A Guide to the IBM
System/370 Model 168
for System /370

Model 165 Users

Systems

GC20-1755-3
File No. S370-01

A Guide to the IBM
System/370 Model 168
for System/370

Model 165 Users

This guide presents hardware, programming systems, and
other pertinent information about the IBM System/370
Model 168 that describes its significant new features and
advantages. Knowledge of the IBM System/370 Model 165
is assumed. Features common to Models 165 and 168 are
indicated but not discussed in detail. The contents of the
guide are intended to acquaint the reader with the Model
168 and to be of benefit in planning for its installation.

Associated with this guide are three optional supplements
that describe operating systems for the Model 168 that
support a virtual storage environment. Each supplement
has its own form number and must be ordered individually,
if required. Optional supplements are the following:

® (S/Virtual Storage 1 Features Supplement
(GC20-1752)

® OS/Virtual Storage 2 Single Virtual Storage (SVS)
Features Supplement (GC20-1753)

® Virtual Machine Facility/370 Features Supplement
(GC20-1757)

LBV

Fourth Edition (September 1976)

This is a major revision obsoleting GC20-1755-2. Text has been added to include information
about the multiprocessing feature and Attached Processor Systems. Miscellaneous other
changes have been made throughout the publication as well. Changes to the text and
illustrations are indicated by a vertical line in the left margin.

This guide is intended for planning purposes only. It will be updated from time to time;
however, the reader should remember that the authoritative sources of system information
are the system library publications for the Model 168, its associated components and its
programming support. These publications will first reflect any changes.

Requests for copies of IBM publications should be made to your IBM representative or to the
IBM branch office serving your locality. .

A form has been provided at the back of this publication for readers’ comments. If this form
has been removed, address comments to: IBM Corporation, Technical Publications/Systems,
Dept. 824, 1133 Westchester Avenue, White Plains, New York 10604. Comments become the
property of IBM.

© Copyright International Business Machines Corporation 1972, 1974, 1975, 1976

PREFACE

It is assumed that the reader of this publication is familiar with
System/370 Model 165 hardware features, channels, I/0 devices, and
programming support as described in A Guide to the IBM System/370 Model
165, GC20-1730, and/or system library publications concerning Model 165
hardware and programming systems support. This guide discusses in
detail only the hardware features of the Model 168 that are different
from those of the Model 165 and the programming support provided for new

features of the Model 168.

Those familiar with a System/360 model only or a System/370 model
other than the Model 165 should obtain A Guide to the IBM System/370
Model 168 for System/360 Users, GC20-1787, which discusses the
differences between the Model 168 and the System/360 Model 65.

There are three versions of the Model 168: the Model 1, Model 3, and
Model A3. The hardware differences between Model 1 of the Model 168 and
the Model 165 are discussed in Sections 01 to 60. The differences
between Models 3 and 1 of the Model 168 (both uniprocessor and
rmultiprocessor systems) are discussed in Section 65. The Model A3,
which together with the 3062 Attached Processing Unit forms the Model
168 Attached Processor System, is discussed in Section 67.

The Model 168 is not compared with a Model 165 II, which is a
purchased Model 165 (storage model J, K, or KJ) with the optional
Dynamic Address Translation Facility installed. However, functional
descriptions of Model 168 features that are also part of the Dynamic
Address Translation Facility of the Model 165 II apply to the Model 165 II
as well, unless otherwise noted. This publication applies to systems
with 60-cycle power.

The total Model 168 guide consists of this base publication (Sections
01 to 70), which covers virtual storage and virtual machine concepts and
Model 168 hardware and I/0 devices, and from one to three optional
supplements (Sections 90 to 110). The optional supplements describe the
facilities of the IBM programming systems that support a virtual storage
environment using the dynamic address translation hardware of the Model
168. Each optional supplement has its own unigque form number and each
supplement desired must be ordered separately and inserted in this base
publication, which is distributed without the automatic inclusion of any
optional supplements.

The following optional supplements can be inserted in this base
publication:

¢ OS/Virtual Storage 1 Features Supplement (GC20-1752) - assumes
knowledge of OS MFT

e OS/Virtual Storage 2 Single Virtual Storage (SVS) Features
Supplement (GC20-1753) - assumes knowledge of OS MVT

e Virtual Machine Facility/370 Features Supplement (GC20-1757) - does
not assume knowledge of CP-67/CMS

All optional supplements also assume knowledge of virtual storage,
dynamic address translation, and other new Model 168 features as
described in this base publication or appropriate system library
documents. However, no optional supplement requires knowledge of the
contents of any other optional supplement.

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users

This base publication, as well as each optional supplement, begins

with page 1 and includes its own table of contents and index.

The base

publication or supplement title is printed at the bottom of each page as
a means of identification.

The optional programming systems supplements contain System/370
model-independent information, unless otherwise noted, and are designed
to be included in the guides for System/370 Models 135, 145, 158, and

168 as shown below,

Base
Publications

Supplements
0S/Vs2
DOS/Vs 0s/vs1 SVs vM/370
Features Features Features Features
Supplement Supplement Supplement Supplement
(GC20-1756) (GC20-1752) | (GC20-1753) | (GC20~1757)

A Guide to the IBM
Systenv/370 Model. 135
(GC20-1738-4 or
later editionms)

A Guide to the IBM
System/370 Model 145
(GC20-1734~-2 or
later editions)

A Guide to the IBM
System/370 Model 158
for System/370
Model 155 Users
(GC20-1754)

A Guide to the IBM
System/370 Model 158
for System/360 Users
(GC20-1781)

A Guide to the IBM
System/370 Model 168
for Systemv/370

Model 165 Users
(GC20-1755)

A Guide to the IBM
System/370 Model 168
for System/360 Users
(GC20-1787)

Additional, more detailed information regarding System/370 Model 168
hardware and programming systems support can be found in system library

publications.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

CONTENTS

Base Pub

lication Sections (Sections 01 to 70)

Section

Section

Section

20:05
20:10

20:15

20:20
20:25
20:30

Section
30:05

30:10

30:15

Section
40:05
40:10

Section

50:05
50:10

A Guide

01: System Highlights of Models 1 and 3 « . .

10: Major Components and System Technology for
Models 1 and 3 - - - - - - - - - - - - - - - - -

20: Architecture Design and System Components of the
Mme l 1 - - - - - - - - - - - - - - - -

Architecture DesSign . . ¢ ¢ &« ¢ ¢ 4 o @ o @ = « © @ =
The Central Processing Unit . « ¢ ¢ o« ¢ ¢ o 0 © w o
Extended COntxol MOdE « v v « « « @ « o o @ o © o =
Monitoring Feature. . . . v c v o o @ o « © @ @« o ®
New Instructions. e« ® o ® ° @ % w = w° w
Clock Comparator and CPU Tlmer. « @ o o . ® @ @ = -
Reljability, Availability, and Serviceability Featur
StOXage v « v « o o « o o o o = ¢ o a o o . o
Processor (Main) StoOrage. o« « « « « = « @ s « w
High-Speed Buffer StOrage . . « o« « « « o o « © =« o
channels. - - - - - L] L] - - - - - - - - - - - - - -) -
System Console. . . e e o e % ® @ % @ @ @ @
Standard and 0ptional System Features .« « « v « o < =
Standard FeaturesS . « o« o« o« « ¢ « o © ¢ o © © o «
Optional Features . « « « o« « « o o o o © ® ® @ =

30: Virtual Storage and Dynamic Address Translation .
Virtual Storage Concepts, Advantages, and Termlnology
The Need for Larger AdAresSs SPACE . o v « « « = « =

-

L O R N SRR I R B B
7

O T T)

[T T S T T T Y

-

Virtual Storage and Dynamic Address Translation Concepts.
General Advantages Offered by IBM Operating Systems that
Support a Virtual Storage Enviromment . <« o « o « o © « o

virtual Storage and Dynamic Address Translation
Terminology « « « « o « « c e e ® @ s e e o o
Dynamic Address Translation Bardware for Models 1
t he Model 16 8 - - - - - - - - - . - - - - - - . -
Virtual Storage Organization. . . « ¢« ¢ ¢ « =« «
Operation of Dynamic Address Translation Hardware
Features to Support Demand Paging « « « w« o « «
Channel Indirect Data Addressing. . . . - o -
System Performance in a Virtual Storage Environment
System Resources Required to Support a Virtual Stora
Emlronmmt - - - - - - - - - - . - L - - - - - . -
New Factors that Affect System Performance. . . .

-

LI SR I e

Aimiiiiiiwi

Relationship Between Virtual Storage Size and System

PerformancCe . « « « «w « « o o w o @ © ® @« ® © @ ° i«
Increasing System Performance in a Virtual Storage
ENVIronment . o v o o o « « o ¢ @ o @ @ o o @ o ©

40: Virtual Machines. . ¢« ¢ ¢ ¢« ¢ e v @ © = © = o
Definition and General Operation. . « w o « & w « w«
General Advantages of a Virtual Machine Environment .

50: I/0 Devices for Models 1 and 3 . « « @ « @ @« w
I1/0 Device Support. -

3333 pisk Storage and Control Model 11 and 3330 Disk Storage

MOdel 11. e e * e e e e @ ® e o @ e e

Attachment via Integrated storage Cohtrols. o e e e e e e

to the IBM Systemv370 Model 168 for System/370 Model 165 Users

@

aiai-aos

o

50:15

Section
60:05

60:10

60:15
60:20

Section
65:05
65:10

Section
67:05
67:10
67:15

67:20
67:25

Section
70:05

70:10

The 3340 Direct Access Storage Facility . .« « « = «
3340 Disk Storage Drives and the 3348 Data Module
Attachment via 3830 Storage Control Model 2 . .
Attachment via Integrated Storage Controls.
Intermixing 3340 and 3330~-Series Strings on

Attachment. . « « « « « o «
SUMMAYY « = « « w = = = o = =

60: Multiprocessing . . « « « -«

General Description « .
Introduction. . . . -
Definition of Multiprocessing
The Model 168 Multiprocessing

Advantages of Model 168 Tightly Coupled

Configurations. . . .

Advantages of lLoosely Coupled Multiprocessing

Configurations. . « « w« « .

Model 168 Multiprocessing Architecture. e @ & @ ® i e e
Uniprocessor and Multiprocessor Hardware Differences.

-

~

-

System.

- e e

¢ ® -

- @ © e

3068 Multisystem Communication Unit .

Prefixing . ¢« ¢« ¢ ¢ o ¢ ¢ o .
CPU Addressing. « « « « o« « «
Time-of~-Day Clock

Interprocessor Programmed Communication
Interprocessor Hardware Communication .

-

-

Channel Reconfiguration Hardware. .
Recording and Diagnostic Programs . .

Planning Considerations

Planning for Maximum System Availabi

65: Differences Between the Model

Performance EnhancementS. . « .

The Service Processor . « « « « «
Functions and General Operation

Processor Unit. « « o« « o « «
Trace Unit.
Counters. . .
Internal Disk File.
CE Panel. . . . « .
Printer Control . .
Corporate Standard I
Modem . <« . < o o
Advantages. . . .

¢« s s s s 2 0
® .
.

rfa

[]
ncsiiiiu
nomeouto
. s

67: Attached Processor System .
System Description. . . . « « .

The 3062 Attached Processing Unit
Uniprocessor and Attached Processor

Differences . « « « « « « & «
3066 Model 3 System Console . .

w

« & 8 8 & & & 8 ¢« 0 s o

-

-

and

¢ & & & & o 3 & & & & o

Recording and Diagnostic Routines . .

70: Comparison Tables

3

-

s 8 8 B & 2 8 2

-

iity.

. e e
* e
-

* .

¢ & 8 3 s 8 & 0 s

.

the Model

-
e« © e

- -
-

- -

P e

s
e & @ & @& & @& 0 4 0 0w s

-

-

-

-

]

-

SyStem Hardware

-
- @ e ® e
-

88 a

-

Multiprocessing

@ 4 8 4 8 4 3 8 8 8o oa

]

Comparison Table of Hardware Features of the System/360
Model 65 and System/370 Models 158 (Models 1 and 3), 165,
165 II, and 168 (Models 1 and 3).

0S and 0S/VS Support of the Model 168 (Models 1 and 3)

Index (Sections 01 t0 70). v« v « o « o

-

* e e

-

.

- @

P
[s & 8

PR T}

[T T T ST T T S S

101
101
116
119

121
122

126
126
126
127
128

135

141
142
142
143
154
155
156
157

158
‘160

162
162
163

165
165
168
168
170
171
172
172
173
173
174
174
175

177
177
181
183
186
187
189
190
200

206

A Guide to the IBM Systemv 370 Model 168 for System/370 Model 165 Users

Optional Sections (see each supplement for detailed contents and index)

Section 90: OS/Virtual Storage 1 FEatuUreS . . w « o « « « © = « « « 213

Section 100: O0OS/Virtual Storage 2 Single Virtual Storage (SVS)
Features .« ¢ « o o o ¢ o o o o e « @ @ o = w o @ o o« 215

Section 110: Virtual Machine Facility/370 FeaturesS. « « « o« « « « « 217
Note: This guide does not have a Section 80. DOS/Virtual Storage

features are discussed in the Section 80 supplement and the Model
168 is not supported by DOS/VS.

FIGURES (Sections 01 to 70)

10.1 System/370 Model 168. . =« 2 <« ¢ ¢ e @ 2 ©w © @ @ = w . 6
10 - 2 SLT substra te - - L] - - - - - - - - AL J - - - - . - 7
20.10.1 BC mode and EC mode PSW formats . o . o 14
20.10.2 Model 168 model-independent fixed storage locations for

BC and EC modes . . . o @ ® o w © ®w 16

20.10.3 Model 168 (Model 1) model-dependent fixed storage

lJocations « « « « o o o ¢ ¢ @ 2 e 8 w6 2 0 @ o . o . == o« 17
20.10.4 Model 168 machine check code. v 2 o =« « « © o @ @ « w = « 23
20.15.1 Model 168 processor storage organization and

configuration panel . . « « ¢ ¢« ¢ ¢ 4 o . o .
20.15.2 8K and 16K buffer organization. « & «
20.15.3 Model 168 components and controls . . .
30.05.1 Names and location of instructions and data in a virtual

storage environment . . . ¢ ¢ ¢ ¢ @ e o @ @ @ w0 o w o o U2

- ® @ @ e 27
° @ @ e ‘e 30

30.05.2 Relationship of virtual storage, direct access storage,
and real StOXrage€e . « « o « o © w o © © . X]
30.05.3 Conceptual illustration of real storage utlllzation in

a mixed batch and online virtual storage enviromment. . . 52
30.05.4 Layout of virtual storage, external page storage, and

real storage. “- e e e - e @w o« ® o o o 55
30.10.1 Virtual storage address fields for a 6uK segment. . . -« 60
30.10.2 Segment table and page tables used for dynamic address

translation . . . e o ® ® e ® @ ® @ o o e w o e o o o 62
30.10.3 Dynamic address translation procedure . . . w e o« o « 63
30.10.4 TLB purging when control register 1 is changed. e @ « o =« 65
30.10.5 Example of IDALs required for a CCW list when page size

ls 2K - L] - - 70
30.15.1 Possible system performance when a virtual storage

operating system is used with a Model 168 with the

same I/0 configuration and real storage size as the

replaced MOdel 165. « o v ¢ v ¢ e o o o« o ® = o o o o o 14

30.15.2 General effect on page faults of increasing the ratio of
virtual storage used to real storage present in the
system. . . e o o o 5.0 = ® = c o % o ® - 79
30.15.3 General effect on system performance of the paging factor
only. . . . c @ o o ® ® o o o o 80
30.15.4 General effect of the paging factor on system performance
with various active-to-passive page ratios. « « « « « « - 81
30.15.5 General system performance curve for a virtual storage
environment - - . 82
40.05.1 Conceptual illustration of the real and virtual machlne
environment that is supported by VM/370 . . « o « o . 88
40.05.2 Conceptual illustration of the implementation of v1rtual

storage in a virtual machine environment. « . « « « « « « 90
40.05.3 Segment table and page tables built when a virtual

storage operating system executes in a virtual machine. . 91
50.10.1 Permissible 3330-series string configurations for the

Model 168 Integrated Storage Controls feature . « « « « « 99

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

50.10.2

Sample 3330-series string configuration with string

switching . . . « o o o = . o e = - . e « 100
50.15.1 A five-drive 3340 string w1th 33“0 Model A2 B2, and
Bl unltS- - - - - - L] - - - - - - - - - - - - - - - - - - 102
50.15.2 The 3348 Data Module. . . . 102
50.15.3 Location of physical and 1oglca1 tracks and read/wrlte
heads on a data surface in a 3348 Data Module 106
50.15.4 Cylinder and read/write head layout for a 3348 Model
. 35 Data Modllle. .. e o o o - e o e - - ® - ® @ ® 108
50.15.5 Cylinder and read/write head layout for a 33“8 Model
70 Data MOdllle. - - . - @ ® e o e e 109
50.15.6 Cylinder and read/wrlte head 1aycut for a 33“8 Model
' 70F Data Module e o e = e = « 111
50.15.7 A Model 168 conflguratlon Wlth 33&0 disk storage
attached via 3830 Storage Control Model 2 - « 116
50.15.8 String switching for the 3340 facilities attached to
A 3830 Model 2. v 4 2o 4 @ o o o o 2 o s 8 o @ o . - o 118
50.15.9 Permissible 3340 string configurations for the Model
168 Integrated Storage Controls feature « « « 120
50.15.10 String switching for 3340 facilities attached to one
ISC - 121
60.05.1 Model 168 Model 1 multiprocessing system. « < . . 129
60.10.1 Configuration control panel for a Model 168
multiprocessing SystemMe « o o o o ¢ o o o o o « o o « o o 144
60.10.2 Storage elements and floating storage addressing. . - - « 146
65.05.1 ngh—speed buffer and processor storage organization
in the Model 3. . &« 4 ¢ ¢ @ o ¢ o o o o« « « o o o o o 167
65.10.1 Components of the service processor in a Model 3. 4 e .« . 169
67.05.1 Components of the Model 168 Attached Processor System . . 178
67.10.1 organization of the Model A3 CPU and 3062 APU 182
TABLES (Sections 01 to 70)
20.15.1 Model 168 uniprocessor cycle and access times . . . « . . 26
20.20.1 Permissible configqurations and channel prioritles for
highest speed 8ystem/370 I/0 devices in unlprocessor
Systems - - . - - - - - - - - - B - 33
30.10.1 Number and 31ze of segments and pages for a 16—mlllion-
byte virtual storage. . . . - . o . 58
30.10.2 virtual and real storage addresses used by and supplled
- to programs in the Model 168. e o o o o 67
50.10.1 Capacity and timing characteristics for 3330-series
drives. . . - e X
50.10.2 3336 Model 1 and 11 Disk Pack characterlstics o e e e« 97
50.15.1 Physical and capacity characteristics of 3348 Data
Modules and the 2316 DiSk PacCKe « « o « « o « o o » = « » 113
50.15.2 Timing characteristics of the 3340 direct access storage
facility and the 2314 facility. . . « « « - . 114
50.15.3 Summary of the hardware features of 3340 and 231u dlsk
storage facilities . . . « o e « ® = - 123
50.15.4 Summary of the features of 3830 Storage control Models
1 and 2 and Integrated Storage CONtrols . « « « « o » - « 124
60.05.1 Processor storage access and fetch times for
multiprocessor models in nanosecondsS. « « « « « « =« « « « 131
60.05.2 Permissible configurations and channel priorities for
highest speed System/370 I/0 devices in a Model 168
tightly coupled multiprocessing configuration 134
67.15.1 Comparison of hardware features in the Model 3 CPU
(uniprocessor and mul tiprocessor models), Model A3
CPU, and 3062 APU . = 2 « « « o o o« = « = = » @ = « « « « 185
A Guide to the IBM Systenv370 Model 168 for Systems/370 Model 165 Users

SECTION 01: SYSTEM HIGHLIGHTS OF MODELS 1 AND 3

The Systenv 370 Model 168 is an advanced function growth system for
System/360 Models 65, 67, and 75 and Systemv370 Models 155, 158, and
165. The Model 168 provides major new functions that are not basic to
Systenv 360 architecture. The Model 168 has new features and new
programming systems support that are designed to facilitate application
development and maintenance. In addition, a Model 168 and its new
programming support can ease entry into, and expansion of, online data
processing operations.

Both uniprocessor and multiprocessor models of the Model 168 CPU are
available. Two multiprocessor models can be connected to form a tightly
coupled multiprocessing configuration. Thus, the Model 168 is also a
growth system for System/360 Model 65 and Systenv370 Model 158 tightly
coupled multiprocessing systems. Model 168 uniprocessor and
multiprocessor configurations can be combined with each other and other
System/370 models to form loosely coupled multiprocessing
configurations.

The Model 168 makes new functions available to Model 65, 75, 155, and
165 users without requiring a major conversion effort, since the Model
168 is upward compatible with these models. Existing System/360
operating systems that support these models, namely OS MFT and MVT,
support the Model 168. However, the Model 168 has standard features
that are designed to support a virtual storage environment, and new
versions of OS are provided that use these features.

Compatible growth from a System/360 operating system to a Model 168
virtual storage environment can be achieved using the new System/370
operating systems: O0S/Virtual Storage 1 (0S/VS1l) and 0S/Virtual Storage
2 (0s/vs2), which are based on 0S MFT and 0S MVT, respectively. These
operating systems will run only on Systemv370 models with extended
System/370 functions, namely on those with extended control mode of
system operation and dynamic address translation facilities. They
cannot operate on System/360 models. In addition to implementing
virtual storage, the System/ 370 operating systems offer many other new
capabilities and performance-oriented enhancements that are not provided
by 0S MFT or MVT.

A virtual machine environment is supported by Virtual Machine
Facilitys/370 (VM/370), the successor to CP-67/CMS for Systemv/370. While
CP-67/CMS is available only to Model 67 System/360 usexs, VM/370
operates on System/370 Models 135, 145, 155 11, 158, 165 II, and 168.
Model 67 users who have CP-67/CMS installed can use VM/370 on a Model
168 with some conversion effort. The Virtual Machine Assist RPQ can be
installed on a Model 168 (or a Model 165 II) to improve the performance
of certain operating systems that execute in a virtual machine under
VM/370 control.

Transition with little or no reprogramming is also provided for Model
65, 67, and 165 users who are emulating 7070-, 7080-, or 7090-series
systems under OS MFT or MVT and for users with these systems installed,
since the integrated emulators for 7000-series systems are also
suppor ted by 0S/VSl and OS/VS2.

Three models, 1, 3, and A3, of the Model 168 CPU are provided. The
Model 3 is an advanced version of the Model 1. The Model 3 has hardware
features that give it faster internal performance and higher
availability than the Model 1. The new hardware features of the Model 3
consist of internal implementation differences in the Model 168 CPU and

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 1

a larger high-speed buffer and do not require any programming support.
Thus, programs that execute correctly on the Model 1 will execute
correctly on the Model 3 without any programming changes assuming they
have no timing dependencies and do not access model-dependent logout
areas that differ in the two models.

The Model A3 CPU is used in Model 168 Attached Processor Systems. An
Attached Processor System consists of a 3062 Attached Processing Unit
{(APU) connected to a Model A3 CPU. The 3062 APU is an instruction
processor with instruction execution facilities equivalent to those of a
Model 168 Model 3 CPU, with a few exceptions. The 3062 APU does not
contain any processor storage and has no channels attached. The Model 3
CPU and 3062 APU operate together as a single tightly coupled system
with shared storage under the control of a single multiprocessing
operating system.

Like a tightly coupled maltiprocessing configuration, the Attached
Processor System provides the capability of executing two instruction
streams (tasks) simultaneously. It provides internal performance
improvements for uniprocessor Model 168 users. An Attached Processor
System can be included in loosely coupled multiprocessing configurations.
Details of this Model 168 system are covered in Section 67.

Highlights of the Model 168, when compared with a Model 165, are as
follows (features apply to the Model 1 and the Model 3 unless otherwise
noted). :

e A basic control (BC) mode and an extended control (EC) mode of
system operation are standard. Only BC mode is provided in the
Model 165. EC mode of operation provides additional system control
and supports new functions that are not provided in System/360 or a
Model 165.

¢ Internal performance of a Model 168 operating in BC mode is faster
than that of a Model 165. The instruction execution rate of the
Model 168 Model 1 is generally in the range of 10 to 30 percent
faster than that of the Model 165 when identical system
configurations, identical programs, and the same operating system
are used. The increased internal performance of the Model 1 results
primarily from the significantly faster cycle times of processor
storage. in the Model 168.

The internal performance of Model 3 of the Model 168 is generally in
the range of 5 to 13 percent faster than that of a Model 1 with a
16K high-speed buffer when identical system configurations,

~ identical programs, and the same operating system are used, and 2K

. pages are not used. The increase in the internal performance of a
Model 3 is somewhat greater when its performance is compared with
that of a Model 1 having an 8K buffer. The increase in Model 3
internal performance is the result of a standard 32K high-speed
buffer and improved execution times for certain instructions and all
interruptions.

e Dynamic address translation (DAT) is a standard facility that can be
made operative only when the Model 168 is in EC mode. It provides
hardware translation of addresses during program execution. One
virtual storage of up to 16 million bytes or multiple virtual
storages of up to 16 million bytes each can be supported using DAT
hardware. (The amount of virtual storage that can be efficiently
supported by a Model 168 depends on the hardware configuration and
job stream characteristics.) The optional channel indirect data
addressing feature must be installed on 2860, 2870, and 2880
channels when dynamic address translation is used. Channel indirect
data addressing enables the channels to access an I/0 buffer that is
contained in noncontiguous processor storage areas.

2 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

¢ Program event recording (PER) is standard and can be made operative
when the Model 168 is in EC mode. It is designed to be used as a
problem determination aid. This feature includes hardware that
monitors the following during program execution: successful
branches, the alteration of general registers, and instruction
fetches from and alterations of specified areas of processor
storage.

e A monitoring feature is standard that can be used to trace user-
defined program events for the purpose of debugging or statistics
gathering.

® A CPU timer and clock comparator are standard. The CPU timer
provides an interval timing capability similar to that of the
interval timer at location 80 but it is updated every microsecond,
as is the time of day clock. The clock comparator can be used to
cause an interruption when the time of day clock passes a specified
value. These items provide higher resolution timing facilities than
the interval timer and enable more efficient timing services
routines to be writtemn.

e New instructions that support dynamic address translation, the new
timing hardware, and system control facilities are added to the
System/370 instructions available for the Model 165.

* Processor storage is implemented using monolithic technology instead
of discrete ferrite cores, and a Model 168 can have five million
more bytes than a Model 165. Processor storage sizes of 1024K,
2048K, 3072K, 4096K, 5120K, 6144K, 7168K, and 8192K are available
for the Model 168. Monolithic storage for the Model 168 is faster
and more compact than core storage for the Model 165. As in a Model
165, processor storage in a Model 168 is four-way doubleword
interleaved.

The physical size of a Model 168 CPU is not a function of the amount
of processor storage installed. A Model 168 is smaller than a Model
165 with 512K and, therefore, is significantly smaller than Model
165 CPU's with more than 512K installed.

o The optional Power Warning feature, when installed on a Model 168
with uninterrupted power supplies, provides a warning machine check
interruption when the utility-supplied power is approximately 18
percent below the rated voltage. Program support of this
interruption, which is provided by 0s MVT (Releases 21.6, 21.7, and
21.8), 0s/vsl (as of Release 3), and 0S/VS2 (Releases 1.6 and up),
is designed to permit an orderly system shutdown after a power line
disturbance occurs, when necessary, so that operations can be
restarted once the power supply is stabilized.

* A high-speed buffer of 32K bytes is standard in Model 3 of the Model
168. Model 1 of the Model 168, like the Model 165, has an 8K buffer
as standard and optionally a 16K buffer.

s A multiprocessing feature, not available for Model 165 systems, is
optional for the Model 168. When installed, this feature permits
two Model 168 CPUs, any combination of Models 1 and 3, to be
connected to a 3068 Multisystem Communication Unit to form a tightly
coupled multiprocessing configuration that shares all available
processor storage up to a maximum of 16 megabytes (8 megabytes per
CPU). Model 168 tightly coupled multiprocessing configurations are
supported by 0S/vsS2 MVS (Releases 2 and up).

e The maximum aggregate channel data rate a Model 168 can support is

significantly increased over that supported by a Model 165 because
of the faster cycle time of processor storage and the new channel

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 3

dual I/0 bus that is used to transfer data from the channels to the
storage control unit. A Model 168 configuration can handle a
maximum aggregate data rate of 17 megabytes per second (MB/sec).
The maximum aggregate data rate possible on a Model 165 is 9.4

¢ 3330-series disk storage (all models), 3340, 3344, and 3350 direct
access storage can be attached to a 2880 channel on a Model 168 via
the Integrated Storage Controls (ISC) feature as well as via 3830
Storage Control (Models 1 and 2). The optional ISC feature provides
dual direct access storage control functions equivalent to two 3830
Storage Control Model 2 units, with the exception of four-channel
switching. Four strings of from two to eight drives each can be
attached to each of the two logical storage controls for a total of
eight strings (64 drives) attached via the ISC feature. Optionally,
the staging adapter feature can be installed on the ISC to permit
attachment of the 3850 Mass Storage System via ISC instead of via
3830 storage Control Model 3.

e The 3340 Direct Access Storage Facility can be attached to the Model
168 via 3830 Storage Control Model 2 and the Integrated Storage
Controls feature. The 3340 facility is intermediate capacity direct
access storage that, because of its unique design and advanced
technology, offers advantages over 2314 disk storage in addition to
those provided by 3330-series disk storage. Automatic error
correction features and multiple requesting are standard on the
3340. Rotational position sensing is optional.

The storage medium for 3340 disk storage is the removable
interchangeable 3348 Data Module, a sealed cartridge that is never
opened by the operator. In addition to the disks on which data is
written, the 3348 Data Module contains a spindle, access arms, and
read/write heads. The 3340 Disk Storage Drive contains the
mechanical and electrical components required to operate the 3348
Data Module.

The 3340 facility has an 885 KB/sec data transfer rate, average seek
time of 25 ms, and full rotation time of 20.2 ms. A 3348 Data
Module has a maximum capacity of approximately 35 million bytes or
70 million bytes, depending on the model. One model of the 3348
offers fixed heads for zero seek time to approximately 502,000 bytes
maximam and movable heads for an average seek time of 25 ms to the
remaining bytes in the data module. A string of from two to eight
3340 drives can be configured. From one to four strings can be
attached to the 3830 Model 2 and to each of the logical controls in
ISC. Any model of the 3348 can be mounted on a 3340 drive.
Therefore, 3340 string capacity can vary from 70 million to 560
million bytes in increments of 35 ands/or 70 million bytes.

The sealed cartridge design of the 3340 facility offers the
advantages of multiple capacities per 3340 drive, increased data
reliability, and simplified data module loading and unloading
procedures.

e 3344 Direct Access Storage can be attached to a Model 168 via 3830
Storage Control Model 2 and Integrated Storage Controls. It offers
significantly increased maximum online capacity per drive for 3340
users without the necessity of program conversion. The 3344 is
fixed media disk storage. Data is recorded on nonremovable disks.
The 3344 is designed to eliminate operator handling, eliminate
exposure to external contamination (like the 3348 Data Module), and
provide high reliability.

The 3344 has the same data transfer rate, averadge seek time, and
full rotation time as the 3340. However, the maximum capacity of a

4 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

3344 drive is 280 megabytes, or the equivalent of four 70-million-
byte 3348 Data Modules. The 3344 is a two-drive unit that attaches
to the 3340 Model A2. A 3340/3344 string can contain any mixture of
3344 and 3340 units (as long as the first is a 3340 Model A2) for a
maximum of eight drives with a maximum capacity of over 1.8 billion
bytes.

Automatic error correction, rotational position sensing, and
multiple requesting are standard in the 3344. Fixed head models are
also available that contain fixed heads for zero access time to a
portion of the data and movable heads for access to the balance of
the data.

e 3350 Direct Access Storage can be attached to a Model 168 via 3830
Storage Control Model 2 and Integrated Storage Controls. The 3350
is very large capacity, high-speed, fixed media direct access
storage. Data is stored on nonremovable disks. The 3350 is
designed to eliminate operator handling, eliminate exposure to
external contamination, and provide high reliability.

The 3350 has a data transfer rate of 1198 KB/sec, average seek time
of 25 ms, and full rotation time of 16.8 ms. A 3350 drive operating
in native mode has a maximum capacity of 317.5 megabytes. A 3350
string can contain from two to eight drives in two-drive increments
for a maximum string capacity of over 2.5 billion bytes of online
disk storage.

The Standard Selective Format feature enables the format of each
3350 to be set during volume initialization. A 3350 drive can
operate in 3350 native mode, 3330 Model 1 compatibility mode, orx
3330 Model 11 compatibility mode. When operating in 3330 Model 1
compatibility mode, a 3350 drive is the egquivalent of two 3330 Model
1 drives in capacity. When operating in 3330 Model 11 compatibility
mode, a 3350 drive is the equivalent of one 3330 Model 11 drive in
capacity. This feature enables 3330-series users to obtain the
price performance and functional advantages of the 3350 without
program conversion.

Automatic error correction, rotational position sensing, and
multiple requesting features are standard. The 3350 is also
available in fixed head models. These models provide fixed heads
for zero access time to a portion of the data and movable heads for
access to the balance of the data.

e A service processor unit is standard in the Model 3. This unit
provides status data that is designed to improve problem analysis by
the local customer engineer as well as facilities that improve the
remote problem analysis capability available for a Model 3. It is
also a replacement for the optional 2955 Remote Analysis Unit that
is available for the Model 165 and Model 1 of the Model 168.

The Model 168 is designed primarily to support a virtual storage
environment that allows programmers to write and execute programs that
are larger than the processor storage available to them. When virtual
storage is supported, restraints normally imposed by the amount of
processor storage actually available in a system are eased. The removal
of certain restraints can enable applications to be installed more
easily, and can be valuable in the installation and operation of online
applications. While some of the new hardware features of the Model 168
and some of the new facilities supported by System/370 operating systems
are designed to improve performance, a virtual storage environment is
designed primarily to help improve the productivity of data processing
personnel and enhance the operational flexibility of the installation.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 5

Figure 10.1. System/370 Model 168

6 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Monolithic technology is used to implement nearly all logic and all
storage (processor, local, writable contrxol, read-only control, and
buffer) in the Model 168. Use of monolithic technology for processor
storage, as well as for logic, represents a significant technological
advance in storage implementation. The monolithic storage implemented
in the Model 168 provides several advantages over the wired, discrete
ferrite core storage implemented in the Model 165.

Monolithic storage is similar in design to monolithic logic
circuitry, the latter representing a technological advance over the
solid logic technology (SLT) introduced with the announcement of
System/360. Since the technology associated with monolithic storage is
like that used to produce monolithic logic, monolithic storage can be
batch~-fabricated.

Solid Logic Technology (SLT)

Monolithic technology is a breakaway from the hybrid circuit design
concept of SLT and can best be explained by comparison with SLT. As
shown in Figure 10.2, SLT circuits were implemented on half-inch ceramic
squares called substrates. Metallic lands on the substrate formed
interconnections onto which the components were soldered. These
components consisted of transistors and diodes, which were integrated on
silicon chips about the size of a pinhead, and thin film resistors. An
SLT chip usually contained one type of component, and several chips and
resistors were needed to form a circuit. In general, an SLT substrate
contained a single circuit.

SLT chip with
one component Ceramic substrate

with interconnections

Figure 10.2. SLT substrate

Monolithic System Technology (MST)

Monolithic system technology also makes use of a half-inch-square
ceramic substrate with metal interconnections onto which chips are
placed. However, in monolithic logic circuitry, large numbers of
elementary components, such as transistors and resistors, are integrated
on a single chip. Unlike an SLT chip, an MST logic chip usually
contains several intercomnected logic circuits instead of only one
component. MST logic modules, each consisting of one substrate, are
mounted on circuit cards, which are in turn mounted on circuit boards
(as in SLT logic).

MST logic offers the following advantages over SLT:
e MST logic circuitry is intrinsically more reliable because many

circuit connections are made on the chip, significantly reducing the
number of external connections.

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 7

e Faster circuit speeds can be obtained because the path between
circuits is considerably shorter.

. Spaée requirementé for logic circuitry are reduced by the
significantly higher density of components per chip.

Monolithic Storage

Monolithic storage design incorporates the same concepts described
for monolithic logic. However, storage cells that are used to contain
storage bits instead of logic circuits are implemented on a metal oxide
semiconductor chip. In the Model 168, a monolithic storage array chip
is approximately 1/8 by 3/16 of an inch in size and contains a large
mumber of interconnected circuits. These circuits form storage bits and
support circuitry (decoding, addressing, and sensing) on the chip.

Since power is required tc maintain a one or zero state in a ,
monolithic storage bit, data. is lost when power is turned off, and
monolithic storage is, therefore, said to be volatile. This is not true
of core storage, which retains a magnetized state when power is removed.

The following are the advantages of monolithic over core storage:

e Faster storage speeds are obtained, first, because of the shorter
paths between storage circuitry and, second, because of the
nondestructive read-out capability of monolithic storage. Since
core storage read-out is destructive, a regeneration cycle is
required after a read, and a read-out cycle is required before a
write. These types of regeneration cycles are not required for
monolithic storage.

‘e Storage serviceability is enhanced because storage is implemented in
accessible, easily replaceable cards. Diagnostic routines need only

identify the failing storage card, which can be replaced in a matter
of minutes.

¢ Space requirements for system storage are reduced. Dense bit
packaging per chip is achieved by the use of monolithic technology
and by the fact that the regularity of a storage pattern lends
itself to such packaging.

8 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

SECTION 20: ARCHITECTURE DESIGN AND SYSTEM COMPONENTS OF THE MODEL 1

20:05 ARCHITECTURE DESIGN

Extended System/370 architecture embodies two different modes of
system operation, basic control (BC) mode and extended control (EC)
mode, as determined by bit 12 of the current PSW. When a Model 168
operates in BC mode, the contents, layout, and function of permanently
assigned processor storage locations 0 to 127 are identical to these
locations in System/360 Models 22 and up (except 44 and 67) with the
exception of the use of PSW bit 12. BC mode essentially is the
System/360~compatible mode of System/370 operation.

When EC mode is operative in the Model 168, the format of the PSW is
altered and the number of permanently assigned locations extends beyond
processor storage address 127. Changes to the PSW consist of the
removal of certain fields to create space for additional mode and mask
bits that are required for new functions, such as dynamic address
translation and program event recording. The removed fields are
assigned to locations above 127 and to a control register.

EC mode is effective when current PSW bit 12 is a one. BC mode is
effective when this bit is a zero. BC mode is established during
initial program reset. Therefore, a control program must turn on bit 12
of the PSW in order to cause EC mode to become. operative. As a result,
control and processing programs written for System/360 (Models 22 and up
except 44 and 67) will run without modification in BC mode on a
System/370 Model 168 (either a Model 1 or a Model 3) that has a
comparable hardware configuration, with the following exceptions:

1. Time-dependent programs. (They may or may not execute
correctly.)

2. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area. (0S SER erroxr-
logging routines for System/360 models will not execute
correctly.)

3. Programs that use the ASCII mode bit in the PSW (bit 12). ASCII
mode is not implemented, and this bit is used in System/370 to
specify BC or EC mode of operation.

4. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. This area can be reduced to
512 bytes by moving the CPU extended logout area.

5. Programs deliberately written to cause certain program checks.

6. Programs that depend on devices or facilities not implemented in
the Model 168.

7. Programs that use model-dependent operations of the System/370
Model 168 that are not necessarily compatible with the same
operations on System/ 360 models.

8. Programs that depend on the validity of storage data after system
power has been turned off and then on.

Oonly BC mode is implemented in the Model 165. Hence, control and

processing programs that currently operate on a Model 165 will run
without modification in BC mode on a Model 168 (either a Model 1 or a

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 9

Model 3) that has a comparable hardware configuration, with the
following exceptions:

1. Time-dependent programs. (They may or may not execute correctly.)

2. Programs that depend on the nonusable lower processor storage
area being smaller than 1938 bytes. (The nonusable area in the
Model 165 is 1504 bytes.)

3. Programs that use machine-dependent data such as that which is
logged in the machine-dependent logout area.

4. Programs deliberately written to cause certain program checks.

5. Programs that depend on the validity of storage data after system
power has been turned off and then on.

0S control programs are designed to support either BC or EC mode of
system operation. 0S PCP, MFT, and MVT control programs generated for a
Model 65, 67, or 75 support BC mode operations on a Model 168. OS
control and processing programs being used on a Model 65, 67, or 75 are
subject to the eight compatibility restrictions in the first list. If
an OS MFT or MVT control program that was generated for a Model 65, 67,
or 75 is used on a Model 168, the system should be set to check stop on
machine checks. (Section 60:20 in A Guide to the IBM System/370 Model

165, GC20-1730, discusses the reason.)

OS MFT and MVT support for the Model 168 (Model 1) in BC mode is
provided as of Release 21.6. OS MFT and MVT control programs generated
for a Model 165 using OS Release 21.6 or later will also operate on a
Model 168 to support BC mode of system operation (the Model 168 should
be specified as an alternate CPU via the SECMODS macro at system
generation). Processing programs that are used on the Model 165 will
operate under 0S MFT or MVT control on a Model 168 in BC mode subject to
the five compatibility restrictions in the second list.

Support of Model 168 (Model 1) systems operating in EC mode is
provided by 0sS/vsl, 0S/VS2 Releases 1 and up, and VWM/370, each of which
is designated as system control programming (SCP). All of these
programming systems support a virtual storage environment using dynamic
address translation, which operates only when the system is in EC mode.
0S/VS2 Releases 1, 1.6, and 1.7 support a single virtual storage (SVS)
environment. O0S/VS2 Releases 2 and up support maltiple virtual storages
(an MVS environment), Model 168 Attached Processor Systems, and tightly
coupled and loosely coupled miltiprocessing configurations. VM/370
supports a virtual machine environment.

User-written processing programs that operate on a Model 165 or Model
168 Model 1 under OS MFT or MVT control can operate under O0S/VSl or
0S/VS2 SVS respectively, on a Model 168 (Model 1) with little or no
modification, as discussed in the optional programming systems
supplements (Sections 90 and 100). Hence, compatible growth from a
Systemv/360 or a BC mode nonvirtual storage environment to an EC mode
virtual storage environment is provided.

10 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

The following are standard features of the Model 168 (Model 1) that’
are functionally identical to the same features of the Model 165:

e Instruction set that includes Systemv360 instructions and the
following System/370 instructions:

COMPARE LOGICAL CHARACTERS SET CLOCK, STORE CLOCK
UNDER MASK SHIFT AND ROUND DECIMAL

COMPARE LOGICAL LONG START I/70 FAST RELEASE

INSERT CHARACTERS UNDER MASK STORE CHANNEL ID

LOAD CONTROL, STORE CONTROL STORE CHARACTERS UNDER MASK

MOVE LONG STORE CPU ID

e Extended-precision floating point

s Overlap of instruction fetching and preparation with instruction
execution (implementation of the instruction and execution units is
enhanced in the Model 168)*

e Stoxre and fetch protection

Multiple control registers (more registers are implemented in the

Model 168 than in the Model 165)#*

Interval timer (3.3 millisecond resolution)

Time-of-day clock

Byte-oriented operands

Extended external interruption masking

Expanded machine check interruption class (additional facilities are

provided in the Model 168) *

Extended channel logout

Instruction retry, ECC on processor storage, and command retry

Writable monolithic control storage

High-speed buffer storage ~ 8K

Direct control

The following are optional features of the Model 168 (Model 1) that
are functionally identical to the same features on the Model 165:

e High Speed Multiply (increases speed of fixed- and floating-point
maltiply operations by a factor of approximately two to three)
Buffer Expansion for the addition of 8K of buffer storage (the 16K
buffer has a slightly different organization in the Model 168)#
707077074 Compatibility

7080 Compatibility

709/7090/70941II Compatibility

2870 Multiplexer Channels and attachment feature, 2860 Selector
Channels and attachment feature, and 2880 Block Multiplexer Channels
(one 2860, one 2880, or one 2870 with one selector subchannel is
required)

Extended Channels (for up to twelve channels)

Channel-to-Channel Adapter on 2860 selector channels

Extended Unit Control Words on 2880 Block Mutliplexer Chamnels

3066 Model 2 system Console (required) - a few new items are provided
2955 Remote Analysis Unit

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 11

The following are standard features of the Model 168 (Model 1) that
are not available for the Model 165:

¢ New instructions#*

CLEAR I/0

COMPARE AND SWAP

COMPARE DOUBLE AND SWAP

INSERT PSW KEY

LOAD REAL ADDRESS

MONITOR CALL

PURGE TLB

RESET REFERENCE BIT

SET CLOCK COMPARATOR

SET CPU TIMER

SET PSW KEY FROM ADDRESS

STORE CLOCK COMPARATOR

STORE CPU TIMER

STORE THEN AND SYSTEM MASK

STORE THEN OR SYSTEM MASK

EC mode of system operation#*

Dynamic address translation#

Reference and change recording#*

CPU timer and clock comparator#*

Program event recording#*

Monitoring feature#* ,
Program interruption for SET SYSTEM MASK instruction#*
Store status function*
Monolithic read-only control storage (instead of capacitor read-only)*
Monolithic processor storage (instead of core storage)
Channel dual I/0 bus

*Part of the Dynamic Address Translation Facility of a Model 165 II.
The functional descriptions of these items in this publication apply
to their implementation in both the Model 168 and the Model 165 II,
unless otherwise indicated.

The following are optional features of the Model 168 (Model 1) that
are not available for a Model 165:

* Channel Indirect Data Addressing for 2860, 2870, and 2880 channels
(required by the virtual storage operating systems and available for
the Model 165 II)

Integrated Storage Controls for attachment of 3330-series, 3340,
3344, or 3350 disk storage, or the 3850 Mass Storage System

¢ Two-Channel Switch for Integrated Storage Controls
¢ Staging adapter for Integrated Storage Controls

e Power Warning

¢ Multiprocessing

All the new features of the Model 168 Model 1 except Integrated
Storage Controls, multiprocessing, and those related to implementing
virtual storage (such as dynamic address translation and reference and
change recording) are discussed in the remainder of this section.

12 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

20:10 THE CENTRAL PROCESSING UNIT

Like the Model 165, the Model 168 has a CPU cycle time of 80
nanoseconds and an internal data path that is eight bytes wide. The
implementation of local storage (80 nanosecond cycle time), read-only
and writable control storage (80 nanosecond cycle times), expanded
external interruption masking, and parity checking is the same in the
two models. Control registers in addition to the four implemented in
the Model 165 are implemented in the Model 168 in order to support new
EC-mode-only functions. Additional control registers are implemented in
the Model 165 II as well.

Implementation of the instruction and execution units in Models 168
and 165 differs in several aspects in order to provide better overlap of
instruction preparation with instruction execution and to provide
functions required by new Model 168 hardware features, such as dynamic
address translation. (This new implementation is also provided in a
Model 165 II.) 8Significant differences are the following:

e In the Model 168, up to four instructions can be prepared and await
execution while one instruction is being executed. The Model 165
can prepare and hold up to three instructions.

e When an incorrect estimate of the success of a conditional branch
has been made, thé Model 168 can decode the correct instruction one
cycle sooner than can the Model 165, if the instruction is presently
in an instruction buffer.

e In the Model 168, a doubleword from a given instruction stream can
be placed in the instruction buffers every machine cycle. This can
be done every other cycle in a Model 165.

e In the Model 168, two registers are provided to hold data that is
awaiting placement in processor storage. Each can hold up to eight
bytes. The Model 165 has only one such register.

e The instruction unit in the Model 168 includes an instruction
pretest function (explained under “"Instruction Nullification®™ in
Section 30:10).

e Imprecise interruptions do not occur in a Model 168. In a Model
165, an imprecise interruption occurs if an attempt is made to store
data at an invalid storage address or at a storage-protected
location. The Model 168 implementation of pretesting (for the
dynamic address translation function) also ensures that such
conditions do not cause imprecise interruptions in the Model 168.

EXTENDED CONTROL MODE

Extended control mode, unlike basic control mode, is exclusively a
System/370 mode and is not implemented in System/360. In a Model 168,
the optional Channel Indirect Data Addressing feature must be installed
on all standalone channels for the channels to operate with EC mode
enabled. Note that IBM-supplied operating systems do not support
Systems/370 models operating in EC mode without dynamic address
translation operative also. Facilities that depend on which mode is in
effect are discussed below. Any item not covered operates identically
in BC and EC modes. (The discussion of EC/BC mode differences applies
to the Model 165 II also.) :

A Guide to the IBM Systenv 370 Model 168 for Systems/370 Model 165 Users 13

Change: in PSW Format

When a Systen/370 operates in EC mode, the format of the PSW differs
from the BC mode format. Both PSW formats are shown in Figure 20.10.1.
In EC mode, the PSW does not contain individial channel mask bits, an
instruction length code, or the interruption code for a supervisor call,
external, or program interruption. The channel masks are contained in
contxol register 2, and the other fields are allocated permanently
assigned locations in fixed processor storage above address 127.

BC MODE PSW FORMAT EC MODE PSW FORMAT
Bit | Content Bit | Content
0 Channel 0 mask 0 0
1 -Channel 1 mask 1 PER mask
2 Channel 2 mask 2 0
3 | Channel 3 mask . System 3 0 mt: m
4 Channel 4 mask . mask 4 0
5 Channel 5 mask 5 Translation mode (DAT feature mask) -
6 | /O mask 6 1/0 summary mask
7 External mask 7 E xternal summary mask
8 Protect kay -8 Protect key
9 9
10 10
1 1
12 | EC/BC mode {0 is BC) . 12 EC/BC mode (1 is EC)
13 | Machine check mask 13 | Machine check mask
14 | Wait/running state 14 | Wait/running state
16 Problem/supervisor state- 15 Problem/supervisor state
16. | Interruption code 16 0
17 17 0
18 18 | Condition code
19 19
20 20 Program mask
21 21 l
22 22
23 23
24 24 | O
~ ‘L ~ ~ A ~
T ¥ r F T
30 30 1
iy 31
32 nstruction length code 32 0
| 33 33
34 | Condition code 34
|35 35
36 | Program mask 36
37 37
» 1 »
309 9|y
40 | Instruction address 40 | |nstruction address.
41 4
42 42
4L 1 4 o~ 4
~ ~ - ~No - '1 P
61 “ 61
62 62
63 63 |y

Figure 20.10.1. BC mode and EC mode PSW formats

Removal of the fields indicated provides room in the EC mode PSW for
control of new features that are unigque to EC mode (such as PER and DAT)
and for the addition of summary mask bits (such as channel and 1/0
masks). Use of a single mask bit to control the operation of an entire
facility (such as program event recording) or an entire interruption
class (such as I/0 and external) simplifies the coding required to
enable and disable the system for these interruptions.

14 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Change in Permanently Assigned Processor Storage Locations

When a System/370 operates in EC mode, the number of permanently
assigned locations in lower processor storage is increased to include
fields for storing instruction length codes, interruption codes (for
supervisor call, external, and program interruptions), program event
recording data, the I/0 device address for an I/0 interruption, and an
exception address for the DAT feature. The model-independent BC mode
and EC mode fixed storage areas for System/370 models are shown in
Figure 20.10.2. The balance of the fixed area for the Model 168, that
which has model-dependent fields, is shown in Figure 20.10.3. This
model-dependent area is not affected by whether EC or BC mode is in
effect except for locations 185 to 187, which contain the I/0 address
after an I/0 interruption and an IPL only when EC mode is in effect.

The machine check interruption procedure and the format of the data
logged on a machine check are the same in EC and BC modes, except for
differences in the PSW format and the permanently assigned locations
previously discussed.

Expansion of Storage Protect Key Size

The size of the storage protect key associated with each 2K storage
block is expanded from five to seven bits in the Model 168. The two
additional bits (reference and change) are included for use with dynamic
address translation and are discussed in Section 30:10. The SET STORAGE
KEY instruction sets a seven-bit key regardless of the mode, BC or EC,
in effect. The INSERT STORAGE KEY loads a five-bit or a seven-bit key
into the register indicated depending on whether BC or EC mode,
respectively, is in effect.

