GC28-6515-11

IBM System/360
, and System/370
Systems FORTRAN IV Language

Twelfth Edition (September 1983)

This is a reprint of GC28-6515-10 incorporating changes released in the following Technical
Newsletters: ’

GN26-0805 (dated 30 April 1976)
GN26-0891 (dated 18 March 1977)
GN26-0987 (dated 01 February 1981)
GN26-0999 (dated 03 June 1981)

This edition documents the capabilities of the IBM System/360 and System/370 FCRTRAN
IV Language. The changes for this edition are summarized under “Summary of Amendments”
following the preface.

Changes are periodically made to the information herein; before using this publication in
connection with the operation of IBM Systems, consult the latest IBM System/370 and 4300
Processors Bibliography, GC20-0001, or IBM System/360 Bibliography, GC20-0360, for the
editions that are applicable and current.

‘ References in this publication to IBM products, programs, or services do not imply that IBM
intends to make these available in all countries in which IBM operates.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your locality.

A form for readers’ comments has been provided at the back of this publication. If the form
has been removed, address comments to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California 95150. IBM may use or distribute whatever information
you supply in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines 1965, 1966, 1968, 1971, 1972, 1973, 1974

PREFACE

This publication describes the IBM System/360 and System/370 FORTRAN
IV language. It is intended to be used as a reference manual by persons
writing programs in the FORTRAN IV language. A reader should have some
knowledge of FORTRAN before using this publication. A useful source for
this information is the set of programmed instruction texts, FORTRAN IV
for IBM System/360 and System/370, Order Nos. SR29-0081, SR29-008%,
SR29-0085, SR29-0886, and SR29-0087.

The material in this publication is arranged to provide a quick
definition and syntactical reference to the various elements of the
language. In addition, sufficient text dgscr%bing each element, with
appropriate examples as to possible use, is given.

Appendixes contain additional information useful in writing a
FORTRAN IV program. This information consists of a table of source
program characters; a list of other FORTRAN statements accepted by
FORTRAN IV; a list of FORTRAN-supplied mathematical and service sub-
programs; lists of differences between FORTRAN IV and Basic FORTRAN IV
and between FORTRAN IV and ANS FORTRAN; sample programs; extensions
to the FORTRAN IV language supported by the FORTRAN IV (H Extended),
FORTRAN IV (G1), and Code and Go FORTRAN and VSPC FORTRAN compilers,
and a glossary.

Information pertaining to the FORTRAN IV libraries, compiler
restrictions, and programming considerations, will be found in the
System Reference Library publication for the respective library or
compiler. A list of such publications is contained in the appropriate
bibliography, IBM System/370 and 4300 Processors Bibliography,

Order No. GC20-000T1, IBM System/360 Bibliography, Order No. GC20-0360,
or the General Information manual for the program product.

This manual is to be used for the 1966 level of the FORTRAN
language. It is not valid for the 1978 level of the VS FORTRAN
language. Readers who wish to write programs to the 1978 level should
use the VS FORTRAN Application Programming: Language Reference,
GC26-3986.

If, however, this book is revised, a summary of amendments will
pe included with the TNL or complete revision. It will be inserted
immediately following the preface and will highlight the changes made.

Summary of Amendments Number 6

Date of Publication: 3 June 1981
Form of Publication: TNL GN26-0999 to GC28-6515-10

Miscellaneous Changes

Unsigned constant has been clarified.

Real constant precision has been corrected.

Summary of Amendments Number 5

Date of Publication: 1 February 1981
Form of Publication: TNL GN26-0987 to GC28-6515-10

Statements in the Preface and Introduction to make it clear that the manual is not
applicable to writing VS FORTRAN programs to the 1978 level of FEORTRAN.

Miscellaneous Changes

Clarification of the Arithmetic and Logical Assignment precision rules, with an
additional example.

Clarification of the FORMAT statement.
Replacement for Example 1 of the DATA Initialization statement.

Addition to List-Directed Input Data, indicating the use of a comma when skipping
the first item,

Editorial changes of no technical significance are not noted here.

Technical changes to the text of this publication are indicated by a vertical bar to the left of the text.

L

B

Summary of Amendments Number 4

Date of Publication: March 18, 1977

Form of Publication: TNL GN26-0891 to GC28-6515-10

Miscellaneous Changes

Maintenance: Documentation Only
Shadings to indicate IBM extensions to ANS FORTRAN have been corrected.
The description of real constants has been clarified.

An example has been added to the section on Arithmetic and Logical Assignment
Statements.

The description of the various forms of the FORMAT statement has been clarified.

The description of the dummy arguments in a function or subroutine subprogram
has been clarified.

The description of multiple entries into a subprogram has been clarified.

Table 5, Service Subroutines, has been corrected.

Summary of Amendments Number 3

Date of Publication: April 30, 1976
Form of Publication: TNL GN26-0805 to GC28-6515-10

VSPC FORTRAN Compiler Support

New: Programming and Documentation

VSPC FORTRAN has been added to the Mathematical Function Table to indicate
supported functions.

VSPC FORTRAN has been added to Appendix I to indicate its support of the
features described therein.

A new service subroutine (OPSYS) for VSPC FORTRAN has been added to the

Service Subroutine Table. A note has been added to this table to indicate service
subroutines not supported by VSPC FORTRAN.

Miscellaneous Changes

New: Documentation Only
Errors in the indications of IBM extensions to ANS FORTRAN have been corrected.
Changes have been made to the examples of the NAMELIST Output Data listing,
the Statement Function definitions, and the DATA and FUNCTION SUBPROGRAM

Statements.

Clarification of which entities become undefined upon exit has been added to the
general discussion of FUNCTION and SUBROUTINE subprograms.

The indication of the use of T and F for .TRUE. and .FALSE. has been removed
from the DATA statement example explanation.

The rule for locating NAMELIST input data has been explained.

Clarifying information has been added to the discussion about declaring size and
type of arrays.

A statement warning against embedding one program unit within another program
unit has been added to the discussion about coding FORTRAN statements.

Summary of Amendments Number 2

Date of Publication: May 15, 1974
Form of Publication: Revision, GC28-6515-10
Miscellaneous Changes

New: Documentation Only

Certain errors in the shading of IBM extensions to ANS FORTRAN have been
corrected.

The discussion of FORTRAN IV statement coding has been clarified.
The explanation of literal constant restrictions has been clarified.

The maximum number of dimensions permitted when declaring the size of an array
is three in ANS FORTRAN and seven in FORTRAN IV.

* The restriction that the second part of a logical IF statement may not have a statement
number has been explicitly stated in the description of its general form.

An explanation of the effect of a sequential WRITE or END FILE statement has
been added.

The illustration of NAMELIST output has been revised to show the correct type of
output. ’

The P scale factor output example has been revised.
The discussion of sharing associated variables has been revised.

The restriction on repeating specification statement information has been explicitly
stated.

The explanation of the COMMON statement example has been revised.

The explanation of the effect of the RETURN statement on storage entities in
subprograms has been revised.

The description of the DISPLAY statement list has been revised.

An example of an invalid statement function reference has been added.

The mathematical function tables in Appendix C have been revised and clarified.

Editorial changes of no technical significance are not noted here.

Technical changes to the text of this publication are indicated by a vertical bar to the left of the text.

Summary of Amendments Number 1

Date of Publication: March 31, 1973
Form of Publication: TNL GN28-0610 to GC28-6515-8, -9

Miscellaneous Changes

Maintenance: Documentation Only

Shading indicating IBM extensions to ANS FORTRAN has been corrected.

The description of the order of computation has been changed slightly to reflect
that left to right computation is within a hierarchical level.

The rules governing data types in exponentiation operations have been revised to
indicate that negative operands may not have real exponents.

The examples illustrating integer division have been clarified to better show the
effects of truncation.

The description of the use of subscripts in an implied DO has been clarified to
indicate that unsubscripted array names refer to entire arrays.

The description of the scale factor when used with G formats has been revised to
indicate the range outside which the effect of the scale factor is suspended.

The description of the DATA statement has been revised to indicate that real,
integer, and complex constants may be signed and that storage entities may only be
initialized once.

An explanation of the effect of the RETURN statement on storage entities in
subprograms has been added.

The definition of BLOCK DATA subprograms has been clarified to indicate that
they are not called but only supply initial data values.

The definitions of certain FORTRAN library functions have been updated.
FLOAT has been deleted from the list of GENERIC names for library functions.
The lists of IBM extensions to ANS Basic FORTRAN and ANS FORTRAN have

been revised to include statement numbers as arguments in CALL statements and
asterisks as dummy arguments in SUBROUTINE statements.

Editorial changes of no technical significance are not noted here.

Technical changes to the text of this publication are indicated by a vertical bar to the left of the text.

INTRODUCTION

. -« e e e - . o e e . » * e o« o .

ELEMENTS OF THE LANGUAGE . . ¢ o ¢« o ¢« o o o « o o o o

Statements

Coding FORTRAN Statements . « ¢ o o « « o o ¢ o o o o

Constants . .« .« . . .
Integer Constants .
Real Constants . .
Complex constants .
Logical constants .
Literal Constants .

. o - . * e - . e e . . - - o o .

Hexadecimal Constants . « « ¢ o o« o o 2 o « o o o o o« @

Symkolic Names . . .
Variables
Variable Names . .
Variable Types and
Type Declaration
Type Declaration
Type Declaration
BYTAYS ¢ ¢ o « o o
Subscripts
Ceclaring the Slze

Lengths e . e e e 4 e e e e e e
by the Predeflned Specification . .
by the IMPLICIT Statement

by Explicit Specification Statements

. . . . o o - - « o -

and Type of an AYYAY « « ¢ o« o o o

Arrangement of Arrays in Storage« ¢ 4 ¢ ¢ 4 o

Expressions
Arithmetic Expressi
Arithmetic Operat
Logical Expressions
Relational Expres
Logical Operators

ARITHMETIC AND LOGICA

CONTROL STATEMENTS .
GO TO Statements . .
Uncenditional GO TO
Computed GO TO stat
ASSIGN and Assigned
Additional Control St

@« o e 8 e s e e e e o e s e o e o o
ons e e o e e e e 4 e e s e e e e
ors e e 4 e e e 8 e o e o e e ¢ o o

SIONS 4 4 4 4 4 e e e e e e e e e

I, ASSIGNMENT STATEMENT . . « « .« . .

- . e « e - - e e .« o . - . . « e .

Statement « ¢ ¢ ¢ 4 e e e e e s e .
ement e o e . e o e o e & o o o @
GO TO StatementQ e e o o e e o o
ALEMENTES « ¢ ¢ ¢ ¢ o o o o o o o o

Arithmetic IF Statement . . o ¢ ¢ « o o o o « o o o o
Logical IF Statement . ¢ « o ¢ o ¢ o o o o o o« « o o o

DO Statement . . .
Programming Conside
CONTINUE Statement

PAUSE Statement . .
STOP Statement . .
END Statement . . .

rations in Using a DO LOOP « « « «

INPUT/OUTPUT STATEMENTS ¢ + « ¢ o o o o o o o o o« o o« o =
Sequential Input/Output Statements . « . « « ¢« « « + ¢ &

READ Statement .« .
Formatted READ .,
Unformatted READ

WRITE Statement . .
Formatted WRITE .
Unformatted WRITE

. - e o« a * e . e e -

- - - . e * e - o . -

. « . . . - e o - . « o .

READ and WRITE Using NAMELIST e e 4 e e e e e e e e .
NAMELIST Input Data « « « « ¢ ¢ ¢ ¢ o o o o o o o « o«
NAMELIST Output Data . « ¢ ¢ ¢ ¢ ¢ o o ¢ ¢ ¢ o o o« &

FCRMAT Statement .
Various Forms of
I Format Code . .
D, E, and F Forma

a FORMAT Statement . « « « « o o o &

. o e« - - e o . . « o . . . o .

£ COAES 4 4 4 4 o 4 o o o o o o o o

CONTENTS

7Z Format CoA€ o« o« o o ¢ o s o o o
G Format Code « « «

Fxamples of Numeric Format Codes e o o o
Scale Factor = P .« ¢ o« o « o o o+

L Format Cod€ v« o« « « o o o o o s s o o «
A Format Code ¢« o« o ¢ « o o o o o o o o
B Format code and Literal Data
X Format Code ¢ o o ¢ o o o o o o o o o o
T Format Code « o o o o o o o o o o o o o
Group Format Specification . « . « « « .

Reading Format Specifications at Object Time

END FILE Statement =« « ¢ ¢ ¢ ¢ ¢ o o o o o
REWIND Statement .« « o« ¢ « o ¢ o o o o o o«
BACKSPACE Statement . « ¢ ¢ ¢ o o o o o o @
LCirect~Access Input/Output Statements
DEFINE FILE Statement . . . ¢« ¢« ¢ « o« = .
Direct-Access Programming C3n51derat10ns -
READ Statement .« ¢ « « ¢ o o o o o o o o @
WRITE Statement « « « ¢ o ¢« ¢ o o o o o o @
FIND Statement .« ¢« ¢ ¢ ¢ ¢ o ¢ o o « o o &

CATA INITIALIZATION STATEMENT « « « « « « « =«

SPECIFICATION STATEMENTS . . . « . s o &+ o« o

DIMENSION Statement . . . ¢« ¢ ¢ ¢ ¢ o« « o o
Type Statements « « ¢ ¢ ¢ ¢ ¢ o o o o o o
IMPLICIT Statement .« « « + ¢ o o
Explicit Specification Statements
DOUBLE PRECISION statement . . .
CCMMON Statement .« « ¢ ¢ ¢ o o &
Blank and Labeled COommon
Storage Arrangement of Variables in Common
EQUIVALENCE Statement « « ¢ ¢ ¢ o o o o o o

a o o o o
¢ o s o
.
o o o o
o o o o o

- . . .

Storage Arrangement of Variables in Egquivalence

SUBPROGRAMS &« &+ ¢ ¢ ¢ o o o o o s s o o o o »
Naming Subprograms . « « « ¢« « o o o o o &
FUNCtionS +« ¢ « « o o o o« o o o o o o o o @

Function Definition « . « ¢ ¢« ¢« o« « « « .
Function Reference . . « + ¢ ¢ « o o o« =
Statement Functions . .+ ¢ ¢ ¢ ¢ ¢ 4 e o o e
FUNCTION Subprograms . . e e e e e e s

e o o 4 o

G

RETURN and END statements in a FUNCTION Subprogram . .

SUBROUTINE Subprograms . « « « « « o o« « &
CALL Statement e e e e e e e e

RETURN Statements in a SUBROUTINE Subprogram

Dummy Arguments in a FUNCTION or SUBROUTINE
Multiple Entry into a Subprogram .
EXTERNAL Statement .« « ¢« « « ¢ o
Otject-Time Dimensions
BLOCK DATA Subprograms . « « « o« .

e o o o
¢ s e o
e o o

APPENDIX A: SOURCE PROGRAM CHARACTERS

APPENDIX B: OTHER FORTRAN STATEMENTS ACCEPTED
READ Statement e e o s & o s e e o s e o @
PUNCH Statement « +« o o o o o « o o o o o @
PRINT Statement « « « ¢ ¢ ¢« ¢ o ¢ o o o o

APPENDIX C: FORTRAN-SUPPLIED PROCEDURES . . .

APPENDIX D: SAMPLE PROGRAMS « ¢ ¢ ¢ « « « o o
Sample Program 1 « « « ¢ « « o o o o o o o
Sample Program 2 « « « o o « ¢ o o o o o o @

APPENDIX E: DEBUG FACILITY . .+« « o o o « o o
Programming Considerations « « . .
Debug Facility Statements . . « .« ¢« « « « . .

Subprogram .

. . - - . e e

BY FORTRAN IV

. . - o o - -
. . . o e ¢ e

e 3 e o o

«113

.115
.115
<115
<116

<117

125
.125
. 126

.131
.131
.132

CERUG Specification Statement . . .

AT Debug Packet Identification Statement . . .

TRACE ON Statement . . . « . « . .
TRACE OFF Statement « .« « &
DISPIAY Statement « .« . .
Dekug Packet Programming Examples .

- . - .« .

APPENDIX F: IBM FORTRAN IV FEATURES NOT IN IBM BASIC FORTRAN IV . .

APPENDIX G: IBM FORTRAN IV FEATUREg NOT IN ANS FORTRAN

APPENDIX H: FORTRAN IV (H EXTENDED) FEATURES . .

Asynchronous Input/Output Statements
Asynchronous READ Statement
Asynchronous WRITE Statement . . .
WAIT Statement . « « ¢ « o ¢ ¢ o &

Extended Precision <«
REAL*16 Constants « « + « « « « «
COMPLEX*32 Constants . « « « « « &

QO Format Code ¢« .« ¢« ¢ o .

EXTERNAL Statement Extension . . .

Automatic Function Selection (GENERIC

Statement)

APPENDIX I: H EXTENDED, G1, CODE AND GO, AND VSPC

List-Directed READ Statement
IList-Directed WRITE Statement
List-Directed Input Data
List-Directed Output Data . . . « . .

GLOSSARY & ¢ ¢ ¢ ¢ ¢ « o o o o o o

INDEX ¢« ¢ ¢« ¢ o o o o o o o o o s o =

- - - . - -

. . - . - .

FORTRAN

.133
. 134
.134
. 134
. 135
.135

. 139
<141

<143
.143
.44
.46
L7
.150
. 150
. 151
.152
.153
. 154

. 157
. 157
.158
.159
. 160

.161

.165

ILLUSTRATIONS

FIGURES

Figure 1.
Figure 2.

Sample Program 1 w ¢ v« = o « @ s o =« o o & = « =
Sample Program 2 « « = = o = =« ©« o »« « @ « = =

TABLES

Table 1. Determining the Type and Length of the Result of +
-y ¥, and / Operations .« « « = « « o = - - . - -
Table 2. Determining the Type and Length of the Result of
Logical Operations o « o 2 = o « = a s o = a o« « « = = = <« =
Table 3. Conversion Rules for the Arithmetic Assignment
Statement a=b e B e ® @ % w ® o w @ e w e e @ w e mow s e =
Table 4. Mathematical Functions « « =« =« « = o =« o o = = =
Table 5. Service Subroutines. . . - « - . e emow . -
Table 6. Determining the Type and Length of the Result of +,

@

-125
128

- 35
.118
.124

-, *, and / Operations Used with the FORTRAN IV (H Ext.) Compller 152

’ .

Table 7.

Generic Names for Built-in and Library Functions .

-

«156-

N

INTRODUCTION

IBM System/ 360 and System/370 FORTRAN IV consists of a language, a
library of subprograms, and a compiler.

The FORTRAN IV language is especially useful in writino programs for
applications that involve mathematical ccmputations and other
manipulation of numerical data. The name FORTRAN is an acronvm for
FORmula TRANslator.

Sourcs programs written in the FORTRAN IV language consist of a set
of statements constructed bty the programmer from the language elements
descrikted in this publication.

In a process called compilation, a program called the FORTRAN
compiler analyzes the source program statements and translates them into
a machine language program called the object program, which will be
suitable for execution on IBM System/360 and System/370. 1In addition,
when the FORTRAN compiler detects errors in the sourcs program, it
produces appropriate diagnostic error messages. The FORTRAN IV
programmer's and terminal users' guides contain information about
corpiling and executing FORTRAN programs.

The FORTRAN compiler operates under control of an operating system,
which provideés it with input/output and other services. OJObject programs
generated by the FORTRAN compiler also operate under operating system
control and depend on it for similar services.

The IBM System/360 and System/370 FORTRAN IV language is designed
according to the specifications of the American National Standard (ANS)
FORTRAN, X3.9-1966, as understood and interpreted by IBM as of March
1964. It also contains, as a proper subset, Basic FORTRAN IV. Append-
ixes F and G contain lists of differences between FORTRAN IV and
Basic FORTRAN IV and ANS FORTRAN

If you are writing programs using the 1977 VS FORTRAN language
level, see VS FORTRAN Application Programming: Language Reference,

GC26-3986.

The VS FORTRAN compiler provides for coexistence of old user

source programs by accepting either the current VS FORTRAN language or
the 1966 level of the FORTRAN IV language as a compiler option. The
VS FORTRAN products do not include a language conversion program.

Introduction 11

N

ELEMENTS OF THE LANGUAGE

STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions, constants, and storage areas.
A given FORTRAN statement performs one of three functions:

1. It causes certain operations to be performed (e.g., addition,
multiplication, branching)

2. It specifies the nature 5f the data being handled

3. It specifies the characteristics of the source program

FORTRAN statements usually are composed of certain FORTRAN key words
used in conjunction with the basic elements of the language: constants,
variables, and expressions. The categories of FORTRAN statements are as
follows:

1. Assignment Statements: These statements cause calculations to be
performed. The result replaces the current value of a designated
variable or array element.

2. Control Statements: These statements enable the user to govern the
order of execution of the object program and terminate its
execution.

3. Input/Output Statements: These statements, in addition to
controlling input/output devices, enable the user to transfer data
between internal storage and an input/output medium.

4. FORMAT Statement: This statement is used in conjunction with

certain input/output statements to specify the form in which data
appears in a FORTRAN record on an input/output device.

6. DATA Initialization Statement: This statement is used to assign
initial values to variables and array elements.

7. Specification Statements: These statements are used to declare the
properties of variables, arrays, and f ti
amount of storage reserved) @Hd; i >

8. gtatement Function Definition Statement: This statement specifies
orerations to be performed whenever the statement function name
appears in an executable statement.

9. Subprogram statements: Thess statements enable the user to name
and to specify arguments for functions and subroutines.

Elements of the Language 13

The basic elements of the language are discussed in this section.
The actual FORTRAN statements in which these elements are used are
discussed in following sections. The term program unit refers to a main
program or a subprogram; the term executable statements refers to those
statements in categories 1, 2, and 3, above. An executable program
consists of a main program plus any number of subprograms and/or
external procedures.

The order of statements in a FORTRAN program unit (other than a BLOCK
DATA subprogram) is as follows:

1. Subprogram statement, if any.

2.

3. Other specification statements, if anvy.

4, statement function definitions, if any.
5. Executable statements, at least ons of which must be present.

6. END statement.

No program unit can be embedded in another program unit; that is,
between a program unit's first statement and its END statement, no> other
program unit can occur.

nts may appear anywhere
before the END statement. DATA
follow any specification statements that

The order of statements in BLOCK DATA subprograms is discussed in the
section "BLOCK DATA Subprograms."

CODING FORTRAN STATEMENTS

The statements of a FORTRAN source program can be written on a
standard FORTRAN coding form, Form X28-7327. Each line on the coding
form represents one 80-column card.

comments to explain the program may be written in columns 2 through
80 of a card if the letter C is placed in column 1. The FORTRAN
compiler does not process comments other than to print them as part of
the source program listing. Comments may appear anywhere in the program
except between the cards of a FORTRAN statement that is contained on
more than one card.

FORTRAN statements are written on one or more cards within columns 7
through 72. The first card of a statement may have a statement number
in columns 1 through 5 and must have a blank or zero in column 6. The
statement number, which must not be zero, consists of from 1 to 5
decimal digits. Blanks and leading zeros in a statement number are
ignored. The values of the statement numbers do not affect the order in
which the statements are executed.

14

=1

A FORTRAN statement that is not confined to one card may be continued
onto as many as 19 additional cards. A continuation card has any
character other than a blank or z2ro in column 6. The statement is then
continued within columns 7 through 72. Columns 1 through 5 may contain
any characters, except that the letter C must not appear in column 1.
The characters in columns 1 through 5 are ignored.

