1 Systems
1 Program Number 5668-996
Release 1

This publication was produced using the
IBM Document Composition Facility
(program number 5748-XX9) and
the master was printed on the IBM 3800 Printing Subsystem.

First Edition (November 1982)

This edition applies to Release 1 of IBM BASIC, Program Product
5668-996, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; before
using this publication in connection with the cperation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliotra hy, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an 1BM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below; requests
for IBM publications should be made to vour IBM representative or
to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.0. Box 50020, Programming
Publishing, San Jose, California, U.5.A. 95150. IBM may use or
distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982

ABOUT THIS MANUAL

MANUAL ORGANIZATION

INDUSTRY STANDARDS

This manual provides reference material on the IBM BASIC
language. It presents definitions and examples of IBM BASIC
statements and commands.

IBM BASIC is available as a program product that runs under:

° Virtual MachinesSystem Product—Conversation Monitor System
(VM/SP-CMS) Release 1, batch and interactive.

In this manual, the following subjects are discussed:
. "Introduction™ on page 1
. "Structure of a Basic Program™ on page 4%
e "Constants, Variables, and Arrays" on page 14
. "Expressions" on page 25
. "Intrinsic Functions™ on page 3%
. "IBM BASIC File Capabilities™ on page 5%
. "IBM BASIC Statements™ on page 60
. "Statement Descriptions™ on page 838
. "Immediate Statements™ on page 260
. "Editing with Line Numbers™ on page 264
. "IBM BASIC Commands"™ on page 267
. Appendixes
"Appendix A. Exception Codes™ on page 319

"Appendix B. Character Set Collating Sequences"™ on page
327

"Appendix C. Migration from VS BASIC"™ on page 333

. Glossary

The IBM BASIC program product is designed according to the
specifications of the following industry standards, as understood
and interpreted by IBM as of December 1981:

R d American National Standard for Minimal BASIC, ANSI X3.60-1978

. International Organization for Standardization proposed
standard IS0 Minimal BASIC dp IS0-6373

U European Computer Manufacturers' Association Standard ECMA-55
Minimal BASIC, January 1978

These standards are technically equivalent.

In addition, IBM BASIC has many capabilities not contained in the
above standards.

About This Manual iii

RELATED PUBLICATIONS

Familiarity with the following publications is strongly
recommended.

IBM BASIC Application Programming: Guide, 5C26-4027
IBM BASIC Application Programming: Svstem Services, 5C26-4028

If VSAM file processing is to be used, the following manual is

useful:
0S/VS Virtual Storage Access Method: Programmer's Guide,
GC26-3838

If BASIC programs are to communicate with Graphical Data Display
Manager programs, the following manual is useful:

Graphical Data Display Manager: User's Guide, SC33-0101

iv IBM BASIC Application Programming: Language Reference

CONTENTS

Introduction e o o o e o s o s e s e s e e

The BASIC Language e
Interactive Environment e e e e e e e e e e e . e e e s
Batch Environment e e e e e e e e . . e e e e
Syntax Notation e e e e . .. e e e e e

Structure of a Basic Program e o s o o
Character Set e e e e e . e e e e e
Identifiers . . e e e e e e e e e e
Language Statements e e e e e e e
Lines and Line Numbers e e e e
Line Labels e e e e e e e e e e e e
Reserved Words e e e e e e e e e e
Keywords e e e e e e e e e e e e e e
Keyword List e e . .
Rules for Keywords Removed from the Reserved Nord Llst
Meaningful Spaces or Blanks *
Statements and Their Categories
Continuation of Statements .
Multiple Statements Per Line
Comments
Exclamation Mark Comments
REM Statement Comments .
Comment Continuation Not Allowed
Statement Blocks e e e e e e e e e
Program Units e e e e e e e e e e e e e

e e e e e s e
e o e 0 e 0 o o @
e ¢ o o ¢ o o 0
I I I I |
PR I

o 0 e s 4 e e
.
.

. .
e o e -
- -
- .
.

e e 0 e e
P T TSP
P N T T
)
LR T R R S R
e e e e e e
e e e e
.
DR I R S S P R
P R T T R S S T
.

constants, variables, and Arrays e e e e s e e e e e e
Constants« e e e e e .
Numeric Constants .
Integer Constants . .
Decimal Constants .
Character Constants
Variables

-

.

D O I I Y
L I]
.
.
.
.
.
.
e 4 o e 4 s s @

e e o e ® o 6 ¢ 2 4 s e s @

Explicit D1men51on1ng of Arrays . .
Numeric Arrays e e e e e e e e e

Numeric Varlables e e e . .
Character Varlables . e . . e e e e e e e e e e e e
Arrays . e e e e e e e
References to Array Elements (Subscrxpts) . e e .
Subscript Boundaries e e e e e e e e e .
Base Indexing . .

Character Arrays . .
Implicit Dimensioning of Arrays . . c e .
Redimensioning e e e e e e e e e e

Redimensioning COMMON Arrays e e e e e e e e e

Redimensioning Parameters “ e e e . .

LR T T T)

D S N)

Expressions e o o o o o o s e s o e e o s e = o
Numeric Expressions . e e e .
Evaluation of Numeric ExpreSSIOns . .
Parentheses in Numeric Expressions . e e e e . .
Addition and Multiplication Rules in Numerlc Expressions

Plus and Minus as Sign Operators e e e e e e e e s
Mixed Type Numeric Expressions e e e e e . . .
Character Expressions e e e e e e e e e e e .

Concatenation
Substrings of Character Variables and Arrays
Substrings of Character Arrays e e e e .
Relational Expressions e v e e e e e e e e
Relational Operators . . . e . . .
Numeric Data in Relational Expre551ons .
Character Data in Relational Expressions
Logical Expressions . . e e e e e
AND Logical Operator
OR Logical Operator . .
NOT Logical Operator ..

.

e« e o s e

D
¢ ¢ e e 4 e o s
e e e e e ¢ o 9 T e s .
.
.
L T S S S R S R)

P Y
.
.
.
.
.
.
¢ o ¢ 4 o

Contents

2 b b b b e b e
GCGINNVNIVN R 2OO0OWVWR N IUVNTIALD WN

vi

Combining Logical Expressions
Priority of Expression Evaluation
Array Expressions e e e e e e .

Intrinsic Functions c e e e e
Notation Used for Parameters
Intrinsic Numeric Functions
Intrinsic String Functions .
Function Descriptions e e
ABS(X) e e e e e e e e e
ACOS(X) . .

ANGLE(X,Y) e e e e e
ASINC(X) e e e e e e e e
ATN(X) e e e e .
CEIL(X) e e e e e e e e . .

CEN(X) e e e e e e e e
CHRS$ (M) e e e e e e e e
CNT e e e e e e e e e e
CODE . .
C0S(X)

COSH(X) .
COT(XD ..
CSC(X) ..
DATSL(M)] .
DATE . . .
DATES - ..
DEC(X) ..
DEG(X) .
DETL(A)] .
DOT(A,B) .
EPS . . .
ERR e e
EXP(X) ..
FAH(X) . .
FILE(N) . .
FILENUM . .

e ¢ s s 4 e 4 s e ¢ s e e
.
« e e e e

¢ s e o 4 8 6 4 v e s e 6 ¢ o
R S

e ¢ 4 e e & e o 0 ¢ v s e o
.

FILES(M)
FP(X) . .
IFIX(X)

INF e e .
INT(X)

IP(X) . .
JDYL(C$)]
KEYNUM .
KLN(M)

KPS(M) .
LENCAS) .
LINE .
LOG(X) .
LOG2(X)
LOGL10(X)
LPAD$(AS,m)
LTRMS (AS) .
LWRCS(AS) .
MAX(X}V[;...]
MINCX,YL,...1
MOD(X,Y) .
ORD(AS) . .
PI e i e e
POS(AS$,B$) .
POS(AS,BS,M
PRD(A) . .
RAD(X) .
REC(m) ..
REM(X,Y) .
RLN(m) ..
RNDL(X)]
ROUND(X,N)
RPADS (AS$,M)
RPTS(AS,M)
RTRMS$(AS) .
SEC(X)
SGN(X)

DR Y R)

s ¢ e e o

S ¢ o ¢ s e s & 2 4 st 6 & ¢ 0 4 & o s 0 s ¢ o
.
o« e e 0 .
.
.

L A A I)

D Y
D N e R)
@ 0 6 8 6 6 e e ¢ 4 s & ¢ 4 2 ¢ s 4 e & e s s e t ¢ ¢ 2 e 4

¢ e e o e ¢ e s o
L T T
P Y

o« ¢ e 4 e

P T A]
€ 8 e e ¢ 4 s e v 4 e 2 & 4 e e o

¢« ¢ e s 0 e 0
L T T S S S T N S SR S S S SR S Y
@ e & e ¢ ¢ & 0 8 4 s 4 e 0 2 et &t 2 4 ¢ & 8 e e 0+ e ¢ o 0+ o
@ e & & e & & e e s+ + o ¢ o 0
6 & 8 e 6 e e & & 6+ 0+ T s 6 s 6 4 6 e 8 st 0 s s 0 e
e e e & o e 8 e & o s e 0 L R R
€ ¢ & e s & € & o 0 0 0 4t e s 4 0 e .
6 ¢ e ¢ e o 0 s e e e & s 4 s s o D R S R T T Y S
¢ ¢ 4 e e e & ¢ 0 e e e & o 2 0
e ¢ ¢ e s e ¢ s & 0 o 6 ¢ ¢ & 0+ s ¢ ¢ @ o o

« o o o

.

L]

« o o s 0

o« o e s s e

€ o o ¢ o o o

¢ 8 ¢ e ¢ e ¢ s o o o o o o

¢ o e o 0

e e e e ¢ o o L I)

¢ o e o o o

L]

IBM BASIC Application Programming: Language Reference

L R R K S T T T T S S S R T T BT TR S)

T T S S S S S T R R A R R R e e e I N A R Y B S S S}

e 8 e & o 4 6 ¢ e 4 2 4 4 s e

¢ e e 4 8 e & & & & 0 e & 9 s e ¢ 9 e € s 6 0 & 2 e s e v e 0 9 e & 0 4 0 ¢ e 0 o

e 6 4 6 & 6 & e s s s e 4 e s e 8 e e s s 0 & & s & s & 0 ¢ o

« & e ¢ e o 9 o

o e o ¢ e+ .

D O I I T T Y

¢ o e e

« o e & & 4 0 e 4 0 e e e

¢ ¢ e 4 e e ® o 0 s s+ ¢ s s @

L I I Y e)

e e 6 e & 4 6 & e ¢ ¢ ¢ o 0 s

e ¢ 4+ & & & & 4 e e e 4 & e ¢ e

« e s o .

e 4 e o e s e

¢ & e e 8 e & & & 4 0 4 4 & s e ¢ 4 s+ e 0 8 ¢ 0 4 o s o

¢ e e 6 6+ & & & & & & e e 0 e o @

L N)

o e s 0 o

€ ¢ 8 6 6 s e e e ¢ &6 4 ¢ e e & st e 0 0 0 e e o s

e 0 & ¢ o 4 e o 0 4 s e 2 e @

¢ 6 e e ¢ s e e o 4 8 e e ¢ e o ¢ s 4 e s 4 ¢ & e+ o & 2 & ¢ s e

e o 4 e & o o e

I T T S R T T e e e T T T T L T T T R R T e T S S R T R I R T T T S S S SR S S R S S T S R T R T T T

.

e s s o ¢ o @

¢ ¢ o s ¢ ¢ o s

e« o s e e

e & & s e e 2 & 4 + ¢ e 2 e+t s s e ¢ ¢ 0 0

e ¢ e ¢ & ¢ & + s e e e 2 e e e 0 v e 4 ¢ 9 e s e 4 s o

e ¢ & & & 0 3 e 4 e e s+ 0

e 4 8 4 s e s e e e e+ e e o 0

« ¢ o 4+ o 0 e e e o

« o .

. .

e e e ¢ o ¢ o s s .

e ¢ o e o e o o

¢ o & 6 0 4 s ¢ & 0 v & e e s ®

e & o & 4 9 e & e ¢ e ¢ o ¢ s

.

SINCX) e e e e e e e e
SINH(X)
SIZE(A) or SIZE(A$) .
SIZE(A,M) or SIZE(AS,M)
SQR(X) e e e e e
SRCH(A,X[,Y] . ..
SREPS(A$ N B$,C$)

L B R T T T R SY
L T S S S S Y
.
¢ ¢ o 4 0
D T S T T S PR Y
@« ¢ 8 s e e 0 e o e s 0 4 .
« e e e 0
o« 0 s e .

STR$(X) “ .. e e e e . . e e
SUMCA)- e e
TANCX) e e e e e e e e . . -
TANH(X) e . e e e e
TIME e e e e e e e e e . e e e e e e
TIMES . . e e e e e e e e e e e e e e
TRUNCATE(X, N) e e e e e e e
UDIM(A,M) or UDIM(A$ M) e e e e e e e e e . . .
UPRCS(AS) .- e . et e e e e e e e e e e e e e e e e
VALCAS) e e e e e e e e e e e e e e e e e e . . .
IBM BASIC File Capabilities . o s e . o . . - . .
Records . . e e e e e e e e e e .

File Attrlbutas .

File Organization . .
Sequential Organlzatlon
Stream Organization .
Relative Organization .« .
Keyed Organization e e e e

File Format (Type) . .
Display Format e ..

.

« s e 0 e
.
.

L R I)
DR S T ST TR R S Y
L A I N)

D A
e ¢ e o e 4 e s

L S I T)
.
.

Internal Format . . : : : .
Native Format e e e e e
File Access Mode e e e e e .

L S I)

INPUT Access Mode e e e e e
OUTPUT Access Mode e e e e e .
OUTIN Access Mode . . . N
Combinations of File Organlzatlon and Format
Allowable Combinations for File Access .
Allowable Combinations for File Record Type
File Statements and File Attributes e e e e e e

IBM BASIC Statemznts « e s s
Declarative Statements . e e
Control Statements

e ¢ o o e v e

. .

. .

L I I I R S Y S R]
L R T S A
¢ o e o v o s .

« o o e .
D R Y

e« s s =

e ¢ ¢ 0
* e e @
e o o @

Branch Control Statements .
Subroutine Control Statements e e e e .
Loop Control Statements c e e e e e e e e e
DO/LO0OP Blocks e e e e e e e e e e e
FOR/NEXT Blocks . e e
Decision Structure Control Statements ¢ e e
IF Blocks e e e e e e e e e e e e e e e e e

« e e e @
.
.

LR)
.

e e ¢ o ¢ o e e .

SELECT Blocks e e e e e e e .
Execution Control Statements . e e e e e . .
Assignment Statements e e e e e e . .
Rounding Rules . e e e e e e e e e e e . .
Input/COutput Statements . . . « e e . .

General Input/Qutput Con51deratlon5 . e . .

Input/0utput Lists e e et e e e e e e e
Input/0utput Data Rules e
FORM and IMAGE Statements .
FORM Character Expressions
Input/Qutput Error Processing . . e .
Internal Data Input/QOutput Statements e v e .
Terminal Input/Output Statements . . e e e e .
Line-By-Line Input/0Output Statements

L A I I I T T Y S N)

-
e o s o s e e
.

S ¢ & e 4 e e & 6 ¢ e 0 4 & 9 s 4 e 4 e e e =
« ¢ e 0 e

e s e o & e e
T S T O R R L I T S Y S

Full Screen Input/Qutput Statements
Mixed Mode Operations . e e e e e e e .

File Inputs/0Output Statements e e e e e . .
File Positioning Clauses « e e e e . .

File Control Statements .
File Input/Qutput Transm15510n Statements
Program Segmentation Statements e e e e e e
User-Defined Function Statements e e e e e e e
Single Line Functions e e e e e e e e e e e
Multiline Functions e e e e e e e e e e e

L S T L T T R T S T R S R R T T Y ST S Y
L T T S
.

¢ e e e s 0

Contents

e 4 e 0 e e & 0 e o o

¢ s 6 ¢ e ¢ & ¢ & ¢ e 4 ¢ e ¢ e & s e 4 e s e

vii

viii

Subprogram Statements e e e e e e e
Main Programs e e e e e e e
Subprograms . .
Calling IBM BASIC Programs

-
-

¢ ¢ e e

Calling Programs Written in Other Languages

Calling the System

Calling the Graphlcal.Data Dlsplay Manager (GDDM)

Chaining Statements . . e .

Program Segmentation RestrlctIOns .

Program Segmentation and Common e e .
Exception Handling Statements

Using I/0 Statement Error Clauaes and On Condltlon

Statements . .
Exception Hand11ng ln I/O Statements
Using the CAUSE Statement .

Using the RETRY and CONTINUE Statements
Exceptions and User-Defined Functions

-
. e

. .
-
.

-
.

.

Exceptions and Calling and Called Programs

Debugging Statements . e e e e e e
Using the TRACE Statement . . .
Immediate Statements and Debugglng .

Statement Descriptions
BREAK Statement e e . .

CALL Statement . .

CASE Statement .

CASE ELSE Statement

CAUSE Statement . .

CHAIN Statement . e .

CLOSE Statement - . .

COMMON Statement . e .

CONTINUE Statement . .

DATA Statement

DEBUG Statement . e e e e e e

D
P Y A I S]
.

L T R B)
.

L R T T T B T S

¢ s e 2 e s e ¢ e e

.
.

Immediate Execut1on .
DO Statement e e e e e
ELSE Statement e e e
END Statement e e e .
END IF Statement .
END SELECT Statement
END SUB Statement .
EXIT Statement - e .
EXIT IF Statement .
FNEND Statement . .
FOR Statement . v .
FORM Statement - . .
GET Statement . . e
GOSUB Statement . .
GOTO Statement . .
IF Statement . . .
Block IF Statement .
IMAGE Statement . .
INPUT Statement .
INPUT FIELDS Statement
INPUT File Statement

Description . e
INTEGER Statement

Description

Immediate Executlon . . .
LET (Scalar Assignment) Statement

Immediate Execution
LINE INPUT/LINPUT Statement . . .
LINE INPUT/LINPUT File Statement .
LOOP Statement e e e e e e e e e e

Immediate Execution
DECIMAL Statement e e . e

Immediate Execution . . .
DEF Statement . . e .. .
DELETE File Statement
DIM Statement

e 4 e ¢ s 8 e e e
« e e e 0 e e 0
e e o 4 ¢ o & e e e
L e L I I I I N I B e
.
D I I I)

L]

L I Y

.

« o e
T B T)
o ¢ ¢ ¢ ¢ 2 s e e

T o o 0 v e
c

e e o &

.

. . .

« e e
PRI R R S S S S S ST S S ST SR T S T T R T

I T T
. n

[~}

J.o.

¢ e e

. -

« v & 0 e

MARGIN Statement . e e e e e e .
MARGIN File Statement .
MAT (Array Assignment) Statement

IBM BASIC Application Programming: Language Reference

1 Sereen.

.

. e o

e+ e e o o o e
.

L S S I)

e s TFe e e e

L T T L I T T B B I

-

¢ ¢ e e

-

R R I R B)

L R R Y

e ¢ e e e

L T R T

.

.

.

.

.

T

Input

P Y

¢ e e e e

e o e 4 e s 4 e & & o e s L)

e e s e s e & 4 e o o

e ¢ o o o . P S S)

o Ma e 0 e 0 e e e e

. .

¢ o o e e 0

¢ e o 0

L R R R N T)

e ¢ o & ¢ & 0 e+ s

L T T S S S S T T T S S I |

124
126

147
148
150
152
158
161
167
167
169
169
170
171
172
173
175
177
178
181
183

Array Assignment e e e e e e e s e e e e
Scalar Assighment . . e e e e e
Addition and Subtractnon 1n Numerlc Arrays
Matrix Multiplication of Numeric Arrays
Scalar Multiplication in Numeric Arrays
Array Concatenation of Character Arrays
Scalar Concatenation in Character Arrays
Identity Array Function (IDN) e e e e .
Zero Array Function (ZER) e e e e e .
Constant Array Function (CON) . .

Null String Array Function (NUL$) e e e
Inverse Array Function (INV) e e e e e
Transpose Array Function (TRN) .« e e s
Ascending Index Array Function (AIDX) “ e e e e s .
Descending Index (DIDX) . e e s e e e e
Sort Array Functions (ASORT. DSORT)
Immediate Execution . . e e e

NEXT Statement . - e . .

ON GO TO/GOSUB Statement . e
ON Condition Statement . e e e
OPEN Statement . . e e e e e
OPTION Statement e e e e e e
Immediate Execution e .
PAUSE Statement e e e e e e e
PRINT Statement e v e e e e e
Immediate Execution

o o o o o

-

o e o ¢ ¢ o o o

¢ ¢ e @ ¢ 2 e s 0
L T S T R T B

« ¢ o e e

PRINT FIELDS Statement (For Full Screen Termmal isplay
PRINT File Statement (For Display Format Files) . e .
Description e e e e e e e e s e e e e e e e e e
PUT File Statement e e e e e e e e e e s e e e e e e
Description e e e e e e e s e e e e e e e e e .
RANDOMIZE Statement . . e e e e e e e e e e e e s
Description e e e e . et e s e e e e e e e s
Immediate Execution . e e e e e e e e e e e e e e
READ Statement . .« e . e e 4 e e s e e e e e e e e
READ FILE Statement . . e e e e e e e e e e e e e e .
REM Statement e e e e e e e e e e e e e e .
Comments Using the Exclam tion Mark e e e e e e e
REREAD Statement . e . . . e e e e e e e e e e e e
RESET Statement e e e e e s s e e e e e e e e e e e
RESTORE Statement e e e e e e e e e e e e e e e e e e
RETRY Statement e e e e e e e e e e e e e e e ee e e
RETURN Statement e e e e e e e e e e e e e e e e e
REWRITE Statement e e e e e e c v e e e s e s e e e
SCRATCH Statement e e e e e e e e e e e e e e e e e e
SELECT Statement e e e e e e e e e e e e e e e e e e
STOP Statement . e e e e e e e e e e e e e e e e e .
Immediate Executton s e e e e e 4 e e e e e e e e e
SUB Statement e e e e . e e e e e e e e e e e e s e
SUBEXIT Statement e e e e e e e e e e e e e e e e
TRACE Statement e e e . e et e e e e e e e e e e e
Immediate Trace Executlon « .. e e e e e e e e e e
USE Statement e e e e e e e e e e e e e e e e e « e .
WRITE Statement c e e e e e e e e e e e e e e e e e e
Immediate Statements . . . & . ¢ ¢ 0 i i 0 0 e e e e e v e
Variables and Arrays and Immediate Statements e e e e e .
Immediate Type and Dimensions c e s e e e e e e e e e e e
Immediate Statement Exceptions e e e e et s e e e e ee e
Editing with Line Numbers e o s o o s e s s e e e e e s s =
The Workspace . . c e e e e e e e e .
Entering Program Llnes from the Termlnal e e e e e e e e
Replacing and Deleting Individual Lines e e e e e e e e
Editing Continuation Records e e e e e e e e e e . e e e .
Deleting Continuation Records e e e e e e e e e e e e e e
Replacing Records e e e e e e e e e e e e e .
Inserting Contn\uatlon Records et s e s e s s s e e e .
IBM BASIC Commands e e s o o e s o o 6 6 8 s e s e s e s s e
Abbreviation of Commands e e e e e e e e e e e e e e e e e
Current Line e s e s e e e s e s e e e e e e e e e e e e e

AUTO Command c e e e e e e e e e e e e e s e e . .

e 0 o e 0 o 0 0 e o

o ¢ ¢ & e 0 e ¢ e o 0 e 0
e ¢ o o o 2 & ¢ s s e e s
e o6 e ¢ e ¢ o ¢ o e e o o

@ 8 & 6 e 4 6 & e s ¢ 6 6 e 0 0 8 8 4 0 8 & 9 & 2 0 4 NP s 0 9 6 e 2 4 0 0 s s 8 0t 2 e 2 e 0 e s s ¢ 0

Contents

e o 0 ¢ 0 e o ¢ e @ e 8 st s e e e & e s e s v .

@ & & & o & e & 4 s 6 s 4 e & ¢ @ 9 4 ¢ 4 0 0 & 0 0 .

e o 0 e o ¢ @

e o e o o

185
185
186
187
188
189
190
191
192
193
193
194
195
196
197
198
199
200
201
203
206
211
214
216
217
224
225
230
231
232
232
234
234
234
235
237
240
240
262
244
266
247
248
249
251
252
253
253
254
255
256
256
257
258

260
261
262
263

266
264
264
264
265
265
265
266

267
267
268
269

ix

X

BREAK Command .

CHANGE Command—Format 1 e e e e e e e e e
CHANGE Command—Format 2 e e e e e e e e e
COMPILE Command . . e e e e e e e e e e e
COPY Command e e e e s v e e 6 e e e e e s
DELETE Command e e . e e e e e e e e e e s
DROP Command e e e e e e e e e e e e e e e
EXTRACT Command e e e e e e e e e e e e e
FETCH Command e e e 4 e e e e e e e e e e
FIND Command e e e e e e e e e e e s e e e
GO Command . . e e e e e e e e e e e e e
HELP Command . e e e e e e e e e e e e e
INITIALIZE Command e e e e e e e e e e e e
LIST Command e e v . e e e . .« e e e e
LOAD Command et e e s e e e e e e “ e e .
MERGE Command e e e e e e e e e e e .
PURGE Command e e e e e e e e e e e e e e
QUERY Command e e e e e e e e e e e e e e
QUIT Command e e e e e e e e e e e e e e e
REMAME Command e e e e e e e e e e e e e e
RENUMBER Command e e e s e e e e e e e e e
RUN Command e e e e e e e e e .« e e .
SAVE Command e e e e e e e e e e o e e s
SET LOG Command . et e e e e e e e e e
SET MS5G Command e e e e e e e e e e e e
STORE Command e e e e e e e e e . e e e
SYSTEM Command e e e e e e e e e e e .

Appendix A. Exception Codes e s s o s e e o @
Appandix B. Character Set Collating Sequences
ASCII Character Set and Collating Sequence .
EBCDIC Character Set and Collating Sequence

Appendix C. Migration from vS BASIC .

Language . e e e e e e e e e e e e e
Intrinsic Functlons . . . « e e e
File Structures e e e e e e e e v e s
Arithmetic . e e e e e « v e .
VS BASIC Data Set Mlgratlon e e .

Glassary

e ®© o e ® ® © o ° © © ° s e ° = e o

Indax © ® ® e ® & © ® °®© ® e & © ° ° e & ° o O

IBM BASIC Application Programming: Language Reference

R T T S S S S R I I T T T T T SR Y B S S)

.

e ¢ o ¢ o o

€ 6 & & o e o e e @ 0 4 e 4 & e 4 s s e s e e . e s 0

® 4 ¢ o o e o

€ o o o & o & e & ¢ s o o o

e 8 e o & o e o o s+ e 0 o

e o o & ¢ ¢ ¢ o o o o

@ & e o ¢ 2 o 6 o e e 6 0 & o ¢ e ¢ s s s e 0 e ¢ s o

e ¢ o e 4 e s & s 4 s e s o &

s e o e ¢ o 0o o o

® ¢ o e & e e e € + 6 s e & ¢ 4 & & & s s s e e o »

271
273
276
278
281
283
284
285
286
287
289
291
294
295
297
298
301
302
304
305
306
308
311
312
313
315
317

319

327
327
330

333
333
333
333
333
333

335
343

FIGURES

L T)

Py

QWO NOUTAGNE

-

o b o b fch o o ok
OOO\IO‘WJ-\UJNH
e e e e o o e o

Integer Data—Internal Representation .
Decimal Data-Internal Representation . .
One-Dimensional Array References—BASE 0 Indexrng .
Three-Dimensional Array References—BASE 1 Indexing
Numeric Operators and Evaluation Order .
Relational Operators .

COLLATE Option and Comparlsons of Character
Expressions e .. . e .
Scalar Express1ons——Evaluatlon Pr1or1tv
Valid Combinations of Organization and Format
File Access Modes .

Record Types Valid wlth Each Flle Organlzatlon
File Format, Organization, Statements, and Use

Valid and Invalid Loop Nesting e e e e s

D0O/LOOP Block Flow of Control .
FOR/NEXT Loop Flow of Control .
IF Blocks—Flow of Control . .
SELECT Block—Flow of Control .
Assignment Statement—Assigning Constant Values
Assignment Statement—Assigning Variable Values

« o e
I
e s e e
-

¢ e o 0

.

e ® e s s =

.

-

-

e« o o

.

« o o 0
.

¢ o e o
e ¢ ¢ o & ¢ & o & o

Positioning Options Allowed—File Input/Output
Statements . e e e e e e e e e e e
Calling and Called Programs e e e e e e
Chaining and Chained Programs . .
Tvpe Conversions for Interlanguage Calls
FORM Statement Data Form Codes . . .

IMAGE Statement Format Specrflcation

Imperative Statements S e e .« e .

IMAGE Statement—Floating Symbol Usage
INPUT FIELDS Statement—Data Form Codes

MAT
MAT
MAT
MAT
MAT
MAT
MAT
MAT

Statement—Addition and Subtraction Example
Statement—Matrix Multiplication Example

-
.
-
.
.

Statement—Matrix Concatenation Example
Statement—Scalar Concatenation Example

Statement—IDN Function Examples. .
Statement—ZER Function Example .« .
Statement—INV Function Example . .
Statement—TRN function Example .

ON Conditions—Processor Actions .

Allowable Combinations of File Type and Flle

Organization . . « e .
PRINT Statement——Comma and Semtcolon Separator Usage
PRINT FIELDS Statement—Data Form Codes
IBM BASIC Commands—Minimum Abbreviations
HELP—PF Keys Used .

SYSTEM Command—Valid CMS Subset Commands

.

.

e o ¢ o ¢ o e o
¢ o o 0 o e ¢ ¢ 0

e ¢ e o ¢ o s o 4 e ¢ 0 0 o s ¢ o

e & @ o ¢ o+ e 2 e 6 9 0 e 4 e 0

¢ e o e e e
e s e o o o s 0

.
-
.
-

¢ ¢ o o
o o & o

.
.
.
.

Figures

e 0 s e 0 e e ¢ o e s v 0

e & o & s 0 0 o & 4 0 0 6 8 o 0 0

« o o 0

267
292
317

xi

INTRODUCTION

THE BASIC LANGUAGE

BASIC is an acronym for Beginner's All-purpose Symbolic
Instruction Code. The elementary capabilities of the language are
specified by the American National Standard for Minimal BASIC,
ANSI X3.60-1978.

IBM BASIC is a significant extension of Minimal BASIC. It includes
many new and advanced capabilities which allow you to produce more
powerful and efficient programs. In addition to the programming
language, IBM BASIC provides two modes of using the language:

. Interactive mode, which includes an interactive "environment™
in which you can create and execute BASIC programs.

. Batch mode, which allows you to separately compile BASIC
programs and then execute the compiled programs under direct
operating system control. This is similar to other batch
language processors such as FORTRAN or COBOL.

The IBM BASIC program product consists of a Processor and a

Library. Interactive mode requires both the processor and

library. Batch mode requires the processor and library for

compilations but only the library for the running of compiled
programs.

IBM BASIC is a line-oriented language used to generate programs. A
program is a sequence of lines containing statements. Each line
begins with a unique line number which serves as a label for the
first statement contained in the line. Statements are grouped in
saveral categories:

. Declarative

. Control

. Assignment

. Input/output

. Program segmentation

L Exception handling

. Debugging

. Remarks

INTERACTIVE ENVIRONMENT

Interactive IBM BASIC provides the capability to create, edit,
debug, and run programs using an interactive terminal. In the
interactive environment, the programs themselves can also
interact directly with the terminal.

In addition to the BASIC language, the interactive environment
provides line number editing facilities and a set of commands.
These commands instruct the interactive BASIC processor to
perform the following functions:

. Create and edit program lines

. Load, merge, or save programs

. Initiate and control execution of programs

Introduction 1

BATCH ENVIRONMENT

. Display information about IBM BASIC
L Delete files
In the interactive environment, several BASIC statements play a

dual role. These statements can be used within programs, as usual,
or can be executed immediately to act as commands. With immediate

statements, you can perform several desk calculator operations:

. Assignment of values to variables or arrays
. Printing of variables, arrays, or expressions

U Calculations using intrinsic functions and numeric,
character, and array operations

L Declaration of immediate variables
. Specification of immediate options

Immediate statements are particularly useful in debugging. They
allow you to inspect and modify variables within a program while
execution of that program has been suspended.

Programs can be compiled either in the interactive environment
(with the COMPILE command) or in the batch environment. The
compiled programs can also be executed in either the interactive
or batch environment.

The batch processor is invoked directly from the host system for
each source program file which is to be compiled. It optionally
produces an object program file and a listing file.

Programs which are executed in the batch environment do not have
an interactive terminal associated with them. Consequently, batch
programs do not interact directly with a terminal and do not have
the IBM BASIC command and immediate statements available for
debugging and program control. In addition, all input/output is
from and to internal or external files.

2 IBM BASIC Application Programming: Language Reference

SYNTAX NOTATION

The following conventions are used for syntax notation.

symbol
[1

{1}

Note:

Meaning

Brackets enclose optional data that can be omitted
without causing errors.

Example

[file-spec] can be specified or omitted in the
RUN command.

The OR sign separates items for which one choice may be
made within a set of data.

Example

For DISPLAY|INTERNAL|[NATIVE, the user may choose ounly
one of the alternatives: DISPLAY, or INTERNAL,

or NATIVE.

Braces indicate a choice of required operands. Choose one
alternative from the enclosed set of data.

Example

For {DISPLAY|INTERNAL|NATIVE}, the user must choose
only ggsEof the alternatives: DISPLAY, or INTERNAL,
or NA .

The ellipsis (...) indicates that the preceding syntactic
element may be repeated an arbitrary number of times.

Example
argument [,argument]...

indicates a list of arguments separated by commas.

The syntax notation used in the HELP facility differs from

that described above. The HELP syntax notation is described in the
HELP SYNTAX panel.

Introduction 3

STRUCTURE OF A BASIC PROGRAM

CHARACTER SET

IDENTIFIERS

The general syntax of a BASIC program is defined in this chapter.

The IBM BASIC character set is:

Character Meaning

x>
i
N

Uppercase Letters
Lowercase Letters
Digits

Blank

Ampersand

Apostrophe (or single quote)
Asterisk

At Sign

Colon

Comma

Dollar Sign

Equal Sign
Exclamation Mark

or - Exponentiation symbol
Greater Than Sign
Left Parenthesis

Less Than Sign

Minus Sign

Number Sign

Percent Sign

Period

Plus Sign

Quotation mark (or double quote)
Right Parenthesis
Semicolon

Solidus or Slash
Underline

-0 OO
[
o N

o 8 XK

N | ANV) = il O

T+

N v

Notes:

1. Uppercase and louwercase letters are equivalent in a BASIC
program, except within character string.

2. The processor uses the asterisk (¥) and question mark (?)
characters as terminal prompts.

Identifiers name variables, arrays, functions, subprograms and
line labels.

The names of variables, arrays, functions, and line labels may
contain up to 40 characters. Subprogram names (see SUB and CALL
statements) may contain at most seven characters.

The first character of an identifier must be a letter, which may
be followed any of the 26 letters of the alphabet, the 10 digits,
and the underline character (_). Letters may be uppercase or
lowercase.

The final character of an identifier may be the number sign (#),
the percent sign (%), or the dollar sign ($). Special meanings
provided by the three characters are discussed under "Variables™
on page 17.

4 IBM BASIC Application Programming: Language Reference

LANGUAGE STATEMENTS

Examples

ALPHAS

Alpha$
alpha_betic$
alpha betic$
DEC_NUM
INT_numX%
decNum#$

A given identifier may name:

. a variable,
. an array,
. or a function.

but not more than one of these in a program unit.

Within a program unit, the same identifier may be used as:
. a variable or array name,

. a line label,

. or a subprogram name (SUB statement).

because context always determines which interpretation is to be
used.

A program unit is either a main program or a subprogram. Each
program unit is a distinct entity in that identifiers used to name
variables, arrays, and user-defined functions are local to the
program units in which they occur; that is, they may be used to
name different objects in different program units. Identifiers
used to name subprograms are global to the entire program; that
is, they name the same subprogram wherever they occur.

BASIC source language statements contain line numbers, optional
line labels, kevwords, identifiers, and expressions.

LINES AND LINE NUMBERS

An IBM BASIC program is made up of a series of statement lines.
Each line starts with a unique number. The smallest line number
allowed is 1 and the largest 9999999.

Line numbers provide labels for statements.

Example
100 IF A=B THEN 300

300 LET B=C

The statement at line 100 directs processing to bypass all of the
instructions between lines 100 and 300 if the value of the
variable A is equal to the value of the variable B. Line (or
statement) 300 becomes a label which is the object of the IF
statement.

Structure of a Basic Program 5

LINE LABELS

RESERVED HORDS

KEYHWORDS

A line label is a statement identifier followed by a colon (:)., It
is declared by its appearance after a line number.

Only one line label may be declared for any one line number.

Line labels may be up to %0 characters long, the first of which
must be alphabetic (A-Z). The remaining characters may be either
alphabetic, numeric, or the underline character.

Example
200 FIRST_CHOICE: LET A=B

In this example, FIRST_CHOICE is the line label.

Reserved words are words you cannot use as identifiers.

Unless your organization has customized the reserved word list,
all of the keywords in IBM BASIC as distributed are reserved
words.

Check with your system administrator for the reserved words used
by vour organization.

Following the line number, and the optional line label, the line
usually continues with one or more BASIC statements. A statement
usually begins with a keyword. Each keyword in BASIC has a
specific meaning. Some keywords are optional and are so noted in
the descriptions of those statements.

The initial keyvword of a statement indicates the action to be
performed by the statement (READ, WRITE, etc.).

Keyuwords may be spelled using either louwercase letters, uppercase
letters, or mixed uppercase and lowercase letters.

Example

LET
Let
let

are equivalent.

6 IBM BASIC Application Programming: Language Reference

Keyuord List

The following is a partial list of IBM BASIC keywords in
alphakbetic order. (The complete list includes the names of the
intrinsic functions and predefined subprogram names. Intrinsic
function names are listed in "Intrinsic Functions™ on page 34.
Predefined subprogram names are listed in "Predefined Subprogram

Names™ on page 91.)

ACCESS IF REM
AND IGNORE REREAD
APPEND IMAGE RESET
AT INPUT REST
ATTN INTEGER RESTORE
INTERNAL RETRY
BASE INVP RETURN
BEGIN I0OERR REWRITE
BOTTOM RIGHT
BREAK KEY
KEYED SCRATCH
CALL SEARCH
CASE LE SELECT
CAUSE LEFT SEQUENTIAL
CHAIN LENGTH SKEY
CLOSE LET SKIP
COLLATE LINE SOFLONW
COM LINPUT SPREC
COMMON LOOP STANDARD
CONTINUE LPREC STEP
CONV LT STOP
STREAM
DATA MARGIN SUB
DEBUG MAT SUBEXIT
DECIMAL SYSTEM
DEF NATIVE
DEFDBL NE TAB
DEFINT NEWPAGE THEN
DEFSNG NEXT T0
DELETE NOFIPS TOP
DIM NOKEY TRACE
DISPLAY NONE TYPE
DO NOREC
DUPKEY NOT UFLOW
DUPREC UNTIL
OFF USE
ELSE OFLOW USING
END ON
ENDPAGE OPEN VARIABLE
EOF OPTION
EQ OR WHILE
ERROR ORGANIZATION WRITE
EXIT OQUTIN
OUTPUT ZDIV
FIELDS
FILES PAGE
FIPS PAGEOFLOW
FIXED PAUSE
FLAG POINTER
FNEND POS
FONT PRINT
FOR PROMPT
FORM PRTZO
PUT
GE
GET RANDOMIZE
GO RD
GOSUB READ
GOTO REC
GT RECORD
RECORDS
\ RELATIVE

Structure of a Basic Program

Except for the following, keywords may not be abbreviated.
e COM may be used in place of COMMON

. REC may be used in place of RECORD

. PAGE may be used in place of NEWPAGE

Rules for Keyuords Removed from the Reserved Word List

If your organization has removed keyuwords from the IBM BASIC
reserved word list, the rules regarding treatment of keyuwords are
different from those given above; the modified rules are given in
the following paragraphs.

If a BASIC keyword has not been removed from the reserved word
list, the keyword cannot be used as an identifier.

Example
LET LET = 2
LET = 2
neither is accepted if LET is included in the reserved word list.

However, if a kevword has been removed from the reserved word
list, it can be used as an identifier, even though it is still a
BASIC keyword. In that case, both of the LET statements in the
preceding example are accepted as written:

. In the first LET statement, the first word LET is interpreted
as a keyword, and the second is interpreted as an identifier.

° In the second LET statement, the word LET is interpreted as an
identifier.

Some kevuwords may be ambiguous if they are not reserved;

therefore, whenever an ambiguity is detected, the keyword
interpretation is used.

Example
100 REM = 3
200 IMAGE: X=Y
300 X = SINCY)
In these examples:

i Statement 100 is a REM statement, not an assignment
statement.

. Statement 200 is an IMAGE statement, not an assignment
statement with a statement label named IMAGE.

. Statement 300 is a reference to the intrinsic function SIN,
not an implicit declaration of a numeric array SIN.

However, if a keyword is deleted from the reserved word table and
its first use in the program is a declaration in a COM, DIM, or
DEF statement, an ambiguous usage is treated by the program as an
identifier. That is, in the previous example, if SIN is declared
as an array in a COM statement before the reference in statement
300, then statement 300 is a reference to an array named SIN.

8 IBM BASIC Application Programming: Language Reference

MEANINGFUL SPACES OR BLANKS

Spaces (blanks) cannot appear within:

line numbers
keywords
identifiers
numeric constants

Example
BOT TOM

is not acceptable.

Spaces are optional between the following kevwords. GOTO and GO TO
mean the same thing, GOSUB and GO SUB mean the same thing.

When the presence of delimiting characters delimits keywords or
identifiers, the keywords or identifiers can be coded with or
without delimiting spaces. Delimiting characters are:

+-%/7 = ()" "' =~ (or~)

All the following assignment statements are accepted and
processed in the same manner:

Example

100 LET TOTAL
100 LET TOTAL
100 LET TOTAL

VALA + VALB+VALC
VALA+VALB + VALC
VALA + VALB + VALC

Any keyword appearing in a program must be preceded by a space or
other delimiting character and, if not at the end of a line,
followed by a space or other delimiting character.

Example
FORI=1 TO010

is not a correct FOR statement.
A space must follow the
words FOR and T0, as follows:

FOR I=1 TO0 10

Spaces may optionally precede or follow the equal sign (=).

Example

FOR I =1 70 10
FOR I= 1 T0 10
FOR I =1 70 10

are all equivalent.

Spaces appearing in quoted characters constants (character
constants enclosed in auotes) are counted as part of the constant;
spaces appearing outside the quotation are not considered part of
the constant. Spaces either preceding or following an unquoted
character constant (only allowed in DATA statements and responses
tg ;NPUT statements) are not considered part of the character
string.

Structure of a Basic Program 9

Example

LET ALPHA$ = "LAST YEAR" The spaée between T and Y
is part of the string
DATA LAST YEAR The space between T and Y

is part of the string; the
spaces that precede L and
follow R are not part of
the string

STATEMENTS AND THEIR CATEGORIES

IBM BASIC statements can be considered as belonging to one of the
following categories:

Imperative Statement Causes an unconditional action to occur.

conditional Statement Tests a condition to determines which of
two or more alternative paths of execution
are to be followed.

Declarative Statement Specifies characteristics of the program

in general and thus influences the entire
program unit in which it appears.

continuation of Statements

Statements may be continued from one line to the next by placing
an ampersand (&) as the last nonblank character of each line to be
continued, and beginning the next line with an ampersand as the
first nonblank character.

Eﬂm;e_l.g

100 PRINT A,B,C,D,E(11,12),F,G,H,I,J,K,LE&
& ,M,N

is equivalent to:

100 PRINT A,B,C,D,E(11,12),F,G,H,I,J,K,L,M,N
A line can be continued in any line position where a space might
normally appear, except within a character constant. Line numbers
and line labels are not allowed on continuation lines.
Continuations are not allowed within REM (remarks) statements.
Lines containing trailing comments may be continued, but the
comment may not be continued.

Example

102 é = B + ! THIS IS A COMMENT &

is functionally equivalent to:
100 A =B + C ! THIS IS A COMMENT

There is no limit to the number of continuations, except for the
amount of storage available to the entire program.

10 IBM BASIC Application Programming: Language Reference

Multiple Statements Per Line

COMMENTS

The colon (), when not within a quoted character string or
parentheses, and when not used to signify a label, and when not
used in a file I/70 or IMAGE statement, indicates the end of a
statement when another statement begins on the same line.

Example
100 LET A = 5: LET B = 6: LET €C = 10

is functionally equivalent to three separate LET statements:

100 LET A =5
110 LET B = 6
120 LET C = 10

If a statement normally could be expected to end in a colon, then
the presence of a second colon is recognized as the indication
that another statement is present on the same line.

Example
100 PRINT #3:: PRINT #3: "THE ANSLER IS"™, A

is functionally equivalent to two separate PRINT statements:

100 PRINT #3:
110 PRINT #3: "THE ANSWER IS"™, A

where the first colon is part of the syntax of the PRINT #3:
statement, and the second colon indicates that another
statement begins on that line.

The statements EXIT, IMAGE, FORM, and SUB must be the first
statement on a line, because they must have a line number or label
to be used for reference.

The DATA, EXIT, FORM, IF, IMAGE, and REM statements must be last
on a line. This requirement is made to maintain compatibility with
other BASICs and to avoid ambiguous syntax.

In a REM statement, or in any statement containing an exclamation
mark remark ('), no other statement can occur on the same line,
since all characters following the remark are taken to be remarks.

Similarly, wherever an unquoted character string may occur, such
as in a DATA statement, another statement may not follow, because
of the possible conflict of interpretation.

When the line number of a multistatement line is used in a GOTO or
?QSUB statement, it always refers to the first statement on that
ine.

Multiple statements per line are not allowed in immediate
statements.

Colons are used to separate statements within statement lists
appearing in IF statements. llhen an IF statement ends with a
statement list (as opposad to a line number reference or a line
label reference), all of the remaining statements on the line are
considered part of the IF statement list.

Comments inserted at intervals make programs easier to understand
and their logic easier to follow. IBM BASIC allows comments in two
forms: the exclamation mark comment, and the REM comment.

Structure of a Basic Program 11

EXCLAMATION MARK COMMENTS

An exclamation mark (!) specifies that the balance of the data on
the current line is a comment and not to be interpreted, that is,
the data is to be displayed in the program listing and no other
action taken.

Example

100 LET DEPOSITS = 90.10 + 50.00 + 85.00 !TOTAL DEPOSITS
110 LET CHECKS = 12.50 + 16.00 + 27.00 !TOTAL CHECKS
120 LET BALANCE = OLDBAL+DEPOSITS-CHECKS !NEW BALANCE

Through the comments, the purpose of these three statements
is clearly documented.

The exclamation mark may not appear as a trailing comment on an
IMAGE, DATA, or FORM statement.

REM STATEMENT COMMENTS

The keyword REM (for remarks) is used for comment lines. REM
specifies that data on the entire current line is a comment and
not to be interpreted; that is, the data is to be displayed in the
program listing and no other action taken.

Example

100 LET ABC = PARTA + PARTB
110 REM TOTAL THE PARTS

has exactly the same meaning as the following line:

100 LET ABC = PARTA + PARTB !TOTAL THE PARTS

COMMENT CONTINUATION NOY ALLOWED

STATEMENT BLOCKS

Comments cannot extend bevond an end of line. If more room is
required for a comment than the current line allows, another REM,
or exclamation mark permits continuation of the comment at the
beginning of the next line.

Example

100 LET DEPOSITS = 90.10 + 50.00 + 85.00 !TOTAL
110 !DEPOSITS FOR CURRENT MONTH

Certain statements are logically grouped into statement blocks.
Each block serves a separate and distinct purpose. The statement
blocks are:

. User-Defined Functions—described in "User-Defined Function
Statements"™ on page 77

. tgop Blocks—described in "Loop Control Statements™ on page

. IF Blocks—described in "IF Blocks" on page 64

. SELECT/CASE Blocks—described in "SELECT Blocks"™ on page 66

12 IBM BASIC Application Programming: Language Reference

PROGRAM UNITS

A program may be divided logically into a number of program units;
a main program and one or more subprograms.

Each program unit establishes a separate scope of identifiers.
The same identifier may be used in different program units to name
different items.

Statements within a program unit may not refer to any variable,
array, line label, line number, or function (other than intrinsic
functions) defined externally to that program unit.

Program units are described in "Subprogram Statements™ on page
78.

Structure of a Basic Program 13

CONSTANTS, VARIABLES, AND ARRAYS

CONSTANTS

NUMERIC CONSTANTS

Integer Constants

Decimal Constants

Data can be constants, variables, or arrays. To reference data, a
constant, a variable name, or an array name may be specified.

All data—whether a constant, a variable, or an array—is divided
into two classes: numeric and character. There are two types of
numeric data: integer or decimal. Character data has the
character type.

A constant, as the name implies, is a piece of data whose value
will not and cannot be changed during processing. There are two
types of constants: numeric and character.

Numeric (also referred to as arithmetic) constants can be
represented in two forms: integer and decimal.

Integer constants are made up of whole numbers. These numbers can
be either positive or negative and can range from -2,167,483,648
'tO +2}147,483;647.

Periods and commas cannot appear within integer constants.

Example

15

+365
-123
1429

INTERNAL REPRESENTATION OF INTEGER CONSTANTS: Integer Constants
can contain up to 10 digits, with a maximum value of
+2,147,483,647 and a minimum value of -2,1647,483,648.

They are stored internally as shown in Figure 1.

‘]
L

{——— 4 bytes — >

Figure 1. Integer Data—Internal Representation

Integer constants are stored internally as full word (32-bit)
two's complement values.

Decimal constants can be either fixed-point or floating-point
constants.

Decimal data can contain up to 17 digits.

