
Systems

GC28-6515-11

IBM System/360
and System/370
FORTRAN IV Language

--....- ---_.-: - -------- -. ---- -- ---------------, -

Twelfth Edition (September 1983)

This is a reprint of GC28-6515-10 incorporating changes released in the following Technical
Newsletters:

GN26-0805 (dated 30 Apri11976)
GN26-0891 (dated 18 March 1977)
GN26-0987 (dated 01 February 1981)
GN26-0999 (dated 03 June 1981)

This edition documents the capabilities of the IBM System/360 and System/370 FORTRAN
IV Language. The changes for this edition are summarized under "Summary of Amendments"
following the preface.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM Systems, consult the latest IBM System/370 and 4300
Processors Bibliography, GC20-0001, or IBM System/360 Bibliography, GC20-0360, for the
editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments has been provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines 1965,1966,1968,1971,1972,1973, 1974

(

,
~

(

PREFACE

This publication describes the IBM System/360 and System/370 FORTRAN
IV language. It is intended to be used as a reference manual by persons
writing programs in the FORTRAN IV language. A reader should have some
knowledge of FORTRAN before using this publication. A useful source for
this information is the set of programmed instruction texts, FORTRAN IV
for IBM System/360 and System/370, Order Nos. SR29-0081, SR29-0084,
SR29-0085, SR29-0886, and SR29-0087.

The material in this publication is arranged to provide a quick
definition and syntactical reference to the various elements of th~
language. In addition, sufficient text describing each element, w1th
appropriate examples as to possible use, is given.

Appendixes contain additional information useful in writing a
FORTRAN IV program. This information consists of a table of source
program characters; a list of other FORTRAN statements accepted by
FORTRAN IV; a list of FORTRAN-supplied mathematical and service sub
programs; lists of differences between FORTRAN IV and Basic FORTRAN IV
and between FORTRAN IV and ANS FORTRAN; sample programs; extensions
to the FORTRAN IV language supported by the FORTRAN IV (H Extended) ,
FORTRAN IV (G1), and Code and Go FORTRAN and VSPC FORTRAN compilers,
and a glossary.

Information pertaining to the FORTRAN IV libraries, compiler
restrictions, and programming considerations, will be found in the
System Reference Library publication for the respective library or
compiler. A list of such publications is contained in the appropriate
bibliography, IBM System/370 and 4300 Processors Bibliography,
Order No. GC20-ooo1, IBM System/360 B1bl1ography, Order No. GC20-0360,
or the General Informat1on manual for the program product.

This
language.
language.
use the VS
GC26-3986.

manual is to be used for the 1966 level of the FORTRAN
It is not valid for the 1978 level of the VS FORTRAN
Readers who wish to write programs to the 1978 level should
FORTRAN Application Programming: Language Reference,

If, however, this book is revised, a summary of amendments will
be included with the TNL or complete revision. It will be inserted
immediately following the preface and will highlight the changes made.

Summary of Amendments Number 6

Date of Publication: 3 June 198 1

Form of Publication: TNL GN26-0999 to GC28-6515-10

Miscellaneous Changes

Unsigned constant has been clarified.

Real constant precision has been corrected.

Summary of Amendments Number 5

Date of Publication: 1 February 1981

Form of Publication: TNL GN26-0987 to GC28-6515-1 0

Statements in the Preface and Introduction to make it clear that the manual is not
applicable to writing VS FORTRAN programs to the 1978 level of FORTRAN.

Miscellaneous Changes

Clarification of the Arithmetic and Logical Assignment precision rules, with an
additional example.

Clarification of the FORMAT statement.

Replacement for Example 1 of the DATA Initialization statement.

Addition to List-Directed Input Data, indicating the use of a comma when skipping
the first item.

Editorial changes of no technical significance are not noted here.

Technical changes to the text of this publication are indicated by a vertical bar to the left of the text.

.J
1"1 \~I

~r
\

Summary of Amendments Number 4

Date of Publication: March 18,1977

Form of Publication: TNL GN26-0891 to GC28-6515-10

Miscellaneous Changes

Maintenance: Documentation Only

Shadings to indicate IBM extensions to ANS FORTRAN have been corrected.

The description of real constan ts has been clarified.

An example has been added to the section on Arithmetic and Logical Assignment
Statements.

The description of the various forms of the FORMAT statement has been clarified.

The description of the dummy arguments in a function or subroutine subprogram
has been clarified.

The description of multiple entries into a subprogram has been clarified.

Table 5, Service Subroutines, has been corrected.

Summary of Amendments Number 3

Date of Publication: April 30, 1976
Form of Publication: TNL GN26-0805 to GC28-6515-10

VSPC FORTRAN Compiler Support

New: Programming and Documentation

VSPC FORTRAN has been added to the Mathematical Function Table to indicate
supported functions.

VSPC FORTRAN has been added to Appendix I to indicate its support of the
features described therein.

A new service subroutine (OPSYS) for VSPC FORTRAN has been added to the
Service Subroutine Table. A note has been added to this table to indicate service
subroutines not supported by VSPC FORTRAN.

Miscellaneous Changes

New: Documentation Only

Errors in the indications of IBM extensions to ANS FORTRAN have been corrected.

Changes have been made to the examples of the NAMELIST Output Data listing,
the Statement Function definitions, and the DATA and FUNCTION SUBPROGRAM
Statements.

Clarification of which entities become undefined upon exit has been added to the
general discussion of FUNCTION and SUBROUTINE sUbprograms.

The indication of the use of T and F for .TRUE. and .FALSE. has been removed
from the DATA statement example explanation.

The rule for locating NAMELIST input data has been explained.

Clarifying information has been added to the discussion about declaring size and
type of arrays.

A statement warning against embedding one program unit within another program
unit has been added to the discussion about coding FORTRAN statements.

Summary of Amendments Number 2

Date of Publication: May 15, 1974
Fonn of Publication: Revision, GC28-6S1S-1O

Miscellaneous Changes

New: Documentation Only

Certain errors in the shading of IBM extensions to ANS FORTRAN have been
corrected.

The discussion of FORTRAN IV statement coding has been clarified.

The explanation of literal constant restrictions has been clarified.

The maximum number of dimensions permitted when declaring the size of an array
is three in ANS FORTRAN and seven in FORTRAN IV.

The restriction that the second part of a logical IF statement may not have a statement
number has been explicitly stated in the description of its general form.

An explanation of the effect of a sequential WRITE or END FILE statement has
been added.

The illustration of NAMELIST output has been revised to show the correct type of
output.

The P scale factor output example has been revised.

The discussion of sharing associated variables has been revised.

The restriction on repeating specification statement information has been explicitly
stated.

The explanation of the COMMON statement example has been revised.

The explanation of the effect of the RETURN statement on storage entities in
subprograms has been revised.

The description of the DISPLAY statement list has been revised.

An example of an invalid statement function reference has been added.

The mathematical function tables in Appendix C have been revised and clarified.

Editorial changes of no technical significance are not noted here.

Technical changes to the text of this publication are indicated by a vertical bar to the left of the text.

Summary of Amendments Number 1

Date of Publication: March 31, 1973

Form of Publication: TNL GN28-061 0 to GC28-6515-8, -9

Miscellaneous Changes

Maintenance: Documentation Only

Shading indicating IBM extensions to ANS FORTRAN has been corrected.

The description of the order of computation has been changed slightly to reflect
that left to right computation is within a hierarchical level.

The rules governing data types in exponentiation operations have been revised to
indicate that negative operands may not have real exponents.

The examples illustrating integer division have been clarified to better show the
effects of truncation.

The description of the use of subscripts in an implied DO has been clarified to
indicate that unsubscripted array·names refer to entire arrays.

The description of the scale factor when used with G formats has been revised to
indicate the range outside which the effect of the scale factor is suspended.

The description of the DATA statement has been revised to indicate that real,
integer, and complex constants may be signed and that storage entities may only be
initialized once.

An explanation of the effect of the RETURN statement on storage entities in
subprograms has been added.

The definition of BLOCK DATA subprograms has been clarified to indicate that
they are not called but only supply initial data values.

The definitions of certain FORTRAN library functions have been updated.

FLOAT has been deleted from the list of GENERIC names for library functions.

The lists of IBM extensions to ANS Basic FORTRAN and ANS FORTRAN have
been revised to include statement numbers as arguments in CALL statements and
asterisks as dummy arguments in SUBROUTINE statements.

Editorial changes of no technical significance are not noted here.

Technical changes to the text of this publication are indicated by a vertical bar to the left of the text.

(

INTRODUCTION • • • 11

ELEMENTS OF THE LANGUAGE • 13
Statements • • • • • • • • • 13

Coding FORTRAN Statements • .
Constants . • . • .

Integer Constants •
Real Constants . • • • . • • • •
Complex constants
Logical constants
Literal Constants •
Eexadecimal Constants

Symtolic Names • . . •
Variables • • . • • • . • • • . . •

Variable Names . • . . • • . • .
Variable Types and Lengths • • • .

Type Declaration by the Predefined specification . • . . .
Type Declaration by the IMPLICIT Statement •• .•
~ype Declaration by Explicit Specification Statements .

• 14
• 15
• 15
• 16

17
• 17
• 18
• 18
• 19
• 20
• 21
• 21
• 22
• 22
• 22

Arrays • . . . • • . .
subscripts•..•

• • • • • 23

ceclaring the Size and Type of an Array .
Arrangement of Arrays in Storage

Expressions • . . • • • • •
Arithmetic Expressions

Arithmetic Operators
Logical Expressions •..

Relational Expressions
Logical Operators • . .

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

CONTROL STATEMENTS
GO ~'O Sta temen ts . •

Unconditional GO TO Statement
Computed GO TO statement
ASSIGN and Assigned GO TO Statements

Additional Control Statements .
Arithmetic I~ Statement .
Logical IF Statement .• . .
DO Statement • • . . • . . •
programming Considerations in USing a DO Loop . •
CONTINUE Statement
PAUSE Statement . .
STOP Statement
END Statement • .

INPU~/OUTPUT STATEMENTS • .
Sequential Input/Output Statements

READ Statement
Formatted READ
Unformatted READ

WRITE Statement . . •
Formatted WRITE • .
Unformatted WRITE .

READ and WRITE Using NAMELIST
NAMELIST Input Data • .
NAMELIST Output Data

FORMAT Statement • . . .
Various Forms of a FORMAT Statement . •
I Format Code • • .
D, E, and F Format Codes • • . • • • .

• 23
• 24
· 25
· 25
• 25
• 26
• 29
• 29
• 30

• 33

• 37
• 37
• 37
• 38
• 39
• 40
• 40
• 41

• • • 42
• • • 44

• 46
· 47

• • • 48
• • 48

• 49
• 51
• 51

52
• 52
• 53

• • • • 53
• • • • • • • 54

54
• • • 55

• 56
• 57
• 59

• • • 60
• 60

Z Format Code • • • • • • . • . • • • • • •
G Format Code • • • . • • • • • • •
Examples of Numeric Format Codes
Scale Factor - P
L For:mat Code
A Format code
H Format code and Literal Data
X Format Cod e ••••
~ Format Code •••.
Group Format Specification
Reading Format Specifications at Object Time

END FILE Statement
REWIND Statement • • • • • • •
BACKSPACE Statement • • • • • •

Lirect-Access Input/Output Statements •
DEFINE FILE Statement • • • • • • • •
Direct-Access Programming C~nsiderations
READ statement
WRITE Statement • • • • •
FIND Statement

LATA INITIALIZATION STATEMENT •

SPECIFICATION STATEM$NTS
DIMENSION Statement •
Type Statements • • • • •
IMPLICIT Statement
Explicit Specification Statements
DOUBLE PRECISION statement
CCMMON Statement • . . • • • • •
Blank and Labeled Common ••••
Storage Arrangement of Variables in
EQUIVALE~CE statement • • • • • • •
storage Arrangement of Variables in

SUBPROGRAMS • . • . •
Naming Subprograms
Functions . • • • • •

Function Definition •.•.••
Function Reference

Statement Functions •
FUNCTION Subprograms

Common

Equivalence Groups

RETURN and END statements in a FUNCTION Subprogram
SUEF.OUTINE Subprograms . • • •

CALL Statement • . • • • . • • • • • . . .
RETUFN Statements in a SUBROUTINE Subprogram

Duwmy Arguments in a FUNCTION or SUBROUTINE Subprogram
Multiple Entry into a Subprogram
EX~ERNAL Statement
Ocject-Time Dimensions
BLOCK DATA Subprograms

APPENDIX A: SOURCE PROGRAM CHAFACrERS •

• 61
• 61
• 62
• 64

65
• 65
• 66
• 67
• 67
• 68
• 68

· . • 69
• 69
• 70
• 71
• 71
• 73
• 74
• 76

• • • 77

• 79

• 81
• 81
• 81
• 82

84
· 86
· 86
• 88
• 90
· 92
• 94

• 95
• 95
• 96
• 96
• 96
• 96

98
• • •• • 100

• • • • 101
• • • 102

.• 103
• • • • • .104

• • • 105
• • • • • • • 1 08

.109
• • • 111

• • • 113

APPENDIX B: OTHER FORTRAN STATEMENTS ACCEPTED BY FORTRAN IV •.•.• 115
READ Statement . . .• • 11 5
PUNCH Statement .115
PRIN~ Statement • • • . •• . 116

APPENDIX C: FORTRAN-SUPPLIED PROCEDURES

APPENDIX D: SAMPLE PROGRAMS •
sample Program 1
Sample Program 2 •••••

APPENDIX E: DEBUG FACILITY
Programming considerations

Debug Facility Statements •••

• 117

• • • 125
• •• 125

• 126

.131

.131

.132

CEEUG Specification Statement • • • • . .
AT Debug Packet Identification Statement
~PACE ON Statement
TRACE OFF Statement . . • . . • •
DISPLAY Statement . • • • . . • •
Detug Packet Progra~ming Examples • •

.133

. 134
· •. 134

.134

.135

.135

APPENDIX F: IBM FORTRAN IV FE~TURES NOT IN IBM BASIC FORTRAN IV ..• 139

APPENDIX G: IBM FORTRAN IV FEATURES NOT IN ANS FORTRAN

APPENDIX H: FORTRAN IV (H EXTENDED) FEATURES • • • • •
Asynchronous Input/Output Statements

Asynchronous READ Statement •
Asynchronous WRITE Statement
WAIT Statement

Extended Precision
REAL*16 Constants ••..
COMPLEX*32 Constants

Q Format code • • .
EXTERNAL Statement Extension
Automatic Function Selection (GENERIC Statement)

· • 141

• .143
• • • • 143

• 144
. • • • 146

.147

.150

.150

.151
• •• 152

· • 153
.154

APPENDIX I: H
List-Directed
List-Directed
List-Directed
List-Directed

EXTENDED, G1, CODE AND GO, AND VSPC FORTRAN FEATURES .157
.157
.158
.159

READ Statement . • • • • • • .
WRITE Statement • • • • •
Input Data . . . •
Output Data • • . • 160

GLOSSARY • .161

INDEX • • • • •• 165

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.

TABLES

Sample Program 1
Sample Program 2

Table 1. Determining the Type ana Length of the Result of +,
-, *, and / Operations ... • • 4.
Table 2. Determining the Type and Length of the Result of
Logical Operations • • • • ... • • ~ ~ • ..
Table 3. Conversion Rules for the Arithmetic Assignment
Statement a=b ~.............. •
Table 4. -Mathematical Functions.. .. •
Table 5. Service Subroutines _ _ .. ~

Table 6. Determining the Type' and Lengtl} qf the Result of +,

.. 125
,.128

28

• 32

'. 35
.118
.124

-, *, and / Operations Used with the FORTRAN IV(H Ext.) Compiler.152
Table 7. Generic Names for Built-in and Library Functions ~ 15&

~:

\.

IBM System/360 and SystEm/370 FORTF.hN IV consists of a language, a
library of subprograms, and a compiler.

The FORTRAN IV language is especially useful in writing programs fOr
applications that i.nvolve mathematical computations and other
manipulation 'of numerical data. The name FORTRAN is an acronym for
FORmula TRANslator.

Source programs written in the FORTR~N IV language consist of 3 set
of statements constructed by the programmer from the language elements
descri~ed in this publication.

In a process called compilation, a prog~am called the FORTRAN
compiler analyzes the source program statements and translates them into
a machine language program called the object program, which will be
suitable for execution on IBM System/360 and System/370. In addition,
when the FORTRAN compiler detects errors in the source program, it
produces appropriate diagnostic error messages. The F~RTPAN IV
programmer's and terminal users' guides contain information about
cornfiling and executing FORTRAN programs.

The FORTRAN compiler operates under control of an operating system,
which provides it with input/output and other services. Jbject programs
generated by the FORTRAN compiler also operate under operating system
control and depend on it for similar services.

The IBM System/360 and System/370 FORTRAN IV language is designed
according to the specifications of the American National Standard (ANS)
FORTRAN, X3.9-1966, as understood and interpreted by IBM as of March
1964. It also contains, as a proper subset, Basic FORTRAN IV. Append
ixes F and G contain lists of differences between FORTRAN IV and
Basic FORTRAN IV and ANS FORTRAN.

If you are writing programs using the 1977 VS FORTRAN language
level, see VS FORTRAN Application Programming: Language Reference,
GC26-3986.

The VS FORTRAN compiler provides for coexistence of old user
source programs by accepting either the current VS FORTRAN language or
the 1966 level of the FORT~N IV language as a compiler option. The
VS FORTRAN products do not ~nclude a language conversion program.

Introduction 11

Source programs consist of a set of statements from which the
compiler generates machine instructions, constants, and storage ~reas.
A given F~RTRAN statemEnt performs one of three functions:

1. It causes certain operations to be performed (e.g., addition,
multiplication, branching)

2. It specifies the nature ~f the data being handled

3. It specifies the characteristics of the source program

FOR~RAN statements usually are composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The categories of FORTRAN statements are as
follows:

1. ~§§!gg~en~_§~~~g~2: These statements cause calculations to be
performed. The result replaces the current value of a designated
variable or array element.

2. Control Statements: These statements enable the user to govern the
order-o~execution of the object program and terminate its
execution.

3. !~E~~LQ~!E£~_§ta~em~~~2: These statements, in addition to
controlling input/output devices, enable the user to transfer data
between internal storage and an input/output medium.

4. FOR~~T_st~!:~~~nt: This statement is used in conjuncti~n with
certain input/output statements to specify the f~rm in which data
appears in a FOFTRAN record on an input/output device.

5.

6. DATA Initialization Statement: This statement is used to assign
initial-values to variables-and array elements.

7. §E~£ii!£~tiQ~state~~~!:~: These statements are used t~ declare the
properties of variables, arrays, and functions (such as t e and
amount of reserved)

8. statement Function Definition Statement: This statement specifies
operations to be perf~rmed whene~er the statement function name
appears in an executable statement.

9. §!!!2£E.2.9:E~.!!L§.tatements: These statements enable the user to name
and to specify arguments for functions and subroutines.

Elements of the Language 13

The basic elements of the language are discussed in this secti~n.
The actual FORTRAN state~ents in which these elements are used are
discussed in following sections. The term pro~~~~i~ refers to a main
program or a subprogram; the term ~~ec~~~£l~~~~~~ment~ refers to those
statements in categories 1, 2, and 3, above. An executable program
consists of a main program plus any number of subprograms and/or
external procedures.

The order of statements in a FORTRAN program unit (other than a BLOCK
DATA subprogram) is as follows:

1. Subprogram statement, if any.

2.

3. other specification statements, if any.

4. statement function definitions, if any.

5. Executable statements, at least one of which must be present.

6. END statement.

No pro~ram unit can be embedded in another program unit; that is,
between a program unit's first statement and its END statement, n~ other
program unit can occur.

FORMAT and DATA statements may appear anywhere 11~~.I.lllli1~ljll~I~~ljill
befOre the END

follow any specification statements ~hat
or arra names.

The order of statements in BLOCK DATA subprograms is discussed in the
section "BLOCK DATA Subprograms."

CODING F~RTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a
standard FORTRAN coding form, Form X28-7327. Each line on the coding
form represents one 80-column card.

Comments to explain the pr~gram may be written in columns 2 through
80 of a card if the letter C is placed in column 1. The FORTRAN
compiler does not process comments other than to print them as part of
the source program listing. comments may appear anywhere in the program
except between the cards of a FORTRAN statement that is contained on
more than one card.

FORTRAN statements are written on one or more cards within columns 7
through 72. The first card of a statement may have a statement number
in columns 1 through 5 and must have a blank or zero in column 6. The
statement number, which must not be zero, consists of from 1 to 5
decimal digits. Blanks and leading zeros in a statement number are
ignored. The values of the statement numbers do not affect the order in
which the statement~ are executed.

14

(

A FORTRAN statement that is not confined to one card may be c~ntinued
onto as many as 19 additional cards. A continuation card has any
character ot.her than a blank or zero in column 6. The statement is then
continued within columns 7 through 72. Columns 1 through 5 may contain
any characters, except that the letter C must not appear in column 1.
The characters in columns 1 through 5 are ignored.

Elements of the Language 14.1

J'
'.~I \,

Columns 73 through 80 of any FORTkAN card are not significant to the
compiler and may, therefore, be used for program identification,
sequencing, or any other purpose.

As many blanks as desired may be written in a statement or comment to
improve its readability. They are ignored by the compiler. However,
blanks that are inserted in literal data are retained and treated as
blanks within the data.

CONSTANTS ------

A constant is a fixed, unvarying quantity. There are.llll, classes of
constants -- those that specify numbers (numerical constants), those
that specify truth values (logical constants) those that
literal data (literal constants)
.1I\".lfiljll.I~';;I;III11\'.I~!IT' ,

Numerical constants are integer, real" or complex numners; logical
constants are .TRUE. or .FALSE .. ; literal constants are a strin of
a 1 hamer i c an d/ 0 r s ec i a 1 cha r a c te rs;' !1~ ~~(.I~I'III~~I'II'I!!II'III~I.Il~I~i'11!1;:i;!.!li

An unsigned constan~ is a constant with no leading sign. A signed
constant is a constant with a leading plus or minus sign. An optionally
signed constant is a constant that may be either signed or unsigned.
Only integer and real constants may be optionally signed constants, and
may be used as such, except where specified otherwise.

INTEGER CONSTANTS

r--,
I Definition I
r--~
I Integer Constant - a whole number written without a decimal point. 1
I It occupies four locations of storage (i.e., four bytes). 1
I 1
I Maximum Magnitude: 2147483647 (i.e., 231-1). I L __ J

An integer constant may be positive. zero, or negative. If unsigned
and nonzero, it is assumed to be positive. (A zero may be written with
a preceding sign, which has no effect on the value zero.) Its magnitude
must not be greater than the maximum and it may not contain embedded
commas.

Valid Integer Constants:

o
91
173
-2147483647

Invalid Integer Constants:

27 ..
3145903612
5,396

(Contains a decimal point)
(Exceeds the maximum magnitude)
(Contains an embedded comma)

Elements of the LaDguage 15

i,

REAL CONSTAN'l'S

r--,
I Definition I
r~---1
I Real Constant - has one of three forms: a basic real constant, a I
I basic real constant followed by a decimal exponent, or an integer I
I constant followed by a decimal exponent. 1
I l
I A basic real constant is a string of decimal digits with a j
I decimal pointi it occupies four storage locations (bytes). J

I I
I A decimal exponent consists of the letter E or the letter D i
I followed by a signed or unsigned 1- or 2-digit integer constant. J

I The letter E specifies a constant of length four; the letter D J
I specifies a constant of length eight (and is required to J

I obtain a length of eight). J

I I
I Magnitude - Four or eight locations: 0 or 16-65 through 16 63

J
I (approx. 10-78 through 10 75) J
I I
I 1
I Precision - Four locations: 6 hexadecimal digits]
I (approx. 6 decimal digits))
I Eight locations: 14 hexadecimal digits]
I (approx. 15 decimal digits) J
I I l __ J

A real constant may be positive, zero, or negative (if unsigned and
nonzero, it is assumed to be positive) and must be within the allowable
range. It may not contain embedded commaSq A zero may be written with
a preceding sign, which has no effect on the value zero. The decimal
exponent permits the expression of a real constant as the product of a
basic real constant or integer constant times 10 raised to a desired
power.

