F 2

VSE/Advanced Functions

Diagnosis Reference
LIOCS Volume 3
DAM and ISAM

Program Number 5666-301

Order Number LY33-9118-0
File No. S370/4300-30

Licensed Program - Property of IBM

First Edition (March 1985)

This edition applies to Version 2, Release 1 of IBM Virtual Storage
Extended/Advanced Functions, Program Number 5666-301 and to all
subsequent releases until otherwise indicated in new editions or
Technical Newsletters. Changes are made periodically to the information
herein; before using this publication in connection with the operation
of IBM systems, consult the latest IBM System/370, 30XX and 6300
PrgcessorstBibliograghxz GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or services do
not imply that IBM intends to make these available in all countries in
which IBM operates. Any reference to an IBM program product in this
document is not intended to state or imply that only IBM's program
Pr°g“°§ may be used. Any functionally equivalent program may be used
instead.

Publications are not stocked at the addresses given below; requests for
copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
py%%icagion. If the form has been removed, comments may be addressed
either to:

IBM Corporation

Dept. 6R

180 Kost Road

Mechanicsburg, PA 17055, USA

or to:

IBM Deutschland GmbH

Dept. 3248

Schoenaicher Strasse 220
D-7030 Boeblingen

Federal Republic of Germany

IBM may use or distribute any of the information you supply in any way
it believes appropriate without incurring any obligation to you.

C) Copyright International Business Machines Corporation 1985

Licensed Program - Property of IBM

This manual is the third in a series of
four manuals providing detailed information
about the VSE/Advanced Functions Logical
I0OCS programs. The four manuals are:

Volume 1: General Information and
Imperative Macros, LY33-9116.

SAM, LY33-9117.
DAM and ISAM, LY33-9118.
SAM for DASD, LY33-9119.

Volume 2:

Volume 3:

Volume 6&:

This third volume is intended mainly for
persons involved in program maintenance and
for systems programmers who are altering
the program design. Logic information is
not necessary for the operation of the
programs described.

General routines that apply to more than
one access method or more than one file
type are described in Volumes 1 and 4.
These routines include open/close and a
number of transient routines. References
to Volumes 1 and 4 are made whenever
required for a good understanding of the
topics discussed.

This volume of the VSE/Advanced
Fun:tions LIOCS manuals consists of three
parts:

1, LIOCS support for DAM files
2. LIOCS support for ISAM files
3. Charts.

Parts 1 and 2 supply descriptions of the
declarative and imperative macros, DTF
tables, and initialization and termination
procedures for each of the file types
described. Part 3 supplies the detailed
flowcharts associated with the descriptions
in the first two parts.

PREFACE

The appendixes in the back of the manual
provide maintenance personnel with the
service aids:

1. Label list
2. Message cross-reference list.

Effective use of this publication requires
an understanding of IBM VSE/Advanced
Functions operation and the Assembler
language and its associated macro
definition language. Reference
publications for this information are
listed below.

PREREQUISITE PUBLICATIONS

* VSE/Advanced Functions Macro User's
Guide, SC33-6196.

e VSE/s/Advanced Functions Macro Reference,
SC33-6197.

e 0S/VS - DOS/VSE - VM/370 Assembler
Language, GC33-4010.

RELATED PUBLICATIONS

e VSE/Advanced Functions Diagnosis
Reference: Supervisor, LY33-9107.

e VSE/SP Messages and Codes, SC33-6181.

For other related publications, refer to
IBM System/370 and 4300 Processors
Bibliography, GC20-0001

Preface iii

Licensed Program - Property of IBM

iv IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

CONTENTS

Property of IBM

Licensed Program -

- N N MmN NN M O O N N M T O O N MY VYO N O H H H - NN M G T
o H -1 NN NN N M MM M M M T S S O NN N NSNS N ~~
— — — — — —t - — -— — — — — — — — —— — — —— — — -— —— — — — - — -— -— -— -— —
.o . . e o o & o & . . . LRI N DEEN . . .
<€ o ~ 0 o =~ © -~ - w — —n >
M oF o & o . eds e D e e L oD L o . e m oD e o4 o] o= o [oLl e - . e .
> -~ C &« O O ¢+« L O O + ¢« ¢+ W\ w w e - X Z L] > 0>
W c@W W) oD e e oD M@ ¢V M0 oL L e e oF et o4t o o) o VM oD e 0O o LI S A T B INC NN NI e O Y
[T I, BV S R T T E E M XX U U ®@ M £ L > m mes W Lo SV IR S Vo B - B R I
M oM@ o ok o o X ¢E o . X . O oM X oF (O ofT o MTLU o4 o DO o oZ o N -4 . e e L
L £ w nmn X o w w - E = £ o o o < 00 W 0 @0 O o0 @ O O o
O O ¢2Z o C ol ¢T oL of= o= ol o= o . ot o . e L . . a s a o a o7 . [I BT, BT, BNV, B el el e QU e
O ZT £ < H H W Wk~ F - O - - - -0 © O = FFmB @M M @ ®© UV M ” 4+ 4+
- a o a o . o L el o X o) LU e U LW L e aca e 0 DL oh oL ¢F (X C oL ¢ o o C ol oL oC o(C c
o c o0 - - o X X L W O o N nxo o OL L LeUu O VU xx <04 O O A A & A O H H
o o« & D 0D M e (DM e LU U cUDUIM oM M@ ol oL o X >
U0 U L« ¢ oW O I1E 0O UM B MBIR/E X E F O~ =~ = A e e e e a¥ aE
[T=N] M cQ 20O +T) o0 o o0 s 00 000 o0 s 00 o0e ooo | e X M CME X X A% C ¢eC *oC ¢C ¢C oC eoC eC eC) CI
E EOE n m CCE ¥ £ X & o d a2 XX - ow ww A oY o w U 0 0o o o OO v
P A E E om0 O 0O Ok sk ¢ O bk ¢+ ¢ Q ecd eed = o o ¢Z +HQO -0 0 00 -0 -0 -a-0a¥ax +
e W - O A QA A Z Z Z Z Zww + < b FUFEH - H € OO0 O O O O O O O O O c
LWALP— W W >HNZ Z Z Z O C O -CVNCOHUN W DWW -l W< o o0 Y=] .. . w n 9
Lt b = O+ < < <€ W W W WHweiw O o N NLx X X Z 5 ¥ £ £ £ X £ £ v+ ¥
WOW mee H ook LXON I V)) U NLNM o - . © .. O« < < oL o < oL < L £
UV Voo KUTDTE W O W w n L x < wLH wnmy v o=y Qb nun r o
e O AOX WML - all = - - INGLIEEN ol a) e o eo o 0o 0o 0™ sa() 0o oo o o0 Wh N H HH i HEHEHCHE O
] I gOWHW | W W oW W oW @ X e Xl e o Xl O | I ! I [SR &)
' - oo woee >L>A>L> > >M> > > ek ¢ ¢ Ik sk oo FWUN < w < W
QOFAQTAOM ¢ ool ALK AXNMEIXEOKLEY sXA¥ K KEOMOIMKANE KULOEWH OedeQ o edord e oo ooX oo aoe n

WLt O A XL RSO FORFRJdRE2Q A AASHA AJdOoA AXA 4 N NN v AN O NHON
OVOoFFOo VA AVMWDOWOWVIWOW W wuw wWwkwkFkA A AA AvuAakFAQ A AVNCUZoOno O Do ouovo
S P A ATX P EPXPEIEPONXU]S WL PL<APIULSLWULSPL<PHULINIPNAPYDPNIPNPDP0IN4P0N 00N o
“© N L W LZL -~ & R S S S S s I 7] - L L wm WL LA L LOHOH OO OO N0
ZTOEMERE | EM0HOE>ENE>INENEI A TEIMEME X | EZEMEANIMEY | ZfEmH20000r0rn0n0n0OR0ORO 0O MmO B
< QOO <<UCOIUCCC oL OCOICLCIAOLCL L LCOICLCILCICLCCLZA Mo oMM IMomMomMeoemomom.c
NI NOLUNONWNOOLUVNXNOUXNONONOVONVLUVNOLUNTDIUVOINNONOVNOLUVNMXUTOVNOHWEZEVOQOVLOOWOLOLOOLOLOLOLL VA
(o] - [oa] — [oa] “w (o] - - (o] (o] - -~ (o] (o] (o] - - (o] (o] - - - [SE-& 3 o o w “w « o w o «

zZow

<oz

wna

—

AAAND OArA—AANNMIMOOOOARROOOA TOORON N MMMMININVOVONOARDODODA «NN M M 1N Vv N &8 O O
— HAdAdAAAAAAAAAAAANNNN NUINWNY O VOVVOVOVBOVOVVVOVOVNNNS NNO O O O O O O O =
— — — - - - —i - - -
o e e .
o o . . o e o o . e o o o o s e s o o o D .. o e s 0 o o e . . e . . . o] o] o) o) o
4
o o o e o e o o .. e o o 0 o o o e e e e e e S . .. e o o e s o 0 s 0 s o o e e o¥ (D X o et o s o\ oM o
nE a o Z O
ooooo e o o o) o o . o o o . OIfM ¢ o ¢ ¢ o4y o e o o o o o o o e o o o . e o o o of) o QU e Q@ QD W -
w wv [> ~ = BN = B4 n o u n o u o un
. o oD o o o o) o o) o e o o o oo . e o [o o o o o o o o o o o o o W) o o e of o<C LN - M M0 o (0
z (] o ~ =] ? o N o o O <« o £ £ £ £ <
o o o eld o o o oLl o oD D) e o e L ODOXE L o Z o o o j) o Z e e o s e s o o o . O o o o) o . . o0 o o 0. 0L
(7] o O x oLLL o O =] - I X o o
o o o of) o o o of]) o oL} - o o eMULULLY o o o o] o Wi e o o o o o o . L <C DR = B Y o BN o Y o BN - - - o &
1] [=] o o EMNMMI—~ c = p =g > L W o omoAoOwLOo O
o o= o o o o o o< . o - o . EEXryow < o obd o . o o o o o o<l WZ e o o . . . LOLOLD L [
o (=) [=} w +Cc Z (%) [7, J VST] Vi VYV VIVl OLIO C
O ¢ QO ¢ = ¢ o O - . L W3 C . L 7 B A AR — LY ¢+ ¢ Z Z Z Z MBCMO WD
o, < > ZOwn HEXWONUE O o w ~ QW>FZ O O o OLMDMDMDMGMH
o . - . e O cZFwW . HFENLCCE C el ¢ O e oo oo = D>UJWWL o o o H o a A
o =] o <<<{N ICZUL PO~W ~ 0O (8] O~@CHHXWY Wk = F>aunaunaua 2
Qun « Z - o oL OO NZO I - 0 e L s e e e e OO e e cOLOWO ~OWL Lol
no <t S VH-O A o S <un O - N -aZz DHDAD DHALAOLFLF LA
W . . e) ¢ A MOWW e ooeer Ceoe OONOW e e e e e XL D o XU O XNXXZ PZ MW MW pW R
——Z v w o 1 ZAQOXJIWNVUVHNLZ L <O <« - o O FF FWF- FRuucwuwcocnocncocnc
= L O O ¢ ¥ o HESLODDXNN\N \NOA9FT QA0 +H - e TXXADO OF ¢« « VAUV UV VW O O U L O
wrEn [= LO A OE4CQAN >>> >3 o 1 o XCUOZFQuir ZNZAZ Z
z I -w O - ~2NO EOO N\ \\ - \NNZAI < Z vy - UHDLLW Xy ¢ H<{H H s e aee aee ace a
nNNWOOF o wWwHwoO EXXIDOZIDZDIDIDVD O «O W o TV Ccx~FVO O a o —QaAauAaaae Ao
Lol sl >Zk el (d NNNNN\N\NLHOOU DVNC N W » CLWXAO IO -« O OFO0OJO<<IL (L <Tl <TU <Lt
WWwoox wAawo Lg WZoowuuu>uw e >Wov CuwwoLsx o awupcuig 00y wIxXxHOAOAOFORFOR

o< LM LW FONHHHAIACSLLILCTLZ -~ WL ore g T OrHAO xxoO OVO>OFJZ aZ JuwJwaw
QOZE¥YXW o N JFxxFOOOOoMOOOA~NWHFOCOL N>-<<C X CoNXO g4 ood<AdAdWugSZ w w v v v
<<<TH OV A ONH FOOXXXXXX:-~-HOAO 10 n ol XX OO~ Z0WFrZZHF4<EZIIAYEXuErmrrmrmImEm

CTZEXXEWHOXXOWIII1O0O000O0S10-0mLec A woLoOno~nN0D xxOwoDxXEXyr W O xx DICodOod9<od<og9e
FRrLWOAOWWOOO>F0OFO<<—X OOHOHOHOOIMC U 0O WwAONOOJwe >xo—=A ADHO TFEXOQOIZIFEZQOUONONLVNOUVY

OOOULULNMFCOOZ J1ZA HEEZFE HHHHHH HEXEZ O HKELCHIUXFOEXF<<QZOFANAIX W<+ H H H H
WHFFWLWOWewwwo D A0X (xO << < < woo oy OoA<WLCLHOWNWWNXNXWNY

XXS>OAQAUL > OEHOWOoIuwLNn O QO [=]8]w] wa ZA<eNFDUWLEH H H H

LW wuvn z Zwh >Z o ounkFwym

[afala] o - oy o w o Ak

J J J J

Licensed Program -

vi

Property of IBM

A: ISAM Close,
1: ISAM RETRVE Open,

0 Charts

v

a -NF c e .
TVZ2: ISAM RETRVE Open, Phase

a .

N

Phase
NG-NH .

OF FLOWCHART SYMBOLS ..

. . .

174
175
175

177
178

ISAM CHARTS e e e e e e 182
APPENDIX A: LABEL CROSS-REFERENCE

LIST C e e e e e s e e e e e 289
APPENDIX B MESSAGE CROSS-REFERENCE

LIST e v e e v v e e e e 4 v . . 295
INDEX e e e e e e e e e e 297

IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Figure 1. DTFDA Table (Part 1 of 6) . . .3
Figure 2. DTF Extension for DTFDA e e e W9
Figure 3. DTFPH Table for DAM Files . . 10
Figure 4. Record ID Returned to IDLOC . 13
Figure 5. Spanned Record Control Field. 14
Figure 6. Error/Status Indicator (Part

1 0of 4) © v v ¢ &« & o o« & o o +« o o + . 18
Figure 7. Multisegment Spanned Record 22
Figure 8. DAM Descriptor Byte . 24
Figure 9. DAM Channel Program Buulder
Strings Without RPS Support . . 26
Figure 10. AM Channel Program Bu11der
Strings with RPS Support. 27
Figure 11. Basic CCHWs for DAM Channel
Program Bu lder . . e+« . 28
Figure 12. DAM Channel Program

Descriptor Bytes. 29
Figure 13. Example of DAM Channel

Program for a WRITE ID Macro. . 30
Figure 164. DAM Channel Programs

Without RPS Support (Part 1 of 14). . 31
Figure 15. DAM Channel Programs with

RPS Support (Part 1 of 14). 45
Figure 16. Format of Extent

Information to Use 59
Figure 17. DSKXTNT Table for Relatlve
Addressing. . .« « « 59
Figure 18. Alteratlon Factors for

Relative Addressing . . 60
Figure 19. ISAM I/0 Area Requ1rements

(in bytes). . . . 63
Figure 20. Format of Sequence—Link
Field/Index Level Pointer . . 64
Figure 21. ISAM Work Area Requtrements

(in bytes). « « o« 65
Figure 22. Schematic Example ‘of a

Track Index .« +« o o o o o o o o o o 67
Figure 23. Cylinder Overflou Control
Record (COCR . 68
Figure 24. Schematlc Example of a

Cylinder Index. . .« .+« . 68
Figure 25. Schematic Example of a

Master Index. . 69
Figure 26. DTFIS ExtenSIOn for RPS 72
F%gure 27. DTFIS LOAD Table (Part 1 of 73
Fggure 28 DTFIS ADD Table (Part 1 of 78
Figure 29. Overflow Area Upper Limits
(MBCCHHR) v v v v v o o o o o o o & 84
Figure 30. End of Volume Limits for

Prime Data Area (MBCCHHR) 84
Figure 31. DTFIS RETREVE, RANDOM Table
(Part 1 of 6) . « ¢« ¢« o« « o« o« o« o« « « o+ 85
Figure 32. DTFIS RETREVE, SEQNTL Table
(Part 1 of 6) ¢« ¢ v v o o o « o« o« o « « 90
Figure 33. DTFIS RETREVE, ADDRTR Table
(Part 1 of 7) . . . e« « e o« « + 95
Figure 34. ERREXT Parameter List . .102
Figure 35. Pointer to First Record to

be Processed by Sequential Retrieval. .106
Figure 36. CCW Chain Built by $$BSETFL

to Write Prime Data Records 10

Property of IBM

FIGURES

Figure 37. Channel Program Builder for
ADD -- CCW chain built to search
master cylinder index .

Figure 38.
ADD -- CCHW
index .

Figure 39
ADD -- CCHW
EOF record.

Figure 40.
ADD -- CCW
data record

Figure 41.
ADD -- CCW chain built to rewrite
track index entry .

Figure 42. Channel Program Bu11der for
ADD -- CCW chain built to write track
index entry ¢ ¢ ¢ ¢ 0 o 0 e

Figure 43. Channel Program Builder for
AD CCW chain built to write COCR.

Figure 44, Channel Program Builder for
AD CCW chain built to read
previous overflow record.

Figure 45. Channel Program Bu11der for
AD CCW chain built to urite
previous overflow record. .

Flgure 46, Channel Program Builder for

ADD -- CCW chain built to urlte new
overflow record . .

Figure 47. Channel Program Bunlder for
ADD -- CCW chain built to write over
EOF record (blocked records). . .

Figure 48. Channel Program Builder for
ADD -- CCW chain built to write over
EQOF record (unblocked records). . .

Figure 49. Channel Program Builder for
ADD -- CCW chain built to urite EOF in
independent overflow area .

Figure 50. Channel Program Bu11der for
ADD CCW chain built to read last
track index entry .

Figure 51. Channel Program Bu11der for
ADD -- CCW chain built to read
overflow record . . .

Figure 52. Channel Program Bullder for
ADD -- CCW chain built to read last
prine data record .

Figure 53. Channel Program Burld
ADD —-- CCW chain built to write
of prime data records and verify.

Figure 54. Channel Program Bunlder for
ADD -- CCW chain built to write track
index entry ¢ ¢ ¢ v ¢ . 0 0

Figure 55. Channel Program Builder for
ADD -- CCN chain built to read index
entry . " e & s e o e o o o e & o

Figure 56 Channel Program Builder for
ADD -- CCN chain built to write index
entry .

Figure 57.
chain built to write track
- CCW overflow entry . .

Figure 58. Channel Program Bu11der for
ADD -- Notes. . . « « « ¢ ¢« « « « «

chain built to search track
chain built to write new

chain built to find prime

er
blo

‘Channel Program Builder for
indexADD -

Figures vii

Channel Program Bu11der for'
.Cﬁamnel.Program.Bdiider.for.
Channel Program Builder for

Channel Program Builder for

117

.118
.118

.119

.119

.120

.120

.121

121

122

.122

.122

.123

.123

.12¢4

124

124
.125

Licensed Program - Property of IBM

Figure 59. CCW chain built by $$BINDEX retrieve function . . .150
to skip cylinder index entries preced- Figure 81. Channel Program Builder for

ing the one to process a given key. . .126 ADDRTR —-- CCW chain built to write
Figure 60. CCW chain built by $$BINDEX record for random retrieve function . .150
to read cyllnder index into storage . .127 Figure 82. Channel Program Builder for
Figure 61. Channel Program Builder for ADDRTR -- CCW chain built to search

Random Retrieval -- CCW chain built to master cylinder index for add function.151
search master cylinder index.129 Figure 83. Channel Program Builder for
Figure 62. Channel Program Builder for ADDRTR -- CCHW chain built to search

Random Retrieval -- CCW chain built to track index for add function. . .152
search track index. . . .129 Figure 84. Channel Program Bullder for
Figure 63. Channel Program Bu11der for ADDRTR —- CCW chain built to write new
Random Retrieval -- CCW chain built to EOF record for add function . . .152
find record in prime data area Figure 85. Channel Program Bu11der for
(unshared track). . .130 ADDRTR -- CCW chain built to find
Figure 64. Channel Program "Builder for prime data record for add function. . .153
Random Retrleval —== CCW chain built to Figure 86. Channel Program Builder for
find record in prime data area (shared ADDRTR -- CCW chain built to reurite
track)., « v ¢ v ¢ v 4 e e 4 e e s+ o« . 130 index entry for add function. . . .15¢4
Figure 65. Channel Program Builder for Figure 87. Channel Program Bullder for
Random Retrieval —=- CCW chain built to ADDRTR -- CCW chain built to write

find record in overflow chain131 track index entry for add function. . .155
Figure 66. Channel Program Builder for Figure 88. Channel Program Builder for
Random Retrieval -- CCHW chain built to ADDRTR —-- CCHW chain built to write

write record. . .131 COCR for add function156
Figure 67. Channel Program Bu11der for Figure 89. Channel Program Bullder for
Random Retrieval -- notes . .132 ADDRTR -- CCW chain built to read
Figure 68. Channel Program Bu11der for previous overflow record for add
Sequential Retrieval -- CCW chain function. . . . + + ¢« +« ¢ ¢ « « « o« . 156
built to search master cylinder index .136 Figure 5%0. Channel Program Builder for
Figure 69. Channel Program Builder for ADDRTR -- CCW chain built to uwrite
Sequential Retrieval -- CCW chain previous overflow record for add

built to search track index . . . 136 function. . . « + + « ¢« ¢« ¢« « ¢« 4 « o« 4157
Figure 70. Channel Program Builder for Figure 91. Channel Program Builder for
Sequential Retrieval -- CCW chain ADDRTR =-= CCW chain built to write new
built to find starting record in prime overflow record for add function. . . .157
data area . « .« « ¢+ v e e e e e o . 137 Figure 92. Channel Program Builder for
Figure 71. Channel Program Builder for ADDRTR —-- CCW chain built to write
Sequential Retrieval -- CCW chain over EOF record (blocked records) for
built to find starting record in add function. . .158
overflow chain. . 137 Figure 93. Channel’ Program ‘Builder for
Figure 72. Channel Program Bu11der for ADDRTR —-- CCW chain built to write
Sequential Retrieval -- CCN chain over EOF record (unblocked records)

built to write records. . . .138 for add function.159
Figure 73. Channel Program Bu11der for Figure 94. Channel Program Burlder for
Sequential Retrieval -- CCW chain ADDRTR —-- CCW chain built to write EOF
built to search track index . .138 record in independent overflou area
Figure 74. Channel Program Bunlder for for add function. . .159
Sequential Retrieval -- CCN chain Figure 9%5. Channel Program Bullder for
built to read records 4139 ADDRTR -- CCW chain built to read last
Figure 75. Channel Program Bu11der for track index entry for add function. . .160
Sequential Retrieval -- Notes139 Figure 96. Channel Program Builder for
Figure 76. Channel Program Builder for ADDRTR -- CCW chain built to read

ADDRTR -- CCW chain built to search overflow record for add function. . . .160
master-cylinder index for random Figure 97. Channel Program Builder for
retrieve function . . .148 ADDRTR -—- CCW chain built to read last
Figure 77. Channel Program Bu11der for prime data record for add function. . .161
ADDRTR —-- CCW chain built to search Figure 98. Channel Program Builder for
track index for random retrieve ADDRTR —- CCW chain built to urite
function. « + ¢« ¢ v ¢ ¢ + « « s + + . 4168 block of prime data records and verify
Figure 78. Channel Program Builder for for add function. . .161
ADDRTR —~ CCW chain built to find Figure 99. Channel Program Buxlder “for
record in prime data area (unshared ADDRTR —- CCW chain built to write

track) for random retrieve function . .149 track index entry for add function. . .162
Figure 79. Channel Program Builder for Figure 100. Channel Program Builder

ADDRTR —- CCW chain built to find for ADDRTR -- CCW chain built to read
record in prime data area (shared index entry for add function. . . . 162
track) for random retrieve function . .149 Figure 101. Channel Program Bu11der
Figure 80. Channel Program Builder for for ADDRTR —-— CCW chain built to write
ADDRTR —- CCW chain built to find index entry for add function.163

record in overflow chain for random

viii IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM ’

Licensed Program - Property of IBM

Figure 102. Channel Program Builder $$BSETL (1) to search TI for

for ADDRTR -- CCW chain built to write sequential retrieve function. . . . 166
track index overflow entry for add Figure 108 Channel Program Builder
function. . . + + + ¢« ¢« ¢« + +« s+ e + « <163 for ADDRTR —-- CCHW chain built by

Figure 103. Channel Program Builder $$BSETL (1) to find first record in

for ADDRTR —-- CCW chain built to write prime data area for sequential

records for sequential retrieve retrieve function . . . 166
function. . . + « « « ¢« « « +« + « « . 164 Figure 109 Channel Program Bu11der

Figure 104, Channel Program Builder for ADDRTR —-- CCW chain built by

for ADDRTR -- CCW chain built to $SBSETL (1) to find first record in

search track index for sequential overflow chain for sequential

retrieve function . . . 164 retrieve function . e o .. L1667
Figure 105. Channel Program Bu11der Figure 110. Channel Program Builder

for ADDRTR —- CCW chain built to read for ADDRTR -- Notes 1-6168
record for sequential retrieve Figure 111. Channel Program Builder
function. e« e s s s+ s+ s+ s e e o « 165 for ADDRTR -- Notes 7-81l69
Figure 106 Channel Program Builder Figure 112. RPS DTF Extension Work

for ADDRTR -—- CCW chain built by Area. F e
SSBSETL (1) . v v v & ¢« « o« o « o o« o« 4165 Figure 113 Message Cross—-Reference
Figure 107 Channel Program Builder List (Part 1 of 2) e e e s e e+ o+ .« .296
for ADDRTR —-- CCW chain built by

‘ Figures ix

Licensed Program - Property of IBM

x IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

- }

t 01. DAM Open.
Chart 02. ISAM Open
Chart AA.-BF. deleted . .
Chart CA. $$BODACL: DA Close
Input/0utput (Part 1 of 3
Chart CB ¢$BODACL: DA Close
Input/0utput (Part 2 of 3) . .
Chart CC. $$BODACL: DA Close
Input/Qutput (Part 3 of 3). . . .
Chart DA. ISAM LOAD: ENDFL Macro,
Phase 1, $$BENDFL (Part 1 of 2) .
Chart DB. ISAM LOAD: ENDFL Macro,
Phase 1, $$BENDFL (Part 2 of 2) . . .
Chart DC. ISAM LOAD: ENDFL Macro,
Phase 2, $$BENDFF (Part 1 of 2)
Chart DD. ISAM LOAD: ENDFL Macro.
Phase 2, $$BENDFF (Part 2 of 2) . .
Chart DE. ISAM LOAD: SETFL Macro.
Phase 1, $$BSETFL (Part 1 of 2)
Chart DF. ISAM LOAD: SETFL Macro.
Phase 1, $$BSETFL (Part 2 of 2) . .
Chart DG. ISAM LOAD: SETFL Macro,
Phase 2, $$BSETFF . e e e e e
Chart DH. ISAM LOAD: SETFL Macro,
Phase 3, $$BSETFG . e e e
Chart DJ. ISAM LOAD: SETFL Macro,
Phase &4, $$BSETFH . . e e e
Chart DK. ISAM LOAD: SETFL Macro,
Phase 3A, $$BSETFI. R T
Chart DL. ISAM LQAD: Write Macro,
NEWKEY (Part 1 of 4).
Chart DM ISAM LOAD: MWrite Macro,
NEWKEY (Part 2 of &4).
Chart DN, ISAM LOAD: Write Macro,
NEWKEY (Part 3 of 4}.
Chart DP ISAM LOAD: Write Macro,
NEWKEY (Part 4 of 4).« « « . .
C?ar¥ Ee. ISAM ADD: WAITF Macro (Part
o P
Charg E?. ISAM ADD: WAITF Macro (Part
2 0 e e e e e e e e e e e e
CgarE Eg. ISAM ADD: WAITF Macro (Part
o P
CzarE E?. ISAM ADD' NAITF Macro (Part
of .. e e
Chart EE. ISAM ADD and "ADDRTR: "WRITE
Macro, NEWKEY (Part 1 of 2)
Chart EF. ISAM ADD and ADDRTR: NRITE
Macro, NEWKEY (Part 2 of 2) . .
Chart EG. SAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 1 of 8)
Chart EH ISAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 2 of 8)
Chart EJ ISAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 3 of 8)
Chart EK. ISAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 4 of 8)
Chart EL. ISAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 5 of 8)
Chart EM. ISAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 6 of 8§)
Chart EN ISAM ADD, RETRVE, and
ADDRTR: Subroutines (Part 7 of 8)
Chart EP. ISAM ADD, RETRVE, and

Licensed Program - Property of IBM

CHARTS
61 ADDRTR: Subroutines (Part 8 of 8)
171 Chart FA. ¢$BINDEX: Read Cylinder
179 Index into Storage (Part 1 of 2)
Chart FB. $SBINDEX: Read Cylinder
180 Index into Storage (Part 2 of 2). .
Chart FC. ISAM RETRVE, RANDOM: READ
181 Macro, KEY. . . . e e e e e e
Chart FD. ISAM RETREVE. RANDOM: WAITF
182 Macro (Part 1 of 4) C e e e e e
Chart FE. ISAM RETREVE, RANDOM: WAITF
183 Macro (Part 2 of &) . . ¢ « v o « & &
Chart FF. ISAM RETREVE, RANDOM: WAITF
184 Macro (Part 3 of 4) . e e e e e
Chart FG. ISAM RETREVE, RANDOM: WAITF
.185 Macro (Part 4 of &) e e e e e e
Chart FH ISAM RETREVE, RANDOM: WRITE
.186 Macro KEY . . . e e e e e e s
Chart FJ. ISAM RETREVE, RANDOM:
187 SUBFrOULINeS « « v o o o o o @ w v . .
Chart FK. ISAM RETREVE, RANDOM: FREE
188 Macro . N
Chart GA. SAM RETREVE, SEQNTL: ESETL
189 Macro . . . ¢ v ¢ v 4 e 0 e e
Chart GB. SAM RETREVE, SEQNTL: GET '
190 Macro (Part 1 of 4}
Chart GC. SAM RETREVE, SEQNTL: GET
.191 Macro (Part 2 of 4) e e e e e e
Chart GD. SAM RETREVE, SEQNTL: GET
192 Macro (Part 3 of 4)« « .« . .
Chart GE. SAM RETREVE, SEQNTL: GET
193 Macro (Part 4 of 4) « .« . .
Chart GF. SAM RETREVE, SEQNTL: PUT
194 Macro . . s e e e e e e
Chart GG. SAM RETREVE, SEQNTL: SETL
195 Macro, $$BSETL (Part 1 of 5). . . .
Chart GH. SAM RETREVE, SEQNTL: SETL
196 Macro, $$BSETL (Part 2 of). o .
Chart GJ. SAM RETREVE, SEQNTL: SETL
197 Macro, $$BSETL (Part 3 of 5). . . .
Chart GK SAM RETREVE, SEQNTL: SETL
198 Macro, $$BSETL (Part 4 of 5). . . .
Chart GL SAM RETREVE, SEQNTL: SETL
199 Macro, $$BSETL (Part 5 of 5). . . .
Chart GM AM RETREVE, SEQNTL: SETL
00 Macro, $$BSETL1 (Part 1 of 5) . . .
Chart GN SAM RETREVE, SEQNTL: SETL
201 Macro, $$BSETL1 (Part 2 of 5) . . .
Chart GP SAM RETREVE, SEQNTL: SETL
02 Macro, $$BSETL1 (Part 3 of 5) . . .
Chart GQ SAM RETREVE, SEQNTL: SETL
.203 Macro, $$BSETL1 (Part 4 of 5) .
Chart GR SAM RETREVE, SEQNTL: SETL
204 Macro, $$BSETL1 (Part 5 of 5) .
Chart HA SAM RETREVE, SEQNTL, and
.205 ADDRTR: Subroutines (Part 1 of 3) .
Chart HB SAM RETREVE, SEQNTL, and
206 ADDRTR: Subroutines (Part 2 of 3) .
Chart HC SAM RETREVE, SEQNTL, and
207 ADDRTR: Subroutines (Part 3 of 3) .
Chart J SAM ADDRTD: ESETL Macro .
208 C?ar¥ i? SAM ADDRTR: GET Macro (Part
o . e e e e e
209 Chart JC SAM ADDRTR GET Macro (Part
2 of &) . e e e e e e e e

Charts xi

.210
211
.212
.213
.214
.215
.216
.217
.218
219

220

.221
.222
.223
.224
.225
.226
.227
.228
.229
.230
.231
.232
.233
.23¢4%
.235
.236
.237
.238

.239
.240

. 241

242

Licensed Program - Property of IBM

o

o

72}

pd

=
> WHNI> 3>
0O O O oo
oo uUo oo

OV -HhAA~HhAWDD
“= A —H

R
R
3
R
3
R
3
R
R

0]
>
=
>
[w)
[e=)
e
—

(Part 2 of

O O O O O O O O O 00O O O
TATOTOTOSTHTOTOTOTOTTIT LT WD

U VY U VU OY OU OY OB O OY DY
[SNYUITWI@IWITWIYIWOY WY @WIWIITYI0 30 Y

TASTAVNANANANAFVNANAUB Wttt —h et

t o M M M mMm M M M mM
X R RHLAHLAHL AL o HL Ho o oo Do

—~
e
o

SAM ADDRTR:
SAM ADDRTR:
SAM ADDRTR:

e nvae \se nvee ee
~

5)
SAM ADDR¥R:

SAM ADDRTR:
SAM ADDRTR:
AM ADDRTR:
ADDRTR:
ADbeR:
ADDRTR:
ISAM

GET Macro (Part
GET Macro (Part

éU% ﬁaéré

READ Macro, KEY

SETL Macro,
SETL Macro,
SETL Macro,
éEfL.Méc;o;
SETL Macro,
SETL Macro,
SETL Macro,

) I
WAITF Macro

QAiTﬁ ﬁaéré
WAITF Macro
ﬁAiTﬁ ﬁaéré ’
WAITE Macro
WRITE Macro,
Open, Phase

0l:

0l: ISAM Open, Phase
02: ISAM Open, Phase
04: ISAM Open, Phase
05: ISAM Open, Phase
85: ISAM Open, Phase
05: ISAM Open, Phase

NN N
oI A E R A
~N oondbh W

—

Ute Ule LIDNI- e

(Part 3 of 3) . . .
Chart LH 5801506'
(Part 1 f 2)
Chart LI SBOISO6
Part 2 2)
Chart LJ SBDISRP
RPS .
Chart MA §BOISO7:
(Part 1 of 4) . . .
Chart MB $BOIS07:
(Part 2 of 4) . . .
Chart MC $BOISO07:
(Part 3 of 4) . . .
Chart MD $BOISO07:
(Part 4 of 4) .
Chart ME $BOISO8.
(Part 1) B
Chart MF $BOIS08:
(Part 2 of 2) . .
Chart MG. $B0OIS09:
Integrity Phase 1 (Part
Chart MH. $BOIS09:
Integrity Phase 1 (Pa
Chart MI. $B0IS09:
Integrity Phase 1 (
Chart MJ. $BOIS10:
Integrity Phase 2 (
Chart MK. $B0OIS10:
Integrity Phase 2 (P
Chart NA. $BCISOA:
of 3) . v e e e
Chart NB. $BCISOA:
of 3) e e e e
Chart NC $BCISOA:
of 3
Chart ND

Chart NH.

$BORTVi:
3

$BORTVZ2:

Phase 2 (Part 2 of

xii IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

épén; Phase
6pén; éhésé
6pén; Phase
Open, Phase
épén; Phase
Open, Phase
Open, Phase
ﬁpén; Phase

Open, Phase

M 6Pén;

1l of 3)
Open,
2 of 3)
Open,
3 of 3)
Open,
1 of 2)

Close (Part
Close (Part
Close (Part

RETRVE Open,
RETRVE Open,
RETRVE Open,
RETRVE Open,
RETRVE Open,

. Ove

s D0 e o N ~Je e

.267
.268
.269
.270
.271
272
273
274
.275
.276
.277
.278
.279
.280
.281
.282
.283
.284
.285
.286
.287
.288
. 289

Licensed Program - Property of IBM

Direct Access (DA) files refer to files
contained on DASD devices and processed by
the Direct Access Method. Note that the
term Direct Access applies to a method of
processing DASD records and not to a type
of file organization.

DIRECT ACCESS METHOD

The Direct Access Method provides a
flexible set of macro instructions for
creating and maintaining a data file on a
DASD device. This technique applies
specifically to records organized in a
random order, but it can also be used to
process records sequentially. The macro
language offered by this data management
method permits the user to load, read,
write, update, add, or replace records on a
DASD file.

The Direct Access Method is an IO0CS
processing method processing method
specifically designed to utilize the
capabilities of direct access storage
devices. This method provides the
following facilities:

. Processing of records organized in a
random order.

. Processing, in physical sequence, of a
file of records stored by record key.

¢ Utilizing track capacities.
¢ Two referencing methods:

1. Record ID (physical track and record
address),

2. Record KEY (control field of the
logical record).

. Multiple track searching beyond the
specified track for resolving the key
argument.

* Providing a means of supplying the user
with the Record Identifier (ID) of
either the current record or the next
record after a READ or a WRITE operation
has been executed.

The Direct Access Method is subject to the
following restrictions:

e Only unblocked records are processed.

. No work area and only one I/0 area can
be specified for the file.

DIRECT ACCESS FILES

* The user must supply either a track
reference or a record identifier for
?ngy record read or written by logical

ASD files processed by the Direct Access

ethod must be defined for logical IOCS by
DTFDA macro. If a DASD file is processed
y hysical I0OCS in a manner similar to the

i ct Access Method, the file must be

ned by a DTFPH macro.

DASD
Meth
a DT
by p
Dire
defi

DEVICE INDEPENDENT SUPPORT

Device independent support is provided in
LIOCS by dynamically extending the user
DTFDA into the virtual area within the user
partition (see Figure 2), and by linking
the user DTFDA to the device independent
version of the logic module in the SVA
(shared virtual areal. The user must
provide sufficient dynamically allocatable

space in his partition for the device
independent extension to the DTFDA table.

The device independent versions of the
logic module in the SVA are reenterable and
therefore sharable between partitions. If
the linkage to the original module is
already coded read-only, the user supplied
save area is not used.

The device independent versions of the
logic modules in the SVA are supersets of
the functions needed to process the DTFDA
being opened. Supersetting of RPS and
non-RPS logic modules is not supported.

The CCB CCW address and the module
linkage field in each DTFDA are modified to
point to the DTFDA extension and the device
independent version of the logic module in
the SVA. Each DTFDA has two indicators set
on by OPEN: one indicates that the DTF has
been extended into the virtual area, the
other indicates that the device supports
RPS (if that is the case).

The DTFDA extension contains a CCW build
area necessary to construct channel
programs. In addition, it contains a save
area to allow reentrant imperative macro
calls to the device independent version of
the logic modules and to preserve DTFDA
information to reestablish the original
DTFDA at CLOSE time. The original DTFDA is
used for all other information, except the
channel progrim.

Direct Access Files 1

Licensed Program - Property of IBM
DTFDA MACRO

Whenever a file of DASD records is
processed by the Direct Access Method, the
logical file must be defined by a DTFDA
macro. This macro generates a partial DTF
table to describe the characteristics of
the file for logical IOCS as shown in
Figure 1. The DTF table is completed by
the chanhel program builder subroutine in

DA logic module. This subroutine

ds the channel program CCWs to process
file and inserts them into the DTFDA
table extension (see VSE/Advanced

tions Diagnosis Reference: LIOCS Volume
The number and specific nature of the
5 varies imperative macros used with the
ile. See Figures 14 and 15 for a summary
f the CCW chains needed to accomplish the
u

nction of a particular imperative macro.

0O |cH4Tc T

O HOINTOA+OT A+

2 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label|[Bytes Bits Function
&Filename IJICCB (g—é? Command Control Block (CCB).
IJIMOD 16 0 1l = Trailer labels
(10) 1 Used by FREE macro
2 1 = COBOL Opens/Ignore option
3 1 = Track hold option specified
4 1l = DTF relocated by OPENR
5 Not used
6 1 = SPNUNB
7 Used by CNTRL macro
17-19 Address of logic module.
(11-13)
20 DTF type for OPEN/CLOSE (X'22' = direct access
(14) files).
IJISHI 21 0 1 = QOutput; 0 = Input.
(15) 1 1l = Verify option specified.
2 1 = Search multiple track (SRCHM) specified.
3 1 = WRITE AFTER or WRITE RZERO macro used.
4 1 = IDLOC specified.
5 1 = Undefined; 0 = FIXUNB, VARUNB, or SPNUNB
6 1 = RELTYPE = DEC
7 1 = End of file.
IJIFNM 22-28 Filename (DTF Name).
(16-1C)
IJIDVTP 29 Device Type.
(1D) X'00' = 2311 X'08' = 3340 general
X'01' = 2314, 2319 X'09' = 3340 35MB
X'g4' = 3330-1, 3330-2 X'0A' = 3340 70MB
X'05' = 3330-11 X'0B' = 3375
X'07' = 3350 X'gc' = 3380
IJIUNT 30-31 Starting logical unit address of the first volume
(1E-1F) containing the data file This value is supplied
by the OPEN from EXTENT cards (can be initially
zero).
IJIRPS 32 0 Not used
(20) 1 1 = RPS device and RPS=YES in FOPT macro
2-6 [Not used
7 1 = Extended DTF for RPS
IJIULB 33-35 Address of user's label routine.
(21-23)
IJIUXT 36-39 Address of user's routine for processing EXTENT
(24-27) information.
IJIRELPT 40 Pointer to relative address area:
(28) &Filename.Pz— &Filename
IJIERC 41-43 Address of a 2-byte field in which I0OCS can store
(29-2B) the error condition or status codes.

Figure 1. DTFDA Table (Part 1 of 6)

Direct Access Files 3

Licensed Program -

Property of IBM

DTF Assembly|Module
Label DSECT Label|Bytes Bits Function
IJITST 44-45 Macro code switch for internal use:
(2C-2D) X'0000' = READ ID
X'0001"' = READ KEY
X'0002' = WRITE ID
X'0003" = WRITE KEY
X'0004' = WRITE RZERO
X'0005" = WRITE AFTER
IJIBPT 466-47 Pointer to channel program build area
(2E-2F) (&Filename.B) minus 32.
IJICB2 ?§662F) Control seek CCB.
&Filename.Z |IJICCHW ?26727) Control Seek CCW for overlap seek routine.
IJIXMD 72-75 Channel program builder instruction:
(48-4B) XI 36(2),C'0"
IJIMSZ 76-77 Maximum data length for FIXUNB or UNDEF records;
(4C-4D) BLKSIZE for VARUNB or SPNUNB records.
IJISPT 78 Pointer to READ ID string (Filename.0); X'00"' if
(4E) no READ ID issued.
79 Pointer to READ KEY string (Filename.l); X'00"' if
(4F) no READ KEY issued.
80 Pointer to WRITE ID string (Filename.2); X'00' if
(50) no WRITE ID issued.
81 Pointer to WRITE KEY string (Filename.3); X'00"'
(51) if no WRITE KEY issued.
82 Pointer to WRITE RZERO string (Filename.%4); X'00°'
(52) if no WRITE RZERO issued.
83 Pointer to WRITE AFTER string (Filename.5); X'00°'
(53) if no WRITE AFTER issued.
84-87 Reserved
(54~-57)

Figure 1.

DTFDA Table (Part 2 of 6)

4 IBM VSE/Advanced Functions LIDOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly|Module
Label DSECT Label|Bytes Bits Function
IJILAT 88 0 Not used.
(58) 1 1 = Wrong-length record.
2 1 = Non-data transfer error.
3 Not used.
4 1l = No room found.
5-6 |Not used.
7 1 = Record out of extent area.
89 0 1 = Data check in count area.
(59) 1 1 = Track overrun.
2 1 = End of cylinder.
3 1 = Data check when reading key or data.
4 1 = No record found.
5 1 = End of file.
6 l = End of volume.
7 Not used.
IJILBTK 30-95 Label track address, XBCCHH, where X is the
(5A-5F) volume sequence number of the device on which the
label track is located.
This is the end of the common DTFDA table.
The following section is included if UNDEF, AFTER, or RZERO is specified.
DTF Assembly|Module
Label DSECT Label|Bytes Bits Function
&Filename.L |[IJILST 96-14643 Basic CCWs to build channel program
(60-8F) (see Figure 9).
144-183 Basic CCWs for undefined length or formatting
(90-B7) macros (see Figure 9).
IJIVIT 184-185 Instruction to give record length to user if
(B8-B9%) record length is undefined. (NOPR 0 if no
RECSIZE specified.)
IJIFRU 186-187 Instruction to get record length from user if
(BA-BB) record length is undefined. (NOPR 0 if no
RECSIZE specified.)
&Filename.F [IJIFLD 188-192 Work area (used for RO address - CCHHO).
(BC-CQ)
&Filename.K |IJICNT 193-200 Work area (used for RO data field).
(C1-C8)
&Filename.C |IJICTS 201-208 Work area (included only for spanned or variable
(C9-D0O) records for record count field).

Figure 1. DTFDA Table (Part 3 of 6)

Direct Access Files 5

Licensed Program - Property of IBM

The channel program builder strings are
preceding the channel program building
program builder string to be used for e

generated following the DTFDA table, and
area. (See Figures 9 and 10 for the channel
ach macro.)

DTF Assembly|Module
Label DSECT Bytes Bits
Label

Function

&Filename.0 Variable

&Filename. Variable
&Filename. Variable
&Filename. Variable
Variable

&Filename.%

&Filename.5 Variable

Channel program builder string for READ ID macro.
If READ ID is not specified, the string is not
generated.

er string for READ KEY

Channel progr
I the string

macro. RE
is not genera

build
KEY is not specified,

t >0

m
D
e

er string for WRITE ID

Channel progr
WR is not specified, the string

macro. If
is not genera

r string for WRITE KEY

Channel progr
W is not specified, the string

macro. If
is not genera

RITE RZERO
macro. R is not

specified,

WRITE AFTER
R is not

The following section contains the chan

nel program build areas and varies in size.

DTF Assembly

Label Bytes Bits

Function

&Filename.B 0-7

Variable

Variable

Seek CCW that is generated at program assembly
time and used by all channel programs.

Area to build:
1. Eight CCUs

Eight CCWs if s
records and AFT

if AFTER is not specified.

ed or variable length
ES is specified.

S and
A

n CCWs d or fixed records

R=YES

if u

F
p
E
n
i5 spe

anned
R=YES
eve define
FTE cified.
t

CCWs
=YES

if AFTER is not specified and
is specified

if spanned or vari
nd AFTER=YES and VE
r fixed records and
are specified.

Figure 1. DTFDA Table (Part 4 of 6)

6 IBM VSEs/Advanced Functions LIOCS Volu

me 3 DAM and ISAM

The following section

L

icensed Program - Property of IBM

is added for spanned records only.

DTF Assembly|Module
Label DSECT Label|Bytes Bits Function

8 bytes Count save area.
8 bytes SEEKADR save area.
1 byte 0 1 = Relative addressing.

1 1 = IJIGET switch on.

2 = Ignore hold switch on.

3 Reserved for use by IJGXDAV/S

4 1 = New volume SEEKAD

5-7 |Not used.
1 byte Reserved.

bytes Record size.

12 bytes Work area.
8 bytes Control word save area.

The following section
specified

is added to the DTFDA table

if DSKXTNT (relative addressing)

DTF Assembly|Module
Label DSECT Label|Bytes Bits Function
&Filename.P 3 bytes 3X'00' for padding.
&Filename.l 5 bytes IDLOC record area (bucket used by module).
&Filename.S 8 bytes SEEKADR in form: M,B1,B2,C1,C2,H1,H2,R
4 bytes DC A(&SEEKADR)
4 bytes DC A(&IDLOC)
8 bytes Work area for RELTYPE=DEC.
&Filename.X 4 bytes Save area for CCHH portion of actual DASD
address.
4 bytes Alteration factor for Cl in SEEKADR (see bytes
112-119):
2311: X'00000001°"
2314, 2319: X'00000001"
3330 X'00001300"
3340: X'00000CO00"
3350: X'00001ECQ’
3375: X'Qo0000CGCO"
3380: X'000OQOFOQO"
4 bytes Alteration factor for C2 in SEEKADR (see bytes
112-119):
2311: X'0000O0O00A"
2316, 2319: X'00000014"
3330: X'00000013°
3340: X'oo000G0C?”
3350: X'00O0O0O0O1E"
3375: X'ggoogoocC’
3380: X'0000000F"

Figure 1.

DTFDA Table (Part 5 of 6)

Direct Access Files 7

Licensed Program - Property of IBM

DTF Assembly
Label

Bytes

Bits

Function

4 bytes

Variable
to end
of DTF
table

=00 WWHWWWNN - >

< TV HWHWWWWW

w

Bytes 5-7 TTT1

A
X

[oye
Nt
1m

TR ONUID W
AKX OUNOoOONH

te

l-byte end-of-table
' follows the last entry

'FF

~N
MR RXK KX
s e s

-0

o000 OoOvwo

0
0
0
0
0
0

ooo0oO0Oo0 O
oococoo o
OOoODOXOoD
[s]efole]ls]

ocooo000o
=t et et e O

he following
s 0-2 TTT2

3 M-
4 B -

table.

g‘on factor for H1 in SEEKADR (see bytes

oooo1l"

« e e =

TNT table composed of a variable number of
te entries containing extent

information
format:

cumulative number of tracks in
the DSKXTNT table entries up to
and including the current
entry.

volume sequence number.

0 for disk devices.

relative track number of lower
limit of this entry.

indicator containing
in the DSKXTNT

Numbers

Figure 1.

in parentheses are displacements

DTFDA Table (Part 6 of 6)

in hexadecimal notation.

8 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly|Module .
Label DSECT Label|Bytes Bits Function
IJIXBLD 0 CCW build area.
(0)
IJIXSPTR (ég? Address of original channel program.
IJIXSVMP (ég? Address of original logic module.
IJISAVA 184 72-byte register save area.
(B8)
266 Not used.
(10A)
IJISECVO 267 Sector work byte.
(10B)
IJISECV1 268 Sector work byte.
(10C)
IJISECVZ2 269 Sector work byte.
(10D)
IJIXSEC 270 RPS CCW.
(10E)
IJIXSSO 278 RPS CCW.
(116)
IJIXSSX 286 RPS CCHW.
(11E)
IJIXSSNF 294 RPS CCMW.
(126)
IJIXSTRG 302 PESC byte string area.
(12E)
IJIXSPT 382 Displacement to strings.
(17E)
IJIXMCYL 390 Maximum cylinders per volume.
(186)
IJIXTFAC 392 Tolerance factor.
(188)
IJIFLGL 394 Flag byte.
(18A)
IJIXUSTF (133? Indicator needed to use tolerance factor.
IJIFLG2 396 Flag byte
(18C)
Numbers in parentheses are displacements in hexadecimal notation.

Figure 2.

Device Independent DTF Extension for DTFDA

Direct Access Files 9

Licensed Program

DTFPH MACRO

Figure 3

Property of IBM

illustrates the DTF table

generated by the DTFPH macro when the

parameters DEVICE=xxxx and MOUNTED=ALL
in the macro operand. The t

information to define a D
file for processing by physical IDCS, i
manner similar to the Direct Access Met

specified
contains the

O
mm

a
ab
AS
n
h

a
od.

If the device being opened has RPS
capability and the SYSGEN option RPS=YES
has been specified, OPEN will set on bit 1
in byte 32 of the DTF. If the user wishes
to make use of the RPS feature of a device,

he must provide the appropriate Read Sector
and Set Sector CCWs in his channel programs
as is done in the Direct Access Method

(See the appropriate hardware manual for
your device, for format of Sector CCWs and
a write-up on Rotational Position Sensing.)

Bytes Bits |Function
0-15 CCB.
(0-F)
16 (10) X'08' indicates DTF relocated by OPENR.
17-19 3X'00"
(11-13)
20 (14) DTF type (X'23').
21 (15) Option codes.
0 1 = Qutput, 0 = Input.
1-7 [Not Used.
22-28 Filename.
(16-1C)
29 (1D) Device type code:
X'g0' = 2311
X'01' = 2314, 2319
X'04' = 3330-1, 3330-2
X'05' = 3330-11
X'g7' = 3350
X'08' = 3340 general
X'0%' = 3340 35MB
X'0A" = 3340 70MB
X'0B' = 3375.
30-31 Logical unit address of first volume containing
(1E-1F) the file.
32 (20) 0 Not Used.
1 1 = Device supports RPS.
2 1 = Version 3 DTF.
3-7 |Reserved for future use.
33-35 Address of user label routine.
(21-23)
36-39 Address of user routine to process EXTENT
(264-27) information.

Numbers in parentheses are displacements

DTFPH Table for DAM Files

Figure 3.

REFERENCE METHODS AND ADDRESSING SYSTEMS

Each record read or written must be
identified by providing the logical IOCS
routines of the Direct Access Method with

two references:

1. Track reference - location of the track
within the pack.

in hexadecimal notation.

2. Record number (ID), or Record Key
(control information) - position of the
record on the track.

The user can specify the track reference or
record ID as either an actual physical DASD
address or as an address relative to the
start of the file. If relative addressing
is used, the address provided by the user

10 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

has been converted to either a 4-byte
hexadecimal or a 10-byte decimal address.
Actual physical addresses are supplied as
8-byte DASD addresses. Further details of
the addressing systems are presented in the
following discussion of reference methods.

TRACK REFERENCE

Before issuing a read or write instruction,
the user must supply the proper track
identification in the track reference field
in main storage. (This field is identified
by the SEEKADR= parameter specified in the
DTFDA macro.) The track identification can
be expressed in one of three formats
depending on the addressing system used.

1. Actual physical addressing - the track
identification is contained in the
first seven bytes of the 8-byte track
reference field (MBBCCHHR).

2. Relative addressin RELTYPE=HEX) - the
track identification is contained in
the first three bytes of the 4-byte
track reference field (TTTR).

3. Relative addressing (RELTYPE=DEC) - the

track identification is contained in
the first eight zoned decimal bytes of
the 10-byte track reference field
(TTTTTTTTRR).

The track reference selects the channel and
gnltdon which the referenced track is
oun

RECORD ID

Reference to a particular record can be
made by supplying a specific number in the
track reference field This number (ID)
refers to the consecutive position of the
record on the given track; that is, the
first data record on a track is number 1,
the second is number 2, and so on.

The form in which the record ID is
supplied in the track reference field also
depends on the addressing system used.

1. Actual physical addressing
ID 1s the last byte (R-byt
8-byte track reference fie
(MBBCCHHR) .

2. Relative addreSS|ng (RELTYPE=HEX) - the
record is the last byte (R-byte) in
E?$Ta;byte track reference field

- the record
e) in the
ld

3. Relative addressing (RELTYPE=DEC) - the
record ID is the last two zoned decimal
bytes (RR) in the 10-byte track
reference field (TTTTTTTTRR)

When a READ or WRITE macro that searches

for record ID is executed, logical IOCS

refers to the track reference field to
determine which record is requested by the
program. The number in this field is
compared with the corresponding field in
the count areas of the DASD records.
When a READ ID macro is executed, IOCS
searches the specified track for the
particular record. If the record is found,
the key area (if present and defined by the
KEYLEN= parameter in the DTFDA macro) and
the data area of the record are transferred
into the main storage I/0 area. If the
corresponding record ID (R portion of the

count area on the track) is not found, a
no—-record-found indicator is placed in the
user's error/status indicator. The WRITE
ID operation is the same as the READ ID
except a record is written instead of read

RECORD KEY

If the DASD records include key areas, the
records can be identified by the control
information contained in the key. Whenever
this method of referencing is used, the
problem program must supply the key of the
desired record to logical IOCS before a
READ or WRITE macro is issued. When a READ
or WRITE macro is executed, I0CS searches
the track identified by the track reference
field for the desired key. The search is
confined to one track unless multiple track
search is specified by the user. (Refer to
the section "Multiple Track Search".)

If the desired key is not found on the
track, I0CS posts a no record found
indication in the user's error/status
indicator. When the desired key is found,
I0CS reads the data area of the DASD record
into gain storage if a READ KEY macro was
issued.

When a WRITE KEY macro is executed and
the desired key is found, IOCS transfers
the data in main storage to the data area
of the DASD record. This replaces the
information previously recorded in the data
area.

CONVERSION OF RELATIVE ADDRESSES

When the record address supplied by the

user in the track reference field (SEEKADR)
is in relative address form, it must be
converted to an actual DASD address (CCHHR)
before it can be handled by the routines of
the DA logic modules. The Seek Overlap
subroutine in the logic module performs the
conversion.

If the user wants to express the
relative address as a 10-byte zoned decimal
number (RELTYPE=DEC), the address is packed
and converted to binary so that it takes
the hexadecimal TTTR form before conversion
to an actual address.

