EM Field Engineering Education

Supplementary Course Material

0S/HASP
Volume 1

o

PREFACE

This document is intended for the use of IBM FE
Programming System Representatives enrolled in
course 10191,

PRELIMINARY EDITION (May 1971)

This publication has been printed in a preliminary format
so that it would be available to the intended users in time
for training on this course. This preliminary manual may
contain typographical errors that would normally be
corrected before publication. This edition is not eligible for
suggestion awards, however, your comments will be
appreciated. '

Issued to:

Branch Office: No:

Address:t

3

If this manual is mislaid, please return it to the above address.

Address any comments concerning the contents of this publication to:
IBM, Field Engineering Education Media Development Center, Dept 327,
Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1971

MAGNETIC TAPE KEY

BASIC
This volume contains two files as described below.

File 1 - Assembled object decks and JCL necessary to
perform a HASPGEN (refer to Section 10 of
this manual for information concerning use
of this tape).

Records - 417, Characters/block - 80,
Records/block - 1, Blocks/file - 417.

File 2 - Source decks for HASP-II, Version 3.0.

Records - 50,343, Characters/block - 1600,
Records/block - 20, Blocks/file - 2518.

*Optional

System/3 users only - 140 96-column cards. This deck .

is a "starter system" for the HASP MULTI-LEAVING Remote
Job Entry support.

*Optional material will be forwarded only when specifically
requested.

HASP

Section

1.0
2.0
3.0
3.1
3.2
3.3
3.4
3.5
3.6

TABLE OF CONTENTS

Introduction

General Description

HASP Structure

Aliocation of Main Storage

Allocation of Direct-Access Space
Allocation of Input/Output Units
Allocation of Central Processing Unit Time
Allocation of Programs

Allocation of Jobs

Allocation of Overlay Areas

HASP Processors

Input Service Processor

Execution Control Processor

Output Service Processor (Print and Punch)
Purge Processor

HASP Command Processor

Operator Console Attention Processor
Checkpoint Processor

Asynchronous Input/Output Processor
HASP Log Processor

Operator Console Input/Output Processor
Timer Processor

Remote Terminal Processor (STR Model 20)

12
17
20
22
24
26
29
31
32
48
62
76
77
98
99
101
102
103
105
106

HASP

Section

5.9

5.10
5.11
5.12
5.13

Remote Terminal Processor (System/360)
Remote Terminal Processor (1130)
Execution Task Monitor Processor
Internal Reader Processor
MULTI-LEAVING Line Manager
Remote Console Processor
Execution Thaw Processor

Overlay Roll Processor

HASP SMB Writer

Priority Aging Processor

Remote Terminal Processor (System/3)
HASP Control Service Programs
HASP Dispatcher

Input/Output Supervisor

Job Queue Manager

Buffer Manaéer

Unit Allocator

Interval Timer Supervisor

$WTO Processing Routine

Direct Access Storage Allocator
Disastrous Error Handler
Catastrophic Error Handler

Trace Effector

WTO/WTOR Processing Routine

Console Buffering and Queueing Routines

HASP

Section

5.14

Input/Output Error Logging Routine

Remote Terminal Access Method

Overlay Service Routines

Miscellaneous

HASP

HASP

HASP

HASP

HASP

HASP

Initialization
Initialization SVC Routine
Overlay Build Utility

REP Routine

Accounting Routine

2

Dump Routines

HASPGEN and RMTGEN Parameters

HASPGEN Parameters

RMTGEN Parameters for System/360 Model 20 STR

RMTGEN Parameters for System/360 Model 20 BSC

RMTGEN Parameters for System/360

RMTGEN Parameters for 1130

RMTGEN Parameters for 1130 Loader

RMTGEN Parameters for System/3

HASP

HASP

Control Table Formats

Communication Table Format (HCT)

Processor Control Element Format (PCE)

Buffer Format (IOB)

Console Message Buffer Format (CMB)

Device Control Table Format (DCT)

Job Queue Element Format (JQE)

vi

280

287

288

297 =

299
302
305
306
309
310
422
427
446
466
481
485
505
506
521
527
544
546
567

i,

HASP

Section

8.7

8.8

Job Information Table Element Format (JIT)
Job Control Table Format (JCT)

Track Extent Data Table Format (TED)

Timer Queue Element Format (TQE)

Overlay Table Format (OTB)

Data Definition Table Format (DDT)
Partition Information Table Format (PIT)
Message Allocation Control Block (MSA)

Data Block Format (HDB)

vii

Introduction

‘The information contained in Volume 1 and 2 of the HASP System Supplementary Course
Material was originally distributed as a one-volume document,

Volume 1 contains pages 1 through 590, Section 1 through 8. Volume 2 contains
pages 1 through 594, Section 9 through 12.

A Contents has been included in each volume for your convenience.

viii

e

&

i

P

HASP

1.0 INTRODUCTION

The HASP SYSTEM operates as a compatible extension to the MFT or
MVT options of the Operating System for System/360 and System/370
to provide specialized supplementary support in the areas of job
management, data management, and task management.

HASP appears as a transparent “front-end" processor to 0OS to,
via the SPOOLing functions normally associated with OS input
readers and output writers, act as an automatic scheduler

and operator of 0S. Because of this relationship between HASP
and the Operating System, varicus other functional, performance
and operational benefits can be included in HASP.

The use of HASP offers an installation the following advantages:

) IMPROVED PERFORMANCE - In many cases, because of the
singular, specialized use of resources by HASP, system
performance may be improved. Any improvement is dependent
upon the configuration and job mix and can only be deter-
mined by actual measurement. (Ssee Section 2 of this manual
for additional details.)

) IMPROVED OPERATIONAL PROCEDURES - HASP acts as an automatic
interface between the operator and 0S, to perform various O0OS
control functions previously done directly by the operator.
Readers, Writers and Initiators in 0OS are started and sched-
uled automatically by HASP. Also, many additional operator
commands for controlling job flow and device operation are
provided by HASP. (See Section 11 of this manual for
additional details.)

°® INCREASED SYSTEM FUNCTION - The use of HASP provides certain
functions which are not otherwise available. These include
dynamic task ordering based upon CPU - I/O characteristics
(see Section 2 for additional details); the inclusion of
relevant console messages in each job's output (see Section 7:
for additional details); the capability of any job to intro-
duce another job into the HASP queue via an internal reader
(see Section 12.10 for additional details); an execution
batching facility to pass jobs directly to a processing pro-
gram such as a one-step monitor (see Section 12.13 for addi-
tional details); many additional operational control functions
(see Section 11 for additional details); a priority aging
technique (see Section 4.22 for additional details); a pre-
execution volume fetch facility (see Section 11 for additional
details); and various other functional enhancements.

® RESQURCE REDUCTION - Because of the dynamic direct-access

allocation techniques utilized by HASP, installations may, in
general, reduce the number of direct-access volumes required

Introduction - Page 1.0-1

HASTP

for SPOOLing functions as compared with a non-HASP SYSTEM.
The size of the 0S SYS1.SYSJOBQE data set may also be
reduced since all job queueing is performed by HASP.

Certain installations may actually reduce system main storage
requirements (increase problem program space available) by
adding HASP to their system because of the OS functions
replaced by HASP. 1In any case, the space required for the
HASP partition or region will be at least partially compen-
sated for by the elimination of duplicate functions.

® LOW-ENTRY, HIGH-PERFORMANCE REMOTE JOB ENTRY - For a nominal
increase in the size of HASP, an installation can utilize the
HASP RJE support for a wide variety of workstation devices.
Support for Binary-Synchronous, CPU workstations employs an
advanced technique called MULTI-LEAVING which provides for
simultaneous operation of all devices on a remote workstation.
A subset of the HASP operator command language is provided to
all remote sites. Workstation programs are supplied for all

supported CPU workstations. (See Section 12.11 for addition-
al details.)
e TRANSPARENT OPERATIONS ~ HASP is, in general, transparent to

both the Operating System and to user programs. Although

a special SYSGEN is required, no actual modifications to OS
are required to utilize HASP. Thus, the same generation of
0OS may be interchangeably used with or without HASP. Because
of this transparency, HASP is generally independent of the

OS release level or options selected and can be used as a
stable base for local modifications to customize for local
operational requirements.

Most standard jobs which operate under 0S can be run with
absolutely no change in a HASP environment. Most installations
can, therefore, implement HASP with little or no changes to
current user programs.

Introduction - Page 1.0-2

HASP

2.0 GENERAL DESCRIPTION

HASP is a specialized program which operates in the same CPU
with 0S/360 to perform the peripheral functions associated with
batch job processing.

HASP is loaded as a normal 0S/360 program and upon gaining
control enters the supervisor mode via a special SVC routine.
Control of all on-line unit record devices is assumed, the
designated intermediate storage direct-access device(s) are
initialized and job processing begins. The basic interface be-
tween HASP and 0S/360 is through the Input-Output Supervisor (IOS).
The entry point of I0S is modified so that Input-Output requests
to unit record devices are diverted to HASP rather than being
physically executed by I0S. Jobs which have been previously read
from physical input devices by HASP can now be passed to 0OS by
simulating a successful completion of the intercepted I1I/0 request.
In a similar manner, print and punch output from jobs being pro-
cessed by 0S/360 can be intercepted and queued on intermediate
storage for later transcription to unit record devices.

HASP has four major processing stages which account for its four
major external functions. These are:

1. INPUT STAGE - This stage reads jobs simultaneously from an
essentially unlimited number of various types of on-line
card readers, tapes and remote terminals into the system.
These jobs are then entered into a priority queue by job
class to await processing by the next stage.

2. EXECUTION STAGE - This stage removes jobs based upon priority
and class from the queue established by the Input stage and
passes those jobs to 0S/360 for processing. Input cards are
supplied as required to the executing program and print and
punch records are received and written onto HASP intermediate
storage. This stage can simultaneously control an essentially
unlimited number of jobs being processed by 0S/360. At the
completion of a job, it is placed in a queue to await pro-
cessing by the next stage.

3. PRINT STAGE - The purpose of this stage is to transcribe the
printed output generated by jobs in the previous stage to
printers. An essentially unlimited number of various types
of printers and remote terminals can be operated simultaneously.

4. PUNCH STAGE - This stage transcribes the punch output generated
by jobs in the execution phase to punches. An essentially
unlimited number of various types of punches and remote
terminals can be operated simultaneously.

General Description - Page 2.0-1

HASP

All of the these processes are controlled by re-entrable code
so that no additional code is required to support multiple,
simultaneous functions. Since all of the above functions can
occur simultaneously and asynchronously, a continuous flow of
jobs may pass through the system.

Following are some of the more significant algorithms employed
by HASP to improve function and performance:

°® SPECIALIZED DIRECT-ACCESS STORAGE ALLOCATION

HASP, through the use of an allocation bit map in main
storage, dynamically allocates space for intermediate
storage on a record basis, within definable track groups,
for jobs. The use of this technique offers the following
advantages: -

1. Disk-arm motion and interference is minimized by
dynamically allocating space based upon the position
of the access mechanism.

2. Disk area fragmentation is automatically eliminated
by allocation of the smallest possible increment of
space.

3. The data for a single data set can be spread across

multiple direct-access volumes. In addition to further
optimizing arm motion, this capability allows for the
simultaneous use of multiple selector channels to
increase the data rate for a given job.

4, Since space is allocated only when required, there
will be no unused space as a result of over estimated
output requirements.

5. The release of previously used space is accomplished
by a simple algorithm which requires no I/O operations.

® UNIT RECORD DEVICE COMMAND CHAINING

While operating any reader, printer or punch, rather than
handling each record separately, HASP constructs a chained
sequence of channel command words to pass to the channel.
Thus, instead of the overhead of an EXCP and the ensuing
interrupts for each record transmitted, only one EXCP and
associated interrupt is required for a series of records.
For example, when reading a job into the system, HASP might
chain 40 commands together to instruct a card reader. This

General Description - Page 2.0-2

HASP

would cause the next 40 cards to be read into memory without
requiring the execution of any CPU instructions.

® TRANSPARENT BLOCKING

All input, print and punch for every job is automatically
blocked by HASP to improve performance. Since all deblocking
is also done by HASP, any program even if designed to operate
with unblocked records can benefit from the blocking. Also,
because all blocking and deblocking is done by HASP, problem
programs require buffers only the size of a single card or
line. This can reduce a program's partition or region require-
ment by several thousand bytes over normal full track blocking.

° DYNAMIC BUFFER POOL

HASP maintains a dynamic area of memory which is allocated as
required. This technique allows not only multiple data sets
of a job, but multiple jobs to share this area, thereby
insuring optimum use of storage.

® EXECUTION TASK MONITOR

A significant item contributing to system performance is the
correct ordering of dispatching priorities of jobs in rela-
tion to their CPU-I/O utilization ratios. It is obviously
straightforward to manually set the dispatching priorities
of two jobs, one of which is completely I/O-bound and the
other completely CPU-bound. It becomes more difficult to
determine relative priorities of multiple jobs with varying
degrees of CPU-I/O ratios and impossible to determine prior-
ites for multiple jobs which constantly change from CPU to
I/0 bound or vice versa.

HASP provides a feature which, at frequent intervals, examines
each eligible job and dynamically re-orders the OS dispatching
chain based upon the measured CPU-I/0O characteristics of the
jobs during the previous interval. This capability relieves
an installation of the responsibility of attempting to assign
job dispatching priorities while insuring the optimum ordering
of jobs being processed by the Operating System.

General Description - Page 2.0-3

HASP

(The remainder of this page intentionally left blank.)

HASP

3.0 HASP STRUCTURE

The primary goal in the design of any execution support system such
as.HASP must be the efficient manipulation of the various resources
required for processing. The first design steps must then include the
determination of what resources will be required and the careful application
of sound programming design techniques to achieve an efficient and
consistent solution to the allocation of these resources.

A study would reveal that HASP requires the following resources:

1. Main Storage

2. Direct-Access Space

3. Input/Output Units

4., Central Processing Unit Time

5. Input/Output Channel and Unit Time
6. Programs

7. Jobs

8. Interval Timer

Since these resources are essentially the basic facilities provided by
the Operating System, it would at first seem that these facilities would
be sufficient to meet the requirements of HASP. Further studies show,
however, that the philosophies of the Operating System's services are not

always consistent with the design requirements of a system such as HASP.

HASP Structure - Page 3.0-1

HASP

For instance, the main storage services provided by the Operating
System are very flexible and comprehensive but fail to meet the require-‘
ments of HASP in the following areas:

° As requests for main storage are serviced, memory becomes
fragmented in such a way that eventually a request for
storage cannot be serviced for lack of contiguous memory
even though the total amount of storage available far

exceeds the requested quantity.

® As the amount of available storage decreases, the
requestor becomes more susceptible to being placed in
an OS WAIT state or being ABENDed. These conditions are

both intolerable to HASP.

® The primary use of main storége in HASP is for buffering
space for input/output purposes. These input/output pur-
poses require that an Input/Output Block be associated
with each segment of main storage which the Operating
System Main Storage Supervisor, only naturally, does not
provide. This means that HASP would have to construct

such a block for each main storage segment it required.

HASP

In a similar fashion the Direct-Access Device Space Manager
(DADSM) provides flexible and comprehensive services for normal
job processing requirements but fails to meet the requirements of |
HASP in the following areas:

° Because of the data set concept employed by DADSM,

the "hashing" or "fragmentation" problem described
above also impacts the allocation of direct-access

space.

® The data set concept complicates the simultaneous
allocation of storage across many volumes (for

selector channel overlap).

[The DADSM limit of extents per volume tends to cause
volume switching, and the associated time delays are

intolerable to HASP,

] DADSM consists of non-resident routines which must
be loaded for each direct-access space allocation
service., Because of the frequent allocation requirerpents ,
the associated overhead involved in the loading of these
routines would degrade the performance of HASP to a

certain extent.

HASP Structure - Page 3.0-3

HASP

Since the unit-record input/output units which the scheduler
allocates to the jobs being processed in other partitions must be
available for use by HASP, HASP must be responsible for the allo-
cation of its own input/output units.

The Operating System Tésk Supervisor is responsible for the
allocation of Central Processing Unit (CPU) time to all tasks in the
system. The different functions of HASP (reading cards, printing,
punching, etc.) could be defined as individual OS tasks except

for the following considerations:

° Defining each function as a separate task would
prohibit HASP from being used with anything other

than a variable-task system.

® Inter-task communication and synchronization is
many times more complex than intra-task commu-

nication and synchronization.

The Operating System Input/Output Supervisor is responsible
for the allocation of all input/output channel and unit time. It
completely meets all requirements and is used by HASP for all

input/output scheduling.

HASP Structure - Page 3.0-4

10

HASP

The Operating System Interval Timer Supervisor provides complete
interval timer management services but limits theée services to one
user per task. Since HASP has many functions which have simultanebus
interval timer requirements, an interface must be provided which will
grant unlimited access to the OS Interval Timer Supervisor.

The following sections describe, in detail, the allocation techniques
and algorithms used in HASP to provide the allocation of the resources

listed above.

HASP Structure - Page 3.0-5

11

HASP

3.1 ALLOCATION OF MAIN STORAGE

The main storage requirements of HASP are as follows:

® Storage space for buffering card images and print lines
between intermediate direct-aécess storage devices
and unit-record devices.

) Storage space for normally non-resident control tables
during times when they are resident in main storage.

°® Stoirage for console messages which have been queued
for dutput to or input from one or more operator consoles.

® Storage for elements which reflect the status of all jobs
which are queued for any stage of processing by HASP.

° Storage space for non-resident processing routines (over-

lays) during times when they are in main storage.

The HASP Buffer Pool

The first two requirements for main storage are provided for by the

HASP Buffer Pool, a group of buffers with the following basic format:

Allocation of Main Storage - Page 3.1-1

12

HASP

Input/Output
Block
(10B)

buffer control
information

buffer
© work
space

Figure 3.1.1 - The HASP Buffer

Since the use of this buffer always involves some input/output
activity, a standard Operating System Input/Output Block (IOB) is pro-
vided with each buffer for the purpose of being used to initiate this
input/output activity.

The "buffer control information" area is an extension of the IOB used
by HASP for input/output synchronization.

The "buffer work space" is a fixed-length (set by HASPGEN) area into
which data is read and/or out of which data is written,

In addition to a fixed number of buffers (set in/accordance with region
or partition size), the buffer pool contains a one-word control field called
the Buffer Pool Qontrol Block which contains the address of the first avail-

able buffer in the buffer pool. Each available buffer contains the address

Allocation of Main Storage - Page 3.1-2

13

HASP

of the next available buffer with the last available buffer containing a
zero address. If no buffers are available, the Buffer Pool Control
Block contains zero.

The above technique is called "chaining," the buffers are said
to be "chained," and the field containing the address of the next
~ element in the chain is referred to as the "chain field." Chaining
is used throughout HASP for the maintenance of resources.

To obtain an available buffer from the buffer pool, the Buffer Pool
Control Block is tested for an available buffer. If one exists it is
removed from the available chain by moving its chain addraess into the
pool control block.

To release a buffer to the available chain, the contents of the
pool control block are moved to the chain field of the buffer, and the

address of the buffer is placed in the pool control block.

The Console Message Buffer Pool

The third requirement for main storage is provided for by the
Console Message Buffer Pool. This buffer pool is organized similarly
to the HASP Buffer Pool except for the format of the buffers which is

as follows:

Allocation of Main Storage - Page 3.1-3
14

HASP

chain field

work
space
Ve

Figure 3.1.2 — The Console Message Buffer

Since IOB's are provided for each console, it is not necessary to
provide such a control block with e’ach buffer.

The length of the work space is consistent with the maximum
length of a console message.

Buffers in this buffer pool are obtained and released by exactly

the same procedure used in the HASP Buffer Pool.

The HASP Job Queue

The fourth requirement is provided for by the HASP Job Queue.

For more information about this facility see section 3.6.

Allocation of Main Storage - Page 3.1-4

15

HASP

The HASP Overlay Area Pool

The HASP Overlay Area is similar to thé HASP Buffer in format;
however, the size of the "work space" is set to accommodate the
largest non-resident HASP control-section (CSECT). Although the
fixed number of overlay areas (set by HASPGEN) are chained together,
control fields indicate the area status and contents for the purpose
of sharing areas containing the same CSECT or for selecting an area

to overlay with a new CSECT.

Allocation of Main Storage - Page 3.1-5

16

HASP

3.2 ALLOCATION OF DIRECT-ACCESS SPACE

The direct-access allocation technique employed by HASP must
meet the following requirements:

° It must use a minimum of CPU time.
[) It must not use an excessive amount of main storage.
° It must not be susceptible to the "hashing" or

"fragmentation" problem.

° It must be capable of allocating for any direct-access
) device which is supported by Operating System/360.

° It must be device transparent to the user.

° It must be consistent with the checkpoint/restart
technique used by HASP.

The HASP Track Address

The standard Operating System track address is defined to be an
eight-byte field with the following format:

M B B C C H H R
where: M = Module
BB = Bin
CcC = Cylinder
HH = Head
R = Record

Figure 3.2.1 - The Operating System Track Address Format

For the purpose of HASP, this track address can be reduced to a
four-byte field with the following format:

Mbdule (DEB extent number)
True Track Number

M| T T R
where: M =
TT =
R = Record

Figure 3.2.2 - The HASP Track Address Format

Allocation of Direct-Access Space - Page 3.2-1

17

HASP

The reduction in the length of the track address permits it to
be kept in a single word of storage or in a general purpose
register simplifying the handling of the track address.

The HASP Master Track Group Map

The HASP Master Track Group Map is a table which represents the
sum total of all track groups or logical cylinders available on
all HASP direct-access SPOOL volumes. (A track group contains
one or more tracks which are considered a single resource.)
Each bit in the HASP Master Track Group Map represents a single
track group on one direct-access volume. If the bit is one, it
indicates that the corresponding logical cylinder is available
for allocation; if the bit is zero, the logical cylinder is not
available to HASP or has already been allocated by HASP.

The HASP Job Track Group Map

The HASP Job Track Group Map is identical to the HASP Master Track
Group Map except that one word has been added to the front to save
the last track address which was allocated to the particular job
with which the map is associated. The bits in the Job Track Group
Map represent the same track groups as the bits in the Master Track
Group Map except that a one bit indicates that the respective track
group has been allocated to the associated job and a zero indicates
that the group has not been allocated to the job.

last track address

track group

Figure 3.2.3 - The HASP Job Track Group
Two Job Track Group Maps are associated with each job. One repre-
sents the track groups used to contain the input data (SYSIN),

and the other represents the groups used to contain the output
data (SYSPRINT and SYSPUNCH) .

Allocation of Direct-Access Space - Page 3.2-2

18

HASP

Direct-Access Space Allocation Procedures

When the direct-access space allocation subroutine is entered, it
first examines the first four bytes of the appropriate Job Track
Group Map to determine if a new track group is required. A new
group is required whenever no tracks have been allocated to this
job (the last track address is zero) or if all of the tracks in
the last group allocated have been used.

If a new track group is not required, the record or head field of
the last track address is incremented to provide a new track
address.

If a new track group must be allocated, the Master Track Group

Map is scanned for an available group. When the next group to

be allocated is determined, the appropriate bit in the Master Track
Group Map is set to zero, and the corresponding bit in the Job
Track Group Map is set to one. A track address is then constructed
to represent the first track in the new group, and this track
address is saved in the first four bytes of the Job Track Group Map.

When any direct-access input/output operation is initiated by HASP,
the HASP I/O interface saves the cylinder which was referenced

by module. When a new track group must be allocated, the allo-
cation routine first tries to allocate a group corresponding to

the last cylinder referenced on each module. If these groups are
not available, the routine attempts to allocate within one cylinder
of the last references. If track groups within these cylinders are
not available, the routine tries to allocate a group within two
cylinders, and so on, until the entire track group map has been
examined.

Direct-Access Space De-Allocation Procedure

To de-allocate the direct-access space allocated to a particular
function, it is necessary only to "OR" the track group map portion
of the Job Track Group Map associated with the particular function
into the Master Track Group Map. This will reset to one all bits
in the Master Track Group Map which correspond to the track groups
which have been allocated to the particular function.

Allocation of Direct-Access Spéce - Page 3.2-3

19

HASP

3.3 ALLOCATION OF INPUT/OUTPUT UNITS

The HASP Device Control Table (DCT) is used by HASP to allocate

all input/output units. It has the following basic format:

- status

device type

other
control
information

device name

work
space

Figure 3.3.1 — The HASP Device Control Table (DCT)

The "status" field is used to indicate whether the device is available
and whether it is in use.

The "device type" field specifies whether this DCT represenfs a card
reader, printer, punch, or other type of 1/0O device.

The "other control information" field contéins such information as
the Data Control Block (DCB) address, the chain address, indications of

operator commands, and other fields for synchronization purposes.

Allocation of Input/Output Units - Page 3.3-1

20

HASP

" The "device name" field contains an eight-byte EBCDIC device
name (such as READER1) which is primarily used for console messages.

The "work space" is a device dependent area used by some devices
for extended control of the device.

All DCT's are chained together for allocation purposes. They are
initialized by the HASP initialization phase if the associated devices
are attached to the system.

Input/Output Device allocation consists of "running" the DCT
chain and looking for a DCT of the specified type which is available
and which has not been allocated. If one is found, the "in use" bit
is set to one to indicate that the device has been allocated.

De-allocation consists of setting the "in use" bit to zero.

The Device Control Table is also used as a parameter list whenever

Input/Output activity is initiated through the HASP I/O interface.

Allocation of Input/Output Units - Page 3.3-2
21

HASP ' ;
3.4 ALLOCATION OF CENTRAL PROCESSING UNIT TIME

Thé Operating Syétem controls the allocatibn of Central Processing“
Unit (CPU) time to different tasks through the means of a Task Control
Block (TCB) chain. In a similar fashion, HASP controls the allocation
of CPU time to the different functions within HASP through the means
of a Processor Control Element (PCE) chain. The basic format of the

Processor Control Element is as follows:

oS
save
area

event wait field

chain field

processor
work
space

Figure 3.4.1 — HASP Processor Control Element (PCE)

Whenever a particular function is being processed, general purpose
register 13 always contains the address of the Processor Control Element
~which is allocating the time to that function. For this reason the first

eighteen words of the PCE are a standard 'OS register save area.

