate stmt sequence

The indicated goto statement references a label which was previously
defined within a statement sequence of which the goto is not a con­
stituent. Such a reference is not permitted.

Example

begin
for I ·- 1 to 10 do

begin
LABEL!: A[!] ·- O;

end;
goto LABEL!; (*<==invalid reference of label *)

end

183 CASE label outside range of indexing expression

The indicated case label within a case statement has a value which
is outside the range of the indexing expression. For example,

var r: 0 .. 10;
begin

case I*2 of (*range of index is 0 •• 20 *)
0 : •.•
1. .20: ...
30: ... (*<==this label is out of range of index*)

end
end

Pascal/VS Messages 145

184 second operand of HOD operation must be positive integer

The indicated expression involving the mod operator was found to be
invalid; the second operand is required to be a positive integer.

185 Routine is not defined in standard Pascal

This warning may be produced when the LANGLVLCSTANDARD) compiler
option is specified. The indicated call statement refers to a pre-
defined Pascal/VS routine which does not eX'i st in standard Pascal.

186 Directive only applies to procedure, not to a function

The indicated procedure directive ("MAIN" or "REENTRANT") is being
applied to a function declaration. The directive is not supported
for functions.

188 ·First parameter of REENTRANT procedure must be an integer by var

The indicated procedure declaration in which the directive
"REENTRANT" was specified, failed to comply with the parameter list
requirement for such a procedure: the first parameter of a
"REENTRANT" procedure must be a pass-by-reference (specified with
the var reserved word) integer in which a pointer to the Pascal/VS
environment is saved between calls.

191 simple constant required

A constant expression which required compile-time computation was
found where a simple constant is required. This is often a warning
message that may be produced when the LANGLVLCSTANDARD> compiler
option is specified.

192 %Percent directives are not recognized in standard Pascal

This warning may be produced when the LANGLVLCSTANDARD> compiler
option is specified. All compiler directives which appear in the
source program with the percent (%) prefix are Pascal/VS extensions
and are not supported in standard Pascal.

193 FOR- or WHILE-loop has no statements within its body

This is a warning message to indicate that a for-statement or
while-statement loops on an empty statement. Such a case is often
not the programmer's intent.

Examples

while A > 0 do;

for I . - 1 to J do ;

194 PACKED subranges not supported in standard Pascal

This warning may be produced when the LANGLVLCSTANDARD> compiler
option is specified. Subrange type definitions may not be "packed"
in standard Pascal. This feature is a Pascal/VS language extension.

146 Pascal/VS Programmer's Guide

•

TNL SN204445 (31December1981) to SH20-6162-1

195 Variable is not properly aligned

The indicated variable is being passed as a var parameter and the
compiler has detected that its address may not be properly aligned.
CFor example, passing a full word integer which has an address that
is not on a word boundary.)

On most models of the 370 series, the manipulation of objects which
are not properly align will result in a penalty in execution speed.

This warning will be produced even if the variable is just poten­
tially missaligned (as in the case of a subscripted variable).

500 Recursion detected in "%INCLUDE" processing libCmemJ

Source text which was included from member "mem" in library "lib" by
means of the a XIHCLUDE directive contains in itself a XIHCLUDE
directive which directly or indirectly references the same member
recursively. This error causes immediate termination of the compi­
lation.

Example

Source program:

program EXAMPLE;
type

Xinclude TYPES;
begin

end.

Member TYPES:

REC = record
HAME: STRIHGClO);
AGE : 0 .. 99;

end
Xinclude TYPES; C*<===ERROR 500*)

501 Too tr.any ncisting levels in "%INCLUDE" processing libCmaml

A XIHCLUDE directive was detected which is nested 8 levels deep
within a stack of "includes". "Included" source text may not be
nested beyond 8 levels. This error causes immediate termination of
the compilation.

502 unable to open "%INCLUDE" library: libname

The include library named "libname" could not be opened. Possible
causes are that the DDname was not assigned or the DCB attributes of
the library are not correct. This error causes immediate termi­
nation of the compilation.

600 Identifier used in type definition at line nnn is out of context: xxxx

601

The identifier 'xxxx' appeared in a pointer type
form 1 ->xxxx' at line 'nnn', but the identifier
declared as something other than a type.

Example:

type X = ->Y;

defin~tion of the
was subsequently

var y: INTEGER; C* <=== would cause error 600 to be generated *>

Type identifier referenced at line nnn is undeclared: xxxx

The identifier 'xxxx' appeared in a pointer type definition of the
form '->xxxx' at line 'nnn', but the identifier was not subsequently
declared.

602 Label xxxx was declared and/or referenced but was not defined

The label named 'xxxx' was declared and/or referenced from within
the associated routine, but was not ever defined.

603 procedure/function xxxx was forwarded but not resolved

The procedure or function named 'xxxx'
tive 'FORWARD', but the body of the
declared.

was declared with the direc­
routine was not subsequently

Pascal/VS Messages 147

TNL SN20-4445 (31December1981) to SH20-{;162·1

Ho.

AHPOOOlS

AMPTOGlE

AMPT002E

Af1PT003E

AMPTOOSE

AMPT006E

Hessage and Explanation

Rout;ne 'name' fs too large to compile at stmt n

The indicated routine has too many statements to compile; a
fixed-length table of the compiler has overflowed. The last
statement that was successfully processed was statement "n".
The routine should be divided into two or more separate rou­
tines.

Inevitable NIL pointer error will occur

The code optimizer of the compiler has determined that a nil
pointer checking error will inevitably occur at execution time
at the specified routine and statement. Example:

begin
P • - nil
WRITELN C POl. I);

end;
CM<===AMPTOOlE - inevitable error*)

Inevitable high bound error wf ll occur

The code optimizer of the compiler has determined that a high
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:

var I : 1. .10;
J : INTEGER;

begin
J ·- 11;
I ·- J;

end;
(M<===AMPT002E - inevitabie error*)

Inevitable low bound error will occur

The code optimizer of the compiler has determined that a low
bound checking error will inevitably occur at execution time at
the specified routine and statement. Example:

var I : 1 .. 10;
J : INTEGER;

begin
J • - 0;
I . - J;

end;
C*<===AMPT003E - inevitable error*)

Function routine does not return a value

The code optimizer of the compiler has determined that the spe­
cified function routine does not return a result. Example:

functlon cvar I: INTEGER>: INTEGER;
begin

READLNC I>;
end; CM<===AMPT005 function did not return a resultM)

Express;on is too complicated at stmt nnn of routine xxxxxxxx

The expression in statement "nnn" of routine "xxxxxxxx" is too
complex to compile and should be broken up into multiple state­
ments. If the indicated statement contains a relatively simple
expres~ion, then the Pascal/VS support group should be
notified.

148 Pa~cal/VS Programmer's Guide

"'

TNL SN20-4445 (31December1981) to SH20-6162-1

...
At1PT700S Routine "name" contains too many statements. Max=n

The statement table being generated overflowed in the specified
routine. The routine should be divided into two or more rou-
tines.

AMPT701I Record type contains too many fields

The DEBUG compiler option was specified and a record type defi-
nition was compiled that contains too many fields to be accomo-
dated in the debugger type table. If this error should occur,
the resulting code may not work properly when the interactive
debugger is enabled.

AMPT702S Routine "name" exceeds 8K limit at stmt n

The specified routine caused more than 8192 bytes of code to be
generated starting at statement number "n". Since Pascal/VS
only reserves two base registers to address code, 8192 bytes is
the limit. The indicated routine should be divided into two or
more separate routines.

AHPT703I Field name space pool overflowed

The DEBUG compiler option was specified and a large number of
record type definitions were compiled. The debugger table
which contains the record field names overflowed. If this
error should occur, the resulting code may not work properly
when the interactive debugger is enabled.

AMPT704I Type table overflo~. Debug is disabled

The module being compiled with the DEBUG option contains more
than 256 unique data types. The type table being generated for
the interactive debugger may contain no more than 256 entries.
The interactive debugger may not be used on this module.

AMPL999S compiler error notify Pascal/VS support

An error was detected in the first pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AMP0999S Notify Pascal/VS support - Optimizer Error

An error was detected in the second pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM.

AHPT999S Notify Pascal/VS support - Translation error

An error was detected in the third pass of the compiler. If
this error should occur, please notify Pascal/VS support at
IBM •

•

Pascal/VS Messages 149

TNL SN20-4445 (31 December 1981) to SH20-6162-1

17.2 EXECUTION TIME MESSAGES

No. Message and Explanation

AMPXOllE operation exception

An operation exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program or due to a 'wild' assignment through an uninitial-
ized pointer.

Al1PX012E Privileged exception

A privileged exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPX013E Execute exception

An execute exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

Al1PX014E Protection exception

A protection exception occurred in the program. The error is
probably due to a 'wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off) .

AMPXOlSE Addressing exception

An addressing exception occurred in the program. The error is
probably due to a 'wild' assignment through an uninitialized
pointer, or to an array assignment with a bad subscript (with
checking off).

AMPX016E Specification exception

A specification exception occurred in the program. The error is
probably in an assembly language routine linked with your Pas-
cal program.

AMPX017E Data exception

A data exception occurred in the program. The error is probably
in a non-Pascal routine linked with a Pascal program.

AMPX018E Fixed point overflow exception

A fixed-point overflow exception occurred in the program. The
error is probably due to an addition, subtraction, or multipli-
cation that resulted in an integer with a magnitude which
exceeds MAXINT.

AMPX019E Fixed point divide by zero exception

A fixed point divide by zero exception occurred in the program.
The error is due to a div operation in which the second operand
Cthe divisor) has the value zero.

