

-------.-.. - -------- ~ ---- - - ----------""-, - " '. ~, '" ,. ...

Virtual Machine/
System Product

System Facilities for
Programming

Release 5

SC24-5288-0

First Edition (December 1986)

This edition, SC24-5288-0, applies to Release 5 of IBM Virtual Machine/System
Product (VM/SP), program number 5664-167; Release 5 of IBM Virtual
Machine/System Product High Performance Option (VM/SP HPO), program
number 5664-173; and to all subsequent releases of these products until otherwise
indicated in new editions or Technical Newsletters. It contains material formerly
found in the VM/SP System Programmer's Guide, SC19-6203, and VM/SP HPO
System Programmer's Guide, SC19-6224, (both discontinued after Release 4).
Changes are made periodically to the information contained herein; before using
this publication in connection with the operation of IBM systems, consult the IBM
System/370, 30xx, and 4300 Processors Bibliography, GC20-0001, for the editions that
are applicable and current.

Summary of Changes

For a detailed list of changes, see "Summary of Changes" on page 431. This
summary includes the changes from the last two editions of the VM/ SP System
Programmer's Guide.

Technical changes and additions to the text and illustrations are indicated by a
vertical bar to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

Ordering Publications

Requests for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality. Publications are not stocked at the
address given below.

A form for readers' comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, NY, U.S.A. 13760. IBM
may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1986

VM System Facilities for Programming, SC24-5288, contains reference
information pertaining to specific facilities of VM. It is intended for
VM/SP and VM/SP HPO system programmers, system analysts, and others
who know Basic Assembler Language and have experience with
programming concepts and techniques. The material in this manual was
previously found in the VM/ SP System Programmer's Guide, SC19-6203 and
the VM/SP HPO System Programmer's Guide, SC19-6224.

This manual provides reference information concerning facilities in VM,
such as IUCV, VMCF, and the DIAGNOSE instruction. This manual is one
of a set of reference manuals for VM system programmers. Other books in
the set include

• VM/SP CP for System Programming, SC24-5285,
or VM/ SP HPO CP for System Programming, SC19-6224, if you have
VM/SP HPO.

• VM/ SP CMS for System Programming, SC24-5286

o VM/ SP Group Control System Command and Macro Reference,
SC24-5250

• VM/ SP Transparent Services Access Facility Reference, SC24-5287

o VM Diagnosis Guide, L Y24-5241

The order numbers for other books in the VM/SP and VM/SP HPO libraries
can be found in the bibliography in the back of this manual.

This publication consists of two parts and two appendixes.

"Part 1. VM System Facilities" contains functional descriptions as well as
guidance in using the following facilities and services provided with your
VM system.

• The DIAGNOSE Instruction
• The Inter-User Communications Vehicle (IUCV)
• CMS IUCV
• CP System Services
• The Special Message Facility
• The Single Console Image Facility
• The Logical Device Support Facility
• The Virtual Machine Communication Facility (VMCF)

Preface 111

"Part 2. VM System Applications" contains a functional description, as
well as guidance in using the following applications provided with your VM
system:

• The Programmable Operator Facility
• Getting National Languages on Your System

"Appendix A: CP Device Classes, Types, Models, and Features for
DIAGNOSE code X'24'" lists possible device type classes and device type
values for DIAGNOSE code X'24'.

"Appendix B: Sample CMS IUCV Program" contains a short program using
CMS IUCV support to use the CP Message System Service.

"Appendix C: Converting Programmable Operator Routing Tables" gives
instruction on how to convert old routing tables (VM Release 2) to the
current format.

In the back of the manual, five more sections may help you use this manual
more easily:

Summary of Changes
summarizes the enhancements made to this manual since the last edition
was issued.

Abbreviations of Terms
explains the acronyms and device numbers of IBM products that we use
in this manual for convenience.

Glossary
lists and defines technical terms used in this manual.

Bibliography
lists publications that ~ay be helpful to you while usir'" vour VM
system and other related IBM licensed programs.

Index
lists the content of this manual alphabetically with page numbers.

IV VM System Facilities for Programming

Conftenis

Part 1. VM System Facilities 1

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 3
DIAGNOSE Code X'OO' -- Store Extended-Identification Code 4
DIAGNOSE Code X'04' -- Examine Real Storage 7
DIAGNOSE Code X'08' -- Virtual Console Function 9
DIAGNOSE Code X'OC' -- Pseudo Timer 12
DIAGNOSE Code X'10' -- Release Pages 13
DIAGNOSE Code X'14' -- Input Spool File Manipulation .' 14

Subcode X'OOOO' -- Read Next Spool Buffer 15
Subcode X'0004' -- Read Next Print Spool File Block 16
Subcode X'0008' -- Read Next Punch Spool File Block 16
Subcode X'OOOC' -- Select a File For Processing 17
Subcode X'OOI0' -- Repeat Active File 'nnn' Times 17
Subcode X'OOI4' -- Restart Active File at Beginning 17
Subcode X'OOI8' -- Backspace One Record 17
Subcode X'OOIC' -- Read Next Monitor Spool File Block 18
Subcode X'0020' -- Read Next Monitor Spool Record 18
Subcode X'0024' -- Read Last Spool Buffer 18
Subcode X'OFFE' -- Select Next Fi~e Not Previously Selected 18
Subcode X'OFFF' -- Retrieve Subsequent File Descriptor 19
Programming Information for Users of I)IAGNOSE Code X'14' 20
Reading a Virtual Spool File :....................... 21

DIAGNOSE Code X'18' -- Standard DASD I/O 22
DIAGNOSE Code X'IC' -- Clear Error Recording Cylinders 24
DIAGNOSE Code X'20' -- General I/O 25
DIAGNOSE Code X'24' -- Device Type and Features 27
DIAGNOSE Code X'28' -- Channel Program Modification 30
DIAGNOSE Code X'2C' -- Return DASD Start of LOGREC 31
DIAGNOSE Code X'30' -- Read One Page of LOGREC Data 32
DIAGNOSE Code X'34' -- Read System Dump Spool File 33
DIAGNOSE Code X'38' -- Read System Symbol Table ',' 34
DIAGNOSE Code X'3C' -- Update the VM Directory 34
DIAGNOSE Code X'40' -- Clean-Up after Virtual IPL by Device 35
DIAGNOSE Code X'48' -- Issue SVC 76 from a Second Level VM/370 or

VM Virtual Machine 36
DIAGNOSE Code X'4C' -- Generate Accounting Records for the Virtual

User ... 36
Subcode X'OOOO' -- Subcode X'OOOC' 37
Subcode X'0010' ... 38

DIAGNOSE Code X'50' -- Save the 370X Control Program Image 39
DIAGNOSE Code X'54' -- Control The Function of the P A2 Function

Key .. 40
DIAGNOSE Code X'58' -- 3270 Virtual Console Interface 40

Displaying Data ... 41
Full Screen Mode .. 43

Contents V

DIAGNOSE Code X'5C' -- Error Message Editing 50
DIAGNOSE Code X'60' -- Determining the Virtual Machine Storage Size 52
DIAGNOSE Code X'64' -- Finding, Loading, and Purging a Named

Segment .. 52
Subcodes X'OOOO' and X'0004' -- The LOADSYS Function 53
Subcode X'0008' -- The PURGESYS Function 54
Subcode X'OOOC' -- The FINDSYS Function 55

DIAGNOSE Code X'68' -- Virtual Machine Communication Facility
(VMCF) ... 55

DIAGNOSE Code X'6C' -- Shadow Table Maintenance 57
DIAGNOSE Code X'70' -- Activating the Time-of.Day (TOD) Clock

Accounting Interface 57
DIAGNOSE code X'74' -- Saving or Loading a 3800 Named System 59
DIAGNOSE Code X'78' -- MSS Communication 60
DIAGNOSE Code X'7C' -- Logical Device Support Facility 61

Description of Logical Device Support Facility Functions 65
External Interrupt Code X'2402' 67
Logical Device Interrupt Code X'2402' 68
Logical Device Restrictions 68
Migration/Coexistence 68

DIAGNOSE Code X'80' -- MSSFCALL 69
MSSF Command Words 70

DIAGNOSE Code X'84' -- Directory Update-In-Place 72
DIAGNOSE code X'8C' -- Access Certain Device Dependent Information 80
DIAGNOSE code X'94' -- VMDUMP Function 81

Supported Parameters 83
Dump Address Parameter List 85

DIAGNOSE Code X'98' -- Real Channel Program Support 89
Subcode X'OOOO' -- Lock a Virtual Page 90
Subcode X'0004' -- Unlock a Virtual Page 91
Subcode X'0008' -- Perform I/O on a Real CCW String 91

DIAGNOSE Code X'AO' -- Retrieve a Group Name 92
DIAGNOSE Code X'BO' -- Access Diagnostic Information Saved For

Protected Application Facility Users 92
DIAGNOSE Code X'B4' -- Virtual Printer External Attribute Buffer

Manipulation .. 94
External Attribute Buffer (XAB) 96

DIAGNOSE Code X'B8' -- Spool File External Attribute Buffer
Manipulation .. 98

DIAGNOSE Code X'BC' -- Open A Spool File 100
DIAGNOSE Code X'C8' -- Set Language 101
DIAGNOSE Code X'CC' -- Saving the CP Message Repository 103
DIAGNOSE Code X'DO' -- Provide 3480 Tape Volume Serial Number .. 105
DIAGNOSE Code X'D4' -- Specify An Alternate U serid 106
DIAGNOSE Code X'D8'-System Spool Information 108

Subcode X'OOOO' -- Read next SFBLOK 110

Chapter 2. Inter-User Communications Vehicle 111
IUCV Paths ... 111
IUCV Messages. .. 112