Elements of the Language 14.1

—m

Columns 73 through 80 of any FORTRAN card are not significant to the
compiler and may, therefore, be used for program identification,
sequencing, Or any other purpose.

As many blanks as desired may be written in a statement or comment to
improve its readability. They are ignored by the compiler. However,
blanks that are inserted in literal data are retained and treated as
blanks within the data.

CONSTANTS

A constant is a fixed, unvarying quantity. There are ¥ - classes of
constants -- those that specify numbers (numerical constants), those
that specify truth values (logical constants) those that specify
llteral data (literal constants), @i 3

Numerical constants are integer, real, or complex numopers; logical
constants are .TRUE. or .FALSE.; literal constant
alphameric and/or special characters;

An unsigned constanc is a constant with no leading sign. A signed
constant is a constant with a leading plus or minus sign. An optionally
signed constant is a constant that may be either signed or unsigned.
Only integer and real constants may be optionally signed constants, and
may be used as such, except where specified otherwise.

INTEGER CONSTANTS

Definition

Integer Constant - a whole number written without a decimal point.
It occupies four locations of storage (i.e., four bytes).

Maximum Magnitude: 2147483647 (i.e., 231-1).

[e e e e e e)
SRR Y SR

An integer constant may be positive, zero, or negative. If unsigned
and nonzero, it is assumed to be positive. (A zero may be written with
a preceding sign, -which has no effect on the value zero.) Its magnitude
must not be greater than the maximum and it may not contain embedded
commas.

Examples:
valid Integer Constants:
0
91
173
-2147483647

Invalid Integer Constants:

27. (Contains a decimal point)
3145903612 (Exceeds the maximum magnitude)
5,396 (Contains an embedded comma)

Elements of the Language 15

REAL CONSTANTS

Definition

[e e i e et e et e e . . e ot . i o e . e e

Real Constant - has one of three forms:
basic real constant followed by a decimal exponent, or an integer
constant followed by a decimal exponent.

Magnitude - Four or eight locations:
(approx. 10

Precision - Four locations:

Eight locations:

a basic real constant, a

A basic real constant is a string of decimal digits with a
decimal point; it occupies four storage locations (bytes).

A decimal exponent consists of the letter E or the letter D
followed by a signed or unsigned 1- or 2-digit integer constant.
The letter E specifies a constant of length four; the letter D
specifies a constant of length eight (and is required to
obtain a length of eight).

-65 63
0 or 16_,g through 16,5

through 10°'7)

6 hexadecimal digits

(approx. 6 decimal digits)
14 hexadecimal digits

(approx. 15 decimal digits)

A real constant may be positive,

1

|

-~

I

I
]
]
!
!
I
|
l
|
]
|
l
|
]
|
J
]
]
]
|
!
]

zero, or negative (if unsigned and

nonzero, it is assumed to be positive) and must be within the allowable

range.

It may not contain embedded commas.
a preceding sign, which has no effect on the value zero.

A zero may be written with
The decimal

exponent permits the expression of a real constant as the product of a
basic real constant or integer constant times 10 raised to a desired

power.

Examples:

Valid Real Constants (four

+0.

-999.9999

7.0E+0
19761.25E+1

7.E3

7.0E3

7.0E+03

7E-03
21.98753829457168

(i.e.,
(i.e.,

(i.e.,

(i.e.,
(Note:

storage locations):

7.0 x 10° = 7.0)
19761.25 x 101 = 197612.5)

7.0 x 103 = 7000.0)

7.0 x 102 = 0.007)
this level of precision cannot be

accommodated in four storage locations)

Valid Real Constants (eight storage locations):

1234567890123456.D-93

7.9D03
7.9D+03
7.9D+3
7.9D0
7D03

16

(i.e.,

(i.e.,
(i.e.,

(Equivalent to .1234567890123456x10-77)

7.9 x 103 = 7900.0)
7.9 x 10° = 7.9)
7.0 x 103 =.7000.0)

Invalid Real Constants:

1 (Missing a decimal point or a decimal expomnent)
3,471.1 (Embedded comma)
1.E (Missing a 1- or 2-digit integer constant

following the E. Note that it is not
interpreted as 1.0 x 109°)

1.2E+113 (E is followed by a 3-digit integer constant)

23.5D+97 (Magnitude outside the allowable range; that
is, 23.5 x 1097>16°3)

21.3D-90 (Magnitude outside the allowable range; that

is, 21.3 x 1079°<16-°%)

COMPLEX CONSTANTS

Definition

Complex Constant - an ordered pair of signed or unsigned real
constants separated by a comma and enclosed in parentheses. The
first real constant in a complex constant represents the real part
of the complex number; the second represents the imaginary part of
the complex number. Both parts must occupy the same number of
storage locations (either four or eight).

o s e it . e ot G e
b s e s s e it 4D it

The real constants in a complex constant may be positive, zero, or
negative (if unsigned and nonzero, they are assumed to be positive), and
must be within the allowable range. A zero may be written with a
preceding sign, which has no effect on the value zero.

Examples:
Valid Complex Constants

(3.2,-1.86) (Has the value 3.2 - 1.861)
(-5.0E+03,.16E+02) (Has the value -5000. + 16.0i)

L
Where i =\/-1
Invalid Complex Constants:

(292704,1.697) (The real part is not a valid real constant)
(.003E4,.005D6) (The parts differ in length)

LOGICAL CONSTANTS

1
Definition |

[3

|

t

| Logical Constant - a constant that specifies a logical value "true"

| or "false."™ There are two logical constants:
]

]

|

|

L

-FALSE.
Each occupies four storage locations. The words TRUE and FALSE must |

1
i
.TRUE. |
i
be preceded and followed by periods. |

J

Elements of the Language 17

The logical constant .TRUE. or .FALSE. when assigned to a logical
variable specifies that the value of the logical variable is true or
false, respectively. (See the section "Logical Expressions.™)

LITERAL CONSTANTS

r -
| Definition i
L 3
I)|
] Literal Constant - a string of characters of alphabetic, numeric,]
| and/or special characters (see Appendix A), delimited as follows: 1
I |
} 1. g
| 2. The string can be preceded by wH where w is the number of 1
] characters in the string. |
L J

Each character requires one byte of storage. The number of
characters in the string, including blanks, may not be less than 1 or
greater than 255.) ‘

- If wH

L

precedeslfﬁe lltéral,‘a single époétrophé within the literal is
represented by a single apostrophe.

ed only in the arg

t list of a CALL statement

or in FORMAT

Examples:
24H INPUT/OUTPUT AREA NO. 2

SHDON'T

18

SYMBOLIC NAMES

Definition

L T p———

Symbolic Name - from 1 through 6 alphabetic (A,B,...,Z,ﬁ? Oor numeric

{(0,1,...,9) characters, the first of which must be alphabetic.

Elements of the Language

19

Symbolic names are used in a program unit to identify elements in the
following classes:

e An array and the elements of that array (see "Arrays")
¢ A variable (see "Variables")

¢ A statement function (see "Statement Functions")

¢ An intrinsic function (see Appendix C)

e A FUNCTION subprogram (see "FUNCTION Subprograms®)

® A SUBROUTINE subprogram (see "SUBROUTINE Subprograms")

¢ A common-block name (see "BLOCK DATA Subprogram")

e An external procedure name that cannot be classified in that program
unit as either a SUBROUTINE or FUNCTION subprogram name (see
"EXTERNAL Statement")

Symbolic names must be unique within a class in a program unit and
can identify elements of only one class with the following exceptions.

A common-block name can also be an array, variable, or statement
function name in a program unit.

A FUNCTION subprogram name must also be a variable name in the
FUNCTION subprogram.

Once a symbolic name is used as a FUNCTION subprogram name, a
SUBROUTINE subprogram name, a block name, or an external procedure name
in any unit of an executable program, no other program unit of that
executable program can use that name to identify an entity of these
classes in any other way.

VARIABLES

A FORTRAN variable is a data item, identified by a symbolic name,
that occupies a storage area. The value specified by the name is always
the current value stored in the area.

For example, in the statement

A = 5.0+B
both A and B are variables. The value of B has been determined by some
previously executed statement. The value of A is calculated when this
statement is executed and depends on the previously calculated value of
B.

Before a variable has been assigned a value its contents are

undefined, and the variable may not be referred to except to assign it a
value.

20

VARIABLE NAMES

FORTRAN variable names must follow the rules governing symbolic
names. The use of meaningful variable names can serve as an aid in
documenting a program.

Examples:

Valid variable Names:

B292S
RATE

Invalid Variable Names:

B292704 {Contains more than six characters)
4ARRAY (First character is not alphabetic)
SI.X (Contains a special character)

VARIABLE TYPES AND LENGTHS

The type of a variable corresponds to the type of data the variable
represents. Thus, an integer variable represents integer data, a real
variable represents real data, etc. There is no variable type
associated with literal g¢ ' data. These types of data are

identified by a name of one of the other types.

A programmer may declare the type of a variable by using the
following:

o Predefined specification contained in the FORTRAN language

e Explicit specification statements

An explicit specification statement overrides
the predefined specification.

Elements of the Language 21

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

1. If the first character of the variable name is I, J, K,

. L, M, or N,
the variable is integer of length 4.

2. If the first character of the variable name is any other alphabetic
character, the variable is real of length 4.

This convention is the traditional FORTRAN method of implicitly

specifying the type of a variable as being either integer or real In

all examples that follow in this publication it is presumed that this
specification applies unless otherwise noted. Variables defined with
this convention are of standard length

Type Declaration by Explicit Specification Statements

Explicit specification statements differ from the first two ways of
specifying the type of a varialile, in that an explicit specification
statement declares the type of a particular variable by its name rather
than as a group of variable names beginning with a particular letter.

2 explicit specification
statement declared that the variable named ITEM 1s comp

letters J through N are specified as integer by the predefined
convention.

The explicit specification statements are discussed in greater detail
in the section "Specification Statements."

22

ARRAYS

A FORTRAN array is a set of data items identified by a symbolic name,
called the array name. The data items which the array comprises are
called array elements. A particular element in the array is identified
by the array name and its position in the array (e.g., first element,
third element, seventh element, etc.).

Consider the array named NEXT, which consists of five elements, each
currently representing the following values: 273, 41, 8976, 59, and 2.
Fach element in this array consists of the name of the array (i.e.,
NEXT) immediately followed by a number enclosed in parentheses, called a
subscript.

NEXT(1) contains 273
NEXT (2) contains 41
NEXT(3) contains 8976
NEXT(4) contains 59
NEXT(5) contains 2

The array elsment NEXT(I) refers to the "Ith" element in the array,
where I is an integer variable that may assume a value of 1, 2, 3, 4, or
5.

To refer to any element in an array, the array name plus a
parenthesized subscript must be used. In particular, the array name
alone does not represent the first element.

Before an array element has been assigned a value its contents are
undefined, and the array element may not be referred to except to assign
it a value.

The following array named LIST is described by two subscript

quantities, the first ranging from 1 through 5, the second from 1
through 3:

Column 1 Column 2 Column 3

Row 1 82 4 7
Row_ 2 12 13 14
Row_ 3 91 1 31
Row 5 24 16 10
Row 5 2 8 2

The element in row 2, column 3 would be referred to as LIST (2,3),
and has the value 14. oOrdinary mathematical notation might use LIST +to
rerresent any element of the array LIST. In FORTRAN, this 1is written as
LIST(I,J), where I equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3.

SUBSCRIPTS

A subscript is an integer subscript quantity, or a set of integer
subscript quantities separated by commas, that is associated with an
array name to identify a particular element of the array. The number of
subscript quantities in any subscript must be the same as the number of
dimensions of the array with whose name the subscript is associated. A
sukscript is enclosed in parenthe es and is written immediately after
the array name. A maximum of §é subscript quantities (three in ANS
FORTRAN) can appear in a subscript.

Elements of the Language 23

The following rules apply to the construction of subscript
quantities. (See the section "Expressions" for additional information
about the terms used below.)

5. The evaluated result of a subscript quantity should always be
greater than zero.

Examples:
Valid Array Elements:
ARRAY (IHOLD)

NEXT (19)
MATRIX (I-5)

Invalid Array Elements:

ARRAY (-5) (A subscript guantity cannot be negative.)

LOT (0) (A subscript quantity cannot be zero.)

ALL (. TRUE.) (A subscript quantity cannot be of a logical
type.)

NXT (14(1.3,2.0)) (A subscript quantity cannot be of a complex
type.)

DECLARING THE SIZE AND TYPE OF AN ARRAY

The size (number of elements) of an array is declared by specifying
in a subscript declarator the number of dimensions in the array, and the
size of each dimension. Each dimension is represented by an integer
constant or integer variable. A maximum of . dimensions (three in
ANS FORTRAN) is permitted. The size of each dimension is equal to the
value of its respective constant or variable.

Size information must be given for all arrays in a FORTRAN program SO
that an appropriate amount of storage may be reserved. Declaration of
this information is made by a DIMENSION statement, a COMMON statement,
or by one of the explicit specification statements; these statements are
discussed in detail in the sectjon "Specification Statements." The type
of an array name is determined by the conventions for specifying the
type of a variable name. Each element of an array is of the type
specified for the array name.

24

ARRANGEMENT OF ARRAYS IN STORAGE

An array is stored in ascending storage locations, with the value of
the first of its subscript quantities increasing most rapidly and the
value of the last increasing least rapidly.

For example, the array named A, described by one subscript quantity
which varies from 1 to 5, appears in storage as follows:

A1) A(2) A(3) AW A(S5)
The array named B, described by two subscript quantities with the
first subscript quantity varying from 1 to 5, and the second varying

from 1 to 3, appears in ascending storage locations in the following
order:

B(1,1) B(2,1) B(3,1) B(4,1) B(5,1)——
3

T
L->B(1,2) B(2,2) B(3,2) B(4,2) B(5,2)-—

J

r
t->B(1,3) B(2,3) B(3,3) B(4,3) B(5,3)

Note that B(1,2) and B(1,3) follow in storage B(5,1) and B(5,2),
respectively.

The following list is the order of an array named C, described by
three subscript quantities with the first varying from 1 to 3, the
second varying from 1 to 2, and the third varying from 1 to 3:

c(,1,1) c(2,1,1) ¢c(@3,1,1) C1,2,1) C(2,2,1) C(3,2,1)-—
1

r
L->c(,1,2) c€(2,1,2) c(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)~—

4

.
L->c(,1,3) C(2,1,3) c(3,1,3) Cc(1,2,3) C(2,2,3) c(3,2,3)

Note that C(1,1,2) and C(1,1,3) follow in storage C(3,2,1) and
c(3,2,2), respectively.

EXPRESSIONS

FORTRAN IV provides two kinds of expressions: arithmetic and logi-
cal. The value of an arithmetic expression is always a number whose
type is integer, real, or complex. The value of a logical expression is
always a truth value: +true or false. Expressions may appear in
assignment statements and in certain control statements.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary, which may
be a single constant, variable, array element, function reference, or
another expression enclosed in parentheses. The primary may be either
integer, real, or complex.

Elements of the Language 25

In an expression consisting of a single primary, the type of the
primary is the type of the expression.

Examples:
Primary Type of Primary Type of Expression
3 : Integer constant Integer of length 4
A Real variable Real of length 4
3.14D3 Real constant Real of length 8
(2.0,5.7) Complex constant Complex of length 8
SIN(X) Real function reference Real of length 4
(A*B+C) © Parenthesized real Real of length 4

expression

Arithmetic Operators

More complicated arithmetic expressions containing two or more
primaries may be formed by using arithmetic operators that express the
computation(s) to be performed.

The arithmetic operators are as follows:

Arithmetic Operator Definition
* % Exponentiation
* Multiplication
/ Division
+ Addition
- Subtraction

RULES FOR _CONSTRUCTING ARITHMETIC EXPRESSIONS: The following are the
rules for constructing arithmetic expressions that contain arithmetic
operators:

1. B2ll desired computations must be specified explicitly. That is, if
more than one primary appears in an arithmetic expression, they
must be separated from one another by an arithmetic operator. For
example, the two variables A and B will not be multiplied if
written:

AB

In fact, AB is regarded as a single variable with a two-letter
name.

If multiplication is desired, the expression must be written as
follows:

A*B or B*A

2. No two arithmetic operators may appear consecutively in the same
expression. For example, the following expressions are invalid:

A*/B and A*-B
The expression A*-B could be written correctly as
A*(-B)

In effect, -B will be evaluated first and then A will be multiplied
with it. (For further uses of parentheses, see rule 3.)

26

pr===

3. Order of Computation: Computation is performed accordi
hierarchy of operations shown in the following list. &
i o o " o Fa o

s

Operation Hierarchy
Evaluation of functions 1st :
Exponentiation (*%*) . 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and =) 4th

This hierarchy is used to determine which of two sequential
operations is performed first. If the first operator is higher
than or equal to the second, the first operation is performed. 1If
not, the second operator is compared to the third, etc. When the
end of the expression is encountered, all of the remaining
operations are performed in reverse order.

For example, in the expression A*B+C*D**I, the operations are
performed in the following order:

1. A*B Call the result X (multiplication) (X+C*D**T)
2. D**I Call the result Y (exponentiation) (X+C*Y)

3. Cx*Y Call the result Z (multiplication) (X+27)

4. X+%Z Final operation (addition)

A unary plus or minus has the same hierarchy as a plus or minus in
addition or subtraction. Thus,

A=-B is treated as A=0-B

A=-B*C is treated as A=-(B*C)

A=-B+C is treated as A=(-B)+C
Parentheses may be used in arithmetic expressions, as in algebra,
to specify the order in which the arithmetic operations are to be
performed. Where parentheses are used, the expression within the
parentheses is evaluated before the result is used. This is
equivalent to the definition above, since a parenthesized
expression is a primary.
For example, the following expression:

B/ ((A-B) *C) +A**2

is effectively evaluated in the following order:

1. A-B Call the result W B/ (WC) +A*%2
2. W*xC Call the result X B/X+A**2

3. B/X Call the result Y Y+A*%%2

4, A**2 Call the result 2 Y+2

5. Y+Z Final operation

Elements of the Language 27

Table 1. Determining the Type and Length of the Result of +, -, *, and
/ Operations

!
|
|
|First
|Operand

INTEGER

)

I

|

L

L)

| REAL

| W)

L

T

| REAL

| (8)

[

L)

] COMPLEX Complex
] (8) (8)

4. The type and length of the result of an operation depends upon the
type and length of the two operands (primaries) involved in the
operation. Table 1 shows the type and length of the result of the
operations +, -, *, and /.

5. A REAL*4 or REAL*8 operand may have an INTEGER*4,

REAL*4, or REAL*8 exponent. An 3 INTEGER*4 operand may

have an _INTEGER* 4, REAL# REALXB exponent. However,

a negative operand (either REAL or INTEGER) may not have a REAL

exponent. The exponent of a complex operand must be an integer

value. No other combinations are allowed. The type of the result
depends upon the types of the two operands involved, as shown in

Table 1. , v " W s ,

28

6. When division is performed using two integers, any remainder is
truncated (without rounding) and an integer answer is given. The
sign is determined normally.

Examples:
I J I/3
9 2 4
-5 2 -2
1 -4 0

LOGICAL EXPRESSIONS

The simplest form of logical expression consists of a single logical
primary. A logical primary can be a logical constant, logical variable,
logical array element, logical function reference, relational
expression, or logical expression enclosed in parentheses. A logical
primary, when evaluated, always has the value true or false.

More complicated logical expressions may be formed by using logical
operators to combine logical primaries.

Relational Expressions

two integer expressions, two real expressions, |

Relational expressions are formed by combining two arithmetic
expressions with a relational operator. The six relational operators,
each of which must be preceded and followed by a period, are as follows:

Relational Operator Definition

.GT. Greater than (>)

.GE. Greater than or equal to (=)
«LT. Less than (<)

.LE. Less than or equal to (X)
.EQ. Equal to (=)

. NE. Not equal to (#)

The relational operators express an arithmetic condition which can be
either true or false. The relational operators may be used to compare

Examples:

Assume that the type of the following variables has been specified as
follows:

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L Logical variable
C Complex variable

Then the following examples illustrate valid and invalid relational
expressions.

Valid Relational Expressions:

«5 .GE. .9%ROOT
E .EQ. 27.3D+05

Elements of the Language 29

Invalid Relational Expressions:

C .GE. (2.7,5.9E3) (Complex quantities may never appear in logical

expressions)

L .EQ. (A+F) (Logical quantities may never be joined by
relational operators)

E**2 _LT 97.1E1l (Missing period immediately after the relational
operator)

.GT. 9 (Missing arithmetic expression before the rela-

tional operator)

Logical Operators

The three logical operators, each of which must be preceded and
followed by a period, are as follows (where A and B represent logical
constants or variables, or expressions containing relational operators):

Logical Operator Use Meaning
.NOT. .NOT.A If A is true, then .NOT.A has the value

false; if A is false, then .NOT.A has
the value true.

«AND. A.AND.B If A and B are both true, then A.AND.B has
the value true; if either A or B or both
are false, then A.AND.B has the value
false.

.OR. A.OR.B If either A or B or both are true, then
A.OR.B has the value true; if both A and
B are false, then A.OR.B has the value
false.

The only valid sequences of two logical operators are .AND..NOT. and
.OR..NOT.; the sequence .NOT..NOT. is invalid.

Only those expressions which, when evaluated, have the value true or
false may be combined with the logical operators to form logical
expressions.

Examples:

Assume that the type of the following variables has been specified as
follows:

Variable Names Type

ROOT, E Real variables

A, I, F Integer variables
L, W Logical variables
C Complex variable

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

30

1\‘M\

valid Logical Expressions:

L .AND. .NOT. (I .GT. F)

.NOT. W .AND. .NOT. L

L .,AND. .NOT. W .OR. I .GT. F

Invalid Logical Expressions:

A .AND. L (A is not a logical expression)
.OR. W (.OR. must be preceded by a logical expression)
NOT. (A .GT. F) (Missing period before the logical operator

- NOT.)

(C .EQ. I) .AND., L (A complex quantity may never be an operand of
a relational operator)

L .AND. .OR. W {The logical operators .AND. and .OR. must
always be separated by a logical expression)
.AND. L (.AND. must be preceded by a logical
expression)

Order of Computations in Logical Expressions: The ordexr in which the
operations are performed is:

Operation Hierarchy
Evaluation of functions 1st (highest)
Exponentiation (*%) 2nd
Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th
Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 5th

.NOT. 6th

<AND. 7th

<-OR. 8th

For example, the expression:

A.GT.D**B.AND..NOT.L.OR.N

is effectively evaluated in the following order:

1. D**3B Call the result W (exponentiation)

2. A.GT.W Call the result X (relational operator)

3. .NOT.L call the result Y (highest logical operator)

4. X.AND.Y Call the result 2z (second highest logical operator)
5. Z.0R.N Final operation

Note: Logical expressions may not require that all parts be evaluated.
Functions within logical expressions may or may not be called. For
example, in the expression A.OR.LGF(.TRUE.), it should not be assumed
that the LGF function is always invoked, since it is not necessary to do
so to evaluate the expression when A has the value true.