Allocation of Central Processing Unit Time - Page 3.4-1

22

"HASP

The "event wait field" is a two-byte field which describes the
dispatchability of the function under the control of this PCE. If this
field is zero, the function is dispatchable. If this field is non-zero,
the function is not dispatchable and the bit which is one specifies
upon what event the function is "waiting".

The "chain field" contains the address of the next PCE in the PCE
chain.

The "processor work space" is a variable length area which is used
by the program processing the function as a scratch area.

HASP searches the PCE chain looking for a PCE which is dispatchable.
When a dispatchable PCE is located, the general purpose registers are
loaded from the PCE/OS save area and control is passed to the location
specified in register 15,

When control is returned to the dispatching program, the gener&il pur-
pose registers are saved in the PCE and the search for dispatchable PCEs
continues. If a notable event occurred since the last PCE dispatch such
as the freeing of a common resource or the "posting" of a specific event,
the search starts at the beginning of the PCE chain; otherwise, it starts
with the PCE following the last dispatched. The program returning control
to the dispatching program must set the return address in register 15 before
returning.

When no PCEs are found to be dispatchable, the HASP task enters an
OS WAIT state to allow the Operating System to allocate CPU time to other

tasks.

Allocation of Central Processing Unit Time - Page 3.4-2

23

HASP

3.5 ALLOCATION OF PROGRAMS

The programs of which HASP is composed can be divided into

the following classifications:

° The Dispatcher

) Proc‘essors

@ Control Service Programs
® Miscellaneous Programs

The Dispatcher is the dispatching program described in Section
3.4. Its function is to distribute CPU time among the various processors
| described below.

Processors are programs which control the execution of various HASP
functions such as reading cards, printing, punching, etc. With each
processor is always associated at least one Processor Control Element
which causes the dispatcher to give control to the processor and allows
the processor to synchronize with various HASP events. The PCE work
space also permits the processors to be written re-enterably such that by
defining more than one PCE for a given processor, the processor can control
an essentially unlimited number of functions simultaneously. For instance,
by defining ten PCEs for the Print Processor, up to ten printers can be ser-
viced simultaneously utilizing and requiring only one copy of the processing

program.,

Allocation of Programs - Page 3.5-1
24

HASP

The Control Service Programs are subroutines used by the processors
in accomplishing their functions. By using the PCE/OS save area, the
control service programs can maintain the re-enterability of the
processors.

Miscellaneous Programs are those special purpose programs which
do not fall into any of the other three categories, such as the HASP
Initialization Program. They are executed only once and need not be

considered in the normal HASP job flow.

Allocation of Programs - Page 3.5-2

25

HASP

3.6 ALLOCATION OF JOBS

HASP maintains its job pointers in the HASP Job Queue, a table of

elements with the following basic format:

priority

type

job number

chain address

JCT track

Figure 3.6.1 — The HASP Job Queue Element

The "priority" represents the dynamic priority of the job within the
HASP system. |

The "type" represents the function for which the element is quéued
or the function in which the job is currently being processed.

The "job humber" is the number sequentially assigned to each job
by HASP as it enters the system.

The "chain address" is the address of the next element in the chain.

Allocation of Jobs - Page 3.6-1

26

PEEEN

HASP

The "JCT track" is the track address of the HASP Job Control Table
described below.

Two chains are maintained in the Job Queue. The first chain
represents those jobs which are currently awaiting processing or being
processed. Elements in this chain are chained in the order of their
priority. The second chain represents the inactive or unused queue
elements.

To add a job to the job queue, a queue element is obtained from
the inactive chain, initialized with the information shown in figure
3.6.1, and inserted into the active chain according to its priority.

To obtain a job from the job queue, the active chain is searched
for an element of the specified type. When found, the "type" field is
modified to reflect the fact that the job is now being processed.

To return a job to the job queue, the element is moved from the
active chain to the inactive chain. Since the priority is of no concern

here, the element is placed at the head of the chain.

The HASP Job Control Table (JCT)

The HASP Job Control Table contains all of the information necessary

to process the associated job in the following basic format:

Allcocation of Jobs - Page 3.6-2

27

HASP

data from
JOB Card

accounting
information

first input track

input job
track group map

output job ,
track group map

work space

output data
set tracks

Figure 3.6.2 - The HASP Job Control Table (JCT)

The HASP Job Control Table is nbrmally resident on a direct-access
intermediate storage device. Once the HASP Job Queue Element is
obtained, the "JCT track"” in the element can be used to initiate a read
into a HASP Buffer. Once this read has been completed, all information

necessary to process the job can then be obtained.

Allocation of Jobs - Page 3.6-3

28

i,

HASTP

3.7 ALLOCATION OF OVERLAY AREAS AND NON-RESIDENT CONTROL SECTIONS

Portions of the various programs of which HASP is composed are
organized into non-resident control sections (CSECTs) and stored
in an overlay library (OLAYLIB) on a direct-access volume. These
control sections contain HASP re-entrant subroutines and/or data
which may be requested for use by a Processor.

The user obtains an Overlay Area by requesting from the cverlay
control service program for use of a non-resident CSECT. If the
CSECT requested is in main storage, the user is allowed to use

the Overlay Area for processing. If, however, the CSECT is not
already in an area, an area must be selected to hold the requested
CSECT. The requesting Processor is made to "wait" until the
requested CSECT is read from direct-access into main storage.

The algorithms for Overlay Area allocation cause multiple users

of the same CSECT to use only one area, into which that CSECT is
read. Competition for areas is resolved partially by the priority
associated with each overlay CSECT. However, a "pre-empting"
(roll) algorithm prevents any Processor from being indefinitely
delayed, even if the system has only one Overlay Area.

The user releases an Overlay Area by requesting that overlay
services remove his PCE from association with the area.

Allocation of Overlay Areas - Page 3.7-1

29

HASP

(The remainder of this page intentionally left blank.)

30

A,

HASP

4.0 HASP PROCESSORS

This section contains detailed internal information about each of

the HASP Processors and is intended primarily for use by system
programmers.

HASP Processors -- Page 4.0-1

31

HASP

4.1

INPUT SERVICE PROCESSOR

-

INPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Input Service Processor are as follows:
. To read card images from an input device.

. To detect and scan JOB cards, extracting parameters for

job accounting, job control, and print and punch identi-
fication.

. To detect and process other control cards such as the
PRIORITY, MESSAGE, ROUTE, SETUP, COMMAND, DD*, and DD
DATA cards.

. To assign a unique HASP job number to each job.
. To log jobs into the HASP System.

. To assign job priority based upon PRIORITY card or JOB
card parameters.

. To generate, from cards read, a JCL file and input data
files, and to record these files on direct-access storage
device(s) for later use by the Execution Control Processor
(see Section 4.2).

. To generate HASP Job Control Tables, Job Queue Entries,
and other HASP control blocks required for later job proces-
sing.

. To queue jobs for processing by the Execution Control
Processor. :

The Input Service Processor is coded re-enterably in such a
way that it can accept jobs from a number of different input
devices (with different hardware characteristics) simultane-
ously. The re-enterability is attained by retaining all
storage unique to a job in the Processor Control Element

(see figure 4.1.1) which must be unique for each input device.

INPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Input Service Processor is divided into three phases, 13
subroutines, and three non-process exits. This section will
give a functional description of each of these phases, sub-

routines, and exits to aid the System Programmer in gaining

a working knowledge of the processor.

Input Service Processor - Page 4.1-1

32

HASTP

PHASES

Phase 1 - Processor Initialization

The Initialization Phase, which is written as an overlay seg-
ment, begins by attempting to acquire an input device. If

no input device is available, the processor is placed in a
HASP SWAIT state until a device is made available; whereupon
the entire procedure is repeated until an input device is
available. Upon acquiring an available input device the
processor continues by acquiring a Device Control Table (DCT)
for the direct-access device(s) and a HASP buffer for use as
an input buffer.

If the input device is not a remote terminal, a chain of
Channel Control Words (CCW's) is then constructed in the
input buffer which will be used to read 80-byte records from
the input device into the rest of the input buffer. These
CCWs are constructed in such a way that the input records
will be read into adjacent areas in the input buffer with as
many cards being read as the buffer will hold. The initiali-
zation of the PCE Work Area is then completed and control is
transferred to Phase 2.

If the input device is a remote terminal, transmission is
initiated by calling upon the Remote Terminal Access Method
to open the Remote Terminal Device Control Table. Control
is then passed to Phase 2.

Phase 2 -~ Main Processor

The Main Processor Phase reads cards from the input device,
scans each card to detect HASP control cards and processes
these cards as follows:

/*control card--The control card scan routine (HASPRCCS) is
called to process the control card and take any appropriate
action.

Job Card--The JOB card scan routine (HASPRJCS) is called to
terminate the previous job (if any), to scan the JOB Card,
and to initialize the PCE work area for the processing of
the following job.

DD* or DD DATA--A track address is obtained for the first
data block of the input data set. A dummy card is added to
the JCL file which contains the track address in columns 1-4.

Input Service Processor - Page 4.1-2

33

HASTP

This card is differentiated from other cards by setting the
control byte (see figure 8.15.1). The DD* or DD DATA state-
ment is then added to the JCL file in normal fashion. Control
is subsequently turned back to the main processor to process
the input data.

When a hardware end-of-file is detected on the input device,
or when "$DRAIN input device" command is entered by the opera-
tor, control is given to Phase 3.

Phase 3 - Processor Termination

Upon receiving control from the Main Processor, the Processor
Termination Phase, which is written as an overlay segment,
terminates the last job (if any), issues a rewind and unload
command to the input device if it is tape, frees the input
buffer, closes the input DCT if it is a Remote Device, releases

the input and direct-access devices, and returns control to
Phase 1.

SUBROUTINES

HASPRCCS ~- Subroutine to Process HASP /* Control Cards

The HASPRCCS subroutine, which is written as an overlay seg-
ment, is called whenever the Main Processor Phase encounters
a /* control card. The control card type is first determined
and then processing continues as follows:

/*COMMAND Card -- The command is listed on the opera-
tor's console and then added to the Command Processor's
input command queue.

/*PRIORITY Card -- The previous job (if any) is termina-
ted, the priority specified is converted to binary and
saved, and the scan is continued with the next card.

If the following card is not a JOB card, the message,
"device SKIPPING FOR JOB CARD", is written on the
operator's console, the effect of the /*PRIORITY Card

is nullified, and the input stream is scanned for
another /*PRIORITY or JOB card.

/*ROUTE Card -- The appropriate routing byte is set to

the value associated with the destination indicated.

If an invalid field is encountered, an appropriate mes-
sage is issued, both to the operator and to the programmer,
and further job processing is bypassed.

Input Service Processor - Page 4.1-3

34

HASP

/*SETUP Card -- The volumes to be mounted are listed on
the operator's console and the job is placed in "hold"
status.

/*MESSAGE Card -- Leading and trailing blanks are remcved

and the message is routed to the operator's console.

If the control card type is not recognized, the card is ignored
and treated like any other /* card.

HASPRJCS~--Subroutine to Scan and Initialize Job Control Infermatiocn

The HASPRJCS subroutine, which is written as an overlay segment,
is called whenever the Main Processor Phase encounters a JOB card.
The previous job (if any) is terminated by calling the RJOBEND
subroutine. The master job number is incremented and its new
value is assigned to the current job. The job control informa-
tion in the PCE Work Area (see figure 4.1.1) is initialized by
scanning the JOB card and extracting parameters relative to job
control. The first JCL block is initiated, and control is passed
to the Job Initialization Subroutine: HASPRJBI.

RSCAN - RSCANA -- Subroutine to Scan Parameters from JOB Card

This subroutine has two entry points; the entry point: "RSCAN"

is used to scan numeric parameters from the JOB card, while the
entry point: "RSCANA" is used to scan alphameric parameters from
the JOB card. There are also two returns from the subroutine.

If return is made to the first byte following the Branch and Link
(the call) instruction, it indicates that the final parameter on
the JOB card was returned on the previous call and that there are
no more parameters. If return is made to the fourth byte follow-
ing the Branch and Link instruction, it indicates that parameter
register "R1" contains the next parameter, right-adjusted with
leading binary zeroes. If the parameter was a "null" parameter,
"R1" will be zero. If this subroutine detects an illegal char-
acter (such as a non-numeric character in a numeric field) or
more than four characters in a parameter, control is transferred
to the RBADJOBC subroutine.

RCONTNUE -- Subroutine to Validate Continuation Cards

This subroutine validates JCL continuation cards by ensuring
that columns 1 and 2 are punched with slashes and that column 3
is blank. The start of the continuation card is located and

Input Service Processor - Page 4.1-4

35

HASP

control is returned to the caller. If an invalid continuation
card is discovered, control is passed to the illegal job card
subroutine for further processing.

REBCDBIN -- Subroutine to Convert from EBCDIC to Binary

This subroutine expects to find numeric EBCDIC characters with
leading binary zeroes in parameter register "R1". There are

two returns from the subroutine. If return is made to the

first byte following the Branch and Link (the call) instruction,
it indicates that the parameter register now contains the binary
equivalent of the EBCDIC input. If return is made to the fourth
byte following the Branch and Link instruction, it indicates
that the parameter register was zero (null parameter) and con-
tained no EBCDIC to translate.

HASPRJBI -- Subroutine to Initialize Job Processing

This subroutine, which is written as an overlay segment, re-
ceives control from the JOB Card Scan Routine (HASPRJCS) and
completes the initialization of the various control blocks for
input job processing. A "job on" message is issued to the
operator, the job's priority is assigned based upon JOB card

or /*PRIORITY card parameters, and the job is queued in the
active input queue. Control is then returned to the Main Proces-
sor Phase.

RBADJOBC -- HASPRIJC -- Subroutine to Process Illegal Job Cards

This subroutine notifies the operator of an illegal JOB card,
calls the subroutine: "RJOBKILL" to delete the job, and returns
control to the Main Processor Phase.

RJOBEND =-- Subroutine to Complete Job Input Processing

This subroutine tests whether the Input Processor is currently
processing a job, and if it is not, returns control immediately.
The RJOBTERM subroutine is called to terminate the input proces-
sing of the job, and the job is queued for the Execution Control
Processor in the logical queue associated with the job's JOB
CLASS. Control is then returned to the calling program.

Input Service Processor - Page 4.1-5

36

HASP

RGET -- Subroutine to Get Next Card from Input Buffer

This subroutine returns the address of the next card to be pro-
cessed by the Input Service Processor in register "RPI". If

the input buffer is empty or if all the cards in the input
buffer have been processed, an I0S read is staged from the input
device and the subroutine places the processor in a HASP SWAIT
state until the input buffer has been filled. If the input
device is a remote terminal, a "call" is made on the Remote
Terminal Access Method to procure the next card. If a permanent
error is detected on the input device, no action is taken until
after the last card has been processed and then the JOB currently
being processed is deleted with appropriate comments to the oper-
ator. Processing then continues by scanning the input stream.
for the next JOB card.

This subroutine also processes the operator commands "$STOP
input device" and "S$DELETE input device" by entering the HASP
SWAIT state and calling the subroutine RJOBKILL to delete the
job, respectively.

There are two returns from the subroutine. If return is made
to the first byte following the Branch and Link (the call) in-
struction, it indicates that the last card has been processed
and that an end-of-file has been sensed on the input device.
If return is made to the fourth byte following the Branch and
Link, it indicates that register "RPI" contains the address of
the next card.

RPUT --- RPUTOLAY -- Subroutine to Add Card to Output Buffer

This subroutine accepts 80-byte card images and blocks them
into standard HASP Data Blocks (see section 8.15). If the cur-
rent output buffer is full, it is truncated and scheduled for
output, and a new HASP buffer is acquired and used as the next
output buffer. If no output buffer exists upon entry, it indi-
cates that the processor is skipping for a JOB card and the
subroutine returns without taking any action.

RJOBKILL -- Subroutine to Delete Current Job

This subroutine tests whether the input processor is currently
processing a job, and if it is not, returns control immediately.
If a job is being processed, the operator is notified that the
job is being deleted, the RJOBTERM subroutine is called to termi-
nate the input processing of the job, and the job is placed in
the Print Processor Queue for subsequent processing. Control is
then returned to the calling program.

Input Service Processor - Page 4.1-6

37

HASP

RJOBTERM -- Subroutine to Terminate Job

This subroutine terminates the last output buffer and schedules
it for output. It then acquires a HASP buffer, and from infor-
mation kept in the PCE Work Area (see figure 4.1.1) constructs
the Job Control Table (JCT) and schedules it for output. Con-
trol is then returned to the calling program.

RGETBUF -- Subroutine to Initialize Output Buffers

This subroutine acquires a HASP buffer for an output buffer and
returns with the address of the buffer in register "R1".

NON-PROCESS EXITS

The following routines are used to put the Input Service Proces-
sor in a HASP S$WAIT state if a HASP resource is not available.
In all cases Reader Link Register 2 ("RL2") must have been set
to the restart address before the routine is entered.

. RNOUNIT -- A HASP Unit was not available.

. RNOCMB -- A HASP Console Message Buffer was not available.

. RNOJOB =-- The HASP Job Queue was full and a new entry
could not be added.

When the respective resource is available, the processor is
$SPOSTed and another attempt is made to acquire the resource.

Ihput Service Processor - Page 4.1-7

38

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT

Displacement

Hex. Dec.

s8¢ 88
s5c 92
60 96
64 100
68 104
6C 108
70 112
74 116
78 120
7c 124
80 128

e

RDRDCT
RCARDID Address of Input Device Control Table
RDADCT
RDRSW Address of Direct-Access DCT
RBIEND

Address of Last Card in Input Buffer
RBONEXT

Address of Next Card in Output Buffer

RBOEND
Address of End of Output Buffer
RLSAVEL
Link Register Save Word 1
RLSAVEZ2
Link Register Save Word 2
RLSAVE3
Link Register Save Word 3
RSAVEL
General Purpose Save Word 1
RSAVEZ2

General Purpose Save Word 2

Input Service Processor - Page 4.1-8

39

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement
Hex. Dec.
80 128
84 132
B8 184
B8 184
BC 188
co 192
c4 196
cs 200

J L

RJCLTRAK
Track Address of Next JCL Block
RMESSAGE
Reader Message Area
RJOB Address of Job Queue Element T
RQUEPRI RQUETYPE RQUEJOBN Job Number
I
RQUEFLAG g
Job Queue RESERVED 4
Flags =
<]
RQUETRK 2
=)
Track Address of Job Control Table Z
o -
n o
RQUEPRTR RQUEPUNR RQUECLAS RQUEREGS
Print Route Punch Route Job Class Region Size

Input Service Processor - Page 4.1-9

40

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)
Displacement
----------------------- 4 byteg ==w--mmmmmme e —
Hex. Dec.
(o] 200 RJCTJOBN RJCTPRIO RJCTROUT)
Job Number (Binary) Priority Input
Route Code
cc 204 RJCTJOBE RJCTPNAL
Job Number (EBCDIC) Programmer's
Name Length
DO 208 RJCTPNAM
N Programmer's Name from Job Card Ny
m
A
)
<
E4 228 RJUCTJINAM 2
=
2
Z
Job Name from Job Card — S
M
O
>
g
EC 236 RJCTACTN 2
Job Accounting Number
FO 240 RJCTROCM
Programmer's Room Number
F4 244 RJCTETIM
Estimated Execution Time
F8 248 RJCTCARD
Current Input Card Count
v
FC 252

Input Service Processor - Page 4.1-10

41

ok
h

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement
ittt bt L L L DD DD DD 4 bytes --=--------c-e-meo——o—o— >
Hex. Dec.
FC 252 RJCTESTL A
Estimated Lines of Output
100 256 RJCTESTP
Estimated Number of Cards to be Punched
104 260 RJCTLINC RJCTCPYC RJCTLOG RJCTDDCT
Lines Print Log Option
Per Page Copy Count Switch RICTFLAG
108 264 RJCTFORM 3
)
Job Print Forms ﬁ
3
10C 268 ﬁ
8
Job Punch Forms O
m
=
110 272 RJCTRDRO by
Reader Sign-On Time g
a
114 276 RJCTRDRT
Track Address of First JCL Block
118 280 RJCTCYMX
Maximum MTTR for Current Track Group
l1c 284 RJCTMTTR
Last MTTR Allocated ‘
120 288

Input Service Processor - Page 4.1-11

42

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement L.
----------------------- 4 bytes ------------s--mem e
~Hex. Dec.
120 288 RJCTCYMA ’
B4
O
~ \J\ &
N Variable Length Track Allocation Map \r E
=
a
RTPCARD

80-Byte Remote Job Entry Input Card Image Area

7/

Input Service Processor - Page 4.1-12

43

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement

Field Name Bytes

Field Description

Hex.

58

58

5C

5C

60
64
68
6C
70

74

Dec.

88

88

92

92

96
100
104
108
112

116

RCARDID

RDRDCT

RDRSW

RDADCT

RBIEND
RBONEXT
RBOEND
RLSAVEL
RLSAVE2
RLSAVE3

-1

4

1

>

Type of card being processed --

Hex.
Value Meaning

00 Normal Card.

03 Internally Generated Card.
04 HASP Control Card.

13 Illegal Control Card.

19 Last JCL Card.

73 Dummy Track Address Record.

Address of Reader, Tape, Internal
Reader, or Remote Device Control Table.

Reader Switches --

Bit Name Meaning

0 RJOBQUED Job has been Queued.
1 RSYSINSW Processing Internally Gener-
: ated DD * Card.

RXBJOBSW Processing XEQ Batch Class
Job.

ROSINSW Processing O/S Input Data Set.

RJCLSW Processing JCL.

RDREOFSW End of File Indication.

RNOSCAN Not Scanning JCL (DD DATA).

RJFLUSH Job Flush Message has not
been issued.

;8]

QO v A W

Address of Direct-Access Device Control
Table.

Address of Last Card in Input Buffer.
Address of Next Card in Output Buffer.
Address of End of Output Buffer.

Link Register Save Word 1.

Link Register Save Word 2.

Link Register Save Word 3.

Input Service Processor - Page 4.1-13

44

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

78 120 RSAVEL 4 General Purpose Save Word 1.

7C 124 RSAVE2 4 General Purpose Save Word 2.

80 128 RJCLTRAK 4 Track Address of Next JCL Block.
84 132 RMESSAGE 52 Reader Message Area.

B8 184 RJOB 4 Address of Job Queue Element

(when Job has been Queued).
B8 184 RQUEPRI 1 Job Queue Priority (Before Queueing) --

Bits 0-3 Priority (0-15).
Bits 4-7 Zero.

B9 185 RQUETYPE 1 Job Class - X'80' (Before Queueing).
BA 186 RQUE JOBN 2 Job Number (Before Queueing).
BC 188 RQUEFLAG 1 Job Queue Flags --

Bits Name Meaning

0 QUEHOLDlL Job Held: TYPRUN=HOLD
or Input Device Held.

1-7 Reserved.

BD 189 3 Reserved.
co 192 RQUETRK 4 Track Address of Job Control Table.
c4 196 RQUEPRTR 1 Print Routing: O = Lccal.

n = Remote n.
C5 197 RQUEPUNR 1 Punch Routing: O = Local.

n = Remote n.
c6e 198 RQUECLAS 1 Job Class - X'80' (After Queueing) .
c7 199 RQUEREGS 1 Region Size =-- Reserved.
c8 200 RJCTJDBN 2 Job Number (Binary).
cA 202 RJCTPRIO 1 Priority from /*PRIORITY Card.

Input Service Processor - Page 4.1-14

45

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

~Displacement Field Name Bytes
Hex. Dec.

Field Description

CB 203 RJCTROUT 1 Input Route Code: O = Local.
n = Remote n.
CC 204 RJCTJOBE 3 Job Number (EBCDIC) .
CF 207 RJCTPNAL 1 Programmer's Name Length.
DO 208 RJCTPNAM 20 Programmer's Name from Job Card.
E4 228 RJCTJINAM 8 Job Name from Job Card.
EC 236 RJCTACTN 4 Job Accounting Number.
FO 240 RJCTROOM 4 Programmer's Room Number.
F4 244 RJCTETIM 4 Estimated Execution Time.
F8 248 RJCTCARD 4 Current Input Card'Count.
FC 252 RJCTESTL 4 Estimated Lines of Output.
100 256 RJCTESTP 4 Estimated Number of Cards to be Punched.
104 260 RJCTLINC 1 Lines per Page.
105 261 RJCTCPYC 1 Number of Copieé of Print.
106 262 RJCTLOG 1 Log Option Switch.
107 263 RJCTDDCT 1 Count of Input Data Sets SPOOLed by HASP.
107 263 RJCTFLAG 1 JCT Flags.
108 264 RJCTFORM 4 Job Print Forms.
10C 268 4 Job Punch Forms.
110 272 RJCTRDRO 4 Reader Sign-On Time.
114 276 RJCTRDRT 4 Track Address of First JCL Block.
118 280 RJCTCYMX 4 Maximum MTTR for Current Track Group.
llc 284 RJCTMTTR 4 Last MTTR Allocated.

Input Service Processor - Page 4.1-15

46

HASP

Figure 4.1.1 -~ INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

120 288 RJCTCYMA Variable Length Track Allocation Map.

RTPCARD 80 Remote -Job Entry Input Card Image Area.

Input Service Processor - Page 4.1-16

47

HASP

4.2 EXECUTION CONTROL PROCESSOR

4.2.1 Execution Control Processor — General Description

The Execution Control Processor is responsible for the interface
between HASP and OS/36D. It presents jobs to the Operating System
for execution and communicates with the I/O supervisor to supply SYSIN
data for a job and to accept SYSPRINT and SYSPUNCH from a job for
later printing and punching.

This Processor is re-enterably coded and has the capability to

‘present any number of jobs to OS/360 for simultaneous execution by

maintaining unique INPUT/OUTPUT streams for each job. All storage
unique to a job is retained in the Processor Control Element (see
Figure 4.2.2) to provide re-enterability.

