
('

Field Engineering Education
Supplementary C:ourse Material

OS/HASP

Volume 1

--·-----------·---------

PREFACE

This document is intended for the use of IBM FE
Programming System Representatives enrolled in
course 10191.

PRELIMINARY EDITION (May 1971)
This publication has been printed in a preliminary format
so that it would be available to the intended users in time
for training on this course. This preliminary manual may
contain typographical errors that would normally be
corrected before publication. This edition is not eligible for
suggestion awards, however, your comments will be
appreciated.

If this manual is mislaid, please return it to the above address.

Address any comments concerning the contents of this publication to:
IBM, Field Engineering Education Media Deveiopment Center, Dept 927,
Rochester, Minnesota 55901.

© Copyright International Business Machines Corporation 1971

MAGNETIC TAPE KEY

BASIC

This volume contains two files as described below.

File 1 - Assembled object decks and JCL necessary to
perform a HASPGEN (refer to Section 10 of
this manual for information concerning use
of this tape} .
Records - 417, Characters/block - 80,
Records/block - 1, Blocks/file - 417.

File 2 - Source decks for HASP-II, Version 3.0.

*Optional

Records - 50,343, Characters/block - 1600,
Records/block - 20, Blocks/file - 2518.

System/3 users only - 140 96-column cards. This deck.
is a "starter system" for the HASP MULTI-LEAVING Remote
Job Entry support.

*Optional material will be forwarded only when specifically
requested.

iii

H A S P

TABLE OF CONTENTS

Section

1.0 - Introduction

2.0 - General Description

3.0 - HASP Structure

3.1

3.2

3.3

3.4

3.5

3.6

- Allocation

- Allocation

- Allocation

- Allocation

- Allocation

- Allocation

of

of

of

of

of

of

Main Storage

Direct-Access Space

Input/Output Units

Central Processing

Programs

Jobs

Unit Time

Page

1

3

7

12

17

20

22

24

26

3.7 - Allocation of Overlay Areas 29

4.0 - HASP Processors 31

4.1 - Input Service Processor 32

4.2 - Execution Control Processor 48

4.3 - Output Service Processor (Print and Punch) 62

4.4 - Purge Processor 76

4.5 - HASP Command Processor 77

4.6 - Operator Console Attention Processor 98

4.7 - Checkpoint Processor 99

4.8 - Asynchronous Input/Output Processor 101

4.9 - HASP Log Processor 102

4.10 - Operator Console Input/Output Processor

4.11 - Timer Processor

4.12 - Remote Terminal Processor (STR Model 20)

iv

103

105

106

H A S P

Section

4.13 - Remote Terminal Processor (System/360)

4.14 - Remote Terminal Processor (1130)

4.15 - Execution Task Monitor Processor

4.16 - Internal Reader Processor

4.17 - MULTI-LEAVING Line Manager

4.18 - Remote Console Processor

4.19 - Execution Thaw Processor

4.20 - Overlay Roll Processor

4.21 - HASP SMB Writer

4.22 - Priority Aging Processor

4.23 - Remote Terminal Processor (System/3)

5.0 - HASP Control Service Programs

5.1 - HASP Dispatcher

5.2 - Input/Output Supervisor

5.3 - Job Queue Manager

5.4 - Buffer Manager

5.5 - Unit Allocator

5.6 - Interval Timer Supervisor

5.7 - $WTO Processing Routine

5.8 - Direct Access Storage Allocator

5.9 - Disastrous Error Handler

5.10 - Catastrophic Error Handler

5.11 - Trace Effector

5.12 - WTO/WTOR Processing Routine

5.13 - Console Buffering and Queueing Routines

v

Page

119

138

190

193

195

197

199

200

202

204

205

243

244

246

247

250

251

252

254

255

257

258

259

262

266

H A S P

Section

5.14 - Input/Output Error Logging Routine

5.15 - Remote Terminal Access Method

5.16 - Overlay Service Routines

6.0 - Miscellaneous

6.1 - HASP Initialization

6.2 - HASP Initialization SVC Routine

6.3 - HASP Overlay Build Utility

6.4 - HASP REP Routine

6.5 - HASP Accounting Routine

6.6 - HASP Dump Routines

7.0 - HASPGEN and RMTGEN Parameters

7.1

7.2

7.3

7.4

7.5

7.6

- HASPGEN

- RMTGEN

- RMTGEN

- RMTGEN

- RMTGEN

- RMTGEN

Parameters

Parameters

Parameters

Parameters

Parameters

Parameters

for System/360

for System/360

for System/360

for 1130

for 1130 Loader

7.7 - RMTGEN Parameters for System/3

8.0 - HASP Control Table Formats

Model

Model

8.1 - HASP Communication Table Format (HCT}

8.2 - Processor Control Element Format (PCE}

8.3 - Buffer Format (IOB}

8.4 - Console Message Buffer Format (CMB}

8.5 - Device Control Table Format (DCT}

8.6 - Job Queue Element Format -CJQE}

vi

20 STR

20 BSC

Page

269

272

280

287

288

297

299

302

305

306

309

310

422

427

446

466

481

485

505

506

521

527

544

546

567

H A S P

Section

8.7 - Job Information Table Element Format (JIT) 569

8.8 - Job Control Table Format (JCT) 570

8.9 - Track Extent Data Table Format (TED) 578

8.10 - Timer Queue Element Format (TQE)

8.11 - Overlay Table Format (OTB)

8.12 - Data Definition Table Format (DDT)

8.13 - Partition Information Table Format (PIT)

8.14 Message Allocation Control Block (MSA)

8.15 - Data Block Format (HDB)

vii

579

580

582

585

588

589

Introduction

The information contained in Volume 1 and 2 of the HASP System Supplementary Course
Material was originally distributed as a one-volume document.

Volume 1 contains pages 1 through 590, Section 1 through 8. Volume 2 contains
pages 1 through 594, Section 9 through 12.

A Contents has been included in each volume for your convenience.

viii

H A S P

1.0 INTRODUCTION

The HASP SYSTEM operates as a compatible extension to the MFT or
MVT options of the Operating System for System/360 and System/370
to provide specialized supplementary support in the areas of job
management, data management, and task management.

HASP appears as a transparent "front-end" processor to OS to,
via the SPOOLing functions normally associated with OS input
readers and output writers, act as an automatic scheduler
and operator of OS. Because of this relationship between HASP
and the Operating System, various other functional, performance
and operational benefits can be included in HASP.

The use of HASP offers an installation the following advantages:

• IMPROVED PERFORMANCE - In many cases, because of the
singular, specialized use of resources by HASP, system
performance may be improved. Any improvement is dependent
upon the configuration and job mix and can only be deter­
mined by actual measurement. (See Section 2 of this manual
for additional details.)

e IMPROVED OPERATIONAL PROCEDURES - HASP acts as an automatic
interface between the operator and OS, to perform various OS
control functions previously done directly by the operator.
Readers, Writers and Initiators in OS are started and sched­
uled automatically by HASP. Also, many additional operator
commands for controlling job flow and device operation are
provided by HASP. (See Section 11 of this manual for
additional details.)

e INCREASED SYSTEM FUNCTION - The use of HASP provides certain
functions which are not otherwise available. These include
dynamic task ordering based upon CPU - I/O characteristics
(see Section 2 for additional details); the inclusion of
relevant console messages in each job's output (see Section 71
for additional details); the capability of any job to intro­
duce another job into the HASP queue via an internal reader
(see Section 12.10 for additional details); an execution
batching facility to pass jobs directly to a processing pro­
gram such as a one-step monitor (see Section 12.13 for addi­
tional details); many additional operational control functions
(see Section 11 for additional details); a priority aging
technique (see Section 4.22 for additional details); a pre­
execution volume fetch facility (see Section 11 for additional
details); and various other functional enhancements.

• RESOURCE REDUCTION - Because of the dynamic direct-access
allocation technique-s utilized by HASP, installations may, in
general, reduce the number of direct-access volumes required

Introduction - Page 1.0-1

1

H f\ S P

for SPOOLing functions as compared with a non-HASP SYSTEM.
The size of the OS SYSl.SYSJOBQE data set may also be
.reduced since all job queueing is performed by HASP.

Certain installations may actually reduce system main storage
requirements (increase problem program space available) by
adding HASP to their system because of the OS functions
replaced by HASP. In any case, the space required for the
HASP partition or region will be at least partially compen­
sated for py the elimination of duplicate functions.

e LOW-ENTRY, HIGH-PERFORMANCE REMOTE JOB ENTRY - For a nominal
increase in the size of HASP, an installation can utilize the
HASP RJE support for a wide variety of workstation devices.
Support for Binary-Synchronous, CPU workstations employs an

, advanced technique called MULTI-LEAVING which provides for
simultaneous operation of all devices on a remote workstation.
A subset of the HASP operator command language is provided to
all remote sites. Workstation programs are supplied for all
supported CPU workstations. (See Section 12.11 for addition­
al details.)

• TRANSPARENT OPERATIONS - HASP is, in general, transparent to
both the Operating System and to user programs. Although
a special SYSGEN is required, no actual modifications to OS
are required to utilize HASP. Thus, the same generation of
OS may be interchangeably used with or without HASP. Because
of this transparency, HASP is generally independent of the
OS release level or options selected and can be used as a
stable base for local modifications to customize for local
operational requirements.

Most standard jobs which operate under OS can be run with
absolutely no change in a HASP environment. Most installations
can, therefore, implement HASP with little or no changes to
current user programs.

Introduction - Page 1.0-2

2

(

H A S P

2.0 GENERAL DESCRIPTION

HASP is a specialized program which operates in the same CPU
with OS/360 to perform the peripheral functions associated with
batch job processing.

HASP is loaded as a normal OS/360 program and upon gaining
control enters the supervisor mode via a special SVC routine.
Control of all on-line unit record devices is assumed, the
designated intermediate storage direct-access device(s) are
initialized and job processing begins. The basic interface be­
tween HASP and OS/360 is through the Input-Output Supervisor (IOS).
The entry point of IOS is modified so that Input-Output requests
to unit record devices are· diverted to HASP rather than being
physically executed by IOS. Jobs which have been previously read
from physical input devices by HASP can now be passed to OS by
simulating a successful completion of the intercepted I/O request.
In a similar manner, print and punch output from jobs being pro­
cessed by OS/360 can be intercepted and queued on intermediate
storage for later transcription to unit record devices.

HASP has four major processing stages which account for its four
major external functions. These are:

1. INPUT STAGE - This stage reads jobs simultaneously from an
essentially unlimited number of various types of on-line
card readers, tapes and remote terminals into the system.
These jobs are then entered into a priority queue by job
class to await processing by the next stage.

2. EXECUTION STAGE - This stage removes jobs based upon priority
and class from the queue established by the Input stage and
passes those jobs to OS/360 for processing. Input cards are
supplied as required to the executing program and print and
punch records are received and written onto HASP intermediate
storage. This stage can simultaneously control an essentially
unlimited number of jobs being processed by OS/360. At the
completion of a job, it is placed in a queue to await pro­
cessing by the next stage.

3. PRINT STAGE - The purpose of this stage is to transcribe the
printed output generated by jobs in the previous stage to
printers. An essentially unlimited number of various types
of printers and remote terminals can be operated simultaneously.

4. PUNCH STAGE - This stage transcribes the punch output generated
by jobs in the execution phase to punches. An essentially
unlimited number of various types of punches and remote
terminals can be operated simultaneously.

General Description - Page 2.0-1

3

HASP

All of the these processes are controlled by re-entrable code
so that no additional code is reqµired to support multiple,
simultaneous functions. Since all of the above functions can
occur simultaneously and asynchronously, a continuous flow of
jobs may pass through the system.

Following are some of the more significant algorithms employed
by HASP to improve function and performance:

e SPECIALIZED DIRECT-ACCESS STORAGE ALLOCATION

HASP, through the use of an allocation bit map in main
storage, dynamically allocates space for intermediate
storage on a record basis, within definable track groups,
for jobs.. The use of this technique offers the following
advantages:

1. Disk-arm motion and interference is minimized by
dynamically allocating space based upon the position
of the access mechanism.

2. Disk area fragmentation is automatically eliminated
by allocation of the smallest possible increment of
space.

3. The data for a single data set can be spread across
multiple direct-access volumes. In addition to further
optimizing arm motion, this capability allows for the
simultaneous use of multiple selector channels to
increase the data rate for a given job. ·

4. Since space is allocated only when required, there
will be no unused space as a result of over estimated
output requirements.

5. The release of previously used space is accomplished
by a simple algorithm which requires no I/O operations.

e UNIT RECORD DEVICE COMMAND CHAINING

While operating any reader, printer or punch, rather than
handling each .record separately, HASP constructs a chained
sequence of channel command words to pass to the channel.
Thus, instead of the overhead of an EXCP and the ensuing
interrupts for each record transmitted, only one EXCP and
associated interrupt is required for a series of records.
For example, when reading a job into the system, HASP might
chain 40 commands together to instruct a card reader. This

General Description - Page 2.0-2

4

H A S P

would cause the next 40 cards to be read into memory without
requiring the execution of any CPU instructions.

e TRANSPARENT BLOCKING

All input, print and punch for every job is automatically
blocked by HASP to improve performance. Since all deblocking
is also done by HASP, any program even if designed to operate
with unblocked records can benefit from the blocking. Also,
because all blocking and deblocking is done by HASP, problem
programs require buffers only the size of a single card or
line. This can reduce a program's partition or region require­
ment by several thousand bytes over normal full track blocking.

e DYNAMIC BUFFER POOL

HASP maintains a dynamic area of memory which is allocated as
required. This technique allows not only multiple data sets
of a job, but multiple jobs to share this area, thereby
insuring optimum use of storage.

e EXECUTION TASK MONITOR

A significant item contributing to system performance is the
correct ordering of dispatching priorities of jobs in rela­
tion to their CPU-I/O utilization ratios. It is obviously
straightforward to manually set the dispatching priorities
of two jobs, one of which is completely I/0-bound and the
other completely CPU-bound. It becomes more difficult to
determine relative priorities of multiple jobs with varying
degrees of CPU-I/O ratios and impossible to determine prior­
i tes for multiple jobs which constantly change from CPU to
I/O bound or vice versa.

HASP provides a feature which, at frequent intervals, examines
each eligible job and dynamically re-orders the OS dispatching
chain based upon the measured CPU-I/O characteristics of the
jobs during the previous interval. This capability relieves
an installation of the responsibility of attempting to assign
job dispatching priorities while insuring the optimum ordering_
of jobs being processed by the Operating System.

General Description - Page 2.0-3

5

H A S P

(The remainder of this page intentionally left blank.)

6

HASP

3 .0 HASP STRUCTURE

The primary goal in the design· of any execution support system such

as HASP must be the efficient manipulation of the various resources

required for processing. The first design steps must then include the

determination of what resources will be required and the careful application

of sound programming design techniques to achieve an efficient and

consistent solution to the allocation of these resources.

A study would reveal that HASP requires the following resources:

1. Main Storage

2. Direct-Access Space

3. Input/Output Units

4. Central Processing Unit Time

5. Input/Output Channel and Unit Time

6. Programs

7. Jobs

8. Interval Timer

Since these resources are essentially the basic facilities provided by

the Operating System, it would at first seem that these facilities would

be sufficient to meet the requirements of HASP. Further studies show,

however, that the philosophies of the Operating System's services are not

always consistent with the design requirements of a system such as HASP.

HASP Structure - Page 3 • 0-1

7

HASP

For instance, the main storage services provided by the Operating

System are very flexible and comprehensive but fail to meet the require­

ments of HASP in the following areas:

• As requests for main storage are serviced, memory becomes

fragmented in such a way that eventually a request for

storage cannot be serviced for lack of contiguous memory

even though the total amount of storage available far

exceeds the requested quantity.

• As the amount of available storage decreases, the

requester becomes more susceptible to being placed in

an OS WAJ.T state or being ABENDed. These conditions are

both intolerable to HASP.

• The primary use of main storage in HASP is for buffering

space for input/output purposes. These input/output pur­

poses require that an Input/Output Block be associated

with each segment of main storage which the Operating

System Main Storage Supervisor, only naturally, does not

provide. This means that HASP would have to construct

such a block for each main storage segment it required.

HASP Structure -Page 3. 0-2

8

HASP

In a similar fashion the Direct-Access Device Space Manager

(DADSM) provides flexible and comprehensive services for norm~!

job processing requirements but fails to meet the requirements o,<f.

HASP in the following areas:

• Because of the data set concept employed by DADSM,

the "hashing" or "fragmentation" problem described

above also impacts the allocation of direct-access

space.

• The data set concept complicates the simultaneous

allocation of storage acres s many volumes (for

selector channel overlap).

• The DADSM limit of extents per volume tends to cause

volume switching, and the associated time delays are

intolerable to HASP.

• DADSM consists of non-resident routines which must

be loaded for each direct-access space allocation

service. Because of the frequent allocation requirements,

the associated overhead involved in the loading of these

routines would degrade the performance of HASP to a

certain extent.

HASP Structure - Page 3 • 0-3

9

HASP

Since the unit-record input/output units which the scheduler

allocates to the jobs being processed in other partitions must be

available for use by HASP, HASP must be responsible for the allo­

cation of its own input/ output units.

The Operating System Task Supervisor is responsible for the

allocation of Central Processing Unit (CPU) time to all tasks in the

system. The different functions of HASP (reading cards, printing,

punching, etc.) could be defined as individual OS tasks except

for the following considerations:

• Defining each function as a separate task would

prohibit HASP from being used with anything other

than a variable-task system.

• Inter-task communication and synchronization is

many times more complex than intra-task commu­

nication and synchronization.

The Operating System Input/Output Supervisor is responsible

for the allocation of all input/ output channel and unit time. It

completely meets all requirements and is used by HASP for all

input/output scheduling.

HASP Structure - Page 3. 0-4

10

r ;

,•, E

HASP

The Operating System Interval Timer Supervisor provides complete

interval timer management services but limits these services to one

user per task. Since HASP has many functions which have simultaneous

interval timer requirements, an interface must be provided which will

grant unlimited access to the OS Interval Timer Supervisor.

The following sections describe, in detail, the allocation techniques·

and algorithms used in HASP to provide the allocation of the resources

listed above.

HASP Structure - Page 3 • 0- 5

11

HASP

3 .1 ALLOCATION OF MAIN STORAGE

The main storage requirements of HASP are as follows:

• Storage space for buffering card images and print lines

between intermedfate direct-access storage devices

and unit-record devices.

• Storage space for normally non-resident control tables

during times when they are resident in main storage.

• Storage for console messages which have been queued

for output to or input from one or more operator consoles.

• Storage for elements which reflect the status of all jobs

which are queued for any stage of processing by HASP.

• Storage space for non-resident processing routines (over­

lays) during times when they are in main storage.

The HASP Buffer Pool

The first two requirements for main storage are provided for by the

HASP Buffer Pool, a group of buffers with the following basic format:

Allocation of Main Storage - Page 3. 1-1

12

HASP

Input/Output
Block
(IOB)

buffer control
information

buffer
work
space

Figure 3. 1 • 1 - The HASP Buffer

Since the use of this buffer always involves some input/output

activity, a standard Operating System Input/Output Block (IOB) is pro-

vided with each buffer for the purpose of being used to initiate this

input/output activity.

The 11 buffer control infonnation" area is an extension of the IOB used

by HASP for input/output synchronization.·

The "buffer work space" is a fixed-length (set by HASPGEN) area into

which data is read and/or out .of which data is written.

In addition to a fixed number of buffers (set in accordance with region

or partition size), the buffer pool contains a one-word control field called

the Buffer Pool Control Block which contains the address of the first avail-

able buffer in the buffer pool. Each available buffer contains the address

Allocation of Main Storage - Page 3 .1-2

13

HASP

of the next available buffer with the last available buffer containing a

zero address. If no buffers are available, the Buffer Pool Control

Block contains zero.

The above technique is called "chaining, " the buffers are said

to be "chained, " and the field containing the address of the next

element in the chain is referred to as the "chain field." Chaining

is used throughout HASP for the maintenance of resources.

To obtain an available buffer from the buffer pool, the Buffer Pool

Control Block is tested for an available buffer. If one exists it is

removed from the available chain by moving its chain address into the

pool control block.

To release a buffer to the available chain, the contents of the

pool control block are moved to the chain field of the buffer, and the

address of the buffer is placed in the pool control block.

The Console Message Buffer Pool

The third requirement for main storage is provided for by the

Console Message Buffer Pool. This buffer pool is organized similarly

to the HASP Buffer Pool except for the format of the buffers which is

as follows:

Allocation of Main Storage - Page 3 .1-3

14

HASP

chain field

work
space

/

Figure 3 .1.2 - The Console Message Buffer

Since IOB' s are provided for each console, it is not necessary to

provide such a control block with each buffer.

The length of the work space is consistent with the maximum

length of a console message.

Buffers in this buffer pool are obtained and released by exactly

the same procedure used in the HASP Buffer Pool.

The HASP Job Queue

The fourth requirement is provided for by the HASP Job Queue.

For more information about this facility see section 3. 6.

Allocation of Main Storage - Page 3 .1-4

15

HASP

The HASP Overlay Area Pool

The HASP Overlay Area is similar to the HASP Buffer in format;

however, the size of the "work space" is set to accommodate the

largest non-resident HASP control-section (CSECT). Although the

fixed number of overlay areas (set by HASPGEN) are chained together,

control fields indicate the area status and contents for the purpose

of sharing areas containing the same CSECT or for selecting an area

to overlay with a new CSECT.

Allocation of Main Storage - Page 3. 1..;; S

16

\ ... /

H A S P

3.2 ALLOCATION OF DIRECT-ACCESS SPACE

The direct-access allocation technique employed by HASP must
meet the following requirements:

• It must use a minimum of CPU time.

• It must not use an excessive amount of main storage.

• It must not be susceptible to the "hashing" or
"fragmentation" problem.

• It must be capable of allocating for any direct-access
device which is supported by Operating System/360.

• It must be device transparent to the user.

• It must be consistent with the checkpoint/restart
technique used by HASP.

The HASP Track Address

The standard Operating System track address is defined to be an
eight-byte field with the following format:

where: M = Module
BB = Bin
cc = Cylinder
HH = Head
R = Record

Figure 3.2.1 - The Operating System Track Address Format

For the purpose of HASP, this track address can be reduced to a
four-byte field with the following format:

where: M
TT
R

= Module {DEB extent number)
= True Track Number
= Record

Figure 3.2.2 - The HASP Track Address Format

Allocation of Direct-Access Space - Page 3.2-1

17

H A S P

The reduction in the length of the track address permits it to
be kept in a single word of storage or in a general purpose
register simplifying the handling of the track address.

The HASP Master Track Group Map

The HASP Master Track Group Map is a table which represents the
sum total of all track groups or logical cylinders available on
all HASP direct-access SPOOL volumes. (A track group contains
one or more tracks which are considered a single resource.)
Each bit in the HASP Master Track Group Map represents a single
track group on one direct-access volume. If the bit is one, it
indicates that the corresponding logical cylinder is available
for allocation; if the bit is zero, the logical cylinder is not
available to HASP or has already been allocated by HASP.

The HASP Job Track Group Map

The HASP Job Track Group Map is identical to the HASP Master Track
Group Map except that one word has been added to the front to save
the last track address which was allocated to the particular job
with which the map is associated. The bits in the Job Track Group
Map represent the same track groups as the bits in the Master Track
Group Map except that a one bit indicates that the respective track
group has been allocated to the associated job and a zero indicates
that the group has not been allocated to the job.

last track address

track group

Figure 3.2.3 - The HASP Job Track Group

Two Job Track Group Maps are associated with each job. One repre­
sents the track groups used to contain the input data (SYSIN) ,
and the other represents the groups used to contain the output
data (SYSPRINT and SYSPUNCH).

Allocation of Direct-Access Space - Paqe 3.2-2

18

H A S P

Direct-Access Space Allocation Procedures

When the direct-access space allocation subroutine is entered, it
first examines the first four bytes of the appropriate Job Track
Group Map to determine if a new track group is required. A new
group is required whenever no tracks have been allocated to this
job (the last track address is zero) or if all of the tracks in
the last group allocated have been used.

If a new track group is not required, the record or head field of
the last track address is incremented to provide a new track
address.

If a new track group must be allocated, the Master Track Group
Map is scanned for an available group. When the next group to
be allocated is determined, the appropriate bit in the Master Track
Group Map is set to zero, and the corresponding bit in the Job
Track Group Map is set to one. A track address is then constructed
to represent the first track in the new group, and this track
address is saved in the first four bytes of the Job Track Group Map.

When any direct-access input/output operation is initiated by HASP,
the HASP I/O interface saves the cylinder which was referenced
by module. When a new track group must be allocated, the allo­
cation routine first tries to allocate a group corresponding to
the last cylinder referenced on each module. If these groups are
not available, the routine attempts to allocate within one cylinder
of the last references. If track groups within these cylinders are
not available, the routine tries to allocate a group within two
cylinders, and so on, until the entire track group map has been
examined.

Direct-Access Space De-Allocation Procedure

To de-allocate the direct-access space allocated to a particular
function, it is necessary only to "OR" the track group map portion
of the Job Track Group Map associated with the particular function
into the Master Track Group Map. This will reset to one all bits
in the Master Track Group Map which correspond to the track groups
which have been allocated to the particular function.

Allocation of Direct-Access Space - Page 3.2-3

19

HASP

3. 3 ALLOCATION OF INPUT/OUTPUT UNITS

The HASP Device Control Table (DCT} is used by HASP to allocate

all input/output units. It has the following basic format:

status

device type

other
control

information

device name

work
space

Figure 3. 3 .1 - The HASP Device Control Table (DCT)

The "status" field is used to indicate whether the device is available

and whether it is in use.

The "device type" field specifies whether this DCT represents a card

reader, printer, punch, or other type of 1/0 device.

The "other control information" field contains such information as

the Data Control Block (DCB) address, the chain address, indications of

operator commands , and other fields for synchronization purposes.

Allocation of Input/Output Units - Page 3 • 3-1

20

HASP

The "device name" field contains an eight-byte EBCDIC device

name (such as READER!) which is primarily used for console messages.

The "work space" is a device dependent area used by some devices

for extended control of the device.

All DCT' s are chained together for allocation purposes. They are

initialized by the HASP initialization phase if the associated devices

are attached to the system.

Input/Output Device allocation consists of "running" the DCT

chain and looking for a DCT of the specified type which is available

and which has not been allocated. If one is found, the "in use" bit

is set to one to indicate that the device has been allocated.

De-allocation consists of setting the "in use" bit to zero.

The Device Control Table is also used as a parameter list whenever

Input/Output activity is initiated through the HASP I/O interface.

Allocation of Input/Output Units - Page 3. 3-2
21

HASP

3 • 4 ALLOCATION OF CENTRAL PROCESSING UNIT TIME

The Operating System controls the allocation of Central Processing

Unit (CPU) time to different tasks through the means of a Task Control

Block (TCB) chain. In a similar fashion, HASP controls the allocation

of CPU time to the different functions within HASP through the means

of a Processor Control Element (PCE) chain. The basic fonnat of the

Processor Control Element is as follows:

OS
save
area

event wait field

chain field

processor
work

space

Figure 3. 4 .1 - HASP Processor Control Element (PCE)

Whenever a particular function is being processed, general purpose

register 13 always contains the address of the Processor Control Element

. which is allocating the time to that function. For this reason the first

eighteen words of the PCE are a standard OS register save area.

\, ./

Allocation of Central Processing Unit Time - Page 3. 4 ... 1

22

f

HASP

The "event wait field 11 is a two-byte field which describes the

dispatchability of the function under the control of this PCE. If this

field is zero, the function is dis patchable. If this field is non- zero,

the function is not dispatchable and the bit which is one specifies

upon what event the function is "waiting".

The "chain field" contains the address of the next PCE in the PCE

chain.

The "processor work space" is a variable length area which is used

by the program process~ng the function as a scratch area.

HASP searches the PCE chain looking for a PCE which is dis patchable.

When a dis patchable PCE is located, the general purpose registers are

loaded from the PCE/OS save area and control is passed to the location

specified in register 1 S.

When control is returned to the dispatching program, the general pur­

pose registers are saved in the PCE and the search for dispatchable PCEs

continues. If a notable event occurred since the last PCE dispatch such

as the freeing of a common resource or the "posting" of a specific event,

the search starts at the beginning of the PCE chain; otherwise, it starts

with the PCE following the last dispatched. The program returning control

to the dispatching program must set the return address in register 15 before

returning.

When no PCEs are found to be dispatchable, the HASP task enters an

OS WAIT state to allow the Operating System to allocate CPU time to other

tasks.

Allocation of Central Processing Unit Time - Page 3. 4-2

23

HASP

3. 5 ALLOCATION OF PROGRAMS

The programs of which HASP is composed can be divided into

the following classifications:

• The Dispatcher

• Processors

• Control Service Programs

• Miscellaneous Programs

The Dispatcher is the dispatching program described in Section

3. 4. Its function is to distribute CPU time among the various processors

described below.

Processors are programs which control the execution of various HASP

functions such as reading cards, printing, punching, etc. With each

processor is always associated at least one Processor Control Element

which causes the dispatcher to give control to the processor and allows

the processor to synchronize with various HASP events. The PCE work

space also permits the processors to be written re-enterably such that by

defining more than one PCE for a given processor, the processor can control

an essentially unlimited number of functions simultaneously. For instance,

by defining ten PCEs for the Print Processor, up to ten printers can be ser­

viced simultaneously utilizing and requiring only one copy of the processing

program.

Allocation of Programs - Page 3. 5-1

24

HASP

The Control Service Programs are subroutines used by the processors

in accomplishing their functions. By using the PCE/OS save area, the

control service programs can maintain the re-enterability of the

processors.

Miscellaneous Programs are those special purpose programs which

do not fall into any of the other three categories, such as the HASP

Initialization Program. They are executed only once and need not be

considered in the normal HASP job flow.

Allocation of Programs - Page 3 • 5-2

25

HASP

3 • 6 ALLOCATION OF JOBS

HASP maintains its job pointers in the HASP Job Queue, a table of

elements with the following basic format:

priority

type

job number

chain address

JCT track

Figure 3 • 6 .1 - The HASP Job Queue Element

The 11 priority" represents the dynamic priority of the job within the

HASP system.

The "type" represents the function for which the element is queued

or the function in which the job is currently being processed.

, ..

The "jo~ number" is the number sequentially assigned to each job

by HASP as it enters the system.

The "chain address". is the address of the next element in the chain.

Allocation of Jobs . - Page 3 • 6-1

26

HASP

The "JCT track" is the track uddress of the HASP Job Control Table

described below.

Two chains are maintained in the Job Queue. The first chain

represents those jobs which are currently awaiting processing or being

processed. Elements in this chain are chained in the order of their

priority. The second chain represents the inactive or unused queue

elements.

To add a job to the job queue, a queue element is obtained from

the inactive chain, initialized with the information shown in figure

3. 6. l, and inserted into the active chain according to its priority.

To obtain a job from the job queue, the active chain is searched

for an element of the specified type. When found, the "type 11 field is

modified to reflect the fact that the job is now being processed.

To return a job to the job queue, the element is moved from the

active chain to the inactive chain. Since the priority is of no concern

here, the element is placed at the head of the chain.

The HASP Job Control Table (JCT}

The HA.SP Job Control Table contains all of the information necessary

to process the associated job in the following basic format:

Allocation of Jobs - Page 3. 6-2

27

HASP

data from
JOB Card

accounting
information

first input track

input job
track group map

output job
track group map

work space

output data
set tracks

Figure 3. 6. 2 - The HASP Job Control Table (JCT)

The HASP Job Control Table is normally resident on a direct-access

intermediate storage device. Once the HASP Job Queue Element is

obtained, the 11 JCT track" in the element can be used to initiate a read

into a HASP Buffer. Once this read has been completed, all information

necessary to process the job can then be obtained.

Allocation of Jobs - Page 3. 6-3

28

' '
H A S P

3.7 ALLOCATION OF OVERLAY AREAS AND NON-RESIDENT CONTROL SECTIONS

Portions of the various programs of which HASP is composed are
organized into non-resident control sections (CSECTs) and stored
in an overlay library (OLAYLIB) on a direct-access volume. These
control sections contain HASP re-entrant subroutines and/or data
which may be requested for use by a Processor.

The user obtains an Overlay Area by requesting from the overlay
control service program for use of a non-resident CSECT. If the
CSECT requested is in main storage, the user is allowed to use
the Overlay Area for processing. If, however, the CSECT is not
already in an area, an area must be selected to hold the requested
CSECT. The requesting Processor is made to ''wait" until the
requested CSECT is read from direct-access into main storage.

The algorithms for Overlay Area allocation cause multiple users
of the same CSECT to use only one area, into which that CSECT is
read. Competition for areas is resolved partially by the priority
associated with each overlay CSECT. However, a ''pre-empting"
(roll) algorithm prevents any Processor from being indefinitely
delayed, even if the system has only one Overlay Area.

The user releases an Overlay Area by requesting that overlay
services remove his PCE from association with the area.

Allocation of Overlay Areas - Page 3.7-1

29

H A S P

(The remainder of this page intentionally left blank.)

30

H A S P

4.0 HASP PROCESSORS

This section contains detailed internal information about each of
the HASP Processors and is intended primarily for use by system
programmers.

HASP Processors -- Pa9e 4.0-1

31

H A S P

4.1 INPUT SERVICE PROCESSOR

4.1.1 INPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Input Service Processor are as follows:

To read card images from an input device.

To detect and scan JOB cards, extracting parameters for
job accounting, job control, and print and punch identi­
fication.

To detect and process other control cards such as the
PRIORITY, MESSAGE, ROUTE, SETUP, COMMAND, DD*, and DD
DATA cards.

To assign a unique HASP job number to each job.

To log jobs into the HASP System.

To assign job priority based upon PRIORITY card or JOB
card parameters.

To generate, from cards read, a JCL file and input data
files, and to record these files on direct-access storage
device(s) for later use by the Execution Control Processor
(see Section 4.2).

To generate HASP Job Control Tables, Job Queue Entries,
and other HASP control blocks required for later job proces­
sing.

To queue jobs for processing by the Execution Control
Processor.

The Input Service Processor is coded re-enterably in such a
way that it can accept jobs from a number of different input
devices (with different hardware characteristics) simultane­
ously. The re-enterability is attained by retaining all
storage unique to a job in the Processor Control Element
(see figure 4.1.1) which must be unique for each input device.

4.1.2 INPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Input Service Processor is divided into three phases, 13
subroutines, and three non-process exits. This section will
give a functional description of each of these phases, sub­
routines, and exits to aid the System Programmer in gaining
a working knowledge of the processor.

Input Service Processor - Page 4.1-1

32

' /

H A S P

PHASES

Phase 1 - Processor Initialization

The Initialization Phase, which is written as an overlay seg­
ment, begins by attempting to acquire an input device. If
no input device is available, the processor is placed in a
HASP $WAIT state until a device is made available; whereupon
the entire procedure is repeated until an input device is
available. Upon acquiring an available input device the
processor continues by acquiring a Device Control Table (DCT)
for the direct-access device(s) and a HASP buffer for use as
an input buffer.

If the input device is not a remote terminal, a chain of
Channel Control Words (CCW's) is then constructed in the
input buffer which will be used to read 80-byte records from
the input device into the rest of the input buffer. These
CCWs are constructed in such a way that the input records
will be read into adjacent areas in the input buffer with as
many cards being read as the buffer will hold. The initiali­
zation of the PCE Work Area is then completed and control is
transferred to Phase 2.

If the input device is a remote terminal, transmission is
initiated by calling upon the Remote Terminal Access Method
to open the Remote Terminal Device Control Table. Control
is then passed to Phase 2.

Phase 2 - Main Processor

The Main Processor Phase reads cards from the input device,
scans each card to detect HASP control cards and processes
these cards as follows:

/*control card--The control card scan routine (HASPRCCS) is
called to process the control card and take any appropriate
action.

Job Card--The JOB card scan routine (HASPRJCS) is called to
terminate the previous job (if any), to scan the JOB Card,
and to initialize the PCE work area for the processing of
the following job.

DD* or DD DATA--A track address is obtained for the first
data block of the input data set. A dummy card is added to
the JCL file which contains the track address in columns 1-4.

Input Service Processor - Page 4.1-2

33

H A S P

This card is differentiated from other cards by setting the
control byte (see figure 8.15.1). The DD* or DD DATA state­
ment is then added to the JCL file in normal fashion. Control
is subsequently turned back to the main processor to process
the input data.

When a hardware end-of-file is detected on the input device,
or when "$DRAIN input device" conunand is entered by the opera­
tor, control is given to Phase 3.

Phase 3 - Processor Termination

Upon receiving control from the Main Processor, the Processor
Termination Phase, which is written as an overlay segment,
terminates the last job (if any) , issues a rewind and unload
conunand to the input device if it is tape, frees the input
buffer, closes the input OCT if it is a Remote Device, releases
the input and direct-access devices, and returns control to
Phase 1.

SUBROUTINES

HASPRCCS -- Subroutine to Process HASP /* Control Cards

The HASPRCCS subroutine, which is written as an overlay seg­
ment, is called whenever the Main Processor Phase encounters
a /* control card. The control card type is first determined
and then processing continues as follows:

/*COMMAND Card -- The command is listed on the opera­
tor's console and then added to the Conunand Processor's
input command queue.

/*PRIORITY Card -- The previous job (if any) is termina­
ted, the priority specified is converted to binary and
saved, and the scan is continued with the next card.
If the following card is not a JOB card, the message,
"device SKIPPING FOR JOB CAJU)", is written on the
operator's console, the effect of the /*PRIORITY Card
is nullified, and the input stream is scanned for
another /*PRIORITY or JOB card.

/*ROUTE Card -- The appropriate routing byte is set to
the value associated with the destination indicated.
If an invalid field is encountered, an appropriate mes­
sage is issued, both to the operator and to the programmer,
and further job processing is bypassed.

Input Service Processor - Page 4.1-3

34

H A S P

/*SE'I'UP Card -- The volumes to be mounted are listed on
the operator's console and the job is placed in "hold"
status.

/*MESSAGE Card -- Leading and trailing blanks are remcved
and the message is routed to the operator's console.

If the control card type is not recognized, the card is ignored
and treated like any other /* card.

HASPRJCS--Subroutine to Scan and Initialize Job Control Information

The HASPRJCS subroutine, which is written as an overlay segment,
is called whenever the Main Processor Phase encounters a JOB card.
The previous job (if any) is terminated by calling the RJOBEND
subroutine. The master job number is incremented and its new
value is assigned to the current job. The job control informa­
tion in the PCE Work Area (see figure 4.1.1) is initialized by
scanning the JOB card and extracting parameters relative to job
control. The first JCL block is initiated, and control is passed
to the Job Initialization Subroutine: HASPRJBI.

RSCAN - RSCANA -- Subroutine to Scan Parameters from JOB Card

This subroutine has two entry points; the entry point: "RSCAN"
is used to scan numeric parameters from the JOB card, while the
entry point: "RSCANA" is used to scan alphameric parameters from
the JOB card. There are also two returns from the subroutine.
If return is made to the first byte following the Branch and Link
(the call) instruction, it indicates that the final parameter on
the JOB card was returned on the previous call and that there are
no more parameters. If return is made to the fourth byte follow­
ing the Branch and Link instruction, it i_ndicates that parameter
register "Rl" contains the next parameter, right-adjusted with
leading binary zeroes. If the parameter was a "null'' parameter,
"Rl" will be zero. If this subroutine detects an illegal char­
acter (such as a non-numeric character in a numeric field) or
more than four characters in a parameter, control is transferred
to the RBADJOBC subroutine.

RCONTNUE -- Subroutine to Validate Continuation Cards

This subroutine validates JCL continuation cards by ensuring
that columns 1 and 2 are punched with slashes and that column 3
is blank. The start of the continuation card is located and

Input Service Processor - Page 4.1-4

35

HAS P

control is returned to the caller. If an invalid continuation
card is discovered, control is passed to the illegal job card
subroutine for fur~her processing.

REBCDBIN -- Subroutine to Convert from EBCDIC to Binary

This subroutine expects to find numeric EBCDIC characters with
leading binary zeroes in parameter register "Rl". There are
two returns from the subroutine. If return is made to the
first byte following the Branch and Link (the call) instruction,
it indicates that the parameter register now contains the binary
equivalent of the EBCDIC input. If return is made to the fourth
byte following the Branch and Link instruction, it indicates
that the parameter register was zero (null parameter) and con­
tained no EBCDIC to translate.

HASPRJBI -- Subroutine to Initialize Job Processing

This subroutine, which is written as an overlay segment, re­
ceives control from the JOB Card Scan Routine (HASPRJCS) and
completes the initialization of the various control blocks for
input job processing. A "job on" message is issued to the
operator, the job's priority is assigned based upon JOB card
or /*PRIORITY card parameters, and the job is queued in the
active input queue. Control is then returned to the Main Proces­
sor Phase.

RBADJOBC -- HASPRIJC -- Subroutine to Process Illegal Job Cards

This subroutine notifies the operator of an illegal JOB card,
·calls the subroutine: "RJOBKILL" to delete the job, and returns
control to the Main Processor Phase.

RJOBEND -- Subroutine to Complete Job Input Processing

This subroutine tests whether the Input Processor is currently
processing a job, and if it is not, returns control immediately.
The RJOBTERM subroutine is called to terminate the input proces­
sing of the job, and the job is queued for the Execution Control
Processor in the logical queue associated with the job's JOB
CLASS. Control is then returned to the calling program.

Input Service Processor - Page 4.1-5

36

H A S P

RGET -- Subroutine to Get Next Card from Input Buffer

This subroutine returns the address of the next card to be pro­
cessed by the Input Service Processor in register "RPI''. If
the input buffer is empty or if all the cards in the input
buffer have been processed, an IOS read is staged from the input
device and the subroutine places the processor in a HASP $WAIT
state until the input buffer has been filled. If the input
device is a remote terminal, a "call" is made on the Remote
Terminal Access Method to procure the next card. If a permanent
error is detected on the input device, no action is taken until
after the last card has been processed and then the JOB currently
being processed is deleted with appropriate comments to the oper­
ator. Processing then continues by scanning the input stream.
for the next JOB card.

This subroutine also processes the operator commands "$STOP
input device" and "$DELETE input device" by entering the HASP
$WAIT state and calling the subroutine R..TOBKILL to delete the
job, respectively.

There are two returns from the subroutine. If return is made
to the first byte following the Branch and Link (the call) in­
struction, it indicates that the last card has been processed
and that an end-of-file has been sensed on the input device.
If return is made to the fourth byte following the Branch and
Link, it indicates that register "RPI" contains the address of
the next card.

RPUT -- RPUTOLAY -- Subroutine to Add Card to Output Buffer

This subroutine accepts 80-byte card images and blocks them
into standard HASP Data Blocks (see section 8.15). If the cur­
rent output buffer is full, it is truncated and scheduled for
output, and a new HASP buffer is acquired and used as the next
output buffer. If no output buffer exists upon entry, it indi­
cates that the processor is skipping for a JOB card and the
subroutine returns without taking any action.

RJOBKILL -- Subroutine to Delete Current Job

This subroutine tests whether the input processor is currently
processing a job, and if it is not, returns control immediately.
If a job is being processed, the operator is notified that the
job is being deleted, the RJOBTERM subroutine is called to termi­
nate the input processing of the job, and the job is placed in
the Print Processor Queue for subsequent processing. Control is
then returned to the calling program.

Input Service Processor - Page 4.1-6

37

H A S P

RJOBTERM -- Subroutine to Terminate Job

This subroutine terminates the last output buffer and schedules
it for output. It then acquires a HASP buffer, and from infor­
mation kept in the PCE Work Area (see figure 4.1.1) constructs
the Job Control Table (JCT) and schedules it for output. Con­
trol is then returned to the calling program.

RGETBUF -- Subroutine to Initialize Output Buffers

This subroutine acquires a HASP buffer for an output buffer and
returns with the address of the buffer in register "Rl".

NON-PROCESS EXITS

The following routines are used to put the Input Service Proces­
sor in a HASP $WAIT state if a HASP resource is not available.
In all cases Reader Link Register 2 ("RL2") must have been set
to the restart address before the routine is entered.

RNOUNIT -- A HASP Unit was not available.

RNOCMB

RN OJ OB

A HASP Console Message Buffer was not available.

The HASP Job Queue was full and a new entry
could not be added.

When the respective resource is available, the processor is
$POSTed and another attempt is made to acquire the resource.

Input Service Processor - Page 4.1-7

38

4
·. ~.

H A S P

Figure 4.1.l -- INPUT SERVICE PCE WORK AREA FORMAT

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

58 88 RDRDCT

RC ARD ID l Address of Input Device Control Table

SC 92 RDADCT

RDRSW J
Address of Direct-Access OCT

60 96 RBI END

Address of Last Card in Input Buffer

64 100 RBONEXT

Address of Next Card in Output Buffer

68 104 RBOEND

Address of End of Output Buffer

6C 108 RLSAVE:L

Link Register Save Word 1

70 112 RLSAVE2

Link Register Save Word 2

74 116 RLSAVE3

Link Register Save Word 3

78 120 RSAVE:L

General Purpose Save Word 1

7C 124 RSAVE2

General Purpose Save Word 2

80 128

Input Service Processor - Page 4.1-8

39

H A S P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement r-----------------~----- 4 bytes ------------------------1·
Hex. Dec. - -

BO 12B RJCLTRAK

Track Address of Next JCL Block

B4 132 RMESSAGE

1 '~ Reader Message AreaJ'

'-----------' '

BB 1B4

BB 1B4 RJOB Address of Job Queue Element

RQUEPRI RQUETYPE RQUEJOBN Job Number

BC lBB RQUEFLAG

Job Queue RESERVED
Flags

co 192 RQUETRK

Track Address of Job Control Table

C4 196 RQUEPRTR RQUEPUNR RQUECLAS RQUEREGS

Print Route Punch Route Job Class Region Size

CB 200

Input Service Processor - Page 4.1-9

40

H A S P

Figure 4.1.l -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

ca 200

cc 204

DO 208

E4 228

EC 236

FO 240

F4 244

F8 248

FC 252

~----------------------- 4 bytes ------------------------~

"

~

RJCTJOBN RJCTPRID

Job Nwnber (Binary) Priority

RJCTJOBE

Job Number (EBCDIC)

RJCTPNAM

Programmer's Name from Jo b c d ar

RJCTJNAM

Job Name from Job Card

RJCTACTN

Job Accounting Nwnber

RJCTROOM

Programmer's Room Nwnber

RJCTETIM

Estimated Execution Time

RJCTCARD

Current Input Card Count

RJCTROUT

Input
Route Code

RJCTPNAL

Programmer's
Name Length

"

~

Input Service Processor - Page 4.1-10

41
'.·~.:.::l
.,,~.

H A S P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement !..----------------------- 4 bytes ------------------------...!
Hex. ~· I -,

FC 252 RJCTESTL

Estimated Lines of Output

100 256 RJCTESTP

Estimated Number of Cards to be Punched

104 260 RJCTLINC RJCTCPVC RJCTLOG RJCTDDCT

Lines Print Log Option RJCTFLAG Per Page Copy Count Switch

108 264 RJCTFORM

Job Print Forms

lOC 268

Job Punch Forms

110 272 RJCTRDRO

Reader Sign-On Time

114 276 RJCTRDRT

Track Address of First JCL Block

118 280 RJCTCYMX

Maximum MTTR for Current Track Group

llC 284 RJCTMTTR

Last MTTR Allocated

120 288

Input Serviqe Processor - Page 4.1-11

42

H A S P

Figure 4.1.l -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement !..----------------------- 4 bytes
Hex. ~· I ------------------------~
120 288

1
RJCTCYMA

l
Variable Length Track Allocation Map

l RTPCARD l
fi... ____ 8_0_ -B_y_t_e_R_e_m_o_t_e_J_o_b_E_n_t_r_y_I_n_p_u_t_C_a_r_d_I_m_a_g_e_A_r_e_a ___ --'J

Input Service Processor - Page 4.1-12

43

HASP

Figure 4. 1. 1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

S8 88

S8 88

SC 92

SC 92

60 96

64 100

68 104

6C 108

70 112

74 116

RCARDID

RDRDCT

RDRSW

RDADCT .

RBI END

RB~EXT

RBOEND

RLSAVEl

RLSAVE2

RLSAVE3

. 1

4

1

4

4

4

4

4

4

4

Type of card being processed --

Hex.
Value Meaning

00 Normal Card.
03 Internally Generated Card.
04 HASP Control Card.
13 Illegal Control Card.
19 Last JCL Card.
73 Dummy Track Address Record.

Address of Reader, Tape, Internal
Reader, or Remote Device Control Table.

Reader Switches --

Bit Name Meaning

0 RJOBQUED Job has been Queued.
1 RSYSINSW Processing Internally Gener­

ated DD * Card.
2 RXBJOBSW Processing XEQ Batch Class

Job.
3
4
s
6
7

ROSINSW
RJCLSW
RDREOFSW
RNOSCAN
RJFLUSH

Processing O/S Input Data Set.
Processing JCL.
End of File Indication.
Not Scanning JCL (DD DATA).
Job Flush Message has not

been issued.

Address of Direct-Access Device Control
Table.

Address of Last Card in Input Buffer.

Address of Next Card in Output Buffer.

Address of End of Output Buffer.

Link Register Save Word 1.

Link Register Save Word 2.

Link Register Save Word 3.

Input Service Processor - Page 4.1-13

44

•

H A S P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

78 120

7C 124

80 128

84 132

B8 184

BB 184

B9 185

BA 186

BC 188

BD 189

co 192

C4 196

cs 197

C6 198

C7 199

ca 200

CA 202

RSAVEl 4

RSAVE2 4

RJCLTRAK 4

RMESSAGE 52

RJOB 4

RQUEPRI 1

Bits 0-3
Bits 4-7

RQUETYPE

RQUEJOBN

RQUEFLAG

RQUETRK

RQUEPRTR

RQUEPll'JR

RQUECLAS

RQUEREGS

RJCTJOBN

RJCTPRIO

1

2

1

3

4

l

1

1

1

2

1

General Purpose Save Word 1.

General Purpose Save Word 2.

Track Address of Next JCL Block.

Reader Message Area.

Address of Job Queue Element
(when Job has been Queued) .

Job Queue Priority (Before Queueing)

Priority (0-15).
Zero.

Job Class - X'BO' (Before Queueing).

Job Number (Before Queueing) .

Job Queue Flags

Bits Name Meaning

0 QUEHOLJ)l Job Held: TYPRUN=HOLD
or Input Device Held.

1-7 Reserved.

Reserved.

Track Address of Job Control Table.

Print Routing: 0 = Local.
n = Remote n.

Punch Routing: 0 Local.
n = Remote n.

Job Class - X'BO' (After Queueing).

Region Size -- Reserved.

Job Number (Binary) .

Priority from /*PRIORITY Card.

Input Service Processor - Page 4.1-14

45

HASP

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description

!!!!.·· ~·
CB 203

cc 204

CF 207

DO 208

E4 228

EC 236

FO 240

F4 244

F8 248

FC 252

100 256

104 260

105 261

106 262

107 263

107 263

108 264

lOC 268

110 272

114 276

118 280

llC 284

RJCTROUT

RJCTJOBE

RJCTPNAL

RJCTPNAM

RJCTJNAM

RJCTACTN

RJCTROOM

RJCTETIM

RJCTCARD

RJCTESTL

RJCTESTP

RJCTLINC

RJCTCPYC

RJCTLOG

RJCTDDCT

RJCTFLAG

RJCTFORM

RJCTRDRO

RJCTRDRT

RJCTCYMX

RJCTMTTR

1 Input Route Code: 0 = Local.
n = Remote n.

3 Job Number (EBCDIC).

1 Programmer's Name Length.

20 Programmer's Name from Job Card.

8 Job Name from Job Card.

4 Job Accounting Number.

4 Programmer's Room Number.

4 Estimated Execution Time.

4 Current Input Card Count.

4 Estimated Lines of Output.

4 Estimated Number of cards to be Punched.

1 Lines per Page.

1 Number of Copies of Print.

1 Log Option Switch.

1 Count of Input Data Sets SPOOLed by HASP.

1 JCT Flags.

4 Job Print Fonns.

4 Job Punch Forms.

4 Reader Sign-On Time.

4 Track Address of First JCL Block.

4 Maximum MTTR for Current Track Group.

4 Last MTTR Allocated.

Input Service Processor - Page 4.1-15

46

'· /

H A S P

Figure 4.1.1 -- INPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

120 288 RJCTCYMA Variable Length Track Allocation Map.

RTPCARD 80 Remote Job Entry Input Card Image Area.

Input Service Processor - Page 4.1-16

47

HASP

4. 2 EXECUTION CONTROL PROCESSOR

4. 2 .1 Execution Control Processor - General Description

The Execution Control Processor is responsible for the interface

between HASP and OS/360. It presents jobs to the Operating System

for execution and communicates with the I/O supervisor to supply SYSIN

data for a job and to accept SYSPRINT and SYSPUNCH from a job for

later printing and punching.

This Processor is re-enterably coded and has the capability to

present any number of jobs to OS/360 for simultaneous execution by

maintaining unique INPUT/OUTPUT streams for each job. All storage

un.ique to a job is retained in the Processor Control Element (see

Figure 4. 2. 2) to provide re-enterability.

The Execution Control Processor is also responsible for monitoring

job limit excess ions (such as time, line, or punched card estimates).

Jobs are selected for OS processing based on a logical partition structure

defined by HASPGEN. Each logical partition is controlled by a partition

information table (PIT) which indicates the eligibility of jobs for

execution by that logical partition. There is a direct correlation between

the HASP logical partition and the number of initiators active in the

system. Jobs thus selected for OS processing are passed to a single

OS/360 Reader/Interpreter which remains constantly STARTed to a

Execution Control Processor - Page 4.2-1

48

HASP

HASP pseudo device which appears us c:i 2 540 curd reader. Only the

Job Control Language statements of <l job are pussed to the R/I.

Input stream datu sets, defined by DD* or DD DATA cards have been

previously transcribed to a SPOOL disk by the HASP input service

processor. The JCL for a job is dynamically modified by H/\SP to

assign pseudo unit record devices to all SYSIN and SYSOUT data sets

to permit interception by HASP. The job is interpreted by the R/I and

is placed in the OS job queue for immediate selection by an initiator.

At the completion of a job's execution, it is placed in the OS SYSOUT

queue to be processed by an output writer, Because of the assignment

of pseudo unit record devices to all SYSOUT files, the output

writer is required only to "print" the System Message Blocks from

SYS!. SYSJOBQE. These SMB 1 s are intercepted by HASP and are stored

on the SPOOL disks as another print data set. After receiving the

last SMB, HASP terminates the XEQ phase, queues the job for the

HASP output processors and indicates that the logical partition requires

another job. All information concerning SYS IN and SYSOUT files

assigned to HASP pseudo devices is kept in Data Definition Tables

(DDT). There is a DDT for each active file of a job which indicates

buffer addresses, file status, record count, etc. and is correlated with

the proper file through the HASP pseudo device address.

Execution Control Processor - Page 4. 2-2

49

HASP

4. 2 • 2 Execution Control Processor - Program Logic

The Execution Control Processor (XEQ) consists of the three

following logical phases:

PHASE 1

PHASE 2

Job Control - Initiates and terminates job processing.

Asynchronous I/O Handler - Interfaces with OS/3 60

via the Input/Output Supervisor (!OS) to perform

SYSIN/SYSPRINT/SYSPUNCH I/O requests.

PHASE 3 - Synchronous I/O Handler - Performs the SPOOL I/O

required by Phase 2 •

. Figure 4. 2. 1 indicates the relationship between these three phases and

OS/360.

An OS execution is initiated by Phase 1 by obtaining a suitable job

from the HASP job queue and reading its Job Control Table from disk. Job

limit parameters are initialized and the status of the OS/360 R/I is interro­

gated. If the R/I is currently processing the input for another job, Phase 1

$WA!Ts until it has completed. A DDT describing the JCL file for the sel­

ected job is constructed and associated with the HASP pseudo 2 540 used by

the R/I. The dormant R/I is then POSTed to signal the availability of

Execution Control Processor - Page 4. 2-3

50

HASP

a job and control is transferred to Phase 3 to await I/O requirements

from Phase 2. The OS/360 Supervisor call table has been modified by

HASP initialization so that all I/O requests are diverted to Phase 2 of

the XEQ processor. If the I/O request thusly intercepted refers to a

HASP pseudo device, it is processed by HASP; otherwise it is passed

to the Operating System Input-Output Supervisor for normal processing.

Since XEQ has the capability to control the simultaneous execution of

many jobs, the PCE for the job issuing the I/O request to a pseudo

device must be identifiable. This is done by using a combination of

the JOB name and the TCB address (Job Step TCB for MVT). Once the

PCE is located, the DDT for this particular pseudo device is found by

the pseudo device address from the UCB. Phase 2 verifies that there

is a buffer still associated with the file and simulates the I/O request.

Each channel command word in the request is examined and, when a

data select type is recognized, the I/O operation is simulated by a

MOVE CHARACTERS to or from the current HASP buffer for that file.

Input requests are serviced by stripping (deblocking) the next card image

from the HASP buffer and moving it as indicated by the CCW. These

moves (only) are done while operating under the requesting program's

protect key to prevent an undetected protect violation by HASP, which

normally operates under protect key zero. Requirements for I/O

Execution Control Processor - Page 4. 2-4

51

HASP

activities associated with Phase 2 processing are indicated by a series

of status bits in each DDT. Requests to get buffers, read buffers and

write buffers, are indicated in the appropriate DDT, Phase 3 of the

XEQ processor is $POSTed and the HASP task is POSTed. If the re­

quested activity must be completed before an I/O request can be

satisfied by Phase 2, the I/C requester is made to WAIT. This is done

by saving the current CCW location and using the OS WAIT routine to

hold the requester. When the required I/O activity is complete, the

WAITing task is POSTed and the pseudo device I/O request is re-issued.

At the end of all successful I/O operations, the appropriate user

appendage (channel-end appendage, etc.) is entered, the I/O is

POSTed complete if required and a CSW is constructed to indicate the

normal I/O completion.

When Phase 3 of the Execution Processor is entered after initiation

of the job it immediately enters a HASP $WAIT state to await direction

from Phase 2. Upon being activated via a $POST from Phase 2 or by

a timer interrupt, this PHASE examines various status bits in the PCE

and DDT' s to determine the required action. This action may be either

the priming of an input buffer, writing and re-initialization of an output

buffer, or the notification to the operator of expiration of the estimated

time of the job. An. input buffer is primed by obtaining the track address

Execution Control Processor - Page 4. 2-5

52

HASP

of the next buffer from the current buffer and issuing a read for the record.

Status bits are set in the DDT to indicate that a read is in progress on

this buffer and are reset at channel end time to indicate that the record

is available. A full output buffer from Phase 2 is scheduled for trans­

cription to disk and a new buffer is immediately obtained and initialized

for use. When the buffer is initialized a track address is acquired and

inserted as a forward chain in the buffer to be written. If Phase 3 is

for any reason unable to get a HASP buffer, a special service called

Buffer-roll is invoked. The function of Buffer-roll is to make a HASP

buffer currently being utilized by another file (in this or another job)

available to the requester. This is done by selecting a low frequency

·DDT which owns a buffer and forcing a "free" of that buffer. To free a

primary or secondary input buffer, a switch is set in the DDT to force

a re-read of the buffer when the input file is next required. Output

buffers are freed by terminating and writing the buffer to the SPOOL

disk. Future references to this output file will cause a new buffer to

be obtained and chained to the partial buffer.

A count of the number of logical records contained in each outpu,t

buffer is maintained by the Phase 2 routine and is used by Phase 3

upon writing a buffer to maintain the total line and card count for this

job. This accumulated figure is also compared, after each write, to

Execution Control Processor - Page 4. 2- 6

53

HASP

the estimated number of output records with the operator being notified

on its excession. If a job exceeds either cards, lines, or time, the

operator is so advised and a HASPGEN value is added to the original

estimate which will cause repeated excession messages as this new

estimate is reached. The job continues through normal OS/360

processing until the end of execution is reached. The job, as part

of normal OS job terminatiori, is then placed in the OS SYSOUT queue

for processing by an output writer. Because of the dynamic modification

of all SYSOUT= cards to pseudo devices, the only data set to be

processed by the output writer is that containing the System Message

Blocks. The Output Writer therefore 11 prints 11 the

SMB's to a HASP pseudo device. When the last SMB is received, Phase

3 is notified {via an OS POST) to return control to Phase 1 for HASP job

termination.

The job termination section of Phase 1 mus.t now prepare the job

for passage to the print queue. First, all partially filled output buffers

are truncated and written out, and all input buffers are freed. The

timer interval for the job is cancelled and all job execution statistics

are added to the JCT. At this point the areas of the SPOOL disks used

to store the job input information are made available to be re-allocated

by HASP {Purged), the JCT is written to disk and the job is passed to

Execution Control Processor - Page 4. 2-7

54

'" /

HASP

the print queue for printing. If no priority card was present, the job

priority is recalculated as a function of the number of lines of print

generated before the job is placed in the print queue.

A branch is then made to the beginning of XEQ to begin another

job if available, or to display a message indicating that the logical

partition is idle .

The process of dynamic examination and modification of selected

JCL statements is accomplished by invoking the standard OS Reader/

Interpreter exit list option which allows users to inspect all JCL en­

coded by the reader. A detailed discussion of the HASP processing

algorithm is contained in Appendix 12. 8: HASP JCL Processing.

Execution Control Processor - Page 4. 2-8

55

H A S P

Figure 4.2.1 -- Execution Control - OS/360 Relationship

HASP
TASK

\
\

._________ \

XEQ JOB
CONTROL

(PHASE 1)

$WAIT

\~
\~ \ \,;

\
\
\
\
\
\
\ START

, VIA PO
\ \ "2.
\~

\
\ ,'()
\ 0
\~

\ ../
\
\

HASP JCL
PROCESSOR
(XJCLSCAN)

OS/360
R/I
TASK

I/O REQUESTS
VIA IOS

, _______ _
SYNCHRONOUS

I/O
PROCESSOR
(PHASE 3)

$POST

ASYNCHRONOUS
I/O

PROCESSOR
(PHASE 2)

R/I
EXIT
LIST
POINTER

Execution Control Processor - Page 4.2-9

56

H A S P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT

Displacement r----------------------- 4 bytes ------------------------~
Hex. Dec. -- -

58 88 XPCEECll

Job Synchronization Event Control Block Chain

SC 92 XPCEJST

Address of User Task Control Block

60 96 XPCEJOll

A4dress of Job Queue Entry

64 100 XPCEWAIT

Reader Unit Allocation Event Control Block

68 104 XPCEJOllN

I- Job Name -1

70 112 XPCEDCT

XPCESTAT 1 Address of Direct-Access OCT

74 116 XPCEDDll

Start of Data Definition Table Chain

78 120 XPCESTEP

I- Step Name -

80 128

Execution Control Processor - Page 4.2-10

57

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FO~T (CONTINUED)

Displacement !.----------------------.. 4 bytes ----------------------.,.-J
Hex. !?_!£. I I

80 128

I- Procedure Step Name,

88 136 XPCEPRT

Current Output Line Count

0c 140

Estimated Lines of Output

90 144

Line Estimate Excession Amount

94 148

EBCDIC Constant -- "LINE"

98 152 XPCEPUN

Current Output Card Count

9C 156

Estimated Punched Cards

AO 160

Card Estimate Excession Amount

A4 164

EBCDIC Constant -- "CARD"

A8 168

Execution Control Processor - Page 4.2-11

58

H A S P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement r----------------------- 4 bytes ------------------------1 Hex. Dec. -- --
AS 168 XPCEPIT

Address of Partition Information Table

AC 172 XSTQE

...... -

Execution Timer Queue Element

I- -

BB 184 XXSTIME

Time Estimate Excession Amount

BC 188 XPCEJSI:B

Address of User JSTCB (MVT) or PIB (MFT)

co 192

Execution Control Processor - Page 4.2-12

59

HASP

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

58 88

SC 92

60 96

64 100

68 104

70 112

70 112

74 116

78 120

80 128

88 136

SC 140

90 144

94 148

98 152

9C 156

XPCEECB

XPCEJST

XPCEJOB

XPCEWAIT

XPCEJOBN

XPCESTAT

XPCEDCT

XPCEDDB

XPCESTEP

XPCEPRT

XPCEPl>J

4

4

4

4

8

1

4

4

8

8

4

4

4

4

4

4

Job Synchronization Event Control Block
Chain.

Address of User Task Control Block.

Address of Job Queue Entry.

Reader Unit Allocation Event Control Block.

Job Name.

Status

Bit Name

0-1
2 XPOSTBIT
3 XRDRACT
4 XEOJMES
5 XDUPBIT

6 XUCBDDB

7 XEOJBIT

Meaning

Reserved.
POST Request for XTHAW.
Reserved.
End Execution Message Sent.
Job with Duplicate Job Name
Waiting.

UCB/DDT Required by
Execution Interface.

End of Job Flag.

Address of Direct-Access OCT.

Start of Data Definition Table Chain.

Step Name.

Procedure Step Name.

Current Output Line Count.

Estimated Lines of Output.

Line Estimate Excession Amount.

EBCDIC Constant -- "LINE".

Current Output Card Count.

Estimated Punched Cards.

Execution Control Processor - Page 4.2-13

60

H A S P

Figure 4.2.2 -- EXECUTION CONTROL PCE WORK AREA FORMAT (CONTINUED)

Dis12lacement Field Name B:Ltes Field Descri12tion
Hex. Dec.

AO 160 4 Card Estimate Excession Amount.

A4 164 4 EBCDIC Constant -- "CARD".

AB 16B XPCEPIT 4 Address of Partition Information Table.

AC 172 XSTQE 12 Execution Timer Queue Element.

BB 184 XXSTIME 4 Time Estimate Excession Amount.

BC 1B8 XPCEJSIB 4 MVT Address of Job Step Task Control Block.
MFT Address of Partition Information Block.

Execution Control Processor - Page 4.2-14

61

H A S P

4.3 OUTPUT SERVICE PROCESSOR (PRINT AND PUNCH)

4.3.1 OUTPUT SERVICE PROCESSOR - GENERAL DESCRIPTION

The functions of the Output Service Processor are as follows:

To convert the print and punch output generated by the
Execution Control Processor to hard copy.

To provide for the unique identification of both print
and punch output to facilitate collection and delivery.

To provide for the routing of special data sets to printers
and punches reserved for special forms processing.

To produce multiple copies of print output upon request.

To count print lines and produce automatic page overflow.

To translate all illegal print characters to blanks (option­
al) .

To load the Universal Character Set Buffer (optional).

To load the Forms Control Buffer (optional) .

To provide additional information for checkpoint which
allows print to continue in the event of a "warm start".

To punch a Job Accounting Card (optional) .

To process all printer and punch I/O errors with automatic
error recovery (no operator intervention).

To respond to all operator commands directed toward any
printer or punch.

To queue jobs for the next stage .of processing when the
current print/punch function has been completed.

The Output Service Processor is coded re-enterably in such a
way that it can deliver output to a number of different output
devices simultaneously. The re-enterability is attained by
retaining all storage unique to a job in the Processor Control
Element (see figure 4.3.1) which must be unique for each output
device.

Output Service Processor - Page 4.3-1

62

H A S P

4.3.2 OUTPUT SERVICE PROCESSOR - PROGRAM LOGIC

The Output Service Processor is divided into three phases,
nine subroutines, and two non-process exits. This section
will give a functional description of each of these phases,
subroutines, and exits to aid the system programmer in gaining
a working knowledge of the processor.

PHASES

Phase 1 -- Processor Initialization

The Initialization Phase begins by attempting to get an out­
put unit. If an output unit is not available, the processor
enters a HASP $WAIT state until a device is made available
and then the process is repeated.

Next, an output function is determined. If the device ac­
quired is a remote printer, the appropriate entry in the
Remote Message Table is examined to determine if any remote
messages have been queued, and if so processing continues.
The general purpose register: "JCT" is set to zero to indi­
cate that remote messages are being processed.

If the device is not a remote printer, or if there are no
messages queued, an attempt is made to obtain a job from the
Job Queue which matches the type, routing and special forms
of the device obtained. If no jobs are queued which fit these
qualifications, the special forms processing type is checked
to see if the forms requirement can be dropped. If so, another
attempt is made to obtain a job from the Job Queue which
matches the type and routing specifications only.

If a job cannot be found, then the output unit is released
and control is returned to the start of the Initialization
Phase.

If the output device is a remote terminal, output activity is
initiated by calling upon the Remote Terminal Access Method
{RTAM) to "open" the Remote Device Control Table.

The processor then acquires a direct-access Device Control
Table {DCT) and a HASP buffer into which the Job Control
Table {JCT) is then read. A message is sent to the operator
notifying him that a particular job is now on the respective
device and the initialization of the Processor Control Element
Work Area (see figure 4.3.1) is completed.

Output Service Processor - Page 4.3-2

63

H A S P

If the processor is processing print output, and if the output
is not a data set which has been routed for special forms,
the PRINTID subroutine is called to generate the print identi­
fication header and control is transferred to Phase 2.

If the processor is processing punch output, and if the output
is not a data set which has been routed for special forms,
the Punch ID Card is generated for later punching, and control
is transferred to Phase 2.

Phase 2 - Main Processor

The function of the Main Processor is to read the data blocks
which are produced by the Execution Control Processor and build
a channel program to print or punch the data. The PRDBUF and
PRDCHK subroutines are used to read the data blocks, the PPPUT
subroutine is used to construct the channel program and the
PPWRITE and PPCHECK subroutines are used to initiate and check
the execution of the channel program.

If the processor is processing print output, the "Control
Byte" fields of the Data Block (see figure 8.15.1) are used
to build the ccw operation codes. These control bytes are
also used to count the actual lines of paper spaced and when
~his line count exceeds the parameter JCTLINCT, an eject is
inserted to force a new page and the count is restarted. If
an illegal control byte is encountered, or if the operator
has entered a "$T PRTn,C=l" command, a single-space CCW is
generated and used rather than the one provided in the data
block. In such cases line counting continues and automatic
page overflow is still provided.

If the processor is processing punch output, a "Punch, Feed,
and Select Stacker P2" command is generated.

When the last data block has been printed or punched, control
is transferred to Phase 3.

Phase 3 - Processor Termination

The Processor Termination Phase first reads the Job Control
Table and scans the Peripheral Data Description Blocks (see
figure 8.8.1) for the next data set to be processed. If
another data set is encountered, control is returned to Phase
2 for processing. If no more data sets are to be processed,
the termination phase then proceeds depending upon the type of
output which is being processed.

Output Service Processor - Page 4.3-3

64

"' . /

H A S P

If the processor is processing print output, the "Print Copy
Count" field in the JCT {see figure 8.8.1) is compared with
the current number of copies which have been printed. If
more copies are needed, control is transferred to Phase 1 for
the production of another copy. If no more copies are required,
the PRINTID subroutine is called to generate the print identi­
fication trailer.

If the processor is processing punch output, the job accounting
subroutine is called, and the accounting card is punched fol­
lowed by a blank card to clear the punch and check the punching
of the Job Accounting Card.

The Job Control Table is then re-written, the Job Queue Element
is passed to the next processor queue, the Device Control
Tables are released, and control is transferred to the start
of Phase 1.

SUBROUTINES

PLOADUCS -- Subroutine to Load the UCSB and FCB

This subroutine determines the Universal Character Set Type
from the Printer Device Control Table. The UCSB Table is then
searched and the corresponding UCS image (if one is found) is
$LOADed and moved into a HASP buffer. The UCS Buffer is then
loaded using the PPPUT, PPWRITE, and PPCHECK subroutines.

If the output device type specifies a 3211 printer, then the
Forms Control Buffer is loaded in a manner similar to the UCS
Buffer. After loading the FCB, the FCB type is reset so that
no more FCB loads will occur until the operator specifies that
the buffer should be re-loaded.

PRINTID -- Subroutine to Generate Print Identification

This subroutine builds up the line image which is used to pro­
duce the Print Identification Page from information in the Job
Control Table and information passed to the subroutine at the
time it is called. This line image is built up in the "Job
Accounting Storage" section of the Job Control Table {see fig­
ure 8.8.1). The subroutine then builds a channel program
which starts with an eject command and follows with enough
print commands to completely fill a page with print identifi­
cation lines. The channel program is then executed and checked
and control is returned to the calling program. The PPPUT
subroutine is used to construct the channel program, and the
PPWRITE and PPCHECK subroutines are used to initiate and check
the execution of the channel program.

Output Service Processor - Page 4.3-4

65

H A S P

PPFORMCK -- Subroutine to Mount Forms

This subroutine compares the forms being requested with the
forms currently mounted on the associated device. If a match
is found, the subroutine returns immediately. Otherwise, a
forms mount message is issued to the operator and the sub­
routine $WAITs for a "$Sdevice" command to be entered. The
DCT Forms field is then set to reflect the new forms type and
processing continues.

PRCOMENT -- Subroutine to Add Comment to Printer Output

This subroutine constructs and adds to the printer output
(using the PPPUT, PPWRITE, and PPCHECK subroutines) a comment
of the form:

PRINT xxxxxxxxx BY OPERATOR.

"xxxxxxxxx" is specified at subroutine entry by parameter
register "Rl" and will be one of the following:

DELETED
RESTARTED
REPEATED
BACKSPACED
FWD-SPACED
SUSPENDED

PRDBUF -- Subroutine to Initiate Read from Direct Access Storage

This subroutine initiates a read from the track address speci­
fied by register "PNP" into the appropriate HASP buffer.

PRDCHK -- Subroutine to Check Read from Direct Access Storage

This subroutine checks the read initiated by the PRDBUF sub­
routine. If the read is not complete, the processor is placed
into a HASP $WAIT state until the read is completed. If an
I/O error is detected, a "$IOERROR" macro-instruction is issued
and the processing of the rest of the data set is deleted.

This subroutine also checks for any operator command which
would cause the Main Processing Phase to be completed and forces
any indicated completion by zeroing the chain track in the data
block just read.

Output Service Processor - Page 4.3-5

66

H A S P

PPPUT -- PPUTOLAY -- Subroutine to Build a Channel Program

This subroutine accepts a CCW from the calling program and,
if the output device is not a remote terminal, constructs a
channel program in the Processor Control Element Work Area
(see figure 4.3.1). Each command is examined and if it is an
immediate printer space or skip, and if the previous command
was a "Write, No Space", the two commands are combined into
one. When the channel program storage area is full, this sub­
routine calls the PPWRITE subroutine to initiate the execution
of the channel program. Upon the next entry, the execution
of the channel program is checked by calling the PPCHECK sub­
routine.