14 IBM BASIC Application Programming: Language Reference

FIXED-POINT DECIMAL CONSTANTS: Fixed-point decimal constants can
be_either positive or negative in value and must include a decimal
point.

Example

.15
+3.65
-123.

FLOATING-POINT DECIMAL CONSTANTS: Floating-point decimal
constants allow the representation of very large or very small
numeric values.

Floating—-point constants can be either positive or negative in
value. A floating-point decimal constant can be written as either
an integer or decimal fixed point constant, followed by the letter
E, followed by an integer constant.

Example
5.0E+6

5E6
+5E06

Each of these examples represents the number 5 million, expressed
as 5 times 10 to the sixth.

Each of these examples specifies that the decimal point is to be
moved right the number of places indicated after the letter E
(that is, 5 is to be multiplied by that power of 10). The number
before the E is referred to as the mantissa. The number after the
E is referred to as the exponent.

Just as easily, very small number values can be presented by
saying, "move the decimal left."”

Example
5.0E-6
5E-06
+5E-6
all represent .000005, or 5 times 10 to the minus sixth.
For floating-point, the mantissa is normalized to an implicit
decimal point to the left of the leftmost significant digit. The
exponent can be in the range -75 to +75.
Therefore, the largest absolute value is:
.99999999999999999E+75
and the smallest absolute value is:
1E-75
INTERNAL REPRESENTATION OF DECIMAL CONSTANTS: Decimal data is

stored internally as three words (12 bytes) as shown in Figure 2
on page 16.

Constants, VYariables, and Arrays 15

CHARACTER CONSTANTS

{——————nmantissa—>] EXP
ddlddlddldd ddldd dd|ddld0|0+ !
where:
mantissa is a 10-byte packed decimal number
normalized to the left with the last
two digits zero
d represents a half-byte containing the
value of a decimal digit (0-9)
+ represents the half-byte for the sign
EXP represents the half-word exponent as a
twos-complement value.

Figure 2. Decimal Data-Internal Representation

Character constants are strings of characters. They can be used,
for example, to create headings and subheadings for reports. They
are normally enclosed within quotes (called delimiters). These
delimiters may be omitted in DATA statements and in the responses
to INPUT statements under specific rules which are discussed in
the sections dealing with the DATA and INPUT statements.

Character constants may be specified using either single or
double quotes, but not both, for the same constant.

Example

If this constant is specified:
'The sentry shouted, "Halt!"*
the value is:
The sentry shouted, "Halt!"™

with double quotes around the word Halt.

If this constant is specified:

"The sentry shouted, "Halt!'"™

the value is:

The sentry shouted, 'Halt!?

Wwith single quotes around the word Halt.
If the delimiting quote mark appears within the string, it must
appear doubled, with no intervening spaces. Thus, the last
example could be specified:

*The sentry shouted, "'Halt!''?

A character constant may be null, that is, contain no characters.
The null string (that is, a string of length zero) may be

16 IBM BASIC Application Programming: Language Reference

VARIABLES

NUMERIC VARIABLES

specified with either contiguous single quotes ('') or contiguous
double quotes ("").

Variables are data items whose values may be changed. Variables
may take two forms: simple, referring to a single item, or
subscripted, referring to one item (or member) of an array or
group of data.

A variable name is an identifier for a set of data which may
change values during processing, hence the name variable.

Variable names cannot exceed 40 characters in length.

Numeric variables:
. Are integer or decimal type.

. Are specified explicitly by type through the INTEGER or
DECIMAL statements.

U Are specified implicitly by type through the integer suffix %
or the decimal suffix # on the variable name.

U Are in error if these specifications conflict.
U May not have names ending with $.
. Are initialized to zero (0).

The type (decimal or integer) of numeric variables may be
specified by DECIMAL and INTEGER statements. These statements
declare the type of a variable according to the variable name or
the first letter of the name.

Example
100 INTEGER (A-C),INT1

defines all numeric variables with names beginning with
A, B, or C as type integer. The variable INT1l is also type
integer.

If a variable name does not end with # or ¥ and the name or first
letter of the name is not specified in a DECIMAL or INTEGER
statement, the variable is assigned decimal type by default.

Variable names ending with # or X may not be assigned a
contradictory type. For example, DECIMAL XX is an error, INTEGER .
X% is redundant but acceptable. Also, the # and % typing overrides
first character typing (through DECIMAL or INTEGER statements).

Example

110 INTEGER(A-C)
120 ALPHA#=BETA

In this example ALPHA®# is given decimal type even though it begins
with one of the letters declared in the INTEGER statement. BETA is
typed integer.

Note that the characters % and # are considered as part of the 40
characters when determining variable name size limits.

If a numeric variable name ending with # or %X duplicates another
numeric variable name in all character positions except the final
or X and the two names have the same type, then they refer to the
same variable. For example, A#, A%, and A may all be used in a

Constants, Variables, and Arrays 17

CHARACTER VARIABLES

program. If A is typed decimal (either by a DECIMAL statement or
by default) then A and A# represent the same variable. However, if
A is typed integer, A and A% refer to the same variable.

Each time execution of a program unit (main program or subprogram)
is begun, all numeric variables local to the program unit (not in
COMMON and not parameters) are initialized to zero. COMMON
variables are initialized to zero when the first program unit
using COMMON is encountered.

Integer variables contain 32-bit two's complement values as
described under "Integer Constants™ on page 14.

Decimal variables contain 17 digit values with a decimal point and
power of ten exponent. The internal representation and range of
decimal values is discussed under "Decimal Constants™ on page 14.

Character variables:
. Must have names ending with $.
. Contain strings which are variable in length.

° Have a maximum length which is either declared explicitly in a
DIM or COMMON statement, or is the IBM supplied default, (18,
but check with your system administrator).

L May have a maximum length of 32767 characters.
° Are initialized to a null (zero length) string.

All character variable names must end with the character $ and may
be up to 40 characters in length, including the dollar sign.

Character variables contain character strings of varving length.
In other words, the value of a character variable does not
necessarily aluways have the same length.

Each character variable has associated with it a current length.
Each character variable also has a maximum length. The maximum
length is the maximum value possible for the current length. The
maximum length may be declared with the DIM or COMMON statements
or, if not declared, defaults to a value determined by vour system
administrator (18 is the IBM supplied default). The maximum value
that may be declared is 32,767.

Example
110 A$ = "STRING"™
120 A$ = "BIGGER STRING™

In the above example, at line 110 A$ is assigned a string of
length 6, and at line 120 the same variable is assigned a string
of length 13.

Example
100 DIM ADDRESS$*30

In this example, the "%30" declares the variable ADDRESS$ to have
a maximum length of 30.

When execution of a program is initiated, for example, with the
RUN command, and before any statements are processed, IBM BASIC
initializes all character variables to the null string (sets
their current lengths to zero).

18 IBM BASIC Application Programming: Language Reference

ARRAYS

An array is a collection of data items (elements) that is referred
to by a single name. Only data items of the same type (character,
decimal, or integer) and, in the case of character, the same
maximum length can be grouped together to form an array.

Arrays can have from one to seven dimensions. 5 one-dimensional
array can be thought of as a vector of successive data items.

REFERENCES TO ARRAY ELEMENTS (SUBSCRIPTS)

To refer to a single element in the array yvou must be able to
specify that element. In order to do so, you must provide a
subscript for each dimension of the array.

A subscript can be any valid arithmetic expression whose rounded
integer value is equal to or greater than zero. A set of
subscripts is specified within parentheses and separated by
commas after the array name to which they refer.

The parentheses and the enclosed term(s) are referred to as a
subscript.

Example
ARAS(3,3,3)

The subscript reference (3,3,3) locates a specific element
within the 3-dimensional array named ARA3S.

Reference to an element in a one-dimensional array requires that
you specify the array name (ARA1$ for example) followed by the
desired array position enclosed in parentheses. If you want to
move the third value of ARALl$, assuming CPTION BASE 0, to the
variable VARS, vou can use this statement;

100 LET VARS=ARA1$(2)

In multidimensional arrays, the rightmost subscript varies most
rapidly. If you define ARA2$ in this manner:

100 DIM ARA2$(10,20)

a two-dimensional array is generated, and (assuming OPTION BASE
1) you can refer to any one of the two hundred locations within
ARA2$ by using the proper subscript. 200 LET statements could
refer to the array sequentially, one location at a time, in the
same order that a MAT statement would use:

100 LET VARA1$=ARA2$(1,1)
110 LET VARA2$=ARA2$(1,2)
120 LET VARA3$=ARA2$(1,3)

1990 LET VARA199$=ARA2$(10,19)
2000 LET VARA200$=ARA2$(10,20)

subscript Boundaries

The lower boundary of each subscript is determined by the OPTION
BASE in effect. If OPTION BASE 1 is in effect the lower boundary
of a subscript is one (1). If OPTION BASE 0 is in effect the lower
boundary of a subscript is zero (0). Upper subscript boundaries
are dependent upon the current dimensions of the array. These
dimensions are initially set by DIM or COMMON statements or by
implicit defaults (see "Explicit Dimensioning of Arrays"™ on page
21 and "Implicit Dimensioning of Arrays™ on page 22), but may be
dynamically changed by redimensioning (see "Redimensioning™ on
page 23). Redimensioning must not increase the array size to

Constants, Variables, and Arrays 19

BASE INDEXING

exceed the explicitly or implicitly defined number of elements.
The intrinsic function SIZE may be used to determine the
dimensions of an array or the number of its elements (see
"Intrinsic Functions” on page 34).

Subscripts may be any numeric expression. If the result of the
expression is decimal with a fractional part, it is rounded and
converted to an integer value. Thus, A(2.5) is equivalent to A(3).

If a subscript value is outside of the dimension's range (less
than the lower boundary or greater than the upper boundary), an
exception is generated when the illegal array reference is
attempted (see "ON Condition Statement™ on page 203).

Array dimensioning is based on the selection of BASE 0 indexing or
BASE 1 indexing. The OPTION statement specifies the base; the
default is BASE 0.

If base 0 indexing is specified, the array is referenced starting
with zero, AC(0), A(1), A(2), A(3), etc. If base 1 indexing is

specified, the reference starts with one, A(1), A(2), A(3), A(4),
etc.

Example

DIM A(10)

When OPTION BASE 0 is in effect is an ll-element array
When OPTION BASE 1 is in effect is a l0-element array

Figure 3 shows how a one-dimensional array named A, with OPTION
BASE 0 in effect, is laid out in storage.

AC0)
ACL)
AC2)
AC3)
AC0)

Figure 3. One-Dimensional Array References—BASE 0 Indexing

20 IBM BASIC Application Programming: Language Reference

Figure 4 shows how references to a three-dimensional array Named
B, with OPTION BASE 1 indexing, would appear in storage.

B(1,1,1) B(1,1,2) B(1,1,3)
B(1,2,1) B(1,2,2) B(1,2,3)
B(1,3,1) | B(1,3,2) B(1,3,3)
B(2,1,1) B(2,1,2) B(2,1,3)
B(2,2,1) B(2,2,2) B(2,2,3)
B(2,3,1) B(2,3,2) B(2,3,3)
B(3,1,1) B(3,1,2) B(3,1,3)
B(3,2,1) B(3,2,2) B(3,2,3)
B(3,3,1) B(3,3,2) B(3,3,3)

Figure 4. Three-Dimensional Array References—BASE 1 Indexing

Note: A series of values assigned to a multidimensional array
always fills that array with the rightmost subscript varying most
rapidly.

EXPLICIT DIMENSIONING OF ARRAYS

Numeric Arrays

Arrays can be dimensioned explicitly by either the DIM or COMMON
statements.

When an array is dimensioned explicitly, both the number of
dimensions and the upper bounds of each dimension are specified in
the DIM or COMMON statement. For example, if BASE 1 indexing is in
effect:

DIM ARRAY(20,4)
dimensions a numeric array named ARRAY to 20 rows and 4 columns.

The maximum size of an array is limited only by the virtual
storage available.

If an array is explicitly dimensioned more than once in a program
unit, an error message is printed and all declarations of the
array except the first are ignored.

If an array is explicitly dimensioned with an upper bound of zero
in a program unit with OPTION BASE 1, an error message is printed
and the array declaration is ignored.

Numeric arrays are typed (decimal or integer) in the same manner
as numeric variables:

. The DECIMAL and INTEGER statements can declare specific array
names or specific beginning letters of array names.

. The characters # and %X at the end of array names indicate

decimal and integer, respectively, and override declarations
in DECIMAL and INTEGER statements.

Constants, Variables, and Arrays 21

character Arrays

L If a numeric array name ending with # or % duplicates another
array name in all character positions except the final & or %,
and the two arrays have the same type, they refer to the same
array and only one of the two may be dimensioned explicitly.

L Integer arrays contain values as described for integer
variables, and decimal arrays contains values as described
for decimal variables (see "Numeric Variables™ on page 17).

. Numeric arrays are initialized to zero.

Character arrays follow much the same rules as character
variables:

L Character array names must end with the character $.

. All elements of a character array are assigned the same
maximum string length either by explicit declaration in a DIM
or COMMON statement or by default. The maximum length is
32767 . The default maximum is determined by your system
administrator. (18 is the IBM-supplied default.)

° Each element of a character array has a current length which
is not necessarily equal to the current length of other
elements.

° When processing begins, the current length of all character
array elements is set to zero (the null string).

Example

100 OPTION BASE 1
110 DIM NAMES_OF_MONTHSS$(12)%9

This declares a one-dimensional character array of 12 elements
wWwith each element having a maximum length of nine characters.

After an array has been explicitly dimensioned, it cannot be
explicitly dimensioned a second time by another DIM or COMMON
statement anywhere in the program unit.

IMPLICIT DIMENSIONING OF ARRAYS

If the first usage of a name in a program is as an array, but the
array is not dimensioned in a DIM or COMMON statement, implicit
dimensions are assumed.

The upper bound of each implicit dimension is 10; the lower bound
is 0 or 1, depending on OPTION BASE 0 or 1.

The number of implicit dimensions depends on the number of
dimensions in the subscript reference.

If the reference has no subscripts, for example, in a MAT
assignment statement, two dimensions are assumed. (The MAT
functions DOT, AIDX, DIDX and the intrinsic function SRCH are
exceptions to this rule; they assume one-dimensional arrays.)

22 IBM BASIC Application Programming: Language Reference

REDIMENSIONING

An array can be declared implicitly by using the array name in a
context where only an array name is permitted, as in an assignment
statement with subscripts. For example, assuming OPTION BASE 0 is
in effect:

. Reference with subscripts
100 LET ARAX(4,5)=10

establishes ARAX as a two-dimensional array, each
dimension containing 11 elements.

. MAT statement
110 MAT A=(15)

establishes A as a two-dimensional array, each dimension
containing 11 elements.

. MAT name in an input or output list
100 PRINT USING 120:MAT ARAY

establishes ARAY as a two-dimensional array, each
dimension containing 11 elements.

. As the argument of a function which requires an array
parameter

100 IF XDT(K)=0 THEN 200

establishes XDT as a one-dimensional array containing
11 elements.

Assuming BASE 0 indexing, when no DIM or COMMON statement
specifies an array named A, the statement:

A(3) = 50

establishes a one-dimensional array containing 11 elements.
Element A(3) is the 4th element and has a value of 50.

Similarly, when neither a DIM nor a COMMON statement specifies an
array named ARRAY, the statement:

ARRAY(10,4) = 7.123

establishes a two-dimensional array containing 11 rows and 11
columns (121 elements). Element ARRAY(10,4) has a value of 7.123.

Arrays with dimensions that contain more than 10 or 11 elements
must be explicitly dimensioned by a DIM or COMMON statement. Thus,
without the appropriate DIM or COMMON statement, the following
statements would both cause errors:

A(15) = 22.4
B(3,20) = 66.6

Once an array has been dimensioned, either explicitly by a DIM or
COMMON statement, or implicitly through usage, it cannot be
explicitly dimensioned again, but it can be redimensioned.

Arravs may be dynamically redimensioned by MAT assignment
statements and MAT references in input lists within I/0
statements. The number of dimensions and the extents of those
dimensions may be changed as long as the number of elements in the
original array is not exceeded.

Redimensioning only changes the view of the storage associated
with an array, not the contents of the storage. Redimensioning may

Constants, Variables, and Arrays 23

cause anh array to become smaller such that excess elements are not
accessible, but the values remain in storage so that a subsequent
redimensioning may bring them back into view.

Example

original Dimensions Redimensioning Reference

OPTION BASE 1

ARRAY1(100) MAT ARRAY1 = ARRAY1(85)

ARRAY1(100) MAT ARRAY1l = ARRAY1(10,10)
ARRAY2(20,20) MAT ARRAY2 = ARRAY2(300)
ARRAY2(20,20) MAT ARRAY2 = ARRAY2(500) (See Note)

Note: This redimensioning reference is invalid; the redimensioned
ARRAY2 would exceed the original size of ARRAYZ2.

Redimensioning COMMON Arrays

Arrays in COMMON can be redimensioned and the effects are global
(remain in effect) across program units. If a subprogram
redimensions a COMMON array, the new dimensions remain in effect
when the subprogram is exited.

Redimensioning Parameters

An array that is a parameter (that is, appears in a SUB statement)
may be redimensioned within a subprogram. When control returns to
the calling program, the array retains its changed dimensions.

Example
Ccalling Progran Called Program
100 SUB SUBPROG (ARRAY2(,))
100 OPTION BASE 1 110 OPTION BASE 1
110 DIM ARRAY1(10,10) 120 MAT ARRAY2 = ARRAY2(5,5,4%)

120 CALL SUBPROGCARRAYL(,))

-

After control returns to the main program, ARRAY1 has the
dimensioning ARRAY1(10,10).

26 IBM BASIC Application Programming: Language Reference

EXPRESSIONS

NUMERIC EXPRESSIONS

Expressions are representations of numeric or character values,
for example, variable or constants appearing above or in
combination with operators.

An expression can be any one of the following:

Numaric Numeric values, optionally combined by numeric
operators.

Character Character values, optionally combined by character
string operators.

Ralational Combinations of numeric expressions combined by
relational operators or character expressions
combined by relational operators.

Logical Combinations of relational expressions combined by
logical operators.

Array Entire numeric or character arrays, optionally
combined by numeric or character operators.

A numeric expression can be a numeric constant, a simple numeric
variable, a reference toc an element of a numeric array, a
numeric-valued function reference, or a sequence of the above
appropriately separated by numeric operators and parentheses.

There are five numeric operators, sometimes referred to as scalar
operators, as shown in Figure 5.

EVALUATION OF NUMERIC EXPRESSIONS

IBM BASIC evaluates numeric expressions from left to right,
subject to the evaluation order of the various operators defining
the order of execution, as shown in Figure 5.

Evaluation
Operator Meaning order
¥¥% or = or ~ exponentiation 1
b3 multiplication 2
/ division 2
+ addition (or sign operator) 3
- subtraction (or sign operator) 3

Figure 5. Numeric Operators and Evaluation Order

The double asterisk, the logical not sign, or the circumflex can
be used for exponentiation; the one used depends upon the
characters available on the terminal.

The left-to-right processing of operators is modified to provide
compatibility with accepted practices of arithmetic processing.
The highest processing priority is provided to exponentiation.
The intermediate processing priority is provided to
multiplication and division. If these two operators are
encountered in the same expression, normal left-to-right

Expressions 25

processing priority is used. The lowest processing priority is
assigned to addition and subtraction. If these two operators are
encountered in the same expression, normal left-to-right
processing priority is used. See Figure 5 on page 25.

Evaluation of this expression:

Example
5+15-3

results in the value of 17t 5 is first added to 15; then
3 is subtracted from that sum.

In the following expression, the normal left-to-right process is
overridden by the priority of operators:

Example
5+15/3

First, 15 is divided by 3; then, the quotient 5 is added to 5.
The result is 10.

If an arithmetic statement contains several operations with mixed
priorities, the operations with the higher priority are processed
first in a left-to-right sequence. When that is completed, the
next lower priority level of operations is processed.

Example
4+10/72-6%%3/76+5

This expression is evaluated as follows:

1. Exponentiation is the first priority, so 6%x%3 is

evaluated first, giving the following intermediate
expression:

6+10/2-216/4+5

2. Division is the next priority, evaluated in left-to-right
order, so 10/2 is next evaluated, giving the following
intermediate expression:

4+5-216/4+5

3. Next, the right-hand division operation, 216/4, is
performed, giving the following intermediate expression:

4+5-56+5

4. Addition and subtraction are of the same priority; they
are processed from left to right, giving the final
result, which is -4%0.

PARENTHESES IN NUMERIC EXPRESSIONS

26

Parentheses provide a means to modify any of the above stated
rules. The evaluation of parenthetic expressions has the highest
possible priority. If more than one parenthesized subexpression
is contained within an expression, the left-to-right priority
becomes effective.

When parentheses are nested, the innermost pair of parentheses
(the pair deepest nested) has the highest priority.

IBM BASIC Application Programming: Language Reference

Using the expression from the previous example, we will change the
order of processing by adding parentheses:

Example
G+10/2-6%%3/(4+5)

1. Now the first evaluation is (4+5), giving the following
intermediate expression:

G+10/72-6%%x3/9

2. Exponentiation, 6%%3, now takes place, giving the
following intermediate expression:

4+10/2-2167/9
3. The two division operations, 10/2 and 21679, now take
place in left-to-right order, giving the following
intermediate expression:
G+5-24

4. Last of all, addition and subtraction generate the final
value of -15.

Operators may not be presented in succession. The expression
4+-10

is invalid, whereas 4+(-10) is valid.

ADDITION AND MULTIPLICATION RULES IN NUMERIC EXPRESSIONS

In IBM BASIC, multiplication and addition are both commutative;
in other words, A¥B is the same as B¥A and A+B is the same as B+A.

However, multiplication and addition are not always associative;
that is, AX(B%C) does not necessarily give the same results as
(AXB)XC. This is due to the situation shown below, where an
overflow or underflow could result.
For example:

1E60%(1E20%1E-20) equals 1E60
but

(1E60%1E20)%1E-20 results in an overflouw.
The expression in the parentheses causes the overflow and, if no
ON OFLOW GOTO statement has been previously executed, causes the
value 0.99999999999999999E+75 (BASIC infinity) to be substituted
into the expression that is then multiplied by 1E-20. This results
in the total expression equaling 0.99999999999999999E+55.

A/B is defined as A divided by B. If B=0, a division by zero
(ZDIV) error will occur.

A-B is defined as A minus B. No special conditions exist.

PLUS AND MINUS AS SIGN OPERATORS

The + and - signs can also be used as positive/negative operators,
which can be used in only two situations:

. Following a left parenthesis and preceding a numeric
expression.

. As the leftmost character in an entire numeric expression.

Expressions 27

Example

valid Invalid
~-A+B ~A++B
-A+(-B) -A+-B
B-(-2) B--2

MIXED TYPE NUMERIC EXPRESSIONS

The result of an expression containing any decimal operands is
decimal.

The result of an expression containing only integers is integer,
except for division and exponentiation, where integer operands
are converted to decimal, and the result is decimal.

If an integer operand is combined with a decimal operand, the
integer operand is converted to decimal and the result is decimal.

Decimal or integer results may be assigned to numeric variables
and arrays of either type (see "Assignment Statements™ on page
68).

The IFIX, INT, and DEC intrinsic functions are useful with mixed
numeric expressions, The IFIX function returns the rounded
integer value of the argument. The INT function returns the
largest integer not greater than the argument. The DEC function
converts the argument to internal decimal format (see "Function
Descriptions” on page 36).

CHARACTER EXPRESSIONS

CONCATENATION

Character expressions are made up of combinations of character
constants, character variables, character array elements, and
references to character functions, combined by the concatenation
operator and modified by substring qualifiers.

Example

"ABCDEFG123456™ (character constant)
ALPHAS & BETAS (concatenation of 2 character variables)

"SER™ & M"IAL"™ (concatenation of 2 character constants)
ZEBRAS(2:6) (substring of a character variable)
CHRS(CHAR) (a character array element)

GAMMAS(I,I)(4:9) (substring of a character element)

Concatenation is joining two character expressions with an
ampersand (&), the concatenation operator. When two or more
character strings are concatenated, the length of the resulting
string is the sum of the individual string lengths.

Example

110 A$ = "MINNE™
120 BS = A$ & "SOTA"

In this example, the character variable A$ is concatenated with
the character constant "SOTA"™ to form the value of B$ (MINNESOTA:.
In the preceding example, A$ has a length of five ("MINNE™),
"SOTA"™ has a length of four, and B$ has a length of 5+4=9 (with
the value "MINNESOTA").

28 IBM BASIC Application Programming: Language Reference

SUBSTRINGS OF CHARACTER VARIABLES AND ARRAYS

A character substring is a contiguous portion of a character
string. A substring is identified by a substring qualifier.
Operations to extract, insert, replace and append substrings are
provided by references using substrings or qualifiers.

A substring of a character string is specified by adding a
substring qualifier to a character variable or character array
element. A substring qualifier has the form:

(m:n)
Where:
m is the beginning position of a string
n is the ending position.

Both m and n may be numeric expressions. When m and n are
evaluated, the values used are the rounded integer equivalents of
the expressions.

Ifmis less than 1, m is considered to be 1. If m is greater than
the number of characters in the value associated with A$, the
addressed substring is the hull string immediately following the
last character of A$. The number of characters in the value
associated with A$ can be expressed as the intrinsic string
function LEN(AS). If n is greater than LEN(AS$), n is considered to
be equal to LEN(AS). If m is greater than n, the addressed
substring is the null string preceding the mth character of AS$.

When the string notation occurs to the right of the equal sign in
an assignment statement, extraction is indicated. When the string
notation occurs to the left of the equal sign, replacement or
insertion is indicated.

Examples

Assume that A$ contains the value ABCDEF and that B$ has the value
VWXYZ. Following are examples of substring extraction,
replacement, and insertion.

Extraction

G$ = B$(2:3) Assigns WX (the 2nd and 3rd positions
of B$S) to GS.

G$ = BS(4:4) Assigns Y (the 4th position of B$)
to GS.

GS$ = B$(0:2) Assigns VW (the first two positions
of B$) to G$. (m is taken as 1).

GS = BS(7:8) Assigns a null string to G$ (because
B$ has only 5 characters)

GS = B$(4:8) Assigns YZ to G6$. (n is taken as 5,

which is the length of the string).
Replacement

A$ (3:4) = mpQ" gguse: CD to be replaced in A$ by PQ.
PQE

A$ (3:4) = nrm Causes CD to be deleted from AS$.
ABEF

A$ (3:4) = B$(1:2) Causes CD to be replaced by VH.
ABYWEF

A$ (3:6) = B$(3:3) Causes CD to be replaced by X.
ABXEF

A$ (3:4) = B$(1:4) Causes CD to be replaced by VWXY.
ABVUWXYEF

AS (3:2) = B$(1:4) Causes VWXY to be inserted before
C, resulting in ABVWXYCDEF.

Expressions 29

Preceding Insertion

AS(1:0) = "pPQ"™ Causes insertion before the current
characters of AS.
PQABCDEF

A$(1:0) B$(3:4) Results in XYABCDEF.

ASC1:0) = BS(1:1) Results in VABCDEF.

Trailing Insertion

AS(7:8) = "pPQ™ Causes insertion after the current
characters of AS.
ABCDEFPQ

A$(7:8) = B$(2:6) Results in ABCDEFWXY.

A$(10:11) = "pPQ© Results in ABCDEFPQ.

substrings of Character Arrays

Substringing can also be performed on character array elements.
For example, if B$(3) equals ABCDEFG, B$(3)(2:3) equals BC.

Character expressions can combine substring and concatenation
oparations to rearrange character strings. For example, the value
returned by the DATES intrinsic function (which returns the date
in the form YY/MM/DD) can be rearranged as follows:

50 C$ = DATES
100 D$ C$(4:8)&CS(3:3)8&CS(1:2)
120 PRINT D$

This would return the date in the form mm/dd/yy instead of
vy/mm/dd.

RELATIONAL EXPRESSIONS

RELATIONAL OPERATORS

A relational expression compares the value of either two numeric
expressions or two character expressions. The expressions to bhe
compared are evaluated and then compared according to the
definition of the relational operator specified. According to the
result, the relational expression is either satisfied (true) or
not satisfied (false).

Relational expressions can appear in a BASIC program only as part
of IF, DO, LOOP, EXIT IF, and CASE (in abbreviated form)
statements.

Relational operators are defined as shown in Figure 6.

Operator pefinition

= or EQ equal

<> or >< or NE not equal

>= or => or GE greater than or equal

<= or =< or LE less than or equal

> or GT greater than

< or LT less than

Figure 6. Relational Operators

30 IBM BASIC Application Programming: Language Reference

NUMERIC DATA IN RELATIONAL EXPRESSIONS

If a numeric expression of type integer is compared to an
expression of type decimal, the integer expression is converted
to decimal before the comparison is made.

CHARACTER DATA IN RELATICNAL EXPRESSIONS

When character data appears in a relational expression, it is
compared character-by-character, from left to right, according to
the COLLATE entry on the OPTION statement.

When OPTION COLLATE NATIVE is specified, the EBCDIC collating
sequence is used. When OPTION COLLATE STANDARD is specified, the
ASCII collating sequence is used. Both collating sequences are

listed in "Appendix B. Character Set Collating Sequences™ on page
327.

Figure 7 shows examples of the differences between the two
options, COLLATE NATIVE and COLLATE STANDARD, when evaluating
character expressions.

i
EXPI‘ESSiOI‘I Native Result standard Result
T"ABCW"="ABC"™ True True
"ABLET<"BALL"™ True True
- MI23IVSTBALLY True False
ngrawnyn True True
nASHENLNG4 N True . False

Figure 7. COLLATE Option and Comparisons of Character Expressions

Character expressions of different lengths can never be equal. If
two character expressions are equal for the length of the shorter
expression, the shorter expression is less than (in value) the
longer expression. For example, "ABC™ is less than "ABC ™.

LOGICAL EXPRESSIONS

Relational expressions can be combined using the AND, OR, and NOT
operators to yvield a logical expression.

Logical expressions can be used in IF, DO, EXIT IF, and LOOP
statements.

AND LOGICAL OPERATOR

AND specifies that both of two expressions must be true in order
for the logical expression to be true.

Example
A = 3 AND NAMES$ = "CHARLIE™

This logical expression is true only if both the numeric variable
A equals 3 and the character variable NAME$ equals CHARLIE.

Expressions 31

OR LOGICAL OPERATOR

OR specifies that either of two expressions must be true in order
for the relational expression to be true.

Example
A = 3 OR NAME$ = "CHARLIE™
This logical expression is true if A equals 3 andZor NAMES equals
CHARLIE.
NOT LOGICAL OPERATOR

NOT specifies the negation of a relational or logical expression
that follows the NOT operator.

Example
NOTCA EQ B)
This expression is true if A is not equal to B.
Note: However, A NOT EQ B is invalid, because EQ is not a
relational or logical expression.
COMBINING LOGICAL EXPRESSIONS

Logical operators may be combined to form more complex logical
expressions.

The evaluation of parenthesized expressions has the highest
possible priority. If more than one parenthesized expression is
contained within an expression, the left-to-right priority

becomes effective. When parentheses are nested, the innermost
pair of parentheses has the highest priority.

Example
NOT (NUM<=COUNT OR DATA$ = TEND") AND ALPHA$<>BETAS

is a valid logical expression. The parentheses are required to
negate the result of the OR operation.

PRIORITY OF EXPRESSION EVALUATION

The priority of evaluation of expressions is shown in Figure 8.

subexpression or Operator Evaluation Order

Arithmetic or character 1
expressions

Relational operators
NOT
AND
OR

Ul N

Figure 8. Scalar Expressions—Evaluation Priority

32 IBM BASIC Application Programming: Language Reference

ARRAY EXPRESSIONS

Array expressions perform operations on the entire collection of
a numeric or character array's elements rather than on each
element individually, as scalar expressions do.

Array expressions may appear only within the MAT statement. See

"MAT (Array Assignment) Statement™ on page 183 for a description
of array expressions.

Expressions 33

INTRINSIC FUNCTIONS

A function is a named expression or block of statements that
computes a single value. A function can be invoked through a
reference to it in an expression.

You can define and name yvour own functions by using the DEF
statement. See the usar-defined functions "DEF Statement™ on page
109 and "FNEND Statement™ on page 126.

An intrinsic function is a predefined function supplied by IBM
BASIC to evaluate commonly used mathematical, character, and
system operations.

kWhen an intrinsic function name ends in a dollar sign (for
example, DATES$) a character, rather than numeric, value is
returned.

An intrinsic function may require an argument list (of one or more
arguments) to follow the function name. The argument list is
enclosed in parentheses, and each item in the list is separated
from the next by commas. The type of argument allowed for each
intrinsic function is predefined, and an invalid argument
produces an error. A function reference may be used anywhere in an
expression where a variable, a constant, or an array reference of
the same data type as the function return value, can be used.

If the value of a parameter is outside the allowable range, an
exception is generated at the time the function reference is
attempted. Appendix A, "Exception Codes," includes all exceptions
caused by intrinsic function parameter errors.

Notation Used for Parameters

In this section, those intrinsic functions which require
parameters are indicated by a parenthet\c list after the functlon
name. The notation used for parameters is:

Notation Meaning
Xory Numeric parameter which can be either decimal or
integer

Example: ABS(X)

Mor N Tvpe integer parameter. The function can be used
with any numeric expression as the argument, but if
the result of the expression is type decimal, it
will automatically be converted to integer (with
rounding).

Example: FILE(M)
AorB Array parameter.
Example: DET(A)
A%,B%,or €$ Character variable parameter.
Example: LEN(CA$)
[1 Intrinsic functions which may or may not have
parameters are indicated by enclosing the parameter

list in square brackets.

Example: RNDIL(X)]

34 IBM BASIC Application Programming: Language Reference

INTRINSIC NUMERIC FUNCTIONS

The following numeric functions are supported:

ABS(X)
ACOS (X)
ANGLE(X,Y)
ASINCXD
ATN(X)

CEIL(X)
CEN(X)
CNT
CODE
C0S(X)
COSH(X)
COT(X)
CsSC(X)

DATE
DEC(X)
DEG(X)
DETL(A)]
DOTC(CA,B)

EPS
ERR
EXP(X)

FAH(X)
FILE(N)
FILENUM
FP(X)

IFIX(X)
INF
INT(X)
IP(X)

KEYNUM

KLN(M)
KPS(M)

INTRINSIC STRING FUNCTIONS

LINE
LOG(X)
LOG2(X)
LOG10(X)

MAX(X,YL,...]1)
MINCX,YL,...1)
MOD(X,Y)

PI
PRDCA)

RAD(X)
REC(M)
REM(X,Y)
RLN(M)
RNDL(X)]
ROUNDL(X,N)1

SEC(X)

SGN(X)

SINCX)

SINH(X)

SIZE(AL,M1) or SIZECASL,MI1)
SQR(X)

SRCH(A,XL,YI)

SUMCA)

TAN(X)
TANH(X)

TIME
TRUNCATE(X,N)

UDIM(CA,M) or UDIM(AS,M)

The following string functions are supported.

CHRS$ (M)

DATS$<(M)>
DATES

FILES(M)
JDY<(C$)>
LENCAS)
LPADS(AS,M)
LTRMS$ (AS)
LWRCS (AS)

ORD(AS$)

POS(A$,BSL,MD)
RPADS$(AS,M)
RPT$(AS,M)

RTRMS$ (AS)
SREPS$(A$,M,BS,C$)
STR$(X)

TIMES

TIMES

UPRCS$(AS)

VAL(AS)

Intrinsic Functions

35

FUNCTION DESCRIPTIONS

ABS(X)

ACOS(X)

ANGLE(X,Y)

ASIN(X)

ATN(X)

CEIL(X)

The intrinsic numeric and string functions, in alphabetic order,
are described in detail below:

Returns the absolute value of X. The argument type can be integer
or decimal. The type of the result is the same as the type of the
argument.

Example
ABS(-1.2) is 1.2; ABS(3.4) is 3.4

Returns the arccosine (the inverse function of the cosine) of X,
where X is in radians. X can be integer or decimal type. X must be
in the range -1 to 1. The result is decimal and the range is 0 to
PI.

Example
AC0S(0) is 1.5707963267948966

Returns the angle in radians between the positive X-axis and the
vector joining the origin to the point with coordinates (X,Y); the
angle is in the range: -PI to PI. X and Y may be integer or
decimal. The result is decimal.

Example
ANGLE (0,0) is 0

Returns the arcsine (the inverse function of the sine) of X, where
X is in radians. X must be in the range -1 to 1 and may be decimal
or integer. The result type is decimal and in the range -PI/2 to
PIz2.

Example
ASIN(1) is 1.5707963267948966

Returns the arctangent (the inverse function of the tangent) of X,
where X is in radians. X may be integer or decimal. The result is
type decimal in the range -PI/2 to PI/2.

Example
ATN(1) is 0.78539816339746829

Returns the smallest integer greater than or equal to X (the
ceiling function). Both its argument and function types are
numeric (integer or decimal). The result type is the same as the
argument type.

36 IBM BASIC Application Programming: Language Reference

CEN(X)

CHRS(M)

CNT

CODE

cos(X)

Example
CEIL (~-1.2) is -1; CEIL (2.3) is 3

Returns the degrees Centigrade corresponding to X degrees
Fahrenheit. ((X-32)%5/9). X can have integer or decimal type and
must be greater than or equal to -459.67. The result type is
decimal.

Example
CEN(32) is O

Returns the character corresponding to a specified position
within the current collating sequence. Its argument is numeric
(numeric values are rounded to integers if necessary); its result
type is character. The result depends on the current setting of
OPTION COLLATE (see "OPTION Statement™ on page 211).

Example (ASCII)

CHR$(53) is "5™,CHR$(65) is "A"
Example (EBCDIC)

CHR$(194) is "B",CHR$(241) is ™17

Returns the number of data items successfully processed by the
last I/70 statement executed. If input data was terminated with the
solidus or slash (/) to indicate the end of data, CNT reflects the
number of data items processed prior to the solidus character.

Example

¥ 100 DIM B(2): OPTION BASE 0

¥ 110 PRINT "ABCDE"™,123645,MAT B
¥ 120 A=CNT

¥ 130 PRINT A

As a result of the PRINT statement at line 110, the number of data
items processed (5) is stored in A and printed at line 130.

Returns the value forwarded by the host system, when that system
detected an error. The value of CODE is system dependent. See
"Exception Handling Statements™ on page 8%4.

Returns the cosine of X, where X is in radians and ABS(X) <
PI¥(2%%50). The argument type may be integer or decimal. The
result type is decimal.

Example
COS(PI) is -1

Intrinsic Functions 37

COSH{X)

CoT(X)

csc(X)

DATS$IL(M)]

DATE

DATES$

Returns the hyperbolic cosine of X. X can be integer or decimal
and ABS(X) < 175.366. The result is decimal.

Example
COSH(0) is 1

Returns the cotangent of X, where X is in radians and ABS(X) <
PI%(2%%50). The argument type may be integer or decimal. The
result type is decimal.

Example
COT(PI/Z%) is 1

Returns the cosecant of X, where X is in radians and ABS(X)
<PI%(2%%50). The argument type may be integer or decimal. The
result type is decimal.

Example
CSC(PI/2) is 1

Returns the Gregorian date in the format YYYY/MM/DD. Its argument
is the Julian date and can be either integer or decimal type
(decimal values are rounded). Its result type is character. If the
argument is omitted, DAT$ returns today's date.

DATS$(M) returns the Gregorian date in the range 0000703701 to
9999712731 corresponding to Julian dates (values of M) in the
range 1721120 to 5373484.

Example

DAT$(2369916) is "1776/07/04"

For systems with no date, the value returned is 0000/00/00.

Returns the current date in the decimal form YYDDD, where YY are
the last two digits of the year and DDD is the number of days
elapsed in the year. If there is no calendar available, the value
returned by DATE is -1. The result type is integer.

Example
N% is DATE

If current date is May 9, 1977, NX is set to 77129.
If there is no calendar available, N% is set to -1.

Returns the current date in the string representation YY/MM/DD.
If there is no calendar available, the value of DATES$ will be
00/00/00. The function type is character; it has no argument.

38 IBM BASIC Application Programming: Language Reference

Example
A$ is DATES

If the current date is May 9, 1977, A$ is set to 77/705/09.
If there is no calendar available, A$ is set to the string
value "00/00/00".

DEC(X)
Converts X to an internal decimal format. The function type is
decimal and the argument type numeric (integer or decimal).
Example
The function can be used to convert an argument to decimal before
calling a function:
¥ 110 I% = 3
¥ 120 CALL DSUB (DEC(IX%))
¥ 130 END
¥ 140 SUB DSUB(B)
¥ 150 PRINT B
¥ 160 END SUB
In the above example, the subprogram requires a decimal argument.
In order to pass the value of I%, the value of IX must be
converted to decimal.
DEG(X)
Returns the number of degrees of X, where X is in radians. X can
be integer or decimal. The result is decimal.
Example
DEG(1) is 57.295779513082321
DETIL(A)}
Returns the value of the determinant of the square numeric array
A. The function type is decimal; the argument type is numeric. If
the argument is omitted, DET returns the determinant of the last
array inverted using the INV function in a MAT statement. If the
argument is not a square matrix, an exception occurs.
DOT(A,B)

Returns the dot product of the vector A and the vector B. A and B
must be one-dimensional arrays with the same number of elements.
The arguments may be integer or decimal. The result is integer if
both arguments are integer; otherwise, the result is decimal.

Example
¥ 100 DIM A(3),B(3)
¥ 200 DATA 3,4,5,-2
¥ 300 DATA '3;3)1)-3
¥ 400 MAT READ A,B
¥ 500 C = DOT (A,B)
¥ 600 PRINT C
¥ 700 END
¥ RUN
14

Intrinsic Functions 39

EPS

EXP(X)

FAH(X)

FILE(N)

Returns the smallest positive decimal number that the
implementation allouws.

Example
EPS is .1E-75

Returns the exception code of the last exception which occurred.
Exception codes are listed in "Appendix A. Exception Codes" on
page 319. ERR returns an integer type value. See "Exception
Handling Statements” on page 84%.

Example

110 ON ERROR GOTO 140

120 AC11) =1

130 STOP

140 PRINT ERR;" SUBSCRIPT OUT OF BOUNDS'
150 END

RUN

001 SUBSCRIPT OUT OF BOUNDS

N X X X X X X

Returns the exponential value of X, that is, the value of the base
of natural logarithms (e=2.7182818284590451) raised to the power
X. If EXP(X) is less than machine infinitesimal (.1E-75), its
value is replaced by zero. X must be less than or equal to 174.673
and can be integer or decimal. The result is decimal.

Example

¥ PRINT EXP(1)
2.71828

Returns the degrees Fahrenheit corresponding to X degrees
Centigrade. X can be integer or decimal, and must be greater than
or equal to -273.15. The result is decimal.

Example
FAH(O0) is 32

Returns a numeric value indicating the status of the file
specified by N. (The value is modified by each access to the file,
to contain the current file status). The function type is integer;
the argument type numeric (integer or decimal). If the file is not
open, a value of -1 is returned.

Numeric

Value status

0 Operation specified occurred successfully.

1 File opened with default INPUT.

2 File opened with default CUTPUT.

3 File opened with default OUTIN.

10 End-of-file exception during input operation.
11 End-of-file exception during output operation.

40 IBM BASIC Application Programming: Language Reference

Numeric

Value Status
20 Transmission error during input operation.
21 Transmission error during output operation.

FILENUM
Returns the file number (0 to 255) of the file in which an error
has occurred. Additional data about the cause of the error can be
obtained through the use of the function FILE(N}. The name of the
file can be obtained through the use of the function FILES(M).
If no error has occurred, the value returned is zero (0).
Example
¥ 100 OPEN #1: 'ABC',INPUT,SEQUENTIAL,INTERNAL
X 300 READ #1: A$,B$ EOF 400
* 400 LET XYZ = FILENUM
¥ 410
XYZ is set to file number 1, when the READ statement transfers
control to 4608 on end-of-file.
FILES$(M)
Returns the filename associated with the file number M. The
function type is character. The argument type is integer or
decimal. Returns a null string if the file is not open.
Example
¥ 100 OPEN #1: 'ABC', INPUT,SEQUENTIAL,INTERNAL
% 600 A$ = FILES(L)
A$ is set to "ABC', the name of file #1.
FP(X)
Returns the sign of X times the fractional part of the absolute
value of X. Both the function and argument are of type numeric
(integer or decimal). The result type is the same as the type of
the argument.
Example
FP(-1.2) is -.2; FP(3.4) is .4
IFIX(X)

Returns the rounded integer value of X. The function is integer
type while the argument type can be decimal or integer.

Intrinsic Functions 41

INF

INT(X)

IP(X)

JDYL{C$]]

KEYNUM

Example

IFIX (3.5) is &
IFIX (3.2) is 3
IFIX (-3.5) is -4
IFIX (-3.2) is -3

Rf}urns the largest positive decimal number that implementation
allows.

Example
INF is .99999999999999999E+75

Returns the largest integer less than or equal to X. The function
gnd_ar?%ment are both type numeric (both either integer or
ecimal).

Example
INT(1.3) is 1; INT(-1.3) is -2

Return the integer part of the absolute value of X times the sign
of X. Both argument and function types are numeric (both either
integer or decimal). The result type is the same as the type of
the argument.

Example
IP(-1.2) is -1; IP(3.4) is 3

Returns the Julian date for the corresponding Gregorian date,
expressed as "YYYY/MM/DD'. If the argument is omitted the current
date is assumed. For a system with no date, value 0 is returned
when the argument is omitted. The function is integer; its
argument character.

The argument for JDY (C$) must be the form 'YYYY/MM/DD' where MM
must be between 1 and 12 inclusive and DD between 1 and 31
inclusive. If the argument has a DD of 31 or less but higher than
possible for the month (for example, 1900/04/31), it is taken as
equivalent to the appropriate date of the next month
¢1900/05701).

The Julian date range is 1721120 to 5373484 corresponding to a
Gregorian date range of 0000703701 to 9999/12/31%1.

Example
¥ 100 Jx = JDY (M1960/01/01™)
J% is set to 2436935.

Returns the number of the PF key which caused the SKEY condition.
(See "ON Condition Statement™ on page 203.) If an SKEY exception
has not occurred, zero is returned.

42 IBM BASIC Application Programming: Language Reference

Example

¥ 100 ON SKEY GOTO 980
¥ 110 INPUT AS

980 XYZ=KEYNUM
990 ON XYZ GOSUB 1000,2000,3000

WK o o

XYZ is set equal to the PF key which is pressed.

KLN{(M]}
Returns the length of the embedded key (stated in bytes) for the
file M. The function type is integer; the argument type can be
either decimal or integer. If the file is not keyed, or is not
currently open, a value of -1 is returned.
Example
¥ A% is KLN(1)
A% is set equal to the number of bytes in the key
associated with file #1.
KPS(M)
Returns the byte position for the start of the embedded key for
the file M. The function type is integer; the argument type can be
either decimal or integer. If the file is not keyed, or is not
currently open, a value of -1 is returned.
Example
¥ A% is KPS(1)
A% is set equal to the starting byte position of the
key in each record for file #1.
LEN(AS)
Returns the number of characters in the value associated with AS.
The function type is integer and the argument type is character.
Example
¥ AS = 'THIS!
¥ LN = LEN(AS)
LN is set equal to 4.
*BS:!'
¥ LN = LEN(BS)
LN is set equal to 0.
LINE

Returns the line number of the most recent statement whose
exacution caused a transfer of control due to an exception. If no
exceptions have occurred, zero is returned. See "Exception
Handling Statements™ on page 8%.

Intrinsic Functions 43

LOG(X)

LOG2(X)

LOG10(X])

LPAD$(AS, M)

LTRM$(AS)

Example

¥ 110 ON ERROR GOTO 140
¥ 120 A(11) =1

¥ 130 STOP

* éﬁg PRINT "SUBSCRIPT OUT OF BOUNDS AT LINE ™; LINE
*
SUBSCRIPT OUT OF BOUNDS AT LINE 120

Computes the natural logarithm of the positive number represented
by X. X can be integer or decimal; the result is decimal.

Example
LOG(2) is 0.69314718055994533

Computes the base 2 logarithm of the positive number represented
by X. X can be integer or decimal; the result is decimal.

Example
L0G2(2) is 1

Provides the common logarithm (base ten) of the positive number
gepresented by X. X can be integer or decimal; the result is
ecimal.

Example
LOG10(2) is 0.3010299956639812

Returns the string of M characters produced by concatenating M
minus LEN(A$) spaces to the front of the value A$. If M is not
greater than LEN(AS$), then A$ is returned. The function type is
character; the argument types are character and numeric.

Example
¥ A$ is LPADS(™ABCT™,5)

There are two spaces inserted in front of "ABC' and
AS is set to ™ ABC™.

Returns the value of string A$ with all leading space characters
removed. Its function type and argument type are both character.

Example
¥ B$ = LTRMS(™ ABC™)

The leading blanks are removed and B$ is set to MABC"™.

46 IBM BASIC Application Programming: Language Reference

LURCS(AS)

"AX(X,Y[’...])

"IN(X’Y[’...])

MOD(X, Y]}

ORD(A$)

Returns the string of characters resulting from the value
associated with A$ by replacing each uppercase letter in the
string by its lowercase version. Both the function type and
argument type are character.

Example
¥ B$ = LWRCS(MABc™)

B$ is set to Mabe".

Returns the larger of its numeric (decimal or integer) arguments.
If any one of the numeric arguments is decimal, the numeric
function value is also decimal.

Example
If A=2 and B=5, the statement;
¥ C=MAX(A,B)
Sets € equal to 5.
¥ C=MAX(1.2234,1.2214)
Sets C equal to 1.2234

Returns the smaller of its numeric (decimal or integer)
arguments. If any one of the numeric arguments is decimal, the
numeric function value is also decimal.

Example
If A=2 and B=5, the statement;

¥ C=MIN(A,B)
Sets C equal to 2.

Returns X modulo Y, that is, an integer (whole number) in the
range of 0 to Y minus 1, representing the relationship of Y to X,
where Y is a modulus. Both function and argument types are numeric
(integer or decimal). MOD(X,Y)=X-Y¥INT (X/Y) if Y is nonzero. If Y
is zero, MOD(X,Y)=X.

