
Systems
Program Number 5668-996
Release 1

--- -----= =-=::.~ - -. ---- - - ----==-=~=
GC26-4026-0
File No. S370-23

This pUblication was produced using the
IBM Document Composition Facility

(program number 5748-XX9) and
the master was printed on the IBM 3800 Printing Subsystem.

First Edition (November 1982)

This edition applies to Release 1 of IBM BASIC, Program Product
5668-996, and to any subsequent releases until otherwise
indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; before
using this publication in connection with t~e operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable and
current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be'used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below; requests
for IBM pUblications should be made to your IBM representative or
to the IBM branch office serving your locality~

A form for readers' comments is provided at the back of thi~
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1982

ABOUT THIS MANUAL

MANUAL ORGANIZATION

INDUSTRY STANDARDS

This manual provides reference material on the IBM BASIC
language. It presents definitions and examples of IBM BASIC
statements and commands.

IBM BASIC is available as a program product that runs under:

• Virtual Machine/System Product--Conversation Monitor System
(VM/SP-CMS) Release 1, batch and interactive.

In this manual, the following subjects are discussed:

• "Introduction" on page 1

• "Structure of a Basic Program" on page 4

• "Constants, Variables, and Arrays" on page 14

• "Expressions" on page 25

• "Intrinsic Functions" on page 34

• "IBM BASIC File Capabilities" on page 54

• "IBM BASIC Statements" on page 60

• "Statement Descriptions" on page 88

• "Immediate Statements" on page 260

• "Editing with line Numbers" on page 264

• "IBM BASIC Commands" on page 267

• Appendixes

"Appendix A. Exception Codes" on page 319

"Appendix B. Character Set Collating Sequences" on page
327

"Appendix C. Migration from VS BASIC" on page 333

• Glossary

The IBM BASIC program product is designed according to the
specifications of the following industry standards, as understood
and interpreted by IBM as of December 1931:

• American National Standard for Minimal BASIC, ANSI X3.60-1978

• International Organization for Standardization proposed
standard ISO Minimal BASIC dp ISO-6373

• European Computer Manufacturers' Association Standard ECMA-55
Minimal BASIC, January 1978

These standards are technically equivalent.

In addition, IBM BASIC has many capabiliti~5 not contained in the
above standards.

About This Manual iii

RELATED PUBLICATIONS

Familiarity with the following pUblications is strongly
recommended.

IBM BASIC Application Programming: Guide, SC26-4027

IBM BASIC Application Programming: System Services, SC26-4028

If VSAM file processing is to be used, the following manual is
useful:

OS/VS Virtual Storage Access Method: Programmer's Guide,
GC26-3838

If BASIC programs are to communicate with Graphical Data Display
Manager programs, the following manual is useful:

Graphical Data Displav Manager: User's Guide, SC33-0101

iv IBM BASIC Application Programming: Language Reference

CONTENTS

Introduct i on ••••••
The BASIC Language
Interact i ve Env ironment
Batch Env ironment .•..
Syntax Notat ion

structure of a Basic Program
Character Set•
Identifiers
Language Statements .

Lines and Line Numbers
Line Labels.
Reserved Words
Keywords

Keyword List
Rules for Keywords Removed from the Reserved Word List

Mean i ngful Spaces or Blanks' .
Statements and Their Categories

Continuation of Statements
Multiple Statements Per Line

Comments•.• .•
Exclamation Mark Comments
REM Statement Comments
Comment Continuation Not Allowed

Statement Blocks
Program Uni ts

constants, Variables, and Arrays ••••
Constants•. . . • •

Numeri c Constants
Integer Constants ..•• • • • • .
Decimal Constants .•......

Character Constants
Variables•.

Numeric Variables•..
Character Variables•.

Arrays•.....•.•.•
References to Array Elements (Subscripts)

Subscript Boundaries
Base Indexi ng
Explicit Dimensioning of Arrays

Numeric Arrays
Character Arrays

Implicit Dimensioning of Arrays
Redimensioning

Redimensioning COMMON Arrays
Redimensioning Parameters

Express ions •••••••••••••••
Numer i c Express ion s

Evaluation of Numeric Expressions
Parentheses in Numeric Expressions
Addition and Multiplication Rules in Numeric Expressions
Plus and Minus as Sign Operators ...•.
Mi xed Type Numeri c Expressi ons

Character Express; ons
Concatenation
Substrings of Character Variables and Arrays

Substr; ngs of Character Arrays•.
Relat i onal Express; ons

Relat i ona 1 Operato rs
Numeric Data in Relational Expressions ...•
Character Data in Relational Expressions

Logi cal Expressi ons
AND Logi cal Operator•
OR Logical Operator••.•..
NOT Logi cal Operator•..

Contents

1
1
1
2
3

~
4
4
5
5
6
6
6
7
8
9

10
10
11
11
12
12
12
12
13

1~
14
14
14
14
16
17
17
18
19
19
19
20
21
21
22
22
23
24
24

2S
25
25
26
27
27
28
28
28
29
30
30
30
31
31
31
31
32
32

v

Combining Logical Expressions
Priority of Expression Evaluation
Array Expressi ons

Intrinsic Functions ••••••
Notation Used for Parameters •...

Intrinsic Numeric Functions
Intri nsi c Stri ng Functi ons
Functi on Oescri pti ons•.

ABS(X)
ACOS(X)
ANGLE(X,Y)
ASIN(X)
ATN(X)
CEIL(X)
CEN(X)
CHR$(M)
eN T • • • • • • • • • • • • • • • • •
CODE
COS(X)
COSH(X)
COT(X)
CSC(X) . . . •
OAT$[(M)]
OA T E • .
OATE$
DEC(X)
DEG(X)
DEl[(A)]
DOT(A,B)
EPS • .
ERR
EXP(X)
FAH(X)
FILE(N)
FILENUM
FILE$(M)
FP(X)
IFIX(X)
INF
INT(X)
IP(X) .
JDY[(C$)]
KEYNUM
KLN(M)
KPS(M)
LEN(A$)
LINE
LOG(X)
LOG2eX)
LOG10(X)
LPAD$(A$,m)
LTRM$(A$)
LWRC$ (A$) ..
MAX(x,y[, ...])
MIN(X,Y[, ...])
MOD(X,Y)
ORD(A$)
PI. . . .
POSeA$,B$)
POS(A$,B$,M)
PRD(A)
RAO(X)
REC(m)
REMeX,Y)
RLNem)
RNO[(X)]
ROUND(X,N)
RPAO$(A$,M)
RPT$(A$,M)
RTRMeA)
SECeX)
SGN(X)

vi IBM BASIC Application Programming: Language Reference

32
32
33

34
34
35
35
36
36
36
36
36
36
36
37
37
37
37
37
38
38
38
38
38
38
39
39
39
39
40
40
40
40
40
41
41
41
41
42
42
42
42
42
43
43
43
43
44
44
44
44
44
45
45
45
45
45
46
46
46
47
47
47
47
48
48
48
48
49
49
49
49

SINCX)•...•.••
SINHCX)
SIZE(A) or SIZECA$)
SIZECA,M) or SIZECA$,M)
SQR(X)
SRCH(A,X[,Y] 0 ••••

SREP$(A$,M,B$,C$)
STR$(X) •...
SUM(A)- 0.0 ••

TAN(X)••....
TANH(X) .•..
TIME
TIfllE$ 0.0 •• 0 ••• 0

TRUNCATECX,N) ...
UDIMCA,M) or UDIM(A$,M)
UPRC$(A$) . 0 0 • 0 • 0 ••••

VAL(A$) o. 0 0 0 • 0 0

IBM BASIC File Capabilities
Reco rds•....•
File Attributes • 0 0 ••

File Organization
Sequential Organization
St ream 0 rgan i zat ion 0.. 0 0 • • • •

Relative Organization
Keyed Organization

File Format (Type)
Display Format
Internal Format
Native Format

Fi Ie Access Mode•..
INPUT Access Mode . • • • 0 • • • • •

OUTPUT Access Mode • • • • .
OUTIN Access Mode •...... 0 • • • •

Combinations of File Organization and Format
Allowable Combinations for File Access .
Allowable Combinations for File Record Type

File statements and File Attributes

IBN BASIC statements • • • • •
Decla rat i ve Statement s • . . • .
Control Statements . 0 ••

Branch Control Statements•.
Subroutine Control Statements
Loop Control Statements

DO/LOOP Blocks 0.. 0 ••
FOR/NEXT Blocks •... 0 0 • 0 • • • • 0

Decision Structure Control Statements
IF Blocks . 0 ••••• 0 •

SELECT Blocks
Execution Control Statements

Assi gnment Statements•• 0 •

Roundi ng Rules . 0 •• 0 • 0 0 ••••

Input/Output Statements .•. 0 ••••

General Input/Output Considerations
Input/Output Lists .•..
Input/Output Data Rules
FORM and IMAGE Statements 0

FORM Character Expressi ons ...•• 0 ••••

Input/Output Error Processi ng ..
Internal Data Input/Output Statements
Termi nal Input/Output Statements " ...

Line-By-Line Input/Output Statements
Full Screen Input/Output Statements
Mixed Mode Operations

File Input/Output Statements ..• 0

Fi Ie Posi ti oni ng Clauses •.. 0' ••

File Control Statements 0 0 •• 0 0 ••••

File Input/Output Transmission Statements
Program Segmentation Statements .. 0 ••••• 0 •••

User-Defined Function Statements
Single Line Functions
Multiline Functions

Contents

49
49
50
50
50
50
51
51
51
51
51
52
52
52
53
53
53

S4
54
54
55
55
55
55
55
56
56
56
56
56
56
56
56
57
57
58
58

60
60
61
61
61
62
62
63
64
64
66
68
68
69
70
70
70
72
72
72
72
73
73
73
73
74
74
74
75
75
76
77
78
78

vii

Subprogram Statements
Ma in Programs • • .
Subprograms . . • 0 0

Call i ng IBM BASIC Programs 0 0 • 0 0

Calling Programs Written in Other Languages
Calling the System o. 0 0 ••••• 0 ••••

Calling the Graphical Data Display Manager (GDDM)
Cha in i ng Statement so. • 0

Program Segmentat ion Restr i ct ions 0 0 • 0

Program Segmentat i on and Common
Exception Handling Statements ... 0 •

Using I/O Statement Error Clauses and On Condition
Statements 0 •••••••• 0 ••••

Exception Handling in I/O Statements
Usi ng the CAUSE Statement 0 •••••• 0

Using the RETRY and CONTINUE Statements . 0 • 0

Exceptions and User-Defined Functions •.
Exceptions and Calling and Called Programs

Debuggi ng Statements 0 0 •••• 0 0 •

Usi ng the TRACE Statement . 0 • 0 • 0 0 ••

Immediate Statements and Debugging

statement Descriptions
BREAK Statement
CALL Statement
CASE Statement
CASE ELSE Statement
CAUSE Statement
CHAIN Statement
CLOSE Statement
COMMON Statement
CONTINUE Statement
DATA Statement
DEBUG Statement .

Immediate Execution
DECIMAL Statement

Immediate Execution
DEF Statement . 0 • 0 •

DELETE File Statement
DIM Statement

Immediate Execution
DO Statement
ELSE Statement
END Statement
END I F Statement 0 0 •

END SELECT Statement
END SUB Statement .. 0 0 • • 0

EXIT Statement
EXIT IF Statement
FNEND Statement
FOR Statement
FORM Statement
GET Statement
GOSUB Statement
GOTO Statement
I F Statement •.
Block I F Statement . • • .
IMAGE Statement . . 0 • •

. .'.

INPUT Statement 0 0 •••• 0 0 0 ••••••• 0 0 ••

INPUT FIELDS Statement (For Full Screen Terminal Input)
INPUT Fi Ie Statement .•.. . 0 ••

Description •...
INTEGER Statement

Description
Immedi ate Executi on 0 •••••••••••• 0

LET (Scalar Assignment) Statement
Immed i ate Execut ion 0.0. 0

LINE INPUT/LINPUT Statement
LINE INPUT/LINPUT File Statement
LOOP Statement
MARGIN Statement 0 • • 0 • •

MARGIN File Statement 0 ••••••••• 0 ••••••• 0

MAT (Array Assignment) Statement

viii IBM BASIC Application Programming: Language Reference

78
78
78
80
80
81
81
81
83
83
84

84
84
85
85
85
86
86
87
87

88
89
90
95
96
97
98

100
102
104
105
106
106
107
108
109
112
114
115
116
117
118
119
120
121
122
124
126
127
129
143
145
147
148
150
152
158
161
167
167
169
169
170
171
172
173
175
177
178
181
183

Array Assignment •...••••.•••••••••
Scalar Assi gnment ...•.•..••.•
Addition and Subtraction in Numeric Arrays
Matrix Multiplication of Numeric Arrays
Scalar Multiplication in Numeric Arrays
Array Concatenation of Character Arrays
Scalar Concatenation in Character Arrays
Identity Array Function (IDN) ..•••••••
Zero Array Functi on (ZER) .•.•.•..
Constant Array Function (CON) .•.•..•••
Null String Array Function (NUL$) •.•.
Inverse Array Function (INV) ••.•.••••
Transpose Array Function (TRN) .•
Ascending Index Array Function (AIDX)
Descending Index (DIDX) ..••.•••.•••
Sort Array Functions (ASORT, DSORT)
Immediate Executi on

NEXT Statement
ON GO TO/GOSUB Statement
ON Condi t i on Statement .•••
OPEN Statement ...•.
OPTION Statement

Immediate Execution
PAUSE Statement ..•.
PRINT Statement . . • . . •••••••

Immediate Execution ..•.•..••.•••••••••
PRINT FIELDS Statement (For Full Screen Terminal Display)
PRINT File Statement (For Display Format Files)

Description ...••.•.•••
PUT File Statement ••••

Description .••.•.•••••••
RANDOMIZE Statement • • • • •

Description •••••••
Immed i ate Execut ion ..••• • • • •

READ Statement . . • • • • • • • • • • • •
READ FI L E Statement . • • •
REM Statement • • • • • • • • • •

Comments Usi ng the Exclamati on Mark •••••
REREAD Statement • . • • • • • • •
RESET Statement .••••••
RES TORE Statement • • • . • • •
RETRY Statement ...•. . • • • • • • •
RETURN Statement ..•. . . • • • •
REWRITE Statement ..•••
SCRATCH Statement • • • •
SEL ECT Statement •••
S TOP Statement .. • • • • • • • •

Immediate Execution ••••••
SUB Statement •......• .• • • • • • •
SUBEXIT Statement . . • . • •••
TRACE Statement • • •

Immediate Trace Execution •••••
USE Statement
WRITE Statement

Immediate statements. • •••••••••••
Variables and Arrays and Immediate Statements
Immediate Type and Dimensions ..••••
Immedi ate Statement Excepti ons •••••

Editing with Line Numbers ••••••
The Wo rkspace•.. •••. • • • • • • • • •
Enteri ng Program Lines from the Termi nal •••••••••.
Replacing and Deleting Individual Lines •••••
Editing Continuation Records•••••••

Deleting Continuation Records ••••••••
Replaci ng Records••
Inserting Continuation Records

IBM BASIC Commands
Abbreviation of Commands
Current Line

AUTO Command

185
185
186
187
188
189
190
191
192
193
193
194
195
196
197
198
199
200
201
203
206
211
214
216
217
224
225
230
231
232
232
234
234
234
235
237
240
240
242
244
246
247
248
249
251
252
253
253
254
255
256
256
257
258

260
261
262
263

264
264
264
264
265
265
265
266

267
267
268
269

Contents ix

BREAK Command .••..•.••
CHANGE Command--Format 1
CHANGE Command--Format 2
COMPILE Command
COPY Command
DEL ET E Command
DROP Command
EXTRACT Command
FETCH Command
FIND Command •.•••.•••
GO Command .•.••..••••
HELP Command ..
INITIALIZE Command
LIST Command .•••..•.•.
LOAD Command •••••
MERGE Command • . • • • •
PURGE Command
QUERY Command
QUIT Command
RENAME Command
RENUMBER Command
RUN Command
SAVE Command
SET LOG Command
SET MSG Command
STORE Command
SYSTEM Command

APpendix A. Exception Codes

APpendix B. Character set Collating sequences
ASCII Character Set and Collating Sequence
EBCDIC Character Set'and Collating Sequence

APpendix C. Migration from VSBASIC
Language
Intrinsic Functions
Fi Ie Structures ••.•
Arithmetic •...•

VS BASIC Data Set Migration

Glossary

Index

x IBM BASIC Application Programming: language Reference

271
273
276
278
281
283
284
285
286
287
289
291
294
295
297
298
301
302
304
305
306
308
311
312
313
315
317

319

327
327
330

333
333
333
333
333
333

335

343

FIGURES

1.
2.
3.
4.
5.
6.
7 •

8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.

21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

39.
40.
41.
42.
43.

Integer Data--Internal Representation •••..••.
Decimal Data-Internal Representation •..•....•
One-Dimensional Array References--BASE 0 Indexing
Three-Dimensional Array References--BASE 1 Indexing
Numeri c Operators and Evaluati on Order .••.
Relat i onal Operators••...
COLLATE Option 'and Comparisons of Character
Expressions ..•.••.....•.•..••••
Scalar Expressions--Evaluation Priority ..
Valid Combinations of Organization and Format
F i 1 e Access Modes•
Record Types Valid with Each File Organization
File Format, Organization, Statements, and Use
Val i d and Inval i d Loop Nest i ng •••..•.•••••
DO/LOOP Block Flow of Control •••••.•••
FOR/NEXT Loop Flow of Control ..••
IF Blocks--Flow of Control •••••
SELECT Block--Flow of Control .•••..•..
Assignment Statement--Assigning Constant Values
Assignment Statement--Assigning Variable Values
Positioning Options Allowed--File Input/Output
Statements .•..• • . . • . . • . • • • • • • •
Call i ng and Called Programs .•.••• . ••.
Cha in i ng and Cha i ned Programs •.•..••••••
Type Conversions for Interlanguage Calls ••••
FORM Statement Data Form Codes • • • •
Imperative Statements .•..•••.••..•••••
IMAGE Statement Format Specification
IMAGE Statement--Floating Symbol Usage ••••
INPUT FIELDS Statement--Data Form Codes •••
MAT Statement--Addition and Subtraction Example
MAT Statement--Matrix Multiplication Example
MAT Statement--Matrix Concatenation Example
MAT Statement--Scalar Concatenation Example
MAT Statement--IDN Function Examples
MAT statement--ZER Function Example
MAT statement--INV Function Example
MAT Statement--TRN function Example
ON Conditions--Processor Actions ...•.
Allowable Combinations of File Type and File
Organization ..•.•••....••.•••••.••
PRINT Statement--Comma and Semicolon Separator Usage
PRINT FIELDS Statement--Data Form Codes •••••
IBM BASIC Commands--Minimum Abbreviations ••••
HELP--PF Keys Used •.......•
SYSTEM Command--Valid CMS Subset Commands

14
16
20
21
25
30

31
32
57
57
58
59
62
63
64
65
67
69
70

75
79
82
94

130
149
154
155
162
187
188
190
191
192
193
194
196
204

208
219
226
267
292
317

Figures xi

INTRODUCTION

THE BASIC LANGUAGE

BASIC is an acronym for Beginner's All-purpose Symbolic
Instruction Code. The elementary capabilities of the language are
specified by the American National Standard for Minimal BASIC,
ANSI X3.60-1978.

IBM BASIC is a significant extension of Minimal BASIC. It includes
many new and advanced capabilities which allow you to produce more
powerful and efficient programs. In addition to the programming
language, IBM BASIC provides two modes of using the language:

• Interactive mode, which includes an interactive "environment"
in which you can create and execute BASIC programs.

• Batch mode, which allows you to separately compile BASIC
programs and then execute the compiled programs under direct
operating system control. This is similar to other batch
language processors such as FORTRAN or COBOL.

The IBM BASIC program product consists of a Processor and a
Library. Interactive mode requires both the processor and
library. Batch mode requires the processor and library for
compilations but only the library for the running of compiled
programs.

IBM BASIC is a line-oriented language used to generate programs. A
program is a sequence of lines containing statements. Each line
begins with a unique line number which serves as a label for the
first statement contained in the line. Statements are grouped in
several categories:

• Declarative

• Control

• Assignment

• Input/output

• Program segmentation

• Exception handling

• Debugging

• Remarks

INTERACTIVE ENVIRONMENT
\

Interactive IBM BASIC provides the capability to create, edit,
debug, and run programs using an interactive terminal. In the
interactive environment, the programs themselves can also
interact directly with the terminal.

In addition to the BASIC language, the interactive environment
provides line number editing facilities and a set of commands.
These commands instruct the interactive BASIC processor to
perform the following functions:

• Create and edit program lines

• Load, merge, or save programs

• Initiate and control execution of programs

Introduction 1

BATCH ENVIRONMENT

• Display information about IBM BASIC

• Delete fi les

In the interactive environment, several BASIC statements playa
dual role. These statements can be used within programs, as usual,
or can be executed immediately to act as commands. With immediate
statements, you can perform several desk calculator operations:

• Assignment of values to variables or arrays

• Printing of variables, arrays, or expressions

• Calculations using intrinsic functions and numeric,
character, and array operations

• Declaration of immediate variables

• Specification of immediate options

Immediate statements are particularly useful in debugging. They
allow you to inspect and modify variables within a program while
execution of that program has been suspended.

Programs can be compiled e~ther in the interactive environment
(with the COMPILE command) or in the batch environment. The
compiled programs can also be executed in either the interactive
or batch environment.

The batch processor is invoked directly from the host system for
each source program file which is to be compiled. It optionally
produces an object program file and a listing file.

Programs which are executed in the batch environment do not have
an interactive terminal associated with them. Consequently, batch
programs do not interact directly with a terminal and do not have
the IBM BASIC command and immediate statements available for
debugging and program control. In addition, all inputJoutput is
from and to internal or external files.

2 IBM BASIC Application Programming: Language Reference

SYNTAX NOTATION

The following conventions are used for syntax notation.

symbol Meaning

[] Brackets enclose optional data that can be omitted
without causing errors.

Example

[file-spec] can be specified or omitted in the
RUN command.

The OR sign separates items for which one choice may be
made within a set of data.

Example

For DISPLAYIINTERNALINATIVE, the user may choose unly
one of the alternatives: DISPLAY, or INTERNAL,
or NATIVE.

{ } Braces indicate a choice of required operands. Choose one
alternative from the enclosed set of data.

Example

For {DISPLAYIINTERNALINATIVE}, the user must choose
only one of the alternatives: DISPLAY, or INTERNAL,
or NATIVE.

The ellipsis (•..) indicates that the preceding syntactic
element may be repeated an arbitrary number of times.

Example

argument [,argumentl •.•

indicates a list of arguments separated by commas ..

Note: The syntax notation used in the HELP facility differs from
that described above. The HELP syntax notation is described in the
HELP SYNTAX panel.

Introduction 3

STRUCTURE OF A BASIC PROGRAM

CHARACTER SET

IDENTIFIERS

The general syntax of a BASIC program is defined in this chapter.

The IBM BASIC character set is:

Character

A - Z
a - z
0 - 9

& ,
* 0)

,
$
=

or ...
>
(

<

I
%

+
"
)
;
/

Notes:

Meaning

Uppercase Letters
Lowercase Letters
Digits
Blank
Ampersand
Apostrophe (or single quote)
Asterisk
At Sign
Colon
Comma
Dollar Sign
Equal Sign
Exclamation Mark
Exponentiation symbol
Greater Than Sign
left Parenthesis
less Than Sign
Minus Sign
Number Sign
Percent Sign
Period
Plus Sign
Quotation mark (or double quote)
Right Parenthesis
Semicolon
Solidus or Slash
Underline

1. Uppercase and lowercase letters are equivalent in a BASIC
program, except within character string.

2. The processor uses the asterisk (*) and question mark (1)
characters as terminal prompts.

Identifiers name variables, arrays, functions, subprograms and
line labels.

The names of variables, arrays, functions, and line labels may
contain up to 40 characters. Subprogram names (see SUB and CALL
statements) may contain at most seven characters.

The first character of an identifier must be a letter, which may
be followed any of the 26 letters of the alphabet, the 10 digits,
and the underline character (). Letters may be uppercase or
lowercase. -

The final character of an identifier may be the number sign (I),
the percent sign (%), or the dollar sign ($). Special meanings
provi ded by the three characters are di scussed under "Vari abIes"
on page 17.

4 IBM BASIC Application Programming: language Reference

LANGUAGE STATEMENTS

Examples

ALPHA$
Alpha$
alpha_betic$
alpha ___ betic$
DEC NUM
INT-numY.
decNuml

A given identifier may name:

• a variable,

• an array,

• or a function.

but not more than one of these in a program unit.

Within a program unit, the same identifier may be used as:

• a variable or array name,

• a line label,

• or a subprogram name (SUB statement).

because context always determines which interpretation is to be
used.

A program unit is either a main program or a subprogram. Each
program unit is a distinct entity in that identifiers used to name
variables, arrays, and user-defined functions are local to the
program units in which they occur; that is, they may be used to
name different objects in different program units. Identifiers
used to name subprograms are global to the entire program; that
is, they name the same subprogram wherever they occur.

BASIC source language statements contain line numbers, optional
line labels, keywords, identifiers, and expressions.

LINES AND LINE NUMBER~

An IBM BASIC program is made up of a series of statement lines.
Each line starts with a unique number. The smallest line number
allowed is 1 and the largest 9999999.

Line numbers provide labels for statements.

Example

100 IF A=B THEN 300

300 LET B=C

The statement at line 100 directs processing to bypass all of the
instructions between lines 100 and 300 if the value of the
variable A is equal to the value of the variable B. Line (or
statement) 300 becomes a label which is the object of the IF
statement.

Structure of a Basic Program 5

LINE LABELS

RESERVED WORDS

KEYWORDS

A line label is a statement identifier followed by a colon (:). It
is declared by its appearance after a line number.

Only one line label may be declared for anyone line number.

Line labels may be up to 40 characters long, the first of which
must be alphabetic (A-Z). The remaining characters may be either
alphabetic, numeric, or the underline character.

Example

200 FIRST_CHOICE: LET A=B

In this example, FIRST_CHOICE is the line label.

Reserved words are words you cannot use as identifiers.

Unless your organization has customized the reserved word list,
all of the keywords in IBM BASIC as distributed are reserved
words.

Check with your system administrator for the reserved words used
by your organization.

Following the line number, and the optional line label, the line
usually continues with one or more BASIC statements. A statement
usually begins with a keyword. Each keyword in BASIC has a
specific meaning. Some keywords are optional and are so noted in
the descriptions of those statements.

The initial keyword of a statement indicates the action to be
performed by the statement (READ, WRITE, etc.).

Keywords may be spelled using either lowercase letters, uppercase
letters, or mixed uppercase and lowercase letters.

Example

LET
Let
let

are equivalent.

6 IBM BASIC Application Programming: Language Reference

Keyword List

ACCESS
AND
APPEND
AT
ATTN

BASE
BEGIN
BOTTOM
BREAK

CALL
CASE
CAUSE
CHAIN
CLOSE
COLLATE
COM
COMMON
CONTINUE
CONV

DATA
DEBUG
DECIMAL
DEF
DEFDBL
DEFINT
DEFSNG
DELETE
DIM
DISPLAY
DO
DUPKEY
DUPREC

ELSE
END
ENDPAGE
EOF
EQ
ERROR
EXIT

FIELDS
FILES
FIPS
FIXED
FLAG
FNEND
FONT
FOR
FORM

GE
GET
GO
GOSUB
GOTO
GT

The following is a partial list of IBM BASIC keywords in
alphabetic order. (The complete list includes the names of the
intrinsic functions and predefined subprogram names. Intrinsic
function names are listed in "Intrinsic Functions" on page 34.
Predefined subprogram names are listed in "Predefined Subprogram
Names" on page 91.)

IF REM
IGNORE REREAD
IMAGE RESET
INPUT REST
INTEGER RESTORE
INTERNAL RETRY
INVP RETURN
IOERR REWRITE

RIGHT
KEY
KEYED SCRATCH

SEA'RCH
LE SELECT
LEFT SEQUENTIAL
LENGTH SKEY
LET SKIP
LINE SOFLOW
LINPUT SPREC
LOOP STANDARD
LPREC STEP
LT STOP

STREAM
MARGIN SUB
MAT SUB EXIT

SYSTEM
NATIVE
NE TAB
NEWPAGE THEN
NEXT TO
NOFIPS TOP
NOKEY TRACE
NONE TYPE
NOREC
NOT UFLOW

UNTIL
OFF USE
OFLOW USING
ON
OPEN VARIABLE
OPTION
OR WHILE
ORGANIZATION WRITE
OUTIN
OUTPUT ZDIV

PAGE
PAGEOFLOW
PAUSE
POINTER
POS
PRINT
PROMPT
PRTZO
PUT

RANDOMIZE
RD
READ
REC
RECORD
RECORDS

\ RELATIVE
\

Structure of a Basic Program 7

Except for the following, keywords may not be abbreviated.

• COM may be used in place of COMMON

• REC may be used in place of RECORD

• PAGE may be used in place of NEWPAGE

Rules for Keywords Removed from the Reserved Word List

If your organization has removed keywords from the IBM BASIC
reserved word list, the rules regarding treatment of keywords are
different from those given above; the modified rules are given in
the following paragraphs.

If a BASIC keyword has not been removed from the reserved word
list r the keyword cannot be used as an identifier.

Example

LET LET = 2

LET = 2

neither is accepted if LET is included in the reserved word list.

However, if a keyword has been removed from the reserved word
list, it can be used as an identifier, even though it is still a
BASIC keyword. In that case, both of the LET statements in the
preceding example are accepted as written:

• In the first LET statement, the first word LET is interpreted
as a keyword, and the second is interpreted as an identifier.

• In the second LET statementr the word LET is interpreted as an
identifier.

Some keywords may be ambiguous if they are not reserved;
therefore, whenever an ambiguity is detected, the keyword
interpretation is used.

Example

100 REM = 3

200 IMAGE: X=Y

300 X = SINCY)

In these examples:

o Statement 100 is a REM statement, not an assignment
statement.

• Statement 200 is an IMAGE statement, not an assignment
statement with a statement label named IMAGE.

• Statement 300 is a reference to the intrinsic function SIN,
not an implicit declaration of a numeric array SIN.

However, if a keyword is deleted from the reserved word table and
its first use in the program is a declaration in a COM, DIM, or
DEF statement, an ambiguous usage is treated by the program as an
identifier. That is, in the previous example, if SIN is declared
as an array in a COM statement before the reference in statement
300, then statement 300 is a reference to an array named SIN.

8 IBM BASIC Application Programming: language Reference

MEANINGFUL SPACES OR BLANKS

Spaces (blanks) cannot appear within:

line numbers
keywords
identifiers
numeric constants

Example

BOT TOM

is not acceptable.

Spaces are optional between the following keywords. GOTO and GO TO
mean the same thing, GOSUB and GO SUB mean the same thing.

When the presence of delimiting characters delimits keywords or
identifiers, the keywords or identifiers can be coded with or
without delimiting spaces. Delimiting characters are:

+ - * / = () n , .. (or""')

All the followi ng assi gnment statements are accepted and
processed in the same manner:

Example

100 LET TOTAL = VALA + VALB+VALC
100 LET TOTAL = VALA+VALB + VALC
100 LET TOTAL = VALA + VALB + VALe

Any keyword appearing in a program must be preceded by a space or
other delimiting character and, if not at the end of a line,
followed by a space or other delimiting character.

Example

FORI=l TOlD

is not a correct FOR statement.
A space must follow the
words FOR and TO, as follows:

FOR 1=1 TO 10

Spaces may optionally precede or follow the equal sign (=).

Example

FOR I =1 TO 10
FOR 1= 1 TO 10
FOR I = 1 TO 10

are all equivalent.

Spaces appearing in quoted characters constants (character
constants enclosed in quotes) are counted as part of the constant;
spaces appearing outside the quotation are not considered part of
the constant. Spaces either preceding or following an unquoted
character constant (only allowed in DATA statements and responses
to INPUT statements) are not considered part of the character
string.

Structure of a Basic Program 9

Example

LET ALPHA$ = "LAST YEAR" The space between T and Y
is part of the string

DATA

STATEMENTS AND THEIR CATEGORIES

LAST YEAR The space between T and Y
is part of the string; the
spaces that precede Land
follow R are not part of
the string

IBM BASIC statements can be considered as belonging to one of the
following categories:

Imperative statement Causes an unconditional action to occur.

Conditional statement Tests a condition to determines which of
two or more alternative paths of execution
are to be followed.

Declarative Statement Specifies characteristics of the program
in general and thus influences the entire
program unit in which it appears.

continuation of statements

Statements may be continued from one line to the next by placing
an ampersand (I) as the last nonblank character of each line to be
continued, and beginning the next line with an ampersand as the
first nonblank character.

Example

100 PRINT A,B,C,D,E(11,12),F,G,H,I,J,K,L&
I ,M,N

is equivalent to:

A line can be continued in any line position where a space might
normally appear, except within a character constant. Line numbers
and line labels are not allowed on continuation lines.

Continuations are not allowed within REM (remarks) statements.
Lines containing trailing comments may be continued, but the
comment may not be continued.

Example

100 A = B + ! THIS IS A COMMENT &
I C

is functionally equivalent to:

100 A = B + C ! THIS IS A COMMENT

There is no limit to the number of continuations, except for the
amount of storage available to the entire program.

10 IBM BASIC Application Programming: Language Reference

Multiple statements Per Line

COMMENTS

The colon (:), when not within a quoted character string or
parentheses, and when not used to signify a label, and when not
used in a file I/O or IMAGE statement, indicates the end of a
statement when another statement begins on the same line.

Example

100 LET A = 5: LET B = 6: LET C = 10

is functionally equivalent to three separate LET statements:

100 LET A = 5
110 LET B = 6
120 LET C = 10

If a statement normally could be expected to end in a colon, then
the presence of a second colon is recognized as the indication
that another statement is present on the same line.

Example

100 PRINT 13:: PRINT 13: "THE ANSWER IS", A

is functionally equivalent to two separate PRINT statements:

100 PRINT 13:
110 PRINT 13: "THE ANSWER IS", A

where the first colon is part of the syntax of the PRINT 13:
statement, and the second colon indicates that another
statement begins on that line.

The statements EXIT, IMAGE, FORM, and SUB must be the first
statement on a line, because they must have a line number or label
to be used for reference.

The DATA, EXIT, FORM, IF, IMAGE, and REM statements must be last
on a line. This requirement is made to maintain compatibility with
other BASICs and to avoid ambiguous syntax.

In a REM statement, or in any statement containing an exclamation
mark remark (!), no other statement can occur on the same line,
since all characters following the remark are taken to be remarks.

Similarly, wherever an unquoted character string may occur, such
as in a DATA statement, another statement may not follow, because
of the possible conflict of interpretation.

When the line number of a multi statement line is used in a GOTO or
GOSUB statement, it always refers to the first statement on that
line.

Multiple statements per line are not allowed in immediate
statements.

Colons are used to separate statements within statement lists
appearing in IF statements. When an IF statement ends with a
statement list (as opposed to a line number reference or a line
label reference), all of the remaining statements on the line are
considered part of the IF statement list.

Comments inserted at intervals make programs easier to understand
and their logic easier to follow. IBM BASIC allows comments in two
forms: the exclamation mark comment, and the REM comment.

Structure of a Basic Program 11

EXCLAMATION MARK COMMENTS

An exclamation mark (!) specifies that the balance of the data on
the current line is a comment and not to be interpreted, that is,
the data is to be displayed in the program listing and no other
action taken. .

Example

100 LET DEPOSITS = 90.10 + 50.00 + 85.00 !TOTAL DEPOSITS
110 LET CHECKS = 12.50 + 16.00 + 27.00 !TOTAL CHECKS
120 LET BALANCE = OLDBAL+DEPOSITS-CHECKS !NEW BALANCE

Through the comments, the purpose of these three statements
is clearly documented.

The exclamat i on mark may not appear as a tra iii ng comment on an
IMAGE, DATA, or FORM statement.

REM STATEMENT COMMENTS

The keyword REM (for remarks) is used for comment lines. REM
specifies that data on the entire current line is a comment and
not to be interpreted; that is, the data is to be displayed in the
program listing and no other action taken.

Example

100 LET ABC = PARTA + PARTB
110 REM TOTAL THE PARTS

has exactly the same meaning as the following line:

100 LET ABC = PARTA + PARTB !TOTAL THE PARTS

COMMENT CONTINUATION NOl ALLOWED

STATEMENT BLOCKS

Comments cannot extend beyond an end of line. If more room is
required for a comment than the current line allows, another REM,
or exclamation mark permits continuation of the comment at the
beginning of the next line.

Example

100 LET DEPOSITS = 90.10 + 50.00 + 85.00 !TOTAL
110 !DEPOSITS FOR CURRENT MONTH

Certain statements are logically grouped into statement blocks.
Each block se~ves a separate and distinct purpose. The statement
blocks are:

• User-Defined Functions--described in "User-Defined Function
Statements" on page 77

• Loop Blocks--described in "Loop Control Statements" on page
62

• IF Blocks-descri bed in "IF Blocks" on page 64

• SELECT/CASE Blocks--described in "SELECT Blocks" on page 66

12 IBM BASIC Application Programming: language Reference

PROGRAM UNITS

A program may be divided logically into a number of program units;
a main program and one or more subprograms.

Each program unit establishes a separate scope of identifiers.
The same identifier may be used in different program units to name
different items.

statements within a program unit may not refer to any variable,
array, line label, line number, or function (other than intrinsic
functions) defined externally to that program unit.

Program units are described in "Subprogram Statements" on page
78.

Structure of a Basic Program 13

CONSTANTS, VARIABLES, AND ARRAYS

CONSTANTS

NUMERIC CONSTANTS

Integer Constants

Decimal Constants

Data can be constants, variables, or arrays. To reference data, a
constant, a variable name, or an array name may be specified.

All data--whether a constant, a variable, or an array--is divided
into two classes: numeric and character. There are two types of
numeric data: integer or decimal. Character data has the
character type.

A constant, as the name implies, is a piece of data whose value
will not and cannot be changed during processing. There are two
types of constants: numeric and character.

Numeric (also referred to as arithmetic) constants can be
represented in two forms: integer and decimal.

Integer constants are made up of whole numbers. These numbers can
be either positive or negative and can range from -2,147,483,648
to +2,147,483,647.

Periods and commas cannot appear within integer constants.

Example

15
+365
-123
1429

INTERNAL REPRESENTATION OF INTEGER CONSTANTS: Integer Constants
can contain up to 10 digits, with a maximum value of
+2,147,483,647 and a minimum value of -2,147,483,648.

They are stored internally as shown in Figure 1.

<------ 4 bytes --------->

Figure 1. Integer Data--Internal Representation

Integer constants are stored internally as full word (32-bit)
two's complement values.

Decimal constants can be either fixed-point or floating-point
constants.

Decimal data can contain up to 17 digits.

14 IBM BASIC Application Programming: language Reference

FIXED-POINT DECIMAL CONSTANTS: Fixed-point decimal constants can
be either positive or negative in value and must include a decimal
point.

Example

.15
+3.65
-123.

FLOATING-POINT DECIMAL CONSTANTS: Floating-point decimal
constants allow the representation of very large or very small
numeric values.

Floating-point constants can be either positive or negative in
value. A floating-point decimal constant can be written as either
an integer or decimal fixed point constant, followed by the letter
E, followed by an integer constant.

Example

5.0E+6
5E6
+5E06

Each of these examples represents the number 5 million, expressed
as 5 times 10 to the sixth.

Each of these examples specifies that the decimal point is to be
moved right the number of places indicated after the letter E
(that is, 5 is to be multiplied by that power of 10). The number
before the E is referred to as the mantissa. The number after the
E is referred to as the exponent.

Just as easily, very small number values can be presented by
saying, "move the decimal left."

Example

5.0E-6
5E-06
+5E-6

all represent .000005, or 5 times 10 to the minus sixth.

For floating-point, the mantissa is normalized to an implicit
decimal point to the left of the leftmost significant digit. The
exponent can be in the range -75 to +75.

Therefore, the largest absolute value is:

.99999999999999999E+75

and the smallest absolute value is:

1E-75

INTERNAL REPRESENTATION OF DECIMAL CONSTANTS: Decimal data is
stored internally as three words (12 bytes) as shown in Figure 2
on page 16.

Constants, Variables, and Arrays 15

CHARACTER CONSTANTS

<----------Imantissa-----------> EXP

dd

where:

mantissa

d

+

EXP

is a 10-byte packed decimal number
normalized to the left with the last
two digits zero

represents a half-byte containing the
value of a decimal digit (0-9)

represents the half-byte for the sign

represents the half-word exponent as a
twos-complement value.

Figure 2. Decimal Data-Internal Representation

Character constants are strings of characters. They can be used,
for example, to create headings and subheadings for reports. They
are normally enclosed within quotes (called delimiters). These
delimiters may be omitted in DATA statements and in the responses
to INPUT statements under specific rules which are discussed in
the sections dealing with the DATA and INPUT statements.

Character constants may be specified using either single or
double quotes, but not both, for the same constant.

ExamEle

If this constant is specified:

'The sentry shouted, "Halt!'"

the value is:

The sentry shouted, "Halt!"

with double quotes around the word Halt.

If this constant is specified:

"The sentry shouted, 'Halt!'"

the value is:

The sentry shouted, 'Halt!'

with single quotes around the word Halt.

If the delimiting quote mark appears within the string, it must
appear doubled, with no intervening spaces. Thus, the last
example could be specified:

'The sentry shouted, "Halt!'"

A character constant may be null, that is, contain no characters.
The null string (that is, a string of length zero) may be

16 IBM BASIC Application Programming: Language Reference

VARIABLES

NUMERIC VARIABLES

specified with either contiguous single quotes (") or contiguous
double quotes ("").

Variables are data items whose values may be changed. Variables
may take two forms: simple, referring to a single item, or
subscripted, referring to one item (or member) of an array or
group of data.

A variable name is an identifier for a set of data which may
change values during processing, hence the name variable.

Variable names cannot exceed 40 characters in length.

Numeric variables:

• Are integer or decimal type.

• Are specified explicitly by type through the INTEGER or
DECIMAL statements.

• Are specified implicitly by type through the integer suffix X
or the decimal suffix # on the variable name.

• Are in error if these specifications conflict.

• May not have names ending with $.

• Are initialized to zero (0).

The type (decimal or integer) of numeric variables may be
specified by DECIMAL and INTEGER statements. These statements
declare the type of a variable according to the variable name or
the first letter of the name.

Example

100 INTEGER (A-C),INTI

defines all numeric variables with names beginning with
A, B, or C as type integer. The variable INTI is also type
integer.

If a variable name does not end with I or Y. and the name or first
letter of the name is not specified in a DECIMAL or INTEGER
statement, the variable is assigned decimal type by default.

Variable names ending with # or X may not be assigned a
contradictory type. For example, DECIMAL XY. is an error, INTEGER.
XY. is redundant but acceptable. Also, the # and Y. typing overrides
first character typing (through DECIMAL or INTEGER statements).

Example

110 INTEGER(A-C)
120 ALPHA#=BETA

In this example ALPHAI is given decimal type even though it begins
with one of the letters declared in the INTEGER statement. BETA is
typed integer.

Note that the characters X and I are considered as part of the 40
characters when determining variable name size limits.

If a numeric variable name ending with I or X duplicates another
numeric variable name in all character positions except the final
or X and the two names have the same type, then they refer to the
same variable. For example, AI, AX, and A may all be used in a

Constants, Variables, and Arrays 17

CHARACTER VARIABLES

program. If A is typed decimal (either by a DECIMAL statement or
by default) then A and AI represent the same variable. However, if
A 1S typed integer, A and A% refer to the same variable.

Each time execution of a program unit (main program or subprogram)
is begun, all numeric variables local to the program unit (not in
COMMON and not parameters) are initialized to zero. COMMON
variables are initialized to zero when the first program unit
using COMMON is encountered.

Integer variables contain 32-bit two's complement values as
described under "Integer Constants" on page 14.

Decimal variables contain 17 digit values with a decimal point and
power of ten exponent. The internal representation and range of
decimal values is discussed under "Decimal Constants" on page 14.

Character variables:

• Must have names ending with $.

• Contain strings which are variable in length.

• Have a maximum length which is either declared explicitly in a
DIM or COMMON statement, or is the IBM supplied default, (18,
but check with your system administrator>.

• May have a maximum length of 32767 characters.

• Are initialized to a null (zero length) string.

All character variable names must end with the character $ and may
be up to 40 characters in length, including the dollar sign.

Character variables contain character strings of varying length.
In other words, the value of a character variable does not
necessarily always have the same length.

Each character variable has associated with it a current length.
Each character variable also has a maximum length. The maximum
length is the maximum value possible for the current length. The
maximum length may be declared with the DIM or COMMON statements
or, if not declared, defaults to a value determined by your system
administrator (18 is the IBM supplied default). The maximum value
that may be declared is 32,767.

Example

110 A$ = "STRING"
120 A$ = "BIGGER STRING"

In the above example, at line 110 A$ is assigned a string of
length 6, and at line 120 the same variable is assigned a string
of length 13.

Example

100 DIM ADDRESS$*30

In this example, the "*30" declares the variable ADDRESS$ to have
a maximum length of 30.

When execution of a program is initiated, for example, with the
RUN command, and before any statements are processed, IBM BASIC
initializes all character variables to the null string (sets
their current lengths to zero).

18 IBM BASIC Application Programming: language Reference

ARRAYS

An array is a collection of data items (elements) that is referred
to by a single name. Only data items of the same type (character,
decimal, or integer) and, in the case of character, the same
maximum length can be grouped together to form an array.

Arrays can have from one to seven dimensions. A one-dimensional
array can be thought of as a vector of successive data items.

REFERENCES TO ARRAY ELEMENTS (SUBSCRIPTS)

subscript Boundaries

To refer to a single element in the array you must be able to
specify that element. In order to do so, you must provide a
subscript for each dimension of the array.

A subscript can be any valid arithmetic expression whose rounded
integer value is equal to or greater than zero. A set of
SUbscripts is specified within parentheses and separated by
commas after the array name to which they refer.

The parentheses and the enclosed term(s) are referred to as a
subscript.

Example

ARA$(3,3,3)

The subscript reference (3,3,3) locates a specific element
within the 3-dimensional array named ARA3$.

Reference to an element in a one-dimensional array requires that
you specify the array name (ARA1$ for example) followed by the
desired array position enclosed in parentheses. If you want to
move the third value of ARA1$, assuming OPTION BASE 0, to the
variable VAR$, you can use this statement;

100 LET VAR$=ARA1$(2)

In multidimensional arrays, the rightmost subscript varies most
rapidly. If you define ARA2$ in this manner:

100 DIM ARA2$(10,20)

a two-dimensional array is generated, and (assuming OPTION BASE
1) you can refer to anyone of the two hundred locations within
ARA2$ by using the proper subscript. 200 LET statements could
refer to the array sequentially, one location at a time, in the
same order that a MAT statement would use:

100 LET VARAl$=ARA2$(1,1)
110 LET VARA2$=ARA2$(1,2)
120 LET VARA3$=ARA2$(1,3)

.
1990 LET VARA199$=ARA2$(10,19)
2000 LET VARA200$=ARA2$(10,20)

The lower boundary of each subscript is determined by the OPTION
BASE in effect. If OPTION BASE 1 is in effect the lower boundary
of a subscript is one (1). If OPTION BASE 0 is in effect the lower
boundary of a subscript is zero (0). Upper subscript boundaries
are dependent upon the current dimensions of the array. These
dimensions are initially set by DIM or COMMON statements or by
implicit defaults (see "Explicit Dimensioning of Arrays" on page
21 and "Implicit Dimensioning of Arrays" on page 22), but may be
dynamically changed by redimensioning (see "Redimensioning" on
page 23). Redimensioning must not increase the array size to

Constants, Variables, and Arrays 19

BASE INDEXING

exceed the explicitly or implicitly defined number of elements.
The intrinsic function SIZE may be used to determine the
dimensions of an array or the number of its elements (see
"Intrinsic Functions" on page 34).

Subscripts may be any numeric expression. If the result of the
expression is decimal with a fractional part, it is rounded and
converted to an integer value. Thus, AC2.5) is equivalent to A(3).

If a subscript value is outside of the dimension's range (less
than the lower boundary or greater than the upper boundary), an
exception is generated when the illegal array reference is
attempted (see "ON Condition Statement" on page 203).

Array dimensioning is based on the selection of BASE 0 indexing or
BASE I indexing. The OPTION statement specifies the base; the
default is BASE O.

If base 0 indexing is specified, the array is referenced starting
with zero, A(O), A(I), A(2), A(3), etc. If base 1 indexing is
specified, the reference starts with one, ACl), A(2), A(3), A(4),
etc.

Example

DIM A(IO)

When OPTION BASE 0 is in effect is an ll-element array

When OPTION BASE 1 is in effect is a lO-element array

Figure 3 shows how a one-dimensional array named A, with OPTION
BASE 0 in effect, is laid out in storage.

ACO)

A(I)

A(2)

A(3)

ACO)

Figure 3. One-Dimensional Array References--BASE 0 Indexing

20 IBM BASIC Application Programming: Language Reference

Figure 4 shows how references to a three-dimensional array Named
B, with OPTION BASE 1 indexing, would appear in storage.

B(l,l,l) B(1,1,2) B(1,1,3)

B(1,2,1) B(1,2,2) B(1,2,3)

8(1,3,1) B(1,3,2) B(1,3,3)

B(2,1,1) B(2,1,2) B(2,1,3)

B(2,2,1) B(2,2,2) B(2,2,3)

8(2,3,1) 8(2,3,2) 8(2,3,3)

B(3,1,1) B(3,1,2) 8(3,1,3)

B(3,2,1) B(3,2,2) 8(3,2,3)

B(3,3,1) B(3,3,2) B(3,3,3)

Figure 4. Three-Dimensional Array References--BASE 1 Indexing

Note: A series of values assigned to a multidimensional array
always fills that array with the rightmost subscript varying most
rapidly.

EXPLICIT DIMENSIONING OF ARRAYS

Numsr i C Arrays

Arrays can be dimensioned explicitly by either the DIM or COMMON
statements.

When an array is dimensioned explicitly, both the number of
dimensions and the upper bounds of each dimension are specified in
the DIM or COMMON statement. For example, if BASE 1 indexing is in
effect:

DIM ARRAY(20,4)

dimensions a numeric array named ARRAY to 20 rows and 4 columns.

The maximum size of an array is limited only by the virtual
storage available.

If an array is explicitly dimensioned more than once in a program
unit, an error message is printed and all declarations of the
array except the first are ignored.

If an array is explicitly dimensioned with an upper bound of zero
in a program unit with OPTION BASE 1, an error message is printed
and the array declaration is ignored.

Numeric arrays are typed (decimal or integer) in the same manner
as numeric variables:

• The DECIMAL and INTEGER statements'can declare specific array
names or specific beginning letters of array names.

• The characters I and" at the end of array names i ndi cate
decimal and integer, respectively, and override declarations
in DECIMAL and INTEGER statements.

Constants, Variables, and Arrays 21

Character Arrays

• If a numeric array name ending with # or ~ duplicates another
array name in all character positions except the final I or ~,
and the two arrays have the same type, they refer to the same
array and only one of the two may be dimensioned explicitly.

• Integer arrays contain values as described for integer
variables, and decimal arrays contains values as described
for decimal variables (see "Numeric Variables" on page 17).

• Numeric arrays are initialized to zero.

Character arrays follow much the same rules as character
variables:

• Character array names must end with the character $.

• All elements of a character array are assigned the same
maximum string length either by explicit declaration in a DIM
or COMMON statement or by default. The maximum length is
32767. The default maximum is determined by your system
administrator. (18 is the IBM-supplied default.)

• Each element of a character array has a current length which
is not necessarily equal to the current length of other
elements.

• When processing begins, the current length of all character
array elements is set to zero (the null string).

Example

100 OPTION BASE 1
110 DIM NAMES_OF_MONTHS$(12)*9

This declares a one-dimensional character array of 12 elements
with each element having a maximum length of nine characters.

After an array has been explicitly dimensioned, it cannot be
explicitly dimensioned a second time by another DIM or COMMON
statement anywhere in the program unit.

IMPLICIT DIMENSIONING OF ARRAYS

If the first usage of a name in a program is as an array, but the
array is not dimensioned in a DIM or COMMON statement, implicit
dimensions are assumed.

The upper bound of each implicit dimension is 10; the lower bound
is 0 or 1, depending on OPTION BASE 0 or 1.

The number of implicit dimensions depends on the number of
dimensions in the subscript reference.

If the reference has no subscripts, for example, in a MAT
assignment statement, two dimensions are assumed. (The MAT
functions DOT, AIDX, DIDX and the intrinsic function SRCH are
exceptions to this rule; they assume one-dimensional arrays.)

22 IBM BASIC Application Programming: language Reference

REDIMENSIONING

An array can be declared implicitly by using the array name in a
context where only an array name is permitted, as in an assignment
statement with subscripts. For example, assuming OPTION BASE 0 is
in effect:

• Reference with subscripts

100 LET ARAXC4,S)=10

establishes ARAX as a two-dimensional array, each
dimension containing 11 elements.

• MAT statement

110 MAT A=C1S)

establishes A as a two-dimensional array, each dimension
containing 11 elements.

• MAT name in an input or output list

100 PRINT USING 120:MAT ARAY

establishes ARAY as a two-dimensional array, each
dimension containing 11 elements.

• As the argument of a function which requires an array
parameter

100 IF XDTCK)=O THEN 200

establishes XDT as a one-dimensional array containing
11 elements.

Assuming BASE 0 indexing, when no DIM or COMMON statement
specifies an array named A, the statement:

A(3) = 50

establishes a one-dimensional array containing 11 elements.
Element A(3) is the 4th element and has a value of 50.

Similarly, when neither a DIM nor a COMMON statement specifies an
array named ARRAY, the statement:

ARRAYC10,4) = 7.123

establishes a two-dimensional array containing 11 rows and 11
columns (121 elements). Element ARRAY(10,4) has a value of 7.123.

Arrays with dimensions that contain more than 10 or 11 elements
must be explicitly dimensioned by a DIM or COMMON statement. Thus,
without the appropriate DIM or COMMON statement, the following
statements would both cause errors:

AC1S) = 22.4
BC3,20) = 66.6

Once an array has been dimensioned, either explicitly by a DIM or
COMMON statement, or implicitly through usage, it cannot be
explicitly dimensioned again, but it can be redimensioned.

Arrays may be dynamically redimensioned by MAT assignment
statements and MAT references in input lists within I/O
statements. The number of dimensions and the extents of those
dimensions may be changed as long as the number of elements in the
original array is not exceeded.

Redimensioning only changes the view of the storage associated
with an array, not the contents of the storage. Redimensioning may

Constants, Variables, and Arrays 23

cause an array to become smaller such that excess elements are not
accessible, but the values remain in storage so that a subsequent
redimensioning may bring them back into view.

Example

original Dimensions

OPTION BASE 1
ARRAYl(100)
ARRAYl(100)
ARRAY2(20,20)
ARRAY2(20,20)

Redimensioning Reference

MAT ARRAYl = ARRAYl(85)
MAT ARRAYl = ARRAYl(lO,lO)
MAT ARRAY2 = ARRAY2(300)
MAT ARRAY2 = ARRAY2(500) (See Note)

Note: This redimensioning reference is invalid; the redimensioned
ARRAY2 would exceed the original size of ARRAY2.

Redimensioning COMMON Arrays

Arrays in COMMON can be redimensioned and the effects are global
(remain in effect) across program units. If a subprogram
redimensions a COMMON array, the new dimensions remain in effect
when the subprogram is exited.

Redimensioning Parameters

An array that is a parameter (that is, appears in a SUB statement)
may be redimensioned within a subprogram. When control returns to
the calling program, the array retains its changed dimensions.

Calling Program

100 OPTION BASE 1
110 DIM ARRAYl(lO,lO)
120 CAll SUBPROG(ARRAYl(,»

Called Program

100 SUB SUBPROG (ARRAY2(,»
110 OPTION BASE 1
120 MAT ARRAY2 = ARRAY2(5,5,4)

After control returns to the main program, ARRAYl has the
dimensioning ARRAYl(lO,lO).

24 IBM BASIC Application Programming: language Reference

EXPRESSIONS

NUMERIC EXPRESSIONS

Expressions are representations of numeric or character values,
for example, vari able or constants appeari ng above or in
combination with operators.

An expression can be anyone of the following:

Numeric Numeric values, optionally combined by numeric
operators.

Character Character values, optionally combined by character
string operators.

Relational Combinations of numeric expressions combined by
relational operators or character expressions
combined by relational operators.

logical Combinations of relational expressions combined by
logical operators.

Arr~y Entire numeric or character arrays, optionally
combined by numeric or character operators.

A numeric expression can be a numeric constant, a simple numeric
variable, a reference to an element of a numeric array, a
numeric-valued function reference, or a sequence of the above
appropriately separated by numeric operators and parentheses.

There are five numeric operators, sometimes referred to as scalar
operators, as shown in Figure 5.

EVALUATION OF NUMERIC EXPRESSIONS

IBM BASIC evaluates numeric expressions from left to right,
subject to the evaluation order of the various operators defining
the order of execution, as shown in Figure 5.

operator

** or ... or"
* /
+

Meaning

exponentiation
mUltiplication
division
addition (or sign operator)
subtraction (or sign operator)

Evaluation
Order

1
2
2
3
3

Figure 5. Numeric Operators and Evaluation Order

The double asterisk, the logical not sign, or the circumflex can
be used for exponentiation; the one used depends upon the
characters avai lable on the termi nal.

The left-to-right processing of operators is modified to provide
compatibility with accepted practices of arithmetic processing.
The highest processing priority is provided to exponentiation.
The intermediate processing priority is provided to
multiplication and division. If these two operators are
encountered in the same expression, normal left-to-right

Expressions 25

processing priority is used. The lowest processing priority is
assigned to addition and subtraction. If these two operators are
encountered in the same expression, normal left-to-right
processing priority is used. See Figure 5 on page 25.

Evaluation of this expression:

Example

5+15-3

results in the value of 17: 5 is first added to 15; then
3 is subtracted from that sum.

In the following expression, the normal left-to-right process is
overridden by the priority of operators:

Example

5+15/3

First, 15 is divided by 3; then, the quotient 5 is added to 5.
The result is 10.

If an arithmetic statement contains several operations with mixed
priorities, the operations with the higher priority are processed
first in a left-to-right sequence. When that is c6mpleted, the
next lower priority level of operations is processed.

Example

4+10/2-6**3/4+5

This expression is evaluated as follows:

1. Exponentiation is the first priority, so 6**3 is
evaluated first, giving the following intermediate
expression:

4+10/2-216/4+5

2. Division is the next priority, evaluated in left-to-right
order, so 10/2 is next evaluated, giving the following
intermediate expression:

4+5-216/4+5

3. Next, the right-hand division operation, 216/4, is
performed, giving the following intermediate expression:

4+5-54+5

4. Addition and subtraction are of the same priority; they
are processed from left to right, giving the final
result, which is -40.

PARENTHESES IN NUMERIC EXPRESSIONS

Parentheses provide a means to modify any of the above stated
rules. The evaluation of parenthetic expressions has the highest
possible priority. If more than one parenthesized sUbexpression
is contained within an expression, the left-to-right priority
becomes effective.

When parentheses are nested, the innermost pair of parentheses
(the pair deepest nested) has the highest priority.

26 IBM BASIC Application Programming: Language Reference

Using the expression from the previous example, we will change the
order of processing by adding parentheses:

Example

4+10/2-6**3/(4+5)

1. Now the first evaluation is (4+5), giving the following
intermediate expression:

4+10/2-6**3/9

2. Exponentiation, 6**3, now takes place, giving the
following intermediate expression:

4+10/2-216/9

3. The two division operations, 10/2 and 216/9, now take
place in left-to-right order, giving the following
intermediate expression:

4+5-24

4. Last of all, addition and subtraction generate the final
value of -15.

Operators may not be presented in succession. The expression

4+-10

is invalid, whereas 4+(-10) is valid.

ADDITION AND MULTIPLICATION RULES IN NUMERIC EXPRESSIONS

In IBM BASIC, mUltiplication and addition are both commutative;
in other words, A*B is the same as B*A and A+B is the same as B+A.

However, mUltiplication and addition are not always associative;
that is, A*(B*C) does not necessarily give the same results as
(A*B)*C. This is due to the situation shown below, where an
overflow or underflow could result.

For example:

lE60*(IE20*IE-20) equals lE60

but

(IE60*IE20)*IE-20 results in an overflow.

The expression in the parentheses causes the overflow and, if no
ON OFLOW GOTO statement has been previously executed, causes the
value 0.99999999999999999E+75 (BASIC infinity) to be substituted
into the expression that is then multiplied by lE-20. This results
in the total expression equaling O.99999999999999999E+55.

A/B is defined as A divided by B. If B=O, a division by zero
(ZDIV) error will occur.

A-B is defined as A minus B. No special conditions exist.

PLUS AND MINUS AS SIGN OPERATORS

The + and - signs can also be used as positive/negative operators,
which can be used in only two situations:

• Following a left parenthesis and preceding a numeric
expression.

• As the leftmost character in an entire numeric expression.

Expressions 27

Example

Valid Invalid

-A+B -A++B
-A+(-B) -A+-B
B-(-2) B--2

MIXED TYPE NUMERIC EXPRESSIONS

The result of an expression containing any decimal operands is
decimal.

The result of an expression containing only integers is integer,
except for division and exponentiation, where integer operands
are converted to decimal, and the result is decimal.

If an integer operand is combined with a decimal operand, the
integer operand is converted to decimal and the result is decimal.

Decimal or integer results may be assigned to numeric variables
and arrays of either type (see "Assignment statements" on page
68).

The IFIX, INT, and DEC intrinsic functions are useful with mixed
numeric expressions. The IFIX function returns the rounded
integer value of the argument. The INT function returns the
largest integer not greater than the argument. The DEC function
converts the argument to internal decimal format (see "Function
Descriptions" on page 36).

CHARACTER EXPRESSIONS

CONCATENATION

Character expressions are made up of combinations of character
constants, character variables, character array elements, and
references to character functions, combined by the concatenation
operator and modified by substring qualifiers.

Example

"ABCDEFG123456"
ALPHA$ & BETA$
"SER" & "IAL"
ZEBRA$(2:6)
CHR$(CHAR)
GAMMA$(I,I)(4:9)

(character constant)
(concatenation of 2 character variables)
(concatenation of 2 character constants)
(substring of a character variable)
(a character array element)
(substring of a character element)

Concatenation is joining two character expressions with an
ampersand (&), the concatenation operator. When two or more
character strings are concatenated, the length of the resulting
string is the sum of the individual string lengths.

Example

110 A$ = "MINNE"
120 B$ = A$ & "SOTA"

In this example, the character variable A$ is concatenated with
the character constant "SOTA" to form the value of B$ (MINNESOTA).
In the preceding example, A$ has a length of five ("MINNE"),
"SOTA" has a length of four, and B$ has a length of 5+4=9 (wi th
the value "MINNESOTA").

28 IBM BASIC Application Programming: Language Reference

SUBSTRINGS OF CHARACTER VARIABLES AND ARRAYS

A character substring is a contiguous portion of a character
string. A substring is identified by a substring qualifier.
Operations to extract, insert, replace and append substrings are
provided by references using substrings or qualifiers.

A substring of a character string is specified by adding a
substr i ng qual i fi er to a character vari able or character array
element. A substring qualifier has the form:

Where:

m is the begi nni ng posi ti on of a stri ng

n is the ending position.

Both m and n may be numeric expressions. When m and n are
evaluated, the values used are the rounded integer equivalents of
the expressions.

If m is less than 1, m is considered to be 1. If m is greater than
the number of characters in the value associated with A$, the
addressed substring is the null string immediately following the
last character of A$. The number of characters in the value
associated with A$ can be expressed as the intrinsic string
function lENCA$). If n is greater than lENCA$), n is considered to
be equal to lEN(A$). If m is greater than n, the addressed
substring is the null string preceding the mth character of A$.

When the string notation occurs to the right of the equal sign in
an assignment statement, extraction is indicated. When the string
notation occurs to the left of the equal sign, replacement or
insertion is indicated.

Examples

Assume that A$ conta ins the value ABCDEF and that 8$ has the value
VWXYZ. Following are examples of substring extraction,
replacement, and insertion.

Extraction

G$ = 8$(2:3)

G$ = 8$(4:4)

G$ = 8$(0:2)

G$ = 8$(7:8)

G$ = 8$(4:8)

Re~lacement

A$ (3:4) = "PQ"

A$ (3:4) = ""
A$ (3:4) = 8$(1:2)

A$ (3:4) = 8$(3:3)

A$ (3:4) = 8$(1:4)

A$ (3:2) = 8$(1:4)

Assigns WX (the 2nd and 3rd positions
of 8$) to G$.
Assigns Y (the 4th position of 8$)
to G$.
Assigns VW (the first two positions
of 8$) to G$. (m is taken as 1).
Assigns a null string to G$ (because
B$ has only 5 characters)
Assigns YZ to G$. (n is taken as 5,
which is the length of the string).

Causes CD to be replaced in A$ by PQ.
ABPQEF
Causes CD to be deleted from A$.
ABEF
Causes CD to be replaced by VW.
ABVWEF
Causes CD to be replaced by x.
ABXEF
Causes CD to be replaced by VWXY.
ABVWXYEF
Causes VWXY to be inserted before
C, resulting in A8VWXYCDEF.

Expressions 29

A$(1:0) = "PQ"

A$(1:0) = B$(3:4)
A$(1:0) = B$(1:1)

A$(7:8) = "PQ"

A$(7:8) = B$(2:4)
A$(10:11) = "PQ"

Causes insertion before the current
characters of A$.
PQABCDEF
Results in XYABCDEF.
Results in VABCDEF.

Causes insertion after the current
characters of A$.
ABCDEFPQ
Results in ABCDEFWXY.
Results in ABCDEFPQ.

substrings of Character Arrays

Substringing can also be performed on character array elements.
For example, if B$(3) equals ABCDEFG, B$(3)(2:3) equals BC.

Character expressions can combine substring and concatenation
operations to rearrange character strings. For example, the value
returned by the DATE$ intrinsic function (which returns the date
in the form YY/MM/DO) can be rearranged as follows:

50 C$ = DATE$
100 D$ = C$(4:8)&C$(3:3)&C$(1:2)
120 PRINT 0$

This would return the date in the form mm/dd/yy instead of
yy/mm/dd.

RELATIONAL EXPRESSIONS

RELATIONAL OPERATORS

A relational expression compares the value of either two numeric
expressions or two character expressions. The expressions to be
compared are evaluated and then compared according to the
definition of the relational operator specified. According to the
result, the relational expression is either satisfied (true) or
not satisfied (false).

Relational expressions can appear in a BASIC program only as part
of IF, DO, LOOP, EXIT IF, and CASE (in abbreviated form)
statements.

Relational operators are defined as shown in Figure 6.

Operator Definition

= or EQ equal

<> or >< or NE not equal

>= or => or GE greater than or equal

<= or =< or LE less than or equal

> or GT greater than

< or LT less than

Figure 6. Relational Operators

30 IBM BASIC Application Programming: Language Reference

NUMERIC DATA IN RELATIONAL EXPRESSIONS

If a numeric expression of type integer is compared to an
expression of type decimal, the integer expression is converted
to decimal before the comparison is made.

CHARACTER DATA IN RELATIONAL EXPRESSIONS

LOGICAL EXPRESSIONS

AND LOGICAL OPERATOR

When character data appears in a relational expression, it is
compared character-by-character, from left to right, according to
the COLLATE entry on the OPTION statement.

When OPTION COLLATE NATIVE is specified, the EBCDIC collating
sequence is used. When OPTION COLLATE STANDARD is specified, the
ASCII collating sequence is used. Both collating sequences are
listed in "Appendix B. Character Set Collating Sequences" on page
327.

Figure 7 shows examples of the differences between the two
options, COLLATE NATIVE and COLLATE STANDARD, when evaluating
character expressions.

Expression Native Result Standard Result

"ABC"="ABC" True True
"ABLE"<"BALL" True True
"123">"BALl" True False
"$12"<"7" True True
"155"<"44" True False

Figure 7. COLLATE Option and Comparisons of Character Expressions

Character expressions of different lengths can never be equal. If
two character expressions are equal for the length of the shorter
expression, the shorter expression is less than (in value) the
longer expression. For example, "ABC" is less than "ABC"

Relational expressions can be combined using the AND, OR, and NOT
operators to yield a logical expression.

Logical expressions can be used in IF, DO, EXIT IF, and LOOP
statements.

AND specifies that both of two expressions must be true in order
for the logical expression to be true.

Example

A = 3 AND NAME$ = "CHARLIE"

This logical expression is true only if both the numeric variable
A equals 3 and the character variable NAME$ equals CHARLIE.

Expressions 31

OR LOGICAL OPERATOR

NOT LOGICAL OPERATOR

OR specifies that either of two expressions must be true in order
for the relational expression to be true.

Example

A = 3 OR NAME$ = "CHARLIE"

This logical expression is true if A equals 3 and/or NAME$ equals
CHARLIE.