If the output device is a remote terminal, the Remote Terminal
Access Method is "called" to process the output line or card.
Control is then given to the PPCHECK subroutine to test for
operator commands.

PPWRITE--Subroutine to Initiate Execution of the Channel Program

If the output processor is being deleted by operator action,
this subroutine returns immediately. Otherwise a write is
initiated on the respective output device, using the channel

·program developed by the PPPUT subroutine.

PPCHECK--Subroutine to Check the Execution of the Channel Program

This subroutine checks for the successful completion of the
channel program execution initiated by the PPWRITE subroutine.
If the execution has not yet completed, the subroutine enters
the processor into a $WAIT condition until the output has
been completed. If an unsuccessful completion is detected,
the subroutine performs the error recovery described in the
paragraph below. This subroutine also interprets all operator
commands directed at the processor and initiates appropriate
action.

NON-PROCESS EXITS

The following routines are used to place the Output Service
Processor into a HASP $WAIT state if a HASP resource is not
available. In both cases the non-process register ("PNP")
must have been set to the· restart address before the routine
is entered.

Output Service Processor - Page 4.3-6

67

HASP

PNOUNIT -- A HASP unit was not available.

PNOBUF -- A HASP buffer was not available.

When the respective resource is made available, the processor
is $POSTed and another attempt is made to acquire the resource.

PRINTER "WARM START" LOGIC

When the Output Service Processor is successful in acquiring a
job from the print queue, the print checkpoint area is searched
for an available Print Checkpoint Element (see figure 4.3.2).
This element is thereafter used to record the job number, copy
count, and line and page counts.

In the event of a "warm start", the elements are searched and
each Print Checkpoint element is moved into the Job Control
Table for the job which it represents.

When the job is printed, the JCT is examined, and if the Print
Checkpoint Element is present, the processor continues printing
from the point when the last checkpoint was taken.

OUTPUT PROCESSOR BUFFER LOGIC

The buffer logic that the output processor employs is determined
by the HASPGEN parameters: $PRTBOPT, $PUNBOPT, $RPRBOPT, and
$RPUBOPT.

Buffer Option = 1

One buffer will be obtained at the beginning of output proces­
sing and will be used through the entire processing of a job's
output. A read for the following data block will not be ini­
tiated until the current data block has completed its output.
Periods of high Input/Output activity could cause the printers
and punches to operate at less than their maximum rate when
this option is used.

Buffer Option = 2

Two buffers will be obtained at the beginning of output pro­
cessing and will be used through the entire processing of a
job's output. A read for ~he following data block will be

Output Service Processor - Page 4.3-7

68

H A S P

initiated as soon as the previous data block has completed
its output and will be performed while the current data block
is completing its output. This option represents the most
efficient utilization of the output devices.

PRINT AND PUNCH ERROR RECOVERY

Print Errors

The operator will be informed of all printer errors, but they
will be ignored by the Output Service Processor.

Punch Errors

The card which causes a punch check and the card following
this card are selected automatically into the reject stacker.
The Output Service Processor will attempt to punch these two
cards correctly until no error occurs or the operator deletes
the job. Since all normal punch output is selected to another
stacker, no operator intervention will be required to clear
t~e punch. Every error will be recorded on the operator's
console.

Output Service Processor - Page 4.3-8

69

HASP

Figure 4.3.l -- OUTPUT SERVICE PCE WOIUC AREA FORMAT

Displacement [__ _______________________ 4 bytes ------------------------...!
Hex. E!£· l I

58 88 PDCT

PP FLAG 1 Address of Print/Punch/Remote OCT

SC 92 PDADCT

PDCTFLAG 1 Address of Direct-Access OCT

60 96 PJO:B

Address of Job Queue Entry

64 100 PRCHKPTE Address of Print Checkpoint Element

PUERRPT Address of Punch Error ccw
68 104 PTIMEON

Print/Punch Sign-On Time

6C 108 P!UFSAVE

Address of Next Print/Punch Buffer

70 112 PCCWPT

Address of Last Print/Punch CCW Set Up

74 116 PCCWEND

Address of Last Possible Print/Punch CCW

78 120 PMESSAGE

...,i

1~~~~~~~~~-P-r_i_n-t/_P_u_n_c_h~M-•_s_s_a_g_e~A-r_e_a~~--~~~~~-'J
8C 140

Output Service Processor - ·Page 4.3-9

70

H A S P

Figure 4.3.l -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement ~----------------------- 4 bytes ------------------------~
Hex. Dec. I

BC 140 PDD!SKIP PPRCFLAG PPRCPVCT

Count of Pages to Skip Checkpoint Copy Count
Flags

90 144 PDD:SDISP PDDBPGCT

Current PDDB Displacement Current PDDB Page Count

94 l4B PPLNCDCT

Current Line or Card count

9B 152 PRPAGECT

Current Page Count

9C 156 PDEVTYPE

P:SUFOPT l Print/Punch Device Type

AO 160 PLSAVE

Link Register Save word

A4 164 PRLINECT

Maximum Lines per Page

AB l6B PCCWCHN

"'!...

1
Variable Length Print/Punch CCW Chain

J

Output Service Processor - Page 4.3-10

71

HASP

Figure 4.3.1 -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

S8 88 PPFL.AG 1

S8 88 PDCT 4

SC 92 PDCTFLAG 1

SC 92 PDADCT 4

60 96 PJOB 4

64 100 PRCHKPTE 4

64 100 PUERRPT 4

68 104 PTIMEO'J 4

6C 108 PBUFSAVE 4

Print/Punch Synchronization Flags --

Bit Name

o PPWSW
1 PPDELSW
2 PPNOJOB
3 PRDELSW

4 PRRSTSW

s PPRDERR

6-7

Meaning

Write has been Initiated.
Function has been Deleted.
No Job is Active.
Print was Deleted by
Operator.

Print was Restarted by
Operator.

Function Terminated by
Read Error.

Reserved for Future Use.

Address of Print/Punch/Remote
Device Control Table.

Print/Punch/Remote Operator Commands --

Bit Name

o DCTSTOP
1 DCTDELET
2 DCTRSTRT
3 DCTRPT
4 DCTBKSP
s DCTSPACE

2+4
6-7

Meaning

$Z ($STOP) Command.
$C ($DELETE) Command.
$E ($RESTART) Command.
$N ($REPEAT) Command.
$B ($BACKSPACE) Command.
$T ••• ,C=l Command.
$I Command.
Reserved.

Address of Direct~Access Device Control
Table.

Address of Job Queue Entry.

Print Only: Address of Print Checkpoint
Element.

Punch Only: Address of Punch Error CCW.

Print/Punch Sign-On Time.

Address of Next Print/Punch Buffer.

Output Service Processor - Page 4.3-11

72

HAS P

Figure 4.3.l -- OUTPUT SERVICE PCE WORK AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

70 112

74 116

78 120

8C 140

8E 142

BF 143

90 144

92 146

94 148

98 152

9C 156

9C 156

AO 160

A4 164

AB 168

PCCWPT

PCCWEND

PMESSAGE

PDDBSKIP

PPRCFLAG

PPRCPYCT

PDDBDISP

PDDBPGCT

PPLNCDCT

PRPAGECT

PBUFOPT

PDEVTYPE

PLSAVE

PRLINECT

PCCWCHN

4

4

20

2

1

1

2

2

4

4

1

4

4

4

Address of Last Print/Punch CCW Set Up.

Address of Last Possible Print/Punch CCW.

Print/Punch Message Area.

Count of Pages to Skip.

Checkpoint Flags --

Bit Name

o PRCHKUSE
1 PRCHKJOB

2-7

Meaning

Checkpoint Element Assigned.
Job Active Indication.
Reserved.

Current Copy Count.

Current PDDB Displacement.

Current PDDB Page Count.

current Line or Card Count.

Current Page Count.

Buffering Option

Value Meaning

1 Single Buffering.
2 Double Buffering.

Device Type from UCB (UCBTYP) .

Link Register Save Word.

Maximum Lines per Page.

Variable Length Print/Punch CCW Chain.

Output Service Processor - Page 4.3-12

73

H A S P

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT

Displacement !.-----..,----------------- 4 bytes ------------------------J
Hex. Q!£· I I

0 0 PRCJOBNO PRC FLAGS PRCCPVCT

Checkpoint Job Number Checkpoint Checkpoint
Flags Copy Count

4 4 PRCPDDBD PRCPD:PBP

Checkpoint PDDB Displacement Checkpoint PDDB Page Count

8 8 PRLINCT

Checkpoint Total Line Count

c 12 PRPAGCT

Checkpoint Total Page Count

10 16

Output Service Processor - Page 4.3-13

74

··~

Figure 4.3.2 -- PRINT CHECKPOINT ELEMENT FORMAT (CX>NTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0

2 2

3 3

4 4

6 6

8 8

c 12

PRCJOBNO

PRC FLAGS

PRCCPYCT

PRCPDDBD

PRCPDDBP

PRLINCT

PRPAGCT

2

l

l

2

2

4

4

Job Number.

Checkpoint Flags

Bit Name

O PRCHKUSE
l PRCHKJOB

2-7

Meaning

Checkpoint Element in Use.
Job Active Indication.
Reserved for Future Use.

Curren~ Copy Co~t.

Current PDDB Displacement.

Current PDDB Page Count.

Total Line Count.

Total Page Count.

Output Service Processor - P.age 4. 3-14

75

H A S P

4.4 PURGE PROCESSOR

4.4.1 PURGE PROCESSOR - GENERAL DESCRIPTION

The Purge processor frees the job's acquired HASP direct-access
space and removes the Job Queue Element from the system.

4.4.2 PURGE PROCESSOR - PROGRAM LOGIC

The processor first acquires a Job Queue Element and issues the
$ACTIVE macro to inform the HASP Dispatcher that the processor
is active. Then a direct-access Device Control Table (OCT) and
a HASP buffer are acquired and initialized so that the job's
Job Control Table (JCT) may be read into the buffer from the
SPOOL disk. If a DCT or buffer is not available this processor
will be placed in a HASP $WAIT state until a OCT or buffer can
be acquired. If no permanent I/O errors occur while reading
the JCT, a $PURGE macro instruction is then issued to return
the job's direct access tracks. If a permanent I/O error occurs
while the JCT is being read, the DISASTROUS error routine is
called and the $PURGE macro instruction is not executed. Next,
the Job Queue Element is removed from the HASP Job Queue and
the following message is issued to the operator:

JOB xxx IS PURGED

Finally, the buffer and OCT are freed, and the $DORMANT macro
instruction is issued to indicate to the HASP Dispatcher that
the processor is inactive and control is returned to the start
of the routine for the processing of the next job to be purged.

Purge Processor Page 4.4-1

76

H A S P

4.5 HASP COMMAND PROCESSOR

4.5.1 HASP Command Processor - General Description

The HASP Command Processor receives all HASP commands entered
from acceptable local or remote HASP input sources. The Processor
is responsible for decoding each command and performing the pro­
cessing necessary to cause appropriate action to the operator's
request.

4.5.2 HASP Command Processor - Program Logic

The HASP Command Processor is initially entered at the beginning
of the Control Section (CSECT) HASPCOMM which is a part of the
resident portion of HASP. Subsequent re-entries are returns from
the various command sub-processors with optional requests for the
displaying of the "OK'' message or other message contained in the
COMMAND area of the PCE. After displaying any requested replies
the HASP Console Message Buffer queue $COMMQUE is examined for
the presence of the next command to process. If no buffer is
queued, the Command Processor waits on WORK. When $POSTed or if
a buffer is present upon entry, the Command Edit Routine is
entered via $LINK macro.

Command Edit Routine - HASPCOME

VERB CONVERSION - The Command Edit Routine converts the command
text from the long form to the standard single character verb form.
The data portion of the Console Message Buffer up to the first
comma (,) or apostrophe (') is made upper case and non-blank
characters are shifted to the left. The resulting text is compared
against arguments in the VERB CONVERSION TABLE. If a match is
found, the corresponding standard form of the command is substituted.

COMMAND EDIT AND BREAK OUT - The information in the HASP Console
Message Buffer is moved to the COMMAND field in the PCE work area.
The two bytes CMBFLAGS and CMBCONS of the buff er are moved to the
COMFLAGS and COMROUTE fields of the PCE workarea. These two
bytes when combined with the two succeeding bytes in the PCE form
the list form of the $WTO used for all responses to the operator
from the Command Processor. · ~-

The COMMAND area of the PCE is primed with blanks and the buffer
is scanned. Solid characters are ORed (moved with upper casing)
into the COMMAND area. Blanks encountered in the buffer will

HASP Command Processor - Page 4.5-1

77

H A S P

normally be skipped (blank elimination); however, if an apostrophe
is encountered, blanks will not be skipped until the next apos­
trophe. Double apostrophe characters will cause the blank com­
pression status to remain as previously set; however, the second
apostrophe of the pair will be eliminated.

As each comma is encountered an entry of the next available
character position is made in the COMPNTER area of the PCE. (The
first entry is the address of the character after the verb. The
second is the address of the second operand, etc.) When the
COMPNTER area is full, recording is discontinued. Upon completion
of the scan, the buffer is released, the COMNULOP field in the
PCE is set to the address of the second character beyond the last
solid character (null operand) , and the operand pointers are
shifted down adjacent to the COMMULOP field {see Figures 4.5.1
to 4.5.3). Control registers are set as follows:

WD = address of the first operand pointer in the COMPNTER field
WE = 4
WF = address of the last operand pointer in the COMPNTER field

SELECTING THE COMMAND SUB-PROCESSOR - The SELECTION TABLE is used
to determine the appropriate command sub-processor which must be
entered. Starting with the first element, the SELECTION TABLE is
scanned for a matching verb. When the verb is located, the first
character of the first operand is then used for comparing. If a
match is found on the operand or if the table entry contains an
X'FF.' for operand argwnent, the table entry for the command is
considered "located". If the end of the entries is encountered
for the verb or table, the command is considered invalid and the
edit routine returns to the main processor with INVALID COMMAND
message in the COMMAND area for display. (See $COMTAB macro in
Section 4.5.4 for format of the SELECTION TABLE element.)

VALIDATING THE SOURCE AND ENTERING THE SUB-PROCESSOR - Each entry
of the SELECTION TABLE may have restriction indicators as follows:

COMRMT = 1 - Reject remote sources
COMS = 1 - Reject consoles which are restricted from

entering SYSTEM COMMANDS
COMD = 1 - Reject consoles which are restricted from

entering DEVICE COMMANDS
COMJ = 1 - Reject consoles which are restricted from

entering JOB COMMANDS

The restriction indicators correspond with the restriction indi­
cators which appear in the COMFLAGS field. The COMFLAGS indicator
is previously set from the CMBFLAGS field of the HASP Console
Message Buffer which in turn is set by other HASP processors as
follows:

1. CMBFLAGS when set by the remote console processor or
remote reader processors will contain the remote
indicator. This indicator corresponds to COMRMT bit
in the SELECTION TABLE.

HASP Command Processor - Page 4.5-2

78

H A S P

2. CMBFLAGS when set by the local console support routines
will contain the restriction flags assigned to the
Console Device Control Table. (Restriction is the
opposite of authority which is set by the operator
command $TCONn,A=authority or by the system programmer.)

3. CMBFLAGS when set by the OS console interface is
the OS authority indicators inverted with the
Exclusive Or Immediate (XI) instruction.

The restriction indicators are used as the second operand of a
Test Under Mask (TM) instruction. If any restriction indicator
in the COMFLAGS field corresponds to any restriction indicator
in the SELECTION table entry, the command is rejected as invalid.
Otherwise Register 1 is set with the value in the SELECTION TABLE
entry COMTOFF field and control is passed to the CSECT indicated
by the Overlay Constant ($OCON) field of the SELECTION TABLE
element via the $XCTL macro.

Command Sub-Processor Control Sections

The Entry routine of each command sub-processor control section
will, if applicable, use the offset value in register 1 (set by
the edit routine) to determine the "relative" entry point for the
designated sub-processor. Normally the sub-processor is entered
directly by the special Command Processor macro: "Branch
Re·lative Register" on Rl ($BRR Rl). However, some control section
entry routines will pre-process the operands of the command prior
to entering the sub-processor. Each sub-processor performs the
desired functions and returns to the main command processor for
the next command.

HASP Command Processor - Page 4.5-3

79

H A S P

4~5.3 HASP Command Processor Organization

The HASP Command Processor is created by a single assembly with
multiple Control Sections (CSECT). The main CSECT HASPCOMM is
the only portion of the Command Processor that is part of the
HASP resident load module. It contains all V type address
constants required by the sub-command processors and all "BASE2"
service routines. The Command Edit Routine HASPCOME receives
control from the main processor and determines which COMMAND
SUB-PROCESSOR CSECT to enter for processing of the command entered.
One or more of the various COMMAND SUB-PROCESSOR CSECTs are used
in processing each HASP operator command. Although the physical
CSECTs are organized in accordance with the size of the overlay
work area , the logical organizational grouping is as follows:

JOB QUEUE COMMANDS
JOB LIST COMMANDS
MISCELLANEOUS JOB COMMANDS
DEVICE LIST COMMANDS
SYSTEM COMMANDS
MISCELLANEOUS DISPLAY COMMANDS
REMOTE JOB ENTRY COMMANDS

HASP Command Processor Workarea

The HASP Command Processor PCE workarea shown in Figure 4.5.l is
the primary workarea for the processor and is the only area which
may be used.to save information in the event a $WAIT is issued by
the processor or any of the "BASEl" service routines on behalf of
the processor. The fields are generally used as described in the
following paragraphs.

COMFLAGS to COMCLASS - This field contains a list form of the $WTO
macro. The $WTO is referred to by a single execute form of the
$WTO located within the resident portion of the Command Processor
which is used for all operator messages generated by any routine
within the processor:- The CMBFLAGS and CMBCONS fields of the HASP
Console Message Buffer for each command is inserted into the
COMFLAGS and COMROUTE cells and are used to provide correct route
codes for replies. The three low order bits of COMFLAGS are
restriction indicators and are set to zero prior to each $WTO reply.

COMEWORK - This field is used as a workarea and by function routines
identified by the macro instructions as follows:

HASP Command Processor - Page 4.5-4

80

"-.._ /

H A S P

macro

$CFCVE
$CFDCTL
$CFJDCT
$CFJMSG

contents upon exit from routine

last character is blank
first four characters of requested device name
address of HASP job queue element for requested job
same as $CFCVE

COMDWORK - This field is aligned on a double word boundary and is
used as a workarea and by function routines identified by the macro
instructions as follows:

macro

$CFCVE
$CFDCTL
$CFJMSG

contents upon exit from routine

five character number in EBCDIC with leading blanks
last four characters of requested device name
same as $CFCVE

COMMAND - This field contains the compressed form of the operator
cqmmand with trailing blanks at the time each command sub-processor
is entered. The command is overlayed by the reply message text for
all $WTO messages issued by any Command Processor routine. Some
command sub-processors use the area as scratch areas and in some
cases the right end for storage of critical information while
message replies are generated in the left end of the area.

COMPNTER-COMNULOP - These fields are set by the Command Edit
Routine and are used to locate the beginning of each of the
specified operands in the command currently being processed.
COMNULOP contains a pointer to the second character beyond the
last operand specified, i.e., points to a non-existant or "null"
operand. Operand 1 through n pointers are right adjusted in
COMPNTER so that operand n pointer is adjacent to the "null"
pointer (see Figures 4.5.2 and 4.5.3 for illustrations). Command
sub-processors use these areas for additional workspace after the
operand pointers are no longer needed. Examples of other· uses
are listed as follows:

1. Job queue command $DN and $DQ commands place queue
scanning control elements in the COMPNTER area.

2. Job list commands place the job range numbers (j-jj)
in the corresponding operand pointer element area.

3. $DR uses the right end of the COMMAND area and
COMPNTER-COMNULOP area to hold the reply ID numbers.

HASP Command Processor - Page 4.5-5

81

H A S P

Figure 4.5.l

Displacement

Hex. Dec.

58 88

SC 92

60 96

68 104

EO 224

E4 228

EB 232

EC 236

HASP COMMAND PCE WORI< AREA FORMAT

~~---------------------- 4 bytes ------------------------~
COM FLAGS COMROUTE COM LNG TH COMCLASS

List Form of $WTO

COMEWORK

Function Work Area

COMDWORK

I- Function Work Area ...,

COMMAND COMVER:B COMOPRND

Message Area Command Verb First Operand

__,

'l Command Text and Message Area -...i

COMPNTER

Address of n-4 Operand

Address of n-3 Operand

Address of n-2 Operand

HASP Command Processor - Page 4.5-6

82

H A S P

Figure 4.5.1 -- HASP COMMAND PCE WORR AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

EC 236

FO 240

F4 244

F8 248

~----------------------- 4 bytes ------------------------~

Address of n-1 Operand

Address of n Operand

COMNULOP

Address of n+l Operand

HASP Command Processor - Page 4.5-7

83

HASP·

Figure 4.5.2 COMMAND - COMNULOP Areas With Single Operand Command

COMMAND -

COMPNTER - - - - not used

not used

not used

not used

WD,WF + operand l+

COMNULOP - - - - null +

$PPRTlb b

t--'

Upon exit of Edit Routine,
Registers WO, WE and WF
are set for testing
instructions:

BXLE WD,WE,loop
(for next operand)

BXH WD,WE,exit
(if no more)

Figure 4.5.3 COMPNTER -COMNULOP Areas With Five Operand Commands

COMMAND - $PPRT1,PRT2,PUN1,RDR1,RD2bb

COMPNTER - WO + operand

operand

operand

operand

WF + operand

COMNULOP null

NOTE: b = blank character

l+

2+

3+

4+

St

+

Upon exit of Edit Routine,
Registers WD,WE and WF
are set for testing
instructions:
BXLE WD,WE,loop

(for next operand)
BXH WD,WE,exit

(if no more)

HASP Command Processor - Page 4.5-8

84

H A S P

Coding Conventions

The symbols with the command processor conform to the following
conventions:

1. All main processor, Edit Routine, and PCE workarea symbols
start with the characters "COM".

2. All Function macro generated symbols start with "COF".

3. All command sub-processors have entry point symbols
of the following form:

form
Cvo

Cv
Cvxx

example
CON

CB
CD7D

command
$ON

$B device
$0 1 job name 1

comments
v = the verb of the command
o = the first operand character
single character identifier

apostrophe is hexadecimal 7D

4. All symbols created for the support of the command will start
with characters which identify the entry point (CDNxxxxx
identifies a location which was originally written for the
$ON command). Commands with no unique operand character
symbol have the character "x" as the third character.
(CBX •.••. identifies a location which was originally written
for the $B device command.) These conventions may be altered
in cases where the command identification characters are
redefined after original development.

5. The main processor CSECT is HASPCOMM, all other CSECTs are
defined via the symbol field of the $COMGRUP macro; specified
starting with the characters "HASPC".

HASP Command Processor - Page 4.5-9

85

H A S P

Register Conventions

The Command Edit Routine passes control to the control section
(CSECT) which contains the appropriate command sub-processor.
At the point the Command group entry routine receives control,
the registers will contain the following:

reg
RO
Rl
WA
WB
WC
WO
WE
WF
BASE3
BAS El
BASE2
SAVE
LINK
RlS

contents
unpredictable
entry off set from the Command entry off set
unpredictable
unpredictable
unpredictable
first operand pointer (zero if no operand)
4
last operand pointer
base for CSECT
HCTDSECT address
beginning of main Command Processor
PCE address
unpredictable
unpredictable

If more than one command appears within the group, the value of
register Rl will be set by the $COMGRUP entry routine to a value
so that a $BRR Rl will enter the command sub-processor.

HASP Command Processor - Page 4.5-10

86

H A S P

4.5.4 HASP COMMAND PROCESSOR MACROS

To facilitate flexibility in the development and possible modi­
fication of the Command Processor a macro package is included
within the assembly source deck. This section is intended to
supplement the HASP Command Processor Source listings obtainable
from the HASP generation and assembly process in assisting the user
to understand the generated code as specifically used in the
current HASP as distributed.

Each HASP Command Processor macro may be dependent upon the
definitions contained within the Command Processor source deck as
well as other members of the HASP source library. These macros
are catagorized as follows:

ORGANIZATIONAL Macros which provide basic definitions and
are closely associated with the organization
of the processor.

BASE2 SERVICES Macros which call upon the main Command
Processor to perform a service (display a
reply) .

CONDITIONAL IN-LINE FUNCTIONS - Macros which perform the function
in-line or links to a routine which performs
the desired function.

RELOCATABILITY AIDS - Macros which assist in keeping the overlay
CSECT relocatable around $WAIT or implied
$WAIT situations.

The macros which are supplied under each cateqory are summarized
in Table 4.5.4. The following conventions are used in specifying
parameter requirements:

"parameter=** -"

"parameter=text -"

"parameter -"

keyword parameter is required

the assumed value if the keyword parameter
is not specified

the parameter is an optional positional
parameter

"parameter - Required" - the parameter is a required positional
parameter.

HASP Command Processor - Page 4.5-11

87

H A S P

Table 4.5.4 Command Processor Macro Summary

Op-Code

ORGANIZATIONAL:
$COMWORK
$COMGRUP
$COMTAB

BASE2 SERVICES:
$CRET
$CWTO

Definition

COMMAND PROCESSOR WORKAREA (symbolic definitions)
DEFINE GROUP OF COMMAND SUB-PROCESSORS
DEFINE COMMAND TABLE ELEMENT

RETURN TO MAIN COMMAND PROCESSOR
WRITE TO OPERATOR

CONDITIONAL
$CFCVB
$CFCVE
$CFDCTD
$CFDCTL
$CFINVC
$CFINVO
$CFJDCT
$CFJMSG
$CFJSCAN
$CFSEL
$CFVQE

IN-LINE FUNCTIONS:

RELOCATIBILITY AIDS:

CONVERT TO BINARY
CONVERT TO EBCDIC
DEVICE CONTROL TABLE DISPLAY
DEVICE CONTROL TABLE LOCATE
REPLY INVALID COMMAND
REPLY INVALID OPERAND
FIND JOB'S DEVICE CONTROL TABLE
DISPLAY JOB INFORMATION MESSAGE
SCAN JOB QUEUE ASSISTANCE
SELECT A ROUTINE BASED ON CHARACTER
VERIFY CONSOLE CONTROL OVER JOB

$ARR ADD RELATIVE REGISTER
$BRR BRANCH RELATIVE REGISTER
$SRR SUBTRACT RELATIVE REGISTER

HASP Command Processor - Page 4.5-12

88

H A S P

Organizational Macros

$COMWORK

$COMGRUP

- COMMAND PROCESSOR WORKAREA (symbolic definitions)
This macro adds to the PCEDSECT definitions for
fields located in the Command Processor PCE workarea.
Additional symbolic constants for BASE2 services
and some externally defined parameters are defined.

- DEFINE GROUP OF COMMAND SUB-PROCESSORS
This macro defines the Command Processor overlay
control.section via the $OVERLAY macro. It provides
an optional entry point routine which locates the
command sub-processor for the commands which belong
to the group and sets register Rl to the relative
address. (The symbol field must be specified for
this macro.)

n positionals - Each positional specifies the command
identification characters for the corresponding
command sub-processor located within the group.
Example:

specification
AA
DA
B
c
P40
S40
D7D

command
$AA
$DA
$B device
$C device
$P
$S
$D' jobnarne'

sub-processor
CAA
CDA
CB
cc
CP40
CS40
CD7D

entry point name

PRTY=** - Priority of the HASP overlay defined by
the macro.

DELAY=NO - The sub-processor will be entered via
$BRR Rl macro instruction. If "YES" is specified
Rl will contain the appropriate relative entry point
address and control will be given to the statement
following the macro statement. (More than one posi­
tional must be specified if Rl is to be set or the
branch is to be executed.)

HASP Command Processor - Page 4.5-13

89

H A S P

$COMTAB - DEFINE COMMAND TABLE ELEMENT
This macro defines an element in the command
SELECTION TABLE which is used by the Command Edit
Routine for identifying legal commands, eliminating
unauthorized input sources, and entering the correct
command group CSECT.

verb - Required - The command identification
character(s) corresponding to the $COMGRUP positional
parameter specification for the command. No two
$COMTAB macro statements may specify the same iden­
tification character string. All macro statements
creating entries for the same command verb will
appear in consecutive statements with the statement
which specifies a single identification character
last.

groue - Required - The exact characters used in the
specification in the symbol field of the appropriate
$COMGRUP macro statement.

REJECT= - The command source rejection mask. One or
more of the following symbols may be specified as
follows:

"COMRMT" - reject command if entered from a
remote

"COMS" - reject command if entered from a
console not authorized for SYSTEM
control

"COMO" - reject command if entered from a
console not authorized for DEVICE
control

"COMJ" - reject command if entered from a
console not authorized for JOB
control

Rejection of either a remote or a console not
authorized for SYSTEM appears as follows:

"REJECT=COMRMT+COMS"

HASP Command Processor - Page 4.5-14

90

H A S P

Figure 4.5.5 - Selection Table Element

(variable)

overlay

COMTOFF =

COMTFL

COMTVB =

COMTOFF COMTFL COMTVB

cons tan~ identifiers

Off set for the overlay control section to
locate the command sub-proqessor entry point.

Rejection flags.

Command identification characters. Verb with:

1. First character of the first operand.

2. X'FF'
If X'FF' is specified all commands which
have not been specified by the previous
entries in the table will be considered
"selected".

HASP Command Processor - Page 4.5-15

91

H A S P

BASE2 Services

$CRET

$CWTO

- RETURN TO MAIN COMMAND PROCESSOR

MSG= - "Address" of the message to be moved to
COMMAND area for display. (L=operand of a
non-register form is required.) "MSG=OK" indi­
cates that the main processor is to display the
OK message.

L= - "Value" representing the length of the message
that is to be moved or has already been moved.

- WRITE TO OPERATOR
REGISTERS USED: RO, Rl, WA, LINK, RlS

MSG= - "Address" of the message to be moved to
COMMAND area and displayed. (L=operand of a non­
register form is required.)

L=** - "Value" representing the length of the mes­
sage that is to be moved or has already been moved.

HASP Command Processor - Page 4.5-16

92

H A S P

Conditional In-Line Functions

The HASP Command Processor as distributed provides for the
ability of the author of the command sub-processor to specify
whether or not the code which performs the function is in-line or
out of line. If an out of line routine is used the name and
location of the subroutine must be defined. This is accomplished
with parameters standard for all function macro instructions
with the exception of $CFJSCAN as follows:

TYPE=CALL - The macro statement is not a definition form of
the macro. "TYPE=DEF", the macro statement defines the
subroutine form of the function and return linkage must be
provided.

SYMBOL=address - The address of the "TYPE=DEF" version of
the macro instruction. This indicates that only linkage
to the "TYPE=DEF" version is to be provided. If neither
"TYPE=DEF" or "SYMBOL=" parameters are specified the code
will be generated in-line with no return linkage.

$CFCVB

$CFCVE

- CONVERT TO BINARY
This macro converts the numeric portion of a
command operand to one or two numeric values.
REGISTERS USED: RO, Rl, LINK, Rl5
RO - contains the last number converted.
Rl - contains the next to last number converted

(last number if the only one or the last is
smaller than the previous).

POINTER=(Rl) - The address of the COMPNTR field
which addresses the operand containing one or more
numerical values separated by dash (-).

NUM=2 - return two values. "NUM=l", one value is
sufficient (Rl will be unpredictable on return) .

NOK=** - Address of the error exit routine if the
operand does not contain a number or if the number
is too large.

- CONVERT TO EBCDIC
This macro converts the number in register (RO) to
printable EBCDIC and sets the five resulting digits
in the first five characters of the PCE area
COMDWORK.
REGISTERS USED: RO, LINK

VALUE=(RO) - The positive binary half-word value
to convert to EBCDIC. If the register form is not
used, the value is contained within the addressecr­
half-word.

HASP Command Processor - Page 4.5-17

93

H A S P

$CFDCTD

$CFINVC

$CFINVO

,-, ··:::.: ·;~.'_: •'t :~·:,? x .~;_ f. "~- •'~- ~- i

DEVICEC'C0riT;RQJ.i 'J;'~BL,.E.r LQ~~'J;'E,:., .c,. . .• ·.·· 'f • ,, , .'

Tni:s m~s:;i;:~, conv~,i;,t,~ 1t.11·e. a.];l.breyic;lt.e,0: f cirm q~· ,t:.11€!. ,
device name .tQ rt:.l!e +ong, fp:i;:-m,: (.if. abb;rev.ic;i:t'ea J;Cir~ .
is specified) and searches .the DCT chain for ·a ..

· · :.<mart:Q~·ing qeyiae. . .r• · ... · . . , . , '-'·,, .(:.·
·.·REGISTE~S.t1$ED:;: RQ,, Rl, R+5,.,.~:;r;~K ..
<R1 "' oo:nta,:i.;ni;; ,1;he. a.d. d. r:.· .. e .. J5 .. s ... o. ·£ · ·t ... J1 .. e .. ··.·. o.·.:.C,T ... · .. · g~'ifo.o..·: or:' 'zero

°'. ''.'. /),:'! :<' if no DCT found. ·· · · · ·

•)PO!NmERc::;:JRl);J Tl"l,e a.oc:l;re.ss o~ the.,CQ!J1f~'J;'~;R,.~ield
whicb .• ~CJ.dr:esses t;.:t;ie .<;)peranq 'cont.ainii:lg··~n¢·:.·a:~y:j:ce

•name (a:Pbr:ev;ia.~ed} . · .··· ·· ·· .. ·. · · · · ·· ·· · · ·· · · >· ·

7" ; REPLIJ INY/\.I..ID .COMMA~P . •. ; . i . .) ... !

This macro returns to the Main Coil:unand'Proce$sor and
causes the display ":I:ltlY!\-LJD GO~~P.·'~··

', ' ' (' .. ,

- -aEPJ..iluINYAJ',:.HJ ,.Ol?E,RAt"Jl) >: .•• , •.. •> >. •··.·.·.·. ·.····•··
This ma9rp moves. e~ght 9h.9racte'r:s ,·):>ji:arting with

··the·· first:. ch .. a.racter of t~~ "cu:rient~'.· operand to
th~ ~OMMA;ND (ire<a,,.,a,nd returns tq tpe, ,~ain Command
Processor: causJng, the d.,isplay Of "operand INVALID
OPERAND'' · ...

- FINJ;l ,.)'QB' s oEVrc.~ ,. CQN'l'~OL TABLE .:.
This macro searches the DCT chain for an active

. printery puncq, qr +eade,r oc:r wl+,ic:h is assigned
to a,. prqcesq;: wpos.e .PCE .· con.t~ins ·.·.~· ... pointer to the
HASP job queue entry belonging to' the desired job .

. · ;I:f the dev,ice ,is not fO:UI).d ·~~it ·!i"iJl. be to the
instruc.t;Lon .itn:rneq,i,a:tely, foIJow:i,:qg J:.he $CFJDCT state­
ment (in-line code versionri othe:rwise, exit will be
to the instruction plus 4 ~(~SI+4}.
REGISTERS USED: Rl, LIN~, ,.Rl5 • ... ,. ''··.-:. :_: '· .' ·; , .,

J0BQE= (Ri) - fh.e a¢t'dress ,of th.e HA.s~ job queue
ent;r;y f:or the desire<J job.,

HASm Command Processor - Page 4. 5-18

94

H A S P

$CFJMSG

$CFJSCAN

- DISPLAY JOB INFORMATION MESSAGE
This macro sets into the COMMAND area of the PCE
the information required for the JOB INFORMATION
MESSAGE and displays the message.
REGISTERS USED: RO, Rl, WA, LINK, Rl5

JOBQE=(Rl) - The address of the HASP job queue
entry for the desired job.

JDCT= - The address of the $CFJDCT TYPE=DEF macro
which may be used to locate the job's DCT. Register
form is prohibited.

CVE= - The address of the $CFCVE TYPE=DEF macro
which may be used to convert numeric information
to EBCDIC. Register form is prohibited.

JOB= - This parameter may be ignored by the macro;
however, if specified as "JOB=SET" the text "JOBj"
is assumed by the expanded routine to have been set
in the COMMAND area for the desired job.

OPT= - This parameter may be ignored by the macro;
however, if specified as "JOB=Q" all jobs given to
the macro expansion are queued (not active) or
if specified as "JOB=A" all jobs given to the
expansion are active.

- SCAN JOB QUEUE ASSISTANCE

This macro is used to assist in scanning the job
queue. As each entry is located the user's PROCESS
routine is entered. The user examines the entry,
performs whatever function desired on the entry,
and returns to the symbol specified by the "NEXT="
operand. When the end of the queue is encountered,
control is given to the instruction following the
macro instruction. An optional feature of the macro
is to allow thP PROCESS routi:le an "IGNORE' entry
to the generated code to indicate the current job
entry is not acceptable to the PROCESS routine. If
the "IGNORE=" option is specified the corresponding
"EMPTY=", option is required. Register 1 is the
scan register and is assumed to be unaltered by the
user PROCESS routine. The "TYPE=DEF" option is not
permitted for this macro.
REGISTERS USED: Rl, BASE2
Rl - scan register
BASE2 - found/not found switch (in addition to
processor base.

HASP Command Processor - Page 4.5-19

95

H A S P

$CFSEL

$CFVQE

PROCESS=** - Address of the user's job queue element
processing routine. Register form prohibited.

IGNORE= - Symbol to be used to define the entry to
continue scan when the current job entry is not
of the desired type.

NEXT=** - The symbol to be used to define the entry
to continue scan when the current job entry is
of the desired type.

EMPTY= - The name of the user exit routine desired
to be entered when the job queue is found to be
empty of jobs of the desired type. Register form is
prohibited.

- SELECT A ROUTINE BASED ON CHARACTER
This macro matches the designated input character
against a list of arguments and transfers control to
the routine designated by the corresponding address.
If no match is found, the next sequential instruction
is entered.
REGISTERS USED: Rl, LINK, RlS

n positionals of form: (character, address) - Each
positional "character" sub-parameter specifies an
argument to compare against. The corresponding
address sub-parameter indicates the address of
the desired routine to enter if the character matches
the argument. Register form is prohibited.

OPERAND=(Rl) - The address of the designated input
character to examine.

- VERIFY CONSOLE CONTROL OVER JOB
This macro tests COMFLAGS field of the PCE to deter­
mine if the input source is a remote. If the source
is a remote, the not OK routine will be entered
unless either the print or punch route codes for the
indicated job specify the remote. Otherwise the OK
routine will be entered.
REGISTERS USED: Rl, LINK

JOBQE=(Rl} - The address of the HASP job queue entry
for the desired job.

OK= - Address of the routine desired to be entered
if the console has control over the job. The
address may be the symbolic register containing the
address if specified as "OK=(register,BCR)" or
"OK=(relative register,$BRR}.

HASP Command Processor - Page 4.5-20

96

H A S P

NOK= - Address of the routine desired to be entered
if the console does not have control over the job.
The address may be the symbolic register containing
the address if specified as ''NOK=(Register,BCR)" or
"NOK=(relative register,$BRR). Either "OK=" or
"NOK=" parameters must be specified.

Relocatability Aids

$ARR

$BRR

$SRR

- ADD RELATIVE REGISTER
This macro instruction is used in conjunction with
$SRR to restore the specified register to refer to
the true address of relocated information.

register - Required - The symbolic register contain­
ing the address to be made true.

- BRANCH RELATIVE REGISTER
This macro instruction is used in conjunction with
$COMGRUP to enter a sub-processor routine using the
offset provided by the $COMGRUP routine.

condition - Condition required to be met in order
to branch. · If this parameter is omitted, no comma
should be written to signify its omission.-"Condi­
tion code" may be specified by the character
strings: (E, NE, H, L, NH, NL, Z, NZ, P, M,
NP, NM, 0 or NO).

Register - Required - The symbolic register con­
taining the offset.

- SUBTRACT RELATIVE REGISTER
This macro instruction is used to make an address
pointer relative for possible relocation before
next referral to the information contained at
the address.

re~ister - Required - The symbolic register con­
taining the address to be made relative.

HASP Command Processor - Page 4.5-21

97

H A S P

4.6 OPERATOR CONSOLE ATTENTION PROCESSOR

This processor is included in HASP only if the value of the
HASPGEN variable &NUMCONS is greater than 0 (see Section 7.1).
The HASP interface to OS Console Support if &NUMCONS=O, is
described in Appendix 12.15.

4.6.1 Operator Console Attention Processor - General Description

The function of this processor is to stage a read on a console
whenever an attention is received from that console.

4.6.2 Operator Console Attention Processor - Program Logic

During HASP initialization, the first three words of the OS Console
Attention Routine (IEEBAl) are overlayed with instructions which
cause ·ros to enter the HASPATTN routine of this processor whenever an
attention interrupt occurs.

When an attention request is signalled by a console device, HASPATTN
saves the device address in the processor's PCE workarea, $POSTs
the PCE, and POSTs HASP.

When the Attention Processor is dispatched, it locates the physi­
cal console whose address is in the processor's PCE workarea and
links to the $WTO Processing Routine (see Section 5.7) to queue
a read on.that console.

Console Attention Processor - Page 4.6-1

98

H A S P

4.7 CHECKPOINT PROCESSOR

4.7.1 CHECKPOINT PROCESSOR - GENERAL DESCRIPTION

The purpose of this processor is to write the necessary infor­
mation onto disk to affect a subsequent restart of the system.
This processor will write the information at a predefined time
increment and at the completion of each stage of each job.

4.7.2 CHECKPOINT PROCESSOR - PROGRAM LOGIC

The first entry into the Checkpoint Processor is into a sec­
tion which initializes the processor. This section issues a
&GETUNIT macro-instruction to obtain a DCT for a disk and
completes this DCT by inserting the event wait field address,
track to be written, and the buffer address.

The information to be checkpointed consists of the Job Queue
which contains the status of each job in the system, the track
allocation map which indicates the track groups of each disk
that have been assigned, a save area which contains added in­
formation as to the status of the system, the print checkpoint
table which is used to effect a warm start of the jobs being
printed, and (if generated) the Job Information Table which
contains additional information concerning each job in the
system. The Job Queue and the Job Information Table reside
within the checkpoint buffers, but the remaining fields must
be moved into these buffers.

The track allocation map is the first to be moved and the
track groups that have been reserved for the jobs that are
currently executing and reading in are returned to the track
allocation map to avoid loss of tracks in case of an emergency
restart. Next the write buffers are completed by moving the
save area and the print checl:point tables. An ~EXCP is issued
to write the checkpoint buffers and a $WAIT on I/O is initiated.

The Job Information Table (if generated) is written with CCW's
which are chained to the CCW's used to write the rest of the
checkpoint information. The Job Information Table is not
written with each checkpoint but only when the processor
which requests the checkpoint indicates that he wishes the
JIT to be written. This indication is made by setting the
"JITJCKPT" bit in the "$JITSTAT" field to one.

Checkpoint Processor - Page 4.7-1

99

HASP

At the completion of the I/O operation, the HASP ECB is posted
and the timer is reset to a predefined time increment that was
specified as a HASPGEN parameter. A test is now executed to
determine if the previous write was successful and if so, a
$WAIT macro-instruction is issued to place the processor into
an inactive state until the time increment has expired or a
stage of a job is completed.

If the previous write was unsuccessful, a message is issued
to indicate to the operator that a restart is needed and a
permanent HASP $WAIT state is entered so that no further check­
point will be attempted.

Checkpoint Processor - Page 4.7-2

100

4.8 ASYNCHRONOUS INPUT/OUTPUT PROCESSOR

4.8.1 ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - GENERAL DESCRIPTION

Since the completion of all HASP I/O operations are signalled
asynchronously with HASP operation via !OS channel-end appen­
dages, these completions must be queued by the appendage
until all HASP processors can be synchronized to receive the
notification. The purpose, then, of the Asynchronous Input/
Output Processor ($ASYNC) is to, at non-interrupt time,
notify all processors of their I/O completions which were
indicated by the OS I/O supervisor at interrupt time.

4.8.2 ASYNCHRONOUS INPUT/OUTPUT PROCESSOR - PROGRAM LOGIC

The buffers (and respective IOBs) associated with I/O channel­
ends are chained, by the HASP channel-end appendages, for
later processing by $ASYNC. In addition to the POST of the
HASP task by IOS on any I/O completion, the channel-end appen­
dages also $POST the Asynchronous Input/Output Processor to
initiate its processing when the HASP task receives control.
When $ASYNC receives control, it dequeues the first buffer
from its chain of work (operating disabled, for this operation
only, since its chain is updated at interrupt time). The
Device Control Table entry (OCT) associated with this buffer
is located and the active I/O count for the device is reduced
by one. Next the user's EWF address is extracted from the
buffer and interrogated, and action is taken according to the
following algorithm:

EWF = 0

EWF > 0

EWF < 0

User does not want notification of completion
of I/O operation (always a write). The buf­
fer will be returned to the HASP buffer pool
by $ASYNC.

$POST the "I/O" bit in the EWF specified and
take no further action.

Enter a user provided routine at the address
specified by the absolute value of the EWF
field. Addressability for the processor
routine is established and the address given
is entered via the Branch and Link instruction
with the buffer address in register "Rl."
No further action is taken upon return by the
processor.

After performing the indicated action, $ASYNC returns to dequeue
the next buffer from its chain and the above procedure is re­
peated. When the end of the chain is reached, $ASYNC enters
the $WAIT state until additional I/O completions occur.

Asynchronous Input/output Processor - Page 4.8-1

101

H A S P

4.9 HASP LOG PROCESSOR

4.9.1 HASP Log Processor - General Descriptiop

The function of the HASP Log Processor is to construct output
buffers for eventual processing as part of each Job's printed
output. Input to the Log Processor is through a queue of CMBs
associated with the queue pointer $LOGQUE which is defined in
the HCT. The nature of the information in the input queue, and
consequently the printed output, varies as a function of the
HASPGEN Parameters &NUMCONS and &WTLOPT.

4.9.2 HASP Log Processor - Program Logic

Log processing of a message buffer is started by locating the
corresponding execution PC~. PCEs for output buffers are found
by using the job number in the buffer, and "reply" message PCEs
are located by using the TCB address which is placed into bytes
six through eight of the buffer by the Operator Console Input/
Output Processor's asynchronous exit. Reply message processing
is valid only for &NUMCONS>O.

A test is made to ascertain if the message will fit in the HASP
buffer currently being used by the job for log output. If space
is available, the message is placed in the HASP buffer and the
CMB is processed as follows: If the CMB status bits indicate a
"read" or a "log only" condition, then the CMB is returned to
the free queue via the routine $FREEMSG. The "log only" condi­
tion is used when &NUMCONS=O. "Read" and "Write" have meaning
only when &NUMCONS>O. If the status bits indicate a "write"
condition, then the CMB is queued for display via the $WQUEBUF
subroutine.

HASP Log Processor - Page 4.9-1

102

H A S P

4.10 OPERATOR CONSOLE INPUT/OUTPUT PROCESSOR

This processor and associated routines are included in HASP only
if the value of &NUMCONS is greater than 0 (see Section 7).
The HASP interface to the OS console support which is included
if &NUMCONS=O, is described in Appendix 12.15.

4.10.1 Operator Console Input/Output Processor - General Description

The function of the Operator Console Input/Output Processor is to
process all I/O activity on all operator consoles. The processor
also processes all console errors, making a number of retries.
If the error continues, the message is ignored.

4.10.2 Operator Console Input/Output Processor - Program Logic

The Operator Console Input/Output Processor examines each entry
in the console message buffer I/O queue,$BUSY.QUE. Each bit in
the console byte is tested for an available console. If one is
found the appropriate operation is initiated with a $EXCP macro­
instruction and testing of the queue is resumed. When all avail­
able consoles have been processed, the processor enters a $WAIT
condition until an I/O interrupt is received on one of the consoles,
or until another console message is added to the queue.

Console Input/Output Processor - Page 4.10-1

103

H A S P

4.10.3 Operator Console Input/Output Appendage - Program Logic

The Operator Console Input/Output Processor's asynchronous exit
is entered from the Asynchronous Post Processor following the com­
pletion of an I/O operation on a console device. The IOB completion
code is tested for abnormal end, and if an error exists, an error
routine is entered to retry the operation.

If the completion is normal the appropriate physical console bit
is shut off and the console byte is tested to see if the operation
is complete on all consoles. If any bits are still on the Operator
Console Input/Output Processor is $POSTed and an exit is taken.

If all bits are now off and the operation code is a write, a link
is made to $FREEMSG, the Input/Output Processor is $POSTed and an
exit is taken.

If the completed operation is a read, the response is processed
according to type. If the buffer contains a HASP command (i.e.,
an input message whose first character is a dollar sign ($)), it
is chained to the end of a queue for the Command Processor
($COMMQUE), the processor is $POSTed, and an exit is made with a
$POST of the Input/Output Processor.

If the message is a "reply", the reply number is converted to
binary and the corresponding entry in $WTORQUE is located. Using
the information in the entry, the message is moved to the WTOR's
reply area and the WTOR's ECB is POSTed. The reply queue entry
is merged into the free queue ($WTORFRE), and a link is made to
the Log Queuing Routine. The Input/Output Processor is $POSTed
and exit is made.

If the message is not a "reply" or a HASP command, it is assumed
to be an OS command. The message buffer is set to the proper
format for the Master Command Routine and an SVC 34 is issued.
When control is returned from the Master Command Routine, the
buffer is released, the Input/Output Processor is $POSTed and an
exit is made.

Console Input/Output Processor - Page 4.10-2

104

H A S P

4.11 TIMER PROCESSOR

4.11.1 TIMER PROCESSOR - GENERAL DESCRIPTION

The function of this processor is to reset the OS interval
timer after a timer interrupt has occurred.

4.11.2 TIMER PROCESSOR - PROGRAM LOGIC

This processor calls the IPOSTIT and ISETINT subroutines in
the $STIMER/$TTIMER Control Service Routine (see Section 5.6},
which causes the expired TOEs to be POSTed and the time inter­
val specified in the first TOE in the TOE chain to be set
into the OS interval timer. The processor then waits for
another timer interrupt to occur. When the next timer interrupt
is processed, the asynchronous exit routine $POSTS this pro­
cessor and the above procedure is repeated.

Timer Processor - Page 4.11-1

105

HASP

4. 12 REMOTE TERMINAL PROCESSOR (360/20-STR)

4. 12. 1 Remote Terminal Processor (360/20) - General Description

The Remote Terminal Processor (RTP), although not a part of HASP

proper, can be considered in the same catagory as other HASP processors.

RTP is created by HASPGEN to operate as an extension of HASP on a

System 360 Model 20 used as a remote terminal to HASP. RTP, in

the Model 20, maintains constant communications with HASP at the

central computer site via several classes of telephone lines to 1) encode

and transmit jobs submitted at the remote site to HASP for execution on

the central computer, and 2) print and/or punch the output from

jobs thus submitted as the output becomes available. Various techniques

are utilized by RTP and HASP to obtain maximum performance of both

the Model 20 devices and the communication lines used. RTP currently

requires an SK Model 20 with any reader and printer attached. The

program can be made to operate in a 4K environment at a somewhat

degraded performance .. with reduced ease of operation.

RTP has been designed to allow the addition of "background" functions

to operate in a multiprogrammed environment with normal remote terminal

processing.

Remote Terminal Processor (360/20) - Page 4. 12-1

106

HASP

4 .12. 2 Remote Tenninal Processor (STR Model 2 0) - Program Logic

Upon completion of the loading of the RTP program deck, control is

transferred to the initialization phase of the program to prepare for job

processing. Initialization first checks the card reader for the presence

of patch {REP) cards and, if present, makes the appropriate patches

{the RTP REP card format is identical to the HASP REP card as described

in Section 6. 4). Encountering a /*SIGN ON card within the REP cards,

will cause initialization to replace the default remote SIGN-ON identification

and password by the contents of the card. After loading REPs, or if no REP

cards are present, the dynamic configuration card (which follows REPs if

present) is decoded and appropriate commands for the system punch

s.elected are established. {The formats of the SIGN-ON and dynamic

configuration card are given in the Model 20 Operator's Guide-Section 11. 2).

The final process of initialization is the dynamic construction of the buffer

pool. Buffers are built, according to the HASPGEN parameter &TPBFSIZ

until the memory size of the machine is reached or the assembly parameter

&NUMBUFS is reached. Construction of the buffer pool overlays the complete

initialization routine. Control is then passed to the processing section of RTP.

Remote Terminal Processor (360/20) - Page 4 .12-2

107

HASP.

The processing phase of the program consists of four principal processors

and a communications adapter (CA) 1/0 supervisor. Allocation of CPU

time to the various processors is accomplished via a commutator. A

p,rocessor is entered into contention for CPU time by changing its comm.u­

tator entry from a NOP to a BRANCH command. Through the use of the

WAIT macro, a processor may await the occurrence of a certain event

and be entered, via the commutator, below the wait instruction upon

completion of the event.

Remote Terminal Processor (360/20) - Page 4. 12-3

108

HASP

PROCESSORS

Card Read Processor

Upon initial entry, this processor checks the system card reader

for ready status. If the device is not ready, HASP is notified, via a

SEND EOT, of the lack of jobs to transmit, the CA receive processor

is activated, the card read processor is deactivated, and entry is made

to the commutator. If the card reader was ready, the transmission phase

is immediately begun. Cards are read (double buffered) and are passed

to the ENCODE subroutine which compresses and translates the card

for transmission. The encoded card images are blocked in a buffer

obtained from the dynamic buffer pool until the capacity of the buffer is

reached. The buffer is then chained into a queue of buffers awaiting

transmission by the CA transmission processor to HASP in the central

computer. Another buffer, if available, is obtained from the buffer pool

and is processed in a like manner. When, and if, the supply of buffers

is exhausted, the reader processor enters a WAIT state to await the freeing

of a transmitted buffer by the CA transmission processor. When the

last card of the job stack has been read, a SEND EOT (zero word count

buffer) is queued for transmission and the steps described previously

are done to terminate transmission and activate reception. In order to

Remote Terminal Processor (360/20) - Page 4. 12-4

109

HASP

minimize CPU utilization, the card read processor-compression routine

only compresses "n" or more blank characters (where 11 n" is the value

of the assembly parameter &CCT}. The format of transmission records

to HASP is described in Section 12. 9. 3,

Remote Terminal Processor (360/20) - ,Page 4. 12-5

110

HASP

Communications Adapter Transmission Processor

The CA Transmission processor removes buffers from an ordered

queue, dynamically being built by the Card Read Processor, and trans­

mits their contents to HASP in the central computer. All transmissions

are via the Communications Adapter-1/0 Supervisor (CAIOS) which pro­

vides for line re-instruct at interrupt time to make optimum use of the

line (See CAIOS description). As posting of successfully completed

writes occurs, the buffers are returned to the free buffer chain for

reuse by another processor. This processor continues to dequeue and

transmit buffers, as they become available, until a buffer with a trans­

mission word count of zero is encountered. An EOT is then sent to HASP

to indicate the end of the input stream, the CA Transmission Processor is

deactivated and return is made to the commutator.

Remote Terminal Processor (360/ZO) - Page 4. 12-6

111

HASP

Communications Adapter-Receive Processor

The CA Receive Processor is activated by the Card Read Processor

when it is determined that no jobs are available to transmit to the central

computer. Upon being entered, CA Receive establishes communication

with HASP in the central computer to await the output of a previously

submitted job. The lack of jobs to transmit is indicated by HASP with an

immediate EOT signal to the Model 20. When this EOT is received, the

CA Receive Processor deactivates itself and activates the Card Read

Processor to again check for the presence of jobs to send to HASP.

If a job is avialable to be printed or punched, the CA Receive

Processor activates the Print/Punch processor and immediately begins

reading transmittal records into buffers obtained from the dynamic

buffer pool. Buffers, thus filled, are placed in an ordered queue to

await processing by the Print/Punch Processor. All CA reads are

via the Communications Adapter 1/0 Supervisor (CAIOS) which provides

for line re-instruct at interrupt time to make optimum.use of the line

(see CAIOS description). Processing continues, as buffers and/or

transmittal records become available, until an EOT signal is received

from HASP indicating end-of-job. A buffer with a word count of zero

is added to the queue to inform the Print/Punch processor of the end­

of-job.

Remote Terminal Processor (360/20) - Page 4. 12-7

112

HASP

Communication is then, once again, established with HASP to

ascertain if additional output for this i2P is available (i.e. the punch

output of the job which has just completed printing). After the additional

output has been processed, or if none existed, the CA Receive Processor

is deactivated, the Card. Read Processor is activated, and return is

made to the commutator. Note that this logic, of activating the Card

Read Processor prior to beginning processing output from the next job,

allows the Model 20 Operator to interrupt print/punch processing, at

a job boundary, to transmit a job to the central computer.

Remote Terminal Processor (360/20) - Page 4. 12-8

113

HASP

Print/Punch Processor

I

When activated, the Print/Punch Processor begins dequeuing_ and

processing buffers from the queue (being) created by the CA Receive

Processor. Records to be punched are indicated by "carriage control"

characters of X'OFOF' and are routed to the punch section of the pro-

cessor. In order to minimize CPU requirements, the print processor

does not provide for 1-7 /8 encoding of print characters (see Section 12. 9).

The 16 4 of 8 characters normally reserved for 1-7 /8 encoding are re-

defined for print records only, as additional print characters, thus

yielding a· 64 character print set.

After reconstructing and printing or punching all records in a buffer,

that buffer is returned to the buffer pool for use by another processor.

When a buffer with a zero word count is encountered in the queue (indi-

eating end-of-job), the Print/Punch Processor is deactivated, unless

records from the next job have already been queued, and return is made

to the commutator.

If a dynamic configuration card described the system punch unit as

DUMMY, the punch section of the processor is dynamically altered (by

initialization) to immediately free all punch buffer encountered in the

Print/Punch buffer queue. This results in eliminating punched output;

however, punch records are still transmitted to the Model 20.

Remote Terminal Processor (360/20) - Page 4. 12-9

114

HASP

By setting the assembly parameter &PUNCH to 0, all code concerned

with processing punched output will be eliminated from RTP. The

appropriate HASPGEN must be done on the central system to force all

punch output for a "punchless" terminal to be processed locally.

Remote Terminal Processor (360/20) - Page 4. 12-10

115

HASP

Communications Adapter I/0 Supervisor

The primary purpose of CAIOS is to assure the maximum possible

communication line utilization by re-instructing the line at the earliest

possible moment after completion of a previous generation.

All requests to read and/or write the communication line are passed

to CAIOS for execution by the CA processors. Upon receipt of an 1/0

request, CAIOS immediately initiates the operation if the line is dormant,

or queues the request to await completion of the currently active opera­

tion.

The completion of a CA 1/0 operation causes an interrupt which

immediately transfers control to CAIOS. If the operation indicated as

complete by the interrupt was successful (error free), any queued I/O

request is immediately initiated. The Event Control Block of the re­

quester of the just completed 1/0 operation is posted (with a X' 7F') to

indicate the successful completion of the request. Return is then made

to the interrupted processor. CAIOS recognizes and attempts to

correct all transmission errors encountered on any CA I/O operation.

Since both CA processors are designed to double buffer I/O requests,

CAIOS insures virtually total line utilization during transmission periods.

Remote Terminal Processor (360/20) - Page.4.12-11

116

HASP

4. 12. 3 Remote Terminal Processor (360/20)-Assembly Parameters

The following indicates the variable name and function of certain RTP

assembly parameters which can be of general use.

&TPBFSIZ

&NUMBUFS

&CCT.

defines the size of the buffers used for

transmission to and from the HASP system.

(Since this variable must exactly agree with

the corresponding variables in the HASP

system, the values of both are automatically

set at HASPGEN time.

limits the number of CA buffers created

dynamically at initialization time. Initial­

ization will create buffers until the capacity

of memory, or the value of &NUMBUFS is

reached. It is suggested that this value be

made large enough to allow sufficient buffering

(hence line load-leveling) to occur.

represents the minimµm number of consecutive

blank characters which will be compressed

by the Card Read Processor. This value

should never be less than 4 and, significantly

Remote Terminal Processor (360/20) - Page 4. 12 .. 12

, \

117

HASP

&PUNCH

&MACHINE

reduces CPU requirements by the Card Read

Processor as it is increased. A value of 80

will effectively prevent all blank compression

(except on totally blank cards). The value of

&CCT may never exceed 80.

controls the existance of code within RTF to

process punch output received from HASP.

If &PUNCH= l, punching capabilities will exist

in RTP.

&PUNCH=O, no punching capabilities will be

created in RTP (NOTE:. the HASPGEN of the

central computer system must agree with this

option.)

defines the Model of SYSTEM/360 on which

RTF is to operate. This value must presently

be set to 20. This option can subsequently be

used to assemble RTF, at HASPGEN time, for

any Model of SYSTEM/360 being utilized as a

HASP remote terminal. Although certain parts

of this feature are currently in RTP, it is

incomplete and totally untested.

Remote Terminal Processor (360/20) - Page 4. 12-13

118

HASP

4 .13 REMOTE TERMINAL PROCESSOR (SYSTEM/360-BSC)

The following sections outline the basic logic flow of the MULTI-LEAVING

Remote Terminal Processor program for System/360 (including Model 20)

workstations utilizing Binary Synchronous communications devices. The same

workstation program is utilized for both the Model 20 and System/360 work­

stations with generation parameters for the machine type.

4 .13. 1 General Description

The MULTI-LEAVING Remote Terminal Processor program is created by

HASPGEN to operate as an extension of HASP on any Model of SYSTEM/360

used as a remote workstation for HASP. This terminal program maintains

cor:i.stant communications with HASP at the central site via several classes

of telephone lines to (1) encode and transmit jobs submitted at the remote

site for OS/360 processing on the central computer, and (2) print and/or

punch the output from jobs thus submitted as the output becomes available.

Optionally, if an operator console is attached to the remote system,

informational and control facilities are provided. All of the above functions

may occur simultaneously. Various techniques are utilized by HASP and

the workstation program to obtain maximum performance of the remote

devices and the communications line. Figure 4. 13. 1 indicates the basic

information flow through the system.

Remote Terminal Processor (Systern/360) - Page 4 .13-1

119

HASP

Figure 4.13.1 MULTI-LEAVING Information Flow Diaqram

$ClJTBJF
Queue

4~

STPPUT

OACTBJFF

A
• $TPPUT

Device
Tank

. $RRTNl

. SWRTNli

INPUT DEVICE

$CCJ.1SUP

STPPUT ...

HASP
A

• SCCJ.1SUP

CBUFFER

$CCJ.1SUP

$BUFFER
Pool

4~

$TANKPOL
Pool

Notes:

... -

$CCJ.1SUP

$TPGET

$TPGET ..

$PRTNl
$URTNl
$WRTNl

-

'llr

SINBUF
Queue

$TPGET

~r

TCTBJFER
Queue

.
• $TPGET

J_

TCTTANK
Queue

• $PRTNli
• $URTNl
• $WRTNli

' OUTPUT DEVICE

Solid lines indicate buffer or decompression tank flow with or without data.

Broken lines indicate data flow only.

Line comments indicate processor responsible.

Remote Terminal Proces.sor (System/360) - Page 4 .13-2

120

HASP

4 . 13 . 2 Program Logic

The MULTI-LEAVING Remote Terminal Processor consists of an initialization

section, four principal processors, three communications interface processors

and a communications INPUT/OUTPUT supervisor. Allocation of CPU time to

the various processors is accomplished through a basic program commutator.

A processor is entered info contention for CPU time by changing its commutator

entry from a NOP to a BRANCH command. A single control block, the Total

Control Table (TCT) is utilized by all processors to provide for synchronization

of concurrent operations, processor status information,re-enterability and both

inter and intra processor communication.

The following sections discuss the basic logic flow of the various

comr:?onents of the program.

Communications Interface Processor - Output ($TPPUT)

This processor serves as the interface between the various input processors

and the communications INPUT/OUTPUT supervisor. Its function is to compress

and encode records for subsequent transmission to HASP at the central site.

$TPPUT is utilized as a subroutine by the various input processors and relieves

the input routines of the responsibility of data compression and transmission

buffer management. As records are submitted for transmission, $TPPUT

compresses the records according to a compression type generation parameter

Remote Terminal Processor (System/360) - Page 4 .13-3

121

liA::i P

(&CMPTYPE) and add the encoded record to its current output buffer. When

the current buffer is filled or terminated, it is chained in an ordered queue

for transmission to HASP by the communications INPUT/OUTPUT supervisor

and a new buffer obtained. Details of the compression and encoding •

technique utilized by $TPPUT are included as an appendix to this manual.

Communications Interface Processor - Input ($TPGET)

This processor serves as the interface between the various output processors

(Print, Punch, Console, etc) and the Communications INPUT/OUTPUT processor.

Its function is to decode and uncompress transmission buffers received from

HASP and to route the decompressed records to the appropriate processor for

processing. $TPGET is entered from the commutator and processes buffers from

a ordered queue of received buffers established by the Communications INPUT/

OUTPUT supervisor. Records received are deblocked into "decompression

tanks" and passed to the appropriate processor. Synchronization and passage

of the tanks to the processors is accomplished through the Total Control Table

{TCT) for each processor. $TPGET additionally is responsible for metering

the flow of each type of record from HASP. This also is accomplished by

utilizing the various buffer and tank limits indicated in the TCT for each

processor.

Control Record Processor ($CONTROL)

This processor provides synchronization between the various processing

Remote Terminal Processor (System/360) - Page 4 .13-4

122

HASP

functions at the workstation and the HASP SYSTEM at the central site. Control

Records from HASP (i.e. Request to start a function, etc) are queued on this

processor by the $TPGET processor. $CONTROL then processes the control

record, transmits a response, if required, through $TPPUT and initializes the

required functional processor.

Communications INPUT/OUTPUT Supervisor (COMSUP)

COMSUP maintains communications with HASP in the central CPU at all

times and is responsible for the transmission of all data to and from the remote

site. The data processed by COMSUP is always in compressed buffer form

and passes to and from COMSUP via ordered queues esta;.,.ilished by $TPPUT

and for $TPGET.

The communications I/O is primarily interrupt driven and is completely

maintained by COMSUP (i.e. COMSUP is both the initiator and executor

of communications I/O). During periods requiring no data transmission,

COMSUP maintains a "handshaking" cycle with HASP at approximately 2

second intervals to insure full bi-directional capabilities and to avoid

unprogrammed 11 time-outs 11 of the adapter.

In addition COMSUP maintains, verifies and corrects (if necessary)

the MULTI-LEAVING block sequence checking feature and detects, logs

and retries all communications errors.

Remote Terminal Processor (System/360) - Page 4 .13-5

123

HASP

Initialization Processor

The Initialization Processor receives control from the loader and

initializes the remote terminal program as follows:

1. If the CPU is not Model 20, general registers 1, 2, and 3

are loaded to establish 16 K addressability.

2. Replacement (REP) cards are read from READER 1 for possible

modifications to the program. The format of the REP card

is as follows:

Col. 2-4 REP

Col. 9-12 Replacement address - hexadecimal address

of the first half word of storage to replace

Col. 17-n

Col. n+l

(if blank the previous REP card is continued)

xxxx, xxxx, ... xxxx replacement data -

one or more half word groups of hexadecimal

data separated by commas

blank - terminator for the replacement data

Col. n+2-80 comments - any text

Each REP card is printed on PRINTER 1 when read as a record of program

modification. REP reading is terminated when either a blank card (blank in

Col. 1-5) or a /*SIGNON card is encountered.

3. The HASP ENVIRONMENT RECORDING ERROR PRINTOUT (HEREP)

is printed if the recording table is intact from the last execution

Remote Terminal Processor (System/360) - Page 4 .13-6

124

HASP

of the program; otherwise, a new table is created for .future

recording and print out.

4. Interrupt PSW' s are set for non Model 20 CPU's.

5. The communication adapter is enabled and communications

established with HASP as follows:

a. Write SOH-ENQ to HASP

b. Read for DLE-ACKO from HASP

If I/O errors occur or HASP responses do not match the expected

sequence, the sequence is repeated.

6. The processor constructs a buffer pool over itself and queues

the SIGN-ON record for transmission to HASP.

7. I/0 PSW's are set (I/O old points to commutator) and control

is passed to the communication adapter interrupt routine.

Print Service Processor - $PRTN1

The Print Service Processor's major functions are dequeuing decompression

tanks containing print information from the printer Total Control Table,

examining the sub-record control byte for carriage control information,

performing required carriage control, printing the information on the designated

printer, and releasing the used decompression tank to the pool. The processor

also provides event control upon dequeuing and releasing the "tanks". If

no console typewriter is attached to the system and the value of the user

option &PRTCONS is not zero, the processor will set status information

Remote Terminal Processor (System/360) - Page 4 .13-7

125

I I :
HASP

at the end of each print data set which allows the console processor to queue

operator messages for printing.

Input Service Processor - $RRTN1

The Input Service Processor supports various card readers used for the

purpose of submitting job streams to HASP and in the case of Model 20

DUAL 2 560 MFCM serves the functions of punch service processor. The

processor provides error analys.is and recovery for supported devices.

Execution begins with the initial read routine which continuously attempts

to read cards from the designated card reader. In the case of a DUAL 2 560

control is passed to the punch routine if the primary feed is empty. If reader

is a DUAL 2520 or 1442 the routine will check the first card for blank and

if so pass control to the punch preparation routine; otherwise subroutine

$TPOPEN is called which sends a request to send a job stream to HASP.

When permission is received the job stream submission routine is entered

which reads cards into one of two decompression tanks calling the $TPPUT

processor which compresses the data and schedules transmission to HASP.

At end-of-file $TPPUT is used to signal HASP and control is passed to the

initial read routine.

The DUAL 2 560 punch routine attempts to dequeue a decompression tank

from the Total Control Table. If successful the card image is punched and

the used "tank" is released to thP. pool. The routine continues to dequeue

and punch for a maximum of 100 cards; this time tests are made to determine

Remote Terminal Processor (System/3.60) - Page 4 .13-8

126

HASP

the existance of cards in the primary feed. The tests are also made in the

event of no tanks available for dequeuing. If the tests are negative the

processor continues to punch cards; otherwise control is passed to the

read routine following the initial read. The processor provides event control

upon dequeuing and releasing decompression tanks.

DUAL 2 52 0/1442 punch preparation routine tests for:

1. Operator signal - changing of the data dials, . SRI command,

or unsolicited device end. · (Depends upon configura ti6n).

2. Presence of Decompression tanks for punching.

If the operator signals, the routine passes control to the initial read

routine. If a "tank" is queued to the device Total Control Table control

is passed to the Punch Service Processor ($URTN1).

Punch Service Processor - $URTN1

The Punch Service Processor's major functions are dequeuing decompression

tanks containing print ~nformation from the punch Total Control Table, punching

the information into cards on the designated punch, and releasing the used

"tanks" to the pool. The processor also provide event control upon de-

queuing and releasing the "tanks" in addition to error recovery upon

erroneous punching of data. If the device is a DUAL 2 520 or 1442 control

is passed to the Input Service Processor ($RRTN1) after servicing output

"tank".

Remote Terminal Processor (System/360) - Page 4 .13-9

127

HASP

Console Service Processor - $WRTN1

If the remote terminal has an attached operator printer keyboard, the

console processor performs the following functions:

1 . Reads operator commands from the console keyboard.

2 • Examines the input for local commands (Model 2 0 only)

passing local commands to the command processor and

passing all other commands to HASP.

3. Type operator messages contained in decompression tanks

queued to the console Total Control Table.

4. Convert codes in the error message log table to readable form

and type the resulting messages.

Execution begins with the processor testing for an operator command

in the console input "tank" waiting to be transmitted to HASP. If so the

console read in function is skipped and an attempt is made to send the

command to HASP. Control is passed to the console output routine which

tests for output messages. If so, the processor dequeues the tank, types

the message, and releases the tank. Control is then passed to the beginning

of the processor. If no output messages are pending the console logging

routine is entered which converts, types the message, and passes control

to the beginning of the processor. 'I'he console read routine tests for

operator requests and if so, reads the command from the keyboard, calls

the $TPPUT processor to compress the data and transmit the command to

HASP, and passes control to the console output routine. If the remote

Remote Terminal Processor (System/360) - Page 4.13-10

128

.<.,. ,' ... \

HASP

terminal is a Model 20 the read routine tests for local commands and

calls the command processor which in case of 11 • S" command , posts the

appropriate Service Processor and returns. Local commands are not

tran.smi tted to HASP.

The Console Service Processor without a console keyboard exists only

when the value of the user option &PRTCONS is not zero. Execution begins

with a test for printer availability. If available, any console messages are

removed from the console output queue by the dequeue routine and attached to

the printer queue, allowing the Print Service Processor to print the message.

If no console messages are queued the processor will convert any log messages

into readable form, move the resulting message into a 11 tank 11 obtained from

the pool, queue it to the console output queue and pass control to the con-

sole dequeue routine. If the value of &PRTCONS is one and the printer is

not available console messages are allowed to accumulate to a maximum

queue limit. If the limit is reached prior to the printer becoming otherwise

available the printer is forced available and the messages are queued to the

printer with the sub-record control byte of the first message set to skip to

channel 1 before print. If the value of &PRTCONS is two and the printer

is not available to the console the processor will dequeue console tanks

and release them to the pool.

Remote Terminal Processor (System/360) - Page 4 .13-11

129

. HASP .,

Total Control Table (TCT)

The Total Control Table is the major working storage area for the unit

record processors and is customized for each configuration and device supported

by the remote terminal program. Each basic TCT field may be referred to by using

symbols defined in the DSECT named TCTDSECT, however, each processor has

the option of uniquely referting to the fields directly by using the alternate

three character prefix to each field name as follows:

TCT = General TC T prefix

CCT = Control record TCT

PCT = Printer TCT

RCT = Reader TCT.