Message Data Transfer 112
Message Identification 113

IUCV External Interrupts 114

VI VM System Facilities for Programming

Avoiding IUCV External Interrupts 116
Security Considerations 116
Virtual Machine-to-Virtual Machine Communication 117

Using Data in a Buffer 117
Using Data in a Parameter List 120
Using Control Paths 121
Invoking IUCV Functions 123

IUCV Functional Descriptions· 124
QUERY Function ... 127
DECLARE BUFFER Function 128
CONNECT Function 131

Connection Pending External Interrupt 135
ACCEPT Function .. 137

Connection Complete External Interrupt 140
SEND Function ~... 142

Message Pending External Interrupt 147
RECEIVE Function 149
REPLY Function ... 154

Message Complete External Interrupt 158
REJECT Function .. 161
PURGE Function ... 164
SEVER Function ... 168

Connection Severed External Interrupt 170
RETRIEVE BUFFER Function 172
QUIESCE Function 173

Connection Quiesced External Interrupt 175
RESUME Function .. 176

Connection Resumed External Interrupt 178
TEST MESSAGE Function 179
DESCRIBE Function 181
TEST COMPLETION Function 184
SET MASK Function 188
SET CONTROL MASK Function 191
Trace Table Entries 193

IUCV Trace Table Entry Formats 194
Trace Table Entry Field Definitions 195

lUCY System Services 197

Chapter 3. CMS IUCV 199
HNDIUCV Macro ... 199
CMSIUCV Macro ... 204
Exits ... 211
Using CMS IUCV to Communicate Between Two Virtual Machines .. 212
Guidelines and Limitations of the CMS IUCV 215

Chapter 4. SNA Virtual Console Communication Services 219
System Structure ... 220
Environments Supported 221
Processing Descriptions 222
SNA CCS Entries in CP Internal Trace Table 233

Trace Table Entry Formats 233
Trace Table Entry Field Definitions 235

Chapter 5. The Message System Service 239

Contents Vll

Establishing Communications with the Message System Service 0 0 0 0 0 239

Chapter 6. The Message All System Service 241

Chapter 7. The DASD Block I/O System Service 243
Establishing Communications with DASD Block I/O Service 0 0 0 0 0 0 0 0 243

IUCV CONNECT to the DASD Block I/O System Service 0 0 0 0 0 0 0 0 244
IUCV SEND to the DASD Block I/O System Service 0 0 0 0 0 0 0 0 0 0 0 0 245

Using the DASD Block I/O System Service from CMS 0000000000000 246

Chapter 8. The Signal System Service 251
Establishing Communications with the Signal System Service 0 0 0 0 0 0 0 251
IUCV CONNECT to the Signal System Service 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 252
Sending Signals 0 254
Receiving Signals 0 254
Leaving the Signal System Service 0 255

Chapter 9. The Error Logging System Service 257
Establishing Communications with the Error Logging System Service 257
Interactions 0 257

Chapter 10. The SPOOL System Service 259
Establishing Communications with the SPOOL System Service 0 0 0 0 0 0 259
IUCV CONNECT to the SPOOL System Service 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 260
IUCV SEND to the SPOOL System Service 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 261

The SELECT Function . 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 262
The CLOSE Function 0 • 0 0 0 265
The MESSAGE Function 000000000000.00000000. 0 • 0 0 0 0 • 0 0 0 0 268
The READ Functions 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 0 0 270

The SPOOL System Service to a Logical Printer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 273
The SEND Function . 0 0 0 0 0 0 • 0 274
The NOTIFY Function 00000000000.000 •• 00.000000000000000 275
The PURGE Function 000000000000. 0 275

Chapter 11. The Special Message Facility 277

Chapter 12. Single Console Image Facility 279
Using the Single Console Image Facility 0 0 • 0 279

Chapter 13. Logical Device Support Facility 281

Chapter 14. The Virtual Machine Communication Facility 283
Using the Virtual Machine Communication Facility 0 0 0 0 0 .00 0 • 0 • •• 284

VMCF Applications . 0 0 0 0 • 0 •••• 00' 0 • 0 •• 0 ••••••• 0 0 • 0 0 0 0 0 0 0 285
Security and Data Integrity 0 0 ••• 0 0 0 0 0 0 •• 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 • 0 0 286
Performance Considerations 0 0 •• 0 • 0 0 0 • 0 • 0 0 •• 0 0 0 0 • 0 0 • 0 0 • 0 0 0 0 287
General Considerations 0 0 0 •••• 0 0 0 0 • 0 0 • 0 • 0 • 0 • 0 • 0 0 ••• 0 0 • 0 0 0 288

VMCF Protocol 00.0.0. 0 0 .00 • 0 •• 0 0 0 0 .00 • 0 0 0 • 0 • 0 ~ 0 • 00000. 000 288
The SEND Protocol . 0 0 0 0 0 •• 0 0 0 0 0 0 • 0 0 • 0 0 0 .0 • 0 •• 0 0 0 0 0 • 0 • 0 0 289
The SEND/RECV Protocol .0.000. 0 0 0 0 •• 0 0 • 0 • 00 • 0 •• 0 •• 0 •• o. 290
The SENDX Protocol . 0 ••••••• 0 ••••••••• 0 •••••• 0 ••• 0 •• 0 • 0 291
The IDENTIFY Protocol ... 0 •• 0 ••• 000. 0 0 • 0 0 0 00.0.0 •• 0 ••••• 292

Descriptions of VMCF Functions 0 •••••••••••••••••••• 0 •• 0 • 0 •• 293

Vlll VM System Facilities for Programming

The Control Functions 293
The Data Transfer Functions 296

Invoking VMCF Functions 300
DIAGNOSE Code X'68' 300
The VMCPARM Parameter List 301
External Interrupt Code X'4001' 305
The External Interrupt Message Header 306
VMCF User Doubleword 309
DIAGNOSE Code X'68' Return Codes 309
Data Transfer Error Codes 312

Part 2. VM System Applications 313

Chapter 15. The Programmable Operator Facility 315
Overview .. 315

Using the Programmable Operator Facility in Various System
Environments ... 315

The Logical Operator 317
Routing Table Information 317
Action Routines .. 318
How it Works : 318
Flow of Operation 319
Relationship to RSCS Networking 320

The Programmable Operator Virtual Machine 321
Installing the Programmable Operator Facility 321
Invoking the Programmable Operator Facility 322
Message Output Format 327
Stopping the Programmable Operator Facility 327

Running the Programmable Operator Facility from NCCF or NetView 328
The Programmable Operator/NCCF Message Exchange 328
Installing the PMX 328
Communication Between the Programmable Operator and NCCF or

NetView ... 330
PMX Communication Protocol 331
Stopping the PMX 332

The Logical Operator 332
The Default Logical Operator _._. 333
The NCCF or NetView Logical Operator 334
Assigning or Changing the Logical Operator 334

The Routing Table .. 336
How the Programmable Operator Facility Uses the Routing Table 337
Routing Table Entry Formats 337
Tailoring the Routing Table 346

The Log File ... 354
Logging NCCF or NetView messages in the Log File 356
Ensuring a Complete Log 356

The Feedback File .. 358
Communications Checking 359
Invoking Programmable Operator Facility Commands 361
Programmable Operator Facility Command Descriptions 368

CMD Command ... 369
FEEDBACK Command 371
GET Command ... 372

Contents IX

LGLOPR Command 373
LOADTBL Command 375
LOG Command ... 377
QUERY Command 379
SET Command ... 382
STOP Command .. 385

Action Routines .. 386
The Action Routine Interface 387
Description of Supplied Action Routines 392

Exit EXECs .. 396
Exit EXEC Interface 396
Supplied Error Exit EXECs 397

Problem Determination - Debug Mode 398

Chapter 16. Getting National Languages on Your System 401
Contents of the Feature Tape 401

Source Files and Listing Files 402
Object Files .. 403

Installing National Language Files on Your VM System 404
Loading the National Language Files From Tape to Disk 404

Saving National Language Files for CP and CMS 404
Saving National Language Files for GCS 407

Adding National Language Information for an Application 407
Updating Files for an Existing National Language 409
Deleting a National Language 410
Deleting Language Information for an Application 410
The LANGMERG Command 411

LANGMERG's Control File 412
The LANGGEN Command 413

LANGGEN's Control File 415

Appendixes 417

Appendix A. CP Device Classes, Types, Models, and Features 419

Appendix B. Sample CMS IUCV Program 425

Appendix C. Converting Programmable Operator Routing Tables 429

Summary of Changes 431
Structural Changes 431
Technical Changes for VM System Facilities for Programming 433
Summary of Changes for VM/SP and VM/SP HPO System

Programmer's Guides 435

Glossary of Terms and Abbreviations 443

Bibliography .. 449

Index .. 453

x VM System Facilities for Programming

figures

1. Data Returned to DIAGNOSE code X'OO' 5
2. Format of Pseudo Timer Information 13
3. Addressable Storage Before and After a LOADSYS Function 53
4. DIAGNOSE Code X'84' -- Parameter List Operation Field 74
5. Suggested Format of an External Attribute Buffer 96
6. IUCV Two-Way Data Transfer 113
7. Sequence of Functions 118
8. CP System Services and Their U serids 197
9. Sequence of Instructions in Virtual Machine to Virtual Machine

Communication 213
10. Virtual Console Support in CP 220
11. SNA Virtual Console Support Interfaces 224
12. Printer Subsystem Support 260
13. Summary of Logical Device Support Facility Functions 282
14. Virtual Machine Communication Facility (VMCF) Functions ... 284
15. The SEND Protocol 290
16. The SENDjRECV Protocol 291
17. The SENDX Protocol 292
18. The IDENTIFY Protocol 293
19. VMCF Functions, Parameters, and Return Codes 304
20. DIAGNOSE Code X'68' Return Codes 309
21. DIAGNOSE Code X'68' Data Transfer Error Codes 312
22. LGLOPR Command Authorization for an NCCF or NetView