The Execution Control Processor is also responsible for monitoring
job limit excessions (such as time, line, or punched card estimates).
Jobs are selected for OS processing based on a logical partition structure
defined by HASPGEN. Each logical partition is controlled by a partition
information table (PIT) which indicates the eligibility of jobs for
execution by that logical partition. There is a direct correlation between
the HASP logical partition and the number of initiators active in the
system. Jobs thus selected for OS processing are passed to a single

0S/360 Reader/Interpreter which remains constantly STARTed to a

Execution Control Processor — Page 4,.2-1

48

HASP

HASP pseudo device which appears as a 2540 card reader. Only the
Job Control Language statements of a job arc passed to the R/I.

Input stream data sets, defined by DD * or DD DATA cards have been
previously transcribed to a SPOOL disk by the HASP input service
processor. The JCL for a job is dynamically modified by HASP to

" assign pseudo unit record devices to all SYSIN and SYSOUT data sets
to permit interception by HASP. The job is interpreted by the R/I and
is placed in the OS job queue for immediate selection by an initiator.
At the completion of a job's execution, it is placed in the OS SYSOUT
queue to be processed by an output writer, Because of the assignment
| of pseudo unit record devices to all SYSOUT files, the output

writer is required only to "print" the System Message Blocks from
SYS1.SYSJOBQE. These SMB's are intercepted by HASP and are stored
on the SPOOL disks as another print data set. After receiving the

last SMB, HASP terminates the XEQ phase, queues the job for t_he

HASP output processors and indicates that the logical partition requires
another job. All information concerning SYSIN and SYSOUT files
assigned to HASP pseudo devices is kept in Data Définition Tables
(DDT). There is a DDT for each active file of a job which indicates
buffer addresses, file status, record count, etc. and is correlated with

the proper file through the HASP pseudo device address.

Execution Control Processor — Page 4.2-2

49

HASP

4.2.2 Execution Control Processor — Program Logic

The Execution Control Processor_ (XEQ) consists of the three

following logical phases:

PHASE 1 — Job Control — Initiates and terminates job processing.

PHASE 2 — Asynchronous I/O Handler — Interfaces with OS/360
via the Input/Output Supervisor (IOS) to perform
SYSIN/SYSPRINT/SYSPUNCH 1/0 requests.

PHASE 3 — Synchronous I/O Handler — Performs the SPOOL I/O

required by Phase 2.

_Figure 4.2.1 indicates the relationship between these three phases and

0s/360.

An OS execution is initiated by Phase 1 by obtaining a suitable job
from the HASP job queue and reading its Job Control Table from disk. Job
limit parameters are initialized and the status of the OS/360 R/I is interro-
gated. If the R/I is currently processing the input for another job, Phase 1
SWAITs until it has completed. A DDT describing the JCL file for the sel-
ected job is constructed and associated with the HASP pseudo 2540 used by

the R/I. The dormant R/I is then POSTed to signal the availability of

Execution Control Processor — Page 4.2-3

50

HASP

a job and control is transferred to Phase 3 to await I/O requirefnents
from Phase 2. The OS/360 Supervisor call table has been modified by
HASP initialization so that all I/O requests are diverted to Phase 2 of
the XEQ processor. If the I/O request thusly intercepted refers to a
HASP pseudo device, it is processed by HASP; otherwise it is passed
to the Operating System Input-Output Supervisor for normal processing.
Since XEQ has the capability to control the simultaneous execution of
many jobs, the PCE for the job issuing the I/O request to a pseudo
device must be identifiable. This is done by using a combination of
the JOB name and the TCB address (Job Step TCB for MVT). Once the
PCE is located, the DDT for this particular pseudo device is found by
the pseudo deviée address from the UCB. Phase 2 verifies that there
is a buffer still associated with the file and simulates the I/O request.
Each ;:hannel command word in the request is examined and, when a
data select type is recognized, the I/O operation is simulated by a
MOVE CHARACTERS to or from the cﬁrrent HASP buffer for that file.
Input requests are serviced by stripping (deblocking) the next card image
from the HASP buffer and moving it as indicated by the CCW. These
moves (only) are done while operating under the requesting program's
protect key to prevent an undetected protect violation by HASP, which

normally operates under protect key zero. Requirements for I/0

Execution Control Processor — Page 4.2-4

51

HASP

activities associated with Phase 2 processing are indicatea by a series
of status bits in each DDT. Requests to get buffers, read buffers and
write buffers, are indicated in the appropriate DDT, Phase 3 of the
XEQ processor is $SPOSTed and the HASP task is POSTed. If the re-
quested activity must be completed before an I/O request can be
satisfied by Phase 2, the I/C requestor is made to WAIT. This is done
by saving the current CCW location and using the OS WAIT routine to
hold the requestor. When the required I/O activity is complete, the
WAITing task is POSTed and the pseudo device I/O request is re-issued.
At the end of all successful I/O operations, the appropriate user
appendage (channel-end appendage, etc.) is entered, the I/O is
POSTed complete if required and a CSW is constructed to indicate the
normal I/O completion.

When Phase 3 of the Execution Processor is entered after initiation
of the job it immediately enters a HASP SWAIT state to await direction
from Phase 2. Upon being activated via a $POST from Phase 2 or by
a timer interrupt, this PHASE examines various status bits in the PCE
and DDT's to determine the required action. This action may be either
the priming of an input buffer, writing and re-initialization of an output
buffer, or the notification to the operator of expiration of the estimated

time of the job. An input buffer is primed by obtaining the track address

Execution Control Processor — Page 4,2-5

52

HASP

of the next buffer from the current buffer and issuing a read for the record.
Status bits are set in the DDT to indicate that a read is in progress on
this buffer and are reset at channel end time to indicate that the record
is available. A full output buffer from Phase 2 is scheduled for trans-
cription to disk and a new buffer is immediately obtained and initialized
for use. When the buffer is initialized a track address is acquired and
inserted as a forward chain in the buffer to be written. If Phase 3 is
for any reason unable to get a HASP buffer, a special service called
Buffer-roll is invoked. The function of Buffer-roll is to make a HASP
buffer currently being utilized by another file (in this or another job)
available to the requestor. This is done by selecting a low frequency
"DDT which owns a buffer and forcing a "free" of that buffer. To free a
primary or secondary input buffer, a switch is set in the DDT to force
a fe-r-ead of the buffer when the input file is next required. Output
buffers are freed by terminating and writing the buffer to the SPOOL
disk. Future references to this output file will cause a new buffer to
be obtained and chained to the partial buffer,

A count of the number of logical records contained in each output
buffer is maintained by the Phase 2 routine and is used by Phase 3
upon Writing a buffer to maintain the total line and card count for this

job. This accumulated figure is also compared, after each write, to

Execution Control Processor — Page 4.2-6

53

HASP

the estimated number of output records with the operator being notified
on its excession. If a job exceeds either cards, lines, or time, the
operator is so advised and a HASPGEN value is added to the original
estimaté which will cause repeated excession messages as this new
estimate is reached. The job continues through normal OS/360
processing until the end of execution is reached. The job, as part
of normal OS job termination, is.then placed in the OS SYSOUT queue
for processing by an output writer. Because of the dynamic modification
of all SYSOUT= cards to pseudo devices, the onlir data set to be
processed by the output writer is that containing the System Message
Blocks. The Output Writer therefore "prints" the
SMB's to a HASP pseudo device. When the last SMB is received, Phase
3 is notified (via an OS POST) to return control to Phase 1 for HASP job
termination.

The job termination section of Phase 1 must now prepare the job
for passage to the print queue. First, all partially filled output buffers
are truncated and written out, and all input buffers are freed. The
timer interval for the job»is cancelled and all job execution statistics
are added to the JCT. At this point the areas of the SPOOL disks used
to store the job input information are made available to be re-allocated

by HASP (Purged), the JCT is written to disk and the job is passed to

Execution Control Processor — Page 4.2-7

54

HASP

the print queue for printing. If no priority card was present, the job
priority is recalculated as a function of the number of lines of print
generated before the job is placed in the print queue.

A branch is then made to the beginning of XEQ to begin another
job if available, or to display a message indicating that the logical
partition is idle.

The process of dynamic examination and modification of selected
JCL statements is accomplished by invoking the standard OS Reader/
Interpreter exit list option which allows users to inspect all JCL en-
coded by the reader. A detailed discussion of the HASP processing

algorithm is contained in Appendix 12.8: HASP JCL Processing.

Execution Control Processor — Page 4.2-8

55

HASP

Figure 4.2.1 -- Execution Control - 0S/360 Relationship

HASP HASP JCL
TASK PROCESSOR
\ (XJCLSCAN)
\
\ 9 R/I
\P EXIT
\\Z‘g LIST
\ | POINTER
\
\\
XEQ JOB \ \ sTarr | 05/360
CONTROL R/I
(PHASE 1) / \VIA PoST TASK
\ 2
\\ [
\V\<3 I/0 REQUESTS
SWAIT \ 9 VIA IOS
2
\

\
\

SYNCHRONOUS ASYNCHRONOUS
I/0 I/0
PROCESSOR $POST PROCESSOR
(PHASE 3) (PHASE 2)

Execution Control Processor - Page 4.2-9

56

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT

Displacement

Hex. Dec.
58 88
5C 92
60 96
64 100
68 104
70 112
74 116
78 120
80 128

XPCEECB

Job S

ynchronization Event Control Block Chain

XPCEJST

Address of User Task Control Block

XPCEJOB

Address of Job Queue Entry

XPCEWAIT

Rea

der Unit Allocation Event Control Block

XPCEJOBN
Job Name ~
XPCEDCT
XPCESTAT Address of Direct-Access DCT
XPCEDDB

Start of Data Definition Table Chain

XPCESTEP

Step Name N

Execution Control Processor - Page 4.2-10

57

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement
¢ - - —emm————— we————ee- 4 bytes --------s-seceemoo—onon- -
Hex. Dec.
80 128
- Procedure Step Name -
88 136 XPCEPRT
Current Output Line Count
8C 140
Estimated Lines of Output
90 144
Line Estimate Excession Amount
94 148
EBCDIC Constant =-- "LINE"
98 152 XPCEPUN
Current Output Card Count
9C 156
Estimated Punched Cards
A0 160
Card Estimate Excession Amount
A4 164
EBCDIC Constant -- "CARD"
A8 168

Execution Control Processor - Page 4.2-11

58

HASP

Figure 4.2.2 --

Displacement
' Hex. Dec.
A8 l68
AC 172
B8 184
BC 188
co 192

EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

XPCEPIT

Address of Partition Information Table

XSTQE

Execution Timer Queue Element
XXSTIME

Time Estimate Excession Amount
XPCEJSIB

Address of User JSTCB (MVT) or PIB (MFT)

Execution Control Processor - Page 4.2-12

59

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

58 88 XPCEECB 4 Job Synchronization Event Control Block
Chain.
5C 92 XPCEJST 4 Address of User Task Control Block.
60 96 XPCEJOB 4 Address of Job Queue Entry.
64 100 XPCEWAIT 4 Reader Unit Allocation Event Control Block.
68 104 XPCEJOBN 8 Job Name.
70 112 XPCESTAT 1 Status =--
Bit Name Meaning
0-1 Reserved.
2 XPOSTBIT POST Request for XTHAW.
3 XRDRACT Reserved.
4 XEOJMES End Execution Message Sent.
5 XDUPBIT Job with Duplicate Job Name

Waiting.
XUCBDDB UCB/DDT Required by
Execution Interface.
7 XEOJBIT End of Job Flag.

o)}

70 112 XPCEDCT 4 Address of Direct-Access DCT.

74 116 XPCEDDB 4 Start of Data Definition Table Chain.

78 120 XPCESTEP 8 Step Name.

80 128 8 Procedure Step Name.

88 136 XPCEPRT 4 Current Output Line Count.

8C 140 4 Estimated Lines of Output. .
90 144 ' 4 Line Estimate Excession Amount.

94 148 4 EBCDIC Constant -- "LINE".

98 152 XPCEPWN 4 Current Output Card Count.

9C 156 4 Estimated Punched Cards.

Execution Control Processor - Page 4.2-13

60

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name

Bytes Field Description

Hex.
A0
Ad
A8
AC
B8

BC

Dec.
160
164
168
172
184

188

XPCEPIT
XSTQE
XXSTIME

XPCEJSIB

4 Card Estimate Excession Amount.

4 EBCDIC Constant -- "CARD".

4 Address of Partition Information Table.
12 Execution Timer Queue Element.

4 Time Estimate Excession Amount.

4 MVT -- Address of Job Step Task Control Block.
MFT -- Address of Partition Information Block.

Execution Control Processor - Page 4.2-14

61

HASP

OUTPUT SERVICE PROCESSOR (PRINT AND PUNCH)

OUTPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Output Service Processor are as follows:

To convert the print and punch output generated by the
Execution Control Processor to hard copy.

To provide for the unique identification of both print
and punch output to facilitate collection and delivery.

To provide for the routing of special data sets to printers
and punches reserved for special forms processing.

To produce multiple copies of print output upon request.
To count print lines and produce automatic page overflow.

To translate all illegal print characters to blanks (option-
al).

To load the Universal Character Set Buffer (optional).
To load the Forms Control Buffer (optional).

To provide additiqnal information for checkpoint which
allows print to continue in the event of a "warm start".

‘To punch a Job Accounting Card (optional).

To process all printer and punch I/O errors with automatic
error recovery (no operator intervention).

To respond to all operator commands directed toward any
printer or punch.

To queue jobs for the next stage of processing when the
current print/punch function has been completed.

The Output Service Processor is coded re-enterably in such a
way that it can deliver output to a number of different output
devices simultaneously. The re-enterability is attained by
retaining all storage unique to a job in the Processor Control
Element (see figure 4.3.1) which must be unique for each output
device.

Output Service Processor - Page 4.3-1

- 62

HASP

4.3.2 OUTPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Output Service Processor is divided into three phases,
nine subroutines, and two non-process exits. This section
will give a functional description of each of these phases,
subroutines, and exits to aid the system programmer in gaining
a working knowledge of the processor.

PHASES

Phase 1 -- Processor Initialization

The Initialization Phase begins by attempting to get an out-
put unit. If an output unit is not available, the processor
enters a HASP S$WAIT state until a device is made available
and then the process is repeated.

Next, an output function is determined. If the device ac-
quired is a remote printer, the appropriate entry in the
Remote Message Table is examined to determine if any remote
messages have been queued, and if so processing continues.
The general purpose register: "JCT" is set to zero to indi-
cate that remote messages are being processed.

If the device is not a remote printer, or if there are no
messages queued, an attempt is made to obtain a job from the
Job Queue which matches the type, routing and special forms

of the device obtained. If no jobs are queued which fit these
qualifications, the special forms processing type is checked

to see if the forms requirement can be dropped. If so, another
attempt is made to obtain a job from the Job Queue which
matches the type and routing specifications only.

If a job cannot be found, then the output unit is released
and control is returned to the start of the Initialization
Phase.

If the output device is a remote terminal, output activity is
initiated by calling upon the Remote Terminal Access Method
(RTAM) to "open" the Remote Device Control Table.

The processor then acquires a direct-access Device Control
Table (DCT) and a HASP buffer into which the Job Control

Table (JCT) is then read. A message is sent to the operator
notifying him that a particular job is now on the respective
device and the initialization of the Processor Control Element
Work Area (see figure 4.3.1) is completed.

Output Service Processor - Page 4.3-2

63

HASTP

If the processor is processing print output, and if the output
is not a data set which has been routed for special forms,

the PRINTID subroutine is called to generate the print identi-
fication header and control is transferred to Phase 2.

If the processor is processing punch output, and if the output
is not a data set which has been routed for special forms,

the Punch ID Card is generated for later punching, and control
is transferred to Phase 2.

Phase 2 - Main Processor

The function of the Main Processor is to read the data blocks
which are produced by the Execution Control Processor and build
a channel program to print or punch the data. The PRDBUF and
PRDCHK subroutines are used to read the data blocks, the PPPUT
subroutine is used to construct the channel program and the
PPWRITE and PPCHECK subroutines are used to initiate and check
the execution of the channel program.

If the processor is processing print output, the "Control
Byte" fields of the Data Block (see figure 8.15.1) are used
to build the CCW operation codes. These control bytes are
also used to count the actual lines of paper spaced and when
this line count exceeds the parameter JCTLINCT, an eject is
inserted to force a new page and the count is restarted. If
an illegal control byte is encountered, or if the operator
has entered a "$T PRTn,C=1" command, a single-space CCW is
generated and used rather than the one provided in the data
block. 1In such cases line counting continues and automatic
page overflow is still provided.

If the processor is processing punch output, a "Punch, Feed,
and Select Stacker P2" command is generated.

When the last data block has been printed or punched, control
is transferred to Phase 3.

Phase 3 - Processor Termination

The Processor Termination Phase first reads the Job Control
Table and scans the Peripheral Data Description Blocks (see
figure 8.8.1) for the next data set to be processed. If
another data set is encountered, control is returned to Phase
2 for processing. If no more data sets are to be processed,
the termination phase then proceeds depending upon the type of
output which is being processed.

Output Service Processor - Page 4.3-3

64

HASP

If the processor is processing print output, the "Print Copy
Count" field in the JCT (see figure 8.8.1) is compared with

the current number of copies which have been printed. If

more copies are needed, control is transferred to Phase 1 for
the production of another copy. If no more copies are required,
the PRINTID subroutine is called to generate the print identi-
fication trailer.

If the processor is processing punch output, the job accounting
subroutine is called, and the accounting card is punched fol-
lowed by a blank card to clear the punch and check the punching
of the Job Accounting Card.

The Job Control Table is then re-written, the Job Queue Element
is passed to the next processor queue, the Device Control
Tables are released, and control is transferred to the start

of Phase 1.

SUBROUTINES

PLOADUCS -- Subroutine to Load the UCSB and FCB

This subroutine determines the Universal Character Set Type
from the Printer Device Control Table. The UCSB Table is then
searched and the corresponding UCS image (if one is found) is
$LOADed and moved into a HASP buffer. The UCS Buffer is then
loaded using the PPPUT, PPWRITE, and PPCHECK subroutines.

If the output device type specifies a 3211 printer, then the
Forms Control Buffer is loaded in a manner similar to the UCS
Buffer. After loading the FCB, the FCB type is reset so that
no more FCB loads will occur until the operator specifies that
the buffer should be re-loaded.

PRINTID -- Subroutine to Generate Print Identification

This subroutine builds up the line image which is used to pro-
duce the Print Identification Page from information in the Job
Control Table and information passed to the subroutine at the
time it is called. This line image is built up in the "Job
Accounting Storage" section of the Job Control Table (see fig-
ure 8.8.1). The subroutine then builds a channel program
which starts with an eject command and follows with enough
print commands to completely fill a page with print identifi-
cation lines. The channel program is then executed and checked
and control is returned to the calling program. The PPPUT
subroutine is used to construct the channel program, and the
PPWRITE and PPCHECK subroutines are used to initiate and check
the execution of the channel program.

Output Service Processor - Page 4.3-4

65

HASP

PPFORMCK -- Subroutine to Mount Forms

This subroutine compares the forms being requested with the
forms currently mounted on the associated device. If a match
is found, the subroutine returns immediately. Otherwise, a
forms mount message is issued to the operator and the sub-
routine $WAITs for a "$Sdevice" command to be entered. The
DCT Forms field is then set to reflect the new forms type and
processing continues.

PRCOMENT -- Subroutine to Add Comment to Printer Output

This subroutine constructs and adds to the printer output
(using the PPPUT, PPWRITE, and PPCHECK subroutines) a comment
of the form:

PRINT xxxxxxxxx BY OPERATOR.

"xxxxxxxxx" is specified at subroutine entry by parameter
register "R1" and will be one of the following:

DELETED
RESTARTED
REPEATED
BACKSPACED
FWD-SPACED
SUSPENDED

PRDBUF -- Subroutine to Initiate Read from Direct Access Storage

This subroutine initiates a read from the track address speci-
fied by register "PNP" into the appropriate HASP buffer.

PRDCHK =-- Subroutine to Check Read from Direct Access Storage

This subroutine checks the read initiated by the PRDBUF sub-
routine. If the read is not complete, the processor is placed
into a HASP $WAIT state until the read is completed. If an

I/0 error is detected, a "S$IOERROR" macro-instruction is issued
and the processing of the rest of the data set is deleted.

This subroutine also checks for any operator command which
would cause the Main Processing Phase to be completed and forces

any indicated completion by zeroing the chain track in the data
block just read.

Output Service Processor - Page 4.3-5

66

HASP

PPPUT -- PPUTOLAY -- Subroutine to Build a Channel Program

This subroutine accepts a CCW from the calling program and,

if the output device is not a remote terminal, constructs a
channel program in the Processor Control Element Work Area
(see figure 4:3.1). Each command is examined and if it is an
immediate printer space or skip, and if the previous command
was a "Write, No Space", the two commands are combined into
one. When the channel program storage area is full, this sub-
routine calls the PPWRITE subroutine to initiate the execution
of the channel program. Upon the next entry, the execution

of the channel program is checked by calling the PPCHECK sub-
routine.

If the output device is a remote terminal, the Remote Terminal
Access Method is "called" to process the output line or card.
Control is then given to the PPCHECK subroutine to test for
operator commands.

PPWRITE--Subroutine to Initiate Execution of the Channel Program

If the output processor is being deleted by operator action,
this subroutine returns immediately. Otherwise a write is
~initiated on the respective output device, using the channel

program developed by the PPPUT subroutine.

PPCHECK--Subroutine to Check the Execution of the Channel Program

This subroutine checks for the successful completion of the
channel program execution initiated by the PPWRITE subroutine.
If the execution has not yet completed, the subroutine enters
the processor into a $WAIT condition until the output has

been completed. If an unsuccessful completion is detected,
the subroutine performs the error recovery described in the
paragraph below. This subroutine also interprets all operator
commands directed at the processor and initiates appropriate
action.

NON-PROCESS EXITS

The following routines are used to place the Output Service
Processor into a HASP S$WAIT state if a HASP resource is not
available. In both cases the non-process register ("PNP")
must have been set to the restart address before the routine
is entered.

Output Service Processor - Page 4.3-6

67

HASP

. PNOUNIT -- A HASP unit was not available.
. PNOBUF -- A HASP buffer was not available.

When the respective resource is made available, the processor
is $POSTed and another attempt is made to acquire the resource.

PRINTER "WARM START" LOGIC

When the Output Service Processor is successful in acquiring a
job from the print queue, the print checkpoint area is searched
for an available Print Checkpoint Element (see figure 4.3.2).
This element is thereafter used to record the job number, copy
count, and line and page counts.

In the event of a "warm start", the elements are searched and
each Print Checkpoint element is moved into the Job Control
Table for the job which it represents.

When the job is printed, the JCT is examined, and if the Print

Checkpoint Element is present, the processor continues printing
from the point when the last checkpoint was taken.

OUTPUT PROCESSOR BUFFER LOGIC

The buffer logic that the output processor employs is determined
by the HASPGEN parameters: $PRTBOPT, $PUNBOPT, S$RPRBOPT, and
SRPUBOPT. :

Buffer Option = 1

One buffer will be obtained at the beginning of output proces-
sing and will be used through the entire processing of a job's
output. A read for the following data block will not be ini-
tiated until the current data block has completed its output.
Periods of high Input/Output activity could cause the printers
and punches to operate at less than their maximum rate when
this option is used.

Buffer Option = 2

Two buffers will be obtained at the beginning of output pro-
cessing and will be used through the entire processing of a
job's output. A read for the following data block will be

Output Service Processor - Page 4.3-7

68

HASP

initiated as soon as the previous data block has completed
its output and will be performed while the current data block
is completing its output. This option represents the most
efficient utilization of the output devices.

PRINT AND PUNCH ERROR RECOVERY

Print Errors

The operator will be informed of all printer errors, but they
will be ignored by the Output Service Processor.

Punch Errors

The card which causes a punch check and the card following
this card are selected automatically into the reject stacker.
The Output Service Processor will attempt to punch these two
cards correctly until no error occurs or the operator deletes
the job. Since all normal punch output is selected to another
stacker, no operator intervention will be required to clear

the punch. Every error will be recorded on the operator's
console.

Output Service Processor - Page 4.3-8

69

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT

Displacement
Q- - eee e —ccae- 4 bytes ~------- e niniattatdtebted >
Hex. Dec.
58 88 PDCT
PPFLAG Address of Print/Punch/Remote DCT
5C 92 PDADCT
PDCTFLAG Address of Direct~-Access DCT
60 96 PJOB
Address of Job Queue Entry
64
100 . PRCHKPTE Address of Print Checkpoint Element
PUERRPT Address of Punch Error CCW
68 104 PTIMEON
Print/Punch Sign-On Time
6C 108 PBUFSAVE
Address of Next Print/Punch Buffer
70 112 PCCWPT
Address of Last.Print/Punch CCW Set Up
74 116 PCCWEND
Address of Last Possible Print/Punch CCW
78 120 PMESSAGE
N . N§
T~ Print/Punch Message Area “

8C 140

Output Service Processor - Page 4.3-9

70

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement
Dttt bbbl bt b 4 bytes -=--------mmmmmmo———o——— >
Hex. Dec.
8C 140 PDDBSKIP PPRCFLAG PPRCPYCT
Count of Pages to Skip Checkpoint Copy Count
Flags
90 144 PDDBDISP PDDBPGCT
Current PDDB Displacement Current PDDB Page Count
94 148 PPLNCDCT

Current Line or Card Count

98 152 PRPAGECT
Current Page Count
9C 156 PDEVTYPE
PBUFOPT Print/Punch Device Type

A0 160 PLSAVE

Link Register Save Word
Ad 164 PRLINECT

Maximum Lines per Page
A8 168 PCCWCHN

:E Variable Length Print/Punch CCW Chain j:

i

Output Service Processor - Page 4.3-10

71

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes

Field Description

Hex.

58

58

5C

5C

60

64

64

68

eC

Dec.

88

88

92

92

96

100

100

104

108

PPFLAG

PDCT

PDCTFLAG

PDADCT

PJOB
PRCHKPTE

PUERRPT
PTIMEON

PBUFSAVE

1 Print/Punch Synchronization Flags --
Bit Name Meaning

0 PPWSW Write has been Initiated.

1 PPDELSW Function has been Deleted.

2 PPNOJOB No Job is Active.

3 PRDELSW Print was Deleted by
Operator.

4 PRRSTSW Print was Restarted by
Operator.

5 PPRDERR Function Terminated by

6-7

Read Error.
Reserved for Future Use.