UCT = Punch TCT

WCT = Console TCT

Appropriate DSECT's are provided by generation macros in the event more

than one TCT of a given type is supported by the system. Basic control

fields appearing only in systems with model numbers above the Model 20

are as follows:

NAME

$pCTCOMn

DESCRIPTION

TCT addressability field - The commutator

branches to this field to give control to the

appropriate processor - the field contains a

BALR R7, 0 instruction which sets up TCT

Remote Terminal Processor (System/360) - Page 4 .13-12

130

/

HASP

NAME

TCTSTRT

TCTENTY

TCTRTN

TC TC CW

TCTDATA

DESCRIPTION

addressability for the processor - symbol

characters "p" and "n" uniquely identify the

TCT for the commutator

First two characters of unconditional branch

instruction

"S" type address constant pointing to the

appropriate processor - the field completes the

branch instruction which passes control to the

processor at the desired entry point

Return to next entry in commutator - each

processor waits by branching to this field

of the TCT which in turn branches to the

commutator

Actual CCW op-code used in last I/O on the

device - set by the processor and unit record

ros

Address of data area used for last I/O transfer

or address of input "tank" currently being

Remote Terminal Processor (System/360) - Page 4 .13-13

131

••,,,

HASP

NAME

TCTFLAG

TCTOPCOD

TCTCCWCT

TCTSENSE

TCTUCB

TCTECB

DESCRIPTION

compressed for transmission to HASP

CCW flags

Op-code which will be inserted into the

TCTCCW field upon normal entry to unit record

IOS

CCW count field - length of data last trans­

ferred or to be transferred

Sense information - set by unit record IOS

for error diagnostic purposes

Device Address - contains hexadecimal

device address for SIO and interrupt recognition

purposes - the high order bit of the field is set

on by the processor when waiting for HASP to

authorize job submission

Event Control Block - contains all bits stored

in CSW byte 4 since the last SIO instruction for

the device - busy bit is set at SIO and when

the processor desires to wait for unsolicited

Remote Terminal Processor (System/360) - Page 4 .13-14

132

HASP

NAME

TCTALTOP

TCTSAVl

DESCRIPTION

device end - busy bit is reset at device end

Alternate op-code for DUAL reader/punch

devices - processors requiring alternate op­

codes have the option of setting the TCTCCW

field with the contents of this field prior to

entry to unit record IOS

Save area for the processor subroutine LINK

register

Basic fields which may appear in remote terminal programs for all

360 models are as follows:

TC TN EXT

TCTFCS

TCTRCB

Next TCT in the chain of TCTs

Function Control Sequence Mask - used by

$TPGET processor to setup the FCS transmitted

to HASP for backlog control

Record Control Byte - records from HASP which

have RCB bytes identical to this field will be

queued for output on the corresponding device

Remote Terminal Processor (System/360) - Page 4 .13-15

133

HASP

NAME

TC TS TAT

DESCRIPTION

Status Flags - each bit has one or more meanings

which are dependant upon the processor

involved:

bit 0 = TCTOPEN - always off indicating

device is in use by HASP output

(as appropriate)

bit 1 = TCTACT - used by $TPGET to

determine which output devices

ne1ed more data - processors set bit

1 when dequeuing output "tanks"

bit 2 = TCTSTOP - device has been stopped

and is awaiting a. start command.

bit 3 = TCT1052, TCT2152 - console

d~wice identifier

bit 4 - PCT only= TCT1403, TCT1443,

'l'CT2203, TCTPRTSW - indicates the

:status of the corresponding printer -

if set the printer is available for

printing operator messages

bit 4 - WCT only = TCTREQ - console request -

operator desires to enter a command

Remote Terminr.il Processor (System/360) - Page 4 .13=16

134

HASP

NAME

TC TC OM

TCTID

TCTINRCB

DESCRIPTION

bit. 4 - UCT only= TCT1442 - the device is a

1442 with single stacker pocket

bit 5 - RCT or UCT = TCT2 540 - TCT is for

a 2540

bit 5 - WCT only = TCTREL - release requested -

an unsuccessful attempt has been made

to obtain a buffer for command trans­

mission to HASP - the command is in

compressed fonn in the consoles "tank"

waiting for a free buffer

bit 6 - RCT/UCT = TCT14420, TCT25600 -

TCT is for a DUAL 1442 Reader Punch

or DUAL 2 560 MFCM

bit 7 - RCT/UCT = TCT2 5200 - TCT is for a

DUAL 2520 Reader Punch device

Pointer to corresponding commutator entry

Optional field - two character identification

for local command processors

Optional field - exists when DUAL devices are

attached to the system - identifies the Input

Remote Terminal Processor (System/360) - Page 4 .13-17

135

HASP

NAME DESCRIPTION

Service Processor function as opposed to the

Punch Service Processor function identified by

TCTRCB - TCTINRCB is equated to TCTRCB if

no DUAL devices are attached

The following fields are normal device extensions and do not exist for

card reader devices when DUAL devices are not attached to the remote

terminal:

TCTTANK

TCTBUFER

TCTTNKLM

TCTTNKCT.

TCTBUFLM

Beginning of output "tank" queue - output records

appear in unit record image form

Beginning of output buffer queue - contains

records in compressed form waiting for de­

compression into tanks

Tank limit - maximum number of "tanks" which

may be placed in the 11 TCTTANK queue

Tank count - actual number of 11 tanks" queued

to the TCT

Buffer limit - maximum number of output buffers

which may be placed in the TCTBUFER queue

Remote Terminal Processor (System/360) - Page 4 .13-18

136

HASP

NAME

TCTBUFCT

DESCRIPTION

before signalling HASP to suspend sending the

streams - limit is ignored for WCT

Buffer count - actual number of buffers queued

to the TCT

Reader and console TCT' s have extensions which are used as "tanks 11

for records which are transmitted to HASP. These "tanks 11 belong to the

device (2 for readers and 1 for the console) and are not released to the "tank"

pool. The following field symbols are only defined for the TCT 's with

prefix designators. RCT, WCT, and with DUAL devices UCT:

RCTTANKl , RCTTANK2 "Tank" origin and working storage

RCTTRCBl, RCTTRCB2 Input RCB for HASP identification

RCTTSRCl I RCTTSRC2 Sub-record control byte = x· 80 I

RCTTCTl , RCTTCT2 Count field - length of data portion

RCTTDTAl , RCTTDTA2 Data area - input card or operator command -

will be blank for the DUAL 2520 and 1442

while in output status

Remote Terminal Processor (System/360) - Page 4 .13-19

137

HASP

SECTION

4.14

4.14.1

TABLE OF CONTENTS

Remote Terminal Programs (1130)
Introduction

PAGE

4.14-1
4.14-1

Remote Terminal Proce~sor (RTPl 130) 4 .14-3
Introduction 4 .14-3
Commutator Processors 4 .14-4

TPIOX - SCA I/0 Control 4 .14-6
TPGET - TP Buffers From HASP 4 .14-6
TPPUT - TP Buffers To HASP 4 .14-6
RDTFO - 2501 Card Reader 4 .14-7
RPFFT - 1442 Reader Punch 4 .14-7
PRFOT - 1403 Printer 4 .14-7
PRETT - 1132 Printer 4.14-8
CONSL - Console Keyboard/Printer 4 .14-8
RTPET - Initialization 4 .14-9

System Subroutines 4 .14-10
SGETQEL - Dequeue An Element 4 .14-11
SPUTFQL - Enqueue A Free Element 4 .14-11
SPUTAQL - Enqueue An Active Element 4 .14-11
STPOPEN - Initiate Control Record 4 .14-11
SSRCHB - Search UFCB Chain 4 .14-12
SWTOPR - Type Message 4 .14-12
SLOGSCA - Log SCA Error 4 • 14-12
SMOVE - Move A Variable Number Of Words 4.14-13
SXPRESS - Convert Card Code To EBCDIC 4 .14-13
SXCPRNT - EBCDIC To Console Print 4.14-13
SXPPRNT - Convert EBCDIC To 1403 Print 4.14-13
SXCPNCH - Convert EBCDIC To Card Code 4.14-13
STRACE - Trace Machine Registers 4 .14-13
SSDUMP - System Core Dump 4 .14-13

Processor Subroutines 4 .14-16
BSXIOS - SCA I/O Supervisor 4 .14-17
DBLOCK - Deblock Data From HASP 4 .14-17
TPCOMPR - Construct Output To HASP 4 .14-18
DBUGSCAL - Trace SCA Interrupts 4 .14-18
TPBUILD - Build TP Buffers· 4 .14-20

HASP Remote Terminal Processor (1130) - Page 4 .14-i

138

/

HASP

SECTION

4.14.1
Continued

4.14.2

4.14.3

4.14.4

4.14.
4.14.S

4.14.6

TABLE OF CONTENTS
(Continued)

Control Block And Data Formats
Chained List General Format
UFCB - Unit-Function Control Block
TPBUF - TP Buffer Format
Output Element (Tank) Format
Object Deck Format
REP Card Format

Remote Terminal Main Loader (RTPLOAD)

Remote Terminal Bootstrap (RTPBOOT)

Remote Terminal Program 3 60 Processing
(LETRRIP)

1130 Instruction Macros

General Information
Variable Internal Parameters

PAGE

4.14-21
4.14-21
4.14-22
4 .14-25
4.14-27
4.14-28
4.14-29

4.14-32

4.14-33

4.14-38

4.14-39

4.14-44
4.14-44

HASP Remote Terminal Processor (1130) - Page 4 .14-ii

139

HASP

4 .14 REMOTE TERMINAL PROGRAMS (1130)

Introduction

The 1130 MULTI-LEAVING terminal program is designed to operate on a

system with BK words which contains the standard Binary Synchronous Com-

munications Adapter.

The unit-record equipment supported may include any or all of the following

devices:

• 1442 Reader/Punch or Punch

• 2501 Reader

• 1132 Printer

• 140 3 Printer

• Console keyboard/Printer

Programs developed for the 1130 in conjunction with the HASP Remote Job

Entry feature are assembled using the OS/360 Assembler. The 1130 instruction

set is generated thru the use of macro instructions (See Section 14. 4. 5) corres-

ponding to the actual 1130 hardware commands. Additionally, pseudo (assembler)

operations are available to aid in the development of 1130 programs on the System

360.

The object decks produced by the OS Assembler are subjected to further

processing by a program (LETRRIP) which condenses and changes the format of

the EBCDIC decks to facilitate 1130 loading ..

HASP Remote Terminal Processor (1130) - Page 4 .14-1

140

' ' .·

HASP

The remote terminal system for the 1130 is composed of several programs

briefly described in the following paragraphs:

RTPBOOT - A bootstrap loader consisting of a single "load mode" format

card and several column binary and EBCDIC program cards. The function

of RTPBOOT is to "bootstrap" an EBCDIC format loader (RTPLOAD) into

1130 core. RTPBOOT will load from either a 1442 or a 2501 card reader.

RTPLOAD - Loads into the upper segment of defined 1130 core and then

loads the main terminal program (RTPll 30) into the lower extent of 1130

core. RTPLOAD also processes REP cards and perforr,1s the initial pro­

cessing of /*SIG NON control cards.

RTPll 30 - The main terminal processing program which provides the

MULTI-LEAVING support for the 1130.

The following sections provide more detailed information on the design

and implementation of the above programs.

HASP Remote Terminal Processor (1130) - Page 4. 14-2

141

HASP

4.14.1 Remote Terminal Processor (RTPl130)

Introduction

The, subsequent sections present the basic structure of the terminal program

for the ll 30. Included, are descriptions of the commutator logic and associated

processors; system subroutines; processor subroutines; control block formats

and data block general formats.

The documentation presented is intended to be introductory in nature.

The user intending to modify the system should use the documentation in con­

junction with a program listing which contains commentary in much greater detail.

HASP Remote Terminal Processor (1130) - Page 4 .. 14-3

142

HASP

Commutator Processors

Distribution of CPU time to the processors concerned with the functions

necessary to support terminal devices is through programmed commutator

logic. Each processor which needs CPU time and is dependent on external

1/0 device rates is represented by a commutator entry. The commutator

entry consists of the following basic elements:

• A named commutator "gate" which takes the form of a branch to

the next commutator entry (gate closed) or a "NOP" if the entry

is active (gate open).

• A long form branch to the active commutator main -outine used if

the gate is open.

• A named return point for reference by the main commutator routine.

• A named end to the commutator entry which is the address of the

next commutator entry.

The basic structure as defined may also contain register save-restore

sequences to be used for each entry-exit cycle through the commutator.

The processors entry from the commutator (gate open) usually provides

for a method of setting a variable entry to the segments of the processor

which are involved with waiting for 1/0 to complete or some system resource

to become available.

HASP Remote Terminal Processor (1130) - Page 4 .14-4

143

HASP

The general operation of the commutator involves the opening and closing

of processor gates, the setting of variable entry points within the processors,

the initiation and associated wait period for I/O operations and the return to

the commutator to "share" the CPU during wait periods. The last instructiop

in the commutator is a branch to the "top" or first instruction in the commutator

which initiates the next cycle. The current system does not provide for a

priority relationship among commutator processors.

The main commutator processors contained in the RTP1130 system and

briefly described in the following sections.

HASP Remote Terminal Processor (1130) - Page 4. 14-5

144

HASP

TPIOX - SCA Input/Output Control Processor

Controls the transmission of data and/or control records between HASP

and RTP1130 via the SCA. All adapter I/0 is initiated using the SCA I/0

Supervisor - BSXIOS.

TPGET - Processor for TP Buffers From HASP

Processes data received from HASP in the form of TP buffers or control

records preprocessed by TPIOX. Control recad processing is in the form

. of "Request to start" or "Permission to send" functions.

Data buffers are deblocked, decompressed, converted t.o appropriate

codes (1403 printer, 1442 punch, etc.) and queued for the specified com-

mutator I/O processors.

Control information pertinent to the unique requirements of each data

type is provided through the associated UFCB.

TPPUT - Processor For Data Destined For HASP

Acquires a TP buffer from the free chain and collects data from defined

sources (card reader(s), console keyboard, etc.) to be processed (con-

. verted, truncated, compressed, etc.) and inserted into the buffer which is

queued for TPIOX transmission to HASP.

HASP Remote Terminal Processor (1130) - Page 4.14-6

145

HASP

RDTFO - 2501 Card Reader Processor

A conditionally assembled processor which supports the 2501 card

reader as a job entry device. The functions of monitoring for a 2501 "ready"

condition; reading cards; requesting permission to transmit to HASP; waiting

for permission to send; queueing data for TPPUT; transmitting "end-of-file"

conditions and device error recovery are contained in this processor.

RPFFT - 1442 Reader And/Or Punch Processor

A conditionally assembled processor which supports the 1442 - 5, 6 or 7

as a card reader, card reader/punch or as a card punch only. The functions

to be performed are controlled by the assembly variablEM> chosen and the use

of local operator commands, when applicable. The reader sections of code

monitor for a "ready" condition; reads cards for transmission to HASP via

TPPUT; processes "end-of-file" communications and provide error recovery.

The punch sections of code wait for data to be punched through interrogation

of a queue developed by the TPGET processor and provide error recovery and

and punch termination procedures.

PRFOT - 1403 Printer Processor

A conditionally assembled processor which supports the 1403 printer

as a terminal output device. The functions of monitoring for input to be

.printed; simulating carriage control operations; processing "end-of-file''

HASP Remote Terminal Processor (1130) - Page 4. 14-7

146

HASP

conditions; setting UFCB status information and error recovery are included

in this processor.

PRETT - 1132 Printer Processor

A conditionally assembled processor which supports the 1132 printer as

a terminal output device. The functions of monitoring for input to be printed;

initialization of interrupt processing routines for the 1132 print scan opera­

tions; simulation of carriage control operations; processing "end-of-file"

conditions; setting UFCB status information and error recovery are con­

tained in this processor.

CONSL - Console Keyboard/Printer Processor

Processes console keyboard input and prints on the typewriter messages

originating from HASP or internal sources.

Keyboard input is initiated by activation of the "INT REQ" key and by

the interrupt routine which sets a flag and opens the console routine gate.

Note: The position of the "keyboard/console" switch is not interrogated and

input is assumed to be from the keyboard. The value of the console entry keys

is read every communtator cycle and, if key o is on, stored in location

$ENTKEYS. All non-control character input is printed and the card code value

stored for investigation at EOF time. If the first character of input is "."

(period) then the datiil is assumed to be a local command. All other data is

transmitted to HASP for action as a HASP operator command.

HASP Remote Terminal Processor (1130) - Page 4 .14-8

147

HASP

Print input is obtained from a queue which originates locally and/or

from HASP. Data to be printed may be EBCDIC or tilt-rotate code and

black or red ribbon.

R'I'PET - Initialization Processor

This special commutator processor is responsible for the initialization

functions necessary for the commencement of the 1130 terminal operation

in conjunction with HASP. The major functions performed are:

• Sets the interrupt transfer vectors for RTP1130 operation.

• Dynamically builds the TP buffer pool using the defined extent

of 1130 core; the end of the 1130 program and the defined TP

buffer size.

• Builds a TP buffer containing the sign-on information processed by

RTPLOAD for transmission to HASP.

• Establishes SCA communications with HASP and prepares TPIOX

for "sign-on 11 •

• Opens the commutator gates for all SCA and input processors.

• Disconnects initialization from the commutator.

• Branches to commutator which initiates MULTI-LEAVING operation.

HASP Remote Terminal Processor (1130) - Page 4. 14-9

148

HASP

System Subroutines

The following are brief descriptions of the major subroutines contained

in the RTP1130 program. These subroutines are available for use by any

system commutator processor with the restriction that they may not be used

at interrupt time. Detailed information concerning the calling sequences,

input values, etc. may be found in the listing of the RTP 1130 program.

HASP Remote Tenninal Processor (1130) - Page 4.14-10

149

HASP

SGETOEL - Dequeue An Element From a Chained List

Given the address of a chained list, SGETQEL returns ·the address of the

first element available in the list and removes the element and rechains the

list. The chain field of the dequeued element is set to zero before returning.

If the chain is null, an indication is returned to the.user.

SPUTFQL - Enqueue An Element In A Free Element Chain

Given the address of a free element chain pointer and the address of an

element to be returned to the free chain, the element is returned to the free

chain. The construction of the free chain is in random order depending on

system processor utilization of the free element chain.

S PUTAQL - Enqueue An Element In An Active Chained List

The address of an element supplied by the caller is used. to build a

chained list in first-in, first-out order.

8TPOPEN - Initiate Control Record Transmission

Control record communications with HASP in the form of "Request to

start" and "Permission to send" sequences is the function of this routine.

Input includes an indication of the control record type and a pointer to the

UFCB for the device being processed.

HASP Remote Terminal Processor (1130) - Page 4.14-11

150

/

HASP

SSRCHB - Search UFCB Chain For Matching RCB

The RCB code supplied by the user is used to search the UFCB chain

for a UFCB with a matching RCB code. An indication of the status of the

search is returned to the caller.

SWTOPR - Type Message On Console Typewriter

The caller supplies the address of a message in EBCDIC and with

control information indicating red or black ribbon and the number of char­

acters to be typed. The address of a routine to be given control in the

event that the message cannot be processed immediately m·.lst also be

supplied.

·The message is queued for processing by the console typewriter

commutator routine.

SLOGSCA - Log SCA Error Messages On Console Typewriter

Error conditions associated with the SCA operation are logged on the

console typewriter for information and possible remedial purposes. The

format of the message logged is:

SCA LOG XXX:XXXXX

Where the value of "XXXXXXXX" is determined by the caller and is in

fact the contents of the ACC and EXT on entry to the routine.

An indication of the status of the request to log is returned to the caller.

HASP Remote Terminal Processor (1130) - Page 4.14-12

151

HASP

SMOVE - Move A Variable Number Of Words

This routine provides for the moving of a specified number of words

from a source block to a target block.

RXPRESS - Convert Card Code To EBCDIC

The card code (12 bit) input is converted to EBCDIC using a high

speed conversion algorithm in conjunction with a minimal conversion table.

Special consideration is given to "blank" conversion under the assumption

that most cards are dense with "blank 11 data.

SXCPRNT - EBCDIC To Console Printer Code Conversion

Converts a single EBCDIC character to the equivalent console printer

Tilt-Rotate code using a table look-up method.

f=:XPPRNT - EBCDIC To 1403 Printer Code Conversion

Converts a single EBCDIC character to the equivalent 1403 printer 6 bit

with parity code using a table look-up method.

SXCPNCH - EBCDIC To Card Code Conversion

Converts a single EBCDIC character to the equivalent 12 bit card code

using a table look-up method and conversion algorithm.

HASP Remote Terminal Processor (1130) ... 4.14-13

152

HASP

STRACE - Trace Machine Registers

Stores the information shown below in a table of variable length. Each

entry is the result of the execution of the linkage created by the STRACE

macro. The trace table created at assembly time is circular.

Trace table entry :

Word Description

1 Count of the number of entries for this $TRACE

2 Location +l of caller to $TRACE

3 Contents of ACC

4 Contents of EXT

5 Contents of XRl

6 Contents of XR2

7 Contents of XR3

The count of the number of entries is also stored in the STRACE

macro linkage.

The assembly of srRACE is a function of the variable &TRACE.

SSDUMP - System Core Dump

A conditionllly assembled subroutine which allows post-mortem or

dynamic dumps on either the 1132 or 1403 printer. SSDUMP is assembled if

&DEBUG SETA 1 is included in the RTP1130 source deck. Linkage to SSDUMP

HASP Remote Terminal Processor (1130) - Page 4.14-ll

153

HASP

via location 0 is also established so that a post-mortem dump may be

taken by pressing system reset and start.

The linkage to use this subroutine dynamically is contained in the'

system listing. Note: The logic of the subroutine does not allow concurrent

operation of the selected printer and other devices.

HASP Remote Terminal° Processor (1130) - Page 4.14-15

. 154

HASP

Processor Subroutines

The following are brief descriptions of the major subroutines which

may be used by commutator processors subject to the restrictions that these

routines are processor dependent in their operation. For example, the SCA

1/0 Supervisor (BSXIOS) is used at initialization time and by the TP buffer

manager but cannot be simultaneously used by these commutator processors.

HASP Remote Terminal Processor (1130) - Page 4.14-16

155

HASP

BSXIOS - Low Speed BSCA Input/Output Supervisor

Processes requests for transmit, receive or program timer functions

on the low speed binary synchronous communications adapter. BSX IOS

initiates the requested function and prepares the interrupt programs for the

associated interrupt processing of the desired fl,mctions.

The status of the function performed by BSXIOS is contained in a com­

munication cell which is addressed by a variable pointer word. A commu­

nication cell is defined for both read (receive) and write (transmit) operations.

Various completion codes stored in the cells provide the status of the function

with respect to normal or abnormal termination.

BSXIOS expects the caller to provide the ad.dress of an appendage routine

to be entered at the termination (interrupt time) of every write operation. The

purpose of the write end-of-operation appendage is to allow re-instruct (read

operation) of the communications adapter as soon as possible after the write

completion.

HASP Remote Terminal Processor (1130) - Page 4.14-17

156

HASP

DBLOCK - Deblock, Decompress, Convert and Store Data From HASP

Locates a record (defined by RCB) in a TP buffer as specified by a

given UFCB, decompresses, edits and moves data to a selected target

area. The target area must have the same format as described under

"Output Element (Tank) Description".

The operation of DBLOCK includes the priming of the output tank

with an initialization value supplied by the user (usually the value of

a blank for the associated device); the updating of control information in

the UFCB; the setting of control information in appropriate fields of the

output tank; the automatic entry to conversion and store routines unique

to the device associated with the UFCB supplied and the communication

of the status of the buffer being processed (end-of-file, end-of-block

conditions).

HASP Remote Terminal Processor (1130) - Page 4 .14-17. 1

157

HASP

TPCOMPR - Construct Records For Insertion In TP Buffers

Constructs a logical record consisting of a physical input record .

attached 1130 devices (card reader(s),· console, etc.). The logical record

constructed consists of the original input after code translation, data trun­

cation and/or compression (optionally} and attachment of the control bytes

necessary for HASP processing. The control bytes are per the standard HASP

MULTI-LEAVING conventions.

The options listed below are set at assembly time to generate the

supporting code.

• No compression or truncation

• Trailing blank elimination only {truncation)

• Blank and duplicate compression and blank truncation

The current version of TPCOMPR assumes card code input.

DBUGSCAL - Trace Routine For Low Speed SCA

This routine is conditionally assembled as a function of "&DEBUG"

and provides a trace of all SCA interrupts in the form shown below. Entry

is from BSXIOS interrupt processing routines. External disabling of the SCA

trace function is provided through the entry keys. The trace table limits are

preset to use the upper SK of a 16K 1130 and must be changed either by

assembly or by the appropriate "REP". See the program listing and refer to

locations DBUGSTRT and DBUGSTND.

HASP Remote Terminal Processor (1130) - Page 4.14-18

158

HASP

The trace table format is:

Word

1

2

3

4

s

6

7

8

Description

Operation type (BSXIOPT)

DSW at interrupt time

BSXIOS Completion Code (BSXOPF)

Location of interrupt

Data received/transmitted

Data transfer count

Read or write sequence index

Spare word

HASP Remote Terminal Processor (1130) - Page 4.14-19

159

HASP

TPBUILD - Constructs IP Buffers

Constructs TP buffers for TPIOX transmission to HASP. Dam to be

inserted and length of insert are provided by user. TPPUT initializes this

routine by providing the buffer to be used and setting pointers and variables.

The dam to be inserted is usually in the form a logical record as con­

structed by TPCOMPR.

HASP Remote Terminal Processor (1130) - Page 4 .14-20

160

HASP

RTP1130 Control Block And Data Formats

Chained List General Format

All qu~ues maintained within RTP1130 are of the chained list form and

consist of free queues and free queue pointers and active queues and active

queue pointers. Free queues are chained in a random fashion while active

queues are maintained in a first-in, first-out order. The general form of

a queue is:

ELEMENT CHAIN WOR

Address of next element chain word.
Set to zero if no element.

• • • Variable length element.

ELEMENT CHAI:N' WORD • • •Variable length element •

•
•
0 • • • Last variable length element

(Chain Word Set to zero).

Examples of chained lists are: TP buffers, console message tanks,

printer data tanks, punch data tanks. The size and number of elements in

the queue is variable according to the nature of the queue.

HASP Remote Terminal Processor (1130) - Page 4 .14-21

161

HASP

UFCB - Unit-Function Control Block Description

Each device which transmits data to or from HASP via the communications

adapter processors must be represented by a unit-function control block.

The general format of a UFCB is:

REFERENCE WORD DESCRIPTION

UFCBCNW 0 Chain word to next UFCB

UFCBNFO l Information word •••

Input: Byte 0 =Reserved

Byte l = Input Code

= 0 for IBM Card

= l for PTTC/8

= 2 for EBCDIC

UFCBSAR 2 Status and RCB Code •••

Byte 0 = Status of unit-function

= X'90' if request to start sent from

input unit-function or if request to

start received for output unit-function

HASP Remote Terminal Processor (1130) - Page 4.14-22

'

162

HASP

UFCBFCS 3

UFCBCOM 4

UFCBFQP 5

UFCBBFP 6

UFCBBFC 7

UFCBBFL 8

UFCBPBP 9

UFCBPBA 10

= X'AO 1 If permission to start

received for input unit-function or

if permission to start sent for output

unit-function.

Byte 1 = RCB code associated with this UFCB

Function control sequence bit associated with this

UFCB (and RCB)

Address of commutator processor gate addres·s for

processor associated with this UFCB

Tank free queue pointer for output devices or

address of input element for input devices

Queue pointer for active TP buffers for output

devices or end-of-file flag for input devices

Count of active TP buffers for associated device

Limit of active TP buffers for associated device

Buffer address of ·current buffer being processed

by TPGET processor

Address of next RCB in buffer being processed

HASP Remote Terminal Processor (1130) - Page 4.14-23

163

HASP

UFCBPBS 11

UFCBPWD 12

UFCBPRO 13

UFCBSTO 14

· Position indicator for next RCB in buffer being

processed. Set to O if RCB right justified. Set

to 1 if RCB left justified.

Output device width= 2*W /P where W = actual

width in characters and P = 2 for packed output

tanks or P = 1 for unpacked output tanks.

Address of data processing routine (usually a con-

version program) for each character processed by $DEBLOCK.

Address of routine to store data processed by

"UFCBPRO" program.

HASP Remote Terminal Processor (1130) - Page 4 .14-24

164

HASP

TPBUF - TP Buffer Element Description

All data transmitted to or from HASP is contained in variable length buffers

(variable at generation time) with the following general format:

REFERENCE WORD

TPBUFCW 0

TPBUFST 1

TPBUFCB 2

TPBUFDT 3

TPBUFHD 3

DESCRIPTION

Chain word to next TP buffer

Reserved

Buffer control word

Byte 0 = 0 (Reserved)

Transmit function •••

Byte 1 = Number of bytes to be transmitted minus 2

for end sequence which is inserted by BSXIOS.

Receive function •.•

Byte 1 = Number of bytes received

Timer function •••

Byte 1 = Number of program time interrupts processed

before ending timer operation

Start of data area of length defined by "&TPBUFSZE"

which includes •••

BSC header value indicating the function (Read, write,

timer) to be performed as defined by SCA function indicators

HASP Remote Terminal Processor -(H 30) - Page 4 .14-25

165

HASP

TPBUFBI'. 4

TPBUFFR 5

TPBUFSR 6

Control sequence •••

Byte 0 = BCB

Byte 1 =first byte of FCS

Control sequence •••

Byte 0 = Second byte of FCS

Byte 1 =ROB

Control sequence •••

Byte 0 = SRCB

Byte 1 = SCB

HASP Remote Terminal Processor (1130) - Page 4.14-26

166

ti
\:
'(

HASP

Output Element (Tank) Description

Local terminal output devices (printers , punch, etc.) receive data via

elements or tanks which are built by the commutator routine responsible for

processing TP buffers transmitted by HASP. The general format of these tanks

is described below.

REFERENCE WORD DESCRIPTION

TANKWRDA 0 Chain word to next tank

TANKWRDB 1 Reserved

TANKWRDC 2 Control wCllid

Byte 0 =Reserved for device use

Byte 1 = SRCB from record received

TANKWRDD 3 Control word

Byte 0 =Reserved for device use

Byte 1 = Actual tank data count

TANKWRDE 4 Start of variable length data area determined at

generation time

Note: The element chain word and the data area must start on even

1130 word boundaries.

HASP Remote Terminal Processor (1130) - Page 4.14-27

167

HASP

QbJect Deck Format

The following is the format of the object decks (RP Tl 130 ,. RTPLOAD)

produced from OS/360 assembler output by LETRRIP.

Text Card

Qolumn(s) Description

1 'T' for text card identification

2-3 Absolute 1130 load address.

I

4 Word count of data field

5-72 Data field (maximum of 34 words)

73-74 Checksum of columns 1-72

75-76 Identification

77-80 Sequence number

End Card

Column Cs) Description

1 1E1 for end card identifica·tion

2-3 Entry point to program loaded

4-72 Reserved

73-74 Checksum of columns 1-72

75-76 Identification

77-80 Sequence number

.'-..

HASP Remote Terminal Processor (1130) ... Page 4.14-28
' .

. 168

HASP

REP Card Format

Column Cs) Description

l Any legal EBCDIC punch

.2-4 "REP II

5 Blank

6 Load address format field:

11 1 11 for listing option where the specified load address

corresponds to the OS/360 assembler listing.

11X11 for absolute 1130 core address

7 Currently unused but usually punched 11 0 11 for continuity

8-11 Load address for first data word and is incremented by l

12

13

14-17

18

•
•
•

for each additional data word. REP cards may be con-

tinued by leaving this field blank

Blank

Format field for data following. Subject to same definition

as column 6.

Data field to be loaded in the location computed as a

function of columns 8-11

II II
I

HASP Remote Terminal Processor (1130) - Page 4.14-29

169

HASP

Columns 19 through 78 in the same format as columns 13-18 with the·

exception of column 78 which must be blank. A blank in columns 18, 24, ••• 72

terminates the scan of the card.

Note: The 11 1 11 option causes the specified data to be divided by 2

for conversion from 360 byte data to 1130 word data.

HASP Remote Terminal Processor (1130) - Page 4 .14-30

l70

HASP

Examples of REP Cards

1 • The following cards:

0 00 :u
li 56 23

RREP L02208 X4COO,L004E,X4400,XOOOF

RREP X74FF,XOOOO,X7li0l

Would result in the code represented below starting in 1130 core

location 1104 (Hex):

:U04

:U06

:uoa
:UOA

2 • The following card:·

0 00 ll
la 56 23

$B

$TSL

$MDM

$MDX

l.5

o,-:i.

RRER LO:la772 X4Cla8,XlFF8

Would be ignored because columns 2-4 not equal to "REP"

HASP Remote Terminal Processor (1130) - Page 4 .14-31

171

HASP

4 .14. 2 Remote Terminal Main Loader (RTPLOAD)

RTPLOAD is an EBCDIC format loader which is loaded by RTPBOOT

into the upper part of defined 1130 core. The 1130 core definition (which

is a RMTGEN variable) is used to specify the origin of RTPLOAD. The format

of RTPLOAD (and RTPll 30) is given in Section 4 .14 .1 under C.Ontrol Blocks

and Data Formats.

RTPLOAD also reads and processes "REP" cards as well as the optional

/*SIGNON control card.

The major functions of RTPLOAD are:

• Clears core from location 0 to "&RTPLORG-1"

• Tests for a 2501 or 1442 card reader and initializes the card

read routine for the appropriate device.

• · Reads RTPl 130 program cards, performing the conversion from

card code to EBCDIC and loading the data into the specified locations.

• Sets up the entry to RTP1130 when the end card is processed.

• Reads and processes REP cards, if they exist.

• Reads, converts and stores /*SIGNON and sets indicator for

RTP1130 signalling existance if /*SIGNON encountered.

• Transfers control to RTPll 30

HASP Remote Terminal Processor (1130) - Page 4.14-32

172

HASP

4 .14. 3 Remote Terminal Bootstrap (RTPBOOT)

The bootstrap loader distributed in object form as shown in the subsequent

pages is specifically constructed to "bootstrap" the EBCDIC main loader

(RTPLOAD) into the core locations defined by 11 &RTPLORG 11 at RMTGEN time.

RTPBOOT loads into lower 1130 core via the load-mode format first card and

following binary program cards and EBCDIC conversion table cards. RTPBOOT

will load from a 2501 or 1442 card reader which is wired for the load-mode

sequence initiated by the console 11 LOAD 11 button.

HASP Remote Tenninal Processor (1130) - Page 4.14-33

173

HASP

Eigure 4 .14. 3 - Remote Terminal Bootstrap Card Format

Card
Col Card No 1 . . Card No 2 . Card No 3 . Card No 4 .

1 12-11-7 12 12-11-1-2-3-4-5 12-11-1
2 1-2-9 11-0-3-5 blank 12
3 12-11-1-8 11 5 12-11-2-3-4-5
4 12-11-7-8-9 blank 11-0-1-5 12-11-1
5 11-0-1-6-9 5 4 5
6 0-2-6 11-0-1-5 11-0-1-5 11-0-1-5
7 4-7-8-9 12-11-0 ... 1-2-4-5 0-1-2-3-4 12-11-0 ... 2-3-4-5
8 blank 12-11 11 11-0-1
9 4-6 blank blank blank

10 0-1-2 12-11-1-5 12-11-1-4 11-0-3-5
11 blank 5 5 0-3
12 11-2-5 1-2 11··0-1-4 5
13 4-5-9 12-11-0-1-4-5 12-11-0-1-2-3-4-5 blank
14 12-0-1-2-5-6 12-11-1 11-0-1-4-5 12-1-5
15 1-2-8 blank 12-11-0-1-2-4 5 -16 12-11-1-3-4-5-6-8-9 12-11-3 11-0-1 12-1-5
17 12-11-3-4-5-6-7 5 12-3-4-5 12-11-2
18 1-2-8-9 blank 12-11 12-11-1
19 12-11-1-3-4-5-6-8 12-11-0-1-2-3-4-5 12-0-3 1-5
20 12-3-4-5-7-9 11-0-1-3 11-0-1 11
21 12-11-1-·3-4-5-7 ll-2-4-5 blank 12-11-3-4
22 12-11-4-7 blank 12-11-3 12-11-0-1
23 1-6 12-11-3-4-5 12-11-1-2-3 1-2
24 12-11-1-4-8 11-0-1 blank 11-2-3
25 112-Al:.~. 2-3-4-5 blank 11-0-2-3-4-5
26 12-11-1-4-7-9 11-0-1-3 11-0-3-4-5 blank
27 12-4-8 11-2-4 2-3-4-5 12-11-0-1-2-3-4-5
28 12-11-1-4-9 blank 4 11-0-1
29 12-11-3-4-6-9 12-11-3 0-2-4 5
30 1-6-9 11-0-1 11 11-0-1-4-5
31 12-11-1-3-4-6 3-5 5 12-11-0-1-2-3-4-5
32 1-2-6 11-0-5 11-0-1 11-0-1-4
33 12-11-1-4-6-7-9 3-4-5 3-4 12-11-0-2
34 12-11-1-5-6-7-8 11-0-1-3 11-0-1 11-0-1
35 12-11-1-5-6-8-9 11-2-4 blank 12-11-0-1-2-3-4-5
36 12-11-1-3-4-8 blank 11-0-3-4-5 11-0-1
37 12-11-1-3-4-7-9 blank 12-11-0-1-5 5
38 2-3-5-6-7-8 11-0-3-4 5 blank
39 2-·3-5-6-7-8-9 11-0-2-4-5 0-3-5 blank
40 11-0-1-3-4-5-6-7-8-9 4 11 12-11-0-1-4-5

HASP Remote Terminal Processor (1130) - Page 4 .14~34

174

HASP

Figure 4.14. 3(CONT) - Remote Terminal Bootstrap Card For.mat

Card
Col. Card No. 1 Card No. 2 Card No. 3 Card No. 4

41 9 1-3 12-11-0-1-4-5 0
42 2-3-4-8 11-0-1-3 11-0-1 11-2-3
43 12-11-3-5-6-7-8-9 2-3 11-2-3-4-5 12-0-1-3-5
44 12-8-9 blank 11-0-1-3 blank
45 12-11-1-3-5-6-7-9 12-0-1 12-0-2-5 5
46 2-3-5-6-7 11-0-1-4 blank 11-0-1-3
47 11-2-3-4-5-6 12-0-4-5 1 12-0-2-3-4-5
48 9 11-0-2-4 1-2 blank
49 11-0-1-3-4-5-6-7-8-9 12-1-2-3-4 12-11-1-2-3-4-5 blank
50 9 11-0-2-4 12-11-1 12-11-0-1-4-5
51 12-11-6-7-9 11-2-3-4-5 12-0-1-3-4 12
52 12-3-4-5-6-8-9 12-11 11-0-5 11-2-3
53 12-11-1-6-8-9 blank blank 12-0-2-3-4-5
54 12-11-6 12-11-1-4 12-11-3-5 blank
55 12-3-4-5-6 12-11-0-1-2-3-4-5 0-3-4 11-1
56 12-11-1-8-9 11-0-1-5 5 blank
57 12-3-4-5-7-8 12-0-1-2-5 blank blank
58 12-11-1-7 11-0-1 11-0-3-4-5 12-11-5
59 3-7 1-2-4-5 0-2-3 2
60 blank 11-0-1-3 5 1
61 1-2-6 11-2-4 blank 5
62 1-2 blank 11-0-3-4 12-11-0-2-5
63 blank 12-0-1-3-4 blank 12
64 1 11-0-1 5 11-2-3
65 blank blank 1-2 12-0-1-2
66 12-11-7-8-9 11-0-3-5 11 blank
67 12-1-3-4-6-7 12-11-1-2-3-5 1-4-5 blank
68 12-11-1-7-9 blank 11-0-1 11-0-3-5
69 11-2-4 11-3-4 blank 12-11-1-2-3-5
70 11-0-1-3-4-6-7 11 12-11-3 blank
71 2-3-7-9 blank 4-5 12-11-0-1-3-4-5
72 2-3 12-11-1-5 blank 11
73 11-2-3-4-5-6 12 12-11-0-1-2 5
74 4-7-8-9 11-0-3-4 12-1 12-11-1
75 11-0-1-7 12-11-1-2-3-5 blank blank
76 8 blank 12-11-1-3-5 11-2-3
77 blank 12 0-3-4 blank
78 blank 11-0-3-4-5 5 blank
79 0 0 0 0
80 1 2 3 4

HASP Remote Terminal Processor (1130) - Page 4.14-35

175

HASP

Figure 4.14. 3 (CONT) - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 5 Card No. 6 Card No. 7 Card No. 8

1 0 11-0-1-8 12 12-0-1-8-9
2 1 11-0-1 12-11-1-9 12-1-9
3 2 11-0-2 12-11-2-9 12-2-9
4 3 11-0-3 12-11-3-9 12-3-9
5 4 11-0-4 12-11-4-9 12-4-9
6 5 11-0-5 12-11-5-9 12-5-9
7 6 11-0-6 12-11-6-9 12-6-9
8 7 11-0-7 12-11-7-9 12-7-9
9 8 11-0-8 12-11-8-9 12-8-9

10 9 11-0-9 11-1-8 12-1-8-9
11 12-11-0-2-8-9 11-0-2-8 rrl-2-8 rr2-2-s-9
12 12-11-0-3-8-9 11-0-3-8 11-3-8 12-3-8-9
13 12-11-0-4-8-9 11-0-4-8 11-4-8 12-4-8-9
14 12-11-0-5-8-9 11-0-5-8 11-5-8 12-5-8-9
15 12-11-0-6-8-9 11-0-6-8 11-6-8 12-6-8-9
16 12-11-0-7-8-9 11-0-7-8 11-7-8 12-7-8-9
17 blank 12-11-0-1-8 11 12-11-1-8-9
18 . 12-11-0-1 0-1 11-1-9
19 . 12-11-0-2 11-0-2-9 11-2-9
20 . 12-11-0-3 11-0-3-9 11-3-9
21 . 12-11-0-4 11-0-4-9 11-4-9
22 . 12-11-0-5 11-0-5-9 11-5-9
23 . 12-11-0-6 11-0-6-9 11-6-9
24 . 12-11-0-7 11-0-7-9 11-7-9
25 . 12-11-0-8 11-0-8-9 11-8-9
26 . 12-11-0-9 0-1-8 11-1-8-9
27 . 12-11-0-2-8 12-11 11-2-8-9
28 . 12-11-0-3-8 0-3-8 11-3-8-9
29 . 12-11-0-4-8 0-4-8 11-4-8-9
30 . 12-11-0-5-8 0-5-8 11-5-8-9
31 . 12-11-0-6-8 0-6-8 11-6-8-9
32 . 12-11-0-7-8 0-7-8 11-7-8-9
33 . 12-0 12-11-0 11-0-1-8-9
34 . 12-1 12-11-0-1...:.9 0-1-9
35 . 12-2 12-11-0-2-9 0-2-9
36 . 12-3 12-11-0-3-9 0-3-9
37 . 12-4 12-11-0-4-9 0-4-9
38 . 12.:...5 12-11-0-5-9 0-5-9
39 . 12-6 12-11-0-6-9 0-6-9
40 . 12-7 12-11-0-7-9 0-7-9

HASP Remote Terminal Processor (1130) - Page 4. 14-36

176

HASP

Figure 4.14.3 (CONT) - Remote Terminal Bootstrap Card Format

Card
Col. Card No. 5 Card No 6 . Card No 7 . Card No. 8

41 blank 12-8 12-11-0-8-9 0-8-9
42 . 12-9 1-8 0-1-8-9
43 . 12-0-2-8-9 2-8 0-2-8-9
44 . 12-0-3-8-9 3-8 0-3-8-9
45 . 12-0-4-8-9 4-8 0-4-8-9
46 • 12-0-5-8-9 5-8 0-5-8-9
47 . 12-0-6-8-9 6-8 0-6-8-9
48 . 12-0-7-8-9 7-8 0-7-8-9
49 . 11-0 12-0-1-8 12-11-0-1-8-9
50 . 11-1 12-0-1 1-9
51 . 11-2 12-0-2 2-9
52 . 11-3 12-0-3 3-9.
53 . 11-4 12-0-4 4-9
54 . 11-5 12-0-5 5-9
55 . 11-6 12-0-6 6-9
56 . 11-7 12-0-7 7-9
57 . 11-8 12-0-8 8-9
58 . 11-9 12-0-9 1-8-9
59 . 12-11-2-8-9 12-0-2-8 2-8-9
60 . 12-11-3-8-9 12-0-3-8 3-8-9
61 . 12-11-4-8-9 12-0-4-8 4-8-9
62 . 12-11-5-8-9 12-0-5-8 5-8-9
63 . 12-11-6-8-9 12-0-6-8 6-8-9
64 . 12-11-7-8-9 12-0-7-8 7-8-9
65 . 0-2-8 12-11-1-8 blank
66 . 11-0-1-9 12-11-1 12-0-1-9
67 . 0-2 12-11-2 12-0-2-9
68 . 0-3 12-11-3 12-0-3-9
69 . 0-4 12-11-4 12-0-4-9
70 . 0-5 12-11-5 12-0-5-9
71 . 0-6 12-11-6 12-0-6-9
72 . 0-7 12-11-7 12-0-7-9
73 . 0-8 12-11-8 12-0-8-9
74 . 0-9 12-11-9 12-1-8
75 . 11-0-2-8-9 12-11-2-8 12-2-8
76 . 11-0-3-8-9 12-11-3-8 12-3-8
77 . 11-0-4-8-9 12-11-4-8 12-4-8
78 . ll~0-5-8-9 12-11-5-8 12-5-8
79 . 11-0-6-8-9 12-11-6-8 12-6-8
80 blank 11-0-7-8-9 12-11-7-8 12-7-8

HASP Remote Terminal Processor (1130) - Page 4.14-37

177

HASP

Figure 4.14. 3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 1

I II 1111 111111 I 11111 Ill 11111111 Ill

I Ill I II I II I I II I 11111 I I I I I I II I I I Ill I I
0000110001000100000000000000000000000001000000001ooooooooooooooooooooloooolooolo
12i1s1111~nnuu~n»~n~~nntt~HnHHro~n»~~Huu~~~~a«~«U««~~ug~~~"~"w~a~~~~~""ronnnH~n»nnn

111111111111111111111111ti11
21222122212121122122222222222221222221122122211222222222222211222222121112222222
333333333333333llllll3333333l3l3333lllll3ll3lllll3Jl33lalJl33l3333l33llll3333333

444444l4l444l44ll4llll4llllll414l44ll44l4l4444l4l44l44l4l44444444414ll44Dl444444
ssssssss5ss111s11s111ssssssss5sss11sslllssls1Blslsslsslsl55s5ssssssssssslsssssss

ssssll&sls&ssl&ll&l&&sl&&ssslllllll&slllsslslll&lslllllss&sslssssslsslsslsss&sss
l17l77l777771777l77lll77ll777777ll77llll77l7ll77l7l77777lll777777lll1ll11ll11111

ssll88l88888BBllBll8888llBl88888Blllalllslll8888IBBllaall8888888Bl8888888l8l8888
9l.9ll9l99999l99l9l9l99999l9lll99l9l9l9lllslll99llllll99l999999999l9l9Sl99l999999
1 l 3 I 5 6 l P 9 10 11 tl 13 14 1116 ll Ii 19 20 21 2i 23 24 2516 n li 2SSO 31 o1ll 34 31 JG 37 38 3940 41 42 4l 44 45 46 414&4910 51 12 53 54 5156 57 58 5910 !1 6l SJ H 51>6 6168£3 70 11 12 ll 74 71 76 » 78 79 60

@M_~·r:I'TI

n
U I

HI I
U I
U I

I I
Ill II II II I II

CARD 2

I I I I II I I I II I I
I I I Ill Ill I II I II II I II I

01000110000010000011000101000101010001100100111101oooolllloloollolooooooolooollo
12icss1eswnn11a~11»11l9w21nnu~nnnn~~""~~~vnn~~~a«~«4l««~~~~M~~"~"~~~~"~~~""ronnnu~nnnnn

11111 u 1 1111 u 11 1 1 n 11111111111 1 11111111 n 1 111 11111111u1u111111 111 1 11111111111

222222122221222222121222121222222212121222!?22211!12221212~212222212222222122221

3 I 3 3 a 3 3 3 3 3 3 3 a 3 a 13 a 11 a a 1 3 n 3 a I 3 I 3 n 3 3 aa a a 1 n a a a a 31 a1 a a a 1 a 3 3 a 1 a 3 I 33 II 3 I 3 3 a 3 II a 3 I 33

444444l44444l44444l4141414l44444l4l44lll44444llllll44ll4441414l44444l4444l444144
Sl55lll55ll5l555l5l5l5l5l55555lll55555l5555555l555l555lll5l555555ll555Sl55l55l55

6 66 & 6 6 6 6 6 6 6 6 6 6 6 6 6 6

7 7 11 7 7 7 7 1 7 111111 7 1 7 1 7 1111 7 1171111 7 7 111 7 1 7 1 7 7 7 111 7111111 7111111 77 1 77 7 7 111117 7 1111

a a a a a as s u a a a a aa a a s a a u e u au sa a u aa aa as a BB o a a u a au sa aa a a sa a a a s aa a a a a a a s a a a aa u
99
1z3c511191ottn11uffl~»ra~w~nna~3nnn»~n»~»~uuu~~""~~u11uu~MngM~~"""~Mn~H~~~""rannnH»~nnnn

Q!E:i!Y.ill

HASP Remote Terminal Processor (1130) - Page 4 .14-3 7. 1

178

HASP

Figure 4 .14. 3 (CONT) - Remote Terminal Bootstrap Card Format

I I I Ill II
I I I I I 11111 I I II I

CARD 3

I I I

I I I II 11111
Ill I
II I I I I

I II I
I I I I I

0001011000011111001100000100100101011010110110000011ooloolloolooonoloooolooololo
12>•s1111~11uuKwnuwww~nnunananH~n»u»H»U»4J~uu«~~~""~~"~~»~P~""~~63"~"uaHronnnMwnnnnu

11l 1BI 111111111111

12222212222212122222221222121222222222222212122112222222221222221222222212222222
l33333l33333l333lll3Jll3Jll3333Jl3Jl33l333ll333JIJIJJll3lll33l333333JIJJJJJllJJI

l444l4l44l4llll4l44444444llll444l44l4444l4l44444l4l444l44l444l444414441444441444
1s11s1ssss1s11ss1ssssssss11sss1ssssllllslslslssslsslslslslslssslsslssslsssslslss
6616666666666666666666

11111111111111111.11111111111111111111111111111111111111 11111 11111111111 11 1111111

8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 88 8 8 88 S 8 8 8 8 8 8 8 8 I 8 8 8 8 8 8 8 8 8 8 8 8 8 8

99~99999999999
I 2 3 t 5 6 1 8 9 10 11 12 13 14 15 15 11 11 1120 212223 24 2516 27 ll H 30 l132333435 36 3138 JI 40 41 42 43« 45 46 ti 4849 !0 51!253 54 ;; !.; :' $1 S!OO 6162 &3 646SH ll E!69 lJ ;• l2 lJ 14 IS J; H ll 7110

QI.T-0JITJ

1111 I
I II Ill I

CARD 4

I Ill II I I I I

II Ill II II 1111111
I I I

I I I
II I
I I I

I

I

II I
I I

I I I

111111
00000111011000000000010010110111111100011010011001001ooooooooloolooloolooooooolo
123456719~11UUKWWUnWM~UUMHHUU~~Mn»U»H»UUW~UU«~U~48U~~"~~~~"~"~~6363M~~ll"Hronl2l2HWnnnnu

111l 1111l 111l 1l 11l 111111

22122212222222i2122222111212221212122222212222122221122222122l2ll222l222222l2222 . .

33l3JJIJJll333333333l3lllll333l333l33333lllllll3JJ3ll33333J333Jl33JllJl333JIJ333

44l444l4444444444444l444l4l44lll44l4444l444444l44l44l44444444444444444l444444441
5Sl5lllS5ISISlll55l55555lslslllsss1s1ss1sslslslsslssl5ssslssll55Sssllslslsssssss
66666666666&&6666666666666666666&6666666666666666666666666666666666&666666666666

111111111111117 11111111111711111711711111111111111111111111111171111111117 111111

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 ~ 8 11 8 8 8 8 8 8 8 8 8 8 I

99
1234511s9~nuuK~~u~ww~nnunnnnn~"""U»H»»»~~uu«~uuuu~~»~M~~~"u~~&3&3M~H~un~nnnunnnnn~

011,., 5~an

. HASP Remote Terminal Processor (1130) - Page 4 .14-37. 2

179

HASP

Figure 4 .14. 3 (CONT) - Remote Terminal Bootstrap Card Format

CARD 5

111111
111111

100000000011111100000000000000000000000000000000000-00000000000~00000000000000000
123451111wttnUKBKnKa~~nnNnnnnn~"""»»nnn»~n~u«ttunuu~~»~~"~~9"Hnn~«nff~~"ronnnunnnnnn

11

22122222221222

a 3 JI 3 3 3 3 a 3 313 3 3 3 3 3 3 3 3 3 3 a 3 a a a a a a a a a 3 3 3 3 3 3 3 3 3 3 3 3 a 3 3 ~ u a 3 a 3 a a 3 3 a 3 a 3 3 u a 3 3 3 3 a 3 3 3 3 3 3 a
4444144444441444

55555l5555555l55

666666l&666666l6666666666666666666&66666666666666666666666666666666&666666666666

1777777I7117711111711 7117 7 77 7111111111117717711777111111111111111171111111111111

s s s a as a a 1a111111 a a a a a u a a aa a sa s s s a a 88 as s aa a a a a a a a aa aa BB a sa a a a s a u a aa aa a as a s a a a s a
9 9 999999g11111119 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 g g 9
1234511e i1rnaaKWK»Ka~~nnM"nnnn~"""»»HUH»~nuuM~«nuu~~~u~"~"~~u~~n~~uvunronnnunnnnnu

~]?IJ

CARD 6

11111111111111111111111111111111 111111

11111111111111111111111111111111 1111111111111111 I 111111
11111111011111111111111111111111100000000011111110000000000000001111111111111111
12J45&111~nuuwBKn~aw~nnN~s~nn~~un»»~nun~~~~«~unuu9~»UM"~"~~"n~uu~uvnnronnnunnnnnu

111tItt11t111111II11111111111111111111111111t1t111tt1t1t1tttt11t111111111t111t11

2212222222122222221222222212222222122222221222222212222222122j221212222222l22222

333l3333333l3333333l3333333l~333333l333~~~3l3333333l3333:33l3333333l3333333l3333

4444l4444444l4444444l4444444l4444444l4444444l4444444l4444444l4444444l4444444l444

55555l5555555l5555555l5555555l5555555l5555555l5555555l5555555l5555555l5555555l55

666666l6&66666l6666666l6666666l6666666l66&6666l6666666l66666&6l6666666l666666&16

111l1111111l1111111l1111111l1111111I

1saaaaeslalllllllaaaaaaslsllllllasassaaalallllllasasaaaalslllllll1aasasslallllll
999999999l999S99999999999l999999999999999lllllll999999999lllllll9l9999999lllllll
1 2 3 4 5 6 7 B I :on 1213 14 151111111!20 n 2l 23 24 25 2& 212129 ~ 3132 33 34 35H 313839401142 044454& 41484950 5152!3M551& 57 58 IH:Sl £l 6J!l6~ tHl&B ti 10 71 ll iJ 1415 IG 11 li :110

L···L~Jt.U

HASP Remote Terminal Processor (1130) - Page 4 .14-37. 3

180

HASP

Figure 4 .14. 3 (CONT) - Remote Terminal Bootstrap Card Format

111111111 I

1111111111111111 1111111 I

CARD 7

111111111

111111111

llllllllllllllllllllllllDDDIDlll

llllllUlllDllUI

00000000000000000111111111011111111111111000000011111111111111110000000000000000
123451111~nnnu~~n~~mvun~nMv3~mnn~i1E•unno~~~u~uu~o~~un~~~~~u~r~~~~"~""mnnnnnnnnau

ll 111111ll1111111l 1111111l 1111111l 111111ll111111ll 1111111111111tll1111I111111111

22122222221222222212222222222222221222222212222222122222221222222212222222122222

3 3 313 3 3 3 3 3 313 3 3 3 3 3 313 3 3 l l l 313 3 l l 3 l JI 3 l 3 3 l 3 313 l 3 3 l 3 ll 3 l 3 l 3 3 JI 3 l l l l 3 JI 33 J 3 3 J 31 l J J l

4444l4444444l4444444l4444444l4444444l4444444l4444444l444444~l4444444l44444441444

55555l5555555l5555555l55555SSl555555Sl5555555l5555555l5555555IS555555l5555555lss
'

666666l6&66666l6666666l&66666&1&&66&66l6666666IG6666&6l6666S66l6666666l6&66666I&

111l1111111l1111111l1111111l1111111I

8888888Bllllllll88888888llBlllllB888888BlllllllllBB8888BlalllllllBB88888lslllDll
sllllllll~sssssssslllllllssssssssllllllllssssssssssssssssls9ssssssssssssslssssss
1 2 J ' I 6 1 : 9 10 11 12 13 14 ll 16 n 18 Ii 20 21 1: :J" 2126 21 ZB IS 30)\ Jl)J l• JI 36 31 j8 l9 40 41 42 43 0 45 46 47 48 49 50 11 52 IJ 14 5156 57 ~d jJ 1.: r· 11 £3&4 s; 66 67 LE 6ll0 n 7; JJ '•)5 Ii ;J 16)9 80

rr• .. •n· ~)

11111111111111111

11111111111111111

CARD 8

I

I

llllllUDUUU

10000000000000000000000000000000111111111111111110000000000000000lllllBll0000000
12345s1aew"nuu"~"n~nnunN~~vn~mvnn~n~n~ng41uo«ea~uo~~»u~~u»~~~n~~"~~~""mnnnnn~n.a~"

II 111I1111111111111I11111111111111111111tiI1II1111111111titt1111ll11111111111111

22122222221222222212222222122222221222222212222222122222221222222212222222122222

333l3333333l3333333l3333333l3333333l3333333l3333333l3333333l3333333l3333333l3333

4444l4444444l4444444l4444444l4444444l4444444l4444444l4444444l4444444l44444441444

55555l5555555l5555555IS555555l5555555l5555555l555S555l5555555ls555555l5555555l55

666666l6666666l6&66666l6&66666l6666666l6&666&6l666666Gl6&666&6l6666666l6666666IG

11

IBB8888BlllllllllB888888lllllllllassaas~lllllllllaasBB88llllllllB888888BllBlllll

ll9llllllllsss999g
I 2 J 4 s £ 7 6 9 Hl 11 12 13 14 15 16 u 18 l9 w 21 2t 4J 24 ~) '-6 27 :a 2:1 JO JI 32 3,j 34 3! ls 37 ;a 39 4G 41 42 43 44 4HO 4J 48" 50 51 52 5l 54 SS 56 S7 sa SS&.: Sit; ~ 04 SS bS 67 GS L~ ;::. 11 12 7J 74 75 i6 n 71 79 80

QiiT_~Q.--m

HASP Remote Terminal Processor (1130) - Page 4.14-37.4

181

HASP

4 .14. 4 Remote Terminal Program 360 Processing (LETRRIP)

LETRRIP (Loader for Eleven-'.lbirty Relocatable Remote Interleaving Processor)

is a 360 program executed under 08/360 as part of the RMTGEN procedure.

The purpose of this program is to condense the object deck produced by the

360 assembler; relocate address constants according to the requirements of the

1130 and to produce a new object deck in the format as described in Section

4.14.1.

HASP Remote Terminal Processor (1130) - Page 4.14-38

182

r+
{"

HASP

4.14.5 1130 Instruction Macros

The OS/360 Assembler Macro instructions listed on the following
pages are used to assemble the RTP1130 and RTPLOAD programs as a
part of the RMTGEN procesk necessary to create the 1130 workstation
program.

The general format of the instructions to be assembled with the
macros is:

LABEL $OP ADDR,TAG,FMT,MOD

Where:

"LABEL" is the statement label subject to the OS/360 assembler
rules and restrictions.

"$OP" is a macro from the set listed at the end of this section.

"ADDR" is the address field of the 1130 instruction.

"TAG" is the index register (TAG) field of the 1130 instruction.

"FMT" is the format indicator for the 1130 instruction:

FMT=L for long form
FMT=I for long form indirect address
FMT=X for short form absolute address
FMT='blank' for short form relative address

"MOD" is the modifier bits field required for some 1130 instruc­
tions.

Listed below are some of the conventions which must be followed to
successfully use the macro package in producing a program for
operation on an 1130. ·

1. All symbols starting with the character "$" are deemed to be
absolute in value.

2. The symbols WA, WB and WC are assumed to define absolute values.
Note: WA, WB and WC cannot be used as the first two characters
of any relocatable symbols.

3. All other symbols are assumed to be relocatable as defined by
the OS/360 assembler SRL.

4. Parenthetical expressions are considered to be relocatable if
contained in an instruction, e.g.,

$AXT (*-*),WA,L
is considered relocatable, where

$AXT *-*,WA,L
is considered absolute.

HASP Remote Terminal Processor (1130) - Page 4.14-39

183

f!ASP

1130 Instruction Macros

Macro Form

$LD ADD, TAG, FMT

$LDD ADD, TAG, FMT

$STO ADD, TAG, FMT

$STD ADD, TAG I FMT

$LDX ADD I TAG, FMT

$1.XA. ADD, TAG

$AXT ADD, TAG, FMT

$STX ADD, TAG, FMT

$STS ADD, TAG, FMT

$LDS ADD, TAG

$A ADD, TAG, FMT

$AD ADD, TAG, FMT

$8 ADD, TAG, FMT

$SD ADD, TAG, FMT

$M ADD, TAG, FMT

$D ADD, TAG,FMT

$AND ADD, TAG,FMT

$OR ADD I TAG, FMT

$EOR ADD, TAG, FMT

•
Description And Notes

Load ACC

Load double (ACC, EXT)

Store ACC

Store double (ACC, EXT)

Load index

Load index from address. A variation of $LDX

with F = 1 and IA= 1.

Address to index true. Identical to $LDX.

Store index

Store status

Load status

Add

Add double

Subtract

Subtract double

Multiply

Divide

Logical AND

Logical OR

Logical Exclusive OR

HASP Remote Terminal Processor (1130) - Page 4.14-40

184

HASP

Macro Form

$SLA. ADD I TAG

$SLCA ADD I TAG

$SLC ADD I TAG

$SRA ADD I TAG

$SRT ADD, TAG

$RTE ADD I TAG

Description And Notes

Shift left ACC

Shift left and count ACC

Shift left and count ACC and EXT

Shift right ACC

Shift right ACC and EXT

Rotate right ACC aI)d EXT

$BSC

$BOSC

$BP

ADD, TAG, FM T, MOD Branch/Skip on con di ti on

ADD, TAG,FMT,MOD Branch/Skip and reset interrupt

ADD, TAG, FMT Branch ACC positive (long)

$BNP ADD I TAG I FMT

·$BN ADD, TAG, FMT

$BNN ADD, TAG, FMT

$BZ ADD, TAG, FMT

$BNZ ADD, TAG, FMT

$BC ADD, TAG, FMT

$BO ADD, TAG, FMT

$BOD ADD, TAG,FMT

$SKPP

$SKPN

$SKPZ

$SKPO

Branch ACC not positive {long)

Branch ACC negative (long)

Branch ACC not negative (long)

Branch ACC zero (long)

Branch ACC not zero (long)

Branch on carry (long)

Branch on overflow (long)

Branch ACC odd (long)

Skip ACC positive (short).

Skip ACC non-zero (short)

Skip ACC zero (short)

Skip overflow off (short)

HASP Remote Terminal Processor (1130) - Page 4.14-41

185

HASP

Macro Form

$SKPC

$SKPX

$B ADD, TAG, FMT

Description And Notes

Skip carry off (short)

Skip ACC not equal zero and carry off (short)

Branch unconditionally. FMT = L or I generates

long form $BSC with MOD= O.

FMT = X or blank generates $MDX ADD, TAG, FMT

$BSI ADD, TAG,FMT,MOD Branch conditionally and store IAR

$TSL ADD, TAG, FMT

$MDX ADD, TAG, FMT

$STL ADD,FMT

$MOM ADD,VALUE

$WAIT

$XIO

$BSS

$BES

ADD, TAG, FMT

N,X

N,X

Transfer and store location counter. Assembled

as a $BSI with FMT = L, MOD = 0 (long form

unconditional branch and store IAR).

Modify index and skip

Store location counter. Assembles as $STX

ADD, a, FMT.

Modify memory.

Wait for interrupt

Execute I/O

Block started by symbol

N = number of words.

X = E for even storage.

Block ended by symbol

N = number of words

X = E for even storage

HASP Remote Terminal Processor (1130) - Page 4. 14-42

186

HASP

Macro Form

$NULL

$ADCON

$NOP

$ZAC

ADDR

Description and Notes

Null operation for symbol definition

Address constant. Assembles as an

absolute 1130 address. "ADDR" must

be a relocatable symbol by the OS

assembler definition.

No operation. Assembles as $SLA 0

Clear ACC. Assembles as $SRA 16

HASP Remote Terminal Processor (1130) - Page 4 .14-43

187

H A S P

4.14.6 GENERAL INFORMATION

OS/360 ASSEMBLY OUTPUT

If the value of &FULLIST is set to 1 at the time of generation
of RTP1130 or RTPLOAD then the listing produced by the OS/360
Assembler will contain the following informatio~:

1. The location counter value for each 1130 instruction or
storage location in terms of bytes. The actual 1130
location in terms of words can be determined by dividing
the displayed value by 2. The REP facility allows a
specification of either byte or word form.

2. The 1130 instruction is printed in 1130 format. The long
form address is in terms of 1130 words and the short form
is true relative format.

VARIABLE INTERNAL PARAMETERS

The generation of the RTP1130 program using RMTGEN provides
the user with a simple and flexible means of changing common
parameters germane to the configuration of the 1130. Addi­
tional internal parameters may be varied by using the source
file update feature of the RMTGEN program.

Listed below are the major parameters, with a brief descrip­
tion of each, which the user might consider altering as a
function of hardware and software performance considerations.

VARIABLE

&DEBUG

&CNP SIZE

&CONINSZ

&PRFOTKL

DESCRIPTION

Conditionally assembles the RTP1130 internal
core dump program ($SDUMP) and the BSC adapter
trace routine (DBUGSCAL). Default value
inhibits the assembly of these debugging
programs.

Maximum console printer message size. Default
value is 120 bytes per message.

Maximum console keyboard input buffer size.
Default value is 120 characters per command.

Number of 1403 printer buffers (tanks) provided
at assembly time. Default value is 2. The
TPGET processor will build up to the value of
&PRFOTKL and then suspend operation for the 1403
until the count of buffers falls below &PRFOTKL

HASP Remote Terminal Processor (1130) - Page 4.14-44

188

H A S P

VARIABLE

&PRETTKL

&PUNFTKL

&CONSTKL

&PRFOBFL

&PRETBFL

&PUNFBFL

&CNSPBFL

&NPTFBFL

DESCRIPTION

Number of 1132 printer buffers (tanks} provided
at assembly time. Default value is 2. See
&PRFOTKL for TPGET action.

Number of 1442 punch buffers (tanks} provided
at assembly time. Default value is 2. See
&PRFOTKL for TPGET action.

Number of console printer buffers (tanks} pro­
vided at assembly time. Default value is 5.
See &PRFOTKL for TPGET action.

Maximum number of TP buffers containing data
destined for the 1403 printer which will be
accepted by TPIOX before setting the trans­
mission suspension bit defined in the FCS for
the 1403. HASP will suspend transmission of
1403 print data until the FCS bit is reset
when the number of 1403 TP buffers becomes
less than the value of &PRFOBFL. Default value
is 2.

Same definition as &PRFOBFL except it applies
to the 1132 printer. Default value is 2.

Same definition as &PRFOBFL except it applies
to the 1442 punch. Default value is 2.

Same definition as &PRFOBFL except it applies
to the console printer. Default value is 1.

Maximum number of TP buffers allotted to input
devices collecting data to be sent to HASP.
Default value is one greater than the number
of card readers defined for RTP1130.

HASP Remote Terminal Processor (1130) - Page 4.14-45

189

HASP

. 4 .15 EXECUTION TASK MONITOR

4. 15. 1 Execution Task Monitor - General Description

The Execution Task Monitor is a processor which periodically examines

the CPU utilization of user tasks within a dynamic priority group and re­

arranges the OS/360 task dispatching chain giving higher priority to those

tasks, within the group, which use the least amount of CPU time. Tasks

above and below the dynamic priority group are not affected by the rearrange­

ment of the dispatching chain. Tasks with all of the following characteristics

are included within the dynamic priority group:

1. The task is a job step of a job scheduled by HASP.

2. The current dispatching priority of the task is

a. equal to priority of the dynamic group as specified by

the value of the &XZPRTY parameter for MVT or

b. not greater than the value &XZMFTH and not less than the

value of &XZMFTL for MFT.

3. The job step is not multi-tasking. .(The user doe.s not ATTACH

other tasks.)

The interval between the periodic examinations is controlled by the value

of the &MONINTV parameter. Setting &MONINTV value to a positive integer

will cause the processor to be generated. OS/360 must support Job Step Timing

and must not have a Time Slicing Group Defined at the priority level(s)

corresponding to the priority range of the dynamic group.

Execution Task Monitor Processor - Page 4 .15-1

190

HASP

4 .15. 2 Execution Task Monitor - Algorithm

The Execution Task Monitor determines the CPU utilization history {ht, n)

for each task within the dynamic priority group using the following formula:

ht, n=cput, n+ht-1, n-Ht/N

where: Ht = CPUt I 1+ht-1,1+cput,2+ht-l , z+ ..• cput, N+ht-1, N

= Total CPU counts observed for the N tasks being

monitored plus the sum of the previous history values.

N = The number of tasks being monitored at the end of

the time interval.

ht, n = The history of CPU utilization for task (n) during

the current time interval.

ht- l , n = The history of CPU utilization for task (n) taken at

the previous time interval.

New tasks, entering the monitored group, will be assigned a history

value of zero and temporarily placed at the low priority end of the group.

Task with continuous low values of CPU counts will have {h) values which

become increasingly negative. The (h) values will be prevented from falling

below the range of one time interval; thus providing responsiveness to

erratic changes in the corresponding task's CPU utilization.

Low values of h indicate the task (1) has not been able to utilize the

CPU time given to it because of waiting for events such as I/O or (2)

Execution Task Monitor Processor - Page 4.15-2

191

HASP

has not been given the opportunity to utitize the CPU. High values of h

indicate the task has had the opportunity and has utilized the CPU. The

Execution Task Monitor performs a partial sort and rechains the monitored

tasks, insuring that the task with the largest history of CPU utilization

will have the lowest effective priority within the dynamic priority group

during the next time interval.. This will by default raise the effective

priority of other tasks in the group.

Execution Task l\ • .fon!tor Processor ~ Page 4 .15-3

192

HASP

4.16 INTERNAL READER ..

4 .16 .1 Internal Reader - General Description

The Internal Reader Processor is an Input Service Processor which

reads card images from any system or user task running under OS/360.

The Internal Reader recognizes, through the use of Execution Control

Processor interface routines, an attempt by other tasks running under OS/360

to punch information into "cards" on pseudo 2520 punch devices, performs

the function of the Input Service Processor on each card, and via OS/360

POST macro signals completion of I/O to the submitting task.

4. 16. 2 Internal Reader - Program Logic

The Internal Reader uses the code of the Input Service Processor with

modifications in the following areas.

1. Processor Initialization - The Internal Reader attempts to

obtain an internal reader device control table (OCT) which

contains an 80 byte buffer area rather than a normal

reader DCT. When a device is received the processor

continues by acquiring a direct-access DCT and passes

control to the main processor.

2. Main Processor - The Internal Reader RGET routine tests

for the existance of a submitting task punch channel program.

Internal Reader Processor - Page 4 .16-1

193

HASP

If no channel program exists the Processor will wait for ..
WORK. If a channel program exists RGET will simulate the

punching of one card into the 80 byte DCT buffer area (no

data chaining). If the channel command represents the

end of the channel program RGET posts completion of I/O

and resets channel program indicators. RGET returns to

the main processor passing the card image for processing

or in the event the "card" has "/*EOF" in columns 1 to 5

returns indicating end of file.

3. Processor Termination - Termination of the Internal Reader

involves terminating the last job (if any), re:easing the

direct-access and internal reader device DCT 1 s, and passing

control to the processor initialization routines.

The Internal Reader requires supporting routines in the Execution Control

Processor Asynchronous 1/0 Handler which perform the following functions:

1. Recognize EXCP macro references to designated internal readers

as setup by HASP initialization.

2. Make the internal reader available to the Input Service Processor

on first use.

3. Set up the first channel command word and IOB pointers.

4. Force the submitting task in the wait state if required.

5. Post the Input Service Processor for WORK.

Internal Reader Processor - Page 4 .16-2

194

HASP

4 .17 MULTI-LEAVING LINE MANAQER

4 .17. 1 MULTI-LEAVING Line Manager - General Description

The function of this processor is to control all line activity with remote

terminals • This includes line initiation/termination, remote terminal

synchronization, line error recovery, and sign-on/sign-off processing.

This processor interfaces very closely with the Remote Terminal Access

Method described in section 5 .15.

4.17.2 MULTI-LEAVING Line Manager - Program Logic

When this processor receives control from the dispatcher it first

determines whether an I/O operation has completed. If not, it then scans

each line (via the line Device Control Tables) to check for requested

processing. When all processing has been completed the processor then

returns control to the dispatcher ($WAIT' s) until such time as more work

becomes available.

When a channel end is detected, the channel end routine determines

the sequence type of the Channel Command Word chain and branches to the

appropriate section to analyze the channel end and initiate any error

recovery procedures required.

The line Device Control Tables (DCT' s) are scanned and when one is

found to be available the Line Initiation routine is entered which acquires

MULTI-LEAVING Line Manager - Page 4 .17-1

195

··,''

!

. ·~

. i
I

HASP

the DCT, acquires a. TP buffer, constructs an initial CCW chain, and

initiates I/O on the line.

A single timer queue element is maintained by the Line Manager to

initiate delays in line processing. This facility provides the capability

of delaying a null response to a remote terminal and decreases the

associated degradation. Various other timer queue elements are maintained

by individual line processors to initiate other delays of varying intervals.

The code in this processor is assembled conditionally such that only

the instructions required to process a given configuration will be generated.

MULTI-LEAVING Line Manager - Page 4 .17-2

196

H A S P

4.18 REMOTE CONSOLE PROCESSOR ..

4.18.1 Remote Console Processor - General Description

The function of this processor is to process all console
messages to and from remote terminals. This routine
optionally saves messages to remotes which are not "signed
on" MULTI-LEAVING terminals for later printing on the
remote terminal printer.

4.18.2 Remote Console Processor - Program Logic

This processor receives control whenever a console message
is queued for a remote terminal or whenever a console mes­
s age is received from a remote terminal. The processor
first examines the output queue of messages and upon en­
countering a message queued for a remote terminal examines
the current status of the terminal. If the terminal is
not an active BSC MULTI-LEAVING terminal the message is
purged (the console message buffer is returned to the
available queue) or the message is saved on the SPOOLl
volume if operator message SPOOLING is requested.