Channel Masking Changes

When a System/370 operates in EC mode, interruptions from each
channel are controlled by the summary I/0 mask bit in the current PSW
{bit 6) and an individual channel mask bit in control register 2. 1In
the Model 168, bits 0 to 11 in control register 2 are assigned to
control channels 0 to 11, respectively. Both the summary mask bit and
the appropriate individual channel mask bit mast be on in order for an
interruption from a given channel to occur. In BC mode, only
interruptions from channels 6 to 11 are controlled by individual channel
mask bits in control register 2 and the I/0 mask bit in the PSW.
Interruptions from channels 0 to 5 are controlled only by channel mask
bits in the current PSW (bits 0 to 5) in BC mode.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 15

BC MODE FIXED AREA 0-159

Decimal 0
locations IPL PSW
‘ IPL CCW 1
16 1PL CCW 2 ® Model independent among
24 System/360 and System/370
External old PSW models in BC mode except
32 Supervisor call old PSW for PSW bit 12
40 Program old PSW ® Processed by the control program
48 Machine check old PSW
56 1/0 old PSW
64
Channel status word — CSW
7
2 Channel address word — CAW 76 Unused
80
Interval timer 84 Unused
88
External new PSW
96
Supervisor call new PSW
104
Program new PSW
112
Machine check new PSW
120
1/0 new PSW
128
0 132
136
0 140 0
144 R
0 148 0 |Monitor 0
152 R
0 156 0 Monitor code
EC MODE FIXED AREA 0—159
0 IPL PSW
IPL CCW 1
16 o Model independent among
2% IPL CCW 2 System/370 models in
External old PSW EC mode
32 N
Supervisor call old PSW o PSW format is different
40 Program old PSW from that of BC mode
PSW
48 Machine check old PSW
56 o Processed by the control
1/0 old PSW program
64 Channel status word — CSW
72 Channel address word — CAW 76 Unused
80 Interval timer 84 Unused
88 External new PSW
96 Supervisor call new PSW
104 Program new PSW
112 Machine check new PSW
120 /0 new PSW
128 0 gg dl‘: 0 External int.code
136 0 ILC SVCint.code {140 O ILC [Program int. code|
144 0 Translation excp. addr. | 148 0 ?:/'I:sr;itor PER codel 0
162 0 PER address 156 0 Monitor code

Figure 20.10.2. Model 168 model-independent fixed storage locations
for BC and EC modes

16 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Reserved .
: : AREA

168 Channel ID 172 1/0 extended log pointer /0 COMMU';‘Glgé_T:g:\‘ s
e Unused o 0 *Stored for EC modi

ored for ode
184 0 r *1/0 address 188 0 operations only
192’,, Unused pavt
216

Contents of CPU timer FIXED LOGOUT AREA

24 Contents of clock comparator 216-611

232 Machine check code Layout varies by System/370
240 model
Reserved
e Always logged on a
248' Failing storage address |252 Reserved mach}lne c?l%ck interruption
256? Five doublewords of retry status > Processed by RMS
352‘%« Floating point register save area #
384*.‘, General register save area #
448.",'. Control register save area ,A:,

CPU EXTENDED LOGOUT AREA

-141
CPU extended logout—1416 bytes e Model dependent
® Stored on all exigent machine
(Pointer in control register 15 checks and first and seventh
set to 512 at IPL) instruction retry,if specified,
and logged by RMS

® Processed by Logdut
Analysis Program

Figure 20.10.3. Model 168 (Model 1) model-dependent fixed storage
locations

Changes to Certain System/370 Instruction Definitions

All Model 168 instructions are valid in BC and EC modes. However,
because of differences between the PSW format and the permanently
assigned storage locations in EC and BC modes, the definition of certain
instructions is affected. Instructions provided for both System/360 and
System/370 whose definition is altered for EC mode are:

BRANCH AND LINK (RR, RX) SET STORAGE KEY
INSERT STORAGE KEY SET SYSTEM MASK
LOAD PSW SUPERVISOR CALL

SET PROGRAM MASK

Revised definitions of these instructions to include BC/EC mode
differences are contained in System/370 Principles of Operation (GA22-
© 7000~2, or later editions). Programs that operate in BC mode and that
use LOAD PSW and/or SET SYSTEM MASK (SSM) instructions must be modified
to operate correctly in EC mode. The eight-byte PSW to be loaded by
LPSW instructions and the eight-bit system mask to be set by SSM
instructions must be changed to EC mode format. (Programs that use SSM
instructions and that are executed in an 0S/VSl or 0S/VS2 environment
need not be modified because the interruption for SsM instructions and
an SSM simulation routine, described next, are supported.)

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 17

Programs that use the other instructions listed 4o not have to be
changed to operate correctly in EC mode, unless they use other
facilities that are mode dependent. Programs that operate in BC mode
and that use the STORE THEN OR SYSTEM MASK and STORE THEN AND SYSTEM
MASK instructions (not provided in System/360) must also be modified to
operate correctly in EC mode.

When a System/370 is operating in EC mode, execution of the SET
SYSTEM MASK instruction is under the control of the 8SM mask in control
register 0. When the SSM mask bit is a one, an attempt to execute an
SSM instruction causes a program interruption without execution of the
SSM instruction. When the SSM mask bit is a zero, §SM instructions are
executed as usual.

This interruption is implemented to enable existing programs that
were written for System/360 models or for System/370 BC mode of
operation to execute correctly in EC mode without modification of the
system mask field addressed by existing SSM instructions. Wwhen an
interruption occurs for an SSM instruction, the contents of the BC mode
format system mask indicated by the SSM instruction can be inspected,
and the appropriate EC mode mask bits can then be set by an SSM
simulation routine.

The SSM instruction interruption is also implemented for use in Model
168 tightly coupled multiprocessing configurations and Attached
Processor Systems. In a two CPU environment, both CPUs operate with the
SSM control bit on. This ensures that the 0S/VS2 multiprocessing
control program will be notified, via an interruption, of any attempt to
execute the SSM instruction. This is required for the protection of
serially reusable system resources.

Program Event Recording

Program event recording (PER), a standard feature of the Model 168,
is designed to assist in program debugging by enabling a program to be
alerted to any combination of the following events via a program
interruption:

¢ Successful execution of any type of branch instruction

* Alteration of the contents of the general registers designated by
the user

e Fetching of an instruction from a processor storage area defined by
the user ‘

* Alteration of the contents of a processor storage area defined by
the user

The PER feature can operate only when EC mode is in effect and the
PER mask, bit 1 of the current PSW, is on. Control register 9 (bits 0
*o 3) is used to specify which of the four PER event types are to be
monitored. A PER program interruption is taken after the occurrence of
an event only if both the PER mask bit and the respective event mask bit
in control register 9 are on. Control register 9 (bits 16 to 31) also
specifies which of the 16 general registers are to be monitored if
monitoring of this event is specified. Control registers 10 and 11
indicate the beginning address and the ending address, respectively, of
the contiguous processor storage area that is to be monitored for
instruction fetching and/or alteration. '

18 A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Usexrs

When an event that is being monitored is detected, PER hardware
causes a program interruption, if the PER mask bit is on, and
identification of the type of event is stored in the fixed processor
storage area (location 150). The address of the instruction associated
with the event is also stored (locations 153 to 155). Program event
interruptions are lost if they occur when the PER mask bit or the
particular event mask bit is off.

If dynamic address translation mode is also specified when PER is
active, virtual storage addresses instead of real storage addresses
(discussed in Section 30) are placed in the control registers to monitor
references to a contiguous virtual storage area.

Note that when PER is enabled to monitor successful branches, general
register alterations, or processor storage alterations, significant CPU
performance degradation occurs.

MONITORING FEATURE

The monitoring feature is standard on the Model 168 (and on the Model
165 II). This feature provides the capability of monitoring the
occurrence of programmed events. For example, monitoring can. be used to
perform measurement functions (how many times a routine was executed) or
tracing functions for the purpose of program debugging (which routines
were executed).

The MONITOR CALL instruction is provided with the monitoring feature.
Execution of this instruction indicates the occurrence of one of the
events being monitored. The operands of the MONITOR CALL instruction
permit specification of up to 16 classes of events, each class with up
to 16 million unique types of events. The 16 monitor classes are
individually maskable via mask bits in control register 8. A program
interruption occurs when a MONITOR CALL instruction is executed, if the
monitor class indicated is specified in control register 8, and the
event identification (class and type) is stored in the fixed storage
area. ,

Both the PER facility and the monitoring feature are provided for
debugging purposes. The two features differ from one another in (1) the
number of events that can be defined, (2) whether events are defined by
the hardware or the programmer, and (3) whether hardware or the
programmer checks for the events and causes the interruptions. When PER
is used, once the events to be monitored have been designated by the
user, CPU hardware checks for the occurrence of the events and causes
the interruption. When the monitoring feature is used, the user defines
the events to be monitored (up to 16 classes with up to 16 million
monitor codes each instead of only four events), determines when the
events occur, and causes program interruptions by issuing MONITOR CALL
instructions.

NEW INSTRUCTIONS

STORE THEN AND SYSTEM MASK and STORE THEN OR SYSTEM MASK are two new
privileged imstructions that affect the system mask (bits 0 to 7 in the
current PSW). The STORE THEN AND SYSTEM MASK instruction provides, via
a single instruction, the capability of storing the current system mask
for later restoration, while selectively zeroing certain system mask
bits. The STORE THEN OR SYSTEM MASK provides system mask storing and
selective setting of system mask bits to ones. These two instructions
simplify the coding required to alter the system mask, particularly when
the existing settings must be saved.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 19

COMPARE AND SWAP and COMPARE DOUBLE AND SWAP instructions provide the
capability of controlling access to a shared real storage area in a
multiprogramming or multiprocessing environment. Although the TEST AND
SET instruction can also be used for this purpose, these compare
instructions enable a program to leave a message when the shared area is
in use. This message can be inspected, via a COMPARE AND SWAP
instruction, by other programs that share the real storage area. The
virtual telecommunications access method (VTaM), 0OS/VS2 MVS, and VSAM
Release 2 use these two instructions.

The INSERT PSW KEY privileged instruction enables a program to place
in general register 2 the four-bit storage protection key from the
carrent PSW. The SET PSW KEY FROM ADDRESS privileged instruction
enables a program to place a protect key contained in general register 2
or processor storage in the current PSW. When a control program is
requested to access a given processor storage location by a problem
program, these two instructions can be used by the control program
during its processing of the request to determine whether the problem
program is authorized to access the specified processor storage location.

The CLEAR I/0 privileged instruction can be used together with the
HALT DEVICE instruction to terminate all I/0 activity on a given
channel. CLEAR I/0, INSERT PSW KEY, and SET PSW KEY FROM ADDRESS are
used by 0OS/VS2 MVs.

The new instructions discussed above are provided in the Model 165 II
also. Other new instructions provided for the Model 168 are related to
specific features (such as monitoring, dynamic address translation, the
clock comparator, and the CPU timer) are discussed with these features.

CLOCK COMPARATOR AND CPU TIMER

These timing facilities are standard on the Model 168. (They are
also provided in a Model 165 II.) The clock comparator provides a means
of causing an external interruption when the time-of-day clock has
passed a time specified by a program. This feature can be used to
initiate an action, terminate an operation, or inspect an activity, for
example, at specific clock times during system operation.

The clock comparator has the same format as the time-of-day clock and
is set to zero during initial program reset. The SET CLOCK COMPARATOR
privileged instruction is provided to place a value that represents a
time-of-day in the clock comparator. When clock comparator
interruptions are specified via the external interruption summary mask
bit in the current PSW and the clock comparator subclass mask bit in
control register 0, an external interruption occurs when the time-of-day
clock value is greater than the clock comparator value. Bits 0 to 51 of
the time-of-day clock and the clock comparator are compared. If clock
comparator interruptions are masked when this condition occurs, the
interruption remains pending only as long as the time-of-day clock value
remains higher than the value in the clock comparator. The STORE CLOCK
COMPARATOR privileged instruction can be used to obtain the current
value of the clock comparator.

The use of a clock comparator, instead of the interval timer at
location 80, to cause an interruption when a specified time is passed
"offers two advantages. First, the time-of-day clock increments when the
system is in the stopped state, while the interval timer does not.
Hence, if a system stop occurs during processing and the system is
restarted, the clock comparator can still cause an interruption at the
time requested. The interruption caused by the interval timer in such a
situation is late. Second, implementing the time-of-day clock and the
clock comparator in the same doubleword format eliminates having to
convert doubleword time-of-day clock to single-word interval timer units.

20 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

The CPU timer provides a means of causing an external interruption
when an interval of time specified by a program has elapsed. The CPU
timer is implemented as a binary counter with a format identical to that
of the time-of-day clock; however, bit 0 of the CPU timer is considered
to be a sign. The CPU timer has a maximum time period half as large as
that of the time-of-day clock and the same resolution of one
microsecond. When both the CPU timer and the time-of-day clock are
running, the stepping rates of the two are synchronized so that they are
stepped at exactly the same rate.

The CPU timer is set to zero at initial program reset and the SET CPU
TIMER privileged instruction is provided to place an interval of time in
the CPU timer. The STORE CPU TIMER privileged instruction can be used
to obtain the current CPU timer value. The CPU timer decrements every
microsecond. If the external interruption summary mask bit in the
current PSW and the CPU timer subclass mask bit in control register 0
are on, an external interruption occurs whenever the CPU timer value is
negative (not just when the timer goes from positive to negative),
indicating that the time interval has elapsed. The CPU timer decrements
when the CPU is executing instructions (including instruction retry
operations) and while the CPU is in the wait state. It is not
decremented when the system is in the stopped state.

While providing essentially the same function as the interval timer
at location 80, the CPU timer provides advantages over the interval
timer as follows: Task processing intervals of less than 3.3
milliseconds are accurately measured because of the one microsecond
resolution of the CPU timer. A pending CPU timer interruption is reset
when a SET CPU TIMER instruction is issued to set a positive value in
the CPU timer, eliminating the need to take an interruption in order to
reset the CPU timer, as is required for the interval timer.

In addition, the amount of timing facilities processing required
during a task switch can be reduced because the format of the time-of-
day clock and the CPU timer are the same. Conversion of doubleword
time-of-day clock values to single-word interval timer values is
eliminated, and timer queues can be structured in such a way that little
of the processing currently required during a task switch, when the
intexval timer is used, is necessary.

RELIABILITY, AVAILABILITY, AND SERVICEABILITY FEATURES

The following hardware RAS features implemented in the Model 168 are
functionally identical to those provided in the Model 165:

e Automatic retry of most failing CPU operations by hardware (a few
instructions are retried on a Model 165 that are not retried on a
Model 168)

e ECC checking on processor storage to correct all single-bit and
detect all double-bit errors. However, in a Model 168, machine
check interruptions after ECC corrections are disabled during a
system reset (that is, nonrecording mode is in effect). If machine
check interruptions are to occur after ECC corrections, the DIAGNOSE
instruction must be issued to enable full recording mode (and the
recovery mask bit must be turned on). In the Model 165 (and 165 II),
a system reset enables the CPU for machine check interruptions
after ECC corrections.

e I/0 operation retry facilities, including the storing of channel
retry data during an I/0 interruption that results from an error,
and channel/control unit command retry procedures to correct certain
failing 1I/0 operations

A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Users 21

Implementation of machine check interruption facilities is expanded
in the Model 168 to provide more definitive logout information when a
machine check interruption is taken, and new buffer row deletion and
. translation lookaside buffer deletion functions are implemented.
Machine check interruption facilities are the same in Models 168 and 165
except for the following (which also apply to a Model 165 II except for
the warning interruption):

e The instruction processing damage subclass of machine check
interruption, not implemented in the Model 165, is implemented in
the Model 168. Instruction processing damage is indicated in the
machine check code (shown in Figure 20.10.4) when a CPU error occurs
that is not retryable or that was unsuccessfully retried, unless an
LPSW instruction or an interruption was in process at the time of
the failure or the failure was a hang detect. In these cases,
system damage is indicated. In the Model 165, system damage. is
indicated for all CPU and storage errors that. cannot be retried or
that are unsuccessfully retried.

Implementation of the instruction processing damage subclass in the
Model 168 is designed to identify errors that can be associated with
a specific task so that only that task need be abnormally
terminated. cCode is included in the Model 165 MCH routine that
attempts, when a system damage error is indicated, to distinguish
system damage from damage that can be associated with a task. This
code is not required for the Model 168.

e Whenever a machine check interruption is taken to record information
about a correctable or an uncorrectable processor storage error, the
failing processor storage address is placed in locatiomns 248-251.
The machine check code indicates the type of processor storage error
and whether the stored failing storage address is valid.

e In the Model 168, each block in the high-speed buffer has a delete
bit associated with it in the address array for the buffer, as in
the Model 165. This bit can be turned on using a DIAGNOSE
instruction. However, in the Model 168 each row within the buffer
also has a row delete trigger associated with it. (There are four
rows in the 8K buffer and eight rows in the 16K buffer, as shown
later in Figure 20.15.2.) Whenever certain buffer errors occur and
the Model 168 CPU is enabled for automatic buffer row deletions,
hardware determines the buffer row in which the error occurred. The
row delete trigger is turned on for that row. This indicates that
the buffer row is disabled and that the CPU can no longer fetch data
from or store data in the deleted buffer row. When the CPU is
enabled for degradation interruptions, the machine check code stored
during the interruption that occurs after a buffer row is deleted
indicates a degradation condition. '

The mode bit implemented in the Model 165 that can be set by a
DIAGNOSE instruction to cause the entire buffer to be disabled when
a machine check occurs is not implemented in the Model 168. The
buffer bypass mode bit in the Model 165 that causes the entire
buffer to be bypassed when it is turned on via a DIAGNOSE
instruction is implemented in the Model 168. The Model 168 also
contains a mode bit that can be set using a DIAGNOSE instruction to
cause the buffer row deletion mechanism to be disabled. This
selective buffer deletion facility allows only one-quarter of an 8K
buffer or one-eighth of a 16K buffer to be automatically disabled by
hardware at the time certain buffer errors occur and avoids total
buffer disabling after an error.

22 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

€2 83980 G9T TODPOW oLe/msts 203 89T TODPOW 0LE,/wo3sks WHI Byl 03 2pTNO ¥

Fixed Logout Area Locations 232—239

0-8 16 —18
- 20 — 31, 46,47 48 — 63
M“@;:e‘;“e"" Storage Validity Bits CPU Extended Log Length
o
a a ala 3 212 2
% 7] b} % 7] Zero if no logout
g(e|5|218]|2]12(8]=|2|¥|4|3|¥]2 313 2 or 1416 bytes
Z2|CQ 4 zl|z Z
> = =) g =} =1 =) =
) Bt 0 1 2 3 4 5 6 7 8 914 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132-4546 47 48
Bit Interrupt Type Bit Error Bit Valid Fixed Area Data
0 SD — System Damage 15 Delayed Interruption 20-23 Machine Check Oid PSW (48-55)
1 PD - Instrucgion 16 Storage 20 AMWP
Processing Damage Error 21 Masks and Protect Key
2 SR — Syster: Recovery Uncorrected 22 Program Mask and Condition Code
4 CD — Timing Facilities 17 Storage 23 Instruction Address
Damage Error 24 Failing Storage Address
5 ED - External Damage Corrected 27 Floating Point Registers (352-383)
7 DG — Degradation 18 Protection 28 General Registers (384-447)
8 W | — Warning Key 29 Control Registers (448-511)
: Error 30 CPU Extended Logout
31 Storage (Validity of storage being
processed by instructions when
interruption occurred.)
46 CPU Timer Value
47 Clock Comparator Value

Figure 20.10.4. Model 168 machine check code

* A tianslation lookaside buffer (TLB) deletion function is
implemented and is discussed in Section 30:10.

¢ The time-of-day clock damage interruption, maskable by the external
mask bit and PSW bit 13, is expanded to include clock comparator and
CPU timer errors. Its name is changed to "Timing Facilities
Damage®. When a STORE CLOCK COMPARATOR or a STORE CPU TIMER
instruction is issued and the addressed timing facility has an error
or when the CPU timer or the clock comparator develops an error, a
timing facilities damage interruption occurs if the timing
facilities damage mask bit is a one.

¢ Whenever a machine check interruption occurs in a Model 168, the
general and floating-point registers are validated, the current
value of the CPU timer is stored in locations 216 to 223, and the
current value of the clock comparator is stored in locations 224 to
231 during the interruption. Bits 46 and 47 of the machine check
code, shown in Figure 20.10.4, are used to indicate whether the time
values were stored correctly.

e The size of the CPU extended logout area in the Model 168 is 1416
bytes instead of 992 bytes as in the Model 165 in order to log
additional status information when a machine check interruption
occurs.

Machine check code bits 22, 23, and 31 are set to zero only when an
instruction processing damage or system damage type of machine check
interruption occurs.

¢ A warning machine check interruption is implemented in Model 168
systems with the optional Power Warning feature installed. This
field~installable feature can be used in Model 168 systems that have
0.E.M. uninterruptable power supplies (UPS). A UPS is designed to
protect a system from power line disturbance by providing auxiliary
power for a specified interval of time during a power reduction or
outage. A system can be fully or partially protected.

Full protection involves supplying a UPS for all system components.
This support provides continuous system operation for a specified
interval of time during a power line disturbance. Partial
protection involves supplying a UPS for a critical subset of system
components, namely, the 3168 Processing Unit, 3066 Model 2 System
Console, 3067 Model 2 Power and Coolant Distribution Unit, all
standalone channels, and all the control units attached to one
standalone channel. The Power Warning feature can be used with
partially and fully protected Model 168 systems.

A UPS for a Model 168 must generate a power warning signal when an
undervoltage condition of 18% (+2%) is detected. A Model 168 CPU
with the Power Warning feature recognizes this signal. If bit 13 in
the current PSW and the warning submask (bit 7 in control register
14) are both on, a warning repressible machine check interruption ,
occurs. Bit 8 in the stored machine check interruption code will be
on to indicate a warning condition. The machine check handler (MCH)
routine is given CPU control to process the interruption. If either
mask bit is off, the warning interruption remains pending.

The Power Warning feature is designed to enable a Model 168 system
to terminate operations in an orderly manner when a. power line
disturbance or power shutdown occurs. When a warning interruption
occurs, a determination can be made as to whether the power line
disturbance is transient. Operation of a fully protected system
need not be terminated for a transient disturbance of a short enough
duration. If system termination is required, a complete processor .

24 A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users

storage dump can be taken first. This enables processor storage to
be restored when a system restart is performed at a later time.

Model 168 recovery management routines (machine check and channel
check handlers) that operate in BC mode are included in OS MFT and OS
MVT as of Release 21.6. They provide recovery functions similar to
those provided for the Model 165 and support of new Model 168 machine
check facilities, except for MFT, which does not support the Power
Warning feature.

An instruction processing damage interruption is recognized in the
Model 168, and recovery management support (RMS) attempts to identify
‘the affected task and abnormally terminate it. When a system damage
error occurs, Model 168 operations are terminated without an attempt to
refresh damaged control program areas. Model 168 RMS also recognizes a
degradation interruption that indicates buffer row or TLB deletion by
the hardware, and the operator is notified of this hardware action.

These recovery routines are also included in 0S/VSl1 and 0S8/VS2 and
are modified to operate correctly when the Model 168 is operating in EC
and dynamic address translation modes. A discussion of how these
recovery routines differ from those provided for BC mode operations is
contained in each optional programming systems supplement.

The same remote error analysis facility is provided for the Model 168
(Model 1) as for the Model 165. That is, optionally the 2955 Remote
Analysis Unit can be attached to a channel in the Model 168
configuration. The 2955 can be connected to the RETAIN/370 network in
Raleigh, North Carolina via a communication line. Using an OLT that
runs under OLTEP and OLTSEP control, SYS1.LOGREC data can be sent via
the 2955 to Raleigh for transmittal to the Large System Support Group in
Poughkeepsie for problem analysis.

20:15 STORAGE

PROCESSOR (MAIN) STORAGE

Like the Model 165, the Model 168 has a two-level storage system in
which large high-speed processor storage backs up small, higher-speed
buffer storage. A maximum of 8192K of processor storage can be
installed in a Model 168. The Model 165 can have a maximum of 3072K.
Processor storage is available for the Model 168 Model 1 in 1024K
increments as follows:

Capacity
(K=1024 bytes)

1024K
2048K
3072K
4096K
5120K
6144K
7168K
8192K

2 EEE B E

Processor storage in a Model 168 is four-way doubleword interleaved
with a 2-microsecond cycle time, as it is in a Model 165. The processor
storage installed in a Model 168 is divided into four logical storages,
each of which can operate independently from the other three logical
storages. Logical storages can be selected at 80 nanosecond intervals.
The data path to and from processor storage is eight bytes wide.
Consecutively addressed doublewords are spread across logical storages,

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 25

as shown in Figure 20.15.1, so that access to four doublewords can be
overlapped. The processor storage control function provides the
interface to the logical storages.

As in a Model 165, processor storage in a Model 168 can be accessed
concurrently by any combination of one or more channels and the CPU for
a total of four unique logical storage requests. When simultaneous
requests for the same logical storage are received, the processor
storage access priority control unit schedules the requests according to
a priority scheme. This priority is the same in Models 168 and 165.
That is, the channels have priority over the CPU and the priority among
channels is definable at channel installation time. Table 20.15.1
summarizes Model 168 uniprocessor cycle and access times.

Table 20.15.1. Model 168 uniprocessor cycle and access times

Cycle or Access Time Time in Nanoseconds
CPU cycle time 80
Local storage cycle time 80
Control storage cycle time 80

Processor (logical) storage read/write
cycle time (for eight bytes on a

doubleword boundary) \ 320
Processor (logical) storage cycle time

for a partial write (fewer than 8 bytes) - 640
Minimum time between successive selects

to processor storage 80

Processor storage access time (from time

of PSCF select to availability of data

in the PSCF) 400
CPU fetch of 8 bytes from processor

storage (from time of request acceptance

to availability of data in a CPU register) 640
CPU fetch of eight bytes from buffer (from

time of request acceptance to availability

of data in a CPU register)
Minimum time between successive buffer

requests 80

Processor Storage Reconfiguration

As shown in Figure 20.15.1, the processor storage present in the
Model 168 is divided into from one to eight elements of 1024K bytes
each. Element numbers 0 to 7 are used. If an uncorrectable processor
storage error occurs, the element containing the malfunctioning
location(s) can be manually configured out of the system by the operator.

The configuration panel on the 3066 Model 2 System Console is used to
enable storage elements, assign a one-megabyte range of addresses to
each enabled element, and establish four-way interleaving or serial
operations. The configuration panel is also shown in Figure 20.1S5.1.
The operator selects a configuration by inserting pins in the
appropriate hubs. The storage configuration indicated by the panel is
made effective during a system reset. If necessary, the storage
configuration that is actually enabled can be displayed on the indicator
viewer (configuration registers in Image CO0).

26 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

8-Megabyte Processor Storage

Storage DWO DW1 DW2 DW3
segment DW4 DWS DW6 owy
number

1024K

1 1024K

2 1024K

3 1024K

4 1024K

5 1024K

6 1024K

7 1024K

Logical 0 7 2 3
storage

Configuration Panel

CPU ADR BITS
“ 10 41~ ENABLE
o O O o []
e o} o o]
2 O 0] L L
3 0 o 0] o
STG
SEG
4+ O o (@] O
s O ®) o} O
6 O (@] O 0]
7 O (o] (0] O
INTERLEAVE MODE
O
O=aw
@ =SERIAL

Figure 20.15.1. Model 168 processor storage organization and configuratio
panel . .

The absence of a pin in the interleave mode hub selects four-way
interleaving. When a pin is inserted in this hub, serial
(noninterleaved) operations are selected. The presence of a pin in an
enable hub indicates the associated storage element is to be included in
the active storage configuration. The three CPU address bit hubs for an
element are used to indicate the range of processor storage addresses
that are to be assigned to the element. Shown below are the pin
combinations that are required to select the various ranges of

A Guide to the IBM System/370 Model 168 for Systems/370 Model 165 Users 27

addresses. A zero in an address bit hub column indicates the absence of
a pin. A one indicates the presence of a pin.

Address Bit BHub
Address Range 9 10 11
0-1024K 0 0 0
1024K-2048K 0 0 1
2048K~-3072K 0 1 0
3072K~-4096K 0 1 1
4096K~-5120K 1 0 0
5120K-61 44K 1 0 1
6144K-7168K 1 1 0
7168K-8192K 1 1 1

The storage configuration selected by the control panel shown in
Figure 20.15.1 is the following:

¢ Elements 0, 2, and 3 are enabled and all other elements are disabl ed.

¢ Element 0 is assigned addresses 0 to 1024K, element 2 is assigned
addresses 1024K to 2048K, and element 3 is assigned addresses 2ousx
to 3072K.

e Four-way interleaving is enabled.

Storage ripple functions are provided in the Model 168 for read-only
control storage, writable control storage, local storage, and processor
storage, as for the Model 165. The inline ripple facility of the Model
165 is not implemented in the Model 168.

HIGH-SPEED BUFFER STORAGE

As in the Model 165, an 8K buffer is standard in the Model 168
(Model 1) and installation of the optional Buffer Expansion feature
permits inclusion of an additional 8K of buffer storage. Buffer storage
provides high-speed data access for CPU fetches. In a Model 168, as in
a Model 165, the CPU can obtain eight bytes from the buffer in 160
nanoseconds (two CPU cycles) and a request can be initiated every cycle.
This is the time between request acceptance and availability of the data
in a CPU register. If the buffer does not contain the data required,
the data must be obtained from processor storage.

Use of the hlgh—speed buffer in Models 168 and 165 is almost
idgntical. (This description of the buffer in Model 1 of the Model 168
also applies to the Model 165 II.) When a data fetch request is made by
the CPU, a determination is made of whether the requested data is in the
high~speed buffer by the interrogation of the address array of the
buffer's contents. If the data requested is present in the buffer, it
is sent directly to the CPU without a processor storage reference. If
the requested data is not currently in the buffer, a processor storage
fetch is made and the data obtained is sent to the CPU. The data is
also assigned a buffer location and stored in the buffer. When data is
stored by the CPU, both the buffer and processor storage are updated if
the contents of the processor storage location being altered are
currently being maintained in the buffer.

The channels never access the buffer directly. They read into and
write from processor storage using a eight-byte-wide path between the
CPU and processor storage that bypasses the buffer. When a channel
stores data in processor storage, the address array is inspected. If
the data from the affected processor storage address is being maintained
in the buffer, appropriate bits are set in the address array to indicate

28 A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users

that this buffer data is no longer valid. In a Model 165, the buffer is
updated instead of invalidated when a channel stores data in a processor
storage location whose contents are currently in the buffer.

As in a Model 165, the entire buffer in a Model 168 can be disabl ed
manually by a system console switch. When the buffer is disabled, all
CPU fetches are made directly to processor storage and effective system
execution speed is reduced. Selective buffer disabling by row performed
by hardware, as described previously, is also provided for the buffer in
the Model 168.

The 8K and 16K buffers are shown in Figure 20.15.2 together with
their address arrays. The 8K buffer is organized in the same way in
Models 168 and 165. The 8K buffer contains 64 columns of 128 bytes
each. Every buffer columm is subdivided into four blocks. A block is
32 bytes and can contain 32 consecutive bytes from processor storage
that are on a 32-byte boundary. The 8K buffer can contain a maximum of
256 different blocks of processor storage data (four blocks per column
times 64 columns). A valid trigger is associated with each buffer block
and is set to indicate whether the block contains valid data. All valid
triggers are set off during an initial program reset. There are four
rows in the 8K buffer. The first row consists of block 0 of each column
(64 blocks). The last row consists of block 3 of each column.

The organization of the 16K buffer in Models 168 and 165 is slightly
different. 1In the Model 168, the 16K buffer still contains 64 columns
but each column has eight blocks instead of four. In a Model 165, the
16K buffer has 128 columns of four blocks each. The approach taken in
the Model 168 enables bits 21 to 31 of the storage address in an
instruction to be used to address the index array for the buffer whether
the storage address is virtual or real. This enables interrogation of
the index array to be performed simultaneously with interrogation of the
translation lookaside buffer, which is part of the Dynamic Address
Translation Facility. (See Section 30:10 for more details.) There are
eight rows in the 16K buffer. The first row consists of block 0 of each
column (64 blocks). The last row consists of block 7 of each column.

Processor storage is logically divided into the same number of
columns as buffer storage, which is always 64 in the Model 168. While
there are four or eight blocks in a buffer column, depending on buffer
size, the number of blocks in a processor storage column varies with the
size of processor storage. When buffer storage is assigned, bits 21-26
of the processor storage address determine which one of the 64 columns
in buffer storage is to be used. The organization of 2048K bytes of
processor storage is shown in Figure 20.15.2. Any of the 1024 klocks in
a given processor storage column can be placed in any one of the four
(8K buffer) or eight (16K buffer) blocks in a corresponding buffer
column.

Figure 20.15.2 also shows the organization of the address array for
the 8K and the 16K buffer. The address array contains the processor
storage addresses of the data that is currently in the buffer. A least-
recently-used algorithm, similar to that used in the Model 165, is
implemented in the Model 168 to determine which block within a buffer
column is to be assigned when data is placed in the buffer.

Buffer and processor storage components and controls in the Model 168
are shown in Figure 20.15.3. ’

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 29

‘

Address Array — 8K Buffer

>

Address Array — 16K ‘Buffer

J2

13.0i =X ¢ 1361t <¢
it i
Block 0 address Block 0 | address
22 22
AR Y
1 1
22 32
B LS9
2 2
LYY 3
A% Y A3
3 3
33 2
Column 0 1 63 4
2
256 block address registers 5 o .e
2
S
6
Y
{3
7
2
Column 0 1 63
512 block address registers
Buffer Storage — 8K Buffer Storage — 16K
Ly ™ I
e B3]
Block 0 | 32 bytes Block 0 | 32 bytes
b LY
A3 A%
1 1
22 by
s L9
2 2
22 EY
AR A9
3 3
—? Q¢
Column 0 1 63 4
256 blocks 22
5
2%
A
6
b))
~C¢
7
{
Column 0 1 63
512 blocks
Processor Storage—2048K
Block 0 | 32 bytes J Addresses 0 - 2047
1) Addresses 2048 - 4095
:)
e, R, Y
et — m__/.
([
1022
1023
Column 0) 63

Figure 20.15.2. 8K and 16K buffer organization

30 A Guide to the IBM System/370 Model 168 for System/370 Model 165

Users

Central Processing Unit

Processor Storage

Channel Storage Arrays
I Logical Logical Logical Logical

T storage storage storage storage
0 1 2 3
Channel [€— x

v

C,hanlne' Storage control ﬁ:g::g‘:
signa and ECC logic
P! conversion n o9t keys

Channel |t rrf ?

3%
343

Processor Storage Control
Function

Channel |me—d

Processor
storage access
priority
control

vy

Channe! | Buffer P> High-speed

buffers | inval- buffer
and idate address array
address

control

stack » buffer control

Dynamic address

translation Tra:slg‘tjion
hardware and I;)o;fasa e
controls uffer

Instruction unit Execution unit

T

1/0 instructions and interruption data

Figure 20.15.3. Model 168 components and controls

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 31

20:20 CHANNELS

- The number and types of channels. that can be attached to Models 165
and 168 are the same. The capability of attaching up to seven
standalone channels to the Model 168 is standard. Any combination of
one or two 2870 Multiplexer, up to six 2860 Selector, and up to six 2880
Block Multiplexer Channels can be attached to a Model 168, up to the
limit of seven channels. Installation of the optional Extended Channels
feature permits attachment of a maximum of twelve channels. Any
combination of one (with address 0) or two (with an address from 1 to 6)
28708, six 2860s (with addresses 1 through 6), and eleven 2880s (with
addresses 1 through 11), up to the limit of twelve, can be installed. A
maximum of seven channel frames (for a maximim of twelve channels) can
be attached to the Model 168.

As for a Model 165 channel configuration, the addresses and priorities
of the channels present in a Model 168 configuration are established
at channel installation time as indicated by the user, within the
restraints specified for the Model 168. The channel buffering scheme
implemented in the storage control unit is the same for Models 168 and 165.

The 2870, 2860, and 2880 channels that attach to the Model 168 are
functionally and physically identical to those that attach to a Model
165. The same attachment feature that must be installed on a 2870 or a
2860 channel in order to attach the channel to a Model 165 must be
installed on 2870 and 2860 channels that are to be attached to a Model 168.

The 2880 has one shared subchannel and 56 nonshared subchannels. The
shared subchannel always has 200 device addresses associated with it
plus one additional address for each nonshared subchannel not plugged
during installation. The Extended Unit Control Words feature can be
installed on a 2880 attached to a Model 168 to increase the number of
nonshared subchannels in the 2880 from 56 to 256. This feature is
mutually exclusive with the Two-Byte Interface feature for 2880 channels.

While the data rates of channels that attach to the Model 168 are the
same as for the Model 165, the maximum aggregate data rate that a Model
168 can sustain with minimal overrun exposure is significantly higher
than that of the Model 165. The Model 168 can also have more high-speed
I/0 devices, such as the 2305, operating concurrently. The increased
data rate is made possible by the use of a channel dual 1/0 bus to
transfer data between the channels and the storage control unit so that
the faster cycle time of Model 168 processor storage can be utilized to
advantage.

The channel dual I/0 bus in the Model 168 consists of bus A and bus
B. Each bus provides a path between from one to six channels and a
register in the storage control unit. A channel is connected to one bus
or the other (not to both). Data can be transferred simultaneously on
the two buses. This facility is used for input operations to transfer
simultaneously data from two different channels to registers in the
storage control unit.

A Model 168 without the Extended Channels feature can have three
channels attached to bus A and four channels attached to bus B. When
the Extended Channels feature is installed, a maximum of six channels
can be attached to each bus. The channel priority assigned to a channel
determines the bus to which it must be attached. A channel assigned
priority 1, 2, 3, 9, A(10), or B(11l) must be attached to the A bus. A
channel assigned priority 4, 5, 6, 7, €(12), or D(13) must be attached
to the B bus. Channels within the same channel frame must be attached
to the same bus. Channels with the highest speed devices attached
should be positioned closest to the Model 168 processor on the bus to
which they are attached. Channel priority is established by plugging
jumpers on matrix cards in the processor storage control function.

32 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Channel priorities 1 to D refer to the high to low priorities the
buffers for each channel have for accessing processor storage. Channel
priorities also determine the relative priority channels attached to the
same I1/0 bus have for using the bus to access their associated buffers.

Thus, for the A bus high to low channel priorities for using the bus
to access channel buffers are 1, 2, 3, 9, A, B. For the B bus, high to
low channel priorities are 4, 5, 6, 7, C, D. 1In effect, the two
channels with priority 1 and 4 have the same priority for accessing
their respective channel buffers but the channel with priority 1 has the
highest priority for accessing processor storage. Similarly, the
channels with priorities 2 and 5 have the same relative buffer access
priority, etc.

A 2780 channel without a selector subchannel or with one or two
selector subchannels should be given as high a channel priority as
possible. A 2780 channel with more than two selector subchannels should
be assigned priority position 1, 2, 3, or 4.

An aggregate data rate of 8.5 MB/sec can be sustained on each bus,
which provides a total maximum aggregate data rate of approximately 17
MB/sec for the system. As a general rule, devices with the highest data
rates should be attached to the highest priority channels. Table
20.20.1 indicates the channel priorities that the highest speed
System/370 I/0 devices require. That is, each I/0 device in the table
can be assigned only those priorities indicated in its column. Each
column also indicates the maximum number of channels to which the device

can be attached (four for the 2305 Model 1, six for the 2305 Model 2, etc.).

Table 20.20.1. Permissible configurations and channel priorities for

highest speed Systemv370 I/0 devices in uniprocessor systems.
An asterisk indicates the device attaches via the 2880 only.

Device Type
3330-series*

Channel |2305 Model 1% | 2305 Model 2% | 3420 Model 8 3340% 3420 Model 6
Priority 3 MB/sec 1.5 MB/sec 1.25 MB/sec .8 MB/sec .8 MB/sec
1 X X X X X
2 X X X X X
3 X X X X
4 X X X X X
5 X X X X X
6 X X X X
7 X X X
9 X X X
A X* X X
B X X
C X
D X

Permissible 1/0 device configurations are also shown by table
20.20.1, which in turn indicates the I/0 device configurations that can

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 33

operate concurrently. In general, any other device type with similar
characteristics and the same or a slower data rate than the listed
device can also be assigned the indicated channel priority. Negligible
Or no overrun exposure exists in a Model 168 system when the guidelines
indicated in Table 20.20.1 are followed.

The presence of the channel dual 1I/0 bus in the Model 168 permits
greater flexibility in the physical layout of Model 168 components since
the channel frames are attached to two separate cable sets instead of
only one, as for a Model 165. Greater flexibility in the cable lengths
between channel frames attached to the same I/0 bus is also provided by
the Model 168.

20:25 SYSTEM CONSOLE

The 3066 Model 2 System.Console for the Model 168 has the same
features as the 3066 Model 1 System Console for the Model 165: a
cathode ray tube and keyboard, a microfiche indicator viewer, a
microfiche document viewer, a processor storage configuration panel, a
system activity monitor, and a device for loading microcode and
diagnostics. In addition, the store status function is implemented.
(The store status function is implemented in a Model 165 II as well.)

The operator can cause the contents of the following to be placed in
processor storage by pressing the store status button on the control panel:

CPU timer -~ locations 216 ~223

Clock comparator - locations 224-231
Current PSW - locations 256-263
Floating-point registers - locations 352-383
General registers - locations 384-447
control registers - locations 448-511

In addition to the store status button, the control panel on the 3066
Model 2 has system clear and cooling reset alarm pushbuttons, and a
switch associated with the dynamic address translation feature.

20:30 STANDARD AND OPTIONAL SYSTEM FEATURES

STANDARD FEATURES
Standard features for the Systemv370 Model 168 (Models 1 and 3) are:

¢ BC and EC mode of operation

¢ Instruction set that includes binary, decimal, floating-point, and
extended precision floating-point arithmetic, and System/370
instructions. sStandard System/370 instructions for the Model 168 are:

*CLEAR 1/0

COMPARE AND SWAP

COMPARE DOUBLE AND SWAP
COMPARE LOGICAL CHARACTERS UNDER MASK
COMPARE LOGICAL LONG

INSERT CHARACTERS UNDER MASK
*INSERT PSW KEY

*L,OAD CONTROL
*LOAD REAL ADDRESS

MONITOR CALL

MOVE LONG

*PURGE TLB

*RESET REFERENCE BIT

*SET CLOCK

*SET CLOCK COMPARATOR

*privileged instruction

34 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

*SET CPU TIMER
*SET PSW KEY FROM ADDRESS
SHIFT AND ROUND DECIMAL
*START I/0 FAST RELEASE
*STORE CHANNEL ID
STORE CHARACTERS UNDER MASK
STORE CLOCK
*STORE CLOCK COMPARATOR
*STORE CONTROL
*STORE CPU ID
*STORE CPU TIMER
*STORE THEN AND SYSTEM MASK
*STORE THEN OR SYSTEM MASK

*Pfivileged instruction

Dynamic Address Translation

Reference and Change Recording

Instruction retry

Interval timer (3.3 ms resolution)

Time-of-day clock, clock comparator, and CPU timer
Monitoring feature

Program Event Recording

Program interruption for SSM instruction

Expanded machine check interruption class

ECC on processor storage

Byte-oriented operands

Store and fetch protection

High-speed buffer storage - 8K bytes (Model 1), 32K bytes (Model 3)
Attachment for up to seven channels

Channel dual I/0 bus

Channel retry data in extended channel logout area
Writable and read-only control storage

Store status function

Direct Control

Service processor (Model 3 only)

® & 6 0 6 00 0 & 0 06 0 00 % 0 s 0 o0 o

OPTIONAL FEATURES

Optional features for the System/370 Model 168 (Models 1 and 3), which
can be field installed unless otherwise indicated, are:

3066 Model 2 system Console (required in all configurations)

High-Speed Multiply#*#

Buffer Expansion for inclusion of a 16K buffer (Model 1 only)

707077074 Compatibility#*#

7080 Compatibility*#*

709/7090/7094/70941I1 Compatibility#*#*

2870 Byte Multiplexer Channels, 2860 Selector Channels, and 2880

Block Multiplexer Channels

e Channel Indirect Data Addressing for 2870, 2860, and 2880 channels
(required when 0S/VS1l, 0OS/VS2, or VM/370 is used)

¢ Extended Channels (for up to twelve channels)

Channel-to-Channel Adapter on 2860 channels

Extended Unit control Words on 2880 channels (mutually exclusive

with the Two-Byte Interface feature)

Integrated Storage Controls

Two-Channel Switch and/or Staging Adapter for Integrated Storage Controls

Power Warning

2955 Remote Analysis Unit (Model 1 only)

Multiprocessing

#*Not recommended‘ﬁor field installation

Note: Compatibility features are mutually exclusive

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 35

SECTION 30: VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION

The first subsection, 30:05, discusses the needs that virtual storage
and dynamic address translation in System/370 are designed to address.
No previous understanding of these facilities is assumed. In this
discussion, an address space is defined as a consecutive set of
addresses that can be used in programs to reference data and
instructions. System operation in IBM-supplied virtual storage
environments is explained conceptually, without use of all the
terminology new to such an environment.

The general advantages of IBM-supplied virtual storage operating
systems are presented also. Included in this subsection are those that
apply to 0S/vsl and 0S/VS2. Additional advantages of virtual storage
that are specific to a particular IBM-supplied operating system are
discussed in the optional supplement for that operating system.

The last portion of subsection 30:05 defines the terminology
associated with virtual storage and dynamic address translation
hardware. The terminology included is that common to the four IBM-
supplied programming systems that support a virtual storage environment
for Systems/370. However, specific references to DOS/VS are not made
where a difference between DOS and 0OS exists, since DOS/VS does not
support the Model 168. Terms unique to a particular programming system
are defined in the optional supplement that describes that programming
system.

Subsection 30:10 describes in detail the implementation and operation
of dynamic address translation and channel indirect data addressing
hardware in the Model 168 (Models 1 and 3). Other hardware items
associated with dynamic address translation, such as reference and
change recording, are discussed as well.

The last subsection, 30:15, discusses the new factors that affect
system performance in a virtual storage environment. The information
presented is related to efficient installation and utilization of an
IBM-supplied virtual storage operating system.

The two optional programming systems supplements (Sections 90 and
100) for the virtual storage operating systems for the Model 168 (0S/Vsl
and 0S/VS2 SVS assume knowledge of the entire contents of Section 30.
The optional supplement for VM/370 (Section 110) assumes knowledge of
subsections 30:05 and 30:10 only, since performance in a virtual machine
environment is discussed in the VM/370 supplement. This entire section
applies to the Model 165 II as well as to the Model 168, except where
differences are noted.

30:05 VIRTUAL STORAGE CONCEPTS, ADVANTAGES, AND TERMINCLOGY

THE NEED FOR LARGER ADDRESS SPACE

The past and present rapid growth in the mumber and types of data
processing applications being installed has led to an increasing demand
for more freedom to design applications without being concerned about,
or functionally constrained by, the physical characteristics of a
particular computer system--system architecture, I/O device types, and
processor storage size. As program design and implementation become
easier, they can enable more rapid installation of applications, so that
the benefits of data processing can be achieved sooner.

36 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

The design of System/360 and 0S MFT and MVT allowed programmers to be
less concerned than before about specific CPU architecture and I/O
device types when designing and implementing applications by (1)
providing a compatible set of CPU models ranging in size from small to
large scale, (2) providing a variety of high-level languages with
greatly expanded capabilities, including a new language (PL/I), (3)
providing comprehensive data management functions, including support of
I/0 device independence where data organization and the physical
characteristics of devices permitted, and (4) supporting dynamic
allocation of system resources (channels, I/0 devices, direct access
space, and processor storage).

While System/360 and OS represented major steps toward giving
programmers a larger measure of system configuration independence,
constraints that resulted from the necessity to design applications to
fit within the amount of processor storage available still existed. 1In
addition, although System/360 models provided more and less costly
processor storage than was previously available, increasingly larger
amounts of processor storage began to be required as the use of high-
level languages increased, the usage and level of multiprogramming
increased, the functions supported by operating system control programs
expanded, and applications that regquire relatively larger amounts of
processor storage (such as teleprocessing and data base) were designed
and installed more frequently. '

The requirement for more processor storage is still growing. The new
applications being developed and installed tend to have larger and
larger storage design points in oxrder to provide the functions desired.
More processor storage is also required for I/0 buffer areas to achieve
maximum capacity and performance for sequential operations using new
Systems/370 direct access devices with significantly larger track
capacities. Larger blocking of tape records, which requires larger I/0
buffers, also results in increased tape reel capacity and decreased tape
processing time. As a result, System 370 models provide significantly
more processor storage than their predecessor System/360 models and
offer it for a lower cost. .

The availability of more processor storage, however, has not relieved
all the constraints associated with processor storage. Applications
still must be tailored to the amount of processor storage actually
available in a given system even though storage design points (partition
and region sizes) can be larger than they were previously.

consider the following situations that can occur in installations:

1. An application is designed to operate in a 50K processor storage
area that is adequate to handle current processing needs and that
provides room for some expansion. Some time after the
application is installed, however, maintenance changes and the
addition of new functions cause one of the programs in the
application to require 51K and another to require 52K.
Installation of the next processor storage increment cannot be
justified on the basis of these two programs, so time must be
spent restructuring and retesting the programs to fit within S50K.

2. An existing application has programs with a planned overlay
structure. The volume of transactions processed by these
programs has doubled and better performance is now required.
Additional processor storage is installed. However, the overlay
programs cannot automatically use the additional storage.
Therefore, reworking of the overlay programs is required to take
them out of planned overlay structure and, thereby, achieve the
better performance desired.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 37

3. A low-volume, terminal-oriented, simple induiry program that will
operate for three hours a day is to be installed. If the program
is written without any type of overlay structure, it will require
60K of processor storage to handle all the various types of
inquiries. However, because of a low inquiry rate, only 8K to
12K of the total program will be active at any given time. 1In
oxrder to justify its operational cost, considerable additional
program development time is spent designing the inquiry program
to operate with a dynamic overlay structure so that only 12K of
processor storage. is required for its execution.

4. A multiprogramming installation has a daily workload consisting
primarily of long-running .jobs. There are also certain jobs that
require a relatively small amount of time to execute. The times
at which these jobs must be executed are unpredictable; however,
when they are to be run, they have a high completion priority.
While it is desirable to be able to initiate these high-priority
jobs as soon as the regquest to execute them is received, this
cannot be done because long-running jobs are usually in
operation. Hence, a certain time of day is established for
initiating high-priority jobs and the turnaround time for these
jobs is considerably longer than is desired.

5. A series of new applications are to be installed that require
additional computing speed and twice the amount of processor
storage available in the existing system. The new application
programs have been designed and are being tested on the currently
installed system until the new one is delivered. However,
because many of the new application programs have storage design
points that are much larger than those of existing applications,
testing has to be limited to those times when the required amount
of processor storage can be made available. Although another
smaller-scale model is also installed that has time available for
program testing, it cannot be used because it does not have the
amount of processor storage required by the new application
programs. In addition, although the smaller-scale model now
provides backup for the currently installed larger-scale model,
the smaller-scale model cannot be used to back up the new system
because of processor storage size limitations.

6. A large terminal-oriented application is to be operative during
one entire shift. During times of peak activity, four times more
processor storage is required than during low-activity periods.
Peak activity is experienced about 20 percent of the time and low
activity about 40 percent. The rest of the time, activity ranges
from low to peak. Allocation of the peak activity processor
storage requirement for the entire shift cannot be justified and
a significantly smaller storage design point is chosen. As a
result, a dynamic program structure must be used, certain desired
functions are not included in the program, and response times
during peak and near-peak activity periods are increased above
that originally planned.

In this installation, most of the batched jobs are processed
during the second shift. However, there is also a need to
operate the large terminal-oriented application for a few hours
during second shift. This cannot be done because the system does
not have the amount of processor storage required for concurrent
operation of the batched jobs and the terminal program (which
must have its storage design point amount allocated even though
that amount of processor storage would not be required during
second shift operations). The large amount of additional
processor storage required to operate the terminal program for
only a portion of the second shift cannot be justified.

38 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

7. An application program with a very large storage design point is
executed only once a day as a batched job. A significant benefit
would result from putting the program online to a few terminals
during the morning hours. However, the program continues to be
run as a batched job because it is very large and would be made
larger by putting it online. The large amount of additiomal
processor storage required to operate the program concurrently
with the existing morning workload cannot be justified.

8. A terminal~based application has been installed on a full
production basis for several months. During this period, the
benefits accrued from the online application have encouraged the
gradual addition of several more terminals, and peak activity is
considerably higher than it was initially. Because growth has
been gradual, much additional programming time (significantly
more than is required to maintain batch-oriented applications)
has to be spent periodically restructuring the terminal-based
application program to handle the increasing volume of activity.

9. An online application is currently active during an entire shift
and operates concurrently with batched jobs. It would be
advantageous to install a second terminal-oriented application
that would operate concurrently with the existing workload during
the entire shift. However, the amount of processor storage that
would have to be dedicated to each online application for the
entire shift in order to handle its peak activity is very large,
and times of peak activity for the two applications do not
completely overlap. Because S0 much processor storage would be
unused during a large portion of the shift if both online
applications were always active, installation of the second
online application is difficult to justify.

