o

EM Field Engineering Education

Supplementary Course Material

0S/HASP
Volume 2

PREFACE

This document is intended for the use of IBM FE
Programming System Representatives enrolled in
course 10191.

PRELIMINARY EDITION (May 1971)

This publication has been printed in a preliminary format
so that it would be available to the intended users in time
for training on this course. This preliminary manual may
contain typographical errors that would normally be
corrected before publication. This edition is not eligible for
suggestion awards, however, your comments will be
appreciated.

Address any comments concerning the contents of this publication to:
IBM, Field Engineering Education Media Development Center, Dept 927,
Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1971

HASP

Section

9.10

9.11
10.0
10.1
10.2
10.3
10.4
11.0
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9

HASP Executor Services

Buffer Services

Unit Services

Job Queue Services

Direct-Access Space Services
Input/Output Services

Time Services

Overlay Services

Synchronization Services

Debug Services

Error Services

Coding Aid Services

HASP Maintenance Procedures

Generating a HASP System (HASPGEN)

0S SYSGEN and Installing a HASP System
Generating HASP Remote Terminal Programs
Remote Generation for non-HASP Users
Operator's Guides

HASP Operator's Guide

HASP RTP Operator's Guide (STR Model 20)
HASP RTP Operator's Guide (1978)

HASP RTP Operator's Guide (1130)

HASP RTP Operator's Guide (System/360)
HASP RTP Operator's Guide (BSC Model 20)
HASP RTP Operator's Guide (2780)

HASP RTP Operator's Guide (2770)

HASP RTP Operator's Guide (System/3)

10
12
14
23
25
34
37
A
50
52
55
63
6l
78
88
99
101
103
263
289
323
349
381
413
441

473

HASP

Section
12.14 - HASP Overlay Programming Rules
12.15 - HASP with OS Console Support

12.16 - Multiple Devices on MULTI-LEAVING Remotes

H :; &

Introduction

The information contained in Volume 1 and 2 of the HASP System Supplementary
Course Material was originally distributed as a one-volume document.

Volume 1 contains pages 1 through 590, Section 1 through 8.
Volume 2 contains pages 1 through 594, Section 9 through 12,

A Contents has been included in each volume for your convenience.

HASP

9.0 HASP EXECUTOR SERVICES

The HASP Control Service Programs provide a comprehensive set of
services which aid the HASP Processors in performing their respec-
tive tasks in an efficient manner without burdening the processor
programmer down with endless detail. These services are requested
by the processor through the use of HASP macro instructions. The
services are subdivided in this publication, as follows:

® Buffer Services, which provide for the acquisition and release
of HASP buffers.

o Unit Services, which provide for the acquisition and release
of HASP Input/Output units.

° Job Queue Services, which provide the processors with an
interface with the HASP Job Queue.

o Direct Access Space Services, which provide for the allocation
and de-allocation of HASP direct-access storage space.

° Input/Output Services, which provide all communication with
the Operating System Input/Output Supervisor.

° Time Services, which provide for the setting and interrogation
of the interval timer.

o Overlay Services, which provide the capability to define and
utilize sections of HASP that may optionally be made resident
on direct-access storage and fetched into a dynamic area
within HASP whenever required.

° Synchronization Services, which provide synchronization and
communication between HASP processors, the HASP dispatcher,
and the Operating System.

° Debug Serv1ces, which provide facilities for aid in debugging
I‘lASP.
° Error Services, which provide a unlform way of processing

detected errors.

o Coding Aid Services, which provide the HASP programmer with
coding aids not usually available in the Operatlng System,
but useful in coding HASP routines.

Some of the above services are provided by "in-line" code expansion
wherever the macro instruction is used. The remainder of the ser-
vices are provided by routines which . are integral parts of the
Control Service Programs. For more information about these rou-
tines refer to Section 5. These routines are "linked to" by code
generated wherever the macro instruction is used.

HASP Executor Services - Page 9.0-1

HASP

At execution time, the macro-expansion passes information to the
control program routine to specify the exact nature of the service
to be performed. This information is broken down into parameters
and, in general, is passed to the routine through general purpose
registers called parameter registers.

The macro-expansion can contain load instructions (LA,L,LH,etc.)
that form parameters in parameter registers, and/or it can contain
instructions which load parameter registers from registers loaded
by the processor. The processor can also load parameters directly.
Registers "R1" and "RO" are generally used as parameter registers,

Each parameter resulting from the expansion of a macro-instruction
is either an address or a value.

ADDRESS PARAMETER: An address parameter is a standard 24-bit
address. It 1s always located in the three low-order bytes of a
parameter register. The high-order byte in the parameter register
should contain all zeros. Any exception to this rule will be stated
in the individual macro-instruction description.

An address parameter is always an effective address. The Control
Service Programs is never given a 16-bit or 20-bit explicit address
of the form D(B) or D(B,X) and then required to form an effective
address. When an effective address is to be resolved, it is formed
either by the macro-expansion or before the macro-instruction is
issued.

""VALUE PARAMETER: A value parameter is a field of data other than
an address. It is of variable length, and is usually in the low-
order bits of a parameter register. The value parameter will always
have a binary format. The high-order unused bits in the parameter
register should contain all zeros. Any exception to this rule will
be stated in the individual macro-instruction description.

Certain value parameters can be placed in a register along with
another parameter, which can either be an address or a value
parameter. In this case, a value parameter will be in other than
the low-order bits. Two or more parameters in the same register
are called packed parameters.

OPERANDS: Parameters are specified by operands in the
macro-instruction. An address parameter can result from a relo-
catable expression or, in certain macro-instructions, from an
implied or explicit address. A value parameter can result from an
absolute expression or a specific character string. Address and
value parameters can both be specified by operands written as an
absolute expression enclosed in parentheses. This operand form is
called register notation. The value of the expression designates

a register into which the specified parameter must be loaded by the
processor before macro-instruction is issued. The contents of this

register are then placed in a parameter register by the macro-expan-
sion.

HASP Executor Services — Page 9.0-2

S,

HASTP

Types of Macro-Instruction Operands

The processor programmer writes operands in a HASP macro-instruction
to specify the exact nature of the service to be performed. Operands
are of two types: positional and keyword.

POSITIONAL OPERANDS: A positional operand is written as a string
of characters. This character string can be an expression, an im-
plied or explicit address, or some special operand form allowed in

a particular macro-instruction.

Positional operands must be written in a specific order. If a posi-
tional operand is omitted and another positional operand is written
to the right of it, the comma that would normally have preceded the
omitted operand must be written. This comma should be written only
if followed by a positional operand; it need not be written if it
would be followed by a keyword operand or a blank.

In the following examples, EX1 has three positional operands. In
EX2, the second of three positional operands is omitted, but must
still be delimited by commas. In EX3, the first and third operands
are omitted; no comma need be written to the right of the second
operand.

EX1 S$EXAMP A,B,C

EX2 SEXAMP A,,C

EX3 S$EXAMP ,B

KEYWORD OPERANDS: A keyword operand is written as a keyword
immediately followed by an equal sign and an optional value.

A kezword consists of one through seven letters and digits, the
first of which must be a letter. It must be written exactly as
shown in the macro-instruciton description.

An optional value is written as a character string in the same way
as a positional operand.

Keyword operands can be written in any order, but they must be
written to the right of any positional operands in the macro-instruc-
tion.

In the following examples, EX1l shows two keyword operands. EX2 shows
the keyword operands written in a different order and to the right

of any positional operands. In EX3, the second and third positional
operands are omitted; they need not be delimited by commas, because
they are not followed by any positional operands.

HASP Executor Services — Page 9.0-3

HASTP

EX1 S$EXAMP KW1l=X,6KW2=Y
EX2 $SEXAMP A,B,C,KW2=Y ,KW1l=X

EX3 S$EXAMP A ,KW1=X,6KW2=Y

REQUIRED AND OPTIONAL OPERANDS: Certain operands are required in

a macro-instruction, if the macro-instruction is to make a meaning-
ful request for a HASP executor service. Other operands are optional,
and can be omitted. Whether an operand is required or optional is
indicated in the macro-instruction descriptions.

9.0.1 BASIC NOTATION USED TO DESCRIBE MACRO-INSTRUCTIONS

HASP macro-instructions are presented in this section by means of
macro-instruction descriptions, each of which contains an illustra-
tion of the macro-instruction format. This illustration is called
a format description. An example of a format description is as
follows:

[symbol] SEXAMP namel-value mnemonic,name2-CODED VALUE,
KEYWDl=value mnemonic,KEYWD2=CODED VALUE

Operand representations in format descriptions contain the following
elements:

® An operand name, which is a single mnemonic word used to
refer to the operand. 1In the case of a keyword operand, the
keyword is the name. In the case of a positional operand,
the name is merely a reference. In the above format descrip-
tion, namel, name2, KEYWD1l, and KEYWD2 are operand names.

® A value mnemonic, which is a mnemonic used to indicate how
the operand should be written, if it is not written as a coded
value. For example, addr is a value mnemonic that specified
that an operand or optional value is to be written as either
a relocatable expression or register notation.

° A coded value, which is a character string that is to be
written exactly as it is shown. For example, RDR is a coded
value.

The format description also specifies when single operands and
combinations of operands should be written. This information is
indicated by notational elements called metasymbols. For example,
in the preceding format description, the brackets around "symbol"
indicate that a symbol in this field is optional.

HASP Executor Services - Page 9.0-4

C‘i?t

HASP

Operand Representation

Positional operands are represented in format descriptions in one
of two ways:

° By a three-part structure consisting of an operand name,
a hyphen, and a value mnemonic. For example: namel-addr.
° By a three-part structure consisting of an operand name,

a hyphen, and a coded value. For example: namel-RDR.

Keyword operands are represented in format descriptions in one of
two ways:

o By a three-part structure consisting of a keyword, an equal
sign, and a value mnemonic. For example: KEYWDl=addr.

° By a three-part structure consisting of a keyword, an equal
sign, and a coded value. For example: KEYWD1=RDR.

The most significant characteristic of an operand representation

is whether a value mnemonic or coded value is used; these two
cases are discussed below.

Operands with Value Mnemonics

When a keyword operand is represented by:
KEYWORD=value mnemonic

the programmer first writes the keyword and the equal sign, and
then a value of one of the forms specified by the value mnemonic.

When a positional operand is represented by:
name-value mnemonic

the programmer writes only a value of one of the forms specified
by the value mnemonic. The operand name is merely a means of
referring to the operand in the format description; the hyphen
simply separates the name from the value mnemonic. Neither is
written.

The following general rule applies to the interpretation of operand
representations in a format description; anything shown in upper-
case letters must be written exactly as shown; anything shown in
lower-case letters is to be replaced with a value provided by the
programmer. Thus, in the case of a keyword operand, the keyword
and equal sign are written as shown, and the value mnemonic is
replaced. In the case of a positional operand, the entire
representation is replaced.

HASP Executor Services — Page 9.0-5

%

HASP

VALUE MNEMONICS: The value mnemonics listed below specify most
of the allowable operand forms that can be written in HASP macro-
instructions. Other value mnemonics, which are rarely used, are
defined in individual macro-instruction descriptions.

) symbol -- the operand can be written as a symbol.

® relexp -- the operand can be written as a relocatable
expression.
® addr -- the operand can be written as (1) a relocatable

expression, or (2) register notation designating a register
that contains an address in its three low order bytes. The
designated register must be one of the registers 2 through
12, unless special register notation is used. (Refer to
Section 9.0.2: Special Register Notation.)

® addrx -- the operand can be written as (1) an indexed or
nonindexed implied or explicit address, or (2) register
notation designating a register that contains an address in
its three low-order bytes. An explicit address must be
written as in the RX form of an assembler language instruction.

) adval -~ the operand can be written as (1) an indexed or
nonindexed implied or explicit address, or (2) register
notation designating a register that contains a value. An
explicit address must be written as in the RX form of an
assembler language instruction.

° absexp -- the operand can be written as an absolute expression.
® value =-- the operand can be written as (1) an absolute expres-

sion, or (2) register notation designating a register that con-
tains a value in its three low-order bytes. '

° text -- the operand can be written as a character constant
as in a DC data definition instruction. The format description
shows explicitly if the character constant is to be enclosed
in single quotation marks.

° code -- the operand can be written as one of a large set of
coded values; these values are defined in the macro-instruction
description.

Coded Value Operands

Some operands are not represented in format descriptions by value
mnemonics. Instead, they are represented by one or more upper-case

character strings that show exactly how the operand should be written.

These character strings are called coded values, and the operands
for which they are written are called coded value operands.

HASP Executor Services — Page 9.0-6

HASP

A coded value operand results in either a specific value parameter
or a specific sequence of executable instructions.

If a positional operand can be written as any one of twc or more
coded values, all possible coded values are listed and are separated
by vertical stroke indicating that only one of the values is to be
used.

Metasymbols

Metasymbols are symbols that convey information to the programmer,
but are not written by him. They assist in showing the programmer
how and when an operand should be written. The metasymbols used
in this section are:

° | This is a vertical stroke and means "or". For example
A|B means either the character A or the character B.
Alternatives are also indicated by being aligned verti-
cally (as shown in the next paragraph).

[[} These are braces and denote grouping. They are used most
often to indicate alternative operands. For example:
YES
{veslno} or NO}

The two examples above are equivalent; either YES or NO
must be written.

° [] These are brackets and denote options. Anything enclosed
in brackets can either be omitted or written once in the
macro instruction. For example:

[YES|NO] [:]

The two examples above are equivalent; YES, or NO, or
neither can be written. The underlining indicates that,
if neither is written, YES is assumed. Braces used for
grouping inside brackets are redundant.

9.0.2 SPECIAL REGISTER NOTATION

If an operand of a HASP macro-instruction is written using register
notation, the resulting macro-expansion loads the parameter contained
in the designated register into elther parameter register "R1" or
parameter register "RO".

HASP Executor Services - Page 9.0-7

HASP

For example, if an operand is written as (R15), and if the cor-
responding parameter is to be passed to the control program in
register "R1", the macro-expansion could contain the instruction:

LR R1,R15

The processor can load parameter registers directly, before the
execution of the macro-expansion; this is called preloading.

The programmer specifies that preloading will occur by writing an
operand as either "(R1l)" or "(RO)"; this is called special register
notation. This notation is special for two reasons:

° The register notation designation of registers "R1l" and "RO"
is generally not allowed.

° The designation must be made by the specific four characters
"(R1)" or "(RO)", rather than by the general form of an
absolute expression enclosed in parentheses. For example,
even though the absolute symbol RONE could be equated to R1,
" (RONE) " must not be written instead of "(R1l)" if special
register notation is intended. If this were done, the macro-
expression would contain a useless instruction:

LR R1,RONE.

The format description shows whether special register notation can

be used, and for which operands. This is demonstrated by the
following example:

abc~-addrx def-addrx
[symbol] $EXAMP E(Rl)] , {(RO)]

Both operands can be written in the addrx form, and therefore can
be written using register notation. Ordinary register notation
indicates that the parameter register should be loaded from the
designated register by the macro-expansion. The format description
also shows that the abc operand can be written as "(R1l)", and the
def operand can be written as "(RO)". If either of these special
register notations is used, the processor must have loaded the
designated parameter register before the execution of the macro-
instruction. * '

HASP Executor Services - Page 9.0-8

e

I ASP

9.0.3 REGISTER TRANSPARENCY

In general, the following registers cannot be considered transparent
across a HASP macro expansion and the associated link to the Control
Service Program:

] LINK
° R14
° R15
o RO

[R1

All other registers will be transparent unless specifically stated
in the individual macro-instruction description.

HASP Executor Services - Page 9.0-9

HASTP

9.1 BUFFER SERVICES

9.1.1 $SGETBUF - Acquire a HASP Buffer from the HASP Buffer
Pool or RJE Buffer from the RJE Buffer Pool

The S$GETBUF macro-instruction obtains a buffer from the HASP
or RJE buffer pool and returns the address of this buffer in
register "R1".

Format Description:

[symbol] SGETBUF [none-relexp] [,TYPE=TP] [,OLAY=YES]

none
specifies a location to which control will be returned if
there are no buffers available.

If this operand is omitted, the condition code will be set
to reflect the availability of a buffer as follows:

CC=0 - no buffer is available.

CC#0 - "R1" contains the address of the buffer.

TYPE=TP .

specifies that the buffer is to be obtained from the RJE
buffer pool rather than the HASP buffer pool.

OLAY=YES

must be specified’'if the S$GETBUF macro-instruction is
coded physically within an overlay segment.

Buffer Services - Page 9.1-1

10

9.1.2 SFREEBUF - Return a HASP Buffer to the HASP Buffer
Pool or RJE Buffer to the RJE Buffer Pool

The SFREEBUF macro-instruction is used to return a HASP buffer
to the HASP buffer pool or RJE buffer to the RJE buffer pool.

