

--------- -------- - ------ ---
===-=~=

(-

(

Virtual Machine/System Product
Program Update Information

Restructured Extended Executor
Language Enhancements

VM/SP Release 6
APARS VM36993, VM36994 and VM36988

GC24-5406-00

,I

---~~--~ ~-" """"--- """--

First Edition " (August 1989)

This edition, GC24-5406-00, applies to Release 6 of Virtual Machine/System Product (VM/SP), program (\
number 5664-167, and to all subsequent releases of this product until otherwise indicated in new editions or '"j
Technical Newsletters. Changes are made periodically to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest IBM System/370, 30xx, 4300,
and 9370 Processors Bibliography, GC20-000l, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Publications are not stocked at the address given below. Requests for copies of IBM publications should be
made to your IBM representative or to the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information Development, Dept. G60, P.O. Box 6,
Endicott, NY, U.S.A. 13760. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1989. All rights reserved.

o

Preface

Who is this Book for?
This book is written for the systems programmer, application programmer, and
others interested in an overview of the Restructured Extended Executor Language
(REXX) enhancements. It is not a permanent addition to your library. Use it along
with your current VM/SP manuals until otherwise indicated in new editions.

What Is This Book For?
This book is intended to help you use the Restructured Extended Executor (REXX)
Language enhancements. It primarily contains general-use programming interfaces,
which allow you to write programs that use the services of VM/SP. The
programming interfaces are indicated as follows:

IriillU\I,1

Internal Prodnct Information --------------------,

Internal product information is provided as additional guidance for planning.
This internal information should never be used as programming interface
information.

IBM issues books such as this one to reflect software enhancements or software
support for new hardware released on a program update tape (PUT). The books
vary in size depending on the enhancement. The book typically describes the
support, explains how to use it, and lists new messages, codes, and design changes.
We recommend that you file it along with your VM/SP library in the binder
provided for these books. If you do not have this binder, you can order it by using
order number SX24-5226.

(What Information does this Book Supplement?
This book supplements the information in the following VM/SP Release 6 manuals:

VM/SP Release 6 Books Order Number

Application Development Reference for CMS SC24-5284

Group Control System Command and Macro Reference SC24-5250

System Messages and Codes SC 1 9-6204

System Product Interpreter Reference SC24-5239

GC24-S406-00 © Copyright IBM Corp. 1989 iii

What Other Books Should I Have?
See the "Bibliography" on page 45 for a list of the program update books that have i~-\
been issued since VMjSP Release 4 became available.'\.,_J"

",
)

()

iv REXX Enhancements

(Contents

(

(

Overview .. 1
Programming Interfaces 2

Modified Instructions 3
CALL ... 3
SIGNAL ... 7

New Options ... 9
Conditions and Condition Traps 9

New Function
CONDITION

New Macros
EPLIST
GCSCALL
RXITDEF
RXITPARM

. .. 14
14

. .. 16
16
20
22
23

Modified System Interface 26
EXECCOMM 26

Function Codes (SHVCODE) 26

Modified CSL Routine 27
DMSCGS - Get Special REXX Values ., 27

New System Exits 29
System Exits .. 29

Invocation of the Language Processor by an Application Program 29
Invocation of the System Exits by the Language Processor 31

New GCS ABEND Codes 41
GCS ABEND Codes 41

Design Changes 43
Changed Modules (CMS) 43
Changed Modules (GCS) 43
New Modules (GCS) 43
Changed Modules (REXX) 43
New Modules (REXX) 43
Changed Macros (CMS) 43
New Macros (CMS) 43
Changed Macros (GCS) 44
Changed Macros (REXX) 44
New Macros (REXX) 44
Changed Control Blocks (CMS) 44
Changed Control Blocks (GCS) 44
Changed Execs (CMS) 44
Changed Execs (GCS) 44
Changed HELP Files 44
New HELP Files 44

GC24-5406-00 © Copyright IBM Corp. 1989 v

Bibliography 45

{ ' ... ' .. . ,'·,r
'. .'
./

vi REXX Enhancements

(. Overview

(,

Overview

This book explains the enhancements to REXX for both the CMS and GCS
environments. Additions to REXX are as follows:

• Condition trap option of the CALL instruction

The CALL instruction also controls the trapping of certain conditions; that is,
condition traps can modify the explicit flow of a program by specifying the ON
or OFF keyword of the CALL instruction. This support is similar to the
existing SIGNAL instruction.

• New keyword for CALL and SIGNAL instructions

The syntax for specifying condition traps has changed. The new syntax includes
the NAME keyword (NAME trapname). Both the CALL and SIGNAL
instructions reflect this change.

• CONDITION built-in function

A new built-in function, CONDITION, returns condition information associated
with the current trapped condition.

• Argument limit increased for CALL instruction

The number of argument strings on a CALL instruction has been increased to
20.

• Fetch Private Argument List function of EXECCOMM

The Fetch private operation of the EXECCOMM interface is extended to return
program supplied information about the following:

Number of argument strings supplied to the program
Nth argument string supplied to the program.

• User exits for system services

User exits are now provided to let applications tailor the Procedures Language
environment. The exit types are as follows:

Initialization/Termination

System services

• PARSE VERSION update

routines called at start up and termination of
a program

routines called to provide host environment
services to the interpreter.

To reflect the changes made by this support, a value of 3.46 is returned by
PARSE VERSION. The date returned is "31 May 1988".

• New GCS macros

A new GCS macroinstruction, GCSCALL, is provided to allow invoking either
the GCS REXX interpreter or the EXECCOMM interface directly from the user
program.

A new GCS macroinstruction, EPLIST, is provided to generate a DSECT for
the GCS extended parameter list.

GC24-5406-00 © Copyright IBM Corp. 1989 1

Ovemew

• New RXITDEF macro

A new CMS/GCS macroinstruction, RXITDEF, is provided to assign the correct
values to the symbols used for the exit routine function and subfunction codes.

• New RXITPARM macro

A new CMS macroinstruction, RXITPARM, is provided to map the parameter
list used to pass information between the language processor and an exit routine.

Programming Interfaces

2 REXX Enhancements

The CALL instruction, SIGNAL instruction, CONDITION function, EPLIST
macro, GCSCALL macro, RXITDEF macro, RXITPARM macro, and the System
Exits are part of the general programming interfaces for VM/SP.

See "CALL" on page 3, "SIGNAL" on page 7, and "Conditions and Condition
Traps" on page 9 in this book and Chapter 3 of the VM/SP System Product
Interpreter Reference, SC24-5239, for documentation on the CALL and SIGNAL
instructions.

See "CONDITION" on page 14, "EPLIST" on page 16, "GCSCALL" on page 20,
"RXITDEF" on page 22, "RXITPARM" on page 23, and "System Exits" on
page 29 in this book for documentation on the CONDITION function, the
GCSCALL macro, the RXITDEF macro, the RXITPARM macro, and the System
Exits.

For more information on programming interfaces in VM/SP, see the VM/SP
Directory of Programming Interfaces for Customers book, GC24-5417. / ~

('. ,) "'-...

'\
)

(

~~---~ ---

CALL

Modified Instructions

CALL

This section discusses modified instructions and should be used with the VM/SP
System Product Interpreter Reference, SC24-5239. These modifications are marked
by a vertical bar (I). Information concerning conditions and condition traps can be
found in "Conditions and Condition Traps" on page 9.

-CALL--r--Inam@---r------------,r--;---

FFt=ERROR
FAILURE
HALT--......

NAME-trapnam

Where:

name
is a symbol or literal string that is taken as a constant.

OFF
turns off the specified condition trap.

ON
turns on the specified condition trap.

Note: For information on condition traps see "Conditions and Condition Traps" on
page 9.

CALL is used to invoke a routine, or (if ON or OFF is specified) can be used to
control the trapping of certain conditions.

When name is specified, CALL invokes a subroutine which can be:

• An internal routine
• An external routine
• A built-in function.

GC24-S406-00 © Copyright IBM Corp. 1989 3

CALL

4 REXX Enhancements

It can optionally return a result, and is functionally identical to the clause:

--resul t=name(--r"I-f----------.-)-;­

Lexpress ion]

except that the variable RESULT becomes uninitialized if no result is returned by
the routine invoked.

The name given in the CALL instruction must be a valid symbol. If a string is used
for name (that is, name is specified in quotes) the search for internal labels is
bypassed, and only a built-in function or an external routine is invoked. Note that
the names of built-in functions (and generally the names of external routines too) are
in uppercase, and hence the name in the literal string should be in uppercase.

VM supports specifying up to 20 expressions, separated by commas. The
expressions are evaluated in order from left to right, and form the argument string(s)
during execution of the routine. Any ARG or PARSE ARG instructions, or ARG
built-in function in the called routine will access these strings, rather than those
previously active in the calling program. Expressions may be omitted, if
appropriate, by including "extra" commas.

The CALL then causes a branch to the routine called name using exactly the same
mechanism as function calls. The order in which these are searched for is described
in the section on functions in the VM/SP System Product Interpreter Reference,
SC24-5239, but briefly is as follows:

Internal routines:
These are sequences of instructions inside the same program, starting at
the label that matches name in the CALL instruction. If the routine
name is specified in quotes, then an internal routine will not be
considered for that search order.

Built-in routines:
These are routines built in to the language processor for providing
various functions. They always return a string containing the result of
the function.

External routines:
Users can write or make use of routines that are external to the language
processor and the calling program. An external routine can be written in
any language, including REXX, which supports the system dependent
interfaces. If an external routine, written in REXX, is invoked as a
subroutine by the CALL instruction, any argument strings may be
retrieved using the ARG or PARSE ARG instructions or the ARG
built-in function.

During execution of an internal routine, all variables previously known are normally
accessible. However, the PROCEDURE instruction may be used to set up a local
variables environment to protect the subroutine and caller from each other. The
EXPOSE option on the PROCEDURE instruction can be used to expose selected
variables to a routine.

,.rO' . , " ',--

/' '\
I
\",

Calling an external program as a subroutine is similar to calling an internal routine. 0
The external routine, however, is an implicit PROCEDURE in that all the caller's

-- ---- --------- -----

(

(

(

CALL

variables are always hidden and the status of internal values (NUMERIC settings,
etc.) start with their defaults (rather than inheriting those of the caller).

When control reaches the internal routine, the line number of the CALL instruction
is available in the variable SIGL (in the caller's variable environment). This may be
used as a debug aid, as it is therefore possible to find out how control reached a
routine. Note that if the internal routine uses the PROCEDURE instruction, then it
will need to EXPOSE SIGL to get access to the line number of the CALL.