Address of Print/Punch/Remote

Device Control Table.

Bit Name

Print/Punch/Remote Operator Commands --

Meaning

0 DCTSTOP
1 DCTDELET
2 DCTRSTRT
3 DCTRPT

4 DCTBKSP
5 DCTSPACE

Table.

4 Print Only:

4 Punch Only:

Output Service Processor - Page 4.3-11

72

$Z ($STOP) Command.

$C (SDELETE) Command.
SE ($RESTART) Command.
SN (SREPEAT) Command.

$B ($BACKSPACE) Command.
$T...,C=1 Command.

$1I Command.

Reserved.

Address of Direct-Access Device Control

Address of Job Queue Entry.

Address of Print Checkpoint
Element.

Address of Punch Error CCW.
Print/Punch Sign-On Time.

Address of Next Print/Punch Buffer.

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Address of Last Print/Punch CCW Set Up.

Address of Last Possible Print/Punch CCW.

0 PRCHKUSE Checkpoint Element Assigned.
1 PRCHKJOB Job Active Indication.

Device Type from UCB (UCBTYP) .

Displacement Field Name Bytes Field Description
Hex. Dec.
70 112 PCCWPT 4
74 116 PCCWEND 4
78 120 PMESSAGE 20 Print/Punch Message Area.
8C 140 PDDBSKIP 2 Count of Pages to Skip.
8E 142 PPRCFLAG 1 Checkpoint Flags --
Bit Name Meaning
2-7 Reserved.
8F 143 PPRCPYCT 1 Current Copy Count.
90 144 PDDBDISP 2 Current PDDB Displacement.
92 146 PDDBPGCT 2 Current PDDB Page Count.
94 148 PPLNCDCT 4 Current Line or Card Count.
98 152 PRPAGECT 4 Current Page Count.
oc 156 PBUFDPT 1 Buffering Option --
Value Meaning
1 Single Buffering.
2 Double Buffering.
9C 156 PDEVTYPE 4
A0 160 PLSAVE 4 Link Register Save Word.
A4 164 PRLINECT 4 Maximum Lines per Page.
A8 168 PCCWCHN

Variable Length Print/Punch CCW Chain.

Output Service Processor - Page 4.3-12

73

HASP

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT

Displacement
ndititbebdattll bbb DD DL Dl 4 bytes -----------ceccecne—o——- >
Hex. Dec.
0 0 PRCJOBNO PRCFLAGS PRCCPYCT
Checkpoint Job Number Checkpoint Checkpoint
. Flags Copy Count
4 4 PRCPDDBD PRCPDDBP

Checkpoint PDDB Displacement Checkpoint PDDB Page Count

8 8 PRLINCT
. Checkpoint Total Line Count
c 12 PRPAGCT
Checkpoint Total Page Count
10 16

Output Service Processor - Page 4.3-13

74

=N

HASEP

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT (CONTINUED)

Displacement Field Name

Bytes

Field Description

Hex.
0

2

Dec.
0

2

12

PRCJOBNO
PRCFLAGS

PRCCPYCT
PRCPDDBD
PRCPDDBP
PRLINCT

PRPAGCT

2

Job Number.
Checkpoint Flags --

Bit Name Meaning

0 PRCHKUSE Checkpoint Element in Use.
1 PRCHKJOB Job Active Indication.
2-7 Reserved for Future Use.
Current Copy Count.
Current PDDB Displacement.
Current PDDB Page Count.

Total Line Count.

Total Page Count.

Output Service Processor - Page 4.3-14

75

HASP

4.4.2

PURGE PROCESSOR

PURGE PROCESSOR - GENERAL DESCRIPTION

The Purge processor frees the job's acquired HASP direct-access
space and removes the Job Queue Element from the system.

PURGE PROCESSOR - PROGRAM LOGIC

The processor first acquires a Job Queue Element and issues the
SACTIVE macro to inform the HASP Dispatcher that the processor
is active. Then a direct-access Device Control Table (DCT) and
a HASP buffer are acquired and initialized so that the job's
Job Control Table (JCT) may be read into the buffer from the
SPOOL disk. If a DCT or buffer is not available this processor
will be placed in a HASP $WAIT state until a DCT or buffer can
be acquired. If no permanent I/O errors occur while reading
the JCT, a $PURGE macro instruction is then issued to return
the job's direct access tracks. If a permanent I/O error occurs
while the JCT is being read, the DISASTROUS error routine is
called and the SPURGE macro instruction is not executed. Next,
the Job Queue Element is removed from the HASP Job Queue and
the following message is issued to the operator:

JOB xxx IS PURGED
Finally, the buffer and DCT are freed, and the $DORMANT macro
instruction is issued to indicate to the HASP Dispatcher that

the processor is inactive and control is returned to the start
of the routine for the processing of the next job to be purged.

Purge Processor = Page 4.4-1

76

HASP

4.5 HASP COMMAND PROCESSOR

4.5.1 HASP Command Processor - General Description

The HASP Command Processor receives all HASP commands entered

from acceptable local or remote HASP input sources. The Processor
is responsible for decoding each command and performing the pro-
cessing necessary to cause appropriate action to the operator's
request.

4.5.2 HASP Command Processor - Program Logic

The HASP Command Processor is initially entered at the beginning
of the Control Section (CSECT) HASPCOMM which is a part of the
resident portion of HASP. Subsequent re-entries are returns from
the various command sub-processors with optional requests for the
displaying of the "OK" message or other message contained in the
COMMAND area of the PCE. After displaying any requested replies
the HASP Console Message Buffer queue $COMMQUE is examined for
the presence of the next command to process. If no buffer is
queued, the Command Processor waits on WORK. When $POSTed or if
a buffer is present upon entry, the Command Edit Routine is
entered via $LINK macro.

Command Edit Routine - HASPCOME

VERB CONVERSION - The Command Edit Routine converts the command
text from the long form to the standard single character verb form.
The data portion of the Console Message Buffer up to the first
comma (,) or apostrophe (') is made upper case and non-blank
characters are shifted to the left. The resulting text is compared
against arguments in the VERB CONVERSION TABLE. If a match is
found, the corresponding standard form of the command is substituted.

COMMAND EDIT AND BREAK OUT - The information in the HASP Console
Message Buffer is moved to the COMMAND field in the PCE work area.
The two bytes CMBFLAGS and CMBCONS of the buffer are moved to the
COMFLAGS and COMROUTE fields of the PCE workarea. These two
bytes when combined with the two succeeding bytes in the PCE form
the list form of the $WTO used for all responses to the operator
from the Command Processor.

The COMMAND area of the PCE is primed with blanks and the buffer
is scanned. Solid characters are ORed (moved with upper casing)
into the COMMAND area. Blanks encountered in the buffer will

HASP Command Processor - Page 4.5-1

77

HASP

normally be skipped (blank elimination); however, if an apostrophe
is encountered, blanks will not be skipped until the next apos-
trophe. Double apostrophe characters will cause the blank com-
pression status to remain as previously set; however, the second
apostrophe of the pair will be eliminated.

As each comma is encountered an entry of the next available
character position is made in the COMPNTER area of the PCE. (The
first entry is the address of the character after the verb. The
second is the address of the second operand, etc.) When the
COMPNTER area is full, recording is discontinued. Upon completion
of the scan, the buffer is released, the COMNULOP field in the

PCE is set to the address of the second character beyond the last
solid character (null operand), and the operand pointers are
shifted down adjacent to the COMMULOP field (see Figures 4.5.1

to 4.5.3). Control registers are set as follows:
WD = address of the first operand pointer in the COMPNTER field
WE = 4
WF = address of the last operand pointer in the COMPNTER field

SELECTING THE COMMAND SUB-PROCESSOR - The SELECTION TABLE is used
to determine the appropriate command sub-processor which must be
entered. Starting with the first element, the SELECTION TABLE is
scanned for a matching verb. When the verb is located, the first
character of the first operand is then used for comparing. If a
match is found on the operand or if the table entry contains an
X'FF' for operand argument, the table entry for the command is
considered "located". If the end of the entries is encountered
for the verb or table, the command is considered invalid and the
edit routine returns to the main processor with INVALID COMMAND
message in the COMMAND area for display. (See $COMTAB macro in
Section 4.5.4 for format of the SELECTION TABLE element.)

VALIDATING THE SOURCE AND ENTERING THE SUB-PROCESSOR - Each entry
of the SELECTION TABLE may have restriction indicators as follows:

COMRMT = 1 - Reject remote sources

CoMS = 1 - Reject consoles which are restricted from
entering SYSTEM COMMANDS

COMD = 1 - Reject consoles which are restricted from
entering DEVICE COMMANDS

COMJ = 1 - Reject consoles which are restricted from

entering JOB COMMANDS

The restriction indicators correspond with the restriction indi-
cators which appear in the COMFLAGS field. The COMFLAGS indicator
is previously set from the CMBFLAGS field of the HASP Console
Message Buffer which in turn is set by other HASP processors as
follows:

1. CMBFLAGS when set by the remote console processor or
remote reader processors will contain the remote
indicator. This indicator corresponds to COMRMT bit
in the SELECTION TABLE.

HASP Command Processor - Page 4.5-2

78

HASP

2. CMBFLAGS when set by the local console support routines
will contain the restriction flags assigned to the
Console Device Control Table. (Restriction is the
opposite of authority which is set by the operator
command S$TCONn,A=authority or by the system programmer.)

3. CMBFLAGS when set by the 0S console interface is
the 0S authority indicators inverted with the
Exclusive Or Immediate (XI) instruction.

The restriction indicators are used as the second operand of a
Test Under Mask (TM) instruction. If any restriction indicator
in the COMFLAGS field corresponds to any restriction indicator

in the SELECTION table entry, the command is rejected as invalid.
Otherwise Register 1 is set with the value in the SELECTION TABLE
entry COMTOFF field and control is passed to the CSECT indicated
by the Overlay Constant ($SOCON) field of the SELECTION TABLE
element via the $XCTL macro.

Command Sub-Processor Control Sections

The Entry routine of each command sub-processor control section
will, if applicable, use the offset value in register 1 (set by
the edit routine) to determine the "relative" entry point for the
designated sub-processor. Normally the sub-processor is entered
directly by the special Command Processor macro: "Branch

Relative Register" on Rl ($BRR Rl). However, some control section
entry routines will pre-process the operands of the command prior
to entering the sub-processor. Each sub-processor performs the
desired functions and returns to the main command processor for
the next command.

HASP Command Processor - Page 4.5-3

79

HASP

4.5.3 HASP Command Processor Organization

The HASP Command Processor is created by a single assembly with
multiple Control Sections (CSECT). The main CSECT HASPCOMM is
the only portion of the Command Processor that is part of the
HASP resident load module. It contains all V type address
constants required by the sub-command processors and all "BASE2"
service routines. The Command Edit Routine HASPCOME receives
control from the main processor and determines which COMMAND
SUB-PROCESSOR CSECT to enter for processing of the command entered.
One or more of the various COMMAND SUB-PROCESSOR CSECTs are used
in processing each HASP operator command. Although the physical
CSECTs are organized in accordance with the size of the overlay
work area , the logical organizatiorial grouping is as follows:

JOB QUEUE COMMANDS

JOB LIST COMMANDS
MISCELLANEOUS JOB COMMANDS
DEVICE LIST COMMANDS

SYSTEM COMMANDS

MISCELLANEOUS DISPLAY COMMANDS
REMOTE JOB ENTRY COMMANDS

HASP Command Processor Workarea

The HASP Command Processor PCE workarea shown in Figure 4.5.1 is
the primary workarea for the processor and is the only area which
may be used to save information in the event a $WAIT is issued by
the processor or any of the "BASEl" service routines on behalf of
the processor. The fields are generally used as described in the
following paragraphs.

COMFLAGS to COMCLASS - This field contains a list form of the $WTO
macro. The $WTO is referred to by a single execute form of the
$WTO located within the resident portion of the Command Processor
which is used for all operator messages generated by any routine
within the processor. The CMBFLAGS and CMBCONS fields of the HASP
Console Message Buffer for each command is inserted into the
COMFLAGS and COMROUTE cells and are used to provide correct route
codes for replies. The three low order bits of COMFLAGS are
restriction indicators and are set to zero prior to each $WTO reply.

COMEWORK - This field is used as a workarea and by function routines
identified by the macro instructions as follows:

HASP Command Processor - Page 4.5-4

80

HASP

macro ' contents upon exit from routine

$CFCVE last character is blank

$CFDCTL first four characters of requested device name
$CFJDCT address of HASP job queue element for requested job
SCFJIMSG same as $CFCVE

COMDWORK - This field is aligned on a double word boundary and is

used as a workarea and by function routines identified by the macro
instructions as follows:

macro contents upon exit from routine

SCFCVE five character number in EBCDIC with leading blanks
$CFDCTL last four characters of requested device name
$SCFJIMSG same as $CFCVE

COMMAND - This field contains the compressed form of the operator
command with trailing blanks at the time each command sub-processor
is entered. The command is overlayed by the reply message text for
all $WTO messages issued by any Command Processor routine. Some
command sub-processors use the area as scratch areas and in some
cases the right end for storage of critical information while
message replies are generated in the left end of the area.

COMPNTER-COMNULOP - These fields are set by the Command Edit
Routine and are used to locate the beginning of each of the
specified operands in the command currently being processed.
COMNULOP contains a pointer to the second character beyond the
last operand specified, i.e., points to a non-existant or "null"
operand. Operand 1 through n pointers are right adjusted in
COMPNTER so that operand n pointer is adjacent to the "null"
pointer (see Figures 4.5.2 and 4.5.3 for illustrations). Command
sub-processors use these areas for additional workspace after the

operand pointers are no longer needed. Examples of other uses
are listed as follows:

1. Job queue command $DN and $DQ commands place queue
scanning control elements in the COMPNTER area.

2. Job list commands place the job range numbers (j-jj)
in the corresponding operand pointer element area.

3. $DR uses the right end of the COMMAND area and

COMPNTER-COMNULOP area to hold the reply ID numbers.

HASP Command Processor - Page 4.5-5

81

HASP

Figure 4.5.1 -- HASP COMMAND

Displacement

Hex. Dec.
58 88
5C 92
60 96
68 104
E0 224
E4 228
E8 232
EC 236

PCE WORK AREA FORMAT

ya

st LB LI LD LD DL Lt Ll 4 bytes ----------s-scem——ooooo- >
‘COMFLAGS COMROUTE COMLNGTH COMCLASS
List Form of S$WTO
COMEWORK
Function Work Area
COMDWORK
= Function Work Area —
COMMAND COMVERB COMOPRND
Message Area | Command Verb | First Operand
N Command Text and Message Area :;
COMPNTER
Address of n-4 Operand
Address of n-3 Operand
Address of n-2 Operand

HASP Command Processor - Page 4.5-6

82

HASP

Figure 4.5.1 -- HASP COMMAND PCE WORK AREA FORMAT (CONTINUED)

Displacement
ittt bbbt bbb Db b bl 4 bytes ---=----------cmemmm———- >
Hex. Dec.
EC 236
Address of n-1 Operand
FO 240
Address of n Operand
F4 244 COMNULOP
Address of n+l Operand
F8 248

HASP Command Processor - Page 4.5-7

83

HAS P

Figure 4.5.2 COMMAND - COMNULOP Areas With Single Operand Command

COMPNTER - - - -
WD, WF >
COMNULOP =~ - = =

COMMAND - S$P

not used

not used

not used

not used

operand

14

fRle

null

+

|

Upon exit of Edit Routine,
Registers WD, WE and WF
are set for testing
instructions:

BXLE WD,WE, loop

(for next operand)
BXH WD,WE,exit

(if no more)

Figure 4.5.3 COMPNTER -COMNULOP Areas With Five Operand Commands

COMPNTER - WD >

WF ->

COMNULOP ~- - - -

COMMAND - $PPRT1,PRT2,§UN1,§DR1,RD2bb

operand

14

operand

24

opérand

3t

operand

4+

operand

54

null

A
4

NOTE: b = blank character

Upon exit of Edit Routine,
Registers WD,WE and WF
are set for testing
instructions:

BXLE WD,WE, loop

(for next operand)
BXH WD,WE,exit

(if no more)

HASP Command Processor - Page 4.5-8

84

HASP

Coding Conventions

The symbols with the command processor conform to the following
conventions:

1.

2.

3.

All main processor, Edit Routine, and PCE workarea symbols
start with the characters "COM".

All Function macro generated symbols start with "COF".

All command sub-processors have entry point symbols
of the following form:

form example command comments
Cvo CDN SDN v = the verb of the command

o = the first operand character
Cv CB $B device single character identifier
Cvxx CD7D $D' jobname' apostrophe is hexadecimal 7D

All symbols created for the support of the command will start
with characters which identify the entry point (CDNxxxxx
identifies a location which was originally written for the
$DN command). Commands with no unique operand character
symbol have the character "x" as the third character.

"(CBX..... identifies a location which was originally written

for the $B device command.) These conventions may be altered
in cases where the command identification characters are
redefined after original development.

The main processor CSECT is HASPCOMM, all other CSECTs are
defined via the symbol field of the $COMGRUP macro; specified
starting with the characters "HASPC".

HASP Command Processor - Page 4.5-9

85

HASTP

Register Conventions

The Command Edit Routine passes control to the control section
(CSECT) which contains the appropriate command sub-processor.
At the point the Command group entry routine receives control,
the registers will contain the following:

reg contents

RO unpredictable

Rl entry offset from the Command entry offset
WA unpredictable

WB unpredictable

WC unpredictable

WD first operand pointer (zero if no operand)
WE 4

WF last operand pointer

BASE3 base for CSECT

BASEl HCTDSECT address

BASE2 beginning of main Command Processor

SAVE PCE address

LINK unpredictable

R15 unpredictable

If more than one command appears within the group, the value of
register Rl will be set by the $COMGRUP entry routine to a value
so that a $BRR Rl will enter the command sub-processor.

HASP Command Processor - Page 4.5-10

86

HASP

4.5.4 HASP COMMAND PROCESSOR MACROS

To facilitate flexibility in the development and possible modi-
fication of the Command Processor a macro package is included
within the assembly source deck. This section is intended to
supplement the HASP Command Processor Source listings obtainable
from the HASP generation and assembly process in assisting the user
to understand the generated code as specifically used in the
current HASP as distributed.

Each HASP Command Processor macro may be dependent upon the
definitions contained within the Command Processor source deck as

well as other members of the HASP source library. These macros
are catagorized as follows:

ORGANIZATIONAL - Macros which provide basic definitions and
are closely associated with the organization
of the processor.

BASE2 SERVICES - Macros which call upon the main Command
Processor to perform a service (display a
reply) .

CONDITIONAL IN-LINE FUNCTIONS - Macros which perform the function
in-line or links to a routine which performs
the desired function.

RELOCATABILITY AIDS - Macros which assist in keeping the overlay
CSECT relocatable around S$WAIT or implied
$WAIT situations.

The macros which are supplied under each category are summarized

in Table 4.5.4. The following conventions are used in specifying
parameter requirements:

"parameter=**% -" - keyword parameter is required

"parameter=text -" - the assumed value if the keyword parameter
is not specified

"parameter -" - the parameter is an optional positional
parameter

"parameter - Required" - the parameter is a required positional
parameter.

HASP Command Processor - Page 4.5-11

87

HASP

Table 4.5.4 Command Processor Macro Summary
Op-Code Definition
ORGANIZATIONAL:
SCOMWORK COMMAND PROCESSOR WORKAREA (symbolic definitions)
$COMGRUP DEFINE GROUP OF COMMAND SUB-PROCESSORS
SCOMTAB DEFINE COMMAND TABLE ELEMENT
BASE2 SERVICES: ’
SCRET RETURN TO MAIN COMMAND PROCESSOR
$CWTO WRITE TO OPERATOR
CONDITIONAL IN-LINE FUNCTIONS:
$CFCVB CONVERT TO BINARY
$CFCVE CONVERT TO EBCDIC
SCFDCTD DEVICE CONTROL TABLE DISPLAY
$SCFDCTL DEVICE CONTROL TABLE LOCATE
SCFINVC REPLY INVALID COMMAND
$CFINVO REPLY INVALID OPERAND
$CFJDCT FIND JOB'S DEVICE CONTROL TABLE
SCFIMSG : DISPLAY JOB INFORMATION MESSAGE
SCFJSCAN SCAN JOB QUEUE ASSISTANCE
$CFSEL SELECT A ROUTINE BASED ON CHARACTER
SCFVQE VERIFY CONSOLE CONTROL OVER JOB
RELOCATIBILITY AIDS:
SARR ADD RELATIVE REGISTER
$BRR BRANCH RELATIVE REGISTER
$SRR SUBTRACT RELATIVE REGISTER

HASP Command Processor - Page 4.5-12

- 88

HASP

Organizational Macros

SCOMWORK - COMMAND PROCESSOR WORKAREA (symbolic definitions)
This macro adds to the PCEDSECT definitions for
fields located in the Command Processor PCE workarea.
Additional symbolic constants for BASE2 services

and some externally defined parameters are defined.

SCOMGRUP - DEFINE GROUP OF COMMAND SUB-PROCESSORS

This macro defines the Command Processor overlay
control section via the $OVERLAY macro. It provides
an optional entry point routine which locates the
command sub-processor for the commands which belong
to the group and sets register Rl to the relative
address. (The symbol field must be specified for
this macro.)

n positionals - Each positional specifies the command
identification characters for the corresponding
command sub-processor located within the group.

Example:
specification command sub-processor entry point name
AA SAA CAA
DA $DA CDA
B $B device CB
C $C device CcC
P40 $P CP40
S40 $S Cs40
D7D $D' jobname' CD7D

PRTY=** - Priority of the HASP overlay defined by
the macro.

DELAY=NO - The sub-processor will be entered via
$BRR R1 macro instruction. If "YES" is specified

Rl will contain the appropriate relative entry point
address and control will be given to the statement
following the macro statement. (More than one posi-
tional must be specified if Rl is to be set or the
branch is to be executed.)

BN

HASP Command Processor - Page 4.5-13

89

HASP

$COMTAB

- DEFINE COMMAND TABLE ELEMENT

This macro defines an element in the command
SELECTION TABLE which is used by the Command Edit
Routine for identifying legal commands, eliminating
unauthorized input sources, and entering the correct
command group CSECT.

verb - Required - The command identification
character (s) corresponding to the $COMGRUP positional
parameter specification for the command. No two
SCOMTAB macro statements may specify the same iden-
tification character string. All macro statements
creating entries for the same command verb will
appear in consecutive statements with the statement
which specifies a single identification character
last.

roup - Required - The exact characters used in the
specification in the symbol field of the appropriate
$COMGRUP macro statement.

REJECT= - The command source rejection mask. One or
more of the following symbols may be specified as
follows:

"COMRMT" - reject command if entered from a
remote

"COMS" - reject command if entered from a
console not authorized for SYSTEM
control

"COMD" - reject command if entered from a
console not authorized for DEVICE
control

"coMJg" reject command if entered from a
console not authorized for JOB
control

Rejection of either a remote or a console not
authorized for SYSTEM appears as follows:

"REJECT=COMRMT+COMS"

HASP Command Processor - Page 4.5-14

90

i,

HASTP

Figure 4.5.5 - Selection Table Element

(variable) COMTOFF | COMTFL | COMTVB
overlay constant identifiers
COMTOFF = Offset for the overlay control section to

locate the command sub-progessor entry point.

COMTFL = Rejection flags.

COMTVB = Command identification characters. Verb with:
1. First character of the first operand.
2. X'FFr'

If X'FF' is specified all commands which
have not been specified by the previous

entries in the table will be considered

"selected".

HASP Command Processor - Page 4.5-15

91

HASP

BASE2 Services

SCRET -

SCWTO -

RETURN TO MAIN COMMAND PROCESSOR

MSG= - "Address" of the message to be moved to
COMMAND area for dlsplay (L=operand of a
non-register form is required.) "MSG=OK" indi-
cates that the main processor is to display the
OK message.

L= - "Value" representing the length of the message
that is to be moved or has already been moved.

WRITE TO OPERATOR
REGISTERS USED: RO, Rl, WA, LINK, R15

MSG= - "Address" of the message to be moved to
COMMAND area and displayed. (L=operand of a non-
register form is required.)

L=** - "yalue" representing the length of the mes-
sage that is to be moved or has already been moved.

HASP Command Processor - Page 4.5-1¢

92

P

HASP

Conditional In-Line Functions

The HASP Command Processor as distributed provides for the
ability of the author of the command sub-processor to specify
whether or not the code which performs the function is in-line or
out of line. 1If an out of line routine is used the name and
location of the subroutine must be defined. This is accomplished
with parameters standard for all function macro instructions

with the exception of $CFJSCAN as follows:

TYPE=CALL - The macro statement is not a definition form of
the macro. "TYPE=DEF", the macro statement defines the
subroutine form of the function and return linkage must be
provided.

SYMBOL=address - The address of the "TYPE=DEF" version of
the macro instruction. This indicates that only linkage
to the "TYPE=DEF" version is to be provided. If neither
"TYPE=DEF" or "SYMBOL=" parameters are specified the code
will be generated in-line with no return linkage.

$CFCVB -~ CONVERT TO BINARY

This macro converts the numeric portion of a

command operand to one or two numeric values.

REGISTERS USED: RO, R1l, LINK, R15

RO - contains the last number converted.

Rl - contains the next to last number converted
(last number if the only one or the last is
smaller than the previous).

POINTER=(R1l) - The address of the COMPNTR field
which addresses the operand containing one or more
numerical values separated by dash (-).

NUM=2 - return two values. "NUM=1", one value is
sufficient (Rl will be unpredictable on return).

NOK=** - Address of the error exit routine if the
operand does not contain a number or if the number
is too large.