Format Description:

buffer-addrx

[symbol] SFREEBUF (R1)

[,OLAY=YES]
buffer
specifies either a pointer to a buffer or the address of
a buffer to be returned to the buffer pool as follows:

If "buffer" is written as an address, then it represents
the address of a full word which contains the address of
the buffer to be returned in its three low order bytes.
This word must be located on a full-word boundary in core.

If "buffer" is written using register notation (either
regular or special register notation), then it represents
the address of the buffer to be returned.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

OLAY=YES
must be specified if the S$FREEBUF macro-instruction is
coded physically within an overlay segment.

CAUTION: The specified buffer must have been obtained by a
GETBUF macro-instruction. The action of the macro-instruction

as well as future SGETBUF and SFREEBUF macro-instructions is
unpredictable in other cases.

Buffer Services - Page 9.1-2

1

a8 &3 W &

9.2 UNIT SERVICES

9.2.1 SGETUNIT - Acquire a Unit Dev;cc Cont;g&_?able (DCT)

The $GETUNIT macro-instruction obtains a Devieg centrol Table
(DCT) for a specified type of unit, and xeturnl the address of
this DCT in register "R1", ,

Format Description:

[symbol] $GETUNIT type-code {,hone-relﬁ#pl'[,OLAY=YESJ

type
specifies the type of unit for wh;ch a DCT is tc be obtained.
The values for this operand and th#ir mianiag: are:
DA - Direct Access DCT : - : _
LNE - Line DCT :
RDR - Card Reader DCT
TPE - Input Tape DCT
RJR - Remote Reader DCT
INR - Internal Reader DCT
PRT - Printer DCT
RPR - Remote Printer DCT
PUN. - Punch DCT
RPU - Remote Punch DCT
CON - Console DCT
none
specifies a location to which control will be returned if
there are no available Device Control Tables for the
specified device. If this operand is omitted, the condi-
tion code will be set to reflect tht availabxlity of a
DCT as follows: N
CC=0 - no DCT is available. -
CC#0 - "R1" contains the addrnaa at l ncw of the
specified type. : .
OLAY=YES

must be spec1fled if the $GETUNI? m&ﬁt0~inltzuctlon is
coded physically within an overlay p.qment.

12

HASP

9.2.2 SFREUNIT - Release a Unit Device Control Table (DCT)

The S$FREUNIT macro-instruction is used to release a Device
Control Table (DCT).

Format Description:

[symbol] SFREUNIT

dct-addrx
(R1)

} [,OLAY=YES]

dct
specifies either a pointer to a DCT or the address of a
DCT to be released as follows:

If "dct" is written as an address, then it represents the
address of a full word which contains the address of the
DCT to be released in its three low order bytes. This
word must be located on a full-word boundary in core.

If "dct" is written using register notation (either
regular or special register notation), then it represents
the address of the DCT to be released.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

OLAY=YES
must be specified if the $FREUNIT macro-instruction is
coded physically within an overlay segment.

CAUTION: The specified DCT must have been obtained by a
SGETUNIT macro-instruction. The action of the macro-instruction
is unpredictable in other cases.

Unit Services - Page 9.2-2

13

HASTP

9.3 JOB QUEUE SERVICES

The HASP Job Queue consists of a chain of Job Queue Elements
and can be divided into five logical queues. These five logical
queues are represented by the following symbolic names:

Table 9.3.1 - Symbolic Representation of the Logical Job Queues

Symbolic Name

SINPUT
$XEQ

$PRINT
$PUNCH

$PURGE

Queue
Queue
Queue
Queue

Queue

of
of
of
of

of

"Logical Job Queue

jobs
jobs
jobs
jobs

jobs

in input processing
awaiting 0/S Execution phase
awaiting Print phase
awaiting Punch phase

awaiting Purge phase

For more information concerning the formats of the HASP Job
Queue Element and the HASP Job Information Table Element,
- refer to sections 8.6 and 8.7 of this manual.

14

~ Job Queue Services - Page 9.3-1

HASP

9.3.1 SQADD - Add Job Queue Element to the HASP Job Queue

The $QADD macro-instruction adds an element to the HASP Job Queue,
placing it in the specified logical queue. The address of the
associated Job Information Table Entry is returned in register

" RO " .

Format Description:

[symbol] SQADD

(R1)

element-addrx
’ (RO)

queue—valuel

[,full-relexp] [,OLAY=YES]

element
specifies the address of an Element which is to be added
to the HASP Job Queue.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

queue
specifies the logical queue in which the Job Queue Element
is to be placed. This value must always be one of the
values listed in table 9.3.1.

If register notation is used, one of these values must
have been loaded into the designated register before the
execution of this macro-instruction.

full
specifies a location to which control will be returned if
the HASP Job Queue is full.
If this operand is omitted, the condition code will be set
to reflect the status of the HASP Job Queue as follows:
CC=0 - the queue is full and the element cannot be
accepted.
CC#0 - the Element was successfully added to the queue.
"RO" contains the address of the associated
JIT Entry.
OLAY=YES

must be specified if the $QADD macro-instruction is coded
physically within an overlay segment.

Job Queue Services - Page 9,3-2

15

HASP

9.3.2 SQGET - Obtain Job Queue Element from the HASP Job Queue

The S$QGET macro-instruction obtains a Job Queue Element from the
specified logical queue of the HASP Job Queue and returns the
address of this element in register "R1l". The address of the
associated Job Information Table Entry is returned in register

11 RO " .

Format Description:

[symbol] SQGET {?gi?e—value} [,none-relexp]

[,PRROUTE=YES] [,PUROUTE=YES]
[,CLASS=YES] [,FORMS=YES] [,OLAY=YES]

queue

specifies the logical queue from which the Job Queue Element
is to be obtained. This value must always be one of the
values listed in table 9.3.1.

If register notation is used, one of these values must have
been loaded into the designated register kefore the
execution of this macro-instruction.

none

specifies a location to which control will be returned
if the specified logical queue is empty.

If this operand is omitted, the condition code will be
set as follows:

CC=0 - the specified logical queue is empty.

CC#0 - "R1" contains the address of a Queue Element
from the specified logical queue and "RO"
contains the address of the associated
JIT Entry.

PRROUTE=YES
specifies that bits 0-7 of register "RO" contain a route
code which must match the route code (QUEPRTRT) of the
Job Queue Element obtained.

PUROUTE=YES
specifies that bits 8-15 of register "RO" contain a route
code which must match the route code (QUEPUNRT) of the
Job Queue Element obtained.

CLASS=YES
specifies that bits 16-23 of register "RO" contain a class
code which must match the class. code (QUECLASS) of the Job
Queue Element obtained.

Job Queue Services - Page 9.3-3

16

PN

HASP

FORMS=YES
specifies that bits 16-31 of register "R0" contain a forms
type which must match the forms type (QUEFORMS) of the
Job Queue Element obtained.

If no job is found which meets all of the requirements
specified, and one or more jobs are found which meet all
of the requirements except for the forms specification,
then the address of the highest priority Job Queue Element
which meets all of the requirements except for the forms
specification is returned in register "RO". If no job

is found in the specified queue which meets the routing
and class requirements alone, then register "RO" is zero.

OLAY=YES
must be specified if the $QGET macro-instruction is coded
physically within an overlay segment.

Job Queue Services - Page 9.3-4

17

HASP

9.3.3 $QPUT - Return Job Queue Element to the HASP Job Queue

The $QPUT macro-instruction returns a Job Queue Element to the
HASP Job Queue, placing it in the specified logical queue. The
address of the associated Job Information Table Entry is returned
in register "RO".

Format Description:

[symbol] $SQPUT element—addrx} ,

(R1)
[,OLAY=YES]

queue-value
(RO)

element ,
specifies the address of an Element which is to be returned
to the HASP Job Queue.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

queue
specifies the logical queue in which the Job Queue Element
is to be placed. This value must always be one of the
values listed in table 9.3.1.

If register notation is used, one of these values must have
been loaded into the designated register before the
execution of this macro-instruction.

OLAY=YES
must be specified if the $QPUT macro-instruction is coded
physically within an overlay segment.

CAUTION: The specified Job Queue Element must have been
previously obtained with a $QGET macro-instruction or the
action of the $QPUT macro-instruction is unpredictable.

PROGRAMMING NOTE: The $QPUT macro-instruction cannot be used to
change the priority of a Job Queue Element. If a change of
priority is desired, the $QREM and $QADD macro-instructions

must be used.

Job Queue Services - Page 9.3-5

18

HASP

9.3.4 SQREM - Remove Job Queue Element from the HASP Job Queue

The S$QREM macro-instruction removes a specified Job Queue Element
from the HASP Job Queue.

Format Description:

element-addrx

(R1) [,OLAY=YES]

[symbol] SQREM
element

specifies the address of an Element which is to be removed

from the HASP Job Queue.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

OLAY=YES
must be specified if the $QREM macro-instruction is coded
physically within an overlay segment.

CAUTION: The specified Job Queue Element must have been

previously obtained with a $QGET macro-instruction or the
action of the $QREM macro-instruction is unpredictable.

Job Queue Services - Page 9.3-6

19

HASP

9.3.5 $QSIZ - Determine Number of Elements in a Logical Queue

The $QSIZ macro-instruction determines the number of Job Queue
Elements in a specified logical queue of the HASP Job Queue and
returns this value in register "R1".

Format Description:

[symbol] $QS1z %Ei?e—valuel [,none-relexp]
[,PRROUTE=YES] [,PUROUTE=YES]
[,CLASS=YES] [,FORMS=YES] [,OLAY=YES]

queue
specifies the logical queue which is to be counted. This
value must always be one of the values listed in table 9.3.1.

If register notation is used, one of these values must have
been loaded into the designated register before the
execution of this macro-instruction.

none _
» specifies a location to which control will be returned if
the specified logical queue is empty.

If this operand is omitted, the condition code will be set
to reflect the status of the specified logical queue
as follows:
CC=0 - the specified queue is empty (R1=0).
CC#0 - the specified queue contains at least one
Job Queue Element (Rl = number of Elements
in queue).

PRROUTE=YES
specifies that bits 0-7 of register "RO" contain a route
code which must match the route code (QUEPRTRT) of all
jobs counted.

PUROUTE=YES
specifies that bits 8-15 of register "RO" contain a route
code which must match the route code (QUEPUNRT) of all
jobs counted.

CLASS=YES ,
specifies that bits 16-23 of register "RO" contain a class

code which must match the class code (QUECLASS) of all
jobs counted.

Job Queue Services - Page 9.3-7

20

HASTP

FORMS=YES
specifies that bits 16-31 of register "RO" contain a forms

type which must match the forms type (QUEFORMS) of all jobs
counted.

OLAY=YES
must be specified if the $QSIZ macro-instruction is coded
physically within an overlay segment.

Job Queue Services - Page 9.3-8

21

HASTP

9.3.6 $QLOC - Locate Job Queue Element for Specific Job

The $QLOC macro-instruction locates the Job Queue Element
associated with the job with the specified job number and
returns the address of this Element in register "R1l". The
address of the associated Job Information Table Entry is
returned in register "RO".

Format Description:

[symbol] SQLOC %E??o—adval} [,none-relexp]
[,OLAY=YES]

jobno
specifies the binary job number associated with the job
for which the Job Queue Element is being searched.

If an address is used it specifies the address of a half-
word that contains the binary job number. This half-word
must be located on a half-word boundary.

If register notation is used, the binary job number must
have been loaded into the designated register before the
execution of this macro-instruction.

none
specifies a location to which control will be returned if
the specified job number is not locatable in the HASP
Job Queue.
If this operand is omitted, the condition code will be set -
to reflect the status of register "R1" as follows:
CC=0 - the specified job is not locatable.
CC#0 - the specified job is locatable and "R1" con-
tains the address of the associated Job Queue
Element, and "RO" contains the address of the
associated JIT Entry.
OLAY=YES

must be specified if.-the $QLOC macro-instruction is coded
physically within an overlay segment.

Job Queue Services - Page 9.3-9

22

PN

HASTP

9.4 DIRECT ACCESS SPACE SERVICES

9.4.1 STRACK - Acquire a Direct-Access Track Address

The S$TRACK macro-instruction obtains a track address on a HASP
committed direct access device and returns this track address
in register "R1".

Format Description:

[symbol] $TRACK [OLAY=YES]

OLAY=YES
must be specified if the $TRACK macro-instruction is coded
physically within an overlay segment.

CAUTION: The JCT register must be loaded with the address of a
Job Control Table before the execution of this macro-instruction
or the action of the macro-instruction will be unpredictable.

Direct-Access Space Services - Page 9.4-1

23

HASTP

9.4.2 SPURGE - Return Direct-Access Space

The S$PURGE macro-instruction is used to return the direct- access
space which has been allocated for a given job.

Format Description:

[symbol] $PURGE ?Il&‘)’cmap"ad_dr ¥ [,oLAY=YES]

allocmap

specifies the address of a track allocation map containing
the direct-access space to be returned.

If register notation is used, the address must have b¢en
loaded into the designated register before the execution
of this macro-instruction.

OLAY=YES

must be specified if the $PURGE macro-instruction is coded
physically within an overlay segment.

Direct-Access Space Services - Page 9.4-2

24

HASTP

9.5 INPUT/OUTPUT SERVICES

9.5.1 $EXCP - Execute HASP Channel Program

The S$EXCP macro-instruction initiates HASP Input/Output
activity.

Format Description:

dct-addrx

[symbol] SEXCP (R1)

} [,OLAY=YES]

dct
specifies either a pointer to a Device Control Table (DCT)
or the address of a DCT which represents a device upon
which Input/Output activity is to be initiated.

If "dct" is written as an address, then it represents the
address of a full word which contains the address of the
DCT in its three low-order bytes. This word must be
located on a full-word boundary.

If "dct" is written using register notation (either regular
or special .register notation), then it represents the
address of the DCT.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

'OLAY=YES

must be specified if the $EXCP macro-instruction is coded
physically within an overlay segment.

Input/Output Services - Page 9.5-1

25

HASTP

9.5.2 SEXTP - Initiate Remote Terminal Input/Output Operation

The S$EXTP macro-instruction initiates an Input/Output Action or
Operation.

Format Description:

[symbol] SEXTP type-code,
[,OLAY=YES]

dct—~addrx loc-addrx
(R1) - ! (RO)

type
specifies the type of operation as follows:
OPEN - Initiate Remote Terminal processing.
GET - Receive one record from the Remote Terminal.
PUT - Send one record to the Remote Terminal.
CLOSE - Terminate Remote Terminal processing.

dct
specifies either a pointer to a DCT or the address of a
DCT which represents the Remote Terminal Device.

If "dct" is written as an address, then it represents the
address of a full word which contains the address of the
Remote Terminal Device DCT in its three low-order bytes.
This word must be located on a full-word boundary in core.

If "dct" is written using register notation (either regular
or special register notation), then it represents the
address of the Remote Terminal Device DCT.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

loc
If "type" specifies either "OPEN" or "CLOSE" this parameter
should not be specified.

If "type" specifies "GET" this parameter specifies the
address of an area into which the input record will be
placed. The input area must be defined large enough to
contain the largest record to be received.

If "type" specifies "PUT" this parameter specifies the
address of a CCW which contains the carriage control (or
stacker select), address, and length of the record to be
written.

If register notation is used, the appropriate address must
have been loaded into the designated register before the
execution of this macro-instruction.

Input/Output Services - Page 9.5-2

26

g

A,

HASP

OLAY=YES

must be specified if the S$EXTP macro-instruction is coded
physically within an overlay segment.

Input/Output Services - Page 9.5-3

27

HASP

9.5.3 SWTO - HASP Write to Operator

The S$WTO macro-instruction initiates output activity on one or
more of the devices designated as operator consoles.

Format Description - Standard Form:

message—-addrx length -value

[symbol] SWTO (R1) L, (RO)
[JOB_@.%] [WAIT_@.%] [CONVERT_;Oﬁ
[,ROUTE=code] [,CLASS=code] [,PRI=code]

Format Description - Execute Form:

[symbol] SWTO {message—addrxl IZ' length-valu%] MF=(E,name)

(R1) (RO)

Format Description - List Form:

[name] SWTO0 [,length-value,] MF=L

[,JOB—YES:I I: WAIT—¥-§§] I: c:ONVERT-%g-g-‘¢i

[,ROUTE=code] [,CLASS=code] [,PRI=code]

message
specifies the address of a message which is to be written
on the designated console(s).

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

length
specifies the length of the above message.

If register notation is used, the value must have been
loaded into the low-order byte of the designated register
before the execution of the macro-instruction. The rest
of the register must be zero unless the message is being
sent to a remote terminal (see below).