If the message is to be written, a Remote Console Device
Control Table is constructed for the specific remote termi­
nal, the DCT is chained onto the other DCTs for this
remote, the DCT is "OPENed" by calling the Remote Terminal
Access Method, all messages which are queued are written
to the terminal, and the DCT is "CLOSEd" and unchained.
If the message to be written is for a currently inactive
or for a non-MULTI-LEAVING active remote and HASP operator
message SPOOLING space is specified (&SPOLMSG ~ 0) , an at­
tempt to save the message on the SPOOLl volume for later
printing at the remote by printer support routines is made.
The remote MESSAGE SPOOLING QUEUE ($MSPOOLQ) element for
the designated remote is examined for a queue HEADER entry
of zero. If zero, a record is allocated from the MESSAGE
ALLOCATION ($MSALLOC) Table, and the corresponding MTTR for
the record is placed in both HEADER and TRAILER entries
for the remote. (Non-zero but equal HEADER and TRAILER
entries signify that the queue exists; however, since the
last record of each remote element is always empty no data
is currently queued). A record is allocated from the
$MSALLOC table to represent the new end of message queue
and the associated MTTR is placed in the chain field of the
current HASP buffer. The HASP buffer is then filled with
the operator message and any more messages for the same
remote currently queued and written on the SPOOLl volume

Remote Console Processor - Page 4.18-1

197

H A S P

at the record location designated by the TRAILER MTTR for
the remote. Upon completion of I/O the chain field replaces
the TRAILER MTTR. The above process is repeated for addi­
tional buffers as required to empty the console message
queue for the remote.

In the process of allocating message records the $MSALLOC
table bit map is used. Each bit in the map when on repre­
sents a free record on the SPOOLl volume. Allocation con­
sists of finding the highest numbered bit that is qn,
turning the bit off, and converting to a corresponding MTTR.
When all bits in the map are off indicating that no records
are available, the messages are purged.

If an input message is to be read, a Remote Console Device
Control Table is constructed and the Remote Terminal Access
Method is utilized to "GET" the message. The message is
written to the local console and then queued for the Command
Processor.

Remote Console Processor - Page 4.18-2

198

H A S P

4.19 EXECUTION THAW PROCESSOR

4.19.l EXECUTION THAW PROCESSOR - GENERAL DESCRIPTION

XTHAW is a companion to the main Execution processor IOS
interface routine called XFREEZE. XTHAW is responsible for
discovering which tasks have been forcibly placed in an OS
WAIT state by XFREEZE (frozen) and should now be activated
(thawed) thru the OS POST ECB mechanism.

4.19.2 EXECUTION THAW PROCESSOR - PROGRAM LOGIC

XTHAW uses an IOB (HASP buffer) chain constructed thru the
XTHAW PCE or the Execution Processor PCE{s) in the XPCEECB
field of the PCE work area. The chain is constructed using
the XTHAW or an Execution PCE depending on the reason for
invoking XFREEZE. If the IOS interface section is entered
while an Execution processor is active, then the XTHAW PCE
is used. If an I/O request cannot be proc8ssed and an
Execution processor is not active at the time of the request,
then the PCE controlling the caller is used to build the
chain.

XTHAW is activated ($POSTed) by the Execution Processor
whenever a Job or the HASP controlled OS Reader/Interpreter
is active and just prior to $WAITing for work. A special
status bit (XPOSTBIT) in the XPCESTAT field of an Execution
PCE is used as the primary test for processing the IOB chain.
This bit is not turned on when the OS Reader/Interpreter
is active and assigned to a PCE but does not have a job to
process. This prevents unnecessary activation (thawing) of
the Reader/Interpreter when no Jobs are available for initia­
tion.

XTHAW performs the following major functions:

(1) Examines the XPCEECB field of the XTHAW processor.
If this field is non-zero, it is used as the pointer
to a chain of IOBs (HASPhlffers) which contain ECBs
to be POSTed (thawed) and the HASP/OS POST subroutine
(WPOSTECB) is used to perform the POST. The chain
address for the IOBs is contained in the IOBCSW field
which is set to zero for the last IOB.

(2) Next, the Execution PCEs are searched for the XPOSTBIT
condition and the XPCEECB field is processed as de­
scribed in Step 1, if the XPOSTBIT is on.

(3) XTHAW $WAITs for work after processing all PCEs as
described.

Execution THAW Processor - Page 4.19-1

199

H A S P

4.20 OVERLAY ROLL PROCESSOR

4.20.1 Overlay Roll - General Description

This Processor operates in conjunction with the Overlay Service
Routines. Description of them in Section 5.16 should be read to
provide proper background to understanding of Overlay Roll. The
objective of this Processor is to prevent system lockout due to
$WAITs in overlay routine coding.

4.20.2 Overlay Roll - Program Logic

This Processor's PCE is placed lowest on the HASP Dispatcher chain
and it $WAITs on ABIT when idle. This means that all Processors
with their requested overlay routine in an Overlay Area will have
at least one chance to execute code or otherwise use their overlay
routine before the Overlay Area containing that routine is taken
for other use. Overlay Roll does not receive control unless all
other HASP Processors are in a $WAIT state, i.e., HASP is ready
to relinquish control to OS by WAIT. Overlay Roil always receives
control, just before WAIT is executed.

Overlay Roll has local addressability provided in BASE2 and also
establishes the base address for Overlay Service in register WC so
that its subroutines and tables may be used. On each entry, the
Queue beginning with $WAITACE (see 5.16.2) of PCEs waiting for an
Overlay Area is tested. If empty, $WAIT ABIT is used to exit.
Otherwise, the following attempts are made to secure one or more
Overlay Areas and begin reading a requested routine into them.

For each group of one or more waiting PCEs requesting the same over­
lay routine, all Overlay Areas are searched to find a suitable one.
If a read operation to load an overlay routine is in process, the
area is never taken. Users of that routine are allowed at least
one chance to execute after read completion is processed by Overlay
$ASYNC Exit (see 5.16.9).

For each Overlay Area which does not have read in process, the
OACEPRIO field is examined and the chain of all current users
(beginning at OACEPCE) is searched to determine if any user is
$WAITing on I/O. This would be I/O other than an overlay read
operation, would be expected to complete "soon", and would, there­
fore, make it less desirable to pre-empt that area. The lowest
priority area with no user $WAITing I/O is chosen, if any, other­
wise the lowest priority area is chosen.

Since an overlay routine is "refreshable" at $WAIT time, it is not
necessary to literally "roll", i.e., write to disk, a pre-empted
Overlay Area. Each PCE on the chain of current users (OACEPCE) is

Overlay Roll Processor - Page 4.20-1

200

H A S P

processed to prevent further use of the pre-empted area by it.
The re-entry address (PCER15) is ""sized 11 to determine if it points
into the Overlay Area and if so is relativized by subtracting the
Overlay Area address. The PCE is forced into a $WAIT OROL state,
in addition to the other $WAIT conditions present. When other
$WAIT conditions have been $POSTed, the Dispatcher (see 5.1.2)
detects the PCE $WAITing OROL oSll and sets it to call on Overlay
Service. OLOD subroutine (see • 6.8) is eventually called to
refresh the routine, either directly, or if the PCE gets into the
$WAITACE Queue, by OEXIT subroutine (see 5.16.7) or by Overlay Roll.

The area thus pre-empted is used to read in a new overlay routine,
to be used by the highest priority PCE group on $WAITACE. The OLOD
subroutine (see 5.16.8) is called to begin the read operation.

If there are more PCE groups on the $WAITACE Queue, the above actions
are repeated. When Overlay Roll finally exits by $WAIT ABIT, the
$WAITACE Queue is either empty or all Overlay Areas have an overlay
read operation started, to be posted by Overlay $ASYNC Exit.

Overlay Roll Processor - Page 4.20-2

201

H A S P

4.21 HASP SMB WRITER (HASPWTR)

4.21.1 HASP SMB Writer - General Description

The primary function of this program is to read System Message
Blocks (SMBs) from the data set SYSl.SYSJOBQE and "print" them to
HASP. The process signals the end of the OS execution phase of a
job's processing and makes the messages (JCL, JCL diagnosis, allo­
cation/disposition, SMF, etc.) available to HASP, to be later
printed with print data sets of the job previously SPOOLed by HASP.

This program is used as an attached task, in the HASP region or
partition, if the HASPGEN parameter &WTRPART is set to "*". Other­
wise, the standard OS Output Writer is used to fulfill the same
functions and is started by HASP in a separate partition, using a
procedure named HOSWTR. The re-queuing feature described below is
only available when using HASPWTR.

The program HASPWTR depends upon OS Queue Management structures
(QCR, LTH, SMB, no-work ECB) as documented in OS/360 MVT Job

Management PLM. Functions such as enqueue, deque·.1e or delete of
a job; ENQ/DEQ to control access to Queue Management resources; and
conversion of record addresses between NN, TTRO, and MBBCCHHR forms
are all performed in a manner consistent with that described for
the standard OS Job Management modules.

Microfiche listings for IEFQDELQ, IEFQMDQQ, and IEFSD086 were
consulted as examples during the development of HASPWTR. However,
no actual Job Management modules are executed by HASPWTR.

4. 21. 2 HASP SMB Writer - Program Logic

On initial entry after being ATTACHed, the program saves three
addresses passed to it by HASP Initialization: memory address of
the pseudo 1403 UCB designated by the HASPGEN parameter &WTR,
address of a HASP subroutine to be called to signal end-of-job,
and address of an ECB which will be posted by HASP if the operator
enters the command $P HASP. After signalling HASP (via a POST)
that ATTACH was successful and setting up addressability to the
OS Queue Manager resident DCB and DEB for SYSl.SYSJOBQE, the pro­
gram enters its major processing loop.

The major processing loop is driven by inspection of a list of
ECBs. One is the $P HASP ECB which, if posted, causes the program
to terminate as described below. All other ECBs are each part of
an eight byte no-work element. One such element is present for
each SYSOUT (MSGCLASS) to be proc.essed, as indicated by the list of

HASP SMB Writer (HASPWl'R) - Page 4.21-1

202

H A S P

classes assigned to the HASPGEN parameter &WTRCLAS. If an ECB is
posted, the Queue Control Record (QCR) for that class is read and
a job is dequeued, if present. The dequeued job's last Logical
Track Header (LTH) must be read to perform the dequeue. The updated
QCR is re-written. If there were no jobs to dequeue or the one
dequeued was the only one, the class ECB is cleared and the no-work
element is chained from the QCR before re-writing.

If a job was dequeued, its SMBs are read, messages are formatted
into print lines, and the lines are "printed" to HASP using the
pseudo 1403 UCB. If non-SMB blocks such as Data Set Blocks (DSBs)
are encountered, they are simply skipped. The data sets they
represent are not printed or scratched. When the end of the job
is reached, a small subroutine in HASP is called to signal end-of­
job to HASP.

The HASPGEN parameter &WCLSREQ controls the disposition of the job
after processing. If the position in the list &WCLSREQ, correspond­
ing to the position of the job's original class in the list &WTRCLAS,
is a valid SYSOUT class then the job is re-queued in the QCR for
that new class. Any tasks (e.g., other system writers for perhaps
CRBE, CRJE, TSO, CPS, etc.) whose no-work elements are chained from
that QCR are POSTed. The re-queue action always places the job in
the new QCR chains at highest priority.

If &WCLSREQ does not indicate re-queuing ("*" in a list position
instead of a class), the job's tracks in SYSl.SYSJOBQE are released
by chaining them to the chain of free space beginning in the Master
QCR, POSTing any tasks waiting for Job Queue space, and re-writing
the Master QCR.

The major processing loop is repeated until no ECBs are found posted.
An OS multiple WAIT is executed and when any ECB is posted by another
task (usually an OS Job Terminator), the major processing loop is
resumed.

If the operator enters $P HASP, HASP will POST an ECB to signal
termination actions to this program. All QCRs for processed classes
(&WTRCLAS) are read, the no-work chain of each is zeroed, then the

QCR is re-written. HASPWTR exits with a zero completion code.

If permanent I/O errors occur during any I/O on the SYSl.SYSJOBQE
data set, an error message is always written to the operator. For
write operations, no further special action is taken and processing
continues. For read operations, an attempt is made to minimize
system damage. No input from an incorrect read is ever used for
processing. If the error occurs in reading a QCR or LTH while
attempting to de-queue a job, the ECB is set so that no further pro­
cessing of that class will be attempted. If there is an SMB read
error, end-of-job is signalled to HASP and no further blocks on that
job's chain are read. If a QCR read error occurs during a re-queue
attempt, the job is deleted (tracks ·are released) .

HASP SMB Writer· (HASPWTR) - Page 4.21-2

203

RAS P

4.22 PRIORITY AGING PROCESSOR

4.22.1 Priority Aging Processor -- General Description

The function of the Priority Aging Processor is to regularly
increase the priority of a job in such a way that its position
in the HASP Job Queue is enhanced with the passage of time.
This is accomplished by regularly passing through the HASP Job
Queue and incrementing the priority field of all Job Queue
Elements whose priority falls between upper and lower limits.
These limits, as well as the time interval, are HASPGEN
parameters and can be specified to fit the needs of an
installation.

4.22.2 Priority Aging Processor -- Program Logic

When this processor is dispatched, it searches through the HASP
Job Queue until it encounters a Job Queue Element whose priority
field "QUEPRIO" (see figure 8. 6 .1) is ·less than the HASPGEN
parameter: &PRIHIGH. For that Job Queue Element and every Job
Queue Element after that (until the HASPGEN parameter &PRILOW
is reached), the priority field is incremented by one. The
Interval Timer is then reset and the processor enters a HASP
$WAIT until the timer interval expires.

Since the priority of the Job Queue Element is represented by
the four high-order bits of "QUEPRIO", adding one to this field
has no immediate effect on the priority. After repeating this
operation sixteen times, however, the actual value of the
priority will be increased by one. The value of the time
interval is actually only one-sixteenth of the interval implied
by the HASPGEN parameter: &PRIRATE. This effect tends to smooth
out the process of priority aging by creating less impact when
an interval expires.

In order to minimize CPU utilization, this processor discontinues
operation whenever the HASP Job Queue is empty and does not
continue until a new job enters the system.

Priority Aging Processor -- Page 4.22-1

204

H A S P

4.23 SYSTEM/3 REMOTE TERMINAL PROCESSOR PROGRAM LOGIC

The HASP System/3 Remote Terminal Program is assembled on a
System/360 or System/370 computer under OS, using Assembler F
(IEUASM). The advantages of assembling under OS are: the
System/3 program can be assembled as part of a standard HASPGEN
or RMTGEN; a System/3 program can be customized to the particular
System/3 configuration and HASP System being generated, since
Assembler F can handle conditional assembly statements; and macros
can be used.

To allow assembly of System/3 code, a set of macros is included
as part of the System/3 source code, HRTPSYS3. Most of these
macros are designed to generate machine language code for the
System/3; a few additional macros, such as $WAIT and $FB, provide
for in-line functions and control blocks. The former macros will
be discussed first; they are called the machine-language macros.

The machine-language macros consist of a set of macros whose names
correspond to the mnemonic System/3 operation codes defined in the
publication "Card and Disk System Components Reference Manual"
(Order Number GA21-9103) and the extended System/3 assembler
mnemonics defined in the publication "Disk System Basic Assembler
Program Reference Manual" (Order Number SC21-7509), with the fol­
lowing exceptions: each mnemonic operation code is prefixed by a
dollar sign; no macros are provided for the instructions ZAZ, AZ,
and SZ; additional extended mnemonics $NOPB and $NOPJ are provided;
and the form and order of the operands is such as to be convenient
to Assembler F.

When a machine-language macro refers to a location in core, the
operand is coded either "address" or "(displacement,register)".
Thus one might write "$MVC X'l234',(0,REG2) ,LENGTH" to move LENGTH
bytes to core location X'l234' (and succeeding lower-addressed
bytes) from the core location pointed to by REG2 (and succeeding
lower-addressed bytes).

There are ten forms of machine-language outer macros. These are:

1. The two-address form exemplified by "$MVC adrl,adr2,length".
The operands "adrl" and "adr2" are as explained above. The
operand "length" is assembled as "length-1" unless it is
omitted or is literally "*-*" (in which case it is assembled
as zero) or the opcode is $MVX, in which case it is assembled
as "length". The opcodes $MVC, $ALC, $ED, $ITC, $CLC, and
$MVX belong to this form. The extended mnemonics $MZZ, $MZN,
$MNZ, and $MNN may be used.

2. The one-address form exemplified by "$L reg,adr" and including
$L, $A, $LA, and $ST.

3. The one-address form exemplified by "$MVI adr,immediate" and
including $MVI, $CLI, $SBN, $SBF, $TBN, and $TBF.

System/3 Remote Terminal Processor - Page 4.23-l

205

H A S P

4. The Jump instruction, written as either "$JC adr,cc" or
"$Jxxx adr", where $Jxxx is one of the extended mnemonics.
In this case, "adr" may not be specified as
"(displacement,register)" and must be within a positive dis­
placement of 256 bytes from the last byte of the Jump
instruction.

5. The Branch instruction, written as either "$BC adr,cc" or
"$Bxxx adr" where $Bxxx is one of the extended mnemonics.

6. The one-address I/O forms, exemplified by "$LIO da,m,n,adr"
and including $LIO, $TIO, and $SNS.

7. The instruction $SIO, written as "$SIO da,m,n,cc".

8. The instruction $APL, written as "$APL da,m,n".

9. The instruction $HPL, written as "$HPL cc", where each "c"
is either the actual character to be displayed as a halt code
or the character"*", indicating a byte of zeros. For exam­
ple, one might write "$HPL EJ".

10. The assembler instructions $DC and $DS, t,o·!'lere the statement
label (if any) is assigned the address of the last byte of
the last operand specified.

In addition to the machine-language macros, a $USING and a $DROP
macro are provided to enable Assembler F DSECTs to be used more
easily. The form of the $USING macro is "$USING expression,reg­
ister" where "expression" is a one-to-eight-character expression
with the location counter reference symbol "*" either not used or
used as the first character, and "register" is a one-to-eight­
character absolute expression. No more than two different
$USINGs (two $USINGs with different arguments "register") may be
outstanding at any time. $USING works as follows: from the time
the $USING is issued, for any address-type machine-language macro
which contains an address specification of "(displ,reg)", the
character string "reg" is compared with the string "register" of
each outstanding $USING. If no match is found, the displacement
is assembled as YLl(displ). If a match is found, the displacement
is assembled as YLl(displ-(expression)), where "expression" is
taken from the corresponding $USING.

The form of $DROP is "$DROP register" where "register" is a char­
acter string that appeared as. the second operand of a previous
and outstanding $USING. The form "$DROP register,register" is
also allowable.

The assembly listing generated by Assembler F contains the macro­
expansion for each macro used, in order to provide a printed copy
of the generated text of each machine instruction and the address
at which it will be loaded in System/3 storage. The expansion
of each of the machine-instruction macros is typically contained
in one print line, and the text of the 9enerated instruction is

System/3 Remote Terminal Processor - Page 4.23-2

206

H A S P

always contained in hexadecimal on one print line . ..
The object deck produced by Assembler F is used as input to the
translation program SYS3CNVT, called automatically by RMTGEN.
SYS3CNVT reads the object deck via either ddname SYSLIN, or
ddname SYSGO if SYSLIN is absent. First, SYS3CNVT punches on
SYSPUNCH a System/3 one-card loader. Then it reads from SYSLIN
or SYSGO, ignoring all but TXT cards and the END card. For each
TXT card, SYS3CNVT creates one System/3 96-column load-mode card
image, suitable for reading by the System/3 one-card loader. Each
such 96-column card image contains 64 bytes of information as
follows:

• bytes 1-5 contain a System/3 $MVC instruction of the form
11 $MVC load-adr, (column-number,l) ,length-1" where load-adr
is the absolute load address of the rightmost byte of text
on the corresponding 80-column Assembler·F object deck TXT
card, column-number is the number minus one of the 96-card
column in which appear the low-order six bits of the right­
most byte of text, the digit 11 l" .refers to the System/3' s
register 1, and length is the number of bytes of text on
the card;

• bytes 6-61 contain a maximum of 56 bytes of text, starting
in column 6; and

• bytes 62-64 contain a three-digit card sequence number •

. When the object deck's END card is detected, or when a TXT card
appears that was generated by the $END macro (whose optional key­
word operand START= specifies the starting execution address of
a segment of text) , a 96-column load-mode card image is constructed
whose 64 bytes are as follows:

• bytes 1-4 contain a System/3 $B instruction of the form "$B
address" where address is either the first byte of the text
segment just loaded (if the $END macro does not specify
START=, or if the END card of the assembly has no operand) or
the address specified in the START= parameter of the $END
macro or the operand field of the END card;

• bytes 62-64 contain a three-digit card sequence number.

After the object deck's END card has been processed, SYS3CNVT
creates a 96-column card image of which columns 2-4 are "EOR"
(this is the rep terminator card, End-of-reps) and columns 62-64
contain a three-digit c~rd sequence number.

Certain of these 96-column card images contain descriptive infor­
mation in bytes 33-64: these are the one-card loader, which is
captioned "FIRST CARD"; the card created from a $END macro, which
is captioned "PSEUDO-END"; and the card created from an END card,
which is captioned "LAST CARD".

After it has created each 96-column card image (including that for
the one-card loader) , SYS3CNVT breaks the image in half and punches
two 80-column cards from it. Each 80-column card punched by

System/3 Remote Terminal Processor - Page 4.23-3

207

HAS P

SYS3CNVT contains the following fields:

• columns 1-2 are blank;.
• columns 3-50 contain the first (if column 80 is odd) or the

last (if column 80 is even) 48 bytes of a System/3 card
image;

• columns 51-72 are blank;
• column 73 contains the punch combination for X'80', an

indicator to any System/3 Remote Terminal Program generated
with &S396COL=l that two 80-column cards are to be combined
and punched as one 96-column card (the System/3 Starter System
is generated with &S396COL=l);

• columns 74-80 contain the remote terminal identifier and card
sequence number, in the form "Rrnmnnnn", where nnnn is 0001 on
the first card punched.

The punched output of SYS3CNVT may be routed directly to a System/3
which is running the Starter System or other suitable System/3 Re­
mote Terminal Program; the resulting 96-column punched deck of
cards is immediately ready for loading into a System/3 of the
proper configuration. Alternatively, SYS3CNVT's punched output
may be punched on 80-column cards for later transmittal to a
System/3. Each 80-column card is suitable for d·ata transmission '
in either transparent or non-transparent mode.

System/3 Remote Terminal Processor - Page 4.23-4

208

' "-..-. __ ._/

H A S P

The following pages constitute the Program Logic manual for the
System/3 Remote Terminal program.

The program consists of processors., interrupt routines, and system
subroutines. There is a processor for each logical function to
be performed by the program; each processor is controlled by a
Function Block (somewhat analogous to a TCB in OS). Interrupt
routines are provided for those devices (BSCA, 5471, and 5475)
which are capable of interrupting the CPU; other devices are
operated by processors. For example, the MFCU processor operates
a hopper of the 5424 MFCU; it becomes associated with either a
logical reader processor or a logical punch processor, depending
upon the state of the hopper.

The various routines of the System/3 Remote Terminal program
are described in the order in which they appear in the listing.

System/3 Remote Terminal Processor - Page 4.23-5

209

H A S P

IHEREP - HASP Environmental Recording and Error Processor

IHEREP prints at program load time the error statistics gathered
from the previous running of the System/3 Remote Terminal pro­
gram. IHEREP is then overlaid and the Remote Terminal program
continues to load.

First, IHEREP loads the 5203 forms length register and selects
the correct print chain image according to the printer's status
information. Then it checks the log area for validity. If the
log area is valid, the characters 'HASP' will appear immediately
before the log area. If these characters do not appear, IHEREP
prints the message

HEREP COUNTERS HAVE BEEN ALTERED

and branches to zero to cause program loading to resume.

If the log area is intact, it contains eight two-byte counters
for each status byte which can contain unit check information
for a device. IHEREP prints a title line and then, for each
status byte, a subtitle line and as many as eight detail lines.
A subtitle line contains device description and status byte number.
A detail line contains status bit description, bit number, and
count of bit occurrences in decimal.

Control of IHEREP resides in the table of subtitles and detail
descriptors, and control of the two-byte bit counters is by a
bit string (starting at symbol IHBITl) containing one-bits
for the counters to which correspond detail descriptors. The
table of subtitles and detail descriptors is made up of $IHMSG
macros; if the first operand of this macro is 'T', the macro
defines a subtitle, and if the first operand is an integer
between 0 and 7, it specifies a detail descriptor for the bit
whose bit number is the first operand. The table entries are
used in order, and a byte of zero defines the end of the table.

When the HASP Environmental Recording and Error Printout is com­
plete, the counters are zeroed out and IHEREP branches to zero
to continue program loading.

System/3 Remote Terminal Processor - Page 4.23-6

210

H A S P

$COM - Conunutator

The Conunutator gives control in turn to the various processors
which comprise the System/3 Remote Terminal program, based upon
the status of the various Function Blocks (FBs).

If the Event Wait Field (FBEWF) of an FB has zeroes in the bit
positions defined by EWFALL, the function is said to be dispatchable.
$COM loads register one from field FBREGl of the FB (register two
points to the FB) and gives control to the associated processor by
loading the Instruction Address Register (IAR) from field FBENT.

When the processor has completed its work, it returns to the com­
mutator with register two pointing to its FB. It may return to
$COMRET, where $COM will save both the Address Recall Register (ARR)
as the processor's next entry point and the value of register one;
$COMRETA, where $COM will save the value of register one; or
$COMRETB, where $COM will assume that both the value FBENT and
the value FBREGl are correct.

Then $COM chains to the next FB (or starts again with the first
FB if the chain field FBNEXT is zero) and repeats the above process.

System/3 Remote Terminal Processor - Page 4.23.7

211

H A S P

$MFCU - 5424 MFCU Processor

$MFCU operates under two FBs and two Hopper Control Areas (HCAs) -
one for each MFCU hopper. The routine contains four levels of
subroutines.

$MFCU begins by calling first-level subroutine HREAD to read a
card. HREAD sets up a read $SIO instruction from information
in the HCA and calls second-level subroutine HEXCP. HEXCP calls
fourth-level subroutine HTIO, which returns condition code equal
if the hopper described by the HCA is ready and condition code
unequal if it is not. If condition code unequal is returned,
HEXCP returns to the commutator; it will regain control again at
the call to HTIO.

If the hopper is ready, HEXCP calls third-level subroutine HSIO
to perform I/O on the hopper. HSIO first checks for various
exceptional conditions. If error recovery is in progress (for
the other hopper), HSIO returns immediately with condition code
unequal. It returns similarly if the MFCU is busy reading,
printing, or punching. If error recovery is not in progress and
the MFCU is not busy, HSIO tests the "hurry" switch (which is set
if one hopper is active and the other hopper becomes ready with
a read $SIO pending for it). If the hurry switch is set and the
current $SIO is not a read-only $SIO, HSIO returns condition code
·false.

If all the above tests are passed, HSIO checks the stacker request
associated with the current $SIO. If the stacker request is dif­
ferent from that for the previous $SIO, the feed path is checked
to make sure it is clear. If the feed path is not clear, HSIO
returns condition false; in addition, if the $SIO is read-only,
it sets the "hurry" switch. But if the feed path is clear, HSIO
resets the hurry switch, sets the new stacker number, and proceeds
as if the stacker request for the current $SIO were the same as
that for the previous $SIO.

If no stacker change is indicated, HSIO moves the current $SIO
to an in-line position from the HCA and examines it. If the $SIO
indicates print (interpreting) , HSIO attempts to select one of two
print buffers into which to move the punch information for the
$SIO. If unsuccessful, HSIO returns condition code unequal. But
if one of the print buffers is free (as indicated by the MFCU
print-buffer-busy status bits) HSIO copies the punch data into
the print buffer and modifies the $SIO instruction to indicate
the print buffer being used. Then, or if the $SIO is read-only,
HSIO loads the MFCU's read and punch data address registers.
After a call to HTIO to insure that the hopper is still ready,
HSIO issues the $SIO instruction, sets condition code equal, and
returns to its caller, HEXCP.

System/3 Remote Terminal Processor - Page 4.23.8

212

H A S P

HEXCP examines the condition code returned to it. If the condition
code is unequal, HEXCP non-process exits, exactly as it did for
HTIO above. But if the condition code is equal, HEXCP non-process
exits to be entered again at a $TIO which continues to non-process
exit until the MFCU ceases being busy; then HEXCP calls third-level
subroutine HSNS to determine the completion of the I/O operation.

HSNS calls HTIO to see if a unit check condition exists. If that
is the case, HSNS reads the MFCU status bytes. If all status bits
in the error status byte are off (or if no unit check condition
existed} HSNS returns condition code equal; if only the no-op status
bit is on, HSNS returns condition code unequal.

If other error status bits are on, HSNS calls system subroutines
$MSG and $LOG to add a message to the error trace table and to
count the error bits for HEREP, respectively. Then HSNS checks
the error bits further. If the only error bits on are punch
invalid or print check, HSNS returns condition code equal; these
are regarded as user data errors (punch invalid} or trivial errors
(print check}.

But if other error bits are on, HSNS sets the error-recovery-in­
progress flag in HSIO (to prevent other $SIO instructions from
resetting the error bits} and non-process exits until a SNS in­
struction shows that all error bits (except no-op} have been reset
by the operator (who must do a non-process run-out on the MFCU).
Then HSNS returns condition code unequal.

HEXCP returns to its caller (which was HREAD in this case) the
condition code it received from HSNS.

HREAD examines the condition code returned to it by HEXCP. If
unequal was returned, HREAD again calls HEXCP; otherwise first­
level subroutine HREAD returns control to mainline $MFCU (in
this case, at its second instruction).

Having read the first card from its hopper, $MFCU now tests that
card for blanks, via first-level subroutine HBLANK. If the card
is blank, the hopper is assumed to contain blank cards to be
punched. Otherwise, the hopper is assumed to contain a job
stream and the MFCU awaiting-read routine HAR attempts to asso­
ciate the hopper with a free logical reader FB, using subroutine
HGET. HGET returns condition code equal if it succeeds (it also
posts the logical reader's FB for UNIT}, and condition code
unequal if the hopper becomes not ready (and therefore dormant
rather than awaiting-read); otherwise, HGET non-process exits
until one of the above two conditions happens.

If HGET returns condition code equal, the MFCU reading routine,
HRD, signals to the now-associated logical reader that the read
buffer for the associated hopper is busy; then HRD non-process

System/3 Remote Terminal Processor - Page 4.23.9

213

H A S P

exits until the logical reader frees the read buffer. When the
read buffer is free, HRD checks the EOF' flag, set by the logical
reader when it encounters a /*EOF control card. If the EOF flar;
is on, HRD makes the hopper dormant by branching to the first
instruction of $MFCU; otherwise HRD calls first-level subroutine
HREAD as above to read the next card and, on return, again sets
the read buffer busy.

If on the other hand $MFCU finds a blank card in a dormant hopper
it gives control to HAP, the awaiting-punch routine, which tries
to find (via HGET) a logical punch FB of which HASP has requested
permission to send a punch stream. Having found such a logical
punch, HAP gives control to HPU, the MFCU punch routine.

HPU non-process exits until the associated logical punch processor
sets either the EOF flag or the punch-buffer-busy flag in the
flag byte of its hopper control area. If the EOF flag is set,
HPU makes the hopper dormant.

But if the punch-buffer-busy flag is set, HPU punches and prints
a card and reads the next card (to insure that only blank cards
are punched). HPU sets up a read-punch-print $SIO and calls
second-level subroutine HEXCP. If HEXCP returns condition code
unequal and the MFCU status indicates any of the errors no-op,
punch check, hopper check, or feed check, the punch buffer is not
marked free; otherwise it is marked free and set to blanks. The
MFCU status is checked again; if neither read check nor no-op is
indicated, the card is examined to determine if it is completely
blank. Otherwise, or if the card now in the wait station is not
blank, another card is read (via subroutine HREAD). When a blank
card has been read successfully, HPU again checks for punch­
buffer-busy as above.

System/3 Remote Terminal Processor - Page 4.23.10

214

H A S P

$1442 - 1442 Card Reader - Punch Processor

The $1442 processor is assembled if RMTGEN parameter &531442 has
been set to 1. Its logic is similar to that of $MFCU but simpler,
since only one hopper need be controlled. $1442 uses some of the
subroutines of $MFCU; for this reason, and since its interface to
the logical reader and logical punch is the same, the 1442 hopper
control area is similar to (but not identical with) the HCAs of
the MFCU.

$1442 starts by reading a card from the 1442 via entry point
GSIORD of subroutine GSIO. If the card is blank, GAP (awaiting­
punch) calls HGET just as does HAP in $MFCU; if the card is non­
blank, GAR (awaiting-read) calls HGET just as does HAR in $MFCU.

When a logical reader or logical punch has been associated with
the 1442, GRD or GPU gains control and proceeds with I/O as indi­
cated by the read-buffer-busy and punch-buffer-busy flags. In
addition to recognizing the EOF flag set by the logical reader,
GRD also recognizes the last-card status bit from the 1442 and
sets the last-card flag, recognized by the logical reader.

Subroutine GSIO performs I/O on the 1442. Entry point GSIORU
sets a feed command in the $SIO and branches to common code. Entry
point GSIORD sets a read-EBCDIC command in the $SIO and loads the

.data address register; it branches to common code. Entry point
GSIOPU sets up a punch-and-feed command, loads the data address
register and the punch count register, and falls through to
common code.

GSIO's common code non-process exits on a $TIO until the hopper
is ready. Then it issues the constructed $SIO and non-process
exits until the 1442 is not busy. If entry was from GSIORU,
GSIO returns condition code equal; otherwise it tests for unit
check (via subroutine HTIO) and reads the 1442 status bytes. If
no unit check occurred, GSIO returns condition code equal.

But if the 1442 had a unit check or otherwise became not ready,
GSIO uses subroutines $MSG and $LOG to add a message to the
error trace table and to count the error bits for HEREP,
respectively; then it checks the status bytes. If no error bit
is on, GSIO returns condition code equal; otherwise GSIO returns
condition code unequal.

System/3 Remote Terminal Processor - Page 4.23.11

215

H A S P

$5203 - 5203 Printer Processor

The 5203 Printer Processor non-process exits until another
processor has marked the printer data area busy. Then it com­
pletes the Q-byte and CC-byte of a $SIO instruction from an
SRCB furnished it by either $PRINTER or $CONP. After a $TIO
shows that the 5203 is ready, $5203 loads the printer image
address register and the printer data address register and
issues the $SIO. $5203 then non-process exits until the printL1
is not busy.

When the printer operation has ended, $5203 checks for errors.
If any of the error incrementer failure check, hammer echo
check, or any hammer on check has occurred, $5203 attempts to
reprint the line. Otherwise it clears the print line to blanks,
shows the print buffer free, and again non-process exits until
a processor sets the print buffer busy.

Additionally, whenever a unit check occurs, $5203 calls sub­
routines $MSG and $LOG to produce an error message and to
count the one-bits in the printer status bytes.

System/3 Remote Terminal Processor - Page 4.23.12

216

•

H A S P

$READER - Logical Reader Processor

$READER waits for one of the physical reader routines to post it
for UNIT. When posted, it sends to HASP a request-permission
control sequence (via subroutine $REQ) and waits to be posted for
PERM by $BSCA when the system receives from HASP the appropriate
permission-granted sequence.

When it has received permission, $READER non-process exits unless
the read-buffer-busy flag is on, indicating a card is ready to be
processed. Then it examines the card. If the card's columns 1-5
are "/*EOF", $READER sends to HASP an end-of-file control sequence
(via subroutine $LEOF), which is merely a zero-length record. It
then waits again for UNIT, and continues as above when posted •
The same end-of-file processing occurs if the reader is a 1442 and
the last-card flag was set by the 1442 physical reader routine.
1442 code is absent unless &S31442=1.

If there is no end-of-file indication, $READER processes the card
further. If object deck processing was not specified at RMTGEN
time, $READER transmits the first 80 columns of the card to HASP
by calling subroutine $CMPR. On return, $READER resets the read­
buffer-busy flag of the appropriate hopper control area and non­
process exits until the read-buffer-busy flag is again set by the
physical reader routine.. Then it continues as above.

However, if object deck processing was indicated at RMTGEN time by
the specification &S30BJDK=l and if the physical reader device is a
5424, $READER first checks column 81 of the 96-column card image
for the character "l". If -the comparison is unequal, $READER
processes the card normally, as above. ·But if column 81 equals
"l", the card is the first card of a two-card hexadecimal image of
a full-EBCDIC BO-column card. In this case, $READER compresses
the first 80 columns of the card into the first 40 bytes of the
same device's punch buffer, shows the read buffer free, and non­
process exits until the read buffer is again busy. Then it checks
the new card image for a "2" in column 81. If column 81 does not
contain a "2", $READER treat8 the newly-read card as a normal card,
and the previous card is lost. If the new card contains a "2" in
column 81, $READER compresses its first 80 columns to the second
40 bytes of the same device's punch buffer and transmits the con­
structed card image to HASP, using subroutine $CMPR. Then it
resets the read-buffer-busy bit and non-process exits as above.

Subroutine RDSQUEZE performs the above-mentioned compression. It
creates a single sink byte from a pair of source bytes each of
which is assumed, without validity-checking, to contain the
EBCDIC representation of one of the sixteen hexadecimal characters.
For example, it would compress the byte pair "FOC6" to the byte "OF".

System/3 Remote Terminal Processor - Page 4.23.13

217

H A S P

$PRINTER - Logical Printer Processor

$PRINTER waits for HASP to send a request-permission control
sequence. When $BSCA finds such a sequence, it posts $PRINTER
for permission. $PRINTER then checks the printer availability
flag. It non-process exits until this flag becomes zero; then it
sets this same flag to show that the printer is in use. It sends
a permission-granted control record to HASP (via subroutine $PERM)
and then, if the print buffer is free, calls subroutine $DCOM to
request a print line be decompressed into the print buffer.

On return from $DCOM, $PRINTER recognizes two or three conditions:
normal return, end.-of-file return, and (optionally) forms mount
message.

For the forms mount message case, the SRCB (carriage-control byte,
in the case of print records) will be x 1 8E'. $PRINTER makes the
carriage control byte a print-and-space-three, shows the print
buffer busy, and non-process exits until the print buffer becomes
free; then it sets a carriage-control byte of space-three-immediate
(so that the forms mount message will be visible on the printer
without operator intervention) and continues as in the normal case.
This code is assembled only &S35471=0.

For the normal-return case, $PRINTER moves the SRCB returned by
$DCOM to the printer control area as the carriage control byte,
sets the print-buffer-busy bit, and non-process exits until the
print-buffer-busy is off. Then it again calls $DCOM for the
next print line.

For the end-of-file case, $PRINTER resets the printer availability
flag and checks to see HASP had again sent a request-permission.
If so, $PRINTER again sets the printer availability flag, sends to
HASP permission-granted (via subroutine $PERM) and continues as
above. Otherwise $PRINTER waits for HASP to send request-permission.

Remote Terminal Processor - Page 4.23.14

218

H A S P

$PUNCH - Logical Punch Processor

$PUNCH waits for HASP to send a request-permission control sequence.
When $BSCA finds such a sequence, it posts $PUNCH for PERM, where­
upon $PUNCH waits for .UNIT. When posted for UNIT by a physical
device routine, $PUNCH sends a permission-granted control record
to HASP (via subroutine $PERM) and non-process exits until the
appropriate punch buffer is free. Then it calls subroutine $DCOM
to decompress a card image into the punch buffer.

If $DCOM returned a card image (rather than end-of-file) the image
is processed in various ways, depending upon the type of the punch
device and options selected at RMTGEN time. If the punch is a
1442, $PUNCH calculates the number of bytes to punch, subtracts it
from 128, places the difference in the 1442 hopper control area,
and shows the punch buffer busy. It then non-process exits, as
above, until the punch buffer becomes free.

If the device is a 5424, $PUNCH first checks column 1 of the card
image.

If column 1 is X'6A', the card image is assumed to be a HASP job
separator card. $PUNCH extracts the job number from columns 52,
62 and 72, ignores the rest of the image, and punches a card of
which columns 1-32 are:

********** JOB nnn **********

It causes this card to be punched as usual, that is, by marking the
punch buffer busy; then it non-process exits until the punch buffer
becomes free.

If the device is a 5424 and RMTGEN specified &S396COL=l, $PUNCH
checks column 73 of the card image. If that column is X'80',
$PUNCH checks column 80. If column 80 is odd, $PUNCH saves in a
work area in its Function Block the 48 columns starting at column
3 and again calls $DCOM to get the next card, as above. If column
80 is even, $PUNCH moves columns 3-50 of the card image to columns
49-96, moves the first 48 bytes from its work area to columns 1-48,
and causes the card to be punched.

If the device is a 5424 and RMTGEN specified &S30BJDK=l, $PUNCH
checks column 1. If that column is X'02', $PUNCH saves the
rightmost 40 columns of the BO-column card image in its work area
and expands the leftmost 40 columns to 80 columns by substituting
for each byte two EBCDIC characters; for example X'02' becomes
C'02'. It sets the character "l" in column 81 and causes the card
to be punched. $PUNCH then repeats this process for the saved 40
columns, sets the character "2" in column 81, and causes the card.

System/3 Remote Terminal Processor - Page 4.23.15

219

H A S P

to be punched.

If none of the above situations apply, $PUNCH merely marks the
punch buffer busy, non-process exits until it becomes free again,
and then calls $DCOM to get the next card.

$DCOM may return an end-of-file indication rather than a card
image. $PUNCH sets the end-of.-file flag in 1:.he hopper control
area and checks for a subsequent request-permission from HASP.
If HASP has requested permission again, $PUNCH waits again for
UNIT, as above1 otherwise $PUNCH waits for PERM, as above.

Sy11temi3 Remote Terminal Processor - Page 4.23.16

220

H A S P

5471 Console Interrupt Routine

CINT, the 5471 console interrupt routine, gains.control upon an
interrupt from either the 5471 printer or the 5471 keyboard. A
keyboard interrupt may occur due to the End key, the Return key,
the Cancel key, the Request key, or a Data key. A printer inter­
rupt may occur either after completion of printing a character or
after a carriage return.

At an End key interrupt CINT starts a carriage return, posts the
console processor, and exits by starting the keyboard. If a
request is pending, the Start-I/O instruction sets the request
light on and disables interrupts from all keys; otherwise it sets
both lights off and enables interrupts from the request key.

A Return key interrupt causes the same functions as an End key
interrupt.

A Cancel key interrupt causes CINT to print an asterisk and set a
flag which will cause a carriage return at the next printer inter­
rupt. CINT then resets the buffer pointer to point to the first
byte of the buffer and exits by issuing a SIO which leaves the
same lights on and interrupts enabled as before the interrupt.

At a Request key interrupt, CINT posts the console processor if
a~ inspection of the console status byte CCFLG shows that neither
input nor output is currently in process. In any case, it sets
the request-pending bit and exits by issuing a SIO which turns on
the request-pending light, disables request key interrupts, and
leaves the proceed light and. other key interrupt indicators as
they were before the interrupt.

For a Data key interrupt, CINT saves the keyed character in the
buffer byte pointed to by the buffer pointer; then it increments
the buffer pointer by one. It issues a SIO to the printer so that
the keyed character will be printed. If the buffer pointer now
falls outside the buffer, CINT turns on the carriage-return request
bit and performs all the functions of the End key except for issuing
a carriage return. Otherwise it exits by issuing to the keyboard a
SIO which leaves the same lights on and interrupts enabled as
before the interrupt.

On a printer interrupt due to end of either printing or carriage
return, CINT tests the carriage return request bit. If that bit
is on, CINT resets it and exits by issuing a SIO for carriage
return.

If there is no carriage return request pending, CINT tests the out­
put-in-process bit. If output is not in process, CINT exits by
disabling printer interrupts. But if output is in process, CINT
checks whether the final output character has been printed. If so
it resets the output-in-process flag, posts the console processor,
and exits by starting a carriage return. If not, it selects and

System/3 Remote Terminal Processor - Page 4.23.17

221

H A S P

loads the next character to print and exits by issuing a SIO
to print that character.

Whenever CINT posts the console processor, it also turns on the
action-required flag, CFACT. This flag is tested and reset by
the console processor.

System/3 Remote Terminal Processor - Page 4.23.18

222

H A S P

5471 Console Processor

The 5471 console processor, $CON, non-process exits until posted;
then it checks to find what caused it to be posted.

If input is complete, $CON replaces in the MULTI-LEAVING buffer
pool the buffer it stole when it acknowledged the request key.
Then it sends the operator command to HASP by calling subroutine
$CMPR, unless the input length is zero. In any case, it continues
by checking for request-pending.

If a keyboard request is pending, $CON first steals a buffer from
the MULTI-LEAVING buffer pool, to avoid a potential buffer lock-out
problem. If no buffers are available, it leaves the request pending
and checks for queued buffers containing messages to print on the
5471 printer. But if the MULTI-LEAVING buffer steal was successful
$CON resets the 5471 buffer pointer, resets the action-required and
request-pending flags, sets the input-in-process flag, and issues
a SIO which turns on the proceed light and enables all keyboard
interrupts. Then it non-process exits until posted.

If $CON was not posted for the above reasons, it investigates out­
put possibilities. If either input or output is in process, it
cannot start output; it again non-process exits until posted. But
if neither input nor output is in process, and if there is no end­
of-forms indication from the 5471, $CON checks for output. First
it checks the error message table, a circular table, to see if any
error messages are outstanding. If so, it expands a four-byte coded
error message to the equiyalent eight-character hexadecimal repre­
sentation in the 5471 buffer, sets the output-in-process flag, and
issues a SIO to start printing the first character; then it non­
process exits until posted, while CINT prints the remaining char­
acters.

If no error messages are outstanding, $CON checks for messages from
HASP. If there are some, $CON calls subroutine $DCOM to decompress
a message. In order not to be forced into a wait condition on sub­
sequent calls to $DCOM, $CON then checks whether the MULTI-LEAVING
buffer from which the message was decompressed contains more
messages; if not, $CON frees it by calling subroutine $FREEBUF.
Then $CON initiates printing of the message by setting the output­
in-process flag and issuing a SIO to print the message's first
character. Then $CON non-process exits until posted.

System/3 Remote Terminal Processor - Page 4.23.19

223

H A S P

5475 Console Interrupt Routine

Upon an interrupt from the 5475 Data Entry Keyboard, the 5475
Console Interrupt Routine (CINT) checks the cause of the inter­
rupt. An interrupt may be caused by a data key, the field-erase
function key, the release function key, the error-reset function
key, any other function key or switch, or the multipunch key. A
multipunch key interrupt is treated as an error and requires the
operator to depress the error-reset key; all function keys and
switches other than those mentioned are treated as no-operation
keys.

A data key interrupt causes CINT to place the keyed character in
the 5475 buffer. CINT then increments the buffer pointer by
one; if the buffer pointer now points outside the buffer, CINT
performs the release key function. Otherwise CINT adds one to the
column indicated and exits. The exit process con~ists of issuing
a LIO for the colunm indicators and a SIO for the keyboard.

An interrupt from the field-erase key causes CINT to reset the
buffer pointer, set the column indicators to display "01", and
exit.

An interrupt from the release key causes CINT to post the 5475
console processor for work, set the SIO in CINT to disable the
keyboard, and exit.

Any of several error situations causes CINT to turn on the error
light. It does this by setting its SIO to X'23', which also
locks all data keys. When an interrupt other than from the error­
reset key occurs and the error light is on, CINT exits without
further processing. But if the interrupt was from the error-reset
key, CINT resets the SIO to its normal value of X'4F' and exits.
Conditions which cause the error light to come on are a multipunch
interrupt indication, no interrupt indication, or two or more of
the interrupt conditions data key, function key, and multipunch
key.

System/3 Remote Terminal Processor - Page 4.23.20

224

H A S P

5475 Input Console Processor

When posted for WORK by CINT, the 5475 Input Console Processor
($CON) sends the operator command to HASP by calling subroutine
$CMPR, unless the input length is zero. In any case, it resets
the column indicator save area to "01", resets the 5475 buffer
pointer, and sets to X'4F' the SIO in CINT. Then $CON turns
off the column indicator display (to avoid burning out the lights},
issues a SIO to unlock the keyboard and enable interrupts, and
again waits for WORK.

System/3 Remote Terminal Processor - Page 4.23.21

.225

H A S P

$CONP - 5203 Output Console Processor

When posted for WORK, $CONP checks the printer-availability flag.
This flag is on if $PRINTER is currently printing a job. If the
flag is on and RMTGEN specified &PRTCONS=2, $CONP frees all
MULTI-LEAVING buffers currently queued on its Function Block
(using subroutine $FREEBUF) and again waits for WORK. But if
RMTGEN specified &PRTCONS=l, $CONP checks to see if it should
force messages to be printed on the 5203. It does this by com­
paring the number of MULTI-LEAVING buffers currently queued on its
Function Block with a maximum number. If the comparison is low,
it non-process exits until either the comparison is not low or
the printer-availability flag is off; if the comparison is not
low, it performs a page eject before starting to print messages.

To print messages, $CONP first prevents the logical printer routine
$PRINTER from using the 5203 simultaneously; to prevent this, it
sets the UNIT wait bit in $PRINTER'S Function Block. Then $CONP
attempts to find an outstanding four-byte coded error message; if
it finds one, it expands the message to eight bytes and.causes it
to be printed.

If no error messages are outstanding, $CONP checks for messages
from HASP. If there are some, it calls $DCOM to decompress a
message. In order not to be forced into a wait condition on sub­
sequent calls to $DCOM, $CONP then checks whether the MULTI-LEAVING
buffer from which the message was decompressed contains more mes­
sages; if not, it calls $FREEBUF to free the buffer. Then $CONP
causes the message to be printed, by marking the print buffer busy
and non-process exiting until it again becomes free. All messages
printed by $CONP are single-spaced.

Finally, if no messages remain to be printed, $CONP examines the
printer-available bit to determine if it interrupted a job to print
messages. If so, $CONP does a page eject. In any case, $CONP
resets the UNIT wait bit to unlock $PRINTER and waits for work
again.

System/3 Remote Terminal Processor - Page 4.23.22

226

H A S P

BSCINT - BSCA Interrupt Routine

The BSCA Interrupt Routine, BSCINT, processes all interrupts and
performs all error recovery for the Binary Synchronous Communications
Adapter. Processing is always initiated by one of three types of
op-end interrupts - end-of-transmit, end-of-receive, and 2-second­
timeout.

For an end-of-transmit interrupt, BSCINT gains control at BSXOPE.
If no hardware errors have occurred, it starts a receive operation;
otherwise it uses subroutine BIDISCON to recover from a possible
disconnect and, on return, attempts to re-transmit.

For an end-of-receive interrupt, a great deal more is done. After
having computed the number of received bytes, BIRCV checks for
hardware errors; if any occurred, it uses subroutine BIDISCON and
then transmits a negative acknowledgment (NAK) to HASP.

If no hardware error occurred, the starting sequence is checked at
BCROK - it is valid if it is a NAK or a DLE-ACKO or if its second
byte is STX and the last byte received is ETB. If none of these
is the case, BCROK sets up an error message of 03SSSS00 (where
SSSS is the. starting sequence) and then transmits a NAK to HASP.

The section of code responsible for transmitting a NAK first checks
whether the wait-a-bit (WAB) sequence had been transmitted most
·recently; if so, it transmits the WAB sequence again rather than a
NAK. If not, it determines if more than five bytes had been
received. Since the buffer used for a receive is the same as that
used for a transmit, the receive operation may have overlaid some
or all of the transmitted data; since the starting or ending se­
quence was incorrect or a hardware error occurred, BSCINT has not
yet received a positive acknowledgment for the transmitted data.
To alleviate this problem, the first five bytes of the transmit
data were saved before the buffer was transmitted. If the receive
operation overlaid more than these bytes, the buffer cannot again
be transmitted; the first two saved bytes are replaced with a
DLE-ACKO and the transmit ending address is set to the starting
address plus two. Then the routine transmits a NAK to HASP.

If the received starting sequence was a NAK, the interrupt routine
sets up an error message of 02000000 (NAK received), refreshes the
first five bytes of the buffer and the transmit ending address, and
re-transmits the buffer to HASP.

If the received sequence was DLE-ACKO, BSCINT sets flags to show
$BSCA that a transmit-receive operation has completed; then it
exits by starting a two-second timeout. If the two-second timeout
completes before $BSCA has cancelled it, BSCINT sets the two-second­
timeout-complete flag and exits by disabling BSCA interrupts.

System/3 Remote Terminal Processor - Page 4.23.23

227

H A S P

If the second byte of the received starting sequence was STX and
the ending byte was ETB, BSCINT validates the Block Control Byte

.. (a HASP control byte which contains a modulo~l6 received-block
count) and saves the two-byte HASP Function Control Sequence. If
the BCB is as expected, interrupt processing concludes as for
DLE-ACKO. Otherwise the STX is changed to X'FF' as a signal to
$BSCA to throw the buffer away and the difference between the
received BCB and the expected BCB is examined. If the modulo-16
difference is -2 or -1, BSCINT tolerates the error; otherwise it
sets up an error message of 02rree00 to display the received.and
expected BCB's, and it builds and transmits to HASP a BCB-error
control sequence.

System/3 Remote Terminal Processor - Page 4.23.24

228

H A S P

$BSCA - Conununications Adapter Processor

$BSCA non-process exits until BSCINT posts it with an indication
that either an error message awaits synchronous processing, a re­
ceive operation has completed without error, or a two-second
timeout has occurred.

If an error message was produced by BSCINT, it must be placed in
the circular error message trace table by a synchronous processor
rather than an interrupt routine, since the $MSG subroutine is not
re-entrant. $BSCA calls the $MSG subroutine to add the error mes­
sage to the trace table.

If a receive operation has ended without error, $BSCA processes the
received buffer, which is always the first buffer on $BSCA's buffer
chain. If the buffer does not contain text, $BSCA frees it imme­
diately. Otherwise $BSCA inspects the buffer's first RCB (or first
SRCB if the RCB indicates a MULTI-LEAVING control record) . If the
RCB is zero (typical when HASP sends wait-a-bit) $BSCA frees the
buffer. Otherwise $BSCA compares the RCB (or SRCB) with the field
FBRCB in all FB's eligible to receive buffers; if there is no
match, it frees the buffer. But if a match is found, $BSCA again
determines if the first record in the buffer L, a control record.
If so, it posts the subject FB for PERM and resets its POST bit to
indicate a possible early post (the POST bit is turned on by sub­
routine $PERM); then it frees the buffer. But if the buffer con­
tains data records, $BSCA dequeues the buffer from its own FB and
queues it onto the subject FB, in the process reducing its own
buffer count by one, increasing that of the subject FB by one, and,
if the subject FB's buffer count (FBBCT) becomes equal to or greater
than the subject FB's maximum buffer count (FBBMX), resetting the
appropriate bit in the master Function Control Sequence $FCS by
using FBFCS.

Having processed the received buffer or if a two-second timeout
occurred, $BSCA determines what and when it is to transmit. $BSCA
inspects the most-recently-received FCS for the wait-a-bit; if it
is on, $BSCA transmits inunediately a DLE-ACKO (or a wait-a-bit
sequence if there are no free MULTI-LEAVING buffers).

But if the received wait-a-bit is off, $BSCA inspects its buffer
chain. If the chain is non-empty, $BSCA prepares to transmit the
first-chained buffer to HASP. Each buffer on the chain has the
following format, as set by subroutine $CKLEN:

System/3 Remote Terminal Processor - Page 4.23.25

229

H A S P

Ptr to next buffer
'

Ptr to 3d-to-last byte (ETB-2)

First RCB

First SRCB text . . .

&MLBFSIZ

EOB (Xi 00 I) ETB (X'26')

$BSCA overlays these
5 bytes with DLE (SOH),
STX, BCB, FCSl, FCS2.

ETB is not necessarily
the last byte.

If there is no text buffer to , $BSCA checks for a free MULTI-
LEAVING buffer. If there is no free MULTI-LEAVING buffer, $BSCA
sends a wait-a-bit sequence if a two-second timeout has occurred;
otherwise it non-process exits awaiting either a two-second timeout
or the setting of its BFPOST flag by subroutine $CKLEN.

If a free MULTI-LEAVING buffer is available, $BSCA will use it only
if the last-received buffer was a text buffer (that is, its second
byte was STX) ·or if the ·master Function Control Sequence, $FCS, had
changed from that last transmitted to HASP. If the latter is the
case, $BSCA will transmit immediately a logical acknowledgment (DLE
or SOH, STX, BCB, FCSl, FCS2, EOB, ETB) to inform HASP of the
change; if the former is the case, $BSCA will transmit a physical
acknowledgment (DLE, ACKO). If neither is the case, $BSCA will
non-process exit until either a two-second timeout occurs (where­
upon it will send DLE-ACKO or the wait-a-bit sequence) or $CKLEN
sets BFPOST (whereupon $BSCA will again check for a received
wait-a-bit) .

To get a free buffer $BSCA uses subroutine BSGBUF, which queues the
buffer on $BSCA 1 s buffer chain (FBBUF) in last-in, first-out fashion
and increments its buffer count (FBBCT) by one. Additionally, a
part of BSGBUF sets up the transmit starting address, receive
starting address, and receive ending address, and may be called
separately from BSGBUF.

System/3 Remote Terminal Processor - Page 4.23.26

230

H A S P

$LEOF, $PERM, $REQ - Control Sequence Subroutines

These subroutines transmit to HASP certain control sequences
required for proper operation of HASP MULTI-LEAVING Remote Job
Entry: logical end-of-file, permission-granted, and request­
permission.

$LEOF sends the sequence RCB, SRCB, SCB where RCB is taken from
the FB pointed to by register 2 (FBRCB) I SRCB is X'80', and SCB
is X'OO' (a string control byte of X'OO' is an end-of-logical­
record SCB; occurring immediately after an SRCB, such an SCB
indicates a zero-length record).

$PERM sends the sequence RCB, SRCB, EOB where RCB is X'AO' (per­
mission-granted for function described in SRCB) , SRCB is taken
from FBRCB of the FB pointed to by register 2, and EOB is X'OO'
(a zero RCB indicating logical-end-of-transmission-block).
$PERM also sets the bit EWFPOST in the field FBEWF; this "early­
post" bit is reset by $BSCA when it finds any permission-type
control record whose SRCB matches FBRCB.

$REQ sends the sequence RCB, SRCB, EOB where RCB is X'90' (request­
permission for function described in SRCB) and SRCB and EOB are as
described for $PERM.

Code common to all three routines requests from $CKLEN three bytes
of space in a MULTI-LEAVING buffer, moves the three-byte sequence,
and calls $BFLUSH to truncate the buffer and queue it on $BSCA's
buffer chain.

System/3 Remote Terminal Processor - Page 4.23.27

231

HAS P

$DCOM - Decompression Subroutine

$DCOM is called by one of the output processors (such as $PRINTER)
to decompress a logical record from a MULTI-LEAVING buffer into
an area whose starting address is supplied by the caller. (HASP
transmits all data records to MULTI-LEAVING terminals in a com­
pressed and truncated format). If decompression is successful,
$DCOM returns to the caller at an offset of three bytes; if $DCOM
recognized a logical-end-of-file, it returns at an offset of zero.

To decompress a logical record, $DCOM first examines the address
in FBCURL, a two-byte field in the caller's FB reserved for the
use of $DCOM. If that field is non-zero, it has previously been
set by $DCOM to point to the RCB following the last-decompressed
logical record in the current buffer. If that RCB is not X'OO',
$DCOM decompresses to the caller's area (which must be two bytes
longer than the maximum record length) the record following the
RCB, moves the SRCB to FBSRCB, saves the address of the next RCB
in FBCURL, and returns to the caller as explained above.

But if FBCURL is zero, $DCOM checks if more buffers are queued on
the caller's FB. (If FBCURL is non-zero but the RCB to which it
points is zero, $DCOM first frees the current buffer and then pro­
ceeds as if FBCURL were zero.)

It one or more buffers are queued, $DCOM selects the first buffer,
points to its first RCB, and decompresses a logical record as
above. But if no.buffers are queued, $DCOM waits for WORK, to be
posted by $BSCA when the next buffer for the same output device
is received.

The output buffer's address is specified by the caller in field
FBAREA; on return, $DCOM replaces this field by the address of
the last-plus-one output byte.

System/3 Remote Terminal Processor - Page 4.23.28

232
~ - -... •, ·~ ,;, ~·- ...

H A S P

$CMPR - Compression Subroutine

$CMPR compresses data from a user-specified input area to a local
workarea and transmits it to HASP by calling subroutine $CKLEN.

When called, $CMPR examines the status of its local workarea. If
the workarea is busy, $CMPR has been called by some other proces­
sor and has in turn called $CKLEN; $CKLEN is non-process exiting
until it can find sufficient bytes in a MULTI-LEAVING buffer to
allocate to $CMPR. In this case, $CMPR non-process exits until
its workarea becomes free.

When the workarea is free, $CMPR compresses into it the text pointed
to by FBAREA. Compression consists of either full compression
and truncation, only truncation, or neither compression nor trun­
cation, as selected by the setting of the RMTGEN variable &COMP=.
Once the record is compressed, $CMPR calculates its compressed
length and calls $CKLEN with a request for the number of bytes it
requires in a MULTI-LEAVING buffer. When $CKLEN returns, $CMPR
moves the compressed record, shows its workarea free, and returns
to the caller.

System/3 Remote Terminal Processor - Page 4.23.29

233

H A S P

$CKLEN - MULTI-LEAVING Buffer Allocation Subroutine

$CKLEN returns to its caller the address in a MULTI-LEAVING buffer
of the rightmost byte of an area whose length is specified by the
caller.

The caller specifies a length in register one. If $CKLEN has a
current buffer, its current buffer pointer points to the last­
allocated byte. It adds to this the caller's specified length.
If the resultant address is lower than two bytes before the end of
the buffer, $CKLEN saves this address as its current buffer pointer
and returns this address to the caller in register one. But if the
resultant buffer address is not lower than two bytes before the end
of the current buffer, $CKLEN truncates the buffer, queues it on
$BSCA's buffer chain, and posts $BSCA by turning on flag BFPOST
in byte BCFl. To truncate a buffer, $CKLEN moves the current buf­
fer pointer to its first two bytes and the sequence EOB, ETB
(X'0026') to the two bytes after the byte pointed to by the current
buffer pointer.

After having truncated and queued the current buffer or if on entry
there was no current buffer, but not if entered via entry point
$BFLUSH (in which case $CKLEN returns immediately after truncation
and queuing), $CKLEN attempts to get another buffer to satisfy the
caller's request; if no buffer is free, it non-process exits until
one comes free. It initializes the current buffer pointer to point
to what will eventually be the buffer's FCS2 byte. It initializes
a pointer to the last byte available in the buffer, and it saves
the address of the buffer's chain word in a third pointer. Then
it allocates space for ~he caller and returns, as above.

System/3 Remote Terminal Processor - Page 4.23.30

234

H A S P

$FREEBUF - MULTI-LEAVING Buffer Free Subroutine

$FREEBUF dequeues the first buffer from the buffer chain word FBBUF
of the FB addressed by register two upon entry; subtracts one from
FBBCT, the count of buffers enqueued upon that FB; and compares the
new count with FBBMX. If the compare is low, $FREEBUF OR's the two
byte field FBFCS into the two-byte field $FCS and compares the
resulting $FCS with BCXFCS, the FCS last transmitted to HASP. If
$FCS is not equal to BCXFCS, $FREEBUF posts $BSCA.

In any case, $FREEBUF queues the just-dequeued buffer on chain word
$MLPOOL in last-in, first-out sequence. If the system was generated
for a 5471 console, $FREEBUF posts $CON, the console processor.
Then $FREEBUF returns to its caller.

System/3 Remote Terminal Processor - Page 4.23.31

235

H A S P

ABEND - Core Dump Subroutine

ABEND produces a core dump on the S203 printer. The code for
ABEND is assembled only if the RMTGEN specification &DEBUG=l
has been used. &DEBUG=l also causes the generation of extra
debugging code throughout the terminal program; some of the
extra sequences of code generated contain conditional branches
to ABEND. ABEND may also be called from the CE panel of the
System/3 by setting the IAR to its address.

Each line produced by ABEND consists of a four-character address,
64 characters representing the 32 bytes starting at that address,
and their printable equivalent in 32 more characters, bounded at
the left and the right by a single asterisk; or four asterisks
in the address position followed by blanks, to indicate that all
of core up to the next line's address or the end of core would
have printed the same as the previous line. The ABEND dump rou­
tine requires a printer with at least 120 print positions; if a
96-print-position printer is used, not all of the EBCDIC portion
of the line will be printed.

The first six bytes of printed core contain the address recall
register, register one, and register two as of the time ABEND
gained control; the remainder of core is intact.

System/3 Remote Terminal Processor - Page 4.23.32

236

H A S P

$LOG - HASP Error Recording Subroutine

$LOG is a re-entrant subroutine which maintains in-core error
recording counters. Each counter is two bytes long and has a
maximum count of 65535. There are eight counters for each of the
following bytes:

1442 Status Byte 2 (if &631442=1)
1442 Status Byte 1 (if &531442=1)
BSCA Status Byte 2
5203 Status Byte 2
5203 Status Byte 1
5424 Status Byte 1

The counters are captioned, printed, and reset by IHEREP at
program load time and thus form a permanent record of unit checks
associated with the above devices. Only those counters which
represent unusual unit checks are printed by IHEREP.

System/3 Remote Terminal Processor - Page 4.23.33

237

H A S P

$MSG - Error Message Tracing Subroutine

$MSG adds the four-byte coded entry addressed by register one to
the circular traae table of error messages. This table is examined
by the 5471 console processor and under certain conditions by the
5203 output console processori $MSG posts whichever of these pro­
cessors has been generated.

The various error messages supplied to this routine by its callers
are explained in the System/3 Operator's Guide •

. System/3 Remote Terminal Processor - Page 4.23.34

238

H A S P

$INIT - Initialization Routine

$INIT gains control when program loading is complete. It sets
the print chain image, reads and processes REP cards, sets the
5203 forms length register, sets the 5424 print buffer register,
establishes communication, sets up buffers, and exits to the
commutator.

To set up the print chain image, $INIT reads the printer status
bytes. If the 48-character-set bit is on, it moves the LC
image to the image area; otherwise it moves the PN image. Then
$INIT starts processing reps.

The format of a REP card is

column 2 9 17
REP addr rep-data

where "addr" must be a valid hexadecimal core address of exactly
four characters (or four blanks) and "rep-data" is a sequence of
one or more replacement groups with the last group terminated by
a blank and all others terminated by commas. A replacement group
is a string of 2n (n any integer) hexadecimal characters. The
blank after the last replacement group may be followed by comments.

Starting at the address specified by "addr", the REP routine will
store bytes one at a time corresponding to byte pairs of the "rep­
data 11 taken from left to right. If the "addr" specification is
blank, bytes will be stored starting at the first byte after the
byte last used by the preceding REP card (or at zero if there was
no preceding REP card). A REP card whose "rep-data" field con­
tains no data is valid; its "addr" field (if any) specifies the
address of the first byte to be repped if the next REP card's
"addr" field is blank.

To process reps, $INIT reads a card from the primary hopper of the
MFCU; a read error will give an F3 halt. If the card image con­
tains "REP" in columns 2-4, it is processed according to the above
specifications, with absolutely no validity-checking, and $INIT
reads another card, as above.

If the card image contains "&MLBFSIZ=" starting in column 1, $INIT
converts to binary the specified decimal buffer size (which must
immediately follow the equal sign and be terminated by a blank)
and substitutes the result for the default buffer size. Then $!NIT
reads the next card, as above.

If the card image contains "/*SIGNON" starting in column 1, $INIT
overlays the default sign-on card with it and continues as if the
card were an EOR card.

System/3 Remote Terminal Processor - Page 4.23.35

239

H A S P

If the card image contains "EOR" (end-of-reps) in columns 2-4,
$INIT terminates rep processing, loads the 5203 print forms lengtl.
register and the 5424 print buffer address register, and establ±shes

· communications.

To establish communications, $INIT first disables and then enables
the BSCA. Next, it examines the sign-on card to see if dialing
information was specified. If so, it determines the starting and
ending addresses for the telephone number (which is not checked
for validity) and loads these values into the current and stop
address registers after first ensuring that the data line is unoc­
cupied. (If the data line is occupied, $INIT assumes the operator
dialed and waits for the data set to become ready.) After starting
an auto-call operation and looping until an op-end interrupt occurs,
$INIT checks for timeout status; if so, the auto-call unit returned
an abandon-call-and-retry signal and a CA halt (call-aborted) occurs.
When the operator resets the halt, the entire logic starting with
disable-BSCA will be re-executed. But if the timeout bit is off,
$INIT assumes the call was successful and loops until a dataset-
ready indication occurs, as above. ·

When the data set becomes ready, $INIT transmits the two-byte
sequence SOH-ENQ, a sequence recognized by HASP as a request from
a MULTI-LEAVING terminal. ·If the receive part of this transmit/
receive command ends with timeout, the operation is repeated; if
it ends with any other abnormal status, one of two things occurs.
If the system was generated with &DEBUG=l and the address knobs
on the System/3 console are set to any odd address, the System/3
halts; the halt indicators display a hexadecimal image of the
BSCA error status byte. Otherwise, and when the operator resets
the halt, the entire logic. starting with disable-BSCA will be
re-executed.

If the receive operation ended normally, the two received bytes
should be DLE-ACKO. If they are not, the transmit/receive opera­
tion is performed.

If DLE-ACKO was received correctly, the message "COMMUNICATION
ESTABLISHED" is printed on the 5203. If a 5471 was specified when
the system was generated, its interrupts are enabled and the same
message is printed on it. If a 5475 was specified, its interrupts
are enabled. $INIT now performs buffer initialization.

Buffer initialization consists of three steps and overlays the
initialization code with MULTI-LEAVING buffers. As the first
step, the value of MULTI-LEAVING buffer size is set in the various
locations throughout the program that requires it; it may have
been changed by the &MLBFSIZ control card. Step two moves the
actual buffer initialization code to low core, where it is executed

System/3 Remote Terminal Processor - Page 4.23.36

240

H A S P

as step three. Execution consists of chaining together all
buffers but the first buffer (which contains the sign-on record
and is afterward queued to the $BSCA proc.~ssor) with the chain
origin at $MLPOOL. .

When buffer chaining is complete, the sign-on buffer is queued
as mentioned and control passes to the commutator. $COM gives
control in its turn to the $BSCA processor, which as a special,
first-time function transmits to HASP the buffer containing the
sign-on card image.

System/3 Remote Terminal Processor - Page 4.23.37

241

(The remainder of this page intentionally left blank.)

242

H A S P

5.0 HASP CONTROL SERVICE PROGRAMS

This section contains detailed internal information about each of
the HASP Control Service Programs and is intended primarily for
use by systems programmers.

HASP Control Service Programs -- Page 5.0-1

243

H A S P

5.1 HASP DISPATCHER

5. l. l HASP Dispatcher - General Information

The HASP Dispatcher is responsible for the allocation of the CPU
time used by the HASP Task to each of the HASP Processors.

5.1.2 HASP Dispatcher - Program Logic

The HASP Dispatcher receives control each time the HASP task is
dispatched by the Operating System and utilizes an ordered queue
of Processor Control Elements (PCE's) to distribute the CPU time
among the HASP Processors. The Event Wait Field (EWF) in each
PCE (see Figure 8.2.1) is a two byte field which is used to control
the dispatchability of the Processors. Any Processor or Control
Service Routine may issue a $WAIT macro-instruction at any time
which turns on a particular bit in the EWF corresponding to the
event $WAITed on and returns control to the HASP Dispatcher to
allow other processors to be dispatched. The Processor (or
Service Routine) will not be given control again until some other
system function issues a $POST to its EWF for the event $WAITed on.

The events reflected by the EWF fall into two categories: the
·first of which is the synchronization of the use of common system
resources such as buffers, direct-access space, etc. With the
exception of the general $POST bit $EWFPOST, the bits in the first
byte of the EWF field are used to indicate the particular resource
being $WAITed on and corresponds exactly to the Event Completion
Field (ECF) in the Dispatcher. The ECF is $POSTed whenever a
resource becomes available and is propagated through all processor
EWF's by the Dispatcher. Thus, if a track becomes available on a
direct-access device, every processor (PCE) which has issued a
$WAIT for a track will be put in contention for CPU time to try
to obtain the track or tracks that have been released.

The second byte of the EWF is used to synchronize a processor with
respect to a specific event, applicable only to that processor,
such as a particular I/O completion. This section of the EWF must
be $POSTed directly by the system routine performing the required
function (additional details regarding $WAIT/$POST events may be
found in Section 9.8).

When scanning the PCE chain, the HASP Dispatcher, upon discovering
a zero EWF (no events being $WAITed on) , will enter the code
controlled by the PCE immediately below the prior $WAIT which had
returned control to the Dispatcher. All registers of a processor
which issues a $WAIT are preserved in the PCE and are reloaded
prior to entering the processor (register "RlS" is destroyed by
the $WAIT macro to provide the address of the $WAIT, i.e., the
resume point). A processor may return control to the Dispatcher

HASP Dispatcher - Page 5.1-1

244

H A S P

only by means of the $WAIT macro. In the event any $POST macro
was executed by the processor dispatched or by any of the HASP
asynchronous service routines the Dispatcher's ECF field will be
altered to reflect the $POST. The general $POST bit represents
a $POST of a specific processor (second byte of the EWF) . If the
ECF field indicates no $POST has occurred, the HASP Dispatcher
continues to scan down the PCE chain starting with the next PCE.
However, if the ECF field indicates $POSTs have occurred, the
$POST for the general $POST is removed and scanning is resumed
at the beginning of the PCE chain, after promulgating any remaining
ECF $POST indicators.

Upon reaching the end of the PCE chain, the Dis­
patcher examines the processor active count to determine if any
jobs are being processed. If an active job is in the system
(active count ~ 0) an OS WAIT state is entered to wait for some
external event (I/O interrupt, etc.) to activate HASP again. This
WAIT allows use of the CPU by other tasks in the system. If no
jobs are active, the message

"ALL AVAILABLE FUNCTIONS COMPLETE"

is sent to all operator consoles and HASP is placed into the WAIT
state.