$CFCVE - CONVERT TO EBCDIC
This macro converts the number in register (RO) to
printable EBCDIC and sets the five resulting digits
in the first five characters of the PCE area
COMDWORK .
REGISTERS USED: RO, LINK

VALUE=(R0) - The positive binary half-word value
to convert to EBCDIC. If the register form is not
used, the value is contained within the addressed
half-word.

HASP Command Processor - Page 4.5-17

93

HASP

SCFDCTD

$CFDCTL$Q%=;M:(
winiio. This macro converts the abhreV1ated form

$SCFINVC

$SCFINVO . .. @ =

$DFJDCT

ngEGISTERS USED'ﬁ

cooomatehing device. - ... g
- :REGISTERS USED:. .. RO, Rl RlSjLLI .
orRL = contalns the. address of the@DCT foun zero

‘p{REPLY INVALID COMMAND

MFIND JOB'S DEVICE. CONTROL TABLE

- DEVICE CONTROL TABLE DISPLAY...

This macro displays the- deV1ce name, unlt address,VQF
and status of the DCT requested.
RO, R1, WA, LINK, R15

hf'_of the DCT to dlsplay

DEVICE,CONTROL TABLE LOCATE

device name to the long .form (if abbreviated
is spec1f1ed) and searches the DCT chain for a’

if no DCT found.

= POINTER«=(R1l) .~ The address of the COMPNTER field
' which.addresses the. Operand contalnlng"‘qh vice
‘name:. (abbrev1ated) N !

L ¥

This macro returns to the Maln Command Processor and
causes the display "INVALID. COMMAND"

REPLY. INVALID OPERAND .
This macro moves elght characters, startlng with

-~ the first. character of. the "current" operand to

the:: COMMAND area., and returns to. the. Main Command

'e;;Processor cau51ng the dlsplay of "operand INVALID

OPERAND"..

"“,OPERAND—(Rl) = The address of the operand to display.

This macro searches the DCT chain for an active

. printer, punch, or reader DCT which is assigned
.. to .a procesor. whose PCE contalns a p01nter to the

HASP job queue entry belonglng to the desired job.

+~Lf the device is not found exit will be to the
. instruction 1mmed1ately follow1ng the S$CFJDCT state-

ment (in-line code ver51on), otherw1se, exit will be
to the instruction plus 4° (NSI+4)
REGISTERS USED: Rl LINK R15

'vdeOBQE-(Rl) - The address of the HASP job queue
 entry for tha des:.red]Ob o

~HASP.'Command Processor - Page 4.5-18

94

HASP

SCFJMSG

SCFJSCAN

- DISPLAY JOB INFORMATION MESSAGE

This macro sets into the COMMAND area of the PCE
the information required for the JOB INFORMATION
MESSAGE and displays the message.

REGISTERS USED: RO, R1, WA, LINK, RI15

JOBQE=(Rl) - The address of the HASP job queue
entry for the desired job.

JDCT= - The address of the S$CFJDCT TYPE=DEF macro
which may be used to locate the job's DCT. Register
form is prohibited.

CVE= - The address of the $CFCVE TYPE=DEF macro
which may be used to convert numeric information
to EBCDIC. Register form is prohibited.

JOB= - This parameter may be ignored by the macro;
however, if specified as "JOB=SET" the text "JOBj"
is assumed by the expanded routine to have been set
in the COMMAND area for the desired job.

OPT= - This parameter may be ignored by the macro;
however, if specified as "JOB=Q" all jobs given to
the macro expansion are queued (not active) or

if specified as "JOB=A" all jobs given to the
expansion are active.

SCAN JOB QUEUE ASSISTANCE

This macro is used to assist in scanning the job
queue. As each entry is located the user's PROCESS
routine is entered. The user examines the entry,
performs whatever function desired on the entry,
and returns to the symbol specified by the "NEXT="
operand. When the end of the queue is encountered,
control is given to the instruction following the
macro instruction. An optional feature of the macro
is to allow the PROCESS routine an "IGNORE' entry
to the generated code to indicate the current job
entry is not acceptable to the PROCESS routine. If
the "IGNORE=" option is specified the corresponding
"EMPTY=", option is required. Register 1 is the
scan register and is assumed to be unaltered by the
user PROCESS routine. The "TYPE=DEF" option is not
permitted for this macro.

REGISTERS USED: R1, BASE2

Rl - scan register

BASE2 - found/not found switch (in addition to
processor base.

HASP Command Processor - Page 4.5-19

95

HASP

SCFSEL

$CFVQE

PROCESS=** - Address of the user's job queue element
processing routine. Register form prohibited.

IGNORE= - Symbol to be used to define the entry to
continue scan when the current job entry is not
of the desired type.

NEXT=** - The symbol to be used to define the entry
to continue scan when the current job entry is
of the desired type.

EMPTY= - The name of the user exit routine desired
to be entered when the job queue is found to be
empty of jobs of the desired type. Register form is
prohibited. ‘

SELECT A ROUTINE BASED ON CHARACTER

This macro matches the designated input character
against a list of arguments and transfers control to
the routine designated by the corresponding address.
If no match is found, the next sequential instruction
is entered.

REGISTERS USED: R1l, LINK, R15

n positionals of form: (character, address) - Each
positional "character" sub-parameter specifies an
argument to compare against. The corresponding
address sub-parameter indicates the address of

the desired routine to enter if the character matches
the argument. Register form is prohibited.

OPERAND=(R1) - The address of the designated input
character to examine.

VERIFY CONSOLE CONTROL OVER JOB

This macro tests COMFLAGS field of the PCE to deter-
mine if the input source is a remote. If the source
is a remote, the not OK routine will be entered
unless either the print or punch route codes for the
indicated job specify the remote. Otherwise the OK
routine will be entered.

REGISTERS USED: R1l, LINK

"JOBQE=(R1) - The address of the HASP job queue entry

for the desired job.

OK= - Address of the routine desired to be entered
if the console has control over the job. The
address may be the symbolic register containing the
address if specified as "OK=(register,BCR)" or
"OK=(relative register,$BRR).

HASP Command Processor - Page 4.5-20

96

EEEN

HASTP

NOK= - Address of the routine desired to be entered
if the console does not have control over the job.
The address may be the symbolic register containing
the address if specified as "NOK=(Register,BCR)" or
"NOK=(relative register,$BRR). Either "OK=" or
"NOK=" parameters must be specified.

Relocatability Aids

SARR - ADD RELATIVE REGISTER
This macro instruction is used in conjunction with
$SRR to restore the specified register to refer to
the true address of relocated information.

register - Required - The symbolic register contain-
ing the address to be made true.

$BRR - BRANCH RELATIVE REGISTER
This macro instruction is used in conjunction with
SCOMGRUP to enter a sub-processor routine using the
offset provided by the $COMGRUP routine.

condition - Condition required to be met in order
to branch. 1If this parameter is omitted, no comma
should be written to signify its omission. "Condi-
tion code" may be specified by the character
strings: (E, NE, H, L, NH, NL, 2, NZ, P, M,

NP, NM, O or NO). :

Register - Required - The symbolic register con-
taining the offset.

$SRR - SUBTRACT RELATIVE REGISTER
This macro instruction is used to make an address
pointer relative for possible relocation before
next referral to the information contained at
the address.

register - Required - The symbolic register con-
taining the address to be made relative.

HASP Command Processor - Page 4.5-21

97

HASP

4.6 OPERATOR CONSOLE ATTENTION PROCESSOR

This processor is included in HASP only if the value of the
HASPGEN variable &NUMCONS is greater than 0 (see Section 7.1).
The HASP interface to OS Console Support if &NUMCONS=0, is
described in Appendix 12.15.

4.6.1 Operator Console Attention Processor - General Description

The function of this processor is to stage a read on a console
whenever an attention is received from that console.

4.6.2 Operator Console Attention Processor - Program Logic

During HASP initialization, the first three words of the 0S Console
Attention Routine (IEEBAl) are overlayed with instructions which
cause IOS to enter the HASPATTN routine of this processor whenever an
attention interrupt occurs.

When an attention request is signalled by a console device, HASPATTN
saves the device address in the processor's PCE workarea, S$POSTs
the PCE, and POSTs HASP.

When the Attention Processor is dispatched, it locates the physi-
cal console whose address is in the processor's PCE workarea and

links to the S$WTO Processing Routine (see Section 5.7) to queue
a read on. that console.

Console Attention Processor - Page 4.6-1

98

HASP

4.7 CHECKPOINT PROCESSOR

4.7.1 CHECKPOINT PROCESSOR - GENERAL DESCRIPTION

The purpose of this processor is to write the necessary infor-
mation onto disk to affect a subsequent restart of the system.
This processor will write the information at a predefined time
increment and at the completion of each stage of each job.

4.7.2 CHECKPOINT PROCESSOR - PROGRAM LOGIC

The first entry into the Checkpoint Processor is into a sec-
tion which initializes the processor. This section issues a
&GETUNIT macro-instruction to obtain a DCT for a disk and
completes this DCT by inserting the event wait field address,
track to be written, and the buffer address.

The information to be checkpointed consists of the Job Queue
which contains the status of each job in the system, the track
allocation map which indicates the track groups of each disk
that have been assigned, a save area which contains added in-
formation as to the status of the system, the print checkpoint
table which is used to effect a warm start of the jobs being
printed, and (if generated) the Job Information Table which
contains additional information concerning each job in the
system. The Job Queue and the Job Information Table reside
within the checkpoint buffers, but the remaining fields must
be moved into these buffers.

The track allocation map is the first to be moved and the

track groups that have been reserved for the jobs that are
currently executing and reading in are returned to the track
allocation map to avoid loss of tracks in case of an emergency
restart. Next the write buffers are completed by moving the
save area and the print checkpoint tables. An $EXCP is issued
to write the checkpoint buffers and a $WAIT on I/0 is initiated.

The Job Information Table (if generated) is written with CCW's
which are chained to the CCW's used to write the rest of the
checkpoint information. The Job Information Table is not
written with each checkpoint but only when the processor
which requests the checkpoint indicates that he wishes the

JIT to be written. This indication is made by setting the
"JITJCKPT" bit in the "SJITSTAT" field to one.

Checkpoint Processor - Page 4.7-1

99

HASP

At the completion of the I/0 operation, the HASP ECB is posted
and the timer is reset to a predefined time increment that was
specified as a HASPGEN parameter. A test is now executed to
determine if the previous write was successful and if so, a
SWAIT macro-instruction is issued to place the processor into
an inactive state until the time increment has expired or a
stage of a job is completed.

If the previous write was unsuccessful, a message is issued
to indicate to the operator that a restart is needed and a

permanent HASP $WAIT state is entered so that no further check-
point will be attempted.

Checkpoint Processor - Page 4.7-2

100

ASYNCHRONOUS INPUT/OUTPUT PROCESSOR

ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - GENERAL DESCRIPTION

Since the completion of all HASP I/0 operations are signalled
asynchronously with HASP operation via IOS channel-end appen-
dages, these completions must be queued by the appendage
until all HASP processors can be synchronized to receive the
notification. The purpose, then, of the Asynchronous Input/
Output Processor ($SASYNC) is to, at non-interrupt time,
notify all processors of their I/O completions which were
indicated by the 0OS I/0 supervisor at interrupt time.

ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - PROGRAM LOGIC

The buffers (and respective IOBs) associated with I/O channel-
ends are chained, by the HASP channel-end appendages, for
later processing by SASYNC. In addition to the POST of the
HASP task by IOS on any I/O completion, the channel-end appen-
dages also $POST the Asynchronous Input/Output Processor to
initiate its processing when the HASP task receives control.
When $ASYNC receives control, it dequeues the first buffer
from its chain of work (operating disabled, for this operation
only, since its chain is updated at interrupt time). The
Device Control Table entry (DCT) associated with this buffer
is located and the active I/0 count for the device is reduced
by one. Next the user's EWF address is extracted from the
buffer and interrogated, and action is taken according to the
following algorithm:

EWF = 0 User does not want notification of completion

of I/O operation (always a write). The buf-
fer will be returned to the HASP buffer pool
by $ASYNC.

EWF > O SPOST the "I/O" bit in the EWF specified and
take no further action.

EWF < 0 Enter a user provided routine at the address
specified by the absolute value of the EWF
field. Addressability for the processor
routine is established and the address given
is entered via the Branch and Link instruction
with the buffer address in register "R1."

No further action is taken upon return by the
processor.

After performing the indicated action, $ASYNC returns to dequeue
the next buffer from its chain and the above procedure is re-
peated. When the end of the chain is reached, SASYNC enters
the SWAIT state until additional I/O completions occur.

Asynchronous Input/Output Processor - Page 4.8-1

101

HASP

4.9 HASP LOG PROCESSOR

4.9.1 HASP Log Processor - General Description

The function of the HASP Log Processor is to construct output
buffers for eventual processing as part of each Job's printed
output. Input to the Log Processor is through a queue of CMBs
associated with the queue pointer S$LOGQUE which is defined in
the HCT. The nature of the information in the input queue, and
consequently the printed output, varies as a function of the
HASPGEN Parameters &NUMCONS and &WTLOPT.

4.9.2 HASP Log Processor - Program Logic

Log processing of a message buffer is started by locating the
corresponding execution PCE. PCEs for output buffers are found
by using the job number in the buffer, and "reply" message PCEs
are located by using the TCB address which is placed into bytes
six through eight of the buffer by the Operator Console Input/
Output Processor's asynchronous exit. Reply message processing
is valid only for &NUMCONS>O0.

A test is made to ascertain if the message will fit in the HASP
buffer currently being used by the job for log output. If space
is available, the message is placed in the HASP buffer and the
CMB is processed as follows: If the CMB status bits indicate a
"read" or a "log only" condition, then the CMB is returned to
the free queue via the routine S$FREEMSG. The "log only" condi-
tion is used when &NUMCONS=0. "Read" and "Write" have meaning
only when &NUMCONS>0. If the status bits indicate a "write"
condition, then the CMB is queued for display via the S$WQUEBUF
subroutine.

HASP Log Processor - Page 4.9-1

102

HASP

4.10 OPERATOR CONSOLE INPUT/OUTPUT PROCESSOR

This processor and associated routines are included in HASP only
if the value of &NUMCONS is greater than 0 (see Section 7).

The HASP interface to the 0OS console support which is included
if &NUMCONS=0, is described in Appendix 12.15.

4.10.1 Operator Console Input/Output Processor - General Description

The function of the Operator Console Input/Output Processor is to
process all I/O activity on all operator consoles. The processor
also processes all console errors, making a number of retries.

If the error continues, the message is ignored.

4.10.2 Operator Console Input/Output Processor - Program Logic

The Operator Console Input/Output Processor examines each entry

in the console message buffer I/0 queue, $BUSYQUE. Each bit in

the console byte is tested for an available console. If one is
found the appropriate operation is initiated with a S$EXCP macro-
instruction and testing of the queue is resumed. When all avail-
able consoles have been processed, the processor enters a S$WAIT
condition until an I/0 interrupt is received on one of the consoles,
or until another console message is added to the queue.

Console Input/Output Processor - Page 4.10-1

103

HASP

4.10.3 Operator Console Input/Output Appendage - Program Logic

The Operator Console Input/Output Processor's asynchronous exit

is entered from the Asynchronous Post Processor following the com-
pletion of an I/O operation on a console device. The IOB completion
code is tested for abnormal end, and if an error exists, an error
routine is entered to retry the operation.

If the completion is normal the appropriate physical console bit

is shut off and the console byte is tested to see if the operation
is complete on all consoles. If any bits are still on the Operator
Console Input/Output Processor is $POSTed and an exit is taken.

If all bits are now off and the operation code is a write, a link
is made to $FREEMSG, the Input/Output Processor is $POSTed and an
exit is taken.

If the completed operation is a read, the response is processed
according to type. If the buffer contains a HASP command (i.e.,
an input message whose first character is a dollar sign (§)), it
is chained to the end of a queue for the Command Processor
($COMMQUE) , the processor is $P0OSTed, and an exit is made with a
$POST of the Input/Output Processor.

If the message is a "reply", the reply number is converted to
binary and the corresponding entry in $WTORQUE is located. Using
the information in the entry, the message is moved to the WTOR's
reply area and the WTOR's ECB is POSTed. The reply queue entry
is merged into the free queue ($WTORFRE), and a link is made to
the Log Queuing Routine. The Input/Output Processor is $POSTed
and exit is made.

If the message is not a "reply" or a HASP command, it is assumed
to be an 0S command. The message buffer is set to the proper
format for the Master Command Routine and an SVC 34 is issued.
When control is returned from the Master Command Routine, the
buffer is released, the Input/Output Processor is $POSTed and an
exit is made.

Console Input/Output Processor -~ Page 4.10-2

104

HASP

4.11

4.11.1

4.11.2

TIMER PROCESSOR

TIMER PROCESSOR - GENERAL DESCRIPTION

The function of this processor is to reset the 0OS interval
timer after a timer interrupt has occurred.

TIMER PROCESSOR - PROGRAM LOGIC

This processor calls the IPOSTIT and ISETINT subroutines in

the $STIMER/STTIMER Control Service Routine (see Section 5.6),
which causes the expired TQEs to be POSTed and the time inter-
val specified in the first TQE in the TQE chain to be set

into the 0S interval timer. The processor then waits for
another timer interrupt to occur. When the next timer interrupt
is processed, the asynchronous exit routine $POSTs this pro-
cessor and the above procedure is repeated.

Timer Processor - Page 4.11-1

105

HASP

4.12 REMOTE TERMINAL PROCESSOR (360/20-STR)

4.12.1 Remote Terminal Processor (360/20) - General Description

The Remote Terminal Processor (RTP), although not a part of HASP
proper, can be considered in the same catagory as other HASP processors.
RTP is created by HASPGEN to operate as an extension of HASP on a
System 360 Model 20 used as a remote terminal to HASP. RTP, in
the Model 20, maintains constant communications with HASP at the
central computer site via several classes of telephone lines to 1) encode
and transmit jobs submitteci at the remote site to HASP for execution on
the central computer, and 2) print and/or punch the output from
jobs thus submitted as the output become.s available. Various techniques
are utilized by RTP and HASP to obtain maximum performance of both
t.he Model 20 devices and the communication lines used. RTP currently
requires an 8K Model 20 with any reader and printer attached. The
program can be made to operate in a 4K environment at a somewhat
degraded performance. with reduced ease of operation,

RTP has been designed to allow the addition of ""background" functions
to operate in a multiprogrammed environment with normal remote terminal

processing.

Remote Terminal Processor (360/20) — Page 4.12-1

106

HASP

4.12.2 Remote Terminal Processor (STR Model 20) - Program Logic

Upon completion of the loading of the RTP program deck, control is
transferred to the initialization phase of the program to prepare for job
processing. initialization first checks the card reader for the presence
of patch (REP) cards and, if present, makes the appropriate patches
(the RTP REP card format is identical to the HASP REP card as described
in Section 6.4). Encountering a /*SIGNON card within the REP cards,
will cause initialization to replace the default remote SIGN-ON identification
and password by the contents of the card. After loading REPs, or if no REP
cards are present, the dynamic configuration card (which follows REPs if
present) is decoded and appropriate commands for the system punch
selected are established. (The formats of the SIGN-ON and dynamic
configuration card are given in the Model 20 Operator's Guide-Section 11.2).
The final process of initialization is the dynamic construction of the buffer
pool. Buffers are built, according to the HASPGEN parameter &TPBFSIZ
until the memory size of the machine is réached or the assembly parameter
&NUMBUTFS is reached. Construction of the buffer pool overlays the complete

initialization routine. Control is then passed to the processing section of RTP.

Remote Terminal Processor (360/20) — Page 4.12-2

107

HASP.

The processing phase of the program consists of four principal processors
and a communications adapter (CA) I/O supervisor. Allocation of CPU
time to the various processors is accomplished ‘via a commutator. A
processor is entered into contention for CPU time by changing its commu-
tator entry from a NOP to a BRANCH command. Through the use of the
WAIT macro, a processor may await the occurrence of a certain event

and be entered, via the commutator, below the wait instruction upon

completion of the event.

Remote Terminal Processor (360/20) — Page 4.12-3

108

HASP

PROCESSORS

Card Read Processor

Upon initial entry, this processor checks the system card reader
for ready status. If the device is not ready, HASP is notified, via a
SEND EOT, of the lack of jobs to transmit, the CA receive processor
is activated, the card read processor is deactivated, and entry is made
to the commutator. If the card reader was ready, the transmission phase
is immediately begun. Cards are read (double buffered) and are passed
to the ENCODE subroutine which compresses and translates the card
for transmission. The encoded card images are blocked in a buffer
obtained from the dynamic buffer pool until the capacity of the buffer is
reached. The buffer is then chained into a queue of buffers av;zaiting
transmission by the CA transmission processor to HASP in the central
computer. Another buffer, if available, is obtained from the buffer pool
and is processed in a like manner. When, and if, the supply of buffers
is exhausted, the reader processor enters a WAIT state to await the freeing
of a transmitted buffer by the CA transmission processor. When thé
last card of the job stack has been read, a SEND EOT (zero word count
buffer) is queued for transmission and the steps described previously

are done to terminate transmission and activate reception. In order to

Remote Terminal Processor (360/20) — Page 4.12-4

109

HASP

minimize CPU utilization, the card read processor-compression routine
only compresses ''n'"' or ‘more blank characters (where !'n'" is the value
of the assembly parameter &CCT). The format of transmission records

to HASP is described in Section 12. 9. 3.

Remote Terminal Processor (360/20) - Page 4.12-5

110

HASP

Communications Adapter Transmission Processor

The CA Transmission processor removes buffers from an ordered
queue, dynamically being built by the Card Read Processor, and trans-
mits their contents to HASP in the central computer. All transmissions
are via the Communications Adapter-I/O Supervisor (CAIOS) which pro-
vides for line re-instruct at interrupt time to make optimum use of the
line (See CAIOS description). As posting of successfully completed
writes occurs, the buffers are returned to the free buffer chain for
reuse by another processor. This processor continues to dequeue and
transmit buffers, as they become available, until a buffer with a trans-
mission word count of zero is encountered. An EOT is then sent to HASP
to indicate the end of the input stream, the CA Transmission Processor is

deactivated and return is made to the commutator.

Remote Terminal Processor (360/20) — Page 4.12-6

111

HASP

Communications Adapter-Receive Processor

The CA Receive Processor is activated by the Card Read Processor
when it is determined that no jobs are available to transmit to the central
computer. Upon being entered, CA Receive establishes communication
with HASP in the central computer to await the output of a previously
submitted job. The lack of jobs to transmit is indicated by HASP with an
immediate EOT signal to the Model 20. When this EOT is received, the
CA Receive Processor deactivates itself and activates the Card Read
Processor to again check for the presence of jobs to send to HASP.

If a job is avialable to be printed or punched, the CA Receive
Processor activates the Print/Punch processor and immediately begins
reading transmittal records into buffers obtained from the dynamic
bu.ffer pool. Buffers, thus filled, are placed in an ordered queue to
await processing by the Print/Punch Processor. vAll CA reads are
via the Communications Adapter I/O Supervisor (CAIOS) which provides
for line re-instruct at interrupt time to make optimum use of the line
(seeb CAIOS description). Processing continues, as buffers and/or
transmittal records become available, until an EOT signal is received
from HASP indicating end-of-job. " A buffer with a word count of zero
is added to the queue to inform the Print/Punch processor of the end-

of-job.

Remote Terminal Processor (360/20) — Page 4.12-7

112

HASP

Communication is then, once again, established with HASP to
ascertain if additional output for this job is available (i.e. the punch
output of the job which has just completed printing). After the additional
output has been processed, or if none existed, the CA Receive Processor
is deactivated, the Card Read Processor is activated, and return is
made to the commutator. Note that this logic, of activ.a.ting the Card
Read Processor prior to beginning processing output from the next job,
allows the Model 20 Operator to interrupt print/punch processing, at

a job boundary, to transmit a job to the central computer.

Remote Terminal Processor (360/20) — Page 4.12-8

113

HASP

Print/Punch Processor

Ve’hen activated, the Print/Punch Processor begins dequeuing and
processing buffers from the queue (being) created by the CA Receive
Processor. Records to be punched are indicated by ''carriage control"
characters of X'0FOF' and are routed to the punch section of the pro-
cessor. In order to minimize CPU requirements, the print processor
does not provide for 1-7/8 encoding of print characters (see Section 12.9).
The 16 4 of 8 characters normally reserved for 1-7/8 encoding are re-
defined for print records only, as additional print characters, thus
yielding a 64 character print set.

After reconstructing é,nd printing or punching all records in a buffer,
that buffer is returned to the buffer pool.for use by another processor.
When a buffer with a zero word count is encountered in the queue (indi-
cating end-of-job), the Print/Punch Processor is deactivated, unless
records from the next job have already begn queued, and return is made
to the commutator.

If a dynamic configuration card described the system pun.ch unit as
DUMMY, tl;.te punch section of the processor is dynamically altered (by
initialization) to immediately free all punch buffer encountered in the
Print/Punch buffer queue. This results in eliminating punched output;

however, punch records are still transmitted to the Model 20.

Remote Terminal Processor (360/20) — Page 4.12-9

114

PN

HASP

By setting the assembly parameter &PUNCH to 0, all code concerned
with processing punched output will be eliminated from RTP. The
appropriate HASPGEN must be done on the central system to force all

punch output for a ""punchless'' terminal to be processed locally.

Remote Terminal Processor (360/20) — Page 4.12-10

115

HASP

Communications Adapter I/O Supervisor

The primary purpose of CAIOS is to assure the maximum possible
communication line utilization by re-instructing the line at the earliest
possible moment after completion of a previous generation.

All requests to read and/or write the communication line are passed
to CAIOS for execution by the CA processors. Upon receipt of an 1/0
request, CAIOS immediately initiates the operation if the line is dormant,
or queues the request to await completion of the currently active opera-
tion.

The completion of a CA I/O operation causes an interrupt which
immediately transfers control to CAIOS. If the operation indicated as
complete by the interrupt was successful (error free), any queued I/O
reéuest is immediately initiated. The Event Control Block of the re-
questor of the just completed I/0O operation is posted (with a X'7F') to
indicate the successful completion of the request. Return is then made
to the interrupted processor. CAIOS recognizes and attempts to
correct all transmission errors encountered on any CA I/O operation.
Since both CA processors are designed to double buffer I/0 requests,

CAIOS insures virtually total line utilization during transmission periods.