16

Valid Real Constants (four storage locations):

+0 ..
-999.9999
7.0E+0
19761.25E+l
7.E3
7.0E3
7 .. 0E+03
7E-03
21.98753829457168

(i.e. u 7.0 x 10 0 = 7.0)
(i.e., 19761.25 x 10 1 = 197612.5)

(i.e., 7.0 x 103 = 7000.0)

(i.e., 7.0 x 10- 3 = 0.007)
(Note: this level of precision cannot be
accommodated in four storage locations)

Valid Real Constants (eight storage locations):

1234567890123456.D-93
7 .. 9D03
7.9D+03
7 .. 9D+3
7.9DO
7D03

(Equivalent to .1234567890123456x10-77)

(i. e., 7.9 x 103

(i.e., 7 .. 9 x 100

(i.e., 7.0 x 103

7900.0)

7.9)
7000.0)

(:

Invalid Real constants:

1
3,,471.1
l.E

1 .. 2E+113
23.5D+97

21 .. 3D-90

COMPLEX CONSTANTS

(Missing a decimal point or a decimal exponent)
(Embedded comma)
(Missing a 1- or 2-digit integer constant

following the E. Note that it is not
interpreted as 1.0 x 100)

(E is followed by a 3-digit integer constant)
(Magnitude outside the allowable range; that

is, 23.5 x 1097 >16 63)

(Magnitude outside the allowable range; that
is, 21 .. 3 x 10-90<16- 65)

r--,
I Definition 1

~----------------------------~---1
I Complex Constant - an ordered pair of signed or unsigned real l
I constants separated by a comma and enclosed in parentheses. The I
I first real constant in a complex constant represents the real part J
I of the complex number; the second represents the imaginary part of 1
I the complex number. Both parts must occupy ~he same number of '1
I storage locations (either four or eight).) L __ J

The real constants in a complex constant may be positive, zero, or
negative (if unsigned and nonzero" they are assumed to be positive)f/ and
must be within the allowable rangea A zero may be written with a
preceding sign, which has no effect on the value zero.

Examples:

Valid Complex Constants

Where i =.y-::1
Invalid Complex Constants:

(292704,1.697)
(.003E4,.005D6)

(The real part is not a valid real constant)
(The parts differ in length)

LOGICAL CONSTANTS

r--,
I Definition J

~--~ I Logical Constant - a constant that specifies a logical value "true" 1
I or "false." There are two logical constants: 1
I . TRUE. ~
1 • FALSE. J
1 Each occupies four storage locations. The words TRUE and FALSE must 'J
I be preceded and followed by periods. I L __ J

Elements of the Language 17

The logical constant .TRUE. or.FALSE. when assigned to a logical
variable specifies that the value of the logical variable is true or
false, respectively. (See the section "Logical Expressions.")

LITERAL CONSTANTS

r--,
J Definition 1
~--~
J Literal Constant - a string of characters of alphabetic, numeric.]
I and/or special characters (see Appendix A), delimited as follows: J
I J
I 1.J
I ~
I 2,. The string can be preceded by !:!H where ~ is the number ofJ
I characters in the string.] L __ J

Each character
characters in the
reater than 255.

precedes the literal, a single apostrophe
represented by a single apostrophe.

Examples:

24H INPUT/OUTPUT AREA NO. 2

5HDON'T

18

1 or

If wH

(

,
\'
~

SYMBOLIC NAMES

r--,
I Definition 1
~--~~------------i
I Symbolic Name - from 1 through 6 alphabetic (A,B, ••• ,z,l) or numeric 1
I (0.1 •••• ,9) characters, the first of which must be alphabetic. I l __ J

(
Elements of the Language 19

Symbolic names are used in a program unit to identify elements in the
following classes:

• An array and the elements of that array (see "Arrays")

• A variable (see "Variables")

• A statement function (see "Statement Functions")

• An intrinsic function (see Appendix C)

• A FUNCTION subprogram (see "FUNCTION Subprograms")

• A SUBROUTINE subprogram (see "SUBROUTINE Subprograms")

• A common-block name (see "BLOCK DATA Subprogram")

• An external procedure name that cannot be classified in that program
unit as either a SUBROUTINE or FUNCTION subprogram name (see
"EXTERNAL Statement")

•

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

A common-block name can also be an array, variable, or statement
function name in a program unit.

A FUNCTION subprogram name must also be a variable name in the
FUNCTION subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a
SUBROUTINE subprogram name, a block name, or an external procedure name
in any unit of an executable program, no other program unit of that
executable program can use that name to identify an entity of these
classes in any other way.

VARIABLES

A FORTRAN variable is a data item, identified by a symbolic name,
that occupies a storage area. The value specified by the name is always
the current value stored in the area.

For example, in the statement

A = 5.0+B

both A and B are variables. The value of B has been determined by some
previously executed statement. The value of A is calculated when this
statement is executed and depends on the previously calculated value of
B.

Before a variable has been assigned a value its contents are
undefined, and the variable may not be referred to except to assign it a
value.

20

(

(

VARIABLE NAMES

FORTRAN variable names must follow the rules governing symbolic
names. The use of meaningful variable names can serve as an aid in
documenting a program.

Examples:

Valid Variable Names:

B292S
RATE

Invalid Variable Names:

B292704
4ARRAY
SI.X

<Contains more than six characters)
(First character is not alphabetic)
(Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents.. Thus, an integer variable represents integer data, a real
variable represents real data, etc. There is no variable type
assoc~ated with literal . data. These types of data are
identified by a name of one 0 the ot er types.

A programmer may declare the type of a variable by using the
following:

• Predefined specification contained in the FORTRAN language

• Explicit specification statements

ecification statement overrides
the predefined specif

Elements of the Language 21

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I~ J, K, L, M, or N~
the variable is integer of length 4.

2. If the first character of the variable name is any other alphabetic
character, the variable is real of length 4.

This convention is th~ traditional FORTRAN method of implicitly
specifying the type of a variable as being either integer or real. In
all examples that follow in this publication it is presumed that this
specification applies unless otherwise noted. Variables defined with
this convention are of standard length.

Type Declaration by Explicit Specification Statements

Explicit specification statements differ from the first two ways of
specifying the type of a varia~le, in that an explicit specification
statement declares the type of a particular variable by its name rather
than as a group of variable names beginning with a particular letter.

s
variable ITEM is complex i.jjilliliijJjI~ijiiiilliiiiljllljjiilliiig"iliiiliillillll.
illlll_ill.ltll,lill •• 1 Note that variable names beginning Wl.th the
letters J through N are specified as integer by the predefined
convention.

The explicit specification statements a~e discus.sed in greater detail
in the section "Specification Statements."

22

(A FORTRAN array is a set of data items identified by a symbolic name,
called the array name. The data items which the array comprises are
called array elements. A particular element in the array is identified
by the array name and its position in the array (e.g., first element,
third element, seventh element, etc.).

Consi1er the array named NEXT, which consists of five elements, each
currently representing the following values: 273, 41, 8976, 59, and 2.
Each element in this array consists of the name of the array (i.e.,
NEXT) immediately followed by a number enclosed in parentheses, called a
subscript.

NEXT (1)
NEXT (2)
NEXT (3)
NEXT (4)
NEXT (5)

contains 273
contains 41
contains 8976
contains 59
contains 2

The array element NEXT(I) refers to the "Ith" element in the array,
where I is an integer variable that may aSSUme a value of 1, 2, 3, 4, or
5.

To refer to any element in an array, the array name plus a
parenthesized subscript must be used. In particular, the array name
alone does not represent the first element.

Before an array element has been assigned a value its contents are
undefined, and the array element may not be referred to eKcept to assign
it a value.

The following array named LIST is described by two subscript
quantities, the first ranging from 1 through 5, the second from 1
through 3:

Row 1
ROW 2
Row3
Row4
E2W ~

Column 1 --82--
12
91
24

2

£Q.J:.!!~!l_£
4

13
1

16
8

Column 3 --=;--
14
31
10

2

~he element in row 2, c~lumn 3 would be referred to as LIST (2,3),
and has the value 14. ordinary mathematical notation might use LIST to
represent any element of the array LIST. In FORTRAN, this is written as
LIS~(I,J), where I equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3.

A subscript is an integer subscript quantity, or a set of integer
subscript quantities separated by commas, that is associated with an
array name to identify a particular element of the array. The number ~f
subscript quantities in any subscript must be the same as the number of
dimensions of the array with whose name the subscript is associated. A
subscript is enclosed in parentheses and is written immediately after
the array name. A maximum of~I¥!n subscript quantities (three in A.NS
FORTRAN) can appear in a subscript.

Elements of the Language 23

The following rules apply to the construction of subscript
quantities. (See the section "Expressions" for additional information
about the terms used below.)

1 •

2.

3.

4.

5. The evaluated result ~f a subscript quantity should always be
greater than zero.

Examples.;.

y~lig Array Elements:

ARRAY (IHOLD)
NEXT (19)
MATRIX 1-

ARRAY (- 5) (A subscript quantity cannot be negative.)
LOT (0) (A subscript quantity cannot be zero.)
ALL (. TRUE.) (A subscript quantity cannot be of a logical

type.)
NXT (1+(1.3,2.0» (A subscript quantity cannot be of a complex

type.)

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is declared by specifying
in a subscript declarator the number of dimensions in the array, and the
size of each dimension. Each dimension is represented by an integer
constant or integer variable. A maximum of ';1:11'11 dimensions (three in
ANS FORTRAN) is permitted. The size of each dimension is equal to the
value of its respective constant or variable.

Size information must be given for all arrays in a FORTRAN program so
that an appropriate amount of storage may be reserved. Declaration of
this information is made by a DIMENSION statement, a COMMON statement,
or by one of the explicit specification statements; these statements are
discussed in detail in the section "specification statements." The type
of an array name is determined by the conventions for specifying the
type of a variable name. Each element of an array is of the type
specified for the array name.

24

(

ARRANGEMENT OF ARRAYS IN STORAGE

An array is stored in ascending storage locations~ with the value of
the first of its subscript quantities increasing most rapidly and the
val ue of the last increasing least rapidly,.

For example, the array named A, described by one subscript quantity
which varies from 1 to 5:, appea,rs in storage as follows:

AG1) A(2) A(3) A(4) A(S)

The array named B, described by two subscript quantities with the
first subscript quantity varying from 1 to 5" and the second varying
from 1 to 3, appears in ascending storage locations in the following
order:

B(l,l) B(2.l) B(3,l) B(4.l) BCS,l)--,
r--------------------------------------J

L->B(1.2) B(2,2) B(3,2) B(4,2) B(S,2)--1

r--------------------------------------J

L->B(1.3) B(2,3) B(3,3) B(4,3) B(S,3)

Note that BC1,2) and B(l,3) follow in storage BCS,l) and B(S,2),
respecti vely,.

The following list is the order of an array named C, described by
three subscript quantities with the first varying from 1 to 3, the
second varying from 1 to 2, and the third varying from 1 to 3:

C(l~l,l) C(2,l,l) C(3,l,l) C(l,2,1) C(2,2,l) C(3,2,1)--,
r---____ J
L->C(l,l,2) C(2,1,2) C(3,1.2) C(l,2,2) C(2,2,2) C(3,2,2)--,
r--___ J
L->C(ln l,3) C(2,1.3) C(3,l,3) C(l,2,3) C{2,2,3) C(3,2,3)

Note that C(1"l,2) and C(l,l,3) follow in storage C(3,2,1) and
C (3,,2,2) " respectively.

EXPRESSIONS

FORTRAN IV provides two kinds of expressions: arithmetic and logi
cal. The value of an arithmetic expression is always a number whose
type is integer" real, or complex. The value of a logical expression is
always a truth value: true or false. Expressions may appear in
assignment statements and in certain control statements.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary, which may
be a single constant, variable, array element, function reference, or
another expression enclosed in parentheses. The primary may be either
integer, real, or complex.

Elements of the Language 25

In an expression consisting of a single primary, the type of the
primary is the type of the expression.

Examples:

Primary
3
A
3.1403
(2.0,5.7)
SIN(X)
(A*B+C)

Type of Primary
Integer constant
Real variable
Real constant
Complex constant
Real function reference
Parenthesized real

expression

Type of Expression
Integer of length 4
Real of length 4
Real of length 8
Complex of length 8
Real of length 4
Real of length 4

Arithmetic Operators

More complicated arithmetic expressions containing two or more
primaries may be formed by using arithmetic operators that express the
computation(s) to be performed.

The arithmetic operators are as follows:

Arithmetic Operator
**

Definition
Exponentiation
Multiplication
Division
Addition
Subtraction

*
/
+

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. All desired computations must be specified explicitly. That is. if
more than one primary appears in an arithmetic expression# they
must be separated from one another by an arithmetic operator. For
example, the two variables A and B will not be multiplied if
written:

AB

In fact, AB is regarded as a single variable with a two-letter
name.

If multiplication is desired, the expression must be written as
follows:

A*B or B*A

2. No two arithmetic operators may appear consecutively in the same
expression. For example, the following expressions are invalid:

26

A*/B and A*-B

The expression A*-B could be written correctly as

A*(-B)

In effect, -B will be evaluated first and then A will be multiplied
with it. (For further uses of parentheses, see rule 3.)

3 ..

(

(-

Operation
Evaluation of functions
Exponentiation C**)
Multiplication and division (* and /)
Addition and subtraction (+ and -)

Hierarchy
1st
2nd
3rd
4th

This hierarchy is used to determine which of two sequential
operations is performed first. If the first operator is higher
than or equal to th~ second, the first operation is performed. If
not, the second operator is compared to the third, etc. When the
end of the expression is encountered, all of the remaining
operations are performed in reverse order.

For example, in the expression A*B+C*D**I, the operations are
performed in the following order:

1.
2.
3.
4.

A*B
D**I
c*y
X+Z

Call the result X (multiplication)
Call the result Y (exponentiation)
Call the result Z (multiplication)
Final operation (addition)

(X+C*D**I)
(x+c*y)
(X+Z)

A unary plus or minus has the same hierarchy as a plus or minus in
addition or subtraction. Thus.

A=-B is treated as A=O-B

A=-B*C is treated as A=-(B*C)

A=-B+C is treated as A=(-B)+C

Parentheses may be used in arithmetic expressions, as in algebra,
to specify the order in which the arithmetic operations are to be
performed. Where parentheses are used. the expression within the
parentheses is evaluated before the result.is used. This is
equivalent to the definition above, since a parenthesized
expression is a primary.

For example, the following expression:

B/«A-B)*C)+A**2

is effectively evaluated in the following order:

1. A-B Call the result W B/(W*C)+A**2
2. w*c Call the result X B/X+A**2
3 .. B/X Call the result Y Y+A**2
4. A**2 Call the result Z Y+Z
5 .. Y+Z Final operation

Elements of the Language 27

Table 1. Determining the Type and Length of the Result of +, -,. *. and
/ Operations

I INTEGER
I (4)

~------~---.----.
I REAL
I (4)

~-------------
I REAL
I (8)

r-·--·--·--·--·y---------·---------T------
I
I
I
I
I

4. The type and length of the result of an operation depends upon the
type and length of the two operands (primaries) involved in the
operation. Table 1 shows the type and length of the result of the
operations +, -. *n and /.

5. A REAL*4 or REAL*8 operand may have an INTEGER*4,

28

REAL*4, or REAL*8 exponent. An ER*4 operand may
have an _ INTEGER*4, exponent. However n
a negative operand (either REAL or INTEGER) may not have a REAL
exponent. The exponent of a complex operand must be an
value. No other combinations are allowed. The type of
depends upon the s of the two 0 rands involved,
Table 1.

I
1,(,

6. When division is performed using two integers, any remainder is
truncated <without rounding) and an integer answer is given. The
sign is determined normally.

Examples:

I
9

-5
1

J
"2
2

-4

LOGICAL EXPRESSIONS

I/J
4

-2
o

The simplest form of logical expression consists of a single logical
primary. A logical primary can be a logical constant, logical variable_
logical array element, logical function reference, relational
expression, or logical expression enclosed in parentheses. A logical
primarYII when evaluated, always has the value true or false.

More complicated logical expressions may be formed by using logical
operators to combine logical primaries.

~elational Expressions

Relational expressions are formed by combining two arithmetic
expressions with a relational operator. The six relational operators,
each of which must be preceded and followed by a period, are as follows:

Relational Operator Definition
.GT .. Greater than <»
• GE. Greater than or equal to (~)

.. LT .. Less than «)

.LE .. Less than or equal to <~)

.EQ .. Equal to (=)

.. NE. Not equal to (:t:)

The relational operators express an arithmetic condition which can be
either true or false. The relational operators may be used to compare
two integer expressions. two real expressions"

Examples:

Assume that the type of the following variables has been specified as
follows:

variable Names
ROOT" E
A" I" F
L
C

~
Real variables
Integer variables
Logical variable
Complex variable

Then the following examples illustrate valid and invalid relational
expressions.

Valid Relational Expressions:

.5 .. GE.. .9*ROOT
E .EQ. 27.3D+05

Elements of the Language 29

Invalid Relational Expressions:

C '. GE. (2.7,,5. 9E3)

L .. EQ. (A+F)

(Complex quantities may never appear in logical
expressions)

(Logical quantities may never be joined by
relational operators)

E**2 .LT 97.1El

.GT. 9

Logical Operators

(Missing period immediately after the relational
operator)

(Missing arithmetic expression before the ~ela
tional operator)

The three logical operators. each of which must be preceded and
followed by a period, are as follows (where A and B represent logical
constants or variables, or expressions containing relational operators):

Logical Operator Use

.NOT. .NOT.A

,.AND. A.AND.B

.OR. A.OR.B

Meaning

If A is true, then .NOT.A has the value
false; if A is false, then .NOT.A has
the value true.

If A and B are both true, then A.AND.B has
the value true; if either A or B or both
are false, then A.AND.B has the value
false.

If either A or B or both are true, then
A.OR.B has the value true; if both A and
B are false. then A.OR.B has the value
false.

The only valid sequences of two logical operators are .AND •• NOT. and
.OR •• NOT.; the sequence .NOT •• NOT. is invalid.

Only those expressions which, when evaluated. have the value true or
false may be combined with the logical operators to form logical
expressions.

Examples:

Assume that the type of the following variables has been specified as
follows:

variable Names
ROOT. E
A, I, F
L, W
C

~
Real variables
Integer variables
Logical variables
Complex var:iable

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

30

(

Valid Logical Expressions:

'tR()q!f*,Pi< ~'i:\G~~;:,\!;~);,i;t~Nfj.\(;}\\ 'vf
L .AND. • NOT. (I .GT. F)
(;l::t'S.:9D2 ,.GT'. 2*:EL,~j()R.\' ,L
• NOT.. W .AND. • NOT. L
L QAND. .NOT. W .OR. I .GT.
~~1Ic:*'F\\.G'1?~' '~Q'o1t':\ ';NP ~ .. \~9T:\~

Invalid Logical Expressions:

F
.I<.~Q~ .

A "AND. L
.OR. W

(A is not a logical expression)

NOT. (A • GT • F)

(C • EQ. I) .AND" L

L .AND ... OR. W

.. AND. L

(.OR. must be preceded by a logical expression)
(Missing period before the logical operator

.NOT.)
(A complex quantity may never be an operand of

a relational operator)
(The logical operators .AND. and .OR. must

always be separated by a logical expression)
(.AND. must be preceded by a logical

expression)

Order of computations in Logical Bxpressions: The order in which the
operations are performed is:

Operation
Evaluation of functions
Exponentiation (**)
Multiplication and division (* and /)
Addition and subtraction (+ and -)
Relationals (.GT.w.GE.w.LT.w.LE.w.EQ.,.NE.)
.NOT.
.AND.
.OR.

For example, the expression:

A.GT.D**B.AND •• NOT.L.OR.N

is effectively evaluated in the following order:

1. D**B Call the result W (exponentiation)

Hierarchy
1st (highest)
2nd
3rd
4th
5th
6th
7th
8th

2. A.GT.W Call the result X (relational operator)
3. .NOT.L Call the result y (highest logical operator)
4. X.AND.Y Call the result Z (second highest logical operator)
5. Z.OR.N Final operation

Note: Logical expressions may not require that all parts be evaluated.
Functions within logical expressions mayor may not be called. For
example, in the expression A.OR.LGF(.TRUE.), it should not be assumed
that the LGF function is always invoked, since it is not necessary to do
so to evaluate the expression when A has the value true.

Elements of the Language 31

Use of Parentheses in Logical Expressions: Parentheses may be used in
logical expressions to -specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair
of parentheses) is evaluated first. For example, the logical
expression:

• NOT. «B.GT.C.OR.K).AND.L)

is evaluated in the following order:

1. B .. GT.C
2. X •• OR. K
3. Y •. AND.L
4.. • NOT. Z

Call the result X
Call the result Y
Call the result Z
Final operation

• NOT. (eX.OR.K)uAND.L)
• NOT .. (Y. AND .. L)
.. NOT .. Z

The logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more quantities.
For example, assume that the values of the logical variables, A and B,
are false and true, respectively. Then the following two expressions
are not equivalent:

• NOT .. (A .. OR. B)
.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first.
true; but .NOT. (.TRUE.) is the equivalent of dFALSE ••
value of the first expression is false.

The result is
Therefore, the

In the second expression, .NOT.A is evaluated first. The result is
true; but .. TRUE ... OR .. B is the equivalent of .. TRUE.. Therefore, the value
of the second expression is true. Note that the value of B is
irrelevant to the result in this example. Thus, if B were a function
reference, it would not have to be evaluated.

Length of a Relational Expression: A relational expression is always
evaluated to a LOGICALlBresult.

Results of the various logical operations are shown in Table 2.

Table 2. Determining the Type and Length of the Result of Logical
Operations

-------------------,

I
I L __________________ _

32

1
I

(
ARITHMETIC AND LOGICAL ASSIGNMENT STA'I'EMENT

r--,
I General Form I
r--~
I ~ = Q l
I J
I Where: ~ is a variable or array elemento 1
I l
I ~ is an arithmetic or logical expression. I L __ J

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equality. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable or array element to the left of the equal sign.

If b is a logical expression, a must be. a logical variable or array
element. If b is an arithmetic expression, ~ must be an integer, real,
or complex variable or array element. Table 3 gives the conversion
rules used for placing the evaluated result of arithmetic expression ~
into variable ~.

The expression is resolved to a single value based on its structure,
contents, and format as entered. Expression evaluation is accomplished
before any reference to the receiving variable or array element occurs.
In order to obtain valid mathematical results, then, the FORTRAN
statements that represent a mathematical calculation must each be
appropriate to the magnitude and precision desired in the final result.
The general rule is that accuracy is maximized when intermediate
calculations are more precise than required by the final result.

Assume that the type of the following data items has been specified
as:

Symbolic Name
I, J, W
A, B, C, D
E
F{l), ,FeS)
G, H

~
Integer variables
Real variables
Complex variable
Real array elements
Logical variables

Length Specification
4,4,2
4,4,8,8
8
4
4,4

Then the following examples illustrate valid arithmetic statements
using constants, variables, and array elements of different types:

Statements
A = B

W B

A = I

I = I + 1

Description
The value of A is replaced by the current value of B.

The value of B is truncated to an integer value, and
this value replaces the value of w.

The value of I is converted to a real value8 and this
result replaces t'he value of A.

The value of I is replaced by the value of I + 1.

Arithmetic and Logical Assignment Statement 33

statements

111'.iIIIII111

A C*D

G .TRUE.

H • NOT.G

E (1.0,2.0)

F(l) A

C 99999999.0

34

The most signi£icant part of the product of C and D
replaces the value of A.

The value of G is replaced by the truth value true.

If G is true, the value of H is replaced by the truth
value false. If G is false, the value of H is
replaced by the truth value true.

The value of the complex variable E is replaced by
the value of the complex constant (1.0,2.0). Note
that the statement E = (A,B), where A and Bare
real variables, is invalid. The mathematical
function subprogram CMPLX can be used for this
purpose. See Appendix C.

The value of element 1 of array F is replaced by the
value of A,.

A basic real constant occupies only four storage
locations, with a precision of approximately 7.2
decimal digits. Thus, the entered 8-digit basic
real constant (99999999.0) is first truncated to
7.2 decimal digits of accuracy, and it is this
value that replaces the 8-digit real variable (C).
That is, C will not ,b_e exactly equal to the enter
ed real constant. However, if the basic real
constant were entered as 99999999.0DO, a full 8
digits ,of accuracy would result, and the 8-digit
real variable (C) would be exactly equal to the
entered basic real constant.

(

, ,

(

Arithmetic and Logical Assignment Statement 34.1

Table 3. Conversion Rules for the Arithmetic Assignment Statement a=b

I
I

--------T-----------T-----------T-----------T----------.--~
Type 1 J I I

of ~]I:~~E<;;,ER,*2 I I I
I Type INTEGER*4 REAL*4 I REAL*8 I COMPLEX*8
I of ~ J

t~~~~-GE-.·· .. ~-~-·~-·~~~--A-S-S-i-g-n----+-----F-i-x--a-n-d~a-s-s-~-'g--n----~~~~~~~
I INTEGER* it
I

I
1

~-·--·--·-~·---+-----------+-----------T---------
I REAL*4
I

F~oat and I Assign IReal assign
assign I I

I I I
1 I I
I } I
~------- -----------+-----.--.-----~---.--,----.--.-~
I REAL*8 DP float IDP float Assign
I
J
I
I
I

and assign land assign
I
I
1
I

~--~-----.--... ~,,.,.
I COMPLEX * 8
1
I
J

I
I

Notes: 1
~ssign means transmit the resulting va/lue, without change. If J

the significant digits of the resulting value exceed the speci- I
fied length, results are unpredictable. J

2. Real Assign means transmit to ~ as much prec~s~on of the most 'J

sigIifficant part of the resulting value as REAL*4 data can 1
contain. 1

3. Fix means truncate the fractional port.ion of the resulting value I
and transform to the form of an integer. I

4. Float means transform the resulting value to the form of a REAL*4 l
number, retaining in the process as much precision of the value 1
as a REAL*4 number can contain. 1

5. DP Float means transform the resulting value to the form of a i
REAL*8 number. ~

16. An expression of the form E=(A,B), where E is a complex variable J
I and A and B are real variables, is invalid. The mathematical J
I function subprogram CMPLX can be used for this purpose. See I
I Appendix C. ~ L __ J

Arithmetic and Logical Assignment Statement 35

(~

CONTROL STATEMENTS

Normally. FORTRAN statements are executed sequentially. That is~
after one statement has been executed, the statement immediately
following it is executed. This section discusses certain statements
that may be used to alter and control the normal sequence of execution
of statements in the program.