NOT specifies the negation of a relational or logical expression
that follows the NOT operator.

Example

NOTCA EQ B)

This expression is true if A is not equal to B.

Note: However, A NOT EQ B is invalid, because EQ is not a
relational or logical expression.

COMBINING LOGICAL EXPRESSIONS

Logical operators may be combined to form more complex logical
expressions.

The evaluation of parenthesized expressions has the highest
possible priority. If more than one parenthesized expression is
contained within an expression, the left-to-right priority
becomes effective. When parentheses are nested, the innermost
pair of parentheses has the highest priority.

Example

NOT CNUM<=COUNT OR DATA$ = "END") AND ALPHA$<>BETA$

is a valid logical expression. The parentheses are required to
negate the result of the OR operation.

PRIORITY OF EXPRESSION EVALUATION

The priority of evaluation of expressions is shown in Figure 8.

subexpression or operator Evaluation Order

Arithmetic or character 1
expressions

Relational operators 2

NOT 3

AND 4

OR 5

Figure 8. Scalar Expressions--Evaluation Priority

32 IBM BASIC Application Programming: language Reference

ARRAY EXPRESSIONS

Array expressions perform operations on the entire collection of
a numeric or character array's elements rather than on each
element individually, as scalar expressions do.

Array expressions may appear only within the MAT statement. See
"MAT (Array Assignment) Statement" on page 183 for a description
of array expressions.

Expressions 33

INTRINSIC FUNCTIONS

A function is a named expression or block of statements that
computes a single value. A function can be invoked through a
reference to it in an expression.

You can define and name your own functions by using the DEF
statement. See the user-defined functions "DEF statement" on page
109 and "FNEND Statement" on page 126.

An intrinsic function is a predefined function supplied by IBM
BASIC to evaluate commonly used mathematical, character, and
system operations.

When an intrinsic function name ends in a dollar sign (for
example, DATE$) a character, rather than numeric, value is
returned.

An intrinsic function may require an argument list (of one or more
arguments) to follow the function name. The argument list is
enclosed in parentheses, and each item in the list is separated
from the next by commas. The type of argument allowed for each
intrinsic function is predefined, and an invalid argument
produces an error. A function referehce may be used anywhere in an
expression where a variable, a constant, or an array reference of
the same data type as the function return value, can be used.

If the value of a parameter is outside the allowable range, an
exception is generated at the time the function reference is
attempted. Appendix A, "Exception Codes," includes all exceptions
caused by intrinsic function parameter errors.

Notation Used for Parameters

In this section, those intrinsic functions which require
parameters are indicated by a parenthetic list after the function
name. The notation used for parameters is:

Notation

X 01'" Y

f1 01'" N

A or B

Meaning

Numeric parameter which can be either decimal or
integer

Example: ABSeX)

Type integer parameter. The function can be used
with any numeric expression as the argument, but if
the result of the expression is type decimal, it
will automatically be converted to integer (with
rounding).

Example: FIlE(M)

Array parameter.

Example: DETeA)

A$,B$,or C$ Character variable parameter.

[]

Example: lENeA$)

Intrinsic functions which mayor may not have
parameters are indicated by enclosing the parameter
list in square brackets.

Example: RND[(X)]

34 IBM BASIC Application Programming: language Reference

INTRINSIC NUMERIC FUNCTIONS

The following numeric functions are supported:

ABS(X)
ACOS(X)
ANGLE(X,Y)
ASIN(X)
ATN(X)

CEIL(X)
CEN(X)
CNT
CODE
COS(X)
COSH(X)
COT(X)
CSC(X)

DATE
DECCX)
DEGCX)
DET[eA)]
DOTeA,B)

EPS
ERR
EXpeX)

FAH(X)
FILECN)
FILENUM
FPeX)

IFIXeX)
INF
INTCX)
IP(X)

KEYNUM
KLNCM)
KPSCM)

INTRINSIC STRING FUNCTIONS

LINE
LOGCX)
LOG2CX)
LOGIOeX)

MAXeX,Y[, ...])
MIN(X,Y[, ...])
MODeX,Y)

PI
PRD(A)

RAD(X)
REC(M)
REM(X,Y)
RLN(f'n
RND[eX)]
ROUND[eX,N)]

SECeX)
SGNeX)
SINCX)
SINHeX)
SIZECA[,M]) or SIZECA$[,M])
SQR(X)
SRCHCA,X[,Y])
SUMCA)

TAN(X)
TANHeX)
TIME
TRUNCATECX,N)

UDIMeA,M) or UDIMeA$,M)

The following string functions are supported.

CHR$CM) POSeA$,B$[,M])

DAT$«M» RPAD$(A$,M)
DATE$ RPTeA,M)

RTRMeA)
FILE$(M)

SREP$(A$,M,B$,C$)
JDY<CC$» STR$(X)

TIME$
LENCA$) TIME$
LPAD$(A$,M)
L TRr-1$(A$) UPRCCA)
LWRC$(A$)

VALCA$)
ORDCA$)

Intrinsic Functions 35

FUNCTION DESCRIPTIONS

ABS(X)

ACOS(X)

ANGLE(X,Y)

ASIN(X)

ATN(X)

CEIL(X)

The intrinsic numeric and string functions, in alphabetic order,
are described in detail below:

Returns the absolute value of X. The argument type can be integer
or decimal. The type of the result is the same as the type of the
argument.

Example

ABS(-1.2) is 1.2; ABS(3.4) is 3.4

Returns the arccosine (the inverse function of the cosine) of X,
where X is in radians. X can be integer or decimal type. X must be
in the range -1 to 1. The result is decimal and the range is ° to
PI.

Example

ACOS(O) is 1.5707963267948966

Returns the angle in radians between the positive X-axis and the
vector joining the origin to the point with coordinates (X,Y); the
angle is in the range: -PI to PI. X and Y may be integer or
decimal. The result is decimal.

Example

ANGLE (0,0) is °

Returns the arcsine (the inverse function of the sine) of X, where
X is in radians. X must be in the range -1 to 1 and may be decimal
or integer. The result type is decimal and in the range -PI/2 to
PI/2.

Example

ASIN(1) is 1.5707963267948966

Returns the arctangent (the inverse function of the tangent) of X,
where X is in radians. X may be integer or decimal. The result is
type decimal in the range -PI/2 to PI/2.

Example

ATN(l) is 0.78539816339744829

Returns the smallest integer greater than or equal to X (the
ceiling function). Both its argument and function types are
numeric (integer or decimal). The result type is the same as the
argument type.

36 IBM BASIC Application Programming: Language Reference

CEN(X)

CHR$(M)

CNT

CODE

COS (X)

Example

CEIL (-1.2) is -1; CEIL (2.3) is 3

Returns the degrees Centigrade corresponding to X degrees
Fahrenheit. ((X-32)*5/9). X can have integer or decimal type and
must be greater than or equal to -459.67. The result type is
decimal.

Example

CEN(32) is 0

Returns the character corresponding to a specified position
within the current collating sequence. Its argument is numeric
(numeric values are rounded to integers if necessary); its result
type is character. The result depends on the current setting of
OPTION COLLATE (see "OPTION Statement" on page 211).

Example (ASCII)

CHR$(53) is "5",CHR$(65) is "A"

Example (EBCDIC)

CHR$(194) is "B",CHR$(241) is "1"

Returns the number of data items successfully processed by the
last I/O statement executed. If input data was terminated with the
solidus or slash (/) to indicate the end of data, CNT reflects the
number of data items processed prior to the solidus character.

Example

* 100 DIM B(2): OPTION BASE 0
* 110 PRINT "ABCDE",12345,MAT B * 120 A=CNT
* 130 PRINT A

As a result of the PRINT statement at line 110, the number of data
items processed (5) is stored in A and printed at line 130.

Returns the value forwarded by the host system, when that system
detected an error. The value of CODE is system dependent. See
"Exception Handling Statements" on page 84.

Returns the cosine of X, where X is in radians and ABS(X) <
PIM(2**50). The argument type may be integer or decimal. The
result type is decimal.

Example

COS(PI) is -1

Intrinsic Functions 37

CoSH(X)

COT (X)

CSC(X)

DAT$[(Ml]

DATE

DATE$

Returns the hyperbolic cosine of X. X can be integer or decimal
and ABS(X) < 175.366. The result is decimal.

Example

COSH(O) is 1

Returns the cotangent of X, where X is in radians and ABS(X) <
PI*C2**50). The argument type may be integer or decimal. The
result type is decimal.

Example

COT(PI/4) is 1

Returns the cosecant of X, where X is in radians and ABS(X)
<PI*(2**50). The argument type may be integer or decimal. The
result type is decimal.

Example

CSCCPI/2) is 1

Returns the Gregorian date in the format YYYY/MM/DD. Its argument
is the Julian date and can be either integer or decimal type
(decimal values are rounded). Its result type is character. If the
argument is omitted, DAT$ returns today's date.

DAT$(M) returns the Gregorian date in the range 0000/03/01 to
9999/12/31 corresponding to Julian dates (values of M) in the
range 1721120 to 5373484.

Example

DAT$(2369916) is "1776/07/04"

For systems with no date, the value returned is 0000/00/00.

Returns the current date in the decimal form YYDDD, where YY are
the last two digits of the year and DDD is the number of days
elapsed in the year. If there is no calendar available, the value
returned by DATE is -1. The result type is integer.

Example

NY. ;s DATE

If current dat~ is May 9, 1977, NY. is set to 77129.
If there is no calendar available, NY. is set to -1.

Returns the current date in the string representation YY/MM/DD.
If there is no calendar available, the value of DATE$ will be
00/00/00. The function type is character; it has no argument.

38 IBM BASIC Application Programming: language Reference

DEC(Xl

DEG(Xl

DET[(A1J

DOl(A,B)

Example

A$ is DATE$

If the current date is May 9, 1977, A$ is set to 77/05/09.
If there is no calendar available, A$ is set to the string
value "00/00/00".

Converts X to an internal decimal format. The function type is
decimal and the argument type numeric (integer or decimal).

Example

The function can be used to convert an argument to decimal before
calling a function:

* 110 I~ = 3 * 120 CAll DSUB (DEC(I~»
* 130 END * 140 SUB DSUBCB) * 150 PRINT B * 160 END SUB

In the above example, the subprogram requires a decimal argument.
In order to pass the value of I~, the value of I~ must be
converted to decimal.

Returns the number of degrees of X, where X is in radians. X can
be integer or decimal. The result is decimal.

Example

DEG(I) is 57.295779513082321

Returns the value of the determinant of the square numeric array
A. The function type is decimal; the argument type is numeric. If
the argument is omitted, DET returns the determinant of the last
array inverted using the INV function in a MAT statement. If the
argument is not a square matrix, an exception occurs.

Returns the dot product of the vector A and the vector B. A and B
must be one-dimensional arrays with the same number of elements.
The arguments may be integer or decimal. The result is integer if
both arguments are integer; otherwise, the result is decimal.

Example

* 100 DIM A(3),B(3) * 200 DATA 3,4,5,-2 * 300 DATA -3,3,1,-3 * 400 MAT READ A,B * 500 C = DOT (A,B) * 600 PRINT C * 700 END
* RUN
14

Intrinsic Functions 39

EPS

ERR

EXP(X)

FAH(X)

FILE(N)

Returns the smallest positive decimal number that the
implementation allows.

Example

EPS is .lE-75

Returns the exception code of the last exception which occurred.
Exception codes are listed in "Appendix A. Exception Codes" on
page 319. ERR returns an integer type value. See "Exception
Handling Statements" on page 84.

Example

* 110 ON ERROR GOTO 140 * 120 A(ll) = 1 * 130 STOP * 140 PRINT ERR;' SUBSCRIPT OUT OF BOUNDS'
* 150 END * RUN
2001 SUBSCRIPT OUT OF BOUNDS

Returns the exponential value of X, that is, the value of the base
of natural logarithms (e=2.7182818284590451) raised to the power
X. If EXP(X) is less than machine infinitesimal (.lE-75), its
value is replaced by zero. X must be less than or equal to 174.673
and can be integer or decimal. The result is decimal.

Example

* PRINT EXP(l)
2.71828

Returns the degrees Fahrenheit corresponding to X degrees
Centigrade. X can be integer or decimal, and must be greater than
or equal to -273.15. The result is decimal.

Example

FAH(O) is 32

Returns a numeric value indicating the status of the file
specified by N. (The value is modified by each access to the file,
to contain the current file status). The function type is integer;
the argument type numeric (integer or decimal). If the file is not
open, a value of -1 is returned.

Numeric
Value

o
1
2
3
10
11

status

Operation specified occurred successfully.
File opened with default INPUT.
File opened with default OUTPUT.
File opened with default OUTIN.
End-of-file exception during input operation.
End-of-file exception during output operation.

40 IBM BASIC Application Programming: Language Reference

FILENUM

FILE$(M)

FP(X)

IFIX(X)

Numeric
Value status

20
21

Transmission error during input operation.
Transmission error during output operation.

Returns the file number (0 to 255) of the file in which an error
has occurred. Additional data about the cause of the error can be
obtained through the use of the function FILE(N). The name of the
file can be obtained through the use of the function FILE$(M).

If no error has occurred, the value returned is zero (0).

Example

* 100 OPEN #1: 'ABC',INPUT,SEQUENTIAL,INTERNAL

· * 300 READ #1: A$,B$ EOF 400

· * 400 LET XYZ = FILENUM
* 410

XYZ is set to file number I, when the READ statement transfers
control to 400 on end-of-file.

Returns the filename associated with the file number M. The
function type is character. The argument type is integer or
decimal. Returns a null string if the file is not open.

Example

* 100 OPEN 11: 'ABC', INPUT,SEQUENTIAL,INTERNAL

· * 400 A$ = FILE$(l)

A$ is set to 'ABC', the name of file #1.

Returns the sign of X times the fractional part of the absolute
value of X. Both the function and argument are of type numeric
(integer or decimal). The result type is the same as the type of
the argument.

Example

FP(-1.2) is -.2; FP(3.4) is .4

Returns the rounded integer value of X. The function is integer
type while the argument type can be decimal or integer.

Intrinsic Functions 41

INF

INT(X)

IP(X)

JDY[(C$)]

KEYNUM

Example

IFIX (3.5) is 4
IFIX (3.2) is 3
IFIX (-3.5) is -4
IFIX (-3.2) is -3

Returns the largest positive decimal number that implementation
allows.

Example

INF is .99999999999999999E+75

Returns the largest integer less than or equal to X. The function
and argument are both type numeric (both either integer or
decimal).

Example

INT(I.3) is 1; INT(-1.3) is -2

Return the integer part of the absolute value of X times the sign
of X. Both argument and function types are numeric (both either
integer or decimal). The result type is the same as the type of
the argument.

Example

IP(-1.2) is -1; IP(3.4) is 3

Returns the Julian date for the corresponding Gregorian date,
expressed as 'YYYY/MM/DD'. If the argument is omitted the current
date is assumed. For a system with no date, value 0 is returned
when th~ argument is omitted. The function is integer; its
argument character.

The argument for JDY (C$) must be the form 'YYYY/MM/DD' where MM
must be between 1 and 12 inclusive and DD between 1 and 31
inclusive. If the argument has a DD of 31 or less but higher than
possible for the month (for example, 1900/04/31), it is taken as
equivalent to the appropriate date of the next month
(1900/05/01).

The Julian date range is 1721120 to 5373484 corresponding to a
Gregorian date range of 0000/03/01 to 9999/12/31·.

Example

* 100 J% = JDY ("1960/01/01")

J% is set to 2436935.

Returns the number of the PF key which caused the SKEY condition.
(See "ON Condition Statement" on page 203.) If an SKEY exception
has not occurred, zero is returned.

42 IBM BASIC Application Programming: Language Reference

KLN(MJ

LEN(A$J

LINE

Example

* 100 ON SKEY GOTO 980 * 110 INPUT A$

* 980 XYZ=KEYNUM * 990 ON XYZ GOSU8 1000,2000,3000

XYZ is set equal to the PF key which is pressed.

Returns the length of the embedded key (stated in bytes) for the
file M. The function type is integer; the argument type can be
either decimal or integer. If the file is not keyed, or is not
currently open, a value of -1 is returned.

Example

* A% is KlN(l)

A% is set equal to the number of bytes in the key
associated with file #1.

Returns the byte position for the start of the embedded key for
the file M. The function type is integer; the argument type can be
either decimal or integer. If the file is not keyed, or is not
currently open, a value of -1 is returned.

Example

* A% is KPS(l)

A% is set equal to the starting byte position of the
key in each record for file #1.

Returns the number of characters in the value associated with A$.
The function type is integer and the argument type is character.

Example

* A$ = 'THIS' * IN = lEN(A$)

IN is set equal to 4.

* B$ = " * IN = lEN(B$)

IN is set equal to O.

Returns the line number of the most recent statement whose
execution caused a transfer of control due to an exception. If no
exceptions have occurred, zero is returned. See "Exception
Handling Statements" on page 84.

Intrinsic Functions 43

LOG(Xl

LOG2(X)

LOGIO(Xl

LPAD$(A$,Ml

LTRM$(A$l

Example

* 110 ON ERROR GOTO 140 * 120 A(11) = 1 * 130 STOP * 140 PRINT "SUBSCRIPT OUT OF BOUNDS AT LINE "; LINE
* RUN

SUBSCRIPT OUT OF BOUNDS AT LINE 120

Computes the natural logarithm of the positive number represented
by X. X can be integer or decimal; the result is decimal.

Example

LOG(2) is 0.69314718055994533

Computes the base 2 logarithm of the positive number represented
by X. X can be integer or decimal; the result is decimal.

Example

LOG2(2) is 1

Provides the common logarithm Cbase ten) of the positive number
represented by X. X can be integer or decimal; the result is
decimal.

Example

LOG10(2) is 0.3010299956639812

Returns the string of M characters produced by concatenating M
minus LENCA$) spaces to the front of the value A$. If M is not
greater than LENCA$), then A$ is returned. The function type is
character; the argument types are character and numeric.

Example

* A$ is LPAD$C"ABC",S)

There are two spaces inserted in front of 'ABC' and
A$ is set to" ABC".

Returns the value of string A$ with all leading space characters
removed. Its function type and argument type are both character.

Example

* B$ = LTRM$C" ABC")

The leading blanks are removed and B$ is set to "ABC".

44 IBM BASIC Application Programming: Language Reference

LWRC$(A$l

MAX(X,Y[, •••])

MIN(X,Y[, •••])

MOD(X,Y)

ORD(A$l

Returns the string of characters resulting from the value
associated with A$ by replacing each uppercase letter in the
string by its lowercase version. Both the function type and
argument type are character.

Example

* B$ = lWRC$("ABc")

B$ is set to "abc".

Returns the larger of its numeric (decimal or integer) arguments.
If anyone of the numeric arguments is decimal, the numeric
function value is also decimal.

Example

If A=2 and 8=5, the statement;

* C=MAX(A,B)

Sets C equal to 5.

* C=MAX(1.2234,1.2214)

Sets C equal to 1.2234

Returns the smaller of its numeric (decimal or integer)
arguments. If anyone of the numeric arguments is decimal, the
numeric function value is also decimal.

Example

If A=2 and B=5, the statement;

* C=MIN(A,B)

Sets C equal to 2.

Returns X modulo Y, that is, an integer (whole number) in the
range of 0 to Y minus 1, representing the relationship of Y to X,
where Y is a modulus. Both function and argument types are numeric
(integer or decimal). MOD(X,Y)=X-Y*INT (X/Y) if Y is nonzero. If Y
is zero, MOD(X,Y)=X.

Example

MOD (11,5) is 1; MOD (68,44) is 24; MOD (301,5) is 1.

Returns the ordinal position of the character named by the string
associated with A$ in the collating sequence of the declared
character set, where the first member of the character set is in
ordinal position zero. The acceptable values of A$ are the single
character graphics of the character set and the two- and
three-character mnemonics of that set. The acceptable values for
both character sets are shown in "Appendix B. Character Set
Collating Sequences" on page 327. The function type is integer;
the argument type character.

Intrinsic Functions 45

PI

POS(A$,B$)

Example

For the standard character set (OPTION COLLATE STANDARD).

ORDC"BS")=8

ORDC"A")=65

ORD("5")=53

ORDC"SOH")=1

Returns the decimal constant 3.1415926535897932, the ratio of the
circumference of a circle to its diameter.

* 100 R=10
* 110 AR=PI*R**2
* 120 PRINT AR
* RUN
314.159

AR equals the area of the circle whose radius equals R.

Returns the character position within the value associated with
A$, of the first character of the first occurrence of the value
associated with B$. If there is no such occurrence, POSCA$,B$)
will be zero. POSCA$,"") will be one. The function type is
integer; the argument type character.

Example

IF A$ contains" 123-4.56" AND
B$ contains "_It

* X = POSCA$,B$)

X is set equal to 5

* X = POSC"LEARN YOUR ABCS", "ABC")

X is set equal to 12

* X = POSC"ABC","123")

X is set equal to zero, as 123 does not occur in the first
string.

Returns the character position, within the value associated with
A$, of the first character of the first occurrence of the value
associated with B$, starting with the Mth character of A$. If the
defined string does not exist within the designated portion of A$,
the value returned is zero. The function type is integer, the
argument types character and numeric. POSCA$,"",M) is M.

46 IBM BASIC Application Programming: language Reference

PRD(A)

RAD(X)

REe(")

RE"(X,Y)

Example

If A$ has the value "GRANDSTANDING", then;

* X = POS(A$,"AN",l)

X is set to 3

* X = POS(At,"AN",4)

X is set to 8 the search started after GRA, at letter N

* X = pas (A$,"AN",9)

X is set to 0 as NDING does not contain the letters AN

Returns the product of the elements of the array specified by A.
Both the function and argument types are numeric (both integer or
both decimal).

Example

* 10 OPTION BASE 1 * 20 DIM ARA(4)
* 30 DATA 4,3,10,5
* 40 MAT READ ARA
* 100 ARAPROD = PRD(ARA)

ARAPROD is set to 600 which is the product of 4*3*10*5.

Computes the number of radians in X degrees.

Example

* X = RAD(23)

X is set to .401426

RAD(180) equals 3.1415926535897932

Returns the number of the last record processed in file Mo Returns
a zero if no records have been processed. Returns -1 if the file
is closed or is not a relative file. The function type is integer;
the argument type is numeric.

Example

X = REC(l)

X contains the number of the last record either read or
written.

Returns the remainder X-Y*IPCX/Y) if Y is nonzero, and returns X
if Y is zero. Both the argument and function types are numeric
(both either integer or decimal).

Intrinsic Functions 47

RLNU1J

RND[(Xl 1

ROUND(X,Nl

RPAD$(A$,t1)

REM C 1 7 , 3) i 5 2
REM C 6 , 0) i 5 6
REM C -1 7 , 5) i 5 - 2
REMC-17,-5) is -2
R EM C 16 , 4) i 5 0
REMC-6.74,4) is -2.74

Returns the length of the last record referenced for file M. Zero
is returned if no records have been processed. Returns -1 if the
file is closed. The function type is integer; the argument type is
numeric.

Example

* X = RLN(1)

X contains the number of bytes in the last record read from
or written to in file 11.

Provides the next pseudorandom number in an implementation
supplied sequence of pseudorandom numbers uniformly distributed
in the range 0 LE RND LT 1.

If the argument Xis included, RND also assi gns the value of X to
the seed value for the pseudorandom number generator. X must be in
the range 0 LE X LT 1.

Example

* 100 LET N = INTCRND*1000+1)

Generates a random number in the range of 1 to 1000 and
assigns it to the variable N. Each time the statement is
executed, N may contain a different value.

Returns the value of X, rounded to N decimal digits Cthat is,
INTeX*10**IFIXeN)+.5)/10**IFIXeN». The result has the same type
as the argument X. The arguments can be integer or decimal.

Example

* 100 X=15.73591
* 110 R=ROUNDeX,2)

R contains 15.74

ROUNDC123.456,-1.5) is 100

Returns the string of M characters produced by concatenating M
minus LENeA$) spaces to the end of the value of A$. If M is not
greater than LENeA$), A$ is returned. The function type is
character; the argument types are character and numeri c.

Example

* A$ = RPAD$C"ABC",5)

A$ contains "ABC "

48 IBM BASIC Application Programming: Language Reference

RPT$(A$,M)

RTRM$(A$)

SEC(X)

SGN(X)

SIN(XJ

SINH(X)

Repeats the string A$, M number of times. The function type is
character; the argument types are character and numeric.

Example

* A$ = RPT$C"*",3)

A$ contains ***

Returns the value of string A$ with all trailing spaces removed.
Both the function and argument types are character.

Example

* 100 A$="AB CD "
* 200 B$=RTRM$CA$)

B$ contains "AB CD"

Returns the secant of X, where X is in radians. X can be integer
or decimal and ABSCX) must be less than PI*C2**50). The result
type 1 s dec i mal.

Example

SECCPI) is -1

Returns -1 if X<O, 0 if X=O, +1 if X>O. The function type is
integer; the argument type is numeric (integer or decimal).

Example

SGNC-2) is -1

SGN(10) is 1

SGNCO) is zero.

Returns the sine of X, where X is in radians. X can have integer
or decimal type. The absolute value of X must be less than
PI*C2**50). The result is decimal.

Example

SIN(3) is 0.14112000805986738

SINCPI/2) is 1

Returns the hyperbolic sine of the number X. X can have integer or
decimal type. The absolute value of X must be less than 175.366.
The result is decimal.

Example

SINHCO) is 0

Intrinsic Functions 49

SIZE(A) OR SIZE(A$)

Returns the number of elements in the array A. The function type
is integer; the argument type may be numeric or character.

Example

* DIM A(4),BC4,3) * N = SIZECA) * X = SIZECB)

N contains 5 and X contains 20 if OPTION BASE 0 is in
effect.

N contains 4 and X contains 12 if OPTION BASE 1 is in
effect.

SIZE(A,M) OR SIZE(A$,Ml

SQR(X)

SRCH(A,X[,Y]

Returns the number of elements in the Mth dimension of array A.
The function type is integer; the argument types are any type
array, and numeric.

Example

* 10 DIM ACI0), BC4,3) * 20 N = SIZECA,l) * 30 X = SIZECB,l) * 40 Y = SIZECB,2)

If OPTION BASE 0 is in effect, N contains 11, X
contains 5 and Y contains 4.

If OPTION BASE 1 is in effect, N contains 10, X
contains 4 and Y contains 3.

Return the square root of X. X must be a positive number, it can
be integer or decimal. The square root i~ returned with decimal
type.

Example

* X = SQR(9) * Y = SQR(58)

X contains 3 and Y contains 7.61577

Searches the one-dimensional array A for the value X, optionally
beginning the search with the Yth element of A. The value returned
is the subscript of the element of A which first matches X. If a
match is not found, a value of -1 is returned.

The function type is integer. The array A must be one-dimensional
and can be numeric or character. The type of X must agree with the
type of A, numeric or character. If numeric, X is converted from
integer to decimal or vice versa, if necessary, to match the type
of the array. If necessary, Y is rounded to an integer value.

50 IBM BASIC Application Programming: language Reference

SREP$(A$,H,B$,C$)

STR$(X)

SUH(A)

TAN(X)

TANH(X)

Returns a string whose value is A$, where, starting at position M
in string A$, the nonoverlapping occurrences of string B$ are
located, and those occurrences are replaced with string C$. The
function type is character; the argument types are character and
numeric.

Example

* 100 A$="ABCDEFG"
* 120 B$="DE"
* 130 C$="123"
* 140 D$=SREP$CA$,2,B$,C$)

D$ contains "ABCI23FG"

Returns the string that would be generated by the PRINT statement
as the external representation of the value associated with the
numeric argument X. No leading or trailing spaces are included in
this representation. This is the inverse of the VAL function. The
function type is character; the argument type is numeric Ceither
integer or decimal).

Example

STR$(139) is "139"
STR$C12E30) is "1.2E+31"

Returns the sum of the elements of a one-dimensional numeric
array. The function type is the same as the type of the array;
integer or decimal.

Example

Assuming the elements of array ARX contain the values;
5,27,6,13.

* 100 SUMM=SUMCARX)

SUMM contains 51.

Computes the tangent of X, where X is stated in radians (integer
or decimal type). The absolute value of X must be less than
PI*C2**50). The functional type is decimal.

Example

TANCPI/4) is 1

Computes the hyperbolic tangent of the number X (integer or
decimal). The function type is decimal.

Example

TANHCO) is 0

Intrinsic Functions 51

TIME

TIME$

TRUNCATE(X,N)

Returns the time elapsed since midnight, expressed in seconds.
The function type is integer.

Example

If the current time is 11:15 A.M.

* X = TIME

X 1S set to 40500

If no clock is available, the value of X is set to -1.

Returns the time of day in 24-hour notation, the eight character
positions HH:MM:SS. The function type is character, with no
argument.

Example

If the current time is 11:15 A.M.

* A$ = TIME$

A$ is set to 11:15:00

If there is no clock available, the value of A$ is set to
99:99:99.

Returns the value of X truncated to N decimal places following the
decimal point. The argument type is numeric integer or decimal;
the type of the result is decimal.

Negative values of N cause the function to return the integer part
of X with the N rightmost digits set to zero.

Example

Assume X has been set to the value of PI
(3.14159265358979).

* 100 X=TRUNCATE (X,4)

X is set to 3.1415

TRUNCATE (1234.56,-2)

returns 1200.

52 IBM BASIC Application Programming: language Reference

UDIM(A,Ml OR UDIM(A$,Ml

UPRC$(A$l

VAL(A$)

Returns the upper limit of dimension M of array A. The function
type is integer; the argument types are any type for A and numeric
for M.

Example

If array A is dimensioned A(23110 16), the statement;

would cause U to equal 23.

150 U=UDIM(A,3)

would cause U to equal 6.

Returns the string of characters resulting from the value
contained in A$ by replacing each lowercase letter in the string
by its uppercase version. Both the function and argument types are
character type.

Example

UPRC$("abC2")

returns

"ABC2"

Returns the value of the numeric constant contained in A$ if the
string contained in A$ is a numeric constant. leading and trailing
spaces in the string are ignored. The string must be a valid
numeric input form (see "Numeric Constants" on page 14). If it is
not a valid numeric forml an exception is generated. The exception
can be handled by the CONV condition in an ON condition statement.
If the evaluation of the numeric constant would result in a value
which causes an underflow or overfiowl the usual action for
numeric underflow or overflow occurs. See "ON Condition
Statement" on page 203. The function type is decimal; the argument
type character.

Example

VAL ("123.5") is 123.5
VAL ("MCMXVII") causes an exception.
VAL ("123.5XY") causes an exception.

Intrinsic Functions 53

IBH BASIC FILE CAPABILITIES

RECORDS

FILE ATTRIBUTES

A file is a collection of data which is stored together. Files can
be either "internal" (data stored within a program unit) or
"external" (data stored on a medium, such as disk, external to all
program units.)

This section deals exclusively with external files. External
files allow interchange of data within a program unit as well as
between program units, programs, systems, and languages.

The collection of data values which comprise a file can be
arranged so that sets of values form logically related units; for
example, a company payroll file would contain the name, address,
job classification, salary, and other pertinent information for
each employee. The term record is used to describe a discrete
collection of data fields, such as the information needed to
process an employee's payroll check.

Fixed record-length files are those whose record lengths are all
the same, that is, each record in the file has the same length as
every other record in that file.

If a payroll file is to contain data about the employee's
dependents, a file with fixed length records allows a fixed number
of positions whether the employee has one dependent or twenty.

Variable record-length files are those whose records do not
necessarily have the same length, that is the record lengths can
vary. The record length specified for a variable record-length
file defines the maximum record length for that file.

In a payroll file with variable-length records, fields in an
employee's record can be added for each dependent, up to the
maximum record length specified for that file.

The record type (fixed or variable) of a file is declared in the
RECORDS cl~use of the OPEN statement for a file.

All files have attributes which describe how the data is
organized, how the data is formatted, and how the data can be
accessed. These three attributes, organization, format, and
access, interact according to the rules specified in this
section.

54 IBM BASIC Application Programming: Language Reference

FILE ORGANIZATION

File organization is the file attribute which describes how data
is arranged on a file. The way in which a file is organized
determines how it can be accessed, that is, sequentially or
directly (see "File Access Mode" on page 56).

The file organization can be: SEQUENTIAL, STREAM, RELATIVE, and
KEYED. The file organization is specified in the OPEN statement.

sequential Organization

stream Organization

A file with sequential organization consists of records which are
ordered serially in the sequence in which they were written. The
first record occupies the first position in the file; the last
record occupies the last position in the file, regardless of the
contents of the records.

The only way to access a file with sequential organization is
serially, beginning with the first record.

A file with stream organization is a file with sequential
organization in which each record consists of a single value in
internal format (see "File Format (Type)" on page 56).

Relative Organization

Keyed organization

A file with relative organization consists of a sequence of
"record slots" of the same fixed length, which are used to contain
the records. A record slot may be empty (null) or may contain a
record. Each slot has a unique record number associated with it,
beginning with one and continuing to the maximum number of records
that can be contained in the file. The record number is not
necessarily contained within the record.

A relative file may be read either directly by reference to record
numbers, or sequentially. When access is sequential, null records
are bypassed on input.

A relative file must be written by reference to record numbers.

A file with keyed organization consists of records identified by
keys. A key is a string of characters contained at a specific
location within the record.

A keyed file may be accessed sequentially, that is, in the order
in which the keys collate, or directly by reference to the keys.
File positioning can be made by reference to a portion of the key.
Keyed organization requires that VSAM be used. (See OS/VS Virtual
Storage Access Method: Programmer's Guide.)

IBM BASIC File Capabilities 55

FILE FORHAT (TYPE)

Display fermat

Internal Fermat

Native Fermat

FILE ACCESS HODE

INPUT Access Hode

OUTPUT Access Hode

OUTIN Access Mode

The file attribute which describes the format of records in a file
lsknown as file format or type. The TYPE clause of the OPEN
statement permits specification of the file format.

There are three file formats: DISPLAY, INTERNAL, and NATIVE.

DISPLAY file format means that each record is a sequence of
characters in the same format as characters being displayed on a
print output device.

If the "OPEN Statement" on page 206 specifies DEVICE PRINTER for
an output file, a carriage control character is prefixed to each
record. If the OPEN statement specifies DEVICE 3800, a carriage
control character followed by a font control character are
prefixed to each record.

INTERNAL file format indicates that each record is written as a
sequence of numeric and string values. These values are written in
internal binary format, each value preceded by a type byte
(indicating integer, decimal, or character); consequently, files
in this format cannot be edited.

NATIVE file format indicates that the contents of each record are
to be formatted by FORM statements.

Files with keyed and relative organizations require native file
format.

The file attribute which determines the I/O operations allowed on
a file is known as file access mode. File access is specified by
the ACCESS clause of the OPEN statement.

The file access mode can be: INPUT, OUTPUT, and OUTIN.

INPUT file access mode specifies that only read operations are
permitted on the file while the current OPEN statement is in
effect. No records can be written, replaced, or deleted.

OUTPUT file access mode specifies that only write operations are
permitted on the file while the current OPEN statement is in
effect. No records can be retrieved from the file.

OUTIN file access specifies that both read and write data transfer
operations are permitted on the file while the current OPEN
statement is in effect. This is the only file access mode which
permits rewriting or deletion of records. Sequential files may be
extended in this mode by adding more records. but they cannot be
shortened.

56 IBM BASIC Application Programming: Language Reference

COMBINATIONS OF FILE ORGANIZATION AND FORMAT

Not all combinations of organization and format are acceptable.
The valid combinations are shown in Figure 9.

Combination Name organization Format

Display Sequential Display

Stream Stream Internal

Internal Sequential Internal

Native Sequential Sequential Native

Relative Relative Native

Keyed Keyed Native

Figure 9. Valid Combinations of Organization and Format

Allowable Combinations for File Access

Fi gure 10 illustrates whi ch file access modes are permi tted wi th
the valid type and organization combinations.

Type and Access Access Access
Organization INPUT OUTPUT OUTIN

Display X X

Stream X X

Internal X X X

Native Sequential X X X

Relative X X X

Keyed X X X

Figure 10. File Access Modes

IBM BASIC File Capabilities 51

Allowable combinations for File Record Type

Fi gure 11 shows whi ch record types are allowed with the vali d type
and organization combinations:

Type and FIXED VARIABLE
Organization Records Records

Display X X

Stream X

Internal X X

Native Sequential X X

Relative X

Keyed X X

Figure 11. Record Types Valid with Each File Organization

FILE STATEMENTS AND FILE ATTRIBUTES

Not all file input/output statements can ba used with all kinds of
files. Figure 12 lists which statements can be used with each of
the six legal combinations of format and organization. Figure 12
also notes possible uses of the various combinations.

58 IBM BASIC Application Programming: language Reference

Allowable Combinations for File Record Type

Figure 11 shows which record types are allowed with the valid type
and organization combinations:

Type and FIXED VARIABLE
Organization Records Records

Display X X

Stream X

Internal X X

Native Sequential X X

Relative X

Keyed X X

Figure 11. Record Types Valid with Each File Organization

FILE STATEMENTS AND FILE ATTRIBUTES

Not all file input/output statements can bQ used with all kinds of
fi les. Fi gure 12 lists whi ch statements call be used wi th each of
the six legal combinations of format and organization. Figure 12
also notes possible uses of the various combinations.

58 IBM BASIC Application Programming: language Reference

Format organization

NATIVE KEYED

NATIVE RELATIVE

DISPLAY SEQUENTIAL

INTERNAL STREAM

NATIVE SEQUENTIAL

INTERNAL SEQUENTIAL

statements

READ USING
WRITE USING
DELETE KEY
WRITE USING
REREAD USING
RESET KEY
RESET BEGIN
SCRATCH

READ USING
WRITE USING
DELETE REC
RESET REC
RESET BEGIN
REREAD USING
REWRITE USING
SCRATCH

INPUT
LINE INPUT
PRINT
RESET BEGIN
RESET END
SCRATCH

INPUT
GET
PUT
WRITE
RESET BEGIN
RESET END
SCRATCH

READ USING
WRITE USING
REWRITE USING
REREAD USING
RESET BEGIN
RESET END
SCRATCH

INPUT
READ
WRITE
RESET BEGIN
RESET END
SCRATCH

Use

You would use this file type when
a particular piece of data that
you're using is always unique (for
example, employee number) and you
want to access individual records
rapidly. You could use this file
organization for Inventory of
parts, Employee data, Bank account
data, etc. The file must be a VSAM
file.

You would use this file type when
you know that the different
records can be numbered. You might
use this for error messages, or if
you're keeping track of the
occurrence of a particular number.

You would use this file type when
you wanted to save data that is in
a printer format. You might create
a file which could be spooled to a
printer or output to a tape.

You would use this file type when
each record has a single value.
The length of each record may
vary, as the value in the record
is described in the record. You
could use this as a text file in
which each word is a separate
field.

NATIVE or INTERNAL sequential
files can be used the same way.
You would use one of these file
types when you are saving data in
consecutive sequence and you only
want to "report" or read the data
from the beginning. For example, a
transaction register that
maintains everything that is
entered in the exact order it was
entered.

The only difference between a
SEQUENTIAL, NATIVE and a
SEQUENTIAL, INTERNAL file is the
format of the records themselves.

Figure 12. File Format, Organization, Statements, and Use

IBM BASIC File Capabilities 59

IBM BASIC STATEMENTS

Statements are instructions to BASIC to perform a task or
operation when the program is executed. They are either
executable or nonexecutable:

• Executable statements cause a program action, such as value
assignment or printing.

• Nonexecutable statements descri be i nformati on needed by the
program, but cause no program action.

All statements are processed in line number sequence, regardless
of the order of entry, unless the sequence is altered by control
statements, function references, subprogram calls, CHAIN
statements, or exceptions.

Example

100 LET A=B
150 LET C=D
140 LET G=H
130 IF K=L THEN GO TO 160

160 LET M=N

Even though the line numbers are not presented in sequence, they
will be processed in the correct order; 100, 130, 140 (unless
K=L), 150, 160 ...

All of the statements are listed alphabetically and discussed
individually in "Statement Descriptions" on page 88.

However, many statements fall into subcategories of similar
statements, and many statements must be used in combination with
other statements. These subcategories are:

• Declarative statements

• Control statements

• Assignment statements

• Input/Output statements

• Program segmentation statements

• Exception handling statements

• Debugging statements

These categories and sets of statements are discussed in the
following sections.

DECLARATIVE STATEMENTS

Five statements perform declarative functions.

These statements do not cause an action to occur at the point in
the program where they appear. Instead, they specify
characteristics of the program in general; this influences the
entire program unit (main program or subprogram) within which
they appear.

Declarative statements may appear anywhere in a program unit,
even subsequent to other statements which they influence.

60 IBM BASIC Application Programming: Language Reference

CONTROL STATEMENTS

COMMON

DECIMAL

DIM

INTEGER

OPTION

The COMMON statement defines variables and arrays in a
common region of storage whe~e they may be shared by
program units (main programs and subprograms). COMMON
also explicitly defines dimensions of common arrays and
declares the maximum length of common character
variables and character array elements.

The DECIMAL statement explicitly defines which
identifiers in the program unit are to be assigned
decimal type.

The DIM statement explicitly defines dimensions of
arrays, declares the maximum length of a character
variable, or declares the maximum length of each
element of character arrays.

The INTEGER statement explicitly defines which
identifiers in a program unit are to be assigned
integer type.

The OPTION statement specifies various options for a
program unit during program compilation and/or
execution. Options explicitly stated (by using the
OPTION statement) override any appended to a RUN or
COMPILE command.

Control statements direct the flow of execution of a program. Most
of the control statements can be used to transfer control from one
location in a program to another, rather than executing it in a
sequential manner.

Control statements are divided into the following logical groups:
branch control, subroutine control, loop control, and decision
structure control.

BRANCH CONTROL STATEMENTS

Branch statements transfer control to the specified line number
or line label.

GOTO

ON exp GOTO

SUBROUTINE CONTROL STATEMENTS

Branches unconditionally to the specified line
number or line label.

Branches, conditionally, to one of the elements in
the line number/line label list associated with
this statement. The value of the expression (exp)

·determines to which element of the list the
program branches.

Subroutines provide a method of defining a group of statements
that can be executed from various parts of the program without
duplicating them each time. Control transfers to the subroutine
and, after execution of these statements, returns to the
statement immediately following the location from which the
program branched.

GOSUB

ON exp GOSUB

Transfers control unconditionally to the specified
line number or line label and saves the return
location for subsequent transfer back.

Transfers control, conditionally, to one of the
elements in the line number/line label list
associated with this statement, and saves the
return location for subsequent transfer back. The
value of the expression (exp) determines to which
element of the list the program will transfer.

IBM BASIC Statements 61

RETURN Returns control to the first executable statement
following the last GOSUB or ON exp GOSUB statement
executed in this program unit.

LOOP CONTROL STATEMENTS

DO/LOOP Blocks

Loop control gives programs the capability of executing a single
statement or a group of statements any number of times. Loop
control statements are also referred to as loop blocks; there are
two types: the DO/LOOP block and the FOR/NEXT block.

Any type of loop block may be nested completely within any other
type of loop block, as shown in Figure 13. The effect of loop
nesting is that each time the outer block is executed once, the
inner block is executed until the exit condition is met.

Valid Loop Nesting Invalid Loop Nesting

outer loop start outer loop start

inner loop start

~:nner loop start

loop end outer loop end lnner

outer loop end inner loop end

Figure 13. Valid and Invalid Loop Nesting

Loops can be nested to any depth needed by the logic of the
program.

DO/LOOP blocks process a series of statements repeatedly WHILE or
UNTIL one or more conditions are met.

DO The DO statement is the first statement (also referred to
as the upper limit) of a DO loop. It can be used to control
how long processing remains inside the loop by the use of
the optional keywords WHILE or UNTIL:

LOOP

WHILE

UNTIL

As long as a particular condition exists, the
series of statements between the DO statement and
the LOOP statement are processed repeatedly.

Until a particular condition is met, the series of
statements between the DO statement and the LOOP
statement are processed repeatedly.

The condition may be controlled by statements within the
loop.

Indicates the last line (also referred to as the lower
limit) of the DO loop.

The WHILE and UNTIL clauses can be used in the LOOP
statement in the same manner as in the DO statement to
control how long processing remains in the loop.

DO and LOOP statements must always be used in pairs with the DO
appearing first in line number sequence.

62 IBM BASIC Application Programming: Language Reference

DO/LOOP Blocks

DO

*Both tests are optional

Figure 14 shows the flow of control in a DO/LOOP block.

statement (s) executed

not satisfied
or not present

not satisfied

Figure 14. DO/LOOP Block Flow of Control

FOR/NEXT Blocks

If the WHILE/UNTIL clauses are specified only in the DO statement.
the exit condition is tested before the statements within the loop
are executed. This means that. if the exit condition is true the
first time the DO statement is encountered. the statements within
the loop are not executed.

If the WHILE/UNTIL clauses are specified only in the LOOP
statement. the exit condition is tested after the statements
within the loop are executed. This means that. if the exit
condition is true the first time the LOOP statement is
encountered. the statements within the loop are executed once.

In one loop block, both the WHILE and UNTIL clauses can be
specified both in the DO statement and in the LOOP statement. thus
permitting a variety of exit conditions.

The only statements that may transfer control into the body of a
DO loop are CONTINUE, RETRY, RETURN, and END SUB, each having been
set originally by a condition within that DO loop.

A DO loop may be exited by an EXIT IF statement. as well as by
other branching statements.

FOR/NEXT blocks allow you to process a series of statements
repeatedly until a count condition is met.

FOR The FOR statement is the first line of a FOR loop. It
controls how long processing will remain in the loop by
providing:

• A count condition control variable

• An initial value for the count condition control
variable

• A final value for the count condition control variable

• An increment for testing the count condition control
variable

The count condition control variable is incremented and
tested after each iteration of the loop. When the count
condition is met. loop processing stops.

IBM BASIC statements 63

FOR/NEXT Blocks

FOR

NEXT The NEXT statement is the last line of a FOR loop and
provides a lower limit to the loop.

Its causes the incrementing of the count condition control
variable.

FOR and NEXT statements must appear insets. The FOR must appear
first in line number sequence.

The flow of control in a FOR/NEXT loop is shown in Figure 15.

increment

count

statement(s) executed

satisfied

Figure 15. FOR/NEXT Loop Flow of Control

If the count condition is true the first time it is tested, the
statements within the loop are not executed.

The only statements that may transfer control into the body of a
FOR loop are CONTINUE, RETRY, RETURN, and END SUB, each having
been set originally by a condition within that FOR loop.

A FOR loop may be exi ted by an EXIT IF statement as well as by
other branching statements.

DECISION STRUCTURE CONTROL STATEMENTS

IF Blocks

These statements are tools for structured programming. They allow
conditional processing of alternative statement sequences. Block
IF structures allow two alternative paths of execution. SELECT
structures allow multiple alternative paths of execution.

Any decision structure can contain within it any other decision
structure or loop.

IF blocks provide for alternative paths of program execution,
depending on a logical expression.

The path selected depends on whether the logical expression
evaluates as true or false.

IF blocks contain four basic parts:

IF The keyword IF. followed by a logical expression to
be tested.

THEN Block The keyword THEN, followed by a block of statements
processed when the logical expression is true. After
the block of statements is executed, control is
transferred to the statement immediately following
the END IF statement.

64 IBM BASIC Application Programming: Language R~ference

IF Block

IF

ELSE Block The keyword ELSE, followed by a block of statements
processed when the logical expression is~.

END IF

If an ELSE block is not present, the statement
immediately following the END IF is executed when the
condition is false.

The last line of the IF block.

Figure 16 shows this flow of control.

THEN statement(s) executed

END IF

ELSE statement(s) executed

Figure 16. IF Blocks--Flow of Control

The following example shows how an IF block is coded:

Example

100 IF A=B THEN
110 LET C=10
120 LET E=20
130 ELSE
140 LET E=10
150 END IF

Note: The indentation clarifies the IF block structure.

The IF block in the example is executed as follows:

1. If A equals B, lines 110 and 120 are processed.

2. Processing then skips to the line after END IF.

3. If A does not equal B, lines 130 through 150 are processed.

4. Processing then continues at the line after END IF.

The only statements that may transfer control into an IF block
(either the THEN or ELSE block) are CONTINUE, RETRY, RETURN, and
END SUB, each having been set originally by a condition within
that IF block. An IF block can be exited by branch control and
exception handling statements.

IF STATEMENT: Another form of the IF statement allows for:

1. IF/THEN--conditional execution of a branch or list of
imperative statements.

2. IF/THEN/ELSE--conditional execution of one of two branches or
sequences of imperative statements.

This form of the IF statement, unlike the IF block. must be
contained on a single line. In this form, if there is no ELSE

IBM BASIC Statements 65

SELECT Blocks

clause, the statement on the next line is executed when the
condition is false.

SELECT blocks conditionallY process one of several alternative
sequences of statements. depending on the value of a selection
expression. (An IF block allows only two alternatives; the SELECT
block allows many alternatives, based on the selection expression
value.)

A SELECT block consi sts of four par·ts:

SELECT

CASE

CASE ELSE

The SELECT statement is the initial delimiter of a
SELECT block. It contains the select expression to be
tested by the CASE statements that follow.

The CASE statement is a selection statement in a
SELECT block. The keyword CASE immediately precedes a
case item. which is tested against the selection
expression. If the case item tests true, the sequence
of statements following the CASE statement is
executed. There can be as many case items as are
needed by the logic of the program.

The selection expression is evaluated and compared
wi th the case items in the order in whi ch the CASE
statements occur until a match is found.

Once a match is found, that CASE block is executed.

After the appropri ate CASE block, if any, has been
processed, the program continues at the statement
following the END SELECT statement (that is, the
remaining CASE blocks are skipped).

The CASE ELSE statement immediately precedes a
sequence of statements executed if no case item tests
true.

CASE ELSE is optional.

The CASE ELSE statement must be last block specified
in the SELECT block.

If there is no CASE ELSE block and a match is not
found, an exception occurs. This exception is of the
ERROR category-see "Except ion Handl i ng Statements"
on page 84 and "ON Condition Statement" on page 203.

END SELECT The END SEl ECT statement is the end deli mi ter of a
SELECT block.

In line number sequence, it must be placed after the
SELECT statement.

Figure 17 on page 67 shows the logical flow of control in a SELECT
block.

66 IBM BASIC Application Programming: Language Reference

SELECT Blocks

clause, the statement on the next line is executed when the
condition is false.

SELECT blocks conditionallY process one of several alternative
sequences of statements, depending on the value of a selection
expression. (An IF bloc.k allows only two alternatives; the SELECT
block allows many alternatives, based on the selection expression
value.)

A SELECT block consi sts of four parts:

SELECT

CASE

CASE ELSE

The SELECT statement is the initial delimiter of a
SELECT block. It contains the select expression to be
tested by the CASE statements that follow.

The CASE statement is a selection statement in a
SELECT block. The keyword CASE immediately precedes a
case item, which is tested against the selection
expression. If the case item tests true, the sequence
of statements following the CASE statement is
executed. There can be as many case items as are
needed by the logic of the program.

The selection expression is evaluated and compared
with the case items in the order in which the CASE
statements occur until a match is found.

Once a match is found, that CASE block is executed.

After the appropri ate CASE block, if any, has been
processed, the program continues at the statement
following the END SELECT statement (that is, the
remaining CASE blocks are skipped).

The CASE ELSE statement immediately precedes a
sequence of statements executed if no case item tests
true.

CASE ELSE is optional.

The CASE ELSE statement must be last block specified
in the SELECT block.

If there is no CASE ELSE block and a match is not
found, an exception occurs. This exception is of the
ERROR category-see "Exception Handling Statements"
on page 84 and "ON Condition Statement" on page 203.

END SELECT The END SELECT statement is the end del im; ter of a
SELECT block.

In line number sequence, it must be placed after the
SELECT statement.

Figure 17 on page 67 shows the logical flow of control In a SELECT
block.

66 IBM BASIC Application Programming: Language Reference

SE LECT/CASE Blocks
(CASE-1 True)

CASE-1 statement(s) executed

(CASE-2 True)
CASE-2 statement(s) executed

SELECT CASE .
END SELECT .. condition ~ . ---

tested (CASE-n True)
CASE-n statement(s) executed

(No CASE is True)
CASE ELSE statement(s) executed

Figure 17. SELECT Block--Flow of Control

In the following SELECT block example, assume the variable ABC has
a value of 5:

ExamEle

100 SELECT ABC
110 CASE 6 TO 10 !SELECTED IF ABC HAS A VALUE 6 THRU 10
120 LET A=B

150 CASE LT 4 !SELECTED IF ABC HAS A VALUE lESS THAN 4
160 LET C=D

.
200 CASE 12 !SELECTED IF ABC HAS THE VALUE 12
210 LET E=F

250 CASE ELSE !SELECTED IF NO OTHER CASE IS TRUE
260 LET G=H

.
300 END SELECT

This SELECT block is executed as follows:

1. Line 110 is evaluated and it is determi ned that ABC is not
between 6 and 10, so processing skips to line 150.

2. Line 150 is evaluated and it is determined that ABC is not
less than 4, so processing skips to line 200.

3. Line 200 is evaluated and it is determined that ABC is not
equal to 12, so processing skips to line 250.

4. Line 250 is used to indicate processing in the event that none
of the conditions specified by a CASE statement are met. In
this example (ABC=5) these lines are processed.

There may be any number of CASE blocks within a SELECT block, but
they must never overlap. Any illegal nesting of CASE and CASE ELSE
blocks is detected either during compilation or as part of the RUN
command.

A CASE block can be exited by branch control and exception
handling statements.

IBM BASIC Statements 67

Control may transfer into the body of a CASE or CASE ELSE block
only through the use of a CONTINUE, RETRY, RETURN, or END SUB
statement.

Further, you should ensure that all CASE blocks can be reached.
For example, if the third CASE statement in the above exampl~ had
a value of 2 (instead of 12), it could never be reached, because
the second CASE block selects any value that is less than 4.

EXECUTION CONTROL STATEMENTS

Execution control statements provide a method of halting your
program, temporarily stopping your program, or selecting a new
starting point for a list of pseudorandom numbers.

END Indicates the end of a main program and therefore is
both logically and physically the last statement in a
main program. It halts the execution of your program
and closes all files that have been opened.

PAUSE Temporarily halts the execution of your program,
displays either a system message, or the message
associated with the PAUSE statement itself, and
resumes execution at the next statement when the GO
command or a null entry are entered.

RANDOMIZE Is used to start a new series of pseudorandom numbers.

STOP Halts the execution of your program, and performs the
same operations as the END statement. The STOP
statement, however, unlike the END statement, may be
placed anywhere in your program, and you may specify
it more than once.

ASSIGNMENT STATEMENTS

Assignment statements assign (move) data to variables.

The data assigned can be a constant, another variable, the result
of a function or an expression. The data and the variable must
both be of the same type; that is, the variable must be a
character variable if the data is character data, or the variable
must be a numeric variable if the data is numeric.

For numeric data types (integer or dacimal), however, the data is
always converted to match the numeric variable before it is
assigned (moved). That is, an integer value is converted to a
decimal value if the variable is decimal, or a decimal value is
converted (with rounding) to an integer value if the variable is
an integer. Numeric overflow may occur if decimal values are
converted to integer.

The assignment statements are:

LET assigns values to scalar variables.

The keyword LET is optional.

HAT assigns values to arrays.

Some examples of assigning constants to variables are shown in
Figure 18 on page 69.

68 IBM BASIC Application Programming: Language Reference

ROUNDING RULES

LET AI = 123.56

LET B,C,D = 5.7

LET E% = 3

LET F% = 3.666

Assigns decimal constant 123.56 to
decimal variable AI.

Assigns decimal constant 5.7 to
variables B, C, and D.

Assigns integer constant 3 to integer
variable EY..

Rounds decimal constant 3.666 to the
value 4 and assigns it after rounding
to integer variable FY..

LET ABC$ = "STRING" Assigns the character string constant
"STRING" to the character variable ABC$.

MAT ARAYI = (5) Assigns integer constant 5 to every
element in the decimal array ARAYI.

LET LIST = 5 Assigns integer constant 5 to variable
LIST (a keyword is allowed as a variable
name in an assignment statement only if
the optional keyword LET is specified).

Figure 18. Assignment Statement--Assigning Constant Values

As Figure 2 on page 16 shows, the internal representation of a
decimal value provides the capability of conveying 19 digits of
decimal data; however, the actual representation provides for
only 17. During the evaluation of a numeric expression,
intermediate results make use of all 19 digits. At the completion
of evaluation, the last two digits are examined and, if they
represent a value equal to or greater than 50, the 17th digit is
rounded up, and the 18th and 19th digits are set to zero.

Some examples of assigning one variable to another variable are
shown in Figure 19 on page 70.

IBM BASIC statements 69

Ai = B

B,C,D = X

M$ = N$

MAT AR = BRAY

DIM ABC$(S,S)

Assigns the value in variable B to
variable A.

Assigns the value in variable X to
variables B, C, and D.

Assigns the character string value in
variable N$ to character variable M$.

(In this case the maximum length of M$
must be greater than or equal to the
length of the character string in N$
or string overflow occurs.

Assigns the values in array BRAY to
the array AR on an element-by-element
basis.

(When assigning values to arrays, be
sure the array on the left of the equal
sign has the proper dimensions. Any
array can be redimensioned during an
assignment, but its overall size cannot
be increased).

MAT ABC$ = XYZ$(2,3)
Redimensions ABC$ to 2 by 3 and
then assigns the values in array
XYZ$ to the corresponding elements
in array ABC$.

Figure 19. Assignment Statement--Assigning Variable Values

INPUT/OUTPUT STATEMENTS

Input/output statements define file attributes, define and
control access to file data, and transmit file data to, from, and
within a program.

Input/output statements are classified according to the
disposition of the data being processed (internal or external),
and according to the function being performed. The input/output
statements are classified by function as follows:

• Internal Data Input/Output statements

• Terminal Input/Output statements

• File Input/Output Statements

After a description of general input/output considerations, the
individual statements under each of these headings are described
below.

GENERAL INPUT/OUTPUT CONSIDERATIONS

Input/Output Lists

This section discusses input/output lists used by many
statements, data rules for input/output, the use of FORM and IMAGE
statements for data formatting, and input/output error
processing.

Most of the input/output statements that transmit data require an
input/output list, a list of items associated with data to be
transmitted either as input or output. The exception to this

70 IBM BASIC Application Programming: Language Reference

requirement is the PRINT statement, which allows a null list. The
null PRINT list produces a blank line (or record) of output.

The input/output list has the following format:

[item separator [item separator] •..] [item]

Where:

item
is either the name of a data item or a print clause, and may
take these forms:

1. In an input list:

a. Simple variable.

b. Subscripted array element.

c. Array, that is:

MAT array name

d. Array with redimensioning, that is:

MAT array name

(numeric expression [,numeric expression] •••).

The rounded integer values of the expressions are
used to redimension the array before storing input
values into the array.

2. In an output list:

a. Simple variable.

b. Subscripted array element.

c. Array, that is:

MAT array name

d. Scalar expression (either numeric or character>.

e. TAB clause (PRINT and PRINT file statement only)

f. NEWPAGE clause (PRINT and PRINT file statement only)

separator
is one or more commas or semicolons, with the following
restrictions:

• A semicolon is valid only on output, and only used when
transmitting data to the terminal or to a DISPLAY file,
that is, only in PRINT and PRINT file statements.

• The list may end with a comma or semicolon only in PRINT
and PRINT file statements.

• More than one consecutive comma or semicolon for a
separator is only allowed in PRINT and PRINT file
statements.

If the list consists only of arrays, there is an alternative form
of the statement, with MAT as the first word (that is, preceding
the keyword that identifies the statement) and with no occurrence
of MAT in the input/output list.

IBM BASIC Statements 71

For example:

MAT READ A,B,C

is equi valent to

READ MAT A, MAT B, MAT C

Input/Output Data Rules

Unless stated otherwise, the following rules apply to data
associated with input/output statements.

Input list

output list

FORM and IMAGE statements

Data recei ved is assi gned to the values in the list
in the order received.

Numeric conversions to the type in the input list
are performed.

A character variable in an input list assumes the
length of the character data value.

The action when an error condition is detected
varies according to the input statement used,
whether the receiving data is from a file or from
the terminal and the error processing that has been
specified in the program. See the specific input
statement for details.

Data is moved in the order specified in the list.
See the specific output statement for details.

Many of the transmission input/output statements have a USING
clause which refers to a FORM or an IMAGE statement to format data
for output, or which refers to a FORM statement for input. This
reference may be the line number or line label of a FORM or IMAGE
statement, or a character expression which, when evaluated, is
equivalent to a FORM or IMAGE statement.

Such a character expression is evaluated as follows:

• If FORM is specified, the FORM syntax is used.

• Otherwise, the IMAGE syntax is used.

FORM Character Expressions

When the FORM is entered as a separate statement, replication
factors can be constants or variables, and the parameter n in the
specifications X n, POS n, and SKIP n can be a numeric
expression. When the FORM is contained in a character expression,
however, these values must be constants.

In a FORM statement, the specifications X, POS, and SKIP must be
followed by at least one space character. In FORM character
expressions, the spaces are optional.

Input/output Error Processing

During execution of input/output statements, various errors can
occur which may be handled in a number of ways. The ON Condition
statement can be used to provide general error-handling routines
for many of the situations which might occur.

Most of the input/output statements permit you to specify
error-recovery clauses for that particular statement, either as
an EXIT clause or as individual error clauses, such as CONY,

72 IBM BASIC Application Programming: language Reference

SOFlOW, and IOERR. The EXIT clause, which refers to an EXIT
statement, and the other error clauses are mutually exclusive.
Multiple error clauses are separated by commas and cannot
duplicate each other.

Error-recovery clauses on input/output statements temporarily
override any ON Condition statements which are in effect for
similar conditions.

INTERNAL DATA INPUT/OUTPUT STATEMENTS

An internal data file consists of a sequence of numeric and
character values which exist within the program unit. These
values can only be accessed sequentially and only for input.

The internal data input statements are:

DATA

READ

RESTORE

One or more DATA statements create an internal data
table.

READ statements assign values from the data table to
variables and arrays.

The RESTORE statement resets the file pointer to the
first value in the data table.

TERMINAL INPUT/OUTPUT STATEMENTS

Terminal input/output statements provide communication between a
program and the terminal during an interactive session.

Terminal input/output statements are of two types: ·line-by-line
input/output statements and screen field input/output statements.

Line-sy-Line Input/Output Statements

This group of statements refer to the terminal one line at a time.
The line-by-line statements are:

INPUT Provides data to a program from a terminal for
assignment to the items in an input list.

LINE INPUT Provides unformatted data to a program from a
terminal for assignment to a character item in an
input list.

MARGIN Sets the boundaries for writing data via a PRINT
statement to a terminal.

PRINT Writes both formatted and unformatted data from a
program to a terminal. The output to the terminal is
determined by the items in an output list.

Full Screen Input/Output Statements

Full screen input/output statements can be used with a display
terminal that can read and write specific fields on the screen.
The full screen input/output statements are:

INPUT FIELDS Reads one or more data values from one or more
screen fields and assigns each to a variable.

PRINT FIELDS Displays one or more data values in one or more
screen fields.

Attribute Characters on the Screen: On the IBM 3270 family of
terminals, or equivalent, "attribute characters," which control
screen attributes, occupy screen positions and display as blanks.

IBM BASIC Statements 73

An attribute character precedes and follows each screen field
accessed by an INPUT FIELDS or a PRINT FIELDS statement. These
attribute characters are not available to the IBM BASIC user.

The screen positions occupied by these attribute characters are
immediately to the left and right of the field the user specifies.
The character to the "left" of a character in column one is the
last character in the previous row, and the screen wraps
around-that is, the bottom row "precedes" the top row. The same
ordering (left to right, top to bottom with wraparound)
determines the attribute character to the right of the field.

Overlapping Fields: Print fields may overlap other fields, but
the visual characteristics ·of previous fields may change. For
example, if the end of an output fi eld overlaps the begi nni ng of a
previous high intensity field (H attribute), the portion of the
previous field which is not overwritten is still displayed, but
with normal intensity.

Input fields may not overlap existing attribute characters. Such
an overlap causes an exception.

Mixed Mode Operations

Be careful when intermixing full screen operations with
line-by-line operations. When switching between them, ther~ is no
implicit display screen clearing. Therefore, if the display
screen is not cleared before full screen processing begins, full
screen processing fields will be intermixed with the previous
contents of the display screen.

To clear the screen, use the PRINT NEWPAGE statement.

FILE INPUT/OUTPUT STATEMENTS

File Input/Output statements process data which is stored in
files, as described in the chapter "IBM BASIC File Capabilities"
on page 54.

The file input/output statements are of two types: file control
and file transmission. In addition, a number of file input/output
statements have a file-positioning clause.

File positioning Clauses

When a sequentially organized file is opened, it can be positioned
at its beginning or its end; other file input/output statements
directly or indirectly affect the position of the file. "Current
position of the file" is equivalent to saying the record or value
which would be accessed if a sequential input/output operation
were to be executed at that time; the frequently u sed term "fi Ie
pointer" can be viewed as an arrow pointing to the current
position of the file.

When a relative or keyed file is opened, only the BEGIN option is
available.

Several file input/output statements allow for a "positional"
clause which specifies a particular position; this position is
sometimes designated as the beginning or end of the file (RESET
Ifileref/RESTORE Ifileref).

For relative files, the positional clause may specify a RECORD
option; the file is positioned at the record whose relative
position is identical to the one specified.

For keyed files, the positional clause may specify a KEY option;
the file is positioned to the first record which satisfies the KEY
option condition. The KEY option must specify a condition using
the exact length of the key.

74 IBM BASIC Application Programming: Language Reference

For keyed files~ the positional clause may also specify a SEARCH
option; the file is positioned to the first record which satisfies
the SEARCH option condition. The SEARCH option condition can
specify a partial key (that is, a key whose length is less than
the length of the key).

The input/output statements which allow record positioning are
shown in Figure 20.

File statement Options Allowed

Relative Files Ke~ed Files

DELETE Ifileref RECORD KEY
READ Ifileref RECORD KEY SEARCH
RESET Ifileref RECORD KEY SEARCH
RESTORE Ifileref RECORD KEY SEARCH
REWRITE Ifileref RECORD KEY
WRITE Ifileref RECORD KEY

Figure 20. Positioning Options Allowed--File Input/Output
Statements

File Control statements

OPEN Ifileref Activates a file, assigns a file reference
number, specifies access, file type,
organization, record type, and file position.

CLOSE Ifileref Deactivates a file, preventing further access
to it until that file is reactivated by another
OPEN Ifileref statement.

RESET Ifileref Changes the position of the file pointer for a
file.

RESTORE Ifileref Is identical to the RESET Ifileref statement.

MARGIN Ifileref Specifies the page margins for display files
which are written with PRINT file statements.

SCRATCH Ifileref Erases the contents of a file and resets the
file pointer to the beginning.

Each of the file input/output statements refers to a file by means
of a file reference number (Ifileref) which is assigned by the
OPEN statement for that file; all other input/output statements
for that file must refer to this number.

In most statements, the file reference number must be between 1
and 255; in some statements, it may be zero, which always
specifies the terminal.

The file reference number assigned by an OPEN statement remains in
effect, even across communicating program units, until the file
is closed, either by the file input/output statement CLOSE, or by
other statements, namely STOP and END, and the CHAIN statement
when the FILES option is not specified.

File Input/Output Transmission statements

GET Ifileref Assigns values from a stream file or
internal format file to a list of data
items.

IBM BASIC Statements 75

PUT Ifileref Writes values from a list of data items to a
stream file.

READ Ifileref Retrieves a record from an internal file or
native file and assigns values from it to a
list of data items. Values from native files
are formatted with a FORM statement or
specification.

REREAD Ifileref Causes the record last read to be accessed
again, and the data processed as in a READ
Ifileref statement. It is only valid for
native files and values are formatted with a
FORM statement or specification.

WRITE Ifileref Adds a record to a native, stream, or
internal file. The data for the record comes
from a list of data items; for native files,
these values are formatted with a FORM
statement or specification.

REWRITE Ifileref Alters a record already existing on a native
file. A list of data items supplies the new
values which are formatted with a FORM
statement or specification.

DELETE Ifileref Removes a specific record from a keyed or
relative file.

INPUT Ifileref Assigns values from files in three different
ways. For display files, it functions as an
INPUT statement; for internal files, it
functions as a READ Ifile statement, and for
stream files, it functions as a GET Ifile
statement.

LINE INPUT Ifileref Assigns a complete record of unformatted
data to a character variable.

PRINT Ifileref Transmits both formatted and unformatted
data to a display file.

PROGRAM SEGMENTATION STATEMENTS

The program segmentation statements segment programs in several
ways: through user-defined internal functions or subroutines,
through external subprograms, or through external program
chaining.

Internal functions or subroutines are defined by DEF/FNEND or
GOSUB/RETURN statements, respectively. Each internal function or
subroutine can be a logical entity within the program.

External subprograms are defined using the SUB, SUBEXIT, and END
SUB statements. They are invoked with the CAll statement. These
statements can be used to split a large program into manageable
program units, consisting of a main program and one or more
subprograms. The subprograms can be accessed (through the CAll
statement) repetitively from the main program or from each other.