Eventually the subroutine should execute a RETURN instruction, and at that point
control will return to the clause following the original CALL. If the RETURN
instruction specified an expression, the variable RESULT will be set to the value of
that expression. Otherwise, the variable RESULT is dropped (becomes
uninitialized).

An internal routine can include calls to other internal routines, as well as recursive
calls to itself.

Example:

/* Recursive subroutine execution ••• */
arg x
call- factorial x
say x'! =, result
exit

factorial: procedure
arg n
if n=e then return 1
call factorial n-1
return result * n

/* calculate factorial by •• */
/* .. recursive invocation. */

During internal subroutine (and function) execution, all important pieces of
information are automatically saved and are then restored upon return from the
routine. These are:

• The status of DO loops and other structures - Executing a SIGNAL while within
a subroutine is "safe" in that DO loops, etc., that were active when the
subroutine was called are not deactivated (but those currently active within the
subroutine will be deactivated).

• Trace action - Once a subroutine is debugged, you can insert a TRACE Off at
the beginning of it, and this will not affect the tracing of the caller. Conversely,
if you only wish to debug a subroutine, you can insert a TRACE Results at the
start and tracing will automatically be restored to the conditions at entry (for
example, "Off") upon return. Similarly,? (interactive debug) and! (command
inhibition) are saved across routines.

• NUMERIC settings (the DIGITS, FUZZ, and FORM of arithmetic operations,
described in the NUMERIC instruction in the VM/SP System Product
Interpreter Reference, SC24-5239) are saved and are then restored on RETURN.
A subroutine can therefore set the precision, etc., that it needs to use without
affecting the caller.

• ADDRESS settings (the current and secondary destinations for commands - see
the ADDRESS instruction in the VM/SP System Product Interpreter Reference,
SC24-5239) are saved and are then restored on RETURN.

Modified Instructions 5

CALL

6 REXX Enhancements

• Condition traps (CALL ON and SIGNAL ON) are saved and then restored on
RETURN. This means that CALL ON, CALL OFF, SIGNAL ON, and
SIGNAL OFF can be used in a subroutine without affecting the conditions set
up by the caller.

• Condition information - This is the information returned by the CONDITION
built-in function (see "CONDITION" on page 14).

• Elapsed-time clocks - A subroutine inherits the elapsed-time clock from its caller
(see the TIME function in the VM/SP System Product Interpreter Reference,
SC24-5239), but since the time clock is saved across routine calls, a subroutine
or internal function can independently restart and use the clock without affecting
its caller. For the same reason, a clock started within an internal routine is not
available to the caller.

• OPTIONS ETMODE/EXMODE are saved and are then restored on RETURN.
For more information - see the OPTIONS instruction in the VM/SP System
Product Interpreter Reference, SC24-5239.

Implementation maximum: The total nesting of control structures, which includes
internal routine calls, may not exceed a depth of 250.

:,'-"

(,,-/

o

SIGNAL

(

(

SIGNAL

--SIGNAL labelnam~--------------------~----;~

Where:

labelname

1-T------,r--1expres S i onl------------4
VALUE

FF~ERROR FAILURE
HALT---I
NOVALUE
SYNTAX

N1
ERRO FAILURE
HALT
NOVALUE
SYNTAX

NAME-trapnam

is a symbol or literal string that is taken as a constant.

OFF
turns off the specified condition trap.

ON
turns on the specified condition trap.

Note: For information on condition traps see "Conditions and Condition Traps" on
page 9.

The SIGNAL instruction causes an abnormal change in the flow of control, or (if
ON or OFF is specified) controls the trapping of certain conditions.

When neither ON nor OFF is specified, a label name is derived from labelname or
taken from the result of evaluating the expression following VALUE. This must be
a symbol, which is treated literally, or a literal string. The subkeyword VALUE may
be omitted if expression does not begin with a symbol or literal string (Le. if it starts
with a special character, such as an operator or parenthesis). All active pending DO,
IF, SELECT, and INTERPRET instructions in the current routine are then
terminated (that is, they cannot be reactivated). Control then passes to the first label
in the program that matches the required string, as though the search had started
from the top of the program. If labelname is a symbol, the match is done
independently of alphabetic case, but otherwise the label must match exactly.

Example:

Signal fred; /* Jump to label "FRED" below */

Fred: say I Hi! I

Because the search effectively starts at the top of the program, control will always
pass to the first occurrence of the label in the program if duplicates are present.

Modified Instructions 7

SIGNAL

8 REXX Enhancements

--- ~- --------

When control reaches the specified label, the line number of the SIGNAL instruction
is assigned to the special variable SIGL. This can be used to aid debugging, as it r-""
can be used to determine the source of a jump to a label. V

Using SIGNAL with the INTERPRET Instruction

If, as the result of an INTERPRET instruction, a SIGNAL instruction is issued or a
trapped event occurs, the remainder of the string(s) being interpreted will not be
searched for the given label. In effect, labels within interpreted strings are ignored.

ii·ijiill

o

Conditions and Condition Traps

(New Options

(...

(

Conditions and Condition Traps

1m
CALL and SIGNAL modify the flow of execution in a REXX program by using
condition traps. Condition traps are turned on or off using the ON or OFF
subkeywords of the SIGNAL and CALL instructions (see "CALL" on page 3 and
"SIGNAL" on page 7).

-.-CALL
LSIGNALJ

LOFF-ConditiOn---------r--;~
ON--conditi on--r"------~

~NAME--trapnam~

where condition and trapname are single symbols which are taken as constants.

Following one of these instructions, a condition trap is set to either ON (enabled) or
OFF (disabled). The initial setting for all condition traps is OFF.

If a condition trap is enabled and the specified condition occurs, control passes to
the routine or label trapname. SIGNAL or CALL is used, depending on whether the
most recent trap for the condition was set using SIGNAL ON or CALL ON
respectively.

The conditions and their corresponding events, which can be trapped are:

ERROR
is raised if any host command indicates an error condition upon return. It is
also raised if any host command indicates failure and neither CALL ON
FAILURE nor SIGNAL ON FAILURE are set. The condition is raised at the
end of the clause that invoked the command, but will be ignored if the ERROR
condition trap is already in the delayed state.

In VM (and TSOjE), when the RXCMD exit is not being used, CALL ON
ERROR and SIGNAL ON ERROR trap all positive return codes; and will trap
negative return codes if neither CALL ON FAILURE nor SIGNAL ON
FAILURE are set. When the RXCMD exit is being used, CALL ON ERROR
and SIGNAL ON ERROR will trap the RXCFERR flag returned by the
RXCMD exit; and will trap the RXCFF AIL flag if neither CALL ON
FAILURE nor SIGNAL ON FAILURE are set.

FAILURE
is raised if any host command indicates a failure condition upon return, but will
be ignored if the FAILURE condition trap is already in the delayed state.

In VM (and TSOjE), when the RXCMD exit is not being used, CALL ON
FAILURE and SIGNAL ON FAILURE trap all negative return codes from
commands. When the RXCMD exit is being used, CALL ON FAILURE and
SIGNAL ON FAILURE will trap the RXCFFAIL flag returned by the
RXCMD exit.

GC24-5406-00 © Copyright IBM Corp. 1989 9

---_ .. __ ... - ... _-- ----

Conditions and Condition Traps

HALT
is raised if an external attempt is made to interrupt execution of the program.
The condition is raised at the end of the clause that was being interpreted when
the interruption took place.

In VM, when the RXHLT exit is not being used, the CMS immediate command
HI (Halt Interpretation) will cause a halt condition. If the RXHL T exit is being
used, a halt condition will be recognized when the RXHFHAL T flag is set by
the exit routine. Refer to "Interrupting Execution and Controlling Tracing" in
the VMjSP System Product Interpreter Reference, SC24-5239.

NOVALUE
raised if an uninitialized variable is used:

• As a term in an expression
• As the name following the V AR subkeyword of the PARSE instruction
• As an unassigned variable pattern in a parsing template.

This condition may only be specified for SIGNAL ON.

SYNTAX
raised if an interpretation error is detected. This condition may only be specified
for SIGNAL ON.

Any ON or OFF reference to a condition trap replaces the previous state (ON or
OFF, and any trap name) of that condition trap. Thus, a SIGNAL ON HALT
replaces any current CALL ON HALT, and so on.

Action Taken When a Condition is Trapped
When a condition trap is currently enabled (ON has been specified), the trap is in
effect. So, when the specified condition occurs, instead of the usual flow of control a
"CALL trapname" or "SIGNAL trapname" is executed automatically (i.e., passes
control to a label or routine). The label or routine given control will depend on
whether you used the NAME trapname option when you enabled the condition trap.

If no explicit trapname was specified, control is passed to the label or routine that
matches the name of the condition itself (ERROR, FAILURE, HALT, NOVALUE,
or SYNTAX).

If trapname was specified following the NAME subkeyword of the CALL ON or
SIGNAL ON instruction, control is passed to the label or routine specified, rather
than the name of the condition.

The sequence of events, once a condition has been trapped, varies depending on
whether a SIGNAL or CALL is executed:

10 REXX Enhancements

• If the action taken is a SIGNAL, execution of the current instruction ceases
immediately, the condition is disabled (set to OFF), and the SIGNAL takes
place in exactly the same way as usual (see page 7).

If any new occurrence of the condition is to be trapped, a new CALL ON or
SIGNAL ON instruction for the condition is required to re-enable it once the
label is reached. For example, if SIGNAL ON SYNTAX is enabled when a
SYNTAX condition occurs, then if the SIGNAL ON SYNTAX label name is
not found a normal syntax error termination will occur.

• If the action taken is a CALL, the CALL is made in the usual way (see page 3)
except that the special variable RESULT is not affected by the call. If the
routine should RETURN any data, then the returned character string is ignored.

.--.-.--.-~- -'~"---' --.----- .. - .. -.~--.. ------- ---... - .. - ---

04 ,.

1;(\
(" "

,j

o

(

Conditions and Condition Traps

Note that CALL ON can only occur at clause boundaries. Because these
conditions (ERROR, FAILURE, and HALT) can arise during execution of an
INTERPRET instruction, execution of the INTERPRET may be interrupted
and later resumed if CALL ON was used.