Direct Access Files 11

Licensed Program - Property of IBM

Conversion to an actual DASD address
starts by comparing the TTT value given
the user-supplied relative address wWith
TTT2 value of each entry in the DSKXTNT
table. (Refer to Figure 16 and to
"Relative Addressing" under "Initialization
and Termination" in this section of the
manual.) The proper DSKXTNT entry is
reached when the TTT2 value of the entry
exceeds the TTT value in the address. The
M and B2 values from the table entry are
inserted into the seek address, MBBCCHHR
(Bl is always 0). The reconversion factor
is calculated by subtracting the TTT1l value
of the current extent entry from the TTT2
value of the previous entry. The
reconversion factor is saved for
reconversion of an actual address to a
relative address if IDLOC is specified.

-
==
m

The user's TTT value is then divided, in
turn, by the three device—-dependent
alteration factors; Cl1, C2, and H1 (refer
to Figure 17). The quotient after each
divide operation is placed in the
respective position in the seek address.
For example; the quotient (after the TTT
value is divided by the Cl alteration

factor), is inserted in the first C byte of
the seek address, MBBCCHHR. The remainder
after each divide operation becomes the
dividend for the next divide operation.

The remainder after the final divide
operation is the H2 val ue in the seek
address, MBBCCHHR. The R byte of the
actual seek address is identical to the R

byte (or equivalent to the RR bytes if
decimal relative addressing is used) in the
TTTR relative address.

If a record ID is returned to t
in relative address form after a R
WRITE macro instruction is execute
specified), reconversion is accompli
reversing the conversion process. T
the corresponding CCHH portions of t
actual address are multiplied by the
respective alteration factors and the
reconversion factor is added to the result.
Again, the R byte remains unmodified
throughout the reconversion process. If
the decimal form of relative addressing is
specified, the TTTR hexadecimal form is
further converted to the 10-byte zoned
decimal form TTTTTTTTRR.

D—'Q.I'ﬂ:!'
>m

MULTIPLE TRACK SEARCH

The Direct Access READ KEY and WRITE KEY
macro routines for processing DASD files
normally search one track for the desired
logical record. The user can specify a
search of multiple tracks by including the
DTFDA entry SRCHM (SeaRCH Multiple tracks)
in the DTF. When SRCHM is specified, IOCS
begins the search for a specified record
key on the track specified in the track
reference field. he search continues
until one of two conditions occur:

12 IBM VSE/Advanced Functions LIOCS Volume

1. An equal compare occurs betuween the key
argument (record key) in main storage
and the key of the required record.

2. The end of the specified cylinder is
reached.

The search for multiple tracks continues
through the cylinder, even though part of
the cylinder may be assigned to a different
logical file. This occurs with or without
relative addressing. I0OCS provides the
user With an end of cylinder indicator when
the search reaches the end of a cylinder.
This indicator is placed into the
error/status byte by I0CS.

IDLoC

The parameter IDLOC= is provided (in both
the DTFDA and IJGXDAF/U or IJGXDAV/

macros) if the user wants to identify
records after each READ or WRITE operation
is complete. If specified, IDLOC
identifies a main storage location where
I0OCS supplies the address (either actual or
relative) of a DASD record. If spanned

records are being processed, the ID
returned will be that of the first segment
of the record. The address returned in
location IDLOC after a particular macro
depends on a variety of conditions. See
Figure 4 for a summary of these conditions
and the addresses returned. When the
problem program references a record by ID
or KEY and does not specify the SRCHM
(search multiple tracks) option, IOCS
returns the ID of the next record under
normal conditions. If the user is
processing records sequentially on the
basis of the next ID, he can check the ID
supplied by IOCS against his file limits to
determine when he has reached the end of
his logical file.

If the next record ID is returned to
IDLOC, LIOCS searches for the ID of the
next record on the specified cylinder. If
an end of cylinder occurs before the next
record is found, logical IOCS:

1. Posts the end-of-cylinder bit in the
error/status indicator, and

2. Updates the address to head 0, record 1
of the next cylinder, and posts this
updated address in IDLOC.

It is possible that there will be no record

at this new address. In this case, logical

IOCS posts a no-record—-found in the

error/status indicator. Two ways to avoid

this possibility:

1. Initialize the volume by wWwriting a
dummy record at the beginning of each
cylinder.

2. Add 1 to the record address and read or
write again, and continue this process
until logical I0OCS finds the desired
record.

3 DAM and ISAM

Licensed Program - Property of IBM
SRCHM = YES SRCHM # YES Seek
Read/Write address
Function Normal No *End Normal No *End EOF not in
170 record]of I1/0 record|of record| extent
complete| found |cylinder|complete|found |cylinder|read area
READ Filename,KEY Same Blank |[Next Next Dummy |[Next Dummy Dummy
record record record record|record record| record
WRITE Filename,KEY Same Blank [Next Next Dummy |[Next Dummy Dummy
record record record record|record record| record
READ Filename,ID Next Dummy |Next Next Dummy |[Next Dummy Dummy
record record|record record record|record record| record
WRITE Filename,ID Next Dummy |Next Next Dummy |Next Dummy Dummy
record record|record record record|record record| record
WRITE Filename,AFTER|None Dummy |Dummy None Dummy |Dummy Dummy Dummy
record|record record|record record| record
WRITE Filename,RZERO|None Dummy |Dummy None Dummy |Dummy Dummy Dummy
record|record record|record record record
¥If an end-of-cylinder condition coincides with either a physical or a logical end of
volume, the ID supplied is that of the first record on the next volume. If this
condition occurs on the last volume, the ID supplied in IDLOC is equal to the maximum
number of tracks for the file. A dummy record is supplied when a physical end of
volume is reached if actual DASD addressing is used.
Dummy record:
Actual addressing -——-=------ 5 bytes (CCHHR), each containing X'FF'
Relative addressing (HEX) -- 4 bytes (TTTR), each containing X'FF'
Relative addressing (DEC) -- 10 bytes, each containing decimal 9

Figure 4. Record ID Returned to IDLOC
CONTROL FIELD SPANNED RECORDS

Figure 5 illustrates the format of the
8-byte control field associated with each
spanned record. The first four bytes are
called the block descriptor word and
contain information supplied by LIOCS when
the record is written. The second four
bytes are called the segment descriptor
word and contain segment type information,
the user supplied record length, and the
segment control flag.

Normal Segment: The term normal segment
refers to any segment of the kind described
by the segment control flag.

Null Segment: The term null segment refers
to a special 8-byte segment (control field
only) that may be written by a WRITE AFTER
macro when the file is being created. A
null segment is written as the last record
on a volume and indicates that tha next
logical record is written on a new volume.
Spanned records do not span volumes; that
is, the first portion of a logical record

cannot exist on one volume and the
remainder on another.

ERROR/STATUS INDICATOR

When processing records in a DASD
environment, certain exceptional conditions
must be handled within the program.

Because the method used for handling these
exceptional conditions depends on the
application and operating environment, the
logical IOCS routines of the Direct Access
Method provide the user with exception
indicators.

The user must specify a symbolic name
for the address of a 2-byte field where
IOCS places the exceptional condition

codes. The symbolic name is written by the
user in the DTFDA entry ERRBYTE. When
needed, IOCS sets one or more of the bits

in this error/status indicator for the
conditions illustrated in Figure 6.

Direct Access Files 13

Licensed Program - Property of IBM

Block Descriptor Word Segment Descriptor Word

[lmy m [y 2] Jom §]

Segment Type Segment Control
(Bit 0) Flag (bits 6 and 7)

-

Block Descriptor Word

Ll = Record length including the 8- byte control
tield (ff+).

RR Used by the system.
Segment Descriptor Word

= Record length including the 4-byte segment
descriptor {data length + 4).

Segment Type:

0 = Normal segment
1 = Null segment

f = Contains binary zeros except bits 6 and 7.
Segment Control Flag:
00 = This segment is not followed or preceded by
another segment; that is, a single contiguous

segment contains the entire logical record.

01 = This segment is the first segment of a multi-
segment logical record.

10 = This segment is the last segment of a multi-
segment logical record.

11 = This segment is neither the first nor the last
segment of a multisegment logical record.

r = Contains binary zeros.

Figure 5. Spanned Record Control Field

14 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program — Property of IBM

Byte|Bit

Error/Status Indicator

Explanation

Not used.

Wrong-length record

FIXUNB records: This bit is set on whenever the
data length or key length of a record differs
from the original record. If an updated record
is shorter than the original record, the updated
record is padded with binary zeros to the length
of the original record. If the updated record is
longer than the original record, the original
record positions are filled and the rest of the
updated record is truncated and lost.

UNDEF records: This bit is set on under the
following conditions:

e When a READ is issued and the record is
greater than the maximum data size (BLKSIZE
minus KEYLEN; or BLKSIZE minus the value of
KEYLEN plus eight, if AFTER is used), a
wrong—-length error condition is given and the
value returned in the RECSIZE register is that
of the actual record length.

e When a WRITE ID or KEY is issued and the
record to be written is greater than the
maximum data size, a wrong-length error
condition is given and the record written is
equal to that of the maximum data length. If
the DASD record is larger than the maximum
data size, the remainder of the record is
padded with binary zeros. The value in the
RECSIZE register is set equal to that of the
maximum data length.

* When a WRITE AFTER is issued and the record to
be written is greater than the maximum data
size, a wrong-length error condition is given
and the record written is truncated to the
maximum data length. The value in the RECSIZE
register is set equal to that of the maximum
data length.

VARUNB records: This bit is set on under the
following conditions:

e When a READ is issued and the LL (data leng
+ 8) count of the record read is greater th
the maximum value specified by the BLKSIZE=
parameter in the DTFDA macro.

* When a WRITE ID or KEY macro is issued and the
LL count is greater than the value specified
by the BLKSIZE parameter in the DTFDA macro.
The record is written with the low-order bytes
truncated.

* When a WRITE AFTER macro is issued and the LL
count is greater than the value specified by
the BLKSIZE parameter in the DTFDA macro. The
record is written with the low-order bytes

truncated.

Figure 6.

Error/Status Indicator

(Part 1 of 4)

Direct Access Files 15

Licensed Program - Property of IBM

Byte

Bit

Error/Status Indicator

Explanation

5

Non-data transfer error

Not used.

No-room—-found

Not used.

SPNUNB records: This bit is set on under the

following conditions:

* When a READ macro is issued, the wrong-length
record error indicator is set if the LL (data
length + 8) count is larger than the value
specified by the BLKSIZE parameter in the
DTFDA macro. The number of data bytes read
into the I/0 area is equal to the value of
BLKSIZE minus 8 bytes for the control words.

e When a WRITE ID or KEY macro is issu
wrong-length record indicator is set

e

h

1. The LL count for the record to b
exceeds the value specified by t
parameter in the DTFDA macro.

2. The data length of the record to be written
exceegs the data length of the original
record.

In either of the above cases the record is
written with the low-order bytes truncated.

The wrong-length record indicator is also set
when the first segment encountered for the
original record is not type 00 or O01l. In this
case the no-record-found (bit 4 in byte 1)
indicator is also set on and no portion of the
new record is written.

The wrong-length record indicator is set for
multisegment records if any segment of the
original record encountered after the first
segment is not type 11 or 10. In this case
the remainder of the new record is not
written.

¢ When a formatting WRITE AFTER macro is issue
and the LL count for the record being writte
exceeds the value specified by the BLKSIZE
parameter in the DTFDA macro. The record is
written with the low-order bytes truncated.

record in error was neither read nor written.
ERREXT is specified and this bit is off (0),
nsfer took place and the problem programmer
Yéd check for other errors in the ERRBYTE

The no-room—-found indication is applicable only
when the formatting WRITE AFTER macro is used for
a file, If the bit is set on, IOCS has
determined that there is not enough room left to
wrjgi the record; consequently, the record is not
written.

Figure 6.

Error/Status Indicator (Part 2 of 4)

16 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

Error/Status Indicator

Explanation

Byte|Bit
0 6
0 7
1 0
1 1
1 2
1 3
1 4
1 5

Not used.

Record out of extent area

Data check in count area

Track overrun

End-of-cylinder

Data check when reading
key or data

No-record-found

End-of-file

The relative address given is outside the extent
area of the file. No I/0 activity has been
started and no other error indicators are set.

This is an unrecoverabhle error.

The number of bytes on the track exceeds the
theoretical capacity. (Will not occur when
VSEéA?vanced Function macro instructions are
used.

The end-of-cylinder indicator bit is set on when
SRCHM is specified for a READ or WRITE KEY and
the end-of-cylinder is reached before the record
is found (bit 4 of byte 1 is also turned on). If
IDLOC is also specified, certain conditions also
turn this bit on, possibly in conjunction with
the no-record-found indicator (bit 4 in byte 1).
For further information see IDLOC.

This is an unrecoverable error.

no-re -found indication is given when a
RSH ID KEY is issued and the record is not
nd.

SRCHM=YES is specified, the end-of-cylinder
dicator (bit 2 in byte 1) is also set on.

For SPNUNB records: the no-record-found
indicator is also set on if, when the identified
record is found, the control flag in the first
segment encountered is not 00 or 01. In this
case, the no-record-found indicator is set on in
conjunction with the wrong-length-record
indicator (bit 1 of byte 0).

The end-of-file indication is applicable only
when the record to be read has a data length of
zero. The ID returned in IDLOC, if specified, is
hexadecimal FFFFF. The bit is set only after 3all
the data records have been processed. For
example, in a file having n data records (record
n+l is the end-of-file record), the end-of-file
indicator is set on when the user reads the n+l
record. This bit is also posted when an end of
volume marker is detected. It is the user's
responsibility to determine if this bit means
true EOF or end of volume on a SAM file.

Figure 6.

Error/Status Indicator (Part 3 of &)

Direct Access Files 17

Licensed Program - Property of IBM

Byte|Bit |Error/Status Indicator

Explanation

1 [The end-
conjunc
(bit 2
next re
1)

her

End-of-volume

c
de

o T

Not used.

of-volume indication is given
tion with the_end-of-cylinder i
of byte 1). This bit is set on
cord ID (CCHHR where CC = n+l,
that is returned on an end-of-c
than the volume address limit.
limit is: cylinder 199, head
ylinder 199, head 19, for a 231
r 40 head 18 for a 3330 model
head 18 for 3330 model 1
ead 11, for a 3340 with 3
cylinder 554, head 29 fo
» head 11 for a 3375. These
he reserved alternate track a

RN N

i
n
H =
ylin
e
9, fo
4 or
o
1; ¢
5
r

ﬂ'b-lﬂl—‘ NSO OS

non

1
;
M
li

QJ-'U-IO‘<"I

B
a
imi
re
nd-of-cylinder and end-of-volume

s are set on, the ID returned in IDLOC

Figure 6. Error/Status Indicator (Part 4 of &
CAPACITY RECORD (RZERO OR RO)

The Direct Access Method utilizes the first
record on each track, RO, to monitor the
amount of available space on the track.
This record is unique in that it does not
contain a key area even though keys may be
specified for the data records of the file.

The Direct Access Method reads the data
portion of the RO record into the
Filename.K location in the DTF table. The
data portion has the following format:

. 5-bytes - The identifier (CCHHR) of the
last record written on the track.

. 2-bytes - The number of unused bytes

remaining on the track.
e l-byte - Flag for the Direct Access
Method.

WRITE RZERO MACRO

The WRITE Filename,RZERO macro is used to
erase a specified track. To do this, the
programmer must supply tne track address in
the track—-reference field identified by the
SEEKADR= parameter of the DTFDA macro. The
LIOCS locates the track, restores the
number-of-bytes-remaining infermation in
the data field of the RO record to the
maximum capacity of the track, and erases
the rgmainder of the track after the RO
record.

18 IBM VSE/Advanced Functions LIOCS Volume 3 D

)
FORMATTING MACRO

The formatting WRITE Filename,AFTER macro
is used to write a record after the last
current record on a specified track. To
perform this function, the problem
programmer must supply, in the location
specified by the SEEKADR= parameter of the
DTFDA macro, the address of the track on

which the new record is to be written.
This form of the WRITE macro cannot return
the ID of the new record in the IDLOC
field.

When the formatting WRITE AFTER macro is
used to write FIXUNB or UNDEF records on a
file, the first eight bytes of the user's
I/0 area must be reserved for LIOCS.
Therefore, the blocksize (BLKSIZE) must be
equal to:

8 + (KEYLEN, if specified) + DL

ID of the new record can be found in
first five bytes of the I/0 area after
write operation is complete because

CS uses the eight bytes that are

erved for the record count field with
following Tormat:

¢ b5-byte track ID (CCHHR)

. l-byte key length (KL)

¢ 2-byte data length (DL)

When the formatting WRITE AFTER macro is
used to write VARUNB or SPNUNB records on a

file, the first eight bytes of the user's
I/0 area contain the record control

PO

AM and ISAM

9

<9

Licensed Program - Property of IBM

information. (See Fiaur e 5 for the format
of the 8-byte control field.) Therefore,
the blocksize (BLKSIZE) ust be equal to:

e
n
L
Maximum DL + 8

The ID of the new record can be found in
the DTF table at location Filename.C after
the write operation is complete. This area
of the DTF table is generated specifically
for VARUNB and SPNUNB records and is used
for the count field of the new record. It
has the following format:

e 6-byte track ID (CCHHR)
e 1l-byte key length (KL)
¢ 2-byte data length (DL)

Note: For VARUNB and SPNUNB records, DL
includes the 8-byte control field.

DAM LOGIC MODULES

VSE/Advanced Functions Release 4 provides 4%
preassembled DAM superset logic modules
that are loaded into the SVA during IPL.
DAM file open processing automatically
links the DTFDA to the proper logic module;
therefore, use of either the IJGXDAF/U or
IJGXDAV/S macro, which was required in
DOS/VSE, is not necessary. However, if
either macro is submitted (and properly
specified), it will cause no_compilation
problems; it will simply be ignored by the
Assembler.

DAM LOGIC MODULES

IBM supplied four pre-compiled logic
modules to process records under the Direct
Access Method

These modules are:

. IJGXDAF for fixed length unblocked
records

¢ IJGXDAS for spanned unblocked records
. IJGXDAU for undefined records

¢ ITIJGXDAV for variable-length unblocked
records

These modules are executed in the SVA.
Each individual module contains for its
respective records format the routines for
the following Direct Access Macros:

READ, WRITE, CNTRL, FREE and WAITF.

The macro-routines have individual entries
in the logic modules.

When the user issues a READ or WRITE
macro instruction for a file, program

control transfers to one of these logical
I0OCS routine that builds the proper channel
program to accomplish the command.

IOCS routine issues an execute channel
program that causes the I/0 request to
start. I0CS then returns control to the
problem program. A WAITF macro instruction
must be issued by the user before the next
READ or WRITE for the file. The WAITF
routines test the status of the channel to
ensure that the operation is complete. If
the channel is busy, the routine waits for
I/0 completion. The WAITF routines supply
indications of exceptional conditions to
the problem program in the error/status
indicator. At the completion of the I/0
operation, control returns to the problem
program.

o
1

IJGXDAFsU: READ/WRITE Macro

Objective: To read or write a fixed-length
unblocked or undefined record on a direct
access file

Entry: From any Input/Output macro used
Wwith the Direct Access Method.

Exit: To the problem program via linkage
register 14.

Method: Each of the five Input/Output
macros has a unique expansion that results
in a branch to a different entry point in
the module. The entry point is at one of a
series of exclusive OR instructions. The
exclusive OR instructions cause a unique
bit structure to be set up in a one-byte
macro switch in the DTFDA table. From this
macro switch, the module determines which
macro has been issued.

After the macro suwitch has been set, a
test is made for undefined records or an
end-of-file condition. If neither, the
data length is set to the maximum length.
If end of file, the data length is set to
zero. If undefined and a read operation,
the data length is set to the maximum. For
a WRITE AFTER, WRITE KEY, or WRITE ID
instruction, this routine gets the data
length from the user, and determines
whether it is greater than the maximum
length. If so, it is set to maximum and
the wrong-length-record bit is set on in
the DTF table. The CCW data areas are then
updated, and a branch and link is made to
the IJISOVP subroutine, to calculate the
physical address and to determine the
symbolic unit.

Next, this routine branches to the
channel program builder to build the CCW
chain for the macro that is being processed
(refer to Figure 14 or 15). A test is then
made for a WRITE AFTER or WRITE RZERO macro
being processed. If neither of these, this
routine issues the SVC 0 to perform a read
or write operation. Control then returns

to the problem program.

Direct Access Files 19

Licensed Program - Property of IBM

If the macro is a formatting macro
(WRITE AFTER or WRITE RZERO), additional
processing is necessary. If the macro is
WRITE AFTER, RO is read and the capacity of
the track is checked. If the space
remaining on the track is not large enough
for the record, the no-room-found bit is
set on in the DTF and control returns to
the problem program.

If the track capacity is large enough,
the routine calculates the space remaining
on the track after the record is written
and stores it in the RO write area. The
channel program builder then builds a CCHW
chain to WRITE AFTER, updates the previous
record ID by 1 in the RO write area, and
tests for end of file. If end of file, the
key and data length fields in the count
field are set to zero. If not end of file,
the key and data lengths of the record are
inserted in the count field. An SVC 0 is
then issued to write out the record. If
track hold has been specified, an SVC 36 is
issued to free the held track, and control
returns to the problem program.

If the macro issued is a WRITE RZERO,
CCWs are modified, and a new RO record is
written. If track hold has been specified,
and the macro is READ,ID or READ,KEY, the
track held is not freed by IJGXDAF/U. This
must therefore be done in the user program
with the FREE macro. Control then returns
to the problem program.

IJGXDAF/U/V/S: WAITF Macro

Objective: To ensure that the transfer of a
record has been completed, to supply the ID
of a record to the user, if IDLOC is
specified, and to post error conditions in
the errors/status indicator, if necessary.

Entry: From the WAITF macro.
Exit: To the problem program.

Method: After saving the user's registers,
this routine first issues an SVC 7 WAIT
macro to ensure that the previous I/0
operation is complete. The second error
byte from the CCB is placed in the error/
status indicator in the DTF table.

If IDLOC is specified, IOCS supplies the
with the ID of a record after each

or WRITE is completed (see Figure 4).
DLOC is specified, a test is made for
type of macro issued. If a READ KEY or
E KEY macro, the routine determines if
search multiple track option (SRCHM)
has been specified. If so, the ID returned
to the user is the ID of current record
transferred.

If a READ or WRITE KEY macro has been
issued without a search multiple track
option, or a READ or WRITE ID macro has

been issued, the ID returned to the user is
the ID of the next record location, unless
an end-of-cylinder condition is
encountered. In this case, the ID returned
is that of the first record of the next
cylinder. If an end-of-volume condition is
detected while updating the cylinder
address, the end-of-volume bit is set in
the error/status indicator in the DTF

table, and a dummy record is returned in
IDLOC.
After the module determines the contents

of IDLOC, the error/status bytes are set in
accordance With the conditions posted to
the CCB by physical I0CS, and returned to
the user. Then, if record length is
undefined and a READ macro has been issued,
the record length is calculated and
returned to the user. This routine then
restores the user's registers, resets the
macro switch in the DTF table, and returns
control to the problem program via linkage
register 14.

IJGXDAF/U/V/S: CNTRL Macro

Objective: To perform non-data operations
on a file. For a disk device, a seek
operation is executed.

Entry: From the CNTRL macro.

Method: This routine saves the user's
registers, and then branches and links to
the IJISOVP subroutine, to calculate the
physical address and to determine the
symbolic unit. When the non-data transfer
operation has been completed, the user's
registers are restored, and control returns
to the problem program via linkage register

To the problem program.

IJGXDAF/sU/V/S: FREE Macro

Objective: To release a protected (held)
track on a direct access storage device.

Entry: From a FREE macro expansion in the
problem program.

Exit: To the problem program.

Method: After storing the user's registers,
the FREE routine branches to the
seek-overlap subroutine. The subroutine
determines the seek address of the held
track from the seek CCW in the channel
program build area. The module (M) number
from the seek address calculates tne
symbolic unit address which is then
inserted into the CCB. An SVC 36 is issued
to free the held track. After completing
the subroutine, the FREE routine restores
the user's registers and returns control to
the problem program.

20 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

IJGXDAV/S:

Objective: To read or write a
variable-length unblocked or a spanned
unblocked record on a Direct Access file.

Input/Qutput Macros

Entry: From any Input/0Output macro used
Wwith the Direct Access Method.

Exit: To the problem program via linkage
register 14,

Method: Each of the five Input/QOutput
macros has a unique expansion that results
in a branch to a different entry point in
the module. The entry point is to one of a
series of exclusive OR instructions, which
cause a unique bit pattern to be set up in
a l-byte macro switch in the DTFDA table.
The module determines which macro has been
issued by testing this switch.

READ Macro — VARUNB Records: The procedure
followed for both the READ ID and the READ
KEY macros is exactly the same. The only
difference between the two macros is in the
CCW chain built by the channel program
builder subroutine, IJISBLD. Refer to
Figure 14 or 15, Chart I for READ ID; Chart
J for READ KEY.

The byte count in the basic read data
CCW (see Figure 11) is set equal to the
length specified by the user in the
BLKSIZE= parameter for the DTFDA macro.
The IJISOVP subroutine is then entered to
calculate the physical address and to
determine the symbolic unit. Next, the
channel program builder subroutine is used
to build the required channel program. The
channel program is executed to read the
record into the I/0 area and control is
returned to the problem program.

Macro - SPNUNB R
owed for both the
macros is exactly

rence between th
hain built by th
er subroutine, I

» Chart I for RE
KEY.

ds: The
D ID and the READ
same. The only

or procedure
EA
he
two macros is in the
ch
SB

I

nnel program
See Figure 14
Chart J for

DO O XHT
oo m
»>CmMm
]

e byte count in the basic read data
see Figure 11) is set equal to the

h specified by the user in the

ZE= parameter for the DTFDA macro.
JISOVP is then entered to calculate
hysical address and to determine the
symbolic unit. Next, the channel program
builder subroutine is used to build the
required channel program, which is then
executed to start the read operation. If
the segment descriptor for the record read
indicates that it is a null segment or that
the segment contains the entire logical
record (segment type 00), control is
returned to the problem program.

the record read is segment type 01
(the first segment of a multisegment record
- at this point, segment types 10 or
would be in error), which indicates that
the rest of the logical record continues on

another track, the CCW chain is modified
and the seek address is updated to the next
track. One of the modifications made to
the READ ID CCW chain is the substituting
of a TIC%¥+8 CCW for the RDKD CCW when
KEYLEN is specified. This is done because
the record key is associated only with the
first segment of a mulitsegment record.

The last eight bytes of the last portion
of the record read into the_I/0 area are
temporarily stored in the DTF table to
allow the control words (block descriptor
and segment descriptor) of the next segment
to be read in along with the data (see
Figure 7); these bytes are later restored
after the control word information for the
next segment is processed. The modified
channel program is reexecuted to read the
next segment into the I/0 area and its
length is added to the combined length of
the previous segments. The combined total
length is then compared to the BLKSIZE
specified by the user. Should the combined
length exceed the BLKSIZE, a
wrong—-length-record (WLR) indicator is set.
If the segment just read is type 11
(neither the first nor the last segment of
a multisegment record), the procedure
described in this paragraph is repeated.

When the last segment (type 10) is read,
the combined length of all the record
segments is posted to the segment
descriptor word in the I/0 area and control
is returned to the problem program.

WRITE Macro — VARUNB Records: The procedure
followed for both the WRITE ID and the
WRITE KEY macros is exactly the same. The
only difference between the two macros is
in the CCW chain built by the channe
program builder subroutine, IJISBLD. See
Figure 14 or 15, Chart K for WRITE ID and
VERIFY, Chart L for WRITE ID and NO VERIFY,
Chart M for WRITE KEY and VERIFY, and Chart
N for WRITE KEY and NO VERIFY.

The logical record length (ll) is
obtained from the user's segment descriptor
word in the I/0 area. The length specified
for the record plus four bytes for the
block descriptor word is then tested to see
if it is greater than the maximum block
length specified in the BLKSIZE= parameter
of the DTFDA macro. If it is not greater

an the BLKSIZE value, he byte count in
basic read data CCW (RDD CCW - Figure
is set equal to the specified 1l + 4

n ~rt -

at is, LL) value. If, on the other
d, the LL value is greater than the
SIZE value, the record capacity

register(IJICPR) and the RDD CCW byte count
are set equal to the BLKSIZE value and the
wrong—length—-recora (WLR) indicator is set.
This causes truncation of the record when
it is written.

The IJISOVP subroutine is entered to
calculate the physical address and to
determine the symbolic unit. Next, the
channel program builder subroutine is used
to build the required channel progranm,
which is then executed to write (and
verify, if so specified) the record.

Direct Access Files 21

Licensed Program - Property of IBM

Control is then returned to the problem
progranm.
specified,
written resides
returned.

WRITE Macro — SPNUNB Records:
followed for both the WRITE ID and the

the track on which the record

is freed before control is

If the track hold option has been

The procedure

channel program builder subroutine is used
to build the first portion of the WRITE
macro channel program. It is at this point
that spanned record handling differs
markedly from the handling of records of
other formats.

The first portion of the WRITE macro

WRITE KEY macros is exactly the same. The channel program (see Figure 14 or 15,
only difference between the two macros is Charts K or L for WRITE ID; Charts M or N
in the CCW chain built by the channel for WRITE KEY) is actually a CCW chain to
program builder subroutine, IJISBLD. See read the eight bytes of control information
Figure 14 or 15, Chart K for WRITE ID and contained in the existing DASD record.
VERIFY, Chart L for WRITE ID and NO VERIFY, This read operation is necessary because,
Chart M for WRITE KEY and VERIFY, and to before a spanned record can be written, the
Chart N for WRITE KEY and NO VERIFY. arrangement of the record being replaced
must be determined. That is, it must be
The IJISOVP subroutine is entered to known if the existing record is contained
calculate the physical address and to in a single DASD segment (type 00) or in
determine the symbolic unit. Next, the
- BLKSIZE (LL) >
< RECORD LENGTH >

"——— DATA LENGTH (D)

AIA

g————————— First Segment
IOAREA1 ! !

Next Segment —-I

3
DTFDA Table Data Record “‘
I 1 = R
Block Segment Segment 1 Segment ! Segment
2 T | pescriptor | Descriptor | Typeqt | | Type 11 ' Type 10
SPNUNB Area U BNTY| HETE ITT1 I
\ A WA h
\ \
[N/
4 - \ \\
- -~ Z Segment Type 01 Segment Type 11 or 10
1 :| élllill INNANNT
A A
Segment Control Words]
Last 8 data bytes of segment are temporarily
stored to make room in the 1/O area for the
control words of the next segment.
Figure 7. Multisegment Spanned Record
multiple DASD segments and, if in multiple new record, and control is returned to the
segments, the lengths of the individual problem program.
segments must be known. Thus, for each .
segment of a multisegment spanned record, If the segment control flag in the DASD
it is necessary to execute a read and a segment read is type 01 (the first segment
write operation. of a multisegment record), the channel
program builder subroutine is entered to
If the segment control flag in the build the write CCW chain. The CCW chain
segment descriptor of the existing record is then modified according to the various
is type 00, the record to be written is options specified for the type of macro
handled in a manner similar to a normal being used. Next, the length of the
variable—-length record. That is, the current DASD segment is determined from the
channel program builder subroutine is control words obtained by the read
entered to build the write CCW chain, the operation and compared to the
channel program is executed to write the user—-specified length of the record to be
written (LL).
22 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

2

vicensed Program - 2roperty of IBM

If the record length is less than the
length of the current segment, the byte
count in the write data (WRD) CCH is
changed to the length of the record (if
VERIFY is specified, the byte count in the
verify read data CCH is likewise changed).
Otherwise, the CCW byte count remains equal
to the length of the segment that can be
accommodated on the track; that is, the
length of the current segment. The channel
program is then executed to write the
segment.

After the first segment of the record is
written, the seek address is updated to the
next track and a similar procedure is
followed for the next segment(s) of the
record. During the procedure for uwriting
segments after the first segment, the last
eight data bytes of the preceding segment
are temporarily stored in the DTF table to
allow the control words of the subsequent
segment to be read into the I/0 area (see
Figure 7). The segment length obtained
from the control words is used to set the
byte count in the WRD CCW for all type 11
segments. Each time a segment is written,
its length is added to the combined lengths
of the previously written segments, and the
total is subtracted from the user-specified
record length. The result of this
calculation is the number of bytes in the
record that remain to be written. When the
last segment (type 10) is written, this
remainder is used to determine if the new
record is larger or smaller than the
original record. If it is larger, a WLR
indicator is set and the truncated
remainder of the record is written; if
smaller, the byte count in the WRD CCHW is
reduced to the value necessary to write the
remainder of the record.

Because each segment of a multisegment
spanned record is handled as an individual
physical DASD record, if the VERIFY option
is specified, each segment is verified
after it is written and before the next
segment is read. Therefore, if VERIFY is
used, three I/0 operations are required for
each segment: read, write, and read.

WRITE AFTER Macro — VARUNB Records: The
byte count of the basic read data CCW (see
Figure 11) is set equal to the block length
(LL) of the record to be written, and the
IJISOVP subroutine is entered to calculate
the physical address and determine the
symbolic unit. The channel program builder
subroutine, IJISBLD, is then used to build
the first portion (read RZERQO) of the
channel program for the WRITE AFTER macro
(see Figure 14 or 15, Chart 0).

Next, the ID (CCHHR) of the RO re
the specified track is set up in the
table, at location Filename.F, and t

cord on
DTF
he

channel program is executed to read the
8-byte data field of RO into the DTF table
at location Filename.K. The data field of
the RO record contains the following
information:

Bytes 0-4: The CCHHR of the last record
currently written on the track.

Bytes 5-6: The number of unused bytes
currently remaining on the
track.

Byte 7: Not used by VSE/Advanced

Functions.

Using the information contained in bytes 5
and 6 of the RO data field, a test is made
to determine if sufficient room exists on
the track to write the new record. f
enough room is not available, the no-room-
found indicator is set in the DTF table and
control is returned to the problem program.

If there is enough room on the track for
the new record, the DASD space that remains
after the new record is written is
calculated to update the RO record. Next,
the channel program builder subroutine is
used to build the rest of the WRITE AFTER
channel program, which includes the CCWs
needed to write the updated RO record and
the new record (and verify both, if so
specified).

The channel program is then executed and
control is returned to the problem program.
If the track hold option has been
specified, the track is freed before
control is returned.

WRITE AFTER Macro — SPNUNB Records: The
procedure followed for the WRITE AFTER
macro for spanned records is the same as
that followed for variable-length records
up to the point of testing to determine if
there is sufficient room on the specified
track for the new record. For spanned
records, the test is first made to
determine if a minimum length (KEYLEN + 9)
segment can be written in the space
remaining on the track. If not, the
no-room-found indicator is set in the DTF
table and control is returned to the
problem program. If the minimum length
segment can fit, a second test determines
if the entire record can be written on the
track. If it can, the record is written in
the manner described for variable-length
records.

If the entire record will not fit in the
space remaining on the specified track, the
length of the portion that can fit is
calculated and subtracted from the
user—-specified length of the record.

Direct Access Files 23

Licensed Program - Property of IBM

The seek address
next track.

The RO record for the next track is read
and checked for full availability; that is,
if the track is not empty, a no-room-found
indicator is set and control is returned to
the problem program. The data field of the
RO record is tested to determine if all the
remaining bytes of the record (plus eight
bytes for control words) can be contained
on the new track. If not, the length of
the largest single record that fits on a
track is subtracted from the number of
record bytes remaining to be written, and
the seek address is once again updated.
This process is repeated until the point is
reached where the entire logical record can
be accommodated. If the track hold option
has been specified, a hold is placed on all
the tracks checked.

is then updated to the

The channel program builder subroutine
is then used to build the second portion of
the WRITE AFTER channel program, and the
first segment of the record is written on
the specified track. If KEYLEN is
specified, the key is written with the
first segment. The rest of the record is
then written in as many segments as
necessary, along with the RO records for
each of the tracks involved. If the track
hold option has been specified, the tracks
are individually freed after the respective
segment is written.

If, during the checking of the series of
tracks needed to write the record, the
updated seek address indicates a change to
a new volume, the RO records of all the
tracks between the user-specified track and
the first track on the new volume are
rewritten with their respective data fields
indicating no space available. Checking is
reinitiated on the new volume and, when it
is established that sufficient room is
available on the new volume, the first
segment (and, if specified, the record key)
is written on the first track. The rest of
the record is written on subsequent tracks
in the normal manner.

WRITE RZERQO Macro — VARUNB or SPNUNB
Records: The IJISBLD subroutine is entered
to build the channel program. The ID for
the RO record (CCHHO) on the specified
track is set up in locations Filename.F and
Filename.K in the DTF table. The number of
bytes remaining on the track is set equal
to the full track capacity and inserted
into bytes 5 and of the RO data field
(Filename.K). The channel program is then
executed to erase the track and write the
updated RO record, after which control is
returned to the problem program.

IJGXDAF/U/V/S:
Subroutine

Channel Program Builder

Objective: To construct a channel program
in accordance with the processing macro
issued in the problem program.

Note: Figures 14 and 15 provide a summary
of the channel programs built to process
DASD records by the Direct Access Method.

Entry: From a direct access logic module
(IJGXDAF/U/V/S) via a branch and link
instruction.

Exit: To the calling routine.

Method: To perform direct access
processing, many different channel
programs, varying in length from 5 to 17
CCWs, are needed (see Figures 14 and 15).
The many CCWs required can be built from 11
basic CCWs by modifying command codes
and/or flag bytes. Of these 11 CCWs, 5 are
required for initial file loading. The
other 6 are needed for normal file
maintenance processing. TIC CCWs are built
directly from storage addresses.

For each channel program that is built,
a string of descriptor bytes are generated
in the DTF table at program assembly time.
The content of the string depends on the
imperative macro issued by the problem
program to access the file. There is one
descriptor byte for each CCW in the channel
program. This descriptor byte is divided
into three subfields, which perform the
functions illustrated by Figure 8.

Bit 011 2 3 4|5 6 7
Field Al B | C
Field A: References the command code.

Field B: A relative pointer to select
one of the 11 basic CCUs

(see Figure 9).

Field C: Further defines the command
code, and modifies the flag
byte as required.

Figure 8. DAM Descriptor Byte

Because the first CCW in a direct access
method channel program must be a seek
command, the seek CCW is generated at
program assembly time as the first CCHW in
the CCW build area, and is never modified.
As each channel program is requested, the
channel program builder subroutine is
Cﬁl}ed to build the remainder of the CC
chain.

W

26 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

9

9

Licensed Program - Property of IBM

Before entering this subroutine, the
logic module uses the macro suwitch to
determine the address of the string of
descriptor bytes for the macro issued (see
Figures 9 and 10). After pointers are set
to the current descriptor byte and the CCH
build area, the subroutine isolates the
relative pointer to the basic CCW needed
(see Figure 11) and tests to determine if
the CCH is to be a Transfer In Channel
(TIC). Figure 11 shous the basic CCWs used
to build channel programs.

If fields A and C of the descriptor byte
are zero, the CCW is to be a TIC. Field B
determines the address of the CCW to which
control is to be transferred. This address
and the TIC command code are stored in the

TIC CCH (see Figure 12). If the end of the
descriptor string has not been reached, the
subroutine returns to build the next CCW;
otherwise, control returns to the calling
routine.

If the CCW is not a TIC, Field B
determines which of the basic CCWs is moved
to the build area. Fields A and C of the
descriptor byte are tested to see which
fields in the CCW, if any, are to be

modified (see Figure 12). A test is then
made for the end of the descriptor string.
If the end has not been reached, the
routine returns to build the next CCW in
the chain; otherwise, control returns to
the calling routine.

Direct Access Files 25

Licensed Program - Property of IBM
Macro Option FIXUNB UNDEF VARUNB SPNUNB
READ 1D No options DC X'871814' DC X'C718BF14' DC X'871816' DC X'871816'
KEYLEN DC X'87182C" DC X'C718BF2C’ DC X'87182A16' DC X'87182A16'
IDLOC DC X'8718979E" DC X'C719BF129C" DC X'8718129E" DC X'8718129E'
KEYLEN, IDLOC | DC X'8718AF9E' DC X'C718BF2A9C' DC X'87182A129E' DC X'87182A129€E"
READ KEY | No options DC X'8F1814' DC X'BF8F1014' DC X'A7188F1816' DC X'A7180A1816'
SRCHM DC X'A718881814' DC X'A718B8881014' DC X'A718881816" DC X'A7188A1816'
1DLOC DC X'8F1897%E" DC X'BF8F10129C" DC X'A7188F18129E' DC X'A7180A18129€"
SRCHM, IDLOC | DC X'A7189A881014' DC X'A718B8881014' DC X'A7189A881016" DC X'A7189ABA1016'
WRITE D No options DC X'871895" DC X'871895' DC X'871895' DC X'871814871895"
(No VERIFY)*| KEYLEN DC X'8718AD' DC X'8718AD" DC X'8718AB95' DC X'8718148718AB95"
IDLOC DC X'8718919E" DC X'8718939C" DC X'8718919€' DC X'8718148718919E'
KEYLEN, IDLOC | DC X'8718A99E" DC X'8718ABSC’ DC X'8718AB919E' DC X'8718148718AB919E'
WRITE ID No options DC X'871891871815' DC X'871893871815' DC X'871891871815' DC X'871814871891871815'
(VERIFY) KEYLEN DC X'8718A987182D" DC X'8718AB87182D"' DC X'8718AB9187182B15' | DC X'8718148718AB9187182B15'
IDLOC DC X'8718918718119€' DC X'8718938718139C" DC X'8718918718119E" DC X'8718148718918718119E"
KEYLEN,IDLOC | DC X'8718A98718299E" DC X'8718AB87182B9C" DC X'8718AB9187182B119E* | DC X'8718148718AB9187182B119E"
WRITE KEY | No options DC X'8F1895' DC X'8F1895' DC X'A7188F1895' DC X'A7180A18140A1895'
(No VERIFY) | SRCHM DC X'A718881895 DC X'A718681895' DC X'A718881895' DC X'A7189A8A10148A1895'
IDLOC DC X'8F18919E* DC X'8F18939C" DC X'A7188F18919E* DC X'A7180A181 40A18919E'
SRCHM, IDLOC | DC X'A7189A881095"' DC X'A71888881095' DC X'A7189A881095' DC X'A7189A8A1014BA1895'
WRITE KEY | No options DC X'8F18918F1815' DC X'8F18938F1815' DC X'A7188F18910A1815' | DC X'A7180A18140A18910A1815
(VERIFY) SRCHM DC X'A7188818918F1815' DC X'A7188818938F1815' | DC X'A7188818910A1815' | DC X'A7189A8A10148A18910A1815"
IDLOC DC X'8F18918F18119€" DC X'8F18938F18139C" DC X'A7188F18910A18119E* | DC X'A7180A18140A18910A18119E*

SRCHM, IDLOC

DC X'A7189A8810918F1815"

DC X'A718B88810938F1815"

DC X'A7189A8810910A1815"

DC X'A7189A8A10148A18910A1815'

DC X'C71834'

DC X'C718D752C718B5' WRITE RZERO
READ RZERO

|f AFTER is specified, these strings are generated for all record formats:

Macros WRITE AFTER and WRITE RZERO use the same strings. |f AFTER is not specified in the DTFDA macro, the strings are not generated .

And one of the following strings:

No VERIFY

VERIFY

DC X'C718B18718CD’

DC X'C718B18718C9C7183187184D"

DC X'C718818718CB?1C7183187184B15"

No options DC X'C718B18718CB9S"
KEYLEN DC X'C718B18718CBAB9S'
No options

KEYLEN

DC X'C718B18718CBAB91C7183187184B2B15"

One string for each macro to be used is generated, dependent upon the options specified in the DTFDA macro.

*Indicates the operation used in the example given of the Channel Program Builder.

Figure 9.

26 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

DAM Channel Program Builder Strings Without RPS Support

Licensed Program -~ Property of IBM
Macro Option FIXUNB UNDEF VARUNB SPUNB
READ ID No options DC X'58871895' DC X‘'C718BF14* DC X'871816' DC X'871816'
KEYLEN DC X'588718AD' DC X'C718BF2C’ DC X'87182A16' DC X'87182A16'
IDLOC DC X'588718919E* DC X'C718BF129C' DC X'8718128E" DC X'8718129E*
KEYLEN,IDLOC [DC X'588718A99E* DC X'C718BF2A9C' DC X'87182A129E' DC X'87182A129E'
READ KEY No options DC X'8F1814' DC X'BF8F1014' DC X'487A188F18164' DC X'48A7180A1816'
SRCHM DC X'48A718881814' DC X'48A718B8881014' DC X'48A718881816" DC X'48A7188A1816"
IDLOC DC X'8F18979E' DC X'BF8F10129C"* DC X'48A7188F18129E' DC X'48A7180A18129E"
SRCHM, IDLOC DC X'48A7189A881014' DC X'48A718B8881014' DC X'48A7189A881016" DC X'48A7189A8A1016'
WRITE ID No options DC X*'58871814' DC X'871895' DC X'871895' DC X'8718977858871895'
(No VERIFY)* | KEYLEN DC X'5887182C" DC X'8718AD' DC X'8718AB95' DC X'87189778588718AB95"
IDLOC DC X'588718979E' DC X'8718939C"' DC X'8718919E' DC X'87189778588718AB919E "’
KEYLEN,IDLOC | DC X'588718AF9E' DC X'8718AB9C' DC X'8718ABY1YE" DC X'87189778588718ABF19E
WRITE ID No options DC X'5887189158871815' DC X'8718936858871815' DC X'8718914858871815' DC X'871897785887189158871815"
(VERIFY) KEYLEN DC X'588718A95887182D" DC X'6718AB485887182D" DC X'8718AB91485887182B15" DC X'87189778588718AB915887182B15'
IDLOC DC X'58871891588718119E' DC X'87189348588718139C" DC X'87189168588718119E" DC X'8718977858871891588718119E'
KEYLEN,IDLOC |DC X'588718A9588718299E" DC X'8718AB685887182B9C" DC X'8718AB91485887182B119E" DC X'87189778588718AB915887182B119E’

WRITE KEY | No options DC X'8F1895* DC X'8F1895' DC X'48A7188F1895" DC X'48A7180A189778580A1895"

{No VERIFY) | SRCHM DC X'48A718881895' DC X'48A718881895' DC X'48A718881895' DC X'48A7189A8A109778588A1895"
IDLOC DC X'8F18919E" DC X'8F18939C" DC X'48A7188F1895' DC X'48A7180A189778580A18919E"
SRCHM,IDLOC | DC X '48A7189A881095' DC X'48A718B8881095' DC X'48A7189A881095 DC X“48A7189ABA109778588A1895'

WRITE KEY | No options DC X'48C718D752C718B5" DC X'8F189368588F1815' DC X'48A7188F189168580A1815' DC X'48A7180A189778580A1891580A1815"

(VERIFY) SRCHM DC X'48A71888189168588F1815' DC X'48A71888189368588F1815' DC X'48A71888189148580A1815" DC X'48A7189A8A109778588A1891580A1815"
IDLOC DC X'8F189168588F18119E" DC X '8F189348588F181393" DC X'48A7188F189148580A18119E' | DC X '48A7180A189778580A1891580A18119E"
SRCHM,IDLOC | DC X'48A7189A88109168588F1815' | DC X'48A718B888109368588F1815' |DC X '48A7189A88109168580A1815' | DC X '48A7189ABA109778588A1891580A1815'

Macros WRITE AFTER and WRITE RZERO use the same strings. If AFTER is not specified in the DTFDA macro, the strings are not generated.

If AFTER is specified, these strings are generated for all record formats

DC X'48C718D752C718B5' WRITE RZERO

DC X'48C71834' READ RZERO

And one of the following)

strings

No VERIFY DC X'48C718B18718CD" No options DC X'48C718B18718CB9S5*

KEYLEN DC X'48C718B18718CBAB95'
VERIFY DC X'48C718B18718C9C7183187184D" No options DC X'48C718B18718CB91C7183187184815'
KEYLEN DC X'43C718B18718CBAB91C718318718482B15"

One string for each macro to be used is generated, dependent upon the options specified in the DTFDA macro.

* Indicates the operation used in the example given of the Channel Program Builder.

Figure 10.

DAM Channel Program Builder Strings with RPS Support

Direct Access Files

27

Licensed Program -

Property of IBM

Field B|Basic CCW Function

0000 X'31',&SEEKADR+3,X'40"',5 Search identifier equal using the
address specified in the user's
track-reference field.

X'31',&Filename.S+3,X'40"',5 If relative addressing is used.

0001 X'29',KEYARG,X'40"',Key length Search key equal for key specified
by user in KEYARG field.

0Q10 X'06',&I0AREA+16,X'40"',Data length Read data into I/0 area (FIXUNB and
UNDEF records).

X'06',&I0AREA,X'40",BLKSIZE Read data into I/0 area (VARUNB and
SPNUNB records).

0011 X'12',&IDLOC,X'40"',5 Read count (CCHHR) into IDLOC.

X'12',&Filename.I,X'40"',5 Read count (CCHHR) into work area in
DTF table if relative addressing is
used.

0100 X'39',&SEEKADR+3,X"'40"',4 Search home address equal using the
address specified in the user's
track-reference field.

X'39',&Filename.S5,X'40"',4 If relative addressing is used.

0101 X'0E',&%I0AREA+8,X'40"',Key and Data length |[Read key and data into I/0 area

(FIXUNB and UNDEF records).
X'0E',&KEYARG,X'C0',Key length Read key into user's KEYARG field
(VARUNB and SPNUNB records).

0110 X'06',&Filename.K,X'40"',8 Read RO data into work area in DTF
table.

0111 X'12',&Filename.K,X'40"',5 Read RO count into work in DTF
table.

1000 X'31'",&Filename.F,X'40"',5 Search identifier equal using the
address specified in the 5-byte work
area in the DTF table.

1001 X'"1E',&I0AREA,X"'40"',Count, Key, and Data Read count, key, and data into I/0
length area (FIXUNB and UNDEF records).
X'1lE',&Filename.C,X'C0"',8 Read count (CCHHRK D D) into work

area in DTF table (SPNUNB records).

1010 X'11',&Filename.B+32,X'40"',Length of the Control erase of track.

%argﬁst single record that fits on a
rack.

Figure 11.

Basic CCWs for DAM Channel Program Builder

28 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

Field A Field B Field C Meaning
1 N N N N 1 1 1 [Basic CCW not modified.
1 N N N N 0 0 0 |Modify command code to multiple-track operation.
1 N N N N 0 0 1 [Modify command code in write operation.
1 N N N N 0 1 0 [Modify command code to multitrack, set SLI flag on.
1 N N N N 0 1 1 |Modify command code to write, set SLI flag on.
1 N N N N 1 0 0 [Modify command code to multitrack, set CC flag off.
1 N N N N 1 0 1 |Modify command code to write, set CC flag off.
1 N N N N 1 1 1] gggi;¥a;og:?nd code to multitrack, set CC flag off,
0 N N N N 0 0 1 |Set SKIP flag on in CCH.
0 N N N N 0 1 0 {Set SLI flag on in CCH.
0 N N N N 0 1 1 |Set SLI and SKIP flag on in CCHW.
0 N N N N 1 0 0 |Set CC flag off in CCM.
0 N N N N 1 0 1 |[Set CC flag off, SKIP flag on in CCH.
0 N N N N 1 1 0 {Set CC flag off, SLI flag on in CCHW.
0 N N N N 1 1 1 |[Set CC flag off, SLI and SKIP flag on in CCHW.
0 0 0 0 0 0 0 0 |TIC to %*-32
0 0 0 0 1 0 0 0 |TIC to %-24
0 0 0 1 0 0 0 0 |[TIC to *-16
0 0 0 1 1 0 0 0 |TIC to %-8
0 0 1 0 0 0 0 0 [TIC to %-0
0 0 1 0 1 0 0 0 |ITIC to *+8
0 0 1 1 0 0 0 0 |TIC to %x+16
0 0 1 1 1 0 0 0 |TIC to x+24
0 1 0 0 0 0 0 0 ITIC to *+32
Bit 0 1 2 3 4 5 6 7
Note: NNNN = bits 1-4 of the descriptor byte and is one of the 1l1l-bit
FeTa ontaTns"the re1at Ve pointer fo the basie CCi (See Fioure 1170°

cC - Command Chaining

SLI - Suppress Length Indicator

SKIP - Suppress Transfer of Information to storage.
Figure 12. DAM Channel Program Descriptor Bytes

Direct Access Files 29

Licensed Program - Property of IBM

Descriptor
Byte CCW Built Meaning
X'07',&SEEKADR+1,X'00"',6|Seek to the address specified in the user's track
reference field.
X'87" X'31'",&SEEKADR+3,X'40"',5|Search identifier equal to the address specified in
the user's track reference field.
X'18" X'08',Pointer to %-8 TIC to %*-8
X'93" X'05"',&I0AREA+16,X'60', |Write the data portion of the record
Data length from the IOAREA.
X'9C" Xv1i2',&IDLOC,X'00"',5 Read the count field into IDLOC.

Figure 13. Example of DAM Channel Program
The following discussion describes how the
DAM channel program builder constructs a
channel program for the given example.

Example: Write an undefined record
referenced by ID in the location specified
by the user's track-reference field, and
return the corresponding track record
identifier (CCHHR) in IDLOC (option).

Figure 13 illustrates the CCWs needed
for the complete channel program to
accomplish this operation. In all, five
CCWs are required. The first CCW (seek)
generated at assembly time and the
remaining four CCWs are built using the
string of descriptor bytes included as part
of the DTF table for the WRITE ID macro
(see Figure 9 or 10). The descriptor
strlng for the WRITE ID macro is:

X'871893%C".

Except for the Seek CCW that is
generated for any channel program at
assembly time and never modified, each pair
of hexadecimal characters (descrlptor byte)
corresponds to one CCH. Thus, X'87"
corresponds to the CCW to Search Identifier
Equal as illustrated in part 1 of the
explanation that followus.

The CCW chain
descriptor string

is

is generated from the
in this order:

1. X'87' (10000111): Figure 11
illustrates that the CCW for a
descriptor byte with a B—-field = 0000
is a Search Identifier Equal CCH.
Figure 12 further illustrates that a
descriptor byte with an A-field = 1 and
a C-field = 111 performs no

30 IBM VSE/Advanced Functions LIOCS Volume

for a WRITE ID Macro

3 DAM

modification of the ba
Therefore, the second
being the Seek CCW) i
program CCW chain is
Search Identifier Eq
{;?1'.&SEEKADR+3.X'4

X'18' (00011000): Because both the A
and C fields are all zeros (a
characteristic of a descriptor byte
used to generate a TIC CCHW), the second
descriptor byte in the string generates
a TIC CCW for the third CCW in the
channel program. Figure 10 illustrates
that a descriptor byte of this kind
with a B-field = 0011 supplies the CCHW,
TIC to * 8 (see Figure 13 for
generated CCHW).

X'93"'" (10010011): The B-field = 0010
in this descriptor byte indicates that
the next CCW in the channel program
chain will be the third basic CCW (see
Figure 11). Because the A-field = 1
and the C-field = 0ll, Figure 12 shows
that the command code is modified to a
WRITE and that the SLI (Suppress Length
Indicator) bit is turned on.

X'9C' (10011100): The B-field = 0011
in the last descriptor byte indicates
that the last CCW in the chain will be
the fourth basic CCW in Figure 11, Read
Count into IDLOC. A descriptor byte
with an A-field = 1 and a C-field = 100
indicates that the command code is
modified for a multitrack operation and
that the command chaining bit is turned
off to signify the end of the channel
program (see Figure 12).

and ISAM

- Property of IBM

Licensed Program

¥ 1HVYHD
— - _ i
1 aay) Ta'w0zx' T 1vVIIVOI 90X | #1] I a%Q¥! 10+ 13.02.X "9+ (VRVOI' 10,X
ao' a0 TN 1vavol 90X 71 | 030y, 10+ T37.00,X 9+ 1¥2¥¥OL*130,X 83
“ INDaQ® 87,09, XPWoud3 21X | ' @ 1NDa 8,07, X " NAWou1y ! 7| X
o1 84" 80X 1] ! oy 8-.".80.X
| . ol 8-4"180.X m . | 8-.7.80.X
BaIHous! §7,09 X 'E+HQVNIIS " 1EX 28] ! 301HD¥S S°0n X EHAVIIS (16X ¢
H paiHoys] €.0¥.X * 3wouay) 5} ! 301 HOY §',0p.X ' $3woudyy
) H
T T T
' , aigy, §102X "20101":26,:X !
alay! §%,02,X'20101".%:X 8 | n__n___" §4,02X 2010126 X
)
! aq¥, 1009 X TH+ LYIIVOI" 90, '
aay, 'a’orx D 1vaIvol’ 90, [2¢) | @XQ¥:10+ TH',09,X 9+ VIIVOL" 30, X
' LNDQ¥! 8,07, X ' ¥awWoud| 14,21, X '
ol 8-4"180X 6] ' u:h 180.X
! o1y, 8-."80,X H
3QIHD¥S1 §1.07 X E+4QVAIIS L I1EX 28] ' JQIHDYSE §',07 X '£+¥AVNIIS’ 1€ X
! 3a1HD¥S) §4,0% X wouRLy” 16X |

ANNNS
/ANN¥VA

[IN P

BEE B

i
1INDQY: 8°.0y.X ' Nowowd) 4. Z1L X
'
ouy 8-4".80.X
'
RaIMD¥s §'\0% X ' 43wouad’ IR X
\

T
aiay! Q.E,xdo,_ot_ﬁ.”‘
'
I

axay, 10+ 147,09, X’ 9+ IVIIVO(", 30, X |

5ILAS ¥OL4IND$3T

8= v NIHL 1@+ W< azisns 4l
0= 9 N3HL 1@+ Tx = 3zisung 41

-

9,00, * 1+¥IVI33S " LOX

MDD X335 ONIMOT104
JHL A8 03Q3D3¥d ¥V SNIVHD MDD 1TV “Z

IWIL ALND3IXI - SVYIAV G3AVHSNN
IWIL ATBWISSY - S¥IUY QIAVHS °

‘$31ON

ON

¥IUINIOL
ONIYLS ¥O1dI$3a

AT s H

NIVHD M2
Q3LVIINID

ON

ANNX14

ANNNGS
/ONMIVA

S3A

Q) faweus|iy Qv3d

O¥dYW

DAM Channel Programs without RPS Support (Part 1 of 14)

Figure 14.