When scanning the PCE chain, the Dispatcher detects the special
case of a PCE which is not dispatchable (PCEEWF is not zero) but
is $WAITing only on the OROL bit. This situation is created when,
while the PCE was $WAITing on other event(s), the Overlay Area
being used by the PCE is preempted by the Overlay Roll Processor
for other use (see Section 4.20). Subsequently, the other event(s)
being $WAITed on are $POSTed allowing the Dispatcher to detect the
"OROL only". The Processor in such a condition is not entered but
is made to call Overlay Service. The actions performed are iden­
tical to those described for $LINK Service in Section 5.16.2,
beginning with the fourth paragraph describing search of Overlay
Areas. The Processor will be entered by Overlay Service if the
requested routine is in memory, or will be $WAITed on OLAY
allowing the Dispatcher to continue its PCE scan.

HASP Dispatcher - Page 5.1-2

245

H A S P

5.2 INPUT/OUTPUT SUPERVISOR

5.2.1 Input/Output Supervisor - General Description

The HASP Input/Output Supervisor ($EXCP) is used to interface all
HASP Input/Output requests with the Operating System Input/Output
Supervisor. Through the use of $EXCP the HASP processors can
remain "device independent" through the wide range and number of
HASP direct-access devices. In addition, $EXCP also provides all
required I/O appendages for OS IOS and for the $POSTing of I/O
completions to each processor.

5.2.2 Input/Output Supervisor - Program Logic

The only interface between the HASP Input/Output Supervisor and
the using processors is the Device Control Table element (OCT) ,
which is passed via the $EXCP macro-instruction when I/O is
requested. (Additional information concerning the OCT and the
$EXCP macro may be found in Sections 8.5 and 9.5 respectively.)
Upon entry to $EXCP the address of the buffer to be used is
obtained from the OCT and the !OB (appended to every buffer) is
initialized. The user's Event Wait Field (EWF) address is moved
from the OCT to the buffer and a pointer to the OCT is placed in
the buffer. If the OCT is a direct-access type, the coded track
address from the DCT is used to compute MBBCCHHR.

The IOB is now scheduled fo~ I/O through the use of the standard
OS Execute Channel Program macro-instruction (EXCP) and immediate
return is made to the caller. Each I/O request issued by HASP
has an I/O appendage list specified which causes the appropriate
channel end appendage in $EXCP to be entered upon termination of
the I/O. Since these appendages are entered asynchronously with
HASP operation, the buffer associated with the completed I/O is
scheduled for synchronous HASP processing by the Asynchronous
Input/Output Processor. The HASP task is POSTed, and immediate
return is made to IOS. (The action taken by the Asynchronous
Input/Output Processor is explained in Section 4.8.)

A separate channel end appendage is provided for remote terminal
operations. This appendage correlates the channel end conditions
with the commands executed and provides special processing of con­
ditions unique to the teleprocessing.

Input/Output Supervisor - Page 5.2-1

246

H A S P

5.3 JOB QUEUE MANAGER

5.3.1 Job Queue Manager - General Information

Jobs being processed or awaiting processing by a HASP phase are
represented in an ordered queue by a Job Queue Element (see
Figure 8.6.1).

The Job Queue Management routines are used by the HASP Processors
to insert, alter, locate, and remove Job Queue Elements. The
Queue Elements are maintained in priority at all times with the
highest priority element at the top of the active chain. There
are six Job Queue Element routines which are called by issuing
the following macros: $QADD, $QREM, $QGET, $QPUT, $QLOC, and
$QSIZ (see Section 9.3). The Job Queue Elements are arranged
in two chains. The active chain contains the Job Queue Elements
for all the jobs in the system at a given time. The free chain
contains all the Queue Elements which are not in use.

5.3.2 $QADD Routine - Program Logic

The $QADD routine is called whenever a Queue Element is to be added
to the active queue. If the Checkpoint Processor is waiting for
the checkpointed information to be written onto the SPOOLl disk,
this routine enters a HASP $WAIT state. Whenever the Checkpoint
Processor's I/O is complete, the free queue chain is tested to see
if any free Queue Elements are available. If none are available,
control is returned to the caller with a condition code of zero.
If a Queue Element is available, the correct slot within the active
queue chain is located by comparing the priority of the element to
be added with the priorities of the elements in the active chain.
When the priority of the new element is higher than the priority
of the element in the active chain, the free Job Queue Element is
extracted from the free queue chain and inserted into the active
chain. All the information for the new Job Queue Element is moved
from the location pointed to by register "Rl" into the new Job
Queue Element. Then the HASP Dispatcher's Event Control Field is
$POSTed to indicate that a Job Queue Element is available. The
Checkpoint Processor's PCE is also $POSTed so that it will be given
control to write the updated Job Queue onto the SPOOLl disk. The
condition code is set non-zero and control is returned to the
caller. Upon return, register "RO" contains the address of the
associated Job Information Table Entry.

Job Queue Manager - Page 5.3-1

247

H A 5 P

5.3.3 $QREM Routine - Program Logic

The $QREM routine is.entered to remove a Job Queue Element from
the active chain. It will enter the calling Processor into a
HASP $WAIT state if the Checkpoint Processor's I/O is not complete.
When the Checkpoint Processor's I/0 is complete, the Job Queue
Element that is to be removed is located by comparing its job
number with the job numbers of the queue elements in the active
chain. If an equal comparison is not found, control is returned
to the caller with the condition code set to zero. If a match
is found, the Job Queue Element is removed from the active chain
and added to the top of the free chain by updating all the chain
pointers. The Checkpoint Processor's PCE is $POSTed so that it
will be given control to checkpoint the Job Queue. Then control
is returned to the caller with the condition code set non-zero to
indicate that the Queue Element was successfully removed.

5.3.4 $QGET Routine - Program Logic

The $QGET routine is entered to acquire a Job Queue Element in a
specified queue so that the job may be processed. The active queue
chain is searched for a Job Queue Entry of the specified type (e.g.,
execution, print, punch, or purge) which is not in hold status and
not presently acquired. If such a job is not present, control is
·returned to ·the caller with the condition code set to zero. If
an acceptable queue element is found, the QENTBY bit is turned on
in the queue element to show that the element has been acquired,
and control is returned to .the caller with the condition code set
non-zero, register "Rl" pointing to the job queue element that was
acquired, and register "RO" pointing to the associated Job Infor­
mation Table Entry. Whenever the system is in a drained status,
this routine will be crippled such that control will 'always be
returned to the caller with the condition code set to zero to
indicate that no available Job Queue Elements are present.

5.3.5 $QPUT Routine - Program Logic

The $QPUT routine is entered to return a previously acquired Job
Queue Element to the active chain, but with a new queue type. It
will enter the calling Processor into a HASP $WAIT state if the
Checkpoint Processor's I/O is not complete. When the Checkpoint
Processor's I/O is complete, the job number of the queue element
to be returned is compared with the job numbers of the queue ele­
ments in the active queue. If the job number is not found, control
is returned to the caller with the condition code set to zero. If
a match is found, the new queue type is set, the HASP Dispatcher's

Job Queue Manager - Page 5.3-2

248

HAS P

Event Control Field is posted to indicate that a Job Queue
Element is available to be acquired, and the Checkpoint Proces­
sor's PCE is $POSTed so that it will be given control to write
the updated Job Queue onto the SPOOLl disk. If the QUEPURGE bit
is on in the queue element (indicating that the job has been
deleted) , the job queue element is placed in the punch queue by
moving the punch queue type into the queue element's QUETYPE
field. If the QUEPURGE bit is not on, the job queue element is
placed in the queue indicated by register "RO" upon entry to
this routine. The QENTBY bit is turned off to indicate that this
queue entry has been returned, the condition code is set non-zero,
and control is returned to the caller. Upon return, register "Rl"
contains the address of the Job Queue Entry just returned and
register "RO" contains the address of the associated Job Infor- -
mation Table Entry.

5.3.6 $QLOC Routine - Program Logic

The $QLOC routine is entered to obtain the Job Queue Element address
when the job number is known. The job number is compared with the
job numbers in the active chain. If a match is not found, control
is returned to the caller with the condition code set to zero. If
a match is found, the condition code is set non-zero, and control
is returned to the caller with register "Rl" containing the lo­
cated Job Queue Element's address and register "RO" containing the

·associated Job Information Table Entry address.

5.3.7 $QSIZ Routine - Program Logic

The $QSIZ routine is entered to obtain the number of Job Queue
Elements in a given queue type, route, class, and forms. The num­
ber of jobs of the specified type (excluding jobs in hold status)
are counted, and control is returned to the caller with register
"Rl" containing this count. If register "Rl" is non-zero, the con­
dition code is set non-zero, and if it is zero, the condition code
is set to zero. Whenever the system is in a drained status, this
routine is crippled so that control is always returned to the
caller with register "Rl" zeroed, and the condition code set to
zero to indicate that no jobs are available in the specified job
queue.

Job Queue Manager - Page 5.3-3

249

H A S P

5.4 BUFFER MANAGER

5.4.1 Buffer Manager - General Descriptio~

The Buffer Management routines are responsible for the allocation
of the dynamic memory area (Buffer Pool) of HASP. Fixed-size buf­
fers in this area are allocated and de-allocated to HASP Processors
and Routines via the $GETBUF and $FREEBUF macro-instructions (see
Section 9.1).

5.4.2 Buffer Manager - Program Logic

The $GETBUF routine consists of two programs which allocate HASP
Buffers or RJE Buffers respectively. Both programs function iden­
tically as follows: The appropriate free buffer pointer is tested,
and if no buffers are available, control is returned to the caller
with the condition code set to zero. If a free buffer is present,
the free buffer pointer is updated to point to the next free buffer;
or, if this is the last available buffer, the pointer is zeroed.
Then, if the debug indicator is on, a buffer .alidity checking rou­
tine is entered to assure that the buffer is within the buffer chain.
If it is not in the chain, the catastrophic error routine is entered;
otherwise, control is returned to the $GETBUF routine. The condition
c6de is set non-zero and control is returned to the caller with the
buffer address in ter "Rl".

enters the buffer validity checking routine if
the debug is on, the buffer to be freed is inserted back
into the appropriate free buffer chain (depending upon whether the
buffer is a HASP Buffer or an RJE buffer} , and the IOBSTART field is
updated wi the address of the buffer's channel program: IOBCCWl
(see Figure 8.3). The HASP Dispatcher's Event Control Field is
$POSTed to show that a buffer is available and control is returned
to the caller.

Buffer Manager - Page 5.4-1

250

H A S P

5.5 UNIT ALLOCATOR

5 .• 5 .1 Unit Allocator - General Description

The Unit Allocation routines are responsible for the allocation
and de-allocation of the Input/Output units which have been
assigned to HASP. Device Control Tables (DCTs) are allocated and
de-allocated to HASP Processors and Routines via the $GETUNIT and
$FREUNIT macro-instructions (see Section 9.2).

5.5.2 Unit Allocator - Program Logic

The $GETUNIT routine scans the Device Control Table (OCT) chain
in an attempt to find an available DCT of the requested type. If
none are found, control is returned to the caller with the condition
code set to zero. If an available DCT of the requested type is
found, it is set "not available" and control is returned to the
caller with the condition code set non-zero. The address of the
DCT is returned in register "Rl".

The $FREUNIT routine first examines the "Active Buffer Count" field
of the DCT (see Figure 8.5) to see if there are any buffers involved
in active I/O with the associated unit. If the "Active Buffer
Count" is non-zero, the Processor is placed in a HASP $WAIT state
until this count is reduced to zero. When the count is zero, the
OCT is made available and control is returned to the caller.

Unit Allocator - Page 5.5-1
251

H A S P

5.6 INTERVAL TIMER SUPERVISOR

5.6.1 Interval Timer Supervisor - General Description

The Interval Timer Supervisor is used by the various HASP Proces­
sors to record the passage of a specified period of time and to
notify the requesting Processor upon expiration of the interval.
This routine uses the standard OS/360 timer features (STIMER &
TTIMER) but has the additional capability to simultaneously monitor
an unlimited number of intervals.

5.6.2 Interval Timer Supervisor -Program Logic

All uses of the Interval Timer Supervisor are through the HASP
macro-instructions $STIMER and $TTIMER which are described in Sec­
tion 9.6. Each user of $STIMER is required to provide a 12-byte
(three-word) HASP Timer Queue Element (TQE} , passed via parameter
register "Rl" (see Section 8.10). $STIMER maintains a chain of all
active TQEs in ascending order of interval magnitudes, with the
shortest requested interval (first TQE) set on ~he OS STIMER queue
(via a normal STIMER macro). Upon being entered with a new interval
request, $STIMER first cancels the active OS timer element.with a
TTIMER CANCEL, and reduces the interval specified in all chained
TQEs by the elapsed portion of.this interval. The requester's TQE
is then, after converting the requested interval to OS timer units
(26 usec units), inserted into the appropriate place on the TQE
chain using the first word ot the TQE as a chain field. The OS
timer is now re-activated with the interval in the first TQE in the
chain and return is made to the caller.

When the current OS interval elapses, the asynchronous exit routine
in $STIMER is entered to record the expiration. The asynchronous
routine first reduces the intervals of all queued TQEs by the size
of the just-elapsed interval, then $POSTS the TIMER Processor, POSTS
the HASP task, and returns to OS. The TIMER Processor, when dis­
patched, will $POST the appropriate Processors and reset the OS
Timer to the interval specified in the first TQE in the chain by
issuing an STIMER macro.

HASP Processors which have previously set an interval through
$STIMER may obtain the time remaining in the interval and optionally
cancel this interval through the use of the $TTIMER macro. When
entered, $TTIMER cancels the active OS interval and reduces all
queued TQE intervals by the elapsed portion of that interval. The
requester's TQE is then located in the queue by comparing the ad­
dress of the TQE passed by the macro in register "Rl" to each TQE
in the chain. When the correct TQE is found, the remaining time

Interval Timer Supervisor - Page 5.6-1

252

H A S P

in the interval is loaded in register "RO" for return to the
caller. The use of the CANCEL option on the $TTIMER macro,
which is indicated by register "Rl" containing the complement of
the TQE address rather than the true address, causes the TQE
to be dequeued from the chain. The OS timer is re-activated
with the interval from the first TQE on queue and return is made
to the caller. NOTE: A $TTIMER for a TQE which is not active
has no effect and a zero value is returned in register "RO" as
the time remaining.

•

Intervat Timer Supervisor - Page 5.6-2

- ~fl 253

t"1 .,.,
...... , ,

HASP

5. 7 $WTO PROCESSING ROUTINE

5. 7. 1 $WTO Processing Routine - General Description

This routine services the $WTO macro-instruction (see Section 9. 5)

by queuing the associated message for the Operator Console Input/Output.

Processor.

5. 7. 2 $WTO Processing Routine - Program Logic

This routine tests for a free message buffer. If none are available,

it causes the requesting processor to be placed in a $WAIT condition until

a message buffer is released. Otherwise it link~ to the Console Buffering

Routine to process the mes sage.

$WTO Processing Routine - Page 5. 7-i

254

H A S P

5.8 DIRECT ACCESS STORAGE ALLOCATOR

5.8.1 Direct Access Storage Allocator - General Information

This routine allocates tracks for the SPOOL volumes that were
on-line at IPL time. The track information is stored in the Job
Control Table (JCT) and is also returned to the caller in register
"Rl". The track allocation algorithm is designed to reduce seek
time as much as possible.

5.8.2 Direct Access Storage Allocator - Program Logic

The status of each SPOOL volume is recorded and maintained in
track group bit maps. A map is present for each module (available
SPOOL volume). Each bit in the track group bit map represents a
track group. If the bit is on, the track group is available to be
allocated, and if the bit is off, the track group has already been
allocated. Track group bit maps are also maintained in each JCT,
but the bit definitions are opposite. Thus, if a bit is on in
the JCT, the track group has been allocated to the JCT.

Track groups on the SPOOL volumes are allocated whenever the JCT
_has not previously acquired any tracks or whenever all the tracks
in the current track group which is allocated to the JCT have been
acquired. If the JCT has already been allocated a track group,
but all the available tracks in that track group have not been
acquired, the next available sequential track in the track group
is allocated to the requester. When this happens, the track
information in the JCT is updated and loaded into register "Rl",
and control is returned to the caller with the condition code set
to one. This track information is recorded in the JCT in the
following format: MTTR, where M is the module number (one byte),
TT is the track number relative to cylinder 0 track 0 (two bytes),
and R is the record number (one byte). The JCT track group bit
map is also updated whenever a new track group is acquired. The
update consists of ORing in the appropriate bit for the acquired
track group in the JCT track group bit map.

When a new track group has to be acquired, seek time is reduced
by searching for the nearest track group + or - eight track
groups from the last-used track group. The last-used track group
for each track group bit map is updated each time a $EXCP is
issued to the volume. Each track group bit map is searched for
an available track group at the last-used track group. Then each
track group bit map is searched for an available track group -
one track group from the last-used track group, then + one from
the last-used track group and this progression continues until an

Direct-Access Storage Allocator - Page 5.8-1

255

H A S P

available track group is found or the + eight track group is
searched. If an available track group is found, the JCT track
information is updated and loaded into register "Rl", and control
is returned to the caller with the condition code set to one.
The JCT track group bit map is also updated. If a .track group is
not available within + or - eight of the last-used track group,
another search routine is entered which inspects each byte of the
track group maps, starting with the first byte. This search will
continue until an available track group is found or until all of
the active track group bit maps have been searched. If an available
track group is found, the JCT track information is updated and
loaded into register "Rl", and control is returned to the caller
with the condition code set to one. The JCT track group bit map
is also updated. If an available track group is not found, the
operator is notified of the out-of-track condition by the fol­
lowing message:

SPOOL VOLUMES ARE FULL

Then control is returned to the caller with the condition code set
to zero and register "Rl" zeroed.

5.8.3 Direct Access Storage Purge Routine - .Program Logic

This routine frees all of the SPOOL volume tracks that the job has
acquired and informs the system that these tracks are available
to be re-acquired.

The track group bit map in the job's Job Control Table is ORed
into the main track group bit map to return the job's tracks back
to the system. Then the track group bit map in the JCT is zeroed
to indicate that this job does not have any tracks allocated to
it. The HASP dispatcher's Event Control Field is posted to show
that tracks are available to be acquired, and control is returned
to the caller.

Direct-Access Storage Allocator - Page 5.8-2

256

H A S P

5.9 DISASTROUS ERROR HANDLER

5.9.1 Disastrous Error Handler - General Description

This routine is entered from a Processor whenever a critical SPOOL
disk error is detected. The operator is notified of the error, and
processing continues, although the operator should re-IPL the sys­
tem with a cold start as soon as possible.

5.9.2 Disastrous Error Handler - Program Logic

When this routine is entered, a $WTO is issued to notify the operator
of the error, and control is returned to the calling Processor. The
message to the operator is as follows:

DISASTROUS ERROR - COLD START SYSTEM ASAP

Disastrous Error Handler - Page 5.9-1
257

H A S P

5.10 CATASTROPHIC ERROR HANDLER

5.10.l Catastrophic Error Handler - General Description

This routine is entered whenever an unrecoverable error is dis­
covered by HASP. The operator is informed of the error and given
an error code, and the system enters a one instruction disabled
loop. The error codes and their meanings are listed in the HASP
Operator's Guide {see Section 11). For more information, refer
to Section 9.10.1.

5.10.2 Catastrophic Error Handler - Program Logic

//.
/When this routine is entered, register "RO" contains the address

of a four byte field containing the three character error code
left justified. After the system is disabled, the four byte error
code field is moved into the operator message. This message is
then written on the operator's console defined by the HASPGEN
parameter "$PRICONA":

$ HASP SYSTEM CATASTROPHIC ERROR. CODE = xxx

After this message is typed, all registers are restored so that
they. will be intact, a one instruction loop is executed.

Catastrophic Error Handler -- Page 5.10-1
258

HASP

5. 11 TRACE EFFECTOR

5. 11. 1 Trace Effector - General Description

The Trace Program is a debug facility used in HASP which is completely

independent of the OS trace facility. This program will insert the contents

of the general purpose registers into a special trace table (assembled into

the HASP module) each time it is called and thereby aid in the determin­

ation of HASP problems.

5. 11. 2 Trace Effector - Program Logic

The Trace Program is called by any Routine or Processor in HASP

by the insertion of a $TRACE macro-instruction (see Section 9.9 .1). If the

HASPGEN parameter "&TRACE" is set non-zero, the macro-instruction

will expand into an instruction which will cause a unique specification pro­

gram interrupt. All program interrupts are fielded by the HASP Trace

Program and the instruction which caused the interrupt is tested to deter­

mine if it is the unique instruction inserted by the $TRACE macro-instruction.

If the interrupt was caused by a true program interrupt. the request is sent

to the first level interrupt handler, to be handled in the normal way.

Otherwise a sixteen word trace entry is inserted into the HASP trace table.

Trace Effector - Page 5. 11-1

259

HASP

The sixteen word trace entry has the following format:

First Byte ••••••••••••••.••••• $TRACE count

First Word ••••••••••••••••••• $TRACE storage location

Second Word .••••••••••••••.• Register 0

Third Word ••••••••••••••••••• Register 1

Fourth Word •••.•••••••••.•••• Register 2

Fifth Word ••••••••••••••••••. Register 3

Sixth Word ••••••••••••••••••• Register 4

Seventh Word ••••••••••••••••• Register 5

Eighth Word •••••.•••••••••••• Register 6

Ninth Word ••••.•••••••••.••.. Register 7

Tenth Word ••••.••••.••••••••• Register 8

Eleventh Word •••••.•••••••••• Register 9

Twelfth Word •••••••••.••.• ~ •• Register 10

Thirteenth Word ••••••••••.••.• Register 12

Fourteenth Word ••••••••••••••• Register 13

Fifteenth Word •••••••••••••••• Register 14

Sixteenth Word •••••••••••••••• Register 15

After the trace table entry has been inserted and the pointers updated,

the count of the number of times this particular $TRACE macro-instruction

has been executed is inserted into the first byte of the first word of the

Trace Effector - Page 5. 11-2

260

HASP

the trace entry and also into the last half of the $TRACE "instruction. "

All registers are then restored and return is made by loading the Program

Old PSW which restores the condition code to its original value before

the $TRACE macro-instruction was executed.

The symbolic location "$TRACETB" in HASP identifies a three-word

table with the following format: the first word is the address of the

last entry which was made in the trace table; the second word is the

address of the first byte of the trace table; and the third word is the

address of the last byte of the trace table + 1.

Trace Effector - Page 5 .11-3

261

HASP

5. 12 WTO /WTOR PROCESSING ROUTINE

5. 12. 1 WTO/WTOR Processing Routine General Description

The function of this routine is to process all OS WT0 1 s and WTOR 1s.

If a console buffer is not available for the message the requesting task is

placed in an OS WAIT state until a buffer becomes available to process

the request. This routine is not included if the HASP interface to OS Console

Support is generated (&NUMCON=O, see Appendix 12. 15).

5. 12. 2 WTO/WTOR Processing Routine - Program Logic

The WTO/WTOR Processing Routine is entered from the OS Execu­

tion Control Processor whenever an SVC 35 or SVC 36 is issued. Upon

entering, a test is made to determine if a free console buffer is available.

If none are available the user is made to WAIT using the first word of his

calling sequence as an ECB. The information necessary to later dispatch

the task is saved in an entry in the $WTORQUE (see figure 5. 12. 1).

If an unused buffer exists register zero is set with the parameters

required by the Console Buffering Routine (see figure 5.13. 1), register

one is set with the message address, and if a job number exists for the

job, register 10 (JCT) is set with the JCT address. If the SVC represents

WTO/WTOR Processing Routine - Page 5. 12-1

262

HASP

a WTOR, a reply number is established and a W:TOR Reply Element

(see figure 5. 12. 2) is set up to service the subsequent operator reply.

A link is then made to the Console Buffering Routine to initialize

the buffer with the message. Upon return, HASP is POSTed and the

processing routine exits to the OS dispatcher via register 14.

WTO/WTOR Processing Routine - Page S. lZ-Z

263.

.•

Figure 5.12.l -- WTO/WTOR TASK WAIT ELEMENT

Displacement r----------------------- 4 bytes -------------------7 ----1 Hex. Dec. -- --
0 0

Address of Next Task Wait Element

4 4
X'FF'
if Address of User's WTO(R)

Reply Wait

8 8

PCE ID Address of Task Control Block

c 12

User Parameter List Save Area

10 16

WTO/WTOR Processing Routine - Page 5 .12-3

264

HAb t'

Figure 5.12.2 -- WTOR REPLY ELEMENT

Displacement r----------------------- 4 bytes ---------------~--------~
Hex. Dec. - -

0 0

Address of Next WTOR Reply Element

4 4

Reply Number Address of Event Control Block

8 8

PCE IO Address of Task Control Block

c 12

Reply Length Address of Reply Area

10 16

WTO/WTOR Processing Routine - Page 5. 12-4

•
265 •

H A S P

5.13 CONSOLE BUFFERING AND QUEUING ROUTINES

The following routines are responsible for the queuing and
de-queuing of all console and log messages.

5.13.l CONSOLE BUFFERING ROUTINE - PROGRAM LOGIC

The Console Buffering Routine is used to prepare a message
buffer with the information required to process a console
message. At entrance registers zero and one contai~ the infor­
mation shown in figure 5.13.l.

The routine makes use of three tables comprised of one-byte
entries. The bits in each byte specify the physical consoles
which are to be used for the respective entry. In the first
($WCONTBL) each byte corresponds to one of eight consoles.
The bytes are ORed for each specified symbolic console to
set the physical byte for a write operation.

A second table ($WCLASTB) has an entry for each of the six­
teen possible message classes. The appropriate byte is ANDed
with the physical consoles byte to screen out consoles with
the class set too high.

In addition to setting the console routing byte, the Console
Buffering Routine supplies the other information shown in
figure 8.4.1. Prior to ~eturning to the caller, the routine

,places the message in the log queue (non-HASP messages with
a job number) , or in the queue of messages to be processed
by the Console Input/Output Processor (all other output
messages and all reads).

5.13.2 CONSOLE QUEUING ROUTINE - PROGRAM LOGIC

This routine places a console buffer into a queue of messages,
according to priority, to be processed by the Operator Console
Input/Output Processor and $POSTs that processor.

5.13.3 LOG QUEUING ROUTINE - PROGRAM LOGIC

This routine places a console buffer at the end of the queue
of messages to be processed by the HASP Log Processor and
$POSTS that processor.

Console Buffering and Queueing Routines - Page 5.13-1

266

H A S P

5.13.4 CONSOLE BUFFER FREEING ROUTINE - PROGRAM LOGIC

This routine places the console buffer in the free queue.
The Attention Processor's PCE is examined to determine if
the Attention.Processor is $WAITing for a console buffer,
and if it is, the Attention Processor is $POSTed and exit
is made. If the Attention Processor is not $WAITing, the
$WTORQUE is tested and the first task found is POSTed. If
no tasks are waiting, the HASP Event Control Field is $POSTed
and exit is made.

Console Buffering and Queueing Routines - Page 5.13-2

267

ll A S P

Figure 5.13.l -- CONSOLE BUFFERING ROUTINE PARAMETER REGISTERS

Displacement

Hex. Dec.
~----------------------- 4 bytes·-·----------------------~

0 0 !ROI

Flags Consoles Message Priority
Specified Length & Class

4 4 (RJ. l

X' 00' = $WTO Message Address (or Zero for Read)
X'80' = WTO

8 8

Console Buffering and Queueing Routines - Page 5.13-3

268

HASP

5 .14 INPUT/OUTPUT ERROR LOGGING ROUTINE

5 .14. 1 Input/Output Error Logging Routine -- General Description

This routine is entered whenever an unrecoverable Input/Output error

occurs on a HASP direct-access intermediate storage device, or whenever

line errors occur which may require the attention of the operator. A

message is generated describing the error and this message is routed to

the operator via the operator's console. The routine then returns without

taking any further action.

5 .14. 2 Input/Output Error Logging Routine - Program Logic

When this routine is entered, register 11 Rl 11 contains the address of

the Input/Output Block (IOB) which is associated with the Input/Output

operation in error. The channel status, channel command code, sense

information, track address, and line status are retrieved from the IOB

and formatted; the unit address and volume serial are obtained from the

Unit Control Block (UCB); the device name (if applicable) is acquired

from the Device Control Table (DCT); and the message is written to the

operator's console.

The format of the message describing a direct-access error is as

follows:

Input/ Output Error Logging Routine - Page 5 • 14-1

269

HASP

where:

n

uuu

cc

ssss

iiii

bbcchhr

I/O ERROR ON SPOOLn uuu,cc,ssss,iiii,bbcchhr

- identifies the SPOOL disk in error

- unit address of disk

- channel command code being executed

- channel status code

- unit sense information

- track address as follows:

bb bin (always zero)

cc cylinder

hh head

r record

The format of the message describing a line error is as follows:

I/O ERROR ON LINEm uuu,cc,ssss,iirr,ttee

where:

m - line number

uuu - unit address of line

cc - channel command code being executed

ssss - channel status code

ii - unit sense information

Input/Output Error Logging Routine - Page 5 .14-2

270

HASP

where:

rr

tt

ee

- STR - sense information

BSC - terminal response

- internal sequence and command code

STR - always blank

BSC - expected response

Input/,)utput Error Logging Routine - Page 5 .14-3

271

HASP

5 .15 REMOTE TERMINAL ACCESS METHOD (RTAM)

5 .15. 1 Remote Terminal Access Method -- General Description

The Remote Terminal Access Method provides an interface between the

HASP Processor and the Remote Terminal. RTAM provides blocking/deblocking,

compression/decompression, and synchronization with the remote terminal

in such a way that the processor need not be concerned with the character­

istics of the remote with which he is communicating. The MULTI-LEAVING

Line Manager synchronizes very closely with RTAM through a series of

subroutines, the more important ones, of which, are briefly described

below •

. 5 .1S.2 Remote Terminal Access Method -- Program Logic

The Remote Terminal Access Method consists of four main sections

and some miscellaneous subroutines. This section discusses the four

main sections: OPEN, GET, PUT, and CLOSE. The primary subroutines

are discussed in Section S .15. 3 below.

OPEN

The OPEN routines convert the line from an idling mode of opera ti on

to a transmit or receive mode of operation. In the case of the MULTI­

LEAVING interface, this routine also generates the request or permission

to begin a new function.

Remote Terminal Access Method -- Page 5 .15-1

272

HASP

The GET routines convert data received from the line into EBCDIC

images suitable for processing by the HASP processors. This conversion

includes deblocking, decompression, and conversion from line code to

EBCDIC.

PUT.

The PUT routines convert data from EBCDIC into a form ready to be

transmitted to the remote terminal. This conversion includes compression,

blocking, and conversion from EBCDIC to line code.

CLOSE

The CLOSE routines convert the line from a transmit or receive mode

of operation to an idling mode of operation.

5 .15. 3 Remote Terminal Access Method -- Subroutines

This section describes the primary subroutines used by the Remote

Terminal Access Method and the MULTI-LEAVING Line Manager.

MSIGNON -- Sign-On Card Processor

This subroutine is passed the address of a /*SIGNON card in register

"Rl 11 • If the line from which the Sign-On Card was read was defined to be a

"leased" line, the Sign-On Card is ignored and the subroutine returns immed­

iately. If the line is a "dial" line, the MABORT and MDISCON subroutines

are called to disconnect any other remote which may have been attached to

Remote Terminal Access Method -- Page 5.15-2

273

HASP

this line. The password is then checked and if not valid, an urrcr rnc.:ssage

is. issued and the subroutine returns. If the password is valid the specified

Remote Terminal's DC T's are located and examined. If the specified remote

is already attached to another line or if the specified remote is not locatable,

the subroutine issues an error message and returns. Otherwise, the specified

remote is attached to the line and a confirmation message is issued.

MCCWINIT -- Channel Command Word Seguence Setup Subroutine

This subroutine is passed a sequence type in bits 24-2 7 of register

"Rl 11 • The subroutine then constructs a CCW chain based upon this value

and returns. Figure 5 .15 .1 depicts the various CCW sequences which can

be constructed by the subroutine.

MINITIO -- MULTI-LEAVING Input/Output Interface

This subroutine analyzes t}:le status of a MULTI-LEAVING Remote Terminal

and takes appropriate action to minimize degradation while insuring maximum

line throughput. The subroutine first establishes the status of every pro-

cessor currently active on the MULTI-LEAVING line. Then, based upon the

active input processor count, the active output processor count, the status

of the remote terminal, and the status of input and output buffers queued

within HASP either transmits an ACKO to the terminal, transmits a text buffer

to the terminal, or initiates a one-second delay.

Remote Terminal Access Method -- Page 5. 15-3

274

HASP

MEXCP -- Remote r_erminal Input/Output Interface

This subroutine interfaces the Remote Terminal Access Method with

the standard HASP 11 $EXCP 11 Input/Output Interface. In addition to initiating

1/0, this subroutine also provides the MULTI-LEAVING Block Control Byte

sequence count, ahd the BSC 2 770/2 780 parity check {ACKO-ACKl)

conversion.

Remote Terminal Access Method -- Page 5 .15-4

275

HASP

Figure 5. 15. 1 - HASP Remote Terminal CCW Sequences

STR Hardware Terminal Prepare Sequence (code= 4)

INTERNAL
ccw COMMAND DATA ADDRESS FLAGS CODE BYTE CaJNT

IOBCCW:L DISABLE 0 60 40],

IOBCCW2 SET MODE LCBMCB 60 41 2

IOBCCW3 ENABLE 0 60 42],

IOBCCW4 TEST SYNCH 0 60 43 J,5

IOBCCW5 SEND INQUIRY 0 20 4A 6

S TR CPU Terminal Prepare Sequence (code= 5)

INTERNAL
ccw COMMAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCW:L DISABLE 0 60 50],

IOBCCW2 SET MODE LCBMCB 60 51 2

IOBCCW3 ENABLE 0 60 52],

IOBCCW4 TEST SYNCH 0 60 53 J,5

IOBCCW5 SEND EDT 0 60 SB 6

IOBCCW6 PREPARE 0 60 57 :L

IOBCCW7 READ TPBUFST 20 54 &TPBFSIZ

Remote Terminal Access Method _.;.. Page 5 .15-5
276

HASP

Figure 5. 15. 1 (continued) - HASP Remote Terminal CCW Sequences

STR Read Sequence {code= O: Hardware; code= 1: CPU)

INTERNAL
ccw Cc:J.1MAND DATA ADDRESS FLAGS CODE BYTE COUNT

IO:SCCWli TEST SYNCH 0 60 03/J.3 li5

IOBCCW2 PREPARE 0 60 07/J.7 Ji

IOBCCW3 READ TPBUFST 20 04/lA &TPBFSIZ

IO:SCCW4 STEP COUNT 0 60 00/liO Ji

IOBCCW5 ERR CR 0 60 00/liO l

IO:SCCW6 TIC IOBCCW3 00 00/:LO 0

S TR Write Sequence (code= 2: Hardware; code= 3: CPU)

INTERNAL
ccw COMMAND DATA ADDRESS FLAGS CODE BYTE COIJ'.JT

IOBCCW:L TEST SYNCH 0 60 23/33 15

IOBCCW2 SEND INQUIRY 0 60 2A/3A 6

IOBCCW3 ·WRITE TPBUFST 20 28/38 *-*

Remote Terminal Access Method -- Page 5 .15-6

277

HASP

Figure S. 15. 1 (continued) - HASP Remote Terminal CCW Sequences

BSC Prepare Seguence (code= C)

INT5R!jAL
ccw CCM-1AND DATA ADmESS FLAGS ~ BYTE CCJJNT

IO:OCCWl DISABLE 0 60 co li

IO:OCCW2 SET MODE LCBMCB 60 Cl l

IOBCCW3 ENABLE 0 60 C2 l

IO:BCCW4 NOP MBSCSYN 60 CA 4

IOBCCWS NOP/WRITE MBSCENQ/MBSCEOT 60 CA l

IO:OCCW6 READ LCBRCB 20 C6 2

BSC MULTI-LEAVING Terminal Seguence (code= 9)

ccw COMMAND

IOBCCWl ENABLE

IOBCCW2 NOP

IOBCCW3 WRITE

IOBCCW4. READ

IOBCCW5 NOP

IOBCCW6 WRITE

IOBCCW7 WRITE

IOBCCW8 READ

INTERNAL
DATA ADDRESS FLAGS ~ BYTE COUNT

0 60 92 l

MBSCSYN 60 99 4

LC BR CB 60 99 2

TPBUFST 20 94 &TPBFSIZ

MBSCSYN 60 98 4

TPBUFST 60/AO 98 *-*
METBSEQ 60 98 2

TPBUFST 20 B4 &TPBFSIZ

Remote Terminal Access Method -- Page 5.15-7

278

HASP

Figure 5. 15. 1 (continued) - HASP Remote Terminal CCW Sequences

BSC Hardware Terminal Read Seguence (code= 8)

INTERNAL
ccw CCJ.1MAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCWl.t ENABLE 0 60 S2],

IOBCCW2 NOP MBSCSYN 60 S9 4

IOBCCW3 WRITE LCBRCB 60 89 2

IOBCCW4 READ TPBUFST 20 S4 &TPBFSIZ

BSC Hardware Terminal Write Seguence (code =A)

INTERNAL
ccw CCJ.1MAND DATA ADDRESS FLAGS CODE BYTE COUNT

IOBCCWl.t ENABLE 0 60 A2],

IOBCCW2 NOP MB SC SYN 60 AA 4

IOBCCW3 WRITE MBSCENQ 60 AA],

IOBCCW4 READ LCBRCB 20 A6 2

IOBCCW5 NOP MBSCSYN 60 AB 4

IOBCCW6 WRITE TPBJFST 60 AS *-*

IOBCCW7 WRITE METBSEQ 60 AS 2

IOBCCW8 READ LC BR CB 20 A5 2

Remote Terminal Access Method -- Page 5. 15-8

279

H A S P

5.16 OVERLAY SERVICE ROUTINES

5.16.l Overlay Service - General Description

These routities, together with the Overlay Roll Processor des­
cribed in Section 4.20, respond to calls from other HASP Processors
when the macros $LINK, $LOAD, $XCTL, $RETURN, and $DELETE are
executed in HASP coding. This enables certain executable and table
portions of HASP coding (assembly control sections created by use
of the $OVERLAY macro) to be brought into main storage from their
normal direct access residence for use during HASP execution.

Major objectives of Overlay Service and Roll logic are: to allow
multiple Processors to use a single copy of the same overlay routine
simultaneously, and to prevent any system lockout due to $WAITs in
overlay routine coding.

The overlay data set is constructed as part of HASP installation
by the HASP Overlay Build utility, described in Sections 10.2.2
and 6.3, and is referred to by the ddname OLAYLIB in the job which
invokes HASP.

All Overlay Service and Roll Processor coding is located in module
HASPNUC. Service entry points are addressable by register BASEl
and are referenced by macro expansions through the HASP Communica­
tion Table.

Actions necessary to initialize HASP Overlay Service are contained
in module HASPINIT and are de~cribed in Section 6.1.2.

See Sections 8.3.3, 9.7, and 12.14 for descriptions of Overlay
Area(s) format, macros mentioned above, and coding rules relating
to use of overlay routines.

5~16.2 $LINK Service - Program Logic

On entry, register "RlS" contains the address of the next instruc­
tion after $LINK and register "LINK" contains the called routine's
Ocon. An Ocon is an index into the HASP Overlay Table, which is
the control section HASPOTAB created by the HASP Overlay Build
utility, whose individual entries are defined in OTBDSECT, created
by the $OTB macro.

The calling Processor's registers "RO-WC" are saved in the caller's
PCE. Overlay Service base address is established in register "WC".
Register "Rl5" is saved in PCEORTRN. "RlS" is set to the relative
displacement of the called routine entry point from the beginning
of an Overlay Area IOB, i.e., OACEPROG-BUFDSECT. The called
routine Ocon is saved in PCEOCON, then used to compute the address
of the Overlay Table entry for the called routine. If &DEBUG is set

Overlay Service Routines - Page 5.16.1

280

H A S P

to YES, field OTBCALLS is incremented by one. The called routine's
priority is moved to PCEOPRIO.

If the Overlay Table indicates that the called routine was made a
permanent part of the HASP Load Module at Overlay Build time,
register BASE3 is loaded with the address of a theoretical Overlay
Area containing the resident routine (BUFSTART-BUFDSECT bytes prior
to the routine itself}, caller's "RO-WC" are reloaded, and control
is passed to the called routine at its entry point.

If the called routine is not permanently resident, a search is made
of all Overlay Areas in the system. If the called routine is found
in an area (PCEOCON equal to area's OACEOCON), the caller's PCE is
added to the chain of all active users of the area. This chain
begins at OACEPCE and continues through PCEOPCE of each PCE, if
several users are on the chain, and ends with a zero chain word. A
test is made for illegal nested $LINK if &DEBUG is set to YES, see
Operator's Guide for error message. If the called routine is in
process of being read into the area from direct-access, the calling
Processor is made to $WAIT on OLAY, to be later activated by the
Overlay $ASYNC Exit (see 5.16.9). Otherwise, caller's "RO-WC" are
reloaded and control is passed to the called routine entry point,
with register BASE3 containing the address of the Overlay Area IOB
for use as the overlay routine base address.

If the called routine is not found while searching all Overlay Areas,
the search attempts to find an Overlay Area which is not currently
in use. It may contain an overlay routine but may not have active
users (OACEPCE must be zero) . The inactive area containing the rou­
tine of lowest priority (OACEPRIO) will be used, subroutine OLOD
(see 5.16.8) will be called to start reading the called routine from
direct-access, and the calling Processor will be $WAITed on OLAY,
to be later activated by Overlay $ASYNC Exit (see 5.16.9).

If no inactive areas are found, the calling PCE is placed on a Queue
waiting for an Overlay Area. The Queue begins at the word $WAITACE,
continues in descending priority order by PCEOPRIO using chain word
PCEBASE3, and ends with a zero chain word. If several PCEs are on
the Queue requesting the same overlay routine (PCEOCONs equal) , only
the first PCE is on the above chain, the others are chained from it
using word PCEOPCE. All PCEs in the Queue are $WAITed on OLAY.
This Queue is emptied by the Overlay Roll Processor, as described in
Section 4.20, or by the OEXIT subroutine, as described in 5.16.7.

Overlay Service Routines - Page 5.16.2

281

H A S P

5.16.3 $LOAD Service - Program Logic

$LOAD shares almost all logic with $LINK (see 5.16.2). Entry
register conditions are identical to those for $LINK.

"Rl5" is not saved in PCEORTRN. "Rl5" is not set to the relative
entry point of the called ·routine.

When the called routine is found in an Overlay Area or read into
one by later system actions, "Rl5" still contains the address of
the next instruction after $LOAD. Subsequent use of "Rl5" as an
absolute entry point results in control being returned to the caller
with the routine in an actual or theoretical area, addressable by
BASE3 as with $LINK.

5.16.4 $XCTL Service - Program Logic

$XCTL logic shares almost all logic with $LINK (see 5.16.2). Entry
register conditions are identical to those for $LINK.

"Rl5" is not saved in PCEORTRN. $XCTL is legal only when it logi­
cally follows another $XCTL or an original $LINK. Subsequent
$RETURN uses PCEORTRN as stored by the original $LINK to return
control from Overlay Service to the original caller.

Before doing entry actions for the new called overlay routine, the
OEXIT subroutine is called (see 5.16.7) to remove the calling
Processor's PCE from the cha~n of users of the current overlay
routine.

5.16.5 $RETURN Service - Program Logic

On entry, register LINK points to the next instruction after $RETURN
and also contains the condition code and program mask as set by a
BAL instruction. BASE3 points to an actual or theoretical area con­
taining the current overlay routine.

Caller's "RO-WC" are saved in the PCE. Overlay Service base address
is established in we.

The OEXIT subroutine is called (see 5.16.7) to remove caller's PCE
from the chain of users of the current overlay routine.

Returned condition code is re-established using an SPM instruction.
Caller's "RO-WC" are reloaded. Control is returned to the address
previously saved in PCEORTRN by $LINK.

Overlay Service Routines - Page 5.16.3

282

H A S P

5.16.6 $DELETE Service - Program Logic

$DELETE is nearly identical to $RETURN, except that it is used to
release control of an overlay routine previously $LOADed.

On entry, register LINK points to the next instruction after $DELETE.
This is stored in PCEORTRN. and all actions described for $RETURN
are performed.

5.16.7 - OEXIT Subroutine - Program Logic

This subroutine is used by service routines for $XCTL, $RETURN, and
$DELETE to release use of the current overlay routine by the calling
Processor. On entry, register WA contains the subroutine return
address and register BASE3 contains the address of an actual or
theoretical (permanently resident routine) Overlay Area containing
the current overlay routine.

If the current overlay routine is permanently resident, OEXIT returns
immediately. Otherwise, the chain of all users of the area (begin­
ning at OACEPCE and continuing through PCEOPCE) is searched and the
caller's PCE is removed. If other Processors are still using the
area, OEXIT returns.

If the above actions result in the Overlay Area becoming inactive
(OACEPCE equal zero), the $WAITACE Queue (see 5.16.2) is inspected.
If PCE(s) are waiting, the top priority group of one or more request­
ing the same overlay routine i~ de-queued, the address of the first
such PCE is placed in register "Rl", and OEXIT simply falls through
to the OLOD subroutine (5.16.8), which eventually returns to the
caller of OEXIT.

5.16.8 CLOD Subroutine - Program Logic

This subroutine is used by service routines for $LINK, $LOAD, $XCTL;
by the Overlay Roll Processor (see Section 4.20); and indirectly
by users of the OEXIT subroutine (5.16.7). Its purpose is to start
a read for a requested overlay routine from the direct-access device
containing the overlay data set. On entry, register WA contains the
subroutine return address, register BASE3 contains the address of an
actual Overlay Area to be used, and register "Rl" contains the ad­
dress of the first of a group of one or more PCEs requesting the
same overlay routine, chained from the first PCE by PCEOPCE.

OACEPCE of the Overlay Area is pointed to the first PCE. OACEPRIO
and OACEOCON are set to indicate the routine which will reside in

Overlay Service Routines - Page 5.16.4

.283

H A S P

the. area. The Overlay Table entry for the requested routine is
accessed and, if &DEBUG is set to YES, field OTBLODS is incremented
by one.

The relative T and R in the overlay data set of the requested
routine is obtained from th,e Overlay Table. The address of the
Overlay DCT is loaded into.register "Rl". If the overlay data set
is on any SPOOL volume (device type DA in the DCT), an absolute
form of MTTR is computed and stored in DCTSEEK. This conforms to
$EXCP requirements for SPOOL volumes (see 5.8) and allows $EXCP to
remember SPOOL arm positions. If the overlay data set is on a
non-SPOOL direct-access volume, the standard OS form of MBBCCHHR
is computed and stored in IOBSEEK. See Section 6.1.2 for initiali­
zation of the Overlay DCT and data set.

Hardware read operation is requested by using the $EXCP macro. The
Overlay DCT specifies that when the read operation is complete,
Overlay $ASYNC Exit is to be entered. All PCEs chained from
OACEPCE are already $WAITing OLAY, to be later activated by Overlay
$ASYNC Exit (see 5.16.9). OLOD then returns to its caller or caller
of OEXIT.

5.16.9 Overlay $ASYNC Exit - Program Logic

This routine is entered when under control of the Asynchronous Input/
Output Processor ($ASYNC) PCE (see Section 4.8) an overlay read opera·
tion (started by OLOD subroutine, see 5.16.8) is posted complete.
On entry, register "Rl" points to the Overlay Area. BASE2 is set
to the base value for the Oyerlay Roll Processor, which is used for
local addressability. "Rl5" contains the return address to $ASYNC.

The chain of all users of the overlay routine just read (begins at
OACEPCE, continues through PCEOPCE) is processed. Each PCE's
re-entry address ("Rl5", now stored in PCER15) is absolutized by
adding the address of the Overlay Area, if the value in PCER15 is
determined uo be relative. The address of the Overlay Area is also
stored in each PCEBASE3, to provide addressability when the Dis­
patcher activates each Processor. The function $POST for OLAY is
performed on each PCE to make it dispatchable.

If OS IOS has posted the read complete with a permanent I/O error,
each PCE's (on OACEPCE chain) re-entry address (PCER15) is pointed
to a routine which types the message "UNREADABLE OVERLAY - "
and enters a permanent $WAIT. The Overlay Area is freed for other
use.

If &OREPSIZ is set to zero, this Exit returns to $ASYNC. Other­
wise, the Overlay REP storage area is examined to see if any REPs
~ere read during HASP Initializatiort (see 6.4) which may apply to

Overlay Service Routines - Page 5.16.5

2ff4

(

H A S P

this overlay routine. REPs whose CSECT name {last four characters)
match OACENAME are applied. The assembly origin (OACEASMO) of the
routine is subtracted from the REP address and the BUFSTART address
of this Overlay Area is added, to determine the memory location to
be patched.

Return is finally made to $ASYNC to allow other processing to con­
tinue. The Dispatcher will enter each Processor using the overlay
routine just read.

Overlay Service Routines - Page 5.16.6

285

H A S P

(The remainder of this page intentionally left blank.)

./

286

! t . ' ' I I

1.. o rvHSCELLANF..:01 JS

This section contair1:; d,·1 .. ill·d jnterr:al inf.;1 n1.1tion .d,out n1isct::llan1:1-t1,

routines in1bedded in 1,1· 111\,,j.,·,.,1 with the HAS :;,1 ;Lern <lrl(I is intended

prirna1·ily for use by sy,;1t·n1~, ,,, ,grammers.

Miscellanecus -- Paf' "·

H A S P

6.1 HASP INITIALIZATION

6.1.l HASP Initialization - General Description

The purpose of HASP initialization is to initialize for HASP job
processing. Initialization builds the required control blocks and
makes modifications to the Operating System nucleus which allows
HASP to monitor the execution of jobs.

HASP Initialization is designed to provide either a "cold" or "warm"
starting capability. A "cold" start is one which starts the system
anew. Only those jobs which are entered after a "cold" start will
be processed. A "cold" start does not have any requirements as to
configuration except as defined in the HASP generation parameters.
A "warm" start is a restart. Checkpointed information is read from
the SPOOL! volume and the queued jobs and data from the last pro­
cessing are recovered. This type of start requires, as a minimum,
that the SPOOL volumes that were used during the previous execution
be on-line. Extra SPOOL volumes, up to a total of &NUMDA volumes,
may be added.

6 .1. 2 HASP Initialization - Program Logic

Initialization begins with the issuing of the HASP Supervisor Call
which turns control over to the HASP Initialization SVC Routine. On
return the HASP task will be in the Su~ervisor State with protect
key of zero. Register 1 points to a list of resolved nucleus
addresses and a return point for resetting HASP to problem state.
These addresses are moved into the HASP Communication Table (HCT)
for later use by the system.

Since HASP Initialization resides in the same area as the main HASP
buffer pool as designated by the HASP parameter &NUMBUF and portions
of the initialization routines are executed from overlay control
sections, all HAS~ processors except those required for initiali­
zation and console processing are placed in the hold status. The
command processor PCE is altered to refer to the Root Segment of
HASP Initialization, which resides in the data portion of the
first buffer used for HASP SPOOLING. The HASP Initialization WTOR
is then displayed via OS WTOR facilities. Initialization then waits
for the operator to respond with the desired options. The options
are then compared against the Initialization Options table and the
appropriate bits in the $0PTSTAT field in the HCT are set or reset
in accordance with the options specified. If any option is incor­
rectly entered, an error message is issued and the $OPTSTAT field
is set to the default option configuration. (Refer to STARTING THE
HASP JOB Section of the HASP Operator's Guide.)

HASP Initialization - Page 6.1.l

288

H A S P

Tile HASP REP routine (described in Section 6. 4) is entered fr)r
optional alteration of the resident portions of the Operatin(1
System or HASP (resident or overlay control sections).

~reparation Of Overlay Service

'rhe Overlay DCT is prepared by indicating that it is in use, u'.
only for reading, that Overlay $ASYNC Exit is to be entered on
completion of any operation which was started by using Overlay
OCT, and that Overlay Roll Processor is the owner of the DC'l'.

'rhe overlay data set is described by a DD card having ddnamc : f
OLAYLIB. DEVTYPE and OPEN macros are used to determine the num···
ber of tracks/cylinder of the overlay volume and data set exteni
which is placed as the last (&NUMDA+l) extent in HASP's s1nqle
J:1u l ti-extent direct-access DEB. The overlay data set is closeu
since HASP uses its own constructed I/O control blocks.

The overlay data set UCB address is stored in a table used to
withdraw or abort HASP and the UCB is made allocated, permanent.: j ·

resident, and private.

The number of tracks/cylinder and extent are used to compute a
beginning absolute TT of the overlay data set, which is stored

. in the Overlay OCT for later use by the OLOD subroutine (see
Section 5.16.8).

Locating Spool Volumes

All OS UCBs are searched via the UCB lookup table and direct-ac.::1- ~.:
volumes with volume serials of SPOOLx are examined for use for I-!i\<.\F
SPOOL volumes. As each device is examined, the UCB is allocated
by turning on the private, reserved, permanently resident, and
allocation indicators. The UCB locations and sixth volume serial
character are saved in a temporary workarea for later reference.
If during the UCB search multiple volumes with the same serial
or too many SPOOLx volumes are found, an error message is display. ;J

SPOOL volume UCBs are deallocated and the HASP job is ·terminated.
Upon completion of a successful allocation of SPOOL volumes, con­
trol is passed to Direct-Access Initialization.

HASP Initialization - Page 6.1.2

289

H A S P

Direct-Access Initialization

Direct-Access Initialization (NGDAINIT) gains control after all
Spool devices have been found by initialization; initialization has
built a table of six-byte entries {NSPOOLLl} describing the direct­
access devices upon which Spool disks are mounted, of which each
entry appears as follows:

0 1 2 4

I dev I vol lucB I unused

where:

dev is the low-order byte of the direct-access
device type;

vol is the low-order byte of the volume serial
number; and

UCB is the device's UCB address.

Before checking for warm start, NGDAINIT establishes where the
checkpoint record is to be placed on SPOOLl. To do this, it first
calls the DEB/TED setup routine to establish certain statistics
about all mounted Spool volumes and then issues an OBTAIN macro­
instruction for SYSl.HASPACE on SPOOL!. The checkpoint information
will reside on the first track of this data set (the first two
tracks if &JITSIZE is not zero); accordingly, NGDAINIT sets up
the necessary channel programs using the OBTAINed information.

WARM START

If the operator requested a warm start, NGWARM reads the checkpoint
information directly into the area from which the checkpoint
processor will write it; the information consists of the HASP job
queue, the track group map, printer checkpoint information, mis­
cellaneous status information (including direct access checkpoint
information) and, optionally, the job information table (JIT).
The direct access checkpoint information, $DACKPT, consists of
&NUMDA six-byte entries of the following form:

0 1 2 4

ldev I vol Is s s s le e e e

where:

dev is the low-order byte of the direct-access device type;

vol is the low-order byte of the volume serial number;

HASP Initialization - Page 6.1.3

290

H A S P

ssss is the starting absolute track number of data set
SYSl.HASPACE on the indicated SPOOL volume; and

eeee is the ending absolute track number of the first
extent of data set SYSl. HASPACE on the indicated
SPOOL volume.

For SPOOL!, the starting track number excludes the checkpoint
tracks.

NGWARM insures that each volume specified in the direct-access
checkpoint is mounted and, with the help of subroutine NGALLOC,
that its extents are unchanged. If not all volumes are mounted,
or if any extents have been changed, or if a cursory check of
a volume shows that it is not properly formatted, NGWARM writes
a message and sets a quit switch to cause HASP to quiesce.

If all volumes specified by the direct-access checkpoint are
correct, NGWARM checks for (and formats if necessary) newly­
mounted volumes. Then it again calls subroutine NGDEBSET to
allow for the possibility that the order of Spool volumes in
NSPOOLLl (by unit address) may not have been the same as in $DACKPT;
the final order is that of $DACKPT.

Now NGWARM relocates the HASP job queue, if necessary. The job
queue as recorded in the checkpoint record contained main storage
addresses; if HASP does not now occupy the same core locations as
it did before, each main storage address in the HASP job queue (and
in pointers to the job queue) must be adjusted to reflect the cur­
rent main storage location of the job queue.

After relocation, NGWARM scans the job queue to check the busy bit
of each active entry and to reset certain flags. If a busy bit is
on, NGWARM turns it off and issues a WTO to inform the operator
that the job was reading, executing, printing, or punching. Addi­
tionally, if the job was reading, NGWARM uses HASP queue manage­
ment routine $QREM to delete the job's queue entry.

At the end of the job queue, NGWARM gives control to NGEXIT,
which assembles and format-writes the checkpoint information;
restores the HASP appendage table pointer in $DADEB1, the HASP
multi-extent direct access DEB; counts the number of allocated
track groups (one-bits) in the track group map; and gives control
to NINITWTO.

COLD/FORMAT START ,

If the operator specified cold or format start, NGCOLD first zeros
out the track group mqp. Then NGCOLD processes each mounted SPOOL
volume.

' For each volume, NGCOLD uses subroutine NGALLOC to process the DSCB
for SYSl. HASPACE. This subroutine issues. the OBTAIN macro-instruc­
tion to retrieve the DSCB; if OBTAIN's return code is not zero, an
appropriate error message is printed via Wl'O. If the return code is

HASP Initialization - Page 6.1.4

291

HAS P

zero, NGALLOC computes and saves lower and upper absolute track
numbers.

If NGALLOC operated normally, NGCOLD now tests for an operator
specification of COLD; if the test is positive, NGCOLD calls sub­
routine NGREADCT to read and validate the count field of the first
record of the last track of the first extent of SYSl.HASPACE on the
volume. If the count field is invalid, or if the operator specified
FORMAT, NGCOLD calls NGFORMAT to format the first extent. NGFORMAT
issues an unconditional GETMAIN for core in which to build .a for­
matting channel program and data, builds them, and formats each
track by calling NGEXCP, which merely issues an EXCP and a WAIT
and checks the post code.

After the volume has been inspected (and formatted if necessary),
NGCOLD calls NGMAP to calculate the number of track groups in this
volume and the track group number of the first track group. NGCOLD
increments the overall number of track groups available for alloca­
tion by the quantity returned from NGMAP and then calls NGBITMAP
which turns on in the master track group map the bits corresponding
to available track groups on this volume. Then NGCOLD processes
the next volume.

When all volumes have been processed NGCOLD refreshes certain
checkpoint information (the HASP job queue, the print checkpoint
information, and some miscellaneous checkpoint information) and
gives control to NGEXIT, as above.

The DEB initialization subroutine, NGDEBSET, initializes certain
HASP and OS control blocks and allows a great degree of SPOOL
device independence.

When called,
HASP TCB; it
the standard
by NGEXIT.)
not found.

NGDEBSET first puts into $DADEB1 the address of the
also changes the DEB appendage address to point to
!OS appendage. (The appendage address is restored
It checks for SPOOL! and quiesces HASP if SPOOL! is

Then NGDEBSET processes the Spool volumes.

For each volume, NGDEBSET calculates number of records per track
using information from the device characteristics table IECZDTAB
in the OS nucleus and the formula given with the DEVTYPE macro­
instruction in the OS System Programmer's Guide. Then it sets up
certain information in an entry of the Table of Extent Data (TED) .

Then, after setting the UCB address in $DADEB1, NGDEBSET performs
the same functions for the remaining volumes and returns to the
caller.

HASP Initialization - Page 6.1.5

292

H A S P

Activation of Overlay

If the overlay data set is contained on a SPOOLx volume, the
Overlay Device Control Table is adjusted so that $EXCPs done by
the OLOD subroutine (see 5.16.8) will use MTTR addresses and M
which refers to the DEB extent for the SPOOLx volume rather
than the overlay data set extent. The first Processor Control
Element (PCE) in the HASP chain is connected to the OS save area
chain and, with register 13 pointing to the first PCE, Initiali­
zation enters the HASP DISPATCHER as though the first processor
had executed a $WAIT macro. The HASP DISPATCHER will run the PCE
chain and dispatch the Initialization ROOT segment. The ROO'r
segment will $LINK to the first overlay control section HASPIOVA.

Unit Record Initialization -HASPIOVA

The OS UCBs are scanned for unit record devices. Devices which
are on-line on a DUAL Processor Model 65 system, have OS
scheduled I/O activity, or answer positively to a TIO instruction
are considered real devices. Otherwise the devices are con­
sidered pseudo devices.

PSEUDO DEVICE INITIALIZATION - Pseudo, dev·ices are initialized by
· flagging the UCB for later identification by the HASP Execution
Processor SVC O intercept routines and are -var.ied. on-line.

Pseudo 2540 reader, 1442 special forms punch, and 1443 special
forms printer devices are especially noted and counts are maintainea
for the HASP Execution Processor Device Allocation Routine. Pseudo
1403 Printer UCS feature is removed from the UCB. Pseudo 2520
devices are identified and matched with an internal reader INTRDR
Device Control Table .which is initialized for processing.

REAL UNIT RECORD DEVICE INITIALIZATION - Each device is matched with
a corresponding Device Control Table which is initialized for pro­
cessing. If the device is allocated by OS, the DCT will remain
in the drained status causing HASP not to use the device unless
the operator starts the device by command. Automatic starting
reader and (as appropriate} HASP console UCB attention index values
are set to four allowing HASP to recognize the readying of the
readers or the pressing of the enter key(s). (At least one HASP
console device is reserved for a 1052 type of device.) If more
real unit record devices of each particular type are found than
available DCTs, an error message is displayed and the additional
devices are ignored.

,...J
Control is then passed to the Remote
zation routines as appropriate via a

Job Entry or console initiali­
$XCTI;. macro.

·~

HASP Initialization - Pa 6 1 6 ge • .

O,_ 293

H A S P

Remote Job Entry Initialization - HASPIOVR

LINE INITIALIZATION - The OS UCBs are scanned for Synchronous
Communication Adapter devices. The UCBs found are first matched
with one or more DCT and corresponding line descriptions (LINEmm
HASP Generation Parameters). Any DCT with a line description
which specifically designates the UCB will be initialized for the
UCB. If no line description designates the UCB, tests are made
to determine if the adapter is physically on-line and, if so,
a DCT with a line description with "***" specified will be located
and initialized. Line devices will not automatically be started.

REMOTE DEVICE INITIALIZATION - Remote Device Control Tables are
connected and initialized with information contained in the corres­
ponding remote description (RMTnn HASP Generation Parameter) . Each
group of RMr.RDn, ... ,RMr.PRn, .•. ,RMr.PUn, ... for a given remote
are chained together for control by the MULTI-LEAVING-line manager
and RTAM. In addition the printer and punch DCTs are removed from
the chain of all HASP DCTs and reinserted directly behind the
reader DCT for the corresponding terminal. The device description
is converted to internal flags and placed in each of the corres­
ponding DCTs. If the line number is designate - in the description
the line DCT is located, DCTs are chained together, and flags are
set to indicate non-signon remote.

·The HASP Remote Job Entry Buffer Pool is initialized and control
is passed to the remote console initialization routine or console
(local) initialization routine as appropriate by $XCTL.

Remote Console Initialization - HASPIOVS

The Operator Message Space is allocated and control blocks are ini­
lialized. The Remote Console Processor PCE and a direct-access OCT
are connected (the DCT is flagged IN USE) . The origin of the first
available track in the SYSl.HASPACE data set of the SPOOLl volume
and the base track address for operator message record allocation
is set into the MSAMTTR field of the MESSAGE ALLOCATION ($MSALLOC)
Table in the form: OTTl (TT is the first track available for
messages). The number of records per track for the mounted SPOOLl
volume is inserted into the MSARPTRK field. If "cold" start was
performed by direct-access initialization, the Cylinder map for
SPOOLl is altered to reflect the allocation of sufficient adjacent
track groups starting with the group of the base track. The num­
ber of the last group is saved in the checkpoint records for
future "warm" starts. If a "warm" start was performed by direct­
access initialization, a check is made against the checkpoint record
to insure that the space required is within the allocated space.
Control is given to the console (local) initialization routine
by $XCTL.

HASP Initialization - Page 6.1.7

294

H A S P

Console Initialization - HASPIOVB

OS CONSOLE INITIALIZATION - Information is extracted from the OS
UCM and the Console processor is made ready for interfacing with
OS.

HASP CONSOLE INITIALIZATION - The Console DCTs are initialized
for HASP console support. Each DCT that was matched with a UCB
by the unit record initialization routine is initialized for I/O
processing. The corresponding authorization for each console
is converted to console restrictions and set into the DCT. The
operator command $S console is simulated.

Control is passed to the intercept initialization routine via $XCTL.

Intercepts Initialization - HASPIOVC

The following intercepts are made in accordance with the type of
the HOST Operating System MVT or MFT and the HASP generation
options as follows:

SVC 0 - EXCP interface used for control of user I/O
SVC 6 - LINK interface used to recognize events within OS
SVC 7 - XCTL. interface used to recognize events within OS

and to interface with OS console support
SVC 35 - WTO interface for console support
SVC 36 - WTL interface for write to log support.

Start Initiator, reader, and writer (optional) commands are issued
which start the procedures contained on SYSl.PROCLIB. The reader
will be directed to the pseudo device & RDR and the writer will be
directed (if started) to the pseudo device &WTR.

In the event the HASP writer is selected in lieu of the OS writer,
the HASP writer module "HASPWTR" is attached. If OS console sup­
port is selected, the HASP communications task is attached, via the
attaching of module "HASPBRl" which enters the console processor.

Control is passed to the HASP buffer building routine via $XCTL.

HASP Initialization - Page 6.1.8

295

H A S P

Buff er Build - HASPIOVD

An OS variable GETMAIN is issued to obtain storage for the alternate
buffer pool from the hierarchy as designated by the &BUFHICH
generation parameter. The actual amount of core is reduced by the
amount of reserved core (&RESCORE*l024) and used to determine the
number of buffers which may be created in the alternate buffer
pool along with the actual amount of storage needed. Extra core
if any is released via OS FREEMAIN. The number of buffers which
may be created in the alternate pool is compared against the
expression of generation parameters:

&MINBUF - &NUMBUF where &MINBUF ~ &NUMBUF = number of buffers
in the main buff er
pool

If the alternate buffer pool will not contain at least the number
of buffers specified by the expression a warning is issued.

The origin of the main and alternate buffer pools are examined to
determine which has the lower storage address. The pool with the
lowest address is created and chained to the $BUFPOOL chain of
buffers. The pool remaining is then created and chained to the
end of the first.

The operator is then asked to ENTER HASP REQUESTS (optional) and
the ROOT segment of HASP INITIALIZATION is entered via the $RETURN
macro.

Activation Of Normal Processing

The ROOT SEGMENT returns the PCE to the Command Processor and, if
the operator specified REQ in the WTOR, enters the Command Proces­
sor. If NOREQ was specified by the operator, all HASP Processors
are $POSTed and the Comm.and Processor is entered.

HASP Initialization - Page 6.1.9

296

/

H A S P

6.2 HASP INITIALIZATION SVC ROUTINE

6.2.1 HASP Initialization SVC Routine - General Description

This program is a Type-I SVC routine which resides in the Operating
System Nucleus and provides the following basic functions:

1. For HASP:

2.

3.

6.2.2

• • •
•
•

For

•
•
For

•

To give HASP a zero storage protection key .
To place HASP in supervisor state .
To return the address of key symbols in the nucleus
which are required for HASP processing.
To guard against recursive entries in order to prohibit
multiple copies of HASP from being initiated.
To provide the address of an entry which will cause
the SVC routine to be reset for HASP withdrawal and
cause the PSW to be reset to its initial value.

the HASP Reader/Interpreter Appendage:

To place the HASP JCL Exit routine in supervisor
state.
To return the left half of the PSW which was in use
when the SVC was invoked.

the non-HASP program:

To give an indication to any other program as to
whether HASP is currently active or not.

HASP Initialization SVC Routine - Program Logic

This program is a Type-I OS SVC routine. It must be link-edited
with the nucleus to resolve the external address constants required
for HASP processing.

Upon entry, register 1 is compared with the EBCDIC characters "HASP".
If the register does not compare, a condition code is returned to
the user in register 15 as follows:

R15 = O - HASP has not been initiated and is not currently
active.

RlS ~ 0 - HASP has been initiated and is currently active.

HASP Initialization - Page 6.2.1

297

H A S P

If register 1 contains "HASP", a test is made to determine- if
HASP has been invoked. If not, then this switch is set to
indicate that HASP is now active and the left half of the PSW
is saved for the "reset entry". ·

If HASP has been invoked, the protect key of the caller is
interrogated. If this protect key is non-zero, the caller
is ABENDed with an appropriate ABEND code.

The SVC OLD PSW is modified so that the return to HASP will
place HASP in the supervisor state and give HASP a zero storage
protection key. Register 1 is then loaded with the address of
a table of address constants of key nucleus addresses and return
is made through the OS SVC FLIH. At this time register O con­
tains the left half of the PSW which was in use when the SVC
was invoked.

One of the addresses in the nucleus address table is the address
of the SVC reset routine. When this routine is entered, it
resets the switch to indicate that HASP is no longer active. It
then returns to the user by load~ng a PSW constructed by con­
catenating the left half of the original PSW with register 14.

HASP Initialization - Page 6.2.2

298

H A S P

6.3 HASP OVERLAY BUILD UTILITY

6.3.l HASP OVERLAY BUILD - GENERAL DESCRIPTION

The purpose of this program is to process the object deck
output from the ten primary HASP assemblies. Overlay CSECTs
are extracted and written (each as a single record) to the
sequential overlay data set (ddname OLAYLIB) , all references
to overlays from resident and overlay routines are resolved,
and all resident CSECTs (even if prograrruned as overlayable)
are passed to the OS Linkage Editor in a sequential data set
(ddname SYSLIN). Optional control cards are processed which
allow changing the status of any overlayable CSECT from actual
overlay to permanently resident and vice-versa.

The use of this program to install HASP (control cards, list­
ings produced, etc.) is described in section 10.2.2.3, which
s~ould be read as background to this description. Overlay
Se~vices and Roll logic, and Overlay Prograrruning Rules are
de3cribed in sections 5.16, 4.20, and 12.14 respectively.

" 6.3.2 HASP OVERLAY BUILD - PROGRAM LOGIC

On initial entry, the time is sampled. A truncated "time­
like" value is saved. This value will be placed into one
resident CSECT and one overlay CSECT. During HASP Initiali­
zation, if these two values do not match, an error message
is produced and HASP terminates.

All data sets are OPENed and the listing title line is printed.
If the control card data set is present (ddname SYSIN) , cards
are read, printed, and processed until end-of-file is encoun­
tered. Each card contains an overlayable CSECT name beginning
in column 1, which must begin with "HA$". A SYM table entry
is made for each such name. An Ocon (index into the Overlay
Table, HASPOTAB) is assigned and a priority, if present in
column 16 of the card, is remembered. This ·information is
later used to override the normal processing of that CSECT,
when encountered in the object decks. A listing header line
is printed at the end of control card processing.

All objects decks are processed as a single sequential input
data set (ddname SYSOBJ). Only the four object card types
ESD, TXT, RLD, and END; as documented in OS/360 Loader PLM,
Y28-6714, Figures 30-34; are processed. All other cards are
wr'itten directly to SYSLIN. If an object card with a valid
ESID number greater than the program's table limits (internal
assembly variable &MAXESID) is encountered, the program abends
with a U0101 code.

HASP Overlay Build Utility - Page 6.3.1

299

H A S P

ESD card processing is essentially the construction of two
Tables from ESD information. The SYM table contains the
names of and information about any external names under over­
lay control (i.e. beginning with "HA$") • It is a global
table covering all object decks together. A name is entered
when a reference to it or CSECT definition of it is first
encountered, or during control card processing as previously
described. An overlay name in an ESD card item is first
searched for in the SYM table, and if found, changes are
made to the existing entry. An error message is produced
for each duplicate definition of a previously defined over­
lay CSECT name and only the first definition is used. An
Ocon is assigned to each entry. When a name becomes a de­
fined CSECT, if the fourth character is "O", the overlay
routine is actually to be made disk resident, and storage
is assigned to load its text.

The ESID table is cleared at the beginning of each object
deck and constructed as ESD items are encountered, under
control of SYM table contents. It is a table of words, in
order by ESID number. TXT and RLD card processing access
this table only. It contains relocation values, Ocons, and
flags controlling the disposition of text and RLD items.

ESD items, for references to overlays or for definitions of
overlay CSECTs which are to be disk resident or are dupli­
cated, are eliminated from an ESD card when processed, before
the ESD card is written to SYSLIN. This elimination is done
by changing them to type NULL or, if type LO, by physically
removing them and compacting the card.

TXT card processing has ·three possible results. Text be­
longing to an actual overlay is loaded into memory, subject
to relocation according to storage assigned by ESD proces­
sing. Text of any overlay CSECT which is a duplicate of one
encountered previously is discarded. Text of non-overlay
CSECTs or overlays being made permanently resident is written
Un-altered to SYSLIN.

RLD card processing concerns individual RLD items, as follows.
If an item applies to a discarded duplicate overlay CSECT, it
is eliminated. If an item references a non-overlay CSECT,
it is left un-altered. An overlay reference item describes
a 2 byte Q type constant assembled in the expansion of the
$LINK, $LOAD, $XCTL, and $OCON macros. The reference is
resolved by substituting the Ocon value assigned to the ref­
erenced overlay routine, and the item is eliminated. If the
Q constant exists in an actual overlay routine, the Ocon value
is simply moved to the proper address of the text already load­
ed in memory. If the Q constant exists in a non-overlay CSECT
or overlay being made resident, a new TXT card containing the
Ocon value is created and written to SYSLIN. Eliminated items
are physically removed and the RLD card compacted before
writing to SYSLIN. ',

HASP Overlay Build Utility - Page 6.3.2

300

H A S P

END card processing is really end-of-object-deck processing.
The card is written unchanged to SYSLIN. The entire SYM
table is then scanned for selected processing. Each actual
overlay whose text was loaded from the most recent object
deck is written to OLAYLIB as a fixed length record of length
&OLAYSIZ (internal assembly variable set to 1024 bytes in
unmodified HASP). A listing line is printed for each overlay
CSECT defined in the most recent deck, with its assigned Ocon
value. Priority and disk address in two forms are printed for
actual overlays. An error message is printed if an actual
overlay length exceeds &OLAYSIZ.

Processing of multiple object decks continues as above until
end-of-file for SYSOBJ is signalled. The entire SYM table
is then processed to produce the Overlay Table, which is
written to SYSLIN as a new object deck (did not exist in the
input) containing a single resident CSECT, HASPOTAB. An
error message is printed for any name in the SYM table which
is still not defined as a CSECT.