Example
MOD (11,5) is 1; MOD (68,44) is 24; MOD (301,5) is 1.

Returns the ordinal position of the character named by the string
associated with A$ in the collating sequence of the declared
character set, where the first member of the character set is in
ordinal position zero. The acceptable values of A$ are the single
character graphics of the character set and the two- and
three-character mnemonics of that set. The acceptable values for
both character sets are shown in "Appendix B. Character Set
Collating Sequences” on page 327. The function type is integer;
the argument type character.

Intrinsic Functions 45

Example
For the standard character set (OPTION COLLATE STANDARD).
ORD("™BS")=8
ORD(™A™)}=65
ORD("5™)=53
ORD("SOH")=1

PI

Returns the decimal constant 3.1415926535897932, the ratio of the
circumference of a circle to its diameter.

Example

¥ 100 R=10

¥ 110 AR=PIXRX%%2
¥ 120 PRINT AR

% RUN

314.159

AR equals the area of the circle whose radius equals R.

POS(A$,B$)

Returns the character position within the value associated with
A$, of the first character of the first occurrence of the value
associated with B$. If there is no such occurrence, POS(AS,BS)
Wwill be zero. POS(AS,"") will be one. The function type is
integer; the argument type character.

Example

IF AS$ contains ™ 123-4.56" AND
B$ contains "-"

¥ X = POS(A$,BS)

X is set equal to 5

b 3

X = POS("LEARN YOUR ABCS™, ™ABC™)

X is set equal to 12

¥ X = POS("ABC","123™)

X is set equal to zero, as 123 does not occur in the first
string.

POS(A$,B%,M)

Returns the character position, within the value associated with
A$, of the first character of the first occurrence of the value
associated with B$, starting with the Mth character of AS$. If the
defined string does not exist within the designated portion of A$,
the value returned is zero. The function type is integer, the
argument types character and numeric. POSCAS,"",M) is M.

46 IBM BASIC Application Programming: Language Reference

Example
If AS has the value "GRANDSTANDING™, then;

b3

X = POS(AS,™ANT,1)
X is set to 3

¥ X = POS(AS,"™AN",4)
is set to 8 the search started after GRA, at letter N

X

¥ X = POS (A$,"AN",9)
is set to 0 as NDING does not contain the letters AN

X

PRD(A)
Returns the product of the elements of the array specified by A.
Both the function and argument types are numeric (both integer or
both decimal).

Example

¥ 10 OPTION BASE 1

¥ 20 DIM ARA(4)

¥ 30 DATA 4,3,10,5

¥ 60 MAT READ ARA

% 100 ARAPROD = PRDC(ARA)

ARAPROD is set to 600 which is the product of 4%3%10x5.

RAD(X)
Computes the number of radians in X degrees.
Example
¥ X = RAD(23)
X is set to .401426
RAD(180) equals 3.1615926535897932

REC(M)
Returns the number of the last record processed in file M. Returns
a zero if no records have been processed. Returns -1 if the file

is closed or is not a relative file. The function type is integer;
the argument type is numeric.

Example
X = REC(1)
X contains the number of the last record either read or
written.
REM(X,Y)
Returns the remainder X-Y*IP(X/Y) if Y is nonzero, and returns X

ifY is zero. Both the argument and function types are numeric
(both either integer or decimal).

Intrinsic Functions 47

RLN(M)

RNDI(X)]

ROUND(X,N)

RPADS(AS, M)

Example

REM(17,3) is 2
REM(6,0) is 6
REM(-17,5) is -2
REM(-17,-5) is -2
REM(16,4) is 0
REM(-6.764,64) is -2.74

Returns the length of the last record referenced for file M. Zero
is returned if no records have been processed. Returns -1 if the
file is closed. The function type is integer; the argument type is
numeric.

Example
¥ X = RLN(1)

X contains the number of bytes in the last record read from
or written to in file #1.

Provides the next pseudorandom number in an implementation
supplied sequence of pseudorandom numbers uniformly distributed
in the range 0 LE RND LT 1.

If the argument X is included, RND also assigns the value of X to

the seed value for the pseudorandom number generator. X must be in
the range 0 LE X LT 1.

Example
¥ 100 LET N = INT(RND%*1000+1)

Generates a random number in the range of 1 to 1000 and
assigns it to the variable N. Each time the statement is
executed, N may contain a different value.

Returns the value of X, rounded to N decimal digits (that is,
INT(X%10%*IFIX(N)+.5)/710%%XIFIX(N)). The result has the same type
as the argument X. The arguments can be integer or decimal.

Example

¥ 100 X=15.73591
% 110 R=ROUND(X,2)

R contains 15.74
ROUND(123.456,-1.5) is 100

Returns the string of M characters produced by concatenating M
minus LENCAS$) spaces to the end of the value of A$. If M is not
greater than LEN(AS$), A$ is returned. The function type is
character; the argument types are character and numeric.

Example
¥ AS = RPADS(™ABC™,5)
A$ contains MABC ™

48 IBM BASIC Application Programming: Language Reference

RPT$(AS,M)

Repeats the string A$, M number of times. The function type is
character; the argument types are character and numeric.

Example
¥ A$ = RPTS$("%"™,3)

A$ contains %X

RTRM$(AS)

Returns the value of string A$ with all trailing spaces removed.
Both the function and argument types are character.

Example

¥ 100 AS="AB CD "
X 200 BS=RTRM$(AS)

B$ contains "AB CD"

SEC(X)
Returns the secant of X, where X is in radians. X can be integer
or decimal and ABS(X) must be less than PIX(2%%50). The result
type is decimal.

Example
SEC(PI) is -1

SGN(X)

Returns -1 if X<0, 0 if X=0, +1 if X>0. The function type is
integer; the argument type is numeric (integer or decimal).

Example
SGN(-2) is -1
SGN(10) is 1
SGN(0) is zero.

SIN(X)
Returns the sine of X, where X is in radians. X can have integer
or decimal type. The absolute value of X must be less than
PI*(2%%50). The result is decimal.
Example
SIN(3) is 0.164112000805986738

SIN(PI/2) is 1

SINH(X)
Returns the hyperbolic sine of the number X. X can have integer or
decimal type. The absolute value of X must be less than 175.366.
The result is decimal.

Example
SINH(0) is 0

Intrinsic Functions 49

SIZE(A) OR SIZE(A$)

Returns the number of elements in the array A. The function type
is integer; the argument type may be numeric or character.

Example

* DIM A(4),B(4,3)
¥ N = SIZE(A)
¥ X = SIZE(B)

N contains 5 and X contains 20 if OPTION BASE 0 is in
effect.

N contains 4 and X contains 12 if OPTION BASE 1 is in
effect.

SIZE(A,M) OR SIZE(AS,M)

SQR(X)

SRCH{A,XI,Y]

Returns the number of elements in the Mth dimension of array A.
The function type is integer; the argument types are any type
array, and numeric.

Example
¥ 10 DIM A(10), B(4,3)
¥ 20 N = SIZEC(A,1)
¥ 30 X = SIZE(B,1)
¥ 40 Y = SIZE(B,2)

If OPTION BASE 0 is in effect, N contains 11, X
contains 5 and Y contains 4.

If OPTION BASE 1 is in effect, N contains 10, X
contains 4 and Y contains 3.

Return the square root of X. X must be a positive number, it can
be integer or decimal. The square root is returned with decimal
type.

Example

¥ X = SQR(9)
¥ Y = SQR(58)

X contains 3 and Y contains 7.61577

Searches the one-dimensional array A for the value X, optionally
beginning the search with the Yth element of A. The value returned
is the subscript of the element of A which first matches X. If a
match is not found, a value of -1 is returned.

The function type is integer. The array A must be one-dimensional
and can be numeric or character. The type of X must agree with the
type of A, numeric or character. If numeric, X is converted from
integer to decimal or vice versa, if necessary, to match the type
of the array. If necessary, Y is rounded to an integer value.

50 IBM BASIC Application Programming: Language Reference

SREP$(AS,M,B$,C$)

Returns a string whose value is A$, where, starting at position M
in string A$, the nonoverlapping occurrences of string B$ are
located, and those occurrences are replaced with string C$. The
function type is character; the argument types are character and
numeric.

Example

¥ 100 AS="ABCDEFG"™

¥ 120 B$="DE"

¥ 130 C$="123"

¥ 140 D$=SREP$(AS$,2,B%$,C$)

D$ contains MABCl23FG"

STR$(X)
Returns the string that would be generated by the PRINT statement
as the external representation of the value associated with the
numeric argument X. No leading or trailing spaces are included in
this representation. This is the inverse of the VAL function. The
function type is character; the argument type is numeric (either
integer or decimal).
Example
STR$(139) is ™139"
STR$(12E30) is "1.2E+31"
sUM(A)
Returns the sum of the elements of a one~dimensional numeric
array. The function type is the same as the type of the array;
integer or decimal.
Example
Assuming the elements of array ARX contain the values;
5,27,6,13.
¥ 100 SUMM=SUM(ARX)
SUMM contains 51.
TAN(X)
Computes the tangent of X, where X is stated in radians (integer
or decimal type). The absolute value of X must be less than
PIX(2%%50). The functional type is decimal.
Example
TAN(PI/4%) is 1
TANH(X)

Computes the hyperbolic tangent of the number X (integer or
decimal). The function type is decimal.

Example
TANH(0) is ©

Intrinsic Functions 51

TIME

TIMES

Returns the time elapsed since midnight, expressed in seconds.

The function type is integer.

Example
If the current time is 11:15 A.M.
¥ X = TIME

X is set to 40500

If no clock is available, the value of X is set to -1.

Returns the time of day in 24-hour notation, the eight character
positions HH:MM:SS5. The function type is character, with no

argument.

Example
If the current time is 11:15 A.M.
X A$ = TIMES
A$ is set to 11:15:00

If there is no clock available, the value of AS is set to

99:99:99.

TRUNCATE(X,N)

52

Returns the value of X truncated to N decimal places following the
decimal point. The argument type is numeric integer or decimal;

the type of the result is decimal.

Negative valuaes of N cause the function to return the integer part

of X with the N rightmost digits set to zero.

Example

Assume X has been set to the value of PI
(3.14159265358979).

¥ 100 X=TRUNCATE (X,%)
X is set to 3.1415
TRUNCATE (1234.56,-2)

returns 1200.

IBM BASIC Application Programming: Language Reference

UDIM(A,M) OR UDIM(AS,M)

UPRC$(AS)

VAL(A$)

Returns the upper limit of dimension M of array A. The function
iypﬁwis integer; the argument types are any type for A and numeric
or M.

Example
If array A is dimensioned A(23,10,6), the statement;
100 U=UDIMC(A,1)
would cause U to equal 23.
150 U=UDIM(A,3)

would cause U to equal 6.

Returns the string of characters resulting from the value
contained in A$ by replacing each lowercase letter in the string
by its uppercase version. Both the function and argument types are
character type.

Example
UPRCS$("abC2™)

returns

"ABC2™

Returns the value of the numeric constant contained in A$ if the
string contained in A$ is a numeric constant. Leading and trailing
spaces in the string are ignored. The string must be a valid
numeric input form (see "Numeric Constants™ on page 14). If it is
not a valid numeric form, an exception is generated. The exception
can be handled by the CONV condition in an ON condition statement.
If the evaluation of the numeric constant would result in a value
which causes an underflow or overflow, the usual action for
numeric underflow or overflow occurs. See "ON Condition
Statement™ on page 203. The function type is decimal; the argument
type character.

Example

VAL ("123.5™) is 123.5
VAL ("™MCMXVII"™) causes an exception.
VAL ("123.5XY") causes an exception.

Intrinsic Functions 53

IPM BASIC FILE CAPABILITIES

RECORDS

FILE ATTRIBUTES

A file is a collection of data which is stored together. Files can
be either "internal™ (data stored within a program unit) or
"external™ (data stored on a medium, such as disk, external to all
program units.)

This section deals exclusively with external files. External
files allow interchange of data within a program unit as well as
between program units, programs, systems, and languages.

The collection of data values which comprise a file can be
arranged so that sets of values form logically related units; for
example, a company payroll file would contain the name, address,
job classification, salary, and other pertinent information for
each employee. The term record is used to describe a discrete
collection of data fields, such as the information needed to
process an employee's payroll check.

Fixed record-length files are those whose record lengths are all
the same, that is, each record in the file has the same length as
every other record in that file.

If a payroll file is to contain data about the employee's
dependents, a file with fixed length records allows a fixed number
of positions whether the employee has one dependent or twenty.

Variable record-length files are those whose records do not
necessarily have the same length, that is the record lengths can
vary. The record length specified for a variable record-length
file defines the maximum record length for that file.

In a payroll file with variable-length records, fields in an
employee's record can be added for each dependent, up to the
maximum record length specified for that file.

The record type (fixed or variable) of a file is declared in the
RECORDS clause of the OPEN statement for a file.

All files have attributes which describe how the data is
organized, how the data is formatted, and how the data can be
accessed. These three attributes, organization, format, and
access, interact according to the rules specified in this
section.

56 IBM BASIC Application Programming: Language Reference

FILE ORGANIZATION

File organization is the file attribute which describes how data
is arranged on a file. The way in which a file is organized
determines how it can be accessed, that is, sequentially or
directly (see "File Access Mode" on page 56).

The file organization can be: SEQUENTIAL, STREAM, RELATIVE, and
KEYED. The file organization is specified in the OPEN statement.

Sequential Organization

Stream Organization

A file with sequential organization consists of records which are
ordered serially in the sequence in which they were written. The
first record occupies the first position in the file; the last
record occupies the last position in the file, regardless of the
contents of the records.

The only way to access a file with sequential organization is
serially, beginning with the first record.

A file with stream organization is a file with sequential
organization in which each record consists of a single value in
internal format (see "File Format (Type)™ on page 56).

Relative Organization

Keyed Organization

A file with relative organization consists of a sequence of
"record slots"™ of the same fixed length, which are used to contain
the records. A record slot may be empty (null) or may contain a
record. Each slot has a unique record number associated with it,
beginning with one and continuing to the maximum number of records
that can be contained in the file. The record number is not
necessarily contained within the record.

A relative file may be read either directly by reference to record
numbers, or sequentially. When access is sequential, null reéords
are bypassed on input.

A relative file must be written by reference to record numbers.

A file with keyed organization consists of records identified by
keys. A key is5 a string of characters contained at a specific
location within the record.

A keyed file may be accessed sequentially, that is, in the order
in which the keys collate, or directly by reference to the keys.
File positioning can be made by reference to a portion of the key.
Keved organization requires that VSAM be used. (See 05/VS Virtual
Storage Access Method: Programmer's Guide.)

IBM BASIC File Capabilities 55

FILE FORMAT (TYPE)

Display Format

Internal Format

Native Format

FILE ACCESS MODE

INPUT Access Mode

OUTPUT Access Mode

OUTIN Access Mode

The file attribute which describes the format of records in a file
is known as file format or type. The TYPE clause of the OPEN
statement permits specification of the file format.

There are three file formats: DISPLAY, INTERNAL, and NATIVE.

DISPLAY file format means that each record is a sequence of
characters in the same format as characters being displayed on a
print output device.

If the "OPEN Statement™ on page 206 specifies DEVICE PRINTER for
an output file, a carriage control character is prefixed to each
record. If the OPEN statement specifies DEVICE 3800, a carriage
control character followed by a font control character are
prefixed to each record.

INTERNAL file format indicates that each record is written as a
sequence of numeric and string values. These values are written in
internal binary format, each value preceded by a type byte
(indicating integer, decimal, or character); consequently, files
in this format cannot be edited.

NATIVE file format indicates that the contents of each record are
to be formatted by FORM statements.

Files with keyed and relative organizations require native file
format.

The file attribute which determines the 170 operations allowed on
a file is known as file access mode. File access is specified by
the ACCESS clause of the OPEN statement.

The file access mode can be: INPUT, OUTPUT, and OUTIN.

INPUT file access mode specifies that only read operations are
permitted on the file while the current OPEN statement is in
effect. No records can be written, replaced, or deleted.

OUTPUT file access mode specifies that only write operations are
permitted on the file while the current OPEN statement is in
effect. No records can be retrieved from the file.

OUTIN file access specifies that both read and write data transfer
operations are permitted on the file while the current OPEN
statement is in effect. This is the only file access mode which
permits rewriting or deletion of records. Sequential files may be
eﬁtezdeddin this mode by adding more records, but they cannot be
shortened.

56 IBM BASIC Application Programming: Language Reference

Not all combinations of organizatjon and format are acceptable.

COMBINATIONS OF FILE ORGANIZATION AND FORMAT

The valid combinations are shown in Figure 9.

Combination Name Organization Format
Display Sequential Display
Stream Stream Internal
Internal Sequential Internal
Native Sequential Sequential Native
Relative Relative Native
Keyed Keved Native

Figure 9. Valid Combinations of Organization and Format

Allouable combinations for File Access

Figure 10 illustrates which file access modes are permitted with
the valid type and organization combinations.

Type and Access Access Access
Organization INPUT OUTPUT OUTIN
Display X X

Stream X X

Internal X X X
Native Sequential X X X
Relative X X X
Keyed X X X

Figure 10. File Access Modes

IBM BASIC File Capabilities

57

Allowable Combinations for File Record Type

Figure 11 shows which record types are allowed with the valid type
and organization combinations:

Typa and FIXED VARIABLE
organization Records Records
Display X - X
Stream X
Internal X X
Native Sequential X X
Relative X

Keyed X X

Figure 11. Record Types Valid with Each File Organization

EILE STATEMENTS AND FILE ATTRIBUTES

Not all file input/output statements can be used with all kinds of
files. Figure 12 lists which statements can be used with each of
the six legal combinations of format and organization. Figure 12
also notes possible uses of the various combinations.

58 IBM BASIC Application Programming: Language Reference

Allouable combinations for File Record Type

Figure 11 shows which record types are allowed with the valid type
and organization combinations:

Type and FIXED VARIABLE
Organization Records 1 Records
Display X X
Stream X
Internal X X
Native Sequential X X
Relative X

Keyed X X

Figure 11. Record Types Valid with Each File Organization

FILE STATEMENTS AND FILE ATTRIBUTES

Not all file input/output statements can bea used with all kinds of
files. Figure 12 lists which statements can be used with each of
the six legal combinations of format and organization. Figure 12
also notes possible uses of the various combinations.

58 IBM BASIC Application Programming: Language Reference

Format Organization Statements Use
NATIVE KEYED READ USING You would use this file type when
WRITE USING a particular piece of data that
DELETE KEY vou're using is always unique (for
WRITE USING example, employvee number) and you
REREAD USING want to access individual records
RESET KEY rapidly. You could use this file
RESET BEGIN organization for Inventory of
SCRATCH parts, Emplovee data, Bank account
data, etc. The file must be a VSAM
file.
NATIVE RELATIVE READ USING You would use this file type when
WRITE USING vou know that the different
DELETE REC records can be numbered. You might
RESET REC use this for error messages, or if
RESET BEGIN vou're keeping track of the
REREAD USING occurrence of a particular number.
REWRITE USING
SCRATCH
DISPLAY SEQUENTIAL INPUT You would use this file type when
LINE INPUT vou wanted to save data that is in
PRINT a printer format. You might create
RESET BEGIN a file which could be spooled to a
RESET END printer or output to a tape.
SCRATCH
INTERNAL STREAM INPUT You would use this file type when
GET each record has a single value.
PUT The length of each record may
WRITE vary, as the value in the record
RESET BEGIN is described in the record. You
RESET END could use this as a text file in
SCRATCH which each word is a separate
field.
NATIVE SEQUENTIAL READ USING NATIVE or INTERNAL sequential
WRITE USING files can be used the same way.
REWRITE USING You would use one of these file
REREAD USING types when you are saving data in
RESET BEGIN consecutive sequence and vou only
RESET END want to "report" or read the data
SCRATCH from the beginning. For example, a
transaction register that
maintains everything that is
entered in the exact order it was
entered.
INTERNAL SEQUENTIAL INPUT The only difference betuween a
READ SEQUENTIAL, NATIVE and a
WRITE SEQUENTIAL, INTERNAL file is the
RESET BEGIN format of the records themselves.
RESET END
SCRATCH

Figure 12. File Format, Organization, Statements, and Use

IBM BASIC File Capabilities

59

IBM BASIC STATEMENTS

Statements are instructions to BASIC to perform a task or
operation when the program is executed. They are either
executable or nonexecutable:

. Executable statements cause a program action, such as value
assignment or printing.

. Nonexecutable statements describe information needed by the
program, but cause nho program action.

All statements are processed in line number sequence, regardless
of the order of entry, unless the sequence is altered by control
statements, function references, subprogram calls, CHAIN
statements, or exceptions.

Example
100 LET
150 LET

T

140 LE

130 IF K THEN GO TO 160

160 LET M=N
Even though the line numbers are not presented in sequence, they

will be processed in the correct order; 100, 130, 140 (unless
K=L), 150, 160 ...

All of the statements are listed alphabetically and discussed
individually in "Statement Descriptions™ on page 88.

However, many statements fall into subcategories of similar
statements, and many statements must be used in combination with
other statements. These subcategories are:

. Declarative statements

. Control statements

. Assignment statements

. Input/0Output statements

o Program segmentation statements

. Exception handling statements

. Debugging statements

These categories and sets of statements are discussed in the
following sections.

DECLARATIVE STATEMENTS

60 IBM BASIC Appli

Five statements perform declarative functions.

These statements do not cause an action to occur at the point in
the program wuhere they appear. Instead, they specify
characteristics of the program in general; this influences the
entire program unit (main program or subprogram) within which
they appear.

Declarative statements may appear anywhere in a program unit,
even subsequent to other statements which they influence.

cation Programming: Language Reference

COMMON The COMMON statement defines variables and arrays in a
common region of storage where they may be shared by
program units (main programs and subprograms). COMMON
also explicitly defines dimensions of common arrays and
declares the maximum length of common character
variables and character array elements.

DECIMAL The DECIMAL statement explicitly defines which
identifiers in the program unit are to be assigned
decimal tvype.

DIM The DIM statement explicitly defines dimensions of
arrays, declares the maximum length of a character
variable, or declares the maximum length of each
element of character arrays.

INTEGER The INTEGER statement explicitly defines which
identifiers Iin a program unit are to be assigned
integer type.

OPTION The OPTION statement specifies various options for a
program unit during program compilation and/or
execution. Options explicitly stated (by using the
OPTION statement) override any appended to a RUN or
COMPILE command.

CONTROL STATEMENTS

Control statements direct the flow of execution of a program. Most
of the control statements can be used to transfer control from one
location in a program to another, rather than executing it in a
sequential manner.

Control statements are divided into the following logical groups:
branch control, subroutine control, loop control, and decision
structure control.

BRANCH CONTROL STATEMENTS

Branch statements transfer control to the specified line number
or line label.

GOTO Branches unconditionally to the specified line
number or line label.

ON exp GOTO Branches, conditionally, to one of the elements in
the line number/line label list associated with
this statement. The value of the expression (exp)
-determines to which element of the list the
program branches.

SUBROUTINE CONTROL STATEMENTS

Subroutines provide a method of defining a group of statements
that can be executed from various parts of the program without
duplicating them each time. Control transfers to the subroutine
and, after execution of these statements, returns to the
statement immediately following the location from which the
program branched.

GOSUB Transfers control unconditionally to the specified
line number or line label and saves the return
location for subsequent transfer back.

ON exp GOSUB Transfers control, conditionally, to one of the
elements in the line number/line label list
associated with this statement, and saves the
return location for subsequent transfer back. The
value of the expression (exp) determines to which
element of the list the program will transfer.

IBM BASIC Statements 61

RETURN Returns control to the first executable statement
following the last GOSUB or ON exp GOSUB statement
executed in this program unit.

LOOP CONTROL STATEMENTS

DO/LOOP Blocks

Loop control gives programs the capability of executing a single
statement or a group of statements any number of times. Loop
control statements are also referred to as loop blocks; there are
two types: the DO/LOOP block and the FOR/NEXT block.

Any type of loop block may be nested completely within any other
type of loop block, as shown in Figure 13. The effect of loop
nesting is that each time the outer block is executed once, the
inner block is executed until the exit condition is met.

Valid Loop Nesting Invalid Loop Nesting

outer loop start —outer loop start

inner loop start

inner loop start

inner loop end outer loop end

outer loop end inner loop end

Figure 13. Valid and Invalid Loop Nesting

Loops can be nested to any depth needed by the logic of the
program.

DO/LO0OP blocks process a series of statements repeatedly WHILE or
UNTIL one or more conditions are met.

Do The DO statement is the first statement (also referred to
as the upper limit) of a DO loop. It can be used to control
how long processing remains inside the loop by the use of
the optional keywords WHILE or UNTIL:

WHILE As long as a particular condition exists, the
series of statements between the D0 statement and
the LOOP statement are processed repeatedly.

UNTIL Until a particular condition is met, the series of
statements between the D0 statement and the LOOP
statement are processed repeatedly.

The condition may be controlled by statements within the
loop.

LOOP Indicates the last line (also referred to as the lower
limit) of the DO loop.

The WHILE and UNTIL clauses can be used in the LOOP
statement in the same manner as in the DO statement to
control how long processing remains in the loop.

DO and LOOP statements must always be used in pairs with the DO
appearing first in line number sequence.

62 IBM BASIC Application Programming: Language Reference

Figure 14 shows the flow of control in a DO/LOOP block.

DO/LOOP Blocks

DO

*Both tests are optional

not satisfied
or not present

LOOP
exit condition
tested™

DO
exit condition
tested*

statement(s) executed

]

not satisfied
or not present

satisfied satisfied

Y

Figure 14. DO/LOOP Block Flow of Control

FOR/NEXT Blocks

If the WHILE/Z/UNTIL clauses are specified only in the DO statement,
the exit condition is tested before the statements within the loop
are executed. This means that, if the exit cdondition is true the
first time the DO statement is encountered, the statements within
the loop are not executed.

If the WHILE/UNTIL clauses are specified only in the LOOP
statement, the exit condition is tested after the statements
within the loop are executed. This means that, if the exit
condition is true the first time the LOOP statement is
encountered, the statements within the loop are executed once.

In one loop block, both the WHILE and UNTIL clauses can be
specified both in the DO statement and in the LOOP statement, thus
permitting a variety of exit conditions.

The only statements that may transfer control into the body of a
DO loop are CONTINUE, RETRY, RETURN, and END SUB, each having been
set originally by a condition within that DO loop.

A DO loop may be exited by an EXIT IF statement, as well as by
other branching statements.

FOR/NEXT blocks allow you to process a series of statements
repeatedly until a count condition is met.

FOR The FOR statement is the first line of a FOR loop. It
controls how long processing will remain in the loop by
providing:

° A count condition control variable

° An initial value for the count condition control
variable

® A final value for the count condition control variable

° An increment for testing the count condition control
variable

The count condition control variable is incremented and

tested after each iteration of the loop. When the count
condition is met, loop processing stops.

IBM BASIC Statements 63

NEXT The NEXT statement is the last line of a FOR loop and
provides a lower limit to the loop.

Its causes the incrementing of the count condition control
variable.

FOR and NEXT statements must appear in sets. The FOR must appear
first in line number sequence.

The flow of control in a FOR/NEXT loop is shown in Figure 15.

FOR/NEXT Blocks

FOR

increment statement(s) executed

count not satisfied

—{ count satisfied

condition L
'\tes(V

Figure 15. FOR/NEXT Loop Flow of Control

If the count condition is true the first time it is tested, the
statements within the loop are not executed.

The only statements that may transfer control into the body of a
FOR loop are CONTINUE, RETRY, RETURN, and END SUB, each having
been set originally by a condition within that FOR loop.

A FOR loop may be exited by an EXIT IF statement as well as by
other branching statements.

DECISION STRUCTURE CONTROL STATEMENTS

IF Blocks

These statements are tools for structured programming. They allow
conditional processing of alternative statement sequences. Block
IF structures allow two alternative paths of execution. SELECT
structures allow multiple alternative paths of execution.

Any decision structure can contain within it any other decision
structure or loop.

IF blocks provide for alternative paths of program execution,
depending on a logical expression.

The path selected depends on whether the logical expression
evaluates as true or false.

IF blocks contain four basic parts:

IF The keyword IF, followed by a logical expression to
be tested.

THEN Block The keyword THEN, followed by a block of statements
processed when the logical expression is true. After
the block of statements is executed, control is
transferred to the statement immediately following
the END IF statement.

64 IBM BASIC Application Programming: Language Reference

ELSE Block The keyword ELSE, followed by a block of statements

processed when the logical expression is false.

If an ELSE block is not present, the statement
immediately following the END IF is executed when the
condition is false.

The last line of the IF block.

END IF

Figure 16 shows this flow of control.

IF Block
THEN statement(s) executed
(True)
IF - condition END IF -
tested
(False)
ELSE statement(s) executed
Figure 16. IF Blocks—Flow of Control

The following example shows how an IF block is coded:

Example
100 IF A=B THEN
110 LET C=10
120 LET E=20
130 ELSE
140 LET E=10
150 END IF

Note: The indentation clarifies the IF block structure.

The IF block in the example is executed as follows:

1. If A equals B, lines 110 and 120 are processed.

2. Processing then skips to the line after END IF.

3. If A does not equal B, lines 130 through 150 are processed.
4. Processing then continues at the line after END IF.

The only statements that may transfer control into an IF block
(either the THEN or ELSE block) are CONTINUE, RETRY, RETURN, and
END SUB, each having been set originally by a condition within
that IF block. An IF block can be exited by branch control and
exception handling statements.

IF STATEMENT: Another form of the IF statement allows for:

1. IF/THEN—conditional execution of a branch or list of
imperative statements.

2. IF/THEN/ELSE—conditional execution of one of two branches or
sequences of imperative statements.

This form of the IF statement, unlike the IF block, must be
contained on a single line. In this form, if there is no ELSE

IBM BASIC Statements 65

SELECT Blocks

clause, the statement on the next line is executed when the
condition is false.

SELECT blocks conditionally process one of several alternative
sequences of statements, depending on the value of a selection

expression.

(An IF block allows only two alternatives; the SELECT

block allows many alternatives, based on the selection expression

value.)

A SELECT block consists of four parts:

SELECT

CASE

CASE ELSE

END SELECT

The SELECT statement is the initial delimiter of a
SELECT block. It contains the select expression to be
tested by the CASE statements that follow.

The CASE statement is a selection statement in a
SELECT block. The keyword CASE immediately precedes a
case item, which is tested against the selection
expression. If the case item tests true, the sequence
of statements following the CASE statement is
executed. There can be as many case items as are
needed by the logic of the program.

The selection expression is evaluated and compared
with the case items in the order in which the CASE
statements occur until a match is found.

Once a match is found, that CASE block is executed.

After the appropriate CASE block, if any, has been
processed, the program continues at the statement
following the END SELECT statement (that is, the
remaining CASE blocks are skipped).

The CASE ELSE statement immediately precedes a
sequence of statements executed if no case item tests
true.

CASE ELSE is optional.

The CASE ELSE statement must be last block specified
in the SELECT block.

If there is no CASE ELSE block and a match is not

found, an exception occurs. This exception is of the
ERROR category—see "Exception Handling Statements™
on page 84 and "ON Condition Statement™ on page 203.

The END SELECT statement is the end delimiter of a
SELECT block.

In line number sequence, it must be placed after the
SELECT statement.

Figure 17 on page 67 shows the logical flow of control in a SELECT

block.

66 IBM BASIC Application Programming: Language Reference

. SELECT Blocks

clause, the statement on the next line is executed when the
condition is false.

SELECT blocks conditionally process one of several alternative
sequences of statements, depending on the value of a selection
expression. (An IF block allows only two alternatives; the SELECT
block allows many alternatives, based on the selection expression

value.)

A SELECT block consists of four parts:

SELECT

CASE

CASE ELSE

END SELECT

The SELECT statement is the initial delimiter of a
SELECT block. It contains the select expraession to be
tested by the CASE statements that follouw.

The CASE statement is a selection statement in a
SELECT block. The keyword CASE immediately precedes a
case item, which is tested against the selection
expression. If the case item tests true, the sequence
of statements following the CASE statement is
executed. There can be as many case items as are
needed by the logic of the progranm.

The selection expression is evaluated and compared
with the case items in the order in which the CASE
statements occur until a match is found.

Once a match is found, that CASE block is executed.

After the appropriate CASE block, if any, has been
processed, the program continues at the statement
following the END SELECT statement (that is, the
remaining CASE blocks are skipped).

The CASE ELSE statement immediately precedes a
sequence of statements executed if no case item tests
true.

CASE ELSE is optional.

The CASE ELSE statement must be last block specified
in the SELECT block.

If there is no CASE ELSE block and a match is not

found, an exception occurs. This exception is of the
ERROR category—see "Exception Handling Statements™
on page 84 and "ON Condition Statement™ on page 203.

The END SELECT statement is the end delimiter of a
SELECT block.

In line number sequence, it must be placed after the
SELECT statement.

Figure 17 on page 67 shows the logical flow of control in a SELECT

block.

66 IBM BASIC Application Programming: Language Reference

SELECT/CASE Blocks (CASE-1 True)

CASE-1 statement(s) executed

(CASE-2 True)
CASE-2 statement(s) executed

SELECT CASE : END SELECT
: condition

tested (CASE-n True)
CASE-n statement(s) executed

y

{No CASE is True)
CASE ELSE statement(s) executed

Figure 17. SELECT Block—Flow of Control

In the following SELECT block example, assume the variable ABC has
a value of 5:

Example

100 SELECT ABC
i 110 CASE 6 TO 10 !SELECTED IF ABC HAS A VALUE 6 THRU 10
120 LET A=B

.

150 CASE LT 4 'SELECTED IF ABC HAS A VALUE LESS THAN 4
160 LET C=D

.

200 CASE 12 !SELECTED IF ABC HAS THE VALUE 12
210 LET E=F

250 CASE ELSE 'SELECTED IF NO OTHER CASE IS TRUE
260 LET G=H

300 END SELECT
This SELECT block is executed as follous:

1. Lline 110 is evaluated and it is determined that ABC is not
between 6 and 10, so processing skips to line 150.

2. Line 150 is evaluated and it is determined that ABC is not
less than ¢, so processing skips to line 200.

3. Line 200 is evaluated and it is determined that ABC is not
equal to 12, so processing skips to line 250.

4. Line 250 is used to indicate processing in the event that none
of the conditions specified by a CASE statement are met. In
this example (ABC=5) these lines are processed.

There may be any number of CASE blocks within a SELECT block, but
they must never overlap. Any illegal nesting of CASE and CASE ELSE
blocks is detected either during compilation or as part of the RUN
command.

A CASE block can be exited by branch control and exception
handling statements.

IBM BASIC Statements 67

Control may transfer into the body of a CASE or CASE ELSE block
only through the use of a CONTINUE, RETRY, RETURN, or END SUB
statement.

Further, vou should ensure that all CASE blocks can be reached.
For example, if the third CASE statement in the above example had
a value of 2 (instead of 12), it could never be reached, because
the second CASE block selects any value that is less than 4.

EXECUTION CONTROL STATEMENTS

Execution control statements provide a method of halting vour
program, temporarily stopping your program, or selecting a new
starting point for a list of pseudorandom numbers.

END Indicates the end of a main program and therefore is
both logically and physically the last statement in a
main program. It halts the execution of your program
and closes all files that have been opened.

PAUSE Temporarily halts the execution of your program,
displays either a system message, or the message
associated with the PAUSE statement itself, and
resumes execution at the next statement when the GO
command or a null entry are entered.

RANDOMIZE Is used to start a new series of pseudorandom numbers.

STOP Halts the execution of vour program, and performs the
same operations as the END statement. The STOP
statement, however, unlike the END statement, may be
placed anywhere in your program, and you may specify
it more than once.

ASSTIGNMENT STATEMENTS

Assignment statements assign (move) data to variables.

The data assigned can be a constant, another variable, the result
of a function or an expression. The data and the variable must
both be of the same type; that is, the variable must be a
character variable if the data is character data, or the variable
must be a numeric variable if the data is numeric.

For numeric data types (integer or dacimal), however, the data is
always converted to match the numeric variable before it is
assigned (moved). That is, an integer value is converted to a
decimal value if the variable is decimal, or a decimal value is
converted (with rounding) to an integer value if the variable is
an integer. Numeric overflow may occur if decimal values are
converted to integer.
The assignment statements are:
LET assigns values to scalar variables.

The keyword LET is optional.
MAT assigns values to arrays.

Some examples of assigning constants to variables are shown in
Figure 18 on page 69.

68 IBM BASIC Application Programming: Language Reference

ROUNDING RULES

LET
LET
LET

LET

LET
MAT

LET

B,C,D = 5.7

E%x = 3

F% = 3.666

ABCS$ = "STRINGY
ARAY# = (b)
LIST =5

Assigns decimal constant 123.56 to
decimal variable A#.

Assigns decimal constant 5.7 to
variables B, C, and D.

Assigns integer constant 3 to integer
variable EX.

Rounds decimal constant 3.666 to the
value 4 and assigns it after rounding
to integer variable FX%.

Assigns the character string constant
"STRING" to the character variable ABCS.

Assigns integer constant 5 to every
element in the decimal array ARAY#.

Assigns integer constant 5 to variable
LIST (a keyword is allowed as a variable
name in an assignment statement only if
the optional keyword LET is specified).

Figure 18. Assignment Statement—Assigning Constant Values

As Figure 2 on page 16 shouws, the internal representation of a
decimal value provides the capability of conveying 19 digits of
decimal data; however, the actual representation provides for
only 17. During the evaluation of a numeric expression,
intermediate results make use of all 19 digits. At the completion
of evaluation, the last two digits are examined and, if they
represent a value equal to or greater than 50, the 17th digit is
rounded up, and the 18th and 19th digits are set to zero. -

Some examples of assigning one variable to another variable are
shown in Figure 19 on page 70.

IBM BASIC Statements 69

A = B Assigns the value in variable B to
variable A.

B,C,D = X Assigns the value in variable X to
variables B, C, and D.

M$ = N$ Assigns the character string value in
variable N$ to character variable M$.

(In this case the maximum length of M$
must be greater than or equal to the
length of the character string in N$
or string overflow occurs.

MAT AR = BRAY Assigns the values in array BRAY to
the array AR on an element-by-element
basis.

(When assigning values to arrays, be
sure the array on the left of the equal
sign has the proper dimensions. Any
array can be redimensioned during an
assignment, but its overall size cannot
be increased).

DIM ABC$(5,5) Redimensions ABC$ to 2 by 3 and

MAT ABCS$ = XYZ2$(2,3) then assigns the values in array
XYZ$ to the corresponding elements
in array ABCS.

Figure 19. Assignment Statement—Assigning Variable Values

INPUT/OUTPUT STATEMENTS

Input/output statements define file attributes, define and
control access to file data, and transmit file data to, from, and
within a program.

Input/output statements are classified according to the
disposition of the data being processed (internal or externall,
and according to the function being performed. The input/output
statements are classified by function as follows:

. Internal Data Input/Output Statements

. Terminal Input/Output Statements

. File Input/Output Statements

After a description of general input/output considerations, the

én?ividual statements under each of these headings are described
elow.

GENERAL INPUT/OUTPUT CONSIDERATIONS

Input/Output Lists

This section discusses input/output lists used by many

statements, data rules for input/output, the use of FORM and IMAGE
statements for data formatting, and input/output error
processing.

Most of the input/output statements that transmit data require an
input/Zoutput list, a list of items associated with data to be
transmitted either as input or output. The exception to this

70 IBM BASIC Application Programming: Language Reference

requirement is the PRINT statement, which allows a null list. The
null PRINT list produces a blank line (or record) of output.

The input/output list has the following format:

[item separator [item separator] ...] [item]

Where:

item

is either the name of a data item or a print clause, and may
take these forms:

1. In an input list:

a.

Simple variable.

Subscripted array element.

Array, that is:

MAT array name

Array with redimensioning, that is:

MAT array name

(numeric expression [,numeric expression] ...).
The rounded integer values of the expressions are

used to redimension the array before storing input
values into the array.

2. In an output list:

a.

f.

separator

Simple variable.

Subscripted array element.

Array, that is:

MAT array name

Scalar expression (either numeric or character).
TAB clause (PRINT and PRINT file statement only)
NEWPAGE clause (PRINT and PRINT file statement only)

is one or more commas or semicolons, with the following
restrictions:

L A semicolon is valid only on output, and only used when
transmitting data to the terminal or to a DISPLAY file,
that is, only in PRINT and PRINT file statements.

o The list may end with a comma or semicolon only in PRINT
and PRINT file statements.

. More than one consecutive comma or semicolon for a
separator is only allowed in PRINT and PRINT file
statements.

If the list consists only of arrays, there is an alternative form
of the statement, with MAT as the first word (that is, preceding
the keyword that identifies the statement) and with no occurrence
of MAT in the input/output list.

IBM BASIC Statements 71

For example:
MAT READ A,B,C
is equivalent to

READ MAT A, MAT B, MAT C

Inputsoutput Data Rules.

Unless stated otherwise, the following rules apply to data
associated with input/output statements.

Input list Data received is assignhed to the values in the list
in the order received.

Numeric conversions to the type in the input list
are performed.

A character variable in an input list assumes the
length of the character data value.

The action when an error condition is detected
varies according to the input statement used,
whether the receiving data is from a file or from
the terminal and the error processing that has been
specified in the program. See the specific input
statement for details.

putput list Data is moved in the order specified in the list.
See the specific output statement for details.

FORM and IMAGE Statements

Many of the transmission input/output statements have a USING
clause which refers to a FORM or an IMAGE statement to format data
for output, or which refers to a FORM statement for input. This
reference may be the line number or line label of a FORM or IMAGE
statement, or a character expression which, when evaluated, is
equivalent to a FORM or IMAGE statement.

Such a character expression is evaluated as follows:
. If FORM is specified, the FORM syntax is used.
. Otherwise, the IMAGE syntax is used.

FORM Character Expressions

When the FORM is entered as a separate statement, replication
factors can be constants or variables, and the parameter n in the
specifications X n, P0S n, and SKIP n can be a numeric
expression. When the FORM is contained in a character expression,
however, these values must be constants.

In a FORM statement, the specifications X, P0S, and SKIP must be
followed by at least one space character. In FORM character
expressions, the spaces are optional.

Input/Output Error Processing

72

During execution of input/output statements, various errors can
occur which may be handled in a number of ways. The ON Condition
statement can be used to provide general error-handling routines
for many of the situations which might occur.

Most of the input/output statements permit you to specify
error-recovery clauses for that particular statement, either as
an EXIT clause or as individual error clauses, such as CONV,

IBM BASIC Application Programming: Language Reference

SOFLOW, and I0ERR. The EXIT clause, which refers to an EXIT
statement, and the other error clauses are mutually exclusive.
Multiple error clauses are separated by commas and cannot
duplicate each other.

Error-recovery clauses on input/output statements temporarily
override any ON Condition statements which are in effect for
similar conditions.

INTERNAL DATA INPUT/0UTPUT STATEMENTS

An internal data file consists of a sequence of numeric and
character values which exist within the program unit. These
values can only be accessed sequentially and only for input.

The internal data input statements are:

DATA One or more DATA statements create an internal data
table.
READ READ statements assign values from the data table to

variables and arrays.

RESTORE The RESTORE statement resets the file pointer to the
first value in the data table.

TERMINAL INPUT/0OUTPUT STATEMENTS

Terminal input/output statements provide communication between a
program and the terminal during an interactive session.

Terminal input/output statements are of two types: line-by-line
input/output statements and screen field input/output statements.

Line-By-Line Inputs/output Statements

This group of statements refer to the terminal one line at a time.
The line-by-line statements are:

INPUT Provides data to a program from a terminal for
assignment to the items in an input list.

LINE INPUT Provides unformatted data to a program from a
terminal for assignment to a character item in an
input list.

MARGIN Sets the boundaries for writing data via a PRINT
statement to a terminal.

PRINT Writes both formatted and unformatted data from a
program to a terminal. The output to the terminal is
determined by the items in an output list.

Full sScreen Inputs/cutput statements

H

Full screen input/output statements can be used with a display
terminal that can read and write specific fields on the screen.
The full screen input/output statements are:

INPUT FIELDS Reads one or more data values from one or more
screen fields and assigns each to a variable.

PRINT FIELDS Displays one or more data values in one or more
screen fields.

Attribute Characters on the Screen: On the IBM 3270 family of
terminals, or equivalent, "attribute characters,”™ which control
screen attributes, occupy screen positions and display as blanks.

IBM BASIC Statements 73

An attribute character precedes and follows each screen field
accessed by an INPUT FIELDS or a PRINT FIELDS statement. These
attribute characters are not available to the IBM BASIC user.

The screen positions occupied by these attribute characters are
immediately to the left and right of the field the user specifies.
The character to the "left™ of a character in column one is the
last character in the previous row, and the screen wraps
around—that is, the bottom row "precedes" the top row. The same
ordering (left to right, top to bottom with wraparound)
determines the attribute character to the right of the field.

overlapping Fields: Print fields may overlap other fields, but
the visual characteristics of previous fields may change. For
example, if the end of an output field overlaps the beginning of a
previous high intensity field (H attribute), the portion of the
previous field which is not overwritten is still displayed, but
with normal intensity.

Input fields may not overlap existing attribute characters. Such
an overlap causes an exception.

Mixed Mode Operations

Be careful when intermixing full screen operations with
line-by-line operations. When switching between them, there is no
implicit display screen clearing. Therefore, if the display
screen is not cleared before full screen processing begins, full
screen processing fields will be intermixed with the previous
contents of the display screen.

To clear the screen, use the PRINT NEWPAGE statement.

FILE INPUT/0UTPUT STATEMENTS

File Input/0Output statements process data which is stored in
files, a; described in the chapter "IBM BASIC File Capabilities™
on page 56.

The file input/output statements are of two types: file control
and file transmission. In addition, a number of file input/output
statements have a file-positioning clause.

File Positioning Clauses

74

When a sequentially organized file is opened, it can be positioned
at its beginning or its end; other file input/output statements
directly or indirectly affect the position of the file. "Current
position of the file" is equivalent to saying the record or value
which would be accessed if a sequential input/output operation
were to be executed at that time; the frequently used term "file
peinter” can be viewed as an arrow pointing to the current
position of the file.

When a relative or keved file is opened, only the BEGIN option is
available.

Several file input/output statements allow for a "positional™
clause which specifies a particular position; this position is
sometimes designated as the beginning or end of the file (RESET
#fileref/RESTORE #fileref).

For relative files, the positional clause may specify a RECORD
option; the file is positioned at the record whose relative
position is identical to the one specified.

For keved files, the positional clause may specify a KEY option;
the file is positioned to the first record which satisfies the KEY
option condition. The KEY option must specify a condition using
the exact length of the key.

IBM BASIC Application Programming: Language Reference

For keyved files, the positional clause may also specify a SEARCH
option; the file is positioned to the first record which satisfies
the SEARCH option condition. The SEARCH option condition can
specify a partial key (that is, a key whose length is less than
the length of the key).

The input/output statements which allow record positioning are
shown in Figure 20.

File statement Options Alloued
Relative Files Keved Files

DELETE #fileref RECORD KEY

READ #fileref RECORD KEY SEARCH

RESET #fileref RECORD KEY SEARCH

RESTORE #fileref RECORD KEY SEARCH

REWRITE #fileref RECORD KEY

WRITE #fileref RECORD KEY

Figure 20. Positioning Options Allowed—File Input/0Output
Statements

File Ccontrol statements

OPEN &fileref Activates a file, assigns a file reference
number, specifies access, file type,
organization, record type, and file position.

CLOSE &fileref Deactivates a file, preventing further access
to it until that file is reactivated by another
OPEN &fileref statement.

RESET #&fileref ghanges the position of the file pointer for a
ile.

RESTORE #fileref 1Is identical to the RESET #fileref statement.

MARGIN §fileref Specifies the page margins for display files
which are written with PRINT file statements.

SCRATCH #fileref Erases the contents of a file and resets the
file pointer to the beginning.

Each of the file input/output statements refers to a file by means
of a file reference number (#fileref) which is assigned by the
OPEN statement for that file; all other input/output statements
for that file must refer to this number.

In most statements, the file reference number must be between 1
and 255; in some statements, it may be zero, which always
specifies the terminal.

The file reference number assigned by an OPEN statement remains in
effect, even across communicating program units, until the file
is closed, either by the file input/output statement CLOSE, or by
other statements, namely STOP and END, and the CHAIN statement
when the FILES option is not specified.

t

File Inputs/output Transmission Statements

GET &fileref Assigns values from a stream file or
j:ternal format file to a list of data
items.

IBM BASIC Statements 75

PUT &fileref Writes values from a list of data items to a
stream file.

READ #fileref Retrieves a record from an internal file or
native file and assigns values from it to a
list of data items. Values from native files
are formatted with a FORM statement or
specification.

REREAD #fileref Causes the record last read to be accessed
again, and the data processed as in a READ
#fileref statement. It is only valid for
native files and values are formatted with a
FORM statement or specification.

HRITE #fileref Adds a record to a native, stream, or
internal file. The data for the record comes
from a list of data items; for native files,
these values are formatted with a FORM
statement or specification.

REWRITE &#fileref Alters a record already existing on a native
file. A list of data items supplies the new
values which are formatted with a FORM
statement or specification.

DELETE #fileref Removes a specific record from a keyed or
relative file.
INPUT #fileref Assigns values from files in three different

ways. For display files, it functions as an
INPUT statement; for internal files, it
functions as a READ #file statement, and for
stream files, it functions as a GET #file
statement.

LINE INPUT #fileref Assigns a complete record of unformatted
data to a character variable.

PRINT #&fileref Transmits both formatted and unformatted
data to a display file. ’

PROGRAM SEGMENTATION STATEMENTS

76

The program segmentation statements segment programs in several
ways: through user-defined internal functions or subroutines,
through external subprograms, or through external program
chaining.

Internal functions or subroutines are defined by DEF/FNEND or
GOSUB/RETURN statements, respectively. Each internal function or
subroutine can be a logical entity within the program.