31

Direct Access Files

Property of IBM

Licensed Program

LHYHD

T | j 1 1

i | oaxm 10%,00.X T+ IYUVOI 190.X GHOEXTNLVABVOI 90X a

! . aa¥l Ta'0zx T 1vaevOI 90X o " o BOX FL-a"B0X o
aar) %00 e (vaIvOI 90X mn sur 91-4".80.X for} i e TH,0n X DUVAD " 6V.X a
! e 80X o i M INHDYS! TR0 X DIVAIN VX e o

H P! DIHIYS, TX.07, X DUVAIN 62X o ' , 87100, X " H2WSU3| 14" 28,X oo

BIHINS, X op X DUVAI 162X m . R ot 87e780X , o
' oo BromxTammER X a BVHHOUS! ¥’.0v.XE-¥QVNIIS " 6EX geta0x
' ! : AVHHONS] b0 X R HOVNITS 68X £V

'
t

aay! Ta’.0z,x e IVRIVOI' 190X

aQ¥i 19,00, THIVIIVOI90.X
.

q1gy $'.02,X"2010)",28,X ' . 8
§7,02:X"20101". 26X i @ u:d u:_, 9M=4"180.X m
Y700 x .

agy) 13’09’ N+ LYIIVOL’ .90, X ' . . , 2
Ta’.0r.x T+ 1¥2IVOL 190, X ' IIHOUS] TRLOMX DUVAIN 6V X 33N | T 00X OUTAIN' 6Y,X 3
iy P1-+".80,X i s ooyt . i - 0P HowOU| 14" 2
8-4"180.X N §'.09.X" 20101, 2%.X 1NDQY! 87,07, X " owou| 14, 24,X =
Y| TX.0p. X T OUVAIN' 62.X ' s ! . 3
TN 0n X O¥VAIN 62X iy 2-.7.80,X L 8-4".80.% o

i

FZUQ«_ B'.09,X " Nawoua)iy’ 7], X
'
1

.
IVHHONS| ¥7.0v. X € 4QVAIIS * SEX us..xuxm", #.00.X €+ ¥AAVY IS " 6E, X
)y H

NIVHD MDD
QIUVHINID

ANNNJS

INNNAS
JANNYVA

JANNIYA

BNNXI

ANNXId 43aNN

ON S3IA

9'100.X " 1+3Q¥YNIIS L0

MDD %335 ONIMONOA 3HL
A8 Q3QID3d WY SNIVHD MOD TV “Z

Iwie 31ND3X 3 - SYIIY QIQVHSNN
INIL ATBWISSY - SYIYY QIQVHS L

At "ewous)ii Qv

[el mA)

‘SALON

31A8 1531

DAM Channel Programs without RPS Support (Part 2 of 14)

32 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Figure 16,

-~ Property of IBM

Licensed Program

2 1uvHD
T — — T
aay’ Ta%oux T 1vauvoiso.x 5] aadl Tat0ex T Lva¥vol90.x 0%a¥; 10+ T4 01X O+ IVRIVOI 30,X oz) axay: g+ T4 08X "9+ LYRVOI',30,X
o, 8-4".80,X E u:“ 8-4"180.Y il 8-2",80,X m §-4",80,%
uc.:uxmm S* 0P X E+HAVNIAS L IEX E uo_zuxmm S*.0P.X 'E+¥AYNIIS X wn_:u,m_ S0, X E+ ¥AVNIIS L IE, X [5] S0P X E+ HAVYNIIS L IEX
avm' Taosx T Lvauvol “soix [16] g 'aonx e tvauvol‘so.x axum, 19+ 47,05, O+ lVIVOL Q0. x v} 0+ 1%7,0£,% 7 1Y WVOI'.0, X
! 8-2"80.X m oIy 8-2"80.X i 82,00, X m 8-+,80.X
wn_zv._wm! S .0nX "EXIQVIIIS L 16X z 3aimous, S1,0% X E+¥AYNIIS L IEX uo_xu._wm S0P X E+ 4QVIIIS 1E, X §1.0v X € NV AIIS L IEX
1 -
T T T

§.02:X 20101 26X B aiay, 502X D01a1 "1 26,X iy, $1.02,X'20701".26:%

1a",06.x+ T3¢ LvIIVOI 90X m nnxw_ 1a%,02,% T LYRYOL 90X axay] 10 TH.08.X P+ (VIHVOI* 30X

8-+",80.X o ! -+",80.X oiL, 8-+".80,X

5,07 X 'E+HQVNIIS “EX is] | bonowst §7,00X 'E+4QVATIS " 1E.X saikous, 57,07, X 'E+ ¥QVORIS
\

aiqy!
1

axay 10+ ™" 0L,X T+ 1YRIVOL" 30,X
\

§1.02,X'20101" .28, X

o) 8-+".80.X

S0 X 'E+ 4QYNIIS ' 16X

QIHDYS,

BEBEBBEN

INNNAS
/BNMIVA

ANNXI1 410NN

8- Y NIHL1Q +IN < IZISHIE 4)
0=9N3IHLIg+TN IZISA1E 4t

o

97,00:X * 1+3AVN33S "1 LOX

MDD N335 ONIMOTIOS IHL
A8 Q3Q3IDFd VY SNIVHD MDD 1TV “Z

IwWIL 31N23X3 - SYIYY QIAVHSNN
IWIL ATEWISSY - SVAYY Q3AVHS

S3ION

Ta*,06.x T 1VIIVOL 50 [4] 1a%,04x" T+ 1v3¥VOI” 50.X @i g+ ' 05X 9+ (VRVOL',00.X axum 'a+ 704X v (VYOI 0,
< "180.X o o1 8-4",80.X ElS §-4.80,X o “ 8-4".80.X
S0P X E+HAVAIIS L IEX n wa_xu@r §'.0F X 'E+¥AVNIIS wo_zuv_JV S°.0F,X £+ 4AVHIIS, 1€, X E_xuxm" §7.07 X '€ + AV NS, 16, X
' NIVHD MOD
CEIZEINEEY
ON

vt H

ANNNGS
/eNMIVA

Lo B>

ENNXI4

SIA

" * dwsoudy !
¥1INIOd a 114 LM

ONRLS ¥O 14140530

oudYw

SILAS ¥OLdRDIS3A

(Part 3 of 14)

DAM Channel Programs without RPS Support

14,

Figure

33

Access Files

irect

D

Property of IBM

Licensed Program -

T
Qum,

i
|

3q1Ho¥s!
i

1a%,01x T+ 1 VIIVOI 150X
8-+ /80X

€107, X ‘E+4AVAIIS 1 1€ X

G 2uvHD
T T T
B8 9_;“ Ta*,0.% T+ LYRIVOI“ 50X, <6 QXm0+ T3.01LX 9+ 1VIIVOI.Q0,X jav} axem g+ 17,06.X V4 (VIBVOI*, Q0K
! 1
1 . .
o iy 8-»"180,X m oul 8-4"180.X o Bl 8-4".80,X
\
8 QIHO¥S) §1.0P X - HQVNIIS L LEX o PR S.0n X EXHAVHIIS L 1EX hatkous, 1,07 X C+¥OVNIISH IEX
= L L L
v T
aiay] §°.02X* 20101\ ZiX aiay! shozxooazex | f] .02, *20101". 26,X
.
aymi 1a',06X T LVIRVOI /150X ami latoux T ivaevortsox | L] Ta+ Yy’,05.X ' 7+ tYRVOI*,00,X
) \
oul 8-4".80.X EUY 8-4".80.X m 8-2"180:X
\
3ainous, .0, X £ UAVAIIS 16X Baiows, §'.0NX £+ HAVHIIS 'L 1EX [29] .07, X £+UAVNIIS L 1EX
|

1

ANNNAS
/ANMEVA

INNXI

8= YNIHLIG-IN< IZISNE 31
0= YNIHLIGTN = 3ZISN19 3t °

97:00.X * 1+BAVNIIS *L0X

MOID N31S ONIMOTIOS IHL A8

Q303D3%d Y SNIVRI MDD 11V °Z

INWIL 3INDIXI - SYIHV QIAVHSNN
IWEL ATEWISSY - SYANV QIAVHS "I
‘S3LION

SIIAS O L41¥D530

SIA

ON

Aap oN

3] Q] §1.02,X 20101\ 26X
v aximi 10+ 1504, T+ 1VIIVOI,00,X
|
o by 8-4"180.X
|
o] | hanoust 10X ‘€ ¥AVNIIS EX
1 i
NIVHD MDD
QIUVIINID

ON

ANNXI4

S3A

_\ (PanuLLOD) Q] ‘WU | M h

QYW

DAM Channel Programs without RPS Support (Part 4 of 14)

Figure 14.

34 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Property of IBM

Licensed Program

3 LHVHD
| 1 ooz“ Tg"01.x T5+1¥34V01".90,X (13 aay; 1a%ov.x T LYIYVOI 90X o
| | .
agy) '@'.0L.x T +LvIHVOI.90.X gt aay) 14,09 X' T3+ L¥3IHVOI'.90.X L AL, 8-.".80.x L] oLl 8-.7,80.X 8t
! 8-.".80.X P aiel 8-..80.X N ERGECH .00, X DYV AINBLZX F mxxuam" Tw.09.x'ouvaan.ezx| [wo
1 ¢ 06" . Cor " .
I%HOHS | 5,00, X DHVAIN.62,X 48 wxxomm_ T,00.X'OHVAIN 62.X L cm;" Ta',06.x 54+ 1VIHVOr S0.X 6} aumi 1a'04,x T+ LYIHYOI'.S0X €8
aumt 10'.08.x T+ 1VIHVOL.50,X 8 aum| 1Q'0L.x T+ LYIBVOI’,50.X 6 Ly 8-."80.x 2 o1Ly 8-.°.80.X 8t
! 8-.".80.X o ol B-."80.X [INHOYS | TH00.X'OUY ATN"6V.X 98 INHOY! " .00, X OHY AIN".6V.X 88|
i . . o
awHous| wovxouvaaxex| |as Bmous! Dronxouvanneex| | L 8-.80.x [[l oy s-.eox| |si
| ; m(::umm_ ¥°.0p. X 'C+HOVX335",6E. X ¥ 3IvHHous| .00, X'E+HOVNIIS 6E.X 144
1 |
] ; i L | L] -
I . T 1 T] T
| 1 agd t 1g7.01.x T+ LVIYYOI'90.X st gyl Ta'.or.x +Lvanvor.9o.x
qigy | §°.0Z.X'207101°.26.X 6 o_um" $'.02,X"201Q1".26. a8 21 “ B-.".80.X B u_»_ 8-.'.80.X
nn_m_ 70%.05.x 1%+1v3HVOI.90.X 113 aay s 1a',00.x %+ 1¥3IEVOL 90.X £} InHous | T.00. X OUY ATN'62.X 48 INHOYS) 75,09, X'OHYAIN' 62,X
o1L 8-.80.X 81 u_»_ 8-.".80.X Ln. aum [10,05 TH+1VILVOI 50X 16 aum! 1g°.00.x TH+1¥38VOI",50.X
3ANHOUS | 75,00, X' DHY AIN 62X 48 ANHOYS | TX.00. X' OHVAIN 62X 48 o ! 91-.".80.X oL u.»"
aum! 10706.x T+ 1vILvOI'S0. 8 osz 107,02, T5+1¥3HVON.50.X €6 I%HOYS | .00, X DUV AIN'.6V.X o8 ENTTLIYS T3 .00, X'DHVAIN 6Y.X
| . 1 . .
u:._ L oiL, 8-.".80.x 8 alad 5',09.X°0010Q1".26.X AL n_azh 800X X INYNINIL".26.X
FNHOHS | TN.00. X' DHYAIN' 62X 48 INHOYS | T3.00.X'DHVAIN'6Z.X 48 oLl 8-.7.80.X 8 a1
l “ IVHHOUS n ¢'.0p, X E+H0 VNI IS 6E.X (34 wqxxumm“ ¥,0p. X E+HQVNIIS" 6E.X
I
.ﬂ NIYHO MDD Q3LvHINID
s PN S N
oN s01al S3A oN 207 SIA oN saat S3A oN 20%al S3A
nz:zam\mz:ﬁ ENNNJS/ENNEYA
aNNX14 FECINY

MDD X33S ONIMOT110d IHL AB 030323Hd IHV SNIVHI MID 1TV

aNNX13 < 430NN

9'.00.X'L+HQYX3IS".L0.X

o~

3WIL 31ND3XT — VIHV QIQVHSNN

IWIL A1BW3ISSY — VIV QI0VHS *

SILON

— YILANIOG DNILAS BOLNNIERG _

31A8153L

7 AIN'Oweud) g 3L IHM

OYOVA

S$3LA8 HOLdIHISIA

(Part 5 of 14)

DAM Chanhnel Programs without RPS Support

14,

Figure

35

Direct Access Files

Property of IBM

Licensed Program

4 LHVH
T . . -
! . asmy 10700 X T LYIHVOL 50X Ezm 0% 08.X - | ¥3¥01 .50, X
am) Q%00 X T 1VIIVOI“.60,X axm, 1’08 - 1v3BVOI 150.X u:m 8-4".80.X i 8- ".80:X
u:m 8+ "180,X u_f_ 8-4180:X US| TN0PX OUVAIR "16V.X DS TH.07. X OYVAIN 6V X
wxxuﬁm TN 0r X OIVAIN 62X wxxuw_m" TH 00 X OUVAIN 162X u:m 84" 180.X 1L 8-4"480.X
“ “ uqxxvzm 0P X ¥OYNIIS ST u(:xvim #.0P X E-¥AVNIIS 6E X
H H H N
T T— T T T
! I aum, 100X Ty tv3evolso.x | Qum, 107,08 X TH+1VIIVOI10.X
n__n_x_ §,0LX 20101, 26X ES," §°.02:X 2010126, X u:m 91-¢"80.X u:ﬂ 1=, B0X m
Q_;m 1a".05.X I« 1 vI¥¥OI "150.X E;_, Ta* .00 T+ V34 YOI 150X I¥HDNS, T3°,00.X ‘ OUVAIN 6V X wv_zuﬁm T0p X ONVAIN Y. X m
u:" 8-2".B0.X u:_” 8- .80, X n_mxm §°.09:X 20101 26.X EEW 80P XN IWYNITE" 26X m
S_zv:m T o O¥VAIN 62X INHIYS] TR 0P X OUVAIN 62X u:”_ u:m 8-4' 80X m
. ¥ 0P E-3AVAIIS LT X ¥.0r, X '€ AQYAIIS 16X

|
3VHHDOY¥S
I

IVHHS,

ANNNGS
JANMIVA

INNX IS

SIA

9,00/X ' 1+3AY %33 " 180X
MDD NIIS ONIMOTION FHL

A9 Q303D3¥d AV SNIVHD MDD NV "2

3WLEL 31ND3XT - SY3IEV QIQVHSNN
INIL ATEWISSY - SYIYVY QIAVHS |
'SILON

ON

Adl¥3A ON

ON

NIVHD MDD
Q31veINGD

NNNGS
/eNN¥VA

ANNXTS

(Panunjuod) A3 awoualid 3 13m

o¥dvw

DAM Channel Programs without RPS Support (Part 6 of 14)

Figure 14.

36 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

- Property of IBM

Licensed Program

nxu_;_ a3 5% 01X 1v3MvOL . aLX

onl 8-.".80.X
3aiuss, 5,00 X "E-HAVXS L 16X
V
asmi B87,06.X ‘ ¥3Wou3] 14,60, X
1

oul 8-.".80.X
'

IQIHDYS, §0p, X" 43weua) 14,16, X
'

T
aay] 8,00 X " NAwou2113",90,X

o1y B4 ".80.X

'
3AIHIYS, Sh0rX " JPwouRy 16X
i
(owazy avay)
9°.00.x " 14BAVNIIS WLOX

MDD NI ONIMOTIOL THL AT
030334 WY SNIVHI MDD NV *Z

IWIL JINDIX3I - SYTHY QIGVHSNN
IWIL ATWISSY - SV QIAYHS (L

$3ION

UNNNGS
/andvA

9 14VHD

'
o
uc_:u._w“
!

aay,

|

Bl
2a1HD¥s)
nxu.}_
1

oIy

'
3QIHDYS
|

Qumy

|

o

'

ial xem“
|

T
adar Ta- 5’01 X Lvasvol 3L
1

S S ———

8-.".80:X
§7\0%X £+ ¥QVANIIS 1EX

B7.05.X * Hawoud114“,90.X

8-4"80.X

8-4.80.X
§°.0RX T IAVNIIS L 1EX

B7.05.X "D awouap3*,60.x

8. '180X

S1.0mX ‘Jawoudpg L 1EX

T
agy} B0, "X3woud|1 ‘90,
oui 8-4".80.X
)
IQIHDS! UG SEL L L FAN TS 4
H

(O¥3IZY av3n)

LETELA L IFETUTY

aumi 801X "NwWou314’ 50X
'
o 2-4°,80.X 9
; e 2
301HD¥sH .08 X 413", 1EX 2
' 3
3
ISVH3; WBUB) PI03% *XOuw *,09.X ,008Z,X s 11X Q
' =
ESCHY 8°,00.X " 26 §9WOUR|14, F1LX 3
! @
o 8=."80.X
3Q1HDS S°.0mX Ry
NIVHD MDD
QUVEINID

¥IINIOd
ONIYLS ¥OL1412353

uAzt !

O¥37y"dwoudpd 2L IIM

QDWW

DAM Channel Programs without RPS Support (Part 7 of 14)

Figure 14,

37

Direct Access Files

Property of IBM

Licensed Program -

“ATONIGODDVY

QIONVHD 3 T1IM $:MOD Q¥M ANV GG 3HL
¥04 (3ZISNI6) INNOD 31AE IHL ANV SARIODIY
ANIWOISILINW ¥O4 031HIGOW AV SNIVHD IHL
NI SiMDD 3HL “(00 3dAL) SCHODIN INIWOIS
JIONIS ¥O4 GILV¥INIO ATTVILINI ISOHL TV
SQUODIY FNNNAS Y03 NMOHS SNIVHD MDD 3HL ©

*20101 40 QVIISNI

1" owouayyy
S1(36 31A8 ¥O141¥D530) MDD
INDGY IHL NI SSTAAY VIVQ IHL
‘@sn S ONISSINAAY JALLVIR 4 ©
9°.00:X* 1+YQVNIIS ' 1L0:X

*MID 33§ ONIMOTI04
3H1 AR @3A3D4d UV SNIVHI MOD TV 2

3WIL 31N03X3 ~SVIIY GIAVHSNN
IWIL ATOWISSY - SYRIV QIQVHS "I

$SI1ION

| 14VHO
T o T p—
; . - oe.n 3ZISNE’0LX YIIVO! ‘90X 9" e “ IZISXI9* 0% X VIIVOL ' 90X L
nﬁu 3ZISNTR’102.X “VIIVOI ‘190X 9 aQ_“ 3ZISN1E 102X " YIUVOI " 90X o ” DG | T3°,03.X SUVAIN /130X Au.‘ﬁ [UTT T3°,03,X OUVAIN' 30X L v
ou 8-4"180:X 8l u:“ 82 "180.X I 1 “ 8-'80 | | &1 1 “ -0 " 80X n
IAHOYS “ §/i0MX ‘E+HAVNIIS " IEX s JAHIYS " S0 X EXYIAVNIIS " IEX a IAIHO¥S _ §'0nX Ee¥OVAIIS 16X fﬁ IAHINS _ §10nX “E+¥QVAIIS " UEX l&l
T T
ac| §7102:X 201 " U X g EE" §0LX 20108 X
EB“ §40LX" 201011 26X 3 es_m §°02:X 20101 26X £ nﬁ__ 3ZISAI*109.X ' VIIVOI 190X o oE" 3ZISX18°,09:X ' VIIVOI ‘190X
aB“ 3ZISN18* 109X VIIVOI *90:X au a®@| 3ZISN1E’109:X ‘VIUVOI ‘190X 2t | QQ“ T3,03,x * OUVAIN 130X vE Qﬂ_n 13,03, DUVAIN 130X
il 8-4"180:X [0 u=“ 8- 180X " on " 8~¢"1B0X o oul 8-4 180X
IAHDYS M §°.0n X 'E+UaVAITS W IEX 8 wﬂxvﬁ“ $10nX £+ ¥AVAIIS“ LEX -1 3aIHO¥S __ §10MX CH VNI 1 LEX o unxu-mm S°.0KX ‘EH Y QVAITS " IEX
NIVHD MDD
QUVEINID

SILAR ¥OL4I¥D53a

DAM Channel Programs without RPS Support (Part 8 of 14)

14.
38 IBM VSE/Advanced Functions

Figure

LIOCS Volume 3 DAM and ISAM

Property of IBM

Licensed Program

£ 14VHD
! T . ~ . + * . T
a@| 3ZISN8’.0LX VIIVOL 90X aa¥ | 3ZISN8’.0ZX YIIVOL 90X ” 3Z15%18°,02:X VIIVOI 190X L) agyl 3ZISN18’,0%X VIEVOL“ 90X L]
i | ., - : | ’
ol 8-5"180:X ol 8-+ 1,80, n 84,80 L ol 8-4"180:X 8l
!) P . A : | .
INHDNS | 3109, O¥VAIN “16LX IAHYS | N0 X DUVAIN 62X [R TX'.09 X OUVAIN " 6ViX [VB DS TH.0% X * D¥VAIN16¥:X "
| . . . ! .
oy 8-4"180:X u:” 8= "180:X " 8-4":80:X LT oul 8-0"80:X ot
| - . . P , !
IVHHOUS | /107X ‘E+HAVIITS ‘166X avanoss | 77,07, ‘EHIAVATIS 168X 2y 77107 X ‘€4 UAVIITS 166X A AR ECE #°.07.X BAAQVAITS 68X o
1 1 1 Ld
T J*l
H T T
...__B_, §7:02X*20101"\26:X £ 5°.02:X’ 20101 .26, X 2 Q@ | IZISAI*0TX 'YIIVOI 190.X 9% a® | 3ZISHI8° 05X VINVOL 90X
3 { 1
aQ:, IZISNE" 109X ' VIIVOI '190.X 4] 3ZISH18"109:X ' YIUVOL *190,X o Py 91=s"sB0X oL oL 9l=s 80X
! [i
u_L 8-.%80.x | 81 8-+"180:X " INHDYS | TN.09: X DUVAIN .6V, X Yo INHDUS | T OFX DUVAIN 6YiX
! . , ! o | [
DN | TA09. X OAVAIN 61X Yo T \0rxX UVAIN 162X ”» i | £1.09.X 20101 .26:X 6 gy §°,09.X/ 30101 126X
| > 4 | s
o1l 8-4".80.X 8 L1} oy 8-4"80.X 3} o_L 8-2"180.X
1 £ f
IVHHOXS | P07 EXE QWIS /66X IVHHD¥S | POnX ‘E+8aVAIIS 166X o w<z.._u§" .09 X ‘E+¥AWNIIS “16EX LY wqx:vﬁ" ¥'.0h X E+¥QWAIIS 168X
L L © i : h
NIVHD MDD
QLWEANID
el \\\MNM/// \\\Mﬂ”/// payjnds
ON 0a SIA ON 00 SIA oN L 5 SIA
* ATONIQO DDV
GIDNVHD 36 TIIM 5.MDD GIM ANV QG FHL
¥04 (3ZISN18) INNOD 11AS FHL ANV SQUODM
INIWOISILINW 304 GAIJICOW 38V SNIVHD FHL
NI S:M3D JHL *(00 3dAL) SQUOD3H INIWOIS
J1ONIS ¥04 G3LVHINID ATIVILINI 3SOHL Y
SA¥0D3Y INNNJS ¥O4 NMOHS SNIVHD MOD 3HL 7
NON INMYVA AINNNJS INNIYA
rawous|s = INDQY ENONdS N
€45 9Wous| 1y ~ JVHHIYS
01 GIONYHD 38 1IM
AT3AIL1D34534 MDD INDG 3HL ONY MDD
IVHHONS JHL JO SSROQY Y1V 3HL
ISN St ONISSTHAAY JAILVIIE 41 '€ oN SIA
97:00:X ‘ 1+¥QVNTIS ' LOX
MDD X335 ONIMOTIOA 3HL
A8 GIQID3 TV SNIVHD MDD TV "2
A /owous) 1y Qv3y
IWIL AINDIX3 - SYIIY AIAVHSNN
IWIL ATGWISSY - SYASV QIAVHS CL onVW
310N

§11A8 ¥OU4INDS3Q

DAM Channel Programs without RPS Support (Part 9 of 16)

14,

Figure

39

Direct Access Files

- Property of IBM

Licensed Program

3 LUYHD
a “ 3Z 1197 0L X VIFYO! 190X
DR “ T3040 OUVAIN 30X
GG | IZISNIE 01X 'VIVOI ‘H0X L _ -2 "B0X
B " 80" \BOX 3amd¥s | §*.0X EFIAVIITS 1 LEX T
| | Lo, s QG | 3ZISX16"0LX'VIIVOI'90X
FTHNS | §.0n X E+IaVNIIS 16X aqum | 321501807 vIVOI ‘150X
I | I) TN 3,04, X" DYVAIN 30X
@M | IZISNE0NX VIIVOL”S0X T @um | A*09 X DUVAIN 1A X |
| agd | 3ZISNE 01X VIIVOI ‘90X | s ou | 8-4".80:X
ol 84" 180X “ s oL | 8-2".80X |
1 oLy 8=/ B0X | — . 3GHI¥S | §7107 X ‘CHIQWVNIIS I LEX
3aiHoys | S 10mX “E+IAVNIIS L 16X | IQIHDNS | §0nX ‘BRI OVNIIS i 16X |
L 3GIHIYS | S0P X ERAQVATIS ' 1EX QUM | 3ZISNTE' .07 X 'VIIVO 1 150X
|
acu | 8',00,X ' VIIVO! 90X @M | IZISNTE 09X VIRIVOI ' 150X o ﬂ 87,000 VIAVOL'190.X DM ” VX100, OUVAIN 100X
i
ot 8-4",80.X oL | 8-2"180X E " B0",80.X i _, 8-4°180%
i
2A0HS " &% X ‘E+IAVNIIS (I X I0IHDYS | §10r X CHIQVNIIS I LEX JQIHDYS h S0P X E+IAVNIIS | 1EX 1QIMDYS V §* 0P X ‘EFIQVNIIS ' IE X
I
A " §°,02.X 20101 . 28X
o _ 3ZISNNA’.05.X “VIUYOI 190X
T
aq | §7,0Z,X 201l 26X [T] _, T '04 X DUVAIN 30X
i
am@ | 3ZISNIE’A05:XVIIVOI‘:90.X i “ 8- 180X
}
oL} 8-4"180,X IAHOYS ” S,0m X E+Y VIS 1 IEX
1
AAHS | S0P X ‘E+3 QWIS ' 16X T @M | IZISNTIE’.0r. X VIIVOL 150X
] a® §°.02,X 201 "1 286X] bt
QM | IZISNE 0N X VIIVOL 1SthX | am | T44,09.X DUVAIN 1 Q0K
) aq@ | 3IZISNE’106:X ‘VIIVOI 9 X]
o} 8-4"180:X i o) 8=4".80.X
1 ol | 8= 180X |
IAHNS | S 0m X CHIaVAIIS s LEX | IAIHOYS | §/0mX ' E+HIQVANIIS L IEX
. JOHDYS “ S1.0NX ‘EUQVNTIS ' 16X
. 2 . T . * .
asy “ 27.00:% ' ¥IAVO! ‘90X [T} _ 3ZISNA’:01X ' VIUVOI ' ,SOX ad | 87,00 ‘VIUVO! ' 90X
1 |
ol 8-4",80:X oL n 2=2"180:X a1l §=4"4B0X
| |
3aHD¥s | SY,0nX ‘EAUAVNIIS ' 1EX 10IHIYS “ S7\0MX ‘EHIAVNIIS 1 1EX IQHDNS | S.0mX HIAVIITS) 16X

aa | sexsorazex | [
a " IZISNIE*106:X ' YIAVOL ‘KX W
o | T7,04,X ' OYVAIN ' 30X ('3
o " 8-4"B0:X (]
3aIHDYS " S0P X ‘SHAOVAIIS I IEX [t 28
[) “ FZISHR’ 0N YRIVOL 1§ X “
oem | Tx'09.x" O¥vAIN 00X | | oW
oIt " g-00x | | @
JAHIYS “ §\0PX EFIAVAIIS 16X Y-

*AIONIGIODDY

GIDINVHD 38 T1IM 5 MID GIM ONY OGH 3HL
304 (JZISH16) INNOD FLAS THL ONY SROIM
INIWOISILTNW ¥O4 GAIFIGOW T¥Y SNIVHD FHL
NI S.M2D 3HL (00 34AL) SGHOII INIWO3S
TIONIS 304 GILVEINID ATIVILINI ISOHL TV
SQIOIIM INNNGS 404 NMOHS SNIVHD MDD 3HL ¥

1" soum 14
‘01 BONVHD
§1(36 ILAG ¥OL4I¥I530) MDD
AINDQ 3HL 4O SSINA0Y Yiva IHL
‘@ISN 51 ONISSIIAQY JALLVIZY 41 '€
9°.00:X * 144QWNIIS L0 X

MO N335 ONIMOTIOE IHL

Af G303D3¥d VY SNIVHD MDD 1V °Z

IWIL 3UNDIX3 ~SVINY GIAVHSNN *
INIL ATEWASSY = SYIHVY QAVHS TL

*$1LON

INNIVA

ON

NIVHD M2
@ALVINID

Q1 ‘owouaty 3L 1NM

O¥dYW

S3LAE JOL41¥I530

DAM Channel Programs without RPS Support (Part 10 of 14)

14,

Figure

LIOCS Volume 3 DAM and ISAM

40 IBM VSE/Advanced Functions

Property of IBM

Licensed Program

7 LUVHD
T . E
QUM | IZISHNTA00:X ' VINVOL 'S0 X [}
T
am 3ZISHTA*100,X VIIVOI 150X oM " 131109, OUVAIN ' Q0K w
|
u__" 80 .80:X oL | 8=+"180,X Bl
i
2amHous | SN X ‘E+EQVAIIS “ LEX J0MHDNS | SN X BRIV TSI LEX n T
L L h @M | 3ZISHTEY00: YIUVOL 'iSOX [
T T T | B N
am i 8,00 “vauvol 90X | [DX @M | 3ZISHTE 00X ‘VIUVOL 50X ad | 87100:X ‘VIIVOI “190.X " DM | TH7,09.X SEVAIN ', 00X o I3
| S { 1 I
ol B 80X | |8 2L 8-."180,X | # uzh 8-.":80,X L]} oLt 8-",80.X L
1 4 i
uo_zugp § 0P X SHIQVIAAS “LEX a IAHDUS _ S*.0rX ' EXIAVIIISUEX 7. | IGHDYS n S0P X ER¥aVNIIS L LEX RL IS | S0P X "EXYAVNIIS I IEX 8
Ly
A T —
aigy) §°,05:X 20101 ", 28X]
T
a® | §1,00X 20101 28X » B;“ IZISHTE’(0rX ' VIAVOL ‘150.X w
| "
M | 3ZISNTE’,0MX “VIIVOL ‘150X w TRM _ T3 4,07, X OUVAIN 100X iy
L3 1
1L 8= ':80X 3 oML 8180 (1} T T
3 I e ai | $.02.X' 2070 26X Y
30IH¥S SONX EHIQVNAIS 16X [l 28] T JQHYS | S7,0M X “E+IQVHIIS 1 1EX o |
= AR | §°,02.X 201" 126X 2% — M | 3ZISHIE 0P X VIIVOL SOX 1]
- | g T — |]
a 8'.00:X ' VIVO!“ 90.X W @M | 3ZISNIE".OnX VIIVOL “\SOIX 13 agw | 8°:00:X " YRIVO! 190X v im | 31,09, OUVAIN 1 GOX v
i | ! 4 |
o a-o's0x | ') L n bl “ 8-"80X ot a1 8-s'80x | |'Dt
| |
JOIHDYS _ S/ 0P X BRIV IS L LEX a JAHINS n §.0mX ‘E+IQVNIIS L LEX V- 3QIHDYS __ S'\0mX ‘EHaVIIIS 16X @8 JAHNS | §7.0mX SHIAVIIIS 1B I 3
b — L
j NIVHD MDD
@LVIINID
“ATONIQ¥ODDV

GIONVHD 38 111M S:MDD GIM ANV QG 3HL
304 (3ZISAIE) INNOD 3LAE FHLANVSQUODIN
ANIWOISILINW ¥O4 @ 1HIGOW 34V SNIVHD 3HL
NI $:MDD 3HL “ (00 3dAL) SONODT INIWOIS
JIONIS ¥Od GILVEINIO ATIVILINI 3ISOHL Juv
SQIODIY INNNGS ¥O4 NMOHS SNIVHD MDD 3HL ~

ANNIVA

|- owous (13
‘01 GIONVHD SI MDD
ANDQ IHL NI SSHAAY Viva IHL
“@3sn §1 ONISSAAY JAILYITY 41 °

SIA
94,00, ‘ L+4Y VRIS ' L0.X
MDD 333 ON IMOTIOH
IHL AV GIAIORIA TV SNIVHI MOD TV *
IWIL 31ND3X3 ~SYTHY QIAVHSNN Ql“swous1d 11 (M A
INIL ATEWISSY - SYRIV @AVHS “L
Ad43A ON TRl
$IION

S3LAR WOLINDSIC

(Part 11 of 14&)

DAM Channel Programs without RPS Support

14,

Figure

41

Direct Access Files

Property of IBM

Licensed Program -

W LMYHD

aa] misomauxvaworsox] [a
. —
Qayl TISNWOLXVIVOI'S0.X | | Sl u:" B, 80,X Bl
1
o e ‘o0 | | ot PH | §°109.X'OUVATN 62, [¥O
[
0S| Ty oo owvaan szx | | vo awm| s orxcvavor'sox | | le
-
33" TZISN O X VIIVOL ' 50.X 16 T — u:“ 8-4".80.X 8t T —
| QG | FZISXE’ OLX VIIVOI' 90X I | N QQY | FZISHE'OLXVIIVOI' 90X st
ity 8-.'00.x | | 81 I BIHOYS | X 09X DUVAIN 4V.X vy
) 2 oLy 82" 80.X 8l — 80’ 80.X 8l
INHDYS | H'109. X" DUVAIN ST X o | N T) 1
H L INHDNS | 3 09.X* O¥VAIN' £Z.X Yo aay, 87.00.X‘VIIVOI* 90X n INHDXS | N 09X OIVAIN' £LX Yo
T el |
aay | 81,00, X'vIVOI'90.X | | ¥l Es_ TZISHE’ 0% X 'VIIVOI’ 50.X L 16 u:_ 91-"80,X ol QUM | 3ZISHTE’.0F. X VIAVOI"iS0X 16
| | et
ity 8l oIy 8-4"180.X 8l INHDUS ,_ T3 ,09.X QUVAIN' 6V X [vB oL " 8-4"180.X 8l
i
INHDS | T3 09,x" OavAIN 62X 1 YO IAHYS “ 4,00 X DUV AIN 162X F alay ,_ §7.09.X"20701"/26:X v INHDYS ” T .0p X DUV AIN" EX 88
i
Jity 80X | | 8L il 8-.".80.X 8l u:“ §-+"180.X 8l ot | 8-4",80:X H
) |
IVHHDYS | Y707, X'EHHAVAIIS ' SEX | | LY IVHHOIS | 707X E+ BV NI’ SEX o IVHHOUS _ ¥ 0P X E¥AVIITS 68X Ad IVHHDYS | ¥°.0X 'E+¥QY NI BEX v
! 1 ! R 147 , ad
alay ,_ §.0LX"D01A1" Z6.X 3 QQ¥ | IZISA'OLXVIIVOI 90X st
| .
aagy “ 3ZISNQ 05X YRVOI' 90.X t ol 847,80 X 8l
i1 ” 82" 801X M IS | 13109, OUVAIN 6| | vo
et
HH0¥s | TX,09. X OUVAIN 62X [VO T — " — 715N .07, X VWV OL " .50.X 16 .
| aiay | §°,02.X'20101".24.X 3% , Q@Y | ZISHA 01X VRIVOL' 90X
aqum | 3218707, X 'V IIVOL’90,X 16 | 8-4"180.X 8l |
| QQ¥ | TZISNG’05.X Y RVOI " 90X 1 oI 8-+",90.X
oIl 8-+7180.X 81) T,09,X" O¥VAIN 16V, X ve | .
| . oy 8-2",80.X 8l — IS | 309X OUVAIN" 6T:X
| 3w | X,09. X OYVAIN " £TX vo | 1 7 |
L — INHI¥S | 109, X OYVAIN 6T X vo 800X VIYVOL" 90, L Q:s_
. ’ !
aow | 8°,00,X"VIIVOL" 90.X " 9_;_ FZISHT8’ 07X VIIVOI' SO X 4 16 ol 91-+".80,X ol u:“ .
I . . B Ty . .
ol 8l u:_ 8-47.00.X (1] T3 09, X" OOV AN 6v. X |4 V8 uxxu.w_ N 07X OYVAIN' SEX
! Ty 0ox” .
INHDUS | 509X S8V AIN 82X] YO wxzuﬁ_ W,09,X ' DUVAIN' 62X E] $°.09,X'20101".28,X \J o_oi §°.09.X’ 20101" Z6,X
| .
iy a0 | |8t o a0 | | 8t ' om0 | ot o) -0 90X
i . . .
IVHHI¥S | 707X E+IQYNITS” 6E.X o w«::uuwn P70y X EFIQY NI T6E X 14 IVHHO¥S “ .07, X 'E+UQVIIT "L X fal IVHHDYS | 707X E+BAVNIIS ' 66X
NIVH) M)
Q3LvaINID
*ATONIQODOY GIONVHD 38 1TIM SiMOD payrovds poyeds poyioods
QM ANV Q0¥ 3HL 304 (3ZISH18) INNOD 1 >o1at 20101
31A8 3HL ONY SQI0I3Y INIWDISILINW %03 ON ol s34 ON s34 SIA ON s34
Q314 1GOW IV SNIVHD JHL NI S,M2D FHL
*(00 34AL) SAYODIY INIWOIS TIONIS ¥O4
GILVIINIO ATV ILINI 3SOHL ¥V IO
BNNNGS 304 NMOHS SNIVHD MDD 3HL ¥
rowousiiy - INDQY
£+ IWOUB|1 - IVHHDYUS ANNN4S ANNAVA ANNNGS ANNIVA
01 GIONVHD WY
AT2ALLO34S 3 MDD INDGH FHL ONY MDD
IVHHI¥S 3HL NI 5355¥00V V1vQ 3HL -
'QIsN I ONISSINOOY IAILVI 41 °€ pou3edg
ON S3A
9°.00.X ' 1 ¥AYRIIS L0 X
‘MDD A33S ONIMOTOAL IHL
A8 G03D3Yd Y SNIVHD MID 1TV 'Z
‘swous |1
AWIL AINDIXI ~SYY QIAVHSNN A 144 3Lm
IWILAIBWISSY - SRV GIQVHS 1
Adian C¥OVW
SIION

$3J A8 ¥OL41¥OS3I0

DAM Channel Programs without RPS Support

(Part 12 of 14)

14,
42 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Figure

Property of IBM

Licensed Program

N 16VHD
T
@M | IZISNIA’ 100X VIHVOI‘150,X 13
T Py . i “.g0.x |
@M IZISHET 00X VIIVOL'S0.X | | 56 u:" 8-780.X 8t
1
i 9-0",80 1 8L INHDYS) 15409, X * DUVAIN'16V. X e
ahys | Tx',09.x ‘QuvAax 62 | | vo T M
L ca | 8,00 ‘VIIYO) '190:X l
T T I
Qo | 8°,00:X 'VIIVOL " 190X rl @M | IZISNTE',00.X ‘VINVOL iSO S8 oML | 9t-4"180:X ol IZISNIE’.00:X VIIVOL 1$0X 56
| 1 |
u:n g-"80x | | &1 oL 8=4,80.X 8l INHDNS | T37,09,X OUVAIN ' 16¥:X ve 8-4".80.X |
| | [
aH¥s | 31,09, OUVAIN 62X || WO, INHDAS | T’,0m X OUVAIN 162X] ® INDGY | §°.09:X* 20101 126X V6 T3:07 X OUVAIN 16V X e
1 |
u_L 8-"80X | | @1 ol 8=4"180:X 8l ol 8-4"180.X a 8-2",80.X 0
| 1
IVHHDYS | 10X ‘ERIQVNIIS 68X 2@ IVHHDES | ¥".0nX E+¥OWIIS 4EX 2v IVHHOUS " /.07 X ‘£ UAVAIIS 166X o™ P.00X EHIAVNTIS 166X o
1 L L L e
. . T ’
am® __ §.02X 2010126 X » QM | 3ZISNIE'00.X VI¥VOI“ 50X | | 56
I
RIM _ 371SX78”,0%.X VIEVOI 150X 13 oL B=s 180X 8l
1
on _ 8-5"180.X j 8l M | 3109 SUVAIN“ 6¥iX A
! . .
IS | Tx09x OuvADI6Tx | | VO T - . , ;
L — as | §.02X 201" 26X * [8°.00,X * VI¥VOI '190.X @M | 3ZISHIL'00:X 'VIIVOI '150.X
T | P . |
am 8'100:X‘ VIIVOL"190:X ¥ @m | IZISNIE’0VX VIIVOL SO 16 bl 1L “ 91=4".80.X
| | 1
ol 8-2"180,X 81 oL | 0l IXHDY5 | X090, O¥VAIR v | | ve IAHDNS “ X .0r X ' DUVAZN 16X
I 1 !
I0HYS | 137,09, X DYVAIN 62X [VO AXHOS | X0 X" SUVAIN' 62X 48 aa | S0 20" Z6x | | v a® “ §'09:X" 20101 26X
! |
oi “ 8-4"180:X Ll ou | ‘180, 81 B _~ 8-4"180:¢ o1 " 847180,
i
vHHOES | P40NX S TYNIIS 65X o IVHHONS 1 PONX EAAUNIIS 60X | | ov 2:55\“ PONX BIAVAIISEX | | 2w IVHHONS “ .00 X "SIV 168X
NIVHD M2
GLVEINID
*ATONIQIODDV GIONVH 38 111M SIMDD poypdeds polyiandy poyyoedy
@M ONV GG IH1 ¥0d (3ZISXTE) INNOD ON Jo1at SIA ON 2001
11A8 3HL ONY SGIODTY INIWOISILINW YOI
Q3131GOW 34V SNIVHD JHL NI §:MDD 3HL
“(00 34AL) SO INIWOIS JTONIS 04
@LV¥INIO ATIVHINI 3SOHL 3V SRHODT
SNNNJS Y04 NMOHS SNIVHD MDD 3HL ¥
1"awousgty - INDAY
SNNNJS INMIVA ANNNIS INNIVA
£4572WDUD}LJ = IVHHIUS
0L GIONVHD TY
AT3AI1D34538 MDD INDGH FHL GNY MDD
IVHHONS FHL NI $35S¥AAY V1V 3HL poyyjeads
‘@350 S) ONISSHAQY JAILYII 41 ‘€ ON WHONS SIA
97,00, " +4QWNIIS" 1£0.X
MDD %335 ONIMOTIOS 3HL
A8 G3GID3W4 IV SNIVHD MDD 1TV "2
A2x‘swouelld 11 M
IWIL 31ND3X3 ~SYIAV GIQVHSNN
IWIL ATEWISSY = SYI¥Y GIaVHS °I
AWIA ON oww
$3ION

SILAR ¥OLdNDSIQ

(Part 13 of 14)

DAM Channel Programs without RPS Support

14,

Figure

43

Direct Access Files

Licensed Program - Property of IBM

O 1HVHO
T ¢ oo " .
@M | 3ZISHTB’,00.X "VIIVOL 50X o
T o
QM | 3ZISNTE',00.X ' VINVOL '1S0.X 56 (o271 " 31,03, O¥VAIN 1 Q0 X Lid
@OIM n 8,03, "D swoLRj13*,q1X (] @D¥M | 8703.X D" ewbuRYL QLY [}
|
on " 8-0":80,X 8t oIL | 8-+"180.X [
QNS | S",0nX "E+¥QVNIIS 16X 5 3QIHD¥S " S7.07X ‘E+EAVNITS L IEX I
I
@M | 87.07.X /" 3wbu2]14",60,X] 93“ 87,07, X X" 2woU3]14,50,X]
|
| 872 180.X 8t il 8-2",80.X L]
{ |
3QIHDYS | S10pX " 4" wou3)1 0 IQIHOYS | §°i0piX 4" 3wDu3) L4, 1€,X 0
al h =
| [| (R
I [I | [l 1
| [N | [
1 [1 [
oy T 1
am v 87,00, "3 *awou3| 14 *,90,X ”© aa | 87100, "X ‘WDLL|1 !, 90, X 13
1
u:_ 8-=2".80:X [BL - o 8- 180X L 8l
|
3QIHD¥S _, §10%X 4" wouy’, €,x f=} JQIHDYS | §°30pX "4 WU L4 " 1€,X 2
(0¥3zy av3y) (O¥3z¥ avay)
*ATONIQ¥OIDV
GIONVHD 38 T1IM S.MDD G¥M ANV Q0% 3HL
¥04 (3ZISH18) INNOD 31AE 3HL ANV SGIOI3Y
INIWOISILINW ¥O4 @I4I00W UV SNIVHD 3HL
NI SiMDD 3HL *(00 34A1) SGYODTY INIWOIS
JTONIS ¥O4 GILVEINIOD ATIVLINI ISOHL Fuv
SA¥ODI¥ INNN4S ¥O 4 NMOHS SNIVHD MDD 3HL * 5
N

9°,00.X ‘ 1+4QVNIIS " LLOX

*MOD %335 ONIMOT104 3HL
A® G30333¥4 WV SNIVHO MDD 1TV 2

3WIL 31ND3X3 =SVIYV QIGVHSNN
IWIL ATBWISSY = SYIUV @IQVHS ‘L

“$310N

a® “ IZISATE.0LX VIIVOL 190, X st
>o® " 87,04 D swouopts 31X | | wr
ou | 880X | |
30IHD¥S " SUOnX ‘e HaVNIISEX | [28
am “ 805X " aWou(14”,90,X i
oI " 8-."80x | | @
3QIHYS “ SY.0nX 4" swouay1y N 0
@m “ IZISXT8.07X ' VIIVO! " 50X s
D>OIM " 8°,03.X ‘D> swouspig’,aLx | | 6D
it _ 8-+"180,X [
3QIHYS n S'.onX ‘eaawaIs e | | 28
@m | 87107, X" awous |14’ 50,% "
Si1 v]
3QIHDYS “ fel
| |
1 |
1 |
] _, o000 "3 muouana90x | [¥e]
o1 _ 8-2",80X | B1
3IHD¥S " [AR TP I Y
(O¥3zy avay)
poyedg
AdnOA SIA

aa " 3ZISH18°,01.X V3UVO! ':90,X
A n TX1.04.X " O¥VAIN' 130X
DO _ 87,04,X /D" Mwou3(13 " 31X
on n 8-4" 80X
QNS " §*.00.X ‘E+YAYNIIS 116X
a “ 87106, N " 3wDL3[14”,90,X
on “ 8-2".80:X
IAHDYS _ 0% 4" owous14 ' LEX
@m | 3Z15N18".0rX ' VI¥VOL150.X
M “ T3*103.X OUVAIN "\ 00X
@IM _ 87,03, "D wouaty’ L. X
on “ 8-4"180,X
3AIHDYS “ §".07. X E+HAVNIIS I IEX
@m " 8°,0%.X " AWOUB[13 .50, X
ou _
JAHDNS | §'0mX ‘4 swouli L 1EX
1 ' 1
1 1
' t
I |
QR | 8%00.X"%MWouRl’ 90X
on "
3aIHd¥s __ §10mX 4" MouR|14 * 1EX

(O¥3izy avay)
NIVHD MDD
Q3LV¥INID

LETELAL L TR

O¥dVW

S34AB ¥O1d1¥DS3Q

DAM Channel Programs without RPS Support (Part 14 of 14)

14,

Figure

LIOCS Volume 3 DAM and ISAM

44 IBM VSE/Advanced Functions

Property of IBM

Licensed Proaram

20101

& vNIHL Jae) < 3ZISH e 31

0= v N3IHL 10+ T3 = 3ZISH18 41

9,00, 1+8QYHIIS L0 X

MDD W335 ONIMOTI0L

IHL AS 0303D34d 34Y SNIVHD MDD 1Y °

IWIL IINDIXI - SYI¥V GIAVHSNN

IWIL ATBWISSY - SYIV QIQVHS

$1ION

INNXI4

v 04>
T T S
1 J .
H '
' I
) R 1
qay 10,02, % Tois LYRHOI'.90, X axaw 10+ W00, XTHLYINOL30.X x axa¥) 10+ HN0Z X'T L VIHON 30.X %
’ ' h .
0%.00.x' ¥+ Lyl s0.x INSQY 87,07 X"H Wk B 6-..80.X 8l INDGY a8
8-.".80.X ! aiHoust 5,00, X ErIQYHIIS " IE.X) B 8l
aIHD¥s) .07 X E+4AV AIIS” IE X 3Q1HD¥S, §7,07, X oL LE X umem" 1407 X LADIS 1168 X G.aL wo_:uxm" S407. X JPuouBpLy 18 X ,hw
s 1 i J.I
T T J T T
1 1 1
i ! ! .
1 '
aiay .08.x/201al". 26X aay 500X’ 2010126 X 35 aia 02X’ 3070126, X E aiay 02X 20101 26X
1
qay Ta’,0r.x Ve Lvau01" .90, aax Y0405, e LYRIOI 50X |o] 21 avod Ta+ 15 .0n X'+ LVRIOI . 30.X ™ axa¥ g5 .09, x%+LYROI 30X
| ’
ol 8-+ 80.X Eun:." 6,07, X 3WOUJ" T X 48 o 8-3" 180, X 8l -zun:___ PR L JIFRTAT
wn__xv._w__ S0P XE+IQVNIIS 1€ X u_:_ .80, X 8l szuum" §,0P X E+4QYAIIS" IE X £8 u:_ 84780, X
Sasu3s) 1,08 X/ IADIS 110 82.X oty 57,07, X' 4PWOUR| L', 16, X el 35135t 1.0r X A3V 18X 8 wo_xuﬁm S0P X 900U, 1E, X
NIVHD 0D
QILVAINID
potyoeds’

SAA ON

ANNNGS

ANNNGS
JANNIVA

/ANNYVA

ANOXIS

TRANIO:
~ ONIBLS ¥O141¥530

s sat r

N

L

Q['owous|} 4 Qv |—

O¥OWYW

$31A8 ¥O14NDS3A

(Part 1 of 14)

DAM Channel Programs with RPS Support

Figure 15.

45

Direct Access Files

Property of IBM

Licensed Program

€ 3oy
T T - T — —
] u . “ 1
'
“ 1 v ' ” Q0¥ 1 1g'0z,x T+ vavOI'0.X "
" : aa¥ 1 1000, A+ 1v3IvOIL90.X " My 91-4".80,X o
] ' onl 8-4".80.X 8l IAHIS ¢ XY X OUVAIN'. 6%, X]
! HEE W | . [' V.09 " . | INDQY ‘ot . [—
1 aay s 0’02, T+ 1 V3UVOI 90, X " BIHOUS 4 208 X DUVAIN' 6. X 88 ! 8,00, X" NOWOUS): 4,76, X L
' 1
aay t 10%00.x T 1vHVOI'90. X {1 SiL 91-.480,X ot o 8-4,80.X 8l BT 8- 44 80.X 8t
1 .
Mt 8-.'.80.X 8i IS | 3,00, X' OuVAT 48 IVHH Ous ¢ 7,07 X E+IAVIIIS 66 X Fiz IVHHOUS " 7,00 X E+3QAYNIIS 66 X LY
' . . " .
A0S | TH',0%, X' DUVAIN" 8L X F INDQY 1 8,07, X' HoWOUR|13', 21, X £® 235135 108 X0ADISII, €L, X 1 238135 1 1YOR XDADTIII' €2, X 4
2 j .Ij A ﬁl L)
T - T jﬂl T
T j T i ' H
) 1] [}
) : H : i
H '
' ! aa¥ ! a,00.x T 1v3VOI" 90, " aay ! Taozx Heivaavor.e.x
)
' aay! $.0Z.X'20101.26.X £ o 91-4480. X [ot 91-480,X
' le—1 o] . f— P .
aigy §°.02,X'20101", 26X 36 aay; 10,09, %'+ Ly39vO1".90.X 2t DN | .07 X DAVAIN' 6V X] NS | T 0% X OUVAIN' 6V, X
agu ! aLonx HirivaHvoILe 6 e 91-.",80,X ol aigy | §409,X'0101" .26 X vé INDaY | 807 X" XPuoU8)1 5,26, X
) . . .
o 8-.%,80)X [IAHOUS Y 0% X OUVAIN' & X 48 oy 8-2".80.X 8L oy 8-.".80.X
i
IAHDYS | .00 X DUVAIN' 62, X E INDay! 87,07, X NWUR)LS 2L X 48 AVHHOES | 0P XEAIAVAIIS 48 X IVHHOUS _» P07 X EXIAVAIIS 68 X
NIVHD MDD
Q3VEINID
Ppayy12adg payyraadg payjoedg pely1vedg
ON Jo1ai ON Joal Sk ON J01a1 S0t

SIA

INNNJS
JANNIVA

ENNX14

9°,00, X" 1+¥QV335,£0. X

MDD N33S ONIMOTIOS IHL
A8 Q3G3034d Y SNIVHO MDD 1TV T

3WIL 31ND3X3 - SYIAV Q3AVHSNN
IWLL ATBWISSY - SYIIV QIAVHS L

‘SIION

INNNGS
JANMYVA

Pay108dg
ON WHIUS SIA
¥3IINIOE
ONINLS ¥O14R¥I53Q

A8 1S3 H

AN PwouI|y Qv

O¥dww

SHALUO LY

DAM Channel Programs with RPS Support (Part 2 of 14)

Figure 15.

LIOCS Volume 3 DAM and ISAM

46 IBM VSE/Advanced Functions

Property of IBM

Licensed Program

D DivKD
T T . " 1 LT W " | KT Tpe— -
aay) @%0Lx Hirtvaavor’,po.x aasl 1008 TR VIIVOL'.90.X st a@xgy 10+ TX.01 X’ v +1 VYOI 30, X az @Y, 10+ TN 08. X" ¥ +1v38vOI',30.X az
B -0, ou! 8-./.80.X 8l oy 82,80, 8l iy -.,80X ot
S_:u!m" S0 X E+4AY NIIS" 1E X uc_xu«m“ S0P X E+3AYN3IS" 1E. X yz] E_xuxm" §'.07 X ‘E+4AVAITS’ 1E X 8 mo_xuﬁ“ S',0p X E+4AVYNIIS" 1E X 8
235135 LA0r X LADISIMI .62 X 23513, 1107 X' LADISIN', €2, X s 235135 €T X 8 235135, 8s
9_;" a0, T+ L VIHVOI50. X Sasayl VAOr X LADISIF1.22.X [*=1 69 @M} 10+ THL05. X ¥ +1VRIVOI'.Q0. X [+ &¥ o308 A0n X LADISH1, 28, X L3
R 8-..80,X 9_3“ 10%,02, X T+ 1 VIIVOL150, X €% o 8l axemy 1o TH.04 X’ v +1YRIVOI' Q0. X (17
uo_zu%" /.07 X E+¥a VN335 16X u:" 8-.°.80, X 81 wn_:u%" S0 X E+HAVHIIS 1E X 8 u:“ 8-."80.X 8
REEH] 1,00 X' LADISIFI'.€2.X 3aIH¥S| §'.07. X 'E+4QYHIIS" 1E.X L2 135! X LA €2,X 3aIk2s! S'.0r X ERIQV IS 16: X 2]
T 1 T - T T

aiau! §'02.X 20101, 26 X E) alay §%02.X 010126, X 36 aiay! 02, X"201a1". 26X ﬂ aiay) $%02:X" 20101, 26 X

aqyl 10%08.x+ T+ LYIUvOI".90.X u aq¥) 1004 X D LyIeYOI’90.X £l 9,2" Ta+ IN',05. X’ 7 +1 v34vOI' 30, X & 9.2“ 04 TW,04 X' 9 +1v28VOI".20,X

u:“ B, 80, X 8l u:._ 8- .80, X 8l ot 8l o 8,480, X

wexu._m" §%.0r X EXIAVIIIS’ 1€ X 8 uo_xuﬁu §,0P X E+3AVHIIS 16 X 8 uo_:uﬁ" S0P X E+¥QYHIIS’, 1€ X @8 E_xuxm" S0P X'EHIAY IS IEX

135, VOV X IADBSI M EL X] B€ 231381 1200 X' LADESIT1 68, X o] 85 J3s1as! VOr.X 1AD3 23 2381381 14on X IADTSIT B2, X

quml 1005 X B+ vaEvOI%S0.X 16 ume.“ 1,07 X LAD3SICN. 22, X ® nx«z" 10+ 10,05, %’ ¥ +1VAIVOI', 00, X ov J3s01! FLOR X LADIN' 22X

u:" 8-.%80.X 8l aim! Ta%,02, X W+ LY 24O’ 50, X € u:.“ 8-2".80,X 0l 04 MA06 X' © +LVIVOL'.00.X

EERY SN X E-¥AVAIIS' 18X il BlIY 8-4".80.X 8l 3a1HIS) 07 X E+¥AV XIS 1€, X i) iy 8-.780.X

Twm_u" VAOn X LAD3SIM62.X F painous! 07 X'E+4QYATIS", LE. X uwmzm“ 110X LADISITHAEZ X L3 3gIHDys! SOV X'ERIAVHIIS! 1E X

NIVHD M2D
QIUVEINID
pey130dg payzedg payitseds

]
[

A8 Q3

ELY
ELl

201dI

ANMNJS
/ENNIYA

WI0DN

INNXI4

201q1

= v NaHL Jas < 3zisne 31
=0 NaHL Yo = 3zism A e

9,00, X 1+4QVA3IS".£0. X

MDD H33S ONIMOT04 IHL
j3D3¥d 34V SNIVHD MDD TV °

&

31ND3X3 — Sy AIQVHSNN
i1 A18W3SSY - SYIiV Q3QVHS 'L

S3ION

\\\M“M///

20%q1

aNNXI4

/BNNYVA

NIWI ¢ SIA

ONIULS ¥OL4IND530

Q| ‘swous||3 ILI¥M

[or bl

$31A8 4014192530

(Part 3 of 14)

DAM Channel Programs with RPS Support

Figure 15.