Each entry in HASPOTAB is 4 bytes or, if &DEBUG is set to
YES, 12 bytes. The last 4 characters of the CSECT name are
included if entries are 12 bytes, to facilitate identifica­
tion in a memory dump. If a routine is actual overlay (disk
resident) , the TR (relative form) of disk address and the
priority are placed into the table entry for that routine.
If an overlay routine was written to SYSLIN by previous pro­
cessing (to become permanently resident in the HASP load
module), a V type constant is created in its table entry.
An appropriate RLD item referencing the CSECT name is created.

When HASPOTAB is complete, an END card for it is written to
SYSLIN, all data sets are CLOSEd and the program terminates.

HASP Overlay Build Utility - Page 6.3.3

301

H A S P

6.4 HASP REP ROUTINE

This routine gives the systems programmer the capability of
applying absolute or relocatable value patches to HASP, at
absolute or relocatable memory addresses, as part of the HASP
Initialization process.

6.4.1 REP Card Format

Columns
1
2-5
6
7-12

13-16
17-blank

Contents
Any identification - ignored by REP routine
CSECT name, "REP", or "ABS"
Blank
Address at which to apply patch (6 hex digits)
or blank
Blank
Half word absolute value patches, 4 hex digits

each, separated by commas, patch data
terminated by first blank,

or one fqll word (8 hex digit; relocatable
~value patch, followed by a comma and the

name of the resident CSECT which defines the
relocatable part of the value

The above format allows patches to be applied at any absolute
memory location (by use of REP or ABS beginning in column 2) or
at addresses in HASP CSECTs .<resident or overlay), subject to
relocation. Relocatable addresses should be taken directly from
a HASP assembly listing containing the CSECT to be patched. A
blank address field is interpretted as one greater than the last
address patched by the previous card, but the card will be used
only if columns 2-5 match those of the previous card.

The patches may be absolute values or one relocatable word per
card, whose value is relative to any resident HASP CSECT.
Relocatable values should be punched as if they were the assembled
value of an A type constant in the CSECT which defines the
referenced relocatable symbol.

Use of the term "CSECT name" in the above description means the
fifth and following characters of a HASP CSECT name, as taken from
the External Symbol Dictionary of a HASP assembly listing.

A deck of one or more REP cards should be terminated by a card
having "/*" punched in columns 1-2.

HASP REP Routine - Page 6.4.1
302

H A S P

6.4.2 REP Routine - Program Logic

REP cards, as described in Section 6.4.1, are read from the card
reader, whose address is given by the HASPGEN parameter $REPRDR,
immediately after the operator replys to HASP's initial WTOR, if
the operator specifies "REP" in the reply options. Each card is
listed on the printer, whose address is given by the HASPGEN
parameter $REPWTR, unless the operator specifies "NOLIST'' in the
reply options. All I/O is performed using CPU instructions SIO
and TIO with the CPU disabled for all interruptions. Cards are
read and processed until a card having "/*" in columns 1 and 2
is encountered or until the card reader signals unit exception.

The value or data portion of each card is processed first. If
the value is relocatable (indicated by comma in column 25), eight
hex digits beginning in column 17 are converted to a binary value.
The CSECT name (last four characters beginning in column 26) is
located in an internal table of standard resident module names.
A value is taken from this table which is the memory address at
which the resident module is loaded. This value is added to the
value taken from the card.

If the value portion is absolute, groups of four hex digits (sep­
arated by commas) beginning in column 17 are converted to binary
values until a blank is encountered instead of an expected comma.
The values are concatenated to form a single variable length
binary value.

The address portion of the card is processed next. If non-blank,
six hex digits beginning in·colurnn 7 are converted to a binary
address. An attempt is made to locate the to-be-patched CSECT
name (last four characters beginning in column 2) in the standard
resident module name table. If located, the loaded memory address
of the resident module is added to the address taken from the card.
If the CSECT name is not in the standard resident module name
table, the overlay table is searched to determine if the CSECT is
an overlay which was made permanently resident. If so, the non­
zero assembly origin of Lhe uv~rlay CSECT is subtracted from and
the loaded memory address is added to the address taken from the
card. In both of the above cases, the patch value as previously
computed is applied by moving it to the memory address determined
by one of the two methods described.

If the CSECT name is not located by either search just described,
it is assumed to be an overlay CSECT which is not permanently resi­
dent. The name, unrelocated address, and value are saved in a
reserved area, to be applied each time the overlay is read from
direct access during HASP operation.

If the address field of the card is blank, the to-be-patched CSECT
name is compared with that from the preceeding card. If they are
not equal, the card is ignored. Otherwise, the card is considered

HASP REP Routine - Page 6.4.2

303

H A S P

to be a continuation of the preceeding card and the patch value
is applied at the next higher memory address or saved as appro­
priate.

If no area was reserved to save patch information for application
to non-resident overlays (HASPGEN parameter &OREPSIZ=O) or if the
capacity of the reserved space is exceeded, the operator message
"OVERLAY REPPING ERROR" is issued and HASP operation is abortively
terminated.

HASP REP Routine - Page 6.4.3

304

\._

H A S P

6.5 HASP ACCOUNTING ROUTINE

6.5.1 HASP Accounting Routine - General Description

The Accounting Routine accumulates statistics for each job at the
completion of the Punch phase and produces the HASP Account Card
(see Section 11) which is punched by the Punch Processor. This
feature is optional and may be deleted at HASPGEN time.

6.5.2 HASP Accounting Routine - Program Logic

The HASP Accounting Routine is a separately assembled overlay seg­
ment which gains control at the end of the Punch phase. Its func­
tion is to construct an accounting card such that the Punch
Processer can punch this card upon return.

Upon entry, the following registers contain the following irtformation:

Register 1 - Address of the HASP Job Queue Entry Priority Byte.

Register 2 - Address of the Accounting Card Image Area.

Register 10 - Address of the HASP Job Control Table.

Register 14 - Return Address.

All registers must be saved and restored before return to HASP.

This routine blanks out the Accounting Card Image Area and then
extracts information from the HASP Job Control Table and HASP Job
Queue Entry and constructs the Accounting Card Image in the Account­
ing Card Image Area. Special consideration is made for the clock
passing midnight. In such cases the elapsed time is negative and
a correction factor (24 hours) must be added.

The accounting card which is normally punched when this routine
returns to the punch processor may be deleted by setting the
condition code to zero before returning.

HASP Accounting Routine - Page 6.5.1

305

H A S P

6.6 HASP DUMP ROUTINES

HASP provides two dump routines which are optionally included
as debugging aids. The HASP Dump Routine for printer formatted
dumps and the HASP High Speed Dump to Tape Routine are discussed
in the following sections.

6.6.1 HASP Dump Routine - General Description

The $Dump routine is available as a debugging aid (effective only
if &DEBUG=YES and will, when the console PSW RESTART key is de­
pressed, dump memory according to specified limits.

6.6.2 HASP Dump Routine - Program Logic

This routine gains control via the PSW RESTART key on the console.
Upon activation of the key, a specially formatted HASP PSW is loaded
from location HEX 1 0 1 • The format is HEX'0004000F" for the first
word; where 0004 is the mask that allows only a machine check
interrupt, and OOOE is the address of the printer that is referenced
in the routine. The second word will contain the address of the

·$Dump routine of HASP.

Once activated, $Dump will reference the low core address of HEX'30'
for its beginning limit and HEX'34' for its ending limit. These
limits default to values that will dump all of the memory unless
the operator changes the limits prior to pushing the PSW RESTART
key. If a change is desired, the limits should be entered at
their respective locations in the following format: HEX'OOXXXXXX'.
Also, if an operator should care to change the limits while $Dump
is activated, the routine will immediately note a change, will
immediately stop the previous dump, and will start dumping memory
within the new limits. It should be noted at this point that a
machine check will destroy the limit values within their position
in core. To avoid undetected machine checks, however, the dump
program is, at all times, enabled for machine check interrupts.

The routine also allows the operator to route
printer with an address other than HEX'OOE'.
printer address in the HASP preformatted PSW,
of $Dump, will accomplish this.

the printing to a
A change of the
prior to activation

At the normal end of the routine, the system will be placed in a
"wait" state via the LPSW command. At this point in time, the
registers will have been restored back to their values prior to
$Dump and the default limits of $Dump will have been returned to
their respective values.

HASP Dump Routines - Page 6.6.1

306

"· /

·'-. ..

H A S P

6.6.3 HASP HIGH SPEED DUMP TO TAPE ROUTINE - GENERAL DESCRIPTION

The High Speed Dump to Tape Routine, available as an optional
debugging aid, dumps all of main storage to tape for post
processing by the IBM System/360 Operating System Service
Aids program IMDPRDMP or an equivalent processor.

6.6.4 HASP HIGH SPEED DUMP TO TAPE ROUTINE - PROGRAM LOGIC

ENTRY TO, IDMTAPE - If the system progranuner sets the HASPGEN
parameter &DMPTAPE to the address of an attached magnetic tape
drive the High Speed Dump to Tape Routine (IDMTAPE) will be
created to write on the specified drive when entered. Initial­
ization will display on the operator's console the message
"SET RESTART PSW TO 0004000000aaaaaa FOR TAPE DUMP" where
"aaaaaa" is the address of the entry point IDMTAPE. This
message not only verifies that the routine is present; it is
sufficient information for the operator to manually activate
the dump. Via the REP processing routine or via manual key
entries the system progranuner or operator is able to insert
code within the system to detect errors and cause dumps by
program entry to the routine simulating the loading of the
requested PSW. (Example: set program new PSW as directed to
dump on the first program check.)

IDMTAPE assumes that the device generated is an appropriate
tape drive to use, that the tape is at load point ready for
writing, and that the recording mode status is correctly set.
If these conditions are not true unpredictable results will
occur.

CHANGING THE TAPE ADDRESS - The halfword located in storage
at IDMTAPE-4 contains the address of the tape drive upon which
the routine will write when entered. This address may be
altered manually to any other tape drive address as appropriate
prior to executing the rout.ine.

PROGRAM LOGIC - The general registers and selected fixed
storage areas are saved in location 84 hexadecimal to be
compatible with the OS Service Aids dump program.

HASP control section locator elements are moved into low
storage adjacent to the fixed area information. These elements
contain the last four characters of the 11 HASPxxxx 11 control
section names of basic assembly modules. Following each CSECT
identification is the address of the beginning of the identi­
fied CSECT. (HASP control sections may then be easily located
in the dump after post processing.) Location 80 hexadecimal

HASP Dump Routines - Page 6.6.2

307

H A S P

is set to the negative of address 2048. Location 80 hexadecimal
for 4 bytes is written followed by 2048 bytes of storage (first
part of which contains saved data).

Each succeeding record is written by adding the address 2048
to the address in location 80 (hex) , storing the memory protect
key in the high byte, and writing 2052 bytes of storage (four
from location 80 (hex) and 2048 from the designated address).
When the address is greater than zero the program new PSW is
set to provide an end of storage exit which, when entered,
will cause the writing of EOF, a rewind unload, and the loading
of a wait state PSW.

HASP Dump Routines - Page 6.6.3

308

H A S P

7.0 HASPGEN AND RMTGEN PARAMETERS

This section describes the parameters used to specify
the HASP System, HASP MULTI-LEAVING Remote Terminal
Programs, and the System/360 Model 20 STR Remote
Terminal Program.

Generation of the HASP System is called HASPGEN, and
generation of the HASP MULTI-LEAVING Remote Terminal
Programs and the System/360 Model 20 STR Program
for HASP Remote Job Entry is called RMTGEN. Both
generation processes are described in Section 10.

HASPGEN and RMTGEN P·arameters - Page 7. 0 .1

309

H A S P

7.1 HASPGEN PARAMETERS

Generation of a HASP System involves specification
of certain parameters, called HASPGEN parameters.
With these parameters, the installation system
programmer specifies the characteristics of the
System/360 or System/370 with which he will use
HASP and the optional HASP features he wishes to be
included in the generated HASP System.

The following pages describe the HASPGEN parameters.
For each parameter there is an explanation, the de­
fault value, and frequently notes which expand upon
the explanation and refer to related HASPGEN
~arameters.

The HASPGEN parameters are given in alphabetical order
(neglecting the first character if it is & or $)
except for parameter $$x, which appears last.

HASPGEN Parameters - Page 7.1.1

310

' /

H A S P

&ACCTNG

&ACCTNG

Explanation: Variable symbol &ACCTNG specifies the
HASP job accounting option. If it is specified as.
YES, HASP will call the HASP accounting routine and
punch a HASP accounting card for each job processed
by HASP. The specification must be either YES or NO.

Default: &ACCTNG=YES

Notes:
1. The HASP accounting routine and the HASP ac­

counting card are discussed in other sections
of this manual.

2. If &NUMPUNS=O, parameter &ACCTNG should be
set to NO.

HASPGEN Parameters - Page 7.1.2

311

H A S P

&AUTORDR

&AUTORDR

Explanation: Variable symbol &AUTORDR specifies
the inclusion or exclusion of code in HASP to recog­
nize automatically when a physical card reader
available to HASP becomes ready. The specification
must be either YES or NO.

Default: &AUTORDR=YES

Notes:
1. If &AUTORDR=NO, HASP'S physical card readers

remain in the INACTIVE state when they become
rea~y; the operator must issue a $SRDRn command
to cause HASP to begin reading cards from
READERn.

HASPGEN Parameters - Page 7.1.3

312

H A S P

&BSCCPU

&BSCCPU

Explanation: Variable symbol &BSCCPU specifies inclusion
or exclusion in the HASP Remote Terminal Access Method
of support for HASP MULTI-LEAVING Remote Job Entry.

Default~ &BSCCPU=NO

HASPGEN Parameters - Page 7.1.4

313

H A S P

&BSC2770

&BSC2770

Explanation: Variable symbol &BSC2770 specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for the 2770 Data
Communication System. The specification must be either
YES or NO.

Default: &BSC2770=NO

HASPGEN Parameters - Page 7.1.5

314

.H A S P

&BSC2780

&BSC2/80

Explanation: Variable symbol &BSC2780 specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for the 2780 Data
Transmission Terminal. The specification must be
either YES or NO.

Default: &BSC2780=NO

HASPGEN Parameters - Page 7.1.6

315

H A S P

&BSHPRSU

&BSHPRSU

Explanation: Variable symbol &BSHPRSU specifies inclu­
sion or exclusion of the HASP Remote Job Entry Printer
Interrupt feature for binary synchronous hardware
terminals. If this feacure is included, the Remote
Terminal operator may interrupt printing to transmit
jobs or HASP commands to HASP. The specification
must be either YES or NO.

Default: &BSHPRSU=YES

Notes:
1. If &BSHPRSU=YES, HASP will recognize certain

control characters from the binary synchronous
hardware terminal which indicate that the printer
has stopped. The HASP Remote Terminal Operator's
Manual for hardware terminals contains more infor­
mation.

HASPGEN Parameters - Page 7.1.7

316

H A S P

&BSVBOPT

&BSVBOPT

Explanation: Variable symbol &BSVBOPT specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of code to recognize an EM (End of Media) punch
in card images transmitted nontransparently by the
2780 Data Transmission Terminal. The specification
must be either YES or NO.

Default: &BSVBOPT=NO

HASPGEN Parameters - Page 7.1.8

317

H A S P

&BUFHICH

&BUFHICH

Explanation: Variable symbol &BUFHICH specifies the
storage hierarchy for which HASP initialization will
issue a GETMAIN in an attempt to get·more than &NUMBUF
buffers for HASP. The specification must be either
0 or 1.

Default: &BUFHICH=l

Notes:
1. &BUFHICH has meaning only with OS storage hier­

archy support.
2. See HASPGEN parameters &NUMBUF, &MINBUF and

&RESCORE for additional information concerning
the use of this parameter.

HASPGEN Parameters - Page 7.1.9

318

H A S P

&BUFSIZE

&BUFSIZE

Explanation: Variable symbol &BUFSIZE specifies
the size in bytes of each HASP buffer. If the
value specified is not a multiple of eight,
HASPGEN will adjust it upward to a multiple of
eight. The specification must be an integer not
larger than the track size of any SPOOL device
and not smaller than the number given by

300+2*&NUMDA*&NUMTGV/8+5*S+8*F
where S = maximum allowable number of SYSOUT

specifications per job, including
special forms requests

F = maxi~um allowable number of special
forms requests per job.

Default: &BUFSIZE=688

Notes:
1. The above formula is the approximate size

of a HASP control block called the JCT.
&BUFSIZE is the data length of each physical
record on the portion of a SPOOL volume used
by HASP, and JCTs are written on SPOOL volumes.
A JCT's initial size is about
300 + 2*&NUMDA*&NUMTGV/8; it increases in size
as a job is being executed. When HASP recog­
nizes a job step change, the JCT is increased
in size by five bytes for each non-special­
forms SYSOUT data set, or by thirteen bytes
for each special-forms SYSOUT data set, that
was written upon since the previously-recog­
nized step change. But if an increase of five
(or thirteen) bytes would cause the JCT size
to become greater than &BUFSIZE, HASP instead
writes to operator the message

JCT OVERFLOW--OUTPUT LOST
for the SYSOUT data set, aad its output is lost.

2. The default &BUFSIZE of 688 is optimized for
the 2314 track size. If &NUMTGV and &NUMDA
are left at their default values of 400 and 2,
the &BUFSIZE default allows a maximum of 37
(no special forms) and a minimum of 14 (all
special forms) SYSOUT data sets per job. A
good value of &BUFSIZE optimized for the 3330
would be 736.

HASPGEN Parameters - Page 7.1.10

319

H A S P

$CKPTIME

Explanation: Ordinary symbol $CKPTIME specifies the
interval, in seconds, at which certain HASP informa­
tion will be checkpointed for warm start purposes.

Default: $CKPTIME=60

Notes:

$CKPTIME

1. The time interval specified is a maximum. Check­
points are also taken when a job changes its
status in the HASP job queue.

2. The section of this manual describing the HASP
checkpoint processor describes the checkpoint
information.

HASPGEN Parameters - Page 7 .1..11

320

HASP·

&CLS(n)

Explanation: Subscripted variable symbols &CLS(n)
specify HASP job classes. The nth HASP logical
partition may select for OS execution a job from
the HASP job queue only if the job's class (specified
by the user in the CLASS=parameter of the JOB card,
or defaulted to A) is one of the characters specified
in the &CLS(n) parameter or specified by the operator
in the set command, $T Imm,list (where &PID(n)=mm).
Each specification must be a 1- to 8-character string
of valid HASP job classes. The same HASP job class
may be specified in two or more specifications.

Default: &CLS(l)=A
&CLS(2)=BA
&CLS(3)=CBA
&CLS(4)=DCBA
&CLS(S)=EDCBA
&CLS(6)=FEDCBA
&CLS(7)=GFEDCBA
&CLS(8)=HGFEDCBA
&CLS(9)=IHGFEDCB
&CLS(lO)=JIHGFEDC
&CLS(ll)=KJIHGFED
&CLS(l2)=LKJIHGFE
&CLS(l3)=MLKJIHGF
&CLS(l4)=NMLKJIHG
&CLS(lS)~ONMLKJIH

Notes:
1. Only the first &MAXPART specifications, &CLS(l)

through &CLS(&MAXPART), will be used.
2. If &MAXCLAS is specified less than 8, only the

first &MAXCLAS characters of each specification
&CLS(n) will be used.

&CLS(n)

HASPGEN Parameters - Page 7.1.12

321

H A S P

&CONAUTH

&CONAUTH

Explanation: Variable symbol &CONAUTH specifies the
HASP conunand authorization of each of the eight possible
HASP physical consoles when HASP console support is
included in the generated HASP system. The specifi­
cation must be a string of up to eight numeric digits,
each of which may range from 0 to 7 and is the sum
of the desired authorizations for its respective
console (leftmost digit for CONSOLE 1, next digit
for CONSOLE2, etc.) as follows:

1 - System Control (including OS) Conunands
2 - Device Control Conunands
4 - Job Control Conunands.

Default: &CONAUTH=77777777

Notes:
1. Any HASP console's command authoriz2tion may be

changed from a console with System Control
Conunand authority.

2. If &NUMCONS=O, parameter &CONAUTH is not used.
3. All HASP consoles are authorized for the issuance

of Display Conunands.

HASPGEN Parameters - Page 7.1.13

322

H A S P

&DEBUG

&DEBUG

Explanation: Variable symbol &DEBUG specifies inclu­
sion or exclusion of debugging code in the generated
HASP system. The specification must be either YES
or NO.

Default: &DEBUG=NO

Notes:
1. The &DEBUG option is independent of the &TRACE

option.
2. If &DEBUG is specified as YES, HASP includes,

in addition to other debugging code, a core dump
rouine.

HASPGEN Parameters - Page 7.1.14

323

H A S P

$DELAYCT

$DELAYCT

Exllanation: Ordinary symbol $DELAYCT specifies a
de ay factor to be applied by the HASP Remote Terminal
Access Method when transmitting to a Multi-Leaving
System/360 Model 20 Sub-Model 2 Remote Terminal over
a high-speed (19,200 baud or greater) teleprocessing
line, to avoid the possibility of certain line errors.
The specification must be an integer greater than
zero. Recommended values for some central CPUs are:

Model 91 - 4000
Model 85 - 3000
Model 75 - 500
Model 65 - 256
Model 50 - 100
Model 40 - 1

Values for other CPUs may be interpolated based on
CPU speed.

Default: $DELAYCT=256

HASPGEN Parameters - Page 7.1.15

324

H A S P

&DMPTAPE

&DMPTAPE

Exelanation: Variable symbol &DMPTAPE specifies a
unit address to be used with the HASP dump program.
The specification must be a valid unit address. If
the specification is not 000, the address is assumed
to be that of a tape drive and the generated HASP
system will include a dump-to-tape program for that
tape drive. The tape produced by this program may
be printed using FE Service Aid IMDPRDMP.

Default: &DMPTAPE=OOO

Notes:
1. This parameter does not affect inclusion of the

HASP dump-to-printer program, which is always
assembled if &DEBUG=YES. To use the dump-to-tape
program the operator must set location 0 as in­
dicated in an operator message produced by HASP
initialization, make the tape drive ready for
writing, and push PSW RESTART.

2. This facility is provided as an aid to the
system programmer and may not operate correctly
in all environments or with other than the
IMDPRDMP program provided with Release 19 of
OS. No maintenance will be provided for this
facility. Installations unable to utilize this
support as distributed should utilize the service
aid IMDSADMP to produce dump tapes.

HASPGEN Parameters - Page 7.1.16

325

H A S P

$ESTIME

$ESTIME

Explanation: Ordinary symbol $ESTIME specifies
the default estimated execution time, in minutes,
for a job. The specification must be an integer
greater than zero.

Default: $ESTIME=2

Notes:
1. If a user does not specify in the accounting

field of his job card a value for estimated
execution time, the value $ESTIME is used.

2. All timings performed by HASP are in real
time. The timing for estimated execution
time begins when HASP allows its OS Reader/
Interpreter to start reading the job.

HASPGEN Parameters - Page 7.1.17

326

H A S P

$ESTLNCT

$ESTLNCT

Explanation: Ordinary symbol $ESTLNCT specifies
the default estimated print line count, in thou­
sands of lines, for a job. The specification must
be an integer greater than zero.

Default: $ESTLNCT=2

Notes:
1. If a user does not specify in the accounting

field of his job card a value for estimated
print line count, the value $ESTLNCT is used.

HASPGEN Parameters - Page 7.1.18

327

H A S P

$ESTPUN

$ESTPUN

Explanation: Ordinary.symbol $ESTPUN specifies
the default estimated punched card count, in cards,
for a job. The specification must be an integer
greater than zero.

Default: $ESTPUN=l00

Notes:
1. If a user does not specify in the accounting

field of his job card a value for estimated
card count, the value $ESTPUN is used.

HASPGEN Parameters - Page 7.1.19

328

HASP

&INITSVC

&INITSVC

Explanation: Variable symbol &INITSVC specifies the
SVC number of the HASP SVC. The specification must
be an integer between 200 and 255, inclusive.

Default: &INITSVC=255

Notes:
1. The specification for &INITSVC must correspond

to a use at SYSGEN time of the OS SYSGEN macro­
instruction SVCTABLE. The HASP SVC is a type-1
SVC and must be included in the OS Nucleus before
HASP can be used. After HASPGEN has completed,
the object deck for the HASP SVC is member
HASPSVC of partitioned data set SYSl.HASPOBJ.
For further discussion, see the section on in-
stalling HASP. ·

HASPGEN Parameters - Page 7.1.20

329

H A S P

&JITSIZE

Explanation: Variable symbol &JITSIZE specifies
the number of bytes per entry of the HASP job infor­
mation table. The specification must be an integer
greater than or equal to 8, or equal to O, but never
so large that the value

&MAXJOBS*&JITSIZE
is greater than the track size of the device upon
which SPOOL! is mounted.

If &JITSIZE=O, the HASP command $D'jobnarne' will be
inoperative.

Default: &JITSIZE=O

Notes:
1. The recommended specifications for &JITSIZE are

0 and 8. If &JITSIZE is set greater than 8,
the additional space generated in t.he job infor­
mation table will not be used by HASP.

2. If &JITSIZE is specified greater than zero, the
job information table will be checkpointed on
SPOOL! whenever it changes.

&JITSIZE

HASPGEN Parameters - Page 7.1.21

330

H A S P

$LINECT

Explanation: Ordinary symbol $LINECT specifies the
default maximum nunilier of lines to be printed per
page of a job's printed output.

Default: $LINECT=61

Notes:
I:"'"~If a user does not specify in the accounting

field of his job card a value for line count,
the value $LINECT is used.

$LINECT

HASPGEN Parameters - Page 7.1.22

331

H A S P

LINEmm

Code Letters

mm

aaa

1

1

c

LINEmm

Explanation: Ordinary symbols LINEmm specify the
characteristics of teleprocessing lines to be used
by HASP Remote Job Entry. Lines must be defined con­
secutively, starting with LINEOl. Each specification
must be a 5-character string of the form

LINEmm=aaalc
where the letters represent the following:

Range

01-99

000-FFF

0-5

0-5

0-3

Description

Line Number

STR or BSC Adapte·r Address (See Note 2)·

Line Description as follows:

STR Lines

0 = Interface A - 2 wire Half-Duplex
1 = Interface A - 4 wire dalf-Duplex
2 = Interface A - Full-Duplex
3 = Interface B - 2 wire Half-Duplex
4 = Interface B - 4 wire Half-Duplex
5 = Interface B - Full-Duplex

BSC Lines

0 = Interface A - Half-Duplex (1200-9600
baud)

1 = Interface A - Full-Duplex (1200-9600
baud)

2 = Interface A - Full Duplex (19.2-230.4
k-baud)

3 = Interface B - Half-Duplex (1200-9600
baud)

4 = Interface B - Full-Duplex (1200-9600
baud)

5 = Interface B - Full-Duplex (19.2-230.4
k-baud)

Clock/Code as follows:

STR Lines

0 = Internal Clock x
1 = Internal Clock y
2 = Internal Clock z
3 = External Clock

HASPGEN Parameters - Page 7 .1. 23

332

\
''-

H A S P

Code Letters Range

0-7

Default:

Notes:

BSC Lines

0 ::: Code
1 = Code
2 = Code
3 = Code
4 = Code
5 = Code
6 = Code
7 = Code

LINErrun=* 1'°*0l

A - EBCDIC - Nu Transparency
A EBCDIC - Transparency
A - USASCII - No Transparency
A USASCII - Transparency
B - EBCDIC - No Transparency
B - EBCDIC - Transparency
B USASCII No Transparency
B USASCII - Transpar~~cy

1. Parameter &NUMLNES must specify the number of
specifications LINErmn to be included in the r;c~ne­
rated HASP system.

2. The unit address aaa may be specified as ***.
HASP initialization will assign unit addresses
to lines whose unit addresses are specifi.ed as
*** by scanning the OS UCBs. A teleprocessing
UCB whose device type field specifies a 2701
STR adapter, a 2701 BSC adapter, or a 2703 BSC
adapter will be recognized as a UCB defining a
line. If the unit address of such a UCB is not
specified explicitly in any of the first &NUMLNES
line definitions LINEmm, HASP initialization
will assign the UCB to the first line number
whose unit address is specified *** and will
change the *** to the EBCDIC address specified
in the UCB, unless no line definition remains whos~
unit address is ***, or if (except for M65MP and
a 2-CPU multiprocessor) a TIO shows the line not
operational, or if (for M65MP and a 2-CPU multi­
processor) the UCB is marked off-line; in that
case HASP will not use the line.

3. If a line specification LINEnun designates USA~3Cl l,
that line cannot be used with any but 2770 and
2780 USASCII terminals. HASP will translate each
record it receives into EBCDIC, and each record
it transmits into USASCII before transmission.

HASPGEN Parameters - Page ·;. 1. 1 ·I

333

H A S P

&LOGOPT

&LOGOPT

Explanation: Variable symbol &LOGOPT specifies
inclusion or exclusion of code to support the HASP
System Log feature. The specification should be
either YES or NO.

Default: &LOGOPT=YES

Notes:
1. The HASP System Log is a listing included in

each user's output of console messages that
were produced during processing of the job and
(unless &NUMCONS=O) of replies to WTORs issued
during processing of the job.

F..ASPGEN Parameters ~ Page 7.1.25

334

H A S P

&MAX CLAS

Explanation: Variable symbol &MAXCLAS specifies
the maximum number of job classes which may be
specified via the HASP command $T In,list for a
HASP logical partition. The specification must
be an integer from 1 to 64, inclusive.

Default: &MAXCLAS=8

Notes:
1. If &MAXCLAS is specified as less than 8, then

no more than &MAXCLAS characters may be speci­
fied for each of the parameters &CLS(n).

&MAXCLAS

HASPGEN Parameters - Page 7.1.26

335

H A S P

&MAXJOBS

&MAXJOBS

Explanation: Variable symbol &MAXJOBS specifies the
maximum number of jobs that can be in the HASP System
at any given time. The specification must be an
integer greater than zero.

Default: &MAXJOBS=lOO

Notes:
1. This variable does not affect the range of

HASP job numbers, which is 1 to 999.
2. This variable strongly influences the size of

the HASP checkpoint record(s). The size of
the first checkpoint record is

16*(&MAXJOBS+&NUMPRTS+&NUMTPPR)+
&NUMDA*((&NUMTGV+7)/8)+40.

The size of the second checkpoint record is
&MAXJOBS*&JITSIZE.

If either checkpoint is longer than the track
size of the device on which SPOOL! is mounted,
HASP will not warm start correctly.

HASPGEN' Parameters - Page 7.1.27

336

H A S P

&MAXPART

&MAXPART

Explanation: Variable symbol &MAXPART specifies,
for both MFT and MVT, the number of HASP logical
partitions to be defined. The specification must
be an integer between 1 and 15, inclusive.

Default: &MAXPART=&MAXXEQS

Notes:
1. The nth logical partition is further defined

by the specifications &PRI(n), &OSC(n), and
&CLS (n) •

HASPGEN Parameters - Page 7.1.28

337

H A S P

&MAXXEQS

&MAXXEQS

Explanation: Variable symbol &MAXXEQS specifies
the maximum number of jobs which may concurrently
be active in the HASP Execution phase. The speci­
fication must be an integer greater than zero.

Default: &MAXXEQS=3

Notes:
1. See also &MAXPART, the variable which deter­

mines the number of HASP logical partitions.

HASPGEN Parameters - Page 7.1.29

338

H A S P

&MINBUF

&MINBUF

Explanation: This variable is provided to allow instal­
lations, which depend on the dynamic buffer construction
feature of HASP, to detect the condition where sufficient
buffers for proper operation cannot be obtained. The
specification should be an integer value representing
the minimum number of buffers determined as necessary
for the installation (see &NUMBUF).

Default: &MINBUF= 3*&MAXXEQS+2*&NUMRDRS
+&NUMINRS+2*&NUMPRTS+&NUMPUNS
+&NUMTPBF

Notes:
1. HASP will automatically attempt to utilize, via a

variable GETMAIN, any free space in its region or
partition (hierarchy indicated by &BUFHICH) as
additional buffers. If the number of buffers so
obtained when added to the variable &NUMBUF is less
than the value of &MINBUF the warning message

&MINBUF BUFFERS NOT AVAILABLE
will be issued during HASP initialization and pro­
cessing will continue.

2. Since the changing of HASPGEN options, local
modifications and/or OS changes can affect the
number of HASP buffers, proper setting of this
variable can prevent a possible undetected perfor­
mance degradation.

3. See the description of HASPGEN parameters &NUMBUF,
&BUFHICH and &RESCORE for related information.

HASPGEN Parameters - Page 7.1.30

339

H A S P

&MLBFSIZ

&MLBFSIZ

Explanation: Variable symbol &MLBFSIZ specifies
the size in bytes of each HASP Multi-Leaving buffer.
The specification for &MLBFSIZ must be a positive
integer no larger than &TPBFSIZ.

Default: &MLBFSIZ=&TPBFSIZ

Notes:
1. The value specified for &MLBFSIZ automatically

becomes the Multi-Leaving buffer size in each
HASP Multi-Leaving Remote Terminal program.

2. The defaults given for &TPBFSIZ and &MLBFSIZ
are judged to be practical minimum values and
to give suitable performance for medium-speed
teleprocessing lines.

HASPGEN Parameters - Page 7.1.31

340

H A S P

&MONINTV

&MONINTV

Explanation: Variable symbol &MONINTV specifies the
interval in seconds at which the HASP Execution Task
Monitor will examine CPU utilization characteristics
and, if necessary, modify dynamically the order in
the TCB chain, of all HASP-controlled job step tasks
which fit Execution Task Monitor criteria. The
specification should be an integer between 0 and 10
inclusive. If &MONINTV is specified as zero, the
Execution Task Monitor is excluded from the generated
HASP system.

Default: &MONINTV=S

Notes:
1. See also parameters &XZPRTY (for MVT), &XZMFTL,

and &XZMFTH.

HASPGEN Parameters - Page 7.1.32

341

&.NOPRCCW

&NOPRCCW

Explanation: Variable symbol &NOPRCCW specifies the
maximum number of channel command words per channel
program for local printers.

Default: &NOPRCCW=lS

HASPGEN Parameters - Page 7.1.33

342

HASP

&NOPUCCW

&NOPUCCW

Explanation: Variable symbol &NOPUCCW specifies _tht:::
maximum number of channel command words per channel
program for local punches.

Default: &NOPUCCW=lO

HASPGEN Parameters - Page 7.1.34

343

H A S P

&NUMBUF

&NUMBUF

Explanation: This variable symbol indicates the number
of INPUT/OUTPUT buffers to be included in the HASP
load module and should normally be set by each instal­
lation, according to the formulae below, to reflect the
total number of buffers required for proper operation
of HASP. However, since HASP will automatically utilize
free space in its region or partition to dynamically
construct additional buffers, there are circumstances
when &NUMBUF may be set to a value less than the actual
number of buffers required for proper HASP operation.
In this case, it is assumed that sufficient additional
buffers will be dynamically obtained from free storage
in the HASP region/partition to provide an adequate
total number of buffers (see &MINBUF and &RESCORE) .
This facility could be used, for example, to allow
additional buffers to reside in a storage hierarchy
different from that of the HASP load module {see &BUFHICH)
or to provide a HASP. whose size {and performance and
function) can be controlled by the setting of the region
or partition size.

Default: &NUMBUF=lS

Notes:
1. In order to utilize all the dynamic storage con­

tained in the' HASP load module for the initialization
process, the value of &NUMBUF must never be less
than the value

1+6000/(SO+&BUFSIZE)
2. Since all HASP buffers are maintained in a dynamic

pool until required by an active function, instal­
lation should determine the appropriate number of
buffers for HASP based on predicted simultaneity
of the various functions required at the installa­
tion. The following indicates the number of buffers
required for each logical function. A defined
function which is inactive requires no buffers.

Each local input function --2
Each internal reader --1
Each Remote Input function --1
Each local print function --2 (1 if $PRTBOPT=l)
Each remote print function --1 (2 if $RPRBOPT=2)
Each local punch function --1 (2 if $PUNBOPT=2)
Each remote punch function --1 (2 if $RPUBOPT=2)
Each OS job execution --2 (minimum value)

HASPGEN Parameters - Page 7.1.35

344

' ' ' J
"

j ..

J

1
'-~

!

H A S P

For performance reasons, additional buffers· must
be available to sustain periods of high SYSIN/
SYSOUT activity by jobs being processed by OS.
It is therefore recommended that additional buffers
(beyond the requirements indicated above) be inclu­
ded corresponding to the value: l+&MAXXEQS.

SEVERE PERFORMANCE AND/OR DEVICE DEGRADATION CAN
OCCUR IN A SYSTEM CONTAINING INSUFFICIENT BUFFERS
TO PERFORM THE REQUIRED FUNCTIONS.

3. To avoid a complete system failure caused by a
buffer "lock-out" condition, the number of available
buffers must never be less than the value

&MAXXEQS+&NUMRDRS+&NUMTPES+l
+&NUMPRTS*($PRTBOPT-l)
+&NUMPUNS*($PUNBOPT-l)
+&NUMTPPR*($RPRBOPT-l)
+&NUMTPPU*($RPUBOPT-l)

HASPGEN Parameters - Page 7.1.36

345

H A S P

&NUMCONS

&NUMCONS

Explanation: Variable symbol &NUMCONS specifies the
type of console support to be provided by HASP. Two
options are available: console support controlled
totally by HASP or a HASP interface to the standard
OS Console processors.

The specification &NUMCONS=n (n an integer between
one and eight) causes HASP to support directly as many
as n consoles. The devices which may be used as con­
soles are 1052, 1053, 3210, 3215, 2260 and 1443. The
1053s and 2260's must be attached locally via a 2848.

The specification &NUMCONS=O causes HASP to interface
with the OS console support, including the MCS option.
All devices available with the OS console routines are
supported through this interface.

Default: &NUMCONS=O

Notes:
1. If &NUMCONS=O is specified, then all HASP functions

with the exception of those listed below are pro­
vided.

a. Non-HA~P Messages, e.g., problem program WTOs,
will appear on the console(s) without time
tags or HASP Job numbers. A copy of the mes­
sage which includes the Job number and time
tag is placed in the HASP System Log.

b. WTORs issued by the problem program will be
included in the HASP Log without the OS as­
signed reply identification number.

c. Replies to outstanding WTORs are not included
in the HASP log.

2. If OS Multiple Console Support or M65MP or the
Time Sharing Option have been SYSGENed and are to
be used with HASP, then &NUMCONS should be speci­
fied as zero.

3. If &NUMCONS greater than zero is specified and if
HASP initialization finds more than &NUMCONS de­
vices of the type supported then the message

MAXIMUM OF &NUMCONS CONSOLE(S) EXCEEDED

HASPGEN Parameters - Page 7.1.37

346

H A S P

is issued and HASP uses as consoles the devices
with the lowest unit addresses starting with the
first 1052, 3210 or 3215 and continuing with the
next &NUMCONS-1 devices.

4. 2260 support (&NUMCONS greater than zero} is
dependent on additional specifications via the
variables &SIZ2260 and &SPD2260.

S. If &NUMCONS is specified greater than zero, HASP
will intercept and process all WTOs and WTORs,
ignoring all MCS information~ In particular,
HASP will ignore all routing codes. Thus, for
example, a WTO with ROUTCDE=ll will be written
on HASP consoles and on the HASP System Log but
not in an OS System Message Block.

6. See parameter &CONAUTH, &WTLOPT and &LOGOPT for
additional information.

HASPGEN Parameters - Page 7.1.38

347

H A S P

&NUMDA

&NUMDA

Explanation: Variable symbol &NUMDA specifies
the maximum number of direct-access volumes which
may be mounted concurrently as SPOOL volumes. The
specification must be an integer greater than zero.

Default: &NUMDA=2

Notes:
1. All direct-access devices except 232ls are

eligible for use as SPOOL devices.
2. Specifying &NUMDA greater than the default may

require increasing the value of &BUFSIZE.
3. If HASP initialization finds mounted more than

&NUMDA direct-access volumes whose volume
serials begin with the characters SPOOL, it
will write to operator the message

MAXIMUM OF &NUMDA SPOOL VOLUME(S) EXCEEDED
and HASP will quiesce.

4. This variable influences the size of the HASP
checkpoint record; see Note 2 of variable
&MAXJOBS.

5. An associated variable is &NUMTGV.

HASPGEN Parameters - Page 7 .1. 39

348

HASP

&NUMDDT

&NUMDDT

E~anation: Variable symbol &NUMDDT specifies the
n er of Data Definition Tables (DDTs) to be assem­
bled into HASP. The specification should be an
integer between 3 and 256, and equal to

2 + &MAXXEQS + A + B + C + D + E
where

A = number of pseudo-2540 readers defined at
SYS GEN time

B = number of pseudo-2540 punches defined at
SYSGEN time

c = number of pseudo-1403 printers defined at
SYS GEN time

D = number of pseudo-1442 punches defined at
SYS GEN time

E = number of pseudo-1443 printers defined at
SYS GEN time

Default: &NUMDDT=20

Notes:
f. Pseudo-units for &RDR and &WTR need not be

counted in &NUMDDT.

HASPGEN Parameters - Page 7.1.40

349

H A S P

&NUMINRS

&NUMINRS

Explanation: Variable symbol &NUMINRS specifies
the number of 2520 pseudo-punches to be used by the
generated HASP System as internal readers.

Default: &NUMINRS=O

Notes:
1. If &NUMINRS is specified as or defaulted to

zero, code to support the HASP internal reader
feature will be deleted from the generated
system.

2. If more than &NUMINRS 2520 pseudo-punches have
been specified at SYSGEN time, only the first
&NUMINRS 2520 pseudo-punches can be used. It
is permissible to specify &NUMINRS greater
than the number of 2520 pseudo-punches speci­
fied at SYSGEN time.

3. The count of 2520 pseudo-punches is not
included in HASPGEN variable &NUMDDT.

HASPGEN Parameters - Page 7.1.41

350

H A S P

&NUMLNES

&NUMLNES

Explanation: Variable symbol &NUMLNES specifies
the largest teleprocessing line identification
number {mm in LINEmm) and thus the number of line
definitions which are to be used by the generated
HASP System. The specification must be an integer
between 0 and 99 inclusive. The specification for
&NUMLNES automatically becomes the specification
for &NUMRJE, unless &NUMRJE is specified explicitly.

Default: &NUMLNES=O

Notes:
1. See also the HASPGEN variable LINEmm.
2. If &NUMLNES is set to or left at zero, all

other Remote Job Entry parameters should
be left at their default values.

HASPGEN Parameters - Ptlge 7.1.42

351

H A S P

&NUMOACE

&NUMOACE

Explanation: Variable symbol &NUMOACE specifies the
number of overlay areas to be provided for the standard
HASP Overlay feature. The specification must be an
integer greater than zero.

Default: &NUMOACE=l

Notes:
1. It is judged that more than two overlay areas

will benefit only a system with high performance
orientation (a very fast CPU or a work load con­
sisting of a large number of short jobs) .

2. See also parameter &OLAYLEV.

HASPGEN Parameters - Page 7.1.43

352

H A S P

&NUMPRTS

&NUMPRTS

Explanation; Variable symbol &NUMPRTS specifies the
maximum number of physical printers HASP may use to
print the printed output of jobs. HASP supports 1403
and 3211 printers. The specification must be an
integer greater than zero.

Default: &NUMPRTS=2

Notes:
1. If HASP initialization finds more than &NUMPRTS

1403 and 3211 printers, it writes to operator
the message

MAXIMUM OF &NUMPRTS PRINTER(S) EXCEEDED
and continues normally, using as printers only
the &NUMPRTS printers with lowest unit addresses.

2. Regardless of the number specified for &NUMPRTS,
HASP will use only those 1403 and 3211 printers
which are operational (as shown by a TIO) or
on-line (for M65MP only) when HASP is started.

3. Handling of special forms by printer, the
optional 1403 UCS buffer, and the 3211 UCS and
Forms Control buffers is explained as part of
the $T operator command.

4. This variable influences the size of the HASP
checkpoint record; see Note 2 of variable
&MAXJOBS.

HASPGEN Parameters - Page 7.1.44

353

H A S P

&NUMPUNS

&NUMPUNS

Explanation: Variable symbol &NUMPUNS specifies
the maximum number of physical punches which will
be used by HASP to punch the punched output of jobs.
HASP supports 2540, 2520, and 1442 card punches.
The specification must be an integer greater than
or equal to zero.

Default: &NUMPUNS=l

Notes:
1. If HASP initialization finds more than &NUMPUNS

2540, 2520 and 1442 punches, it writes to
operator the message

MAXIMUM OF &NUMPUNS PUNCH(S) EXCEEDED
and continues normally, using as printers only
the &NUMPUNS punches with lowest unit addresses.

2. Regardless of the number specified for &NUMPUNS,
HASP will use only those 2540, 2520 and 1442
punches which· are operational (as shown by a
TIO) or on-line (for M65MP o .. ly) when HASP is
started.

3. If &NUMPUNS=O, parameter &ACCTNG should be
set to NO.

HASPGEN Parameters - Page 7.1.45

354

H A S P

&NUMRDRS

&NUMRDRS

Explanation: Variable symbol &NUMRDRS specifies the
maximum number of physical card readers HASP may use
to read OS job streams. HASP supports 2540 and 2501
card readers. The specification must be an integer
greater than zero.

Default: &NUMRDRS=l

Notes:
1. If HASP initialization finds more than &NUMRDRS

2540 and 2501 card readers, it writes to oper­
ator the message

MAXIMUM OF &NUMRDRS READER(S) EXCEEDED
and continues normally, using as readers only
the &NUMRDRS readers with lowest unit addresses.

2. Regardless of the number specified for &NUMRDRS,
HASP will use only those 2540 and 2501 readers
which are operational (as shown by a TIO) or
on-line (for M65MP only) when HASP is started.

HASPGEN Parameters - Page 7.1.46

355

H A S P

&NUMRJE

&NUMRJE

Explanation: Variable symbol &NUMRJE specifies the
largest remote terminal identification number
{nn in RMTnn) and thus the number of remote terminal
definitions which are to be used by the generated
HASP System. The specification must be an integer
between O and 99 inclusive.

Default: &NUMRJE=&NUMLNES

.Notes:
1. See also the HASPGEN variable RMTnn.
2. If this variable is not specified and if

&NUMLNES is specified as an integer greater
than zero, the first &NUMLNES remote terminal
definitions RMTnn are used by the generated
HASP System, whether they are specified
explicitly or by default.

HASPGEN Parameters - Page 7.1.47

356

H A S P

&NUMTGV

&NUMTGV

Explanation: Variable symbol &NUMTGV specifies the
number of units (track groups) into which each SPOOL
volume will be divided for HASP allocation purposes.
The specification must be a positive integer no
greater than the number of tracks on the SPOOL device
with the fewest tracks.

Default: &NUMTGV=400

Notes:
1. The user should decide upon the number of tracks

he requires in a track group and then divide by
that number the total number of tracks (except
alternate tracks) on a typical SPOOL device type
at the installation. For example, to obtain a
track group size of five tracks on a 2311, the
division would yield a quotient of 400; the user
would specify &NUMTGV=400. If the same instal­
lation occasionally used a 2314 as a SPOOL
device, the track group size for the 2314 would
automatically become ten tracks.

2. Specifying a large &NUMTGV may require increasing
the value of &BUFSIZE.

3. For each SPOOL volume it finds, HASP initializa­
tion calculates number of tracks per group by
dividing.the total number of tracks on the volume
by &NUMTGV. It then marks unavailable all track
groups which lie partially or wholly outside
the first extent of data set SYSl.HASPACE on
that volume. HASP initialization also computes
the number of HASP buffers of length &BUFSIZE
which will fit on a track of the SPOOL volume
for each SPOOL volume mounted.

HASPGEN Parameters - Page 7.1.48

357

H A S P

&NUMTPBF

&NUMTPBF

Explanation: Variable symbol &NUMTPBF specifies
the number of HASP Teleprocessing buffers for HASP
Remote Job Entry to be assembled into the generated
HASP system. The specification must be an integer
greater than or equal to zero.

Default: &NUMTPBF=&NUMLNES

Notes:
1. Each signed-on HASP Multi-Leaving terminal re­

quires at least two HASP Teleprocessing buffers;
each other signed-on terminal requires at least
one buffer. If &NUMTPBF is specified too small,
HASP RJE may not work correctly.

2. See also parameters &TPBFSIZ and &MLBFSIZ.

HASPGEN Parameters - Page 7.1.49

358

H A S P

&NUMTPES

&NUMTPES

Explanation: Variable symbol &NUMTPES specifies
the maximum number of tape drives HASP may use
simultaneously to read OS job streams. The speci­
fication must be an integer greater than or equal
to zero.

Default: &NUMTPES=l

Notes:
1. If &NUMTPES=O is specified, code required to

support tapes as readers is omitted from the
generated HASP System.

2. Since the operator specifies a unit address
when issuing the start command to a tape drive
(e.g., $S TPEl,182), there is rarely a need to
specify for &NUMTPES a number greater than one.

3. Tapes should be equivalent to the JCL specifi­
cation LABEL=(l,NL),DCB=(RECFM=FB,LRECL=80,
BLKSIZE=nnnnn) where nnnnn is not greater than
(lO*&BUFSIZE)/11. For seven-track tape, use
the additional DCB specification DEN=2,TRTCH=C.

HASPGEN Parameters - Page 7.1.50

359

H A S P

&NUMTPPR

&NUMTPPR

Explanation: Variable symbol &NUMTPPR specifies the
maximum number of HASP Remote Terminal (including Multi­
Leaving) printed-output streams that can simultaneously
be active. The specification must be an integer greater
than or equal to zero.

Default: &NUMTPPR=&NUMLNES

Notes:
1. If any remote terminal is to receive printed

output, &NUMTPPR must not be zero.

HASPGEN Parameters - Page 7.1.51

360

H A S P

&NUMTPPU

Explanation: Variable symbol &NUMTPPU specifies the
maximum number of HASP Remote Terminal (including
Multi-Leaving) punched-output streams that can
simultaneously be active. The specification must
be an integer greater than or equal to zero.

Default: &NUMTPPU=&NUMLNES

Notes:
1. If any remote terminal is to receive punched

output, &NUMTPPU must not be zero.

&NUMTPPU.

HASPGEN Parameters - Page 7.1.52

361

H A S P

&NUMTPRD

&NUMTPRD

Explanation: Variable symbol &NUMTPRD specifies the
maximum nWriber of HASP Remote Terminal (including
Multi-Leaving) input streams that can simultaneously
be active. The specification must be an integer
greater than or equal to zero.

Default: &NUMTPRD=&NUMLNES

Notes:
1. If any remote terminal is to read cards (including

the /*SIGNON and /*SIGNOFF control cards) &NUMTPRD
must not be zero.

HASPGEN Parameters - Page 7.1.53

362

/.f
i.

~

H A S P

&NUMWTOQ

&NUMWTOQ

Explanation: Variable symbol &NUMW'I'OQ specifies
the number of message buffers to be provided in
HASP. The specification must be an integer greater
than two.

Default: &NUMWTOQ=l5

Notes:
1. If &NUMCONS is specified greater than zero,

additional message buffers are needed.
2. If Remote Job Entry is used, more message

buffers are needed. This is especially true
with console support for MULTI-LEAVING
terminals.

3. Serious system degradation can be caused by
specifying too few message buffers.

4. During periods of high console activity, when
no message buffers are available, certain non­
critical HASP messages will be discarded rather
than delaying the associated process. These
include certain RJE oriented messages (such
as communication line error messages), execution
time/line/card excession messages (continued
excession will be noted when a message buffer
becomes available) , and certain I/O error mes­
sages on HASP-controlled devices. Additionally,
when no message buffers are available in a sys­
tem in which &NUMCONS is greater than zero,
messages from the OS error t·ask are queued only
to a depth of one which can result in the loss
of some of these messages.

HASPGEN Parameters - Page 7.1.54

363

H A S P

&OLAYLEV

&OLAY LEV

Explanation: Variable symbol &OLAYLEV specifies a
HASP overlay level to be used for assembly of the
various HASP control sections. Any potential overlay
code defined (by the $OVERLAY macro) with a residence
factor greater than &OLAYLEV will be assembled as
resident code rather than overlay code. The specifi­
cation for &OLAYLEV must be an integer between 0 and
15, inclusive.

Default: &OLAYLEV=l5

Notes:
1. HASP uses only residence factors 4, 8, 12 and (for

HASP initialization only) 0.
2. If &OLAYLEV=l5, all potential overlay code will

be assembled as overlay code.
3. If &OLAYLEV=O, all potential overlay code except

that in HASP initialization will be assembled
as resident code. HASP main storage requirements
will be increased by approximately 24K over
the case &OLAYLEV=l5.

4. Regardless of the setting of &OLAYLEV, the instal­
lation systems programmer may use control cards
for the HASP Overlay Builder after the HASPGEN
process is .complete to specify that a particular
section of potential overlay code be made either
resident code or overlay code.

HASPGEN Parameters - Page 7.1.55

364

H A S P

&OREPSIZ

&OREPSIZ

Explanation: Variable symbol &OREPSIZ specifies the
size in bytes of a table in HASP to be used to hold
REP data for true overlay code. The REPs associated
with a particular section of true overlay code will
be applied to that code every time it is brought into
main storage from the HASP overlay library. The
specification for &OREPSIZ must be either 0 or an
integer not less than 10.

Default: &OREPSIZ=O

Notes:
1. Each entry in the HASP Overlay REP table consists

of B+n bytes (2 ~ n ~ 256) where n is the number
of contiguous bytes to be changed in a section
of overlay code.

2. The table is used only if the operator specifies
to HASP initialization that REPs are to be used
and if some of the REPs are for sections of true
overlay code.

3. If the HASP Overlay REP table is too small to
handle all true overlay REPs, HASP initialization
writes to operator the message

OVERLAY REPPING ERROR
and HASP quiesces.

4. See also Sectio·n · 6. 4 of this manual.

HASPGEN Parameters - Page 7.1.56

365

'; ,'

H A S P

&OSC(n)

Explanation: Subscripted variable symbols &OSC(n)
specify OS job classes. A job selected by HASP
logical partition n will be submitted to OS with the
job class &OSC(n). Each specification must be a
single unique letter between A and O, inclusive.
No two specifications may be the same.

Default: &OSC(l}=A

Notes:

&OSC-(2) =B
&OSC(3)=C
&OSC(4)=D
&OSC(S)=E
&OSC(6)=F
&OSC(7}=G
&OSC(8)=H
&OSC(9)=I
&OSC(lO)=J
&OSC(ll)=K
&OSC(l2)=L
&OSC(l3)=M
&OSC(l4)=N
&OSC(l5)=0

1. Only the first &MAXPART specifications, &OSC (1.:.
through &OSC(&MAXPART) will be used.

2. In an MVT system, HASP initialization issue,:;
the &MAXPART commands

S INIT.HOSINIT&OSC(l) ,,,&OSC(l)

&OSC(n)

s INIT.HOSINIT&OSC (&MAXPART} I I ,&OSC (&MAXPART).
3. In an MFT system, HASP initialization issues the

single command
S !NIT.ALL;

thus the classes of the MFT partitions to be
controlled by HASP must have already been defined.
Each such partition must be defined with only
one job class; that job class must match one and
only one of the &MAXPART job classes &OSC(l),
&OSC(&MAXPART).

HASPGEN Parameters - Pag<,' 7 .1. 57

366

H A S P

&OSINOP'f

&OSINOPT

Explanation: Variable symbol &OSINOPT specifies inclu­
sion or exclusion of the HASP OS Input Spooling option.
The specification must be either YES or NO. If &OSINOPT=
YES and a DD * (or DD DATA) statement specifies the DCB
keyword, HASP will pass the DD statement and the data
following it to the OS Reader/Interpreter; OS will
perform input spooling. If &OSINOPT=NO, and for every
DD * (or DD DATA) statement that does not specify the
DCB= keyword, HASP will SPOOL the input data as usual.

Default: &OSINOPT=NO

HASPGEN Parameters - Page 7.1.58

367

H A S P

&OUTPOPT

Explanation: Variable symbol &OUTPOPT specifies
the action to be taken when a job exceeds its esti­
mated print lines or punched cards of output. The
specification must be one of the integers O, 1 or
2. For &OUTPOPT=2, output excession causes the job
to be cancelled with a dump. For &OUTPOPT=l, output
excession causes the job to be cancelled without a
dump. For &OUTPOPT=O, output excession does not
cause the job to be cancelled.

Default: &OUTPOPT=O

Notes:
1. Regardless of the specification for &OUTPOPT,

output excession causes messages to be written
to the operator. See also Notes 1 and 2 of
&OUTXS.

2. If &OUTPOPT=2 is specified, users should use
SYSUDUMP or SYSABEND DD cards if a core dump
is desired on output excession.

&OUTPOPT

HASPGEN Parameters - Page 7.1.59

368

H A S P

$0UTXS

Explanation: Ordinary symbol $OUTXS specifies
the interval, in print lines/punched cards, at
which messages will be written to the operator
informing him that a job's print line count or
punch card count has been exceeded. The speci­
fication must be an integer greater than zero.

Default: $0UTXS=2000

Notes:

$0UTXS

1. The first print line excession message will
be written to the operator when the job's
estimated print line count has been exceeded.

2. The first punched card excession message
will be written to the operator when the
job's estimated punched card count has been
exceeded.

HASPGEN Parameters - Page 7.1.60

369

H A S P

&PIO (n)

Explanation: Subscripted variable symbols &PID(n)
specify the identifiers to be used with the HASP
logical partitions. Each specification must be
a unique 1- or 2-character string.

Default: &PID(l)=l

Notes:

&PID(2)=2·
&PID(3)=3
&PID(4)=4
&PID(S)=S
&PID(6)=6
&PID(7)=7
&PID(8)=8
&PID(9)=9
&PIO (10) =10
&PID(ll)=ll
&PID(l2)=12
&PID(l3)=13
&PID(l4)=14
&PID(l5)=15

1. Only the first &MAXPART specifications, &PID(l)
through &PID(&MAXPART), will be used.

2. The identifiers &PID(n) are used in messages
to and commands from the operator. For example,
when an operator uses the set command $T Imm,list
he is referring not to logical partition mm but
to logical partition n, where &PID(n)=mm.

&PID(n)

P~SPGEN Parameters - Page 7.1.61

370

H A S P

&PRI (n)

&PRl(n)

Explanation: Subscripted variable symbols &PRI(n)
specify OS job priorities. A job selected by HASP
logical partition n will be submitted to OS with the
job priority &PRI(n). Each specification must be
an integer between 1 and 15, inclusive.

Default: &PRI(l)=7

Notes:

&PRI(2)=7
&PRI (3)=7
&PRI(4)=7
&PRI (5) =7
&PRI(6)=7
&PRI(7)=7
&PRI(8)=7
&PRI{9)=7
&PRI(l0)=7
&PRI(ll)=7
&PRI(12)=7
&PRI(l3)=7
&PRI(l4)=7
&PRI(l5)=7

1. The defaults are all the same as &XZPRTY. This
allows the HASP Execption Task Monitor to regu­
late all job steps under the control of HASP.
See also parameters &XZPRTY and &MONINTV.

2. These parameters have no effect in MFT.
3. The priorities defined by &PRI(n) affect only

OS execution. The priority of a job in the
HASP Job Queue is determined by parameters
&RPRT(m), &RPRI(m), &XLIN(m), and &XPRI(m).

4. Only the first &MAXPART specifications, &PRI(l)
through &PRI(&MAXPART), will be used.

HASPGEN Parameters - Page 7.1.62

371

H A S P

$PRICONA

$PRICONA

Ex~lanation: Ordinary symbol $PRICONA specifies the
unit address of a 1052, 3210, 3215, 1443, or 1403 to
which HASP will issue a SIO in the event of a catas­
trophic error. The message HASP writes to this device
is:

HASP CATASTROPHIC ERROR. CODE=xxx.
The specification must be a valid unit address.

Default: $PRICONA=01F

Notes:
1. When HASP is operating with M65MP in a 2-CPU

multiprocessor environment, the device specified
by $PRICONA must be operational to both CPUs
when a HASP catastrophic error occurs.

HASPGEN Parameters - Page 7.1.63

372

H A S P

$PRIDCT

Explanation: Ordinary symbol $PRIDCT specifies the
number of print lines to appear on each HASP job
separator page for local printers. The specification
must be an integer greater than or equal to zero. If
the specification is zero, no separator page will be
produced on local printers.

Default: $PRIDCT=61

Notes:
1. The equivalent HASPGEN parameter for remote

terminal printers is $TPIDCT.

$PRIDCT

HASPGEN Parameters - Page 7.1.64

373

H A S P

&PRIHIGH

&PRIHIGH

Explanation: Variable symbol &PRIHIGH specifies a
HASP priority to be associated with the HASP Priority
Aging feature. A job will not be priority-aged if
its HASP priority is (or becomes) greater than or
equal to &PRIHIGH. The specification must be an
integer between 0 and 15, inclusive.

Default: &PRIHIGH=lO

Notes:
1. If &PRIRATE=O, parameter &PRIHIGH is not used.
2. See also parameters &PRIRATE and &PRILOW.

HASPGEN Parameters - Page 7.1.65

374

H A S P

&PRILOW

&PR I LOW

Explanation: Variable symbol &PRILOW specifies a
HASP priority to be associated with the HASP Priority
Aging feature. A job will not be priority-aged by
HASP unless its HASP priority is initially at least
&PRILOW. The specification must be an integer between
0 and 15, inclusive.

Default: &PRILOW=S

Notes:
1. If &PRIRATE=O, parameter &PRILOW is not used.
2. See also parameters &PRIRATE and &PRIHIGH.

HASPGEN Parameters - Page 7.1.66

375

H A S P

&PRIRATE

&PR IRATE

Explanation: Variable symbol &PRIRATE specifies the
amount by which a job's HASP priority will be incre­
mented in 24 hours by the HASP Priority Aging feature.
For example if &PRIRATE=3 then a job's priority will
be incremented by one for every eight hours it remains
in the system. But a job's priority will not be incre­
mented unless it is at least &PRILOW; nor will a job's
priority be incremented above &PRIHIGH. The specifi­
cation must be an integer greater than or equal to
zero. If zero is specified, Priority Aging is excluded
from the generated HASP system.

Default: &PRIRATE=O

Notes:
1. If &PRIRATE=O, parameters &PRILOW and &PRIHIGH

are not used.
2. See also parameters &RPRT(n), &RPRI(n), &XLIN(n),

and &XPRI(n).
3. If a job's priority is specified on the /*PRIORITY

control card, the job will be priority-aged if
its priority is eligible.

HASPGEN Parameters - Page 7.1.67

376

H A S P

$PRTBOPT

$PRTBOPT

Explanation: Ordinary symbol $PRTOPT specifies the
printer buffering option to be used for local HASP
printers. The specification must be either 1 (for
single buffering) or 2 (for double buffering) .

Default: $PRTBOPT=2

HASPGEN Parameters - Page 7.1.68

377

H A S P

&PRTRANS

&PRTRANS

Explanation: Variable symbol &PRTRANS specifies
translation for lines of print. The specification
must be either YES or NO.

Default: &PRTRANS=YES

Notes:
1. If &PRTRANS is specified as YES, each line to

be printed by HASP is first translated. Trans­
lation changes lower-case letters to upper-case
letters and characters invalid on a PN train to
blanks.

2. If any print train is to·be used on any HASP­
controlled pr-inter which has characters not
equivalent to those on a PN train or a Pll train,
&PRTRANS must be specified as NO.

HASPGEN Parameters - Page 7.1.69

378

H A S P

&PRTUCS

&PRTUCS

Explanation: Variable symbol &PRTUCS specifies the
name of the print chain or print train which HASP
initially assumes is mounted on every local 1403
printer SYSGENed with the UCS feature, and on every
local 3211 printer. The UCS identifier can be modi­
fied by the operator individually by printer. The
specification should be either AN, HN, PN, QN, RN,
UN, All, Hll, Pll, Ull, or Q.

Default: &PRTUCS=O

Notes:
1. A specification of zero causes HASP to bypass

the UCS loading procedure on all local printers
until the UCS type of each printer is specified
by the operator.

2. Only the first character of &PRTUCS is interro­
gated. That is to say, an AN specification is
equivalent to an All specification, an Hll
specification is equivalent to an HN specifica­
tion, etc.

3. If a UCS specification is encountered which is
not valid for the type of printer being addressed,
the UCS loading procedure will be bypassed.

4. The UN and Ull specifications are provided for
installation use to support other type of print
chains.

HASPGEN Parameters - Page 7.1.70

379

H A S P

$PUNBOPT

$PUNBOPT

Explanation: Ordinary symbol $PUNBOPT specifies the
punch buffering option to be used for local HASP
punches. The specification must be either 1 (for
single buffering) or 2 (for double buffering).

Default: $PUNBOPT=l

HASPGEN Parameters - Page 7.1.71

380

H A S P

&RDR

Explanation: Variable symbol
unit address of a pseudo-2540
HOSRDR to supply jobs to OS.
be a valid unit address which
SYSGEN time as a pseudo-2540

Default: &RDR=OFC

&RDR

&RDR specifies the
reader to be used with
The specification must
has been specified at

reader.

HASPGEN Parameters - Page 7.1.72

381

HASP

&RDRPART

&RDRPART

Explanation: Variable symbol &RDRPART specifies for
MFT systems the identifier field of an OS START
command issued by HASP initialization for the OS
reader/interpreter HOSRDR. The complete START command
is

S HOSRDR.&RDRPART,&RDR.
The specification must be a valid identifier field
for an OS START reader command, as described in the
OS Operator's Guide.

Default: &RDRPART=S

Notes:
1. If HASP initialization detects an MVT system,

this parameter is not used.

HASPGEN Parameters - Page 7.1.73

382

H A S P

$REPRDR

$REPRDR

Explanation: Ordinary symbol $REPRDR specifies the
unit address of a physical 2540 or 2501 card reader
from which HASP initialization will read REP cards
if requested by the operator. The specification
must be a valid unit address.

Default: $REPRDR=OOC

Notes:
1. When REP cards are to be read and HASP is

operating with M65MP in a 2-CPU multiprocessor
environment, the device specified by $REPRDR
must be operational to both CPUs.

HASPGEN Parameters - Page 7.1.74

383

H A S P

$REPWTR

$REPWTR

Exelanation: Ordinary symbol $REPWTR specifies the
unit address of a physical 1403 or 1443 on which
each REP card read is to be printed, if printing
of REP cards is requested by the operator. The
specification must be a valid unit address.

Default: $REPWTR=OOE

Notes:
1. When REP cards are to be printed and HASP is

operating with M65MP in a 2-CPU multiprocessor
environment, the device specified by $REPWTR
must be operational to both CPUs.

HASPGEN Parameters - Page 7.1.75

384

H A S P

&RESCORE

&RESCORE

Explanation: Variable symbol &RESCORE specifies a
storage size, in multiples of 1024 bytes. HASP will
always issue a GETMAIN for additional storage for HASP
buffers; all such storage but &RESCORE*l024 bytes will
be used for buffers.

The specification must be an integer greater than or
equal to zero.

Default: &RESCORE=O

HASPGEN Parameters - Page 7.1.76

385

H A S P

&RJOBOPT

&RJOBOPT

Explanation: Variable symbol &RJOBOPT specifies
whether or not an illegal HASP JOB card is to prevent
execution of the associated job. The specification
must be either YES or NO.

Default: &RJOBOPT=NO

Notes:
1. If &RJOBOPT=YES and HASP reads a JOB card whose

accounting field does not match the specifica­
tions required by HASP, the job is flushed by
HASP and an appropriate message is written to
the operator.

HASPGEN Parameters - Page 7.1.77

386

H A S P

RMTnn

Code Letters

nn

nun

00

pp

ii

11

w

t

d

RMTnn

Explanation: Ordinary symbols RMTnn specify the
characteristics of remote terminals to be used with
HASP Remote Job Entry. Terminals must be defined
consecutively, starting with RMTOl. Each specifica­
tion must be a 14-character string of the form

RMTnn=nunooppiillwtdf
where the letters represent the following:

Range

01-99

01-99

00-99

00-99

00-15

00-15

0-6

0-6

0-4

Descri:etion

Remote Number

Line Number (**indicates /*SIGNON
assignment)

Print Routing (Remote Number)

Punch Routing (Remote Number)

Priority Increment for this Remote

Priority Limit for this Remote

Printer Width as follows:
0 = 80 characters
1 = 100 characters
2 = 120 characters
3 = 132 characters
4 = 144 characters
5 = 150 characters
6 = 96 characters

Terminal Type as follows:
0 = 1009, 2770
1 = 1978, 2780, 7702
2 = System 360/20 Sub-model
3 = System 360/20 Sub-model
4 = System 360/25, 30, 40,

so, etc.
5 = 1130
6 = System/3

Data Format as follows:
0 = Unblocked fixed length
1 = Blocked fixed length

2
5

2 = Unblocked variable length
3 = Blocked variable length

387

(Note - this should be
used for all 1978, 2770,
and 2780 terminals.)

HASPGEN Parameters - Page 7.1.78

f

H A S P

0-3

0-7

4 = Programmable Interface
(Note - this should be
used for all STR 20 and
BSC MULTI-LEAVING inter­
£ aces.)

Terminal Features as follows:

2770 Terminal Features

Buffer
f Expansion Trans12arenci'.: Notes

0 No No w must be
2 or 6

1 No Yes w must be
2 or 6

2 Yes No
3 Yes Yes

2780 Terminal Features

Horizontal Multiple

0 ' 1'

0 ' 1

f Format Control Record Feature Transparency

0 No No No
1 No No Yes
2 No Yes No
3 No Yes Yes
4 Yes No No
5 Yes No Yes
6 Yes Yes No
7 Yes Yes Yes

0-3 MULTI-LEAVING Terminal Features

Console
f Support Transparency

0 No No
1 No Yes
2 Yes No
3 Yes Yes

Default: RMTnn=**nn0000153131

Notes:
1. Parameter &NUMRJE must specify the number of speci­

fications RMTnn to be included in the generated
HASP system.

HASPGEN Parameters - Page 7.1.79

388

H A S P

2. No two specifications RMTnn may specify the same
line number (mm) . If ** is specified instead of
a line number for mm, the associated remote ter­
minal may connect to HASP via any suitable line.
HASP will logically connect the terminal with the
line when it recognizes the /*SIGNON control card.
If line number is specified explicitly, the asso­
ciated terminal need not use a /*SIGNON card.

3. The line number specification mm refers to line
specification LINEmm, which in turn specifies
the unit address of the line.

4. For print and punch routing, a specification of
00 causes output from jobs submitted at the Remote
Terminal to be printed/punched locally, unless
re-routed.

5. Priority increment is the value to be added to the
priority of a job submitted from the Remote
Terminal.

6. Priority limit is the maximum value of priority
for any job submitted from the Remote Terminal.

7. If any MULTI-LEAVING workstation is to utilize
more than one reader, printer or punch, see
Section 12.16 for additional information.

HASPGEN Parameters - Page 7.1.80

389

H A S P

$RPRBOPT

$RPRBOPT

E~lanation: Ordinary symbol $RPRBOPT specifies the
printer buffering option to be used for all printers
at HASP Remote Terminals. The specification must be
either 1 (for single buffering) or 2 (for double
buffering).

Default: $RPRBOPT=l

Notes:
1. The specification refers to HASP regular buffers,

not to HASP Teleprocessing buffers.

HASPGEN Parameters - Page 7.1.81

390

H A S P

&RPRI{n)

&RPRl(n)

Explanation: Subscripted variable symbols &RPRI(n)
specify tentative job priorities corresponding to
intervals defined by subscripted variable symbols
&RPRT(n). If a user specifies in the accounting
field of his job card an estimated execution time
of t minutes, the job's tentative priority will
be &RPRI{n) where

&RPRT{n-l)<t5&RPRT(n).
Each specification must be an integer between 0 and
15 inclusive.

Default: &RPRI{l)=9

Notes:

&RPRI{2)=8
&RPRI{3)=7
&RPRI{4)=6
&RPRI{S)=S
&RPRI{6)=4
&RPRI{7)=3
&RPRI(8)=2
&RPRI (9) =l

1. The values &RPRI(n) will normally be in
opposite order from the subscripts n.

2. See also Notes 1 and 2 for &RPRT(n).

HASPGEN Parameters - Page 7.1.82

391

H A S P

&RPRT (n)

&RPRT(n)

Explanation: Subscripted variable symbols
&RPRT(n) specify estimated execution times in
minutes. If a user specifies in the accounting
field of his job card an estimated execution time
of t minutes, and if t satisfies the relation

&RPRT(n-l)<tS&RPRT(n)
then &RPRI(n) will be the tentative priority of
the job. If t is less than &RPRT(l) or greater
than &RPRT(9), value &RPRI{l) or zero will be
the tentative priority of the job. Each specifi­
cation must be an integer between 1 and X'FFFFFF'/60
inclusive.

Defaults: &RPRT(l)=2

Notes:

&RPRT (2) ::::5
&RPRT(3)=15
&RPRT(4)=X'FFFFFF'/60
&RPRT(S)=X'FFFFFF'/60
&RPRT(6)=X'FFFFFF'/60
&RPRT(7)=X'FFFFFF'/6G
&RPRT(8)=X'FFFFFF'/60
&RPRT(9)=X'FFFFFF'/60

1. Priority &RPRI(n) is overridden by HASP
control card /*PRIORITY.

2. The tentative priority defined above is adjusted
according to &XLIN{m) and the estimated print
lines specified in the accounting field of
the user's JOB card. If the user estimated
p print lines, and if p satisfies the relation

&XLIN(m)<ps&XLIN(m+l)
then the tentative priority is reduced by m.

3. The values &RPRT(n) should be in the same
order as the subscripts n.

HASPGEN Parameters - Page 7.1.83

392

H A S P

$RPUBOPT

$RPUBOPT

Explanation: Ordinary symbol $RPUBOPT specifies the
printer buffering option to be used for all punches
at HASP Remote Terminals. The specification must
be either 1 (for single buffering) or 2 (for double
buffering) .

Default: $RPUBOPT=l

Notes:
1. The specification refers to HASP regular buffers,

not to HASP Teleprocessing buffers.

HASPGEN Parameters - Page 7.1.84

393

H A S P

&RQENUM

&RQENUM

Explanation: Variable symbol &RQENUM specifies the
number of WTOR reply buffers to be provided in the
generated HASP system. The specification must be
an integer greater than zero.

Default: &RQENUM=S

Notes:
1. This parameter is ignored if &NUMCONS=O. '
2. If &NUMCONS is not specified as zero, no more

than &RQENUM replies can be outstanding at any
time. ·

HASPGEN Parameters - Page 7.1.85

394

H A S P

&SIZ2260

&SIZ2260

Explanation: Variable symbol &SIZ2260 specifies
screen width in characters for local 2260s (attached
via 2848) to be used as HASP operator consoles.
The specification must be either 0, 40, or 80. If
0 is specified, support for local 2260s and local
1053s (attached via 2848) will be excluded from the
generated HASP system.