Before the CALL is made, the condition trap is put into a delayed state. This
state persists until the RETURN from the CALL, or until an explicit CALL (or
SIGNAL) ON (or OFF) is made for the condition. This delayed state prevents
a premature condition trap at the start of the routine called to process a
condition trap. When a condition trap is in the delayed state it remains enabled,
but if the condition is trapped again any action (including the updating of the
condition information) will be delayed until one of the following events:

1. A CALL ON or SIGNAL ON, for the delayed condition, is executed. In
this case a CALL or SIGNAL will take place immediately after the new
CALL ON or SIGNAL ON instruction has been executed.

2. A CALL OFF or SIGNAL OFF, for the delayed condition, is executed. In
this case the condition trap is disabled and the default action for the
condition will occur at the end of the CALL OFF or SIGNAL OFF
instruction.

3. A RETURN is made from the subroutine. In this case the condition trap is
no longer delayed and the subroutine will be called again immediately.

On RETURN from the CALL, the original flow of execution is resumed (that is,
the flow is not affected by the CALL).

Notes:

1. In all cases, the condition will be raised (and the current instruction
terminated) immediately upon detection of the error. Therefore, the
instruction during which an event occurs may be only partly executed. For
example, if SYNTAXis raised during the evaluation of the expression in an
assignment, the assignment will not take place. Note that ERROR,
FAILURE, and HALT can only occur at clause boundaries, but could arise
in the middle of an INTERPRET instruction.

2. The state (ON, OFF, or DELAY, and any trapname) of each condition trap
is saved on entry to a subroutine and is then restored on RETURN. This
means that CALL ON, CALL OFF, SIGNAL ON, and SIGNAL OFF can
be used in a subroutine without affecting the conditions set up by the caller.
See the CALL instruction (page 3) for details of other information that is
saved during a subroutine call.

3. The state of condition traps is not affected when an external routine is
invoked by a CALL, even if the external routine is a REXX program. On
entry to any REXX program, all condition traps have an initial setting of
OFF.

4. While user input is executed during interactive tracing, all conditions are set
OFF so that unexpected transfer of control does not occur should (for
example) the user accidentally use an uninitialized variable while SIGNAL
ON NOVALUE is active. For the same reason, a syntax error during
interactive tracing will not cause exit from the program, but is trapped
specially and then ignored after a message is given.

5. Certain execution errors are detected by the host interface either before
execution of the program starts or after the program has exited. These
errors cannot be trapped by SIGNAL ON SYNTAX.

New Options 11

Conditions and Condition Traps

Condition Information

Note that labels are clauses consisting of a single symbol followed by a colon.
Any number of successive clauses can be labels; therefore, multiple labels are
allowed before another type of clause.

When any condition is trapped and causes a SIGNAL (or CALL), this becomes the
current trapped condition, and certain condition information associated with it is
recorded. This information can be inspected by using the CONDITION built-in
function

The condition information includes:

• The name of the current trapped condition
• Any descriptive string associated with that condition
• The instruction executed as a result of the condition trap (CALL or SIGNAL)
• The status of the trapped condition.

The descriptive string varies, depending on the condition trapped. In the case of
SIGNAL, the descriptive string that is passed to the external environment as
command results in one of the following:

ERROR The string that was processed and resulted in the error condition.

FAILURE The string that was processed and resulted in the failure condition.

HALT Any string associated with the halt request. This can be the null string
if no string was provided.

o

NOV ALUE The derived name of the variable whose attempted reference caused the r' -\

NOV ALUE condition. ~,_)

SYNTAX Any string associated with the error by the language processor. This
can be the null string if no specific string is provided. Note that the
special variable RC and SIGL provide information on the nature and
position of the processing error.

The current condition information is replaced when control is passed to a label as
the result of a condition trap (CALL ON or SIGNAL ON). Condition information
is saved and restored across subroutine or function calls, including one due to a ,#\
CALL ON trap. A routine invoked by a CALL ON, therefore, can access the '\",_)
appropriate condition information. Any previous condition information is still
available after the routine returns.

The Special Variable SIGL

When any transfer of control due to a SIGNAL (or CALL) takes place, the line
number of the clause currently executing is stored in the REXX special variable
SIGL. This is especially useful for SIGNAL ON SYNTAX when the number of the
line in error can be used, for example, to control an editor. Typically, code
following the SYNTAX label may PARSE SOURCE to find the source of the data,
then invoke an editor to edit the source file positioned at the line in error. Note that
in this case the program has to be reinvoked before any changes made in the editor
can take effect.

12 REXX Enhancements

o

(

Conditions and Condition Traps

Alternatively, SIGL can be used to help determine the cause of an error (such as the
occasional failure of a function call) as in the following example:

/* Standard handler for SIGNAL ON SYNTAX */
syntax:

errormsg='REXX error' rc 'in line' sigl':' errortext(rc)
say erronnsg
say sourceline(sigl)
trace '?r'; nop

This code first displays the error code, line number, and message text. It then
displays the line in error, and finally drops into debug mode to let you to inspect the
values of the variables used at the line in error.

The Special Variable RC

For ERROR and FAILURE, the REXX special variable RC is set to the command
return code error number before control is transferred to the condition label. For
SIGNAL ON SYNTAX, RC is set to the syntax error number.

'ri"4M

New Options 13

CONDITION

New Function

CONDITION ..
I ~ONDITION(option) ~~

returns the condition information associated with the current trapped condition. See
"CALL" on page 3 and "SIGNAL" on page 7 for a description of condition traps.
Four pieces of information can be requested:

• The name of the current trapped condition

• Any descriptive string associated with that condition

• The instruction executed as a result of the condition trap (SIGNAL or CALL)

• The status of the trapped condition.

The following option can be supplied to select the requested information. Only the
first letter is significant.

Condition name

Description

Instruction

Status

returns the name of the current trapped condition.

returns any descriptive string associated with the current
trapped condition. See page 12 for the list of possible strings.
If no description is available, a null string is returned.

returns the keyword for the instruction executed when the
current condition was trapped, being either CALL or SIGNAL.
This is the default if option is not specified.

returns the status of the current trapped condition. This can
change during execution, and is either:

ON • the condition is enabled

OFF· the condition is disabled

DELAY· any new occurrence of the condition is delayed.

If no condition has been trapped (that is, there is no current trapped condition) then
the CONDITION function returns a null string in all four cases.

Here are some examples:

COND I TI ON ()
CONDITION (' C')
CONDITION ('I')
CONDITION (' D')
CONDITION(' S')

->
->
->
->
->

'CALL'
, FAILURE'
'CALL'
'Fail ureTest'

/* perhaps */

'OFF' /* perhaps * /

14 REXX Enhancements

o

(

~----- ----

CONDITION

Note:

The condition information returned by the CONDITION function is saved and
restored across subroutine calls (including those caused by a CALL ON condition
trap). Therefore, once a subroutine invoked due to a CALL ON trap has returned,
the current trapped condition reverts to the current condition before the CALL took
place. CONDITION returns the values it returned before the condition was trapped.

New Function 15

'I

EPLIST

New Macros

EPLIST

Format

This section discusses modified macros and should be used with the VM/SP GCS
Command and Macro Reference, SC24-5250, and the VM/SP Application
Development Reference, SC24-5284. These modifications are marked by a vertical
bar (I).

Use the EPLIST macro to generate a DSECT for the GCS extended parameter list.

[label] EPLIST

Optional Parameter
label

Usage Note

16 REXX Enhancements

is an optional assembler label for the statement. The first statement in the
EPLIST macro expansion is labeled EPLIST.

1. The EPLIST macroinstruction expands as follows:

()

/ "\
I '

\ .. ~J

\ (

(

EPLIST
*
*** EPLIST - EXTENDED PLIST DSECT
*

* 0
* EPLCMD EPLARGBG
* 8
* EPLARGND EPLUWORD
* 10
* EPARGLST EPFUNRET
* 18
*
* 20

EPLIND I EPLRESVD

*
*** EPLIST - EXTENDED PLIST DSECT
*
EPLIST DSECT
EPLCMD OS A ADDRESS OF COMMAND TOKEN.
EPLARGBG OS A ADDR OF BEGINNING OF ARGUMENTS.
EPLARGND OS A ADDR OF END OF ARGUMENTS.
EPLFBL OS A ADDR OF THE FILE BLOCK
EPARGLST OS A ADDR OF THE FUNCTION ARGUMENT LIST
EPFUNRET OS A ADDR FOR RETURN OF FUNCTION DATA
EPL4LNBY EQU *-EPLIST 4 WORD HEADER LENGTH IN BYTES
EPL4LNDW EQU (*-EPLIST+7)/8 4 WORD HEADER LENGTH IN DWORDS

* While the preceding 6 words are the same for both CMS and
* GCS, the following word is applicable for GCS only.

Figure 1 (Part 1 of 3). EPLIST Control Block Format

EPLIST

New Macros 17

EPLIST

EPLIND DS X Indicator byte.
EPLPGM EQU x'ee' Program issued command.
EPLACMD EQU X'el' Called from System Product
* Interpreter with ADDRESS COMMAND
EPLFNC EQU x'es' Subroutine or function call.
EPLCONS EQU X'eB' Console command.

DS 3X Reserved
SPACE,

EPLLENBY EQU *-EPLIST Total length in bytes.
EPLLENDW EQU (*-EPLIST+7)/8 Total length in dwords.

EJECT,

* The following equates for byte e of reg 1 are applicable
* for CMS only. GCS uses the EPLIND byte instead. This is
* defined above. The following equates are retained to allow
* programs to be compiled on CMS and execute in either CMS or
* GCS environments.