GO TO STATEMENTS

GO TO statements permit transfer of control to an executable
statement specified by number in the GO TO statement. Control may be
transferred either unconditionally or conditionallyo The GO TO
statements are:

1. Unconditional GO TO statement

2. Computed GO TO statement

3. Assigned GO TO statement

UNCONDITIONAL GO TO STATEr-lENT

r--,
I General Form ~

t--i
I GO TO xxxxx 1
I J
I Where: xxxxx is the number of an executable statement in the same 1
I program unit. J L ___ - ________ ~

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.
Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or
executed.

Example:

GO TO 25
10 A = B + C

25 C = E**2

Control Statements 37

Explanation:

In this example, each time the GO TO statement is executed, control
is transferred to statement 25.

COMPUTED GO TO STATEMENT

r--,
I General Form 1
~--i
I GO TO (~1u~2n~3' ••• '~n)' ! ~
I I
J Where: Each x is the number of an executable statement in the 1
I program unit containing the GO TO statement. J

I J
I i is an integer variable (not an array element) which must ~
I be given a value before the GO TO statement is executed. J L _________________________ - ___________________________ - ________________ J

This statement causes control to be transferred to the statement
numbered X1, X2, X3 •••• ' or Xn, depending on whether the current value
of i is 1; 2,-3".~ow or n, res ctive

Example:

GO TO (25,10g 7,10), ITEM
345 C = 7.02

7 C = E**2+A

25 L = C

10 B = 21.3E02

Explanation:

In this example, if the value of the integer variable ITEM is 1,
statement 25 will be executed next. If ITEM is 1 to 2 or 4
statement 10 is executed next and so on.

38

ASSIGN AND ASSIGNED GO TO STATEMENTS

r--------------------------~---,
I General Form ~

~--i
ASSIGN ! TO m ~

)
~
IJ

~
J

Where: i is the number of an executable statement.
of the numbers ~~'~2'~3' •• • ,~n.

It must be one J

Each ~ is the number of an executable statement in the
program unit containing the GO TO statement.

m is an integer variable (not an array element) of length 4
which is assigned one of the statement numbers:

J
J
I
I
J
~
~

~~'~2.~3'···'~n· 1
L ____________ ---_________________ J

The assigned GO TO statement causes control to be transferred to the
statement numbered ~~l1tf2'~311 ••• ,or ~n, depending on whether the current
assignment of m is ~~'~2.~311 ••• ,or ~n, respectively. For example, in
the statement:-

GO TO N, (10, 25, S)

If the current assignment of the integer variable N is statement number
S, then the statement numbered S is execut.ed next. If the current
assignment of N is statement number 10. the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

At the time of execution of an assigned GO TO statement, the current
value of m must have been defined to be one of the values x~, x2, ••• ,xn
by the previous execution of an ASSIGN statement. The value of the -
integer variable m is not the integer statement number; ASSIGN 10 TO I
is not the same as I = 10.

Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or
executed.

Example 1:

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, lS)

50 A = B + C

Explanation:

In Example 1. statement 50 is executed immediately after statement
10.

Control Statements 39

Example 2:

ASSIGN 10 TO ITEM

13 GO TO ITEM, (8,12,25, 50,10)

8 A = B + C

10 B = C + D
ASSIGN 25 TO ITEM
GO TO 13

25 C = E**2

Explanation:

In Example 2, the first time statement 13 is executed~ control is
transferred to statement 10. On the second execution of statement 13,
control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

ARITHMETIC IF STATEMENT

r------~---,
I General F'orm 1
~--i
I IF (~) ~1'~2.~3 l
I 1
I J
I Where: ~ is an arithmetic expression of any type except complex. I
I 1
I Each x is the number of an executable statement in the ~
I program unit containing the IF statement. J
L ___ ----------_~---------------J

The arithmetic IF statement causes control to be transferred to the
statement numbered X1,X2. or X3 when the value of the arithmetic
expression Ca) is less-than, equal to, or greater than zero,
respectively-:-

Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or
executed.

40

(
Example:

IF (A(J,K)**3-B)10, 4~ 30
40 D = C**2

4 D = B + C

30 C = D**2

10 E = (F*B)/D+1

Explanation:

In this example, if the value of the expression (A(J,K)**3-B) is
negative, the statement numbered 10 is executed next. If the value of
the expression is zero. the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

LOGICAL IF STATEMENT

r--,
J General Form I
~--i
I IF (~) ~ ~
I 1
I Where: ~ is any logical expression. ~

I I
1 s is any executable statement except a DO statement or I
I another logical IF statemento The statement ~ may not have I
I a statement number. ~ L __ J

The logical IF statement is used to evaluate the logical expression
(~) and to execute or skip statement ~ depending on whether the value of
the expression is true or false, respectively.

Example 1:

IF(A.LE.O.O) GO TO 25
C = D + E
IF(A.EQ.B) ANSWER = 2.0*A/C
F = G/H

25 W = x**z

Control Statements 41

Explanation:

In the first statement~ if the value of the expression is t~ue (i_e.~
A is less than or equal to 0.0) " the statement GO TO 25 is executed next
and control is passed to the statement numbered 25.. If the value of the
expression is false (i. e. I, A is g~eater than 0.0) " the statement GO TO
25 is ignored and control is passed to the second statement.

In the third statement, if the value of the expression is true (ioe ••
A is equal to B). the value of ANSWER is replaced by the value of the
expression (2.0*A/C) and then the fourth statement is executed. If the
value of the expression is false (i. e .. , A is not equal to B) " the value
of ANSWER rema.ins unchanged and the fourth statement is executed next.

Example 2:

Assume that P and Q are logical variables.

IF(P.OR •• NOT.Q)A=B
C = B**2

Explanation:

In the first statement, if the value of the expression is true, the
value of A is replaced by the value of B and the second statement is
executed next. If the value of the expression is false., the statement
A = B is skipped and the second statement is executed.

DO STATEMENT

r------------------~---,
I General Form J

~--i
End of DO Initial Test I
Range Variable Value Value Increment I
~ ------~ '-~~ ~ '-,-----v .. ----/ 1

DO

Where:

i

x is the number of an executable statement appearing after
the DO statement in the program unit containing the DO.

i is an integer variable (not an array element) called the
DO variable.

m1, m2, and m3r are either unsigned integer constants
greater than-zero or unsigned integer variables (not array
elements) whose value is greater than zero. The value of ~1
should not exceed that of ~2" !!!2 may not exceed 231-2 in
value. m3 is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma must

1
I
1
I
1
~
1
I
1
I
1
1
]
1

also be omitted. 1 __ J

The DO statement is a command to execute, at least once, the
statements that physically follow the DO statement, up to and including
the statement numbered x. These sta-ternents are called the range of the

42

tit
"I
\l

(

DO. The first time the statements in the range of the DO are executed,
1 1S initialized to the value ~1; each succeeding time i is increased by
the value m3. When. at the end of the iteration" i is equal to the
highest value that does not exceed ~2. control passes to the statement
following the statement numbered~. upon completion of the DO, the DO
variable is undefined and may not be used until assigned a value (e. g. "
in an arithmetic assignment statement).

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language_
For example" assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, OU~(I), from the
previous stock on hand, STOCK(l).

Example 1:

1=0
10 1=1+1

STOCK(I)=STOCK(I)- OUT(I)
IF(I-l000) 10,30,30

30 A=B+C

Explanation:

The first., second, and fourth statements required to control the
previously shown loop could be replaced by a single DO statement as
shown in Example 2.

Example 2:

DO 25 I = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)

A = B+C

Explanation:

In Example 2, the DO variable, I, is set to the initial value of 1.
Before the second execution of statement 25# I is increased by the
increment, 1, and statement 25 is again executed. After 1000 executions
of the DO loop. I equals 1000. since I is now equal to the highest
value that does not exceed the test value. 1000, control passes out of
the DO loop and the third statement is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 or 1001.

Control statements 43

Example 3:

DO 25 1=1" 10, 2
J = I+K

25 ARRAY(J) = BRAY(J)
A = B + C

Explanation:

In Example 3, statement 25 is the end of the range of the DO loop.
The DO variable, I, is set to the initial value of 1. Before the second
execution of the DO loop, I is increased by the increment, 2, and the
second and third statements are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I is now equal to the
highest value that does not exceed the test value, 10, control passes
out of the DO loop and the fourth statement is executed next. Note that
the DO variable I is now undefined; its value is not necessarily 9 or
11.

PROGRAMMING CONSIDERATIONS IN USING A DO LOOP

1. The indexing parameters of a DO statement (i, ~~, m2, m3) should
not be changed by a statement within the range of the DO loop.

2. There may be other DO statements within the range of a DO
statement. All statements in the range of an inner DO must be in
the range of each outer DO. A set of DO statements satisfying this
rule is called a nest of DO's~

Example 1:

DO 50 I = 1, 4

A(I) = B(I)**2

DO 50 J=l, 5

50 C (I.J) = A(I) :
Example 2:

DO 10 I = L, M

N = I + K

DO 15 J = 1~ 100, 2

Range of
Inner DO

iRange of
15 TABLE(J 8 I) = SUM(J,N)-l~ Inner DO

10 B(N) = A(N)

Range of
outer DO

Range of
Outer DO

3. A transfer out of the range of any DO loop is permissible at any
time. The DO variable is defined when such a transfer is executed.
and its value is the value it has when the transfer is executed.

4. The extended range of a DO is defined as those statements that are
executed between the transfer out of the innermost DO of a set of

44

(

(

completely nested DO's and the transfer back into the range of this
innermost DO. In a set of completely nested DO's, the first DO is
not in the range of any other DO, and each succeeding DO is in the
range of every DO which p~ecedes it. The following restrictions
apply:

• Transfer into the range of a DO is permitted only if such a
transfer is from the extended range of the DO.

• The extended range of a DO statement must not contain another DO
statement that has an extended range if the second DO is within
the same program unit as the first.

• The indexing parameters (i, ~~, ~2' ~3) cannot be changed in the
extended range of the DO~

Example 3:

•
• •

DO

DO

DO

! Extended
Range

5. A statement that is the end of the range of more than one DO
statement is within the innermost DOq The statement label of such
a terminal statement may not be used in any GO TO or arithmetic IF
statement that occurs anywhere but in the range of the most deeply
contained DO with that terminal statement.

Control statements 45

Example 4:

DO DO

r-______ D_:) 4
DO

~ __ -------_D_O~l

2

Explanation:

In the preceding examplejf the transfers specified by the numbers 1/11
2, and 3 are permissible, whereas those specified by 4, 5, 6, and 7
are not ..

6. The indexing parameters (i~ ~1' ~2' ~3) may be changed by
statements outside the range of the DO statement only if no
transfer is made back into the range of the DO statement that uses
those parameters.

7. The last statement in the range of a DO loop (statement x) must be
an executable statement. It cannot be a GO TO statement-of any
form, or a PAUSE, STOP, RETURN, arithmetic IF statement, another DO
statementw or a logical IF statement containing any of these forms.

8.. The use of, and return from, a subprogram from within any DO loop
in a nest of DO's, or from within an extended range, is permitted.

CONTINUE STATEMENT

r----------------~---,
I General Form I
~---~----------------~
I CONTINUE 1 L ___________ ------_______________________ ---___________________________ J

CONTINUE is a statement that may be placed anywhere in the source
program (where an executable statement may appear) without affecting the
sequence of execution. It may be used as the last statement in the
range of a DO in order to avoid ending the DO aoop with a GO TO, PAUSE,
STOP" RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of these forms.

46

5

(~

Example 1:

DO 30 I = 1w 20
7 IF (A(I)-B(I» 5,30,30
5 A(I) =A(I) +1.0

B(I) = B(I) -2.0

GO TO 7
30 CONTINUE

C = A(3) + B(7)

Explanation:

In Example 1, the CONTINUE statement is used as the last statement in
the range of the DO in order to avoid ending the DO loop with the
statement GO TO 7.

Example 2:

DO 30 I=lw20
IF(A(I)-B(I»5 w40 w40

5 A(I) = C(I)
GO TO 30

40 A(I) = 0.0
30 CONTINUE

Explanation:

In Example 2w the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement 40.

PAUSE STATEMENT

r--,
I General Form 1
~--~
I PAUSE l
I PAUSE n ~
I PAUSE 1
I l
I Where: ~ is a string of 1 through 5 decimal digits. I
I]
I 1
I J
I J
I J L __ J

Control Statements 47

PAUSE ~, PAUSE message, or PAUSE 00000 is displayed, depending upon
whether ~, 'message' or no parameter was specified, and the program
waits until operator intervention causes it to resume execution,
starting with the next statement after the PAUSE statement. For further
information, see the FORTRAN IV programmer's guide for the respective
system.

STOP STATEMENT

r--,
I General Form i
~--~
I STOP i
I STOP ~ 1
) ,]
I Where: ~ is a string of 1 through 5 digits. >] L-_____________________________ ------__________________________________ J

The STOP statement terminates the executi0n of the object program
For further information, see the

programmer s gU1 e or the respective system.

END STATEMENT

r--,
I General Form ~

~--~
I END J L _________________________ ~ _____________ - _________________________ -----J

The END statement is a nonexecutable statement that defines the end
of a main program or subprogram. Physically. it must be the last
statement of each program unit. It may not have a statement number, and
it may not be continued. The END statement does not terminate program
execution. To terminate execution. a STOP statement or a RETURN
statement in the main program is required_

48

(

Input/output statements are used to transfer and control the flow of
data between internal storage and an input/output device, such as a card
reader, printer, punch, magnetic tape unit, or disk storage unit. The
data that is to be transferred belongs to a data set. Data sets are
composed of one or more records. Typical records-are punched cards,
printed lines, or the images of either on magnetic tape or disk.

There are types of input/output statements: sequential
Sequential input/output statements are used for storing

and retrieving data sequentially. These statements are device
independent and can be used for data sets on either sequential or direct
access devices.

Qperation: In order for the input or output operation to take place,
the programmer must specify the kind of operation he desires: READ,
WRI~E, or BACKSPACE, for example.

Data Set Reference Number: A FORTRAN programmer refers to a data set by
its data set reference number. (The FORTRAN IV programmer's guides,
explain how data set reference numbers are associated with data sets.)
In the statement specifying the type of input/output operation, the
programmer must give the data set reference number corresponding to the
data set on which he wishes to operate.

I/O List: Input/output statements in FORTRAN are primarily concerned
with the transfer of data between storage locations defined in a FORTRAN
program and records which are external to the program. On input, data
is taken from a record and placed into storage locations that are not
necessarily contiguous. On output, data is gathered from diverse
storage locations and placed into a record. An I/O list is used to
specify which storage locations are used. The I/O list can contain
variable names, array element names, array names, or a form called an
implied DO (see below). No function references or arithmetic
ex~ressions are permitted in an I/O list,

If a variable name or array element name appears in the I/O list, one
item is transmitted between a storage location and a record.

If an array name appears in the list, the entire array is transmitted
in the order in which it is stored. (If the array has more than one
dimension, it is stored in ascending storage locations, with the value
of the first subscript quantity increasing most rapidly and the value of

Input/Output Statements 49

the last increasing least rapidly. Examples are given in the se~tion
"Arrangement of Arrays in storage.")

Implied_£Q: If an implied DO appears in the I/O list, the variables,
array elements, or arrays specified by the implied DO are transmitted.
The implied DO specification is enclosed in parentheses. Within the
parentheses are the names of one or more variables, array elements, or
arrays, separated by commas, with a comma following the last name,
followed by indexing parameters 1. =g!j. '~2. ~3· The indexing parameters
are as defined for the DO statement. Their range is the list of the
DO-implied list and, for input lists, i. ~j., ~2' and ~3 may appear
within that range only in subscripts.

For example, assume that A is a variable and that B, C, and Dare
1-dimensional arrays each containing 20 elements. Then the statement:

WRITE (6) ~, B, (C (I), I=1, 4), 0 (~)

writes the current value of variable A, the entire array B, the first
four elements of the array C, and the fourth element of D. (The 6
following the WRITE is the data set reference number.) If the subscript
(I) were not included with array C, the entire array would be written
four times.

Implied DO's can be nested if required; For example, to read an
element into array B after values are read into each row of a 10 x 20
array A, the following would be written:

READ (5) «A(I,J), J=1,20}, B(!), I=1,10)

The order of the names in the list specifies the order in which the
data is transferred between the record and the storage locations.

Formatted and Unformatte~ecords: Data can be transmitted either under
control of a FORMAT statenent or without the use of a FORMAT statement.

when data is transmitted with format control, the data in the record
is coded in a form that can be read by the programmer or which satisfies
the needs of machine representation. The transformation for input takes
the character codes and constructs a machine representation of an item.
The output transformation takes the machine representation of an item
and constructs character codes suitable for printing. Most
transformations involve numeric representations that require base
conversi~n. To obtain format control, the programmer must include a
FORMAT statement in the p~ogram and must give the statement number of
the FORMAT statement in the READ or WRITE statement specifying the
input/output operation.

When data is transmitted without format control, no FORMAT statement
is used. In this case, there is a one-to-one correspondence between
internal storage locations (bytes) and external record positions. A
typical use of unformatted data is for information that is written out
during a program, not examined by the programmer, and then read back in
later in the program, or in another program, for additional processing.

50

For unformatted output data, the I/O list determines the length of
the record. An output record is complete when the current values of all
the items in the I/O list have been placed in it, plus any control words
supplied by the input/output routines or Data Management. For further
information, see the FORTRAN IV programmer's guide for the respective
system.

For formatted data, the I/O list and the FORMAT statement determine
the form of the record. For further information see the section "FORMAT
statement" and the FORTRAN IV programmer's guides.

SEQUENT!~~ INPUT/OUTPUT STATEMENTS

There are five sequential input/output statements: READ, WRITE, END
FILE, REWIND, and BACKSPACE. The READ and WRITE statements cause
transfer of records of sequential data sets. The END FILE statement
defines the end of a data set; the REWIND and BACKSPACE statements
control the positioning of data sets. In addition to these five
statements, the FORMAT III 11111111. statements, although not
input/output statements, are used with certain forms of the READ and
WRITE statements.

After execution of a sequential WRITE or END FILE statement, no
record exists in the data set following the last record transferred by
that statement.

READ STATEMENT

r--------------------·-------- --------------------.-----------------------------,
IGeneral Form ,
READ (~, ~

Where: a is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference
number.

b is optional and is either the statement number of the
FORMAT statement describing the record(s) being read, the
name of an array containing a format specification, or a

!is~ is optional and is an I/O list.

The READ statement may take many forms. The value of ~ must always
be specified, but under appropriate conditions b· and list can be
omitted.

I ,

Input/Output Statements 51

7he basic forms of the READ statements are:

7he form READ (a,b) list is used to read data from the data set
associated with data-set reference number a into the variables whose
names are given in the list. The data is transmitted from the data set
to storage according to the specifications in the FORMAT statement,
which is statement number £.

READ (5,98) A,B,(C(I,K),I=1,10)

ExE!anati.on: The above statement cauSes input data to be read from the
data set associated with data set reference number 5 into the variables
A, B, C(1,K), C(2,K) , ••• , C(10,K) in the format specified by the FORMAT
statement whose statement number is 98.

Unformatted READ

The form READ(~) list is used to read a single record from the data
set associated with data set reference number a into the variables whose
names are given in the list. Since the data is unformatted, no FORMAT
statement number is given-.- This statement is used to read unformatted
data written by a WRITE(a) list statement. If the list is omitted, a
record is passed over withou~being read. ----

52

(

(

READ (J) A,B,C

EXFlan~i~Qg: The above statement caUSeS data to be read from the data
set associated with data set reference number J into the variables A, E,
and c.

WRI'IE STATEMENT

, ,
IGeneral Form I

~----------------.--~,
WRITE (~,Q) 1!~i I

Where: a is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference
number.

I
I
I
I

I Q is optional and is either the statement number of the
FORMAT statement describing the record(s) being written, thel
B~.rn~ .. ,~~;g .. "',,~;.~ay containing a format specification, or a
;1 •• ,III,.,dsml~,.

list is optional and is an I/O list.

I ,
I
I , __ ~---------J

The three basic forms of the WRITE statement are:

WRITE (a, b) list
WRITE (~)-l!~-

Formatted WRITE

purpose

Formatted WRITE
Unformatted WRITE

The form WRITE (a,b) list is used to write data into the data set
whose reference number is-~ from the variables whose names are given in
the list. The data is transmitted from storage to the data set
according to the specifications in the FORMAT statement whose statement
number is £.

WRITE (7,75) A, (B (1,3) ,1=1,10,2) ,c

Explanation: The above statement causes data to be written from the
variables A, B(1 ,3), B(3,3), B(5,3), B(7,3), B(9,3), C into the data set
associated with data set reference number 7 in the format specified by
the FORMAT statement whose statement number is 75.

Input/Output Statements 53

~he form WRITE (a) list is used to write a single record from the
variables whose names-are given in the list into the data set whose data
set reference number is a. This data can-be read back into storage with
the unformatted form of the READ statement, READ (a) list. The list
cannot be omitted. - --- --

WRITE (L) «A(I,J},I=1,10,2), B(J,3), J=1,K)

ExElanation: The above statement causes data to be written from the
variables A(1,1), A(3,1} , ••• , A(9,1), B(1,3}, A(1,2), A(3,2), •.• ,
A(9,2), B(2,3) , ••• , B(K,3) into the data set associated with the data
set reference number L. Since the record is unformatted, no FORM~T
statement number is given. Therefore, no FORMAT statement number should
be given in the READ statement used to read the data back into storage.

54

(

(

Input/Output Statements 55

~ote: The blanks that would normally separate the variables and
elements have been omitted in reproducing this example because of space
lirritations.