Operator .. 330
23. QUERY Command Authorization for an NCCF or NetView

Operator .. 334
24. Sample LGLOPR Command Entries in a Routing Table 336
25. The Programmable Operator Facility in a Distributed System ... 341
26. Partial Routing Table 345
27. Routing Entries to Send Messages to an NCCF or NetView

Operator .. 350
28. Routing Entries to Filter Responses to Routine Commands 351
29. Uncontrolled Authorization 352
30. Restricting Authorization by Nodeid 353
31. Restricting Authorization by Userid and Nodeid 353
32. Restricting Command Use to Specific Users 354
33. Example of Communication in the Single System Environment .. 363
34. Example of Communication in the Distributed Environment 364
35. Example of Communication in the Mixed Environment 366
36. Register Conventions for Invoking an Action Routine 388
37. CP Device Classes, Types, Models, and Features 419
38. New VM System Programming Manuals for Release 5 432

Figures Xl

xu VM System Facilities for Programming

Part 1 contains chapters about the following VM system facilities:

• The DIAGNOSE Instruction
• The Inter-User Communications Vehicle (IUCV)
• CMS IUCV
• The CP System Services

SNA Virtual Console Communication Services (*CCS)
The Message System Service (*MSG)
The Message All System Service (*MSGALL)
The DASD Block I/O System Service (*BLOCKIO)
The Signal System Service (*SIGNAL)
The Error Logging System Service (*LOGREC)
The SPOOL System Service (*SPL)

• The Special Message Facility
• The Single Console Image Facility
• The Logical Device Support Facility
• The Virtual Machine Communication Facility (VMCF)

Part 1. VM System Facilities 1

2 VM System Facilities for Programming

The DIAGNOSE instruction cannot be used in a virtual machine for its
normal function. If a virtual machine tries to execute a DIAGNOSE
instruction, a program interrupt returns control to CPo Since a DIAGNOSE
instruction issued in a virtual machine results only in returning control to
CP and not in performing normal DIAGNOSE functions, the' instruction is
used for communication between a virtual machine and CP. The machine
language format of DIAGNOSE is:

a 1 2 3

83 Rx Ry CODE

where:

83 is X'S3' and is the S/370 operation code for the DIAGNOSE
instruction.

RX,Ry

CODE

Note: There is no mnemonic for DIAGNOSE.

are general purpose registers that cQlltain operand storage
addresses or function codes passed to the DIAGNOSE functions,
or return codes from the DIAGNOSE functions. If the registers
contain addresses, those addresses must be real to the virtual
machine issuing the DIAGNOSE!. The registers are specified as
X'xy'. Unless otherwise noted, the register specified as Ry
contains the return code on completion.

is a two-byte hexadecimal value that CP uses to determine what
DIAGNOSE function to perform, such as X'OOOS'. The codes
defined for the general VM user are described in this section.
The code must be a multiple of four. Codes X'OO' through X'FC'
are reserved for IBM use, and codes X'lOO' through X'lFC' are
reserved for users. The privilege class for each code is indicated.

Because DIAGNOSE operates differently in a virtual machine than it does
in a real machine, a program should determine that it is operating in a
virtual machine before issuing a DIAGNOSE instruction, and prevent
execution of a DIAGNOSE when in a real machine. The Store Processor ID
(STIDP) instruction provides a program with information about the
processor in which it is executing, including the processor version number.
If STIDP is issued from a virtual machine, the version code, which precedes

Except for DIAGNOSE code X'04' which examines real storage.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 3

DIAGNOSE Codes

the CPUID field, will be X'FF'. For a preferred machine assist guest
(VM/SP HPO), it is the real processor id. For a preferred machine assist
guest with the control switch assist, CP returns X'FF'.

A virtual machine issuing a DIAGNOSE instruction should run with
interrupts disabled. This prevents loss of status information about the
DIAGNOSE operation such as condition codes and sense data.

Notes:

1. A DIAGNOSE instruction with invalid parameters may at times result in
a specification exception, protection exception, or addressing exception.
Unauthorized use (not having the correct CP authorization class) results
in a privileged operation exception.

2. If you change the privilege class for DIAGNOSE instructions using the
OVERRIDE command, the privilege classes mentioned in this manual for
DIAGNOSE instructions may no longer be correct for your installation.

3. If you have VM/SP HPO, you cannot use the DIAGNOSE instruction in
a virtual machine when preferred machine assist is active unless control
switch assist is also active. In the latter case, the following DIAGNOSE
codes can be used:

DIAGNOSE
Code
X'OO'
X'04'
X'OS'
X'40'
X'4C'
X'6S'
X'6C'
X'7S'
X'SO'

Description
Store Extended-Identification Code
Examine Real Storage
Virtual Console Funciton
Cleanup after Virtual IPL by Device
Generate Accounting Records
Virtual Machine Communication Facility
Shadow Table Maintenance
MSS Communication
MSSFCALL

DIAGNOSE Code X'OO' -- Store Extended-Identification Code

All privilege classes (except ANY)

DIAGNOSE code X'OO' allows a virtual machine to examine the
extended-identification code. For example, an OS/VSl virtual machine
issues a DIAGNOSE code X'OO' instruction to determine if the version of
VM under which it is executing supports the VM/VS Handshaking feature.
If the extended-identification code is returned to VSl, VM supports
handshaking; otherwise, it does not.

Note: If you have VM/SP HPO, DIAGNOSE code X'OO' is supported by a
preferred machine assist guest with the control switch assist active.

4 VM System Facilities for Programming

Field

System
Name

RESERVED

Version
Code

MCEL

Processor
Address

Userid

lD~AGNOSlE Codes

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'OO':

Rx

Ry

Contains the doubleword aligned virtual storage address where the VM
extended-identification code is to be stored.

Contains the number of bytes to be stored entered as an unsigned binary
number.

Exit Values: If the VM system currently executing does not support the
DIAGNOSE code X'OO' instruction, no data is returned to the virtual
machine. If it does support the DIAGNOSE code X'OO' instruction, the data
in Figure 1 is returned to the virtual machine (at the location specified by
Rx):

Description Characteristics

"VMjSP" 8 bytes,
EBCDIC

(for IBM use) 3 bytes, zeroes

VMjSP executes the STIDP (Store Processor ID) 1 byte,
instruction to determine the version code. hexadecimal

VMjSP executes the STIDP instruction to determine the 2 bytes,
maximum length of the MCEL (Machine Check Extended hexadecimal
Logout) area.

VMjSP executes the STAP (Store Processor Address) 2 bytes,
instruction to determine the processor address. hexadecimal

The userid of the virtual machine issuing the DIAGNOSE. 8 bytes,
EBCDIC

Figure 1 (Part 1 of 2). Data Returned to DIAGNOSE code X'OO'

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 5

DIAGNOSE Codes
(, ,:.~.:: "ir:' 'r:,·;, : '

Field Description Characteristics

Licensed Identifies the licensed programs that are installed. Valid 8 bytes,
Program values and the licensed programs each identifies are: hexadecimal
Bit Map

Value Licensed Program

X'8000000000000000' Basic System Extensions 2
X'4000000000000000' System Extensions, Release 2
X'2000000000000000' VM/SP, Release 1
X'1000000000000000' VM/SP, Release 2
X'0800000000000000' VM/SP, Release 3
X'0400000000000000' VM/SP, Release 4
X'0200000000000000' VM/SP, Release 5
X'0080000000000000' VM/SP HPO, Release 1
X'0040000000000000' VM/SP HPO, Release 2
X'0020000000000000' VM/SP HPO, Release 2.5
X'0010000000000000' VM/SP HPO, Release 3
X'0008000000000000' VM/SP HPO, Release 3.2
X'0004000000000000' VM/SP HPO, Release 3.4
X'0002000000000000' VM/SP HPO, Release 3.6
X'0001000000000000' VM/SP HPO, with 3880

Model 21 support
X'0000800000000000' VM/SP HPO, with VDLE support
X'0000400000000000' VM/SP HPO, Release 4.0
X'0000200000000000' VM/SP HPO, Release 4.2
X'0000100000000000' VM/SP HPO, with Scheduler/Monitor

changes
X'0000080000000000' VM/SP HPO, Release 5.0

Note: These bits are cumulative. For example, if your
system is VM/ SP Release 4, the bits would be on for
all releases of VM/ SP giving you
X'FCOOOOOOOOOOOOOOO'. If your system is VM/ SP
HPO Release 4.2 and has all of the listed features,
all the bits would be on (including all the bits for
VM/ SP since VM/ SP Release 4 is a prerequisite)
giving you X'FCFDFOOOOOOOOOOOO'.

Time Zone Represents the time zone differential in seconds from 4 bytes,
Value Greenwich Mean Time. hexadecimal

Note: The Time Zone Value is a signed hexadecimal
fullword value in seconds. Negative values
represent differentials west of Greenwich Mean Time
and positive values represent differentials east of
Greenwich Mean Time.

Version The first byte is the release number, the second byte is the 4 bytes,
Number release modification level, the third and fourth bytes are hexadecimal

the PLC (Program Level Change) number.

Figure 1 (Part 2 of 2). Data Returned to DIAGNOSE code X'OO'

If VM is executing in a virtual machine, another 40 bytes, or less, of
extended identification data is appended to the first 40 bytes described
above. Up to five nested levels of VM virtual machines are supported by
this DIAGNOSE instruction resulting in a maximum of 200 bytes of data

6 VM System Facilities for Programming

!DIAGNOSE Codes

that can be returned to the virtual machine that initially issued the
DIAGNOSE instruction.