NOTE: When using the Execute and List forms of the macro-
instruction, the length can be specified on either form
but must not be specified on both.

Input/Output Services - Page 9.5-4

28

HASTP

JOB

WAIT

specifies whether the characters "JOB nnn" will be appended
to the start of the message as follows:
YES - The job number will be aprended to the start of
the message.
NO -~ The job number will not be appended to the
message.

If this operand is omitted, JOB=YES will be assumed.

CAUTION: Unless JOB=NO is specified, the JCT register must
be loaded with the address of the Job Control Table before
the execution of this macro-instruction or the job number
printed will be unpredictable.

specifies the action to be taken in the event no Console
Message Buffers are available as follows:

YES - Return will not be made until a Console Message
Buffer has become available and the message has
been queued.

NO - An immediate return will always be made with the
condition code set as follows:

CC=0 - No Console Message Buffers were avail-
able. The message was not accepted
and the macro-instruction must be
re-issued.

CC#0 - The message was accepted.

If this operand is omitted, WAIT=YES will be assumed.

NOTE: Unless WAIT=NO is specified, the message to be issued
must be constructed in a re-enterable area of storage.

CAUTION: WAIT=NO must be specified if the $WTO macro-
instruction is coded physically within an overlay segment.

CONVERT

specifies the type of consoles indicated as follows:

YES - Logical Consoles have been specified (e.g., S$LOG)
and these must be converted to physical consoles
by the Control Service Program.

NO - Physical Consoles have been specified and no
conversion is necessary.

If this operand is'omitted, CONVERT=YES will be assumed.

Input/Output Services - Page 9.5-5

29

HAS

ROUTE

CLASS

P

specifies the console or consoles on which the above
message is to be written. The code consists of the
absolute sum of one or more of the Logical Console
designations in the following list:

Designation Console Specified
$LOG System Log Console (s)
$ERR Error Console (s)
SUR : Unit Record operations area
STP Teleprocessing operations area
$TAPE Tape operations area
SMAIN Chief Operator's area
$0S 0S Message Console (s)
$ALL All of the above Consoles
$REMOTE Remote Terminal Console

NOTE: 1If "S$SREMOTE" is specified, no other consoles should
be specified, the register form of "length" must be
specified, and the remote terminal number must be loaded
into bits 16-23 of the register used to specify the length
before the execution of the macro-instruction. Bits 0-15
of this register must be zero.

If no ROUTE is specified, the "S$SLOG" console will be assumed.

CAUTION: The designation "$ALL" should not be used in
conjunction with any other console but should be specified
alone. Failure to observe this rule will give unpredict- .
able results.

specifies the class of the message as one of the following:
SALWAYS - The message should always be written.:
SACTION - The message requires operator action.
' SNORMAL - The message is considered essential to
normal computer operations.
$TRIVIA - The message is considered non-essential
to normal computer operations.

If no CLASS is specified, $NORMAL will be assumed.

Input/Output Services - Page 9.5-6

30

P

HASP

JOB

WAIT

specifies whether the characters "JOB nnn" will be appended
to the start of the message as follows:
YES - The job number will be appended to the start of
the message.
NO - The job number will not be appended to the
message.

If this operand is omitted, JOB=YES will be assumed.

CAUTION: Unless JOB=NO is specified, the JCT register must
be loaded with the address of the Job Control Table before
the execution of this macro-instruction or the job number
printed will be unpredictable.

specifies the action to be taken in the event no Console
Message Buffers are available as follows:

YES - Return will not be made until a Console Message
Buffer has become available and the message has
been queued.

NO - An immediate return will always be made with the
condition code set as follows:

CC=0 - No Console Message Buffers were avail-
able. The message was not accepted
and the macro-instruction must be

‘ re-issued.
CC#0 - The message was accepted.

If this operand is omitted, WAIT=YES will be assumed.

NOTE: Unless WAIT=NO is specified, the message to be issued
must be constructed in a re-enterable area of storage.

CAUTION: WAIT=NO must be specified if the $WTO macro-
instruction is coded physically within an overlay segment.

CONVERT

specifies the type of consoles indicated as follows:

YES - Logical Consoles have been specified (e.g., S$LOG)
and these must be converted to physical consoles
by the Control Service Program.

NO - Physical Consoles have been specified and no

' conversion is necessary.

If this operand is omitted, CONVERT=YES will be assumed.

Input/Output Services - Page 9.5-5

31

HAS

ROUTE

CLASS

P

specifies the console or consoles on which the above
message is to be written. The code consists of the
absolute sum of one or more of the Logical Console
designations in the following list:

Designation Console Specified
$LOG System Log Console (s)
$ERR Error Console (s)
$UR Unit Record operations area
$TP Teleprocessing operations area
$TAPE Tape operations area
$MAIN Chief Operator's area
$0S OS Message Consaole(s)
$ALL All of the above Consoles
$SREMOTE ° Remote Terminal Console

NOTE: If "SREMOTE" is specified, no other consoles should
be specified, the register form of "length" must be
specified, and the remote terminal number must be loaded
into bits 16-23 of the register used to specify the length
before the execution of the macro-instruction. Bits 0-15
of this register must be zero.

If no ROUTE is specified, the "S$LOG" console will be assumed.

CAUTION: The designation "$ALL" should not be used in
conjunction with any other console but should be specified
alone. Failure to observe this rule will give unpredict-
able results.

specifies the class of the message as one of the following:
$ALWAYS - The message should always be written.:
SACTION - The message requires operator action.
" $NORMAL - The message is considered essential to
normal computer operations.
$TRIVIA - The message is considered non-essential
to normal computer operations.

If no CLASS is specified, SNORMAL will be assumed.

Input/Output Services - Page 9.5-6

32

HASTP

PRI

specifies the priority of the message as one of the
following:

$HI - High Priority.

$ST - Standard Priority.

$LO - Low Priority.

If no PRI is specified, $ST priority will be assumed.

Input/Output Services - Page 9.5-7

33

HASP

9.6 TIME SERVICES

9.6.1 $TIME - Request Time of Day

The $TIME macro-instruction obtains the time of day and retgrns
this time in register "RO". The time is returned as an unsigned
32-bit binary number in which the least significant bit has a
value of 0.01 second.

Format Description:

[symbol] $TIME [OLAY=YES]

OLAY=YES) . _
must be specified if the $TIME macro-instruction is coded
physically within an overlay segment.

The time returned is the time of day based on a 24-hour clock.

Time Services - Page 9.6-1

HASP

9.6.2 SSTIMER - Set Interval Timer

The $STIMER macro-instruction sets an interval into a programmed
interval timer.

Format Description:

loc-addrx

(R1) [,OLAY=YES]

[symbol] $STIMER

loc
specifies the address of a HASP Timer Queue Element.
Before this macro-instruction is executed, the Timer
Queue Element must be initialized as follows:
ITIME must be initialized with the interval to be
set in the following manner:
If "x" seconds are desired, then ITIME should
be set to "x"; OR
If "y" hundredth-seconds (0.01 seconds) are
desired, then ITIME should be set to the
two's complement of "y".
IPOST must be initialized with the address of the
Event Wait Field to be posted.

If register notation is used, the address must have been
loaded into the designated register before the execution
of this macro-instruction.

For more information, refer to section 8.10: HASP Timer
Queue Element Format.

OLAY=YES
must be specified if the $STIMER macro-instruction is coded
physically within an overlay segment.

PROGRAMMING NOTE: An unlimited number of independent $STIMER
time intervals can be active at any time provided that each
has been furnished with a unique HASP Timer Queue Element.

Time Services - Page 9.6-2

35

HASP

9.6.3

STTIMER - Test Interval Timer

The STTIMER macro-instruction obtains the time remaining in the
associated time interval that was previously set with a $STIMER
macro-instruction. The value of the time interval remainder is
returned in register "RO" in seconds (rounded to the nearest
second). The $TTIMER macro-instruction can also be used to can-
cel the associated time interval.

Format Description:

[symbol] $TTIMER

1°°"addrxl [,CANCEL] [,OLAY=YES]

{(R1)

loc :
specifies the address of the timer queue element.
If register notation is to be used, the address must have
been loaded into the designated register before the execu-
tion of this macro-instruction.

CANCEL
specifies that the interval in effect should be cancelled.
If this operand is omitted, processing continues with the
unexpired portion of the interval still in effect.
If the interval expired before the $TTIMER macro-instruction
was executed, the CANCEL operand has no effect.

OLAY=YES

must be specified if the $TTIMER macro-instruction is coded
physically within an overlay segment.

Time Services - Page 9.6-3

36

HASP

9.7 OVERLAY SERVICES

9.7.1 SOVERLAY - Define Overlay Segment

The SOVERLAY macro-instruction defines the instructions which
follow it as an overlay segment and defines the name, priority,
and residence susceptibility factor of this overlay segment.

Format Description:

HASPname-symbol SOVERLAY prio-value [,resfact-value]

HASPname
specifies the name to be assigned to the overlay segment.
The first four characters must be the characters "HASP".
The last four characters can be any unique combination of
alphameric characters. '

prio
specifies the priority of the overlay segment as follows:
0 - Lowest Priority
&LOW - Low Priority
&MED - Medium Priority
&HIGH - High Priority
resfact

specifies the residence susceptibility factor of the
overlay segment as follows:

0 - Never Resident
&LOW - Resident only if &OLAYLEV<4
&MED - Resident only if &OLAYLEV<S8

&HIGH - Resident only if &OLAYLEV<12

If this parameter is omitted, a residence factor of 0 will
be used. '

NOTE: This parameter may be overridden at the time that
the overlay library is built.

Overlay Services - Page 9.7-1

37

HASP

9.7.2 $OCON - Define Overlay Constant

The S$OCON macro-instruction defines an overlay constant fOCON)
for use in conjunction with other overlay macro-instructions.

Format Description:

[symbol] $OCON HASPname-symbol

HASPname
specifies the name of an overlay segment.

Overlay Services - Page 9.7-2

38

HASP

9.7.3 $LINK - Link to an Overlay Segment

The SLINK macro-instruction is used to link to an overlay segment
from a non-overlay segment.

Format Description:

HASPname-symbol

[symbol] SLINK (register)

HASPname
specifies the name of the overlay segment to which control
is to be transferred.

If register notation is used, the register specified must
be loaded with the address of an overlay constant (OCON)

which represents the overlay segment to which control is
to be transferred.

Overlay Services - Page 9.7-3

39

HASTP

9.7.4 $XCTL - Transfer Control to Another Overlay Segment

The $XCTL macro-instruction is used to transfer control from
one overlay segment to another.

Format Description:

HASPname-symbol

[symbol] $XCTL (register)

HASPname
specifies the name of the overlay segment to which control
is to be transferred.

If register notation is used, the register specified must
be loaded with the address of an overlay constant (OCON)

which represents the overlay segment to which control is
to be transferred. :

Overlay Services - Page 9.7-4

40

HASP

9.7.5 SRETURN - Return from an Overlay Segment

The $RETURN macro-instruction is used to return control from
an overlay segment to a non-overlay segment.

Format Description:

[symbol] SRETURN

Overlay Services - Page 9.7-5

41

HASP

9.7.6 SLOAD - Load an Overlay Segment

The SLOAD macro-instruction is used to load an overlay segment
from a non-overlay segment. The address of the overlay area
into which the overlay segment has been loaded is returned in
register "BASE3". :

Format Description:

HASPname-symbol

[symbol] SLOAD (register)

HASPname ’
specifies the name of the overlay segment to be loaded.

If register notation is used, the register specified must
be loaded with the address of an overlay constant (OCON)
which represents the overlay segment to be loaded.

Overlay Services - Page 9.7-6

42

HASP

9.7.7 S$DELETE - Delete a Loaded Overlay Segment

The $DELETE macro-instruction is used to delete an overlay
segment which has been loaded with a $LOAD macro-instruction.

Format Description:

[symbol] $DELETE

Overlay Services - Page 9.7-7

HASTP

9.8 SYNCHRONIZATION SERVICES

9.8.1 SACTIVE - Specify Processor is Active

The $ACTIVE macro-instruction indicates to the HASP Dispatcher
that the associated processor is processing a job or task.

Format Description:

[symbol] SACTIVE [R=register]
specifies the register which is to be used by the S$SACTIVE
macro-instruction.

if R is omitted, register "R1l" will be used.

Synchronization Services - Page 9.8-1

HASTP

9.8.2 $DORMANT - Specify Processor is Inactive

The S$DORMANT macro-instruction indicates to the HASP Dispatcher
that the associated processor has completed the processing of a
job or task and is now going into a "dormant" state.

Format Description:

[symbol] SDORMANT [R=register]

specifies the register which is to be used by the $DORMANT
macro-instruction.

If R is omitted, register "R1" will be used.

CAUTION: The S$DORMANT macro-instruction should never be executed

unless a corresponding S$ACTIVE has been executed for the same
processor.

Synchronization Services - Page 9.8-2

45

HASTP

9.8.3 SWAIT - Wait for a HASP Event

The $WAIT macro-instruction places the associated processor in
a HASP wait condition and specifies the event upon which the
processor is waiting in the Processor Control Element Event

Wait Field.

Format Description:

[symbol]

event

specifies

as one of
BUF
TRAK
JOB
UNIT
CKPT
CMB
OPER
I0

WORK
HOLD
DDB

ABIT

ENABLE

SWAIT

the event

event-code [,ENABLE] [,OLAY=YES]

upon which the processor is waiting

the following:

- waiting
- waiting
- waiting
- waiting
- waiting
- waiting
- waiting
- waiting

for a HASP Buffer.

for a direct-access track address.

for a job.

for a Device Control Table.

for the completion of a HASP checkpoint.
for a Console Message Buffer.

for an operator response.

for the completion of an Input/Output

operation.

- waiting
- waiting
- waiting

Control
- waiting

to be re-directed.

for a $S operator command.

for a Device Definition Table or Unit
Block.,

for the next HASP dispatch.

specifies that the system mask in the PSW should be set to
all ones prior to returning to the HASP Dispatcher.

OLAY=YES

must be specified if the S$WAIT macro-instruction is coded
physically within an overlay segment.

Synchronization Services - Page 9.8-3

46

HASTP

9.8.4 SPOST - Post a HASP Event Complete

The $POST macro-instruction indicates a HASP event 1is complete
by turning off the specified bit in the indicated Event Wait
Field.

Format Description:

[symbol] $POST ewf-relexp,event-code

ewf
specifies the address of the event wait field which is to
be posted. This operand can also be written in the form
D(B).

event
specifies the event which is to be posted as one of the
following:

BUF a HASP Buffer has been returned.

TRAK - direct-access space has been released.

JOB - a HASP Job Queue Element has changed status.
UNIT - a Device Control Table has been released.
CKPT - a HASP checkpoint has completed.

CMB - a Console Message Buffer has been returned.
OPER - an operator has responded.
IO - an Input/Output operation has completed.

WORK - a processor has been re-directed.

HOLD - an operator has entered a $S command.

DDB a Device Definition Table or a Unit Control
Block has been released.

CAUTION: The SPOST macro-instruction should not be executed
unless addressability to the HASP Communication Table (HCT) has
been established.

Synchronization Services - Page 9.8-4

47

HASP

9.8.5 SENABLE - Enable Interrupts

The S$ENABLE macro-instruction causes the specified interrupts
to be enabled.

Format Description:

[symbol] SENABLE mask-code [,OLAY=YES]
mask v
specifies the interrupts to be enabled as follows:
ALL - Enable all interrupts.
JCL - Enable the interrupts which were enabled when
the Reader/Interpreter appendage was entered.
NOTE: This code can be specified only in the
Reader/Interpreter appendage.
OLAY=YES

must be specified if the $ENABLE macro-instruction is coded
physically within an overlay segment.

Synchronization Services - Page 9.8-5

48

HASP

9.8.6 $DISABLE - Disable Interrupts

The S$DISABLE macro-instruction causes the specified interrupts
to be disabled.

Format Description:

[symbol] SDISABLE mask-code [,OLAY=YES]

mask

specifies the interrupts to be disabled as follows:
ALL - Disable all interrupts.
INT - Disable Interval Timer Interrupt.

OLAY=YES
must be specified if the $DISABLE macro-instruction is coded
physically within an overlay segment.

Synchronization Services - Page 9.8-6

49

HASP

9.9 DEBUG SERVICES

9.9.1 STRACE - Make Entry in the HASP Trace Table

The S$TRACE macro-instruction makes an entry in the HASP trace
table if the &TRACE option is set non-zero. If the &TRACE
opticon is set to zero, this macro-instriaction does not generate
any code.

Format Description:

[symbol] $TRACE

PROGRAMMING NOTE: The S$STRACE macro-expansion and associated
Control Service Program preserve all registers and the condition
ccde. For more information concerning the HASP trace table,
refer to Section 5.11.