56

(

(

FORMAT STATEMENT

r
'General Form
~---
Ixxxxx FORMAT (C.1 , C 2 " , cn)
~
IWhere:
I
~
I

~~~~ is a statement number (1 through 5 digits). 

are format codes. 

IThe format codes are: 
I 
I~I!! 
'~D!?£ 
I~E~.~ 
I aFw. d 
I 
I.E~G!?~ 
I~L!! 
I~A!? 
I~.IIIII~ 
I!!H 
,~x 

t 

I 
I ~ ( .. · 
I 
,Where: 
I , 
I , , , , , , 

(Describes integer data fields.) 
(Describes double precision data fields.) 
(Describes real data fields.) 
(Describes real data fields.) 

(Desc 
(Describes 
(Describes character data 
11111.llllljlll.I!II;'!II,llt'll~ 
(Indicates ii tera'i 'data:) 
(Indicates that a field is 

data fields.) 

to be skipped on input or filled 
with blanks on output.) 

11.11 •• I~jiii.~II~I.lli~:_ ••• 1 

~ is optional and is a repeat count, an unsigned nonzero 
integer constant used to denote the number of times the 
format code or group is to be used. If ~ is omitted, the 
code or group is used only once. 

~ is an unsigned nonzero integer constant that specifies the 
number of characters in the field. 

Q is an unsigned integer constant specifying the number of 
decimal places to the right of the decimal point; i.e., the 
fractional portion. 

s is an unsigned integer constant specifying the number of 
significant digits. 

E is optional and re~resents a scale factor designator of 
the form nP where ~ is an unsigned or negatively signed 
integer constant. 

( ••• ) is a group format specification. Within the 
parentheses are format codes or an additional level of 
groups, separated by commas or slashes. 

Input/Output Statements 57 



The FORMAT statement is used in conjunction with the I/O list in the 
READ and WRITE statements to specify the structure of FORTRAN records 
and the form of the data fields within the records. In the FORMAT 
statement, the data fields are described with format codes, and the 
order in which these format codes are specified gives the structure of 
the FORTRAN records. The I/O list gives the names of the data items to 
make u~ the record. The length of the list, in conjunction with the 
FORMAT statement, specifies the length of the record (see the section 
"Various Forms of a FORMAT Statement"). 

Throughout this section, the examples show punched card input and 
printed line output. However, the concepts apply to all input/output 
media. In the examples, the character b represents a blank. 

The following list gives general rules for using the FORMAT 
statement: 

1. FORMAT statements are not executed; their function is to supply 
information to the object program. They may be placed anywhere in 
a program unit other than a BLOCK DATA subprogram, subject to the 
rules for the placement of the FUNCTION, SUBROUTINE, IMPLICIT, and 
END statements. 

2. Complex data in records require two successive D, E, F, or G format 
codes. 

3. Either one comma or any number of slashes can be used as separators 
between format codes (see the section "Various Forms of a FORMAT 
statement") • 

4. When defining a FORTRAN record by a FORMAT statement, it is 
important to consider the maximum size record allowed on the 
input/output medium. For example, if a FORTRAN record is to be 
punched for output, the record should not be longer than 80 
characters. If it is to be printed, it should not be longer than 
the printer's line length. For input, the FORMAT statement should 
not define a FORTRAN record longer than the actual input record. 

5. When formatted records are prepared for printing at a printer or 
terminal, the first character of the record is not printed. It is 
treated as a carriage control character. It can be specified in a 
FORMAT statement with either of two forms of literai data: either 
'~' or 1H~, where ~ is one of the following: 

~ Meaning: 

blank Advance one line before printing 

0 Advance two line s before printing 

1 Advance to first line of next page 

+ NO advance 

For media other than a printer or terminal, the first character of 
the record is treated as data. 

6. If the I/O' list is omitted from the READ or WRITE statement, a 
record is skipped on input, or a blank record is inserted on 
output, unless the record was transmitted between the data set and 
the F~RMAT statement (see "H Format Code and Literal Data") • 

58 



, 
'i 

7. To illustrate the nesting of group format specifications, 
FORMAT ( ••• ,~( ••• ,~( ••• ), ••• ,~( ••• ), ••• ), ••• ) is permitted, but 
FORMAT ( ••• ,a( •.. ,a( ••• ,a( ••• ), ••• ), ••• ),.u.) is invalid, because 
a group withIn another group cannot itself contain a group. 

Various Forms of a FORMAT Statement 

All of the format codes in a FORMAT statement are enclosed in a pair 
of parentheses. within these parentheses, the format codes are delim
ited by the separators, slash and comma. The slash indicates the end of 
the physical record; the comma indicates the end of a data item within 
the record. 

Execution of a formatted READ or formatted WRITE statement initiates 
format control. Each action of format control depends on information 
provided jointly by the I/O list, if one exists. and the format 
specification. There is no I/O list item corres on~ing to the format 
codes X, H, These communicate 
information directly wlth the record. 

Whenever an I, Dr E, F, G, An L, code is encountered, format 
control determines whether there is a corresponding element in the I/O 
list. If there is such an element, appropriately converted information 
is transmitted. If there is no corresponding element, the format 
control terminates, even if there is an unsatisfied repeat count. 

If, however, format control reaches the last (outer) right 
parenthesis of the format specification, a test is made to determine if 
another element is specified in the I/O list. If not, control 
terminates. However, if another list element is specified, the format 
control demands that a new record start. Control therefore reverts to 
that group specification terminated by the last preceding right 
parenthesis, including its group repeat count, if any, or, if no group 
specification exists, then to the first left parenthesis of the format 
specification. Such a group specification must include a closing 
("internal") right parenthesis. If no group specification exists, then 
control reverts to the first left parenthesis of the format 
specification. 

Given the following FORMAT statements: 

70 FORMAT (2(I3,F5.2),I4,F3.1) 
80 FORMAT (I3,F5.2,2(I3,2F3.1» 
90 FORMAT (I3,F5.2,2I4,5F3.1) 

with additional elements in the I/O list after control has reached the 
last right parenthesis of each, control would revert to the 2(I3,F5.2) 
specification in the case of statement 70; to 2{I3,2F3.1) in the case of 
statement 80; and to the beginning of the format specification, 
I3,F5.2 n ••• in the case of statement 90. 

The question of whether there are further elements in 
asked only when an code or the 
parenthesis of the format 
done, X, and H codes, 
are processed. If there are ewer e 
are format codes, the remaining format codes are 

the I/O list is 
final right 
efore this is 
and slashes 

than there 

Comma: The simplest form of a FORMAT statement is the one shown in the 
box at the beginning of this section. The format codes, separated by 
commas, are enclosed in a pair of parentheses. One FORTRAN record is 
defined within a single pair of left and right parentheses. For an 
example~ see the section "Examples of Numeric Format Codes." 

Input/Output Statements 59 



~1.2.§..h: A slash is used to indicate the end of a FORTRAN record format. 
l"or example, the statement: 

25 FORM AT (1.3, F 6 • 2/D 1 0 .3 ,F 6 • 2) 

descrihes two FORTEMI record formats. The first, third, etc., records 
are transmitted according to the format 13, P6.2 and the second, fourth, 
etc., records are transmitted according to the format D1C.3, p6.2. 

Consecutive slashes can be used to introduce blank output records or 
to skip input records. If there are.!! consecutive slashes at the 
beginning or end of a FORMAT statement, A input records are skipped or n 
blank records are inserted between output records. If n consecutive 
slashes appear anywhere else in a FORMAT sta tement, the number of 
records skipped or blank records inserted is !!,.-1. For example, the 
sta tement: 

25 FORMAT (1 X,1015//1X,BE14. 5) 

describes three FORTRAN record formats. On output, it causes double 
spacinq between the line written with format 1X,10I5 and the line 
written with the format 1X,BE14.5. 

The I format cod9 is used in transmitting integer data. For example, 
if a RRAD statement refers to a FORMAT statement containing I format 
codes, the input data is stored in internal storage in integer format. 
The maqnitude of the data to be transmitted must not exceed the maximum 
magnitUde of an integer constant. 

ID~E1! Leading, embedd~d, and trailing blanks in a field of the input 
card are interpreted as zeros. 

Q!!1.2ut: If the number of significant digits and sign 
represent the quantity in the storage location is 
leftmost print positions are filled with blanks. 

The D, E, and F format codes are used in transmitting real or double 
precision data. The data must not exceed the maximum magnitude for a 
real or double precision constant. 

1.!!~1!..t: Input must be a number which, optionally, may have a D, E, or 
signed-integEr-constant exponent. The D or E may be omitted from the 
exponent if the exponent is signed. All exponents must be preceded by a 
constant: i.e., an optional sign followed by at least one decimal digit 
with or without decimal point. If the decimal point is present, its 
position overrides the position indicated by the ~ portion of the format 
field descriptor, and the number of positions specified by ~ must 
include a place for it. If the data has a D. E, or signed-integer
constant exponent and the format field descriptor includes a P scale 
factor, the scale factor bas no effect. 

Each data item must be right justified in its field. since leading, 
trailing, and embedded blanks are treated as zeros. 

60 



( 
The D, E. and signed-integer-constant exponent specifications for 

input data are interchangeable. For example, given a REAL*4 item in an 
input list, and an E or F FORMAT specification, it makes no difference 
whether the exponent specification of the data item is a D. an E, or a 
signed integer constant. Similarly., if the list item is REAL*8 or 
DOUBLE PRECISION and the format specification is D, the exponent 
specification of the data item may likewise be a Du an E, or a signed 
integer constant. 

Output: For data written under a D or E format code, unless a P scale 
factor is specified" output consists of an optional sign (required for 
negative values), a decimal point, the number of significant digits 
specified by d. and a D or E exponent requiring four positions. The w 
specification-must provide for all these positionsw including the one
for a sign when the output value is negative. If additional space is 
available, a leading zero may be written before the decimal point. 

For data written under an F format code, w must provide sufficient 
spaces for an integer segment if it is other-than zero, a fractional 
segment containing d digits, a decimal int, and, if the output value 

ative - . · .. ~~:reJ?:tOvidedforthe 
,kJt"';:,,;aJol(l.· .. ~lgri .·(if. ·any).,~ . 

positions are 

For D" E, and F, fractional digits in excess of the number specified 
by Q are dropped after rounding. 

G Format Code 

The G format code is a generalized code used to transmit ;~ij~:~·g:~r;·~:~; 
real, ~tllldata according to the type specification of the 
corresponding variable in the I/O list. 

Input: The rules for input for G format code depend upon the type of 
the variable in the I/O list and the form of the number punched on the 
card. For example, if the variable is real and the number punched in 
the card has an E decimal ex ent the rules are the same as for the E 
format code. 

for D, 

For real data, 
point for input 
codes. 

Input/Output Statements 61 



or rea , 
be printed and whether 

with or without a decimal exponent. If the number, say n, is in the 
range OQ1~ n < 10**s, the number is printed without a decimal exponento 
Otherwise, it is printed with an E or D decimal exponent, depending on 
the length specification of the variable in the I/O list. The w 
specification for real data must include a position for a decimal point. 
four ~~sitions for a decimal exponent, and, if the value is negative, a 
position for a minus sign. All other rules for output are the same as 
those for the individual format codes. 

Examples of Numeric Format Codes 

The following examples illustrate the use of the format codes I, F, 
D, E, and G. 

Example 1: 

75 FORMAT (I3,F5.2,El0.3,Gl0.3) 

READ (5,75) N,A,B,C 

Explanation: 

1.. Four input fields are described in the FORMAT statement and four 
variables are in the I/O list. Therefore, each time the READ 
statement is executed, one input card is read from the data set 
associated with data set reference number 5. 

2. When an input card is read, the number in the first field of the 
card (three columns) is stored in integer format in location N. 
The number in the second field of the input card (five columns) is 
stored in real format in location A, etc. 

3. If there were one more variable in the I/O list, say M, another 
card would be read and the information in the first three columns 
of that card would be stored in integer format in location M. The 
rest of the card would be ignored. 

4. If there were one fewer variable in the list (say C is omitted), 
format specification Gl0.3 would be ignored. 

5. This FORMAT statement defines only one record format. The section 
"Various Forms of a FORMAT Statement" explains how to define more 
than one record format in a FORMAT statement. 

Example 2: Assume that the following statements are given: 

75 FORMAT ( Dl0.3,2Gl0.3) 

READ (5,75) A,B,C,D 

where A. C, and Dare REAL*4 and B is REAL*8 and that on successive 
executions of the READ statement, the following input cards are read: 

62 



( 

Column: 1 
I 
v 

Input 

Cards 

Format: 

5 
I 

15 
I 

25 
I 

35 
I 

v v v v 
56432D+02276.38E+15bbbbbbbbbb 

55381+02b382506E+28276.38E+15 

46.18D-03485.322836276.38E+15 

D10.3 G10.3 G10.3 

Then the variables A. B, C. and D receive values as if the following 
had been punched: 

A B C D 

156.432D02 276.38E+15 000000.000 

155.381+20 382.506E28 276.38E+15 

346.18D-03 485.322836 276.38E+15 

Explanation: 

1. Leading, trailing" and embedded blanks in an input field are 
treated as zeros. Therefore, since the value for B on the second 
input card was not right justified in the field, the exponent is 20 
not 2. 

2. Values read into the variables C and D with a G format code are 
converted according to the type of the corresponding variable in 
the I/O list. 

Example 3: Assume that the following statements are given: 

76 FORMAT ,F6.2,E12.3,G'14.6,I5) 

WRITE (6 11 76)A,B,C,N 

and that the variables A, B" C, and N have the following values on 
successive executions of the WRITE statement: 

A B C N 

034.40 123.380E+02 123.380E+02 031 

031.1 1156.1E+02 123456789. 130 

-354.32 834.621E-03 1234.56789 4'28 

01.132 83.121E+06 123380.D+02 000 

Input/Output statements 63 



Then, the following lines are printed by successive executions of the 
WRITE statement: 

Print 
Column: 

Explanation: 

1 
] 

9 
I 

21 
I 

35 
J 

v v v v 
34.40 0.123E 05 12338.0 31 

31.10 0.116E 06 0.123457E 09 130 

0.835E 00 1234.57 428 

1.13 0.831E 08 0.123380E 08 o 

1ft The integer portion of the third value of A exceeds the format 
specification, so asterisks are printed instead of a value. The 
fractional portion of the fourth value of A exceeds the format 
specification, so the fractional portion is rounded. 

2. Note that for the variable B the decimal point is printed to the 
left of the first significant digit and that only three significant 
digits are printed because of the format specification E12 .. 3. 
Excess digits are rounded off from the right .. 

3. The values of the variable C are printed according to the format 
specification G1406. The s specification, which in this case is 6~ 
determines the number of dIgits to be printed and whether the 
number should be printed with a decimal exponent. Values greater 
than or equal to 0.1 and less than 1000000 are printed without a 
decimal exponent in this example. Thus" the first and third values 
have no exponent. The second and fourth values are greater than 
1000000, so they are printed with an exponentQ 

Scale Factor - P 

The P scale factor may be specified as the first part of a D, E" F, 
or G field descriptor to change the location of the decimal point in 
real numbers. The effect of the scale factor is: 

scale factor 
external number = internal number x 10 

Input: A scale factor may be specified for any real data, but it is 
ignored for any data item that contains an exponent in the external 
field. For example" if the input data is in the form xx.xxxx and is to 
be used internally in the form .xxxxxx I1 then the format code used to 
effect this change is 2PF7.4. Or, if the input data is in the form 
XXeXXXX and is to be used internally in the form xxxx.xx, then the 
format code used to effect this change is -2PF7.4. 

Output: A scale factor can be specified for real numbers with or 
without E or D decimal exponents. For numbers without an E or D decimal 
exponent, the effect is the same as for input data except that the 
decimal point is moved in the opposite direction. For example, if the 
number has the internal form .xxxxxx and is to be written out in the 
form xx.xxxx, the format code used to effect this change is 2PF7.4. For 
real numbers written under the G format code, the effect of the scale 
factor is suspended unless the magnitude of the number (~) to be 
converted is outside the range (.1>n>10**s" where s is the number of 
significant digits specified in the-G format code,-G~.~) that permits 
the effective use of the F format code. 

64 



( 

tII-
\1 
\ 

For numbers with an E or D decimal exponent, when the decimal point 
is moved, the exponent is adjusted to account for it, i.e." the value is 
not changed. For example, if the internal number 238.41 were printed 
according to the format El0.3, it would appear as O.238Eb03. If it were 
printed according to the format 1PE10.3# it would appear as 2.385Eb02. 

A repetition code can precede the Dr E, or F format code. For 
example H 2P3F1Q4 is valid. 

Note: Once a scale factor has been established" it applies to all 
subsequently interpreted D, E, FII and G codes in the same FORMAT 
statement until another scale factor is encountered. The new scale 
factor is then established. A factor of 0 may be used to discontinue 
the effect of a previous scale factorQ 

L Format Code 

The L format code is used in transmitting logical variables~ 

Input: The input field must consist of optional blanks, followed by a T 
or F, followed by optional characters, for true and false respectively. 
The T or F causes a value of true or false to be assigned to the logical 
variable in the input list. 

Output: A T or F is inserted in the output record depending upon 
whether the value of the logical variable in the I/O list was true or 
false, respectively. The single character is right justified in the 
output field and preceded by ~-1 blanks. 

A Format Code 

The A format code is used in transmitting data that is stored 
internally in character format. The number of characters transmitted 
under A format code depends on the length of the corresponding variable 
in the I/O list. Each alphabetic or special character is given a unique 
internal code. Numeric characters are transmitted without alteration; 
they are not converted into a form suitable for computation. Thus, the 
A format code can be used for numeric fields, but not for numeric fields 
requiring arithmetic. 

Input: The maximum number of characters stored in internal storage 
depends on the length of the variable in the I/O list. If w is greater 
than the variable length, say v, then the l.eftmost w-v characters in the 
field of the input card are skIpped and the remaining-~ characters are 
read and stored in the variable. If w is less than v, then w characters 
from the field in the input card are read and the remaining rightmost 
characters in the variable are filled with blanks. 

Output: If ~ is greater than the length (~) of the variable in the I/O 
list, then the printed field will contain v characters right-justified 
in the field, preceded by leading blanks. -If ~ is less than ~, the 
leftmost w characters from the variable will be printed and the rest of 
the data ;ill be truncated. 

Example ,1: Assume that B has been specified as REALl~, that Nand Mare 
INTEGERtl, and that the following statements are given: 

25 FORMAT (3A1) 

READ (5.,,25) B, N, M 

Input/Output statements 65 



When the READ statement is executed, one input card is read from the 
data set associated with data set reference number 5 into the variables 
B. N, and M in the format specified by FORMAT statement number 25. The 
following list shows the values stored for the given input cards (b 
represents a blank). 

Input Card B N M 

ABCDEFG46bATbl1234567 ABCDEFGb ATbl 4567 

HIJKLMN76543213334445 HIJKLMNb 4321 4445 

Example 2: Assume that A and B are real variables of length 4, that C 
is a real variable of length 8~ and that the following statements are 
given: 

26 FORMAT (A6.A5.A6) 

WRITE (6,26) A.B.C 

When the WRITE statement is executedw one line is written on the data 
set associated with data set reference number 6 from the varia~les A. Bw 
and C in the format specified by FORMAT statement 26. The printed 
output for values of A. B, and C is as follows (b represents a blank): 

A B c Printed Line 

A1B2 C3D4 E5F6G7H8 bbA1B2bC3D4E5F6G7 

H Format Code and Literal Data 

Literal data can appear in a 
following the H format code 
the following FORMAT statemen s 

25 FORMAT (22H 1968 INVENTORY REPORT) 

No item in the I/O list corresponds to the literal data. The data is 
read directly into or written directly from the FORMAT statement a (The 
FORMAT statement can contain other types of format codes with 
corresponding variables in the I/O listQ) 

Input: Information is read from the input card and replaces the literal 
data in the FORMAT statement. (If the H format code is used. w 
characters are read. 

66 



( 

(, 

output: The literal data from the 
output data set. (If the H format 
following the H are written. 

,:·~~¢:};1?~~E·~~A·;;,apJ'.~#:;@'pli~~~~~~;!i~·0S:!"' ..... 
statements: 

FORMAT statement is written on the 
code is used. the w characters 
':11_:[:::':J,,:J~h~~~':':I'~" ~ A": .' "", ',,",: M .~,#,,~;.] 

For example, the following 

8 FORMAT (14HOMEAN AVERAGE: " F8.4) 
WRITE (6,8) AVRGE 

would cause the following record to be written if the value of AVRGE 
were 12.3456: 

MEAN AVERAGE: 12.3456 

The first character of the output data record in this example is used 
for carriage control of printed output and does not appear in the 
printed line. 

X Format Code 

The X format code specifies a field of w characters to be skipped on 
input or filled with blanks on output~ For example, the following 
statements: 

5 FORMAT (I10,10X w4Il0) 
READ (5,5) I6J,K,L,M 

cause the first ten characters of the input card to be read into 
variable I. the next ten characters to be skipped over without 
transmission, and the next four fields of ten characters each to be read 
into the variables J, K. L, and M. 

Input/Output statements 67 



Group Format Specification 

The group format specification is used to repeat a set of format 
codes and to control the order in which the format codes are used. 

The group repeat count ~ is the same as the repeat indicator ~ which 
can be placed in front of other format codes. For example, the 
following statements are equivalent: 

10 FORMAT (I3,2(I4,I5),I6) 

10 FORMAT (I3,(I4,I5,I4,I5),I6) 

Group repeat specifications control the order in which format codes 
are used since control returns to the last group repeat specification 
when there are more items in the I/O list than there are format codes in 
the FORMAT statement (see "Various Forms of a FORMAT statement"). Thus'H 
in the previous example~ if there were more than six items in the I/O 
list, control would return to the group repeat count 2 which precedes 
the specification (I4,I5). 

If the group repeat count is omitted, a count of 1 is assumed. For 
examplen the statements: 

15 FORMAT (I3,(F6.2,Dl0.3» 

READ (5,15) N,A,B,C,D,E 

cause values to be read from the £irst record for N~ A, and B, according 
to the format codes I3,F6.2, and Dl0.3, respectively. Then, because the 
I/O list is not exhausted, control returns to the last group repeat 
specification, the next record is read, and values are transmitted to C 
and D according to the format codes F6.2 and Dl0.3, respectively. Since 
the I/O list is still not exhausted w another record is read and a value 
,is transmitted to E according to the format code F6.2 -- the format code 