47

Direct Access Files

Property of IBM

Licensed Pr~aram -

ON 2014l SIA ON

pled 1] SIA

a vHD
v T] T — —
a.x“ 1001 X T Lv38VOL'.50, X 56 “ 9_._;“‘ TN0LX’ ¢ +1V3IVOI00.X -av
Y] 8" 80.X | nss“ "0 .06.x " Lv3avOI 50X | se BTy 8-480.X S g+ 14,08, X’ T+1V38VO1'1 00X Lo
IAIHDYS __ §'.0P, XE+IAVAIIS 1€ X 8 i 880X 8l mn.xu«m" S0P X'C+IQVNIIS 16 X il B-.,80,X 8!
38135 " 10n X LADISIMN €2 X ﬂl mn_xuam” §'\0n X'E+IQYHIIS 1EX | o me._W" L0m X LADISIFI' €2, X r.ﬂ wexuxm“ §'.07, X'E+aVAITS" LEX IﬂL
M H ﬁJ T ﬁl T
§',0%:X'201a1" . 26 X 36] aiqy, §406 X' 2011 28 X 3 H
1a',05. X" i+ LyI¥vOI',50.X 16 Y §02,X'20101" .26 X 3 anm] Tav 05X’ v +1vIEYON, 00X &y i $%02,X'20101". 24 X
o x [T aum; aoux M ivaevoriso.x [* €6 ou} 82480, {*=T 81 @m0+ HL0L X 9 +LYINVOI'G0X
B TR X I oi “ €.\ B0 X [ua_._.Cm“ .00, X'C+HQY IS, 1€, X 8 u:“ 8-.480,X
0P X 1ADISITI €L X '3 3QIHD¥S " S'.0r. X'E+IAV NIIS’ 1E X Vi) ummbm“ 1,07 X LADISHI . €2, X I3 uo;zum_ S".0m X 'E+IAVNIIS’ 16X
I-L NIVHD M2
QILVEINIS
PoLy120dg \vu_:u&m/
SIA

ONNX14

8=vNIHL Jgs D <3250 41
0=9NIHL Tg+ TN = 3ZISH8 4

-

9°,00.X' 1+¥aV 35" L0 X

MDD 3335 ONIMOTI04 IHL AR
0303534d YV SNIVHO MDD 1Y

o~

IWIL 31INDIXI - SYIYY GIAVHSNN

IWIL ATBWISSY - SYIUY QIAVHS L

$3ION

INNNGS
/ANM¥VA

INNNGS
/ENNYYA

BNNXI4

oN [NELER

fma N @

_[(PanupueD)q| ‘oweuaty 1M H

[o1)44

S3LAE ¥OL41¥D530

(Part 4 of 14)

DAM Channel Programs with RPS Support

Figure 15.

LIOCS Volume 3 DAM and ISAM

48 IBM VSE/Advanced Functions

Licensed Program - Property of IBM

3 oy

"‘] i aas | Tawouxwivarvorsox| i) QO¥ | 1G'06.X" i+ LVIIVOL'.90.X 1
1 ! oy 8-.480,X 8l o 8-4480.X 8l
H ! NS | .0, X OUVAIN' 62, X ® ;IS ! TH07, X OUVAIN'62.X »
oa.._ 001 X T+ L V3¥VO1',90. X st aayr 1006 X T Lv3IVOI'.90. X st 238435 | VA0n X LADBIM' €2, X 3 38135 | \0P X LADISII €2, X L3
B Y] 8-.80,X 8l oy 8-480.X 8l RELLH LW0n X LADISIMN 28 X ® J3say | O X LADISIML 28 X ®
KNS | 10, X OUVAIN' 62 X) KNS | 07, X'O¥VAIN 6L X] aum ! Ta'.05.x Mtvauvorisox [| 16 am) alouxMsivarvorsox || ee
ozsus | [o138 ! 1A0n X LADISIMI 62, X [LT 8-.80.X 81 ou m 8-.80.X 8l
2350Y ¢ .2 23504 ® INHDYS) TH.00 X OUVAIN' 6V, X 88 IAHDYS 1 3,07 X’ DUVAIN 6V X 88
Q] 10%06.X Ik LYIHYOL'SOX 16 am; Tatosx T 1vanve € S 8-.,80.X 8l u:m 9-.,80.X 8l
ol 8-.80.X 8l 1) 8-..80.X 8l IVHHOUS “ 7,00 X EXYQVAIIS 6E. X w IVHHDYS | 7,07 X E+¥QVNIIS" 66, X w
IS | 3,07 X DUVAIN' .62, X j.l I9HUS | WonxouvAIXez x| | 48 | o3s13s ! 1407, X'0AD3SI11.62.X TP 235135 | 1,07 X'0AD3SIM1*,62.X lﬂl
T] T j T onxt - o] T laheex ‘
H ' aad s Ja%oux M 1vaEvol’.eo.x st aayr 1006 X e+ VIIVOI 90X
H m o1 " 8-.480,X 8l uzm 8-.,80.X
' ! INHONS | TX,00 X OUVAIN' 62.X » !xu«um 0,00, X OUVAIN 62 X
aioy! $02.X'20101.26.X 3 aiay, §,02,X'20101". 26X 3 2313 | 1409 X LADISIMT', €2, X E3 1351 1.0n X LAD3SIT L
aay! a",05, X" T+ LVIVOI190,X 1 oaty 0,02, X T+ LVI¥VOI' 90, X €l 3508 | TR X LADISIMI 22X E3 0! 1,00 X 1AD35)
ol 8-.80,X 81 BT 8480, a a.z" 10,05, x T+ L vagvOL.50.X 16 aum] 10%04x T 1v3HVOI'.50. X
BN | TN0r X OUVAIN X [*TT 48 H¥S | T30, X OUVAIN' 62, X [+ # o 91-.80.X[*] o1 oy 91-4"80.X
23135 1A0n X LAD3SITI' €2, X [o135 | 1407 X’ LADISITI' €2.X E3 NHIS 1 X0, X OUVAIN' 6V, X] O | N0, X OUVAIN 6V X
Sasay) 1407 X" LADISIMI\ 22X ® 350y ! ® aiay | §%09.X'20101 26X vé n_a.m 8107 X X IWVNINI 26X
awi 10%06,X T LVIIVONSO X 16 a1 1a00x i 1VIEVOL'60.X ™ e 84 80.X 8l on! 8-.,80.X
ol 8-.'80.X 8l BT 8-480.X 8 IVHHNS | 7,07, X'EHIQVHIIS" 66X 1 IvHHOES ! 2.0 XE+YQVNIIS 146X
wxxuem_ T\00. XOUVAIN 6L X uxzu«mm TN,0r X OUVAIN',62:X F] 238135 ¢ 107 XOADISIN' €2 X 8 235135 ! 1407 X'OADISI €2, X
NIVHD MDD
Q3UVEINID
Po1j190d5

SNNNAS
ZANNYVA

INNXIF

9,00, X’ 1+3QVAIIS L0 X

MDD X33 ONIMOTOA 3HL
A9.030303¥d VY SNIVHO MDD MV 2 ON

IWIL 31ND3X3 - SYFMY GIAVHSNN
IWIL ATEW3SSY - SYIBY 03aVHS L

330N " §3UNI0d

AN'owoun|i4 J1¥M

M CONIYLS ¥O4dI¥D530 !

oW

1
81

228223 RS

Y

S3LAR ¥OLdI¥D53a

DAM Channel Programs with RPS Support (Part 5 of 14)

15.

Figure

49

Direct Access Files

Licensed Program - Property of IBM

9,00, X" 1+¥Q V335", 80, X

INNNGS
JANNSYA

FMID 3335 ONIMOTIOH 3HL
A8 0303034 Y SNIVHO MID 1V T

INLL 3LNJ3X3 ~ SVIYY QIAVHSNN
INEL ATIWISSY - SYIUY QIAVHS L

$310N

Adnan ON @

FIH)
T T [%:) T [T Y
i | S ' s ! PO . o =
1 ' - awmi 1a%01x D LVIIVOI'S0X [aum a'.06.x T+ L VA¥VOI'i50. X 56
! H : BT eaox| fa E soox| et
1] ' k™ . . i 1 Iy, . .
Ml 10506 X e LYIEVOLS0.X auml 0oL x T ivasvor'sox [+ ¢ IHHO¥S, N0, X OUVAIN.6V.X fod 88 IAHOYS, 3,07, X OUVAIN'.6V: X |t 88
! ! oy 8-..80,X 8l LTy 8-.80.X [
M, Bl B bl B vy vionxesavaassieex| | iv vHiOws! .07, X'CH3 VI’ 66, X o
aaous! T, 0% X OUVAINL 62X e.zusm Wn',0r. X OUVAIN' 62.X] 238135) varxordminezx| fer | 238135 1,07 X'0AD3SI 1,62, X ..M
L L
T] T - T
T [] H 1 '
| ! 1 '
\ ' auml 0L X ¥+ L VIUVOI'.50. X [n.;“ 10,06, X T+ LVIUVOI".50.X|
! ! oud 91480 o £ 91-"80.X
' ' IIHOUSH X0, X OUVAIN' .6V X (] 3! TH0r X OUVAIN' 6¥. X
' [; W e[N . 09" PR ! . oy’ .
aiay, §.0%.X'20101'.26. X 3 aiay §.0Z,X'201a1" .26 X % aias §'.09,X'20101, 26X 6 aiay 807 X X INYNINAZ6X
ami 10%05. X Vi LYIUYOI".50.X 16 @M gvoLxDwivaavorisox| | es ' 8-.480.X 8 E 8-.480.X
21, 8-..80.X o o 8.8 8 IVHHDUS) 7,07 X'E+¥AVNIIS", 66, X vHHus! 7,07, X'E+UQVNITS", 66X
IAHDUS) TX.07, X OUVAIN'. 62, X » MW, TH,09 X OUVAIN', 62. X 8 235135 1,07 X'0AD3SIM1".62.X 1,07 X'0ADISH 1,62, X
NIVHD M2
QILVEINID
SIA ON

INONIS
/ANNIVA

SIA

(ponuguod) A3 owousyi4 ILIIM

Owdww

S3LAS ¥OLHI¥DS30

DAM Channel Programs with RPS Support (Part 6 of 14)

15.

Figure

50 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

O VKD

Qxoum; 16+ kD01 X I YRIVOL.aLX

u:" 8- \80X
IQIHD¥S) S0K X'CUAVNI' 16 X

2;" 8,05, X" XowouR1 4,60, X
A 8480 X

aX3a¥! g+ T2, 0L X 1 VAIVOL 31X
u_." 8-.80X
QIHD¥S | S ON XEHUOVIIIS IE X
aay!
u:“
30HDYs |
awowm! Yo w05 x lvaevor.anx
AL " 8-.80.X
QIS | S0P XE+HAWNIIS L L€ X
qum “ 805X wou]11', 50, X
ol 8-.80.X
3AIHS " S'u0 X JPUDUB1LS, 18, X
235138 " V40P XOADISIMNSEL X

£8°.00, X’ Nowoue)i4°,90, X
8-\ 80X
§'10r, X" Jowoum 13", 1€, X

1,09 X 0ADISIN EL X

3OS |
235135}
T
aoy;
oul
ks |

o135} 1,09, X‘0AD35 101 4 £2, X

(©¥IZ4 aval)
9,00, X' 1+ BV 1 L0X

‘MO ¥33S ONIMOTIOS IHL AR
0303034 Y SNIVHI MID 1Y 2

IWIL ILNDIXI - SVIIY QIAVHSNA
IWIL A1EWISSY - SYIIY QIQVHS L

33ION

(O¥3IZy avay)

¥IINIOd
ONIYLS ¥O141¥D530

—

oYW

¥
I
)
aumi 801X/ HPWBU91L 4,50, X 9
]
Al ®
' =
30IHD¥5) 3
35va3] WB) Pro>erxou,09, 1,002, X', Q
=
mmiu“ 8,00, X T+grwou m
AL v
3aIH0¥s | shorxummpax| | o
oauas ! L2On X'0ADISIN . EL X .4
NIVHD MDD
Q3LVEINID
MINIO

"ONI¥1S HOLII¥I530

]

1148 1531

_V OUIZY'swouR|13 11 M

ovoww

DAM Channel Programs with RPS Support (Part 7 of 14)

15.

Figure

51

Direct Access Files

- Property of IBM

Licensed Program

1 lawd

” “ on.” 3ZISX19°,02, X ¥I¥VOL',90. X 9t QQ¥l IZISNIE',0Z.X VRIVOI'90. X
oox" IZISHW'\ 0% X VIIVOI'. 90 X 91 an." 3ZISNTN',02 X ¥IIVOI'.90. X axoul TX,03. X" DAVAIN' 30X v oxar) To,02 X" O¥VAIN'. I X
L) 6280, X 8L Ry 84,80, | & 60 81 i .80, X
0iws b .00, X'E+¥QV A"\ 16X 8 201Hs | §°.00. X'E4¥AVAIIS 16X wn_zu.i S"07 X'E4AQVNIT” 1L X uﬂr QNS | S0r.XE+3QV IS’ 16X
T T
] 1
T T ! o :
1 1 aiayy $°,0L,X' 20101, 26X aiqu $',02,X° 20701\ 26 X
alau | $%08.X'207a1", Z& X alay “ §%0%.X20101, 26X E'S QQ¥) ITISH0P X VIUVOI',90. X [t 0¥, IZISNIE09 X' VIIVOI'90.X
aay “ 3ZISNIV.0P. X VIIVOI .90 X aay n IZISAIW'.09.X VIRIVOI'. 90, X z axay) TX\03. X' 02VAIN' 30X axar) 3,03 X' OUVAIN B0 X
pIIeY 8-+"80.X Ly .80, 8L Y 8-.480.X Ll 400X
30IHDYS “ X 3qIHD¥S " €100 X E+4QYAIIS" 1E.X] wa_xu._m” S0N X EIQVNIIS L X 30135, 0N XCHIGVAITS' LEX

"ATONIQ¥ODV

QIONVHD 38 11IM 5. MDD G¥m ONY GQY 3HL
¥O4 (3ZISHMW) INNOD iAQ IHL ANV SQIODN
INIWOISILINW 304 0311GOW ¥V SNIVHD JHL
NI §, MDD 3HL "0 3dAL) SQUIODR INIWOIS
JIONIS ¥O4 QILVEINID ATIVILINI 3SOHL RY
SQYODI INNNAS YO NMOHS SNIVHD MOD 3HL I

*3071 40 GVALSNI
| ounus)1y
51 (36 ILAS BOLINISIQ) MID

INDGY FHL NI SSI¥AQY YiVa IHL
*qIsn §1 ONISSIIAAY IAUVIR 41

L

9°,00. X 1+8QV¥IFS" £0. X

MDD %335 ONIMOTIOS
JHL AE §303734d VY SNIVHD MOD TV °

o~

IwiL 310033 - SY3UY QIQYHSNN
INIL ATWISSY - SYIUY QIAVHS 'L

$3ION

ANNNGS

A:@u&m/

$34

ON . 20w

INNNGS

SIA

NIVHD MDD
QILvaINID

ﬁ

Ql'awoue); 4 QvIy ;—

OWOWW

S IOUIIn y
DAM Channel Programs with RPS Support (Part 8 of 14)

LIOCS Volume 3 DAM and ISAM

15.
52 IBM VSE/Advanced Functions

Figure

Property of IBM

Licensed Program

“ATONIGY¥O DY

QIONVHD 39 TTIM S: MDD QUM ONY QQH 3HL
404 {3ZISH18) INNOD ILAR IHL ANV SGYODT
ANIWOISILINW 04 03HIQOW RV SNIVHD 3HL
NI $:MDD 3HL "0 3dAL) SQYODIN INIWOIS
I1ONIS ¥04 QILVEINIO ANVILINI 50K Y

SQYO I3 ANNNAS Y04 NMOHS SNIVHD MDD 3HL i

Jrowoua)y -

AINDQY

£+§9wWoLA(14 - IYHHOUS

‘01 GIONVHD 38 1M
ATIARID34SIY MDD LNDQY FHL ANV MDD
JVHHONS 3HL 4O $S3¥QQY viva IHL

‘aasN S1 ONISSAAV IAILVIIY 31

9,00, X' 14¥QVNIIS L0 X

MDD A3 ONIMOTIOA JHL

A9 0303034 AV SNIVHD MID 1V

IWIL 3LNDIX - SYRIY G3AVHSNN
INIL ATIWISSY - SYAAY Q30 VHS

©

o~

$1ION

ANNNGS

ANNYVA

ANNNGS

ANNAIVA

r LIVHD
! i ! %4
(] " 3ZISA1E'02, X VIIVOL,90. X aay ! 3215318°,02, X V3¥VOI'\90,X LTk aay ! 3ZI5319.02, X" VA¥VOL190.: X 3ZISNTE'02 X VIIVOI .90, X 91
oMLy 8480, X a1, 8-4",80.X oLy 8-280,X 181
InHous | Ty 09, X OUVAIN' 6. X IHDNS | T3,00. X OUVATN 2. X IHOUS | 300, X' OUVAIN . 6V, X N7 X OUVAIN, 6V X | et 88
on! §-4',80.X ol oy 8-2.80.X oL " 8480, 8-4,80.X 8l
w(xxu-m" 0K XAV EE X 2v] IVHHONS | PA0F X E+4QVNIS " 66 X IYHHOUS | P07 X'EHIOVNIIS 66X IVHHONS PL0r X'E+IAVNIIS 61X 3
Jasu3s | V0P XOADISIN L X o PEE W01 XDADTSII'.E2. X o138 “ V0P XOADISIN €2, X Jas13s ! 0% XOADISIN'EL X iy
1 - H 1 iy
T HE E \ ¥
aiay " §4,0%.X"20101" 26 X alay " §4,02,:X' 2010126, X 36 agy " I2ISN18',02. X VIV OL'.90. X 9 aa;
QQu | 3ZISHIA'.09. X VIIVOI'.90.X QaY | 3ZISHIE09. X VAUVOI', 90, X 2 oL 91-480.X] o1,
u:“ 820X A, 8--L80X 8l BaHOws | 0P X OUVAIN S X | | VB M T30 X OUVAIN 6V X
NS | TX',09. X' DAVAIN' 6L X INHOWS | TN 00 X OUVAIN', 68X 4 aiay ! %09 X'20101 26X v aiay) §09,X'20101 /26 X
oLl 8-4480.X aul 8-2480.X oLl 0.X a ou! 880X
avHHous | P07 X'EAIYNIIS", 66, X IVHHONS | ¥',07 X'E+4QVNITS 6 X .y IVHHDYS | .07, X E4UOVNIIS" 66, X v IVHHINS | 0% X'THIQVNIIS’, 661X
uum:m_ 140 X 0ADISIM.€2. X 35135 " 10 X0ADISIM €2, X o .hmmm“ vorxondsinesx | fier o135 | 140n X0ADIIN'£2.X
NIVHD MDD
QIUVIINID
penyeds. ;o&m/ 1poyy1oeds
20W" " $3A ON 9 30wl $IA ON

3010l

AIN'owendty Qv

Quowvw

SALAG O LAINDSIA

(Part 9 of 14)

DAM Channz2l Programs with RPS Support

Figure 15.

53

Direct Access Files

Property of IBM

Licensed Progranm

A LVHD

“ATONIQ¥OIDV

QIDONVHD 38 1M S: MDD Q¥M ANV QY IHL
¥O4 (3ZISHA) INNOD ILAS IHL GNY SAYOON
ANIWOISILINW YO Q31JIGOW AV SNIVHD IHL
NI SiMDD 3HL (00 3A1) SQAOD INIWO3IS
JTONIS ¥O4 G3Lv¥INID ATIVILINI 3SOHL RV
SQYO DT ANNNJS ¥04 NMOHS SNIVHD MDD JHL

Jrowduaiy

‘01 G3ONVHO

) (36 1LAE YO LAIDSIA) MDD
ANDQ¥ 3H1 4O $53¥aQY Yiva IHL
‘Q3sn S1 ONISSIHAAY ALV 4l

-

97,00, X’ 1+4QYAIIS" 20, X

MDD A3 ONIMOTIOL 3HL
Af Q303034 WY SNIVHI MDD 1V T

3IWIL 31ND3X3 - SYIIY QIAVHSNN
IWIL ATEWISSY - SYRIV GIaVHS I

$SILON

ANNNAS

ANMIVA

S3A

ON

AINWIA

ON

ANNNAS

INNIVA

T R
aqy ' IZISHW.0LX VRIVOL190:X
axay | 3,04 X' OUVAIN IO X
n_e_J_ IZISHTE'0L X VIUVOL' .90, X u:" 8-4'180,X
i1, 82490 3aIHD¥S | SN XEXIAVNITS 1EX
301H%s | S'.0n XE+¥AWNIIS, 16, X 238135 | 1,00 X" LADTSIMN . €2, X T i
Sasu3s ! 1407 X LADTSI 1462 X awm " IZISHTE'07 X' VIIVOL'4§0: X Q@y | IZISIWLOLX VIIVOI'90,X
Qum | TZISNE0rXVRVOI'50.X T — - anm 109, X OYVAIN, G0 X axay | 04 X DUVAIN' 20.X
Sl e B0X oy, ITISHEOLX VIIVOL.90.X BT 8\80X T 880X
IaIHOYS " 6\0r. X E+IaV T3 u_-“)) 80X 2aIHDS | §.0n X E+¥AVATIS 1E X 3QIHDYS | §'.0n X'E+UAYNIS 16 X
35135) 100X’ LADTSITI' €2, X DML S0 XY X d3su3s) 140n X LADISIMI EL.X 23138 | 1A0n X LADTSIMI' 6T X
T o3s13s| 1,09 X" LAD3SI1°,€2. X 0 oy 120X LADISIMI'\ 22X
1400 X" IADISIN' 28X 35Qu; 1409 X LAD3SIM1 22 X >a5q8! 1500, X LADZSIM", 22, X Qum | IZISHIE0r X VIIVOL'S0.X
8°,07. X" VIUVOI' 90, X n-;“ IZISNE" 09 X' VIIVOT 150, X ! 807X VIYVOI'.90: X axum ! 3,09, X OUVAIN', Q0 X
8-.490.X ol o, 8. 80X H 8-.1,80,X 3 i 8-480,X
$.07, X E+HAVNIIS L 16X £8)) 3aIH¥s | §0n XE+IAVIIS L I X 3a1HDas | S'.0 X E+IQVNT IS’ 1E X . 3aiHous | .0 XE+AAVNITS s 16X
T
aiay _ $405:X"20101. 26 X
, ag | 3Z15518°05. X VANVOL.90.X
alay | €'0L X' 201a1'. 2 X axay ! T\ 04 X OAVAIN 20X
aay ! IZISAI.05. X VIUVOL 90 X ol “ 6-4"180.X
u_»" 8.%.80.X amoes | .07 X'E+¥AVAIS L 16X “
wa_:u.m“ S0 X'EFYAYNIIS 16X 215135 “ 1/0r X LADISITI €L X aigy “ £°,02,X'20101" .26 X
REHE N 110n X LADISIM €23 X o T - - QUM | 3ZISNTE'Or. X VRIVOL' SO X aa¥ | IZISNIE05. X VRIVOIL90, X
QUM | 3ZISHT.0NX'VIIVOI'50.X s awax ' §40L.X20101" 26, X axim | TX,09, X" DUVAIN. GO X axay “ T, 03 X OUVAIN' 30, X
u:" LR % o aau | wN_mxd.,.s_x,S.qo_w.s.x 1L _ 8-.490,X a0y
3QIHDYS | SL0n X EAIQVATIS 1€ X % ALy 82480, X 30IHYS | §°.07, X'E+4QYAITS", 1€.X 8 3AIHDYS |
Sasu3s | onxdssinenx || | L “ 40N X ERIAVITIS 16X 513 vorxiasssiniex| | % 38135)
1 i | 1400 X LAD3SIT*. 62X h 0 | asay |
o1y | 11,00, X° 1AD3SIMN" 28X [} 35y ! 1407 X LADISIM .20 X BERT] “ rooxasimax| o] aim | 3ZISHIROP X VIUYOI 50, X
aay " 8,07, X'VIUVOI".90,X 2 aum " IZISNTR', 0. X' VA¥VOI'50. X aay | gonx'vauvorsex| fize axm | 14,09, X" OUVAIN' 00 X
ULy 8-.80.X o] on 8-4'90.X ou 8-..900.x| Plag o - B0X
3AIHDYS .07 X E+¥QVAITS, 1€ X 28] IAIHD¥S .07 X'E+3Q VIS’ IE. X 3aiHd¥s S0 X'E+IAV IS 1€ X 30IHDYS §'.07 X E+IAVAIIS" 16 X
NIVHD MDD
QIVEINID

[JIFE LT

OudWwW

SILAS JO L4510

DAM Channel Programs with RPS Support (Part 10 of 14)

54 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Figure 15.

Property of IBM

Licensed Program

"ATONIQ¥0DV

GIONVHD 38 1M 5. MDD Q¥M ONV 0¥ 3HL
¥O4 (3Z15318) INNOD ILA8 IHLANVYSAUOIN
INIWOISHLINW ¥O4 GIHAGOW ¥V SNIVHD IHL
NI S,MID 3HL “00 3dA1) SQY¥ODIY INIWO3IS
319NIS ¥04 QILVHINID ANVILINI ISOHL NV

SAYO DI ANNNES JO4 NMOHS SNIVHD MDD 3HL i

|rawoud)1

‘01 GIONVHI S| MDD
ANDGY 3HL NI $S3¥QAV vivd IHL

Q25N SI ONISSINAAY IAILYIIY dI

9,00, X' 1+3QVIIS"LOX

MII ¥33S ONIMOTIOA

3HL A8 3037344 UV SNIVHI MDD TV

NI ALNDIXI - SYIUV GIAVHSNN

INIL ATBWISSY - SYIAY QIAVHS

$IION

1 LavHD
T P s
. Qimi 3ZISHI.00.X VISVOL' SO X 56
Gum| 3ZISH1E.00.X'vIIVOI'50.X 6 9:_;“ IN',09 X DUVAIN', Q0N X v
snl 8 one 8-4480.X ._.*
wo_xuxm“ S".0n X EHIAVAIIS | IEX 8 wa_:u&“ §'\0P X E+HAVNIS" 16X ¥
xS | 140r X LAIFSIN' B2 X 85 uwmzm“ 1,00 X' LADISIM€2.X (3 T
’ ' |
150¥ | 14000 IADISI 1" 28X faed 8 T EETH 1,00, X' LAD3SIM1', 22, X QUM 3ZISH19%.00, X VIEVOI S0, X 6
aay| 2.0 X vIIvor. 90X | b /s Qum) IZISHTAY00, X VIHVOL',S0. X B oax) 8,07 X" V3AYOL' .90, X arm “ TN, 09X OUVAIN, Q0. X v
an! e-oox | |8t au| 84180.X ot I 80X M 880X M
3QIHDNS | S0P X'EHIGVIIT’L 16X 28] 3AIHDNS § $°0P X E+3QYNIIS 1€ X 8, IAIHDAS " <0 X'E+AaYNIS" _n_g 3QIHIYS _ §0%. X E+¥QVNIIS" 1E X 8
!
. e aloy | §°,02,X'2010126,X
aigy ! $,02,X20101".26.X N auml 3ZISNE’,0n, X VIHVOI'S0.X 1
am " 3ZISH18°,07. X" VIIVOI',.§0. X M " 3,09 X' O¥VAIN'.GO. X iy
Iy} 8-.90.X ROy al
IAMDYS “ 5,07 X’E+4QW IS’ LE X uo_xuﬁ“ .00 X'CH¥QVHIS" 16 X 8]
235435 Lon X LADISIA . EL X T 35138 L V0P X LADISIMI €2 X .Iemx 1
! aiay ! §°,02,X' 20101, 26X)
Y V100X ASHI1'22.X aa, .06, X'D010, 26X 36 umn.“ rooxiasmsinizzx | [a] QUM | IZSNEL0nX'VIVOIS0.X
aayy 807X VIIVOI'\90.X am! IZISNE.0N X VYOI, 50X 16 aay | 8,07 X' V3UVOL'.90, X 26 axum | .09, X' O¥VAIN', 00X
o 8-4,00X i e-vox| fa S g-soox | el) 8.4 80.X
JAIHIYS ¢ 07 X 'E+3QV IS 1€ X 3Q1H¥s ! S0P XEHYAVNIS’, 18 X 48 aaiHdus | §°.0P X E+HAVNIIS) 16X L<8) JQIHNS 1 5,00, X'C+IOVNIS" 1€ X
NIVHD M)
aaLvEINID

ON

INNN4GS SNNIVA

INNNGS AINNAVA

B

ON SIA

~

;’ QIawoud)id 111am

[e2 b))

AJII3A ON

$IUAE NOLNDSIA
DAM Channel Programs with RPS Support (Part 11 of 14)

Figure 15.

55

Direct Access Files

Licensed Program - Property of IBM

W LiVHD

Q¥M ANV QQY 3HL 404 (3ZISNTE) INNOD

¥.0r, X'E+¥A V33

118,01 X" vA¥VOI'190. X

3ZISAE".0%. X' VIYVO! 150, X

91-480: X

TH'0P, X DUVAIN' 66X

§09.X'20101".26 X

1 0¥ X'DADISIMTI'ET X

aay " azine’oLx'vaavor'so.x | s
— - 8-480,X
aas, azisxw.oLXvawvorox | fsi] u:“ I et}
xul o-cmx | o] Biudws | 09 X OUAIN'.62.X ['vol
2 0N X
Baows ! W00 x'oyvAD&x | V) 3L Le0n X 1A 55|
u:.zm“ o] QUM IZISHTE'0 X VIIVOI'S0. X m
1t 8-.80,X
amm! azisne’orxvaavor'sox [e o , o
u:“ woox | o] ! DS 1| ¥.09.x'0uvAIN 6vix | [vel n
= h ¢ op
1l Iy . . = I 235138 1,07, X' LADISI N\ ET X 5] | 3 ,
s ! X108 X UVADN X v} aay| 3zsoeouxvawvorsox| [l * ooy) amsxwoLxvavorsex | fs)
235435 § v xiadssin ez x | o] ! B-.80.X Ssay] reoxwolimax| e a e-00x | fol]
™ wx_._u.m“ TH'09. X' DUVAIN, 62, X aax | [26 IAHDNS | Wonxowantex | W)
aay, 8':07, X" v3¥vO! .50, X 3 aum ! 3ZISNT1E 0P, X VIEVOL' 50, X a1l [aum ! 3ZISHIE 0n X VIIVOL a
o1 8-.',80,X u:" 8-480,X NS | i ve u___ m
EETR X09 X OYVAIN' 62X faf O] 39N | Tr.orxovvanniezx | [l 48] ¥ " oz M 6]
oy 840X) e-ox [foi) T [B m
IVHHOIS | 7,00, X E44QV IS, 66, X IVHHINS | .0 X'E4HAVIIS’, 6, X Lv] IVHHIYS " ¥',07. X E4U0VAIS 661 X LY3 ::55“ Y0 X e+IOVNIIS", 66 X <v]
J3su3s ¢ 1,07 X'OADTS 1462, X 3 35135 ! 107 XOADISIN 2. X 235435 1,07 X'OADTSIN'. 62X 2 235135 V40P X'OAD3SI I, 62, X o
T T oLX’ .90,
aiay 602 X'01A1Z6 X . ne__ 3ZIS318°,01, X VRIVOI'.90,X m
ag¥l 32ZISHE'.05.X VIIVOL'90.X oMy s 8-200.X g
1 . INHUS 309 X O¥VAIN' &2, X
o1 8-4480.X]
IS “ T 09 X ORVAIN LK J3s135) viorxadasinezx | Fes
. . . aim 3ZISNE.07, X VIIVOI'i50. X
uwm:m_ V.0n X LAJISITI £2.X " ! Lisg cas| azsH
QM| ITISNEOR X VRIVOL 90, X ! . e
it B-.80.X H . HDNs | X109, X'OUVAIN 6% X H
. 9K OUVAIN & alad | sLonxoarizex | [3 Jasuas | 10% X LAD3SH 1 €2.X BPHS |
1 o X QQy) 3ZISNTE’06.X VIIVOL90: X | memm“
H oy . . —
23s13s | vorximminsezx| e} oLy 8 .180.X >350% " 1.00.X’ 1AD3S| 23503
t Iy . . { . . 1
TH00. X IADTSITT 20X BANDYS | N109. X OUVAIN' 64 X g aay 8,07, X' Y3¥VOI' 90, X awm,
1 - opx” . qum | 3zsEor X vaavorisox [f il s1-00x| [0 EY]
aay 8,07, X VIIVOI' 90, X 1 -, E) - !
aul B BOX u:“ , 8 ...S.x 913 0TS X109, X OUVAIN' 6% X [+ va DIMNS
BM0HS | V3,09, X" OUVAIN' 62X 0¥ | ¥ xouva.ezx | 59 aigy §mxo0NNzeX| V6, aias!
oLl 82,80, X oy 8-./80X m oL 8-4\80,X 8L ud
IVHHOUS “ 07 X'THIQVNIS" 46X IvHks | vonx'ceyavaassieex | 2V aveHOus | ¥'.0P X E+HQV 3" 6. X AVHHIAS |
' ‘- 0 .
Sasizs | £, 235435 rovxondssin’enx | Lol 3535 | 1,07 X'0AD3171, 62, X osias !
"ATONIGYODDY QIONVHD 38 TIM 5, MDD
ETY

3LAE IHL ONY SQIODIY INIWOISILINW 04
Q3INTOW Y SNIVHD JHL NI §.MID 3HL
00 3dA1) SQIOIIY INIWO1IS 31 DNIS 304
Q31VEINID ATTVILINI ISOHL 38V S QYOI

ANNNJS YO NMOHS SNIVHD MO 3HL

[ewsuaty - INDQY

£+§79Woud)14 - JYHHIYS
‘Ol GIDONVHD VY

ATIAILD34SIY MDD LNDGQY 3HL ANV MDD
JVHHDUS 3HL NI §53¥0QY V1vd 3HL

‘@3asN S1 ONISSIIGAY IALLYIR 31

97,00, X’ L+¥OVAI3S"1£0. X

$MID 1335 O NIMOTIOS 3HL

A€.0303D3%d YV SNIVHD MID IV

IWIL 31ND3X3 - SVAAY QIAVHSNN
INIL ATBWISSY - SYIVY QIAVHS

~

3

IS

SIION

AINNNGS

ANMIVA

ON

AdlHIA

ON

ANNNIS

ANNIVA

3
o4
woyy

S3A

NIVHD M2J
QILV¥INID

Ax'ouausjig 1M

O¥OWW

S3IAE ¥OLIID530
DAM Channel Programs with RPS Support (Part 12 of 14)

56 IBM VSE/Advanced Functions

Figure 15,

LIOCS Volume 3 DAM and ISAM

Property of IBM

Licensed Program

HEEHHBEB

N LaVHD
awm | 3zisne.o0.xvasvorsox| 58]
9_;“ 3215016".00. "vauvolso x| ffse] u:" . e
s o] 8 DS | V_..S.x.o__ie_.a(.x [ve]
AN | o xowvanyée x|) 235135 vior ' 1AD3sIn ez x | S
o513 | .on X 1A03sirr e x| [8s] Swaal B0 AT ZEX o]
| s opxct
uuma.“ voox 1AEImzn x| el _< agy, 8407 X vIIVOI T
aay) 8o x'vawvor'so.x | [§ze] QM | IZISHNIE',00.XVIIVOI'S0.X m ot 914 oi] Qum, 3ZISHE00.X'VIIVOL'50.X [56]
o1 s-,.00.x| [8if oLy 874480, X o1 mv.:u.m__ 4,09, x"OuvAIN v X | [Fv9l u:“
mxzu%“ TH.09. X OUVAIN, &2 X RO} INHINS | THON X DUVATIN 2. X [18] INDGY | §409,X' 20101 26X IHHO¥S | T3, 0F X OUVAT N 6V: X
SH o ou " 8-4.80.X m ol e-<eox| [eil out 8-+.00.X | [81]
uixu.m" riorxensawiassieex | eyl IVHHDES | 9,07 XEHIAYHIIS 66X Vi wixuxmu Y.onXEIav A 60X | 12V IVHHONS ¢ vior.xeriaviaasisex | v
23843 ! Lorx‘oadasinez x| o] oIS | L40n X'DADISIFI' £2.X 2 235135 1 40 X LADISIA1'.E2: X o1 ! 1,07 X'OAD3SIH €2 X [
suozxd0tarzex | 34 am " 3ZIs 318,00 X'vauvolso.x | Bse)
3zisg on X vauvol'so.x | - 1] oM eeox | sl
880X m DIHDYS | W09, X OyvAIN v x | fve]
154,09, X OUVA TN & X fvol 235136 1 v iaoasiceax | Jes]
1200 X' LAD3SIF 162X o] " J3asay “ rooxiadsinyezx| fu “
1500 X 1AOBI (125X aigy | $%,02,X'2070128 X qaay gLor.x'vayvor.sox | §Zel QUM) 3ZISHTE'00, X VRIVOL S0 X
800, X vIUVOI" 90, X nukh IZISNE'0F, X' vIUVH u:" s1-00.x (Kol u:" ?1-4'80X
84180/ X [81] 1Y 8 DIHIES | TH109. X" DUVAIN' 6% X [vs] IAHDES | T3, 07.X OBVAIX' 6¥%i X
V3,09, X OUVAIN' &, X [vo) IS “ Ty, 0r X DuvAIX gy “ $'.0%X'D0aIZ6 X [ve] _aiayi §%09.X°20101". 28 X
PRI o1, 8- ol e-o0x| [aif ou) 880X
IvHHO¥S | .07, X E+IAVAIIS 68 X & IWHHOYS “ 7.0r X'ERIaVNIES IVHHONS | r.or x'evsavassisex | v IVHHDYS | 7107 XE+IQYII 66X
uﬁ_m_ 1,07 X‘0AD351 1)1 £2. X [&) Ummmm“ 10n X'0AD3SI 1,62 X 235135 | 1'.0r X'OADISIF 2 X | 5] memm" 1,07 X'0AD3SI M1, E2, X
NIVHD M2
Q3UVEINID
"AIONIQYOIIV GIONVHD 38 T1IM 5, MDD | | E——
QUM ANV 0aY 3HL ¥04 (BZISNNE) INNOD oN SIA SIA

3LAE IHL ANV SQUO DT LNIWOISILINW 304
Q31JIGOW 38V SNIVHD FHL NI S,:MDD 3HL
“(00 3dAL) SQYODIY INIWOIS TONIS ¥O3
Q3ILVEINIO AT1TVILINI ISOHL FWY SQA0ON

ANNNGS ¥O3 NMOHS SNIVHD MDD 3HL

jewus (i - AINDGY

£457PWONR(L] - JYHHIUS
‘01 GIONVHD WV

ATIALLI34SI MDD LINDGY HL ANV MDD
IVHHOUS 3HL NI $3553¥0AY viva IHL

‘Q3sN §I ONISSIAAAY JALLVIIY dI

9,00, X’ 1+¥A VIS0, X

*MID %335 ONIMOTIOA JHL
A€ 4303338 WV SNIVHD MDD MV

IWIL ANODA - SYRIV QIAVHSNA
JWIL ATIWISSY - SYRIV QIAVHS

<

~

Ny

33IO0N

ENNNGS

ANIVA

ON

AJII3IA °N

ANNN4GS

SIA

ANMIVA

AN ‘swousjid I M

ownww

S3LAE ¥OLdI¥DsIa

(Part 13 of 14)

DAM Channel Programs with RPS Support

15.

Figure

Access Files 57

Direct

- Property of IBM

Licensed Program

X
qum | 3715 110°,00. X’ v3¥VOI'$0.X
M " 8,03, ouous)
2
3a1kous | S0P X E+ AV 23S 1EX
awm ! 8'.09: X' X'wous| 13’60, X
o1 " 8-4,80.X
30IH¥s | SO0 X4 wous 4, 1E, X
oasuzs | 1%, OMXOADISIMT'AEL,X
! 1
[} 1
|
1
nn._“ 87,00, X X" wWous) 3,90, X
oL 8-4180.X
aaiuous | §09, X' 4" wwRuRl 4, 1E,X
235138 | 1,09, X'0AD3SIM",€2.X

(©wIzd avay)

"ATONIQ¥OIDV

GIONVHD 30 TIM S:MDD G¥M ONV QQY JHL
¥04 (AZISHT) INNOD 3LA9 IHL ANV SAIODA
ANIWOISILINW ¥O4 G31IGOW ¥V SNIVHD IHL
NI $:M3D JHL "00 3dAL) SAYODITY INIWOIS
JTONIS 304 QILVAINIO ATTVILINI ISOHL Ry

SAUOD3H ANMNGS ¥O4 NMOHS SNIVHD MDD JHL

9,00, X’ 1+3QVYAIIS"LOX

iMID 2335 ONIMOTNIOL IHL

Af Q303333 VY SNIVHD MOD 1Y °

INIL 3IND3IXI - SYAAY QIAYHSNN
AINIL ATEWISSY - SYINY Q3AVHS

gNEBREHA

L

&

%310N

aax! azsnetoLx‘vavor.sox
ax>a¥ “ 8',04, X" "ououe) 3,3, X
R 8-4/80,X
3a1KOu | $'.07, X C+3QYNIIS" 1EX

3aIMD8S |
i
osa3s |

§'0r X'EAIaVAIN IEX
87,00, X" "o 14,60, X
8-/ 80X
S0P, X" 4 owoue)1 3, 1E, X
L',0P X'0AD3SI M1, €2, X

O 1vHd
T
1
am) 3zswooxvavol'sox| [sel
axm _ Wroax‘ouvaav.aox| [av]
(=Y 8,03, X >eumveiyaLx| Jeof
| oo0x| Fei
3qIHDS | s orx'eqsavaas’ ex | [29
aqum | 8,0n X ooy co.x | | 1]
u:“ oc00x| foul
30IHDS | shorosowovena e | f23)
o35135 | 1%0rx'0A03SI01'.62.% | [ep]
| [I |
] [I |
1 []
1)
aqa | 87,00, X" " 9woue|14°,90, X
u:"
JQIHO¥S | S0, X4 owous 14", 1€, X
35435 | L0r X 0ADTSIM'.E2.X
{0078 avay)
ON

aay T
ol “
IQIHD¥S |
o3su3s |

poLydeds
AN3A

8,00, X" ' owous|1°, 90, X

L'\0r X'0ADTSIF1', £2.X
(0¥37 avay)

SN ABNEREREERBNOA

o] azsywoLxvavorsox

*a¥) 0 X'DUVAINI0.X
ana! 804> oumum 14, 31,
u:“ #2480.X
JaIHO¥S | S OPOCEIQYAIIS' 16X
aau} 9,05, X X"owou 11,90, X
A1
30w | S0n XS

e_!" AZISHIE .00, X VIIVOI', 50, X

[T TH.02, X O¥VAIN' A0 X
aoumi 9,03, X' > *uoury’, L X
i 13
3IHDAS “ S'0r. X'E+4AVIT
s 8100 X 4 oy
M “ 8-4480.X
301K | S0, X' wusouey
oasixs | 100 X'OADISITI 62X

aay " .00, X" X Ouona| 13,90, X
Y]

3aiHws ! OF X4

1
J3513S | 1',0% X'0AD3SI M. €2: X

(©¥328 avaw)
NIVHD 42D
QILV¥INIO

YLV PRI TAIM _

QoW

L= s 7

ORNEARBRRANEBARNBENDNE

53149 JOLH¥SIC

DAM Channel Programs with RPS Support (Part 14 of 14)

Figure 15.

LIOCS Volume 3 DAM and ISAM

58 IBM VSE/Advanced Functions

Licensed Program - Property of IBM

INITIALIZATION AND TERMINATION

When a DASD file is processed by the Direct
Access Method, all extents specified by the
user must be opened before any data is
transferred.

The DAM Open logical transients make all
the extents for the file available for use
by the problem program. To accomplish
this, the open routines check and create
standard DASD labels or, in the case of
nonstandard labels, pass control to the
user for label processing.

To open a file, the open routines use
label information supplied by the user in
job control statements and stored in the
label information area. This information
is used either to check or create the
actual file labels in the VTOC (Volume
Table of Contents) on the DASD volume
containing the file.
Functions DASD Labels for details of the
label information area and the standard
DASD file labels processed by logical I0CS.

Close is required for DASD files .
processed by the Direct Access Method to
invoke a FREEVIS for the DTFDA extension
and handle the user standard trailer labels
if specified.

DAM OPEN CHART 01

For input files, the volume and format-1
labels are checked against the SYSRES label
information supplied by the user's /7 DLBL
job control card. User labels are then
processed, providing that LABADDR=address
has been specified in the DTFDA macro
defining the file. Finally, EXTENT
information is passed to the user for
checking and/or processing (see Figure 16).

Byte 0O

Byte 1

Bytes 2 to 5
Bytes 6 to 9
Bytes 10, 11
Byte 12

Byte 13

Extent Type

Extent Sequence Number

Extent Lower Limit

Extent Upper Limit
Symbolic Unit

0 for disk

0 for disk

Format of Extent Information to
User

Figure 16.

For output files, extents are checked to
ensure that they do not overlap the VTOC or

other extents. Labels are created and
written in the VTOC, and user labels are
processed, if required.

Refer to VSE/Advanced Functions
Diagnosis Reference: LIOCS Volume 4 for

detailed descriptions of common DASD
¥9Ttines that open direct access method
iles.

Relative Addressing

Refer to VSE/Advanced

ative addressing is specified for a

e open routines convert extent

ion supplied as actual physical

resses into a relative addressing
The converted extent information

d at the end of the DTF table, in a
SKXTNT) at location &Filename.P+48.
ytes preceding the DSKXTNT table

device—-dependent alteration factors

d

d

i

io

IJMT ITWV-Hh—MD
Mme—~—Tt —~N3IOTO0MI
Qo rtm

Q.f"’:'l—'

IO A YU +—=MrtYy

each) used to convert the extent
resses. The format of the DSKXTNT
the location of the alteration

s illustrated in Figure 17. The

n factors are summarized in Figure

Y At~ ~O At =T = HE
O—YY-DOTUWNO BT =T

e O T3

Actual C1, C2, H1, H2 address Alteration factor for C1

Alteration factor for C2 Alteration factor for H1

First Extent Xq=Vy-Ly#+1 Ly

Second Extent | Xo= Xy +{Vy-Lp+1) L
27" 272 2

Third Extent [X3=X5+(V3-L3+1) L3

Last Extent Xn*Xn1t{Vo-Lat1) Ln

End of Table X'FF* | X'FF* I ,
\-—\/—/“ """“_—\/-—/

TTT2 M 82 haasl

TTT1, L

relative track number of the
extent lower limit; that is, the
number of tracks from cylinder 0,
track 0 to the lower limit of the
corresponding extent. (3 bytes)

TTT2

cumulative total tracks in
current extent plus previous
extents in the table. (3 bytes)

B2 = 0 for a disk device. (1 byte)

symbolic unit number, incremented
by 1 for each new symbolic unit.
(1 byte)

v = number of tracks from cylinder 0,
track 0 to the upper limit of
corresponding extent.

DSKXTNT Table for Relative
Addressing

Figure 17.

Direct Access Files 59

Licensed Program - Property of IBM

Factor ! 2311 ! 231472319 ! 3330 ! 3340 ! 3350 ! 3375

c1 ! 1| 1 ! 4864 ' 3072 I 7680 | 3072

c2 { 10 | 20 | 19 | 12 | 30 ! 12

H1l | 1 I 1 I 1 I 1 I 1 | 1
Figure 18. Alteration Factors for Relative Addressing
An actual physical extent address is value obtained is the L (or TTT1l) value and
converted to a relative address in the is stored in the DSKXTNT table (see Figure
following manner. Each of the four bytes 17).
(CCHH) of the actual address are handled
separately and are referred to as Cl, C2, If the conversion is performed for the
H1, and H2. Starting with Cl, the first upper limit address of the extent, the

three bytes of the actual address are
multiplied, one at a time, by the
respective device-dependent alteration

factor (see Figure 18). The result of each

multiply operation is added into an
accumulating register. To complete the
conversion, H2 is added to the accumula
result. If the conversion is performed
the lower limit address of the extent,

ted
on
the

converted value is increased by 1 and TTT1l
is subtracted from the result. The value
obtained from this calculation is the total
number of tracks included in the extent.
The total number of tracks in the extent is
then added to the total number of tracks of
all previous entries to obtain the TTTZ2
value for the current extent entry in the
DSKXTNT table (see Figure 17).

60 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

Chart 01. DAM Open

From Open Monitor
$$BOPEN1

$$BOSFBL *
1. Links the LTA to

the OPEN/CLOSE
SVA Phase.

R

$1JJGTOP *

1. Builds and verifies
extents in the
VTOC.

2, Handies the extent
exit/user label
interfaces.

!

$$BOSVLT *

1. Links the SVA Phase|
back to the LTA.

SVC2 FETCH
$$BOPEN

* Documented in VSE/Advanced Functions Diagnosis
Reference LIOCS Volume 4 SAM for DASD.

Direct Access Files 61

Licensed Program - Property of IBM

DAM CLOSE

$$BOgACL: DA Close, Inputs/Qutput, Charts

CA-C
Objective: To read or write standard user
trailer labels, and to test for track hold.

Entry: From the Close Monitor or from a
message Wwriter phase.

Exit: To the Close Monitor, $$BCLOSE; to
$$BOMSGl if a message is required; or to
$$B0OSDC2 to free any tracks.

Method: For input files, phase $$BODACL
initializes the search CCHW with a key
argument of the_first standard user trailer
label (UTLO). The label is read and

control is passed to the user's label
routine. Processing of standard user
trailer labels contirues until either the

maximum number of trailer labels are read
(8 for disk devices), or a file mark (a UTL
with a data length of 0) is read. Control
then returns to the Close Monitor.

For output files, phase $$BODACL
initializes the search CCHW with a key
argument of UTLO, the end-of-file mark
written after the last UHL. When the UTLO
label is found, control passes to the
user's label routine. Control returns to
SBODACL to write the standard user trailer
label on the user's label track. The first
standard user trailer label written is
identified by UTLO and is written over the
end-of-file mark previously identified by
UTLO. A new end-of-file mark (a standard
user trailer label with a data length of 0)
is written and the Close Monitor is fetched
after all standard user trailer labels are
processed. The maximum number of standard
user trailer labels permitted (excluding
ghe.end-of—file mark), is 8 for a disk

evice.

62 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

9

Licensed Program - Property of IBM

INDEXED SEQUENTIAL ACCESS METHOD

The indexed sequential access method (ISAM)
permits processing DASD records in both
random and/or sequential order by control
information. For random processing, the
user supplies the control information
(record key) of the desired record to ISAM,
and then issues READ or WRITE macro
instructions to transfer the specified
record. For sequential processing, the
user specifies the first record to be
processed, and then issues GET and/or PUT
macro instructions to retrieve or insert
records in sequential order by record key.
Variations in macro instructions permit:

e A logical file of records to be loaded
onto DASD (created).

. Individual records to be read from,
added to, or updated in the file.

RECORD TYPES

(control
logical record

information) of the highest (last)
in the block is stored i

the key area of the block.

STORAGE AREAS

1/0

An I/0 area must be specified for each ISAM
file to be processed in a problem program.

This I1/0 area must be defined to contain

Areas

sufficient space for the data area.
unblocked records are to be retrieved

sequentially or records are to be loaded or
ed, space for a key field
Space for the count area must be provided
is being loaded or additions

add

when the file
to the file are being made.

sequence-link field

additions are to be made to the file or
when records are retrieved from a file.

is required when

The sequence-link field is used for

Logical records in an ISAM-organized file overflow records (refer to the section
must be fixed-length records either blocked Records to a File™).
or unblocked. Each physical record in the
file must contain a key area. If the Figure 19 shows the ISAM I/0 area
records are blocked, the record key requirements.
Sequence
Function Count Key Link Data
Load - Unblocked Records 8 Key Length - Record Length
Load - Blocked Records 8 Key Length -- Record Length X Blocking
Factor
Add - Unblocked Records 8 Key Length 10 Record Length
Add - Blocked Records 8 Key Length -- Record Length X Blocking
Factor
or
8 Key Length 10 Record Length
Random Retrieve - Unblocked - - 10 Record Length
Records
Sequential Retrieve - - Key Length 10 Record Length
Unblocked Records
Random or Sequential Retrieve - - — -— Record Length (Including
Blocked Records Keys) X Blocking Factor
or*
- | - | 10 Record Length
* Whichever is larger.
Figure 19. ISAM I/0 Area Requirements (in bytes)

Indexed Sequential Access Method 63

is required.

Space for a

Licensed Program -

Property of IBM

2311/2314/2319/3330/3340 Disk

The format of the sequence - link field of an overflow record or the index~ level pointer is MBBCCHHRFP:

M = Extent Sequence Number
BB =00

CC = Cylinder Number

HH = Heod (Track) Number

R = Record Number

P = Pointer type. See Note 2.

F = (ccceciii) Entry Type and Index Level. See Note 1.

Note 1: F = ccceciii

Entry Type (cccce)

Index Level (iii)

DASD Address Information

00000 ~ Normal Entry (Unshared Track)

000 ~ Track Index
001 = Cylinder Index
010 - Master Index

00001 - Normal Entry (Shared Track)

000 ~ Track Index

R =N (Points to First Data Record on the Track)

00010 - Overflow Entry (End)

000 =~ Track Index or Sequence=- Link Field

R =255

00011 - Overflow Entry (Chained)

000 - Track Index or Sequence - Link Field

R =N (Actual Record Address)

00100 - Dummy Entry (End)

000 - Track Index
001 - Cylinder Index
010 = Master Index

M through R =0

00101 = Dummy Entry (Chained)

001 - Cylinder Index
010 - Master Index

M through H Points to First Track on Next Cylinder, R =0

00110 - Inactive Entry 000 - Track Index M through R =0
001 - Cylinder Index
010 - Master Index
Note 2:
P = Seek Op- Code
Seek Op=- Code Meaning Index Level
18 Entry Points to Cylinder Index Track on Same Cylinder Master Index
0B Entry Points to Cylinder Index Track on Different Cylinder Master Index
07 Entry Points to Track Index Cylinder Index
18 Normal Entry (Shared or Unshared) Track Index
07 Overflow Entry (End) Track Index or Sequence- Link Field
07 Overflow Entry (Chained) Track Index or Sequence - Link Field
07 Dummy Entry (End) Master, Cylinder and Track Indexes
07 Dummy Entry (Chained) Master and Cylinder Indexes
07 Inactive Entry Master, Cylinder and Track Indexes

Figure 20.

LOAD: To create or extend a disk file of

blocked or unblocked records. S
must be defined with enough capacity for an

This area

Format of Sequence-Link Field/Index Level Pointer

8-byte count field, a
field (key area)l), and

66 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

control
the data record

informa

tio
(s)

n

C

C

C

Licensed Program - Property of IBM

ADD, UNBLOCKED RECORDS: The output area for
adding unblocked records to an ISAM
organized file must be defined with enough
capacity for an 8-byte count field, a
control information field (key area), and a
data record area. The data record area .
must have space for a 10-byte sequence-link
field that is used in conjunction with
overflow records (refer to the section "Add
Records to a File™). The sequence-link
field is required when a record is written
on an overflow track. ISAM determines the
correct sequence link and stores this
information at the beginning of the data
section of the I/0 area. When the
sequence-link field is not used, the ten
unused bytes fall at the end of the data
section and are ignored. Figure 20 shous
¥helgormat of the 10-byte sequence-link
ie

ADD, BLOCKED RECORDS: The output area for
adding blocked records to an S
organized file must contain enough space
for an 8-byte count field, a control
information field (key area) and a data
section large enough to contain the block
of logical records. The minimum size for
the data section is one logical record plus
10 bytes to be used for a sequence-link
field when required.