On return, Ry contains its original value less the number of bytes that were
stored.

Condition and Return Codes: No return code is received, and the
condition code remains unchanged.

DIAGNOSE Code X'04' -- Examine Real Storage

Privilege class C or E

DIAGNOSE code X'04' allows a user to examine real storage.

Note: If you have VM/SP HPO, DIAGNOSE code X'04' is supported by a
preferred machine assist guest with the control switch assist active.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'04':

Rx

Ry

Contains the virtual address of a list of CP (real) addresses to be
examined.

Contains the count of entries in the list.

Ry+l
Contains the virtual address of the result field. The result field contains
the values retrieved from the specified reallocations.

Exit Values: For each address in the list of CP addresses, VM provides a
fullword of data obtained from the specified address in real storage. VM
stores this data into the result field identified by Ry + 1.

There is a one-to-one correspondence between entries in the list of
addresses and entries in the result field. For example, data obtained from
the address in the first entry of the address list is stored in the first entry of
the result field, data obtained from the second entry of the address list is
stored in the second entry of the result field, and so forth.

Program Exceptions: If DIAGNOSE code X'04' is specified incorrectly,
the following exceptions are received:

Addressing
If the requested CP storage is outside the real machine storage size.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 7

DIAGNOSE Codes

Specification
If Ry contains a zero or negative count, or Ry is greater than 1024.

If the request list and the result list are not in the same virtual page.

If the request list and the result list cross a page boundary.

If the requested real page frame is disabled.

Notes:

1. The request and result tables must be in the same page of virtual storage,
and that page must be resident in real storage, at the time the
DIAGNOSE is executed. This is guaranteed if the instruction itself is
also in the same page.

2. In the attached processor or multiprocessor environment, each processor
has a prefix register to relocate addresses between 0 and 4095 to another
page frame in main storage. The prefix register enables each processor to
use a different page frame to avoid conflict with the other processor for
such activity as interrupt code recording. Thus, the range 0 through 4095
refers to different areas of storage, depending on which processor
gen!.?rates the address.

In attached processor mode, all references to main ftorage from either
processor are handled as if they were made on the main processor. In
multiprocessor mode, references to main storage from either processor are
handled as if they were made on the IPL processor. Existing user
programs remain valid for performance data; they receive the statistics for
the main (or IPL) processor.

References to the PSA of the attached processor (or non-IPL processor, in
multiprocessor mode) may be made as follows: first, retrieve the value of
PREFIXB, the value of the prefix register for the other processor (the
attached processor in this case). Next, specify addresses that are the sum
of the value of PREFIXB and the PSA displacement. References to 0
through 4095 are made by summing the value of PREFIXA and the PSA
displacement to form the request address. Several system values that are
processor independent are maintained in 0 through 4095, such as the
restart PSW and the trace table vectors.

For details on attached processor and multiprocessor environments, please
see VM/ SP CP for System Programming or VM/ SP HPO CP for System
Programming.

3. If a reference is made to a real page frame that CP has determined to be
disabled, results cannot be predicted. The CORET ABLE entry
corresponding to the real page address is checked and, if a disabled
condition is found, the operation is terminated and a program check for a
specification exception is presented to the virtual machine.

8 VM System Facilities for Programming

DIAGNOSE Codes

4. If you have VM/ SP HPO, extended storage support allows CP to use
storage above the 16Mb line. However, DIAGNOSE code X'04' cannot
access storage above 16Mb.

DIAGNOSE Code X'08' -- Virtual Console Function

All privilege classes (except ANY)

DIAGNOSE code X'08' enables a virtual machine running in supervisor
state to issue CP commands. The virtual machine must specify the
command, the command parameters, and whether CP is to return the
command response to the user's terminal or to a buffer. In addition to
returning the command response, CP sets a return code in Ry and may set a
condition code.

Note: If you have VM/SP HPO, DIAGNOSE code X'08' is supported by a
preferred machine assist guest with the control switch assist active.

Entry values: Set up the input registers as follows when invoking
DIAGNOSE code X'08':

Rx

Ry

Must point to the character string in virtual storage that contains the
CP commands and parameters. If the character string contains multiple
commands, each command and its associated parameters must be
separated from adjacent commands by the value X'15'.

Contains flag bits in the high-order byte; the other three bytes specify,
in bytes, the length of the CP commands and parameters. The maximum
allowable length is 240 characters.

Set the flag bits in the high-order byte of Ry as follows:

X'80' For CP to reject a password entered on the same line as a LINK
command. CP rejects passwords only if the installation specified
password suppression during system generation.

X'40' For CP to return the command response in a buffer.

X'20' To make the virtual machine responsible for prompting the user
for the LINK or A UTOLOG password and reissuing the LINK or
AUTOLOG command with the correct password in the command
buffer.

If the command response is to be returned in a buffer, Rx and Ry cannot
be consecutive registers nor can either be register 15. In addition, Rx + 1
and Ry + 1 must be setup as follows:

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 9

DIAGNOSE Codes

Rx+l
Must point to the buffer in virtual storage where CP is to return the
command response.

Ry+l
Must specify, in bytes, the length of the buffer.

Exit values: If Ry contains the value X'OOOOOOOO', the DIAGNOSE code
acts as a no-operation (NOP) instruction. As a consequence, the issuing
virtual machine is placed into a CP-READ state.

Condition Codes: If the command response is to be returned in a buffer,
CP sets a condition code and returns information as follows:

CC = 0 The request was successful. Rx + 1 points to the buffer that contains
the command response. Ry + 1 specifies the length of the response.

CC = 1 The request was unsuccessful. The response does not fit into the
buffer. Ry + 1 contains a value that specifies how many bytes of the
response would not fit into the buffer.

Return Codes: When CP returns to a program executing a DIAGNOSE
code X'08' instruction, the length value that was supplied in Ry is replaced
by the CP return code value. This value is 0 if the CP console function was
successfully executed. If an error occurred, the return code is the numeric
value expressed in the message describing the error (unless X'20' is
specified in the high-order bit of Ry). For example, if error message
DMKCFM045E is issued, CP sets a return code of 45.

If the virtual machine assumes responsibility for prompting and a password
is not in the command buffer on a LINK or AUTOLOG command issued
through DIAGNOSE code X'08', and the information in the command buffer
is valid, one of five unique return codes is passed back to the virtual
machine. These return codes indicate which password prompt the virtual
machine should issue. The short logon prompt and extended logon prompt
return codes are 8013 and 8014, respectively, for the AUTOLOG command.
The read, write, and multi password prompt return codes are 8015, 8016, and
8017, respectively, for the LINK command. The link or autolog request
should then be reissued via another DIAGNOSE code X'08' with the
password in the command buffer.

If the user has not specified a command response buffer, error messages and
informational messages are generated according to the current values
established by SET EMSG, SET IMSG, and SET MSG commands.

If a command response buffer is used, error and informational messages are
always put into the buffer instead of being written to the console. Each
line of the response is followed by a new line character (X'15'). If the buffer
is not long enough to contain all of the response lines, only as many
complete lines as can fit into the buffer are supplied, so the last character
written into the response buffer by CP is always a new line character. Any
unused portion of the response buffer is not changed. The setting of EMSG

10 VM System Facilities for Programming

DIAGNOSE Codes

determines only whether the error message code is retained. (SET EMSG
OFF is treated the same as SET EMSG ON; SET EMSG TEXT suppresses
error message codes.) Messages affected by SET MSG are not put into the
command response buffer unless MSG is set on (SET MSG ON).

The return code values returned by CP are not affected by the values of
EMSG and IMSG, or by using a command response buffer.

If CP is executing multiple commands and encounters an invalid command,
processing stops and CP ignores the remaining commands.

Service Virtual Machine System Integrity: Certain virtual machines
process or manage either data or other resources for multiple applications
or users. At the interfaces these service virtual machines provide to user
virtual machines, there is the potential for accidental or intentional misuse
of the interface. Such misuse could lead to exposures to data security or
data integrity.

Where such interfaces allow the user directly or indirectly to request or
specify functions to be performed by the control program, it is the
responsibility of the service virtual machine to determine that the functions
to be performed are valid for the environment in which they will be
performed.

For example, the CP Virtual Console Function facility allows the character
string pointed to by Rx to contain more than one CP command. If a service
virtual machine were to accept such a string from an unauthorized user
virtual machine, and then pass the string to CP's Virtual Console Function
facility without checking the validity of the command or commands and the
command parameters in the string, then it is possible that a data security or
data integrity problem could occur.

Programs that accept character data, which is embedded in strings passed
to CP, should ensure that such data does not contain the X'15' character
unless it is specifically desired that multiple commands be permitted.

Example: Following are two examples showing how to specify DIAGNOSE
code X'08'. The first example shows how a program issues the QUERY
FILES command. In this example the response is returned to the user's
terminal. Note that in virtual storage environment, a load real address
(LRA) instruction must be used to load Rx.

CMMD
CMMDL

LAl 6,CMMD
LA lO,CMMDL
DC X'S3' ,X'6A' ,XL2'OOOS'

DC
EQU

C'QUERY FILES'
*-CMMD

The second example shows how to specify a string of commands when
multiple commands are to be issued.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 11

DIAGNOSE Codes
I.,; ", -,

LAl 6,CMMD
LA lO,CMMDL
DC X'83' ,X'6A' ,XL2'0008'

CMMD DC C'QUERY FILES'
DC X'IS'
DC C'PURGE PRINTER'

CMMDL EQU *-CMMD

Notes:

1. If you are in EC mode you must code a LRA instruction instead of a LA
instruction if you are running a virtual storage system (for example,
MVS) in a virtual machine and want to specify the address of the CMMD
parameter.