Elements of the Language 31

Use of Parentheses in Logical Expressions: Parentheses may be used in
logical expressions to specify the order in which the operations are to
be performed. Where parentheses are used, the expression contained
within the most deeply nested parentheses (that is, the innermost pair
of parentheses) is evaluated first. For example, the logical
expression:

.NOT. ((B.GT.C.OR.K).AND.L)

is evaluated in the following order:

1. B.GT.C Call the result X - NOT. ((X.OR.K).AND.L)
2. ZX.OR.K Call the result Y «NOT. (Y.AND, L)

3. Y.AND.L Call the result 2 » NOT. Z

4., .NOT.Z Final operation

The logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more gquantities.
For example, assume that the values of the logical variables, A and B,
are false and true, respectively. Then the following two expressions
are not equivalent:

-NOT. (A.OR.B)
«NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is
true; but .NOT.(.TRUE.) is the egquivalent of ,FALSE.. Therefore, the
value of the first expression is false.

In the second expression, .NOT.A is evaluated first. The result is
true; but .TRUE..OR.B is the equivalent of .TRUE.. Therefore, the value
of the second expression is true. Note that the value of B is
irrelevant to the result in this example. Thus, if B were a function
reference, it would not have to be evaluated.

Length of a Relational Expression: A relational expression is always
evaluated to a LOGICAL#¥H result.

Results of the various logical operations are shown in Table 2.

Table 2. Determining the Type and Length of the Result of Logical
Operations

Second operand

LOGICAL
)

st ity s aed

First operand

LOGICAL
)

LOGICAL
W)

32

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

General Form

Where: a is a variable or array element.

b is an arithmetic or logical expression.

o S A e et e S e =y
|
|

et et s it e bt i

This FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies replacement rather than
equality. That is, the expression to the right of the equal sign is
evaluated, and the resulting value replaces the current value of the
variable or array element to the left of the equal sign.

If b is a logical expression, a must be a logical variable or array
element. If b is an arithmetic expression, a must be an integer, real,
or complex variable or array element. Table 3 gives the conversion
rules used for placing the evaluated result of arithmetic expression b
into variable a.

The expression is resolved to a single value based on its structure,
contents, and format as entered. Expression evaluation is accomplished
before any reference to the receiving variable or array element occurs.
In order to obtain valid mathematical results, then, the FORTRAN
statements that represent a mathematical calculation must each be
appropriate to the magnitude and precision desired in the final result.
The general rule is that accuracy is maximized when intermediate
calculations are more precise than required by the final result.

Assume that the type of the following data items has been specified
as:

Symbolic Name Type Length Specification
I, d, W Integer variables 4,4,2

A, B, C, D Real variables 4,4,8,8

E Complex variable 8

F(),...,F(5) Real array elements 4

G, H Logical variables 4,4

_Then the following examples illustrate valid arithmetic statements
using constants, variables, and array elements of different types:

Statements Description
A =B The value of A is replaced by the current value of B.
W =238 The value of B is truncated to an integer value, and

this value replaces the value of W.

A=1I The value of I is converted to a real value, and this
result replaces the value of A.

I=1I+1 The value of I is replaced by the value of I + 1.

Arithmetic and Logical Assignment Statement 33

Statements Description

A = C*D The most significant part of the product of C and D
replaces the value of A.

G = .TRUE. The value of G is replaced by the truth value true.

H = .NOT.G If ¢ is true, the value of H is replaced by the truth
value false. If G is false, the value of H is
replaced by the truth value true.

E = (1.0,2.0 The value of the complex variable E is replaced by
the value of the complex constant (1.0,2.0). Note
that the statement E = (A,B), where A and B are
real variables, is invalid. The mathematical
function subprogram CMPLX can be used for this
purpose. See Appendix C.

F(1) = A The value of element 1 of array F is replaced by the
value of A,

(@]
It

99999999.0 A basic real constant occupies only four storage
locations, with a precision of approximately 7.2
decimal digits. Thus, the entered 8-digit basic
real constant (99999999.0) is first truncated to
7.2 decimal digits of accuracy, and it is this
value that replaces the 8-digit real variable (C).
That is, C will not .be exactly equal tco the enter-
ed real constant. However, if the basic real
constant were entered as 99999999.0D0, a full 8
digits of accuracy would result, and the 8-digit
real variable (C) would be exactly equal to the
entered basic real constant.

34

Arithmetic and Logical Assignment Statement

34.1

INTEGER*U

s

T

|
REAL*4 REAL*8 | COMPLEX*8

b s s . i

|Notes:

}1. Assign means transmit the resulting value, without change. If
i the significant digits of the resulting value exceed the speci-
fied length, results are unpredictable. i

2. Real Assign means transmit to a as much precision of the most
icant part of the resulting value as REAL*4 data can

signi

Assign Fix and assign
REAL*4U Float and Assign Real assign
assign
REAL*8 DP float DP float Assign

and assign

contain.

w

. Fix means truncate the fractional portion of the resulting value
and transform to the form of an integer.

and assign

T
|
|
I
|
!
11,
I
I
I
|
I
|

G

|
|
|
|
I
| !
4. Float means transform the resulting value to the form of a REAL*L4 |
| number, retaining in the process as much precision of the value |
| as a REAL*4 number can contain. 1
|5. DP_Float means transform the resulting value to the form of a |
] REAL*8 number. |
|]6. An expression of the form E=(A,B), where E is a complex variable |}
| and A and B are real variables, is invalid. The mathematical }
| function subprogram CMPLX can be wused for this purpose. See |
] Appendix C. |
L J

Arithmetic and Logical Assignment Statement 35

CONTROL STATEMENTS

Normally, FORTRAN statements are executed sequentially. That is,
after one statement has been executed, the statement immediately
following it is executed. This section discusses certain statements
that may be used to alter and control the normal sequence of execution

of statements in the program.

GO TO STATEMENTS

GO TO statements permit transfer of control to an executable
statement specified by number in the GO TO statement. Control may be
transferred either unconditionally or conditionally. The GO TO
statements are:

1. ©Unconditional GO TO statement
2. Computed GO TO statement

3. Assigned GO TO statement

UNCONDITIONAL GO TO STATEMENT

General Form

GO TO XXXXX

Where: xxxxX is the number of an executable statement in the same
program unit.

o e Atn it e e s sy
R Y L

This GO TO statement causes control to be transferred to the
statement specified by the statement number. Every subsequent execution
of this GO TO statement results in a transfer to that same statement.
Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or

executed.

Example:

GO TO 25
io A=B +C

Control Statements 37

Explanation:

In this example, each time the GO TO statement is executed, control
is transferred to statement 25.

COMPUTED GO TO STATEMENT

General Form

GO TO (X1,X20X3se==9Xn)s i]

: Each x is the number of an executable statement in the
program unit containing the GO TO statement.

i is an integer variable (not an array element) which must
be given a value before the GO TO statement is executed.

e e e s e e e e e
=
=3
0]
2]
[

This statement causes control to be transferred to the statement
numbered X3, X2, X3gee.s Or Xpn, depending on whether the current value

Example:

GO TO (25,10,7,10), ITEM
345 ¢ = 7.02

-
-

7 C = E**2+A

25 L =C

I

10 B 21.3E02

Explanation:

In this example, if the value of the 1nteger variable ITEM is 1,
statement 25 will be executed next. If ITE l to 2
statement 10 is executed next, and so on. : -

38

=

ASSIGN AND ASSIGNED GO TO STATEMENTS

General Form

ASSIGN i TO m i

GO TO m, (X1¢X2¢X3s~+-sXn) l

Where: i is the number of an executable statement. It must be one
of the numbers X,,X2,X3¢+-+sXn-

Each x is the number of an executable statement in the
program unit containing the GO TO statement.

m is an integer variable (not an array element) of length 4
which is assigned one of the statement numbers:

510521}_(3" «e¢Xn-

[S G s s, A Bt s s S e A, S, o B, G P

b s e B e gt e

The assigned GO TO statement causes control to be transferred to the
statement numbered X;,X2,X3s---¢0r Xn, depending on whether the current
assignment of m 1S X;,X2¢X3p---¢Or Xn, respectively. For example, in
the statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number
8, then the statement numbered 8 is executed next. If the current
assignment of N is statement number 10, the statement numbered 10 is
executed next. If N is assigned statement number 25, statement 25 is
executed next.

At the time of execution of an assigned GO TO statement, the current
value of m must have been defined to be one of the values Xi, Xa2s+-+¢Xn
by the previous execution of an ASSIGN statement. The value of the
integer variable m is not the integer statement number; ASSIGN 10 TO I
is not the same as I = 10.

Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or
executed.

Example 1:

ASSIGN 50 TO NUMBER
10 GO TO NUMBER, (35, 50, 25, 12, 18)

Explanation:

In Example 1, statement 50 is executed immediately after statement
10.

Ccontrol Statements 39

Example 2:

-

ASSIGN 10 TO ITEM

13 GO0 To ITEM, (8, 12, 25, 50, 10)

10 B=C + D ,
ASSIGN 25 TO ITEM
GO TO 13

25 C = E**2

Explanation:

In Example 2, the first time statement 13 is executed, control is
transferred to statement 10. On the second execution of statement 13,
control is transferred to statement 25.

ADDITIONAL CONTROL STATEMENTS

ARITHMETIC IF STATEMENT

e

General Form

IF (a) X1,X2.Xa

Where: a is an arithmetic expression of any type except complex.

Each x is the number of an executable statement in the

program unit containing the IF statement.

o i i i vt S s i e it sy

The arithmetic IF statement causes control to be transferred to the
statement numbered X;,X2, Or X3 when the value of the arithmetic
expression (a) is less than, equal to, or greater than zero,
respectively.

Any executable statement immediately following this statement should
have a statement number; otherwise it can never be referred to or
executed.

40

Example:

IF (A(J,K)**3-B)10, 4, 30
40 D = C**2

30 C = D**2

10 E = (F*B)/D+1

Explanation:

In this example, if the value of the expression (A(J,K)**3-B) is
negative, the statement numbered 10 is executed next. If the value of
the expression is zero, the statement numbered 4 is executed next. If
the value of the expression is positive, the statement numbered 30 is
executed next.

LOGICAL IF STATEMENT

]

| General Form

F

| IF (a) s

|

| Wwhere: a is any logical expression.

I

| S is any executable statement except a DO statement or
| another logical IF statement. The statement s may not have
| a statement number.

L

The logical IF statement is used to evaluate the logical expression
(a) and to execute or skip statement s depending on whether the value of
the expression is true or false, respectively.

Example 1:

-

IF(A.LE.0.0) GO TO 25

C=D+ E
IF(A.EQ.B) ANSWER = 2.0%A/C
F = G/H

25 W = X*%*3Z

control Statements 41

Explanation:

In the first statement, if the value of the expression is true (i.e.,
A is less than or equal to 0.0), the statement GO TO 25 is executed next
and control is passed to the statement numbered 25. If the value of the
expression is false (i.e., A is greater than 0.0), the statement GO TO
25 is ignored and control is passed to the second statement.

In the third statement, if the value of the expression is true (i.e.,
A is equal to B), the value of ANSWER is replaced by the value of the
expression (2.0*%A/C) and then the fourth statement is executed. If the
value of the expression is false (i.e., A is not equal to B), the value
of ANSWER remains unchanged and the fourth statement is executed next.

Example 2:

Assume that P and Q are logical variables.

IF(P.OR. .NOT.Q)A=B
C = B*x*2

Explanation:

In the first statement, if the value of the expression is true, the
value of A is replaced by the value of B and the second statement is
executed next. If the value of the expression is false, the statement
A = B is skipped and the second statement is executed.

DO STATEMENT

General Form
End of DO Initial Test
Range Variable Value Value Increment
R R N R e R e
bo X i = Mg, Ma, ms

Where: x is the number of an executable statement appearing after
the DO statement in the program unit containing the DO.

i is an integer variable (not an array element) called the

DO variable.

o s ie? i o i ool i s i @RS e

my, Mz, and mi, are either unsigned integer constants
greater than zero or unsigned integer variables (not array
elements) whose value is greater than zero. The value of m4
should not exceed that of m,. m, may not exceed 231-2 in
value. ms is optional; if it is omitted, its value is
assumed to be 1. In this case, the preceding comma must
also be omitted.

- e e s St B, A o G S . . S e, S, . SO S St St e

—_—]

The DO statement is a command to execute, at least once, the
statements that physically follow the DO statement, up to and including
the statement numbered x. These statements are called the range of the

42

DO. The first time the statements in the range of the DO are executed,
i is initialized to the value m,; each succeeding time i is increased by
the value mj;. When, at the end of the iteration, i is equal to the
highest value that does not exceed m,, control passes to the statement
following the statement numbered x. Upon completion of the DO, the DO
variable is undefined and may not be used until assigned a value (e.g.,
in an arithmetic assignment statement).

There are several ways in which looping (repetitively executing the
same statements) may be accomplished when using the FORTRAN language.
For example, assume that a manufacturer carries 1000 different machine
parts in stock. Periodically, he may find it necessary to compute the
amount of each different part presently available. This amount may be
calculated by subtracting the number of each item used, 0UT(I), from the
previous stock on hand, STOCK(I).

Example 1:

I=0

10 I=I+1
STOCK(I)=STOCK(I)- OUT(I)
IF(1-1000) 10,30,30

30 A=B+C

Explanation:

The first, second, and fourth statements required to control the
previously shown loop could be replaced by a single DO statement as
shown in Example 2.

Example 2:

-

DO 25 I = 1,1000
25 STOCK(I) = STOCK(I)-OUT(I)
A = B+C

Explanation:

In Example 2, the DO variable, I, is set to the initial value of 1.
Before the second execution of statement 25, I is increased by the
increment, 1, and statement 25 is again executed. After 1000 executions
of the DO loop, I equals 1000. Since I is now equal to the highest
value that does not exceed the test value, 1000, control passes out of
the DO loop and the third statement is executed next. Note that the DO
variable I is now undefined; its value is not necessarily 1000 oxr 1001.

control Statements 43

Example 3:

DO 25 I=1, 10, 2

J = I+K
25 ARRAY(J) = BRAY(J)
A=PRBR+C

Explanation:

In Example 3, statement 25 is the end of the range of the DO loop.

The DO variable, I, is set to the initial value of 1. Before the second
execution of the DO loop, I is increased by the increment, 2, and the
second and third statements are executed a second time. After the fifth
execution of the DO loop, I equals 9. Since I is now equal to the
highest value that does not exceed the test value, 10, control passes
out of the DO loop and the fourth statement is executed next. Note that
the DO variable I is now undefined; its value is not necessarily 9 or

11.

PROGRAMMING CONSIDERATIONS IN USING A DO LOOP

3.

4y

The indexing parameters of a DO statement (i, my, m>, m3) should
not be changed by a statement within the range of the DO oop.

There may be other DO statements within the range of a DO
statement. All statements in the range of an inner DO must be in
the range of each outer DO. A set of DO statements satisfying this
rule is called a nest of DO's.

Example 1:
DO 50 I =1, 4

A(I) = B(I)**2

DO 50 J=1, 5 Range of
~————— Range of Outer DO
50 c(I,3) = a(I) Inner DO
——d ~red
Example 2:
DO 10 I =L, M
N=1I+EK N
po 15 J =1, 100, 2 Range of
“—]Range of Outer DO
15 TABLE(J, I) = SUM{(J,N)-=1 Inner DO
—~—
10 B(N) = A(N)

A transfer out of the range of any DO loop is permissible at any
time. The DO variable is defined when such a transfer is executed,
and its value is the value it has when the transfer is executed.

The extended range of a DO is defined as those statements that are
executed between the transfer out of the innermost DO of a set of

5.

completely nested DO's and the transfer back into the range of this
innermost DO. In a set of completely nested DO's, the first DO is
not in the range of any other DO, and each succeeding DO is in the
range of every DO which precedes it. The following restrictions
apply:

¢ Transfer into the range of a DO is permitted only if such a
transfer is from the extended range of the DO.

s The extended range of a DO statement must not contain another DO
statement that has an extended range if the second DO is within
the same program unit as the first.

¢ The indexing parameters (i, m,, m,, m3) cannot be changed in the
extended range of the DO. .

Example 3:
DO
DO
DO

Extended
Range

A statement that is the end of the range of more than one DO
statement is within the innermost DO. The statement label of such
a terminal statement may not be used in any GO TO or arithmetic IF
statement that occurs anywhere but in the range of the most deeply
contained DO with that terminal statement.

control Statements 45

Example 4:

DO DO
DOD L DO) .
DO

Explanation:

In the preceding example, the transfers specified by the numbers 1,
2, and 3 are permissible, whereas those specified by 4, 5, 6, and 7
are not.

The indexing parameters (i, my, m>, m3) may be changed by
statements outside the range of the DO statement only if no
transfer is made back into the range of the DO statement that uses
those parameters.

The last statement in the range of a DO loop (statement x) must be
an executable statement. It cannot be a GO TO statement of any
form, or a PAUSE, STOP, RETURN, arithmetic IF statement, another DO
statement, or a logical IF statement containing any of these forms.

The use of, and return from, a subprogram from within any DO loop
in a nest of DO's, or from within an extended range, is permitted.

CONTINUE STATEMENT

General Form

[y ——

CONTINUE

e o achis s

CONTINUE is a statement that may be placed anywhere in the source

program (where an executable statement may appear) without affecting the
sequence of execution. It may be used as the last statement in the
range of a DO in order to avoid ending the DO loop with a GO TO, PAUSE,
STOP, RETURN, arithmetic IF, another DO statement, or a logical IF
statement containing any of these forms.

1

6

Example 1:

DO 30 I =1, 20
7 IF (A(ID)-B(I)) 5,30,30
5 A(I) =A(I) +1.0

B(I) = B(I) -2.0

GO TO 7
30 CONTINUE
Cc = A@3) + B(7)

Explanation:

In Example 1, the CONTINUE statement is used as the last statement in
the range of the DO in order to avoid ending the DO loop with the
statement GO TO 7.

Example 2:

DO 30 I=1,20
IF(A(I)-B(I))5,40,40
5 A(D = c(D
GO TO 30
40 A(I) = 0.0
30 CONTINUE

Explanation:

In Example 2, the CONTINUE statement provides a branch point enabling
the programmer to bypass the execution of statement Uu0.

PAUSE STATEMENT

General Form

.
|

a

1

PAUSE]
PAUSE n |
PAUSE ’]
!

I

]

|

Where: n is a string of 1 through 5 decimal digits.

e s n

Control Statements 47

PAUSE n, PAUSE message, or PAUSE 00000 is displayed, depending upon
whether n, *‘message' or no parameter was specified, and the program
waits until operator intervention causes it to resume execution,
starting with the next statement after the PAUSE statement. For further
information, see the FORTRAN 1V programmer's guide for the respective
system.

STOP STATEMENT

General Form

[— s s s e . g
o 2t i s e AED e e

END STATEMENT

General Form

END

[en S e oy
SRR s e |

The END statement is a nonexecutable statement that defines the end
of a main program or subprogram. Physically, it must be the last
statement of each program unit. It may not have a statement number, and
it may not be continued. The END statement does not terminate program
execution. To terminate execution, a STOP statement or a RETURN
statement in the main program is required.

48

expre551ons are permitted in an I/O list,

INPUT/OUTPUT STATEMENTS

Input/output statements are used to transfer and control the flow of
data between internal storage and an input/output device, such as a card
reader, printer, punch, magnetic tape unit, or disk storage unit. The
data that is to be transferred belongs to a data set. Data sets are
composed of one or more records. Typical records are punched cards,
printed lines, or the images of either on magnetic tape or disk.

types of input/output statements: sequential and
Sequential input/output statements are used for storlng

and retr1ev1ng:data sequentially. These statements are device

independent and can be used for data sets on either sequential or direct
access devices.

Operation: In order for the input or output operation to take place,
the programmer must specify the kind of operation he desires: READ,
WRITE, or BACKSPACE, for example.

Data_Set Reference Number: A FORTRAN programmer refers to a data set by
its data set reference number. (The FORTRAN IV programmer's guides,
explain how data set reference numbers are associated with data sets.)
In the statement specifying the type of input/output operation, the
programmer must give the data set reference number corresponding to the
data set on which he wishes to operate.

I/0 list: Input/output statements in FORTRAN are primarily concerned
with the transfer of data between storage locations defined in a FORTRAN
program and records which are external to the program. On input, data
is taken from a record and placed into storage locations that are not
necessarily contiguous. On output, data is gathered from diverse
storage locations and placed into a record. An I/O list is used to
specify which storage locations are used. The I/O list can contain
variable names, array element names, array names, or a form called an
implied DO (see below). No function refer

If a variable name or array element name appears in the I/O list, one
item is transmitted between a storage location and a record.

If an array name appears in the list, the entire array is transmitted
in the order in which it is stored. (If the array has more than one
dimension, it is stored in ascending storage locations, with the value
of the first subscript quantity increasing most rapidly and the value of

Input/Output Statements 49

the last increasing least rapidly. Examples are given in the se~tion
"Arrangement of Arrays in Storage.")

Implied DO: If an implied DO appears in the I/0 list, the variables,
array elements, or arrays specified by the implied DO are transmitted.
The implied DO specification is enclosed in parentheses. Within the
parentheses are the names of one or more variables, array elements, or
arrays, separated by commas, with a comma following the last name,
followed by indexing parameters i = my, M2¢ Ma. The indexing parameters
are as defined for the DO statement. Their range is the list of the
DO-implied list and, for input lists, i, my, m>, and m; may appear
within that range only in subscripts.

For example, assume that A is a variable and that B, C, and D are
1-dimensional arrays each containing 20 elements. Then the statement:

WRITE (6) A, B, (C(I), I=1,4), D(4)

writes the current value of variable A, the entire array B, the first
four elements of the array C, and the fourth element of D. (The 6
following the WRITE is the data set reference number.) If the subscript
(I) were not included with array C, the entire array would be written
four times.

Implied DO's can be nested if required. For example, to read an

elerent into array B after values are read into each row of a 10 x 20
array A, the following would be written:

READ (5) ((aA(I,J), J=1,20), B(I), I=1,10)

The order of the names in the list specifies the order in which the
data is transferred between the record and the storage locations.

Formatted and Unformatted Records: Dpata can be transmitted ejther under

control of a FORMAT statement or without the use of a FORMAT statement.

when data is transmitted with format control, the data in the record
is coded in a form that can be read by the programmer or which satisfies
the needs of machine representation. The transformation for input takes
the character codes and constructs a machine representation of an item.
The output transformation takes the machine representation of an item
and constructs character codes suitable for printing. Most
transformations involvé numeric representations that require base
conversion. To obtain format control, the programmer must include a
FORMAT statement in the program and must give the statement number of
the FORMAT statement in the READ or WRITE statement specifying the
input/output operation.

When data is transmitted without format control, no FORMAT statement
is used. In this case, there is a one-to-one correspondence between
internal storage locations (bytes) and external record positions. 2
typical use of unformatted data is for information that is written out
during a program, not examined by the programmer, and then read back in
later in the program, or in another program, for additional processing.

50

For unformatted output data, the I/0 list determines the length of
the record. An output record is complete when the current values of all
the items in the I/0O list have been placed in it, plus any control words
supplied by the input/output routines or Data Management. For further
information, see the FORTRAN IV programmer's guide for the respective
system.

For formatted data, the I/0 list and the FORMAT statement determine

the form of the record. For further information see the section "FORMAT
Statement" and the FORTRAN IV programmer's guides.

SEQUENTIAL INPUT/OUTPUT STATEMENTS

There are five sequential input/output statements: READ, WRITE, END
FILE, REWIND, and BACKSPACE. The READ and WRITE statements cause
transfer of records of sequential data sets. The END FILE statement
defines the end of a data set; the REWIND and BACKSPACE statements
centrol the positioning da s. In addition to these five
statements, the FORMAT a 55 statements, although not
input/output statements, used with certain forms of the READ and
WRITE statements.