External subprograms are defined using the SUB, SUBEXIT, and END
SUB statements. They are invoked with the CALL statement. These
statements can be used to split a large program into manageable
program units, consisting of a main program and one or more
subprograms. The subprograms can be accessed (through the CALL
statement) repetitively from the main program or from each other.

The CHAIN and USE statements can be used to split a very large
program into several main programs (each, if needed, calling its
own subprograms) so that each main program (through a CHAIN
statement) can transfer control to the next at execution time.

In the CALL and CHAIN statements, values can be passed through
arguments. Data can be shared by different programs in the COMMON
area, which survives both a CALL and CHAIN statement execution.

The CALL statement can also access subprograms written in other
languages. IBM BASIC supplies interface routines that allow the
program to execute CMS commands, to perform Graphical Data

IBM BASIC Application Programming: Language Reference

Display Manager/Presentation Graphics Feature (GDDM/PGF)
operations, and to invoke subprograms written in COBOL, FORTRAN,
or PL/I.

USER-DEFINED FUNCTION STATEMENTS

User-defined functions allow you to define new functions in
addition to the intrinsic (built-in) functions already available
to vou. User-defined functions are specified through the
following statements:

DEF Declares a user-defined function. It may define a numeric
or character valued function.

The DEF statement may completely define the function or it
may specifty the beginning of a function block, or
multiline function. The DEF statement is the first line of
the block. It defines the function name and parameters

FNEND Marks both the physical and logical end of a multiline
function. The FNEND statement is the last statement of the
block. It serves the mark the end of block and is also the
exit point of the function.

Functions are activated by a reference to the function name. You
cannot transfer control into the body of a multistatement
function.

A DEF statement, or a DEF/FNEND group of statements may appear
anywhere in a program unit, except within another DEF/FNEND
group.

Lines in a function definition are not executed unless the
function they define is referenced. If execution reaches a DEF
statement in some other fashion, processing proceeds to the line
immediately following the function definition, bypassing the
statements within the function.

When used in an executable statement, the function name may be
followed by a list of arguments. This list must agree in number,
order, and type with the list in the DEF statement.

A user-defined function can be:

. A single DEF statement containing an expression which
determines the function's value.

. A multistatement function which is delimited by DEF and FNEND
statements.

When a function is invoked, the arguments in the function
reference, if any, are evaluated and their values assigned to the
parameters in the parameter list for the function definition.

Transfer of control into or out of a function other than through
function references is illegal. Unpredictable results may occur
if input/output is performed by a function that has been invoked
in an input/output data list, or if a function changes the value
of a variable appearing in the same statement as the function
reference.

A function name can be defined only once in a given program unit.
A function definition may not refer, directly or indirectly, to
the function being defined, that is, recursive functions are not
allowed.

A parameter appearing in the parameter list of a function

definition is distinct from any variable with the same name
outside the function definition.

IBM BASIC Statements 77

Single Line Functions

Multiline Functions

If a function is completely defined in a DEF statement, the
expression in that statement is evaluated and its value returned
as the value of the function.

If a function is defined in a DEF block, the lines following the
DEF line are executed in sequential order.

Within multiline functions, assignments (LET statements) of
values to the function name determine the value to be returned as
the value of the function.

Exit from a multiline function is accomplished by executing the
FNEND statement.

The only exit from a multistatement function is through the FNEND
statement. You cannot transfer control (for example, specify a
GOTO statement) out of the body of a multistatement function.

Within a function, any GOSUB statement for which a matching RETURN
statement has not been executed is removed from the RETURN list of
GOSUB statements. Therefore, execution of a subsequent RETURN
statement will not cause control to return into the function.

Processing a STOP statement in a DEF block ends the entire program
(see "Subroutine Control Statements™ on page 61).

SUBPROGRAM STATEMENTS

Main Programs

subprograms

A program can be divided logically into a number of program units:
a main program, and one or more subprograms.

Each program unit establishes a separate scope of identifiers.
The same identifier may be used in different program units to name
di fferent items.

Statements within a program unit mayv not refer to any variable,
array, line label, line number, or function (other than intrinsic
functions) defined externally to that program unit.

A main program is a program unit whose first noncomment statement
is any statement other than a SUB statement and whose last
statement is an END statement.

CALL Passes control from the calling program to the specified
subprogram. The arguments associated with the CALL must
correspond to the parameters of the SUB statement for the
program invoked.

A main program is the first program unit to receive control when
processing is initiated. Other main programs may be invoked by
means of the CHAIN statement (see "Chaining Statements™ on page
81).

A subprogram begins with a SUB statement and ends with an END SUB
statement. The SUB statement may be preceded by comment
statements.

Subprograms are named in the SUB statement. They are invoked by
calls (the CALL statement) from other program units (both main
programs and other subprograms).

78 IBM BASIC Application Programming: Language Reference

SUB Names the subprogram and names parameters which are
variables to be used by the subprogram.

SUBEXIT Ends execution of a subprogram. This statement may
occur only in a subprogram.

END SUB Marks the physical end of a subprogram and, if
executed, ends execution of the subprogram.

A subprogram is a set of statements designed to perform a specific
task. It might be a subprogram that can be used with more than one
calling program to help solve several problems. For example, it
might be necessary to write several programs, each of which must
access and process a name and address file in the same manner.
Processing the name and address file, then, is a prime candidate
for becoming a subprogram.

It is possible. for one program to access more than one subprogram,
allowing dates Ao pass not only to and from the main program, but
between subprograms as well. A CALL statement is issued in a
calling program in order to access a called subprogram. Called
programs may in turn become calling programs. (See Figure 21.)

SUBPROG1
B SUB SUBPROG1 (C, D)
MAINPROG M

Py []

° []

° CALL SUBPROG2 (C)
CALL SUBPROG1 (A, B) next executable statement i
next executable statement <t @

° [

° ®

. <t SUBEXIT
END °

®
.

ENDSUB

SUBPROG2

SUB SUBPROG2 (A) —
[]
[]
*

ENDSUB

Figure 21. Calling and Called Programs

Subprogram A is both a called program and a calling program. It
accepts data from subprogram B, processes it, and passes results
back to the main program. Subprogram B is a called program,
supplying data to both the main calling program and the calling
subprogram A.

Arrays and character variables in a subprogram which are not
parameters must appear in a dimension statement in that
subprogram if they are to have other than the default dimensions
or default maximum string lengths.

IBM BASIC Statements 79

An array parameter is declared in the SUB statement with an "empty
array declarator" which states how many dimensions the array has,
but not the values of the dimensions. The actual values of the
dimensions are those of the corresponding argument when the
subprogram is called.

The same is true for parameters which are character variables.
Both the current length and the maximum length of the parameter
are passed as part of the CALL.

All arrays and variables which are not parameters and are not in
COMMON are initialized to zero, for numerics, or null, for
character strings, each time the subprogram is called.

Recursive subprogram calls are permitted.

Calling IBM BASIC Programs

The CALL statement passes control from the calling program to the
subprogram specified.

The SUB statement is the first line of the subprogram, naming the
subprogram and declaring any parameters.

When a CALL statement is executed, control transfers from the
current program to the named subprogram. Execution of the
subprogram begins at the line following the SUB statement in the
called program and continues until:

. Some other action is dictated by execution of a control
statement
o An error occurs that causes an abnormal termination

) An END SUB, STOP, or SUBEXIT statement is executed

The number and type of arguments in a CALL statement must agree
with the number and type of parameters in the corresponding SUB
statement. An array used as an argument must have the same number
of dimensions as the corresponding parameter.

An array that is a parameter (that is, appears in a SUB statement)
may be redimensioned within a subprogram. When control returns to
the calling program, the array retains its changed dimensions.

See IBM BASIC Application Programming: System Services for more
details.

calling Programs Hritten in other Languages

The CALL statement may be used to access subprograms written in
other languages. However, because IBM BASIC's argument passing
conventions differ from those of other languages, these calls
must be made indirectly through interface routines which convert
argument sequences.

BASIC follows general IBM calling conventions and generates
object modules in standard IBM format. Modules created by other
language processors may be linked with BASIC object modules. See
IBM BASIC Application Programming: Svstem Services for details.

Interface routines are supplied to establish linkage to routines
written in COBOL, FORTRAN, and PL/I. '

80 IBM BASIC Application Programming: Language Reference

Calling the System

CALL COBOL (string expression, pl,p2,...)
CALL FORTRAN (string expression, pl,p2,...)
CALL PLI (string expression, pl,p2,...)

Where the value of string expression is the name of the routine to
be called. pl,p2,... are arguments. See "CALL COBOL, FORTRAN or
PLI Statement™ on page 94 for argument conversion rules.

Note that because of the conversions, the called programs may not
store back into decimal arguments.

Other considerations, particularly in the area of input/output,
must be taken into consideration.

The supplied subprogram SYSTEM allows programs to execute host
system commands. These commands are limited to those available
for execution under program control (see Figure 43 on page 317).
The syntax is:

100 CALL SYSTEM (string expression)
where the value of the string expression is a host system command.

This statement is the analog of the IBM BASIC SYSTEM command. If
the host system detects errors, an exception occurs.

calling the Graphical Data Display Manager (GDDM)

CHAINING STATEMENTS

The Graphical Data Display Manager (GDDM) may be called to perform
graphic operations. The syntax is

100 CALL GDDM (rcp, pl,p2,...)

Where rcp is a numeric expression whose rounded integer value
specifies the GDDM request control parameter (RCP) for the
operation to be performed. The allowable values and their
corresponding operations are defined in the GDDM User's Guide.

pl,p2... are the actual arguments for the operation. The number
and type of these arguments depends upon the request control
parameter.

GDDM does not use IBM BASIC's floating decimal or varying length
character string data types. The interface routine converts
parameters of these types to single precision floating binary and
fixed length character strings, respectively. Integer parameters
are passed in their IBM BASIC format. For information on how to
link to GDDM routines, see IBM BASIC Application Programming:
System Services.

You cannot use the following GDDM functions:

FSEXIT
FSINIT
FSRNIT
FSTERM
SPINIT

These are GDDM initialization and completion functions handled

automatically by BASIC's interface routine. See the GDDM User's
Guide for a description of the functions that are available.

CHAIN Ends execution of the current program (the chaining
program) and starts another program (the chained

IBM BASIC Statements 81

82

program). It also specifies which variables are to be
passed from the chaining program to the chained progranm.

USE Specifies which variables the chained program is
expecting to receive from the chaining program. A "by
name" correspondence must exist: only those variables
that have the same identifiers and attributes in both
programs are passed.

The CHAIN and USE statements allow separate programs to be
executed serially, without outside intervention. This capablllty
is useful when segmenting very large programs.

Figure 22 shows how a chaining program might work:

1. The MENU program contains CHAIN statements to invoke other
main programs which execute entirely independently of the
MENU program.

2. When the chained programs complete execution, they chain back
to the MENU program.

Y _ MENUPROG PROG1
i [3 o []
® []
[) ‘.
IF ... CHAIN PROG1 CHAIN MENUPROG
[] []
[[]
[) []
F ...CHAIN PROG2 END >
[]
[]
[]
END PROG2

\j

.
.
.

CHAIN MENUPROG
.
.
.

END

\J

Figure 22. Chaining and Chained Programs

The CHAIN statement may optionally indicate whether the currently
open files are to remain open or be closed prior to invoking the
chained program.

The CHAIN and USE statements can be used to copy values from the
chaining program to the chained program. The arguments are
matched by name; if a name appears in only one list it is ignored.
For names that do match, the type and size (for arrays and
characters) are checked. If they match, the value is transferred;
if not, an exception occurs.

IBM BASIC Application Programming: Language Reference

PROGRAM SEGMENTATION RESTRICTIONS

CALL STATEMENT RESTRICTIONS: In the interactive mode, if the CALL
statement is a source statement in the workspace, BASIC first
checks to see if the subprogram is present in source form in the
workspace. If it is, the workspace subprogram is used. Otherwise,
BASIC attempts to find and load a compiled TEXT file with a
filename the same as the subprogram name.

If the calling program is itself compiled, the subprogram must
also be compiled. Thus a CALL within a dynamically loaded TEXT
file cannot refer back to a program in the workspace.

CHAIN STATEMENT RESTRICTIONS: Main programs that are the targets
of CHAIN statements are dynamically loaded. They can be compiled
TEXT files or BASIC source program files.

When, in interactive mode, a CHAIN statement is encountered,
BASIC first attempts to find a TEXT file of the indicated name. If
a TEXT file is found, it is loaded and used. If no TEXT file is
available, BASIC then attempts to find a source file, with the
filetype of BASIC, and reload the workspace.

In programs running outside of the interactive BASIC environment,
CHAIN statements can refer only to compiled TEXT files.

PROGRAM SEGMENTATION AND COMMON

Both the CALL and the CHAIN statements may explicitly pass
arguments to another program unit using an argument list.

They may also pass arguments implicitly via the COMMON statement,
which creates an area of storage that can be shared by many
different programs.

A COMMON area created in a main program remains in existence from
one subprogram CALL to the next as well as from one main program
CHAIN to the next. Thus, a main program could declare a COMMON
block, perform some actions which set values in COMMON, and then
CHAIN to another main program which could continue to process
thgse same values. See "COMMON Statement"™ on page 102 for more
details.

IBM 3ASIC Statements 83

EXCEPTION HANDLING STATEMENTS

Exception handling statements provide a means of regaining
control in a program after an exception has occurred.

The exception handling statements are:

ON Condition Determines the action taken when an exception
occurs: transfer control to a specified line
number or label, ignore the exception, or perform
the default action.

EXIT Specifies a line number or line label to which
control is transferred when input or output
exception conditions occur.

CAUSE Explicitly causes an exception; for example, for
testing purposes.

CONTINUE Resumes execution after the statement which caused
an exception.

RETRY Resumes execution after an exception by
reexecuting from its beginning the statement which
caused the exception.

USING I/0 STATEMENT ERROR CLAUSES AND ON CONDITION STATEMENTS

The ON condition statement and error clauses within I/0
statements (which may use EXIT statements) perform a similar
function; the identification of what action the system should
take if one of a general class of exceptions occur. The actions
and their meanings are:

IGNORE Act as if the exception did not occur

GOTO Transfer program execution to a specified statement
SYSTEM Perform a default system action

These actions are explicit in an ON statement. In an I/0
statement's error clause they are implicit; presence of a
condition name implies GOTO; absence implies SYSTEM.

If an‘exception occurs, and control is transferred, whether via an

error clause or ON statement, the following intrinsic functions
are available for processing the exception:

CODE Obtains the system error code
ERR Obtains the IBM BASIC exception code
LINE Obtains the statement line number of the exception

EXCEPTION HANDLING IN I/0 STATEMENTS

84

Error clauses in I/0 statements take priority over the ON
condition statement. That is, when an exception occurs, the
processor first checks if an applicable error clause is specified
in the I/0 statement. If it is, control is transferred as
specified by the error clause. If the exception does not
correspond to any error clause, the action taken is determined
from the ON condition statement, if any.

The error conditions, ENDPAGE, CONV, and SOFLOW, are equivalent
to the ON conditions of the same name. All other error clause or
EXIT conditions are equivalent to the ERROR condition of the ON
statement.

IBM BASIC Application Programming: Language Reference

USING THE CAUSE STATEMENT

The user can generate an exception explicitly with the CAUSE
statement. This can be used to test routines that handle abnormal

conditions.

USING THE RETRY AND CONTINUE STATEMENTS

Use the RETRY and CONTINUE statements to resume program

execution:

. RETRY—resumes execution with the statement that caused the

exception

J CONTINUE—resumes execution with the statement fbllowing fhat

which caused the exception

In general, any statements in the language may be used to attempt
recovery from the error condition. If another exception occurs,
and IBM BASIC has not been told to IGNORE it, all knowledge of the
first exception is lost. In this case, a RETRY or CONTINUE
statement resumes execution at or after the location of the second

exception.

EXCEPTIONS AND USER-DEFINED FUNCTIONS

The relationship between exceptions and user-defined functions
requires some additional explanation. An EXIT or ON condition
statement may indicate that the processor should GOT0 any line
number or label in the program unit without restriction. When an
exception occurs, the following rules are follouwed:

. If the indicated statement is not in the main body of the
program unit or in a currently executing user function, the
exception message is written and an "invalid exception
location™ exception is generated. Otherwise:

— Each executing function is immediately exited, that is,
the remaining code is not executed until the function (or
main body of the program unit) containing the GOTO

destination is reached.

- The intrinsic function is set to the statement containing
the function invocation at the now current level.

- Control is transferred to the designated line.

Example

100 ON OFLOW GOTO 360

110 DEF A(P1)
120 A = X/P1
130 FNEND

210 DEF B(P2)

220 ON ZDIV GOTO 250

230 B = P2%A(P2)
240 GOTO 260

250 PRINT 'ZDIV AT LINE';LINE

260 FNEND

310 X = 1.E50

320 Y = B(0)

330 Y = B(1.E-50)
340 Y = A(O0)

350 STOP

360 PRINT 'OFLOW AT LINE';LINE

3706 CONTINUE
380 END

In this example, the first invocation of B (at line 320) causes an
exception at line 120 in A. A is exited, and execution will resume

at line 250 and LINE will be set to 230:

IBM BASIC Statements 85

The next invocation of B (at line 330) will cause an exception at
line 120 in A as well. Both A and B will be exited; execution will
resume at line 360, and LINE will be set to 330. The CONTINUE
statement will transfer control to line 340. This too will cause
an exception at line 120 in A. However, the ON ZDIV still points
to line 250 in B, which is not active, hence a ZDIV error message
will be written and an "invalid exception location™ exception
generated.

Note: This exception can belhandled with an ON ERROR clause.

EXCEPTIONS AND CALLING AND CALLED PROGRAMS

DEBUGGING STATEMENTS

86

Each program unit (subprogram or main program) has a separate set
of EXIT and ON condition lists. If one program unit calls another,
it loses all control over any exceptions until the called program
unit returns. At that time the EXIT and ON conditions are reset to
their state prior to the call.

Debugging facilities allow the user to build test points into
programs. With debugging statements, the user can set
breakpoints, trace the execution of a program, and turn the
debugging system ON and OFF.

DEBUG ON/OFF The DEBUG ON statement causes debugging to become
active in the program unit in which it is
specified.

The DEBUG OFF statement causes debugging to become
inactive in the program unit in which it is
specified. If a DEBUG OFF statement is executed
when tracing is in progress, an implicit TRACE OFF
statement is executed; that is, when a subsequent
DEBUG ON statement is executed tracing does not
resume.

Before the execution of any debug statement in a
program unit, debugging is inactive (OFF).

BREAK The BREAK statement, when debugging is active,
reports the line number of the BREAK statement and
suspends processing. (This is called a breakpoint.)
At this time, the user can continue execution by
pressing the ENTER key, or can enter IBM BASIC
commands and immediate statements before
continuing.

If the program is not modified, processing can be
resumed by issuing the GO command.

If the program is modified in any way, processing
cannot be resumed at the breakpoint; instead, the
program must be reinitiated via the RUN command.
Thus, any line number editing or use of the
following commands end execution: CHANGE, COMPILE,
COPY, DELETE, DROP (of any program variables),
EXTRACT, FETCH, INIT, LOAD, MERGE, RENUMBER, RUN.

A BREAK statement is ignored when debugging is
inactive.

TRACE ON/OFF The TRACE ON statement, when debugging is active,
turns tracing on in the program unit in which it is
specified.

The TRACE OFF statement, when debugging is active,
turns tracing off in the program unit in which it is
specified.

IBM BASIC Application Programming: Language Reference

Before the execution of any TRACE statement in a
program unit, tracing is set off.

A TRACE statement is ignored when debugging is
inactive.

USING THE TRACE STATEMENT
The following actions occur when tracing is on.

. For each statement causing a transfer of control (for
example, a GOTO, or CALL, or NEXT), both the line number of
the statement and the line number of the next statement to be
processed (if such @ line number exists) are reported.

. For each statement causing the value of a variable or array to
change, both the line number of the statement and the values
assigned to any variables by the statement are reported.

Trace reports may be directed to files by means of the TO clause
in the DEBUG ON and TRACE ON statements.

Four rules govern the use of the TO clause.

1. A TO clause in a DEBUG ON statement overrides any TO clauses
of TRACE ON statements encountered subsequent to the DEBUG ON
statement in the same program unit.

2. A TRACE OFF statement breaks the file connection set by any
TRACE ON 70 statement in the same program unit.

3. A TRACE ON TO statement breaks the file connection
established by a prior TRACE ON TO statement in the same
program unit. It does not break the file connection
established by a prior DEBUG ON TO statement.

4. A DEBUG OFF statement breaks the file connection as well as
trace output established by any prior DEBUG ON TO or TRACE ON
TO0 statement in the same program unit.

If no file reference is specified, the trace report is directed to
the device associated with file reference zero (usually the
terminall.

IMMEDIATE STATEMENTS AND DEBUGGING

Statements that can be executed in the immediate mode (although
they are not classified as debugging statements) are very useful
for program debugging. For example, while stopped at a breakpoint
you can execute an immediate PRINT statement to examine the value
of any variable in the active program unit.

IBM BASIC Statements 87

STATEMENT DESCRIPTIONS

This section describes the syntax and semantics of each statement
in the IBM BASIC language. The statements appear in alphabetic
order. For the relationships between statements, see the previous
sections in the chapter on "IBM BASIC Statements™ on page 60.

88 IBM BASIC Application Programming: Language Reference

BREAK STATEMENT

Description

BREAK Statement

The BREAK statement (when debugging is active) suspends program
execution, identifies the current line, and makes possible
interaction with the system. The suspension of execution is known
as a breakpoint.

Execution of a BREAK statement when debugging is inactive has no
effect.

Format

BREAK

The BREAK statement provides a means of using the debugging
capabilities of IBM BASIC.

System commands may be used without inhibiting processing, if
they do not modify the program. If the program is modified in any
way, execution cannot be resumed at the breakpoint and must be
reinitiated via the RUN command. Thus, any line number editing or
use of the following commands ends processing: CHANGE, COMPILE,
COPY, DELETE, DROP (of any program variables), EXTRACT, FETCH,
INIT, LOAD, RENUMBER, RUN.

If the program is not modified, enter either a GO or a null entry
to restart program execution after a BREAK statement. (A null
entry can be used only if no other commands have been entered
while at the breakpoint.)

The BREAK statement is controlled by the DEBUG statement. See
"Debugging Statements"™ on page 86 and "DEBUG Statement™ on page
106.

See "BREAK Command™ on page 271 for another method of causing a

program break (without the necessity of editing and rerunning
your program).

Statement Descriptions 89

CALL Statement
CALL STATEMENT

Description

The CALL statement invokes subprograms.

Format

CALL name [Cargl,argl...)]

Where:

name

identifies the subprogram to be run. Subprogram names may
contain at most seven characters.

If the name is SYSTEM, COBOL, FORTRAN, PLI, or GDDM, see the
special format on the following pages.

arg
is an argument passed from the calling program to the called
subprogram. It is an expression (numeric or character) or an
array from the calling program that may be accessed by the
called subprogram.

When an entire array is to be passed as an argument, it must
be stated as an empty array declarator to indicate the number
of dimensions in the form:

identifier ([,1...)

lWhen a CALL statement is executed, control passes from the calling
program to the named subprogram. When the subprogram completes
execution, control returns to the calling program at the next
executable statement after the CALL statement.

Example

100 REM MAIN PROGRAM STATEMENT
110 CALL DEDUCT
120 REM NEXT STATEMENT OF MAIN

-

600 SUB DEDUCT

700 END SUB

The CALL statement at line 110 passes control to the subprogram
DEDUCT, identified by the SUB statement. Processing continues
until the END SUB statement signals a return to the main program.
Execution continues at the first statement following the CALL
(statement 120).

The number and type of arguments used in the CALL statement must
agree with the number and tvpe of parameters in the corresponding
SUB statement. An array used as an argument must have the same
number of dimensions as the corresponding parameter in a SUB
statement.

Arguments that are numeric variables or character variables

(without substring qualifiers) are passed by reference, as
follows:

90 IBM BASIC Application Programming: Language Reference

CALL Statement

. Any reference to such a parameter in a subprogram is a
reference to the corresponding argument in the calling

program.

L Any assignment to such a parameter in a subprogram is an
assignment to the corresponding argument in the calling
program.

If an argument is an array element, its subscripts are evaluated
once, when the CALL statement is executed. The previously stated
rules apply.

If an argument is a constant or an expression that involves
numeric or character operators, it is evaluated once, when the
CALL statement is executed. (Note that a character substring is
considered such an expression.) The evaluated value is assigned
to a temporary location available only to the subprogram. In any
reference to the corresponding subprogram parameter, this
temporary value is used; in any assignment to the corresponding
subprogram parameter, this temporary location is used.

See also "Calling IBM BASIC Programs™ on page 80.

Predefined Subprogram Names

The CALL statement can be used to call programs written in other
languages (COBOL, FORTRAN, or PL/I), to request operations from
the Graphical Data Dislay Manager (GDDM), or to execute host
operating system commands (SYSTEM). This is done by specifying
special subprogram names in CALL statements. (See "CALL SYSTEM
Statement" on page 92, "CALL GDDM Statement™ on page 93, and "CALL
COBOL, FORTRAN or PLI Statement”™ on page 94.) The special
subprogram names are:

CLINK GDDM
COBOL PLINK
FLINK PLI
FORTRAN SYSTEM

They are keyvwords and, as distributed by IBM, they are also
reserved words.

If your organization has removed these names from the reserved
word list, you can use them as variable or array names or as line
labels. However, because of their keyword meanings, you cannot
use them in SUB statements to name subprograms. If used in the
CALL statement, they will always refer to the predefined
subprograms.

Statement Descriptions 91

CALL Statement

CALL SYSTEM Statement

Description

The CALL SYSTEM statement allows vou to execute a limited set of
system commands.

Format

CALL SYSTEM (string expression)

Where:

string expression
must evaluate to a character string that is a system command.

The commands available for use with CALL SYSTEM are limited to
those available for execution under program control. Sce
Figure 43 on page 317 for a list of the commands available. Be
careful when using these commands; some of them can adversely
affect your BASIC terminal session.

When the CALL SYSTEM statement is executed, the system command in
string expression is executed. If the command displays
information at the terminal, and the terminal is a display
terminal, the BASIC screen is temporarily replaced by the system

screen. See IBM BASIC Application Programming: Svystem Services
for methods of restoring the BASIC screen.
If an error occurs during command execution, an exception occurs.

See also "Calling the System™ on page 81.

92 IBM BASIC Application Programming: Language Reference

CALL GDDM Statement

Description

CALL Statement

The CALL GDDM statement is used to perform graphic operations.

Format

CALL GDDM (rcp,al,a2,...)

Where:

rcp
is a numeric expression whose rounded integer value
specifies the Request Control Parameter for the Graphic Data
Display Manager (GDDM).

al,a2,...
are arguments for the operation.

The allowable values and their corresponding operations are
defined in the GDDM User's Guide.

Additional details are given in IBM BASIC Application
Programming: System Services.

See also "Calling the Graphical Data Display Manager (GDDM)™ on
page 81 for a discussion of parameter passing rules.

Statement Descriptions 93

CALL Statement

CALL COBOL, FORTRAN or PLI Statement

Description

The CALL COBOL, FORTRAN, or PLI statements are interface routines
;?a§ establish linkage to routines written in COBOL, FORTRAN, or
71,

Format

CALL {COBOL|FORTRAN|PLI}
(string expression,al,a2,...)

Where:

string expression
evaluates to a character string that is the name of the
routine to be called

al,a2,...
are arguments that are converted as shown in Figure 23.

Because of differences in internal data representations, the
called programs must return values to IBM BASIC carefully. Only
integer and character parameters may be passed back to IBM BASIC
and they must conform to the characteristics of IBM BASIC, that
is, fullword integers and appropriate string lengths.

Entire arrays cannot be used as arguments in interlanguage calls.

Decimal values cannot be returned by the called program. Integer
and character values can be returned, but care must be taken with
character string lengths. When calling COBOL, the current length
(at the time of the call) of a character argument must be equal to
m in Figure 23. When calling PL/1, the current length must be less
than or equal to n in Figure 23 and, if a value is to be returned,
the maximum length defined for the BASIC variable must be equal to
n.

Before it can call COBOL, FORTRAN, or PL/I; IBM BASIC must be told
which programs are to be called in a CALL CLINK, CALL FLINK, or
CALL PLINK statement, respectively. Lﬁﬂ_ggglg;Agg;igggign
Programming: Svystem Services gives details.

See also "Calling Programs Written in Other Languages™ on page 80.

BASIC COBOL FORTRAN PL/I1

INTEGER PIC $9(9) USAGE INTEGER FIXED BIN (31)
comp-4

DECIMAL USAGE COMP-2 REAL%8 FLOAT DEC (16)

CHARACTER PIC X(m) USAGE not allowed CHAR(n)
DISPLAY VARYING

Figure 23. Type Conversions for Interlanguage Calls

94 IBM BASIC Application Programming: Language Reference

CASE STATEMENT

Description

CASE Statement

The CASE statement immediately precedes a group of statements (a
CASE block) within a SELECT block that are executed when the value
of the selection expression in the SELECT statement satisfies the
criteria of the CASE statement. The group of statements is
referred to as a CASE block.

Format

CASE selector [,selectorl...

Where:

selector
is one of the following:

constant
constant TO constant
relation constant
and:
constant
is a constant of the same type, either numeric or

character, as the selection expression for the
containing SELECT block.

relation
is one of the relational operators.

The CASE statement is used with the SELECT, CASE ELSE and END
SELECT statements to form a CASE block within a SELECT block.

CASE blocks include all statement lines between a CASE statement
and either the next CASE statement, CASE ELSE statement, or an END
SELECT statement.

The CASE statement may appear only within a SELECT block. It
defines the beginning of a CASE block and the selection criteria
for that block.

The constants and relations on a CASE statement define which CASE
block will be executed when the selection expression of the SELECT
statement is evaluated.

See also "SELECT Blocks™ on page 66.

Example
100 CASE <0, 50 TO 60, >100
specifies this CASE block will be selected for any numeric
values less than zero, for any value between 50 and 60,
inclusive, and for any value greater than 100.
200 CASE "MAY','JUNE',"JULY’

specifies this CASE block will be selected for a character
value of "MAY', "JUNE'; or *"JULY®

Statement Descriptions 95

CASE ELSE Statement
CASE ELSE STATEMENT
The CASE ELSE statement immediately precedes a group of

statements (a CASE block) within a SELECT block that are executed
if no other CASE blocks are selected.

Format

CASE ELSE

Description

The CASE ELSE statement defines the CASE block to be executed if
selection criteria for the other CASE blocks are not met.

The CASE ELSE statement is used with the SELECT, CASE, and END
SELECT statements to form SELECT blocks. These are discussed
under "Decision Structure Control Statements™ on page 64.

The CASE ELSE statement may only appear within a SELECT block. It
must begin the last CASE block in a SELECT block.

See also "SELECT Blocks™ on page 66.

96 IBM BASIC Application Programming: Language Reference

CASE ELSE Statement
CASE ELSE STATEMENT
The CASE ELSE statement immediately precedes a group of

statements (a CASE block) within a SELECT block that are executed
if no other CASE blocks are selected.

Format

CASE ELSE

pescription

The CASE ELSE statement defines the CASE block to be executed if
selection criteria for the other CASE blocks are not met.

The CASE ELSE statement is used with the SELECT, CASE, and END
SELECT statements to form SELECT blocks. These are discussed
under "Decision Structure Control Statements" on page 64.

The CASE ELSE statement may only appear within a SELECT block. It
must begin the last CASE block in a SELECT block.

See also "SELECT Blocks™ on page 66.

96 IBM BASIC Application Programming: Language Reference

CAUSE STATEMENT

Description

CAUSE Statement

The CAUSE statement generates an exception during processing.

Format

CAUSE numeric expression

Where:

numeric expression
is any numeric expression.

Exceptions are normally generated implicitly when error
conditions arise. The CAUSE statement may be used to explicitly
create an exception.

The expression is evaluated and, if decimal, rounded and
converted to integer. The result is used as the exception code.

Exception codes are listed in "Appendix A. Exception Codes"™ on
page 319. You are not limited to this set of codes. Any codes not
listed there are treated as ERROR category exceptions (see "ON
Condition Statement™ on page 203).

See also "Exception Handling Statements™ on page 86.

Example

-

200 ON ERROR GO TO 500

500 IF ERR = -7320 THEN FILE_NOT_FOUND
510 ON ERROR SYSTEM
520 CAUSE ERR

If, during program execution, an ERROR exception occurs, control
is transferred to line 500. At line 500 the exception for
file-not-found (-7320) is tested, and, if this is the ERROR
exception, control is transferred to the line with label
FILE_NOT_FOUND.

If some other exception has occurred, the CAUSE statement is

executed, forcing the system action for that exception to take
place. (The ERR intrinsic function returns the exception code.)

Statement Descriptions 97

CHAIN Statement
CHAIN STATEMENT

Description

Thae CHAIN statement halts processing of the program in which it
appears and starts a new main program.

Format

CHAIN char-exp [,FILES][,arg-listl]

Where:

char-exp
is a character expression naming the chained program (the

name of the file containing the new main program being
started).

arg-list
is a list of variable and/or array names separated by commas.

When a CHAIN statement is executed, the program in process is
terminated and the program named in the CHAIN statement is
invoked.

FILES KEYWORD: The optional keyword FILES may follow the chained
program name. If it is present, all currently open files remain
open, and at their current position. If the keyword FILES is not
present, all files in the chaining program are closed when the
CHAIN statement is executed.

ARGUMENT LIST: A list of data items may follow. The list defines
the names of the variables and arrays in the chaining program that
are to retain their current values when the chained program begins
executing., If the CHAIN statement is specified in a subprogram,
the argument list may not include the names of COMMON variables or
parameters. All other data except COMMON variables are destroyed
during the chaining operation.

This list is compared against the identifiers listed in USE
statements within the chained program. Only those identifiers
that match (have the same name, type, and dimensions) are passed
to the chained program.

GENERAL CONSIDERATIONS: Chaining allows separate programs to be

processed serially, without outside intervention. This procedure
is useful when segmenting large programs (that is, breaking them
into smaller, more manageable pieces).

A CHAIN statement may not be used in a function definition
(between DEF and FNEND statements).

See also "Program Segmentation Statements™ on page 76 "CHAIN
Statement,” and "USE Statement™ on page 257.

Example
Program X contains this statement
100 CHAIN "MYFILE",FILES,C,B,A
Program MYFILE contains this statement
200 USE A,B,C

98 IBM BASIC Application Programming: Language Reference

CHAIN Statement

This example keeps all of program X's currently open files open,
but stops processing program X and starts processing MYFILE. The
values of variables A, B, and C are passed to MYFILE from X. The
variables A, B, and C must be the same type in both program X and
program MYFILE. If variable A is typed integer in program X and

decimal in program MYFILE, an exception occurs.

Statement Descriptions 99

CLOSE Statement
CLOSE STATEMENT

Description

The CLOSE statement deactivates the specified file.

Format

CLOSE #fileref : [errl,errll

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255.

err
is one of the following:

EXIT line-ref
JOERR line-ref
EOF line-ref

line-ref
is a line number or line label

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The colon after fileref may be omitted if it is the last nonblank
character on the line.

Example
300 CLOSE #2

The CLOSE statement prevents further successful access to the
file until another OPEN statement is processed for that file. An
attempt to close a file that is not open results in an exception.

A CLOSE statement issued for a display format file which has an
incomplete print line waiting to be written (that is, the last
PRINT statement ended with a comma or semicolon) causes the print
line to be written before the file is closed.

The STOP, END, and CHAIN statements (without the keyword FILES)
automatically close all active files. Any resulting errors are
handled as if they were caused by a CLOSE statement.

FILEREF: Fileref is the reference number of the file to be closed.

An attempt to close fileref 0, the system device, is ignored and a
warning message is produced.

ERROR CONDITIONS: The two error conditions EOF (end of file) and
I0ERR (input/output error) may be recoverable if an err clause for
the condition is specified in the statement or on the referenced
EXIT statement. EOF occurs if the file cannot be closed because of
lack of space. IOERR occurs if a hardware malfunction or other
condition prevents closing of the file.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

100 IBM BASIC Application Programming: Language Reference

CLOSE Statement

Example

100 CLOSE #5: EXIT 200
200 EXIT IOERR 500, EOF 800

is functionally equivalent to:

100 CLOSE #5: IOERR 500, EOF 800
In this example, if the file associated with file reference number
5 cannot be closed because of a hardware malfunction, control is

transferred to line number 500. If it cannot be closed because of
a lack of space on the file, control passes to line number 800.

Statement Descriptions 101

COMMON Statement
COMMON STATEMENT

Description

The COMMON statement provides a means of sharing values between
either a main program and subprograms, or between main programs
when a CHAIN statement is executed.

Format

COMIMON] mif,m21]...

Where:

mli, m2 ...
may each be one of the following:

a
bIxL]

and where:

a

is a numeric variable or array declarator.
b

is a character variable or array declarator.
L

is an unsigned integer constant between 1 and 32,767,
giving the maximum length of the character variable.

array declarator
has the form c¢(d1il,d2[,d3[,d4l,d50,d6[,d7111111) where
c is a numeric or character identifier and each d is an
unsigned integer constant in the range 0 or 1
(depending upon OPTION BASE) to 32767.

The COMMON statement explicitly defines the number and extents of
array dimensions and the maximum string length of character
variables and array elements, and allocates these variables and
arrays in a common area. The array dimensions and string lengths
are specified as they are in the DIM statement.

In order to access the common area, a program unit must include a
COMMON statement. COMMON statements may appear anyuwhere within a
program unit. Items in common are allocated in the order of their
appearance. Variables and arrays that are defined in COMMON
statements may not also appear in DIM statements.

The common area is initialized once, upon entry to the first
program unit defining the common area; all numeric items are set
to zero and character variables are set to null. When the first
program unit using common is executed, the size of the common area
is determined; subsequent program units may specify a common area
of an equal or smaller size, but they may not extend the common
area.

Program units that share the common area must agree in their image
of the common area. This means that, although they need not have
the same names, the common variables and arrays must be declared
in the same order and with the same characteristics; variables
must be of the same type, character variables and array elements
must have the same maximum string length, and arrays must be of
the same total size.

102 IBM BASIC Application Programming: Language Reference

COMMON Statement

Arrays can be declared with different dimensions as long as the
total size remains the same. The sizes are checked when a common
array is passed between program units, but the array's dimensions
are left as they exist in the calling program. The converse is
also true; if a called subprogram redimensions a common array, the
new dimensions are returned to the caller.

The following examples illustrate correct and incorrect usage of
COMMON.

Example 1 (correct)

100 COM A,B%(3,3),C$(16)%10
110 COM D#(5)

creates a common area with the following four items: a decimal
variable named A, a 4-by-4% integer array named B%, a 17-element,
one-dimensional character array named C$ with each element having
a maximum length of 10 characters, a 6-element, one-dimensional
decimal array named D#.

Example 2 (incorrect)

100 COM A
110 A(3) = PI

causes an exception because common arrays must be explicitly
dimensioned.

Example 3 (incorrect)

100 COM A
110 DIM A(100)

causes an exception because arrays in common must be dimensioned
in the COMMON statement, not by a DIM statement.

Example % (incorrect)

100 COM A, C$(99)%3, B%(1,3),D
110 CALL JOE

120 END

130 SUB JOE

140 COM W,Y$(99)%6,X%(0,7)

150 X%(0,6)=59

160 END SUB

contains two errors. First, C$ and Y$ have different maximum
string lengths; second, line 150 does not agree with the
dimensions of the array at the time of the call. The following
changes result in a correct program:

105 MAT B%=B%(0,7)'redimension BX%
140 COM W,Y$(99)%3,X%(0,7)

or, you could code:

100 COM A,C$(99)%6,B%(1,3),D
145 MAT X%=X%(0,7)'redimension X%

Statement Descriptions 103

CONTINUE Statement
CONTINUE STATEMENT

Description

The CONTINUE statement provides for the return to normal
sequential statement execution after program flow has been
diverted to process an exception.
Assume that you wanted to keep track of the number of times in
your program that an attempt was made to divide a number by zero.
You did not want to halt the program on this error, just count the
occurrences.
Example

100 ON ZDIV GOTO 1000

500 BAL = A - B

510 DIVI = TOT/BAL

520 BAL = A + B

1000 COUNT = COUNT + 1

1010 CONTINUE
Statement 100 sets the condition being tested. If BAL is set to
zero at statement 500, execution of 510 triggers the ZDIV (divide
by zero) condition. Execution branches to statement 1000, adds 1
to COUNT, and returns to statement 520 because of the CONTINUE.
If an exception condition does not exist when CONTINUE is
executed, an exception occurs.
See also "Exception Handling Statements™ on page 84.

104 IBM BASIC Application Programming: Language Reference

The CONTINUE statement is used to resume execution at the
statement follouwing the statement causing an exception.

Format

CONTINUE

DATA STATEMENT

Description

DATA Statement

The DATA statement is used to create internal data files for
reference by READ statemaents.

Format

DATA [integer¥*litem [,[integer*]item]...

Where:

integer
is a nonzero, unsigned integer constant used to replicate
the immediately following item.

item
is either a constant (either numeric or character) or an
unquoted character string.

DATA statements are nonexecutable statements which are used to
create a data file internal to the program unit. They can appear
anywhere in the program unit, but all of the DATA statements

- create one internal file of values whose order is determined by

the line numbers of the statements.

Both character and numeric constants can be used in DATA
statements. A character constant may be specified without
surrounding quotation marks provided the constant does not start
with an integer immediately followed by an asterisk and provided
the constant contains no commas, no leading or trailing blanks,
and no leading or trailing quotes. A valid numeric constant may be
assigned to either a numeric or a character variable; however, if
a numeric constant is assigned to a character variable, it is
assigned as a string of characters.

Specifying the replication factor (for example, 10XMOBS) is
equivalent to repeating the variable MOB$ 10 consecutive times.

See also "READ Statement™ on page 235.

Example

100 DATA 3%10.0,"APPLES",2.5,PEARS,19
200 DATA PEACHES,2%24,2%BANANAS

The above DATA statements create an internal data file which, when
accessed by READ statements, provides the following sequence of
values:

10.0
10.0
10.0
APPLES
2.5
PEARS
19
PEACHES
246

264
BANANAS
BANANAS

Statementbbescriptions 105

DEBUG Statement
DEBUG STATEMENT

Description

Immediate Execution

The DEBUG statement activates debugging facilities in a program.

Format
DEBUG ON L[TO #filerefl]
or

DEBUG OFF

Where:

fileref
is a numeric expression, the rounded, integer value of which
must be in the range of 0 to 255, specifying the file for
trace listing.

Debugging facilities are provided by language statements in order
to allow test points to be built into a program.

The DEBUG statement allows you to turn the debugging facility ON
and OFF within each program—-unit. The DEBUG statement acts as an
ON/OFF access switch:s

. DEBUG ON causes debugging to become active, making the
statements BREAK and TRACE available for use.

. DEBUG OFF causes debugging to become inactive. In a program
unit, before the processing of a DEBUG statement, debugging
is inactive. TRACE and BREAK statements have no effect when
debugging is inactive.

The fileref in the optional TO clause overrides subsequent TO
clauses in TRACE statements.

See "Debugging Statements™ on page 86.

The DEBUG statement may be executed as an immediate statement. All
forms are accepted in the immediate mode. However, if the program
unit did not contain both a TRACE ON and a DEBUG ON statement
prior to the start of execution, the trace facility, when
activated by TRACE ON, monitors program flow only; it does not
show variable assignments.

See also "Immediate Statements™ on page 260.

106 IBM BASIC Application Programming: Language Reference

DECIMAL STATEMENT

Description

DECIMAL Statement

The DECIMAL statement specifies which identifiers are to be
assigned decimal type.

Format

DECIMAL [[identifier|(letter-list)]...]

Where:

identifier
may be a specific numeric identifier.

letter-list
is a list of letters and/or ranges of letters separated by
commas. A range of letters is represented by the first and
last letters in the range separated by a minus sign.

For compatibility with other BASICs, the reserved words DEFSNG
(define single) and DEFDBL (define double) may be used in place of
the keyword DECIMAL. The syntax and semantics of DEFSNG and DEFDBL
statements are the same as for DECIMAL statements.

The DECIMAL statement declares a specific identifier or any
identifier beginning with a specific letter as having decimal
tyvpe, or when used without a list, to specify the default type for
all identifiers not otherwise typed in a program unit. DECIMAL
statements may appear anyuwhere in a program unit, and affect
identifiers throughout the program unit. The identifiers affected
may be variable names, array names, or function names.

An identifier explicitly stated in a DECIMAL statement may end
with the self-typing character "#", but not with "%"™ or "$". If
the DECIMAL statement specifies a parenthetical list of letters,
all identifiers beginning with these letters are to be typed
decimal, unless they end in a contradictory self-typing character
"%" or "$Y, or unless they are explicitly declared in an INTEGER
statement by identifier or letter-list. The letter-list may be
specified as either single letters (A, B, D, J) or as a series of
consecutive letters, such as (A-J, T-2), indicating A through J
and T through Z.

If a DECIMAL statement specifies no identifiers and no

letter-list, the default type for all identifiers in the program
unit is set to decimal. This is the default.

Example 1

100 DECIMAL ABLE,(C-E,G,J,L),NANCY
specifies that identifiers ABLE and NANCY, as well as all
identifiers beginning with the letters C, D, E, G, J, and L are
typed decimal. If the program unit subsequently contains a

variable named DANDY, it would be assigned decimal type; however,
COLORS$ would be character and LOT% would be integer.

Example 2
100 DEFSNG ABLE,(C-E,G,J,L),NANCY

is equivalent to Example 1.

Statement Descriptions 107

DECIMAL Statement

Immediate Execution

You can use the DECIMAL statement to set the type of immediate

variables and arrays. The format and description are the same as
for a DECIMAL statement in a program.

See "Immediate Statements™ on page 260 and "Immediate Type and
Dimensions" on page 262 for the rules regarding the interaction
with other immediate statements and program statements.

108 IBM BASIC Application Programming: Language Reference

DEF STATEMENT

Description

DEF Statement

The DEF statement defines and names a user-written function.

Format

DEF name [(paraml,paraml...)] [=expressionl

Where:

name
is a scalar numeric or character name that gives a name to
the function and its input. If it is character (ends with $),
the maximum length may be defined by following the
identifier with an asterisk and an integer (between 1 and the
maximum allowed string length).

param
is a scalar numeric or character variable name that
specifies the function input. If it is character (ends with
$), the maximum length may be defined by following the
identifier with an asterisk and an integer.

expression
is an expression of the same type, numeric or character, as
name, used to complete a one-line function definition.

The DEF statement is a nonexecutable statement that defines user
functions. The user function definition may be contained in the
DEF statement itself by including the equal sign and expression.
Otherwise, the DEF statement marks the beginning of a group of
statements, ending with an FNEND statement, which constitutes the
function definition.

A user function is referred to in other statements within the same
program unit in a manner similar to the intrinsic functions. When
used in an executable statement, the function name is optionally
followed by a list of arguments, separated by commas and enclosed
in parentheses. This list of arguments must agree in number,
order, and type with the list of parameters in the DEF statement.

Example
100 DEF E_TO_X_SQUARED(X) = EXP(X%x%2)

defines the natural exponential of X squared, using the intrinsic
function EXP. The numeric variable X, enclosed in parentheses
after the function name, is called a parameter. You can have more
than one parameter, and the list of variables can contain both
numeric and character variables. Your function performs its
defined calculation on the actual values supplied for these
parameters. (The expression value substituted for each parameter
is called the argument.)

Example
220 ANS=E_To_X_SQUARED(5)
The value 5 is substituted for the parameter X.
A DEF statement or DEF/FNEND group of statements may appear

anviwhere in a program unit, except within another DEF/FNEND
group.

Statement Descriptions 109

DEF Statement

A user defined function may be executed only through a function
reference. Any other transfer to the DEF statement results in a
transfer to the statement following the function.

Transfer of control into or out of user defined functions, other
than through function references, is illegal.

Nonexecutable statements, such as COM, DATA, DECIMAL, DIM,
INTEGER, USE, EXIT, FORM and IMAGE, may appear within a
user-defined function. A user-defined function can refer to or
change values of any variable, except those used as parameters in
the function, in the program unit containing the function.

Undefined results may occur if:

1. A user defined function performs any input/output, and the
function reference has been involved in an input/output data
list,

2. A user defined function changes the value of a variable
appearing in the same statement as the function reference.

A function of a given name can be defined only once in a given
program unit.

When a defined function is referenced (that is, when an expression
involving the function is evaluated), the arguments in the
function reference, if any, are evaluated and their values are
assigned to the parameters in the argument list for the function
definition (that is, arguments are passed by value to functions).

A function definition may not refer, directly or indirectly, to
the function being defined; that is, recursive function
invocations are not permitted.

A parameter appearing in the parameter list of a function
definition is local to that function definition; that is, it is
distinct from any variable with the same name outside the function
definition.

SINGLE LINE FUNCTIONS: If a function is completely defined in a
DEF statement, the expression in that statement is evaluated next
and its value assigned as the value of the function.

MULTILINE FUNCTIONS: A function defined over many statements is
called a multiline function. A multiline function begins with the
word DEF, the function name, and any parameters, the same as
single-line functions.

Within a multiline function definition, an assignment to the
function name establishes the value returned when that function
evaluation is complete.

If the flow of control through a multiline function is such that
the function name is not assigned a value, the value returned is
the value returned by the previous invocation of the function. If
the function has not been previously invoked, zero or a null
string is returned for numeric or character functions,
respectively.

The FNEND statement indicates both the physical and logical end of
a multiline function.

If a function is defined in a DEF block (a multiline function),
the lines following the DEF line are processed in sequential order
until:

. Some other action is dictated by processing of a control
statement

. An exception occurs

. An FNEND or STOP statement is executed

110 IBM BASIC Application Programming: Language Reference

DEF Statement

Execution of a STOP statement in a DEF block ends processing of
the entire program. See "FNEND Statement™ on page 126.