2. The logical line editing characters (described in the VM/SP Terminal
Reference and under the TERMINAL command in the VM/SP CP
Command Reference or the VM/ SP HPO CP Command Reference) are
only recognized by CP when entered from a terminal, not when passed to
CP via DIAGNOSE code X'08'. Therefore a command such as #CP is not
recognized by CP when issued via DIAGNOSE code X'08' and results in
error message "DMKCFC001E Unknown CP command: name". The
value X'15', as described in the "Entry Values", is the only value
recognized by DIAGNOSE code X'08' for issuing multiple commands.

DIAGNOSE Code X'OC' -- Pseudo Timer

All privilege classes (except ANY)

DIAGNOSE code X'OC' causes CP to store four doublewords of time
information in the user's virtual storage.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'OC':

Rx
Contains the address of the 32-byte area where the time information is to
be stored. The address must be on a double word boundary. The
information returned is in the format shown below.

12 VM System Facilities for Programming

DIAGNOSE
8 bytes

MMjDDjYY

HH:MM:SS

VIRTCPU

TOTCPU

Figure 2. Format of Pseudo Timer Information

The first eight bytes contain the Month/Day-of-Month/Year. The next eight
bytes contain the time of day in Hours:Minutes:Seconds. The last 16 bytes
contain an unsigned binary number that represents the virtual and total
processor time (in microseconds) of the virtual machine that issued the
DIAGNOSE.

Condition and Return Codes: No return code is received, and the
condition code remains unchanged.

DIAGNOSE Code X'10' -- Release Pages

All privilege classes (except ANY)

Pages of virtual storage can be released by issuing DIAGNOSE code X'lO'.
A released page is considered all zero.

Do not use DIAGNOSE code X'lO' to release noncontiguous storage; use
DIAGNOSE code X'64' for this purpose.

Entry values: Set up the input registers as follows when invoking
DIAGNOSE code X'lO':

Rx
Contains the address of the first page to be released.

Ry
Contains the address of the last page to be released.

Both addresses must be on page boundaries. A page boundary is a storage
address whose low-order three digits, expressed in hexadecimal, are zero.

Condition and Return Codes: No return code is received, and the
condition code remains unchanged.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 13

DIAGNOSE Code X'14' -- Input Spool File Manipulation

All privilege classes (except ANY)

DIAGNOSE code X'14' causes DMKDRDER to manipulate the input spool
files.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'14':

Rx

Ry

Contains a buffer address, a copy count, or a spool file identifier
depending on the value of the function specified.

Which must be an even register, contains either the virtual address of a
spool input card reader or, if Ry + 1 contains X'OFFF', a spool file ID
number.

Ry+l
Contains a hexadecimal code indicating the file manipulation to be
performed, and a flag with the optional size of the spool file block.

The function subcodes are:

Code
0000
0004
0008
OOOC
0010
0014
0018
001C
0020
0024
OFFE
OFFF

Notes:

Function
Read next spool buffer (data record)
Read next print spool file block (SFBLOK)
Read next punch spool file block (SFBLOK)
Select a file for processing
Repeat active file nnn times
Restart active file at beginning
Backspace one record
Read next monitor spool file block
Read next monitor spool record
Read last spool buffer (active file)
Select next file not previously selected
Retrieve subsequent file descriptor

1. Subcodes X'OOlC' and X'0020' are the only subcodes of DIAGNOSE
code X'14' that can be used for monitor files.

2. For subcodes X'OOOO', X'0004', X'0008', X'OOOC', X'OOl C', and X'0020',
held files are skipped.

Condition Codes: On return Ry + 1 may contain error codes that further
define a returned condition code of 3.

14 VM System Facilities for Programming

Condition
Code

o
1

2
3
3
3

3
3
3

[)~AGNOSIE Codes

Ry+l Error
Data transfer successful
End of file or if subcode X'0018' and
file is at first record
File not found

4 Device address invalid
8 Device type invalid

12 Device busy, reader not ready, or
device is a real device

16 Fatal paging I/O error
20 Page already locked for I/O
24 File in use by system; probable

paging or spooling error.

SUbcode X'OOOO' -- Read Next Spool Buffer

Rx = start address of full-page virtual buffer
Ry = virtual spool reader address
Ry+ 1 = function subcode

The specified device is checked for a file activated via DIAGNOSE. If one
is found, the next full-page buffer is made available to the virtual machine
via a call to DMKRP AGT. If a file is not found, the chain of reader files is
searched for a file for the calling user and connected to the virtual device
for further reading. If no file is found, virtual condition code 2 is set. When
the end of an active file is reached, the device status settings are tested for
"spool continuous." If not set, virtual condition code 1 is set, indicating
end of file. If the device is set for continuous input, the active file is
examined to determine if it is a multiple-copy file. If it is, reading is
restarted at the beginning of the file. If it is not, the file is closed via
DMKVSUCR and the reader chain is searched for another input file. If no
other file is found, virtual condition code 1 is set. A specific DIAGNOSE
code X'14' subcode X'OOOO' must be issued to get the first spooled page
again.

Notes:

1. Subcode X'OOOO' returns a 3 condition code if an active monitor file or CP
dump file is found.

2. Issuing DIAGNOSE code X'14' subcode X'OOOO' against a locked page
causes the page to become unlocked.

3. For Subcode X'OOOO', held files are skipped.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 15

DIAGNOSE Codes

Subcode X'0004' -- Read Next Print Spool File ,Block

Rx = virtual address of an SFBLOK buffer
Ry = virtual spool reader address
Ry + 1 = flag, optional size of SFBLOK in doublewords, and function

subcode.

If the specified device is in use via DIAGNOSE, the VSPLCTL block is
checked to see if this is a repeated call for printer SFBLOKs. If it is, then
the chain search continues from the point where the last SFBLOK was
given to the virtual machine. In this case, CC = 1 is set when there are no
more print files. If this is the first call for an SFBLOK, or if there have
been intervening calls for file reading, the spool input chain is searched
from the beginning, and CC = 2 is set if no files are found.

If the high-order byte of the subcode register (Ry + 1) is zero, then only 13
doublewords of the SFBLOK are returned and the rest could be truncated.
However, if bit zero of the register is on, then bits 2 to 7 specify the amount
of data to be returned (in doublewords). If the actual SFBLOK is shorter,
the extra space is filled with zeroes.

Notes:

1. If the virtual buffer specified by Rx crosses a page boundary, a
specification exception results.

2. For Subcode X'0004', held files are skipped.

3. For Subcode X'0004', the format definition for a VM SFBLOK can be
found in the system macro library.

Subcode X'0008' -- Read Next Punch Spool File Block

Rx = virtual address of an SFBLOK buffer
Ry = virtual spool reader address
Ry + 1 = flag, optional size of SFBLOK in doublewords, and function

subcode.

Processing for subcode X'OOOS' is the same as for subcode X'0004', except
that only punch files are processed.

Notes:

1. For Subcode X'0008', held files are skipped.

2. For Subcode X'0008', the format definition for a VM SFBLOK can be
found in the system macro library.

16 VM System Facilities for Programming

Subcode X'OOOC' -- Select a File For Processing

Rx = file identifier of requested file
Ry = virtual spool reader address
Ry + 1 = function subcode

DIAGNOSE Codes

The spool input chain is searched for the file specified. If it is not found,
CC = 2 is set. If it is found, the file is moved to the head of the chain so
that it is the next file processed by any of the other functions.

Note: For Subcode X'OOOC', held files are skipped.

Subcode X'0010' -- Repeat Active File 'nnn' Times

Rx = new copy count (nnn) for the active file
Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for an active file. If no file is active, CC = 2
is set. Otherwise, the copy COUNT (nnn) for the file is set to the specified
value, with a maximum of 255. If the specified count is not positive, a
specification exception is generated.

Subcode X'0014' -- Restart Active File at Beginning

Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for an active file. If no active file is found,
CC = 2 is set. Otherwise, the VSPLCTL pointers are reset to the beginning
of the file.

Subcode X'0018' -- Backspace One Record

Rx = start address of virtual full-page buffer
Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for an active file. If no active file is found,
CC = 2 is set. Otherwise, the file is backspaced one record and the record is
given to the user as in subcode X'OOOO'. If the file is already positioned at
the first record, the first record is given to the user.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 17

DIAGNOSE Codes

Subcode X'001C' -- Read Next Monitor Spool File Block

Rx = virtual address of an SFBLOK buffer
Ry = virtual spool reader address
Ry + 1 = flag, optional size of SFBLOK in doublewords, and function

subcode.

Processing is the same as subcode X'0008', except that only monitor spool
files, as identified by the SFBMON flag is SFBFLAG2, can be handled.

Note: For Subcode X'OOl G', held files are skipped.

Subcode X'0020' -- Read Next Monitor Spool Record

Rx = start address of virtual full-page buffer
Ry = virtual spool reader address
Ry + 1 = function subcode

Processing is the same as subcode X'OOOO', except that only monitor spool
files, as identified by the SFBMON flag in SFBFLAG2, can be handled.

Note: For Subcode X'0020', held files are skipped.

Subcode X'0024' -- Read Last Spool Buffer

Rx = start address of virtual full-page buffer
Ry = virtual spool reader address
Ry + 1 = function subcode

The specified device is checked for an already active file. If there is one,
the last full-page buffer is made available to the virtual machine via a call
to DMKRPAGT. If there is no active file, CC=2 is set.

Subcode X'OFFE' -- Select Next File Not Previously Selected

Rx = virtual address of a 332-byte buffer
Ry = code to further determine function
Ry + 1 = flag, optional size of SFBLOK in doublewords, and function

subcode.

If Ry code = 0, the next reader spool file that was not previously seen is
selected and returns data2 to the user's buffer.