*
* *
* THE EXTENDED PLIST FLAGS INDICATE THE PRESENCE *
* OF AN EXTENDED PLIST IN REGISTER e. THE HIGH *
* ORDER BYTE OF REGISTER 1 WILL CONTAIN EITHER *
* EPLCMDFL OR EPLFNCFL TO INDICATE THE EXTENDED *
* PLIST IS AVAILABLE. ONLY THE FIRST 4 WORDS OF *
* OF THE EXTENDED PLIST ARE AVAILABLE WITH THESE *
* CODES. *
* *
* IF THE HIGH ORDER BYTE OF REGISTER 1 CONTAINS *
* EPFUNSUB, THEN THE INVOCATION IS AN EXTERNAL *
* FUNCTION/SUBROUTINE CALL FROM REXX. WITH THIS *
* PLIST, ALL 6 WORDS OF THE PLIST ARE AVAILABLE. *
* WORD S POINTS TO A LIST OF DOUBLE WORD AD LENS *
* (ADDRESS-LENGTH PAIRS) WHICH DESCRIBE THE *
* ARGUMENTS TO THE ROUTINE (EPARGLST). WORD 6 *
* (EPFUNRET) IS THE LOCATION FOR THE CALLED *
* ROUTINE TO STORE THE ADDRESS OF AN EVALBLOK *
* TO RETURN DATA TO THE CALLING PROGRAM. *
* *
*

Figure 1 (Part 2 of 3). EPLIST Control Block Format

18 REXX Enhancements

/'

o

EPLIST

(EPLCMDFL EQU X'eB' EXTENDED PLIST AVAILABLE FLAG.
EPLFNCFL EQU X'01' EXTENDED PLIST AVAILABLE FLAG.
EPFUNSUB EQU x'es' EXTERNAL FUNCTION PLIST AVAILABLE
*
* FLAG DEFINITIONS. EXCEPT AS NOTED, ONLY THE FIRST FOUR
* WORDS OF THE EXTENDED PLIST ARE AVAILABLE.
* EPLIST
* FLAG VALUE AVAIL? MEANING
EPLFPROG EQU x'ee' N PROGRAM
EPLFCMND EQU x'el' Y ADDRESS COMMAND
EPLFSBCM EQU x'e2' Y SUBCOM
EPLFNNUE EQU x'e3' Y NO NUCEXT, EXTENDED
EPLFNNUT EQU x'e4' N NO NUCEXT, TOKENIZED
EPLFRXFN EQU x'es' Y REXX EXTERNAL FUNCTION.
* 6 WORD EXTENDED PLIST PRESENT
EPLFIMMD EQU x'e6' Y IMMEDIATE COMMAND

('- EPLFSRCH EQU x'eB' Y COMMAND SEARCH
EPLFENDC EQU X'FE' N END OF COMMAND
EPLFABEN EQU X'FF' N ABEND OR NUCXDROP

Figure 1 (part 3 of 3). EPLIST Control Block Format

(

•

New Macros 19

'I

GCSCALL

GCSCALL

Format

Use the GCSCALL macro to:

• call the GCS REXX interpreter directly from the user program

• call the EXECCOMM interface directly from the user program

• determine the address of the environment work block (WORKBLOK) for the
current EXECCOMM variable pool

• change the address of the environment work block (WORKBLOK) for the
current EXECCOMM variable pool.

[label] GCSCALL {REXX } EXECCOMM
GETCOMM
SETCOMM

Optional Parameters
label

is an optional assembler label for the statement.

REXX
specifies a link to the GCS REXX Interpreter. You must set up the following
registers in order to use this option:

RO Pointer to the Extended Plist.
Rl Pointer to the Tokenized Plist.
R13 Pointer to a standard 18 fullword register save area.
R14 Reserved for module linkage.
R15 Reserved for module linkage and return code.

On return, registers 0 through 13 should be unchanged, register 14 will be the
address to which control was returned, and register 15 will be the return code.

EXECCOMM
specifies a link to the GCS EXECCOMM interface. You must set up the
following registers in order to use this option:

RO Pointer to the shared variable block request chain.
Rl Ignored.
R13 Pointer to a standard 18 fullword register save area.
R14 Reserved for module linkage.
R15 Reserved for module linkage and return code.

On return, registers 0 through 13 should be unchanged, register 14 will be the
address to which control was returned, and register 15 will be the return code.

GETCOMM

20 REXX Enhancements

determines the address of the environment work block (WORKBLOK) for the
current EXECCOMM variable pool. You must set up the following registers in
order to use this option:

~-~-----~------ ------------------~

;1-- -)

("'-~ -

o

(-

(

Usage Notes

(-

•

.~---.----------

RO
Rl
R13
R14
R15

Reserved for the returned WORKBLOK address.
Ignored.
Pointer to a standard 18 fullword register save area.
Reserved for module linkage.
Reserved for module linkage and return code.

GCSCALL

On return, registers 1 through 13 should be unchanged, register 0 will contain
the address of the current WORKBLOK, register 14 will be the address to which
control was returned, and register 15 will be the return code. A return code of
zero indicates the function was successful.

SETCOMM
changes the address of the environment work block (WORKBLOK) for the
current EXECCOMM variable pool. You must set up the following registers in
order to use this option:

RO Address of the desired WORKBLOK.
Rl
R13
R14
R15

Ignored.
Pointer to a standard 18 fullword register save area.
Reserved for module linkage.
Reserved for module linkage and return code.

On return, registers 0 through 13 should be unchanged, register 14 will be the
address to which control was returned, and register 15 will be the return code.
A return code of zero indicates the function was successful.

1. For GCSCALL EXECCOMM, to convert an existing SVC call to a BALR call,
replace the:

<label> EXECCOMM REQLIST~addr

statement in your program with:

<label> LA R0,addr
GCSCALL EXECCOMM

or equivalent statements.

2. In the case of GCSCALL REXX and GCSCALL EXECCOMM, when used
from supervisor state, the calling program may be running either enabled for all
interrupts, enabled for some and disabled for other interrupts, or disabled for all
interrupts. The GCS REXX interpreter enables for all interrupts periodically
during processing and returns to the calling program enabled for all interrupts.

3. The GCSCALL GETCOMM and GCSCALL SETCOMM functions are
intended for use only within an exit routine. If the exit routine chooses to use
SETCOMM to change the WORKBLOK pointer during the exit processing, the
exit routine must first use GETCOMM to remember the original pointer value,
and use SETCOMM to restore the pointer to this value before returning to the
GCS REXX interpreter. The active WORKBLOK address must be consistent
with the register contents returned to the interpreter.

lriPl 4M

New Macros 21

RXITDEF

RXITDEF

Format

Usage Note

Use the RXITDEF macro to assign the correct values to the symbols used for the
exit routine function and subfunction codes. This macro may be used for CMS and
GCS programs.

RXITDEF

The following symbols are assigned by this macro:

RXFNC EQU x'eee2' Process a function request.
RXFNCCAL EQU X'eee1' FNC Call a function/subroutine.
RXCMD EQU X'eee3' Process a command request.
RXCMDHST EQU X'eee1' CMD Process a host command request.
RXMSQ EQU X'eee4' Manipulate the session queue.
RXMSQPLL EQU X'eee1' MSQ Pull an entry from queue.
RXMSQPSH EQU X'eee2' MSQ Push an entry onto queue.
RXMSQSIZ EQU X'eee3' MSQ Determine the queue size.
RXSIO EQU X'eee5' Perform Session Input/Output.
RXS IOSAY EQU X'eeel' SIO Output a SAY string.
RXSIOTRC EQU X'eee2' SIO Output a TRACE string.
RXS IOTRD EQU X'eee3' SIO Terminal Read.
RXSIODTR EQU X'eee4' SIO Debug Terminal Read.
RXSIOTLL EQU X'eee5' SIO Determine line length.
RXMEM EQU X'eee6' Memory management services.
RXMEMGET EQU X'eee1' MEM Get memory.
RXMEMRET EQU X'eee2' MEM Return memory.
RXHLT EQU x'eee7' Halt services.
RXHLTCLR EQU X'eeel' HLT Clear the halt status.
RXHL TTST EQU X'eee2' HLT Test the halt status.
RXTRC EQU X'eee8' Test the TRACE status.
RXTRCTST EQU X'eeel' TRC Test the TRACE status.
RXINI EQU X'eee9' Initialization service.
RXINIEXT EQU X'eeel' INI Initialization exit.
RXTER EQU X'eeeA' Termination service.
RXTEREXT EQU X'eeel' TER Termination exit.

lrill_glll'

22 REXX Enhancements

o

()

•

o

RXITPARM

('~, RXITPARM
--' 1m

Use the RXITPARM macro to map the parameter list used to pass information
between the language processor and an exit routine. This macro may be used for
CMS and GCS programs.

Format

RXITPARM

Usage Notes
The following symbols are defined by this macro:

('- RXITPARM DSECT •
"

-// ***
* The following parameters are common to all exit routines.

RXIEXIT DS H Exit code (input)
RXISUBFN DS H Exit subfunction (i nput)
RXIUSER DS F User word (i nput)
RXICFLAG DS X Exit processing control flags
RXIFFLAG DS X Exit specific flags
RXIFEVAL EQU X'Ol' String returned via EVALBLOK (output)

(\ RXIPLEN DS H Length of plist in bytes (i nput)
DS F Reserved for future use

_/
RXITMAPX DS CL24 Beginning of exit specific parameters
RXITMAPZ EQU * End of exit parameter list
RXITMAPL EQU RXITMAPZ-RXIEXIT Length of the parameter list

* The following parameters are unique to the RXFNC exit.

ORG RXITMAPX
RXFFERR EQU X'80' Invalid call to routine (output)

(~'\ RXFFNFND EQU X'40' Routine not found (output)
RXFFSUB EQU X'20' Subroutine call (input)
RXFFNC DS A Pointer to the routine name (input)
RXFFNCL DS F Length of the routine name (input)
RXFARGS DS A Pointer to argument list (input)
RXFRET DS A Pointer to EVALBLOK for
* function RETURN result (output)
RXFPLEN EQU *-RXITMAPX

* The following parameters are unique to the RXCMD exit. • ***

ORG RXITMAPX
RXCFFAIL EQU X'80' Command FAILURE occurred (output)
RXCFERR EQU X'40' Command ERROR occurred (output)
RXCADDR DS CL8 Current ADDRESS setti.ng (input)
RXCCMD DS A Pointer to the command (input)

(' RXCCMDL DS F Length of the command (input)
''' / RXCRETC DS A Pointer to return code buffer (in+out)

RXCRETCL DS F Length of return code (in+out)
RXCPLEN EQU *-RXITMAPX

New Macros 23

'~-:f ,. -" ~-~ -_ ... --_. -----~-

'I

RXITPARM

* The following parameters are unique to the RXMSQ exit.

SPACE 1
* The following parameters are used for the RXMSQPLL function.

ORG RXITMAPX
RXMFEMPT EQU X'4S' Queue was empty (output)
RXMRETC OS A Pointer to return value buffer (in+out)
RXMRETCL OS F Length of return value (in+out)
RXMPLLPL EQU *-RXITMAPX

SPACE 1
* The following parameters are used for the RXMSQPSH function.

ORG RXITMAPX
RXMFLI FO EQU X'8S' Stack the line LIFO (input)
RXMVAL OS A Pointer to line to stack (input)
RXMVALL OS F Length of line to stack (input)
RXMPSHPL EQU *-RXITMAPX

SPACE 1
* 'The following parameters are used for the RXMSQSIZ function.