Example

100 DEF POSITIVE_DIFFERENCE(X,Y)
110 IF X>Y THEN

120 POSITIVE_DIFFERENCE = X-Y
130 ELSE

140 POSITIVE_DIFFERENCE = Y-X
150 END IF

160 FNEND

Statement Descriptions 111

DELETE File Statement
DELETE FILE STATEMENT

The DELETE File statement causes deletion of a record from a keyved
or relative file.

Format

DELETE #fileref [,] pos: [errl,errl]...]

Where:

fileref
is a numeric expression that, when evaluated and rounded,

must be a positive integer nwithin the range 1 to 255.

pos is KEY [=]EQ] character expression
or
RECIORD] [=]|EQ] numeric expression
Note: fileref and pos may appear in any sequence.
err

is one of the following:
EXIT line-ref
NOREC line-ref
NOKEY line-ref
I0OERR line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The colon (after pos) may be omitted if it would be the last
character on the line.

Example
100 DELETE #1, REC=8:
and
100 DELETE #1, REC=8

are equivalent.

Description

The DELETE statement specifies that the record indicated by the
KEY or RECORD clause is to be deleted from a keyed or relative
file. After deletion, the file pointer is positioned immediately
after the deleted record.

112 IBM BASIC Application Programming: Language Reference

DELETE File Statement
ERROR CONDITIONS: Three error conditions may be recoverable if an
err clause for the condition is specified in the statement or on
the referenced EXIT statement:

1. The NOKEY condition occurs if a specified key does not exist
on a keyed file.

2. The NOREC condition occurs if a specified record does not
exist on a relative file

3. The IOERR condition occurs if a hardware malfunction or other
condition prevents deletion of the record.

The file must be opened with access OUTIN.

The error conditions interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

Example
100 DELETE #5, RECORD=12: NOREC 200

The record with relative record position 12 is to be deleted from
file #5. If no such record exists, control is transferred to line
number 200.

Statement Descriptions 113

DIM Statement
DIM STATEMENT

The DIM statement specifies the size of arrays and the length of
character variables and array elements.

Format

DIM mll,m21...

Where:

Each m may be one of the following:

a
hIxL]
and:
a
is a numeric array declarator.
b
is a character variable or character array declarator.
L

is an unsigned integer constant between one and the
maximum string size.

array declarator
has the form:

c(dil,d2l,d30,d4l,d50,d6[,d7111111)
where:
. Each € is a numeric or character identifier

. Each d is an unsigned integer constant in the
range 0 or 1 (depending upon OPTION BASE) to
32767.

Description

The DIM statement explicitly defines the number and extents of
array dimensions and the maximum string length of character
variables and array elements.

Arrays may be defined with from one to seven dimensions, and each
dimension may have a value in the range 0 to 32767 if OPTION BASE
0 is in effect, or 1 to 32767 if OPTION BASE 1 is in effect.

The length of a character variable or array as specified in a DIM
statement is the maximum length which that variable or array
element may assume within the program unit. If no length is
specified in a DIM statement, a character variable or array
element has a default maximum length determined by your system
administrator. (The IBM-supplied default is 18.)

DIM statements may be placed anywhere in a program unit. They need
not appear before use of the arrays and variables they define.
Variables and arrays defined in DIM statements may not also appear
in COMMON statements. :

114 IBM BASIC Application Programming: Language Reference

DIM Statement

Example

100 DIM A$x%72,B$(3,3),C$(200)%5
110 DIM X%(100)

A$ is a character variable with a maximum length of 72.

BS$ is a 4-by-4 character array with each element having a maximum
default length.

C$ is a character array having 201 elements, each with a maximum
length of 5 (OPTION BASE 0 is in effect.)

X% is an integer array with 101 elements.

Immediate Execution

DIM can be used in immediate mode to establish the dimensions and
maximum string lengths of immediate arrays and character
variables. The format and description of an immediate DIM
statement are the same as for a DIM statement in a program.

See "Immediate Statements™ on page 260 and "Variables and Arrays
and Immediate Statements™ on page 261 for the rules regarding the
interaction with other immediate statements and program
statements.

Statement Descriptions 115

DO Statement
DO STATEMENT

Description

The DO statement initiates the execution of a set of statements
that may be processed zero or more times.

Format

DO [{UNTIL|WHILE} logical expressionl

Where:

logical expression
can be any logical expression as documented in "Logical
Expressions™ on page 31.

The DO statement is used in conjunction with the LOOP statement to
define a loop.

If execution of a program reaches a D0 statement, either as
initial entry to the loop or when iterating the loop body, the
next statement is executed if there is no WHILE or UNTIL clause.
If ?itzeg of these clauses are present, the logical expression is
evaluated.

For a WHILE clause, if the expression is true, the next statement
is executed, if the expression is false, the statement
immediately following the associated LOOP statement is executed
(the loop is skipped).

For an UNTIL clause, if the expression is false the next statement
is executed, if the expression is true, the statement immediately
following the LOOP statement is executed (the loop is skipped).

The values in the expression associated with a D0 statement can be
set outside the loop and changed within the loop. The expression
is reevaluated each time the loop is entered or processed. See
"Loop Control Statements™ on page 62, "LOOP Statement™ on page
177, and "EXIT IF Statement"™ on page 124.

Example

100 LET INC = 9.0

120 DO UNTIL INC = 27.0

130 LET SQYD = 12.0%INC/9.0
140 PRINT SQYD,INC

150 LET INC= INC+1.0

160 LOOP

170 A = B+C

In this example, statement 100 sets the initial value of INC to.
9.0. The DO clause is evaluated at 120, and it specifies that the
statements within the DO loop (130 through 150) are executed until
the value in INC equals 27.0. When INC equals 27.0, statement 170
is executed.

116 IBRM BASIC Application Programming: Language Reference

ELSE Statement

ELSE STATEMENT

The ELSE statement specifies the beginning of the ELSE block
portion of an IF block.

Format

ELSE

Description
The ELSE statement is an optional part of an IF block.

The ELSE statement is followed by a group of statements referred
to as an ELSE block which are executed if the logical expression

in an IF line is false.
The ELSE block is terminated by the END IF statement.

The ELSE statement is also discussed under "IF Blocks™ on page 64
and "Block IF Statement™ on page 150.

Statement Descriptions 117

END Statement
END STATEMENT

Description

The END statement indicates both the physical and logical end of
the main program.

Format

END [numeric expression]

Where:

numeric expression
can be any numeric expression

When an END statement is encountered, all open files are closed
and the current program is ended.

The optional expression may be any numeric expression. Its
purpose is to return a value to the operating environment when the
program finishes running in the batch environment. The rounded
integer value of the expression is returned.

In the interactive environment, the value of numeric expression
is displayed as part of the ending message.

If the main program is missing an END statement and the end of the
workspace is encountered, an error message is given and the END
statement is assumed. The END statement is also assumed if a SUB
statement is encountered during the processing of the main
program.

118 IBM BASIC Application Programming: Language Reference

END IF STATEMENT

Description

END IF Statement

The END IF statement signifies the end of an IF block.

Format

END IF

The statements following END IF are executed after the associated
THEN block or ELSE block (if any) is executed.

The END IF statement is also discussed under "IF Blocks™ on page
64 and "Block IF Statement"™ on page 150.

Statement Descriptions 119

END SELECT Statement
END SELECT STATEMENT
The END SELECT statement signifies the end of a SELECT block.

Format

END SELECT

Description

The END SELECT statement is used with the SELECT, CASE, and CASE
ELSE statements to terminate a SELECT block.

The END SELECT statement is also discussed under "SELECT Blocks"
on page 66 and "SELECT Statement™ on page 252.

120 IBM BASIC Application Programming: Language Reference

END SUB Statement

END SUB STATEMENT
The END SUB statement marks the physical end of a subprogranm.

Format

END SUB

Description

If an END SUB statement is processed, it acts as a SUBEXIT
statement and stops the subprogram, returning control to the

caller.

The END SUB statement is also discussed under "Subprogram
Statements™ on page 78 and "SUB Statement™ on page 254%.

Statement Descriptions 121

EXIT statement
EXIT STATEMENT

Description

The EXIT statement specifies where control is to be transferred if
a particular condition occurs during the execution of an
input/Zoutput statement.

Format

EXIT condition line-ref [,condition line-refl] ...

Where:

condition
is CONV, DUPKEY, DUPREC, ENDPAGE, ECF, IOERR, NOKEY, NOREC,
or SOFLOW. A single condition may not appear more than once.

line-ref
is a line number or line label.

The EXIT statement is a nonexecutable statement used in
conjunction with input/output statements. The EXIT statement
specifies a line number or line label to which control is
transferred, if an error condition of the type specified occurs in
the input/output statement referring to the EXIT statement.

EXIT statements interact with ON condition statements as
described in "Exception Handling in I/0 Statements™ on page 84.

Using an input/output statement with error clauses other than
EXIT is equivalent to using the statement with an EXIT error
clause and its corresponding EXIT statement.

Example

100 GET #5 : A$ EOF 500,I0ERR 600,&
& CONV 700,SOFLOW 800

or

200 GET #5 : A$ EXIT 300
300 EXIT EOF 500,I0ERR 600,CONV 700,&
& SOFLOW 800

In the above example, the two GET statements are functionally
equivalent. During execution of both GET statements, if an error
condition occurs, control is passed to the same locations.

The following list shows conditions for which tests may be made:
condition Description

CONV The field cannot be converted to the type of variable
speci fied.

An attempt is made to write numeric data using either
a C or V FORM specification.

A FORM/IMAGE specification refers to a location
outside the record.

A data list value cannot be converted to the format
defined in an associated FORM statement.

122 IBM BASIC Application Programming: Language Reference

EXIT Statement
EXIT STATEMENT
The EXIT statement specifies where control is to be transferred if

a particular condition occurs during the execution of an
inputZoutput statement.

Format

EXIT condition line-ref [,condition line-refl] ...

Where:

condition
is CONV, DUPKEY, DUPREC, ENDPAGE, ECF, IOERR, NOKEY, NOREC,
or SOFLOW. A single condition may not appear more than once.

lina-ref
is a line number or line label.

Description

The EXIT statement is a nonexecutable statement used in
conjunction with input/output statements. The EXIT statement
specifies a line number or line label to which control is
transferred, if an error condition of the type specified occurs in
the input/output statement referring to the EXIT statement.

EXIT statements interact with ON condition statements as
described in "Exception Handling in I70 Statements™ on page 864.

Using an input/output statement with error clauses other than

EXIT is equivalent to using the statement with an EXIT error
clause and its corresponding EXIT statement.

Example

100 GET #5 : A$ EOF 500,I0ERR 600,&
& CONV 700,SOFLOW 800

or

200 GET #5 : A$ EXIT 300

300 EXIT EOF 500,I0ERR 600,CONV 700,&

& SOFLOW 800

In the above example, the two GET statements are functionally
equivalent. During execution of both GET statements, if an error
condition occurs, control is passed to the same locations.
The following list shows conditions for which tests may be made:
condition Description

CONV The field cannot be converted to the type of variable
specified.

An attempt is made to write numeric data using either
a C or V FORM specification.

A FORM/IMAGE specification refers to a location
outside the record.

A data list value cannot be converted to the format
defined in an associated FORM statement.

122 IBM BASIC Application Programming: Language Reference

DUPKEY

DUPREC

ENDPAGE

EQOF

I0ERR

NOKEY

NOREC

PAGEOFLON
SOFLOH

EXIT Statement

There are not enough values in the record for the data
list items.

There is not enough room in the record to write all of
the data list items, and SKIP REST is not specified.

Notae: The previous three CONV conditions are for
record-oriented nonstream input/output only.

A record already exists on the referenced file with
the same key as the one specified for the current
record.

A record already exists on the referenced file with
the same record number as the one specified for the
current record.

A PRINT or PRINT File statement has attempted to
start a new line beyond the limits specified for the
current page.

(A PRINT or PRINT File statement prints as many lines
on a page as specified by the BOTTOM parameter in a
MARGIN or MARGIN File statement (or, for a PRINT File
statement, a default number of lines).)

See also "MARGIN Statement™ on page 178 and "ON
Condition Statement™ on page 203.

There is no more data in a stream-oriented file to
satisfy an INPUT or GET statement.

There are no more records in a record-oriented file
to satisfy an INPUT, LINE INPUT, or READ statement.

There is insufficient room in a file to accommodate a
PUT, WRITE, PRINT, or REWRITE statement.

A CLOSE statement cannot be completed because of lack
of space.

A hardware malfunction prevents record access and
could prevent recognition of other exception
conditions.

Any input/output error not covered by one of the
other input/output conditions.

A format item other than C, V, NC, or PIC in a FORM
statement is referred to by a PRINT or PRINT File
statement.

No record exists in the referenced file with the key
specified.

No record exists in the referenced file with the
record number specified.

(See ENDPAGE.)

There are not enough characters in the receiving
variable or image to contain the data received, or
not enough characters in the definition of the output
item to contain all of the characters specified by
the output list-item.

Construction of a character string exceeds the
maximum allowed.

For a further discussion of the EXIT statement and its
relationship to program exceptions, see "Exception Handling
Statements"™ on page 84%.

Statement Descriptions 123

EXIT IF Statement
EXIT IF STATEMENT

Description

The EXIT IF statement can be used within a DO or FOR loop to
transfer control to the statement immediately following the
associated LOOP or NEXT statement when the EXIT IF clause is true.

Format

EXIT IF logical expression

Where:
logical expression

can be any logical expression as described in "Logical
Expressions" on page 31.

The EXIT IF statement may appear within either & DO or FOR loop.

If an EXIT IF statement is reached during normal processing, the
logical expression is evaluated:

. If it is false, processing proceeds sequentially.
. If it is true, execution branches to the statement

immediately following the innermost loop in which the EXIT IF
occurs.

Example 1
100 DO WHILE...

150 EXIT IF A=0

180 LOOP
190 PRINT...

At line 150, the program goes to line 190 if A is equal to 0. As
long as A is not equal to 0 and the WHILE condition is true, lines
100-180 are executed.

Example 2

100 FOR A = ...
120 FOR B= ...

190 EXIT IF X=Y
200 FOR C= ...

230 NEXT C

.

260 NEXT B
265 PRINT X,Y,A,B
270 NEXT A

124 IBM BASIC Application Programming: Language Reference

EXIT IF Statement

At line 190 (within the FOR/NEXT loop B) the program goes to
statement 265 if X is equal to Y. As long as X is not equal to Y,
loop C (lines 200-230) is executed for each execution of loop B
(lines 120-260).

When X is found equal to Y, processing bypasses loop C and
processes the first statement after the NEXT statement of loop B.
(In this case, PRINT statement line 265.)

Statement Descriptions 125

FNEND Statement
FNEND STATEMENT

The FNEND statement indicates both the physical and logical end of
a multiline user-defined function.

Format

FNEND

Description
The FNEND statement marks the physical and logical end of a
multiline user-defined function. To exit from a multiline
function, the FNEND statement must be executed.
The FNEND statement must be preceded by a DEF statement.

See "User-Defined Function Statements™ on page 77 and "DEF
Statement” on page 109.

126 IBM BASIC Application Programming: Language Reference

FOR STATEMENT

Description

FOR Statement

The FOR statement initiates a FOR/NEXT count-condition loop.

Format

FOR var=expressionl TO expression2 [STEP expression3]

Where:

var
is a numeric variable.

expressionl, expression2, expression3
are numeric expressions.

The FOR and NEXT statements form a FOR/NEXT count-condition loop.
The FOR statement is the first statement in the loop; the NEXT
statement is the last statement in the loop.

The FOR statement must be matched with a NEXT statement.

The FOR and NEXT statements are paired, with the same controlling
numeric variable occurring in both statements. The NEXT statement
must follow the paired FOR statement in line number sequence.

The three numeric expressions are evaluated only during the
initial processing of the FOR statement including, if necessary,
conversion to the type of the control variable according to the
rules for numeric conversion. The three expressions are not
affected by any statement within the FOR loop.

The numeric variable, var, is the control variable and is modified
within the FOR loop, as follows:

1. When the loop is first processed, the control variable is set
to the initial value, expressionl.

2. If expressionl, the initial value, is greater than (or, for
negative increments, less than) the expression following the
T0 (expression2) at evaluation time, the loop is never
processed and the value of the control variable is set to the
initial value (expl).

3. If expressionl, the initial value, is less than or equal to
expression2, the expression following T0, the statements in
the loop are processed, and the expression following STEP
(expression3) is added to the control variable.

If STEP expressiond is omitted, the increment is
automatically set to 1.

(The optional STEP parameter, STEP expression3, bypasses
unnecessary values by supplying an increment other than 1.)

4. This process continues until the control variable is greater
than (or, for negative increments, less than) the expression
following TO (expression2).

5. Control now passes to the first statement following the NEXT
statement.

It is possible to transfer control out of a FOR/NEXT loop. In this
case, the control variable retains its value at the time of the

Statement Descriptions 127

FOR Statement

transfer until either reset outside of the loop or reset by
reentry through the FOR statement.

Except for the CONTINUE, RETRY, and RETURN statements, control
cannot enter a loop unless it enters at the initial FOR statement.

FOR/NEXT loops are also described in "Loop Control Statements™ on

page 62.

Example
110 FOR FEET=9.0 TO 48.0 STEP 3
120 LET YARDS=12.0%FEET/9.0

130 PRINT YARDS,FEET
148 NEXT FEET
150 END

This loop is executed fourteen times. During the first iteration,
FEET is 9, during the second iteration, FEET is 12, etc. After the
last iteration, when another iteration would increase FEET beyond
48, the loop is exited.

128 IBM BASIC Application Programming: Language Reference

FORM STATEMENT

FORM Statement

The FORM statement defines the exact appearance of both input and
output data.

Format

FORM item [,item]...

Where:

item
can be literal, or control specification, or [repeat¥*ldata
form.

And where:

literal
is a quoted character string.

control specification
is one of the following:

Xlel
skip e positions in record or on line

Poslel
position to location e in record or on line

SKIPIel
skip @ number of lines

Where:

e
is a numeric expression evaluating to a
rounded integer.

[NEHIPAGE
position to top of new page

repeat
is an unsigned, nonzero integer constant or
variable, used as a replication factor with a data
form.

data form
is one of the data forms shown in Figure 24 on page 130.

Statement Descriptions 129

FORM Statement

Data Form Meaning
PIC(sIsl...[===[~...11[tr}1) Picture of data item
CcIiwl Character data
VIK] Character data with trailing blanks removed on
input
N wi.dl] Conversion of numeric data to and from character
data
Glul.dl] Represents either character data or conversion of
numeric data to and from character data, depending
upon the type of the data, character or numeric
NC wl.dl} Conversion of numeric data to zoned decimal format
on output, and conversion of either zoned decimal
or numeric characters on input
2D wl.dl Conversion of zoned decimal data for both input
and output
Blul Fixed-point binary
S Short-form floating-point binary (32 bits)
L Long-form floating-point binary (64 bits)
PD wl.dl Packed decimal
ND Interhal floating-point decimal
NI Internal integer
Where:
W
is an unsigned, nonzero integer constant, which may be preceded with
blanks.
d
is an unsigned, integer constant.
S) :
is a digit specifier (&%, Z, %, $, +, or =), or an insertion character (a
comma (,), solidus (/), blank (B), or decimal point (.).
is an exponent specifier, where three or more (-) characters are shown.
(Can also be specified as the circumflex character.)
iw
is a trailing character, that is, a trailing plus (+), trailing minus (-),
trailing credit (CR), or either form of trailing debit (DB or DR).

Figure 24. FORM Statement Data Form Codes

Description

130

The FORM statement is used in conjunction with the PRINT, PRINT
file, READ, REREAD, WRITE, and REWRITE statements. These
statements may reference the line number or line label of a FORM
statement, or a character expression which evaluates to a FORM
statement.

IBM BASIC Application Programming: Language Reference

FORM Statement

The FORM can specify literal values, the format of character and
numeric data (data form specifications), and the positioning of
data (control specifications), all of which describe the
components of a record or line of data.

Each data item of the input or output list of the input/output
statement is matched against a corresponding data form
specification in the FORM statement. If there are more list items
than data form specifications, the FORM is reused from its
beginning until the list is exhausted; an excess of data form
specifications over list items is ignored.

Literal specifications

If a quoted character string appears in a FORM associated with a
READ or REREAD statement, it is treated as if it were an XInl
control specification, where the value of the n is equal to the
number of characters in the character string, excluding the
surrounding quotation marks. The effect is the skipping of n
positions of the input record.

Example

110 FORM "INPUT",N5.2,C5
120 READ #5 USING 110: NUM#,CHARS

when the READ file statement is executed, 5 characters of the
input data are skipped, and data transfer begins with NUM#.

If a quoted character string appears in a FORM associated with a
PRINT, PRINT File, WRITE, or REWRITE statement, it is treated as
if it were a Clwl data form specification, where w is equal to the
number of characters in the character string (excluding the
surrounding quotes). The effect is the transmission of w
characters to the output record.

Example

110 FORM "OUTPUT",N5.2,C5
120 WRITE #5 USING 110: NUM#,CHARS

when the WRITE file statement is executed, the characters OUTPUT
are sentsto the output device, followed by the contents of NUM#
and CHARS.

Control specifications

Control specifications set the position within a record or line
(P0OS and X), and control line skipping (SKIP and PAGE).

The control specifications X, P0S, and SKIP are optionally
followed by a nhumeric parameter. When these control
specifications are used in a FORM statement, the parameter may be
any numeric expression. However, when an input/output statement
uses a character expression as a FORM (the USING clause refers to
a character expression rather than a FORM statement), the
parameter for all control specifications within the character
string must be numeric constants.

X The X [el control specification indicates how many
positions are to be passed over in the line or record up to
the next value.

If X is specified in a FORM statement, it must be followed
by a space; however, if a FORM is contained in a character
expression, the space after the X may be omitted.

e is a numeric expression evaluating to a rounded

expression greater than zero. It may not refer to
user—-defined functions.

Statement Descriptions 131

FORM Statement

POS

SKIP

For READ, REREAD, WRITE, and REWRITE operations, the value
of e must be between 1 and the defined record length. If e
is less than 1 or is omitted, 1 is assumed; if e is greater
than the record length, a CONV error occurs.

For PRINT and PRINT File operations, if the resultant
position is greater than the right margin value, the
current line or record is assumed to be complete and is
transmitted to the output device or file, resetting the
position to the left margin of the next line or record.

Example

300 PRINT #3 USING 400 : A$,BS
400 FORM €10,X 5,Cl10

The value of A$ will start 9 characters to the right of the
left margin. The value of B$ will start 15 characters to the
right of the left margin.

The P0S [el] control specification indicates the position in
the record or line for the next value.

e is a numeric expression evaluating to a rounded
expression greater than zero. It may not refer to
user—-defined function.

If POS is specified in a FORM statement, it must be followed
by a space; however, if a FORM is contained in a character
expression, the space after the P0S may be omitted.

For READ, REREAD, WRITE, and REWRITE operations, the value
of e must be between 1 and the defined record length. If e
is less than 1 or is omitted, 1 is assumed; if e is greater
than the record length, a CONV error occurs.

For PRINT and PRINT File operations, the value of e must be
between the left and right margin values (see the "MARGIN
Statement™ on page 178). If e is less than the left margin
value, the left margin value is assumed; if e is greater
than the right margin value, the current line or record is
assumed to be complete and is transmitted to the output
device or file, resetting the position to the left margin of
the next line or record.

Example

100 WRITE #10 USING 200 : A$,B%
200 FORM C15,P0S 24,N6

The value of AS will be written in positions 1-15; B% will
be written in positions 24-29.

The SKIP [el] control specification indicates how many lines
are to be skipped before the next value is printed; this
option is valid only with the PRINT or PRINT File statement.
The numeric expression (e) may not refer to user-defined
functions.

If SKIP is specified in a FORM statement, it must be
followed by a space; however, if a FORM is contained in a
character expression, the space after the SKIP may be
omitted.

If e is less than 0 or is omitted, the value 1 is assumed.

If e is 0, the action taken depends upon the file being
printed:

. If the file contains a carriage control character at
the beginning of each record (that is, the file is
opened as DEVICE PRINTER or DEVICE 3800, see "OPEN
Statement™ on page 206), the current image of the

132 IBM BASIC Application Programming: Language Reference

FORM Statement

record is written with no line advance. The next data to
be printed begins a new record which prints over the
previous record.

. If the file does not have carriage control characters
or if the option is to PRINT to the terminal, SKIP 0 is
handled the same as P0S 1; that is, characters are
overlaid in the current record but the effect is
replacement rather than overprinting.

When e is greater than 0, a current image of the line or
record is created, and e-1 blank lines or records are
generated. The position of the next line or record is set to
the left margin value.

If e is greater than the remaining lines on the page, then e
is taken as the number of lines remaining on the page. This
causes blank lines to be printed until an ENDPAGE condition
is generated (see "MARGIN Statement™ on page 178 and "ON
Condition Statement™ on page 203).

Example

100 PRINT USING 200 : A$,B%
200 FORM C15,SKIP 7,N3

Six blank lines will appear between the value of AS$ and the
value of BX%.

PAGE The PAGE control specification indicates that the next
value is to be written on a new page positioned to the left
margin; this option is only valid in conjunction with PRINT
or PRINT File statements.

If PAGE or NEWPAGE is specified and the file is not opened
as DEVICE PRINTER or DEVICE 3800 (see "OPEN Statement™ on
page 206), an exception is generated. The SYSTEM action for
the exception is a warning message.

When used with a PRINT statement to a display terminal, PAGE
clears the screen.

PAGE also resets the internal line counter used to control
the top and bottom margins, see "MARGIN Statement™ on page
178.

Example

100 PRINT #5 USING 200 : AS$,BX%
200 FORM C10,PAGE,N5

The values of BX% will appear at the top of the page
following the page on which A$ appears.

Data Form Specifications

Data form specifications indicate the formats in which character
and numeric input data items exist, and the formats in which
character and numeric output data items are to be created.

Data form specifications may be preceded by a repeat count, or
replication factor. Within a FORM statement, the replication
factor can be either an integer constant or an integer variable.
But;, within FORM specifications that are character strings
specified in the USING clause of input/output statements, the
replications factors must be integer constants only.

Only the Clwl, VIwl, Nwl.dl, and PIC data form specifications can

be used in FORM statements associated with PRINT and PRINT File
statements.

Statement Descriptions 133

FORM Statement

PIC

The PIC data form specification may only be used on FORM
statements associated with the output statements PRINT,
PRINT File, WRITE, and REWRITE.

PIC identifies the placement of a character or numeric
output list item in an output record. The keyword PIC is
followed by a field of characters that indicate various
types of formatting as described below; the field of
characters is enclosed in parentheses and is referred to
as a picture field.

For character data. the contents of the picture field
are ignored and only its length is used. If the data
value has the same length as the picture field, the data
value is moved to the output record, exactly as it
appears. If the data value is shorter than the picture
field, the character string is padded with blanks on the
right. If the character value is longer than the picture
field, a string overflow exception occurs.

For numeric data, the picture field specifies both
length and the format for its value. The specification
consists of digit specifiers, insertion characters, and
exponent specifiers.

The digit specifiers and their functions are as follows
('b' in output implies a space):

Specifies a data position where a digit must always
appear.

Value Output
100 FORM PIC (###&8) 63 00063

Z Causes zero suppression; that is, a leading zero in
the associated data position is replaced by a blank.

Value Output
110 FORM PIC (ZZZ.&#) 24.6 b24.60

When zero suppression is in effect, at least one
decimal position to the left of the decimal place is
printed, unless the entire field is zero. In that
case, the zero to the left of the decimal point is
omitted.

% Causes zero suppression; that is, a leading zero in
the associated position is replaced by an asterisk.

Value Output
120 FORM PIC (xxx§#) 243 *%2643
-6 -%%06

Note: The use of both Z and ¥ in a single edit string
is not valid.

$ Specifies each data position that can potentially be
occupied by a floating currency sign (that is, a
currency sign immediately to the left of the first
significant digit).

If a single $ is used in the PIC, the $ appears in the
leftmost position of the field. If more than one $ is
used, the $ appears, justified as far to the right as
possible, where a $ appeared, and where no
significant digit is present.

Value Output
130 FORM PIC ($$$#8) 243 b$243
-6 bb$-6

134 IBM BASIC Application Programming: Language Reference

FORM Statement

Note: Use of a § digit specifier has the effect of
suppressing nonsignificant leading zeros

+ Specifies each data position where a floating
high-order sign may appear. The use of this character
guarantees the appearance of either a plus sign or a
minus sign in the printed field.

Value Output
140 FORM PIC (+++§#%#) 243 b+243
-6 bb-06

If a single + is used in the PIC, the sign of the
numeric value appears in the leftmost position of the
field. If more than one + sign is used, the sign of
the numeric value appears, justified as far to the
right as possible, wherever a plus sign appeared, and
where no significant digit is present.

Note: Use of a + digit specifier has the effect of
suppressing nonsignificant leading zeros

- Which indicates each data position where a floating
high-order minus sign may appear if the field is
negative.

Value Qutput
150 FORM PIC (---##%) 243 bb243
-6 bb-06

If a single - is used in the PIC, and the value is
negative, the sign of the numeric value appears in
the leftmost position of the field. If more than one
minus sign is used in the PIC, the sign of the numeric
value appears, justified as far to the right as
possible, wherever a minus sign appeared, and where
no significant digit is present.

Note: Use of a - digit specifier has the effect of
suppressing nonsignificant leading zeros.

If the picture field does not contain at least one sign
position (leading or trailing), and if the value of the
expression is negative, and if the field is large enough
to contain a minus sign, a leading minus sign is printed.

Insertion characters are characters inserted into the
output at the position they are specified in the PIC
clause. Insertion characters may be either conditional
or unconditional.

The unconditional insertion character is:

B the blank, which always appears when
specified.

The conditional insertion characters are:

’ the comma

/7 the solidus or slash

. the decimal point

CR the trailing credit symbol

DB or DR the trailing debit symbol
+ or - the trailing sign symbols
The trailing symbols (CR, DB, PR, trailing +, trailing

-) are replaced by either a blank or an asterisk if the
conditions for their appearance are not met. Only one

Statement Descriptions 135

FORM Statement

trai

ling symbol representation is permitted per PIC

clause, and then only if there is no leading + or -.

The
are:

rules for the appearance of the insertion characters

A comma (,) or a solidus (/) is not allowed as the
first character in the PIC clause. (The condition
for their appearance can never be met).

If zero suppression is not in effect, or.if a
significant digit is found to their left, the comma
(,) and solidus (/) always appear.

If zero suppression is in effect because of a
preceding conditional digit specifier (Z, %, $, +,
=), then if no significant digit exists to their
left, the following characters do not appear:

comma (,)
solidus or slash(/)
trailing signs (+ or =)

They are replaced, instead, by either a blank or (if
the preceding digit specifier is an asterisk) an
asterisk.

In this case, the trailing plus sign always causes
the appearance of either a positive or a negative
sign, while the other trailing symbols (minus sign,
CR symbol, DB or DR symbol), appear only when the
resulting value is negative.

The decimal point (.) always appears in its
associated position except in the following
circumstance: zero suppression is specified for
every digit position (both to the left and right of
the decimal point) and the value of the numeric
field is zero. In this case, the decimal point is
replaced by the appropriate zero suppression
character.

An exponent specifier appears in the three or more

low-

order characters of a PIC string.

Three or more occurrences of - specify the presence in
the corresponding print positions of the following
sequence:

1.
2.
3.

The letter E
The exponent sign (+ or =)

One or more digits representing the value of the
exponent

Zero suppression is effectively turned off by an
exponent specifier. A decimal point specified previously
will therefore always appear in a field defined with an
exponent specifier.

PIC Clause Examples

The following examples show some of the different types
of conversion specifications that can be used with the

PIC
the

clause. Blanks in the result field are shown here as
lower case "b".

136 IBM BASIC Application Programming: Language Reference

ciul

viul

Integer Format:

-10
20289
=123
123
123

specification

PICCHEHER)
PIC(ZZZZ)
PIC(%x%%x%)
PIC($$$%)
PIC($$$$$8$6$)
PICC##/788/788)
PIC(ZZZZDB)
PIC(++++2Z2227)
PIC(+22Z22272)

Fixed Point Format:

Value

12.145

1000
=77

0000

specification

PIC(2Z2Z. #%)
PICC*%%, %%, #§)
PICCRARE. #3R)
PICC*¥%x %x)

Floating Point Format:

Value

5
-255.555

Character String:

Value

ABC
ABC
Xyz

specification

PIC(2ZZ.ZZ~~--)
PIC(22.222~=~)

specification

PICCHEREN)
PI1C(ZZ2.222)
PICCH#&#)

FORM Statement

Result

0010
bbl0
%x10
b$10
bbbb$-10
02702789
b123DB
bbb+b123
+bbbbl123

Result

bl2.15
%%1,000.00
-077.000
33 3 % % %

Result

500.00E-02
-2.556E+2

Result

ABCbb
ABCbbb
XYz

This data form specification deals with w positions of

character data.

On input, the next w characters from a record are moved
to a corresponding character variable in the input list.
If the variable's maximum length, n, is less than w, a
string overflow occurs. If n is greater than w, the
variable's length becomes the length of the character
string transmitted. The value of w defaults to 1.

On output, the next w characters in an output record will
be the result of the evaluation of a character.
expression in the output list. If the length (n) of the
expression is less than w, then w minus n blanks are
added to the right of the expression's value. If n is
greater than w, a string overflow occurs. The value of w

defaults to 1.

This data form specification is valid for READ, REREAD,
PRINT, PRINT File, WRITE, and REWRITE statements.

On input, the next w characters from the record are
inspected and all characters (up to and including the
last nonblank character in the field) are moved to a
corresponding character variable in an input list (that
is, trailing blanks are removed).

If the variable's maximum length, n, is less than the
number of characters moved, p, a string overflow occurs.

If n is greater than p, the variable's length becomes p.

Statement Descriptions 137

FORM Statement

N wl.dl

GIul.dl]

The value of w defaults to 1.

For output, the V specification acts exactly as the C
specification.

The data form specification is valid for READ, REREAD,
PRINT, PRINT File, WRITE, and REWRITE statements.

On input, the specified number of positions of the
record contain a numeric value in character form which
is to be moved to a corresponding numeric variable in the
input list. The value is converted to IBM BASIC internal
integer or decimal format (with rounding for integer) as
required by the type of the receiving variable.

In the record, the numeric data must be a
right-justified character string consisting of numeric
data in either integer or fixed-point format. If the
character string is all blanks, the number is set to 0.
The optional constant d indicates the number of decimal
fraction positions in the field if the field has no
explicit decimal point (an explicit decimal point
overrides the d specification).

On output, the corresponding numeric expression is
rounded to the number of decimal places specified by d
and converted to a character value having a decimal
point. This value is placed in the next w positions in
the record and right-justified. If d is not specified, d
is assumed to be 0 and no decimal point is placed in the
field. If the value is negative, a minus sign precedes
the value.

The value of d must be less than or equal to w. For
example, if a number is negative and contains a decimal
point, d must be at least two less than w to allow for
the minus sign and the decimal point.

This data form specification is valid for READ, REREAD,
PRINT, PRINT File, WRITE, and REWRITE statements.

This data form specification can be used to transmit
either numeric or character values. It acts as a V data
form specification if the value is character, and as an N
data form specification if the value is numeric. The
value of w defaults to 1.

For input, if the corresponding input list variable is
character, the G specification is treated the same as a V
specification where the decimal fraction "d" is ignored
if specified. If the corresponding input list variable
is numeric, the 6 specification is treated the same as an
N specification.

For output, if the corresponding output list item is a
character item; the G specification is treated the same
as a V specification where the decimal fraction "d" is
ignored if specified. If the corresponding output list
item is numeric, the G specification is treated the same
as an N specification.

This data form specification is valid for READ, REREAD,
PRINT, PRINT File, WRITE, and REWRITE statements.

Data Conversion Examples

The following are examples of the C, V and N conversion
specifications. The lower case "b" shows blanks in the
result.

138 IBM BASIC Application Programming: Language Reference

OQutput:

Value

AB
AB

75
3.645
3.45

-3.45

Input:

Value

AB

AB

AB

b75
bbb3.45
bbbbb-3

specification

c3
V4
c

N3
N7.2
N7.1
N7

specification

Cc3
V4

c

N3
N7.2
N7

FORM Statement

Result

(Characters)

ABb

ABbb

string overflow
error

b75

bbb3.45

bbbb3.5

bbbbb-3

Result

(Characters)

ABb

ABbb

A

75
3.45

-3

NC Wl.d] On input, indicates that the next w positions of a record
contain a numeric value in zoned decimal format (a zone
and a digit per position, except for the low-order
position which may contain either a zone or a sign and a
digit), or the value which was written by a PIC data form
specification. The value is converted to IBM BASIC
internal integer or decimal format (with rounding for
integer) as required by the type of the receiving

ZD ul.d]

variable.

The optional d indicates the number of decimal positions
in the field and, if present, will override an explicit
decimal point in the data. In addition to digits, of
which the rightmost may be signed, the input field may
contain a combination of any of the following

characters:

sr +, -, %,

DB, DR, blank,

comma (,),

decimal point (.), exponential notation

(E plus or minus numeric constant)

On output, indicates that the corresponding numeric
expression in an output list is to be converted to a
signed zoned decimal field of length w, rounded, and
placed in the output record.

If the optional parameter d is present, that number of
decimal positions will be present in this field; if it is
not, all w positions will represent the integer part of
the numeric value. The value of d must be less than or
equal to the value of w.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input, the next w positions of the record contain a
numeric value in zoned decimal form which is to be
converted to internal numeric representation and moved
to a corresponding numeric variable in the input list.

The optional parameter, d, specifies the number of
digits in the fractional portion of the number, and is
assumed to be zero if absent.

Statement Descriptions 139

FORM Statement

B [wl

On output, the corresponding numeric expression in an
output list is to be converted to a signed, zoned,
decimal field of length w, rounded, and placed in the
output record.

If the optional parameter, d, is present, d decimal
positions will be present in this field; if not, all w
positions will represent the integer part of the numeric
value. The value of d must be less than or equal to the
value of w.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

Numeric Data Conversion Examples

The following are examples of the NC and ZD conversion
specification.

Input:
value specification Result
(Characters)
bb$1,234.56CR NC13.3 -123.456
bb$1,234.56CR ZD13.3 error
000034E NC7.2 3.45
000000L NC7 -3
oo0000L ZD7.1 -.3
Output:
Value specification Result
(decimal) (hexadecimal)
3.45 NC7.2 FOFOFOFOF3F4C5
3.45 ZD7.2 FOFOFOFOF3F4C5
-3.45 NC?7 FOFOFOFOFOFOD3

Note: Hexadecimal values shown are the EBCDIC character
equivalent of the numbers used. See "Appendix B.
Character Set Collating Sequences” on page 327 for the
characters these codes represent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

For input, the next w positions (w must be 2, 4, or 8)
contain the binary representation of a numeric value.
This value is to be assigned to the corresponding
numeric variable in the input list. The default value
for w is 4.

For o:'tput, the corresponding numeric expression in an
output list is converted to a rounded, fixed-point
binary integer, occupying the next w record positions. w
must be 2, 4, or 8. The default is 4.

Example

100 I=10

110 J=14

120 WRITE #2 USING 130:I,J
130 FORM B4,B%

In this example I and J will be written to the file and
the binary value 0...01010 will occupy the first four
bytes of the record and the binary value 0...01110 will
occupy the next four bytes of the record.

140 IBM BASIC Application Programming: Language Reference

FORM Statement

B [N)

On output, the corresponding numeric expression in an
output list is to be converted to a signed, zoned,
decimal field of length w, rounded, and placed in the
output record.

If the optional parameter, d, is present, d decimal
positions will be present in this field; if not, all w
positions Wwill represent the integer part of the numeric
value. The value of d must be less than or equal to the
value of w.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

Numeric Data Conversion Examples

The following are examples of the NC and ZD conversion
specification.

Input:
value specification Result
(Characters)
bb$1,234.56CR NC13.3 -123.456
bb$1,234.56CR ZD13.3 error
000034E NC7.2 3.45
000000L NC7 -3
000000L 2D7.1 -.3
Output:
Value Specification Result
(decimal) (hexadecimal)
3.45 NC7.2 FOFOFOFOF3F4C5
3.45 2D7.2 FOFOFOFOF3F4C5
-3.45 NC?7 FOFOFOFOFOFOD3

Note: Hexadecimal values shown are the EBCDIC character
equivalent of the numbers used. See "Appendix B.
Character Set Collating Sequences" on page 327 for the
characters these codes represent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

For input, the next w positions (w must be 2, 4%, or 8)

contain the binary representation of a numeric value.

This value is to be assigned to the corresponding

gumerip ‘?riable in the input list. The default value
or wis 4.

For o'tput, the corresponding numeric expression in an
output list is converted to a rounded, fixed-point
binary integer, occupying the next w record positions. w
must be 2, 4, or 8. The default is 4.

Example

100 I=10

110 J=14

120 WRITE #2 USING 130:I,J
130 FORM B4,B¢4

In this example I and J will be written to the file and
the binary value 0...01010 will occupy the first four
bytes of the record and the binary value 0...01110 will
occupy the next four bytes of the record.

140 IBM BASIC Application Programming: Language Reference-

PD Wi.dl

ND

FORM Statement

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input; indicates that the short form of a
floating-point operand (32 bits) exists in the record,
and is to be moved to the corresponding variable in the
input list. The value is converted to decimal or integer
format as required by the receiving variable.

On output, specifies that a numeric value is to be
converted to the short form of a floating-point operand
and written to the record.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input indicates that the long form of a
floating-point operand (6% bits) exists in the record,
and is moved to a corresponding numeric variable in the
input list. Conversion to decimal or integer format is
performed as required by the receiving variable.

On output, specifies that a numeric value is to be
converted to the long form of a floating-point operand
and written to the record.

Floating-Point Conversion Example

100 I#,J8=3.45
110 WRITE #3,USING 120:I%#,J#
120 FORM S,L

In this example, I# and J# will be written to the file.
The first four bytes will contain the short precision
numeric values of I# and the next eight bytes will
contain the long precision numeric value of J#.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input, the next w positions of the record contain a
numeric value in packed decimal form (two digits per
position, except for the low-order position holding one
digit and a sign), which is to be converted to internal
numeric representation and moved to a corresponding
numeric variable in the input list. The optional
parameter, d, specifies the number of digits in the
fractional portion of the number, and, if absent, is
assumed to be zero.

On output, the corresponding numeric expression in an
output list is to be converted to a packed decimal field
with d fractional digits, occupying the next w record
positions.

The value of d must be less than or equal to the value of
W.

Packed Decimal Conversion Example

Value specification Result
(hexadecimal)
3.45 PD 7.2 0000000000345C
3.37 PD 7.1 0000000000034C
-3.29 PD 7 0000000000003D

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input, the internal representation of a decimal value
exists in the record (12 character positions) and is to

Statement Descriptions 141

FORM Statement

NI

be moved to a corresponding numeric variable in the
input list. If the variable has integer type, the value
is cqnverted to integer format with rounding.

On output, a value is written to the next 12 character
positions in the record in internal floating decimal
format. Integer values are converted to their decimal
equivalent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input, the internal representation of an integer
value exists in the next 4 character positions in the
record and is to be moved to a corresponding numeric
variable in the input list. If the variable has decimal
type, the value is converted to decimal format.

On output, a numeric value is written to the record in
the next 4 character positions in internal integer
format. Decimal values are rounded and converted to
their integer equivalent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

Internal Integer Conversion Example

100 J#& 15.36
200 I# = 124.3
300 WRITE #3 USING 400 : I#,J%
400 FORM ND,NI

This sequence of code causes the IBM BASIC internal
representation of the decimal number 124.3 (12 bytes) to
be moved to the output record. The internal
representation of the decimal number 15.36 is then
rounded to an integer, converted to a 4-byte binary
valueé and moved to the next four bytes in the output
record.

142 IBM BASIC Application Programming: Language Reference

GET STATEMENT

Description

GET Statement

The GET statement retrieves values from a stream or internal file.

Format

[MAT] GET #fileref : input-list [,SKIP RESTI]
lerrl,errl...]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
is within the range 1 to 255. It identifies the file to be
processed.

input-list
is an input list of variable or array names (possibly
subscripted) separated by commas.

err .
is one of the following:

EXIT line-ref
EOF line-ref
IOERR line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

For stream files, the GET statement retrieves one data value at a
time and assigns it to the corresponding item of the input list,
if necessary, getting additional records to satisfy the input
list.

For internal sequentially organized files not open with stream
organization, the GET statement retrieves one record and assigns
each of its values to the corresponding items of the input list.
An internal sequentially organized record file may be opened with
stream organization specified. In this case the GET statement
acts as if the file was created as a stream organized file.

For both types of files, each value retrieved and assigned must be
of the same basic type (character or numeric) as the corresponding
variable in the input list or a conversion condition occurs.
However, numeric values can be assigned to either integer or
decimal variables, with conversions being made as for the LET
statement. If an input list item is subscripted, the subscripts
are evaluated just before the value is assigned.

MAT KEYHORD: The MAT kevword preceding the GET keyword specifies

that the input-list consists only of arrays; the MAT keyword is
then unnecessary in the input-list.

Statement Descriptions 143

GET Statement

If MAT does not precede GET, then any individual array item in the
input-list may be preceded by the MAT keyword.

See "Input/Output Lists™ on page 70 for more information.

FILEREF: The file reference must refer to a stream or internal
;;1§. (See "Combinations of File Organization and Format™ on page

INPUT-LIST: An array in an input list is identified by the keyword
MAT appearing before the array name. (Unless the entire GET
statement is prefaced with MAT, in which case all list items must
be arrays and individual MAT specifications are unnecessary.)
Arrays are assigned values from the specified file with the
rightmost subscript varying most rapidly. If the array name is
followed by redimension specifications, the array is first
redimensioned to extents equal to the rounded integer values of
the numeric redimension expressions, and then the array is
filled. When an array is redimensioned, the original number of
members may not be exceeded.

Ordinarily, the length of a receiving character variable is set to
the length of the character string assigned to it. However, if the
length of the character string exceeds the maximum length of the
receiving variable, a string overflow occurs.

If there are no more values in the file to assign to remaining
input list items, an end-of-file condition exists.

SKIP REST CLAUSE: For an internal sequential file, a conversion
error occurs if all the items in the input list have been
satisfied, but more values exist in the current record; this
situation can be avoided by use of the SKIP REST clause which
indicates that all remaining values in a record are to be ignored.

Because stream files have only one value per record, the SKIP REST
clause has no meaning and is ignored if it appears on the GET
statement.

ERROR CONDITIONS: The string overflow (SOFLOW), conversion
(CONV), and end-of-file (EOF) conditions described above, as well
as the input/output error condition (I0ERR), may be recoverable
if the corresponding error clauses are included on the GET
statement. For example, an attempt to get from fileref 0, or an
attempt to get from a file opened for QUTPUT, are situations which
result in an I0ERR condition.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

Example

100 GET #27 : A%,B$
200 GET #27 : X%,MAT Z%(X%)

The first GET statement results in values being assigned to A% and
B$. The second GET statement assigns a value to X%, redimensions
the array 2%, and assign values to the newly-dimensioned array.

144 IBM BASIC Application Programming: Language Reference

GET Statement

If MAT does not precede GET, then any individual array item in the
input-list may be preceded by the MAT keyword.

See "Input/Output Lists"™ on page 70 for more information.

FILEREF: The file reference must refer to a stream or internal
file. (See "Combinations of File Organization and Format"™ on page
57.)

INPUT~LIST: An array in an input list is identified by the keyword
MAT appearing before the array name. (Unless the entire GET
statement is prefaced with MAT, in which case all list items must
be arrays and individual MAT specifications are unnecessary.)
Arrays are assigned values from the specified file with the
rightmost subscript varving most rapidly. If the array name is
followed by redimension specifications, the array is first
redimensioned to extents equal to the rounded integer values of
the numeric redimension expressions, and then the array is
filled. When an array is redimensioned, the original number of
members may not be exceeded.

Ordinarily, the length of a receiving character variable is set to
the length of the character string assigned to it. However, if the
length of the character string exceeds the maximum length of the
receiving variable, a string overflow occurs.

If there are no more values in the file to assign to remaining
input list items, an end-of-file condition exists.

SKIP REST CLAUSE: For an internal sequential file, a conversion
error occurs if all the items in the input list have been
satisfied, but more values exist in the current record; this
situation can be avoided by use of the SKIP REST clause which
indicates that all remaining values in a record are to be ignored.

Because stream files have only one value per record, the SKIP REST
clause has no meaning and is ignored if it appears on the GET
statement.

ERROR CONDITIONS: The string overflow (SOFLOW), conversion
(CONV), and end-of-file (EOF) conditions described above, as well
as the input/output error condition (IOERR), may be recoverable
if the corresponding error clauses are included on the GET
statement. For example, an attempt to get from fileref 0, or an
attempt to get from a file opened for OCUTPUT, are situations which
result in an I0ERR condition.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 8%4.

Example

100 GET #27 : A%,B$
200 GET #27 : X%,MAT Z%(X%)

The first GET statement results in values being assigned to A% and
B$. The second GET statement assigns a value to X%, redimensions
the array 2%, and assign values to the newly-dimensioned array.

144 IBM BASIC Application Programming: Language Reference

GOSUB STATEMENT

Description

GOSUB Statement

The GOSUB statement is used, together with the RETURN statement,
to invoke subroutines.

Format

60SUB {line-number|line-label}

Where:

line-number
must be an existing line-number in the program.

line-label,
must be an existing line-label in the program.

The GOSUB statement may be spelled GO SUB.

The GOSUB statement causes the program to branch to the indicated
line number or line label.

The RETURN statement transfers control to the first executable
statement following the last GOSUB statement which was executed.

The statements executed between the time a 60SUB statement
transfers control and control is returned by a RETURN statement
are called a subroutine. The last statement executed in a
subroutine is a RETURN statement. Its purpose is to allow normal
sequential processing to continue under completion of the
subroutine specified by the GOSUB statement.

An attempt to branch via the GOSUB statement to a nonexistent line
number or line label results in a warning message when the program
is compiled or when a RUN command is issued. When such a GOSUB
statement is executed, an exception is generated. This exception
can be handled by the ON Condition statement using the ERROR
condition. See "ON Condition Statement™ on page 203 and
"Exception Handling Statements"™ on page 84.