AMPX020E Decimal overflow exception

A decimal overflow exception occurred in the program. The error
is probably occurred in a non-Pascal routine linked to the Pas-
cal program.

150 Pascal/VS Programmer's Guide

AMPX021E Decimal divide by zero exception

A decimal divide by zero exception occurred in the program.
The error probably occurred in a non-Pascal routine linked to
the Pascal program.

AMPX022E Exponent overflow exception

An exponent overflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude greater than
7.23700557733226E75.

AMPX023E Exponent underflow exception

An exponent underflow exception occurred in the program. The
error is probably due to a floating point multiplication or
division which produces a result with a magnitude less than
5.39760534693403E-79.

AMPX024E Significance exception

This exception is not intercepted by the Pascal/VS run time
environment. If it should occur, then the Pascal/VS run time
environment may have been locally modified. Contact your local
system support.

AMPX025E Floating point divide by zero exception

A floating point divide by zero exception occurred in the pro-
gram. The error is caused by an attempt to divide by zero.

AMPX026E Segment translation exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX027E Page translation exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX028E Translation specification exception

This is a system error, run the program again and if the error
persists contact Pascal/VS Development for assistance.

AMPX029E Special operation exception

This is a system error, run the program again and 1f the error
persists contact Pascal/VS Development for assistance.

AMPXOJOE Terminal attention exceptton

An attention was signaled from the users terminal.

AMPX031E Low bound checking error

Either the value of an array subscript, or the value being
assigned to a subrange type variable is less than the minimum
allowed for the subscript or subrange. This error may also
result if the mod operation is attempted for which the second
operand Cthe divisor) is less than or equal to zero.

At1PX032E High bound checking error

Either the value of an array subscript, or the value beir.y
assigned to a subrange type variable is greater than the maxi-
mum allowed for the subscript or subrange.

(
I

Pascal/VS Messages 151

AHPX033E Nil pointer checking error

An attempt was made to reference a dynamic variable from a
pointer which has the value nil.

AHPX034E case l~bel checking error

The expression of a case-statement has a value other than any
of the speci fled case labels and ~here is no otherwise clause.

AMPX03SE Function value checking error

A function routine returned to its invoker without being
assigned a result.

At1PX036E Assertion failure checking error

The expression of an assert statement computed to the value
FALSE.

At1PX037E string subscript out of bounds checking error

The subscript on a STRING was not in the range O .. LENGTHCs),
where s is the STRING being subscripted.

AMPX038E Error 38 not assigned

This error number has not been assigned a meaning.

AMPX039E string truncation checking error

An assignement into a STRING variable could not be performed
because the length of the source string is longer than the max-
imum length of the destination string.

At1PX041S File could not be opened: DDNAME

An error occurred when an attempt was made to open the file
with the indicated DDname. The most probable cause of this
error is a missing DDname definition. Under CMS, this error
wi 11 occur when attempting to open a file that does not have a
record format of 'F' or 'v' .

At1PX042E Lrecl size too small for file DDNAHE

The logical record length of the file with the indicated DDNAME
is not large enough to contain a single file component.

AHPX043E File is not open for output: DDNAME

An output operation was attempted on a file open for input.

At1PX044E File is not open for input: DDNAHE

An input operation was attempted on a file open for output.

AHPX045E Logical record is too small in input file

The logical record length of a particular record within a vari-
able record length file is not large enough to contain a file
component.

AMPX046E Data larger than lrecl for file

The logical record length of a file is too small to contain the
file's component.

152 Pascal/VS Programmer's Guide

TNL SN20-4445 (31 December 1981) to SH20-6162-1

AMPX047E Invalid Input/Output option: xxxxx •••

The options string passed to the procedure contains an incor-
rect or invalid option.

AMPX048E Hissing member in file: member library

The indicated member could not be fo·und in the partitioned data
set.

AMPX049E Floating point overflow/underflow

The floating point number read by procedure READ was either too
large or too small to be represented within the machine.

• AMPXOSOE BLKSIZE exceeds 32760 in file DDNAME

A block size was specified that exceeds 32760 which is the max-
imum length of a block.

AHPXOSlE LRECL > BLKSIZE-4 in v format file: DD NAME

The logical record size was too large to permit at least one
record to be fit in a block.

AMPX052E BLKSIZE not integer multiple of LRECL in DDNAME

The specified block size for a fixed-length record file is not
an integer multiple of logical records.

AMPX053E component length of file exceeds 32760 in DDNAME

A single element must fit in one logical record, therefore its
length is restricted to 32760 bytes.

AMPX054E GET or READ called after end-of-file in DDNAME

An attempt was made to advance the file beyond the end-of-file.

AMPXOSSE Integer READ operation failed for file DDNAME

An attempt was made to read an integer from a text file, but
either the end-of-file occurred, or unrecognizable character
were detected where the integer should have been.

AMPX056E overflow/underflow detected in integer READ: DD NAME

An attempt was made to read an integer which has a value that
does not lie within the range -2147483648 .. 2147483647.

AMPX057E Invalid run time option:

An invalid option was specified when invoking a Pascal/VS pro-
gram. A runtime option is specified preceeding a slash '/'
when invoking the program.

AMPX058I OPEN and INTERACTIVE are no longer supported, use READ/WRITE

The procedures OPEN and INTERACTIVE are not supported in Real-
ease 2.0. The Pascal/VS Programmer's Guide SH20-6162-l and the
Pascal/VS Reference Manual SH20-6168-1 describes the equivalent
operations.

Pascal/VS Messages 153

TNL SN20-4445 (31December1981) to SH20-6162-1

AMPX059E

Al'1PX060E

AMPX061E

Al'1PX063E

AMPX064E

AMPX065E

AMPX066E

AHPX067E

AMPX070E

AMPX071E

Al'1PX072E

Text exceeds logical record length in file "name"

A line of data is being written to the text file whose DDname
is "name" and the line exceeded the logical record length of
the file. As a recovery, the line is terminated at the end of
the logical record and the remaining text of the line is placed
in the next logical record.

For each file being written, this error will be diagnosed only
on the first occurrence; subsequent violations will not be
diagnosed.

Operand to RELEASE does not correspond to HARK

The parameter passed to RELEASE did not have the value returned
by a call to MARK.

Operand to DISPOSE not allocated with NEW

A DISPOSE operation was attempted for~ pointer which did not
have a valid value as would have been returned by NEW.

operand to DISPOSE already deallocated

An attempt was made to perform a DISPOSE operation on a pointer
which referenced heap storage which had been previously
released.

Insufficient space to do NEW

There was not enough storage available to perform the NEW pro­
cedure. You should execute the program in a larger region COS>
or in a larger virtual machine CCMS). Also, you may not be
calling DISPOSE for storage you no longer need.

storage has been incorrectly assigned prior to DISPOSE

The pointer being disposed of was used incorrectly, namely, the
pointer caused the heap to be modified beyond the size of the
dynamic variable. This could happen if the dynamic variable
was a record that was allocated by specifing tag values and
then it was later used to assigning to a different variant.

Operand to DISPOSE is NIL or undefined.

The operand is not valid for DISPOSE.

Heap incorrect due to previous invalid assignment using a pointer

The heap has been damaged, the cause of the damage was probably
due to a pointer being used incorrectly.

LN: argument <= o.o
The natural logarithm function CLN> was called with a 0 or neg­
ative argument.

SQRT: argument < o.o, zero returned as result

The square root function CSQRT» was called with a negative
argument.

EXP: argument too large, exceeds 174.67309

The argument of the EXP function is too large; the result of
the call exceeds the largest real number that can be repres­
ented: 7.237e+75.

154 Pascal/VS Programmer's Guide

•

,.

TNL SN20-444S (31December1981) to SH20-6162-1

AMPX073E RANDOM: seed is out of range

The function RANDOM was called with an argument which is either
negative or greater than 1048575 Cwhich is the allowed
maxi mum).

AMPX074E SIN/COS: argument too large, exceeds CPI/2HOE50

A call to SIN or COS was made with an argument that is too
large for an accurate result to be computed.

AMPX07SE SEEK called for a file not opened for DIRECT access

AMPX076E SEEK: bad relative record address

The record number in an invocation of SEEK has an invalid
value.

AMPX077E Direct access file does not have fixed unblocked records: DDNAME

An attempt was made to perform direct access (relative record)
operations on a file that was either not fixed or not
unblocked. The required record format for a file to be manipu-
lated with SEEK is RECFM=F.

AMPX078E Target string filled to maximum length in WRITESTR call

The target STRING (first parameter) in a call to WRITESTR was
filled to capacity before the data being assigned into the
STRING was exhausted.

AMPX079E source string exhausted in READSTR call

Prior to reading all data from the the source string (first
parameter), the end of the string was encountered.

AMPX081E LPAD: PADDING exceeds maximum length of string

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter).

AMPX082E DELETE: Length parameter less than zero

AMPX083E DELETE: starting index ts less than 1

AMPX084E DELETE: substring not contained within source string

AMPX08SE Set operation out of bounds

An attempt to perform a set operation in which the resulting
set contained members which are outside the range of a target
set. This can occur in a set assignment in which the source
set contains members which are not valid for the declared type
of the target set.

AMPX086E SUBS TR: Length parameter less than zero

AMPX087E SUBSTR: starting index is less than 1

AMPX088E SUBS TR: substring not contained within source string

155

TNL SN20444S (3lDeceiµ~er 1981).to.SH20~162-l

AHPX089E RPAD: padding exceeds maximum length of string

The specified pad length (second operand) exceeds the maximum
allowed length of the target string (first parameter).

AHPX200I The module must be linked with DEBUG for debugger features

An attempt was made to invoke the interactive debugger on a
module that was not linked with the debugger library.