Default: &SIZ2260=0

Notes:
1. This parameter is not used if &NUMCONS=O.
2. See also parameter &SPD2260.

HASPGEN Parameters - Page 7.1.86

395

H A S P

&SPD2260

&SPD2260

Explanation: Variable symbol &SPD2260 specifies roll
rate in hundredths of a second for local 2260s (attached
via 2848) to be used as HASP operator consoles. If
new messages are pending for display on a HASP 2260
console, they will be displayed (and old messages will
be deleted, if the screen is full) at the rate of one
message every &SPD2260/100 seconds.

Default: &SPD2260=50

Notes:
1. This parameter is not used if &NUMCONS=O or if

&SIZ2260=0.

HASPGEN Parameters - Page 7.1.87

396

H A S P

&SPOLMSG

&SPOLMSG

Explanation: Variable symbol &SPOLMSG specifies the
number of physical records in the first extent of
SYSl.HASPACE on SPOOL! which are to be reserved for
holding operator and HASP messages for HASP Remote
Terminals. Each physical record is capable of holding
one or more messages for a single remote terminal.
Messages are held if they are directed to:

• any terminal not signed on;
• any signed-on hardware terminal which is cur­

rently processing an input or output stream;
• any signed-on computer terminal that is not a

Multi-Leaving terminal with a console.

If a message is to be held but no space is available
to hold it, the message is thrown away without operator
notification.

The specification for &SPOLMSG
greater than or equal to zero.
fied as zero, no messages will
terminals.

Default: &SPOLMSG=lO*&NUMRJE

Notes:

must be an integer
If &SPOLMSG is speci­

be sent to hardware

1. Only the $DM command can generate messages to a
terminal not signed on.

2. For signed-on terminals, messages are generated
for job-on-reader, by $DM, and as responses to
commands from the terminal.

3. Each message to a terminal (except to a Multi­
Leaving remote defined with a console) is
held until it can be printed, or until HASP is
restarted.

HASPGEN Parameters - Page 7.1.88

397

H A S P

&STRCPU

&STRCPU

Explanation: Variable symbol &STRCPU specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for the System/360
Model 20 with a Synchronous Transmit-Receive (STR)
adapter and the associated HASP Remote Terminal program.
The specification must be either YES or NO.

Default: &STRCPU=NO

HASPGEN Parameters - Page 7.1.89

398

H A S P

&STR1978

&STR1978

Explanation: ·variable symbol &STR1978 specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of Remote Job Entry support for Synchronous
Transmit-Receive (STR) hardware terminals such as the
1978. The specification must be either YES or NO.

Default: &STR1978=NO

HASPGEN Parameters - Page 7.1.90

399

H A S P

&TIMEOPT

&TIMEOPT

Explanation: Variable symJ;>ol &TIMEOPT specifies the
action to be taken when a job's estimated execution
time is exceeded. The specification must be one of
the integers O, 1, 2 or 4. For &TIMEOPT=4, the job's
time limits will not be monitored. For &TIMEOPT=2,
time excession causes the job to be cancelled with a
dump. For &TIMEOPT=l, time excession causes the job
to be cancelled without a dump. For &TIMEOPT=2,
&TIMEOPT=l, or &TIMEOPT=O, time excession causes
messages to be written to the operator.

Default: &TIMEOPT=4

Notes:
1. See also Notes 1 .and 2 of &ESTIME, which apply

for &TIMEOPT=O, &TIMEOPT=l, and &TIMEOPT=2.

HASPGEN Parameters - Page 7.1.91

400

H A S P

$TIMEXS

$TIME XS

Explanation: Ordinary symbol $TIMEXS specifies
the interval, in minutes, at which messages will
be written to the operator informing him that a
job's execution time is exceeded. The specifica­
tion must be an integer greater than zero.

Default: $TIMEXS=l

Notes:
1. The first time excession message is written

to the operator when the job's estimated
execution time has been exceeded.

2. If &TIMEOPT is specified greater than 2,
$TIMEXS is not used.

3. See also Note 2 of $ESTIME.

HASPGEN Parameters - Page 7.1.92

401

H A S P

&TPBFSIZ

&TPBFSIZ

Explanation: Variable symbol &TPBFSIZ specifies
the size in bytes of each HASP Teleprocessing
buffer. The specification must be an integer not
less than 328 if &BSC2770=NO and &BSC2780=NO,
and otherwise not less than 400.

Default: &TPBFSIZ=4-00

Notes:
1. The value of &TPBFSIZ is the maximum size of

any HASP Teleprocessing buffer. See also
parameter &MLBFSIZ, which may never be specified
larger than &TPBFSIZ.

2. The HASP Remote Terminal program for the
System/360 Model 20 with an STR communications
adapter (HRTPSM20} uses a teleprocessing buffer
si2e of &TPBFSIZ; all other HASP Remote Terminal
programs are Multi-Leaving programs, and use
&MLBFSIZ.

3. The parameter &TPBFSIZ is specified only once,
at HASPGEN time; it is conveyed automatically
to the requisite Remote Terminal programs by
HASPGEN.

4. See also the notes for &MLBFSIZ.

HASPGEN Parameters - Page 7.1.93

402

H A S P

$TPIDCT

$TPIDCT

Explanation: Ordinary symbol $TPIDCT specifies the
number of print lines to appear on each HASP job
separator page for jobs whose printed output is directed
to any HASP Remote Terminal. The specification must
be an integer greater than or equal to zero. If the
specification is zero, no separator page will be pro­
duced on remote printers.

Default: $TPIDCT=6

Notes:
1. The equivalent HASPGEN parameter for local printers

is $PRIDCT.

HASPGEN Parameters - Page 7.1.94

403

H A S P

&TRACE

&TRACE

Explanation: Variable symbol &TRACE specifies inclu­
sion or exclusion of a facility for event-tracing
a~d statistics-gathering in the generated HASP system.
It also specifies the nlliuber of entries to be genera­
ted in the HASP trace table. The specification must
be an integer greater than or equal to zero.

Default: &TRACE=O

Notes:
1. Inclusion of the HASP Trace facility causes the

OS program interrupt exit (SPIE) mechanism to
work incorrectly. For this reason, the HASP
Trace should not be included in any generated
HASP system desI"gned for normal production.

2. The &TRACE option is independent of the &DEBUG
option.

HASPGEN Parameters - Page 7.1.95

404

H A S P

&USASCII

&USASCll

Explanation: Variable symbol &USASCII specifies inclu­
sion or exclusion in the HASP Remote Terminal Access
Method of the capability to use USASCII line control
characters as well as EBCDIC line control characters.
If any line specification LINEnun for a BSC line has
value c set to 2, 3, 6 or 7, &USASCII should be set
to YES; otherwise, &USASCII should be set to NO.

Default: &USASCII=NO

HASPGEN Parameters - Page 7.1.96

405

H A S P

$WAI TIME

$WAI TIME

Explanation: Ordinary symbol $WAITIME specifies a
time interval, in seconds. For hardware terminals,
the HASP Remote Terminal Access Method will wait
$WAITIME seconds at the completion of processing of
any input stream, printed output stream, or punched
output stream, to allow the operator time to alter
the normal sequence of Remote Job Entry operations.
For example, the operator may wish to transmit another
job to HASP after a previous job has finished printing
rather than wait till the previous job h~s finished
punching.

The specification for $WAITIME must be an integer
greater than zero.

Default: $WAITIME=l

HASPGEN Parameters - Page 7. 1. 9 7 ,_ /

406

H A S P

&WCLSREQ

&WCLSREO

Explanation: Variable symbol &WCLSREQ specifies optional
requeueing for OS output classes specified by &WTRCLAS.
The values assigned &WCLSREQ are effective only if
&WTRPART=*.

If &WTRPART=*, then the HASP writer subtask (load module
HASPWTR) processes jobs queued in the OS output queues
defined by &WTRCLAS. At the end of processing a job
whose output class is the nth character of &WTRCLAS,
HASPWTR examines the nth character of &WCLSREQ. If the
nth character of &WCLSREQ is *, HASPWTR deletes the
job from the OS Job Queue. But if the nth character
of &WCLSREQ is an OS Output class, HASPWTR requeues
the job in the OS Output queue specified by the nth
character of &WCLSREQ (which must be different from
any class specified in &WTRCLAS).

The specification mti.st be a string of one to eight char­
acters each of which is either * or a unique valid OS
output class different from any specified in &WTRCLAS.
If more characters are specified than were specified
for &WTRCLAS, the excess characters are unused.

Default: &WCLSREQ=********

Notes:
1. The output requeueing option is useful for providing

an extra copy of a job's system messages to, for
example, a conversational programming terminal.

2. A requeued job is not referenced by HASP, but must
be accessed by a standard OS Output Writer or other
suitable means.

3. A requeued job may contain a mixture of system
messages and sysout data sets of the same class,
if the sysout data sets were spooled by OS (see
HASPGEN parameter $$x) . The module HASPWTR does
not process the sysout data sets, but requeues the
entire job containing them in the new class specified
by &WCLSREQ. The system messages and sysout data
sets are then available to a standard OS Output
Writer which is processing the new class.

HASPGEN Parameters - Page 7.1.98

407

H A S P

4. Any DD statements in the system messages of a
requeued job, which are originally coded as DD*
or DD DATA and are not subject to OS spooling (see
HASPGEN parameter &OSINOPT) , are available to a
Writer processing a &WCLSREQ class as DD$ and
DD CATA respectively. They are printed as DD$ and
DD CATA unless the Writer is programmed to change
them to their original form.

HASPGEN Parameters - Page 7.1.99

408

H A S P

&WTLOPT

&WTLOPT

Explanation: Variable symbol &WTLOPT specifies
inclusion or exclusion of code to cause HASP to
intercept the WTL SVC (SVC 36) and to add to a job's
output any log messages associated with it. The
messages will be written on the HASP System Log for
the job. The specification for &WTLOPT must be either
YES or NO.

Default: &WTLOPT=NO

Notes:
1. If &WTLOPT is set to YES and &NUMCONS is set

non-zero, no messages will be recorded on the
OS log data sets and the OS WRITELOG command
must not be used.

2. If &WTLOPT is set to YES and &LOGOPT is set to
NO, all WTL messages will be thrown away.

HASPGEN Parameters - Page 7.1.100

409

H A S P

&WTR

Ex~lanation: Variable symbol &WTR specifies the
unit address of a pseudo-1403 printer to be used

&WTR

by a writer to retrieve from the OS Job Queue System
Message Blocks (SMBs) for jobs controlled by HASP.
The specification must be a valid unit address which
has been specified at SYSGEN time as a pseudo-1403
printer.

Default: &WTR=OFE

Notes:
1. The unit address assigned to this parameter must

not be assigned a symbolic unit name at SYSG~
time, as described for other pseudo-1403 printers.

HASPGEN Parameters - Page 7.1.101

410

H A S P

&WTRCLAS

&WTRCLAS

Explanation: Variable symbol &WTRCLAS specifies the
OS System Output classes to be processed by HASP.
The output writer started by HASP initialization (and
selected by the &WTRPART Parameter) is intended to
process only those System Message Blocks (SMBs)
created by OS jobs submitted to and controlled by
HASP. If other OS writers are to be used concurrently
with the writer started by HASP, none of them may
process any of the output classes specified in &WTRCLAS.

The specification for &WTRCLAS must be one to eight
unique characters that are valid OS output classes.

Default: &WTRCLAS=HA

Notes:
1. HASP examines the MSGCLASS parameter of every

JOB card it sends to OS. If MSGCLASS is not
specified or is not one of the classes specified
by &WTRCLAS, HASP adds the MSGCLASS parameter
to the JOB card, using as a class the leftmost
character of &WTRCLAS.

2. If a job submitted to OS by HASP has certain
errors on the JOB card, OS will fail the job and
change its MSGCLASS to A. It is therefore
recommended that class A be specified in &WTRCLAS.
If class A is not specified and such an error
happens, HASP may not operate correctly.

3. See also HASPGEN parameter $$x.

HASPGEN Parameters - Page 7.1.102

411

H A S P

&WTRPART

&WTRPART

Explanation: Variable symbol &WTRPART specifies the
method HASP will use to retrieve from the OS Job
Queue System Message Blocks for jobs controlled by
HASP.

For &WTRPART=*, HASP initialization creates a subtask
to interface directly between HASP and the OS Job
Queue. ·

If &WTRPART is not Specified as *, HASP initializa­
tion starts an OS writer {using procedure HOSWTR)
to interface between HASP and the OS Job Queue. In
particular, for MFT systems HASP initialization
issues the OS command

S HOSWTR.&WTRPART,&WTR,,&WTRCLAS

The specification for &WTRPART must be either * or,
for MVT, any other character string of one to eight
characters or, for MFT, a valid identifier for an
OS START writer command, as described :n the OS
Operator's Guide.

Default: &WTRPART=*

Notes:
1. For an OS MFT system, the default specification

requires that, during SYSGEN, the SUPRVSOR macro
include'ATTACH in the OPTIONS=keyword.

2. If &WTRPART is not specified as *, it is
recommended for an MFT system that HOSWTR
be assigned the partition immediately below
HASP in priority. That is, if HASP were to
be assigned PO, &WTRPART would be specified as
Pl.

HASPGEN Parameters - Page 7.1.103

.412

H A S P

&XBATCHC

&XBATCHC

Explanation: Variable symbol &XBATCHC specifies a
list of job classes to be used with the HASP Execution
Batch Scheduling feature. The specified classes are
excluded from running jobs outside of Execution
Batch Scheduling. The specification for &XBATCHC
is a string of one to eight characters (letters and
numbers) which specify valid unique HASP job classes.
If &XBATCHC is left at its default, the generated
HASP system will not include Execution Batch Scheduling.

Default: &XBATCHC=[null string]

Notes:
1. For further information, see the section of this

manual on the Execution Batch Scheduling feature.
2. If &XBATCHC is not specified, then &XBATCHN is

not used.

HASPGEN Parameters - Page 7.1.104

413

H A S P

&XBATCHN

&XBATCHN

Explanation: Variable symbol &XBATCHN specifies the
first five characters of the name of each OS job to
be started internally by HASP when required for the
execution of a user "job" under the HASP Execution
Batch Scheduling feature. The specification must be
a five-character string of which the first character
is alphabetic or national and the remaining four
are alphameric or national.

Default: &XBATCHN=$$$$$

Notes:
1. For further information, see the section of this

manual on the Execution Batch Scheduling feature.
2. If &XBATCHC is specified, then HASP will reject

all user submitted jobs whose jobnames start
with the five characters &XBATCHN.

HASPGEN Parameters - Page 7.1.105

414

H A S P

&XLIN(n)

&XLIN(n)

Explanation: Subscripted variable symbols
&XLIN(n) specify estimated line counts. If a
user specifies in the accounting field of his
job card an estimated line count of l=p/1000,
then the tentative job priority computed on the
basis of his estimated execution time will be
reduced by n, where

&XLIN(n)<p~&XLIN(n+l).
Each specification must be an integer between 1
and 16,777,215. &XLIN(9) must be 16,777,215.

Default: &XLIN(l)=2000

Notes:

&XLIN(2)=5000
&XLIN(3)=15000
&XLIN(4)=X'FFFFFF'
&XLIN(S)=X'FFFFFF'
&XLIN(6)=X'FFFFFF'
&XLIN(7)=X'FFFFFF'
&XLIN(B)=X'FFFFFF'
&XLIN(9)=X'FFFFFF'

1. The values &XLIN(n) must be in the same
order as the subscript n.

2. See also Note 2 for &RPRT(n).
3. These values are not used if the job uses a

/*PRIORITY HASP control card.
4. See also the description of &XPRI(n), used

with &XLIN(n) to determine a job's printing
priority.

HASPGEN Parameters - Page 7.1.106

415

H A S P

&XPRI (n)

&XPRl(n)

Explanation: Subscripted variable symbols &XPRI(n)
specify job priorities for printing which cor­
respond to intervals defined by subscripted
variable symbols &XLIN(n). If a user does not sup­
ply a /*PRIORITY control card with his job, the
job's priority is recomputed after execution based
upon the actual number of print lines it produced.
If the job produced p print lines then its priority
for printing and punching will become &XPRI(n),
where n is the smallest number for which

p!5;&XLIN(n).
Each specification must be an integer between O and
15.

Default: &XPRI(l)=9
&XPRI(2)=8
&XPRI(3)=7
&XPRI(4)=6
&XPRI(S)=S
&XPRI(6)=4
&XPRI(7)=3
&XPRI(8)=2
&XPRI(9)=1

HASPGEN Parameters - Page 7.1.107

416

"- - /

H A S P

&XZMFTH

&XZMFTH

Explanation: Variable symbol &XZMFTH specifies the
dispatching priority of the highest-priority MFT task
to be included in the group of tasks analyzed by the
HASP Execution Task Monitor. Each MFT HASP-controlled
job step task without subtasks whose dispatching
priority falls within the range &XZMFTL through &XZMFTH
is examined by the HASP Execution Task Monitor every
&MONINTV seconds. In order to balance the CPU utili­
zation characteristics of these tasks, the Execution
Task Monitor resets the dispatching priority of each
of them to &XZMFTL and, if necessary, changes their
order on the TCB ready chain. The specification for
&XZMFTH must be one or two hexadecimal characters
ranging from 00 to FF.

Default: &XZMFTH=FF

Notes:
1. If &XZMFTH is specified as 00, Execution Task

Monitor support for MFT is excluded from the
generated HASP system.

2. If &XZMFTH is specified as 00 and &XZPRTY is
specified as 0-1, then &MONINTV must be specified
as o.

HASPGEN Parameters - Page 7.1.108

417

H A S P

&XZMFTL

&XZMFTL

Explanation: Variable symbol &XZMFTL specifies the
dispatching priority of the lowest-priority MFT task
to be included in the group of tasks analyzed by the
HASP Execution Task Monitor. Each MFT HASP-controlled
job step task without subtasks whose dispatching
priority falls within the range &XZMFTL through &XZMFTH
is examined by the HASP Execution Task Monitor every
&MONINTV seconds. In order to balance the CPU utiliza­
tion characteristics of these tasks, the Execution
Task Monitor resets the dispatching priority of each
of them to &XZMFTL and, if necessary, changes their
order on the TCB ready chain. The specification for
&XZMFTL must be one or two hexadecimal characters
ranging from 00 to FF.

Default: &XZMFTL=OO

Notes:
l. If &XZMFTH is specified as 00, &XZMFTL is not

used and Execution Task Monitor support for MFT
is excluded from the generated HASP system.

HASPGEN Parameters - Page 7.1.109

418

~. /

H A S P

&XZPRTY

&XZPRTY

Exelanation: Variable symbol &XZPRTY specifies a
priority value used by the HASP Execution Task Monitor
for MVT systems. The Execution Task Monitor periodi­
cally analyzes each MVT HASP-controlled job step task,
without subtasks, whose dispatching priority is
&XZPRTY*l6+11. In order to balance the CPU utiliza­
tion characteristics of these tasks, the Execution
Task Monitor may re-order these tasks on the TCB
ready chain. The specification for &XZPRTY must be
an integer between 0 and 15 inclusive, or the expres­
sion "0-1". The latter value should be used when the
Execution Task Monitor is to operate for MFT but not
for MVT.

Default: &XZPRTY=7

Notes:
l. If &MONINTV=O, the value of &XZPRTY is not used.
2. If &XZPRTY is specified as 0-1 and &XZMFTH is

specified as O, then &MONINTV must be set to O.

HASPGEN Parameters - Page 7.1.110

419

H A S P

$$x

$$x

Explanation: Ordinary symbol $$x specifies the
destination for an output data set ·designated in the
user's JCL as SYSOUT=x. The specification for each
of these ordinary symbols must be one of the charac­
ters A, B, 1, 2, or *·

For $$x=A, associated SYSOUT data sets will be
printed with the user's job.

For $$x=B, associated SYSOUT data sets will be
punched with the user's job.

For $$x=l, associated SYSOUT data sets will be
added to the HASP special forms queue, to be printed
with other SYSOUT data sets requiring the same
forms.

For $$x=2, associated SYSOUT data sets will be
added to the HASP special forms queue, to be punched
with other SYSOUT data sets requiring the same
forms.

For $$x=*, associated SYSOUT data sets will be
processed entirely by OS. In this case, HASP will
add the specification UNIT=SYSDA to the JCL, unless
the user has himself specified UNIT=information.

Default: $$A=A
$$B=B
$$C=A
$$D=A
$$E=A

· $$F=A
$$G=A
$$H=A

_."'$$I=A
($$J=l·

_;, $$K=2
$$L=A
$$M=A
$$N=A
$$0=A
$$P=A
$$Q=A
$$R=A

420

$$S=A
$$T=A
$$U=A
$$V=A
$$W=A
$$X=A
$$Y=A
$$Z=A

,_ $$l=A
$$2=A
$$3=A
$$4=A
$$5=A
$$6=A
$$7=A
$$8=A
$$9=A
$$0=A

HASPGEN Parameters - Page 7.1.111 \
'..

H A S P

Notes:
1. For any output class x, regardless of the value

specified for $$x, a four-digit special forms
number can be coded as the third positional
parameter of the SYSOUT=keyword. The specifi­
cation is converted to a packed number (unless
$$x=*); that is, forms number 0001 is the same
as forms number 01.

2. For an output class x for which $$x=*, the
SYSOUT=pararneter may be coded as described in
the OS Job Control Language Reference manual.

3. A user SYSOUT specification which includes the
second positional parameter (program name) will
be processed entirely by OS, regardless of
whether the associated $$ parameter was specified
as *·

4. If a given output class x is one of the classes
assigned to &WTRCLAS, it must not be used in a
SYSOUT specification to be processed by OS
(caused if $$x=*, or if the second parameter
of SYSOUT is used), unless that class xis
subject to requeueing as described under the
parameter &WCLSREQ.

HASPGEN Parameters - Page 7.1.112

421

H A S P

7.2 RMTGEN PARAMETERS FOR SYSTEM/360 MODEL 20 STR

This section describes the parameters used in assembly
of the System/360 Model 20 STR Remote Terminal Program
for HASP Remote Job Entry. The parameters are used
during RMTGEN to specify hardware configuration and
software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

STR-20 RMTGEN Parameters - Page 7.2.1

422

H A S P

&CCT

&CCT

Explanation: Variable symbol &CCT specifies the
degree of text compression to be provided in the
program. For text transmission to HASP, the program
will compress strings of &CCT or more identical
characters. The specification must be an integer
between 3 and 80 inclusive.

Default: &CCT=4

Notes:
1. Low values of &CCT cause creation of highly

compact records, increasing effective line speed
at the expense of CPU

STR-20 RMTGEN Parameters - Page 7.2.2

423

H A S P

&CORESIZ

&CORESIZ

Explanation: Variable symbol &CORESIZ specifies the
amount of main storage available to the program in
K bytes. The specification must be an integer greater
than O.

Default: &CORESIZ=8.

STR-20 RMTGEN Parameters - Page 7.2.3

424

H A S P

&NUMBUFS

&NUMBUFS

Explanation: Variable symbol &NUMBUFS specifies the
maximum number of buffers to be used by the program.
The specification must be an integer greater than or
equal to 2.

Default: &NUMBUFS=lO

Notes:
1. The length of each buffer is given by HASPGEN

parameter &TPBFSIZ.

STR-20 RMTGEN Parameters - Page 7.2.4

425

H A S P

&PUNCH

&PUNCH

E~lanation: Variable symbol &PUNCH specifies inclu­
sion (&PUNCH=l) or exclusion (&PUNCH=O) of support
for a card punch attached to the Model 20. The speci­
fication must be either 0 or 1.

Default: &PUNCH=!

Notes:
1. The program supports 1442, 2520, and 2560 card

punches interchangeably.

STR-20 RMTGEN Parameters - Page 7.2.5

426

'·. __ /

H A S P

7.3 RMTGEN PARAMETERS FOR SYSTEM/360 MODEL 20 BSC

This section describes the parameters used in assembly
of the System/360 Model 20 BSC Remote Terminal Program
for HASP MULTI-LEAVING Remote Job Entry. The parameters
are used during RMTGEN to specify hardware configuration
and software options~

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

BSC-20 RMTGEN Parameters - Page 7.3.l

427

H A S P

&CCT

&CCT

Explanation: Variable symbol &CCT specifies for all
text compression but trailing blank compression the
minimum number of characters to be compressed. A
duplicate character string of fewer than &CCT charac­
ters will be treated as a string of non-duplicate
characters for compression purposes. The specification
must be an integer between 3 and 31, inclusive.

Default: &CCT=4

Notes:
1. See also &CMPTYPE. The value of &CCT is not

used if &CMPTYPE=l.
2. A smaller value of &CCT increases efficiency

of communication line usage at the expense of
compute time required for compression.

BSC-20 RMTGEN Parameters - Page 7.3.2

428

H A S P

&CMPTYPE

&CMPTYPE

Explanation: Variable symbol &CMPTYPE specifies the
type of compression to be applied to all text trans­
mitted from the Model 20 to the central computer.
The specification must be either 1, 2., or 3. The
value 1 specifies trailing blank compression; 2 speci­
fies compression of leading, embedded, and trailing
blanks, and 3 specifies compression of all duplicate
character strings.

Default: &CMPTYPE=2

Notes:
1. See also &CCT.

BSC-20 RMTGEN Parameters - Page 7.3.3

429

H A S P

&CORESIZ

Explanation:
size of Model
1024 bytes) •
between 8 and

&CORESIZ

Variable symbol &CORESIZ specifies the
20 main storage in Kbytes (1 Kbyte =
The specification must be an integer
32 inclusive.

Default: &CORESIZ=8

BSC-20 RMTGEN Parameters - Page 7.3.4

430

H A S P

&ERRMSGN

&ERRMSGN·

Explanation: Variable symbol &ERRMSGN specifies the
number of four-byte entries to be assembled in the
System/360 Remote Terminal as an error message log
table. The specification must be an integer not less
than 8.

Default: &ERRMSGN=8

BSC-20 RMTGEN Parameters - Page 7.3.5

431

H A S P

&LINESPD

&LINESPD

Explanation: Variable symbol &LINESPD specifies the
speed, in baud, of the communication line to be used
between the Model 20 and the central computer. The
specification must be a positive integer.

Default: &LINESPD=2000

BSC-20 RMTGEN Parameters - Page 7.3.6

432

H A S P

&NUMBUFS

&NUMBUFS

Explanation: Variable symbol &NUMBUFS specifies number
of teleprocessing buffers to be constructed by the
Model 20 Remote Terminal program. The specification
must be an integer no less than given by the formula

2*X+l
where

X=l if either a 2520 or a 2560 is to be used as
both a reader and a punch, or

O otherwise.

Default: &NUMBUFS=8

Notes:
1. The length of each buffer is &MLBFSIZ+S bytes

(rounded up to the next full word); the value
of HASPGEN parameter &MLBFSIZ is automatically
propagated to RMTGEN.

2. If &NUMBUFS specifies more buffers than can be
built in available storage, the Remote Terminal
program will build as many buffers as it can.

3. It is recommended that at least two buffers be
furnished for each output device and for the
communication adapter.

BSC-20 RMTGEN Parameters - Page 7.3.7

433

H A S P

&NUMTANK

&NUMTANK

Explanation: Variable symbol &NUMTANK specifies the
number of decompression buffers ("decompression tanks")
to be assembled in the Model 20 Remote Terminal program.
The specification should be an integer not less than 2.

Default: &NUMTANK=8

Notes:
1. The length of each decompression tank is &PRTSIZE+6.
2. It is recommended that at least two tanks each be

provided for the printer and the punch.
3. For an BK Model 20, specification of &NUMTANK

greater than 8 may cause the Remote Terminal
program to assemble larger than X'lFOO' bytes
(BK-256); the resultant program will fail to
load.

BSC-20 RMTGEN Parameters - Page 7.3.8

434

H A S P

&PDEV(l)

&PDEV(1)

Explanation: Subscripted variable symbol &PDEV(l)
specifies device type for the Model 20 printer. The
specification must be either 1403 or 2203.

Default: &PDEV{l)=2203

BSC-20 RMTGEN Parameters - Page 7.3.9

435

H A S P

&PRTCONS

&PRTCONS

Explanation: Variable symbol &PRTCONS specifies degree
of use of the printer as an output console. The speci­
fication must be either O, 1, or 2.

For &PRTCONS=O, the printer will never be used as an
output console.

For &PRTCONS=l, the printer will be used as an output
console. If the Model 20 receives an operator message
while the printer is printing a job, the message will
be held in a decompression tank. If all but two of the
decompression tanks contain messages, the job's printing
will be stopped, a page ejected, the messages printed,
another page will be ejected, and the job will resume
printing.

For &PRTCONS=2, the printer will be used as an output
console only if it is not printing a job. Otherwise,
operator messages received from the central computer
will be thrown away.

Default: &PRTCONS=O

Notes:
1. If &WDEV(l) is not specified as zero, &PRTCONS is

not used a~d the printer will never be used as an
output console.

2. If &PRTCONS=l or &PRTCONS=2, console support must
be indicated for this Remote Terminal at HASPGEN
time. See HASPGEN parameter RMTnn.

BSC-20 RMTGEN Parameters - Page 7.3.10

436

H A S P

&PRTSIZE

&PRTSIZE

Explanation: Variable symbol &PRTSIZE specifies the
length in bytes of the text portion of each decompres­
sion tank. Each tank must be long enough to hold a
maximum-length output record to either the printer,
the punch, or the operator console. The specification
must be an integer that is the largest of 80 (if &UDEV(l)
is not zero), 120 (if &WDEV(l) is not zero), and the
line width of the printer.

Default: &PRTSIZE=l20

BSC-20 RMTGEN Parameters - Pag~ 7.3.11

437

H A S P

&RADR (1)

&RADR(1)

Explanation: Subscripted variable symbol &RADR(l)
specifies the unit address of the Model 20 card
reader. The specification must correspond to the
specification for &RDEV(l) as follows:

&RDEV(l)
2501
2520
2560

Default: &RADR(l)=l

&RADR(l)
1
2
2

BSC-20 RMTGEN Parameters - Page 7.3.12

438

H A S P

&RDEV(l)

-~

&RDEV(1)

Explanation: Subscripted variable symbol &RDEV(l)
specifies device type for the Model 20 card reader.
The specification must be either 2501, 2520, or 2560.

Default: &RDEV(l)=2501

Notes:
1. See also &RADR(l)

BSC-20 RMTGEN Parameters - Page 7.3.13

439

H A S P

&SUBMOD

&SUBMOO

ExSlanation: Variable symbol &SUBMOD specifies the
Su model number of the System/360 Model 20 for the
specified Remote Terminal. The specification must
be a valid System/360 Model 20 Submodel number.

Default: &SUBMOD=2

BSC-20 RMTGEN Parameters - Page 7.3.14

440

/ '

H A S P

&UADR(l)

&UADR(1)

Explanation: Subscripted variable symbol &UADR(l}
specifies the unit address of the Model 20 card punch.
The specification must correspond to the specification
for &UDEV(l) as follows:

&UDEV (1)
1442
2520
2560

0

Default: &UADR(l)=3

&UADR(l)
3
2
2

not used

BSC-20 RMTGEN Parameters - Page 7.3.15

441

H A S P

&UDEV (1)

&UDEV(1)

Explanation: Subscripted variable symbol &UDEV(l)
specifies device type for the Model 20 card punch.
The specification must be either 1442, 2520, 2560,
or o. Specification 0 is used when the Model 20
does not include a card punch.

Default: &UDEV(l)=l442

Notes:
1. See also &UADR(l), unless &UDEV(l)=O.

BSC-20 RMTGEN Parameters - Page 7.3.16

442

H A S P

&WDEV (1)

&WDEV(1)

Explanation: Subscripted variable symbol &WDEV(l)
specifies device type for the Model 20 console.
The specification must be either 2152 (if a console
is present) or 0 (if no console is present).

Default: &WDEV(l)=O

Notes:
1. If &WDEV(l)=2152, console suppo~t must be

for this Remote Terminal at HASPGEN time.
HASPGEN parameter RMTnn.

indicated
See·

BSC-20 RMTGEN Parameters - Page 7.3.17

443

H A S P

&WTOSIZE

&WTOSIZE

Explanation: Variable symbol &WTOSIZE specifies the
maximum length in bytes of a HASP operator cormnand to
be transmitted from the Model 20 to the central com­
puter. The specification must be a positive integer.

Default: &WTOSIZE=l20

Notes:
1. If &WDEV(l)=O, this parameter is not used.

BSC-20 RMTGEN Parameters - Page 7.3.18

444

H A S P

&XPARENT

&XPARENT

Explanation: Variable symbol &XPARENT specifies presence
or absence of the text transparency feature. If the
Binary Synchronous Communication Adapters at both the
Model 20 and the central computer have the text trans­
parency feature, YES should be specified; otherwise NO
should be specified.

Default: &XPARENT=YES

BSC-20 RMTGEN Parameters - Page 7.3.19

445

H A S P

7.4 RMTGEN PARAMETERS FOR SYSTEM/360 (EXCEPT MODEL 20) BSC

This section describes the parameters used in assembly
of the System/360 BSC Remote Terminal Program for HASP
MULTI-LEAVING Remote Job Entry. The parameters are
used during RMTGEN to specify hardware configuration
and software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

BSC-360 RMTGEN Parameters - Page 7.4.l

446

H A S P

&ADAPT

&ADAPT

Ex~lanation: Variable symbol &ADAPT specifies the
unit address of the Binary Synchronous Communication
Adapter to be used by the System/360 Remote Terminal
to communicate with HASP at the central computer.
The specification must be a valid unit address.

Default: &ADAPT=020

BSC-360 RMTGEN Parameters - Page 7.4.2

447

H A S P

&CCT

&CCT

Explanation: Variable symbol &CCT specifies for all
text compression but trailing blank compression the
minimum number of characters to be compressed. A
duplicate character string of fewer than &CCT charac­
ters will be treated as a string of non-duplicate
characters for compression purposes. The specification
must be an integer between 3 and 31, inclusive.

Default: &CCT=4

Notes:
1. See also &CMPTYPE. The value of &CCT is not

used if &CMPTYPE=l.
2. A smaller value of &CCT increases efficiency

of communication line usage at the expense of
compute time required for compression.

BSC-360 RMTGEN Parameters - Page 7.4.3

448

H A S P

&CMPTYPE

&CMPTYPE

Explanation: Variable symbol &CMPTYPE specifies type
of compression to be applied to all text transmitted
from the System/360 Remote Terminal to the central
computer. The specification must be either 1, 2, or
3. The value 1 specifies trailing blank compression;
2 specifies compression of leading, embedded, and
trailing blanks, and 3 specifies compression of all
duplicate character strings.

Default: &CMPTYPE=2

Notes:
1. See also &CCT.

BSC-360 RMTGEN Parameters - Page 7.4.4

449

H A S P

&CORESIZ

&CORESIZ

Explanation: Variable symbol &CORESIZ specifies the
size of main 'storage for the System/360 Remote Terminal
in Kbytes (1 Kbyt~ = 1024 bytes). The specification
must be an integer between 8 and 32 inclusive. If
the System/360 is larger than 32 Kbytes, &CORESIZ must
be specified as 32.

Default: &CORESIZ=32

BSC-360 RMTGEN Parameters - Page 7.4.5

450

H A S P

&ERRMSGN

&ERRMSGN

Explanation: Variable symbol &ERRMSGN specifies the
number of four-byte entries to be assembled in the
Model 20 Remote Terminal program as an error message
log table. The specification must be an integer not
less than 8.

Default: &ERRMSGN=8.

BSC-360 RMTGEN Parameters - Page 7.4.6

451

H A S P

&LINESPD

&LINESPD

Explanation: variable symbol &LINESPD specifies the
speed, in baud, of the communication line to be used
between the System/360 Remote Terminal and the central

·computer. The specification must be a positive integer.

Default: &LINESPD=2000

BSC-360 RMTGEN Parameters - Page 7.4.7

452

H A S P

&MACHINE

&MACHINE

Explanation: Variable symbol &MACHINE specifies the
model number of the System/360 to be used as a HASP
Remote Terminal. The specification must be a valid
System/360 model number for a System/360 which includes
the standard instruction set and the decimal instruction
set.

Default: &MACHINE=30

BSC-360 RMTGEN Parameters - Page 7.4.8

453

: NUl'-1BllFS

&N UMHl.Jt·~,

Exelanation: Variable symbol &NUMBUFS specifies number
of teleprocessing buffers to be· constructed by the
System/360 Remote Terminal program. The specification
must be an integer no less than given by the formula

2*X+l
where

X=l if either a 2520 or a 1442 is to be used as
both a reader and a punch, or

0 otherwise.

Default: &NUMBUFS=8

Notes:
I. The length of each buffer is &MLBFSIZ+S bytes

(rounded up to a multiple of 4): the value of
HASPGEN parameter &MLBFSIZ is automaticaily
propagated to RMTGEN.

2. If &NUMBUFS specifies more buffers than can be
built in available storage, the Remote Terminal
program will build as many buffers as it can.

3. It is recommended that at least two buffers be
furnished for each output device and for the
communication adapter.

liSC-360 RMTGEN Parameters - Page 7.4.9

454

H A S P

&NUMTANK

&NUMTANK

Ex~anation: Variable symbol &NUMTANK specifies the
nu er of decompression buffers ("decompression tanks")
to be assembled in the System/360 Remote Terminal
program. The specification should be an int~ger not
less than 2.

Default: &NUMTANK=B

Notes:
1. The length of each decompression tank is &PRTSIZE+6.
2. It is recommended that at least two tanks be pro­

vided for each printer and each punch (3 for a 2540
punch) .

BSC-360 RMTGEN Parameters - Page 7.4.10

455

H A S P

&PADR (n)

&PADR(n)

Explanation: Subscripted variable symbols &PADR(n)
specify unit ~ddresses for the printers defined by
&PDEV(n). Fo,r each &PDEV(n) not speciffed as zero,
the correspondi:ng ,symbol &PADR (n) must specify the
device's 3-character hexadecimal unit address.

Default: &l?ADR(l)~OOE
&Pf\DR(2)=00F
&PADR(3) =FFF
&PADR{4)'=FFF
&PADR(S)=FFF
&PADR(6)=FFF
&PADR(7)=FFF

BSC-360 RMTGEN Parameters - Page 7.4.11

456

H A S P

&PDEV(n)

&PDEV(n)

Explanation: Subscripted variable symbols &PDEV(n)
specify the existence and device types of the Remote
Terminal printers. Each specification must be either
1403, 1443, or O. A specification of 0 indicates that
the associated printer does not exist.

Default: &PDEV(l)=l403

Notes:

&PDEV(2)=0
&PDEV (3) =0
&PDEV(4)=0
&PDEV(S)=O
&PDEV (6) =O
&PDEV (7) =O

1. If &PDEV(n) is specified as a device type, then
&UDEV (8-n) must be specified as zero_.

2. If &PDEV(n+l) is specified as a device type, then
&PDEV(n) must be specified as a device type.

3. If more than one printer is specified, a Device
Control Table (DCT) for each additional printer
must be added to the HASP System.

BSC-360 RMTGEN Parameters - Page 7.4.12

457

H A S P

&PRTSIZE

&PRTSIZE

Explanation: Variable symbol &PRTSIZE specifies the
length in bytes of the text portion of each decompres­
sion tank. Each tank must be long enough to hold a
maximum-length output record to either a printer, a
punch, or the operator console. The specification
must be an integer that is the larger of 120 and the
line width of the widest printer.

Default: &PRTSIZE=l32

BSC-360 RMTGEN Parameters - Page 7.4.13

458

. -~ . ~·

H A S P

&RADR(n)

&RADR(n)

Explanation: Subscripted variable symbols &RADR(n)
specify unit addresses for the readers defined by
&RDEV(n). For each &RDEV(n) not specified as zero,
the corresponding symbol &RADR(n) must specify the
device's J~character hexadecimal unit address.

Default: &RADR(l)=OOC
&RADR(2)=FFF
&RADR(3)=FFF
&RADR(4)=FFF
&RADR(S)=FFF
&RADR(6)=FFF
&RADR(7)=FFF

BSC-360 RMTGEN Parameters - Page 7.4.14

459

H A S P

&IWEV (n)

&RDEV(n)

Explanation: Subscripted variable symbols &RDEV(n)
specify the existence and device types of the Remote
Terminal readers. Each specification must be either
2540, 2501, 2520, 1442, or O. A specification of 0
indicates that the associated reader does not exist.

Default: &RDEV(l)=2540

Notes:

&RDEV(2)=0
&RDEV(3)=0
&RDEV(4)=0
&RDEV(S}=O
&RDEV(6)=0
&RDEV(7)=0

1. If &RDEV(n+l) is specified as a device type, then
&RDEV(n) must be specified as a device type.

2. If more than one reader is specified, a Device
Control Table (DCT) for each additional reader
must be added to the HASP System.

BSC-360 RMTGEN Parameters - Page 7.4.15

460

H A S P

&UADR(n)

&UADR(n)

Explanation: Subscripted variable symbols &UADR(n)
specify unit addresses for the punches defined by
&UDEV(n). For each &UDEV(n) not specified as zero,
the corresponding symbol &UADR(n) must specify the
device's 3-character hexadecimal unit address.

Default: &UADR(l)=OOD
&UADR(2)=FFF
&UADR(3)=FFF
&UARD(4)=FFF
&UARD(S)=FFF
&UARD(6)=FFF
&UARD(7)=FFF

BSC-360 RMTGEN Parameters - Page 7.4.16

461

H A S P

&UDEV(n)

&UDEV(n)

Explanation: Subscripted variable symbols &UDEV(n)
specify the existence and device types of the Remote
Terminal punches. Each specification must be either
2540, 2520, 1442, or 0. A specification of 0 indicates
that the associated punch does not exist.

Default: &UDEV(l)=2540

Notes:

&UDEV (2) =O
&UDEV(3)=0
&UDEV(4)=0
&UDEV(5)=0
&UDEV(6)=0
&UDEV(7)=0

1. If &UDEV(n) is specified as a device type, then
&PDEV(B-n) must be specified as zero.

2. If &UDEV(n+l) is specified as a device type, then
&UDEV(n) must be specified as a device type.

3. If more than one punch is specified, a Device
Control Table (DCT) for each additional punch must
be added to the HASP System.

BSC-360 RMTGEN Parameters - Page 7.4.17

462

H A S P

&WADR (1)

&WADR(1)

Explanation: Subscripted variable symbol &WADR(l) specifies
the unit address of the 1052 operator console on the
System/360 Remote Terminal. The specification must
be a 3-character hexadecimal unit address.

Default: &WADR(l)=OlF

BSC-360 RMTGEN Parameters - Page 7.4.18

463

H A S P

&WTOSIZE

&WTOSIZE

Explanation: Variable symbol &WTOSIZE specifies the
maximum length in bytes of a HASP operator command to
be transmitted from the System/360 Remote Terminal
to the central computer. The specification must be
a positive integer.

Default: &WTOSIZE=l20

BSC-360 RMTGEN Parameters - Page 7.4.19

464

H A S P

&XPARENT

&XPARENT

Explanation: Variable symbol &XPARENT specifies
presence or absence of the text transparency feature.
If the Binary Synchronous Cormnunication Adapters at
both the System/360 Remote Terminal and the central
computer have the text transparency feature, YES
should be specified; otherwise NO should be specified.

Default: &XPARENT=YES

BSC-360 RMTGEN Parameters - Page 7.4.20

465

-----------~----- ------------

H A S P

7.5 RMTGEN PARAMETERS FOR 1130

This section describes the parameters used in assembly
of the 1130 Remote Terminal Program for HASP MULTI­
LEAVING Remote Job Entry. The parameters are used
during RMTGEN to specify hardware configuration and
software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

T.he parameters are listed in alphabetical order.

RTP1130 RMTGEN Parameters - Page 7.5.1

4p6

ll A S P

&CLOCK

&CLOCK

Explanation: The variable symbol &CLOCK is used to
specify the type of communication adapter clocking
available on the 1130 to be used by the workstation
program. The specification of &CLOCK=O is interpreted
to mean that data set clocking is being used. The
value &CLOCK=l specifies internal (1130) clocking.

Default: &CLOCK=O

Notes:
1. The rate of insertion of the synchronous idle

sequence in the transmitted data is determined
by the variables &CLOCK, &LINESPD and &TRANPRN.
The relationship of these variables to the inser­
tion rate is:

&CLOCK

0
0
1
1

&TRANPRN

0
1
0
1

INSERTION EVERY:

&LINESPD/8
&LINESPD/8

70
&LINESPD/8

characters
characters·
characters
characters

2. The equation used for the insertion rate is:
(&LINESPD/8) *T

where T is 1.00 second which is the nominal 2701
timer value.

RTP1130 RMTGEN Parameters - Page 7.5.2

467

H A S P

&CMPTYPE

&CMPTYPE

Explanation: The variable symbol &CMPTYPE is used to
specify the compression technique that is to be applied
to the data transmitted to the central HASP system.
The choices for &CMPTYPE are:

&CMPTYPE=O for no compression of duplicat~ char­
acters or truncation of trailing blanks.

&CMPTYPE=l for trailing blank truncation only.

&CMPTYPE=2 for full compression: trailing blank
truncation and encoding of duplicate
characters.

Default: &CMPTYPE=2

Notes:
1. The process of compressing input data offers optimum

performance with respect to efficient line utiliza­
tion. However, the factors of line speed, CPU
availability, buffer size, line turn-around time,
nature of the data to be compressed, etc., are
variables which contribute to the overall operation
of the workstation program. Since compression and
truncation require considerable CPU time, the user
may decide, on the basis of the other variables,
to respecify the compression technique.

RTP1130 RMTGEN Parameters - Page 7.5.3

468

H A S P

&DELAY

&DELAY

Explanation: The variable symbol &DELAY is used to
define the number of intervals of time that RTP1130
will delay in transmitting a "handshaking" sequence
(DLE-ACKO) to the central HASP site. The hardware
program timer clock is used to measure the delay and
is assumed to be set to a nominal value of .35 seconds.

Default: &DELAY=3

Notes:
1. &DELAY=3 results in a delay of 1.05 seconds,

assuming a timer interval of .35 seconds.
2. The purpose of the delay when "handshaking" is

to minimize CPU processing at the central HASP
computer when no data is being transmitted.

3. The value of &DELAY must not be set to such a
large increment that the delay will be greater
than the timeout period of the central site
2701/2703.

RTP1130 RMTGEN Parameters - Page 7.5.4

469

H A S P

&FULLIST

&FULLIST

Explanation: The variable symbol &FULLIST is used
to specify the type of assembly listing which is pro­
duced by the OS/360 assembler during the RMTGEN process.
If the value of &FULLIST is set to O, then the assembly
listing produced will be according to the PRINT NOGEN
stipulation of the assembler. If the value of &FULLIST
is set to 1, the listing will be produced according to
the PRINT GEN stipulation.

Default: &FULLIST=l

Notes:
1. Since most of the code in RTP1130 and RTPLOAD

is created by Macro instructions, the specifica­
tion of &FULLIST=O will essentially produce a
source listing (cross referenced) without the
1130 assembled instructions. Error messages
will not appear on the listing.

RTP1130 RMTGEN Parameters - Page 7.5.5

470

H A S P

&LINESPD

&LINESPD

Explanation: The variable symbol &LINESPD is used
to specify the baud rate for the communication line
interfac~ to the workstation program. The value should
correspond to the selected setting of the baud rate
switch on the 1130 SCA control panel: 1200,2000, ... ,etc.

Default: &LINESPD=2000

Notes:
1. The rate of insertion of the synchronous idle

sequence (DLE-SYN or SYN-SYN) in the transmitted
data is determined by the variables &CLOCK,
&LINESPD and &TRANPRN. See note 1 of &CLOCK
description.

RTP1130 RMTGEN Parameters - Page 7.5.6

471

H A S P

&MACHSIZ

&MACHSIZ

Explanation: Variable symbol &MACHSIZ specifies the
amount of 1130 core to be used by RTP1130. The value
of &MACHSIZ is in units of 1130 words.

Default: &MACHSIZ=8192

Notes:
1. The value of &MACHSIZ is interpreted to mean that

"&MACHSIZ" number of words, starting at location
O, are available for the workstation program con­
sisting of RTPBOOT, RTPLOAD and RTP1130.

2. The same variable symbol must be defined for
RTPLOAD and should have the same value.

3. The value of &MACHSIZ may be less than the actual
available storage but must not be greater.

RTP1130 RMTGEN Parameters - Page 7.5.7

472

H A S P

&PN1442

&PN1442

Explanation: The variable symbol &PN1442 is used to
define a 1442 punch. If the variable is set to 1,
then RTP1130 will include support for punched card
output produced by jobs at the Central HASP site.
If the variable is set to 0, no support for the 1442
punch will be provided. See &RD1442 for the defini­
tion of a reader function on the 1442.

Default: &PN1442=1

RTP1130 RMTGEN Parameters - Page 7.5.8

473

H A S P

&PRFOTLW

&PRFOTLW

Explanation: The value of the variable symbol &PRFO'rLW
is used to define the line width of the 1403 printer
specified by &PR1403. The choices are 120 or 132
character lines.

Default: &PRFOTLW=l20

Notes:
1. The definition of the line width for all printers

on a particular remote is a HASPGEN requirement.
See HASPGEN parameter RMTnn.

RTP1130 RMTGEN Parameters - Page 7.5.9

474

H A S P

&PR1132

&PR1132

Explanation: The variable symbol &PR1132 is used to
define an 1132 printer. If the variable is set to
1, then RTP1130 will include support for the 1132 to
print job output. If the variable is set to O, no
support will be included in RTP1130 for the 1132.

Default: &PR1132=0

RTP1130 RMTGEN Parameters - Page 7.5.10

475

H i\ S P

&PR1403

&PR1403

Explanation: The variable symbol &PR1403 is used to
define a 1403 printer for use as an output device.
If the value of &PR1403 is 1, then the 1403 function
will be included in RTP1130. If the value is O, the
function is deleted from RTP1130.

Default: &PR1403=1

Notes:
1. See &PRFOTLW for specifying the line width of

the 1403.

RTP1130 R1'1TGEN Parameters - Page 7. 5. ll

4 76

I l ;\ s p

&k01442

&RD1442

Explanation: The variable symbol &RD1442 is used to
define a 1442 as a card reader. If the variable is
set to 1, then RTPllJO will be assembled with all
necessary control blocks and support routines to pro­
vide job input from the 1442. If the variable is set
to O, no support for the 1442 reader will be provided
in RTP1130. See &PN1442 for a definition of the
punch function on the 1442.

Default: &RD1442=1

Notes:
1. If the variable &RD1442 is set to 1 and a 1442

reader does not exist then the operation of the
workstation program may be unpredictable.

RTP1130 RMTGEN Parameters - Page 7.5.12

477

Ii A S P

&RD2501

&R02501

Explanation: The variable symbol &RD2501 is used to
define a 2501 card reader. If the variable is set
to 1, then RTP1130 will be assembled with all necessary
control block and subroutines to support the 2501 as
a job input device. If the variable is set to O,
no support for the 2501 will be included in RTP1130.

Default: &RD2501=0

Notes:
1. If the variable &RD2501 is set to 1 and a 2501

does not exist then the operation of the work­
station program will be unpredictable and usually
unproductive.

RTP1130 RMTGEN Parameters - Page 7.5.13

478

H A S P

&RTPLORG

&RTPLORG

Explanation: The variable symbol &RTPLORG defines
the origin in 1130 storage of the program loader
RTPLOAD which is used to load RTP1130.

Default: &RTPLORG=2*(&MACHSIZ-1024)

Notes:
1. The value of the above expression, assuming

&MACHSIZ=8192, is 14336 (which is twice the
actual 1130 storage address because the value
is used in an ORG operation and must be in terms
of bytes not 1130 words.

2. The RTPLOAD program must origin in the storage
available between the end of RTP1130 (beginning
of buffer pool) and the end of defined (&MACHSIZ)
storage MINUS the length of RTPLOAD. The default
value of &RTPLORG allows for an RTPLOAD of 1024
words in size.

RTP1130 RMTGEN Parameters - Page 7.5.14

479

U A S P

&TRj\NPRN

&TRANPRN

Explanation: The variable symbol &TRANPRN is used to
define the simulation of the Binary Synchronous
Transparency feature. If the value of &TRANPRN is set
to 1, then RTP1130 will simulate the transparency
feature in the same manner as the 2701 SDA-II adapter
equipped with the transparency feature. If the
variable is set to O, no simulation will occur and
therefore data which contains transparent characters
cannot be properly processed by RTP1130.

Default: &TRANPRN=l

Notes:
1. If &TRANPRN=O is specified, the conversion of

card code data is monitored and all BSC control
characters are converted to hexadecimal O. This
prevents mispunched data from causing an infinite
error retryjf the central site does not have
transparency.

2. See &LINESPD and &CLOCK for additional influence
of &TRANPRN.

3. If &TRANPRN=l, the generated Remote Terminal
program will communicate only with a 2701 or 2703
adapter which has the text transparency feature.

RTP1130 RMTGEN Parameters - Page 7.5.15

480

·•

•

H A S P

7.6 RMTGEN PARAMETERS FOR 1130 LOADER

This section describes the parameters used in assembly of
RTPLOAD, the 1130 Loader Program. RTPLOAD is used to load
the 1130 Remote Terminal Program. RTPLOAD's three parameters
specify machine size, loader origin, and an assembler list
option.

For each parameter there is an explanation, the default value,
and frequently notes which expand upon the explanation.

The RMTGEN processes produce the object decks for RTPLOAD
and RTP1130. The bootstrap loader (RTPBOOT) cannot be pro­
duced on a System 360 and must be punched by keypunch as
indicated in Section 4.14.3.

The parameters are listed in alphabetical order.

RTPLOAD RMTGEN Parameters - Page 7.6.1

481

ll ~\ s p

&FULLIST

&FULLIST

Explanation: The variable symbol &FULLIST is used
to specify the type of assembly listing which is pro­
duced by the OS/360 assembler during the RMTGEN process.
If the value of &FULLIST is set to O, then the assembly
listing produced will be according to the PRINT NOGEN
stipulation of the assembler. If the value of &FULLIST
is set to 1, the listing will be produced according to
the PRINT GEN stipulation.

Default: &FULLIST=l

Notes:
1. Since most of the code in RTP1130 and RTPLOAD

is created by Macro instructions, the specifica­
tion of &FULLIST=O will essentially produce a
source listing (cross referenced) without the
1130 assembled instructions. Error messages
will not appear on the listing.

RTPLOAD RMTGEN Parameters - Page 7.6.2

482

H A S P

&MACHSIZ

&MACHSIZ

Explanation: Variable symbol &MACHSIZ specifies the
amount of 1130 core to be used by RTPLOAD. The value
of &MACHSIZ is in units of 1130 words.

Default: &MACHSIZ=8192

Notes:
1. The value of &MACHSIZ is interpreted to mean that

11 &MACHSIZ 11 number of words, starting at location
O, are available for the workstation program con­
sisting of RTPBOOT, RTPLOAD and RTP1130.

2. The same variable symbol must be defined for
RTP1130 and should have the same value.

3. The value of &MACHSIZ may be less than the actual
available storage but must not be greater.

RTPLOAD RMTGEN Parameters - Page 7.6.3

483

ll A S P

&l\TPLORG

&RTPLORG

Explanation: The variable symbol &RTPLORG defines
the origin in 1130 storage of the program loader
RTPLOAD which is used to load RTP1130.

Default: &RTPLORG=2*(&MACHSIZ-1024)

Notes:
1. The value of the above expression, assuming

&MACHSIZ=8192, is 14336 (which is twice the
actual 1130 storage address because the value
is used in an ORG operation and must be in terms
of bytes not 1130 words.

2. The RTPLOAD program must origin in the storage
available between the end of RTP1130 (beginning
of buffer pool) and the end of defined (&MACHSIZ)
storage MINUS the length of RTPLOAD. The default
value of &RTPLOR~ allows for an RTPLOAD of 1024
words in size.

RTPLOAD RMTGEN Parameters - Page 7.6.4

484

H A S P

7. 7 RMTGEN PARAME'rERS FOR SYSTEM/3

This section describes the parameters used in assembly
of the System/3 Remote Terminal Program for HASP MULTI­
LEAVING Remote Job Entry. The parameters are used
during RMTGEN to specify hardware configuration and
software options.

For each parameter there is an explanation, the default
value, and frequently notes which expand upon the
explanation.

The parameters are listed in alphabetical order.

System/3 RMTGEN Parameters - Page 7.7.1

485

11 A S P

&COMP

&COMP

Explanation: Variable symbol &COMP specifies degree
of text compression to be provided for all text trans­
mitted from the System/3 to HASP. The specification
must be either 0, 1, or 2.

For &COMP=O, neither compression nor truncation is
performed.

For &COMP=l, trailing blanks are truncated from each
logical record before it is transmitted.

For &COMP=2, compression takes place after truncation.
Strings of from two to 31 blanks are compressed to a
single byte; strings of from three to 31 duplicate
characters are compressed to two bytes.

Default: &COMP=2

System/3 RMTGEN Parameters - Page 7.7.2

486

H A S P

&DEBUG

&DEBUG

Explanation: Variable symbol &DEBUG specifies inclusion
or exclusion of certain validity tests and a core dump
program in the System/3 Remote Terminal Program. The
specification must be either O or 1.

Default: &DEBUG=O

System/3 RMTGEN Parameters - Page 7.7.3

487

H A S P

&DIAL, &DIAL!

&DIAL ------------

Exelanation: Variable symbols &DIAL and &DIALl specify
the telephone number to be used during the initializa­
tion process. The values will be included on the
default /*SIGNON card assembled into the System/3
Remote Terminal Program and preceded by the keyword
DIAL (unless the parameters are left at their defaults).
Each specification is a string of from one to eight
decimal digits. If the telephone number is eight or
fewer digits long, it should be specified by &DIAL.
If the telephone number is longer than eight digits,
its leftmost eight digits should be specified by &DIAL
and the remaining digits by &DIALl.

Default: &DIAL=[null string]
&DIALl=[null string]

System/3 RMTGEN Parameters - Page 7.7.4

488

H A S P

&MACHSIZ

&MACHSIZ

Explanation: Variable symbol &MACHSIZ specifies the
size of System/3 Core storage. The specification
should be either 8192, 12288, 16384, 24576, or 32768
for core storage sizes of 8K, 12K, 16K, 24K or 32K
respectively.

Default: &MACHSIZ=8192

System/3 RMTGEN Parameters - Page 7.7.5

489

-------- ----------------------- ------------------------·--------------------------------------- ---- -----------

H A S P

&PASSWD

&PASSWD

Explanation: Variable symbol &PASSWD specifies a
password to be used during the SIGNON process. The
value will be included on the default /*SIGNON card
assembled into the System/3 Remote Terminal Program.
The specification must be a character string of from
one to eight characters. If blanks are desired, no
specification may be made.

Default: &PASSWD=[null string]

System/3 RMTGEN Parameters - Page 7.7.6

490

H A S P

&PC(n)

&PC(n)

Explanation: Subscripted variable symbols &PC(n)
specify skip information for the 5203 printer. The
value to which &PC(n) is set will be the print line
number to which paper will be skipped when the System/3
Remote Terminal Program simulates the 1403 command
"Skip to Channel n". Each specification must be an
integer between O and &S3FORML, inclusive. A specifi­
cation of 0 causes no forms movement.

Default: &PC(l)=l
&PC(2)=0
&PC(3)=0
&PC(4)=0
&PC(S)=O
&PC(6)=0
&PC(7)=0
&PC(B)=O
&PC(9)=0
&PC(lO)=O
&PC(ll)=O
&PC(l2)=&S3FORML-5

System/3 RMTGEN Parameters - Page 7.7.7

491

H A S P

&PRTCONS

&PRTCONS

Explanation: Variable symbol &PRTCONS specifies utili­
zation of the 5203 printer as an operator's output
console. The specification must be O, 1, or 2.

For &PRTCONS=O, the 5203 printer will never be used as
an operator's output console.

For &PRTCONS=l, the System/3 Remote Terminal Program
will attempt to hold operator messages from HASP until
a job has completed printing. However, if two or more
MULTI-LEAVING buffers are received containing HASP
operator messages, the 5203 will eject a page (skip to
channel 1), print the HASP operator messages, eject
another page, and resume printing its job.

For &PRTCONS=2, the System/3 Remote Terminal Program
will throw away all operator messages while the 5203
is printing a job. While the 5203 is dormant , it
will print any received messages.

Default: &PRTCONS=2

Notes:
1. If &S35471=1, the value of &PRTCONS is ignored

and assumed to be zero.

System/3 RMTGEN Parameters - Page 7.7.8

492

H A S P

&S3FORML

&S3FORML

Explanation: Variable symbol &S3FORML specifies the
number of print lines on a page of the continuous
forms which will be used in the 5203 printer. The
specification must be an integer not less than 6.

Default: &S3FORML=66

System/3 RMTGEN Parameters - Page 7.7.9

493

H A S P

&S3NPUNS

&S3NPUNS

Explanation: Variable symbol &S3NPUNS specifies the
maximum number of jobs that can be punching simultaneously
at the System/3 Remote 'l'erminal. The specification must
be 1, 2, or 3. (A value of 3 allows simultaneous opera­
tion of both 5424 hoppers and the 1442 hopper as punches.)

Default: &S3NPUNS=l

Notes:
1. If &S3NPUNS is set to 2 or ~' extra device control

tables must be added for the appropriate remote to
the HASP System at HASPGEN time.

System/3 RMTGEN Parameters - Page 7.7.10

494 \

H A S P

&S3NRDRS

&S3NRDRS

Explanation: Variable symbol &S3NRDRS specifies the
maximum number of job streams that can be reading
simultaneously from the System/3 Remote Terminal.
The specification must be 1, 2, or 3. (A value of
3 allows simultaneous operation of both 5424 hoppers
and the 1442 hopper as readers.)

Default: &S3NRDRS=l

Notes:
1. If &S3NRDRS is set to 2 or 3, extra device control

tables must be added for the appropriate remote to
the HASP System at HASPGEN time.

Systern/3 RMTGEN Parameters - Page 7.7.11

495

H A S P

&S30BJDK

&S30BJDK

Explanation: Variable symbol &S30BJDK specifies inclu­
sion of a facility to ounch Operating System object
decks. Text transparency should be present. The
specification should be 0 or 1.

If &S30BJDK=l, each card of an OS object deck will be
expanded and punched into two 96-column cards. These
cards will be recognized when later read by a System/3
Remote Terminal program for which &S30BJDK=l, and for
each two 96-column cards read an OS object deck card
image will be transmitted.

Default: &S30BJDK=O

System/3 RMTGEN Parameters - Page 7.7.12

496

H A S P

&S3SIP

&S3SIP

Explanation: Variable symbol &S3SIP specifies usage
of those bytes of System/3 core storage between X'lOO'
and X'lFF', inclusive. The specification must be either
0.or 1. For &S3SIP=l, the System/3 Remote Terminal
Program will not use the bytes; their values will be
preserved for the use of the System/3 Card System
Initialization Program.

Default: &S3SIP=O

System/3 RMTGEN Parameters - Page 7.7.13

497

H A S P

&S3TRACE

&S3TRACE

Explanation: Variable symbol &S3TRACE specifies the
number of four-byte entries in the System/3 Remote
Terminal Program's internal error message table. The
specification must be an integer greater than 1.

Default: &S3TRACE=l0

Systern/3 RMTGEN Parameters - Page 7.7.14

498

H A S P

&S3XPAR

&S3XPAR

Explanation: Variable symbol &S3XPAR specifies presence
or absence of the EBCDIC text transparency feature. The
specification should be 1 if both the central computer's
communications adapter and the System/3 BSCA have the
EBCDIC text transparency feature; otherwise the specifi­
cation should be 0.

Default: &S3XPAR=O

System/3 RMTGEN Parameters - Page 7.7.15

499

H A S P

&831442

&531442

Explanation: Variable symbol &S31442 specifies inclu­
sion or exclusion of support for the 1442 Card Reader­
Punch (RPQ) • The specification must be 1 for inclusion
and 0 for exclusion of 1442 support.

Default: &S31442=0

Notes:
1. If &831442=1, the resultant System/3 Remote Termi­

nal Program requires that a 1442 be present on
the System/3.

System/3 RMTGEN Parameters - Page 7.7.16

500

H A S P

&535471

Explanation: Variable symbol &S35471 specifies
presence or absence of a 5471 Printer-Keyboard on

&535471

the System/3. The 5471 will be used as an operator's
input/output console. The specification must be 1
if a 5471 is present: otherwise it must be O.

Default: &535471=0

System/3 RMTGEN Parameters - Page 7.7.17

501

H A 8 P

&835475

&535475

Explanation: Variable symbol &835475 specifies presence
or absence of a 5475 Data Entry Keyboard on the 8ystem/3.
The 5475 will be used as an operator's input console.
The specification must be 1 if a 5475 is present; other­
wise it must be 0.

Default: &835475=0

Notes:
1. If &835471=1, this parameter is ignored.

8ystern/3 RMTGEN Parameters - Page 7.7.18

502

H A S P

&S396COL

&S396COL

Explanation: Variable symbol &S396COL specifies inclu­
sion or exclusion of the System/3 load-mode punch option.
The specification must be either O or 1. If &S396COL
is specified, the resultant System/3 Remote Terminal
Program will be capable of receiving correctly the
punched output of a System/3 RMTGEN.

Default: &S396COL=O

System/3 RMTGEN Parameters - Page 7.7.19

503

H A S P

{The remainder of this page intentionally left blank.}

504

ll A S P

8.0 IIASP CONTROL Tl\DLE FORMATS

This sections contains block diagrams which depict the format!;
of the HASP Control Tables which are not described in other
sections of this manual.

HASP Control Table Formats -- Page 8.0-1

505

H A S P

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT

Displacement

Hex. Dec.

0 0

8 8

c 12

10 16

14 20

18 24

lC 28

20 32

24 36

28 40

r----------------------- 4 bytes ------------------------1

$VERSION

I- HASP Version
_,

$WAIT

Entry to HASP Dispatcher

$GETBUF

Entry to HASP Buffer "GET" Routine

$GETPBUF

Entry to HASP RJE Buffer "GET" Routine

SFREEBUF

Entry to HASP Buffer "FREE" Routine

$GE TUN IT

Entry to HASP Unit "GET" Routine

$FR EUN IT

Entry to HASP Unit "FREE" Routine

$QADD

Entry to HASP Job Queue Element "ADD" Routine

$QGET

Entry to HASP Job Queue Element "GET" Routine

HASP Communication Table Format -- Page 8.1-1

506

111\SP

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ,----------------------- 4 bytes ------------------------•,

28 40 $QPUT

Entry to HASP Job Queue Element "PUT" Routine

2C 44 $QREM

Entry to HASP Job Queue Element "REMOVE" Routine

30 48 $QSIZ

Entry to HASP Job Queue "SIZE" Routine

34 52 $QLOC

Entry to HASP Job Queue Element "LOCATE" Routine

38 56 $QJITLOC

Entry to HASP JIT Element "LOCATE" Routine

3C 60 $TRACK

Entry to HASP Track Allocation Routine

40 64 $PURGER

Entry to HASP Track Purge Routine

44 68 $EXCP

Entry to HASP Input/Output Supervisor

48 72 $EXTPOPE

Entry to HASP RTAM Open Routine

4C 76 $EXTPGET

Entry to HASP RTAM Get Routine

50 80

HASP Communication Table Format -- Page 8.1-2

507

Ili\SP

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

50 80

54 84

58 88

SC 92

60 96

64 100

68 104

6C 108

70 112

74 116

78 120

r----------------------- 4 bytes ------------"-----------1

$EXTPPUT

Entry to HASP RTAM Put Routine

$EXTPCLO

Entry to HASP RTAM Close Routine

$RESTORE

Entry to HASP RTAM Restore Routine

$0DEL

Entry to HASP Overlay $DELETE Routine

$0RET

Entry to HASP Overlay $RETURN Routine

$0LINK

Entry to HASP Overlay $LINK Routine

$0XCTL

Entry to HASP Overlay $XCTL Routine

$0LOAD

Entry to HASP Overlay $LOAD Routine

$WTO

Entry to HASP Write-to-Operator Routine

$FREEMSG

Entry to HASP Console Message Buffer Free Routine

HASP Communication Table Format -- Page 8.1-3

508

II A S P

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

!lex. Dec.
~----------------------- 4 bytes ------------------------~

78 120 $STIMER

Entry to HASP Set Interval Timer Routine

7C 124 $TTIMER

Entry to HASP Test Interval Timer Routine

80 128 $10ERROR

Entry to HASP Input/Output Error Logging Routine

84 132 $ERROR

Entry to HASP Catastrophic Error Routine

88 136 $DI STERR

Entry to HASP Disastrous Error Routine

0c 140 $SYS TYPE $0PTSTAT $STATUS

System Type Initialization HASP RESERVED
MFT or MVT Options Status

90 144 $HASPECF MHASPECB $XEQACT $ACTIVE

Master Event RJE Event O/S Execution Active
Control Field Control Field Count Count

94 148 $ENBALL $DI SALL $DIS INT

Enable All Disable All Disable Int RESERVED

98 152

Mask Mask Timer Mask

I $PSRDRCT $PSPRFCT $PSPUFCT

Pseudo Reader Pseudo Printer Pseudo Punch RESERVED
Count (2540) Count (1443) Count (1442)

~

9C 156 $EXCPCT $COMMCT

Active I/O Count Active Command Count

AO 160

HASP Conununication Table Format -- Page 8.1-4

509

11 A S P

Figure B.l.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

AO 160

A4 164

AB 16B

AC 172

BO 176

B4 lBO

BB 1B4

BC lBB

co 192

C4 196

ca 200

~----------------------- 4 bytes ------------------------~

$CKPTRAK

Checkpoint Track R E S E R V E D

$HASPTCB

Address of HASP Task Control Block

$PCEORG

Address of First HASP Processor Control Element

$BUFPDOL

Address of First Available HASP Buffer

$TPBPDOL

Address of First Available HASP RJE Buffer

$DCTPOOL

Address of First HASP Device Control Table

$JITABLE

Address of HASP Job Information Table

$CYLMAP

Address of First HASP Cylinder Module Map

$TEDADDR

Address of First Track Extent Data Table

$DCBLI ST

Address of HASP Direct Access DCB

HASP Communication Table Format -- Page 8.1-5

510

llJ\SP

Fiqun' t3 .1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Ht:!x. Dec.

cs 200

cc 204

DO 208

D4 212

DB 216

DC 220

~----------------------- 4 bytes ------------------------~

$FREEQUE

Address of First Free HASP Console Message Buffer

$BUSYQUE

Console Message Buffers Queued for I/O

$LOGQUE

Console Message Buffers Queued for Log Processor

$COMMQUE

HASP Commands Queued for Command Processor

$PRCHKPT

Address of HASP Print Checkpoint Table

HASP Communication Table Format -- Page 8.1-6

511

ll A S P

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ~----------------------- 4 bytes ------------------------~

DC 220 $SVCRELT

Address of MFT SVC Relocation Table

EO 224 $SVCTABF

Address of MFT SVC Table

E4 228 $SVCTABV

Address of MVT SVC Table

EB 232 $IOSENT

Entry to 0/S Input/Output Supervisor

EC 236 $ATTNENT

Entry to IOS Attention Appendage

FO 240 $XSMFENT

Entry to SMF EXCP Counting Routine

F4 244 $SVRSET

Entry to HASP SVC Reset Routine

F8 248

HASP Communication Table Format -- Page 8.1-7

512

llt\SP

Figure B.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

D~::'.ac:::~t r----------------------- 4 bytes ------------------------•

FB 248 $WAI TENT

Entry to IGCOOl (WAIT)

FC 252 SLINKENT

Entry to IGC006 (LINK)

100 256 $XCTLENT

Entry to IGC007 (XCTL)

104 260 $TIMENT

Entry to IGCOll (TIME)

108 264 $SVC IDS

Address of EXCP SVC Table Entry

lOC 268 $SVCLI NK

Address of LINK SVC Table Entry

110 272 $SVCWTO

WTO/WTOR SVC Table Entry

114 276 $SVCWTL

WTL SVC Table Entry

118 280 SATTNSAV

l~------~---1-2_-_B_y_t_e~A-t_t_e_n_t_i_o_n __ A_p_p_en_d_a_g_e __ S_a_v_e __ A_r_e_a ____________ ~J ____ ..._
-..J

124 292

HASP Communication Table Format -- Page 8.1-8

513

B·A S P

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement

lie~, Dec.
~---------C------------- 4 bytes -----~------------------~

124 292 $JOBQPTR

Address of HASP Job Queue

128 296 $JQFREE

Beginning of Free Job Queue Element Chain

12C 300 $JQENT

Beginning of Active Job Queue Element Chain

130 304 $XEQTOTL

cumulative Estimated Execution Time

134 308 $PRTTOTL

Cumulative Lines to be Printed

138 312 $PUNTOTL

Cumulative Cards to be Punched

l3C 316 $JOBNO $MSGRPNO

HASP Job Number Last Console Track

140 320 $DACK PT

....

'~-----------V-a_r_i_a_b_l_e __ L_e_n_g_t_h __ D_A __ C_h_e_c_k_p_o_i_n_t_A_r_e_a ___________ _,f ____ ~

HASP Communication Table Format -- Page 8.1-9

514

ll A S P

Figure 8. 1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Dis1"1lacement Field Name Bytes Field Description
Hex. Dec.

0 0 $VERSICJ\I 8 HASP Version (" V v.m ").

8 8 $WAIT 4 Entry to HASP Dispatcher.

c 12 $GETBUF 4 Entry to HASP Buffer "GET" Routine.

10 16 $GETPBUF 4 Entry to HASP RJE Buffer "GET" Routine.

14 20 $FREEBUF 4 Entry to HASP Buffer "FREE" Routine.

18 24 $GETlJHT 4 Entry to HASP Unit "GET" Routine.

lC 28 $FRELNIT 4 Entry to HASP Unit "FREE" Routine.

20 32 $QADD 4 Entry to HASP Job Queue Element "ADD" Routine.

24 36 $QGET 4 Entry to HASP Job Queue Element "GET" Routine.

28 40 $QPUT 4 Entry to HASP Job Queue Element "PUT" Routine.

2C 44 $QREM 4 Entry to HASP Job Queue Element "REMOVE"
R¢utine.

30 48 $QSIZ 4 En~ry to HASP Job Queue "SIZE" Routine.