Processing of a RETURN statement without an active GOSUB
statement results in an exception.

More than one GOSUB statement may be active, that is, one
subroutine may use the GOSUB statement to branch to another
subroutine.

Normally, each GOSUB statement must have a matching RETURN
statement. However, it is not necessary to have executed an equal
number of GOSUB/RETURN statements when the current program unit
is ended during execution. All active GOSUB statements in a
subprogram or in a multiline function are set inactive by the
execution of either a SUBEXIT statement, or of an FNEND statement.

Statement Descriptions 145

GOSUB Statement

Example

100 GO SUB 140
110 REM

120 REM

130 GO TO 230
140 REM

150 GO SUB Al
160 REM

170 REM

180 RETURN

190 Al: X = X+Y
200 GO SUB 260
210 REM

220 RETURN

230 REM

240 REM

250 GO TO 300
260 REM

270 REM

280 REM

290 RETURN

300 REM

The sequence of statement processing from the above program
segment would be:

100,140,150,190,200,260,270,280,290,210,220
160,170,180,110,120,130,230,240,250,300

1646 IBM BASIC Application Programming: Language Reference

GOTO STATEMENT

Description

GOTO Statement

The GO TO0 statement unconditionally branches to the indicated
line number or line label.

Format

GOTO {line-number|line-label}

Where:

line-number
must be an existing line-number in the program.

line-lahel
must be an existing line label in the program.

The GOTO statement may be spelled GO TO.

The GOTO statement unconditionally transfers control to the
specified line number or line label.

An attempt to go to a nonexistent line number or line label
results in a warning message when the program is compiled or when
a RUN command is issued. When such a GOT0 statement is executed,
an exception is generated. This exception can be handled by the ON
Condition statement using the ERROR condition. See "ON Condition
Statement” on page 203 and "Exception Handling Statements"™ on
page 84%.

Example
100 GO TO 190

190 LET A = B+C

When statement 100 is executed, all statements between 100 and 190
are bypassed. Sequential processing continues from that point.

Statement Descriptions 147

IF Statement
IF STATEMENT

The IF statement evaluates a logical expression and conditionally

transfers control or conditionally executes a statement or series
of statements.

Format

IF logical expression
THEN statement-reference
[ELSE statement-referencel

Where:

logical expression
can be any logical expression as described in "Logical
Expressions" on page 31.

statement-reference
is a line number, line label, or list of imperative
statements separated by end of statement characters ().

Description

The logical expression in the IF statement is evaluated. If the
expression is true, either control is transferred to the line
number or line label following THEN or the statements immediately
following THEN are executed. Control then passes to the next
statement after the IF statement.

Example

200 IF A = B THEN 500
210 X = X+Y

If the value in A equals the value in B, the statement
is true, and control is transferred to line number 500.
If A is not equal to B, statement 210 is executed.

If a list of statements follows THEN, and the expression is true,
they are processed in sequence.

Example
100 IF A=B THEN LET C=D: LET E=F: LET G=H

If the logical expression in the IF statement is false, either
control is transferred to the line number or line label following
ELSE or the statements immediately following ELSE are executed.
If there is no ELSE clause, control is transferred to the next
statement after the IF statement.

Example

200 IF A = B THEN 500 ELSE LET C = E
210 X = X+Y

If the value in A is not equal to the value in B, the
value of C is set equal to the value of E, because the
ELSE clause is executed.

When an IF statement ends with a statement list, all of the rest

of the statements on the line are considered part of the list and
are executed under control of the IF.

148 IBM BASIC Application Programming: Language Reference

IF Statement
IF STATEMENT

The IF statement evaluates a logical expression and conditionally

transfers control or conditionally executes a statement or series
of statements.

Format

IF logical expression
- THEN statement-reference
[ELSE statement-referencel

Where:

logical expression
can be any logical expression as described in "Logical
Expressions™ on page 31.

statement-reference

is a line number, line label, or list of imperative
statements separated by end of statement characters (:).

Description

The logical expression in the IF statement is evaluated. If the
expression is true, either control is transferred to the line
number or line label following THEN or the statements immediately
following THEN are executed. Control then passes to the next
statement after the IF statement.

Example

200 IF A = B THEN 500
210 X = X+Y

If the value in A equals the value in B, the statement
is true, and control is transferred to line number 500.
If A is not equal to B, statement 210 is executed.

If a list of statements follows THEN, and the expression is true,
they are processed in sequence.

Example
100 IF A=B THEN LET C=D: LET E=F: LET G=H

If the logical expression in the IF statement is false, either
control is transferred to the line number or line label following
ELSE or the statements immediately following ELSE are executed.
If there is no ELSE clause, control is transferred to the next
statement after the IF statement.

Example

200 IF A = B THEN 500 ELSE LET € = E
210 X = X+Y

If the value in A is not equal to the value in B, the
value of C is set equal to the value of E, because the
ELSE clause is executed.

When an IF statement ends with a statement list, all of the rest

of the statements on the line are considered part of the list and
are executed under control of the IF.

148 IBM BASIC Application Programming: Language Reference

IF statement

Example

200 IF A = B THEN GOTO 300
210 X = X + Y

is not equivalent to
200 IF A = B THEN GOTO 300: X = X + Y

In fact, in the second version, X = X + Y will never be
executed.

The imperative statements available for use with the IF statement
are listed in Figure 25.

BREAK LET REREAD
CALL LINE INPUT RESET
CAUSE MARGIN RESTORE
CHAIN MAT RETRY
CLOSE ON CONDITION RETURN
CONTINUE OPEN REWRITE
DEBUG PAUSE SCRATCH
DELETE PRINT STOP
GET PUT SUBEXIT
GOSUB RANDOMIZE TRACE
GOTO READ WRITE
INPUT

Figure 25. Imperative Statements

Statement Descriptions 149

IMAGE Statement

Example
<++HEE D%uUN

is equivalent, for numeric conversion, to
SHEEHRE 4%%L

. The numeric value is converted according to the type of its
conversion specification as follows:

I-format
The value is converted to an integer, rounding any fraction.
F-format

The value is converted to a fixed-point number, rounding the
value or extending it with zeros in accordance with the
conversion specifications.

E-format

The value is converted to a floating-point number, rounding
the value or extending it with zeros in accordance with the
conversion specification. The three or more - characters
(--=) in an E-format specification are used to indicate the
print positions of the exponent part of a floating point
number.

The first - character is replaced by the '"E'; the second by
the sign of the exponent, "+' or "-'. The remaining -~
characters are replaced by the value of of the exponent, which
is right-justified with leading zeros.

IMAGE Specification Result valid Exponent

am= E¥x 1 digit
~—— E*xx 2 digits
———— Exxxx 3 digits

{where x is any digit)

Figure 26. IMAGE Statement Format Specification

If the exponent exceeds the width provided, an exception
occurs.

° The converted numeric value 15 edited with respect to digit
specifiers and commas as follows:

- When ¥ is the digit specifier, nonsignificant zeros are
gener?ted in the integer (or to the left of the decimal
point).

- When ¥ is the digit specifier, nonsignificant zeros are
replaced by asterisks.

- When # is the digit specifier, nonsignificant zeros are
suppressed. :

- When a comma appears in the image between groups of three

: digit specifiers:; it will appear in the output where
significant, provided at least one digit has been
generated to the left of the position where the comma is
to appear; if no digit has been generated to the left of
the point of insertion, the comma is replaced by an

154 IBM BASIC Application Programming: Language Reference

IMAGE Statement

asterisk if the digit specifier is the ¥, or suppressed if
the digit specifier is the #.

- If the number of digit specifiers is not adequate to
contain all the significant digits, positions of the
floating-header, if present, are used.

. A floating-header consists of a string of n repetitions of a
+, -, or $ character, where n is greater than or equal to 1.
The term "floating” is used because the "floating symbol,"
listed in Figure 27, "floats" from left to right among the n
positions and appears in the output in a position dependent on
the value and format of the numeric item, as explained further

on.

Floating-Header | Sign of value | Floating Symbol
+l+1... positive +

+[+3... negative -

-0-3... positive space

-f-1... negative -

SLSI... positive.. $

SIsd... negative $-

Figure 27. IMAGE Statement—Floating Symbol Usage

. Whenever a floating-header is not specified:

- If the numeric value is negative, and if the conversion
specification is large enough to contain the number and a
minus sign, then the minus sign is placed immediately
preceding the data.

- If the number and the minus sign wWill not fit, then the
entire specification is filled with asterisks.

- If the value is positive, the value is displayed without a
sign.

- If the positive value does not fit, then the entire
specification is filled with asterisks.

Example

Value specification Result
123 RA%%% 0123
-123.45 133338 3 -123.45
-1234 323 3 3 % %
-12 ;223 b-12
-12 %% %% -%12
-12 %%%% -012

(The "b"™ shows a blank (space) position in the result.)

. If a floating-header is specified, the floating symbol is
placed in the rightmost portion of the floating—header and to
the left of the first digit. Any remaining leading positions
of the floating—header are replaced with blanks.

If there is insufficient room in the specification for the

numeric value and for a nonblank floating symbol, then the
entire specification is filled with asterisks.

Statement Descriptions 155

IMAGE Statement

When the floating header is a §, the numeric value is
negative, and there is room (without termination of
significant data) for both a $ and minus sign, a minus sign is
inserted to the right of the $. If significant data would be
truncated, the numeric specification is fill with asterisks.

Where the minus sign is displayed, when the floating header is
$, depends upon whether or not zero suppression is in effect.
(The # digit specifier does zero suppression):

- If # is the digit specifier, the minus sign floats and is
inserted immediately to the left of the first significant
digit.

- If % or ¥ is the digit specifier, minus sign insertion
depends on the number of $ positions specified, as
follouws:

— If 2 or more $ are specified, the minus sign is
inserted in a floating dollar position, immediately
to the right of the $.

— If at least 2 $ are not specified, the minus sign
replaces the first digit specifier (¥ or %).

Example
Value specification Result
123 -———%% 123
123 +++%% +123
12345 —-——%% %36 % % %
12345 +++%% 3333
-123 SSOSHENRS bbb$-123
-12 SSSHEES bb$b-12
-12 SEEHXXK b$-%%12
=12 13337974744 b$-0012
-12 SRR XX $-%12
-12 SU%%Y% $-012
-12 SHERE $b-12

(The "b"™ shows a blank (space) position in the result.)

Format Conversion Examples

The following are examples of the different types of
conversion specifications. The letter "b" shows blank (space)
in the result.

I-format Example

Value specification Result

1000000 #&, B8E, s b1,000,000
-99999 #8, B, B8 bbb-99,999
3 E3.3.3.3 *¥%3
3.2 XHK X XX%3
100 KK, X% %%%%100
4 %%%% 0004

156 IBM BASIC Application Programming: Language Reference

IMAGE Statement

F-format Examples

Value specification Result

12.145 88,88 bl12.15
1000 XA, XX, %%1,000.00
=77 A%A% . BEE -077.000

E-format Examples

value specification Result
5 CTT I T S 500.00E-02
-255.555 #8. 888~ -2.556E+2

Statement Descriptions 157

INPUT Statement
INPUT STATEMENT

pescription

The INPUT statement provides input through the terminal. (See
also the INPUT FIELDS and INPUT FILE statements.)

Format

[MAT] INPUT [input-prompt :] input-list
[errl,errl...]

Where:

input-prompt
can be one of the following:

PROMPT string expression
PROMPT quoted character string
quoted character string
input-list
isalist of variable or array names (possibly subscripted),

to be input, separated by commas.

err
is one of the following:

EXIT line-ref
IOERR line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number, or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other err clauses are mutually exclusive.

In interactive mode, this form of the INPUT statement allouws the
user to provide values for program variables from a terminal
during program execution.

In batch mode, this form of the INPUT statement is system
dependent. See the IBM BASIC Application Programming: Syste

Services manual.

MAT KEYHORD: The MAT kevword preceding the INPUT keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input-list.

See "Input/0Output Lists™ on page 70 for more information.
INPUT-PROMPT: If an input-prompt is present, the string
exprassion will be displayed at the terminal during program
execution as a prompt for the data to be entered.

An INPUT statement without an input prompt causes a question mark
(?) to be generated on the terminal to indicate data is expected.

158 IBM BASIC Application Programming: Language Reference

INPUT Statement

If the last previously executed PRINT statement had an output
list, and the last item was followed by a semicolon (more data
expected), the INPUT statement will cause any prompt, or question
mark, to be appended to the data from the last PRINT statement and
be sent to the terminal.

The terminal keyboard is then activated for input, without a
return to the beginning of a new line. The user's expected
response is to enter a list data values which will be assigned to
the items in the input list. Each value must be of the same type,
numeric or character, as the corresponding input list-item;
however, a numeric value may be assigned to either a numeric or
character variable.

INPUT-LIST: For input-lists consisting only of scalar variables,
no assignment of values from the input reply takes place until an
input reply line has been entered and checked for:

L The correspondence of each data item entered with the type of
data item expected.

L Ibe_illowable range of values for each item to be within the
imits.

. The number of items entered as exactly the number of items
expected.

When an error is detected and the INPUT statement contains the
corresponding error clause, control is transferred to the
statement specified in the error clause. If there is no
corresponding error clause, a request is made that the current
input reply be re-entered.

For input lists that contain arrays (MAT), successive values are
assigned as received from the input reply. If an error is detected
as described in the scalar case, and the INPUT statement contains
an appropriate error clause, control is transferred to the
statement specified in the error clause. If there is no
appropriate error clause, a request is made that the current input
reply be reentered.

A significant difference between the scalar and MAT case is that
in the scalar case no assignment is made for the entire input
reply until all supplied values have been verified. In the MAT
casg%.azsignment is made for each item at the time that item is
verified. ,

INPUT REPLY: Successive values entered at the terminal must be
separated by commas. Consecutive commas cause the corresponding
item of the input list to be passed over and to be left unchanged.

If the last character of the input reply is a comma, additional
input is expected on the next line. The reply can be a "/", a
value, or any other allowable response for the input list.

A "/" character at the end of a line of data causes any remaining
items of the input list to be passed over and to be left
unchanged.

If the current item of the input list is a scalar, one value is to
be accepted for that item.

If the current item is an array, then a number of values
corresponding to the number of elements in the array is accepted,
and is assigned to members of the array with the rightmost array
subscripts varying most rapidly.

Arrays in the input list may be redimensioned; the redimensioning
occurs before values are assigned to the array.

In the input reply, the notation:

j*value

Statement Descriptions 159

INPUT statement

where j is a nonzero, unsigned integer constant, indicates that
the value is to be assigned to the next j items of the input list;
that is, j acts as a replication factor.

Example
5%555

specifies that the next 5 items of the input-list are to contain
the value 555.

Character constants in the input reply are normally set off by
quotation marks. However, these quotation marks may be omitted
for character constants which:

. Contain no commas
J Have no leading or trailing blanks
. Contain no leading or trailing quotes

. Do not start with an integer immediately followed by an
asterisk

All numeric data are rounded to a fixed number of significant
digits, (or filled with zeros), 10 for integer data, and 17 for
decimal data.

ERROR CONDITIONS: If an error clause is specified, the action
taken is determined by the error option specified.

If an error clause is not specified, and if a numeric entry causes
an overflow condition, a warning message is displayved and the
runtime support requests that the line be reentered. If an
underflow condition occurs, a warning message is displayed and
the value is replaced by zero.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/70 Statements™ on page 8%.

All character data will have a length assigned which is equal to
the length of the string transmitted; a string overflow occurs if
the length of the string received exceeds the defined maximum
length of the character string variable.

If a string overflow occurs, the SOFLOW exception occurs. If a
numeric value cannot be converted as required, the CONV exception
occurs. These errors can be handled by specifying the condition as
an err clause, or by specifying an EXIT condition. The IOERR
clause can also be specified to handle hardware malfunctions.

Example

100 INPUT ™ENTER NAME:":NAME$
200 INPUT ™ENTER HOME & BUSINESS PHONE:™:HOMES$,BUS$

The above statements will prompt for name, then home and business
phone numbers.

160 IBM BASIC Application Programming: Language Reference

INPUT FIELDS Statement
INPUT FIELDS STATEMENT (FOR FULL SCREEN TERMINAL INPUT)

The INPUT FIELDS statement reads one or more data values from one
or more specific fields of the terminal screen and assigns the
value(s) to one or more variables.

Format

INPUT [#filerefl,]] FIELDS field-definition:
input-list [errl,errl...1

Where:

fileref
is a numeric expression whose rounded integer value
evaluates to zero.

field-definition
can be:

character expression
or
MAT character array name

Each character expression or character array name must
evaluate to:

"row, column,data-forml,[leadingll,trailingll”
Where:

row
is a positive nonzero integer, specifying the screen
row of the field.

column
is a positive nonzero integer, specifying the column of
the first character in the field.

data-form
ggg be one of the data forms shown in Figure 28 on page

leading
are display and control attributes for the input field

trailing
are display attributes for the positions between the
input field and the next field and are control
attributes for this input field.

Display attributes that have meaning to IBM BASIC are:

H

highlighted
I

invisible (not displayed)
N

normal intensity
Note: For ease of migration from other BASIC products,

B, R, and U are also accepted and treated as N (normal
intensity). Multiple attributes can be specified. If I

Statement Descriptions 161

INPUT FIELDS Statement

Data Form Meaning

W Length of data item.

clul Character data.

Viul Character data with trailing blanks removed on input.

Nul.dl Conversion of numeric data from character data.

GIul.dl] Represents either character data or conversion of numeric data

from character data depending upon whether the type of the
receiving field is character or numeric.

Where:

is an unsigned, nonzero integer constant, which may optionally be preceded
with blanks.

d
is an unsigned integer constant, which must be less than or equal to w.

Note: The total length of w, in characters, can be from 1 through (screen-size
- 2) for character data, or from 1 through 156 for numeric data. (The screen
size is the total number of characters on the screen.) If w (or w.d) is omitted,
the length is 1 character.

Figure 28. INPUT FIELDS Statement—Data Form Codes

is specified, it overrides both H and N; H overrides N.
N is the default.

Leading control attributes that have meaning to IBM
BASIC are:

A
automatic field exit (when a character is entered
into the last position of the field, the cursor
automatically advances to the first character
position in the next input field). If not
specified, the cursor advances to the next
non-attribute character after the field.

c
position the cursor to this field first

The trailing control attribute that has meaning to IBM
BASIC is:

A
automatic field exit (when a character is entered
into the last position of the field, the cursor
automatically advances to the first character
position in the next input field). If not
specified, the cursor advances to the next
non-attribute character after the field.

input-list
is a list of one or more variables, array elements, and/or
entire arrays (prefaced with MAT). List elements are
separated by commas.

err
can be one of the following:

EXIT line-ref
CONV line-ref

162 IBM BASIC Application Programming: Language Reference

pescription

INPUT FIELDS Statement
IOERR line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

When the INPUT FIELDS statement is executed, the terminal user can
enter a value for each field specified in the statement. At the
beginning of execution, the cursor is positioned to one of the
following:

. The first character of the first (or only) field specified

° If the C attribute is specified, to the first character of the
last (or only) field with C as the leading attribute.

and BASIC waits for value(s) to be entered.

After entering the last character of a field, subsequent cursor
posi?}gn;ng depends upon whether or not control-attribute A is
specitied:

. If A is specified, the cursor is positioned at the beginning
of the next field on the terminal screen.

. If A is not specified, the cursor is positioned to the first
non—-attribute character after the field.

The terminal user can position the cursor by using the cursor
ﬁosifioning keys (including the NEXT FIELD and PREVIOUS FIELD
eys).

All field-definitions are syntax-checked before the screen is
altered or any data transfer takes place.

No data transfer takes place until the terminal user presses
ENTER. (Pressing a PF key does not enter the data, which remains
on the screen. If SKEY is set to SYSTEM or IGNORE, pressing the PF
key has no effect at all. If SKEY is set to GOTO, control is
transferred to the line specified.)

When the data is transferred, multiple input fields are processed
in the same order that the fields are defined in the
field-definition array. As each field is processed, the data
value is assigned to the corresponding input-list item. Unlike
the INPUT statement, in which all data values are verified before
any data is transferred, the INPUT FIELDS statement verifies each
data value as it is transferred. The order that the fields are
assigned in the field-definition array corresponds to the order
in which the input-list items are defined. (That is, the first
field-definition corresponds to the first input-list item, the
second field-definition corresponds to the second input-list
item, and so on.)

At the completion of execution, the number of input-list items
successfully transferred can be obtained through the CNT
intrinsic function.

If the terminal does not have a screen, an I0ERR exception occurs.
(See "Full Screen Input/Output Statements™ on page 73.)

Statement Descriptions 163

INPUT FIELDS Statement

FILEREF: The fileref is a numeric expression that should, when
rounded to an integer, evaluate to zero; if it does not, an I0ERR
exception occurs. The standard system action is to replace the
value with zero.

FIELD-DEFINITION: A field-definition entry can be a character
expression or MAT character array name:

L If a field-definition entry is a character expression, it
dezines one input field, and only one item of data can be
entered.

. If a field-definition entry is MAT character array name, it
can define one or more input fields. In this case, the
field-definition entry must be a one dimensional array; the
field-definition entries within the array need not match the
order of the fields on the screen.

If an array is specified for a field-definition entry, the number
of fields is the number of input-list items, not the number of
elements in the array. The number of elements in the array can
exceed the number of input-list items; any extra array elements
are ignored. However, all the array elements are syntax checked.

Row_and column are positive, nonzero integers that specify the
starting location of each field. Row 1, column 1 is the upper
left-hand corner of the screen. An exception occurs if either row
or column exceeds the dimensions of the screen.

Input fields cannot overlap; they may not contain attribute
fields created by a previous PRINT FIELDS statement.

Data-Form specifies the length and data type of the data to be
entered and any data conversions to be performed. Figure 28 on
page 162 shows the data forms allowed.

The data-form specifies the number of characters in the field.
Fields that extend beyond the rightmost column are continued in
column one of the next row, the bottom row continuing to the top
of the screen with wraparound.

For the C, V, and G data forms, the length of the field (w or w.d)
may be omitted from the field-definition by omitting the length in
the data-form specification. If the length is omitted, the field
is one character long.

Display Attributes specify how the display is treated.

Leading Display Attributes specify how the input field is to
display on the screen. The leading attribute occupies a character
position on the screen preceding the field. The leading attribute
unprotects the field.

Trailing Display Attributes specify how the positions between the
input field and the next field are to display. The trailing
attribute occupies a character position on the screen following
the field. The trailing attribute protects the following field.

The location of the trailing display attribute for one field can
overlap with the leading display attribute of the following
field. If leading and trailing attributes overlap, the last
attribute written to the screen is the one in effect.

Control Attributes specify actions to be taken for each field.

Leading Control Attributes specify how the input field is to be
treated:

A An automatic field exit occurs if the terminal user places a
character in the last position of the field.

164 IBM BASIC Application Programming: Language Reference

INPUT FIELDS Statement

C Places the cursor at the beginning of the specified field. If
C is specified for more than one field in an array, the cursor
is placed at the beginning of the last field specified with
the C attribute.

The Trailing Control Attribute can be specified as A (for
automatic field exit); it applies to the preceding field.

Any combination of leading display and control attributes is
allowed, and any combination of trailing display attributes is
allowed. If any character other than those given above is
specified, it is ignored.

A set of leading or trailing attributes should not be separated by
commas; the comma specifies the beginning and ending of each
legding or trailing list. The attributes can be entered in any
order.

INPUT-LIST: There must be at least one entry in the input-list.

For each variable name or array element in the input-list, only
one item of data can be entered.

If the input-list is MAT array name, data values are placed into
the array on a row-by-row basis when the values are transferred
from the screen.

ERROR CONDITIONS: If a string overflow occurs, the SOFLOW
exception occurs. If a numeric conversion cannot be performed as
required, the CONV exception occurs. If a hardware malfunction
prevents completion of the input process, the I0ERR exception
occurs.

These exceptions can be recovered from, if the CONV, I0OERR, or
SOFLOW clauses are specified, or if an EXIT clause refers to an
EXIT statement that contains these clauses.

The I/0 error conditions interact with the ON Condition statement
as described in "Exception Handling in 170 Statements™ on page 84%.

Example 1

110 INPUT FIELDS ™10,12,C15,I": PASSWORD$
Starting in row 10, column 12, 15 characters are read from a field
into the variable PASSWORD$. The entered characters are not
displayed.
Example 2

100 A$="22,5,N2"
110 INPUT FIELDS A$: AGEX

Reads a 2-character numeric constant starting in row 22, column 5,
into the variable AGE%. Intensity is not specified, so the default
NORMAL is in effect.

Statement Descriptions 165

INPUT FIELDS Statement

166

Example 3

100 OPTION BASE 1

110 DIM A$(4), B$(4), NAME$X30, ADDR$%*30, CITY$%30,&
& ST_ADDR_CODE$%30

130 DATA "10,10,C10,H", ™12,20,Cl0",&
& "14,20,C10", "16,20,C20,N"

140 MAT READ A$,

150 DATA "10,45,C30,HA,H","12,45,C30,HA,H",&
& "14,645,C30,HA,H","16,45,C30,H,N"

160 MAT READ B$

170 PRINT NEWPAGE

180 PRINT FIELDS MAT A$: "NAME™, "ADDRESS", "CITY",&
& "STATE, ADDRESS-CODE"™

190 INPUT FIELDS MAT B$: NAMES, ADDR$, CITY$, ST_ADDR_CODES

200 PRINT FIELDS "20,15,C15,H™: "O0K? TYPE Y OR N"

210 INPUT FIELDS "20,31,Cl,H,N": RETRY$

220 IF UPRCS(RETRY$) = UPRCS(™N™) THEN 190

230 PRINT NEWPAGE: PRINT "YOU ENTERED"

240 PRINT NAMES: PRINT ADDRS$

gzg ES%NT CITY$: PRINT ST_ADDR_CODES$

This series of statements sets up two arrays of
field-definitions, A$ and B$, each with ¢ elements.

When the first PRINT FIELDS statement (180) is executed, the
headings are displayed on the screen in rows 10, 12, 14, and 16,
and all at column 20.

When the first INPUT FIELDS statement (190) is executed, the
cursor is positioned first at row 10, column 45. When the first
field is filled in by the terminal user, the cursor advances to
the beginning of the next field (row 12, column 45). When this
field is filled in, the cursor is positioned at row 14, column 45,
and, after this field is filled, at row 16, column 45.

When the terminal user presses ENTER, the input data on the screen
is transferred to NAMES$, ADDRS, CITY$, and ST_ADDR_CODES in that
order.drote that not all fields need be filled before ENTER is
pressed.

Statements 200 through 220 serve as a check that the user hasn't

pressed ENTER by mistake. If the user wishes to reenter the

Iields, then the program loops back to statement 190 for another
ry.

When the user indicates that the entry has been correctly made, a
new screen displays the data values entered.

IBM BASIC Application Programming: Language Reference

INPUT FILE STATEMENT

Description

INPUT File Statement

The INPUT File statement reads either display or internal files.

Format 1 (display files)

[MAT] INPUT #fileref [[,] input-promptl]
tinput-1listl,SKIP REST]
[errl,errl...]

Format 2 (internal files)

[MAT] INPUT #fileref :input-listl[,], SKIP RESTI]
[lerrl,errl...]

Where:

fileref
is a numeric expression which when evaluated and rounded,
must be a positive integer within the range 0 to 255, and
which identifies the file to be read.

input-prompt
is a quoted character string.

Note: The fileref and input-prompt may occur in either
order.

input-list
is an input list of variable or array names (possibly
subscripted) separated by commas.

err
is one of the following:

EXIT line-ref
EOF line-ref
IOERR line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The INPUT file statement, when referring to a fileref connected to
a display format file, receives data in a manner similar to the
way the INPUT statement receives data from a terminal; a record
from the file is accessed, and its contents are processed as if
they represented a line entered on the terminal in response to an
INPUT request. However, there are exceptions to this similarity.

. During input from a file, the input-prompt has no meaning and
is ignored.

. Unlike input from a terminal, which can request a new reply if
the current reply is invalid, file input, when it retrieves an

Statement Descriptions 167

INPUT File Statement

invalid record, causes an exception. An exception can occur
in the following situations:

1. An attempt is made to read a character data item into a
numeric variable.

2. The number of data values does not match the number of
variables in the input list.

3. A string or numeric overflow occurs.

When the file reference is 0, this statement acts like the INPUT
statement for the terminal. (See "INPUT Statement™ on page 158.)

When operating on a stream file, the INPUT file statement acts
like a GET statement. (See "GET Statement™ on page 143.)

When operating on a record-oriented internal-format file, the
INPUT File statement acts like a READ statement. (See "READ FILE
Statement"™ on page 237.)

MAT KEYHORD: The MAT keyword preceding the INPUT keyword
specifies that the input-list consists only of arrays; the MAT
keyuword is then unnecessary in the input list.

See "Input/Output Lists™ on page 70 for more information.

FILEREF: The fileref must refer to a display or internal file.
(See "Combinations of File Organization and Format"™ on page 57.)

INPUT-LIST: If the input list does not specify enough variables to
accommodate all of the values retrieved from a record of a display
or internal format file, a CONV error occurs. To keep the CONV
condition from occurring in this case, the SKIP REST clause can be
specified. The SKIP REST clause causes excess data to be ignored,
thus not causing the CONV condition.

See "Input/Output Lists™ on page 70 for additional
considerations.

ERROR CONDITIONS: If a numeric entry causes an overflow
condition, a warning message is displayed and a request is made
that the line be entered.

If an underflow condition occurs, a warning message is displayed
and the value is replaced by zero.

All character data has a length assigned which is equal to the
length of the string transmitted; a string overflow occurs if the
length of the string received exceeds the defined maximum length
of the variable.

If a string overflow occurs, the SOFLOW exception occurs. If a
numeric value cannot be converted as required, the CONV exception
occurs,

In addition, an EOF clause may be specified to process the
condition which occurs when an attempt is made to access another
record when end-of-file has been reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 8%.

Example
100 INPUT #5 : AS$,B% SOFLOW 500,CONV 600

In the above example, assuming a display file is associated to
file reference 5, a record is read and values assigned to A$ and
B% as if an INPUT statement were executed. If a string overflouw
error occurs in assigning data to A$, control passes to line
number 500; if a numeric conversion error occurs with B%, control
passes to line number 600.

168 IBM BASIC Application Programming: Language Reference

INPUT File Statement

invalid record, causes an exception. An exception can occur
in the following situations:

1. An attempt is made to read a character data item into a
humeric variable.

2. The number of data values does not match the number of
variables in the input list.

3. A string or numeric overflow occurs.

When the file reference is 0, this statement acts like the INPUT
statement for the terminal. (See "INPUT Statement™ on page 158.)

When operating on a stream file, the INPUT file statement acts
like a GET statement. (See "GET Statement™ on page 143.)

When operating on a record-oriented internal-format file, the
INPUT File statement acts like a READ statement. (See "READ FILE
Statement™ on page 237.)

MAT KEYHORD: The MAT keyword preceding the INPUT keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output Lists"™ on page 70 for more information.

FILEREF: The fileref must refer to a display or internal file.
(See "Combinations of File Organization and Format™ on page 57.)

INPUT-LIST: If the input list does not specify enough variables to
accommodate all of the values retrieved from a record of a display
or internal format file, a CONV error occurs. To keep the CONV
condition from occurring in this case, the SKIP REST clause can be
specified. The SKIP REST clause causes excess data to be ignored,
thus not causing the CONV condition.

See "Input/Cutput Lists™ on page 70 for additional
considerations.

ERROR CONDITIONS: If a numeric entry causes an overflow

condition, a warning message is displayed and a request is made
that the line be entered.

If an underflow condition occurs, a warning message is displayed
and the value is replaced by zero.

All character data has a length assigned which is equal to the
length of the string transmitted; a string overflow occurs if the
length of the string received exceeds the defined maximum length
of the variable.

If a string overflow occurs, the SOFLOW exception occurs. If a
numeric value cannot be converted as required, the CONV exception
ocecurs,

In addition, an EOF clause may be specified to process the
condition which occurs when an attempt is made to access another
record when end-of-file has been reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

Example
100 INPUT #5 : A$,B% SOFLOW 500,CONV 600

In the above example, assuming a display file is associated to
file reference 5, a record is read and values assigned to A$ and
B% as if an INPUT statement were executed. If a string overflouw
error occurs in assigning data to A$, control passes to line
number 500; if a numeric conversion error occurs with B%, control
passes to line number 600.

168 IBM BASIC Application Programming: Language Reference

INTEGER STATEMENT

Description

INPUT File Statement

The INTEGER statement specifies which identifiers are to be
assigned integer type.

Format

INTEGER [[identifier|(letter-list)]...]

Where:

identifier
may be a specific numeric identifier.

letter-list
is a list of letters and/or ranges of letters separated by
commas. A range of letters is represented by the first and
last letters in the range separated by a minus sign.

For compatibility with other BASICs, the keyword DEFINT (define
integer) may be used in place of INTEGER. The syntax and semantics
of the DEFINT statement are the same as those for the INTEGER
statement.

The INTEGER statement declares a specific identifier, or any
identifier beginning with a specific letter, as having integer
type; or, when used without a list, it specifies the default type
for all identifiers not othernwise typed in a program unit.

INTEGER statements may appear anywhere in a program unit, and
affect identifiers throughout the program unit. The identifiers
affected are variable names, array names, or function names.

TYPE SPEC: If the INTEGER statement specifies a parenthetical
list of letters, all identifiers beginning with these letters are
to be typed integer, unless they end in a contradictory
self-typing character "#" or "$", or unless they are explicitly
declared in a DECIMAL statement by identifier.

The letter-list may be specified as either single letters (A, B,
C, D) or as a series of consecutive letters, such as (A-D, X-2),
indicating A through D and X through Z.

An identifier explicitly stated in an INTEGER statement may end
with the self-typing character "%" but not with "#" or "$".

If an INTEGER statement specifies no identifiers and no
letter-list, the default type for all identifiers in the
program—unit is set to integer.

If an INTEGER (or DECIMAL) typing statement is not specified, the
default typing is DECIMAL.

Example 1
100 INTEGER ABLE,(C-E,G,J,L),NANCY

specifies that identifiers ABLE and NANCY, as well as all
identifiers beginning with the letters C, D, E, G, J, and L are
typed integer. If the program unit subsequently contains a
variable named GEORGE, it would be assigned integer type;
haweveg, CHARLIE# would be assigned decimal and EDGARS$ assigned
character.

Statement Descriptions 169

INTEGER Statement

Example 2
100 DEFINT ABLE, (C-E,G,J,L),NANCY

is equivalent to Example 1.

Immediate Execution

Integer type is valid for immediate variables and arrays. The
immediate INTEGER statement has the same form as when used in a
program.

See "Immediate Statements™ on page 260 and "Immediate Type and
Dimensions™ on page 262 for a discussion of the interaction of
immediate INTEGER statements with other immediate statements and
program statements.

170 IBM BASIC Application Programming: Language Reference

LET (Scalar Assignment) Statement

LET (SCALAR ASSIGNMENT) STATEMENT

Description

The LET scalar assignment statement assigns values to both
numeric and character variables.

Format

[LET] variable [, variablel...=expression

Where:
variable
is:
a numeric variable.
a character variable (with optional substring notation).
a subscripted numeric array member.
a subscripted character array member (with optional
substring notation).
expression

is any numeric expression (for numeric variables) or
character expression (for character variables).

The value of the numeric or character expression to the right of
the equals sign is evaluated and assigned to the numeric or
character variable on the left of the equals sign.

The keyword LET is optional. In the following example, the
statements are equivalent.

Example

100 LET SUMM = ADD1+ADD2+ADD3
110 SUMM = ADD1+ADD2+ADD3

VARIABLE: The type of the variable(s) on the left side of the
equals sign must agree with the type of the expression on the
right side. They both must be either character or numeric.
However, in the case of numeric LET statements, the left side can
be integer when the right side is decimal, and vice versa.

A single value may be assigned to several variables at once using
multiple variables to the left of the equal sign.

Example
100 LET A$,B$,C$ = 'TOTAL'

is functionally equivalent to:

100 LET A$ = 'TOTAL®
110 LET B$ = 'TOTAL'
120 LET C$ = *TOTAL'

Statement Descriptions 171

LET (Scalar Assignment) Sstatement

Immediate Execution

Multiple aSsignments are made from left to right.
100 LET I, ACI) =5
is functionally equivalent to:

100 LET I =5
110 LET ACI) =5

EXPRESSION: For numeric assignment statements where the type
(integer or decimal) of the expression to the right of the equal
sign does not agree with that of the variable to the left of the
equals sign, the result of the expression is converted to the type
gftthe variable. Rounding occurs when converting decimal to
integer.

Example ‘
100 LET SUMM% = ADD# + ADC#H#

If the value of ADD® is 20.7 and ADC# is 10.0, the value of SUMMX%
after the execution of the LET statement is 31.

The LET immediate statement assigns the expression on the right of
the equal sign to the variable(s) on the left.

Immediate and program variables may be used in expressions. There
are two restrictions:

1. Immediate LET statements cannot refer to user-defined
functions defined in a program (DEF statements). However,
intrinsic functions may be used.

2. The keyword LET is optional unless the immediate LET
statement assigns a value to a variable having the same name
as one of the IBM BASIC commands. See "IBM BASIC Commands™ on

page 267.
Example '
100 LIST =3 is an error
100 LET LIST = 3 is accepted

See "Immediate Statements™ on page 260 for additional information
on immediate execution.

172 IBM BASIC Application Programming: Language Reference

LINE INPUT/LINPUT Statement

LINE INPUT/LINPUT STATEMENT

The LINE INPUT statement allows the unformatted input of
character strings from a terminal.

Format

[MAT] LINE INPUT [input-prompt:]
input-list [errl,errll

Where:

input-prompt
can be:

PROMPT string expression
or
a quoted character string

input-list
is an input list of character items.

err
is one of the following:

EXIT line-ref
IOERR line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other two err clauses are mutually
exclusive.

Description
LINE INPUT may also be spelled LINPUT.

Character strings which contain commas and other characters
usually considered as delimiters can be entered from a terminal
with the LINE INPUT statement.

MAT KEYHORD: The MAT keyword preceding the LINE INPUT keyuwords
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output Lists™ on page 70 for more information.

INPUT-PROMPT: If the statement specifies an input-prompt, the
result of the PROMPT string expression or the quoted character
string is displayed.

If a prompt is not present, a question mark is displayed.

If the last PRINT statement had an output list in which the last
data item was followed by a semicolon (more data expected), the
input statement causes any prompt, or the question mark, to be
appended to the data from the last PRINT statement and be sent to
the terminal.

Statement Descriptions 173

LINE INPUT/LINPUT Statement

Example

100 PRINT "PROM";
110 LINE INPUT 'PT': A$

.

When these statements are executed, the display terminal displays
the following:

PROMPT _

(The underscore indicates where the cursor is positioned for the
terminal user to enter a line of input.)

The terminal is then activated for input, without a return to the
beginning of a new line. The response is to enter one line for
each variable or array element in the input list. A question mark
prompt is issued for each subsequent line.

The entire contents of successive input lines are assigned to the
string variables in the input list. Array elements are assigned
with the rightmost subscripts varyving most rapidly. A new
question mark prompt is issued for each variable or array element
after the first.

If redimensioning is specified, then dynamic redimensioning takes
place before values are assigned to the redimensioned array.

ERROR CONDITIONS: The error conditions I0OERR (input/output error)
and SOFLOW (string overflow) may be recoverable if an err clause
for the condition is specified in the statement or on the
referenced EXIT statement.

SOFLOW occurs if the strihg entered at the terminal is longer than
the maximum length of the corresponding character variable.

I0OERR occurs if a hardware malfunction prevents the completion of
the input process.

The I/0 error conditions interact with the ON condition statement
as described in "Exception Handling in I/70 Statements™ on page 84%.

Example
100 LINE INPUT "TYPE IT™ : A$,B$

The prompt message, TYPE IT, appears on the terminal with the
cursor positioned immediately to the right.

If AB,Cl110?124% is entered, that data is assigned to A$ having a

length of 11. The terminal then prompts (?) for the second value
to be stored in B$.

174 IBM BASIC Application Programming: Language Reference

LINE INPUT/LINPUT File Statement

LINE INPUT/LINPUT FILE STATEMENT

Description

The LINE INPUT File statement allows the unformatted input of data
from a file.

Format

[MAT] LINE INPUT #fileref
([,linput-promptl]:input-list
lerrl,err)...]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255, and
which identifies the file to be processed.

input-prompt
is a quoted character string.

Noge: The fileref and input-prompt clauses may occur in any
order.

input-list
is an input list of character variables or array names
(possibly subscripted).

err
is one of the following:

EXIT line-ref
EOF line-ref
IOERR line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

LINE INPUT may also be spelled LINPUT.

The LINE INPUT File statement processes records of a file the same
way the LINE INPUT statement processes lines of data from a
terminal. The entire contents of each successive record,
including commas and other characters usually thought of as
delimiters, is assigned to each successive character string
variable in the input list.

MAT KEYWORD: The MAT keyword preceding the LINE INPUT keywords
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output Lists™ on page 70 for more information.

Array elements are assigned with the rightmost subscripts varying
most rapidly.

Statement Descriptions 175

LINE INPUT/LINPUT File Statement

176

If redimensioning is specified, dynamic redimensioning takes
place before values are assigned to the redimensioned array.

FILEREF: A file which is accessed with this statement must have
display format. The length of the records must not exceed the
length of the corresponding character variables in the input
é;s§. (See "Combinations of File Organization and Format™ on page

INPUT-PROMPT: The input-prompt clause is ignored if the file
reference number is not zero. When fileref is zero, the terminal
is accessed and this statement acts identically to a LINE INPUT
statement (see "LINE INPUT/LINPUT Statement™ on page 173).

ERROR CONDITIONS: The EXIT, I0OERR, and SOFLOW err clauses
function as they do for a terminal. In addition, the EOF err
clause can be used to process the condition caused by attempting
to aiczss another record when the end of the file has been
reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements" on page 84%.

Example
100 LINPUT #3 : AS

Retrieves a record from the file reference number 3 and assigns
the record to AS.

IBM BASIC Application Programming: Language Reference

LINE INPUT/LINPUT File Statement

176

If redimensioning is specified, dynamic redimensioning takes
place before values are assigned to the redimensioned array.

FILEREF: A file which is accessed with this statement must have
display format. The length of the records must not exceed the
length of the corresponding character variables in the input
lisg. (See "Combinations of File Organization and Format™ on page
57. .

INPUT-PROMPT: The input-prompt clause is ignored if the file
reference number is not zero. When fileref is zero, the terminal
is accessed and this statement acts identically to a LINE INPUT
statement (see "LINE INPUT/LINPUT Statement™ on page 173).

ERROR CONDITIONS: The EXIT, I0ERR, and SOFLOW err clauses
function as they do for a terminal. In addition, the EOF err
clause can be used to process the condition caused by attempting
to aﬁczss another record when the end of the file has been
reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I70 Statements"™ on page 84.

Example
100 LINPUT $#3 : AS

Retrieves a record from the file reference number 3 and assigns
the record to AS.

IBM BASIC Application Programming: Language Reference

LOOP STATEMENT

Description

LOOP Statement

The LOOP statement delimits a DO loop.

Format

LOOP ({WHILE|UNTIL} logical expression]

Where:
logical expression

can be any logical expression as documented in in "Logical
Expressions™ on page 31.

The LOOP statement specifies the end of a DO loop.

The WHILE/UNTIL clause is the exit condition. When the exit
condition is satisfied, processing continues with the next
executable statement.

The exit condition is satisfied if:

. The value of the logical expression following WHILE is false
. The value of the logical expression following UNTIL is true

The LOOP statement must always follow a matching DO statement.

See "DO Statement™ on page 116 and "Loop Control Statements™ on
page 62.

Statement Descriptions 177

MARGIN Statement
MARGIN STATEMENT

Description

The MARGIN statement specifies where output may begin and end on a
terminal screen or page.

Format
MARGIN numeric expression
or

MARGIN [RIGHT numeric expression]
[LEFT numeric expressionl
[TOP numeric expressionl
[BOTTOM numeric expressionl

Where:

numeric expression
can be any numeric expression

BOTTOM
defines the bottom margin of the page

LEFT
defines the left margin of the page

RIGHT
defines the right margin of the page

TOP
defines the top margin of the page

Nogei The keywords BOTTOM, LEFT, RIGHT, and TOP may appear in any
order.

The MARGIN statement is an executable statement which sets the
boundaries for subsequent PRINT statement output to a terminal.

The first format of the statement may be used to set the right
margin; in the second format, at least one clause must be
specified.

NUMERIC EXPRESSION: The rounded integer values of the numeric
expressions are used to determine:

. Where the last line of the screen or page may appear (BOTTOM)
. Where the first position of a line may appear (LEFT)

. Where the last position of a line may occur (RIGHT)

. Where the first line of the screen or page may appear (TOP)

If any of the following margin rules are violated, an exception
occurs.

MARGIN LEFT: The value specified for the left margin must be
within the range 1 to the defined line width of the terminal, and
must not exceed the value of the right margin.

If no left margin is specified, the default value of 1l is
assigned.

178 IBM BASIC Application Programming: Language Reference

MARGIN Statement

MARGIN RIGHT: The value specified for the right margin must be
within the range 0 to the defined line width of the terminal. If a
value of zero is specified, or if no right margin is specified,
the default value of the terminal's line width is assumed.

For PRINT statements without IMAGE or FORM control, the right
margin, if not zero, must exceed the left margin by an amount
necessary to print a numeric value from an unformatted print in
floating decimal form. For SPREC that value is 13; for LPREC it is
19.

MARGIN TOP: The value specified for the top margin must be within
the range 1 to the value of the bottom margin, unless the bottom
margin is 0.

If no top margin is specified, the default value of 1 is assumed.

MARGIN BOTTOM: The value specified for the bottom margin must be
within the range 0 to 32,767.

If no bottom margin is specified, the default value of 0 is
assumed.

A bottom margin of 0 implies no line limit, and no ENDPAGE (or
PAGEOFLOW) condition is to be generated.

GENERAL CONSIDERATIOMNS: The MARGIN statement may appear as often
as necessary within a program to provide the desired formats.
Execution of a MARGIN statement provides new parameters
immediately.

Example
MARGIN LEFT 1 RIGHT 65 TOP 7 BOTTOM 60

are valid margins for an output file on a hardcopy
terminal with 8-1/72 x 1ll-inch pages.

LEFT AND RIGHT MARGINS: The LEFT and RIGHT MARGIN parameters
}ntfract with the various forms of the PRINT statement, as
ollows:

PRINT The print-zone size, which is established by
default or the OPTION PRTZ0 statement, is
counted from the LEFT margin. If the left
margin is 10 and the print-zone size is 20,
the print zones will be located at columns
10)30)50; etc.

The RIGHT margin determines the location of
the last print zone. There must be enough
columns between the beginning of the last
print zone and the right margin to satisfy the
print-zone size. In the above example, if the
right margin was 80, the last print zone would
start at column 50.

PRINT USING IMAGE The image begins at the LEFT margin.

An image that extends bevond the RIGHT margin
causes a CONV exception when the PRINT
statement is processed.

PRINT USING FORM If the FORM refers to a column position bevond
the LEFT or RIGHT margins, a CONV exception
occurs.

TOP AND BOTTOM MARGINS AND THE ENDPAGE CONDITION: For display
terminals, PRINT lines scroll continuously onto the screen from
the bottom. In order to insure that lines are not scrolled off the
top of the screen before they are seen, BASIC does not allow more
than the number of lines that fit on the screen to scroll without
a positive response from the terminal user. For example, on a 3278

Statement Descriptions 179

MARGIN Statement

model 2 terminal which holds 24 lines on its screen, as soon as 23
print lines have scrolled onto the screen and the 24th is printed
by the program, the scrolling stops and the bottom line (the 24th)
displays the message

¥X¥ENTER TO CONTINUEXX

This means the user must press the ENTER key to allow the
scrolling, and the program, to continue. When ENTER is pressed,
the first line scrolls off the top and the 24th line scrolls onto
the bottom of the screen.

On a hard-copy terminal with printer characteristics, the TOP and
BOTTOM margins can be used to control when page ejects
(top-of-form) are generated and how many blank lines are
automatically generated after a page eject. These page ejects
correspond to ENDPAGE exceptions generated by PRINT statements.
On a display terminal screen, the ¥ENTER TO CONTINUEX¥ scrolling
stops can be controlled by ENDPAGE exceptions.

When the number of lines printed since the last ENDPAGE exception
(or since the start of the program or since the last NEWPAGE in a
print list or PAGE in a FORM) is equal to the BOTTOM margin, and
the action associated with ENDPAGE is SYSTEM (see "ON Condition
Statement™ on page 203), the ENDPAGE exception is generated
immediately, even if the program is in the middle of a PRINT
:tatement which prints more than one line. The SYSTEM action is
[}

On a display terminal: Print as many blank lines as necessary
to cause scrolling to halt and the XXENTER TO CONTINUEXx»
prompt to appear. Then, when ENTER is pressed, to print as
many blank lines as specified by TOP minus one. Then continue
execution of the program.

On_a_hard-copy terminal: Eject a page, print TOP minus one
blank lines, and continue execution of the program.

If the action associated with NEWPAGE is GOTO (the program takes
control of the exception), the exception is not generated until
the generating PRINT statement is completed. Thus if the PRINT
statement produces more than one line, more than one BOTTOM lines
are printed before the transfer of control occurs.

180 IBM BASIC Application Programming: Language Reference

MARGIN File Statement

MARGIN FILE STATEMENT

Description

The MARGIN File statement specifies the page margins for
display-format files being accessed by PRINT File statements.

Format
MARGIN #fileref numeric expression
or
MARGIN #fileref [RIGHT numeric expressionl
[LEFT numeric expressionl

[TOP numeric expression]
[BOTTOM numeric expressionl

Where:

fileref
is a numeric expression which when evaluated and rounded,
must be a positive integer within the range of 0 to 255.

numeric expression
can be any numeric expression

BOTTONM
defines the bottom margin of the page

LEFT
defines the left margin of the page

RIGHT
defines the right margin of the page

TOP
defines the top margin of the page

Note: The keywords RIGHT, LEFT, TOP, and BOTTOM may appear
in any order. At least one must appear.