Debug Services - Page 9.9-1
50

HASP

9.9.2 SCOUNT - Count Selected Occurrences

The $COUNT macro-instruction increments a counter every time

the macro-instruction is executed and can be used to determine
the number of times a particular event occurs or a particular
section of code is entered. The counter is a half-word counter
(modulo 65,536) which is located fourteen bytes deep in the macro
expansion (symbol+14).

Format Description:

[symbol] $COUNT [R=register]

specifies a register to be used in performing the counting
operation.

If this parameter is omitted, register "R1" will be used.

Debug Services - Page 9.9-2
51

HASP

9.10 ERROR SERVICES

9.10.1- . SERROR - Indicate Catastrophic Error

The S$ERROR macro-instruction is used to'indicate that a catastro-
phic error has.occurred, one that prevents any further processing

by HASP. 'The macro-instruction causes the following message to

ge printed out on the console specified by HASPGEN parameter
PRICONA:

$ HASP SYSTEM CATASTROPHIC ERROR. CODE = éymbol ,

Format Description:

‘symbol $ERROR
symbol

consists of a four-character symbol 1ndlcating the type
of error which occurred. ‘

This operand usually consists of a letter, two digits, and
trailing blanks, and will be printed as the error code in
the message which is printed.

NOTE: This operand must be present,

Error Services - Page 9.10-1

e

HASP

9.10.2 SDISTERR - Indicate Disastrous Error

The S$DISTERR macro-instruction is used to indicate that a
disastrous error has occurred. The macro-instruction causes

the following message to be printed out on the $ERR and $LOG
consoles:

DISASTROUS ERROR - COLD START SYSTEM ASAP

Format Description:

[symbol] S$DISTERR [OLAY=YES]

OLAY=YES
must be specified if the $DISTERR macro-instruction is coded
physically within an overlay segment.

Error Services - Page 9.10-2

53

HASP

9.10.3 $IOERROR - Log Input/Output Error

The SIOERROR macro-instruction is used to log an Input/Output
Error on the operator's console.

Format Description:

buffer~addrx

(R1) [,OLAY=YES]

[symbol] $IOERROR
buffer

specifies either a pointer to a HASP buffer or the address

of a buffer which has been associated with a HASP Input/

Output error. ‘

If "buffer" is written as an address then it represents the
address of a full-word which contains the address of the
buffer in error in its three low order bytes. This word
must be located on a full-word boundary in core.

If "buffer" is written using register notation (either
regular or special register notation), then it represents
the address of the buffer in error.

If register notation is used, the address must have been
loaded into the designated register before the execution
of the macro-instruction.

OLAY=YES

must be specified if the $IOERROR macro-instruction is
coded physically within an overlay segment.

Error Services - Page 9.10-3

HASP

9.11 CODING AID SERVICES

9.11.1 $GLOBAL - Define GLOBAL Symbols

The $GLOBAL argument on a COPY instruction causes all HASP
GLOBAL Symbols to be defined. This COPY instruction must be
the first instruction in an assembly (except for TITLE, EJECT,
and SPACE operations) to function correctly.

Format Description:

COPY $GLOBAL

Coding Aid Services - Page 9.11-1

HASTP

9.11.2 SHASPGEN - Define HASPGEN Parameters

The $HASPGEN argument on a COPY instruction causes all general
HASPGEN parameter values to be defined. This COPY instruction
may be placed anywhere in an assembly but must follow the

COPY SGLOBAL instruction.

Format Description:

cory $HASPGEN

Coding Aid Services - Page 9.11-2

56

PN

HASP

9.11.3 NULL - Define a Symbol

The NULL macro-instruction defines the symbol in the name field,
if any, as having the current value of the location counter
rounded up, if necessary, to a half-word boundary.

Format Description:

[symbol] NULL

Coding Aid Services - Page 9.11-3

57

HASP

9.11.4 SHASPCB - Generate HASP Control Blocks

The $HASPCB macro-instruction causes the specified HASP Control
Block definitions and, optionally, documentatlon for those
control blocks to be generated

Format Description:

SHASPCB cbl-code [,cb2-code]...[,cb24-code] [,DOC=YES]

cbl-cb24
specifies the control block definitions to be generated
as follows:

HCT - HASP Communication Table DSECT (or CSECT)

PCE - HASP Processor Control Element DSECT

BUFFER - HASP Buffer DSECT

CMB - HASP Console Message Buffer DSECT

DCT - HASP Device Control Table DSECT

JQE - HASP Job Queue Element Definitions

JIT - HASP Job Information Table Definitions

JCT - HASP Job Control Table DSECT

TED - HASP Track Extent Data Table DSECT

TQE - HASP Timer Queue Element Definitions

OTB - HASP Overlay Table DSECT

DDT - HASP Data Definition Table DSECT

PIT -~ HASP Partition Information Table Definitions
- PRC - HASP Print Checkpoint Element Definitions

MSA - HASP Message Allocation Control Block DSECT

CvT - 0S Communication Vector Table DSECT

TCB - 0OS Task Control Block DSECT

RB - OS Request Block DSECT

DCB - OS Data Control Block DSECT

DEB - OS Data Extent Block DSECT

UCB - 0S Unit Control Block DSECT

RDRWORK - HASP Input Processor PCE Work Area DSECT

XEQWORK - HASP Execution Processor PCE Work Area DSECT

PPPWORK - HASP Print/Punch PCE Work Area DSECT

These arguments can be specified in any comblnatlon with the
following exceptlons.
1) 1If JCT is specified, BUFFER must be specified as a
prior argument.
2) If RDRWORK, XEQWORK, or PPPWORK is specified, PCE
- must be specified as a prior argument.

DOC=YES
specifies that documentation of the control blocks is desired.

Coding Aid Services - Page 9.11-4

58

o

HASP

9.11.5 $XXC - Variable Core to Core Operation

The $XXC macro-instruction generates a variable number of core-
to-core operations such that there is virtually no restriction
on the length of such an operation. The $XXC is especially
useful when the length of a core-to-core operation is dependent
upon the value of an assembly parameter which may cause the
number of operations needed to vary.

Format Description:

[symbol] $XXC op-code, to-relexp, from-relexp
[,length-integer]

op
specifies the core-to-core operation as one of the
following:
NC - AND
XC - Exclusive OR
MVC - Move
MVN - Move Numerics
MVZ - Move Zones
OC - OR
TR - Translate
to -
specifies the address of the first field.
This operand may optionally be written as two absolute
expressions separated by a comma and enclosed in paren-
theses. The first expression will be interpreted as a
displacement and the second as a base register.
from
specifies the address of the second field.
This operand may optionally be written as two absolute
expressions separated by a comma and enclosed in paren-
theses. The first expression will be interpreted as a
displacement and the second as a base register.
length

specifies the total number of bytes in the field.

If this operand is omitted, the length attribute of the
first field will be used.

Coding Aid Services - Page 9.11-5

59

HASP

9.11.6 SPATCHSP - Generate Patch Space

The S$PATCHSP macro-instruction causes a specified number of .
bytes of patch space to be generated. This patch space will be
divided into half words and listed in the assembly in such a way
that both the assembly location (for REPing and SUPERZAPing) and

the Base-Displacement (in the form BDDD) will be printed for each
half word.

Format Description:

[symbol] $PATCHSP length-number

length
specifies the length of the patch space in bytes.

CAUTION: Local addressability is required for this macro-
instruction to assemble correctly.

Coding Aid Services - Page 9.11-6

60

N

HASP

9.11.7 SDLENGTH - Compute Decimal Length

The S$DLENGTH macro-instruction causes the length of a CSECT
(or DSECT) to be computed and that length to be printed in
decimal.

Format Description:

symbol $SDLENGTH [HEADER=character]

symbol
specifies a name to which the decimal length of the CSECT
(or DSECT) will be assigned. This must be unique for each
use of the $DLENGTH macro-instruction.

HEADER
specifies a one-character header which will insure unique
internally generated symbols. This must be specified differ-
ently for each use of the $DLENGTH macro-instruction.

If this operand is omitted, the character "L" will be used.

Coding Aid Services - Page 9.11-7

61

HASP

9.11.8 SRTAMDEF - Remote Terminal Access Method Definitions

The S$RTAMDEF argument on a COPY instruction causes certain Remote
Terminal Access Method Symbols to be defined.

Format Description:

COPY SRTAMDEF

Coding Aid Services - Page 9.11-8
62

e
,

HASP

10,0 HASP MAINTENANCE PROCEDURES

This section describes various maintenance procedures for the HASP

System and is intended primarily for use by systems programmers,

HASP Maintenance Procedures — Page 10, 0-1

63

HASP

10.1 GENERATING A HASP SYSTEM (HASPGEN)

To generate a HASP System which conforms to the needs of a par-
ticular installation, it is necessary to allocate and catalog
several data sets, build a tailored version of the HASP source
coding in one of the data sets, assemble several of the HASP
source modules, and do a few other utility functions.

10.1.1 Data Set Requirements for HASPGEN

Table 10.1.1 lists the data sets required for HASPGEN and their
contents at the end of the full HASPGEN process.

Figure 10.1.2 shows a sample job which will allocate and catalog
the required data sets on two 2311 disk volumes. UNIT and SPACE

parameters should be changed as appropriate if other direct-access

devices are used. VOLUME parameters may be changed as desired.
Data sets SYS1.UT1l and/or SYS1.UT2 may be assigned to labeled
tape (s) if desired.

Generating A HASP SYSTEM - Page 10.1-1

64

HASP

Table 10.1.1 - HASPGEN Data Set Description

Data Set Name

SYS1.HASPSRC
(HASP Source
Coding)

SYS1.HASPOBJ
(HASP Object
Decks)

Member Names

SACTIVE thru $XXC

CvT
HASPACCT
HASPBR1
HASPCOMM
HASPCON
HASPINIT
HASPJCL
HASPMISC
HASPNUC
HASPOBLD
HASPPRPU
HASPRDR
HASPRTAM
HASPSVC
HASPWTR
HASPXEQ
HRTPB360
HRTPLOAD
HASPOPTS
HASPSM20
HASPSYS3
HASP1130
IEFUCBOB
NULL

HASPBR1
HASPNUC
HASPRDR
HASPXEQ
HASPPRPU
HASPACCT
HASPMISC
HASPCON
HASPRTAM
HASPCOMM

" HASPINIT

HASPSVC
HASPWTR
HASPOBLD

Generating A HASP SYSTEM - Page 10.1-2

65

Description

74 HASP Macros

0S CVT Macro
Accounting Routine
Return Module

Command Processor
Console Support
Initialization Routine
Sample Install Jobs
Miscellaneous Routines
HASP Nucleus

Overlay Build Utility
Print/Punch Processor
Input Processor

Remote Support

SVC Routine

SMB Writer

Execution Processors

360 and M20 BSC Remote Program

1130 Loader Program

RMTGEN Standard Option Lists

M20 STR Remote Program
System/3 Remote Program
1130 Remote Program
OS UCB Macro

HASP Macro

same as SYS1.HASPSRC

HASTP

Data Set Name Member Name Description

SYS1.HASPMOD HASPGEN HASPGEN Program

(HASP Load EXRMTGEN Initial RMTGEN Program

Modules) RMTGEN RMTGEN Control Program
GENRMT RMTGEN Effector Program
LETRRIP 1130 RMTGEN Post-Processor
SYS3CNVT System/3 RMTGEN Post-Processor
HASPOBLD Overlay Build Utility

SYS1l.UT1

SYS1.UT2

SYS1.UT3

(Sequential Scratch

Data Sets)

Generating A HASP SYSTEM - Page 10.1-3

66

p—

a—,

HASP

Figure 10.1.2 - Sample Job to Catalog Data Sets for HASPGEN

//CATALOG JOB
//SCRATCH EXEC
//TWOSPACK DD
//HASP DD
//SYSPRINT DD
//SYSIN DD
UNCATLG
UNCATLG
UNCATLG
UNCATLG
UNCATLG
UNCATLG
SCRATCH
SCRATCH
/*
//ALLOCAT EXEC
//SYSIN DD
//SYSPRINT DD
//HASPSRC DD

//
//
//HASPOBJ DD
//
/7
//HASPMOD DD

//
//UT1 DD
//
//UT2 DD

//

//UT3 DD

//

(0000,0000) ,'HASP DATA SETS',MSGLEVEL=1
PGM=IEHPROGM
UNIT=2311,VOLUME=SER=222222,DISP=0LD
UNIT=2311, VOLUME=SER=HASP,DISP=0OLD
SYSOUT=A

*

DSNAME=SYS1.HASPSRC
DSNAME=SYS1.HASPOBJ
DSNAME=SYS1.HASPMOD

DSNAME=SYS1.UT1

DSNAME=SYS1.UT2

DSNAME=SYS1.UT3
VTOC,VOL=2311=222222 ,PURGE
VTOC,VOL=2311=HASP, PURGE

PGM=IEHPROGM

DUMMY

DUMMY

DSNAME=SYS1.HASPSRC,UNIT=2311, VOLUME=SER=HASP,

.DISP=(,CATLG) ,SPACE=(CYL, (30,5,5)),

DCB= (RECFM=FB, LRECL=80,BLKSIZE=3360)
DSNAME=SYS1.HASPOBJ,UNIT=2311, VOLUME=SER=HASP,
DISP=(,CATLG) ,SPACE=(CYL, (5,5,5)),

DCB= (RECFM=FB, LRECL=80 ,BLKSIZE=400)
DSNAME=SYS1.HASPMOD,UNIT=2311,VOLUME=SER=HASP,
DISP=(,CATLG) ,SPACE=(CYL, (5,5,5))
DSNAME=SYS1.UT1,UNIT=2311,VOLUME=SER=222222,
DISP=(,CATLG) ,SPACE=(CYL, (50,5))
DSNAME=SYS1.UT2,UNIT=2311,VOLUME=SER=HASP,
DISP=(,CATLG) ,SPACE=(CYL, (50,5))
DSNAME=SYS1.UT3,UNIT=2311,VOLUME=SER=222222,
DISP=(,CATLG) , SPACE=(CYL, (50,5))

Generating A HASP SYSTEM - Page 10.1-4

67

HAGSP

10.1.2 HASPGEN Parameter Cards

All HASPGEN parameters and their default values are discussed in
Section 7. After the desired value for each parameter has been

determined, the values of those which are to be changed from the
default values are usually punched into cards, to be read by the
HASPGEN utility program.

Each parameter should be punched in the format: "option=value",
beginning in column 1 of a card, where "option" represents a
HASPGEN parameter and "value" represents a permissible value for
that parameter, as described in Section 7. The above format must
not contain embedded blanks. The first blank terminates the
"value" field and the rest of the card may contain comments.

HASPGEN parameter cards may occur in a deck in any order. If the
same parameter occurs more than once, the last occurrence determines
the parameter's value. A deck of one or more HASPGEN parameter
cards is usually terminated by a card with "END" punched in

columns 1-3. If symbolic updates (PTFs or user modifications)

‘are to be applied, then the "END" card should be replaced by an
"UPDATE" card (see 10.1.3). Alternate methods of entering HASPGEN
parameters are discussed in 10.1.5.

Generating A HASP SYSTEM - Page 10.1-5

68

HASP

10.1.3 HASPGEN Update Cards

Source coding of any member in SYS1.HASPSRC (see Table 10.1.1)
may be updated by cards punched according to a subset of the
formats acceptable to the IEBUPDAT OS utility program. This is
the method used to apply Official HASP Maintenance Changes

(PTFs, etc.) and user modifications to HASP, if any. Updates are
placed following the HASPGEN parameter deck, immediately after a
card with "UPDATE" punched in columns 1-6 (see 10.1.2).

Only the ./ CHNGE ... and ./ DELET ... control cards
are defined for use with HASPGEN Update. Fields following the
module (member) name on the CHNGE card are ignored, 1if present.
Other control cards defined for use with IEBUPDAT should not be
used.

A card without "./" in columns 1 and 2 replaces an existing

source card (if columns 73-80 match an existing card in the member)
or is inserted between existing source cards, according to ascend-
ing collating sequence based on columns 73-80. Cards which are
blank in columns 73-80 (or which do not maintain the ascending
collating sequence) are inserted immediately following the last
modification card which was in ascending collating sequence.

All PTFs (and user modifications, if any) which apply to one
source module must be integrated into a single deck, beginning
with a CHNGE card naming that module, in ascending sequence number
order. If more than one module is updated, the decks must be
placed together so that the module names on CHNGE cards are in
ascending collating sequence, as listed in Table 10.1.1 under
SYS1.HASPSRC.

The last source update card must be followed by a ./ ENDUP
control card and a /* delimiter card. Figure 10.1.3 shows a

composite deck of HASPGEN parameters and source updates in correct
order.