In the situations described, processor storage is a constraining
factor in one way or another and the constraints highlighted can apply
in some degree to all systems regardless of their scale (small,
intermediate, large) or processor storage size. The fact that larger,
less expensive processor storage is now available on sSystem/370 models -
does not remove these constraints for two major reasons.

First, once a storage design point has been chosen for an
application, whether the design point is relatively large or small, the
application is dependent on that processor storage size for its
operation. The application cannot execute in less than its design point
storage amount, nor can it take advantage of additional available
processor storage without being modified (unless it has been
specifically structured to use additional storage as, for example, are
most IBM-supplied language translators).

Second, although processor storage has become less costly, it still
is a resource that should be used efficiently because of its importance
in the total system operation. Thus, when storage design points are
chosen, tradeoffs among processor storage cost, application function,
and system performance are often made. Making applications fit within
the storage design points selected becomes the responsibility of
application designers and programmers. This situvation is made more
difficult by the fact that for many applications an optimum storage
design point cannot be determined until the application is written and
tested using expected transaction volumes.

The significance of processor storage restraints should be evaluated
in light of the following trends evidenced by new types of applications:
(1) the total amount of storage required to support their new facilities
continues to grow larger, (2) the storage they actually require for
operation during their execution is tending to become more variable, and
(3) it is becoming as desirable to install many of these new

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 39

applications on smaller-scale systems with relatively small maximum
processor storage sizes and low volume requirements as it is to install
them on larger~scale systems. Reduction of the constraining factors
currently imposed by processor storage is, therefore, a necessary step
in making new applications easier and less costly to install and
available to a wider range of data processing installations.

Given the existing processor storage restraints on application design
and development and the storage requirements that are becoming
increasingly more characteristic of many of the new types of
applications, it becomes advantageous to allow programmers to design and
code applications for a larger address space than they currently have.
That is, programmers should be able to use as much address space as an
application requires so that special program structures and techniques
are not required to fit the application into a given storage size.
Programmers can then concentrate more on the application and less on the
techniques of programming. In addition, the size of the address space
provided should not be determined by processor storage size, as it is in
0Ss MFT and MVT, so that the address space can be larger than the
processor storage available.

A larger address space should be provided, therefore, by a means
other than making processor storage as large as the address space
desired. This requirement can be satisfied by providing programmers
with an address space (called virtual storage) that is supported using
online direct access storage and dynamic address translation hardware.
This approach also offers the advantage of supporting a larger address
space for a lower cost than if larger processor storage is used, since
direct access storage continues to be significantly less expensive per
bit than processor storage. In addition, dynamic address translation
hardware offers functional capabilities that large processor storage
alone cannot provide. ‘

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION CONCEPTS

Virtual storage is an address space the maximum size of which is
determined by the addressing scheme of the computing system that
supports it rather than by the actual number of physical processor
storage locations present in the computing system. In System/370, for
example, which uses a 24-bit binary address, a virtual storage as large
as 16,777,216 bytes can be supported. When virtual storage is
implemented, the storage that can be directly accessed by the CPU,
normally called processor or main storage, is referred to as real

stor age.

The concept of virtual storage is made possible by distinguishing
between the names of data and instructions and their physical location.
In a virtual storage environment, there is a distinction between address
space and real storage space. Address space (virtual storage) is a set
of identifiers or names (virtual storage addresses) that can be used in
a program to refer to data and instructions. Real storage space is a
set of physical storage locations in the computer system in which
instructions and data can be placed for processing by the CPU. The
number of addresses in the two spaces need not be the same, although
both spaces begin with address zero and have consecutive addresses. The
programmer refers to data and instructions by name (virtual storage
address) without knowing their physical (real storage) location.

When virtual storage is not implemented, there is, in effect, no
differentiation between address space and real storage space. The
address space that can be used in programs is identical in size to the
real storage space available and the address in an instruction
represents both the name and the location of the information it
references.

40 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

In a virtual storage environment, therefore, the address space
available to programmers is that provided by the virtual storage size
implemented by a given system--not the address space provided by the
real storage available in the given system configuration. In 0S/VS1l and
0S/VSs2, virtual storage rather than real storage is divided into
consecutively addressed partitions or dynamically allocated regions for
allocation to problem programs. The fact that storage addresses in
executable programs are virtual rather than real does not affect the way
in which the programmer handles addressing. In System/370, for example,
an Assembler lLanguage programmer assigns and loads base registers and
manipulates virtual storage addresses in a program just as if they were
real storage addresses.

Virtual storage is so named because it represents an "image of
storage™ rather than physical processor storage. Since virtual storage
does not actually exist as a physical entity, the instructions and data
to which its virtual storage addresses refer, which are the contents of
virtual storage, must be contained in some physical location.

In 0S/Vsl and 0S/VS2 environments, the contents of virtual storage
are divided into a portion that is always present in real storage,
namely, part of the control program, and another portion that is not
always present in real storage. The instructions and data that are not
always present in real storage must be placed in locations from which
they can be brought into real storage for processing by the CPU during
system operation. This requirement is met by using direct access
storage to contain this portion of the contents of virtual storage (see
Figure 30.05.1). The amount of direct access storage required to
support a given amount of virtual storage varies by operating system,
depending on how direct access storage is organized and allocated.

In addition, a mechanism is required for associating the wvirtual
storage addresses of instructions and data contained in direct access
storage with their actual locations in real storage when the
instructions and data are being processed by the CPU. This requirement
is met by using dynamic address translation (DAT) hardware in the CPU to
associate virtual storage addresses with appropriate real storage
addresses.

With this design, a system can support an address space that is
larger than the actual size of the real storage present in the system.
This is accomplished by bringing instructions and data from direct
access storage into real storage only when they are actually required by
an executing program, and by returning altered instructions and data to

~direct access storage when the real storage they occupy is needed and
they are no longer being used. At any given time, real storage contains
only a portion of the total contents of virtual storage.

Such a design is made practical by the fact that the logical flow of
processing within the majority of programs is such that the entire
program need not be resident in real storage at all times during
execution of the program. For example, initialization and termination
routines are executed only once during the operation of a program. Any
exception-handling procedure, such as an error routine, is required only
if the exception condition occurs. A program that handles a variety of
transaction types (whether batch or online oriented) need have resident
at any given time only the transaction routine required to process the
current transaction type. It is this property of programs that has
enabled planned overlay and other dynamic program structures to be used
successfully in nonvirtual storage environments when the amount of
processor storage available was not large enough. As indicated
previously, this variable storage requirement characteristic of programs
tends to be even more pronounced in new types of applications and in
online environments in which processing is event-driven.

A Guide to the IBM Systenmv370 Model 168 forVSystem/370 Model 165 Users 41

Virtual Storage Direct Access Storage

Address space Contents of a portion

I
I
I
I
programmers | (instructions and data)
I
I
I
]

available to I— mapped —3m={ of virtual storage
Consecutive
addresses
maximum in
System/370 .
) __/

Location of data

Address space allocated . .
and instructions

I
|
I
I
I
0t0 16,777,215 ¢ |
I
|
| |
I to the control program I
| that is always present |

in real storage

o J

Names of instructions
and data

Contains
virtual storage
addresses

Executable program

Figure 30.05.1. Names and location of instructions and data in a
virtual storage environment

For the purpose of resource management in a virtual storage
environment, virtual storage and its contents, direct access storage
used to contain a portion of the contents of virtual storage, and real
storage are divided into contiguous fixed-length sections of equal size.
Once a program has been fetched fram a program library and initiated,
instructions and data within a program are transferred between real
storage and direct access storage a section at a time, during program
execution. A section of an executing program is brought into a real
storage section only when it is required, that is, only when a virtual
storage address in the section is referenced by the executing program.

A program section that is present in real storage is written in a direct
access storage section only when the real storage assigned to it is
required by another program section and only if the section has been
changed.

A virtual storage operating system control program monitors the
activity of the sections of all executing programs and attempts to keep
the most active sections in real storage, leaving the least active
sections in direct access storage. Figure 30.05.2 illustrates the
relationship of virtual storage, direct access storage, and real storage

42 A Guide to the IBM Systems/370 Model 168 for System/370 Model 165 Users

without regard to a specific virtual storage operating system
implementation.

The division of a program and its data into sections and the transfer
of these sections between direct access storage and real storage during
program execution is handled entirely by the virtual storage operating
system without any effort by the programmer. When a planned overlay or
dynamic overlay program structure is used, the programmer is responsible
for dividing the program and its data into phases, determining which
phases can' be present at the same time in the amount of real storage
available (partition or region), and indicating when phases are to be
loaded into real storage during processing.

Virtual Storage Direct Access Storage
©\
AN
N
N
AN
Tables or an . N
algorithm used Contents of a portion
Address space R of virtual storage AN Real Storage
to map virtual s .
allocated to storage sections (instructions and
executing programs to direct data for executing
frect access programs)
storage sections Tabl
Aables map Active sections
virtual storage of executing
sections to real programs
K‘——‘/ storage sections
Control program Control program

Figure 30.05.2. Relationship of virtual storage, direct access
storage, and real storage

While a virtual storage up to 16 million bytes in size can be
addressed by any System/370 model with DAT hardware, the virtual storage
size that can be effectiwvely implemented by a given system is affected
by (1) the amount of real storage present, (2) the amount of direct
access storage space made available to contain the contents of virtual
storage, (3) the speed of the direct access storage devices containing
virtual storage contents and contention for these devices or the
channels to which they are attached, (4) the speed of the CPU, and (5)
the characteristics of the programs operating concurrently. Hence, the
amount of real storage required to effectively implement a specific
amount of virtual storage can vary by system, depending on the
characteristics of the applications in the workload and the performance’
desired, as is discussed in Section 30:15.

Once a program section has been loaded into real storage, its virtual
storage addresses can be translated when they are referenced. Dynamic
address translation hardware is the mechanism that translates the
virtual storage addresses contained in instructions into real storage
addresses during instruction execution. Address translation is
accomplished in System/370 using a hardware-implemented table lookup
procedure that accesses tables contained in real storage. These tables,
which are maintained by control program routines, (1) define the amount
of virtual storage supported and allocated, (2) indicate whether any

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 43

given program section is currently present in real storage, and (3)
contain the addresses of real storage sections allocated to the program
sections that are currently present in real storage.

During the execution of each instruction, address translation is
performed on any virtual storage address in the instruction that refers
to data or to an instruction. Translation occurs after the 24-bit
effective virtual storage address has been computed by adding together
base, displacement, and, if any, index values as usual. The result of
the address translation is a 24-bit real storage address designating the
location containing the data or instruction referenced by the virtual
storage address in the instruction. The virtual storage addresses in
channel programs (CCW lists) are not translated by channel hardware
during channel program.execution; therefore, programmed translation is
required prior to initiation of a channel operation.

In reality, DAT hardware provides dynamic relocation of the sections
of a program during its execution. This capability is not provided by
0S MFT and 0S MVT, which support program relocation at link-edit and
program load time only. Once a program has been loaded into an area of
real storage by the program fetch routine, these operating systems
cannot relocate the program to another area of real storage during its
execution. Thus, an entire program or a portion of a program cannot be
written on direct access storage during execution and later reloaded
into different real storage locations to continue execution. Once
loaded, therefore, a program is bound during its execution to its
initially allocated real storage addresses. In a virtual storage
environment, a program is bound only to the virtual storage addresses it
was assigned during loading.

The dynamic relocation provided by DAT hardware eliminates, for most
programs, the need for allocating and dedicating a contiguous area of
real storage to an entire program for the duration of its execution, a
requirement for all programs in MFT and MVT. (As discussed later in
this subsection, some programs cannot operate in the manner being
described, that is, with sections transferred only as required between
direct access storage and real storage.) 1In a virtual storage
environment, real storage is no longer divided into contiguously
addressed partitions or dynamically allocated regions that can contain
one executing job step (program) at a time.

Further, when real storage is allocated to a section of an executing
program, the real storage is not dedicated to that program section for
the duration of program execution. Concurrently executing programs can
dynamically share the same real storage sections. That is, in general,
the real storage available for allocation to executing programs can be
allocated to any program section as needed. When a section of an
executing program must be loaded, any available section of real storage
can be assigned (subject to certain restrictions imposed by operating-
system-dependent real storage organizations). When the program section
is no longer required, it can be written in direct access storage, if it
has been altered, and the real storage assigned to it can be made
available for allocation to another section of the same program or to a
section of another program.

The assignment of real storage sections is handled entirely by the
operating system, which also keeps account of which sections of
concurrently operating programs are the most active. The operating
system does not attempt to allocate a given amount of real storage to
each executing program. It merely allocates real storage to those
sections it determines are the most active, without taking into account
the particular program to which the active section belongs.

DAT hardware, therefore, provides more than translation from address
space (virtual storage) to real storage space. It provides the

44 A Guide to the IBM System/370 Model 168 for Systems/370 Model 165 Users

capability of implementing dynamic real storage management that requires
no effort on the part of the programmer and significantly less CPU time
than programmed address tramnslation during program execution. (The
large amount of CPU time required to translate addresses during program
execution using programmed means has precluded implementation by IBM of
an operating system that supports such programmed dynamic address
translation.) Much of the real storage utilization preplanning required
for 0s MFT and MVT environments in order to use real storage effectively
can be eliminated in a virtual storage environment. Dynamic real
storage management capability is another advantage the technique of
using direct access storage and DAT hardware to support a larger address
space has over using larger real storage to provide a larger address space.

Another capability made available by the implementation of large
address space using direct access storage and dynamic address
translation is that of supporting more than one virtual storage with
only one system. Multiple virtual storages are supported by 0S/VS2 MVS
(Releases 2 and up) and also can be used to support multiple virtual
machines. A discussion of the concepts and general advantages of
virtual machines is contained in Section 40. The features and operation
of VM/370 are presented in Virtual Machine Facility/370 Features

Supplement .

The use of virtual storage and DAT hardware to enable programs to
operate in less real storage than the total storage requirement of the
programs can also offer better performance potential than the technique
of using a planned overlay program structure. When a planned overlay
program executes in MFT or MVT, considerable time can be spent executing
the overlay supervisor in order to pexform programmed address
translation (relocation) when a program phase is loaded. In addition,
more efficient real storage utilization may be achieved in a virtual
storage environment, since the control program reacts to changing
processing needs and only portions of the program that are actually
required are loaded (all phases of an overlay program may not be the
same size and all code within a phase may not be used when the phase is
loaded). Once a planned overlay program has been structured to handle
the currently required set of program phases efficiently, it cannot
automatically adapt to a change in the set of program phases required or
to a change in the activity of the required set of phases.

In a virtual storage environment, the performance of the system can
be directly affected by the amount of time spent transferring program
sections between direct access storage and real storage. Satisfactorxy
system performance is achieved when each of the concurrently executing
programs has enough real storage dynamically allocated to it to keep the
need for transferring program sections into and out of real storage at
an acceptable level.

AsS previously mentioned, most programs can be structured so that
processing activity is localized in one area of the program or another
during time intervals rather than equally spread over the entire
program. In other words, at any given time period during execution of
the program, only a subset of the entire program need be referenced.

This is sometimes called the "locality of reference® characteristic of
programs. Therefore, a program achieves satisfactory performance when

its most active sections in any given time interval remain in real

storage and there is a limited amount of program section transfer activity.

Most programs require a certain minimum amount of real storage in
which to execute in order to achieve satisfactory performance. If such
programs operate with less than their minimum requirement dynamically
allocated, program section transfer activity increases and performance
degradation can occur. The minimum real storage requirement of a
program is related to the amount of real storage required by the most
active sections of the program. Because of the locality of reference

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users U5

characteristic of most programs, the minimum real storage requirement of
a program for satisfactory operation frequently can be less than its
total storage requirement. This fact enables an operating system to
efficiently support a virtual storage that is larger than the real
storage actually present in the computing system.

A virtual storage environment, therefore, enables most programs to be
independent of real storage size to a large degree. A program can
execute using varying amounts of dynamically available real storage.
without being modified. The amount of real storage dynamically
available to a program during its execution primarily affects its
performance, to the extent that program section transfer activity is
affected, rather than its capability to be executed. For example, while
a given 200K language translator might be able to operate with an
average of 100K of real storage dynamically available to it dQuring its
operation, the time required to compile a program under these conditions
might be unacceptable. Alternatively, the performance desired might be
achieved if an average of 130K is dynamically available to the language
translator while it operates. Without a virtual storage operating
system, the 200K language translator might not be used at all because of
‘its design point size.

In addition to the requirement for larger address space, there is
still a requirement for larger real storage sizes in order to meet the
functional and performance needs of the larger, more complex,
multiprogramming environments. The availability of large lower-cost
real storage for the Model 168 and the real storage independence that a
virtual storage environment offers provide new flexibility in tradeoffs
among real storage cost, function, and individual program or total
system performance.

GENERAL ADVANTAGES OFFERED BY IBM OPERATING SYSTEMS THAT SUPPORT A
VIRTUAL STORAGE ENVIRONMENT

Each of the IBM operating systems that supports a virtual storage
environment for System/370 models using dynamic address translation
offers the capability of using address space that is larger than that
provided by available real storage, and each supports dynamic real
storage management that is transparent to the user. As a result, these
operating systems offer certain general potential advantages that 4o not
depend on their unique features. The implementation of virtual storage
also provides benefits that are specific to each of these operating
systems because of their design and the particular functions they
support. The following discusses the potential advantages of virtual
storage and dynamic address translation that are common to 0S/VS1 and
05/VS2 environments.

The general advantages of virtual storage 0perating systems are the
potential they offer for:

e Increased application development
e Expanded operational flexibility
¢ System performance improvement

A virtual storage operating system can facilitate more rapid
development of new applications because, by removing most existing real
storage restraints on application design, it can help improve the
productivity of programmers. Specifically, a virtual storage operating
system has characteristics that can be used to reduce the effort, time,
and cost associated with application design, coding, testing, and
maintenance. This makes the installation of new applications more
readily justifiable and encourages the addition of new functions to

46 A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Users

existing applications. The potential advantage of improved operational
flexibility is made possible by the greater independence of applications
from real storage size. Enhanced system performance can result from
improved real storage utilization. Wwhile these latter two benefits have
their own individual value, they also, either indirectly or directly,
ease the installation of new applications.

Potential for Increased New Application Development

The following capabilities are characteristic of a virtual storage
operating system environment :

¢ Greater flexibility in the design of applications is possible.

larger programs can be written without the necessity of using
planned overlay techniques or other dynamic program structures
designed to fit programs into the amount of real storage available.
The need for intermediate (or working) data sets is reduced or
eliminated because tables, relatively small data groups, etc., that
are placed on direct access storage because of real storage
limitations can become part of the program and will be brought into
real storage automatically as required. Program planning, coding,
and testing time can be reduced by elimination of the use of these
programming techniques and other real storage management facilities,
which also require additional programming knowledge and skill. Also
avoided is the restructuring of application programs after they have
been written because they are larger than the real storage available
for their execution. Hence, applications can kecome operational
more qguickly.

Open-ended, straightforward application design is possible, and more
comprehensive programs can be written. An application can be
segmented into a series of programs according to its logical flow
instead of according to the functions that can be performed in the
specific amount of real storage available to each step in the
application. Programming and processing duplication inherent in the
approach of using two or more job steps to perform one logical
process is thereby avoided.

Additional programming facilities can become available that
othexrwise could not be used because of real storage limitations.
specifically, full-function high-level language translators, which
offer more capabilities than their subset versions (such as
additional debugging facilities and performance options) but which
also have larger storage design points, can be used because they can
operate in a virtual storage environment using less real storage
than their design point requirement.

e Preproduction testing of larger-than-average application programs
can be increased if enough virtual storage can be made available to
enable them to run during normal testing periods. Turnaround time
during testing can be reduced.

In a nonvirtual storage environment such programs are usually
grouped together and executed only at certain times when their
larger design point storage requirements can be made available.

e Fine tuning of application programs to achieve performance
improvements, when necessary, can be delayed until after the
application is in production. This capability enables an
application to become operative sooner.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 47

e Startup costs for new applications may be reduced.

A new application can be developed and tested on the existing
system, assuming the required 1/0 devices are present in the
configuration, before the additional real storage the application
requires for performance on a production basis is actually
installed. When the application is ready for production, the
additional real storage required can be added to the system. 1In
some cases it may be possible to operate the application on a
production basis on the existing system without adding real storage
initially, because during the startup period, transaction volume is
very low. As the volume grows, real storage can be added to achieve
better performance.

¢ Growth of existing applications and the maintenance of operational
programs is simplified.

Because of the removal of most real storage restraints, new
functions can be more easily and more rapidly added to most existing
applications. Program expansion because of added functions or
maintenance changes does not require the use of overlay techniques,
maltiple job steps, etc., when the size of the extended program
exceeds the original storage design point size.

In general, alteration and debugging of nonoverlay programs are also
easier than alteration and debugging of programs with planned
overlay or dynamic structures.

e Application programs whose real storage requirements, based on
~ transaction volume and complexity, vary widely during their
execution may be justified, designed, and installed more easily.

Design, coding, and testing time can be reduced because dynamic
storage management is automatically provided by the operating
system. Time and effort need not be spent structuring such programs
to use available real storage dynamically to support the functions
and/or response times required.

e Design and installation of one-time, low-usage, or low-volume
programs of very large storage size are more easily justified.
Existing applications in these categories that currently operate in
a batch environment can also more easily be altered to operate
online, a growth step that might not be justifiable in a nonvirtual
storage environment.

e Applications can be installed on a.trial basis for the purpose of
observing and evaluating their functions and their operation.

Most IBM-supplied application program products can be temporarily
installed on an existing system, assuming the required I/O devices
are present. The additional hardware resources that may be required
to operate the application on a production basis can be added later,
when the application is permanently installed.

e The benefits of the functions provided by many IBM-supplied
application program products with larger storage design points can
be realized using smallexr amounts of available real storage.

It may be difficult to justify the real storage required to install
a relatively large storage design point application on a system to
handle a low volume of transactions, even though the functions
provided by the application are very desirable. In a virtual
storage environment, such an application can execute using that
amount of dynamically available real storage required to satisfy the
desired performance requirements for the low volume of activity.

48 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Potential for Additional Operational Flexibility

The reduction of real storage restraints makes most applications more
independent of the real storage size of a system configuration and
permits most applications to be processed on systems with varying
amounts of available real storage without program modification. Dynamic
real storage management reduces the amount of job stream and operations
preplanning that is normally done to use real storage as efficiently as
possible in a multiprogramming environment. The following benefits can
be the result:

e A system can back up another system even though it has less real
storage than the system it backs up.

A smaller-scale system with the appropriate 1/0 configuration can
provide backup for a . larger-scale system if necessary. (Performance
experienced on the backup system may vary from that normally
achieved depending on the two system configurations involved.)

e A single design and one operating procedure can be used for an
application that is to operate on multiple systems with varying
amounts of real storage, as long as the virtual storage required is
supported by all the systens.

When data processing is decentralized among multiple installationms
with systems that have different amounts of real storage, one
location can design, implement, and maintain an application that can
be used by other installations. Duplication of this type of effort
can be minimized or eliminated. ’

e Most applications can be tested on systems with less real storage
than the one on which they will run in a production environment, as
long as the required amount of virtual storage is supported.

e Growth to a larger real storage configuration can be easier.

Real storage can be added to an existing system to improve system
performance (by the reduction of program section transfer activity)
without the necessity of modifying existing application programs so
that they take advantage of additional real storage. Additional
real storage (up to a maximum of their design point size) is
automatically used by programs that operate in a virtual storage
environment.

e Operators need not perform certain procedures that are solely
related to efficiently managing real storage.

The operator is concerned with the division of virtual storage and
therefore need not change partition sizes at various times (in
0s/vsl, for example) for the purpose of making storage available for
larger than average jobs. (An installation can define virtual
storage partitions that are larger than those currently defined in
the 0S MFT environment, and the partitions can be made big. enough to
contain the largest existing or currently planned storage design
point programs.) Similarly, in an 0S/VS2 environment, the operator
no longer need start long-running jobs at certain points in time to
ensure that available real storage is fragmented as little as
possible.

e Priority jobs whose need to be processed cannot be predicted can be
scheduled when required. ;

A nonvirtual storage environment does not provide the capability of

effectively handling the scheduling of high-priority jobs on a
random basis. Hence, this type of job is not permitted to exist in

A Guide to the IBM System370 Model 168 for System/370 Model 165 Users 49

an installation, or such jobs must be scheduled to operate only at
certain times. In a virtual storage environment, a high-priority
virtual partition can be defined in an 0S/VSl environment and
resexrved for the purpose of processing only high-priority jobs.
Except for that required for certain tables, real storage is not
required for this partition until a job is actually scheduled. In
an 0S/VS2 environment, an initiator with a special class can be
started that will handle only high-priority jobs. This can. be done
in MVT as well but because of the possibility of real storage
fragmentation, there is no assurance that the high-priority job can
be started.

Potential for Performance Improvement

The improved real storage utilization made possible by the use of
dynamic address translation hardware can have a positive effect on the
performance of a system that handles a job mix whose use of real storage
varies considerably while it is being processed. The extent of the
performance improvement depends on the types of applications involved
and the carrent utilization of system resources. Therefore, the amount
of performance gain, if any, that may be achieved is highly variable by
installation. Environments with the greatest potential for improved
performance are as follows:

e Batch-oriented multiprogramming environments with application
programs of widely varying real storage requirements.

Real storage may not be most efficiently used in such an environment
because (1) real storage can become fragmented when regions are
dynamically allocated and freed or (2) it is difficult to divide
real storage into a set of areas that is optimum for all programs
when real storage is partitioned. (Consider the inefficient use of
real storage in an 80K partition allocated for assemble, 1link-edit,
and test jobs in which an 80K language translator, a 44K linkage
editor, and problem programs no larger than 60K execute.) 1In
addition, real storage is not efficiently used when the real storage
requirement of a given program, based on transaction mix or volume,
varies widely, and the amount of real storage that is allocated is
designed to handle the peak requirement. (This is typically true of
graphics applications, for example.) Further, real storage assigned
to a program is not productively used during the time the program is
waiting for a human response, such as for the operator to locate
and/or mount a volume or to make a decision and enter a message on
the console, or during the time required to quiesce the system in
order to change partition definitions, start high-priority jobs, or
start a teleprocessing program in high real storage.

In a virtual storage environment, in which all concurrently
executing job steps share real storage dynamically and use real
storage only when it is actually required for program execution,
real storage is more efficiently used. Hence, if real storage
currently is the restraint, a given real storage size might be
capable of supporting a higher level of mltiprogramming than can be
achieved without the use of dynamic storage management (assuming
other required resources, such as CPU time, I/0 devices, and
channels, are available). For example, installation of a large
storage design point, terminal-based application to handle only a
few terminals might be possible. Alternatively, a higher level of
maltiprogramming might be supported by the addition of a smaller
real storage increment than would otherwise be required.

System performance may also be improved if more efficient use of

available real storage enables additional heavily used functions to
be made resident instead of transient or allows the incorporation of

50 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

performance-oriented options in the control program. This
improvement can apply to environments with batch and online
operations, as well as to batch-only multiprogramming environments.

¢ Multiprogramming environments with a mixture of batch-oriented and
terminal-based applications.

While the real storage required for the communication control
portion of a teleprocessing application remains constant, terminal-
based processing programs are typically. subject to wide variations
in the amount of real storage they require during their execution
because the transaction mix being handled concurrently varies, the
activity of each terminal online varies, or the number of terminals
operating concurrently changes. In order to provide the functions
desired, ensure the capability of handling peak activity periods and
maximum transaction type mixes, and guarantee a given response
during times of peak activity, a certain amount of real storage is
required. This peak reguirement is generally significantly more
than is needed during periods of medium and low activity.

Allocation of the maximum storage requirement results in inefficient
use of real storage, since unused real storage dedicated to any
terminal program cannot be used by other concurrently operating
batched or terminal-oriented jobs in a nonvirtual storage
environment. In addition, it is usually difficult, and sometimes
impossible, to effectively preplan real storage usage for an online
application.

Dynamic real storage management in a virtual storage environment
automatically provides a much more efficient method of allocating
real storage in such an environment. Real storage is not divided
into that which can be used only by the terminal-based program(s)
and that which can be used only by batched jobs. During times of
peak terminal activity, the active sections of terminal-oriented
processing programs with a higher priority are automatically
allocated real storage, making less real storage available to the
lower priority batched jobs in execution at that time. During
periods when terminal activity is relatively low, real storage not
used by any terminal program is available for assignment to the
active sections of executing batched jobs. Such an environment is
represented conceptually in Figure 30.05.3.

In existing mixed batch- and online-oriented installations, dynamic
real storage management allows programming techniques that can
improve the performance of the online application. This improvement
can be in the form of better response for existing terminals or the
ability to support more terminals. A given online application may
also be able to support a higher level of multiprogramming, as a
result of better real storage utilization, without any additional
programming effort (more TSO regions, for example). A virtual
storage environment also makes the concurrent operation of multiple
terminal-based applications more practical.

Figure 30.05.3 shows sample allocations of real storage to two
batched jobs and two terminal-oriented jobs in a multiprogramming
environment during low, medium, and peak activity points in time. Job
priority from high to low is TP2, TP1, BJ2, BJ1l. For simplicity,
virtual and real storage are shown to be totally allocated at all times
and no particular virtual storage operating system (0S/VSl or 0S/VS2) is
assumed, since the concepts illustrated apply to both, regardless of
differences in the way virtual storage is allocated by these operating
systems. Real storage is shown to be contiguously allocated to each job
in high-to-low priority sequence. This is done only to illustrate the
relative amount of real storage the control program has dynamically
allocated to each program during the instant shown. In reality, the
total amount of real storage allocated to an executing program at any

A Guide to the IBM System/370 Model 168 for Systems/370 Model 165 Users 51

given time is usually not contiguous in a virtual storage environment.
In addition, during times of low terminal program activity, it may be
possible to support a. higher level of batched job mltiprogramming,
which is not shown in the figure.

Virtual Storage

Control Batched Batched Terminal program 1 Terminal program 2
program jobs jobs (Total storage requirement (Total storage requirement
(8J1) (BJ2) without overlays) without overlays)
Lowest Next to lowest Next to highest Highest
execution execution execution execution
priority priority priority priority

Real Storage

Low activity Control

for TP1 and ;
BJ1 BJ2 TP1 |TP2
bl program
Real Storage
" Peak activity Control | BJ | BJ
for TP2 and T i

rogram 4 6
low for TP1 prog

Real Storage

Peak activity

for TP1 and Control - 2
medium activity | Program 1
for TP2 -

BJ6

BJ7/4 \

Figure 30.05.3. Conceptual illustration of real storage utilization in
a mixed batch and online virtual storage environment

Summary

As the preceding discussion indicates, a virtual storage environment
is designed primarily to provide new functional capabilities for the
installation as a whole, although performance gains are possible for

52 A Guide to the IBM System/370 Model 168 for System/370 Model 165 lsers

installations with particular environmental characteristics. The
general functional aims. of IBM-supplied virtual storage operating
systems are (1) to use new hardware features and additional control
program processing to support certain facilities that are not possible
in a nonvirtual storage environment because of real storage restraints,
and (2) to handle other functions that must be performed by installation
personnel (programmers, operators, and system designers) when virtual
storage and dynamic address translation are not used.

It is also important to note that while a virtual storage operating
system permits an installation to be independent of real storage
restraints to a large degree and enables real storage to be utilized
more efficiently, the performance of the system and the specific
advantages that can be achieved are still largely dependent on the
amount of real storage present in the system and on the computing speed
of the CPU, among other things. Hence, virtual storage and dynamic
address translation are not a substitute for real storage. Rather, they
provide an installation with greater flexibility in the tradeoff between
real storage size and function or performance.

The degree to which a particular installation experiences the
potential benefits of a virtual storage/dynamic address translation
environment is system-configuration dependent and highly application
dependent (number, type, complexity of applications installed). 1In
addition, consideration must be given to the system resources that are
specifically required to support a virtual storage environment
(discussed in Section 30:15). Some of the potential advantages, such as
those associated with application maintenance and operational
flexibility and those that result from better management of real
storage, can be experienced as soon as a virtual storage operating
system is installed. Othexrs may be achieved in the future when new
applications are installed, and the less restrictive program design
techniques available in a virtual storage environment are more fully
utilized. In any case, installation of a virtual storage operating
system can make System/370 easier to use and can be a major step toward
more rapid installation of applications. Such an operating system can
be of greatest benefit to installations desiring to move to or to extend
online operations and thereby attain the advantages such an environment
offers.

VIRTUAL STORAGE AND DYNAMIC ADDRESS TRANSLATION TERMINOLOGY

For the purpose of presenting the concepts of virtual storage and
dynamic address translation in the previous discussion, virtual storage,
programs. and data, direct access storage, and real storage were
described as being divided into areas called sections. 1In reality, a
unique term is used to describe each one of the various sections,
namely, virtual storage page, page, slot, and page frame. In addition,
virtual storage has two levels of subdivision in System/370. The
following defines the new terminology actually used by the Systemv/370
virtual storage operating systems.

Virtual storage in System/370 is divided into contiguous segments,
which contain virtual storage pages. A virtual storage segment, as
implemented in System/370, is a fixed-length, consecutive set of
addresses for either 64K or 1024K bytes that begins on a 64K or 1024K
boundary, respectively, in virtual storage. A virtual storage is
divided into segments all of one size or the other. In general, in
0S/VSl and 0S/VS2 enviromments, a segment is the unit of virtual storage
allocation. Each segment of virtual storage is divided into contiguous,
fixed-length, consecutive sets of addresses called virtual storage
pages. Each segment in the virtual storage contains the same number of
virtual storage pages, each of which is the same size. A virtual
storage page, as implemented in Systemv370, can be either 2K or UK bytes

A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Users 53

and is located on a 2K or 4K virtual storage boundary, respectively,
within a segment. :

The contents of virtual storage--instructions and data--are divided
(by the operating system) into fixed-length contiguous areas called
pages, corresponding in size to the virtual storage page size chosen,
either 2K or UK bytes. The addresses associated with a virtual storage
page refer to the contents of a page.

The direct access storage used to contain the portion of the total
contents of virtual storage that is not always present in real storage
is called external page storage. Direct access space within external
page storage is divided into physical records called slots, which are of
page size, either 2K or 4K bytes. A slot, therefore, can contain one
page at a time. A virtual storage page that is allocated and that
actually has contents usually has a slot in external page storage
associated with it to contain these contents (depending on the nature of
the contents and how external page storage is managed by the operating
system).

Instructions and data are transferred between external page storage
and real storage as needed on a page basis. This transfer process is
called paging, and a direct access device that contains external page
storage is called a paging device. A slot in external page storage is
associated with a particular virtual storage page by means of an
algorithm or via tables that are maintained by the control program.

Real storage also is divided into fixed-length, consecutively
addressed areas called page frames, which are always the same size as
the virtual storage page being used, either 2K or 4K bytes. Page frames
are located on 2K or 4K real storage boundaries. A page frame is a
‘block of real storage that can contain one page. Hence, a page of data
and/or instructions occupies a slot when it is in external page storage
and a page frame when it is in real storage. Whether or not a page is
present in real storage, a program addresses the contents of the page
using virtual storage addresses.

The act of transferring a page from external page storage into real
storage is called a page-in. This action may also be described as the
loading of a page. The reverse act, transferral of a page contained in
real storage to a slot in external page storage, is called a page-out.
Figure 30.05.4 illustrates the relationship of virtual storage, external
page storage, and real storage that was conceptually shown in Figure
30.05.2. (Note that the terms swap-in, swap-out, and working set have a
specific meaning in an 0S/VS2 TSO environment and are defined in
‘OS/virtual Storage 2 Single Virtual Storage (SVS) Features Supplement.
The definition of a working set in a virtual machine environment is
given in Virtual Machine Facility/370 Features Supplement.)

As previously indicated, DAT hardware uses tables to perform address
translation. These tables are the segment table and page tables. One
segment table and a set of page tables are required to perform address
translation for one virtual storage. The segment table defines the
virtual storage size, indicates allocated virtual storage, and points to
the real storage location of the page tables. The page tables indicate
which pages are currently in real storage and contain the real storage
addresses of these pages. As pages are paged in and out, the control
program makes changes to the page tables as required.

Basic to the implementation of virtual storage using direct access
storage and DAT hardware is the method of determining when pages are to
be brought into real storage and, therefore, when real storage is
allocated to pages. The method supported by IBM~-supplied virtual
storage operating systems, that of bringing a page into real storage
only when it is needed by an executing program, is called a demand

54 A Guide to the IBM System/370 Model 168 for Systems/370 Model 165 Users

paging

technique.

.real storage is, in effect, still allocated on a priority basis.

A request for a page-in is generated by the occurrence of a page.
translation exception, a condition that is also
An interxuption occurs during the execution of an

exception or a
called a page

instruction when DAT hardware attempts to translate a virtual storage

fault. An Interr

address into a real storage address and the appropriate page table
indicates that the page is not currently present in real storage. A
page fault condition causes an interruption in order to alert the
control program to the fact that a page frame must be allocated.
Usually, a page-in is required also to bring in the referenced

Since programs execute on a priority basis in 0Os/vs1
and 0S/Vs2 environments, as they do in 0S (MFT and MVT) environments,

instruction or Qdata.
External
Page Storage
Virtual Storage /’—-\
N~ — —_—
Segment N \
(pages 0 to 15 or 31) Tables or an
aigorithm \
map pages
and slots \ \
\ Real Storage
. Slots
Virtual
»® # ? (containing gﬁ T'ables map
storage Paged area of virtual storage
pages !)ages " pages and
within instructions page frames Page f
segments and data) age frames
{containing active #
w pages of executing
rograms)
Page-out prog
Page-in \\\\‘\
Contents of
T T pageable
virtual storage
Control |
Segment 1 Nonpaged area program
(pages 0 to 15 or 31)
Segment 0
(pages 0 to 15 or 31)
- e e

Address space for
programmers use

Figure 30.05.4. Layout of virtual storage, external page storage, and

real storage

While page-ins are usually initiated as a result of a page fault,
0s/Vsl and 0s/Vs2 provide an Assembler Language macro that can be used
to cause one or more pages to be brought into real storage before they
are referenced. Such requests are sometimes referred to as page-ahead
requests. A page-ahead is required if, for reasons of proper system

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 55

operation, a routine must operate without incurring any page faults.
Use of this macro is restricted because unlimited use of this facility
can defeat the objective of demand paging.

When a page fault occurs and the control program determines that a
page frame is not currently available for allocation, a choice must be
made as tO0 which allocated page frame will be taken away from the page
to which it is currently assigned. The rule governing this choice is
called the page replacement algorithm. If the page replacement
algorithm is designed to choose from among only those page frames
currently allocated to the program that caused the page fault, it is
said to operate locally. If a page frame can be chosen from among all
those available for allocation to all executing programs, the algorithm
is said to operate globally. O0S/Vsl and 0S/VS2 implement a glokal page
replacement algorithm. WM/370 supports a global page replacement
algorithm and supports a local page replacement algorithm as an option.
The algorithms used attempt to keep the most active pages of executing
programs present in real storage. Hardware is included in System/370
models with dynamic address translation that indicates whether a page
has been referenced or changed. Hence, when a page frame is required, a
page determined by the algorithm to be relatively inactive is chosen for
replacement.

Before a new page is loaded into the page frame chosen, the existing
contents of the page frame must be saved if they were modified during
processing. If modification occurred, a page-out operation is required;
otherwise, an exact copy of the page already exists in external page
storage. Code that is not modified during its execution, therefore, has
an additional advantage in a virtual storage environment in that it need
never be paged out once it has been written in external page storage. A
program requiring a page-in is placed in the wait state until the page
it requires has been loaded, during which time CPU control is given to
another ready task, if one is available.

For various reasons, it is necessary to prevent a page-out of certain
pages that are in real storage. One reason is for better operation of
the system. This reason applies to certain frequently used control
program routines, some routines that operate with the CPU in a disabled
state (masked for I/0 and external interruptions), most system tables,
and most system control blocks. Integrity of system operation is
another reason. Pages associated with certain types of operations must
not be paged out while the operation is in progress, so that the
operation can proceed correctly. For example, pages that contain I/0
buffer areas must remain in real storage while the buffers are being
referenced during an I/0 operation, after which a page-out can take
place, if necessary. Another reason is the existence of time
dependency. A page should not be written out if the program to which
the page belongs must complete a logical operation that requires the
page in less time than it takes to perform a page-in. Programs that
handle I/0 device testing operations, such as online tests (OLT's), can
have such a time dependency.

A page that is identified as one that cannot be paged out (or that is
nonpageable) is called a fixed page in 0S/VSl and 0S/VS2 and a locked
page in VM/370. O0sS/VS1l and OS/VS2 support both long-term fixing and
short-term fixing. Pages that should never be paged out when they are
present in real storage are marked long-term fixed. The resident
portion of an operating system control program is never paged and,
therefore, its pages are marked long-term fixed. Pages that must be
fixed for only a portion of the time they are present in real storage
are marked short-term fixed. For example, a page containing an I/0
buffer is marked short-term fixed before the initiation of the I/0
operation that references the buffer. After the I/0 operation
completes, the page is unfixed and it becomes eligible for a page-out.
Pages should be marked fixed only when necessary, since page fixing

56 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

reduces the amount of real storage that can be shared by concurrently
executing paged programs (that which is available to be allocated to the
nonfixed pages) and can, therefore, affect system performance.

As indicated previously, in 0&/VSl and 0S/VS2 environments, a portion
of the control program is resident in real storage. Its pages are
marked fixed. This portion of the control program is not placed in
external page storage (because it is not paged) even though. it is
allocated space in virtual storage. Certain other portions of an OS/Vsli
and an 0S/VS2 control program are pageable and are made resident in
virtual storage, which means they are contained in external page storage
during system operation. During system initialization, these pageable
control program routines are allocated virtual storage and loaded into
real storage from system libraries by the program fetch routine. These
routines will be written in external page storage as a result of normal
paging activity in 0S/Vsl1l and as a result of specific page-out requests
in 0S/VS2. Control program routines that are resident in virtual
storage are brought into real storage from external page storage,
instead of from a system library, when they are required during system
operation.

Just as control program routines can be fixed or pageable, problem
programs operate in one of two modes in 0S/VS1l and 0S/VS2 environments:
paged mode or nonpaged mode. The latter is also sometimes called
virtual equals real (V=R) mode. When a problem program operates in
paged mode, it is resident in virtual storage and pageable. A pageable
program operates in a contiguous area of virtual storage (partition or
region) and is assigned available real storage on a demand paged basis.
Hence, virtual storage addresses must be translated into real storage
addresses. The real storage dynamically allocated to programs operating
in paged mode need not be contiguous and such programs normally can
operate with less real storage than their design point (virtual storage)
amount dynamically allocated to them. This is the mode of operation
described in Section 30:05.

Paged mode is the normal mode of operation of programs in a virtual
storage environment. However, certain programs cannot operate correctly
in this mode, and must run in nonpaged (V=R) mode. In general, a
program must operate in nonpaged mode if its

e Contains a channel program that is modified while the channel
program is active (Section 30:10 discusses the reason)

o Is highly time dependent (involves certain testing operations on I/0
devices, for example)

e Must have all of its pages in real storage when it is executing (for
performance reasons, for example)

Other characteristics that require a program to be executed in
nonpaged mode and that are operating system dependent are listed in the
programming systems supplements, which also discuss steps that can be
taken to avoid running a program in nonpaged mode.

In 0S/VsSl and 0S/VS2 environments, a program that operates in
nonpaged mode is dynamically allocated a contiguous virtual storage area
and a contiquous real storage area of the same size with addresses
identical to those of the allocated virtual storage area. (That is,
virtual and real storage addresses of the allocated area are equal.)
Since programs. operating in V=R mode are not paged, they do not occupy
external page storage. The entire program (except for dynamically
requested modules) is loaded into real storage when it is initiated, and
all its pages are fixed. The amount of real storage allocated to a
program that runs in nonpaged mode must be a multiple of the page size
used.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

-57

30:10 DYNAMIC ADDRESS TRANSLATION HARDWARE FOR MODELS 1 AND 3 OF THE
MODEL 168

Dynamic address translation is a standard facility of the Model 168.
It is made operative by turning on the translation mode bit in the
current PSW. The system must also be operating in EC mode. When DAT is
operative, storage addresses in programs referring to instructions and
data are translated into real storage addresses after instructions are
fetched during program execution. The address in the imstruction
counter is translated also. When DAT is not in operation, storage
addresses in programs are used as real storage addresses. The storage
addresses in CCW lists are not translated by channel hardware during
channel program operation. The channel indirect data addressing
feature, required on all installed channels for a Model 168 when a
virtual storage operating system is used, and programmed channel program
translation are discussed later in this subsection under "Channel
Indirect Data Addressing”.

The following instructions are associated with dynamic address
translation: LOAD REAL ADDRESS, RESET REFERENCE BIT, and PURGE TLB.
These instructions are valid in BC mode as well as in EC mode. They
operate identically regardless of which mode is in effect. All are
privileged instructions.

VIRTUAL STORAGE ORGANIZATION

The Model 168 (as well as other Systemv 370 models with DAT hardware)
supports a virtual storage segment size of either 64K or 1024K bytes, as
determined by bits 11 and 12 of control register 0. With either segment
size, the page size can be 2K or 4K, as determined by bits 8 and 9 of
control register 0. A segment size of 1024K bytes is not supported by
Dos/vs, Os/vsl, 0s/vVs2, or VM/370. Table 30.10.1 summarizes the virtual
storage organization provided in Systemv370.

Table 30.10.1. Number and size of segments and pages for a 16-million-
byte virtual storage

Number of :
CR 0 Bits Segment Size | Segments in the Page Size | Number of Pages
11,12 8,9 (bytes Virtual Storage (bytes) in a Segment
10 01 1,048,576 16 2048 512
10 10 1,048,576 16 4096 256
00 01 65,536 256 2048 32
00 10 65,536 256 4096 16

As already described, the addresses supplied in programs directly
address a location in the virtual storage that is supported by the
virtual storage operating system. In this sense, program-supplied
addresses can be viewed as virtual storage addresses that specify a byte
within a particular virtual storage page and segment. The logic of the
translation process is described in this subsection in these terms. The
architectural definition of dynamic address translation found in
System/370 Principles of Operation (GA22-7000-2 and later editioms)
assumes that the addresses in programs consist of three fields, two of
which are used to index tables during the translation process. Under
these conditions, the addresses supplied by a program are considered to
be logical addresses instead of virtual storage addresses.

58 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

For the purpose of translation, a virtual storage address is divided
into three fields: (1) a segment field, which identifies a segment
within the virtual storage, (2) a page field, which identifies a page
within the segment addressed, and (3) a byte displacement field, which
identifies a byte within the page addressed. The number of bits in each
field varies depending on the segment and page sizes used. Virtual
storage address fields for a segment size of 64K and a specific example
of how the fields are used to address a location in virtual storage are
shown in Figure 30.10.1.

OPERATION OF DYNAMIC ADDRESS TRANSLATION HARDWARE

Address Translation Tables

One segment table is required to describe one virtual storage. If
more than one virtual storage is supported by a single computing system,
there is a segment table for each virtual storage implemented. A
segment table contains one four-byte entry for each segment in the
virtual storage the table describes, up to a maximum of 256 entries for
the maximum size virtual storage of 16 million bytes (using 64K
segments). The real storage address of the segment table (or of the
currently active segment table if multiple virtual storages are
implemented) is contained in control register 1. The current length of
the segment table is also indicated in control register 1. The length
value is used by the hardware during translation to ensure that the
segment entry being referenced falls within the segment table.

The segment table entries point to the real storage locations of the
page tables. There is one page table for each segment in the virtual
storage defined (or, in 0S/VS2, currently allocated), up to a maximum of
256 page tables for a 16-million-byte virtual storage with 64K segments.
A segment table entry contains an indication of the length of the page
table, the high-order 21 bits of the real storage address of the page
table, and an indication of whether or not the entry itself is valid and
can be used for translation purposes (invalid bit). If the invalid bit
is on in a segment table entry, a segment translation exception occurs
during the translation process.

A page table has one entry for each page in the particular segment
the page table describes. For a 64K segment, there are 32 or 16 entries
in a page table depending on whether a 2K or a 4K page is used,
respectively. A page table entry is two bytes in size. It contains the
12 (for a 4K page) or 13 (for a 2K page) high-order bits of the real
storage address of the page frame that is currently allocated to the
virtual storage page that the page table entry describes. Each page
table entry also contains an invalid bit to indicate whether the entry
can be used for translation. The invalid bit is on when a virtual
storage page does not have real storage currently allocated to it. A
page translation exception occurs during the translation procedure if
this invalid bit is on.

Segment and page table formats and entries used for address
translation are shown in Figure 30.10.2. In effect, the segment and
page tables define the relationship between virtual and real storage at
any given time. The segment table reflects the current size of virtual
storage and the location of required page tables. The segment table
also indicates, by means of its invalid bits, which segments of virtual
storage are currently allocated and have a page table available. The
page tables indicate, via their invalid bits, which virtual storage
pages currently have a page frame allocated and the location (real
storage address) of these page frames.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 59

FORMATS
Effective 24-bit virtual storage address

A

r A}
8 16 21 31
64K segment Segment Page Byte displacement Supported by
2K page address address from beginning of page DOS/VS
bits bits ~ and OS/VS1
[~— I\ ~— I\ —_— —?
0 to 265 0to 31 0 to 2047
Effective 24-bit virtual storage address
L4 & h)
8 16 20 31
" Segment Page Byte displacement Supported by
xl(p::zment address address from beginning of page 0S/VS2 and
bits bits VM/370
- — I\ ~ J\, “ —
0 to 255 Oto 15 0 to 4095
EXAMPLE OF ADDRESSING A 4K PAGE
Virtual storage of
16, 777, 216 bytes
(16, 384K)
Page 15
Segment 255
P
16,320k | 920 l
4)
T’ Segments 2 to 254 l’
Hex address O 1 F 0 0 4
128K
Page 15 8 16 20 31
h
Segment 1 00000001f 1111 | 000000000100
. Segment Page Byte
gax |20 1 15 a
Page 15
Segment 0
Virtual
storage Page 0
address 0

64K segments, 4K pages

Figure 30.10.1. Virtual storage address fields for a 64K segment

60 A Guide to the IBM Systems/370 Model 168 for System/370 Model 165 Users

In an 0S/VS1l environment, segment and page tables are established at
system initialization. Page tables are modified during system operation
by control program routines to reflect the current allocation of real
storage to virtual storage so that address translation can take place.
In an 0S8/VS2 environment, in which virtual storage as well as real
storage is dynamically allocated and deallocated, the segment table
constructed during IPL is modified as required 4uring system operation
to reflect the allocation of virtual storage, and page tables are
created and destroyed as necessary.

Address Translation Process

A translation request is either explicit or implicit. Explicit
translation is invoked via execution of the LOAD REAL ADDRESS
instruction. Implicit translation is inwvoked to translate all
instruction addresses and data addresses contained in other
instructions. 1Implicit address translation takes place during
instruction execution. ’

The logical flow and the details of the translation process are given
in Figure 30.10.3. The procedure consists of a two-lewvel, direct
address table lookup operation. Any type of translation exception
causes a program interruption and termination of the hardware
translation process. The CPU cannot be disabled for translation
exception interruptions. Segment and page translation exceptions that
occur during an explicit translation request (LOAD REAL ADDRESS
instruction) are indicated via the condition code setting instead of via
an interruption.

Translation lookaside Buffer

In the Model 168, a translation lookaside buffer (TLB) is implemented
to reduce the amount of time required to perform address translation.
The translation lookaside buffer is used to retain up to 128 previously
translated addresses. Addresses associated with up to six different
virtual storages can be contained in the TLB at any time. Every time a
virtual storage address is translated during instruction execution, the
virtual storage address, the resulting real storage address and its
associated storage protect key, and identification of the virtual
storage to which the virtual storage address belongs are placed in one
of the 128 TLB locations. A hashing algorithm is applied to the virtual
storage address in order to determine which of the 128 TLB locations is
to be used.

After the effective virtual storage address has been computed and
before performing the translation using segment and page tables, the TIB
is interrogated to determine whether it contains the required translated
address. Interrogation of the TLB is done in parallel with reference to
the index array for the buffer. Therefore, no translation cycles are
required when the translated address is obtained from the TLB. If the
TLB does not contain the required translation or if the entry is
invalid, as indicated by a zero identification code, the complete table-
lookup translation procedure, as previously described, is performed. In
the Model 168, the number of CPU (80-nanosecond) cycles required for
address translation when the translation is not obtained from the TLB
varies from a minimum of 8 to a maximum of 26, assuming no I/0
interference, depending on the locations of the segment table and
the page table entries required for the tramslation. 1In the Model 165 II,
from 8 to 46 CPU cycles are required for the translation process when
the required translation is not contained in the TILB.

If an error occurs in the TLB, half of the TLB (64 locations) is
disabled and a machine check interruption occurs if the CPU is enahbled
for degradation interruptions. The degradation bit will be on in the
stored machine check code. The disabled half of the TLB is reenabled

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 61

during an IPL, system reset, or wvhen a bit that controls whether or not

the disabling function is active is set to disable the function.