After execution of a sequential WRITE or END FILE statement, no
record exists in the data set following the last record transferred by
that statement.

READ STATEMENT

L)
|General Form

READ (a,b; list
Where: a is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference

number.

b is optional and is either the statement number of the
FORMAT statement describing the record(s) being read, the
name of an array containing a format specification, or a

P

list is optional and is an I/O list.

b o e

The READ statement may take many forms. The v
be specified, but under appropriate conditions b,
omitted.

of a must always
and list can be

Input/Output Statements 51

The basic forms of the READ statements are:

Form Purpose
READ {(a,b) list Formatted READ

READ (a) list Unformatted READ
" e

Formatted READ

The form READ (a,b) list is used to read data from the data set
associated with data set reference number az into the variables whose
names are given in the list. The data is transmitted from the data set
to storage according to the specifications in the FORMAT statement,
which is statement number b. ’

Example:

READ (5,98) A,B, (C(I,K),I=1,10)

Explanation: The above statement causes input data to be read from the

data set associated with data set reference number 5 into the variables

A, B, C(1,K), C(2,K)seeey C(10,K) in the format specified by the FORMAT
statement whose statement number is 98.

Unformatted READ

The form READ(a) list is used to read a single record from the data
set associated with data set reference number a into the variables whose
names are given in the list. Since the data is unformatted, no FORMAT
statement number is given. This statement is used to read unformatted
data written by a WRITE(a) list statement. If the list is omitted, a
record is passed over without being read.

52

Example:
READ (J) A,B,C

Exrlanation: The above statement causes data to be read from the data

set associated with data set reference number J into the variables A, B,
and C.

WRITE STATEMENT

r - 1
General Form

WRITE (a,b) list

Where: a is an unsigned integer constant or an integer variable
that is of length 4 and represents a data set reference
number.

b is optional and is either the statement number of the
FORMAT statement describing the record(s) being written, the
ay containing a format specification, or a

list is optional and is an I/O list.

The three basic forms of the WRITE statement are:

Form purpose
WRITE (a,b) list Formatted WRITE

Unformatted WRITE

i

WRITE (a) list

Formatted WRITE

The form WRITE(a,b) list is used to write data into the data set
whose reference number is a from the variables whose names are given in
the list. The data is transmitted from storage to the data set
according to the specifications in the FORMAT statement whose statement
number is b.

Example:

WRITE(7,75) A, (B(I,3),I=1,10,2),C
Explanation: The above statement causes data to be written from the
variables a, B(1,3), B(3,3), B(,3), B(7,3), B(9,3), C into the data set

associated with data set reference number 7 in the format specified by
the ¥ORMAT statement whose statement number is 75.

Input/Output Statements 53

Unformatted WRITE

ith

ist

to storage w
The 1

in
ist.

ingle record from the
a) 1

to the data set whose data

te a s
list in
READ (

i
1

d to wr
the
is data can be read back

in

iven
Th

1s use

t

lis
variables whose names are g
is a.

The form WRITE (a)
the unformatted form of the READ statement,

set reference number
cannot be omitted.

Example

J=1,K)

B(J,3),

$10,2),

1

I=

((A(1,J)

(L)

WRITE

er should
to storage.

th the data
no FORMAT

itten from the
B(1,3), A(1,2), A(3,2) 4yeue,
iated wi
is unformatted,
no FORMAT statement numb
in

N,

to the data set assoc
the record

Therefore,

NVoeons
[4
iven.

A(9,

in

ince

3)
S

r

B (K

set reference number L.
is g

The above statement causes data to be wr

ion

bles A(1,1), A(3

planat
be given in the READ statement used to read the data back

A(9,2), B(2,3) 4.4,
statement number

Ex
varia

.

s

54

S
=

s

55

Input/Output Statements

e

G

.

i
s

-

S

o

i
.
B
.

. .ﬁ@zwﬁ?
c&%%. .

ables and
is example because of space

i

~
[
S
Q
e
P
[}
P
© .G
-
©
[oTR <)l
(O]
(7]
9]
>3
— T
T 9
g Q
N O
O M
=
o
o A
—
j=Ro
oo
z 4
M)
ST
© g
S 0
P
a
0w o
L]
£ Q
]
-~ O
Q >
]
Mh
SR
)
o
v O
Ol E
Pl O
Olfri
P4 Y]

tations.

imi

1

56

e

FORMAT STATEMENT

L} A}

General Form

XXXXX FORMAT (C4,Ca24e«-¢Cn)

Where: XXxXXx is a statement number (1 through 5 digits).
C1+C2s---4Cn are format codes.

The format codes are:

(Describes integer data fields.)

(Describes double precision data fields.)

(Describes real data fields.)
_(pescrib fields.)

data fields.)

14
ogical data fields.)
character data fields.)

(Describes
(Describes

wH (Indicates literal data.)
wX (Indicates that a field is to be skipped on input or filled
with blanks on output.)

at specification.)

Where: a is optional and is a repeat count, an unsigned nonzero
integer constant used to denote the number of times the
format code or group is to be used. If a is omitted, the
code or group is used only once.

w is an unsigned nonzero integer constant that specifies the

number of characters in the field.

d is an unsigned integer constant specifying the number of
decimal places to the right of the decimal point; i.e., the
fractional portion.

S is an unsigned integer constant specifying the number of

significant digits.

p is optional and represents a scale factor designator of
the form nP where n is an unsigned or negatively signed
integer constant.

(...) 1is a group format specification. Within the
parentheses are format codes or an additional level of
groups, separated by commas or slashes.

Input/Output Statements 57

The FORMAT statement is used in conjunction with the I/0 list in the
READ and WRITE statements to specify the structure of FORTRAN records
and the form of the data fields within the records. 1In the FORMAT
statement, the data fields are described with format codes, and the
order in which these format codes are specified gives the structure of
the FORTRAN records. The I/0 list gives the names of the data items to
make up the record. The length of the list, in conjunction with the
FORMAT statement, specifies the length of the record (see the section
"yVarious Forms of a FORMAT Statement").

Throughout this section, the examples show punched card input and
printed line output. However, the concepts apply to all input/output
media. In the examples, the character b represents a blank.

The following list gives general rules for using the FORMAT
statement:

1. FORMAT statements are not executed; their function is to supply
information to the object program. They may be placed anywhere in
a program unit other than a BLOCK DATA subprogram, subject to the
rules for the placement of the FUNCTION, SUBROUTINE, IMPLICIT, and
END statements.

2. Complex data in records require two successive D, E, F, or G format
codes,

3. Either one comma or any number of slashes can be used as separators
ketween format codes (see the section "Various Forms of a FORMAT
Statement") .

4. When defining a FORTRAN record by a FORMAT statement, it is
important to consider the maximum size record allowed on the
input/output medium. For example, if a FORTRAN record is to be
punched for output, the record should not be longer than 80
characters. If it is to be printed, it should not be longer than
the printer's line length. For input, the FORMAT statement should
not define a FORTRAN record longer than the actual input record.

5. When formatted records are prepared for printing at a printer or
terminal, the first character of the record is not printed. It is
treated as a carriage control character. It can be specified in a
FORMAT statement with either of two forms of literal data: either
'x' or 1HX, where X is one of the following:

X Meaning

blank Advance one line before printing

0 Advance two lines before printing
1 Advance to first line of next page
+ No advance

For media other than a printer or terminal, the first character of
the record is treated as data.

6. If the I/0 list is omitted from the READ or WRITE statement, a
record is skipped on input, or a blank record is inserted on
output, unless the record was transmitted between the data set and
the FORMAT statement (see "H Format Code and Literal Data").

58

o

.....

7. To illustrate the nesting of group format specifications,
FORMAT (...,al...,al...) e a(eed)ues),.0.) 1is permitted, but
FORMAT (...,a(...,ale.c,a(eee)yeen)yeea), ens) 1is invalid, because
a group within another group cannot itself contain a group.

Various Forms of a FORMAT Statement

All of the format codes in a FORMAT statement are enclosed in a pair
of parentheses. Within these parentheses, the format codes are delim-
ited by the separators, slash and comma. The slash indicates the end of
the physical record; the comma indicates the end of a data item within
the record.

Execution of a formatted READ or formatted WRITE statement initiates
format control. Each action of format control depends on information
provided jointly by the I/O l1list, if one exists, and the format
specification. There i I/0 list it o onding to the format

' and iy ¢ e These communicate

Whenever an 1, D, E, F, G, A, L, code is encountered, format
control determines whether there is a corresponding element in the I/0
list. If there is such an element, appropriately converted information
is transmitted. 1If there is no corresponding element, the format
control terminates, even if there is an unsatisfied repeat count.

If, however, format control reaches the last (outer) right
parenthesis of the format specification, a test is made to determine if
another element is specified in the I/O0 list. If not, control
terminates. However, if another list element is specified, the format
control demands that a new record start. Control therefore reverts to
that group specification terminated by the last preceding right
parenthesis, including its group repeat count, if any, or, if no group
specification exists, then to the first left parenthesis of the format
specification. Such a group specification must include a closing
("internal") right parenthesis. If no group specification exists, then
control reverts to the first left parenthesis of the format
specification.

Given the following FORMAT statements:

70 FORMAT (2(I3,F5.2),I4,F3.1)
80 FORMAT (I3,F5.2,2(I3,2F3.1))
90 FORMAT (I3,F5.2,2I4,5F3.1)

With additional elements in the I/0 list after control has reached the
last right parenthesis of each, control would revert to the 2(I3,F5.2)
specification in the case of statement 70; to 2(13,2F3.1) in the case of
statement 80; and to the beginning of the format specification,
I3,F5.2;,... 1in the case of statement 90.

The question of whether there are further elements in the I/0 list is
asked only when an I, D, E, F, G, code or the final right
parenthesis of the format, ifid efore this is
done, 7, X, and H codes, ~and slashes
are processed. If there t than there
are format codes, the remaining format codes are ignored.

Comma: The simplest form of a FORMAT statement is the one shown in the

box at the beginning of this section. The format codes, separated by
commas, are enclosed in a pair of parentheses. One FORTRAN record is
defined within a single pair of left and right parentheses. For an
example, see the section "Examples of Numeric Format Codes."

Input/Output Statements 59

Slash: A slash is used to indicate the end of a FORTRAN record format.
For example, the statement:

25 FORMAT (I13,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, etc., records
aTre transmitted according to the format I3, F6.2 and the second, fourth,
etc,, records are transmitted according to the format D10.3, F6.2.

Consecutive slashes can be used to imtroduce blank output records or
to skip input records., TIf there are n consecutive slashes at the
beginning or end of a FORMAT statement, n input records are skipped or n
blank records are inserted between output records. If n consecutive
slashes appear anywhere else in a FORMAT statement, the number of
records skipped or blank records inserted is n-1. For example, the
statement:

25 FORMAT (1X,1015//1X,8E14. 5)
describes three FORTRAN record formats. O©On output, it causes double

spacing between the line written with format 1X,10I5 and the line
written with the format 1X,8E14,5.

I Format Code

The I format cods is used in transmitting integer data. For example,
if a RFEAD statement refers to a FORMAT statement containing I format
codes, the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the maximum
magnitude of an integer constant.

Input: Leading, embedd=d, and trailing blanks in a field of the input
card are interpreted as zeros.

Output: If the number of significant digits and sign required to
represent the gquantity in the storage location is
leftmost print positions are filled with blanks.

D, E, and F _Format Cod=s

The D, E, and F format codes are used in transmitting real or double
precision data. The data must not exceed the maximum magnitude for a
real or double precision constant.

Input: Input must be a number which, optionally, may have a D, E, or
signed-integer-constant exponent. The D or E may be omitted from the
exponent if the exponent is signed. All exponents must be preceded by a
constant: i.e., an optional sign followed by at least one decimal digit
with or without dscimal point, 1If the decimal point is present, its
position overrides the position indicated by the d portion of the format
field descriptor, and the number of positions specified by ¥ must
include a place for it, If the data has a D, B, or signed-integer-
constant exponent and the format field descriptor includes a P scale
factor, the scale factor has no effect.

Fach data item must be right justified in its field, since leading,
trailing, and embedded blanks are treated as zeros,

60

The D, E, and signed-integer-constant exponent specifications for
input data are interchangeable. For example, given a REAL*4 item in an
input list, and an E or F FORMAT specification, it makes no difference
whether the exponent specification of the data item is a D, an E, or a
signed integer constant. Similarly, if the list item is REAL*8 or
DOUBLE PRECISION and the format specification is D, the exponent
specification of the data item may likewise be a D, an E, or a signed
integer constant.

Output: For data written under a D or E format code, unless a P scale
factor is specified, output consists of an optional sign (required for
negative values), a decimal point, the number of significant digits
specified by 4, and a D or E exponent requiring four positions. The w
specification must provide for all these positions, including the one
for a sign when the output value is negative. If additional space is
available, a leading zero may be written before the decimal point.

For data written under an F format code, w must provide sufficient
spaces for an integer segment if it is other than zero, a fractional
segment containing d digits, a decimal point, and, if the output value
is negatige, i%siQQ.

prov1ded Atheqnumber 1s’preceded'by blanks.

For D, E, and F, fractional digits in excess of the number specified
by 4 are dropped after rounding.

G Format Code

The G format code is a generalized code used to transmit
real, ; data accordlng to the type specification of the
correspondlng variable in the I/0 list.

Input: The rules for input for G format code depend upon the type of
the variable in the I/O 1list and the form of the number punched on the
card. For example, if the variable is real and the number punched in
the card has an E de01mal exponent, the rules are the same as for the E
format code. 1 ’ he

the s portion gives the location of the 1mp11ed dec1ma1 point for input
-- just like the 4 specification for b, E, and F format codes.

Input/Output Statements 61

: 1 C 54| For real data, the s 1is used to determine the
number of digits to be printed and whether the number should be printed
with or without a decimal exponent. If the number, say n, is in the
range 0.1< n < 10**s, the number is printed without a decimal exponent.
Otherwise, it is printed with an E or D decimal exponent, depending on
the length specification of the variable in the I/0O list. The w
specification for real data must include a position for a decimal point,
four positions for a decimal exponent, and, if the wvalue is negative, a
position for a minus sign. All other rules for output are the same as
those for the individual format codes.

Examples of Numeric Format Codes

The following examples illustrate the use of the format codes I, F,

D, and G.

Example 1:
75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5,75) N,A,B,C

Explanation:

1. Four input fields are described in the FORMAT statement and four
variables are in the I/0 list. Therefore, each time the READ
statement is executed, one input card is read from the data set
associated with data set reference number 5.

2. When an input card is read, the number in the first field of the
card (three columns) is stored in integer format in location N.
The number in the second field of the input card (five columns) is
stored in real format in location A, etc.

3. If there were one more variable in the I/0 list, say M, another
card would be read and the information in the first three columns
of that card would be stored in integer format in location M. The
rest of the card would be ignored.

4. If there were one fewer variable in the list (say C is omitted),
format specification G10.3 would be ignored.

5. This FORMAT statement defines only one record format. The section
"Various Forms of a FORMAT Statement" explains how to define more
than one record format in a FORMAT statement.

Example 2: Assume that the following statements are given:

75 FORMAT (Zl;D10.3,2G10.3)

READ (5,75) A,B,C,D

where A, C, and D are REAL*4 and B is REAL*8 and that on successive
executions of the READ statement, the following input cards are read:

62

Column: 15 25 35
| { |
v v v
1156432D+02276.38E+15bbbbbbbbbb
Input ‘
55381+02b382506E+28276.38E+15
Cards
46.18D-03485.322836276.38E+15
Format: D10.3 G10.3 G10.3

Then the variables A, B, C, and D receive values as if the following
had been punched:

A B c D
156.432D02 276.38E+15 000000.000
155.381+20 382.506E28 276.38E+15
346.18D-03 485.322836 276.38E+15

VRN

Explanation:

1. Leading, trailing, and embedded blanks in an input field are
treated as zeros. Therefore, since the value for B on the second
input card was not right justified in the field, the exponent is 20
not 2.

2. Values read into the variables C and D with a G format code are
converted according to the type of the corresponding variable in
the I/0 list.

Example 3: Assume that the following statements are given:

76 FORMAT ,F6.2,E12.3,G14.6,15)

WRITE (6,76)A,B,C,N

and that the variables A, B, C, and N have the following values on

successive executions of the WRITE statement:

A B < N
034.40 123.380E+02 123.380E+02 031
031.1 1156 .1E+02 123456789, 130
-354.32 834,.621E-03 1234.56789 u28
01.132 - 83.121E+06 123380.D+02 000

Input/Output Statements

63

Then, the following lines are printed by successive executions of the
WRITE statement:

Print
Ccolumn: 1 9 21 35
| |

v v v v
34.40 0.123E 05 12338.0 31

—
—anm

31.10 0.116E 06 0.123457E 09 130

1.13 0.831E 08 0.123380E 08 0

0.835E 00 1234,57 428

Explanation:

1. The integer portion of the third value of A exceeds the format
specification, so asterisks are printed instead of a value. The
fractional portion of the fourth value of A exceeds the format
specification, so the fractional portion is rounded.

2. Note that for the variable B the decimal point is printed to the
left of the first significant digit and that only three significant
digits are printed because of the format specification E12.3.
Excess digits are rounded off from the right.

3. The values of the variable C are printed according to the format
specification Gl4.6. The s specification, which in this case is 6,
determines the number of digits to be printed and whether the
number should be printed with a decimal exponent. Values greater
than or equal to 0.1 and less than 1000000 are printed without a
decimal exponent in this example. Thus, the first and third values
have no exponent. The second and fourth values are greater than
1000000, so they are printed with an exponent.

Scale Factor - P

The P scale factor may be specified as the first part of a D, E, F,
or G field descriptor to change the location of the decimal point in
real numbers. The effect of the scale factor is:

scale factor
external number = internal number x 10

Input: A scale factor may be specified for any real data, but it is
ignored for any data item that contains an exponent in the external
field. For example, if the input data is in the form xx.xxxx and is to
be used internally in the form .xxxxxx, then the format code used to
effect this change is 2PF7.4. Oxr, if the input data is in the form
XX.xxxx and is to be used internally in the form xxxx.xx, then the
format code used to effect this change is -2PF7.4.

Output: A scale factor can be specified for real numbers with or
without E or D decimal exponents. For numbers without an E or D decimal
exponent, the effect is the same as for input data except that the
decimal point is moved in the opposite direction. For example, if the
number has the internal form .xxxxxx and is to be written out in the
form xx.xxxx, the format code used to effect this change is 2PF7.4. For
real numbers written under the G format code, the effect of the scale
factor is suspended unless the magnitude of the number (n) to be
converted is outside the range (.1>n>10%*s, where s is the number of
significant digits specified in the G format code, Gw.s) that permits
the effective use of the F format code.

64

For numbers with an E or D decimal exponent, when the decimal point
is moved, the exponent is adjusted to account for it, i.e., the value is
not changed. For example, if the internal number 238.47 were printed
according to the format E10.3, it would appear as 0.238Eb03. If it were
printed according to the format 1PE10.3, it would appear as 2.385EbO02.

A repetition code can precede the D, E, or F format code. For
example, 2P3F7.4 is valid.

Note: Once a scale factor has been established, it applies to all
subsequently interpreted D, E, F, and G codes in the same FORMAT
statement until another scale factor is encountered. The new scale
factor is then established. A factor of 0 may be used to discontinue
the effect of a previous scale factor.

L Format Code

The L format code is used in transmitting logical variables.

Input: The input field must consist of optional blanks, followed by a T
or F, followed by optional characters, for true and false respectively.
The T or F causes a value of true or false to be assigned to the logical
variable in the input list.

Output: A T or F is inserted in the output record depending upon

whether the value of the logical variable in the 1/0 list was true or
false, respectively. The single character is right justified in the
output field and preceded by w-1 blanks.

A Format Code

The A format code is used in transmitting data that is stored
internally in character format. The number of characters transmitted
under A format code depends on the length of the corresponding variable
in the I/0 list. Each alphabetic or special character is given a unique
internal code. Numeric characters are transmitted without alteration;
they are not converted into a form suitable for computation. Thus, the
A format code can be used for numeric fields, but not for numeric fields
requiring arithmetic.

Input: The maximum number of characters stored in internal storage
depends on the length of the variable in the I/0 list. If w is greater
than the variable length, say v, then the leftmost w-v characters in the
field of the input card are skipped and the remaining v characters are
read and stored in the variable. If w is less than v, then w characters
from the field in the input card are read and the remaining rightmost
characters in the variable are filled with blanks.

Output: If w is greater than the length (v) of the variable in the I/ 0
llSt, then the printed field will contain v characters right-justified
in the field, preceded by leading blanks. If W is less than v, the
leftmost w characters from the variable will be printed and the rest of
the data will be truncated.

Example 1: Assume that B has been specified as REAL#¥ that N and M are

INTEGER#*¥4, and that the following statements are given:

25 FORMAT (3A7)

READ (5,25) B, N, M

Input/Output Statements 65

When the READ statement is executed, one input card is read from the
data set associated with data set reference number 5 into the variables
B, N, and M in the format specified by FORMAT statement number 25. The
following list shows the values stored for the given input cards (b
represents a blank).

Input Card B N M.
ABCDEFGU6bATb11234567 ABCDEFGb ATbl 4567
HIJKLMN76543213334445 HIJKLMND 4321 4uus

Example 2: Assumé that A and B are real variables of length 4, that C
is a real variable of length 8, and that the following statements are
given:

26 FORMAT (A6,A5,A6)
WRITE (6,26) A,B,C
When the WRITE statement is executed, one line is written on the data
set associated with data set reference number 6 from the variables A, B,
and C in the format specified by FORMAT statement 26. The printed
output for values of A, B, and C is as follows (b represents a blank):

A B C Printed Line

Al1B2 C3D4 ES5F6GTHS bbA1B2bC3DUESF6GT

H Format Code and lLiteral Data

Literal data can appear in a FORMAT statement“
following the H format code D& ¢
the following FORMAT statements are equivalent:

For example,

25 FORMAT (22H 1968 INVENTORY REPORT)

No item in the I/0 list corresponds to the literal data. The data is
read directly into or written directly from the FORMAT statement. (The
FORMAT statement can contain other types of format codes with
corresponding variables in the I/O 1list.)

Input: Information is read from the input card and replaces the literal
data in the FORMAT statement. (If the H format code is used, w
characters are read.

66

Output: The literal data from the FORMAT statement is written on the
output data set. (If the H format code is used, the w characters
following the H are written. e

el For example, the following
statements

8 FORMAT (14HOMEAN AVERAGE:, F8.4)
WRITE (6,8) AVRGE

would cause the following record to be written if the value of AVRGE
were 12.3456:

MEAN AVERAGE: 12.3456

The first character of the output data record in this example is used
for carriage control of printed output and does not appear in the
printed line.

X Format Code

The X format code specifies a field of w characters to be skipped on
input or filled with blanks on output. For example, the following
statements:

5 FORMAT (I10,10X,4I10)
READ (5,5 1,3,K,L,M

¥ cause the first ten characters of the input card to be read into
variable I, the next ten characters to be skipped over without
transmission, and the next four fields of ten characters each to be read
into the variables J, XK, L, and M.

Input/Output Statements 67

Group Format Specification

The group format specification is used to repeat a set of format
codes and to control the order in which the format codes are used.