Remote Terminal Processor (360/20) — Page.4.12-11

116

HASP

4.12.3 Remote Terminal Processor (360/20)-Assembly Parameters

The following indi;:ates the variable name and function of certain RTP
assembly parameters which can be of general use.
&TPBFSIZ | - defines the size of the buffers used for
transmission to and from the HASP system.
(Since this variable must exactly agree with
the corresponding variables in the HASP
system, the values of both are automatically

set at HASPGEN time.

&NUMBUFS - limits the number of CA buffers created
dynamically at initialization time. Initial-
ization will create buffers until the capacity
of memory, or the value of &NUMBUFS is
reached. It is suggested that this value be
made large enough to allow sufficient buffering

(hence line load-leveling) to occur.

&CCT . - represents the minimum number of consecutive
blank characters which will be compressed
by the Card Read Processor. This value

should never be less than 4 and, significantly

Remote Terminal Processor (360/20) — Page 4.12=12

117

HASP

&PUNCH

&MACHINE

reduces CPU requirements by the Card Read
Processor as it is increased. A value of 80
will effectively prevent all blank compression
(except on totally blank cards). The value of
&CCT may never exceed 80.

controls the existance of code within RTP to
process punch output received from HASP,

If & PUNCH=1, punching capabilities will exist
in RTP. |

&PUNCH=0, no punching capabilities will be
created in RTP (NOTE: the HASPGEN of the
central computer system must agree with this
option.)

defines the Model of SYSTEM/360 on which
RTP is to operate. This value must presently

be set to 20. This option can subsequently be

used to assemble RTP, at HASPGEN time, for
any Model of SYSTEM/360 being utilized as a ,
HASP remote terminal. Although certain parts
of this feature are currently in RTP, it is

incomplete and totally untested.

Remote Terminal Processor (360/20) — Page 4. 12-13

118

HASP

4.13 REMOTE TERMINAL PROCESSOR (SYSTEM/360-BSC)

The following sections outline the basic logic flow of the MULTI-LEAVING
Remote Terminal Processor program for System/360 (including Model 20)
workstations utilizing Binary Synchronous communications devices. The same
workstation program is utilized for both the Model 20 and System/360 work-

stations with generation parameters for the machine type.

4.13.1 General Description

The MULTI-LEAVING Remote Terminal Processor program is created by
HASPGEN to operate as an extension of HASP on any Model of SYSTEM/360
used as a rémote workstation for HASP. This terminal program maintains
constant communications with HASP at the central site via several classes
of telephone lines to (i) encode and transmit jobs submitted at the remote
site for OS/360 processing on the central computer, and (2) print and/or
punch the output from jobs thus submitted as the output becomes available.
Optionally, if an operator console is attached to the remote system,
informational and control facilities are provided. All of the above functions
may occur simultaneously. Various techniques are utilized by HASP and
the workstation program to obtain maximum performance of the remote
devices and the communications line, Figure 4.13.1 indicates the basic

information flow through the system.

Remote Terminal Processor (System/360) — Page 4.13-1

119

HASP

Figure 4.13.1 MULTI-LEAVING Information Flow Diagram

HASP

A
. $COMSUP
Y
$COMSUP >l CBUFFER $COMSUP
$COMSUP
$OUTBUF $BUFFER $INBUF
Queue Pool Queue
|
$TPPUT $TPGET
OACTBUFF $TPPUT $TPGET TCTBUFER
i
Queue
A
. $TPPUT . $TPGET
Y
Device $TANKPOL $TPGET > TCTTANK
Tank Pool < . Queue
$PRTN1
A SURTNL .
. $RRTNL $WRTNL . $PRTNL
. $WRTNL . $URTNL
. . $WRTNL
INPUT DEVICE Notes: OUTPUT DEVICE

Solid lines indicate buffer or decompression tank flow with or without data.
Broken lines indicate data flow only.

Line comments indicate processor responsible.

Remote Terminal Processor (System/360) — Page 4.13-2

120 -

4.13.2 Program Logic

The MULTI-LEAVING Remote Terminal Processor consists of an initialization
section, four principal processors, three communications interface processors
and a communications INPUT/OUTPUT supervisor. Allocation of CPU time to
the various processors is accomplished through a basic program commutator.

A brocessor is entered into contention for CPU time by changing its commutator
entry from a NOP to a BRANCH command. A single control block, the Total
Control Table (TCT) is utilized by all processors to provide for synchronization
of concurrent operations, processor status information,re-enterability and both
inter and intra processor communication.

The following sections discuss the basic logic flow of the various

components of the program.

Communications Interface Processor - Output (STPPUT)

This processor serves as the interface between the various input processors
and the communications INPUT/OUTPUT supervisor. Its function is to compress
and encode records for subsequent transmission to HASP at the central site.
$TPPUT is utilized as a subroutine by the various input processors and relieves
the input routines of the responsibility of data compression and transmission
buffer management. As records are submitted for transmission, STPPUT

compresses the records according to a compression type generation parameter

Remote Terminal Processor (System/360) — Page 4.13-3

121

HASYP

(§&CMPTYPE) and add the encoded record to its current output buffer. When
the current buffer is filled or terminated, it is chained in an ordered queue
for transmission to HASP by the communications INPUT/OUTPUT supervisor
and a new buffer obtained. Details of the compression and encoding -

]

technique utilized by $TPPUT are included as an appendix to this manual.

Communications Interface Processor - Input (§TPGET)

This processor serves as the interface between the various output processors
(Print, Punch, Console, etc) and the Communications INPUT/OUTPUT processor.
Its function is to decode and uncompress transmission buffers received from
HASP and to route the decompressed records to the appropriate processor for
processing. S$TPGET is entered from the commutator and processes buffers from
a ordered queue of received buffers established by the Coxr}munications INPUT/
OUTPUT supervisor. Records received are deblocked into "decompression
tanks" and passed to the appropriate processor. Synchronization and passage
of the tanks to the processors is accomplished through the Tbtal Control Table
(TCT) for each processor. $TPGET additionally is responsible for metering
the flow of each type of record from HASP. This also is accomplished by
utilizing the various buffer and tank limits indicated in the TCT for each

processor.

Control Record Processor (SCONTROL)

This processor provides synchronization between the various processing

Remote Terminal Processor (System/360) — Page 4.13-4

122

HASP

functions at the workstation and the HASP SYSTEM at the central site. Control
Records from HASP (i.e. Request to start a function, etc) are queued on this
processor by the STPGET processor. S$CONTROL then processes the control
record, transmits a response, if required,through $TPPUT and initializes the

required functional processor.

Communications INPUT/OUTPUT Supervisor (COMSUP)

COMSUP maintains communications with HASP in the central CPU at all
times and is responsible for the transmission of all data to and from the remote
site. The data processed by COMSUP is always in compressed buffer form
and passes to and from COMSUP via ordered queues estaulished by $TPPUT
and for $STPGET.

'The communications 1/0 is primarily interrupt driven and is completely
maintained by COMSUP (i.e. COMSUP is both the initiator and executor
of communications I/0). During periods requiring no data transmission,
COMSUP maintains a "handshaking" cycle with HASP at approximately 2
second intervals to insure full bi-directional capabilities and to avoid
unprogrammed "time-outs" of the adapter.

In addition COMSUP maintains, verifies and corrects (if necessary)
the MULTI-LEAVING block sequence checking feature and detects, logs

and retries all communications errors.

Remote Terminal Processor (System/360) — Page 4.13-5

123

HASP

Initialization Processor

The Initialization Processor receives control from the loader and
initializes the remote terminal program as follows:
1. 1If the CPU is not Model 20, general registers 1, 2, and 3
are loaded to establish 16 K addressability.
2. Replacément (REP) cards are read from READER 1 for possible
modifications to the program. The format of the REP card
is as follows:
Col. 2-4 REP
Col. 9-12 Replacement address - hexadecimal address
of the first half word of storage to replace
(if blank the previous REP card is continued)
Col. 17-n XXXX , XXXX, . . « XXXX replacement data -
one or more half word groups of hexadecimal
data separated by commas
Col. n+l blank - terminator for the repiacement data

Col. n+2-80 comments - any text

Each REP card is printed on PRINTER 1 when read as a record of program
modification. REP reading is terminated when either a blank card (blank in
Col. 1-5) or a /*SIGNON card is encountered.

3. The HASP ENVIRONMENT RECORDING ERROR PRINTOUT (HEREP)

is printed if the recording table is intact from the last execution

Remote Terminal Processor (System/360) — Page 4.13-6

124

HASP

of the program; otherwise, a new table is created for future
recording and print out.
4. Interrupt PSW's are set for non Model 20 CPU's.
5. The communication adapter is enabled and communications
established with HASP as follows:
a. Write SOH-ENQ to HASP

b. Read for DLE-ACKO from HASP

If 1/0 errors occur or HASP responses do not match the expected
sequence, the sequence is repeated.

6. The processor constructs a buffer pool over itself and queues
the SIGN-ON record for transmission to HASP.

7. 1/0 PSW's are set (I/O old points to commutator) and control

is passed to the communication adapter interrupt routine.

Print Service Prqcessor - S$PRTN1

The Print Service Processor's major functions are dequeuing decompression
tanks containing print information from the printer Total Control Table,
examining the sub-record control byte for carriage control information,
performing required carriage control, printing the information on the designated
printer, and releasing the used decompression tank to the pool. The processor
also provides event control upon dequeuing and releasing the "tanks". If
no console typeWriter is attached to the system and the value of the user
option &PRTCONS is not zero, the procéssor will set status information

Remote Terminal Processor (System/360) — Page 4.13-7

125

HASP

at the end of each print data set which allows the console processor to queue

operator messages for printing.

Ifiput Service Processor - $SRRINI1

The Input Service Processor supports various card readers used for the
purpose of submitting job streams to HASP and in the case of Model 20
DUAL 2560 MFCM serves the functions of punch service processor. The
processor provides error analysis and recovery for supported devices.
Execution begins with the initial read routine which continuously attempts
to read cards from the designated card reader. In the case of a DUAL 2560
control is passed to the‘ punch routine if the primary feed is empty. If reader
is a DUAL 2520 or 1442 >the routine will check the first card for blank and
if so pass control to the punch preparation routine; otherwise subroutine
STPOPEN is called which sends a request to send a job stream to HASP.
When permission is received the job stream submission routine is entered
which r‘eads cards into one of two decompression tanks calling the $STPPUT
processor which compresses the data and schedules transmission to HASP.
At end-of-file $STPPUT ’isy ’used to signal HASP and control is passed to the
initial read routine.

The DUAL 2560 punch routine attempts to dequeue a decompression tank
from the Total Control Table. If successful the card image is punched and
the used "tank" is released to the pool. The routine continues to dequeue

- and punch for a maximum of 100 cards; = this time tests are made to determine

Remote Terminal Processor (System/360) — Page 4.13-8

126

HASP

the existance of cards in the primary feed. The tests are also made in the
event of no tanks available for dequeuing. If the tests are negative the
processor continues to punch cards; otherwise control is passed to the
read routine following the initial read. The processor provides event control
upon dequeuing and releasing decompression tanks.
DUAL 2520/1442 punch preparation routine tests for:
1. Operator signal - changing of the data dials, .SR1 command,
or unsolicited device end. (Depends upon configuration).
2. Presence of Decompression tanks for punching.
If the operator signals, the routine passes control to the initial read
routine. If a "tank" is queued to the device Total Control Table control

is passed to the Punch Service Processor (SURTN1).

Punch Service Processor - SURTNI

The Punch Service Processor's major functions are dequeuing decompression
tanks containing print .nformation from the punch Total Control Table, punching
the information into cards on the designated punch, and releasing the used
"tanks" to the pool. The processor also provide event control upon de-
queuing and releasing the "tanks" in addition to error recovery upon
erroneous punching of data. If the device is a DUAL 2520 or 1442 control
is passed to the Input Service Processor (SRRTN1) after servicing output

"tank".

Remote Terminal Processor (System/360) — Page 4.13-9

127

HASP

Console Service Processor - SWRTN1

If the remote terminal has an attached operator printer keyboard, the
console processor performs the following functions:

1. Reads operator commands from the console keyboard.

2. Examines the input for local commands (Model 20 only)
passing local commands to the command processor and
passing all other commands to HASP.

3. Type operator messages contained in decompression tanks
queued to the console Total Control Table.

4. Convert codes in the error message log table to readable form
and type the resulting messages.

Execution begins with the processor testing for an operator command
in the console input "tank" waiting to be transmitted to HASP. If so the
console read in function is skipped and an attempt is made to send the
command to HASP. Control is passed to the console output routine which
tests for output messages. If so, the processor dequeues the tank, types
the message, and releases the tank. Control is then passed to the beginning
of the processor. If no output messages are pending the console logging
routine is entered which converts, types the message, and passes control
to the beginning of the processor. The console read routine tests for
operator requests and if so, reads the command from the keyboard, calls
the STPPUT processor to compress the data and transmit the command to

HASP, and passes control to the console output routine, If the remote
Remote Terminal Processor (System/360) — Page 4.13-10

128

HASP

.terminal is a Model 20 the read routine tests for local commands and
calls the command processor which in case of ".S" command , posts the
appropriate Service Processor and returns. Local commands are not
transmitted to HASP.

The Console Service Processor without a console keyboard exists only
when the value of the user option &PRTCONS is not zero. Execution begins
with a test for printer availability. If available, any console messages are
removed from the console output queue by the dequeue routine and attached to
the printer queue, allowing the Print Service Processor to print the message.
If no console messages are queued the processor will convert any log messages
into readable form, move the resulting message into a "tank" obtained from
the pool, queue it to the console output queue and pass control to the con-
sole dequeue routine. If the value of &PRTCONS is one and the printer is
not available console messages are allowed to accumulate to a maximum
queue limit. If the limit is reached prior to the printer becoming otherwise
available the printer is forced available and the messages are queued to the
printer with the sub-record control byte of the first message set to skip to
channel 1 before print. If the value of &PRTCONS is two and the printer
is not available to the console the processor will dequeue console tanks

and release them to the pool.

Remote Terminal Processor (System/360) — Page 4.13-11

129

HASP

Total Control Table (TCT)

The Total Control Table is the major working storage area for the unit

record processors a‘nd is customized for each configuration and device supported
by the remote terminal program. Each basic TCT field may be referred to by using
symbols defined in the DSECT named TCTDSECT, however, each processor has
the option of uniquely referting to the fields directly by using the alternate
three character prefix to eaéh field name as follows:

TCT = éeneral TCT prefix

CCT = Control record TCT

PCT

]

Printer TCT

RCT Reader TCT.

UCT = Punch TCT

WCT = Console TCT
Appropriate DSECT's are provided by generation macros in the event more
than one TCT of a given type is supported by the system. Basic control
fields appearing only in systems with model numbers above the Model 20
are as follows:

NAME DESCRIPTION

$pCTCOMn TCT addressability field - The commutator
branches to this field to give control to the
appropriate processor - the field contains a

BALR R7,0 instruction which sets up TCT

Remote Terminal Processor (System/360) — Page 4.13-12

130

HASP

NAME

TCTSTRT

TCTENTY

TCTRTN

TCTCCW

TCTDATA

DESCRIPTION

addressability for the processor - symbol
characters "p" and "n" uniquely identify the

TCT for the commutator

First two characters of unconditional branch

instruction

"S" type address constant pointing to the
appropriate processor - the field completes the
branch instruction which passes control to the

processor at the desired entry point

Return to next entry in commutator - each
processor waits by branching to this field
of the TCT which in turn branches to the

commutator

Actual CCW op-code used in last I/O on the
device - set by the processor and unit record

I0S

Address of data area used for last I/O transfer

or address of input "tank" currently being

Remote Terminal Processor (System/360) — Page 4.13-13

131

g

HASP

NAME DESCRIPTION

compressed for transmission to HASP

TCTFLAG CCW flags

TCTOPCOD Op-code which will be inserted into the
TCTCCW field upon normal entry to unit record

I0S

TCTCCWCT CCW count field - length of data last trans-

ferred or to be transferred

TCTSENSE Sense information - set by unit record 10S

for error diagnostic purposes

TCTUCB Device Address - contains hexadecimal
device address for SIO and interrupt recognition
purposes - the high order bit of the field is set
on by the processor when waiting for HASP to

authorize job submission

TCTECB Event Control Block - contains all bits stored
in CSW byte 4 since the last SIO instruction for
the device - busy bit is set at SIO and when

the processor desires to wait for unsolicited

\

-1 D, /

Remote Terminal Processor {System/360) — Page 4.13-14

132

HASP

NAME

TCTALTOP

TCTSAV1

DESCRIPTION

device end - busy bit is reset at device end

Alternate op-code for DUAL reader/punch
devices - processors requiring alternate op-
codes have the option of setting the TCTCCW
field with the contents of this field prior to

entry to unit record 1I0S

Save area for the processor subroutine LINK

register

Basic fields which may appear in remote terminal programs for all

360 models are as follows:

TCTNEXT

TCTFCS

TCTRCB

Next TCT in the chain of TCTs

Function Control Sequence Mask - used by
STPGET processor to setup the FCS transmitted

to HASP for backlog control

Record Control Byte -~ records from HASP which
have RCB bytes identical to this field will be

queued for output on the corresponding device

Remote Terminal Processor (System/360) — Page 4.13-15

133

HASP

NAME DESCRIPTION
TCTSTAT Status Flags - each bit has one or more meanings

which are dependant upon the processor
involved:
bit 0 = TCTOPEN - always off indicating
device is in use by HASP output
(as appropriate)
bit 1 = TCTACT - used by $STPGET to
determine which output devices
need more data - processors set bit
1 when dequeuing output "tanks"
bit 2 = TCTSTOP - device has been stopped
and is awaiting & start command.
bit 3 = TCT1052, TCT2152 - console
device identifier
bit 4 - PCT only = TCT1403, TCT1443,
TCT2203, TCTPRTSW - indicates the
status of the corresponding printer -
if set’the printer is available for
printing operator messages
bit 4 - WCT only = TCTREQ - console request -

operator desires to enter a command

Remote Terminal Processor (System/360) — Page 4.13-16

134

HASP

NAME

TCTCOM

TCTID

TCTINRCB

DESCRIPTION

bit 4

UCT only = TCT1442 - the device is a
1442 with single stacker pocket

bit 5 - RCT or UCT = TCT2540 - TCT is for

a 2540

bit 5 WCT only = TCTREL - release requested -

an unsuccessful attempt has been made
to obtain a buffer for command trans-
mission to HASP - the command is in
compressed foria in the consoles "tank"
waiting for a free buffer

bit 6

RCT/UCT = TCT14420, TCT25600 -
TCT is for a DUAL 1442 Reader Punch
or DUAL 2560 MFCM

bit 7

RCT/UCT = TCT25200 - TCT is for a

DUAL 2520 Reader Punch device
Pointer to corresponding commutator entry

Optional field - two character identification

for local command processors

Optional field - exists when DUAL devices are

attached to the system -~ identifies the Input

Remote Terminal Processor (System/360) — Page 4.13-17

135

HASP

NAME

DESCRIPTION

Service Processor function as opposed to the
Punch Service Processor function identified by
TCTRCB - TCTINRCB is equated to TCTRCB if

no DUAL devices are attached

The following fields are normal device extensions and do not exist for

card reader devices when DUAL devices are not attached to the remote

terminal:

TCTTANK

TCTBUFER

TCTTNKLM

TCTTNKCT

TCTBUFLM

Beginning of output "tank" queue - output records

appear in unit record image form

Beginning of output buffer queue - contains
records in compressed form waiting for de-

compression into tanks

Tank limit - maximum number of "tanks" which

may be placed in the "TCTTANK queue

Tank count - actual number of "tanks" queued

to the TCT

Buffer limit - maximum number of output buffers

which may be placed in the TCTBUFER queue

Remote Terminal Processor (System/360) — Page 4.13-18

136

HASP

- NAME DESCRIPTION

before signalling HASP to suspend sending the

streams - limit is ignored for WCT

TCTBUFCT Buffer count - actual number of buffers queued

to the TCT

Reader and console TCT's have extensions which are used as "tanks"
for records which are transmitted to HASP. These "tanks" belong to the
device (2 for readers and 1 for the console) and are not released to the "tank"

pool. The following field symbols are only defined for the TCT's with

prefix designators. RCT, WCT, and with DUAL devices UCT:
| RCTTANK1, RCTTANK2 "Tank" origin and working storage
RCTTRCB1, RCTTRCB2 Input RCB for HASP identification
RCTTSRC1, RCTTSRC2 Sub-record control byte = X'80°
RCTTCT1, RCTTCT2 Count field - length of data portion

RCTTDTAl, RCTTDTA2 Data area - input card or operator command -

will be ‘blank for the DUAL 2520 and 1442

while in output status

Remote Terminal Processor (System/360) — Page 4.13-19

137

HASP

TABLE OF CONTENTS

SECTION PAGE
4.14 Remote Terminal Programs (1130) 4.14-1
Introduction 4.14-1
4.14.1 Remote Terminal Processor (RTP1130) 4.14-3
Introduction 4.14-3
Commutator Processors 4.14-4
TPIOX - SCA I/0 Control 4.14-6
TPGET ~ TP Buffers From HASP 4.14-6
TPPUT - TP Buffers To HASP 4.14-6
RDTFO - 2501 Card Reader 4.14-7
RPFFT - 1442 Reader Punch 4.14-7
PRFOT - 1403 Printer 4,14-7
PRETT - 1132 Printer 4.14-8
CONSL - Console Keyboard/Printer 4.14-8
RTPET - Initialization 4,14-9
System Subroutines 4.14-10
SGETQEL - Dequeue An Element 4.14-11
SPUTFQL - Enqueue A Free Element 4,14-11
SPUTAQL - Enqueue An Active Element 4.14-11
STPOPEN - Initiate Control Record 4.14-11
SSRCHB - Search UFCB Chain 4,.14-12
SWTOPR - Type Message 4,14-12
SLOGSCA - Log SCA Error 4,14-12
SMOVE - Move A Variable Number Of Words 4.14-13
SXPRESS -~ Convert Card Code To EBCDIC 4.14-13
SXCPRNT - EBCDIC To Console Print 4.14-13
SXPPRNT - Convert EBCDIC To 1403 Print 4,14-13
SXCPNCH - Convert EBCDIC To Card Code 4.14-13
STRACE - Trace Machine Registers 4,14-13
SSDUMP - System Core Dump 4.14-13
Processor Subroutines 4.14-16
BSXIOS - SCA I/0 Supervisor 4.14-17
DBLOCK - Deblock Data From HASP 4,14-17
TPCOMPR - Construct Output To HASP 4,14-18
DBUGSCAL - Trace SCA Interrupts 4,14-18
4.14-20

TPBUILD - Build TP Buffers:

HASP Remote Terminal Processor (1130) - Page 4.14-i
138

HASP

SECTION

4.14.1
Continued

TABLE OF CONTENTS
(Continued)

Control Block And Data Formats
Chained List General Format
UFCB - Unit-Function Control Block
TPBUF - TP Buffer Format
Output Element (Tank) Format
Object Deck Format
REP Card Format

Remote Terminal Main Loader (RTPLOAD)
Remote Terminal Bootstrap (RTPBOOT)

Remote Terminal Program 360 Processing
(LETRRIP)

1130 Instruction Macros

General Information
Variable Internal Parameters

HASP Remote Terminal Processor (1130) - Page 4.14-ii

139

PAGE

.14-21
.14-21
.14-22
.14-25
.14-27
.14-28
.14-29

[ST SN SN S N SIS

4.14-32
4.14-33

4.14-38

4.14-39

4.14-44
4.14-44

HASP

4.14 REMOTE TERMINAL PROGRAMS (1130)

Introduction

The 1130 MULTI-LEAVING terminal program is designed to operate on a
system with 8K words which contains the standard Binary Synchronous Com-
munications Adapter.

The unit-record equipment supported may include any or all of the following

devices:
® 1442 Reader/Punch or Punch
° 2501 Reader
° 1132 Printer
° 1403 Printer
® Console keyboard/Printer

Programs developed for the 1130 in conjunction with the HASP Remote Job
Entry feature are assembled using the OS/360 Assembler. The 1130 instruction
set is generated thru the use of macro instructions (See Section 14.4.5) corres-
ponding to the actual 1130 hardware commands. Additionally, pseudo (assembler)
operations are available to aid in the development of 1130 programs on the System
360.

The object decks produced by the OS Assembler are subjected to further
processing by a program (LETRRIP) which condenses and changes the format of

th_e EBCDIC decks to facilitate 1130 loading.

HASP Remote Terminal Processor (1130) - Page 4.14-1
140

HASP

The remote terminal system for the 1130 is composed of several programs

briefly described in the following paragraphs:

RTPBOOT - A bootstrap loader consisting of a single "load mode" format
card and several column binary and EBCDIC program cards. The function
of RTPBOOT is to "bootstrap" an EBCDIC format loader (RTPLOAD) into

1130 core. RTPBOOT will load from either a 1442 or a 2501 card reader.

RTPLOAD - Loads into the upper segment of defined 1130 core and then
loads the main terminal program (RTP1130) into the lower extent of 1130
core. RTPLOAD also processes REP cards and perforras the initial pro-

cessing of /*SIGNON control cards.

RTP1130 - The main terminal processing program which provides the

MULTI-LEAVING support for the 1130.

The following sections provide more detailed information on the design

and implementation of the above programs.

HASP Remote Terminal Processor (1130) - Page 4.14-2

141

HASP

4.14.1 Remote Terminal Processor (RTP1130)

Introduction

The subsequent sections present the basic structure of the terminal program
for the 1130. Included, are descriptions of the commutator logic and associated
processors; system subroutines; processor subroutines; control block formats
and data block general formats.

The documentation presented is intended to be introductory in nature.

The user intending to modify the system should use the documehtation in con-

junction with a program listing which contains commentary in much greater detail.