The

contxol bit is set via a DIAGNOSE instruction and is the same bit that

controls high-speed buffer deletions.

bit is set to enable the TLB delete function.

256 entries
for

16 million
bytes

Control register 1

Segment

table addr.

0 8 26 31

255

Segment O entry

N
W

Segment 1 entry

- J

4 bytes

b))

Segment 255 entry

Segment Table
for one virtual
storage — 1024
bytes maximum

for 64K
segment size
Segment Table Entry
Page
L]O |Table |O}1I
address
0 4 8 29 3
Bits
0-3 Page table length
8--28 Page table origin
address
31 Invalid bit

64
bytes

[31

31

Page Tables Page Tables
for 2K pages for 4K pages
Segment 0 Page Table Segment 0 Page Table
Page O entry 0 Page 0 entry
A ~ J N ~ J
2 bytes or = 2 bytes o
;i L P ‘
I T Page 156
15 age 15 entry
Page 31 entry
°
°
°
°
°
o
Segment 255 Page Table Segment 255 Page Table
Page 0 entry 0 Page 0 entry
or T P
T 9 15 Page 15 entry
Page 31 entry
256 Page Tables
maximum
2K Page Table Entry. 4K Page Table Entry
Page Page
address ey address Hoofu
0 131415 0 1213 15
Bits Bits
0-12 High-order 13 0-11 High-order 12
bits of real bits of real
storage address storage address
of page of page
13 Invalid bit 12 Invalid bit
15 User bit for 15 User bit for
programming programming
systems use systems use

On a system reset, the control

bytes

Figure 30.10.2. Segment table and page tables used for dynamic address
translation

62 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Effective 24-Bit Virtual Storage Address

64K 2K
| Segment] Page | Displacément |
8 1516 2021 31
Control Register 1
O N I ol I
0 8 | 26 31
XX X000000
/ / 0—0XXXXXXXX0 0—-0XXXXX0
8 25
8 I 29 8 30
Add
8 28
Segment Table \ \ Page Table

] X—X000
1
@ Lengthi Pg?: dI:;'e Add —p Page Address
[—-—r——-——

_i/— Page Table

Page Table X X X X

§ 8 20 21 31

® v
Page Frame

Number rDisplacement]

1. Bits 8, 9, 11, and 12 in control register 0 are checked for
validity. A translation specification interruption occurs if an
invalid setting is present. Segment address bits from the
virtual storage address are checked using length bits in control
register 1. If the segment entry address is outside the segment
table, a segment translation exception is indicated.

2. 8ix low-order zeros are appended to the segment table address in
control register 1. Two low-order zeros are appended to the
segment bits from the virtual storage address. The two values
are added to obtain a segment table entry. If the invalid bit is
on in this entry, a segment translation exception is indicated.

3. Page address bits from the virtual storage address are checked
using page table length bits contained in the segment table
entry. A page translation exception is indicated if the entry
addressed is outside the page table.

4. Three low-order zeros are appended to the page table address
contained in the segment entry. One low-order zero is appended
to the page address from the virtual storage address. The two
values are added to obtain a page table entry. If the invalid
bit is on in this entry, a page translation exception is
indicated.

5. The 24-bit real storage address is formed using the 12 or 13
high-order bits from the page table entry and the 12 or 11 low-
oxder bits from the virtual storage address.

Figure 30.10.3. Dynamic address translation procedure

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users

All the entries in the TLB are invalidated (identification codes set
to zero) when a reset occurs, the operator enters a storage
configuration via the configuration panel, or retry recovery is
attempted after a machine check occurs. When a SET STORAGE KEY is
issued and valid translated addresses are in the TLB, the TLB is
searched and each entry is invalidated that has the same real address as
the one for which the key is being set. The PURGE TLB instruction is
provided to enable a program to invalidate all 128 TLB entries. 1In
general, this instruction must be issued when an entrxry in a page table
is invalidated, since the real storage address being invalidated could
be contained in the TLB. The TLB will be purged by the virtual storage
operating systems as required.

A change in segment table origin address, segment size, or page size
can also affect the validity of current TLB entries. In order to reduce
the number of full TLB purges required by such changes, a segment table
origin address register stack (STO-stack) is implemented. The STO-stack
can- contain the address of six different segment tables at a time. Each
segment table could define a different virtual storage. An STO~-stack
entry also indicates the segment and page size in effect for the virtual
storage associated with the segment table address.

The six entries in the STO-stack have a unique identification number
associated with them. One of these numbers is denoted to be the
currently active identification number. Whenever a segment table
address is placed in control register 1, the segment table address is
also placed in the STO-stack, if it is not already there, and the
identification number the segment table address is assigned becomes the
new active identification number.

An STO-stack identification number is stored with each TLB entry to
identify the segment table, and thereby the virtual storage, with which
the TLB entry is associated. When the TLB is interrogated to see
whether it contains the required tramnslation, the STO-stack 7
identification number of the TLB entry is compared with the active
identification number. If the identifications are equal, the TLB
location contains a translation from the virtual storage associated with
the active identification number. If the identifications are not equal,
the TLB location contains a translation for a different virtual storage
and, therefore, the TLB entry does not contain the required translation
even though it may contain a virtual storage address equal to the one
that is to be translated.

When DAT mode is entered or a LOAD CONTROL instruction is issued when
DAT mode is operative, the segment table address in control register 1
and page and segment size specifications from control register 0 are
compared with each of the STO-stack locations to determine whether a
change in these specifications is being made. If a change is indicated,
some TLB purging may be required.

An equal comparison between an STO-stack entry and the segment table
address, segment size, and page size in control registers 0 and 1
indicates that the virtual storage associated with the segment table
address now in control register 1 is currently one of the six virtual
storages whose translations are being maintained in the TIB and that
segment and page size have not been changed. The STO-stack
identification number of the segment table address now in control
register 1 is designated to be the active identification. No TLB
purging is required.

No equal comparison between an STO-stack entry and the segment table
address, segment size, and page size in control registers 0 and 1
indicates that translations for the segment table now indicated by
control register 1 are not currently being maintained in the TLB or that
segment or page size is being changed. The new segment table address is

64 A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users

placed in the STO-stack, and the STO-stack identification number
assigned becomes the active identification.

A first-in, first-out algorithm is used to determine which STO-stack
location to assign. If the new address displaces another segment table
address, the TLB entries associated with the displaced segment table
(and virtual storage) must be purged. This is done by setting the
identification number to zero for each entry in the TLB that has the
same STO-stack identification number as the segment table address that
was displaced. This identification number is now assigned to the newly
stored segment table address. The other TLB entries need not be
invalidated. See Figure 30.10.4 for an example of TLB purging when
control register 1 is changed.

Translation Lookaside Buffer

Virtual Real Storage
Control Active storage storage protect
0 STO-stack register 1 ID [[»] address address key
1 STOS - [2] 4 | VsA1 RSA1 SPK1
2 STO3 3 VSA2 RSA2 SPK3
3 STO6 V] VSA3 RSA3 SPK1
4 STO7 |«g—— next location 2 | vsAa4 RSA4 SPK2
5 sTO2 to be assigned 6 | VSAS RSAS SPKO
6 STO8 4 VSA6 RSA6 SPKO
3 VSA7 RSA7 SPK1
3 VSA8 RSAS8 SPK1
1T 1T 1 7T
Effect of Changing Control Register 1

Translation Lookaside Buffer

- Virtual Real Storage

Control Active storage storage protect

ID STO-stack register 1 1D ID address ~address key
1 STO5 [4] [0] vsar RSA1 SPK1
2 STO3 3 VSA2 - RSA2 SPK3
3 STO6 0 VSA3 RSA3 SPK1
4 STO4 2 VSA4 RSA4 SPK2
3 STO2 |- next location 6 VSAS RSAS SPKO
6 STO8 to be assigned 0 VSA6 RSA6 SPKO
3 VSA7 RSA7 SPK1
3 VSA8 RSAS8 SPK1
~ ~ ~ ~ ~

LT T T 7T

Figure 30.10.4. TLB purging when control register 1 is changed

Implementation of the STO-stack in the Model 168 enables a control
program that supports multiple virtual storages (such as VM/370) to
alter control registers 0 and 1 in order to change the virtual storage
for which address translation is effective, without automatically
causing purging of the entire TLB. The STO-stack facility will also be
of benefit in an 0S/VS2 environment, since 0S/VS2 SVS supports two

A Guide to the IBM System/370 Model 168 for systens/370 Model 165 Users 65

segment tables to provide fetch protection for all regions (see
OS/Virtual storage 2 Single Virtual Storage (SVS) Features Supplement).

Addresses Translated

All storage addresses that are explicitly designated by a program and
that are used by the CPU to refer to instructions or data in processor
storage are virtual storage addresses and are subject to address
translation. Thus, when DAT is operative, the starting and ending
storage addresses used with the program event recording feature are
virtual, as are the storage addresses stored in PSW's during
interruptions. Address translation is not applied to addresses that
explicitly designate protect key storage locations or to quantities that
are formed as storage addresses from the values designated in the base
and displacement fields of an instruction but that are not used to
address processor storage (shift instructions, for example). 1In
addition, address translation is not applied to the storage addresses in
CCW lists used for I/0 operations.

Some of the storage addresses supplied to a program by the CPU are
virtual and some are real. Table 30.10.2 lists, for the Model 168,
those storage addresses designated by a program, either explicitly or
implicitly, that are virtual (and, therefore, are subject to
translation) and those addresses that are real or not used to reference
processor storage and, thus, are not translated. The table also
indicates which storage addresses supplied to a program are virtual and
which are real.

FEATURES TO SUPPORT DEMAND PAGING

Reference and Change Recording Facility for Real Storage Blocks

A hardware recording facility is standard in the Model 168. This
facility provides continuous recording of the activity of all 2K real
storage blocks via reference and change bits. The settings of these
recording bits can be used by control program routines to support a
demand paging environment. This hardware facility is always active; it
does not depend on EC or translation mode being operative.

The seven-bit key associated with each 2K real storage block in the
Model 168 has four storage-protect bits, one fetch-protect bit, one
reference bit, and one change bit. During system operation, the
activity of each 2K real storage block is monitored by hardware.
Whenever a fetch is made either by a CPU or a channel to a real storage
address, the reference bit in the key associated with the 2K storage
block that contains that real storage address is turned on by the
hardware. A store into any real storage address causes the hardware to
turn on both the change bit and the reference bit for the affected 2K
block.

Stores/display operations initiated from the 3066 console also cause
appropriate changing of the reference and change bits. The RESET
REFERENCE BIT instruction is provided to allow the reference bit of any
2K real storage block to be reset by programming without altering the
contents of the other six bits in the protect key. A CPU fetch that is
satisfied with data contained in the buffer does not cause reference
recording in the Model 168. There are situations, however, in which
instruction or operand prefetching may cause the reference bit for a
page frame to be turned on even though the contents of that page are
never used. ‘ '

66 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Table 30.10.2. Virtual and real storage addresses used by and
supplied to programs in the Model 168

Virtual storage Addresses Explicitly Designated by the Program (translated)

Instruction address in the PSW

Branch addresses in instructions

Addresses of operands in instructions

Operand address in the LOAD REAL ADDRESS instruction

PER starting address in control register 10 and PER ending address
in control register 11

Real Storage Addresses Explicitly Designated by the Program (not translated)

e Operand addresses in SET STORAGE KEY, INSERT STORAGE KEY,
and RESET REFERENCE BIT instructions

Machine check extended log pointer in control registerxr 15
I/0 extended log pointer in location 172
Segment-table-origin address in control register 1
Page-table-origin address in a segment table entry

Page frame address in a page table entry

CCW address in the channel address word (CAW)

Address in a CCW specifying a data area or the location
of another CCW

e Data address in channel indirect data address lists

Addresses Not Used to Address Storage (not translated)

¢ Operand addresses specifying the amount of shift in fixed-point,
logical, or decimal shift instructions

¢ Operand address in LOAD ADDRESS and MONITOR CALL instructions

¢ I/0 addresses in I/0 instructions and in the Input/Output
Communication Area (IOCA)

Real Storage Addresses Used Implicitly (not translated)

¢ Addresses of PSW's used during an interruption and in
executing the programmed or manually initiated restart function

e Address used by the CPU to update the timer at location 80

e Address of the CAW, the CSW, and the 1I/0 address within the IOCA
used during an I/0 interruption or during execution of an I/0
instruction, including execution of STORE CHANNEL ID

¢ Addresses used for the store status function

Virtual Storage Addresses Provided to the Program

e Address stored in the instruction address field of the o0ld PSW during an
interruption

e Address stored by a BRANCH AND LINK instruction

¢ Address stored in register 1 by TRANSLATE AND TEST and
EDIT AND MARK instructions

¢ Address stored in location 144 on a program interruption
for a page translation or segment translation exception

e pAddress stored in location 152 on a PER interruption

Real Storage Addresses Provided to the Program

e The translated address generated by the LOAD REAL ADDRESS
instruction

o Address of the segment table entry or page table entry provided
by the LOAD REAL ADDRESS instruction

¢ Failing storage address in location 248

¢ CCW address in the CSW

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 67

The hardware reference and change recording facility is used by the
page replacement algorithm of a virtual storage operating system. When
a .page is loaded into a page frame, the reference and change bits for
that page frame are set to zero. (When a UK page size is used, the
reference and change bits for both of the 2K storage blocks involved are
reset.) Thereafter, the reference bit is used to determine the activity
of a page.. The change bit is inspected to determine whether a page must
be paged out when its page frame is reassigned. The SET STORAGE KEY
instruction must be used to reset the change bit.

Instruction Nullification

When a page fault occurs in a demand paging environment, execution of
the instruction that caused the page fault stops and the control program
gains control to initiate a page-in operation. When the contents of the
missing page have been loaded (and the appropriate page table entry has
been updated), the instruction that caused the page fault is reissued.
For the instruction to operate correctly the second time, execution of
the instruction must have been stopped so that reexecution gives the
same results as would have occurred if the instruction had been executed
only once. Therefore, the contents of real storage, the general and
floating-point registers, and the PSW must not be altered.

The execution of an instruction is said to be nullified when it is
stopped in such a way that no operation was performed, no fields were
changed, and the PSW indicates the address of the instruction that was
stopped. Interruptible instructions, such a MOVE LONG, are divided
into execution units. One or more execution units may have completed
before a page fault is detected. In this case, only the current
execution unit is nullified.

Various methods are used, depending on the type of imnstruction, to
determine the need for nullification. In some cases, execution is
attempted where hardware detection of page faults permits nullification.
In other cases, pretesting is required to determine whether the virtual
storage pages to be referenced have page frames allocated.

Nullification testing is required only for instructions whose translated
addresses reference storage. In the Model 168, testing is performed by
instruction unit hardware ands/or additional microcode routines that are
executed before normal instruction execution. However, for some
instructions, prefetching of the data accomplishes pretesting, so that
no additional pretesting cycles are required. A LOAD instruction that
addresses a word on a fullword boundary is an example of such an
instruction.

Similarly, if a store fullword instruction addresses a four-byte
field that is not on a fullword boundary, a pretest is required to
determine whether all four bytes are contained in real storage. The
pretest microcode for this instruction issues a fetch to the highest
addressed byte in the four-byte data field (virtual storage address in
the instruction plus 3). The absence of a page translation exception
during translation of the virtual storage address indicates that (1) if
the data field spans two pages, at least the second of the two pages is
present in real storage or (2) the data field is totally contained in
one page, which is present in real storage. Hence the instruction is
allowed to proceed without nullification. If the data field actually
does span two pages and the first page is not present in real storage,
this fact will be indicated by a page fault during tramslation of the
address of the high-order byte of the field. Imnstruction nullification
will occur and the page fault will cause a page-in of the first page to
be initiated by the control program as usual.

If the pretest fetch operation does cause a translation exception,
the store fullword instruction is nullified and the control program

68 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

gains CPU control to load the missing page. Once again, the page~in
caused by the pretest may have brought in the second of two pages
spanned by the data field or the only page containing the data field.
After the page-in, the instruction is reexecuted.

CHANNEL INDIRECT DATA ADDRESSING

Since address translation is not performed by the channels for
programs that operate in paged mode, address translation must be
performed on CCW lists by programming before the initiation of START IL/0
instructions. Such address translation need not be performed on the CCW
lists in programs that operate in nonpaged mode.

In addition, a contiguously addressed 1/0 area in virtual storage can
span a set of noncontiguous page frames. Hence, a method of handling a
noncontiguously addressed I/0 area in real storage during the operation
of a CCW list is required. The channel indirect data addressing feature
is used to provide this capability. As is shown in Figure 30.10.5, the
use of channel indirect data addressing allows the channel program logic
used in the CCW list with virtual storage addresses to be maintained in
the new CCW list that contains real storage addresses.

When channel indirect data addressing is present, bit 37 of a CCW is
designated as the indirect data address (IDA) flag. The IDA flag
applies to read, read backward, write, control, and sense commands and
is valid in both BC and EC modes. When the IDA flag in a CCW is zero,
bits 8 to 31 of the CCW specify the real storage address of the
beginning of the I/0 area as usual. When the I/0 area referenced by a
CCW is completely contained in one page, an indirect data address list
(IDAL) is not required and the IDA flag is set to zero. Wwhen the IDA
flag is one, CCW bits 8 to 31 specify the real storage address of an
IDAL instead of an I/0 area. When the I/0 area referenced by a CCW
spans two or more pages, an IDAL is required and the IDA flag is set to
one.

An IDAL consists of two or more contiguous indirect data address
words (IDAWs) of four bytes each. There is one IDAW in an IDAL for each
2K storage block spanned by the 1I/0 area. An IDAW, which must be
aligned on a fullword boundary, contains a real storage 1/0 area address
in bits 8 to 31. Bits 0 to 7 must be zero. The first IDAW in the list
points to the beginning of the I/0 area to be used by the CCW and is
obtained by translating the virtual storage address contained in the
original CCW. Any valid real storage address can be specified in the
first IDAW of a list. All IDAWs after the first must address the
beginning (or end for a read backward operation) of a 2048-byte block
located on a 2048-byte boundary, or a program check occurs. That is,
bits 21-31 of the address in the IDAW must be zeros (or ones for a read
backward).

Figure 30.10.5 shows an example of the IDALs required for a command-
chained CCW list when 2K pages are used. The IBM-supplied virtual
storage operating systems construct a new COW list with tramslated
addresses that is used to control the I/0 operation. The new CCW list
points to any required IDAlLs.

When a START 1/0 instruction is executed, the channel fetches the
first CCW in the list, pointed to by the channel address word (CAW), and
inspects bit 37. If it is zero, the operation is started in the I/0
area specified by the real storage address in the CCW. 1If bit 37 is a
one, the first IDAW is fetched from the real storage address in the CCW.
The I/0 operation is begun using the real storage address in the first
IDAW and, assuming that the I/0 operation is not a read backward,
ascending real storage addresses in the 1I/0 area are used by the channel
until a 2048-byte boundary is reached.

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 69

CCW List Provided by the Program

1/0 area
3625
cewt address ! 6
1/0 area
CCwW2 address 0 3625
0 8 7 31 33 48 63

Virtual storage
address

CCW List and IDAL's Constructed for the 1/0 Operation
CCW1 /0 area in real

storage — 3625 bytes

IDAL1 576
/' bytes
Real storage Page frame X
IDAW1) 0 address 1/0 area ag
Real storage > 2048
New translated CCW list IDAW2| O address 1/0 area bytes
used for Start 1/0 0 Real storage Page frame Y
IDA IDAW3 address /O area
CAW at location 72 flag 0 8 31 1001
. . bytes
CCW1 IDAL1 ‘
25 Page frame Z
address ccwi address 1 1 36! Pag
IDAL2
1
oo address ° o CCW21/0 i |
o area in rea
o 8 3 3133 37 48 @3 storage — 3625 bytes
Real storage L2
IDA
address v 1800 bytes
0 Real storage
IDAW1 address 1/0 area Page frame A
Real storage
IbAW2) 0 address 1/O area \‘ 1826 b
0 8 31 vies
Page frame B

Figure 30.10.5. Examéle of IDALs required for a CCW list when page
size is 2K

The channel detects a 2K boundary by monitoring I/O area address bits
21-31. when these bits change from all ones to all zeros, the first
byte of the next 2K real storage block is indicated. At this point, the
channel accesses the second IDAW in the list to obtain the next real
storage 1/0 area address to be used, and the data transfer operation
continues. The channel continues using the IDAL until the operation
indicated by the CCW completes (CCW count reaches zero, interrecord gap
on tape reached, etc.). The next CCW is accessed if command or data
chaining is indicated. Bit 37 is inspected and the I/0 operation
continues as described until the CCW list is exhausted.

When a program operates in paged mode, the CCW list for an 1I/0
operation must be inspected and the appropriate IDALS must be
constructed prior to issuing a START I/O instruction. At the completion
of the I/0O operation, some retranslation is also required. In general,
the following steps must be taken for each CCW in a given list:

1. Determine whether the I/0 area referred to in the CCW spans pages
or is contained in only one. If a single page is involved,

70 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

translate the virtual storage address to real and store it in the
CCW. Ensure that a page frame is allocated to the page
containing the buffer and that the page frame is marked fixed.

2., If two or more pages are involved, set up the required number of
IDAWsS, place a pointer to the IDAL in the CCW, and turn on CCW
bit 37.

3. While setting up IDAWsS, determine whether all pages in the 1/0
area have real storage allocated. 1If not, ensure that page
frames are allocated and fixed.

At the completion of the I/0 operation, the real storage address in
the channel status word must be translated to a virtual storage address,
and the pages that were short-term fixed prior to initiation of the I/0
operation must be unfixed. Channel program translation and page fixing
are performed by the I/0 control portion of the control program in IBM-
supplied virtual storage operating system support. A program that
contains a CCW list that is dynamically modified during its execution
cannot operate correctly in paged mode, since the modification is made
to the CCW list with virtual storage addresses rather than to the
translated CCW list that is actually controlling the I/O operation on
the channel.

30:15 SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

A virtual storage environment is designed to provide new data
processing capabilities. As is true for any other capability offered by
an operating system, support of a new function requires control program
use of a certain amount of the hardware resources of the system. In
this respect, virtual storage is no different from multiprogramming and
the many other new capabilities that have continuously been added to 0OS
since its initial release.

The characteristic that makes virtual storage different from most
other features is that virtual storage is not primarily designed to
improve system performance, as are many other control program
facilities. Virtual storage is first a functional tool and, in certain
cases, can also be a performance tool. The objectives of 0S virtual
storage operating systems are to (1) provide new functions, (2) maintain
upward compatibility with OS nonvirtual storage environments, and (3)
provide performance equal to or better than that achieved with a
nonvirtual storage operating system using the same system configuration.
Attainment of the last objective will not be possible for all existing
Systemv 370 configurations.

In addition, some of the new functions a virtual storage environment
provides cannot be achieved in a nonvirtual storage enviromment or are
not practical, and in these cases, performance is not the primary
consideration when using the facility virtual storage offers. . As the
cost of hardware resources contimues to decline on a unit cost basis
(cost per processor storage bit, cost per direct access bit, etc.), it
becomes increasingly more economical to use system resources to perform
functions that otherwise are handled by installation personnel.

The other new characteristic of virtual storage is that it enables a
given system configuration to provide a wider range of performance, as
well as function, as a result of the new factors that affect operation
of a system with virtual storage support. Thus, a slightly different
approach must be taken in planning for and in evaluating system
performance in a virtual storage environment.

Many of the same factors that affect system performance in an OS/VS1
or 0S/VS2 environment are the same as those that apply to OS MFT or OS

A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Users 71

MVT, respectively. First, the system configuration must include the
hardware resources (CPU speed, channels, 1/0 devices, real storage)
required for the control program and job mix. This subsection
identifies the system resources specifically required to support a
virtual storage environment. Second, the system should be designed to
balance resource usage to achieve optimum throughput, and to use
applicable performance and control program design options the particular
operating system offers, taking into account the characteristics of the
installation job stream.

The performance of a system in a virtual storage envirommwent is also
affected by certain new factors that do not apply to systems without
virtual storage support. This subsection identifies these new factors,
explains how they generally affect system performance, and. indicates
steps that can be taken to increase and maximize system performance when
a virtual storage operating system is used.

This discussion applies to 0S/VSl and 0S/VS2, and is restricted to
performance factors that are common to the virtual storage environments
they support. The virtual storage operating systems also offer new
performance-oriented enhancements that are not related to the
implementation of virtual storage. These unique performance features
are discussed in the optional programming systems supplements.

The performance information in this subsection is designed to present
concepts and considerations for a virtual storage environment. Figures
and graphs are used for illustrative purposes. They do not represent
any particular installation or measured results. Their purpose is to
illustrate the interrelated factors of mltiprogramming performance in a
virtual storage environment. The performance information presented is
conceptual. It is based on the experience and judgment of IBM
individuals with performance knowledge and on performance measurements
made during development of 0S/VS1l and OS/VS2. Therefore, it may not
apply to all installations.

SYSTEM RESOURCES REQUIRED TO SUPPORT A VIRTUAL STORAGE ENVIRONMENT

In order to support a demand-paged virtual storage environment using
System/370, in which programs are operating in paged mode, additional
system resources are used by the IBM-supplied virtual storage operating
systems, as follows:

e Dynamic address translation hardware requires CPU time to perform
virtual-storage-to-real-storage address translation. The amount of
time required is determined by the System/370 model and the number
of times the full table-lookup translation procedure must be
performed. The Model 168, for example, has a translation lookaside
buffer that is designed to reduce use of the full table-lookup
translation procedure. The CPU time required is also affected by
program structure (which is discussed later). A small amount of
additional CPU time is also required to pretest certain instructions
that reference storage, as discussed under "Instruction
Nullification" in Section 30:10. sStudies have shown that a
relatively small percentage of the total CPU time specifically
required to support a virtual storage environment is devoted to
address translation by DAT hardware.

e CPU time is required to translate the virtual storage addresses in
channel programs (CCW lists) into real storage addresses, build
indirect data address lists (where necessary), and short-term fix
pages that will be referenced during 1I/0 initiation, execution, and
interruption handling. Channel program translation and page fixing
are performed prior to the .initiation of each 1I/0 operation with a
channel program that contains virtual storage addresses. Channel

72 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

status word retranslation and page unfixing is performed at the
completion of these 1/0 operations. The amount of CPU time this
function requires per data set is affected by the number of 1/0
requests (EXCP macros) issued, the number of CCW's in the channel
programs started, the mumber of pages that must be fixed, and
whether or not indirect data address lists have to be constructed.
Studies have shown that a large portion of the total CPU time
specifically required to support a virtual storage environment is
used to perform channel program translation and page fixing.

e CPU time is required to process page faults and for the execution of
other control program code that is specifically required to support
a virtual storage environment. CPU time is required for such things
as servicing additional program interruptions, managing and
allocating real and external page storage, maintaining tables used
by DAT hardware, and testing for paged or nonpaged mode of program
operation.

e I/0 time is required for paging operations. The amount of paging
I/0 time required is related to the number of page faults that occur
and the speed of the paging I/0 device(s) used. 1In 08/VS2
environments, the total I/0 time required for paging includes some
I/0 time that is also required in 0S MVT enviromments to load
transient control program routines.

e Direct access storage is required for external page storage. The
amount required depends on the amount of virtual storage that is to
be supported and the way in which the particular operating system
organizes and manages external page storage. (See the optional
programming systems supplements for external page requirements by
device type.)

¢ The amount of real storage required by the resident (fixed) control
program is increased by the amount of real storage needed for
additional routines and code that are included specifically to
support a demand paged virtual storage environment.

The effect this additional use of hardware resources has on the
performance of a given system configuration depends on the resource
requirements of the job stream and the current utilization of system
resources. To the degree that the additional required CPU and I/0 time
can be overlapped with existing CPU and I/0 time that is currently not
overlapped, system throughput is not affected. System throughput will
be affected by the increase in CPU and I/0 time that cannot be
overlapped.

When a virtual storage operating system is used with an existing
system configuration, for example, and the same job stream is processed,
pexrformance is affected by the use of any new performance enhancements
these operating systems provide as well as by an increase in resource
utilization that is required to support a virtual storage environmment.
When a Model 168 replaces a Model 165, performance is also affected by
the fact that the Model 168 has a faster internal pexformance than the
Model 165.

Figure 30.15.1 conceptually illustrates possible system performance
when a virtual storage operating system is installed on a Model 168 with
the same amount of real storage and the same I/0 device configuration as
the replaced Model 165.

A Guide to the IBM Systemv/ 370 Model 168 for System/370 Model 165 Users 73

Panel 1

Sample existing CPU and 1/0
utilization and overlap for
a Model 165.

EXISTING SYSTEM THROUGHP UT
MAINTAINED

Panel 2

Some of the additional CPU and I/0
time required is overlapped with pre-
viously unoverlapped I/0 and CPU time
(points A). Additional CPU and 1/0
time that cannot be overlapped

(point B) is offset by a reduction

in the amount of CPU and I/0 time
required to process the same job
stream. Results are achieved in the
same elasped time.

Panel 3

Additional CPU and I/0 time required
(dotted lines) is overlapped and off-
set by operating the system at a
higher level of multiprogramming to
_.achieve greater overlap. Results are
achieved in the same elapsed time.

EXISTING SYSTEM THROUGHPUT IMPROVED
Panel 4

Unoverlapped CPU and I/0 time required
is exceeded by reductions in previ-
ously used CPU and 1I/0 time. Better
overlap of previously used CPU and 1I/0
time is also achieved. Same results
are achieved in less elapsed time.

Panel 5

A higher level of multiprogramming

is used to perform more work and
achieve better overlap of CPU and 1/0
time. More results are achieved in
the same elasped time.

Figure 30.15.1.

CPU

(a) |
L L {b)
e

i1/0

(¥

W

~
Elapsed time

®) Reduced CPU Time ;B
| =

CPU|~=~
1/0 |_ e ' Reduced 1/0 O
@' 1%
___|_ Reduced CPU Time |
CPU [- -
1/0 l }. {b) —{)
— J
—_——
Better Overlap
Reduced CPU Time
ch——}— __
170 I___L Reduced 1/0 Time s
v -
— Better Overlap ,
N
Elapsed Time Reduced
CPU __l_ Increased CPU Time ¢|'__
1/0 l- -%4 Increased 1/0 Time __‘__
\ J
N
Better Overlap

Possible system performance when a virtual storage

operating system is used with a Model 168 with the same
I/0 configuration and real storage size as the

replaced Model 165

A sample throughput for a Model 165 is shown in panel 1. (It is not
meant to represent any specific Model 165 throughput.) Panels 2 and 3
illustrate the conditions under which existing performance c¢an be
maintained and the last two illustrate the conditions under which

existing performance can be improved.

74 A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users

Existing throughput is maintained if both of the following occur:

1. A portion of the additional CPU and 1/0 time required to support
a virtual storage environment is overlapped with CPU and 1/0 time
that previously was not overlapped, as shown by points A in panel

2. The amount of additional CPU and 170 time that cannot be
overlapped (shown by points B in panel 2) is offset by reductions
in previously used CPU and 1/0 time that occur as a result of the
faster internal performance of the Model 168 and use of new
performance features of the virtual storage operating system, as
shown in panel 2. The unoverlapped CPU and I/70 time may also be
offset by a combination of the faster internal performance of the
Model 168 and the achievement of better overlap as a result of
opexating the system at a higher level of multiprogramming to
process the same work (as shown in panel 3).

Existing system throughput can improve if (1) unoverlapped CPU and
I/0 time required to support a virtual storage environment is exceeded
by reductions in previously used CPU and 1/0 time and/or if previously
used CPU and 1/0 time are better overlapped (as shown in panel 4) or (2)
a higher level of multiprogramming is used to perform more work and
provide better CPU and I/0 overlap in the same elapsed time (as shown in
panel 5).

NEW FACTORS THAT AFFECT SYSTEM PERFORMANCE

In addition to the factors that affect system performance in a
nonvirtual storage environment, the performance of a system in a virtual
storage enviromment is affected by the relationship of the following
factors: the speed and number of paging devices, the speed of the CPU,
the size of real storage, the structure of the programs in the job
stream, and the way in which real storage is organized and allocated by
the virtual storage operating system. The interrelationship of each of
these factors and their individual effect on performance, except for the
last factor listed, are as follows (page replacement algorithms are not
discussed) :

Speed and Number of Paging Devices. A certain amount of I/0 time is
required to read in (or write out) a page using a given direct access
device type. This time is a function of device type characteristics--
seek time, rotation time, and data transfer rate. Assuming one page-in
performed at a time, no page-outs, and no contention for the paging
device or its channel, a maximum paging rate, in terms of the number of
page faults that can be serviced per time interval, could be calculated
for a given device type. This rate could be improved by certain
programming techniques, such as use of rotational position sensing when
it is present and initiation of multiple page-in and page-out requests
with a single channel program. (Various techniques are implemented in
0S/Vsl and 0S/VS2.) The maximum paging capability of a given system can
be increased by various means, such as using more than one paglng device
or using a faster paging device.

The paging characteristic of a virtual storage environment is the
featwre that permits an operating system to support virtual storage that
is larger than real storage. The paging activity of a system begins to
adversely affect system performance, however, once the CPU is in the
position of frequently having to wait for paging I/0 operations to
complete. When requests for paging operations are permitted to occur
faster than the paging rate the system can sustain, such that the system
can do little or no processing except that related to paging, the system
is in a paging-I/O-bound situation and is said to be thrashing. When a
thrashing condition exists, little or no productive work can be
accomplished unless paging activity is reduced.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 75

| In order to prevent thrashing, the Systemv/370 virtual storage
operating systems monitor the activity of the system to determine when
paging activity becomes excessive. At this point, the 0S control
program performs task deactivation.. This imvolves placing a task
(0S/VS2) or partition (0S/VS1l) in deactivated status and releasing the
page frames currently allocated to the task or partition. These page
frames are then available for allocation to other tasks to reduce paging
activity. Later, when paging activity becomes sufficiently low, the
deactivated task or partition is reactivated.

CPU speed. An improperly balanced relationship between CPU speed and
paging device speed can also cause the system to become I/0-bound as a
result of paging. A Model 168 can execute a certain number of
instructions during the time required to service a page-in request using
a given direct access device type. A Model 168 can execute many more
instructions during a page-in from a 2305 Model 2, for example, than can
a Model 158. As long as there is useful work for the CPU to perform
while paging operations occur, the system is not kept waiting for paging
I/0. However, if the concurrently operating programs are constantly .
executing instructions faster than the pages they require can be brought
into real storage, an excessively high paging rate can develop and task
deactivation will be the result. In general, therefore, the
larger-scale System/370 models require faster paging devices to handle a
particular page fault rate than d& the smaller-scale models.

Real Storage Size. The amount of real storage present in a system
affects the number of page faults that occur when a given job stream is
processed. If the amount of real storage present in the system .is equal
to the total amount of virtual storage being used by the concurrently
executing tasks, no page faults occur for programs that have been
fetched and initiated. When the amount of real storage present is less
than the amount of virtual storage being used, page faults occur. The
total number of page faults that occur for a given job stream is
affected by the ratio of virtual storage used to real storage available.

Assuming the amount of virtual storage used in a given system remains
the same, the virtual-to-real storage ratio can vary. This occurs while
a given system experiences variations in the amount of real storage
actually available for paging as the amount of fixed real storage
changes during job stream processing. The real storage available for
paging at any point in time is the difference between the amount of real
storage in the system and the total amount of long- and short-term fixed
real storage. For IBM-supplied virtual storage operating systems, the
total amount of fixed real storage at any given time is the sum of the:

¢ Resident (fixed) control program size, which does not vary after IPL

e Amount of long-term fixed real storage required for control blocks,
which can change as the level of multiprogramming changes in 0S/Vsl
and 0S/VS2 environments

e Amount of short-term fixed real storage required for outstanding 1I/0
operations that have virtual channel programs, which fluctuates with
the I/0 activity of the system

¢ Amount of long-term fixed real storage required by the job steps
executing in nonpaged mode, if any

e Amount of long-term fixed real storage required by programs that
operate in paged mode but that have a portion of their partition or
region always fixed (TCAM in 0S/VSl and 0S/VS2, for example)

As the virtual-to-real storage ratio of a job stream increases, so
usually does the page fault rate. In general, the page fault rate
increases slowly for a while. At some point, the increase in page

76 A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users

faults begins rising rapidly as the virtual-to-real storage ratio
continues to increase. Figure 30.15.2, shown later, illustrates the
general relationship between the number of page faults and the virtual-
to-real storage ratio.

The amount of real storage available to process a given job stream
also varies when a given job stream is processed on systems with various
amounts of real storage, such as when a smaller-scale system is used to

back up a larger-scale systen.

The degree to which reducing the real storage available for paging
affects the page fault rate depends on the paging activity pattern of
the programs in a job stream. Therefore, the virtual-to-real storage
ratio at the point at which a given number of page faults occurs will
usually vary by job stream. The point can also be different for systems
with similar paging activity patterns and the same amount of real
storage installed, but with different amounts of long-term fixed real
storage.

As the virtual-to-real storage ratio increases because of a reduction
in the real storage available (or an increase in the amount of virtual
storage used) and the page fault rate increases, more demand is placed
on the paging devices. If too small an amount of real storage is
present in a system, this situation can cause the page fault rate to
exceed the permissible rate and task deactivation will occur. 1In
general, therefore, in order to obtain a certain level of performance, a
configuration that supports a given job stream and virtual storage size
may require more real storage when a relatively slower paging device is
used than when a faster paging device is used.

Program Structure. The total amount of virtual storage a program
uses is not nearly so significant a factor in system performance as the
way in which virtual storage is used. That is, the pattern and
frequency of reference to pages in a program have more effect on the
number of page faults that occur than the total size of the program.

For example, assume a case in which a program has a 100K virtual storage
design point. If the program can be structured to execute as a series
of logical phases of four or five pages each and the pages of each
logical phase reference only each other, no more than four or five page
frames (8K to 10K or 16K to 20K of real storage, depending on page size)
need be dynamically available to the program at one time and paging
activity occurs only as the program progresses from one logical phase to
the next. However, assume the program is structured so that during its
execution each page of instructions constantly references a large number
of different pages of instructions and data for very short durations on
a random basis. An excessively high paging rate could occur if only
four or five page frames were dynamically available to such a program at
any time.

As indicated previously, most types of programs have a natural
locality of reference characteristic, so that they can be structured to
operate as a series of logical phases. In the simplest case, for
example, a program can logically consist of an initialization phase, a
main phase, one or more exception handling phases, and a termination
phase. The total amount of virtual storage referenced in each logical
phase usually varies but, gemerally, the amount is less than the total
size of the program. In addition, the pages that are part of
(referenced in) a given logical phase can usually be described as active
or passive.

For the purpose of the discussion in this subsection, an active page
is defined as one with a high probability of being referenced multiple
times during execution of the logical phase, while a passive page has a.
low probability of being referenced more than once during execution of
the phase. A logical phase experiences the least amount of paging

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Usexrs 77

activity as it executes when its active pages remain in real storage
during its execution and its passive pages are paged in when required.
A program uses real storage most efficiently when the active
instructions and data in each logical phase are contained within the
fewest number of pages possible.

The locality of reference characteristic does not apply to certain
types of programs. For example, it does not apply to any program that
is designed to optimize its performance at execution time by using the
total amount of storage it has been allocated. This characteristic is
usually true of sort/merge programs that initialize themselves to use
all the storage made available to them in their partition or region '
during the sorting passes. The reference pattern for such a sort/merge
is random and encompasses all the storage (and, therefore, all the
pages) the program is assigned.

RELATIONSHIP BETWEEN VIRTUAL STORAGE SIZE AND SYSTEM PERFORMANCE

Assuming other required system resources are available, a given
configuration can support a given virtual storage size and provide
satisfactory performance when paging activity is kept at an acceptable
level. Minimal paging activity occurs when enough real storage is
present in the system to contain most or all of those pages of
concurrently executing programs that are active at any given time.
Paging activity then is required primarily for passive pages. Active
pages are paged in (and later paged out as required) as the set of
active pages for each program changes from one logical phase to anocther.
The paging device(s) present must be capable of handling the demand for
pages that results from the range of paging activity of the system.

As the amount of virtual storage used in a given system increases,
the number of active and passive pages that the system must handle
increases also. The ratio of active to passive pages will vary for a
given increase in virtual storage, depending on how the additional
virtual storage is used. As long as enough real storage is present to
contain all or most of the increased number of active pages, the
increase in paging activity required to support the additional wvirtual
storage will be needed primarily for passive pages and should be
relatively small. As soon as the use of more virtual storage causes the
number of concurrently active pages to constantly exceed the capacity of
real storage, the paging activity increase required to support the
additional virtual storage becomes relatively large. As more and more
active pages must be handled, paging activity could exceed the maximum
paging capability of the system if task deactivation did not occur.

Figure 30.15.2 illustrates the increase in page faults that generally
occurs as more virtual storage is used in a given system configuration.
The curve begins at the point at which the amount of virtual storage
used is equal to the amount of real storage present (virtual-to-real-
storage ratio is 1). Paging activity begins as soon as the amount of
virtual storage used exceeds the real storage present. As the virtual-
to-real-storage ratio increases, so does paging activity. The system
moves from passive paging activity (primarily paging of passive pages)
into active paging (paging active pages in and out more of the time) and
approaches the maximum paging capability of the system. As indicated
previously, Figure 30.15.2 also illustrates the increase in page faults
that generally occurs as less real storage is made available to support
a given virtual storage size. The increase in page faults also causes
the virtual-to-real storage ratio to increase.

78 A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users

Maximum

paging —_—
capability ,
/
/
I Task /
Number of : deactivation /
page faults |
per second I
|

Active
paging

|————— Passive paging

o<
I

Virtual-to-real storage ratio

(7>

Figure 30.15.2. General effect on page faults of increasing the ratio
of virtual storage used to real storage present in
the system

Figure 30.15.3 illustrates how the paging factor only generally
affects system performance. Figure 30.15.5, shown later, illustrates
system performance taking into account all factors. The curve shows the
performance of the system when passive and active paging are occurring,
relative to the virtual-to-real storage ratio. The use of virtual
storage can be increased with little or no adverse effect on performance
as long as paging remains in the passive area. This is true because in
the passive paging area there is a relatively small amount of paging and
a high probability that all or most paging processing (CPU and I/O time)
can be overlapped with other processing. As paging activity increases,
there is a higher probability that CPU processing will be held up
waiting for a paging operation to complete. As the CPU enters the wait
state more frequently to wait for paging I/0 and less paging I/0 is
overlapped, the paging factor causes performance to degrade more
rapidly. ‘

The actual virtual-to-real storage ratio at the time active paging
begins in Figures 30.15.2 and 30.15.3 is a variable and depends on the
way in which virtual storage is used, that is, active-to-passive page
ratio of concurrently executing tasks.

Figure 30.15.4 illustrates the way in which the paging factor only
can affect system performance in a given configuration, based on the
active-to-passive page ratio. If the ratio of active to passive pages
for executing tasks is relatively high most of the time, as shown in
curve 1, the virtual-to-real storage ratio at the point at which active
paging begins will be relatively low. Performance drops very rapidly in
this case as more virtual storage is used, because the increased paging
processing (I/0 and CPU time) cannot be overlapped with other
processing. This situation may apply to an installation initially when
a switch from a nonvirtual storage to a virtual storage environment is
made and more virtual storage is used, since existing programs were

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 79

structured for optimum performance in a given partition or a region size
rather than for optimum performance in a virtual storage environment.

If the active-to-passive page ratio for the system is low, as shown
in curve 3, the virtual-to-real storage ratio can be relatively high
when active paging begins. The performance curve stays flatter longer
as virtual storage is increased when the active-~to-passive page ratio is
low. This situation can apply to an installation in which all executing
programs are structured to minimize real storage requirements and page
faults. An installation that continues executing all or most existing
programs as they are presently designed and that structures new
applications for optimum performance (low active-~-to-passive ratio) may
be more common. - Such installations may experience a virtual-to-real
storage ratio somewhere between the low and the high extremes possible
for a given job stream, as shown in curve 2.

Paging Overhead

Active
paging

t¢—————— Passive paging

!
|
[
|
System |
performance | Task
L~ deactivation

N
N\
N\

\

Virtual-to-real storage ratio
\'2
(7> ‘)

Figure 30.15.3. General ‘effect on system performance of the paging
factor only

mll|<

The amount of wvirtual storage used in a system can be increased. in
several ways. First, the size of existing application programs can be
increased by the addition of new functions. Second, the level of
multiprogramming or multitasking can be increased, assuming other
required resources, such as CPU time and 1/0 devices, are available.
Third, the size of existing application programs can be expanded by (1)
restructuring programs with a planned overlay or a dynamic structure to
take them out of these structures and (2) combining two or more job
steps within a job into one logical job step. The active-to-passive
ratio of the additional pages the system must handle will usually be
higher when the level of multiprogramming is increased than when
existing Jobs are restructured.

80 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Paging Overhead

Curve 3
(active-to-passive
page ratio low-
overlapped paging)

* Curve 2

System

performance Curve 1

(active-to-passive
page ratio high—
nonoverlapped
paging)

|
=1 /I Virtual-to-real storage ratio
\A
(#>1

Figure 30.15.4. General effect of the paging factor on system performance
© with various active-to-passive page ratios

i<

The way in which an installation should view the amount of virtual
storage used and system performance for a given configuration, taking
all performance factors into account, is illustrated in Figure 30.15.5.
The increased use of virtual storage is beneficial to system performance
up to a point. Thereafter, additional virtual storage can be used to
handle additional functions at a variable cost in system performance.

In reality, the virtual-to-real storage ratio and the page fault rate
vary during system processing as the amount of virtual storage used (out
of the total amount supported) and the amount of real storage available
for paging vary. Best owverall system performance is achieved when
paging activity falls most of the time in the area identified on the
curve as the operating range. More significant performance reduction
begins when active paging is experienced. :

Occasional active paging on an exception basis should be acceptable.
More frequent active paging can be performed to achieve a desired
function that does not justify changing the system configuration.
However, when paging activity in a system is constantly at the point at
which task deactivation occurs, system configuration changes should be
made to improve system performance. Such changes might be the addition
of more real storage, the addition of more or faster paging devices, or
installation of a faster CPU. A history of the paging activity of the
system can be maintained by recording the paging statistics provided by
0S/VsSl and 0Os/VsS2.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 81

Performance-All Factors

Active

Passi aging —————> - R
re————— Passive paging paging

Configuration
changes

<«————————— QOperating range —————» necessary

System
performance

Task
deactivation
point

Virtual-to-real storage ratio

()

Figure 30.15.5. General system performance curve for a virtual storage
environment

TI<
]

INCREASING SYSTEM PERFORMANCE IN A VIRTUAL STORAGE ENVIRONMENT

The IBM-supplied wvirtual storage operating systems are designed to
provide an acceptable level of performance when existing problem
programs are run without modification. However, given the additional
resource requirements of virtual storage support and the new factors
that affect system performance in a virtual storage enviromment, once a
virtual storage operating system is installed (either on an existing
configuration or a larger configuration) certain steps can be taken to
improve performance or to achieve optimum performance. The benefit to
be achieved by taking any one of the steps ocutlined must be evaluated on
an installation basis, taking the specific configuration and operating
environment into account. Some steps, for example, are more practical
for large configurations than for small configurations. The following
can be done: :

¢ Use larger 1I/0 buffers. This step is practical primarily for
sequential data sets and can be used most effectively when previous
real storage limitations prevented the use of larger buffer sizes in
general and, in particular, optimum buffer sizes for disk data sets.
In addition to reducing the total I/0 time required to process a
data set, as would occur in a nonvirtual storage environment,
increasing buffer size reduces the number of 1I/0 requests required
to process the data set and, thereby, reduces the CPU time required
for channel program translation and page fixing. This technique
should be used taking into account the amount of real storage
present in the system. If the buffer size of several data sets that
are being processed concurrently is increased considerably or made
large initially, the amount of real storage that must be short-term
fixed increases considerably also and potentially increases the
number of active pages. This may adversely affect system
performance if the system has a relatively limited amount of real
storage available for paging.

82 A Guide to the IBM Systemv370 Model 168 for Systems/370 Model 165 Users

¢ Increase the page-fault-handling capability of the system when
paging activity constantly causes task deactivation. This can be
accomplished by (1) using a direct access device for paging that is
faster than the currently used paging device, (2) allocating more
direct access devices for paging to enable more overlap of paging
activity, or (3) reducing or eliminating contention for the existing
paging device(s). Contention for the paging device can be relieved
by using dedicated paging devices, or reducing the amount of other
I/0 activity on the channel to which the paging device is attached,
or dedicating a channel to paging. Alternatively, the same paging
device configuration can be maintained while page fault occurrence
is decreased by the addition of real storage.

¢ Use code that does not modify itself. Use of this type of code can
reduce the amount of page-out activity required. Such code can be
produced using OS PL/I and the 0S Assembler Language.

e Execute programs in nonpaged mode only when actually required. Use
of nonpaged mode should be limited because the amount of real
storage available for paging operations during the operation of a
nonpaged program is reduced by the size of the program and can
affect system performance. If a nonpageable program is to be
present in a system for an extended period of time or at all times,
it should be considered part of the fixed real storage requirement
s0 that the amount of real storage actually available for paging can
be more accurately determined.

¢ Structure new application programs to operate efficiently imn a
paging environment. This is done by structuring programs to achieve
a reasonable balance between page faults and real storage
requirements. The extent to which this is done can vary widely by
installation. The benefits that can be obtained should be evaluated
in light of the additional programmer effort required. 1In this
respect, deciding on the degree to which programs should be
structured for efficient operation in a paging environment is
similar to deciding how a high-level language should be used. The
emphasis can be on most efficient program execution, which can
require more programmer effort, or on most efficient use of
programmer time, which can result in less efficient programs.
Alternatively, there can be a tradeoff between programmer time and
efficient programs (only the most frequently used programs are
optimized, for example).

Many of the general program structure techniques discussed do not
require a large amount of additional effort or knowledge on the part
of programmers--only that they adopt a particular programming style.
All of the suggested techniques can be used by Assembler Language
programpers. Some can be used with certain high-level languages and
not with others. More of the suggested techniques can be used in
PL/I programs than in other high-level language programs.

Two major steps can be taken to structure programs to use real
storage most efficiently and to incur the smallest possible number
of page faults. The first is to adopt a certain programming style,
one aspect of which is similar to the style that has been encouraged
with System/360 and System/370, namely, that of modular programming.
The second is to package program code and data within page
boundaries. The okbjective of improving programming style is to
construct a program that consists of a series of logical processing
phases each of which contains a relatively small number of active
pages. The objective of packaging code within pages is to group
.active code together to avoid crossing page boundaries in such a way
that more real storage than is really necessary is required to
contain the active pages of a logical phase.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 83

In order to cause references to active instructions and data to be .
localized, the following general rules should be applied to S

programs:

1. A program should consist of a series of sequentially executed
logical phases or--in Systenv370 programming terminology-<~a
series of subroutines or subprograms. The mainline of the
program should contain the most frequently used subroutines in
the sequence of most probable use, so that processing proceeds
sequentially, with calls being made to the infrequently used
subroutines, such as exception and error routines. This
structure contrasts with one in which the mainline consists of a
series of calls to subroutines. Fregquently used subroutines
should be located near each other. Infrequently used subroutines
that tend to be used at the same time whenever they are executed
should be located near each other also.

2. The data most frequently used by a subroutine should be defined
together so that it is placed within the same page, or group of
pages, instead of scattered among several pages. If possible,
the data should be placed next to the subroutine so that part or
all of the data is contained within a page that contains active
subroutine instructions (unless the routine is to be written in
such a way that it is not modified during its execution). This
eliminates references to more pages than are actually required to
contain the data and tends to keep the pages with frequently
referenced data in real storage.

3. Data that is to be used by several subroutines of a program
(either in series or in parallel by concurrently executing
subtasks) should be defined together in an area that can be
referenced by each subroutine.

4. A data field should be initialized as close as possible to the
time it will be used to avoid a page-out and a page-in between
initialization and first use of the data field.

5. Structures of data, such as arrays, should be defined in virtual
storage in the sequence in which they will be referenced, or
referenced by the program in the sequence in which a high-level
language stores them (by row or by column for arrays, for
example).

6. Subroutines should be packaged within pages when possible. For
example, avoid starting a 1500-byte subroutine in the middle of a
2K page so that it crosses a page boundary and requires two page
frames instead of one when it is active. Subroutines that are
smaller than page size should be packaged together to require the
fewest number of pages, with frequently used subroutines placed
in the same page when possible. This applies to large groups of
data as well. The linkage editor supplied with 0s/Vsl1l and 0S/VS2
has new control statements that can be used to cause CSECTs and
COMMON areas to be aligned on page boundaries, and to indicate
the order in which CSECTs are placed in the load module. This
linkage editor facility can be used with certain high-level
language programs that contain multiple CSECTs (such as PL/I and
ANS COBOL) as well as with Assembler Language programs.