Dl0.3 is not used. 

The format codes within the group repeat specification can be 
separated by commas and slashes. For example, the following statement 
is valid: 

40 FORMAT (2I3/(3F6a2,F6n3/Dl0.3,3D10.2» 

The first physical record, containing two data items, is transmitted 
according to the specification 2I3; the second, fourth, etc •• records, 
each containing four data items, are transmitted according to the 
specification 3F6.2,F6.3; and the third. fifth, etc., reco~ds, each also 
containing four data items, are transmitted according to the 
specification D10.3.3D10.2, until the I/O list is exhausted. 

Reading Format Specifications at Object Time 

FORTRAN provides fo~ variabl,e FORMAT statements by allowing a format 
specification to be read into an array in storage. The data in the 
array may then be used as the format specification for subsequent 
input/output operations. The format speci£ication may also be placed 

68 



( 
into the arr ay by a DATA st a teme nt . ii.:IBII,1111E;.·.I!ill II 1111'111;. 
11~1~~liillll in the source program. T e following rules are applicable: 

1. The format specification must be in an array, eVen if the array 
size is only 1. 

2. The format codes entered into the array must have the same form as 
a source program FORMAT statement, except that the word FORMAT and 
the statement number are omitted. 

3. 

ExamE!~: Assume that the following statements are given: 

DIMENSION FMT (18) 

1 FORMAT (18A4) 

READ (5, 1 ) FMT 

READ (5, FMT) A,B, (C (I) , I=1, 5) 

and that the first input card associated with data set reference number 
5 contains (2E10. 3, 5F10.8). 

The data on the next input card is read, converted, and stored in A, B, 
and the array C, according to the format codes 2E10.3, 5F10.8. 

ENC FILE STATEMENT 

r-
I General Form 
r 
, END FILE ~ 
I 
I Where: 
I 
I 

a is an unsigned integer constant or an integer variable 
(not an array element) that is Of length 4 and represents a 
data set reference number. 

L 
_____________---J 

The END FILE statement defines the end of the data set associated 
with ~ by causing an end-ot-file record to be written. 

REWIND STATEMENT 

r , 
I General Form I r , 
I REWIND ~ I 
, I 
,Where: a is an unsigned integer constant or an integer variable I 
, (not an array element) that is of length 4 and represents a I 
I data set reference number. I 
L J 

Input/Output Statements 69 



The REWIND statement causes a subsequent READ or WRITE statement 
referring to ~ to read data from or write data into the first record of 
the data set associated with !. 

BACKSPACE STATEMENT 

L 

General Form 

EACKSPACE a 

Where: a is an unsigned integer constant or an integer variable 
(not an array element) that is of length 4 and represents a 
data set reference number. 

The BACKSPACE statement causes the data set associated with a to 
tackspace one record. If the data set associated with a is already at 
its beginning, execution of this statement has no effect. This 
statement may not be executed for direct-access or NAMELIST data setS. 
For further information, see the FORTRAN IV programmer's guide for the 
respective system. 

~he BACKSPACE statement executed as the first input/output 
instruction to a closed file will not open that file and will have no 
effect on the positioning of the file. 

70 



( 

Input/Output statements 71 



72 



( 

Input/Output statements 73 



74 



(-

Input/Output statements 75 



76 



( 

Input/Output Statements 77 



78 



( 

.-- ----, 
I General Form I 
l- ---------t 
I rATA 
I 
I Where: 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
l-

Each ~ is a lis~ containing ~he names of variables, array 
elements (in which case the subscript quantities must be 
unsigned integer constants),jl:\.~tt'~y:~~ Dummy argument 
names may r.ot appear in the list. 

Each ~ is a list of cor;~~~r;~~.(~r;~~2~:r;~:r:-:r;~~~, which may 
be optionally signed, ;lli:lil~i.ii!;~.i;il!·III'~~~fl,I;' log ical, or 
literal). Any of these con~tanti may be preceded by i*, 
where i is an unsigned integer constant. When the form i* 
appears before a constant, it indicates that the constant is 
to be specified i times. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
! 
I 
I 
I 

A DATA initialization statement is not executable. It is used to 
define initial values of variables, array elements, i~~~(~~~~I~~ There 
must be a.8.~.;:::.~.;;.:--~~~.~ .. correspondence between thF' total number of elements 
specified ~;';ll;tjl.;II.; by the list ~ and the total number of constan-+:s 
specified oy the corresponding list d after application of any 
replication factors, i. -

For real, integer, complex, and logical types, each constant must 
agree in type with the variable or array element i~ is ini~ializing. 
Any type of variable or array element may be initialized with a literal 
!limilli~g~§lm~!J;.i constant. 

If an array name appears in the list ~, the entire array is 
initialized in the order in which it is stored. If the array has more 
than one dimension, it is stored in ascending storage locations, with 
the value of the first subscript quantity increasing most rapidly and 
the value of the last increasing least rapidly. Examples are given in 
the section "Arrangement of Arrays in Storage." 

A storage entity may not be assigned an initial value more than once. 
For purposes of this constraint, entities that are associated with each 
other through COMMON or EQUIVALENCE statements are considered as the 
same entity. 

Example 1: 

REAL*8 E 
DIMENSION 0(5,10) 
DATA A, B, C/5.0,6.1,7.3/,:~~~:~I~!·~I·:~;~~.t~~~!!~:I!,~!.~I~·iJ~I .1/ 

Data Initialization Statement 79 



Explanation: 

The DATA statement causes the variables A, B, and C to be initialized 
to the values 5.0, 6.1, and 7.3, respectively. In addition, the 
~. ~a temen t s p~c~,~i ~,s.",~,~ C3:t:# ,t~ ~,a1!'1!'.5t~ .. J? l:ol:>E! 
*A;~.tothe:VfaJ;ue g2~ ts"Ofl)}t~i 
,~aj; tClrl~,~h~~81l~1~"'I?I~ci~~on. yariable E to the single-precision 
value 5 ~·1 It;cCl~$;f~;cmep.totlje.form,o;f ···aRBAL*8 rl.ti:rtIPer,· see Table 3 and 
accompanying material on Assignment Statement) . 

An initially defir.ed variable or array ~lement may not be in ~la~k 
commcr.. In a labeled co~mon block, tt~y may be initially defined only 
in a BLOCK DATA subprogram. (See the section "Subprograms.") 

80 



( 

SPECIFICATION STATEMENTS 

The specification statements provide the compiler with information 
about the nature of the data used in the source program. In addition, 
they supply the information required to allocate locations in storage 
for this data. 

on statements must prec 
precede the program pa 

Information describing a variable or array in one specification 
statement should not be repeated in other specification statements that 
refer to the same variable or array. 

The specification statement EXTERNAL is described in the section 
"Sutprograms." 

DIMENSION STATEMENT 

r-----------------I General Form 
t-------------------------------.-------------------------
I DIMENSION a1(k1 ),a2(k2),a3(k3 ), ••• ,an(kn ) I --------

Where: Each ~ is an array name. 

Each ~ is composed Of one through ;&."1;;; unsigned integer 
constants, separated by commas, that represent the maximum 
value of each subscript in the array. When the DIMENSION 
statement in which it appears is in a subprogram, each k may 
contain integer variables of length 4, provided that the 
array is a dummy ~rgument. 

~he information necessary to allocate storage for arrays used in the 
source program may be provided by the DIMENSION statement. The 
following examples illustrate how this information may be declared. 

DIMENSION A(10), ARRAY(5,5,5), LIST(10,100) 
DIMENSION B(25,50), TABLE(5,8,4) 

TYPE STATEMENTS 

!~~.~.~i.~.re two kinds of type statements: 
Itllllllllli[li and the explicit specification sta 
bOUBtE PRECISION, COMPLEX, and LOGICAL) • 

Specification Statements 81 



• 

The-explicit specification statements enable the user to: 

• Specify the type (including length) of a variable, array, or 
user-supplied function of a particular name 

• Specify the dimensions of an array 

• 
The explicit specification statements override the '11111111 

lll~I~I'II'llli.I~I~llllllliI01~1~~I~~li~llllllfll~1 the predefined convention for 
spec~ y~ng type. 

82 



Specification Statements 83 



EXPLICIT SPECIFICATION STATEMENTS 

r-
I 
~ 

I 
I 
I 
I 
I 
I 
I 
L 

General 

1Y~ 

where: 

Form 

~1 (~1) ~2 (~2) 

TY~ is INTEGER, REAL, LOGICAL, 

Each a is a variable, array, 
section "Subprograms'" 

l!n) 

or COMPLEX. 

IIBllilli~:: name (see the 

Each ~ is optional and gives dimension information for 
arrays. Each ~ is composed of one throughll~II~111 
integer constants, separated by commas, repre 
maximum value of each subscript in the array. When the type 
statement in which it a~pears is in a subprogram, each ~ may 
contain integer variables of length 4, provided that the 
array is a dummy argument. 

The explicit specification statements declare the ~y~ (INTEGER, 
REAL, COMPLEX, or LOGICAL) of a particular variable or array by its 
name, rather than by its initial character. This differs from the other 
waYI of specifying the type of a variable or array (i.e., predefined 
conventionIIlIIIIIIRIIIIIIIIIIIIIIII). In addition, the information 
necessary to allocate storage for arrays (dimension information) may be 
included within the statement. 

Initial data values cannot be assigned to variables or arrays in 
blank common. The BLOCK DATA subprogram must be used to assign initial 
values to variables and arrays in labeled common. 

xpli ci t speci fi cat ion s~~~.~.~ .. ~~~.~ ......... ~.~.;.~ride 
red e fined c onve nti on .11'illlillllllll 
the standard length per type is assumed. 

84 



( 

( 

Example 1: 

INTEGER,liI1, ITEM.illt, V~LUE 

This statement declares that the variables ITEM and VALUE are of 
integer, 

COMPLEX C 

declares that the variables C, n, and E are of 

Example 3: 

REALII BAKER, HOLD, VALUEII, ITEM{5,5) 

ExE.!anation: 

This statement declares that the variables BAKER, 
the named ITEM are real. In addition 

ITEM. 

REAL A{5, 

This statement declares the size of each array, A and B, and their 
type (real). The array A has 100 storage locations reserved (four for 
each element in the array) and the B has 400 stor e locations 
reserved {four for each element} • 

specification Statements 85 



DOUBLE PRECISION STATEMENT 

t 
I General Form 
~ 

Where: Each a represents a variable, array, Or function name (see 
the section "Subprograms") • 

Each ~ is optional and is composed of one throughlllrdll 
unsigned integer constants, separated by commas, that 
represent the maximum value of each subscript in the array. 
When the DOUBLE PRECISION statement in which it appears is 
in a subprogram, each k may contain integer variables of 
length 4, provided that the array is a dummy argument. 

The DOUBLE PRECISION statement explicitly specifies that each of the 
variables ~ is of type double precision. This statement overrides an 
s cification of a variable made the predefined convention 

COMMON STATEMENT 

r 
, General Form 
l-
I COMMON /!:1/~11 (~11) '~12 (~12) ' ••• '. /!:n/~n1 Q~n1) r~n2 (~n2)' ' ••• , 
I Where: Each a is a variable name or array name that is not a dummy 
t argument. 

Each ~ is optional and is composed of one through !11.1~11 
unsigned integer constants, separated by commas, 
representing the maximum value of each subscript in the 
array. 

Each ~ represents an optional common block name consisting 
of one through six alphameric characters, the first of which 
is alphabetic. These names must always be enclosed in 
slashes. 

The form // (with no characters except possibly blanks 
between the slashes) may be used to denote blank common. If 
~1 denotes blank common, the first two slashes are optional. 

The COMMON statement is used to cause the sharing of storage by two 
or more program units, and to specify the names of variables and arrays 
that are to occupy this area. Storage sharing can be used for two 
purposes: to conserve storage, by avoiding more than one allocation of 
storage for variables and arrays used by several program units; and to 
implicitly transfer arguments between a calling program and a 
subprogram. Arguments passed in a common area are subject to the same 
rules with regard to type, length, etc., as arguments passed in an 
argument list (see the section "Subprograms") • 

A given common block name may appear more than once in a COMMON 
statement, or in more than one COMMON statement in a program unit. All 

86 



( 

( 

entries within such blocks are strung together in order of their 
appearance. 

Although the entries in a COMMON statement can contain dimension 
information, object-time dimensions may never be used. 

The length of a common area can be increased by using an EQUIVALENCE 
statement. 

since the entries in a common area share storage locations, the order 
in which they are entered is significant when the common area is used to 
transmit arguments. consider the following example: 

Calling Prog!:~ 

COMMON A, B, c, R(100) 
REAL A,B,C 
INTEGER R 

CALL MAPMY 

SUBROUTINE MAPMY 
COMMON X, Y, z, S(100) 
REAL X,Y,Z 
INTEGER S 

~he statement COMMON A,B,C,R(100) in the calling program would cause 
412 storage locations (four locations per variable) to be reserved in 
the following order: 

Beginning of common arear i 

I A I 
~ ~ 
I B I 
~ ~ 
I C I 
~ , 
I R (1) , 
I R (2) , 
I I 
I , , I 
I R (100) I 
L- J 

A A 

I , 
I 4 storage locations I 

The statement COMMON X, Y, z, S(100) in the subprogram would then 
cause the variables X, Y, Z, and S(1) , ••• ,S(100) to share the same 
storage space as A, B, C, and R(1) , ••• ,R(100), respectively. Note that 
values for X, Y, Z, and S(1) , ••• ,S(100), because they occupy the same 
storage locations as A, B, C, and R(1), •.• ,R(100), do not have to be 
transmitted in the argument list of a CALL statement. 

Specification statements 87 



Assume a common area is defined in a main program and in three 
subprograms as follows: 

Main Program: COMMON A,B,C (A and B are 8 storage locations 
C is 4 storage locations) 

Subprogram 1: COMMON D,E,F (D and E are 8 storage locations, 
F is 4 storage locations) 

Subprogram 2: COMMON Q,R,S,T,U (4 storage locations each) 
Subprogram 3: COMMON V,W,X,Y,Z (4 storage locations each) 

The correspondence of these variables within common can be illustrated 
as follows: 

Subprogr~!!Ll Su2Qrogra!!Ll. Subprog~-1. 

COMMON A,B,C COMMON D,E,F COMMON Q,R,S,T,U COMMON V,W,X,Y,Z 
r- , 1 ---, , .-- , 
I I I I I Q <----) , V I 
I - - A - -I (---) 1- - -D - -, t f , 
~ I 

t 
I 1 , R (----) 1 W , 
f ~ , ~ , 

I , , I , S (----) I x , 
1 - - B - -I (---) 1- - -E - -I t , --f 

~ 1 
t 

I I , T <----) 1 y , 
f -f ~ ~ , 

I C 1 (---) 1 F , (----) 1 U <----) I z , 
---I ---' L L- I 

4 storage 4 storage 4 storage 4 storage 
locations locations locations locations 

The main program can transmit values for A, B, and C to subprogram 1, 
provided that A is of the same type as D, B is of the same type as E, 
and C is of the same type as F. However, the main program and 
subprogram 1 cannot, by assigning values to the variables A and B, or D 
and E, respectively, transmit values to the variables Q, R, S, and T in 
subprogram 2, or V, w, X, and Y in subprogram 3, because the lengths Of 
their common variables differ. Likewise, subprograms 2 and 3 cannot 
transmit values to variables A and B, or D and E. 

Values can be transmitted between variables C, F, U, and Z, assuming 
that each is Of the same type. With the same assumption, values can be 
transmitted between A and D, and Band E, and between Q and V, Rand W, 
S and X, and T and Y. Note, however, that assignment of values to A or 
D destroys any values assigned to Q, R, V, and W, (and vice versa) and 
that assignment to B or E destroys the values of S, T, X, and Y (and 
vice versa) • 

BLANK AND LABELED COMMON 

In the preceding example, the common storage area (common block) is 
called a blank common area. That is, no particular name was given to 
that area of storage. The variables that appeared in the COMMON 
statements were assigned locations relative to the beginning of this 
blank common area. However, variables and arrays may be placed in 
separate common areas. Each of these separate areas (or blocks) is 
given a name consisting of one through six alphameric characters (the 
first of which is alphabetic); those blocks which have the same name 

88 



( 

occupy the same storage space. The name should not be the same as the 
main program or any subprogram. This permits a calling program to share 
one cornmon block with one subprogram and another cornmon block with 
another subprogram, and also facilitates program documentation. 

~he differences between blank and labeled common are: 

• ~here is only one blank common in an executable program, and it has 
no programmer-assigned name; there may be many labeled commons, each 
with its Own name. 

• Each program unit which uses a given labeled common must define it 
to be of the same length; blank common may have different lengths in 
different program units. 

• Variables and array elements in blank common cann~t be assigned 
initial values; variables ar..d array elements in labeled common may 
be assi d initia values by DATA statements 

but only in a BLOCK DATA subprogram. 

~hose variables that are to be placed in labeled (named) common are 
preceded by a common block name enclosed in slashes. For example, the 
variables A, B, and C will be placed in the labeled common area, HOLD, 
by the following statement: 

COMMON/HOLD/A,B,C 

In a COMMON statement, blank common is distinguished from labeled 
ccmmon by placing two consecutive slashes before the variables in blank 
cemmen or, if the variables appear at the beginning of the COMMON 
statement, by omitting any bl~ck name. For example, in the following 
statement: 

COMMON A, B, C /ITEMS/ X, Y, Z / / D, E, F 

the variables A, B, C, D, E, and F will be placed in blank common in 
that order; the variables X, Y, and Z will be placed in the common area 
labeled ITEMS. 

Blank and labeled common entries appearing in COMMON statements are 
cumulative throughout the program. For example, consider the following 
two COMMON statements: 

COMMON A, B, C /R/ 0, E /S/ F 
COMMON G, H /S/ I, J /R/P//W 

These two statements have the same effect as the single statement: 

COMMON A, B, C, G, H, W /R/ D, E, P /S/ F, I, J 

Assume that A, B, C, K, X, and Y each occupy four locations of 
Hand G each occupy eight locations, 

1111111111111~ 

COMMON H, A /R/ X, ~'!lj~I)I~i'ii / / B 

CALL MAPMY ( ••• ) 

SUBROUTINE MAPMY( ••• ) 
COMMON G, Y, C /R/ K, ~Ijlll 

Specification Statements 89 



Explanation: 

In the calling program, the statement COMMON H, A IRI x,II,;;!I;IIB 
causes 16 locations (four locations each for A and B, and eight for H) 
to te reserved in blank common and eight locations in labeled common 
(four for X !1111~11~IIIIIIIIIIIIWI~fullll~ll) 

~he statement COMMON G,Y,ClR/K,E,F appearing in the subprogram MAPMY 
would then cause the variables G, Y, and C to share the same storage 
sFace (in blank common) as H, A, and B, respectively. It would also 
cause the variables K, to share the same storage space (in 
labeled common area R) as X, respectively, as follows: 

SUbprogram 

<-4 locations-> <-4 locations-> 
r-------------, r----

I 'I 
Blank Common I ----H---- 1<-->1 ----G---- Blank Common 

1 I' 
I -1 t 
1 A 1<-->1 y 
~ ~ rl --------~ 
1 B 1<-->' C 

L 

r 
Labeled Common R <-->1 K Labeled Common R 

<--> 

S~OFAGE ARRANGEMENT OF VARIABLES IN COMMON 

Variables in a common block need not be aligned Froperly. However, 
on some machines, the System/360 in particular, considerable object-time 
efficiency is lost unless the programmer ensures that all of the 
variables have proper boundary alignment. For System/370 machines, the 
loss in object-time efficiency is much less. 

Proper alignment is achieved either by arranging the variables in a 
fixed descending order according to length, or by constructing the block 
so that dummy variables force proper alignment. If the fixed order is 
used, the variables must appear in the following order: 

or real} 
integer or logica~ 

If the fixed order is not used, proper alignment can be ensured by 
constructing the block so that the displacement of each variable can be 
evenly divided by the reference number associated with the variable. 
(Displacement is the number of storage locations, or bytes, from the 
beginning of the block to the first storage location of the variable.) 
The following list shows the reference number for each type of variable: 

90 



( 

Type of 
Variable 
Logical 

Integer 

Real 

Complex 

Length 
specit.<~<9ation 

\~~~: 
4 

4 
8 

8 

Reference 
Number 

1 
4 

2 
4 

4 
8 

8 
8 

The first variable in every common block is positioned as though its 
length specification were eight. Therefore, a variable of any length 
may be the first assigned within a block. To obtain the proper 
alignment for other variables in the same blockn it may be necessary to 
add a dummy variable to the block. For example" the variables A, K, and 
CMPLX are REALil1 INTEGER." and COMPLEX'lIl respectively, and form a 
COMMON block that is defined as: 

COMMON A, K, CMPLX 

Then" the displacement of these variables within the block is 
illustrated as follows: 

I <--------A--------->I <-------K---------->l<-------CMPLX-----------> 
I 4 storage I 4 storage I 8 storage 
1 locations I locations I locations 
I 1 J 
] I ] 
v 
displacement 
o storage 
locations 

v 
displacement 
4 storage 
locations 

v 
displacement 
8 storage 
locations 

Specification Statements 91 



EQUIVALENCE STATEMENT 

r-------~--------------------------------------------------------------, 
I General Form J 
~----------------------------------------------------------------------i 
I EQUIVALENCE (~j.j.'~j.2,~j.3'''.'')'' (~2j.'~22,.s23' ..... ) ..... ,. f 
I ~ 
I Where: Each ~ is a variable or array element and may not be a dummy ~ 
I argument. The subscripts of array elements may have either ~ 
I of two forms: ~ 
I , 
I If the array element has a single subscript quantity, it 1 
I refers to the linear position of the element in the array 1 
I (i.e., its position relative to the first element in the ~ 
) array: 3rd element, 17th element, 259th element). ~ 

I ~ 
I If the array element is multi-subscripted (with the number I 
I of subscript quantities equal to the number of dimensions of I 
I the array), it refers to position in the same manner as in ~ 
I an arithmetic statement (i.e.~ its position relative to the J 
I first element of each dimension of the array). In either J 
I case, the subscripts themselves must be integer constants. 1 L _____________________________________________________ ---______ -------_J 

All the elements within a single set of parentheses share the same 
storage locations.. The EQUIVALENCE statement provides the option for 
controlling the allocation of data storage within a single program unit. 
In particular, when the log ic of the program permits i t,o the number of 
storage locations used can be reduced by causing locations to be shared 
by two or more variables of the same or different types. Equivalence 
between variables implies storage sharing.. Mathematical equivalence of 
variables or array elements is implied only when they are of the same 
type, when they share exactly the same sto~ageu and when the value 
assigned to the storage is of that type. 

Since arrays are stored in a p~edetermined order (see "Arrangement of 
Arrays in Storage")m equivalencing two elements of two different arrays 
may implicitly equivalence other elements of the two arrays. The 
EQUIVALENCE statement must not contradict itself or any previously 
established equivalences. 

Note that the EQUIVALENCE statement is the only statement in which a 
single subscript may be used to refer to an element (or elements) in a 
multi-dimensional array. 

Two variables in one common block or in two different common blocks 
cannot be made equivalent. However* a variable in a program unit can be 
made equivalent to a variable in a common block. If the varia.ble that 
is equivalenced to a variable in the common block is an element of an 
array, the implicit equivalencing of the rest of the elements of the 
array can extend the size of the common block (see Example 3, below). 
The size of the common block cannot be extended so that elements a~e 
added before the beginning of the established common block. 

Example 1: 

Assume that in the initial part of a program. an array C of size 
100xl00 is needed; in the final stages of the program C is no longer 
used, but arrays A and B of sizes 50x50 and 100 0 respectively, are used~ 
The elements of all three arrays are of the type REALIII storage space 
can then be saved by using the statements: 

92 

DIMENSION C(100,100), A(50,50)~ B(100) 
EQUIVALENCE (C(l), A(l», <C(2501)w B(l» 



(-
The array A, which has 2500 elements~ can occupy the same storage as 