AHPX201I The module must be linked with DEBUG for symbolic dump

Ai"I execution time error occurred and a symbolic dump of the
offending routine was attempted, but the module in which the
routine is located was not compiled with the DEBUG option.

AHPX203I Error occurred while executing ONERROR routine

An execution time error h,as occurred while ONERROR was execut-
ing. ON ERROR is a user provided pro.cedu re to diagnose exe-
cut ion errors and determine the correct course of action.

AHPX999S NOTIFY PASCAL/VS SUPPORT: RECURSIVE ERROR IN RUNTIME ENVIRONMENT

A second error was encountered while Pascal/VS was recovering
from the first error. The program is terminated because any
further processing would probably result in a CPU bound loop.
You should notifiy Pascal/VS Development if this error
persists.

156 Pascal/VS Programmer's Gui de

17.3 MESSAGES FROM DEBUG

ND. Message and Explanation

AMPDSOO current module not compiled with Debug option

AttPDSOl No statement *** in

AHPD502 There is no routine named * in module

AMPD503 Invalid qualification specification:

AMPD504 Missing qualification specification

AMPDSOS Module name must be specified

AMPD506 Breakpoint is already set

At1PD507 Maximum number of breakpoints have been set

AHPD508 Specified breakpoint does not exist

At1PD509 is an automatic variable local to a non-active routine

AMPDSlO Field qualified variable is not a record

A11PD511 is not a valid record field

AHPD512 Subscripted variable is not an array

AMPD513 Array subscript is not a scalar

At1PD514 Invalid symbol:

AMPDSlS Array subscript is out of bounds:

AMPD516 Hissing symbol:
•

AHPD517 Associated variable is not a pointer

AMPD518 Pointer variable does not contain valid address

AHPD519 not found in symbol table

AHPD520 Equate substitution is in infinite recursion

Pascal/VS Messages 157

AMPDS21 EQUATE expansion causes command truncationCexceeds 255 characters

AMPD522 You are not in CMS, command not valid

AMPD523 Debug command not recognized:

AMPD524 Invalid character in hexadecimal string:

AMPD52S Invalid hexadecimal string

AMPD526 Routine is not active

AMPDS27 Qualification set to module

AMPD528 The word "EQUATE" may not be redefined

AMPD529 Maximum number of EQUATE' 1 5 have been set

AMPD530 There are no EQUATE''s currently set

AMPD531 statement table missing

Trace requires GOSTMT option

AMPD533 There are no active variables

AHPD534 Routine is not active:

•

158 Pascal.IVS Programmer's Guide

•

/
(
'

17.~ MESSAGES FROM PASCALVS EXEC

The following messages are given by the
PASCAL VS EXEC of CMS to indicate the
status of the compiler invocation.

RC Message and Explanation

l File name is missing

They are shown below with their associ­
ated return codes.

The exec was invoked without specifying a file name.

2 Unable to find 'fn' PASCAL

The specified file name could not be found.

16 Unable to find the 'name' t1ACLIB

The specified maclib file could not be found.

32 Hore than 8 maclibs specified

The maximum number of MACLIBS that may be specified when invoking
the PASCALVS EXEC is eight .

Pascal/VS Messages 159

•

APPENDIXES

• "Command Syntax Notation" on page 163

• "Installation Instructions" on page 165

• "Additional Library Procedures and Functions" on page 175

APPENDIXES 161

The syntax notation used to illustrate
TSO commands is explained in the manual
TSO Command Language Reference
CGC28-0646). The notation used to
illustrate CMS commands is explained in
the manual VM/370: CMS Command and Mac­
ro Reference CGC20-1818).

Briefly, the conventions used by both
notations are as follows.

• Items in brackets []are optional.
If more than one item appears in
brackets, then no more than one of
them may be specified; they are
mutually exclusive.

•

•

•

•

A.0 COMMAND SYNTAX NOTATION

Items in capital letters are
keywords. The command name and
keywords must be spelled as shown.

Items in lowercase letters must be
replaced by appropriate names or
values.

Items which are underlined repre­
sent defaults.

The special characters ' <) * must
be included where shown.

Command Syntax Notation 163

Th;s sect;on descr;bes how to ;nstall
Pascal/VS under OS/VS2 and CMS-VM/370
from the d;str;but;on tape.

All VS2 partitioned data sets Cother
than the comp;ler source) were stored
on the tape by using the IEBCOPY utili­
ty program. VS2 sequential data sets
were stored by using the IEBGENER util­
ity program.

The CMS version of the package is
located at file 12 on the tape. It was
stored by using the TAPE DUMP command.

The source of the compiler was stored
using the utility program IEBUPDTE.

The files on the distribution tape con­
tain the following data sets.

File 1: INSTALL~CNTL
A sample of the job control lan­
guage CJCL> required to install
Pascal/VS under OS/VS2 CMVS).

File 2: LOADSRC.CNTL
A sample of the job control lan­
guage CJCL> required to load the
Pascal/VS source from the dis­
tri buti on tape.

File 3: PASCALVS.CONTENTS
A sequential data set which lists
the contents of the Pascal/VS
package.

File •: PASCALVS.LINKLIB
A partitioned data set which con­
tains the modules of the
compiler.

File S: PASCALVS.LOAD
A partitioned data set which con­
tains the Pascal/VS run time
library.

Ftle 6: PASDEBUG.LOAD
A partitioned data set which con­
tains the Pascal/VS debug
library.

File 7: PASCALVS.MACLIB
The standard include library.

Ft le a: PASCALVS.CLIST
A partitioned data set contain­
i ng two clists: PASCALVS and
PASCMOD.

File 9: PASCALVS.PROCLIB
A partitioned data set which con­
tains the JCL cataloged proce­
dures for running the compiler as
a batch job under MYS.

File 10: SAMPLE.PASCAL
A pa rt it i oned data set contain­
i ng sample programs.

TNL SN20444S (31 December 1981) to SH20-6162-1

APPENDIX B. INSTALLATION INSTRUCTIONS

File 11: PASCALVS.MESSAGES
A sequential data set which con­
tains the compiler messages.

File 12: CMS dump of the entire
Pascal/VS package:

- PASCALVS CONTENTS
A listing of the contents of
the Pascal/VS package.

PASCALS MODULE
A program that issues all
necessary FILEDEF commands
to CMS prior to invoking the
compiler.

- PASCALL MODULE
The first pass of the compil­
er.

- PASCALO MODULE
The second pass of the com­
piler.

- PASCALT MODULE
The third pass of the compil­
er.

- PASCALL TXTLIB
the txtl i b from which PAS­
CALL MODULE was generated.

- PASCALO TXTLIB
the txtlib from which PASCA­
LO MODULE was generated.

- PASCALT TXTLIB
the txtl i b from which PAS­
CAL T MODULE was generated.

- PASCALVS TXTLIB
The Pascal/VS
library.

- PASDEBUG TXTLIB

run time

The Pascal/VS debug library.

- PASCALVS MACLIB
The standard XINCLUDE
library.

- PASCALVS EXEC
CMS EXEC which invokes the
compiler

- PASCALVS CMSHELP
Help file that is accessed
when "PASCALVS ?" is
invoked.

- PASCMOD EXEC
CMS EXEC which creates a load
module from a compiled Pas­
cal/VS program.

- PASCALVS MESSAGES
Li st of the compiler mes­
sages.

Appendix B. Installation Instructions 165

TNL SN20-4445 (3lDecember 1981) to SH20-6162-l

- LOADSRC EXEC
An EXEC which will load the
source of the compi !er from
the tape.

- SAMPLE PASCAL
A sample program.

- PRIHGEN PASCAL
A sample program.

File 13: PASCALL.PASCAL
The source of the first pass of
the compi !er.

File 14: PASCALO.PASCAL
The source of the second pass of
the compi !er.

File 15: PASCALT.PASCAL
The source of the third pass of
the compi !er.

File 16: PASCALD.PASCAL
The source of the interactive
debugger.

File 17: PASCALX.PASCAL
The source of the runtime library
routines.

File 18: PASCALX.ASM
The source of the operating sys­
tem interface routines.

File 19: MACLIBL.PASCAL
Include library for first pass of
the compiler.

File 20: MACLIBO.PASCAL
Include 1 i brary for second pass
of the compiler.

File 21: MACLIBT.PASCAL
Include library for third pass of
the compiler.

File 22: MACLIBD.PASCAL
Include 1 i brary for interactive
debugger.

File 23: HACLIBX.PASCAL
Include library for runtime rou­
tines.

B.1 INSTALLING PASCAL/VS UNDER CMS

To install Pascal/VS under CMS perform
the following:

1. Have the distribution tape mounted
at address 181.

2. Link to the mini-disk Cin write
mode) where the compiler is to be
stored. This i~ done with the CP
LINK command. The. mini-disk must
have at least 2300 blocks of free
storage17 •

3.

4.

Access this disk with the ACCESS
command.

Execute the
commands:

TAPE FSF 11
TAPE LOAD * * m

following two

where "m" is the single letter file
mode of the disk that was accessed in
the previous step.

B.1.1 Regenerating compiler Modules

To fix bugs that are discovered in the
compiler often requires modules of the
compiler to be recompiled. 18 To replace
a compiled module Ca text deck> of the
compiler, execute the following two
commands:

TXTLIB DEL PASCALx AMPxcccc
TXTLIB ADD PASCALx AMPxcccc

where "PASCALx" is either PASCALL, PAS­
CALO, or PASCALT, depending on which
phase of the compiler is being fixed;
"AMPxcccc" is the module name being
replaced.