Generating A HASP SYSTEM - Page 10.1-6

69

HASP

Figure 10.1.3 - Sample HASPGEN Parameter and Update Deck

Columns

1 10 16 73 80
&NUMLNES=1 o
&BSCCPU=YES

LINEO1=02011

RMT01=01010100153643

UPDATE (END if no source updates follow)
./ CHNGE HASPMISC

(modifications to module HASPMISC) nnnnnnnhn
./ CHNGE HASPWTR

(modifications to module HASPWTR) mmmrmrnmm
./ ENDUP
/*

Generating A HASP SYSTEM - Page 10.1-7
70

HASP

10.1.4 Standard Complete HASPGEN Process

For most installations, a complete standard HASPGEN may be
performed (if the required data sets are allocated and cataloged)
simply by using the first file of the distributed HASPGEN tape

as an OS input stream and executing, in order, all the jobs it
contains. Table 10.1.4 lists the jobs, steps, and functions of
each, in the order they occur in the first file of the tape.

The first file of the tape may be executed directly, under
HASP with MFT or MVT, by starting a HASP input tape (TPEn) using
a tape drive as the input unit.

If PCP or PCP Starter System is used, the first file of the tape
must be punched or copied to another tape, then read as a job stream.
This is because the first job will read the second file of the tape
which contains the entire HASP source coding. It would not be
possible to read the first and second files from a single tape
simultaneously, which is what a PCP system would attempt to do.

If MFT or MVT without HASP is used, then the first file of the tape
must be punched and the first job (HASPGEN) run to completion before
other jobs are read by the 0S Reader/Interpreter. During subsequent
generations with the same 0OS system, the first file may be processed
directly by the 0OS RDR.

During the first job (HASPGEN) the HASPGEN utility program will
write the following WTOR message on the console:

nn ENTER HASPGEN OPTION CHANGES (option=value), CARDS,
UPDATE, OR END.

The composite HASPGEN parameter and update deck (example
Figure 10.1.3) should be placed in the 2540 card reader and the
following reply should be entered:

REPLY nn, 'cards'
The listing output of the HASPGEN job includes:

All HASPGEN parameters with their default values
User changes to HASPGEN parameters
Source changes made to modules by HASPGEN Update

In multi-programming systems, care should be taken that the jobs
as listed in Table 10.1.4 execute in sequential order under a
single initiator.

If HASPGEN parameters (&BSCCPU or &STRCPU) are set to include
programmable Remote Job Entry support, then job HRMTGEN will

issue another WTOR console message, which allows optional
generation of Remote Terminal Programs as part of the full HASPGEN
process. Refer to Section 10.3.2 for further details.

Generating A HASP SYSTEM - Page 10.1-8

71

HASP

If all jobs in the first file of the HASPGEN tape are executed
successfully, all data sets and members as listed in Table 10.1l.1
will be completed and the punched card output will contain:

Any Remote Terminal Programs created by HRMTGEN (optional,
see 10.3.2) '

HASPJCL, the deck of sample jobs to install HASP (described
in 10.2.2)

Generating A HASP SYSTEM - Page 10.1-9

72

HASP

Table 10.1.4 - HASPGEN Tape First File Job Description

Job

HASPGEN

HASMBR1
HASMNUC
HASMRDR
HASMXEQ
HASMPRPU
HASMACCT

Step (if multi-step)

Function

LNK

HASPGEN

PROCS

HASMMISC

HASMCON
HASMRTAM
HASMCOMM
HASMINIT
HASMSVC
HASMWTR
HASMOBLD

HRMTGEN

HASPJCL

OBLD
LNKOBLD

PRINT

PUNCH

Link Edits object decks for
HASPGEN, EXRMTGEN, RMTGEN,
GENRMT, LETRRIP, and SYS3CNVT
into SYS1l.HASPMOD

Executes HASPGEN program which
reads all source code from second
file of tape, applies user
HASPGEN parameter modifications
and (optionally) source code
modifications, and builds each
source member in SYS1l.HASPSRC

Adds procedures ASMHASP, HASPGEN,
and RMTGEN to SYS1l.PROCLIB,
if not already there

Assembles source module HASPBR1

Assembles source module HASPNUC

Assembles source module HASPRDR

Assembles source module HASPXEQ

Assembles source module HASPPRPU

Assembles source module HASPACCT

Assembles source module HASPMISC -

Assembles source module HASPCON

Assembles source module HASPRTAM

Assembles source module HASPCOMM

Assembles source module HASPINIT

Assembles source module HASPSVC

Assembles source module HASPWTR

Assembles source module HASPOBLD

Link Edits object deck HASPOBLD
into SYS1l.HASPMOD

Performs optional initial RMTGEN
for one or more HASP Remote
Terminal Programs (see 10.3.2)

Prints source member HASPJCL
(sample jobs to install HASP,
see 10.2.2)

Punches source member HASPJCL

Generating A HASP SYSTEM - Page 10.1-10

HASP

10.1.5 Some HASPGEN Variations

An installation may find it necessary or desirable to vary some
of the standard HASPGEN process described previously. A few of
the possibilities are given below.

The necessity of punching or copying the first file of the HASPGEN
tape, in order to generate under a system without HASP, is discussed
in 10.1.4. The installation's requirements for particular job card
accounting fields or classes, or the absence of a 2540 card reader,
may also require the first file to be punched, listed, and used

as an input stream after appropriate modifications to the JCL.

During the execution of the HASPGEN utility, responses to the WTOR
message other than 'cards' may be used. 1Individual HASPGEN para-
meters may be entered by using a reply text of 'option=value',
where these terms have the sames meaning as described for HASPGEN
parameter cards in 10.1.2. Lower case may be used, but no blanks
or comments are allowable. Each HASPGEN parameter entered from
the console is acknowledged by a message if correct or else by

a diagnostic, with opportunity to re-enter a correct form. The
same parameter may be entered repeatedly; only the last value
entered will be used. The 'cards' reply may be entered at any
time to cause further parameter reading from the 2540 card reader.
If all parameters are entered from the console, a reply text of
'update' may be entered to cause reading of an update deck only
(all cards after UPDATE in Figure 10.1.3) from the 2540 card
reader. If all parameters are entered from the console and there
are no updates, a reply text of 'end' may be used to terminate

all entry to HASPGEN.

If all the actions of the HASPGEN job (Table 10.1.4) are performed
once and the three partitioned data sets SYS1l.HASPSRC, OBJ, MOD
are preserved on a disk pack, then later full or partial HASPGENs
may be performed under a production batch system by using jobs
such as the examples given in Figure 10.1.5. Execution of the
HASPGEN proc invokes only the HASPGEN utility, with a PARM field
causing the WTOR and reply to be omitted so that parameters and
updates are read directly from the input stream. The data set
SYS1.HASPSRC would normally be scratched and re-allocated prior
to running this job. If all 14 assemblies (Table 10.1.4) are to
be done, SYS1.HASPOBJ should also be scratched and re-allocated.
Figure 10.1.5 shows how to use the ASMHASP proc to do assemblies.
If HASPOBLD is assembled, a step should be added to link edit it
from SYS1.HASPOBJ into SYS1.HASPMOD.

Partial HASPGEN may be used to save processing time, if only
minor changes are made to HASPGEN parameters or only a small
number of modules are changed by updates. The recommended process

Generating A HASP SYSTEM - Page 10.1-11

74

p=—

HASP

is to scratch and re-allocate SYS1.HASPSRC only, then to use
the HASPGEN proc and full parameter/update deck to re-create
SYS1.HASPSRC. Only required assemblies are performed, using
ASMHASP proc, with decks replacing those of same name in
SYS1.HASPOBJ.

A module must be re-assembled if a HASPGEN parameter (s) is
changed, compared to the previous HASPGEN, and Table 10.1.6
indicates that the module depends upon the parameter(s). A
change in the update portion of the deck for a module, com-
pared to the previous HASPGEN, also requires that the module
be re-assembled. If in any case re-assembly requirements are
doubtful (e.g., changes in update deck for any member of
SYS1.HASPSRC other than one of the 14 assembly modules), all
14 modules must be re-assembled.

The module HASPBR1 does not actually depend on any generation
parameter. However, it contains the most complete commented
documentation of all HASP Control Blocks which does depend on
various HASPGEN parameters. Therefore HASPBR1 should be re-
assembled periodically to provide listing documentation current
with operational HASP.

Table 10.1.6 refers to the assembly modules by using a single
alphabetic character for each, according to the following
equivalences.

HASPNUC
HASPRDR

HASPXEQ Vs
HASPPRPU o
HASPACCT R
HASPMISC

HASPCON

HASPRTAM

HASPCOMM

HASPINIT

HASPSVC

HASPWTR

HASPOBLD

OHWZOARI|PUXID
L T | 1 | | 1 I 1 |

Generating A HASP SYSTEM - Page 10.1-12

75

HASP

Figure 10.1.5 - Sample Batch HASPGEN Jobs

//HASPGEN JOB ...
//JOBLIB DD DSN=SYS1l.HASPMOD,DISP=SHR
//GEN EXEC HASPGEN
//BASPGEN.OPTIONS DD *
(deck as in Figure 10.1.3)

/*
//HASMNUC JOB ...
//NUC EXEC ASMHASP,MODULE=HASPNUC

//HASPINIT JOB ...
//INIT EXEC ASMHASP,MODULE=HASPINIT

Generating A HASP SYSTEM - Page 10.1-13

76

HASTP

Table 10.1.6 - Module Dependencies on HASPGEN Parameters

&ACCTNG -HPA &NUMPUNS-HPVN &SPD2260-W
&AUTORDR-WCN &NUMRDRS-HWN &SPOLMSG-PMN
&BSCCPU -PM &NUMRJE -MCN &STRCPU -M
&BSC2770-M &NUMTGV -HRXPAVWCN &STR1978-M
&BSC2780-M &NUMTPBF-N &TIMEOPT-X
&BSHPRSU-M &NUMTPES-HN $TIMEXS -X
&BSVBOPT-M &NUMTPPR-HPVN &TPBFSIZ-HMN
&BUFHICH-N &NUMTPPU-HPMN STPIDCT -P
&BUFSIZE-HRXPMN &NUMTPRD-H &TRACE -HXVWN
$SCKPTIME-V &NUMWTOQ-HN &USASCII-M
&CLS (n) -X &OLAYLEV-RXPAVMCN SWAITIME-M
&CONAUTH-N &OREPSIZ-HN &WCLSREQ-T
&DEBUG -HXVCNO &0SC(n) -X SWTLOPT -CN
$DELAYCT-M &0OSINOPT-R &WTR -XWCN
&DMPTAPE-N &OUTPOPT-X &WTRCLAS-XNT
$ESTIME -R $OUTXS =X &WTRPART-WCN
SESTLNCT-R &PID(n) =X &XBATCHC-RXWCN
SESTPUN -R &PRI(n) -X &XBATCHN-RXWC
&INITSVC-XNS $PRICONA-H &XLIN (n)-RX
&JITSIZE-HRXVCN $PRIDCT -P &XPRI (n) =X
SLINECT -R &PRIHIGH-V &XZMFTH -V
LINEmm =N &PRILOW -V &XZMFTL -V
&LOGOPT -X &PRIRATE-HV &XZPRTY -XV
&MAXCLAS-XCN $PRTBOPT-P $$x -X

&MAXJOBS-VN

&MAXPART-X &PRTUCS -N
&MAXXEQS-HXVWN $PUNBOPT-P
&MINBUF -N &RDR -XN
&MLBFSIZ-M &RDRPART-N
&MONINTV-HXV SREPRDR -N
&NOPRCCW-HPC SREPWTR -N
&NOPUCCW-HPC &RESCORE-N
&NUMBUF -N &RJOBOPT-R
&NUMCONS -HXWCN RMTnn -N
&NUMDA -HRXPAVWMCN S$RPRBOPT-P
&NUMDDT -RX &RPRI (n) -R
&NUMINRS-HRXN &RPRT (n) -R
&NUMLNES -HRPWMN SRPUBOPT-P
&NUMOACE-N &RQENUM -W

&PRTRANS-PM

&NUMPRTS-HPVN &SIZ2260-WN

Generating A HASP SYSTEM - Page 10.1-14

77

HASP

10.2.1 OS SYSGEN REQUIREMENTS FOR HASP

In order to utilize HASP, the following additions should be made
to the standard installation OS SYSGEN STAGE 1 input deck.

10.2.1.1 Pseudo Devices

Pseudo readers, printers and punches should be gererated according
to the following formulas.

Number of pseudo 2540 readers = INDD*&MAXXEQS+1
Number of pseudo 1403 printers = PRDD*&MAXXEQS+1l
Number of pseudo 2540 punches = PUDD¥*&MAXXEQS
Number of pseudo 1443 printers = SFPRDD*&MAXXEQS
Number of pseudo 1442 punches = SFPUDD*&MAXXEQS
Number of pseudo 2520 punches = &NUMINRS
Where:
INDD = maximum number of DD * (or DD DATA) cards
per job
PRDD = maximum number of print data sets per step
PUDD = maximum number of punch data sets per ste
SFPRDD = maximum number of print data sets requiring
special forms or special routing per job
" SFPUDD = maximum number of punch data sets requiring
_ special forms or special routing per job
&MAXXEQS = maximum number of simultaneous Job executions
&NUMINRS = number of Internal Reader interfaces

It should be noted that the term "Pseudo Device" implies a physically
non-existent device. The addresses chosen for pseudo devices may be
any hexadecimal values from 000 to 6FF; they need not be contiguous
and they must not match the address of any existent device or other
pseudo device. —_

10.2.1.2 Additional Symbolic Unit Names

The symbolic unit name "A" should be assigned to all pseudo 1403
printers, except the one identified by the HASPGEN parameter &WTR.
The symbolic unit name "B" should be assigned to all pseudo 2540
punches.

OS SYSGEN Requirements for HASP - Page 10.2.1-1

78

HASTP

The Pseudo Device and Symbolic Unit Name requirements are satisfied

by using the SYSGEN macros CHANNEL, IOCONTRL, IODEVICE, and UNITNAME.
The following examples give a simple method of generating the required
devices and names for OS Release 18 and later releases.

Pseudo 2540 Reader
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=10000801

Pseudo 1403 Printer
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=10000808
UNITNAME NAME=A,UNIT=xxX (omit if xxx=&WTR)

Pseudo 2540 Punch
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=10000802
UNITNAME NAME=B,UNIT=xxx

Pseudo 1443 Printer
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=1000080A

Pseudo 1442 Punch
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=51800803

Pseudo 2520 PUNCH
IODEVICE UNIT=DUMMY,ADDRESS=xxx,DEVTYPE=11000805

Because UNIT=DUMMY is used, control unit macros are not required.
However, for hardware reasons, the channel and control unit digits
in the addresses used for pseudo devices should not match an :
existent channel and control unit. For example, if the system has
a 2314 using addresses 130 through 137, then no pseudo device
shculd be generated with an address 13x.

The pseudo 2520 punches may be given a descriptive symbolic unit
name, as in the following example. This will make allocation easier
for programmers using the Internal Reader feature of HASP.

UNITNAME UNIT=(301,302,...),NAME=INTRDR

10.2.1.3 Position for the HASP Type I SVC

The following card must be included in SYSGEN input to reserve a
position for installation of the HASP Type I SVC. For "nnn", the
value assigned to the HASPGEN parameter &INITSVC is used.

SVCTABLE SVC-nnn-T1-S0

OS SYSGEN Requirements for HASP - Page 10.2.1-2

79

HASP

10.2.1.4 1Installation of the HASP SVC at SYSGEN Time

If HASPGEN has been completed prior to SYSGEN, it is possible to
cause the installation of the HASP SVC in the 0S Nucleus during

STAGE 2 of SYSGEN. The data set SYS1.HASPOBJ must be cataloged

in the generating system and the following card must be included
in the STAGE 1 SYSGEN input.

RESMODS PDS=SYS1.HASPOBJ ,MEMBERS=HASPSVC

10.2.1.5 MFT Partitions

Consideration should be given when generating MFT Systems to
setting partition sizes and classes properly. This will minimize
required operator actions when HASP is invoked.

HASP will normally reside in PO, but this is not mandatory. Size
of PO (or partition in which HASP resides) should be sufficient
to contain the HASP load modules whose size may be determined
from the link edit described under Section 10.1.4.3.

If the &WTRPART HASPGEN parameter is not set to "*", a partition
(normally Pl) will be needed for the 0OS Writer.

Other job processing partitions should be generated, each with
only one eligible job class. These classes should be unique and
match the classes assigned to the HASPGEN parameters &OSC (n).
One OS partition should be eligible for Class A jobs, to allow
processing of any job with a JCL error so severe that the 0OS
'R/I defaults it to Class A.