Use the OS PL/I Optimizing Compiler instead of 0S PL/I F. The code
produced by this language translator has characteristics that make
it more suited to a virtual storage environment than the code .
produced by PL/I F. First, generated code is grouped into
functionally related segments, by PROCEDURE and DO group, for
example, which can help reduce paging. When PL/I allocates buffers
and I/0 control blocks, they are packed together and can potentially

84 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

require fewexr pages than if no attempt was made to define them
together. Reentrant code can be produced by the 0S8 PL/I Optimizing
Compiler, and its library routines are reentrant. This reduces
page-out requirements. User-written reentrant PL/I routines that
are required by concurrently executing problem programs can be made
resident in virtual storage and shared to reduce real storage and
paging requirements for active pages of these routines.

e Use the shared library feature of the 0S PL/I Optimizing Compiler
and the COBOL Library Management Facility of the 0S ANS COBOL
language translator to make library modules resident in virtual
storage so they can be shared by concurrently executing problem
programs. Pages containing active library modules will tend to
remain in real storage and thereby reduce paging and real storage
requirenments for these modules.

¢ Restructure existing application programs to incur as few page
faults as possible, use the least possible amount of real storage,
and take advantage of the program structure facilities that a
virtual storage enviromnment offers. This can be accomplished by (1)
using the techniques described above, (2) taking planned overlay and
dynamic structure programs out of these structures, and (3)
combining into one logical step two or more steps of a job that
would have been one job step if the required real storage were
available. The last technique can eliminate redundant I/0 time that
is currently used to read the same sequential input file into two or
more job steps and to write intermediate results from one job step
in one or more sequential data sets for input to the next job step.

e Increase the level of mltiprogramming in the system. This can be
accomplished by (1) performing more peripheral 1/0 operations
concurrently (more readers and writers), (2) operating more regions
or partitions concurrenmtly, or (3) increasing the use of
multitasking (structuring a TCAM message processing program to use
multitasking to enable several different types of transactions to be
processed concurrently, for example).

System throughput can be improved in a virtual storage environment
if a higher level of multiprogramming causes more CPU and I/0 time
to be overlapped, which results in more effective utilization of
available system resources. The larger the number of tasks in the
system under these conditions, the less chance there is for the CPU
to enter the wait state because no task is ready to execute. Better
utilization of real storage in a virtual storage environment can
enable more tasks to be present in the system.

In order to achieve performance gains by increasing the level of
miltiprogramming, the potential for more overlap of CPU and 1/0 time
must exist in a system and/or the potential must exist for reduction
of I/0 time via increased overlapping of channel activity and
reductions in unoverlapped seek time (that can result from new
system performance enhancements). The required hardware resources,
such as CPU time, real storage, I/0 devices, and direct access
storage, must be available as well. The most critical resource, in
this situation is available CPU time. As the percentage of CPU
utilization gets higher, there is less potential for increasing
throughput via increasing the level of mltiprogramming.

The information presented in this subsection is designed to enable
the reader to more fully understand the way a system operates in a
virtual storage environment and the facts that influence system
performance. Understanding the environment and knowing the actions that
can be taken to increase system performance will enable each
installation to quantify the amount of effort that is to be devoted to
optimizing the performance of a virtual storage operating system.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 85

SECTION 40: VIRTUAL MACHINES

This section discusses the basic concepts, general operation, and
advantages of virtual machines, as defined and implemented in Virtual
Machine Facility/370. No previous knowledge of virtual machines is
assumed. The virtual machine concept is a logical extension of the
virtual storage concept. ‘Therefore, comprehension of dynamic address
translation hardware and virtual storage concepts, terminology, and
advantages, as discussed in Sections 30:05 and 30:10, is assumed.

VM/370 consists of the Control Program (CP), Conversational Monitor
System (CMS), Remote Spooling Communications Subsystem (RSCS), and
Interactive Problem Control System (IPCS) components. CP supports the
concurrent operation of multiple virtual machines. CMS, operating in a
virtual machine under CP control, provides conversational time sharing
facilities to a single user. RSCS, operating in a virtual machine under
CP control, provides for the transmission of data between remote users
and virtual machines via binary synchronous communication lines. IPCS,
operating in a CMS virtual machine, provides interactive problem
management, problem determination, and problem isolation.

VM/370 is the successor to CP-67/CMS. Virtual machine support was
first provided by IBM in CP/67. In the CMS time sharing environment in
which CP-67/CMS was primarily used, the major advantage of the virtual
machine facility was that it enabled each CMS user to appear to have a
complete System/360 (Model 22 to 75) at his disposal and to be isolated
from all other CMS users. Each (MS user had access only to his own
virtual machine and, therefore, could not inadvertently interfere with
the operation of other CMS virtual machines. VM/370 also provides these
facilities and can be used in nondedicated time sharing enviromments to
provide other advantages as well.

The information presented in this section is prerequisite reading for
the optional Virtual Machine Facility/370 Features Supplement, which can
be inserted as Section 110 of this guide. The VM/370 supplement
discusses the features and operation of the components of VM/370, as
well as performance considerations for a virtual machine environment and
the types of installations that can benefit most from the use of VMW/370.

40: 05 DEFINITION AND GENERAL OPERATION

A virtual machine is a functional simulation of a complete computer
system, including a virtual CPU, virtual storage, virtual channels,
virtual I/70 devices, and a virtual operator's console, that appears to
the user to be a real machine. In a VM/370 environment, a virtual
machine is the functional equivalent of a System/370 (Models 135 to 168)
and its associated 1/0 devices.

The control program (CP) component of VM/370, executing in a real
machine (System/370 Models 135 through 168 with dynamic address
translation hardware), supports concurrent operation of multiple virtual
machines using multiprogramming techniques that enable real machine
resources to be shared by multiple virtual machines. Each virtual
machine is dedicated to a single user and isolated from other virtual
machines. None of the components of one virtual machine can be accessed
by a program that is executing in another wvirtual machine except via the
controlled sharing facilities that are provided by CP.

The operation of a virtual machine and scheduling of the work it
performs’are handled by an operating system rather than by CP. That is,

86 A Guide to. the IBM Systenv370 Model 168 for System/370 Model 165 Users

each virtual machine has an operating system executing in it that
allocates machine resources and schedules the execution of problem
programs just as if the operating system were executing in a real
machine. 1In order to initiate operations in a virtual machine, the user
must log on the virtual machine and IPL an operating system in it. The
logon procedure establishes a connection with CP and the existence of a
specific virtual machine for this user. A logon is performed using a
console or terminal device of the type that CP supports as a virtual
operator's console.

The virtual operator's console is the means by which the user
controls the operation of his virtual machine and communicates with the
operating system executing in it. CP provides a set of commands that
(1) simulate the system control panel of the virtual machine, (2)
provide for alteration of a virtual machine configuration, (3) request
various services from CP for a virtual machine, and (4) control
operation of the real machine. When a CP command is entered via the
virtual operator's console, CP receives control and performs the
required functions. Communication between the user and the operating
system is accomplished using the operating system command language and
the virtual operator's console. CP performs any simulation required to
make the real I/0 device the operator is using as a virtual operator"'s
console appear to be the primary console device type that is defined for
the operating system.

In a YM/370 environment, a virtual operator's console is frequently
called a remote terminal because, in most cases, a terminal device type
is actually used as the virtual operator's console device. However, the
real I/0 device that is used as the virtual operator"s console may be a
System/370 -console device as well as a local or a remote terminal.

VM/370 supports execution of any one of the following System/360 and
Systenv370 programming systems in a virtual machine:

¢ CMS component of VM/370

¢ RSCS component of VM/370

e DOS Version 3, DOS Version 4, or DOS/VS

e APL 360-DOS

e OS PCP, MFT, or MVT

e OS ASP Version 3

e 0OS/VSl1

e 08/VS2 SVS (Releases 1, 1.6, and 1.7)

e 0S/Vs2 MVS (Releases 2 and up) in uniprocessor mode only

e PS4y

e VM/370

Any number and combination of the above operating systems can execute
concurrently in a VM/370 environment, subject to the availability of the
required real machine resources, including multiple copies of the same
operating system (0S/VS1l executing in more than one virtual machine, for
example). With a few exceptions, all the facilities that are supported
by these operating systems when they execute in a real machine can be
used when the operating system executes in a virtual machine in a VWM/370

environment. Figure 40.05.1 conceptually illustrates the real and
virtual machine environment that is supported by VM/370.

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 87

Each virtual machine that is to be supported by CP must be user
defined and stored in the WM/370 directory. The size of virtual
storage, the virtual I/0 devices to be used, the options to be used, and
a virtual console are usually specified. Virtual machine configurations
can be different from each other and, within certain limitations,
different from that of the real machine in terms of these
specifications. : '

Simulated Virtual Machine Envifonment

Virtual 1/0 units Virtual 1/0 units Virtual 1/O units - Virtual 1/0 units

Operating
system

Operating Operating
system system -

Operating
system

Virtual g Virtual g Virtual Virtual
operator’s . operator’s operator’s operator's
console console console console
User 1 User 2 User 3 User N
Virtual machine 1 Virtual machine 2 Virtual machine 3 ‘ Virtual machine N

Real Machine

User 1 User 2 User 3 User N
Virtual operator’s - Virtusl operator's . Virtual operator’s eon Virtual operator's
console console Real machine console console

operator
Console
“ ’
Card :
punchles! \ |
Printer(s) <
Ld
.
.
e
Card
Reader{s) Tape
unit
Direct Direct Direct
access access eee access
Other /0 ‘storage storage storage Other 1/0
device device
types types

Figure 40.05.1. Conceptual illustration of the real and virtual machine
_ environment that is supported by VM/370

88 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Virtual CPU Simulation

CP is resident in real storage during operation of the real machine.
It controls the operation of the real machine, schedules the execution
of virtual machines, and simulates virtual machine hardware components
using the hardware components of the real machine. 1In order to be able
to perform its functions and isolate virtual machines from each other,
CP must have exclusive control over the status and modes of operation of
the real machine, as does the control program of an operating system.
Hence, CP always executes with the real machine in supervisor state and
receives control after all real machine interruptions.

Virtual machines always operate with the real machine in problem
state. Therefore, any time any program that is executing in a virtual
machine issues a privileged instruction, an interruption occurs in the
real machine. CP receives real CPU control and takes the required
action. This may involve simulating execution of the privileged
instruction for the virtual machine or returning real CPU control to the
control program in the virtual machine for which the interruption
occurred so that the interruption can be processed by that control
program. In this manner, CP maintains control of the real machine. In
addition, CP simulates the existence of both a supervisor state and a
problem state in the virtual machine while, in reality, the virtual
machine operates only in problem state.

CP gives control of the real CPU to operating virtual machines on a
time-shared basis to simulate the existence of multiple CPUs. A virtual
machine can execute any System/370 instruction except READ DIRECT and
WRITE DIRECT, which are part of the Direct Control feature; the
multiprocessing instructions; and SET CLOCK, which is treated as a NOP
because CP controls the setting of the time-of-day clock. In addition,
the DIAGNOSE instruction is reserved for communication between executing
operating systems and CP.

The System/370 instructions and CPU features that are used by the
control and problem programs executing in a virtual machine must be
present in the CPU of the real machine in which CP executes. CP does
not simulate the existence of System/370 instructions and CPU hardware
features that are not present in the real machine. A virtual CPU can
appear to be executing either with BC mode or EC and DAT modes
specified, depending on the mode required by the operating system
executing in it. However, EC and DAT modes are always specified in the
real CPU when a virtual CPU is executing since address translation is
required to support the existence of virtual storage for the virtual
machine.

Virtual Storage Simulation

Each virtual machine can have up to 16,777,216 bytes of virtual
storage, which is the maximum virtual storage size for System/370. The
existence of virtual storage for a virtual machine is simulated by CP
using DAT hardware and external page storage, as is done in a virtual
storage environment (discussed in Section 30).

Operating system programs that are executing in a virtuval machine
(both control and problem programs) are paged in and out of real storage
in the real machine on a demand paged basis as they execute. Real
storage allocation, external page storage allocation, and paging
operations are handled entirely by CP and are transparent to the control
and problem programs that are executing in the virtual machines. 1In
this manner, CP provides one virtual storage for each virtual machine,
and real storage in the real machine is shared by concurrently operating
virtual machines. The implementation of virtual storage in a virtual
machine environment is conceptually illustrated in Figure 40.05.2.

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 89

Virtual machine 1
virtual storage

Control
program

Problem
programs

)
%Y
)Y
W

External

Page Storage
Virtual machine 2
/’_\ virtual storage
Real Storage /___—/ o
. program
cP
Contents of Program
Pages of Derpand ~ virtual storage N programs
virtual storage Paging Y for virtual % 2
for operating machines 1 to N ’1
virtual machines
. L]
L]
\ .

N~

Virtual machine N
virtual storage

Control
program

Problem
programs

b1
«K
h)Y
<«

Figure 40.05.2. cConceptual illustration of the implementation of
virtual storage in a virtual machine environment

The virtual storage defined for a virtual machine always appears to
be real storage to the operating system that is executing in the virtual
machine. 1In effect, an operating system that does not support virtual
storage, such as DOS Version 4 or OS MFT, has virtual storage support
provided by CP when such an operating system executes in a virtual
machine and, therefore, offers the functional advantages of a virtual
storage operating system.

When executing in a wvirtual machine, an operating system that does
support virtual storage uses the virtual storage defined for the virtual
machine as real storage in order to simulate the existence of the
virtual storage it is designed to support. As shown in Figure 40.05.3,
the virtual storage operating system builds a segment table and page

90 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

tables to translate addresses in the virtual storage it supports to
addresses in the virtual storage defined for the virtual machine, which
the operating system assumes is real storage. CP always builds and
maintains a segment table and page tables for each virtual machine.
These tables are used to translate addresses in the virtual storage of
the virtual machine to addresses in real storage in the real machinpe.

When a virtual storage operating system is executing in a virtual
machine, CP constructs and maintains a third set of tables using the
contents of the other two sets of tables. The third set of tables, a
shadow segment table and shadow page tables, are the tables that are
actually used for address translation when the virtual machine operates.
The shadow tables are used to translate addresses in the virtual storage
the operating system supports to addresses in real storage in the real
machine.

Virtual storage

Real machine Virtual machine
real storage virtual storage

cp

Segment Segment

table table
Assumed to be

real storage by

Supported by
the virtual

the virtual
. ¢ storage
Pageable ‘-—. storage operating b - operating system
real Page system Page
storage tables tables

N
Ao
L
W
b))
«

Built by Built by

CP for each the virtual
virtual machine storage operating
system

Built by
CP

Segment
table

Page
tables

Tables used for
address translation

Figure 40.05.3. Segment tables and page tables built when a virtual
storage operating system executes in a virtual machine

Virtual 1/0 Component Simulation

The virtual channels, control units, and I/0 devices defined in each
virtual machine configuration are simulated by CP using real channels,
control units, and I/0 devices that are of the same type. While each
virtual I/70 device defined must have a real I/0 device counterpart in
the real machine configuration, there does not necessarily have to be a
one-to-one correspondence. In addition, the I/0 device addresses
assigned to virtual I/0 devices need not be the same as the addresses of
their real 1/0 device counterparts. CP also allows a virtual direct

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 91

access device to be simulated by only a . portion of a real direct access
device volume. Such a virtual direct access device is called a
minidisk. Support of a minidisk facility enables one real direct access
device to simulate the existence of several virtual direct access
devices of the same type and thus provides more efficient use of
available direct access storage.

Virtual I/0 devices are always simulated on a real 1I/0 device of the
same device type unless the spooling facility of CP is used. (CP also
allows 2311 disk storage to be simulated using 2314/2319 disk storage
- and the minidisk facility.) The local spooling capability of CP

provides data transcription between unit record devices and direct
access storage devices and is functionally similar to DOS POWER, OS
readers and writers, 0S HASP, and 0S/VS JES. In effect, the CP spooling
facility enables virtual unit record devices (card readers, card
panches, and printers) to be simulated using direct access storage. CP
also provides console spooling and a remote spooling facility.

The virtual I/0 devices in a virtual machine configuration are
logically controlled by the operating system that is executing in the
virtual machine rather than by CP. That is, all the data management
routines of the operating system (physical record processing, logical
record processing, and error recovery routines) execute as usual.
Therefore, a virtual machine I/0 configuration can include any I/0
device types that are supported by the operating systems that will
execute in the virtual machine, as long as real I/0 device counterparts
exist in the real machine 1/0 configuration as required.

CP controls only the scheduling and actual initiation of virtual
machine I/0 operations in the real machine. When a START 1/0
instruction is issued by an operating system control program that is
executing in a virtual machine, a privileged operation interruption
occurs and CP receives real CPU control. CP translates the virtual I/0
device address to its counterpart real I/0 device address and, for
minidisks, converts virtual cylinder addresses to corresponding real
cylinder addresses, as required. CP also performs the necessary channel
program translation and page locking operations and queues the 1I/0
request if it cannot be started.

After the I/0 operation is started, CP returns the condition code to
the operating system control program that initiated the I1/0 request so
that appropriate action can be taken. When the I/0 operation completes
and causes an I/0 interruption, CP receives CPU control, gathers 1/0
status information, and attempts to restart the available real I/0
components. CP presents the status data to the operating system control
program via a simulated I/0 interruption for the virtual machine in
which the operating system is executing. ,

CP completely controls operation of the real 1/0 devices that are
required for its own execution, such as paging and spooling devices.
This includes determining the need for 1I/0 operations, scheduling and
initiating I/0 requests, handling 1/0 interruption processing, and
performing exrror recovery procedures.

Virtual Machine Assist Feature

The Virtual Machine Assist feature is available as an RPQ for the
Model 168. This feature is designed to improve total system performance
in a VM/370 environment and can also improve the performance achieved by
certain operating systems that operate under CP control in a virtual
machine. The virtual machine assist feature performs the same functions
as some of the most frequently used virtual machine simulation routines
of CP. Use of the virtual machine assist feature can result in virtual
machine performance improvement through elimination of CP processing

92 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

that would otherwise cause an operating system to experience throughput
degradation when it executes in a virtual machine instead of a real
machine. Total system performance improvement is achieved if a higher
level of multiprogramming can be maintained as a result of the
elimination of certain CP processing.

The virtual machine assist feature is controlled by mask bits in
control register 6. When the virtual machine assist feature is enabled,
certain types of real machine interruptions that occur when a virtual
machine has real CPU control cause the virtual machine assist hardware
feature to gain control to simulate the required virtual machine
function. The virtual machine assist feature is entered when one of the
following occurs:

e A privileged instruction program interruption occurs that is caused
when a virtual machine issues an INSERT PSW KEY, INSERT STORAGE KEY,
LOAD PSW, LOAD REAL ADDRESS, RESET REFERENCE BIT, SET PSW KEY FROM
ADDRESS, SET STORAGE KEY, SET SYSTEM MASK, STORE CONTROL, STORE THEN
AND SYSTEM MASK, or STORE THEN OR SYSTEM MASK instruction. The
virtual machine assist feature simulates execution of the privileged
instruction, and operation of the virtual machine continuves with
execution of the instruction after the privileged instruction.

e An SVC instruction except SVC 76 is issued by a virtual machine.
PSW switching for the virtual machine is simulated hy the virtual
machine assist feature.

¢ A page translation program interruption occurs in a virtual machine
in which a virtual storage operating system is executing. The
virtual machine assist feature updates the appropriate shadow page
table if possible.

The virtual machine assist hardware feature performs the same
functions as the counterpart simulation routines in CP, with a few
exceptions. The virtual machine assist feature does not handle certain
special situations for a few of the privileged instructions supported.
The unsupported special situations are those that occur infrequently and
that would require the inclusion of a considerable amount of additional
hardware. When these special situations occur, the appropriate
similation routine of CP is entered to perfoarm the required functions.

The amount of throughput improvement that occurs for an operating
system when the virtual machine assist feature is used depends on the
extent to which the operating system utilizes the functions the virtual
machine assist feature supports. If the increase in run time an
operating system experiences when it executes in a virtual machine is
caused to a large extent by the CP processing that is required to
simulate functions supported by virtual machine assist hardware, a
relatively significant performance gain can be expected. The virtual
machine assist feature can be of the most benefit, for example, to
operating systems that support virtual storage (DOS/VS, 0S/Vsl, and
0s/Vs2k).

The virtual machine assist feature is supported by VM/370 as of
Release 2. Additional details regarding the operation of the wvirtual
machine assist feature and the support provided by VM/370 are discussed
in Vvirtual Machine Facility/370 Features Supplement.

40:10 GENERAL ADVANTAGES OF A VIRTUAL MACHINE ENVIRONMENT

The advantages of VM/370 complement those of virtual storage
operating systems. Like a virtual storage environmment, a virtual
machine environment is designed primarily to support new functions

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 93

rather than increase system performance. Essentially, CP is a
simulator. Traditionally, simulators have been used to provide a
desired function at the expense of performance. The new functions
provided by virtual machines (1) can increase the rate of new
application development and (2) expand operational capabilities over
those provided by virtual storage. The CMS component of VM/370
supplements these two major advantage areas of a virtual machine
environment by supporting time sharing facilities, suych as online
program development, conversational program execution and problem
solving, and interactive text processing.

The following indicates the way in which the virtual machine
environment that is supported by the CP component of VM/370 aids the
installation of new applications and identifies the new operational
features such an environment supports. The functions and specific
advantages of CMS are discussed in the VM/370 supplement.

Increasing New Application Development

Since virtual machine support includes support of a virtual storage
environment for each virtual machine, all the capabilities virtual
storage provides that aid new application development are present in a
virtual machine environment as well. (These capabilities are discussed
at the end of Section 30:05.) By enabling multiple operating systems to
execute concurrently in one real machine, the virtual machine
environment supported by CP also provides the following new
capabilities:

¢ Testing of new programs can be more extensive and completed sooner
by the elimination of dedicated testing periods. Wwhile a virtual
storage environment can eliminate most program testing restrictions
that result from real storage size limitations, the isolation that
is provided by executing a program in a virtual machine eliminates
the need to test programs that can cause total system termination in
a dedicated enviromment. For example, system-oriented routines:
written by system programmers and teleprocessing programs, which
usually are tested only during scheduled dedicated testing periods,
can be tested while production work is in progress. This can
eliminate the need to establish testing periods during second or
third shift and, by reducing individual test turnaround time,
enables more of this type of testing to be accomplished in a given
time period.

¢ Testing of new programs can be completed sooner through the use of
console debugging, when necessary. Using the CP commands that
simulate system control panel functions, the programmer can use any
console debugging facility that is available on a real machine, such
as setting address stops, examining and altering general registers,
displaying and altering virtual storage, etc., without interfering
with production work. CP also provides other debugging services,
such as an extensive set of traces, that can be invoked by CP
commands. Console debugging, which can enable difficult-to-locate
program errors to be detected more quickly than with desk debugging,
is usually not permitted in a nonvirtual machine environment, except
as a last resort, or is scheduled for nonproduction periods.
Program testing turmaround time can be significantly reduced through
the use of console debugging.

e Transition from one release of an operating system to another
release or from one operating system to another can be accomplished
more quickly because of the capability of executing multiple
operating systems concurrently. A new release of an operating
system can be generated and tested in one virtual machine while
production work continues in another virtual machine using the

94 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

existing release. Existing application programs and system—oriented
programs that must be modified or newly written (to use a new
facility or new language translator, for example) can be tested
during production processing as well. The multiple virtual machine
facility also enables an installation to execute programs that are
dependent on a back release (because the release is user modified,
for example) concurrently with each new release of that operating
system or with an entirely new operating system (such as a back
release of a DOS version operating concurrently with 0S).

e CMS can be used to perform online program development concurrently
with the processing of production work using either 0S or DOS.
Significant gains in programmer ocutput can be realized through
writing, compiling, and testing programs using an online terminal in
a conversational manner. This enables new applications to become
operational sooner. When CMS is used, each programmer has his own
virtual machine with CMS executing in it. Therefore, the occurrence
of a programming or operational error in one virtual machine can
cause termination of that virtual machine only. Other programmers
and production work are not affected.

Expanded Operational Capabilities

In addition to the new operational facilities a virtual storage
environment provides (discussed in Section 30:05), a multiple virtual
machine environment offers the following capabilities:

* Operating system maintenance can be performed concurrently with
production work. PTrF's can be applied and tested using one virtual
machine without the possibility of causing the abnormal termination
of another virtual machine that is processing production work.

e Operator training can be done using a virtual machine, which
eliminates the need to dedicate the entire real machine to this
function. Multiple operators can be trained while production work
is in process without the possibility of terminating real system
operations through an operator error.

e A system can be backed up by another system that not only has less
real storage but that also has real I/0 devices with different
addresses, fewer direct access devices, and fewer channels, as long
as sufficient I/0 devices of the required type are available.

e New channel and direct access device configurations can be simul ated
using a virtual machine for the purpose of evaluating the load on
the new I/0 configuration before it is installed on the real
machine. Similarly, ASP configurations consisting of two or more
machines can be simulated in a virtual machine environment using
only one real machine. This enables an installation without ASP
installed to determine the activity of such a configuration and gain
experience in its operation before the second system is installed or
before making the decision to install ASP. The ASP user can also
experiment with different ASP configurations.

As the above indicates, a virtual machine environment, as supported
by VM/370, offers several unique capabilities that can be of benefit to
small, intermediate, and large System/370 users. In most cases, VM/370
can be used to best advantage as complementary programming system :
support in Model 168 installations in which a version of OS is used as
the primary programming system. VM/370 can be used in the same system
as the 0S8 or 0S/VS operating system or in a separate support system. A
discussion of the types of installation environments in which VM/370
will be most frequently used is contained in Virtual Machine
Facility/370 Features Supplement.

A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Usexs 95

SECTION 50: I/0 DEVICES FOR MODELS 1 AND 3

50:05 1/0 DEVICE SUPPORT

All I/0 devices, consoles, and telecommunications terminals that can
be attached to the Model 165 can be attached to Models 1 and 3 of the
Model 168. However, all I/0 devices supported by OS MFT and MVT are not
also supported by 0s/vsi and 0S/VS2, respectively. (See the optional
programming systems supplements for 1/0 device support.)

Model 65 devices that are not part of the standard Model 165 I/0
configuration are not part of the standard Model 168 I/0 configuration.
The integrated storage controls feature and several 1/0 devices can be
attached to the Model 168 but not to the Model 165 (see the table in
Section 70:05).

The I/0 devices discussed in this section attach to a Model 168
(Models 1, 3, and A3) but not to a Model 165.

MODEL 11

A 3330-series string that is attached to a Model 168 can contain 3333
Model 11 Disk Storage and Control and 3330 Model 11 Disk Storage
modules, which do not attach to the Model 165. The drives in these
modules offer twice the capacity of the drives in Model 1 and 2 modules.
Model 11 of the 3333 consists of two independent drives, device-oriented
control functions, and power for itself and the drives that can be
attached to it, as does Model 1 of the 3333. Model 11 of the 3330
consists of two independent drives without the device-oriented control
functions that are part of a 3333, as does a 3330 Model 1.

In a Model 168 configuration, the 3333 Model 11 attaches to 3830
Storage Control Model 2 and Integrated Storage Controls. It must be the
first module in each 3330-series string that is attached to these
control units. The 3330 Model 11 attaches only to 3333 modules, Models
1 and 11. Up to three 3330 modules, in any combination of Models 1, 2,
and 11, can be attached to a 3333 Model 1 or 11 module.

With one exception, Model 11 3330-series drives are functionally like
Model 1 and 2 drives. The drives in 3330 and 3333 Model 11 modules have
a standard write format release feature that is not provided for 3330
Model 1 and 2 and 3333 Model 1 drives. This feature enables a Model 11
drive to disconnect from a 3333/3330 Model 11, 3830 Model 2, or the ISC
while the drive is erasing to the end of the track after a record has
been written with a formatting write command. This facility frees the
control unit and channel for the initiation of another 1I/0 operation.

The removable 3336 Model 11 disk pack is used with 3333 and 3330
Model 11 drives. Like a 3336 Model 1, a 3336 Model 11 has 19 recording
surfaces. However, the Model 11 disk pack has 808 data cylinders,
instead of 404, for a maximum capacity of 200 million bytes. The Model
11 disk pack also has seven alternate cylinders, like a Model 1. Hence,
the maximum capacity of a 3330-series string of all Model 11 drives is
1600 million bytes.

Model 11 3336 Disk Packs are interchangeable across all 3330 Model 11
and 3333 Model 11 drives but cannot be used with Model 1 and 2 3330-
series drives. The 3336 Model 11 Disk Pack has a physical. interlock so
that it cannot be mounted on a 3330 Model 1 or 2 drive or a 3333 Model 1

96 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

drive. The 3336 Model 1 Disk Pack has a physical interlock so that it
cannot be mounted on a Model 11 drive. The 3336 Model 1 Disk Pack can
be converted to a Model 11.

Table 50.10.1 compares Model 1, 2, and 11 drive characteristics.
Table 50.10.2 compares 3336 Model 1 and 11 Disk Pack characteristics.

Table 50.10.1. Capacity and timing characteristics of 3330-series drives

3330-series 3330-series
Characteristic Model 1 or 2 drive | Model 11 drive
Capacity in thousands of bytes 100,018 200,036
(full-track records)
Seek time (ms)
Maximum 55 55
Average 30 30
Average cylinder-to-cylinder 10 10
Time channel busy searching when
SET SECTOR is used (ms)
Minimum <120 <120
Maximum .380 . 380
Rotation time (ms) 16.7 16.7
Rotation speed (rpm) 3600 3600
Data transfer rate (KB/sec) 806 806

Table 50.10.2 3336 Model 1 and 11 Disk Pack characteristics

3336

3336
Characteristic Model 1 Model 11
Number of disks per pack 12 12
Number of recording disks 10 10
Number of recording surfaces 19 19
Disk thickness in inches .075 © « 075
Disk diameter in inches 14 14
Disk pack weight in pounds 20 20
Disk pack maximum capacity in 100 200
millions of bytes

Full track capacity in bytes 13,030 13,030
Cylinders per pack 404 plus 7 808 plus 7

alternates alternates
Tracks per cylinder 19 19
Tracks per pack 7676 - 15,352

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

Optionally, one Integrated Storage Controls (ISC) feature can be
installed on a Model 168 to attach 3330-series, 3340, 3344, or 3350 disk
storage to one or two 2880 Block Multiplexer Channels. Attachment of
these disk devices via 3830 sStorage Control is possible as well. The
following discusses attachment to the ISC of 3330-series strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and
is functionally like 3830 Storage Control Model 2 except for the
following:

e The Integrated Storage Controls feature is contained in the main
frame of the Model 168 and is powered by it.

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 97

e The Two-Channel Switch, Additional feature (that provides four-
channel switching) cannot be attached to the storage controls in the
ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same 2880 channel or they can be attached to two different 2880
channels connected to the Model 168. Each logical storage control can
have attached a maximum of four 3330-series strings of up to eight
drives each. The 32 Drive Expansion and Control Store Extension
optional features (field installable) must be installed in the ISC in
order to attach more than two strings to each logical comtrol.
Therefore, up to 64 drives (eight strings) can be attached to the Model
168 via the ISC feature. The first module in each 3330-series string
must be a 3333 Disk Storage and Control Model 1 or 11 unit.

The 3330-series drives attached to ISC operate just as if they were
attached via 3830 storage Control Model 2. That is, when multiple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a
time. When a malfunction occurs, diagnostics can be run on one logical
storage control and its drives, while normal operations take place on
the other logical storage control in the ISC.

The ISC feature provides lower-cost attachment of 3330-series disk
storage than 3830 storage Control Model 2 when two storage control units
are required, and floor space is saved since the ISC is in the Model 168
CPU. See Table 50.15.3 for ‘a summary of the capabilities of the 3830
Models 1 and 2 and ISC.

The Two-Channel Switch optional feature is also available for the ISC
feature. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch feature permits each integrated storage control unit to be
attached to two channels in the same Model 168 or to one channel in the
Model 168 and one channel in another Systemv/370. Figure 50.10.1
summarizes the 3330-series string configurations that are possikle for
the Model 168 ISC. Intermixing 3330-series and 3340 strings on an
attachment is discussed in Section 50:15.

The 3333 String Switch optional feature can be installed on a 3333
Model 1 or 11 that is attached to the 3830 Model 2 or ISC. This field-
installable feature enables the 3333 and all its attached 3330s (a 3330-
series string) to be connected to two control-unit-type attachments
instead of only one. The attachments can be any combination of two of
the following:

e 3830 storage Control Model 2

e Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

¢ Integrated Storage Control for the Model 145

e 3345 Storage and Control Frame Models 3, 4, and 5 for the Model 145

e 3330/3340 series IFA for the Model 135

The two attachments to which a 3333 with the 3333 sString Switch
feature is connected can be attached to the same or different channels
in the same CPU, or to channels in two different CPUs. In addition,

channel switching features can be installed on one or both of these
attachments.

98 A Guide to the IBM Systems/370 Model 168 for System/370 Model 165 Users

Channel Channel

Integrated ® Two-Channel Switch
Storage X . e 32 Drive Expansion
Controls Logical Logical e Control Store Extension
control 1 control 2
3333 3333 3333 3333 3333 3333 3333 3333 Model 1 or 11
N
3330 3330 3330 3330 3330 3330 3330 3330
1 | | l l .
combination
3330 3330 3330 3330 3330 3330 3330 3330 > of Models 1,
T T T T T T T |™
3330 3330 3330 3330 3330 3330 3330 3330
J

® One to four strings of from two to eight drives each connected
to each logical control. Each logical control connected to one
or two channels in the same or different CPU’s.

® 3333 String Switch can be added to any or all 3333’s to connect
a 3333 to a second attachment in the same ISC, the same CPU, or
another CPU except Models 115 and 125.

Figure 50.10.1. Permissible 3330-series string configurations for the
Model 168 Integrated Storage Controls feature

The 3333 string Switch is functionally similar in its operation to
the Two-Channel Switch. A switch can be set to allow the 3330-series
string to be accessed via both attachments, one at a time. In effect,
this setting provides two control unit paths to the string. String
switching is accomplished dynamically under program. control.
Alternatively, the switch can be set to dedicate the string to one
attachment or the other so that the string can be accessed only via that
attachment.

Figure 50.10.2 illustrates 3333 string switching for four 3330-series
strings. In the configuration shown, all strings can be accessed via
two channels and two control units. Channel switching, string
switching, and 32 Drive Expamsion features can be used to enhance the
availability of 3330-series disk storage and to extend backup
capabilities when two System/370 systems (the same or different models)
are present in an installation.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Usexs 99

Channel Channel

ISC with ; .
Logical Logical
Twp—Channel control 1 control 2
Switch
Each 3333 has
the 3333 String 3333 3333 3333 3333 Model 1 or 11
Switch installed
\
3330 3330 3330 3330
Any combination of
3330 3330 3330 3330 5 Models 1, 2, and 11
3330 3330 3330 3330
J

Figure 50.10.2. Sample 3330-series string configuration with string
switching

Optionally, the staging adapter feature can be installed on the ISC
to permit attachment of the 3850 Mass Storage System to the ISC. The
ISC provides the same functions for the 3850 as 3830 Storage Control
Model 3. The staging adapter permits the addressing capability of each
of the four ISC paths to be expanded to a maximum of 64 unique
addresses. When the staging adapter is installed, the control store
extension feature must also be installed and 3340 disk storage cannot be
attached to the IscC.

100 A Guide to the IBM 8y3tem/370 Model 168 for System/370 Model 165 Users

50:15 THE 3340 DIRECT ACCESS STORAGE FACILITY

3340 DISK.STORAGE DRIVES AND THE 3348 DATA MODULE

The 3340 Direct Access Storage Facility is an intermediate capacity,
modular, high-performance direct access storage subsystem that consists
of 3340 Disk Storage and Control Model A2 and 3340 Disk Storage Models
Bl and B2. A 3340 string can consist of from one to four units and is
connected to a 2880 Block Multiplexer Channel in a Model 168 (Model 1,
3, or A3) configuration via 3830 Storage Control Model 2 or Integrated
Storage Controls in the Model 168 CPU.

A 3340 string for the Model 168 can consist of from two to eight
drives. A 3340 Disk Storage and Control Model A2 must be the first unit
in a 3340 string. The 3340 Model A2 comsists of two drives, drive-
oriented control functions, and power for itself and the 3340 drives
attached to it. In a Model 168 configuration, the 3340 Model A2
attaches to 3830 storage Control Model 2 and a logical control in the
ISC. Up to three units, any combination of 3340 Disk Storage Models Bl
and B2, can be attached to a 3340 Model A2. The 3340 Model B2 consists
of two drives and does not contain the power and device-oriented control
functions that are part of the 3340 Model A2. The 3340 Model Bl
contains one drive and no control functions. Functionally, all 3340
drives are alike regardless of whether they are part of a Model A2, B2,
or Bl unit.

Figure 50.15.1 shows a 3340 string of five drives that includes one
3340 Model A2, one 3340 Model B2, and one 3340 Model Bl. An operator
control panel is located on the top of each 3340 drive. This panel
contains the three-digit hexadecimal address of the.drive, the switches
required to operate the drive, and status indicator lights. The address
of a 3340 drive is wired on a logic board in the 3340 unit.

The removable 3348 Data Module is used for data storage. Unlike the
removable 2316 and 3336 disk packs that are the storage medium for 2314
and 3330-series disk storage, respectively, the 3348 Data Module is a
sealed cartridge that contains a spindle, access mechanism, and
read/write heads in addition to disks on which data is written and read.
The cover of the data module, which is shock-absorbing and non-
flammable, is never removed from the cartridge. The 3340 disk storage
drive contains only the mechanical and electrical components that are

required to house, load, air-filter, and drive the 3348 Data Module.

The 3348 Data Module is shown in Figure 50.15.2, The access
mechanism in a 3348 Data Module is an L-shaped carriage that moves back
and forth on a cylindrical shaft mounted within the data module. Wwhen
the data module is not loaded, the access mechanism is latched in the
home position so that it cannot move. In this position, the access
mechanism is located such that the read/write heads rest on nondata
areas on the disk surfaces.

Three models of the 3348 pata Module, all of which are the same
physical size, are available. The 3348 Model 35 has a maximum capacity
(assuming full-track records) of approximately 35 million bytes that are
accessed by movable read/write heads. The 3348 Model 70 has a maximum
capacity of approximately 70 million bytes that are accessed by movable
read/write heads. The 3348 Model 70F also has a maximum capacity of 70
million bytes of which approximately 502,000 bytes maximum (60 logical
tracks) are accessed by fixed reads/write heads and the balance Ly
movable read/write heads. ,

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 101

Figure 50.15.1. A five-drive 3340 string with 3340 Model A2, B2,
and B1 units ‘

Figure 50.15.2. The 3348 Data Module

102 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

A purchased 3348 Model 35 can be upgraded to a Model 70 at the plant
of manufacture. The upgrading of a 3348 Model 35S or 70 to a Model 70F
and the alteration of a Model 70 to a Model 35 are not available as data
module conversions.

The 3348 Model 70F can operate only on a 3340 drive (Model a2, B2, or
Bl) that has the optional field-installable Fixed Head feature
installed. When installed on a 3340 A2 or B2 unit, the Fixed Head
feature is installed on both drives. The presence or absence of this
feature in a 3340 drive can be determined by programming at any time by
issuing a SENSE command and inspecting the Fixed Head feature bit in the
sense bytes read. The Fixed Head feature and the the Two~Channel Switch
Additional feature (for four-channel switchin g) are mutually exclusive
for the same 3340 string.

A Model 70F data module can be mounted on a 3340 drive that does not
have the Fixed Head feature installed and made ready without any
notification of the error by the hardware. However, the first I/0
operation issued to the 3340 drive causes an intervention-required unit
check condition and the d&rive is taken out of ready status. Wwhen this
situation occurs in an 0S/VS environment, a message is given to the
operator and the affected job must be canceled in order to recover. To
avoid such situations, it is recommended that 3340 units with and
without the Fixed Head feature not be mixed within a string. If omne
3340 unit has the feature, all should have the feature. :

Models 35 and 70 of the 3348 Data Module can be used with any 3340
drive (Model A2, B2, or Bl) whether or not it has the Fixed Head feature
installed. No indication is given if a Model 35 or 70 is placed in a
3340 drive with the Fixed Head feature. 1In such cases, the fixed head
capability of the drive is not utilized.

The 3340 Direct Access Storage Facility is unlike other System/370
direct access storage in that the capacity of an individual 3340 drive
is determined by the model of 3348 Data Module mounted on the drive
rather than by the model of the drive itself. The capacity of the 3348
Data Module that is mounted on a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
data module size bits in the sense bytes read.

The capability of having two capacity options per drive means the
capacity of a 3340 string can be increased by using larger capacity data
modules on existing drives as well as by adding drives to the string. A
3340 string can vary in capacity from 70 million bytes (two Model 35
data modules) to a maximum capacity of 560 million bytes (eight Model 70
or 70F data modules) in 35- and/or 70-million-byte increments (assuming
full-track records).

Reliability and the Sealed Cartridge Design

The sealed cartridge design of the 3348 Data Module, the advanced
design used for the read/write heads in the data module, and
improvements in the physical design of the 3340 drive make the 3340
Direct Access Storage Facility more reliable than previously announced
direct access storage devices for Systemw370, as explained below. No
preventive maintenance is scheduled for a 3340 facility because of its
reliability features.

Reliability is improved by the removal of head-to-disk alignment
problems. Each read/write head within a 3348 Data Module is dedicated
to certain tracks on one data surface. Therefore, each head reads only
the data it wrote previously, regardless of the 3340 drive that is used.
Since common head alignment across all 3340 drives is not required, the
critical alignment tolerances that are normally necessary to achieve

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 103

data interchangeability among drives are not needed for 3348 Data
Modules. It is the less critical alignment tolerances for the
read/write heads in a 3348 Data Module that minimize the chance of
errors caused by incorrect alignment of a head to its dedicated tracks.

There is also less chance of damaging reads/write heads. If a data
module is dropped, the only read/write heads that can be affected are
those in that data module. If a disk pack is damaged, it can cause
damage to the read/write heads in more than one drive if it is moved
from drive to drive in an attempt to find a drive that can read the
pack. The outside covers of a 3348 Data Module are made of a highly
durable material that is designed to enable a data module to withstand
more severe blows without damage than can a disk pack.

Reliability is improved because the exposure of the disk surfaces in
a 3348 Data Module to outside contamination is greatly reduced when
compared to the contamination exposure of a disk pack. A 3348 Data
Module is opened only when it is mounted on a 3340 drive and only when
the drive cover is closed. Contamination on disk surfaces can be a
major cause of head and disk damage.

In addition, the possibility of head crashes is minimized by the
improved flying characteristics of the read/write heads in a data .
module. The low mass of the read/write heads and the low loading force
used enable the heads to fly over the rotating disks at a very low
height. This neaxr contact (or proximity) recording capability of the
read/write heads in the 3348 permits smallexr bits to be written, which
increases the recording density that can be achieved.

The recording density in bits per inch of a track in a 3348 Data
Module is approximately 2.5 times greater than the recording density of
a track in a 2316 pack (10 percent greater than 3330-series Model 11
density and more than two times greater than 3330-series Model 1 and 2
density). The advanced head design used for the 3348 Data Module
enables greater density to be achieved together with improved
reliability.

Reliability of the 3340 Direct Access Storage Facility is also
improved because many critical mechanical parts have been eliminated,
such as a complex head loads/unload mechanism. In other cases,
electronic functions have replaced mechanical functions. While the 3340
drive contains more electronics than the 2314, higher demnsity logic
cards are used in the 3340, which results in significantly fewer logic
cards. (A 3340 drive also contains approximately one-third the number
of logic cards as a 3330-series drive.)

The sealed cartridge design implemented in the 3348 Data Module
provides several advantages in addition to improved reliability, such as
simplified data module loading and unloading. Operations that are
required for disk pack loading and unloading (tightening the pack on the
spindle, cover removal, cover replacement, untightening the pack for
- removal) are not required for a 3348 Data Module. In addition, the
possibility of hub wear or hub damage as a result of loading and
unloading operations is eliminated for a 3348 Data Module.

After the top cover of the 3340 drive to be used is raised, the
operator places the data module in the exposed drive shroud recess.
After closing the cover, the operator initiates automatic loading of the
module by putting the start/stop switch on the operator panel of the
drive in the start position. This causes the cover of the drive to be
locked, which is indicated by a light on the operator panel, and the
data module to be loaded. .

The following occurs during data module loading. The shroud
containing the seated data module moves to the back of the 3340 drive

104 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

where the voice coil motor is located. While the data module is in
motion, the data module door in the rear of the 3348 is rolled down.
Electrical, mechanical, and filtered air comnections between the 3348
Data Module and the 3340 drive are then made through the open data
module door. The access mechanism is then unlatched and the disks are
brought up to rotational speed. The access mechanism is moved to
physical track 0. This entire loading process requires approximately 20
seconds. When the loading process is completed, the ready light on the
operator panel is turned on to indicate the 3348 Data Module is ready
for processing.

To unload a data module, the operator places the start/stop switch in
the stop position. The unloading procedure consists of a reversal of
the operations performed during loading. The access mechanism moves to
the home position in the data module, where it is latched, disk rotation
is stopped, the data module is disconnected from the drive, the data
module door is closed, and the data module moves to the front of the
drive. The cover-locked indicator light is turned off as soon as the
unloading procedure is completed. Unloading requires approximately 20
seconds. The cover of the 3340 drive can be raised as soon as the
cover-locked indicator light is turned off and the 3348 Data Module can
then be removed.

The possibility of contaminating the disk surfaces of a data module
during loading and unloading operations is minimized because the data
surfaces are exposed to the air within the closed 3340 drive through the
open data module door for only slightly more than one second. Further,
as soon as a seal between the 3340 drive and the 3348 Data Module has
been made, the filtered air system displaces the air within the data
module several times to remove any contaminants that may have entered
via the open data module door.

The sealed cartridge also offers two other unique features. First, a
read-only function (not available for the 2314) is provided on a data
module basis rather than a drive basis (as implemented for 3330-series
disk storage). The read-only function is enabled for a 3348 Data Module
by turning an inset in the handle of the 3348 (see Figure 50.15.2) to
the read-only position before placing the data module in the 3340 drive.
This inset causes the read-only switch that is part of each 3340 drive
and the read-only indicator on the operator panel to be turned on when
the 3348 is loaded in a 3340 drive.

When the read-only function is enabled for a 3348 Data Module and an
attempt is made to write on the data module, an interruption occurs and
IBEM-supplied programming support terminates the program that issued the
write. The advantage of this approach is that once the read-orly inset
in a 3348 Data Module is set to inhibit writing, the data module can be
used with any 3340 drive at any time and the operator need not remember
to turn on a read-only switch on the drive.

Second, external label handling is improved. An external label can
be placed on a 3348 Data Module after it is removed from the 3340 drive.
Placing an external label on the top surface of a disk pack instead of
on the cover, to avoid mislabeling a disk pack by placing the wrong
cover on it, can be done only when the disk pack is mounted on a drive.
In addition, since the outside cover is never removed from a data
module, the volume identification label on the cover is legible through
the front window of the cover of the 3340 drive even when the data
module is loaded and being accessed.

Layout of Tracks, Cylinders, and Read/Write Heads in 3348 Data Modules

The layout of physical and logical tracks on a data surface of any
model 3348 Data Module and the relative position of the read/write heads

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 105

for a data surface are shown in Figure 50.15.3. A data surface contains
700 physical tracks with a small space between the first 350 physical
tracks and the second 350 physical tracks. There is also unused space
after the second group of 350 physical tracks. Two logical tracks, one
even-numbered and one odd-numbered, are writtenm on each physical track.
A logical track has a maximum capacity of 8368 data bytes (for full-
track records).

Disk
rotation

Odd index
point

Even index |
point

350 physical
tracks R2

350 physical R2
tracks

Access mechanism
with two heads
per data surface
has 350 possible Even-numbered logical track on
access positions one half of the physical track,
odd-numbered logical track on
other half of the physical track

Figure 50.15.3. Location of physical and logical tracks and read/write
heads on a data surface in a 3348 Data Module

There are two readswrite heads associated with each data surface.
They are positioned a little more than 350 physical tracks apart, as
shown in Figure 50.15.3. While starting and stopping the data module,
the read/write heads are positioned over the unused portions of the data
surface.

The access mechanism can be placed at any one of 350 access positions
on the data surface. Therefore, an outermost head on the access
mechanism can access physical tracks 0 to 349 on its associated data
surface while an innermost head can access physical tracks 350 to 699.
At any of the 350 possible access mechanism positions, two physical
tracks (four logical tracks) can be accessed on a data surface.

However, only one read/write head in a data module can be active at a
time. :

106 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

The bottommost surface in all 3348 Data Modules is used as the serxvo
surface. This surface contains information for the servo system that is
used to control seek operations, positioning of the heads over tracks,
data clocking (the synchronization of data with rotational speed during
writing operations), index gemneration, and signal generation required by
the RPS feature. Functionally, the 3340 servo system is like that used
in 3330-series drives. However, design improvements, such as
elimination of the electromechanical tachometer, have been made.

The required servo information is prerecorded on the servo surface of
each 3348 Data Module at the plant of manufacture and is read by a servo
read head at the bottom of the access mechanism. The servo information
on this surface cannot be read or written using 3340 commands. The
servo surface on a 3348 Model 70F Data Module also contains the 60
logical tracks that are read by the fixed heads.

The access mechanism in a 3348 is driven by a voice-coil motor. This
motor and the servo system provide fast, precise access mechanism
positioning, which minimizes head settling time.

‘Figure 50.15.4 shows the layout of cylinders and read/write heads for
the 3348 Model 35 Data Module. A Model 35 contains two recording disks.
Three of the data surfaces on the two recording disks are used for data
recording in a Model 35 Data Module. The three data surfaces are
accessed by six read/write heads (0 to 5). The six physical tracks that
can be accessed at any given position of the access mechanism constitute
a logical cylinder and contain twelve logical tracks. Head 0 accesses
logical tracks 0 and 1, head 1 accesses logical tracks 2 and 3, etc.

A four-byte field (CCHH) is used to address the logical tracks in a
3348 Data Module. The two-byte CC (cylinder address) field specifies
the logical cylinder address, which can be 0 to 348 for the primary and
alternate logical tracks of a Model 35 DpData Module. The two-byte HH
field, which normally specifies the actual head address (for 2314 and
3330-series drives, for example), specifies the number of the logical
track within the logical cylinder, a value from 0 to 11, instead of a
head address of 0 to 5. The drive selects the appropriate head, using
the logical track number.

In Figure 50.15.4, the access mechanism is shown positioned at
logical cylinder 0, where physical tracks 0 and 350 on each of the three
data surfaces can be accessed. There are 350 logical cylinders in the
Model 35 Data Module. The first 348 are used for data, logical cylinder
348 is the alternate cylinder, and logical cylinder 349 is the CE
cylinder. The CE cylinder is designed to be used only by the CE for
testing the read/write capability of a 3340 drive. It contains a
prewritten area for read testing and an area in which write tests can be
perf ormed.

Figure 50.15.5 shows the layout of cylinders and reads/write heads for
the 3348 Model 70. A Model 70 contains four recording disks. Six data
surfaces on the four recording disks, each of which is accessible by two
read/write heads, are used for data recording in the Model 70. As for
the Model 35, the six physical tracks that can be accessed by the lower
six read/write heads (0 to 5) at a given position of the access
mechanism constitute a logical cylinder of twelve logical tracks. 1In a
Model 70, however, the logical cylinders addressed by reads/write heads 0
to 5 are all even-numbered (0, 2, 4, ..., 698). The six physical tracks
that can be accessed by the upper six read/write heads (6 to 11) at a
given position of the access mechanism also constitute a logical
cylinder of twelve logical tracks. The logical cylinders addressed by
read/write heads 6 to 11 are all odd-numbered (1, 3, 5, «cc., 699).

Thus, on a Model 70 two logical cylinders (24 logical tracks) can be
accessed at each of the 350 possible access mechanism positions.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 107

Model 35 Data Module
Maximum capacity 34.9 million bytes

Access mechanism
with six read/write
heads, six physical
tracks per logical
cylinder

/Servo arm
Physical —9 699 ... 350349...10 U

track
t T Logical cylinder O
(logical tracks O to 11)

‘ Logical cylinder 1
(logical tracks 12 to 23)

surface

Logical cylinder 349
(logical tracks 4188 to 4199)

Number of recording disks
Number of data surfaces
Number of read/write heads
Number of physical tracks
per physical cylinder
Number of physical tracks per
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 350
data module ;
Number of logical tracks per 4200 (4176 data)
data module (12 alternate)
(12 CE)

[-) A WN

Number of access mechanism 350
positions

Number of logical cylinders 1
accessed per access ;
mechanism position

Figure 50.15.4. Cylinder and read/write head layout for a 3348 Model 35
; Data Module

108 A Guide to the IBM System/370 Model 168 for78ystem/370 Model 165 Users

Model 70 Data Module
Maximum capacity 69.8 million bytes

vt

Logical cylinder 699
(logical tracks 8388 to 8399)

jcal cytinder 3
(|oglcal tracks 36 to 47)

Logical cylinder 1 »
(logicat tracks 12 to 23)

5 350 349 .