The data for the X'OFFE' and X'OFFF' subcodes of DIAGNOSE code X'14' are
SFBLOK, 40 bytes of the 3800 data from the first SPLINK (if requested), the
first CCW, the following TIC, and up to 136 bytes of TAG data.

18 VM System Facilities for Programming

If Ry code = 1, the bit in the SFBLOK is be reset to indicate that the spool
file was previously selected and data2 from the first spool file is returned to
the user. CC = 1 is returned if no file is found.

If Ry is neither 0 or 1, a specification exception error is reflected.

Subcode X'OFFE' waits for a file being used by a system function. If,
however, the file is not available within the 250 millisecond time limit, a
condition code of 3, RC of 24 is returned. This condition indicates system
problems because of performance or errors in the spooling area.

Subcode X'OFFF' -- Retrieve Subsequent File Descriptor

Rx = virtual address of a 332-byte buffer
Ry = spool file ID number
Ry + 1 = flag, optional size of SFBLOK in doublewords, and function

subcode.

If Ry is nonzero, the spool input chain is searched for a file with a matching
ID number: If none is found or if one is found that is owned by a different
virtual machine (VM/SP only), CC = 2 is set. The chain search is continued
from the file that was found, or from the anchor if Ry is zero, for the next
file owned by the caller, independent of file type, class, etc. If none is
found, CC = 1 is set. If a file is found but it has the INUSE flag on, CC = 3
(RC = 12) is returned. Otherwise, the data2 is returned to the user's buffer.

As with subcode X'OFFE', subcode X'OFFF' also waits for a file being used
by a system function. If, however, the file is not available within the 250
millisecond time limit, a condition code of 3, RC of 24 is returned. This
condition indicates system problems because of performance or errors in the
spooling area.

Note: Data chaining may occur when 3800 load CCW's are present in a
spool file. If the data following a 3800 load CCW is more than 4080 bytes
long, that data cannot be contained in one DASD spool file buffer. Instead,
the CCW is data-chained to succeeding DASD buffers until all the data has
been entered into the spool file. If the file contains 3800 load CCW's, either
the SFBLDBEG or the SFBLDMID flags are set in the SFBLOK.

The amount of SFBLOK data returned is calculated as described under
subcode X'0004'. In addition, if bit zero of the subcode register (Ry + 1) is
on, 40 bytes of 3800 data is returned immediately following the SFBLOK
and preceding the TAG data. The data returned is described in the
SPLINK DSECT starting at label SPCHAR.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 19

IO~AGNOSE Codes

I Programming Information for Users of DIAGNOSE Code X'14'

To optimize storage and performance of spooled data transmitted between
VM and other systems, CP automatically:

• Truncates blanks from the end of each data line, and

• Merges carriage control CCW commands.

This processing can cause the loss of significant data.

The rest of this section explains how SPOOL File Compression support
corrects the problem of lost data. Programmers should find the information
useful if their applications require a complete record image (i.e., all trailing
blanks intact).

The DIAGNOSE code X'14' interface includes subcodes that allow an
application program to read the control blocks associated with a virtual
spool file:

SFBLOK
The Spool File Block retains all the information relating to a spool file.

SPLINK
The Spool Page Buffer Linkage Block resides in auxiliary storage and
contains one page (4096 bytes) of unit record spool information
consisting of data and all required CCW s.

Note: A detailed map of the SFBLOK and SPLINK fields is given in
VM/SP Data Areas and Control Block Logic Volume 1 (CP) and VM/SP
HPO Data Areas and Control Block Logic - CPo

Data records are stored in the spool buffer data area which begins at
X'10' displacement into the SPLINK. The format of the data records are as
follows:

• For a printer (PRT), punch (PUN), or console (CON) file created by a
virtual output device the spool buffer data area takes the form of a
"Virtual Channel Program." That is, it is formatted like a channel
program (containing CCWs interspersed with data), but every address is
specified as a relative displacement from the beginning of the closest
"data moving" CCW.

• For a reader (RDR) file created by a real card reader, the spool buffer
data area takes the form of a "Real Channel Program." In this case
each address is specified as a complete address, but since the address is
based on the 4K page of storage that was used at the time of creation, it
is not a reliable value for use by an application program.

20 VM System Facilities for Programming

[)~AGNOSIE Codes

Reading a Virtual Spool File

1. Read an SFBLOK (subcodes X'0004', X'OOOS', X'OFFE', or X'OFFF').
SFBTYPE can be used to determine whether the file was created by a
system reader or a virtual output device. SFBRECSZ contains the
logical record length for the file. If the SFBVLEN bit is on in
SFBFLAG4, the the files contains "Original Length" information for
each record.

2. Read a Spool Page Buffer (subcodes X'OOOO', X'OOlS', or X'0024').
SPRECNUM contains the number of data records in the buffer.

3. Start working at a displacement of SPSIZE into the buffer.

For a file created by a system reader:

a. Use a fixed displacement (SPSIZE = 96) to the beginning of each
entry.

b. The SO-byte data record is located 12 bytes into the entry.

c. SFBREONUM specifies the number of entries in the buffer.

For a file created by a virtual output device:

a. Immediate operations (e.g., Skip to Channell) take up S bytes.

b. Data movers (e.g., Write and Space 2) occupy a variable amount of
space depending on the length of the data and the type of operation:

ccw•.. 8 bytes
TIC CCW 4 bytes
Data Record variable
Original Length3 •••• 2 bytes
Backchain 2 bytes (PUNCH only)
Pad 0-7 bytes

Control Records do not contain an original length field. Only
Punch records reserve an additional 2 bytes to insure that a 4-byte
work area is available after the last byte of the data record. 4

3 The "Original Length" field is the length of the record presented to the
virtual machine's spooling device before the trailing blank suppression
algorithm.

4 An "Original Length" field is not included on files created in VM Release 4 or
earlier.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 21

1

1

1

"I

1

DIAGNOSE Codes

DIAGNOSE Code X'18' -- Standard DASD 1/0

All privilege classes (except ANY)

DIAGNOSE code X'18' allows a virtual machine to perform input/output
operations to a direct access device, of the type used by CMS. CP returns
no I/O interrupts to the virtual machine; the DIAGNOSE instruction
completes only when the READ or WRITE commands associated with the
DIAGNOSE completes.

Note: If you have VM/SP HPO, DIAGNOSE code X'18'. only supports CCW
read/write codes of X'05' and X'06'.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'18':

Rx
Contains the virtual device address of the direct access device.

Ry
Contains the address of a chain of CCWs.

RI5
Contains with the number of READs or WRITEs in the CCW chain. The
CCW chain must be in a standard format that CP expects when
DIAGNOSE code X'18' is used, as shown below.

Use: DIAGNOSE code X'18' checks that the byte count from the user's
read or write CCW does not exceed 4096 bytes. If the byte count exceeds
4096 bytes, CP flags it as an error. If the byte count is less than or equal to
4096 bytes, DIAGNOSE code X'18' makes an additional check for valid CMS
standard block-sizes. The standard CMS block-sizes are 512, 800, 1K, 2K, or
4K bytes. The latter check is necessary and only pertinent in the event
that the user's channel program is directed to a device that is capable of
executing extended count-key-data channel commands (for example, a 3380
attached to a 3880 Control Unit equipped with the Speed Matching Buffer
Feature).

CP converts user's channel programs to the extended count-key-data (CKD)
format when the channel programs:

• Are directed to a 3380 attached to a 3880 Control Unit equipped with
the Speed Matching Buffer (Feature #6550). (The Speed Matching
Buffer is not supported for 3380 Models AD4/BD4 or AE4/BE4.)

• Are directed to a 3375 attached to a 3880 Control Unit equipped with
the Speed Matching Buffer (Feature #6560).

For non-standard channel programs (more than one consecutive READ or
WRITE CCWs chained together), no extended CCW is transformed if this is
directed to a 3380 with the Speed Matching Buffer.

22 VM System Facilities for Programming

And when they:

• Contain READ or WRITE CCW's with valid CMS block-sizes.

• Contain no READs chained to READs or WRITEs which are,
themselves, chained to WRITEs.

An example of a channel program converted to an extended count-key-data
channel program is shown below.

DIAGNOSE code X'18' must not be used to read or write
record-overflow-formatted data.

A typical CCW string to read or write two 800-byte records is as follows:

SEEK,A,CC,6
SET SECTOR (not used for 2314/2319)
SRCH,A+2,CC,5
TIC,*-8,O,O
RD or WRT,DATA,CC+SILI,800
SEEK HEAD,B,CC,6 (omitted if HEAD number unchanged)
SET SECTOR
SRCH,B+2,CC,5
TIC,*-8,O,O
RD or WRT,DATA+800,SILI,800

A SEEK and SRCH arguments for first RD!WRT
B SEEK and SRCH arguments for second RD/WRT

If you are reading from or writing to either a 3380 or 3375 attached to a
3880 Control Unit equipped with the respective Speed Matching Buffer, the
above sample channel program would be converted to the following
extended count-key-data CCWs:

DEFINE EXTENT,C,CC,16
LOCATE RECORD,D,CC,16
RD OR WRT,DATA,CC+SILI,800
LOCATE RECORD,E,CC,16
RD OR WRT,DATA+800,SILI,800

C DEFINE EXTENT argument
D LOCATE RECORD argument for first RD/WRT
E LOCATE RECORD argument for second RD/WRT

Note: The second LOCATE RECORD CCW shown in this example is not
generated in all cases. That is, LOCATE RECORD CCWs, after the first
one, are generated only when one of the following is encountered:

• A READ is followed by a WRITE, or vice versa, with the normal SEEK,
SET SECTOR, SRCH in between them.

• The length of a READ or WRITE is not the same as the length of the
preceding READ or WRITE.