The CHAIN and USE statements can be used to split a very large
program into several main programs (each, if needed, calling its
own subprograms) so that each main program (through a CHAIN
statement) can transfer control to the next at execution time.

In the CAll and CHAIN statements, values can be passed through
arguments. Data can be shared by different programs in the COMMON
area, which survives both a CAll and CHAIN statement execution.

The CALL statement can also access subprograms written in other
languages. IBM BASIC supplies interface routines that allow the
program to execute CMS commands, to perform Graphical Data

76 IBM BASIC Application Programming! Language Reference

Display Manager/Presentation Graphics Feature (GDDM/PGF)
operations, and to invoke subprograms written in COBOL, FORTRAN,
or PL/I.

USER-DEFINED FUNCTION STATEMENTS

User-defined functions allow you to define new functions in
addition to the intrinsic (built-in) functions already available
to you. User-defined functions are specified through the
following statements:

DEF Declares a user-defined function. It may define a numeric
or character valued function.

The DEF statement may completely define the function or it
may specify the beginning of a function block, or
multiline function. The DEF statement is the first line of
the block. It defines the function name and parameters

FNEND Marks both the physical and logical end of a multiline
function. The FNEND statement is the last statement of the
block. It serves the mark the end of block and is also the
exit point of the function.

Functions are activated by a reference to the function name. You
cannot transfer control into the body of a multi statement
function.

A DEF statement, or a DEF/FNEND group of statements may appear
anywhere in a program unit, except within another DEF/FNEND
group.

Lines in a function definition are not executed unless the
function they define is referenced. If execution reaches a DEF
statement in some other fashion, processing proceeds to the line
immediately following the function definition, bypassing the
statements within the function.

When used in an executable statement, the function name may be
followed by a list of arguments. This list must agree in number,
order, and type with the list in the DEF statement.

A user-defined function can be:

• A single DEF statement containing an expression which
determines the function's value.

• A multi statement function which is delimited by DEF and FNEND
statements.

When a function is invoked, the arguments in the function
reference, if any, are evaluated and their values assigned to the
parameters in the parameter list for the function definition.

Transfer of control into or out of a function other than through
function references is illegal. Unpredictable results may occur
if input/output is performed by a function that has been invoked
in an input/output data list, or if a function changes the value
of a variable appearing in the same statement as the function
reference.

A function name can be defined only once in a given program unit.

A function definition may not refer, directly or indirectly, to
the function being defined, that is, recursive functions are not
allowed.

A parameter appearing in the parameter list of a function
definition is distinct from any variable with the same name
outside the function definition.

IBM BASIC Statements 77

single Line Functions

Multiline Functions

If a function is completely defined in a DEF statement, the
expression in that statement is evaluated and its value returned
as the value of the funct ion.

If a function is defined in a DEF block, the lines following the
DEF line are executed in sequential order.

Within multiline functions, assignments (LET statements) of
values to the function name determine the value to be returned as
the value of the function.

Exit from a multiline function is accomplished by executing the
FNEND statement.

The only exit from a multi statement function is through the FNEND
statement. You cannot transfer control (for example, specify a
GOTO statement) out of the body of a multi statement function.

Within a function, any GOSUB statement for which a matching RETURN
statement has not been executed is removed from the RETURN list of
GOSUB statements. Therefore, execution of a subsequent RETURN
statement will not cause control to return into the function.

Processing a STOP statement in a DEF block ends the ehtire program
(see "Subroutine Control Statements" on page 61).

SUBPROGRAM STATEMENTS

Main Programs

Subprograms

A program can be divided logically into a number of program units:
a main program, and one or more subprograms.

Each program unit establishes a separate scope of identifiers.
The same identifier may be used in different program units to name
different items.

Statements within a program unit may not refer to any variable,
array, line label, line number, or function (other than intrinsic
functions) defined externally to that program unit.

A main program is a program unit whose first noncomment statement
is any statement other than a SUB statement and whose last
statement is an END statement. .

CALL Passes control from the calling program to the specified
subprogram. The argument~ associated with the CALL must
correspond/to the parameters of the SUB statement for the
program invoked.

A main program is th~ first program unit to receive control when
processing is initiated. Other main programs may be invoked by
means of the CHAIN statement (see "Chaining Statements" on page
81).

A subprogram begins with a SUB statement and ends with an END SUB
statement. The SUB statement may be preceded by comment
statements.

Subprograms are named in the SUB statement. They.are invoked by
calls (the CALL statement) from other program units (both main
programs and other subprograms).

78 IBM BASIC Application Programming: Language Reference

SUB

SUBEXIT

END SUB

Names the subprogram and names parameters whi ch are
variables to be used by the subprogram.

Ends execution of a subprogram. This statement may
occur only in a subprogram.

Marks the physical end of a subprogram and, if
executed, ends execution of the subprogram.

A subprogram is a set of statements designed to perform a specific
task. It might be a subprogram that can be used with more than one
calling program to help solve several problems. For example, it
might be necessary to write several programs, each of which must
access and process a name and address fi Ie in the same manner.
Processing the name and address file, then, is a prime candidate
for becoming a subprogram.

It is possible,for one program to access more than one subprogram,
allowing date ~o pass not only to a~d from the main program, but
between subpr~grams as well. A CALL statement is issued in a
calling program in order to access a called subprogram. Called
programs may in turn become calling programs. (See Figure 21.>

SUBPROG1

. SUB SUBPROG1 (C, D)

MAINPROG •
• •
• •
• CALL SUBPROG2 (C) -

CALL SUBPROG1 (A, B) ~ next executable statement -
next executable statement f+-- •

• •
• •
• SUBEXIT

END •
•
•

ENDSUB

SUBPROG2

SUB SUBPROG2 (A) .-
•
•
•

ENDSUB

Figure 21. Calling and Called Programs

Subprogram A 1s both a called program and a calling program. It
accepts data from subprogram B, processes it, and passes results
back to the mai n program. Subprogram B is a called prog'ram,
supplying data to both the main calling program and the calling
subprogram A.

Arrays and character vari abIes ina subprogram whi ch are not
parameters must appear in a dimension statement in that
subprogram if they are to have other than the default dimensions
or default maximum string lengths.

IBM BASIC Statements 79

An array parameter is declared in the SUB statement with an "empty
array declarator" which states how many dimensions the array has,
but not the values of the dimensions. The actual values of the
dimensions are those of the corresponding argument when the
subprogram is called.

The same is true for parameters which are character variables.
Both the current length and the maximum length of the parameter
are passed as part of the CAll.

All arrays and variables which are not parameters and are not in
COMMON are initialized to zero, for numerics, or null, for
character strings, each time the subprogram is called.

Recursive subprogram calls are permitted.

Calling IBH BASIC Programs

The CAll statement passes control from the calling program to the
subprogram specified.

The SUB statement is the first line of the subprogram, naming the
subprogram and declaring any parameters.

When a CAll statement is executed, control transfers from the
current program to the named subprogram. Execution of the
subprogram begins at the line following the SUB statement in the
called program and continues until:

• Some other action is dictated by execution of a control
statement

• An error occurs that causes an abnormal termination

• An END SUB, STOP, or SUBEXIT statement is executed

The number and type of arguments in a CALL statement must agree
with the number and type of parameters in the corresponding SUB
statement. An array used as an argument must have the same number
of dimensions as the corresponding parameter.

An array that is a parameter (that is, appears in a SUB statement)
may be redimensioned within a subprogram. When control returns to
the calling program, the array retains its changed dimensions.

See IBM BASIC Application Programming: System Services for more
details.

calling Programs written in other Languages

The CALL statement may be used to access subprograms written in
other languages. However, because IBM BASIC's argument passing
conventions differ from those of other languages, these calls
must be made indirectly through interface routines which convert
argument sequences.

BASIC follows general IBM calling conventions and generates
object modules in standard IBM format. Modules created by other
language processors may be linked with BASIC object modules. See
IBM BASIC Application Programming: System Services for details.

Interface routines are supplied to establish linkage to routines
written in COBOL, FORTRAN, and Pl/I.

80 IBM BASIC Application Programming: language Reference

Calling the System

CAll COBOL (string expression, p1,p2, •••)

CALL FORTRAN (string expression, pl,p2, .••)

CAll PLI (string expression, pl,p2, ..•)

Where the value of string expression is the name of the routine to
be called. p1,p2, ... are arguments. See "CALL COBOL, FORTRAN or
PlI Statement" on page 94 for argument conversion rules.

Note that because of the conversions, the called programs may not
store back into decimal arguments.

Other considerations, particularly in the area of input/output,
must be taken into consideration.

The supplied subprogram SYSTEM allows programs to execute host
system commands. These commands are limited to those available
for execution under program control (see Figure 43 on page 317).
The syntax is: .

100 CALL SYSTEM (string expression)

where the value of the string expression is a host system command.

This statement is the analog of the IBM BASIC SYSTEM command. If
the host system detects errors, an exception occurs.

Calling the Graphical Data Display Manager (GDDM)

CHAINING STATEMENTS

The Graphical Data Display Manager (GDDM) may be called to perform
graphic operations. The syntax is

100 CAll GDDM (rcp, p1,p2,~ .•)

Where rcp is a numeric expression whose rounded integer value
specifies the GDDM request control parameter (RCP) for the
operation to be performed. The allowable values and their
corresponding operations are defined in the GDDM User's Guide.

p1,p2 .•• are the actual arguments for the operation. The number
and type of these arguments depends upon the request control
parameter.

GDDM does not use IBM BASIC's floating decimal or varying length
character string data types. The interface routine converts
parameters of these types to single precision floating binary and
fixed length character strings, respectively. Integer parameters
are passed in their IBM BASIC format. For information on how to
link to GDDM routines, see IBM BASIC Application Programming:
System Services.

You cannot use the following GDDM functions:

FSEXIT
FSINIT
FSRNIT
FSTERM
SPINIT

These are GDDM initialization and completion functions handled
automatically by BASIC's interface routine. See the GDDM User's
Guide for a description of the functions that are available.

CHAIN Ends execution of the current program (the chaining
program) and starts another program (the chained

IBM BASIC Statements 81

program). It also specifies which variables are to be
passed from the chaining program to the chained program.

USE Specifies which variables the chained program is
expecting to receive from the chaining program. A "by
name" correspondence must exist: only those variables
that have the same identifiers and attributes in both
programs are passed.

The CHAIN and USE statements allow separate programs to be
executed serially, without outside intervention. This capability
is useful when segmenting very large programs.

Figure 22 shows how a chaining program might work:

1. The MENU program contains CHAIN statements to invoke other
main programs which execute entirely independently of the
MENU program.

2. When the chained programs complete execution, they chain back
to the MENU program.

r MENUPROG PROG1
~ ..

• •
• •
• •

IF ... CHAIN PROG1 CHAIN MENUPROG

• •
• •
• •

IF ... CHAI N PROG2 END ---..
•
•
•

END PROG2
~

•
•
•

CHAIN MENUPROG

•
•
•

END --I

Figure 22. Chaining and Chained Programs

The CHAIN statement may optionally indicate whether the currently
open files are to remain open or be closed prior to invoking the
chained program.

The CHAIN and USE statements can be used to copy values from the
chaining program to the chained program. The arguments are
matched by name; if a name appears in only one list it is ignored.
For names that do match, the type and size (for arrays and
characters) are checked. If they match, the value is transferred;
if not, an exception occurs.

82 IBM BASIC Appl i cat ion Programmi ng: language Reference

PROGRAM SEGMENTATION RESTRICTIONS

CALL STATEMENT RESTRICTIONS: In the interactive mode, if the CALL
statement is a source statement in the workspace, BASIC first
checks to see if the subprogram is present in source form in the
workspace. If it is, the workspace subprogram is used. Otherwise,
BASIC attempts to find and load a compiled TEXT file with a
filename the same as the subprogram name.

If the calling program is itself compiled, the subprogram must
also be compiled. Thus a CAll within a dynamically loaded TEXT
file cannot refer back to a program in the workspace.

CHAIN STATEMENT RESTRICTIONS: Main programs that are the targets
of CHAIN statements are dynamically loaded. They can be compiled
TEXT files or BASIC source program files.

When, in interactive mode, a CHAIN statement is encountered,
BASIC first attempts to find a TEXT file of the indicated name. If
a TEXT file is found, it is loaded and used. If no TEXT file is
available, BASIC then attempts to find a source file, with the
filetype of BASIC, and reload the workspace.

In programs running outside of the interactive BASIC environment,
CHAIN statements can refer only to compiled TEXT files.

PROGRAM SEGMENTATION AND COMMON

Both the CALL and the CHAIN statements may explicitly pass
arguments to another program unit using an argument list.

They may also pass arguments implicitly via the COMMON statement,
.which creates an area of storage that can be shared by many
different programs.

A COMMON area created in a main program remains in existence from
one subprogram CAll to the next as well as from one main program
CHAIN to the next. Thus, a main program could declare a COMMON
block, perform some actions which set values in COMMON, and then
CHAIN to another main program which could continue to process
those same values. See "COMMON Statement" on page 102 for more
details.

IBM rlASIC Statements 83

EXCEPTION HANDLING STATEMENTS

Exception handling statements provide a means of regalnlng
control in a program after an exception has occurred.

The exception handling statements are:

ON Condition Determines the action taken when an exception
occurs: transfer control to a specified line
number or label, ignore the exception, or perform
the default action.

EXIT

CAUSE

CONTINUE

RETRY

Specifies a line number or line label to which
control is transferred when input or output
exception conditions occur.

Explicitly causes an exception; for example, for
testing purposes.

Resumes execution after the statement which caused
an exception.

Resumes execution after an exception by
reexecuting from its beginning the statement which
caused the exception.

USING I/O STATEMENT ERROR CLAUSES AND ON CONDITION STATEMENTS

The ON condition statement and error clauses within I/O
statements (which may use EXIT statements) perform a similar
function; the identification of what action the system should
take if one of a general class of exceptions occur. The actions
and their meanings are:

IGNORE

GOTO

SYSTEM

Act as if the exception did not occur

Transfer program execution to a specified statement

Perform a default system action

These actions are explicit in an ON statement. In an I/O
statement's error clause they are implicit; presence of a
condition name implies GOTO; absence implies SYSTEM.

If an exception occurs, and control is transferred, whether via an
error clause or ON statement, the following intrinsic functions
are available for processing the exception:

CODE

ERR

LINE

Obtains the system error code

Obtains the IBM BASIC exception code

Obtains the statement line number of the exception

EXCEPTION HANDLING IN I/O STATEMENTS

Error clauses in I/O statements take priority over the ON
condition statement. That is, when an exception occurs, the
processor first checks if an applicable error clause is specified
in the I/O statement. If it is, control is transferred as
specified by the error clause. If the exception does not
correspond to any error clause, the action taken is determined
from the ON condition statement, if any.

The error conditions, ENDPAGE, CONV, and SOFLOW, are equivalent
to the ON conditions of the same name. All other error clause or
EXIT conditions are equivalent to the ERROR condition of the ON
statement.

84 IBM BASIC Application Programming: Language Reference

USING THE CAUSE STATEMENT

The user can generate an exception explicitly with the CAUSE
statement. This can be used to test routines that handle abnormal
conditions.

USING THE RETRY AND CONTINUE STATEMENTS

Use the RETRY and CONTINUE statements to resume program
execution:

• RETRY--resumes execution with the statement that caused the
exception

• CONTINUE--resumes execution with the statement following that
which caused the exception

In general, any statements in the language may be used to attempt
recovery from the error condition. If another exception occurs,
and IBM BASIC has not been told to IGNORE it, all knowledge of the
fir5t exception is lost. In this case, a RETRY or CONTINUE
statement resumes execution at or after the location of the second
exception.

EXCEPTIONS AND USER-DEFINED FUNCTIONS

The relationship between exceptions and user-defined functions
requires some additional explanation. An EXIT or ON condition
statement may indicate that the processor should GOTO any line
number or label in the program unit without restriction. When an
exception occurs, the following rules are followed:

• If the indicated statement is not in the main body of the
program unit or in a currently executing user function, the
exception message is written and an "invalid exception
location" exception is generated. Otherwise:

Each executing function is immediately exited, that is,
the remaining code is not executed until the function (or
main body of the program unit) containing the GOTO
destination is reached.

The intrinsic function is set to the statement containing
the function invocation at the now current level.

Control is transferred to the designated line.

Example

100 ON OFLOW GOTO 360
110 DEF ACP1)
120 A = X/PI
130 FNEND
210 DEF BCP2)
220 ON ZDIV GOTO 2S0
230 B = P2*ACP2)
240 GOTO 260
2S0 PRINT 'ZDIV AT LINE';LINE
260 FNEND
310 X = 1.ESO
320 Y = BCO)
330 Y = BC1.E-SO)
340 Y = ACO)
3S0 STOP
360 PRINT 'OFLOW AT LINE';LINE
370 CONTINUE
380 END

In this example, the first invocation of B (at line 320) causes an
exception at line 120 in A. A is exited, and execution will resume
at line 2S0 and LINE will be set to 230.

IBM BASIC Statements 85

The next invocation of B (at line 330) will cause an exception at
line 120 in A as well. Both A and B will be exited; execution will
resume at line 360, and LINE will be set to 330. The CONTINUE
statement will transfer control to line 340. This too will cause
an exception at line 120 in A. However, the ON ZDIV still points
to line 250 in B, which is not active, hence a ZDIV error message
will be written and an "invalid exception location" exception
generated.

Note: This exception can be handled with an ON ERROR clause.

EXCEPTIONS AND CALLING AND CALLED PROGRAMS

DEBUGGING STATEMENTS

Each program unit (subprogram or main program) has a separate set
of EXIT and ON condition lists. If one program unit calls another,
it loses all control over any exceptions until the called program
unit returns. At that time the EXIT and ON conditions are reset to
their state prior to the call.

Debugging facilities allow the user to build test points into
programs. With debugging statements, the user can set
breakpoints, trace the execution of a program, and turn the
debugging system ON and OFF.

DEBUG ON/OFF The DEBUG ON statement causes debugging to become
active in the program unit in which it is
specified.

BREAK

The DEBUG OFF statement causes debugging to become
inactive in the program unit in which it is
specified. If a DEBUG OFF statement is executed
when tracing is in progress, an implicit TRACE OFF
statement is executed; that is, when a subsequent
DEBUG ON statement is executed tracing does not
resume.

Before the execution of any debug statement in a
program unit, debugging is inactive (OFF).

The BREAK statement, when debugging is active,
reports the line number of the BREAK statement and
suspends processing. (This is called a breakpoint.)
At this time, the user can continue execution by
pressing the ENTER key, or can enter IBM BASIC
commands and immediate statements before
continuing.

If the program is not modified, processing can be
resumed by issuing the GO command.

If the program is modified in any way, processing
cannot be resumed at the breakpoint; instead, the
program must be reinitiated via the RUN command.
Thus, any line number editing or use of the
following commands end execution: CHANGE, COMPILE~
COPY, DELETE, DROP (of any program variables)~
EXTRACT, FETCH, INIT, LOAD, MERGE, RENUMBER, RUN.

A BREAK statement is ignored when debugging is
inactive.

TRACE ON/OFF The TRACE ON statement, when debugging is active,
turns tracing on in the program unit in which it is
specified.

The TRACE OFF statement, when debugging is active,
turns tracing off in the program unit in which it is
specified.

86 IBM BASIC Application Programming: Language Reference

USING THE TRACE STATEMENT

Before the execution of any TRACE statement in a
program unit, tracing is set off.

A TRACE statement is ignored when debugging is
inactive.

The following actions occur when tracing is on.

• For each statement causing a transfer of control (for
example, a GOTO, or CAll, or NEXT), both the line number of
the statement and the line number of the next statement to be
processed (if such a line number exists) are reported.

• For each statement causing the value of a variable or array to
change, both the line number of the statement and the values
assigned to any variables by the statement are reported.

Trace reports may be directed to files by means of the TO clause
in the DEBUG ON and TRACE ON statements.

Four rules govern the use of the TO clause.

1. A TO clause in a DEBUG ON statement overrides any TO clauses
of TRACE ON statements encountered subsequent to the DEBUG ON
statement in the same program unit.

2. A TRACE OFF statement breaks the file connection set by any
TRACE ON TO statement in the same program unit.

3. A TRACE ON TO statement breaks the file connection
established by a prior TRACE ON TO statement in the same
program unit. It does not break the file connection
established by a prior DEBUG ON TO statement.

4. A DEBUG OFF statement breaks the file connection as well as
trace output established by any prior DEBUG ON TO or TRACE ON
TO statement in the same program unit.

If no file reference is specified, the trace report is directed to
the device associated with file reference zero (usually the
terminal).

IMMEDIATE STATEMENTS AND DEBUGGING

Statements that can be executed in the immediate mode (although
they are not classified as debugging statements) are very useful
for program debugging. For example, while stopped at a breakpoint
you can execute an immediate PRINT statement to examine the value
of any variable in the active program unit.

IBM BASIC Statements 87

STATEMENT DESCRIPTIONS

This section describes the syntax and semantics of each statement
in the IBM BASIC language. The statements appear in alphabetic
order. For the relationships between statements, see the previous
sections in the chapter on "IBM BASIC Statements" on page 60.

88 IBM BASIC Application Programming: language Reference

BREAK STATEMENT

Description

BREAK Statement

The BREAK statement (when debugging is active) suspends program
execution, identifies the current line, and makes possible
interaction with the system. The suspension of execution is known
as a breakpoint.

Execution of a BREAK statement when debugging is inactive has no
effect.

Format

BREAK

The BREAK statement provides a means of using the debugging
capabilities of IBM BASIC.

System commands may be used without inhibiting processing, if
they do not modify the program. If the program is modified in any
way, execution cannot be resumed at the breakpoint and must be
reinitiated via the RUN command. Thus, any line number editing or
use of the following commands ends processing: CHANGE, COMPILE,
COpy, DELETE, DROP (of any program variables), EXTRACT, FETCH,
INIT, LOAD, RENUMBER, RUN.

If the program is not modified, enter either a GO or a null entry
to restart program execution after a BREAK statement. (A null
entry can be used only if no other commands have been entered
while at the breakpoint.)

The BREAK statement is controlled by the DEBUG statement. See
"Debugging Statements" on page 86 and "DEBUG Statement" on page
106.

See "BREAK Command" on page 271 for another method of causing a
program break (without the necessity of editing and rerunning
your program).

Statement Descriptions 89

CALL statement

CALL STATEMENT

Description

The CALL statement invokes subprograms.

Format

CALL name [(arg[,arg] .••)]

Where:

name

arg

identifies the subprogram to be run. Subprogram names may
contain at most seven characters.

If the name is SYSTEM, COBOL, FORTRAN, PLI, or GDDM, see the
special format on the following pages.

is an argument passed from the calling program to the called
subprogram. It is an expression (numeric or character) or an
array from the calling program that may be accessed by the
called subprogram.

When an entire array is to be passed as an argument, it must
be stated as an empty array declarator to indicate the number
of dimensions in the form:

identifier ([,] .•.)

When a CALL statement is executed, control passes from the calling
program to the named subprogram. When the subprogram completes
execution, control returns to the calling program at the next
executable statement after the CALL statement.

Example

100 REM MAIN PROGRAM STATEMENT
110 CALL DEDUCT
120 REM NEXT STATEMENT OF MAIN

.
600 SUB DEDUCT

.
700 END SUB

The CALL statement at line 110 passes control to the subprogram
DEDUCT, identified by the SUB statement. Processing continues
until the END SUB statement signals a return to the main program.
Execution continues at the first statement following the CALL
(statement 120).

The number and type of arguments used in the CALL statement must
agree with the number and type of parameters in the corresponding
SUB statement. An array used as an argument must have the same
number of dimensions as the corresponding parameter in a SUB
statement.

Arguments that are numeric variables or character variables
(without substring qualifiers) are passed by reference, as
follows:

90 IBM BASIC Application Programming: Language Reference

CALL statement

• Any reference to such a parameter in a subprogram is a
reference to the corresponding argument in the calling
program.

• Any assignment to such a parameter in a subprogram is an
assignment to the corresponding argument in the calling
program.

If an argument is an array element, its subscripts are evaluated
once, when the CALL statement is executed. The previously stated
rules apply.

If an argument is a constant or an expression that involves
numeric or character operators, it is evaluated once, when the
CALL statement is executed. (Note that a character substring is
considered such an expression.) The evaluated value is assigned
to a temporary location available only to the subprogram. In any
reference to the corresponding subprogram parameter, this
temporary value is used; in any assignment to the corresponding
subprogram parameter, this temporary location is used.

See also "Calling IBM BASIC Programs" on page 80.

Predefined Subprogram Names

The CALL statement can be used to call programs written in other
languages (COBOL, FORTRAN, or PL/I), to request operations from
the Graphical Data Dislay Manager (GDDM), or to execute host
operating system commands (SYSTEM). This is done by specifying
special subprogram names in CALL statements. (See "CALL SYSTEM
Statement" on page 92, "CALL GDDM Statement" on page 93, and "CALL
COBOL, FORTRAN or PLI Statement" on page 94.) The special
subprogram names are:

CLINK

COBOL

FLINK

FORTRAN

GDDM

PLINK

PLI

SYSTEM

They are keywords and, as distributed by IBM, they are also
reserved words.

If your organization has removed these names from the reserved
word list, you can use them as variable or array names or as line
labels. However, because of their keyword meanings, you cannot
use them in SUB statements to name subprograms. If used in the
CALL statement, they will always refer to the predefined
subprograms.

Statement Descriptions 91

CALL statement

CALL SYSTEM Statement

Description

The CAll SYSTEM statement allows you to execute a limited set of
system commands.

Format

CAll SYSTEM (string expression)

Where:

string expression
must evaluate to a character string that ;s a system command.

The commands available for use with CAll SYSTEM are limited to
those available for execution under program control. See
Figure 43 on page 317 for a list of the commands available. Be
careful when using these commands; some of them can adversely
affect your BASIC terminal session.

When the CAll SYSTEM statement is executed, the system command in
string expression is executed. If the command displays
information at the terminal, and the terminal is a display
terminal, the BASIC screen is temporarily replaced by the system
screen. See IBM BASIC Application Programming: System Services
for methods of restoring the BASIC screen.

If an error occurs during command execution, an exception occurs.

See also "Calling the System" on page 81.

92 IBM BASIC Application Programming: language Reference

CALL GDDH statement

Description

CALL statement

The CALL GDDM statement is used to perform graphic operations.

Format

CALL GDDM (rcp,a1,a2, .••)

Where:

rcp
is a numeric expression whose rounded integer value
specifies the Request Control Parameter for the Graphic Data
Display Manager (GDDM).

al,a2, •••
are arguments for the operation.

The allowable values and their corresponding operations are
defined in the GDDM User's Guide.

Additional details are given in IBM BASIC Application
Programming: System Services.

See also "Calling the Graphical Data Display Manager (GDDM)" on
page 81 for a discussion of parameter passing rules.

Statement Descriptions 93

CALL statement

CALL COBOL, FORTRAN or PLI statement

Description

The CALL COBOL, FORTRAN, or PLI statements are interface routines
that establish linkage to routines written in COBOL, FORTRAN, or
PL/I.

Format

CALL {COBOLIFORTRANIPLIl
(string expression,a1,a2, ..•)

Where:

string expression
evaluates to a character string that is the name of the
routine to be called

al,a2, •••
are arguments that are converted as shown in Figure 23.

Because of differences in internal data representations, the
called programs must return values to IBM BASIC carefully. Only
integer and character parameters may be passed back to IBM BASIC
and they must conform to the characteristics of IBM BASIC, that
is, fullword integers and appropriate string lengths.

Entire arrays cannot be used as arguments in interlanguage calls.

Decimal values cannot be returned by the called program. Integer
and character values can be returned, but care must be taken with
character string lengths. When calling COBOL, the current length
(at the time of the call) of a character argument must be equal to
m in Figure 23. When calling PL/I, the current length must be less
than or equal to n in Figure 23 and, if a value is to be returned,
the maximum length defined for the BASIC variable must be equal to
n.

Before it can call COBOL, FORTRAN, or PL/lj IBM BASIC must be told
which programs are to be called in a CAll CLINK, CALL FLINK, or
CALL PLINK statement, respectively. IBM BASIC Application
Programming: System Services gives details.

See also "Calling Programs Written in Other Languages" on page 80.

BASIC COBOL FORTRAN PL/I

INTEGER PIC S9(9) USAGE INTEGER FIXED BIN (31)
COMP-4

DECIMAL USAGE COMP-2 REAL*8 FLOAT DEC (16)

CHARACTER PIC XCm) USAGE not allowed CHARCn)
DISPLAY VARYING

Figure 23. Type Conversions for Interlanguage Calls

94 IBM BASIC Application Programming: Language Reference

CASE STATEMENT

Description

CASE Statement

The CASE statement immediately precedes a group of statements (a
CASE block) within a SELECT block that are'executed when the value
of the selection expression in the SELECT statement satisfies the
criteria of the CASE statement. The group of statements is
referred to as a CASE block.

Format

CASE selector [.selectorl •.•

Where:

selector
is one of the following:

constant

constant TO constant

relation constant

and:

constant
is a constant of the same type, either numeric or
character. as the selection expression for the
containing SELECT block.

relation
is one of the relational operators.

The CASE statement is used with the SELECT, CASE ELSE and END
SELECT statements to form a CASE block within a SELECT block.

CASE blocks include all statement lines between a CASE statement
and either the next CASE statement. CASE ELSE statement, or an END
SELECT statement.

The CASE statement may appear only within a SELECT block. It
defines the beginning of a CASE block and the selection criteria
for that block.

The constants and relations on a CASE statement define which CASE
block will be executed when the selection expression of the SELECT
statement is evaluated.

See also "SELECT Blocks" on page 66.

Example

100 CASE <0, 50 TO 60, >100

specifies this CASE block will be selected for any numeric
values less than zero, for any value between 50 and 60,
inclusive. and for any value greater than 100.

200 CASE 'MAY','JUNE','JULY'

specifies this CASE block will be selected for a character
value of 'MAY', 'JUNE'. or 'JULY'

Statement Descriptions 95

CASE ELSE Statement

CASE ELSE STATEMENT

Description

The CASE ELSE statement immediately precedes a group of
statements (a CASE block) within a SELECT block that are executed
if no other CASE blocks are selected.

Format

CASE ELSE

The CASE ELSE statement defines the CASE block to be executed if
selection criteria for the other CASE blocks are not met.

The CASE ELSE statement is used with the SELECT, CASE, and END
SELECT statements to form SELECT blocks. These are discussed
under "Decision Structure Control Statements" on page 64.

The CASE ELSE statement may only appear within a SELECT block. It
must begin the last CASE block in a SELECT block.

See also "SELECT Blocks" on page 66.

96 IBM BASIC Application Programming: Language Reference

CASE ELSE statement

CASE ELSE STATEMENT

Descr;pt;on

The CASE ELSE statement immediately precedes a group of
statements (a CASE block) within a SELECT block that are executed
if no other CASE blocks are selected.

Format

CASE ELSE

The CASE ELSE statement defines the CASE block to be executed if
selection criteria for the other CASE blocks are not met.

The CASE ELSE statement is used with the SELECT, CASE, and END
SELECT statements to form SELECT blocks. These are discussed
under "Decision Structure Control Statements" on page 64.

The CASE ELSE statement may only appear within a SELECT block. It
must begin the last CASE block in a SELECT block.

See also "SELECT Blocks" on page 66.

96 IBM BASIC Application Programming: Language Reference

CAUSE STATEMENT

Description

CAUSE statement

The CAUSE statement generates an exception during processing.

Format

CAUSE numeric expression

Where:

numeric expression
is any numeric expression.

Exceptions are normally generated implicitly when error
conditions arise. The CAUSE statement may be used to explicitly
create an exception.

The expression is evaluated and, if decimal, rounded and
converted to integer. The result is used as the exception code.

Exception codes are listed in "Appendix A. Exception Codes" on
page 319. You are not limited to this set of codes. Any codes not
listed there are treated as ERROR category exceptions (see "ON
Condition Statement" on page 203).

See also "Exception Handling Statements" on page 84.

Example

.
200 ON ERROR GO TO 500

.
500 IF ERR = -7320 THEN FILE_NOT_FOUND
510 ON ERROR SYSTEM
520 CAUSE ERR

If, during program execution, an ERROR exception occurs, control
is transferred to line 500. At line 500 the exception for
file-not-found (-7320) is tested, and, if this is the ERROR
exception, control is transferred to the line with label
FILE_NOT_FOUND.

If some other exception has occurred, the CAUSE statement is
executed, forcing the system action for that exception to take
place. (The ERR intrinsic function returns the exception code.)

Statement Descriptions 97

CHAIN statement

CHAIN STATEMENT

Descr;pt;on

The CHAIN statement halts processing of the program in which it
appears and starts a new main program.

Format

CHAIN char-exp [,FILES][,arg-list]

Where:

char-exp
is a character expression naming the chained program (the
name of the file containing the new main program being
started).

arg-l;st
is a list of variable and/or array names separated by commas.

When a CHAIN statement is executed, the program in process is
terminated and the program named in the CHAIN statement is
invoked.

FILES KEYWORD: The optional keyword FilES may follow the chained
program name. If it is present, all currently open files remain
open, and at their current position. If the keyword FILES is not
present, all files in the chaining program are closed when the
CHAIN statement is executed.

ARGUMENT LIST: A list of data items may follow. The list defines
the names of the variables and arrays in the chaining program that
are to retain their current values when the chained program begins
executing. If the CHAIN statement is specified in a subprogram,
the argument list may not include the names of COMMON variables or
parameters. All other data except COMMON variables are destroyed
during the chaining operation.

This list is compared against the identifiers listed in USE
statements within the chained program. Only those identifiers
that match (have the same name, type, and dimensions) are passed
to the chained program.

GENERAL CONSIDERATIONS: Chaining allows separate programs to be
processed serially, without outside intervention. This procedure
is useful when segmenting large programs (that is, breaking them
into smaller, more manageable pieces).

A CHAIN statement may not be used in a function definition
(between DEF and FNEND statements).

See also "Program Segmentation Statements" on page 76 "CHAIN
Statement," and "USE Statement" on page 257.

Example

Program X contains this statement

100 CHAIN "MYFILE",FILES,C,B,A

Program MYFllE contains this statement

200 USE A,B,C

98 IBM BASIC Application Programming: Language Reference

CHAIN statement

This example keeps all of program X's currently open files open,
but stops processing program X and starts processing MYFILE. The
values of variables A, B, and C are passed to MYFILE from X. The
variables A, B, and C must be the same type in both program X and
program MYFILE. If variable A is typed integer in program X and
decimal in program MYFILE, an exception occurs.

Statement Descriptions 99

CLOSE Statement

CLOSE STATEMENT

Description

The CLOSE statement deactivates the specified file.

Format

CLOSE Ifileref [err[,err]]

Where:

fileref

err

is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255.

is one of the following:

EXIT line-ref

IOERR line-ref

EOF line-ref

line-ref
is a line number or line label

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The colon after fileref may be omitted if it is the last nonblank
character on the line.

Example

300 CLOSE 12

The CLOSE statement prevents further successful access to the
file until another OPEN statement is processed for that file. An
attempt to close a file that is not open results in an exception.

A CLOSE statement issued for a display format file which has an
incomplete print line waiting to be written (that is, the last
PRINT statement ended with a comma or semicolon) causes the print
line to be written before the file is closed.

The STOP, END, and CHAIN statements (without the keyword FILES)
automatically close all active files. Any resulting errors are
handled as if they were caused by a CLOSE statement.

FILEREF: Fileref is the reference number of the file to be closed.

An attempt to close fileref 0, the system device, is ignored and a
warning message is produced.

ERROR CONDITIONS: The two error conditions EOF (end of file) and
IOERR (input/output error) may be recoverable if an err clause for
the condition is specified in the statement or on the referenced
EXIT statement. EOF occurs if the file cannot be closed because of
lack of space. IOERR occurs if a hardware malfunction or other
condition prevents closing of the file.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

100 IBM BASIC Application Programming: language Reference

CLOSE statement

Example

100 CLOSE 15: EXIT 200
200 EXIT IOERR 500, EOF 800

is functionally equivalent to:

100 CLOSE 15: IOERR 500, EOF 800

In this example, if the file associated with file reference number
5 cannot be closed because of a hardware malfunction, control is
transferred to line number 500. If it cannot be closed because of
a lack of space on the file, control passes to line number 800.

Statement Descriptions 101

COMMON statement

COMMON STATEMENT

Description

The COMMON statement provides a means of sharing values between
either a main program and subprograms, or between main programs
when a CHAIN statement is executed.

Format

COM[MON] ml[,m2] •..

Where:

ml, m2
may each be one of the following:

and where:

a

b

L

is a numeric variable or array declarator.

is a character variable or array declarator.

is an unsigned integer constant between 1 and 32,767,
giving the maximum length of the character variable.

array declarator
has the form c(dl[,d2[,d3[,d4[,d5[,d6[,d7]]]]]]) where
c is a numeric or character identifier and each d is an
unsigned integer constant in the range 0 or 1
(depending upon OPTION BASE) to 32767.

The COMMON statement explicitly defines the number and extents of
array dimensions and the maximum string length of character
variables and array elements, and allocates these variables and
arrays in a common area. The array dimensions and string lengths
are specified as they are in the DIM statement.

In order to access the common area, a program unit must include a
COMMON statement. COMMON statements may appear anywhere within a
program unit. Items in common are allocated in the order of their
appearance. Variables and arrays that are defined in COMMON
statements may not also appear in DIM statements.

The common area is initialized once, upon entry to the first
program unit defining the common area; all numeric items are set
to zero and character variables are set to null. When the first
program unit using common is executed, the size of the common area
is determined; subsequent program units may specify a common area
of an equal or smaller size, but they may not extend the common
area.

Program units that share the common area must agree in their image
of the common area. This means that, although they need not have
the same names, the common variables and arrays must be declared
in the same order and with the same characteristics; variables
must be of the same type, character variables and array elements
must have the same maximum string length, and arrays must be of
the same total size.

102 IBM BASIC Application Programming: Language Reference

COMMON statement

Arrays can be declared with different dimensions as long as the
total size remains the same. The sizes are checked when a common
array is passed between program units, but the array's dimensions
are left as they exist in the calling program. The converse is
also true; if a called subprogram redimensions a common array, the
new dimensions are returned to the caller.

The following examples illustrate correct and incorrect usage of
COMMON.

Example 1 (correct)

100 COM A,B~(3,3),C$(16)*10
110 COM DI(5)

creates a common area with the following four items: a decimal
variable named A, a 4-by-4 integer array named B~, a 17-element,
one-dimensional character array named C$ with each element having
a maximum length of 10 characters, a 6-element, one-dimensional
decimal array named DI.

Example 2 (incorrect)

100 COM A
110 A(3) = PI

causes an exception because common arrays must be explicitly
dimensioned.

Example 3 (incorrect)

100 COM A
110 DIM A(100)

causes an exception because arrays in common must be dimensioned
in the COMMON statement, not by a DIM statement.

Example 4 (incorrect)

100 COM A, C$(99)*3, B~(1,3),D
110 CALL JOE
120 END
130 SUB JOE
140 COM W,Y$(99)*6,X%(0,7)
150 X%(0,6)=59
160 END SUB

contains two errors. First, C$ and Y$ have different maximum
string lengths; second, line 150 does not agree with the
dimensions of the array at the time of the call. The following
changes result in a correct program:

105 MAT B~=B%(0,7)!redimension B%
140 COM W,Y$(99)*3,X~(0,7)

or, you could code:

100 COM A,C$(99)*6,B~(1,3),D
145 MAT X%=X~(0,7)!redimension X~

Statement Descriptions 103

CONTINUE statement

CONTINUE STATEMENT

Description

The CONTINUE statement is used to resume execution at the
statement following the statement causing an exception.

Format

CONTINUE

The CONTINUE statement provides for the return to normal
sequential statement execution after program flow has been
diverted to process an exception.

Assume that you wanted to keep track of the number of times in
your program that an attempt was made to divide a number by zero.
You did not want to halt the program on this error, just count the
occurrences.

Example

100 ON ZDIV GOTO 1000

.
500 BAl = A - B
510 DIVI = TOT/BAl
520 BAl = A + B

.
1000 COUNT = COUNT + 1
1010 CONTINUE

Statement 100 sets the condition being tested. If BAl is set to
zero at statement SOD, execution of 510 triggers the ZDIV (divide
by zero) condition. Execution branches to statement 1000, adds 1
to COUNT, and returns to statement 520 because of the CONTINUE.

If an exception condition does not exist when CONTINUE is
executed, an exception occurs.

See also "Exception Handling Statements" on page 84.

104 IBM BASIC Application Programming: language Reference

DATA STATEMENT

Description

DATA Statement

The DATA statement is used to create internal data files for
reference by READ statements.

Format

DATA [integer*litem [,[integer*liteml •••

Where:

integer
is a nonzero, unsigned integer constant used to replicate
the immediately following item.

item
is either a constant (either numeric or character) or an
unquoted character string.

DATA statements are nonexecutable statements which are used to
create a data file internal to the program unit. They can appear
anywhere in the program unit, but all of the DATA statements
create one internal file of values whose order is determined by
the line numbers of the statements.

Both character and numeric constants can be used in DATA
statements. A character constant may be specified without
surrounding quotation marks provided the constant does not start
with an integer immediately followed by an asterisk and provided
the constant contains no commas, no leading or trailing blanks,
and no leading or trailing quotes. A valid numeric constant may be
assigned to either a numeric or a character variable; however, if
a numeric constant is assigned to a character variable, it is
assigned as a string of characters.

Specifying the replication factor (for example, 10*MOB$) is
equivalent to repeating the variable MOB$ 10 consecutive times.

See also "READ Statement" on page 235.

Example

100 DATA 3*10.0,"APPLES",2.5,PEARS,19
200 DATA PEACHES,2*24,2*BANANAS

The above DATA statements create an internal data file which, when
accessed by READ statements, provides the following sequence of
values:

10.0
10.0
10.0
APPLES
2.5
PEARS
19
PEACHES
24
24
BANANAS
BANANAS

Statement Descriptions 105

DEBUG statement

DEBUG STATEMENT

Description

Immediate Execution

The DEBUG statement activates debuggi~g facilities in a program.

Format

DEBUG ON [TO Ifilerefl

or

DEBUG OFF

Where:

1ileref
is a numeric expression, the rounded, integer value of which
must be in the range of 0 to 255, specifying the file for
trace Ii sting.

Debugging facilities are provided by language statements in order
to allow test points to be built into a program.

The DEBUG statement allows you to turn the debugging facility ON
and OFF wi thi n each program-un it. The DEBUG statement acts as an
ON/OFF access swi tch:

• DEBUG ON causes debugging to become active, making the
statements BREAK and TRACE avai lable for use.

• DEBUG OFF causes debugging to become inactive. In a program
unit, before the processing of a DEBUG statement, debugging
is inactive. TRACE and BREAK statements have no 'effect when
debugging is inactive.

The fileref in the optional TO clause overrides subsequent TO
clauses in TRACE statements.

See "Debugging Statements" on page 86.

The DEBUG statement may be executed as an immediate statement. All
forms ~re accepted in the immediate mode. However, if the·program
unit did not contain both a TRACE ON and a DEBUG ON statement
prior to the start of execution, the trace facility, when
activated by TRACE ON, monitors. program flow only; it does not
show variable assignments.

See also "Immediate Statements" on page 260.

106 IBM BASIC Appl i cation Programmi ng: Language Reference

DECIMAL STATEMENT

Description

DECIMAL Statement

The DECIMAL statement specifies which identifiers are to be
assigned decimal type.

Format

DECIMAL [[identifierl(letter-list)l .•. l

Where:

identifier
may be a specific numeric identifier.

letter-list
is a list of letters and/or ranges of letters separated by
commas. A range of letters is represented by the first and
last letters in the range separated by a minus sign.

For compatibility with other BASICs, the reserved words DEFSNG
(define single) and DEFDBL (define double) may be used in place of
the keyword DECIMAL. The syntax and semantics of DEFSNG and DEFDBL
statements are the same as for DECIMAL statements.

The DECIMAL statement declares a specific identifier or any
identifier beginning with a specific letter as having decimal
type, or when used without a list, to specify the default type for
all identifiers not otherwise typed in a program unit. DECIMAL
statements may appear anywhere in a program unit, and affect
identifiers throughout the program unit. The identifiers affected
may be variable names, array names, or function names.

An identifier explicitly stated in a DECIMAL statement may end
with the self-typing character "I", but not with "X" or "$". If
the DECIMAL statement specifies a parenthetical list of letters,
all identifiers beginning with these letters are to be typed
decimal, unless they end in a contradictory self-typing character
"X" or "$", or unless they are explicitly declared in an INTEGER
statement by identifier or letter-list. The letter-list may be
specified as either single letters (A, B, D, J) or as a series of
consecutive letters, such as (A-J, T-Z), indicating A through J
and T through Z.

If a DECIMAL statement specifies no identifiers and no
letter-list, the default type for all identifiers in the program
unit is set to decimal. This is the default.

Example 1

100 DECIMAL ABLE,(C-E,G,J,L),NANCY

specifies that identifiers ABLE and NANCY, as well as all
identifiers beginning with the letters C, D, E, G, J, and L are
typed decimal. If the program unit subsequently contains a
variable named DANDY, it would be assigned decimal type; however,
COLOR$ would be character and LOT% would be integer.

Example 2

100 DEFSNG ABLE,(C-E,G,J,L),NANCY

is equivalent to Example 1.

Statement Descriptions 107

DECIMAL statement

Immediate Execution

You can use the DECIMAL statement to set the type of immediate
vari abIes and arrays. The format and descri pt i on are the same as
for a DECIMAL statement in a program.

See "Immediate Statements" on page 260 and "Immediate Type and
Dimensions" on page 262 for the rules regarding the interaction
with other immediate statements and program statements.

108 IBM BASIC Application Programming: Language Reference

DEF STATEMENT

Desc~;pt;on

DEF Statement

The DEF statement defines and names a user-written function.

Format

DEF name [(param[,param] ...)] [=expression]

Where:

name

pa~am

is a scalar numeric or character name that gives a name to
the function and its input. If it is character (ends with $),
the maximum length may be defined by following the
identifier with an asterisk and an integer (between 1 and the
maximum allowed string length).

is a scalar numeric or character variable name that
specifies the function input. If it is character (ends with
$), the maximum length may be defined by following the
identifier with an asterisk and an integer.

exp~ess;on
is an expression of the same type, numeric or character, as
name, used to complete a one-line function definition.

The DEF statement is a nonexecutable statement that defines user
functions. The user function definition may be contained in the
DEF statement itself by including the equal sign and expression.
Otherwise, the DEF statement marks the beginning of a group of
statements, ending with an FNEND statement, which constitutes the
function definition.

A user function is referred to in other statements within the same
program unit in a manner similar to the intrinsic functions. When
used in an executable statement, the function name is optionally
followed by a list of arguments, 'separated by commas and enclosed
in parentheses. This list of arguments must agree in number,
order, and type with the list of parameters in the DEF statement.

Example

defines the natural exponential of X squared, using the intrinsic
function EXP. The numeric variable X, enclosed in parentheses
after the function name, is called a parameter. You can have more
than one parameter, and the list of variables can contain both
numeric and character variables. Your function performs its
defined calculation on the actual values supplied for these
parameters. (The expression value substituted for each parameter
is called the argument.)

Example

The value 5 is substituted for the parameter X.

A DEF statement or DEF/FNEND group of statements may appear
anywhere in a program unit, except within another DEF/FNEND
group.

Statement Descriptions 109

DEF statement

A user defined function may be executed only through a function
reference. Any other transfer to the DEF statement results in a
transfer to the statement following the function.

Transfer of control into or out of user defined functions, other
than through function references, is illegal.

Nonexecutable statements, such as COM, DATA, DECIMAL, DIM,
INTEGER, USE, EXIT, FORM and IMAGE, may appear within a
user-defined function. A user-defined function can refer to or
change values of any variable, except those used as parameters in
the function, in the program unit containing the function.

Undefined results may occur if:

1. A user defined function performs any input/output, and the
function reference has been involved in an input/output data
list.

2. A user defined function changes the value of a variable
appearing in the same statement as the function reference.

A function of a given name can be defined only once in a given
program unit.

When a defined function is referenced (that is, when an expression
involving the function is evaluated), the arguments in the
function reference, if any, are evaluated and their values are
assigned to the parameters in the argument list for the function
definition (that is, arguments are passed by value to functions).

A function definition may not refer, directly or indirectly, to
the function being defined; that is, recursive function
invocations are not permitted.

A parameter appearing in the parameter list of a function
definition is local to that function definition; that is, it is
distinct from any variable with the same name outside the function
definition.

SINGLE LINE FUNCT~ONS: If a function is completely defined in a
DEF statement, the expression in that statement is evaluated next
and its value assi gned as the value of the funct ion.

MULTILINE FUNCTIONS: A function defined over many statements is
called a multiline function. A multiline function begins with the
word DEF, the function name, and any parameters, the same as
single-line functions.

Within a multiline function definition, an assignment to the
function name establishes the value returned when that function
evaluation is complete.

If the flow of control through a multiline function is such that
the function name is not assigned a value, the value returned is
the value returned by the previous invocation of the function. If
the function has not been previously invoked, zero or a null
string is returned for numeric or character functions,
respectively.

The FNEND statement indicates both the physical and logical end of
a multiline function.

If a function is defined in a DEF block (a multiline function),
the lines following the DEF line are processed in sequential order
until:

• Some other action is dictated by processing of a control
statement

• An exception occurs

• An FNEND or STOP statement is executed

110 IBM BASIC Application Programming: Language Reference

DEF statement

Execution of a STOP statement in a DEF block ends processing of
the entire program. See "FNEND statement" on page 126.

Example

100 DEF POSITIVE DIFFERENCE(X,Y)
110 IF X>Y THEN -
120 POSITIVE DIFFERENCE = X-V
130 ELSE -
140 POSITIVE DIFFERENCE = V-X
150 END IF -
160 FHEHD

Statement Descriptions 111

DELETE File statement

DELETE FILE STATEMENT

Description

The DELETE File statement causes deletion of a record from a keyed
or relative file.

Format

DELETE Ifileref [,] pos: [err[,err] .••]

Where:

fileref

pas

err

is a numeric expression that, when evaluated and rounded,
must be a positive integer within the range 1 to 255.

is KEY [=IEQ] character expression

or

REC[ORD] [=IEQ] numeric expression

Note: fileref and pos may appear in any sequence.

is one of the following:

EXIT line-ref

NOREC line-ref

NOKEY line-ref

IOERR line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The colon (after pos) may be omitted if it would be the last
character on the line.

Example

100 DELETE 11, REC=8:

and

100 DELETE 11, REC=8

are equivalent.

The DELETE statement specifies that the record indicated by the
KEY or RECORD clause is to be deleted from a keyed or relative
file. After deletion, the file pointer is positioned immediately
after the deleted record.

112 IBM BASIC Application Programming: language Reference

DELETE File statement

ERROR CONDITIONS: Three error conditions may be recoverable if an
err clause for the condition is specified in the statement or on
the referenced EXIT statement:

1. The NOKEY condition occurs if a specified key does not exist
on a keyed file.

2. The HOREC condition occurs if a specified record does not
exist on a relative file

3. The IOERR condition occurs if a hardware malfunction or other
condition prevents deletion of the record.

The file must be opened with access OUTIN.

The error conditions interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 DELETE 15, RECORD=12: NOREC 200

The record with relative record position 12 is to be deleted from
file 15. If no such record exists, control is transferred to line
number 200.

Statement Descriptions 113

DI" statement

DIM STATEMENT

Description

The DIM statement specifies the size of arrays and the length of
character variables and array elements.

Format

DIM ml[,m21 •••

Where:

Each m may be one of the following:

a

and:

a

b

L

is a numeric array declarator.

is a character variable or character array declarator.

is an unsigned integer constant between one and the
maximum string size.

array declarator
has the form:

C(dl[,d2[,d3[,d4[,dS[,d6[,d1]]]]]])

where:

• Each & is a numeric or character identifier

• Each d is an unsigned integer constant in the
range-O or 1 (depending upon OPTION BASE) to
32767.

The DIM statement explicitly defines the number and extents of
array dimensions and the maximum string length of character
variables and array elements.

Arrays may be defined with from one to seven dimensions, and each
dimension may have a value in the range 0 to 32767 if OPTION BASE
o is in effect, or 1 to 32767 if OPTION BASE 1 is in effect.

The length of a character variable or array as specified in a DIM
statement is the maximum length which that variable or array
element may assume within the program unit. If no length is
specified in a DIM statement, a character variable or array
element has a default maximum length determined by your system
administrator. (The IBM-supplied default is 18.)

DIM statements may be placed anywhere in a program unit. They need
not appear before use of the arrays and variables they define.
Variables and arrays defined in DIM statements may not also appear
in COMMON statements.

114 IBM BASIC Application Programming: Language Reference

Immediate Execution

Example

100 DIM A$*72,B$(3,3),C$(200)*5
110 DIM XX(100)

DIM statement

A$ is a character variable with a maximum length of 72.

B$;s a 4-by-4 character array with each element having a maximum
default length.

C$ is a character array having 201 elements, each with a maximum
length of 5 (OPTION BASE 0 is in effect.)

XX is an integer array with 101 elements.

DIM can be used in immediate mode to establish the dimensions and
maximum string lengths of immediate arrays and character
variables. The format and description of an immediate DIM
statement are the same as for a DIM statement in a program.

See "Immediate Statements" on page 260 and "Variables and Arrays
and Immediate Statements" on page 261 for the rules regarding the
interaction with other immediate statements and program
statements.

Statement Descriptions 115

DO statement

DO STATEMENT

Description

The DO statement initiates the execution of a set of statements
that may be processed zero or more times.

Format

DO [{UN~IlIWHILE} logical expression]

Where:

logical expression
can be any logical expression as documented in "Logical
Expressions" on page 31.

The DO statement is used in conjunction with the LOOP statement to
define a loop.

If execution of a program reaches a DO statement, either as
initial entry to the loop or when iterating the loop body, the
next statement is executed if there is no WHILE or UNTIL clause.
If either of these clauses are present, the logical expression is
evaluated.

For a WHILE clause, if the expression is tru~,·the next statement
is executed, if the expression is false, the statement
immediately following the associated LOOP statement is executed
(the loop is skipped).

For an UNTIL clause, if the expression is false the next statement
is executed, if the expr~ssion is true, the statement immediately
following the LOOP statement is executed (the loop is skipped).

The values in the expressio~ associated with a DO statement can be
set outside the loop and changed within the loop. The expression
is reevaluated each time the loop is entered or processed. See
"Loop Control Statements" bn page 62, "LOOP Statement" on page
177, and "EXIT IF Statement" on page 124.

Example

100 LET INC = 9.0
120 DO UNTIL INC = 27.0
130 LET SQYD = 12.0*INC/9.0
140 PRINT SQYD,INC
150 LET INC= INC+l.0
160 LOOP
170 A = B+C

In this example, statement 100 sets the initial value of INC to
9.0. The DO clause is evaluated at 120, and it specifies that the
statements within the DO loop (130 through 150) are executed until
the value in INC equals 27.0. When INC equals 27.0, statement 170
is executed.

116 IBM BASIC Application Programming: Language Reference

ELSE STATEMENT

Description

ELSE statement

The ELSE statement specifies the beginning of the ELSE block
portion of an IF block.

Format

ELSE

The ELSE statement is an optional part of an IF block.

The ELSE statement is followed by a group of statements referred
to as an ELSE block which are executed if the logical expression
in an IF line is false.

The ELSE block is terminated by the END IF statement.

The ELSE statement is also discussed under "IF Blocks" on page 64
and "Block IF Statement" on page 150.

Statement Descriptions 117

END statement

END STATEMENT

Description

The END statement indicates both the physical and logical end of
the main program.

Format

END [numeric expression]

Where:

numeric expression
can be any numeric expression

When an END statement is encountered, all open files are closed
and the current program is ended.

The optional expression may be any numeric expression. Its
purpose is to return a value to the operating environment when the
program finishes running in the batch environment. The rounded
integer value of the expression is returned.

In the interactive environment, the value of numeric expression
is displayed as part of the ending message.

If the main program is missing an END statement and the end of the
workspace is encountered, an error message is given and the END
statement is assumed. The END statement is also assumed if a SUB
statement is encountered during the processing of the main
program.

118 IBM BASIC Application Programming: Language Reference

END IF STATEMENT

Description

END IF Statement

The END IF statement signifies the end of an IF block.

Format

END IF

The statements following END IF are executed after the associated
THEN block or ELSE block (if any) is executed.

The END IF statement is also discussed under "IF Blocks" on page
64 and "Block IF Statement" on page 150.

Statement Descriptions 119

END SELECT Statement

END SELECT STATEMENT

Description

The END SELECT statement signifies the end of a SELECT block.

Format

END SELECT

The END SELECT statement is used with the SELECT, CASE, and CASE
ELSE statements to terminate a SELECT block.

The END SELECT statement is also discussed under "SELECT Blocks"
on page 66 and "SELECT statement" on page 252.

120 IBM BASIC Application Programming: Language Reference

END SUB STATEHENT

Description

END SUB Statement

The END SUB statement marks the physical end of a subprogram.

Format

END SUB

If an END SUB statement is processed, it acts as a SUBEXIT
statement and stops the subprogram, returning control to the
caller.

The END SUB statement is also discussed under "Subprogram
Statements" on page 78 and "SUB Statement" on page 254.

Statement Descriptions 121

EXIT statement

EXIT STATEMENT

Description

The EXIT statement spe~ifies where control is to be transferred 1f
a particular condition occurs during the execution of an
input/output statement.

Format

EXIT condition line-ref [,c~ndition ltne-refl ~ ••

Where:

condition
is CONY, DUPKEY, DUPREC, ENDPAGE, EOF, IOERR, NOKEY, NOREC,
or SOFLOW. A single condition may not appear more than once.

line-ref
is ali ne number or line label.

The EXIT statement is a nonexecutable statement used in
conjunct; on wi th i nput./output statements. The EXIT statement
specifies a line number or line label to which control is
transferred, if an error condition of the type specified occurs in
the input/output statement referring to the EXIT statement.

EXIT statements i nter~ct wi th ON condi ti on statement~ as
described in "Exception Handling in I/O Statements" on page 84.

Using an input/output statement with error clauses other than
EXIT is equivalent to ,",sing the statement with an EXIT error
clause and its corresponding EXIT statement.· .

Example

100 GET 15
&

or

A$ EOF 500,IOERR 600,&
CONY 700,SOFLOW 800

200 GET 15 : A$ EXIT 300
300 EXIT EOF 500,IO'ERR 600,CONV 700,&

& SOFLOW'800

In the above example, the two GET statements are functionally
equivalent. During execution of both GET state~ents, if an error
condition occurs, control is passed to the same locations.

The following list shows conditions for which tests may be made:

Condition

CONY

Description

The field cannot be converted to the type of variable
specified.

An attempt is made to wri te numer; c data US1 ng e1 ther
a C or V FORM specification.

A FORM/IMAGE specification refers to a location
outside the record.

A data list value cannot be converted to the format
defi ned in an C\lssociated FORM statement.

122 IBM BASIC Application Programming: Language Reference

EXIT statement

EXIT STATEMENT

Description

The EXIT statement spe~ifies where control is to be transferred if
a particular condition occurs during the execution of an
input/output statement.

Format

EXIT condition line-ref [,condition line-ref] ~ ••

Where:

condition
is CONY, DUPKEY, DUPREC, ENDPAGE, EOF, IOERR, NOKEY, NOREC,
or SOFLOW. A single condition may not appear more than once.

line-ref
is a line number or line label.

The EXIT statement is a nonexecutable statement used in
conjunction with input/output statements. The EXIT statement
specifies a line number or line label to which control is
transferred, if an error condition of the type specified occurs in
the input/output statement referring to the EXIT statement.

EXIT statements interact with ON condition statements as
described in "Exception Handling in I/O statements" on page 84.

Using an input/output statement with error clauses other than
EXIT is equivalent to using the statement with an EXIT error
clause and its corresponding EXIT statement.

Example

100 GET 15
&

A$ EOF 500,IOERR 600,&
CONY 700,SOFLOW 800

200 GET 15 : A$ EXIT 300
300 EXIT EOF 500,Id~RR 600,CONY 700,&

& SOFLOW 800

In the above example, the two GET statements are functionally
equivalent. During execution of both GET statements, if an error
condition occurs, control is passed to the same locations.

The following list shows conditions for which tests may be made:

condition

CONY

Description

The field cannot be converted to the type of variable
specified.

An attempt is made to write numeric data using either
a C or Y FORM specification.

A FORM/IMAGE specification refers to a location
outside the record.

A data list value cannot be converted to the format
defined in an associ~ted FORM statem~nt.

122 IBM BASIC Application Programming! language Reference

DUPKEY

DUPREC

ENDPAGE

EOF

IOERR

NOKEY

NOREC

PAGEOFLOW

SOFLOW

EXIT statement

There are not enough values in the record for the data
list items.

There is not enough room in the record to write all of
the data list items, and SKIP REST is not specified.

Note: The previous three CONY conditions are for
record-oriented nonstream input/output only.

A record already exists on the referenced file with
the same key as the one specified for the current
record.

A record already exists on the referenced file with
the same record number as the one specified for the
current record.

A PRINT or PRINT File statement has attempted to
start a new line beyond the limits specified for the
current page.

(A PRINT or PRINT File statement prints as many lines
on a page as specified by the BOTTOM parameter in a
MARGIN or MARGIN File statement (or, for a PRINT File
statement, a default number of lines).)

See also "MARGIN Statement" on page 178 and "ON
Condition Statement" on page 203.

There is no more data in a stream-oriented file to
satisfy an INPUT or GET statement.

There are no more records in a record-oriented file
to satisfy an INPUT, LINE INPUT, or READ statement.

There is insufficient room in a file to accommodate a
PUT, WRITE, PRINT, or REWRITE statement.

A CLOSE statement cannot be completed because of lack
of space.

A hardware malfunction prevents record access and
could prevent recognition of other exception
conditions.

Any input/output error not covered by one of the
other input/output conditions.

A format item other than C, V, NC, or PIC in a FORM
statement is referred to by a PRINT or PRINT File
statement.

No record exists in the referenced file with the key
specified.

No record exists in the referenced file with the
record number specified.

(See ENDPAGE.)

There are not enough characters in the receiving
variable or image to contain the data received, or
not enough characters in the definition of the output
item to contain all of the characters specified by
the output list-item.

Construction of a character string exceeds the
maximum allowed.

For a further discussion of the EXIT statement and its
relationship to program exceptions, see "Exception Handling
Statements" on page 84.

Statement Descriptions 123

EXIT IF statement

EXIT IF STATEMENT

Description

The EXIT IF statement can be used within a DO or FOR loop to
transfer control to the statement immediately following the
associated lOOP or NEXT statement when the EXIT IF clause is true.

Format

EXIT IF logical expression

Where:

logical expression
can be any logical expression as described in "logical
Expressions" on page 31.

The EXIT IF statement may appear within either a DO or FOR loop.

If an EXIT IF statement is reached during normal processing, the
logical expression is evaluated:

• If it is false, processing proceeds sequentially.

• If it is true, execution branches to the statement
immediately following the innermost loop in which the EXIT IF
occurs.

Example 1

100 DO WHILE ...

150 EXIT IF A=O

180 lOOP
190 PRINT ...

At line 150, the program goes to line 190 if A is equal to O. As
long as A is not equal to 0 and the WHILE condi ti on is true, lines
100-180 are executed.

Example 2

100 FOR A = .. .
120 FOR B= .. .

190 EXIT IF X=Y
200 FOR C= ...

.
230 NEXT C

260 NEXT B
265 PRINT X,Y,A,B
270 NEXT A

124 IBM BASIC Application Programming: language Reference

EXIT IF statement

At line 190 (within the FOR/NEXT loop B) the program goes to
statement 265 if X is equal to Y. As long as X is not equal to y,
loop C (lines 200-230) is executed for each execution of loop B
(lines 120-260).

When X is found equal to Y, processing bypasses loop C and
processes the first statement after the NEXT statement of loop B.
(In this case, PRINT statement line 265.)

statement Descriptions 125

FNEND statement

FNEND STATEMENT

Description

The FNEND statement indicates both the physical and logical end of
a multiline user-defined function.

Format

FNEND

The FNEND statement marks the physical and logical end of a
multiline user-defined function. To exit from a multiline
function, the FNEND statement must be executed.

The FNEND statement must be preceded by a DEF statement.

See "User-Defined Function Statements" on page 77 and "DEF
Statement" on page 109.

126 IBM BASIC Application Programming: language Reference

FOR STATEMENT

Description

FOR statement

The FOR statement initiates a FOR/NEXT count-condition loop.

Format

FOR var=expression! TO expression2 [STEP expression3]

Where:

var
is a numeric variable.

expressionl, expression2, expression3
are numeric expressions.

The FOR and NEXT statements form a FOR/NEXT count-condition loop.
The FOR statement is the first statement in the loop; the NEXT
statement is the last statement in the loop.

The FOR statement must be matched with a NEXT statement.

The FOR and NEXT statements are paired, with the same controlling
numeric variable occurring in both statements. The NEXT statement
must follow the paired FOR statement in line number sequence.

The three numeric expressions are evaluated only during the
initial processing of the FOR statement including, if necessary,
conversion to the type of the control variable according to the
rules for numeric conversion. The three expressions are not
affected by any statement within the FOR loop.

The numeric variable, var, is the control variable and is modified
within the FOR loop, as follows:

1. When the loop is first processed, the control variable is set
to the initial value, expression!.

2. If expression!, the initial value, is greater than (or, for
negative increments, less than) the expression following the
TO (expression2) at evaluation time, the loop is never
processed and the value of the control variable is set to the
initial value (exp1).

3. If expression1, the initial value, is less than or equal to
expression2, the expression following TO, the statements in
the loop are processed, and the expression following STEP
(expression3) is added to the control variable.

If STEP expression3 is omitted, the increment is
automaticallY set to 1.

(The optional STEP parameter, STEP expression3, bypasses
unnecessary values by supplying an increment other than 1.)

4. This process continues until the control variable is greater
than (or, for negative increments, less than) the expression
following TO (expression2).

5. Control now passes to the first statement following the NEXT
statement.

It is possible to transfer control out of a FOR/NEXT loop. In this
case, the control variable retains its value at the time of the

Statement Descriptions 127

FOR statement

transfer until either reset outside of the loop or reset by
reentry thr~ugh the FOR statement.

Except for the CONTINUE, RETRY, and RETURN statements, control
cannot enter a loop unless it enters at the initial FOR statement.

FOR/NEXT loops are also described in "Loop Control Statements" on
page 62.

Example

110 FOR FEET=9.0 TO 48.0 STEP 3
120 LET YARDS=12.0*FEET;9.u
130 PRINT YARDS, FEET
140 NEXT FEET
150 END

This loop is executed fourteen times. During the first iteration,
FEET is 9, during the second iteration, FEET is 12, etc. After the
last iteration, when another iteration would increase FEET beyond
48, the loop is exited.

128 IBM BASIC Application Programming: Language Reference

FORM STATEMENT

FOR" statement

The FORM statement defines the exact appearance of both input and
output data.

Format

FORM item [,iteml .••

Where:

item
can be literal, or control specification, or [repeatMldata
form.

And where:

literal
is a quoted character stri ng.

control specification
is one of the followi ng:

X[e]
skip ~ positions in record or on line

POStel
position to location e in record or on line

SKIP[e]
skip ~ number of lines

Where:

e
is a numeric expression evaluating to a
rounded integer.

[NEWlPAGE
position to top of new page

repeat

data form

is an unsigned, nonzero integer constant or
variable, used as a replication factor with a data
form.

is one of the data forms shown in Figure 24 on page 130.

Statement Descriptions 129

FORM statement

Data Form Meaning

PIC(sts] ••• [~~~t~ •••]]ttr])

ctw]

Picture of data item

Character data

Ytw] Character data with trailing blanks removed on
input

H wt.d] Conversion of numeric data to and from character
data

Gtwt.d]] Represents either character data or conversion of
numeric data to and from character data, depending
upon the type of the data, character or numeric

HC wt.d] Conversion of numeric data to zoned decimal format
on output, and conversion of either zoned decimal
or numeric characters on input

ZD wE.d] Conversion of zoned decimal data for both input
and output

BEw]

S

l

Fixed-point binary

PD wt.d]

ND

Short-form floating-point binary (32 bits)

long-form floating-point binary (64 bits)

Packed decimal

Internal floating-point decimal

Internal integer HI

Where:

w

d

s

tr

is an unsigned, nonzero integer constant, which may be preceded with
blanks.

is an unsigned, integer constant.

is a digit specifier (i, Z, *, $, +, or -), or an insertion character (a
comma (,), solidus (/), blank (B), or decimal point (.>.

is an exponent specifier, where three or more (~> characters are shown.
(Can also be specified as the circumflex character.>

is a trailing character, that is, a trailing plus (+), trailing minus (-),
trailing credit (CR), or either form of trailing debit (DB or DR).

Figure 24. FORM Statement Data Form Codes

Description

The FORM statement is used in conjunction with the PRINT, PRINT
file, READ, REREAD, WRITE, and REWRITE statements. These
statements may reference the line number or line label of a FORM
statement, or a character expression which evaluates to a FORM
statement.