After the appropriate text modules have
been replaced, then the associated load
module will need to be regenerated. To
regenerate PASCALL MODULE, execute the
following:

PASCMOD AMPLMAIH PASCALL CHAME PASCALL

To regenerate PASCALO MODULE, execute
the following:

PASCMOD AMPOMAIH PASCALO CHAME PASCALO

To regenerate PASCALT MODULE, execute
the following:

PASCMOD AMPTMAIN PASCALT CNAME PASCALT

17 800 byte blocks are assumed. This amount is equivalent to 9 cylinders on
a 3330 disk.

18

166

The Pascal/VS compiler is written entirely in Pascal/VS and is self-compi­
ling.

Pascal/VS Programmer's Guide

I"•

(

compiler, execute the following two
commands:

TXTLIB DEL PASCALx AMPxcccc
TXTLIB ADD PASCALx AMPxcccc

where "PASCALx" is either PASCALL,
PASCALO, or PASCALT, depending on which
phase of the compiler is being fixed;
"AMPxcccc" is the module name being
replaced.

After the appropriate text modules have
been replaced, then the associated load
module will need to be regenerated. To

regenerate PASCALL MODULE, execute the
following:

PASCMOD AMPLMAIH PASCALL CHAME PASCALL

To regenerate PASCALO MODULE, execute
the following:

PASCMOD AMPOMAIH PASCALO CHAME PASCALO

To regenerate PASCALT MODULE, execute
the following:

PASCMOD AMPTMAIH PASCALT CHAME PASCALT

Installation Instructions 167

//JOBNAME JOB ,REGION=SOK
//STEP! EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUTl DD DSN=PASCALVS.INSTALL.CNTL,
// VOL=SER=TAPEVDL,
// UNIT=TAPE,LABEL=Cl,NL>,
// DCB=CLRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3>,
// DISP=OLD --
//SYSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL,DISP=CNEW,CATLG),
// DCB=CLRECL=80,RECFM-FB,BLKSIZE=3120),
// UNIT=3330,VOL=SER=DISKVOL, .
// SPACE=CTRK,Cl,1))
//SYSIN DD DUMMY

Figure 96. Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER VS2

This section explains how to install
Pascal/VS under an OS/VS2 system.

B.2.1 Loading Files from Distribution
Tape

A sample of the job control language
required to install Pascal/VS under VS2
CMVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program
IEBGENER must be used. The JCL shown
in Figure 96 may serve as a model job
to retrieve this file. DD operands
which are high-lighted will require
modification to suit your installation
requirements. The serial number ~f the
distribution tape must be placed where
the name "TAe_EVOL" appears in the DD
card named SYSUTl.

The data set name CDSN=> in the DD card
named SYSUT2 is arbitrary. It is the
name of the data set where the first
file on the tape is to be stored. The
appropriate UNIT and volume serial num­
ber for disk storage must be specified
for DD SYSUT2.

Figure 97 on page 169, Figure 98 on
page 170, and Figure 99 on page 171
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

• The name "TAPEVOL" must be replaced
with the volume serial number of
the distribution tape in the DD
statement named SYSUTl in job step
STEP!.

168 Pascal/VS Programmer's Gui de

•

•

•

•

•

•

The UNIT specification for tapes
has been given the generic name of
"TAPE"; this should be changed to
t~appropri ate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
t~appropriate specification at
your installation.

The disk volume on which Pascal/VS
is to be installed must be speci­
fied where indicated C"DISKVOL">
in the following DD statements:

in STEP!: SYSUT2
in STEP2: SYSUT2
in STEP3: DS4, DSS, DS6,

DS7, DS8, DS9,
DSlO

in STEP4: SYSUT2

The DD statements named SYSUT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener­
ic name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with­
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. If your dis­
tri buti on tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qualifier of data
set names that are to be cataloged
should be modified to follow
installation conventions. CThe
examples in this manual assume a
high level qua! i fi er of "SYSl".)

'- -

TNL SN20-4445 (31December 1981) to SH20-6162-l

//JOBNAME JOB ,REGION=SOK
//STEPl EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUTl DD DSN=PASCALVS.INSTALL.CNTL,
// VOL=SER=TAPEVOL,
// UNIT=TAPE,LABEL=Cl,Nl),
// DCB=CLRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3>,
// DISP=OLD --
//SYSUT2 DD DSN=XXXXXXXX.INSTALL.CNTL.DISP=CNEW,CATLG>,
// DCB=CLRECL=80,RECFM=FB,BLKSIZE=3120),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=CTRK,Cl,1))
//SYSIN DD DUMMY

Figure 96. Sample JCL to retrieve first file of distribution tape.

B.2 INSTALLING PASCAL/VS UNDER VS2

This section explains how to install
Pascal/VS under an OS/VS2 system.

B.2.1 Loading Files from Distribution
Tape

A sample of the job control language
required to install Pascal/VS under VS2
CMVS) is stored as the first file of
the distribution tape. To retrieve
this data set, the utility program IEB­
GENER must be used. The JCL shown in
Figure 96 may serve as a model job to
retrieve this file. DD operands which
are high-lighted will require modi fi­
cati on to suit your installation
requirements. The serial number of the
distribution tape must be placed where
the name "TAPEVOL" appears in the DD
card named SYSUTl.

The data set name CDSN=> in the DD card
named SYSUT2 is arbitrary. It is the
name of the data set where the first
file on the tape is to be stored. The
appropriate UNIT and volume serial num­
ber for disk storage must be specified
for DD SYSUT2.

Figure 97 on page 168, Figure 98 on
pa~e 169, and Figure 99 on page 170
contain a listing of the first file of
the distribution tape. The following
modifications are required prior to
submitting this job.

• The name "TAPEVOL" must be replaced
with the volume serial number of
the distribution tape in the DD
statement named SYSUTl in job step
STEP!.

168 Pascal/VS Programmer's Guide

•

•

•

•

•

•

The UNIT speci fi cation for tapes
has been given the generic name of
"TAPE"; this should be changed to
the appropriate generic at your
installation.

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate speci fi cation at
your installation.

The disk volume on which Pascal/VS
is to be installed must be speci­
fied where indicated C"DISKVOL">
in the following DD statements:

in STEP!: SYSUT2
in STEP2: SYSUT2
in STEP3: DS4, DS5, DS6,

DS7, DS8, DS9,
DSlO

in STEP4: SYSUT2

The DD statements named SYSUT3 and
SYSUT4 in job step STEP3 represent
temporary work storage. The gener­
ic name "SYSDA" is used as a UNIT
specification; this should be
changed to the appropriate generic
at your installation.

The tape density is specified with­
in the DEN suboperand of the DCB
attributes. In the sample job, DEN
is set to 3 which indicates a tape
density of 1600 BPI. If your dis­
tribution tape is at some other
density, then the DEN operands
should be changed accordingly.

The high level qua! i fi er of data
set names that are to be cataloged
should be modified to follow
installation conventions. CThe
examples in this manual assume a
high level qualifier of "SYSl".)

(

//INSTALL JOB ,REGION=128K
II*.
11*- FILE 2 -- SOURCE INSTALLATION JOB
II*.
/ISTEPl EXEC PGM=IEBGENER
/ISYSPRINT DD SYSOUT=*-
1/SYSUTl DD DSN=LOADSRC.CNTL,
II VOL=C,RETAIN,SER=TAPEVOL),
II UNIT=TAPE,LABEL=C2,NL),
11 DCB=CLRECL=80,RECFM=FB,BLKSIZE=3120,DEN=3>,
II DISP=COLD,PASS) --
/ISYSUT2 DD DSN=SVSl.LOADSRC.CNTL,DISP=CNEW,CATLG>,
II DCB=CLRECL=80,RECFM=FB,BLKSIZE=3120),
II UNIT=3330,VOL=SER=DISKVOL,
1 I SP AC E = cTI 2 o , c 1 , 1 »
/ISYSIN DD DUMMY
II*.
II* FILE 3 -- PASCALVS CONTENTS
II*.
//STEP2 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
/ISYSUTl DD DSN=PASCALVS.CONTENTS,
II VOL=REF=*-.STEPl.SYSUTl,
II UNIT=TAPE,LABEL=C3,NL),
II DCB=CLRECL=80,RECFM=VB,BLKSIZE=3120,DEN=J>,
II DISP=COLD,PASS) ~~-
llSYSUT2 DD DSN=SVSl.PASCALVS.CONTENTS,DISP=CNEW,CATLG),
II DCB=CLRECL=80,RECFM=VB,BLKSIZE=3120),
II UNIT=3330,VOL=SER=DISKVOL,
II SPACE=C3120,(1,1))
llSYSIN DD DUMMY
II*
II*.
II*.
II'*.
II*
II*.
II*
II*

FILE 4
FILE 5
FILE 6
FILE 7
FILE 8
FILE 9
FT.LE 10

PASCALVS.LINKLIB
PASCALVS.LOAD
PASDEBUG.LOAD
PASCAL VS .MACLIB
PASCAL VS. CLIST
PASCALVS.PROCLIB
SAMPLE.PASCAL

II*.
llSTEP3
llDS4
II
II
II
llFILE4
II
II
II
II
llDS5
II
II
II
//FILES
II
II
II
II
llDS6
II
II
II

EXEC PGM=IEBCOPY
DD DSN=SYSl.PASCALVS.LINKLIB,DISP=CNEW,CATLG),

DCB=CBLKSIZE=l3030,RECFM=U,DSORG=PO>,
UNIT=3330,VOL=SER=DISKVOL,
SPACE=CTRK,C50,10,3))