ORG RXITMAPX
RXMQSIZE OS F Number of lines in stack (output)
RXMSIZPL EQU *-RXITMAPX

* The following parameters are unique to the RXSIO exit.

SPACE 1
* The following parameters are used for the RXSIOTLL function.

ORG RXITMAPX
RXSSIZE OS F Size of terminal in bytes (output)
RXSSIZPL EQU *-RXITMAPX

SPACE 1
* The following parameters are used for RXSIOSAY and RXSIOTRC.

ORG RXITMAPX
RXSVAL OS A Address of line to display
RXSVALL OS F Length of line to display
RXSOUTPL EQU *-RXITMAPX

SPACE 1

(input)
(i nput)

* The following parameters are used for RXSIOTRO and RXSIOOTR.
ORG RXITMAPX

RXSRETC OS A Pointer to return value buffer (in+out)
RXSRETCL OS F Length of return value (in+out)
RXSINPPL EQU *-RXITMAPX

* The following parameters are unique to the RXMEM exit.

SPACE 1
* The following parameters are used for RXMEMGET and RXMEMREL.

ORG RXITMAPX
RXMFL024 EQU X'8S' Storage must be allocated below
* the 16Mb 1 ine. (input)
RXMSSIZE OS F Size of storage (in double words)
* to be allocated or released (input)
RXMAOOR OS A Address of storage allocated (in-out)
* or being released
RXMPLEN EQU *-RXITMAPX

24 REXX Enhancements

)
/

•

•

o

* The following parameters are unique to the RXHLT exit.

SPACE 1
* The following parameters are used for RXHLTTST.
* (No unique parameters are required for RXHLTCLR.

ORG RXITMAPX
RXHFHALT EQU X'SO'
RXHSTR OS A
*

HALT condition occurred
Pointer to EVALBLOK containing
optional HALT string

RXHPLEN EQU *-RXITMAPX

(output)
an

(output)

* The following parameters are unique to the RXTRC exit.

ORG
RXTFTRAC EQU
RXTPLEN EQU

RXITMAPX
X'SO' External TRACE setting
*-RXITMAPX

(output)

* No unique parameters are used for the RXINI and RXTER exits.

RXITPARM

New Macros 25

I

EXECCOMM

Modified System Interface

EXECCOMM

This section discusses modified system interface and should be used with the VM/SP
System Product Interpreter Reference, SC24-5239. These modifications are marked
by a vertical bar (I).

,! Function Codes (SHVCODE)
P Fetch private information. This interface is identical to the F fetch

interface, except that the name refers to certain fixed information items
that are available. Only the first letter of each name is checked (though
callers should supply the whole name), and the following names are
recognized:

PARM

PARM.n

26 REXX Enhancements

Fetch the number of argument strings. The number of
argument strings supplied to the program is placed in the
caller's buffer. The number is formatted as a character
string.

Note: When specifying PARM, each letter must be
supplied.

Fetch the Nth argument string. Argument string n is
placed in the caller's buffer. If argument string n can not
be supplied (whether omitted, null, or fewer than n
argument strings specified), a null string is returned.
PARM.l returns the same result as ARG.

Note: When specifying PARM.n, 'PARM.' must be
supplied.

•

C··· ."' ... I)

DMSCGS

Modified CSL Routine

This section discusses a modified CSL routine and should be used with the VMjSP
Application Development Reference for CMS, SC24-5284. Specifically, the vamame
parameter definition to the DMSCGS routine has been modified while the syntax
diagram has not changed. These modifications are marked by a vertical bar (I).

DMSCGS - Get Special REXX Values

DB

Format

Parameters

Use the CSL routine DMSCGS to retrieve REXX EXEC arguments, source
program, or version information.

Call to DMSCGS ,retcode, varname
DMSCSL ,vamame _length

,varvalue
,varvalue _buffer_length
,varvalue _actuaClength

Call to DMSCSL
is the language-dependent format for invoking a CSL routine. Refer to VM/SP
Application Development Reference for CMS, SC24-5284, for examples of call
formats.

DMSCGS
is the name of the CSL routine being invoked. The value DMSCGS can be
passed directly or in a variable. Note that you must pad two blanks on the right
because the CSL routine name must be eight characters in length.

retcode
is a signed integer variable, with a length of 4, to hold the return code from
DMSCGS.

vamame
specifies the special REXX information you want to obtain. The value ARG,
PARM, PARM.n, SOURCE, or VERSION can be passed directly or in a
variable. This field is used for input only. It must be a character valiable.

Note: Except for the PARM variable ('PARM' or 'PARM.n'), REXX uses only
the first letter of this parameter name for comparisons. You should completely
spell out the names of the REXX variables you are passing to avoid possible
confusion.

vamame _length
contains the length of the REXX variable's name. This field must be a signed
integer variable, with a length of 4, and it is used for input only.

Modified System Interface 27

'j

DMSCGS

Usage Notes

Return Codes

varvalue
is the name of a buffer used to return the REXX variable's value. This field is
used for output only. It must be a character variable.

varvalue _buffer jength
contains the length of the buffer varvalue. This field must be a signed integer
variable, with a length of 4, and it is used for input only.

varvalue _actuatlength
contains the length of the data returned in the varvalue parameter. This field
must be a signed integer variable, with a length of 4, and it is used as output
only. (See Usage Note 2.)

1. This routine provides the equivalent of the REXX statements PARSE ARG,
PARSE SOURCE, and PARSE VERSION. See the VM/SP System Product
Interpreter Reference for a description of the PARSE instruction.

2. If the length of the returned data (varvalue_actuaC/ength) is shorter than the
buffer space reserved (varvalue_buffer _length), the unused part of the buffer is
unchanged.

If the length of the returned data (varvalue_actuaC/ength) is longer than the
buffer space reserved (varvalue_buffer jength), the buffer is filled and a return
code of 200 is set.

Note that for the last two return codes listed, the nn designates the relative position
of the parameter: retcode is always parameter number 01, the next parameter is
number 02, and so on.

Code Meaning

o Normal completion.

112 The number of parameters passed on the call was incorrect.

200 The data returned in varvalue has been truncated. (The
varvalue_actuaC/ength variable contains the length of the data before it was
truncated.)

201 REXX is working and cannot share variables now.

202 REXX is not active.

207 Variable name is not one of the three supported.

(This return code is also issued if DMSCGS is called from within an EXEC2
environment.)

208 Insufficient storage.

209 Storage failure (error in CMSSTOR or SUBPOOL macro).

lOnn The data type for parameter nn is incorrect.

20nn The length for parameter nn is incorrect.

Di-;!!.'

28 REXX Enhancements

\,,~ ./

System Exits

(~ New System Exits

System Exits

This section discusses system exits and should be used with the VM/SP System
Product Interpreter Reference, SC24-5239.

This support provides a set of exits to the System Product Interpreter to allow
applications to tailor the REXX environment. The exits fall into two categories:

Initialization/Termination

System services

routines called at startup and termination of a
program

routines called to provide host environment
services to the language processor.

These services are provided in both CMS and GCS. For the most part, the
interfaces are identical between the two. The following description focuses on CMS,
with the GCS differences noted.

Invocation of the Language Processor by an Application Program
The system exits are defined at language processor invocation by means of a
specified FILEBLOK extension. The FILEBLOK extension contains a pointer in
the 7th fullword of the extension block that points to the exit. The 8th fullword of
the extension block is used to pass a user word value that is returned to the
parameter list when an exit is entered.

Note: The FBLENAME portion of the FILEBLOK extension is not supported by
GCS. The GCS FBLOCK macro reserves the 5th and 6th fullwords.

Modified CSL Routine 29

System Exits

*

MACRO
FBLOCK

*** FBLOCK - EXEC FILE EXECUTION CONTROL BLOCK
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

9 +---------------------------------------+
I FBLNAME I

8 +---------------------------------------+
I FBLTYPE I

19 +---------+---------+-------------------+
I FBLMODE I FBLEXTL I FBLDLS I

18 +---------+---------+-------------------+
I FBLDLE I FBLPREF I

29 +-------------------+-------------------+
I FBLPREF(cont'd) I FBLENAME I

28 +-------------------+-------------------+
I FBLENAME(cont'd) I FBLSEXIT I

39 +-------------------+-------------------+
I FBLEUSER I

38 +-------------------+

*** FBLOCK - EXEC FILE EXECUTION CONTROL BLOCK
*

SPACE 1
FBLOCK DSECT

DS 9F
FBLNAME DS CL8 Filename
FBLTYPE DS CL8 Filetype
FBLMODE DS CL2 Filemode
FBLLFI EQU *-FBLNAME Length of fileid
FBLEXTL DS AL2(9) Extension block length (words)
FBLDLS DS AL4 Descriptor list start
FBLDLE DS AL4 Descriptor list end
FBLPREF DS CL8 Explicit initial prefix
FBLENAME DS CL8 Explicit environment name
FBLSEXIT DS F Pointer to exit vector
FBLEUSER DS F Userword for system exits
FBLLENL EQU *-FBLNAME Length of FBLOCK (bytes)
FBLLEND EQU (FBLLENL+7)j8 Length of FBLOCK (dwords)

EJECT
POP PRINT
MEND

The exit vector is a list of doubleword tokens, with a doubleword fence signaling the
end of the list. Each token consists of a code in the first halfword identifying an exit.
and the address in the second fullword indicating the address of the exit. The second
half word of the doubleword token is reserved.

The following exits may be specified in the list. The RXITDEF macro establishes
the equated values for each of these exit names, and for their associated
subfunctions.

RXFNC Process external functions

30 REXX Enhancements

/ \,
\ ,)
"- ,/

/ " \
" /

C~

()

o

----~ ----- ~ ---~~ ------- -~---- -----------~ ~

System Exits

RXCMD Process host commands

RXMSQ Manipulate session queue

RXSIO Session I/O

RXMEM Memory services

RXHLT Halt processing

RXTRC Test external trace indicator

RXINI Initialization processing

RXTER Termination processing.

Invocation of the System Exits by the Language Processor

Call Conditions

Return Conditions

Note: If the language processor was invoked by a GCS problem state application,
then the exits are entered in a problem state, enabled for interrupts, and enabled
with the storage key of the original application program. If the language processor
was invoked by a GCS supervisor state application, then the exits are entered in a
supervisor state, key zero, enabled for interrupts. If the language processor was
invoked by a CMS application, then the exits will be invoked in supervisor state,
nucleus key, and enabled for interrupts.

The following registers are defined on entry:

Register 1

Register 13

Register 14

Register 15

A pointer to the system exit parameter list. This parameter list
varies with each entered exit. See below for details on the format of
this parameter list for each exit.