130 IBM BASIC Application Programming: Language Reference

FORM statement

The FORM can specify literal values, the format of character and
numeric data (data form specifications), and the positioning of
data (control specifications), all of which describe the
components of a record or line of data.

Each data item of the input or output list of the input/output
statement is matched against a corresponding data form
specification in the FORM statement. If there are more list items
than data form specifications, the FORM is reused from its
beginning until the list is exhausted; an excess of data form
specifications over list items is ignored.

If a quoted character string appears in a FORM associated with a
READ or REREAD statement, it is treated as if it were an X[n]
control specification, where the value of the n is equal to the
number of characters in the character string, excluding the
surrounding quotation marks. The effect is the skipping of n
positions of the input record.

Example

110 FORM "INPUT",NS.2,CS
120 READ #S USING 110: NUMI,CHAR$

when the READ file statement is executed, S characters of the
input data are skipped, and data transfer begins with NUMI.

If a quoted character string appears in a FORM associated with a
PRINT, PRINT File, WRITE, or REWRITE statement, it is treated as
if it were a C[w] data form specification, where w is equal to the
number of characters in the character string (excluding the
surrounding quotes). The effect is the transmission of w
characters to the output record.

Example

110 FORM "OUTPUT",NS.2,CS
120 WRITE IS USING 110: NUMI,CHAR$

when the WRITE file statement is executed, the characters OUTPUT
are sent to the output device, followed by the contents of NUMI
and CHAR$.

Control specifications

Control specifications set the position within a record or line
(POS and X), and control line skipping (SKIP and PAGE).

The control specifications X, POS, and SKIP are optionally
followed by a numeric parameter. When these control
specifications are used in a FORM statement, the parameter may be
any numeric expression. However, when an input/output statement
uses a character expression as a FORM (the USING clause refers to
a character expression rather than a FORM statement), the
parameter for all control specifications within the character
string must be numeric constants.

X The X [e] control specification indicates how many
positions are to be passed over in the line or record up to
the next value.

If X is specified in a FORM statement, it must be followed
by a space; however, if a FORM is contained in a character
expression, the space after the X may be omitted.

e is a numeric expression evaluating to a rounded
expression greater than zero. It may not refer to
user-defined functions.

Statement Descriptions 131

FOR" statement

For READ, REREAD, WRITE, and REWRITE operations, the value
of e must be between 1 and the defined record length. If e
is less than 1 or is omitted, 1 is assumed; if e is greater
than the record length, a CONV error occurs.

For PRINT and PRINT File operations, if the resultant
position is greater than the right margin value, the
current line or record is assumed to be complete and is
transmitted to the output device or file, resetting the
position to the left margin of the next line or record.

Example

300 PRINT #3 USING 400 : A$,B$
400 FORM C10,X S,C10

The value of A$ will start 9 characters to the right of the
left margin. The value of B$ will start 15 characters to the
right of the left margin.

POS The pas [e] control specification indicates the position in
the record or line for the next value.

e is a numeric expression evaluating to a rounded
expression greater than zero. It may not refer to
user-defined function.

If pas is specified in a FORM statement, it must be followed
by a space; however, if a FORM is contained in a character
expression, the space after the pas may be omitted.

For READ, REREAD, WRITE, and REWRITE operations, the value
of e must be between 1 and the defined record length. If e
is less than 1 or is omitted, 1 is assumed; if e is greater
than the record length, a CONV error occurs.

For PRINT and PRINT File operations, the value of e must be
between the left and right margin values (see the "MARGIN
Statement" on page 178). If e is less than the left margin
value, the left margin value is assumed; if e is greater
than the right margin value, the current line or record is
assumed to be complete and is transmitted to the output
device or file, resetting the position to the left margin of
the next line or record.

Example

100 WRITE #10 USING 200 : A$,B%
200 FORM C15,POS 24,N6

The value of A$ will be written in positions 1-15; B% will
be written in positions 24-29.

SKIP The SKIP [e] control specification indicates how many lines
are to be skipped before the next value is printed; this
option is valid only with the PRINT or PRINT File statement.
The numeric expression (e) may not refer to user-defined
functions.

If SKIP is specified in a FORM statement, it must be
followed by a space; however, if a FORM is contained in a
character expression, the space after the SKIP may be
omitted.

If e is less than 0 or is omitted, the value 1 is assumed.

If e is 0, the action taken depends upon the file being
printed:

• If the file contains a carriage control character at
the beginning of each record (that is, the file is
opened as DEVICE PRINTER or DEVICE 3800, see "OPEN
Statement" on page 206), the current image of the

132 IBM BASIC Application Programming: language Reference

FORM statement

record is written with no line advance. The next data to
be printed begins a new record which prints over the
previous record.

• If the file does not have carriage control characters
or if the option is to PRINT to the terminal, SKIP 0 is
handled the same as pas 1; that is, characters are
overlaid in the current record but the effect is
replacement rather than overprinting.

When e is greater than 0, a current image of the line or
record is created, and e-1 blank lines or records are
generated. The position of the next line or record is set to
the left margin value.

If e is greater than the remaining lines on the page, then e
is taken as the number of lines remaining on the page. This
causes blank lines to be printed until an ENDPAGE condition
is generated (see "MARGIN Statement" on page 178 and "ON
Condition Statement" on page 203).

Example

100 PRINT USING 200 : A$,B%
200 FORM C15,SKIP 7,N3

Six blank lines will appear between the value of A$ and the
value of B%.

PAGE The PAGE control specification iridicates that the next
value is to be written on a new page positioned to the left
margin; this option is only valid in conjunction with PRINT
or PRINT File statements.

Data Form Specifications

If PAGE or NEWPAGE is specified and the file is not opened
as DEVICE PRINTER or DEVICE 3800 (see "OPEN Statement" on
page 206), an exception is generated. The SYSTEM action for
the exception is a warning message.

When used with a PRINT statement to a display terminal, PAGE
clears the screen.

PAGE also resets the internal line counter used to control
the top and bottom margins, see "MARGIN Statement" on page
178.

Example

100 PRINT 15 USING 200
200 FORM CIO,PAGE,N5

A$,B%

The values of B% will appear at the top of the page
following the page on which A$ appears.

Data form specifications indicate the formats in which character
and numeric input data items exist, and the formats in which
character and numeric output data items are to be created.

Data form specifications may be preceded by a repeat count, or
replication factor. Withln a FORM statement, the replication
factor can be either an integer constant ~r an integer variable.
But, within FORM specifications that are character strings
specified in the USING clause of input/output statements, the
replications factors must be integer constants only.

Only the C[w], V[w], Nw[.d], and PIC data form specifications can
be used in FORM statements associated with PRINT and PRINT File
statements.

Statement Descriptions 133

FORM statement

PIC The PIC data form specification may only be used on FORM
statements associated with the output statements PRINT,
PRINT File, WRITE, and REWRITE.

PIC identifies the placement of a character or numeric
output list item in an output record. The keyword PIC is
followed by a field of characters that indicate various
types of formatting as described below; the field of
characters is enclosed in parentheses and is referred to
as a picture field.

For character data; the contents of the picture fiQld
are ignored and only its length is used. If the data
value has the same length as the picture field, the data
value is moved to the output reco~d, exactly as it
appears. If the data value is shorter than the picture
field, the character string is padded with blanks on the
right. If the character value is longer than the picture
field, a string overflow exception occurs.

For numeric data, the picture field specifies both
length and the format for its value. The specification
consists of digit specifiers, insertion characters, and
exponent specifiers.

The digit specifiers and their functions are as follows
('b' in output implies a space):

I Specifies a data position where a digit must always
appear.

100 FORM PIC (1####)
Value

63
Output
00063

Z Causes zero suppression; that is, a leading zero in
the associated data position is replaced by a blank.

110 FORM PIC (ZZZ.II)
Value

24.6
Output
b24.60

When zero suppression is in effect, at least one
decimal position to the left of the decimal place is
printed, unless the entire field is zero. In that
case, the zero to the left of the decimal point is
omitted.

* Causes zero suppression; that is, a leading zero in
the associated position is replaced by an asterisk.

120 FORM PIC (***11)
Value

243
-6

Output
**243
-**06

Note: The use of both Z and * in a single edit string
is not valid.

$ Specifies each data position that can potentially be
occupied by a floating currency sign (that is, a
currency sign immediately to the left of the first
significant digit).

If a single $;s used in the PIC, the $ appears in the
leftmost position of the field. If more than one $ is
used, the $ appears, justified as far to the right as
possible, where a $ appeared, and where no
significant digit is present.

130 FORM PIC ($$$#1)
Value

243
-6

Output
b$243
bb$-6

134 IBM BASIC Application Programming: Language Reference

FORM statement

Nate: Use of a $ digit specifier has the effect of
suppressing nonsignificant leading zeros

+ Specifies each data position where a floating
high-order sign may appear. The use of this character
guarantees the appearance of either a plus sign or a
minus sign in the printed field.

140 FORM PIC (+++11)
Value

243
-6

Output
b+243
bb-06

If a single + is used in the PIC. the sign of the
numeric value appears in the leftmost position of the
field. If more than one + sign is used. the sign of
the numeric value appears. justified as far to the
right as possible. wherever a plus sign appeared. and
where no significant digit is present.

Nate: Use of a + digit specifier has the effect of
suppressing nonsignificant leading zeros

Which indicates each data position where a floating
high-order minus sign may appear if the field is
negative.

150 FORM PIC (---II)
Value

243
-6

Output
bb243
bb-06

If a single - is used in the PIC. and the value is
negative. the sign of the numeric value appears in
the leftmost position of the field. If more than one
minus sign is used in the PIC. the sign of the numeric
value appears. justified as far to the right as
possible, wherever a minus sign appeared, and where
no significant digit is present.

Nate: Use of a - digit specifier has the effect of
suppressing nonsignificant leading zeros.

If the picture field does not contain at least one sign
position (leading or trailing), and if the value of the
expression is negative, and if the field is large enough
to contain a minus sign, a leading minus sign is printed.

Insertion characters are characters inserted into the
output at the position they are specified in the PIC
clause. Insertion characters may be either conditional
or unconditional.

The unconditional insertion character is:

B the blank. which always appears when
specified.

The conditional insertion characters are:

, the comma

/ the solidus or slash

the decimal point

CR the trailing credit symbol

DB or DR the trailing debit symbol

+ or - the trailing sign symbols

The trailing symbols (CR, DB, VR, trailing +. trailing
-) are replaced by either a blank or an asterisk if the
conditions for their appearance are not met. Only one

Statement Descriptions 135

FOR" statement
tra11ing symbol representation is permitted per PIC
clause, and then only if there is no leadi ng + or -.

The rules for the appearance of the i nserti on characters
ara:

• A comma (,) or a soli dus (/) is not allowed as the
first character in the PIC clause. (The condition
for thei r appearance can never be met).

• If zero suppression is not in effect, or.if a
significant digit is found to their left, the comma
(,)and solidus (/) always appear.

• If zero suppression is in effect because of a
preceding conditional digit specifier (Z, *, $, +,
-), then if no significant digit exists to their
left, the following characters do not appear:

comma C,)

solidus or slash(/)

trailing signs (+ or ~)

They are replaced, instead, by ei ther a blank or (i f
the preceding digit specifier is an asterisk) an
asterisk. .

In this case, the trailing plus sign always causes
the appearance of ei ther a posi t i ve or a negat i ve
si gn, whi Ie .the other trai 1 i ng symbols (mi nus si gn,
CR symbol ,DB or DR symbol), appear only when the
resulting value is negative.

• The decimal point (.) always appears in its
associated position except in the following
circumstance: zero suppression is specified for
every digit position (both to the left and right of
the decimal point) and the value of the numeric
field is zero. In this case, the decimal point is
replaced by the appropriate zero suppression
character. .

An exponent specifier appears in the three or more
low-order characters of a PIC stri ng.

Three or more occurrences of ~ specify the presence in
the corresponding print positions of the following
sequence:

1. The letter E

2. The exponent sign (+ or -)

3. One or more digits representing the value of the
exponent

Zero suppression is effectively turned off by an
exponent specifier. A decimal point specified previously
wi 11 therefore' always appear· ina fi eld defi ned wi th an
exponent specifier.

PIC Clause Examples

The following examples show some of the di fferent types
·of conversion specifications .that can be used with the
PIC clause. Blanks in the result field are shown here as
the lowercase "b".

136 IBM BASIC Application Programming: Language Reference

Integer Format:

Value

10
10
10
10

-10
20289

-123
123
123

specification

PIC(n,,)
PIC(ZZZZ)
PICOUUUE)
PIC($$$$)
PIC($$$$$$$$)
PIce II/lit/II)
PIC(ZZZZDB)
PIC(++++ZZZZ)
Plce+zzzzzZZ)

Fixed Point Format:

Value

12.145
1000
-77

0000

Specification

PIC(ZZZ.II)
PIC(***,***.II)
PIce 1111.111)
PIC(u*.U)

Floating Point Format:

Value

5
-255.555

Character String:

Value

ABC
ABC
XYZ

Specification

PIC(ZZZ.ZZ)
PIC(ZZ.ZZZ)

Specification

PIC(IIIII)
PIC(ZZ.ZZZ)
PIC(III)

FORM statement

Result

0010
bb10
**10
b$10
bbbb$-10
02/02/89
b123DB
bbb+bl23
+bbbbl23

Result

b12.15
**1,000.00

-077.000
lElElElElElE

Result

SOO.OOE-02
-2.S56E+2

Result

ABCbb
ABCbbb
XYZ

eEw] This data form specification deals with wpositions of
character data.

On input, the next w characters from a record are moved
to a corresponding character variable in the input list.
If the variable's maximum length, n, is less than w, a
string overflow occurs. If n is greater than w, the
variable's length becomes the length of the character
string transmitted. The value of w defaults to 1.

On output, the next w characters in an output record will
be the result of the evaluation of a character
express; on in the output list. If the length en) of the
expression is less than w, then w minus n blanks are
added to the right of the expression's value. If n is
greater than w, a string overflow occurs. The value of w
defaults to 1.

This data form specification is valid for READ, REREAD,
PRINT, PRINT File, WRITE, and REWRITE statements.

VEw] On input, the next w characters from the record are
; nspected and all characters (up to and i ncludi ng the
last nonblank character in the field) are moved to a
correspondi ng character vari able in an input list (that
is, trai 1 i ng blanks are removed).

If the variable's maximum length, n, is less than the
number of characters moved, p, a string overflow occurs.

If n is greater than p, the variable's length becomes p.

Statement Descrl pH o'ns 137

FORM statement

The value of w defaults to 1.

For output, the V specification acts exactly as the C
specification.

The data form specification is valid for READ, REREAD.
PRINT, PRINT File, WRITE, and REWRITE statements.

H w[.dl On input, the specified number of positions of the
record contain a numeric value in character form which
is to be moved to a corresponding numeric variable in the
input list. The value is converted to IBM BASIC internal
integer or decimal format (with rounding for integer) as
required by the type of the receiving variable.

In the record, the numeric data must be a
right-justified character string consisting of numeric
data in either integer or fixed-point format. If the
character string is all blanks, the number is set to O.
The optional constant d indicates the number of decimal
fraction positions in the field if the field has no
explicit decimal point (an explicit decimal point
overrides the d specification),

On output, the corresponding numeric expression is
rounded to the number of decimal places specified by d
and converted to a character value having a decimal
point. This value is placed in the next w positions in
the record and right-justified. If d is not specified, d
is assumed to be 0 and no decimal point is placed in the
field. If the value is negative, a minus sign precedes
the value.

The value of d must be less than or equal to w. For
example, if a number is negative and contains a decimal
point, d must be at least two less than w to allow for
the minus sign and the decimal point.

This data form specification is valid for READ. REREAD,
PRINT. PRINT File. WRITE, and REWRITE statements.

G[w[.dll This data form specification can be used to transmit
either numeric or character values. It acts as a V data
form specification if the value is character, and as an H
data form specification if the value is numeric. The
value of w defaults to 1.

For input, if the corresponding input list variable is
character. the G specification is treated the same as a V
specification where the decimal fraction "dB is ignored
if specified. If the corresponding input list variable
is numeric. the G specification is treated the same as an
H specification.

For output, if the corresponding output list item is a
character item. the G specification is treated the same
as a V specification where the decimal fraction "dB is
ignored if specified. If the corresponding output list
item is numeric. the Gspecification is treated the same
as an N specification.

This data form specification is valid for READ, REREAD,
PRINT. PRINT File. WRITE, and REWRITE statements.

nata Conver5ion Examples

The following are examples of the C, V and N conversion
specifications. The lower case Db" shows blanks in the
result.

138 IBM BASIC Application Programming: language Reference

Output:

Input:

Value

AB
AB
AB

75
3.45
3.45

-3.45

Value

AB
AB
AB
b75
bbb3.45
bbbbb-3

Specification

C3
V4
C

H3
H7.2
H7.1
H7

Specification

C3
V4
C
N3
N7.2
N7

FORM statement

Result
(Characters)

ABb
ABbb
string overflow
error

b75
bbb3.45
bbbb3.5
bbbbb-3

Result
(Characters)

ABb
ABbb
A
75
3.45

-3

He w[.d] On input, indicates that the next w positions of a record
contain a numeric value in zoned decimal format (a zone
and a digit per position, except for the low-order
position which may contain either a zone or a sign and a
digit), or the value which was written by a PIC data form
specification. The value is converted to IBM BASIC
internal integer or decimal format (with rounding for
integer) as required by the type of the receiving
variable.

The optional d indicates the number of decimal positions
in the field and, if present, will override an explicit
decimal point in the data. In addition to digits, of
which the rightmost may be signed, the input field may
contain a combination of any of the following
characters:

$, +, -, *, /, CR, DB, DR, blank, comma (,),
decimal point (.), exponential notation
(E plus or minus numeric constant)

On output, indicates that the corresponding numeric
expression in an output list is to be converted to a
signed zoned decimal field of length w, rounded, and
placed in the output record.

If the optional parameter d is present, that number of
decimal positions will be present in this field; if it is
not, all w positions will represent the integer part of
the numeric value. The value of d must be less than or
equal to the value of w.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

ZD w[.d] On input, the next w positions of the record contain a
numeric value in zoned decimal form which is to be
converted to internal numeric representation and moved
to a corresponding numeric variable in the input list.

The optional parameter, d, specifies the number of
digits in the fractional portion of the number, and is
assumed to be zero if absent.

Statement Descriptions 139

FOR" statement

B Ew]

On output. the corresponding numeric expression in an
output list is to be converted to a signed. zoned.
decimal field of length w. rounded. and placed in the
output record.

If the optional parameter. d. is present. d decimal
positions will be present in this field; if not, all w
positions will represent the integer part of the numeric
value. The value of d must be less than or equal to the
value of w.

This data form specification is valid for READ. REREAD.
WRITE. and REWRITE statements.

Numeric Data Conversion Examples

The following are examples of the NC and ZD conversion
specification.

Input:

Value
(Characters)

bb$1.234.56CR
bb$1.234.56CR
000034E
OOOOOOl
OOOOOOl

Output:

Value
(deci mal>

3.45
3.45

-3.45

specification

NC13.3
ZD13.3
NC7.2
NC7
ZD7.1

specification

NC7.2
ZD7.2
NC7

Result

-123.456
error
3.45
-3
-.3

Result
(hexadecimal>

FOFOFOFOF3F4C5
FOFOFOFOF3F4C5
FOFOFOFOFOFOD3

Note: Hexadecimal values shown are the EBCDIC character
equivalent of the numbers used. See "Appendix B.
Character Set Collating Sequences" on page 327 for the
characters these codes represent.

This data form specification is valid for READ. REREAD.
WRITE. and REWRITE statements.

For input. the next w positions (w must be 2. 4. or 8)
contain the binary representation of a numeric value.
Thi s value is to be assi gned to the correspondi ng
numeric variable in the input list. The default value
for w is 4.

For o:·tput. the correspondi ng numeri c expressi on in an
output list is converted to a rounded. fixed-point
binary integer, occupying the next w record positions. w
must be 2. 4. or 8. The default is 4.

Example

100 1=10
110 J=14
120 WRITE 12 USING 130:I.J
130 FORM B4, B4

In this example I and J will be written to the file and
the binary value 0~ .. 01010 will occupy the first four
bytes of the record and the binary value 0 ••• 01110 will
occupy the next f,our bytes of the record.

140 IBM BASIC Application Programming: language Reference

FORti statement

B Ew]

On output, the corresponding numeric expression in an
output list is to be converted to a signed, zoned,
decimal field of length w, rounded, and placed in the
output record.

If the optional parameter, d, is present, d decimal
positions will be present in this field; if not, all w
positions will represent the integer part of the numeric
value. The value of d must be less than or equal to the
value of w.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

Numerie Data Conversion Examples

The followi ng are examples of the NC and ZD conversi on
specification.

Input:

Value
(Characters)

bb$1,234.56CR
bb$1,234.56CR
000034E
OOOOOOL
OOOOOOL

Output:

Value
(decimal)

3.45
3.45

-3.45

specification

NC13.3
ZD13.3
NC7.2
NC7
ZD7.1

specification

NC7.2
ZD7.2
NC7

Result

-123.456
error
3.45
-3
-.3

Result
(hexadecimal)

FOFOFOFOF3F4C5
FOFOFOFOF3F4C5
FOFOFOFOFOFOD3

Note: Hexadecimal values shown are the EBCDIC character
equivalent of the numbers used. See "Appendix B.
Character Set Collating Sequences" on page 327 for the
characters these codes represent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

For input, the next w positions (w must be 2, 4, or 8)
contain the binary representation of a numeric value.
This value is to be assigned to the corresponding
numeric variable in the input list. The default value
for w is 4.

For O:ltput, the correspondi ng numeri c expressi on in an
output list is converted to a rounded, fixed-point
binary integer, occupying the next w record positions. w
must be 2, 4, or 8. The default is 4.

Example

100 1=10
110 J=14
120 WRITE 12 USING 130:I,J
130 FORM B4,B4

In thi s example I and J wi 11 be wri tten to the fi Ie and
the binary value 0 ••• 01010 will occupy the first four
bytes of the record and the binary value 0 ••• 01110 will
occupy the next four bytes of the record.

140 IBM BASIC Application Programming: Language Reference

s

L

FORM statement

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input, indicates that the short form of a
floating-point operand (32 bits) exists in the record,
and is to be moved to the corresponding variable in the
input list. The value is converted to decimal or integer
format as required by the receiving variable.

On output, specifies that a numeric value is to be
converted to the short form of a floating-point operand
and written to the record.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

On input indicates that the long form of a
floating-point operand (64 bits) exists in the record,
and is moved to a corresponding numeric variable in the
input list. Conversion to decimal or integer format is
performed as required by the receiving variable.

On output, specifies that a numeric value is to be
converted to the long form of a floating-point operand
and written to the record.

Floating-Point Conversion Example

100 U,J#=3.45
110 WRITE 13,USING 120:II,JI
120 FORM S,L

In thi s example, II and JI wi 11 be wri tten to the fi Ie.
The first four bytes will contain the short precision
numeric values of II and the next eight bytes will
contain the long precision numeric value of JI.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

PD w[.dl On input, the next w positions of the record contain a
numeric value in packed decimal form (two digits per
position, except for the low-order position holding one
digit and a sign), which is to be converted to internal
numeric representation and moved to a corresponding
numeric variable in the input list. The optional
parameter, d, specifies the number of digits in the
fractional portion of the number, and, if absent, is
assumed to be zero.

On output, the corresponding numeric expression in an
output list is to be converted to a packed decimal field
with d fractional digits, occupying the next w record
positions.

The value of d must be less than or equal to the value of
w.

Packed Decimal Conversion Example

Value

3.45
3.37

-3.29

Specification

PO 7.2
PO 7.1
PO 7

Result
(hexadecimal)

0000000000345C
0000000000034C
00000000000030

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

ND On input, the internal representation of a decimal value
exists in the record (12 character positions) and is to

Statement Descriptions 141

FORM statement

be moved to a corresponding numeric variable in the
input list. If the variable has integer type, the value
is converted to integer format with rounding.

On output, a value is written to the next 12 character
positions in the record in internal floating decimal
format. Integer values are converted to their decimal
equivalent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

HI On input, the internal representation of an integer
value exists in the next 4 character positions in the
record and is to be moved to a corresponding numeric
variable in the input list. If the variable has decimal
type, the value is converted to decimal format.

On output, a numeric value is written to the record in
the next 4 character positions in internal integer
format. Decimal values are rounded and converted to
their integer equivalent.

This data form specification is valid for READ, REREAD,
WRITE, and REWRITE statements.

Internal Integer Conversion Example

100 Jfi = 15.36
200 Ifi = 124.3
300 WRITE #3 USING 400 : II,JI
400 FORM ND,NI

This sequence of code causes the IBM BASIC internal
representation of the decimal number 124.3 (12 bytes) to
be moved to the output record. The internal
representation of the decimal number 15.36 is then
rounded to an integer, converted to a 4-byte binary
value, and moved to the next four bytes in the output
record.

142 IBM BASIC Application Programming: language Reference

GET STATEMENT

Desc~iptton

GET Statement

The GET statement retrieves values from a' stream or internal file.

Format

[MAT] GET #fileref : input-list [,SKIP REST]
[err[,errJ ...]

Where:

file~ef
is a numeric expression which, when evaluated and rounded,
is within the range 1 to 255. It identifies the file to be
processed.

input-list

e~~

is an input list of variable or array names (possibly
subscripted) separated by commas.

is one of the following:

EXIT line-ref

EOF line-ref

IOERR line-ref

CONV line-ref

SOFLOW line-ref

line-~ef
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

For stream files, the GET statement retrieves one data value at a
time and assigns it to the corresponding item of the input list,
if necessary, getting additional records to satisfy the input
list.

For internal sequentially organized files not open with stream
organization, the GET statement retrieves one record and assigns
each of its values to the corresponding items of the input list.
An internal sequentially organized record file may be opened with
stream organization specified. In this case the GET statement
acts as if the file was created as a stream organized file.

For both types of files, each value retrieved and assigned must be
of the same basic type (char~cter or numeric) as the corresponding
variable in the input list or a conversion condition occurs.
However, numeric values can be assigned to either integer or
decimal variables, with conversions being made as for the LET
statement. If an input list item is subscripted, the subscripts
are evaluated just before the value is assigned.

MAT KEYWORD: The MAT keyword preceding the GET keyword specifies
that the input-list consists only of arrays; the MAT keyword is
then unnecessary in the input-list.

Statement Descriptions 143

GET statement

If MAT does not precede GET, then any individual array item in th~
input-list may be preceded by the MAT keyword.

See "Input/Output Lists" on page 70 for more information.

FILEREF: The file reference must refer to a stream or internal
file. (See "Combinations of File Organization and Format" on page
57.)

INPUT-LIST: An array in an input list is identified by the keyword
MAT appearing before the array name. (Unless the entire GET
statement is prefaced with MAT, in which case all list items must
be arrays and individual MAT specifications are unnecessary.)
Arrays are assigned values from the specified file with the
rightmost subscript varying most rapidly. If the array name is
followed by redimension specifications, the array is first
redimensioned to extents equal to the rounded integer values of
the numeric redimension expressions, and then the array is
filled. When an array is redimensioned, the original number of
members may not be exceeded.

Ordinarily, the length of a receiving character variable is set to
the length of the character string assigned to it. However, if the
length of the character stri ng exceeds the maxi mum length of the
receiving variable, a string overflow occurs.

If there are no more values in the file to assign to remaining
input list items, an end-of-file condition exists.

SKIP REST CLAUSE: For an internal sequential file, a conversion
error occurs if all the items in the input list have been
satisfied, but more values exist in the current record; this
situation can be avoided by use of the SKIP REST clause which
i ndi cates that all remai ni ng values ina record are to be ignored.

Because stream files have only one value per record, the SKIP REST
clause has no meaning and is ignored if it appears on the GET
statement.

ERROR CONDITIONS: The string overflow (SOFLOW), conversion
(CONV), and end-of-file (EOF) conditions described above, as well
as the input/output error condition (IOERR), may be recoverable
if the corresponding error clauses are included on the GET
statement. For example, an attempt to get from fileref 0, or an
attempt to get from a file opened for OUTPUT, are situations which
result in an IOERR condition.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 GET 127 : A%,8$
200 GET #27 : X%,MAT Z%(X%)

The first GET statement results in values being assigned to A% and
8$. The second GET statement assigns a value to X%, redimensions
the array Z%, and assign values to the newly-dimensioned array.

144 IBM BASIC Application Programming: Language Reference

GET statement

If MAT does not precede GET, then any individual array item in the
input-list may be preceded by the MAT keyword.

See "Input/Output Lists" on page 70 for more information.

FILEREF: The file reference must refer to a stream or internal
file. (See "Combinations of File Organization and Format" on page
57.)

INPUT-LIST: An array in an input list is identified by the keyword
MAT appearing before the array name. (Unless the entire GET
statement is prefaced with MAT, in which case all list items must
be arrays and individual MAT specifications are unnecessary.)
Arrays are assigned values from the specified file with the
rightmost subscript varying most rapidly. If the array name is
followed by redimension specifications, the array is first
redimensioned to extents equal to the rounded integer values of
the numeric redimension expressions, and then the array is
filled. When an array is redimensioned, the original number of
members may not be exceeded.

Ordinarily, the length of a receiving character variable is set to
the length of the character string assigned to it. However, if the
length of the character string exceeds the maximum length of the
receiving variable, a string overflow occurs.

If there are no more values in the file to assign to remaining
input list items, an end-of-file condition exists.

SKIP REST CLAUSE: For an internal sequential file, a conversion
error occurs if all the items in the input list have been
satisfied, but more values exist in the current record; this
situation can be avoided by use of the SKIP REST clause which
indicates that all remaining values in a record are to be ignored.

Because stream files have only one value per record, the SKIP REST
clause has no meaning and is ignored if it appears on the GET
statement.

ERROR CONDITIONS: The string overflow (SOFLOW), conversion
(CONV), and end-of-file (EOF) conditions described above, as well
as the input/output error condition (IOERR), may be recoverable
if the corresponding error clauses are included on the GET
statement. For example, an attempt to get from fileref 0, or an
attempt to get from a file opened for OUTPUT, are situations which
result in an IOERR condition.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 GET 127 : A%,B$
200 GET 127 : X%,MAT Z%(X%)

The first GET statement results in values being assigned to A% and
B$. The second GET statement assigns a value to X%, redimensions
thg array Z%, and assign values to the newly-dimensioned array.

144 IBM BASIC Application Programming: Language Reference

GOSUB STATEMENT

Description

GOSUB statement

The GOSUB statement is used, together with the RETURN statement,
to invoke subroutines.

Format

GOSUB {line-numberlline-label)

Where:

line-number
must be an existing line-number in the program.

I tne-Iabel,
must be an existing line-label in the program.

The GOSUB statement may be spelled GO SUB.

The GOSUB statement causes the program to branch to the indicated
line number or line label.

The RETURN statement transfers control to the first executable
statement following the last GOSUB statement which was executed.

The statements executed between the time a GOSUB statement
transfers control and control is returned by a RETURN statement
are called a subroutine. The last statement executed in a
subroutine is a RETURN statement. Its purpose is to allow normal
sequential processing to continue under completion of the
subroutine specified by the GOSUB statement.

An attempt to branch via the GOSUB statement to a nonexistent line
number or line label results in a warning message when the program
is compiled or when a RUN command is issued. When such a GOSUB
statement is executed, an exception is generated. This exception
can be handled by the ON Condition statement using the ERROR
condition. See "ON Condition Statement" on page 203 and
"Exception Handling Statements" on page 84.

Processing of a RETURN statement without an active GOSUB
statement results in an exception.

More than one GOSUB statement may be active, that is, one
subroutine may use the GOSUB statement to branch to another
subroutine.

Normally, each GOSUB statement must have a matching RETURN
statement. However, it is not necessary to have executed an equal
number of GOSUB/RETURN statements when the current program unit
is ended during execution. All active GOSUB statements in a
subprogram or in a multiline function are set inactive by the
execution of either a SUBEXIT statement, or of an FNEND statement.

Statement Descriptions 145

GelSUB statement
Example

100 GO SUB 140
110 REM
120 REM
130 GO TO 230
140 REM
150 GO SUB Al
160 REM
170 REM
180 RETURN
190 AI: X = X+Y
200 GO SUB 260
210 REM
220 RETURN
230 REM
240 REM
250 GO TO 300
260 REM
270 REM
280 REM
290 RETURN
300 REM

The sequence of statement processing f~om the above program
segment would be:

100,140,150,190,200,260,270,280,290,210,220
160,170,180,110,120,130,230,240,250,300

1~6 IBM BASIC Application ,Programming: language Reference

GOTO STATEMENT

Description

GOTO statement

The GO TO statement unconditionally branches to the indicated
line number or line label.

Format

GOTO {line-numberlline-label}

Where:

line-number
must be an existing line-number in the program.

line-label
must be an existing line label in the program.

The GOTO statement may be spelled GO TO.

The GOTO statement unconditionally transfers control to the
specified line number or line label.

An attempt to go to a nonexistent line number or line label
results in a warning message when the program is compiled or when
a RUN command is issued. When such a GOTO statement is executed,
an exception is generated. This exception can be handled by the ON
Condition statement using the ERROR condition. See "ON Condition
Statement" on page 203 and "Exception Handling Statements" on
page 84.

Example

100 GO TO 190

190 lET A = 8+C

When statement 100 is executed, all statements between 100 and 190
are bypassed. Sequential processing continues from that point.

Statement Descriptions 147

IF statement

IF STATEMENT

Description

The IF statement evaluates a logical expression and conditionally
transfers control or conditionally executes a statement or series
of statements.

Format

IF logical expression

Where:

logical exp~ession

THEN statement-reference
[ELSE statement-reference]

can be any logical expression as described in "logical
Expressions" on page 31.

statement-~efe~ence
is a line number, line label, or list of imperative
statements separated by end of statement characters (:).

The logical expression in the IF statement is evaluated. If the
expression is true, either control is transferred to the line
number or line label following THEN or the statements immediately
following THEN are executed. Control then passes to the next
statement after the IF statement.

Example

200 IF A = B THEN 500
210 X = X+Y

If the value in A equals the value in B, the statement
is true, and control is transferred to line number 500.
If A is not equal to B, statement 210 is executed.

If a list of statements follows THEN, and the expression is true,
they are processed in sequence.

Example

100 IF A=B THEN lET C=D: lET E=F: lET G=H

If the logical expression in the IF statement is false, either
control is transferred to the line number or line label following
ELSE or the statements immediately following ELSE are executed.
If there is no ELSE clause, control is transferred to the next
statement after the IF statement.

Example

200 IF A = B THEN 500 ELSE lET C = E
210 X = X+Y

If the value in A is not equal to the value in B, the
value of C is set equal to the value of E, because the
ELSE clause is executed.

When an IF statement ends wi th a statement list, all of the rest
of the statements on the 1 i ne are consi dered part of the 1 i st and
are executed under control of the IF.

148 IBM BASIC Application Programming: language Reference

IF statement

IF STATEMENT

Description

The IF statement evaluates a logical expression and conditionally
transfers control or conditionally executes a statement or series
of statements.

Format

IF logical expression

Where:

logical expression

THEN statement-reference
[ELSE statement-reference]

can be any logical expression as described in "Logical
Expressions" on page 31.

statement-reference
is a line number, line label, or list of imperative
statements separated by end of statement characters (:).

The logical expression in the IF statement is evaluated. If the
expression is true, either control is transferred to the line
number or line label following THEN or the statements immediately
following THEN are executed. Control then passes to the next
statement after the IF statement.

Example

200 IF A = B THEN 500
210 X = X+Y

If the value in A equals the value in B, the statement
is true, and control is transferred to line number 500.
If A is not equal to B, statement 210 is executed.

If a list of statements follows THEN, and the expression is true,
they are processed in sequence.

Example

100 IF A=B THEN LET C=D: LET E=F: LET G=H

If the logical expression in the IF statement is false, either
control is transferred to the line number or line label following
ELSE or the statements immediately following ELSE are executed.
If there is no ELSE clause, control is transferred to the next
statement after the IF statement.

Example

200 IF A = B THEN 500 ELSE LET C = E
210 X = X+Y

If the value in A is not equal to the value in B, the
value of C is set equal to the value of E, because the
ELSE clause is executed.

When an IF statement ends with a statement list, all of the rest
of the statements on the line are considered part of the list and
are executed under control of the IF.

148 IBM BASIC Application Programming: Language Reference

Example

200 IF A = B THEN GOTO 300
210 X = X + y

is not equivalent to

IF statement

200 IF A = B THEN GOTO 300: X = X + y

In fact, in the second version, X = X + Y will never be
executed.

The imperative statements avallable for use wlth the IF statement
are llsted In Flgure 25.

BREAK
CALL
CAUSE
CHAIN
CLOSE
CONTINUE
DEBUG
DELETE
GET
GOSUB
GOTO
INPUT

LET
LINE INPUT
MARGIN
MAT
ON CONDITION
OPEN
PAUSE
PRINT
PUT
RANDOMIZE
READ

Figure 25. Imperative Statements

REREAD
RESET
RESTORE
RETRY
RETURN
REWRITE
SCRATCH
STOP
SUBEXIT
TRACE
WRITE

statement De~criptions 149

IMAGE statement

Example

:<+++11 >%%%

is equivalent, for numeric conversion, to

:++++#1 %%%%

• The numeric value is converted according to the type of its
conversion specification as follows:

I-format

The value is converted to an integer, rounding any fraction.

F-format

The value is converted to a fixed-point number, rounding the
value or extending it with zeros in accordance with the
conversion specifications.

E-format

The value is converted to a floating-point number, rounding
the value or extending it with zeros in accordance with the
conversion specification. The three or more - characters
(---) in an E-format specification are used to indicate the
print positions of the exponent part of a floating point
number.

The first - character is replaced by the 'E'; the second by
the sign of the exponent, ,+, or '-'. The remaining
characters are replaced by the value of of the exponent, which
is right-justified with leading zeros.

IMAGE specification

(where ~ is any digit)

Result

E±x
E±xx
E±xxx

Valid Exponent

1 digit
2 digits
3 digits

Figure 26. IMAGE Statement Format Specification

If the exponent exceeds the width provided, an exception
occurs.

• The converted numeric value is edited with respect to digit
specifiers and commas as follows:

When % is the digit specifier, nonsignificant zeros are
generated in the integer (or to the left of the decimal
point).

When * is the digit specifier, nonsignificant zeros are
replaced by asterisks.

When 1 is the digit specifier, nonsignificant zeros are
suppressed.

When a comma appears in the imag~ between groups of three
digit specifiers~ it will appear in the output where
significant, provided at least one digit has been
generated to the left of the position where the comma is
to appear; if no digit has been generated to the left of
the point of insertion, the comma is replaced by an

154 IBM BASIC Application Programming: Language Reference

IMAGE statement

asterisk if the digit specifier is the *, or suppressed if
the digit specifier is the I.

If the number of digit specifiers is not adequate to
contain all the significant digits, positions of the
floating-header, if present, are used.

• A floati ng-header consi sts of a stri ng of n repeti ti ons of a
+, -, or $ character, where n is greater than or equal to 1.
The term "floating" is used because the "floating symbol,"
listed in Figure 27, "floats" from left to right among the n
positions and appears in the output in a position dependent on
the value and format of the numeric item, as explained further
on.

Floating-Header Sign of Value Floating symbol

+[+] ... positive +

+[+] ... negative -
-[-] ... positive space

-[-] ... negative -
$[$] ... positive •. $

$[$] .•. negative $-

Figure 27. IMAGE Statement--Floating Symbol Usage

• Whenever a floating-header is not specified:

If the numeric value is negative, and if the conversion
specification is large enough to contain the number and a
minus sign, then the minus sign is placed immediately
preceding the data.

If the number and the minus sign will not fit, then the
entire specification is fill9d with asterisks.

If the value is positive, the value is displayed without a
sign.

If the positive value does not fit, then the entire
specification is filled with asterisks.

ExamEle

Value Specification Result

123 %%%% 0123
-123.45 ****.11 -123.45
-1234 1##1 ****
-12 1#11 b-12
-12 **** -*12
-12 %%%% -012

(The "b" shows a blank (space) position in the result.)

• If a floating-header is specified, the floating symbol is
placed in the ri.ghtmost portion of the floating-header and to
the left of the first digit. Any remaining leading positions
of the floating-header are replaced with blanks.

If there is insufficient room in the specification for the
numeric value and for a nonblank floating symbol, then the
entire specification is filled with asterisks.

Statement Descriptions 155

IMAGE statement

When the floating header is a $, the numeric value is
negative, and there is room (without termination of
significant data) for both a $ and minus sign, a minus sign is
inserted to the right of the $. If significant data would be
truncated, the numeric specification is fill with asterisks.

Where the minus sign is displayed, when the floating header is
$, depends upon whether or not zero suppression is in effect.
(The I digit specifier does zero suppression):

If I is the digit specifier, the minus sign floats and is
inserted immediately to the left of the first significant
digit.

If % or * is the digit specifier, minus sign insertion
depends on the number of $ positions specified, as
follows:

If 2 or more $ are specified, the minus sign is
inserted in a floating dollar position, immediately
to the right of the $.

If at least 2 $ are not specified, the minus sign
replaces the first digit specifier (* or %).

Exam~le

Value Specification Result

123 ---%% 123
123 +++%% +123

12345 ---%% *****
12345 +++%% *****
-123 $$$$1111 bbb$-123
-12 $$$1111 bb$b-12
-12 $$$**** b$-**12
-12 $$$%%%% b$-0012
-12 $**** $-*12
-12 $%%%% $-012
-12 $1##1 $b-12

(The "b" shows a blank (space) position in the result.)

Format Conversion Exam~les

The following are examples of the different types of
conversion specifications. The letter "b" shows blank (space)
in the result.

I-format Example

Value

1000000
-99999
3
3.2
100
4

specification

11,#11,111
11,111,111

,
%%%%

Result

b1,000,000
bbb-99,999

***3
***3

****100
0004

156 IBM BASIC Application Programming: language Reference

IMAGE statement

F-format Examples

Value specification Result

12.145 111.11 b12.15
1000 ***,***.11 **1,000.00
-77 ~~~~.III -077.000

E-format Examples

Value Specification Result

5 111.11 500.00E-02
-255.555 11.111 -2.556E+2

Statement Descriptions 157

INPUT statement

INPUT STATEMENT

Desc~iption

The INPUT statement provides input through the terminal. (See
also the INPUT FIELDS and INPUT FILE statements.)

Format

[MATl INPUT [input-prompt :] input-list
[err[,errl •••]

Where:

input-p~ompt
can be one of the following:

PROMPT string expression

PROMPT quoted character string

quoted character string

input-list

e~~

is a list of variable or array names (possibly subscripted),
to be input, separated by commas.

is one of the following:

EXIT line-ref

IOERR line-ref

CONV line-ref

SOFLOW line-ref

line-~ef
is a line number, or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other err clauses are mutually exclusive.

In interactive mode, this form of the INPUT statement allows the
user to provide values for program variables from a terminal
during program execution.

In batch mode, this form of the INPUT statement is system
dependent. See the IBM BASIC Application Programming: System
Services manual.

MAT KEYWORD: The MAT keyword preceding the INPUT keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input-list.

See "Input/Output Lists" on page 70 for more information.

INPUT-PROMPT: If an input-prompt is present, the string
expression will be displayed at the terminal during program
execution as a prompt for the data to be entered.

An INPUT statement without an input prompt causes a question mark
(1) to be generated on the terminal to indicate data is expected.

158 IBM BASIC Application Programming: Language Reference

INPUT statement

If the last previously executed PRINT statement had an output
list, and the last item was followed by a semicolon (more data
expected), the INPUT statement will cause any prompt, or question
mark, to be appended to the data from the last PRINT statement and
be sent to the terminal.

The terminal keyboard is then activated for input, without a
return to the beginning of a new line. The user's expected
response is to enter a list data values which will be assigned to
the items in the input list. Each value must be of the same type,
numeric or character, as the corresponding input list-item;
however, a numeric value may be assigned to either a numeric or
character variable.

INPUT-LIST: For input-lists consisting only of scalar variables,
no assignment of values from the input reply takes place until an
input reply line has been entered and checked for:

• The correspondence of each data item entered with the type of
data item expected.

• The allowable range of values for each item to be within the
limits.

• The number of items entered as exactly the number of items
expected.

When an error is detected and the INPUT statement contains the
corresponding error clause, control is transferred to the
statement specified in the error clause. If there is no
corresponding error clause, a request is made that the current
input reply be re-entered.

For input lists that contain arrays (MAT), successive values are
assigned as rec~ived from the input reply. If an error is detected
as described in the scalar case, and the INPUT statement contains
an appropriate error clause, control is transferred to the
statement specified in the error clause. If there is no
appropriate error clause, a request is made that the current input
reply be reentered.

A significant difference between the scalar and MAT case is that
in the scalar case no assignment is made for the entire input
reply until all supplied values have been verified. In the MAT
case, assignment is made for each item at the time that item is
verified.

INPUT REPLY: Successive values entered at the terminal must be
separated by commas. Consecutive commas cause the corresponding
item of the input list to be passed over and to be left unchanged.

If the last character of the input reply is a comma, additional
input is expected on the next line. The reply can be a "/", a
value, or any other allowable response for the input list.

A "/" character at the end of a line of data causes any remaining
items of the input list to be passed over and to be left
unchanged.

If the current item of the input list is a scalar, one value is to
be accepted for that item.

If the current item is an array, then a number of values
corresponding to the number of elements in the array is accepted,
and is assigned to members of the array with the rightmost array
subscripts varying most rapidly.

Arrays in the input list may be redimensioned; the redimensioning
occurs before values are assigned to the array.

In the input reply, the notation:

j*value

Statement Descriptions 159

INPUT statement

where j is a nonzero, unsigned integer constant, indicates that
the value is to be assigned to the next j items of the input list;
that is, i acts as a replication factor.

Example

specifies that the next 5 items of the input-list are to contain
the value 555.

Character constants in the input reply are normally set off by
quotation marks. However, these quotation marks may be omitted
for character constants which:

• Contain no commas

• Have no leading or trailing blanks

• Contain no leading or trailing quotes

• Do not start with an integer immediately followed by an
asterisk

All numeric data are rounded to a fixed number of significant
digits, (or filled with zeros), 10 for integer data, and 17 for
decimal data.

ERROR CONDITIONS: If an error clause is specified, the action
taken is determined by the error option specified.

If an error clause is not specified, and if a numeric entry causes
an overflow condition, a warning message is displayed and the
runtime support requests that the line be reentered. If an
underflow condition occurs, a warning message is displayed and
the value is replaced by zero.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

All character data will have a length assigned which is equal to
the length of the string transmitted; a string overflow occurs if
the length of the string received exceeds the defined maximum
length of the character string variable.

If a string overflow occurs, the SOFlOW exception occurs. If a
numeric value cannot be converted as required, the CONY exception
occurs. These errors can be handled by specifying the condition as
an err clause, or by specifying an EXIT condition. The IOERR
clause can also be specified to handle hardware malfunctions.

Example

100 INPUT "ENTER NAME:":NAME$
200 INPUT "ENTER HOME & BUSINESS PHONE:":HOME$,BUS$

The above statements will prompt for name, then home and business
phone numbers.

160 IBM BASIC Application Programming: language Reference

INPUT FIELDS statement

INPUT FIELDS STATEMENT (FOR FULL SCREEN TERMINAL INPUT)

The INPUT FIELDS statement reads one or more data values from one
or more specific fields of the terminal screen and assigns the
value(s) to one or more variables.

Format

INPUT [Ifileref[,]] FIELDS field-definition:
input-list [err[,err] •••]

Where:

fileref
is a numeric expression whose rounded integer value
evaluates to zero.

field-definition
can be:

character expression

or

MAT character array name

Each character expression or character array name must
evaluate to:

"row, column,data-form[,[leading][,trailing]]"

Where:

row
is a positive nonzero integer, specifying the screen
row of the field.

column
is a positive nonzero integer, specifying the column of
the first character in the field.

data-form
can be one of the data forms shown in Figure 28 on page
162.

leading
are display and control attributes for the input field

trailing
are display attributes for the positions between the
input field and the next field and are control
attributes for this input field.

Display attributes that have meaning to IBM BASIC are:

H
highlighted

I
invisible (not displayed)

N
normal intensity

Note: For ease of migration from other BASIC products,
B, R, and U are also accepted and treated as H (normal
intensity). Multiple attributes can be specified. If I

Statement Descriptions 161

INPUT FIELDS statement

Data Form

w
eEw]

vtw]

Nwt.d]

GEwt.d]]

Where:

w

Meaning

Length of data item.

Character data.

Character data with trailing blanks removed on input.

Conversion of numeric data from character data.

Represents either character data or conversion of numeric data
from character data depending upon whether the type of the
receiving field is character or numeric.

is an unsigned, nonzero integer constant, which may optionally be preceded
with blanks.

d
is an unsigned integer constant, which must be less than or equal to w.

Note: The total length of w, in characters, can be from 1 through (screen-size
- 2) for character data, or from 1 through 156 for numeric data. (The screen
size is the total number of characters on the screen.) If w (or w.d) is omitted,
the length is 1 character.

Figure 28. IHPUT FIELDS Statement--Data Form Codes

is specified, it overrides both H and Hi H overrides H.
H is the default.

Leading control attributes that have meaning to IBM
BASIC are:

A

e

automatic field exit (when a character is entered
into the last position of the field, the cursor
automatically advances to the first character
position in the next input field). If not
specified, the cursor advances to the next
non-attribute character after the field.

position the cursor to this field first

The trailing control attribute that has meaning to IBM
BASIC is:

A
automatic field exit (when a character is entered
into the last position of the field, the cursor
automaticallY advances to the first character
position in the next input field). If not
specified, the cursor advances to the next
non-attribute character after the field.

input-list

err

is a list of one or more variables, array elements, and/or
entire arrays (prefaced with MAT). List elements are
separated by commas.

can be one of the following:

EXIT line-ref

COHV line-ref

162 IBM BASIC Application Programming: Language Reference

Description

IOERR line-ref

SOFLOW line-ref

line-ref
is a line number or line label.

INPUT FIELDS Statement

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

When the INPUT FIELDS statement is executed, the terminal user can
enter a value for each field specified in the statement. At the
beginning of execution, the cursor is positioned to one of the
following:

• The first character of the first (or only) field specified

• If the C attribute is specified, to the first character of the
last (or only) field with C as the leading attribute.

and BASIC waits for value(s) to be entered.

After entering the last character of a field, subsequent cursor
positioning depends upon whether or not control-attribute A is
specified:

• If A is specified, the cursor is positioned at the beginning
of the next field on the terminal screen.

• If A is not specified, the cursor is positioned to the first
non-attribute character after the field.

The terminal user can position the cursor by using the cursor
positioning keys (including the NEXT FIELD and PREVIOUS FIELD
keys).

All field-definitions are syntax-checked before the screen is
altered or any data transfer takes place.

No data transfer takes place until the terminal user presses
ENTER. (Pressing a PF key does not enter the data, which remains
on the screen. If SKEY is set to SYSTEM or IGNORE, pressing the PF
key has no effect at all. If SKEY is set to GOTO, control is
transferred to the line specified.)

When the data is transferred, multiple input fields are processed
in the same order that the fields are defined in the
field-definition array. As each field is processed, the data
value is assigned to the corresponding input-list item. Unlike
the INPUT statement, in which all data values are verified before
any data is transferred, the INPUT FIELDS statement verifies each
data value as it is transferred. The order that the fields are
assigned in the field-definition array corresponds to the order
in which the input-list items are defined. (That is, the first
field-definition corresponds to the first input-list item, the
second field-definition corresponds to the second input-list
item, and so on.)

At the completion of execution, the number of input-list items
successfully transferred can be obtained through the CNT
intrinsic function.

If the terminal does not have a screen, an IOERR exception occurs.
(See "Full Screen Input/Output Statements" on p~ge 13.)

Statement Descriptions 163

INPUT FIELDS statement

FILEREF: The fileref is a numeric expression that should~ when
rounded to an integer~ evaluate to zero; if it does not, an IOERR
exception occurs. The standard system action is to replace the
value with zero.

FIELD-DEFINITION: A field-definition entry can be a character
expression or MAT character array name:

• If a field-definition entry is a character expression~ it
defines one input field, and only one item of data can be
entered.

• If a field-definition entry is MAT character array name~ it
can define one or more input fields. In this case, the
field-definition entry must be a one dimensional array; the
field-definition entries within the array need not match the
order of the fields on the screen.

If an array is specified for a field-definition entry~ the number
of fields is the number of input-list items, not the number of
elements in the array. The number of elements in the array can
exceed the number of input-list items; any extra array elements
are ignored. However, all the array elements are syntax checked.

Rowand column are positive, nonzero integers that specify the
starting location of each field. Row 1, column 1 is the upper
left-hand corner of the screen. An exception occurs if either row
or column exceeds the dimensions of the screen.

Input fields cannot overlap; they may not contain attribute
fields created by a previous PRINT FIELDS statement.

Data-Form specifies the length and data type of the data to be
entered and any data conversions to be performed. Figure 28 on
page 162 shows the data forms allowed.

The data-form specifies the number of characters in the field.
Fields that extend beyond the rightmost column are continued in
column one of the next row, the bottom row continuing to the top
of the screen with wraparound.

For the C, V, and G data forms~ the length of the field (w or w.d)
may be omitted from the field-definition by omitting the length in
the data-form specification. If the length is omitted, the field
is one character long.

Display Attributes specify how the display is treated.

Leading Display Attributes specify how the input field is to
display on the screen. The leading attribute occupies a character
position on the screen preceding the field. The leading attribute
unprotects the field.

Trailing Display Attributes specify how the positions between the
input field and the next field are to display. The trailing
attribute occupies a character position on the screen following
the field. The trailing attribute protects the following field.

The location of the trailing display attribute for one field can
overlap with the leading display attribute of the following
field. If leading and trailing attributes overlap~ the last
attribute written to the screen is the one in effect.

Control Attributes specify actions to be taken for each fiel~.

leading Control Attributes specify how the input field is to be
treated:

A An automatic field exit occurs if the terminal user places a
character in the last position of the field.

164 IBM BASIC Application Programming: Language Reference

INPUT FIELDS Statement

C Places the cursor at the beginning of the specified field. If
C is specified for more than one field in an array, the cursor
is placed at the beginning of the last field specified with
the C attri buteo

The Trai 11 ng Control Attri bute can be speci fi ed as A (for
automatic field exit); it applies to the preceding field.

Any combination of leading display and control attributes is
allowed, and any combination of trailing display attributes is
allowed. If any character other than those given above is
specified, it is ignored.

A set of leading or trailing attributes should not be separated by
commas; the comma specifies the beginning and ending of each
leading or trailing list. The attributes can be entered in any
order.

INPUT-LIST: There must be at least one entry in the input-list.

For each variable name or array element in the input-list, only
one item of data can be entered.

If the input-list is MAT array name, data values are placed into
the array on a row-by-row basi s when the values are transferred
from the screen.

ERROR CONDITIONS: If a string overflow occurs, the SOFLOW
exception occurs. If a numeric conversion cannot be performed as
required, the CONY exception occurs. If a hardware malfunction
prevents completion of the input process, the IOERR exception
occurs.

These exceptions can be recovered from, if the CONY, IOERR, or
SOFLOW clauses are specified, or if an EXIT clause refers to an
EXIT statement that contains these clauses.

The I/O error conditions interact with the ON Condition statement
as described in "Exception Handling in I/O Statements" on page 84.

Example 1

110 INPUT FIELDS "10,12,C15,I": PASSWORD$

Starting in row 10, column 12, 15 characters are read from a field
into the variable PASSWORD$. The entered characters are not
displayed.

Example 2

100 A$="22,5,N2"
110 INPUT FIELDS A$: AGEY-

Reads a 2-character numeric constant starting in row 22, column 5,
into the variable AGEY-. Intensity is not specified, so the default
NORMAL is in effect.

statement Descriptions 165

INPUT FIELDS Statement

Example ;}

100 OPTION BASE 1
110 DIM A$(4),B$(4), NAME$lE30, ADDR$lE30, CITY$lE30,&

& ST_ADDR_CODE$*30
130 DATA "10,10,C10,H", "12,20,CI0",&

& "14,20,C10", "16,20,C20,N"
140 MAT READ A$
150 DATA "10,45,C30,HA,H","12,45,C30,HA,H",&

& "14,45,C30,HA,H","16,45,C30,H,N"
160 MAT READ B$
170 PRINT NEWPAGE
180 PRINT FIELDS MAT A$: "NAME", "ADDRESS", "CITY",&

& "STATE, ADDRESS-CODE"
~~~ ~~~~~ ~~ ~tg~ ~~~ Jt c~~~ij! ;~g~~$fy~~T~$ OR S~iiADDR_CODE$ 
210 INPUT FIELDS "20,31,C1,H,N"= RETRY$ 
220 IF UPRC$(RETRY$) =UPRC$("N") THEN 190 
230 PRINT NEWPAGE: PRINT "YOU ENTERED" 
240 PRINT NAME$: PRINT ADDR$ 
~~~ ~~5NT CITY$: PRINT ST_ADDR_CODE$ 

TM s seri es of statements sets up two arrays of
field-definitions, A$ and B$, each with 4 elements.

When the first PRINT FIELDS statement (180) is executed, the
headings are displayed on the screen in rows 10, 12, 14, and 16.
and all at column 20.

When the first INPUT FIELDS statement (190) is executed, the
cursor is positioned first at row 10, column 45. When the first
field is filled in by the terminal user, the cursor advances to
the beginning of the next field (row 12, column 45). When this
field is filled in, the cursor is positioned at row 14, column 45,
and, after this field is filled, at row 16, column 45.

When the termi nal user presses ENTER, the input data on the screen
is transferred to NAME$, ADDR$, CITY$, and ST_ADDR_CODE$ in that
order. Note that not all fields need be filled before ENTER is
pressed.

Statements 200 through 220 serve as a check that the user' hasn't
pressed ENTER by mi stake. If the user wi shes to reenter the
fields, then the program loops back to statement 190 for another
try.

When the user indicates that the entry has been correctly made, a
new screen displays the data values entered.

166 IBM,&ASICApplication Programming: Language Reference

INPUT FILE STATEMENT

Description

INPUT File Statement

The INPUT File statement reads either display or internal files.

Format 1 (display files)

[MAT] INPUT Ifileref [[,] input-prompt]
:input-list[,SKIP REST]
[err[,err] ...]

Format 2 (internal files)

[MAT] INPUT Ifileref :input-list[[,l, SKIP REST]
[err[,err] .•.]

Where:

fileref
is a numeric expression which when evaluated and rounded,
must be a positive integer within the range 0 to 255, and
which identifies the file to be read.

input-prompt
is a quoted character string.

Note: The fileref and input-prompt may occur in either
order.

input-list

err

is an input list of variable or array names (possibly
subscripted) separated by commas.

is one of the following:

EXIT line-ref

EOF line-ref

IOERR line-ref

CON V line-ref

SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The INPUT file statement, when referring to a fileref connected to
a display format file, receives data in a manner similar to the
way the INPUT statement receives data from a terminal; a record
from the file is accessed, and its contents are processed as if
they represented a line entered on the terminal in response to an
INPUT request. However, there are exceptions to this similarity.

• During input from a file, the input-prompt has no meaning and
is ignored.

• Unlike input from a terminal, which can request a new reply if
the current reply is invalid, file input, when it retrieves an

Statement Descriptions 167

INPUT File statement

invalid record. causes an exception. An excepti~n can occur
in the following situations:

1. An attempt is made to read a character data item into a
numeric variable.

2. The number of data values does not match the number of
variables in the input list.

3. A string or numeric overflow occurs.

When the file reference is 0, this statement acts like the INPUT
statement for the terminal. (See "INPUT Statement" on page 158.)

When operating on a stream file, the INPUT file statement acts
like a GET statement. (See "GET Statement" on page 143.)

When operating on a record-oriented internal-format file, the
INPUT File statement acts like a READ statement. (See "READ FILE
Statement" on page 237.)

MAT KEYWORD: The MAT keyword preceding the INPUT keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output lists" on page 70 for more information.

FILEREF: The fileref must refer to a display or internal file.
(See "Combinations of File Organization and Format" on page 57.)

INPUT-LIST: If the input list does not specify enough variables to
accommodate all of the values retrieved from a record of a display
or internal format file, a CONY error occurs. To keep the CONY
condition from occurring in this case. the SKIP REST clause can be
specified. The SKIP REST clause causes excess data to be ignored,
thus not causing the CONY condition.

See "Input/Output lists" on page 70 for additional
considerations.

ERROR CONDITIONS: If a numeric entry causes an overflow
condition, a warning message is displayed and a request is made
that the line be entered.

If an underflow condition occurs, a warning message is displayed
and the value is replaced by zero.

All character data has a length assigned which is equal to the
length of the string transmitted; a string overflow occurs if the
length of the string received exceeds the defined maximum length
of the variable.

If a string overflow occurs, the SOFlOW exception occurs. If a
numeric value cannot be converted as required, the CON V exception
occurs.

In addition, an EOF clause may be specified to process the
condition which occurs when an attempt is made to access another
record when end-of-file has been reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 INPUT #5 : A$,B% SOFlOW 500,CONV 600

In the above example, assuming a display file is associated to
file reference 5. a record is read and values assigned to A$ and
B% as if an INPUT statement were executed. If a string overflow
error occurs in assigning data to A$. control passes to line
number 500; if a numeric conversion error occurs with B%. control
passes to line number 600.

168 IBM BASIC Application Programming: language Reference

INPUT File statement

invalid record, causes an exception. An excepti~n can occur
in the following situations:

1. An attempt is made to read a character data item into a
numeric variable.

2. The number of data values does not match the number of
variables in the input list.

3. A string or numeric overflow occurs.

When the file reference is 0, this statement acts like the INPUT
statement for the terminal. (See "INPUT Statement" on page 158.)

When operating on a stream file, the INPUT file statement acts
like a GET statement. (See "GET Statement" on page 143.)

When operating on a record-oriented internal-format file, the
INPUT File statement acts like a READ statement. (See "READ FILE
Statement" on page 237.)

MAT KEYWORD: The MAT keyword preceding the INPUT keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output Lists" on page 70 for more information.

FILEREF: The fileref must refer to a display or internal file.
(See "Combinations of File Organization and Format" on page 57.)

INPUT-LIST: If the input list does not specify enough variables to
accommodate all of the values retrieved from a record of a display
or internal format file, a CONY error occurs. To keep the CONY
condition from occurring in this case, the SKIP REST clause can be
specified. The SKIP REST clause causes excess data to be ignored,
thus not causing the CONY condition.

See "Input/Output Lists" on page 70 for additional
considerations.

ERROR CONDITIONS: If a numeric entry causes an overflow
condition, a warning message is displayed and a request is made
that the line be entered.

If an underflow condition occurs, a warning message is displayed
and the value is replaced by zero.

All character data has a length assigned which is equal to the
length of the string transmitted; a string overflow occurs if the
length of the string received exceeds the defined maximum length
of the variable.

If a string overflow occurs, the SOFLOW exception occurs. If a
numeric value cannot be converted as required, the CONY exception
occurs.

In addition, an EOF clause may be specified to process the
condition which occurs when an attempt is made to access another
record when end-of-file has been reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 INPUT #5 : A$,BX SOFLOW 500,CONY 600

In the above example, assuming a display file is associated to
file reference 5, a record is read and values assigned to A$ and
BX as if an INPUT statement were executed. If a string overflow
error occurs in assigning data to A$, control passes to line
number 500; if a numeric conversion error occurs with BX, control
passes to line number 600.

168 IBM BASIC Application Programming: Language Reference

INTEGER STATEMENT

Description

INPUT File Statement

The INTEGER statement specifies which identifiers are to be
assigned integer type.

Format

INTEGER [[identifierl(letter-list)l ••• l

Where:

identifier
may be a specific numeric identifier.

letter-list
is a list of letters and/or ranges of letters separated by
commas. A range of letters is represented by the first and
last letters in the range separated by a minus sign.

For compatibility with other BASICs, the keyword DEFINT (define
integer) may be used in place of INTEGER. The syntax and semantics
of the DEFINT statement are the same as those for the INTEGER
statement.

The INTEGER statement declares a specific identifier, or any
identifier beginning with a specific letter, as having integer
type; or, when used without a list, it specifies the default type
for all identifiers not otherwise typed in a program unit.

INTEGER statements may appear anywhere in a program unit, and
affect identifiers throughout the program unit. The identifiers
affected are variable names, array names, or function names.

TYPE SPEC: If the INTEGER statement specifies a parenthetical
list of letters, all identifiers beginning with these letters are
to be typed integer, unless they end in a contradictory
self-typing character "I" or "$", or unless they are explicitly
declared in a DECIMAL statement by identifier.

The letter-list may be specified as either single letters (A, B,
C, D) or as a series of consecutive letters, such as (A-D, X-Z),
indicating A through D and X through Z.

An identifier explicitly stated in an INTEGER statement may end
with the self-typing character "X" but not with "I" or "$".

If an INTEGER statement specifies no identifiers and no
letter-list, the default type for all identifiers in the
program-unit is set to integer.

If an INTEGER (or DECIMAL) typing statement is not specified, the
default typing is DECIMAL.

Example 1

100 INTEGER ABLE,(C-E,G,J,L),NANCY

specifies that identifiers ABLE and NANCY, as well as all
identifiers beginning with the letters C, D, E, G, J, and l are
typed integer. If the program unit subsequently contains a
variable named GEORGE, it would be assigned integer type;
however, CHARLIEI would be assigned decimal and EDGAR$ assigned
character.

Statement Descriptions 169

INTEGER statement

Immediate Execution

Example 2

100 DEFINT ABLE, (C-E,G,J,L),NAKCY

is equivalent to Example 1.

Integer type is valid for immediate variables and arrays. The
immediate INTEGER statement has the same form as when used in a
program.

See "Immediate Statements" on page 260 and "Immediate Type and
Dimensions" on page 262 for a discussion of the interaction of
immediate INTEGER statements with other immediate statements and
program statements.

170 IBM BASIC Application Programming: Language Reference

LET (Scalar Assignment) Statement

LET (SCALAR ASSIGNMENT) STATEMENT

Description

The LET scalar assi gnment statement assi gns values to both
numeric and character variables.

Format

[LET] variable [, variable] ••• =expression

Where:

variable
is:

a numeric variable.

a character variable (with optional substring notation).

a subscripted numeric array member.

a subscripted character array m~mber (with optional
substring notation).

expression
is any numeric expression (for numeric variables) or
character expression (for character variables>.

The value of the numeric or character expression to the right of
the equals sign is evaluated and assigned to the numeric or
character variable on the left of the equals sign.

The keyword LET is optional. In the following example, the
statements are equivalent.

Example

100 LET SUMM = ADD1+ADD2+ADD3
110 SUMM = ADD1+ADD2+ADD3

VARIABLE: The type of the variable(s) on the left side of the
equals sign must agree with the type of the expression on the
right side. They both must be either character or numeric.
However, in the case of numeric LET statements, the left side can
be integer when the right side is decimal, and vice versa.

A si ngle value may be assi gned to several vari abIes at once usi ng
multiple variables to the left of the equal sign.

Example

100 LET A$,B$,C$ = 'TOTAL'

is functionally equivalent to:

100 LET A$ = 'TOTAL'
110 LET B$ = 'TOTAL'
120 LET C$ = 'TOTAL'

statement Descriptions 171

LET (Scalar Assignment) statement

Immediate Execution

Multiple assignments are made from left to right.

100 LET I, ACI) = 5

is functionally equivalent to:

100 LET I = 5
110 LET ACI) = 5

EXPRESSION: For numeric assignment statements where the type
Cinteger or decimal) of the expression to the right of the equal
sign does not agree with that of the variable to the left of the
equals sign, the result of the expression is converted to the type
of the variable. Rounding occurs when converting decimal to
integer.

Example

100 LET SUMMX = ADDI + ADCI

If the value of ADDI is 20.7 and ADCI is 10.0, the value of SUMMX
after the execution of the LET statement is 31.

The LET immediate statement assigns the expression on the right of
the equal sign to the variableCs) on the left.

Immediate and program variables may be used in expressions. There
are two restrictions:

1. Immediate LET statements cannot refer to user-defined
functions defined in a program (DEF statements). However,
intrinsic functions may be used.

2. The keyword LET is optional unless the immediate LET
statement assigns a value to a variable having the same name
as one of the IBM BASIC commands. See "IBM BASIC Commands" on
page 267.

Example

100 LIST = 3 is an error

100 LET LIST = 3 is accepted

See "Immediate Statements" on page 260 for additional information
on immediate execution.

172 IBM BASIC Application Programming: Language Reference

LINE INPUT/LINPUT statement

LINE INPUT/LINPUT STATEMENT

Description

The LINE INPUT statement allows the unformatted input of
character strings from a terminal.

Format

[MAT] LINE INPUT [input-prompt:]
input-list [err[,err]]

Where:

input-prompt
can be:

PROMPT string expression

or

a quoted character string

input-list

err

is an input list of character items.

is one of the following:

EXIT line-ref

IOERR line-ref

SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other two err clauses are mutually
exclusive.

LINE INPUT may also be spelled LINPUT.