DD DSN=PASCALVS.LINKLIB,
VOL=REF=*-.STEPl.SYSUTl,
UNIT=TAPE,LABEL=C4,NL),
DCB=BLKSIZE=13030,
DISP=COLD,PASS>

DD DSN=SVSl.PASCALVS.LOAD,DIS~=CNEW,CATLG),
DCB=ffiKSIZE=13030,RECFM=U,DSORG=PO>,
UNIT=3330,VOL=SER=DISKVOL,
SPACE=CTRK,C14,10,36>>

DD DSN=PASCALVS.LOAD,
VOL=REF=*-.STEPl.SYSUTl,
DCB=BLKSIZE=13030,
UNIT=TAPE,LABEL=C5,NL),
DISP=COLD,PASS>

DD DSN=SYSl.PASDEBUG.LOAD,DISP=CNEW,CATLG),
DCB=CBLKSIZE=13030,RECFM=U,DSORG=PO>,
UNIT=3330,VOL=SER=DISKVOL,
SPACE=CTRK,C9,1,7))

Figure 97. Sample installation job: (continued in Figure 98 on page 170)

Installation Instructions 169

//FILE6 DD DSN=PASDEBUG.LOAD,
// VOL=REF=*.STEPl.SYSUTl,
// DCB=BLKSIZE=13030,
// UNIT=TAPE,LABEL=C6,NL),
// DISP=COLD,PASS)
//DS7 DD DSN=SYSl.PASCALVS.MACLIB,DISP=CNEW,CATLG>,
// DCB=CBLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO>,
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=CTRK,C25,2,3))
//FILE7 DD DSN=PASCALVS.MACLIB,
// VOL=REF=*.STEPl.SYSUTl,
// UNIT=TAPE,LABEL=C7,NL),
// DCB=BLKSIZE=3120,
// DISP=COLD,PASS>
//DS8 DD DSN=SYSl.PASCALVS.CLIST,DISP=CNEW,CATLG),
// DCB=CBLKSIZE=3120,RECFM=VB,LRECL=255,DSORG=PO),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=CTRK,(3,1,5))
//FILES DD DSN=PASCALVS.CLIST,
// VOL=REF=*.STEPl.SYSUTl,
// DCB=BLKSIZE=3120,
// UNIT=TAPE,LABEL=C8,NL>,
// DISP=COLD,PASS>
//DS9 DD DSN=SYSl.PASCALVS.PROCLIB,DISP=CNEW,CATLG),
// DCB=CBLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO>,
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=CTRK,C2,2,2))
//FILE9 DD DSN=PASCALVS.PROCLIB,
// VOL=REF=*.STEPl.SYSUTl,
// UNIT=TAPE,LABEL=C9,NL>,
// DCB=BLKSi'ZE=3120,
// DISP=COLD,PASS>
//DSlO DD DSN=SYSl.SAMPLE.PASCAL,DISP=CNEW,CATLG>,
// DCB=CBLKSIZE=3120,RECFM=FB,LRECL=80,DSORG=PO>,
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=CTRK,CS,2,2))
//FILElO DD DSN=SAMPLE.PASCAL,
// VOL=REF=*.STEPl.SYSUTl,
// UNIT=TAPE,LABEL=ClO,NL>,
// DCB=BLKSIZE=3120,
// DISP=COLD,PASS>
//SYSPRINT DD SYSOUT=*
//SYSUT3 DD UNIT=SYSDA,SPACE=CTRK,Cl))
//SYSUT4 DD UNIT=SYSDA,SPACE=CTRK,Cl))
//SYSIN DD *

/*

COPY OUTDD=DS4,INDD=FILE4
COPY OUTDD=DS5,INDD=FILE5
COPY OUTDD=DS6,INDD=FILE6
COPY OUTDD=DS7,INDD=FILE7
COPY OUTDD=DS8,INDD=FILE8
COPY OUTDD=DS9,INDD=FILE9
COPY OUTDD=DSlO,INDD=FILElO

Figure 98. Sample installation job: (continued in Figure 99 on page 171)

170 Pascal/VS Programmer's Guide (

TNL SN20-4445 (31December1981) to SH20.0162-1

FILE 11-- PASCALVS MESSAGES
//*
//*
//*
//'JE

<Must be stored unblocked because of BDAM access requirements)

//STEP4 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSUTl DD DSN=PASCALVS.MESSAGES,
// VOL=REF='lE.STEPl.SYSUTl,
// UNIT=TAPE,LABEL=Cll,NL>,
// DCB=CLRECL=64,RECFM=FB,BLKSIZE=3200,DEN:J),
// DISP=COLD,PASS> --
//SYSUT2 DD DSN=SYSl.PASCALVS.MESSAGES,DISP=CNEW,CATLG),
// DCB=CLRECL=64,RECFM=F,BLKSIZE=64),
// UNIT=3330,VOL=SER=DISKVOL,
// SPACE=CTRK,Cl,1>)
//SYSIN DD DUMMY

Figure 99. Sample installation job: (continued from Figure 97 on page 168
and Figure 98)

B.2.2 The TSO Clists

Distributed with the compiler are two
CLISTs: PASCALVS and PASCMOD. These
CLISTs reside in the partitioned data
set PASCALVS.CLIST (file 8 of the dis­
tribution tape>.

These CLISTs should be stored in a pub­
lic CLIST library that is accessable to
TSO users through DDname SYSPROC.

Each CLIST must be modified so that the
correct high level qualifier name is
used to reference the Pascal/VS data
sets. In PASCALVS, the symbol named
"FIRSTNAME" should be set to the appro­
priate name. In PASCMOD, the symbols
named "LIBRARY" and "DEBUGLIB" should
be set to the names of the Pascal/VS
run time library and the debug library,
respectively.

B.2.J cataloged Procedures

Distributed with the compiler are four
cataloged procedures for invoking the
compiler from a batch job: PASCC,
PASCCG, PASCCL, and PASCCLG. These
procedures reside in the partitioned
data set PASCALVS.PROCLIB Cfile 9 of
the distribution tape).

These procedures should be stored in a
cataloged procedure 1 i brary, so that
the names will be recognized .when ref­
erenced from a batch job.

Each procedure must be customized to
reflect the data set naming convention
chosen at your installation. For a

listing of the cataloged procedures see
"IBM Supplied Cataloged Procedures" on
page 24.

B.3 LOADING THE SOURCE UNDER CMS

The compiler source is stored on the
distribution tape beginning at file 13;
that is, 12 tape marks from the begin­
ning of the tape. It consists of nine
tape files stored in the IEBUPDTE for­
mat. To read such a format under CMS,
the TAPPDS command must be utilized.

The LOADSRC EXEC, which is provided as
part of the Pascal/VS package, may be
used to load all of the source files to
a single disk. To run this EXEC, per­
form the following:

1. Have the distribution tape mounted
at address 181.

2. Access the disk where the source
files are to be stored in R/W mode.
The disk must have the equivalent
of 35 free cylinders of 3330 stor­
age.19

3. Make sure that there is the equiv­
alent of at least 2 free cylinders
of 3330 storage on your "A" disk.

4. Invoke the LOADSRC EXEC as follows:

LOADSRC f m
where "fm" is the single letter
file mode of the disk to where the
source files are to be placed. The
EXEC will print out messages as it
processes the tape.

19 This is roughly 9400 800-byte blocks. Once the source files have been
installed, you may find it desirable to pack them in order to save disk
storage.

Appendix B. Installation Instructions 171

TNL SN20-4445 (31December 1981) to SH20-{)162-1

B.4 LOADING THE SOURCE UNDER VS2

The compi !er source is stored on the
distribution tape beginning at file 13.
It consists of nine tape files stored
in the IEBUPDTE format.

File 2 of the distribution tape con­
tains the JCL which copies the source
fi !es to disk storage. This file is
unloaded when the compiler is installed
and has been given the name
"LOADSRC.CNTL".

Prior to submitting the job, it must be
customized as follows:

• In ddname SYSIN of jobstep STEP!,
the volume serial number of the
distribution tape should be placed
where the name TAPEVOL is shown.

• The UNIT speci fi cation for tapes
has been given the generic name
"TAPE"; this should be changed to
the appropriate generic at your
installation.

172 Pascal/VS Programmer's Guida

•

•

•

•

•

The UNIT specification for disk
storage has been specified as
"3330"; this should be changed to
the appropriate specification at
your installation.

The disk volume on which the source
files are to be stored must replace
the name "DISKVOL" in the DD state­
ment named SYSUT2 in each job step.

The high level qua! i fi er for the
data set names to be cataloged is
arbitrary. In the supplied JCL,
the name "SOURCE" is used.

If you do not want a Ii sting of the
source, then DDname SYSPRINT
should be assigned to DUMMY in each
of the job steps.

The tape density is specified with­
in the DEN suboperand of the DCB
attributes. In the JCL, DEN is set
to 3 which indicates a tape density
of 1600 BPI. If your distribution
tape is at some other density, then
the DEN operands should be changed
accordingly.

//LOADSRC JOB ,REGION=50K
/O~.