Servo

surface
Physical —» 699
track

350349 ... 10 ;

Number of recording disks
Number of data surfaces
Number of read/write heads
Number of physical tracks
per physical cylinder
Number of physical tracks per
logical cylinder
Number of logical tracks per
logical cylinder
Number of logical cylinders pex
data module
Number of logical tracks per
data module

Number of access mechanism positiohs .
Number of logical cylinders accessed
per access mechanism position

Figure 50.15.5.
. Data Module

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 109

bl

Six physical tracks
accessed by read/write
heads 6 to 11 constitute
an odd-numbered logical
cylinder (1,3,5, . .., 699).

Six physical tracks
accessed by read/write
heads O to 5 constitute
an even-numbered logical
cylinder (0,2,4, ..., 698)

Servo arm

t T Logical cylinder O
(logical tracks 0 to 11)
Logical cylinder 2
(logical tracks 24 to 35)
Logical cylinder 698
I I (logical tracks 8376 to 8387)

4
6
12
12
6

12
700

8400 (8352 data)

(24 alternate)

: (24 CER)

350
2

Cylinder and read/write head layout for a 3348 Model 70

There are 700 logical cylinders in the Model 70 data module. The
first 696 (0-695) are used for data. Logical cylinders 696 and 697 are
used as alternate logjical cylinders while logical cylinders 698 and 699
are CE cylinders. The method of addressing a logical track im a Model
70 data module is the same as described for a Model 35. The CC value
can vary from 0 to 697 for data and alternate logical cylinders while
the HH value can vary from 0 to 11.

Figure 50.15.6 shows the layout of cylinders and read/write heads for
the 3348 Model 70F. This model is identical to the Model 70 except for
the following. Seven surfaces, six data surfaces and the servo surface,
on the four recording disks are used for data recording. ILogical
cylinders 1 to 5 are recorded on the servo surface. They are written on
30 physical tracks that are accessed by 30 fixed read/write elements,
which are mounted on a plate under the servo surface, as shown in Figure
50.15.6. The first six physical tracks contain logical cylinder 1, the
second six physical tracks contain logical cylinder 2, etc. Logical
cyllnders 0 and 6 to 699 are recorded on the six data surfaces just as
in a Model 70 data module.

Addressing a logical track in a Model 70F data module using a CCHH
field is the same as desaribed for the Model 70. When a command is
received that addresses a logical track in logical cylinders 1 to 5 of a
Model 70F, the 3340 drive automatically selects the fixed read/write
element associated with the specified logical track instead of the
movable head. Therefore, a Model 70F and a Model 70 data module can be
accessed using the same 3340 channel programs. This means no special
programming support is required to use a Model 70F instead of a Model 70.

The physical tracks that contain logical cylinders 1 to 5 in a Model
70 are not used in a Model 70F and cannot be accessed by the user or a
customer engineer because of the way in which head selection is
performed. Hence, the data capacity of Models 70F and 70 is the same.
Seek time for logical cylinders 1 to 5 in a Model 70F is zero. Seek
times for logical cylinders 0 and 6 to 695 in a Model 70F are the same
as Model 70 seek times.

A data set or file can be contained both in logical cylinders 1 to 5
of a Model 70F data module and in logical cylinders that are accessed by
movable heads. A 3340 drive, however, can perform only one operation at
a time. Therefore, a seek, search, or data transfer operation involving
a fixed head in a Model 70F data module cannot be performed at the same
time a movable head is involved in a seek, search, or data transfer
operation.

, The best performance gains can be achieved when Model 70F data

modules are used by assigning the fixed head logical tracks to small
active system data sets (such as the page data set, system catalog, TCAM
message queue), small active user data sets, large active data sets that
can be segmented (0S/VS1l page data set, partitioned data sets, ISAM
index levels, for example), and data sets with major activity
concentrated at the beginning of the data set. (such as the 0S/Vs job
qgueue).

The assignment of such data sets to the fixed head logical tracks in
a Model 70F data module is a user responsibility. O0S/VS DD statements
for these data sets must specifically request by actual address
locations within the fixed head logical cylinders. Note also that the
device type code in the device table that is generated in the control
program daring a system generation (0OS/VS UCB table) does not
differentiate between 3340 drives with and without the Fixed Head
feature. Therefore, if generic device type assignment by device type
(3340) is used in a configuration that contains 3340 drives with and
without the Fixed Head feature, either type drive can be selected by the
operating system.

110: A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Model 70F Data Module
Maximum capacity 69.8 million bytes

699 350 .. 10 1
11 10 1 Six physical tracks accessed
by read/write heads 6 to
M ares ouieal aytder T
ered logical cylinder
7 6) (191m.... 699).
7 six physical tracks accessed
by read/write heads 0 to 5
constitute an even-numbered
logical cylinder (0,6,
1 0 8,...,698)
Servo Logical cylinders 1 to 5
surface contained on 30 physical
- tracks
30 fixed Servo arm
read/write
elements
Number of recording disks 4
Number of data surfaces 6 plus servo surface
Number of read/write heads 12 movable
30 fixed
Number of physical tracks 12
per physical cylinder
Number of physical tracks per 6
logical cylinder
Number of logical tracks per 12
logical cylinder
Number of logical cylinders per 700
data module
Number of logical tracks per 8400 (8352 data - 60 fixed head
data module and 8292 movable head)
(24 alternate)
(24 CE)
Numbexr of movable head access. 350
mechanism positions
Number of logical cylinders 2 except for first 3 positions

accessed per access
mechanism position

Figure 50.15.6. Cylinder and read/write head layout for a 3348
: Model 70F data module

A Guide to the IBM Systenv/370 Model 168 for System/370 Model 165 Users 111

The assignment of a 3340 drive with the Fixed Head feature can be
assured in an OS/VS environment by specifying a user-defined device
class name for such 3340 drives at system generation and using this name
(instead of UNIT=3340) in the appropriate DD statements.

Alternate tracks that are accessed by fixed heads are not provided
for logical cylinders 1 to 5 in a Model 70F data module. Logical
cylinders 696 and 697, which provide alternate tracks for the logical
tracks accessed by the movable heads, also provide alternate tracks for
the logical tracks in logical cylinders 1 to S. This approach is taken
because the probability a fixed head track in logical cylinders 1 to 5
will develop a defect is lower than that for movable head tracks and the
possibility of a defect occurring in a movable head track is very low
(for the reasons discussed later).

The low probability of defects occurring in fixed head logical
cylinders 1 to 5 of a Model 70F data module results in part from the
fact that these cylinders are recorded on the servo surface, which is a
specially manufactured surface because of its primary function. 1In
addition, the fixed head tracks are recorded on the outer edge of the
servo surface, which results in a lower bit density for these tracks.
The width of a fixed head physical track is six times greater than that
of a movable head track on a data surface.

If an uncorrectable error does occur on a fixed head logical track in
a Model 70F data module, the logical track should be flagged and an
alternate track should be assigned. This can be done using the
IEHATLAS, IEHDASDR, or IBCDASDI utility of 0S/VS. IEHDASDR or IBCDASDI
should then be used to test the flagged fixed head track to determine
whether the track is really defective. If the track is found not to be
defective, the flag is removed and the assigned alternate track is
released. If the track is defective, the data module can be returned to
the plant of manufacture for repair if the loss of performance resulting
from using an alternate movable head track instead of the fixed head
track is not acceptable.

The physical and capacity characteristics of 3348 Data Modules and
the 2316 disk pack are given in Table 50.15.1. Table 50.15.2 gives the
timing characteristics of the 3340 direct access storage facility and
the 2314 facility.

Track Formatting and Data Module Initialization

Self-formatting records consisting of count, key, and data or oount
and data areas are written on the logical tracks of a 3348 Data Module
just as on the tracks of a 2316 pack. However, each home address,
count, and key area written on a 3348 track has a six-byte detection
code field appended to it for data validity checking by the 3830 Model 2
or integrated storage control. The detection code used can detect all
single-error bursts of eleven bits span or less.

A six~byte correction code field is appended to each data area
written on a 3348 track. The correction code used has the same
detection capability as the detection code and the capability of
correcting single-exror bursts of three bits span or less. The actual
error correction procedure must be performed by programming (error
recovery routines) using corrective bits that are supplied by the
control unit as discussed later.

112 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Table 50.15.1. Physical and capacity characteristics of 3348 Data

Modules and the 2316 Disk Pack

Characteristic 3348 3348 3348 2316
Model 35 Model 70 Model 70F
Number of data 2 4 4 11
disks per data '
module/pack
Disk diameter 14 14 14 14
in inches
Number of 3 data 6 data 6 data 20 data
surfaces used 1 sexrvo 1 servo 1 servo
per data module/pack and data
Number of read/write 2 2 2 plus 1
heads per recording 30 reads
surface write
elements
for the
servo
; surface
Number of cylinders 348 plus 696 plus 696 plus 200 plus
per data module/pack 1 alter- 2 alter- 2 alter- 3 alter-
nate and nates and nates and nates
1 CE 2 CE 2 CE
Number of logical 12 12 12 20
tracks per cylinder
Number of data 4,176 8,352 8,352 4,000
tracks recorded per
data module/pack
Full track capacity 8,368 8,368 8,368 7,294
in bytes e _
Cylinder capacity 100,416 100, 416 100,416 145,880
in bytes ,
Maximum capacity 34,947,768 69,889,536 69,889,536 29,176,000
in bytes per data (502,080
module/pack in logical
cylinders
1to5,
69,387,456 in
logical
cylinders O
and 6 to 695)
Data module/pack 17 19.5 ' 15

weight in pounds

20

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

113

Table 50.15.2. - Timing characteristics of ‘the 3340 direct access
: storage facility and the 2314 facility

Characteristic

Models 35 ‘Model 70F 2314
and 70 Cylinders Cylinders
1-5 ' 0, 6-699
Seek time (ms) '
Maximum S0 0 50 130
(350 cyl-Model 35) (700 cylinders)
(700 cyl-Model 70)
Average 25 0 25 60
(350 cyl-Model 35) : (700 cylinders)
(700 cyl-Model 70)
Cylinder to
cylinder
Model 35 10 25
Models 70, 70F |[Even to next
odd - 0 0 0
Even to next
even - 10 0 10
0dd to next
even or
odd - 10 0 10
Rotation time 20.2 20.2 20.2 25
{ms)
Rotation speed 2964 2964 2964 2400
(rpm)
‘Data transfer 885 885 885 312
rate (KB/sec)
Sectors per track |64 64 64 -
Sector time 316 316 316 -
(microseconds)
Load time (secs) 20 20 20 60
(time to ready
status after
mounting)
Unload time (secs) |20 20 20 15

The home address and count areas written on a logical track in a 3348
contain two new fields in addition to the same fields as are written in

home address and count areas on 2316 tracks.

The home address and each

count area on a 3348 logical track contain a two-byte skip defect field
and a two-byte physical address field in front of the flag byte. The
automatic surface defect skipping capability of the 3340 allows valid
data to be written before and after a surface defect on a logical track.
The skip defect bytes are used to indicate the location of the center of
the surface defect relative to the index point of the logical track.
Bits in the flag byte field indicate whether the surface defect is

located in the next count, key, or data area.

Surface defect skipping is implemented by including in each logical

track of a 3348 Data Module a reserved area called a surface defect gap

in which no data is written.

If a logical track has no surface defects,
the surface defect gap is located at the end of the logical track. If

114 A Guide to the IBM System/370 Model 168 for sSystem/370 Model 165 Users

there is a surface defect, the surface defect gap is placed over the
defective portion of the logical track at the time of manufacture. One
or more surface defects that together occupy an area of up to 16 bytes
in length per logical track can be handled by the defect skipping
technique while the stated full logical track capacity of 8368 bytes is
maintained.

The error detection and correction code capabilities of the 3340
facility permit successful recovery from an error within the data
portion of a physical record even when it contains a surface defect gap.

Partial initialization of all 3348 Data Modules is performed at the
plant of manmufacture. A home address record and track descriptor (R0O)
record are written on each logical track in the data module. If a
single skippable defect is found during the analysis of the surface of a
logical track, the appropriate SD bytes and flag byte are written in the
home address to indicate this fact. If no surface defect is found, the
SD bytes are written as zeros.

The SD bytes and flag byte are supplied in the count area field in
virtual storage only for a WRITE HOME ADDRESS command. When RO is
written during data module initialization and thereafter whenever a
formatting write is performed, the SD and flag bytes for the count area
to be written on disk are supplied by the control unit, which reads them
from the record immediately preceding the record@ to be written.

When a record is written with a formatting write command on the
portion of a logical track that contains an identified surface defect,
the defect gap area is maintained in the defective portion of the
logical track and data is written before and after the defect gap as
appropriate. Whenever a nonformatting write or a read is issued for
this record, the surface defect gap is automatically skipped over by the
hardware without programming assistance or any error notification, just
as if no surface defect existed.

The 0S/VS IBCDASDI, IEHDASDR, or IEHATIAS utilities can be used to
assign an alternate track if a physical track becomes defective during
its use in an installation. If data cannot be read from a 3348 Data
Module and recovery of this data is critical, the data module can be
returned to the plant of manufacture where recovery will be attempted.

The two physical address bytes in home address and count areas on a
3348 logical track contain the physical cylinder and track address of
the logical track on which they are written. When a seek command is
issued, the control unit converts the logical cylinder and track address
specified by the seek command to a physical cylinder and track address
that is actually used by the drive in the seek operation. This physical
address is saved in the control unit for later use in seek verification.

The physical address bytes are automatically written and read by the
control unit and are not processed by programming. That is, when a home
address or count area is written, the physical address bytes are
automatically supplied by the control unit and are not contained in the
home address or count area field in virtual storage that is indicated by
the write command. Similarly, when a home address or count area is
read, the control unit reads the physical address bytes but they are not
placed in the home address or count field area in virtual storage.

The physical address bytes are used by the control unit for seek
verification during nommal operations and by the 3340 microdiagnostic
routines. When a home address or count area is processed during a read,
search, or clock operation, the physical address bytes read are compared
with the most recent seek address (physical cylinder and track address)
that was saved in the control unit when the last seek command was
issued. If the two physical addresses are not equal, the command is

A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users 115

terminated and a unit check condition results. Seek check is indicated
in the sense bytes.)

ATTACHMENT VIA 3830 STORAGE CONTROL MODEL 2

The 3830 Storage Control Model 2 unit contains the control functions
required to operate one or two 3340 strings of from two to eight drives
each. If the 32 Drive Expansion and Control Store Extension optional
features are installed on a 3830 Model 2, up to four 3340 strings of
from two to eight drives each can be attached to it. These two features
are field-installable. A maximum of two of the 3340 strings attached to
the 3830 Model 2 can contain 3344 units.

Cabling between the 3830 Model 2 and the 3340 Model A2 can be a
maximum of 150 feet in length. The 3830 Model 2 attaches to a 2880
Block Multiplexer Channel in the Model 168 configuration via cabling up
to 150 feet in length. Figure 50.15.7 shows a Model 168 configuration
with 3340 strings attached via 3830 Storage Control Model 2.
Intermixing 3340 and 3330-series strings on an attachment is discussed
later in this subsection.

3340 string
20.5" 3340 A2 3340 3340 3340
f_/.\‘ﬂ Device-oriented B1or B2 B1orB2 B1or B2
§'88l1 Cables] control functions| 1 or 2 drives 1 or 2 drives 1 or 2 drives
oc ‘ d 2 dri
Multiplexer jb an rives
Channel Cables 3830
Storage Cabl
ables
;%:::"2 3340 string .
3340 A2 3340 3340 3340
Device-oriented B1 or B2 B1or B2 B1 or B2
control functions 1 or 2 drives 1 or 2 drives 1or 2 drives
and 2 drives
Mode! 168 CPU

Figure 50.15.7. A Model 168 configuration with 3340 disk storage
attached via 3830 Storage Control Model 2

Standard features of the 3830 Model 2 when used with 3340 disk
storage are record overflow, multiple requesting, and rotational
position sensing. The command retry facility of the 3830 Model 2 that
is implemented for 3330-series drives is not implemented for 3340
‘drives. When multiple requesting is used, the 3830 Model 2 can control
concurrent operation of up to 32 channel programs (when 32 Drive
Expansion is installed), one on each of its drives. Only one of the 2
to 32 drives attached to a 3830 Model 2 can be transferring data at a
time.

Rotational position sensing is an optional field-~installable feature
for 3340 units. It must be installed on each unit (both drives in an A2
or B2 3340 unit) that is to use the standard rotational position sensing
capability of the 3830 Model 2. For performance reasons (see Section
60:10 in A Guide to the IBM System/370 Model 165, GC20-1730), it is
recommended that the RPS feature be installed on all of the 3340 units
in a given string or on none of the units in the string. The presence
or absence of the RPS feature in a 3340 drive can be determined by
programming at any time by issuing a SENSE command and inspecting the
RPS feature bit in the sense bytes read.

If a SET SECTOR command is issued to a 3340 drive that does not have
the RPS feature installed, no operation is performed, track orientation
is lost, and channel end and device end status are presented. If a READ

116 A Guide to the IBM Systems/370 Model 168 for System/370 Model 165 Users

SECTOR command is issued to a 3340 drive without RPS installed, a sector
value of zero is returned together with channel end and device end
status. Thus, channel programs containing sector commands can operate
on 3340 drives that do not have RPS installed.

The 3830 Model 2 supports all the 2314 commands (except the file scan
commands) in addition to new commands not available for the 2314, such
as RPS and diagnostic commands. The command set for the 3340 is the
same as that for 3330-series disk storage.

The Two-Channel Switch feature, identical in function to the same
feature for the 2314 facility, can be installed on a 3830 Model 2 to
allow it to be attached to two channels. The Two-Channel Switch,
Additional feature can be added to this configuration to permit the 3830
Model 2 to be attached to four channels. A maximum of two of the four
channels can be present in the same system. The channels to which a
3830 Model 2 with one or both of these features is connected must each
have one control unit position and, if block multiplexing is to be used,
eight nonshared subchannels available. An enables/disable switch on the
3830 Model 2 can be set to dedicate the 3830 to any subset of the two to
four channels.

The optional String Switch feature can be installed on 3340 Model A2
drives. This field-installable feature enables the 3340 Model A2 and
its attached Model B2 and Bl units to be connected to two control-unit-

type attachments instead of only one. The attachments can be any two of
the following:

¢ 3830 Storage Control Model 2
e Integrated Storage Control for the Model 145 or 148
e 3345 storage and control Frawe Models 3, 4, and 5 for the Model 145

e Integrated Storage Controls for Models 158 and 168 (or the two
logical controls in one ISC)

3330/3340-series IFA for the Model 135 or 138
e Direct Disk Attachment of a Model 115 Model 2 or Model 125 Model 2

Except for the Direct Disk Attachment, the two attachments to which a
3340 Model A2 with the String Switch feature is connected can be '
attached to the same or different channels in the same CPU, or to
channels in two different CPUs. In addition, channel-switching features
can be installed on one or both of the attachments (except for the
Direct Disk Attachment).

For Model 2 of Models 115 and 125, the String Switch enables two
strings of 3340 drives to be attached to any System/370 model (except a
Model 115 Model 0 or Model 125 Model 0) and a Model 115 Model 2 or Model
125 Model 2.

The String Switch feature for 3340 disk storage is functionally
similar in its operation to the Two-Channel Switch. A switch on the
3340 Model A2 can be set to allow the 3340 string to be accessed via
both attachments, one at a time. In effect, this setting provides two
control unit paths to the string. Switching is accomplished dynamically
under program control. Alternatively, the switch can be set to dedicate
the string to one attachment or the other so that the string can be
accessed only via that attachment.

Figure 50.15.8 illustrates string switching for two 3340 strings

attached to a 3830 Model 2 unit. In the configuration shown, both
strings can be accessed via two channels and two control units. Channel

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 direct access storage facilities and
to extend backup capabilities when two Systemw370 systems (the same or
different models) are present in an installation.

‘| Channel in same

Channel in Model 168 Model 168 or another CPU

I

o 3830 Model 2
o ISC — Model 158 or 168
@ ISC — Model 145 or 148
Attachment 1 e 3345 Model 3, 4, or
3830 Model 2 Attachment 2 5 for Model 145
o 3330/3340 Series |IFA — Model 135 or 138
’ o DDA — Model 2 of Models
\ >< / o
3340 A2 3340 A2
with with
String String
Switch Switch
3340 3340
3340 3340
3340 3340
Figure 50.15.8. String switching for 3340 facilities attached to a

3830 Model 2

The 3830 Model 2 control unit is microprogram-controlled. Read/write
nmonolithic storage contained in the control unit is used for
microprogram residence. The 3830 Model 2 also contains a device that
reads interchangeable disk cartridges. This device is used for
microprogram backup storage and for storage of nonresident diagnostics
for the 3340 string. During a 3830 Model 2 power-on sequence, the
functional microprogram is loaded from the device into control storage
within the 3830 Model 2 control unit. Therefore, microcode engineering
changes can be installed merely by replacing the current disk cartridge
with another that contains the new microprogram.

The 3830 Model 2 incorporates error detection, correction, and
logging features that are designed to improve its availability and
serviceability. For the 3340, the 3830 Model 2 provides the following
facilities that are not implemented in Systemv 360 direct access devices:

e I/0 erroxr routine correction of recoverable data errors on read
operations with data supplied by the control unit in sense bytes.
When the 3830 Model 2 detects a correctable data error during the
reading of the data portion of a physical record, it generates the
information necessary to .correct the erroneocus bytes. The sense
bytes presented by the 3830 Model 2 contain a pattern of corrective

118 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

bits and a displacement value to indicate which of the bytes
transferred to processor storage contain the errors. The disk error
recovery program need only EXCLUSIVE OR (logical operation) the
corrective bit pattern with the error bytes in the input area in
processor storage to correct the errors.

e Statistical usage recording by the 3830 Model 2. sStatistical usage
counters for each drive in a 3340 string are continuously maintained
by the 3830 Model 2. These counters indicate the number of bytes
read/searched, number of seeks issued, and number of command and
data overruns for each device. When a counter reaches its threshold
or a data module is removed from a drive, the 3830 Model 2 indicates
the condition via a unit check when the next 1/0 operation is
initiated to the drive or a data module is made ready on the drive.
Counter data can be obtained and counters can be reset by issuing a
READ AND RESET BUFFERED LOG command.

e Inline diagnostic testing of a malfunctioning drive. (Inline
diagnostics are provided only for 2314 facilities.) A 3830 Model 2
control unit can execute diagnostic tests on a malfunctioning drive
while normal operations take place on the remaining drives in the
string. Diagnostic tests can be loaded into a transient area of the
control storage of the 3830 Model 2 and executed on the
malfunctioning drive. This can be done in an online environwment
using OLTEP or the CE panel on the 3830 Model 2. OLTSEP can be used
in a standalone enviromment. This inline testing allows CE
diagnosis and repair of most 3340 drive failures without the
necess ity of taking the entire 3340 string out of the system configuration.

A 3340 drive can be placed in CE mode (offline to the system) by
means of a switch that is located inside the rear door of the drive so
that maintenance functions can be performed. To take the 3340 drive out
of CE mode and return it to online status, the attention pushbutton must
be pressed. This also causes the access mechanism to move to physical
track 0.

ATTACHMENT VIA INTEGRATED STORAGE CONTROLS

Optionally, one Integrated Storage Controls feature can be installed
on a Model 168 to attach 3330/33u44, 3330-series, or 3350 disk storage to
one or two block multiplexer channels. Attachment of 3340/3344, 3330-
series and 3350 disk storage via 3830 Storage Control is possible as
well. The following discusses attachment of 3340 strings only.

The Integrated Storage Controls feature includes dual direct access
storage controls, each of which operates independently of the other and
is functionally like 3830 Storage Control Model 2 except for the following:

e The Integrated Storage Controls feature is contained in the main
frame of the Model 168 and is powered by the Model 168 CPU.

¢ The Two-Channel Switch, Additional feature (that provides four-
channel switching) cannot be attached to the logical storage
controls in the ISC feature.

Both logical storage controls in the ISC feature can be attached to
the same channel, two different channels in the Model 168 configuration,
or a channel in the Model 168 configuration and a channel in another
System/370. Each logical storage control can have attached a maximum of
four 3340 strings of up to eight drives each. The 32 Drive Expansion
and Control Store Extension optional features (field installable) must
be installed in the ISC in order to attach more than two strings to each
logical control. Therefore, up to 64 drives (eight strings) can be
attached to the Model 168 via the ISC. The first unit in each 3340

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 119

string must be a 3340 Model A2. A maximum of two of the 3340 strings
attached to the ISC can contain 3344 units.

The 3340 drives attached to the ISC operate just as if they were
attached via 3830 Storage Control Model 2. That is, when multigple
requesting is used, each logical storage control within the ISC can
handle up to 32 channel programs concurrently, one on each of its
drives, and only one of the 32 drives can be transferring data at a
time. When a malfunction occurs, diagnostics can be run on one logical
storage control and its drives while normal operations take place on the
‘other logical storage control in the ISC.

Intermixing 3340 and 3330 -series strings on the ISC is discussed
below. Figure 50.15.9 summarizes the 3340 string configurations that
are possible for a Model 168 IScC.

The ISC feature provides lower-cost attachment of 3340 disk storage
than 3830 sStorage Control Model 2 when two storage control units are
required, and physical space is saved since the ISC is in the Model 168 CPU.

The Two-Channel Switch optional feature is also available for the
ISC. When installed, this feature provides a two-channel switching
capability for both of the logical storage controls. The Two-Channel
Switch permits each logical storage control to be attached to two
channels in the same Model 168 configuration or to one channel in the
‘Model 168 configuration and one channel in another System/370. Two
switches are provided that can be set to dedicate a logical storage
control to one channel or the other, or to enable the storage control to
be accessed by both channels.

Channel Channel
Integrated o Two-Channel Switch
Storage i K e 32 Drive Expansion
Controls Logical Logical e Control Store Extension
control 1 control 2
3340 3340 3340 3340 3340 3340 3340 3340
A2 A2 A2 A2 A2 A2 A2 A2
\
3340 3340 3340 3340 3340 3340 3340 3340
I l l | py
3340 3340 3340 3340 3340 3340 3340 3340 > combination
of Models
[T T T T T T |™™
3340 3340 3340 3340 3340 3340 3340 3340 J

@ One to four strings of from two to eight drives each connected
to each logical control. Each logical control connected to one
or two channels in the same or different CPU's,
® String Switch can be added to any or all 3340 Model A2 units
to connect a 3340 A2 to a second attachment in the same ISC,
the same CPU, or another CPU except Model O of Models 115 and 125.

Figure 50.15.9. Permissible 3340 string configurations for the Model
168 Integrated Storage Controls feature

120 A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Users

The String Switch optional feature can be installed on a 3340 Model
A2 that is attached to the ISC. This field-installable feature enables
the 3340 Model A2 and all its attached 3340s (a 3340 string) to be
connected to two control-unit-type attachments instead of only one, as
dlscussed for the 3830 Model 2.

Figure 50.15.10 illustrates string switching for four 3340 strings
that are attached to the same 1ISC. In the configuration shown, all
strings can be accessed via two channels and two control units. Channel
switching, string switching, and 32 Drive Expansion features can be used
to enhance the availability of 3340 disk storage and to extend backup
capabilities when two System/370 systems (the same or different models)
are present in an installation.

Channel Channel

ISC with . .
Logical Logical
Twp- Channel control 1 control 2
Switch
och 3340 A2 m
has the 3340 3340 3340 3340
Strmg Swntch A2
\
3340 3340 3340 3340
Any combination of
3340 3340 3340 3340 } o
3340 3340 3340 3340
J

Figure 50.15.10. String switching for 3340 facilities attached to one ISC

INTERMIXING 3340 AND 3330-SERIES STRINGS ON AN ATTACHMENT

Optionally, the 3333/3340 Intermix feature can be installed on 3830
Storage Control Model 2 and Integrated Storage Controls in the Model 168
CPU. When present, this field-installable feature permits both 3340 and
3330~-series strings to be attached to a 3830 Model 2 or ISC. Each
string must contain all 3340 drives (no 3344 units) or all 3330-series
drives. A 3340 string that contains 3344 units cannot be intermixed
with 3330-series strings attached to the ISC.

The intermix feature requires installation of the Control Store
Extension feature on the 3830 Model 2 or ISC and can coexist with other
optional features for these units and their strings (channel switching,
32 Drive Expansion, string switching, and fixed head features).

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 121

SUMMARY

The hardware features of the 3340 and 2314 direct access storage
facilities are summarized in Table 50.15.3. Table 50.15.4 compares the
capabilities of the 3830 Model 1, 3830 Model 2, and Model 168 Integrated
Storage Controls for both 3340 and 3330-series disk storage.

Wwhen compared with the 2314 facility, the 3340 facility offers the
following major advantages:

¢ Faster access to data

Data transfer rate almost three times that of the 2314

Seek times approximately 40X of those of the 2314 for
movable head accesses

Zexro seek time provided by the fixed heads in a 3348
Model 70F Data Module _

Rotational delay interval approximately 20% shorter
than for the 2314

. Laréer capacity per drive
17% for the Model 35 data module
175% for Model 70 and 70F data modules

® TwOo capacity options per drive for expanded growth flexibility

e Multiple requesting and rotational position sensing capabilities
for use with block multiplexer channels

e Operational improvements

Cover tightening/untightening and removal/replacement
operations are eliminated, speeding up data module loading
and unloading

Load time to ready status for a mounted data module is three
times faster

Write protection is provided on a data module basis

External labeling procedures are more flexible and leave less
chance of erroneous data module labeling

e Significantly increased reliability
Sealed cartridge design eliminates head-to-disk alignment
problems, minimizes the possibility of disk surface
contamination, and eliminates hub wear and damage
Advanced head design makes head crashes a remote possibility
and permits increased recording density without any loss
of reliability

e Improved error handling capabilities
Exror correction data is provided by the hardware for use
by programmed exror recovery procedures
surface defect skipping reduces the need to use the error
correction capability

e Improved availability and serviceability
No preventive maintenance is scheduled, because of the reliability
features of the 3340 and 3348
Faster error isolation and correction is possible because the
3340 contains fewer circuit carxds
Expanded microdiagnostics can test more than 95% of the
circuits in a 3340

122 A Guide to the IBM Systems/370 Model 168 for System/370 Model 165 Users

Table 50.15.3.

storage facilities

Summary of the hardware features of 3340 and 2314 disk

Feature

3340 attached to
3830 Model 2 orx
IscC

2314 (A-Series)

Number of drives
per string or
facility

Number of strings or
facilities per
control unit

Data medium used

Read-only feature
on drive or data
medium

Removable address
plugs on drive

Attachment of a
string or facility
to two control units
in the same or a
different CPU

Two-Channel Switch
Attachment of the

control unit to
four channels

Record Overflow
File Scan

Multiple track
operations

Multiple requesting

Rotational Position
Sensing

Error correction
data presented
by control unit

Surface defect
skipping

Two tO eight in one
drive increments

One to four

(maximum of eight strings
for 1ISC)

Removable interchangeable
data module (sealed

cartr idge)

Yes, on data module

No

Yes, via optional
string switch feature.
Only one data transfer
operation permitted
per string.

Optional

Yes using the optional
Two-Channel Switch
and Two-Channel Switch,
Additional features
(3830 Model 2 only)
standard

Not available

Standard

Standard

Optional (on 3340
drives)

Yes

Yes

One to eight in one-
drive increments.

(A ninth can be
included as a spare
only.)

One maximum

Removable
interchangeakle disk
pack

No

Yes

Yes, via 2844
Auxiliary Storage
Control. Two con-
current data
transfer operations

per facility permitted.

Optional

Yes using the optiomnal

Two-Channel Switch
and 2844 Auxiliary
Storage Control

 Standard

Standard

Standard

Not available

Not available

No

No

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Table 50.15.3 (continued)

executed under OLTEP
or via .the CE panel

Feature 3340 attached to 2314 (A-Series)
’ ' 3830 Model 2 or
IsC
Writable storage Yes No
in control unit
loaded from a disk
cartridge
Statistics logging Yes No
by the control unit
in its storage
Inline diagnostics Yes Yes

Table 50.15.4. Summary of the features of 3830 Storage Control Models 1
and 2 and Integrated Storage Controls

Characteristic

3830 Model 1

3830 Model 2

IsC

Type of unit

Power source

Attaches to

Devices attaching
to it

Number of drives
in a string

Standard number of
‘strings attachable

32 Drive Expansion
feature for

attachment of two
additional strings

Standalone

Contains own
for itself and
all the drives
that can be
attached to it

Block multi-
plexer channel

3330 Models 1
and 2

1 to 8

One max imum

Not available

Standalone

Contains own
for itself
only

Block multi-
plexer channel

3333 Models 1

and 11 (optionally

with 3330 Model
1, 2, and 11
units attached)
3340 Model A2
(optionally with
3340 Model Bl and

B2 units attached)

2 to 8 for a
3330-series or
3340 string

Two maximum

Optional for a
maximum of
four strings

Contained in
Model 168 CPU

Power control
shared with
Model 168 CPU

Block multi-
plexer channel

Same as 3830
Model 2

Same as 3830
Model 2

Two maximum
per logical
control

Optional for a
maximum of four
strings per
logical control

124 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Table 15.15.4 (continued)

3830 Model 1

3830 Model 2

Characteristic IsC

3333/3340 Intermix Not available Optional Optional
feature for

attachment of

3330-series and

3340 strings

Two-Channel Switch Optional Optional Optional
Two-Channel Switch, Optional Optional Not available

Additional (for
four-channel
switching)

String switching
capability

Multiple
requesting

Rotational
position sensing

Multiple track
operations

Record overflow

Command retry

Surface defect
skipping

Inline diagnostic
tests

Error logging
by control unit

Not available

Standard

Standard

Standard

Standard

Standard

Not implemented

Standard

Standard

Yes, for 3330-
series strings

via optional

3333 string Switch
feature.

Yes, for 3340
strings via
optional String
Switch Feature.

Standard

Standard on
control unit
(standard on 3330-
series drives,
optional on 3340
drives)

Standard

Standard

Standard for
3330-series
strings. Not
available for
3340 strings.

Implemented

for 3340 strings.
Not implemented
for 3330-series
strings.

Standard

Standard

Same as
3830 Model 2

Standard

Same as 3830
Model 2

Standard
Standard

Same as 3830
Model 2

Same as 3830
Model 2

Standard

Standard

A Guide to the IBM System/ 370 Model 168 for System/370 Model 165 Users 125

SECTION 60: MULTIPROCESSING

60:05 GENERAL DESCRIPTION
INTRODUCTION

The System/370 Model 168 offers large-system users the advantages of
shared storage multiprocessing, an advanced system function not
available for System/370 Models 165 and 165 II. A Model 168
multiprocessing configuration, which is similar in architectural design
to a System/360 Model 65 shared storage multiprocessing configuration,
contains two multiprocessor models of the Model 168 that are connected
via the 3068 Multisystem Communication Unit.

The two systems in a Model 168 multiprocessing configuration share
their processor storage and 0perate under the control of a single
operating system that is resident in the shared processor storage. One
input queue and one task queue can be maintained for the configuration
and both CPUs can be used to process each task (but not simultaneously).

IBM-supplied programming systems support of shared storage
miltiprocessing is provided in OS/VS2 Releases 2 and up, that is, in
0OS/VS2 Multiple Virtual Storage (MVS) support and by Time Sharing
Systenv/ 370 (TSS/370). Model 168 mult1processxng is compatible with
Model 158 multlproce331ng.

While Model 168 shared storage multiprocessing is very similar in
design to Model 65 shared storage multiprocessing, Model 168
multiprocessing offers all the advantages provided by the new
architectural features and I/0 devices of System/370, and incorporates
functional hardware and programming enhancements that reflect the
knowledge gained from actual installation of Model 65 multiprocessing.
Thus, Model 168 multiprocessing offers many advantages in addition to
those provided by Model 65 multiprocessing and prov1des improved
performance.

The price performance of Model 168 multiprocessing makes shared
storage multiprocessing available to large-system users who desire the
advantages provided by this type of system configuration but who
previously could not justify the cost. Because Model 168
multiprocessing configurations are upward compatible with uniprocessor
Systenv360 and System/370 models, nondisruptive growth is provided for
installations with multiple systems (Models 65, 155, 158, and 168, for
example) that require a shared storage miltiprocessing environment.

The Model 168 can be part of a wide variety of multiprocessing
configurations. A Model 168 shared storage miltiprocessing
configuration can be combined with other types of multiprocessing
configurations. The breadth and flexibility of the multiprocessing
configurations supported for Systen/370 enable an installation to
combine miltiple systems such that the particular advantages offered by
different types of multiprocessing configurations can be obtained as
desired and ease of growth is assured.

126 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

DEFINITION OF MULTIPROCESSING

A multiprocessing system is one in which two or more CPUs are
interconnected and execute two or more tasks simultaneously, one in each
CPU. Multiprocessing is a logical extension of multiprogramming, in
which two or more tasks operate concurrently in a single CPU. In a
multiprogramming environment, one task executes at a time and only I/0
operations for two or more tasks can operate simultaneously. In a
multiprocessing environment, both 1/0 operations and instruction
execution for two or more tasks in the s or different programs can
occur simultaneously, with each task executing in a different CPU.

The hardware connection of the CPUs in a mltiprocessing
configuration is the means by which CPUs communicate with each other in
order to coordinate the activity of the mltiprocessing system. A
multiprocessing configuration can be tightly or loosely coupled or can
include a combination of both loosely and tightly coupled processors.

A tightly coupled multiprocessing configuration is one in which (1)
the processors share access to all the processor storage available in
each system, (2) CPU-to~-CPU communication is accomplished via the
storing of data in shared storage and via direct CPU-to-CPU signals
(both program- and hardware- initiated), and (3) a single control program
is used. Model 168 and 158 shared storage multiprocessor systems are,
therefore, tightly coupled multiprocessing configurations. A Model 168
Attached Processor System (discussed in Section 67) is also a tightly
coupled mltiprocessing configuration.

A loosely coupled multiprocessing configuration is one in which (1)
CPUs are coupled via shared access to direct access storage or via
channel-to-channel connections, (2) each CPU has its own control
program, and (3) a single system scheduling and operational interface. is
optional.

Loosely coupled multiprocessing configurations for System/370 models
are supported by ASP (Asymmetric Multiprocessing System) Version 3, JES2
Multi-Access Spool support in 0S/VS2 MVS, and JES3 support in 0S/VS2
MVS. ASP Version 3 supports from 2 to 33 systems connected via channel-
to-channel adapters. One support system schedules the operation of up
to 32 main systems.

The JES2 Multi-Access Spool facility supports from two to seven
systems, each with its own control program resident, that share input
and output work queues on direct access storage shared by the systems.
JES3, a generally compatible extension of ASP, supports from two to
eight systems connected via channel-to-channel adapters. Each of the
systems in a JES3 configuration can be a uniprocessor system or tightly
coupled mltiprocessing system (that is, Model 158 multiprocessing
system, Model 168 multiprocessing system, or Model 168 Attached
Processor System).

The objective of coupling multiple systems to form a multiprocessing
configuration is to obtain a configuration that combines advantages of a
single processor environment with those of an uncoupled multiple
processor environment.

A single processor environment offers the following advantages:

e Best price performance potential, since one large system is
generally more economical than several small systems

e A single interface to the computing system for workload scheduling
and operation of the system

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 127

e The ability to apply all the resources of the system to a given job
step when necessary’

The advantages provided by an uncoupled multiple processor
configuration are:

¢ The capability of adding to the configuration in smaller increments,
that is, the addition of a smaller model rather than replacement of
the existing model with the next larger model when additional
computing power is required. The next larger model may provide
additional computing power far in excess of that required.

e More economical growth possibilities for installations with
purchased systems

e Growth possibilities for large-scale installatjions that have the
largest model of the system already installed

e Enhancements to configuration availability (better probability that
.a system will be available for critical application processing),
serviceability (maintenance can occur similtaneously with production
processing), and reliability (protection of critical jobs from
failuwres in noncritical jobs by processing them in separate systems)

THE MODEL 168 MULTIPROCESSING SYSTEM

A Model 168 multiprocessing system, as shown in Figure 60.05.1,
consists of two multiprocessor CPU models of the Model 168 (3168
Processing Units) that are interconnected via the 3068 Multisystem
Communication Unit plus the following for each Model 168 CPU: one
standalone 3066 System Console, one standalone 3067 Power and Coolant
Distribution Unit, standalone channels, and a motor generator set. The
physical dimensions of the 3168, 3066, and 3067 units used in
maltiprocessor and uniprocessor configurations are the same. A field-
installable multiprocessing feature must be installed on 3066 and 3067
units that are part of a Model 168 multiprocessing system. One CPU is
designated as CPU A while the other is CPU B.

Asymmetric processor storage multiprocessing configurations (the
connection of two multiprocessor systems with different amounts of
processor storage) are permitted for the Model 168. The physical
dimensions of the multiprocessor models of the Model 168 CPU are
identical to those of the uniprocessor models.

When multiprocessor mode is in effect and 0S/VS2 MVS multiprocessing
support is used, the two CPUs in a Model 168 multiprocessing
configuration share from 2 to 16 megabytes of processor storage, 1/0
devices that have channel- or string-switching features installed on
their control units, a single control program, and a single set of work
(input and output) queues. The standalone channels for each system are
normally dedicated to that system.

The two systems in a Model 168 multiprocessing configuration can be
reconfigured via the configuration control panel (located on the 3068
Multisystem Communication Unit) to permit each system to operate
independently from the other, that is, in uniprocessor mode.

CPU Features

Multiprocessing is an optional feature for the Model 168 and is
field-installable. That is, uniprocessor models of the 3168 CPU can be
field-converted to multiprocessor models and attached to the 3068 unit.
The multiprocessor models of the Model 168 have the same standard and

128 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

optional features as the uniprocessor models. All standard and optional
features can operate when maltiprocessor mode is in effect. However,
IBM-supplied programming systems support for the Model 168 supports
shared storage multiprocessing operations only for EC and DAT modes. BC
mode multiprocessing operations are not supported.

MG set
3067
Power and Coolant
Distribution Unit
3066 Modet 2 or 3
System
Console
Model 2
CPUB Standalone
3168 channels
Processing 2870
Unit ° 2860
. 2880
° 3068
Standalone ° MCU
channels hd J
gggg CPUA f Configuration
2880 3168 Processor storage control
Processing channel control cPU panel
Unit ISC feature
Model 1 or 3 frames
3067
Power and Coolant 3066
Distribution Unit System
Model 2 or 3 fnﬁﬁ';
e
MG set

Figure 60.05.1. Model 168 Model 1 multiprocessing system

08/Vs2 maltiprocessing support for the Model 168 does not require
symmetric CPU features. That is, the two CPUs need not have the same
optional features installed. When CPU features are not symmetric, the
CPU affinity facility of 0S/VS2 multiprocessing support can be used to
ensure that a program requiring a feature present in only one CPU is
processed only by that CPU. When CPU features are symmetric, both CPUs
can be used in the processing of each program.

The AFFINITY macro can be included. during 0S/VS2 MVS system
generation to specify the names of those programs that can be processed
by only one CPU and the address of that CPU. This macro must be used
for Model 168 multiprocessing systems when a 7000-series emulator
feature is asymmetric. The AFFINITY macro need not be specified when
the High-Speed Multiply feature is installed in only one of the two
Model 168 multiprocessor systems, since the system without the feature
still has the capability of processing multiply instructions. Nor does
installation of the Buffer Expansion feature on only one system require
specification of the AFFINITY macro.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 129

Processor Storage

The processor storage used in Model 168 multiprocessor models is the
same four-way, doubleword interleaved monolithic storage that is used in
the uniprocessor models. The eight multiprocessor storage sizes for the
Model 168 Model 1 are:

Size in Bytes

Model (R=1024)
MP1 1024K
MP2 ‘ 2048K
MP3 3072K
MP4 4096K
MP5 5120K
MP6 6144K
MP7 7168K
MP8 8192K

The total amount of shared storage in a Model 168 multiprocessing
configuration can vary from a minimum of 2048K bytes (two MP1l models) to
a maximum of 16,384K bytes (two MP8 models) in 1024K-byte increments.

The total processor storage contained in each multiprocessor model of
the Model 168 is logically divided into 1024K-byte units, called storage
elements, in order to implement floating storage addressing. Floating
storage addressing is implemented in multiprocessor models of the Model
168 so that the physical address range assigned to each element of
processor storage can be varied as needed.

The address range of each 1024K-byte element of processor storage is
specified using the floating storage address switches on the
configuration control panel when either uniprocessor or multiprocessor
mode is in effect (see discussion in Section 60:10 under %3068
" Multisystem Communication Unit®).

Since processor storage is four-way interleaved in multiprocessor
models (as in uniprocessor models), the total processor storage
available in the multiprocessing configuration is divided into four
logical storages, each of which can be accessed simultaneously.
Nonsimultaneous requests from the processors (the two 3168 Processing
Units) to a nonbusy logical storage are handled on a first-come, first-
served basis. When both processors simultaneously request access to the
same logical storage, a priority scheme is used to determine which
processor is given access.

First, the highest priority contender within each processor is
established. This determination is made concurrently in the two
processors. Within each processor, priority is resolved among requests
from channel buffers and among requests from three CPU registers. These
two priorities are resolved within a processor at the same time. The
highest priority channel buffer is then given priority over the highest
priority CPU register within a processor.

After the highest priority request in each processor is determined,
priority is resolved between the two requests according to the rule that
each processor has the capability of selecting a given logical storage
on an alternate (every other) storage (80-nanosecond) cycle basis. That
is, one processor can access a given logical storage every odd storage
cycle while the other can access the same logical storage every even
storage cycle. Note, however, that neither processor is permitted to
have two successive accesses to a given logical storage. if the other
processor also has a request outstanding for that logical storage. '

S

130 A Guide to the IBM Systemv370 Model 168 for System/370 Model 165 Users

Thus, if one processor, say CPU A, is given storage access and
accesses four consecutive logical storages beginning with, for example,
logical storage 1 and has another request outstanding for logical
storage 1, CPU A is not given access to logical storage 1 if the highest
priority request in CPU B is also for logical storage 1 (even though the
current cycle is still the alternate one during which CPU A can select
logical storage 1). CPU B is given access to logical storage 1 on its
alternate cycle (that is, one storage cycle later).

When the multiprocessing feature is installed, requests from a
processor to its own physical processor storage (local requests) and to
processor storage contained in the other processor (remote requests) are
channeled to storage via the 3068 unit. Therefore, the same amount of
time is required for a remote request as for a local request when
maltiprocessor mode is in effect and more time is required to access
processor storage in a multiprocessor model of the Model 168 than in a
uniprocessor model.

Table 60.05.1 lists the processor storage access and fetch times for
Model 168 multiprocessor models when multiprocessor mode is in effect
and uniprocessor mode is in effect with or without processor storage
cross-configured. Processor storage is said to be cross-configured when
uniprocessor mode is in effect for the two systems and one or more
elements of processor storage physically contained in one system can be
accessed only by the other system.

Table 60.05.1. Processor storage access and fetch times for multiprocessor
models in nanoseconds

Uniprocessor Mode

Multiprocessor Mode Cross- Not Cross-
Shared Storage Conf igured Configured

Processor storage 480 480 480
access time (from
time of PSCF select
to availability of
data in the PSCF)
Processor fetch of 800-880%* 800-880% 720

eight bytes from
processor storage
(from time of
request acceptance
to availability of
data in a processor
register) assuming
the logical storage
is not busy

*The smaller time applies if the fetching processor has pfiority for
selecting processor storage; otherwise, the larger time applies. 1In
addition, the times indicated will increase if the logical storage is
busy.

Channels

The maximum number of channels permitted per Model 168 CPU, twelve,
can be installed for each Model 168 in a tightly coupled multiprocessing
configuration for a total of 24 channels. 1Ideally, each CPU should have
the same number of 2870 Multiplexer, 2860 Selector, and 2880 Block
Multiplexer channels so that at least. two channel paths to I/0 devices,
one from each Model 168 CPU, can be made available via installation of
programmable channel- or string-switching features. Asymmetric channel

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 131

configurations are supported so that a malfunctioning channel can be
removed from the operational system configuration during processing.

-Normally the standalone channels in a Model 168 multiprocessing
system are dedicated to that system and cannot be accessed by the other
Model 168 CPU in the multiprocessing configuration. However, channel
reconfiguration hardware is included in the Model 168 multiprocessing -
feature. It is designed only to aid the recovery provided by the 0S/VS2
multiprocessing control program after one CPU fails and must be
logically removed from the operational multiprocessing configuration. .
When activated in a CPU, channel reconfiguration hardware enables that
CPU to control the operation of the dedicated channels for the other
CPU. Channel reconfiguration hardware is discussed in detail in Sectiomn
60:10. ‘ o

I/0 Devices

Any I/0 device that can be attached to a Model 168 uniprocessor
system can be included in a Model 168 multiprocessing configuration.
While 0S/VS2 multiprocessing support does not require symmetry for all
1/0 devices, for maximum availability the I/0 device configuration
should be as symmetric as possible. Ideally, the same I/0 device
configuration should be attached to each CPU and, where it is available,
a programmable channel-switching or direct access device string-
switching feature should be installed on each control unit to provide
each CPU with access to the device.

A maximum of four channel paths per system .to a given control unit is
supported by 0S/VS2 multiprocessing support. (Note that only two
channel paths to a device are supported for uniprocessor systems in
0S/VS2 MVS.) A control unit can be attached to only one channel in only
one system, two channels in only one system, one channel in each system,
or two channels in each system. The latter two configurations are
preferable for multiprocessing systems. I/0 devices connected to
control units with a channel- or string-switching feature must have the
same I/0 address (channel, control unit, and device) in each system.

Note that the total number of I/O devices present in a Model 168
mltiprocessing system cannot be greater than the maximum number of I/0
devices present in a uniprocessor configuration because 0S/VS2 MVS
supports the same maximum numbér of UCBs (unit control blocks) for I/0
devices in its multiprocessor support as in its uniprocessor support.

String-switching features are available for 3330-series, 3340/3344,
and 3350 disk storage and for the 3330 strings in a 3850 Mass Storage
System. The following are some of the more frequently used 1I/0 devices
for the Model 168 that have a programmable two-channel switch available
for their control unit:

e 1403 Printer

e 2540 Card Read Punch

e 2400-series Magnetic Tape

e 3400-series Magnetic Tape

e 231472319 Disk Storage

e 2305 Model 1 and 2 Disk Storage
e 3330-series Disk Storage

e 3340 and 3344 Disk Storage

132 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Userxs

¢ 3350 Disk Storage
¢ 3800 Printing Subsystem
e 3850 Mass Storage System

The Channel Adapter Type 3 feature can be installed on a 3705
Communications Controller to permit it to be switched between the two
systems in a multiprocessing configuration;under program control. This
channel adapter is functionally equivalent to the programmable two-
channel switch available for certain direct access devices (except for
RESERVE/RELEASE functions). The 3704 Communications Controller has a
nonprogrammable two-channel switch that permits it to be manually
switched between two systems.

For other I/0 devices, the 2911 Manual Switch or 2914 Switching Unit
can be installed to provide a manual switching capability for their
control units when the device is not present in both systems. Manual
switching using the 2911 is normally done by the operator when the
systems are not operating, such as before an IPL. This is also true for
a 2914 unless additional RPQs are installed on the 2914 that enable
switching to be done dynamically during system operation (switching
becomes effective the next time the channel interface becomes inactive).

Shown below is a sample I/0 configuration that operates at the near
maximum aggregate data rate achievable (with negligible or no overrun)
for a Model 168 tightly coupled multiprocessing configuration that
includes I/0 devices with a 3-megabyte data rate. The I/0 configuration
listed below is assumed to operate with multiprocessing mode and four-
way interleaving active. Assuming the identical I/0 configuration shown
below in both systems, the aggregate data rate of a Model 168
maltiprocessing configuration with 3-megabyte devices is 27.8 megabytes
per second.