Character strings which contain commas and other characters
usually considered as delimiters can be entered from a terminal
with the LINE INPUT statement.

MAT KEYWORD: The MAT keyword preceding the LINE INPUT keywords
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output Lists" on page 70 for more information.

INPUT-PROMPT: If the statement specifies an input-prompt, the
result of the PROMPT string expression or the quoted character
string is displayed.

If a prompt is not present, a question mark is displayed.

If the last PRINT statement had an output list in which the last
data item was followed by a semicolon (more data expected), the
input statement causes any prompt, or the question mark, to be
appended to the data from the last PRINT statement and be sent to
the terminal.

Statement Descriptions 173

LINE INPUT/LINPUT statement

Example

100 PRINT "PROM";
110 LINE INPUT 'PT': A$

When these statements are executed, the display terminal displays
the followi ng:

PROMPT

(The underscore indicates where the cursor is positioned for the
terminal user to enter a line of input.)

The terminal is then activated for input, without a return to the
beginning of a new line. The response is to enter one line for
each variable or array element in the input list. A question mark
prompt is issued for each subsequent line.

The entire contents of successive input lines are assigned to the
string variables in the input list. Array elements are assigned
with the rightmost subscripts varying most rapidly. A new
question mark prompt is issued for each variable or array element
after the first.

If redimensioning is specified, then dynamic redimensioning takes
place before values are assi gned to the redi mensi oned array.

ERROR CONDITIONS: The error conditions IOERR (input/output error)
and SOFLOW (string overflow) may be recoverable if an err clause
for the condition is specified in the statement or on the
referenced EXIT statement.

SOFLOW occurs if the string entered at the terminal is longer than
the maximum length of the corresponding character variable.

IOERR occurs if a hardware malfunction prevents the completion of
the input process.

The I/O error conditions interact with the ON condition statement
as described in "Exception Handling in I/O Statements" on page 84.

Example

100 LINE INPUT "TYPE IT" : A$,B$

The prompt message, TYPE IT, appears on the terminal with the
cursor positioned immediately to the right.

If AB,CII0?124 is entered, that data is assigned to A$ having a
length of 11. The terminal then prompts (?) for the second value
to be stored in 8$.

174 IBM BASIC Application Programming: language Reference

LINE INPUT/LINPUT File statement

LINE INPUT/LINPUT FILE STATEMENT

Description

The LINE INPUT File statement allows the unformatted input of data
from a fi Ie.

Format

[MAT] LINE INPUT Ifileref
[[,]input-prompt]:input-list
[erd,err] •••]

Where:

1;lere1
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the'ran~e 0 to 255, and
which identifies the file to be processed.

input-prompt
is a quoted character string.

Note: The fileraf and input-prompt clauses may occur in any
order.

input-list

err

is an input 11 st of character vari abies .or array names
(possibly subscripted).

is one of the followi ng:

EXIT 1 ina-ref

EOF 11 ne-ref

IOERR 1 i ne-ref

SOFlOW 1 i ne-ref

line-ref
is ali ne number or 11 ne label.

An EXIT clause must refer to the line number or lina
label of an EXIT statement.

EXIT and all other err clauses are mutuallY exclusi vee

LINE INPUT may also be spelled LINPUT.

The LINE INPUT File statement processes records of a file the same
way the LINE INPUT statement processes lines of data from a
terminal. The entire contents of each successive record,
i ncludi ng commas and other characters usually thought of as
delimiters, is assigned to each successive character string
variable in the input list.

MAT KEYWORD: The MAT keyword preceding the LINE INPUT keywords
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input list.

See "Input/Output Lists" on page 70 for more information.

Array elements are assigned with the rightmost subscripts varying
most rapidly.

Statement Descriptions 175

LINE INPUT/LINPUT File statement

If redimensioning is specified. dynamic redimensioning takes
place before values are assigned to the redimensioned array.

FILEREF: A file which is accessed with this statement must have
display format. The length of the records must not exceed the
length of the corresponding character variables in the input
list. (See "Combinations of File Organization and Format" on page
57.)

INPUT-PROMPT: The input-prompt clause is ignored if the file
reference number is not zero. When fileref is zero. the terminal
is accessed and this statement acts identically to a LINE INPUT
statement (see "LINE INPUT/LINPUT Statement" on page 173).

ERROR CONDITIONS: The EXIT. IOERR. and SOFLOW err clauses
function as they do for a terminal. In addition, the EOF err
clause can be used to process the condition caused by attempting
to access another record when the end of the file has been
reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 lINPUT 13 : A$

Retrieves a record from the file reference number 3 and assigns
the record to A$.

176 IBM BASIC Application Programming: language Reference

LINE INPUT/LINPUT File statement

If redimensioning is specified, dynamic redimensioning takes
place before values are assigned to the redimensioned array.

FILEREF: A file which is accessed with this statement must have
display format. The length of the records must not exceed the
length of the corresponding character variables in the input
list. (See "Combinations of File Organization and Format" on page
57.)

INPUT-PROMPT: The input-prompt clause is ignored if the file
reference number is not zero. When fileref is zero, the terminal
is accessed and this statement acts identically to a LINE INPUT
statement (see "LINE INPUT/LINPUT Statement" on page 173).

ERROR CONDITIONS: The EXIT, IOERR, and SOFLOW err clauses
function as they do for a terminal. In addition, the EOF err
clause can be used to process the condition caused by attempting
to access another record when the end of the file has been
reached.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 LINPUT 13 : A$

Retrieves a record from the file reference number 3 and assigns
the record to AS.

176 IBM BASIC Application Programming: language Reference

LOOP STATEMENT

Description

LOOP Statement

The LOOP statement delimits a DO loop.

Format

LOOP [{WHILEIUNTIL} logical expression]

Where:

logical expression
can be any logical expression as documented in in "Logical
Expressions" on page 31.

The LOOP statement specifies the end of a DO loop.

The WHILE/UNTIL clause is the exit condition. When the exit
condition is satisfied, processing continues with the next
executable statement.

The exit condition is satisfied if:

• The value of the logical expression following WHILE is false

• The value of the logical expression following UNTIL is true

The LOOP statement must always follow a matching DO statement.

See "DO Statement" on page 116 and "Loop Control Statements" on
page 62.

Statement Descriptions 177

MARGIN statement

MARGIN STATEMENT

Description

The MARGIN statement specifies where output may begin and end on a
terminal screen or page.

Format

MARGIN numeric expression

or

MARGIN [RIGHT numeric expression]
[LEFT numeric expression]
[TOP numeric expression]
[BOTTOM numeric expression]

Where:

numeric expression
can be any numeric expression

BOTTOM
defines the bottom margin of the page

LEFT
defines the left margin of the page

RIGHT
defines the right margin of the page

TOP
defines the top margin of the page

Note: The keywords BOTTOM, LEFT, RIGHT, and TOP may appear in any
order.

The MARGIN statement is an executable statement which sets the
boundaries for subsequent PRINT statement output to a terminal.

The first format of the statement may be used to set the right
margin; in the second format, at least one clause must be
specified.

NUMERIC EXPRESSION: The rounded integer values of the numeric
expressions are used to determine:

• Where the last line of the screen or page may appear (BOTTOM)

• Where the first position of a line may appear (LEFT)

• Where the last position of a line may occur (RIGHT)

• Where the first line of the screen or page may appear (TOP)

If any of the following margin rules are violated, an exception
occurs.

MARGIN LEFT: The value specified for the left margin must be
within the range 1 to the defined line width of the terminal, and
must not exceed the value of the right margin.

If no left margin is specified, the default value of 1 is
assigned.

178 IBM BASIC Application Programming: Language Reference

MARGIN statement

MARGIN RIGHT: The value specified for the right margin must be
within the range 0 to the defined line width of the terminal. If a
value of zero is specified, or if no right margin is specified,
the default value of the terminal's line width is assumed.

For PRINT statements without IMAGE or FORM control, the right
margin, if not zero, must exceed the left margin by an amount
necessary to print a numeric value from an unformatted print in
floating decimal form. For SPREC that value is 13; for LPREC it is
19.

MARGIN TOP: The value specified for the top margin must be within
the range 1 to the value of the bottom margin, unless the bottom
margin is o.
If no top margin is specified, the default value of 1 is assumed.

MARGIN BOTTOM: The value specified for the bottom margin must be
within the range 0 to 32,767.

If no bottom margin is specified, the default value of 0 is
assumed.

A bottom margin of 0 implies no line limit, and no ENDPAGE (or
PAGEOFLOW) condition is to be generated.

GENERAL CONSIDERATIONS: The MARGIN statement may appear as often
as necessary within a program to provide the desired formats.
Execution of a MARGIN statement provides new parameters
immediately.

Example

MARGIN LEFT 1 RIGHT 65 TOP 7 BOTTOM 60

are valid margins for an output file on a hardcopy
terminal with 8-1/2 x 11-inch pages.

LEFT AND RIGHT MARGINS: The LEFT and RIGHT MARGIN parameters
interact with the various forms of the PRINT statement, as
follows:

PRINT The print-zone size, which is established by
default or the OPTION PRTZO statement, is
counted from the LEFT margin. If the left
margin is 10 and the print-zone size is 20,
the print zones will be located at columns
10,30,50, etc.

The RIGHT margin determines the location of
the last print zone. There must be enough
columns between the beginning of the last
print zone and the right margin to satisfy the
print-zone size. In the above example, if the
right margin was 80, the last print zone would
start at column 50.

PRINT USING IMAGE The image begins at the LEFT margin.

PRINT USING FORM

An image that extends beyond the RIGHT margin
causes a CONV exception when the PRINT
statement is processed.

If the FORM refers to a column position beyond
the LEFT or RIGHT margins, a CONV exception
occurs.

TOP AND BOTTOM MARGINS AND THE ENDPAGE CONDITION: For display
terminals, PRINT lines scroll continuously onto the screen from
the bottom. In order to insure that lines are not scrolled off the
top of the screen before they are seen, BASIC does not allow more
than the number of lines that fit on the screen to scroll without
a positive response from the terminal user. For example, on a 3278

Statement Descriptions 179

MARGIN statement

model 2 terminal which holds 24 lines on its screen, as soon as 23
print lines have scrolled onto the screen and the 24th is printed
by the program, the scrolling stops and the bottom line (the 24th)
displays the message

ENTER TO CONTINUE

This means the user must press the ENTER key to allow the
scrolling, and the program, to continue. When ENTER is pressed,
the first line scrolls off the top and the 24th line scrolls onto
the bottom of the screen.

On a hard-copy terminal with printer characteristics, the TOP and
BOTTOM margins can be used to control when page ejects
(top-of-form) are generated and how many blank lines are
automatically generated after a page eject. These page ejects
correspond to ENDPAGE exceptions generated by PRINT statements.
On a display terminal screen, the **ENTER TO CONTINUE** scrolling
stops can be controlled by ENDPAGE exceptions.

When the number of lines printed since the last ENDPAGE exception
(or since the start of the program or since the last NEWPAGE in a
print list or PAGE in a FORM) is equal to the BOTTOM margin, and
the action associated with ENDPAGE is SYSTEM (see "ON Condition
Statement" on page 203), the ENDPAGE exception is generated
immediately, even if the program is in the middle of a PRINT
statement which prints more than one line. The SYSTEM action is
to:

On a display terminal: Print as many blank lines as necessary
to cause scrolling to halt and the **ENTER TO CONTINUE**
prompt to appear. Then, when ENTER is pressed, to print as
many blank lines as specified by TOP minus one. Then continue
execution of the program.

On a hard-copy terminal: Eject a page, print TOP minus one
blank lines, and continue execution of the program.

If the action associated with NEWPAGE is GOTO (the program takes
control of the exception), the exception is not generated until
the generating PRINT statement is completed. Thus if the PRINT
statement produces more than one line, more than one BOTTOM lines
are printed before the transfer of control occurs.

180 IBM BASIC Application Programming: language Reference

MARGIN File statement

MARGIN FILE STATEMENT

Description

The MARGIN File statement specifies the page margins for
display-format files being accessed by PRINT File statements.

Format

MARGIN Ifileref numeric expression

or

MARGIN Ifileref [RIGHT numeric expression]
[LEFT numeric expression]
[TOP numeric expression]
[BOTTOM numeric expression]

Where:

fileref
is a numeric expression which when evaluated and rounded,
must be a positive integer within the range of 0 to 255.

numeric expression
can be any numeric expression

BOTTOM

LEFT

RIGHT

TOP

defi nes the bottom margi n of the page

defines the left margin of the page

defines the right margin of the page

defines the top margin of the page

Note: The keywords RIGHT, LEFT, TOP, and BOTTOM may appear
in any order. At least one must appear.

The MARGIN File statement functions for a display format file the
way the MARGIN statement functions for a terminal. The margins
dictate what the records of the file created by PRINT File
statements would look like if directed to a display output device.
The effects of this statement remain until another MARGIN File
statement expl i ci tly change one or more margi ns of that fi Ie, or
until the file is closed.

FILEREF: The fileref must refer to a display file. (See
"Combinations of File Organization and Format" on page 57.)

If the following margin rules are violated, an exception occurs.

MARGIN LEFT: The value specified for the left margin must be
within the range 1 to the record length of the file, and must not
exceed the value of the right margin (unless the right margin is
0),

The default value for the left margin is 1.

MARGIN RIGHT: The right margin must be within the range 0 to the
record length of the file.

Statement Descriptions 181

MARGIN File statement

If no value is specified, the default is the lesser ~f 133 ~rid ~h~
record length.

A right margin of 0 implies there is no limit, within the record
length of the file.

For PRINT statements without FORM or IMAGE control, the right
margin, if not zero, must exceed the left margin by an amount
necessary to print a numeric value from an unformatted print in
floating-point form. For SPREe that value is 13, for lPREC it is
19.

MARGIN TOP: The top margin must be within the range 0 to the
bottom margin.

The default value of 1 is assumed if no value is specified.

Whenever an ENDPAGE condition occurs on the file, the top margin
less 1 indicates how many blank records are to be generated before
the next data record.

MARGIN BOTTOM: The bottom margin must be within the range 1 to
maximum record size for the file.

The default value is an installation parameter. The IBM supplied
default is 60.

A bottom margin of 0 implies no line limit, and no ENDPAGE
condition is generated.

GENERAL CONSIDERATIONS: The MARGIN file parameters interact with
the various forms of the PRINT File statement in the same manner
as the MARGIN statement interacts with the PRINT statement. (See
"MARGIN Statement" on page 178.)

If fileref is zero, the MARGIN File statement acts as a MARGIN
statement and sets the margins for the terminal.

182 IBM~ASIC Appli cation Progr-ammi ng: language Reference

MAT (A ... ray Assignment) statement

MAT (ARRAY ASSIGNMENT) STATEMENT

Desc ... iption

The MAT statement assigns values and dimensions to an array.

Format

MAT arrayname = array expression
[(redimension)]

Where:

a ayname
is an array name.

a ay exp ... ession
is one of the followi ng:

arrayname1
(expression)
arrayname1+arrayname2
arrayname1-arrayname2
arrayname1*arrayname2
(expression)*arrayname1
arrayname1&arrayname2
(expression)&arrayname1
arraynamel&(expression)
[(expression)*]IDN
ZER
[(expression)*]CON
NUL$
INVCarrayname1)
TRNCarrayname1)
AIDX(arrayname1)
DIDX(arrayname1)
ASORTCarrayname1)
DSORTCarrayname1)

a aynamel and a ayname2
are arraynames (see description for restrictions on
type and dimensions).

exp ... ession
is a numeric or string expression (see description for
restrictions on type) •

... edimension
is one to seven numeric expressions separated by commas.

Execution of an array assignment statement causes the array
expression to be evaluated and its value assigned to the array
named to the left of the equals sign.

ARRAY EXPRESSION: If the right side of the equal sign is an array
expression, it is evaluated and an element-by-element assignment
is made to the receiving array, on the left of the equal sign.

Example 1

MAT ARRAX = VALA+VALB

Each member of ARRAX is assi gned the sum of the correspondi ng
values of arrays VALA and VALB, that is, the value in VALA(O) is
added to the value in VALBCO) and the sum is placed in ARRAX(O).

statement Descriptions 183

MAT (Array Assignment) statement

If the right side of the equals sign is a parenthesized scalar
expression, it is evaluated and each element of the receiving
array is set to that value.

Example 2

MAT AR% = (4*10.02+8/3)

Every element in the array AR% is set equal to 43.

When the array is a character array, the character assi gned may
not exceed the defined maximum length (either explicit or
implicit definition) of the elements of the character array. If
there is an attempt to assign character data that exceeds this
length, a string overflow occurs.

All array statements which result in assignment (with the
exception of AIDX and DIDX) may have expressions on the right side
of the equal si gn that have the same array name as the one on the
left. This is termed "in-position" replacement. Both of the
following statements are permitted.

Example 3

100 MAT A = A + A
110 MAT A = INV(A)

If an error occurs, such as numeric overflow or string overflow.
an exception is generated at the point of the error. This means
that the array assignment may be partially complete (part of the
array on the left side may have been changed). In order to allow
recovery from such situations, IBM BASIC assures that the
operands of the right side expression have not been altered when
the excepti on occurs. If the array on the left appears as an
operand on the right (including as an array element in a scalar
expression), the right side is evaluated into a temporary array
and then moved to the left si de array.

For numeric MAT statements where the type (integer or decimal) of
the array expression does not agree with that of the array to the
left of the equal sign, the result of the expression is converted
to the type of the array on the left. If necessary, rounding
occurs prior to the assignment.

REDIMENSION CLAUSE: When the redimension clause is specified,
thi s array is redi mensi oned dynami cally; that is, the number of
dimensions and the size in each dimension is changed to match the
number of dimensions and the size of each dimension specified by
the values in the redimension specification on the right.

Example 4

120 DIM A(100), B(3,4), C(4,3)
130 MAT A = B*C !A redimensioned to (3,3)
140 MAT A = C*B !A redimensioned to (4,4)
150 MAT A = A(2,2) !A redimensioned to (2,2)

When an array is redimensioned dynamically. the upper bounds are
changed to match the size of its new value and the current lower
bounds as defined by the OPTION BASE are retained. The new bounds
need not be individually less than or equal to the bounds
specified in the dimension statement for that array (or by the
default dimensions if the array is not dimensioned explicitly),
as long as the total number of elements for the redimensioned
array does not exceed the total number of elements specified by
the array's ori gi nal dimensi ons.What thi s means is that for array
B in the above example, you can change anyone of the dimensions
or even add dimensions. as long as the total number of elements
doesn't exceed 20 (when OPTION BASE 0 is in effect) or 12 (when
OPTION BASE 1 is in effect).

184 IBM BASIC Application Programming: language R~f-erence

MAT (Array Assignment) statement

If the right side of the equals sign is a parenthesized scalar
expression, it is evaluated and each element of the receiving
array is set to that value.

Example 2

MAT AR~ = (4*10.02+8/3)

Every element in the array AR~ is set equal to 43.

When the array is a character array, the character assi gned may
not exceed the defined maximum length (either explicit or
implicit definition) of the elements of the character array. If
there is an attempt to assign character data that exceeds this
length, a string overflow occurs.

All array statements which result in assignment (with the
exception of AIDX and DIDX) may have expressions on the right side
of the equal sign that have the same array name as the one on the
left. This is termed "in-position" replacement. Both of the
following statements are permitted.

Example 3

100 MAT A = A + A
110 MAT A = INV(A)

If an error occurs, such as numeric overflow or string overflow,
an exception is generated at the point of the error. This means
that the array assignment may be partially complete (part of the
array on the left side may have been changed). In order to allow
recovery from such situations, IBM BASIC assures that the
operands of the right side expression have not been altered when
the exception occurs. If the array on the left appears as an
operand on the right (including as an array element in a scalar
expression), the right side is evaluated into a temporary array
and then moved to the left side array.

For numeric MAT statements where the type (integer or decimal) of
the array expression does not agree with that of the array to the
left of the equal sign, the result of the expression is converted
to the type of the array on the left. If necessary, rounding
occurs prior to the assignment.

REDIMENSION CLAUSE: When the redimension clause is specified,
this array is redimensioned dynamically; that is, the number of
dimensions and the size in each dimension is changed to match the
number of dimensions and the size of each dimension specified by
the values in the redimension specification on the right.

Example 4

120 DIM A(100), B(3,4), C(4,3)
130 MAT A = B*C !A redimensioned to (3,3)
140 MAT A = C*B !A redimensioned to (4,4)
150 MAT A = A(2,2) !A redimensioned to (2,2)

When an array is redimensioned dynamically, the upper bounds are
changed to match the size of its new value and the current lower
bounds as defined by the OPTION BASE are retained. The new bounds
need not be individuallY less than or equal to the bounds
specified in the dimension statement for that array (or by the
default dimensions if the array is not dimensioned explicitly),
as long as the total number of elements for the redimensioned
array does not exceed the total number of elements specified by
the array's original dimensions. What this means is that for array
B in the above example, you can change anyone of the dimensions
or even add di mensi ons, as long as the total number of elements
doesn't exceed 20 (when OPTION BASE 0 is in effect) or 12 (when
OPTION BASE 1 is in effect).

184 IBM BASIC Appl i cati on Programmi ng: Language R~ference

Array Assignment

Scalar ASsignment

MAT (Array ASsignment) statement

Format

MAT arrayname = arrayname1 [(redimension)]

An element-by-element assignment is made to the array to the left
of the equal sign.

If arrayname is a character string array, arrayname1 must be a
character string array.

If arrayname is a numeric array, arrayname1 must be a numeric
array. As the elements are assigned they are converted to the type
of arrayname.

If the redimension specification is not given, the array to the
left of the equal sign is dynamically redimensioned to the
dimensions of the array on the right.

If the redimension specification is given, the array to the left
of the equal sign is dynamically redimensioned to values
specified in the redimension specification.

Example

100 OPTION BASE 1
110 DIM A(100), B(10,10)
120 MAT A=B

When the MAT statement is executed, array A assumes the dimensions
and values of array B. However, if the following statement is
executed instead:

120 MAT A=B (100)

Array A assumes the values of array B, but is still a
one-dimensional array of 100 elements.

Format

MAT arrayname = (expression) [(redimension)]

The value of the expression is assigned to each element of the
array.

If arrayname is a character string array, the expression must be a
character string expression.

If arrayname is a numeric array, the expression must be a numeric
expression. The value of the expression is converted to the type
of arrayname.

If the redimension specification is not given, the dimensions of
the array are not changed.

If the redimension specification is given, the array is
redimensioned to the values specified in the redimension
specification. I

Statement Descriptions 185

MAT (Array Assignment) statement

Example

200 MAT A = (PI/2)

This statements sets each element of the array A to the value
PI/2.

Addition and Subtraction in Numeric Arrays

Format

MAT arrayname = arrayname1+arrayname2
[(redimension)]

or

MAT arrayname = arrayname1-arrayname2
[(redimension)]

Each element of arrayname2 is added to (or subtracted from) the
corresponding element of arrayname1 and the result is assigned to
the corresponding element of arrayname.

Arrayname, arrayname1, and arrayname2 must all be numeric arrays.
Mixed type operations are handled as described in "Mixed Type
Numeric Expressions" on page 28.

Arrayname1 and arrayname2 must have the same number of dimensions
and the same size in each dimension.

If the redimension specification is not given, arrayname.is
dynamically redimensioned to the dimensions of arraynamel.

If the redimension specification is given, arrayname is
dynamically redimensioned to the values specified in the
redimension specification.

Example

Assume each member of an array named ARAZ is to be given the sum
of the corresponding members of arrays ARAY and ARAX. The value of
ARAY(l) is to be added to the value of ARAX(l) and that sum stored
in ARAZ(l), etc., until all of the values of ARAY and ARAX have
been added together and stored in ARAZ. The source program coding
will look like this:

SO OPTION BASE 1
100 DIM ARAX(S),ARAY(S),ARAZ(S)
110 MAT ARAZ = ARAY + ARAX

and execution results are shown in Figure 29 on page 187.

If the function is changed to subtract, by changing line 110:

110 MAT ARAZ = ARAY - ARAX

the five values of ARAX are subtracted from the five values of
ARAY and the differences stored in array ARAZ. Execution results
are shown in Figure 29 on page 187.

186 IBM BASIC Application Programming: language Reference

MAT (Array Assignment) statement

ARAX Values ARAY Values

10 20 15 10 5 25 20 30 40 50

ARAZ--Resulting Addition Values

35 40 45 50 55

ARAZ--Resulting Subtraction Values

15 o 15 30 45

Figure 29. MAT Statement--Addition and Subtraction Example

Matrix Multiplication of Numeric Arrays

Format

MAT arrayname = arrayname1*arrayname2
[(redimension)]

This statement performs the mathematical matrix multiplication of
two numeric arrays and assigns the product to the third numeric
array.

Each element of the result is the dot product of a row of the
fi rst array wi th a column of the secoild.

The two arrays (arrayname1 and arrayname2) must be
two-dimensional. The number of columns of arrayname1 must be
equal to the number of rows in arrayname 2.

Remember that the first subscript in a two-dimensional array
indicates the number of rows, and the second the number of
columns.

The result of the matrix multiplication is an array with the same
number of rows as arrayname1 and the same number of columns as
arrayname2.

If the redimension specification is given, after assigning the
result to arrayname, arrayname is redimensioned to the values
specified in the redimension specification.

Example

Assume ARAX and ARAY contain the values 2, 3, 4, 5, 6, 7 and 8, 9,
10, 11, 12, 13, respectively, and that you want place the results
of matrix mUltiplication in ARAZ. The program coding would look
like this:

50 OPTION BASE 1
100 DIM ARAX (3,2), ARAY(2,3), ARAZ(3,3)
110 MAT ARAZ=ARAX*ARAY

statement Descriptions 187

MAT (Array Assignment) statement

When these statements are executed, the results are as shown in
Figure 30.

ARAX Values ARAY Values

2 3 8 9 10

4 5 11 12 13

6 7

Resulting ARAZ Values

2*8+3*11 2*9+3*12 2*10+3*13
= = =
49 54 59

4*8+5*11 4*9+5*12 4*10+5*13
= = =
87 96 105

6*8+7*11 6*9+7*12 6*10+7*13
= = =

125 138 151

Figure 30. MAT Statement--Matrix Multiplication Example

The MAT statement in Figure 30 is equivalent to the following
nested loops:

110 FOR 1=1 TO 3
120 FOR J=1 TO 3
130 ARAZ(I,J)=O
140 FOR K=1 TO 2
150 ARAZ(I,J)=ARAZ(I,J)+ARAXCI,K)*ARAYCK,J)
160 NEXT K
170 NEXT J
180 NEXT I

Scalar Multiplication in Numeric Arrays

Format

MAT arrayname = Cexpresslon)*arrayname1
[Credimension)]

Scalar mul t i pl i cat ion is the process where each member of an array
(arrayname1) is multiplied by the scalar result of an expression;
that is, by the same number (the scalar multiplier). The results
are stored in the array identified as arrayname.

188 IBM BASIC A~plication Programming: Language Reference

Example

100 DIM ARAX (10,5),ARAY(14)
110 MAT ARAX = (2+2)*ARAY

"AT (Array Assignment) statement

In statement 110, 2+2 is evaluated, glvlng 4; the value of each
member of ARAY is then multiplied by 4, and the product is
assigned to the corresponding member of ARAX.

Array concatenation of Character Arrays

Format

MAT arrayname = arrayname1 & arrayname2
[(redimension)]

Each element of arrayname2 is concatenated to (joined together
with) the corresponding element of arrayname1 and the result is
assigned to the corresponding element of arrayname.

Arrayname, arrayname1, and arrayname2 must all be character
arrays.

Arrayname1 and arrayname2 must have the same number of dimensions
and the same size in each dimension.

If the redimension specification is not given, arrayname is
dynamically redimensioned to the dimensions of arrayname1.

If the redimension specification is given, arrayname is
dynamically redimensioned to the values specified in the
redimension specification.

Example

Assume you have two arrays, ARA$ and ARB$, dimensioned 2 X 2, and
that you want to concatenate their values together and place the
result in ARC$. The program coding will look like this:

100 MAT ARC$ = ARA$ & ARB$

and the execution results are shown in Figure 31 on page 190.

Statement Descriptions 189

MAT (Array Assignment) statement

ARA$ Values ARB$ Values

abc def www xxx

ghi jkl yyy zzz

Resulting ARC$ Values

abcwww defxxx

ghiyyy jklzzz

Figure 31. MAT Statement--Matrix Concatenation Example

Scalar concatenation in Character Arrays

Format

MAT arrayname = (expression) & arrayname1
[(redimension)]

or

MAT arrayname = arrayname1 & (expression)
[(redimension)]

The value of expression is concatenated to (joined together with)
each element of arrayname1 and assigned to the corresponding
element of arrayname.

If (expression) precedes arrayname1, the value of (expression) is
concatenated on the left.

If (expression) follows arrayname1, the value of (expression) is
concatenated on the right.

Arrayname and arrayname1 must both be character arrays.
Expression must be a character expression.

If the redimension specification is not given, arrayname is
dynamically redimensioned to the dimensions of arraynamel.

If the redimension specification is given, arrayname is
dynamically redimensioned to the values specified in the
redimension specification.

Assume you have an array, ARA$, dimensioned 2 X 2, and a single
3-character variable DATA$, and you want to concatenate the value
in DATA$ to the left of each element in ARA$ and place the result
in ARC$. The program statement looks like this: .

100 MAT ARC$ = (DATA$) & ARA$

and execution results are shown in Figure 32 on page 191.

190 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) statement

However, if you want to concatenate the value in DATA$ to the
right of each element in ARA$, the program statement looks like
this:

100 MAT ARC$ = ARA$ & (DATA$)

and execution results are shown in Figure 32.

ARA$ Values DATA$

abc def mmm

ghi jkl

Concatenation to Left: Concatenation to Right:
Resulting ARC$ Values Resulting ARC$ Values

mmmabc mmmdef abcmmm defmmm

mmmghi mmmjkl ghimmm

Figure 32. MAT Statement--Scalar Concatenation Example

If a character string being assigned to an element of ARC$ exceeds
the maximum character length of the ARC$ element, a string
overflow occurs.

Identity Array Function (IDN)

Format

MAT arrayname = [(expression)*lIDN
[(redimension)]

The identity function, IDN, assigns the value of the expression
(or one, if expression is not specified) to each diagonal array
element (one whose subscripts are equal) and zero to all other
elements.

Arrayname must be a numeric array. Expression must be a numeric
expression.

If the redimension specification is not given, arrayname must be a
two-dimensional array such that the number of rows equals the
number of columns.

If the redimension specification is given, the redimension
specification must specify a two-dimensional array such that the
number of rows equals the number of columns. Arrayname is
redimensioned to the values given in the redimension
specification.

If a scalar-multiplier is used with the identity function, the
value of the expression is assigned to each diagonal array member
(one whose subscripts are equal), and assigns zero to all other
array members.

Statement Descriptions 191

MAT (A ay Assignment 1 statement

Example

The following statements assign the value 1 to ARAX(l,l),
ARAX(2,2), ARAX(3,3); all other array members are assigned the
value O.

50 OPTION BASE 1
100 DIM ARAX(3,3)
110 MAT ARAX = IDN

Execution results are shown in Figure 33.

The following statements assign the value of 8 to AACO,O),
AA(l,l), AA(2,2) and AA(3,3); all other array members are
assi gned a value of zero.

100 DIM AA(3,3)
110 MAT AA = (8)*IDN

Execution results are shown in Figure 33.

Values in ARAX(3,3) Values in AA(3,3)

1 0 0 8 0 0 0

0 1 0 0 8 0 0

0 0 1 0 0 8 0

0 0 0 8

Figure 33. MAT Statement--IDN Function Examples

Ze ... o Ar ... ay Function (ZER)

Format

MAT arrayname = ZER [(redimension)]

The ZER functi on sets the value of each element of the array to
zero.

Arrayname must be a numeric array.

If redimensioning is not specified, the dimensions of arrayname
are unchanged.

Example

The following statements apply the value 0 to all elements of
ARAX:

100 DIM ARAX(3,3)
110 MAT ARAX=ZER

Execution results are shown in Figure 34 on page 193.

192 IBM BASIC Appll cati on Programmi ng: Language Reference

"AT (Array Assfgnment) statement

ARAX

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Figure 34. MAT Statement--ZER Function Example

constant Array Function (CON)

Format

MAT arrayname = [(expression)H]
CON [(redimension)]

The CON function sets the value of each element to the value of
the expression (or to 1, if expression is not specified).

Arrayname must be a numeric array and expression must be a numeric
expression.

If redimensioning is not specified, the dimensions of arrayname
are unchanged.

Example

100 DIM ARAX (2,2)
110 MAT ARAX=CON

In this example, ARAX is set to all ones, by not specifying a
numeric expression prior to CON.

By replacing line 110 with this assignment statement

110 MAT ARAX=(12)HCON

all of the values of ARAX become twelve.

Note: 110 MAT ARAX=(12)HCON yields the same results as 110 MAT
ARAX=(12)

Null String Array Function (NUL$)

Format

MAT arrayname = NUl$ [(redimension)]

The NUl$ function sets the elements of a character array to null
character strings.

Arrayname must be a character array.

Statement Descriptions 1~3

MAT (Array Assignment) statement

Example

100 DIM ARAA$ (2,2)
110 MAT ARAA$=NUl$

After the MAT statement is executed, ARAA$ is still a
two-dimensional array, each element is a null character string.
Note that this yields the same results as:

100 DIM ARAA$(2,2)
110 MAT ARAA$=("")

Inverse Array Function (INV)

Format

MAT arrayname = INVCarraynamel) [(redimension)]

The inverse function performs the matrix inverse of one square
numeric array (a two-dimensional array with the same number of
rows as columns) and assigns it to another array.

The inverse of an array is an array such that if the array and its
inverse are multiplied. the result yields an identity matrix.
Note the result of multiplying an array and the result of the IHV
function may not exactly equal the identity matrix due to roundoff
and precision restrictions.

The array on the right (arraynamel) must be two dimensional and
square.

Arrayname is dynamically redimensioned to the dimensions of
arrayname1. If a redimension specification is given, after the
assignment. arrayname is dynamically redimensioned to the value
given in the redimension specification.

Not every matrix has an inverse. The inverse of a matrix exists if
the DET function returns a value other than O. The DET function
can test for an inverse before inverting the array, if the array
is specified as an argument to the DET function. thus checking for
a value other than zero. (See "DET[(A)]" on page 39.)

Example

The following statements assign the inverse of array ARAK to array
ARAJ:

100 OPTION BASE 1
110 DIM ARAJ(2,2).ARAK(2.2)
150 MAT ARAJ = INV(ARAK)

Execution results are shown in Figure 35.

ARAK Values Resulting ARAJ Values

1 1 2 -1

1 2 -1 1

Figure 35. MAT Statement--IHV Function Example

194 IBM BASIC Application Programming: language Reference

MAT (Array Assignment) statement

Example

100 DIM ARAA$ (2,2)
110 MAT ARAA$=NUL$

After the MAT statement is executed, ARAA$ is still a
two-dimensional array, each element is a null character string.
Note that this yields the same results as:

100 DIM ARAA$(2,2)
110 MAT ARAA$=("")

Inverse Array Function (INV)

Format

MAT arrayname = INV(arrayname1) [(redimension)]

The inverse function performs the matrix inverse of one square
numeric array (a two-dimensional array with the same number of
rows as columns) and assigns it to another array.

The inverse of an array is an array such that if the array and its
inverse are multiplied, the result yields an identity matrix.
Hote the result of multiplying an array and the result of the INV
function may not exactly equal the identity matrix due to roundoff
and precision restrictions.

The array on the right (arrayname1) must be two dimensional and
square.

Arrayname is dynamically redimensioned to the dimensions of
arrayname1. If a redimension specification is given, after the
assignment, arrayname is dynamically redimensioned to the value
given in the redimension specification.

Not every matrix has an inverse. The inverse of a matrix exists if
the DET function returns a value other than O. The DET function
can test for an inverse before inverting the array, if the array
is specified as an argument to the DET function, thus checking for
a value other than zero. (See "DET[(A)]" on page 39.>

Example

The following statements assign the inverse of array ARAK to array
ARAJ:

100 OPTION BASE 1
110 DIM ARAJ(2,2),ARAK(2,2)
150 MAT ARAJ = INV(ARAK)

Execution results are shown in Figure 35.

ARAK Values Resulting ARAJ Values

1 1 2 -1

1 2 -1 1

Figure 35. MAT Statement--INV Function Example

194 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) statement

INV accepts integer or decimal arrays as arguments but always
produces decimal results.

If the argument of the INV function is singular Cdoes not have an
inverse), an exception occurs. If the argument for INV is not a
square matrix, an exception occurs.

Transpose Array Function (TRN)

Format

MAT arrayname = TRNCarrayname1) [Credimension)]

The function TRN transposes an array. The values contained in
column 1 of one array are transferred into row 1 of the other, the
values in column 2 are transferred into row 2, etc.

Arrayname and arrayname1 must both be numeric arrays.

Arrayname1 must be a two-dimensional array.

Arrayname is redimensioned to be two dimensional with the number
of rows equal to the number of columns in arrayname1 and with the
number of columns equal to the number of rows in arrayname1.

After the assignment, if a redimension specification is given,
arrayname is dynamically redimensioned to the value specified in
the redimension specification.

Example

The following statements transpose the values of ARAX in ARAY.

100 OPTION BASE 1
110 DIM ARAXC3,4), ARAYC4,3)
120 MAT ARAY = TRNCARAX)

Execution results are shown in Figure 36 on page 196.

Statement Descriptions 195

MAT (Array Assignment) statement

If ARAX contained the values:

1 10 100 1000

2 20 200 2000

3 30 300 3000

ARAY would contain:

1 2 3

10 20 30

100 200 300

1000 2000 3000

Figure 36. MAT Statement--TRN function Example

Ascending Index Array Function (AIDX)

Format

MAT arrayname = AIDX(arraynamel)
[(redimension)]

The AIDX function sorts an array in ascending sequence, and
assigns the index (subscripts) of this sorted sequence to another
array.

Arrayname must be a numeric array. Arrayname1 may be a numeric or
a character array.

Arrayname1 must be a one-dimensional array (vector).

Arrayname is redimensioned to be a one-dimensional array with the
same number of elements as arrayname1. After the assignment, if a
redimension specification is given, arrayname is dynamically
redimensioned to the values given in the redimension
specification.

The array being indexed, arrayname1, is not changed.

The OPTION BASE setting affects the results of the AIDX function.
Note that the subscripts of the indexed array are the results of
the AIDX function; therefore OPTION BASE setting affects the
results obtained.

Character arrays are indexed according to the collating sequence
specified. Therefore, if arraynamel is a character array, the
OPTION COLLATE settings affect the results.

196 IBM BASIC Application Programming: Language Reference

MAT (Array Assignment) statement

Example

The following statements index the elements of ARAA and assign
them to ARAB in ascending sequence:

90 OPTION BASE 1
100 DIM ARAA(4),ARAB(4)
110 READ MAT ARAA
120 DATA 31,13,46,20
130 MAT ARAB = AIDX(ARAA)

The created index lists the subscripts of the array elements in
ascending order of the values contained within those elements, as
follows: 2, 4, 1, 3, and then stores them in ARAB.

Now, to print the contents of ARAA in ascending order, the
following loop can be specified:

150 FOR 1=1 to 4
160 PRINT ARAA(ARAB(I»
170 NEXT I

generating

13
20
31
46

Descending Index (DIDX)

Format

MAT arrayname = DIDX(arrayname1)
[(redimension)]

The DIDX function logically sorts every element in an array in
descending order and assigns the index (subscripts) of this
sorted sequence to another array. This is referred to as a
descending index.

Arrayname must be a numeric array. Arrayname1 may be a numeric or
a character array.

Arrayname1 must be a one-dimensional array (vector).

Arrayname is redimensioned to be a one-dimensioned array with the
same number of elements as arrayname1.

After the assignment, if a redimension specification is given,
arrayname is dynamically redimensioned to the values given in the
redimension specification.

The array being indexed is not changed.

The OPTION BASE setting affects the results of the DIDX function.
Note that the subscripts of the indexed array are the results of
the DIDX function, therefore, OPTION BASE setting affects the
results obtained.

Character arrays are indexed according to the collating sequence
specified. Therefore, the OPTION COLLATE setting affects the
results.

Statement Descriptions 197

MAT (Array Assignment) statement

Example

The following statements index the elements of character array
(ARA$) and assigns them to ARBX in descending sequence (default
OPTION BASE 0 is in effect):

100 DIM ARA$(4),ARBX(4)
110 MAT READ ARA$
120 DATA EASY, CHARLIE, ABLE, DOG, BAKER
130 MAT ARBX = DIDX(ARA$)

The index created lists the subscripts of the array elements in
descending order of the values contained within those elements
(0, 3, 1, 4, 2) and stores them in ARBX.

To print the contents of ARB$ in descending order, the following
loop may be used:

150 FOR I = 0 to 4
160 PRINT ARA$ (ARBX(I»
170 NEXT I

generating

EASY
DOG
CHARLIE
BAKER
ABLE

Sort Array Functions (ASORT, DSORT)

Format

MAT arrayname = ASORT(arraynamel)
[(redimension)]

or

MAT arrayname = DSORT(arraynamel)
[(redimension)]

The ASORT function sorts character or numeric arrays in ascending
sequence. The DSORT function sorts character or numeric arrays in
descending sequence. The array being sorted is arraynamel.

Character arrays are sorted based on the collate option selected.
See "OPTION Statement" on page 211.

If arrayname is a character array, arraynamel must be a character
array. If arrayname is a numeric array, arraynamel must be a
numeric array.

Arrayname is redimensioned to the dimensions of arraynamel. The
sorted values are then stored into arrayname such that the
rightmost subscripts vary most rapidly.

After the assignment, if a redimension specification is given,
arrayname is dynamically redimensioned to the values given in the
redimension specification.

198 IBM BASIC Application Programming: Language Reference

Immediate Execution

Example

100 DIM ASC$C3,3),ASB$C3,3)
110 MAT ASB$ = ASORTCASC$)
120 DIM DEC$ C3,3), DEB$ C3,3)
130 MAT DEB$ = DSORTCDEC$)

MAT (Array Assignment) statement

OPTION COLLATE NATIVE is in effect, therefore, the members of
array ASC$ are sorted according to the EBCDIC collating sequence
and stored in ascending order in array ASB$.

OPTION COLLATE NATIVE is in effect, therefore, the members of
array DEC$ are sorted according to the EBCDIC collating sequence
and stored in descending order in DEB$.

Note: The EBCDIC collating sequence can be changed to the ASCII
collating sequence if OPTION COLLATE STANDARD is specified.

Example

100 DIM AA(100),BBC100)
110 MAT AA = ASORTCBB)

The members of array BB are sorted in ascending numeric sequence
and stored in ascending order in array AA.

For numeric arguments, the same type argument is returned
(integer, decimal) and the result is then converted to the type of
array to the left of the equal sign.

All forms of the MAT statement may be used in the immediate mode.

Immediate and program variables may be used in expressions, but
scalar expressions cannot refer to functions defined in a
program. Intrinsic functions can be used.

"Immediate statements" on page 260 gives additional information.

Statement Descriptions 199

NEXT statement

NEXT STATE"ENT

Description

The NEXT statement is the end delimiter of a FOR loop.

Format

NEXT variable

Where:

variable
is a numeric variable, the "control variable" used in the
corresponding FOR statement.

The FOR and NEXT statements enclose a set of statements which are
executed zero or more times depending on the evaluation of the
expressions associated with the FOR statement. The NEXT statement
must follow its associated FOR statement in line number sequence.

When the NEXT statement is executed, the control variable is
incremented and compared to the final value specified in the FOR.

For complete details, see "Loop Control Statements" on page 62 and
"FOR Statement" on page 127.

200 IBM BASIC Application Programming: language Reference

ON GO TO/GOSUB statement

ON GO TO/GOSUB STATEMENT

Description

The ON GOTO and ON GOSUB statements conditionally transfer
control to one of a group of statements. ON GOSUB also saves the
return location.

Format

ON numeric expression {GOTOIGOSUB} s[.s] ..•
[NONE slELSE statement]

Where:

numeric expression
can be any numeric expression as described in "Numeric
Expressions" on page 25.

s
is a line number or line label.

statement
is an imperative statement.

The ON GOTO and ON GOSUB statements conditionallY transfer
control to one of a series of statements, depending on the value
of a numeric expression.

(GOTO may also be spelled GO TO; GOSUB may also be spelled GO
SUB.>

The rounded numeric expression is evaluated and its value
determines the element of the line number list to which the GOTO
or GOSUB statement branches.

Example

100 ON ABLE GOTO 120, 130, 140

If ABLE equals 1, the program branches to 120, if ABLE equals 2,
the program branches to 130, if ABLE equals 3, the program
branches to 140.

If the rounded value of the expression is not represented in the
list, an error condition occurs which can be handled by either the
NONE or ELSE clause. If neither the NONE nor the ELSE clause is
present, and the value of the expression is not represented in the
list, an exception occurs.

The NONE clause allows the program to branch to a predetermined
line number or line label when the value of the expression is not
represented in the list.

Example

100 ON IX GOTO 120,130 NONE 980

If IX equals any value less than one or greater than two, the
program branches to statement 980.

If the line branched to is a nonexecutable statement, control is
passed to the first executable statement following the specified
statement.

Transfer to a nonexistent line number results in an exception.

Statement Descriptions 201

ON GO TO/GaSUl Statement

If ELSE is specified and the value of the expression is not
represented in the list, the imperative statement is executed.
That statement may be any of those shown in Figure 25 on page 149.

Example

100 ON A+B GOTO 120,130 ELSE PRINT "NO TRANSFER"
110 X = X+Y

If A+B equals any value less than one or greater than two,
the program executes the PRINT statement, and processing
continues with the next statement (110) in sequence.

ON GOTO: unconditionally branches to the line number or line label
in the list. .

ON GOSUI: passes control in the same manner as the ON GOTO
statement, with one exception. The line numbers represent the
first statement of a subroutine and, as with any other subroutine
process, when it is complete (by execution of a RETURN statement
indicating the end of the subroutine) the statement immediately
following the ON GOSUB statement is executed.

Execution of a RETURN statement is the normal completion of an ON
GOSUB statement, in which case program execution is returned to
the statement following the ON GOSUB. However, as described for
the GOSUB and RETURN statements, termination of a program unit or
multiline function (execution of a SUBEXIT or FNEND statement)
deactivates all ON GOSUBs associated with that program unit or
function. See "Subroutine Control Statements" on page 61.

Example

100 INPUT "ENTER DESIRED ACTION NUMBER": ACTIONX
110 ON ACTIONX GOSUB DEBIT, CREDIT, CURRENT BALANCE&
& NONE 500 -

When the ON GOSUB statement is executed, control is transferred as
follows:

If ACTIONX is:

1
2
3

Control is transferred to:

DEBIT
CREDIT
CURRENT_BALANCE

If ACTIONX contains any other value, control is transferred to
line 500.

202 IBM BASIC Application Programming: Language Reference

ON condition statement

ON CONDITION STATEMENT

Description

The ON condition statement indicates the action to be taken when
an exception occurs.

Format

ON condition action

Where:

condition
is one of the following:

action

ATTN
ERROR
SKEY
ZDIV

CONY
OFLOW
SOFLOW

ENDPAGE
PAGEOFLOW
UFLOW

is stated as one of the three opti ons:

s

IGNORE
GOTO s
SYSTEM

i sal i ne number or 1 i ne label.

The ON Condition statement is an executable statement that, when
executed, establishes what action is to be taken if the program
subsequently generates an exception. Exceptions are grouped
according to which of the following conditions they represent:

ATTN The "attention" interrupt from a terminal, or its
equivalent has occurred.

CONY An error has occurred during an input/output
operation. The error can be a numeric data conversion
error, or can be due to mismatched record
descriptions.

ENDPAGE A PRINT or PRINT File statement has attempted to start
a new line beyond the limits specified for the current
page. See "MARGIN Statement" on page 178.

ERROR I s a general i zed except ion; it appl i es to any error
condition not specifically stated in this list.

OFLOW The condition of numeric overflow has occurred. This
happens when a computed value exceeds the allowed
range.

PAGEOFLOW The same as ENDPAGE.

SKEY One of the PF keys on a 327X termi nal, or equi valent,
has been pressed. An SKEY exception can only occur
during the execution of an INPUT, LINE INPUT or INPUT
FIELDS statement when the user responds to the request
for input with a PF key rather than the ENTER key. When
an SKEY exception occurs and causes a transfer of
control, the function KEYNUM returns the number of the
PF key pressed.

Statement Descriptions 203

ON Condition statement

SOFLOW

UFLOW

ZDIV

A string overflow condition has occurred; that is,
character data has been moved into a field that is too
small to contain It.

The condition of numeric underflow has occurred. This
occurs when the computed value is smaller than the
smallest decimal value allowed.

The condition of division by zero of numeric data has
occurred. Zero raised to a negative power also
produces an excepti on whi ch is classed as a ZDIV
exception.

ON CONDITION RESPONSES: You may pick one of three actions to occur
when the specified condition happens, as follows:

IGt~ORE

GOTO 5

SYSTEM

Allows processing to continue normally

Causes the indicated transfer of control to a line
label or line number.

Permits a predetermined system-controlled response to
the condition

EXIT clauses referring to the same conditions as those in the ON
override the ON-Condition action.

Whenever an exception causes a transfer of control, the exception
code is available by using the function ERR. The line number of
the statement where the exception occurred is available by using
the LINE intrinsic function. In addition, when an SKEY exception
occurs, the function KEYNUM returns the number of the PF key which
was pressed.

Fi gure 37 i ndi cates whi ch of the act ions may be used wi th a
particular condition and what they mean.

ON IGNORE GO TO 5 SYSTEM

ATTN No user message No user message Batch
Continue Transfer control execution:

ignore
Interactive
execution:
stop at the
next
statement.

CONY Not allowed No user message User message
No data transfer Error
Transfer control Stop

ENDPAGE No user message No user message Generate top
or Continue Transfer control of form (i f

PAGEOFLOW upon completion the device
of the or file
input/output allows it)
statement and print
causing the blank lines
ENDPAGE. for top

margin
See "MARGIN
Statement"
on page 178.

ERROR Not allowed No user message User message
No data transfer Error
Transfer control Stop

Figure 37 (Part 1 of 2). ON Conditions--Processor Actions

204 IBM BASIC Application Programming: Language Reference

ON Condition statement

ON IGNORE GO TO 5 SYSTEM

OFLOW No user message No user message User Message
Replace with No data transfer Replace with
signed INF Transfer control signed INF
See "INF" on See "INF" on
page 42 page 42
Continue Continue

SKEY No user message No user message No user
Continue Transfer control message

Continue

SOFLOL~ No user message No user message User message
Excess data is No data transfer Error
truncated on Transfer Control Stop
the right
Continue

UFLOW No user message No user message User message
Replace with No data transfer Replace with
zero Transfer control zero
Continue Continue

ZDIV No user message No user message User message
Replace with No data transfer Replace with
signed INF Transfer Control signed INF
See "INF" on See "INF" on
page 42 page 42
Continue Continue

Figure 37 (Part 2 of 2). ON Conditions-Processor Actions

Statement Descriptions 205

OPEN statement

OPEN STATEMENT

The OPEN statement activates a file and specifies access
conditions.

Format

OPEN Ifileref:[NAMElfileid [file attributes] [err]

Where:

fileref
is a numeric expression which when evaluated and rounded~
must be a positive integer within the range 0 to 255.

fileid
is a character expression, the value of which contains all of
the information necessary to define the file to the system.
This field is system dependent. See IBM BASIC Application
Programming: System Services for valid entries for your
system.

If the file is a display output file which is to include a
carriage control character at the beginning of each record,
the following field must appear as the final character
values in the character expression:

,DEVICE PRINTER

If the file is a display output file to be listed on a 3800
printer, the following field may appear as the final
character values in the character expression:

,DEVICE 3800

which specifies font control for a 3800 device. It specifies
that a second control character (the first is for carriage
control) is necessary for font control on output, when using
the PRINT File statement for the 3800 device. DEVICE 3800 and
DEVICE PRINTER may both appear, even though DEVICE PRINTER
is then redundant.

Note: Font in this context refers to a collection of type,
all of one size and style, for a printer.

file attributes

err

specify, in any order, file access, type, organization,
position, and record type. The options are:

ACCESS
ORGANIZATION
POINTER
RECORDS
TYPE

These options are described below.

can be:

EXIT line-ref

or

IOERR line-ref

206 IBM BASIC Application Programming: Language Reference

Description

OPEN statement

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and IOERR are mutually exclusive.

The OPEN statement makes an external file available for
processing by the program.

FILEREF: The fileref clause supplies a file reference number by
which the file is referenced in all subsequent input/output
statements for that file; a fileref of 0 refers to the terminal.
An attempt to access a file (except file 0) which has not been
opened results in an exception. File 0 is always open; a request
to open it is ignored.

FILE ATTRIBUTES: The operating conditions for the file are
defined by the file attributes clauses, which are defined as
follows:

1. File Access: Specifies what input/output operations are
allowed.

Format

[,[ACCESS] {OUTINIINPUTIOUTPUT}]

a. INPUT specifies that only read operations will be
performed on this file while this OPEN is in effect. No
replacement or deletion is permitted.

For internal format files (including stream files and
DISPLAY files), INPUT is the default if no access is
specified.

b. OUTPUT specifies that only write operations will be
performed on this file while this OPEN is in effect.

c. OUTIN specifies that both read and write operations are
valid on the file while this OPEN is in effect. Sequential
files may be extended, but not shortened.

For native format files, OUTIN is the default if no access is
specified.

2. File Type: Specifies the appearance of the records in the
file.

Format

[,[TYPE] {NATIVEIDISPLAYIINTERNAL}]

a. DISPLAY specifies the file is to be written in the same
format as the data, that would have been displayed on a
print output device. That is, each record is a single
character string, consisting of the edited values from
the data list, positioned according to the '

Statement Descriptions 207

OPEN statement

specifications. The string is terminated by an
end-of-record.

On output, a carriage control character is prefixed to
each record, if DEVICE PRINTER is specified in the
file-id string, and, if DEVICE 3800 is specified in the
file-id string, a font control character is also prefixed
after the carriage control character.

DISPLAY is the default if no file type is specified.

b. INTERNAL specifies that each record of an internal file
is to be written as a sequence of numeric and string
values. These files are written in internal binary
format, each value preceded by a type byte. Internal
files cannot be edited.

c. NATIVE specifies that the contents of each record are not
self-defining. The program will format them.

3. File Organization: Specifies the method by which data is
arranged.

Format

[,[ORGANIZATION] {SEQUENTIALIRELATIVEIKEYEDISTREAM}]

a. SEQUENTIAL specifies that the file can only be accessed
sequentially.

If the organization is not specified, SEQUENTIAL is
assumed.

b. RELATIVE specifies that the file can be accessed through
reference to relative record numbers of records within
that file.

c. KEYED specifies that the file can be accessed through
reference to keys which exist within each record in that
file.

d. STREAM specifies that the file is a sequential file, each
of whose records contains a single character string or
numeric value.

Only certain combinations of type and organization are
allowed as shown in Figure 38.

DISPLAY

INTERNAL

NATIVE

SEQUENTIAL RELATIVE

X

X

X X

KEYED STREAM

x
X

Figure 38. Allowable Combinations of File Type and File
Organization

208 IBM BASIC Application Programming: Language Reference

OPEN statement

4. File Pointer: Specifies whether or not the file should be
opened so that data may be accessed from the beginning or
added to the end.

Format

[,[POINTER] {BEGINIAPPENDIEND}]

For sequential files:

a. BEGIN specifies that the file will be opened at its
beginning.

If the pointer clause is omitted, BEGIN is the default for
input files.

b. APPEND/END specifies that the file will be opened at a
position following the last record in the file.

If the pointer clause is omitted, END is the default for
OUTPUT or OUTIN files.

For relative and keyed files:

a. BEGIN specifies that the file will be opened at its
beginning.

b. APPEND/END have no meaning.

Note: Opening an existing file with OUTPUT and BEGIN has
the same effect as a SCRATCH statement. That is, all data
in the file is lost and the file is ready to be created.

5. File Record Type: Specifies the length attribute of
individual records in the data file. The attributes are:

Format

[,[RECORDS]{VARIABLE[rec-length]IFIXED[rec-length]}]

a. Rec-length is a numeric expression, specifying the actual
or maximum length of each record in the file.

b. VARIABLE specifies that records of different lengths may
appear on the data file. If not stated, VARIABLE is the
default value.

The lengths of all records in a file can be no longer than
that specified by the rounded integer value of the
rec-length in the record type in the OPEN statement
opening the file. The value of the rec-length must be in
the range 0 to 32756. If no rec-length is specified (which
includes the case where the entire RECORDS clause is
omitted), the default maximum record size depends upon
the file type:

DISPLAY 133
INTERNAL 255
NATIVE 255

"VARIABLE 0" results in a maximum record size of 32756
(that is, VARIABLE 0 is treated the same as "VARIABLE
32756"

Statement Descriptions 209

OPEN statement

If the record length is omitted and if the file already
exists, for standard system files the record length is
set to the maximum record length presently existing in
the file. Therefore, to write records longer than the
longest record existing in the file, the new maximum
record length must be specified in the OPEN statement.

For VSAM f1les under the same condi ti ons as above, the
record length is set to the maximum record length defined
for the file and records longer than this cannot be
written.

c. FIXED specifies that each record in the file has the same
length as every other record in that file.

The rec-length specifies the actual length of all records
in the file. The rounded integer value of rec-Iength must
be in the range 1 to the maximum for the system. If no
rec-length is specified, the default fixed record size
depends upon the file type:

DISPLAY ·133
INTERNAL 255
NATIVE 255

For fi xed length records, if the fi Ie already exi sts and a
record length is specified, it must match the record
length in the file. If the record length is not specified,
the record length existing in the file is used.

ERROR CONDITIONS: An attempt to open a file which has already been
opened results in an error condition. Attempting to open a file
with an invalid file reference number results in an error
condition. These errors can be recovered from, if either the IOERR
clause is provided, or an EXIT err clause is to refer to an EXIT
statement whi ch conta ins an IOERR clause.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 OPEN 12: FIlEA$,ACCESS INPUT,TYPE NATIVE,&
& ORGANIZATION SEQUENTIAL,POINTER&
& BEGIN, RECORDS FIXED IOERR 750

The above example opens a native sequential file containing fixed
length records whose length is 255 characters. The file is
positioned at its beginning and can be accessed for input only. If
the open is not successful, control passes to line number 750.

200 OPEN 1100: "PRINT1,DEVICE 3800",OUTPUT

This example opens SEQUENTIAL file 100 as a DISPLAY OUTPUT file,
positioned at the END of the file. The RECORDS in the file are a
maximum 133 characters long, and are VARIABLE in length. Font
control is requested through DEVICE 3800. The following options
are supplied by default:

SEQUENTIAL,DISPLAY,END,VARIABlE 133.

For examples of keyed and relative files, see IBM BASIC
Application Programming: System Services.

210 IBM BASIC Application Programming: Language Reference

OPTION STATEMENT

Description

OPTION Statement

The OPTION statement permits the selection of a variety of options
that can be applied to a program.

Format

Where:

option

OPTION option[, optionl ..•

is one of the following keyword phrases:

BASE{oll}
COLLATE{NATIVElsTANDARD}
INVP
{SPRECILPREC}
PRTZO nn
RD nn
FLAG{IIWIEIS}
{FIPSINOFIPS}

All the keyword phrases are discussed below.

OPTION statements are used to define certain actions to be taken
when language or data is encountered, either during the
compilation of a program or the execution of the program. Options
may also be stated on a COMPILE or RUN command; however, they are
overridden by any options explicitly stated in an OPTION
statement within the program.

Each option has a default action. Check with your system
administrator for the defaults in effect for your organization.

The OPTION statement is a nonexecutable statement that can be
placed anywhere in a program unit and which affects the entire
program unit in which it is specified.

Options may appear in any order, in one or more OPTION statements.
However, any given option may not be redefined within the same
program unit. For example, once an option has been used to set the
collating sequence to STANDARD it cannot be reset to NATIVE in the
same program unit.

If the same option is declared more than once in a program unit,
even if the declarations are redundant, an error message is
printed.

The scope of an option declared by an OPTION statement is the
containing program unit. Options for a subprogram become active
when the subprogram is entered; the options for the calling
program are reactivated when the subprogram is exited.

When a main program terminates normally or abnormally in the
interactive environment, the program's options remain in effect
until the program is edited or you explicitly reset the options
(for example through an immediate OPTION statement). When
execution is suspended at a breakpoint, the options remain those
of the interrupted program unit.

Immediate mode options may be set with immediate OPTION
statements.

Statement Descriptions 211

OPTION statement

The options available are:

BASE (Oil)
This option specifies whether or not array dimensions
include elements corresponding to subscripts with a value of
zero. This definition applies whether or not a DIM statement
was used.

In the absence of an OPTION BASE specification, BASE 0
applies.

Arrays may be passed as parameters between subprograms
having different bases, but sUbscripts obey the base of the
program unit containing them. Because of the possible
confusion different bases could cause, you should usually
use the same base in all related program units.

Example

Main program:

Subprogram:

110 OPTION BASE 0
120 DIM A(S,10)
130 A(O,O)=l
140 A(S,10)=2
ISO CALL Sl(A(,»
160 END
200 SUB Sl(D(,»
210 OPTION BASE 1
220 PRINT D(1,1)+D(6,11)
230 END SUB

The PRINT statement will print the value 3.

COLLATE (NATIVElsTANDARD)

INVP

This option specifies the collating sequence to be used for
the comparison and conversion of character data.

If OPTION COLLATE NATIVE is in effect, the collating
sequence is Extended Binary Coded Decimal (EBCDIC).

If OPTION COLLATE STANDARD is in effect, the collating
sequence is the American National Standard Code for
Information Interchange (ASCII).

If neither is specified, OPTION COLLATE NATIVE is the
default.

Character data is always represented in EBCDIC. OPTION
COLLATE only affects the comparison of character strings
(relational expressions, ASORT, DSORT, AIDX, DIDX) and the
intrinsic functions CHR$ and ORD.

(The EBCDIC and ASCII collating sequences are listed in
"Appendix B. Character Set Collating Sequences" on page
327.)

INVP (inverted print edit facility) specifies that numeric
values are printed interchanging the usage of the period
(decimal point) and the comma, in order to print in the
normal European format.

When this option is specified, a comma is printed as the
decimal point in a numeric value in place of the period, and
a period is printed in place of the comma when used for
separating triples of a numeric value.

This interchange of period and comma applies to all output
resulting from the execution of a print-type statement,
PRINT or PRINT USING. This includes the commas/periods
within an IMAGE statement and within a PIC in a FORM
statement.

212 IBM BASIC Application Programming: Language Reference

OPTION statement

If INVP is not present, the standard U.S. specification for
printing of commas and periods (decimal points) applies to
print-type statement output.

Example
Without

INVP

123,456.78

With
INVP

123.456,78

The INVP option has no effect on the format in which data is
present in the program or on the format in which data must be
entered in response to an INPUT statement.

[SPRECILPREC}
This option specifies the maximum number of significant
decimal digits to be printed by the PRINT statement (without
the USING clause) when printing decimal values.

SPREC specifies "short" precision of 6 digits.

LPREC specifies "long" precision of 12 digits.

PRTZO nn

RD nn

This option specifies the width of zones to be used when
printing. Unless otherwise stated, the width of each print
zone is wide enough to permit printing of explicit point
scaled data items. (See "PRINT Statement" on page 217.)

This default may be overridden by the use of OPTION PRTZO nn,
where nn defines the print zone width. The value assigned to
nn must be in the range:

nn >=

nn <=

the minimum as described above.

the minimum of 255 or the difference between the
right and left margins.

Note: If nn is outside the width range, an error
occurs.

The default value of nn is a parameter supplied during
installation. As distributed, the default is 20.

This option specifies the number of rounded decimal digits
to be displayed when a PRINT statement (not a PRINT USING
statement) is executed, in lieu of the default action of
suppressing trailing zeros.

nn is in the range of (0 <= nn <= 12). If nn is outsi de that
range, an error occurs. A decimal value to be printed is
converted and rounded if necessary to nn digits to the right
of the decimal point. Thus if RD 03 is specified, 4.5678 is
printed as 4.568, and if RD 5 is specified, 4.5678 is printed
as 4.56780.

FLAG ([IIWIEIS})
This option determines the level of error messages reported.
Control of the error check i ng level also exi sts as an opti on
to the processor, but OPTION FLAG overrides those supplied
when the processor is invoked.

The levels (in increasing order of severity) are:

I Informative messages

W Warning messages

E Error messages

S Severe error messages

Statement Descriptions 213

OPTION statement

Immediate Execution

The OPTION FLAG statement specifies that only errors of
levels higher than or equal to the indicated level are to be
reported.

(FIPSINOFIPSl
This option indicates whether or not the processor should
produce a warning diagnostic for any statement which does
not conform to the FIPS BASIC syntax. Federal Information
Processing Standard (FIPS) BASIC is defined in the
publication Minimal BASIC, FIPS PUB 68. Any program written
to conform to FIPS BASIC must conform to the BASIC language
defined in that publication.

OPTION FIPS is negated by OPTION FLAG(WIEIS), which direct
the system to withhold the display of informational
diagnostic messages (which is what the FIPS messages are).

The OPTION statement may be used in immediate mode with all of the
parameters allowed in a program. H~wever, immediate options obey
different rules.

FIPS/NOFIPS AND FLAG OPTIONS: FIPS/NOFIPS and FLAG options are
treated differently in immediate mode than they are when used in a
program. In immediate mode, they temporarily change the state of
interactive IBM BASIC so that it produces the indicated error
messages. BASIC remains in this state until:

1. A contradictory immediate OPTION statement is executed.

2. An INITIALIZE command is executed.

For example,

OPTION FIPS

causes checking of all statements entered from the terminal and by
LOAD or MERGE commands for deviations from the FIPS BASIC
Standard.

When used in a program these options control the error messages
produced when the program is compiled, either with the COMPILE
command or as a batch compilation.

OTHE~ OPTIONS: All other immediate options (BASE, COLLATE, INVP,
LPREC/SPREC, PRTZO, RD) have their normal meanings with the
following restrictions:

1. The duration of these pptions is the same as immediate
variables. They last until:

• The workspace is edited

• The next RUN command is executed

• The next COMPILE command is executed

• The next DROP (all) command is executed

2. Immediate options cannot be entered while at a breakpoint.
Immediate options must agree with the options being used by
the current program unit. Thus they are the same as the
options which are implicitly in effect at that breakpoint.

214 IBM BASIC Application Programming: Language Reference

OPTION statement

3. OPTION BASE cannot contradict the base (0 or 1) of any
existing immediate arrays (immediate arrays within scope when
the OPTION BASE immediate statement is entered) (scope is
defined in "Variables and Arrays and Immediate Statements" on
page 261). If you want to change the base, you must DROP
existing arrays.

"Immediate Statements" on page 260 gives additional information.

Statement Descriptions 215

PAUSE Statement

PAUSE STATEMENT

Description

In the interactive mode, the PAUSE statement halts execution of
the program in which it appears. The statement is ignored during
batch mode operation.

Format

PAUSE [pause-message]

Where:

pause-message
is an optional character expression.

When the PAUSE statement is processed, program execution is
halted.

The pause message, when specified, is displayed just prior to
program interruption. If the pause message is omitted, the
following message displays automatically:

PAUSE AT LINE line-number

and displaying the program line where execution stopped.

Example

220 PAUSE "COMPARE FAILED"

When statement 220 is executed, the program halts and the
following message is displayed at the user's terminal:

COMPARE FAILED

To resume execution of the interrupted program, the user enters
either a null line or the GO command.

216 IBM BASIC Application Programming: Language Reference

PRINT STATEMENT

PRINT Statement

The PRINT statement displays data at the terminal.

Format

[MAT] PRINT [USING line-ref:]
[output-list] [err,[err] •••]

Where:

line-ref
is the 1 i ne number or 1 i ne label of an IMAGE or FORM
statement, or a character expression which contains an IMAGE
or FORM specification.

output-list

err

is a list of constants, variables, array elements,
expressions (numeric and character), and array names (array
names can only appear prefaced with the keyword MAT, either
at the beginning of the statement or immediately preceding
each array name).

list elements are separated by commas or semicolons. The
keywords TAB (followed by a numeric expression in
parentheses), PAGE, and NEWPAGE may be used in the list.

If the output list is omitted, a blank line is printed.

is one of the followi ng:

EXIT line-ref

CONV line-ref

IOERR line-ref

SOFLOW line-ref

line-ref
i sal i ne number or 1 i ne label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other err clauses are mutually exclusi vee

The colon after line-ref may be omitted if it would be the last
nonblank character on the line.

Example

150 PRINT USING 180:

and

150 PRINT USING 180

are equivalent.

Statement Descriptions 217

PRINT statement

General Description

The PRINT statement is used in three different ways to display
data at the terminal:

• PRINT with no USING clause

• PRINT with the USING IMAGE clause

• PRINT with the USING FORM clause

All three formats deal with the concepts of the limits of the
output line, the print zone, and separators.

OUTPUT LINE: The output line is first limited to the size of a
line as defined by the system, and may be further limited by the
left and right margins of the line.