SEQUENTIAL RETRIEVE, UNBLOCKED RECORDS: The
input area for reading unblocked records
must contain sufficient capacity for a key
area and a data area. The data area must
include enough space for the logical record
plus 10 bytes for the sequence-link field
of overflow records. If a record does not
have a sequence-link field, the extra 10

bytes in the I/0 area fall at the end of
the data section and are ignored by the
program.

RANDOM RETRIEVE, UNBLOCKED RECORDS: The
input area for reading unblocked records
must contain space for a data area. The
data area must include enough space for the
logical record plus 10 bytes for the
sequence-link field of an overflow record.
If a record does not have a sequence-link
field, the extra 10 bytes in the I/0 area
fall at the end of the data section and are
ignored by the program.

RETRIEVE, BLOCKED EEQQRDS: The input area
for reading blocked records must contain
space for a data area. The data area must
be large enough to contain a full block of
records. The minimum size of the data area
is one logical record plus 10 bytes for the
sequence-link field used with overflow
records.

When blocked or unblocked records are to
be retrieved and processed directly in the
1/0 area, a register must be specified.
This register is used for indexing, to
point to the beginning of each logical
record when it is needed for processing.

Indexed

Work Areas

When a work area is specified on input,
ISAM moves each record from the I/0 area to
the work area. The problem program can
then process the record in the work area.
When a work area is specified on output,
ISAM moves the record from the work area to
the I/0 area in preparation for
transferring the record to DASD storage.
If a work area is specified, an
register is not required. Figure 21 shous
the ISAM work area requirements.
Unblocked Blocked
Records Records
Load KL+DL or 10% DL or 10%
Add KL+DL or 10% DL or
(KL+10)*
Random DL DL
Retrieve
Sequential KL+DL DL
Retrieve
Where: K = Key
D = Data
L = Length
*¥ Whichever is larger.

ISAM Work Area Requirements (in
Bytes)

Figure 21.

OVERFLOW AREAS

The location of the overflow area(s) for a
logical file may be specified by the user.
The overflow areas may be built by one of
three methods:

1. Overflow areas for records may be
located on each cylinder within the
prime data area that is specified by a
job control extent card for the data
file. 1In this case, the user must
specify the number of tracks to be
reserved for overflow on each cylinder
occupied by the file. The overflow
records that occur within a particular
cylinder are written in the cylinder
overflow area for that cylinder. The
number of tracks to be reserved for
each cylinder overflow area must be
specified in the DTFIS entry CYLOFL
when a file of records is to be loaded
and when records are to be added to an
organized file.

Sequential Access Method 65

Licensed Program - Property of IBM

2. An independent overflow area may be
specified for storing all overflow
records for the logical file. In this
case, a job control EXTENT card must be
included when the program is executed
to specify the area of the volume to be
used for the overflow area. This area
may be on the same volume with the data
records, or on a different volume that
is online. However, it must be
contained within one volume. (It must
be the same kind of device as that
containing the prime data area.)

3. Cylinder overflow areas (method 1) and
an independent overflow area (method 2)
may be used in combination. In this
case, overflow records are placed first
in the cylinder overflow areas within
the data file. MWhen any cylinder
overflow area becomes filled, the
additional overflow records from that
cylinder are written in the independent
overflow area. The specifications
required for both methods 1 and 2 must
be included for this combined method of
handling overflous.

All records placed

in the overflow area
will be in the unblgc e
a

ked format and will
have a sequence-link field prefixed to each
record. There must always be one prime
data track available (for a DASD record
that has a data length of 0) when additions
are being made to the last track in the
prime data area containing records. The
format of the overflow area upper limits
(MBBCCHHR) is shown in Figure 29.

INDEXES

As ISAM loads the records, it creates a set
of two or three indexes to be used to
control the processing and location of the
data records. Two indexes, the track index
and the cylinder index, are always built
for each file. The third, a master index,
is built only when specified by the user,.

A master index should be specified only for
large files. As a guideline, if a cylinder
index occupies less than five tracks, it is
usually faster to search only the cylinder
index (followed by a search on the track
index) than to search also a master index.

Indexes are developed as a series of
entries, each including the address of a
DASD track and the highest (last) record
key on that track or cylinder. Each entry
is a separate DASD record composed of a key
area and a data area. The key area
contains the highest key on the track or
cylinder, and its length (number of bytes)
is the same as the key—-area length
specified by the user for the data records.
The data area of each index record is 10

bytes in size and contains the physical
address of the logical record or of another
index. Figure 20 shows the format of the
10-b¥te index level pointer (index data
area).

Jrack Index (TI)

The lowest level index for logical file is
the track index, This index has two
important functions.

* Point to the correct track in the
ﬁylinder that contains the specified
ey.

* Provide direct linkage to the record
overflow areas.

Each track index is built on the cylinder
that it is indexing. The track index is
located on the first track of each
cylinder. The index can occupy a partial
track, a full track, or more than one
track. If the track index does not fill a
track and if the remaining portion is large
enough to hold any prime data records, then
prime data records are stored on the
remaining portion of the track.

The track index can contain the
following types of entries:)
Normal Entry - Unshared
Normal Entry -~ Shared
Overflow Entry - Chained
Overflow Entry - End
Dummy Entry - End
Inactive Entry.

When first created, the track index is
formatted with two entries for each track
used on the cylinder. These two entries
are the normal entry and the overflow
entry. Each entry is a DASD record
containing a key area and a data area.
Figure 22 is an example of a track index
built for the prime data area of a logical
file utilizing eight tracks on a cylinder.

The normal entry is the first of the two
entries. After a track is loaded with
records for a file, this entry has in its
data area the address of the track
referenced by the entry. The key of the
last record on the track is maintained in
the key area of the normal entry. The key
area is changed each time a record is added
to the track, so that it always reflects
the key of the last record on the track.
(Refer to the section "Add Records to a
File".) When the first track containing
prime data records is shared with the last
or only track of the track index, the data
area of the track index normal entry is
modified to indicate a shared entry.

66 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

J

<9

Licensed Program

Property of IBM

TRACK INDEX
COCR Key Track 1 Key Track 1 Key Track 2 Key Track 2
75 Address 7 Address 150 Address 150 Address
D K D D K D K D
Key Track 3 Key Track3 | _ _ _ _ _ _ _ _ Keay Track 8 Key Track 8
240 Address 240 Address 980 Address 980 Address
K D K D K D K D
Al
1-Bi
K D
Dummy Entry
K =Key Area
D = Data Area

COCR = Cylinder Overflow Control Record (RO)

Figure 22.

The overflow entry is used both in the
track index and in the sequence-link field
of an overflow record. Refer to the
section "Add Records to a File"™ for a
description of the overflow entry in the
sequence=-link field. The overflow entry
required for handling overflow chaining
when additional records are inserted into
the file. Before a record is added to a
track, the track index overflow entry for
that track is similar to the normal entry
in that they both contain the key of the
last record on the track and the address of
the track. Note that, at this point, the
last record on the track is the last record
placed on the track when the file was
originally loaded. MWith overflow records,
the data area of the overflow entry is
changed to reflect the address of the
lowest record in the overflow chain. An
overflow chain is developed for each track.
The key area of the overflow entry is not
changed, but always contains the key of the
highest record, because records added to a
track always have keys lower than the
highest key originally loaded onto the

is

track. The technique used to add records
ingipiained in the section "Add Records to
a File"™.

The two types of overflow entries in the
track index are overflow chained entries
and overflow end entries (see Figure 20).
The data field of the track index overflow
entry is initially set to indicate an
overflow end entry. If an overflow chain
is later built, the overflow end entry
indicates the last overflow record in the
chain. An overflow chained entry is built
to indicate an overflow chain exists. The
data field of an overflow chained entry
contains a pointer to the lowest record
the overflow chain.

in

Indexed Sequential Access Method

Schematic Example of a Track Index

The last entry on a track index is
always a dummy end entry. The dummy end
entry indicates the end of the track index
and indicates that any following records
are logical file data records.

is the
is

the dummy record
user's key length and
The data field is the
normal entries but is a

The key area of
same length as the
filled with X'F's,
same length as the
null field.

Inactive track index entries are built
during the load operation. For a 2311 DASD
device type, inactive entries are written
for the unused portion of the prime data
extent. For all other DASD device types,
inactive entries are written only for the
unused portion of the last cylinder
containing prime data records. The key
area of inactive entry is filled with X'F's
and is the same length as the user's key
length. The data field is the same length
as the normal entry. See Figure 20 for the
format of the track index data area
entries.

When the cylinder overflow option is
specified by the user, record zero (track
descriptor record) of track zero in the
track index is used as a Cylinder Overflow
Control Record (COCR). This entry is set
up in the data area of record zero (R0O).
The address of the last overflow record on
the cylinder and the number of tracks
remaining in the cylinder overflow area are
maintained by ISAM in this record. The
format of the COCR is HHROOTO0O0, where HHR =
Address of last overflow record on
cylinder. T = Number of tracks remaining
in the cylinder overflow area. The COCR
format is shown in Figure 23.

67

Licensed Program - Property of IBM

A T T T
H H R B B T (4] [+]
Number of Bytes Number of
g;‘frr:ln::im‘rd Remaining on Track Track Remaining Reserved
; eco {Zero for Fixed In Cylinder
on Cylinder Length Record) Overflow Area
L - i L
Figure 23. Cylinder Overflow Control Record (COCR)
CYLINDER INDEX
i li 2 Cylinder 9
Ke Cylinder 1 Key Cylinder2 | ~ _ _ _ _ Key Track 1
a8 Track 1 1850 Track 1 4730 r
i Address Address Address
K D D K D
All
1-Bits
K D
Dummy Entry
K = Key Area

D = Data Area

Figure 24. Schematic Example of a Cylinder Index

Cvlinder Index (CI)

The cylinder index is present for all
ISAM-organized files. It is an
intermediate level index used to point to
the correct track index.

The cylinder index can contain the
following types of entries:

* Normal Entry

. Dummy Entry - Chained

¢ Dummy Entry - End

. Inactive Entry.

A cylinder index is built by ISAM to

contain one index entry for each cylin
in the prime data area of the file. T
entry contains the highest record key
associated (in the cylinder or a
corresponding overflow area) with the
cylinder, and the address of the track
index for that cylinder. Figure 24 is an
example of a cylinder index built for a
file requiring nine cylinders. The
cylinder index can be located wherever the
user chooses except on one of the cylinders
that contain data records for the file. It
must be on a separate cylinder or it can be
placed on a separate volume that will be
online whenever the logical file is
processed. The cylinder index can also be
located on one or more successive
cylinders. When more than one cylinder is
required, the last entry on each cylinder

der
his

is a dummy chained entry that points to the
first track of the next cylinder. However,
the cylinder index cannot be continued from
one volume to another. A job control
EXTENT card must be used to specify the
correct location for this index.

The last entry in the cylinder index is
a dummy end entry. The key of the dummy
entry is the same length as the user's key
length and contains bytes of all one-bits.
The data field is of the same length as the
normal entries, but is a null field.

Inactive cylinder index entries have the
same format as the track index inactive
entries. They are written to provide for
future expansion of the file and for 0S/VS1
and 0S/VS2 compatibility. An inactive
cylinder index entry is written for each
track in the cylinder containing track
index inactive entries. See Figure 20 for
th% format of the cylinder index data area
entries.

Master Index (MI)

The master index is the highest level index
for a logical file built by ISAM. This
index is optional; and if required, must be
;g$§§gled by the user in the DTFIS entry

68 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

2

Licensed Program -

MASTER INDEX

Track X + 3
Address

Track X + 2 Key
Address 12750

Key Track X +1 Key
4730 Address 8660

K D K D] K

Al
1-Bits

K D
Dummy Entry

K = Key Area
D = Data Area

Figure 25. Schematic Example of a Master

The master index can contain the
following types of entries:

e Normal Entry
e Dummy Entry - Chained
¢ Dummy Entry - End

Inactive Entry.

The master index must immediately precede
the cylinder index on a volume, and it may
be located on one or more successive
cylinders. Whenever it is continued from
one cylinder to another, the last index
entry on the first cylinder contains a
linkage field that points to the first
track of the next cylinder. This type of
entry is a dummy chained entry. A master
index may not be continued from one volume
to another. It must be completely
contained within one volume. The last
track assigned to the master index area
must be contiguous to the first track of
the cylinder index area. A job control
EXTENT card must be used to specify the
correct location. Like the cylinder index,
it can be located on the same volume with
the data records or on a different volume
that will be online whenever the records
are processed.

The entries in this index point to each
track of the cylinder index. Each entry
contains the highest record key on the
cylinder index track and the address of

that track. For example, if a master index
is located on track x and a cylinder index
is located on tracks x+1 through x+20, the

master
shown

index might contain the entries
in Figure 25.

The last entry on the master index is a
dummy end entry. The key of the dummy end

entry is the same length as the user's key
length and is filled with X'F's, The data
field is of the same length as the normal

entries, but is a null field.

Inactive master index entries have the
same format as the track index inactive
entries. They are written to provide for
future expansion of the file and for 0S/VS
compatibility. An inactive entry is
written for each track of the cylinder

Property of IBM

___________ Key Track X + 20
85610 Address
D K

Index

index containing inactive entries. See
Figure 20 for the format of the master
index data area entries.

FUNCTIONS PERFORMED BY ISAM

ISAM performs the following four basic
{gggﬁions as specified in the DTFIS entry,
T:

. LOAD. To build a logical file on DASD
or to extend a file beyond the highest
record presently in an organized file.

e ADD. To insert new records
organized file.

e RETRVE. To retrieve records from a file
for either random or sequential
processing and/or updating.

e ADDRTR. Both to insert new records into
a file (ADD) and to retrieve records for
processing and/or updating (RTR).

into an

LOAD OR EXTEND A DASD FILE

Data records to be loaded onto a DASD file
must be sorted into sequence by record key,
before being presented to the ISAM load
routines.

The data records are written by ISAM
onto a DASD track in an area of the file
(called the prime data area) specified by
the user. The position of each logical
record is a function of the record key used
in the presort operation. That is, each
record is written one after the other onto
the prime data area of he logical file.
The user must specify one extent for the
prime data area on one pack. If a file is
to be loaded onto more than one pack, the
prime data area must continue from the last
track of one pack to the first track of
another pack. Extents must be adjacent.
The starting and ending limits of the prime
data area are specified by the user in job
control EXTENT cards.

Indexed Sequential Access Method 69

Licensed Program - Property of IBM

In addition, all packs to be used for a
multipack file must be online throughout
the load operation.

ADD RECORDS TO A FILE

After a logical file has been organized on
DASD, it may subsequently become necessary
to add records to the file. These records
may contain keys that are above the highest
key presently in the file and, thus,
constitute an extension of the file. They
may also contain keys that fall between or
below keys already in the file and
therefore require insertion in the proper
sequence in the organized file.

If all records to be added have keys
that are higher than the highest key in the
organized file, the upper limit of the
prime data area of the file can be adjusted
(if necessary) by the specification in a
job control EXTENT card, and the new
records can be added by presorting them and

loading them into the file No overflow
area is required. The file is merely
extended further on the volume. However,

new records can be batched with the normal
additions and added to the end of the file.

If records must be inserted among those
already organized, an overflow area is
required. ISAM uses the overflow area to
permit the insertion of records without
necessitating a complete reorganization of
the established file. The fast random and
sequential retrieval of records is
maintained by inserting references to the
overflow chains in the track indexes, and
by using a chaining technique in the
overflow records. For chaining, a
sequence-link field is prefixed to the
user's data record in the overflow area.
The sequence-link field enables ISAM to
follow a chain of sequential records in a
search for a particular record. This
10-byte sequence-link field has two types
of entries: an overflow chained entry and
an overflow end entry (see Figure 20).

The overflow chained entry contains the
dress of the record in the overflow area
at has the next higher key. The overflow
d entry indicates the end of the chain.

1l records in the overflow area are

blocked, regardless of the specification

n DTFIS RE%E?RM) for the data records in
ile

a
t
e
A
u
(@
the logical

T=J~3 0

To add a record by insertion, ISAM
searches the established indexes first to
determine on which track the record must be
inserted. After the proper track index
entries are located, the point of insertion
can then be determined. The keys of the
last records on the tracks in the
originally organized file determine the
track where an inserted record belongs. A
rﬁcord is always inserted on the track
where:

1. The last key is higher than the
insertion, and

2. The last key of the preceding track is
lower than the insertion.

After the proper track is determined, ISAM
searches the individual records on the
track or overflow area (if necessary} to
find where the record belongs in key order.
This results in either of two conditions:

1. The record falls between two records
presently on the track. ISAM adds the
record by inserting it in the proper
sequence and shifting each succeeding
record one record location higher on
the track, until the end record is
forced off the track. ISAM transfers
the end record to the overflow area,
and prefixes the record (data area)
with a sequence-link field. The first
time a record is inserted on a track,
the sequence-link of the overflow
record indicates that this is the
highest record associated with the
track. Thereafter, the sequence-link
field of each overflow records points
to the next higher record for that
track. ISAM also updates the track
index to reflect this change. The
normal entry for the track has the key
field changed to indicate the new last
record located on the track. The
overflow entry for the track has the
track address (in the data area)
changed to point to the address of the
overflow record.

2. The record falls between the last
record presently on the track and the
last record originally on the track.
Thus, it belongs in the overflow area.
ISAM urites the record in the overflow
area following the last record
previously uwritten. ISAM searches
through the chain of records associated
with the corresponding track for this
record and identifies the sequential
position the record should take. Then
the sequence-link fields of the new
record, and of the record preceding it
by sequential key, are adjusted to
point to the proper records.

RANDOM RECORD RETRIEVAL

Random retrieval from an indexed—-sequential
file is performed by the READ macro
instruction. In response to the READ
instruction, ISAM searches the indexes to
locate the track containing the desired
record and then searches the track for the
record. The block containing the record is
read and the record is made available for
processing. For both blocked and unblocked
files, only the data portion of the record
is read; the key field is not read.

70 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

After record processing has been
completed, a WRITE macro instruction can be
issued to write the record back in its
original location. To allow overlap of
input and output operations with .
processing, READ and WRITE do not wait for
completion of the operations, but return
control to the problem program. The WAITF
macro instruction is used at the point in
the program where processing must be held
up until the I/0 operation is complete.

SEQUENTIAL RECORD RETRIEVAL

Sequential retrieval from an
indexed-sequential file begins at a
location or record specified in a SETL
macro instruction. Input blocks are read
and each record is presented in sequence in
response to the GET macro instruction.

When necessary, ISAM reads those records
from the overflow area that were displaced
from the prime data area by added records.
The track index overflow entry is used to
dicate when this is necessary. The key
eld of unblocked records is read along

th the data field. With blocked records,
wever, the key of the block (repeated in
e last record of the block) is not read.

After record processing has been
completed, a PUT can be issued to write the
record back into its original location. If
the file is blocked, the entire block is
written back after either all records in
the block have been processed and a GET is
issued for the first record in the next
block or an ESETL macro instruction is
issued. The PUT macro instruction does not
have to be issued for records that have not
been changed; a series of GETs can be
issued with no intervening PUT. The entire
block is written back into the file if, and
only if, a PUT is issued for any record in
the block.

Once a SETL macro instruction has been
issued, GET and PUT are the only I/0
operations that can be performed before
issuing an ESETL macro instruction. For
example, if a WRITE is to be issued to add
a record to a file that is being processed
sequentially, it must be preceded by an
ESETL. After adding the new record, the
SETL macro instruction can be reissued,
specifying the last record processed as the
new starting point.

ROTATIONAL POSITION N (RP PPORT
RPS is supported in ISAM for all channel
programs built by ISMOD. This includes

Indexed

channel programs for all index levels and
for both prime and overflow data. The
support is provided for LOAD, ADD, and both
SEQUENTIAL and RANDOM RETRIEVE modes.

RPS support is provided in LIOCS by
dynamically extending the user DTFIS into
the virtual area within the user's
partition, and by linking the user DTFIS to
an RPS version of the logic module in the
SVA (Shared Virtual Area). The user must
provide sufficient dynamically allocatable
space in his partition for the RPS DTFIS
extensions, and sufficient space in the SVA
to contain the required RPS versions of the
logic modules.

The RPS versions of the logic modules in
the SVA are reenterable and therefore
sharable between partitions. If the
linkage to the original module is already
coded read-only, the user-supplied save
area is not used.

The RPS versions of the logic modules in
the SVA are supersets of the functions
needed to process the DTFIS being opened.
Supersetting of RPS and non-RPS logic
modules is not supported.

DTFISs in real partitions or partitions
with insufficient allocatable virtual
storage are opened without RPS support. If
either the device or the system does not
support RPS, the DTFIS is opened without
RPS support.

The CCB CCW address and the module
linkage fields in each DTFIS are modified
to point to the DTFIS extension and the RPS
version of the logic module in the SVA.

Each DTFIS has three RPS indicators set on
by OPEN. The first (byte 65, bit 4)
indicates that the device containing the
prime data being accessed is an RPS device;
the second (byte 65, bit 5) indicates that
the DTFIS has been extended into partition

virtual space; the third (byte 65, bit 7)
indicates that the device containing the
index being accessed is an RPS device.

The RPS DTFIS extension(see Figure 26)
contains CCW build and work areas necessary
to construct RPS channel programs. In
addition, the extension contains:

* A save area to force reentrancy on all
imperative macro calls to the
versions of the logic modules.

] Information necessary to reestablish the
original DTFIS at close time.

e The RPS error exit routine.

t

The RPS error exit routine reestablishes
addressability to the RPS DTFIS extension
ISAM module.

and passes control to the

Sequential Access Method 71

Licensed Program - Property of IBM

This routine gains control when the user
returns to the ISAM module via the error
exit path.

The original DTFIS is used for all
fields except the channel program building
areas.

Displace-

ment Bytes Contents

—
n
H

CCW build area

RPS sector arguments
RPS work area

Pointer to RPS error exit
routine A

Saved ISMOD register 14
at error exit time
Saved user register 13
Saved original CCHW
address

Saved original module
address

User register save area
RPS error exit routine
Unused area in DTFIS
extension

[
i

N — [l B R e p Sy o)
oIl 0 NN O D p
ooy O o 00 pOIDO
SN0 22 DD

op~

Figure 26. DTFIS Extension for RPS

Note: For an explanation of the Rotational
Position Sensing (RPS) feature, refer to
the appropriate hardware manual for the
device type being used.

DTFIS MACRO

Before an indexed sequential file can be
processed, it must be defined by the DTFIS
declarative macro. Some of the fields
within the DTFIS table generated from this
macro instruction are not determined or
filled in until the file is opened during
execution of the program. Many of the
fields in the table are retained with the
file in the DASD format—-2 label.

In addition to the parameters that
describe the file to be processed, the
DTFIS macro instruction includes certain
parameters identical to those in the ISMOD
macro instruction.

The following five DTF tables a

re
generated according to function. They are:

DTFIS LOAD (see Figure 27)

DTFIS ADD (see Figure 28)

DTFIS RETRVE, RANDOM (see Figure 31)
DTFIS RETRVE, SEQNTL (see Figure 32)
DTFIS ADDRTR (see Figure 33)

In addition, the DTF tables for ADD,
RETRVE, and ADDRTR are divided into the
three parts that appear in the assembly
listing. The first part of the DTF table
is common to the ADD, RETRVE and ADDRTR
functions. The rest of the table is

variable and is generated according to the
options specified in the DTFIS detail
entries.

For a description of the DTFIS header
entry and detail entries refer to
VSEsAdvanced Functions Macro Reference.

Note: The DTFIS may be altered when used by
any of the compilers. For further
information, refer to the Programmer's
Guide for the appropriate compiler.

72 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly
Label

Module
DSECT Label

Bytes

Bits

Function

&Filename

&Filename.C

IJHKCCB

IJHKOPCO

IJHKPDDV

IJHKCCOD

0-15
(0-F)

16 (10)

17-19

(11-13)
20 (14)
21 (15)

22-28
(16-1C)

29 (1D)

30 (1E)

N PUIN

N PUINFO

H WhN—- O

~Nou

Command Control Block (CCB).

open ignore option.

o o
net il et

L
gable address constants relocated by

o
" et
c
tn
m
Q.

Data set security.
Wrong block size error during file
extension.

ez RZeZ

Address of logic module.

File type for OPEN/CLOSE (X'24' = LOAD).

Option byte.
Not used.
Not used.
1 = Cylinder overflow option.
Not used.
1 = Blocked records (used by previous
versions).
= Verify.
Not used.
= Two I/0 areas present.

File name.

type indicator.

o

“« e aaeey
[e=J oo Jow J oo Y om ¥ o Y
+ >VOOH~O3T
WHWWNIN A
WOWHWUWWWY

“ e e

wuwuwuwnona

us byte.

Uncorrectable DASD error (except WLR
e

W

t
ny

rror).

LR error.
Prime data area full.
Cylinder index area not large enough to
reference prime data area. Set on only
if error detected at SETFL time.
Master index not large enough to
reference prime data area. Set on only
if error detected at SETFL time.
Duplicate record.
Sequence error.
No EOF record written in prime data
area.

PO XXXXXXKT

—
n wnn

= s
naun

Figuro 27. DTFIS LOAD Table (Part 1 of 5)

Indexed Sequential Access Method 73

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
IJHKHNDV 31 (1F) High level index device type indicator.

X'00' = 2311

X*'0l' = 2314/2319

XTp046' = 3330

X'08' = 3340 general

X'09' = 3340 35MB

X'0A' = 3340 70MB.

32 (20) Relative position of the DSKXTN (logical
unit, cell number) table (in words). This
galze is the length of the DTF table divided

y 4.

33-34 First prime data track in cylinder (HH).

(21-22)

35 (23) First prime data record in cylinder (R).

36-37 Last prime data track in cylinder (HH).

(26-25)

38 (26) High record on master index/cylinder index
track (R).

IJHKNRPD 39 (27) High record on prime data track (R).
G0 (28) High record on overflow track (R).
IJHKNRSH 1 (29) High record on last track index track in
cylinder (whether shared or unshared).
IJHKNRTI 42 (2A) High record on track index track other than
last in cylinder. If only one track index
track in cylinder, it is equal to Byte 41.
IJHKFLAG 43 (2B) Condition Code.
0 1 = WLR checks requested (for extension).
1 1 = First record in file.
2 1l = Prime data extent full.
3 1 = Master index/cylinder index extent too
small.
4 1 = Prime data upper limit has been
increased (for extension).
5 1 = Extension.
6-7 Not used.

464-50 Prime data lower limit (MBBCCHH).

(2C-32)

?é-Sgg) Cylinder index lower limit (MBBCCHH).

3_

58-64 Master index lower limit (MBBCCHH}.

(3A-40)

65 (41) Switches.

0-3 Not used.

4 1 = RPS type device (data).
5 1 = RPS type DTF.

6 1 = Master index.

7 1 = RPS type device (index).

Figure 27. DTFIS LOAD Table

(Part 2 of 5)

76 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly Module . .
Label DSECT Label Bytes Bits Function
&Filename.H IJHKLPDR 66-73 Address of last prime data record
(42-49) (MBBCCHHR) .
IJHKLGLN 74-75 Logical record length.
(4A-4B)
76-77 Key length.
(4C-4D)
IJHKBKLN 78-79 Block length (logical record length times
(4E-4F) number of records).
30-81 Overflow record length (logical record
(50-51) length +10).
IJHKNRCD ?g;&gs) Blocking factor (number of logical records).
84-85 Index entry length (key length +10).
(54-55)
86-87 Prime data record length (key length +
(56-57) physical record length).
88-89 Overflow record length w1th key (key length
(58-59) + logical record length + 10)
930-91 Prime data record format length (key length
(5A-5B) + physical record length + 8).
92-93 Overflow record format length (key length +
(5€C-5D) logical record length + 18).
94-95 Key location (in blocked records).
(5E-5F)
This is the end of the common DTF area. The format of the remainder of the_ table
is variable and is generated according to the parameters specified in the DTFIS

macro instruction.

&Filename.S IJHKSBKT (28—%9? Seek/Search address area (MBBCCHHR).
&Filename.P IJHKLGCT %23—%3? Logical record counter (for blocking).
106-107 Number of bytes for high level index.
(6A-6B)
(6C-6F)
112 Status indicators.
(70) 0-1 Not used.
2 l= File closed.
3-5 Not used.
6 1 = Last prime data track full.
7 1 = Last block full.
IJHKLTIR 113-117 Last track index normal entry address
(71-75) (CCHHR) .
IJHKLCIR 118-122 Last cylinder index entry address (CCHHR).
(76-7A)
IJHKLMIR %%g~%§? Last master index entry address (CCHHR).

Figure 27. DTFIS LOAD Table (Part 3 of 5)

Indexed Sequential Access Method 75

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.B CCHW build area. See description of SETFL
macro, phase 1 - $$BSETFL.
128-135 Seek CCH.
(80-87)
136-143 Search ID equal CCHW.
(88-8F)
146-151 TIC CCH.
(90-97)
IJHKRDWR 152-159 Read/Write CCH.
(98-9F)
160-167 Search ID equal CCHW.
(A0-A7)
168-175 TIC CCH.
(A8-AF)
176-183 Verify CCH.
(B0-B7)
&Filename.M IJHKADCN %gg—ég; Address of IDAREAL.
188-191 Address of data in WORKL. (FIXBLK = address
(BC-BF) of WORKL; FIXUNB = address of WORKL + key).
192-195 Address of key in WORKL. (FIXBLK = address
(C0-C3) of WORKL + KEYLOC - 1; FIXUNB = address of
WORKL.)
IJHKBPOS 196-199 Block position indicator (address of logical
(C4-C7) record in IODAREAL).
IJHKMIXT 200 Master index, extension indicator.
(C8) 0-2 Not used.
3 1 = Extending file, 0 = Creating file.
G4-6 Not used.
7 1 = Master index being used, 0 = No master
index being used.
201-204 Cylinder index upper limit (CCHH).
(C9-CC)
205-208 Master index upper limit (CCHH).
(CD-D0)
IJHKPDUL 209-215 Prime data upper limit (old upper limit, if
(D1-D7) extension) (MBBCCHH).
216-222 Prime data new upper limit (for extension)
(D8-DE) (MBBCCHH) .
IJHKLTM1 %%%) Last prime data track in cylinder - 1.
IJHKKLM1 2264-225 Key length - 1.
(EO-E1)
TIJHKLLM1 226-227 Logical record length - 1.
(E2-E3)
IJHKTIDR 228-229 Address of track index dummy record (HR).
(E4G-E5)
IJHKBFDR 230-231 Address of record before first prime datsa
(E6-E7) record in cylinder (HR).

Figure 27. DTFIS LOAD Table (Part 4 of 5)

76 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

DTF Assembly Module A A
Label DSECT Label Bytes Bits Function
TIJHKNRCM 232 Number of records on master index/cylinder
(E8) index track - 1.
IJHKCMCT 233-236 Master index/cylinder index DASD address
(ES-EC) control field (CCHH).
2311 = X'00C70009"
231472319 = X'00C70013"
3330 = X'01lFF0O0l1l2"
3340 = X'01FFO0O0OC®
IJHKPDCT 237-239 Prime data address control field (CCH).
(ED-EF) 2311 = X'00C700"
2314/2319 = X'00C700°"
3330 = X'01FF0O0"*
3340 = X'01FFQO"
IJHKPDBG 240-242 Prime data beginning of volume (CCH).
(FO0-F2) 2311 = X'000100"
231472319 = X'000100°"
3330 = X'000100"
3340 = X'000100°"
IJHKPDEN 243-245 Prime data end of volume (CCH).
(F3-F5) 2311 = X'00C700"
231472319 = X'00C700"
3330 = X'019300"
3340 = X'015B00' (35MB)
X'02B700' (70MB)
246-247 Used for alignment.
(F6-F7)
&Filename.E IJHKXTBL 248-2511 First entry in DSKXTN table (logical unit,
(F8-FB) cell number).
256-2592 X'FFFFFFFF' = End of DSKXTN table.
(100-103)
260-263 Address of IOAREAZ2.
(104-107)
264-267 Address used to relocate IDAREAZ.
(108-10B)

lEach entry
tuwo. There

in the DSKXTN table
is one entry per extent.

2location of the end-of-table

is four bytes long.

The minimum number of entries is

indicator depends on length of DSKXTN table.

Numbers

Figure 27.

in parentheses are displacements

Indexed Sequential Access Method

in hexadecimal notation.
DTFIS LOAD Table (Part 5 of 5)

77

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename IJHCCCB 0-15 CCB.
(0-F)
16 (10) [0-1 Not used.
2 1 = COBOL open ignore option.
3 1 = Track hold specified.
4 1 = DTF table address constants relocated by
OPENR.
5 Not used
[1 = Data set security.
7 1 = Nrong block size error during addition
to file.
17-19 Logic module address.
(11-13)
20 (14) File type for OPEN/CLOSE (X'25' = ADD).
IJHCOPT 21 (15) Option byte.
0 Not used.
1 1 = Prime data in core,
2 1 = Cylinder overflowu.
3 1 = Cylinder index in core.
4 1l = Blocked records.
5 1 = Verify.
6-7 Not used.
22-28 DTF file name.
(16-1C)
IJHCPDDV 29 (ID) Prime data device type indicator.
X'0g0' = 2311
X'01Y = 231472319
X'04' = 3330
X'08'" = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB
&Filename.C IJHCSTBY 30 (1lE) Status byte.
0 1 = Uncorrectable DASD error (except WLR).
1 1 = WLR error.
2 1 = EOF (sequential).
3 1 = No record found.
4 1 = Illegal ID specified.
5 1 = Duplicate record sensed.
6 1 = Overflow area full.
7 1 = Record retrieved from overflow area.
IJHCHNDV 31 (1F) Highest level index device type.
X'00" = 2311
X'01' = 231472319
X'04' = 3330
X'08' = 3340 general
X'09"' = 3340 35MB
X'0A' = 3340 70MB.
Numbers in parentheses are displacements in hexadecimal notation.

Figure 28.

DTFIS ADD Table (Part 1 of 6)

78 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DFT Assembler Module X
Label DSECT Label Bytes Bits Function
IJHCPNT 32 (20) Relative position of the DSKXTN (logical
unit, cell number) table (in words). This
galze is the length of the DTF table divided
y 4.
?3;3;3) First prime data record in cylinder (HHR).
36-37 Last prime data track in cylinder (HH).
(264-25)
38 (26) High record number on master index/
cylinder index track (R).
IJHCPDH 39 (27) High record number on prime data track (R).
40 (28) High record number on overflow track (R).
IJHCSTH 41 (29) High record number on shared track (R).
IJHCTIH 42 (2A) High record number on track index (TI)
track (R).
IJHCRTR 43 (2B) Retrieval byte.
0 1 = WORKR area specified.
1 1 = WORKS area specified.
2 Overflow switch.
3 1 = Read.
4 Not used.
5 1 = Qutput
6 1 = Write key.
7 1 = PUT macro issued.
446-50 Prime data lower limit (MBBCCHH).
(2C-32)
IJHCCIS 51-57 Cylinder index lower limit (MBBCCHH).
(33-39)
IJHCMIS 58-64 Master index lower limit (MBBCCHH).
(3A-40)
IJHCILN 65 (41) Switches.
0 1 = From WAITF routine.
1 1 = WAITF seek check bit.
2-3 Not used.
4 1 = RPS type device (data).
5 1 = RPS type
6 1 = Master index.
7 1 = RPS type device (index).
&Filename.H IJHCCLPA ?25729) Last prime data record address (MBBCCHHR).
IJHCRESZ 74-75 Logical record length (RECSIZE).
(4A-4B)
IJHCKYSZ 76-77 Key length (KEYLEN).
(4C-4D)
IJHCBLSZ 78-79 Block size (logical record length times
(4E-4F) number of records).

Figure 28. DTFIS ADD Table (Part 2 of 6)

Indexed Sequential Access Method 79

Licensed Program - Property of IBM

DFT Assembler Module
Label DSECT Label Bytes Bits Function
IJHCRLI1O 80-81 Overflow record length (logical record
(50-51) length + 10).
IJHCBFAC 82-83 Blocking factor (number of logical records
(52-53) in block (NRECDS)).
84-85 Index entry length (key length + 10).
(54-55)
IJHCABCD 86-87 Prime data record length (key length plus
(56-57) physical record length (block size)).
88-89 Overflow record length plus key (key length
(58-59) + logical record length + 10).
IJHCCMAX 90-91 Prime data record format length (key length
(5A-5B) + block size + 8).
92-93 Overflow record format length (key length +
(5C-5D) logical record length + 18).
IJHCKYLC ?2E92F) Key location (KEYLOC) for blocked records.
96-97 Constant = 5.
(60-61)
98-99 Constant = 10.
(62-63)
IJHCATB2 100-101 Displacement of Part 2 of the DTFIS table
(64-65) from start of Part 1.
IJHCATB3 102-103 Displacement of Part 3 of the DTFIS table
(66-67) from start of Part 1.
&Filename.S IJHCSADR %23-%%? Seek/search address area (MBBCCHHRFP).
&Filename.W IJHCBKCT %%g-%g? Random/sequential retrieval work area.
&Filename.P IJHACPRC 1264-127 Prime data record count,.
(7C-7F)
IJHACSTI 128 Status indicators.
(80) 0-1 Not used.
2 1l = File Closed.
3-5 Not used.
6 1 = Last prime data track full.
7 1 = Block complete.
IJHACLTA 129-133 Last track index normal entry address
(81-85) (CCHHR) .
IJHACLCA 134-138 Last cylinder index entry address (CCHHR).
(86-8A)
IJHACLMA 139-143 Last master index entry address (CCHHR).
(8B-8F)
IJHACLOA 144-151 Last independent overflow record address
(90-97) (MBBCCHHR) .

Figure 28. DTFIS ADD Table (Part 3 of 6)

80 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DFT Assembler Module A
Label DSECT Label Bytes Bits Function
&Filename.l IJHACOTC %gg—ég? Number of independent overflow tracks.
&Filename.A IJHACOFC %gz-%g? Number of full cylinder overflow areas.
&Filename.O IJHACORC 156-157 Overflow record count.
(9C-9D)
IJHACOLL 158-164 Independent overflow area lower limit
(9E-AG) (MBBCCHH) .
IJHACOUP 165-171 Independent overflow area upper limit
(A5-AB) (MBBCCHH) .
IJHAHRAA 172-175 A(&Filename.D) - Address of work area for
(AC-AF) cylinder overflow control record (COCR).
176-179 A(&Filename.D+8) - Address of work area for
(B0O-B3) the current track index normal entry count
field.
180-183 A(&Filename.D+16) - Address of work area for
(B4-B7) current track index overflow entry count
field.
184-187 A(&Filename.D+24) - Address of work area for
(B8-BB) current prime data record count field.
188-191 A(&Filename.D+32) - Address of work area for
(BC-BF) current overflow record count field.
192-195 A(&Filename.D+40) - Address of work area for
(C0-C3) track index normal entry data field.
IJHADLNK 196-199 A(&Filename.D+50) - Address of work area for
(C4-C7) current overflow record linkage field.
IJHAARAD 200-203 AC&IOAREAL) - Address of IOAREAL, the I/0
(C8-CB) area used for adding records to a file.
IJHACUSE 2064-207 AC&WORKL) - Address of WORKL, work area
(CC-CF) containing user data records to be added to
the file.
IJHADKEY 208-211 A(&Filename.K) - Address of the ADD key
(D0-D3) area.
212-215 A(&IOAREAL+8) - Address of key position in
(D4-D7) I0OAREAL.
IJHAKLNS8 216-219 AC&ZIOAREAL+8+&KEYLEN) - Address of data
(D8-DB) position in IOAREAL.
Numbers in parentheses are displacements in hexadecimal notation.

Figure 28. DTFIS ADD Table (Part 4 of 6)

Indexed Sequential Access Method 81

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.2 IJHCASAD 0-3 A(&Filename.S+3) - Address of the seek”/
(0-3) search address area+3.
4 (4) 0 1 = Seek check indicated.
1-5 |Not used.
6 1 = Over/under seek has occurred.
7 1 = An error has been found, but a seek
check is indicated.
5-7 A(&Filename.W) - Address of random/
(5-7) sequential retrieval work area.
The following information is generated if the cylinder index in core option is
specified.
IJHCORST 12-15 A(&INDAREA) - Starting address of main
(0C-0F) storage area specified for cylinder index.
16-17 AL2(&INDSIZE) - Number of bytes in main
(10-11) storage available for cylinder index.
18-25 Next cylinder index entry to be read
(12-19) (MBBCCHHR3 .
26-30 Last cylinder index entry (CCHHR).
(1A-1E)
IJHCORBT 31C1F) Core index byte
0 1 = First time through B-transient,
SBINDEX.
1 1 = End of cylinder index reached.
2 1 = Index skip option specified.
3 1 = Suppress in-core option and read
cylinder index.
4-7 |[Not used.
IJHCORKY 32-35 Pointer to key (stored by module).
(1D-23)
The following information is generated if the prime data in core add function is
specified. This information is aligned on a double word boundary.
IJHPSIZE 36-37 Size of IOAREAL.
(24-25)
IJHPMAX 38-39 Maximum number of prime data records in main
(26-27) storage.
IJHPDSP1 40-643 Address of write CCHWs.
(28-2B)
IJHPDSPZ2 44-47 Address of read CCHs.
(2C-2F)
IJHPSHKW 48(30) Switch byte.
0 1 = EOF.
1-7 |Not used.
49(31) Reserved.
IJHDCHWRK 50-51 Work field for I/0 module.
(32-33)
Numbers in parentheses are displacements in hexadecimal notation.
Figure 28. DTFIS ADD Table (Part 5 of 6)

82 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.B 0-7 CCW X'07', &Filename.S+1, X'40', 6 - Long
(0-7) seek CCW with command chaining.
IJHCCCHW -127 Channel program build area. See Figures
(8-7F) 37-58 for a description of the channel
program builder.
&Filename.D IJHACOCR %gg-é;? Cylinder overflow control record (COCR).
IJHACTNA 136-143 Current track index normal entry count field
(88-8F) address.
IJHACTOA 146-151 Current track index overflow entry count
(90-97) field address.
IJHACRID 152-159 Current prime data record count field
(98-9F) address.
IJHACFID 160-167 Current overflow record count field address.
(A0-A7)
IJHACTIN 168-177 Track index normal entry data field.
(A8-B1l)
IJHACLNK 178-187 Current overflow record sequence link field.
(B2-BB)
IJHACTIA 188-197 Current track index overflow entry data
(BC-C5) field.
IJHAGATE 198 X'01' - Add to EOF.
(C6) X'02' - Add to independent overflow area.
199-201 Overflow control bytes (CCH).
(C7-C9%)
IJHAOCOH %gi—%g? High HR on overflow track. See Figure 29.
206-211 Volume upper limit for prime data records
(CC-D3) (MBBCCHHR) See Figure 30.
IJHAICOM 212-217 CLC OC&KEYLEN,13),0(6) - Unblocked
(D4-D9) CLC OC&KEYLEN,13),&KEYLOC-1(6) - Blocked
Utility CLC for key.
IJHAISKY 218-223 MVC O(&KEYLEN,13),0(12) - Unblocked
(DA-DF) MVC O(C&KEYLEN,13),&KEYLOC-1(12) - Blocked
Utility MVC for key.
&Filename.E 226-2271 First entry in DSKXTN table (logical unit,
(EQO-E3) cell number).
232-2352 4X'FF' - End of DSKXTN table.
(E8-EB)
&Filename.K 236+ Key area for ADD only. Number of bytes
(EC-end) depends on key length, KEYLEN.
! Each entry in the DSKXTN table is four bytes long. The minimum number of entries is
two. There is one entry per extent.
2 Location of the end-of-table indicator depends on length of DSKXTN table.

Numbers in parentheses are displacements in hexadecimal notation.
Figure 28. DTFIS ADD Table (Part 6 of 6)

Indexed Sequential Access Method 83

Licensed Program - Property of IBM
2311 231472319
M = Extent sequence number M = Extent sequence number
BB = 00 BB = 00
cC =0 cC =20
C =199 C =199
H=20 H =20
H = 9 - CYLOFL (number of tracks H = 19 - CYLOFL (number of tracks
reserved for cylinder overflow) reserved for cylinder overflow)
R = Number of records that fit R = Number of records that fit
on an overflow track on an overfow track
3330 3340 (35MB) 3340 (70MB)
M = Extent sequence number M = Extent sequence number M = Extent sequence number
BB = 0 BB = 0 BB = 0
CC = 403 CC = 347 CC = 695
H =20 =0 H=20
H = 18 - CYLOFL (number of = 11 - CYLOFL (number of H = 11 - CYLOFL (number of
tracks reserved for tracks reserved for tracks reserved for
cylinder overflow) cylinder overflow) cylinder overflow)
R = Number of records that R = Number of records that R = Number of records that
fit on overflow track fit on overflow track fit on overflow track

Figure 29.

Overflow Area Upper Limits (MBBCCHHR)

2311/72314/72319/73330/73340

BB
cc

Extent sequence number
00

Last prime data track

199 for 2311/72314/2319
403 for 3330

347 for 3340 (35MB)
695 for 3340 (70MB)

0

Last record on current track

in cylinder

Figure 30.

84 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

End of Volume Limits for Prime Data Area (MBBCCHHR)

Licensed Program -

Property of IBM

DTF Assembly Module . i
Label DSECT Label Bytes Bits Function
&Filename IJHCCCB ?alg) Command Control Block (CCB).
16 (10) 0 Not used.
1 1 = GET issued.
2 1 = COBOL open ignore option.
3 1 = HOLD option specified.
4 1 = DTF table address constants relocated by
OPENR.
5~6 Not used.
7 1 = Different blocksize in format-1 label
than in DTFIS.
17-19 Address of logic module.
(11-13)
20 (14) File type for OPEN/CLOSE (X'26' = RETRVE).
IJHCOPT 21 (15) Option byte.
0 Not used.
1 1 = Prime data in core.
2 1 = Cylinder overflow option.
3 1l = Cylinder index in core option.
4 1l = Blocked records.
5 1 = Verify.
6-7 Not used.
22-28 File name (DTF name).
(16-1C)
IJHCPDDV 29 (1D) Prime data device type.
X'g0' = 2311
X'01l' = 231472319
X'04' = 3330
X'08' = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB.
&Filename.C IJHCSTBY 30 (1E) Status byte
0 1 = Uncorrectable DASD error (except WLR
error).
1 1 = WLR error.
2 1 = EOF (sequential).
3 1l = No record found.
4 1l = Illegal ID specified.
5 1l = Duplicate record sensed.
6 1 = Overflow area full
7 1 = Record retrieved from overflow area.
IJHCHNDV 31 (1F) High level index device type.
X'g0' = 2311
X'Qgl' = 2314/2319
X'04" = 3330
X'08' = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB.
IJHCPNT 32 (20) Relative position of the DSKXTN (logical
unit, cell number) table (in words). This
;alge is the length of the DTF table divided
y 4.

Figure 31.

DTFIS RETRVE,

RANDOM Table (Part 1 of 6)

Indexed Sequential Access Method 85

Licensed Program - Property of IBM

DFT Assembler Module
Label DSECT Label Bytes Bits Function
%31323) First prime data record in cylinder (HHR).
36-37 Last prime data track in cylinder (HH).
(26-25)
(2 High record number on master index/cylinder
index track (R).
IJHCPDH 39 (27) High record number on prime data track (R).
40 (28) High record number on overflow track (R).
IJHCSTH 41 (29) High record number on shared track (R).
IJHCTIH G2 (2A) High record number on track index track (R).
IJHCRTR 43 (2B) Retrieval byte.
0 1 = WORKR specified.
1 1 = WORKS specified.
2 Overflow switch.
3 1 = Read key.
4 Not used.
5 1 = Output. .
6 1 = Write key.
7 1 = PUT macro issued
44-50 Prime data lower limit (MBBCCHH).
(2€-32)
IJHCCIS 51-57 Cylinder index lower limit (MBBCCHH).
(33-39)
IJHCMIS 58-64 Master index lower limit (MBBCCHH).
(3A-40)
IJHCILN 65 (41) Switches.
0 1l = From WAITF routine.
1 1 = Seek check from WAITF.
2 1 = Data track held.
3 1 = Index track held.
4 1 = RPS type device (data).
5 1 = RPS type DTF.
6 1 = Master index.
7 1 = RPS type device (index).
IJHCCLPA 66-73 Last prime data record address (MBBCCHHR).
(42-49)
IJHCRESZ 74-75 Logical record length.
(4A-4B)
IJHCKYSZ 76-77 Key length.
(4C-4D)
IJHCBLSZ 78-79 Block size (logical record length times
(GE-4F) number of records).
IJHCRL10O 80-81 Overflow record length (logical record
(50-51) length + 10).

Figure 31. DTFIS RETRVE,

RANDOM Table (Part 2 of 6)

86 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

‘ &Filename.NW

DFT Assembler Module
Label DSECT Label Bytes Bits Function
IJHCBFAC 82-83 Blocking factor.
(52-53)
84-85 Index entry length (key length + 10).
(54-55)
IJHCABCD 6-87 Prime data record length (key length +
(56-57) physical record length).
88-89 Overflow record length with key (key length
(58-59) + logical record length + 10).
IJHCCMAX 90-91 Prime data record format length (key length
(5A-5B) + physical record length + 8).
92-93 Overflow record format length (key length +
(5C-5D) logical record length +).
IJHCKYLC 94-95 Key location (blocked records).
(5E-5F)
6-97 Constant = 5.
(60-61)
98-99 Constant = 10.
(62-63)
IJHCATBZ2 100-101 Displacement of Part 2 of the DTFIS table
(664-65) from Part 1.
IJHCATB3 102-103 Displacement of Part 3 of the DTFIS table
(66-67) from Part 1.
&Filename.S IJHCSADR %gg—%%? Seek/search address area (MBBCCHHRFP).
IJHCBCKT %%g—%g? Random/sequential retrieval work area.

Figure 31. DTFIS RETRVE,

RANDOM Table (Part 3 of 6)

Indexed Sequential Access Method 87

Licensed Program -

Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.2 IJHCASAD ?633) Address of seek/search address area + 3.
4 0 1 = Seek check indicated.
(4) 1-5 |Not used.
6 1 = Over/under seek has occurred.
7 1 = An error has been found, but a seek
check is indicated.
5-7 Address of random/sequential retrieval work
(5-7) area.
IJHSIOAR 8-11 Address of IOAREAS.
(8-B)
IJHCRARA 12-15 Address of IOAREAR.
(C-F) ’
IJHCRKEY 16-19 Address of KEYARG.
(10-13)
IJHCRWOR 20-23 Address of WORKR.
(14-17)
IJHSDB1 24-27 Current sequential I/0 area address.
(18-1B)
IJHSLIOR 28-31 4-byte NO-OP instruction, or L IOREG,*-4
(1C-1F) if IOREG was specified.
IJHSLMIT %gﬂ) X'00' = No verify, X'40' = Verify.
?gl) X'08'" = Unblocked, X'00' = Blocked.
%32) R = First prime data record on shared track.
35-39 Upper limit for sequential retrieval
(23-27) (CCHHR) .
IJHSINIT 40-61 H'0' = Blocked records.
(28-29) H'2' = Overflow record.
H'8' = Unblocked records.
42 X'C7' = 2311, 2314, or 2319;
(2A) X'FF' = 3330, 3340.
43-647 Initial values for sequential retrieval.
(2B-2F)
&Filename.H IJHSCADR 48-55 Current DASD address for sequential
(30-37) (MBBCCHHR) .
IJHSCOVF 56-63 Current overflow DASD address for sequential
(38-3F) (MBBCCHHR) .
IJHSRCNT 64-65 Sequential record counter.
(40-641)
IJHSTICU 66-67 Current track index entry for sequential
(42-643) (HR) .

Figure 31. DTFIS RETRVE,

RANDOM Table (Part 4 of 6)

88 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Frogram — Property of IBM
DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.T 68-69 Number of records tagged for deletion.
(44-45)
IJHRREGS 70-71 Load IOREG for random retrieval.
(466-67)
&Filename.G IJHRIDSV ZEE7ZF) DASD address save area (MBBCCHHR).
IJHRADSYV 80-83 Record pointer within I/0 area for urite
(50-53) operation.
&Filename.R IJHROVCN ?228;7) Nonfirst overflow record count.

The following
specified.

information

is generated when the cylinder

index in core option is

IJHCORST

IJHCORKY

92-95
(5C-5F)
96~-97
(60-61)
98-105
(62-69)
106-110
(6A-6E)
(6F)
112-115
(70-73)
116-131
(764-83)

I N—Q

A(&INDAREA) - Starting address of main
storage area specified for cylinder index.

ALZ2(&INDSIZE) - Number of bytes i
storage available for cylinder i

Next cylinder
(MBBCCHHR) .
cylinder

index entry to be rea
(Initialized by $$BIND
index starting address.)

Last cylinder index entry.

1 = First time through transient.
1 = End of index reached.

1 = Index skip option.

Not used.

Pointer to key (stored by the module).

Reserved.

Figure 31.

DTFIS RETRVE,

RANDOM Table (Part 5 of 6)

is 2. There

1The length of one entry

is

is one entry per extent.

2The location of the end-of-table

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.B 0-7 X'07',&Filename.S+1,X'40',6 - Long seek CCHW
(0-7) with command chaining.
IJHCCCHW 8-63 Area to build CCHW string. See Figures 61-67
(8-3F) for a description of the channel program
builder for random retrieval.
&Filename.E 66-671 First entry in DSKXTN table (logical unit,
(40-43) cell number).
72-752 4X'FF' End of DSKXTN table.
(48-4B)

the four bytes shown here.

The minimum number of entries

indicator depends on length of DSKXTN table.

Numbers

Figure 31.

in parentheses are displacements
DTFIS RETRVE,

in hexadecimal notation.

RANDOM Table (Part 6 of 6)

Indexed Sequential Access Method

89

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename IJHCCCB ?Elg) Command Control Block (CCB).
16 0 Not used.
10) 1 1l = GET issued.
2 1 = COBOL open ignore option.
3 1 = Track hold specified.
G 1 = B;ENgable address constants relocated by
5 1 = EQOF on sequential retrieve.
6 1l = Data set security.
7 1l = Different _block size in format-1 label
than in DTFIS.
%Zzlg3) Address of logic module.
%?4) File type for OPEN/CLOSE (X'26' = RETRVE).
IJHCOPT 21 Option byte.
(15) 0 Not used. .
1 1l = Prime data in core.
2 1l = Cylinder overflow option.
3 1 = Cylinder index in core option.
4 1 = Blocked records.
5 1 = Verify.
[1 = IOAEEAS just used, 0 = IOAREA2 just
used.
7 1l = Two I/0 areas present.
22-28 File name (DTF name).
(16-1C)
IJHCPDDV 29 Prime data device type.
(1D) X'00' = 2311
X'01' = 231472319
X'04' = 3330
X'08' = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB.
&Filename.C IJHCSTBY 30 Status byte.
(1E) 0 1 = Uncorrectable DASD error (except MWLR
error
1 1l = WLR error.
2 1 = EOF (sequential).
3 1 = No record found.
4 1 = Illegal ID specified.
5 l = Duplicate record sensed.
6 1 = Overflow area full ?
7 1 = Record retrieved from overflow area.
IJHCHNDV 31 High level index device type.
(1F) X'o0' = 2311
X'01' = 231472319
X'04' = 3330
X'08' = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB

Figure 32.

DTFIS RETRVE,

SEQNTL Table (Part 1 of 6)

90 IBM VSE/Advanced Functions LI(C 'S Volume 3 DAM and ISAM

Licensed P-ogram - Property of IBM

DFT Assembler Module .
Label DSECT Label Bytes Bits Function
IJHCPNT 32 (20) Relative position of the DSKXTN (logical
unit, cell number) table (in words). This
;alze is the length of the DTF table divided
y G.
%22323) First prime data record in cylinder (HHR).
?32335) Last prime data track in cylinder (HH).
38 (26) High record number on master index/cylinder
index track (R).
IJHCPDH 39 (27) High record number on prime data track (R).
40 (28) High record number on overflow track (R).
IJHCSTH 41 (29) High record number on shared track (R).
IJHCTIH 42 (2A) High record number on track index track (R).
IJHCRTR 43 (2B) Retrieval byte
0 = WORKR specified.
1 1 = WORKS specified.
2 Overflow switch.
3 1l = Read key.
4 1 = First record being processed (after
issuing SETL macro).
5 1 = Qutput.
6 1 = Write key.
7 1 = PUT macro issued.
64-50 Prime data lower limit (MBBCCHH).
(2C-32)
IJHCCIS 51-57 Cylinder index lower limit (MBBCCHH).
(33-39)
IJHCMIS 58-64 Master index lower limit (MBBCCHH).
(3A-40)
IJHCILN 65 (41) Switches.
0 1 = From WAITF routine.
1 1 = WAITF seek check bit.
2-3 Not used.
[1l = RPS type device (data).
5 1 = RPS type DTF.
6 1 = Master index.
7 1 = .PS type device (index).
IJHCCLPA 66-73 Last prime data record address (MBBCCHHR).
(42-49)
IJHCRESZ 74-75 Logical record length.
(4A-64B)
IJHCKYSZ 76-77 Key length.
(4C-4D)
IJHCBLSZ 78-79 Block size (logical record length times
(GE-4F) number of records).