A pointer to a 20 fullword register save area.

The return address.

The entry point address.

The system exit parameter list consists of several fields that are commonly used by
all the exits, followed by fields that are specific to each exit. The common
information includes:

• RXIEXIT - the exit being invoked
• RXISUBFN - the subfunction requested for that exit
• RXIUSER - the optional fullword of user data
• RXICFLAG - a flag byte used to control exit processing
• RXIFFLAG - a flag byte used for exit specific communication
• RXIPLEN - the length of the parameter list.

See "System Exit Definitions" on page 32 for the format of the control blocks.

On return from the exit, register 15 contains the exit return code and the parameter
list is updated with the appropriate results. The return code in register 15 signals
one of 3 actions:

RC=O

RC=1

Successful handling of the service. The parameter list has been updated
as appropriate for that exit.

Exit chooses not to handle the service request. The language processor
handles the request by the default means.

New System Exits 31

'I

System Exits

RC=-l An irrecoverable error occurred during processing of this request. REXX
error 48 (Failure in system service) is raised.

The exit routines must save registers 0-14 upon invocation, and restore them before
returning to their caller.

System Exit Definitions
III
The RXlTDEF macro is used to establish the equated values for each of the exit
names, and for their associated subfunction names. The RXITPARM macro is used
to establish the mapping DSECT for these parameter lists. The EPLIST and
EVALBLOK mapping is further described in the VM/SP System Product Interpreter
Reference, SC24-5239. Also, you may use the EPLIST and the EVALBLOK macros
to provide the mapping for each of these DSECTS.

RXFNC

32 REXX Enhancements

Process external functions.

RXFNCCAL Call an external function.

RXIEXIT OS H Exit code = 2
RXISUBFN OS H Exit subfunction = 1
RXIUSER OS F User word
RXICFLAG OS X Exit processing control flags
RXIFFLAG OS X Exit specific flags
RXFFERR EQU X'S0' Incorrect call to routine
RXFFNFNO EQU X'40' Routine not found
RXFFSUB EQU X'20' Subroutine call
RXIPLEN OS H Length of plist in bytes
RXIRESRV OS F Reserved for future use
RXFFNC OS A Pointer to the routine name
RXFFNCL OS F Length of the routine name
RXFARGS OS A Pointer to argument list
RXFRET OS A Pointer to EVALBLOK for
* function RETURN result

On entry to the exit, the name of the invoked function is
defined by the fields RXFFNC and RXFFNCL. The
arguments to the function are pointed to by the field
RXF ARGS. The flag RXFFSUB is on if the invoked
routine is by means of a CALL rather than as a function.

On return from the exit, values in RXlFFLAG indicate
the status of the function processing. If neither
RXFFERR nor RXFFNFND is on, then the routine has
been successfully invoked and has run successfully. The
field RXFRET may have the address of an EV ALBLOK
containing the returned result. If the routine is invoked as
a function and a result is not returned, then the language
processor returns error 44, Funct ion di d not return
data. If the routine is invoked as a subroutine, then the
returned result is optional.

The flag RXFFNFND in RXIFFLAG indicates that the
exit could not locate the routine with the given name.
The language processor returns error 43, Routine not
found. The flag RXFFERR indicates that the parameters
supplied to the routine are somehow incorrect. The

/ ,

/
(

"

RXCMD

(~\

c

System Exits

language processor returns error 40, Incorrect call to
routine.

The EV ALBLOK containing the result is allocated by the
exit and the storage is returned by the language processor.
The maximum size for an EV ALBLOK is 16Mb.

Note: The EXECCOMM interface is enabled during calls
to the RXFNC exits.

Process host commands.

RXCMDHST Invoke a host command.

RXIEXIT OS H Exit code = 3
RXISUBFN OS H Exit subfunction = 1
RXIUSER OS F User word
RXICFLAG OS X Exit processing control flags
RXIFFLAG OS X Exit specific flags
RXCFFAIL EQU X'8C:J' Command FAILURE occurred
* (trappable via SIGNAL ON FAILURE)
RXCFERR EQU X'4C:J' Command ERROR occurred
* (trappable via SIGNAL ON ERROR)
RXIFEVAL EQU X'C:Jl' Return code returned via EVALBLOK
RXIPLEN OS H Length of plist in bytes
RXIRESRV OS F Reserved for future use
RXCADDR OS CL8 Current ADDRESS setting
RXCCMD OS A Pointer to the command
RXCCMDL OS F Length of the command
RXCRETC OS A Pointer to return code buffer
RXCRETCL OS F Length of return code

On entry to the exit, the fields RXCRETC and RXCRETCL
define a buffer that returns a value used for the return code
in character format (i.e., numeric return codes must be
formatted as a character string). The return code may have a
nonnumeric value if desired. On return from the exit,
RXCRETCL contains the length of the data placed in the

. buffer pointed to by RXCRETC.

If the buffer supplied is too small for the returning value,
then the value is alternately returned using an EV ALBLOK.
In this case, the exit supplies an EV ALBLOK and stores the
address of the block in RXCRETC. The flag RXIFEV AL is
then turned on to indicate that an EV ALBLOK has been
provided. If the value is returned by means of an
EVALBLOK, the language processor handles releasing the
EV ALBLOK storage. The maximum size of an EV ALBLOK
is 16Mb.

The flags RXCFF AIL and RXCFERR are used by the exit
to indicate that an ERROR or FAILURE condition has
occurred. The definition of what constitutes an ERROR or
FAILURE of a command is under the control of the exit.
Under the default command processor, a negative return code
is a FAILURE condition and a positive return code is an
ERROR condition.

Note: The EXECCOMM interface is enabled during calls to
the RXCMD exits.

New System Exits 33

System Exits

RXMSQ Manipulate session queue.

34 REXX Enhancements

This service supports a number of subfunctions. The subfunction request
code is contained in the field RXISUBFN (found in RXISUBFN). The
remainder of the parameter list depends on the particular subfunction
invoked. The RXMSQ subfunctions and their parameter lists are:

RXMSQPLL Pull a line from the session queue.

RXIEXIT OS H Exit code = 4
RXISUBFN OS H Exit subfunction = 1
RXIUSER OS F User word
RXICFLAG OS X Exit processing control flags
RXIFFLAG OS X Exit specific flags
RXMFEMPT EQU X'49' Queue was empty
RXIFEVAL EQU X'91' String returned via EVALBLOK
RXIPLEN OS H Length of plist in bytes
RXIRESRV OS F Reserved for future use
RXMRETC OS A Pointer to return value buffer
RXMRETCL OS F Length of return value

On entry to the exit, the fields RXMRETC and
RXMRETCL define a buffer that returns a value for
the line removed from the session queue. If the buffer
supplied is too small, then the value is returned using
EV ALBLOK. In this case, the exit supplies an
EV ALBLOK and stores the address of the block in
RXMRETC. The flag RXIFEVAL is then turned on
to indicate that an EV ALBLOK has been provided. If
the value is returned by means of an EV ALBLOK, the
language processor handles releasing the EV ALBLOK
storage. The maximum size of an EV ALBLOK is
16Mb.

Although the CMS and GCS program stacks are
limited to 255 bytes, there is no such limitation on a
session queue provided by the RXMSQ exits.

On return from the exit, the RXMFEMPT flag
indicates that there is no data on the queue, and no
data has been returned. The contents of the buffer
should be ignored.

RXMSQPSH Place a line on the session queue.

RXIEXIT OS H Exit code = 4
RXISUBFN OS H Exit subfunction = 2
RXIUSER OS F User word
RXICFLAG OS X Exit processing control flags
RXIFFLAG OS X Exit specific flags
RXMFLIFO EQU X'S9' Stack the line LIFO
RXIPLEN OS H Length of plist in bytes
RXIRESRV OS F Reserved for future use
RXMVAL OS A Pointer to line to stack
RXMVALL OS F Length of line to stack

The line placed on the queue is the result of evaluating
the expression specified on a PUSH or QUEUE
instruction. This string can be any length up to 16Mb. '<.

It is the responsibility of the exit to handle truncation
of this string if the exit has a restriction on the

RXSIO

(~I

c

RXMSQSIZ

Session I/O.

System Exits

maximum width of the queue. The stacking order is
indicated by the flag RXMFLIFO.

Return the number of lines in the session queue.

RXIEXIT OS H Exit code = 4
RXISUBFN OS H Exit subfunction = 3
RXIUSER OS F User word
RXICFLAG OS X Exit processing control flags
RXIFFLAG OS X Exit specific flags
RXIPLEN OS H Length of plist in bytes
RXIRESRV OS F Reserved for future use
RXMQSIZE OS F Number of lines in stack

On return from the exit, RXMQSIZE contains the size
of the data queue as a 32-bit unsigned number.

Note: The EXTERNALS built-in function always returns a value of
zero when the RXSIO exit has been specified.

This service supports a number of subfunctions. The subfunction request
code is contained in the field RXISUBFN. The remainder of the
parameter list depends on the particular subfunction invoked. The
RXSIO subfunctions and their parameter lists are:

RXSIOSAY

RXSIOTRC

Write a line to the character input stream. Called for
SA Y instruction to display output.

RXIEXIT OS H Exit code = 5
RXISUBFN OS H Exit subfunction = 1
RXIUSER OS F User word
RXICFLAG OS X Exit processing control flags
RXIFFLAG OS X Exit specific flags
RXIPLEN OS H Length of plist in bytes
RXIRESRV OS F Reserved for future use
RXSVAL OS A Address of line to display
RXSVALL OS F Length of line to display

The line displayed at the terminal is the result of
evaluating the expression specified on a SAY instruction.
This string can be any length up to the size of the
terminal (either by default system processing or by a call
to RXSIOTLL). It is the responsibility of the exit to
handle truncation of this string if the string is too long.

TRACE output processing. Call to output TRACE
results.