The MARGIN statement can be used to specify these values, and, in
effect, determine where output can begin and end on a line. (See
"MARGIN Statement" on page 178.)

PRINT ZONE: The print zone is the number of positions allocated
for printing data items; this is an installation parameter. As
distributed by IBM, the default value is 20, a value sufficiently
large to allow printing of floating poi~t scaled data items in
long precision format.

A different print zone value may be assigned by an OPTION PRTZO
statement.

The print zone is constant throughout a program unit and must not
be less than 13 for short precision or 19 for long precision. (It
should be noted that character items are not limited to 20
positions; if larger, they will extend into new print zones).

SEPARATORS: The separators are the comma (,) and semicolon (;).
The items of an output-list must be separated by commas or
semicolons; the last item may be followed by a comma or a
semicolon.

In general, a comma indicates that the current print position
should be advanced to the next print zone.

If a comma appears when the print position is in the last print
zone on a line, an end of line is generated.

In gsneral, a semicolon indicates that the next printed value will
appear in the position immediately following the last printed
value.

Specific usages of the comma and semicolon are explained under
each of the three PRINT formats below. They are summarized in
Figure 39 on page 219.

MAT KEYWORD: The MAT keyword preceding the PRINT keyword
specifies that the output-list consists only of arrays; the MAT
keyword is then unnecessary in the output-list. See "Input/Output
lists" on page 70 for more information.

ERROR CONDITIONS: All three formats of the PRINT statement may
employ the err clause to process CONY, SOFlOW, and IOERR
conditions.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

218 IBM BASIC Application Programming: language Reference

PRINT statement

1. PRINT without IMAGE or FORM

CHARACTER TRAILING IMBEDDED

same line, same line,
next print zone next print zone

same line, same line,
next character next character

no , or i next line error

2. PRINT with IMAGE or FORM where USING clause is
exhausted (Reuse IMAGE/FORM)

CHARACTER TRAILING IMBEDDED

same line, new line
next print zone

same line, same line,
next position next position

no , or i next line error

3. PRINT with IMAGE or FORM where USING clause is
not exhausted.

CHARACTER TRAILING IMBEDDED

same line, same line,
next print zone next position

same line, same line,
next position next position

no , or next line error

Figure 39. PRINT Statement--Comma and Semicolon Separator Usage

PRINT without USING Clause

When the USING clause is not specified in the PRINT statement,
printed output is under control of the following factors:

I

• The line size dictated by the terminal

• The current settings of the margins

• The width of a print zone

• The separators in the output list

• The content and preci,ion of numeric data

• The length of character data

The current setting of the margins can be controlled by the MARGIN
statement. See "MARGIN Statement" on page 178.

The width of the print zone can be controlled by the OPTION PRTZO
statement. See "OPTION Statement" on page 211.

Statement Descriptions 219

PRINT statement

SEPARATORS: When an imbedded or trailing comma appears in the
output-list, the current line position is advanced to the next
print zone.

When an imbedded or trailing semicolon appears, the next printed
value appears immediately following the last printed value.

If neither appears, new data is displayed on the next line.

PRINT ZONE: The current length of a character string determines
how many characters will print. .

All numeric values are displayed in one of three forms:

implicit unsealed sd ... d
explicit unsealed sd ... drd .•. d
explicit scaled sd ... drd .•. dEsdd

where:

d is a decimal digit

I' is a deci n1al point

5 is an optional sign

E is the character E

Which of the three forms is used for a numeric value depends in
part on the value w assigned by the OPTION statement:

• w is 6 if OPTION SPREe is in effect

• w is 12 if OPTION LPREC is in effect

Each number which can be represented exactly as an integer with w
or fewer decimal digits is displayed using the implicit unsealed
representation.

All other numbers are displayed in one of the two explicit forms:

• Numbers which can be represented with w or fewer digits in the
explicit unsealed form no less accurately than they could be
in the explicit scaled forms are displayed in the unsealed
form.

• Numbers which cannot be represented with w or fewer digits in
the explicit unsealed form as accurately as they can be in the
explicit scaled forms are displayed in the scaled forms.

A printed numeric value is always separated from the next value on
the line by a space, regardless of the separators in the
output-list. If the number is positive, a space is printed in the
first position; if the number is negative, a minus sign is printed
in the first position. A plus sign or minus sign, as appropriate,
is always printed before the E in explicit scaled form.

Data displayed in the last print zone of a line causes an advance
to the next line.

If a character data item will not fit on the current line and the
character data item is not the first item in the current line, the
character data item is printed at the beginning of the next line.

If a character data item is the first item in the current line and
the character data item is longer than the line, it is split into
line length portions and printed on successive lines until the
total length is printed.

The TAB clause sets the columnar position of the current line,
prior to printing the next item. The numeric expression specified
by the TAB is first evaluated and rounded to the nearest integer

220 IBM BASIC Application Programming: Language Reference

PRINT statement

n. If n is less than 1, a warning message is produced, and n
defaults to 1.

If n is not less than one, the columnar position is set to the
value:

left + MOD (n-l, right-left +1)

where left and right are the left and right margins, and MOD is
the MOD intrinsic function. If n specifies a position prior to the
current position in the line, the current line is written and n
sets the position in the next line. This has the following
"wraparound" effect, assuming that left=1 and right=aO:

n
1

10
80
81

line position

1
10
80

1

The NEWPAGE or PAGE clause clears a terminal screen, or restores a
hard copy terminal to a new page, and then resets the current
print zone to the leftmost print zone. The action of the NEWPAGE
clause occurs at the point in the output list where the keyword
appears; therefore, if used other than as the first item in an
output list, NEWPAGE clears the display of the previous items. For
example:

PRINT A,B,NEWPAGE,C

results in only the value of C being displayed. The simple
statement PRINT NEWPAGE can be used to clear the screen.

When PRINT without USING refers to array data, the following
applies:

1. Each array is started on a new line and is printed with the
rightmost subscripts varying most rapidly.

2. Repetitions of the rightmost subscript's range begin at the
start of a new line, and are separated from the preceding line
by a single blank line.

3. After the final repetition of the rightmost subscript's range
has been printed, a blank line is generated, and the terminal
is repositioned to a new print line.

Within each line the separation of values is controlled by the
delimiter following the array name.

A single dimensional array prints as a column vector.

PRINT with USING IMAGE Clause

When the USING IMAGE clause is present on the PRINT statement, the
printed output is under control of these factors:

• The line size dictated by the terminal

• The current settings of the margins

• The use of commas and semicolons in the output list

• The number of data items in the output list

• The image defined by the USING clause

The current setting of the margins can be controlled by the MARGIN
statement. See "MARGIH Statement" on page 178.

Statement Descriptions 221

PRINT statement

QUTPUT-LIST--SCALAR ITEMS: Each scalar reference in the
output-list is edited into that portion of·a line as directed by
the IMAGE. The first position is determined by the left margin,
and the last position cannot be beyond the right margin.

If the output-list contains at least one item, there must be at
least one conversion specification in the referenced IMAGE
clause.

If the output list contains no items and the IMAGE contains no
characters, a blank line is printed.

If the output list contains no items and the IMAGE contains
characters, the IMAGE is printed, up to the first unused
conversion specification.

If the number of scalar references in the output list is less than
the number of conversion specifications in the IMAGE, the output
image is ended at the first unused conversion specification and
the remainder of the IMAGE is ignored.

If the number of scalar references in the output list exceeds the
number of conversion specifications in the IMAGE, and if the
scalar reference using the last specification is followed by:

o A semicolon, the IMAGE is reused from its beginning for the
remaining scalar references, in the next position of the
current print line.

• A comma, the current line is printed and the IMAGE is reused
for the remaining scalar references on the next print line.

If the number of scalar references in the output-list does not
exceed the number of conversion specifications in the IMAGE, and
the last scalar reference is followed by:

• A semicolon, the next output from a PRINT statement is begun
at the next position of the current line.

o A comma, the next output is begun in the next print zone of
the current line.

If the last scalar reference is not followed by either a comma or
a semicolon, the current line is ended and the next PRINT
statement output is on the next line.

OUTPUT-lIST--ARRAY ITEMS: When an array appears in the
output-list, the beginning of the array is started on a new line
to separate the output from the preceding line. The array elements
are printed with the rightmost subscript varying most rapidly.
Completion of the range of the rightmost subscript, forces the end
of the current line, generation of a blank line, and reuse of the
IMAGE on a new line. After the last iteration of the rightmost
range is printed, a blank line is written and the position is
reset to the beginning of the next line.

If the number of array members in the range of the rightmost
subscript exceeds the number of conversion specifications in the
IMAGE, the IMAGE is reused. In this case, if the array name in the
output list is followed by:

• A semicolon, each reuse of the IMAGE is on the same line.

• A comma, each reuse of the IMAGE is on a new line.

If the number of rightmost range members is less than the number
of conversion specifications, the line is terminated at the first
unused conversion specification.

Single dimension arrays (vectors) are displayed as a column.

222 IBM BASIC Application Programming: language Reference

PRINT statement

For scalars mixed with arrays in the output list, each consecutive
set of scalars causes the set of scalar values to be printed at
the start of a line, from the beginning of the IMAGE.

Example

110 OPTION BASE 1
120 DIM A(2,2),B(3)
130 MAT A=(l)
140 MAT B=(2)
150 PRINT USING 160:MAT A,3,4,MAT B,5,6,7,8,9
160 __ ' __ 1 __ 1 __ 1

The above example produces the following output:

_1_1
blank line
_1_1
blank line

3 4
_2-
blank line
_2
blank line
_2
blank line
_5_6_7_8
9

PRINT with USING FORM Clause

When the USING FORM clause is present on the PRINT statement, the
printed output is under control of these factors:

• The line size dictated by the terminal

• The current settings of the margins

• The use of semicolons and commas in the output list

• The number of items in the output list

• The FORM definition

The current setting of the margins can be controlled by the MARGIN
statement. See "MARGIN Statement" on page 178.

At the beginning ~f the construction of the print record, the
entire record contains blanks. Individual data fields are
superimposed over these blanks, according to the data form and
control specifications of the FORM specification. Each item of
the output list is matched against the corresponding data form
specification, converted if necessary to the form and length
indicated, and placed in the position specified by the control
specifications.

If the number of items in the output-list is less than or equal to
the number of data form specifications in the FORM specification,
any control specifications immediately following the last data
form specification used are also used.

If the number of items in the output-list exceeds the number of
data form specifications, any trailing control specifications are
used, and then the FORM is reused from its beginning.

A valid PAGE control specification always causes the output of the
current line.

Except for SKIP 0, a valid SKIP control specification causes the
output of the current line.

Statement Descriptions 223

PRINT statement

Immediate Execution

If the output-list has been exhausted, the current line is output
unless the list ends with:

• A comma, which positions the line to the next print zone.

• A semicolon, which positions the line to the next print
position.

If the output-list is not exhausted (that is, the FORM is to be
reused):

• A comma after the last item processed in the output list
writes the current line.

• A semicolon after the last item processed in the output list
positions the line to the next position.

If the position of a value to be displayed will start beyond the
right margin, the current line is written.

If the display of a value is begun but cannot be completed within
the right margin, the line with that portion of the value is
printed, and the remainder of the value begins on the next line.

In all cases, after an output line is displayed, the line position
is reset to the initial position of the next line.

Print-associated FORM statements may specify the control
specifications X, POS, SKIP, and PAGE, and the data form
specifications C, N, V, and PIC. See "FORM Statement" on page 129.

The PRINT statement can be used to display the values of variables
and arrays created by the program or by other immediate
statements.

All features of the PRINT statement may be used with the following
restrictions:

• The USING clause, if any, cannot refer to an IMAGE or FORM
statement in the workspace. It must be a character
expression.

• The err clauses (EXIT, CONV, IOERR, SOFlOW) are not allowed,
because such clauses refer to program line numbers or
statement labels in the workspace.

224 IBM BASIC Application Programming: language Reference

PRINT FIELDS Statement

PRINT FIELDS STATEMENT (FOR FULL SCREEN TERMINAL DISPLAY)

The PRINT FIELDS statement displays one or more data values on a
display terminal screen in the specified screen field(s).

Format

PRINT [Ifileref[,]] FIELDS field-definition:
output-list [;] [err[,err] •••]

Where:

fileref
is a numeric expression whose rounded integer value
evaluates to zero.

field-definition
can be:

character expression

or

MAT character array name

Each character expression or character array name must
evaluate to:

"row, column[,[data-form][,[leading][,trailing]]]"

Where:

row
is a positive nonzero integer, specifying the row of
the display

column
is a positive nonzero integer, specifying the first
column of the display

data-form
can be one of the data forms shown in Figure 40 on page
226.

leading
are display attributes for the print field

trailing
are display attributes for the positions between the
print field and the next field.

Display attributes that have meaning to IBM BASIC are:

H
highlighted

I
invisible (not displayed)

N
normal intensity

Note: For ease of migration from other BASIC products, B, R,
and U are also accepted and treated as N (normal intensity).
Multiple attribute characters may be specified. Unrecognized
characters are ignored. If I is specified, it overrides Hand
N. H overrides N. N is the default.

Statement Descriptions 225

PRINT FIELDS Statement

Data Form Meaning

w Length of data item.

ctw] Character data.

vtw] Character data.

Nwt.d] Conversion of numeric data to character data.

Gtwt.d]] Represents either character data or conversion of
numeric data to character data, depending upon
whether the type of the data is character or
numeric.

PIC(sts] ••• t~~~[~ •••][tr]]) Picture of data item

Where:

w

d

s

tr

is an unsigned, nonzero integer constant, which may be preceded with
blanks.

is an unsigned, integer constant.

is a digit specifier (I, Z, *, $, +, or -), or an insertion character (a
comma (,), solidus (/), blank (B), or decimal point (.).

is an exponent specifier, where three or more (-) characters are shown.
(Can also be specified as the circumflex character.)

is a trailing character, that is, a trailing plus (+), trailing minus (-),
trailing credit (CR), or either form of trailing debit (DB or DR).

Note: The total length of w, in characters, can be from 1 through (screen-width
- n'umber-of-attr i butes) for character data, or 1 through 156 for numeri c data.
If w (or w.d) is omitted, the length is 1 character.

Where:

screen-size
is the total number of characters on the screen

number-of-attributes
is:

o if neither leading nor trailing attributes are specified.

1 if a leading attribute or a trailing attribute (but not both) is
specified.

2 if both leading and trailing attributes are specified.

Figure 40. PRINT FIELDS Statement--Data Form Codes

output-list
is ali st of zero or more constants, vari ables, array
elements, expressions (numeric and character), and/or entire
arrays (prefaced with MAT)~ List elements are separated by
commas.

226 IBM BASIC Appl i cati on Programmi ng: Language Reference

Description

err
can be one of the following:

EXIT line-ref

CONV line-ref

IOERR line-ref

SOFLOW line-ref

line-ref
is a line number or line label.

PRINT FIELDS Statement

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

When the PRINT FIELDS statement is executed, the data defined in
the output-list is displayed on the terminal screen in the
positions specified by the field-definition.

If the terminal does not have a screen, an IOERR exception occurs.
(See "Full Screen Input/Output Statements" on page 73.)

FILEREF: The fileref is a numeric expression that should, when
rounded to an integer, evaluate to zero; if it does not, an IOERR
exception occurs. The standard system action is to replace the
value with zero.

FIELD-DEFINITION: A field-definition entry can be a character
expression or MAT character array name:

• If a field-definition entry is a character expression, it
defines one print field, and only one item can be displayed.

• If a field-definition entry is MAT character array name, it
can define one or more print fields. In this case, the
field-definition entry must be a one dimensional array; the
field-definition entries within the array need not match the
order of the fields on the screen.

If an array is specified for a field-definition entry, the number
of fields is the number of output-list items, not the number of
elements in the array. The number of elements in the array can
exceed the number of output-list items; any extra array elements
are ignored. However, all of the array elements are syntax
checked.

Rowand column are positive, nonzero integers that specify the
starting location of the field. Row 1, column 1 is the upper
left-hand corner of the screen. If row or column is greater than
the dimensions of the screen, an exception occurs.

The data-form specifies the number of characters in the screen
field, that is, the length of the screen field. A field that
extends beyond the rightmost column is continued starting in
column 1 of the next row, the bottom row continuing in the top row
of the screen.

If the data-form specification is omitted, the length of the field
is:

• For character items, the character length of the output-list
item

• For numeric items, the length of the output-list item if it
was printed by a PRINT statement without the USING clause

Statement Descriptions 227

PRINT FIELDS Statement

For the C, V, and G data forms, the length of the field (w or w.d)
may be omitted from the data-form specification. If the length is
omitted, the field is one character long.

If the data-form definition includes a length specification, the
data is displayed as follows:

• Character strings are left-justified in the field with blanks
padded on the right. If the string length is greater than the
field length, a string overflow exception occurs.

• Numeric values are displayed according to the rules for the
data-form specified as shown in Figure 40 on page 226. If the
field size is smaller than the expression value, asterisks
fill the field and an exception occurs.

Display Attributes specify how the display is treated.

Leading Display Attributes specify how the print field is to
display on the screen. If specified, the leading attribute
occupies one character position on the screen, preceding the
field.

Trailing Display Attributes specify how the positions between the
print field and the next field are to display. If specified, the
trailing attribute occupies one character position on the screen,
following the field.

The location of the trailing display attribute for one field can
overlap with the leading display attribute of the following
field. If leading and trailing attributes overlap, the last
attribute written to the screen is the one in effect.

The default display attribute is N; all other attributes override
it. The I attribute overrides all other display attributes.

A set of leading or trailing attributes should not be separated by
commas; the comma specifies the beginning and ending of each
leading or trailing list.

The attributes can be entered in any order.

OUTPUT-LIST: The output-list can be omitted; if it is omitted,
nothing is displayed.

If the output-list entry is not an array name, only one item of
data can be displayed for that entry.

If the output-list entry is an array name, items are taken from
the list on a row-by-row basis and displayed on the screen as
specified by the field-definition.

OPTIONAL SEMICOLON: The optional semicolon after the output-list
indicates that the display field should be saved, but not
displayed on the screen until one of the following occurs:

• A PRINT FIELDS without a semicolon is executed

• Any other input/output statement which accesses the screen is
executed (PRINT, INPUT, INPUT FIELDS, etc.)

• Some external stimulus (external to BASIC) causes the screen
display to change, for example, pressing the CLEAR key.

ERROR CONDITIONS: If a string overflow occurs, the SOFLOW
exception occurs. If a numeric conversion cannot be performed as
required, the CON V exception occurs. If a hardware malfunction
prevents completion of the display, the IOERR exception occurs.

These exceptions can be recovered from, if the CONY, IOERR, or
SOFLOW clauses are specified, or if an EXIT clause refers to an
EXIT statement that contains these clauses.

228 IBM BASIC Application Programming: Language Reference

PRINT FIELDS Statement

The I/O error conditions interact with the ON Condition statement
as described in "Exception Handling in I/O statements" on page 84.

Example 1

100 PRINT FIELDS "10,12,C 15" :PASSWORD$

Displays the value of PASSWORDS on the terminal screen, beginning
at row 10, column 12. If the data in PASSWORDS is less than 15
characters in length, the balance of the specified area is space
filled.

Example 2

100 A$ = ."22,1,C 3"
110 PRINT FIELDS A$: "AGE"

Prints AGE at location row 22, beginning at column 1.

Example 3

130 DATA "10,10,CI0,H", "12,20,C10",&
& "14,20,CIO", "16,20,C20,N"

140 MAT READ A$

180 PRINT FIELDS MAT A$: "NAME", "ADDRESS", "CITY",&
& "STATE, ADDRESS-CODE"

This PRINT FIELDS statement prints four fields according to the
field-definitions specified in array A$. See Example 3 in "INPUT
FIELDS Statement (For Full Screen Terminal Input)" on page 161 for
the program in which this statement is used.

Statement Descriptions 229

PRINT File statement (For Display Format Files)

PRINT FILE STATEMENT (FOR DISPLAY FOR HAT FILES)

The PRINT File statement transmits data to a display format file.

Format

[MAT] PRINT #fileref [[,]USING line-ref]
[[,]FONT expression]: [output-list]
[err[,errl ...]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255 and
which identifies the file to be processed.

line-ref
is the line number or line label of an IMAGE or FORM
statement, or a character expression which contains a FORM
or an image.

expression
is a numeric expression with a rounded integer value of 1 to
4.

Note: The fileref, USING, and FONT clauses may occur in any
sequence.

output-list

err

is a list of constants, variables, array elements,
expressions (numeric and character), and entire arrays
(prefaced with MAT). List elements are separated by commas
or semicolons. The keywords TAB (followed by a numeric
expression in parentheses), PAGE, and NEWPAGE may be used in
the list.

is one of the following:

EXIT line-ref

ENDPAGE line-ref

PAGEOFLOW line-ref

EOF line-ref

IOERR line-ref

CONY line-ref

SOFLOW line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutuallY exclusive.

The colon may be omitted if it would be the last nonblank
character on the line.

230 IBM BASIC Application Programming: Language Reference

Description

PRINT File statement (For Display Format Files)

Example

100 PRINT 11:

and

100 PRINT 11

are equivalent, and result in a blank record.

When used as a file statement, the PRINT statement must refer to a
file having display format. If DEVICE PRINTER or DEVICE 3800 is
specified in the file-id of the OPEN statement, each output record
is prefixed with a carriage control character. If DEVICE 3800 is
specified, a font control character is prefixed after the
carriage control character.

MAT KEYWORD: The MAT keyword preceding the PRINT keyword
specifies that the output-list consists only of arrays; the MAT
keyword is then unnecessary in the output-list. See "Input/Output
Lists" on page 70 for more information.

FILEREF! The fileref must refer to a display format file. (See
"Combinations of File Organization and Format" on page 57.)

USING CLAUSE: The IMAGE and FORM statement considerations for a
PRINT File statement are exactly the same as for a PRINT
statement. See "PRINT Statement" on page 217.

FONT CLAUSE: The FONT clause is used in conjunction with the
DEVICE 3800 clause in the fileid of the OPEN statement to specify
which font on the 3800 printer is to be used.

OUTPUT-LIST: The output-list is a set of items separated by commas
or semicolons. The list may include the TAB and NEWPAGE clauses,
if no USING clause is present:

TAB(e) where e is a numeric expression
[NEW]PAGE

Use of the TAB clause is explained in "PRINT Statement" on page
217.

Use of PAGE or NEWPAGE forces the beginning of a new record, with
a carriage control character for page eject. If PAGE or NEWPAGE is
specified and the file is not opened as DEVICE PRINTER or DEVICE
3800 (see "OPEN Statement" on page 206), an exception is
generated. The SYSTEM action for this exception is a warning
message.

ERROR CONDITIONS: The error conditions IOERR, CONV, and SOFLOW,
as well as the EXIT reference, function exactly as they do for the
PRINT statement. See "PRINT statement" on page 217.

The EOF condition, which occurs if there is not enough room on the
file for a record, may be recoverable if it is included as an err
condition.

The ENDPAGE (or PAGEOFLOW) condition occurs if the PRINT File
attempts to start a new line beyond the bottom margin. (See
"MARGIN Statement" on page 178.)

A PRINT File statement with fileref 0 is equivalent to a PRINT to
the terminal. The EOF and ENDPAGE conditions have no meaning in
this case. If specified, they are ignored.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O 5tatements" on page 84.

Statement Descriptions 231

PUT File statement

PUT FILE STATEMENT

Description

The PUT File statement places values in a stream file.

Format

[MAT] PUT Ifileref : output-list
[err[,err]]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 1 to 255, and
which identifies the file to be processed.

output-list

err

is an output list of items separated by commas.

is one of the following:

EXIT line-ref

EOF line-ref

IOERR line-ref

line-ref
is a line number or line label.

The EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and the other err clauses are mutually exclusive.

The PUT statement writes the values specified by the items in the
output list into a stream file. Both character and numeric values
are stored in internal format and are preceded by an identifying
byte. Values from arrays are written with the rightmost
subscripts varying most rapidly.

MAT KEYWORD: The MAT keyword preceding the PUT keyword specifies
that the output-list consists only of arrays; the MAT keyword is
then unnecessary in the output-list. See "Input/Output Lists" on
page 70 for more information.

FILEREF: The fileref must refer to a stream file. (See
"Combinations of File Organization and Format" on page 57.)

ERROR CONDITIONS: If values remain to be written on the file but,
space for the file is exhausted, an EOF (end-of-file) condition
exists.

If a hardware malfunction or other condition prevents the PUT
statement from completing execution, an IOERR condition exists.
Examples of IOERR are: attempting to execute a PUT statement on a
file opened for INPUT, or on a fileref O.

Both EOF and IOERR conditions may be recoverable if the
corresponding err clause is used in the PUT statement or in a
referenced EXIT statement.

The error clauses interact with the ON condition statement as
descri~ed in "Exception Handling in I/O Statements" on page 84.

232 IBM BASIC Application Programming: Language Reference

Example

100 PUT 112: A_NUMBERI,A_STRING$ EXIT 200
200 EXIT IOERR 900,EOF 1000

PUT File statement

The above PUT statement adds a numeric and a string value to the
stream file associated with file reference number 12. IOERR
conditions are handled at line number 900, and EOF conditions at
line number 1000.

statement Descriptions 233

RANDOMIZE statement

RANDOMIZE STATEMENT

Description

Immediate Execution

The RANDOMIZE statement generates a new starting point for the
list of pseudorandom numbers used by the RND function.

Format

RANDOMIZE

RANDOMIZE establishes a new seed value for the intrinsic RND
function, much the same as the RNDex) version of the function sets
a new seed. The difference is that the RANDOMIZE seed is random,
that is, unpredictable.

The immediate RANDOMIZE statement operates with the same
restrictions and capabilities as the nonimmediate RANDOMIZE
statement, as described above.

234 IBM BASIC Application Programming: Language Reference

READ STATEMENT

Description

READ Statement

The READ statement retri eves the internal data fi les created by
DATA statements.

Format

[MAT] READ input-list [err[.err]]

Where:

input-list

err

is an input list of items separated by commas.

is one of the followi ng:

EXIT line-ref

CONY line-ref

SOFlOW 1 i ne-ref

line-ref
is a Ii ne number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutuallY exclusive.

When a READ statement is executed. successive values are assigned
from the internal data file to the items in the input list. If all
of the values of the data fi Ie have been used and unassi gned items
remain in the input list of a READ. an exception occurs; however,
a RESTORE statement can be used to reset the pointer to the
beginning of the data file.

See also "DATA Statement" on page 105.

MAT KEYWORD: The MAT keyword preceding the READ keyword specifies
that the i nput-l i st consi sts only of arrays; the MAT keyword is
then unnecessary in the input-list.

See "Input/Output lists" on page 70 for more information.

INPUT-LIST: The input-list can consist of character or numeric
variables or arrays.

The length of a character variable is set to the length of the
character data assigned to it; a string overflow occurs if the
length of the data exceeds the maximum length of the character
variable.

Numeric variables must be assigned numeric values. If a numeric
value exceeds the defined maximum of its corresponding data type,
numeric overflow occurs (OFLOW). If the numeric value is less than
the defined minimum. then numeric underflow occurs (UFLOW).

References to entire arrays (MAT) in the input list are assigned>
from the data file with the rightmost subscript varying most
rapidly, starting at the current data file position. If optional
express; ons follow the array names, the rounded integer portion
of the expressi ons is used to redi mensi on the arrays before the
values are assi gned.

Statement Descriptions 235

READ statement

ERROR CONDITIONS: Conversion and string overflow errors may be
recovered from if the appropriate err clause is included in the
READ statement or a referenced EXIT statement. Numeric overflow
and underflow can be handled by the ON Condition statement.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O statements" on page 84.

Example

90 OPTION BASE 1
100 DATA ABCD.123.4.2.4."XYZ".7*"ZZZ"
200 READ A$.BI
300 DIM Z$(10.10)*3
400 READ PY..QY..MAT Z$(PY..QY.)

In the above example. the first READ assigns the value "ABCD" to
A$ and 123.4 to BI. The second READ first assigns the value 2 to
PY. and 4 to QY.; the array Z$ is redimensioned to eight members and
assigned the remaining values XYZ. and 7 repetitions of ZZZ. in
the data file.

236 IBM BASIC Application Programming: language Reference

READ FILE STATEMENT

READ FILE Statement

The READ File statement retrieves records from native and
internal files.

Format 1 (native files)

[MAT] READ Ifileref [,]USING line-ref
[[,]pos]:
input-list [err [,err] ••.]

Format 2 (internal files)

[MAT] READ Ifileref: input-list [,SKIP REST]
[err[,err] •••]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 1 to 255 and
which identifies the file to be processed.

line-ref

pas

is the line number or line label of a FORM statement, or a
character expression containing a FORM.

is one of the followi ng:

reI

KEY [reI] character expression

SEARCH [reI] character expression

REC[ORD] [=IEQ]numeric expression

is =, =>, >=, EQ, or GE.

If reI is omitted, = is assumed.

Nate: The fileref. USING, and pos clauses can occur in
any sequence.

input-list

err

is an input list of items separated by commas.

is one of the followi ng:

EXIT Ii ne-ref

EOF Ii ne-ref

IOERR Ii ne-ref

CONY line-ref

SOFlOW line-ref

NOREC line-ref

NOKEY line-ref

Statement Descriptions 237

READ FILE statement

Description

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The execution of a READ statement involves two steps

1. Retrieving a record and placing it in a buffer

2. Assigning values from the buffer to the items in the input
list

For both native files and internal files, the next sequential
record is retrieved by the READ statement with no KEY, SEARCH. or
RECORD clause; for relative files, the next sequential record is
the next non-null record, and for keyed files, it is the next
record in key-sequence.

For a relative file, a specific record can be retrieved through
the RECORD clause.

For keyed files, a KEY or SEARCH clause can be used, and the
record retrieved is the first record which satisfies the
condition specified in the clause:

• With the KEY clause, the key length in the record and the
length of the string specified in the condition must be the
same.

• With the SEARCH clause, the length of the specified string can
be less than the key length, and only that number of
high-order positions are compared.

Once the record has been placed in the buffer, values are assigned
from the buffer to the list of variables:

• For internal files, this assignment is done in the same manner
as the LET statement assigns values to variables.

• For native files, the values are formatted according to the
specifications of a FORM statement; this allows the
conversion of data in a variety of external representations
to internal representations.

For both types of files, each value read and assigned must be of
the same basic type (character or numeric) as the corresponding
variable in the input list; although a numeric value may be read
into a character variable.

HAT KEYWORD: The MAT keyword preceding the READ keyword specifies
that the input-list consists only of arrays; the MAT keyword is
then unnecessary in the input-list.

See "Input/Output Lists" on page 70 for more information.

INPUT-LIST: An array in the input list is recognized by the
keyword MAT appearing before the array name. If redimension
specifications appear after the array name in the input list, the
array is first redimensioned to extents equal to the rounded
integer values of the numeric redimension expressions, and then
the array is filled. When an array is redimensioned, the original
number of members may not be exceeded.

ERROR CONDITIONS: Various error conditions can occur as values
from the record buffer are assigned to list items.

238 IBM BASIC Application Programming: Language Reference

READ FILE statement

Description

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The execution of a READ statement involves two steps

1. Retrieving a record and placing it in a buffer

2. Assigning values from the buffer to the items in the input
list

For both native files and internal files, the next sequential
record is retrieved by the READ statement with no KEY, SEARCH, or
RECORD clause; for relative files, the next sequential record is
the next non-null record, and for keyed files, it is the next
record in key-sequence.

For a relative file, a specific record can be retrieved through
the RECORD clause.

For keyed files, a KEY or SEARCH clause can be used, and the
record retrieved is the first record which satisfies the
condition specified in the clause:

• With the KEY clause, the key length in the record and the
length of the string specified in the condition must be the
same.

• With the SEARCH clause, the length of the specified string can
be less than the key length, and only that number of
high-order positions are compared.

Once the record has been placed in the buffer, values are assigned
from the buffer to the list of variables:

• For internal files, this assignment is done in the same manner
as the LET statement assigns values to variables.

• For native files, the values are formatted according to the
specifications of a FORM statement; this allows the
conversion of data in a variety of external representations
to internal representations.

For both types of files, each value read and assigned must be of
the same basic type (character or numeric) as the corresponding
variable in the input list; although a numeric value may be read
into a character variable.

MAT KEYWORD: The MAT keyword preceding the READ keyword specifies
that the input-list consists only of arrays; the MAT keyword is
then unnecessary in the input-list.

See "Input/Output Lists" on page 70 for more information.

INPUT-LIST: An array in the input list is recognized by the
keyword MAT appearing before the array name. If redimension
specifications appear after the array name in the input list, the
array is first redimensioned to extents equal to the rounded
integer values of the numeric redimension expressions, and then
the array is filled. When an array is redimensioned, the original
number of members may not be exceeded.

ERROR CONDITIONS: Various error conditions can occur as values
from the record buffer are assigned to list items.

238 IBM BASIC Application Programming: Language Reference

READ FILE statement

For character data, the length of the receiving variable is set to
the length of the string sent to it. However, if the string being
sent is longer than the maximum length of the receiving variable,
a string overflow occurs. For a native file, this can happen with
a Cw FORM specification where w exceeds the maximum length of the
receiving variable.

For internal files, if the OPEN statement did not specify stream
organization and the items of the input list are all used and more
data remains in the record, a conversion exception occurs.
However, if a SKIP REST clause is specified, the rest of the data
in the record is ignored and the CONV exception is avoided.

For internal files, a conversion exception occurs if there is not
enough data in the record to fill all the input items, and if the
OPEN statement did not specify stream organization.

For native files, a conversion exception occurs in both these
situations.

Other CONV exceptions occur if a value cannot be converted to the
type of variable specified, or if an attempt is made to reference
a location outside a native file record with a POS or X control
specification.

An EOF (end-of-file) exception occurs when no KEY, SEARCH, or REC
is specified and the last record of the file has already been
read.

The NOKEY and NOREC exceptions occur when no record exists which
satisfies the KEY or SEARCH condition on a keyed file, or the
RECORD condition on a relative file.

The IOERR exception occurs if a hardware malfunction or other
error which prevents the reading of the record.

If the SKIP REST clause is specified and the input record contains
more data than necessary to satisfy all of the items in the input
list, the remainder of the record is ignored. If SKIP REST is not
specified and this condition occurs, a CONV exception is
generated.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 READ ITWO~: A$, B~, SKIP REST
200 READ 33 USING 300: C$, D~ IOERR 500
300 FORM C20,N5,X 30
400 DIM ARR3(10,10)
500 READ 34 USING 600 KEY="XYZ":P~,Q~,MAT ARRI(P~,Q~-P~)
600 FORM N2,N2,6*N5

In the above example, the first READ assigns values from the next
sequential record of an internal file to two variables, and
ignores the rest of the record. The second read performs the same
function for a record of a native file, and will pass control to
line number 500 if an IOERR condition occurs. The third read
retrieves a record with key "XYZ" from a keyed file; the first two
values are used to redimension the array ARRI, and then the array
is filled with numeric values.

Statement Descriptions 239

REM statement

~EM STATEMENT

Description

The REM statement inserts remarks into a program.

Format

REM [remark]

Where:

remark
is any character string.

A REM statement may be placed anywhere within a program. It is a
nonexecutable statement and its line number or line label may be
used as the target for transfer of control statements. for
example. GOTO. Execution then continues with the next executable
statement after the REM statement.

Since any character is permitted within a remark. each remark is
considered terminated at end-of-line. This means:

• REM is the last statement on a line (a following statement
separating colon is not recognized).

• REM statements cannot be continued (the continuation
ampersand is not recognized).

comments Using the Exclamation Mark

Remarks may also be appended to statement 1 i nes by usi ng an
exclamation mark as a statement delimiter. A statement beginning
with an exclamation mark is treated the same as a REM statement.

The remark clause (!) is nonexecutable. It appears in the
statement to indicate that the data following is to be considered
a remark only. It has no effect on program execution. It may not
appear on either an IMAGE. DATA. or FORM statement since the
exclamation mark can be meaningful within those statements.

Example

100 IF NUMBER lT 200 THEN GO TO 200
110 REM TEST NUMBER

is functionally equivalent to

100 IF NUMBER lT 200 THEN GOTO 200. !TEST NUMBER

As with the REM statement. a trailing comment must be the last
entry on a line. Unlike REM statements. a line with a trailing
comment can be continued; an ampersand as the last nonblank
character on the line indicates continuation. However. it is not
the trailing comment itself that is continued; it is the statement
before the trailing comment that is continued.

240 IBM BASIC Application Programming: language Reference

REM statement

Example

100 OPEN 14: NAME "PARTS".!FILE OF PART DESCRIPTIONS &
& ORGANIZATION RELATIVE. !RECORD NUMBERS ARE &
& TYPE NATIVE, ACCESS OUlIN !PARl NUMBERS.

is functionally equivalent to:

100 OPEN 14: NAME "PARTS".ORGANIZATION RELATIVE, &
& TYPE NATIVE. ACCESS OUTIN

Statement Descriptions 241

REREAD statement

REREAD STATEMENT

Description

The REREAD File statement makes the last accessed record in a
native file available again.

Format

[MAT] REREAD Ifileref [.]USING line-ref:
input-list [err[.err] •••]

Where:

fileref
is a numeric expression which. when evaluated and rounded.
is a positive integer with the range 1 to 255. and which
identifies the file to be processed.

line-ref
is the line number or line label of a FORM statement. or a
character expression containing a FORM.

Note: The fileref and USING clauses may occur in any order.

input-list

err

is an input list of items separated by commas.

is one of the followi ng:

EXIT line-ref

IOERR line-ref

CON V line-ref

SOFlOW Ii ne-ref

line-ref
is a Ii ne number or 1 i ne label.

The EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusi ve.

The REREAD statement can only be used for native files. The last
access to the specified file must have been either a READ
statement or another REREAD statement.

MAT KEYWORD: The MAT keyword preceding the REREAD keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input-list.

See "Input/Output Lists" on page 70 for more information.

FILEREF: The fileref must refer to a native file. (See
"Combinations of File Organization and Format" on page 57.)

USING CLAUSE: The data in the record is formatted according to the
specifications of the FORM statement.

INPUT-LIST: The data in the record is assigned to the variables in
the input-list. in the same manner as the READ statement for
files. (See "READ FILE Statement" on page 237.)

242 IBM BASIC Application Programming: Language Reference

REREAD statement

REREAD STATEMENT

Description

The REREAD File statement makes the last accessed record in a
native file available again.

Format

[MAT] REREAD Ifileref [,]USING line-ref:
input-list [err[,err] ...]

Where:

file~ef
is a numeric expression which, when evaluated and rounded,
is a positive integer with the range 1 to 255, and which
identifies the file to be processed.

line-ref
is the line number or line label of a FORM statement, or a
character expression containing a FORM.

Note: The fileref and USING clauses may occur in any order.

input-list

e~r

is an input list of items separated by commas.

is one of the following:

EXIT line-ref

IOERR line-ref

CONY line-ref

SOFlOW line-ref

line-~ef
is a line number or line label.

The EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

The REREAD statement can only be used for native files. The last
access to the specified file must have been either a READ
statement or another REREAD statement.

MAT KEYWORD: The MAT keyword preceding the REREAD keyword
specifies that the input-list consists only of arrays; the MAT
keyword is then unnecessary in the input-list.

See "Input/Output lists" on page 70 for more information.

FILEREF: The fileref must refer to a native file. (See
"Combinations of File Organization and Format" on page 57.)

USING CLAUSE: The data in the record is formatted according to the
specifications of the FORM statement.

INPUT-LIST: The data in the record is assigned to the variables in
the input-list, in the same manner as the READ statement for
files. (See "READ FILE Statement" on page 237.)

242 IBM BASIC Application Programming: language Reference

REREAD statement

ERROR CONDITIONS: The err conditions IOERR, CONY, and SOFlOW may
be recoverable if they are specified on the statement or in a
referenced EXIT statement.

A CONV error occurs when a field cannot be converted as specified,
there is not enough data in the record, or there is an attempt to
reference a location outside the record.

SOFlOW occurs with a string overflow.

IOERR occurs when a hardware malfunction or other error prevents
rereading the record.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 READ 12, USING 300: A$, CX
200 REREAD 12 USING 0400: B$, OX EXIT 500
300 FORM C10,POS 21, N5, X 5
400 FORM X 10, C10, P~S 26, N5
500 EXIT IOERR 900, CONV 900, SOFlOW 900

In the above example, a record in a native sequential file
contains four values, two of which are accessed by the READ
statement and two by the REREAD statement. If any errors occur on
the REREAD statement, control passes to line number 900.

Statement Descriptions 243

RESET Statement

RESET STATEMENT

The RESET statement changes the position of the file pointer.

Format

RESET Ifileref [[,]pos] :[err[,err] •••]

Where:

fileref

pas

err

is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255, and
which identifies the file to be processed.

is one of the followi ng:

rel

BEGIN

END

APPEND

KEY [reI] character expression

SEARCH [reI] character expression

REC[ORD] [{= IEQ}] numeric expression

is -, >=, =>, EQ, or GE.

If reI is omitted, = is assumed.

Note: The fileref and pos clauses may be in any
sequence.

is one of the following:

EXIT line-ref

IOERR line-ref

NOREC line-ref

NOKEY line-ref

line-ref
is ali ne number or 1 i ne label.

EXIT and all other err clauses are mutually exclusive.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

The keyword RESTORE may be used instead of RESET.

The colon may be omitted if it would be the last nonblank
character on the line.

244 IBM BASIC Application Programming: language Reference

Description

RESET Statement

Example

200 RESET 13. REC = COUNT~:
and

200 RESET 13. REC = COUNT~
are equivalent.

Any type of external file may be repositioned with a RESET
statement.

An attempt to RESET fileref 0 is ignored.

POS OPTION: The BEGIN clause positions any file to its beginning;
if no positioning clause is specified. BEGIN is assumed.

The END clause positions files. other than relative and keyed, to
their end. so that new records can be added; the APPEND clause is
identical to END.

For relative files. the RECORD clause positions the file to the
record whose relative number is specified.

For keyed files. either the KEY clause or the SEARCH clause
positions the file to the first record whose key satisfies the
specified condition:

• The KEY clause condition specifies the entire key field.

• The SEARCH clause condition specifies that part of the key
with a string length equal to that of the search argument.

ERROR CONDITIONS: The error conditions IOERR. NOREC. and NOKEY
may be recovered if they are included in err clauses or a
referenced EXIT statement.

The NOREC condition occurs if no relative record satisfies the
RECORD condition for a relative file.

The NOKEY condition occurs if no keyed record satisfies the KEY or
SEARCH condition for a keyed file.

The IOERR condition occurs if the file cannot be repositioned for
some other reason.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 RESET 110. KEY="1234": NOKEY 900

.
500 RESET 110: IOERR 1000

At statement 100. a keyed file is positioned to the record whose
key is "1234". If no such record exists. control is transferred to
line number 900. At statement 500. the same file is repositioned
to its beginning; in the event of an IOERR. control is transferred
to line number 1000.

Statement Descriptions 245

RESTORE statement

RESTORE STATEMENT

Description

The RESTORE statement resets the fila pointer of an internal data
file to its first value.

Format

RESTORE

The RESTORE statement resets the fi Ie po inter of an internal data
file, created by DATA statements and accessed by READ statements.

The RESTORE statement resets the internal data pointer to the
first value in the internal file.

The RESTORE statement is ignored if there are no DATA statements
in the program unit.

(See also "RESET Statement" on page 244 for other uses of the
RESTORE keyword.)

Example

100 DATA 123,456,789
200 READ AY., BY.
300 RESTORE
400 READ CY.

In the above example, the value assi gned to CY. is 123, because at
line number 300 the data file was repositioned to its first value.

246 IBM BASIC Appl i cat ion Programmi ng: Language Reference

RETRY STATEMENT

Description

RETRY statement

The RETRY statement reprocesses statement which caused an
exception.

I Format

. RETRY

Execution of a RETRY statement results in reprocessing the
statement which caused an exception. The RETRY statement provides
for a return to normal requested statement execution after
program flow has been diverted to process an exception.

If an exception condition does not exist when the RETRY statement
is executed, an exception occurs.

Example

100 ON ZDIV GOTO 1000

500 BAL = A - B
510 DIVI = TOT/BAL
520 BAL = A + B

.
1000 BAL = 1
1010 RETRY

Statement 100 sets the condition being tested. If BAL is
set to zero at statement 500, execution of 510 will .
trigger the ZDIV (divide by zero) condition. Execution
will branch to statement 1000, set BAL to 1, and return
to statement 510 because of the RETRY statement.

Statement Descriptions 247

RETURN statement

RETURN STATEMENT

Description

The RETURN statement returns control to the next executable
statement following the GOSUB statement that called the
subroutine.

Format

RETURN

When a RETURN statement is executed, program execution is
returned to the next statement following the last GOSUB statement
executed, completing a GOSUB/RETURN cycle. (See "GO SUB Statement"
on page 145.)

Execution of a RETURN statement returns the last active GOSUB
statement to inactive status.

The execution of a RETURN statement without an active GOSUB
statement results in an exception.

It is not necessary that equal numbers of GOSUB statements and
RETURN statements be executed before termination of a program
unit or multiline function (execution of a SUBEXIT statement in a
subprogram or of a FNEND statement in a function). All active
GOSUB statements associated with a program unit or function are
set inactive upon termination of the program unit or function.

For more information, see "Subroutine Control Statements" on page
61.

248 IBM BASIC Application Programming: language Reference

REWRITE STATEMENT

Description

REWRITE statement

A REWRITE statement updates a record stored in a native file.

Format

[MAT] REWRITE Ifileref [,]
USING line-ref [[,]pos]:
output-list [err[,errl •••]

Where:

filel"ef
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 1 to 255, and
which identifies the file to processed.

line-ref

pas

is the line number or line label of a FORM statement, or a
character expression which contains a FORM.

is KEY [=IEQ] character expression

or

REC[ORD] [~IEQ] numeric expression

Nate: The fUeref, USING, and pos clauses may occur in any
sequence.

output-list

err

is an output 1 i st of vari able or array names of items to be
output, separated by commas.

is one of the followi ng:

EXIT 11 ne-ref

IOERR 11 ne-ref

EOF 1 ine-ref

CONY line-ref

SOFlOW line-ref

NOREC line-ref

NOKEY line-ref

line-ref
is a 11 ne number or 1 i ne label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusi ve.

The REWRITE statement updates records of native files which have
been opened with the access attribute OUTIN.

Statement Descriptions 249

REWRITE statement

HAT KEYWORD: The MAT keyword preceding the REWRITE keyword
specifies that the output-list consists only of arrays; the MAT
keyword is then unnecessary in the output-list.

See "Input/Output lists" on page 70 for more information.

FILEREF: The fileref must refer to a native file opened with
access OUTIN. (See "Combinations of File Organization and Format"
on page 57.)

USING CLAUSE: The USING clause identifies the line number or line
label of the FORM statement to be used in formatting the record.

The USING clause can itself contain a character expression that
specifies a format for the data.

POS CLAUSE: If the RECORD clause is included for a relative file.
or if the KEY clause is included for a keyed file, the specified
record is read, updated, and rewritten. If the record belongs to a
keyed file, an IOERR condition occurs if the value of the key is
changed.

If no RECORD or KEY clause is specified, the last access to the
file must have been a READ or REREAD of the record to be written.

OUTPUT-LIST: The values from the output-list are formatted
according to the specifications of the FORM statement and replace
whatever data previously occupied those positions of the record.
Portions of the original record can be preserved by using the X
and pas control specifications of the FORM statement.

For relative and sequential files, the length of the new record
resulting from the output-list. or from the interaction of the
output-list and the FORM, must not exceed the length of the
original record. For keyed files, however, the new record length
may be greater than the original length.

ERROR CONDITIONS: Several error conditions may be recovered from
if an err clause for the condition is specified in the statement
or the referenced EXIT statement.

A NOKEY or NOREC condition occurs if the key or record number
specifies a record which does not exist.

A CONV condition occurs if a value cannot be converted as
specified in the FORM.

The SOFlOW condition is generated by a string overflow.

The EOF condition occurs if the record to be rewritten will no
longer fit on the file.

The IOERR condition indicates that a hardware malfunction or
other cause prevents the writing of the altered record.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 REWRITE 125 KEY EQ KEYl$ USING 120: KEYl$,A~ &
& EXIT 140

120 FORM C4,X 10,N6,POS 25,"WXYZ"
140 EXIT NOREC 900

In the above example of a REWRITE statement for a keyed file, the
key is in positions 1-4; positions 5-14 and 21-24 of the original
record are unchangedj the value of A~ replaces the contents of
record positions 15-20, and the value "WXYZ" replaces the
contents of record positions 25-28. If no record exists with a key
value as specified in KEYl$, then control passes to line 900.

250 IBM BASIC Application Programming: language Reference

REWRITE statement

MAT KEYWORD: The MAT keyword preceding the REWRITE keyword
specifies that the output-list consists only of arrays; the MAT
keyword is then unnecessary in the output-list.

See "Input/Output Lists" on page 70 for more information.

FILEREF: The fileref must refer to a native file opened with
access OUTIN. (See "Combinations of File Organization and Format"
on page 57.)

USING CLAUSE: The USING clause identifies the line number or line
label of the FORM statement to be used in formatting the record.

The USING clause can itself contain a character expression that
specifies a format for the data.

POS CLAUSE: If the RECORD clause is included for a relative file,
or if the KEY clause is included for a keyed file, the specified
record is read, updated, and rewritten. If the record belongs to a
keyed file, an IOERR condition occurs if the value of the key is
changed.

If no RECORD or KEY clause is specified, the last access to the
file must have been a READ or REREAD of the record to be written.

OUTPUT-LIST: The values from the output-list are formatted
according to the specifications of the FORM statement and replace
whatever data previously occupied those positions of the record.
Portions of the original record can be preserved by using the X
and pas control specifications of the FORM statement.

For relative and sequential files, the length of the new record
resulting from the output-list, or from the interaction of the
output-list and the FORM, must not exceed the length of the
original record. For keyed files, however, the new record length
may be greater than the original length.

ERROR CONDITIONS: Several error conditions may be recovered from
if an err clause for the condition is specified in the statement
or the referenced EXIT statement.

A NOKEY or NOREC condition occurs if the key or record number
specifies a record which does not exist.

A CONV condition occurs if a value cannot be converted as
specified in the FORM.

The SOFLOW condition is generated by a string overflow.

The EOF condition occurs if the record to be rewritten will no
longer fit on the file.

The IOERR condition indicates that a hardware malfunction or
other cause prevents the writing of the altered record.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 REWRITE 125 KEY EQ KEY1$ USING 120: KEY1$,AY. &
& EXIT 140

120 FORM C4,X 10,N6,POS 25,"WXYZ"
140 EXIT NOREC 900

In the above example of a REWRITE statement for a keyed file, the
key is in positions 1-4; positions 5-14 and 21-24 of the original
record are unchanged; the value of AY. replaces the contents of
record positions 15-20, and the value "WXYZ" replaces the
contents of record positions 25-28. If no record exists with a key
value as specified in KEY1$, then control passes to line 900.

250 IBM BASIC Application Programming: Language Reference

SCRATCH STATEMENT

Description

SCRATCH Statement

The SCRATCH statement erases the contents of a file.

Format

SCRATCH #fileref: [err]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 0 to 255, and
which identifies the file to be processed.

err
can be:

EXIT line-ref

or

IOERR line-ref

line-ref
is a line number or line label.

EXIT and IOERR are mutually exclusive.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

The colon (after fileref) may be omitted if it would be the last
nonblank character on the line.

Example

150 SCRATCH 11

and

150 SCRATCH 11:

are equivalent.

Processing the SCRATCH statement erases all the values or records
on a file and resets the file pointer to the beginning of the
file. An attempt to scratch fileref 0 is ignored.

An IOERR condition occurs if a hardware malfunction or other
condition prevents the file from being scratched. If an IOERR err
condition is specified in the SCRATCH statement or on a referenced
EXIT statement, the IOERR condition may be recoverable.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Statement Descriptions 251

SELECT statement

SELECT STATEMENT

Description

The SELECT statement begins a SELECT block.

Format

SELECT expression

Where:

expression
is a numeric or character expression

The SELECT statement is used with the END SELECT, CASE, and CASE
ELSE statements to construct SELECT blocks. SELECT blocks allow
for the conditional execution of anyone of a number of
alternative CASE blocks.

A SELECT block is subdivided into CASE blocks, and each time a
SELECT block is entered, one of the CASE blocks or the CASE ELSE
block is executed. The value of the expression in the SELECT
statement is matched against constants in the CASE statements to
determine which CASE block, if any, is selected for execution.
This is described under "SELECT Blocks" on page 66.

The SELECT block consists of four parts, coded in the following
order:

1. The SELECT line containing the selection expression.

2. Any number of CASE blocks. A CASE block is defined as the
statements between one CASE line and another, between a CASE
line and a CASE ELSE line, or between a CASE line and an END
SELECT line.

3. An optional CASE ELSE block, which includes all statements
between the CASE ELSE line and the END SELECT line.

4. An END SELECT line which terminates the SELECT block.

The expression in the SELECT statement is evaluated and its value
compared to the CASE items in the CASE statements in the order in
which they occur until a match is found. If a match is not found,
the CASE ELSE block is executed.

If CASE ELSE is not specified, and no CASE item is matched, an
exception occurs.

An example of a SELECT block is given in "SELECT Blocks" on page
66.

252 IBM BASIC Application Programming: Language Reference

STOP STATE"ENT

Description

Immediate Execution

STOP statement

The STOP-statement terminates program execution.

Format

STOP [numeric expression]

Where:

numeric expression
is any numeric expression

STOP causes exactly the same action as an END statement during
execution. However. unlike the END statement which must be the
last physical as well as last logical statement in the main
program. the STOP statement may appear anywhere in the program.
including a subprogram.

When a STOP statement is executed. all open files are closed.

The numeric expression represents a return code that is returned
to the batch operating system. The value returned is the rounded
integer evaluation of the expression.

In interactive mode. the value of the numeric expression is
displayed as part of the ending message.

The immediate STOP statement operates with the same restrictions
and capabilities as the STOP statement in a program.

Program files are closed and execution terminated.

The optional numeric expression in the STOP statement is allowed
(with the restriction it does not refer to function definitions)
but is ignored.

Statement Descriptions 253

SUB Statement

SUB STATEMENT

Description

The SUB statement is the first statement of a subprogram and names
it.

Format

SUB name [(parameter[,parameterl •••)]

Where:

name
is a subprogram identifier of 1 to 7 characters.

parameter
may be either a simple variable or an empty array declarator.

An empty array declarator has the form:

identifier ([,l ••.)

The SUB statement is the first line of a subprogram, naming the
subprogram and declaring any parameters. The name must not be the
same as that used for one of the special CAll formats. (See "CAll
Statement" on page 90.)

The number and type of arguments in a CAll statement must agree
with the number and type of parameters in the corresponding SUB
statement. An array used as an argument must have the same number
of dimensions as the corresponding parameter (indicated by the
number of commas in an empty array declarator).

An array that is a parameter (that is, appears in a SUB statement)
may be redimensioned within a subprogram. When control returns to
the calling program, the array retains its changed dimensions.

A given parameter may app~ar only once in a SUB statement. The
parameters cannot appear in DIM or COM statements. The number of
dimensions for an array which is a parameter is declared in the
SUB statement and the values of the dimensions are those of the
corresponding argument at run time. If an argument is an array
element, its subscripts are evaluated once, when the subprogram
is first invoked. The conventions for passing parameters are
given in "CAll Statement" on page 90.

Example

100 SUB RTNCA(,»

In this example, the SUB statement names the subroutine as RTN,
and also declares array A to have two dimensions; however, the
values of the dimensions are supplied by the argument at run time.

All parameters and non-COMMON variable and array names specified
in a subprogram are local to that subprogram. They are distinct
from objects with same names outside the subprogram.

See also "Calling IBM BASIC Programs" on page 80.

254 IBM BASIC Application Programming: language Reference

SUBEXIT STATEMENT

Description

SUB EXIT Statement

The SUBEXIT statement stops execution of a subprogram and returns
control to the subprogram's caller.

Format

SUB EXIT

The SUBEXIT statement can only occur within a subprogram. It
passes control back to the calling program at the first line
following the CALL statement.

See "SUB Statement" on page 254, "CALL Statement" on page 90, and
"Subprogram Statements" on page 78.

Statement Descriptions 255

TRACE statement

TRACE STATEMENT

Description

When debuggi ng is active (that is. a DEBUG ON statement has been
executed). the TRACE statement turnstraci ng ON or OFF. The
execution of a TRACE statement when debugging is inactive has no
effect.

Format

TRACE ON [TO Ifilerefl

or

TRACE OFF

Where:

ftleref
is a numeric expression in the range of 0 to 255. indicating
the fi Ie for the trace Ii sti ng.

The TRACE statement displays the flow of control within a program.

When TRACE ON and DEBUG ON are in effect, the following actions
occur each time a statement of the specified type is executed:

1. For a statement causing a transfer of control both the line
number of the statement and the 1 i ne number of the next
statement to be executed (if such a line number exists) ara
reported.

2. Fora statement which changes the value of any variables or
arrays, both the line number of the statement and the values
assigned to any variables by the statement are reported.

When a TRACE ON statement with a file reference is in effect,
trace reports are directed to the file assigned to the specified
fileref. If no fileref has been specified. the trace reports are
directed to the device associated with fileref zero (the
terminal).

If debugging was activated by a DEBUG ON TO filerefstatement, the
TO fileref clause on a TRACE ON statement is ignored.

A DEBUG OFF statement causes an implicit TRACE OFF, that is, a
subsequent DEBUG ON will not resume tracing until another TRACE ON
is encountered.

A TRACE OFF statement terminates any file connection set by a
TRACE ON TO fileref statement, that is, a subsequent TRACE ON will
cause trace output to go to fileref O.

See also "Debugging Statements" on page 86.

ImmedtateTrace Execution

The TRACE statement may be executed as an immediate statement. All
forms are accepted in the immediate mode. However. if the program
unit did not contain both a TRACE ON and a DEBUG ON statement
prior to the start of execution, the trace facility will monitor
program ~lowonly; it will not show variable assignments. (That
is, only the first action described above is done.)

25~ IBM BAste Appli cati on Programmi ng: Language Reference

USE STATEMENT

Description

USE Statement

The USE statement establishes a name correspondence in a chained
program for those names passed via a CHAIN statement.

Format

USE argument-list

Where:

argument-list
is a list of scalar and/or array names separated by commas.

Prior to execution of the chained program, the attributes passed
for each variable name in the USE statement are matched against
the defined attributes for the same variable names in the chaining
program. The local variable names in the chained program are then
initialized to the passed values.

This matching is done by name, not by order. If a name appears in
only one list, it is ignored. If the names match but the types (or
number and size of dimensions of an array) do not, an exception
occurs. (Passed attributes are not automatically inherited by the
chained program. Each variable name in the USE statement must be
defined (via DIM or default) within the chained program.)

Example

This statement appears in the chaining program:

100 CHAIN "PROGB",VAlUEA,VALUEC

This statement appears in the chained program (PROGB):

200 USE VALUEB,VALUEA

Statement 100 ends the chaining program. The data from VALUEA is
passed to PROGB, the chained program and placed in the variable
named in the USE statement, VALUEA. VALUES is initialized to the
default for its type, because it was not named in the CHAIN
statement. PROGB is now executed, with the value passed to it from
the chaining program.

Note: The value from VALUEC is not passed to PROGB, although it is
included in the CHAIN statement-.--

The USE statement may appear anywhere in a main program; only one
may be specified. The names of COMMON variables may not be
included ina USE statement, as COMMON is passed across CHAIN
boundaries independently.

The data-list in the USE statement defines the data items retained
by the program. All other data values (except COMMON variables)
are set to zero or null prior to their first use.

See "CHAIN Statement" on page 98.

Statement Descriptions 257

WRITE statement

WRITE STATEMENT

The WRITE statement adds records or values to native, internal,
and stream files.

Format 1 (native format)

[MAT] WRITE 'fileref [[,]USING
line-ref [[,]pos]:
output-list [err[,err] •••]

Format 2 (internal format)

[MAT] WRITE fileref : output-list
[err[,errJ ... J

Where:

filer-af
is a numeric expression which, when evaluated and rounded.
must be a positive integer within the range 1 to 255, and
which identifies the file to be processed.

line-... ef

pos

is the line number or line label of a FORM statement, or a
character expression which contains a FORM.

is REC[ORD] [= or EQ] numeric expression

Note: The fileref, USING, and pos clauses may appear in any
order.

output-list

e

is an output list with items separated by commas.

is one of the followi ng:

EXIT line-ref

EOF 1 i ne-ref

IOERR line-ref

CONY line-ref

SOFLOW li ne-ref

DUPREC line-ref

DUPKEY li ne-ref

line- ... ef
is ali ne number or 1 i ne label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusi ve.

258 IBM BASIC Appli cati on Programmi ng: Language Reference

WRITE statement

WRITE STATEMENT

The WRITE statement adds records or values to native, internal,
and stream files.

Format 1 (native format)

[MAT] WRITE Ifileref [[,]USING
line-ref [[,]pos]:
output-list [err[,err] •••]

Format 2 (internal format)

[MAT] WRITE fileref : output-list
[err[,err] ..•]

Where:

fileref
is a numeric expression which, when evaluated and rounded,
must be a positive integer within the range 1 to 255, and
which identifies the file to be processed.

line-ref

pas

is the line number or line label of a FORM statement, or a
character expression which contains a FORM.

is REC[ORD] [= or EQ] numeric expression

Note: The fileref, USING, and pos clauses may appear in any
order.

output-list

err

is an output list with items separated by commas.

is one of the following:

EXIT line-ref

EOF line-ref

IOERR line-ref

CONV line-ref

SOFlOW line-ref

DUPREC line-ref

DUPKEY line-ref

line-ref
is a line number or line label.

An EXIT clause must refer to the line number or line
label of an EXIT statement.

EXIT and all other err clauses are mutually exclusive.

258 IBM BASIC Application Programming: language Reference

Descrtption

WRITE statement

The WRITE statement adds records to any sequential file, native,
internal, or stream. If the file is positioned at its beginning by
an OPEN statement, the WRITE statement places the record at the
beginning of the file, replacing any already existing records; in
this case, none of the old records are any longer available.

MAT KEYWORD: The MAT keyword preceding the WRITE keyword
specifies that the output-list consists only of arrays; the MAT
keyword is then unnecessary in the output-list.

See "Input/Output Lists" on page 70 for more information.

FILEREF: The fileref must refer to a native, internal, or stream
file, opened for OUTPUT (or QUTIN) access. (See "Combinations of
File Organization and Format" on page 57.)

USING CLAUSE: The USING clause is required for writing native
files. The record is built by formatting the values from the
output-list according to the FORM specifications. If the FORM
control specifications X and POS are used, any positions skipped
in the record are filled with blanks.

For internal and stream files, the USING clause is invalid; the
values are written to the file in internal format.

POS CLAUSE: A WRITE statement with a RECORD clause is used to add
a record to a relative file.

For a keyed file, a record is added by a WRITE statement with an
output-list containing a character value with the length and
position attributes of the key for the file.

ERROR CONDITIONS: Several error conditions may be recoverable if
the appropriate err clause is included in the WRITE statement or
on a referenced EXIT statement.

The CONV condition occurs if a value cannot be converted to the
specified format, or if the record being added is larger than the
record length for the file.

The DUPKEY or DUPREC conditions occur if the key or record number
specifies a record which already exists.

The SOFLOW condition indicates the occurrence of a string
overflow.

The EOF condition occurs if there is not enough room to add the
record.

The IOERR condition is caused by hardware malfunction or other
conditions which prevent the writing of the record.

The error clauses interact with the ON condition statement as
described in "Exception Handling in I/O Statements" on page 84.

Example

100 WRITE 15, USING 110, REC=1234: FLDA,FLDB,FLDC&
& IOERR 500, EOF 600

110 FORM X 10,N5,X 10,N5,X 10,N5

In this example, a record with relative position 1234 is added to
the relative file associated with file reference number 5. The
record is 45 positions in length, with three numeric values each
preceded by ten blanks. If an end of file occurs, control would
pass to line 600. An IOERR exception would result in control being
transferred to line 500.

Statement Descriptions 259

IMMEDIATE STATEMENTS

In interactive mode, a user can enter a statement from the
terminal without a line number. In this case, the statement is
translated and processed immediately rather than stored away for
later execution.

Immediate statements can be used in "desk calculator" mode of
execution.

Immediate statements are also useful for program debugging.
During a breakpoint, when the program is executing in debugging
mode, any immediate statement can be entered. Thus, through
immediate statements, the user can inspect the values of program
variables at intermediate points during execution.

Not all statements may be executed immediately, and those that may
often have special semantics or restricted syntax. This section
identifies which statements can be used immediately and discusses
general rules for the use of immediate statements.

Specific rules for each statement are given under the heading
"Immediate Execution" as part of the individual statement
definitions in the section "Statement Descriptions" on page 88.

Statements that can be used immediately are:

DEBUG
DECIMAL
DIM
INTEGER
LET
MAT
PRINT
OPTION
RANDOMIZE
STOP
TRACE

You can execute an immediate statement anytime your session is in
command mode; command mode is signified by an asterisk prompt on
the terminal screen.

The user can continue immediate statements across more than one
input line; however, immediate stat~ments must be entered one at a
time. Multiple statements per line are not accepted.

260 IBM BASIC Application Programming: Language Reference

VARIABLES AND ARRAYS AND IMMEDIATE STATEMENTS

When a program is stopped at a breakpoint, the user can issue
immediate statements to display or change the values of the
program's variables and arrays.

Immediate statements may also use variables and arrays other than
those specifically stated in the program. In fact, a program may
be either suspended, ended, or not present (that is, the workspace
is empty) when an immediate statement is processed. These
"immediate variables" are created (attributes attached and
storage allocated) according to immediate declarations and
immediate options.

Example

OPTION BASE 1
INTEGER A
DIM A(20)

These three immediate statements create the immediate,
20-element, integer, array A.

The scope of an immediate variable is also the containing program
unit, which is defined as:

• The main program if the variable is created at any time other
than when at a subprogram breakpoint. This includes when you
are not at a breakpoint (the program is not running) or when
there is no program in the workspace.

• An instance of a subprogram if the variable is defined whiie
at a breakpoint in the subprogram. Note that in the case of
recursive calls, different instances of the same subprogram
may contain different immediate variables.

The only program variables that may be accessed at any given
breakpoint are the variables belonging to the containing program
unit--main program or subprogram.

For example, assume the main program contained the variables
ALPHA and BETA. The main program CALLs a subprogram named SUBI
which also contained a variable named BETA. The variable printed
by "PRINT BETA" would depend upon where execution was stopped, in
main or SUB!. Also, at a breakpoint in SUBl, "PRINT ALPHA" would
not access main's ALPHA, but would create an immediate ALPHA (and
print zero, the default initial value).

Subprogram variables (immediate and program) cease to exist when
the subprogram is exited. Main program variables continue to
exist after the program completes. In other words, after a program
has been executed, immediate statements may be used to inspect the
final values of the program variables.

Execution of any command or editing operation which changes the
program in the workspace causes IBM BASIC to drop all immediate
and program variables. In addition, the COMPILE, INITIALIZE, and
RUN commands cause all variables to be dropped (although RUN
causes another generation of program variables to come into
existence).

The DROP command explicikly ~moves immediate and program
variables. This may be necessary if the user wishes to attach new
attributes to an existing variable name. The old attributes must
be detached before the processor will accept a new declaration.

Immediate Statements 261

IMMEDIATE TYPE AND DIMENSIONS

Immediate DECIMAL and INTEGER statements set the type of
immediate variables, and immediate DIM statements give dimensions
for immediate arrays and establish maximum string lengths for
immediate character variables. These statements have the same
syntax rules as when they are used in a program, but they behave
slightly differently in immediate mode.

Immediate declarations have no effect on program variables
(variables used by the program). The attributes of the program
variables are completely determined by the program.

An immediate DECIMAL or INTEGER statement does not "create"
variables. It simply records that the specified identifiers
and/or first-letters are assigned a particular type. It is not
until a subsequent immediate statement (for example, LET) uses an
identifier in a context requiring a variable or array that the
type information is used. Because of this delayed action,
immediate type statements (DECIMAL or INTEGER) may contradict
previous immediate type statements and, if at a breakpoint,
program type statements. However, the new type declarations must
not explicitly (that is, by name) contradict a variable or array
that has already been created, either by the program or by
previous immediate statements.

Example

INTEGER ALPHA
LET ALPHA = 5
DECIMAL ALPHA

is an error; the LET statement created ALPHA with integer type.

INTEGER ALPHA
DECIMAL ALPHA
LET ALPHA = 5

is acceptable because ALPHA has not been created when the DECIMAL
statement is entered.

The first letter typing stated in immediate DECIMAL and INTEGER
statements may contradict both previous immediate first-letter
typing and program first-letter typing. The immediate
first-letter typing applies only to immediate variables and
arrays created subsequently.

Example

The program contains

100 INTEGER RED,(A-C)
110 RED=l
120 BLUE=2

when stopped at a breakpoint,

DECIMAL RED is an error

DECIMAL (B-D) is OK and has no effect on the integer program
variable BLUE.