Figure 32. DTFIS RETRVE,

SEQNTL Table (Part 2 of 6)

Indexed Sequential Access Method 91

Licensed Program — Property of IBM

DFT Assembler Module
Label DSECT Label Bytes Bits Function
IJHCRLIO 0-81 Overflow record length (logical record
(50-51) length + 10).
IJHCBFAC 82-83 Blocking factor.
(52-53)
84-85 Index entry length (key length + 10).
(54-55)
IJHCABCD 86-87 Prime data record length (key length +
(56-57) physical record length).
88-89 Overflow record length with key (key length
(58-59) + logical record length + 10).
IJHCCMAX 90-91 Prime data record format length (key length
(5A-5B) + physical record length + 8).
92-93 Overflow record format length (key length +
(5C-5D) logical recaord length + 18).
IJHCKYLC 96-95 Key location (blocked records).
(5E-5F)
96-97 Constant = 5.
(60-61)
98-99 Constant = 10.
(62-63)
IJHCATBZ2 100-101 Displacement of Part 2 of the DTFIS table
(64-65) from Part 1.
IJHCATB3 102-103 Displacement of Part 3 of the DTFIS table
(66-67) from Part 1.
&Filename.S IJHCSADR %23—%%? Seek/search address area (MBBCCHHRFP).
&Filename.N IJHCBCKT %%g—%g? Random/sequential retrieval work area.

Figure 32. DTFIS RETRVE,

SEQNTL Table (Part 3 of 6)

92 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program — Property of IBM

DTF Assembly Module i
Label DSECT Label Bytes Bits Function
&Filename.?2 IJHCASAD ?533) Address of seek/search address area + 3.
4 (4) 0 1 = Seek check indicated.
1-5 |Not used.
6 1l = Over/under seek has occurred.
7 1 = An error has been found, but a seek
check is indicated.
5-7 Address of random/sequential retrieval work
(5-7) area.
IJHSIOAR 8-11 Address of IOAREAS.
(8-B)
IJHCRARA 12-15 Address of IOAREA2.
(C-F)
IJHCRKEY 16-19 Address of KEYARG.
(10-13)
IJHCRWOR 20-23 Address of WORKR.
(14-17)
IJHSDB1 26-27 Current sequential I/0 area address.
(18-1B)
IHJSLIOR 28-31 L IOREG,*-4 — Load IOREG if IOREG was
(1C-1F) specified, or a 4-byte NO-OP instruction.
IJHSLMIT 32 (20) X*'00' = No verify, X'40' = Verify.
33 (21) X'08"' = Unblocked records, X'00' = Blocked
records.
34 (22) R = First prime data record on shared track.
35-3 Upper limit for sequential retrieval
(23-27) (CCHHR) . :
IJHSINIT 40-61 H'0' = Blocked records,
(28-29) H'2' = QOverflow record,
H'8' = Unblocked records.
42 X'c7' = 2311, 2314, or 2319;
(24) X'FF' = 3330, 3340.
43-647 Initial values for sequential (CCHHR).
(2B-2F)
&Filename.H IJHSCADR 48-55 Current DASD address for sequential
(30-37) retrieval (MBBCCHHR).
IJHSCOVF ?ggng) Current overflow DASD address (MBBCCHHR).
IJHSRCNT 664—-65 Sequential record counter.
(40-41)
' IJHSTICU 66-67 Current track index entry (HR).
(42-43)

Figure 32. DTFIS RETRVE,

SEQNTL Table (Part 4 of §6)

Indexed Sequential Access Method 93

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function

&Filename.T 68-69 Number of records tagged for deletion.
(464-45)
70-75 For boundary alignment.
(46-4B)
76-91 Reserved.
(4C-5B)

Figure 32. DTFIS RETRVE, SEQNTL Table, (Part 5 of 6)

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.B 0-7 X'07'",&Filename.S+1, X'40',6 - Long seek CCH
(0-7) with command chaining.
IJHCCCH 8-63 Area to build CCW string. See Figures 68-75
(8-3F) for a description of the channel program
builder for sequential retrieval.
&Filename.E 64-671 First entry in DSKXTN table (logical unit,
(40-43) cell number).
72-75%2 4X'FF' - End of DSKXTN table.
(48-4B)
1The length of one entry is the four by*es shown here. The minimum number of entries
is 2. There is one entry per extent.
2The location of the end-of—-table indicator depends on length of DSKXTN table.

Number in parentheses are displacements in hexadecimal notation.

Figure 32. DTFIS RETRVE, SEQNTL Table (Part 6 of 6)

94 IBM VSE/Advanced Functions LIOCS

Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DTF Assembly Module . .
Label DSECT Label Bytes Bits Function
&Filename IJHCCCB 0-15 CCB.
(0-F)
16 0 Not used.
(10) 1 1 = GET issued. .
2 1 = COBOL open ignore option.
3 1 = Track hold option specified.
4 1 = DTF table address constants relocated by
OPENR.
5 EOF switch.
6 1 = Data set security.
7 1 = Wrong block size error during addition
to file.
17-19 Logic module address.
(11-13)
20 (15) File type for OPEN/CLQOSE (X'27' = ADDRTR).
IJHCOPT 21 Option byte.
(15) 0 Not used.
1 1 = Prime data in core.
2 1 = Cylinder overflouw.
3 1 = Cylinder index in core.
4 1 = Blocked records.
5 1 = Verify.
6 1 = IOAEEAS just used, 0 = I0OAREA2 just
used.
7 1l = Two I/0 areas present.
22-28 DTF file name.
(16-1C)
IJHCPDDV 29 Prime data device type indicator.
(1D) X'00' = 2311
X'01' = 231472319
X'04' = 3330
X'08' = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB.
&Filename.C IJHCSTBY 30 Status byte.
(1E) 0 1 = Uncorrectable DASD error (except WLR).
1 1 = WLR error.
2 1 = EOF (sequential).
3 1 = No record found.
4 1 = Illegal ID specified.
5 1 = Duplicate record sensed.
[1 = Overflow area full.
7 1 = Record retrieved from overflow area.
IJHCHNDV 31 Highest level index device typa.
(1F) X'00' = 2311
X'01l' = 2314/2319
X'04" = 3330
X'08' = 3340 general
X'09' = 3340 35MB
X'0A' = 3340 70MB.
Figure 33. DTFIS ADDRTR Table (Part 1 of 7)

Indexed Sequential Access Method

95

Licensed Program - Property of IBM

DFT Assembler Module
Label DSECT Label Bytes Bits Function
IJHCPNT 32 Relative position of the DSKXTN (logical
(20) unit, cell number) table (in words). This
galue is the length of the DTF table divided
Yy .
%gISES) First prime data record in cylinder (HHR).
%22335) Last prime data track in cylinder (HH).
38 (26) High record number on master index/cylinder
index track (R).
IJHCPDH 39 (27) High record number on prime data track (R).
40 (28) High record number on overflow track (R).
IJHCSTH (29) High record number on shared track (R).
IJHCTIH (2A) High record number on track index (TI)
track (R).
IJHCRTR 43 (2B) Retrieval byte.
0 1 = WORKR area specified.
1 1 = WORKS area specified.
2 Overflow switch.
3 1 = Read.
4 1l = First record being processed (after
issuing SETL macro
5 1 = Qutput.
6 1 = Hrite key.
7 1 = PUT macro issued.
44-50 Prime data lower limit (MBBCCHH).
(2C-32)
IJHCCIS 51-57 Cylinder index lower limit (MBBCCHH).
(33-39)
IJHCMIS 58-64 Master index lower limit (MBBCCHH).
(3A-40)
IJHCILN 65 (41) Switches.
0 1l = From WAITF routine
1 1 = Seek check from WAITF.
2 1 = Data track held.
3 1 = Index track held,
4 1 = RPS type device (data).
5 1 = RPS type DTF.
6 0 = Cylinder index.
1 = Master Index.
7 1 = RPS type device (index).
&Filename.H IJHCCLPA ?25729) Last prime data record address (MBBCCHHR).
IJHCRESZ 74-75 Logical record length (RECSIZE).
(4A-4B)
Figure 33. DTFIS ADDRTR Table (Part 2 of 7)

96 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

DFT Assembler Module
Label DSECT Label Bytes Bits Function
IJHCKYSZ 76-77 Key length (KEYLEN).
(4C-4D)
IJHCBLSZ 78-79 Block size (logical record length times
(4E-4F) number of records).
IJHCRL1O0 80-81 Overflow record length (logical record
(50-51) length + 10).
IJHCBFAC 82-83 Blocking factor (number of logical records
(52-53) in block (NRECDS)).
84-85 Index entry length (key length + 10).
(54-55)
IJHCABCD 86-87 Prime data record length (key length plus
(56-57) physical record length (block size)).
88- Overflow record length with key (key length
(58-59) + logical record length + 10).
IJHCCMAX 90-91 Prime data record format length (key length
(5A-5B) + block size + 8).
32-93 Overflow record format length (key length +
(5C-5D) logical record length + 18).
IJHCKYLC ?gg9gF) Key location (KEYLOC) for blocked records.
96-97 Constant = 5.
(60-61)
38-99 Constant = 10.
(62-63)
IJHCATBZ2 100-101 Displacement of Part 2 of the DTFIS table
(66-65) from start of Part .
IJHCATB3 102-103 Displacement of Part 3 of the DTFIS table
(66-67) from start of Part 1.
&Filename.S IJHCSADR 106-113 Seek/search address area.
(68-71)
&Filename.N IJHCBKCT %%g—%%? Random/sequential retrieval work area.
&Filename.P IJHACPRC 1264-127 Prime data record count.
(7C~-7F)
IJHACSTI 128 Status indicators.
(80) 0-1 Not used.
2 l = File closed.
3-5 Not used.
6 1l = Last prime data track full.
7 1 = Block complete.
IJHACLTA 129-133 Last track index normal entry address
(81-85) (CCHHR)
IJHACLCA %gz—éz? Last cylinder index entry address (CCHHR).

Figure 33. DTFIS ADDRTR Table (Part 3 of 7)

‘ Indexed Sequential Access Method 97

Licensed Program - Property of IBM

DFT Assembler Module
Label DSECT Label Bytes Bits Function
IJHACLMA 139-143 Last master index entry address (CCHHR).
(8B-8F)
IJHACLOA 144-151 Last independent overflouw record address
(90-97) (MBBCCHHR) .
&Filename.lI IJHACOTC %3%—%3? Number of independent overflow tracks.
&Filename.A IJHACOFC %gz—%g; Number of full cylinder overflow areas.
&Filename.0 IJHACORC 156-157 Overflow record count.
(9C-9D)
IJHACOLL 158-164 Independent overflow area lower limit
(9E-A4) (MBBCCHH) .
IJHACOUP 165-171 Independent overflow area upper limit
(A5-AB) (MBBCCHH) .
IJHAHRAA 172-175 A(&Filename.D) - Address of work area for
(AC-AF) cylinder overflou control record (COCR).
176-179 A(&Filename.D+8) - Address of work area for
(B0-B3) ¥he1§urrent track index normal entry count
ie
180-183 A(&Filename.D+16) - Address of work area for
(B4-B7) ggrignt track index overflouw entry count
ie
184-187 A(&Filename.D+24) - Address of work area for
(B8-BB) current prime data record count field.
188-191 A(&Filename.D+32) - Address of work area for
(BC-BF) current overflow record count field.
192-195 A(&Filename.D+40) - Address of work area for
(C0-C3) track index normal entry data field
IJHADLNK 196-199 A(&Filename.D+50) - Address of work area for
(C4-C7) current overflow record sequence-link field.
IJHAARAD 200-203 AC&IOAREAL) - Address of IDOAREAL, the I/0
(C8-CB) area used for adding records to a file.
IJHACUSE 2064-207 AC&WORKL) - Address of WORKL, work area
(CC-CF) containing user data records to be added to
the file.
IJHADKEY %gg—g%% A(&Filename.K) - Address of the ADD key area
212-215 A(&IDAREAL+8) - Address of key position in
(D4-D7) I0OAREAL.
IJHAKLNS 216-219 AC&IDAREAL+8+&KEYLEN) - Address of data
(D8-DB) position in IOAREAL.

Figure 33. DTFIS ADDRTR Table (Part &4 of 7)

98 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program — Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.?2 IJHCASAD 0-3 A(&Filename.S+3) - Address of the
(0-3) seek/search address area+3.
4 (&) 0 1 = Seek check indicated.
1-5 |Not used.
6 1 = Over/under seek has occurred.
7 1l = An error has been found, but a seek
check is indicated.
5-7 A(&Filename.W) - Address of the random/
(5-7) sequential retrieval work area.
IJHSIOAR 8-11 Address of I0OAREAS, I/0 area used for
(8-B) sequential retrieval.
IJHCRARA 12-15 Address of IOAREAR, I/0 area used for random
(C-F) retrieval or address of IOAREA2 (if
specified) for sequential retrieval.
IJHCRKEY 16-19 Address of KEYARG, field containin
(10-13) user—-supplied key used for random READ/NRITE
operations and sequential retrieval
initiated by key.
IJHCRWOR 20-23 Address of WORKR, work area used for random
(14-17) retrieva
IJHSDB1 264-27 Current sequential I/0 area address.
(18-1B)
IJHSLIOR 28-31 1. L IOREG,*-4 — Load I/0 register for
(1C-1F) sequential or
2. 6G-byte NO-OP instruction for random.
IJHSLMIT 32 (20) X'00' = No Verify; X'40' = Verify.
33 (21) X'00' = Blocked; X'08' = Unblocked
34 (22) R = First prime data record on shared track.
35-39 Limits for sequential (CCHHR).
(23-27)
IJHSINIT 40-41 H'0' = Blocked records.
(28-29) H'2' = QOverflow recor
H'8' = Unblocked records
42 (2A) X*'C7' = 2311, 2314, or 2319;
X'FF' = 3330, 3340.
43-47 Initial values for sequential.
(2B-2F)
&Filename.H IJHSCADR ?§65§7) Current sequential DASD address (MBBCCHHR).
IJHSCOVF 56-63 Current overflow DASD address (MBBCCHHR).
(38-3F)
IJHSRCNT 64-65 Sequential record count.
(40-461)
IJHSTICU 66-67 Current track index entry for sequential
(42-43) (HR).
Figure 33. DTFIS ADDRTR Table (Part 5 of 7)
Indexed Sequential Access Method 99

Licensed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.T 68-69 Number of records tagged for deletion.
(44-45)
IJHRREGS 70-71 LR &IOREG,0 for random (or 2-byte NO-OP for
(46-67) sequential).
&Filename.G IJHRIDSV 72-79 DASD address save area for random retrieval
(48-4F) (MBBCCHHR) .
IJHRADSYV 80-83 Record pointer within I/0 area for urite
(50-53) (for random retrieval).
&Filename.R IJHROVCN 864-87 Nonfirst overflow record count.
(54-57)
The following information is generated if the cylinder index in core option is
specified. Bytes 88-91 (58-5B) are not used.
IJHCORST 92-95 AC&INDAREA) - Starting address of main
(5C-5F) storage area specified for cylinder index.
96-97 AL2(&INDSIZE) - Number of bytes in main
(60-61) storage available for cylinder index.
98-105 Next cylinder index entry to be read
(62-69) (MBBCCHHR) .
106-110 Last cylinder index entry (CCHHR).
(6A-6E)
IJHCORBT 111 (6F) Core index byte.
0 1 = First time through $$BINDEX.
1 1 = End of cylinder index reached.
2 1l = Index skip option specified.
3 1 = Suppress index in-core option and read
cylinder index.
4-7 |Not used.
IJHCORKY 112-115 Pointer to key (stored by module).
(70-73)
The following information is generated if the prime data in-core add function is
specified. This information is aligned on a double word boundary. If both cylinder
index in—-core and prime data in-core add functions are specified, the following
information is found in bytes 116-131 (74-83).
IJHPSIZE 116-117 Size of IOAREAL.
(74-75)
IJHPMAX 118-119 Maximum number of prime data records in main
(76-77) storage
IJHPDSP1 120-123 Address of write CCUs.
(78-7B)
IJHPDSP2 124-127 Address of read CCHUs.
(7C-7F)
IJHPSHW 128(80) Switch byte.
0 1 = EOF (Bits 1-7 not used).
2 81) Reserved.
IJHDCHRK 30-131 Work field for I/0 module.
(82-83)

Figure 33. DTFIS ADDRTR Table (Part

100 IBM VSE/Advanced Functions LIOCS

6 of 7)

Volume 3 DAM and ISAM

Lice

nsed Program - Property of IBM

DTF Assembly Module
Label DSECT Label Bytes Bits Function
&Filename.B 0-7 X'07', &Filename.S+1, X'40', 6 - Long seek
(0-7) CCW with command chaining.
IJHCCCH 8-63 Channel program build area. See Figures
(8-3F) 76-112 for a description of the channel
program builder.
664-127 Channel program build area for add function
(40-7F) only.
&Filename.D IJHACOCR %gg—é%? Cylinder overflow control record (COCR).
IJHACTNA 136-143 Current track index normal entry count
(88-8F) field.
IJHACTOA 146-151 Current track index overflow entry count
(90-97) field.
IJHACRID 152-159 Current prime data record count field.
(98-9F)
IJHACFID 160-167 Current overflow record count field.
(AQ-A7)
IJHACTIN 168-177 Track index normal entry data field.
(A8-B1)
IJHACLNK 178-187 Current overflow record sequence-link field.
(B2-BB)
IJHACTIA 188-197 Current track index overflow entry data
(BC-C5) field.
IJHAGATE 198 X'01' - Add to EOF.
(Cé6) X'02' - Add to independent overflow area.
199-201 Overflow control bytes (CCH).
(C7-C9)
IJHAOCOH %g%-gg? High HR on overflow track. See Figure 29.
206-211 Volume upper limit for prime data records
(CC-D3) (MBBCCHHR) See Figure 30.
IJHAICOM 212-217 CLC OC&KEYLEN,13),0(6) - Unblocked
(D4-D9) CLC O(C&KEYLEN,13),&KEYLOC-1(6) - Blocked
Utility CLC for key.
IJHAISKY 218-223 MVC O(&KEYLEN,13),0(12) - Unblocked
(DA-DF) MVC O(&KEYLEN,13),&KEYLOC-1(12) - Blocked
Utility MVC for key.
&Filename.E 226-2271 First entry in DSKXTN table (logical unit,
(EQO-E3) cell number).
232-2352 GX'FF' - End of DSKXTN table.
(E8-EB)
&Filename.K 236+ Key area for add only. Number of bytes
(EC-end) depends on key length, KEYLEN.

! Each entry
is two. Th
2 Location o

in the DSKXTN table is four
ere is one entry per extent.
f the end-of-table indicator

bytes long. The minimum number of entries
depends on length of DSKXTN table.

Numbers in p

Figure 33.

arentheses are displacements
DTFIS ADDRTR Table (Part 7 of

Indexed

in hexadecimal notation.
7)

Sequential Access Method 101

Licensed Program - Property of IBM

ISMOD MACRO

The ISMOD (Indexed-Sequential Module) macro
instruction must be included for each logic
module required to support each DTFIS macro
in a particular problem program. The logic
modules are described by an ISMOD header
entry and a series of parameter entries.

See VSE/Advanced Functions Macro Reference
for an explanation of the parameters.

The following imperative macros use the
logic in the ISMOD:

The logic for the other imperative macros
used by ISAM (ENDFL, ESETL, SETFL and SETL)
is found in various B-transient routines.
Flowcharts for ISFMS are in alphabetical
order by macro within function. The
functions appear in the following sequence:

This section does not discuss each of these
macros separately but, instead, presents
them in the context of a particular
function.

REENTERABLE MODULE: A reenterable module is
a logic module that can be asynchronously

used, or shared, by more than one file.
ISMOD is made reenterable by inclusion of
the RDONLY=YES parameter in the ISMOD macro
instruction. The RDONLY (read-only)
parameter assures, regardless of the
processing requirements of any file(s)
using the module, that the generated logic
module is never modified in any way. This
feature is implemented through the
establishment of unique (one for each task
using the module) save areas external to
the logic module. Each save area must be
72 bytes and doubleword aligned. The save
area for ISMOD contains general registers
2-14, the last overflow record address, the
new overflow record address, and_ a uwork
area for the channel program builder. A
task must provide the address of its unique
save area in register 13 before an
imperative macro is issued to the file and
a logic module is entered by the task.

ERROR OPTION EXTENSIONS: When ERREXT is not
specified and an unrecoverable I/0 error
occurs, ISFMS indicates this error in
Filename.C and returns to the problem

102 IBM VSE/Advanced Functions LIOCS Volume

program., Control is returned to ISFMS only
by issuing another macro instruction.

When ERREXT is specified and an
unrecoverable 170 error occurs, bit 0 of
Filename.C is set on. Also, byte 2, bit 2
of the CCB in the DTF is set on when data
transfer has not occurred. The problem
program error processing routine should
determine if data transfer occurred by
checking the data transfer bit (byte 2, bit
2) in the DTF. Information concerning the
record being read or written and the
operation being performed at the time of
the error can be found in the 18-byte
parameter list pointed to by register 1.
See Figure 34 for a description of this
parameter list.

Bytes|Bits Contents

0-3 DTF address.

4-7 Main storage address of the
record in error.

8-15 DASD address of record in
error (MBBCCHHR), where M is
the extent sequence number and
R is the record number. R can
be inaccurate if a read error
occurred during a read of the
highest level index.

16 Record identification:

Data.

Track index.
Cylinder index.
Master index.

WO

Type of operation:

Not used.
Not used.
Write.
Read.

17 Command code of failing CCW.

~Noup

Figure 34. ERREXT Parameter List

After checking for errors and taking
corrective action if necessary, the problem
program error processing routine can return
to ISAM via the ERET macro. The ERET
IGNORE or ERET SKIP macro returns to ISAM
to ignore the error condition and process
the record. The ERET RETRY returns to ISAM
to make another attempt to read or urite
the record.

Note: The ERREXT coding is not designed to
andle irrecoverable errors that are posted
in Filename.C. Examples of irrecoverable
errors are No Record Found, Prime Data Area
Full, Master Index Full, and so on.

3 DAM and ISAM

Licensed Program - Property of IBM

DOUBLE BUFFERING: Double buffering is
meaningful only when creating the file or
sequentially retrieving from the file. If
I0OAREA2=YES is specified as an ISMOD macro
parameter, and the presence of two I/0
areas is indicated in the DTF table,
overlapping of I/0 with processing is i
provided for the load create and sequential
retrieve functions.

g E?EEO INSTRUCTIONS TO LOAD OR EXTEND A

The function of originally loading a file
of presorted records onto DASD, and the
function of extending the file by adding
new presorted records beyond the previous
high record, are the same. Both are
considered a LOAD operation (specified by
the DTFIS entry IOROUT), and they both use
the same macro instructions in the problem
program. However, the type field in the
DLBL card must specify ISC for load
creation and ISE for load extension.

The areas of the volumes used for the
file are specified by job control EXTENT
cards. The areas are: he prime data area
where the data records are written, a
cylinder index area where the user wants
ISAM to build the cylinder index, and a
master index area if a master index is to
be built (specified by the DTFIS entry
MSTIND).

During the load operation, ISAM builds
the track, cylinder, and master (if
specified) indexes.

Three different macro instructions are
always required in the problem program to
load original or extenSIOn records into the
logical file on DASD

The SETFL (set file load mode) macro
instruction causes to set up the file
so that the load or extension function can
be performed. When loading a file, SETFL
preformats the last track of each track
index; but when extending the file, SETFL
preformats only the last track of the last
track index plus each new track index for
the extension of the file. This allous
prime data on a shared track to be
referenced even though no track index
entries exist on the shared track.

This macro must be issued whenever the
file is to be loaded or extended.

When a WRITE macro instruction with the
parameter NEWKEY is issued in the problem
program between a SETFL instruction and an
ENDFL instruction (the third macro required
for loading), it causes ISAM to load a
record onto DASD.

Before issuing the WRITE instruction,
the problem program must store the key and
data portions of the record in a work area

(specified by DTFIS WORKL). The ISAM
routines construct the 1/0 area by moving
the data record to the data area, moving
the key to the key area, and building the
count field. MWhen the I/0 area has been
filled, ISAM transfers the records to DASD
storage and then constructs the count field
for the next record. The WAITF macro
should not be used when loading or
extending an ISAM file.

Before records are transferred, ISAM
performs both a sequence check (to ensure
that the records are in order by key) and a
duplicate-record check.

After each WRITE is issued, ISAM makes
the ID of that record or block available to
the problem program. Th I is located in

an 8-byte field labeled

As records are loaded on DASD, ISAM
writes track index entries each time a
track is filled, writes a cylinder index
entry each time a cylinder is filled, and
writes a master index entry (if DTFIS
MSTIND is specified) each time a track of
the cylinder index is filled.

Filename.H.

The ENDFL macro performs an operation
(similar to a CLOSE) for the file that has
been loaded. It writes the last block of
data records, if necessary, and then writes
an end-of-file record after the last data
record. It writes any index entries that
are needed. It also writes inactive track
index entries for the unused portion of the
prime data extent for the 2311 device type.
For DASD types other than 2311, only the
remaining portion of the last cylinder
containing prime data records has inactive
track index entries.

When extending or adding to a file, the
user is responsible for checking byte 16,
bit 7 of the DTF to determine whether the
correct blocksize has been specified.

A P CRO INSTRUCTIONS FOR ADDING RECORDS

ISAM
TO A FILE

After a file has been organized on DASD,
new records can be added to the file. Each
record is inserted in the proper place
sequentially by key. This function is
provided by specifying ADD or ADDRTR in the
DTFIS entry IOROUT.

The file can contain either blocked or
unblocked records, as specified by the
DTFIS entry RECFORM. When the file
contains blocked records, the user must
provide ISAM with the location of the key
field that is provided through the DTFIS
entry KEYLOC. The records to be inserted
are written one record at a time.
records must contain a key field in the
??Te location as the records already in the

ile.

Indexed Sequential Access Method 103

Licensed Program - Property of IBM

Whenever the addition of records i
follow sequential retrieval (A DDRTR),
macro instruction ESETL must be issued
before a record is added.

the

Two macro instructions, WRITE NEWKEY and
WAITF are used in the problem program for
adding records to a file.

Before the WRITE macro is issued for
unblocked records, the program must store

the record (key and data) to be added into
a work area specified in the DTFIS entry
WORKL. For blocked records, the program
must store only the data (the key is
assumed to be a part of the data). Before
any records are transferred, ISFMS checks
for duplicate record keys. If n
duplication is found, ISAM inserts the

record in the file.

To insert a record into a file, ISAM
performs an index search at the highest
level index. This search determines if the
record to be inserted can be placed within
the file, or if it is higher than the last
record on the file.

If the record can be inserted within the
file, searching of the master index (if
available), the cylinder index, and the
track index determines the appropriate
location to insert the record.

For an entry to_an unblocked file, an_
equal/high search is performed in the prime
data area of the track. When a record on
the track is found that is equal to or
higher than the record to be inserted, the
record is read from the track and placed in
storage (in the I/0 area). The two records
are compared to see if a duplicate record
is found. If a duplicate record is found,
that information is posted to the user
the DTF table at Filename.C. no
duplicate is found, the appropr|ate record
(in the user's work area) is uwritten
directly on the track. The record (just
displaced from the track) in the I/0 area
}ﬁ moved by ISAM to the user's work area.

e
th

in

next record on the track is read into
I/0 area.

in the work area is
Succeeding records
are shifted until the last record on the
track is set up as an overflow record. If
the ADD I/0 area (IOAREAL) is increased to
permit the reading or writing of more than
one record on DASD at a time, an equal/high
search is performed in the prime data area
of the track. MWhen a record on the track
is found that is equal to or higher than
the record to be inserted, as many records
as can fit into the I/0 area specified in
the DTFIS operand IOAREAL are read from the
trac§ and placed in storage (in the I/0
area

the record

104 IBM VSE/Advanced Functions LIOCS Volume

The record to be added is compared to
existing records in the I/0 area. If

duplicate key is found, the condition IS
posted to the user in the DTF table
Filename.C. If no duplicate is found, the

records are shifted in storage, leaving the
record Nlth the highest key remaining in
the user's work area. The other records
are reuritten directly onto the track. Any
remaining record(s) on the track are then
read into the I/0 area. The process
continues until the last record on the
track is set up as an overflow record.

This last record is then written into
the appropriate overflow area, and the
appropriate track index entries are
updated. This is the cylinder overflow
area, if CYLOFL has been specified for this
file and the area has not been filled.

If the cylinder overflow area is filled,
or if only an independent overflow area has
been specified by a job control EXTENT
card, the end record is transferred to the
independent overflow area. If an
independent overflow area has not been
specified (or is filled) and the cylinder
overflow area is filled, there is no room
available to store the overflow recor
ISAM posts this condition in the DTF table
at Filename.C.

before any records are
termines if room is

In all cases,
written, ISAM de
available.

For an entry to a blocked file, the work
area, WORKL, is required in the DTFIS
entries. Each record to be added must
contain a key field in the same location as
the records already in the file. The
high-order position of this key field
relative to the leftmost position o
logical record, must be specified t
by the user. The DTFIS entry KEYLO
used for this specification.

When the WRITE macro is issued in the
problem program, first locates the
correct track by referring to the necessary
master (if _available), cylinder, and track
indexes. Then, a search on the key areas
of the DASD records on the track is made to
locate the desir=sd block of records. The
block of records (or as many as will fit
into the I/0 area if IOAREAL has been
increased for reading and writing more than
one record on DASD at a time) is read into
the I/0 area. ISAM then examines the key
field within each logical record to find
the exact position in which to insert the
new record and to check for duplication of
records. If duplication of keys exists,

f
(o]
c

the condition is posted in Filename.C. If
the key of the record to be inserted
(contained in the work area WORKL) is lowu,

it is exchanged with the record presently
in the block.

3 DAM and ISAM

Licensed Program - Property of IBM

This procedure continues with each
succeeding record in the block until the
last record is moved into the work area.
ISFMS then updates the key area of the DASD
record to reflect the highest key in the
block. If the IOAREAL has been increased,
succeeding blocks in the I/0 area are also
updated. The block (or blocks) is then
written back onto DASD. The remaining
blocks on the track are similarly processed
until the last logical record on_the track
is moved into the work area. This record
is then set up as an overflow record with
the proper sequence-link field and moved to
the overflow area. The indexes are updated
and ISAM returns to the problem program for
the next record to be added. If the
overflow area is filled, the information is
posted in Filename.C.

If the proper track for a record is an
overflow track (determined by the track
index), ISAM searches the overflow chain
and checks for duplication. If no
duplication is found, ISAM writes the
record, preceded by a sequence-link field
in the data area of the DASD record, and
adjusts the appropriate linkages to
maintain sequential order by key. ISAM
writes the new record in either the
cylinder overflow area or the independent
overflow area. If these areas are filled,
the user is notified by a bit in
Filename.C.

If the new record is higher than all
records presently in the file (end-of-
file), ISAM checks to determine if the last
track containing data records is filled.

If it is not, the new record is added,
replacing the end-of-file record. The
end-of-file record is written in the next
record location on the track, or on the
next available prime data track. Another
track must be available within the file
limits. If the end-of-file record is the
first record on any track, the new record
is written in the appropriate overflow
area. After each new record is inserted in
its proper location, ISAM adjusts all
indexes that are affected by the addition.

The WAITF macro instruction is issued to
ensure that the transfer of a record has
been completed.

This instruction must be issued before
the problem program attempts to process an
input record or build another output record
for the file concerned. The program does
not regain control until the previous
transfer of data is complete.

0O INSTRUCTIONS FOR RANDOM

—2

When a file has been organized by ISAM,
records can be retrieved in random order
for processing and/or updating. Retrieval
must be specified in the DTFIS entry IOROUT
(IOROUT=RETRVE or IOROUT=ADDRTR). Random

processing pec1f1ed in the DTFIS

mus
entry TYPEFLE=

t be
RANDOM
Because random reference to the file is
by record key, the problem program must
supply the key of the desired record to
To do this, the key must be stored
in the storage key field specified by the
FIS entry KEYARG. The specified key
ignates both the record to be retrieved
the record to be written back into the
e in an updating operation. Records
ed to the file between the READ and the
TE macro for a particular record to be
ated can result in a lost record and a
licate key.

ocFo -hﬂ} [eBw]

T
es
nd
il
dd
RI
pd
up

Three macro instructions (READ KEY,
WRITE KEY and WAITF) are available for use
in the problem program for retrieving and
updating records randomly.

The READ KEY instruction used in
conjunction with WAITF macro instruction
causes ISAM to retrieve the specified
record from the file.

To locate the record, ISAM searches the
indexes to determine the track on which the
record is stored, and then searches the
track for the specific record. When the
record is found, ISAM transfers it to the
I/0 area specified by the DTFIS entry
IOAREAR. The ISAM routines also move the
record to the specified work area if the
DTFIS entry WORKR is included in the file
definition.

When records are blocked, ISAM transfers
the block that contains the specified
record to the I/0 area. It makes the
individual record avallable for processing
either in the I/0 area or the work area (if
specified). For processing in the I/0
area, ISAM supplies the address of the
record in the register specified by DTFIS
IOREG. The ID of the record can be
referenced by using Filename.G.

The WRITE instruction with the parameter
KEY is used in conjunction with the WAITF
macro instruction for random updating. It
causes ISAM to transfer the specified
record from main storage to DASD storage.

ISAM rewrites the record retrieved by
the previous read instruction for the same
file. The record is updated from the work
area, if one is specified; otherwise, from
the I/0 area. The key need not be
specified again ahead of the WRITE
instruction.

The WAITF macro instruction is issued to
ensure that the transfer of a record has
been completed. This instruction must be
issued before the problem program attempts
to process an input record or build another
output record for the file concerned. The
program does not regain control untll the
previous transfer of data is complete.

The WAITF instruction posts any
exceptional information in the DTFIS table
at Filename.C.

Indexed Sequential Access Method 105

Licensed Program - Property of IBM
SAM MACRO INSTRUCTIONS FOR SEQUENTIAL
ETRIEVAL

When a file has been organized by ISAM,
records can be retrieved in sequential
order by key for processing and/or
updating. The DTFIS entry IOROUT=RETRVE
must be specified. Sequential processing
must be specified in the DTFIS entry
TYPEFLE=SEQNTL.

Although records are retrieved in order
by key, sequential retrieval can start at a
record in the file identified either by key
or by the ID (identifier in the count
field) of a record in the prime data area.
Sequential retrieval can also start at the
beginning of the logical file. The user
specifies, in SETL, the type of reference
he will use in the problem program.

Whenever the starting reference is by
key and the file contains blocked records
(RECFORM=FIXBLK), the user must also
provide ISAM with the position of the key
field within the records. This is
specified in the DTFIS entry KEYLOC. To
search for a record, ISAM first locates the
correct block by the key in the key area of
the DASD record. (The key area contains
the key of the highest record in the
block.) Then, ISAM examines the key field
Wwithin each record in the block to find the

specified record.

Four macro instructions (SETL, GET, PUT
and ESETL) are available for use in the
problem program for retrieving and updating
records sequentially.

The SETL (set limits) macro instruction
initiates the mode for sequential retrieval

and initializes the ISAM routines to begin
retrieval at the specified starting
address. It requires two parameters. The
first operand (Filename) specifies the name
of the file (specified in the DTFIS header
entry) from which records are to retrieved.

The second operand specifies where
processing is to begin. If the user is
processing by the record ID, the operand
Idname or (r) specifies the symbolic name
of the main-storage field in which the user
supplies the starting (or lowest) reference
for ISAM use. The symbolic field contains
information as shown in Figure 35. If
processing is to begin with a key supplied
by the user, the second operand is
The key is to be supplied by the user in
the field specified by the DTFIS entry
KEYARG. If the specified key is not
present in the file, an indication will be
given at Filename.C.

The second operand BOF specifies_that
retrieval is to start at the beginning of
the logical file.

Selected groups of records within a file
containing identical characters or data in
the first locations of each key can be
processed by specifying GKEY in the second
operand. The GKEY specification allowus
processing to begin at the first record (or
key) within the desired group. The user
must supply a key that will identify the
significant (high order) bytes of the
required group of keys. The remainder (or
insignificant bytes) of the key must be
padded with blanks, binary zeros, or bytes
lower in collating sequence than any of the
insignificant bytes in the first key of the
group to be processed. The problem program

Byte Identifier Contents Information
0 M 2-245 Extent sequence number of the volume in which
the starting record is located.
1-2 B,B 0,0 (for disk) Always zero for disk.
3- c,C 0,1-199 (for Cylinder number for disk.
2311/23164/2319)
0-403 (for 3330)
0-347 (for 3340
with 35MB)
0-695 (for 3340
with 70MB)
5-6 HyH 0,0-9 (for 2311) Head position for 2311, 2314, 2319, 3330, and
0,0-19 (for 3340 disks.
2314/2319)
0,0-18 (for 3330)
with 70MB)
7 R 1-254 Record location.

Figure 35.

must determine when the generic group is
completed. Otheruwise, ISAM continues
through the remainder of the group.

Pointer to First Record to be Processed by Sequential Retrieval

This method also allous startlng at a
key equal to or greater than the on
specified in the DTFIS entry KEYARG NIthout
getting an error indication in Filename.

106 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

The GET macro instruction causes ISAM to
retrieve the next record in sequence from
the file. It can be written in either of
two forms, depending on where the record is
to be processed.

The first form is used if records are to
be processed in the I/0 area (specified by
DTFIS IOAREAS). It requires only one
parameter, which is the name of the file
from which the record is to be retrieved.
ISFMS transfers the record from this file
to the I/0 area, and the record is
available for the execution of the next
instruction in the problem program. The
key is located at the beginning of IOAREAS
and the register (IOREG) points to the
data. If blocked records are specified,
ISAM makes each record available by
supplying its address in the register
specified by the DTFIS entry IOREG. The
key is contained in the record.

The second form of the GET instruction
is used if records are to be processed in a
work area (DTFIS specifies WORKS). It
requires two parameters both of which can
be specified as symbols or in register
notation. The first is the name of the
file, and the second is the name of the
work area. When register notation is used,
workname should not be preloaded into
register 1. The record is available for
the execution of the next program
instruction.

If blocked records are specified in the
file definition, each GET that transfers a
block of records to main storage will, if
necessary, also write the preceding block
back into the file in its previous block
location. GET writes the preceding block
if a PUT instruction has been issued for at
least one of the records in the block. If
no PUT instructions have been issued,
updating is not required for this block,
and GET does not cause the block to be
rewritten. Whenever an unblocked record is
retrieved from the prime data area, ISAM
supplies the ID of that record in the field
addressed by Filename.H. If blocked
records are specified, ISAM supplies the ID
of the block. The PUT macro instruction is
used for sequential updating of a file, and
causes ISAM to transfer records to the file
in sequential order. PUT returns a record
that was obtained by a GET. It can be
written in either of two forms, depending
on where records are processed.

The first form_is used if records are
processed in the I/0 area (specified by
DTFIS IOAREAS). It requires only the name
of the file to which the records are to be
transferred.

The second form of the PUT instruction
is used if records are processed in a work

area. It requires two parameters, both of
which can be specified either as a symbol
or in register notation. The first 1s the
name of the file, and the second is the
name of the work area. When register
notation is used, workname should not be
loaded into register 1. The work area name
may be the same as that specified in the
preceding GET for this file, but this is
not required. ISAM moves the record from
the work area specified in the PUT
instruction to the I/0 area specified for
the file in the DTFIS entry IODAREAS.

When unblocked records are specified,
each PUT writes a record back onto the file
in the same location from which it was
retrieved by the preceding GET for this
file. Thus, each PUT updates the last
record that was retrieved from the file.
If some records do not require updating, a
series of GET instructions can be issued
without intervening PUT instructions.
Therefore, it is not necessary to reurite
unchanged records.

When blocked records are specified, PUT
instructions do not transfer records to gn

e
file. Instead, each PUT indicates that e
block is to be written after all the
records in the block have been processed.

When processing for the block is complete
and a GET is issued to read the next block
into main storage, that GET also writes the
completed block back_into the file in its
previous location. If a PUT instruction is
not issued for any record in the block, GET
does not write the completed block. The
ESETL macro instruction writes the last
block processed, if necessary, before the
end of file. The ESETL (end set limit)
macro instruction ends the sequential mode
initiated by the SETL macro. If blocked
records are specified, ESETL writes the

last block back if a PUT was issued.

Note: If ADDRTR and/or RANSEQ are specified
in the same DTF, ESETL should be issued
before issuing a READ or WRITE. Another
SETL can be issued to restart sequential

retrieval.

ISAM LOAD ENDFL Macro, Phase 1 -
SSBENDFL, Charts DA-DB

Objective: To validate IOAREAL address

imits and DTFIS table limits. To reset
error indicators in DTF table. To pad key
field and write partially filled block if
present. To write EQF record. To write TI
(track index) entries, CI (cylinder index
entry, and MI (master index) entry if
needed.

Indexed Sequential Access Method 107

Licensed Program - Property of IBM

To compute number of bytes used in the this routine writes a cylinder index normal
highest level index used. To write track entry and a master index normal entry, if
index inactive entries if needed. the master index is being used.
Entry: From the ENDFL macro expansion. If the last track index record number
] was zero, but the track was not 0, a
Exits: To the second phase of the ENDFL cylinder index normal entry is written. If
macro, $$BENDFF. the last track index track was 0, and the
. i . cylinder index record is not the last
Method: This phase first validates the record on the track, a master index normal
address limits of IOAREAL and the DTFIS entry is written (if the master index is
table via an SVC 26. It then resets error being used). Otherwise, pointers are set
indicators in the DTF table for prime data to the lower limit of the highest index
area full, duplicate record, and sequence level being used.
error. It checks for a partially filled
blocked record. If one is present, it pads The routine then computes the total
the key field with all X'F's and writes the number of bytes used in the normal entries
partially filled block. of the highest level index being used
A series of tests is made to determine When the total number of bytes in the
the location of the last prime data record highest level index has been determined,
written. If the record was not the last this phase formats the track index inactive
record on the track, the last track full entries and then tests to determine if
indicator is set off. If the record was there are more track index records on the
the last record on the track, the address cylinder. 1If so, track index inactive
in the ID field of IOAREAL is modified. If entries are written until there are no more
space is available in the prime data area, records on the cylinder. A test is made
the EOF record is uwritten. If enough space for the device type. If the device is a
is not available for the EOF record, this 2311, this routine continues to write track
condition is posted at Filename.C in the index inactive entries until the end of the
DTF table. prime data extent is reached, keeping a
count of the number of cylinders containing
A test is made to determine if the last track index inactive entries. For a DASD
prime data track was full. If not, this other than 2311, this phase does not format
routine writes the track index normal entry any more track index inactive entries.
and the track index overflow entry. I
also writes the cylinder index normal When there are no more track index
entry, and (if the master index is being inactive_entries to be written, the address

in
used) the master index normal entry. If of the DTF is saved for the next phase, and
the last prime data track was full, and the this phase exits to phase $$BENDFF.

last track index record number was not 0,

108 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM ’

Licensed Program - Property of IBM

ISAM LOAD: ENDFL Macro, Phase 2 -
SS$BENDFF, Charts DC-DD

Objective: To write cylinder and master
index 1nactive entries for any unused
cylinders. To write cylinder index and
master index dummy end entries. To write
cylinder index and master index dummy
chained entries.

Entry: From the first phase of the ENDFL
macro, SSBENDFL.

Ezits: To the problem program via an SVC
11.

Method: This transient routine first
formats the cylinder index inactive entry.
Using the count of the number of cylinders
containing track index inactive entries, as
determined by $$BENDFL, this routine writes
cylinder index inactive entries for the
unused cylinders. MWhile the inactive
entries are being written, a count is kept
of the number of tracks containing cylinder
index inactive entries. After the last
cylinder index inactive entry is written, a
cylinder index dummy end entry is written.

The routine then tests to determine if
the master index is being used. If it is,
master index inactive entries are uritten
using the count of cylinder index tracks
containing inactive entries. One master
index inactive entry is uwritten for each
track of cylinder index inactive entries.
After the last master index inactive entry
is written, this routine writes a master
index dummy end entry.

At the end of each master index or
cylinder index cylinder, there is a master
index or cylinder index dummy chained entry
that points to the next master index or
cylinder index cylinder. In other words,
the last record on the last track of a
cylinder of cylinder index records points
to record 0 on track 0 of the following
cylinder if it is also in the cylinder
index extent. After the dummy end entries
have been uritten, this routine uwrites
dummy chained entries, if any, for the
cylinder index, and for the master index,
if it is being used.

When the dummy chained entries have been
written, this phase exits to the problem
program via an SVC 11.

SETFL Macr
SET Charts DE-DF

Phase -

Objective: To validate DTFIS table limits
and IOAREAL limits. To test for prime data
on data cell and disk devices. To
determine the number of cylinders in the
prime data extent, the maximum number of
cylinder index entries in the cylinder

index extent, and to check if the cylinder
index extent is too small. To check if the
master index extent (if present) is too
small. To build the basic CCW string for
use by the LOAD module and ENDFL
transients. To move last prime data, track
index, cylinder index, and master index
record addresses to the DTF table.

Entry: From the SETFL macro expansion.
Exits: To the $$BSETFF for normal exit. To

problem program (via SVC 11) if cylinder
index or master index extents are too

small.

Method: This B-transient first validates
the address limits of IOAREAL and the DTFIS
table It then tests whether the prime
data is on a data cell or disk device, and
moves the address limits to the prime data
control field of the DTF table.

This phase then calculates the number of
prime data extents minus one. The total
number of cylinders minus one is then
calculated.

This phase next calculates the number of
active records in the cylinder index, and
compares this number with the total number
of prime data cylinders minus 1. If the
number of cylinders is greater than or
equal to the number of cylinder index
records, the cylinder index extent is too
small and flags are set to indicate this
condition.

A test is then made to determine whether
the master index is being used. If it is,
the total number of cylinder index records
referenced by the master index is used to
determine the number of cylinder index
cylinders referenced by the master index.
One dummy record per cylinder index
cylinder is subtracted from the total
number of cylinder index records. The
result of this subtraction (number of
cylinder index records referenced by the
master index) is compared to the total
number of prime data cylinders minus one.
If the number of prime data cylinders is
greater than or equal to the number of
cylinder index records, the master index is
too small, and flags are set to indicate
this condition. If the master index is not
being used, this check is bypassed.

. The phase then checks to determine if
either the cylinder index or master index
extent is too small. If so, this phase
returns to the problem program via an SVC
11. If the extents are large enough, the
record number of the track index dummy
record is calculated, and the logical
transient proceeds to build the CCW string
shown in Figure 36.

When the CCW string has been completed,
the seek/search address is set up. The
lower limit address of the prime data area

Indexed Sequential Access Method 109

Licensed Program - Property of IBMNM

is moved to the seek/search address area,

full, the last two track index entries must

and a test is made to see if the file is to be rewritten during the load operation

be extended. If so, the extension (since the highest key on the prime data
indicator in the DTF table is set on, and track increases when new records are

the address of the last prime da*a record written). Therefore, the LTIRA is

is saved for $$BSETFF. LTIRA (last track decreased to point to the track index
index record address) is initialized to the entries for the previous track. The LCIRA

address of the last track
entry. A test
upper limit address of the prime data
extent has been increased. f
indicator is set for $$BSETFF,
prime data upper limit is moved to the
seek/search address area.
address is
data upper limit

index overflow
is made to see whether the

50,
and the old

The upper limit
initialized with the new prime

(last cylinder index record number) and the
LMIRA (last master index record number) are
also decreased by one. (LMIRA is only
decreased if the master index is being
used.) $$BSETFF is then fetched.

If the last prime data track is full,
and it is not the end of the cylinder, the
LPDRA (last prime data record address) is
increased to record zero on the next track.

A test is then made to see if the last
prime data track is full. If it is not
CCW Built Function

X'07', Address of Prime Data Lower
Limit, Command Chaining,

X'23', Address of Sector Argument,
Command Chaining, 1.

X'31', Address of Prime Data Lower
Limit, Command Chaining,

X'08', Pointer to %-8, Command
Chaining, -.

X'1D', Address of IOARE L. Suppress
Length Indicator, 16384

X¥22', Address of Sector Argument,
Command Chaining, 1.

'data area.

Long seek.
Set Sector for beginning of the prime
Search identifier equal for the beginning

of the prime data area.
TIC to %-8.

Write count, key and data in _prime data area
If the verify option is specified, the command
chaining bit is set on in the flag field.

Read Sector for last record written.

If the verify option is specified,

above.

the following CCWs are built

in addition to those

Xt23', Address of Sector Argument,
Command Chaining, 1.

X'31',
Limit,
X'08', Pointer to %x-8,
Chaining, -.

X'1E', 0, Suppress Length Indicator
and Data Transfer, 1.

Address of Prime Data Lower
Command Chaining,

Command

Set Sector for beginning of the prime
data area.

Search identifier equal.
TIC to %-8.

data to verify prime data
data is transferred to

key and
No

Read count,
record written.
main storage.

Note:
Figure 36.

The shaded areas

CCW Chain Built by $$BSETFL

indicate CCWs built for RPS only.

to Write Prime Data Records

A test is made to see whether the last If the last cylinder index track is full,
track index entry address is the last LMIRA is not changed.
record on the track index track. If so,
the LTIRA is set to record zero on the next When ail processing has been ompleted,
track. Then the LCIRA and the LMIRA are this phase exits to phase $$BSETFF to
decreased by one, and $$BSETFF is fetched. initialize the CCW chain and I/0 areas.

If the last prime data track is full,

and the cylinder is full, the LPDRA and the

LTIRA are updated to the start of the next ISAM LOAD: SETFL Macro, Phase 2 -
cylinder of the prime data extent. Since SSBSETFF, Chart DG

the last prime data cylinder is full, the

last LCIRA is not changed. If the last

cylinder index track is not full, the LMIRA Objective: To initialize the CCW chain and

is decreased by one.

I/O areas required to write the last track

ndex track in each cylinder of the prime

110 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

data area and the COCR (cylinder overflow
control record), if the cylinder overflow
gpgion has been specified in the DTFIS
able.

Entry: From the first phase of the SETFL
macro, $$BSETFL.

Exit: To the third phase of the SETFL
macro, S$$BSETFG.

Method: This phase first gets the key

length from the DTFIS table and stores it
in the count fields associated with the
write count, key and data CCHs These
CCWs are built to write up to 41 track
index records with one EXCP.

A track index dummy record is built in
the user's IOAREAL and the number of
cylinder overflow tracks in each cylinder
is calculated and saved in the COCR data
field. This phase then determines the
correct Write Count, Key and Data CCH to
write the track index dummy record. When
the correct CCW is found, the address of
IOAREAL is moved to its data address field.

A test is made to determine if the
cylinder overflow option has been
specified. If it has, Record Zero (RO) in
the track index contains a COCR. The COCR
is found in the data area of RO. The COCR
contains the address of the last overflow
record on the cylinder and the number of
tracks remaining in the cylinder overflow
area. This phase initializes the COCR with
the address of the first cylinder overflow
:ract and the number of cylinder overflow

racks.

It tests to determine if the track index
records to be formatted are on track 0 of
each cylinder. If so, the seek command
code is changed to a NO-0OP, the flag bits
are set to indicate command chaining, the
file protect indicator is reset and
SBSETFG is fetched for execution. All
writing is done on track 0 with one EXCP.
If the track index records are not on track
0, a test for DASD file protect is made.

If the DASD file protect feature is not
present, flag bits of the seek CCW are set
to indicate command chaining, the file
protect indicator is reset and $$BSETFG is
fetched for execution. All writing is done
with one EXCP. If the file protect feature
is present, the file protect indicator is
left on and $$BSETFG is fetched. All
writing is done with two EXCPs. If the
cylinder overflow option has not been
specified, the file protect indicator is
Eiést. All writing will be done with one

Indexed

ISAM LOAD: SETFL Macro, Phase 3 -
SBSETFG, Chart

Objective: To format last track index t
in each prime data cylinder. To uwrite
data if the cylinder overflow option ha

no-s
ou
o0
oxX

been specified.

Entry: From the second phase of the SETFL
macro, $$BSETFF.

Exit: To problem program via an SVC 11 or
to phase 4 of the SETFL macro, $$BSETFH,
via an SVC 2, or to phase 3A of the SETFL
macro, $$BSETFI, if RPS is supported.

Method: This logical transient phase first
checks to determine whether the file has
been extended, but the prime data area
upper limit has remained the same. If so,
no formatting is required, and a branch is
taken to read the last prime data record.
If the file is being created or being
extended with increased upper limit, this
phase formats the last track index track in
each prime data cylinder (1 track per EXCP
through use of an extended CCW chain), and
writes the COCR data for each cylinder if
the cylinder overflow option is specified.

ISAM LOAD: SETFL Macro, Phase 3A -
$SBSETFI, Chart

Objective; To build an RPS CCW chain for
the load function if RPS is supported, and
to initialize the remaining DTF fields.

Entry: From the third phase of the SETFL
macro, $$BSETFG.

To the problem
or to phase 4 of the
via an SVC 2.

ogram via an SVC 11
TFL macro, $$BSETFH,

Method: If the DTF is an RPS type DTF, the
Load CCW chain is built in the DTF

xtension with embedded RPS CClUs. Then

is phase tests to determine whether the
e is being extended or created. If the
15 being created, the seek/search

es is set up, the count field of the
EA is initialized with the address,

1 ngth and data length of the last

e data record. The CCB is initialized
he address of the CCW chain.

If the file is being created, the block
position address is set with the current
logical record address. The logical record
counter is saved in the DTF table, the CCB
is initialized with the address of the CCW
chain, and this phase exits to the problem
program via an SVC 11.

If the file is being extended, $$BSETFH
is fetched via an SVC .

Z'U Y —h-hﬂ'm

hi
il
il
dd
0A
ey
ri
it

:I'B

N

Sequential Access Method 111

Licensed Program - Property of IBM

ISAM LO SETFL Macro, Phase 4 -
SSBSETFE Chart

Objective: For extension of file, to read
the last prime data record so that keys may
be compared by the ISMOD macro.

Entry: From the third phase of the SETFL
macro, S$$BSETFG.

Exit: To problem via an SVC 11.

Method: For extension of file, this phase
reads the last prime data record (the
address was saved by the first phase,
$$SBSETFL). This provides keys for a
comparison in the load operation. If the
records are blocked and the last block was
not filled by a previous load operation,
this phase finds the padded record and sets
the block position address to load the next
prime data record at the location of the
padded record. If the records are blocked
and the last block is full, this phase
reads the last cylinder index entry to
obtain the highest key of the load file and
sets the block position address to load the
next prime data record at the location of
the data in IOAREAL.

WRITE Macro, NEWKEY, Charts

SAM_LOAD:
L-D

I
D P

Objective: To ensure that keys are in
ascending sequence. To write prime data
record in correct location. To write track
index entries, cylinder index entry and
master index entry, if necessary.

Entry: From the WRITE, NEWKEY macro
expansion.

Exit: To problem program via return
register

Method: This routine first tests switches
in the DTF table to determine if the prime
data area is full or if the cylinder/master
index is too small. If either condition
exists, this routine exits to the problem
program via linkage register l14. A test is
then made to determine if IOAREA2=YES is
specified as an ISMOD macro parameter
option. If IOAREA2 is specified and the
presence of two I/0 areas is indicated in
the DTF table to allow overlapping of I/0
with processing while creating the file,
this routine gets the addresses of IOAREAL
and IOAREA2 and determines if the ENDFL
macro was issued. If it has been issued, a
wait for I/0 completion and a test for
ERREXT=YES are made. If ERREXT is
specified, additional error conditions can
be returned to the problem program, thus
giving the user greater flexibility in
attempting to continue processing.

If IOAREA2 is not specified or if the
ENDFL macro was not issued, a test is made

ed and there are two I/0 areas, the
bit in the CCB is turned on and the
address constant is relocated. If
is not specified or if the current
record is not the first record in the file,
the current key is moved to the I/0 area
and a test is made to determine if the
previous key is lower than the current key.
If the previous key is not louwer, a test
for duplicate keys is made. If the keys
are equal, a duplicate record indicator is
set at Filename.C. f the current key is
lower than the previous key, an
out-of-sequence indicator i1s set at
Filename.C. Control then returns to the
problem program.

If the previous key is lower than the
current key, the current key and data are
moved to the I/0 area, the prime data
record count and logical record count are
updated by 1 and a test is made to
determine if this is the first logical
record in the block. If it is the first
logical record, the record number in the
count field of the I/0 area is updated. If
IDAREA2 is specified, a test for a full
block is made. If the block is not full,
the logical record count and the block
position address are saved and control
returns to the problem program.

If the block is full, the logical record
count is reset to 0 and a test for
IOAREA2=YES is made. If I0OAREA2 is
specified, the addresses of the two I/0
areas are interchanged and saved in the DTF
table. The I/0 area data address is saved
as the block position address, and a test
for ERREXT=YES is made. If ERREXT is
specified, the record type in the parameter
list is set to indicate data. A test for
IOAREA2=YES is made. If I0OAREA2 is

specified and there are two I/0 areas
present. the prime data record ID is
updated again and a prime data record from
the second I/0 area is written. If IOAREA2
is not specified, a prime data record from
IOAREAL is uwritten.

Note: The preceding process works for both
ElocEed and unblocked records.

A check is then made to determine if the
data record was written on a shared track.
If it was written on a shared track, and it
was not the last record of a shared track,
control returns to the problem program. If
the record was the last on a shared track,
a test for IOAREA2=YES is_made. If IOAREA2
is specified, a wait for I/0 completion is
made. The track index normal entry is then
1n|t1a1|zed to indicate a shared track
index entry.