HASP Remote Terminal Processor (1130) - Page 4.14-3

142

e
T T

HASP

Commutator Processors

Distribution of CPU time to the processors concerned with the functions
necessary to support terminal devices is through programmed commutator
logic. Each processor which needs CPU time and is dependent on external
I/0 device rates is represented by a commutator entry. The commutator
entry consists of the following basic elements:

e A named commutator "gate" which takes the form of a branch to

the next commutator entry (gate closed) or a "NOP" if the entry
is active (gate open).

® A long form branch to the active commutator main -outine used if

the gate is open.

°® A named return point for reference by the main commutator routine.

e A named end to the commutator entry which is the address of the

next commutator entry.

The basic structure as defined may also contain register save-restore
sequences to be used for each entry-exit cycle through the commutator.

The processors entry from the commutator (gate open) usually provides
for a method of setting a variable entry to the segments of the processor
which are involved with waiting for I/O to complete or some system resource

to become available.

HASP Remote Terminal Processor (1130) - Page 4.14-4

143

HASP

The general operation of the commutator involves the opening and closing
of procAessor gates, the setting of variable entry points within the processors,
the initiation and associated wait pe;iod for I/O operations and the return to
the commutator to "share" the CPU during wait periods. The last instruction
in the commutator is a branch to the "top" or first instruction in the commutator
which initiates the next cycle. The current system does not provide for a
priority relationship among commutator processors.

The main commutator processors contained in the RTP1130 system and

briefly described in the following sections.

HASP Remote Terminal Processor (1130) - Page 4.14-5

144

HASP

TPIOX - SCA Input/Output Control Processor

Controls the transmission of data and/or control records between HASP
and RTP1130 via the SCA. All adapter 1/0 is initiated using the SCA 1/0

Supervisor - BSXIOS.
TPGET - Processor for TP Buffers From HASP

Processes data received from HASP in the form of TP buffers or control
records preprocessed by TPIOX. Control record processing is in the form
. of "Request to start" or "Permission to send"” functions.

Data buffers are deblocked, decompressed, converted 10 appropriate
codes (1403 printer, 1442 punch, etc.) and ql_.ueued for the specified com-
mhtaté)r 1/0 processors.

Control information pertinent to the unique requirements of each data

type is provided through the associated UFCB.

TPPUT - Processor For Dg_taﬁf)estined For HASP

Acquires a TP buffer from fhe free chain and collects data from defined
sources (card reader(s), console keyboard, etc.) to be processed (con-
.verted, truncated, compressed, etc.) and inserted into the buffer which is

queued for TPIOX transmission to HASP.

HASP Remote Terminal Processor (1130) - Page 4.14-6

145

HASP

RDTFO - 2501 Card Reader Processor

A conditionally assembled processor which supports the 2501 card
reader as a job entry device. The functions of monitoring for a 2501 "ready"
condition; reading cards; requesting permission to transmit to HASP; waiting
for permission to send; queueing data for TPPUT; transmitting "end-of-file"

conditions and device error recovery are contained in this processor.

RPFFT - 1442 Reader And/Or Punch Processor

A conditionally assembled processor which supports the 1442 - 5, 6 or 7
‘as a card reader, card reader/punch or as a cafd punch only._ The functions
to be performed are controlled by the assembly variablas chosen and the use
of local operator commands, when applicable. The reader sections of code
monitor for a "ready" condition; reads cards for transmission to HASP via
TPPUT; processes "end-of-file" communications and provide error recovery.
The punch sections of code wait for data to be punched through interrogation
of a queue developed by the TPGET processor and provide error recovery and

and punch termination procedures.

PRFOT - 1403 Printer Processor

A conditionally assembled processor which supports the 1403 printer
as a terminal output device. The functions of monitoring for input to be

.printed; simulating carriage control operations; processing "end-of-file"

HASP Remote Terminal Processor (1130) - Page 4.14-7

146

HASP

conditiohs; setting UFCB status information and error recovery are included

in this processor.

PRETT - 1132 Printer Processor

A conditionally assembled processor which supports the 1132 printer as
a terminal output device. The functions of monitoring for input to be printed;
initialization of interrupt processing routines for the 1132 print scan opera-
tions; simulation of carriage control operations; processing "end-of-file"
conditions; setting UFCB status information and error recovery are con-

tained in this processor.

CONSL - Console Keyboard/Printer Processor

Processes console keyboard input and prints on the typewriter messages
originating from HASP or intérnal sources.

Keyboard input is initiated by activation of the "INT REQ" key and by
the interrupt routine which sets a flag and opens the console routine gate.
Note: The position of the "keyboard/console" switch is not interrogated and
input is assumed to be from the keyboard. The value of the console entry keys
is read every communtator cycle and, if key o is on, stored in location
SENTKEYS. All non-control character input is printed and the card code value
stored for investigation at EOF time. If the first character of input is "."
(period) then the data is assumed to be a local command. All other data is

transmitted to HASP for action as a HASP operator command.

HASP Remote Terminal Processor (1130) - Page 4.14-8

147

HASP

Print input is obtained from a queue which originates locally and/or
from HASP. Data to be printed may be EBCDIC or tilt-rotate code and

black or red ribbon.

RTPET - Initialization Processor

This special commutator processor is responsible for the initialization
functions necessary for the commencement of the 1130 terminal operation

in conjunction with HASP. The major functions performed are:

® Sets the interrupt transfer vectors for RTP1130 operation.

® Dynamically builds the TP buffer pool using the defined extent
of 1130 core; the end of the 1130 program and the defined TP
buffer size.

° Builds a TP buffer containing the sign-on information processed by
RTPLOAD for transmission to HASP.

® Establishes SCA communications with HASP and prepares TPIOX
for "sign-on".

° Opens the commutator gates for all SCA and input processors.

® Disconnects initialization from the commutator.

° Branches to commutator which initiates MULTI-LEAVING operation.

HASP Remote Terminal Processor (1130) - Page 4.14-9

148

HASP

System Subroutines

The following are brief descriptions of the major subroutines contained
in the RTP1130 program. These subroutines are available for use by any
system commutator processor with the restriction that they may not be used
at interrupt time. Detailed information concerning the calling sequences,

input values, etc. may be found in the listing of the RTP1130 program.

HASP Remote Terminal Processor (1130) - Page 4.14-10

149

HASP

SGETQEL - Dequeue An Element From a Chained List

Given the address of a chained list, SGETQEL returns the address of the
first element available in the list and removes the element and rechains the
list. The chain field of the dequeued element is set to zero before returning.

If the chain is null, an indication is returned to the user.

SPUTFQL - Enqueue An Element In A Free Element Chain

Given the address of a free element chain pointer and the address of an
element to be returned to the free chain, the element is returned to the free
chain. The construction of the free chain is in random order depending on

system processor utilization of the free element chain.

SPUTAQL - Enqueue An Element In An Active Chained List

The address of an element supplied by the caller is used.to build a

chained list in first-in, first-out order.

'STPOPEN - Initiate Control Record Transmission

Control record communications with HASP in the form of "Request to
start" and "Permission to send" sequences is the function of this routine.
Input includes an indication of the control record type and a pointer to the

UFCB for the device being processed.

HASP Remote Terminal Processor (1130) - Page 4.14-11

150

HASP

SSRCHB - Search UFCB Chain For Matching RCB

The RCB code supplied by the user is used to search the UFCB chain
for a UFCB with a matching RCB code. An indication of the status of the

search is returned to the caller.

SWTOPR - Type Message On Console Typewriter

The caller supplies the address of a message in EBCDIC énd with
control information indicating red or black ribbon and the number of char-
acters to be typed. The address of a routine to be given control in the
event that the message cannot be processed immediately must also be
supplied.

‘The message is queued for processing by the console typewriter

commutator routine.

SLOGSCA - Log SCA Error Messages On Console Typewriter

Error conditions associated with the SCA operatioﬁ are logged on the
console typewriter for information and possible remedial purposes. The
format of the message logged is:

SCA LOG XXXxXxXxXXX

Where the value of "XXXXXXXX" is determined by the caller and is in

fact the contents of the ACC and EXT on entry to the routine.

An indication of the status of the request to log is returned to the caller.

HASP Remote Terminal Processor (1130) - Page 4.14-12

151

HASP

SMOVE - Move A Variable Number Of Words

This routine provides for the moving of a specified number of words

from a source block to a target block.

SXPRESS - Convert Card Code To EBCDIC

The card code (12 bit) input is converted to EBCDIC using a high
speed conversion algorithm in conjunction with a minimal conversion table.
Special consideration is given to "blank" conversion under the assumption

that most cards are dense with "blank" data.

SXCPRNT - EBCDIC To Console Printer Code Conversion

Converts a single EBCDIC character to the equivalent console printer

Tilt-Rotate code using a table look-up method.

SXPPRNT - EBCDIC To 1403 Printer Code Conversion

Converts a single EBCDIC character to the equivalent 1403 printer 6 bit

with parity code using a table look-up method.

SXCPNCH - EBCDIC To Card Code Conversion

Converts a single EBCDIC character to the equivalent 12 bit card code

using a table look-up method and conversion algorithm.

HASP Remote Terminal Processor (1130) - 4.14-13

152

HASP

STRACE - Trace Machine Registers

Stores the information shown below in a table of variable length, Each
entry is the result of the execution of the linkage created by the STRACE
macro. The trace table created at assembly time is circular.

Trace table entry :

Word - Description

1 Count of the number of entries for this $ TRACE
2 Location +1 of caller to $TRACE

3 Contents of ACC

4 Contents of EXT

S Contents of XR1

6 Contents of XR2

7 Contents of XR3

The count of the number of entries is also stored in the STRACE
macro linkage.

The assembly of STRACEisa function of the variable &TRACE.

SSDUMP - System Core Dump

A conditionially assembled subroutine which allows post-mortem or
dynamic dumps on either the 1132 or 1403 printer. SSDUMP is assembled if

&DEBUG SETA 1 is included in the RTP1130 source deck. Linkage to SSRUMP

HASP Remote Terminal Processor (1130) - Page 4.14-1¢

153

HASP

via location Q is also established so that a post-mortem dump may be
taken by pressing system reset and start.

The linkage to use this subroutine dynamically is contained in the
system listing. Note: The logic of the subroutine does not allow concurrent

operation of the selected printer and other devices.

HASP Remote Terminal Processor (1130) - Page 4.14-15

154

HASP

Processor Subroutines

The following are brief descriptions of the major subroutines which
may be used by commutator processors subject to the restrictions that these
routines are processor dependent in their operation. For example, the SCA
1/0 Supervisor (BSXIOS) is used at initialization time and by the TP buffer

manager but cannot be simultaneously used by these commutator processors.

HASP Remote Terminal Processor (1130) - Page 4.14-16

155

HASP

BSXIOS - Low Speed BSCA Input/Output Supervisor

Processes requests for transmit, receive or program timer functions
on the low speed binary synchronous communications adapter. BSXIOS
initiates the requested function and prepares the interrupt programs for the
associated interrupt processing of the desired functions.

The status of the function performed by BSXIOS is contained in a com-
munication cell which is addressed by a variable pointer word. A commu-
nication cell is defined for both read (receive) and write (transmit) operations.
Various completion codes stored in the' cells provide the status of the function
with respect to normal or abnormal termination.

BSXIOS expects the caller to provide the address of an appendage routine
to be entered at the termination (interrupt time) of every write operation. The
purpose of the‘ write end-of-operation appendage is to allow re-instruct (read
operation) of the communications adapter as soon as possible after the write

completion.

"HASP Remote Terminal Processor (1130) - Page 4.14-17

156

HASP

DBLOCK - Deblock, Decompress, Convert and Store Data From HASP

Locates a record (defined by RCB) in a TP buffer as specified by a
given UFCB, decompresses, edits and moves data to a selected target
area. The target area must have the same format as described under
"Output Element (Tank) Description".

The operation of DBLOCK includes the priming of the output tank
with an initialization value supplied by the user (usually the value of
a blank fdr the associated device); the updating of control information in
the UFCB; the setting of control information in appropriate fields of the
output tank; the automatic entry to conversion and store routines unique
to the device associated with the UFCB supplied and the communication
of the status of the buffer being processed (end-of-file, end-of-block

conditions).

HASP Remote Terminal Processor (1130) - Page 4.14-17.1
157

HASP

TPCOMPR - Construct Records For Insertion In TP Buffers

Constructs a logical record consisting of a physical input record .
attached 1130 devices (card reader(s), console, etc.). The logical record
constructed consists of the original input after code translation, data trun-
cation and/or compression (optionally) and attachment of the control bytes
necessary for HASP processing. The control bytes are per the standard HASP
MULTI-LEAVING conventions.

The options listed below are set at assembly time to generate the
supporting code.

° No compression or truncation

e Trailing blank elimination only (truncation)

° Blank and duplicate compression and blank truncation
The current version of TPCOMPR assumes card code input.

DBUGSCAL - Trace Routine For Low Speed SCA

This routine is conditionally assembled as a functiop of "&DEBUG"
and provides a trace of all SCA interrupts in the form shown below. Entry
is from BSXIOS interrupt processing routines. External disabling of theq SCA
trace function is provided through the entry keys. The trace table limits are
preset to use the upper 8K of a 16K 1130 ana must be changed either by
assembly or by the appropriate "REP". See the program listing and refer to

locations DBUGSTRT and DBUGSTND.

HASP Remote Terminal Processor (1130) - Page 4.14-18

158

HASP

The trace table format is:

Word Description

1 Operation type (BSXIOPT)

2 DSW at interrupt time

3 BSXIOS Completion Code (BSXOPF)
4 Location of interrupt

5 Data received/transmitted

6 Data transfer count

7 Read or write sequence index

8 Spare word

HASP Remote Terminal Processor (1130) - Page 4.14-19

159

HASP

- TPBUILD - Constructs TP Buffers

Constructs TP buffers for TPIOX transmission to HASP. Data to be
inserted and length of insert are provided by user. TPPUT initializes this
routine by providing the buffer to be used and setting pointers and variables.

The data to be inserted is usually in the form a logical record‘as con-

structed by TPCOMPR.

HASP Remote Terminal Processor (1130) - Page 4.14-20

160

HASP

RTP1130 Control Block And Data Formats

Chained List General Format

All queues maintained within RTP1130 are of the chained list form and
consist of free queues and free queue pointers and active queues and active
queue pointers. Free queues are chained in a random fashion while active
queues are maintained in a first-in, first-out order. The general form of

a queue is:

QUEUE POINTER Address of next element chain word.
> Set to zero if no element.

ELEMENT CHAIN WORD) ¢ ¢ « Variable length element.

%LEMENT CHAIN WORD)- » ¢ Variable length element.

Examples of chained lists are: TP buffers, console message tanks,

O o g e

¢ ¢ ¢last variable length element
(Chain Word Set to zero).

printer data tanks, punch data tanks. The size and number of elements in

the queue is variable according to the nature of the queue.

HASP Remote Terminal Processor (1130) - Page 4.14-21

16l

-

HASP

UFCB - Unit-Function Control Block Degg;gtion

Each device which transmits data to or from HASP via the communications
adapter processors must be represented by a unit-function control block.

The general format of a UFCB is:

REFERENCE _ WORD DESCRIPTION

UFCBCNW 0 Chain word to next UFCB
UFCBNFO 1 Informaﬂon word. ..
Input: Byte 0 = Reserved
Byte 1 = Input Code
= 0 for IBM Card
=1 for PTTC/8

= 2 for EBCDIC

UFCBSAR 2 Status and RCB Code...

B}}te 0 = Status of unit-function

= X'90"' if request to start sent from
input unit-function or if request to

start received for output unit-function

HASF Remote Terminal Processor (1130) - Page 4.14-22

162

HASP

= X'AQ' If permission to start
received for input unit-function or
if permission to start sent for output

unit-function.

Byte 1 =RCB code associated with this UFCB

UFCBFCS 3 Function control sequence bit associated with this

UFCB (and RCB)

UFCBCOM 4 Address of commutator processor gate addres’s for

processor associated with this UFCB

UFCBFQP 5 Tank free queue pointer for output devices or

address of input element for input devices

UFCBBFP 6 Queue pointer for active TP buffers for output

devices or end-of-file flag for input devices

UFCBBFC 7 Count of active TP buffers for associated device
UFCBBFL 8 Limit of active TP buffers for associated device
UFCBPBP 9 Buffer address of current buffer being processed

by TPGET processor

UFCBPBA 10 Address of next RCB in buffer being processed

HASP Remote Terminal Processor (1130) - Page 4.14-23

163

HASP

UFCBPBS

UFCBPWD

UFCBPRO

UFCBSTO

11

12

13

14

-Position indicator for next RCB in buffer being

processed. Set to 0 if RCB right justified. Set

to 1 if RCB left justified.

Output device width = 2*W/P where W = actual
width in characters and P = 2 for packed output

tanks or P = 1 for unpacked output tanks.

Address of data processing routine (usually a con-

version program) for each character processed by SDEBLOCK.

Address of routine to store data processed by

"UFCBPRO" program.

HASP Remote Terminal Processor (1130) - Page 4.14-24

164

HASP

TPBUF - TP Buffer Element Description

All data transmitted to or from HASP is contéined in variable length buffers

(variable at generation time) with the following general format:

REFERENCE WORD DESCRIPTION

TPBUFCW 0 Chain word to next TP buffer

TPBUFST 1 Reserved
TPBUFCB 2 Buffer control word

Byte 0 = 0 (Reserved)
Transmit function...
Byte 1 = Number of bytes to be transmitted minus 2
for end sequence which is inserted by BSXIOS.
Receive function... |
Byte 1 = Number of bytes received
Timer function...
Byte 1 = Number of program time interrupts processed
before ending timer operation |

TPBUFDT 3 Start of data area of length défined by "&TPBUFSZE"
which includes. ..

TPBUFHD 3 BSC header value indicating the function (Read, write,

timer) to be performed as defined by SCA function indicators

HASP Remote Terminal Processor {1130 - Page 4.14-25

165

HASP

TPBUFBF 4 Control sequence...

Byte 0 = BCB

Byte 1 = first byte of FCS
TPBUFFR 5 Control sequence...

Byte 0 = Second byte of FCS

Byte 1 = RCB
TPBUFSR 6 Control sequence...

Byte 0 = SRCB

Byte 1 = SCB

HASP Remote Terminal Processor (1130) - Page 4.14-26

166

HASP

Output Element (Tank) Description

Local terminal output devices (printers, punch, etc.) receive data via
elements or tanks which are built by the commutator routine responsible for
processing TP buffers transmitted by HASP. The general format of these tanks

is described below.

REFERENCE WORD DESCRIPTION

TANKWRDA 0 Chain word to next tank
TANKWRDB 1 Reserved
TANKWRDC 2 Control word

Byte 0 = Reserved for device use
Byte 1 = SRCB from record received
TANKWRDD 3 Control word
Byte 0 = Reserved for device use
Byte 1 = Actual tank data count
TANKWRDE 4 Start of variable length data area determined at

generation time

Note: The element chain word and the data area must start on even

1130 word boundaries.

HASP Remote Terminal Processor (1130) - Page 4.14-27

167

HASP

Object Deck Format

The following is the format of the object decks (RPT1130, RTPLOAD)

produced from OS/360 assembler output by LETRRIP.

Text Card

golumggs) Description

1 'T' for text card identification
2-3 Absolute 1130 load address
4 Word count of data field
5-72 Data field (maximum of 34 words)
73-74 Checksum of columns 1-72 |
75-76 Identification
77-80 Sequence number

End Card

Column(s) Description

1 'E' for end card identification
2-3 Entry point to program loaded
4-72 | Reserved

73-74 Checksum of columns 1-72
75-76 Identification

77-80 Sequence number

HASP Remote Terminal Processor (1130) - Page 4.14-28
| 168 | |

HASP

REP Card Format

Column(s)
1

.2-4

8-11

12

13

14-17

18

Description

Any legal EBCDIC punch

"REP"

Blank

Load address format field:

"L" for listing option where the specified load address
corresponds to the OS/360 assembler listing.

"X" for absolute 1130 core address

Currently unused but usually punche'd "0" for continuity
Load address for first data word and is incremented by 1
for each additional data word. REP cards may be con-
tinued by leaving this field blank

Blank

Format field for data following. Subject to same definition
as column 6.

Data field to be loaded in the location computed as a

function of columns 8-~11

" ow
’

HASP Remote Terminal Processor (1130) - Page 4.14-29

169

HASP

Columns 19 through 78 in the same format as columns 13-18 with the -
exception of column 78 which must be blank. A blank in columns 18, 24,...72
terminates the scan of the card.

Note: The "L" option causes the specified data to be divided by 2

for conversion from 360 byte data to 1130 word data.

- HASP Remote Terminal Processor (1130) - Page 4.14-30

170

HASP

Examples of REP Cards

1. The following cards:

Col
0 00 11
1 56 23

RREP L02208 X4C00,L004E yX4400+X000F
RREP XT4FF , X00004X7101

Would result in the code represented below starting in 1130 core

location 1104 (Hex):

1104 $B 399L
11.06 $TSL 15
11.08 $MDM 0,-1
11.0A $MDX 11

2. The following cards

Col
0 00 11
1 56 23

RRER LOL772 X4C18,X1FF8

Would be ignored because columns 2-4 not equal to "REP"

HASP Remote Terminal Processor (1130) - Page 4.14-31

171

HASP

4,.14.2 Remote Terminal Main Loader (RTPLOAD)

RTPLOAD is an EBCDIC format loader which is loaded by RTPBOOT

into the upper part of defined 1130 core. The 1130 core definition (which

is a RMTGEN variable) is used to specify the origin of RTPLOAD. The format

of RTPLOAD (and RTP1130) is given in Section 4.14.1 under Control Blocks

and Data Formats.

RTPLOAD also reads and processes "REP" cards as well as the optional

/*SIGNON control card.

The major functions of RTPLOAD are:

Clears core from location 0 to "&RTPLORG-1"
Tests for a 2501 or 1442 card reader and initializes the card

read routine for the appropriate device.

"Reads RTP1130 program cards, performing the conversion from

card code to EBCDIC and lo;ding the data into the specified locations.
Sets up the entry to RTP1130 when the end card is processed.
Reads and processes REP cards, if they exist.

Reads, converts and stbres /*SIGNON and sets indicator for
RTP1130 signalling existance if /*SIGNON encountered.

Transfers control to RTP1130

HASP Remote Terminal Proéessor (1130) - Page 4.14-32

172

HASP

4.14.3 Remote Terminal Bootstrap (RTPBOOT)

The bootstrap loader distributed in object form as shown in the subsequent
pages is specifically constructed to "bootstrap" the EBCDIC main loader
(RTPLOAD) into the core locations defined by "&RTPLORG" at RMTGEN time.
RTPBOOT loads into lower 1130 core via the load-mode format first card and
following binary program cards and EBCDIC conversion table cards. RTPBOOT
will load from a 2501 or 1442 card reader which is wired for the load-mode

sequence initiated by the console "LOAD" button.

HASP Remote Teminal Processor (1130) - Page 4.14-33

173

HASP

Figure 4 14.3 - Remote Terminal Bootstrép Card Format

Card
Col. Card No. 1 Card No. 2 Card No. 3 Card No. &4
1] (12-11~7 12 12-11-1-2-3-4-5 12-11-1
2 | 1-2-9 11-0-3-5 blank 12 ~
311(12-11-1-8 11 5 12-11-2-3-4-5
4 | {12-11~7-8~9 blank 11-0-1-5 12-11~-1
5 ({11-0-1-6-9 5 4 - 5 '
6 | |0-2-6 11-0-1-5 11-0-1-5 11-0-1-5
7 | 14~7-8-9 12-11-0-1-2-4-5 |Q=1=2~3=4 12-11-0=2-3-4=5
8 | |blank 12-11 11 11-0-1
9 46 blank blank blank
10 | |0=1~2 12-11~1-5 12-11-1-4 11-0-3-5
11 | |blank 5 5 0-3
12 | |11-2-5 1-2 11-0~-1-4 5
13 | {4-5-9 12-11-0-1-4-5 12-11-0-1-2-3-4~5 |blank
14 | |12-0~1-2-5-6 12-11-1 11-0-1-4~5 12-1-5
15 | |1~-2~8 blank 12-11-0-1-2-4 5
16 | |12-11-1~3-4~5-6~8-9 |12-11-3 11-0-1 12-1-5
17 12<11=3=b4=5<6=7 5 12-3~4-5 12-11-2
18 | {1~2-8-~9 blank 12-11 12-11-1
19 | |12-11-1~3~4~5-6-8 12-11-0-1-2-3-4~5|12-0-3 1-5
20 | [12«3=4~5=7=9 11-0-1-3 11-0-1 11
21 | |12-11-1=3=4=5~7 11-2-4-5 blank 12-11-3-4
22 | {12-11~4-7 blank 12-11-3 12-11-0-1
23 | |1-6 12-11-3-4~5 12-11-1-2-3 1-2
24 | [12-11-1-4~8 11-0-1 blank 11-2-3
25 | 112=4-7=8 2=3=b4~5 blank 11-0=2-3~4-5
26 | |12=-11~1~4~7-9 11-0-1-3 11-0=3=4~5 blank
27 12-4-8 11-2~4 2=3=4~5 12-11-0-1-2-3-4-5
28 | 112-11-1~4~9 blank 4 11-0-1
29 | 12-11=3-4~6-9 12-11-3 0-2-4 5
30 | |1~-6-9 11-0-1 11 11-0-1-4-5
31 | |12-11-1-3~4~6 3-5 5 12-11-0-1-2-3-4-5
32 | 1-2-6 11-0-5 11-0-1 11-0~-1-4 '
33 | {12-11~1-4~6-7-9 3-4-5 3-4 12-11-0-2
34 |112-11-1~5-6-7-8 11-0-1-3 11-0-1 11-0-1
35 | |12-11-1-5=6-8-9 11-2-4 blank 12-11-0-1-2-3-4-5
36 |(|12-11-1-3~4-8 blank 11-0~3~4-5 11-0-1
37 12-11-1=3~4~7-9 blank 12-11~0~1~5 5
38 | |2~3-5-6~7-8 11-0-3-4 5 blank
39 | {2~3~5-6-7=8=9 11-0~2-4~5 0=3=5 blank
40 | 111-0=-1-3-4~5-6-7~8~9 |4 11 12-11-0~1-4~5

HASP Remote Terminal Processor (1130) - Page 4.14-34

174

HASP

Figure 4.14.3(CONT) - Remote Terminal Bootstrap Card Format

Card

Col. Card No. 1 Card No. 2 Card No. 3 Card No. 4
41 | |9 1-3 12-11-0-1-4-5 0
42 2-3-4-8 11-0-1-3 11-0-1 11-2-3
43 12-11-3~5-6-7-8-9 2-3 11-2-3-4-5 12-0-1-3-5
44 12-8-9 blank 11-0-1-3 blank
45 12-11-1-3-5-6-7-9 12-0-1 12-0-2- 5
46 2~3-5-6-7 11-0-1-4 blank 11-0-1-3
47 11-2-3-4~5-6 12-0-4-5 1 12-0-2-3-4-5
48 9 . 11-0-2-4 1-2 blank
49 11-0-1-3-4-5-6-7-8-9 {12-1-2-3-4 12-11-1-2-3-4-5 |blank
50 9 11-0-2-4 12-11-1 12-11-0-1-4-5
51 12-11-6-7-9 11-2-3-4-5 12-0-1-3-4 12
52 12-3-4~5-6-8~9 12-11 11-0-5 11-2-3
53 12-11-1-6-8-9 blank blank 12-0-2-3-4-5
54 12-11-6 12-11-1-4 12-11-3-5 blank
55 12-3-4-5-6 12-11-0-1-2-3-4~5 |0-3~4 11-1
56 12-11~-1-8-9 11-0-1-5 5 blank
57 12-3-4-5-7-8 12-0-1-2-5 blank blank
58 12-11-1-7 11-0-1 11-0-3-4-5 12-11-5
59 3-7 1-2-4-5 0-2-3 2
60 | [blank 11-0-1-3 5 1
61 | [1-2-6 11-2-4 blank 5
62 1-2 blank 11-0-3-4 12-11-0-2-5
63 | |[blank 12-0-1-3-4 blank 12
64 1 11-0-1 5 11-2-3
65 | |blank blank 1-2 12-0-1-2
66 12-11-7-8-9 11-0-3-5 11 blank
67 12-1-3-4-6-7 12-11-1-2-3-5 1-4-5 blank
68 12-11-1-7-9 blank 11-0-1 11-0-3-5
69 11-2-4 11-3-4 blank 12-11-1-2-3-5
70 11-0-1-3-4-6-7 11 12-11-3 blank
71 | [2-3-7-9 blank 4-5 12-11-0-1-3-4-5
72 2-3 12-11-1-5 blank 11
73 11-2-3-4-5-6 12 12-11-0-1-2 5
74 | |4-7-8-9 11-0-3-4 12-1 12-11-1
75 11-0~1-7 12-11-1-2-3-5 blank blank
76 8 blank 12-11-1-3-5 11-2-3
77 | |blank 12 0-3-4 blank
78 | |blank 11-0-3-4~5 5 blank
79 | |0 0 0 0
80 | |1 2 3 4

HASP Remote Terminal Processor (1130) - Page 4.14-35

175

8

Card No.