An immediate DIM statement causes arrays and character variables
to be created. Type declarations must have preceded the DIM
statement.

Example

DIM GREEN (50)
INTEGER GREEN

is an error. GREEN is assigned decimal type (the default) as part
of the DIM statement.

262 IBM BASIC Application Programming: Language Reference

IMMEDIATE STATEnENT EXCEPTIONS

All exceptions generated by immediate statements are handled
according to the default actions (the SYSTEM actions in the ON
Condition statement). See "ON Condition Statement" on page 203.

ON Condition statements in the workspace have no effect upon
immediate statements. Nor can immediate PRINT statements contain
"err" clauses (which refer to lines in the workspace).

Immediate Statements 263

EDITING WITH LINE NUMBERS

THE WORKSPACE

One of the major features of· IBM BASIC is the ease wi th whi ch the
use~ can enter. update. and execute a program.

BASIC maintains the current program in an area called the
workspace--an area of storage reserved for a user's exclusive
use. The workspace can be given a name by using one of several
commands: FETCH. INITIALIZE, LOAD, or RENAME.

When you create a program it is entered, line by line, into the
workspace. When you log on, your workspace is empty.

You can enter program lines in your workspace either directly from
the terminal keyboard or, by using commands, from files in your
library. Each time you want to change a program, you must load
your program into your workspace so that those changes can be
made. You ask for the file that contains your program to be put
into your workspace by usi ng the LOAD command.

LOAD file-name

When you have made all of the changes you feel are necessary, you
can save the new version of the program in a file by using the
SAVE command. The workspace is the collection of information
which completely describes the program you are currently editing
and/or executing. This includes the program itself, the data
being acted upon. and other information concerning the status of
the program.

ENTERING PROGRAM LINES FROM THE TERMINAL

IBM BASIC indicates that a line entry is expected by displaying an
asterisk (M) on the terminal. Every program line begins with a
1 i ne number. The presence of ali ne number on an input 1 i ne
i denti fi es the 1 i ne as a program statement rather than a command
or immediate statement. Program statements require line numbers;
commands and immediate statements do not begin with numbers.

Program lines may be entered in any sequence. IBM BASIC
automatically accumulates them in the workspace and sorts them by
1 i ne number.

Every program 1 i ne begi ns wi th ali ne number; however each program
line may be composed of more than one physical line (the original
line plus its continuations). Each such physical line is a
separate record.

If you enter a continued record (ending with a continued ampersand
that is not part of a REM statement), IBM BASIC prompts for a
continuation record by displaying the leading continuation
ampersand.

REPLACING AND DELETING INDIVIDUAL LINES

Program lines already entered may be replaced by reentering the
line using the same line number.

Individual program lines already entered may be deleted by
entering only the line number.

~·2.'4 IBMBASIe .Appl i cat ion Programm i ng: language Reference

EDITING CONTINUATION RECORDS

A continuation record within a line can be referred to by its
record number. For example, if line 200 required four records to
complete, they would be numbered 200.0, 200.1, 200.2, and 200.3.
The number to the right of the decimal point indicates the
continuation record number.

This notation is not generally available in commands, such as
DELETE or LIST, which refer to entire lines, but may be used to
delete, replace, insert, and, in the second format of the CHANGE
command, change records as documented below. Continuation numbers
are never displayed.

DELETING CONTINUATION RECORDS

REPLACING RECORDS

A continuation record may be deleted by entering:

Ii ne-number. record-number

The record number must be greater than or equal to 1, and must
designate an existing record. If not, an error message is
displayed and the workspace is not changed.

Example

110.1

deletes the first continuation record of line 110.

A record may be replaced by entering:

line-number. record-number new-data

The record number must be greater than or equal to 0, and must
designate an existing record. If not, an error message is
displayed and the workspace is not changed.

If the last record of a line is replaced and the new record ends
with an ampersand and the line is syntactically correct up to that
point, the user is prompted for another continuation record with
an ampersand. Thi s allows the user to extend a Ii ne wi thout
creating meaningless error messages.

Example 1

150.3&, ORGANIZATION RELATIVE &

replaces the third continuation record of line 150 with

&,ORGANIZATION RELATIVE &

and prompts with 150.4&

Example 2

120.0 A = 2**B&

replaces the line number record with

120 A = 2**B&

In each example, IBM B~SIC then prompts for the next line with an
ampersand.

Editing with line Numbers 265

INSERTING CONTINUATION RECORDS

A new continuation record may be inserted by entering the initial
line segment number, a + sign, and the segment numba ... , as follows:

line-number+record-number new-data

The record-number must be greater than or equal to 1. If it is
not, an error message is di splayed and the workspace is not
changed.

If the record number is greater than the exi.sting number of
continuation records, then the new record is added after the last
record in the line.

If the inserted record is the last record of ali ne And it ends
with an ampersand 2nd the line is syntactically correct to that
point, the user is prompted for another continuation record with
an ampersand.

Example

150+3&, TYPE NATIVE &

inserts a record

&, TYPE NATIVE &

after the second cont i nuat i on record of li ne 150 and prompts wi th
an ampersand. The inserted record is then the third continuation
record.

266 IBM BASIC Applicati on Programmi ng: Language Reference

INSERTING CONTINUATION RECORDS

A new continuation record may be inserted by entering the initial
line segment number, a + sign, and the segment number, as follows:

line-number+record-number new-data

The record-number must be greater than or equal to 1. If it is
not, an error message is di splayed and the workspace is not
changed.

If the record number is greater than the existing number of
continuation records, then the new record is added after the last
record in the line.

If the inserted record is the last record of a line and it ends
wi th an ampersand and the line is syntacti cally correct to that
point, the user is prompted for another continuation record with
an ampersand.

Example

150+3&, TYPE NATIVE &

inserts a record

&, TYPE NATIVE &

after the second continuation record of line 150 and prompts with
an ampersand. The inserted record is then the third continuation
record.

266 IBM BASIC Application Programming: Language Reference

IBM BASIC COMMANDS

This section contains individual discussions of each interactive
command. The commands are presented in alphabetic order.

ABBREVIATION OF COMMANDS

All commands may be abbreviated, but only if the abbreviation is
unique. For example, the commands QUERY and QUIT can be
abbreviated as follows:

QUERY QUIT
QUER QUI
QUE

If either is abbreviated further, BASIC cannot determine which
command is meant.

Figure 41 lists each command with its shortest allowable
abbreviation.

The command description formats in the following section show the
minimum abbreviation for each command.

Command

AUTO
BREAK
CHANGE
COMPILE
COPY
DELETE
DROP
EXTRACT
FETCH
FIND
GO
HELP
INITIALIZE
lIST
lOAD
MERGE
PURGE
QUERY
QUIT
RENAME
RENUMBER
RUN
SAVE
SET lOG
SET MSG
STORE
SYSTEM

Abbreviation

AU
DR
CH
COM
COP
DE
DR
EX
FE
FI
GO
HE
IN
II
lO
ME
PU
QUE
QUI
RENA
RENU
RU
SA
SE lOG
SE MSG
ST
SY

Note: The minimum abbreviation is two characters

Figure 41. IBM BASIC Commands--Minimum Abbreviations

IBM BASIC Commands 267

CURRENT LINE

When one or more program lines exist in your workspace~ one of the
lines is considered the current line. The current line is
considered to be the point in the program at which you are
currently editing. It is used as the implicit operand for one form
of the CHANGE command and as a reference point for scrolling with
the LIST command.

Usually the current line is the last line entered. However,
commands that perform editing functions may modify the setting of
the current line. Those commands that change the current line are
noted in the following discussions.

268 IBM BASIC Application Programming: Language Reference

AUTO COMMAND

Description

AUTO Command

The AUTO command puts a terminal session into program line entry
mode.

Format

AUTO [line-number][STEP increment]

Minimum: AU

Where:

line-number
indicates the starting line number. The default is 100.

increment
is a nonzero, positive integer less than 9999999. The
default is 10.

In program line entry mode, the processor presumes the user is
entering consecutive lines of a program and prompts with line
numbers so that all the user need do is enter BASIC statements.

The first prompted line number is determined by the following
rules:

• If line-number is specified, the first prompted line is for
line-number.

• If line-number is not specified and the workspace is empty,
the first prompted line is for 100.

• If line-number is not specified and the workspace is not
empty, the first prompted line is equal to the highest line
number in the workspace plus the increment (or 10 if the
increment is not specified).

Subsequent line numbers are derived by adding the STEP increment,
if specified, or 10, the default, to the previous automatically
generated line number.

To terminate automatic line number prompting, enter the null line
(press the EHTER key after a new line number is displayed). The
null line does not become part of the program.

line number prompting is also terminated by the following error
conditions:

• The next line number to be prompted would be equal to an
existing line number in the workspace.

• An existing line number is greater than the last prompted line
number and less than the next prompted line number.

• The line-by-line syntax checker detects an error (the
associated syntax error message will be displayed).

• The next line number to be prompted would exceed the maximum
line number (9999999).

As lines are entered after the line number prompts, the most
recent becomes the current line.

IBM BASIC Commands 269

AUTO Command

AUTO 300 STEP 5

starts prompting with 300 and increments by S.

Example 2

AUTO

starts prompting at 100 and increments by 10, (if the workspace is
empty) .

Example 3

If the workspace currently contains the lines

100 A=B
110 C=D

then

AUTO

starts prompting at line 120 and increments by 10.

270 IBM BASIC Application Programming: Language Reference

BREAK COMMAND

Description

BREAK Command

The BREAK command sets, removes, and lists breakpoints within a
program.

Format 1

BREAK [ON] line-1 [,line-2] •..

Format 2

BREAK OFF [line-1 [,line-2] .••]

Format 3

BREAK?

Format 4

BREAK ?

Minimum: BR

Where:

line-n
specifies an actual line number.

A BREAK ON command causes execution to halt just prior to the line
specified. The BREAK ON command sets breakpoints at the indicated
line number.

The BREAK OFF command removes breakpoints. If no line numbers are
specified, all breakpoints are removed. If one or more line
numbers are specified, only those breakpoints are removed.

BREAK? or BREAK? lists all line numbers where breakpoints are
currently set. If no breakpoints are set, the message "NO
BREAKPOINTS" is displayed.

When a breakpoint is encountered during execution, execution is
suspended and a message is displayed indicating the line number.
Execution is suspended before the line is executed. You may then
use immediate statements and commands to inspect the values of
variables, set additional breakpoints, etc., before continuing
execution.

Execution can be resumed, if nothing is done while at the
breakpoint, by pressing the ENTER key or by issuing the GO
command.

If commands that do not alter the workspace program or immediate
statements have been executed, the GO command must be used to
resume execution.

If a command that alters the workspace program or a DROP command
that drops a program variable is executed, then execution of the
workspace program cannot be resumed.

A breakpoint remains in effe~t if:

• The line associated with the breakpoint is replaced by line
editing.

IBM BASIC Commands .271

BREAK Command

• The line associated with the breakpoint is renumbered
(RENUMBER command). It is the program line that has the
breakpoint, not the line number. The line numbers are used to
help point to the program line.

A breakpoint is automaticallY deleted if:

• The line associated with the breakpoint is deleted.

• The MERGE command replaces the line associated with the
breakpoint.

All breakpoints are deleted as part of INITIALIZE, LOAD, and FETCH
commands.

Example

If a breakpoint is set on line 100 as follows:

• BREAK ON 100

• Line 100 must exist at the time the breakpoint is set.

• If line 100 is deleted, the breakpoint is removed. If a new
line 100 is added later, line 100 does not have a breakpoint
set.

• If you replace line 100 by typing "100" followed by a new
statement, line 100 still has a breakpoint set.

• If the MERGE command replaces line 100, line 100 no longer has
a break point set.

• If RENUMBER changes line 100 to line 150, line 150 still has
a breakpoint set, but not the new line 100, if any.

The current line setting remains unchanged for a BREAK command.

Example 1

BREAK ON 200,300

sets breakpoints at lines 200 and 300.

Example 2

BREAK OFF 200

removes a breakpoint previously set for line 200. Note that the
break previously set for line 300 (example 1) remains in effect
until it is set OFF also.

272 IBM BASIC Application Programming: Language Reference

CHANGE Command--Format 1

CHANGE COMMAND--FORHAT 1

Description

The CHANGE command changes character strings within the
statements in your workspace. There are two formats of this
command. This section discusses the first format.

Format 1

CHANGE [start-line [TO end-line]]
delim old-string
delim new-string
[delim [A[ll]]]

Minimum: CH

Where:

start-line and end-line

delim

specify the scope of the command. They may also be specified
FIRST or F to refer to the lowest line number and lAST or l
to refer to the highest line number.

is a delimiter of the string. It must be a special character
(other than 0-9 or A-Z) including the space character such
that:

• delim is not contained in either old-string or
new-string.

• delim may be a space (or series of spaces) only if all
following conditions are true:

old-string does not start with a special character
or a digit (when start-line is omitted)

old-string is not FIRST, F, lAST, l (when start-line
is omitted)

old-string is not TO (when end-line is omitted but
start-line is specified).

old-string
is the character string to be changed.

new-string
is the new character string to replace the old string.

A or ALL
indicates that all occurrences of old-string are to be
replaced by new-string.

The CHANGE command specifies lines in the workspace to be changed.
All occurrences of old-string can be replaced by new-string (the
All option), or only the first occurrence in each line.

If no line numbers are given (no start-line or end-line), the
Current line is the line to be changed.

If only start-line is specified, it must be an actual line number
of your program, and only that line is changed.

If both start-line and end-line are specified they need not be
actual line numbers but must bracket at least one actual line; all
lines between start-line and end-line, inclusive, are changed.

IBM BASIC Commands 273

CHANGE Command-Format 1

If ALL is specified, all occurrences of old-string in each line of
the range are replaced by new-string. If ALL is not specified,
only the first occurrence in each line of the range is replaced.

The leading line numbers on each line are not considered part of
the line to be searched. Therefore you cannot change the line
number of a line, only the statements within the line.

Old-string cannot overlap continuation records.

Though the IBM BASIC language, except in character strings, does
not discern between upper and lower case, the CHANGE command finds
only new strings which exactly match old-strings.

If new-string is a null string (two successive delimiters>, the
effect is deletion of old-string.

If old-string is a null string, new-string is inserted
immediately after the blank character following the line number.

If old-string cannot be located,

"STRING NOT FOUND"

is di splayed.

When any change occurs, the new line is displayed. If more than
one line is being changed, all changed lines are displayed, and at
the end of all the changes, a count of the total number of lines
changed is displayed on your terminal.

Whenever a line is changed, the syntax of the new line is checked.
Consequently, error messages may appear along with the new line.

If a string replacement would result in a record longer than the
maximum allowed, the replacement is not made, a message is
displayed, and the CHANGE process ends at the affected line.

The leading and trailing ampersands on the records of a continued
line may be changed. This may result in syntax errors. Note that
all the records between one line number and the next are
associated with the first of the two line numbers, irrespective of
the records' contents. This means you can inadvertently remove a
leading or trailing continuation ampersand and still not lose the
following continuation records.

The current line is reset to the last line accessed by CHANGE, or
the last line in the range if a range of line numbers is
specified.

Example 1

CHANGE /DAYS/WEEKS/

The first occurrence of DAYS, on the current line, is changed to
WEEKS. If DAYS occurs again, either in the same line, or in any
other line, it remains unchanged.

Example 2

CHANGE 100 /DAYS/WEEKS/ALl

Every occurrence of DAYS, on line 100, is changed to WEEKS.

Example 3

CHANGE 100 TO 200/DAYS/WEEKS/ALL

All occurrences of DAYS, between lines 100 and 200 inclusive, are
changed to WEEKS.

274 IBM BASIC Application Programming: language Reference

CHANGE Command--Format 1

Example 4

CHANGE 100/DAYS//ALL

Delete all occurrences of DAYS found on line 100. The delete is
specified by providing two consecutive delimiters, (the null
string) for the new string.

Example 5

CHANGE //DAYS/

Inserts the word DAYS following the space after the line number of
the current line.

Example 6

CHANGE FIRST TO LAST/DAYS//ALL

Deletes all occurrences of DAYS from the workspace.

Example 7

CHANGE F TO 400/DAYS/WEEKS/

Change the first occurrence of DAYS to WEEKS in each line from the
first line in the workspace through the line numbered 400.

Example 8

CHANGE 400 TO LAST/DAYS/WEEKS/A

Change every occurrence of DAYS to WEEKS found from line 400
through the last line in the workspace.

Example 9

CH OLD NEW

Change the first occurrence of OLD to NEW in the current line.

IBM BASIC Commands 275

CHANGE Command--Format 2

CHANGE COMMAND--FORMAT 2

Description

The CHANGE command changes character strings within the
statements in your workspace. There are two formats of this
command. This section discusses the second format, which may be
used only with a 327X type terminal~

Format 2

CHANGE [line-number [.record number]]

Minimum: CH

Where:

line-number
identifies an existing line in the workspace. It is an
unsigned integer.

record number
identifies a particular record of a multi record line (a
continued line). It is an unsigned integer.

The second form of the CHANGE command does not perform string
replacement. It displays a particular record in the 327X terminal
input area that can then be modified and reentered.

If you enter a line number, that line is displayed in the input
area of the screen.

If you enter no line number, the current line is displayed in the
input area of the screen.

The record number is needed only if you are dealing with continued
lines and want to change a particular continuation record.
Individual continuation records of a line are numbered starting
with zero. Thus, line 250 itself can be considered line 250.0, and
the second continuation record (the third record of line 250) is
250.2.

As discussed for format 1 of CHANGE, the continuation ampersands
may be altered without loss of the record.

The line number of a changed line must not be changed. If it does
not agree, the modified record is rejected with an error message.

An error message is displayed if the terminal (for example, a hard
copy terminal) does not support the editing facilities.

The current line is reset to the line accessed by the CHANGE
command.

Example 1

If your program contains the line

200 LET DAYS = 52

you can recall this line to the screen with

CH 200

276 IBM BASIC Application Programming: Language Reference

CHANGE Command--Format 2

and then, using the terminal's editing keys, change it to

200 LET WEEKS = 52

and reenter the line in your workspace by pressing ENTER.

Example 2

If your program contains the line

100 OPEN 15: NAME "MYFILE" &
& ,ACCESS INPUT &
& ,TYPE NATIVE &
& ,ORGANIZATION KEYED &
& ,RECORDS FIXED &
& EXIT 9000

The third record (the one containing TYPE) can be brought to the
screen for editing by

CHANGE 100.2

IBM BASIC Commands 277

COMPILE Command

COMPILE COMMAND

Description

The COMPILE command compiles the program currently located in the
workspace.

Format

COMPILE [OBJECT (file-spec-l)]
[OUT (file-spec-2)]
[OPTIONS (option-list)]

Minimum: COM

Where:

file-spec-l and file-spec-2
are file names.

option-list
is a list of compiler option keywords. The choices are given
below.

The parameters OBJECT, OUT, and OPTIONS may appear in any order.

Execution of the COMPILE command is almost the same as the
execution of the batch IBM BASIC compiler, the only difference
being that COMPILE expects the source program in your workspace
instead of in a file.

OBJECT CLAUSE: The OBJECT clause specifies the file on which the
object text is to be placed. If omitted, the object text is placed
in your library under the name currently associated with the
workspace and a file type of TEXT.

OUT CLAUSE: The OUT clause directs the listing to a file. If
omitted, the listing is placed in your library under the name
currently associated with the workspace and a file type of
LISTING.

If both the OBJECT and OUT clause are omitted and the workspace
does not currently have a name, you are prompted for a name. You
must enter a name or cancel the command by entering a null line.

COMPILER OPTIONS: The following compiler options are available.
Each option is a keyword. The keywords must be separated by blanks
or commas.

Each option has a default; compile any program without specifying
any OPTIONS to discover the defaults in force for your
organization.

SOURCE - NOSOURCE
Specifies whether or not the source program listing is to be
written. This listing includes diagnostic error messages.
Most errors are indicated by listing the statement in its
original form with the erroneous phrases or characters
undermarked, followed by messages indicating the error type.
In addition, errors involving the flow of control, for
example, branches to undefined statement numbers, are listed
at the end of the program.

OBJECT - NOOBJECT
Specifies whether or not the object text is to be written.

278 IBM BASIC Application Programming: Language Reference

COMPILE Command

MAP - NOMAP
Specifies whether or not to produce an allocation map,
listing all the variables and subprograms used in each
program unit.

The listing is in three parts: COMMON variables, local
variables, and subprograms. Within each part, identifiers
are listed alphabetically with type, location, and (arrays
only) number of declared dimensions.

XREF - NOXREF
Specifies whether or not to produce a cross-reference
listing for variables, referenced line numbers, and
referenced statement labels.

This listing is in three parts in the following order:

1. Line numbers in numeric order

2. Line labels in alphabetic order

3. Variables, arrays, user-defined functions, and intrinsic
functions in alphabetic order

With each number, label, or variable listed are the line
numbers containing reference(s) to the item.

References to a statement label are followed by a colon.

References that may alter the value of the variable are
followed by an asterisk.

References which are declarations, for example, in an
INTEGER or COMMON statement, are followed by a slash.

LIST - NOLIST
Specifies whether or not to produce a listing of the object
module, consisting of assembler mnemonics and symbols. If
the SOURCE option is also specified, instructions are listed
directly after the source statement lines to which they
apply.

FLAG (!IWIEIS)
Specifies the level of diagnostic messages to be written.

FLAG(I) indlcates that information messages, warning
messages, error messages, and severe error messages are
to be printed.

FLAG(W) indicates that warning messages, error messages,
and severe error messages are to be printed.

FLAG(E) indicates that only error messages and severe
error messages are to be printed.

FLAGCS) indicates that only severe error messages are to
be printed.

FIPS - NOFIPS
Specifies whether or not to produce a diagnostic warning for
any statement found not to conform to the ANSI Minimal
Standard BASIC syntax.

These messages are informational and are printed only if
FLAGCI) is set, either explicitly or by default.

SPREe - LPREC
Specifies the maximum number of significant digits to be
written by the PRINT statement (without the USING clause)
when printing decimal values. SPREC specifies a precision of
6 digits. LPREC specifies a precision of 12 digits.

IBM BASIC Commands 279

COMPILE Command

Example 1

COMPILE OBJECT (MYOBJECT)

compi les the source code in your workspace and wri tes it to a fi Ie
named MYOBJ ECT .

Example 2

COMPILE OBJECT (MYOBJECT) OUT (LISTFILE)

compiles the source code in your workspace, writes it to a file
named MYOBJECT, and places the generated listing on the file named
LISTFILE.

280 IBM BASIC Application Programming: Language Reference

COpy COMMAND

Description

COpy Command

The COpy command causes one or more lines in the workspace to be
duplicated.

Format

COPY start-line [TO end-line] AT line-num
[STEP increment]

Where:

start-line
may be either a line number, the keyword F[IRST], or the
keyword L[AST1.

end-line
may be either a line number or the keyword L[AST]. End-line
must be greater than or equal to start-line.

line-num
is a line number.

increment
a nonzero, positive integer less than 9999999. The default
increment is 1.

The COPY command specifies the range of lines to be duplicated and
the new line numbers to which they are assigned.

If only start-line is specified, then a single program line is
copied and start-line must be an actual line number.

If a range, start-line TO end-line, is specified, all program
lines within the range are copied. If there are no lines within
the range, an error message is displayed.

If the COpy command would cause the new block of numbers to
overlay or duplicate existing line numbers, an error message is
displayed and the command is ignored.

If renumbering a reference causes a record to exceed the maximum
length, an error message is displayed and the command is ignored.

The current line is set to the last line copied.

AT CLAUSE: Line numbers are assigned to the copied lines by
assigning line-num to the first copied line and subsequent copied
lines are assigned line numbers by adding the STEP increment to
the previously assigned line number.

STEP OPTION: If the STEP option is specified, subsequent copied
lines are numbered based on the increment set by this parameter.

If within the block of copied lines, a statement refers to a line
within the block, that reference is adjusted to match the new
numbers. References from outside the block are not modified.

IBM BASIC Commands 281

COpy Command

Example 1

COpy 120 TO 170 AT 500 STEP 5

Copies the lines between 120 and 170, inclusively. The new lines
will start at 500 and be incremented by 5.

282 IBM BASIC Application Programming: language Reference

DELETE COMMAND

Description

DELETE Command

The DELETE command deletes the specified line, or group of lines,
from the workspace.

Format

DELETE start-line [TO end-line]
[,start-line [TO end-line]] •••

Minimum: DE

Where:

sta~t-line
may be either a line number, the keyword F[IRST], or the
keyword l[AST].

end-line
may be either a line number or the keyword l[AST]. End-line
must be greater than or equal to start-line.

When only start-line is specified, then start-line is deleted.
Start-line, in this case, must be an actual line number.

If a range, start-line TO end-line is specified then all lines
within the range, inclusive, are deleted.

A message for each range of lines and/or single line deleted will
be displayed upon completion of the command.

If a specified range or single line number does not exist (that
is, there are no lines within the range), a message is displayed
and the DELETE command is ignored.

The current line is set to the next line after the largest line
number deleted. If such a line does not exist, the current line is
set to the last line in the workspace.

Example 1

DELETE FIRST TO 130

deletes all lines up to and including 130.

Example 2

DELETE 100, 200 TO LAST

deletes line 100 and all lines after 199.

IBM BASIC Commands 283

DROP Command

DROP COMMAND

Description

The DROP command erases the specified variables.

Format

DROP [identifier [~identifier] •••]

Minimum: DR

Where:

identifier
can be any valid variable or array name.

The DROP command erases either immediate or program variables~
without resetting the entire workspace. This will also free the
variable name so that it may be reused. If DROP is used without a
variable list, all currently active variables are forgotten.

Erasing a program variable while execution is halted at a
breakpoint prohibits program continuation. The program must be
restarted at the beginning.

After the identifier is dropped, it may be redeclared in an
immediate statement, for example~ to change the type or number of
dimensions.

Example

DROP OlDVAR

Erases the variable OlDVAR~ leaving the rest of the workspace
unchanged.

284 IBM BASIC Application Programming: language Reference

EXTRACT COMMAND

Description

EXTRACT Command

The EXTRACT command removes all lines, other than those
specified, from the workspace.

Format

EXTRACT start-line [TO end-linel
[,start-line [TO end-linell •••

Minimum: EX

Where:

start-line
may be either a line number, the keyword F[IRSTl, or the
keyword L[ASTl.

end-line
may be either a line number or the keyword L[ASTl. End-line
must be greater than or equal to start-line.

If only start-line is specified, all program lines are deleted
from the workspace except start-line, and start-line must be an
actual line number.

If a range, start-line TO end-line, is specified, all program
lines, except those within the specified range, are deleted from
the workspace. Start-line and end-line need not be actual line
numbers.

A message for each successful range of lines and/or single line
extracted will be displayed upon completion of the command.

The current line is set to last program line in the workspace.

If a specified range or single line number does not exist (that
is, there are no lines within the range), a message is displayed
and the EXTRACT command is rejected.

Example 1

EXTRACT 115 TO 120

Deletes all lines before 115 and all lines after 120 from the
program, keeping lines 115 through 120.

Example 2

EXTRACT 115 TO 120, 125 TO 130

Deletes lines FIRST through 114, 121 through 124, and 131 through
LAST, keeping lines 115 through 120 and 125 through 130.

Example 3

EXTRACT FIRST TO LAST

Deletes no lines. The workspace is unchanged, except that the
current line is now the last line of the workspace.

IBM BASIC Commands 285

FETCH Command

FETCH COMMAND

Description

The FETCH command restores programs to the workspace.

Format

FETCH file-spec

Where:

file-spec
i s a f i I e name.

FETCH is used in conjunction with the STORE command. You can save
the contents of the workspace to a file by using the STORE
command, and later issue a FETCH command, causing your workspace
to be restored to the exact state it had prior to the STORE.

Unlike the LOAD command which scans and translates to internal
text, FETCH merely brings the program into storage. Individual
syntax errors are not reported, even if they exist. However, if
you attempt to run a program and it contains errors, you are
notified.

The program in the workspace previously, if any, is cleared as
part of FETCH. The file-spec becomes the name associated with the
workspace.

FETCH sets the current line to the last line in the workspace.

Example

STORE SAVEDATA

.
FETCH SAVEDATA

(See "STORE Command" on page 315.)

286 IBM BASIC Application Programming: Language Reference

FIND COMMAND

Description

FIND Command

The FIND command locates character strings within a program line,
or block of lines and displays the line number on the terminal.

Format

FIND [start-line [TO end-line]]
delim string [delim[A[LL]]]

Minimum: FI

Where:

start-line
may be either a line number, the keyword F[IRST], or the
keyword L[AST].

end-line

delim

may be either a line number or the keyword L[AST]. End-line
must be greater than or equal to start-line.

is a delimiter of the string. It must be a special character
(other than 0-9 or A-Z), including the space character, such
that:

1. delim is not contained in string.

2. delim may be a space (or series of spaces) only if string
does not start with a special character or a digit (when
start-line is omitted) and string is not FIRST, F, LAST,
L (when start-line is omitted) and string is not TO (when
end-line is omitted but start-line is specified).

string
is an exact representation of the character string you are
trying to find.

The range of the FIND command is determined by the following
rules:

• If neither start-line nor end-line is specified, the range is
assumed to be from FIRST to LAST.

• If only start-line is specified, the range is from start-line
to LAST.

• If both start-line and end-line are specified, the range is
from start-line to end-line.

If A[LL] is specified, all lines in the range that contain string
are displayed.

If A[LL] is not specified, the first line in the range containing
string is displayed.

The value of the current line at the completion of a FIND command
depends upon two conditions, the ALL option, and whether or not
the string is found:

• If ALL is specified, the current line is set to the last line
in the range, either end-line or LAST.

IBM BASIC Commands 287

FIND Command

• If All is not specified and the string is not found, the
current line is set to the last line in the range.

• If All is not specified and the string is found. the current
line is set to the line in which the string was found.

If the string is not found. the following message is displayed:

"STRING NOT FOUND"

The leading line number and following blank are not considered as
part of the line to be searched.

Example 1

FIND /THE END/All

Find and display every line with the occurrence of the string THE
END.

Example 2

FIND 100 TO ISO/THE END/

Find the first occurrence of THE END after line 99 and before line
151, and display that line on the screen.

Example 3

FIND /THE END/

Find and display the first occurrence of THE END.

288 IBM BASIC Application Programming: language Reference

GO COMMAND

Description

GO Command

The GO command restarts a program which has been temporarily
halted.

Format 1

GO [{line-numberIEND}][STEP]

Format 2

GO TO line-number

Minimum: GO

Where:

line-number
corresponds to an actual line number in the program.

T~e GO or GOTO command resumes execution.

Execution is suspended in a number of ways:

• The next line to be executed has been designated as a
breakpoint in a BREAK command

• Executing a BREAK statement

• Executing a PAUSE statement

• Executing an ATTENTION interrupt

If no line number is specified, execution will resume at the first
statement following the last program statement executed.
Execution sequence may be altered by specifying a different line
number with the command.

If you specify a line number it must be within the current program
unit. You cannot use the GO or GO TO commands to enter into or
exit from a subprogram. You must also take care that you do not
request an invalid entry or exit of:

• DEF/FNEND blocks

• FOR/NEXT blocks

• DO/LOOP blocks

• IF/CASE/END IF blocks

• SELECT/CASE/END SELECT blocks

which could cause unpredictable results.

GO END terminates the program and closes all files. You can use
this version of the command independently of the current program
unit. The keyword STEP may be specified with END, but has no
effect, that is, GO END STEP is the same as GO END.

The STEP keyword causes the program to execute one statement at a
time, displaying the line number of the next statement expected to
be executed. This is called a STEP prompt. Pressing the ENTER key

IBM BASIC Commands 289

GO Command

keeps the program in the STEP mode, executing one statement per
entry.

Exit from STEP mode can be done in one of these ways:

• A response to the step prompt with anything other than the
ENTER key, for example, with another command

• Program execution of a STOP, END, or BREAK statement

• Program generation of any exception that causes program
termination

In STEP mode, breakpoints set by the BREAK command remain in
effect but do not stop STEP mode.

Example 1

GO

continues execution.

Example 2

GO 500 STEP

continues execution in STEP mode at line 500

Example 3

GOTO 200

continues execution at line 200

Example 4

GO END

terminates program execution.

290 IBM BASIC Application Programming: language Reference

HELP COMMAND

Description

HELP Command

The HELP command displays information about IBM BASIC.

Format

HELP [request]

Mi ni mum: HE

Where:

request
is the name of a HELP panel.

The HELP command has two primary usages. The fi rst as a tutorial
device invokable any time you want a brief statement about a
particular aspect of writing IBM BASIC programs or using system
services. The second as a diagnostic aid to provide you with
explicit information on how to resolve a processor-noted error.

THE HELP TREE: The information displayed by HELP can be thought of
as a tree of panels. Each panel is either a mgny (points to other
panels) or is prose (a leaf of the tree). Each panel may have
several ~, in which each page is one full terminal display.
The tree contains panels describing all IBM BASIC commands,
statements, intrinsic functions, and diagnostics, as well as
tutorial discussions of how to use the interactive facilities and
how to write programs.

HELP MODE: HELP is a separate mode of interactive IBM BASIC. Once
you enter HELP mode (by executing a HELP command), you must use
HELP actions. The usual commands, line number editing, and
immediate statements are not accepted until you leave HELP mode
(by means of the HELP "CAN" action).

ENTERING HELP MODE: The HELP command causes the contents of your
screen to be saved (if you are using a display terminal) and the
first page of a HELP panel to be displayed. You are then in HELP
mode. Your original screen is restored when you exit HELP mode.

You may specify the name of the panel you wish to have displayed,
or you may enter "HELP" with no panel name. In the latter case,
the processor determines the panel to be displayed:

• If your entry of the HELP command was immediately preceded by
a diagnostic message, IBM BASIC assumes that you desire more
information concerning the diagnostic, and displays a panel
with that information.

• If the HELP command was not preceded by a diagnostic, a panel
describing how to use HELP is displayed.

THE HELP SCREEN: While in HELP mode, the top line and the bottom
two lines of a display terminal screen have a fixed format.

The top line identifies:

• BASIC HELP

• The current panel name

• "PAGE n OF m"

IBM BASIC Commands 291

HELP Command

The bottom line defines the correspondence between PF keys and
HELP act ions.

The next to the bottom line is the command line. It contains the
prompt "===>" to the left. HELP acti on keywords and panel names
are entered on this line.

HELP ACTIONS: Once in HELP mode, you may use HELP actions to view
the information in the HELP tree. These actions can be invoked by
the entry of keywords or, for those terminals which have them, PF
keys. (See Fi gure 42 for the PF keys that HELP uses.)

KeYI~ord PF Key Action

Panel name none Displays the first page of
the named panel. If there is
no panel for the name, an
error message is displayed on
the command line.

CAN PF12 Returns control to IBM BASIC
command mode. Exits HELP mode
(cancel).

HLP PFI Displays a panel which
explains how to use HELP.

PRV PF3 Restores the page of the
previous panel which was
being displayed when the
current panel was requested.
If there was no previous
panel, returns control to IBM
BASIC command mode (cancel).
Exits HELP mode.

SCF PF8 Advances to the next page of
the current panel (scroll
forward). If there is no next
page, an error message
appears on the command line.

SCB PF7 Goes back to the previous
page of the current panel
(scroll backward). If there
is no previous page, an error
message appears on the
command line.

PRT PF5 Prints all of the current
panel. The listing goes to a
file named (BASHELP) of type
listing. A message appears on
the command line when the
action is completed.

Figure 42. HELP--PF Keys Used

PRINTING ALL OR PART OF HELP: The PRT keyword (or PFS) may be used
to print the current panel. The listing goes to a file named
(BASHELP) of type listing.

The HELP command PRT MESSAGES may be used to print all the
messages which can be issued by interactive IBM BASIC. The
messages are printed to a file named (BASHELP) of type listing.

The help command PRT ALL may be used to print all the panels. The
panels are printed to a file named (BASHELP) of type listing.

292 IBM BASIC Application Programming: language Reference

HELP Command

HELP WITH HARD COPY TERMINALS: When you request a HELP panel on a
hard copy terminal, all of the designated panel is printed (all
pages). The SCF and SCB actions are ignored, because all pages are
printed at the same time.

Examp!e

HELP READ

disp!ays a pane! describing the READ statement.

IBM BASIC Commands 293

INITIALIZE Command

INITIALIZE COMMAND

Description

The INITIALIZE command closes all open files and clears the
workspace.

Format

INITIALIZE

Mi nimum: IN

Where:

file-spec

[fi Ie-spec]

is a fi Ie name whi ch may be suppl i ed to rename the current
workspace.

The workspace is cleared of all statements and data. If a filename
is specified, it becomes the name of the empty workspace,
otherwise the workspace is unnamed.

The state of the FIPS/NOFIPS and FLAG options are reset to the
system defaults (see immediate options). The workspace is cleared
of all statements and data.

The current line setting is undefined.

Example

INITIALIZE MYPROG

The empty workspace is named MYPROG.

294 IBM BASIC Application Programming: Language Reference

LIST COMMAND

Format 1 Description

LIST Command

The lIST command causes the text of the specified program lines to
be di splayed.

Format 1

lIST [XREFl [OUTCfile-spec)l
[line-number-range[,line-number-rangel ••• l

Format 2

lIST scroll-spec [nl

Mi ni mum: II

Where:

file-spec
i s a f i 1 e name.

line-number-range
specifies one or a range of line numbers in the form

start-line [TO end-linel

where start-line may be the keywords F[IRSTl or l[ASTl.
End-line may be specified as l[ASTl.

scroll-spec
is the keyword FOR[WARDl or the keyword BACK[WARDl.

n
is a positive, nonzero integer.

The XREF clause, OUT clause, and. line number ranges may appear in
any order.

The lIST command causes the text of the specified lines between
start-line and end-line, inclusively, to be displayed. If no line
numbers are specified, the entire workspace is displayed. If only
start-line is specified, only that line number is displayed.

Start-line and end-line need not be actual line numbers in the
workspace. If a request is made to list a nonexistent individual
1 i ne or a range of 1 i ne numbers whi ch does not include any 1 i nes,
an error message is displayed.

If the keyword XREF is specified, a cross-reference listing of the
program in your workspace is displayed. The listing is in three
parts:

1. Referenced line numbers in numeric sequence

2. line labels in alphabetic sequence

3. Variables, arrays, user-defined functions, and intrinsic
functions in alphabetic sequence

Each item displayed indicates all line number references to that
item:

• References to the line label are mar~ed by a colon.

IBM BASIC Commands 295

LIST Command

Format 2 Description

• References that may alter the value of a variable are marked
by an asterisk.

• References that are declarations, for example, in an INTEGER
or COMMON statement, are marked by a slash.

If you request a cross-reference of lines lying in more than one
program unit, each program unit is cross-referenced separately.
For example, if your workspace contains a main program followed by
a subprogram, the command LIST XREF first displays the main
program and its cross-reference listing and then displays the
subprogram and its cross-reference listing.

Normally the cross-reference listing is displayed at the
terminal. The OUT (file-spec) option may be used to direct output
to a file.

If the requested listing contains more lines than can be held on
the screen, the screen is filled and a message appears, requesting
you to continue or terminate the scrolling.

If you respond with a null line (press the ENTER key), the listing
continues to scroll until either the screen is full of new lines
or the LIST command completes execution.

This format of the LIST command sets the current line to the last
line listed.

To terminate the LIST command, respond with the attention
interrupt.

Example

LIST 110 TO 120

displays lines 110 through 120 of your program on the terminal.

Scroll-spec is specified as either of the keywords BACK[WARD] or
FOR[WARD1. Your program will be scrolled backward or forward from
the current line in pages of lines specified by n. If n is
omitted, 1 is assumed. A page of lines is the number of lines it
takes to fill your terminal screen.

This format of the LIST command sets the current line to the last
line listed.

Example

LIST FORWARD 2

Moves ahead two complete screens of program lines. In other words,
one screen (or page) is skipped.

296 IBM BASIC Application Programming: Language Reference

LOAD COttHAND

Description

LOAD Command

The LOAD command clears the workspace and loads a program from
your library.

Format

LOAD file-spec

Mi nimum: LO

Where:

file-spec
is the file name of the program to be loaded into the
workspace.

When the LOAD command is executed, the workspace is cleared and
the program in the file named in the command is loaded into the
workspace.

Line-by-line syntax checking is performed. If any syntax errors
are encountered, the lines in error and error messages are
displayed. Syntax errors do not halt execution of the LOAD
command.

After the file is loaded, the name of the program in the workspace
is the fi Ie-spec used in the command.

The current line is set to the last line in the workspace.

If the specified file name is not a valid name or cannot be found,
an error message is displayed. The workspace, the program name,
and the current line setting remain unchanged.

LOAD is used in conjunction with the SAVE command. See "SAVE
Command" on page 311.

Example

LOAD FILEUPDT

loads a program from a file named FILEUPDTi the name of the
workspace is set to FILEUPDT.

IBM BASIC Commands 297

MERGE Command

MERGE COMMAND

Description

The MERGE command inserts statements from files into the program
currently in the workspace.

Format

MERGE file-spec [start-line][TO end-line]
[AT line-number] [STEP increment]
[(REPLACE[)]]

Mi nimum: ME

Where:

file-spec
i s a f i 1 e name.

start-line and end-line
are line numbers which specify a range of lines in the file
to be merged. Start-line may be specified as F[IRST] or
L[AST]. End-line may be specified as L[AST].

line-number
is ali ne number whi ch is assi gned to the fi rst merged 1 i ne,
if speci fi ed.

increment
is a positive, nonzero integer less than 9999999.

The AT and STEP clauses may be interchanged.

The MERGE command retri eves a sequence of statements from a fi Ie
and inserts it starting at a specific line number in the
workspace.

Start-line and/or end-line specify which lines from the file are
to be merged; they need not be actual line numbers in the file.
Start-line defaults to FIRST. End-line defaults to LAST. Thus, if
you omit both start-line and end-line, the entire file (FIRST TO
LAST) is merged. The merged lines are renumbered according to the
AT and step parameters.

AT CLAUSE: The AT clause specifies where the merged lines should
go in the workspace. It gi ves the 1 i ne-number to be assi gned to
the first merged line. If the AT clause is omitted, it defaults to
the first line number of the merged lines (the line number it has
in the file).

STEP CLAUSE: The STEP clause indicates how the merged lines are
renumbered. The increment between any two successive merged lines
is as speci fi ed by the STEP clause, or, if you ami t the STEP
clause, the increment is that which existed between those two
lines in the file.

If within the block of merged lines a statement refers to a line
within the block, that reference will be renumbered, accordingly.

REPLACE CLAUSE: The REPLACE clause allows replacement of exi sti ng
1 i nes in the workspace. I f any current lines are wi thi n the block
of merged lines, and REPLACE is not specified, the merge does not
take place. However, if REPLACE is specified, the merge takes
place and the current program lines falling within the block of
merged lines are deleted.

298 IBM BASIC Application Programming: Language Reference

The current line is set to the last line merged.

Example 1

MERGE FILEA 350 TO 400 AT 350 STEP 5 (REPLACE)

MERGE Command

Copies lines 350 to 400 from FILEA to the workspace renumbering
them starting with 350 and incrementing by 5. If any existing
lines are within the range of the merged lines# the old lines are
deleted.

Example 2

If FILEA contains the lines

100 A = B
150 D = C
200 PRINT A#D

then

MERGE FILEA 100 TO 200

Inserts lines 100# 150 and 200 from FIlEA in the program currently
in the workspace# but does not renumber them and does not replace
any lines in the workspace.

Example 3

MERGE FIlEA 350 TO 400 AT 300

Insert lines 350 to 400 from FILEA (the merging program) into the
workspace starting at line 300. The merged lines are renumbered
from 300 on with the increment the same as in FILEA# but no
statements in the merged section are replaced.

Example 4

If the contents of FIlEA are:

500 KEY_ERRORS: EXIT DUPKEY 510# NOKEY 510
510 PRINT "KEY ERROR.lINE";lINE;"#FIlEI";FILENUM
520 CONTINUE

and the contents of the workspace are:

.
100 READ 111, USING 310: NAME$,ADDRESS$ EXIT KEY_ERRORS
210 FORM C18,C40

MERGE FILEA 500 to 520 AT 202 STEP 2

IBM BASIC Commands 299

MERGE Command

will change the workspace to:

.
100 READ 111, USING 210: NAME$,ADDRESS$ EXIT KEY_ERRORS
202 KEY_ERRORS: EXIT DUPKEY 204, NOKEY 204
204 PRINT "KEY ERROR.lINE";LINE;",FILEI";FILENUM
206 CONTINUE
210 FORM C18,C40

300 IBM BASIC Application Programming: Language Reference

PURGE COMMAND

Description

PURGE Command

The PURGE command removes files from your library.

Format

PURGE file-spec

Minimum: PU

Where:

file-spec
is a filename.

The PURGE command deletes all files named file-spec from your
library. Thi s may be more than one fi Ie if several fi les exi st
with the same filename but different file types. The types of
files that may be removed are source, object, internal text,
listing, or program data.

Example

PURGE YOURFILE

Removes the file YOURFILE from your program library and makes the
space it occupied available for use by another file. The file is
no longer available for processing, and must be rewritten if
access to it is required.

IBM BASIC Commands 301

QUERY Command

QUERY COMMAND

Description

The QUERY command permits interrogation of your user files.

Format

QUERY [file-type] [file-spec-ll
[OUT(file-spec-2)]

Minimum: QUE

Where:

file-type
is one of the following keywords:

ALL
FILE
PROG[RAM]
WORK[SPACE]

file-spec-l and file-spec-2
are fi Ie names.

The QUERY command obtains information about one or more files in
your 1 i brary.

FILE-TYPE: The file-type is a keyword indicating the kind of files
about which you want information:

ALL means all types. Thi sis the default if no keyword is
given.

PROGRAM means source program files, those created by the SAVE
command.

FILE means data fi les created by or for your programs.

WORKSPACE means program files, created by the STORE command.

FILE-SPEC-l: If you specify a particular file (file-spec-l) only,
information regarding the requested types of files having that
particular name is displayed. If no file-spec-l is stated, all
files of the requested types are displayed.

OUT (FILE-SPEC-2): Normally the requested data are displayed at
the terminal but may be directed to a list file (file-spec-2) by
usi ng the OUT opti on.

Information on using the QUERY command is given in IBM BASIC
Application Programming: System Services.

Example 1

QUERY PROGRAM

Obtains information about all source program files in your
libra~y.

Example 2

QUERY TEST

302 IBM BASIC Application Programming: Language Reference

QUERY Command

Obtains information about all files of all types with a filename
of TEST in your library.

Example 3

QUERY WORK

Obtains information about all of the program files in your library
(those created by a STORE command).

Example 4

QUERY

Obtains information about all files of all types in your library.

IBM BASIC Commands 303

QUIT Command

QUIT COMMAND

Description

The QUIT command ends the current BASIC session.

Format

QUIT

Mi nimum: QUI

The QUIT command closes all open fi les, clears the workspace of
all programs and data, and exits from BASIC.

If the program in the workspace should be saved, then a SAVE or
STORE commands should be executed before the QUIT command.

Example

SAVE MYPROG
QUIT

or

STORE MYPROG
QUIT

304 IBM BASIC Application Programming: language Reference

RENAME COMMAND

Description

RENAME Command

The RENAME command either assigns a name to the program in your
workspace or displays the current name associated with your
workspace.

Format

RENAME [file-spec]

Where:

file-spec
is a filename.

The name of the workspace is changed to file-spec. If file-spec is
not specified, the current name of the workspace is displayed.

If the workspace is unnamed, you are notified.

In response to the displayed name, a new name may be assigned by
entering the new name. If a null line is entered, the name is
unchanged.

If the workspace is named, and a file-spec is not specified, the
following prompt is issued:

ENTER WORKSPACE NAME (NULL LINE FOR NO CHANGE):

The terminal user can then type in the new name.

When the new name is specified, the following message is issued:

'XXXXX' IS THE WORKSPACE NAME

(where XXXXX is the new name supplied).

If the workspace is unnamed, and a file-spec is not specified,
this prompt message is issued. If the terminal user does not then
enter a name, the following message is issued:

THE WORKSPACE DOES NOT HAVE A NAME

Example

RENAME NEWFILE

changes the name of the workspace to NEWFILE.

IBM BASIC Commands 305

RENUMBER Command

RENUMBER COMMAND

Description

The RENUMBER command changes some or all of the existing line
numbers of the program in the workspace.

Format

RENUMBER [start-line [TO end-line]] AT line-number]
[STEP increment]

Minimum: RENU

Where:

start-line
may be a line number, the keyword F[IRST], or the keyword
L[AST1.

end-line
may be either a line number or the keyword L[AST1. End-line
must be greater than or equal to start-line.

line-number
is a line number. The default is 100.

increment
is a nonzero, positive integer less than 9999999. The
default increment is 10.

The AT and STEP clauses may be interchanged.

If only start-line is specified, then a single line is renumbered
and start-line must represent an actual line number.

When a range, start-line TO end-line, is specified, all program
lines within the range, inclusive, are renumbered. In this case,
start-line and end-line need not be actual line numbers but, if
they do not bracket any actual lines, an error message is
displayed. The default range FIRST TO LAST is used if no range is
specified.

AT LINE-NUMBER: When AT line-number is specified, line numbers
are assigned to the program lines within the specified range by
assigning line-number to the first program line within the range.

STEP INCREMENT: When STEP increment is specified, line numbers
are assigned to the program lines within the specified range by
assigning line numbers to program lines within that range by
adding the STEP increment to the previously renumbered program
line.

All line number references affected by the renumbering ara
changed to agree with the new line numbers.

The current line setting is unchanged; however, it may have a new
line number associated with it.

The RENUMBER command issues an error message for the following:

• Renumbering would cause the overlap of line numbers outside
the range specified.

• Renumbering would generate a line number that would exceed
the maximum legal line number (9999999).

306 IBM BASIC Application Programming: Language Reference

RENUMBER Command

• Renumbering would resolve previously unresolved line number
references.

• Renumbering would cause a record to exceed the maximum record
length.

Example 1

RENUMBER 180 TO LAST AT 120 STEP 5

Renumber the lines from 180 to the end, start with 120 and
increment by s.
Example 2

RENUMBER

Renumber the entire file currently in the workspace, start with
100 and increment by 10.

IBM BASIC Commands 307

RUN Command

RUN COMMAND

General Description

Format 1 Description

The RUN command initiates execution of a program, starting with
the lowest numbered statement.

Format 1

RUN [file-spec] [([SOURCE][SPRECILPREC][)]][STEP]

Format 2

RUN file-spec (OBJECT)

Mi ni mum: RU

Where:

file-spec
isafilename.

If file-spec is specified, the specified program is loaded into
the workspace as if the command

LOAD file-spec

had been executed (see "LOAD Command" on page 297).

Execution is then initiated starting with the lowest numbered
line in the workspace.

If file-spec is not specified, the workspace is unchanged.

SOURCE OPTION: SOURCE designates execution of a program in the
workspace. If the optional keyword SOURCE is not specified,
SOURCE is assumed.

SPREe AND LPREC OPTIONS: These options determine the maximum
number of digits displayed when the program prints unformatted
decimal values:

SPREC

LPREC

6 digits are displayed. This is the default, as shipped by
IBM, which may be overridden by an OPTION statement
within the program.

12 digits are displayed.

If neither SPREC nor LPREC is specified, the default is used.
Check with your system administrator for t~e default value in
force for your organization.

STEP OPTION: The STEP option specifies execution in the step mode.
In the step mode, processing halts before executing each
statement (including the first) and displays the line number.
Thus, you are allowed to interact with the processor between
statements.

After processing halts, pressing the EHTER key causes the next
statement to be executed and keeps the program in step mode.

308 IBM BASIC Application Programming: Language Reference

RUN Command

There are three ways to exit from STEP mode:

• Response to the step prompt with anything other than the ENTER
key, for example, another command. (See "GO Command" on page
289 to continue execution.)

• The program executes a STOP, END, or BREAK statement.

• The program generates an exception that terminates program
execution.

Stepping ignores function references. If you are stepping across
a statement which refers to a multiline function (DEF/FNEND
block), all of the function statemehts are executed as part of the
step. However, if the function contains a line which has been
designated as a breakpoint by the BREAK command, or if an
attention interrupt with SYSTEM action occurs while executing a
multiline function, a break occurs in the function, but stepping
mode at the level of the referencing statement is not terminated.

The RUN command initializes the values of all variables, arrays,
and ON condition actions. Numeric variables and arrays are set to
zero. Character variables and arrays are set to the null string.
ON condition actions are set to SYSTEM. All files are closed.
Immediate variables are dropped. The STEP option can be used to
halt just after this initialization has been done and before the
first statement is executed. Immediate LET statements can then be
used to initialize variables to other values before continuing
execution with the GO command.

Example 1

RUN (SPREe) STEP

Initiates execution of the program in the workspace in the STEP
mode with short precision printing of unformatted numerics
(maximum of six decimal digits).

Example 2

RUN MYFILE (LPREC)

Loads the source code of the program named MYFILE into the
workspace and executes it with long precision printing of
unformatted numerics (maximum of twelve decimal digits).

Example 3

RUN PROGA

Loads the program named PROGA in the workspace and executes it.

Example 4

RUN MYFILE (SOURCE LPREC)

This format is also used to bring a specified program into the
workspace and begin execution. It is equivalent to a LOAD command
followed by a RUN command with no file-spec.

RUN TESTPROG STEP

is equivalent to

LOAD TESTPROG
RUN STEP

Note that the prior contents of your workspace are lost (see "LOAD
Command" on page 297).

The program lines are checked for proper syntax as they are
brought into the workspace and error messages are displayed.

IBM BASIC Commands 309

RUN Command

Format 2 Description

The second form of the RUN command executes a program that has
been previously compiled and exists as an object module in your
library. The step mode is not available, and SPREC and LPREC are
as specified when the program was compiled.

The workspace is cleared, and the named object module is loaded
and executed.

The RUN command initializes the values of all variables, arrays,
and ON condition actions. The values of all numeric variables and
arrays are set to zero. Character variables and arrays are set to
the null string. ON condition actions are set to SYSTEM. All files
are closed. Immediate variables are dropped. After the object
module has been executed, the object module is cleared from the
workspace, and the workspace does not have a name.

Example

RUN MYFILE (OBJECT)

Clears the workspace and executes the object module named MYFILE.
The workspace is cleared after executing the object module.

310 IBM BASIC Application Programming: Language Reference

SAVE COMMAND

Description

SAVE Command

The SAVE command copies the program in the workspace to a file.

Format

SAVE [file-spec][CREPLACE[)]]

Minimum: SA

Where:

file-spec
is a fi Ie name.

The program lines in your workspace are written to a file in line
number sequence. The fileis determined as follows:

• File-spec, if specified.

• If the workspace has a name associ ated wi th it C set by the
FETCH, LOAD, INITIALIZE, RENAME, and RUN commands), that name
is prompted. You may accept it by responding with the ENTER
key, or supply a different name before pressing ENTER.

• If the workspace does not have a name, you are requested to
enter a name. You may supply a name or cancel the command by
entering a null line.

If the name entered, either as part of the SAVE command or in
response to a prompt, is equal to the current name of the
workspace, the workspace is saved to the file whether it exists
already or not. The keyword REPLACE is unnecessary and is ignored
if present.

If a file name other than the one currently naming your workspace
is to be saved, you must explicitly state that an existing file is
to be replaced. This may be done in two ways; either by the
REPLACE keyword or, if REPLACE is not used, a YES response to a
message asking if the file should be replaced. If REPLACE is
specified and the file does not already exist, an information
message is displayed and the file is saved.

Note that the workspace name is not changed.

Example 1

SAVE PROGA

Writes PROGA from the workspace to your library. A diagnostic is
displayed if PROGA already exists in your library.

Example 2

SAVE PROGB (REPLACE)

Replace~ the old version of PROGB in y~ur library with the new
version of PROGB.

An informational diagnostic is displayed if no old version of
PROGB exists, and the REPLACE parameter is specified.

IBM BASIC Commands 311

SET LOG Command

SET LOG COMMAND

Description

The SET LOG command activates or deactivates logging of the BASIC
dialog with the terminal. This command may be used only in the CMS
environment.

Format

SET LOG {[ON][OUT (file-spec)]IOFF)

Minimum: SE LOG

Where:

file-spec
i s a f i 1 e name.

SET LOG controls logging of activity at the terminal. "SET LOG ON"
activates logging, and "SET LOG OFF" deactivates logging. While
logging is active, copies of lines written to the terminal as well
as lines read from the terminal are recorded, in the order they
occur, to a file.

The logging file is determined by the OUT clause. If an OUT clause
is not specified, the default for file-spec is BASLOG. See IBM
BASIC Applications Programming: System Services for details of
fi Ie types.

If none of the parameter keywords are speci fi ed, ON is assumed.
Thus "SET LOG" is synonymous with "SET LOG ON".

The log records all terminal input/output with the following
exceptions:

• Execution of PRINT FIELDS and INPUT FIELDS are not logged.

• HELP mode is not logged. Se~ "HELP Command" on page 291.

• CMS commands are not logged. This includes output from CMS
commands and all dialog while in the CMS subset mode. See
"SYSTEM Command" on page 317.

Consecutive SET LOG ON commands without an intervening SET LOG OFF
are not accepted. The second results in an error message. SET LOG
OFF when logging is not "on" also results in an error message.

Each SET LOG ON command with an OUT clause erases the current
contents of the specified logging file before initiating logging.

The default file BAS LOG is erased by the first SET LOG ON command
in a BASIC session, but not by subsequent SET LOG ON commands.
Thus, logging to this file may be turned on and off repeatedly
without loss of previous output.

312 IBM BASIC Application Programming: Language Reference

SET MSG COMMAND

Description

SET MSG Command

The SET MSG command controls the content of error messages
displayed at the terminal.

Format

SET MSG C{IIWIEIS}){AllITEXT}

Minimum: SE MSG

The SET MSG command controls how error message are displayed. A
complete message consists of two parts:

1. Codes. This is a 9-character string.

The first 3 characters are "BAS", for messages produced by the
BASIC Processor, or "BlI", for messages produced by the
Library.

The next 5 characters uniquely define the message.

The final character of the codes indicates the severity level
of the message:

I informative

W warning

E error with corrective assumption

S error with no corrective assumption

2. Text. This is a variable number of characters which explain
the reason for the message.

When All is in effect, both the codes and the text are
displayed at the terminal.

Example

SET MSGCS) ALL

is in effect, and an attempt is made at line 20 to access an array
element with a subscript that is larger than the corresponding
array dimension, the following message is displayed:

BLI02001S LINE 20. SUBSCRIPT OUT OF BOUNDS. PROGRAM EXECUTION
TERMINATED.

When TEXT is in effect, only the text portion of the message is
displayed at the terminal.

Example

If prior to the above error, the following SET command is entered.

SET MSGCS) TEXT

the following message is displayed:

lINE 20. SUBSCRIPT OUT OF BOUNDS. PROGRAM EXECUTION TERMINATED.

The SET MSG command controls messages displayed at the terminal,
not messages written to a listing file as a result of a COMPILE
command. listing messages always include codes.

IBM BASIC Commands 313

SET "SG Command

The default settings for the four message levels are determined as
part of the BASIC installation procedure. As the product is
distributed by IBM:

• I level messages are TEXT

• W. E. and S level messages are ALL

314 IBM BASIC Application Programming: Language Reference

STORE COMMAND

Description

STORE Command

The STORE command places the program currently in the workspace
(the source program along with internal representation of the
program) into a file.

Format

STORE [file-spec][CREPLACE[)]]

Minimum: ST

Where:

file-spec
is a file name.

The workspace placed in the file is determined by:

• File-spec, if specified in the STORE command.

• If the workspace currently has a name, that name is displayed
as a prompt. You may either accept the displayed name by
pressing ENTER or enter a new name and then press ENTER.

• If your workspace does not have a name, you are asked to enter
a name. A null response in this case cancels the STORE
command.

If the name entered, either as part of the STORE command or in
response to a prompt, is equal to the current name of the
workspace, the file is stored whether it already exists or not.
The keyword REPLACE is unnecessary and is ignored if present.

If the name is not the current name of the workspace, you must
explicitly state that an existing file is to be replaced. This may
be done either by the REPLACE keyword in the command or, if the
keyword is not used, an affirmative response to an IBM BASIC
message asking if the file should be replaced.

If REPLACE is specified and the file does not already exist, the
file is stored and you are notified by display.

Files created by the STORE command may be reloaded in the
workspace with the FETCH command. (See "FETCH Command" on page
286.)

Example 1

STORE MYFILE

Write the contents of the workspace to MYFILE.

If MYFILE already exists and the name currently associated with
the workspace is not MYFILE, the REPLACE parameter must be
specified, or a diagnostic is issued asking you if you really want
to replace the file.

Example 2

STORE MYFILE (REPLACE)

IBM BASIC Comm~nds ~15

STORE Command

Will replace the old version of MYFIlE with the new one. When you
are ready to continue processing MYFIlE, it may be reloaded into
the" workspace by executing a FETCH command.

316 IBM BASIC Application Programming: language Refere~ce

SYSTEM COMMAND

Description

SYSTEM Command

The SYSTEM command executes a CMS SUBSET command or enters CMS
SUBSET mode. This command may be used only in the CMS environment.

Format

SYSTEM ["ems-command"]

Minimum: SY

Where:

ems-command
is one of the CMS SUBSET commands.

If "ems command" is included, it must be one of the CMS SUBSET
commands in exactly the form used when CMS is in control. (See CMS
Command and Macro Reference for a description of these commands:ll
Thi s allows you to execute a si ngle CMS command as though it were
an IBM BASIC command. Be careful when using these commands; some
of them can adversely affect your BASIC terminal session.
Fi gure 43 lists the CMS subset commands.

eMS Nucleus-Resident Commands

CP GENMOD START
DEBUG INCLUDE STATE
ERASE LOAD STATEW
FETCH LOADMOD

CMS Transient-Area Commands

ACCESS HELP RELEASE
ASSGN LISTFILE RENAME
COMPARE MODMAP SET
DISK OPTION SVCTRACE
DLBL PRINT SYNONYM
FILEDEF PUNCH TAPE
GENDIRT QUERY TYPE
GLOBAL READCARD

Fi gure 43. ·SYSTEM Command-Val i d CMS Subset Commands

If the command is rejected by CMS, an error message is displayed.
If it causes a CMS screen display (for example, LISTFILE), the
BASIC screen is cleared, the CMS screen appears, and the BASIC
screen is restored upon completion of the CMS command.

If ju~t the keyword SYSTEM is entered, the BASIC environment is
temporarily suspended and the CMS SUBSET environment is entered.
The BASIC screen is erased and a CMS screen is displayed with a
RUNNING status. While in the CMS SUBSET environment, any CMS
commands which run in the transient area may be issued.

IBM BASIC Commands 317

SYSTEM Command

To return to BASIC from the CMS SUBSET environment, enter the eMS
SUBSET command, RETURN. The BASIC screen as it existed at the time
the SYSTEM command was entered is restored.

For further details, see the IBM BASIC Application Programming:
System Services manual.

Example 1

SYSTEM

enters CMS subset mode.

Example 2

SYSTEM "LIST * BASIC *"
The system takes over the screen and displays all the files of
type BASIC.

-
318 IBM BASIC Application Programming: Language Reference

APPENDIX A. EXCEPTION CODES

The follow; ng table speci fi es the values of the; ntr; nS1 c
function ERR. Less severe exceptions (those whose SYSTEM action
does not halt the program) are denoted by underlined codes. A
negative value indicates that the exception is not part of the
emerging ANS BASIC Standard. The ON statement condition (ON) and
EXIT statement condition (EXIT) of each exception code are
defined following the error function.

OVERFLOW (1000)

1001 Overflow in evaluating numeric constant.

1002 Overflow in evaluating numeric expression.

1003 Overflow in evaluating numeric intrinsic function.

1004 Overflow in evaluating VAL function.

1005 Overflow in evaluating numeric array expression.

1006 Overflow in numeric datum for (MAT) READ.

1007 Overflow in numeric datum for (MAT) INPUT.

1008 Overflow in numeric datum for (MAT) FILE INPUT.

-1009 Underflow in numeric datum for (MAT) READ.

-1010 Underflow in evaluating numeri,c expression.

-!!!! Underflow in numeric datum for (MAT) INPUT.

-1012. Underflow in evaluating VAL function.

-1013 Underflow in numeric datum f9r (MAT) file INPUT.

-1014 Overflow in numeric datum for INPUT FIELDS.

-1015 Underflow in numeric datum for INPUT FIELDS.

1051 Overflow in evaluating character expression.

1052 Overflow in evaluating character array expression.

1053 Overflow in character datum for (MAT) READ.

1054 Overflow in character datum for (MAT) INPUT.

1055 Overflow in character datum for (MAT) WRITE.

-1056 Overflow in character datum for INPUT FIELDS.

-1057 Overflow in character datum for PRINT FIELDS.

-1058 Overflow in character datum for (MAT) LINE INPUT.

-1059 Overflow in character datum for (MAT) file INPUT.

ON

OFLOW

OFLOW

OFLOW

OFLOW

OFLOW

OFLOW

OFLOW

OFLOW

UFLOW

UFLOW

UFLOW

UFLOW

UFLOW

OFLOW

UFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

EXIT

none

none

none

none

none

none

none

none

none

none

none

none

none

none

none

SOFLOW

SOFLOW

SOFLOW

SOFLOW

SOFLOW

none

none

SOFLOW

SOFLOW

Appendix A. Exception Codes 319

SUBSCRIPT ERRORS (2000) ON

ERROR

ERROR

ERROR

2001

2002

-2003

Subscript out of bounds.

Redimension index less than subscript lower bound.

Wrong number of subscripts.

MATHEMATICAL ERRORS (3000) ON

ZDIV

ERROR

ZDIV

ERROR

ERROR

ZDIV

ERROR

ERROR

ERROR

ERROR

3001

3002

3003

3004

3005

3006

3007

-3008

-3009

-3010

Division by zero.

Negative n~mber raised to nonintegral power.

Zero raised to negative power.

Logarithm of zer~ or negative number.

Square root of negative number.

Zero divisor specified for MOD or REM.

Argument of ACOS or ASIN not in range -1 to +1.

Absolute value of argument not less than PI*2**50.

Argument approaches a singularity.

Absolute value of argument not less than 175.366.

PARAMETER ERRORS (4000) ON

4001

4002

4003

4004

4005

4006

-4007

-4008

-4101

-4102

-4103

-4104

Argument of VAL not a character representation of a CONY
numeric constant.

Argument of CHR$ out of range. ERROR

Argument of ORD not a character or mnemonic. ERROR

Invalid index specified for size. ERROR

Index in TAB less than one. ERROR

Negative index for margin setting. ERROR

Argument of DAT$ or JDY out of range. ERROR

Argument of POS less than left margin. ERROR

Common definitions do not match. ERROR

CHAIN/USE parameter type mismatch. ERROR

Subrouti ne parameter type mi smatch. ERROR

Function parameter type mismatch. ERROR

STORAGE EXHAUSTED ERRORS (5000) ON

5001

-5003

-5004

Size of redimensioned array too large. ERROR

Insufficient storage for intermediate character ERROR
result.

Insufficient storage for intermediate array result. ERROR

320 IBM BASIC Application Programming: Language Reference

, EXIT

none

none

none

EXIT

none

none

none

none

none

none

none

none

none

none

EXIT

none

none

none

none

none

none

none

none

none

none

none

none

EXIT

none

none

none

STORAGE EXHAUSTED ERRORS (5000)

-5005

-5006

-5007

-5008

-5009

Insufficient storage for I/O buffer.

Insufficient storage to execute GOSUB or CAll.

Insufficient storage to preserve CHAIN data.

Insufficient storage for user data area.

Insufficient storage for COMMON data area.

MATRIX ERRORS (6000)

6001

6002

6003

6004

6005

-6006

-6007

-6008

-6009

6101

Mismatched dimensions in numeric array expression.

Argument of DET is not a square matrix.

Reference to DET without argument prior to INV.

Argument of INV is not a square matrix.

Argument to IDN does not specify a square matrix.

Array argument of AIDX or DIDX is not a one
dimensional array.

Argument of TRN is not a two dimensional array.

Cannot invert a singular matrix.

Destination array too small for MAT assignment.

Mismatched dimensions in character array
expression.

FILE USE ERRORS (7000)

7001

7002

7003

7004

-7005

-7006

-7007

7201

7202

7203

-7204

-7205

7301

Channel number not integer in range 0 to 255.

Channel number zero not allowed in OPEN, CLOSE,
RESET, or SCRATCH.

Nonzero channel number in OPEN already active.

Inactive channel number in file statement other
than OPEN.

ENDPAGE.

Device unable to perform requested operation.

I/O statement referenced user-defined function
which terminated the I/O.

File pointer cannot be reset as specified.

RECORD clause not allowed for nonrelative file.
file.
KEY clause not allowed for non keyed file.

File pointer cannot be reset to KEY as specified.

File pointer cannot be reset to RECORD as
specified.

Scratch of file not permitted.