• The READ or WRITE that follows a previous READ or WRITE is not
for the next sequential record on the track.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 23

DIAGNOSE Codes

Condition and Return Codes: The codes returned are as follows:

CC = 0 I/O complete with no errors. R15 is set to o.

CC = 1 Error condition. Register 15 contains one of the following return
codes:

R15 Meaning
1 Device not attached
2 Device not 2319, 2314, 3330, 3340, 3350, 3375, or 3380
3 Attempt to write on a read-only disk
4 Cylinder number not in range of user's disk
5 Virtual device is busy or has an interrupt pending

CC = 2 Error condition. Register 15 contains one of the following return
codes:

R15 Meaning
5 Pointer to CCW string not doubleword-aligned.
6 SEEK/SEARCH arguments not within range of user's storage.
7 CCW is not a SEEK, SEEK HEAD, SET SECTOR, SEARCH

ID, TIC*-8, READ, or WRITE or an invalid CCW string was
submitted.

8 READ/WRITE byte count=O
9 READ/WRITE byte count greater than 4096

10 READ/WRITE buffer not within user's storage
11 The value in R15, at entry, was not a positive number from 1

through 15, or was not large enough for the given CCW
string.

12 Cylinder number on seek head was not the same number as
on the first seek.

CC = 3 Uncorrectable I/O error:

R15 Meaning
13 CSW (8 bytes) returned to user. Sense bytes are available if

the user issues a SENSE command.

Note: This code does not support fixed-block DASD devices. If a program
issues a DIAGNOSE code X'18' to a fixed-block DASD device, CP sets
CC = 1 and places a return code of 2 in register 15.

DIAGNOSE Code X'1C' -- Clear Error Recording Cylinders

Privilege class F

DIAGNOSE code X'lC' allows a user to clear the error recording data on
disk. The DMKIOEFM routine performs the clear operation.

24 VM System Facilities for Programming

c== __ . __________________________________ ~J

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'IC':

Rx
Contains a one-byte code value in the low-order byte as follows:

Code Function

X'OI' Clear and reformat all error recording, leaving any frame records
intact

X'02' Clear and reformat all error recording cylinders, erasing both
frame records and error records

DIAGNOSE Code X'20' -- General 1/0

All privilege classes (except ANY)

With DIAGNOSE code X'20', a virtual machine user can specify any valid
CCW chain to be performed on a tape, disk (including FBA) or unit record
device. (An exception: DIAGNOSE must not be used to read or write
record-overflow-formatted data on DASD devices.) No I/O interrupts are
reflected to the virtual machine; the DIAGNOSE instruction is completed
only when all I/O commands in the specified CCW chain are finished.

Notes:

1. Virtual spooled devices, such as, card readers and punches, are not
supported for this DIAGNOSE. That is, unless the virtual device is a
minidisk, a real device must be attached to the virtual machine.

2. If you have VM/SP HPO, DIAGNOSE code X'18' only supports CCW
read/write codes of X'OS' and X'06'.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'20':

Rx

Ry

Contains the virtual device address.

Contains the address of the CCW chain, and CP uses the high-order byte
of the register as a storage key for accessing the user's virtual storage.

The CCW s are processed via DMKCCWTR through DMKGIOEX, providing
full virtual I/O in a synchronous fashion (self-modifying CCW s are not
permitted, however) to any virtual machine specified. Control returns to
the virtual machine only after the operation is completed or a fatal error
condition is detected. EREP support is provided for tape and DASD devices
only; all other devices present an error condition in the PSW to the virtual

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 25

DIAGNOSE Codes

machine. Condition codes and return codes are returned to the virtual
system.

With VM/SP HPO, for virtual I/O to a 3880 Model 13 or Model 23 that is
not dedicated, the following CCW commands are valid if the virtual
machine is a cache owner:

• Set Subsystem Mode
• Sense Subsystem Status
• Sense Subsystem Counts.

If the virtual machine is not a cache owner, CP treats the above CCWs as
invalid.

Also, for the above CCW s, CP does not try to translate storage director data
(track addresses and device addresses) to or from virtual machine addresses.
For the storage director data to be meaningful to a virtual machine that
uses these CCWs, the virtual machine addresses must map to the real
device addresses. Virtual channel addresses need not map to real channel
addresses.

Set High Performance Limits is a 3880 Model 13-only command. If this
command is issued to a 3880 Model 13 or Model 23, CP treats it as an
invalid command.

Note: If multiple errors occur on error recovery during DIAGNOSE code
X'20', the CCW address in the CSW may be unpredictable.

Completion and Condition Codes: The condition codes and return codes
are as follows:

CC = 0 I/O completed with no errors

CC = 1 Error condition. Register 15 contains the following return codes:

R15 Meaning
1 Device is either not attached or the virtual channel is

dedicated, the device is virtual and not DASD (minidisk).
5 Virtual device is busy or has an interrupt pending.

CC = 2 Exception conditions. Register 15 contains one of the following
return codes:

R15 Meaning
2 Unit exception bit in device status byte = 1
3 Wrong length record detected.

26 VM System Facilities for Programming

,.

CC = 3 Error Condition:

Ry

R15 Meaning
13 A permanent I/O error occurred or an unsupported device was

specified. The user's Ry contains four sense bytes. Sense
bytes 2 and 3 are in the two leftmost positions in Ry; sense
byte 0 and 1 are in the two rightmost positions in Ry. For an
imprecise ending error condition, the CSW does not reflect the
failing CCW. In this case residual count is contained in sense
byte 3 providing for the calculation of the correct failing CCW.

Sense Byte
2

Sense Byte
3

Sense Byte
o

Sense Byte
1

DIAGNOSE Code X'24' -- Device Type and Features

All privilege classes (except ANY)

DIAGNOSE code X'24' requests CP to provide a virtual machine with
identifying information and status information about a specified virtual
device. The virtual machine must specify the virtual device for which
information is requested. CP returns information about the virtual device
and associated real device in Rx, Ry, and Ry + 1. CP also provides a
condition code identifying the specific device information returned to the
virtual machine.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'24':

Rx
Must contain the virtual device address for which information is
requested or the value negative 1 (-1). Specify -1 when the device is a
virtual console whose address is unknown to the virtual machine.

Exit Values: When CP returns control to the virtual machine, Ry, Ry+1,
and Rx contain device information. Ry contains information about the
virtual device and Ry + 1 contains information about the real device. If-I
was specified and CP located the virtual console, Rx contains the address of
the virtual console.

CP obtains device information from three control blocks: virtual device
information from the virtual device block (VDEVBLOK), and real device
information from the real device block (RDEVBLOK) and from NICBLOK.
The following diagrams identify specific information returned by CP and
show how to locate this information in the Rx, Ry, and Ry + 1 registers.
The symbolic names used in these diagrams are the symbolic names used
with VDEVBLOK, RDEVBLOK, and NICBLOK in VM/SP Data Areas and
Control Block Logic Volume 1 (CP) and VM/SP HPO Data Areas and

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 27

DIAGNOSE Codes

Control Block Logic - CPo For more device information, see
Appendix A, "CP Device Classes, Types, Models, and Features."

Note: For a DIAGNOSE code X'24' to an SNA device though VCNA or
VSCS, the model (RDEVMDL) information is correct; however, the
RDEVTYPE may not be reliable.

Rx

Byte 0 Byte 1 Byte 2 I Byte 3

RDEVTMCD virtual
-or- device

NICTMCD address

Symbolic Name Meaning
RDEVTMCD
- or -

NICTMCD

Ry

Byte 0

VDEVTYPC

Symbolic Name
VDEVTYPC
VDEVTYPE
VDEVSTAT
VDEVFLAG

Ry+l

Byte 0

RDEVTYPC

Terminal code bits defining the type of console and the
translate table the console is using. RDEVTMCD is for a
local virtual console; NICTMCD for a remote 3270 virtual
console.

Byte 1 Byte 2

VDEVTYPE VDEVSTAT

Meaning
Virtual device type class
Virtual device type
Virtual device status
Virtual device flags

Byte 1 Byte 2

RDEVTYPE RDEVMDL
- or - - or -

NICDTYPE NICMDL

Byte 3

VDEVFLAG

Byte 3

RDEVFTR
- or -

RDEVLLEN
- or -

NICLLEN

Symbolic Name Meaning
RDEVTYPC Real device type class
RDEVTYPE Real device type

28 VM System Facilities for Programming

RDEVMDL

RDEVFTR

RDEVLLEN
NICDTYPE
NICMDL

NICLLEN

Notes:

Real device model number. To determine if the speed
matching buffer for the 3380 or 3375 is present, check if
bits 0 and 1 are set on. For VM/SP HPO, the Speed
Matching Buffer is not supported for 3380 Models
AD4/BD4 or AE4/BE4.
Real device feature code for a device other than a virtual
console
Current device line length for a local virtual console
Real device type for a remote 3270 virtual console
Real device model number for a remote 3270 virtual
console
Current device line length for a remote virtual console

1. RDEVTYPE may not be reliable for SNA devices through VCNA or
VSCS.

2. Remote dialed terminals and remote dedicated printers appear to be local
devices as RDEVTYPC will contain the value CLASGRAF.

3. Also note that a remote dialed 3275 appears as a local 3277 and a remote
dialed 3276 appears as a local 3278.

4. Remote dedicated printers internally carry a virtual device class and type
of CLASGRAF and TYP3277 to follow code for remote dialed terminals.
DIAGNOSE code X'24' returns VDEVTYPC = CLASGRAF and
VDEVTYPE = TYP3284 for remote dedicated printers.

Condition Codes: The condition codes CP can return for DIAGNOSE code
X'24' are listed below. Please note that Rx contains information only when
DIAGNOSE code X'24' specifies a virtual console whose address is
unknown. And if Ry is register 15, CP returns only virtual device
information; no information is returned in Ry + 1.