\
34 52 $QLOC 4 En,try to HASP Job Queue Element "LOCATE"

Routine.

38 56 $QJITLOC 4 Entry to HASP Job Information Table Element
"LOCATE" Routine.

3C 60 $TRACK 4 Entry to HASP Track Allocation Routine.

40 64 $PURGER 4 Entry to HASP Track Purge Routine.

44 68 $EXCP 4 Entry to HASP Input/Output Supervisor.

48 72 $EXTPOPE 4 Entry to HASP RTAM Open Routine.

4C 76 $EXTPGET 4 Entry to HASP RTAM Get Routine.

50 80 $EXTPPUT 4 Entry to HASP RTAM Put Routine.

54 84 $EXTPOPE 4 Entry to HASP RTAM Close Routine.

58 88 $RESTORE 4 Entry to HASP RTAM Restore Routine.

HASP Communication Table Format -- Page B.1-10

515

JI A S P

Fiqurc 8.1.1 -- HASP COMMUNICATION TABLE FORMA'r (CONTINUED)

Dis,elacement Field Name Bytes Field Description
Hex. Dec.

SC 92 $0DEL 4 Entry to HASP Overlay $DELETE Routine.

60 96 $0RET 4 Entry to HASP Overlay $RETURN Routine.

64 100 $DUNK 4 Entry to HASP Overlay $LINK Routine.

68 104 $0XCTL 4 Entry to HASP Overlay $XCTL Routine.

6C 108 $0LOAD 4 Entry to HASP Overlay $LOAD Routine.

70 112 $WTO 4 Entry to HASP Write-to-Operator Routine.

74 116 $FREE MSG 4 Entry to HASP Console Message Buffer
Free Routine.

78 120 $STIMER 4 Entry to HASP Set Interval Timer Routine.

7C 124 $TTIMER 4 Entry to HASP Test Interval Timer Routine.

80 128 $IOERROR 4 Entry to HASP Input/Output Error Logging
Routine.

84 132 $ERROR 4 Entry to HASP Catastrophic Error Routine.

88 136 $DI STERR 4 Entry to HASP Disastrous Error Routine.

BC 140 $SYS TYPE 1 System Type

Hex.
Value Meaning

10 MVT
14 MPS
20 MFT

BD 141 $0PTSTAT 1 Initialization Options --

Bit Name Meaning

0 $0PTFMT FORMAT.
1 $OPT COLD COLD.
2 $0PTREQ REQ.
3 $0PTREP REP.
4 $0PTLIST LIST.
5 $0PTRACE TRACE.

6-7 Reserved for Future Use.

HASP Conununication Table Format -- Page 8.1-11

516

H A S P

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

BE 142

SF 143

90 144

91 145

$STATUS 1

1

$HASPECF 1

MHASPECF 1

HASP Status --

Bit

0
1

2
3
4

5

6-7

Name

$RDRPEND
$ALMSGSW

$DRAINED
$CKPTACT
$JITCKPT

$SY SEX IT

Meaning

O/S Reader is Pending.
ALL AVAILABLE FUNCTIONS

COMPLETE Message has been
Issued.

System has been $DRAINed.
Checkpoint is in Progress.
Job Information Table (JIT)
is to be Checkpointed.

HASP System is in termination
process.

Reserved for Future Use.

Reserved for Future Use.

Master Event Control Field

Bit

0
l
2

3

4
5
6

7

Name

$EWFPDST
$EWFBUF
$EWFTRAK

$EWFJOB

$EWFU'~IT

$EWFCKPT
$EWFCMB

$EWF8

Meaning

A PCE has been $POSTed.
A Buffer has been Released.
A Direct-Access Track has
been Released.

A Job Queue Element has
Changed Status.

A HASP Unit has been Released.
A HASP Checkpoint has Completed.
A Console Message Buffer has
been Released.

Reserved for Future Use.

Remote Job Entry Line Manager Event
Control Field

Bit Name

0-2
3 $EWFJOB

4-7

Meaning

Reserved - Must be Zero.
A Job Queue Element has

Changed Status.
Reserved - Must be Zero.

HASP Conununication Table Format -- Page 8.1-12

517

II A S P

Figure 8.1.l -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

92 146

93 147

94 148

95 149

96 150

97 151

98 152

99 153

9A 154

9B 155

9C 156

9E 158

AO 160

A2 162

A4 164

AB 168

AC 172

BO 176

B4 180

BB 184

BC 188

co 192

$XEQACT

$ACTIVE

$ENBALL

$DI SALL

$DIS INT

$PSRDRCT

$PSPRFCT

$PSPUFCT

$EXCPCT

$COMMCT

$CKPTRAK

$HASPTCB

$PCEDRG

$BUFPOOL

$TPBPOOL

$DCTPOOL

$JITABLE

$CYLMAP

$TEDADDR

l

l

l

1

l

l

l

l

l

l

2

2

2

2

4

4

4

4

4

4

4

4

Count of Jobs in O/S Execution Phase.

Count of Active Processors.

$ENABLE ALL Mask (X'FF').

$DISABLE ALL Mask (X'OO').

$DISABLE INT Mask (X'FE').

Reserved for Future Use.

Count of Pseudo 2540 Readers.

Count of Pseudo 1443 Printers.

Count of Pseudo 1442 Punches.

Reserved for Future Use.

Count of Active I/O Operations.

Number of Console Message Buffers which
are not Queued for the HASP Command Processor.

Checkpoint Track.

Reserved for Future Use.

Address of HASP Task Control Block.

Address of First HASP Processor Control
Element.

Address of First Available HASP Buffer.

Address of First Available HASP RJE Buffer.

Address of First HASP Device Control Table.

Address of HASP Job Information Table.

Address of First HASP Track Allocation Map.

Address of First Track Extent Data Table.

HASP Communication Table Format -- Page 8.1-13

518

JI A S P

Figure 8. 1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

C4 196 $DCBLIST 4 Address of HASP Direct Access DCB.

CB 200 $FREEQUE 4 Address of First Free HASP Console
Message Buffer.

cc 204 $BUSYQUE 4 Address of First Console Message Buffer
which is Queued for I/O.

DO 20B $LOGQUE 4 Address of First Console Message Buffer
which is ·Queued for the Log Processor.

04 . 212 $COMMQUE 4 Address of First Console Message Buffer
which is Queued for the Command Processor.

DB 216 $PRCHKPT 4 Address of HASP Print Checkpoint Table.

DC 220 $SVCRELT 4 Address of MFT SVC Relocation Table.

EO 224 $SVCTABF 4 Address of MFT SVC Table.

E4 22B $SVCTABV 4 Address of MVT SVC Table.

EB 232 $IOSENT 4 Address of Entry to O/S Input/Output
Supervisor.

EC 236 $ATTNENT 4 Address of Entry to IOS Attention Appendage.

FO 240 $XSMFEMT 4 Address of Entry to SMF EXCP Counting
Routine.

F4 244 $SVRSET 4 Address of Entry to HASP SVC Reset Routine.

FB 24B $WAITENT 4 Address of Entry to IGCOOl (WAIT) .

FC 252 $LINKENT 4 Address of Entry to IGC006 (LINK) .

100 256 $XCTLENT 4 Address of Entry to IGC007 (XCTL) .

104 260 $TIMENT 4 Address of Entry to IGCOll (TIME).

108 264 $SVCIOS 4 Address of EXCP SVC Table Entry.

lOC 268 $SVCLINK 4 Address of LINK SVC Table Entry.

HA.SP Cornrnunication Table Format --· Page 8 .1-14

519

H A S P

Figure 8.1.1 -- HASP COMMUNICATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

110 272

114 276

118 280

124 292

128 296

12C 300

130 304

134 308

138 312

13C 316

13E 318

140 320

$SVCWTO

$SVCWTL

$ATTNSAV

$JOBQPTR

$JQFREE

$JQENT

$XEQTOTL

$PRTTOTL

$PLNTOTL

$JCIBNO

$MSGRPNO

$DACKPT

4

4

12

4

4

4

4

4

4

2

2

WTO/WTOR SVC Table Entry.

WTL SVC Table Entry.

Attention Appendage Save Area.

Address of HASP Job Queue.

Beginning of Free Job Queue Element Chain.

Beginning of Active Job Queue Element Chain.

Cumulative Estimated Execution Time.

Cumulative Lines to be Printed.

Cumulative Cards to be Punched.

HASP Job Number.

Last Remote Console Message Queueing Track.

. Variable Length Direct Access Checkpoint Area.

HASP Communication Table Format -- Page B.1-15

520

HA S.P

Figure 8.2.l -- PROCESSOR CONTROL ELEMENT FORMAT

Displacement

Hex. Dec.

0 0

4 4

8 8

c 12

10 16

14 20

18 24

lC 28

20 32

24 36

28 40

~----------------------- 4 bytes ----~-------------------~

PCESAVEA

RESERVED

PCEPREV

Address of Previous Processor Control Element

PC EN EXT

Address of Next Processor Control Element

PCELINK

Processor Register 14 (LINK) Storage

PCERJ.5

Processor Register 15 Storage

PC ERO

Processor Register 0 Storage

PCERJ.

Processor Register 1 Storage

PC EWA

Processor Register 2 (WA) Storage

PCEWB

Processor Register 3 (WB) Storage

PCEWC

Processor Register 4 (WC) Storage

Processor Control Element Format -- Page 8.2-1

521

H A S P

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacementj
Hex. Dec. r------------------------ 4 bytes ------------------------ I

28 40 PCEWD

Processor Register 5 (WO) Storage

2C 44 PC EWE

Processor Register 6 (WE) Storage

30 48 PCEWF

Processor Register 7 (WF) Storage

34 52 PCEWG
PCEBASE3

Processor Register 8 (WG or BASE3) Storage

38 56 PCER9

Processor Register 9 Storage

3C 60 PCEJCT

Processor Register 10 (JCT) Storage

40 64 PCEBASEl

Processor Register 11 (BASEl) Storage

44 68 PCEBASE2

Processor Register 12 (BASE2) Storage

48 72 PCEEWF PC EID

Event Wait Field Processor Type

4C 76 PCEOPRIO PCEOCON

RESERVED Overlay Overlay Routine OCON
Priority

50 80

Processor Control Element Format -- Pa~e 8.2-2

522

II A S P

Figure B.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement

Hex. Dec. 1----,...------------------ 4 bytes ------------------------1
50 BO PCEORTRN

Overlay Supervisor Register 14 (LINK) Storage

54 84 PCEOPCE

Chain of PCEs Using Same Overlay Routine

58 88 PCEWORK

1'--~~~~~-V-a_r_i_·a_b_l_e~-L-e_n_g_t_h~P-r_o_c_e_s_s_o_r~W-o_r_k~A-r-e~a~~~~~~--'1

Processor Control Element Format -- Page 8.2-3

523

H A S P

Figure 8.2.1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Dis2lacement Field Name Bytes Field DescriEtion
Hex. Dec.

0 0 PCESAVEA 4 Reserved.

4 4 PCEPREV 4 Address of Previous Processor Control
Element.

8 8 PCENEXT 4 Address of Next Processor Control Element.

c 12 PCELINK 4 Processor Register 14 (LINK) Storage.

10 16 PCERl5 4 Processor Register 15 Storage.

14 20 PCERO 4 Processor Register 0 Storage.

18 24 PCER:L 4 Processor Register 1 Storage.

lC 28 PC EWA 4 Processor Register 2 (WA) Storage.

20 32 PCEWB 4 Processor Register 3 (WB) Storage.

24 36 PCEWC 4 Processor Register 4 (WC) Storage.

28 40 PCEWD 4 Processor Register 5 (WO) Storage.

2C 44 PC EWE 4 Processor Register 6 (WE) Storage.

30 48 PCEWF 4 Processor Register 7 (WF) Storage.

34 . 52 PCEWG 4 Processor Register 8 (WG or BASE 3)
PCEBASE3 Storage.

38 56 PCER9 4 Processor Register 9 Storage.

3C 60 PCEJCT 4 Processor Register 10 (JCT) Storage.

40 64 PCEBASEl 4 Processor Register 11 (BASEl) Storage.

44 68 PCEBASE2 4 Processor Register 12 (BASE2) Storage.

Processor Control Element Format -·- Page 8. 2-4

524

H A S P

Figure 8. 2 .1 -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

48 72

4A 74

PCEEWF 2

Byte 1

Byte 2

PCEID 2

Byte 1

Event Wait Field --

Hex.
Value

80
40
20

10
08
04

02

01

Name

$EWFPOST
$EWFBUF
$EWFTRAK

$EWFJOB
$EWFUNIT
$EWFCKPT

$EWFCMB

$EWF8

Meaning

Reserved.
Waiting for a Buffer.
Waiting for HASP

Direct-Access Space.
Waiting for a Job.
Waiting for a Unit.
Waiting for the completion
of a HASP Checkpoint.

Waiting for a Console
Message Buffer.

Reserved for Future Use.

80 $EWFOPER Waiting for Operator

40

20
10
08
04
02
01

$EWFID

$EWFWORK
$EWFHOLD
$EWFDDB
$EWFOLAY
$EWFl5
$EWFOROL

Processor Type

Bit

0
1

Name

PCEPRSID
PCEPUSID

Response.
Waiting for the Completion
of I/O.

Waiting to be Re-directed.
Waiting for a $S Command.
Waiting for a DDT or UCB.
Waiting for an Overlay Area.
Reserved for Future Use.
Relinquished Overlay Area.

Meaning

Print Processor.
Punch Processor.

2-4 Reserved for Future Use.
5 PCEINRID Internal Reader Processor.
6 PCERJEID Remote Terminal Processor.
7 PCELCLID Local Processor.

Processor Control Element Format -- Page 8.2-5

525

H A S P

Figure 8.2.l -- PROCESSOR CONTROL ELEMENT FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

4C 76

4D 77

4E 78

50 80

54 84

58 88

Byte 2

l

PCEOPRIO l

PCEOCGJ 2

PCEORTRN 4

PCEOPCE 4

PCEWORK

Processor Type (continued) --

Hex.
Value

00
01
03
04
05
07
08
09
DA
OB
oc
OD
OE
OF

Name

PCEASYID
PCERDRID
PCEXEQID
PCETHWID
PCEXZMID
PCEPRTID
PCEPl.J'.JID
PCEPRGID
PCECONID
PCEMLMID
PCETIMID
PCECKPID
PCEGPRID
PCEOROID

Meaning

ASYNCH Processor.
Input Service Processor.
Execution Service Processor.
Execution Thaw .Processor.
Execution Task Monitor.
Print Processor.
Punch Processor.
Purge Processor.
Console Processor.
Line Manager Processor.
Timer Processor.
Checkpoint Processor.
Priority Aging Processor.
Overlay Roll Processor.

Reserved for Future Use.

Priority of Current Overlay Routine.

Overlay Constant (OCON) of Current Overlay
Routine.

Overlay Supervisor Register 14 (LINK) Storage.

Chain of PCEs Using Sarne Overlay Routine.

Variable Length Processor Work Area.

Processor Control Element Format -- Page 8.2-6
526

H A S P

Figure 8.3.l -- BUFFER FORMAT

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

0 0 IOBFLAG1 IOBFLAG2 IOBSENSO IOBSENS1

I/O Flags I/O Flags First Second
Sense Byte Sense Byte

4 4 IOBECBPT

IOBECBCC Address of HASP Event Control Block

8 8 IOBFLAG3 IOBCSW

I/O Flags

Channel Status Word _,

10 16 I OBS TART

!OBS IOCC Address of Channel Program

14 20 IDBDCBPT

Address of Data Control Block

18 24 IDBRESTR

IOBREPM Restart Address of Channel Program

lC 28 IOBINCAM IDBERRC T

Block Count Increment Error Count

20 32 IOBXTENT IOBSEEK

Extent Index

Seek Address (Direct-Access Only) -

28 40

Buffer Format -- Page 8.3-1

527

H A S P

Figure 8.3.l -- BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.

28 40

2C 44

30 48

34 52

38 56

40 64

48 72

50 80

r-------------"--------- • bytes ------------------------1

BUFCHAIN

BUFECBCC l Buffer Chain Field

BUFDCT

BUFTYPE l Address of Device Control Table

BUFEWF

Event Wait Field or Post Address

R E S E R V E D

IOBCCWJ.

I- Channel Command Word 1 -i

IOBCCW2

I- Channel Command Word 2 -I

IOBCCW3

I- Channel Command Word 3 -i

Buffer Format -- Page 8.3-2

528

H A S P

Figure 8.3.l -- BUFFER FORMAT (CONTINUED)

Displacement

!lex. Dec.

50 80

~----------------------- I
---------------------------,

4 bytes

BUFSTART

l
l

Variable Length Buffer l
l

Buffer Format -- Page 8.3-3

529

II A S P

Figure B. 3. 1 -- BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 IOBFLAG1

1 1 IOBFLAG2

2 2 IDBSENSO

3 3 IOBSENS1

4 4 IOBECBCC

4 4 IDBECBPT

8 8 IOBFLAG3

9 9 IOBCSW

10 16 . IOBSIOCC

10 16 IOBSTART

14 20 IOBDCBPT

18 24 IOBREPM

18 24 IDBRESTR

lC 28 IDBINCAM

lE 30 IOBERRCT

20 32 IOBXTENT

1

1

1

l

1

4

1

7

1

4

4

1

4

2

2

1

Standard OS/360 IOB Flag Byte.

Standard OS/360 IOB Flag Byte.

First Sense Byte (Device Dependent).

Second Sense Byte (Device Dependent).

Completion Code for I/O Event.

Address of HASP Event Control Block:
$HASPECB.

I/O Supervisor Error Routine Flag Byte
(Device Dependent) .

Low-Order Seven Bytes of the Last CSW
that Reflects the Status of the
Last Request .

Condition Code Returned after Execution
of SIO Instruction for Last Request.

Address of Channel Program to be
Executed.

Address of Data Control Block Associated
with this IOB.

Operation Code Used by I/O Supervisor
Error Routines for Repositioning
Procedures.

Restart Address of Channel Program Used
by I/O Supervisor Error Routines During
Error Correction.

Value used to Increment Block Count
Field in DCB for Magnetic Tape.

Used by I/O Supervisor Error Routines
to Count Temporary Errors during Retry.

The Number of the DEB Extent to be
Used for this Request.

Buffer Format -- Page 8.3-4

530

li ,\ :::> I'

Figure 8. 3.1 -- BUFFER FORMAT {CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

21 33 IOBSEEK

28 40 BUFECBCC

28 40 BUFCHAIN

2C 44 BUFTYPE

2C 44 BUFDCT

30 48 BUFEWF

34 52

38 56 IOBCCWl

40 64 IOBCCW2

48 72 IOBCCW3

50 80 BUFSTART

7

1

4

1

4

4

4

8

8

8

Seek Address Required for this. I/O
Request {Direct-Access Only).

Completion Code for I/O Event --

Hex.
Value Meaning

00 The I/O Event has not Completed.
7F The I/O Event has Completed

Successfully.
other The I/O Event has Completed

Unsuccessfully.

Buffer Chain Field.

Buffer Type --

Hex.
Value Name Meaning

oo HASPBUF HASP Buffer

Address of Device Control Table Associated
with this I/O Request.

Event Wait Field or Post Address.

Reserved for Future Use.

Channel Command Word 1.

Channel Command Word 2.

Channel Command Word 3.

Variable Length Buffer.

Buffer Format -- Page 8.3-5

531

H A S P

Fiqure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT

Displacement

!lex. Dec.
~----------------------- 4 byte• ------------------------~

0 0 IOBFLAG1 IOBFLAG2 IOBSENSO IOBSENS1

I/O Flags I/O Flags First Second
Sense Byte Sense Byte

4 4 .IOBECBPT

IOBECBCC Address of HASP Event Control Block

8 8 IOBCSW

RESERVED

-- Channel Status Word

10 16 IOBSTART

IOBSIOCC l Address of Channel Program

!-----
14 20 IOBDCBPT

Address of Data Control Block

18 24 IOBRESTR

Address of First CCW in Channel Program

lC 28 TPBMXREC

Maximum R E S E R V E D
Record Count

20 32 TBPLCCAD

TPBLCCC J Address of Last Remote Carriage Control

24 36 TPBFDATA

TPBRECNT Remote Data Pointer

28 40

Buffer Format -- Page 8.3-6

532

ll!\SP

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.

28 40

2C 44

30 48

34 52

38 56

40 64

48 72

50 80

~----------------------- 4 bytes ------------------------~

BUFCHAIN

BUFECBCC Buffer Chain Field

BUFDCT

BUFTYPE 1 Address of Line DCT

BUFEWF

Address of Event Wait Field

LCBMCB LCBACK LC BR CB

Mode Byte Next Response Control Block
Acknowledge

IOBCCWJ..

I- Channel Conunand Word l -

MSEQTYPE

IOBCCW2

I- Channel Command Word 2 -I

IOBCCW3

~ Channel Command Word 3 -I

Buffer Format -- Page 8.3-7

533

H A S P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement~.---------------~------- 4 bytes ------------------------...J
Hex. Dec. I . I

50 80 IOBCCW4

f- Channel Command Word 4,

58 88 IOBCCW5

f- Channel Command Word 5 -

60 96 IOBCCW6

t- Channel Command Word 6 -

68 104 IOBCCW7

I- Channel Command Word 7 _,

70 112 IOBCCW8

f- Channel Command Word 8 -

78 120

Buffer Format -- Page 8.3-8

534

,.
'-

ll A S P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement

Hex. Dec.

78 120

~----------------------- 4 bytes ------------------------~

l
1

TPBUFST

Variable Length Buffer

J

Buffer Format -- Page 8.3-9

535

H A S P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0

1

2

3

4

4

8

9

10

10

14

18

lC

lD

20

20

24

24

2.8

28

0

1

2

3

4

4

8

9

16

16

20

24

28

29

32

32

36

36

40

40

IOBFLAGl

IOBFLAG2

IOBSENSO

IOBSENSl

IOBECBCC

IOBECBPT

IOBCSW

IOBSIOCC

I OBST ART

IOBDCBPT

IOBRESTR

TPBMXREC

TPBLCCC

TPBLCCAD

TPBRECNT

TPBFDATA

BUFECBCC

BUFCHAIN

1

1

1

1

1

4

1

7

1

4

4

4

1

3

1

4

1

4

1

4

Standard OS/360 IOB Flag Byte.

Standard OS/360 IOB Flag Byte.

First Sense Byte (Device Dependent).

Second Sense Byte (Device Dependent) .

Completion Code for I/O Event.

Address of HASP Event Control Block:
$HASPECB.

Reserved.

Low Order Seven Bytes of the Last CSW
that Reflects the Status of the Last
Request.

Condition Code Returned after Execution
of SIO Instruction for Last Request

Address of Channel Program to be Executed.

Address of Data Control Block Associated
with this IOB.

Address of Normal Channel Program to be
Executed.

Maximum Output Record Count.

Reserved for Future Use.

Last Output Channel Command Operation.

.Address of Last Remote Carriage Control.

Current Output Record Count.

Address of Next Data in Buffer.

Completion Code for I/O Event.

Buffer Chain Field.

Buffer Format -- Page 8.3-10

536

lli\SP

Fiqure B.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Descri12tion
Hex. Dec.

2C 44 BUFTYPE 1 Buffer Type --

Hex.
Value Name Meaning

80 TPBUF Remote Job Entry Buffer

2C 44 BUFDCT 4 Address of Line Device Control Table
Associated with this I/O Request.

30 48 BUFEWF 4 Address of Event Wait Field.

34 52 LCBMCB 1 Mode Byte Used to Set SDA Mode.

35 53 LCBACK 1 BSC: Next Acknowledgement Character
(Expected or to be Sent) .

STR: Second Mode Byte.

36 54 LCBRCB 2 BSC: Response Control Block.
STR: Unused.

38 56 IOBCCl..Jl. 8 Channel Command Word 1.

3D 61 MSEQTYPE 1 Sequence and Command Type

Bits 0-3 Sequence Type

Bit Name Value Meaning

0 MBSCSEQ 0 STR Sequence.
1 BSC Sequence.

1 MP REP SEQ 0 Text Sequence.
1 Prepare Sequence.

2 MWRITSEQ 0 Read Sequence.
1 Write Sequence.

3 MCPUSEQ 0 Hardware Sequence.
1 CPU Sequence.

Buffer Format ·-- Page 8. 3-11

537

H A S P

Figure 8.3.2 -- REMOTE JOB ENTRY BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

Bits 4-7

40 64 IOBCCW2 8

48 72 IOBCCW3 8

50 80 IOBCCW4 8

58 88 IOBCCW5 8

60 96 IOBCCW6 8

68 104 IOBCCW7 8

70 112 IOBCCW8 8

78 120 TPBUFST

Sequence and Command Type (continued) --

Command Type

Hex.
Value

0
1
2
3
4
5
6
7
8
9
A
B

Name

MDISCMD
MSETMCMD
MENBCMD
MTSYNCMD
MREADCMD
MRRSPCMD
MRREQCMD
MPREPCMD
MWRITCMD
MWRSPCMD
MWENQCMD
MSEOTCMD

Meaning

Disable Command.
Set Mode Command.
Enable Command.
Test Synch Command.
Read Text Command.
Read Response (Normal).
Read Response (To ENQ).
Prepare Command.
Write Text Command.
Write Response Command.
Send Inquiry Command.
Send EOT command.

Channel Command Word 2.

Channel Command Word 3.

Channel Command Word 4.

Channel Command Word 5.

Channel Command Word 6.

Channel Command Word 7.

Channel Command Word 8.

Variable Length Buffer.

Buffer Format -- Page 8.3-12

538

H l\ S P

Figure 8.3.3 -- OVBRLAY AREA FORMAT

Displacement

flex. Dec.
r----------------------- • bytes ------------------"-----1

0 0 IOBFLAGJ, IOBFLAG2 IOBSENSO IOBSENSl

I/O Flags I/O Flags First Second
Sense Byte Sense Byte

4 4 IOBECBPT

IOBECBCC Address of HASP Event Control Block

8 8 IOBFLAG3 IOBCSW

I/O Flags

Channel Status Word -

10 16 IOBSTART

IOBSIOCC Address of Channel Program

14 20 IOBDCBPT

Address of Data Control Block

18 24 IOBRESTR

IOBREPM Restart Address of Channel Program

lC 28 IOBEP.RCT

R E S E RV E D Error Count

20 32 IOBXTENT I OBS EEK

Extent Index

Seek Address -

28 40

Buffer Format -- Page 8.3-13

539

H A S P

Figure 8.3.3 -- OVERLAY AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.

28 40

2C 44

30 48

34 52

38 56

40 64

44 68

48 72

50 80

~----------------------- 4 bytes ------------------------~
BUFCHAIN

BUFECBCC Buffer Chain Field

BUFDCT

BUFTYPE Address of OLAY DCT

BUFEWF

Address of Overlay Service Asynchronous Exit

OACECHN

Overlay Area Chain Word

IOBCCWJ.

I- Channel Command Word l -I

IOBCCW2

Channel Command Word 2

OACEPRIO OACEOCON

RESERVED Overlay Overlay Call Constant
Priority

IOBCCW3

t- Channel Command Word 3,

Buffer Format -- Page 8.3-14

540

ll A S P

Figure 8.3.3 -- OVERLAY AREA FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ------------------------~

50 80 DACE NAME

Name of Overlay Routine

54 84 OACEASMO

Assembly Origin of Overlay Routine

58 88 DACEPROG

Entry Point of Overlay Routine

SC 92

-.J Variable Length Overlay Area

OACEPCE

Chain of PCEs Using Overlay Area

Buffer Format -- Page 8.3-15

541

H A S P

Figure 8.3.3 -- OVERLAY AREA FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 IOBFL.AGl

1 1 IDBFL.AG2

2 2 IOBSENSO

3 3 IOBSENSl

4 4 IOBECBCC

4 4 IOBECBPT

8 8 IOBFL.AG3

9 9 IOBCSW

10 16 IOBSIOCC

10 16 I OBST ART

14 20 IOBDCBPT

18 24 IOBREPM

18 24 IOBRESTR

lC 28

lE 30 IOBERRCT

20 32 IOBXTENT

21 33 IOBSEEK

1

1

1

1

1

4

1

7

1

4

4

1

4

2

2

1

7

Standard OS/360 IOB Flag Byte.

Standard OS/360 IOB Flag Byte.

First Sense Byte (Device Dependent).

Second Sense Byte (Device Dependent) .

Completion Code for Overlay Read.

Address of HASP Event Control Block:
$HASPECB.

I/O Supervisor Error Routine Flag Byte
(Device Dependent).

Low Order Seven Bytes of the Last CSW
that Reflects the Status of the Last Read.

Condition Code Returned After the Execution
of the SIO Instruction for the Last Read.

Address of the Channel Program to be
Executed.

Address of the Data Control Block Associated
with this IOB.

Operation Code Used by I/O Supervisor
Error Routines for Repositioning Procedures.

Restart Address of Channel Program Used by
I/O Supervisor Error Routines During Error
Correction.

Reserved.

Used by I/O Supervisor Error Routines
to Count Temporary Errors During Retry,

The Number of the DEB Extent to be Used
for this Read.

The Seek Address for the Requested Overlay
Routine.

Buffer Format -- Page 8.3-16

542

/

ll i\ s I'

l·'.iqun' H.1.J -- OVERLAY AREA F'ORMAT (CON'rlNlJEO)

_uispL1cement Field Name Bytes Field Description
!lex. Dec.

28 40 BUFECBCC 1

28 40 BUFCHAIN 4

2C 44 BUFTYPE 1

2C 44 BUFDCT 4

30 48 BUFEWF 4

34 . 52 OACECHN 4

38 56 IOBCCWl 8

40 64 IOBCCW2 8

44 68 1

45 69 OACEPRIO 1

46 70 OACEOCCl'J 2

48 72 IOBCCW3 8

50 80 DACENAME 4

54 84 OACEASMO 4

58 88 OACEPROG

4

Completion Code for Overlay Read --

Hex.
Value Meaning

00 The Read has not Completed.
7F The Read has Completed Successfully.

other The Read has Completed Unsuccessfull1.

Buffer Chain Field.

Buffer Type --

Hex.
Value Name Meaning

40 OLAYBUF Overlay Area.

Address of Overlay Device Control Table.

Address of Overlay Service Asynchronous Exit.

Overlay Area Chain Word.

Channel Command Word 1.

Channel Command Word 2.

Reserved for Future Use.

Priority of Current Overlay Routine.

Overlay Constant (OCON) of Current Overlay
Routine.

Channel Command Word 3.

Name of Overlay Routine.

Assembly Origin of Overlay Routine.

Entry Point of Overlay Routine.

Variable Length Overlay Area

Chain of PCEs Using Overlay Area.

Buffer Format -- Page 8.3-17

543

H A S P

Figure 8.4.l -- CONSOLE MESSAGE BUFFER FORMAT

Displacement

Hex. Dec. r----------------------- • bytes ------------------------1
0 0 CHBCHAIN

Address of Next Console Message Buff er

4 4 CMBFLAGS CMBCONS CMBMSGL CMBPRIO
CMBCLASS

Flags Consoles Message
Specified Length Prio & Class

8 8 CMBMSG CMBMARK CMBTIME

Start of Attention
Message Indicator

-I
c 12

Time of Day

I-
10 16 CMBJOBNO

-I
14 20

Job Number

I-
18 24 CMBTEXT

-
lC 28

" 112-Byte Message Text· Area -..J ·

l....____~___.]
SC 140

Console Message Buffer Format -- Page 8.4-1

544

II i\ S P .

F'iqure 8.4.l -- CONSOLE MESSAGE BUFFER FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0

4 4

5 5

6 6

7 7

B B

9 9

A 10

13 19

lB 27

CMBCHAIN 4

CMBFLAGS 1

CMBCONS 1

CMBMSGL 1

CMBCLASS 1

Bits 0-3

CMBPRIO

Bits 4-7

CMBMSG 132

CMBMARK 1

CMBTIME 9

CMBJOBNO 8

CMBTEXT 112

Address of Next Console Message Buffer.

Console Buffer Flags --

Bit

0

1
2
3
4
5
6
7

Name

WCMBFD

WCMBFH
WCMBFE
WCMBFF
WCMBFG
WCMBFA
WCMBFB
WCMBFC

Meaning

CMBCONS Contains Physical
Consoles.

Operation Type.
Message for HASP Log Only.
CMBCONS Contains UCMID.
CMBCONS Contains Remote No.
Reserved for

Command
Processor.

Console Specifications or Remote Number.

Message Length.

Message Class

Value

1
3
5

7

Name

$TRIVIA
$NORMAL
$ACTION

$ALWAYS

Message Priority

Value

1
4
7

Name

$LO
$ST
$HI

Message Area.

Meaning

Non-Essential Messages.
Normal Messages.
Messages Requiring

Operator Action.
Essential Messages.

Meaning

Low Priority.
Standard Priority.
High Priority.

Asterisk (*) if Message Class is 5 or More.

Time of Day (HH.MM.SS).

Job Number (If Applicable).

Message Text Area.

Console Message Buffer Format -- Page 8.4-2

545

H A S P

Figure 8.5.1 -- DIRECT-ACCESS DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec. ~----------------------- 4 bytes ------------------------~
0 0 DCTPCE

DCTSTAT l Address of Processor Control Element

4 4 DCTBUFAD

Current Buffer Address

8 8 DCTSEEK

Current Track Address

c 12 DCTEWF

Event Wait Field or Post Address

10 16 DCTBUFCT DCTDEVTP DCTIOTYP

Active RESERVED Device Input/Output
Buffer Count Type Request Type

14 20 DCTCHAIN

Address of Next Device Control Table

18 24

Device Control Table Format -- Page 8.5-1

546

ll :\ s p

Fiqure 8.5.l -- DIRECT-ACCESS DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes· Field Description
Hex. Dec.

0 0 DCTSTAT

0 0 DCTPCE

4 4 DCTBUFAD

8 8 DCTSEEK

c 12 DCTEWF

10 16 DCTBUFCT

11 17

12 18 DCTDEVTP

13 19 DCTIOTYP

14 20. DCTCHAIN

1

4

4

4

4

1

1

l

1

4

OCT Sta.tus --

Bit Name Meaning

0 DCTINUSE OCT is In Use.
1-7 Reserved.

Address of Processor Control Element.

Address of Current Buffer.

Current Track Address.

Event Wait Field or Post Address.

Number of I/O Requests Outstanding.

Reserved for Future Use.

Device Type --

Hex.
Value Name Device.Tyre

oo DCTDA Direct-Access Device.

Input/Output Request Type

Bit

0

1
2-7

Name

DC TREAD
DCTWRITE

Meaning

Read Request.
Write Request.
Reserved for Future Use.

Address ·of Next Device Control Table.

Device Control Table ~ormat -- Page 8.5-2

547

H A S P

Figure 8.5.2 -- OVERLAY DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec. r----------------------- 4 bytes ------------------------1

0 0 DCTPCE

DCTSTAT Address of Overlay Roll PCE

4 4 DCTBUFAD

Address of Current Overlay Area

8 8 DC TSE EK

Overlay Track Address

c 12 DCTEWF

Address of Overlay Service Asynchronous Exit

10 16 DCTBUFCT DCTDEVTP DCTIOTYP

Active RESERVED Device Input
Buffer Count Type Request Type

14 20 DCTCHAIN

Address of Next Device Control Table

18 24 DC TD EVN

.EBCDIC Device Name -- "OLAY"

lC 28 DCTOTC DC TOTT

Number of Tracks/Cylinder Overlay Extent Origin

20 32

Device Control Table Format -- Page 8.5-3

548

ll A S P

Fi9ure B.5.2 -- OVERLAY DEVICE CONTROL TABLE f'OHMAT (CONTINUED)

Displacement Field Nam(' Bytes Field Description
!lex. Dec.

0 0 DCTSTAT

0 0 DCTPCE

4 4 DCTBUFAD

8 8 DCTSEEK

c 12 DCTEl..JF

10 16 DCTBUFCT

11 17

12 18 DCTDEVTP

13 19 DCTIOTYP

14 20 DCTCHAIN

18 24 DCTDEVN

lC 28 DCTOTC

lE 30 DC TOTT

1

4

4

4

4

l

l

1

1

4

4

2

2

DCT Status --

Bit Name Meaning

O DCTINUSE OCT is In Use.
1-7 Reserved.

Address of Overlay Roll PCE.

Address of Current Overlay Area.

Overlay Track Address.

Address of Overlay Service Asynchronous
Exit.

Number of I/O Requests Outstanding.

Reserved for Future Use.

Device Type --

Hex.
Value Name

oo DCTDA

01 DCTOLAY

Meaning

Overlay Data Set Resides
on SPOOL Disk.

Overlay Data Set does not
Reside on SPOOL Disk.

Input Request Type --

Bit

0
1-7

Name

DC TREAD

Meaning

Read Request.
Reserved for Future Use.

Address of Next Device Control Table.

EBCDIC Device Name -- "OLAY".

Number of Tracks per Cylinder on Overlay
Direct-Access Device.

Overlay Extent Origin.

Device Control Table Format -- Page 8.5-4

549

H A S P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec.
~----------------------- 4 bytes ----------~-------------~

0 0 DCTPCE

DC TS TAT Address of Processor Control Element

4 4 DCTBUFAD

Current Buffer Address

8 8 DC TDCB

Address of Data Control Block

c 12 DC TEWF

Event Wait Field or Post Address

10 16 DC TBUFCT DCTNO DCTDEVTP DC T IOTYP

Active OCT Device Device
Buff er Count Number Type Type

14 20 DCTCHAIN

DC TFLAGS Address of Next Device Control Table

18 24 DCTDEVN

~ EBCDIC Device Name -

20 32

DEVICES OTHER THAN PRINTERS AND PUNCHES

20 32 DCTPRINT DCTPUNCH DCTPRINC DCTPRLIM

Print Punch Priority Priority
Destination Destination Increment Limit

24 36

Device Control Table Format -- Page 8.5-5

550

lli\SP

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.

20 32

24 36

24 36

28 40

2C 44

30 48

34 52

38 56

88 136

r----------------------- 4 bytes ----------C-------------1

PRINTERS AND PUNCHES

DC TFDRMS

Current Forms Type (Packed) Carriage Tape UCS Type

INTERNAL READERS

RIDUCB

Address of Internal Reader UCB

RIDFLAGS RIDCNT

Synchronization Flags TIC Count

RIDECB

Address of Internal Reader ECB

RIDTCB

Address of Internal Reader TCB

RIDCCW

Address of Internal Reader CCW

RIDDATA

..... 0- '
'~-------------8---B-y_t_e---In __ t_e_r_n_a_l __ R_e_a_d_e_r __ D_a_t_a __ A_r_e_a ______________ _.f

Device Control Table Format -- Page 8.5-6
551

H A S P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ~----------------------- 4 bytes ------------------------1

PUNCHES

l 24 36

1
DCTWORK

80-Byte Error Recovery Save Area

l I
74 116

Device Control Table Format -- Page 8.5-7

552

H A S P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 DCTSTAT 1 DCT Status --

Bit Name Meaning

0 DCTINUSE DCT is In Use.
1 DCTDRAIN DCT is Drained.
2 DCTHOL.D DCT is Held.

3-7 Reserved.

0 0 DCTPCE 4 Address of Processor Control Element.

4 4 DCTBUFAD 4 Current Buffer Address.

8 8 DCTDCB 4 Address of Data Control Block
for this Unit.

c 12 DCTEWF 4 Event Wait Field or Post Address.

10 16 DCTBUFCT 1 Number of I/O Requests Outstanding.

11 17 DCTNO 1 Device Number.

12 18 DCTDEVTP 1 Device Type --

Hex.
Value Name Device T;t:pe

10 DCTRDR Card Reader.
11 DC TT PE Input Tape.
14 DCTINR Internal Reader.
20 DCTPRT Printer.
30 DCTPUN Punch.
40 DCTCON Console.

13 19 DCTIOTYP 1 Device Type and Console Restrictions

Bit Name Meaning

0-1 Reserved.
2 DCTl.053 1053 Console.
3 DCT2260 2260 Console.
4 DCTREJRM ·Reserved.
5 DCTREJJB Job Command Restriction.
6 DCTREJDV Device Command Restriction.
7 DCTREJSY System Command Restriction.

Device Control Table Format -- Page B.5-8

553

H A S P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

14

14

18

20

21

22

23

20

22

23

20

20

24

32

33

34

35

32

34

35

DCTFLAGS

DCTCHAIN

DCTDEVN

DCTPRINT

DCTPIJ\ICH

DCTPRINC

DCTPRLIM

DCTFORMS

1

4

8

1

1

1

1

2

1

1

Operator Command Flags --

Bit

0
1
2
3
4

5

2+4
6-7

Name

DCTSTOP
DCTDELET
DCTRSTRT
DCTRPT
DCTBKSP

DCTHOLDJ
DCTSPACE

Command

$Z ($STOP)
$C ($DELETE)
$E ($RESTART)
$N ($REPEAT)
$8 ($BACKSPACE)
$F
$T ... ,H
$T ... ,C=l
$I
Reserved for Future Use.

Address of Next Device Control Table.

EBCDIC Device Name.

Print Destination.

Punch Destination.

Priority Increment.

Priority Limit.

Current Forms Type (Packed) .

Carriage Tape

Bit

0
1

2-7

Name

DCTFSPEC
DCTFOPER

Meaning

Special Forms Routing.
Operator Controlled Forms.
Carriage Tape Type.

Universal Character Set --

Bit Name Meaning

0 DCTIDSEP Generate Separator Page/Card.
1 Reserved for Future Use.

2-7 UCS Type.

Device Control Table Format -- Page 8.5-9

554

ll A S P

Figure 8.5.3 -- UNIT RECORD DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

24 36 RIDUCB

28 40 RIDFLAGS

2A 42 RIDCNT

2C 44 RIDECB

30 48 RIDTCB

34 52 RIDCCW

38 56 RIDDATA

24 36 DCTWORK

4

2

Byte 1

Byte 2

2

4

4

4

80

80

Address of Internal Reader UCB.

Synchronization Flags --

Bit

0
1-7

Name

RIDBUSY

Meaning

I/O Simulation in Progress.
Reserved for Future Use.

Reserved for Future Use.

Count of Transfer-In-Channel Commands.

Address of Internal Reader ECB.

Address of Internal Reader TCB.

Address of Internal Reader ccw.

Internal Reader Data Area.

Punch Error Recovery Save Area.

Device Control Table Format -- Page 8.5-10

555

H A S P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec.
~------"---------------- 4 bytes ------------------------~

0 0 DCTPCE

DCTSTAT Address of Line Manager PCE

4 4 DCTBUFAD

Address of Line RJE Buffer

8 8 DCTDCB

DCTPSTAT Address of Line Data Control Block

c 12 MDCTOBUF

MDCTOPCT RJE Output Buffer Chain Field

10 16 DCTBUFCT MDCTATTN DCTDEVTP DCTPCODE

Active Attention Device Line
Buffer Count Indicator Type Type

14 20 DCTCHAIN

DCTFLAGS l Address of Next Device Control Table

18 24 DCTDEVN

I- EBCDIC Device Name -

. 20 32 MDCTCODE

Address of RJE Code Table

24 36 MDCTFCS MDCTERCT DCTPLINE

Function Control Sequence Error Count Mode Byte

28 40

Device Control Table Format -- Page 8.5-11

556

H A S P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ~----------------------- 4 bytes ------------------------~
28 40 MDCTDCT

Address of First Remote OCT Attached to this Line

2C 44 MDC TR SEQ MDC TT SEQ

Receive Transmit R E S E R V E D
Sequence Sequence

30 48 MDCTPSWD

~ Line Password -

38 56

Device Control Table Format -- Page 8.5-12

557

H A S P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0

0 0

4 4

B 8

8 B

c 12

c 12

10 16

11 17

DCTSTAT

DCTPCE

DCTBUFAD

·ocrPSTAT

DCTDCB

MDC TOP CT

MDCTOBUF

DCTBUFCT

MDCTATTN

1

4

4

1

4

1

4

1

1

DCT Status --

Bit Name Meaning

0 DCTINUSE DCT is In Use.
1 DCTDRAIN DCT is Drained.

2-7 Reserved.

Address of Line Manager PCE.

Address of Line RJE Buffer.

Line Flags

Bit

0
1
2
3

4-7

Name

DCTLOGAL
DCTLEASE
DCTETX
DCTSOFF

Meaning

Log Every Channel End.
Leased Line.
An ETX has been Received.
A /*SIGNOFF Card has been
Processed.

Reserved for Future Use.

Address of Line Data Control Block.

MULTI-LEAVING Terminal Open Count.

RJE Output Buffer Chain Field.

Number of I/O Requests Outstanding.

Line Attention Requests --

Bit

0
1
2
3

2+3
4-7

Name

MDCTir-ER
MDCTPAWS
MDCT JOB:L
MDCTJOB2
MDCTJOB

Meaning

Timed Action Requested.
Line Pause Requested.
Job Post Indicator 1.
Job Post Indicator 2.
Job Post Indication.
Reserved for Future use.

Device Control Table Format -- Page 8.5-13

558

ll A S P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

12 18 DCTDEVTP

13 19 DCTPCODE

14 20 DCTFLAGS

14 20 DCTCHAIN

18 24 DCTDEVN

20 32 MDCTCDDE

24 36 MDCTFCS

26 38 MDCTERCT

27 39 DCTPLINE

28 40 MDCTDCT

1

1

1

4

8

4

2

1

1

4

Device Type --

Hex.
Value Name

02 DCTLNE

Line Type --

Bit

0

1

2

3
4-5

6

7

Name

DCTPBSC

DCTPTRSP

DCTPASCI

DCTPHASP

DCTPWIDE

DCTPHALF
DCTPFULL

Device Type

Line.

Value Meaning

0 STR Line.
1 BSC Line.
0 No Transparency.
1 Transparency.
0 EBCDIC Code.
1 USASCII Code.

Reserved.
Reserved.

0 Low-Speed Line.
1 Wide-Band Line.
0 Half-Duplex Line.
1 Full-Duplex Line.

Operator Command Flags

Bit Name Command

0-1 Reserved.
2 DCTRSTRT $E ($RESTART) -- Abort.

3-7 Reserved.

Address of Next Device Control Table.

EBCDIC Device Name.

Address of RJE Code Table.

Last Function Control Sequence Received.

Line Error Count/Indicator.

SDA Mode Byte.

Address of First Remote DCT Attached to
this Line.

Device Control Table Format -- Page 8.5-14

559

H A S P

Figure 8.5.4 -- LINE DEVICE CONTROL TABLE FORMAT (CONTINUED)

DisElacernent Field Name Bytes Field Description
Hex. Dec.

2C 44 MDCTRSEQ 1 Receive Block Sequence Count.

2D 45 MDC TT SEQ 1 Transmit Block Sequence Count.

2E 46 2 Reserved for Future Use.

30 48 MDCTPSWD 8 Line Password.

Device Control Table Format -- Page 8,5-15

560

H A S P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT

Displacement

Hex. Dec.

0 0

4 4

8 8

c 12

10 16

14 20

18 24

20 32

20 32

24 36

~----------------------- 4 bytes ------------------------~
DCTPCE

DCTSTAT Address of Processor Control Element

DCTBUFAD

Address of Current RJE Buffer

DCTDCB

DCTPSTAT Address of Line Device Control Table

DCTEWF

Address of Event Wait Field

DCTNO DCTDEVTP DCTPCODE

RESERVED Remote Device Remote
Number Type Code

DCTCHAIN

DCTFLAGS l Address of Next Device Control Table

DC TD EVN

~ EBCDIC Device Name -

REMOTE READERS AND REMOTE CONSOLES

DCTPRINT DCTPUNCH DCTPRINC DCTPRLIM

Print Punch Priority Priority
Destination Destination Increment Limit

Device Control Table Format -- Page 8,5-16

561

H A S P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ~----------------------- 4 bytes ------------------------~

REMOTE PRINTERS AND REMOTE PUNCHES

20 32 DCTFORMS

Current Forms Type (Packed) Flags

24 36

ALL REMOTE DEVICES

24 36 MDCTFCS DCTPRLEN DCTPLINE

Function Control Sequence Remote Remote
Printer Width Characteristics

28 40 MDCTDCT

MDCTRCB l Address of Next DCT for this Remote

2C 44

Device Control Table Format -- Page 8.5-17

562

(

H A S P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 DCTSTAT

0 0 DCTPCE

4 4 DCTBUFAD

8 8 DCTPSTAT

8 8 DCTDCB

c 12 DCTEWF

10 16

11 17 OCTNO

12 18 DCTDEVTP

1

4

4

1

4

4

1

1

1

OCT Status --

Bit

0
1
2

3-7

Name

DCTINUSE
DCTDRAIN
DCTHOLD

Meaning

OCT is In Use.
OCT is Drained.
OCT is Held.
Reserved.

Address of Processor Control Element.

Address of Current RJE Buffer.

Remote Flags --

Bit

0-3
4
5
6
7

Name

DCTSINON
DCTPOST
DCTABORT
DCTPBUF

Meaning

Reserved for Future Use.
OCT is Attached to Line OCT.
I/O Complete Flag.
Transmission was Aborted.
Remote has Output Buffer.

Address of Line Device Control Table.

Address of Event Wait Field.

Reserved -- Must be zero.

Remote Number.

Device Type --

Hex.
Value Name

12 DCTRJR
22 DCTRPR
32 DCTRPU
42 DCTRCON

Meaning

Remote Reader.
Remote Printer.
Remote Punch.
Remote Console.

Device Control Table Format -- Page 8.5-18

563

H A S P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

13

14

14

18

20

21

22

23

19

20

20

24

32

33

34

35

DCTPCODE

DCTFLAGS

DCTCHAIN

DCTDEVN

DCTPRINT

DCTPIJ'JCH

DCTPRINC

DCTPRLIM

1

1

4

8

1

1

1

1

Remote Code --

Bit

0
1
2
3

4
5
6
7

Name

DCTPTRSP

DCTPCON
DCTPMRF

DCTPTAB
DCTPROG
DCTPVAR
DCTPBU<

Meaning

Reserved.
Terminal Transparency.
Reserved.
Terminal Console.
Multiple-Record Feature.
Buffer Expansion Feature.
Horizontal Format Control.
Programmable Interface.
Variable Length Records.
Blocked Records.

Operator Command Flags --

Bit

0
1
2
3
4

5

2+4
6-7

Name

DCTSTOP·
DCTDELET
DCTRSTRT
DCTRPT
DCTBKSP

DCTHOLDJ
DCTSPACE

Command

$Z ($STOP)
$C ($DELETE)
$E ($RESTART)
$N ($REPEAT)
$B ($BACKSPACE)
$F
$T ... ,H
$T ... ,C=l
$I
Reserved for Future Use.

Address of Next Device Control Table.

EBCDIC Device Name.

Print Destination.

Punch Destination.

Priority Increment.

Priority Limit.

Device Control Table Format -- Page 8.5-19

564

H A S P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT {CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

20 32 DCTFORMS 2 Current Forms Type {Packed).

22 34 2 Flags

Byte 1 Bit Name Meaning

0 OCTFSPEC Special Forms Routing.
1 DCTFOPER Operator Controlled Forms.

2-7 Reserved for Future Use.

Byte 2 Bit Name Meaning

0 DCTIDSEP Generate Separator Page/Card.
1-7 Reserved for Future Use.

24 36 MDCTFCS 2 Function Control Sequence Mask --

Bit Meaning

Byte 1 0-3 Reserved.
4 Reader 1 or Printer 1.
5 Reader 2 I Printer 2 I or Punch 7.
6 Reader 3 I Printer 3, or Punch 6.
7 Reader 4, Printer 4, or Punch 5.

Byte 2 0 Reserved.
1 Remote Console.

2-3 Reserved.
4 Reader 5, Printer 5, or Punch 4.
5 Reader 6, Printer 6, or Punch 3.
6 Reader 7, Printer 7, or Punch 2.
7 Punch 1.

26 38 DCTPRLEN 1 Remote Printer Width and Remote Input Size.

27 39 DCTPLINE 1 Remote Characteristics --

Bits 0-3 Adapter/Terminal Characteristics

Bit Name Value Meaning

0 DCTPBSC 0 STR Adapter.
1 BSC Adapter .

1 .DCTPTRSP 0 No Transparency.
1 Transparency.

2 DCTPASCI 0 EBCDIC Code.
1 USASCII Code.

3 Reserved.

Device Control Table Format -- Page 8.5-20

565

II A S P

Figure 8.5.5 -- REMOTE DEVICE CONTROL TABLE FORMAT (CQNTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec. -·-

Remote Characteristics (continued) --

Bits 4-7 Terminal Type

Hex.
Value Name Terminal Type

0 DCTP2770 2770, 1009.
l DCTPHARD 2780 I 1978.
2 DCTP20 360/20 Sub-Model 5.
4 DCTP360 360/25, 30, 40 I etc.
6 DCTP20S2 360/20 Sub Model 2.
8 DCTPl:L30 1130.
A DCTPSYS3 System/3.

28 40 MDC TR CB l Record Control Byte --

Bits Meaning

0 Always One.
1-3 Device Number.
4-7 Device Type --

Value Device Type

1 Output Console.
2 Input Console.
3 Reader.
4 Printer.
5 Punch.

28 40 MDCTDCT 4 Address of Next OCT for this Remote.

Device Control Table Format -- Page 8.5-21

566

H A S P

Figure 8.6.l -- JOB QUEUE ELEMENT FORMAT

Displacement

Hex. Dec.

0 0

4 4

8 8

c 12

10 16

~----------------------- 4 bytes ------------------------~
QUEPRIO QUE TYPE QUEJOBNO

Priority Queue Type Job Number (Binary)

QUECHAIN

QUE FLAGS Address of Next Job Queue Element

QUETRAK

Disk Address of Job Control Table

QUEPRTRT QUEPUNRT QUECLASS I QUEREGSZ

Print Route Punch Route QUE FORMS

Job Queue Element Format -- Page 8.6-1

567

!I A S P

Figure 8.6.l -- JOB QUEUE ELEMENT FORMAT (CONTINUED}

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0

1 1

2 2

4 4

4 4

8 8

c 12

D 13

E 14

E 14

F 15

QUEPRIO 1

Bits 0-3
Bits 4-7

QUETYPE 1

QUEJOBNO 2

QUE FLAGS 1

QUECHAIN 4

QUETRAK 4

QUEPRTRT l

QUEPl.J'.JRT 1

QUECLASS

QUEFORMS 2

QUEREGSZ 1

Queueing Priority

Priority {0-15).
Reserved.

Queue Type

Binary
Value Name

lxxxxxxx QENTBY
xlcccccc $XEQ

xOlOOOOO $INPUT
xOOOOlOO $PRINT
xOOOOOlO $PLf\ICH
xOOOOOOO $PURGE

Meaning

Queue Entry is In Use.
Execution --

cccccc = Job Class - X'CO'.
Input Queue.
Print Queue.
Punch Queue.
Purge Queue.

Job Number (Binary)

Queue Flags --

Bit

0
1
2
3

4-7

Name

QUEHOL.DA
QUEHOL.Dl
QUEHOL.D2
QUE PURGE
QUEUSECT

Meaning

Job Held ($H A)
Job Held (Single Job)
Job Held (Duplicate Job Name).
Job Deleted.
Entry Use Count.

Address of Next Job Queue Element.

Track Address of Job Control Table.

Print Routing: 0 Local.
n = Remote n.

Punch Routing: 0 Local.
n = Remote n.

Sub-Class -- Unused.

Forms Code (Packed) .

Region Size -- Unused.

Job Queue Element Format -- Page 8.6-2

568

H A S P

Figure 8.7.l -- JOB INFORMATION TABLE ELEMENT FORMAT

Displacement

Hex. Dec. r----------------------- . bytes ---------------~--------~
0 0 JITJNAME

Job Name

8 8

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 JITJNAME 8 Job Name.

-

Job Information Table Element Format -- Page 8.7-1

569

ll A S P

figure 8.8.l -- JOB CONTROL TABLE FORMAT

Displacement

Hex. Dec. r----------------------- 4 bytes ------------------------1

50 80 JCTPCE

JCTID l Address of Processor Control Element

54 84 JCTJOBNO JCTPRIO JCTROUTE

Job Number (Binary) Priority Input
Route Code

58 88 JCTJOBEB JCTPNAML

Job Number (EBCDIC) Programmer's
Name Length

SC 92 JCTPNAME

I- -I

I- -

Programmer's Name from Job Card

I- -

t- -;

70 112 JCTJNAME

I- Job Name from Job Card -I

78 120

Job Control Table Format -- Page 8.8-1

570

H A S P

Figure 8.8.1 -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- 4 bytes ---~---------~----------~

78 120 JCTACCTN

Job Accounting Number

7C 124 JCTROOMN

Programmer's Room Number

80 128 JCTETIME

Estimated Execution Time

84 132 JCTCARDS

Number of Input Cards

88 136 JCTESTLN

Estimated Lines of Output

SC 140 JCTLINES

Current Lines of Output

90 144 JCTESTPU

Estimated Number of Cards to be Punched

94 148 JCT PUNCH

Current Output Card Count

98 152 JCTLINCT JCTCPYCT JCT LOG -JCTFLAGS

Lines Print Log Option Miscellaneous
Per Page Copy Count Switch Flags

9C 156 JCTFORMS

Job Print Forms

AO 160.

(

Job Control Table Format -- Page 8.8-2

571

JI A S P

Figure B.B.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec.
~----------------------- • bytes ------------------------~

AO 16Q

Job Punch Forms

A4 164 JCTPRTCT

Current Number of Lines Printed

AB 168 JCTPAGCT

Current Number of Pages Printed

AC 172 JCTPUNCT

Current Number of Cards Punched

BO 176 JCTRDRON

Reader Sign-On Time

B4 lBO JCTRDROF

Reader Sign-Off Time

BB 184 JCTXEQON

Execution Sign-On Time

BC lBB .JCTXEQOF

Execution Sign-Off Time

co 192 JCTPRTON

Printer Sign-On Time

C4 196 JCTPRTOF

Printer Sign-Off Time
I

ca 200

Job Control Table Format -- Page 8.8-3

572

H A S P

Figure 8.8.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec. ~----------------------- 4 bytes ---------~------;--------!
ca 200 JCTPUNON

Punch Sign-On Time

cc 204 JCTPUNOF

Punch Sign-Off Time

DO 208 · JCT PRC

Checkpoint Checkpoint Checkpoint PDDB Displacement
Flags Copy Count

D4 212 ...

Checkpoint PDDB Page Count Checkpoint Total Line Count

D8 216

Checkpoint Total Line Count Checkpoint Total Page Count
(continued)

DC 220 Checkpoint Total Page Count
(continued)

JCTRDRTR First Reader Track

EO 224 JCTCYSAV

....... In ut p 'le Fl Tra ck c Allo ation Bit Map Save Area -..J

JCTCYMXM

Maximum MTTR for Current Track Group

JCTMTTR

Last MTTR Allocated

Job Control Table Format -- Page 8.8-4

573

H A S P

Figure 8.8.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement

Hex. Dec .. ~----------------------- ----------~-------------~ 4 bytes

1
JCTCYMAP

Variable Length Track Allocation Bit Map l
JCTACCT

...., 132-Byte Job Accounting Information Area
)-

JCTPDDB
JCTLPD~B

: .. . ·.;'

HASP System Log PDDB

t-
JCTSPDDB

System Message Block (SMB) PDDB

-

""

1
Peripheral Data Definition Block (PDDB) Area

I

Job Control Table Format -- Page 8.8-5

574

tl A S P

Figure 8.8.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

so 80 JCTID 1 JCT Identification -- X'FF'.

so 80 JCTPCE 4 Address of Processor Control Element.

S4 84 JCTJaBNO 2 Job Number (Binary) .

S6 86 JCTPRIO 1 Priority from /*PRIORITY Card.

S7 87 JCTROUTE l Rou~e Code of Input Device: 0 Local.
n = Remote n.

SB 88 JCTJOBEB 3 Job Number (EBCDIC) .

SB 91 JCTPNAML 1 Length of Programmer's Name.

SC 92 JCTPNAME 20 Programmer's Name from Job Card.

70 112 JCTJNAME 8 Job Name from Job Card.

78 120 JCTACCTN 4 Job Accounting Number.

7C 124 JCTROOMN 4 Programmer's Room Number.

80 128 JCTETIME 4 Estimated Execution Time.

84 132 JCT CARDS 4 Number of Input Cards.

88 136 JCTESTLN 4 Estimated Lines of Output.

BC 140 JCT LINES 4 Generated Lines of Output.

90 144 JCTESTPU 4 Estimated Number of Cards to be Punched.

94 148 JCTPUNCH 4 Number of Output Cards Generated.

98 152 JCTLINCT 1 · Lines per Page.

99 153 JCTCPYCT 1 Number of Copies of Print.

9A 154 JCT LOG 1 Log Option Switch --

EBCDIC
Valqe Meaning

L Produce HASP SYSTEM LOG.
N Do not -Produce HASP SYSTEM LOG.

Job Control Table Format -- Page 8.8-6

575

Fiqure 8.8.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

~isplacement Field Name Bytes Field Description
ilex. Dec.

98 155 JCT FLAGS 1 Miscellaneous Flags --

Bit Name Meaning

O JCTDSRT Processing Special Forms.
1-7 Count of Input Data Sets

SPOOLed by HASP.

9C 156 JCT FORMS 4 Job Print Forms.

AO 160 4 Job Punch Forms.

A4 164 JCTPRTCT 4 Number of Lines Printed.

AB 168 JCTPAGCT 4 Number of Pages Printed.

AC 172 JCTPUNCT 4 Number of Cards Punched.

BO 176 JCTRIJRON 4 Reader Sign-On Time.

B4 180 JCTRDROF 4 Reader Sign-Off Time.

B8 184 JCTXEQON 4 Execution Sign-On Time.

BC 188 JCTXEQOF 4 Execution Sign-Off Time.

co 192 JCTPRTON 4 Print Sign-On Time.

C4 196 JCTPRTOF 4 Print Sign-Off Time.

C8 200 JCTPUNON 4 Punch Sign-On Time.

cc 204 JCTPUNOF 4 Punch Sign-Off Time.

DO 208 JCTPRC 14 Print Checkpoint Element.

DC 220 JCTRDRTR 4 First Reader Track.

EO 224 JCTCYSAV Variable Length Input File
Track Allocation Bit Map Save Area.

JCTCYMXM 4 Maximum MTTR for Current Track Group.

JCTMTTR 4 Last MTTR Allocated.

JCT CY MAP Variable Length Track Allocation Bit Map.

Job Control Table Format -- Page 8.8-7

576

H A S P

Figure 8.8.l -- JOB CONTROL TABLE FORMAT (CONTINUED)

Displacement
Hex. Dec.

Field Name

JCT ACCT

JCTPDDB

JCTLPDDB

JCTSPDDB

Field Description

132 Job Accounting Information Area.

Peripheral Data Definition Block (PDDB) Area.

5 HASP System Log PDDB.

5 System Message Block (SMB) PDDB.

Job Control Table Format -- Page 8.8-8

577

H A S P

Figure 8.9.l -- TRACK EXTENT DATA TABLE FORMAT

Displacement

Hex. Dec. r---'-------------------- • bytes ------------------------1

0 0 TNCH

MTTR For Most Recent $EXCP on this Module

4 4 TNTC

Number of Tracks per Cylinder on this Device

8 8 TNMD TNRT

DEB Extent Number Number of HASP
(times 256) Buffers per Track

c 12 TNGE TNTG

Number of Groups/Extent Number of Tracks/Group

10 16 TNMO TNMB

Offset of this Map Number of Bytes
from First Map in this Map

14 20

Dis,Elacement Field Name Bytes Field Description
Hex. Dec.

0 0 TNCH 4 MTTR for Most Recent $EXCP on this Module.

4 4 TNTC 4 Number of Tracks per Cylinder on this Device.

8 8 TNMD 2 DEB Extent Number (times 256).

A 10 TNRT 2 Number of HASP Buffers per Track.

c 12 TNGE 2 Number of Track Groups per Extent.

E 14 TNTG 2 Number of Tracks per Track Group.

10 16 TNMO 2 Offset of This Map from First Map.

12 18 TNMB 2 Number of Bytes in This Map.

Track Extent Data Table Format -- Page 8.9-1

578

H A S P

Figure 8.10.l -- TIMER QUEUE ELEMENT

Displacement

Hex. Dec.
~----------------------- 4 Oytes ------c---------------~-~

0 0 I CHAIN

Address of Next HASP Timer Queue Element

4 4 IT I ME

Specified Interval

8 8 I POST

Address of Event Wait Field to be Posted

c 12

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 I CHAIN 4 Address of Next HASP Timer Queue Element.

4 4 I TIME 4 Timer Interval.

8 8 I POST 4

Byte 1 Flag Byte --

n.: t- ''~ l ~"'""' Mev:.ing

0 0 Timer Interval has not Expired.
1 Timer Interval has Expired.

1-7 Reserved.

Bytes 2-4 Address of Event Wait Field to be Posted.

Timer Queue Element Format -- Page 8.10-1

579

H A S P

Figure 8.11.1 -- OVERLAY TABLE FORMAT

Displacement

Hex. Dec.

0 0

0 0

4 4

8 8

c 12

~----------------------- 4 bytes ------------------------~

&DEBUG = NO

OTBADDR Address of Resident Overlay Module

OTBPRIO l RESERVED l OTBTRAK Relative TTR

&DEBUG = YES

OTBNAME

Overlay Module Name (Last Four Characters)

OTBADDR Address of Resident Overlay Module

OTB PR IO 1 RESERVED OTB TR AK Relative TTR

OT:BCALLS OTBLODS

Count of PCE Requests Count of Times Loaded

Overlay Table Format -- Page 8.11-1

580

H A S P

Figure 8.11.l -- OVERLAY TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0 OTBADDR 4 Address of Resident Overlay Module~

Byte 1 X'FF'.

Bytes 2-4 Addressability Address of Resident
Overlay Module -- Assembly Origin - X'50'.

0 0 OTBPRIO 1

1 1 1

2 2 OTBTRAK. 2

0 0 OTBNAME 4

B 8 OTBCALLS 2

A 10 OTBLODS 2

Priority of Overlay Module.

Reserved for Future Use.

Relative Track and Record Address of
Overlay Module.

Last Four Characters of Overlay Module

Number of Times This Overlay Module
was Requested.

Number of Times This Overlay Module
was Loaded.

Name.

Overlay Table Format -- Page 8.11-2

581

H A S P

Figure 8.12.l -- DATA DEFINITION TABLE FORMAT

Displacement

Hex. Dec.

0 0

4 4

8 8

c 12

10 16

18 24

lC 28

20 32

24 36

~----------------------- 4 bytes ---------------------------

DDBCHAIN

Address of Next Data Definition Table

DDBTYPE DDBUNIT

Data Set Type Unit Address (EBCDIC)

DDBSTATl DDBSTAT2 DDBUFPTR
IXSJ

Status Byte l Status Byte 2 Current Buffer Pointer

DDBPBUF

Address of Primary Buffer or TTR

DDBSBUF Address of Secondary Buffer (Input)

DDBFORMS
I- _,

Special Forms Type (Output)

DDBTTR

Next Track Address (Input Data Sets)
First Track Address (Output Data Sets)

DDBCOUNT

Output Record Count R E S E R V E D

DDBPCE

Address of Processor Control Element

Data Definition Table Format -- Page 8.12-1

582

ll A S P

Figure 8.12.l -- DATA DEFINITION TABLE FORMAT {CONTINUED)

Displacement Field Name Bytes Field.Definition
Hex. Dec.

0

4

5

8

9

0

4

5

8

9

DDBCHAIN

DDBTYPE

DDBLNIT

DDBSTAT:L
(XS)

DDBSTAT2

4

1

3

1

1

Address of Next Data Definition Table.

Data Set Type --

Hex.
Value Name

01 XSPROUTE
02 XPRTDDB
04 XPUNDDB
08 XPLOTDDB
10 XLOGDDB
40 XNULLDDB
80 XINDDB

Data Set Tyne

Special Route SYSOUT.
Print.
Punch.
Plot.
Log.
Dummy (Null) .
Input.

Unit Address (EBCDIC) .

Status Byte 1 --

Bit

0
1
2
3
4
5
6
7

Name

XS EDD
XS IDA
XSIO
XNSB
XPEOD
XPIOA
XPIO
XNPB

Status Byte 2

Bit

0
1
2
3
4
5
6
7

Name

XACT

XLOGHEAD
XOPEN
XUCB
XIOC
XROLL
XTERM

Meaning

End of Data on Secondary.
I/O Active on Secondary.
I/O Required on Secondary.
No Secondary Buffer.
End of Data on Primary.
I/O Active on Primary.
I/O Required on Primary.
No Primary Buffer.

Mi:;aning

Action Required on This DDT.
Reserved for Future Use.
Log Title Switch.
DDT has been Used.
Allocatable UCB Exists.
I/O Error on Read.
Roll Output Buffer.
Terminate DDT.

Data Definition Table Format -- Page 8.12-2

583

II A S P

Figure 8.12.l -- DATA DEFINITION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

10 DDBUFPTR

c 12 DDBPBUF

10 16 DDBSBUF

10 16 DDBFORMS

18 24 DDBTTR

lC 28 DDBCOlJ'JT

lE 30

20 32 DDBPCE

2

4

4

8

4

2

2

4

Current Displacement of Data in
Primary Buffer.

Address of Primary Buffer -- Or TTR
if No Primary Buffer.

Address of Secondary Buffer (Input Only) .

Special Forms Type (Output Only) .

Input: Next Track Address.
Output: First Track Address.

Output Record Count.

Reserved for Future Use.

Address of Processor Control Element.

Data Definition Table Format -- Page 8.12-3

584

H A S P

Pigur~ 8 .13 .1 -- PARTITION INFORMATION TABLE FORMAT \ ,:.

Displacement

Hex. Dec.
r-----------------------, 4 bytes ---------------------- -' -· ;·,

.)i.

0 0 PIT STAT PIT I CLAS PITPATID

Status Byte Initiator Logical Partition
Class Identification

4 4 PITSIZE PITPRIO

Logical Partition Size Logical Partition PRTY

WITH EXECUTION JOB BATCHING

8 8 PITBECB

Batching Program Frozen ECB Chain

c 12 PITBJST

Address of Batching Program TCB

10 16 PITBCLAS PITBUNIT

~ctive Batching Batching Program Input Unit
Class

14 20 PITBUCBA PITCLASS

Batching Input UCB Address

-

..,
'

1
Variable Number of Logical Partition Classes

I

Partition Information Table Format -- Page 8.13-1

585

H A S P

Figure 8.13.l -- PARTITION INFORMATION TABLE FORMAT (CONTINUED)

Di&flacement 1..----------------------- 4 bytes ------------------------...J
Hf!X. Dec. 1- ~,

8

WITHOUT EXECUTION JOB BATCHING

PITCLASS

Variable Number of Logical Partition Classes l
J

Partition Information Table Format -- Page 8,13-2

586

(

H A S P

Figure 8.13.l -- PARTITION INFORMATION TABLE FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

0 0

1 1

2 2

4 4

6 6

8 8

c . 12

10 16

11 17

14 20

PITS TAT 1

PIT I CLAS 1

PITPATID 2

PITSIZE 2

PITPRIO 2

PI:rBECB 4

PITBJST 4

PITBCLAS 1

PITBll'JIT 3

PITBUCBA 2

PITCLASS

Status Byte --

Bit

0
1
2
3

4-6
7

Name

PITHOLDA
PITHOLD:L
PITBUSY
PITIDLE

PITLAST

Meaning

PIT is Drained ($P I).
PIT is Drained ($P In) .
Partition Busy Indicator.
PIT Idle Message Switch.
Reserved for Future Use.
Last PIT Indicator.

O/S Initiator Class.

Logical Partition Identification.

Logical Partition Size (Unused).

Logical Partition PRTY.

Batching Program Frozen ECB Chain.

Address of Batching Program TCB.

Active Batching Class.

Batching Program Input Unit.

Batching Input Unit Control Block (UCB)
Address.

Variable Number of Logical Partition
Classes.

Partition Information Table Format -- Page 8.13-3

587

H A S P

Figure 8.14.1 -- MESSAGE ALLOCATION CONTROL BLOCK

Hex. Dec. ~----------------------- 4 bytes ------------------------~ Displacement

0 0 MSAMTTR

Base SPOOL Record Pointer

4 4 MSARPTRK MS AB ITS

Number of Records/Track

-I

l
Variable Length Allocation Bit Map

Displacement Field Name B;ttes Field DescriEtion
Hex. Dec.

0 0 MSAMTTR 4 Base SPOOL Record Pointer.

4 4 MSAPTRK 2 Number of Records/Track.

6 6 MSABITS Variable Length Allocation Bit Map.

Message Allocation Control Block Format -- Page 8.14-1

588

H A S P

Figure 8.15.1 -- DATA BLOCK FORMAT

Displacement

Hex. Dec.

50 80

54 84

~----------------------- 4 bytes ----------~----------------

" 'r-

t-

.......

HDBNXTRK

HDBSTART

Record
Length

Record
Length

Block
Terminator

Track Address of Next Data Block

Control
Byte

Variable Length Data Area

Record Control
Length Byte

Variable Length Data Area

Control
Byte

Variable Length Data Area

-
....

't-

-I

.......

-

Data Block Format -- Page 8.15-1

589

H A S P

Figure 8.15.1 -- DATA BLOCK FORMAT (CONTINUED)

Displacement Field Name Bytes Field Description
Hex. Dec.

50 80

54 84

HDBNXTRK

HDBSTART

Record
Length

Control
Byte

Data
Area

Block
Terminator

4 Track Address of Next Data Block.

Start of Data Block.

1 Length of Data Area (0-254) .

1 Control Byte --

Input Data Sets

Hex ..
value Meaning

00. Normal Record.
03 Internally Generated Card.
04 HASP Control Card.
13 Illegal HASP Control Card.
19 Last JCL Card.
73 Dummy Track Address Record.

Print Data Sets Carriage Control.

Punch Data Sets Stacker Select.

Variable Length Data Area.

Record Length of 255 (X'FF').

Data Block Format -- Page 8.15-2

590

·•

SR27-9720-0

Ilrnlliil
®

International Businass Machines Corporation
Data Procaaaing Division
1133 Wastchaater Avanua, White Plains, Naw York 10604
[U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, Naw York, Naw York 10017
[International)

g -:c
1;;
"'Cl

<
0 c
3
CD

Cl)
c
1J
1J
ii'
3
CD
:I
lit
<
0
0 c
i
:!:::
Ill

~
!:
"'Cl .. :;· ...
!.
:;·
c
tn
;t-
Cl)
::0 ...,
""' cb
""' N g '•