The group repeat count a is the same as the repeat indicator a which
can be placed in front of other format codes. For example, the
following statements are equivalent:

10 FORMAT (I3,2(I4,1I5),1I6)
10 FORMAT (I3,(I4,I5,1I4,1I5),1I6)

Group repeat specifications control the order in which format codes
are used since control returns to the last group repeat specification
when there are more items in the I/0 list than there are format codes in
the FORMAT statement (see "Various Forms of a FORMAT Statement"). Thus,
in the previous example, if there were more than six items in the I/0
list, control would return to the group repeat count 2 which precedes
the specification (I4,I5).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT (I3,(F6.2,D10.3))
READ (5,15) N,A,B,C,D,E

cause values to be read from the first record for N, A, and B, according
to the format codes 13,F6.2, and D10.3, respectively. Then, because the
I/70 list is not exhausted, control returns to the last group repeat
specification, the next record is read, and values are transmitted to C
and D according to the format codes F6.2 and D10.3, respectively. Since
the I/0 list is still not exhausted, another record is read and a value
is transmitted to E according to the format code F6.2 -- the format code
D10.3 is not used.

The format codes within the group repeat specification can be
separated by commas and slashes. For example, the following statement
is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2))

The first physical record, containing two data items, is transmitted
according to the specification 2I3; the second, fourth, etc., records,
each containing four data items, are transmitted according to the
specification 3F6.2,F6.3; and the third, fifth, etc., records, each also
containing four data items, are transmitted according to the
specification D10.3,3D10.2, until the I/O list is exhausted.

Reading Format Specifications at Object Time

FORTRAN provides for variable FORMAT statements by allowing a format
specification to be read into an array in storage. The data in the
array may then be used as the format specification for subsequent
input/output operations. The format specification may also be placed

68

to the array by a DATA statement | -
in the source program. T pplicable:
1. The format specification must be in an array, even if the array
size is only 1.

2. The format codes entered into the array must have the same form as
a source program FORMAT statement, except that the word FORMAT and
the statement number are omitted.

Exarnple: Assume that the following statements are given:

DIMENSION FMT (18)
1 FORMAT (18A4)
READ (5,1) FMT

READ (5,FMT) A,B, (C(I),I=1,5)

and that the first input card associated with data set reference number
5 contains (2E10.3, 5F10.8).

The data on the next input card is read, converted, and stored in A, B,
and the array C, according to the format codes 2E10.3, SF10.8.

ENC FILE STATEMENT

General Form

e R

END FILE a

Where: a is an unsigned integer constant or an integer variable
(not an array element) that is of length 4 and represents a
data set reference number.

e e o v i, et ity .)

The END FILE statement defines the end of the data set associated

with a by causing an end-of-file record to be written.

REWIND STATEMENT

General Form

1
‘T
|
|
t
4
!

REWIND a

Where: a is an unsigned integer constant or an integer variable
(not an array element) that is of length 4 and represents a
data set reference number.

s e e i, et o oty e *

Input/Output Statements 69

The REWIND statement causes a subsequent READ or WRITE statement
referring to a to read data from or write data into the first record of
the data set associated with a.

BACKSPACE STATEMENT

General Form

EACKSPACE a

Where: a is an unsigned integer constant or an integer variable
(not an array element) that is of length 4 and represents a
data set reference number.

)
|
{
v
|
|
I
I
|
L

o e e i, e oot e e oo

The BACKSPACE statement causes the data set associated with a to
kFackspace one record. If the data set associated with a is already at
its beginning, execution of this statement has no effect. This
statement may not be executed for direct-access or NAMELIST data sets.
For further information, see the FORTRAN IV programmer's guide for the

respective system.
The BACKSPACE statement executed as the first input/output

instruction to a closed file will not open that file and will have no
effect on the positioning of the file.

70

Input/Output Statements 71

Ih5

He
i

e
=

o

i

. 3 .
e i R L
s s . ot s
i s . s s = W“W%%mmmmmﬂ

72

A

Input/Output Statements

T4

Input/Output Statements 75

76

4
e
Sms Bl i
e
‘%@a;km e
o o

L

S
e
Ui

. s

b e o ﬁ‘mg
i i B e i

e Sl el WS

Input/Output Statements 77

78

=N

DATA INITIALIZATION STATEMENT

— i .

CATA k17817 ,k2/d27 44« skn/dn/

Where: Each k is a list containing the names of variables, array
elements (in which case the sub cr t quantltles must be
unsigned integer constants), - Dummy argument
names may rot appear in the list

Each d is a list of co 1, which may

be optionally signed, : logical, or
literal). Any of thes Yy p eded by i*,
where i is an unsigned integer constant. When the form i*
appears before a constant, it indicates that the constant is

to be specified i times.

define initial values of variables, array elements,
must be a e correspondence between the total number of 2lements
specified éd by the list k and the total number of constants
specified rrespondlng list d after application of any
replication factors, i.

For real, integer, complex, and logical types, each constant must
agree in type with the variable or array element i+ is initializing.
Any type of variable or array element may be initializ=d with a literal
i constant.

If anp array name appears in the list k, the entire array is
initialized in the order in which it is stored. 1If the array has more
than one dimension, it is stored in ascending storage locations, with
the value of the first subscript guantity increasing most rapidly and
the value of the last increasing least rapidly. Examples are given in
the section "Arrangement of Arrays in Storage."

This statement cannot orecede any specification statement

Otherwise, a DATA

2 storage entity may not be assigned an initial value more than once.
For purposes of this constraint, entities that are associated with each
other +hrough COMMON or EQUIVALENCE statements are considered as the
same entity.

Example 1:

REAL*8 E
DIMENSION D(5,10) v
DATA A, B, C/5.0,6.1,7.3/,

Data Initialization Statement 79

Explanation:

The DATA statement causes the variables A, B, and C to be initialized
to the values 5.0, 6.1, d 7.3 tivel I dditi th
tateme s ifies th i ame: o

he single-precision
see Table 3 and

accompanying material on Assignment Sta

An initially defired variable or array element may not be in blark
commcri. In a labeled common block, they may be initially defined only
in a BLOCK DATA subprcgram. (See the section "Subprograms.")

80

-

SPECIFICATION STATEMENTS

The specification statements provide the compiler with information
about the nature of the data used in the source program. In addition,
they supply the information required to allocate locations in storage
for this data.

de initions, which must
executable statement. &

Information describing a variable or array in one specification
statement should not be repeated in other specification statements that
refer to the same variable or array.

The specification statement EXTERNAL is described in the section
t*Sukprograms."

DIMENSTON STATEMENT

1} h]
General Form

DIMENSION a, (k;),22(k2),a3(ka)¢=«-,an(kn)

Where: Each a is an array name.

Fach k is composed of one through @ewen unsigned integer
constants, separated by commas , that represent the maximum
value of each subscrlpt in the array. When the DIMENSION
statement in which it appears is in a subprogram, each k may
contain integer variables of length 4, provided that the
array is a dummy .argument.

The information necessary to allocate storage for arrays used in the
source program may be provided by the DIMENSION statement. The
following examples illustrate how this information may be declared.

Examples:

DIMENSION A (10), ARRAY(5,5,5), LIST(10,100)
DIMENSION B(25,50), TABLE(5,8,4)

TYPE STATEMENTS

There are two kinds of type statements:
and the explicit specification s
DOUBLE PRECISION, COMPLEX, and LOGICAL).

Specification Statements 81

G
.

.
.

-
O
[l W
o]
o
S + O
X >) o
(o) © +
Y M =)
- B
[} $ &
[4)] - [e]
=] L] o O
— <
] 2 P T
£ ® 9 -
Y (VK= .
N Lellal
4 Sg ne
| ey
Q] | | IR
UV WM - O
owm ~
0 — n o
L 20 » £5
(] + © [N
=4 o+ Y En
@ g M 9 @
+) em.. (s} 43
© o~ «
+ ol L
[1)] m.,a 1] w
[« RS (TN R Y =3
(o] T O o (o)
- o o
P Hg owm +
[\ [O2Ne] =] [1:]
8] (S (o] 0
P o S ot
W ~0 n Y4y
o [=} o] ot
4] [T~ [} 16}
o Q1 £ @
Q> ol Q
nw +$T O 7y
0] : .
P OAd O P B O
- SO G ofaed Oy
[S IR S I o PR 6F = 1
o jon -~ -+
- = >4 —t
Q0 HW®! Yy Q, o
LR] o 3 =
[0} (O3 =] (8})] el
| [ONK V) (V)] >y
K] 0, 0 o) [0 = 0]
£ WS oW =g o
5] 13 Q
[[] [()]
Q
1)

82

ydédi@reé‘

Specification Statements 83

EXPLICIT SPECIFICATION STATEMENTS

General Form

-

Where: Type is INTEGER, REAL, LOGICAL, or COMPLEX.

Each a is a variable, array, name (see the {
section "Subprograms")

Each k is optional and gives dimension irnfo
arrays. Each k is composed of one through.
integer constants, separated by commas, rep

unsigned
ing the

maximum value of each subscript in the array. When the type
statement in which it appears is in a subprogram, each k may
contain integer variables of length 4, provided that the
array is a dummy argument.

The explicit specification statements declare the type (INTEGER,
REAL, COMPLEX, or LOGICAL) of a particular variable or array by its
name, rather than by its initial character. This differs from the other
g of specifying the type of a variable or array (i.e., predefined
convention). In additicn, the information
necessary to allocate storage for arrays (dimension information) may be
included within the statement.

Initial data values cannot be assigned to variables or arrays in
blank common. The BLOCK DATA subprogram must be used to assign initial
values to variables and arrays in labeled common.

predefined convention.
the standard length per type is assumed.

84

Explanation:

This
integer,

Example 2:

COMPLEX C,D

Explanation:

This stat

HOLD, VALU

ITEM(5,5)

Explanation:

This statement declares that the variables BAKER, HOLD, VALUE, and
the array named ITEM are ype rea it it declares the
size of the array ITEM. J

Example 4:

REAL A (5,5
Explanation:
This statement declares the size of each array, A and B, and their

type (real). The array A has 100 storage locations reserved (four for
each element in the array) and the array B has 400 storage locations

Specification Statements 85

DOUBLE PRECISION STATEMENT

General Form

COUBLE PRECISION 21 (51) Q2 (Ka) '23(53)'m-~ «2n (_]Sn)

Where: Each a represents a variable, array, or function name (see
the section "Subprograms").

Each k is optional and is composed of one through gév
unsigned integer constants, separated by commas, that
represent the maximum value of each subscript in the array.
When the DOUBLE PRECISION statement in which it appears is
in a subprogram, each k may contain integer variables of

length 4, provided that the array is a dummy argument.

The DOUBLE PRPECISION statement explicitly specifies that each of the
variables a is of type double precisio This statement overrides a
specification of a variable made by e

COMMON STATEMENT

r h)
General Form

COMMON /.r_1/§11 (_15,11) 1212 (512) . /En/,‘?_n:. (Enl) rdnz2 (}_(nz) goee

Where: Each a is a variable name or array name that is not a dummy
argument.

Each k is optional and is composed of one through
unsigned integer constants, separated by commas,
representing the maximum value of each subscript in the
array.

Each r represents an optional common block name consisting
of one through six alphameric characters, the first of which
is alphabetic. These names must always be enclosed in
slashes.

The form // (with no characters except possibly blanks
between the slashes) may be used to denote blank common, If
| x, denotes blank common, the first two slashes are optional.

The COMMON statement is used to cause the sharing of storage by two
or more program units, and to specify the names of variables and arrays
that are to occupy this area. Storage sharing can be used for two
purposes: to conserve storage, by avociding more than one allocation of
storage for variables and arrays used by several program units; and to
inmplicitly transfer arguments between a calling program and a
subprogram. Arguments passed in a common area are subject to the same
rules with regard to type, length, etc., as arguments passed in an
argument list (see the section "Subprcgrams").

A given common block name may appear more than once in a COMMON
statement, or in more than one COMMON statement in a program unit. All

86

entries within such blocks are strung together in order of their
appearance.

Although the entries in a COMMON statement can contain dimension
information, object-time dimensions may never be used.

The length of a common area can be increased by using an EQUIVALENCE
statement.

Since the entries in a common area share storage locations, the order
in which they are entered is significant when the common area is used to
transmit arguments. Consider the following example:

Example 1:

Calling Program Subprogram
COMMON A, B, C, R (100) SUBROUTINE MAPMY
REAL A,B,C COMMON X, Y, Z, S(100)
INTEGER R REAL X,Y,7Z
. INTEGER S
CALL MAPMY .

Exrlanation:

The statement COMMON A,B,C,R(100) in the calling program would cause
412 storage locations (four locations per variable) to be reserved in
the following order:

Beginning of common area; v
A

B

c |

R(1)
R(2)

R (100)

b

4 storage locations

The statement COMMON X, Y, Z, S(100) in the subprogram would then
cause the variables X, Y, Z, and S(1),...,S(100) to share the same
storage space as A, B, C, and R(1),...,R(100), respectively. Note that
values for X, ¥, Z, and S(1),...,5(100), because thev occupy the same
storage locations as A, B, ¢, and R(Y,...,R(100), do not have to be
transmitted in the argument list of a CALL statement.

Specification Statements 87

Example 2:

Assume a common area is defined in a main program and in three
subprograms as follows:

Main Program: COMMON a,B,C (A and B are 8 storage locations
C is 4 storage locations)
E

Sukprogram 1: COMMON D,E,F (D and are 8 storage locations,
F is 4 storage locations)

Subprogram 2: COMMON o,R,S,T,U (4 storage locations each)

Subprogram 3: COMMON v,Ww,X,Y,2 (4 storage locations each)

The correspondence of these variables within common can be illustrated
as follows:

Main Program Subprogram 1 Subprogram 2 Subprogram 3
COMMON A,B,C COMMON D, E, F COMMON Q,R,S,T,U COMMON V,W,X,Y,2
| St — | 2 — | | A — | Eaean————— |
| o) C=m==> | v
- -a- - <==>|---D- - frmmee——| frmmmee——{
(R <m===> W
s <-===> X
--B- -| <===> |- - -E - -
T Lm===> Y
c <===> F <====> | U <====> /
| I——— | | I —— | DO —— | IO — |
4 storage 4 storage 4 storage 4 storage
locations locations locations locations

The main program can transmit values for A, B, and C to subprogram 1,
provided that A is of the same type as D, B is of the same type as E,
and € is of the same type as F. However, the main program and
subprogram 1 cannot, by assigning values to the variables A and B, or D
and E, respectively, transmit values to the variables Q, R, S, and T in
subprogram 2, or v, w, X, and Y in subprogram 3, because the lengths of
their common variables differ. Likewise, subprograms 2 and 3 cannot
transmit values to variables A and B, or D and E.

Values can be transmitted between variables ¢, F, U, and Z, assuming
that each is of the same type. With the same assumption, values can be
transmitted between A and D, and B and E, and between Q and V, R and W,
S and X, and T and Y. Note, however, that assignment of values to A or
D destroys any values assigned to Q, R, V, and W, (and vice versa) and
that assignment to B or E destroys the values of S, T, X, and Y (and
vice versa}).

BLANK AND LABELED COMMON

In the preceding example, the common storage area (common block) is
called a blank common area. That is, no particular name was given to
that area of storage. The variables that appeared in the COMMON
statements were assigned locations relative to the beginning of this
blank common area. However, variables and arrays may be placed in
separate common areas. Each of these separate areas (or blocks) is
given a name consisting of one through six alphameric characters (the
first of which is alphabetic); those blocks which have the same name

88

o

occupy the same storage space. The name should not be the same as the
main program or any subprogram. This permits a calling program to share
one common block with one subprogram and another common block with
another subprogram, and also facilitates program documentation.

The differences between blank and labeled common are:

e There is only one blank common in an executable program, and it has
no programmer-assigned name; there may be many labeled commons, each
with its own name.

e Each program unit which uses a given labeled common must define it
to be of the same length; blank common may have different lengths in
different program units.

e Variables and array elements in blank common canndt be assigned
initial values; variables ard array elements in labeled common may
i initi es by DAT2 statements @
. but only in a BLOCK DATA subprogram.

Those variables that are to be placed in labeled (named) common are
preceded by a common block name enclosed in slashes. For example, the
variables A, B, and C will be placed in the labeled common area, HOLD,
by the following statement:

COMMON/HOLD/A,B,C
In a COMMON statement, blank common is distinguished from labeled
ccmmon by placing two consecutive slashes before the variables in blank
cecmmon or, if the variables appear at the beginning of the COMMON
statement, by omitting any block name. For example, in the following
statement:
CoOMMON A, B, C /ITEMS/ X, Y, 2 7/ /7 D, E, F

the variables A, B, C, D, E, and F will be placed in blank common in
that order; the variables X, ¥, and Z will be placed in the common area
labeled ITEMS.

Elank and labeled common entries appearing in COMMON statements are
cumulative throughout the program. For example, consider the following
two COMMON statements:

COMMON A, B, C /R/ D, E /S/ F
COMMON G, H /S/ I, J /R/P//W

These two statements have the same effect as the single statement:
COMMON A, B, C, G, H, W/R/ D, E, P/S/ F, I, J
Example:

Assume that A, B, C, K, X, and Y each occupy four locations of
storage, H and G each occupy eight locations,

Calling program Subprogrgm

COMMON H, A /R/ X, i B SUBROUTINE MAPMY (...)
. COMMON G, Y, C /R/ K,

CALL MAPMY (...) .

.

Specification Statements 89

Explanation:

In the calling program, the statement COMMON H, A /R/ X,
causes 16 1ocat10ns (four locations each for A and B, and eig
to ke reserv
(four for X

for H)
nd eight locations in labeled common

The statement COMMON G,Y,C/R/K,E,F appearing in the subprogram MAPMY
would then cause the variables G, Y, and C to share the same storage
srace (in blank common) as H, A, and B, respectively. It would also
cause the variables K, | are the same storage space (in
labeled common area R) as X, ., respectively, as follows:

i

Calling Program Subprogram

<-4 locations-> <-4 locations=->
i - r i

Blank Common | -=---H---- |K==>| =-=--G---- Blank Common

|

L.

1)

| a <-=> ¥

L

¢

| B <--> C

[

Labeled Common R | Labeled Common R

STORAGE ARRANGEMENT OF VARIARBLES IN COMMON

Variables in a common block need not be aligned rroperly. However,
on some machines, the System/360 in particular, considerable opject-time
efficiency is lost unless the programmer ensures that all of the
variables have proper boundary alignment. For System/370 machines, the
loss in object-time efficiency is much less.

Proper alignment is achieved either by arranging the variables in a
fixed descending order according to length, or by constructing the block
so that dummy variables force proper alignment. If the fixed order is
used, the variables must appear in the following order:

or real)
integer or logical)

If the fixed order is not used, proper alignment can be ensured by
constructing the block so that the displacement of each variable can be
evenly divided by the reference number associated with the variable.
(Pisplacement is the number of storage locations, or bytes, from the
beginning of the block to the first storage location of the variable.)
The following list shows the reference number for each type of variable:

90

Type of Length Reference

Variable Specification Number
Logical T 1
n
Integer 2
i
Real 4 4
8 8
Complex 8
8

The first variable in every common block is positioned as though its
length specification were eight. Therefore, a variable of any length
may be the first assigned within a block. To obtain the proper
alignment for other variables in the same block, it may be necessary to
add a dummy vagigble to the block. For example, the variables A, K, and

CMPLX are REAL#* . and COMPLEX#8, respectively, and form a
COMMON block that is defined as:

COMMON A, K, CMPLX

Then, the displacement of these variables within the block is
illustrated as follows:

1< A >l< K >< CMPLX——m = e >
| 4 storage | 4 starage | 8 storage

| locations | locations | locations

| ! !

! ! !

v v v

displacement displacement displacement

0 storage L storage 8 storage

locations locations locations

The displacements of K and CMPLX are evenly divisible by their reference

Specification Statements 91

EQUIVALENCE STATEMENT

General Form

i wdin wiia e

EQUIVALENCE (211s812+813s0-+)9{321s822s8323720+)¢non

Where: Each a is a variable or array element and may not be a dummy |
argument. The subscripts of array elements may have either
of two forms:

If the array element has a single subscript quantity, it
refers to the linear position of the element in the array
(i.e., its position relative to the first element in the
array: 3rd element, 17th element, 259th element).

If the array element is multi-subscripted (with the number
of subscript quantities equal to the number of dimensions of
the array), it refers to position in the same manner as in
an arithmetic statement (i.e., its position relative to the
first element of each dimension of the array). In either .
case, the subscripts themselves must be integer constants. i

e e D

All the elements within a single set of parentheses share the same
storage locations. The EQUIVALENCE statement provides the option for
controlling the allocation of data storage within a single program unit.
In particular, when the logic of the program permits it, the number of
storage locations used can be reduced by causing locations to be shared
by two or more variables of the same or different types. Equivalence
between variables implies storage sharing. Mathematical equivalence of
variables or array elements is implied only when they are of the same
type, when they share exactly the same storage, and when the value
assigned to the storage is of that type.

Since arrays are stored in a predetermined order (see "Arrangement of
Arrays in Storage"), equivalencing two elements of two different arrays
may implicitly equivalence other elements of the two arrays. The
EQUIVALENCE statement must not contradict itself or any previously
established equivalences.

Note that the EQUIVALENCE statement is the only statement in which a
single subscript may be used to refer to an element (or elements) in a
multi-dimensional array.

Two variables in one common block or in two different common blocks
cannot be made equivalent. However, a variable in a program unit can be
made equivalent to a variable in a common block. If the variable that
is equivalenced to a variable in the common block is an element of an
array, the implicit equivalencing of the rest of the elements of the
array can extend the size of the common block (see Example 3, below).
The size of the common block cannot be extended so that elements are
added before the beginning of the established common block.

Example 1:

Assume that in the initial part of a program, an array C of size
100x100 is needed; in the final stages of the program C is no longer
used, but arrays A and B of sizes 50x50 and 100, respectively, are used.
The elements of all three arrays are of the type REA Storage space
can then be saved by using the statements:

DIMENSION C{100,100), A(50,50), B(100)
EQUIVALENCE (c(1), A(1)), (c(2501), B(1))

92

N

§

The array A, which has 2500 elements, can occupy the same storage as
the first 2500 elements of array C since the arrays are not both needed
at the same time. Similarly, the array B can be made to share storage
with elements 2501 to 2600 of array C.

Example 2:

DIMENSION B(5), C(10, 10), D(5, 10, 15)
EQUIVALENCE (2, B(1), c{(5,3)), (p(5,10,2), E)

This EQUIVALENCE statement specifies that the variables A, B(1), and
Cc(5,3) are assigned the same storage locations and that variables
D(5,10,2) and E are assigned the same storage locations. It alkso
implies that the array elements B(2) and C(6,3), etc., are assigned the
same storage locations. Note that further equivalence specification of
B(2) with any element of array C other than C(6,3) is invalid.