The MARGIN File statement functions for a display format file the
way the MARGIN statement functions for a terminal. The margins
dictate what the records of the file created by PRINT File
statements would look like if directed to a display output device.
The effects of this statement remain until another MARGIN File
statement explicitly change one or more margins of that file, or
until the file is closed.

FILEREF: The fileref must refer to a display file. (See
"Combinations of File Organization and Format"™ on page 57.)

If the following margin rules are violated, an exception occurs.

MARGIN LEFT: The value specified for the left margin must be

within the range 1 to the record length of the file, and must not

gxceed the value of the right margin (unless the right margin is
).

The default value for the left margin is 1.

MARGIN RIGHT: The right margin must be within the range 0 to the
record length of the file.

Statement Descriptions 181

MARGIN File Statement

182

If no value is specified, the default is the lesser of 133 and the
record length.

A right margin of 0 implies there is no limit, within the record
length of the file.

For PRINT statements without FORM or IMAGE control, the right
margin, if not zero, must exceed the left margin by an amount
necessary to print a numeric value from an unformatted print in
floating-point form. For SPREC that value is 13, for LPREC it is
19.

MARGIN TOP: The top margin must be within the range 0 to the
bottom margin.

The default value of 1 is assumed if no value‘is specified.

Whenever an ENDPAGE condition occurs on the file, the top margin
less 1 indicates how many blank records are to be generated before
the next data record.

MARGIN BOTTOM: The bottom margin must be within the range 1 to
maximum record size for the file.

The default value is an installation parameter. The IBM supplied
default is 60.

A bottom margin of 0 implies no line limit, and no ENDPAGE
condition is generated.

GENERAL CONSIDERATIONS: The MARGIN file parameters interact with
the various forms of the PRINT File statement in the same manner
as the MARGIN statement interacts with the PRINT statement. (See
"MARGIN Statement™ on page 178.)

If fileref is zero, the MARGIN File statement acts as a MARGIN
statement and sets the margins for the terminal.

IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement
MAT (ARRAY ASSIGNMENT) STATEMENT

The MAT statement assigns values and dimensions to an array.

Format

MAT arrayname = array expression
[(redimension)]

Where:

arrayname
iS5 an array name.

array expression
is one of the following:

arraynamel

(expression)
arraynamel+arrayname?2
arraynamel-arrayname2
arraynamel*arrayname2
(expression)*arraynamel
arraynamel&arrayname2
(expression)&arraynamel
arraynamel&(expression)
[(expression)*]IDN

ZER

[(expression)*]CON

NULS$

INV(arraynamel)
TRN(arraynamel)
AIDX(arraynamel)
DIDX(arraynamel)
ASORT(arraynamel)
DSORT(arraynamel)

arraynamel and arrayname2
are arraynames (see description for restrictions on
type and dimensions).

expression
is a numeric or string expression (see description for
restrictions on type).

redimension
is one to seven numeric expressions separated by commas.

pescription

Execution of an array assignment statement causes the array
expression to be evaluated and its value assigned to the array
named to the left of the equals sign.

ARRAY EXPRESSION: If the right side of the equal sign is an array
expression, it is evaluated and an element-by-element assignment
is made to the receiving array, on the left of the equal sign.

Example 1
MAT ARRAX = VALA+VALB
Each member of ARRAX is assigned the sum of the corresponding

values of arrays VALA and VALB, that is, the value in VALA(O) is
added to the value in VALB(0) and the sum is placed in ARRAX(0).

Statement Descriptions 183

MAT (Array Assignment) Statement

If the right side of the equals sign is a parenthesized scalar
expression, it is evaluated and each element of the receiving
array is set to that value.

Example 2
MAT AR% = (4%10.02+8/3)

Every element in the array AR% is set equal to 43.

When the array is a character array, the character assigned may
not exceed the defined maximum length (either explicit or
implicit definition) of the elements of the character array. If
there is an attempt to assign character data that exceeds this
length, a string overflow occurs.

All array statements which result in assignment (with the
exception of AIDX and DIDX) may have expressions on the right side
of the equal sign that have the same array name as the one on the
left. This is termed "in-position” replacement. Both of the
following statements are permitted.

Example 3
100 MAT A = A + A
110 MAT A = INV(A)

If an error occurs, such as numeric overflow or string overflow,
an exception is generated at the point of the error. This means
that the array assignment may be partially complete (part of the
array on the left side may have been changed). In order to allow
recovery from such situations, IBM BASIC assures that the
operands of the right side expression have not been altered when
the exception occurs. If the array on the left appears as an
operand on the right (including as an array element in a scalar
expression), the right side is evaluated into a temporary array
and then moved to the left side array.

For numeric MAT statements where the type (integer or decimal) of
the array expression does not agree with that of the array to the
left of the equal sign, the result of the expression is converted
to the type of the array on the left. If necessary, rounding
occurs prior to the assignment.

REDIMENSION CLAUSE: When the redimension clause is specified,
this array is redimensioned dynamically; that is, the number of
dimensions and the size in each dimension is changed to match the
number of dimensions and the size of each dimension specified by
the values in the redimension specification on the right.

Example 4

120 DIM ACl00), B(3,4), C(4,3)

130 MAT A = BXC 'A redimensioned to (3,3)
140 MAT A C%XB 'A redimensioned to (4,4%)
150 MAT A A(2,2) 'A redimensioned to (2,2)

When an array is redimensioned dynamically, the upper bounds are
changed to match the size of its new value and the current lower
bounds as defined by the OPTION BASE are retained. The new bounds
need not be individually less than or equal to the bounds
specified in the dimension statement for that array (or by the
default dimensions if the array is not dimensioned explicitly),
as long as the total number of elements for the redimensioned
array does not exceed the total number of elements specified by
the array's original dimensions. What this means is that for array
B in the above example, you can change any one of the dimensions
or even add dimensions, as long as the total number of elements
doesn't exceed 20 (when OPTION BASE 0 is in effect) or 12 (when
OPTION BASE 1 is in effect).

184 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

If the right side of the equals sign is a parenthesized scalar
expression, it is evaluated and each element of the receiving
array is set to that value.

Example 2
MAT AR% = (4%10.02+8/3)

Every element in the array AR% is set equal to 4%3.

When the array is a character array, the character assigned may
not exceed the defined maximum length (either explicit or
implicit definition) of the elements of the character array. If
there is an attempt to assign character data that exceeds this
length, a string overflow occurs.

All array statements which result in assignment (with the
exception of AIDX and DIDX) may have expressions on the right side
of the equal sign that have the same array name as the one on the
left. This is termed "in-position™ replacement. Both of the
following statements are permitted.

Example 3

100 MAT A = A + A
110 MAT A = INV(A)

If an error occurs, such as numeric overflow or string overflow,
an exception is generated at the point of the error. This means
that the array assignment mav be partially complete (part of the
array on the left side may have been changed). In order to allow
recovery from such situations, IBM BASIC assures that the
operands of the right side expression have not been altered when
the exception occurs. If the array on the left appears as an
operand on the right (including as an array element in a scalar
expression), the right side is evaluated into a temporary array
and then moved to the left side array.

For numeric MAT statements where the type (integer or decimal) of
the array expression does not agree with that of the array to the
left of the equal sign, the result of the expression is converted
to the type of the array on the left. If necessary, rounding
occurs prior to the assignment.

REDIMENSION CLAUSE: When the redimension clause is specified,
this array is redimensioned dynamically; that is, the number of
dimensions and the size in each dimension is changed to match the
number of dimensions and the size of each dimension specified by
the values in the redimension specification on the right.

Example 4
120 DIM AC100), B(3,4), C(4,3)

130 MAT A = BXC 'A redimensioned to (3,3)
140 MAT A = C%B 'A redimensioned to (4%,4)
150 MAT A = A(2,2) 'A redimensioned to (2,2)

When an array is redimensioned dynamically, the upper bounds are
changed to match the size of its new value and the current lower
bounds as defined by the OPTION BASE are retained. The new bounds
need not be individually less than or equal to the bounds
specified in the dimension statement for that array (or by the
default dimensions if the array is not dimensioned explicitly),
as long as the total number of elements for the redimensioned
array does not excead the total number of elements specified by
the array's original dimensions. What this means is that for array
B in the above example, you can change any one of the dimensions
or even add dimensions, as long as the total number of elements
doesn't exceed 20 (when OPTION BASE 0 is in effect) or 12 (when
OPTION BASE 1 is in effect).

184 IBM BASIC Application Programming: Language Reference

Array Assignment

Scalar Assignment

MAT (Array Assignment) statement

Format

MAT arrayname = arraynamel [(redimension)l

An element-by-element assignment is made to the array to the left
of the equal sign.

If arrayname is a character string array, arraynamel must be a
character string array.

If arrayname is a numeric array, arraynamel must be a numeric
array. As the elements are assigned they are converted to the type
of arrayname.

If the redimension specification is not given, the array to the
left of the equal sign is dynamically redimensioned to the
dimensions of the array on the right.

If the redimension specification is given, the array to the left
of the equal sign is dynamically redimensioned to values
specified in the redimension specification.

Example

100 OPTION BASE 1
110 DIM ACl00), B(16,10)
120 MAT A=B

When the MAT statement is executed, array A assumes the dimensions
and values of array B. However, if the following statement is
executed instead:

120 MAT A=B (100)

Array A assumes the values of array B, but is still a
one-dimensional array of 100 elements.

Format

MAT arrayname = (expression) [(redimension)]

The value of the expression is assigned to each element of the
array.

If arrayname is a character string array, the expression must be a
character string expression.

If arrayname is a numeric array, the expression must be a numeric
expression. The value of the expression is converted to the type
of arrayname.

If the redimension specification is not given, the dimensions of
the array are not changed.

If the redimension specification is given, the array is

redimensioned to the values specified in the redimension
specification.

Statement Descriptions 185

MAT (Array Assignment) Statement

Example
200 MAT A = (PI/72)

This statements sets each element of the array A to the value
PIz2.

Addition and Subtraction in Numeric Arrays

Format

arraynamel+arrayname2
[(redimension)]

MAT arrayname

or

arraynamel-arrayname2
[(redimension)]

MAT arrayname

Each element of arrayname2 is added to (or subtracted from) the
corresponding element of arrayvnamel and the result is assigned to
the corresponding element of arrayname.

Arrayname, arraynamel, and arrayname2 must all be numeric arrays.
Mixed tvype operations are handled as described in "Mixed Type
Numeric Expressions™ on page 28.

Arraynamel and arrayname2 must have the same number of dimensions
and the same size in each dimension.

If the redimension specification is not given, arrayname is
dynamically redimensioned to the dimensions of arraynamel.

If the redimension specification is given, arrayname is
dynamically redimensioned to the values specified in the
redimension specification.

Example

Assume each member of an array named ARAZ is to be given the sum
of the corresponding members of arrays ARAY and ARAX. The value of
ARAY(1) is to be added to the value of ARAX(1l) and that sum stored
in ARAZ(1), etc., until all of the values of ARAY and ARAX have
been added together and stored in ARAZ. The source program coding
will look like this:

50 OPTION BASE 1
100 DIM ARAX(5),ARAY(5),ARAZ(5)
110 MAT ARAZ = ARAY + ARAX
and execution results are shown in Figure 29 on page 187.
If the function is changed to subtract, by changing line 110:
110 MAT ARAZ = ARAY - ARAX
the five values of ARAX are subtracted from the five values of

ARAY and the differences stored in array ARAZ. Execution results
are shown in Figure 29 on page 187.

186 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

ARAX Values ARAY Values

10 20 15 10 5 25 20 30 40 50

ARAZ—Resulting Addition Values
35 40 45 50 55

ARAZ—Resulting Subtraction Values
15 0 15 30 45

Figure 29. MAT Statement—Addition and Subtraction Example

Matrix Multiplication of Numeric Arrays

Format

MAT arrayname = arravnamel*arrayname2
[(redimension)]

This statement performs the mathematical matrix multiplication of
two numeric arrays and assigns the product to the third numeric
array.

Each element of the result is the dot product of a row of the
first array with a column of the secoind.

The two arrays (arraynamel and arrayname2) must be
two-dimensional. The number of columns of arraynamel must be
equal to the number of rows in arrayname 2.

Remember that the first subscript in a two-dimensional array
indicates the number of rows, and the second the number of
columns.

The result of the matrix multiplication is an array with the same
number of rows as arraynamel and the same number of columns as
arrayname2.

If the redimension specification is given, after assigning the
result to arrayname, arrayname is redimensioned to the values
spaecified in the redimension specification.

Example

Assume ARAX and ARAY contain the values 2, 3, %, 5, 6, 7 and 8, 9,
10, 11, 12, 13, respectively, and that you want place the results

of matrix multiplication in ARAZ. The program coding would look
like this:

50 OPTION BASE 1

100 DIM ARAX (3,2), ARAY(2,3), ARAZ(3,3)
110 MAT ARAZ=ARAXx*ARAY >

Statement Descriptions 187

MAT (Array Assignment) Statement

When these statements are executed, the results are as shown in

Figure 30.
ARAX Values ARAY Values
2 3 8 9 10
4 5 11 12 13
6 7

Resulting ARAZ Values

2x8+3x11 | 2x9+3%12 | 2x10+3%13
49 56 59

4%8+5%11 | 4x9+5%12 | 4X10+5%13
87 96 105

6%8+7X11 | 6X9+47%12 | 6X¥10+7%13
125 138 151

Figure 30. MAT Statement—Matrix Multiplication Example

The MAT statement in Figure 30 is equivalent to the following
nested loops:

110 FOR I=1 T0 3

120 FOR J=1 TO 3

130 ARAZ(I,J)=0

140 FOR K=1 TO 2

150 ARAZ(I,J)=ARAZ(I,J)+ARAX(I,K)I*ARAY(K,J)
160 NEXT K

170 NEXT J

180 NEXT I

scalar Multiplication in Numeric Arrays

Format

MAT arrayname = (expression)¥arraynamel
[(redimension)]

Scalar multiplication is the process where ecach member of an array
(arraynamel) is multiplied by the scalar result of an expression;
that is, by the same number (the scalar multiplier). The results
are stored in the array identified as arrayname.

188 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

Example

100 DIM ARAX (10,5),ARAY(14)
110 MAT ARAX = (2+2)%ARAY

In statement 110, 2+2 is evaluated, giving %; the value of each

member of ARAY is then multiplied by %, and the product is
assigned to the corresponding member of ARAX.

Array concatenation of Character Arrays

Format

MAT arrayname = arravnamel & arrayname2
[(redimension)]

Each element of arrayname2 is concatenated to (joined together
with) the corresponding element of arraynamel and the result is
assigned to the corresponding element of arrayname.

Arrayname, arraynamel, and arrayname2 must all be character
arrays.

Arraynamel and arrayname2 must have the same number of dimensions
and the same size in each dimension.

If the redimension specification is not given, arrayname is
dynamically redimensioned to the dimensions of arraynamel.

If the redimension specification is given, arrayname is

dynamically redimensioned to the values specified in the
redimension specification.

Example
Assume you have two arrays, ARA$ and ARB$, dimensioned 2 X 2, and
that you want to concatenate their values together and place the
result in ARCS$. The program coding will look like this:

100 MAT ARC$ = ARAS$ & ARBS

and the execution results are shown in Figure 31 on page 190.

Statement Descriptions 189

MAT (Array Assignment) Statement

ARAS$ Values ARBS$ Values
abc def WWW XXX
ghi jkl vVvy z2zz
. Resulting ARC$ Values
abcuwww defxxx
ghiyyy jklzzz

Figure 31. MAT Statement—Matrix Concatenation Example

scalar concataenation in Character Arrays

Format

(expression) & arraynamel
[(redimension)]

MAT arrayname

or

MAT arrayname = arraynamel & (expression)
[(redimension)]l

The value of expression is concatenated to (joined together with)
each element of arraynamel and assigned to the corresponding
element of arrayname.

If (expression) precedes arraynamel, the value of (expression) is
concatenated on the left.

If (expression) follows arraynamel, the value of (expression) is
concatanated on the right.

Arrayname and arraynamel must both be character arrays.
Expression must be a character expression.

If¥ the redimension specification is not given, arrayname is
dynamically redimensioned to the dimensions of arraynamel.

If the redimension specification is given, arrayname is
dynamically redimensioned to the values specified in the
redimension specification.

Assume you have an array, ARAS$, dimensioned 2 X 2, and a single
3-character variable DATAS$, and you want to concatenate the value
in DATAS$ to the left of each element in ARA$ and place the result
in ARCS$. The program statement looks like this:

100 MAT ARCS = (DATAS) & ARAS

and execution results are shown in Figure 32 on page 191.

IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

However, if you ivant to concatenate the value in DATAS to the
;;ght of each element in ARAS$, the program statement looks like
188

100 MAT ARC$ = ARAS$ & (DATAS)

and execution results are shown in Figure 32.

ARA$ Values DATAS
abc def mmm
ghi jkl
Concatenation to Left: Concatenation to Right:
Resulting ARC$ Values Resulting ARC$ Values
mmmabc mmmdef abcmmm defmmm
mmmghi mmmjkl ghimmm jkimmm

Figure 32. MAT Statement—Scalar Concatenation Example

If a character string being assigned to an element of ARC$ exceeds
the maximum character length of the ARCS$ element, a string
overflow occurs.

Identity Array Function (IDN)

Format

MAT arrayname = [(expression)*]IDN
{(redimension)]

The identity function, IDN, assigns the value of the expression
(or one, if expression is not specified) to each diagonal array
element (one whose subscripts are equal) and zero to all other
elements.

Arrayname must be a numeric array. Expression must be a numeric
expression.

If the redimension specification is not given, arrayname must be a
two-dimensional array such that the number of rows equals the
number of columns.

If the redimension specification is given, the redimension
specification must specify a two-dimensional array such that the
number of rows equals the number of columns. Arrayname is
redimensioned to the values given in the redimension
specification.

If a scalar-multiplier is used with the identity function, the
value of the expression is assigned to each diagonal array member
(one whose subscripts are equal), and assigns zero to all other
array members.

Statement Descriptions 191

MAT (Array Assignment) Statement

Example

The following statements assign the value 1 to ARAX(1,1),
AR?X(Zéz), ARAX(3,3); all other array members are assigned the
value 0.

50 OPTION BASE 1
100 DIM ARAX(3,3)
110 MAT ARAX = IDN

Execution results are shouwn in Figure 33.

The following statements assign the value of 8 to AA(0,0),
AAC1,1), AA(2,2) and AA(3,3); all other array members are
assigned a value of zero.

100 DIM AA(3,3)
110 MAT AA = (8)XIDN

Execution results are shouwn in Figure 33.

Values in ARAX(3,3) Values in AA(3,3)
1] 0 8 0 0 0
0 1 0 0 8 0 0
] 0 1 0 0 8 0
0 (] 0 8

Figure 33. MAT Statement—IDN Function Examples

Zero Array Function (ZER)

Format

MAT arrayname = ZER [(redimension)l

The ZER function sets the value of each element of the array to
zero.

Arrayname must be a numeric array.

If redimensioning is not specified, the dimensions of arrayname
are unchanged.

xXample

Ig:xfollowing statements apply the value 0 to all elements of

100 DIM ARAX(3,3)
110 MAT ARAX=ZER

Execution results are shown in Figure 34 on page 193.

192 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) statement

ARAX

ocljlojlo o
ojlojo|o
olojlolo
olojleoe|lo

Figure 34. MAT Statement—ZER Function Example

constant Array Function (CON)

Format

MAT arrayname = [(expression)]
CON [(redimension)l

The CON function sets the value of each element to the value of
the expression (or to 1, if expression is not specified).

Arrayname must be a numeric array and expression must be a numeric
expression.

If redimensioning is not specified, the dimensions of arrayname
are unchanged.

Example

100 DIM ARAX (2,2)
110 MAT ARAX=CON

In this example, ARAX is set to all ones, by not specifying a
numeric expression prior to CON.

By replacing line 110 with this assignment statement
110 MAT ARAX=(12)X%CON
all of the values of ARAX become tuwelve.
Note: 110 MAT ARAX=(12)%CON yields the same results as 110 MAT
ARAX=(12)

Null string Array Function (NULS)

Format

MAT arrayname = NUL$ [(redimension)l

The NUL$ function sets the elements of a character array to null
character strings.

Arrayname must be a character array.

Statement Descriptions 193

MAT (Array Assignment) Statement

Example

100 DIM ARAAS (2,2)
110 MAT ARAAS$=NULS

After the MAT statement is executed, ARAAS is still a
two-dimensional array, each element is a null character string.
Note that this yields the same results as:

100 DIM ARAA$(2,2)
110 MAT ARAAS=(™™)

Inverse Array Function (INV)

Format

MAT arrayname = INV(arraynamel) [(redimension)l

The inverse function performs the matrix inverse of one square
numeric array (a two-dimensional array with the same number of
rows as columns) and assigns it to another array.

The inverse of an array is an array such that if the array and its
inverse are multiplied, the result yields an identity matrix.

Note the result of multiplying an array and the result of the INV
function may not exactly equal the identity matrix due to roundoff
and precision restrictions.

The array on the right (arraynamel) must be two dimensional and
square.

Arrayname is dynamically redimensioned to the dimensions of
arraynamel. If a redimension specification is given, after the
assignment, arrayname is dynamically redimensioned to the value
given in the redimension specification.

Not every matrix has an inverse. The inverse of a matrix exists if
the DET function returns a value other than 0. The DET function
can test for an inverse before inverting the array, if the array
is specified as an argument to the DET function, thus checking for
a value other than zero. (See "DETL(A)]I™ on page 39.)

Example

XE:Jfollowing statements assign the inverse of array ARAK to array

100 OPTION BASE 1
110 DIM ARAJ(2,2),ARAK(2,2)
150 MAT ARAJ = INVC(ARAK)

Execution results are shown in Figure 35.

ARAK Values Resulting ARAJ Values
1 1 2 -1
1 2 -1 1

Figure 35. MAT Statement—INV Function Example

194 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

Example

100 DIM ARAAS (2,2)
110 MAT ARAAS$=NULS

After the MAT statement is executed, ARAAS$ is still a
two-dimensional array, each element is a null character string.
Note that this yields the same results as:

100 DIM ARAAS(2,2)
110 MAT ARAAS=("M)

Inverse Array Function (INV)

Format

MAT arrayname = INV(arraynamel) [(redimension)l

The inverse function performs the matrix inverse of one square
numeric array (a two-dimensional array with the same number of
rows as columns) and assigns it to another array.

The inverse of an array is an array such that if the array and its
inverse are multiplied, the result yields an identity matrix.
Note the result of multiplying an array and the result of the INV
function may not exactly equal the identity matrix due to roundoff
and precision restrictions.

The array on the right (arraynamel) must be two dimensional and
square.

Arrayname is dynamically redimensioned to the dimensions of
arraynamel. If a redimension specification is given, after the
assignment, arrayname is dynamically redimensioned to the value
given in the redimension specification.

Not every matrix has an inverse. The inverse of a matrix exists if
the DET function returns a value other than 0. The DET function
can test for an inverse before inverting the array, if the array
is specified as an argument to the DET function, thus checking for
a value other than zero. (See "DETL[(A)I"™ on page 39.)

Example

Xh:Jfollowing statements assign the inverse of array ARAK to array
RAJ:

100 OPTION BASE 1
110 DIM ARAJ(2,2),ARAK(2,2)
150 MAT ARAJ = INV(ARAK)

Execution results are shown in Figure 35.

ARAK Values Resulting ARAJ Values
1 1 2 -1
1 2 -1 1

Figure 35. MAT Statement—INV Function Example

194 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

INV accepts integer or decimal arrays as arguments but always
produces decimal results.

If the argument of the INV function is singular (does not have an

inverse), an exception occurs. If the argument for INV is not a
square matrix, an exception occurs.

Transpose Array Function (TRN)

Format

MAT arrayname = TRN(arraynamel) [(redimension)]

The function TRN transposes an array. The values contained in
column 1 of one array are transferred into row 1 of the other, the
values in column 2 are transferred into row 2, etc.

Arrayname and arraynamel must both be numeric arrays.

Arraynamel must be a two-dimensional array.

Arrayname is redimensioned to be two dimensional with the number
of rows equal to the number of columns in arraynamel and with the
number of columns equal to the number of rows in arraynamel.
After the assignment, if a redimension specification is given,

arrayname is dynamical}y redimensioned to the value specified in
the redimension specification.

Example

The following statements transpose the values of ARAX in ARAY.
100 OPTION BASE 1
110 DIM ARAX(3,4), ARAY(4,3)
120 MAT ARAY = TRHNCARAX)

Execution results are shown in Figure 36 on page 196.

Statement Descriptions 195

MAT (Array Assignment) statement

If ARAX contained the values:

1 10 100 1000
2 20 200 2000
3 30 300 3000

ARAY would contain:

10 20 30
100 200 300
1000 2000 3000

Figure 36. MAT Statement—TRN function Example

Ascending Index Array Function (AIDX)

196

Format

MAT arrayname = AIDX(arraynamel)
[(redimension)]

The AIDX function sorts an array in ascending sequence, and
assigns the index (subscripts) of this sorted sequence to another
array.

Arrayname must be a numeric array. Arraynamel may be a numeric or
a character array.

Arraynamel must be a one-dimensional array (vector).

Arrayname is redimensioned to be a one-dimensional array with the
same number of elements as arravnamel. After the assignment, if a
redimension specification is given, arrayname is dynamically
redimensioned to the values given in the redimension
specification.

The array being indexed, arraynamel, is not changed.

The OPTION BASE setting affects the results of the AIDX function.
Note that the subscripts of the indexed array are the results of
the AIDX function; therefore OPTION BASE setting affects the
results obtained.

Character arrays are indexed according to the collating sequence
specified. Therefore, if arravnamel is a character array, the
OPTION COLLATE settings affect the results.

IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) Statement

Example

The following statements index the elements of ARAA and assign
them to ARAB in ascending sequence:

90 OPTION BASE 1

100 DIM ARAA(4),ARAB(4%)
110 READ MAT ARAA

120 DATA 31,13,46,20

130 MAT ARAB = AIDX(ARAA}

The created index lists the subscripts of the array elements in
ascending order of the values contained within those elements, as
follows: 2, 4, 1, 3, and then stores them in ARAB.

Now, to print the contents of ARAA in ascending order, the
following loop can be specified:

150 FOR I=1 to &
160 PRINT ARAACARAB(I))
170 NEXT I

generating
13
20

31
46

pescending Index (DIDX)

Format

MAT arrayname = DIDX(arraynamel)
[(redimension)]

The DIDX function logically sorts every element in an array in
descending order and assigns the index (subscripts) of this
sorted sequence to another array. This is referred to as a
descending index.

Arravname must be a numeric array. Arraynamel may be a numeric or
a character array.

Arraynamel must be a one-dimensional array (vector).

Arrayname is redimensioned to be a one-dimensioned array with the
same number of elements as arraynamel.

After the assignment, if a redimension specification is given,
arrayname is dynamically redimensioned to the values given in the
redimension specification.

The array being indexed is not changed.

The OPTION BASE setting affects the results of the DIDX function.
Note that the subscripts of the indexed array are the results of
the DIDX function, therefore, OPTION BASE setting affects the
results obtained.

Character arrays are indexed according to the collating sequence

specified. Therefore, the OPTION COLLATE setting affects the
results.

Statement Descriptions 197

MAT (Array Assignment) statement

Example

The follomwing statements index the elements of character array
(ARAS$) and assigns them to ARB% in descending sequence (default
OPTION BASE 0 is in effect):

100 DIM ARA$(4),ARB%(4)

110 MAT READ ARAS

120 DATA EASY, CHARLIE, ABLE, DOG, BAKER
130 MAT ARB% = DIDX(ARAS$)

The index created lists the subscripts of the array elements in
descending order of the values contained within those elements
(0, 3, 1, 4, 2) and stores them in ARBX.

To print the contents of ARBS in descending order, the following
loop may be used:

150 FOR I = 0 to 4
160 PRINT ARA$ (ARB%(I))
170 NEXT I

generating

EASY
DOG
CHARLIE
BAKER
ABLE

sort Array Functions (ASORT, DSORT)

198

Format

MAT arrayname ASORT(arraynamel)

[(redimension)]

or

MAT arrayname = DSORT(arraynamel)
[(redimension)]

The ASORT function sorts character or numeric arrays in ascending
sequence. The DSORT function sorts character or numeric arrays in
descending sequence. The array being sorted is arraynamel.

Character arrays are sorted based on the collate option selected.
See "OPTION Statement™ on page 211.

If arrayname is a character array, arraynamel must be a character
array. If arrayname is a numeric array, arraynamel must be a
numeric array.

Arrayname is redimensioned to the dimensions of arraynamel. The
sorted values are then stored into arrayname such that the
rightmost subscripts vary most rapidly.

After the assignment, if a redimension specification is givgn.
arrayname is dynamically redimensioned to the values given in the
redimension specification.

IBM BASIC Application Programming: Language Reference

Immediate Execution

MAT (Array Assignment) Statement

Example

100 DIM ASC$(3,3),AS5BS$(3,3)
110 MAT ASB$ = ASORT(ASCS)
120 DIM DEC$ (3,3), DEBS$ (3,3)
130 MAT DEB$ = DSORT(DECS)

OPTION COLLATE NATIVE is in effect, therefore, the members of
array ASCS$ are sorted according to the EBCDIC collating sequence
and stored in ascending order in array ASBS.

OPTION COLLATE NATIVE is in effect, therefore, the members of
array DECS$ are sorted according to the EBCDIC collating sequence
and stored in descending order in DEBS.

Note: The EBCDIC collating sequence can be changed to the ASCII
collating sequence if OPTION COLLATE STANDARD is specified.

Example

100 DIM AAC100),BB(100)
110 MAT AA = ASORT(BB)

The members of array BB are sorted in ascending numeric sequence
and stored in ascending order in array AA.

For numeric arguments, the same type argument is returned

(integer, decimal) and the result is then converted to the type of
array to the left of the equal sign.

All forms of the MAT statement may be used in the immediate mode.
Immediate and program variables may be used in expressions, but
scalar expressions cannot refer to functions defined in a
program. Intrinsic functions can be used.

"Immediate Statements” on page 260 gives additional information.

Statement Descriptions 199

NEXT Statement
NEXT STATEMENT

Description

The NEXT statement is the end delimiter of a FOR loop.

Format
NEXT variable

Where:

variable
is a numeric variable, the "control variable™ used in the
corresponding FOR statement.

The FOR and NEXT statements enclose a set of statements which are
executed zero or more times depending on the evaluation of the

expressions associated with the FOR statement. The NEXT statement
must follow its associated FOR statement in line number sequence.

When the NEXT statement is executed, the control variable is
incremented and compared to the final value specified in the FOR.

For complete details, see "Loop Control Statements™ on page 62 and
"FOR Statement™ on page 127.

200 IBM BASIC Application Programming: Language Reference

ON GO TO/GOSUB Statement

ON GO TO/GOSUB STATEMENT

Description

The ON GOTO and ON GOSUB statements conditionally transfer
control to one of a group of statements. ON GOSUB also saves the
return location.

Format

ON numeric expression {GOTO|GOSUB} s[,sl...
{NONE s|ELSE statement]

Where:

numaric expression . .
can be any numeric expression as described in "Numeric
Expressions™ on page 25.

s
is a line number or line label.

statement
is an imperative statement.

The ON GOTO and ON GOSUB statements conditionally transfer
control to one of a series of statements, depending on the value
of a numeric expression.

ggng may also be spelled GO T0; GOSUB may also be spelled GO

The rounded numeric expression is evaluated and its value
determines the element of the line number list to which the GOTO
or GOSUB statement branches.

Example
100 ON ABLE GOTO 120, 130, 140

If ABLE equals 1, the program branches to 120, if ABLE equals 2,
the program branches to 130, if ABLE equals 3, the program
branches to 140.

If the rounded value of the expression is not represented in the
list, an error condition occurs which can be handled by either the
NONE or ELSE clause. If neither the NONE nor the ELSE clause is
present, and the value of the expression is not represented in the
list, an exception occurs.

The NONE clause allows the program to branch to a predetermined
line number or line label when the value of the expression is not
represented in the list.
Example

100 ON I% GOTO 120,130 NONE 980

If I%X equals any value less than one or greater than two, the
program branches to statement 980.

If the line branched to is a nonexecutable statement, control is
pis:ed t% the first executable statement following the specified
statement.

Transfer to a nonexistent line number results in an exception.

Statement Descriptions 201

ON GO TO/GOSUB Statement

202

If ELSE is specified and the value of the expression is not
represented in the list, the imperative statement is executed.
That statement may be any of those shown in Figure 25 on page 149.

Example

100 ON A+B GOTO 120,130 ELSE PRINT "NO TRANSFER"™
110 X = X+Y

If A+B equals any value less than one or greater than two,
the program executes the PRINT statement, and processing
continues with the next statement (110) in sequence.

ON GOTO: unconditionally branches to the line number or line label
in the list.)

ON GOSUB: passes control in the same manner as the ON GOTO
statement, with one exception. The line numbers represent the
first statement of a subroutine and, as with any other subroutine
process, when it is complete (by execution of a RETURN statement
indicating the end of the subroutine) the statement immediately
following the ON GOSUB statement is executed.

Execution of a RETURN statement is the normal completion of an ON
GOSUB statement, in which case program execution is returned to
the statement following the ON GOSUB. However, as described for
the GOSUB and RETURN statements, termination of a program unit or
multiline function (execution of a SUBEXIT or FNEND statement)
deactivates all ON GOSUBs associated with that program unit or
function. See "Subroutine Control Statements™ on page 61.

Example

100 INPUT "ENTER DESIRED ACTION NUMBER™: ACTIONX%
110 gg AC;ION% GOSUB DEBIT, CREDIT, CURRENT_BALANCE%
& NO 50

When the ON GOSUB statement is executed, control is transferred as
follows:

If ACTIONX is: Contreol is transferred to:
1 DEBIT
2 CREDIT
3 CURRENT_BALANCE

If ACTION% contains any other value, control is transferred to
line 500.

IBM BASIC Application Programming: Language Reference

ON condition Statement

ON CONDITION STATEMENT

Description

The ON condition statement indicates the action to be taken when
an exception occurs.

Format

ON condition action

Where:
condition
is one of the following:
ATTN CONV ENDPAGE
ERROR OFLOW PAGEOFLOW
SKEY SOFLOW UFLOW
ZD1V
action
is stated as one of the three options:
IGNORE
GOTO s
SYSTEM
S

is a line number or line label.

The ON Condition statement is an executable statement that, when
executed, establishes what action is to be taken if the program
subsequently generates an exception. Exceptions are grouped
according to which of the following conditions they represent:

ATTN The "attention™ interrupt from a terminal, or its
equivalent has occurred.

CONV An error has occurred during an input/output
operation. The error can be a numeric data conversion
error, or can be due to mismatched record
descriptions.

ENDPAGE A PRINT or PRINT File statement has attempted to start
a new line beyond the limits specified for the current
page. See "MARGIN Statement™ on page 178.

ERROR Is a generalized exception; it applies to any error
condition not specifically stated in this list,

OFLON The condition of numeric overflow has occurred. This
happens when a computed value exceeds the allowed
range.

PAGEOFLOH The same as ENDPAGE.

SKEY One of the PF keys on a 327X terminal, or equivalent,
has been pressed. An SKEY exception can only occur
during the execution of an INPUT, LINE INPUT or INPUT
FIELDS statement when the user responds to the request
for input with a PF key rather than the ENTER key. When
an SKEY exception occurs and causes a transfer of
control, the function KEYNUM returns the number of the
PF key pressed.

Statement Descriptions 203

ON Condition Statement

204

SOFLON

UFLON

ZDIV

ON CONDITION RESPONSES: You may pick one of three actions to occur
when the specified condition happens, as follows:

IGNORE
GOTO s

SYSTEM

A string overflow condition has occurred; that is,
character data has been moved into a field that is too

small to contain it.

The condition of numeric underflow has occurred. This
occurs when the computed value is smaller than the
smallest decimal value allowed.

The condition of division by zero of numeric data has
occurred. Zero raised to a negative power also
produces an exception which is classed as a ZDIV

exception.

Allows processing to continue normally

Causes the indicated transfer of control to a line
label or line number.

Permits a predetermined system-controlled response to

the condition

EXIT clauses referring to the same conditions as those in the ON
override the ON-Condition action.

Whenever an exception causes a transfer of control, the exception
code is available by using the function ERR. The line number of

the statement where the exception occurred is available by using
the LINE intrinsic function.

was pressed

In addition, when an SKEY exception
occurs, the function KEYNUM returns the number of the PF key which

Figure 37 indicates which of the actions may be used with a
particular condition and what they mean.

ON IGNORE GO TO s SYSTEM
ATTN No user message No user message Batch
Continue Transfer control execution:
ignore
Interactive
execution:
stop at the
next
statement.
CONV Not allowed No user message User message
No data transfer Error
Transfer control Stop
ENDPAGE No user message No user message Generate top
or Continue Transfer control of form (if
PAGEQOFLOW upon completion the device
of the or file
input/output allows it)
statement and print
causing the blank lines
ENDPAGE. for top
margin
See "MARGIN
Statement™
on page 178.
ERROR Not allowed No user message User message
No data transfer Error
Transfer control Stop

Figure 37 (Part 1 of 2).

IBM BASIC Application Programming: Language Reference

ON Conditions—Processor Actions

ON Condition Statement

ON IGNORE GO TO s SYSTEM

OFLOW No user message No user message User Message
Replace with No data transfer Replace with
signed INF Transfer control signed INF
See "INF" on See "INF" on
page %2 page 42
Continue Continue

SKEY No user message No user message No user
Continue Transfer control message

Continue

SOFLOW No user message No user message User message
Excess data is No data transfer Error
truncated on Transfer Control Stop
the right
Continue

UFLOW No user message No user message User message
Replace with No data transfer Replace with
zero Transfer control zero
Continue Continue

ZDIV No user message No user message User message
Replace with No data transfer Replace with
signed INF Transfer Control signed INF
See "INF"™ on See "INF"™ on
page 42 page 42
Continue Continue

Figure 37 (Part 2 of 2).

ON Conditions—Processor Actions

Statement Descriptions 205

OPEN Statement
OPEN STATEMENT

The OPEN statement activates a file and specifies access
conditions.

Format

OPEN #fileref:I[NAMEIfileid [file attributes] [errl

Where:

fileref

is a numeric expression which when evaluated and rounded,
must be a positive integer within the range 60 to 255.

fileid

file

err

is a character expression, the value of which contains all of
the information necessary to define the file to the system.
This field is system dependent. See IBM BASIC Application
Programming= System Services for valid entries for your
system.

If the file is a display output file which is to include a
carriage control character at the beginning of each record,
the following field must appear as the final character
values in the character expression:

»DEVICE PRINTER

If the file is a display output file to be listed on a 3800
printer, the following field may appear as the final
character values in the character expression:

»DEVICE 3800

which specifies font control for a 3800 device. It specifies
that a second control character (the first is for carriage
control) is necessary for font control on output, when using
the PRINT File statement for the 3800 device. DEVICE 3800 and
DEVICE PRINTER may both appear, even though DEVICE PRINTER
is then redundant.

Note: Font in this context refers to a collection of type,
all of one size and style, for a printer.

attributes
specify, in any order, file access, type, organization,
position, and record type. The options are:

ACCESS
ORGANIZATION
POINTER
RECORDS

TYPE

These options are described belouw.

can be:
EXIT line-ref
or

IOERR line-ref

206 IBM BASIC Application Programming: Language Reference

OPEN Statement

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and IOERR are mutually exclusive.

Description

The OPEN statement makes an external file available for
processing by the program.

FILEREF: The fileref clause supplies a file reference number by
which the file is referenced in all subsequent input/output
statements for that file; a fileref of 0 refers to the terminal.
An attempt to access a file (except file 0) which has not been
opened results in an exception. File 0 is always open; a request
to open it is ignored.

FILE ATTRIBUTES: The operating conditions for the file are
gef}ned by the file attributes clauses, which are defined as
ollows:

1. File Access: Specifies what input/output operations are
allowed.

Format
[,[ACCESS] {OUTIN|INPUT|OUTPUT}]

a. INPUT specifies that only read operations will be
performed on this file while this OPEN is in effect. No
replacement or deletion is permitted.

For internal format files (including stream files and
DISPLAY filaes), INPUT is the default if no access is
specified.

b. OUTPUT specifies that only write operations will be
performed on this file while this OPEN is in effect.

c. OUTIN specifies that both read and write operations are
valid on the file while this OPEN is in effect. Sequential
files may be extended, but not shortened.

For native format files, OUTIN is the default if no access is
specified.

2. ;jie Type: Specifies the appearance of the records in the
ile.

Format
[,LTYPE] {NATIVE|DISPLAY|INTERNAL}]

a. DISPLAY specifies the file is to be written in the same
format as the data that would have been displayed on a
print output device. That is, each record is a single
character string, consisting of the edited values from
the data list, positioned according to the ’

Statement Descriptions 207

OPEN Statement

specifications. The string is terminated by an
end-of-record.

On output, a carriage control character is prefixed to
each record, if DEVICE PRINTER is specified in the
file-id string, and, if DEVICE 3800 is specified in the
file-id string, a font control character is also prefixed
aftter the carriage control character.

DISPLAY is the default if no file type is specified.

INTERNAL specifies that each record of an internal file
is to be written as a sequence of numeric and string
values. These files are written in internal binary
format, each value preceded by a type byte. Internal
files cannot be edited.

NATIVE specifies that the contents of each record are not
self-defining. The program will format them.

3. File Organization: Specifies the method by which data is
arranged.
Format
[,[ORGANIZATION] {SEQUENTIAL|RELATIVE|KEYED]|STREAM}]

a. SEQUENTIAL specifies that the file can only be accessed
sequentially.

If the organization is not specified, SEQUENTIAL is
assumed.

b. RELATIVE specifies that the file can be accessed through
reference to relative record numbers of records within
that file.

c. KEYED specifies that the file can be accessed through
;9{erence to keys which exist within each record in that

ile.

d. STREAM specifies that the file is a sequential file, each
of whose records contains a single character string or
numeric value.

-0Only certain combinations of type and organization are
allowed as shown in Figure 38.
SEQUENTIAL RELATIVE KEYED STREAM
DISPLAY X
INTERNAL X X
NATIVE X X X

Figure 38. Allowable Combinations of File Type and File

Organization

208 IBM BASIC Application Programming: Language Reference

4.

OPEN Statement

File Pointer: Specifies whether or not the file should be

open

ed so that data may be accessed from the beginning or

added to the end.

Format

L,

[POINTER] {BEGIN]|APPEND|END}1]

For

a.

sequential files:

BEGIN specifies that the file will be opened at its
beginning.

If the pointer clause is omitted, BEGIN is the default for
input files.

APPEND/END specifies that the file will be opened at a
position following the last record in the file.

If the pointer clause is omitted, END is the default for
OUTPUT or OUTIN files.

For relative and keyed files:

a.

b.

BEGIN specifies that the file will be opened at its
beginning.

APPEND/END have no meaning.
Note: Opening an existing file with OUTPUT and BEGIN has

the same effect as a SCRATCH statement. That is, all data
in the file is lost and the file is ready to be created.

File Record Type: Specifies the length attribute of

indi

vidual records in the data file. The attributes are:

Format

L,

[RECORDS]{VARIABLELrec-lengthl|FIXED[rec-lengthl}]

Rec-length is a numeric expression, specifying the actual
or maximum length of each record in the file.

VARIABLE specifies that records of different lengths may
appear on the data file. If not stated, VARIABLE is the
default value.

The lengths of all records in a file can be no longer than
that specified by the rounded integer value of the
rec-length in the record type in the OPEN statement
opening the file. The value of the rec-length must be in
the range 0 to 32756. If no rec-length is specified (which
includes the case where the entire RECORDS clause is
omitted), the default maximum record size depends upon
the file type:

DISPLAY 133
INTERNAL 255
NATIVE 255

"YARIABLE 0" results in a maximum record size of 32756
(thgznis, VARIABLE 0 is treated the same as "VARIABLE
327

Statement Descriptions 209

OPEN Statement

If the record length is omitted and if the file already
exists, for standard system files the record length is
set to the maximum record length presently existing in
the file. Therefore, to write records longer than the
longest record existing in the file, the new maximum
record length must be specified in the OPEN statement.

For VSAM files under the same conditions as above, the
record length is set to the maximum record length defined
fortihe file and records longer than this cannot be
written.

c. FIXED specifies that each record in the file has the same
length as every other record in that file.

The rec-length specifies the actual length of all records
in the file. The rounded integer value of rec-length must
be in the range 1 to the maximum for the system. If no
rec-length is specified, the default fixed record size
depends upon the file type:

DISPLAY 133
INTERNAL 255
NATIVE 255

For fixed length records, if the file already exists and a
record length is specified, it must match the record
length in the file. If the record length is not specified,
the record length existing in the file is used.

ERROR CONDITIONS: An attempt to open a file which has already been
opened results in an error condition. Attempting to open a file
with an invalid file reference number results in an error
condition. These errors can be recovered from, if either the IOERR
clause is provided, or an EXIT err clause is to refer to an EXIT
statement which contains an ICERR clause.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

Example

100 OPEN #2: FILEAS,ACCESS INPUT,TYPE NATIVE,&
& ORGANIZATION SEQUENTIAL,POINTER&
& BEGIN,RECORDS FIXED IOERR 750

The above example opens a native sequential file containing fixed
length records whose length is 255 characters. The file is
positioned at its beginning and can be accessed for input only. If
the open is not successful, control passes to line number 750.

200 OPEN #1060: "PRINT1,DEVICE 38007,0UTPUT

This example opens SEQUENTIAL file 100 as a DISPLAY OUTPUT file,
positioned at the END of the file. The RECORDS in the file are a
maximum 133 characters long, and are VARIABLE in length. Font
control is requested through DEVICE 3800. The following options
are supplied by default:

SEQUENTIAL,DISPLAY,END,VARIABLE 133.

For examples of keyved and relative files, see IBM BASIC
Application Programming: System Services.

210 IBM BASIC Application Programming: Language Reference

OPTION STATEMENT

Description

OPTION Statement

The OPTION statement permits the selection of a variety of options
that can be applied to a program.

Format

OPTION option(, optionl]...

Where:

option
is one of the following keyword phrases:

BASE{0]|1}
COLLATE{NATIVE|STANDARD}
INVP

{SPREC|LPREC}

PRTZ0 nn

RD nn

FLAG{I|WIE|S}
{FIPS|NOFIPS}

All the keyword phrases are discussed belouw.

OPTION statements are used to define certain actions to be taken
when language or data is encountered, either during the
compilation of a program or the execution of the program. Options
may also be stated on a COMPILE or RUN command; however, they are
overridden by any options explicitly stated in an OPTION
statement within the program.

Each option has a default action. Check with your system
administrator for the defaults in effect for your organization.

The OPTION statement is a nonexecutable statement that can be
placed anyuwhere in a program unit and which affects the entire
program unit in which it is specified.

Options may appear in any order, in one or more OPTION statements.
However, any given option may not be redefined within the same
program unit. For example, once an option has been used to set the
collating sequence to STANDARD it cannot be reset to NATIVE in the
same program unit.

If the same option is declared more than once in a program unit,
even if the declarations are redundant, an error message is
printed.

The scope of an option declared by an OPTION statement is the
containing program unit. Options for a subprogram become active
when the subprogram is entered; the options for the calling
program are reactivated when the subprogram is exited.

When a main program terminates normally or abnormally in the
interactive environment, the program's options remain in effect
until the program is edited or vou explicitly reset the options
(for example through an immediate OPTION statement). When
execution is suspended at a breakpoint, the options remain those
of the interrupted program unit.

Immediate mode options may be set with immediate OPTION
statements.

Statement Descriptions 211

OPTION Statement
The options available are:

BASE {013
This option specifies whether or not array dimensions
include elements corresponding to subscripts with a value of
zero. This definition applies whether or not a DIM statement
was used.

In the absence of an OPTION BASE specification, BASE 0
applies.

Arrays may be passed as parameters between subprograms
having different bases, but subscripts obey the base of the
program unit containing them. Because of the possible
confusion different bases could cause, you should usually
use the same base in all related program units.

Example

Main program: 110 OPTION BASE 0
120 DIM A(5,10)
130 ACO0,0)=1
1640 A(5,10)=2
150 CALL SICACG,)
160 END
Subprogram: 200 SUB S1(D(,))
210 OPTION BASE 1
220 PRINT D(1,1)+D(6,11)
230 END SUB

The PRINT statement will print the value 3.

COLLATE {NATIVE|STANDARD}
This option specifies the collating sequence to be used for
the comparison and conversion of character data.

If OPTION COLLATE NATIVE is in effect, the collating
sequence is Extended Binary Coded Decimal (EBCDIC).

If OPTION COLLATE STANDARD is in effect, the collating
sequence is the American National Standard Code for
Information Interchange (ASCII).

If neither is specified, OPTION COLLATE NATIVE is the
default.

Character data is always represented in EBCDIC. OPTION
COLLATE only affects the comparison of character strings
(relational expressions, ASORT, DSORT, AIDX, DIDX) and the
intrinsic functions CHRS and ORD.

(The EBCDIC and ASCII collating sequences are listed in
;App$ndix B. Character Set Collating Sequences™ on page
27.

INVP
INVP (inverted print edit facility) specifies that numeric
values are printed interchanging the usage of the period
(decimal point) and the comma, in order to print in the
normal European format.

When this option is specified, a comma is printed as the
decimal point in a numeric value in place of the period, and
a period is printed in place of the comma when used for
separating triples of a numeric value.

This interchange of period and comma applies to all output
resulting from the execution of a print-type statement,
PRINT or PRINT USING. This includes the commas/periods
within an IMAGE statement and within a PIC in a FORM
statement.

212 IBM BASIC Application Programming: Language Reference

OPTION Statement

If INVP is not present, the standard U.S. specification for
printing of commas and periods (decimal points) applies to
print-type statement output.