If the record was not written on a
shared track and it was not the last record
on the prime data track, control returns to
the problem program.

112 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

If the end of the prime data has been
reached, a test for IOAREA2=YES is made.
If IOAREA2 is specified, a wait for I/0

completion is made and a _test for
ERREXT=YES is made. If ERREXT is
specified, the record type in the parameter
list is set to indicate track index.

track index normal and overflow entries are
written and the last track index record
address is saved.

Tests are then made for end of cylinder.
If the last prime data record written was
not the next-to-last or last record on the
cylinder, the current prime data track
number is updated by 1 and control returns
to the problem program. If the record was
the next to last record in the cylinder, a
test is made for the end of the prime data
extent. If the end of the extent has not
been reached, the prime data track number
is increased and control returns to the
problem program. If it is the end of the
extent, the end-of-extent indicators in the
DTF table are set and control returns to
the problem program.

If the record was the last prime data
record on the cylinder, a test for
ERREXT=YES is made. If ERREXT is
specified, the record type in the parameter
list is set to indicate cylinder index.
cylinder index entry is then written and
the last cylinder record address is
updated. If a master index is being used,
a master index entry is written if:

1. The cylinder index entry is the next to
last track in the cylinder.

2. The cylinder index is the last record
on the track. Before the master index
entry is written, a test for ERREXT=YES
is made. If ERREXT is specified, the
record type in the parameter list is
set to indicate master index.

Next, this routine tests for the end of the
prime data volume. If end of volume has
been reached, the extent sequence number is
updated by 1 and the seek/search address is
modified to the beginning address of the
volume. If it is not the end of volume,
the address in the seek/search area is
updated, and the last track index record
address and the address in the count field
of the I/0 area are modified. (This
modification also occurs for end of prime
data volume.) This routine then exits to
the problem program via return register 14.

ISAM ADD: WAITF Macro, Charts EA-ED

Objective: To add a record to an indexed
sequential file, adjusting the indexes and
other records as necessary.

Entry: From the WAITF macro expansion.

Indexed

Exit: To the problem program via linkage
register 14

Method: This routine first tests for
ERREXT=YES. If ERREXT is specified,
additional error conditions can be returned
to the problem program, thus giving the
user greater flexibility in attempting to
continue processing. After waiting for the
completion of the I/0 operation, this R
routine determines the type of add function
to be performed. The three types of add
functions are:

¢ Normal add to the prime data area
¢ Add to the overflow area
e EOF add.

Normal Add to the Prime Data Area:
normal add to the prime data area is
required, this routine determines if the
record is to be added to the last prime
data track. If it is and the last prime
data track is full, the overflow record
address is calculated, and EXCP is issued
to search and read the prime data track to
determine the point of insertion and a wait
for I/0 completion is made. Figures 37-58
give a description of the channel program
builder for the ADD function. If the
addition is not on the last prime data
track, the overflow record address is
calculated and the prime data track is
searched to determine the point of
insertion for the record to be added to the
file. When an equal/high key is found
during the search, the count and data
fields of that location are read into a
save area in the DTF table and IOAREAL
respectively.

JIf a

A test is made to determine if the prime
data in core option has been specified as
an ISMOD macro parameter. If it has been
specified, as many records as can fit into
the I/0 area specified in the DTFIS operand
IOAREAL are read from the prime data track
into main storage. The key of the record
to be added is compared to the keys of the
existing records in the I/0 area. If a
duplicate key is found, the condition is
indicated to the user in the DTF table
entry labeled Filename.C. If no duplicate
key is found, the records are shifted in
main storage leaving the record with the
highest key remaining in the user's work
area, WORKL. The other records are
rewritten directly onto the track. Any
remaining records on the track are then
read into the I/0 area. The process
continues until the last record on the
track is set up as an overflow record.

When the last prime data record on the
track has been rewritten, the new overflow
record is written in the overflow area, the
track index normal and overflow entries and
the COCR are written and control returns to
the problem program.

If the prime data in core option has not
been specified as an ISMOD macro parameter.
a_test for blocked records is made. If the
file is unblocked, the record previously
found on the search key equal/high is
reread to get the key field.

Sequential Access Method 113

Licensed Program - Property of IBM

If it is a_duplicate key, a suwitch is set
on in the D FIS table indicating a
duplicate key has been sensed, and a return
to the problem program is made. If there
are no duplicate keys, the user's key and
data are written from the work area, WORKL,
onto the DASD file. The record in the I/0
area, IOAREAL, replaces the user's record
in the work area. The next record on the
track replaces the one in the I/0 area.
This process is repeated until the end of
track is reached

If the end-of-file (EOF) record is read
during the process of shifting the records
over one record position, this routine
writes the last record over the EOF record,
and then writes a new EOF record (see
Figures 39, 47, 48).

If the file contains blocked records,
this routine reads the block of records (or
as many as fit in the I/0 area if IOAREAL
has been increased for reading and writing
more than one record at a time) into
IOAREAL. The key field within each logical
record is analyzed to determine the correct
position in which to_ insert the new record.
If there is duplication of keys, a switch
is set on in the DTFIS table and control
returns to the problem program.

If the key of the record to be inserted
(contained in WORKL) is low, it is
exchanged with the record presently in the
block. This procedure continues with each
succeeding record in the block until the
last record is moved into the work area.
The key field of the DASD record is then
updated to reflect the highest key in the
block. If the size of IOAREAL has been
increased, succeeding blocks in the I/0
area are also updated. The block (or
blocks) is then written back onto DASD.
The remaining blocks on the track are
similarly processed until the last logical
record on the track is moved into WORKL.
This record is then set up as an overflow
record with the correct sequence-link field
added and written in the overflow area.
The sequence-link field for the new
overflow record is taken from the track
index overflow entry. The indexes are
updated and control returns to the problem
program for the next record to be added.
If the overflow area is full, this
information is indicated to the user in the
DTF table entry labeled Filename.C

The track index normal entry key field
is updated to the key of the new last
record, the track index overflow entry data
field is updated to the address of the new
overflow entry (that entry has the louwest
key for the overflow for that track) and
the COCR is updated. These records are
written on the DASD file before control
returns to the problem program.

If the last block in the prime data area
is padded, the last record to be shifted is
included in that block. If the EOF record
is read during the process of shifting the
records one record position, the last
record is written as a new block and a new

114 IBM VSE/Advanced Functions LIOCS Volume

EOF record is written before returning
control to the problem program.

Add to the Overflow Area:; This routine

computes the new overflow record address
and reads the overflow chain to get the
address of the record with the next highest
key. This address is stored in the
sequence-link field of the new record. The
new overflow record is then written in
either the cylinder overflow _area or
independent overflow area. If these areas
are full, this condition is indicated to
the user in the DTFIS table entry labeled
Filename.C. Each time an overflow record
is added to the independent overflouw area,
an EOF record is written to maintain the
integrity of the indexed sequential file
(see Figure 49). The next overflow record
followed by an EOF record overlays the
previous EOF record.

If the new overflow record has the
lowest key in the overflow chain, its
address is used to build a new track index
overflow entry. The new overflow entry is
then written on the DASD file (see Figure
46) and control returns to the problem
program. If a cylinder overflow condition
occurs, the updated COCR (cylinder overflow
control record) is written on DASD before
control is returned to the problem program
(see Figure 43).

If the new overflow record does not have
the lowest key, the sequence-link field of
the record with the next lower key is

updated to contain_the address of the new
overflou record. This overflow record is
then rewritten on DASD and the COCR is

updated. Control returns to the problem
program.

EOF Add: This routine first determines if
the last prime data track is full. If the
last prime data track is not full, the new
record is inserted on it. If the file is

blocked, the block is read and the new
record is inserted.

If the file is not blocked or if it is
blocked and the last block is full, a new
last prime data record address is stored
and the new record is written at that
address. A new EOF record is then uwritten
(see Figure 39).

If the last prime data track is full,
the new record is inserted in the overflow
area. The new overflow record address is
computed and the record is written in the
overflow area.

If an overflow chain is present, the
next lower record in the chain is found and
the address of the new record is moved to
the sgquence—link field of the next louwer
record.

If no overflow chain is present, the
dress of the new overflow record is moved
the track index overflow entry. The
ck index overflow entry is then written
h the new high key. The master index

present) and the cylinder index are
dated with the new high key. A test for
the cylinder index in core option is then

C~E oy

d
o
r
i
i
[

3 DAM and ISAM

C

C

Licensed Program - Property of IBM

made. If it has not been specified,
control is returned to the problem program.
If the cylinder index in core option has
been specified, the new key is inserted
into the appropriate index in core entry
before returning control to the problem
program.

ISAM _ADD: WRITE Macro, NEWKEY har
EE-EF

Objective: To perform the necessary
initialization to add a record to a file.

Entry: From the WRITE, NEWKEY macro
expansion.

Exit: To the problem program via linkage
register 146

Method: After initializing the pointers to
the three parts of the DTFIS table, this
routine gets the starting address of the
highest level index, builds a CCW chain to
search the highest level index (see Figure
37) executes the channel program and tests
for ERREXT=YES. If ERREXT is specified,
additional error conditions can be returned
to the problem program, thus giving the
user greater flexibillty in attempting to
continue processing. The channel program
is executed and a wait for I/0 completion
is made. The routine then tests the F code
of the index level pointer to determine if
the next search is of the cylinder or track
index. The F code refers to the index
level just searched. If it was the master
index, the next search is on the cylinder

If the F code indicates a dummy chained
entry, the search of the master, cylinder
or track index continues. If the index
level pointer did not indicate a dummy
chained entry, a_test for an inactive or
dummy end entry is made. If an inactive or
dummy end entry is indicated, the EOF add
indicator is set on in the DTFIS table, a
CCW chain is built to read the last track
index entries (see Figure 50), the channel
program to bypass the last of the track
index entries is executed, a wait for the
I/0 operation to be completed is made, and
control returns to the problem program.
Processing continues with the record
following the last key.

If an inactive or dummy end entry is not
indicated, a test for the presence of a
master index is made. If the master index
is not present, indicating the cylinder
index was just searched, a search of the
track index is performed, and a return to
the problem program is made.

If the master index is present, a test
is made to determine if the cylinder index
in-core option was specified as an ISMOD
macro parameter. If it was not specified,
an EXCP is issued to search the cylinder
index, followed by a wait for I/0
completion, an EXCP to search the track
index, a wait for I/0 completion, and a
return to the problem program. If the
cylinder index in-core option uwas
specified, a search of the track index is
performed, and a return to the problem
program is made. When HOLD=YES is
specified in the DTF, any held data tracks
and index tracks are freed before control
returns to the problem program.

Function

index. See Figure 20 for a description of
the F code.
CCW Builder
Control Code? CCW Built
7961 X'69"', &KEYARG, CC and SLI,
Key Length
0CéB X'08', Pointer to %+16, CC
and SLI, 5
D17B XvY1A', 2&Fil name.D+8, cc,
SLI and SKIP, 5
516C X'92', 2&Filename.D+8, CC
and SLI, 10
7961 X'69"', &KEYARG, CC and
SLI, Key Length
046B X'08', Pointer to %-16, CC
and SLI, 5
150C {606', 2%Filename.D+40, 00,

Search key equal or high the master/
cylinder index. Key supplied by user in
the DTFIS table.

TIC to *+16.

Read home address into work area for the
current track index normal entry count
field in the DTFIS table.

Read count (multiple track) into work
area for the current track index normal
entry count field in the DTFIS table.

Search key equal or high the master/
cylinder index. Key supplied by user in
the DTFIS table.

TIC to %*-16.
Read data (next 10-byte index level

pointer) into work area for track index
normal entry data field in DTFIS table.

1 2 See Notes 1 and 2 in Figure 58.

Figure 37. Channel Program Builder for ADD

index.

—-- CCW chain built to search master cylinder

Indexed Sequential Access Method 115

Licensed Program -

Property of IBM

CCW Builder

Control Code!

CCW Built

Function

8C4B

066B

106C

516C

7961

046B

156C

526C

1DocC

2&Filename.S+3,

2¢Filename.D+8,
and SLI, 10

and SLI,

Pointer to %-8,CC
and SLI, 5

2g&Filename.D,

&KEYARG, CC,
Key Length

Pointer to %-16,
and SLI,

28Filename.D+40,
10

2&Filename.D+16,

and SLI,

2%Filename.W, 00

cc,

CC and

ccC

Search identifier equal the track index

using the pointer (CCHHR) in the common
seek/search area.

TIC to %*-8.

Read data (COCR record) into the cylinder
overflow control record (COCR) area.

Read count (multiple track) into work
area for the current track index normal
entry count field in the DTFIS table.

Search key equal or high the track
Key supplied by user in the DTFIS

TIC to *-16.

in
tab

Read data (next 10-byte pointer to prime

data record) into work area for track index

normal entry data field in DTFIS table.

Read count (multiple track) into work

area for current track index overflow entry

count field in DTFIS table.

Read data (10-byte overflow entry) into
random/sequential retrieval work area.

! 2 gee Notes 1 and 2 in Figure 58.
Figure 38. Channel Program Builder for ADD -- CCW chain built to search track index.

CCW Builder

Control Code!

CCW Built

Function

8C4B

066B

342C

Pointer to %-8,
and SLI,

2&Filename.S+3, CC,

2&Filename.D+32,

cc

Search identifier equal for the last
data record address using pointer, CC
in common seek/search area in DTFIS t

TIC to %-8.

[Ty e

ri
HR
bl

Write count, key and data of EOF record
located in current overflow record count
field in DTFIS table.

1 2 See Notes 1 and 2 in Figure 58.

Figure 39. Channel Program Builder for ADD -- CCW chain built to write new EOF record.

116 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

CCW Builder
Control Code! CCHW Built Function
8C4B X*'31', 2&Filename.S+3, CC, 5 |Search identifier equal the prime data
track using pointer, CCHHR, in common
seek/search area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI,
436C X'12', 2&Filename.D+24, CC Read count field for current prime data
and SLI, 10 record.
7941 X'69', &KEYARG, CC, Key Search key equal or high the prime data
Length track. Key supplied by user in DTFIS
table.
066B X'08', Pointer to %-16, CC TIC to %*-16.
‘ and SLI,
1B02 X'06', Address of IOAREAL+8 Read data (prime data block) into
+KEYLEN, 00, Block Size IOAREAL+8+Key Length.
1 2 See Notes 1 and 2 in Figure 58.
Figure 40. Channel Program Builder for ADD -- CCHW chain built to find prime data
record.
CCW Builder
Control Code?! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 Search identifier equal the track index
using pointer, CCHHR, in common seek/
‘ search address area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %x-8.
and SLI,
B0O6&C X'05', 2&Filename.D, CC and Rewrite COCR located in cylinder overflow
SLI, 1 control record work area in DTFIS table.
E14B X'Bl', 2&Filename.D+8, Search identifier equal (multiple track)
cC, 5 for the pointer, CCHHR, in the normal
entry count field.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI,
2A45 X'0D', Address of Rewrite track index normal entry located
IOAREAL+8, CC, at IOAREAL+8.
Key Length + 10
E24B X'Bl', 2&Filename.D+16, CC, 5 |[Search identifier equal (multiple track)
for the pointer, CCHHR, in the overflow
entry count field.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLII
BDCC X'05', 2&Filename.W, CC and Rewrite overflow entry located in
DC, 10 random/sequential retrieval work area.
824B X'31', 2&Filename.D+16, Search identifier equal for the pointer,
cc, 5 CCHHR, in the overflow entry count field.
066B X'08', Pointer to %-8, CC TIC to x%-8.
and SLI'
1D3C X'06', 2&Filename.W, SLI and Read data to verify record just written.
SKIP, 10 Information is not transferred to main
storage.
1 2 See Notes 1 and 2 in Figure 58.
Figure 41. Ch:nnel Program Builder for ADD -- CCW chain built to rewrite track index
entry.

C

Indexed Sequential Access Method

117

Licensed Program -

Property of IBM

CCW Builder
Control Code! CCW Built Function

8C4B X'13', 2&Filename.S+3, CC, 5 |Search identifier equal for RO using
pointer, CCHHR, in common seek/search area
in DTFIS table.

066B X'08', Pointer to %-8, CC TIC to %-8.

and SLI,
B06C X'05', 2&Filename.D, CC and Write data (updated COCR) from the
SLI, 10 cylinder overflow control record (COCR)
area in the DTFIS table.

E14B X'Bl1', 2&Filename.D+8, CC, 5 |Search identifier equal (multiple track)
the track index using the pointer, CCHHR,
in the work area for the current track
index normal entry count field.

066B X'08', Pointer to %-8, CC TIC to »*-8.

and SLI,
BDCC X'05', 2&Filename.W, CC and Write data (track index overflow entry)
DC, 1 from the random/sequential retrieval work
area.

814B X'31', 2&Filename.D+8, CC, 5 |Search identifier equal the track index
using the pointer, CCHHR, in the work area
for the current track index normal entry
count field.

066B X'08', Pointer to %-8, CC TIC to %-8.

and SLI,
1D3C X'06', 2&Filename.W, SLI Read data to verify record just written.
and SKIP, Information is not transferred to main
storage.
1 2 gee Notes 1 and 2 in Figure 58,

Figure 42.
entry.

Channel Program Builder for ADD --

CCW chain built to write track index

CCW Builder
Control Code! CCHW Built Function

8C4B X'31', 2&Filename.S+3, CC, 5 |[Search identifier equal for RO using
pointer, CCHHR, in common seek/search area
in DTFIS table.

066B X'08', Pointer to %-8, CC TIC to *-8.

and SLI,

B02C X'05', 2&Filename.D, SLI, 10 |Write data (updated COCR) from the cylinder
overflow control record area in the DTFIS
table.

1 2 See Notes 1 and 2 in Figure 58.
Figure 43. Channel Program Builder for ADD -—- CCW chain built to write COCR.

118 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

Function

CCW Builder
Control Code? CCW Built
8C4B X*'31', 2&Filename.S+3, CC, 5
066B X'08', Pointer to %-8, CC
and SLI,
AAQ7 X'0E', Address of IOAREAL+8,
00, Key Length + Record
Length + 10

Search identifier equal using pointer,
CCHHR, in common seek/search area in DTFIS
table.

TIC to %-8

Read key low

and data of ?

reviously
overflow record into IOAREAL+8.

1 2 Gee Notes 1 and 2

Channel Program Builder for ADD
record.

in Figure 58.
Figure 44,

C

—— CCW chain built to read previous overflow

Function

CCW Builder
Control Code! CCW Built
8C4B X*'31', 2&Filename.S+3, CC, 5
066B X'08', Pointer to %-8, CC
and SLI,
2A47 X'0D', Address of IOAREAL+8,
CC, Key Length + Record
) Length + 10
‘ 8C4B X'31', 2&Filename.S+3, CC, 5
066B X'08', Pointer to %-8, CC
and SLI,
AA37 X'0E', Address of IOAREAL+S8,
SLI and SKIP, Key Length +
Record Length +

h identifier equal using pointer,
» in common seek/search area in DTFIS

Write key and data of previously low
overflow record located at IOAREAL+8.

Search identifier equal using pointer,
CCHHR, in common seek/search area in DTFIS
table.

TIC to %-8.

Read key and data to verify record just
written. Information is not transferred
to main storage.

1 2 Gee Notes 1 and 2 in Figure 58.

Channel Program Builder for ADD
overflow record.

Figure 45,

C

Indexed Sequential Access Method

——= CCW chain built to write previous

119

Licensed Program - Property of IBM

CCW Builder
Control Code! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |[Search identifier equal for last overflow
record address using pointer, CCHHR, in
common seek/search area in DTFIS table.
0668 X'08', Pointer to -8, CC TIC to %-8.
and SLI,
37C9 X'1D', Address of IOAREAL, Write count, key and data of neuw overflow
CC and DC, Key Length + record located at IOAREAL.
Record Length + 18
8C4B X*'31', 2&Filename.S+3, CC, 5 |Search identifier_ equal for last overflow
record address using pointer, CCHHR, in
common seek/search area in DTFIS table.
066B X'08' Pointer to %-8, CC TIC to %*-8.
and SLI, 5
c739 X'1E', Address of IOAREAL, Read count, key and data to verify record
SLI and SKIP, Key Length + record just written. Information is not
Record Length + 18 transferred to main storage.
1 2 See Notes 1 and 2 in Figure 58.
Figure 46. Channsl Program Builder for ADD -- CCW chain built to write new overflow
recor
CCW Builder
Control Code!? CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal for present EOF
record address minus 1 using pointer,
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to %*-8, CC TIC to %-8.
and SLI,
37C8 X'1D', Address of IOAREAL, Write count key and data of new record
CC and DC, Key Length + o be added located at IOAREAL.
Block Size + 8
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal for present EOF
record address minus 1 using pointer CCHHR,
in common seek/search area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI,
c738 X'1E', Address of IOAREAL, Read count, key and data to verify record
SLI and SKIP, Key Length + just uwritten, Information is not
Block Size + 8 transferred to main storage.
1 2 See Notes 1 and 2 in Figure 58.
Figure 47. Channel Program Builder for ADD -- CCW chain built to write over EOF record

(blocked records

120 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

Function

CCW Builder
Control Code? CCW Built
8C4B X'31', 2&Filename.S+3, CC,
066B X'08', Pointer to %¥-8, CC
and SLI,
37C8 X'1D', Address of IOAREAL,
CC and DC, Key Length +
Block Size + 8
8C4B X'31', 2&Filename.S+3, CC,
066B X'08', Pointer to %-8, CC
and SLI,
c738 X'1E', Address of IDAREAL,
SLI and SKIP, Key Length +
Block Size + 8

5

5

identifier equal for present EOF
address minus 1 using pointer,
in common seek/search area in DTFIS

Search
record
CCHHR,
table.

TIC to %-8.

key and data

Write count, of ne
located at IOAREAL.

to be added,

Search
record
CCHHR,
table.

TIC to

identifier equal for present EOF
address minus 1 using pointer,
in common seek/search area in DTFIS

*-8.

Read count, key and data to verify record
just written. Information is not
transferred to main storage.

1 2 Gee Notes 1 and 2 in Figure 58.

Figure 48.
(unblocked records).

Channel Program Builder for ADD --

CCW chain built to write over EOF record

Function

CCW Builder
Control Code! CCW Built
8C4B X'31', 2&Filename.S+3, CC,
066B X'08', Pointer to %-8, CC
and SLI,
37AC X'1D', Address of IOAREAL,
DC and SLI, 10

5

Search identifier equal for present EOF
record address minus one using pointer,
chTR' in common seek/search area in DTFIS
able.

TIC to %-8.

Write count, key and data of EOF record
located at IOAREAL.

1 2 See Notes 1 and 2 in Figure 58.

Figure 49.
independent overflow area.

Indexed Sequential Access Method

Channel Program Builder for ADD -- CCW chain built to write EOF in

121

Licensed Program - Property of IBM

CCW Builder
Control Code!l CCW Built Function

8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the track index
using the pointer (CCHHR) in the common
seek/search area.

066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI, 5

106C X'06', 2&Filename.D, CC and Read data (COCR record) into the cylinder
SLI, 10 overflow control record (COCR) area.

E14B X'Bl', 2&Filename.D+8, CC, 5 |[Search jidentifier equal (multiple track)

the track index for the last normal entry
using information in the work area for the
current track index normal entry count

field.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI, 5
154C C'06', 2&Filename.D+40, CC, Read data (last track index normal entry)
10 into work area for track index normal entry
data field.
526C X'92', 2&Filename.D+16, CC Read count (multiple-track) of last track
and SLI, 10 index overflow entry into work area for the
current track index overflow entry count
field.
1DoC X'06', Filename.W, 00, 10 Read data (last track index overflow entry)

into random/sequential retrieval work area.

1 2 gee Notes 1 and 2 in Figure 58.

Figure 50. Channel Program Builder for ADD —-- CCW chain built to read last track index
entry.

CCW Builder
Control Code! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the overflow chain
using the pointer (CCHHR) in the common
seek/search area.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI, 5
AAO7 X'0E', Address of IOAREAL+8, Read key and data of overflow record
00, Key Length + Record into IOAREAL+S8.
Length + 10
1 2 Gee Notes 1 and 2 in Figure 58.
Figure 51. Channel Program Builder for ADD -- CCW chain built to read overflow record.
CCW Builder
Control Code! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal for last prime data
record address using pointer, CCHHR, in
common seek/search area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to x%-8.
and SLI, 5
1B02 X'06', Address of IOAREAL+ Read block into IOAREAL + 8 + KEYLEN.
8+KEYLEN, 00, Block Size
1 2 gee Notes 1 and 2 in Figure 58.
Figure 52. Channel Program Builder for ADD -- CCW chain built to read last prime data

record.
122 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

CCW Builder .
Control Code? CCW Built Function
8C4B X*'31', 2&Filename.S+3, CC, 3 |Search identifier equal for last prime data
record address using pointer, CCHHR, in
common seek/search area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
2AC6 X'0D', Address of IOAREAL+8, |Write key and data of prime data block
CC and DC, Key Length + ocated at IOAREAL+8.
Block Size
8C4B X'31', 2&Filename.S+3, CC, 5 |[Search identifier equal for last prime data
record address using pointer, CCHHR, in
common seek/search area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
AA36 X'0E', Address of IOAREAL+8, |Read key and data to verify record just
SLI and SKIP, Key Length + written. Information is not transferred
Block Size to main storage.

1 2 See Notes 1 and 2

Figure 53.

in Figure 58.

data records and verify.

Channel Program Builder for ADD -- CCW chain built to write block of prime

CCW Builder
Control Code!? CCHW Built Function

8C4B X*'31', 2&Filename.S+3, CC, 5 Search identifier equal for last track
index address using pointer, CCHHR, in
common seek/search area in DTFIS table.

066B X'08', Pointer to %-8, CC TIC to %-8.

and SLI,
2A45 X'0D', Address of IOAREAL+S8, Write key and data of tr ck index
CC, Key Length + 10 normal entry located at IOAREAL+8.

E24B X'B1', 2&Filename.D+16, CC, 5 |[Search identifier equal (multiple track)
the track index for the last over flow
entry using the count for the current
track index overflow entry.

066B C'08', Pointer to %-8, CC TIC to %-8.

and SLI,
2845 X'0D', Address of WORKL, CC, Write key and data of track index
Key Length + 10 overflow entry located at WORKL.

824B X'31', 2&Filename.D+16, CC, 5 |Search identifier equal the track index
for the last overflow entry using the
count for the current track index overflow
entry.

066B X'08', Pointer to %-8, CC TIC to %-8.

and SLI, 5
A835 X'0E', Address of WORKL, Read key and data to verify record just
SLI and SKIP, Key Length + 10 |written. Information is not transferred
to main storage.

1 2 Ggee No

Figure 54.
e

tes 1 and 2 in Figure 58.

ntry.

Indexed Sequential Access Method

Channel Program Builder for ADD -- CCW chain built to write track

123

index

Licensed Program — Property of IBM

CCW Builder
Control Code! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the master”/
cylinder index using the pointer, CCHHR, in
the common seek/search area in the DTFIS
table.
066B X'08', Pointer to %-8, CC TIC to *-8.
and SLI, 5
150C X'06', 2&Filename.D+40, Read data (index entry) into work area
00, 1 for track index normal entry data field.
1 2 Gee Notes 1 and 2 in Figure 58.
Figure 55. Channel Program Builder for ADD -- CCW chain built to read index entry.
CCW Builder
Control Code! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the master/
cylinder index using pointer, CCHHR, in
common seek/search area in DTFIS table
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI, 5
2A45 X'0D', Address of IOAREAL+8, Write key and data of master/cylinder
CC, Key Length + 10 index entry located at IOAREAL+8.
8C4B X'31', 2&Filename.S+3, CC, 5 |[Search identifier equal the master/
cylinder index using pointer, CCHHR, in
common seek/search area in DTFIS table
AA35 X'0E', Address of IDAREAL+8, Read key and data to verify record just
SLI and SKIP, Key Length written. No information is transferred
+ 0 to main storage.
1 2 See Notes 1 and 2 in Figure 58.
Figure 56. Channel Program Builder for ADD -- CCW chain built to write index entry.
CCW Builder
Control Code! CCW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 [Search identifier equal the track index
using the pointer, CCHHR, in the common
seek/search area in the DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI, 5
B06C X'05', 2&Filename.D, CC Write data (COCR) from the cylinder
and SLI, 10 overflow control record work area in DTFIS
table.
E24B X'Bl', 2&Filename.D+16, Search identifier equal (multiple-track)
cC, 5 the track index using the pointer, CCHHR,
in the work area for current track index
overflow entry count field.
066B X'08', Pointer to %-8, TIC to %*-8.
CC and SLI, 5
AA3S5 X'0E', Address of IODAREAL+8, Read key and data to verify record just
SLI and SKIP, Key Length written. Information is not transferred
+ 10 to main storage.

1 2 See Notes 1 and 2 in Figure 58.

Figure 57.
overflow entry.

Channel Program Builder for ADD -- CCW chain built to write track

index

124 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program — Property of IBM

Note 1:
The first character of the control code references an operation code at IJHCSTRI.
The second character of the control code references a data area at IJHAHRAA.
The third character of the control code references the following information:
lControl Character CCW Flag Field Meaning
0 X'00"' End of CCW Chain
2 Xr20" SLI (Suppress Length Indicator)
3 X'30" SLI and SKIP (Suppress Data Transfer)
4 X'40" CC (Command Chaining)
6 X'60" CC and SLI
7 X'70"' CC, SLI, and SKIP
A X'AQ' SLI and DC (Data Chaining)
C Xr'co’ CC and DC
The fourth character of the control code references a byte count (length) field at
IJHCRESZ.
Note 2:
&Filename = DTF name supplied by use
&Filename.X = X is suffix supplied by DTFIS for unigque DTF labels.

Figure 58. Channel Program Builder for ADD -- Notes.

$SBINDEX Read Cylinder Index Into Storage, index skip option was specified in the DTF

Charts FA-FB entry. If the index skip option was
specified, any cylinder index entries
preceding the one needed to process a given

Objective: To read all or part of the key are not read into main storage. In
cylinder index into main storage. order to skip the cylinder index entries
preceding the one needed to process a given
Entry: From the indexed-sequential logic key, a CCB to read the cylinder index is
module (ISMOD). built along with a string of CCHWs. Figure

59 gives a description of the CCW string.

Exit: To the problem program.
This transient then executes the channel

Method: This phase determines the number of program and determines if the address of

cylinder index entries that can be read the first cylinder index entry read is the

into main storage at one time. Each address of the required entry (SKEH, TIC,

cylinder index entry consists of a key area NO-0OP) . If it is, there are no cylinder

and a data area. The key area contains the index entries to be skipped and the

highest key associated with the cylinder, cylinder index is then read into main

and its length is the same as that storage from that point. If the addresses

specified for logical data records in the are not the same (RDID, SKEH, TIC, RD), a

DTFIS entry KEYLEN. The data area is ten check is made to determine if this is a

bytes long and contains the pointer to the dummy chained entry.

track index for that cylinder. See Figure

20 for the format of this 10-byte pointer. If it is a dummy chained entry

When this phase reads the cylinder index (indicating the end of the cylinder), its

entry into main storage, only six bytes of address points to the first track of the

the 10-byte pointer are retained. The last next cylinder containing the cylinder

four bytes of the pointer to the track index. This phase subtracts 1 from the

index are the same for all entries in the record number of the dummy chained entry to

cylinder index. Therefore, only the first get the preceding cylinder index entry,

six bytes of the pointer are required for moves the chain address to the next

processing. cylinder index entry to be read (in the

DTFIS table), and reads the cylinder index

If it is the first time through this into main storage starting with the entry

B-transient phase, the key of the first preceding the dummy chained entry.

core index entry is set to 0. If it is not

the first time through this phase, the key If it is not a dummy chained entry, a

of highest entry minus 1 that was test is made to determine if the required

previously read into main storage is moved entry is the first record on the first

to the key area of the first core index track of the cylinder.

entry. A test is made to determine if the

Indexed Sequential Access Method 125

Licensed Program - Property of IBM

If it is, this phase sets up to read the
cylinder index into main storage starting
with entry preceding the dummy chained
entry for the previous cylinder. If the
required entry is not the first record on

the first track of the cylinder, a test is
made to determine if the record number of
the cylinder index entry is 1.

If it is 1, the track number is

decreased by 1 and the record number is
updated to the maximum record number for
the cylinder index track. The cylinder
index is read into main storage starting
with the last record on the preceding
track. If the required cylinder index
record number is greater than 1, the record
number is decreased by 1, and the cylinder
index is read into main storage starting
with the preceding entry on the track.
Each time a cylinder index entry is read,
the number of available index entries in
main storage is decreased by 1.

If the index skip option was not
specified in the DTF, this phase decreases
the number available core index entries by

These two core index entries contain
The first dummy entry at
the beginning of the cylinder index storage
area contains either a key of all zeros (if
this is first time the cylinder index has
been read into main storage) or it contains
the key of the last cylinder index entry
read into main storage. The second dummy
entry is located at the end of cylinder
iqg?x storage area and has a key of all

s.

Before a part or all of the cylinder
index is read into main storage, a test is
made to determine how many cylinder index
records can fit in the area available. A
CCB and a CCW chain are built to perform
the actual read operation. Figure 59 gives
a description of the CCW chain. The
channel program is executed and the number
of core index entries is decreased by the
number of records read. The cylinder index
is read into main storage until either the
end of the cylinder index is reached or
there are no more core index entry
positions.

2.
dummy entries.

CCW Built

Function

X'07', Address of cylinder index entry,

Command Chaining,

X'31', Address of cylinder
Command Chaining, 6

X'08', Pointer to %-8,
X'69', &KEYARG, Command Chai

ning
Suppress Length Indicator, KEYLEN
(Key Length).

index entry,

- =

and

X'08', Pointer to *+16, -, -.

X'063', -, Suppress Length Indicator, 1.
X*'92', IDOFHIT, Command Chaining, 8.
X'69" &KEYARG, Command Chai and

ning
Suppress Length Indicator, KEYLEN
(Key Length).

X'08"',
X'06"',

Pointer to %-16,

POINTER, End of Chain,

-y =

10.

Long seek.

Search identifier equal (SIDE) the
cylinder index.

TIC to %*-8.

Search key equal or high (SKEH) the
cylinder index. Key supplied by user
the DTF table.

TIC to *+16.

NO-OP.

in

t (multiple—-track) (RIDM) into
8-byte area for record found on

earch key equal or high (SKEH) the
ylinder index.

TIC to %-16.
Read data p

ortion
(RD) into POINTER,
pointer to track i

f cylinder index entry
éo—byte area for
ex.

o

mn

Figure 59. t
to process a given key.

CCW chain built by $$BINDEX to skip cylinder

index entries preceding the one

126 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

C

C

Licensed Program - Property of IBM

CCW Built

Function

X'07', Address of cylinder index entry,
Command Chaining, 6.

X'31', Address of cylinder index entry,
Command Chaining, 6.

X'08', Pointer to %-8, -, -,
X'0E', Address of cylinder index enﬁry
+

main storage (multiple of key lengt
Command Chaining, Key Length + 10.

in
6)

»

Long Seek.

Search identifier equal (SIDE) the
cylinder index.

TIC to %-8.

Read key and data (RKD) of cylinder index
entry into storage.

Figure 60.

ISAM RETRVE, RANDOM:
Chart FC

READ Macro, KEY,

Objective: To perform the random retrieval
function for an indexed sequential file by
searching the indexes to determine the
track on which the desired record is
stored.

Entry: From the READ, KEY macro expansion.

Exit: To the problem program via linkage
register 14.

Method: This routine first initializ
pointers and status bits in the DTFI
table. It then constructs the CCW chain to
search the master or cylinder index (see
Figure 61). It determines the highest
level index (master or cylinder) being
used, and tests for ERREXT=YES. If ERREXT
is specified, additional error conditions
can be returned to the problem program,
thus giving the user greater flexibility in
attempting to continue processing. This
routine then searches the highest level
index to get the address of the next index
to be searched.

A test of the F code from the index
level pointer is then made to determine if
the next search is of the track index (see
Figure 20). The F code refers to the index
level just searched. If the master index
was just searched, the next search is on
the cylinder index. If the next search is
not on the track index, the routine gets
the index entry type and determines the
routine to process that type.

es
S

If the entry type is a normal entry, the
routine returns to search the next index.
If the entry type is a dummy end entry or
an inactive entry, the routine branches to
an error routine to set a no-record-found
flag in the DTF table and to return to the
problem program. If the entry is a dummy
chained entry, the routine returns to
search the index using the address supplied
by the 10-byte index level pointer.

CCW chain built by $$BINDEX to read the cylinder index into storage.

When the next search is found to be on
the track index, a test is made to
determine if the track index takes up one
track or more. If the track index does not
require a full track, the routine builds a
new CCW chain to search the track index
(see Figure 62). This routine then issues
the EXCP and SVC7 (WAIT) to search the
track index. If the over/under seek
routine is not needed, it returns to the
problem program.

ISAM RETRVE, RANDOM:
FD-FG

WAITF Macro, Charts

Objective: To ensure that the last EXCP
issued has been completed and that the
condition is normal. If the operation is a
read, to locate the specified record and
complete the transfer of data to the I/0
area specified by the DTFIS entry IOAREAR,
and to the specified work area if the DTFIS
entry WORKR is included in the file
definition. If the operation is a urite,
the objective is to return control to the
problem program.

Entry: From the WAITF macro expansion.

Exit: To the problem program via linkage
register 14.

Method: This routine first tests for
ERREXT=YES. If ERREXT is specified,
additional error conditions can be returned
to the problem program, thus giving the
user greater flexibility in attempting to
continue processing. After initializing
pointers to the DTFIS table, this routine
tests the status byte in the DTF table, to
determine if the condition so far is
normal. If an abnormal condition exists,
control returns to the problem program.

If the condition is normal, the routine
issues a WAIT to determine if the EXCP
issued by the READ or WRITE routines has
been completed, and also tests for errors.

Indexed Sequential Access Method 127

Licensed Program - Property of IBM

Then, if the operation is a WRITE, this
routine returns control to the problem
program.

If the operation is a READ, this routine
must complete the read operation by moving
the data to the I/0 area. If first moves
the address of the track in which the
desired record is stored to the seek/search
area, and initializes pointers to KEYARG
and the I/0 area. It also gets the
relative key location and key length.

The routine then gets the index entry
type (F code) from the search address and
determines the routine to process that
type. If the entry is a normal entry on an
unshared track, a new CCW chain is built to
find the record in the prime data area.
(see Figure 63). If blocked records are
specified, the CCHW command code is modified
to search high or equal. An EXCP and WAIT
are issued to find the record and read the
block into the I/0 area. If records are
unblocked, the record is moved into WORKR,
if specified, and control returns to the
problem program. If records are blocked,
this routine tests to determine if KEYARG
is less than the key in the first logical
record. If it is, the record has not been
found, and the corresponding bit is set on
in the DTF table. Otherwise, the
corresponding key is found within the block
and the routine moves the block to WORKR,
if specified. Control then returns to the
problem program.

For a normal entry on a shared track,
the routine decreases the record number in
the search address by 1, and builds a new
CCW chain to find records on a shared track
(see Figure 64). Processing continues as
in the routine to process a normal entry on
an unshared track.

If the entry is an overflow end entry or
an overflow chained entry, this routine
first constructs a CCW chain to search the
overflow chain (see Figure 65). An EXCP
and WAIT are issued to locate the record in
the overflow chain. A test is made to
determine if the desired record has been
found. it has not been found, the
routine tests for an overflow end entry.

If it is an overflow end entry, e
no-record-found bit is set on in the DTF
table. If it is not an overflow end entry,
the sequence link field is inserted in the
seek/search address, and the overflow chain
is searched again.

If the record has been found, overflow
bits are set on in the DTF table, and the
non-first overflow record count is
increased by 1. The logical record is
moved to WORKR, if specified. Control
rzturns to the problem program via register
14,

If the entry is a dummy end entry or an
inactive entry, the routine sets a

128 IBM VSE/Advanced Functions LIOCS Volume 3

no-record-found bit on in the DTF table,
and returns control to the problem program.

ISAM RETRVE,
Chart FH

RANDOM: WRITE Macro, KEY,

Objective: To perform random retrieval
output for an indexed sequential file.
Entry: From WRITE, KEY macro expansion.

Ezit: To the problem program via register

Method: This routine first sets the write
bit on in the DTFIS table. It then tests
for an uncorrectable DASD error, wrong
length record error, or no record found
error. If any of these errors exist, the
no-record-found bit is set on in the DTF
table, and control returns to the problem
program.

If there are no errors, the status byte
in the DTF table is reset, and pointers to
the DTF table are initialized. This
routine then gets the count field of the
record as saved by the READ routine, the
address of WORKR, and the address of the
logical record within the I/0 area. The
record, or block of records, is moved to
the I/0 area from WORKR, if specified. The
CCW chain to write records is then built
(see Figure 66).

If the entry to be written is not an
overflow entry, the byte count field in the
write and verify CCWs is modified to the
block length from the DTF table. This

routine then issues the EXCP to write the
record, and returns control to the problenm
program without issuing a WAIT. The WAIT
function is left to the WAITF macro, which
must be issued before the user can continue
processing.

ISAM RETRVE, RANDOM: FREE Macro, Chart FK
Objective: To free a held track if the

track hold option has been specified.
Entry: From the FREE macro expansion.

Exit: To the problem program via linkage
register 14,

Method: This routine determines whether the
track hold option has been specified in the
DTF. If so, both the held data track and
the applicable held index track are
released. All tracks are released by SVC 36
and control returns to the problem program.

DAM and ISAM

Licensed Program — Property of IBM

CCW Builder
Control Code! CCHW Built Function
7661 X'69', &KEYARG, CC and Search key equal or high the masters
SLI, Key Length cylinder index. Key supplied by user in
the DTFIS table.
0CéB X'08', Pointer to %*+16, CC TIC to %*+16.
and SLI, 5
D17B X'1A', 2&Filename.W, CC, Read home address into random/sequential
SLI, and SKIP, 5 retrieval work area in DTFIS table.
536C éL?Z'iO&IOAREAR, CC and Read count (multiple track) into IOAREAR.
»
7461 X'69', KEYARG, CC and SLI, Search key equal or high the master/
Key Length cylinder index. Key supplied by user in
‘ DTFIS table.
046B X'08', Pointer to %*-16, CC TIC to *-16.
and SLI, 5
110C X'06"', 2&Filename.W, 00, 10 Read data (10-byte index level pointer)
into random/sequential retrieval area in
DTFIS table.

1 2 gee Notes 1 and 2 in Figure 67.

Figure 61. Channel Program Builder for Random Retrieval —-- CCW chain built to search
master cylinder index.

CCW Builder
Control Code! CCH Built Function
D36B X'1A', &IOAREAR, CC and SLI, 5 |Read home address into IOAREAR.
9661 X'E9', &KEYARG, CC and SLI, Search key equal or high (multiple-
Key Length track) track index. Key supplied by user
in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI, 5
110C X'06', 2&Filename.W, 00, 10 Read data (10-byte index level pointer)
into random/sequential retrieval area in
DTFIS table.

‘ 1 2 See Notes 1 and 2 in Figure 67.

Figure 62. Channel Program Builder for Random Retrieval —-- CCW chain built to search
track index.

‘ Indexed Sequential Access Method 129

Licensed Program -

Property of IBM

CCW Builder
Control Code! CCW Built Function
7461 X'69"', &KEYARG, CC and Search key equal or high in prime data
SLI, Key Length area. Key supplied by user in DTFIS
table.
0C4B ééOB', Pointer to %+16, TIC to %+16.
»
D17B X'1A', 2&Filename.W, CC, Read home address into random/sequential
SLI, and SKIP, retrieval work area in DTFIS table.
406C X'12', 2&Filename.S+3, CC Read count into common seek/search
and SLI, area in DTFIS table.
6461 X'29' or X'69', &KEYARG, If records are unblocked, search key
or 7461 CC and SLI, Key Length equal the prime data area. If records
are blocked, search key equal or high in
prime data area. Key supplied by user in
DTFIS table.
044B X'08', Pointer to %-16, TIC to x%x-16.
cc,
1302 X'06', &IOAREAR, 00, Block Read data (block) containing starting
Length record into IOAREAR.

1 2 Gee Notes 1 and 2

Figure 63.
record

in Figure 67.

Channel Program Builder for Random Retrieval

—== CCW chain built to find

in prime data area (unshared track).

CCW Builder
Control Code!l CCHW Built Function
804B X'31', 2&Filename.S+3, CC, 5 Search identifier equal the prime data
area using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.
064B X'08', Pointer to -8, CC, 5 TIC to %*-8.
406C X'12', 2&Filename.S+3, CC Read count into common seek/search
and SLI, area in DTFIS table.
6461 X'29' or X'69', &KEYARG, If records are unblocked, search key
or CC and SLI, Key Length equal the prime data area. If records
7461 are blocked, search key high or equal the
prime data area. Key supplied by user in
DTFIS table.
044B X'08', Pointer to %-16, CC, 5 TIC to %-16.
1302 X'06', &IOAREAR, 00, Read data (block) containing record
Block Length into IOAREAR.

1 2 See Notes 1

Figure 64.
record

and 2 in Figure 67.

Channel Program Builder for Random Retrieval

—— CCW chain huilt to find

in prime data area (shared track).

130 IBM VSFsAdvanced Functions LIOCS Volume 3 DAM and ISAM

C

Licensed Program - Property of IBM

CCW Builder
Control Code! CCHW Built Function
804B X'31', 2&Filename.S+3, CC, 5 Search identifier equal the overflow
chain using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.
064B X'08', Pointer to %-8, CC, 5 TIC to %*-8.
6461 X'29', &KEYARG, CC and Search key equal the overflow chain.
SLI, Key Length Key supplied by user in DTFIS table.
116C X'06', 2&Filename.W, SLI, 10 Read data (l0-byte sequence-link field)
into random/sequential retrieval area in
DTFIS table. This CCWH is executed when
the required overflow record is not found
in the overflow chain.
1303 X'06', &IOAREAR, 00, Read data (sequence-link field plus
Record Length + 10 logical record) into IOAREAR. This CCHW
is executed when the matching key is
found in the overflow chain.

1 2 See Notes 1 and 2 in Figure 67.

Figure 65. Channel Program Builder for Random Retrieval -- CCW chain built to find
record in i

overflow chain.

CCW Builder
Control Code?! CCW Built Function
804B X'31', 2&Filename.S+3, CC, 5 Search identifier equal prime data area
using pointer (CCHHR) in common seek/
search area in DTFIS table.
064B X'08', Pointer to %-8, CC, 5 TIC to %-8.
B3C3 X'05', &IOAREAR, CC, Record Write data from IOAREAR.
Length + 10
804B X'31', 2&Filename.S+3, CC, 5 Search identifier equal the prime data
area, using pointer (CCHHR) in common
seek/search area in DTFIS table.
064B X'08', Pointer to *-8, CC, 5 TIC to %-8.
1333 X'06', &IOAREAR, SLI and Read data to verify record just written.
SKIP, Record Length + 10 Information is not transferred to main
storage.
1 2 See Notes 1 and 2 in Figure 67.
Figure 66. Channel Program Builder for Random Retrieval —-- CCW chain built to urite

record.

Indexed Sequential Access Method 131

Licensed Program - Property of IBM

Note 1:

Control Character CCW Flag Field

The first character of the control code references an operation code at IJHCSTRI.
The second character of the control code references a data area at IJHCASAD
The third character of the control code references the following information:

oONDwNO

The fourth arac
field at IJ RESZ

Note 2:

name supplied by user

&Filename F us
X is suffix supplied by

= DT
&Filename.X =

ter of the control code references a byte count (length)

DTFIS for unique DTF labels.

Meaning
End of CCW chain
SLI (Suppress Length Indicator)
SLI and SKIP (Suppress Data Transfer)
CC (Command Chaining)
CC and SLI
CC and SLI and SKIP
CC and DC (Data Chaining)

Figure 67.

ISAM RETRVE, SEQNTL: ESETL Macro hart GA

Objective: To write the last record if
necessary, and reset the status byte in the
DTFIS table.

Entry: From the ESETL macro expansion.

Exit: To the problem program via linkage
register 14.

Method: After initializing pointers to the
DTFIS table, this routine sets the status
byte in the DTFIS table to 0. A test is
then made to determine if the PUT issued
bit is on in the retrieval byte of the DTF
table. If it is on, the last block of
records is written. A test for IOAREA2=YES
is then made. If IOAREA2 is specified as
an ISMOD macro parameter option to allow
overlapping of I/0 with processing, a bit
is set in the DTF table to indicate the
first record is being processed and a wait
for I/0 completion is made. If HOLD=YES is
specified, an SVC 36 releases any held
tracks. Control then returns to the
problem program.

ISAM RETRVE, SEQNTL: GET Macro, Charts

GB-GE

Objective: To perform the sequential
retrieval input function for an
indexed-sequential file.

Entry: From the GET macro expansion.

Exit: To the problem program via linkage
register 14.

Method: Th
to the DTF

is routine in alizes pointers
FIS table, and en tests for

132 IBM VSE/Advanced Functions LIOCS Volume

Channel Program Builder for Random Retrieval -- Notes.

IOAREA2=YES. If IOAREA2 is not specified
as an ISMOD macro parameter option, a test
is made to determine if the last record
read was in the overflow area. If the last
record read was in the overflow area, the
contents of the sequence-link field is
moved to the seek/search area and a test is
made to determine if the end of the
overflow chain has been reached. If the
last record read was in the overflow area
and HOLD=YES has been specified, the track
is released, then the overflow record is
read and addresses are saved. If HOLD=YES
is specified, the index track and data
track are held during update procedure.

The index track is then released. The
record is then moved to WORKS, if
specified, and control returns to the
problem program.

If the end of the chain has been
reached, the current DASD address is
updated to the next track and the next
record is read. The record is moved to the
work area if specified, addresses are
saved, and control returns to the problem
program.

If the last record read was not in the
overflow area, the routine determines if
all records in the block have been
processed. If all the records in the block
have not been processed, the I/0 area
pointer is updated to the next logical
record. If that record is not a padding
record, it is moved to the work area, if
specified, addresses are saved, and control
returns to the problem program. If it is a
padding record, the EOF indicator is set in
the DTFIS table, and control returns to the
problem program.

If all records in the block have been
processed, a check is made to determine if
the PUT macro has been issued. If it has,
the record is uritten.

3 DAM and ISAM

Licensed Program - Property of IBM

A test is made to determine if the end
of the track has been reached. If it has
been reached, the track index is searched
to find the next track index entry. The
current track index record number in the
DTF table is then updated, and a test is
made to determine if there is any overflow
record indicated in the track index entry
just read. the track index entry
indicates an overflow record is present,
that overflow record is read, and moved to
the work area if specified. Control
returns to the problem program.

If there is no overflow record indicated
in the track index entry, the current
address is updated by 1, and the record is
read and moved into the wWork area, if
specified. Control returns to the problem
program.

If IOAREA2 has been specified to allow
overlapping of I/0 with processing, a test
is made to determine if the last record
read was in the overflow area. If the last
record read was in the overflow area, a
test is made to determine if the record
being processed by the user is an overflouw
record. If it is an overflow record, a
wait for I/0 completion is made, the next
available I/0 area address is obtained, the
current record address is saved, and a test
is made to determine if the first record is
being processed.

If the first record is being processed,
the overflow record is read, its address is
saved in the DTF table and the record is
moved to the work area, if specified.
Control then returns to the problem
program.

If the first record is not being
processed, the address of the next overflowuw
record is moved to the seek/search address
and a test is made to determine if the end
of the overflow chain has been reached. If
the end has not been reached, the overflowuw
record is read, and addresses are saved.

If HOLD=YES is specified, an SVC 36
releases any held tracks. Control then
returns to the problem program.

If the end of the overflow chain has
been reached, the current disk address is
updated to the next track and the next
record is read. The record is moved to the
work area if specified, addresses are
saved, and control returns to the problem
program.

If the last record was not an overflow
record and the current record is not an
overflow record, this routine determines if
all the records in the block have been
processed. If all records in the block
have not been processed, the I/0 area
pointer is updated to the next logical
record and the record number is updated by
1. If the next logical record is not a
padding record, it is moved to the work
area, if specified, addresses are saved an
control returns to the problem program. I
it is a padding record, the EOF indicator

d
f

is set in the DTF table and control returns
to the problem program.

When all the records in the block have
been processed, a check is made to
determine if the PUT macro has been issued.
If the PUT macro has been issued, the
record is written. A test for the presence
of two I/0 areas is then made. If the
presence of two I/0 areas is indicated in
the DTF table, a test is made to determine
if the first record is being processed. If
the first record is not being processed, a
wait for I/0 completion is made and the
record address is saved in the DTF table.

A test is made to determine if the end
of the track has been reached. If the end
of the track has been reached, the track
index is searched to find the next track
index entry. The current track index
record number in the DTF table is then
updated, and a test is made to determine if
there is any overflow record indicated in
the track index entry Jjust read. If the
presence of an overflow entry is indicated,
and there are two I/0 areas present, this
routine tests to determine if this is the
first record. If it is not the first
record, the record counter is set to 1.

The overflow record address is moved to the
seek/search address, and the overflowuw
record is read and moved to the work area,
if specified. Control then returns to the
problem program.

If there is no overflow record indicated
in the track index entry, the current
address is updated by 1, the next record is
read and moved to the work area, if
specified, and control returns to the
problem program.

ISAM RETRVE, SEQNTL: PUT Macro, Chart GF

Objective: To perform the sequential
retrieval output function for an indexed
sequential file.

Entry: From the PUT macro expansion.

Exit: To the problem program via linkage
register 14.

Method: After initializing pointers to the
DTFIS table, this routine tests whether a
GET has been issued. If a GET has not been
issued, there is an SVC 50 (error).
Otherwise, the GET issued switch is turned
off and the output bit in the retrieval
byte in the DTFIS table is turned on. The
record is moved from the work area to the
I/70 area, and the output bit in the
retrieval byte is set off.

If the record is unblocked, or is in the
overflow area, this routine writes the
record and returns control to the problem
program. If the records are blocked, this
routine sets the bit in the retrieval byte
to indicate that the PUT macro has been
issued for this record, and returns control
to the problem program.

Indexed Sequential Access Method 133

Licensed Program - Property of IBM

The GET macro routine causes the block to
be written on DASD when it determines that
all records in the block have been
processed.

ISAM RETRVEE SEQNTL: SETL Macro, $$BSETL,
Charts GG-

Objective: To initialize for sequential
retrieval based on information supplied by
the user in the SETL macro.

Entry: From the SETL macro expansion.
Exit:

Method: This logical transient first
validates the limits of the DTFIS table and
IDAREAS to ensure that they lie within the
partition. If HOLD=YES has been specified
in the DTF, $$BSETLl is fetched to perform
the SETL macro functions. If track hold
has not been specified, $$BSETL then
initializes for sequential retrieval based
on the information supplied by the user in
the SETL macro. The SETL macro specifies
the type of reference used to identify the
first record to be processed. The types of
reference are:

To the problem program.

. KEY. Key of starting record in the
file.

* GKEY. Location of starting record in
the file, identified by a record key

Wwithin a desired group. The user
supplies a key that identifies the high
order bytes of the required group of
keys. For example, a GKEY specification
of D6430000 would permit file processing
to start at the first key containing
D643XXXX, regardless of the characters
represented by the Xs.

e BOF.

. ID (MBBCCHHR). Location of starting
record in the prime data area.

Beginning of the logical file.

If sequential retrieval is to begin with a
record associated with a particular key
(KEY), the key of the beginning record must
be placed in the field defined by the DTFIS
entry KEYARG before issuing the SETL macro.
This phase searches the master index (if
present), cylinder index and track index
until it finds the track index entry
associated with the specified key. It
determines whether the record with the
desired key is on a shared or unshared
prime data track or in the overflow area.

If the record is on a shared track, the
search is initialized to begin after the
remainder of the track index has been
bypassed. If the record is on a prime data
track and records are unblocked, the track
index overflow entry address associated
with the desired record is calculated and
stored in the DTFIS table, and the track is
searched equal for the desired record. If
the record is not found, a no-record-found
indicator is set in the DTFIS table
(Filename.C).

If the file contains blocked records,
the track is searched equal/high for the
desired block. The user must supply (in
the DTFIS entry KEYLOC) the position of the
key field in the data record. The block is
then searched. When the record with the
matching key is found, its address is saved
in the DTFIS table and control returns to
the problem program. If the record is not
found, the no-record-found indicator is set
in the DTFIS table (Filename.C).

If the record with the desired key is in
the overflow area, the track index normal
and overflow entry addresses are stored in
the DTFIS table, and the overflow chain is
searched for the desired record. When the
desired record is found, its address is
saved in the DTFIS table. If the desired
record is not found in the overflow chain,
a no-record-found indicator is set in the
DTFIS table (Filename.C) and control
returns to the problem program.

If GKEY was specified in the SETL macro,
the CCW chain to read the desired record is
modified to search key equal or high. The
search for the desired record then proceeds
im the same manner as if KEY were specified
in the SETL macro. However, in this case
(GKEY), a no-record-found condition should
not occur unless the key specified is
2]?her than the existing highest key in the

ile.

If BOF was specified in the SETL macro,
the address of the first prime data record
in the file is saved in the sequential
retrieve section of the DTFIS table, and
the track index overflow entry address
associated with the desired record is
calculated and stored in the DTFIS table.
Control then returns to the problenm
program.