Example 3:

COMMON A, B, C
DIMENSION D(3)
EQUIVALENCE (B,D(1))

Explanation:

This would cause a common area to be established containing the
variables A, B, and C. The EQUIVALENCE statement would then cause the
variable D(1) to share the same storage location as B, D(2) to share the
same storage location as C, and D(3) would extend the size of the common
area, in the following manner:

A (lowest location of the common area)
B, D(L)
Cc, D(2)

D(3) (highest location of the common area)

The following EQUIVALENCE statement is invalid:

COMMON A, B, C
DIMENSION D{(3)
EQUIVALENCE (B, D(3))

because it would force D(1) to precede A, as follows:

D(1)
A, D(2) (lowest location of the common area)
B, D(3)
C (highest location of the common area)

Specification Statements 93

STORAGE ARRANGEMENT OF VARIABLES IN EQUIVALENCE GROUPS

Variables in an equivalence group may be in any order in main
storage. However, considerable object-time efficiency is lost unless
the programmer ensures that alY of the variables have proper boundary
alignment. Proper alignment can be ensured by constructing the group so
that the displacement of each variable in the group can be evenly
divided by the length of the variable. The displacement of a variable,
say X, is the number of storage locations, or bytes, from the first byte
of the first variable in the group to the first byte of variable X. The
first variable in the group is the variable or array element with the
lowest storage address. The reference numbers for each type of variable
are given in the section "COMMON Statement." The first variable in each
group is positioned as if its length specification were eight.

For example, the variables A, I, and CMPLX are REAL*4, INTEGER*4, and
COMPLEX*8, respectively, and are defined as:

DIMENSION A{(10), I(16), CMPLX(5)
EQUIVALENCE (A(1), I(7), CMPLX(1))

Then, the displacement of these variables within the group is
illustrated as follows:

| I(1)< T 64 storage locations—————--->1(16)
! !

! | ALY 40 storage locations———————— >R (10)
| !

] { CMPLX (1) <em—me 40 storage locations—--—->CMPLX(5)
! |

v v

displacement displacement

0 storage 24 storage

locations locations

The displacements of A and CMPLX are evenly divisible by their lengths.
However, if the EQUIVALENCE statement were written as

EQUIVALENCE (A€1), I(6), CMPLX(1))

then CMPLX is not properly aligned (its displacement of 20 is not evenly
divisible by its length of 8).

Note that this discussion applies solely to the manner in which the
equivalence group is arranged in storage. This arrangement is not
affected by the order in which the variable and array names are listed
in the EQUIVALENCE statement. For example, the statement EQUIVALENCE
(A(1),1(7),CMPLX(1)) has exactly the same effect as EQUIVALENCE
(CMPLX(1),A(1),I(7)), and in either case, I(1) is the first variable in
the group even though it does not appear in the EQUIVALENCE statement.

94

SUBPROGRAMS

It is sometimes desirable to write a program which, at various
points, requires the same computation to be performed with different
data for each calculation. It would simplify the writing of that
program -if the statements required to perform the desired computation
could be written only once and then could be referred to freely, with
each subsequent reference having the same effect as though these
instructions were written at the point in the program where the
reference was made.

For example, to take the cube root of a number, a program must be
written with this object in mind. If a general program were written to
take the cube root of any number, it would be desirable to be able to
combine that program (or subprogram) with other programs where cube root
calculations are required.

The FORTRAN language provides for the above situation through the use
of subprograms. There are two classes of subprograms: FUNCTION
subprograms and SUBROUTINE subprograms. In addition, there is a group
of FORTRAN-supplied subprograms (see Appendix C). FUNCTION subprograms
differ from SUBROUTINE subprograms in that FUNCTION subprograms return
at least one value to the calling program, whereas SUBROUTINE
subprograms need not return any.

A subprogram must never refer to itself directly or indirectly or
through any of its entry points.

Statement functions are also discussed in this section since they are
similar to FUNCTION subprograms. The difference is that subprograms are
not in the same program unit as the program unit referring to them,
whereas statement function definitions and references are in the same
program unit.

NAMING SUBPROGRAMS

A subprogram name consists of from one through six alphameric
characters, the first of which must be alphabetic. A subprogram name
may not contain special characters (see Appendix A). The type of a
function determines the type of the result that can be returned from it.

Type Declaration of a Statement Function: Such declaration may be
accomplished in one of ; ways: by the predefined convention, by

] y e explicit specification statements.
the rules for declaring the type of variahles apply to statement
functions.

Type Declaration of FUNCTION Subprograms: The declaration may be made
by the predefined convention, ; ici
specification in the FUNCTION statement,

No type is associated with a SUBROUTINE name because the results that
are returned to the calling program are dependent only on the type of
the variable names appearing in the argument list of the calling program
and/or the implicit arguments in COMMON.

Subprograms 95

FUNCTIONS

A function is a statement of the relationship between a number of
variables. To use a function in FORTRAN, it is necessary to:

1. Define the function (i.e., specify which calculations are to be
pexformed)

2. Refer to the function by name where required in the program

Function Definition

There are three steps in the definition of a function in FORTRAN:

1. The function must be assigned a name by which it can be called (see
the section "Naming Subprograms")

2. The dummy arguments of the function must be stated
3. The procedure for evaluating the function must be stated
Items 2 and 3 are discussed in detail in the sections dealing with

the specific subprograms, "Statement Functions" and "FUNCTION
Subprograms."

Function Reference

When the name of a function, followed by a list of its arguments,
appears in any FORTRAN expression, it refers to the function and causes
the computations to be performed as indicated by the function
definition. The resulting quantity (the function value) replaces the
function reference in the expression and assumes the type of the
function. The type of the name used for the reference must agree with
the type of the name used in the definition.

STATEMENT FUNCTIONS

A statement function definition specifies operations to be performed
whenever that statement function name appears as a function reference in
another statement in the same program unit.

r
|General Form
L

L}
|name(ay ,22,83¢+++,an) = €xpression

Where: name is the statement function name (see the section "Namlng
| Subprograms").

Each a is a dummy argument. It must be a distinct variable
] (i.e., it may appear only once within the list of i
arguments). There must be at least one dummy argument.

] expression is any arithmetic or logical expression that does]
not contain array elements. Any statement function
appearing in this expression must have been deflned
| previously.

96

The expression to the right of the equal sign defines the operations
to be performed when a reference to this function appears in a statement
elsewhere in the program unit. The expression defining the function
must not contain a reference to the function it is defining.

The dummy arguments enclosed in parentheses following the function
name are dummy variables for which the arguments given in the function
reference are substituted when the function reference is encountered.
The same dummy arguments may be used in more than one statement function
definition, and may be usad as variables outside the statement function
definitions. An actual argument in a statement function reference may
be any expression of the same type as the corresponding dummy argument.

All statement function definitions to be used in a program must
precede the first executable statement of the program.
Example: The statement:
FUNC(A,B) = 3.%A4B*%2_ 4+X+Y+7
defines the statement function FUNCc, where FUNC is the function name and
A and B are the dummy arguments. The expression to the right of the
equal sign defines the operations to be performed when the function
reference appears in an arithmetic statement.
The function reference might appear in a statement as follows:
C = FUNC(D, F)
This is equivalent to:
C = 3.*%D+EX*2, +X+Y+2
Note the correspondence between the dummy arguments A and B in the

function definition and the actual arguments D and E in the function
reference.

Examples:

references:

Definition Reference
SUM(A,B,C,D) = A+B+C+D NET = GROS-SUM(TAX,COVER,HOSP,STOCK)
FUNC(Z) = A+X*Yx7Z ANS = ¥FUNC(RESULT)

VALID(P,Q) = .NOT. P .OR. Q VAL = TEST .OR. VALID (R, S)
BIGSUM = SUM(A,B,SUM(C,D,E,F),G(I))

Invalid statement function definitions:

SUBPRG (3 ,J,K) =3xI+4+J*%*3 (Arguments must be variables)

SOMEF (A (I) ,B) =A (I) /B+3. (Arguments must not be array elements)

SUBPROGRAM (A, BY =A** 24B** 2 (Function name exceeds limit of six
characters)

3FUNC (D) =3.14%*E (Function name must begin with an
alphabetic character)

ASF(A) =A+B (1) (Expression may not contain an array
element)

BAD (A, B) =A+B+BAD (C, D) (Recursive definition not permitted)

NOGOOD (A ,A) =A*A (Arguments are not distinct variable
names)

Subprograms 97

Invalid statement function references (the functions are defined

as above):

WRONG = SUM(TAX,COVER) (Number of arguments does not agree
with above definition)

MIX = FUNC(I) (Type of argument does not agree with
above definition)

ALPHA = FUNC ('DATA') (Arguments must not be literals)

FUNCTION SUBPROGRAMS

The FUNCTION subprogram is a FORTRAN subprogram consisting of a
FUNCTION statement followed by other statements including at least one
RETURN statement. It is an independently written program that is
executed wherever its name is referred to in another program.

r Al
General Form

Type FUNCTION name¥®® (a;,as42345¢++¢2n)

Where: Type is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, or
LoGICAL. Its inclusion is optional.

name is the name of the FUNCTION.

Each a is a dummy argument. It must be a distinct variable
or array name (i.e., it may appear only once within the

statement) or dummy name of a SUBROUTINE or other FUNCTION
subprogram. There
avgument llSt.

convention, '
the FUNCTION statement

The function name must also be typed in the
prcgram units which refer to it if the predefined convention is not
used.

Since the FUNCTION is a separate program unit, there is no conflict
if the variable names and statement numbers within it are the same as
those in other program units.

The FUNCTION statement must be the first statement in the subprogram.
The FUNCTION subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, or a BLOCK DATA
statement M C

al

i

LRgral gn
least once in the subprogram -- as the variable name to the left of the
equal sign in an arithmetic or logical assignment statement, as an
argument of a CALL statement or an external function reference that is
assigned a value by the function or subroutine referred to, or in the
list of a READ statement within the subprogram.

98

»

The FUNCTION subprogram may also use one or more of its arguments to
return values to the calling program. An argument so used will appear
on the left side of an arithmetic or logical assignment statement, in
the list of a READ statement within the subprogram, or as an argument in
a CALL statement or function reference that is assigned a value by the
subroutine or function referred to.

The dummy arguments of the FUNCTION subprogram (e.g., ass22s

.83y.-+,an) may be considered to be dummy names. These are replaced at

the time of execution by the actual arguments supplied in the function
reference in the calling program. Additional information about
arguments is in the section "Dummy Arguments in a FUNCTION or SUBROUTINE
Sukprogram."

When a RETURN statement in a FUNCTION subprogram is executed, all
variables and ‘arrays in the subprcgram that are not in common and are
not dummy arguments become undefined, except those given initial values
in a DATA statement and whose initial
values were not changed. b

The relationship between variable names used as arguments in the
calling program and the dummy variables used as arguments in the
FUNCTION subprogram is illustrated in the following example:

Example 1:
Calling Program FUNCTION Subprogram
. FUNCTION CALC (A,B,J)
ANS = ROOT1*CALC(X,Y.I) .
. I = J%2
CALC = A**I/B
RETURN
END
Explanation:

In this example, the valuss of X, Y, and I are used in the FUNCTION
subprogram as the values of A, B, and J, respectively. The value of
CALC is computed, and this value is returned to the calling program
where the value of ANS is computed. The variable I in the argument list
of CALC in the calling program is not the same as the variable I
appearing in the subprogram.

Subprograms 99

Example 2:

Calling Program FUNCTION Subprogram

INTEGER FUNCTION CAL

I,J,K)

. -

ANS=ROOT 1*CALC (L, M, N) CALC = I+J+K**2
RETURN
END
Explanation:

The FUNCTION subprogram CALC is declared as type INTEGER of length 2.

RETURN and END Statements in a FUNCTION Subprogram

211 FUNCTION subprograms must contain an END statement and at least
one RETURN statement. The END statement specifies the physical end of
the subprogram; the RETURN statement signifies a logical conclusion of
the computation and returns the computed function value and control to
the calling program.

Example:

FUNCTION DAV (D,E,F)
IF (D-E) 10, 20, 30
10 A = D+2.0*E

5 A = F4+2.0*E

20 DAV = A4D¥*2

RETURN
30 DAV = D*%2

RETURN
END

Explanation:
If the result of (D-E) is negative or zero, the first RETURN

statement will be executed. If the result is positive, the second
RETURN will be executed.

100

SUBROUTINE SUBPROGRAMS

The SUBROUTINE subprogram is similar to the FUNCTION subprogram in
many respects. The rules for naming FUNCTION and SUBROUTINE subprograms
are similar. They both reguire an END statement, and they both contain
the same sort of dummy arguments. Like the FUNCTION subprogram, the
SUBROUTINE subprogram is a set of commonly used computations, but it
need not return any results to the calling program, as does the FUNCTION
subrrogram. The SUBROUTINE subprogram is referenced by the CALL
statement.

r
| General Form |

SUBROUTINE name {(ai,82,33,+-+,3n)

Where: name is the SUBROUTINE name (see the section "Naming
Subprograms") .

Each a is a distinct dummy argument (i.e., it may appear
only once within the statement). There need not be any
arguments, in which case the parentheses must be omitted.
Each argument used must be a variable or array name

the durmy name of another |

"Dummy Arguments in a FUNCTION or SUBROUTINE Subprogram."

Since the SUBROUTINE is a separate program unit, there is no conflict
if the variable names and s+tatemen* numbers within it are the same as
those in other program units.

The SUBROUTINE statement must be the first statement in the
subprogram. The SUBROUTINE subprogram may contain any FORTRAN statement
except a FUNCTION statement, another SUBROUTINE statement, or a BLOCK

The SUBROUTINE subprogram mayv use one or more of its arguments to
return valuss to the calling program. An argument so used will appear
on the left side of an arithmetic or logical assignment statement, in
the list of a READ statement within the subprogram, or as an argument in
a CALL statement or function reference that is assigned a value by the
subroutine or function referred to. The subroutine name must not appear
in any other statement in the SUBROUTINE subprogram,

The dummy arjyuments (a,, @z, @s3,e--,a8n) May be considered dummy names
that are replaced at the time of execution by the actual arguments
supplied in the CALL statement. Additional information about dummy

arguments is in the section "Dummy Arguments in a FUNCTION or SUBROUTINE
Subprogram. "

When a RETURN statement in a SUBROUTINE subprogram is executed, all
variables and arrays in the subprogram that are not in common and are
not dummy arguments beco i _ i initial values
in a DATA statement i . : and whose
initial values were no

Subprograms 101

CALL Statement

The CALL statement is used to call a SUBROUTINE subprogram.

General Form

e

CALL name (ai,22,83s7+++s8n)

Where: name is the name of a SUBROUTINE subprogram

Each a is an actual argument that is being supplied to the
SUBROUTINE subprogram. The argument may be a variable,
array element, or array name, a literal, an arithmeti
logical expression or a function or subroutine name.

Examples:

CALL OUT

CALL MATMPY (X,5,40,Y,7,2)
CALL QDRTIC (X,Y,Z,ROOT1,ROOT2)
CALL SUB1 (X+Y#*5,ABDF, S INE)

CALL SUB2(A,B,&10, 20,8&30)

The CALL statement transfers control to the SUBROUTINE subprogram,
and replaces the dummy variables with the value of the actual arguments
+hat appear in the CALL statement.

Example:
Calling Program SUBROUTINE Subprogram
DIMENSION X(100) ,Y(100)
. SUBROUTINE COPY (A, B,N)
. DIMENSION A(N) ,B(N)
. DO 10 I = 1,N
CALL COPY (X,Y,100) 10 B(I) = A(I)
. RETURN
o END
Explanation:

The relationship between variable names used as arguments in the
calling program and the dummy variables used as arguments in the
SUBROUTINE subprogram is illustrated.

Subroutine COPY "copies" array A into array B within the subprogram.
In this particular call, the subroutine arrays A and B are associated
with the calling program arrays X and Y, respectively, and the variable
N in the subroutine is associated with the wvalue 100. Thus a call to
subroutine COPY in this instance results in the 100 elements of array X
being copied into the 100 elements of array Y.

102

SUBROUTINE Subprogram

in a

RETURN Statements

r—

General Form

1

= —

——— e e ey

—— et e s st]

ETURN statement of a

ing the R

follow
to the next statement follow

ion

The normal sequence of execut

the

in

ing

is

the CALL

SUBROUTINE subprogram

ing program.

call

RETURN may be made in either a SUBROUTINE or

Returns of the type

FUNCTION

in a

"RETURN andrgND Statements

ram (see

FUNCTION subprog

gram").

Subpro

103

Subprograms

DUMMY ARGUMENTS IN A FUNCTION OR SUBROUTINE SUBPROGRAM

The dummy arguments of a subprogram appear after the FUNCTION or
SUBROUTINE name and are enclosed in parentheses. They are replaced at
the time of execution by the actual arguments supplied in the function
reference or CALL statement in the calling program. The dummy arguments
must correspond in number, order, and type to the actual arguments. For
example, if an actual argument is an integer constant, then the
corresponding dummy argument must be an integer of length 4. If a dummy
argument is an array, the corresponding actual argument must be (1) an
array, or (2) an array element. In the first instance, the size of the
dummy array must not exceed the size of the actual array. In the
second, the size of the dummy array must not exceed the size of that
portion of the actual array which follows and includes the designated
element.

The actual arguments can be:

e A literal, arithmetic or logical constant

e Any type of variable or array element

e Any type of array name

e Any type of arithmetic or logical expression

e The name of a FUNCTION or SUBROUTINE subprogram

If a literal is passed to a
passed is the literal as defined, without
preceding wH specification. An actual argument which is the name Of a
subprogram must be identified by an EXTERNAL statement in the calling
program unit containing that name. Hexadecimal constants cannot be
actual arguments.

A dummy argument is an array when an appropriate DIMENWSION or
explicit specification statement appears in the subprogram. N
dummy arguments may appear in an EQUIVALENCE, COMMON, DATA,&
statement.

If a dummy argument is assigned a value in the subprogram, the
corresponding actual argument must be a variable, an array element, or
an array. An expression other than a variable or array element should
not be written as an actual argument unless the programmer is certain
that the corresponding dummy argument is not assigned a value in the
subprogram.

A referenced subprogram cannot assign new values to dummy arguments
which are associated with other dummy arguments within the subprogram or
with variables in COMMON. For example, if the function DERIV is defined
as

FUNCTION DERIV (X,Y,2)
COMMON W

104

the calling program

in

g statements are included

f the followin

and i

OMMON B

C

D)

B

DERIV (A,

C =

it is

because

’

and the variable W,

COMMON;

dummy argument Y
is in

i
h

A
ic

igned new values by the function DERIV.
ted with B.

Dummy arguments X and Z cannot be defined because they are both
r
wh

S
» By

la

e argument

nnot be as

ne sam

Z, and W ca
ith ti

sociated with an argument
is also assoc

Y,
it

associated w

as
because

then X,

105

Subprograms

106

Subprograms 107

EXTERNAL STATEMENT

General Form

EXTERNAL 84,832,335+« 7s8n

Where: Fach a is a name of a subprogram that is passed as an
argument to other subprograms.

fom e o o e ey e ey
e s s i it it i

The EXTERNAL statement is a specification statement, and must precede
statement function definitions and all executable statements.

If the name of a FORTRAN supplied in-line function is used in an
EXTERNAL statement, the function is not expanded in-line when it appears
as a function reference. Instead, it is assumed that the function is
supplied by the user.

The name of any subprogram that is passed as an argument to another
subprogram must appear in an EXTERNAL statement in the calling program.
For example, assume that SUB and MULT are subprogram names in the
following statements:

108

Example 1:

Calling Program Subprogram
EXTERNAL MULT SUBROUTINE SUB(K,M,Z)
. IF (K) 4,6,6
. 4 D = M(K,Z*%*2)
CALIL SUB(J,MULT,C) .
. 6 RETURN
- END

kxplanation:

In this example, the subprogram name MULT is used as an argument in
the subprogram SUB. The subprogram name MULT is passed to the dummy
variable M as are the variables J and C passed to the dummy variables K
and Z, respectively. The subprogram MULT is called and executed only if
the value of K is negative.

Example 2:
Calling Program Subprogram

. SUBROUTINE SUB(W,X,M,N)

- -

CALL SUB(A,B,MULT(C,D),37) .
. RETURN
. END

Explanation:

In this example, an EXTERNAL statement is not required because the
subprogram named MULT is not an argument; it is executed first and the
result becomes the argument.

OBJECT-TIME DIMENSIONS

If a dummy argument array is used in a FUNCTION or SUBROUTINE
subprogram, the absolute dimensions of the array do not have to be
explicitly declared in the subprogram by constants. Instead, an
explicit specification statement or DIMENSION statement appearing in the
subprogram may contain dummy arguments or variables in common which are
integer variables of length 4 to specify the size of the array. When
the subprogram is called, these integer variables receive their values
from the actual arguments in the calling program reference or from
common. Thus, the dimensions of a dummy array appearing in a subprogram
may change each time the subprogram is called.

The absolute dimensions of an array must be declared in the calling
program or in a higher level calling program, and the array name must be
passed to the subprogram in the argument list of the calling program.
The dimensions passed to the subprogram must be less than or equal to
the absolute dimensions of the array declared in the calling program.
The variable dimension size can be passed through more than one level of
subprogram (i.e., to a subprogram that calls another subprogram, passing
it dimension information).

Subprograms 109

Integer variables in the explicit specification or DIMENSION
statement that provide dimension information must not be redefined
within the subprogram; i.e., they must not appear to the left of an
equal sign.

The name of an array with object-time dimensions cannot appear in a
COMMON statement, although variables containing the dimensions may be
placed in a common block.

Example 1:
- SUBROUTINE SUBR1(R,L,M)

- -

-

DIMENSION A(5,10) -
- REAL R(L,M)

CALL SUBR1(A,5,10)

. DO 10 I=1,L
. DO 10 J=1,M
- 10 R(1I,J)=0.
END N
RETURN
END

Explanation:

This example shows the use of object-time dimensions to supply
dimension information to a subroutine that will perform some operation
on an array of any specified size. In this case, the dimensions passed
are those specified for the array in the calling program, i.e., the full
size of the array.

Example 2:
. SUBROUTINE SUBR1(R,L,M)

- -

)

DIMENSION A(5,10)

. REAL R(L,M)
I =4 .
. DO 10 I=1,L
. DO 10 J=1,M
. 10 R(I,J)=0.
J =7 .
. RETURN
CALL SUBR1(A,I,J) .
. END

END

110

VRN

Explanation:

This example shows the use of object-time dimensions to specify a
subset of the extent of an array to a subprogram. The effect of this
coding is the same as if another array, B, of dimensions (4,7) had been
defined in the calling program and had been made equivalent to array A;
the array B and its dimensions would then have been passed to SUBR1l as
follows:

DIMENSION A(5,10),B(4,7)

EQUIVALENCE (A(1),B(1))

-«

CALL SUBR1(B,I,J)

o«

END

BLOCK DATA SUBPROGRAMS

To initialize variables in a labeled (named) common block, a separate
subprogram must be written. This separate subprogram contains only the
BLOCK DATA, DATA, COMMON, DIMENSION, EQUIVALENCE, and explicit
specification statements associated with the data being defined. This
subprogram is not called; its presence suffices to provide initial data
values for references in main and subprograms to labeled common blocks.
Data may not be initialized in unlabeled common.

General Form

BLOCK DATA

g o

1. The BLOCK DATA subprogram may not contain any executable
statement function definitions, or FORMAT,
FUNCTION, SUBROUTINE, or ENTRY statements.

Statements which provide initial values for data items cannot
precede the COMMON statements which define those data items.

Subprograms 111

112

Any main program or subprogram using a common block must contain a
COMMON statement defining that block. If initial values are to be
assigned, a BLOCK DATA subprogram is necessary.

All elements of a common block must be listed in the COMMON
statement, even though they are not all initialized; for example,
the variable A in the COMMON statement in the following example
does not appear in the data initialization statement:

BLOCK DATA
COMMON /E
REAL B(4)

Data may be entered into more than one common block in a single
BLOCK DATA subprogram.