The following is an example of compatible HASPGEN parameters and
SYSGEN PARTITNS macro.

&0SC (1)=A &PID(1)=2 &WTRPART=P1

&0SC (2) =B &PID(2)=3

&0SC (3)=C . &PID(3)=4

PARTITNS - PO(C-H,S-50K),P1(C-W,S-10K) ,P2(C-A,S-100K),

P3(C-B,S-100K) ,P4(C-C,S-100K)
The &PID(n) parameters are only used to make HASP operator messages
correspond to actual physical partitions. If &WTRPART=*, then

Pl may be eliminated or allocated zero storage, which will allow
later optional use of the OS Writer.

OS SYSGEN Requirements for HASP - Page 10.2.1-3

80

‘HASP

10.2.1.6 MFT Features

Certain features of HASP, when used with an MFT System, require
that the MFT System be OS Release 19 or a later release and that
certain optional MFT features be specified in the SYSGEN.

If HASPGEN parameters are specified. (or defaulted) so that
&WTRPART=* and/or &NUMCONS=0 and/or &MONINTV is greater than zero,
then the MFT System must include the multitasking capability. This
is specified by including "ATTACH" in the OPTIONS parameter of the
SUPRVSOR macro. See OS System Generation documentation for further
details. It is not necessary or beneficial for HASP's purposes to
make ATTACH resident, which would require additional fixed storage.

If &NUMCONS=0, the MFT System must also have a four (4) byte SVC
table. This is specified by including "TRSVCTBL" in the OPTIONS
parameter of the SUPRVSOR macro. '

10.2.1.7 Timer Requirement

Use of HASP requires that 0OS have certain software support for the
hardware interval timer. The TIMER parameter of the SUPRVSOR
macro must specify "INTERVAL" or "JOBSTEP". The specification of
"JOBSTEP" is required if the HASPGEN parameter &MONINTV is greater
than zero.

OS SYSGEN requirements as stated above in Sections 10.2.1.1, 2,

3 and 7 are mandatory if the System is to be used with HASP.
Other requirements stated above may be satisfied at a later time
(SVC may be installed later if position has been reserved, parti-

“tions may be set at IPL) or are optional depending upon use of

optional features in HASP.

0OS SYSGEN Requirements for HASP - Page 10.2.1-4

81

HASP

10.2.2 INSTALLING HASP IN AN MFT OR MVT SYSTEM ; AL

D e T
2 o go L ¥
(5% ‘
G %

To install HASP, it is necessary to perform some or all of the
following four processes, after HASPGEN has been completed.
Four sample jobs, one for each process, are printed and punched
from the source member HASPJCL when HASPGEN is performed as
described previously in Section 10.1.4. These jobs are also
listed in Section 12.1 for reference.

It must be emphasized that the sample jobs are just samples.

If run exactly as punched, they will probably produce incorrect
results. Each process is discussed below with comments about
what modifications to the sample job may be necessary.

10.2.2.1 1Install HASP SVC

This process is not necessary if the SVC was installed during OS
SYSGEN as described previously under Section 10.1.3.4. If not
done then, the sample job HASPSVC may be used.

The three step job HASPSVC scratches a second OS Nucleus data set

named SYS1.OLDNUC or SYS1.NEWNUC, link edits the standard Nucleus

with the HASP SVC into a newly created SYS1.NEWNUC, then performs

renaming so that the new Nucleus becomes the standard SYS1.NUCLEUS
data set.

All references in the sample job to volume YYYYYY should be changed
to the volume serial of the system residence volume. The unit and
space allocation for SYS1.NEWNUC should be made to agree with that
used for SYS1.NUCLEUS during SYSGEN. Only two of the three INSERT
cards should be used, as indicated by comments on the cards. INSERT
cards other than those shown may be required if the OS Nucleus
contains special features, such as Channel Check Handler. INSERT
cards actually used should match those shown on the listing of the
OS Nucleus link edit during SYSGEN.

Alternative'procedureé may be used to install the HASP SVC, including
use of alternate members within the single data set SYS1.NUCLEUS

if space permits. Naming of these members and IPL procedures are
described in appropriate OS documentation.

Installing HASP in an MFT or MVT System - Page 10.2.2-1

82

‘ \ 1‘

HASP

10.2.2.2 1Install HASP Procs AR

The sample job HASPROCS should be used to add necessary cataloged
procedures (members) to the system's SYS1.PROCLIB data set. The
members are described below.

Region specifications in all of the members may be modified up or
down to fit actual minimum storage required in a particular MVT
System, as determined by OS Storage Estimates or actual experience
with a particular OS Release. Values given in the samples are
appropriate for Release 19 with blocked proclib.

Member HASP - HASP is invoked when the operator types the 0OS START
command, as described in the Section 11.1 Operator's Guide, para-
graph 2.2. This starts an 0S Reader/Interpreter which reads the
member STRTHASP that, in turn, invokes the HASP System. The
BLKSIZE parameter on card 00900000 should be changed, if necessary,
to agree with the blocking of SYS1.PROCLIB.

Member STRTHASP - The member STRTHASP is an OS job which, when read
and executed, invokes the HASP System. For MFT Systems, the parti-
tion specified on card 01060000 should be changed if HASP will not

reside in partition zero (P0). For MVT Systems, the region size on
card 01020000 should be changed to a size sufficient to contain the

'HASP load modules, whose size is given by the link edit described

under 10.1.4.3.

The DD card 01040000 should refer to the cataloged HASP overlay

data set produced during the build step described under 10.1.4.3.

A STEPLIB DD card may be added to STRTHASP, if the HASP load modules
do not reside in SYS1.LINKLIB.

Others versions of the STRTHASP member may be constructed which
invoke alternate HASP Systems, for purposes of changing device
configuration, HASP features, etc. If these are placed in
SYS1.PROCLIB under other member names, they may be invoked by using
the keyword ",JOB=membername" in the initial operator START HASP
command.

Installing HASP in an MFT or MVT System - Page 10.2.2-2

HASTP

Member HOSRDR - The member HOSRDR is used by HASP to invoke the
single OS Reader/Interpreter necessary to send jobs to 0S for
execution. Two versions are given in the sample job, but only one
should be installed. Either version may be used with MVT but only
the one identified by comments as STD RDR may be used with MFT.

In both versions of HOSRDR, the EXEC PARM field may be modified if
desired, however, the "SSﬁSSSSS" field must not be modified from

Pt A e

¥ the spec1flcatlon "SPOOL ", Also, the DCB field of the IEFRDER DD

statement must not be modified. The IEFDATA statement may be modi-
fied to fit installation requirements, but this will have effect
only if the HASPGEN parameter &OSINOPT=YES and a DD * or DD DATA
card with DCB parameters is encountered in an input stream read

by HASP.

If the ASB version of HOSRDR is used in an MVT System, the fixed
core requirement for the 0OS R/I is reduced from approximately 50K
to 16K. However, the ASB Interpreter will dynamically acquire a
region (82K in the sample) when HASP sends it a job for 0OS execu-
tion. The last character in the ASB Reader EXEC PARM field, called
"K", must be removed if using OS Release 18.

Member HOSWTR - The member HOSWTR is needed only if the HASPGEN
parameter &WTRPART .is not set to "*". However, it should be installed
even if unused so that &WTRPART can be later changed without requiring
installation then.

HASP uses its own module HASPWTR as an attached task, or it uses an
OS Output Writer invoked by the member HOSWTR, to retrieve OS System
Messages from SYS1.SYSJOBQE at the end of job execution.

Installing HASP in an MFT or MVT System - Page 10.2.2-3

HASP

10.2.2.3 1Install HASP Program

The HASP Program consists of one primary load module made up of
resident CSECTs from each of ten object modules, two other smaller
load modules each from a single object module, and several overlay
CSECTs taken from some of the above object modules. Each overlay
CSECT exists as a single record in a sequential data set on a
direct access device, during HASP operation.

The three step sample job HASPHASP shows how the above components
of the HASP Program are constructed from the object decks produced
by HASPGEN. The first step simply scratches the overlay data set
to be later allocated and built.

The second step executes a utility called HASPOBLD whose primary
input is ten object modules from SYS1l.HASPOBJ as shown. The over-
lay csects are written to SYS1.HASPOLIB and all references to them
in other overlays or in resident CSECTs are resolved. Resident
CSECTSs are written to the SYSLIN DD temporary data set as input to
the third step.

The third step uses the OS Linkage Editor to resolve all external
references between resident CSECTs and produce the primary load
module, HASP. The two smaller load modules, HASPBR1 and HASPWTR,
are also produced from their respective object modules.

It must be remembered that the three load modules and the overlay
data set produced by this job belong together and should be invoked
as a single entity by the proclib member STRTHASP, as described
under 10.1.4.2. Load modules must not be used with overlay data
sets produced by different executions of this job, etc.

All uses of ZZZZZZ in the sample job as a volume label should be
changed to the volume of the overlay data set, which may be any
direct access volume including one of the SPOOL volumes. The data
set should be considered a high activity system data set just like
SYS1.SVCLIB and placed accordingly for optimum performance. Space
allocation must be a single extent. The example shows space for
50 records of 1024 bytes, a comfortable quantity for an unmodified

‘HASP System with HASPGEN parameter &OLAYLEV set for maximum overlay.

If it is desired to execute HASP in a hierarchy storage environment,
appropriate changes should be made to the LKED step. "HIAR" should
be added to the PARM field and HIARCHY control cards should be added
to the input prior to the first NAME card, to control the location
of various resident CSECTs. Consult documentation of the OS Linkage
Editor for more details. ‘

Installing HASP in an MFT or MVT System - Page 10.2.2-4

85

HASP

Any CSECT which is programmed for overlay (third character of name
is a "$") may be changed from resident to overlay or vice versa
during execution of HASPOBLD, by reading control cards from the
SYSIN DD file (shown as empty in the sample). The CSECT name 1is
punched in column 1 of a control card, beginning with "HAS$". The
fourth character is punched "O" to make the csect overlay, or "P"
to make it resident. Fifth and following characters are taken
from the CSECT name as given in the appropriate assembly External
Symbol listing. If a CSECT is being made overlay, a priority num-
ber in the range 0-15 may be punched beginning in column 16, to
change the priority.

An information listing is produced by HASPOBLD. Any control cards
are listed first. Then each "HAS$" CSECT name is listed, with its
OCON or relative position in the overlay supervisor reference table.
For actual overlay CSECTs, the relative and absolute record address
is given, and the priority for use of overlay resources. The CCHHR
is especially useful when using IMASPZAP to inspect or change a
particular overlay CSECT on direct access.

Self-explanatory error messages "TOO LONG", "DUPLICATE", or
"UNDEFINED" may be produced with any listed CSECT name. They should
not occur unless erroneous user modifications to HASP have been
made. Too long CSECTs are truncated to 1024 bytes. This condition
may be temporarily circumvented by making the CSECT resident by use
of a control card as described above. Duplicate CSECTs are ignored.
The first copy encountered in HASPOBLD input is used.

If object module input to HASPOBLD causes overflow of any internal

tables, the program will terminate with a U0101 ABEND after printing
the last card read.

10.2.2.4 Allocate SPOOL Direct Access Space

For direct access space, HASP requires one or more volumes whose
volume serial numbers begin with the characters SPOOL. One and
only one of these volumes must be labeled SPOOL1l. Each SPOOL
volume must have a data set named SYS1.HASPACE; HASP will use the
first extent of this data set for SPOOLing space. SPOOL volumes
may reside on any combination of direct-access device types except
2321. HASP sets up an individual parameter list for each SPOOL
volume, thus insuring full use of all allocated space.

It is strongly recommended that each SPOOL volume be entirely
devoted to HASP usage. To allocate other, frequently-referenced
data sets on a SPOOL volume would degrade the efficiency of HASP's
direct-access allocation algorithm. The sample job HASPOOLS shows
full-volume allocation; it assumes one-track VTOCs on cylinder 0,
track 1. If full-volume allocation is used, the following comments

Installing HASP in an MFT or MVT System - Page 10.2.2-5

86

HASTP

in this section may be ignored.

If the installation requires that other data sets be allocated on
a SPOOL volume, a simple example will show how to allocate the
SYS1.HASPACE data set so it contains no dead space. HASP's unit
of direct-access allocation is the track group; the number of tracks
in a track group is obtained by dividing the total number of
tracks on a volume by the number &NUMTGV (number of track groups
per volume). For example, the number of tracks for a 2311 volume
is 2000 (regardless of the size of the SYS1.HASPACE allocation);
if &NUMTGV was set to 500 at HASPGEN time, the number of tracks
per track group is 2000/500 = 4. HASP will use only those track
groups that fall completely within the SYS1.HASPACE allocation;
therefore, an improperly allocated SYS1l.HASPACE could have dead
space at its beginning and end.

For allocation, use the JCL specification

SPACE= (ABSTR, (quantity,address)).
To allocate any SPOOL volume but SPOOL1l, use both "quantity" and
"address" as integral multiples of number of tracks per track
group. For example, specify SPACE=(ABSTR, (1000,20)) if number of

tracks per group is 4.

To allocate SPOOL1l, follow the above procedure, but add 2 to

"quantity" and subtract 2 from "address". HASP uses the first two
tracks of the SPOOLl allocation for checkpoint information. For
example, specify SPACE=(ABSTR, (1002,18)). This would allocate the

1002 tracks beginning with track 18 and ending with track 999.
HASP would use tracks 18 and 19 for checkpoint information; it
would use the 245 track groups beginning with track group 5 (which
starts on track 20 and extends through track 23) and ending with
track group 249 (which starts on track 996 and extends through
track 999). It would mark the other 255 track groups on this 2311
as permanently unavailable for allocation.

Installing HASP in an MFT or MVT System - Page 10.2.2-6

87

HASP

10.3 GENERATING HASP REMOTE TERMINAL PROGRAMS (RMTGEN)

This section describes the process of generating the HASP remote terminal

programs described in the HASP Remote Terminal Operator's Guides.

10.3.1 HASPGEN Preparations For RMTGEN

HASPGEN inserts the RMTGEN procedure into the central operating system's
SYS1.PROCLIB and builds appropriate members of the HASP libraries SYS1.HASPMOD
and SYS1.HASPSRC. These data sets along with the procedure required for
RMTGEN should be retained in the system for (1) the initial HASP Remote
- Terminal Program generation run, and (2) subsequent Batch HASP Remote
Terminal Program generation runs. Table 10.3.1 lists the data sets and
members required for the above generation runs.
Each new HASPGEN will recreate the HASP libraries and will require that
new Remote Terminal Programs be regenerated when any one of the following
conditions exist:
1. Official HASP modifications are used in updating the remote
terminal program éource decks‘on SYS1.HASPSRC (see Section
10.2 - Modifying the HASP SYSTEM).

2. Installation HASPGEN. parameters are changed which affect the
HASP remote terminal interface (see Section 7).

3. Local modifications are made to HASP and/or the Remote source

programs which affect the remote terminals.

Generating HASP Remote Terminal Programs - Page 10 .3-1

88

HASP

f% Table 10.3.1 - RMTGEN Data Sets
DSNAME DSORG _ MEMBERS DESCRIPTION
SYS1.PROCLIB PO Systems Procedure Library

RMTGEN RMTGEN procedure
SYS1.HASPMOD PO HASP Load Module Library
RMTGEN RMTGEN main module

GENRMT RMTGEN source deck preparation and
update module

EXRMTGEN HASPGEN RMTGEN executor module
LETRRIP Post-processor for 1130 remote terminal

programs

SYS3CNVT Post-processor for System/3 remote
terminal programs

SYS1.HASPSRC PO HASP System Source Library
HRTPOPTS HASP Remote Terminal Standard Options

HRTPB360 Source deck for HASP 360 and M20
BSC Remote Terminal Programs

HRTPSM20 Source deck for HASP M20 STR
Remote Terminal Programs

HRTPLOAD Source deck for HASP 1130 BSC loader

HRTP1130 Source deck for HASP 1130 BSC
Remote Terminal Programs

HRTPSYS3 Source deck for HASP System/3 BSC
Remote Terminal Programs

All named data sets must be cataloged in the System Catalog. The initial

RMTGEN run will use data sets SYS1.UT1,UT2,UT3 allocated for HASPGEN.

Generating HASP Remote Terminal Programs - Page 10.3-2

89

HASP

Installations should create and maintain RMTGEN option decks for the
purpose of recreating the revised remote terminal programs when necessary
after each new HASPGEN. (Note RMTGEN runs may be required even though

no changes to the RMTGEN option decks are required.)