the first 2500 elements of array C since the arrays are not both needed 
at the same time. Similarly, the array B can be made to share storage 
with elements 2501 to 2600 of array C. 

Example 2: 

DIMENSION B(5). C(lO, 10), D(5_ lOw 15) 
EQUIVALENCE (A~ B(l), C(5,3», (D(5,10q2)~ E) 

This EQUIVALENCE statement specifies that the variables A, B(l), and 
C(5,3) are assigned the same storage locations and that variables 
0(5,10,2) and E are assigned the same storage locationsu It also 
implies that the array elements B(2) and C(6,3)n etc., are assigned the 
same storage locations. Note that further equivalence specification of 
B(2) with any element of array C other than CC6.3) is invalid. 

Example 3: 

COMMON A, B, C 
DIMENSION D(3) 
EQUIVALENCE (BoD(l» 

Explanation: 

This would cause a common area to be established containing the 
variables A, B, and C. The EQUIVALENCE statement would then cause the 
variable 0(1) to share the same storage location as B, 0(2) to share the 
same storage location as C, and D(3) would extend the size of the common 
area, in the following manner: 

A (lowest location of the common area) 
B, D(l) 
c, O( 2) 

D(3) (highest location of the common area) 

The following EQUIVALENCE statement is invalid: 

COMMON A, B, C 
DIMENSION 0(3) 
EQUIVALENCE (B# 0(3» 

because it would force 0(1) to precede A, as follows: 

D(l) 
A. D(2) (lowest location of the common area) 
B., D(3) 
C (highest location of the common area) 

Specification Statements 93 



STORAGE ARRANGEMENT OF VARIABLES IN EQUIVALENCE GROUPS 

variables in an equivalence group may be in any order in main 
storage. However, considerable object-time efficiency is lost unless 
the programmer ensures that all of the va~iables have proper boundary 
alignment. Proper alignment can be ensured by constructing the group so 
that the displacement of each variable in the group can be evenly 
divided by the length of the variable. The displacement of a variable" 
say X, is the number of storage locations, or bytes.. from the first. byte 
of the first variable in the group to the first byte of variable X. The 
first variable in the group is the variable or array element with the 
lowest storage address. The reference numbers for each type of variable 
are given in the section "COMMON Statement." The first variable in each 
group is positioned as if its length specification were eight. 

For example, the variables A. I~ and CMPLX are REAL*4, INTEGER*4, and 
COMPLEX*8, respectively, and are defined as: 

DIMENSION A(10), I(16). CMPLX(5) 
EQUIVALENCE (A(l), I(7), CMPLX(1» 

Then, the displacement of these variables within the group is 
illustrated as follows: 

I(1)<----------T------------------64 storage 10cations-------->I(16) 

v 
displacement 
o storage 
locations 

I 
I A(1)<------------40 storage locations-------->A(10) 
J 
~ CMPLX(1)<--------40 storage 10cations----->CMPLX(5) 
i 
v 
displacement 
24 storage 
locations 

The displacements of A and CMPLX are evenly divisible by their lengths. 
However, if the EQUIVALENCE statement were written as 

EQUIVALENCE (A:( 1), I (6). CMPLX(l» 

then CMPLX is not properly aligned (its displacement of 20 is not evenly 
divisible by its length of 8). 

Note that this discussion applies solely to the manner in which the 
equivalence group is arranged in storage. This arrangement is not 
affected by the order in which the variable and array names are listed 
in the EQUIVALENCE statement. For example, the statement EQUIVALENCE 
(A(l),I(7),CMPLXC1» has exactly the same effect as EQUIVALENCE 
(CMPLX(1),A(1),I(7», and in either case, 1(1) is the first variable in 
the group even though it does not appear in the EQUIVALENCE statement. 

94 



SUBPROGRAMS 

It is sometimes desirable to write a program which, at various 
points, requires the same computation to be performed with different 
data for each calculation. It would simplify the writing of that 
program if the statements required to perform the desired computation 
could be written only once and then could be referred to freelyo with 
each subsequent reference having the same effect as though these 
instructions were written at the point in the prog+am where the 
reference was made. 

For example, to take the cube root of a number, a program must be 
written with this object in mind. If a general program were written to 
take the cube root of any number, it would be desirable to be able to 
combine that program (or subprogram) with other programs where cube roo~ 
calculations are required. 

The FORTRAN language provides for the above situation through the use 
of subprograms. There are two classes of subprograms: FUNCTION 
subprograms and SUBROUTINE subprograms. In addition, there is a group 
of FORTRAN-supplied subprograms (see Appendix C). FUNCTION subprograms 
differ from SUBROUTINE subprograms in that FUNCTION subprograms return 
at least one value to the calling program~ whereas SUBROUTINE 
subprograms need not return any. 

A subprogram must never refer to itself directly or indirectly or 
through any of its entry points. 

statement functions are also discussed in this section since they are 
similar to FUNCTION subprogramso The difference is that subprograms are 
not in the same program unit as the program unit referring to them, 
whereas statement function definitions and references are in the same 
program unit .. 

NAMING SUBPROGRAMS 

A subprogram name consists of from one through six alphameric 
characters, the first of which must be alphabetic. A subprogram name 
may not contain special characters (see Appendix A)o The type of a 
function determines the type of the result that can be returned from ito 

~Declaration of a Statement Function: Such declaration may be 
0Jc:~~comp~~~~~d~ !-?¥,?n:; of _ ways:. l?y the ~r~def~ned convention, ~h ~~l~t~~1 
i_1f~'I_ or by the eXpll.Clt speclflcatlon statements. T us, 
the rules for declaring the type of variamles apply to statement 
functions. 

Type Declaration of FUNCTION Subprograms: 
by the predefined convention, 
specification in the FUNCTI 

be made 
explicit 

No type is associated with a SUBROUTINE name because the results that 
are returned to the calling program are dependent only on the type of 
the variable names appearing in the argument list of the calling program 
and/or the implicit arguments in COMMON. 

Subprograms 95 



FUNCTIONS 

A function is a statement of the relationship between a number of 
variables. To use a function in FORTRAN, it is necessary to: 

1. Define the function (i.e." specify which calculations are to be 
performed) 

2. Refer to the function by name where required in the program 

Function Definition 

There are three steps in the definition of a function in FORTRAN: 

1. The function must be assigned a name by which it can be called (see 
the section "Naming Subprograms") 

2. The dummy arguments of the function must be stated 

3. The procedure for evaluating the function must be stated 

Items 2 and 3 are discussed in detail in the sections dealing with 
the specif ic subprograms." "Statement Functions" and "FUNCTION 
Subprograms .. " 

Function Reference 

When the name of a function, followed by a list of its arguments, 
appears in any FORTRAN expression, it refers to the function and causes 
the computations to be performed as indicated by the function 
definition. The resulting quantity (the function value) replaces the 
function reference in the expression and assumes the type of the 
function. The type of the name used for the reference must agree with 
the type of the name used in the definition. 

STATEMENT FUNCTIONS 

A statement function definition specifies operations to be performed 
whenever that statement function name appears as a function reference in 
another statement in the same program unit. 

r----------------------------------------------------------------------, 
IGeneral Form ~ 

~----------------------------------------------------------------------~ 
1~(~1.~2'~3' ••• '~n) = expression I 
I 1 I Where: name is the statement function name (see the section "NamingJ 
I Si:lbPrograms").. J 
I 1 
I Each a is a dummy argument. It must be a distinct variable J 

I (i.e.; it may appear only once within the list of I 
I arguments). There must be at least one dummy argument. 1 
I ) 
I expression is any arithmetic or logical expression that does] 
I not contain array elementsg Any statement function I 
I appearing in this expression must have been defined J 
I previously. I L ____________________ - _________________________________________________ J 

96 



The expression to the right of the equal sign defines the operations 
to be performed when a reference to this function appears in a statement 
elsewhere in the program unit. The expression defining the function 
must not contain a reference to the function it is defining. 

7he dummy arguments enclosed in parentheses following the function 
name are dummy variables for which the arguments given in the function 
reference are substituted when the function reference is encountered. 
The same dummy arguments may be used in more than one statement function 
definition, and may be used as variables outside the statement function 
definitions. An actual argument in a statement func~ion reference may 
be any expression of the same type as the corresponding dummy argument. 

All statement function definitions to be used in a program must 
precede the first executable statement of the program. 

Ex~E1~: The statemer.t: 

FUNC(A,B) = 3.*A+B*~2.+X+Y+Z 

defines the statement function FUNC, where FUNC is the function name and 
A and B are the dummy arguments. The expression to the right of the 
equal sign defines the operations to be performed when the function 
reference appears in an arithmetic statement. 

7he function reference might appear in a statement as follows: 

C = FUNC (D, E) 

This is equivalent to: 

C = 3.*D+E**2.+X+Y+Z 

Note the correspondence between the dummy arguments A and B in the 
function definition and the actual arguments D and E in the function 
reference. 

Valid statement function £~finitiQ~~ and statement function 
refe;:~!}£.§~: 

SUM(A,B,C,~ = A+B+C+D 
FUNC{Z) = A+X*Y~Z 
VALID (P,Q) = .NOT. P .8R. Q 

NET = GP.OS-SUM (TAX, COVER, HOSP, SrOCK) 
ANS = FUNC(RESULT} 
VAL = TEST .OR. VALID (F,S) 
BIGSUM = SUM(A,B,SUM(C,D,E,F} ,G(I» 

Inval~£ statement function £efi!}itiQ!}~~ 

SUEPFG(3,J,K}=3*I+J**3 
SOMEF(A(I},B)=A(I)/B+3. 
SUBPROGRAM(A,B)=A**2+B**2 

3FUNC (D) =3.14*E 

ASF (A) =A+B (I) 

BAD(A,B)=A+B+BAD(C,D) 
NOGOOD(A,A)=A*A 

(Arguments must be variables) 
(Arguments must not be array elements) 
(Function name exceeds limit of six 

Characters) 
(Function name must begin with an 

alphabetic character) 
(Expression may not contain an array 

element) 
(Recursive definition not permitted) 
(Arguments are not distinct variable 

names) 

Subprograms 97 



Invalid statement function refe~~~ (the functions are defined as above}: 

WRONG = SUM (TAX,COVER) 

MIX = FUNC (I) 

ALPHA = FUNe ('DATA') 

FUNCTION SUBPROGRAMS 

(Number of arguments does not agree 
with above definition) 

(Type of argument does n~t agree with 
above definition) 

(Arguments must not be literals) 

The FUNCTION subprogram is a FORTRAN subprogram consisting of a 
FUNCTION statement followed by other statements including at least one 
RETURN statement. It is an independently written program that is 
executed wherever its name is referred to in another program. 

r--
I General Form 
~ 
f ~ FUNCTION !!~~llr! (.§!1.'.§!2.~3'.0".0 ,~n) 
I 
I Where: !y~ is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or 
f LOGICAL. Its inclusion is optional. 
I 
t !!~me is the name of the FUNCTION. 
I 
I , 
t 
I 
I 
, Each ~ is a dummy argument. It must be a distinct variable 
I or array name (i.e., it may appear only once within the 
I statement) Or dummy name of a SUBROUTINE or other FUNCTION 
I subprogram. There must be at least one ar ment in the I 
I ar ment list. I 
I , 
L J 

A type d 
convention, 
the FUNCTIO 

prcgram 
used. 

name must a so e typed in the 
predefined convention is not 

Since the FUNCTION is a separate program unit, there is no conflict 
if the variable names and statement numbers within it are the same as 
those in other program units. 

The FUNCTION statement must be the first statement in the subprogram. 
The FUNCTION subprogram may contain any FORTRAN statement except a 
SUBROUTINE statement another FUNCTION statement or a BLOCK DATA 
statement. 

The name of the function 
must be assigned a value at 

least once in the subprogram -- as the var able name to the left of the 
equal sign in an arithmetic or logical assignment statement, as an 
argument of a CALL statement or an external function reference that is 
assigned a value by the function or subroutine referred to, or in the 
list of a READ statement within the subprogram. 

98 



~he FUNCTION subprogram may also use one or more of its arguments to 
return values to the calling program. An argument so used will appear 
on the left side of an arithmetic or logical assignment statement, in 
the list of a READ statement within the subprogram, or as an argument in 
a CALL statement or function reference that is assigned a value by the 
subroutine or function referred to. 

The dummy arguments of the FUNCTION subprogram (e.g., ~~~~2' 
: ~.3' .-•• , ~~l may be con sidered to be dummy names. These are repl aced at 
tne time of execution by the actual arguments supplied in the function 
reference in the calling program. Additional information about 
arguments is in the section "Dummy Argumer.ts in a FUNCTION or SUBROUTINE 
Sut~rogram." 

When a RETURN statement in a ~UNCTION subprogram is executed, all 
variables and "arrays in the subprcgram that are not in common and are 
not dummy arguments become undefined t those iven initial values 
in a DATA statement and whose initial 
values were not change . 

~he relationship between variable names used as arguments in the 
calling program and the dummy variables used as arguments in the 
FUNCTION subprogram is illustrated in the following example: 

ExamE.!~.-!: 

Cal1inSLPrgg:ram 

ANS = POOT1*CALC(X,Y,I) 

FUNCTION Subprogram 

FUNCTION CALC (A,B,J) 

I = J lk 2 

CALC = A**I/B 
RETURN 
END 

In this example, the values of X, Y, and I are used in the FUNCTION 
sub~rogram as the values of A, B, and J, respectively. The value of 
CALC is computed, and this value is returned to the calling program 
where the value of ANS is computed. The variable I in the argument list 
of CALC in the calling program is not the same as the variable I 
appearing in the subprogram. 

Subprograms 99 



Exarrple 2: 

INTEGER CALC 

ANS=ROOT1*CALC(L,M,N) 

FUNCTION Subprogram 

INTEGEF FUNCTION CALC (I,J,K) 

CALC = I+J+K**2 

RETURN 
END 

The FUNCTION subprogram CALC is declared as type INTEGER of length 2. 

RETURN and END Statements in a FUNCTION Subprogram 

All FUNCTION subprograms must contain an ~ND statement and at least 
one RETURN statement. The END statement specifies the physical end of 
the subprogram; the RETURN statement signifies a logical conclusion of 
the computation and returns the computed function value and control to 
the calling program. 

FUNCTION DAV (D,E,F) 
IF (D-E) 10, 20, 30 

10 A = D+2.0*E 

5 A = F+2.0*E 

20 DAV = A+D**2 

RETURN 
30 DAV = D**2 

RETURN 
END 

If the result of (D-E) is negative or zero, the first RETURN 
statement will be executed. If the result is positive, the second 
RE~URN will be executed. 

100 



( 

SUBROUTINE SUBPROGRAMS 

~he SUBROUTINE subprogram is similar to the FUNCTION subprogram in 
many respects. The rules for naming FUNCTION and SUBROUTINE subprograms 
are similar. They both require an END statement, and they both contain 
the same sort of dummy arguments. Like the FUNCTION subprogram, the 
SUBROUTINE subprogram is a set ~f commonly used computations, but it 
need not return any results to the calling program, as does the FUNCTION 
sub~rogram. The SUBROUTINE subprogram is referenced by the CALL 
statement. 

r 
I General Form 
~ 
t SUBROUTINE gam~ 
I 
I Where: 
I 
I 
1 
I 
I 
f 
I , 
I 
f 
I 
L 

name is the SUBROUTINE name (see the section "Naming 
Subprograms") . 

Each a is a distinct dummy argument (i.e., it may appear 
only once within the statement). There need not be any 
arguments, in which case the parentheses must be omitted. 
Each argument used must be a variable or array name 
~IIIIIIIIIIIIIIIIIIIIIIIIIIII~I the dUITlmy name of another 
SUBROUTINE or FUNCTION subprogram 

Since the SUBROUTINE is a separate program unit, there is no conflict 
if the variable names and s+:.atemen+:. numbers within it are the same as 
those in other program units. 

The SUBROUTINE statement must be the first statement in the 
subprogram. The SUBROUTINE subprogram may contain any FORTRAN statement 
except a FUNCTION another SUBROUTINE statement, or a BLOCK 
DATA statement. 

The SUBROUTINE subprogram may use one or more of its arguments to 
return values to the calling program. An argument so used will appear 
on the left side of an arithmetic or logical assignment statement, in 
the list of a READ statement within the subprogram, or as an argument in 
a CALL statement or function reference that is assigned a value by the 
subroutine or function referred to. The subroutine name must not appear 
in any other statement in the SUBROUTINE subprogram. 

The dummy arquments (~~, ~2' ~3, ••• ,~n) may be considered dummy names 
that are replaced at the time ~f execution by the actual arguments 
supplied in the CALL statement. Additional information about dummy 
arguments is in the section "Dummy Arguments in a FUNCTION or SUBROUTINE 
Subprogram." 

When a RETURN statement in a SUBROUTINE subprogram is executed, all 
variables and arrays in the subprogram that are not in common and are 
not dummy arguments become undefined those initial values 
in a DATA statement and whose 
initial values were 

Subprograms 101 



The CALL statement is used to call a SUBROUTINE subprogram. 

r---
I General Form 
t-

Where: name is the name of a SUBROUTINE subprogram 

Each ~ is an actual argument that is being supplied to the 
SUBROUTINE subprogram. The argument may be a variable, 
array element, or array name, a literal, an arithmeti 
logical expression or a function or subroutine name. 

Examples: 

CALL OUT 
CALL MATMPY (X,5,40,Y,7,2) 
CALL QDRTIC (X,Y,Z,ROOT1,ROOT2) 
CALL SUB1 (X+Y*5,ABDF,SINE) 
CALL SUB2(A,B,&10, '20,&30) 

The CALL statement transfers control to the SUBROUTINE subprogram, 
and replaces the dummy variables ~ith the value of the actual arguments 
that appear in the CALL statement. 

DIMENSION X(100) ,Y(100) 

CALL COpy (X,y,10C) 

SUBROUTINE Subprogram 

SUBROUTINE COPY (A,B,N) 
DIMENSION A(N) ,B(N) 
DO 10 I = 1,N 

10 B(I) = A(I) 
RETURN 
END 

~he relationship between variable names used as arguments in the 
calling program and the dummy variables used as arguments in the 
SUEROUTINE subprogram is illustrated. 

Subroutine COpy "copies" array A into array B within the subprogram. 
In this particular call, the subroutine arrays A and B are associated 
with the calling program arrays X and Y, respectively, and the variable 
N in the subroutine is associated with the value 100. Thus a call to 
subroutine COpy in this instance results in the 100 elements of array X 
being copied into the 100 elements of array Y. 

102 



( 

RETURN statements in a SUBROUTINE subprogram 

r----------------------------------------------------------------------, 
I General Form ] 
~----------------------------------------------------------------------i 
I RETURN I 
1 J 
) ] 
I l 
I Where: I 
I I 
I ~ 
I 1 L ______________________________________________________________________ J 

The normal sequence of execution following the RETURN statement of a 
SUBROUTINE subprogram is to the next statement following the CALL in the 
calling program. 

Returns of the 
FUNCTION subpro 
Subprogram"). 

Subprograms 103 



DUMMY ARGUMENTS IN A FUNCTION OR SUBROUTINE SUBPROGRAM 

The dummy arguments of a subprogram appear after the FUNCTION or 
SUBROUTINE name and are enclosed in parentheses. They are replaced at 
the time of execution by the actual arguments supplied in the function 
reference or CALL statement in the calling program. The dummy arguments 
must correspond in number, order, and type to the actual arguments. For 
example, if an actual argument is an integer constant. then the 
corresponding dummy argument must be an integer of length 4. If a dummy 
argument is an array, the corresponding act~l argument must be (i) an 
array, or (2) an array element. In the first instance, the size of the 
dummy array must not exceed the size of the actual array. In the 
second, the size of the dummy array must not exceed the size of that 
portion of the actual array which follows and includes the designated 
elemento 

The actual arguments can be: 

• A literal, arithmetic or logical constant 

• Any type of variable or array element 

• Any type of array name 

• Any type of arithmetic or logical expression 

• The name of a FUNCTION or SUBROUTINE subprogram 

• 

If a literal is passed to 
passed is the literal as defin 
preceding ~H specification. An actual 
subprogram must be identified by an in 
program unit containing that name. Hexadecimal constants 
actual arguments. 

A dummy argument is an array when an appropriate DIMENSION or 
explicit specification statement appears in the subprogram •.. ~~:me?f the 
dummy arguments may appear in an EQUIVALENCE, COMMON, DATA, 1111IIIIIIII 
statement. 

If a 'dummy argument is assigned a value in the subprogram, the 
corresponding actual argument must be a variable, an array element, or 
an array. An expression other than a variable or array element should 
not be written as an actual argument unless the programmer is certain 
that the corresponding dummy argument is not assigned a value in the 
subprogram. 

A referenced subprogram cannot assign new values to dummy arguments 
which are associated with other dummy arguments within the subprogram or 
with variables in COMMON. For example, if the function DERIV is defined 
as 

104 

FUNCTION DERIV (X,Y,Z) 
COMMON W 



( 

( 

and if the following statements are included in the calling program 

COMMON B 

C DERIV (A,B,A) 

then Xg Y, Z, anJ W cannot be assigned new values by the function DERIV. 
Dummy arguments X and Z cannot be defined because they are both 
associated with the same argument, A; dummy argument Y, because it is 
associated with an argument e B, whiCh is in COMMON; and the variable W, 
because it is also associated with B. 

subprograms 105 



106 



( 

Subprograms 107 



EXTERNAL STATEMENT 

r----------------------------------------------------------------------, 
I General Form J 

~----------------------------------------------------------------------~ 
I EXTERNAL ~1'~2'~3.···'~n 1 
I J 
I Where: Each ~ is a name of a subprogram that is passed as an ] 
I argument to other subprograms. 1 
L __________________ ~----------------------------------_________________ J 

The EXTERNAL statement is a specification statement, and must precede 
statement function definitions and all executable statements. 

If the name of a FORTRAN supplied in-line function is used in an 
EXTERNAL statement, the function is not expanded in-line when it appears 
as a function reference. Instead, it is assumed that the function is 
supplied by the user. 

The name of any subprogram that is passed as an argument to another 
subprogram must appear in an EXTERNAL statement in the calling program. 
For example, assume that SUB and MUL'I' are subprogram names in the 
following statements: 

108 



( 

( 

Example 1: 

Calling program 

EXTERNAL MULT 

CALL SUB(J,MULT,C) 

J:!:xplanation: 

4 

SubprQgram 

SUBROUTINE SUB(K,M,Z) 
IF (K) 4,6,6 
D = M(K,Z**2) 

6 RETURN 
END 

In this example, the subprogram name MULT is used as an argument in 
the subprogram SUB. The subprogram name MULT is passed to the dummy 
variable M as are the variables J and C passed to the dummy variables K 
and Z, respectively. The subprogram MULT is called and executed only if 
the value of K is negative. 

Example 2: 

Calling Program 

CALL SUB(A,B.MULT(C,D),37) 

Explanation: 

Subl?rogram 

SUBROUTINE SUB(W(/I X,M, N) 

RETURN 
END 

In this example, an EXTERNAL statement is not required because the 
subprogram named MULT is not an argument; it is executed first and the 
result becomes the argument. 

OBJECT-TIME DIMENSIONS 

If a dummy argument array is used in a FUNCTION or SUBROUTINE 
subprogram.n the absolute dimensions of the array do not have to be 
explicitly declared in the subprogram by constants. Instead, an 
explicit specification statement or DIMENSION statement appearing in the 
subprogram may contain dummy arguments or variables in common which are 
integer variables of length 4 to specify the size of the array. When 
the subprogram is called, these integer variables receive their values 
from the actual arguments in the calling program reference or from 
common. Thus, the dimensions of a dummy array appearing in a subprogram 