A particular common block may not be defined in more than one BLOCK
DATA subprogram.

APPENDIX A: SOURCE PROGRAM CHARACTERS

Alphabetic Characters Numeric Characters

CoOoOdonEsEWNNERE O

Special Characters

(blank)

*¥e N+

~-

A
B
C
D
E
F
G
H
I
J
K
L
M
N
o
P
Q
R
S
T
U
v
W
X
Y

(

[e e o e et et o o e s e — e e et e e et et e P e
e e e i et e e e et ey Ayt e et s et £t Bt G At e s s s e e]
b Bt e et e e e e et et s e e RS e e e e s e et e s e

- characters listed above constitute the set of characters
acceptable by FORTRAN, except in literal data, where any valid card code
is acceptable.

Appendix A: Source Program Characters 113

EN

sit=

Appendix B:

Other FORTRAN Statements Accepted by FORTRAN IV

116

P

.

APPENLCIX C: FORTRAN-SUPPLIED PROCEDURES

S

tWo types: mathematical
bydutines, An in-line function is inserted by
the FORTRAN compiler at any point in the program where the function is
referenced. An out-of-line function is 1ocated in a library, and the
compiler generates an external reference to
mathematlcal functlons, and Table 5 shows

Detailed

Appendix C: FORTRAN-Supplied Procedures 117

8sLiL

3.
é.
|# 5

Argument(s)

Function Value Returned

In-line (I) Out-of-line (O)*

General Definition
Function
Natural and y=log. x
common or
logarithm y=Inx
y=PVlog.z

See Notes 2 and 4.

e y=1ogw X
ALOGI10
DLOGI10
Exponential y=e*
y=e*
See Note 4.
Square y= VX or
root y=x'%
y=Vz or
y=z 1
See Note 4.
Notes:
1. No entry = not provided.

x1 < 0 and x. = 0, in which case y. = —.

v = 16%+ (1 — 16™) for single precision, 16* * (1 — 16™) for double precision,

z is a complex number of the form x, + x.i.

pe doubl

—-180218 =x=
174.673

x = 174.673
| <(@2%n)

Any COMPLEX
argument

cisi

Range®

DOS / C&G /
VSPC / G,G1

H HExt

~180218 =y =
174.673

(0]
o

—-180218 =y,
175.021
—-r<ly=n

A

—-78268 =y =
75.859

0= Y1 =
1.0987 + (v%)
lye] =
1.0987 « (v*%)

2. PV = Principal Value. The answer given (y: + y.i) is that one whose imaginary part (y.) lies between —= and w; more specifically, —7 < y: = =, unless

*y aT1qel

(9 30 | 3xId) SuUOT3OUNd TEROTIRWSYIBN

O xTpuaddy

ssanpsociad psTTddns-NYHLIOL

6L1

A
A Argument(s) Function Value Returned In-line (I) Out-of-line (O)*
General Entry Definiti
- efinition y -
Function Name No. Type* Length Range Type® Length Range® DOS / C&G/ H HExt
VSPC /G,G1

Arc tangent [ATAN | y=arctan x 1| Real 4 Any REAL Real o 4 Mo e T (6]) (o)
Argument (in radians) T2 =Y=T2
DATAN 1} Real 8 Real 8 (0] o (0]

(in radians)

2| Real | 4 Any REAL Real 4 —r<ly=nw (o) 0 (o}

ATAN =arctan X
Y Xz arguments (in radians)
DATAN2 21 Real 8 except (0, 0) Real 8 O (6] [0}

(in radians)
5 i 1

Sine and “SIN [y=sinx "1 Real | 4 | R <(2°) |Real | 4| —1=y=1 0
cosine (in radians)
DSIN 1{ Real 8 x| < (2%+x) Real 8 (0]

(in radians)

Rel

—-l=y=1 (6]
(in radians)
DCOS 1| Real 8 Real 8 (6] (o) (0]

(in radians)

Notes:

1. No entry = not provided.
2.y = 16+ (1 — 167°) for single precision, 16® « (1 — 16™) for double precision, ;
3. T}:’pe real of length 8 exists in ANS FORTRAN as type double precision.

o1gqelL

“h

(9 30 Z 3Ied) SuoTIOUNJ [eOTIRWAYIEN

0zl

Argument(s) Function Value Returned In-line (I) Out-of-line (O)*
General Entry Definition
Function Name s s DOS / C&G/ .
. Length Rang T Length H HExt
No Type eng ange ype' eng VSPC / G.C1 X
Sine and CSIN y=sinz 1 | Complex 8 ||x| < (%) Complex| 8 0 0 0
cosine _— See Note 4. | (Gn rat{l‘i_an\iv) x| = 174.673

(continued)

y=cos z
See Note 4.

Hyperbolic
tangent

Notes:
1. No entry = not provided.

&

routines.
6. Type real of length 8 exists in ANS FORTRAN as type double precision.

°TqelL

]

(9 JO £ 3Ivg) SUOTIOUNI TROIIRWIUIENW

D xt1puaddy

-
-

sainpsdcid pPoITddnsS-NYILIOd

4"

o=\
Arguinent(s) Function Value Returned In-line (I) Out-of-line (O)’
General Entry Definition
. efiniti
Function Name No. Type' jLength Range Type' | Length Range® I\)/gg C/ ;:é,GG/l H HExt
Absolute TIABS* y=lx| 1 | Integer 4 | Any INTEGER Integer 4 1 1 1
value argument
ABS* 1 | Real 4 | Any Real 4 1 1 1
DABS* Real Real

Maximum
and
minimum
values

Truncation

Notes:

MAXO
AMAXO0*

MAX1*
AMAXT*
AX1*

y=|z|= (x*+x°) %

MINO
AMINO*

MIN1*
AMIN1*
DMIN1*

y=min(xi;, ..., Xn)

INT
IDINT*

y=(signof x) *n
where n is the
largest integer

= ||

1. No entry = not provided.
2. vy = 16%« (1 — 16™°) for single precision, 16 « (1 — 16™) for double precision,
3. Floating-point overflow can occur.

4. Type real of length 8 exists in ANS FORTRAN as type double precision.

ANS FORTRAN Intrinsic Function.

Integer argument (o)
=2 | Integer 4 (0] 1 I
=2 | Real 4 | Any Integer O 1 I
4 | REAL Real (6] 1 I
8 | argument 1 (0] I 1
Any INTEGER
4 | argument Integer 4 O I I
Integer 4 Real 4 (0] 1 1
Real 4 | Any Integer 4 (0] I 1
Real 4 | REAL Real 4 (¢} 1 I
Real 8 | argument Real 8 (0] I 1
Any I
REAL
| argument
Integer I
Integer 1

oTqeL

“h

(9 JO f§ 3IRd) SUOT3IOUNJ TeDdTIewsylren

[AA"

Argument(s) Function Value Returned In-line (I) Out-of-line (O)*
General Entry Definition i
Function Name No.| Type' | Length Range Type' | Length Range® \]/) SOPSC/ /Cg,((;;/l H HExt

Médulo B

MOD*

Integer

XQ#O

significant part of
a REAL argument

Notes:

argument

y =remainder Integer
arithmetic AMOD* < X1) i Real See Note 3. Real
DMOD x2 /G Real Real
y=x:(modulo x.)
See Note 2.
Conversion Integer Any
from INTEGER INTEGER
to REAL argument
Conversion y={(signofx) *n _ | Any
from REAL where n is the largest REAL
to INTEGER v integer = |x| argument
Transfer ISIGN* y={(signof x:) * |x| | 2 | Integer 4 |x5£0 Integer 4 I 1 1
of sign See Note 3.
SIGN* 2 | Real 4 Real 4 1
DSIGN* 2 | Real 8 Real 8 1
Positive IDIM?* y=x; —min(x;, x2) 2 | Integer 4 | Any INTEGER Integer 4 1 I 1
difference argument
Any Real 1
REAL R
argument
Obtain most Any REAL 1

1. No entry = not provided.

2. x: (modulo x.) is defined as x; — [*ﬁ':—:l * xs, where the brackets indicate that the largest integer whose magnitude does

x X
not exceed the magnitude of -;:‘ is used. The sign of the integer is the same as the sign of -é

3. If x. = 0, then the modulus and transfer-of-sign functions are mathematically undefined.
4, Type real of length 8§ exists in ANS FORTRAN as type double precision.

5.4 = 16%+ (1 — 16™°) for single precision, 16% « (1 — 16™*) for double precision, :
* ANS FORTRAN Intrinsic Function.

routines.

a1qel

*h

(9 3o g 312d) SsuoT3zoUNg TedTivusylei

O xTpusddy

seanped0i1d pe1Tddng-NVILIOW

1A

argument arg=x;+xXai

Notes:
1. No entry = not provided.

2. Type real of length 8 exists in ANS FORTRAN as type double precision.
* . .

G 1 Ent Argument(s) Function Value Returned In-line (I) Out-of-line (O)*
enera ntry .
. Definition
Function Name No. Type® | Length Range Type® | Length Range \[7) SPSC/ ;:(&;%/1 H HExt

Obtain real part Any COMPLEX I

of a compPLEX argument

argument

Obtain imaginary Any COMPLEX

partof a AIMAG* argument

COMPLEX

argument

Precision Any REAL

increase argument
‘ Express two REAL{| CMPLX* y=x1+xi Any REAL

arguments in argument

COMPLEX form

Obtain conjugate | CONJG* y=x1—Xl Any COMPLEX

of a coMPLEX for argument

s1qelL

“h

(9 30 9 31Bg) suoT3IdUNS TEOTIRWSYIEW

the dump fc
he following:

hexadecimal
OGICALX1 -

124

APPENDIX D: SAMPLE PROGRAMS

SAMPLE PROGRAM 1

.'I'he sample program shown in Figure 1 is designed to find all of the
prime numbers between 2 and 1000. A prime number is an integer greater
than 1 that cannot be evenly divided by any integer except itself and 1.

Tr_ms, 7 is a prime number. The number 9 is not prime, since it can be
divided evenly by 3.

M PORTRAN Coding Farm ﬁ::%‘a.:m
|roon SOMPLE PROGRA | aramic mot g or 4

PUNCKING
o l'm{ lol"o ﬁ INSTRUCTIONS o

f [sraremens
NUMSER

g FORTRAN STATEMENT ln(:g‘;m»u
9

AT sTelT & 90 1117 1314 316 17 W1y W71 22 7 24 25 % T W 29 30 31 37 3334 35 363733 39 0 A1 47 43 4 & % & 4 49 50 S 32 33 54 35 34 &7 81 62 83 &1 &5 66 &7 88 op 20 71 72173 74 75 76 77 N 7%
H T T 3 - - N

¢| PRIME] INVIMBIEIR! IcleN[eR]AITOR] | HINEEE N
Rixfvle [(fel,]a HEEREERE S
4| [Flojrim|RiT

W 4/9(X N

}po 4| I|s[4/2],
Ktjé’ RIT
J

i
T

1"‘—

EICES
H e

FiLlo
1

mo
x|
A

.
m
)
o
=
)
o
°
>

o [ACAEE =

N
g!([[| . [I B
AT I NESERAEN BE L

; L : | [[B C IR ¥

(RS2

Cad
Ca)

+4-

A
]

T
:!5!.1

H ! . P
7 ! i T T

t
'
t —t
b i
i

[R

i ' . H j i I i ' . :
4 sJel7 & % 10 1112 13 1415 16 17 18 19 20 2 22 70 24 25 26 27 78 5 30 35 32 33 34 3 36 3738 39 40 4l 47 43 44 45 4 47 48 49 50 31 57 53 54 55 58 57 32 59 60 o1 62 6] 64 43 66 67 60 9 70 7\ J2[73 74 75 76 T M 7% @
A andord card fom, |

B alectro 888157, is avatiable for punching shotements from fhis form.

Figure 1. sample Program 1

Appendix D: Sample Programs 125

SAMPLE PROGRAM 2

The n points (xj, yj) are to be used to fit an m-degree polynomial by
the least-squares method.

Y = @t asXx + axx2 + ... + amxm
In order to obtain the coefficients a,, aj,+.., ay it is necessary to

solve the normal equations:

(1) Woldg + Wqdy + see + Wmaim= z
(2) Wydo + Wady + eee + Wpeadp = Zy
.
L]
(m+1) W@, * Wp4ada * eee * Wopmam = 2zp
where:
n
Wo = N Zo = Z Y;
=1
n n
Wy =X Xy zZy = I Y;Xg
=1 i=1
n n
W =§ xi2 Zs = ? yixi2
i=1 i=1
* L]
. n
. Zp =2 Y%,
- i=1
L]
n
Wamn =3 xi2m
i=1

After the w's and z's have been computed, the normal equations are
solved by the method of elimination which is illustrated by the
following solution of the normal equations for a second-degree
polynomial (m = 2).

(1) woap+ wiay + waap = 2z,

(2) Wiadot Woag + Wads, = Z4

(3) waayt wza; + wya, = zZ,
The forward solution is as follows:

1. Divide equation (1) by wo.

2. Multiply the equation resulting from step 1 by w; and subtract from
equation (2).

3. Multiply the equation resulting from step 1 by w, and subtract from
equation (3).

126

The resulting equations are:

‘3' _, (1) ay + bysa; + byzaz = by,
(5) bosas + bsizas = by,
(6) biza; + bazaz = ba,
where:
by = Wwi/w,, byia = wa/wWo, by, = zo/Wo
baa = Wa=b1oWs 4 bas = Wa—bsaWs , bay = 23-bauws

bas = Wa~bioWs 4 basz = Wu‘b13W2 ¢ bay = Z2o-biyvs

Steps 1 and 2 are repeated using equations (5) and (6), with b,, and baj,
instead of wyand wi. The resulting equations are:

N as + Cszas = Cay

(8) Ca3da = Cay

where:

I

Cas bos/bas , c2y4 = by, /bax

Cas bs3z-Co3bss ¢ Cauw = bzu—Caubax

The backward solution is as follows:

(9) ap = C34/Cas from equation (8)
(10) ay = Ca4~Ca3ds from equation (7)
(11) dpo = b1u°b12a1—b13a2 from equation (ll»)

Figure 2 is a possible FORTRAN program for carrying out the
calculations for the case: n = 100, m < 10, Wo, Wi, Wz, eee, Wap are
stored in W(1), W(2), W(3),..., W(2M+1), respectively. Zoy Zi1y T2y sses

z, are stored in z(1), Z(2), Z(3),..., Z{M+l), respectively.

Appendix D: Sample Programs 127

IBM FORTRAN Coding Form et 5ohe

wace | oF
moow SAMPLE PROGRAM 2 [omcomss. [T T T T T T 1 et
INSTRUCTIONS [CARD ELECTRO NUMBER®

prysyw— [/68 | e

e - TOENTIFICATION

STATEMENT | 2 FORTRAN STATEMENT

8

|234567B?IOHKQDHISMVN’WNH27232‘252027?329]0!!31333‘.1536]71839101[IZAJMASlllGVSDSI5253545556575059606\5’1b]él5565576&6970717273"757677“7?”

REAL] X(100) Y (100) sW(21)»Z(1 1) sAC1[1) B (11212)
1| FORMAT (I2+I3/[(4F1u.7)) ” :
2 [FORMAT (5[E15.6) N
READ| (534)) MNP (X(IDsY(INsI=1sN)
LW = 2%M+1

J=2LW
.0

DO 6 J=ipLZ
= 0.0

14N

(LY+Y (1)
=29LZ

(J)+p
() +Y(I)¥*P
=LBsLW

P
N(

13} [2(
DO
P

o

123 45 7 8 9 10 Vi 12 13 1a 15 16 17 18 19 20 21 22 23 24 35 2 27 28 29 30 31 37 33 34 55 36 57 K v b Sl & 4l a€ @ a o e 0 G G0 AL 3i W e n w0 e 41 A &) 02 65 66 &7 6f 69 10 T\ 273 74 75 76 77 78 79 8O
R tondord cord form, 164 sleciio 888157, 35 Garloble for punching alementy from This form

Figure 2. Sample Program 2 (Part 1 of 3)

IBM FORTRAN Coding Form o
woewn . GAMPLE PROGRAM 2 T Joweme T T T T T T f eec2o 3
PROGRAMMER | DATE 6/6 8 l INSTRUCTIONS. [PuNcn T [| [l I | IcAm ELECTRC NUMBER™

STaTemENT |5 IDENTIFICATION
ey §| FORTRAN STATEMENT
T 2.3 4 5]617 § 10 11 12 13 14 15 16 17 16 19 20 21 22 23 24 2 26 27 2 25 30 3! 32 30 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4B 47 50 51 52 53 54 55 56 57 58 59 60 61 62 &3 6% 65 66 &7 68 69 70 7\ 72] 73 74 75 76 77 78 79 80}

|}

16| W(J)[= W(I)+P
17/p0 2 I=[lsLZ
b0 20 K={sLZ
J = [K+I
20 B(KoI) = W(J-1]
DO 2[2 "K=[lsLZ
22/ B(KsLB) = Z(K)
23 p0 31 L=[isLZ
DIVB| = B(lLsL)
6 J=lsLB
26/ B(Ls[J) = B(LJ)/DIVBE_
I1 = L+1
IF (T1-LB}) 28533433
28[Ip0 31 T=11sLZ
FMULTBE = B(IsL)
Do 3[=LyLB
31| B(TolJ) = B(I9JD-B(L]sJ)¥FMULTB
33 A(LZ (LZ3LB)

) = B

L ,
35/ SIGMA = ¢..0

7 =[9L7Z

[

: ik
1.2 3 4 sfef7 8 9 10 1112 13 1415 06 17 1819 2020 2228 2425 2% 7 2820 3031 32 39 34 3538 3738 39 40 41 42 43 44 45 6 47 48 49 S0 51 52 53 54 55 56 57 58 59 60 4) 62 &3 64 65 66 67 68 69 70 -1 72|73 74 75 76 77 78 79 80
7R s#onderd cord Torm. 1BM elechro 888157, 13 avarlabTe Tor punching statement from s farm

Figure 2. Sample Program 2 (Part 2 of 3)

128

IBM FORTRAN Coding Form vt

o GANPLE PROGRAM 2 [e i i -

—— ~ 6/68 Nscons o - TR NORGERT

ool 5 FORTRAN STATEMENT o
[N

789 10 1117 T3 14 15 V5, 17 W 15726 21 77 13 74 25 76 27 75 39 % 31 32 13 3¢ 5 3 37 9 30 & A1 42 45 44 45 a6 47 48 49 30 51 97 53 $4 55 56 57 38 59 80 &1 62 &3 68 G 66 &7 o8 69 70 71 72} 71 74 75 76 77 78 79 80

37| ISTGMA = SIIGMA+B(I-1)vJ)%A(J)

T =1-1

ACL) = B(IL>LB)I-STGMA -]
Ug IF (I-1) u1941[535
U1 WRITE (61Q2) (A(I)9I=19LZ)

STOP) -

END

22 3 4 s[ef7 & % 10 t1 02 13 14 15 le 17 18 19 20 21 22 20 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 4l 42 43 a4 45 4t 47 48 49 30 31 50 53 54 56 S 57 6 59 40 61 67 63 61 & 66 67 68 69 0 71 52|73 74 75 76
i satements from s fov

7778 79 80
A sandes cord foim, 1M viectio 888137, 1 Svailable far punciiag yatements 1

Figure 2. Sample Program 2 (Part 3 of 3)

The elements of the W array, except W(1l), are set equal to zero.
W(1l) is set equal to N. For each value of I, X(I) and Y(I) are
selected.. The powers of X(I) are computed and accumulated in the
correct W counters., The powers of X(I) are multiplied by ¥Y(I), and the
products are accumulated in the correct Z counters. In oxrder to save
machine time when the object program is being run, the previously
computed power of X(I) is used when computing the next power of X(I).
Note the use of variables as index parameters., By the time control has
passed to statement 17, the counters have been set as follows:

N
W(1) = N Z(1) = ¥ Y(I)
‘ I=1
N N
W(2) = X(I) 72(2) = T Y(I)X(I)
=1 I=1
N N
W(3) = £ X(I)2 72(3) = Y(I)X(I)=
I=1 =1
L] N
. Z(M+1) = T Y(D)IX(DH™®
- I:l
N
W(2M+1) = = X(I)=2m
I=1

Appendix D: Sample Programs 129

By the time control has passed to statement 23, the values of w,,
WigeeeyWay have been placed in the storage locations corresponding to
columns 1 through M+1, rows 1 through M+l1l, of the B array, and the
values Of z,4Zi14eeey2Zy have been stored in the locations corresponding
to the column M+2 of the B array. For example, for the illustrative
problem (M = 2), columns 1 through 4, rows 1 through 3, of the B array
would be set to the following computed values:

Wo W4 Wo Z,
Wy Wo Wa Z4
Wao W3 w, Zo

This matrix represents equations (1), (2), and (3), the normal
equations for M = 2,

The forward solution, which results in equations (4), (7), and (8) in
the illustrative problem, is carried out by statements 23 through 31.
By the time control has passed to statement 33, the coefficients of the
A(I) terms in the M+l equations which would be obtained in hand
calculations have replaced the contents of the locations corresponding
to columns 1 through M+1, rows 1 through M+1, of the B array, and the
constants on the right-hand side of the equations have replaced the
contents of the locations corresponding to column M+2, rows 1 through
M+1l, of the B array. For the illustrative problem, columns 1 through 4,
rows 1 through 3, of the B array would be set to the following computed
values:

1 bia bis ba,,
0 1 Cas Cay
0 0 Casz Cay,

This matrix represents equations (#), (7), and (8).

The backward solution, which results in equatioms (9), (10), and (11)
in the illustrative problem, is carried out by statements 33 through 40.
By the time control has passed to statement 41, which prints the values
of the A(I) terms, the values of the M+l A(I) terms have been stored in
the M+1 locations of the A array. For the illustrative problem, the A
array would contain the following computed values for a,, ai, and a,,
respectively:

Location Contents

A(3) | C3,/Cas

A(2) Cz4—Cz3d>

A(1) by, -bssa;-byzas

The resulting values of the A(I) terms are then printed according to
the format specification in statement 2.

130

e

s

G

A

e

Goaa

S

=

5

o
e

.o

Debug Facility 131

Appendix E

. e
...
.
.

=
o L

132

DEBUG SPECIFICATION STATEMENT

.

ms

G

o
ARG

G

m
|

e

.

Debug Facility 133

Appendix E:

- - .
.

.

.

s

e
e

§NQ+
e

.

gEe

e

e

S

L

.

. :
o

.

L

134

A

Facility

.
v

e

.

o

o
w«i&ﬁm@%ﬁw&
.

o
.

-

.

o
W‘

e

|
.
-

136

2N

Appendix E:

Debug Facility 137

/

APPENDIX F: IBM FORTRAN IV FEATURES NOT IN 1BM BASIC FORTRAN IV

The following features in IBM FORTRAN IV are not in IBM Basic FORTRAN
IV:

ASSIGN
Assigned GO TO

i

BLOCK DAT

"COMPLEX |
Complex, logical, 1literal, .constants
DATA)

Labeled COMMON

Literal as actual argument in CALL and function reference
LOGICAL
Logical IF

Object-time dimensions

Object-time format specifications

i

The following in-line subprograms in IBM FORTRAN IV are not in IBM Basic
FORTRAN IV:

AIMAG

AINT

CMPLX IDINT
CONJG INT

REAL

The following out-of-line subprograms in IBM FORTRAN IV are not in IBM
Basic FORTRAN IV:

Appendix F: IBM FORTRAN IV Features not in IBM BASIC FORTRAN IV 139

i

.
5 Y B

.