//* FILE 13 -- PASCALL PASCAL - PASS 1 SOURCE CCOMPILER>
//*
//STEP! EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=§_Q~RCE.PASCALL.PASCAL,DISP=CNEW,CATLG),
// UNIT=3330,DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=DISKVOL,SPACE=CTRK,C132,43,5))
//SYSIN DD UNIT=TAPE,VOL=C,RETAIN,SER=TAPEVOL>,LABEL=C13,NL>,
// DISP=COLD,PASS),
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN:J)
//SYSPRINT DD SYSOUT=*
//*
//* FILE 14 -- PASCALO PASCAL - PASS 2 SOURCE (OPTIMIZER>
//*
//STEP2 EXEC PGM=IEBUPDTE,PARM=HEW
//SYSUT2 DD DSN=SOURCE.PASCALO.PASCAL,DISP=CNEW,CATLG>,
// UtnT=J330, DCB=C LRECL=80, BLKSIZE=3120, RECFM=FB),
// VOL=SER=DISKVOL,SPACE=CTRK,C40,10,5))
//SYSIN DD UtHT=TAPE, VOL =REF=*. STEP 1. SYS IN, LABEL =C14, HU,
// DISP=COLD,PASS>,
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=*
//*
//* FILE 15 -- PASCALT PASCAL - PASS 3 SOURCE CTRANSLATOR>
//*
//STEP3 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.PASCALT.PASCAL,DISP=CNEW,CATLG>,
// UNIT:3330~DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=DISKVOL,SPACE=CTRK,Cl17,39,5))
//SYSIH DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=Cl5,HL>,
// DISP=COLD,PASS>,
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRIHT DD SYSOUT=* ~~
//*
//* FILE 16 -- PASCALD PASCAL - DEBUG SOURCE
//*
//STEP4 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.PASCALD.PASCAL,DISP=CNEW,CATLG>,
// UNIT=333"0;"DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=DISKVOL,SPACE=CTRK,C33,9,5))
//SYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIH,LABEL=C16,NL),
// DISP=COLD,PASS),
// DCB=CLRECL=801BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=* ~~
//*
//* FILE 17 -- PASCALX PASCAL - RUN TIME ENVIRONMENT SOURCE
//*
//STEPS EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.PASCALX.PASCAL,DISP=CNEW,CATLG),
// UNIT=3330,DCB=CLRECL~80,BLKSIZE=3120,RECFM=FB),
// VOL=SER=DISKVOL,SPACE=CTRK,C69,24,5))
//SYSIN DD UNIT =TAF'E, VOL =REF=*. STEP 1. SYS IN ,-LABEL= C 17, NL),
// DISP=COLD,PASS),
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=*

Figure 100. Listing of the JCL to copy source files from tape: this job is
stored as file 2 of the distribution tape. (continued in
Figure 101 on page 174>.

Installation Instructions 173

//*
//* FILE 18 -- PASCALZ ASM - RUN TIME ENVIRONMENT SOURCE
//*
//STEP6 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.PASCALZ.ASM,DISP=CNEW,CATLG),
// UNIT=3330~DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=liISKVOL,SPACE=CTRK,(16,1,4))
//SYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=C18,NL>,
// DISP=COLD,PASS),
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=*
//*
//*
//*

FILE 19 -- MACLIBL PASCAL

//STEP7 EXEC PGM=IEBUPDTE,PARM=NEW

- %INCLUDE LIBRARY FOR COMPILER

//SYSUT2 DD DSN=SOURCE.MACLIBL.PASCAL,DISP=CNEW,CATLG),
// UNIT=3330,DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=DISKVOL,SPACE=CTRK,C21,7,4))
//SYSIN DD UNIT=TAPE,VOL=REF=*-.STEP1.SYSIN,LABEL=C19,NL),
// DISP=COLD,PASS>,
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=*-
//*
//*
//*

FILE 20 -- MACLIBO PASCAL - %INCLUDE LIBRARY FOR OPTIMIZER

//STEP8 EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.MACLIBO.PASCAL,DISP=CNEW,CATLG),
// UNIT=3330~DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=DISKVOL,SPACE=CTRK,C5,2,3>>
//SYSIN DD UNIT=TAPE:l/OL=REF=*-.STEP1.SYSIN,LABEL=C20,NL),
// DISP=COLD,PASS),
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=* ~~
//*.
//* FILE 21 -- MACLIBT PASCAL - %INCLUDE LIBRARY FOR TRANSLATOR
//*
//STEP9 EXEC
//SYSUT2 DD
//

PGM=IEBUPDTE,PARM=NEW
DSN=SOURCE.MACLIBT.PASCAL,DISP=CNEW,CATLG>,
UNIT=3330~·DCB=< LRECL =80, BLKSIZE=3120, RECFM=FB>,

//
//SYSIN
//
//
//'Ir.
//*
//*

VOL =SER=DISKVOL, SPACE= CTRK, C 19, 7, 4 > >
DD UNIT=TAPE,VOL=REF=*-.STEP1.SYSIN,LABEL=C21,NL>,

DISP=COLD,PASS>,
DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>

FILE 22 -- MACLIBD PASCAL - %INCLUDE LIBRARY FOR DEBUG

//STEPlO EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.MACLIBD.PASCAL,DISP=CNEW,CATLG),
// UNIT=3330.-DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// VOL=SER=DISKVOL,SPACE=CTRK,(2,1,1>>
//SYSIN DD UNIT=TAPE,VOL=REF=*.STEP1.SYSIN,LABEL=C22,NL),
// DISP=COLD,PASS>,
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=* ~~
//*
//*.
//*
//*

FILE 23 -- MACLIBX PASCAL - %INCLUDE/MACRO LIBRARY FOR RUN TIME
ENVIRONMENT

//STEPll EXEC PGM=IEBUPDTE,PARM=NEW
//SYSUT2 DD DSN=SOURCE.MACLIBX.PASCAL,DISP=CNEW,CATLG),
// UNIT=3330~DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB>,
// 11n1 :::c:i::e>:::nTCll'\IMI C:.PAf'l==fTPll'.(Q.1.?))

//SYsrn DD uN i T;TAPE:voL ;REF~* ~s TEP 1·:sY.siN: t: AB EL= c 23, Nu,
// DISP=OLD,
// DCB=CLRECL=80,BLKSIZE=3120,RECFM=FB,DEN=3>
//SYSPRINT DD SYSOUT=* ~~

Figure 101. Listing of the JCL to copy source files from tape: (continued
from Figure 100)

174 Pascal/VS Programmer's Guide

....

TNL SN204445 (31 December 1981) to SH20-6162-1

APPENDIX C. ADDITIONAL LIBRARY PROCEDURES AND FUNCTIONS

In addition to the routines described
in Pascal/VS Reference Manual, order
number SH20-6168-1, there are several
other routines which are not predefined
but are provided in the Pascal/VS exe­
cution library. These routines are :

• ITOHS Procedure

•
•
•

CMS Procedure

LPAD Procedure

RPAD Procedure

I • PICTURE Function

Appendix C~ Additional Library Procedures and Functions 175

TNL SN20-444S (31December1981) to SH20-6162-1

C.1 CMS PROCEDURE

Invoke a CMS Command

Definition:

procedure CMSC
canst s
var RC
EXTERNAL;

Where:

STRING;
INTEGER>;

S is a STRING that is to be
executed.

RC is the return code.

The STRING specified by S will be
passed to CMS Cvia SVC 202) to be exe­
cuted; the command must be executable
in the transient area or in a shared
segment. You must code the declaration
as shown abo~e, or use the INCLUDE mem­
ber named "CMS" which is provided in
the Pascal/VS library. This procedure
is applicable under CMS only.

%INCLUDE CMS

CMS C 'Q T', RET>;

176 Pascal/VS Programmer's Guide

C.2 ITOHS FUNCTION

Convert an INTEGER to a hex string

Defi ni ti on:

function ITOHSC
I INTEGER>

STRINGC8);
EXTERNAL;

Where:

I is the value to be converted.

This function converts the parameter I
into a STRING that contains the hexade­
cimal representation of the integer.
You must code the declaration as shown
above, or use the INCLUDE member named
"CONVERT" which is provided in the Pas­
cal/VS 1 i brary.

%INCLUDE CONVERT

WRITELNC'The value ',I:O,
' is ', ITOHSCI>,
' in hexadecimal.');

\.

r

C.3 LPAD PROCEDURE

Pads or truncates a string on the left

Defi n i ti on:

procedure
var s

LPADC

L
c

EXTERNAL;

Where:

STRING;
INTEGER;

: CHAR>;

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure LPAD pads or truncates
string variable S on the left. If
LENGTHCS) is greater than L. then the
effect is to truncate characters on the
left. If LENGTHCS) is less than L,
then the effect is to extend S with the
character C on the left. You must code
the declaration as shown above. or use
the INCLUDE member named "STRING" which
is provided in the Pascal/VS library.

~INCLUDE STRING;

. S : = 'ABCDEF' ;
LPADCS, 10, '$');

produces '$$$$ABCDEF' in S

S :: 'ABCDEF';
LPADCS, 5, '$');

produces 'BCDEF' in S

TNL SN20-4445 (31 December 1981) to SH20-6162·1

C.4 RPAD PROCEDURE

Pads or truncates a string on the
right

Definition:

procedure
var s

L

RP ADC

c
EXTERNAL;

Where:

STRING;
INTEGER;
CHAR>;

S is the STRING to be padded;
L is the final length of S;
C is the pad character.

The procedure RPAD pads or truncates
string variable S on the right. If
LENGTHCS> is greater than L, then the
effect is to truncate characters on the
right. If LENGTHCS> is less than L,
then the effect is to extend S with the
character C on the right. You must
code the declaration as shown above, or
use the INCLUDE member named "STRING"
which is provided in the Pascal/VS
library.

Y.INCLUDE STRING

S : = 'ABCDEF' ;
RPADCS, 10, '$');

produces 'ABCDEF$$$$' in S

S :: 'ABCDEF';
RPADCS, 5, '$');

produces 'ABCDE' in S

Appendix C. Additional Library Procedures and Functions 177

TNL SN20-4445 (31 December 1981) to SH20-6162-1

C.S PICTURE FUNCTION

Formats a float~ng point value
according to a "picture" format

Definition:

function PICTURE(
const p : STRING;

R : REAL): STRINGC100);
EXTERNAL;

Where:

P is a picture specification;
R is the number to be formatted.