RXIEXIT OS H
RXISUBFN OS H
RXIUSER OS F
RXICFLAG OS X
RXIFFLAG OS X
RXIPLEN OS H
RXIRESRV OS F
RXSVAL OS A
RXSVALL OS F

Exit code = 5
Exit subfunction = 2
User word
Exit processing control flags
Exit specific flags
Length of plist in bytes
Reserved for future use
Address of line to display
Length of line to display

The line to be displayed at the terminal is the result of a
traced line. This string may be any length up to the size
of the terminal (as determined by default system

New System Exits 35

~~~~-. -------------------------------- -------



System Exits 

processing or by a call to RXSIOTLL). It is the 
responsibility of the exit to handle truncation of this string 
if the string is too long. 

RXSIOTRD Read from character input stream. 

RXIEXIT OS H Exit code = 5 
RXISUBFN OS H Exit subfunction = 3 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXIFEVAL EQU X'Sl' String returned via EVALBLOK 
RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use 

I RXSRETC OS A Pointer to return value buffer 
I RXSRETCL OS F Length of return value 

On entry to the exit, the fields RXSRETC and 
RXSRETCL define a buffer that may be used to return a 
value to be used for the line read from the terminal. If 
the buffer supplied is too small for the value that needs to 
be returned, then the value may alternately be returned 
using an EV ALBLOK. In this case, the exit supplies an 
EVALBLOK and stores the address of the block in 
RXSRETC. The flag RXIFEV AL is then turned on to 
indicate that an EV ALBLOK has been provided. If the 
value is returned by means of an EV ALBLOK, the 
language processor handles releasing the EV ALBLOK 
storage. The maximum size of an EV ALBLOK is 16Mb. 

RXSIODTR Debug read from character input stream. j 

RXIEXIT OS H Exit code = 5 
RXISUBFN OS H Exit subfunction = 4 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use 
RXSRETC OS A Pointer to return value buffer 
RXSRETCL OS F Length of return value 

On entry to the exit, the fields RXSRETC and 
RXSRETCL define a buffer that returns a value for the 
line read from the terminal. If the buffer supplied is too 
small, then a return code of -1 is returned. 

RXSIOTLL Return maximum line length in bytes. 

RXIEXIT OS H Exit code = 5 
RXISUBFN OS H Exit subfunction = 5 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use 
RXSSIZE OS F Size of terminal in bytes 

On return from the exit, RXSSIZE contains the width of 
the terminal as a 32-bit unsigned number. 

36 REXX Enhancements 



( _ .•. '.\ 

/ 

() 

(/ 

c 

System Exits 

This value is used by the LINE SIZE built in function; and 
is used to break up lines created by SAY and TRACE. 
The RXSIOSA Y and RXSIOTRC functions must be 
capable of handling lines of this length. 

RXMEM Memory services. 

This service supports a number of subfunctions. The subfunction request 
code is contained in the field RXISUBFN. The remainder of the 
parameter list depends on the particular subfunction invoked. The 
RXMEM subfunctions and their parameter lists are: 

RXMEMGET Allocate memory. 

RXIEXIT OS H 
RXISUBFN OS H 
RXIUSER OS F 
RXICFLAG OS X 
RXIFFLAG OS X 
RXMFL024 EQU X'80' 
* 
RXIPLEN OS H 
RXIRESRV OS F 
RXMSSIZE OS F 
* 
RXMAOOR OS A 

Exit code = 6 
Exit subfunction = 1 
User word 
Exit processing control flags 
Exit specific flags 
Storage must be allocated below 
the 16Mb line. 
Length of plist in bytes 
Reserved for future use 
Size of storage to be 
allocated (in doublewords) 
Address of allocated storage 

On entry to the exit, RXMSSIZE contains the size of the 
block of storage to be allocated. On exit, RXMADDR 
should contain the address of the allocated storage. 
Out-of-storage conditions are reflected by setting 
RXMADDR to zero on return from the exit. The flag 
RXMFL024 indicates that the storage must be allocated 
below the 16Mb line. 

RXMEMRET Deallocate memory. 

RXIEXIT OS H Exit code = 6 
RXISUBFN OS H Exit subfunction = 2 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use 
RXMSSIZE OS F Size of storage to be 
* released (in doublewords) 
RXMAOOR OS A Address of storage to be 
* released 

On entry, the fields RXMSSIZE and RXMADDR contain 
the length and address of the storage to be released. 

Note: Because calls to external functions and other exits 
can result in the language processor obtaining blocks of 
storage that were not allocated by calls to the 
RXMEMGET exit, the RXMEMRET exit should be 
prepared to handle these conditions. If desired, a return 
code of I can be used to cause a block of storage to be 
released by normal system means. 

Note: Because the services provided by the RXMEM exits cannot 
support releasing storage in increments other than those allocated, the 

New System Exits 37 



System Exits 

language processor does not release partial storage if the RXMEM exit 
has been specified. 

RXHLT Halt processing. 

This service supports a number of subfunctions. The subfunction request 
code is contained in the field RXISUBFN. The remainder of the 
parameter list'depends on the particular subfunction invoked. The 
RXHLT subfunctions and their parameter lists are: 

RXHLTCLR Clear Halt indicator. 

RXIEXIT OS H Exit code = 7 
RXISUBFN OS H Exit subfunction = 1 
RXIUSER OS F User word 

,I RXICFLAG OS X Exit processing control flags 
I RXIFFLAG OS X Exit specific flags 

RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use 

This exit has no inputs or outputs. It signals the exit 
handling HALT processing that the condition has been 
recognized and should be cleared. 

RXHLTTST Test Halt indicator. 

RXIEXIT OS H Exit code = 7 
RXISUBFN OS H Exit subfunction = 2 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXHFHALT EQU X'Sfl' HALT condition occurred 
RXIPLEN OS H Length of plist in bytes / 

J 

RXIRESRV OS F Reserved for future use 
RXHSTR OS A Pointer to EVALBLOK 
* containing an optional 
* HALT string 

On return from this exit, RXHFHALT indicates whether 
a HALT condition has occurred. The exit can also return 
a string that is available as CONDITION{'Description') 
for a CALL ON HALT or SIGNAL ON HALT ", 
condition trap. This string is returned by means of an -/' 

EV ALBLOK. In this case, the exit supplies an 
EV ALBLOK and stores the address of the block in 
RXHSTR. If the value is returned via an EV ALBLOK, 
the language processor handles releasing the EV ALBLOK 
storage. The maximum size of an EVALBLOK is 16Mb. 

RXTRC Trace services. 

RXTRCTST Test external trace indicator. 

RXIEXIT OS H Exit code = S 
RXISUBFN OS H Exit subfunction = 1 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXTFTRAC EQU X'Sfl' External TRACE setting 
RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use " --

38 REXX Enhancements 



(:\ 

4-; 
'-/ 

o 

Usage Notes 

RXINI 

RXTER 

System Exits 

On return from this exit, RXTFTRAC indicates whether 
an external trace condition has occurred. 

Initialization processing. 

RXINIEXT Perform external initialization. 

RXIEXIT OS H 
RXISUBFN OS H 
RXIUSER OS F 
RXICFLAG OS X 
RXIFFLAG OS X 
RXIPLEN OS H 
RXIRESRV OS F 

Exit code = 9 
Exit subfunction = 1 
User word 
Exit processing control flags 
Exit specific flags 
Length of plist in bytes 
Reserved for future use 

This exit has no inputs or outputs. It is called before the 
first instruction of the program is interpreted. The 
EXECCOMM interface is enabled when this exit is called. 

Termination processing. 

RXTEREXT Perform External Termination. 

RXIEXIT OS H Exit code = 10 
RXISUBFN OS H Exit subfunction = 1 
RXIUSER OS F User word 
RXICFLAG OS X Exit processing control flags 
RXIFFLAG OS X Exit specific flags 
RXIPLEN OS H Length of plist in bytes 
RXIRESRV OS F Reserved for future use 

This exit has no inputs or outputs. It is called after the last 
instruction of the program is interpreted. The EXECCOMM 
interface is enabled when this exit is called. 

1. At invocation of the interpreter by an application program, the exit vector could 
contain codes that are not defined or are reserved for future use. These will be 
ignored. 

2. The exit vector could contain the same code more than once. When obtaining 
the storage for the REXX WORKBLOK, the first occurrence of the RXMEM 
exit will be used. The first occurrence of the REXMEM exit will also be used to 
release the storage for the WORKBLOK. In all other cases, including the 
RXMEM exit, the last occurrence of an exit code will be the one used. 

3. Upon return from one of the system exits to the interpreter, the return code 
might be a non-zero return code other than the documented plus I or minus 1. 
All negative return codes will be treated the same as a minus 1 and all positive 
return codes will be treated the same as a plus 1. 

4. The EXTERNALSO built-in function will always return a value of zero when 
the RXSIO exit has been specified. 

5. The EXECCOMM interface may be used by the RXINI, RXTER, RXCMD, 
and RXFNC exits. Return code -1 will be given back by EXECCOMM when it 
is called from any other exit routine. 

6. When invoked on GCS with the RXMEM exit specified, there are three 
circumstances where the RXMEM exit is not used to obtain and release storage: 

• The REXX interpreter has been invoked via SVC 202 from a problem state 
program with exits specified. Storage is obtained for a register save area, 

New System Exits 39 



System Exits 

'I 

40 REXX Enhancements 

then the SYNCH macro is used to switch to problem state. This area is 
retained throughout the processing of the EXEC, but is released just before 
the interpreter returns control back to the SVC handler to return control to 
the calling program. This can be avoided by using GCSCALL REXX. 

• The EXECCOMM routine has been invoked via SVC 203 from a problem 
state program with exits specified. Storage is obtained for a register save 
area, then the SYNCH macro is used to switch to problem state. This area 
is retained throughout the processing of the EXECCOMM request, but is 
released just before EXECCOMM returns back to the SVC handler to 
return control to the calling program. This can be avoided by using 
GCSCALL EXECCOMM. 

• The RXMEM exit is being called to obtain storage for the main 
WORKBLOK. Temporary storage is obtained for the RXMEM parameter 
list, which is released once the WORKBLOK has been obtained. The same 
sequence is used when calling RXMEM to release the storage occupied by 
the WORKBLOK. 

Note: Remember that the FIRST occurrence of the RXMEM exit found in 