7

Card No.

6

Card No.

5

Card No.

Col.

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format
Card

HASP

o
oY i
1 o0
0 NN O OV SO VO | OO\ OOV O
| . IR R | L L
— O O OV VO OV OV OY @0 jo0 €O 0 0 WVl | N O cO 00 O 00 o0
I I . [fo)W~ W= e W=}
O~ NNFTIMN OO —HNNT N O~~~ N™ R) [
LI LU UL U TR TN TRt TR U0 T TR TR U T P L TR N O T | | D U T T | M < N \O >
NN NN NN N NN NN NN NN o e e e = e e - e o168
U B e M 1 G s Mo M M B o M M M M | L s s B B i B e s s [eX=X=X=-K=]
73232
SOV OV Voy Oy Oy Ov M F N O™~
[D T I N L | AN oy O\ Y OV Y § 01 8 1 1
NN O N [e NeoNeNe N
Py b 11 11 1 ocojeo o0 co 00 o0 N T N O~ O [
L B e L i e e B B [[0 i 0 00 O i = o o
s e]l ik B B B i B A A =1 oojlcooo ol ~ i b i Lo B B B B
URURONUN U] ~ 1 1 L a) [U L
NN NN NN NN N e e e e el e e] e e e e DN N NN NAN
=t e e e e e e e e e e e el e O [k X=K=] e~ v
i 133
el NOT VO DI NN
o] 0 oo oojed § ¢ b il o & o B8 o8 o1t
i B EsEeNel «NeleNeNelleNoNo i)
=N TN O SO (=21 N I I T U0 0 T T T T O O T T DO I |
| I D R e e e e] o B B B B] L B B B B]
SRR AR SR SRS ISR ROSORON TYTYT
=t e e o] e e e e e e e =l NN NN NN NNNNNN NN N NN
e e e R I I e B e B] (o Ban B B e] L M e T e § e s M M s R M s s e o =t
OO\ OOV
P 1 1p
o0 00 00 00 ¢[00
85 81 1]
NN O
i1 81 1t
AR i
~ e o
o B e e Bae | Lan B =
P 8§ Bl @ e e o e ef & © RS ef ©¢ e e o
NN N NN -
O NN TN O™ O Nt rd rd e i O
~HANMIFTINNONOASIH NN ITNNONOAO-HNNTNNOSNOARO I NANTNNOSNONO
Al e A A A NN NN N NNNNNOEO O OO OO N OO

HASP Remote Terminal Processor (1130) - Page 4.14-36
176

8

Card No.

7

Card No.

6

Card No.

5

Card No.

Card
Col.

[=))
1
o0
I
~
| OO O MOy OV OO
AN O [U N L
UL L L L L ~ AN OMT KO ™~ 00 00 00j0 00 O O
Oy 00 CO 00 GO |00 00 O i [3= 3K -2Y (= WK W= - ™% i [1 T I A O A T N A T |
LU s I 11l 111 g0 00000 O =ANIMITINOMNS
O~ NN ThNON~N | OOV ONj[onovn0 0 Qoo @il b il
Pttt i el NN N N NN N NNNAN
000000 HHNNITITNOINOANNTINON Ol e Hjprd oA e e -
[Se] 00}cO CO 00 O O
@ 00 0000 00 0 00 | 1% UL L
1 Frjr bl =l NN Oo S0 0N T N O S
SN InNOINOOINOETNO S DHE e L e e e il
I I I ISR e e e R e e R e R el i e Ee e R
oY =) lcNoNoNolo] cNeNoNoNe] (oNeNol el L} o B0y B B B | Ly B B e Bre Mo b Lon Bl Blon e B
wowowolweow 1 |t 1 bttt bty b
A NNIF|IN O] A A A A o o el o o e o e e e e e e e e e
DN AN OV O
OO VO OV O UL JURL L L (=2} (=N W Mo Re)t
[N P o0 0000 00 O |
00 a0 ©0 {00 0O <o UL S L =) Q0 |CO €0 O O O
USSR N M 1N O~ [} ! |
N M TN O~ LD I T DO | ~ N[N T N O S
I ~ rdjed —~ =~ O] | IR
NO OO OO HNMONATFNOWINOODOAH ~Hld ==~ |]O (=) {oNe NNl
0t el NN unjiors~ooo Lo
NaaNaNdalNSNN A A A A A A A NN NSNS = P et e e e
A A AA A A A A A A A A AA A A A AA A A A OH O OO OO OO O rird rd v
E
@ o o o of e o o o eof o o o o ol s o o o o]l o o o o o] e o o o el o o o o
- .
£
~ANNITNONOVAO|HANNITITNNONDVDANOHANNFTNNONDONOIHNMT N
LT TS T T T NN NN NN NN N OO O O O O[O OO O NSNS

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

HASP

HASP Remote Terminal Processor (1130) - Page 4.14-37
177

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

//: L] § B8 HEGBD HUGREE B RGAAN B8 DEERAREA U ‘\

ooBooofooooooooo0000000000000000BooooooooBocoooonoonoocoocooooBooooBooolo
12343 B 91011121394 3515 17 1813 20 21 222326 25 26 27 28 28 30 37 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4950 51 5253 56 55 556 57 58 SIEO €1 82 63 64 65656768 6970 ¥ 1273 24 1576 17 78 75 80
N TR RRRRI RRRT I IR I RI RE I RERI RE I LRI BRI RRRE! RERI RRNI RRI BRI RRT 1 R1 RR1 1 R1 ERRR] RRRR] |
'2!222I222|2[28!22!2222222222222!22222!!zszzz!BzzzzzzzzzzzzzHl222222!2!!!2222222
3333333333333330R300833333338 3833 HANAR BN NER B 8330 0303333333 03300BB3333333
444444 aBa4a Q4N HREARREHAR B aBaaBBaaRaBassaBaBaaloslolasaaeasaaBaliBaslBatasny
5555555555 SHABSHASHANcs555555555sMssHAAssHsBAAsAssHosNsHss555555555555505555555
seccBAcclcocclciHchcocHoccccANNRERcoAANccHoRENcBcBNUMBcooocBoscecBocBscBocssscs
Br7877877777797 787 88R 7788777777887 70888778 BR 18 817771800 v 71 BER R v BBy
poBBscBscsscosHEoBRosssBloNosasccBBN el e lNssosHosBooABosessessBansssasBolonss
PR EEEER B B L EEEEE EL LR KL B EE VL LR UL LERL EEREREEEEL KT KK EEY EEEREE

\ 12345 SLITE LO:; ! 1314 15 16 17 18 19 20 21 22 2324 25 26 27 25 29 50 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4€ 49 50 51 52 53 54 55 56 57 S8 59 5C €162 63 €4 550667 68 €3 70 7 7273 74 1576 77 18 19 60 J
EREI

0000fH@
67
[l

CARD 2

,4

] ABE GO OO BE U EE BE B W O GBE BBG B RE D HO BB B mE @

tfoo poooofooocofBoooBoBoooBoBoBoocBBooBocBRBBoBoocoBEBEoRool EoHoooooooBooolHe
12134 9 S0 1213141516 W 1B 1920212223242526 27232330 313233343536 37383340 4142 4344454647 48495051 525354555657 58 5960 616263 €4656567686210 1227374757677 7879 86
IRRE! IRTRI 11 RRREI 1 RRE] I RERI BRI RRRRREI 1 BRI 1 RRI RERRI V11111 RR1 1 BRI RRREI R RRREE

2222220222282222220 20222028 2222222022282220 222288882228 2828 28222220822222228222:28
383333333333333F3300 BB asMsB BB ssBBBa33ssfsMasslassslaslsasllslazaalifiaslas
444444044444 B0844aalaBaleRacasaBolacBRRe4assBRRERB44BR 4400 aBelasaaaBa0a4Ba44044
sEssERBs sMBsEsssHsRsBslsBsssssBBEs555505555555@555Bs5sMAEsMssssssBEssssBsslsshiss
66
1777?17717711711777117111771117111111771717717177177111711711771;177777177711171
888868858036888808308888008880855880808330880880868608888880588588088888685888668868888¢8
399 gsss 99999993599999999999995999999999999999999999999999995999999999993

1394 1516 17 18 l 920 21 222329 25 26 27 2829 30 31 32 33 34 35 36 37 39 39 40 41 47 4344 45 46 47 48 4950 51 5?53.:45556575859505152:3“655561685970417"73747575777079"/

HASP Remote Terminal Processor (1130) - Page 4.14-37.1

178

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 3

//; 1 1101 N 1 5 1 m.1i I i ‘\
NI Nl (] BN BN D D D BN BN B B

oooBoRBooooRmNARooRRoooocoBocoBooBoBoBBoRoBBoBBoooooEBooBochNooNoooooBooooBoooNolo
12345678 9101 121314151617181920212223242526 27282930 313223334 353637383340 4142 4344 4546 47 49495051 5253 54 5558 7 S2 S960 61626364 6SE5€7 € €970 11 2273 74 1S 76 77 78 13 80
(RETRIIRRI BRI 1111 AN AR RERRRRRA! B BRI RERI I BRI RN 1111 ERRERRRRRARERT R1-1-RRRAE | Bl RN
B2222202222202022222220222020222222222222202022002222222220222220222222202222222
B33333033333033303033RN330N333330a3MsaRaashlsaaslalasilashlsalasaaazalsazsalliaal
BaaaReBosBaBOBRaNssasasasRUNN4aaRasBesaaBaBasasalalasaBasBaasBasnalaaaBasasalany
BsBEsEs55sAsMEssHs5555555MMs5sMssssHANAsNsAshssssshslshshslssshsshsssMsssslslss
66
11777700000 0000000000000000000770100017170710102101171111020071011111711111111111117

8888888808083388888368883888838888888838888388888388888888883388888838888888888888838

99939 999?99999999999
12345678 9101012131415 151718192021222324252627 282930 31 323334353637 383940 414243444546 47 48435051 525354333 T S6530061628364656662€36970 1213 01475753711373¢80
\ T /

CARD 4
(1]] B i ir u i 111l [I D B | I | i e e i

B ER EOR B RN OON N NN ONENEEER B R R BB R OR ORD OREENROROE

ooooofBBoRBooooooocooBooBoRBoRERBRRBoooRBoBooRBooBooBooooooooBooBooBooBooooooobo
12345678 931010 12131415161713132021222324252627 282920 313223334 353637 3835 40 4142 4344 4546 47 48 4950 51 5253 54 5556 57 58 59 €D 6162 6364 656567636370 71 7273 14 2576 77 1912 80
(ERI R B1 ERRERI R RUI BRI I BRI I RETI R 11 RERI BRI BRI ERR! RRER] RRUE] RERR] RRRI B1 BRI ERBRRR!
22|222|2222zzziz|2g222|||2|222|2lzlzzzzzzlzzzzlzzzzll22222I22|2Il222l222222lzzzz
33033303300 333333333 33MM3M333033383333338B33RB333300333333333303330B30333303333
N R E R NN R D R L R R R R R R R RE RN RN RN RN R YRy FRYRRR N) |
ssEsBEEsSsEsRsBuRssHss55sHsAsHRRsssBsHssBssHsBsHssBsslsssshssHlsssssBsAsHsss5555
66
1777117 100071017200 0001000101000 0 00700717000 0000 071110 077107171711111111111717111117311

8888888888888888888888888888838l8888888?83808B888888888888888888888!888088888888

999999999999999999999995999599999939 -
\L|z: S6 78 81011213 1151610 0192020227020 252620 202030 31 323034 3536 .98 39 0 4142 4.4 4545 47 484950 51 5253 545556 57 56 5960 61 62 636463 667 64 63 10 131n1nnnn‘/

.HASP Remote Terminal Processor (1130) - Page 4.14-37.2

179

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 5

/ I - h

.

BEEREE
0ocooo000fBBRRB000000000000000000000000000000000006000000060000000600000000000000
23 456 78 91011121314 1516 1718182021 2223242526 27 2829 30 31 32 33 36 3538 37 38.39 40 4142 43 44 4546 47 48.49'50 51 5253 54 55 56 5758 5360 61626364 656667686310 N 123 W IS 76 71 1079 80
L AR RN R AR RERRRRERRR R R
22822222228222
333083333333[33313133
4444'4444444'44444444444444444444444(444
555555555555[§55
666666 6666666H666
IR R R N R R E] RRR R AR RRAR R AR |
88888888!8'!!!'!88888888888888888888888888888838888888388888808888888!8888888388

94 R L ELEEL REER 99399999999399989
nnn n

1 7 ‘1 {‘ RV EEINER R 0 2 32 JZ 27282330 31 32 33 38 35 36 37 38 39 40 41 42 43 44 45 46 47 4849 50 51 52 53 54 55 56 57 58 S 60 61 62 6364 65667626970 N /576771873 80 /

i
1
1

C‘—‘

/// BENEEEARRNNREBERERDRRENEAERERERE BEEREE

CARD 6

\

BREREDAENEREREGRORRNANERERAROARE DEEROADRGRROARER B HOREER
IIIIlIIIIIIIIEBIBIIIIIIBIHIIBIBBI00000GBUOIIIIIIIouoeuoouuaaunoallll!lllﬂﬁ!lllll
12345 970 111213 14 1515 17 18 19 20 21 2223 24 25 26 27 26 28 30 31 32 33 34 35 35 37 38 33 40 41 42 42 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59.60 6162 6364 6565676563 70 11 7273 24 75 JE 77 18 79 60
EBi1111 lilllllIIIIIlllilll!tllllllllIiI!lIllIlllll|1lllllllll!llllltlllllllllnl
22|2222222]222222zﬂzzzzz22ﬂ2222222l2222222[2222222!2222222!zzézzlzlzzzzzzzlzzzzz
333F2333333[3333333§33333330233333383322223833223338333323303333333033333330B3333
4444004444440 4444444B04400a¢Baa04044B4042044B2044404B0040a40Braa0aasBaaaasasBany
55555HB55555550555555505555555055555550555555505555555055555550555555505555555855
cecc66Booo666c6hc6c66666Mcocc66cHoccccccBoccc666Meoc666cMoceccccBoccsecocBoccncccls
IRRRERRE SRRRRRR] RRRRRER] RRRRRRR] RRRRRER] RRRRRREI RRRRRRE] RRRRRRRL SRARRERE] SRRRERE] |
BossssosBoREUARNNossssscBoRBRBRRossscsssoRRNNRRoccooassHoREARNAEs0sssssBs NRRAME

999999 saslssasssssssss939Issssssssoasssssllllllls99999ss9lllllllslasssesslﬂﬂllll
12345 70

011121314 9516 17 181920 212223242526 27 282330 31 323334 3536 37383940 41424344 4546 47 484950 51 5253 54 5556 57 53 5953 61 €263 4 65 EREIBICOTOM T2 I3 M 7576 77 78 3 80 /

HASP Remote Terminal Processor (1130) - Page 4.14-37.3

180

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 7
naagann 1 Ingnn AERROEANNRNNANOONRRRERERpHRRORER
IERRRERRNRRENNEYR RERENR R g G LLHLRPERENERLL

000000000000c0000BNRRRRRDoRRRRRRRREEERER 000000 0BENBRERERBROBRNRR0000000000000000
123456 78 910N 12131415161718132021222324252627:22930 3132323435363722284% 41424344454647 424950515253 5455565753333 - 62 6364C56667686970 711273247576 77187980
| ARRRRAR] ARRRRRE! RRARERR] ARRRRERR] ERERERR! RRRERS! | RRRRRRERARERRE! | ERRERRERRRRERE
22022222220222222202222222222222220222222202222222022222220222222202222222022222
333033333330333333303333333833333338333333383333333833333330333333303333333032333
444404040440 a40a04aBaaaa4aaBeaasaaaBacssasaBassaasaBasasasclsasasaalaaansaaliany
55555|5555555|5555555|5555555!5555555|5555555!5555555l5555555l5555555!5555555!55
scecc6Bccce6ccMecocco6cMocsc66cHoccc66cMococ66cMococc6c6Mc666s6cHoo66666Hc6c66666MHs
(RRRRRRI RRRREREI RRARRERI RRRRARRI RARRRAR] RRRRERRI RARRRARI RRRRRERI RRRRRRE] RRRRARE] |
888 soRBNENRONcessosecHUcHANENccsescosNAANOURBAscossos Mo NNNNNEEseassscHsRARONE

888
9llllllll°99999999Illllll999999ssllllilll9999999999999999!903939999999999l999999
1 3456

2 72 91011213 14 2516 1718132021 222324252627 2825130 21 322334353637 38394041 424344 4546 47 48495051 5253545556 57 S8 S350 € €2 €3 CA G 6667 EE63IW N 12737479518 77 167980
CriTe o) .

_

CARD 8

//:;Illllllllllllll | ERNGEARBANEORER
NRRNCRNRERENRNNNE |
B0000000000000000000000000000000HNRRRBNBEBEERERBBo0000000000c000o ANNIBNBEo000000
12345 78 910 111213141516 1718 1920 20 2223 24 25 26 77 28 28 30 31 32 33 34 35 36 37 38 35 40 41 42 43 48 4546 47 48 49 50 51 52 53 54 55 56 57 58 53 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 TS 76 71.18 79 80
I RRRRRRR] RERERRI | RRRRERE!I RRRERE! | ERERRARI RRRRREI | ERERERE! ERERRER] EREEREE]I EREREK
22|2222222|2222222l2222222|2222zézl2222222lzzzzzzzl2222222l2222222!2222222322222
333033333330333333303333333083333333833333338333333383333333033333338333333303333
a44aB444aaaaBoasasaaaBadaaaasfasaaaaaBoaasaaalanaaaaaBasaaaaaloaasaaalasasaaalany
5555505555555055555550555555505555555@555555505555555055555550M555555505555555M855
c66666Meccco6cc6Bcc666666Meco666cBoccc6c66cHcccc66cMeccoccccMeccocccHosccsccBoceccocls

IRRRERERI RRRRRRE) RRRRRRE) RRRRRRR] RRRRRRRI RRRRRRR] RARRRRR] RRRRRER] RRRERARE SRRRARE]

0
;
1

BessssscHBENNNENRscoccccRENANNRENssssaccANNUNRRRN ocoao o RN RRRssssocsc HHRRRRER
RN RENRA AN RE AR RN ERE RN RRA AR A RO RR AR RN R o RERAOEHRgss9090
\ 12345 téi%%l 1213 14 15 16 17 18 13 20 21 2223 24 25 26 27 2223 30 31 32 33 34 35356 37 38 39 4G 41 42 4344 4546 4] 4849 50 51 52 53 54 5556 57 58 S5 80 61 €2 6364 656567633 15 N 121314157 77 l7 9 80

HASP Remote Terminal Processor (1130) - Page 4.14-37.4

181

HASP

4.14.4 Remote Terminal Program 360 Processing (LETRRIP)

LETRRIP (Loader for Eleven-Thirty Relocatable Remote Interleaving Processor)
is a 360 program executed under OS/360 as part of the RMTGEN procedure.
The purpose of this program is to condense the object deck produced by the
360 assembler; relocate address constants according to the requirements of the

1130 and to produce a new object deck in the format as described in Section

4.14.1.

HASP Remote Terminal Processor (1130) - Page 4.14-38

182

HASP

4.14.5 1130 Instruction Macros

The 0S/360 Assembler Macro instructions listed on the following
pages are used to assemble the RTP1130 and RTPLOAD programs as a
part of the RMTGEN proces} necessary to create the 1130 workstation
program.

The general format of the instructions to be assembled with the
macros is:

LABEL $OP ADDR, TAG,FMT,MOD

Where:

"LABEL" is the statement label subject to the 0S/360 assembler
rules and restrictions.

"$OP" is a macro from the set listed at the end of this section.
"ADDR" is the address field.of the 1130 instruction.

"TAG" is the index register (TAG) field of the 1130 instruction.
"FMT" is the format indicator for the 1130 instruction:

FMT=L for long form

FMT=I for long form indirect address

FMT=X for short form absolute address
FMT='blank' for short form relative address

"MOD" is the modifier bits field required for some 1130 instruc-
tions.

Listed below are some of the conventions which must be followed to
successfully use the macro package in producing a program for
operation on an 1130.

1. All symbols starting with the character "$" are deemed to be
absolute in value.

2. The symbols WA, WB and WC are assumed to define absolute values.
Note: WA, WB and WC cannot be used as the first two characters
of any relocatable symbols.

3. All other symbols are assumed to be relocatable as defined by
the 0S/360 assembler SRL.

4. Parenthetical expressions are considered to be relocatable if
contained in an instruction, e.g.,
$AXT (*-*) WA,L
is considered relocatable, where.
SAXT *-%* WA,L
is considered absolute.

HASP Remote Terminal Processor (1130) - Page 4.14-39

183

HASP
1130 Instruction Macros
Macro Form

SLD ADD, TAG,FMT
$1DD ADD, TAG,FMT
$STO ADD, TAG, FMT
$STD ADD, TAG,FMT
$LDX ADD, TAG,FMT

S$LXA ADD, TAG

SAXT ADD, TAG,FMT
$STX ADD, TAG,FMT
$STS ADD, TAG, FMT
$LDS ADD, TAG

$A ADD, TAG, FMT
$AD ADD, TAG, FMT
$S ADD, TAG,FMT
$SD ADD, TAG, FMT
$M ADD, TAG, FMT
$D ADD, TAG,FMT
$AND ADD, TAG,FMT
$OR ADD, TAG, FMT

SEOR ADD, TAG,FMT

Description And Notes

Load ACC
Load double (ACC,EXT)
Store ACC
Store double (ACC, EXT)

Load index

Load index from address. A variation of $LDX

withF=1and IA=1.
Address to index true. Identical to SLDX.
Store index

Store status

Load status

Add

Add double

Subtract

Subtract double
Multiply

Divide

Logical AND

Logical OR

Logical Exclusive OR

HASP Remote Terminal Processor (1130) - Page 4.14-40

184

HASP

Macro Form Description And Notes

$SLA ADD,TAG ' Shift left ACC

$SLCA ADD, TAG Shift left and count ACC

$SLC ADD, TAG Shift left and count ACC and EXT
$SRA ADD, TAG Shift right ACC

$SRT ADD, TAG Shift right ACC and EXT

$RTE ADD, TAG Rotate right ACC and EXT

$BSC ADD, TAG,FMT, MOD Branch/Skip on condition

$BOSC ADD, TAG,FMT, MOD Branch/Skip and reset interrupt

$BP ADD, TAG,FMT Branch ACC positive (long)
$BNP ADD, TAG,FMT Branch ACC not positive (long)
$BN ADD, TAG,FMT Branch ACC negative (long)
$BNN ADD, TAG,FMT Branch ACC not negative (long)
$BZ ADD, TAG,FMT Branch ACC zero (long)

SBNZ ADD, TAG,FMT Branch ACC not zero (long)
$BC ADD, TAG,FMT Branch on carry (long)

$BO ADD, TAG,FMT Branch on overflow (long)
$BOD ADD, TAG,FMT Branch ACC odd (long)

$SKPP Skip ACC positive (short).
$SKPN Skip ACC non-zero (short)
$SKPZ | Skip ACC zero (short)

$SKPO Skip overflow off (short)

HASP Remote Terminal Processor (1130) - Page 4.14-41

185

HASP

Macro Form Descript<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>