G

.

.

SRR

:

o
hin

S

o

ANS FORTRAN 141

in

IBM FORTRAN IV Features not

Appendix G:

Appendix H: FORTRAN IV (H

Extended) Features

143

144

Appendix H: FORTRAN IV (H Extended) Features 145

146

G
e

I
i
f
:
i

o
P

e
e

o

Appendix H: FORTRAN IV (H Extended) Features

147

el

BE
5

Ao

e T TR R TR S

LT

&

.
(o

S

Appendix H: FORTRAN IV (H Extended) Features 149

150

Appendix H: FORTRAN IV (H Extended) Features 151

152

ampersand
EXTERN

Appendix H: FORTRAN IV (H Extended) Features 153

Appendix H: FORTRAN IV (H Extended) Features

155

156

.

157

and VSPC FORTRAN Features

Code and Go,

G1,

’

H Extended

I

1xX

Append

-

1['

i d

/

o e

%@%H@W
Ww%ﬁ@%%ﬁ%ﬁm@%wﬂmmﬁﬁﬁ
‘ ..

o

-
i

.
%Mﬁu%@«,@ww\wm

.

w
..(m,
(..W& M«&MWM%«Q

Criaaa e
e

i

o

.

.
-

)

o

i
S
S

=

S

i

i

i

i

san

o
g
-

158

.

s

.

.

.

%&%xﬁ@ :
.

-

.

s

o
o

o

S

o

159

and VSPC FORTRAN Features

Code and Go,

G1,

’

H Extended

-
.

ix I

Append

.

=

160

GLOSSARY

alphabetic character: a character of the set A,B,CpaeesZ,5-

alphameric character: a character of the set which includes the
alphabetic characters and the numeric characters.

argument: a parameter passed between a calling program and a subprogram
or statement function.

arithmetic expression: a combination of arithmetic operators and
arithmetic primaries.

arithmetic_operator: one of the symbols +, -, #*, /, **, used tc denote,
respectively, addition, subtraction, multiplication, division, and
exponentiation.

arithmetic primary: an irreducible arithmetic unit; a single constant,
variable, array element, function reference, or arithmetic expression
enclosed in parentheses.

array: an ordered set of data items identified by a single name.
array

array declarator: the part of a statement which describes an array used
in a program unit. It indicates the name of the array, the number of
dimensions it contains, and the size of each dimension. An array
declarator may appear in a DIMENSION, COMMON, or explicit specification
statement.

array element: a data item in an array, identified by the array name
followed by a subscript indicating its position in the array.

array name: the name of an ordered set of data items.

assignment statement: an arithmetic or logical variable or array
element, followed by an equal sign (=), followed by an arithmetic or
logical expression.

basic real constant: a string of decimal digits containing a decimal
point.

blank common: an unlabeled (unnamed) common block.

common block: a storage area that may be referred to by a calling
program and one Or more subprograms.

complex constant: an ordered pair of real constants separated by a
comma and enclosed in parentheses. The first real constant represents
the real part of the complex number; the second represents the imaginary
part.

constant: a fixed and unvarying quantity. The four classes of
constants specify numbers (numerical constants), truth values (logical
constants), literal data (literal constants), and hexadecimal data
(hexadecimal constants).

control statement: any of the several forms of GO TC, IF and DO

statements, or the PAUSE, CONTINUE, and STOP statements, used to alter
the normally sequential execution of FORTRAN statements, or to terminate
the execution of the FORTRAN program.

Glossary 161

data item: a constant, variable, or array element.
data set: an ordered collection of one or more records.

data set reference number: a constant or variable in an input/output
'statement, which specifies the data set which is to be operated upon.

data type: the mathematical properties and internal representation of
-data and functions. The four basic types are integer, real, complex,
and logical.

DO _loop: repetitive execution of the same statement or statements by
use of a DO statement.

DO variable: a variable, specified in a DO statement, which is
initialized or incremented prior to each execution of the statement or
statements within a DO loop. It is used to control the number of times
the statements within the DO loop are executed.

dummy argument: a variable within a FUNCTION or SUBROUTINE statement,
or statement function definition, with which actual arguments from the
calling program or function reference are associated.

executable program: a program that can be used as a self-contained
procedure. It consists of a main program and, optionally, one or more
subprograms or non-FORTRAN-defined external procedures or both.

executable statement: a statement which specifies action to be taken by
the program; e.g., causes calculations to be performed, conditions to be
tested, flow of control to be altered.

extended range of a DO statement: those statements that are executed
between the transfer out of the innermost DO of a completely nested nest
of DO statements and the transfer back into the range of this innermost
DO.

external function: a function whose definition is external to the
program unit which refers to it.

external procedure: a procedure subprogram or a procedure defined by
means other than FORTRAN statements.

formatted record: a record which is transmitted with the use of a
FORMAT statement.

FUNCTION subprogram: an external function defined by FORTRAN statements
and headed by a FUNCTION statement. It returns a value to the calling
program unit at the point of reference.

SR

hierarchy of operations: relative priority assigned to arithmetic or
logical operations which must be performed.

implied DO: the use of an indexing specification similar to a DO
statement (but without specifying the word DO and with a list of data
elements, rather than a set of statements, as its range).

integer constant: a string of decimal digits containing no decimal
point.

I/0 list: a list of variables in an I/0 statement, specifying the
storage locations into which data is to be read or from which data is to
be written.

162

s—=—.

labeled common: a named common block.

literal constant: a string of alphameric and/or special characters
preceded by a wH specification.

logical constant: a constant that specifies a truth value: true or
false.

logical expression: a combination of logical primaries and logical
operators.

logical operator: any of the set of three operators .NOT., .AND., .OR..

logical primary: an irreduceable logical unit: a logical constant,
logical variable, logical array element, logical function reference,
relational expression, or logical expression enclosed in parentheses,
having the value true or false.

looping: repetitive execution of the same statement or statements,
usually controlled by a DO statement.

main program: a program unit not containing a FUNCTION, SUBROUTINE, or
BLOCK DATA statement and containing at least one executable statement.
A main program is required for program execution.

name: a string of from one through six alphameric characters, the first
of which must be alphabetic, used to identify a variable, an array, a
function, a subroutine, a common block,

nested DO: a DO loop whose range is entirely contained by the range of
another DO loop.

nonexecutable statement: a statement which describes the use or extent
of the program unit, the characteristics of the operands, editing
information, statement functions, or data arrangement.

numeric character: any one of the set of characters 0,1,2,...,9.

numeric constant: an integer, real, or complex constant.

predefined specification: the FORTRAN-defined type and length of a
variable, based on the initial character of the variable name in the
absence of any specification to the contrary. The characters I-N are
typed INTEGE the characters A-H, 0-Z & ‘are typed REAL

&

procedure subprogram: a FUNCTION or SUBROUTINE subprogram.

program unit: a main program or a subprogram.

range of a DO statement: those statements which physically follow a DO
statement, up to and including the statement specified by the DO
statement as being the last to be executed in the DO loop.

real constant: a string of decimal digits which must have either a
decimal point or a decimal expenent, and may have both.

record: a collection of related items of data treated as a unit.

relational expression: an arithmetic expression, followed by a
relational operator, followed by an arithmetic expression. The
expression has the value true or false.

Glossary 163

relational operator: any of the set of operators which express an
arithmetic condition that can be either true or false. The operators
are: .GT., .GE., .1T., .LE., .EQ., .NE., and are defined as greater
than, greater than or equal to, less than, less than or equal to, equal
to, and not equal to, respectively.

scale factor: a specification in a FORMAT statement whereby the
location of the decimal point in a real number (and, if there is no
exponent, the magnitude of the number) can be changed.

specification statement: one of the set of statements which provide the
compiler with information about the data used in the source program. In
addition, the statement supplies information required to allocate
storage for this data.

specification subprogram: a subprogram headed by a BLOCK DATA statement
and used to initialize variables in labeled (named) common blocks.

statement: the basic unit of a FORTRAN program, composed of a line or
lines containing some combination of names, operators, constants, or
words whose meaning is predefined to the FORTRAN compiler. Statements
fall into two broad classes: executable and nonexecutable.

statement function: a function defined by a function definition within
the program unit in which it is referred to.

statement function definition: a name, followed by a list of dummy
arguments, followed by an equal sign (=), followed by an arithmetic or
logical expression.

statement function reference: a reference in an arithmetic or logical
expression to a previously defined statement function.

statement number: a number of from one through five decimal digits
placed within columns 1 through 5 of the initial line of a statement.

It is used to identify a statement uniquely, for the purpose of
transferring control, defining a DO loop range, or referring to a FORMAT
statement.

subprogram: a program unit headed by a FUNCTION, SUBKOUTINE, or BLOCK
DATA statement.

SUBROUTINE subprogram: a subroutine consisting of FORTRAN statements,
the first of which is a SUBROUTINE statement. It optionally returns one
or more parameters to the calling program unit.

subscript: a subscript quantity or set of subscript quantities,
enclosed in parentheses and used in conjunction with an array name to
identify a particular array element.

subscript _gquantity: a component of a subscript: a positive integer
constant, integer variable, or expression which evaluates to a positive
integer constant. If there is more than one subscript quantity in a
subscript, the guantities must be separated by commas.

type declaration: the explicit specification of the type.
of a variable or function by use of an
specification statement.

cit

unformatted record: a record for which no FORMAT statement exists, and
which is transmitted with a one-to-one correspondence between internal
storage locations (bytes) and external positions in the record.

variable: a data item that is not an array or array element, identified
by a symbolic name.

leu

(

(Where more than one page reference is given,

& (ampersand)
in CALL statement 102
with EXTERNAL statement
§END statement 55
* (asterisk) in SUBROUTINE argument
list 101

153,154

A format code 65
ABS function 121
absolute value functions 121
ACOS 119
actual arguments 97,103
adjustable dimensions
(see object-time dimensions)
AIMAG function 123
AINT function 121
ALGAMA function 122
aliases 154-155,118-123
ALOG function 118
ALOG10 function 118
alphabetic character 161
AMAX0 function 121
AMAX1 function 121
AMINO function 121
AMIN1 function 121
AMOD function 122
ANS FORTRAN 11,141
intrinsic functions
arccosine functions 119
ARCOS function 119
arcsine functions 119
arctangent functions 119
arguments 96-108
definition 161
in FUNCTION or SUBROUTINE
subprograms 104
arithmetic assignment statements 33
arithmetic expressions
defined 25,161
order of computation 27
arithmetic IF 40
arithmetic operators 26,161
arithmetic primary 161
array declarator 161
array element 161
array name 161
arrays
arrangement of 24
asynchronous I/0 144-149
defined 161
dimension information 81
general 23
receiving areas
subscripts 23-24
transmitting areas
. type specification
"RSIN function 119
SIN 119

120-123

144-149

146-149
24-25

INDEX

the major reference is first.)

ASSIGN and assigned GO TO 39
assignment statements 33,161
associated variable 72-73
asynchronous input/output
READ statement 144-146
WAIT statement 148-149
WRITE statement 146-148
AT debug packet identification 134
ATAN function 119
ATAN2 function 119
automatic function selection

143-1044

154-155

BACKSPACE statement 70,744,157
Basic FORTRAN IV 139
basic real constant 16,161
blank common 88,161
blank record 58
blanks 14
BLOCK DATA subprogram 111-112
CABS function 121
CALL statement 102
carriage control characters 58
carriage return 159-160
cCcos function 120
CDABS function 121
CDCOS function 120
CDEXP function 118
CDLOG function 118
CDSIN function 120
CDSQRT function 118
CEXP function 118
character set 113
character string 18

in FORMAT statement
CLOG function 118
CMPLX function 123
Code and Go FORTRAN 157-160,133
coding form 14
comments 14
common block 161
common logarithm 118
COMMON statement 86
compilers 13

57,66

COMPLEX statement 84,151
complex values
constants 17,161

extended precision 150-152
in arithmetic assignment statement
in FORMAT statement 58
length specification 82
type specification 84

computed GO TO 38

COND parameter 148

CONJG function 123

constants 15,161

continuation statements 14

CONTINUE statement 46

33

Index 165

control statements 37-48,161

conversion rules
in arithmetic assignment statements 35
in FORMAT statements 60-68

cos function 119

COSH function 120

COTAN function 120

CQABS function 121

CQCOS function 120

CQEXP function 118

CQLOG function 118

CQSIN function 120

CQOSQRT function 118

CSIN function 120

CSQRT furiction 118

D format code 60-61,160
DABS function 121
DARCOS function 119
DARSIN function 119
DATA initialization statement 79
in BLOCK DATA subprogram 111-112
data item 162
data set 162
data set reference number 49,162
data type 162
DATAN function 119
DATAN2 function 119
DBLE function 123
DBLEQ function 122
DCMPLX function 123
DCONJG function 123
DCOS function 119
DCOSH function 120
DCOTAN function 120
DDIM function 122
debug facility 131-137
DEBUG statement 135
DEFINE FILE statement 71
in asynchronous I/0 145,147
DERF function 121
DERFC function 121
DEXP function 118
DFLOAT function 122
DGAMMA function 122
DIM function 122
DIMAG function 123
DIMENSION statement 81
object-time dimensions 109
DINT function 121
direct-access input/output
statements 71-78
programming considerations 73
DISPLAY statement 135
DLGAMA function 122
DLOG function 118
DLOG10 function 118
DMAX1 function 121
DMIN1 function 121
DMOD fumction 122
DO loops 162,43
DO statement 42-46
implied 50
programming considerations 44
DO variable 42,162
double precision number (see real numbers)
DOUBLE PRECISION statement 86,81

166

DREAL function 123

DSIGN function 122

DSIN function 119

DSINH function 120

DSQRT function 118

DTAN function 120

DTANH function 120

dummy arguments 97,101
defined 162
enclosed in slashes 105
in a FUNCTION or SUBROUTINE
subprogram 104 '

DUMP subprogram 124

DVCHK subprogram 124

E format code 60-61
elements of the language 13
embedded blanks 14
END FILE statement 69,144
end-of-card/line condition 159-160
END parameter in READ
asynchronous 144
list-directed 157
sequential 51
END statement
in FUNCTION subprogram 100
in main program 48
in NAMELIST (&END) 55
ENTRY statement 105-107
equivalence groups 92,94
EQUIVALENCE statement 92
ERF function 121
ERFC function 121
ERR parameter in READ
asynchronous 144
direct-access 74
list-directed 157
sequential 51
error functions 121
executable program 162
executable statement 13,162
EXIT subprogram 124
EXP function 118
explicit specification
statements 84,22,151
exponential functions 118
exponentiation 27, 28
expressions
arithmetic 25
defined 25
logical 29
extended precision 150-152
extended range of DO 44,162
external function 162
external procedure 162
EXTERNAL statement 108,153-154

F format code 60-61
field descriptors 57
FIND statement 77
fix functions 122
FLOAT function 122
FORMAT statement

codes 57,60-67

form 57

purpose 58

use at object time 68

3 N

e

formatted READ statement 52

formatted records 50,162

formatted WRITE statement 53

FORTRAN coding form 14

FORTRAN IV (Gl1) 157-160,133

FORTRAN IV (H Extended) 143-156

FORTRAN-supplied procedures 117-124
and EXTERNAL statement 153-154

function definition 96

function reference 96

FUNCTION subprogram 98,162

G format code 62-63
G1 Features 157-160
GAMMA function 122
GENERIC statement 154-155
GO TO statement
assigned 39
computed 38
unconditional 37
group format specification 68

H Extended 143-~160
H format code 66
hexadecimal values
constants 18,162
transmitting 60
HFIX function 122
hierarchy of operations
arithmetic 27
defined 162
logical 31
hyperbolic functions 120

I format code 60
IABS function 121
ID parameter 144-148
IDIM function 122
IDINT function 121
IF statement
arithmetic 40
logical 41-42
IFIX function 122
IMAG 117
implicit specification 82-83,22
IMPLICIT statement 82-83,151
implied DO 50,162
INIT option of DEBUG 133
input/output statements
asynchronous 143-150
direct-access 71-78
FORMAT 57-69
FORTRAN II 115-116
list-directed 157-160
miscellaneous 69-70
NAMELIST 5u4-~56
sequential 49-56,144
INT function 121
INTEGER statement 84
integers
constants 15,162
I format code 60
length specification 82
magnitude 15
type specification 84
use in arithmetic assignment
' statements 33

I/0 list
asynchronous 144-149
defined 49,162
omitted 58

IQINT function 121

ISIGN function 122

L format code 65
labeled common 88,163
language elements 13
length specification 21,163
LGAMMA 122
library subprograms 117-123
list-directed input/output 157-160
literal data 66,21
literals

constants 18,163

data in FORMAT statements 66
LOG 118
LOG10 118
log-gamma functions 122
logical assignment statements 33
logical expressions 29,163
logical IF statement 41-42
logical operators 30,163
logical primary 163
LOGICAL statement 84
logical values

constants 17,163

type specification 84

use in arithmetic assignment

statements 33

use in logical expressions 29
logical variables 21
loop control 42
Jooping 43,163

main program 163

mathematical subprograms 117-123
maximum value functions 121

MAX 121

MAX0 function 121

MAX1 function 121

nminimum value functions 121

MIN 121

MINO function 121

MIN1 function 121

mixed-mode expressions 35

MOD function 122

mode (see type)

modular arithmetic functions 122

name 163

{see also variables)
NAMELIST statement 54
natural logarithm 118
nesting

DO loops 44,163

group format specifications 59
nonexecutable statememrt 163
null items 159-160
NUM parameter 148
numeric character 163
numeric constant 163
numeric format codes 60-64

Index

167

object-time dimensions 109
object-time format 68

operators
arithmetic 26
logical 30

order of computation 27
relational 31
order
of arithmetic computation 27
of common blocks 89
of equivalence groups 92
of logical expression computation
of source program statements 14
OVERFL subprogram 124

P scale factor
parentheses

in arithmetic expressions 27

in logical expressions 32

in FORMAT statement 57,59
PAUSE statement 47
PDUMP subprogram 124
positive difference functions 122
predefined specifications 82,22,163
primary

arithmetic 26

logical 29
PRINT statement 116
printer control characters 58
procedure subprogram 163
program unit 14, 163
PUNCH statement 115

64,152,164

Q format code 152,160
oABS function 121
QARCOS function 119
QARSIN function 119
QATAN function 119
QATAN2 function 119
QCMPLX function 123
QCONJG function 123
QCOSs function 119
QCOsH function 120
QCOTAN function 120
ODIM function 122
QERF function 121
QERFC function 121
QEXP function 118
QEXT fuﬂgtion 123
QEXTD function 123
QFLOAT function 122
QIMAG function 123
QINT function 121
QLOG function 118
QLOG10 function 118
OMAX1 function 121
QMIN1 function 121
OMOD function 122
QREAL function 123
QSIGN function 122
QSIN function 119
QSINH function 120
QSQRT function 118
QTAN function 120
QTANH function 120

168

31

range of DO 42-44,163

READ statement
asynchronous 144-146
direct-access 74
list-directed 157-158
sequential 51,115

‘REAL function 123

real numbers
constants 16,163
extended precision 150-152
in D, E, and F format codes
length specification 82
magnitude 16
precision 16
type specification 83
use in arithmetic assignment
statements 33
REAL statement 84,151
receipt by location 105
receipt by value 105
receiving areas 144-149
record number 71
records
formatted 50
length 72
unformatted 50
relational expressions 32,163
relational operators 29,164
repetition factor 79-80,159-160
RETURN statement
in FUNCTION subprogram 100
in main program 103
in SUBROUTINE subprogram 103
REWIND statement 69,144

60-61

sample programs 125-130
scale factor 64,152,164
sequential input/output 51-56,144
service subprograms 124
SIGN function 122
sign transfer functions 122
SIN function 119
SINH function 120
size specification, array 2u
slashes
asynchronous I/0 list 146
in CALL statement 105
in COMMON statement 89
in FORMAT statement 58
in FUNCTION statement 98

in list-directed input list 159-160

in NAMELIST statement 54

in SUBROUTINE statement 101
SLITE subprogram 124
SLITET subprogram 124
SNGL function 122
SNGLQ function 122
source program characters 113
special characters 113
specification statements 81-94,164
specification subprogram 164
SQRT function 118
square root functions 118

g

A

statements
categories 13
defined 164
function definitions
numbers 14,164
order 14
source 13
STOP statement U8
storage locations (bytes) 82
for literals 18
SUBCHK debug option 133
subprogram statements 95
subprograms
arguments 103
BLOCK DATA 111-112
defined 164
FUNCTION 98
general 95-112
multiple entry 105
naming 95
SUBROUTINE subprogram
subscript quantity 164
subscripts 23-24,164
in asynchronous I/O lists 7145-149
SUBTRACE debug option 133
symbolic names 19-20

96,164

101-104,164

T format code 67

TAN function 120

TANH function 120

termination of program 48,102
TRACE OFF statement 134

TRACE ON statement 134

TRACE debug option 133
transfer of sign functions 122
transmitting area 146-149
trigonometric functions 119-120
truncation functions 121

truth values 18,30

type specification
defined 164
of arithmetic expressions 28
of arrays 23,82-86
of FUNCTION subprogram 95,82-86
of statement function

definitions 95,82-86
of variables 21,82-86
type statements 81-86

unary operators 27
unconditional GO TO 37
unformatted READ statement 52
unformatted records 50,164
unformatted WRITE statement 54
UNIT debug option 133

variable format statements 68
variables

arrangement in common 90

arrangement in equivalence groups

defined 164

general 20

length specification 21

names 21

type specification
VSPC FORTRAN 157-160

21,82-86

WAIT statement 148-149,143-144
WRITE statement
asynchronous 146-147
direct-access 76-77
list-directed 158
sequential 53

X format code 67

Z format code 62

Index 169

94

GC28-6515-11

S/360 & S/370 FORTRAN IV Lang. Printed in US.A. GC28-6515-11

READER’'S COMMENTS

TITLE: |BM System/360 & System/370 ORDER NO. GC28-6515-11
FORTRAN IV Language

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

,‘(L l Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6515-11

fold

L R I R I I R N I N I N I R R N N I I I A I TSI TS ST IP AT I ARY sseessaesn e

Attention: PUBLICATIONS

®Seev et sees s ces st s s e

fold

S S —m— (R
AR SRR S —
- - T NS S
-— L4 SRR S
-— L A1]
- - N S W ..
N Y NS W
S ST S Y -

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

P R R I I I R R R R I I

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

P R R R A A A R R R N R RN R R RN T I Y SO,

91 sy Buore o

ceoe

L R R I N I N N R R I R R R R R IR I I I I A

eee

R R R A I A A A A I

ssecces coer

-

B 09€/S

(4
{

11-G1G9-820D 'V'SNul pauud ‘Bue Al NVHLHOAS

READER’S COMMENTS

TITLE: |BM System/360 & System/370 ORDER NO. GC28-6515-11
FORTRAN IV Language

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6515-11

Attenticn: PUBLICATIONS

.

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL.BE PAID BY ADDRESSEE:

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

.....................

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

IR

ot { T3 Juore Mo

oo

cevesen

D N R R N I I A I I A I A A N R R R)

s s e e e e s ce0 s s s st esce st s 00000000 s 00000000 en0 e s

sessasa

eccsces ssce

R R EEER R R R

18 09€/S,

"Bue] Al NVHLHO4 0

Iy

ll"QLSQ‘SZSE)' V'S Ul paauugd