the exit list is used to obtain and release the storage for the WORKBLOK. 
The LAST occurrence of the RXMEM exit found in the exit list is used for 
all other storage management requests. 

7. The preceding usage notes are designated as "Product Sensitive Interfaces". 
Unless otherwise noted, all other programming information documented in this 
publication is considered to be part of the "General Programming Interface". 

8. The descriptions of some of the exits state that a result may be returned in an 
EV ALBLOK "if the supplied buffer is too small". In fact, the result may be 
returned via an EV ALBLOK regardless of the size of the supplied buffer. It 
MUST be returned via an EV ALBLOK if the supplied buffer is too small, 
providing the routine ends with a zero return code. 

./ 



GCS ABEND Codes 

New GCS ABEND Codes 

GCS ABEND Codes 

ABEND Reason Module Cause of Abend User Response 
Code Code Name 

FCA 108 CSIRSS The SYSREAD function Correct the RXMEM exit 
overran the I/O buffer. being used. 
Register 11 contains the 
parameter list address. 

FCA 109 CSIRSS The SYSREAD function Correct the RXMEM exit 
overran the I/O buffer. being used. 
Register 11 contains the 
parameter list address. 

FCA 666 CSIRSS Unrecognized function code. Do not invoke the CSIRSS 
Register 8 contains the module. It is not intended 
address where the SVC 202 for your use. 
was issued to invoke 
CSIRSS. The 8 character 
string representing the 
function code has been put 
into register 5 and 6. 
Register 11 contains the 
parameter list address. 

FCA 950 CSlREX GCSCALL REXX was used Either correct your 
by a problem state program environment or use CMDSI 
running in key zero. to invoke the language 
Register 13 points to the interpreter. 
save area where the caller's 
registers were saved. 

FCA 95C CSIRSS The specified function must Do not invoke the CSIRSS 
be called by SVC 202. module. It is not intended 
Register 11 contains the for your use. 
parameter list address. 

FCA 95F CSIRSS A VALIDATE failed for the • Do not invoke the 
requested function. Register CSIRSS module, it is 
8 contains the address where not intended for your 
the SVC 202 was issued to use 
invoke CSIRSS. Register 5 • Correct the program 
contains the VALIDATE using the GCSCALL 
return code. Register 11 SETCOMM macro or 
contains the parameter list correct the application 
address. program that is 

modifying REXX 
storage 

• Correct the exit 
routine(s). 

New System Exits 41 



GCS ABEND Codes 

ABEND Reason Module Cause of Abend User Response 
Code Code Name 

FCA BBA CSlREX GCSCALL SETCOMM was Correct the program using 
used with an incorrect the GCSCALL SETCOMM 
WORKBLOK address. macro. 
Register 10 contains the 
original input address value. 

FCA BBB CSlREX GCSCALL SETCOMM was Correct the program using 
used with an address of zero the GCSCALL SETCOMM 
and the task block contains macro. 
an incorrect WORKBLOK 
address. Register 10 
contains the address from 
the task block. 

FCA BBC CSIRSS GCSCALL SETCOMM was Correct the program using 
used with an incorrect the GCSCALL SETCOMM 
WORKBLOK chain. macro or correct the 
Register 3 contains the application program that is 
original input address value. modifying REXX storage. 

FCA BBE CSlREX An exit routine failed to Correct the exit routine. 
restore the correct register 
contents. 

FCA CFO CSIRSS CSIRSS was invoked by a Do not invoke the CSIRSS 
non-REXX module. module. It is not intended 
Register 8 contains the for your use. 
address where the SVC 202 
was issued to invoke 
CSIRSS. Register 11 
contains the parameter list 
address. 

FCA CF9 CSIRSS CSIRSS was invoked by a Do not invoke the CSIRSS 
non-REXX module. module. It is not intended 
Register 8 contains the for your use. 
address where the SVC 202 
was issued to invoke 
CSIRSS. Register 11 
contains the parameter list 
address. 

FCB 950 CSlREX GCSCALL EXECCOMM Either correct your 
was used by a problem state environment or use CMDSI 
program running in key to invoke the language 
zero. Register 13 points to interpreter. 
the save area where the 
callers registers were saved. 

42 REXX Enhancements 



Design Changes 

C' Design Changes 

c .. -" 
/ 

c 

Internal Product Information ----------------, 

This section is intended to help you understand the design changes for this 
enhancement. It contains internal product information, which is provided as 
additional guidance on planning. The information in this section must not be 
used for programming purposes. 

Changed Modules (CMS) 
DMSEXE 
DMSEXI 
DMSREX 
DMSRFF 

Changed Modules (GCS) 
CSIFNC 
CSINUC 
CSIREX 
CSIRFF 

New Modules (GCS) 
CSIRSS 

Changed Modules (REXX) 
IXXRCN 
IXXREV 
IXXRFN 
IXXRIN 
IXXRKA 
IXXRTC 
IXXRVA 
IXXRXE 

New Modules (REXX) 
IXXRXF 

Changed Macros (CMS) 
REXEXT 

New Macros (CMS) 
DMSRXM 

New GCS ABEND Codes 43 



, 

'I 

Design Changes 

Changed Macros (GCS) 
CSIREXE 
CSISIE 

Changed Macros (REXX) 
IXXMINT 

New Macros (REXX) 
EVALBLOK 

Changed Control Blocks (CMS) 
FBLOCK 

Changed Control Blocks (GCS) 
FBLOCK CSISIE 

Changed Execs (CMS) 
DMSSP 
CMSLOAD 

Changed Execs (GCS) 
CSISP 
GCSLOAD 

Changed HELP Files 
CALL HELPREXX 
SIGNAL HELPREXX 

New HELP Files 
CONDITIO HELPREXX 

44 REXX Enhancements 

/ ' 

, J 
<"'-'- _/ 

/ ''-, 



(~\ 

/ 

o 

Bibliography 

The following tables list the program update books that have been issued since VMjSP 
Release 4 became available. Refer to the appropriate column for the books that you may 
need for your installation. You can order any of the publications through the System 
Library Subscription Service (SLSS). 

Table 1. Recent Program Update Books 

Order VM/SP VM/SP 
Title Number RS R6 APAR 

Enhancements to the LINERD and LINEWRT Macros GC24-5313 X VM33157 

Support for United States Department of Defense C2 Security SC24-5384 X VM33580 

Transparent Services Access Facility Virtual Telecommunications Access 
GC24-5392 X VM33116 

Method Line Driver 

CMS Session Services Command Restructure GC24-5482 X X 
VM35846 
VM35847 

Altemate-VSAM GC24-5399 X VM33162 

Security and Integrity Enhancements GC24-5312 X VM33986 

Support for VM/Directory Maintenance Licensed Program Release 4 GTOO-3328 X X VM33536 

Transparent Services Access Facility Full Buffer Trace Enhancement GC24-5404 X X VM36594 

ECFtpASF Coexistence with IBM Enhanced Connectivity Facilities for 
GC24-5488 X X 

VM36495 
VM/System Product VM37139 

Table 2 (page I of 2). Program Update Books. Information from the following books is included in the VMjSP 
Release 6 base books. 

Order VM/SP VM/SP 
Title Number R4 RS APAR 

IBM 9370 Processors, 9332 and 9335 Direct Access Storage Devices, and 9347 
GC24-5315 X X 

VM26890 
Tape Drive VM26898 

DASD DUMP/Restore Streaming Support Improvements GC24-5359 X X VM27035 

GCS/VSAM Support for Local Shared Resources/Deferred Write GC24-5360 X X 
VM27102 
VM27116 

SPOOL Enhancement Accommodation GC24-5361 X VM27764 

Enhancements to the IBM Enhanced Connectivity Facilities for VMjSystem 
GC24-5295 X VM285 10 

Product 

VM29096 
IBM 3380 Direct Access Storage Models AJ4/BJ4 and AK4jBK4 GC24-5371 X X VM29121 

VM29123 

IBM 3990 Storage Control Models 1 and 2 and IBM Direct Access Storage 
GC24-5372 X X VM29507 

Direct Channel Attach Model CJ2 

Terminal Usability Enhancements GC24-5309 X VM30316 

Automatic Re-IPL Enhancement GC24-5391 X VM30314 

Transparent Services Access Facility 9370 Local Area Network Subsystems GC24-5363 X 
VM29422 
VM29450 

9332 Direct Access Storage Device Enhancements GC24-5403 X VM31148 

DIAGNOSE Code X'64' Enhancement GC24-5311 X X VM31012 

DIAGNOSE Code X'E4' Enhancement GC24-5376 X VM31011 

VMfVTAM and NetView™ Enhancements GC24-5310 X 
VM30315 
VM30387 

GC24-5406-00 © Copyright IBM Corp. 1989 45 



Table 2 (page 2 of 2). Program Update Books. Information from the following books is included in the VM/SP 
Release 6 base books. 

Order VM/SP VM/SP 
Title Number R4 RS APAR 

Productivity Aids National Language Support Enhancement GC24-5400 X 
VM32507 
VM32508 

VM33119 
National Language Support File Naming Conventions Enhancements GC24-54 I 8 X VM33161 

VM33407 

Backward Macro Compatibility Enhancement GC24-5423 X VM34760 

Table 3. Program Update Books. Information from the following books is included in the VM/SP Release 5 base 
books. 

Order VM/SP 
Title Number R4 APAR 

Support of IX/370 Enhancements SC24-5280 X VM2278I 

VM22795 
3380 Direct Access Storage Device Models AE4/BE4 SC24-528I X VM22796 

VM22820 

Security Enhancements SC24-5317 X VM23495 

CMS Vector Processing Support and TXTLIB Enhancement SC24-5332 X VM24666 

Logical Device Host Limit Relief SC24-5327 X VM24773 

Programmer's Guide to the Server-Requester Programming Interface for VM/SP SC24-5291 X VM25998 

3480 Volume Serial Error Recording SC24-5329 X VM25737 

CMS Console Facility SC24-5333 X VM25980 

Support of Auto-Deactivation of Restricted Passwords SC24-5335 X VM26007 

OS Simulation Standard Label Tape Processing Exits GC24-5334 X VM26302 

Support of ASCII GC24-5328 X VM26903 

Support of IBM 3422 Magnetic Tape Subsystem GC24-5336 X 
VM26428 
VM26492 

CP Extended Data Stream Support for VMfPass-Through Facility Release 3 GC24-5354 X VM27087 

NetView is a trademark of the International Business Machines Corporation. 

46 REXX Enhancements 



Virtual Machine/System Product 
REXX Enhancements 
Order No. GC14-5406-OO 

READER'S 
COMMENT 
FORM 

Is there anytbiug you especially like or dislike about this book? Feel free to comment on specific errors or 
omissions, accuracy, organization, or completeness of this book. 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered nonconfidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, contact 
your IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

mM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this form to an mM 
representative who will forward it to us. 



GC24-5406-00 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

I I 
BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK. NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

1 ••• 11 •• 11.1 ••• 1.11 •• 11 ••• 1.1 •• 1.1 •• 1 •• 1.1 ••• 111 ••• 1 

Fold and tape Please Do Not Staple 

--...- ------ --------- -. ---- -- _ ... ------
-~- ... -® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tapa 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

Fold and tape 



. .. . . 
.. ' 

GC24-5406-00 

.. 