Example
Without With

INVP INVP
123,456.78 123.456,78
The INVP option has no effect on the format in which data is

present in the program or on the format in which data must be
entered in response to an INPUT statement.

{SPREC|LPREC}

This option specifies the maximum number of significant
decimal digits to be printed by the PRINT statement (without
the USING clause) when printing decimal values.

SPREC specifies "short"™ precision of 6 digits.

LPREC specifies "long"™ precision of 12 digits.

PRTZO nn

This option specifies the width of zones to be used when
printing. Unless otherwise stated, the width of each print
zone is wide enough to permit printing of explicit point
scaled data items. (See "PRINT Statement™ on page 217.)

This default may be overridden by the use of OPTION PRTZ0 nn,
where nn defines the print zone width. The value assigned to
nn must be in the range:

nn >= the minimum as described above.

nn << the minimum of 255 or the difference between the
right and left margins.

Note: If nn is outside the width range, an error
occurs.

The default value of nn is a parameter supplied during
installation. As distributed, the default is 20.

RD nn

FLAG

This option specifies the number of rounded decimal digits
to be displayed when a PRINT statement (not a PRINT USING
statement) is executed, in lieu of the default action of
suppressing trailing zeros.

nn is in the range of (0 <= nn <= 12). If nn is outside that
range, an error occurs. A decimal value to be printed is
converted and rounded if necessary to nn digits to the right
of the decimal point. Thus if RD 03 is specified, 4.5678 is
printed as 4.568, and if RD 5 is specified, 4.5678 is printed
as 4.56780.

({IIMIE]ISY) ‘
This option determines the level of error messages reported.
Control of the error checking level also exists as an option
to the processor, but OPTION FLAG overrides those supplied
when the processor is invoked.

The levels (in increasing order of severity) are:

I Informative messages

1] WHarning messages

E Error messages
S

Severe error messages

Statement Descriptions 213

OPTION Statement

Immediate Execution

The OPTION FLAG statement specifies that only errors of
levelg %igher than or equal to the indicated level are to be
reported.

{FIPS|NOFIPS)}
This option indicates whether or not the processor should
produce a warning diagnostic for any statement which does
not conform to the FIPS BASIC syntax. Federal Information
Processing Standard (FIPS) BASIC is defined in the
publication Minimal BASIC, FIPS PUB 68. Any program uritten
to conform to FIPS BASIC must conform to the BASIC language
defined in that publication.

OPTION FIPS is negated by OPTION FLAG(WI|E|S), which direct
the system to withhold the display of informational
diagnostic messages (which is what the FIPS messages are).

The OPTION statement may be used in immediate mode with all of the
parameters allowed in a program. However, immediate options obey
di fferent rules.

FIPS/NOFIPS AND FLAG OPTIONS: FIPS/NOFIPS and FLAG options are
treated differently in immediate mode than they are when used in a
program. In immediate mode, they temporarily change the state of
interactive IBM BASIC so that it produces the indicated error
messages. BASIC remains in this state until:

1. A contradictory immediate OPTION statement is executed.
2. An INITIALIZE command is executed.
For example,

OPTION FIPS
causes checking of all statements entered from the terminal and by
LOAD or MERGE commands for deviations from the FIPS BASIC
Standard.
When used in a program these options control the error messages
produced when the program is compiled, either with the COMPILE
command or as a batch compilation.
OTHER OPTIONS: All other immediate options (BASE, COLLATE, INVP,
LPREC/SPREC, PRTZ0, RD) have their normal meanings with the
following restrictions:

1. The duration of these options is the same as immediate
variables. They last until:

] The workspace is edited
. The next RUN command is executed
. The next COMPILE command is executed
. The next DROP (all) command is executed
2. Immediate options cannot be entered while at a breakpoint.
Immediate options must agree with the options being used by

the current program unit. Thus they are the same as the
options which are implicitly in effect at that breakpoint.

214 IBM BASIC Application Programming: Language Reference

OPTION Statement

3. OPTION BASE cannot contradict the base (0 or 1) of any
existing immediate arrays (immediate arrays within scope when
the OPTION BASE immediate statement is entered) (scope is
defined in "Variables and Arrays and Immediate Statements™ on

page 261). If vou want to change the base, you must DROP
existing arrays.

"Immediate Statements™ on page 260 gives additional information.

Statement Descriptions 215

- PAUSE Statement
PAUSE STATEMENT

Description

In the interactive mode, the PAUSE statement halts execution of
the program in which it appears. The statement is ignored during
batch mode operation.

Format

PAUSE [pause-messagel

Where:

pause-message
is an optional character expression.

When the PAUSE statement is processed, program execution is
halted.

The pause message, when specified, is displayed just prior to
program interruption. If the pause message is omitted, the
following message displays automatically: ’

PAUSE AT LINE line-number
and displaying the program line where execution stopped.
Example

220 PAUSE "COMPARE FAILED"™

When statement 220 is executed, the program halts and the
following message is displaved at the user's terminal:

COMPARE FAILED

To resume execution of the interrupted program, the user enters
either a null line or the G0 command.

216 IIBM BASIC Application Programming: Language Reference

PRINT Statement
PRINT STATEMENT
The PRINT statement displays data at the terminal.

Format

[MAT] PRINT [USING line-ref:]
[output-list] [err,lerrl...]

Where:

line-ref
is the line number or line label of an IMAGE or FORM
statement, or a character expression which contains an IMAGE
or FORM specification.

output-list
is a list of constants, variables, array elements,
expressions (numeric and character), and array names (array
names can only appear prefaced with the keyword MAT, either
at the beginning of the statement or immediately preceding
each array name).
List elements are separated by commas or semicolons. The
keywords TAB (followed by a numeric expression in
parentheses), PAGE, and NEWPAGE may be used in the list.
If the output list is omitted, a blank line is printed.

err
is one of the following:

EXIT line-ref
CONV line-ref
I0ERR line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other err clauses are mutually exclusive.

The colon after line-ref may be omitted if it would be the last
nonblank character on the line.

Example
150 PRINT USING 180:

and
150 PRINT USING 180

are equivalent.

Statement Descriptions 217

PRINT Statement

General Description

The PRINT statement is used in three different ways to display
data at the terminal:

. PRINT with no USING clause
J PRINT with the USING IMAGE clause
. PRINT with the USING FORM clause

All three formats deal with the concepts of the limits of the
output line, the print zone, and separators.

QUTPUT LINE: The output line is first limited to the size of a
line as defined by the system, and may be further limited by the
left and right margins of the line.

The MARGIN statement can be used to specify these values, and, in
effect, determine where output can begin and end on a line. (See
"MARGIN Statement™ on page 178.)

PRINT ZOHE: The print zone is the number of positions allocated
for printing data items; this is an installation parameter. As
distributed by IBM, the default value is 20, a value sufficiently
large to allow printing of floating point scaled data items in
long precision format.

A different print zone value may be assigned by an OPTION PRTZ0
statement.

The print zone is constant throughout a program unit and must not
be less than 13 for short precision or 19 for long precision. (It
should be noted that character items are not limited to 20
positions; if larger, they will extend into new print zones).

SEPARATORS: The separators are the comma (,) and semicolon (;).
The items of an output-list must be separated by commas or
semicolons; the last item may be followed by a comma or a
semicolon.

In general, a comma indicates that the current print position
should be advanced to the next print zone.

If a comma appears when the print position is in the last print
zone on a line, an end of line is generated.

In general, a semicolon indicates that the next printed value will
appear in the position immediately following the last printed
value.

Specific usages of the comma and semicolon are explained under
each of the three PRINT formats below. They are summarized in
Figure 39 on page 219.

MAT KEYHORD: The MAT keyword preceding the PRINT keyword
specifies that the output-list consists only of arravs; the MAT
kevword is then unnecessary in the output-list. See "Input/Output
Lists™ on page 70 for more information.

ERROR CONDITIONS: All three formats of the PRINT statement may
employ the err clause to process CONV, SOFLOW, and I0ERR
conditions.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

218 IBM BASIC Application Programming: Language Reference

PRINT Statement

1.

PRINT without IMAGE or FORM
CHARACTER TRAILING IMBEDDED
’ same line, same line,
next print zone next print zone
H same line, same line,
next character next character
no , or ; next line arror

PRINT with IMAGE or FORM where USING clause is
exhausted (Reuse IMAGE/FORM)

CHARACTER TRAILING IMBEDDED
» same line, new line
next print zone
; same line, same line,
next position next position
no , or ; next line error

PRINT with IMAGE or FORM where USING clause is
not exhausted.

CHARACTER TRAILING IMBEDDED

’ same line, same line,
next print zone next position

; same line, same line,
next position next position
no , or ; next line error

Figure 39. PRINT Statement—Comma and Semicolon Separator Usage

PRINT without USING Clause

When the USING clause is not specified in the PRINT statement,
printed output is under control of the following factors:

The line size dfctated by the terminal
The current settings of the margins

The width of a print zone

The separators in the output list

The content and precision of numeric data

The length of character data

The current setting of the margins can be controlled by the MARGIN
statement. See "MARGIN Statement™ on page 178.

The width of the print zone can be controlled by the OPTION PRTZ0
statement. See "OPTION Statement™ on page 211.

Statement Descriptions 219

PRINT Statement
SEPARATORS : When an imbedded or trailing comma appears in the
output-list, the current line position is advanced to the next
print zone.

When an imbedded or trailing semicolon appears, the next printed
value appears immediately following the last printed value.

If neither appears, new data is displaved on the next line.

PRINT ZONE: The current length of a character string determines
how many characters will print.)

All numeric values are displayed in one of three forms:

implicit unscaled sd...d

explicit unscaled sd...drd...d
explicit scaled sd...drd...dEsdd
where:

d is a decimal digit
r is a decimal point
s is an optional sign
E

is the character E

Which of the three forms is used for a numeric value depends in
part on the value w assignhed by the OPTION statement:

. wis 6 if OPTION SPREC is in effect
. wis 12 if OPTION LPREC is in effect

Each number which can be represented exactly as an integer with u
or fewer decimal digits is displaved using the implicit unscaled
representation.

All other numbers are displayved in one of the two explicit forms:

. Numbers which can be represented with w or fewer digits in the
explicit unscaled form no less accurately than they could be
in the explicit scaled forms are displayed in the unscaled
form.

L Numbers which cannot be represented with w or fewer digits in
the explicit unscaled form as accurately as they can be in the
explicit scaled forms are displayed in the scaled forms.

A printed numeric value is always separated from the next value on
the line by a space, regardless of the separators in the
output-list. If the number is positive, a space is printed in the
first position; if the number is negative, a minus sign is printed
in the first position. A plus sign or minus sign, as appropriate,
is always printed before the E in explicit scaled form.

Data displaved in the last print zone of a line causes an advance
to the next line.

If a character data item will not fit on the current line and the
character data item is not the first item in the current line, the
character data item is printed at the beginning of the next line.

If a character data item is the first item in the current line and
the character data item is longer than the line, it is split into
line length portions and printed on successive lines until the
total length is printed.

The TAB clause sets the columnar position of the current line,

prior to printing the next item. The numeric expression specified
by the TAB is first evaluated and rounded to the nearest integer

220 IBM BASIC Application Programming: Language Reference

PRINT Statement

n. If nis less than 1, a warning message is produced, and n
defaults to 1.

If n is not less than one, the columnar position is set to the
value:

left + MOD (n-1, right-left +1)

where left and right are the left and right margins, and MOD is
the MOD intrinsic function. If n specifies a position prior to the
current position in the line, the current line is written and n
sets the position in the next line. This has the following
"wraparound™ effect, assuming that left=1 and right=80:

n line position
1 1

10 10

80 80

81 1

The NEWPAGE or PAGE clause clears a terminal screen, or restores a
hard copy terminal to a new page, and then resets the current
print zone to the leftmost print zone. The action of the NEWPAGE
clause occurs at the point in the output list where the keyword
appears; therefore, if used other than as the first item in an
outpu} list, NEWPAGE clears the display of the previous items. For
example:

PRINT A,B,NEWPAGE,C

results in only the value of C being displayed. The simple
statement PRINT NEWPAGE can be used to clear the screen.

When PRINT without USING refers to array data, the following
applies:

1. Each array is started on a new line and is printed with the
rightmost subscripts varyving most rapidly.

2. Repetitions of the rightmost subscript's range begin at the
start of a new line, and are separated from the preceding line
by a single blank line.

3. After the final repetition of the rightmost subscript's range
has been printed, a blank line is generated, and the terminal
is repositioned to a new print line.

Within each line the separation of values is controlled by the
delimiter following the array name.

A single dimensional array prints as a column vector.

PRINT With USING IMAGE Clause

When the USING IMAGE clause is present on the PRINT statement, the
printed output is under control of these factors:

. The line size dictated by the terminal

. The current settings of the margins

. The use of commas and semicolons in the output list
. The number of data items in the output list

. The image defined by the USING clause

The current setting of the margins can be controlled by the MARGIN
statement. See "MARGIN Statement™ on page 178.

Statement Descriptions 221

PRINT Statement

OUTPUT-LIST—SCALAR ITEMS: Each scalar reference in the
output-list is edited into that portion of a line as directed by
the IMAGE. The first position is determined by the left margin,
and the last position cannot be beyond the right margin.

If the output-list contains at least one item, there must be at
least one conversion specification in the referenced IMAGE
clause.

If the output list contains no items and the IMAGE contains no
characters, a blank line is printed.

If the output list contains no items and the IMAGE contains
characters, the IMAGE is printed, up to the first unused
conversion specification.

If the number of scalar references in the output list is less than
the numbaer of conversion specifications in the IMAGE, the output
image is ended at the first unused conversion specification and
the remainder of the IMAGE is ignored.

If the number of scalar references in the output list exceeds the
number of conversion specifications in the IMAGE, and if the
scalar reference using the last specification is followed by:

° A semicolon, the IMAGE is reused from its beginning for the
remaining scalar references, in the next position of the
current print line.

. A comma, the current line is printed and the IMAGE is reused
for the remaining scalar references on the next print line.

If the number of scalar references in the output-list does not
exceed the number of conversion specifications in the IMAGE, and
the last scalar reference is followed by:

o A semicolon, the next output from a PRINT statement is begun
at the next position of the current line.

° A comma, the next output is begun in the next print zone of
the current line.

If the last scalar reference is not followed by either a comma or
a semicolon, the current line is ended and the next PRINT
statement output is on the next line.

OUTPUT-LIST—ARRAY ITEMS: When an array appears in the
output-list, the beginning of the array is started on a new line
to separate the output from the preceding line. The array elements
are printed with the rightmost subscript varying most rapidly.
Completion of the range of the rightmost subscript, forces the end
of the current line, generation of a blank line, and reuse of the
IMAGE on a new line. After the last iteration of the rightmost
range is printed, a blank line is written and the position is
reset to the beginning of the next line.

If the number of array members in the range of the rightmost
subscript exceeds the number of conversion specifications in the
IMAGE, the IMAGE is reused. In this case, if the array name in the
output list is followed by:

° A semicolon, each reuse of the IMAGE is on the same line.

° A comma, each reuse of the IMAGE is on a new line.

If the number of rightmost range members is less than the number
of conversion specifications, the line is terminated at the first
unused conversion specification.

Single dimension arrays (vectors) are displayved as a column.

222 IBM BASIC Application Programming: Language Reference

PRINT Statement

For scalars mixed with arrays in the output list, each consecutive
set of scalars causes the set of scalar values to be printed at
the start of a line, from the beginning of the IMAGE.

Example

110 OPTION BASE 1

120 DIM A(2,2),B(3)

130 MAT A=(1l)

140 MAT B=(2)

150 PRINT USING 160:MAT A,3,4,MAT B,5,6,7,8,9
l60 :_&__% _8&_#

The above example produces the following output:

PRINT with USING FORM Clause

When the USING FORM clause is present on the PRINT statement, the
printed output is under control of these factors:

. The line size dictated by the terminal

. The current settings of the margins

. The use of semicolons and commas in the output list
e The number of items in the output list

. The FORM definition

The current setting of the margins can be controlled by the MARGIN
statement. See "MARGIN Statement™ on page 178.

At the beginning ef the construction of the print record, the
entire record contains blanks. Individual data fields are
superimposed over these blanks, according to the data form and
control specifications of the FORM specification. Each item of
the output list is matched against the corresponding data form
specification, converted if necessary to the form and length
indicated, and placed in the position specified by the control
specifications.

If the number of items in the output-list is less than or equal to
the number of data form specifications in the FORM specification,
any control specifications immediately following the last data
form specification used are also used.

If the number of items in the output-list exceeds the number of
data form specifications, any trailing control specifications are
used, and then the FORM is reused from its beginning.

A valid PAGE control specification always causes the output of the
current line.

Except for SKIP 0, a valid SKIP control specification causes the
output of the current line.

Statement Descriptions 223

PRINT Statement

If the output-list has been exhausted, the current line is output
unless the list ends with:

. A comma, which positions the line to the next print zone.

° A semicolon, which positions the line to the next print
position.

If the output-list is not exhausted (that is, the FORM is to be
reused):

. A comma after the last item processed in the output list
writes the current line.

. A semicolon after the last item processed in the output list
positions the line to the next position.

If the position of a value to be displaved will start beyond the
right margin, the current line is written.

If the display of a value is begun but cannot be completed within
the right margin, the line with that portion of the value is
printed, and the remainder of the value begins on the next line.

In all cases, after an output line is displayed, the line position
is reset to the initial position of the next line.

Print-associated FORM statements may specify the control
specifications X, P0S, SKIP, and PAGE, and the data form
specifications C, N, V, and PIC. See "FORM Statement™ on page 129.

Immediate Execution

The PRINT statement can be used to display the values of variables
and arrays created by the program or by other immediate
statements.

All features of the PRINT statement may be used with the following
restrictions:

. The USING clause, if any, cannot refer to an IMAGE or FORM
statement in the workspace. It must be a character
expression.

. The err clauses (EXIT, CONVY, IOERR, SOFLOW) are not allowed,

because such clauses refer to program line numbers or
statement labels in the workspace.

224 IBM BASIC Application Programming: Language Reference

PRINT FIELDS Statement
PRINT FIELDS STATEMENT (FOR FULL SCREEN TERMINAL DISPLAY)

The PRINT FIELDS statement displays one or more data values on a
display terminal screen in the specified screen field(s).

Format

PRINT [#filerefl,1) FIELDS field-definition:
output-list [;] [errl,errl...]

Where:

fileref .
is a numeric expression whose rounded integer value
evaluates to zero.

field-definition
can beae:

character expression
or
MAT character array name

Each character expression or character array name must
evaluate to:

"row, columnl,[data-formll,[leadingll,trailinglll™
Where:

rou
is a positive nonzero integer, specifying the row of
the display

column
is a positive nonzero integer, specifying the first
column of the display

data-form
gaz be one of the data forms shown in Figure 40 on page
26.

leading
are display attributes for the print field

trailing
are display attributes for the positions between the
print field and the next field.

Display attributes that have meaning to IBM BASIC are:
highlighted

invisible (not displayed)

N
normal intensity

Note: For ease of migration from other BASIC products, B, R,
and U are also accepted and treated as N (normal intensity).
Multiple attribute characters may be specified. Unrecognized
characters are ignored. If I is specified, it overrides H and
N. H overrides N. N is the default.

Statement Descriptions 225

PRINT FIELDS Statement

Data Form Meaning

W Length of aata item.

Ciul Character data.

VInl Character data.

Nul.dl Conversion of numeric data to character data.
GIWI.dIl Represents either character data or conversion of

numeric data to character data, depending upon
whethgr the type of the data is character or
numeric.

PIC(sIs]l...[=~=[-...1Itrll]) Picture of data item

Where:

W
is an unsigned, nonzero integer constant, which may be preceded with
blanks.

d
is an unsigned, integer constant.

s
is a digit specifier (#, Z, %, $, +, or =), or an insertion character (a
comma (,), solidus (/), blank (B), or decimal point (.).

-
is an exponent specifier, where three or more (-~) characters are shoun.
(Can also be specified as the circumflex character.)

tr

is a trailing character, that is, a trailing plus (+), trailing minus (-),
trailing credit (CR), or either form of trailing debit (DB or DR).

Note: The total length of w, in characters, can be from 1 through (screen-width
- number-of-attributes) for character data, or 1 through 156 for numeric data.
If w (or w.d) is omitted, the length is 1 character.

Whera:

screen-size
is the total number of characters on the screen

number-of-attributes
183

0 if neither leading nor trailing attributes are specified.

1 if a leading attribute or a trailing attribute (but not both) is
specified.

2 if both leading and trailing attributes are specified.

Figure 40. PRINT FIELDS Statement—Data Form Codes

output-list
is a list of zero or more constants, variables, array
elements, expressions (numeric and character), and/or entire
arrays (prefaced with MAT). List elements are separated by
commas.

226 IBM BASIC Application Programming: Language Reference

Description

PRINT FIELDS Statement

err
can be one of the following:

EXIT line-ref
CONV line-ref
I0ERR line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

Ah-EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

When the PRINT FIELDS statement is executed, the data defined in
the output-list is displaved on the terminal screen in the
positions specified by the field-definition.

If the terminal does not have a screen, an I0OERR exception occurs.
(See "Full Screen Input/Output Statements™ on page 73.)

FILEREF: The fileref is a numeric expression that should, when
rounded to an integer, evaluate to zero; if it does not, an I0ERR
exception occurs. The standard system action is to replace the
value with zero.

FIELD-DEFINITION: A field-definition entry can be a character
expression or MAT character array name:

e If a field-definition entry is a character expression, it
defines one print field, and only one item can be displayed.

. If a field-definition entry is MAT character array name, it
can define one or more print fields. In this case, the
field-definition entry must be a one dimensional array; the
field-definition entries within the array need not match the
order of the fields on the screen.

If an array is specified for a field-definition entry, the number
of fields is the number of output-list items, not the number of
elements in the array. The number of elements in the array can
exceed the number of output-list items; any extra array elements
a;e ngored. However, all of the array elements are syntax
checked.

Row and column are positive, nonzero integers that specify the

starting location of the field. Row 1, column 1 is the upper
left-hand corner of the screen. If row or column is greater than
the dimensions of the screen, an exception occurs.

The data-form specifies the number of characters in the screen
field, that is, the length of the screen field. A field that
extends beyond the rightmost column is continued starting in
column 1 of the next row, the bottom row continuing in the top rouw
of the screen.

If the data-form specification is omitted, the length of the field
15°%

L fgr character items, the character length of the output-list
item

° For numeric items, the length of the output-list item if it
was printed by a PRINT statement without the USING clause

Statement Descriptions 227

PRINT FIELDS Statement

For the C, V, and G data forms, the length of the field (W or w.d)
may be omitted from the data-form specification. If the length is
omitted, the field is one character long.

If the data-form definition includes a length specification, the
data is displayed as follous:

. Character strings are left-justified in the field with blanks
padded on the right. If the string length is greater than the
field length, a string overflow exception occurs.

L Numeric values are displayed according to the rules for the
data-form specified as shown in Figure 40 on page 226. If the
field size is smaller than the expression value, asterisks
fill the field and an exception occurs.

Display Attributes specify how the display is treated.

Leading Display Attributes specify how the print field is to
display on the screen. If specified, the leading attribute
occupies one character position on the screen, preceding the
field.

Trailing Display Attributes specify how the positions betuween the
print field and the next field are to display. If specified, the
trailing attribute occupies one character position on the screen,
following the field.

The location of the trailing display attribute for one field can
overlap with the leading display attribute of the following
field. If leading and trailing attributes overlap, the last
attribute written to the screen is the one in effect.

The default display attribute is N; all other attributes override
it. The I attribute overrides all other display attributes.

A set of leading or trailing attributes should not be separated by
commas; the comma specifies the beginning and ending of each
leading or trailing list.

The attributes can be entered in any order.

OUTPUT=-LIST: The output-list can be omitted; if it is omitted,
nothing is displaved.

If the output-list entry is not an array name, only one item of
data can be displaved for that entry.

If the output-list entry is an array name, items are taken from
the list on a row-by-row basis and displayed on the screen as
specified by the field-definition.

OPTIONAL SEMICOLON: The optional semicolon after the output-list
indicates that the display field should be saved, but not
displayed on the screen until one of the following occurs:

L A PRINT FIELDS without a semicolon is executed

. Any other input/output statement which accesses the screen is
executed (PRINT, INPUT, INPUT FIELDS, etc.)

. Some external stimulus (external to BASIC) causes the screen
display to change, for example, pressing the CLEAR key.

ERROR CONDITIONS: If a string overflow occurs, the SOFLOW
exception occurs. If a numeric conversion cannot be performed as
required, the CONV exception occurs. If a hardware malfunction
prevents completion of the display, the IOERR exception occurs.

These exceptions can be recovered from, if the CONV, IOERR, or

SOFLOW clauses are specified, or if an EXIT clause refers to an
EXIT statement that contains these clauses.

228 IBM BASIC Application Programming: Language Reference

PRINT FIELDS Statement

The 170 error conditions interact with the ON Condition statement
as described in "Exception Handling in I/0 Statements™ on page 84.

Example 1
100 PRINT FIELDS ™10,12,C 15" :PASSWORD$

Displays the value of PASSWORDS on the terminal screen, beginning

at row 10, column 12. If the data in PASSWORDS is less than 15

gb?;agters in length, the balance of the specified area is space
illed.

Example 2

100 A$ = m22,1,C 3"
110 PRINT FIELDS A$: MAGE"

Prints AGE at location row 22, beginning at column 1.

Example 3

130 DATA "10,10,C10,H" , ™12,20,C10",¢&
& "14,20,C10"™, ™16,20,C20,N"
140 MAT READ A$

180 PRINT FIELDS MAT A$: "NAME", "ADDRESS™, "CITY",&
& "STATE, ADDRESS-CODE"™

This PRINT FIELDS statement prints four fields according to the
field-definitions specified in array A$. See Example 3 in "INPUT
FIELDS Statement (For Full Screen Terminal Input)™ on page 161 for
the program in which this statement is used.

Statement Descriptions 229

PRINT File statement (For Display Format Files)
PRINT FILE STATEMENT (FOR DISPLAY FORMAT FILES)
The PRINT File statement transmits data to a display format file.

Format

[MAT] PRINT #fileref [[,JUSING line-refl
[L[,]FONT expression]: [output-listl
lerrl,errl...]

Wherea:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255 and
which identifies the file to be processed.

line-ref
is the line number or line label of an IMAGE or FORM

statement, or a character expression which contains a FORM
or an image.

expression
is a numeric expression With a rounded integer value of 1 to
6.

Note: The fileref, USING, and FONT clauses may occur in any
sequence.
output-list

is a list of constants, variables, array elements,

expressions (numeric and character), and entire arrays

(prefaced with MAT). List elements are separated by commas

or semicolons. The keywords TAB (followed by a numeric

:zpressgon in parentheses), PAGE, and NEWPAGE may be used in
e list.

err
is one of the following:

EXIT line-ref
ENDPAGE line-ref
PAGEOFLOW line-ref
EOF line-ref

IOERR line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The colon may be omitted if it would be the last nonblank
character on the line.

230 IBM BASIC Application Programming: Language Reference

Description

PRINT File Statement (For Display Format Files)

Example
100 PRINT #1:

and
100 PRINT #1

are equivalent, and result in a blank record.

When used as a file statement, the PRINT statement must refer to a
file having display format. If DEVICE PRINTER or DEVICE 3800 is
spaecified in the file-id of the OPEN statement, each output record
is prefixed with a carriage control character. If DEVICE 3800 is
specified, a font control character is prefixed after the
carriage control character.

MAT KEYKRORD: The MAT keyword preceding the PRINT keyword
spacifies that the output-list consists only of arrays; the MAT
keyword is then unnecessary in the output-list. See "Input/Output
Lists™ on page 70 for more information.

FILEREF: The fileref must refer to a display format file. (See
"Combinations of File Organization and Format™ on page 57.)

USING CLAUSE: The IMAGE and FORM statement considerations for a
PRINT File statement are exactly the same as for a PRINT
statement. See "PRINT Statement™ on page 217.

FONT CLAUSE: The FONT clause is used in conjunction with the
DEVICE 3800 clause in the fileid of the OPEN statement to specify
which font on the 3800 printer is to be used.

OUTPUT-LIST: The output-list is a set of items separated by commas
or semicolons. The list may include the TAB and NEWPAGE clauses,
if no USING clause is present:

TAB(e) where e is a numeric expression
[NEWIPAGE

Uf? of the TAB clause is explained in "PRINT Statement™ on page
217.

Use of PAGE or NEWPAGE forces the beginning of a new record, with
a carriage control character for page eject. If PAGE or NEWPAGE is
specified and the file is not opened as DEVICE PRINTER or DEVICE
3800 (see "OPEN Statement™ on page 206), an exception is
generated. The SYSTEM action for this exception is a warning
message.

ERROR CONDITIONS: The error conditions I0OERR, CONV, and SOFLOW,
as well as the EXIT reference, function exactly as they do for the
PRINT statement. See "PRINT Statement™ on page 217.

The EOF condition, which occurs if there is not enough room on the
filg for a record, may be recoverable if it is included as an err
condition.

The ENDPAGE (or PAGEOFLOW) condition occurs if the PRINT File
attempts to start a new line bevond the bottom margin. (See
"MARGIN Statement™ on page 178.)

A PRINT File statement with fileref 0 is equivalent to a PRINT to
the terminal. The EOF and ENDPAGE conditions have no meaning in
this case. If specified, they are ignored.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I70 Statements™ on page 84.

Statement Descriptions 231

PUT File Statement
PUT FILE STATEMENT

Description

The PUT File statement places values in a stream file.

Format

[MAT] PUT $#fileref : output-list
[errl,errll

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 1 to 255, and
which identifies tha file to be processed.

output-list
is an output list of items separated by commas.

err
is one of the following:

EXIT line-ref
EOF line-ref
IOERR line-ref

line-ref
is a@a line number or line label.

The EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other err cléuses are mutually exclusive.

The PUT statement writes the values specified by the items in the
output list into a stream file. Both character and numeric values
are stored in internal format and are preceded by an identifying
byte. Values from arrays are written with the rightmost
subscripts varving most rapidly.

MAT KEYHORD: The MAT kevword preceding the PUT keyword specifies
that the output-list consists only of arrays; the MAT kevuword is
then unnecessary in the output-list. See "Input/Output Lists"™ on
page 70 for more information.

FILEREF: The fileref must refer to a stream file. (See
"Combinations of File Organization and Format™ on page 57.)

ERROR CONDITIONS: If values remain to be written on the file but,
sp@c: for the file is exhausted, an EOF (end-of-file) condition
exists.

If a hardware malfunction or other condition prevents the PUT
statement from completing execution, an I0OERR condition exists.
Examples of IOERR are: attempting to execute a PUT statement on a
file opened for INPUT, or on a fileref 0.

Both EOF and I0ERR conditions may be recoverable if the
corresponding err clause is used in the PUT statement or in a
referenced EXIT statement.

The error clauses interact with the ON condition statement as
described in "Exception Handling in 170 Statements™ on page 84%.

232 IBM BASIC Application Programming: Language Reference

PUT File Statement
Example

100 PUT #12: A_NUMBER#,A_STRINGS EXIT 200
200 EXIT IOERR 900,EOF 1000

The above PUT statement adds a numeric and a string value to the
stream file associated with file reference number 12. IOERR

conditions are handled at line number 900, and EOF conditions at
line number 1000.

Statement Descriptions 233

RANDOMIZE Statement
RANDOMIZE STATEMENT

The RANDOMIZE statement generates a new starting point for the
list of pseudorandom numbers used by the RND function.

Format
RANDOMIZE

Description

RANDOMIZE establishes a new seed value for the intrinsic RND
function, much the same as the RND(x) version of the function sets
a new seed. The difference is that the RANDOMIZE seed is random,
that is, unpredictable.

Immediate Execution

The immediate RANDOMIZE statement operates with the same
restrictions and capabilities as the nonimmediate RANDOMIZE
statement, as described above.

234 IBM BASIC Application Programming: Language Reference

READ STATEMENT

Description

READ Statement

The READ statement retrieves the internal data files created by
DATA statements.

Format

[MAT] READ input-list [errl,errll]

Where:

input-list
is an input list of items separated by commas.

err
is one of the following:

EXIT line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

When a READ statement is executed, successive values are assigned
from the internal data file to the items in the input list. If all
of the values of the data file have been used and unassigned items
remain in the input list of a READ, an exception occurs; however,
a RESTORE statement can be used to reset the pointer to the
beginning of the data file.

See also "DATA Statement™ on page 105.

MAT KEYHORD: The MAT keyword preceding the READ keyuword specifies
that the input-list consists only of arrays; the MAT keyword is
then unnecessary in the input-list.

See "Input/Output Lists™ on page 70 for more information.

INPUT-LIST: The input-list can consist of character or numeric
variables or arrays.

The length of a character variable is set to the length of the
character data assigned to it; a string overflow occurs if the
lengthlof the data exceeds the maximum length of the character
variable.

Numeric variables must be assigned numeric values. If a numeric
value exceeds the defined maximum of its corresponding data type,
numeric overflow occurs (OFLOW). If the numeric value is less than
the defined minimum, then numeric underflow occurs (UFLOW).

References to entire arrays (MAT) in the input list are assigned
from the data file with the rightmost subscript varying most
rapidly, starting at the current data file position. If optional
expressions follow the array names, the rounded integer portion
of the expressions is used to redimension the arrays before the
values are assigned.

Statement Descriptions 235

READ Statement

ERROR CONDITIONS: Conversion and string overflow errors may be

recovered from if the appropriate err clause is included in the
READ statement or a referenced EXIT statement. Numeric overflow
and underflow can be handled by the ON Condition statement.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/70 Statements™ on page 8%4.

Example

90 OPTION BASE 1
100 DATA ABCD,123.4,2,4,"XYZ",7%"ZZZ"
200 READ AS,B#
300 DIM Z$(10,10)%3
400 READ PX%,Q%,MAT Z$(P%,Q%)

In the above example, the first READ assigns the value "ABCD" to
A$ and 123.4 to B#. The second READ first assigns the value 2 to
P% and ¢ to Q%; the array Z$ is redimensioned to eight members and
assigned the remaining values XYZ, and 7 repetitions of ZZZ, in
the data file.

236 IBM BASIC Application Programming: Language Reference

READ FILE Statement
READ FILE STATEMENT

The READ File statement retrieves records from native and
internal files.

Format 1 (native files)

[MAT] READ #fileref [,JUSING line-ref
[[,]pos]:
input-list [err [,errl...]

Format 2 (internal files)

[MAT] READ #fileref: input-list [,SKIP RESTI
[errl,errl...]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 1 to 255 and
which identifies the file to be processed.

line-ref
is the line number or line label of a FORM statement, or a
character expression containing a FORM.

poOsS
is one of the following:

KEY [rell character expression
SEARCH [rell] character expression
RECIORD] [=]EQ lnumeric expression

rel
is =, =>, >=, EQ, or GE.

If rel is omitted, = is assumed.

Note: The fileref, USING, and pos clauses can occur in
any sequence.

input-list
is an input list of items separated by commas.

err
is one of the following:

EXIT line-ref
EOF line-ref
I0OERR line-ref
CONV line-ref
SOFLOW line-ref
NOREC line-ref
NOKEY line-ref

Statement Descriptions 237

READ FILE Statement

Description

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The execution of a READ statement involves two steps
1. Retrieving a record and placing it in a buffer

2. Assigning values from the buffer to the items in the input
list

For both native files and internal files, the next sequential
record is retrieved by the READ statement with no KEY, SEARCH, or
RECORD clause; for relative files, the next sequential record is
the next non-null record, and for keyed files, it is the next
record in key-sequence.

For a relative file, a specific record can be retrieved through
the RECORD clause.

For keyed files, a KEY or SEARCH clause can be used, and the
record retrieved is the first record which satisfies the
condition specified in the clause:

° With the KEY clause, the key length in the record and the
length of the string specified in the condition must be the
same.

® With the SEARCH clause, the length of the specified string can
be less than the key length, and only that number of
high-order positions are compared.

Once the record has been placed in the buffer, values are assigned
from the buffer to the list of variables:

® For internal files, this assignment is done in the same manner
as the LET statement assigns values to variables.

° For native files, the values are formatted according to the
specifications of a FORM statement; this allows the
conversion of data in a variety of external representations
to internal representations.

For both types of files, each value read and assigned must be of
the same basic type (character or numeric) as the corresponding
variable in the input list; although a numeric value may be read
into a character variable.

MAT KEYHWORD: The MAT keyword preceding the READ keyword specifies
that the input-list consists only of arrays; the MAT kevword is
then unnecessary in the input-list.

See "Input/Output Lists™ on page 70 for more information.

INPUT-LIST: An array in the input list is recognized by the
keyword MAT appearing before the array name. If redimension
specifications appear after the array name in the input list, the
array is first redimensioned to extents equal to the rounded
integer values of the numeric redimension expressions, and then
the array is filled. When an array is redimensioned, the original
number of members may not be exceeded.

ERROR CONDITIONS: Various error conditions can occur as values
from the record buffer are assigned to list items.

238 IBM BASIC Application Programming: Language Reference

READ FILE Statement

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusiveL

Description
The execution of a READ statement involves two steps
1. Retrieving a record and placing it in a buffer

2. §§signing values from the buffer to the items in the input
15

For both native files and internal files, the next sequential
record is retrieved by the READ statement with no KEY, SEARCH, or
RECORD clause; for relative files, the next sequential record is
the next non-null record, and for keyed files, it is the next
record in key-sequence.

For a relative file, a specific record can be retrieved through
the RECORD clause.

For keyed files, a KEY or SEARCH clause can be used, and the
record retrieved is the first record which satisfies the
condition specified in the clause:

U With the KEY clause, the key length in the record and the
length of the string specified in the condition must be the
same.

. With the SEARCH clause, the length of the specified string can
be less than the key length, and only that number of
high-order positions are compared.

Once the record has been placed in the buffer, values are assigned
from the buffer to the list of variables:

° For internal files, this assignment is done in the same manner
as the LET statement assigns values to variables.

J For native files, the values are formatted according to the
specifications of a FORM statement; this allows the
conversion of data in a variety of external representations
to internal representations.

For both types of files, each value read and assigned must be of
the same basic type (character or numeric) as the corresponding
variable in the input list; although a numeric value may be read
into a character variable.

MAT KEYHORD: The MAT kevuword preceding the READ keyword specifies
that the input-list consists only of arrays; the MAT keyword is
then unnecessary in the input-list.

See "Input/Output Lists™ on page 70 for more information.

INPUT-LIST: An array in the input list is recognized by the
keyword MAT appearing before the array name. 1If redimension
specifications appear after the array name in the input list, the
array is first redimensioned to extents equal to the rounded
integer values of the numeric redimension expressions, and then
the array is filled. When an array is redimensioned, the original
number of members may not be exceeded.

ERROR CONDITIONS: Various error conditions can occur as values
from the record buffer are assigned to list items.

238 IBM BASIC Application Programming: Language Reference

READ FILE Statement

For character data, the length of the receiving variable is set to
the length of the string sent to it. However, if the string being

sent is longer than the maximum length of the receiving variable,

a string overflow occurs. For a native file, this can happen with

a Cw FORM specification where w exceeds the maximum length of the

receiving variable.

For internal files, if the OPEN statement did not specify stream
organlzat1on and the items of the lnput list are all used and more
data remains in the record, a conversion exception occurs.
However, if a SKIP REST clause is specified, the rest of the data
in the record is ignored and the CONV exception is avoided.

For internal files, a conversion exception occurs if there is not
enough data in the record to fill all the input items, and if the
OPEN statement did not specify stream organization.

For native files, a conversion exception occurs in both these
situations.

Other CONV exceptions occur if a value cannot be converted to the
type of variable specified, or if an attempt is made to reference
a location outside a native file record with a P0S or X control
specification.

An EOF (end-of-file) exception occurs when no KEY, SEARCH, or REC
is specified and the last record of the file has already been
read.

The NOKEY and NOREC exceptions occur when no record exists which
satisfies the KEY or SEARCH condition on a keyed file, or the
RECORD condition on a relative file.

The IOERR exception occurs if a hardware malfunction or other
error which prevents the reading of the record.

If the SKIP REST clause is specified and the input record contains
more data than necessary to satisfy all of the items in the input
list, the remainder of the record is ignored. If SKIP REST is not
specified and this condition occurs, a CONV exception is
generated.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/70 Statements™ on page 84.

Example

100 READ #TWO%: A$, B%, SKIP REST

200 READ #3 USING 300: C$, D% IOERR 500

300 FORM C20,N5,X 30

400 DIM ARR#(10,10)

500 READ #4 USING 600 KEY="XYZ":PX%,Q%,MAT ARR#(PX,Q%-PX%)
600 FORM N2,N2,6%N5

In the above example, the first READ assigns values from the next
sequential record of an internal file to two variables, and
ignores the rest of the record. The second read performs the same
function for a record of a native file, and will pass control to
line number 500 if an IOERR condition occurs. The third read
retrieves a record with key "XYZ" from a keyved file; the first two
values are used to redimension the array ARR#, and then the array
is filled with numeric values.

Statement Descriptions 239

REM Statement
REM STATEMENT

Description

The REM statement inserts remarks into a program.

Format

REM [remark]

Where:

remark
is any character string.

A REM statement may be placed anyuhere within a program. It is a
nonexecutable statement and its line number or line label may be
used as the target for transfer of control statements, for
example, GOTO. Execution then continues with the next executable
statement after the REM statement.

Since any character is permitted within a remark, each remark is
considered terminated at end-of-line. This means:

. REM is the last statement on a line (a following statement
separating colon is not recognized).

L REM statements cannot be continued (the continuation
ampersand is not recognized).

comments Using the Exclamation Mark

Remarks may also be appended to statement lines by using an
exclamation mark as a statement delimiter. A statement beginning
with an exclamation mark is treated the same as a REM statement.

The remark clause (!) is nonexecutable. It appears in the
statement to indicate that the data following is to be considered
a remark only. It has no effect on program execution. It may not
appear on either an IMAGE, DATA, or FORM statement since the
exclamation mark can be meaningful within those statements.

Example

100 IF NUMBER LT 200 THEN GO TO 200
110 REM TEST NUMBER

is functionally equivalent to
100 IF NUMBER LT 200 THEN GOTO 200, YTEST NUMBER

As with the REM statement, a trailing comment must be the last
entry on a line. Unlike REM statements, a line with a trailing
comment can be continued; an ampersand as the last nonblank
character on the line indicates continuation. However, it is not
the trailing comment itself that is continued; it is the statement
before the trailing comment that is continued.

2640 IBM BASIC Application Programming: Language Reference

REM Statement

Example

100 OPEN $#4: NAME "PARTS",!FILE OF PART DESCRIPTIONS &
& ORGANIZATION RELATIVE, 'RECORD NUMBERS ARE &
& TYPE NATIVE, ACCESS OUTIN !PART NUMBERS.

is functionally equivalent to:

100 OPEN #4: NAME "PARTS",0RGANIZATION RELATIVE, &
& TYPE NATIVE, ACCESS OUTIN

Statement Descriptions 241

REREAD Statement
REREAD STATEMENT

The REREAD File statement makes the last accessed record in a
native file available again.

Format

[MAT] REREAD #fileref [,]JUSING line-ref:
input-list [errl,errl...1]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
is a positive integer with the range 1 to 255, and which
identifies the file to be processed.

line-ref
is the line number or line label of a FORM statement, or a
character expression containing a FORM.
Note: The fileref and USING clauses may occur in any order.

input-list _
is an input list of items separated by commas.

err
is one of the following:

EXIT line-ref
IOERR line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

The EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

Description

The REREAD statement can only be used for native files. The last
access to the specified file must have been either a READ
statement or another REREAD statement.

MAT KEYHORD: The MAT keyword preceding the REREAD keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input-list.

See "Input/0Output Lists"™ on page 70 for more information.

FILEREF: The fileref must refer to a native file. (See
"Combinations of File Organization and Format™ on page 57.)

USING CLAUSE: The data in the record is formatted according to the
specifications of the FORM statement.

INPUT-LIST: The data in the record is assigned to the variables in

the input-list, in the same manner as the READ statement for
files. (See "READ FILE Statement” on page 237.)

242 IBM BASIC Application Programming: Language Reference

REREAD Statement
REREAD STATEMENT

The REREAD File statement makes the last accessed record in a
native file available again.

Format

[MAT] REREAD $#fileref [,JUSING line-ref:
input-list [errl,errl...]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
is a positive integer with the range 1 to 255, and which
identifies the file to be processed.

line-ref

is the line number or line label of a FORM statement, or a
character expression containing a FORM.

Note: The fileref and USING clauses may occur in any order.

input-~list
is an input list of items separated by commas.

err .
is one of the following:

EXIT line-ref
I0ERR line-ref
CONV line-ref
SOFLOW line-ref

line-ref
is a line number or line label.

The EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

Description

The REREAD statement can only be used for native files. The last
access to the specified file must have been either a READ
statement or another REREAD statement.

MAT KEYWORD: The MAT kevuword preceding the REREAD keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input-list.

See "Input/Output Lists"™ on page 70 for more information.

FILEREF: The fileref must refer to a native file. (See
"Combinations of File Organization and Format™ on page 57.)

USING CLAUSE: The data in the record is formatted according to the
specifications of the FORM statement.

INPUT=-LIST: The data in the record is assigned to the variables in

the input-list, in the same manner as the READ statement for
files. (See "READ FILE Statement"™ on page 237.)

2642 IBM BASIC Application Programming: Language Reference

REREAD Statement

ERROR CONDITIONS: The err conditions IOERR, CONV, and SOFLOW may
be recoverable if they are specified on the statement or in a
raeferenced EXIT statement.

A CONV error occurs when a field cannot be converted as specified,
there is not enough data in the record, or there is an attempt to -
reference a location ocutside the record.

SOFLOW occurs with a string overflou.

IOERR occurs when a hardware malfunction or other error prevents
rereading the record.

The error clauses interact with the ON condition statement as
described in "Exception Handling in 170 Statements™ on page 84%.

Example

100 READ #2, USING 300: A$, CX%

200 REREAD #2 USING 0400: B$, D% EXIT 500
300 FORM C10,P0S 21, N5, X 5

400 FORM X 10, Cl10, POS 26, N5

500 EXIT IOERR 900, CONV 900, SOFLOW 900

In the above example, a record in a native sequential file
contains four values, two of which are accessed by the READ
statement and two by the REREAD statement. If any errors occur on
the REREAD statement, control passes to line number 900.

Statement Descriptions 243

RESET Statement
RESET STATEMENT
The RESET statement changes the position of the file pointer.

Format

RESET #fileref [[,lpos] :[errl,errl...]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255, and
which identifies the file to be processed.

pOS
is one of the following:

BEGIN

END

APPEND

KEY [rell character expression

SEARCH [rell character expression
RECLORD] [{= [EQ}] numeric expression

rel
is =, >=, =3, EQ; or GE.

If rel is omitted, = is assumed.

Note: The fileref and pos clauses may be in any
sequence.

err
is one of the following:

EXIT line-ref

IOERR line-ref
NOREC line-ref
NOKEY line-ref

line~-ref
is a line number or line label.

EXIT and all other err clauses are mutually exclusive.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

The keyword RESTORE may be used instead of RESET.

The colon may be omitted if it would be the last nonblank
character on the line.

264% IBM BASIC Application Programming: Language Reference

Description

RESET Statement

Example
200 RESET #3, REC = COUNTZ:

and
200 RESET #3, REC = COUNTX%

are equivalent.

Any type of external file may be repositioned with a RESET
statement.

An attempt to RESET fileref 0 is ignored.

POS OPTION: The BEGIN clause positions any file to its beginning;
if no positioning clause is specified, BEGIN is assumed.

The END clause positions files, other than relative and keyed, to
their end, so that new records can be added; the APPEND clause is
identical to END.

For relative files, the RECORD clause positions the file to the
record whose relative number is specified.

For keyed files, either the KEY clause or the SEARCH clause
positions the file to the first record whose key satisfies the
specified condition:

. The KEY clause condition specifies the entire key field,

L The SEARCH clause condition specifies that part of the key
with a string length equal to that of the search argument.

ERROR CONDITIONS: The error conditions IOERR, NOREC, and NOKEY
may be recovered if they are included in err clauses or a
referenced EXIT statement.

The NOREC condition occurs if no relative record satisfies the
RECORD condition for a relative file.

The NOKEY condition occurs if no keyed record satisfies the KEY or
SEARCH condition for a keved file.

The IOERR condition occurs if the file cannot be repositioned for
some other reason.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/0 Statements™ on page 84.

Example
100 RESET #10, KEY="1234™: NOKEY 900

.

.

500 RESET #10: IOERR 1000

At statement 100, a keyed file is positioned to the record whose
key is "1234". If no such record exists, control is transferred to
line number 900. At statement 500, the same file is repositioned
to its beginning; in the event of an I0OERR, control is transferred
to line number 1000.

Statement Descriptions 245

RESTORE Statement
RESTORE STATEMENT

Description

The RESTORE statement resets the file pointer of an internal data
file to its first value.

Format
RESTORE

The RESTORE statement resets the file pointer of an internal data
file, created by DATA statements and accessed by READ statements.

The RESTORE statement resets the internal data pointer to the
first value in the internal file.

The RESTORE statement is ignored if there are no DATA statements
in the program unit.

(See also "RESET Statement™ on page 24% for other uses of the
RESTORE keyword.)

Example

100 DATA 123,456,789
200 READ A%, BX%

300 RESTORE

400 READ CX%

In the above example, the value assigned to C% is 123, because at
line number 300 the data file was repositioned to its first value.

266 IBM BASIC Application Programming= Language Reference

RETRY STATEMENT

Description

RETRY Statement

The RETRY statement reprocesses statement which caused an
exception.

Format

RETRY

Execution of a RETRY statement results in reprocessing the
statement which caused an exception. The RETRY statement provides
for a return to normal requested statement execution after
program flow has been diverted to process an exception.

If an exception condition does not exist when the RETRY statement
is executed, an exception occurs.

Example
100 ON ZDIV GOTO 1000

-

.

500 BAL = A - B
510 DI<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>