10.3.2 Initial HASP Remote Terminal Program Geneneration Run

(performed as part of HASPGEN)

If CPU remote terminals are indicated in the HASPGEN parameters, the
job named HRMTGEN will type the message "PLACE RMTGEN OPTIONS IN
UNIT XXX AND REPLY 'GO', OR REPLY 'CANCEL' ". XXX is the address of
the OS allocated 2540 card reader attached to the system. The operator
should make sure t};e named 2540 card reader is not being used for any
other function, i.e., HASP reader; clear any cards remaining in the reader;
load the reader with RMTGEN options for all desired remotes; and reply,
"'GO" using the OS/360 reply format. If no remote generations are desirgd

initially the operator should reply, "CANCEL".

10.3.3 Batch HASP Remote Terminal Program Generation Run

RMTGEN runs may be made as a normal batch stream j.ob. Figure 10.3.2
shows an example job stream for a Batch RMTGEN. The user options and

control cards are the same as for an initial RMTGEN run.

Generating HASP Remote Terminal Programs - Page 10.3-3

HASP

10.3.4 RMTGEN PROGRAM EXECUTION

RMTGEN expects its input stream to contain one or more remote terminal
program descriptions. Each terminal program is described by card entries
in the following order:
1. HASP Remote terminal program identification card.
2. User RMTGEN option cards.
3. S$.UPDATE control card (optional).
4. Update cards if $.UPDATE card is used.
5. $.RMTEND end of remote description.
The above description format is repeated for each terminal to be generated.
Descriptions do not affect any following descriptions either in the current run
or succeeding runs.
The following procedures are followed in the generation of each HASP
Remote terminal program.
1. ‘ RMTGEN reéds the card input stream for the remote terminal
program identification, selects the appropriate STANDARD ‘OPTIONS
list for the desired remote terminal program, and prints the

default values onthe SYSOUT=A device.

Generating HASP Remote Terminal Programs — Page 10.3-4

91

HASP

Figure 10.3.2 Example of Batch RMTGEN Run

//RMTGENJB JOB (0000,0000) s 'GEN REMOTE PROGRAMS',MSGLEVEL=1
//JOBLIB DD DSNAME=SYS1.HASPMOD,DISP=SHR
//RMTGEN EXEC RMTGEN
//RMTGEN.OPTIONS DD *
$.RMTM20,2

ERDEV (1)=2560

ERAIR (1)=2

&UDEV (1)=2560

&UADR (1)=2

&WDEV (1)=2152
ENUMTANK=5

$.RMTEND

$.RMT360,3

&CMPTYPE=3
&PDEV(2)=1403
&ADAPT=030

EWADR=009

ENUMTANK=7
&CORESIZ=16

$.RMTEND

/%

Generating HASP Remote Terminal Programs — Page 10.3-5

92

RMTGEN reads the overriding options from the card input stream
and changes the current values. Overriding options are printed

on the SYSOUT=A device as they are encountered. (See Section 7
for RMTGEN option specifications.)

When $.UPDATE or $.RMTEND is encountered, the remote terminal
program source deck is copied to a scratch data set (ddname=
SYSIN) for the assembler. During the transfer the final options

as specified are used to update thevsource. If update is specified,
data from the card input stream will be used to modify thé source
deck.

After the update the assembler is invoked to assemble the remote
terminal program and, except for 1130 and System/3 programs,
punch self loading object decks on the SYSOUT=B data set. 1130
or System/3 assembly places the object deck on a scratch data set.
On return from the assembler, if the program is for the 1130 or
System/3, RMTGEN invokes a post-processor (LETRRIP or SYS3CNVT)
which creates a load deck image on the SYSOUT=B data set. See
10.3.6 for further actions necessary for System/3.

If mére cards are in the card input stream RMTGEN repeats the -

above procedures.

All listihgs produced by RMTGEN and the assebler will have the remote

terminal SIGN-ON identification number at the top of each page. With the

exception of loader bootstrap cards, all object deck cards will have the

Generating HASP Remote Terminal Programs - Page 10.3-6

93

HASP

identification number punched in columns 75-76.

10.3.5 RMTGEN Input Card Specifications

RMTGEN accepts four basic input card groups. (1) RMTGEN control cards,

(2) User options, (3) Update control cards, (4) Update cards.

RMTGEN Control Cards

~_ CARD FORMAT: Col. 1- 2 S. control card identification
Col. 3-71 operands: variable length separated
by comma with no blanks
allowed.

(last operand must be
followed by blank)

. Col. 73-80 ignored
The first card | of a Remote terminal program description is the HASP
Remote terminal program identification card. It serves two functions:
1. Selects the appropriate‘standard options group and source member
from the library.
2. Sets the remote terminal identification number.
CARD FORMAT $.name,n where: name=the name specified in
' Table 10.3.3 for the remote

terminal program to be generated.

n=1 or 2 digit terminal number
followed by blank.

Generating HASP Remote Terminal Programs - Page 10.3-7

94

HASP

RMTGEN has two additional control cards:

$.UPDATE which sets the update mode and causes following

cards to be used to modify the remote program source deck

for the current generation description.

S.RMTEND which signals the end of the remote generation

description.

USER OPTIONS

CARD FORMAT: Col.

1-n Name=value

name = a legal option
specified in the
appropriate remote
terminal program options
section. (see section 7).

value = a character string
of up to 17 characters -
ending in blank. Blanks
must not appear anywhere
on the card except after
the value.

User options may appear in any order after the Remote terminal program identi-

fication card.Each option may occur more than once.

The last value for

each option overrides previous values and is used in generating the remote

terminal program. See Section 7 for default option values.

UPDATE CONTROL CARDS

CARD FORMAT: Col.

control identification

DELET for delete source
cards indicated
ENDUP for terminate update

Generating HASP Remote Terminal Programs — Page 10.3-8

HASP

Col. 16-23 serial 1 starting card serial
number (DELET only)

24 , (DELET only)

25-32 serial 2 ending card serial
number (DELET only)

Update control cards may be used only during an update run i.e. after
$.UPDATE card. The DELET card is used to delete one or more source cards
from the source deck for the described remote terminal program as it is being
prepared for the assembler. The DELET card may be mixed with insertion and
replacement cards containing new source statements for the assembler. All
library source cards starting with serial 1 through and including serial 2
will be omitted from the assembler input source. ENDUP terminates the
rémote terminal program description. It may be replaced by $.RMTEND

which also serves this function.

UPDATE CARDS

Update cards are assembly language source cards and follow the format
described in the OS/360 assembler manuals. Each card may be serialized
in cols. 73-80 or may have all blanks in 73-80. Cards with blank serials
will be inserted immediately in the source deck after the last serialized
input card or, if following a DELET control card, in place of the deleted
source cards. Serialized cards will replace current source program cards
if the serial numbers are equal to existing source cards or will be inserted

in the source deck in the appropriate location based on the serial number.

Generating HASP Remote Terminal Programs — Page 10.3-9

=

HASP

All serialized input (including update DELET cards) must indicate ascending

order serial numbers.

10.3.6 System/3 96-Column Card RMTGEN Output

As described under 10.3.4, RMTGEN for System/3 invokes the post-processor

SYS3CNVT to produce the System/3 load deck image on the SYSOUT=B data set.

The cards thus created are 80-column cards which, if routed (by use of a /*ROUTE

card or the $R operator command) to a Systern/3 Remote Terminal utilizing the
System/3 Starter System, will be punched as full 96-column System/3 load mode
cards. They may also be punched locally or remotely as 80-column cards
together with the punched outputs of other RMTGENSs and later be separated and
routed to a System/3 Starter System as the punched output of an 80/80 card-

to-punch job. The IBM data set utilities IEBPTPCH or IEBGENER might, for

example, be used. See the HASP System/3 Operator's Guide for a System/3

Starter System description.

System/3 96-column load mode cards must be punched as described above
in order to use the output of a RMTGEN on a System/3. 80-column cards are
not loadable on a Systém/3, even if the supported RPQ 1142 card reader is
attached. |

Instead of the System/3 Starter System, any HASP System/3 Remote
Terminal Processor program generated with the option &S396COL set to 1 may

be used to punch RMTGEN output routed to a System/3 as described above.

Generating HASP Remote Terminal Programs - Page 10.3-10

97

HASP

Table 10.3.3 - RMTGEN Terminal Program Identification Cards

HASP Remote Terminal Terminal Program Identification Card
Processor program for (1st card of each remote description)

360/20 STR ‘ $.HRTP,n

360/20 BSC $.RMTM20,n

360/25, 30, 40, etc. $.RMT360,n

1130 Loader $.RTPLOAD,n

1130 $.RTP1130,n

System/3 S$.RMTSYS3,n

n= remote SIGNON number

Generating HASP Remote Terminal Programs - Page 10.3-11

98

A,

HASP

10.4

REMOTE GENERATION FOR NON-HASP USERS -

This section outlines the procedures required to generate
HASP remote workstation programs w1thout 1nsta111ng the
complete HASP System.

PREPARATION - The remote generatlon (RMTGEN) process re-
quires creation of appropriate data sets as discussed in
Section 10.3.1 of this manual. The requirements may be
satisfied using the following procedures:

1) Allocate and catalog the data sets:
SYS1.HASPMOD - for HASPGEN and RMTGEN load modules
SYS1.HASPSRC - for HASP and workstation source decks
SYS1.UT3 - for Linkage Editor utility data set
Refer to Figure 10.1.2 - Sample Job to Catalog Data
Sets for HASPGEN.

2) Mount the HASP distribution tape on an appropriate
drive and start a reader to the tape. DO NOT allow
the jobs to begin executing. (The format and blocksize
of the tape is listed in the front of this manual).

3) Cancel all jobs read in from the tape except the first
job (job name HASPGEN).

4) Allow the HASPGEN job to execute. This will cause the

required workstation source decks, RMTGEN object modules,

and RMTGEN procedures to be added to the system.

5) The HASPGEN job will request that the operator enter
modifications to the default options (see section
10.1.4 - Standard Complete HASPGEN Process). The
remote workstation programs are dependent upon the
following two HASPGEN options which are described in
section 7 of this manual.

&TPBFSIZ
&MLBFSIZ

The value of &MLBFSIZ is the maximum size record which
may be transmitted over the communication 1line .

This parameter must be set to the size which has been
specified at the central CPU with which the workstation
is to communicate.

If official modifications are required for the remote
workstation programs, these modifications should be
inserted into the 2540 card reader behind the option
modification cards and the UPDATE card as described
in section 10.1.3 of this manual.

Remote Generation For Non-HASP Users - Page 10.4-1

99

HASP

When the HASPGEN job completes successfully the data
sets required are ready for the remote generation
RMTGEN process.

EXECUTING RMTGEN - Upon completion of the HASPGEN job
one or more RMTGEN jobs may be submitted in accordance
with section 10.3.3. '

Remote Generation For Non-HASP Users - Page 10.4-2

- 100

,"i I R

HASP

11.0 OPERATOR'S GUIDES

This section consists of the various operator's guides needed for the
efficient operation of the various HASP components. Each operator's guide
is a self-contained package, capable of being separated from the rest of
the documentation and used as a teaching aid for operator classes and/or

for operator reference while operating the respective components.

Operator's Guide — Page 11.0-1

101

HASP

(The remainder of this page intentionally left blank.)

102

HASP

HASP

SYSTEM

OPERATOR'S GUIDE

103

HASP

TABLE OF CONTENTS

PAGE
INTRODUCTION e e e e e e e e e e e e e e e e e e 1
1.0 HASP OPERATOR COMMANDS . . . &+ « « v & o« o« « o « & 3

1.1 ENTERING HASP COMMANDS . . + v o & & o « « . 4
1.2 COMMAND DESCRIPTION SYNTAX . . . + « . « . . 11
1.3 STANDARD RESPONSES . + & « « o o o o « « « . 12
1.4 JOB QUEUE COMMANDS . . & + « v & o o« « « « . 16
1.5 JOB LIST COMMANDS . + v + « « o « « o« « o « o 24
1.6 MISCELLANEOUS JOB COMMANDS 30
1.7 DEVICE LIST COMMANDS . . . « « « « « « « « . 33
1.8 SYSTEM COMMANDS . . + « &« « « « « « « « « « . 60
1.9 MISCELLANEOUS DISPLAY COMMANDS 71
1.10 REMOTE JOB ENTRY COMMANDS « . . . 176
2.0 STARTING THE HASP SYSTEM « « « « « « . . 80
2.1 PREPARATION + ¢ « o « o « o « « « « . 80
2.2 STARTING THE HASP JOB « « « « . . . 81
3.0 ABBREVIATED WTOR REPLY . . & + v v & o o o o « « & 85
4.0 HASP MESSAGES AND CODES . + + o o v o« « « « « . . 86
4.1 HASP INITIALIZATION MESSAGES 86

4.2 HASP SYSTEM CATASTROPHIC ERROR CODES. 98

4.3 HASP PROCESSING MESSAGES . . . « « « « « « « o 102

HASP Operator's Guide - Page i

104

HASP

PAGE

5.0 CONSOLE SUPPORT « « « ¢« « « « . o 122
5.1 HASP CONSOLE SUPPORT 122

5.2 O0S CONSOLE SUPPORT ., &« « « « « . 130

6.0 READER SUPPORT« « ¢« « « « . 132
6.1 CONTROLLING HASP READERS 133

6.2 HASP INPUT STREAM ., , 136

6.3 LOCAL READER ERROR PROCEDURES , , ., ., . . . 142

7.0 PRINTER AND PUNCH SUPPORT ., 143

7.1 CONTROLLING HASP PRINTER AND PUNCH DEVICES . 144

7.2 HASP OUTPUT ROUTING 147
7.3 HASP SPECIAL FORMS ROUTING , 148
7.4 HASP PRINT AND PUNCH OUTPUT FORMATS ., . . . 151

7.5 LOCAL PRINTER AND PUNCH ERROR PROCEDURES . 154

HASP Operator's Guide - Page ii

105

HASTP

INTRODUCTION

HASP is a program which, when started by the operator, assumes
control of selected devices and portions of the Operating System
(0S) for the purpose of managing the subsequent flow of jobs
submitted for execution. Under normal processing, jobs flow
through five distinct major functions of HASP as follows:

1. INPUT - Jobs are read into the system:
Each job, made up of JOB CONTROL
LANGUAGE (JCL) and optional input data
cards, enters the system and is saved
on direct access storage (SPOOL volumes)
for later high speed retrieval.

2. EXECUTION - Jobs are submitted to 0S for execution:
As each job is selected for execution,
the JCL cards are retrieved and submitted
to an 0S READER/INTERPRETER for initiation
by OS. During execution, each job is
monitored; input data is provided and
print/punch data created by the job,
along with SYSTEM messages, is saved
on the SPOOL volumes for later out-
put.

3. PRINT - Print output for jobs is printed:
The SYSTEM messages and print data sets
created during execution are printed.

4. PUNCH - Punch output for jobs is punched:
The punch data sets created during execu-
tion are punched.

5. PURGE - Jobs are removed from the system:
Upon completion of all processing required
for a job, the SPOOL volume space and all
HASP resources associated with the job are
made available for re-use.

Although each job entering the system passes sequentially through
each function, one function at a time, all HASP functions may run
concurrently when sufficient jobs are available for processing.

HASP Operator's Guide - Page 1

106

_

HASTP
PRIORITY QUEUEING AND SCHEDULING

As each HASP function completes processing a job, the job is
placed in a queue in order of HASP scheduling priority along
with other jobs to wait for the next function. A new job to
process is then selected from the queue of eligible jobs.
Since jobs are in priority order on the queue, high priority
jobs will be selected for processing in preference to lower
priority jobs. The net effect is that high priority jobs will
spend less time in the system than low priority jobs.

To illustrate HASP processing of jobs, the following example
traces a job through the system:

Job A enters the system and is assigned HASP job number 100.
Jobs 1 through 99 have entered the system previously and are
being processed by other functions, queued for processing, or
have been deleted from the system. Assuming that job 100 is
placed in the Class A execution queue along with jobs 97, 98,
and 99 and is highest priority, the HASP initiator will select
job 100 for OS execution when the next Class A job is selected.

Job 100 is placed in the print queue upon completion of execution.
Again assuming that the queue contains jobs 70, 71, 73, 80, and 92

and job 100 is hlghest priority, job 100 will be selected for printing
when the printer is free from processing the previous job. After
being printed, job 100 is then queued for punch. If the punch

queue is empty and the punch is available, the job will be

immediately selected for punching. After all punching for job

100 has completed, the job is then queued for purging and, when
selected, is removed from the system.