ON

ERROR

ERROR

ERROR

ERROR

ERROR

ON

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ON

EXIT

none

nona

none

none

none

EXIT

none

none

none

none

none

none

none

none

none

no,ne

EXIT

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ENDPAGE ENDPAGE

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR NOKEY

ERROR NOREC

ERROR IOERR

Appendix A. Exception Codes 321

FILE USE ERRORS (7000)

7302

7303

7304

7305

7306

7307

7308

-7309

-7310

-7311

-7312

-7313

-7314

-7315

-7316

-7317

-7318

-7319

-7320

-7321

-7322

-7323

-7324

-7325

-7326

-7327

-7328

-7329

-7330

-7331

-7332

-7333

-7335

Output not allowed to file opened for INPUT.

Input not allowed from file opened for OUTPUT.

Line input not allowed from nondisplay format file.

Record length specified exceeds current record
length.

Attempt to rewrite keyed record with different key.

Attempt to rewrite nonexistent relative record.

Attempt to write existing relative record.

Attempt to write existing record.

Invalid operation for type of file.

GET or PUT not allowed for display file.

FORM statement not allowed for internal file.

File not opened in OUTIN mode.

FORM statement required for native file.

Record truncated on READ.

Position end not allowed for file opened for INPUT.

Operation not allowed for native format file.

Open OUTPUT or write for file that is read only.

Character overflow on PRINT FORM to IMAGE/SPEC.

File does not exist.

OUTIN only allowed for native or internal files
with record organization.

End media or extents.

Invalid file organization.

Records must be fixed length for relative file.

Invalid reset or position end on relative file.

Invalid reset or position end on keyed file.

Device 3800 expected but not found.

Display file must have sequential organization.

Internal file must have sequential or stream
organization.

Stream organization not allowed for native file.

Margin error: Not enough room for a print zone.

Margin error: Bottom margin is less than top
margin.

Margin statement only allowed for display files.

Record length exceeded on OUTPUT to file.

322 IBM BASIC Application Programming: language Reference

ON ~EXIT

ERROR 'IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR NOREC

ERROR DUPREC

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

SOFLOW SOFlOW

ERROR IOERR

ERROR IOERR

ERROR EOF

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

ERROR IOERR

CONY CONY

FILE USE ERRORS (7000)

-7336

-7337

-7338

-7339

-7340

-7341

-7342

-7343

-7344

-7345

-7346

-7347

-7348

-7350

-7351

-7352

-7353

-7354

-7355

-7356

-7357

-7358

-7359

-7360

-7401

Attempt to write a relative record without a REC
clause.

Invalid form specification for PRINT statement.

FONT may be specified for 3800 DEYICE only.

Record length specified exceeds maximum record
length of fi Ie.

Filename syntax error.

DEYICE 3800 only valid for display files.

Illegal file operation for channel number zero.

Invalid record length specified.

Invalid filetvpe specified.

Invalid filemode specified.

READ required before REREAD.

Invalid margin value.

READ required before REWRITE.

Invalid INPUT operation with file pointer set at
end by WRITE.

Right margin error.

Print zone size too small.

Font value must be from 1 through 4.

Invalid password.

Attempt to read nonexistent keyed record.

Attempt to read nonexistent relative record.

Attempt to delete nonexistent keyed record.

Attempt to delete nonexistent relative record.

Attempt to rewrite nonexistent keyed record.

Attempt to write existing keyed record.

PF KEY ignored.

INPUT/OUTPUT ERRORS (8000)

8001

8002

8003

8011

8012

8013

(MAT) READ beyond end of data.

Too few data items in input reply.

Too many data items in input reply.

End-of-file encountered on input.

Too few data items in record.

Too many data items in record.

ON

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

SKEY

ON

ERROR

ERROR

ERROR

ERROR

CONY

CONY

EXIT

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IEORR

NOKEY

NOREC

NOKEY

NOREC

NOKEY

DUPKEY

none

EXIT

IOERR

IOERR

IOERR

EOF

CONY

CONY

Appendix A. Exception Codes 323

INPUT/OUTPUT ERRORS (8000) ON EXIT

-8016

-8017

8101

8103

8104

-8105

-8106

-8107

-8108

-8109

-8110

-8111

8201

8202

-8203

-8204

-8205

-8206

-8208

-8209

-8210

-8211

-8212

-8213

-8214

-8215

-8301

-8302

-8304

-8305

-8306

Attempt to position beyond end of record. CONY CONY

READ with no data statements declared in program ERROR IEORR
unit.

Nonnumeric datum for (MAT) READ of numeric item. CONY CONY

Noncharacter datum for (MAT) INPUT of number. CONY CONY

Nonstring datum for (MAT) INPUT of string from CONY CONY
file.

Nonnumeri c datum for (MAT) OUTPUT for FORM numeri c CONY CONY
specification.

Numeric data for C or V format item. CONY CONY

Nonnumeric datum for file input of numeric item. CONY CONY

Nonnumeric datum for INPUT FIELDS of numeric item. CONY none

Syntactically incorrect data for file input. ERROR IOERR

Syntactically incorrect data for (MAT) read. ERROR IOERR

Noncharacter input list item specified for LINE CONY CONY
INPUT.

Invalid format string. ERROR IOERR

Data conversion specification in FORM or IMAGE. ERROR IOERR

Missing comma in FORM. ERROR IOERR

IMAGE allowed only for di splay fi les. ERROR - IO-E.RR

IMAGE specification exceeds right margin. CONY CONY

Replication count must be greater than zero. ERROR IOERR

Replication count must be integer type. ERROR IEORR

Replication count exceeds maximum allowed. ERROR IOERR

Expecting comma separator between input items. ERROR IOERR

No closi ng quote found on quoted stri ng. ERROR IOERR

Trailing quote with no matching leading quote. ERROR IOERR

Invalid specification for replication factor. ERROR IOERR

Missing closing quote for character string in form. ERROR IOERR

Form NC conversion width limited to 255. ERROR IOERR

IMAGE output item speci fi ed wi thout an IMAGE output ERROR IOERR
specification.

Floati ng representati on not allowed for N data FORM CONY CONY
specification.

FORM B specification must have a width of 2, 4, or ERROR IOERR
8.

Syntax error in FORM--invalid width specification. ERROR IOERR

PIC may not be used wi th READ. ERROR IOERR

324 IBM BASIC Application Programming: language Reference

INPUT/OUTPUT ERRORS (8000) ON

-8307

-8308

-8309

-8310

-8311

-8312

-8313

-8314

-8315

-8316

-8317

-8318

-8319

-8321

-8324

-8326

-8327

-8328

Numeric conversion syntax error. ERROR

Syntax error in FORM--missing width specification. ERROR

Syntax error in FORM--invalid decimal ERROR
specification.

FORM PIC specification must be enclosed in ERROR
parentheses. ----.-~.--

Replication count not allowed for input fields ERROR
reply.

Input field definition overlaps an existing ERROR
attribute character.

INPUT (PRINT) fields: Invalid syntax for row ERROR
number.

INPUT (PRINT) fields: Row number must be between 1 ERROR
and maximum allowed.

INPUT (PRINT) fields: Invalid syntax for column ERROR
number.

INPUT (PRINT) fields: Column number must be between ERROR
1 and maximum line length.

INPUT (PRINT) fields: Invalid syntax for field ERROR
length.

INPUT (PRINT) fields: Field length must be between ERROR
1 and 156.

INPUT (PRINT) fi elds: Attri bute character must be ERROR
H,I, or N.

PIC syntax error. ERROR

Form scale specification is greater than width ERROR
specification.

Numeric value will not fit in form specification. CONY

Syntactically incorrect data for INPUT FIELDS. ERROR

Numeric value will not fit in IMAGE specification. CONY
Replaced with asterisks.

DEVICE ERRORS (9000)

(Not used)

CONTROL ERRORS(lOOOO)

10001 Index out of range, no ELSE in ONIGOTO or ON GOSUB.

10002 Return without corresponding GOSUB or ON GOSUB.

10003 No CASE block selected and no CASE ELSE.

10004 Attempt to chain to unavailable program.

-10005 Recursive function reference.

ON

ERROR

ERROR

ERROR

ERROR

ERROR

EXIT

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

none

none

none

none

none

none

none

IOERR

IOERR

CONY

IOERR

CONY

EXIT

none

none

none

none

none

Appendix A. Exception Codes 325

CONTROL ERRORS(10000) ON EXIT

-10006 Attempt to execute a previously diagnosed erroneous ERROR none
statement.

-10008 Retry or continue with no active exception. ERROR none

-10009 Reference to undefined line number or label. ERROR none

-10010 Invalid exception transfer to nonactive user ERROR ~one
function.

-10011 Invalid transfer of control. ERROR none

-10012 Unable to load CHAINed program unit. ERROR none

-10013 Unable to load CALLed program unit. ERROR none

-10014 Unable to perform chain. ERROR none

SYSTEM ERRORS (11000)

-11001 System error returned on INPUT.

-11002 System error returned on CALL SYSTEM.

-11003 System error returned on RESET.

-11004 System error returned on READ.

-11005 System error returned on PRINT.

-11006 System error returned on DELETE.

-11007 System error returned on SCRATCH.

-11008 System error returned on CLOSE.

-11009 System error returned on REWRITE.

-11010 System error returned on WRITE.

-11011 System error returned on OPEN.

-11012 System error returned on INPUT fields.

-11013 System error returned on PRINT fields.

-11014 System error returned on PAUSE.

SPECIAL (12000)

-12001 Program suspended due to attention.

-12002 Unrecognized exception generated by CAUSE
statement.

326 IBM BASIC Application Programming: Language Reference

ON

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ERROR

ON

ATTN

ERROR

EXIT

IOERR

none

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

IOERR

EXIT

none

none

APPENDIX B. CH~RACTER SET COLLATING SEQUENCES

This appendix lists the ASCII and EBCDIC collating sequences.

ASCII CHARACTER SET AND COLLATING SEQUENCE

ASCII is the American National Standard Code for Information
Interchange.

In an IBM BASIC program this collating sequence and character set
is specified through the OPTION COLLATE STANDARD statement.

ASCII SEQUENCE AND CHARACTER SET

Ordinal Ord
position Code Graphic Mnemonic Name

0 0/0 NUL Null
1 0/1 SOH Start of heading
2 0/2 STX Start of text
3 0/3 ETX End of text
4 0/4 EOT End of transmission
5 0/5 ENQ Enquiry
6 0/6 ACK Acknowledge
7 0/7 BEL Bell
8 0/8 BS Backspace
9 0/9 HT Horizontal tab
10 0/10 LF Line feed
11 0/11 VT Vertical tab
12 0/12 FF Form feed
13 0/13 CR Carriage Return
14 0/14 SO Shift out
15 0/15 SI Shift in
16 1/0 DLE Data link escape
17 1/1 DC1 Device control 1
18 1/2 DC2 Device control 2
19 1/3 DC3 Device control 3
20 1/4 DC4 Device control 4
21 1/5 NAK Negative acknowledge
22 1/6 SYN Synchronous idle
23 1/7 ETB End of trans. block
24 1/8 CAN Cancel
25 1/9 EM End of medium
26 1/10 SUB Substitute
27 1/11 ESC Escape
28 1/12 FS File separator
29 1/13 GS Group separator
30 1/14 RS Record separator
31 1/15 US Unit separator
32 2/0 SP Space
33 2/1 ! Exclamation mark
34 2/2 " Quotation mark
35 2/3 I Number sign
36 2/4 $ Dollar sign
37 2/5 X Percent sign
38 2/6 & Ampersand
39 2/7 , Apostrophe
40 2/8 (Left parenthesis
41 2/9) Right parenthesis
42 2/10 * Asterisk
43 2/11 + Plus
44 2/12 Comma
45 2/13 Minus sign
46 2/14 . Full stop
47 2/15 / Solidus
48 3/0 0 Zero
49 3/1 1 One

Appendix B. Character Set Collating Sequences 327

ASCII SEQUENCE AND CHARACTER SET

Ordinal Ord
Position Code Graphic Mnemonic Name

50 3/2 2 Two
51 3/3 3 Three
52 3/4 4 Four
53 3/5 5 Five
54 3/6 6 Six
55 3/7 7 Seven
56 3/8 8 Eight
57 3/9 9 Nine
58 3/10 Colon
59 3/11 ; Semicolon
60 3/12 < less than sign
61 3/13 = Equals sign
62 3/14 > Greater than sign
63 3/15 ? Question mark
64 4/0 G) Commercial at
65 4/1 A Uppercase A
66 4/2 D Uppercase D
67 4/3 C Uppercase C
68 4/4 D Uppercase D
69 4/5 E Uppercase E
70 4/6 F Uppercase F
71 4/7 G Uppercase G
72 4/8 H Uppercase H
73 4/9 I Uppercase· I
74 4/10 J Uppercase J
75 4/11 K Uppercase K
76 4/12 L Uppercase L
77 4/13 M Uppercase M
78 4/14 N Uppercase N
79 4/15 0 Uppercase 0
80 5/0 P Uppercase P
81 5/1 Q Uppercase Q
82 5/2 R Uppercase R
83 5/3 S Uppercase S
84 5/4 T Uppercase T
85 5/5 U Uppercase U
86 5/6 V Uppercase V
87 5/7 W Uppercase W
88 5/8 X Uppercase X
89 5/9 Y Uppercase Y
90 5/10 Z Uppercase Z
91 5/11 [Left bracket
92 5/12 , Reverse solidus
93 5/13] Right bracket
94 5/14 - or Logical HOT (also

circumflex accent)
95 5/15 UND Underline
96 6/0 , GRA Grave accent
97 6/1 a LCA lowercase a
98 6/2 b LCD Lowercase b
99 6/3 c lCC lowercase c
100 6/4 d LCD lowercase d

328 IBM BASIC Application Programming: language Reference

ASCII SEQUENCE AND CHARACTER SET

Ordinal Ord
Position Code Graphic tfnemonic Name

101 6/5 e LCE Lowercase e
102 6/6 f LCF Lowercase f
103 6/7 g LCG Lowercase g
104 6/8 h LCH Lowercase h
105 6/9 i LCI Lowercase i
106 6/10 j LCJ Lowercase j
107 6/11 k LCK Lowercase k
108 6/12 I LCL Lowercase I
109 6/13 m LCM Lowercase m
110 6/14 n LCN Lowercase n
111 6/15 0 LCD Lowercase 0
112 7/0 p LCP Lowercase p
113 7/1 q LCQ Lowercase q
114 7/2 r LCR Lowercase r
115 7/3 s LCS Lowercase s
116 7/4 t LCT Lowercase t
117 7/5 u LCU Lowercase u
118 7/6 v LCV Lowercase v
119 7/7 w LCW Lowercase w
120 7/8 x LCX Lowercase x
121 7/9 y LCY Lowercase y
122 7/10 z LCZ Lowercase z
123 7/11 { LBR Left brace
124 7/12 I VLN Vertical line
125 7/13 } RBR Right brace
126 7/14 TIL Tilde
127 7/15 DEL Delete

Appendix B. Character Set Collating Sequences 329

EBCDIC CHARACTER SET AND COLLATING SEQUENCE

EBCDIC is the Extended Binary Coded Decimal Interchange Code.

In an IBM BASIC program this collating sequence and character set
is specified through the OPTION COLLATE NATIVE statement.

EBCDIC SEQUENCE AND CHARACTER SET

ordinal
Position

o
1
2
3
4
5
6
7
8
9
10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

29

30

31

32
33
34
36
37
38
39
42
43
45
46
47
50

Ord
Code

0/0
0/1
0/2
0/3
0/4
0/5
0/6
0/7
0/8
0/9
0/10

0/11
0/12
0/13
0/14
0/15
1/0
1/1
1/2
1/3
1/4
1/5
1/6
1/7
1/8
1/9
1/10
1/11
1/12

1/13

1/14

1/15

2/0
2/1
2/2
2/4
2/5
2/6
2/7
2/10
2/11
2/13
2/14
2/15
3/2

Graphic Mnemonic

NUL
SOH
STX
ETX
PF
HT
LC
DEL
GE
RLF
SMM

VT
FF
CR
SO
SI
DLE
DC1
DC2
TM
RES
NL
BS
IL
CAN
EM
CC
CU1
IFS

IGS

IRS

IUS

DS
50S
FS
BYP
LF
ETB
ECS
SM
CU2
ENQ
ACK
BEL
SYN

330 IBM BASIC Application Programming: Language Reference

Name

Null
Start of heading
Start of text
End of text
Punch off
Horizontal tab
Lowercase
Delete

Start of manual
message

. Vertical tab
Form feed
Carriage return
Shift out
Shift in
Data link escape
Device control 1
Device control 2
Tape mark
Restore
New line
Backspace
Idle
Cancel
End of medium
Cursor control
Customer use 1
Interchange file
separator
Interchange group
separator
Interchange record
separator
Interchange unit
separator
Digit select
Start of significance
File separator
Bypass
Line feed
End of trans. block
Escape
Set mode
Customer use 2
Enquiry
Acknowledge
Bell
Synchronous idle

EBCDIC SEQUENCE AND CHARACTER SET

ordinal Ord
position Code Graphic Mnemonic Name

52 3/4 PN Punch on
53 3/5 RS Record separator
54 3/6 UC Uppercase
55 3/7 EOT End of transmission
59 3/11 CU3 Customer use 3
60 3/12 DC4 Device control 4
61 3/13 NAK Negative acknowledge
63 3/15 SUB Substitute
64 4/0 SP Space
74 4/10 ~ Cent sign
75 4/11 . Period, decimal point
76 4/12 < Less than sign
77 4/13 (Left parenthesis
78 4/14 + Plus sign
80 5/0 & Ampersand
90 5/10 Exclamation mark
91 5/11 $ Dollar sign
92 5/12 * Asterisk
93 5/13) Right parenthesis
94 5/14 Semicolon
95 5/15 .. or "- Logical NOT (also

circumflex accent)
96 6/0 Minus sign
97 6/1 / Slash
107 6/11 , Comma
108 6/12 ~ Percent sign
109 6/13 UNO Underscore
110 6/14 >" Greater than sign
111 6/15 ? Question mark
121 7/9 , GRA Grave accent
122 7/10 Colon
123 7/11 I Number sign
124 7/12 G) Commercial at
125 7/13 • Apostrophe
126 7/14 = Equal sign
127 7/15 " Quotation mark
129 8/1 a LCA Lowercase a
130 8/2 b LCB Lowercase b
131 8/3 c LCC Lowercase c
132 8/4 d LCD Lowercase d
133 8/5 e LCE Lowercase e
134 8/6 f LCF Lowercase f
135 8/7 g LCG Lowercase g
136 8/8 h LCH Lowercase h
137 8/9 i LCI Lowercase i
145 9/1 j LCJ Lowercase j
146 9/2 k LCK Lowercase k
147 9/3 I LCL Lowercase I

Appendix B. Character Set Collating Sequences 331

EBCDIC SEQUENCE AND CHARACTER SET

Ordinal Ord
position Code Graphic Mnemonic Name

148 9/4 m lCM lowercase m
149 9/5 n lCN Lowercase n
150 9/6 0 lCO lowercase 0
151 9/7 p lCP lowercase p
152 9/8 q lCQ lowercase q
153 9/9 r lCR lowercase r
161 10/1 Tilde
162 10/2 s LCS lowercase s
163 10/3 t lCT lowercase t
164 10/4 u lCU lowercase u
165 10/5 v lCV Lowercase v
166 10/6 w lCW lowercase w
167 10/7 x lCX lowercase x
168 10/8 y LCY Lowercase y
169 10/9 z lCZ lowercase z
192 12/0 { lBR Left Brace
193 12/1 A Uppercase A
194 12/2 B Uppercase B
195 12/3 C Uppercase C
196 12/4 D Uppercase D
197 12/5 E Uppercase E
198 12/6 F Uppercase F
199 12/7 G Uppercase G
200 12/8 H Uppercase H
201 12/9 I Uppercase I
208 13/0 } RBR Right brace
209 13/1 J Uppercase J
210 13/2 K Uppercase K
211 13/3 l Uppercase L
212 13/4 M Uppercase M
213 13/5 N Uppercase N
214 13/6 0 Uppercase 0
215 13/7 P Uppercase P
216 13/8 Q Uppercase Q
217 13/9 R Uppercase R
224 14/0 , Reverse solidus
226 14/2 S Uppercase S
227 14/3 T Uppercase T
228 14/4 U Uppercase U
229 14/5 V Uppercase V
230 14/6 W Uppercase W
231 14/7 X Uppercase X
232 14/8 Y Uppercase Y
233 14/9 Z Uppercase Z
240 15/0 0 Zero
241 15/1 1 One
242 15/2 2 Two
243 15/3 3 Three
244 15/4 4 Four
245 15/5 5 Five
246 15/6 6 Six
247 15/7 7 Seven
248 15/8 8 Eight
249 15/9 9 Nine

332 IBM BASIC Application Programming: Language Reference

APPENDIX C. MIGRATION FROM VS BASIC

LANGUAGE

INTRINSIC FUNCTIONS

FILE STRUCTURES

ARITHMETIC

Migration from VS BASIC to IBM BASIC includes considerations of
language, intrinsic functions, file structures, and arithmetic,
as explained in the following paragraphs.

Some of the same statements in IBM BASIC and VS BASIC have
different clauses and options. The syntax of these statements
must be changed to conform to IBM BASIC. Among them are:

CHAIN, CLOSE, DELETE, DIM (for character variables),
END, FORM, FOR/NEXT, GET, GOSUB (computed), GOTO
(computed), ON, OPEN, PRINT USING, PUT, READ (FILE),
REM, RESET, RETURN, REWRITE (FILE), STOP, WRITE

The INPUT FROM statement is replaced by the INPUT fileref
statement, and the PRINT TO statement is replaced by the PRINT
fileref statement.

If logical, relational, or concatenation operators are used, they
must be changed to conform to IBM BASIC usage.

The default for the lower bound of a subscript in IBM BASIC is 0;
in VS BASIC it is 1. (In an IBM BASIC program setting OPTION BASE
1 gives the same effect as in VS BASIC.)

IBM BASIC uses variable-length strings; VS BASIC uses
fixed-length strings.

Some of the names of the intrinsic functions are different,
although they perform the same functions.

VSAM files created by IBM BASIC programs can be processed by VS
BASIC programs, and vice versa.

IBM BASIC and VS BASIC files created through the native system
access method are not compatible.

The magnitude and preC1Slon of numeric data differ between IBM
BASIC and VS BASIC. Increased accuracy of IBM BASIC may result in
different solutions to mathematical calculations.

IBM BASIC rounding and truncation rules differ from VS BASIC
rules.

Not all the VS BASIC predefined constants exist in IBM BASIC.

Exponentiation operators may be different. (VS BASIC uses the
up-arrow exponentiation symbol; IBM BASIC uses the circumflex (or
NOT sign) exponentiation symbol.)

VS BASIC DATA SET MIGRATION

IBM BASIC programs can read both stream-oriented and
record-oriented VS BASIC files. If the specific data layout is
known, IBM BASIC can handle VS BASIC stream-oriented files as IBM
BASIC native format files, using FORM specifications.

Appendix C. Migration from VS BASIC 333

With some restrictions, IBM BASIC programs can read VS BASIC
record-oriented files either as IBM BASIC display format files or
as IBM BASIC native format files.

334 IBM BASIC Application Programming: Language Reference

GLOSSARY

The terms in this glossary are defined in
accordance with their meanings in BASIC.
These terms mayor may not have the same
meanings in other languages.

Definitions from the Draft Proposed
American National Standard for BASIC
dated February 15, 1982, are preceded by
(B) •

IBM is grateful to the American National
Standards Institute (ANSI) for
permission to reprint its definitions
from American National Standard
Vocabulary for Information Processing,
ANSI X3.12-1970 (copyright 1970 by
American National Standards Institute,
Inc.), which was prepared by the
subcommittee on Terminology and
Glossary, X3.5.

American National Standard definitions
are preceded by an asterisk (*).

Alphabetic Character. Any of the 26
letters (A through Z) of the English
alphabet, or any of the alphabet
extenders (I, a, and $).

Argument. An item appearing in
parentheses in a function reference or a
subprogram CALL statement. The item
represents a value (or array of values)
that the function or subprogram is to act
upon. An argument can be a numeric or
character expression, and, in the CALL
statement, an empty array declarator.

Arithmetic constant. A constant with a
numeric value. The forms of arithmetic
constants permitted in IBM BASIC are
integer and decimal.

Arithmetic data item. Data having a
numeri c value

Arithmetic expression. An arithmetic
constant, a simple arithmetic variable, a
reference to an element of an arithmetic
array, an arithmetic-valued function
reference, or a sequence of the above
appropriately separated by numeric
operat9rs and parentheses.

Arithmetic variable. The name of an
arithmetic data item whose value is
assigned and/or changed during program
execution. The name consists of 1 to 40
characters. The first character must be
an alphabetic character, and the
remaining characters may be alphabetic
characters, digits, or the underline
character. The last character can also be
a number sign (signifying a "decimal"
variable) or percent sign (signifying an
"integer" variable).

Array. (1). An arrangement of elements
in one or more dimensions. (2) In BASIC,

a named list or table of data items, all
of whi ch are the same type, ari thmeti c or
character, and all of which have the same
maximum length. IBM BASIC allows up to
seven dimensional arrays.

Array declaration. The process of naming
an array and assigning dimensions to it
either explicitly (by the DIM or COMMON
statement) or implicitly through usage.

Array declarator. An array name followed
by a list of dimensions enclosed in
parentheses. Used in DIM and COMMON
statements to establish the dimensions of
arrays. Empty array declarators (array
declarators with no dimensions, just
parentheses and, possibly, commas) are
used in CALL and SUB statements to pass
array arguments and declare array
parameters, respectively.

Array element. See Array member.

Array expression. An arithmetic
expression or a character expression
representing an array of values rather
than a single value. It may be used only
in an array assignment statement (MAT
statement) .

Array member. A single data item in an
array; its position is indicated by a
subscripted array reference.

Array name. The name of an array, which
follows the rules for formation of a
variable name. See Variable name.

• ASCII. American National Code for
Information Interchange. The standard
code using a coded character set
consisting of 7-bit coded characters (8
bits including parity check), used for
information interchange among data
processing systems, data communication
systems, and associated equipment. The
ASCII set consists of control characters
and graphic characters.

Assignment. The process of giving values
to variables; for example, via LET
statements, READ statements, INPUT
statements, etc.

Assignment statement. A statement that
moves data from one vari able to another,
internally.

Assignment symbol. The symbol =, which
is used in an assi gnment statement to
gi ve a value to one or more vari abies.

(B) BASIC. A term appl i ed as a name to
members of a special class of languages
which possess similar syntaxes and
semantic meanings; acronym for
Beginner's All-purpose Symbolic
Instruction Code.

Glossary 335

(B) Batch mode. The processing of
programs in an environment where no
provision is made for user interaction.

Binary operator. A numeric operator
having two terms. The binary operators
that can be used in absolute or
relocatable expressions and arithmetic
expressions are: addition (+),
subtraction (-), multiplication (*), and
division (/).

* Branch. In the execution of a computer
program, to select one from a number of
alternative sets of instructions.

Built-in function. See Intrinsic
function.

Character constant. A constant with a
character value. It is usually enclosed
by quotation marks, but character
constants in DATA statements and INPUT
replies may not have enclosing quotation
marks.

Character data. Data having a character
value, as opposed to a numeric value.

Character expression. A character
constant, a simple character variable, a
reference to a character array element, a
character-valued function reference, a
substri ng of a character vari able or
array element, or a sequence of the above
appropriately separated by concatenation
operators and parentheses.

Character string. (1) * A string
consisting solely of characters. (2) A
connected sequence of characters.

Character variable. A character data
item whose value is assi gned and/or
changed during program execution.

Character variable name. The name of a
character vari able, consi sti ng of 1 to 40
characters, the first of which must be
alphabeti c and the last of whi ch must be
the dollar sign character ($).
Intermediate characters may be
alphabetic characters, digits, or the
underline character.

CMS. Conversational Monitor System.

Collate native. To sequence data in the
EBCDIC mode. (See Appendix C.)

Collate standard. To sequence data in
the ASCI I mode. (See Appendi xC.)

Comment. A remark or note included in
the body of a program by the programmer.
It has no effect on the execution of the
program; it merely documents the program.
Comments are wri tten as a stri ng of
characters and may appear as a part of a
REM statement, or without the REM
keyword, by using the exclamation mark
(!). May be included on all BASIC
statements except the DATA and IMAGE
statements.

Concatenation. The operation that joins
two strings in the order specified, thus
forming one string whose length is equal
to the sum of the lengths of the two
strings. It is specified by the operator
&.

Constant. A value that never changes.
IBM BASIC has two types of constants:
arithmetic and character.

Control specification. One of the
specifications X, POS, SKIP, or PAGE used
in the FORM statement to specify
formatting of records in record-oriented
files, or to control print line
formatting at a terminal.

Control statement. See FILE I/O.

CP. Control Program.

CRT. Cathode Ray Tube.

Current line. The line at which
operations are being performed, or at
which operations on a group of lines
begin.

Data file. See File.

Data form specification. (1) One of the
specifications B, C, NC, ZD, PD, S, L, or
PIC, used in the FORM statement to
specify formatting of character and
numeric values in record-oriented files.
(2) One of the specifications C or PIC,
used in the FORM statement to format
character and numeric values on a printed
line. (3) One of the specifications used
in IMAGE to specify formatting of
character and numeric values on a printed
line.

Data item. A single unit of data; that
is, a constant, a variable, an array
element, or a function reference.

Data table. The values contained in the
DATA statements of your program. DATA
statements are processed in statement
number sequence (lowest to highest). The
values in each DATA statement are
collected and placed in a single table in
order of their appearance (left to
right).

Data table pointer. An indicator that
moves sequentially through the data
table, pointing to each value as it is
assigned to a corresponding variable in a
READ statement. Initially, the indicator
refers to the first item in the table. It
can be repositioned to the beginning of
the table at any ti me by the RESTORE
statement.

Declaration. See Explicit declaration
and Implicit declaration.

Declarative statement. A statement that
explicitly types identifiers, or
dimensions arrays. Also specifies
vari abIes and arrays placed ina common

336 IBM BASIC Application Programming: Language Reference

region of storage that can be shared by
the main program and/or several
subprograms.

* Del imi tel'. A flag that groups or
separates words or values in a line of
input.

Digits. Any of the numerals 0 through 9.

Dimension specification. The
specification of the size of an array and
the arrangement of its members into from
one to seven dimensions.

Direct access. The facility to obtain
data from a storage device, or to enter
data into a storage device in such a way
that the process depends only on the
locat i on of that data and not on a
reference to data previously accessed.

Display format file. A sequentially
organized file designed to be output in
human readable form.

EBCDIC. External Binary Coded Decimal
Interchange Code. A coded character set
consisting of 8-bit coded characters.

EBCDIC collating sequence. The ordering
of character data items according to the
Extended Binary Coded Decimal
Interchange Code.

(B) End-of-line. The character(s) or
indicator which indentifies the
termination of a line. lines of three
kinds may be identified in BASIC: program
lines, print lines, and input-reply
lines. End-of-lines may vary between the
three cases and may also vary dependi ng
upon context. Thus, for example, the
end-of-line in an input-reply may vary on
a given system depending on the source
for input being used in interactive or
batch mode.

Typical examples of end-of-line are
carriage-return, carriage-return
line-feed, and end of record (such as end
of card).

(B) Error. A flaw in the syntax of a
program which causes the program to be
incorrect.

* Error message. An indication that an
error has been detected.

(B) Exception. A circumstance arising in
the course of executing a program when an
implementation recognizes that the
semantic rules of the BASIC standard
cannot be followed or that some resource
constraint is about to be exceeded.
Certain exceptions may be handled by
automatic recovery procedures specified
in the BASIC standard. These and other
exceptions may also be handled by
recovery procedures specified in the
program. If no recovery procedure is
given or if restrictions imposed by the
hardware or operating environment make it
impossible to follow the given procedure,

then the exception shall be handled by
terminating the program.

Exception statement. A statement
provided to allow processing of one or
more possible error conditions
identified during program execution.

Executable statement. A program
statement that causes an action to be
performed by the computer.

* Execution. The process of carrying out
an instruction by the computer.

Execution error. An error discovered
during execution of an IBM BASIC program
(for example, dividing by zero, branching
to a nonexisting statement number, etc.)

Explicit declaration. The use of a DIM
or COMMON statement to specify the number
of members in an array, the number of
dimensions in an array, or the length of
a character variable. The use of DECIMAL
and INTEGER statements to specify the
numeric type of variables, arrays, and
functions.

Exponent (of floating-point format
number). An integer constant specifying
the power of ten by which the base
(mantissa) of the decimal floating-point
number is to be multiplied.

Exponentiation. Raising a value to a
power.

Expression. A notation, within a
program, that represents a value: a
constant or a reference appearing alone,
or combi nati ons of constants and/or
references with operators. Four forms of
expressions are defined in IBM BASIC:
numeric, character, relational, and
logical.

* File. A set of related records treated
as a unit, for example, in stock control,
a file could consist of a set of
invoices.

File I/O statement. An instruction that
transmits data to, or receives data from,
a set (file) of similar items that have
been grouped together. File I/O
statements must include a file reference
number to indicate the specific device
containing the required file.

Filename. The name of a file.

Fixed-point. A mathematical notation
(as in a decimal system) in which the
point separating whole numbers and
fractions is fixed. See Floating-point.

Fixed-point constant. An arithmetic
constant consisting of one or more digits
and a decimal point, and optionally
preceded by a sign.

Fixed-point format. The form used to
express a fixed-point constant.

Glossary 337

Floating-point. Involving or being a
mathematical notation in which a quantity
is denoted by one number multiplied by a
power of the number base. See
Fixed-point.

Floating point constant. An arithmetic
constant consisting of an integer or
fixed-point constant (the mantissa)
followed by the letter E, followed by an
optionally signed one- or two-digit
integer constant (the exponent).

Floating-point format. The form used to
express a floating-point constant.

Function. A named expression or block of
statements that computes a single value.
See also Intrinsic function and
User-written function.

Function reference. The appearance of an
Intrinsic function name or a user-written
function name in an expression.

Hard copy. A printed copy of machine
output in a visually readable form; for
example, printed reports, listings,
documents, and summaries.

(8) Identifier. A character string used
to name a variable, an array, a function,
a picture-definition, subprogram, or a
program.

Implicit declaration. (1) The
specification of the number of members in
an array or the number of dimensions in
an array, either by a reference to a
member of an array or by context (without
the array being explicitly specified in a
DIM statement). (2) The specification of
the length of a character variable by
context (without the variable being
explicitly defined in a DIM statement).

Input. The transfer of data from an
external medium to internal storage.

Input list. A list of variables to which
values are assigned from input data; the
list can be made up of scalar variables,
array member references, array
references, and array references with
redimensioning.

Input/output. The transfer of data
between an external medium (that is, the
terminal typewriter or a file) and a
workspace.

Input/output statement. An IBM BASIC
statement whose primary function is to
transmit data to or from an executing
program.

(8) Interactive mode. The processing of
programs in an environment which permits
you to respond directly to the actions of
individual programs and to control the
initiation and termination of these
programs.

* Integer. One of the numbers +1, -1,
+2, -2 .•. Synonymous with integral
number.

Integer constant. An arithmetic
constant containing one or more digits,
optionally preceded by a sign.

Integer format. The form used to express
an integer constant.

Internal format file. A file created by
IBM BASIC WRITE, or PUT statements
containing self-identifying,
sequentially organized data.

Internal text file. A sequential file
made up of both binary and EBCDIC data
records in a format unique to the IBM
BASIC interpreter.

* Interrupt. To stop a process in such a
way that it can be resumed.

Intrinsic function. A function supplied
by IBM BASIC (for example, SIN, COS, SQR,
etc.) See Function.

Involution. See Exponentiation.

* Key. One or more characters, within a
set of data, that contains information
about the set, including its
identification.

Keyed file. A record-oriented file whose
records are stored and accessed according
to key values embedded in the records.

(8) Keyword. A character string, usually
with the spelling of a commonly used or
mnemonic word, which provides a
distinctive identification of a
statement or a component of a statement
of a programming language. (See Reserved
word.)

Letter. Any of the uppercase or
lowercase characters A through Z, or a
through z.

Line. An ordered sequence of characters
which terminates with an end-of-line.

Listing files. Files with records that
contain only EBCDIC characters; such
files can be listed on a printer.

Literal. A symbol or quantity in a
source program that is itself data,
rather than a reference to data. See
Constant.

Logical expression. An expression which
uses logical operators to compare two
relational expressions.

Logical operator. An operator that is
used in a logical expression. The logical
operators are: AND, OR, and NOT.

LOOp. A sequence of instructions that is
executed repeatedly Until a terminating
condition is reached. The FOR statement
identifies the beginning of one type of

338 IBM BASIC Application Programming: language Reference

loop; the NEXT statement identifies its
end. The DO statement identifies the
beginning of another type; the LOOP
statement identifies its end.

(B) Machine infinitesimal. The smallest
positive and negative value which can be
represented and manipulated by a BASIC
implementation.

(B) Machine infinity. The positive and
negative values of greatest magnitude
which can be represented and manipulated
by a BASIC implementation. It is not
required that manipulations of machine
infinity yield noninfinite results.

Main program. The first program unit to
receive control when an IBM BASIC program
is executed. The main program may invoke
subprograms but cannot be invoked by
them.

Mantissa. In floating-point notation
(floating-point format), the number that
precedes the E. The value represented is
the product of the mantissa and that
power of ten specified by the exponent.

• Matrix (mathematical). A rectangular
array of elements, arranged in rows and
columns, that may be manipulated
according to the rules of matrix algebra.

Multiline function. A user-defined
function that is defined with more than
one statement.

Native format file. A file created by an
IBM BASIC WRITE statement, containing
user-defined data, organized
sequentially or by record number or by
key.

Nesting. (1) The occurrence of one or
more loops within another loop. (2) The
occurrence of a GOSUB statement when one
or more GOSUB statements are already
active. (3) The use of more than one set
of parentheses to indicate the order of
evaluation in a complex arithmetic
expression.

Nonexecutable statement. A statement
that is used to specify information to a
compiler, but that does not explicitly
result in executable code; for example, a
declaration.

Null character string. An empty
character string, usually specified by
two adjacent single or double quotation
marks.

Numeric character. Any of the digits 0,
1, 2, 3, 4, 5, 6, 7, 8, 9.

Numeric constant. See Arithmetic
constant.

Numeric expression. See Arithmetic
expression.

Numeric operator. A symbol representing
an operation to be performed upon

arithmetic data. The numeric operators
are:

+

* /
..... or .. or **

addition and unary
plus sign

subtraction and unary
minus sign

multiplication
division
exponentiation or

involution

Numeric variable. See Arithmetic
variable.

Operand. A constant, a variable, an
array member reference, a function
reference, or a subexpression on which an
operation is to be performed.

operator. A symbol specifying an
operation to be performed. See also
Numeric operator, Binary operator,
Concatenation operator, Logical
operator, Relational operator, and Unary
operator.

output. The transfer of data from
internal storage to an external medium •

output list. A list of variables from
whi ch values are wri tten to an output
file; the list can be made up of scalar
expressions and array references.

(B) Overflow. With respect to numeric
operations, the term applied to the
condition which exists when a prior
operation has attempted to generate a
result which exceeds machine infinity.

With respect to string operations, the
term applied to the condition which
exi sts when a pri or operati on has
attempted to generate a result which has
more characters than can be contained in
a string of maximal length, as determined
by the language processor.

With respect to string assignment, the
term applied to the condition which
exists when a prior operation has
attempted to assign a value that is
longer than the declared maximum of a
string-variable or
string-defined-function.

padding. The addition of one or more
blanks to the right or left of a
character string to extend the string to
a required length.

Parameter. A simple variable or empty
array declarator enclosed in parentheses
in a DEF statement or a SUB statement,
and then used within that function or
subprogram. The function or subprogram
performs its calculations on the values
substituted for the parameters when the
function or subprogram is called.

Precision. The number of digits for
which significance can be expressed, or
the accuracy with which a number can be
presented.

Glossary 339

(B) Print zone. A contiguous set of
character positions in a printed output
line which may contain an evaluated
print-statement element.

priority. A rank assigned to a numeric
operator; it is used when evaluating an
arithmetic expression. The order of
priorities, from high to low, is:
exponentiation, unary operations,
multiplication and division, addition
and subtraction. Operations at the same
priority level are evaluated as they are
encountered (from left to right in the
expression).

Program. A logically self-contained
sequence of BASIC statements that can be
executed by the computer to attain a
specific result.

Programmer-defined function. See
User-written function.

Program segmentation statement.
Statements that provide a means to pass
parameters between separately assembled
programs or program segments. The
statements SUB, SUBEXIT, ENDSUB, and CALL
are program segmentation statements.

(B) Program Unit. A self-contained part
of a BASIC program consisting of either
the main program, which is a sequence of
lines up to and including a line
containing an END statement, or a
subprogram, external function
definition, picture definition, or
parallel-section external to the main
program.

Record. A collection of related data
i terns treated as a un it.

Record-oriented file. A file in which
items are stored in records.

Redimension specification. The
assignment of a new dimension
specification to an already existing
array, via an array assignment statement,
a READ statement, an INPUT statement, a
GET statement, a READ File statement, or
a REREAD File statement.

Redimensioning. The changing of the
number of dimensions or the number of
members in each dimension of a previously
declared array.

Relational expression. An expression
which uses relational operators to
compare two numeric expressions or two
character expressions.

Relational operator. An operator used in
a logical subexpression. The relational
operators are:

EQ or = equal to
HE or <> not equal to
GT or > greater than
LT or < less than
GE or >= greater than or equal to
LE or <= less than or equal to

Relative-record file. A file whose
records are loaded into fixed-length,
fixed-location slots.

Relative-record number. A number that
identifies not only the slot in a
relative-record data set but also the
record occupying the slot.

Remark. See Comment.

Replication factor. The number of times
a single data FORM specification is to be
used.

Reserved word. A word that may not be
used as a variable name, line label,
function name, or subprogram name. (See
Keyword.)

(B) Rounding. The process by which a
representation of a value with lower
precision is generated from a
representation of higher precision
taking into account the value of that
portion of the original number which is
to be omitted.

Scalar. A single data item (as opposed
to an array of items).

Scalar expression. An arithmetic
expression or a character expression
representing a single value rather than
an array of values.

sequential access. The retrieval of data
according to the order in which the data
is stored in a file.

(B) Significant digits. The contiguous
sequence of digits between the high-order
nonzero digit and the low-order digit,
without regard for the location of the
radix point. Commonly, in a normalized
floating-point internal representation,
only the significant digits of a
representation are maintained in the
significand.

simple variable. A scalar variable (but
not an array member).

Single-line function. A user-defined
function that is defined in one statement
(that is, the DEF statement).

Slot. The space for a data record in a
relative-record data set.

Source file. A sequentially accessible
file containing EBCDIC coded records of
BASIC language statements.

Special characters. Any characters
ailowed in rBM BASIC that are not
alphabetic characters or digits.

340' IBM BASIC Application Programming: Language Reference

statement number. The number which
prefaces an IBM BASIC statement. It can
be up to seven digits in length (in the
range 1 to 9999999).

stream-oriented file. A file in which
items are stored as a stream of data
items and retrieved in sequential order.

Subprogram. A program unit beginning
with a SUB statement and ending with an
END SUB statement. Control is transferred
to a subprogram by a CALL statement.
Control is returned by the SUBEXIT
statement.

Subroutine. A program segment (sequence
of statements) branched to bya GOSUB
statement. The last statement of a
subroutine must be a RETURN statement
which directs the computer to return and
execute the statement following the GOSUB
statement.

Subscript. Any valid arithmetic
expressl0n (whose rounded integer value
is greater than or equal to zero) used to
refer to a part i cular member of an array.

Substring. A part of a character string.

Terminal. A device, usually equipped
with a keyboard and some kind of display,
capable of sending and receiving
information over a communication
channel.

Text file. A file of internally coded
data records suitable for input to a
linkage editor or loader.

* Truncation. The deletion or omission
of a leading or of a trailing portion of
a string in accordance with specified
criteria.

Unary. Having or consisting of a single
component, element, or item.

* Unary operator. A numeric operator
having only one term. The unary operators
that can be used in absolute,
relocatable, and arithmetic expressions
are: (positive) + and (negative) -

(B) Underflow. With respect to numeric
operations, the term applied to the
condition which exists when a prior
operation has attempted to generate a
result, other than zero, which is less in
magnitude than machine infinitesimal.

User. Anyone utilizing the services of a
computing system.

user-written function. A function
defined by the user in a single-line or
multiline function defini~ion.

variable. A data item whose value may
change during execution of a program.

Variable name. A name of a variable. The
name consists of up to 40 alphabetic
characters, optionally followed by a I,
~, or $.

vector. (1) * A quantity usually
represented by an ordered set of numbers.
(2) A collection of array data having a
single dimension.

vs. Virtual Storage.

VSAH. Virtual Storage Access Method.

Workspace. The area which contains the
program currently under development.

Zero suppression. The elimination of
leading nonsignificant zeros in a number.

Glossary 341

Special Characters

+ (addition) 25
+ floating symbol, IMAGE statement 155
& (ampersand)

concatenation symbol 28
continuation 10

(exclamation mark) comments 240
$ floating symbol, IMAGE statement 155 * as digit specifier 156 * multiplication) 25 ** (exponentiation) 25
~ (exponentiation) 25
- (subtraction) 25
- floating symbol, IMAGE statement 155
/ (division) 25
~ as digit specifier 156
as digit specifier 156

ABS(X) function 36
ACCESS (file), OPEN statement

INPUT 207
OUTIN 207
OUTPUT 207

ACOS(X) function 36
addition 25
AIDX function 196
allocation map 278
American National Standard for Minimal

BASIC 111
ampersand 10, 28
AND logical operator 31
ANGLE(X,Y) function 36
ANSI minimal BASIC standard iii
arguments

rules for passing 90
array assignment statement 183-199

special functions 199
array dimensioning 21, 22
array expressions 33
arrays

addition and subtraction 186
and passing arguments 91
assignment 69, 185
base indexing 20
character 22
COMMON 21-23
COMMON statement dimensions 102
concatenation 189
DECIMAL 21
DIM 21-23
explicit dimensioning 21
implicit dimensioning 22
in subprograms 24
INTEGER 21
matrix multiplication 187
numeric 21
OPTION 19, 22
redimensioning 23, 70
scalar multiplication 188
special functions 191
SUbscripts 19

ascending index (AIDX) function 196
ASIN(X) function 36
assignment (LET) statement 171
assignment statements

description 68
LET 69
MAT 69

ATN(X) function 36
attention interrupt 203
ATTN condition 203
AUTO command 269

B option, FORM statement 130
base indexing 19
BASIC

ANSI minimal standard iii
description 1
ECMA minimal standard iii
ISO minimal standard 111

BASIC session, ending 304
batch environment 2
binary, formatted input/output 140
blanks 9
branching

conditional
ON exp GOTO 61
ON GOSUB 61

unconditional
GOSUB 61
GOTO 61
RETURN 61

BREAK command 271
BREAK statement 89

C option, FORM statement 130
CALL COBOL statement 94
CALL FORTRAN statement 94
CALL GDDM statement 93
CALL PL/I statement 94
CALL statement 78-82, 90
calling

COBOL 80, 94
FORTRAN 80, 94
GDDM 81, 93
PL/I 80, 94
programs 81, 98
restrictions on 83
subprograms 80, 90
SYSTEM 81, 92

CASE ELSE statement 96
CASE statement 95
CAUSE statement 84, 97
CEIL(X) function 36
CEN(X) function 37
CHAIN statement 76, 81, 98

COMMON statement 98
FILES keyword 98
restrictions on 83
USE statement 98

Index 343

USE statement and 257
variables 98

CHANGE command 273, 276
changing character strings 273
changing programs

CHANGE command 273
COPY command 281
DELETE command 283
MERGE command 298

character
arrays 19, 22
concatenation 28
substrings 29
variables 18

character conversion, IMAGE
statement 153

character data, in FORM statement 130
character expressions 28
character set 4
CHR$(m) function 37
CLOSE statement 75, 100
CMS SUBSET commands, executing 317
CMS subset mode, entering 317
CNT function 37
COBOL, segmented programs and 76
CODE function 37
collating sequences 212
colon 11
command abbreviations 267
command list

AUTO 269
BREAK 271
CHANGE 273, 276
COMPILE 278
COpy 281
DELETE 283
DROP 284
EXTRACT 285
FETCH 286
figure showing 267
FIND 287
GO 289
HELP 291
INITIALIZE 294
LIST 295
LOAD 297
MERGE 298
PURGE 301
QUERY 302
QUIT 304
RENAME 305
RENUMBER 306
RUN 308
SAVE 311
SET LOG 312
SET MSG 313
STORE 315
SYSTEM 317

comments 240
exclamation point 11
REM 12

COMMON statement 21, 60, 83, 98, 102
COMPILE command 278
compiler options

FIPS 279
FLAG 279
LIST 279
LPREC 279
MAP 278
NOFIPS 279
NOLIST 279
NOMAP 278
NOOBJECT 278
NOSOURCE 278
NOXREF 279

OBJECT 278
SOURCE 278
SPREC 279
XREF 279

CON function 193
concatenation 28
constant function (CON) 193
constants

character 16
decimal 14
integer 14
numeric 14

content of error messages,
controlling 313

continuation line
deleting 265
inserting 266
replacing 265

CONTINUE statement 84-86, 104
control errors 325
CONY condition 72, 122
COpy command 281
COS(X) function 37
COSH(X) function 38
COT(X) function 38
cross-reference 279
CSC(X) function 38
current line 268

DAT$ function 38
data conversions, FORM statement 130
data set migration 333
DATA statement 73, 105
data types

integer 14
numeric 14

DATE function 38
DATE$ function 38
DEBUG statement 86, 106
debugging

BREAK command 271
BREAK statement 89
DEBUG statement 106
GO command 289
TRACE statement 256

debugging statements
BREAK 86
DEBUG 86
general description 86
TRACE 86

DEC(X) function 39
DECIMAL 21
DECIMAL statement 61, 107
decision structures

IF 64
DEF statement 76, 109
DEFDBL statement 107
definitions of terms 335
DEFINT statement 169
DEFSNG statement 107
DEG function 39
DELETE command 283
DELETE statement 75, 112
deleting

files 301
lines 264

descending index (DIDX) 197
descriptive statements

COM~10N 60
DECIMAL 61

344 IBM BASIC Application Programming: Language Reference

DIM 61
INTEGER 61
OPTION 61

DET function 39, 194
device errors 325
DIDX function 197
DIM statement 61, 114
dimension of an array

explicit 21
implicit 22
number 19
redimensioning 23
size 19

display files, IMAGE statement and 152
display format 56
displaying lines in workspace 295
division 25
DO statement 116
DOT function 39
DROP command 284
DUPKEY condition 123
DUPREC condition 123

E-format, IMAGE statement 154
ECMA minimal standard BASIC iii
ELSE statement 117, 148-149
END IF statement 119
END SELECT statement 120
END statement 68, 118
END SUB statement 76, 78, 121
ending a BASIC session 304
ENDPAGE condition 123, 203
EOF condition 123
EPS function 40
ERR function 40
ERROR condition 203
error message printing, level of 213
error messages, controlling content
of 313

error processing
CAUSE statement 84
CONTINUE statement 84-86
CONV condition 72
EXIT condition 72, 84
EXIT statement 86
GOTO action 86
IOERR condition 72
ON condition 84-86
RETRY statement 84
SOFLOW cond;tion 72

European Computer Manufacturers'
Association Standard Minimal BASIC iii

exception codes
control errors 325
device errors 325
file use errors 321
input/output errors 323
mathematical errors 320
matrix errors 321
overflow errors 319
parameter errors 320
special errors 326
storage exhausted errors 320
subscript errors 319
system errors 326

exception handling 203, 247
CAUSE statement 84
CONTINUE statement 84-86
EXIT condition 84
EXIT statement 86

GOTO action 84-86
IGNORE action 84
ON condition 84-86
RETRY statement 84
RETRY statement and 247
SYSTEM action 84

exclamation mark comments 240
executing a program 308
execution control

END statement 68
PAUSE statement 68
RANDOMIZE statement 68
STOP statement 68

execution, halting
BREAK command 271
BREAK statement 89
END statement 118
PAUSE statement 216
STOP statement 253

EXIT condition 72
EXIT IF statement 124
EXIT statement 84, 86, 122
EXP function 40
explicit dimensioning 21
exponentiation 25
expressions

arguments and 91
array 33
character

concatenation 28
substrings 29

logical 31
mixed numeric 28
numeric 25
operators 25
priority of operators 32
processing priority 25-28
relational 30

EXTRACT command 285
extracting lines 285

F-format, IMAGE statement 154
FAH function 40
Federal Information Processing Standard,
specifying 214

FETCH command 286
file access mode

general description 56
INPUT 56
OUTIN 56
OUTPUT 56

file access, OPEN statement 207
file capabilities 54
file combinations 56
file format, OPEN statement 207
file formats

display 56
general description 56
internal 56
native format 56

FILE function 40
file organization

general description 55
keyed 55
relative 55
sequential file 55
stream 55

file organization, OPEN statement 208
file pointer, positioning 244
file positioning

Index 345

OPEN statement
BEGIN 209
END 209

RESET statement
APPEND option 244
BEGIN option 244
END opt ion 244
KEY opt ion 244
RECORD option 244
SEARCH option 244

file processing
CHAIN statement 98
CLOSE statement 100
control statements

CLOSE 75
MARGIN 75
OPEN 75
RESET 75
RESTORE 75
SCRATCH 75

DELETE statement 112
exceptions 122
FORM statement 129
positioning 74
transmission statements

DELETE 75
GET 75
INPUT 75
LINE INPUT 75
PRINT 75
PUT 75
READ 75
REREAD 75
REWRITE 75
WRITE 75

file record type, OPEN statement 209
fi Ie records

fixed 54
variable 54

file type, OPEN statement 207
file use errors 321
FILE$ function 41
FILENUM function 41
FIND command 287
fixed length records 54
fixed-point binary, FORM statement 130
FNEND statement 76, 109, 126
FOR statement 127
FORM statement 72, 129-142
formatted output, PRINT statement

FORM statement and 223
IMAGE statement and 221

FORTRAN, segmented programs and 76
FP function 41
function

arguments 77
calling 77
DEF statement 109
exceptions 85, 110
FNEND statement and 126
intrinsic 34
multiline 78, 111, 126
parameters 77, 109
recursive 110
single line 78
STOP statement and 111
user-defined 77

DEF statement 77
FNEND statement 77

G option, FORM statement 130
GDDM, calling 81
GET statement 75, 143
glossary of terms 335
GO command

description 289
resumes execution after PAUSE 216

GOSUB statement 76, 145
GOTO action in exception 84~86
GOTO statement 147
Graphic Display Management Presentation

Graphics Feature 76
Graphical Data Display Manager

publ i cati on i v
Graphical Data Display Manager (GDDM),
calling 81

halting a program
BREAK command and 271
BREAK statement 89
END statement 118
PAUSE statement 216
STOP statement 253

handling exceptions
CAUSE statement 84
CONTINUE statement 84-86
EXIT condition 84
EXIT statement 86
GOTO action 86
ON condition 84-86
RETRY statement 84

HELP command 291

I-format, IMAGE statement 154
identifiers 4
identity function (IDN) 191
IDN function 191
IF block 150, 151

ELSE statement 117
END IF statement 119

IF statement 148-149
IFIX function 41
IGNORE action in exception 84
IGNORE condition 203
IMAGE statement 72, 152-157
immediate statement 260

DEBUG 106
DECIMAL 108
DIM 115
exceptions 263
INTEGER 170
LET 172
MAT 199
OPTION 214
PRINT 224
RANDOMIZE 234
STOP 253
TRACE 256

immediate variable 261
dimension 262
scope 261

346 IBM BASIC Application Programming: Language Reference

type 262
implicit dimensioning 22
indexing 19
industry standards iii
INF function 42
INITIALIZE command 294
input data, FORM statement formats 129
INPUT FIELDS statement 73, 161
INPUT file 167
INPUT statement 73, 75, 158
input/output

formatting data
FORM statement 72
IMAGE statement 72

input/output errors 323
input/output statements

error processing 72
fi Ie 70
internal data 70

DATA 73
READ 73
RESTORE 73

lists 70
rules 72
terminal 70

general description 73
INPUT 73
INPUT FIELDS 73
LINE INPUT 73
MARGIN 73
PRINT 73
PRINT FIELDS 73

INT function 42
INTEGER 21
INTEGER statement 61, 169
interactive environment 1
internal data file 235
internal data statements

DATA 73
READ 73
RESTORE 73

internal decimal, FORM statement 130
internal format 56
internal integer, FORM statement 130
International Organization for
Standardization proposed minimal
standard iii

interrupts
attention 203
CAUSE statement 97
PAUSE statement 216
PF key 203

intrinsic functions 34-53
INV function 194
inverse function (INV) 194
IOERR condition 72, 123
IP function 42

JDY function 42

keyed fi Ie 55
KEYNUM function 42
keywords

description 6
list of 7
removing from reserved word list 8

KLN function 43
KPS function 43

L option, FORM statement 130
leaving a BASIC session 304
LEN function 43
LET (assignment) statement

description 171
examples 69

LINE function 43
LINE INPUT file statement 175
LINE INPUT statement 73, 75, 173
line labels 6
line number 264
lines and line numbers 5
LIST command 295
listing files 302
LOAD command 297
load module 80
loading a program

FETCH 286
LOAD command 297

locating character strings
CHANGE command 273
FIND command 287

LOG function 44
logging terminal dialog 312
logical operator

AND 31
NOT 32
OR 32

LOGI0 function 44
LOG2 function 44
long precision 279
long-precision floating-point, FORM
statement 130

loop control statements
DO/LOOP 62
FOR/NEXT 63
general description 62

LOOP statement 116, 177
LPAD$ function 44
LTRM$ function 44
LWRC$ function 45

manual organization iii
MARGIN file statement 181
MARGIN statement 73, 75, 178
MAT (array assignment) statement 69,

183-199
mathematical errors 320
matrix errors 321
matrix multiplication 187
MAX function 45
MERGE command 298

Index 347

merging programs 298
messages, printing 292
migration

data set 333
VS BASIC 333

MIN function 45
mixed numeric expressions 28
MOD function 45
multiple statements per line 11
multiplication 25

N option, FORM statement 130
naming variables 17, 18
native format 56
NC option, FORM statement 130
ND option, FORM statement 130
NEWPAGE option, PRINT file
statement 230

NEWPAGE option, PRINT statement 217,
221

NEXT statement 127, 200
NI option, FORM statement 130
NOKEY condition 123
NOREC condition 123
NOT logical operator 32
NUL$ function 193
null character string, IMAGE

statement 153
null line resumes execution 216
null string 18
null string function (NUL$) 193
numeric

arrays 19
variables 17

numeric conversion, IMAGE statement 153
numeric expressions

description 25
mixed 28

object module
calling other languages and 80
COMPILE command requests 278
RUN command uses 310

OFLOW condition 203
ON condition 86

GOTO act ion 84
IGNORE action 84
SYSTEM action 84

ON condition statement 203
ON GOSUB statement 201
ON GOTO statement 201
OPEN statement 75, 206-210
operator priority 32
operators

arithmetic 25
logical 31
relational 30

OPTION statement 61
BASE option 19, 212
COLLATE option 212
description 211-215
FIPS option 214
FLAG option 213
INVP option 212
NOFIPS option 214

precision
LPREC option 213
SPREC option 213

PRTZO option 213
RD option 213

OR logical operator 32
ORD function 45
ORGANIZATION (file), OPEN statement

KEYED 208
RELATIVE 208
SEQUENTIAL 208
STREAM 208

organization, manual 111
output data, FORM statement formats 129
output records, IMAGE statement

formats 152
overflow errors 319
overlapping fields, terminal 74

packed decimal, FORM statement 130
page control 133
PAGE control specification, and PRINT
statement 223

PAGE option, PRINT file statement 230
PAGE option, PRINT statement 217
parameter errors 320
parameters

rules for 90
PAUSE statement 68, 216
PD option, FORM statement 130
PI function 46
PIC option, FORM statement 130
picture of formatted input/output 130
PL/I, segmented programs and 76
POINTER (file), OPEN statement

APPEND 209
BEGIN 209
END 209

POS control specification 132
pas function 46
pas in FORM statement 72
position control

PAGE control specification 133
SKIP control specification 132
X control specification 131

positioning file pointer 244
positioning files 74
PRD function 47
preC1S10n 213
predefined subprogram names 91
preface iii
PRINT FIELDS statement 73, 225
PRINT file statement 230
print lines, IMAGE statement
formats 152

PRINT statement 73, 75, 217
print zone 213, 218
printing messages 292
priority of operators 32
processing priority 25
program

compilation 278
editing

continuation lines 265
deleting lines 264
inserting lines 264
replacing lines 264

entry 264
execution 308
listing 295

348 IBM BASIC Application Programming: language Reference

loading 286, 297
renumbering 306
saving 311
storing 315

program segmentation 83
program segmentation restrictions 83
program segmentation statements

CHAIN 76
DEF 76
END SUB 76
FNEND 76
GOSUB 76
RETURN 76
SUB 76
SUBEXIT 76
USE 76

program un--i ts
general description 13
main programs 78
subprograms 78

program variable 261
publications, related iv
PURGE command 301
PUT file statement 232
PUT statement 75

QUERY command 302
QUIT command 304

RAD function 47
RANDOMIZE statement 68, 234
READ file statement 237
READ statement 73, 75, 235
REC function 47
records 54
RECORDS (file), OPEN statement

FIXED 209
VARIABLE 209

redimensioning of an array
description 23

related publications iv
relational operators

equal 30
greater than 30
greater than or equal 30
less than 30
less than or equal 30
not equal 30

relative file 55
REM function 47
REM statement 240
remarks 240
RENAME command 305
RENUMBER command 306
replacing lines 264
REREAD statement 75, 242
reserved words

description 6
removing keywords from list 8

RESET statement 75, 244
restarting a program 289
RESTORE statement 73, 75, 246
RETRY statement 84, 247
RETURN statement 76, 145, 248
REWRITE statement 75, 249

RLN function 48
RND function 48
ROUND function 48
rounding 213
RPAD$ function 48
RPT$ function 49
RTRM$ function 49
RUN command 308

S option, FORM statement 130
SAVE command 311
sav i ng a program 311
scalar assignment 185
scalar multiplication 188
SCRATCH statement 75, 251
SEC function 49
segmenting programs 76

arguments 83
CALL statement 78-82
COMMON statement 83
functions 77
main programs 81
subprogram 78

SELECT block
CASE ELSE statement 66
CASE statement 66
control within

CONTINUE 67
RETRY 67
RETURN 67

END SELECT statement 66
flow of control 67

, SELECT statement 66
~ELECT statement 252
sequential file 55
SET LOG command 312
~ET MSG command 313
SGN function 49
short precision 279
short-precision floating-point, FORM
statement 130

SIN function 49
SINH function 49
SIZE function 50
SKEY condition 203
SKIP control specification, and PRINT

statement 223
SKIP in FORM statement 72
skipping lines 132
SOFLOW condition 72, 123
sorting

AIDX function 196
ASORT function 198
DIDX function 197
DSORT function 198

source program 278
spaces 9
special errors 326
SQR function 50
SRCH function 50
SREP$ function 51
standards, industry iii
statement blocks

DO/LOOP 62
FOR/NEXT 63
IF 64
SELECT/CASE 66
user-defined functions 77

statement continuation 10
statement list

Index 349

BREAK 89
CAll 90
CAll COBOL 94
CAll FORTRAN 94
CAll GDDM 93
CAll Pl/I 94
CAll SYSTEM 92
CALL SYSTEM statement 92
CASE 95
CAUSE 97
CHAIN 98
CLOSE 100
COr'1MON 102
CONTINUE 104
DATA 105
DEBUG 106
DECIMAL 107
DEF 109
DEFDBL 107
DEFINT 169
DEFSNG 107
DELETE 112
DIM 114
DO 116

EXIT IF 124
UNTIL 116
WHILE 116

END 118
END SUB 121
EXIT 122
EXIT IF 124
FNEND 126
FOR 127

EXIT IF 124
FORM 129-142
GET 143
GOSUB 145
GOTO 147
IF 148

ELSE 148
THEN 148

IF block 150
EL SEll 7, 150
END IF 119, 150
THEN 150

IMAGE 152-157
INPUT 158
INPUT FIELDS 161
INPUT file 167
INTEGER 169
LET 171
LINE INPUT 173
LINE INPUT file 175
LOOP 116

UNTIL 177
WHILE 177

MARGIN 178
MARGIN file 181
MAT

addition and subtraction 186
ascending index (AIDX) 196
assignment 185
concatenation 189
constant function (CON) 193
descending index (DIDX) 197
description 183-199
identity function (IDN) 191
inverse function (INV) 194
matrix multiplication 187
null string function (NUL$) 193
scalar assignment 185
scalar multiplication 188
sorting (ASORT, DSORT) 198
transpose function (TRN) 195
zero function (ZER) 192

NEXT 127, 200
ON condition 203
ON GOSUB 201
ON GOTO 201
OPEN 206
OPTION 211-215
PAUSE 216
PRINT 217-224

USING FORM 223
USING IMAGE 221

PRINT FIELDS 225
PRINT file 230
PUT file 232
RANDOMIZE 234
READ 235
READ fi Ie 237
REM 240
REREAD 242
RESET 244
RESTORE 246
RETRY 247
RETURN 248
REWRITE 249
SCRATCH 251
SELECT 252
SELECT block

CASE ELSE 96
END SELECT statement 120

STOP 253
SUB 254
SUBEXIT 255
TRACE 256
USE 257
WRITE 258

statements
categories of 10
executable 60
nonexecutable 60
processing order 60
subcategories of 60

STOP statement 68, 253
storage exhausted errors 320
STORE command 315
storing a program 315
STR$ function 51
stream file 55
SUB statement 76, 78, 254
SUBEXIT statement 76, 78, 255
subprogram

arguments 80, 254
CALL 80
END SUB statement 121
parameters 254
SUB statement 254
SUBEXIT statement 121
SUBEXIT statement and 255

subprogram names, predefined 91
subprogram statements

END SUB 78
SUB 78
SUBEXIT 78

subprograms 78
subroutine

GOSUB statement 248
RETURN statement 248

subroutine control statements
GOSUB 61
ON exp GOSUB 61
RETURN 61

subscripts
description 19
exception codes 319
references to 21

substrings 29
subtraction 25

350 IBM BASIC Appl i cati on Programmj ng: language Reference

SUM function 51
syntax notation 3
SYSTEM action in exception 84
SYSTEM command 317
SYSTEM condition 203
system errors 326
system, calling the 81

TAB option, PRINT file statement 230
TAB option, PRINT statement 217, 220
TAN function 51
TANH function 51
terminal input 264
terminal input/output statements

full screen
INPUT FIELDS 73, 161
PRINT FIELDS 73, 225
warning on mixed operations 74

INPUT 73
LINE INPUT 73
MARGIN 73
PRINT 73

terminal printing 217
testing a program 86

BREAK statement 86
DEBUG statement 86
TRACE statement 86

THEN statement 148-149
TIME function 52
TIME$ function 52
TRACE statement

DEBUG statement and 106
description 256
used in debugging 86

trailing comments 240
transpose function (TRN) 195
TRN function 195
TRUNCATE function 52
TYPE (file), OPEN statement

DISPLAY 207
INTERNAL 207
NATIVE 207

UDIM function 53
UFLOW condition 203
UNTIL clause, DO statement 116
UPRC$ function 53
USE statement 76, 81, 257
USING clause

FORM statement and 223
IMAGE statement and 221

usi ng i mmedi ate
statements 260
variables 261

V option, FORM statement 130
VAL function 53
variable length records 54
variables

character 18
numeric 17

Virtual Machine/System
Product--Conversation Monitor System
supported 111

VM/SP-CMS supported iii
VS BASIC migration 333
VSA~1

keyed files require 55
publ i cati on i v

WHILE clause, DO statement 116
workspace 264
WRITE statement 75, 258

ZD option, FORM statement 130
ZDIV condition 203
ZER function 192
zero function (ZER) 192
zoned decimal, FORM statement 130
zoned decimal, formatted

input/output 139

Index 351

IBM BASIC
Application Programming:
Language Reference
GC26-4026-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

ustTNL __________________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailedin the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-4026-0

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

III
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

..
Fold and tape Please do not staple Fold and tape

----------.-- ~ -----.. _ -- - - -----
-----~--~- ...

®

r
Q)

:::J
co
C
Q)
co
CD

:0
CD
CD

CD
:::J
(")
CD

-n
CD
Z
o
en
w
-....J
e
i\J
w

G>
(")
I\J
Q")

.h-
e
I\J
Q")

6

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	058_
	059
	060
	061
	062
	063
	064
	065
	066
	066_
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	096_
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	122_
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	140_
	141
	142
	143
	144
	144_
	145
	146
	147
	148
	148_
	149
	154_
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	168_
	169
	170
	171
	172
	173
	174
	175
	176
	176_
	177
	178
	179
	180
	181
	182
	183
	184
	184_
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	194_
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	238_
	239
	240
	241
	242
	242_
	243
	244
	245
	246
	247
	248
	249
	250
	250_
	251
	252
	253
	254
	255
	256
	257
	258
	258_
	259
	260
	261
	262
	263
	264
	265
	266
	266_
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	replyA
	replyB
	xBack