The function PICTURE returns the string
representation of a real number format­
ted according to a "picture" specifica­
tion. The characters that make up the
picture specification are simHar to
those found in PL/I and COBOL.

A declaration for PICTURE may be
obtained by including the member CON­
VERT from the Pascal/VS library.

A picture specification may consist of
two fields: a decimal field and an
exponent field. The latter is optional;
the first one is always required.

The decimal
subfields:
fractional
optional.

field may consist of two
the integer part and the
part. The latter is

Example of picture specifications:

S9999.V99
9V.999ES99
$ZZZ,ZZZ,ZZ9V.99

A picture character may be grouped into
the following categories. Picture
characters may be specified in lower
case.

• Digit and decimal-point specifier

9 specifies that the associated
position in the data item is to
contain a decimal digit.

V divides the decimal f!e!d into
two parts: the integer part and
the fractional part. This char­
acter specif'ies that a decimal
point is assumed at this posi­
tion in the associated data
item. However, it does not spec­
ify that an actual decimal point
is to be inserted. The integer
and fractional parts of the
assigned value are aligned on
the V character; therefore, an
assigned value may be truncated
or extended with zero digits at

178 Pascal/VS Programmer's Guide

either end. CUser beware!) If
no V character appears, a V is
assumed at the right end of of
the decimal field.

• Zero suppression characters

•

Z specifies a conditional digit
position 1n the character
string value and may cause a
leading zero to be replaced with
a blank.

3E specifies a conditional digit
position 1n the character
string value and may cause a
leading zero to be replaced with
an asterisk<'*').

leading zeros are those that occur
in the leftmost digit positions of
the integer part of floating point
numbers.

Insertion character

Insertion characters are inserted
into corresponding positions in
the output string provided that
zero suppression is not taking
place. If zeros are being sup­
pressed when an insertion
character is encountered, a blank
or an asterisk will be inserted in
the corresponding place in the out­
put string, depending on whether
the zero-suppression character is
a Z or an asterisk (*).

, causes a comma to be inserted
into the associated position of
the output string.

causes a point C.) to be
inserted into the associated
position of the output string.
The character never causes
point a!; gnment in the number.
That function is served soley by
the character V.

B causes a blank to be inserted
into the associated position of
the output string.

• Signs and currency symbol

The sign and currency characters
C'S','+','-','$') may be used in
either a static or a drifting man­
ner. ThQ static usa specifies that
a sign, a currency symbol, or a
blank always appears in the associ -
ated position. The drifting use
specifies that leading zeros are to
be suppressed.

A drifting character is specified
by multiple use of that character
in a picture field.

+ specifies a plus sign character
(+) if the number is >=O, other­
wise it specifies a blank.

•

specifies a minus sign charac­
ter (-) if the number is <O,
otherwise it specifies a blank.

S specifies a plus sign character
C+) if the number is >=O, other­
wise it specifies a minus sign
character (-).

$ specifies a dollar sign charac­
ter($).

Exponent specifiers

The characters 'E' and 'K' delimit
the exponent field of a picture

p

'99999'
'ZZZZ9'
'****9'
'ZZZZ9'
'ZZZZZ'
'****9'
'*****'
'59999'
'+9999'
'+9999'
'999.99'
'999V.99'
'ZZZ,ZZZ,ZZ9'
'***•***•**9' •-zz.zzz,zz9•
•---,---,--9'
'$**•***•**9V.99'
'$$$,$$$,$$9V.99'
'59V.9999ES99'
'59V.9999K599'
'-999.999,V99'
'-9.999E9'
'9B9B9B9B9B9'
'9.9.9.9.9.9'
'999995'
'999+'
'999+'
'ZZZ.V99'
'ZZZV.99'
'-9V.999E59'
'59999VE5Z9'
'-V.999E-99'

R

123.0
123.0
123.0

0.0
0. 0
0. 0
0. 0

123.0
123.0

-123.0
-123.456

123.456
123456.0
123456.0

-123456.0
-123456.0

123456.78
123456.78

1.23456
1.23456

1234.567
-1234.567

123456.0
12345.0

-12345.0
-123.45
+123.45

0.12
0.12

l.23E4
-123456.0

123456.0

TNL SN20-4445 (31December1981) to SH20-6162·1

specification. The exponent field
must always be the last field.

E specifies that the associated
position contains the letter E,
which indicates the start of the
exponent field.

K specifies that the exponent
field appears to the right of
the associated position. It
does not specify a character
data item.

See Figure 102 for examples.

PICTURECP,RJ

'00123'
' 123'
'**123'
' 0 '
' '
'****0'
'*****'
'+0123'
'+0123'
' 0123'
'001.23'
'123.46'
' 123,456'
'****123,456'
,_ 123,456'
' -123,456'
'$***123,456.78'
' $123,456.78'
'+1.2346E+OO'
'+1.2346+00'
'-001.234,57'
'-1.235E3'
'1 2 3 4 5 6'
'0.1.2.3.4.5'
'12345-'
'123 '
'123+'
' 12'
' . 12'
' 1.230E+4'
'-1235E+ 2'
'.123E 06'

Figure 102. Examples of using the PICTURE function

Appendix C. Additional Library Procedures and Functions 178.1

'

._1

(
'

access methods 45
BDAM 45
BPAM 45
QSAM 45

arrays
storage mapping of 88

assembler routines, linking
to 104-119

calling Pascal/VS main program
from 109

calling Pascal/VS routines
from 107

general interface 105-106
minimum interface 104
receiving parameters 107

assembly listing 42
automatic variables

storage mapping of 87

batch
See OS batch

BDAM 45
BLKSIZE 45, 57
block size attribute

See BLKSIZE
BPAM 45

CALL
command of TSO 20

cataloged procedures 24
PASCC 25
PASCCG 26
PASCCL 27
PASCCLG 28

CHECK compiler option 31
as it applies to

CASE statements 31
function routines 31
pointers 31
string truncation 32
subranges 31
subscripts 31

checking errors at run time 61
CLOSE procedure 55
closing a file 55
CMS 9-13

building load module 12
compiling under 9-11
defining files under 13
invoking load module 13

CMS procedure 176
COBOL 114

calling from Pascal/VS 114
calling Pascal/VS from 115

code generation 91-102
See also DSA,
linkage conventions

parameter passing,
PCB,
PCWA,
register usage,
routine format,
routine invocation

command syntax 163
compilation

under CMS 9-11
under OS batch 23-30
under TSO 15-17

compiler diagnostics
under CMS 10
under TSO 17

compiler listings 37-43
assembly

See assembly listing
cross-reference

See cross-reference listing
ESD

See ESD table
source

See source listing
compiler messages

See messages, compiler
compiler options 31-33

See also CHECK compiler option,
DEBUG compiler option,
GOSTMT compiler option,
LANGLVL compiler option,
LINECOUNT compiler option,
LIST compiler option,
MARGINS compiler option,
NOCHECK compiler option,
NODEBUG compiler option,
NOGOSTMT compiler option,
NOLIST compiler option,
NOOPTIMIZE compiler option,
NOPXREF compiler option,
NOSOURCE compiler option,
NOWARNING compiler option,
NOXREF compiler option,
OPTIMIZE compiler option,
PAGEWIDTH compiler option,
PXREF compiler option,
SEQUENCE compiler option,
SOURCE compiler option,
WARNING compiler option,
XREF compiler option

console input/output 47
CONSOLE option

of PASCALVS CLIST 16
of PASCALVS EXEC 10

COUNT run time option 35
cross-reference listing 40-41

data set attributes 45
See also LRECL, RECFM, BLKSIZE

data set definitions
See file definitions

DCB attributes
See data set attributes

DDname
OPEN specification 57

DDname association 45
DEBUG compiler option 32

Index 179

debug facility 65-85
commands 65-77

break 66
clear 66
CMS 67
display 67
display breaks 68
display equates 68
end 69
equate 69
go 70
help 71
listvars 71
qualify 72
quit 72
reset 73
set attr 7 3
set count 74
set trace 74
trace 7 5
viewmemory 76
view variable 75
walk 77

input to 65
output from 65
qualification 65

DEBUG option
of PASCMOD CLIST 19
of PASCMOD EXEC 12
of run time 35

debugging a program
interactive debugger

See debug facility
traceback facility 59

DEF variables
storage mapping of 87

default
BLKSIZE 45
LRECL 45
RECFM 45

DISK option
of PASCALVS EXEC 9

DSA {dynamic storage area) 92
dump

symbolic variable 63
dynamic storag~ area

See DSA
dynamic variables

storage mapping of 87

end-of-file condition
for record files 54
for text file 54

end-of-line condition 53
enumerated scalar

storage mapping of 88
EOF function 54
EOLN function 53
EPILOG assembler macro 105
ERRCOUNT run time option 35
ERRFILE run time option 35
errors

execution time
intercepting 62

ESD table 43
executing a program

under OS batch 23-30
execution error handling 61
execution errors

intercepting 62

180 Pascal/VS Programmer's Guide

external symbol dictionary
See ESD table

file control block
See PCB

file definitions
under CMS 13
under OS batch 29
under TSO 20

files
See also input/output facilities
See also record files
See also text files
storage mapping of 89

FORTRAN 112
calling from Pascal/VS 112
calling Pascal/VS from 113

function invocation
See routine invocation

GET procedure 48
record files 48
text files 48

GOSTMT compiler option 32
GS compiler option

See GOSTMT compiler option

l/O facilities
See input/output facilities

~INCLUDE facility
under CMS 10
under OS batch 29
under TSO 17

input/output facilities 45-58
implementation 45
record files

See record files
text files

See text files
installation instructions 165-174

compiler source
under CMS 171
under VS2 172

for CMS 166
for OS/VS2 168-171

cataloged procedures 171
CLIST customizing 171
loading compiler 168-171

modifying for CMS R5 166
regenerating compiler under

CMS 166
interactive files 46, 51
INTERACTIVE open option 46, 57
intercepting execution errors 62
interlanguage communication 103-119

assembler 104
COBOL 114
data type equivalencing 118
FORTRAN 112
PL/I 116

..