HASP Operator's Guide - Page 2

107

HASP

1.0 HASP OPERATOR COMMANDS

Through the use of HASP operator commands the operator may com-
municate with the HASP SYSTEM for the purpose of displaying
~information, controlling the flow of jobs within the system, and
controlling HASP SYSTEM facilities which are used in processing
of jobs. Each HASP command falls into one of the following

categories:

1. JOB QUEUE COMMANDS

2. JOB LIST COMMANDS

3. MISCELLANEOUS JOB
COMMANDS

4. DEVICE LIST
COMMANDS

5. SYSTEM COMMANDS

6. MISCELLANEOUS

DISPLAY COMMANDS

7. REMOTE JOB ENTRY
COMMANDS

Commands which search the HASP
job queue and display or alter
the status of jobs without regard
for the job identity.

Commands which search the HASP

job queue and display or alter the
status of jobs based upon the
identity of the job(s).

Job commands which apply to a
single job by identity.

Commands which control the HASP
peripheral devices.

Commands which control the status
of the HASP SYSTEM or the submis-
sion of jobs to 0S/360 for
execution.

Commands which provide informative
responses but do not belong to the
other categories.

Commands associated almost exclu-
sively with HASP remote job entry.

The following sections provide sufficient information for operator
control of the HASP SYSTEM for that time period after the initial
response to the HASP request for initialization options.

HASP Operator's Guide - Page 3

108

HASP

1.1 ENTERING HASP COMMANDS - GENERAL

- HASP commands have the following form:
Sverb operandl,operand2...,operandn
Where:

$

HASP command identification character--all commands
to the HASP SYSTEM start with the $ character.

verb HASP command verb--a single character verb which
describes the general action which is to be taken
(see TABLE 1.1.1). A longer form of the verb may
be used which is partially compatible with former

versions of the HASP SYSTEM (see TABLE 1.1.2).

operands = HASP command operands--operands are used to modify
the verb of the command or identify the job or
system facility to be acted upon. Commas are used
to separate operands when more than one operand
is used.

NOTE: If more operands are entered than the command is
designed to handle, the additional operands will
either be ignored or be concatenated to the last
acceptable operand and handled as one.

The HASP command structure allows for a great amount of flexibility
in entering the text of the command. The following rules apply:

1. FOR TEXT OUTSIDE PAIRED APOSTROPHES:

A. All alphabetic characters may be entered in upper
or lower case.

B. Blanks may be inserted at any point in the command
after the initial $§ for operator convenience.

C. Apostrophes may appear in the text of the command
as a text character; however, each apostrophe text
character must appear in duplicate.

HASP Operator's Guide - Page 4

109

HASP

2. FOR TEXT INSIDE PAIRED APOSTROPHES:

All characters must appear as required by the individual
command. Text apostrophes must appear in duplicate.

3. Key words for operands may, for the most part, be mis-
spelled. It is only necessary to enter enough infor-
mation to identify the job or facility desired.

The following examples illustrate the above rules:

1. $r all, rmt 4, local
$RALL,RMT4 ,LOCAL
2. $dm4,'If your job''s output is deleted, resubmit'

$DM4,'IF YOUR JOB'S OUTPUT IS DELETED, RESUBMIT'

3. Sa all or Sa a
$AA

NOTE: The first line of each example represents the
operator's input. The second line represents

the internal meaningful representation with the
first character of each operand underlined.

HASP Operator's Guide - Page 5

110

HASP

TABLE 1.1.1

HASP COMMAND VERBS

COMMAND DEFINITION

$A RELEASE

$B BACKSPACE

$C CANCEL

$D DISPLAY

SE RESTART

SF FORWARD SPACE

$H HOLD

$I INTERRUPT

$N REPEAT

$P STOP
(AFTER CURRENT
FUNCTION)

SR ROUTE OUTPUT

$S " START

ST SET

$2Z HALT (IMMEDIATE)

OPERAND TYPES

ALL JOBS OR SPECIFIC JOBS
PRINTERS

DEVICE FUNCTIONS OR JOBS

DISK, UNITS, LINES, REMOTES,
MESSAGES, JOBS, QUEUES, ACTIVITY,
INITIATORS, OR OUTSTANDING REQUESTS
DEVICE FUNCTIONS

PRINTERS

ALL JOBS OR SPECIFIC JOBS
PRINTERS

DEVICE FUNCTION

DEVICE, INITIATOR, SYSTEM, OR
JOB

BY ROUTING GROUP OR JOB
DEVICE, INITIATOR, OR SYSTEM
DEVICE, INITIATOR, JOB, OR
SYSTEM JOB NUMBER BASE
DEVICE

HASP Operator's Guide - Page 6

m

HASP

TABLE 1.1.2 ALTERNATE HASP COMMAND VERBS

ALT FORM SHORT * SAMPLE INPUT - comments
SALTER ST SALTER JOB4,P=+4 - up JOB 4 priority
by 4

$BACKLOG $DQ SBACKLOG - display number of queued jobs

SBACKSPACE SB SBACKSPACE PRT1 - backspace printer 1

SDEFINEI STI SDEFINE I1,ABC - set initiator classes

SDEFINE $DI SDEFINE - list all initiator status

information

SDELETEJ SPJ SDELETE JOB 4 - purge JOB 4 after
current activity

SDELETE s$C SDELETE PRT2 - cancel current output

on PRINTER 2
SDISPLAY $D SDISPLAY DISKS -

SDISPLAY UNITS -
SDISPLAY RMTS -
SDRAIN SP SDRAIN I - stop all further execution
SDRAIN I2 - stop further execution
with INITIATOR 2
$DRAIN PRT1 - stop printing on PRINTER 1
after current job

SLIST ST SLIST CON1,15 - all only messages
classes above 15

SLOCATE $D SLOCATE JOB 4 - display job information
about JOB 4

SHOLD $H $HOLD ALL - prevent all jobs from

beginning activity
SHOLD JOB 4 - prevent JOB 4 from
beginning activity

$IDJ $D $IDJ JOB 3 - display job information
about JOB 3
$IDJ 'ABCJOB' - display job information

about all jobs with
name 'ABCJOB'
SRELEASE SA - $RELEASE ALL - release all jobs in queue
' if held by $HOLD ALL
SRELEASE JOB 6 - release JOB 6

SREPEAT SN SREPEAT PRT1 - repeat the current
function on PRINTER 1
SRESTART SE SRESTART LNE3 - abort current activity
and start over
SROUTE $R $ROUTE ALL,RMT3,LOCAL remote output
$SETJOBNO.TO $TJ $SET JOB NO. TO 4 - set system generated
_ . job number base
SSPACE $T $SPACE PRT1,C=1 - single space each line
on printer until next
job

HASP Operator's Guide - Page 7

112

—
AT

HASTP

TABLE 1.1.2 ALTERNATE HASP COMMAND VERBS (continued)

ALT FORM SHORT * SAMPLE INPUT - comments
$START $S $START - start job processing
SSTART LNE3,QXZ3 - start line with
password

$START TPE1,180 - start input tape
using unit 180

$STATUS $DA $STATUS - list current activity
$STOP $Z $STOP PRT1 - suspend operations until
$START

* The short form listed in this table is the character string to
which the ALTERNATE FORM is converted. Thus verbs such as:

$IDJ, SLOCATE, S$DISPLAY are all converted to $D and are therefore

equivalent.

The syntax of each command is checked after the short form has
been generatéd. Therefore the operator should attempt to use
the short form of the command in preference to the long form.

HASP Operator's Guide - Page 8

113

HASTP

TABLE 1.1.3 HASP COMMAND SUMMARY

COMMAND REMOTE SOURCE COMMENTS
JOB QUEUE
SAA NO Release all jobs
$DA OK Display active jobs
$DF OK Display number of queued jobs
awaiting forms
$DN OK Display job information on queued jobs
$DQ OK Display number of queued jobs
$HA NO Hold all jobs currently in the system
JOB LIST
$A job list IF OWNER Release specified job(s)
$C job list IF OWNER Cancel specified job (s)
$D job list IF OWNER Display job information on specified
job (s)
$H job list IF OWNER Hold specified job(s)
$P job list IF OWNER Stop specified job(s) after current
activity

MISCELLANEOUS JOB

$D 'job name' OK Display job information on job (s)
with OS job name

$T JxX... j,operand NO Set job class or priority - c=class
or p=priority

ST Jx...J NO Set HASP internal job number

DEVICE LIST

$B device list IF OWNER Backspace device (s)

$C device list IF OWNER Cancel current function on device(s)

SE device list IF OWNER Restart current function on device (s)

$F device list IF OWNER Forward space device (s)

$I device list IF OWNER Interrupt the current function on
printer (s)

SN device list IF OWNER Repeat current function on device(s)

$P device list IF OWNER . Stop the device (s)

$S device list IF OWNER . Start device(s)

$T device IF OWNER Set device

$Z2 device list IF OWNER Halt device(s) (suspend operation)

SYSTEM

$DI YES Display initiator(s), classes and
status

$PI NO Stop initiator (s) after current activity

$SI NO Start initiator (s)

STI NO Set initiator classes

$P NO Stop system

SPHASP NO Terminate HASP job

$S NO Start system

HASP Operator's Guide - Page 9

114

HASP

Table 1.1.3 HASP COMMAND SUMMARY (continued)
COMMAND REMOTE SOURCE : COMMENTS
MISCELLANEQOUS DISPLAY
SDD YES Display Direct Access devices
$D line n YES Display HASP remote job entry line
$DR YES Display outstanding reply identification
$DRM YES Display devices on remote (s)
$DU YES Display local unit record devices
REMOTE JOB ENTRY
$DM YES Display message
$R IF OWNER Route output for specified job or

device group to another device group

Only the characters required to recognize the uniqueness of each
command are defined in this table. For complete entry format,
see the individual command description.

HASP Operator's Guide - Page 10

115

HASTP

1.2

COMMAND DESCRIPTION SYNTAX

The following conventions are used to describe the format
requirements and options of the various HASP commands:

1. Upper case characters -
2. Lower case keyword -
3. Braces {} -
4. Brackets [] -

5. character string x... -

the exact characters should be
used when selecting the option

appropriate text should be inserted
to replace the keyword

one of the options enclosed by the
braces must be selected, unless
part of an unselected option

one of the options enclosed by
the brackets mazy be selected

the character preceeding the x is
sufficient to identify the option

‘and any alphabetic characters

following are optional; i.e.,
JxX... indicates that the single
character "J" is sufficient to
identify the operand, however,
"JOB", "JOBS", or any other
alphabetic character strings will
be accepted as long as they begin
with the character "J".

6. character(s) j or jj - a job number is desired

7. character(s) r or rr - a routing code is desired (routing
codes refer to local [r=0] or remote
terminal [r=1 to &MAXRJE] output
routing of job print or punch)

8. character n - a device number is desired

9. character (s) j-jj or r-rr - a range of numbers is desired,

indicating the ability of the
command to operate on one or more
jobs or routing codes

HASP Operator's Guide - Page 11

116

e,

pr=t

HASTP

1.3 STANDARD RESPONSES

It is a basic philosophy of the HASP System to display a response
to each HASP command entered during normal job processing. In
keeping with this philosophy the processing of each command entered
into the HASP System results in one or more responses, which are
displayed upon the requesting console or, in the event of card
input, upon an associated console device.

OK RESPONSE

The response "OK" is used in many commands to signify that action
requested has been taken or that the request has been noted and
action will be taken by the system when appropriate. The "OK"
response, when issued, is the last message issued as a direct
response to the operator; however, many commands will cause action
by components of the system which will issue information

messages to the central operator console devices.

JOB INFORMATION RESPONSE

Many HASP commands will display job information as a response to
the operator. The format of the response is as follows:

1. Jobs queued and waiting for processing:

JOB j [name] AWAITING|\EXEC class | PRIO priority |HOLD

PURGE PURGE
PRINT r DUPLICATE
PUNCH r

2. Jobs being processed (active):

JOB j [name] (EXECUTING class) PRIO priority |ilOLD
IS PURGING PURGE
ON device name

HASP Operator's Guide - Page 12

117

HASTP

Where:

name

class

device name

priority

HOLD

PURGE

DUPLICATE

1

the HASP assigned job number

the 0S job name assigned by the programmer
(displayed only if requested by the installation
at HASPGEN time)

the job class specified on the job card or set by
the operator with the $T JOB command

the remote terminal to receive the output for
which the job is queued (if r=0 the job is queued
for local printing)

the device that is ready, printing or punching
data associated with the job. TIf the operator has
repeated the output of a job, th2 lowest numbered

~device will be listed.

the HASP queueing priority

the job is in HOLD status and must be released to
continue to flow through the system

the job has been flagged for purge and will be
deleted from the system

the job is waiting for OS execution and another
job is currently executing with the same 0S job

name

HASP Operator's Guide - Page 13

118

, é’\iﬁ‘

HASP

Examples:

JOB
JOB
JOB
JOB
JOB
JOB

12
13
14
13
15

16

JOHNSJB
JOHNSJB

PUNCHJOB’
.TESTOUT

ASMJOB
UNIQUE

EXECUTING A PRIO 9

AWAITING EXEC B PRIO 8 DUPLICATE
ON RM1.PUl1l PRIO 7

ON PRINTER1l PRIO 8

AWAITING PRINT 1 PRIO 6

AWAITING PUNCH 0 PRIO 6

HASP Operator's Guide - Page 14

119

HASP

STANDARD ERROR RESPONSES

The following standard messages will be returned in response to
invalid SYNTAX in command entry:

1. XXXXXXXX INVALID COMMAND - The command identified by the
eight characters displayed was not found in the
HASP command verb table. No action has been taken.

2. XXXXXxXxXXx INVALID OPERAND - The input stream identified by
the eight characters displayed was not recognized
as a valid operand. With exception of device list
commands no action has been taken. 1In the case of
device list commands action has been taken on
operands preceding the INVALID OPERAND.

HASP Operator's Guide - Page 15

120

4

HASP

1.4 JOB QUEUE

Definition:

Action:

Responses:

Examples:

\\I)};\\Fit,f’
COMMANDS . e
R DT e
f//’””“”/ e
$A AX... RELEASE ALL JOBS

Any jobs in the system held by the $HA command
will be released and processing allowed

OK - one or more jobs have been
released
QUEUE NOT HELD - no jobs have been released
1. user - $A ALL
system - OK
2. user - $A A
system - OK
3. user - $A A
system - QUEUE NOT HELD

HASP Operator's Guide - Page 16

121

11 n o r

Definition:

Action:

Responses:

Examples:

Comments:

$D Ax... DISPLAY ACTIVE JOBS

Job information for each active job in the
system will be displayed.

Job information messages - (see section 1.3)

NO ACTIVE JOBS - no active jobs were
found

LIST INCOMPLETE - the last job listed

was removed from the
HASP job queue while all
HASP WTO buffers were in
use.

1. user - $D A
system JOB 3 ASSEMBLY EXECUTING A PRIO 5

2. user - $§D ACTIVE
system - JOB 20 LISTALL ON PRINTER 2 PRIO 6

The LIST INCOMPLETE response should be extremely
rare when sufficient WTO buffers have been
generated to handle the message traffic.

HASP Operator's Guide - Page 17

122

s

HASP

Definition:

Action:

Responses:

Examples:

$D Fx...[,r-rr] oS
DISPLAY NUMBER OF JOBS QUEUED ON FORMS

The number of jobs queued for special forms printers
and special forms punches will be summarized and
displayed for the local or remote workstations
specified by the route codes (r-rr). If the route
code ranges are not specified, only the local queues
are displayed.

jjj FORM ffff PRT rrr - one response for each

form/route code combination

with jobs queued for special
forms printer output meaning:
jjj jobs are queued for form

ffff at a printer located

at the local or remote sta-

tion as indicated by rrr.

jjj FORM ffff PUN rrr - one response for each

form/route code combination
with jobs queued for special

forms punch output.

1. user - SDF

4 FORM 0030 PRT
3 FORM 0132 PRT
1 FORM 0011 PUN

system

[eNoNe)

2. user - SD F,3-4
system 2 FORM 6431 PRT
: 1l FORM 7346 PRT
3 FORM 0563 PRT
1 FORM 7346 PRT

b W W

HASP Operator's Guide - Page 18

123

HASTP

Definition:

Where:

Action:

S$D NxX... [{r rr} [ueue]]
queue

DISPLAY JOB INFORMATION ON QUEUED JOBS-

1]
1

only jobs waiting for execution are
to be displayed in order by class
(A, B, C, etc.)

queue = XEQ

= XEQ class - only jobs waiting for execution in
the designated class are to be
displayed

= PRT - only jobs waiting for print are to
be displayed in order by route
code (0, 1, 2, etc.)

= PUN - only jobs waiting for punch are to
be displayed in order by route
code (0, 1, 2, etc.)

= HOLD - only jobs waiting for any act1v1ty
and in hold status are to be
displayed

If routing and/or queue type restrictions are not
specified, job information will be displayed for all
jobs queued for execution (XEQ), print (PRT), and
punch (PUN); destined for output at local and all
remote terminal printer-punch unit record groups.

If the routing restriction is specified in ope<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>