may change each time the subprogram is called. 

The absolute dimensions of an array must be declared in the calling 
program or in a higher level calling program, and the array name must be 
passed to the subprogram in the argument list of the calling program. 
The dimensions passed to the subprogram must be less than or equal to 
the absolute dimensions of the array declared in the calling program. 
The variable dimension size can be passed through more than one level of 
subprogram (i.e., to a subprogram that calls another subprogram, passing 
it dimension information). 

Subprograms 109 



Integer variables in the explicit specification o.r DIMENSION 
statement that provide dimension information must not he redefined 
within the subprogram; i.e." they must not appear to the left of an 
equal sign. 

The name of an array with object-time dimensions cannot appear in a 
COMMON statement, although variables containing the dimensions may be 
placed in a common block. 

DIME~SION A(S,10) 

CALL SUBR1(A.S,10) 

END 

Explanation: 

SUBROUTINE SUBR1(R,L,M) 

REAL R(L,M) 

DO 10 I=l,L 
DO 10 J=l,M 

10 R(I.J)=O. 

RE'I'URN 

END 

This example shows the use of object-time dimensions to supply 
dimension information to a subroutine that will perform some operation 
on an array of any specified size. In this case, the dimensions passed 
are those specified for the array in the calling program, i.e., the full 
size of the array. 

Example 2: 

DIMENSION A(S,10) 

I = 4 

J 7 

CALL SUBR1(A.I,J) 

END 

110 

SUBROUTINE SUBR1(R,L,M) 

REAL R(L.M) 

DO 10 I=l,L 
DO 10 J=l,M 

10 R(I,J)=O. 

RETURN 

END 



( 

Explanation: 

This example shows the use of object-time dimensions to specify a 
subset of the extent of an array to a subprogram. The effect of this 
coding is the same as i.f another array, B, of dimensions (4,7) had been 
defined in the calling program and had been made equivalent to array A; 
the array B and its dimensions would then have been passed to SUBR1 as 
follows: 

DIMENSION A(5,10),B(4,7) 

EQUIVALENCE (A(l),B(l» 

1=4 

J = 7 

CALL SUBR1(B,I,J) 

END 

BLOCK DATA SUBPROGRAMS 

To initialize variables in a labeled (named) common block, a separate 
subprogram must be written. This separate subprogram contains only the 
BLOCK DATA" DATA, COMMON, DIMENSION, EQUIVALENCE, and explicit 
specification statements associated with the data being defined. This 
subprogram is not called; its presence suffices to provide initial data 
values for references in main and subprograms to labeled common blocks. 
Data may not be initialized in unlabeled common. 

r----------------------------------------------------------------------, I General Form ~ 

~---------------------------------------------------------~------------i 
~ BLOCK DATA I L ______________________________________________________________________ J 

1. 

2. 

The BLOCK DATA subprogram may not contain any executable 
ement function definitions. or FORMAT, 

FUNCTION, SUBROUTINE, or ENTRY statements. 

The BLOCK DATA statement must be the first statement in the 
sub"""''',-y-

Statements which provide itial values for data 
precede the COMMON statements which define those 

Subprograms 111 



3. Any main program or subprogram using a common block must contain a 
COMMON statement defining that block. If initial values are to be 
assigned, a BLOCK DATA subprogram is necessary .. 

4. All elements of a common block must be listed in the COMMON 
statement, even though they are not all initialized; for example, 
the variable A in the COMMON statement in the following example 
does not appear in the data initialization statement: 

BLOCK DATA 
COMMON / 
REAL B(4) 
COMPLEX 
END 

Z (3) 

5. Data may be entered into more than one common block in a single 
BLOCK DATA subprogram. 

6. A particular common block may not be defined in more than one BLOCK 
DATA subprogram. 

112 



( 

APPENDIX A: SOURCE PROGRAM CHARACTERS 

r----------------------------------T-----------------------------------, 
I Alphabetic Characters I Numeric Characters i 
~----------------------------------+-----------------------------------~ 
I A ) 0 I 
I B I 1 I 
I C I 2 J 
I D I 3 ] 
IE] 4 ) 

I F I 5 1 
I G ) 6 J 
) H I 7 ] 
I I I 8 } 
I J ] 9 ) 
I K 1 ] 
I L I I 
I M r----------------------------------~ 
I N 1 special Characters J 

I 0 r-----------------------------------~ 
I P I (blank) I 
I Q I + ) 
I R I ] 
I s I / ] 
I T I = 1 
I U I J 
I V I J 
I W I * 'I 
I X 1 J 
1 Y I ( I 
I I I 
I I l L _____________________________ ~ ____ L ___________________________________ J 

The characters listed above constitute the set of characters 
acceptable by FORTRAN, except in literal data, where any valid card code 
is acceptable. 

Appendix A: Source Program Characters 113 





( 

( 

Appendix B: Other FORTRAN Statements Accepted by FORTRAN IV 115 



116 



APPENDIX C: FORTRAN-SUPPLIED PROCEDURES 

'Ihe FOR'I'13AN~supplied procedures are of •• 1; types: mathematical 
functions 1.'t~\111I11111[1i..III •• 11}1 An in-line function is inserted by 
the FORTRAN compiler at any point in the program where the function is 
referenced. An out-of-line function is located in a library, and the 
compiler generates an external reference to it. Table 4 shows 
mathematical functions, and Table 5 shows Detailed 
descri tions of out-of-line mathematical functions 
111.llllill~llllil are given in the FORTRAN IV library publications. 

Appendix C: FORTRAN-Supplied Procedures 117 



~ 

~ 

CD 
General 
Function 

Natural and 
common 
logarithm 

Exponential 

Square 
root 

Notes: 

Entry 
Name 

1. No entry = not provided. 

Definition 

y=loge x 
or 

y=lnx 

y=PV loge Z 

See Notes 2 and 4. 

y=loglo x 

y=eX 

y=e 
See Note 4. 

y= Vx or 
y=x% 

y= V-:;. or 
y=z% 
See Note 4. 

Range 

x>O 

Z =1= 0 + Oi 

x>O 

-180.218 ~ X ~ 

174.673 

Any COMPLEX 

argument 

Range3 

-180.218 ~ y ~ 
174.673 

-180.218 ~ Yl ~ 
175.021 
-7r < Y2~ 7r 

-78.268 ~ y ~ 
75.859 

O~y~I' 

-I'~Yl,Y2~'Y 

O~y~'Y% 

O~YI~ 
1.0987· (1'%) 

IY21 ~ 
1.0987· (,),%) 

o 
o 

2. PV = Principal Value. The answer given (YI + y2i) is that one whose imaginary part (Y2) lies between -7r and 7r; more specifically, -7r < Y2 ~ 7r, unless 
Xl < 0 and X2 = 0, in which case Y2 = -7r. 

3. I' = 1663
• (1 - 16-11

) for single precision, 1663 
• (1 - 16-14

) for double precision, '1!li:i~l;i:I~;I;li!I!:I!II:II~il;i~:i:!~.rll.llll::! •• ~1'IWI11rOllltillles. 
4. z is a complex number of the form Xl + x2i. 
5. Tvoe,">!~~!",~!",~.~~~~~ .. ~~~i~~~ .. ~~ .. ~~~.FORTRAN as tvoe double 

t4 
SlJ 
0' 
~ 
(l) 

~ 

:s: 
SlJ 
rt' 
::r 
(D 
g 
SlJ 
rt ...,. 
(") 

SlJ 
~ 

I-zj 
~ ::s 
(") 

rt ...,. 
o 
::s 
(f) 

-ttl 
~ 
rt 

~ 

o 
H\ 

0\ 



;J:I' 
"0 
"0 

CD 
!j 
0.. 
1-'-
>< 
() 

I-rj 
o 
~ 
1-3 

~ 
Z 
I 

Ul 
~ 

"0 
"0 ..... 
1-'
(D 
0.. 

tU 
Ii 
o 
() 

CD 
0.. 
~ 
Ii 
(D 

Ul 

~ 

~ 

1.0 

~ 

General 
Function 

Sine and 
cosine 

Notes: 

Entry 
Name 

1. No entry = not provided. 

Definition 

y=arctan~ 
X2 

/' = 16"3 0 (1 - 16-6
) for single predsion, 1663 

0 (1 
real of length 8 exists in ANS FORTRAN as 

~~ 

Range 

Any REAL 

arguments 
except (0, 0 ) 

\xl«21S0 7l") 

!xl < (2,,0071") 

~ 

Type3 

o 

-7I"<y~7I" o 

o 

-l~y~l o 

o 

-l~y~l o 

o 

~ 
01 
tr ..... 
CD 

-'=" 

:s: 
01 
rt ::r 
CD 
E3 
01 
rt 
1-'
() 
01 ..... 
I-zj 
~ 
!j 
() 
rt 
1-'
o 
!j 
Ul 

-tlj 
01 
Ii 
rt 

N 

o 
HI 

0\ 



.... 
tv 
0 

General 
Function 

Sine and 
cosine 
( continued) 

tangent 

Notes: 

Entry 
Name 

I CSIN 

Definition 

y=sin z 
See Note 4. 

y=cos z 
See Note 4. 

z is a complex number of the form Xl + x~i. 

Argument ( s) Function Value Returned 

INo.1 Type6 Range Range5 

I 1 I Complex [Xl[ < (21S 
• 11") - 'Y ~ y" yo ~ 'Y 

- 'Y ~ y" Y2 ~ 'Y 

5. 'Y = 1663 
• (1 - 16-6

) for single precision, 1663 
• (1 - 16-14

) for double precision, routines. 
6. Type real of length 8 exists in ANS FORTRAN as type double precision. 

14 
n.t 
0' 

I1~ 
~ 
(!) 

.c:: 0 . 
=s: 
n.t 
rt 
::Y 
(1) 

S 
n.t 
rt 
1-'. 
() 
n.t 
~ 

I-1j 
~ 
~ 
() 

rt 
1-'. 
0 
:::1 
CJ) 

-1'0 
n.t 
11 
rt 

w 

0 
Hl 

0\ 



.~ 
/~c~, ~ 

General Entry fi . . I ---0--------,-, - -------~-- . -.- .. ~ -.~------- In-line (1) Out-of-line (0)' I ~ 
Function Name De mtlOn I No. Type' Length Range Type' Length Range2 DOS / C&G / I H HE tl f--J 

VSPC / G,Gl x (1) 

--------------~--~------~----_r--------------_+------~----~------------------~------------
Absolute I IABS* y= Ixl 1 Integer 4 Any INTEGER Integer 4 I I I I I ~ 
value argument 

ABS* 1 Real 4 Any Real :s: 
DABS* 1 Real 8 REAL Real ~ 

argument ::r 
(1) 

y=l z l=(x12 +x22 )'h L~ Lq()I~1IJI~~1 8 .IAnycoMPLEX ~ 
rt 
1-'
() 
OJ 
f--J 

I-zj 
s:: 
::1 
() 
rt 
1-" 
o 
::1 
en 

;:t::' ana Ml\J\..U·e ~~ Integer q argument Integer 4 0 -
~ minimum A~lAXO* ~2 Integer 4 Real 4 0 ~ 
~ values MAXl * ~2 Real 4 Any Integer 4 0 I ~ 
OJ AMAXI * ~2 Real 4 REAL Real 4 0 I ~ 
1-" 
X DMAXI * ~2 Real 8 argument Real 8 0 I 0 

o ~ 

y=min(x], ... ,xn) Any INTEGER 0'1 

~2 Integer 4 argument Integer 4 a 
6 Ai\IINO* ~2 Integer 4 Real 4 0 

~ ~IIN I * ~2 Real 4 Any Integer 4 0 I 
~ AMINI * ~2 Real 4 REAL Real 4 0 I 
Z D:\IINI * ~2 Real 8 argument Real 8 0 I 
I 

en 
r§ Truncation y= (sign of x) • n Any 
to where n is the REAL 
~ largest integer argument 

~ ~ Ixl 

'1:1 
Ii 
o g Notes: 

OJ 1. No entry = not provided. 
~ 2. 'Y = 1668 

• (l - 16-°) for single precision, 1663 
- (1 16-1' ) for double precision,afidil6.@lC]M'l6.tmlfdnextennednrecisifiihoutines. 

~ 3. Floating-point overflow can occur. 

~ 

"-> 
~ 

4. Type real of length 8 exists in ANS FORTRAN as double 



~ 

l\) 

l\) General ~ 
Function 

arithmetic 

Conversion 
from INTEGER 

to REAL 

Conversion 
from REAL 

to INTEGER 

Transfer 
of sign 

Positive 
difference 

Obtain most 
significant part 
a HEAL argument 

Notes: 

I 
Entry 
Name 

I AMOD* 

ISIGN* 

SIGN* 
DSIGN* 

IDI\I* 

l. No entry = not provided. 

I Definition 

y = remainder 

( :: ) ,i.e., 
y=xl(modulo X2) 
See Note 2. 

y = (sign of x) - n 
where n is the largest 
integer ~ Ixl 
y= (sign of X2) 'ixli 

I y=Xl -min(xl, X2) 

I Argument ( s) I Function Value Returned 

I"T~ I rr ___ ~' I T ~ ___ "1_1 I rr ___ ~. I T ~ __ "1_1 Range" 

X2 oF ° 
See Note 3. 

Any 
INTEGER 

argument 

Any 
REAL 

argument 

2 Integer 4 
X2 oF ° Integer 4 
See Note 3. 

2 Real 4 Real 4 
2 Real 8 Real 8 

2. Xl (modulo X2) is defined as Xl - [ :: ] • X2, where the brackets indicate that the largest integer whose magnitude does 

not exceed the magnitude of ~ is used. The sign of the integer is the same as the sign of ~. 
~ ~ 

3. If X2 = 0, then the modulus and transfer-of-sign functions are mathematically undefined. 
4. Type' real of length 8 exists in ANS FORTRAN as type double precision. 
5. 'Y = 1663

• (1 - 16-6
) for single precision, 1663

• (1 - 16-14
) for double precision, :1~fl·!·~llt·'III!Ir,~il~~II~llf'III~~I~IIIII[I~;~lllll 

* ANS FORTRAN Intrinsic Function. _ 

~ In-line (I) Out-of-line (0) 1 III 
0-

DOS / C&G/ IH ~ 
... "roT"'l.,.... .,....,..., .. H Ext C1> 

-'= 

3: 
w 
c+ 
::T 
C1> 
:3 
w 
c+ ...,-
() 
W 
~ 

I-zj 
s:; 
==' () 

c+ 
..." 
0 
==' CJ) 

-"0 
W 

I 11 
rt 

U1 
I I I 
I I I 0 

H\ 

0\ 



;J:;I 
'"0 
'"0 

(J) 

::1 
OJ 
1-" 
X 

() 

'"'Ij 
o 
~ 
1-3 

~ 
Z 
I 

en 
s:: 

'"0 
to 
~ 
1-" 
m 
0.. 

"0 
t1 
o 
(1 
(J) 

0.. 
s:: 
t1 
(J) 
(Jl 

~ 

I\..) 

W 

.~ 

General 
Function 

Obtain real part 
of a COMPLEX 

argument 

Obtain imaginary 
part of a 
COMPLEX 

argument 

Precision 
increase 

Express two REAL 

arguments in 
COMPLEX form 

Obtain conjugate 
of a COMPLEX 

argument 

Notes: 

Entry 
Name 

1. No entry = not provided. 

Definition 

y=Xl+ Xj 

y=xl-x2i 
for 

arg=Xl +x2i 

No. 

r ..... 

Argument ( s ) 

Range 

Any COMPLEX 

·1 argument 

Any REAL 

argument 

Any REAL 

argument 

Any COMPLEX 

argument 

2. Type real of length 8 exists in ANS FORTRAN as type double precision. 

Function Value Returned 

Type2 Length Range 

~, 
I 

In-line (I) Out-of-line (0) 1 

DOS / C&G/ 
VSPC / G,G! 

H HExt 

~ 
OJ 
0-
~ 
(1) 

+= 

!3:: 
III 
rt 
::T 
(D 
:3 
III 
ri" 
~, 

(1 

III 
~ 

t%j 
s:: 
::1 
(1 

rt 
~, 

o 
::1 
{Jl 

-"0 
III 
t1 
rt 

0'1 

o 
Hl 

0'1 -



124 



( 
APPENDIX D: S~MPLE PRQGRAM§ 

'The sample program shown in Figure 1 is designed to find all of the 
prime numbers between 2 and 1000. A prime number is an integer greater 
than 1 that cannot be evenly divided by any integer except itself and 1. 
Thus, 7 is a prime number. The number 9 is not prime, since it can be 
divided evenly by 3. 

GX2I-7327 .. U/MCIIO 
_"'InU.LA. 

rAG<.1 o • .1. 

11
-;;:;;;;," I~ , .. ;,,,:~11ON 

1213"" 2' 
..,....,....,. ...--..-.,,, .. ,, .. 

c mliiirRIAI~o1RI i I II i ! : ! ! i ' i 

wR 11,.1£1 _'I i i i I 
I' , 

If IFlo 
~- --: " ~ I~lct ~ 1'~I~I,12~~~ ~~~ ~~ 11 1 ; 1 

ID,o I- i: i' i' , 

Itll- lit r7f~ I~ "II I) IT! , i ! , I 

ID[o 12 I- I,i" I ! I ' i i 
, 

I i 
: II IlIIiclb I. I. IG'I. I. "Ie 10 [41 i: -: -1 i I , 

12 ! : ; : 
; , : ! , ! 

! i- i. I) ! 1 I : i i I I I I : 

13 "T II i~) , I : ! ! ' i i i I , 
, i i i 

114 ! T I l : ,. ! i I , : T ! I'-,Q I" T l"l\ltll 

1",,,1 r7 il i1)1 j ! ; ! i : : I I : " 

16 I .. , 1- -, Il 1 I 
i i i 

Isrr loP I I : ! , I ; i i i ! I ;-
: : 

I':NID ! ; , ! : i 1 i' , I 
i, 

: i Ii I I t 
ii' ! , ! 

--: I' 1 ! : : : 

, i: 
, ; ! , 

! : ' 

, 

i • 
; , 

! , 

I : ,I 1 ' I , i ! ! ' i i I j 

i i : : I [ 
, 

i ! : , 

: 
; 

; I; ! I : I, I ! : 

i : ; I I , 

: ! 
! 1 : I I I ' ! ! i 

! ! I ; j 
i ; I ' ! ; 

, 
: I I : i ! , ! . '0 ,.,' 1617 '910 22" ",. ,.,.:10 31 ",,- 36 373839 .. '" '..--.. " .... ,. "" .... 56 ,7" "'" 6162 "-"-M 66.7 .. 70 72 ,.~ ,.1iI 

.... I.dfO_'~' i , 

Figure 1. Sample Program 1 

Appendix D: Sample Programs 125 



SAMPLE PROGRAM 2 

The n points (xi' Yi) are to be used to fit an m-degree polynomial by 
the least-squares method. 

In order to obtain the coefficients a o• a 1 , ••• , am' it is necessary to 
solve the normal equations: 

where: 

(1) 
(2) 

• 

(m+1) 

woao + W1a1 + ••• 
W1a O + W2a 1 + 

Wo = n 

n 
W1 =:E xi 

i=1 

n 
W2 =:E x· 2 

~ 
i=l 

+ wma m = Z 

+ wm+~am = Z1 

n 
Zo = :E y. 

i=1 ~ 

n 
Z1 = :E y.x. 

i=l ~ ~, 

n 
Z2 = :E y.x. 2 

i=l ~ ~ 

n 
Z =:E y.x. m 

m i=l ~ ~ 

After the w's and z's have been computed, the normal equations are 
solved by the method of elimination which is illustrated by the 
following solution of the normal equations for a second-degree 
polynomial (m = 2). 

The forward solution is as follows: 

1. Divide equation (1) by Woe 

2. Multiply the equation resulting from step 1 by W1 and subtract from 
equation (2). 

3. Multiply the equation resulting from step 1 by W2 and subtract from 
equation (3). 

126 



I{ 

The resulting equations are: 

(4) 

( 5) 

( 6) 

where: 

Zo/wo 

steps 1 and 2 are repeated using equations (5) and (6), with b 22 and b 32 
instead of woand w1 • The resulting equations are: 

where: 

The backward solution is as follows: 

from equation (8) 

from equation (7) 

(11) ao from equation (4) 

Figure 2 is a possible FORTRAN program for carrying out the 
calculations for the case: n = 100, m ~ 10. wo, W1, W2, ••• , W2m are 
stored in W(l), W(2), W(3), ••• , W(2M+1), respectively. Zo, Z1, Z2, ••• , 
zm are stored in Z(l), Z(2), Z(3), ••• , Z(M+l), respectively. 

Appendix D: Sa.mple Programs 127 



IB~ FORTRAN Coding Form 

I GRAPHIC I I 
I PUNCH I I 

STATEMENT Z 
NUMBER 8 FORTRAN STATEMENT 

I I I I 
I I I L 

I 
J 

l'AG'l OF 3 
rARO ELECTRO NUMBER* 

IDENTIFICATION 
SEQUENCE 

I , 3 • , • REA til X ( i (0) ; Y ( 100) ; W'( i 1) ~ l ( 1 i ) ; A ( 11) ; B ( 11 ~ 12:) " 53 54 " " " " " 60 61 62 63" 65 66 67 68 69 70 71 72 73 74 75 76 77 78 7980 

t FORMAT (I2'I3/(~F14.7»· , 
2 FORMAT (SEtS.G) _______ _ 

READ (S d) M, N , ( X ( I ) , Y ( I ) , I = 1 't-tL-r------ -------+---+-----+--__ I------f----___j 

LW • 2*M+i --------------+----+----+---+-----+-------1 
LB M+2 
Li M+l 

S ~(J 1 _=_-0°::,-0_1 ==-0 __ +---_--+ ____ t----_-+ ______ --____ -----+--------+-----f---t-------.--+-------j 
Wei) = N 

~-__+~D~O;._;_6rt__~J__::;=~1+='._"'L=z=---+_-__t---+--+_--t__---r--- ----- -------1----+----+-----1 
6 ~(J) = QJ.rzj 

1------1--+.:::P:--7-:=,..-fl~ • ..!:.9J=-.+'O;---:-c:7l+=-.---t---+---t----t------r------- ----1-----------1------1-----1 
l ( 1) = l (+=l'--<-)_+--'cY-=-(+=I~) _-+-_---1 _______ 1-_________________________ 1-_____ ------+----+----+-------l-~-___j 

1--_---1---tD~O=-----.!1~3~~J--:-::±2~'~L=-:r=-+---__+--_+--_+-----____________________ _ 
I-----I-l::':-:-___ ( j-;-).-fX..:.,..:~'--=I:...,:~-:-:;~ct---;~")--:--+-=P-+----t--+------ ------- ----------t------ ---------- r-------

1--~1~3~l+( -=-.J~) f-=-= _r~( J~)~+__:Y!....,_(~l'"-')'--'*~P_+-__+ -__t--- -----f--------li-----t----+----\-----+-----; 
DO 16 J=LB,LW 

~--~p~=~~~(~I~)~*+P----~--4_--_+----~---r---1----+_--_r------- -+-----1------~ 
f---__+-+--_+---t----+----+---+----t----- ---- ----------- ------ -------1--------11------1 

f---__+-+--_+--_+---+----+----+---t----f-----t---- 1------ ------ --- -------I----------f-------I 

I l 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 '}1 22 23 ,}4 ?5 26 27 28 29 3D J 1 3? J3 34 35 J6 .~i JIi ' .:1; .: 1 ..:, :; ~~ .:j .:, - .., '.'. !: I.;. e.'j I.o~ 65 66 e.l 6!1 69 ~o ~l ~'l :-3 ~-1 ;-5 76 77 78 79 80 

Figure 2. Sample Program 2 (Part 1 of 3) 

IBM FORTRAN Coding Form 

I-::-::-::-M,-, ...;::S:.:..A.!..:M.:..:..!-P.;::.L E=--P:...;R:..:..O::::..G~R.:....:A=M-=---=2'-------_y_lo-ATE--;:'-r;;;/,6-.;8.------l ;~~T~:;:'~:;'N' I GRAPI-IIC I I I I I I I'AG' 2 Of 3 
I I I I 

I 

I I ICARD ELECTRO NUM8ER* I PUNCH I 
S~~~~:~T ~ FORTRAN STATEMENT LD~~~I~~~~~ON 

1 2 3 4 5 6 7 8 9 10 11 12 1314151617 1819 <'021 22 23 24 2S 26 27 282930 JI J2 J3 34 35 36 3738394041 424344454647484950 51 5253545556575859606162 63 64 656667686970 71 n 7374 757677 78 7980 

i 6 W ( J) = W-C J ) + P 

DIVB = BCL,L} 
DO 26 J=L,LB 

-----------

~--+-f.I=-:1=----=;-f;;;-7L'--+-:=-t-;;;+.-~::--I:::_.;:____=_=t__--_t_----+-----------" -----+---t-----+-----+--f----+----IF (Il-LBJ 28,33,33 

FMULTB = B(I,L) 

t----"3=-=3++-A~(_=.L=tl;_,) ::;-=--=B+=-( -=-Ll:::<::c'-=-=L=FB:.L)_-l-_-+-_-+_---4 __ +--_+--_-+-_-+ __ -+ ___ --t _________________ _ 
I ... Ll 

35 SIGMA = 0.tD' 
i i 

: : i ' 

I I i III 
, I L ,I I Iii 

123456789101112131415161718192021222324252627 28.2930'31 32333435"'.36373839 <CO. 41 4243444546474849505152535455565758596061626364 656667 686970 ;'"172 7374 757677 787980 
'A dorldord cord form, IBM electro 888157, is ovoiloble for punchinq slolemMh from this fo.m 

Figure 2 .. Sample Program 2 (Part 2 of 3) 

128 



rf 

~ .• 

IBM FORTRAN Cod in; Form 

I GRAPHIC 

1 eUNeH 1 1 .1 J 1 I' 1 tARO ElECTRO NUM"" 

STATEMENT Z IOfNTIFICATION 
NUMBH 8 FORTRAN STATEMENT SEQUENCE 

I 2 :) 4 S 6 7 8 9 10 11 11 13 14 1$ 16 1"' It' 19 ,0 ~I~' 24;S 16 ]I ?8 29 10 31 Ji n 34 ~5 36 37 )8 ;19 40 41 .!] 4) H 45 4647 48 49 50 51 52 53 54 55 56 57 58 59 60 61 61 63 64 65 66 67 68 69 70 il n 7:'1 74 75 76 77 78 79 80 

I = 1-1 
A ( I) = B ( I -, L'--;B~)rl------;;5=--I""'G~M;-:;t-;;A----+----t-------

. ._-

---rr~-- fF--( I:"'1) -LU ')4-1 ,35--- ----. 
LU WR ~J E (G , 2) (A err,! ;-i=-,·-:-L-=l=h:)--+------ -----

5 TOP - ----'--~-_t_------------_l--._+_---+__--+--+_---I__--_____l 

1----++.:Eo-:'N':-c
D

:..-'... -_._._--. ---_.--- _.---.. ---. - --.- ---1---------+-------1 

. -- - .-.- -------/-----+-- -f----f---- ----+----+--+----1-----+-------1 

---._.---- --------+-------t-----

I 2 J 4 5 I:> 7 S <;> 10 11 I:;> 13 14 15 16 17 18 19 20 ]1 n 23 24 25 ]6 27 28 '}9 )0 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 ~/ 48 ~9 jO jl 5~ )3 54 s~, S6 57 58 59 60 61 6? 63 64 65 66 67 68 69 70 71 72 ~3 74 75 76 ;- .. 78 79 80 

Figure 2. Sample Program 2 (Part 3 of 3) 

The elements of the Warray, except W(1), are set equal to zero. 
W(1) is set equal to N. For each value of I, XCI) and Y(I) are 
selected. The powers of XCI) are computed and accumulated in the 
correct W counters. The powers of XCI) are multiplied by Y(I), and the 
products are accumulated in the correct Z counters. In order to save 
machine time when the object program is being run, the previously 
computed power of XCI) is used when computing the next power of XCI). 
Note the use of variables as index parameters. By the time control has 
passed to statement 17, the counters have been set as follows: 

W(l) N 

N 
W(2) = ~ XCI) 

1=1 

N 
W(3) ~ XCI)2 

I=l 

N 
WC2M+l) = ~ XCI) 2m 

I=l 

N 
Z(1) = ~ YCI) 

I=l 

Z(2) 

Z (3) 

Z (M+l) 

N 
~ YCI)XCI) 
I=l 

N 
~ YCI)XCI)2 
I=l 

N 
~ YCI)XCI)m 
I=l 

Appendix D: Sample Programs 129 



By the time control has passed to statement 23, the values of wo, 
W1, ••• ,W2m have been placed in the storage locations corresponding to 
columns 1 through M+l, rows 1 through M+l, of the B array, and the 
values of Zo,Z1, ••• ,Zm have been stored in the locations corresponding 
to the column M+2 of the B array. For example, for the illustrative 
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array 
would be set to the following computed values: 

Wo W1 W2 Zo 

W1 W2 W3 Z1 

W2 W3 W"" Z2 

This matrix represents equations (1) , (2), and (3), -the normal 
equations for M = 2. 

The forward solution, which results in equations (4), (7), and (8) in 
the illustrative problem, is carried out by statements 23 through 31. 
By the time control has passed to statement 33, the coefficients of the 
A(I) terms in the M+l equations which would be obtained in hand 
calculations have replaced the contents of the locations corresponding 
to columns 1 through M+l, rows 1 through M+l, of the B array, and the 
constants on the right-hand side of the equations have replaced the 
contents of the locations corresponding to column M+2, rows 1 through 
M+l, of the B array. For the illustrative problem, columns 1 through 4, 
rows 1 through 3, of the B array would be set to the following computed 
values: 

1 b13 

o 1 

o o 

This matrix represents equations (4), (7), and (8). 

The backward solution, which results in equations (9), (10), and (11) 
in the illustrative problem, is carried out 'by statements 33 through 40. 
By the time control has passed to statement 41, which prints the values 
of the A(I) terms, the values of the M+l A(I) terms have been stored in 
the M+l locations of the A array. For the illustrative problem, the A 
array would contain the following computed values for a2' a1' and ao, 
respectively: 

Location 

A(3) 

A(2) 

A(1) 

contents 

The resulting values of the A(I) terms are then printed according to 
the format specification in statement 2. 

130 



4/ 
\ 

Appendix E: Debug Facility 131 



1.32 



I 
\ 

DEBUG SPECIFICATION STATEMENT 

Appendix E: Debug Facility 133 



134 



, 

( 

Appendix E: Debug Facility 135 



136 



( 

( 

Appendix E: Debug Facility 137 





( 

APPENDIX F: IBM FORTRAN IV FEATU~ES NOT IN IBM BASIC FORTRAN IV 

The following features in IBM FORTRAN IV are not in IBM Basic FORTRAN 
IV: 

Complex, logical, literal, 
DATA 

constants 

as actual argument in CALL and function reference 

The following in-line subprograms in IBM FORTRAN IV are not in IBM Basic 
FORTRAN IV: 

AIMAG 
AINT 
CMPLX 
CONJG INT 

REAL 

The following out-ot-line subprograms in IBM FORTRAN IV are not in IBM 
Basic FORTRAN IV: 

CABS 
CCOS 

CEXP 
CLOG 

CSIN 
CSQRT 

Appendix F: IBM FORTRAN IV Features not in IBM BASIC FORTRAN IV 139 





( 

Appendix G: IBM FORTRAN IV Features not in ANS FORTRAN 141 





( 

( 

Appendix H: FORTRAN IV (H Extended) Features 143 



144 



( 

( 

Appendix H: FORTRAN IV (H Extended) Features 145 



146 



( 

Appendix H: FORTRAN IV (H Extended) Features 147 



148 



( 

4 
\ 

( 

Appendix H: FORTRAN IV (H Extended> Features 149 



150 



( 
Appendix H: FORTRAN IV (H Exte~ded) Features 151 



152 



( An' '. exten si onto, .th,e >iE~iGmJB:,al~l 
'declare names of the FC~R1:~M:Nr\ 

names of user-supplieCi 
t.,he,EXTERNAL statettlept ' 
writing an ampersand~ ( 
namein'anEXTERNAL 
:e~TlitE~N~. statement:' 

·:tl1~;.'!Jlame, is pr~cedQ'("'f:'i;'r.'i!.l""::'; 
preqe,d~$anarri,~. 'oth,~i: 
sUbroutine. 

Tp.i~special 
'tn3'er~';':su:pp lie'd "'~ Ub.lpr(jgl~·a,n 

. ,p~<:>.gram p.ni t . :i.n: 
':H$'~r:"',$u,ppl ied ·~UbPl:;t):qr·l:a 
}·t'b~,:\library$ubprc~q;lt:'ajj[e 

·pio<jram ... 

Appendix H: FORTRAN IV (H Extended) Features 153 



154 



( 

( 
Appendix H: FORTRAN IV (H Extended) Features 155 



156 



Appendix I: H Extended, G1, Code and Go, and VSPC FORTRAN Features 157 



158 



I 
~ 

Appendix I: H Extended, G1, Code and Go, and VSPC FORTRAN Features 159 



160 



alphabetic character: a character of the set A," B, C,,, ••. 6 Z, $. 

alphameric character: a character of the set which includes the 
alphabetic characters and the numeric characters. 

GLOSSARY 

argument: a parameter passed between a calling program and a subprogram 
or statement function. 

arithmetic expression: a combination of arithmetic operators and 
arithmetic primaries. 

arithmetic operator: one of the symbols +, -, *, /" **, used to denote" 