ITOHS function 176

JCL 23
job control language 23

LANGLVL compiler option 32
LC compiler option

See LINECOUNT compiler option
LIB option

of PASCALVS CLIST 16
of PASCMOD CLIST 19

LINECOUNT compiler option 32
linkage conventions 91
LIST compiler option 32
listing

See compiler listings
load module

creating under CMS 12
creating under TSO 18
invoking under CMS 13
invoking under TSO 20

logical record length
See LRECL

LPAD procedure 177
LRECL 45, 57

MACL IB access
See partitioned data set

MAINT run time option 35
MARGINS compiler option 32
MEMBER open option 58
messages 131-159

compiler 131-149
DEBUG 157
execution time messages 150
PASCALVS exec 159

MVS batch
See OS batch

NAME option
of PASCMOD EXEC 12

HOCHECK compiler option
HOCHECK run time option
NODEBUG compiler option
HOGOSTMT compiler option
NOGS compiler option

See HOGOSTMT compiler
HOLIB option

31
35
32

32

option

of PASCALVS CLIST 16
HOLIST compiler option 32
non-text files

See record files
HOOBJ option

of PASCALVS EXEC 10
HOOBJECT option

of PASCALVS CLIST 16
HOOPT compiler option

See HOOPTIMIZE compiler option
NOOPTIMIZE compiler option 33
NOPRINT option

of PASCALVS CLIST 16
of PASCALVS EXEC 10

NOPXREF compiler option 33
NOS compiler option

See NOSOURCE compiler option
NOSEQ compiler option

See NOSEQUENCE compiler option
NOSEQUEHCE compiler option 33
NOSOURCE compiler option 33
NOSPIE run time option 35
NOWARNING compiler option 33
HOX compiler option

See HOXREF compiler option
NOXREF compiler option 33

OBJECT option
of PASCALVS CLIST 15
of PASCMOD CLIST 19

open options 56
INTERACTIVE 46

opening a file
for input 46
for interactive input 46
for output 47
for terminal I/O 47
for update 4 7

OPT compiler option
See OPTIMIZE compiler option

OPTIMIZE compiler option 33
OS batch 23-30

cataloged procedures 23
compiling under 23
executing under 23

Page cross reference 33
PAGE procedure 53
PAGEWIDTH compiler option 33
parameter passing 95-96

by value 95
function results 96
read-only reference CCOHST> 95
read/write reference CVAR> 95
routine parameters 96

partitioned data set 56, 58
access under CMS 56
opening 56

Pascal communication work area
See PCWA

Pascal, standard
extensions 127
modified features 127
restrictions over 127

PASCAL VS
CLIST of TSO 15
DEBUG messages

See messages, PASCALVS exec
exec messages

See messages, PASCALVS exec
exec of CMS 9-10

PASCC cataloged procedure 25, 27

Index 181

PASCCG cataloged procedure 26
PASCCL cataloged procedure 27
PASCCLG cataloged procedure 28
PASCMOD

CLIST of TSO 18
EXEC of CMS 12

PCB 101
PCWA 98
PDS

See partitioned data set
PDSIN procedure 56
PDSOUT procedure 56
Pl/I 116

calling from Pascal/VS 116
calling Pascal/VS from 117

PRINT option
of PASCALVS CLIST .16
of PASCALVS EXEC 10

procedure invocation
See routine invocation

PROLOG assembler macro 105
PUT procedure 49

record files 49
text files 49

PW compiler option
See PAGEWIDTH compiler option

PXREF compiler option 33

QSAM 45

READ procedure
for record file 54
text file 49

integer data 50
length qualifier 50
real data 50
strings 51

READLN procedure 51
RECFM 45, 57
record fields

storage mapping of 87
record files 46

closing 55
GET operation 48
opening for input 46
opening for output 47
processing of 54-55.
PUT operation 49
updating 47

record format
See RECFM

records
storage mapping of 88

regenerating compiler under CMS 166
register usage 91
RESET procedure 46
REWRITE procedure 47
routine format 97
routine invocation 94
RPAD procedure 177
run time errors

intercepting 62
run time libraries

under CMS 12
run time options 35

182 Pascal/VS Programmer's Guida

runtime environment 121-125
main program 121
memory management 125
program initialization 121

S compiler option
See SOURCE compiler option

SEQ compiler option
See SEQUENCE compiler option

SEQUENCE compiler option 33
SETMEM option 35
sets

storage mapping of 89
SOURCE compiler option 33
source listing· 37-39

compilation statistics 39
error summary 38
nesting information 38
option llst 38
page cross reference field 38
page header 38
statement numbering 38

spaces
storage mapping of 90

standard Pascal
See Pascal

static variables
storage mapping of 87

storage mapping 87-90
arrays 88
automatic storage 87
boundary alignment 87-90
data size 87-90
DEF storage 87
dynamic storage 87
enumerated scalar 88
files 89
predefined types 87
record fields 87
records 88
sets 89
spaces 90
static storage 87
subrange scalar 88

subrange scalar
storage mapping of 88

symbolic variable dump 63
syntax notation 163
SYSLIB 27, 29
SYSLIN DDname 24
SYSLMOD 27
SYSPRINT DDname 24
SYSPRINT option

of PASCALVS CLIST 16

TERMIN procedure 47
terminal input/output 47
TERMOUT procedure 47
text files 46

closing 55
GET operation 48
interactive input 46
opening for input 46
opening for output 47
processing of 49-54

"

.·

'

PUT operation 49
traceback facility 59-61
TSO 15-21

building load module 18
compiling under 15-17
defining files under 20
invoking load module 20

UPDATE procedure 47

variable dump
VS2 batch

See OS batch

63

W compiler option
See WARHIHG compiler option

WARHIHG compiler option 33
WRITE procedure 52

for record file 54
WRITELH procedure 53

X compiler option
See XREF compiler option

XREF compiler option 33

Index 183

..

,J

SH20-6162-1

--.. - ~c~i ----- ---~ ----. ----- - ------- --_ _... - " -
International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y .. U.S.A. 10591

IBM World Trade Europe/Middle East/Africa Corporation
360 Hamilton Avenue, White Plains, N.Y .. U.S.A. 10601

"ti

"' "' i;i
.:::::::
<
Cl)

"ti
0
cc
"' 3
3
Cl)
..... .,,-
G)
c c.:
Cl)

•

..

...: E c:
E .E
a. "' ·:; .r:.
C1'
Cl> iii
Cl Cl>
c: "' ·.;::; 0
0 Cl>
"' a.
·- <Cl <Cl

E -c
Cl>

-c E
~ E
E s,
0 '
s~
<Cl

.r:. 0
-~ '""'
~ 0
"' Cl>
E ·~
~ ·;;;
.J:l c: e s:
a. E
:l: ::I
::I "'
~ ~
c: a.
<Cl Cl>
u "'
"' ::I Cl> Cl>

c. :a
<Cl Cl> en s:

Pascal/VS: 5796-PNO
Programmer's Guide

SH20-6162-1

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, is
deemed appropriate. Comments may be written in your own language; use of English is not required.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system. to
your IBM representative or to the IBM branch office serving your locality .
Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation? __________________________ _

Number of latest Newsletter associated with this publication: -------------

READER'S
COMMENT
FORM

Thank you for your-co_~peration. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

SH20-6162·1

Reader's Comment Form

Fold and tape Please Do Not Staple

I II I

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 68Y
P.O. Box 2750
225 John W. Carpenter Freeway, East
Irving, Texas 75062

Fold and tape

--.. - --® ----- - ---- _.. --- -. ------ - - ------------ - ' -
International Business Machines Corporation
Data Processing Division

Please Do Not Staple

1133 Westchester Avenue. White Plains. N.Y. 10604

IBM World Trade Americas/Far East Corporation
Town of Mount Pleasant, Route 9. North Tarrytown. N.Y .• U.S.A. 10591

IBM vyorta'Trade Europe/Middle East/ Africa Corporation
360 Hamilton Avenue, White Plains. N.Y .• U.S.A. 10601

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

I
n s
~
"Tl
0
ii
)>
0
:I

"' r :;·

"'

~
~
Ill
:::::::
<
CJ)

"ti ..,
0
tC ..,
Ill
3
3
CD .., .,.·
G>
c:
a:
CD

"ti
:::!.
:::I
CD a.
:::I

c
en
)>

CJ)
:I:
II.) • 0 .) c:n,
en
r:--> ...

E: :.E,~ ~echnical Newsletter ~1 I~

PASCAL/VS
Programmer's Guide

Program Number: 5796-PNQ

This Newsletter No.

Date

Base Publication No.

File No.

Prerequisite Newsletters

SN20-4445

31 December 1981

SH20-6 l 62-l

SN20-41l7

This Technical Newsletter provides replacement pages for the subject publication.
Pages to be replaced are listed below.

Cover
v/vi
vii/viii
ix/x
5/6
29/30
35/36
37 -40
45 -58
58.1/58.2
103 - 108
113 - 120
127-130
138.1/138.2
139 - 142
142.1/142.2
147 - 150
153 - 156
165 - 168
171/172
175 - 178
178.1/178.2

Note: File this cover page at the back of the manual to provide a record of changes.

IBM Corporation, Marketing Publications, Dept. 825, 1133 Westchester Ave., White Plains, N. Y. 10604

P 'J.S.A.

"