Channel Channel
Priority Type Device Type Data Rate (MB/sec)
1 2880 2305 Model 1 disk or 3.0
3420 Model 8 tape
2 2880 2305 Model 1 disk or 3.0
3420 Model 8 tape
3 2870 Miscellaneous «56
4 2880 2305 Model 1 disk or 3.0
3420 Model 8 tape
5 2870 Miscellaneous « 66
6 2880 3330 disk or 3420 8
Model 6 tape
7 2860 3420 Model 7 tape «32
9 2880 3330 disk -8
A 2880 3330 disk -8
B 2860 3420 Model 7 tape «32
(o] 2860 3420 Model 7 tape 32
D 2860 3420 Model 7 tape 32
Total aggregate data rate per CPU 13.9

Note that a 2860 selector channel with 2301 drums or 3420 Model 8
tape units attached must have channel priority 1 assigned. For best
performance, a 2880 channel with 2301 drums, 2305 Model 1 or 2 disk
storage, or 3420 Model 8 tape units attached should be assigned priority
1, 2, or 4 (although 2880 channels with 2305 Model 2 or 3420 Model 8
tapes can be assigned other priorities as shown in Table 60.05.2). A
2870 byte multiplexer channel with four selector subchannels must be
assigned priority 1 or 2.

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 133

Table 60.05.2 indicates the channel priorities the higher speed
System/370 devices require imn a Model 168 multiprocessing configuration.
That is, each I/0 device in the table can be attached only to a channel
with one of the priorities indicated in its column. Each column also
indicates the maximum number of channels to which the device can be
attached without violating data rate constraints (three for the 2305
Model 1, five for the 2305 Model 2, etc.).

Permissible 1/0 device configurations are also shown in Table
60.05.2, which in turn indicates the 1/0 device configurations that can
operate concurrently. In general, any other device type with similar
characteristics and the same or a slower data rate than the listed
device can also be assigned a channel with the indicated priority (3350
with an 1198-KB/sec data rate same as the 3420 Model 8, 3340/3344 with
an 885-KB/sec data rate same as a 3330).

Table 60.05.2. Permissible configurations and channel priorities for
highest speed System/370 1I/0 devices in a Model 168
tightly ooupled multiprocessing configuration.

(All 3420 tapes are assumed to be attached to
3803 Model 2 control Units.)

Device Type
2305 3330~ 3620 3420 3420
2305 Model 2 series | Model 6 | Model 4 | Model 7
Channel | Model 1. |1.5 MB/ | 3420 :Model 8| .8 MB/| .8 MB/ | .47 MB/ | .32 MB/
Priority | 3 MB/sec | sec 1.25 MB/sec sec sec sec sec
2880| 2860 2860 2860 2860
1 X X X X X X X X
2 X X X X X X X X
3 X - X X X X X X
4 X X X X X X X
5 X X X X X X X
6 X X X X X X
7 X X X X X X
9 X X X X X
A X X X
B X X
C. X X X
D - X X

3068 Multisystem Communication Unit

The 3068 Multisystem Communication Unit contains most of the Model
168 multiprocessing feature hardware. The balance of the
multiprocessing feature is contained in the two CPUs. The 3068 is
divided into two physical units. One unit is associated with CPU A and
the other with CPU B. A physical half of the 3068 unit receives its
power and cooling from the 3067 for its associated CPU. The 3068 is
also water-cooled. -

The 3068 Multisystem Communication Unit also contains the
configuration control panel. This panel provides the operator with the
capability of establishing the hardware configuration (storage and 1/0
devices) that is to be online for each system, assigning address ranges
to storage segments, establishing storage interleave mode, establishing
system and time-~of-day clock oscillator control, and configuring the two
systems for uniprocessor mode or multiprocessor mode operations.

134 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

3066 System Console

4 During multiprocessing operations, the 3066 console on which IPL was
performed is normally used as the operating system primary console. The
other 3066 console can be used as an alternate or, when DIDOCS is used,
additional console.

The two 3066 consoles should not be assigned the same I/0 address
since the 0S/VS2 multiprocessing control program considers the failure
of one console to be the failure of both consoles when both consoles
have the same address.

The system control panel on a 3066 console used in a Model 168
mltiprocessing configuration has a multisystem activity meter and
associated rotary switch in addition to all the same pushbuttons,
lights, and switches as a 3066 console for a uniprocessor model of a
Model 168. These are the only items added for multiprocessing.

The multisystem activity meter logically combines the system activity
meters on the two 3066 system control panels to display the average
activity of the major elements of the multiprocessing configuration.

The rotary switch associated with the multisystem activity meter
determines the activity displayed. When it is set to the A-B OVLP
position, the logical ANDing of the activity selected in the activity
meter switches for both systems is displayed. When the switch is set to
the A/B CALIBRATE position, the logical ORing of the activity selected
for both systems is displayed.

The 3066 console for Model 168 uniprocessor models has the same
functions and operates in the same way as the 3066 console for
uniprocessor models except for additional communication functions
required for multiprocessing operations. Specifically, when a system
reset (with or without the system clear pushbutton pressed) or load (IPL
with or without the system clear pushbutton pressed) is performed by
pressing the system reset or load key on one multiprocessor system, a
corresponding function is also automatically sent (broadcast) to the
othexr system when multiprocessing mode is in effect, as shown below.

The setting of the system clear pushbutton is propagated as well.

Function Selected by Function Performed Function Broadcast
Operator on Local CPU on_local CPU to Remote CPU

System reset (normal) Program reset Program reset

System reset (clear) System clear Initial program reset
Load (normal) Program reset Program reset

Load (clear) System clear Initial program reset

The only other communication function provided in the console unit
for multiprocessor mode operations is for the time-of-day clock. When
the time-of-day clock security switch for either system is held in the
enable set position, this setting is propagated to the other CPU so that
the time-of-day clock in each system is enabled for setting.

ADVANTAGES OF MODEL 168 TIGHTLY COUPLED MULTIPROCESSING CONFIGURATIONS
The major advantages of a Model 168 tightly coupled multiprocessing
configuration when compared with two uncoupled systems, each having half

the resources of the total multiprocessing configuration, are the
following:

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 135

e Improved availability

* Less complex operational requirements
¢ Improved resource utilization

. Operétional flexibility

¢ Improved growth options

e Improved throughput possibilities

These advantages are made (possible by hardware resource redundancy,
extensive hardware reconfigurability (implemented both in hardware and
the 08/VS2 MVS multiprocessing control program), tightly coupled
hardware interconnection that permits the configuration to operate with
one control program and one work queue, and the availability features
that are basic to the design of the 0S/VsS2 MVS control program. 1In a
tightly coupled multiprocessing environment, the most critical component
is the control program, and CPUs are viewed as system resources to be
allocated to tasks just as are 1/0 devices, processor storage, and
programs.

Availability

Availability as it relates to a data processing installation is
usually described as the percentage of scheduled time the system or an
application is capable of processing. A system is available when both
its hardware and programming system are capable of processing jobs. Aan
application is available when it is capable of performing processing for
its end users. :

Unavailable time occurs for a system when, for example, a hardware or
control program failure occurs and system recovery procedures are
invoked, an operator error causes a failure and recovery is required,
scheduled preventive maintenance is performed, engineering changes are
applied to hardware, fixes are applied to programming systems, and
diagnostics are performed to locate a hardware malfunction that prevents
continued system operation.

The improved availability offered by a tightly coupled Model 168
multiprocessing configuration is the result of hardware component
redundancy, hardware component reconfigurability, and availability
features implemented in 0S/VS2 MVS uniprocessor and tightly coupled
multiprocessor support. Since there are two CPUs and, in general, CPU
feature, channel, and I/0 device symmetry as well as access to 1/0
devices by both CPUs, backup is usually available when a hardware
component fails.

In addition, the reconfiguration capabilities supported by the 0S/VS2
MVS multiprocessing control program enable any type of hardware resource
(a CPU, certain storage element, channel, or I/0 device) to be logically
removed from the operational multiprocessing system on an individual
basis (within certain limitations) without the necessity of terminating
system operations and performing a re-IPL. The rest of the
multiprocessing system can then continue to function with a minimum of
performance degradation as only the malfunctioning component is removed.

In a tightly coupled multiprocessing environment, there is more
likelihood of having a critical subset of the total system resources
available for processing than in an environment with two uncoupled
systems, since all processor storage can be accessed by both CPUs.

136 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Availability is also enhanced by the capability of physically
removing malfunctioning components from the configuration for deferred
or concurrent maintenance without impacting the availability of the rest
of the multiprocessing configuration. Once the operator issues a VARY
OFFLINE command to indicate the component to be removed, the 0S/VS2
multiprocessing control program issues a message as soon as it has
finished using the component and has logically removed it from the
operational system. Using the configuration control panel, the operator
can then physically remove the component from the configuration while
normal processing continues, provided the proper operational procedure
is followed.

In a configuration with two uncoupled systems, only unallocated I/0
devices and redundant channel paths can be logically removed from the
operational system (varied offline) without stopping the system. When a
CPU or a critical portion of processor storage is the malfunctioning
component, all the hardware resources of the system are unavailable
(except switched I/0 devices) until repair has been completed.

While a configuration with two uncoupled systems does provide backup
by offering component redundancy, a tightly coupled multiprocessing
configuration provides other availability advantages. First, since
there is a single work queue, instead of two independent job queues, in
a tightly coupled multiprocessing configuration, recovery from a CPU
failure is faster because the switchover from one system to the other of
jobs in progress and queued jobs is eliminated.

Second, when a failure occurs in a tightly coupled multiprocessing
configuration, the hardware components of the failing system are
available to assist in the recovery. In the case of a CPU failure, the
functional CPU is available to perform the recovery. These capabilities
are not provided in a configuration with two uncoupled systemns.

A tightly coupled multiprocessing confiquration also provides a
better method of handling preplanned scheduled maintenance activities
for installations that operate .24 hours a day, since a CPU and its
components can be physically removed from the multiprocessing
configuration without the necessity of job cancellation and system
restart.

Functions designed to increase system availability are basic to the
structure of 0S/VS2 MVS. For both uniprocessor and multiprocessor
systems, 0OS/VS2 MVS is designed to attempt to reduce the frequency of
errors that occur as the result of programming and to reduce the impact
of both hardware and programming errors when they do occur, such that
system terminations are avoided more frequently than when another
operating system, such as 0S MVT, is used.

Specifically, the implementation of one virtual storage for each user
in 0s/Vs2 MVS decreases the chance that one user will inadvertently
modify wvirtual storage of another user or critical portions of the
control program. Many integrity features designed to prevent program
errors are also basic to the system. Several other features that are
unique to 0S/VS2 MVS are provided to reduce the impact of errors.

First, functional recovery routines (FRRs) for certain system
functions are provided. An FRR is a tailored recovery routine for a
specific system function. It uses data stored during execution of the
system function in an attempt to repair that function when a failure
occurs, so that system operation can continue without a re-IPL.

Second, two primary system residence volumes; each on a different

physical path to the system configuration, are maintained. If a
permanent hardware error occurs in the path to the residence volume

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Userxrs 137

currently being used, OS/VS2 MVS automatically switches to the backup
system residence device without termination of system operation.

Third, 0S/VS2 MVS eliminates many system terminations that would
othexwise occur as the result of subchannel errors and control unit
lockups by issuing the System/370 CLEAR I/0 instruction to reset byte
and block multiplexer subchannels when necessary.

Fourth, 0S/VS2 MVS supports operator-initiated recovery via the
restart key. If the operator suspects the system is in a loop or
uncoded wait state, instead of re-IPLing and restarting the system, he
can press the restart key, which gives control to the recovery
termination manager in 0OS/VS2 MVS. The recovery termination manager
initiates normal recovery processing, using FRRs and other recovery
routines to recover the operating system without a system termination.

0S/VS2 MVS multiprocessing support also includes additional recovery
facilities designed to further improve the availability offered by a
Model 168 tightly coupled maltiprocessing configuration. When a hard
CPU failure occurs in one CPU, the alternate CPU recovery (ACR) facility
is invoked in the functional CPU to recover from the CPU failure so that
system operation continues uninterrupted without the failing CPU.
Channel reconfiguration hardware in the Model 168 is used to recover 1/0
operations in progress in the system with the failing CPU. '

After CPU and I/0 recovery have been performed in a multiprocessing
environment, 0S/VS2 MVS automatically varies offline the malfunctioning
CPU and all channel paths to it. If the primary system console was
attached to the failing CPU, an automatic switch to the console of the
functioning CPU is made by O0S/VS2 MVS.

Less Complex Operational Reguirements

A Model 168 tightly coupled multiprocessing configuration has less
complex operational requirements than two uncoupled Model 168 systems
because it presents a single system image to the operator even though
there are two systems in the configuration. The operator has one
operational interface to the entire system, one job scheduling
interface, and one point of control for all the resources in the
configuration. In addition, the operator must communicate with and
control only one control program instead of two.

Improved Resource Utilization

Resource utilization in a tightly coupled multiprocessing
configuration is improved over that of two uncoupled systems because
load leveling occurs between the two systems, there is a reduction in
the amount of processor storage required by the resident control
program, there is I/0 device pooling, and the need for using Shared DASD
support is eliminated.

Load leveling occurs for CPU processing and I/0 processing because of
the way in which 0S/VS2 MVS can schedule task execution and I/0 ,
operations in a tightly coupled multiprocessing configuration. Load
leveling reduces the peak and valley periods of CPU and I/0 utilization
that normally occur in two uncoupled systems, as follows.

The two CPUs are considered to be system resources that, when
available, are allocated to ready tasks. Usually, either CPU is capable
of processing each task in the system. ' Thus, as soon as a CPU beoomes
available, it is allocated to the highest priority queued ready task.
Since there are on the average twice as many tasks in a multiprocessing
configuration as in one system in a two uniprocessor environment, the

138 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

chances that no task in the multiprocessing system is ready to execute
and available CPU time will be unutilized are significantly reduced. &an
I/0 operation is begun on any available channel path in the total
configuration and is not limited to being started only on the channel
path(s) in one system.

Since there is only one copy of the 0S/VS2 MVS multiprocessing
control program resident in processor storage in a /tightly coupled
multiprocessing configuration, more processor storage. is available for
paging (which can benefit performance) than in two uncoupled systems,
each of which has an 0S/VS2 MVS uniprocessor control program resident.

170 devices with programmable channel- or string-switching features
installed are pooled in a tightly coupled multiprocessing configuration
for use by both CPUs. More than half the total number of switched 1/0
devices can be allocated to an individual job when necessary. The
pooling of I/0 devices and sharing of processor storage permits the
execution of jobs with larger processor storage and I/0 device
requirements than is possible using one system in a configuration with
two uncoupled systems.

The sharing of I/0 devices and processor storage also enables the
0S/VS2 MVS control program to automatically handle peak load situations
within jobs and to balance the workload across systems. Manual
balancing of the workload between two systems, as is required for two
uncoupled systems, is not required for a tightly coupled configuration.

The pooling of I/0 devices can reduce the total number of I/0 devices
required in a tightly ocoupled multiprocessing configuration when
compared with the I/0 device requirements for two uncoupled systems that
are to handle the same large I/0 job or peak load direct access storage
requirements.

Since there is only one control program, there is no need to split
any data base into two parts, one for each system, or to use Shared DASD
support in order to share a data base between the two systems, as is
required for two uncoupled systems. The use of Shared DASD support
results in reduced throughput for two uncoupled systems because of the
interference it introduces. This throughput reduction. is not incurred
in a tightly coupled multiprocessing configuration since there is only
one control program and it can maintain the integrity of a shared data
base without using Shared DASD support.

Operational Flexibility

A tightly coupled Model 168 multiprocessing configuration can be
divided into two systems that operate in uniprocessor mode when this is
required to handle special environment sjituations. FPor example, a
uniprocessor mode system might be required for planned preventive
maintenance, as a test system for a system programmer, or to rum a
programming system other than 08/VS2 MVS (such as VM/370).

The two systems in a multiprocessing configuration can be divided
such that only the hardware components (processor storage and I/0
devices) actually required for the special emwironment system are
allocated to one CPU, leaving the balance of the hardware resources
available for normal production processing. When two uncoupled systems
are present in an installation, one total system (half the total
hardware resources) must be allocated to the special environment system
regardless of its actual processor storage and I/0 device requirements
(except for any switched I/0 devices).

In addition to being able to tailor the resources of a special
environment uniprocessor mode system, an installation can perform the

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 139

reconfiguration dynamically in a multiprocessing configuration without
the necessity of stopping the system, canceling or interrupting jobs, or
quiescing the system.

In an installation with two uncoupled systems, production operations
in one system must be stopped or allowed to quiesce before the system
can be used for the special environment operation. Then production
processing must be restarted after the special processing is completed.
Thus, productive capability is lost during the time the system is being
quiesced and later during restart operations. This productive
capability is not lost in a tightly coupled multiprocessing
configuration.

Note also that there is very little possibility of losing half of the
hardware components of a tightly coupled multiprocessing configuration
as a result of one failure. If a CPU in one system fails, processor
storage and switchable devices in that system can still be used by the
other processor. If all processor storage. in one system fails, the CPU,
. channels, and I/0 devices in that system are still available to the
multiprocessing configuration. 1In an enviromment with two uncoupled
systems, a failure in one system causes a loss of the entire system
except for any 1/0 devices that can be switched to the other system.

Improved Growth Options

The installation of tightly coupled multiprocessing in an environment
with two uncoupled Model 168 systems to handle added workload or the
addition of an application is an alternative, less expensive growth step
than the installation of a third uncoupled system.

Assume the two uncoupled systems can handle the current workload but
the installation of another data base application or more terminals, for
example, would cause unacceptable performance during peak load periods.
Installation of tightly coupled multiprocessing would enable the
resources of both systems to be utilized more efficiently during peak
load periods and probably could provide acceptable performance. If the
workload continued to grow and additional resources were required, a
third system (Model 145 or higher) could be installed and loosely
coupled with the existing tightly coupled configuration to provide the
desired performance.

Improved Throughput Possibil ities

As a result of certain hardware and programming interference that
occurs, the internal performance of a Model 168 tightly coupled
multiprocessing configuration is in the area of 1.5 to 1.9 times that of
a uniprocessor Model 168. However, because of the load leveling that
occurs in a tightly coupled configuration, the throughput achieved for a
given job stream can be greater than that achieved when the same job
stream is split and processed by two uncoupled systems with total
resources equal to those of the two coupled systems.

The reason the throughput potential is greater for the tightly
coupled configuration is that load leveling enables most CPU and I/0
time that is unoverlapped when two job streams execute in two uncoupled
systems to be overlapped when the same two job streams execute in a
tightly coupled configuration, as follows.

In a single system environment, unoverlapped I/0 time occurs when
there are no tasks ready to execute until some I/0 completes and
unoverlapped CPU time occurs when no 1/0 is operating and none can be
started until certain CPU processing completes. When two job streams
execute in two uncoupled processors, unoverlapped CPU and I/0 time occur

140 A Guide to the IBM Systenv370 Model 168 for System/370 Model 165 Users

in both systems and the chances that unoverlapped CPU time or I/0 time
occurs simultaneously in the two systems are small.

When these two job streams execute in a tightly coupled
miltiprocessing system, because of the way work is dispatched (in
effect, each CPU can process the other CPU's job stream), most
unoverlapped CPU time that occurs in one system in the uncoupled
environment is overlapped with unoverlapped I/0 time that occurs in the
other system in an uncoupled environment and vice versa. Studies and
installation experience have shown that when the two job streams
involved are relatively unbalanced as far as CPU utilization is
concerned (80 percent for one and 50 percent for the other, as an
example, instead of both 80 percent), the potential for increased
throughput in a tightly coupled configuration, as a result of load
leveling, is greater.

Greater throughput potential for a tightly coupled multiprocessing
configuration also results from the other advantages such a
configuration offers, such as the (1) availability of more processor
storage for paging, (2) elimination of Shared DASD support, (3)
elimination of lost productivity as a result of quiesce and restart
operations, (4) availability of more of the total system resources for
production processing when a special uniprocessor mode system is
required, and (5) reduction in job reruns, data set rebuilding, and re-
IPLing as a result of the improved availability features that reduce the
number of system terminations.

The performance of an individual application in a tightly coupled
miltiprocessing environment versus that achieved in a uniprocessor
system is related to the amount of multitasking within the application
and how well the processing is balanced among tasks. Best performance
is achieved when the work required to process a given transaction is
distributed fairly evenly across the tasks that are to process the
transaction. Good performance can be achieved when no task performs
more than 50 percent of processing for a tramsaction.

ADVANTAGES OF LOOSELY COUPLED MULTIPROCESSING CONFIGURATIONS

Like tightly coupled multiprocessing configurations, loosely coupled
multiprocessing configurations offer advantages over single system and
uncoupled multiple system configurations, such as higher availability
(via better recovery techniques and serviceability) and operational
efficiency and flexibility (via a single input stream, a single operator
interface, pooled I/0O resources, automatic workload balancing, and
better handling of peak load job conditions).

In addition, however, loosely coupled multiprocessing conflgurations
offer certain advantages over tightly coupled multiprocessing
configurations, as follows:

¢ Larger growth potential and growth without disruption. Many more
systems can be coupled in a loosely coupled than in a tightly
coupled configuration and additional systems can be added with
relatively little disruption to operations. Because Systems/370
tightly coupled multiprocessing is limited to a maximum of two
systems, the addition of a third system can be accomplished only by
going to a loosely coupled configuration.

s Loosely coupled systems can be asymmetric. Different System/370
models with unlike hardware characteristics (CPU speed, number of
channels, and processor storage size) can be loosely coupled.
Although processor storage symmetry is not required for Model 168
and Model 158 Model 3 tightly coupled multiprocessing
configurations, model symmetry (two Model 168 or Model 158

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 141

multiprocessor systems) is required. For a Model 158 Model 1,
processor storage size symmetry is also required unless an RPQ that
permits asymmetric processor storage configurations is installed.

e A larger range of models can be loosely coupled. JES3 supports
Models 145, 155 11, 158, 165 II, 168, 158 multiprocessing, 168
multiprocessing, and 168 Attached Processor systems (running under
0S/VS2 MVS) in a loosely coupled configuration. The configuration
can range from a minimum of one Model 145 with 1024K of processor
storage to a maximum of eight Model 168 tightly coupled
multiprocessing systems that are loosely coupled.

A tightly coupled multiprocessing configuration has one significant
advantage over a loosely coupled configuration. While either system can
handle peaks in the number of jobs processed, only a tightly coupled
system can handle peaks that occur within a single job (such as an
online data base application), since the CPU, processor storage, and 1I/0
devices of both systems can be used for the job during peak
requirements. The unigque advantages of both types of multiprocessing
configurations can be obtained when required by combining the two within
an installation.

In addition to the general benefits of tightly and loosely coupled
mltiprocessing, Model 168 tightly and loosely coupled multiprocessing
configurations offer large-system users the following specific
advantages s

¢ Iower-cost entry into a tightly coupled mltiprocessing environment
than was previously available with System/360

e Compatible growth for Model 65, 155, 155 II, 158, 165 II, and 168
uniprocessor systems

e Compatible growth for multiple-system installations with Systemv/360
ands/or System/370 models

e A growth path for Model 165 II and purchased Model 165 uniprocessor
- systens v

¢ All the new and enhanced hardware and programming systems
reliability, availability, and serviceability features provided. in
uniprocessor Model 168 systems, which are of even greater benefit in
a multiprocessing environment

e All the new hardware and new I1/0 devices offered by the Model 168
(more processor storage and channels, faster I1/0 devices, more
subchannels, significantly higher capacity online direct access
storage, etc.) that are required for online applications

¢ Enhancements to Model 65 multiprocessing architecture and
programming systems support

e Support of all the hardware and programming systems features
provided for Model 168 uniprocessor systems operating in EC and DAT
modes, including support of integrated emalation during
multiprocessor mode operations

60:10 MODEL 168 MULTIPROCESSING ARCHITECTURE

UNIPROCESSOR AND MULTIPROCESSOR HARDWARE DIFFERENCES

The following identifies the major areas of architectural and
hardware implementation differences between Model 168 uniprocessor and

142 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

tightly coupled multiprocessor systems (that is, facilities implemented .
in multiprocessor but not uniprocessor systems):

e 3068 Multisystem Communication Unit - a new required unit that
contains the hardware required for comminication between two Model
168 multiprocessor systems and the configuration control panel

e Prefixing - a method of assigning unique areas of processor storage
to addresses 0 to 4095 for each CPU

e CPU addressing and STORE CPU ADDRESS instruction - required to
specifically identify each CPU

e Time-of-day clock - synchronization of the two physical clocks to
provide one logical clock for the multiprocessing configuration

¢ Interprocessor programmed communication (SIGNAL PROCESSOR
instruction) - required to enable a CPU to request services of the
other CPU and to alert it to conditions to which it must respond
during multiprocessor mode operations. For example, this capability
is used during the initialization of multiprocessor mode operations,
for reconfiguring hardware components, and in recovery procedures
that occur after a CPU failure.

¢ Interprocessor hardware communication - required to alert a CPU to
conditions in the other CPU and to synchronize certain operations in
both CPUs during multiprocessor mode operations

e Channel reconfiguration hardware ~ used to expand the recovery
provided by the 0S/VS2 multiprocessing control program after a CPU
failure occurs during multiprocessor mode operations

The instructions included in the multiprocessing feature, which are
valid in uniprocessor as well as multiprocessor mode, are the following:

SET PREFIX

STORE PREFIX
STORE CPU ADDRESS
SIGNAL PROCESSOR

The model-dependent extended CPU logout area contains additional
information in multiprocessor Model 168 models, such as the
configuration in effect and the value in the prefix register at the time
of the interruption.

3068 MULTI SYSTEM COMMUNICATION UNIT

The 3068 Multisystem Communication Unit is required in every Model
168 multiprocessing system. The configuration control panel is mounted
on the 3068 unit. The switches and controls on this panel are shown in
Figure 60.10.1. The configuration control panel is used to establish
the desired mode of system operation and to physically configure the
hardware components (storage elements and I/0 devices) of the
operational system.

The operating mode (multiprocessor or uniprocessor), allocation of
storage segments to CPUs, storage segment addressing, interleave mode
(four-way or serial), and time-of-day clock and system oscillator
control settings are indicated by the settings of the system mode,
storage allocation, floating storage, interleave control, and oscillator
control switches, respectively. These settings are not made effective
until some time after one or both (depending on the system mode change
being made) enter configuration pushbuttons are pressed. The
configuration control panel contains two enter configuration

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 143

pushbuttons, one for each CPU.

The 1/0 allocation switches operate

independently from the enter configuration pushbuttons.

Optional Feature
—A

SYSTEM A
INTR | [eNTRR
[CONFIG I |CONFIG

rConfiguration ~rConfiguration ~
Pending Valid Pending Valid

OOOO

SYSTEM B

System Mode

U-Peo M-P
=0

[Interleave I [Ou:illam]
Serial 4-way Local

fONe)

Storage to Systems

00 ©©

En&lo

|

Enable

i

End:le
Disable

Enablc
Disable

ik

©©©)©)

ﬁ ﬁi?i’i;ﬂ @

w1 ot ek 1 e

@@@@

Enoble Enabla Encble Eneblc
Duable ! Disable Disablc Dvwble
o

Enoblo
Disable|

Enoble
Disable

1/0 to Systems
Enable A

@@@Dl@

D-sable A

m

1/0O to Systems
Enable A

poopooooooegoo
Tl Tl T
0

0 i i
000000000008

Disoble B

Figure 60.10.1.

v

Optional Feature

Configuration control panel for a Model 168
multiprocessing system

The configuration control panel is used to perform the following:

e Establish, via the system mode switch, multiprocessor or

uniprocessor mode of operation for both CPUs.

That is, both CPUs

are set to multiprocessor mode or both are set to uniprocessor mode.
Unlike a Model 65 multiprocessing configuration, no other

combination is required.

When the mode switch is set to the multiprocessor position,
interprocessor communication hardware is enabled (SIGNAL PROCESSOR
interface, high-speed buffer intercommunication, time-of-day clock
oscillator, time-of-day clock security switch, time-of-day clock
synchronization check, malfunction alert signal, and the broadcast
These facilities are discussed in the

of reset functions).
remainder of this subsection.

When uniprocessor mode is established, the interprocessor signals
are deactivated and each CPU can operate independently from the

144 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

other with that portion of available processor storage and the I/O
devices enabled to it via the configuration control panel.

e Establish, via the storage allocation switches on the storage to
systems portion of the configuration control panel, which storage
elements are part of the physical configuration and the CPUs to
which the storage segments are enabled. There is a pair of storage
allocation switches, one for CPU A and’one for CPU B, associated
with each floating address rotary switch. Each storage allocation
switch enables or disables the operation of its associated CPU with
a storage element and the storage address range assigned to the
storage segment via its floating storage address switch. A storage
element is configured out of the physical processor storage
configuration by disabling it from both CPUs.

When multiprocessor mode is in effect, each storage address range
and associated storage element that is enabled for one CPU must also
be enabled for the other CPU. This requirement permits both CPUs to
access all the processor storage currently enabled in the physical
configuration. When uniprocessor mode is in effect, no storage
address range and element can be enabled for access by both CPUs;
however, storage address ranges and elements can be allocated such
that one CPU has access to more processor storage than the other
(storage allocation need not be symmetrical).

Note that the storage allocation switches on the configuration
control panel on the 3068 take precedence over the storage
configuration panel on the two 3066 system consoles in the
miltiprocessing configuration. Only when all the storage allocation
switches for a given CPU are in the disable position, the CPU is in
uniprocessor mode, and none of its processor storage is enabled to
the other CPU is the configuration panel on its associated 3066
console effective for processor storage configuration.

e Assign, via the floating storage address rotary switches, an address
range to each enabled storage element. Each processor storage
element in the multiprocessing configuration is assigned a unique
element number. The eight even element numbers 0 to 14 are used for
the processor storage of CPU A while the eight 0dd element numbers 1
to 15 are used for the processor storage in CPU B, as shown in
Figure 60.10.2.

Each of the 16 storage element numbers has an associated floating
storage address switch that is used to assign a one-megabyte (1024K-
byte) range of storage addresses to its corresponding storage
element, also shown in Figure 60.10.2. The element numbers 8 to 15
and their associated floating storage address switches are present
on the configuration control panel only for Model 168
multiprocessing configurations in which at least one CPU has more
than four megabytes of processor storage installed.

Any one of the 16 one-megabyte storage address ranges, which are
listed on the floating storage address switches as 0-1M, 1M-2M,
through 15M-16M, can be assigned to a storage element as long as the
same address range is not assigned to more than one enabled storage
element when multiprocessor mode is in effect or to two storage
elements in the same system when uniprocessor mode is in effect.

The storage address range 0-1M must be assigned to one enabled
element when multiprocessor mode is in effect and to one emabled
element in each system when uniprocessor mode is in effect;
otherwise a successful IPL cannot be performed.

A Guide to the IBM Systems/ 370 Model 168 for System/370 Model 165 Users 145

Processor Storage Processor Storage

CPU A CcPUB
5120K 5120K
Segment 8 Segment 9
4M to 5M 9M to 10M
Segment 6 Segment 7
3M to 4M 8M to 9M
Segment 4 Segment 5
2M to 3M 7M to 8M
Segment 2 Segment 3
1M to 2M 6M to 7M
Segment 0 Segment 1
Oto 1M 5M to 6M
0 0

CPU A

e

segments 10 to
15 not used in

a 10-megabyte

OO Ofe

.| pe®Bele00b

Configuration control panel
Figure 60.10.2. sStorage elements and floating storage addressing

The storage ranges assigned to a given system for uniprocessor mode
operations or to shared storage for multiprocessor mode operations
need not be contiguous when 0S/VS2 MVS (or TSS/370) is used as the
operating system. In addition, address ranges higher than the total
amount of processor storage in the system can be assigned.

For example, addresses 0 to 3M and 5M to 6M could be assigned to a
multiprocessor mode configuration with four megabytes of processor
storage enabled. The addresses between 3M and 5M are then marked
unavailable by the 0S/VS2 multiprocessing control program. When an
operating system other than 0S/VS2 MVS or TSS/370 is used for
uniprocessor mode operations, processor storage in each system must
be assigned contiguous addresses.

146 A Guide to the IBM Systemvs/370 Model 168 for System/370 Model 165 Users

¢ Enable or disable, via the I/0 allocation switches, access by each
CPU to up to 14 or, optionally, 28 switched control units and/or
switched direct access device strings. Each switching feature
installed that is to be controlled by the I/0 allocation switches
must have installed the optional Remote Switch Attachment feature
(which is a no-charge feature except for the 3803 control unit for
3400-series tape units) to connect the control unit directly to the
configuration control panel. The devices listed previously that
have a programmable two-channel switch also have a Remote Switch
Attachment feature available.

A pair of I/0 allocation switches, one per CPU, is assigned to each
control unit connected to the configuration control panel. When
four-channel switching is installed on a control unit, two pairs of
I/70 allocation switches are assigned. As with storage segments,
each control unit can be enabled for access by one or both CPUs or
disabled for access by both CPUs. A square space is provided below
each pair of I/0 allocation switches to contain the two-digit
hexadecimal address of the associated control unit.

When a CPU issues an I/O instruction to an I/0 device connected to a
control unit that is disabled from that CPU, a "not operational®”
indication results. WwWhen the status of an I/0 allocation switch is
changed, the new status becomes effective when the control
unit/channel interface becomes inactive.

e Establish, via the interleave control switch, four-way interleaved
or serial mode of operation for all enabled processor storage in the
miltiprocessing configuration. Note that floating storage
addressing is functional for both serial and interleaved mode.

¢ Establish, via the oscillator control switch, the system and time-
of-day clock oscillators to be used by each CPU. In a Model 168
multiprocessing configuration, the system oscillator for each CPU is
contained in its associated half of the 3068 unit and the system
oscillator in each CPU is disabled. This is done so that a CPU need
not be operational in order for its processor storage to be accessed
by the other CPU. Each system still has its own time-of -day clock
oscillator in its CPU.

When the oscillator control switch is set to the A position, both
time-of-day clocks operate from the time-of-day clock oscillator in
CPU A and both CPUs use the system oscillator in the physical half
of the 3068 associated with CPU A. When the switch is set to the B
* position, both CPUs use the two oscillators for CPU B. When the
local position is selected, each system operates using its own
system and time~-of-day clock oscillators.

The local position is valid only for uniprocessor mode and when
processor storage is not cross-configured. However, the local
position is not required for uniprocessor mode. Thus, if a switch
from multiprocessor to uniprocessor mode is made, there is no need
to change the oscillator control switch to local. Both systems
continue to use the system and time-of-day clock oscillators for the
CPU indicated by the switch.

The design of the two oscillators is such that.the oscillatorx
control switch can be set to another position during a planned
reconfiguration during system operation without disruption to the
system or loss of synchronization of the two time-of-day clocks.
Note also that if power fails or is removed from the 3068 half whose
system oscillator is currently being used, the other powered system
oscillator will automatically be made the effective oscillator by
hardware logic. Since this action overrides the system oscillator
specified via the configuration control panel, the valid

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

147

configuration indication light (discussed below) goes off and
remains off until the oscillator control switch is changed to select
the oscillator being used.

The enter configuration pushbutton for a CPU operates with the half
of the 3068 unit associated with that CPU. However, when multiprocessor
mode is in effect, either enter configuration pushbutton can be pressed
to change the configuration of one or both systems, including a change
from multiprocessor to uniprocessor mode for both systems. That is,
pressing either button causes the configuration specified via the
configuration control panel to be entered in both systems if it is
valid. :

When both CPUs are in uniprocessor mode, only the enter configuration
pushbutton for a CPU must be pressed to change the configuration for
that CPU, as long as uniprocessor mode is to remain in effect. To
change from uniprocessor to maultiprocessor mode, either enter
configuration button can be pressed.

Note that when processor storage is cross-configured or a change that
affects both CPUs (such as switching the oscillator control switch from
one CPU to the other) is made when uniprocessor mode is in effect,
pressing the enter configuration pushbutton for either CPU causes the
configuration specified via the configuration control pamel to be
entered in both CPUs. If neither of these two conditions exists,
pressing the enter configuration pushbutton for a CPU in uniprocessor
mode causes a configuration to be entered only for that CPU.

There is a pending indicator and a valid indicator for each CPU
located below its configuration pushbutton on the configuration control
panel. When a valid configuration is indicated in the switches, one or
both valid indicators will be 1lit, as appropriate. When multiprocessing
mode is set, both valid indicators must be on before the configuration
can be established. When uniprocessor mode is set, the configuration
will be set in a CPU if its wvalid indicator is on, regardless of the
setting of the valid indicator for the other CPU. If all power is off
in a system, its corresponding valid indicator will be off.

The following are all the conditions that cause one or both of the
valid indicators to be turned off. Any one or more of these conditions
prevents the specified configuration from being established after one or
both configuration pushbuttons are pressed:

e More than one floating storage address switch is set to the same
address range when multiprocessor mode is set or for one CPU with
uniprocessor mode set (double addressing).

e The system mode switch indicates uniprocessor mode and a storage
element is enabled to both CPUs (shared storage in uniprocessor
mode).

e The system mode switch indicates multiprocessor mode and a storage
element is enabled to one CPU but not to the other (partial
sharing).

e One or more storage elements in CPU A are enabled to CPU B (cross-
configured) and the half of the 3068 unit associated with CPU A is
powered down. The reverse is also invalid (cross-configured powered
down 3068 half).

e An element is enabled that is not powered up or installed. For
example, in a configuration with a total of four megabytes installed
(say two megabytes in each system), only the storage allocation
switches for elements 0, 1, 2, and 3 can be set to the enable
position (unavailable stcrage).

148 A Guide to the IBM System/370 Model 168 fo: Systen/370 Model 165 Users

e The system mode switch is set to multiprocessor mode and the
oscillator control switch is set to local (split oscillator).

® Processor storage is cross-configured and the oscillator control
switch is set to local (cross-configured split oscillator).

¢ The oscillator control switch is set to a CPU that has its
associated half of the 3068 unit powered down (unpowered system
oscillator). '

e Either CPU or its half of the 3068 unit is powered down (or not
installed) and multiprocessor mode is set (partial multiprocessing
system).

Some possible valid system configurations are the following:

e A full multiprocessing configuration, that is, both systems set to
multiprocessor mode with all available processor storage enabled to
both systems. This is the normal configuration.

e A full uniprocessor configuration, that is; each system set to
uniprocessor mode with the processor storage of each CPU enabled
only to that CPU (storage is nonshared and not cross-configured)

e Each system set to uniprocessor mode with processor storage of only
one of the systems available. The available processor storage is
divided between the two systems (each element enabled to only one
system). A minimum of two megabytes of processor storage must be
available in one system for this configuration.

e Each system set to uniprocessor mode with one megabyte of storage
allocated to one system only (a maintenance or test system) and all
the remaining available storage allocated only to the other system.

e Each system set to multiprocessor mode with the processor storage of
only one system enabled to both systems. A minimum of one megabyte
of processor storage must be available in either system for this
configuration.

e One system set to uniprocessor mode with all available storage from
both systems enabled to it. The other system is not part of the
production processing configuration, and diagnostics that do not
require processor storage can be executed on it if desired.

Note that when multiprocessor mode is in effect, a malfunction in a
CPU may cause the CPU to be logically removed from the operational
configuration by the 0S/VS2 MVS multiprocessing control program. Both
systems are still in multiprocessor mode and can remain in this mode
until such time as something is to be executed in the malfunctioning
CPU. At this time, uniprocessor mode must be established for both
systems.

If an invalid configuration is specified when the enter configuration
pushbutton(s) is pressed, the valid indicator(s) stays off until a valid
configuration is placed in the switches and the configuration pending
light(s) is not turned on. After the invalid switch settings are
corrected, the enter reconfiguration pushbutton(s) must be pressed again
in order to generate an enter configuration signal.

When an enter configuration pushbutton is pressed, an enter
configuration signal is generated when a valid confiquration is
indicated but the specified configuration does not become effective
until the next time one or both (depending on the mode in effect) CPUs
enter the wait (enabled or disabled) or stopped state. The

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 149

configuration currently in effect is maintained in two sets of
registers, one in each physical half of the 3068 MCU.

When multiprocessor mode is in effect, the specified configuration
does not become effective until the next time both CPUs are in the wait
or stopped state simultaneously. When uniprocessor mode is in effect
and processor storage is not cross-configqured, a change affecting one
system becomes effective as soon as that system only enters the wait or
stopped state. When both CPUs are in uniprocessor mode and processor
storage is cross-configured or a change is made that affects both CPUs
(such as a change in the oscillator control switch setting), the
specified configuration is not made effective until both CHUs
simultaneously enter the wait or stopped state.

During the time an enter configuration request is pending, one or
both pending indicators, as well as one or both valid indicators, are
lit as appropriate. If any of the configuration switches controlled by
the enter configuration pushbutton are changed while a valid
configuration is pending, the configuration that is entered, if any, is
unpredictable.

Note that after a system power-on sequence is completed, an enter
configuration signal is generated to establish the configuration
currently specified via the switches controlled by the enter
configuration pushbutton if it is valid. If an invalid configuration is
specified, one or both valid indicators remain unlit and the
configuration is not entered as would occur if the enter configuration
pushbutton had been pressed. However, the enter configuration signal is
not generated when a unit that can be individually powered on and off
(CPU, processor storage, etc.) is powered on. Therefore, the system
configuration must be reestablished as appropriate any time a specific
unit has been powered on.

Implementation of configuration pushbuttons, which are not present on
the configuration control panel of a Model 65 multiprocessing system,
prevents inadvertent alteration of the operating mode and storage
segment allocation during system operation.

The implementation of the configuration control panel for the Model
168 permits a new hardware configuration to be entered during system
operation without the possibility of introducing a hardware error,
assuming the correct procedure is followed. Hence, system operations
need not be quiesced prior to any alteration of the physical
configuration using the configuration control panel, as is required
prior to altering any switch on the configuration control panel in a
Model 65 multiprocessing system.

Whenever an enter configuration pushbutton is pressed, all the
entries in one or both (as appropriate) high-speed buffers and
translation lookaside buffers are invalidated. TLB invalidation
requires 5120 nanoseconds (80 nanoseconds per odd/even pair of entries).

The settings indicated by the configuration control panel cannot be
obtained as a result of the execution of one instruction. (In a Model
65 multiprocessing system, execution of the DIAGNOSE instruction is
necessary to obtain the settings of certain switches on the
configuration control panel.) The 0S/VS2 multiprocessing control
program determines the storage addresses, channel paths, and I/0 devices
online during IPL by procedures similar to those used by uniprocessor
control programs (TEST I/0 instructions, invalid storage address
indications, etc.). This technique for determining the online system
configuration is Systemv/370 model independent.

150 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

Power Control

Power control for Model 168 multiprocessing systems is designed to
allow certain components within one Model 168 system to be powered on
and off separately from other components of the given system without
preventing operation of the other Model 168 systen.

Model 168 multiprocessor system hardware and programming systems
support are designed to enable a properly isolated system component to
be powered down without the necessity of first guiescing system
operations. This capability enables repair operations to be performed
on a malfunctioning component while normal system operations continue,
using the other system and functional components of the system with the
malfunctioning component. When the malfunctioning component is
repaired, it can be powered on and returned to the functional
configuration, again without quiescing system operations.

Each of the system components that can be separately powered on and
off has its own power control switch that can be set to the local or
remote position. The switch must be set to local in order to perform
separate power on and power off operations.

The following components within a given Model 168 system in a
mltiprocessing configuration can be powered on and off separately from
the other components in the same system:

¢ The CPU frames of the 3168 Processing Unit together with the 3066
System Console

e All processor sﬁorage in the 3168 Processing Unit

e The channel control function in the 3168 Processing Unit

¢ The Integrated Storage Controls feature in the 3168 Processing Unit
¢ Each individual standalone channel for the system

e The physical half of the 3068 Multisystem Communication Unit
associated with the system

e Individual control units and I/0 devices attached to the channels of
the system

When the CPU frames, processor storage, or half the 3068 is in the
process of being powered up or down separately, the other system can
experience machine check or extraneous interruptions unless certain
configuration criteria are met even if the other system is in the
stopped or wait state (since the channels can still be operating).
Therefore, when a component of a system is to be separately powered off,
the following configuration rules should be obserxved:

e To power off the CPU frames without or together with its dedicated
channels or the channel control function in the 3168, uniprocessor
mode must be in effect, no processor storage should be enabled to
the CPU involved, all the I/0 allocation switches for the CPU should
be set to the disable position, and the oscillator control switch
should be set to the other CPU. The processor storage in the
powered down CPU can be utilized by the other CPU by enabling it
only to the other CPU (cross-configuring).

Note that the channel reconfiguration hardware in the powered up CPU
cannot be enabled to access the channels and I/0 devices attached to
the powered down CPU. In order for channel reconfiguration hardware
to be activated in one CPU (3168 Processing Unit) to control the

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 151

channels of the other CPU, the other 3168 Processing Unit must be
-powered on (except for processor storage and the ISC feature).

¢ To power off processor storage in a CPU, none of the processor
storage can be enabled to the other CPU. That is, all of the
storage allocation switches for that processor storage (all even-
numbered or all odd-numbered switches) must be in the disable
position. The CPU containing the powered down processor storage can
operate in multiprocessor mode, sharing the processor storage of the
other CPU, or in uniprocessor mode with processor storage from the
other CPU cross-configured to it. Processor storage would normally
be powered down separately only to perform a maintenance function.

e To power off half of the 3068 unit, uniprocessor mode must be in
effect, no processor storage can be cross-configured (physical
processor storage in one CPU enabled only to the other CPU), the CPU
associated with the 3068 half to be powered down must be in the
stopped state, all the I/0 allocation switches for the associated
CPU should be set to the disable position, and the oscillator
control switch must be set to the other CPU. Note that a CPU cannot
operate when its associated 3068 half is powered down. A 3068 half
would normally be powered down separately only to perform a
maintenance function.

e To power off a channel, the interface disable switch for the channel
must be on, all I/0 allocation switches assigned to the devices
attached to the channel should be in the disable position, and the
CPU to which it is attached must pass through the wait or stopped
state before the power off segquence begins.

¢ To power off the channel control function in the 3168, uniprocessor
mode must be in effect, all the I/0 allocation switches for the
affected CPU must be in the disable position, the oscillator control
switch must be set to the other CPU, and the affected CPU must be in
the stopped state. Note that a CPU with its channel control function
powered down camnnot operate.

e To power off the Integrated Storage Controls feature, power must be
off in the 1/0 devices attached to the ISC. In addition, if the ISC
has any channel-switching features installed (but no string-
switching and remote switch attachment features), the devices
attached to the ISC must be varied offline from both CPUs and their
170 allocation switches must be set to the disable position.

The same configuration rules should be observed when powering on an
individual component, although hardware interlocks prevent a
nonfunctional configuration from being entered. Note also that for
proper system operation, a component (CPU, processor storage, channel,
or I1/0 device) should be logically varied offline to the operating
system before it is powered off. A component must be varied online
after it is again powered on if it is again to be part of the
operational system.

Note that if a 3068 physical half or 3168 processing unit is to be
powered down for the replacement of a part that is water-cooled (such as
a regulator in the 3168) there is a procedure that allows the water
cooling to be removed only from the part to be replaced instead of from
the entire system containing the 3168 or 3068 half.

When the power control switch for a unit is set to the remote
position, it is powered on and off under control of the power on and
power off pushbuttons on the operator control panel of the two 3066
system consoles. Assuming all units in a multiprocessing configuration
have their power control switch in the remote position, when the power

152 A Guide to the IBM Systems/370 Model 168 for System/370 Model 165 Users

on pushbutton for one system is pressed, power is turned on in the
following units of the configuration:

e 3168 Processing Unit associated with the 3066 console used
e 3066 System Console whose power on button was pressed

e 3068 Multisystem Communication Unit (both halves)

e 3067 Power and Coolant Distribution Units for both systems

¢ All standalone channels attached to the system associated with 3066
console used

e All nonshared and shared units attached to the system associated
with the console used (that is, I/0 control units and I/0 devices
with their own integrated control unit). A shared unit is one that
is attached to both systems via a channel or string switch.

¢ Processor storage in the system whose 3066 console was not used

When the power on button on the other 3066 console is then pressed,
power is turned on in that 3066, the remaining portions of the 3168
processor associated with the console used, as well as this processor's
standalone channels and nonshared 1I/70 devices. Assuming all units in
the multiprocessing configur ation have their power control switch in the
remote position, when the power off pushbutton on one system is pressed,
power is turned off in the following units:

e All components of the 3168 Processing Unit associated with the 3066
console used except processor storage

e 3066 System Console whose power off button was pressed

¢ All standalone channels attached to the system associated with the
3066 console used

e All nonshared units attached to the system associated with the 3066
console used

When the power off button on the other 3066 console is pressed, the
remaining powered on units are powered off. When the emergency power
off switch in either system is pulled, power is removed from all units
in the entire multiprocessing configuration (both systems).

The optional Power Warning feature can be installed in one or both of
the CPUs in a Model 168 multiprocessing system. If the feature is
installed on only one CPU, an undervoltage condition will generate a
power warning machine check condition only in that CPU during
multiprocessor mode operations. If all processor storage is to be
dumped after the interruption is taken, power must be on in both systems
and both systems must be partially protected with uninterruptible power
supplies. That is, uninterruptible power supplies must be provided for
both 3168 processors, all channels in both systems, the 3068 MCU, and
those control units and devices that are to receive the storage dump.

If the Power Warning feature is installed on both CPUs in the
multiprocessing configuration, each CPU is capable of recognizing an
undervoltage condition. A cable connecting the two 3066 consoles in the
configuration can be installed that makes the power warning interruption
available to both CPUs when it occurs in either system during
multiprocessor mode operations. The power warning interruption is then
processed by whichever CPU is first enabled to receive such
interruptions. Both systems must be partially protected with

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 153

uninterruptible power supplies (as described previously) in order for
all processor storage to be dumped.

When the Power Warning feature is installed on only one CPU, during
uniprocessor mode operations a power warning interruption is generated
only in the system containing the feature when an undervoltage condition
occurs and only the processor storage enabled to that CPU can be dumped
to disk. The Power Warning feature must be installed on both systems in
order for a power warning condition to be recognized and handled in both
systems during uniprocessor mode operations. Uninterruptible power
supplies must be provided for a control unit and disk device in each
system that is to receive processor storage dumps.

PREFIXING

Each CPU in a shared storage multiprocessing configuration must have
a unique area of storage to be used for permanently assigned locations
and logout areas, which in the Model 168 are contained in addresses 0 to
1938. since there is only one set of storage locations with these
addresses in shared processor storage, a means of assigning these
addresses to two different storage areas, one for each CPU, is required.
Prefixing, sometimes referred to as direct address relocation (not to be
confused with dynamic address translation), is the technigque used.
Prefixing is applied to real storage addresses only, that is, to
translated addresses when dynamic address translation is operative.

The implementation of prefixing in a Model 168 multiprocessing system
permits the assignment of addresses 0 to 4095 to any storage area of
4096 bytes that begins at an address that is a multiple of 4096.
(Addresses up to 4095 are prefixed so that the prefixed area for each
CPU can contain certain control blocks that are required for each CPU,
which in turn, simplifies control program coding). A U4K-byte storage
area that is assigned to contain addresses 0 to 4095 for a given CPU is
called a prefixed storage area (PSA).

Storage addresses are prefixed by means of a prefix value register.
Each CPU has its own prefix value register in the processor storage
control function (PSCF) and, for proper system operation, a unique 12-
bit prefix value must be assigned for each CPU during multiprocessor
mode operations. Prefix registers are initialized to zero during system
reset.

The SET PREFIX and STORE PREFIX privileged instructions are provided
to access the prefix register. SET PREFIX is partially retryable.
STORE PREFIX is totally retryable. A given CPU can set or store only
its own prefix register. A CPU cannot address the prefix register of
the other CPU. :

SET PREFIX is used to place a 12-bit prefix value in the prefix
register in bit positions 8 to 19. Bits 0 to 7 and 20 to 31 of the
prefix register are ignored. The translation loockaside buffer is purged
when a SET PREFIX instruction is issued. STORE PREFIX can be used to
place the prefix value contained in a prefix register in processor
storage. Bits 0 to 7 and 20 to 31 are stored as zeros.

Prefixing operates as follows. When a CPU references a real storage
address in the range of 0 to 4095 (the high-order 12 bits, 8 to 19, of
the real 2u4-bit storage address are zeros), bits 8 to 19 of the prefix
register for that CPU are added to bits 8 to 19 of the real address.

The new address will then point to a location in the PSA of the CpPU.
This is called forward prefixing. When a CPU references a real storage
address in the 4096-byte block that is pointed to by its prefix register
(that is, an address in its own PSA), zeros are substituted for bits 8
to 19 of the real storage address so that an address range of 0 to 4095

154 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

results. This is called reverse prefixing. Reverse prefixing
essentially provides the capability for either CPU to access locations 0
to 4095,

The prefix register contents can be displayed on the CRT screen on
the 3066 console when the CE mode of operation is selected. The prefix
register value can be altered manually using the system control panel on
the 3066 console.

Prefixing is always active and is not subject to mode control. That
is, prefixing always occurs in a Model 168 that has the multiprocessing
feature installed, whether the CPU is in uniprocessor or multiprocessor
mode. Prefixing is applied to all real storage references made by a
CPU. It is implemented in hardware and does not affect instruction
execution time. Channel hardware references to locations 0 to 4095 (for
a channel address word, during channel status word storing, etc.) are
also prefixed.