respecti~ely, addition, subtraction, multiplication~ division, and 
exponentiation. 

arithmetic primary: an irreducible arithmetic unit; a single constant, 
variable, array element" function reference, or arithmetic expression 
enclosed in parentheses. 

array: an ordered set of data items identified by a, single name. 

array declarator: the part of a statement which describes an array used 
in a program unit. It indicates the name of the array, the number of 
dimensions it contains, and the size of each dimension. An array 
declarator may appear in a DIMENSION, COMMON, or explicit specification 
statement. 

array element: a data item in an array, identified by the array name 
followed by a subscript indicating its position in the array. 

array name: the name of an ordered set of data items. 

assignment statement: an arithmetic or logical variable or array 
element, followed by an equal sign (=), followed by an arithmetic or 
logical expression. 

basic real constant: a string of decimal digits containing a decimal 
point. 

blank common: an unlabeled (unnamed) common block .. 

common block: a storage area that may be referred to by a calling 
program and one or more subprograms. 

complex constant: an ordered pair of real constants separated by a 
comma and enclosed in parentheses. The first real constant represents 
the real part of the complex number; the second represents the imaginary 
part. 

constant: a fixed and unvarying quantity. The four classes of 
constants specify numbers (numerical constants)" truth values (logical 
constants), literal data (literal constants), and hexadecimal data 
(hexadecimal constants). 

control statement: any of the several forms of GO TO" IF and DO 
statements, or the PAUSE, CONTINUE, and STOP statements, used to alter 
the normally sequential execution of FORTRAN statements, or to terminate 
the execution of the FORTRAN program. 

Glossary 161 



data item: a constant, variable, or array element. 

data set: an ordered collection of one or more records. 

\data set reference number: a constant or variable in an input/output 
'statement, which specifies the data set which is to be operated upon. 

data type: the mathematical properties and internal representation of 
,data and functions. The four basic types are integer, real, complex, 
and logicalQ 

DO loop: repetitive execution of the same statement or statements by 
use of a DO statement. 

DO variable: a variable, specified in a DO statement, which is 
initialized or incremented prior to each execution of the statement or 
statements within a DO loop. It is used to control the number of times 
the statements within the DO loop are executed. 

dummy argument: a variable within a FUNCTION or SUBROUTINE statement, 
or statement function definition, with which actual arguments from the 
calling program or function reference are associated. 

executable proaram: a program that can be used as a self-contained 
procedure. It consists of a main program and, optionally, one or more 
subprograms or non-FORTRAN-defined external procedures or both. 

executable statement: a statement which specifies action to be taken by 
the program; e.g., causes calculations to be performed, conditions to be 
tested, flow of control to be altered. 

extended range of a DO statement: those statements that are executed 
between the transfer out of the innermost DO of a completely nested nest 
of DO statements and the transfer back into the range of this inne~most 
DO. 

external function: a function whose definition is external to the 
program unit which refers to it. 

external procedure: a procedure subprogram or a procedure defined by 
means other than FORTRAN statements. 

formatted record: a record which is transmitted with the use of a 
FORMAT statement. 

FUNCTION subprogram: an external function defined by FORTRAN statements 
and headed by a FUNCTION statement. It returns a value to the calling 
program unit at the point of referenceo 

hierarchy of operations: relative priority assigned to arithmetic or 
logical operations which must be performed. 

implied DO: the use of an indexing specification similar to a DO 
statement (but without specifying the word DO and with a list of data 
elements, rather than a set of statements, as its range). 

integer constant: a string of decimal digits containing no decimal 
point. 

I/O list: a list of variables in an I/O statement, specifying the 
storage locations into which data is to be read or from which data is to 
be writteno 

162 



labeled common: a named common block. 

literal constant: a stri of alphameric and/or special characters 
preceded by a ~H specification. 

logical constant: a constant that specifies a truth value: true or 
false. 

logical expression: a combination of loaical primaries and logical 
operators. 

logical operator: any of the set of three operators .NOT. o .AND., .OR.~ 

logical primary: an irreduceable logical unit: a logical constant, 
logical variable, logical array element, logical function reference, 
relational expression, or logical expression enclosed in parentheses, 
having the value true or false. 

looping: repetitive execution of the same statement or statements, 
usually 'controlled by a DO statement. 

main program: a program unit not containing a FUNCTION, SUBROUTINE, or 
BLOCK DATA statement and containing at least one executable statement. 
A main program is required for program execution. 

name: a string of from one through six alphameric characters, the first 
of which must be alphabetic, used to identify a variable, an array, a 
function, a subroutine, a common block, 11)11;~i;i,I~i~IIIIIIRI.~li 

nested DO: a DO loop whose range is entirely contained by the range of 
another DO loop. 

nonexecutable statement: a statement which describes the use or extent 
of the program unit, the characteristics of the operands, editing 
information, statement functions, or data arrangement. 

numeric character: anyone of the set of characters O,1,2R .a.,9. 

numeric constant: an integer, real, or complex constant. 

predefined specification: the FORTRAN-defined type and length of a 
variable, based on the initial character of the variable name in the 
absence of any specification to the contrarYG The characters I-N are 
typed INTEGERII; the characters A-H, O-Zllllillil are typed REALII. 

procedure subprogram: a FUNCTION or SUBROUTINE subprogram4 

program unit: a main program or a subprogram. 

range of a DO statement: those statements which physically follow a DO 
statement, up to and including the statement specified by the DO 
statement as being the last to be executed in the DO loop. 

real constant: a string of decimal digits which must have either a 
decimal point or a decimal exp0nent~ and may have both. 

record: a collection of related items of data treated as a unit. 

relational expression: an arithmetic expression, followed by a 
relational operator, followed by an arithmetic expression. The 
expression has the value true or false. 

Glossary 163 



relational operator: any of the set of operators which express an 
arithmetic condition that can be either true or false. The operators 
are: .GT., .GE., .LT., .. LE., .EQ., .NE., and are defined as greater 
than, greater than or equal to, less· than, less than or equal to, equal 
to, and not equal to, respectively. 

scale factor: a specification in a FORMAT statement whereby the 
location of the decimal point in a real number (and, if there is no 
exponent, the magnitude of the number) can be changedu 

specification statement: one of the set of statements which provide the 
compiler with information about the data used in the source program. In 
addition, the statement supplies information required to allocate 
storage for this data. 

specification subprogram: a subprogram headed by a BLOCK DATA statement 
and used to initialize variables in labeled (named) common blocks. 

statement: the basic unit of a FORTRAN program, composed of a line or 
lines containing some combination of names ll operators, constants, or 
words whose meaning is predefined to the FORTRAN compiler. statements 
fall into two broad classes: executable and nonexecutable. 

statement function: a function defined by a function definition within 
the program unit in which it is referred to. 

statement function definition: a name, foliowed by a list of duromy 
arguments, followed by an equal sign (=), followed by an arithmetic or 
logical expression. 

statement function reference: a reference in an arithmetic or logical 
expression to a previously defined statement function. 

statement .number: a number of from one through five decimal digits 
placed within columns 1 through 5 of the initial line of a statement. 
It is used to identify a statement uniquely, for the purpose of 
transferring control, defining a DO loop range, or referring to a FORMAT 
statement .. 

sUbprogram: a program unit headed by a FUNCTION, SUBROUTINE, or BLOCK 
DATA statement. 

SUBROUTINE subprog~am: a subroutine consisting of FORTRAN statements, 
the first of which is a SUBROUTINE statement. It optionally returns one 
or more parameters to the calling program unito 

subscript: a subscript quantity or set of subscript quantities" 
enclosed in parentheses and used in conjunction with an array name to 
identify a particular array element. 

subscript quantity: a component of a subscript: a positive integer 
constant, integer variable, or expression which evaluates to a positive 
integer constant. If there is more than one subscript quantity in a 
subscript, the quantities must be separated by commas. 

the explicit specification of the typel.II!~ 
1I1I~llflof a variable or function by use of an explicit 

unformatted record: a record for which no FORMAT statement exists, and 
which is transmitted with a one-to-one correspondence between internal 
storage locations (bytes) and external positions in the record. 

variable: a data item that is not an array or array element, identified 
by a symbolic name. 

164 



INDEX 

(Where more than one page reference is given, the major reference is first.) 

& (ampersand) 
in CALL statement 102 
with EXTERNAL statement 

&END statement 55 
153,154' 

* (asterisk) in SUBROUTINE 
list 101 

argument 

A format code 65 
ABS function 121 
absolute value functions 121 
ACOS 119 
actual arguments 91,103 
adjustable dimensions 

(see object-time dimensions) 
AIMAG function 123 
AINT function 121 
ALGAMA function 122 
aliases 154-155,118-123 
ALOG function 118 
ALOGI0 function 118 
alphabetic character 161 
A~~XO function 121 
AMAXl function 121 
AMINO function 121 
AMINl function 121 
AMOD function 122 

If ~NS FORTRAN 11,141 
intrinsic functions 120-123 

, arccosine functions 119 
ARCOS function 119 
arcsine functions 119 
arctangent functions 119 
arguments 96-108 

definition 161 
in FUNCTION or SUBROUTINE 

subprograms 104 
arithmetic assignment statements 33 
arithmetic expressions 

defined 25.161 
order of computation 27 

arithmetic IF 40 
arithmetic operators 26,161 
arithmetic primary 161 
array declarator 161 
array element 161 
array name 161 
arrays 

arrangement of 24 
asynchronous I/O 144-149 
defined 161 
dimension information 81 
general 23 
receiving areas 144-149 
subscripts 23-24 
transmitting areas 146-149 
type specification 24-25 

( .~~~N f~~ction 119 

ASSIGN and assigned GO TO 39 
assignment statements 33 6 161 
associated variable 72-73 
asynchronous input/output 143-144 

READ statement 144-146 
WAIT statement 148-149 
WRITE statement 146-148 

AT debug packet identification 134 
ATAN function 119 
ATAN2 function 119 
automatic function selection 154-155 

BACKSPACE statement 70,144,157 
Basic FORTRAN IV 139 
basic real constant 16,161 
blank common 88,161 
blank record 58 
blanks 14 
BLOCK DATA subprogram 111-112 

CABS function 121 
CALL statement 102 
carriage control characters 58 
carriage return 159-160 
CCOS function 120 
CDABS function 121 
CDCOS function 120 
CDEXP function 118 
CDLOG function 118 
CDSIN function 120 
CDSQRT function 118 
CEXP function 118 
character set 113 
character string 18 

in FORMAT statement 57666 
CLOG function 118 
CMPLX function 123 
Code and Go FORTRAN 157-160,133 
coding form 14 
comments 14 
common block 161 
common logarithm 118 
COMMON statement 86 
compilers 13 
COMPLEX statement 84,151 
complex values 

constants 17,161 
extended precision 150-152 
in arithmetic assignment statement 33 
in FORMAT statement 58 
length specification 82 
type specification 84 

computed GO TO 38 
COND parameter 148 
CONJG function 123 
constants 15,161 
continuation statements 14 
CONTINUE statement 46 

Index 165 



control statements 37-48,161 
conversion rules 

in arithmetic assignment statements 35 
in FORMAT statements 60-68 

COS function 119 
COSH function 120 
COTAN function 120 
CQABS function 121 
CQCOS function 120 
CQEXP function 118 
CQLOG function 118 
CQSIN function 120 
CQSQRT function 118 
CSIN function 120 
CSQRT fur.ction 118 

D format code 60-61,160 
DABS function 121 
DARCOS function 119 
DARSIN function 119 
DATA initialization statement 79 

in BLOCK DATA subprogram 111-112 
data item 162 
data set 162 
data set reference number 49,162 
data type 162 
DATAN function 119 
DATAN2 function 119 
DBLE function 123 
DBLEQ function 122 
DCMPLX function 123 
DCONJG function 123 
DCOS function 119 
DCOSH function 120 
DCOTAN function 120 
DDIM function 122 
debug facility 1.31-137 
DEBUG statement 135 
DEFINE FILE statement 71 

in asynchronous I/O 145 6 147 
DERF function 121 
DERFC function 121 
DEXP function 118 
DFLOAT function 122 
DGAMMA function 122 
DIM function 122 
DIlf~G function 123 
DIMENSION statement 81 

object-time dimeNsions 109 
DINT function 121 
direct-access input/output 
statements 71-78 

programming considerations 73 
DISPLAY statement 135 
DLGAMA function 122 
DLOG function 118 
DLOG10 function 118 
D~ffiXl function 121 
DMINl function 121 
DMOD function 122 
DO loops 162,43 
DO statement 42-46 

implied 50 
programming considerations 44 

DO variable 42,162 
double precision number (see real numbers) 
DOUBLE PRECISION statement 86,81 

166 

DREAL function 
DSIGN function 
DSIN function 
DSINH function 
DSQRT function 
DTAN function 
DTANH function 
dummy arguments 

defined 162 

123 
122 

119 
120 
118 

120 
120 

97 0 101 

enclosed in slashes 105 
in a FUNCTION or SUBROUTINE 

subprogram 104 
DUMP subprogram 124 
DVCHK subprogram 124 

E format code 60-61 
elements of the language 13 
embedded blanks 14 
END FILE statement 69,144 
end-of-card/line condition 159-160 
END parameter in READ -

asynchronous 144 
list-directed 157 
sequential 51 

END statement 
in FUNCTION subprogram 100 
in main program 48 
in NAMELIST (&END) 55 

ENTRY statement 105-107 
equivalence groups 92,94 
EQUIVALENCE statement 92 
ERF function 121 
ERFC function 121 
ERR parameter in 

asynchronous 
direct-access 
list-directed 
sequential 51 

READ 
144 

74 
157 

error functions 121 
executable program 162 
executable statement 13,162 
EXIT subprogram 124 
EXP function 118 
explicit specification 

statements 84,22,151 
exponential functions 118 
exp0nentiation 27, 28 
expressions 

ar'i thmetic 25 
defined 25 
logical 29 

extended precision 150-152 
extended range of DO 44,162 
external function 162 
external procedure 162 
EXTERNAL statement 108,153-154 

F format code 60-61 
field descriptors 57 
FIND statement 77 
fix functions 122 
FLOAT function 122 
FORMAT statement 

codes 57,60-67 
form 57 
purpose 58 
use at object time 68 



~! 
I: 
'\ 

formatted READ statement 52 
formatted records 50,162 
formatted WRITE statement 53 
FORTRAN coding form 14 
FORTRAN IV (Gl) 157-160,133 
FORTRAN IV (H Extended) 143-156 
FORTRAN-supplied procedures 117-124 

and EXTERNAL statement 153-154 
function definition 96 
function reference 96 
FUNCTION subprogram 98,162 

G format code 62-63 
G1 Features 157-160 
GAMMA function 122 
GENERIC statement 154-155 
GO TO statement 

assigned 39 
computed 38 
unconditional 37 

group format specification 68 

H Extended 143-160 
H format code 66 
hexadecimal values 

constants 18,162 
transmitting 60 

HFIX function 122 
hierarchy of operations 

arithmetic 27 
defined 162 
logical 31 

hyperbolic functions 120 

I format code 
lABS function 
ID parameter 
IDIM function 
IDINT function 
IF statement 

60 
121 

144-148 
122 

121 

arithmetic 40 
logical 41-42 

IFIX function 122 
I MAG 117 
implicit specification 82-83,22 
IMPLICIT statement 82-83,151 
implied DO 50 w162 
INIT option of DEBUG 133 
input/output statements 

asynchronous 143-150 
direct-access 71-78 
FORMAT 57-69 
FORTRAN II 115-116 
list-directed 157-160 
miscellaneous 69-70 
NAMELIST 54-56 
sequential 49-56,144 

INT function 121 
INTEGER statement 84 
integers 

constants 15,162 
I format code 60 
length specification 82 
magnitude 15 
type specification 84 
use in arithmetic assignment 
statements 33 

I/O list 
asynchronous 144-149 
defined 49,162 
omitted 58 

IQINT function 121 
ISIGN function 122 

L format code 65 
labeled common 88,163 
language elements 13 
length specification 21,163 
LGAMMA 122 
library subprograms 117-123 
list-directed input/output 157-160 
literal data 66,21 
literals 

constants 18,163 
data in FORMAT statements 66 

LOG 118 
LOG 1 0 118 
log-'gamma functions 122 
logical assignment statements 33 
logical expressions 29,163 
logLcal IF statement 41-42 
logical operators 30,163 
logical primary 163 
LOGICAL statement 84 
logical values 

constants 17,163 
type specification 84 
use in arithmetic assignment 
statements 33 

use in logical expressions 29 
logical variables 21 
loop control 42 
looping 43,163 

main program 163 
mathematical subprograms 117-123 
maximum value functions 121 
MAX 121 
MAXO function 121 
MAXl function 121 
minimum value functions 121 
MIN 121 
MINO function 121 
MINl function 121 
mixed-mode expressions 35 
MOD function 122 
mode (see type) 
modular arithmetic functions 122 

name 163 
(see also variables) 

NAMELIST statement 54 
natural logarithm 118 
nesting 

DO loops 44,163 
g~oup format specifications 59 

nonexecutable statemeaat, 163 
null items 159-160 
NUM parameter 148 
numeric character 163 
nume~ic constant 163 
numeric format codes 60-64 

Index 167 



object-time dimensions 109 
object-time format 68 
operators 

arithmetic 26 
logical 30 
order of computation 27 
relational 31 

order 
of arithmetic computation 27 
of common blocks 89 
of equivalence groups 92 
of logical expression computation 31 
of source program statements 14 

OVERFL subprogram 124 

P scale factor 64,152,164 
parentheses 

in arithmetic expressions 27 
in logical expressions 32 
in FORMAT statement 57,59 

PAUSE statement 47 
PDUMP subprogram 124 
positive difference functions 122 
predefined specifications 82,22,163 
primary 

arithmetic 26 
logical 29 

PRINT statement 116 
printer control characters 58 
procedure subprogram 163 
program unit 14, 163 
PUNCH statement 115 

Q format code 152,160 
QABS function 121 
QARCOS function 119 
QARSIN function 119 
QATAN function 119 
QATAN2 function 119 
QCMPLX function 123 
QCONJG function 123 
QCOS function 119 
QCOSH function 120 
QCOTAN function 120 
QDIM function 122 
QERF function 121 
QERFC function 121 
QEXP function 118 
QEXT fun~tion 123 
QEXTD function 123 
QFLOAT function 122 
QIMAG function 123 
QINT function 121 
QLOG function 118 
QLOG10 function 118 
QMAXl function 121 
QMIN1 function 121 
QMOD function 122 
QREAL function 123 
QSIGN function 122 
QSIN function 119 
QSINH function 120 
QSQRT function 118 
QTAN function 120 
QTANH function 120 

168 

range of DO 42-44,163 
READ statement 

asynchronous 144-146 
direct-access 74 
list-directed 157-158 
sequential 51,115 

-REAL function 123 
real numbers 

constants 16,163 
extended precision 150-152 
in D, E, and F format codes 60-61 
length specification 82 
magnitude 16 
precision 16 
type specification 83 
use in arithmetic assignment 
statements 33 

REAL statement 84,151 
receipt by location 105 
receipt by value 105 
receiving areas 144-149 
record number 71 
records 

formatted 50 
length 72 
unformatted 50 

relational expressions 32,163 
relational operators 29,164 
repetition factor 79-80.159-160 
RETURN statement 

in FUNCTION SUbprogram 100 
in main program 103 
in SUBROUTINE subprogram 103 

REWIND statement 69 0 144 

sample programs 125-130 
scale factor 64,152~164 
sequential input/output 51-56,144 
service subprograms 124 
SIGN function 122 
sign transfer functions 122 
SIN function 119 
SINH function 120 
size specification, array 24 
slashes 

asynchronous I/O list 146 
in CALL statement 105 
in COMMON statement 89 
in FORMAT statement 58 
in FUNCTION statement 98 
in list-directed input list 159-160 
in NAMELIST statement 54 
in SUBROUTINE statement 101 

SLITE subprogram 124 
SLITET subprogram 124 
SNGL function 122 
SNGLQ function 122 
source p~ogram characters 113 
special characters 113 
specification statements 81-94.,164 
specification subprogram 164 
SQRT function 118 
square· root functions 1~8 



statements 
categories 13 
defined 164 
function definitions 96~164 
numbers 14,164 
order 14 
source 13 

STOP statement 48 
storage locations (bytes) 82 

for literals 18 
SUBCHK debug option 133 
subprogram statements 95 
subprograms 

arguments 103 
BLOCK DATA 111-112 
defined 164 
FUNCTION 98 
general 95-112 
multiple entry 105 
naming 95 

SUBROUTINE subprogram 101-104,164 
subscript quantity 164 
subscripts 23-24,164 

in asynchronous I/O lists ~45-149 
SUBTRACE debug option 133 
symbolic names 19-20 

T format code 67 
TAN function 120 
TANH function 120 
termination of program 48,102 
TRACE OFF statement 134 
TRACE ON statement 134 
TRACE debug option 133 
transfer of sign functions 122 
transmitting area 146-149 
trigonometric functions 119-120 
truncation functions 121 
truth values 18,30 

type specification 
defined 164 
of arithmetic expressions 28 
of arrays 23,82-86 
of FUNCTION subprogram 95,82-86 
of statement function 
definitions 95,82-86 

of variables 21,82-86 
type statements 81-86 

unary operators 27 
unconditional GO TO 37 
unfonmatted READ statement 52 
unformatted records 50,r64 
unformatted WRITE statement 54 
UNIT debug option 133 

variable format statements 68 
variables 

arrangement in common 90 
arrangement in equivalence groups 
defined 164 
general 20 
length specification 21 
names 21 
type specification 21,82-86 

VSPC FORTRAN 157-160 

WAIT statement 148-149,143-144 
WRITE statement 

asynchronous 
direct-access 
list-directed 
sequential 53 

X format code 67 

Z format code 62 

146-147 
76-77 
158 

94 

Index 169 



GC28-6515-11 

==-= =® - - ------- - ---- -- ----------_.-

en -w 
0') 
o 
~ 
en -w ...... 
o 
II 
o 
:II 
-I 
:II » 
Z 

< 
r 
Q) 

:J cp 



( 

TITLE: 

READER'S COMMENTS 

I 8M System/360 & System/370 
FORTRAN IV Language 

ORDER NO. GC28-6515-11 

Your comments assist us in improving the usefulness of our pUblications; they are an important part 
of the input used in preparing updates to the publications. All comments and suggestions become 
the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM Branch Office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

Please include your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC28-6515-11 

fold 

Attention: PUBLICATIONS 

II "I 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

IBM CORPORATION 
1271 Avenue of the Ameri cas 
New York, New York 10020 

NO POSTAGE 
NECESSARY 
IF MAILED 

fold 

IN THE 
UNITED STATES 

· () · = · ~ 
:~ 
• 0 • ::s .(Jq 

: ~, · .... " 
• !'I' · .. : ~, 

i1 
o 
:0 
-I 

.:0 
» 

·z 
< 
r
Q) 
::3 
t? 

""'tJ 
~ . ........•...........................................••............•...... ~ ......................................•..... ~: ;a 

fold 

==-= =® - - ---- ---- - ---- - - ----------_.-

• (I) 

fold : ~ 
• ::3 

·c en 
?> 

:' G) 
(") 
"-l 
co a, 
(J1 -C!' -



( "1 

{ 

READER'S COMMENTS 

TITLE: IBM System/360 & System/370 
FORTRAN IV Language 

ORDER NO. GC28-6515-11 

Your comments assist us in improving the usefulness of our publications; they are an important part 
of the input used in preparing updates to the publications. All comments and suggestions become 
the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM Branch Office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

Please include your na~ and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC28-6515-11 

fold 

Attention: PUBLICATIONS 

I II 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL·BE PAID BY ADDRESSEE: 

IBM CORPORATION 
1271 Avenue of the Americas 
New York, New York 10020 

NO POSTAGE 
NECESSARY 
IF MAILED 

fold 

IN THE 
UNITED STATES 

· ~ · ,:: 
• C'+ :e. 
• 0 :J& 
:~ 
• {t.. · ,. 
: (D 

"'tI 
~ . 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ~ • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • ..: ::J 
S 

fold 

'.;[. 

. " 

'.:, :"<,J~; '~ .'. 
, ' .. :, "'~ ' .... ,1,1fII 

=~::. =® - ----- ---- -... _ ...... -- - - ----------- - ... -

fold 
Q. 

• ::J 

• ~C 
en 
?> 
G) 
(') 

."-l 
'00 
·en 

01 
~ 

• . Cf · ~ : ~ 

:--· 