If the starting record address is
referenced by a symbolic name in the SETL
macro, this phase analyzes the 8-byte DASD
address (MBBCCHHR) in the field specified
by the symbolic name for validity. If the
address is invalid, an illegal ID indicator
is set in the DTFIS table (Filename.C) and
control returns to the problem progranm. If
the starting address is valid, this phase
saves the address in the DTFIS table,
calculates the track index overflow entry
address associated with the desired record,
stores it in the DTFIS table and returns
control to the problem program.

In order to perform a search of the
master, cylinder or track indexes, prime
data area and overflow area for the
starting record, a CCW string is built to
search the required areas. Figures 68-71
give a description of the channel program
built to perform the necessary search.

ISAM RETRVE, SEQNTL:
Charts GM-GR

SETL Macro, $$BSETLI1,

Objective: To initialize for sequential
retrieval when HOLD=YES, based on

134 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

information supplied by the user in the
SETL macro.

Entry: From the SETL macro expansion.

Exit: To the problem program.

Method: This logical transient first
validates the limits of the DTFIS table and
I0OAREAS to ensure that they lie within the
partition. It then initializes for
sequential retrieval based on the
information supplied by the user in the
SETL macro. The SETL macro specifies the
type of reference used to identify the
first record to be processed. The types of
reference are:

. KEY. Key of starting record in the
file.

s GKEY. Location of starting record in
the file, identified by a record key

within a desired group. The user
supplies a key that identifies the high
order bytes of the required group of

eys. For example, a GKEY spec1flcat10n
of D6430000 would permit file processing
to start at the first key containing
D643XXXX, regardless of the characters
represented by the Xs.

* BOF.

. ID (MBBCCHHR). Location of starting
record in the prime data area.

Beginning of the logical file.

is to begin with a
particular key

If sequential retrieval

record associated wi a

(KEY), the key of the beginning record must
be placed in the fie defined by the DTFIS
entry KEYARG before the SETL macro is
issued. This phase searches the master
index (if present), cylinder index, and
track index until it finds the track index
entry associated with the specified key.

It determines whether the record with the
desired key is on a shared or unshared
prime data track or in the overflow area.

—Mrt<

a
h
d

If the record is on a shared track, the
search is initialized to begin after the
remainder of the track index has been
bypassed. If the record is on a prime data
track and records are unblocked, the track
index overflow entry address asscciated
with the desired record is calculated and
stored in the DTFIS table, and the track is
searched equal for the desired record. If
the record is not found, a no-record-found
indicator is set in the DTFIS table
(Filename.C).

If the file contains blocked records,
the track is searched equal/high for the
desired block. The user must supply (in
the DTFIS entry KEYLOC) the position of the
key field in the data record. The block is
searched. When the record with the
matching key is found, its address is saved
in the DTFIS table, and control returns to
the problem program. If the record is not

found, the no-record-found indicator is set
in the DTFIS table (Filename.C).

If the record with the desired key is in
the overflow area, the track index normal
and overflow entry addresses are stored in
the DTFIS table, the appropriate index and
data tracks are held, and the overflow
chain is searched for the desired record.
When the desired record is found, its
address is saved in the sequential
retrieval section of the DTFIS table. If
the desired record is not found in the
overflow chain, a no-record-found indicator
is set in the DTFIS table (Filename.C), the
held index and data tracks are released,
and control returns to the problem program.

If GKEY was specified in the SETL macro,
the CCW chain to read the desired record is
modified to search key equal or high. The
search for the desired record proceeds in
the same manner as if KEY were specified in
the SETL macro. However, in this case
(GKEY), a no-record-found condition should
not occur unless the key specified is
¥§?her than the existing highest key in the

ile.

If BOF was specified in the SETL macro,
the address of the first prime data record
in the file i1s saved in the sequential
retrieval section of the DTFIS table, and
the track index overflow entry address
associated with the desired record is
calculated and stored in the DTFIS table.
Control returns to the problem program.

If the starting record address is
referenced by a symbolic name in the SETL
macro, this phase checks the validity o
the 8-byte DASD address (MBBCCHHR) in t
field specified by the symbolic name.
the address is invalid, an illegal ID
indicator is set in the DTFIS table
(Filename.C), and control returns to the
problem program. If the starting address
is valid, this phase saves the address in
the DTFIS table, calculates the track index
overflow entry address associated with the
desired record, stores it in the DTFIS
table, holds the required index and data
tracks, and returns control to the problem
program.

Before I/0 is performed, a switch is
tested teo see if track hold has been
specified. If it has, the data track(s)
and the corresponding index track(s) are
held until I/70 is complete. If any error
conditions occur (for example, no record
found, wrong length record, or a DASD read
error), any held tracks are freed before
returning to the user.

T
f
h
I

M

In order to perform a search of the
master, cylinder, or track indexes, prime
data area, and overflow area for the
starting record, a CCH string is built to
search the required area. Figures 68 - 71
give a description of the channel program
built to perform the necessary search.

Indexed Sequential Access Method 135

Licensed Program - Property of IBM
CCW Builder
Label|Control Code! CCW Built Function
7441 X'69"', &KEYARG, CC, Key Search key equal or high the master/
Length cylinder index. Key supplied by user
in DTFIS table.
0C40 X'08', Pointer to %+16, CC, |[TIC to *+16.
Record Length
B04B X'1A', 2&Filename.S+3, CC, 5|Read home address into common
seek/search area in DTFIS table.
506B X'92', 2&Filename.S+3, CC Read count (multiple-track) - CCHHR -
and SLI, into common seek/search area in DTFIS
table.
7441 X'69', &KEYARG, CC, Key Search key equal or high the master”/
Length cylinder index. Key supplied by user.
0440 X'08', Pointer to %-16, CC, |[TIC to %-16.
Record Length
110C X'06"', 2&Filename.W, 00, 10 |Read data (10-byte index level
pointer) into random/sequential
retrieval area in DTFIS table. The
data field is then moved from the
random/sequential retrieval area to
the common seek/search area for the
next search.

1 & See Notes 1 through 6

Figure 68.

in Figure 75.

Channel Program Builder for Sequential Retrieval --

CCW chain built to

search master cylinder index.
CCW Builder
Label|Control Code! CCW Built Function
806C X'31', 2&Filename.S+3, CC Search identifier equal the track
and SLI, index using the 10-byte pointer in the
common seek/search area.
0640 X'08', Pointer %*-8, CC, TIC to %*-8,
Record Length
126C X'06', &IOAREAS, CC and Read data (10-byte track index
SLI, 10 pointer) into IOAREAS, input/output
area for sequential retrieval supplied
by user.
506B X'92', 2&Filename.S+3, CC Read count (multiple—-track) - CCHHR -
and SLI, into common seek/search area in DTFIS
table.
7441 X'69', &KEYARG, CC, Key Search key equal or high the track
Length index. Key supplied by user.
0240 X'08', Pointer to %-24, TIC to %*-24.
CC, Record Length
110C X'06"', 2&Filename.W, 00, 10 [Read data (10-byte pointer) into
random/sequential retrieval area in
DTFIS table. The data field is then
moved from the random/sequential
retrieval area for the next search.

1 ¢ See Notes 1 through 6

Figure 69.

in Figure 75.

index.

Channel Program Builder for Sequential Retrieval --
search track

CCW chain built to

136 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of I3M

CCW Builder A
Label|Control Code! CCW Built Function
STRI1 084B X'31', 2&Filename.S+3, CC, 5|Search identifier equal the prime data
area using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.
066B X'08', Pointer to *-8, CC TIC to %*-8.
and SLI, 5
416C X'12', 2&Filename.W, CC Read count into common
and SLI, 10 seek/search area in the DTFIS table.
6641 X'29"' or X'69', &KEYARG, If KEY is specified in the SETL macro
or CC, Key Length and/or records are unblocked, this
7441 CCW searches key equal the prime data
area. If GKEY is specified in the
SETL macro and/or records are blocked,
this CCW searches key equal or high
the prime data area for the starting
record.
046B X'08', Pointer to x-16, TIC to *-16.
CC and SLI, 5
1202 X'06', &IOAREAS, 00, Read data (block containing starting
Block Size record) into IOAREAS.
1 ¢ See Notes 1 through 6 in Figure 75.
Figure 70. Channel Program Builder for Sequential Retrieval =-—- CCHW chain built to find
starting record in prime data area.
CCW Builder
Label|Control Code!? CCW Built Function
STRI3 804B X*'31', 2&Filename.S+3, CC, 5|Search identifier equal the overflow
chain using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.
0640 X'08', Pointer to *-8, CC, TIC to x%-8.
Record Length
6661 X'29' or X'69', &KEYARG, If KEY is specified in the SETL
or CC, Key Llength macro, this CCH searches key equal
7461 the overflow chain for the starting
record. If GKEY is specified in the
SETL macro, this CCW searches key
equal or high the overflow chain for
the starting record.
112C X'06', 2&Filename.W, SLI, l10|Reads data (10-byte sequence link
field) into random/sequential
retrieval area in DTFIS table. This
CCW is executed when the required
overflow record is not found in the
overflow chain.
1203 X'06', &IOAREAS, 00, Read data (sequence link field
Record Length +10 plus starting record) into IOAREAS.
This CCW is executed when the matching
key is found in the overflow chain.

1

Figure

¢ See Notes 1 through 6 in Figure 75.

71. Channel Program

starting

record in overflow chain.

Builder for Sequential Retrieval -- CCW chain built to find

Indexed Sequential Access Method 137

Licensed Program - Property of IBM

CCW Parameter?
Control Code CCW Built Function
0540 X*'31', 2&Filename.S+3, CC, 5 Search identifier equal the prime data
area using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.
X'0', Pointer to ¥-8, CC, 0 TIC to *-8.
X'05',% &IOAREAS, CC,S Write data (block) onto prime data
Block Length® area.
X'31', 2&Filename.S+3, CC, 5 Search identifier equal to verify urite
operation.
X'08', Pointer to %-8, CC, 0 TIC to %-8.
X'06',% &XIDAREAS, SKIP, Read data to verify write operation.
Block Length®

1 ¢ See Notes 1 through 6 in Figure 75.

Figure 72. Channel Program Builder for Sequential Retrieval -— CCH chain built to write
records.
CCW Parameter?3
Control Code CCH Built Function
0601 X'31', 2&Filename.S+3, CC, 5 Search identifier equal the track index

area using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.

X'08', Pointer to *-8, CC, O TIC to %-8.

X'06',% 2&Filename.W, CC,510 Read data (l10-byte index level pointer)
into random/sequential retrieval area in
the DTFIS table.

X*'31', 2&Filename.S+3, CC, 5 Search identifier equal to verify read
operation.

X'08', Pointer to %x-8, CC, 0 TIC to %-8.

X'06', &IDAREAS, SKIP, Read data to verify read operation.

Block Size

1 & See Notes 1 through 6 in Figure 75.
Figure 73.

search track index.

Channel Program Builder for Sequential Retrieval

—— CCW chain built to

138 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

CCW Parameter?

Control Code CCW Built Function
0600 X'31', 2&Filename.S+3, CC, 5 Search identifier equal the prime data
area using the pointer (CCHHR) in the
common seek/search area in the DTFIS
table.
X'08', Pointer to %-8 ,CC, 0 TIC to x%-8.
X'06"',% &IDAREAS, CC,S5 Read data into IOAREAS.

Block Length?

X'31', 2&Filename.S+3, CC, 5 Search identifier equal to verify read
operation.

X'08', Pointer to %-8 ,CC, O TIC to %-8.

X'06',% &IODAREAS, SKIP, Read data to verify read operation.
Block Length®

1

¢ See Notes 1 through 6 in Figure 75.

Figure 74. Channel Program Builder for Sequential Retrieval -- CCW chain built to read

records.

Note 1: The CCW chains are built by the B-transients, $$BSETL and $$BSETL1. The CCHW
builder control code references information in the $$BSETL and $$BSETL1 assemblies.

set

The first character of the control code references an operation code at IJHROP.
The second character of the control code references a data area at IJHARA.
The third character of the control code references the following information:
Control Character CCW Flag Field Meaning
0 X'00" End of CCW chain
2 X'20" SLI (Suppress Length Indicator)
4 X'40" CC (Command Chaining)
6 X'60" CC and SLI
EEEN$ourth character of the control code references a byte count (length) field at
Note 2:
&Filename = DTF name supplied by user.
&Filename.X = X is suffix supplied by DTFIS for unique DTF labels.
Note 3:
The CCW parameter is found in the ISMOD assembly.
The first byte of the parameter is the command code.
The second byte of the parameter contains flags with the exception of the chain to

search the track index. In this case, the second byte is an indicator to the channel
program builder that the CCHW chain is to search the track index.

Note 4: If the file contains unblocked records, the command code is modified to either
Read Key and Data, or Write Key and Data.

Note 5: If the verify option has not been specified, the command chaining bit is not

on.

Note 6: If the file contains unblocked records, the byte count field contains the
physical record length plus Key Length.

Figure 75. Channel Program Builder for Sequential Retrieval -- Notes.

Indexed Sequential Access Method 139

Licensed Program - Property of IBM

ISAM ADDRTR: ESETL Macro, Chart JA

Objective: To write the last record, if
necessary, and to reset the status byte in
the DTFIS table.

Entry: From the ESETL macro expansion.

Exit: To the problem program via linkage
register 14,

Method: After initializing pointers to the
DTFIS table, this routine sets the status
byte in the DTFIS table to 0. A test is
then made to determine if the PUT issued
bit is on in the retrieval byte of the DTF
table. If it is on, the last block of
records is written. A test for IOAREA2=YES
is then made. If IOAREA2 is specified as
an ISMOD macro parameter option to allow
overlapping of I/0 with processing, a bit
is set in the DTF table to indicate the
first record is being processed and a wait
for 170 completion is made. Control then
returns to the problem program.

ISAM ADDRTR: GET Macro, Charts JB-JE

Objective: To perform sequential retrieval
input for an indexed sequential file.

Entry: From the GET macro expansion.

Exit: To the problem program via linkage
register 14.

: This routine initializes pointers
to the DTFIS table, nd then tests for
IOAREA2=YES. If IOAREAZ is not specified
as an ISMOD macro parameter option, a test
is made to determine if the last record
read was in the overflow area. If the last
record read was in the overflow area, the
contents of the sequence-link field is
moved to the seek/search area, and a test
is made to determine if the end of the
overflow chain has been reached. If it has
not been reached, the overflow record is
read, addresses are saved, and the record
is moved to WORKS, if specified. Control
then returns to the problem program.

If the end of the chain has been
reached, the current disk address is
updated to the next track and the next
record is read. The record is moved to the
work area, if specified, addresses are
saved, and control returns to the problem
program.

If the last record read was not in the
overflow area, the routine determines if
all records in the block have been
processed. If all the records in the block
have not been processed, the I/0 area
pointer is updated to the next logical
record. If that record is not a padding
record, it is moved to the work area, if
specified, addresses are saved, and control
returns to the problem program. If it is a3

padding record, the EOF indicator is set in
the DTFIS table, and control passes to the
problem program.

If all records in the block have been
processed, a check is made to determine if
the PUT macro has been issued. If it has,
the record is written.

A test is made to determine if the end
of the track has been reached. If it has
been reached, the track index is searched
to find the next track index entry. The
current track index record number in the
DTF table is then updated, and a test is
made to determine if there is any overflow
record indicated in the track index entry
just read. If the track index entry
indicates an overflow record is present,
that overflow record is read, and moved to
the work area, if specified. Control
returns to the problem program.

If there is no overflow record indicated
in the track index entry, the current
address is updated by 1, and the record is
read and moved into the work area, if
specified. Control returns to the problem
program.

If IOAREA2 has been specified to allow
overlapping of I/0 with processing, a test
is made to determine if the last record
read was in the overflow area. If the last
record read was in the overflow area, a
test is made to determine if the record
being processed by the user is an overflow
record. If it is an overflow record, a
wait for I/0 completion is made, the next
available I/0 area address is obtained, the
current record address is saved, and a test
is made to determine if the first record is
being processed.

If the first record is being processed,
and if track hold has been specified, the
appropriate index and data tracks are held,
the overflow record is read, addresses are
saved, and the record is moved to a
workarea, if specified. Any held tracks
are released, and control returns to the
problem program.

If the first record is not being
processed, the address of the next overflow
record is moved to the seek/search address
and a test is made to determine if the end
of the overflow chain has been reached. If
the end has not been reached, and if track
hold has been specified, the appropriate
index and data tracks are held, the
overflow record is read, addresses are
saved and the record is moved to the work
area, if specified. Any held tracks are
released and control returns to the problem
program.

If the end of the overflow chain has
been reached, the current disk address is
updated to the next track and the next
record is read. The record is moved to the
work area, if specified, addresses are
saved, and control returns to the problem
program.

140 IBM VSEs/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

If the last record was not an overflow
record and the current record is not an
overflow record, this routine determines if
all the records in the block have been
processed. If all records in the block
have not been processed, the I/0 area
pointer is updated to the next logical
record and the record counter is updated by
1. If the next logical record is not a
padding record, it is moved to the work
area;, is specified, addresses are saved,
and control returns to the problem program.
If it is a padding record, the EOF
indicator is set in the DTF table and
control returns to the problem program.

When all the records in the block have
been processed, a check is made to
determine if the PUT macro has been issued.
If the PUT macro has been issued, the
record is written. A test for the presence
of two I/0 areas is then made. If the
presence of two I/0 areas is indicated in
the DTF table, a test is made to determine
if the first record is being processed. If
the first record is not being processed, a
wait for I/0 completion is made and the
record address is saved in the DTF table.

A test is made to determine if the end
of the track has been reached. If the end
of the track has been reached, the track
index is searched to find the next track
index entry. The current track index
record number in the DTF table is updated.
If HOLD is specified, the index track is
held while a test is made to determine if
there is any overflow record indicated in
the track index entry just read. If the
presence of an overflow entry is indicated,
and there are two I/0 areas present, this
routine tests to determine if this is the
first record. If it is not the first
record, the record counter is set to 1.

The overflow record address is moved to the
seek/search address, the overflow record is
read, held if HOLD=YES is specified, and
moved to the work area, if specified.
Control then returns to the problem
program.

If there is no overflow record indicated
in the track index entry, the current
address is updated by 1, the next record is
read and moved to the work area, if
specified, and control returns to the
problem program.

ISAM ADDRTR: PUT Macro, Chart JF

Objective: To perform sequential retrieval
output for an indexed sequential file.

Entry: From the PUT macro expansion.

Exit: To the problem program via linkage
register 14.

Method: After initializing pointers to the
DTFIS table, this routine tests whether a
GET has been issued. If a GET has not been
issued, there is an SVC 50 (error).
Otherwise, the GET issued switch is turned

off and the output bit in the retrieval
byte in the DTFIS table is turned on. The
record is moved from the work area to the
I/0 area, and the output bit in the
retrieval byte is set off.

If the record is unblocked, or is in the
overflow area, this routine writes out the
record and returns control to the problem
program. If the records are blocked, this
routine sets the bit in the retrieval byte
to indicate that the PUT macro has been
issued for this record, and returns control
to the problem program. The GET macro
routine causes the block to be written on
DASD when it determines that all records in
the block have been processed.

ISAM ADDRTR: READ Macro, KEY, Chart JG

Objective: To perform the random retrieval
input function for an indexed-sequential
file by searching the indexes to determine
t?e t;ack on which the desired record is
stored.

Entry: From the READ, KEY macro.

Exit: To the problem program via linkage
register 14.

Method: This routine first initializes
pointers and status bits in the DTFIS
table. It then constructs the CCW chain to
search the master or cylinder index (see
Figure 76). It then determines the highest
level index (master or cylinder) being
used, and tests for ERREXT=YES. If ERREXT
is specified, additional error conditions
can be returned to the problem program.
This allows the user greater flexibility in
attempting to continue processing. This
routine then searches the highest level
index to get the address of the next index
to be searched.

A test of the F code from the index
level pointer is made to determine if the
next search is of the track index. The F
code refers to the index level just
searched. If the master index was just
searched, the next search is on the
cylinder index. If the next search is not
on the track index, the routine gets the
index entry type and determines the routine
to process that type.

If the entry type is a normal entry, the
routine returns to search the next index.
If the entry type is a dummy end entry or
an inactive entry, the routine branches to
an error routine to set a no-record-found
flag in the DTF table and return to the
problem program. If the entry is a dummy
chained entry, the routine returns to
search the index by using the address
supplied by the 10-byte index level
pointer.

When the next search is found to be on
the track index, a test is made to
determine if the track index takes up one
track or more. If the track index does not

Indexed Sequential Access Method 141

Licensed Program - Property of IBM

If the address is invalid, an illegal ID
indicator is set in the DTFIS table
(Filename.C), and control returns to the
problem program. If the starting address
is valid, this phase saves the address in
the DTFIS table, calculates the track index
overflow entry address associated with the
desired record, stores it in the DTFIS
table, holds the required index and data
tracks, and returns control to the problem
program.,

Before 1/0 is performed, a switch is
tested to see if track hold has been
specified. If it has, the data track(s)
and the corresponding index track(s) are
held until I/0 is complete. If any error
conditions occur (for example, no record
found, wrong length record, or a DASD read
error), any held tracks are freed before
returning to the user.

In order to perform a search of the
master, cylinder, or track indexes, prime
data area, and overflow area for the
starting record, a CCW string is built to
search the required area. Figures 91-946
give a description of the channel program
built to perform the necessary search.

ISAM ADDRTR: SETL Macro, $$BSETLZ2

Objective: To complete the initialization
of the DTF, to free or hold tracks as
required, and to return control to the
user.

Entry: From $$BSETL1.
Exite:

Method: This phase is called by $$BSETL1 if
no I1/0 errors have been detected.
initialization of the DTF is completed for
sequential retrieval starting with the
specified key or low key in a group of
keys. If HOLD=YES is specified in the DT
the index track and the data track are he
until exit, when the index track is freed.
The data track is freed by the module. If
an error occurs, the proper error bit is
posted in Filename.C and exit to the user
is made after freeing all held tracks.

To the problem program.

ISAM ADDRTR: WAITF Macro, Charts KA-KE

Objective:

1. To ensure that the last EXCP
been completed and that the
is normal.

2. If the operation is a READ, to locate
the specified record and to complete
the transfer of data to the 1/0 area
specified by the DTFIS entry IOAREAR,
and to the specified work area if the

issued has
condition

144 IBM VSE/Advanced Functions LIDOCS Volume

DTFIS entry WORKR is included in the
file definition.

3. If the operation is a WRITE (NEWKEY),
to complete the addition of the record
to an indexed sequential file,
adjusting the indexes and other records
as necessary.

4. If the operation i

s a WRITE (KEY), to
return control to the pr

oblem program.

Entry: From the WAITF macro expansion.

Exit: To the problem program via linkage
register 14.

Method: This routine first tests for
ERREXT=YES. If ERREXT is specified,
additional error conditions can be returned
to the problem program. This allows the
user greater flexibility in attempting to
continue processing. After initializing
pointers to the three sections of the DTFIS
table, this routine tests the status byte
in the DTF table to determine if the
condition so far is normal. If not,
control returns to the problem program.

If the condition is normal, the routine
issues a WAIT to determine if the EXCP
issued by the READ or WRITE routines has
been completed, and also tests for errors.
Then, if the operation is a WRITE (KEY),
this routine returns control to the problem
program.

If the operation is a READ, this routine
must complete the READ operation by moving
the data to the I1/0 area. If first sets
the address of the track on which the
desired record is stored in the seek/search
area, and initializes pointers to KEYARG
and the I/0 area. It also gets the
relative key location and key length.

The routine picks up the index entry
type (F code) from the search address and
determines the routine to process that
type. If the entry is a normal entry on an
unshared track, a new CCW chain is built to
find the record in the prime data area (see
Figure 78). If blocked records are
specified, the CCW command code is modified
to search high or equal. An EXCP and WAIT
are issued to find the record and read the
block into the I/0 area. If records are
unblocked, the record is moved into WORKR
(if specified), and control returns to the
problem program. If records are blocked,
this routine tests to determine if the key
specified in KEYARG is less than the key in
the first logical record. If so, the
record has not been found, and the
corresponding bit is set on in the DTF
table. Otherwise, the corresponding key is
found within the block and the routine
moves the block to WORKR, if specified.
Control is then returned to the problem
program.

For a normal entry on a shared track,
the routine decreases the record number in
the search address by 1, and builds a new

3 DAM and ISAM

9

o

Licensed Program - Property of IBM

CCW chain to _find records on a shared track
(see Figure 79). Processing continues as
in the routine to process a normal entry on
an unshared track.

If the entry is an overflow end entry or
an overflow chained entry, this routine
first constructs a CCW chain to search the
overflow chain. An EXCP and a WAIT are
issued to locate the record in the overflo
chain. A test is made to determine if the
desired record has been found. If not, th
routine tests for a overflow end entry. I
so, the no-record-found bit is set on in
the DTF table. If the entry is not an
overflow end entry, the sequence-link field
is inserted in the seek/search address, and
the overflow chain is searched again.

W

e
f

If the record has been found, overflow
its are set on in the DTF table, and the
irst nonoverflow record count is increased
y 1. The logical record is moved to
ORKR, if specified. Control returns to
he problem program via register 14.

If the entry is a dummy end entry or an
inactive entry, the routine sets a
no-record-found bit on in the DTF table,
and returns control to the problem program.

If the operation is a WRITE (NEWKEY),
this routine determines the type of add
function to be performed. The three types
of add functions are:

e Normal add to the prime data area.
e Add to the overflow area.

¢ EOF add.

Normal Add to the Prime Data Area: This
routine first determines 1f the record is
to be added to the last prime data track.
If it is and the last prime data track is
full, the overflow record address is
calculated, an EXCP (see Figure 85) is
issued to search and read the prime data
track to determine the point of insertion,
and a wait for I/0 completion is made.
Figures 76 through 111 describe the channel
program builder for the ADDRTR function.
If the addition is not on the last prime
data track, the overflow record address is
calculated and the prime data track is
searched to determine the point of
insertion for the record to be added to the
file. When an equal/high key is found
during the search, the count and data
fields of that location are read into a
save area in the DTF table and IOAREAL
respectively.

A test is made to determine if the prime
data in core option was specified as an
ISMOD macro parameter. If it was
specified, as many records as can fit into
the I/0 area specified in the DTFIS ocperand
IOAREAL are read from the prime data track

into main storage. The key of the record
to be added is compared to the keys of the
existing records in the I/0 area. If a
duplicate key is found, the condition is
indicated to the user in the DTF table
entry labeled Filename.C. If no duplicate
key is found, the records are shifted in
main storage leaving the record with the
highest key remaining in the user's work
area, WORKL. The other records are
rewritten directly onto the track. Any
remaining records on the track are then
read into the I/0 area. The process
continues until the last record on the
track is set up as an overflow record.
When the last prime data record on the
track has been rewritten, the new overflow
record is wWwritten in the overflow area, the
track index normal and overflow entries and
the COCR are written on DASD, and control
returns to the problem progranm.

If the prime data in core option has not
been specified as an ISMOD macro parameter,
a test for blocked records is made. If the
file contains unblocked records, the record
previously found on the search key
equals/high is reread to get the key field.
If it is a duplicate key, a switch is set
on in the DTFIS table indicating a
duplicate key has been sensed and a return
to the problem program is made. If there
are no duplicate keys, the user's key and
data are written from the work area, WORKL,
onto the DASD file. The record in the I/0
area, IOAREAL, replaces the user's record
in the work area. The next record on the
track replaces the one in the I/0 area.
This process is repeated until the end of
track is reached.

If the end-of-file (EOF) record is read
during the process of shifting the records
over one record position, this routine
writes the last record over the EOF record
and then writes a new EOF record (see
Figures 84, %92, 93).

If the file contains blocked records,
this routine reads the block of records (or
as many as fit in the I/0 area if I0AREAL
was increased for reading and writing more
than one record at a time) into IOAREAL.
The key field within each logical record is
analyzed to determine the correct position
in which to insert the new record. If
there is duplication of keys, a switch is
set on in the DTFIS table and control
returns to the problem program.

If the key of the record to be inserted
(contained in WORKL) is low, it is
exchanged with the record presently in the
block. This procedure continues with each
succeeding record in the block until the
last record is moved into the work area.
The key field of the DASD record is then
updated to reflect the highest key in the
block. If the size of IDAREAL has been
increased, succeeding blocks in the I/0
area are also updated.

Indexed Sequential Access Method 145

Licensed Program - Property of IBM

The block (or blocks) is then written back
onto DASD. The remaining blocks on the
track are similarly processed until the
last logical record on the track is moved
into WORKL. This record is then set up as
an overflow record with the correct
sequence-link field added and written in
the overflow area. The sequence-link field
for the new overflow record is taken from
the track index overflow entry. The
indexes are updated, and control returns to
the problem program for the next record to
be added. If the overflow area is full,
this information is indicated to the user
in the DTF table entry labeled Filename.C.

The track index normal entry key field
is updated to the key of the new last
record, the track index overflow entry data
field is updated to the address of the new
overflow entry (that entry has the lowest
key for the overflow for that track), and
the COCR is updated. These records are
written on the DASD file before control
returns to the problem progranm.

If the last block in the prime data area
is padded, the last record to be shifted is
included in that block. If the EOF record
is read during the process of shifting the
records one record position, the last
record is written as a new block and a new
EOF record is written before returning
control to the problem program.

Add to the Overflow Area: This routine
computes the new overflow record address
and reads the overflow chain to get the
address of the record with the next highest
key. This address is stored in the
sequence—-link field of the new record. The
new overflow record is then written in
either the cylinder overflow area or
independent overflow area (see Figure 91).
If these areas are full, this condition is
indicated to the user in the DTFIS table
entry labeled Filename.C. Each time an
overflow record is added to the independent
overflow area, an EOF record is written to
maintain the integrity of the indexed
sequential file (see Figure 94). The next
overflow record followed by an EOF record
overlays the previous EOF record.

If the new overflow record has the
lowest key in the overflow chain, its
address is used to build a new track index
overflow entry. The new overflow entry is
then written on the DASD file, and control
returns to the problem program. If
cylinder overflow condition occurs, the
updated COCR (cylinder overflow control
record) is written on DASD before control
returns to the problem program.

If the new overflow record does not have
the lowest key, the sequence-link field of
the record with the next lower key is
updated to contain the address of the new
overflow record. This overflow record is
then rewritten on DASD and the COCR is

146 IBM VSE/Advanced Functions LIOCS Volume

updated (see Figures 88-90). Control
returns to the problem program.

EOF Add: This routine first determines if
the last prime data track is full. If the
last prime data track is not full, the new
record is inserted on it. If the file
contains blocked records and the record can
fit in the last block, the block is read
and the new record is inserted.

If the file is not blocked, or if it is
blocked and the last block is full, a new
last prime data record address is stored
and the new record is written at that
address. A new EOF record is then written.

If the last prime data track is full,
the new record is inserted in the overflow
area. The new overflow record address is
computed and the record is written in the
overflow area.

If an overflow chain is present, the
next lower record in the chain is found and
the address of the new record is moved to
the ssquence—link field of the next lower
record.

If no overflow chain is present, the
dress of the new overflow record is moved
the track index overflow entry. The

ack index overflow entry is then written
ith the new high key. The master index
if present) and the cylinder index are
dated with the new high key. A test for
the cylinder index in core option is then
made. If it has not been specified,
control returns to the problem _program. If
the cylinder index in core option has been
specified, the new key is inserted into the
appropriate index in core entry before
returning control to the problem program.

ISAM ADDRTR: WRITE Macro, KEY, Chart KF

Objective: To perform the random retrieval
gggput function for an indexed segquential
ile.

Entry: From WRITE, KEY macro expansion.

Ezit: To the problem program via register
14,

Method: This routine first sets the write
bit in the DTFIS table. If then tests for
an uncorrectable DASD error, wrong length
record error, or no record found error. If
any of these errors exist, the
no-record—-found bit is set on in the DTF
table, and control returns to the problem
program.

If there are no errors, the status byte
in the DTF table is reset, and pointers to
the DTF table are initialized.

3 DAM and ISAM

C

Licensed Program - Property of IBM

This routine then picks up the count field
the record as saved by the read routine,
the address of WORKR, and the address of
the logical record within the I/0 area.

The record, or block of records, is moved
to the I/0 area from WORKR (if specified).
The CCW chain to write records is then
built (see Figure 81).

o
-+

If the entry to be written is not an
overflow entry, the byte count field in the
write and verify CCWs is modified to the
block length from the DTF table. This
routine then issues the EXCP to write the
record, and returns control to the problem
program without issuing a WAIT. The WAIT
function is left to the WAITF macro, which
must be issued before the user can continue

processing.

égAEFADDRTR: WRITE Macro, NEWKEY, Charts

Objective: To perform the necessary
initialization to add a record to a file.

Entry: From the WRITE, NEWKEY macro
expansion.

Exit: To the problem program via linkage
register 14.

Method: After initializing the pointers to
the three parts of the DTFIS table, this
routine gets the starting address of the
highest level index, builds a CCW chain to
search the highest level index (see Figure
82) and tests for ERREXT=YES. If ERREXT is
specified, additional error conditions can
be returned to the problem program. This
allows the user greater flexibility in
attempting to continue processing. The
channel program is executed and a wait for
I/0 completion is made. It then tests the
F code of the index level pointer to
determine if the next search is of the
cylinder or track index. The F code refers
to the index level just searched. If the
master index was just searched, the next

search is on the cylinder index. See
Figure 20 for a description of the F code.

If the F code indicates a dummy chained
entry, the search of the master, cylinder
or track index continues. If the index
level pointer did not indicate a dummy
chained entry, a test for an inactive or
dummy end entry is made. If an inactive or
dummy end entry is indicated, the EOF add
indicator is set on in the DTFIS table, a
CCW chain is built to read the last track
index entries, the channel program to
bypass the last of the track index entries
is executed, a wait for the I/0 operation
to be completed is made, and control
returns to the problem program. Processing
continues with the record following the
last key.

If an inactive or dummy end entry is not
indicated, a test for the presence of a
master index is made. If the master index
is not present, indicating the cylinder
index was just searched, a search of the
track index is performed, and a return to
the problem program is made.

If the master index is present, a test
is made to determine if the cylinder index
in core option was specified as an ISMOD
macro parameter. If it was not specified,
an EXCP is issued to search the cylinder
index, followed by a wait for I/0
completion, an EXCP to search the track
index, a wait for I/0 completion, and a
return to the problem program. If the
cylinder index in core option was
specified, a search of the track index is
performed, and a return to the problemn
program is made.

Any tracks which have been held during
update are released before control returns
to the user.

Indexed Sequential Access Method 147

Licensed Program - Property of IBM

CCW Builder
Control Code? CCW Built Function
7461 X'69"', &KEYARG, CC and Search key equal or high the master/
SLI, Key Length cylinder index. Key supplied by user in
the DTFIS table.
0C6B X'08°, Pointer to %+16, CC TIC to %+16 for non—-RPS.
DE6B X'08', Pointer to %+24, CC TIC to %+24 for RPS.
and SLI, 5 i
D17B X'1A', 2&Filename.W, CC, Read home address into random/sequential
SLI, and SKIP, retrieval work area in DTFIS table.
FO81 X*23', SECARG=0, CC, 1°® Set Sector for start of track.
OE6B X*g8" Set when CYLINDEX is a non-RPS device.
536C éL?Z'iO&IOAREAR, CC and Read count (multiple-track) into IOAREAR.
’
7461 X'69', &KEYARG, CC and SLI, Search key equal or high the master/s
Key Length cylinder index. Key supplied by user in
DTFIS table.
0468 X'08', Pointer to %-16, CC TIC to %-16.
and SLI, 5
110C X'06', 2&Filename.W, 00, 10 Read data (10-byte index level pointer)
into random/sequential retrieval area in
DTFIS table.

1--8 GSee Notes 1 through 8
Note: The shaded areas

Figure 76. u
search master-cylinder

Channel Program Builder for ADDRTR
index for random retrieve function.

in Figures 110 and 111.
indicate CCWs built for RPS only.

-— CCW chain built to

CCW Builder
Control Code? CCW Built Function
D36B é'lA', &I0OAREAR, CC and SLI, Read home address into IOAREAR.
Fo41 1X*23', SECARG=0, CC, 1° Set Sector for start of tfacks‘
9461 X'E9', &KEYARG, CC and SLI, Search key equal or high (multiple-track)
Key Length track index. Key supplied by user in DTFIS
table.
066B X'08', Pointer to %-8, CC TIC to *-8.
and SLI, 5
110C X'06', 2&Filename.W, 00, 10 Read data (10-byte index level pointer)
into random/sequential retrieval area in
DTFIS table.

1--8 Gee Notes 1 through 8
Note: The shaded areas

Figure 77.
search track

indicate CCWs built for

Channel Program Builder for ADDRTR
index for random retrieve function.

in Figures 110 and 111.

RPS only.
-— CCW chain built to

148 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Praoperty of IBM

CCW Bfilder
Control Code! CCW Built Function

7661 X'69', &KEYARG, CC and Search key equal or high in prime data
SLI, Key Length area. Key supplied by user in DTFIS table.

0C4B X'08', Pointer to *+16, TIC to *+16.
cc, 5

‘,15091 o X'23", SECARG=0, eC, 1% Set Sector for stift of track.

D17B X"1A', 2&Filename.W, CC, Read home address into random/sequential
SLI, and SKIP, 5 retrieval area in DTFIS table.

406C X'12', 2&Filename.S+3, CC Read count into common seek/search area
and SLI, 10 in DTFIS table.

6461 X'29' or X'69', &KEYARG, If records are unblocked, search key equal

or CC and SLI, Key Length in prime data area. If records are

7461 blocked, search key equal or high in prime

data area. Key supplied by user in DTFIS
table.
044B ééOB', Pointer to %-16, TIC to *-16.
’

1302 X'06', &IOAREAR, 00, Block Read data (block) containing starting

Length record into IOAREAR.

1--8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.

Figure 78. Channel Program Builder for ADDRTR -- CCW chain built to
find record in prime data area (unshared track) for random
retrieve function.
CCW Builder
Control Code! CCW Built Function
. F101 |x'23', SECARG=1, CC, 1® |Set Sector for prime data area. .
804B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the prime data area
using the pointer (CCHHR) in the common
seek/search area in the DTFIS table.
064B X'08', Pointer to -8 CC, 5 TIC to %-8.
406C X'12', 2&Filename.S+3, CC Read count into common seek/search area
‘ and SLI, 10 in DTFIS table.
6461 X'29' or X'69', &KEYARG, If records are unblocked, search key equal
or CC and SLI, Key Length the prime data area. If records are
7461 blocked, search key high or equal the prime
data are. Key supplied by user in DTFIS
table.
044B X'08', Pointer to %*-16,
CC, 5
1302 X'06', &IOAREAR, 00, Read data (block) containing record into
Block Length IOAREAR.

1--8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.
Figure 79. Channel Program Builder for ADDRTR -- CCW chain built to

find record in prime data area (shared track) for random
retrieve function.

‘ Indexed Sequential Access Method 149

Licensed Program — Property of IBM

CCH Builder
Control Code?! CCHW Built Function
_ F121 [X'23%, SECARG=1, CC, 1® |Set Sector for overflom chain. _
X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the overflow chain
using the pointer (CCHHR) in the common
seek/search area in the DTFIS table.
064B X'08', Pointer to %-8, CC, 5 |TIC to %*-8.
6461 X'29', &KEYARG, CC and Search key equal the overflow chain.
SLI, Key Length Key supplied by user in DTFIS table.
116C X'06', 2&Filename.W, SLI, 10 |[Read data (10-byte sequence link field)
into random/sequential retrieval area in
DTFIS table. This CCW is executed when the
required overflow record is not found in
the overflow chain.
1303 X'06', &IOAREAR, 00, Read data (sequence link field plus
Record Length + 10 logical record) into IDAREAR. This CCHW is
executed when the matching key is found in
the overflow chain.

1--8 See Notes 1 through 8 in Figures 110
Note: The shaded areas

Channel Program Builder
find record in overflow

Figure 80.

and 111.

indicate CCWs built for RPS only.

for ADDRTR
chain for random retrieve function.

-~ CCW chain built to

CCW Builder |
Control Codel]| CCHW Built Function
804B X*'31', 2&Filename.S+3, CC, 5 |Search identifier equal prime data area
using pointer (CCHHR) in common seek/
search area in DTFIS table.
064B X'08', Pointer to %-8, CC, 5 |TIC to %*-8.
B3C3 X'05', &IOAREAR, CC, Record Write data from IOAREAR.
Length + 10
_ F131 |X'23', SECARG=1, CC, 1® [Set Sector for prime data area.
804B X'31, 2&Filename.S5+3, CC, 5 Search identifier equal the prime data
area, using pointer (CCHHR) in common
seek/search area in DTFIS table.
064B X'08', Pointer to %-8, CC, 5 |TIC to %-8
1333 X'06', &IOAREAR, SLI and Read data to verify record just written.
KIP, Record Length + 10 I:formation is not transferred to main
storage.

1--8 Sge Notes 1 through 8 in Figures 110
Note: The shaded areas

Figure 81.
write record for random retrieve

and 111.

indicate CCWs built for RPS only.
Channel Program Builder for ADDRTR -- CCW chain built to

function.

150 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

CCW Builder
Control Code! CCW Built Function
7961 X'69"'", &KEYARG, CC and SLI, Search key equal or high the master/
Key Length cylinder index. Key supplied by user in
the DTFIS table.
0C6B X'08', Pointer to %+16, CC TIC to %+16.
and SLI, 5
FO81 [X'23", SECARG=0, CC, 1®* |Set Sector for start of track.
D17B X*1A', 2&Filename.D+8, CC, Read home address into work area for
SLI and SKIP, 5 the current track index normal entry count
field in the DTFIS table.
516C X'92', 2&Filename.D+8, CC Read count (multiple-track) into work
and SLI, 10 area for the current track index normal
g entry count field in the DTFIS table.
7961 X'69', &KEYARG, CC and Search key equal or high the master”/
SLI, Key Length cylinder index. Key supplied by user in
the DTFIS table.
046B X'08', Pointer to %-16, CC TIC to %*-16.
and SLI, 5
150C X'06', 2&Filename.D+40, 00, Read data (next 10-byte index level
10 pointer) into work area for track index
normal entry data field in DTFIS table.
1 -- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.
Figure 82. Channel Program Builder for ADDRTR -- CCW chain built to
search master cylinder index for add function.

‘ Indexed Sequential Access Method 151

Licensed Program - Pro

perty of IBM

CCW Builder .
Control Code? CCW Built Function
 F04F |X'23', SECARG=0, CC, 1°® Set Sector for start of track.
8C4B X'31', 2&Filename.S5+3, CC, 5 |Search identifier equal the track index
seek/search area.
066B X'08', Pointer to *-8, CC TIC to %*-8.
and SLI, 5
106C X'06', 2&Filename.D, CC and Read data (COCR record) into the cylinder
SLI, 10 overflow record (COCR) area.
516C X'92', 2&Filename.D+8, CC Read count (multiple-tra ck) into work
and SLI, 10 area for the current tra index normal
antry count field in the DTFIS table.
7941 X'69', &KEYARG,CC, Search key equal or high the tra k index.
Key Length Key supplied by user in the DTFIS table.
046B X'08', Pointer to %x-16, CC TIC to %*-16.
and SLI,
156C X'06', 2&Filename.D+40, CC Read data (next 10-byte pointer to prime
and SLI, 10 data record) into work area for track index
normal entry data field in DTFIS table.
526C X'92', 2&Filename.D+16, CC Read count (multiple-track) into work
and SLI, 10 area for current track index overflow entry
count field in DTFIS table.
1DoC X'06', 2&Filename.W, 00, 10 Read data (10-byte overflow entry) into
random/sequential retrieval work area.
! -- 8 See Notes 1 through 8 in Figures 110 and 111.

Note: The shaded areas

search track

indicate CCWs built for RPS only.
Figure 83. Channel Program Builder for ADDRTR -- CCW chain built to

index for add function.

CCW Builder
Control Code?! CCW Built Function
F101 X'23', SECARG=}1, CC 1° Set Sector for 1nst data record or start of
new track. | 3
8C4B X'31"', 2&Filename.S+3, CC, 5 |Search identifier equal for the last prime
data record address using pointer, CCHHR,
in common seek/search area in DTFIS tabl
066B X'08', Pointer to %x-8, CC TIC to %-8.
and SLI,
342C X'10', 2&Filename.D+32, Write count, key and data of EOF record
SLI, located in current overflow record count
field in DTFIS table.
! -—— & See Notes 1 through 8 in Figures 110 and 111,

Note: The shaded areas

indicate CCWs built for RPS only.

Figure 84, Channel Program Builder for ADDRTR -- CCW chain built to
write new EOF record for add function.

152 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program - Property of IBM

CCW Builder |
CCW Built Function
me data record.
X'31', 2&Filename.S+3, CC, 5 (Search identifier the prime data area using
pointer, CCHHR, in common seek/search area
in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI,
436C X'12', 2&Filename.D+24, CC Read count for current prime data
and SLI, record.
7941 X'69', &KEYARG, CC, Key Search key equal or high the prime data
Length area. Key supplied by user in DTFIS table.
0468 X'08', Pointer to %-16, CC TIC to %*-16.
and SLI,
1B02 X'06"', Address of IOQAREAL+8 Read data (prime data block) into
+KEYLEN, 00, Block Size IOAREAL+8+Key Length.
1 —— 8 See Notes 1 through 8 in Figures 110 and 111.

Note: The shaded areas indicate

Channel Program Bui
find prime data rec

Figure 85,

CCWs built for RPS only.

lder for ADDRTR -- CCW chain built to
ord for add function.

Indexed Sequential Access Method 153

Licensed Program - Property of IBM

rewrite track

CCHW Builder 3
Control Code1 CCHW Built Function
 Fo4l |x'23', SECARG=0, CC, 1% Set'Sector for start of track.
8C4B X'31', 2&Filename.S+3, CC, 5 Search identifier equal the track index
using pointer, CCHHR in common seek/
search area in DTFIS table.
066B '08', Pointer to %-8, CC TIC to *-8.
nd SLI, 5
BD6C '05', 2&Filename.D, CC and Rewrite COCR located in cylinder overflow
SLI, 10 control record work area in DTFIS table.
r:«xx‘ |X"23' SECARG=1, CC, 1° ' r for t " ndex nc '
E14B X'Bl1', 2&Filename.D+8, arch identifier equal (multiple-track)
cc, for the pointer, CCHHR, in the normal
entry count field.
066B X'08', Pointer to x-8, CC TIC to %x-8.
and SLI,
2A45 X'0D', Address of Rewrite track index normal entry located
IO?SEAL+8, CC, Key Length at IOAREAL+8.
+
E24B X'Bl', 2&Filename.D+16, CC, 5 |Search identifier equal (multiple-track)
for the pointer, CCHHR, in the overflouw
entry count field.
066B X'08', Pointer to ¥-8, CC TIC to %*-8.
and SLI,
BDCC X'05', 2&Filename.W, CC and Rewrite overflow entry located in random/
DC, 1 sequential retrieval work area.
F251 X'23', SECARG=2, CC, 18 Set Sector for the track index overflow
entry required.
F240 |X'22', SECARG=2, CC, i%® Read Sector ’f'fthn n;xt’traék'inagx
overflow entry. :
824B X*'31', 2&Filename.D+16, Search 1dent|fler equal for the p01nt er,
cc, 5 CCHHR, in the overflow entry count field.
066B X'08', Pointer to %-8, CC TIC to %-8.
and SLI,
1D3C X'06', 2&Filename.W, SLI and Read data to verify record just uwritten.
SKIP, 10 Information is not transferred to main
storage.
! -- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.
Figure 86. Channel Program Builder for ADDRTR -- CCW chain built to

index entry for add function.

154 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

CCW Builder
Control Code! CCW Built Function
 F061 |X'23', SECARG=0, CC, 19 Set Sector for start of track.
8C4B X'13"', 2&Filename.S+3, CC, 5 |[Search identifier equal for RO using
pointer, CCHHR, in common seek/search area
in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI, 5
B06C X'05', 2&Filename.D, CC and Write data (updated COCR) from the
SLI, 10 cylinder overflow control record (COCR)
area in the DTFIS table.
~ F141 |Xx'23", SECARG*1, CC, 1°® 5e§ Sector for current track index normal
o =) : : : entry. o : :
E14B X'Bl', 2&Filename.D+8, CC, 5 |Search identifier equal (multiple-track)
the track index using the pointer, CCHHR,
in the work area for the current track
index normal entry count field.
066B X'08', Pointer to %*-8, CC TIC to %-8.
and SLI, 5
BDCC X'05', 2&Filename.W, CC and Write data (track index overflow entry)
DC, 10 from the random/sequential retrieval work
area.
F151 |X'23', SECARG=1, CC, 1°® Set Sector for current track index normal
: 1 Co entry.
814B X'31', 2&Filename.D+8, CC, 5 |Search identifier equal the track index
using the pointer, CCHHR, in the work area
for the current track index normal entry
count field.
066B X'08', Pointer to *-8, CC TIC to *-8.
and SLI, 5
1D3C X'06', 2&Filename.W, SLI Read data to verify record just written.
and SKIP, Information is not transferred to main
storage.
1 -- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.
Figure 87. Channel Program Builder for ADDRTR -- CCW chain built to

write track

index entry for add function.

CCHW Builder |
Control Code!| CCW Built Function
F041 IX'23', SECARG=0, CC, 18 Set Sector for start of track.
8C4B X'31"', 2&Filename.S+3, CC, 5 |Search identifier equal for RO using
pointer, CCHHR, in common seek/search area
in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to *-8.
and SLI, 5
B02C X'05"', 2&Filename.D, SLI, 10 |Write data (updated COCR) from the cylinder
2vgiflow control record area in the DTFIS
able.

1 -

8 See Notes 1 through 8
Note: The shaded areas

Figure 88.
write COCR for add function.

Indexed Sequential Access Method

in Figures 110 and

111,

indicate CCWs built for RPS only.
Channel Program Builder for ADDRTR

—-— CCW chain built to

155

Licensed Program — Property of IBM

Figure 89.

Channel Program Builder for ADDRTR

CCW Builder N
Control Codel CCH Built Function
Flzt 1X'23', SECARG=1, CC, 18 - |Set Sector fcr praviousl low overflow
: o : |record, e
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal using pointer,
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
AAO7 X'0E', Address of IOAREAL+S8, Read key and data of previously low
00, Key Length + Record overflow record into IOAREAL+8
Length + 10
1 —- 8 gee Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.

-—- CCW chain built to

read previous overflow record for add function.

CCW Builder

Control Code! CCW Built Function
 F12. IX"23', SECARG=1, CC, 18 Set Sector for previously low nverfleu :
o - ' record. - .
X'31', 2&Filename.S+3, CC, 5 |Search identifier equal using pointer,
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to -8, CC TIC to %*-8.
and SLI,
2AG7 X'0D', Address of IOAREAL+3, |[Write key and data of previously low
CC, Key Length + Record overflow record located at IOAREAL+8.
Length + 10
ixra23 7SBCARSII. cC, 1°® Set Sector for. previouslyvxnu overfluw

recor

X'31°',

ldentlfler equal using pointer,

z&Fllename S+3, CC, 5 |Search
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
AA37 X'0E', Address of IOAREAL+S8, Read key and data to verify record just
SLI and SKIP, Key Length + written. Information is not transferred
Record Length + 10 to main storage.
1 -- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.

Figure 90.

Channel Program Builder for ADDRTR

CCW chain built to

write previous overflow record for add function.

156 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

CCW Builder |

Control Code?! CCW Built

Function

SQt Sect

y 2&Filename.S+3,

Record Length + 18

8C4B X'31 CC, 5 |Search 1dent1f1er equal for last overflow
record address using pointer, CCHHR, in
common seek/search area in DTFIS table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
37C9 X'1D', Address of IOAREAL, Write count, key and data of new overflow
CC and DC, Key Length + record located at IOAREAL.

|set sec

2gFilename.S+3,

identifier equ

last overflow

8C4B X'31', CC, 5 |Search al for
record using pointer, CCHHR, in common
seek/search area in DTFIS table.
066B X'08', Pointer to *-8, CC TIC to %*-8.
and SLI,
C739 X'"1E', Address of IOAREAL, Read count, key and data to verify record
SLI and SKIP, Key Length + just written. Information is not
Record Length + 18 transferred to main storage.
! -——- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.
Figure 91. Channel Program Builder for ADDRTR -- CCW chain built to

write new overflow record for add function.

[ccw Builder
|Control Code?

CCW Built

Function

8C4B X'31', 2&Filename.S+3, CC, 5 Search ldentlfler equal for present EOF
record address minus one using pointer,
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to %*-8, CC TIC to %*-8.
and SLI,
37C8 X'1D', Address of IOARCZAL, Write count key and data of new record
CC and DC, Key Length + to be added located at IOAREAL.
Block Size + 8
» €Cy 18 |Set Sector for last overflow record.
8C4B X'31', 2&Filename.S+3, CCy, 5 |[Search identifier equal for present EOF
record address minus one using pointer,
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
c738 X'1E', Address of IOAREAL, Read count, key and data to verify record
SLI and SKIP, Key Length + just written. Information is not
Block Size + transferred to main storage.
1 -- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.

Figure 92.

Channel Program Builder for ADDRTR

-— CCW chain built to

write over EOF record (blocked records) for add function.

Indexed Sequential Access Method

157

Licensed Program - Property of IBM

CCW Builder |

Control Code!? Function

CCW Built
rzs 'y ,sscus«x’ ’ CCs

CC, 5 identifier equal for present EOF

8C4B X 31' z&Fllename S+3.
record address minus one using pointer,
CCHHR, in common seek/search area in DTFIS
table
066B X'08', Pointer to %x-8, CC TIC to %*-8.
and SLI,
37C8 X'1D', Address of IDAREAL, Write count, key and data of new record
CC and DC, Key Length + to be added, located at IOAREAL.
Block Size + 8
~ SECARG=1, |set sector for

— 7*‘23"; o6: 1*

o '; minus one.,
cC, 5

2&Filename.S+3, identifier equal for present EOF

8C4B X'31', Search
record address minus one using pointer,
CCHHR, in common seek/search area in DTFIS
table.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
C738 X'1E', Address of IOAREAL, Read count, key and data to verify record
SLI and SKIP, Key Length + just written. Information is transferred
Block Size + to main storage.
1 —- 8 See Notes 1 through 8 in Figures 110 and 111.
Note: The shaded areas indicate CCWs built for RPS only.
Figure 93. Channel Program Builder for ADDRTR -- CCW chain built to

write over EOF record (unblocked records) for add function.

CCW Builder
Control Code! CCW Built

'x*zz'. sscaaeu. £6. 1*

Function

$ 98 “

{Set Sector for nrasc"
|minus one. i

X 31'

5

identifier equal for present EUF

Z&F]lename sS+3, CC, Search
record address minus one using pointer,
CCHHR, in common seek/search area in DTFIS
table.
D66B X'08', Pointer to %x-8, CC TIC to %*-8.
and SLI,
37AC X'1D', Address of IDAREAL, Write count, nd data of EOF record

located at IokgﬁAE
in Figures 110 and 111.

The shaded areas indicate CCWs built for RPS only.
Channel Program Builder for ADDRTR CCW chain built to

write EOF record in independent overflow area for add
function.

DC and SLI, 10
& See Notes 1 through 8

) R

Note:

Figure 94.

158 IBM VSE/Advanced Functions LIOCS Volume 3 DAM and ISAM

Licensed Program -

Property of IBM

CCW Builder |
Control Code!|

CCHW Built

Function

8C4B X*'31', 2&Filename.S+3, CC, 5 |Search identifier equal the track index
using the pointer (CCHHR) in the common
seek/search area.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
106C X'06"', 2&Filename.D, CC and Read data (COCR record) into the cylinder
SLI, 1 overflow control record (COCR) area.

E14B X'B1', 2&Filename.D+8, CC, 5 |Search identifier equal (multiple-track)
the track index for the last normal entry
using information in the work area for the
current track index normal entry count
field.

066B X'08', Pointer to -8, CC TIC to %-8.

and SLI,
154C X'06', 2&Filename.D+40, CC, Read data (last track index normal entry)
10 into work area for track index normal entry
data field.
526C X'92', 2&Filename.D+16, CC Read count (multiple-track) of last track
and SLI, index overflow entry into work area for the
current track index overflow entry count
‘ field.
1D0C X'06', 2&Filename.W, 00, 10 Read data (last track index overflow entry)

into random/sequential retrieval work area.

1 —a

Note: The shaded areas

Figure 95.

8 See Notes 1 through 8

in Figures 110 and 111.

indicate CCWs built for RPS only.

Channel Program Builder for ADDRTR
read last track

-— CCW chain built to

index entry for add function.

CCW Builder
Control Code?! CCHW Built Function
8C4B X'31', 2&Filename.S+3, CC, 5 |Search identifier equal the overflow chain
using the pointer (CCHHR) in the common
seek/search area.
066B X'08', Pointer to %-8, CC TIC to %*-8.
and SLI,
AAO7 X'0E', Address of IOAREAL+8, |Read key and data of overflow record
00, Key Length + Record into IOAREAL+S8.
Length + 10

|

Note: The shaded areas
Figure 96.

8 See Notes 1 through 8

in Figures 110 and 111.

indicate CCWs built for RPS only.

Channel Program Builder for ADDRTR —-- CCW chain built to

read overflow record for add function.

Indexed Sequential Access Method

159

Licensed Program - Property of IBM

CCW Builder | |)
Control Codel| CCH Built | Function
X'31 2&%Filenam