References by a channel to a channel command word (CCW), I/O data,
indirect data address lists, and CPU extended logout area locations,
either during system operation or IPL, are not prefixed, as they are in
a Model 65 multiprocessing system. This approach permits channel
programs (CCW lists) and I/0 buffers that are contained in the PSA of
one CPU to be executed by the other CPU without the necessity of moving
the channel program and buffers to the PSA of the other CPU. Prefixing
is also not performed during a store status operation.

The implementation of prefixing in a Model 168 multiprocessing system
is different from that used in a Model 65 multiprocessing system. The
PSAs in a Model 65 configuration are defined to be 0 to 4095 and the
highest addressed UK bytes online, and these locations cannot be varied.
In addition, a PSA is assigned to a CPU by the operator via the Model 65
configuration control panel rather than by programming. The Model 168
implementation has the advantages of flexibility (PSAs can be placed
anywhere) and of transparency to the operator, who need not be concerned
with establishing the location of PSas.

CPU ADDRESSING

In a mltiprocessing configuration, each CPU has a unique four-bit
address, which is stored during certain external interruptions to
identify the CPU involved. The CPU address is also used in the SIGNAL
PROCESSOR instruction, which is discussed under "Interprocessor
Programmed Communication®,

Addresses 0000 and 0001 are used, respectively, for the two CPUs, CPU
A and CPU B, in a Model 168 multiprocessing system. These addresses are
permanently assigned during system installation and are effective during
both uniprocessor and multiprocessor operations. The STORE CPU ADDRESS
privileged instruction is provided only in mltiprocessor (and Attached
Processor) systems to enable a program to obtain the address of the CPU
in which it is executing.

An example of a situation in which this instruction is issued is
after the IPL of a multiprocessing configuration. IPL from either CPU
is possible. Therefore, STORE CPU ADDRESS is issued by the control
program to determine the CPU in which it is operating so that the other
CPU can be started via execution of a SIGNAL PROCESSOR instruction,
which requires a CPU address.

STORE CPU ADDRESS should not be confused with STORE CPU ID, which is
a System/370 instruction implemented in both uniprocessor and
multiprocessor models. The STORE CPU ADDRESS instruction is totally
retryable.

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 155

TIME-OF-DAY CLOCK

Because there are two time-of-day clocks in a multiprocessing
configuration, one in each CPU, modifications to uniprocessor time-of-
day clock hardware are required to ensure that both clocks contain the
same time during multiprocessing operations with both CPUs online.
Logically, there must be only one clock in the multiprocessing system.
When the two CPUs operate as independent processors (in uniprocessor
mode), these changes are disabled so that the two time-of-day clocks
operate independently from one another.

When the two CPUs are operating in multiprocessor mode, a SET CLOCK
instruction can be executed by either CPU, if the time-of-day clock
security switch on either CPU is held in the enable set position. An
enable set condition on one CPU is broadcast to the other CPU to
accomplish this clock-setting function. When a time-of-day value is set
in one clock, the 0sS/VS2 multiprocessing control program ensures that
the identical time is contained in the other clock.

when multiprocessor mode is in effect, stepping pulses for both time-
of -day clocks are provided by only one of the two time-of-day clock
oscillators so that both clocks step synchronously. The time-of-day
clock oscillator to be used is controlled by the setting of the
oscillator control switch on the configuration control panel, as
discussed previously.

The values of the two clocks are checked for synchronization by a
combination of 0S/VS2 multiprocessing support and hardware. O0S/VS2
compares bits 0 to 31 of two time-of-day clocks to determine an out-of-
synchronization condition in the high-order portion of the clocks. The
synchronization of bits 32 to 51 in each clock is checked by hardware by
the use of a one-second synchronization pulse that is broadcast by each
CPU to the other CPU.

A time-of-day clock synchronization check external interruption
condition is generated (normally simultaneously in both CPUs) when bits
32 to 51 of the two clocks are out of synchronization (differ by more
than 960 nanoseconds). This interruption is maskable by the external
mask in the current PSW and bit 19 in control register 0. The
interruption condition can then be handled by whichever CPU enakles
i .self for synchronization checks first.

A synchronization check interruption condition continues to be
presented until (1) bits 32 to 51 in the two clocks are equal or differ
by less than 960 nanoseconds or (2) the latch indicating multiprocessing
mode is in effect turns off. This interruption is enabled only during
the times that the 0S/VS2 control program is checking clock
synchronization, such as after IPL, setting the time-of-day clock, and
varying a CPU online.

So that unique time-of-day values are provided in the event that the
CPUs simultaneously issue a STORE CLOCK instruction, the clock value
stored contains a zero im bit 52 for CPU 0(A) and a one in bit 52 for
CPU 1(B). If a STORE CLOCK instruction is issued for a . time-of -day
clock that is in the stopped state, bit 52 is not stored.

Modification of the hardware implementation of the interval timer for
operation in a multiprocessing environment is nc . required. Only one
interval timer is used. Unlike the time-of-day clock, the interval
timer is located in processor storage (in a PSA) and, therefore, the
timer can be addressed by both CPUs no matter which one of the two
interval timers is used by the mul tiprocessing control program.

156 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

INTERPROCESSOR PROGRAMMED COMMUNICATION

The SIGNAL PROCESSOR (SIGP) privileged instruction is provided in
Model 168 multiprocessor systems to support program—initiated
communication between the two CPUs. Its operands indicate the address
of the CPU being signaled, the function to be performed by the addressed
CPU (via a one-byte order code), and a register in the signaling CPU in
which status information from the addressed CPU can be placed, if
necessary. A CPU can signal itself by placing.its own CPU address in
the SIGP instruction when uniprocessor or multiprocessdr mode is in
effect.

SIGNAL PROCESSOR is used in Model 168 multiprocessing systems rather
‘than WRITE DIRECT, the instruction used for communication between Model
65 multiprocessor systems, as the former provides a more flexible method
of interprocessor communication. The SIGNAL PROCESSOR instruction is
not retryable.

When a SIGP instruction is executed, the addressed CPU receives the
signal via the hardware interface between the two processors. The
addressed CPU must be operating in multiprocessor mode in order to
receive a SIGP instruction. The addressed CPU decodes the order to be
performed, performs the operation if possible, and sends a response back
to the signaling CPU to indicate the action taken. The response
consists of a condition code setting and, in some cases, a set of status
bits.

Status bits are presented in response to a SIGP instruction when the
addressed CPU cannot perform the indicated function (because another
external call is pending, the addressed CPU is in the stopped or check
stopped state, the operator is performing an alter or display operation,
for example).

The orders that can be specified in the SIGP instruction are the
following:

Sense. The addressed CPU is requested to respond with an indication
of its status (operating, stopped, not operational, not ready, external
call pending, reseting, for example). A sense could be issued by a CPU
at IPL, for example, to determine whether the other CPU is online.

External Call. An external call type of external interruption
condition is generated in the addressed CPU, and is taken if the
addressed CPU is enabled for these interruptions (via bit 18 in ocontrol
register 0 and current PSW bit 7). If the addressed CPU is disabled for
this interruption, the external call interruption remains pending. Only
one such interruption for a given CPU can be pending at a time.

External call is issued by a CPU to request that a service be
performed by the other CPU. The act of one CPU in a multiprocessing
configuration sending a request to the other CPU via programmed
communication is called "shoulder tapping”.

The external call and emergency signal orders cause the CPU address
of the CPU that issued the SIGP instruction to be stored in processor
storage locations 132 and 133 when the external interruption occurs in
the addressed CPU.

Emexrgency Signal. An emergency signal external interruption
condition is generated in the addressed CPU and is taken if the
addressed CPU is enabled for these interruptions (via bit 17 in oontrol
register 0 and current PSW bit 7). The interruption remains pending if
such interruptions are disabled. Only one emergency signal interruption
can be pending at a time.

A Guide to the IBM Systemv370 Model 168 for Systems/370 Model 165 Users 157

Emergency signal, like external call, is issued by one CPU when a
request is to be communicated to the other CPU. Emergency signal and
external call functions are used-to differentiate between two categories
of requests. Emergency signal is used in 0S/VS2 multiprocessing support
primarily to signal a CPU failure via programming and to coordinate
puxging of the TLBs.

Start. The addressed CPU performs the same function as when its
start key is pressed. The CPU on which IPL is performed issues a start
to the other CPU, for example, during initialization of the
configuration for multiprocessing operations.

Stop. The addressed CPU performs the same function as when its stop
key is pressed. A CPU issues a stop to the other CPU, for example, when
the addressed CPU has been varied offline by the operator.

Restart. The addressed CPU performs the same function as when its
restart key is pressed. The restart occurs without a reset and the
prefix register is not reset.

Initial Program Reset. The addressed CPU, its dedicated channels,
and attached dedicated and shared I/0 devices are reset (as per a system
reset without the system clear pushbutton pressed). The control
registers are initialized in the addressed CPU, and its PSW register,
prefix register, CPU timer, and clock comparator are set to zero. The
reset signal is not propagated to the other CPU.

Program Reset. The addressed CPU, its dedicated channels, and
attached dedicated and shared I/0 devices are reset (as per a system
reset without the system clear pushbutton pressed). The reset signal is
not propagated to the other CPU. This order can be used during recovery
operations to reset a hung I/0 condition.

Stop and Store Status. The addressed CPU enters the stopped state
and the store status function is invoked. This order can be used to
enable the functional CPU to attempt to obtain from the failing CPU the
CPU timer, clock comparator, PSW, prefix, general register, and floating
point register values, which are needed for a successful recovery.

Initial Microprogram load. The addressed CPU, its channels, and its
I/0 devices are reset, after which system microcode is loaded into
writable control storage from the disk cartridge device in the console
unit.

Initial CPU Reset. An initial program reset, except for channel
resetting, is performed in the addressed CPU. Pending channel
interruptions are not reset. This function can be performed only via
the SIGP instruction.

CPU Reset. A program reset, except for channel resetting, is
performed in the addressed CPU. Pending channel interruptions are not
reset. This function can be performed only via the SIGP instruction.

INTERPROCESSOR HARDWARE COMMUNICAT ION

Hardware-initiated communication between two CPUs in multiprocessor
mode occurs as follows:

Malfunction Alert. Whenever a CPU loses power or a . machine check
error causes the CPU to enter the check stopped state, a malfunction
alert indication is sent to the other CPU. A malfunction alert external
interruption condition is generated in the receiving CPU if
multiprocessor mode is in effect and the interruption occurs if the CPU
is enabled for this condition (via bit 6 in control register 0 and

158 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

current PSW bit 7). The address of the malfunctioning CPU is stored in
processor storage locations 132 and 133.

Time-of-Day Clock Facilities. These functions have already been
discussed. Briefly, hardware communication resulting from use of the
time-of-day clock consists of (1) broadcasting a time-of-day clock
security switch enable set condition in one CPU to the other CPU, (2)
broadcasting the time-of-day clock oscillator pulse from one CPU (as
selected via the configuration control panel) to the other CPU, (3)
broadcasting a synchronization pulse between the two CPUs to check clock
synchronization in the low-order bit positions (32 to 51), and (4)
broadcasting a time-of -day clock synchronization check indication if a
synchronization erxor occurs.

Buffer Intercommunication. The high-speed buffer storage controls in
each CPU must communicate with each other to ensure that all real
storage references by both CPUs result in access to the most current
copy of the addressed data. In addition, changes to the storage protect
keys must be provided to both CPUs. Therefore, there is a hardware
interface between the two buffer controls by which each buffer control
broadcasts to the other the real storage addresses of the data changed
and the storage protect keys set.

In a two-CPU multiprocessing configuration, buffer contents are
managed as follows. When a CPU makes a request for data that is not
contained in its high-speed buffer, the data is fetched from real
storage, placed in that CPU's buffer, and sent to the CPU, just as in a
uniprocessor environment. The high-speed buffer in the other CPU is not
affected. When a CPU, say CPU A, stores data . in real storage, its
buffer is updated as well if a copy of the data is currently being
maintained in the buffer (as in a uniprocessor environment). In
addition, however, the real storage address of the data stored is
broadcast to CPU B.

CPU B then determines whether the contents of that storage location
are currently being maintained in its buffer, and if they are, the data
in the buffer in CPU B .is marked invalid. This procedure ensures that
the next fetch request for the data by CPU B will cause a real storage
fetch and access to the most current version of the data.

Similarly, when a channel in either CPU stores data in real storage,
the address of the data is broadcast to the other CPU so that each CPU
can inspect its own buffer to determine whether the data is currently
being maintained there. If so, the data is invalidated.

Both CPUs can fetch data from their respective huffers
simultaneously. During uniprocessor and multiprocessor operations, a
CPU can fetch eight bytes from its buffer in 160 nanoseconds (two CPU
cycles). This is called a local request. During multiprocessor
operations, however, if a local request for a buffer fetch occurs
simultaneously with a remote request for marking buffer information
invalid, the local request is held for 80 nanoseconds (one cycle) while
a search for the data is made and another 80 nanoseconds if invalidation
mast be performed. Hence 240 or 320 nanoseconds (3 or 4 cycles) are
required in this case.

Whenever a CPU issues a SET STORAGE KEY instruction, its TLB is
inspected and any entries that have the same real address as the address
specified in the SSK instruction are invalidated, as in a uniprocessor
environment. In addition, the real address is sent to the other CPU so
that appropriate entries in its TLB can be invalidated.

Interlock Mode for CS and CDS Instructions. When multiprocessor mode
is in effect, an interlock mechanism for the COMPARE AND SWAP (CS) and
COMPARE DOUBLE AND SWAP (CDS) instructions is activated. When a CPU

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 159

issues either of these instructions, the logical storage involved is
made to appear busy to the other CPU so that the other CPU cannot store
into the location indicated in the CS or CDS instruction between the
fetch and store operation the instruction requires. That is, the CPU
that issued the CS or CDS instruction enters interlock mode.

If one CPU, say A, is in interlock mode and the other CPU (B) also
enters interlock mode, CPU B is also prevented from performing any fetch
operations until CPU A leaves interlock mode (completes its fetch and
store operation).

Manual controls. All manual controls on the system control panel on
the 3066 function identically in uniprocessor and multiprocessor mode
except for the time-of-day clock security switch, system reset
pashbutton, load pushbutton, and system clear pushbutton, as discussed
previously.

CHANNEL RECONFIGURATION HARDWARE

Channel reconfiguration hardware is contained in all multiprocessor
models of the Model 168. It is a programmable facility that enables
either CPU to control the operation of the channels normally dedicated
to the other CPU. This hardware is designed to improve the programmed
recovery capability provided by 0S/VS2 multiprocessing support when a
CPU fails and must be removed from the operational system.

Channel reconfiguration is accomplished by the issuing of a DIAGNCSE
instruction in the CPU that is to activate the channel reconfiguration
hardware. The maintenance control word (MCW) specified in the DIAGNOSE
instruction has two bits that control the channel reconfiguration
hardware. One bit controls the enabling and disabling of the channel
reconfiguration hardware in the activating CPU. The other bit activates
and deactivates the channel reconfiguration hardware for one specific
channel in the other CPU.

Only one channel can be reconfigured to the activating CPU at a time.
The address of the channel to be reconfigqured is also specified in the
MCW. Multiprocessor mode must be in effect in order for channel
reconfiguration to be activated via a DIAGNOSE instruction.

When one CPU issues a DIAGNOSE instruction to activate channel
reconfiguration for a channel in the other CPU, the channel control
interface for the specified channel is diverted to channel 6 in the
activating CPU. Only the major CPU-to-channel and channel-to-CPU
control lines are diverted to the activating CPU. (See line from
channel signal conversion to execution unit in Fiqure 20.15.3.) The
data flow lines are not affected and therefore channel data rates are
not changed when channel reconfiguration is activated for a channel.

When channel reconfiguration is activated, the activating CPU can
issue I/0O instructions and receive 1/0 interruptions from the
reconfigured channel in the other CPU. Channel 6 must be used in 1/0
instructions to the configured channel and the channel identification of
6 is stored with any logout data for the reconfigured chanrel. A
reconfigured channel uses the prefix value of the activating CPU for CsSW
storing, CAW storing, and normal channel logouts.

Channel reconfiguration for a channel is reset by issuing a DIAGNOSE
instruction with the enable bit on and the activate bit off. Channel
reconfiguration is also reset when a switch from multiprocessor to
uniprocessor mode is made and when any type of reset, including power on
reset, occurs.

160 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

During the time a chamnel is reconfigqured to the activating CPU,
channel 6 in the activating CPU can be involved in an 1/0 operation that
was started before channel reconfiguration was activated. However, the
activating CPU cannot receive any 1/0 interruptions or issue any I1/0
instructions to its own channel 6 until after channel reconfiguration is
reset.

By activating and deactivating the channel reconfiguration hardware
for one remote channel at a time, the activating CPU can control the I/0
operations on all the channels in the other CPU as well on its own
channel 6 and other channels. Note that the activating CPU can receive
an I/0 interruption from a given remote channel only during the time the
remote channel is reconfigured to the activating CPU and the activating
CPU is enabled for I/O interruptions from channel 6.

For most efficient system operation after a CPU failure occurs that
causes channel reconfiguration hardware to be activated, all paths to
symmetric I/0 devices from the malfunctioning CPU should be varied off-
line by the operator as soon as possible.

Use of channel reconfiguration hardware does not affect the I/0
devices that can be attached to the Model 168 channels in a tightly
coupled multiprocessing configuration. However, proper operation of
time-dependent I/0 devices cannot be assured during the periods of time
channel reconfiguration hardware is active.

Certain components and portions of the CPU whose channels are to be
reconfigured cannot be powered off while the channel reconfiguration
hardware in the other CPU is active, since certain portions of this
CPU's hardware are required by the channel reconfiguration hardware.
Specifically, the three CPU frames (01, 03, and 04) in the 3168
Processing Unit, 3066 System Console, 3068 Multisystem Communication
Unit, 3067 Power and Coolant Distribution Unit, and channel convert
logic in the 3168 Processing Unit must be powered on. (That is, power
must remain on in the units through which the data flow lines pass in
order for channel reconfiguration hardware to operate.) The Integrated
Storage Controls in the 3168 Processing Unit must also be powered on if
devices attached to it are to operate under control of the channel
reconfiguration hardware.

Channel reconfiguration can be performed by both CPUs in a
mltiprocessing configuration but should be activated by only one CPU at
a time. This restriction must be controlled by programming, since there
is no hardware check that prevents both CPUs from attempting to activate
the facility simultaneously.

For correct logical operation of channel reconfiguration programming
support, the CPU whose channels are to be reconfigured should be in the
stopped state. Therefore, diagnostic programs cannot be performed in
this CPU while channel reconfiguration hardware is activated by the
other CPU. Note also that a CPU cannot activate channel reconfiguration
hardware while the Dynamic Support System (DSS) is active and DSS cannot
take control of the system while channel reconfiguration is active.

The support of channel reconfiguration hardware provided by the
0S/Vs2 multiprocessing control program offers the following recovery
advantages:

e Error conditions are posted and I/0 error recovery facilities are
invoked only for those 1/0 operations that actually had an error on
the failed CPU instead of for all I/0 operations in progress at the
time of the CPU failure.

e Recovery of I/0 operations in progress on asymmetric devices
attached to the failed CPU are handled in most instances (where

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 161

time-dependencies are not involved) without the necessity of halting
I/0 operations to the device and requesting operator intervention to
manually switch the device to the operative CPU.

e There is no need for the multiprocessing configuration to enter the
wait state for operator action when a CPU fails in a configuration
in which the tightly coupled multiprocessing configuration is
sharing with another system direct access storage that can be
updated.

60:15 RECORDING AND DIAGNOSTIC PROGRAMS

The same diagnostic programs (ST370, HDM, etc.), microdiagnostics
consisting of approximately 25 programs (fault locating tests), and
recording programs (RMS, SEREP, EREP, OLT, LOA, etc.) are provided for
multiprocessor as for uniprocessor configurations and are updated as
appropriate for multiprocessing hardware. Additional microdiagnostics
are provided to test multiprocessing hardware.

When a malfunction occurs in a multiprocessor CPU, the appropriate
nonresident microdiagnostics provided for uniprocessor models should be
executed first. A minimum system consisting of the malfunctioning CPU,
1024K of processor storage, one channel and tape unit for loading the
tests, and the 3066 System Console are required to execute these
microdiagnostics and uniprocessor mode must be in effect. These
components can be logically and physically removed from the
mltiprocessing configuration without quiescing system operations, as
discussed previously. The other system can continue to perform
production processing while microdiagnostics are being executed in the
malfunctioning CPU.

If these microdiagnostics do not locate the malfunction, the MP Model
Half Duplex Functional Test should be executed next. This requires the
malfunctioning CPU plus all its installed processor storadge. This test
can be executed concurrently with production processing in the other
system provided the other CPU has enough processor storage to operate.

The following microdiagnostics, which require both systems for their
execution, are to be executed in the sequence listed to test tightly
coupled operation of the mul tiprocessing configuration:

e MP Model Full Duplex Functional Test

e MP Model Hardware Functional Test

e MP Model Full Duplex Functional and System Test

e Channel Prefixing and Channel Reconfiguration Test

In order to replace a malfunctioning card in the 3068, the oscillator
control switch must be set to the operational system or to local, and
processor storage must not be cross-configured. Card replacement in a

CPU requires that the malfunctioning system (that portion on which
diagnostics were run) be powered down.

60:20 PLANNING CONSIDERATIONS

Successful installation and operation of a shared storage
multiprocessing installation requires consideration of some factors that
need not be considered in a uniprocessor environment or that are of less
importance. Additiomal planning considerations are discussed in this
subsection.

162 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

PLANNING FOR MAXIMUM SYSTEM AVAILABILITY

System availability is directly affected by the reliability of the
components of the system (both hardware and programming) and by the
sexrviceability of the system components. The reliability of a component
is defined in terms of its frequency of outage (solid failures in a
given time period) while serviceability is measured in terms. of
diagnostic facilities available and the duration of time required for
repair.

The four components of a system that affect its net productive time
are the hardware configuration, the environment in which the system
operates, the operating personnel, and the operating system (control:and
processing programs). The following discusses the reliability and
serviceability features of these components as they relate to a Model
168 shared storage multiprocessing configuration and the steps that can
be taken by system designers to maximize the availability of such a
system.

Hardware Configuration

The reliability of the hardware components of a Model 168
multiprocessing configuration (like that of a uniprocessor model 168
. system) is enhanced by the use of an inherently more reliable technology
than that used in System/360 and by the implementation of extensive
hardware retry, programmed retry, automatic hardware deletion,
programmed hardware removal, and programmed recovery procedures that
prevent system outages because of intermittent or solid failures in many
cases.

Hardware serviceability is improved by extensive error recording, of
intermittent as well as solid errors, and by the availability of inline"
diagnostics, online diagnostics, and enhanced fault-locating
microdiagnostics. In general, more diagnostic data and automated
diagnostic routines (such as the Logout Analysis Program for the Model
168) are provided for System/370 than for System/360.

While system design cannot improve the inherent reliability of any
hardware component, a shared storage multiprocessing system can be
designed such that the failure of one or more hardware components has
minimal impact on the critical subsystem. At the least, critical
hardware components should be duplexed. Critical hardware components
are those that make up the minimal critical subsystem—-that portion of
the total hardware configuration that is necessary for the performance
of productive work.

For maximum availability, CPU features, channels, and I/0 devices
should be symmetrically conf igured on the two CPUs and channel-switching
or string-switching features should be installed on control units, where
available, to provide access to I/0 devices from both CPUs. Control
unit redundancy (cross-chamnel switching for tape units, 2844 Auxiliary
Storage Control for the 2314, string switching for 3330-series, 3340,
and 3350 disk storage, etc.) should be used for critical I/0 devices to
eliminate the loss of access to critical I/0 devices because of a
malfunctioning control unit.

System designers can plan to use standard and optional serviceability
features that are provided, such as OLTEP. When system usage. is being
planned, adequate time should be allocated for preventive maintenance
procedures. In a shared storage multiprocessing environment,
maintenance can be performed on one CPU while the other CPU continues
processing (assuming that the system doing productive work consists of
the minimal critical subsystem).

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

163

Operating Environment

The hardware components of the system configuration have been
designed to operate within certain environmental constraints of
tenperature, humidity, cleanliness, etc., as detailed in System/370
Installation Manual - Physical Planning (GC22-7004). Any unit or system
installed in an environment that violates any of these constraints can
be expected to experience increased error occurrence and unavailability.
Hence system design should ensure that the required physical environment
is provided and maintained to avoid outages caused by 1mproper physical
surroundings.

Operating Personnel

Knowledgeable operators are highly desirable in any data processing
installation. However, in a high-availability environment, having well-
trained operators is of even more significance because operator errors
or lack of proper responses to the changing operational environment can
severely impact system availability.

Although the operator has a single interface to both systems in a
Model 168 multiprocessing configuration and less action is required for
operation of this configuration, as compared to the operational
requirements of two independent Model 168 uniprocessors, successful
operation of a multiprocessing configuration requires a little more
knowledge than is required to run one Model 168 uniprocessor
configuration.

The major new operational procedures that the operator must learn are
those associated with hardware reconfiguration, that is, use of the
configuration control panel and the confiqurability commands and
procedures associated with 0S/VS2 multiprocessing support.

An installation-~designed operator checklist form for the
configuration unit is a highly desirable operator aid. These checklist
forms, marked with the most frequently used configurations, should
become a standard part of job setup instructions for the operator.

Operating System

The reliability of the control and processing programs that are
included in the operating system affect the availability of the system.
As discussed previously, higher reliability and availability than that
provided by previous operating systems were major design objectives of
0S/VS2 MVS. Processing program development procedures for the
installation should include thorough processing program testing and use
of available debugging and problem determination aids as part of the
standard application development procedures. These procedures are even
more important in the developmwent of routines that interface with the
contrxol program.

Despite extensive program testing, however, it is not always possible
to test every condition that can arise during the execution of a
program. Hence, processing program errors will occur that can cause
termination of system operations, particularly during the initial use of
any program. Therefore, the use of restart (such as advanced checkpoint
restart and warm start) procedures, should be preplanned so that system
operation can be restarted as quickly as possible after an alnormal
termination.

164 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

SECTION 65: DIFFERENCES BETWEEN THE MODEL 3 AND THE MODEL 1

Model 3 of the Model 168 differs from the Model 1 primarily in its
faster internal performance and the improved serviceability and
availability made possible by the service processor unit, which is
standard in the Model 3.

A tightly coupled Model 168 multiprocessing configuration can include
any combination of Model 3 and Model 1 systems. The same standard
features are provided for both models except for the amount of high~-
speed buffer storage. The same optional features are available for the
Model 3 (uniprocessor and multiprocessor models) as for the Model 1
except for the 16K Buffer Expansion feature, which is not available for
the Model 3.

A Model 1 CPU (3168-1 Processing unit) can be field-converted to a
Model 3 CPU (3168-3 Processing Unit). The standalone 3066 Model 2
System .Console for the Model 1 is also used with the Model 3. It must
have the field-installable 3168-3 attachment feature in order to be used
with a Model 3. The 3067 Model 3 Power and Coolant Distribution Unit
must be used in a Model 3 system configuration. A 3067 Model 2 can be
field converted to a 3067 Model 3. A motor generator set is required
for the Model 3 as for the Model 1. The same motor generator can be
used with a Model 3 as with a Model 1.

The Model 3 has the same processor storage capacity as the Model 1
(from one megabyte to eight megabytes in one-megabyte increments).
Processor storage models for the Model 3 are U31 to U38 for unlprocessor
systems and M31 to M38 for multiprocessor systems.

The same standalone channels (2860, 2870, and 2880) and 1I/0 devices
attach to the Model 3 as to the Model 1. The 3165/3168 attachment is
required on the standalone channels attached to a Model 3.

The model-dependent fixed storage locations are the same in the Model
3 as in the Model 1 (see Figure 20.10.3) except for minor differences in
a few fields in the CPU extended logout area. For example, the buffer
size installed bits for 8K and 16K are no longer used.

Both models are supported by the same IBM-supplied programming
systems, that is, OS MFT and MVT Releases 21.6, 21.7, and 21.8, OS/vsi,
0OS/VS2 Releases 1 and up, and VM/370. OS MFT and MVT Releases 21.7 and
21.8, 0OS/VSl Releases 1 and up, 0S/VS2 Releases 1 and up, and VM/370
Releases 2 and up are modified to process the model-dependent logout
area data for the Model 3 that differs slightly from that of the Model
1. Although the EREP program in Release 21.6 of 0S8 MFT and MVT will not
be modified, it can still be used on a Model 168 Model 3.

A program can determine whether it is operating on a Model 1 or a
Model 3 by issuing the STORE CPU ID instruction. The version field byte
(bits 0 to 7 in the doublewoxd stored) indicate the model of the 3168
processor being used.

65: 05 PERFORMANCE ENHANCEMENTS

The internal performance of the Model 3 Model 168 CPU is generally in
the range of 5 to 13 percent faster than that of the Model 1 CPU (using
a 16K buffer) when the same hardware configurations, programs, and
programming systems. that do not use 2K pages are used. The increase in

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 165

Model 3 internal performance will be less for users of VSl since it
supports a 2K page size.

The faster internal performance of the Model 3 is the result of the
following differences between the Model 3 and the Model 1:

e 32K of high-speed monolithic buffer storage is standard for the
Model 3. The 32K capacity is not utilized when a page size of 2K is
being used. The buffer operates at a capacity of 16K in this
situation (see buffer discussion below). Buffer fetch times, the
way in which the buffer is used, and the buffer assignment algorithm
are the same in both models. The 32K buffer and processor storage
contain 128 columns, as shown in Figure 65.05.1, instead of 64
columns as in the Model 1. A column in the Model 3 buffer contains
eight 32-byte blocks, as does a column in the buffer in the Model 1.

e The execution time of each of the following instructions is
improved: SUPERVISOR CALL (SVC), MONITOR CALL (MC), STORE THEN OR
SYSTEM MASK (STOSM), STORE THEN AND SYSTEM MASK (STNSM), INSERT
'STORAGE KEY (ISK), INSERT PSW KEY (IPK), SET PSW KEY FROM ADDRESS
(SPKA), LOAD PSW (LPSW), SET SYSTEM MASK (SsSM), STORE CLOCK (SICK),
and SET PROGRAM MASK (SPM). 1In addition, under certain conditions
execution of the following instructions is faster in the Model 3: OR
CHARACTERS (0OC), AND CHARACTERS (NC), EXCLUSIVE OR CHARACTERS (XQ),
TEST AND SET (TS), COMPARE LOGICAL CHARACTERS UNDER MASK (CLM),
INSERT CHARACTERS UNDER MASK (ICM), STORE CHARACTERS UNDER MASK
(STCM), COMPARE AND SWAP (CS), and COMPARE DOUBLE AND SWAP (CDS).
These instructions are more heavily used by the virtual storage
programming systems.

e Improved execution time for all levels of interruption

Improvements in the execution time of the instructions listed above
and all interruptions are made possible by the increase in the size of
writable control storage in the Model 3. The Model 3 has 1024K instead
of 512K words of writable control storage. A denser technology is used
for the 1mplementat10n of writable control storage in the Model 3 so
that less space is required for 1024K words in the Model 3 than for 512K
words in the Model 1.

The 32K high-speed buffer in the Model 3 is also implemented in a
denser technology than is used for the high-speed buffers in the Model 1
and it requires less space than a 16K buffer. The 32K buffer operates
at its 32K capacity when the Model 3 CPU is operating with dynamic
address translation mode disabled or with dynamic address translation
mode and a 4K page size enabled. When dynamic address translation and a
2K page size are enabled, the 32K buffer operates at a 16K capacity just
like the 16K buffer in the Model 1.

The reason for using a 16K capacity when a 2K page size is enabled is
the following. Bits 20 to 26 of the referenced processor (real) storage
address are required to determine the column address (0 to 127) in the
buffer address array for a 32K buffer size. For a 16K buffer size,
processor storage address bits 21 to 26 are required to determine the
column address (0 to 63).

When a 4K page size is used, bits 20 to 31 of the referenced virtual
storage address are the same as bits 20 to 31 of the corresponding real
storage address and do not need to be translated. However, when a 2K
page size is used, bit 20 must be translated as only bits 21 to 31 in
the virtual and corresponding real storage addresses are equal.

166 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

ADDRESS ARRAY

))L

13-bit e
Block 0 address)y
A SN
1
; ad;
Block Address 2
Register Contents 22
® Block address 3
(processor storage 32 1,024 block address
address bits 8 to 20) 4 registers
® Block valid bit 32
o Block delete bit 5
-1 ¢
6
-— ‘\;
7
J A
Column 0 1 b 127
BUFFER STORAGE — 32K
))
t(
Block O | 32 bytes 4K
1 ¢
1
&
2
1t
3
s 1,024 blocks
4
—
5
¢
6
3!
7
1t
Column 0 1 127
PROCESSOR STORAGE
— -
Block 0 4K
s
1 4K
))
ASRY
J L
Y
n 4K
J A
Column 0 1 S 127

Figure 65.05.1. High~speed buffer and processor storage organization
in the Model 3

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 167

Therefore, if the 32K capacity were to be used for a 2K page size, .
bit 20 would not be available for buffer address array addressing until
after address translation had been performed. By using a 16K capacity
for a 2K page size, bits 21 to 26 are available for accessing the buffer
address array before address translation is performed.

Whenever the buffer in the Model 3 is reset, it is set to operate at
its 32K capacity. The buffer is reset when one of the following occurs:

e IPL, program reset, power on reset, or system clear

* CPU reset caused by any condition except pushing the computer reset
pashbutton

e All console loads except load microdiagnostics
e Enter reconfiguration pushbutton is pressed

e SIGNAL PROCESSOR (multiprocessing) instruction is issued that
specifies one of the orders that is defined to cause a buffer reset
(IPL, program reset, IMPL, initial CPU reset, or CPU reset)

¢ Ioad control instruction is issued to change the page size in
effect. When page size is changed from 4K to 2K, buffer capacity is
reduced to 16K. When page size is changed from 2K to 4K, buffer
capacity is increased to 32K.

65:10 THE SERVICE PROCESSOR
FUNCTIONS AND GENERAL OPERAT ION

The service processor is standard in the Model 168 Model 3. It is a
hardware unit that is contained in the Model 168 CPU (3168-3 Processor
Unit), but that is functionally separate from the CPU. Its function is
to provide greater maintenance capabilities for the Model 3 than are
provided by the optional 2955 Remote Analysis Unit for the Model 1
(which is not available for the Model 3). The service processor
supports an interface to RETAIN/370 that offers the same functions as
the 2955 interface to RETAIN/370 in the Model 1 as well as enhancements
that improve the remote problem analysis capability for the Model 3.

The service processor provides the capability of continuously
monitoring selected logic points in the Model 168 CPU, capturing and
storing status data when an intermittent or solid hardware error occurs
(or at other specified times) for later use by a customer engineer,
producing a printout of the stored data for use by a local customer
engineer, and transmitting the stored data over a communication line for
remote analysis by a customer engineer specialist in the Large System
Support Group in Poughkeepsie.

The capabilities of the service processor are designed to make more
timely information available for both on-site and remote customer
engineer analysis so that fault location, particularly for intermittent
erroxrs, which are frequently difficult to duplicate, can be accomplished
more quickly.

The components of the service processor are the processor unit, trace
unit, two battery-powered counters, internal disk file, CE panel,
printer control for an optional 3213 Printer, corporate standard
interface, and modem, as shown in Figure 65.10.1.

168 A Guide to the IBM System/370 Model 168 for Systems/370 Model 165 Users

8 movable probe
and 191 fixed line
locations in CPU

SERVICE PROCESSOR

A 4
Trace CE
Unit Panel
To
disk file
—_— To
Mstang- 1 Modem .
| alone | Corporate or disk ;r? disk CR Counter
| channel @4 Standard ‘L’ Processor e Power-off
i in Interface Counter
l_system
—— To CSI, printer
control, or modem
3213 Internal
Printer Modem Disk
Control File
"l""_!_—"l r""'{"':
| 3213 ' lpata |
| Printer | lAccess |
\ ~--d lArrangement|
Se_--" L. -J
Communication
line to
Raleigh
RETAIN/370
Communication lines
to Poughkeepsie
Ce 3270 soe 3270 Large System
Specialists display display Support Group
Figure 65.10.1. components of the service processor in a Model 3

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

169

The .service processor operates under the control of the stored-
program-controlled processor unit. The service processor normally
operates simultaneously with the operation of the Model 168 CPU to
capture status data and record it on the internal disk file component,
usually when a hardware failure occurs.. The customer engineer controls
the status data collected by setting switches on the CE panel component.
When operating in this manner (recording mode), the service processor
never steals any machine cycles from the Model 168 CPU.

Using the CE panel on the service processor, the customer engineer
can also operate the service processor independently from the Model 168
CPU. In this mode, the customer engineer can print the status data
stored on the internal disk file on the 3213 printer or transmit the
status data to a remote location for analysis. The entire service
processor except for the trace unit is powered independently from the
Model 168 CPU. Therefore, the service processor can perform functions,
other than status data collection, under control of the CE panel in the
service processor even when the Model 168 CPU is not operating or is
powered down (for a maintenance operation, for example).

The way in which the service processor is powered on and off is
determined by the setting of a switch on the CE panel of the service
processor. If the switch is set to remote, the service processor is
automatically powered on or off when the Model 168 CPU is powered on or
off, respectively. When the switch is set to local, the power on and
power off pushbuttons on the CE panel are used to power the service
processor on and off.

When power is turned on in the service processor, an IMPL of
diagnostic routines is automatically initiated. Pressing the SVP IMPL
pushbutton on the CE panel also causes these diagnostics to be loaded.
Once loaded, the IMPL diagnostics exercise the service processor to
determine whether it is functioning correctly. If so, the service
processor automatically goes into the recording mode of operation. 1In
this mode, the trace unit of the service processor collects data from
certain locations in the Model 168 CPU during its operation.

Operation of the service processor in the Model 168 is always
controlled by the local customer engineer. If a customer engineer in
the lLarge System Support Group in Poughkeepsie wishes additional history
data or wishes to have a function performed on the Model 168, he
communicates the request to the local customer engineer via telephone
and the local customer performs the function.

One communication line is used for both the transmission of data to
Poughkeepsie via RETAIN/370 (using data mode) and voice communication
between the local customer engineer and a specialist in Poughkeepsie
(using voice mode). When either customer engineer wishes voice
communication with the other, he sounds an alarm and then goes from data
to voice mode.

If an error occurs in the service processor during its operation, a
switch on the CE panel is inspected by the processor unit to determine
the action to be taken. If the error switch is set to the stop
position, operation of the service processor terminates. If the switch
is not set to the stop position, an IMPL is initiated. The diagnostic
routines then determine whether the service processor can continue
operating based on the type of error condition that exists.

PROCESSOR UNIT

The processor unit contains an arithmetics/logic unit, read-only
control storage, data registers, and a main storage. It operates under

170 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

the control of a program whose instructions are similar in format and
mnemonics to System/370 instructions.

The basic functions of the processor unit are to (1) take data from
the trace unit buffers and write it to the internal disk file and (2)
read data from the internal disk file and transfer it to the printer
control, corporate standard interface (CSI), or modem component of the
service processor. The processor unit can also transfer data from the
corporate standard interface to the modem and transfer data to the
internal disk file from the corporate standard interface. The processor
unit can perform only one of its functions at a time.

The control program routines for the processor unit are contained on
the internal disk file in the service processor. Some.of these routines
are always resident in main storage of the processor unit during its
operation. The resident routines are loaded into the processor unit
after a successful execution of the IMPL diagnostics. Other control
program routines are brought into the processor unit only when they are
required to service a request. ‘

The basic control routine is a polling loop. This routine constantly
interrogates each of the other components of the service processor
(trace unit, corporate standard interface, etc.) on a rotating basis to
determine whether the component has an outstanding request. When a
request is recognized, polling stops and the appropriate control routine
is loaded into the processor unit to service the request. Polling
continues as soon as the request has been processed.

TRACE UNIT

The trace unit receives certain status data from the Model 168 CPU
while the latter is operating, stores the data in trace buffers, and
when a predetermined event occurs presents the trace buffer data to the
processor unit for storing on the internal disk file.

The trace unit obtains the.folrowing data:

e Information from 191 fixed lines to points in the Model 168 CPU.
Every machine cycle (80ns), the data from these 191 fixed points is
placed in a trace buffer. The buffer has a maximum capacity of 32
machine cycles of data. A wraparound technigque is used to store
data in the trace buffer so that the buffer always contains
information regarding the last 32 machine cycles.

e Information from eight movable probe points in the Model 168 CPU
that the customer engineer can establish. Every ten nanoseconds,
information from these probe points is placed in a second trace
buffer. The capacity of this buffer is 256 ten-nanosecond cycles.
A wraparound technigque is also used to store data in this buffer.

¢ Up to 224 doublewords of logout data from the Model 168 CPU. This
is the data logged in the logout area in lowest addressed processoxr
storage when a CPU logout occurs.

Information from the 191 fixed points and eight probe points
continues to be stored in the trace buffers in wraparound fashion until
a predetermined event occurs. When the event is recognized, recording
stops temporarily and the fixed point and probe data in the trace
buffers is sent to the processor unit. The appropriate control program
routine then formats the data, time stamps it, and writes it to the
internal disk file. Trace unit recording resumes as soon as the trace
data has been transferred to the processor.

A Guide to the IBM Systemv/370 Model 168 for System/370 Model 165 Users 171

The event that is to cause existing trace data to be written is
indicated via the CE panel and can be one of the following: a machine
check interruption (for any enabled soft or hard machine check
condition), main storage address compare, instruction counter address
compare, control storage address compare, hang-detect, SIGNAL PROCESSOR
instruction from the other CPU in a tightly coupled multiprocessing
configuration, or a logic line input that can be wired to any point in
the CPU or a fix card.

When the predetermined event occurs, an interval of approximately 655
microseconds is established. If a CPU logout occurs before the interval
expires, it is assumed to be associated with the event that caused this
recording to take place. The CPU logout data in the trace buffer is
formatted, time-stamped, and recorded on the internal disk file along
with the fixed point and probe data. If a CPU logout does not occur
within the interval, logout data is not written to the internal disk
file.

The CPU logout data is divided into three areas for the purpose of
recording: status area (corresponding to the fixed logout area from
processor storage locations 0 to 184), local store area (corresponding
to the fixed logout area between locations 216 and 511), and the CPU
area . (corresponding to the model-dependent CPU extended logout area
beginning at the location indicated in control register 15). The CPU
area is further subdivided into subareas so that the printing of CPU
logout data can be done on a selective basis by area and by subareas
within the CPU area recordings.

COUNTERS

The CR (continuously running) counter is a battery-powered counter
that is always running to maintain the time of day. When power is on in
the Model 168 CPU, the CR counter runs from this power. When CPU power
is off, the CR counter runs from the power supplied by its battery. The
time in the CR counter is synchronized with the time in the time-of-day
clock in the Model 168 CPU whenever a SET CIOCK instruction is issued
that sets the time-of-day clock. The CR counter is used to time stamp
trace data records that are written to the internal disk file.

The power-off counter is also a battery-powered counter. It runs
only when power is off in the Model 168 CPU. This counter starts to run
when CPU power is turned off and stops running when CPU power is turned
on. It can be used to keep account of how long CPU power is turned off.

INTERNAL DISK FILE

The internal disk file used in the service processor is the same file
that is used to load microprograms in Models 158 and 168. The disk file
is used to hold the control programs required by the processor unit and
for storage of trace data records.

The disk file can contain a maximum of 16 trace data records. When
this maximum is reached, the action taken depends on the mode set via
the CE panel. If wrap mode is in effect, each successive trace record
replaces the oldest existing trace record so that the file contains only
the last 16 trace records. If wrap mode is not in effect, the existing
trace records are not overwritten and tracing operations terminate.

The local customer engineer can clear the internal disk file using a
toggle switch on the CE panel of the service processor. All existing or
selected event class records can be cleared. Clearing consists of
zeroing the header records that are associated with the existing data
records. The data records themselves are not zeroed.

172 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

CE PANEL

The CE panel in the service processor enables the customer engineer
to (1) establish operating conditions for the trace unit, as discussed
previously, (2) transfer data records from the internal disk file to the
modem or 3213 printer control component of the . service processor, (3)
clear the internal disk file, and (4) execute microdiagnostics to test
the service processor for correct operation. When the trace unit
presents data to the processor component, the data is always written to
the internal disk file. The data cannot be transferred directly to the
modem or printer control component.

The customer engineer controls the transfer of status records from
the internal disk file using a set of disk data control toggle switches
or an OLT (online test) routine. The customer engineer uses a set of
diagnostic selection switches to control the service processor
diagnostic routine to be executed. When the customer engineer wishes to
transfer status records or execute a specific diagnostic routine, he
turns on the appropriate toggle switch and pushes the execute button on
the CE panel. The function indicated by the toggle switch is then
performed.

Separate destination toggle switches are provided for trace records.
Trace records can be directed to the printer control component for
printing on the 3213 Printer or to the modem component for transmission
to RETAIN/370 in Raleigh.

A set of printer control toggle switches is also used when trace data
recoxrds are to be transferred to the printer control component. These
toggle switches are used to select the types of trace data records that
are to be printed: fixed line status data, movable probe status data,
header, or CPU logout records. Status area and local store area and/or
CPU area records can be selected for printing when the CPU logout toggle
switch is turned on. When CPU area records are selected, two microfiche
selection switches are also used to indicate the subarea of the CPU area
whose records are to be printed.

In order to transfer trace records from the internal disk file to the
modem component, the modem must be enabled. Activation of the modem can
be accomplished only by inserting the CE key (same CE key as is used for
the Model 168 CPU) in the activate TP slot in the CE panel in the
service processor. Once the modem is activated, the TP active/key reset
pushbutton lights up and the CE key can be removed. The modem is
deactivated by pressing the TP actives/key reset pushbutton.

The local customer engineer can perform one of the following
operations involving the service processor at the same time normal
system operations are taking place in the Model 168 system:

e Print trace data from the internal disk file on the 3213 Printerx.
This is controlled via the CE panel.

e Send trace data from the internal disk file to RETAIN/370 in
Raleigh. This is controlled via the CE panel.

e Print trace data from the internal disk file on a printer attached
to the channel to which the corporate standard interface component
of the service processor is connected. This is accomplished by
executing an OLT under OLTEP control.

PRINTER CONTROL
The printer control component is provided to enable a 3213 Printer to
be attached directly to the service processor. Attachment of this

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 173

printer is optional. Using the CE panel, the customer engineer can
cause all or selected trace data records from the internal disk file to
be printed on the 3213. Operation of the 3213 printer is controlled
entirely by the CE panel and is independent from operation of the Model
168 CPU.

CORPORATE STANDARD INTERFACE

The corporate standard interface (CSI) is provided to connect the
processor unit of the service processor to any one System/370 or
System/360 channel. Normally it would be connected to a 2870
Multiplexer Channel in the Model 168 configuration. A switch on the CE
panel is used to enable or disable the connection between the CSI and
the processor unit.

This interface can be used by the customer engineer, for example, to
print trace data records on a local system printer that is faster than
the 3213, such as a 3211 or 1403. The processor unit in the service
processor can also receive input from the CSI. Using this capability, a
program running in the Model 168 CPU (such as an OLT) can send data to
the modem component for transmission to a remote location or read data
from the internal disk file.

An OLT that runs under OLTEP or OLTSEP is provided that reads trace
records (status and CPU logout) from the internal disk file wvia the CsSI,
formats the data, and writes it to an output device (usually a printer).
Another OLT is provided that reads only the CPU logout trace records
from the internal disk file (via the CSI). This OLT then invokes the
Logout Analysis Program to operate on the CPU logout data and print the
results on a local printer via the CSI.

MODEM

The modem component provides the means of connecting the service
processor to RETAIN/370 in Raleigh via a data access arrangement and
communication line for the purpose of remote problem analysis. The
modem has two modes of operation, the remote program mode and the
teleprocessing link mode.

The remote program mode enables the service processor to perform the
same functions for the Model 3 as can be performed for the Model 1 using
the 2955 remote analysis unit. The same OLTs that are used with the
2955 can be used with the modem in remote program mode. That is, an OLT
running under OLTEP concurrent with normal system operations (or under
OLTSEP in a standalone environment) can send SYSl.LOGREC data to the
RETAIN/370 system in Raleigh, after which the modem connection can be
disabled.

When the modem is operating in teleprocessing link mode, the local
customer engineer can transmit trace records contained on the internal
disk file to the RETAIN/370 system using the CE panel on the service
processor, as discussed previously. This data is then transmitted to a
specialist in the Large System Support Group in Poughkeepsie or another
technical support group connected to RETAIN/370. The specialist
interfaces with RETAIN/370 using a 3270 display station.

If the specialist requires any additional information or history data
from the Model 168, he requests it from the local customer engineer via
telephone. Similarly, once the specialist has analyzed the problem, he
communicates the information to the local customer engineer via
telephone.

174 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

The Model 3 offers the following improvements in the remote analysis
capability when compared with that provided for a Model 1:

e Additional and more timely status data is made available to the
specialist, as provided by the trace unit of the service processor.

e The specialist in Poughkeepsie uses a 3270 display unit to
communicate with the RETAIN/370 system in Raleigh. This enables the
specialist to see much more history data displayed concurrently than
does the display device used in a Model 1 environment.

e The analysis and data reduction capabilities of the programs that
operate on the history data sent to RETAIN/370 have been enhanced
and enable the specialist to be more selective in his requests for
data.

The features listed above are designed to enable a customer engineer
specialist in the Large System Support Center to diagnose failures in a
Model 168 more frequently without the need to go to the installation
itself. In addition, status data about intermittent exrrors can be
analyzed by the specialist concurrently with normal system operations.

As in a Model 1 environment, a 2955 OLT operating under OLTSEP can
control the operation of the HDM Diagnostic Program in the Model 168
"Model 3 CPU. A service processor maintenance program is also provided
that operates under the control of the HDM Diagnostic Program. This
program runs diagnostics that test the operation of the lines between
the Model 168 CPU and the service processor.

ADVANTAGES

The advantages of the :service processor in the Model 3 Model 168 are
the following:

¢ More detailed information about intermittent and recoverable errors
is provided than for the Model 1 and on a realtime basis. The
customer engineer can obtain this information and perform prohlem
analysis concurrently with normal system operations.

e The need to try to re-create intermittemt failures for analysis by
the customer engineer is reduced.

e More detailed information about solid errors is provided than for
the Model 1. This data can be analyzed by the local customer
engineer or sent via a communication line to the Large Systems
Support Group for analysis by customer engineers with more
expertise.

e Customer engineer operation of the service processor is controlled
by a separate CE panel . in the unit instead of by the operator
console so that problem analysis operations can be performed
concurrently with normal system operations.

¢ The service processor is physically independent of the Model 168 CPU
80 that no processing time is taken from the Model 168 CPU and an
error in the service processor does not impact the Model 168 CPU.
Similarly, the service processor can operate when the Model 168 CPU
is down for maintenance.

The detailed, timely status information provided about errors, remote
analysis capability, and concurrent problem analysis capabilities
provided by the service processor should result in a reduction in the
number of times normal system operation is interrupted for intermittent
error analysis and the amount of time the system is not operational for

A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users 175

the purpose of locating the cause of solid failures. Since more data
about failures is provided by the service processor, faster error

analysis should occur even if the remote analysis capability is not
utilized.

176 A Guide to the IBM System/370 Model 168 for System/370 Model 165 Users

SECTION 67: ATTACHED PROCESSOR SYSTEM

67:05 SYSTEM DESCRIPTION

The Model 168 Attached Processor (AP) System offers uniprocessor
Model 168 users increased internal pexformance. The AP System is a
Model 168 system configuration in which an additional instruction
execution capability is provided. An AP System contains two tightly
coupled processor units (a Model 168 Model A3 CPU and a 3062 Attached
Processing Unit) that share all processor storage. in the Model A3 CPU
and execute under the control of a single multiprocessing operating
system.

The 3062 Attached Processing Unit (APU) is an instruction processor
that is capable of executing all but two of the same instructions as the
Model A3 CPU. Hence, a Model 168 AP System can execute two instruction
streams simultaneously, as does a Model 168 tightly coupled
multiprocessing configuration. The AP System is supported by 0S/Vs2
MVS, as of Release 3.7, and TSS/370.

The AP System is a growth system for Model 168 uniprocessor users who
require additional internal performance. The internal performance
improvement realized when a uniprocessor Model 168 system is upgraded to
a Model 168 AP System is dependent on the amount of multitasking that
can be achieved. The Model 168 AP System is capable of providing
internal performance 1.5 to 1.8 times that of a Model 168 Model 3
uniprocessor system, depending on the amount of multitasking in the job
streams involved.

The Model 168 AP System also offers better price performance than two