Condition
Code Meaning

o Normal completion. Data is returned in Rx, Ry, and Ry+ 1.

1 Undefined.

2 The virtual device exists but is not associated with a real
device. Data is returned in Rx and Ry.

3 An invalid address is specified, or the virtual device does not
exist.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 29

D~AGNOSIE Codes

DIAGNOSE Code X'28' -- Channel Program Modification

All privilege classes (except ANY)

DIAGNOSE code X'28' allows a virtual machine to correctly execute some
channel programs modified after the Start I/O (SIO) instruction is issued
and before the input/output operation is completed. The channel command
word (CCW) modifications allowed are:

• A Transfer in Channel (TIC) CCW modified to a No Operation (NOP)
CCW

• A TIC CCW modified to point to a new list of CCWs

• A NOP modified to a TIC CCW.

When a virtual machine modifies a TIC CCW, it is modifying a virtual
channel program. CP has already translated that channel program and is
waiting to execute the real CCW s. The DIAGNOSE instruction, with
DIAGNOSE code X'28', must be issued to inform CP of the change in the
virtual channel program, so that CP can make the corresponding change to
the real CCW before it is executed. In addition, when a NOP CCW is
modified to point to a new list of CCW s, CP translates the new CCW s.

To be sure that the DIAGNOSE instruction is recognized in time to update
the real CCW chain, the virtual machine issuing the DIAGNOSE
instruction should have a high favored execution value and a low
dispatching priority value. The CP SET command should be issued:

SET FAVORED xx

SET PRIORITY nn

where xx has a high numeric value and nn has a low numeric value. The
virtual machine issuing DIAGNOSE code X'28' must be in the supervisor
mode at the time it issues the DIAGNOSE instruction.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'28':

Rx

Ry

Contains the address of the TIC or NOP CCW that was modified by the
virtual machine.

Contains the device address in bits 16 through 31.

Rx and Ry cannot be the same register. The addresses specified in Rx, the
new address in the modified TIC CCW, and the new CCW list to which the
modified TIC CCW points must all be addresses that appear real to the
virtual machine: CP knows these addresses are virtual, but the virtual
machine thinks they are real.

30 VM System Facilities for Programming

Condition and Return Codes: The condition codes (CC) and return codes
are as follows:

CC = 0 The real channel program was successfully modified; register 15
contains a zero.

CC = 1 The channel program was not modified. There was probably an
error in coding the DIAGNOSE instruction. Register 15 (R15)
contains one of the following return codes:

R15 Meaning
1 The same register was specified for Rx and Ry.
2 The device specified by Ry was not found.
3 The address specified by Rx was not within the user's storage

space.
4 The address specified by Rx was not double word aligned.
5 A CCW string corresponding to the device (Ry) and address

(Rx) specified was not found.
6 The CCW at the address specified by Rx is not a TIC nor a

NOP, or the CCW in the channel program is not a TIC nor a
NOP.

7 The new address in the modified TIC CCW is not within the
user's storage space.

S The new address in the modified TIC CCW is not doubleword
aligned.

11 The new virtual CCW is a NOP, but the corresponding real
CCW is a TIC with command chaining and is at the end of the
real channel program.

CC = 2 The real channel program cannot be modified because of the state of
the system or the device. A channel end or device end has already
occurred. Register 15 (R15) contains the following:

R15 Meaning
9 The virtual machine should restart the modified channel

program.

DIAGNOSE Code X'2C' -- Return DASD Start of LOGREC

Privilege class C, E, or F

DIAGNOSE code X'2C' allows a user to find the location on the disk of the
error recording area, the number of error recording cylinders, and the
location of the first error record.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'2C':

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 31

IO~AGINIOSlE Codes

Rx
Contains a one-byte code in the low-order byte, indicating the function
to be performed:

Code

X'OI'

X'02'

X'04'

Function

Return the DASD location of the start of the error recording
area, and the number of error recording cylinders.

Return the HDRSTART value (DASD location of first error
record).

Return indication of whether there are frame records on the
error recording cylinders.

Exit Values: On return to the issuer of DIAGNOSE code X'2C' the
registers contain the following:

If code X'OI' is specified: Rx contains the DASD location (in VM control
program internal format) of the start of the error recording area. Ry
contains, in the low-order halfword, the number of error recording
cylinders.

If code X'02' is specified: Rx contains the DASD location of the first error
record (in CCPD format). The value actually points to the last frame record /
written, or record 2 if no frame records present.

If code X'04' is specified: Ry contains a X'20' in the low-order byte if frame
records are present on the error recording cylinders; X'OO' if no frame
records present.

Note: Codes X'02' and X'04' may both be specified (code X'06') on invoking
DIAGNOSE. Both an Rx and Ry value must be specified.

DIAGNOSE Code X'30' -- Read One Page of LOGREC Data

Privilege class C, E, or F

DIAGNOSE code X'30' allows a user to read one page of the system error
recording area.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'30':

Rx
Contains the DASD location (in CP internal format) of the desired
record.

32 VM System Facilities for Programming

ID~AGNOSrE Codes

Ry
Contains the virtual address of a page-size buffer to receive the data.
The DMKRPAGT routine supplies the page of data.

Condition Codes: The condition codes returned are:

Condition
Code

o
1
2
3

Meaning
Successful read, data available
End of. cylinder, no data
I/O error
Invalid location, outside recording area

Note: Issuing DIAGNOSE code X'30' against a locked page unlocks the
page.

DIAGNOSE Code X'34' -- Read System Dump Spool File

Pri vilege class C or E

A user can read the system dump spool file by issuing a DIAGNOSE code
X'34' instruction. However, this DIAGNOSE code cannot read spool files
that contain VMDUMP records -- use DIAGNOSE code X'14' for this
purpose. If a program tries to use DIAGNOSE code X'34' to read VMDUMP
records, CP returns a condition code of 2.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'34':

Rx
Contains the virtual address of a page-size buffer to receive the data.

Ry
Which must not be register 15, contains the virtual address of the spool
input card reader.

Condition Codes: Ry + 1, on return, may contain error codes as follows:

Condition
Code
o
1
2
3
3
3
3

Ry+l
Error Code

4
8

12
16

Meaning
Data transfer successful
End of file
File not found
Device address invalid
Device type invalid
Device busy
Fatal paging I/O error

The DMKDRDMP routine searches the system chain of spool input files for
the dump file belonging to the user issuing the DIAGNOSE instruction.
The first (or next) record from the dump file is provided to the virtual

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 33

IO~AG~OSIE Codes

machine via DMKRP AGT and the condition code is set to zero. The dump
file is closed via VM console function CLOSE.

Note: Issuing DIAGNOSE code X'34' against a locked page unlocks the
page.

DIAGNOSE Code X'38' -- Read System Symbol Table

Privilege class C or E

DIAGNOSE code X'38' causes the routine DMKDRDSY to read the system
symbol table into storage.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'38':

Rx
Contains the address of the page buffer to contain the symbol table.

Condition Codes: When complete, Ry, which must not be register 15,
contains a condition code. On return, Ry + 1 may contain an error code.

Condition Ry + 1
Code Error Code
o

1
3
3 16

Notes:

Meaning
Full page of data available to virtual
machine
No symbol table is available
Page buffer is locked for an I/O operation
Fatal paging I/O error

1. The format of the symbol table entries is described in CP macro SYM.

2. Issuing DIAGNOSE code X'38' against a locked page unlocks the page.

DIAGNOSE Code X'3C' -- Update the VM Directory

Privilege class A, B, or C

DIAGNOSE code X'3C' lets a user dynamically update the VM directory.
The routine DMKUDRDS dynamically updates the directory.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'3C':

Rx
Contains the first 4 bytes of the volume identification.

34 VM System Facilities for Programming

[j)~AGNOSlE Codes

Ry
Contains the last 2 bytes of the volume identification in its first 2 bytes.
The last 2 bytes of Ry contain the volume address.

Condition Codes: The PSW condition code is set depending on the success
of the operation or the meaning of the condition code. The condition codes
are set as follows:

Condition
Code
o
2

3

Meaning
Operation is successful.
Volume not found, not mounted, or not a valid
directory volume.
Fatal I/O error trying to read the directory

DIAGNOSE Code X'40' -- Clean-Up after Virtual IPL by Device

All privilege classes (except ANY)

DIAGNOSE code X' 40' is valid only during virtual IPL. Clean-up restores
the user's page and frees the real page if it is not in the V = R machine. If
the real page is in the V = R machine, the real page is not freed. The PSW
from location zero of the virtual machine is loaded and made the current
PSW.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X' 40':

Rx
Must contain a zero.

Ry
Must point to the virtual machine registers to be loaded.

Use: DIAGNOSE X' 40' is used in DMKVMI to clean up after a virtual IPL.

Program Exceptions: If DIAGNOSE code X'40' is specified incorrectly,
the following exception is generated:

Specification
If the DIAGNOSE is issued outside of its use in DMKVMI.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 35

DIAGNOSE Codes

DIAGNOSE Code X'48' -- Issue SVC 76 from a Second Level VM/370
or VM Virtual Machine

All privilege classes (except ANY)

A second level VM/370, VM/SP, or VM/SP HPO operating system issues
SVC 76 using this DIAGNOSE. SVC 76 handles I/O error recording for
virtual operating systems. For instance, a virtual machine issues SVC 76 to
record data about hardware errors that occur on devices dedicated to it.

Note: If you have VM/SP HPO, DIAGNOSE code X' 48' is supported by a
preferred machine assist guest with the control switch assist active.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X' 48':

Rx
Is Rl, which must contain either of two values

X'04' indicates an SVC 76 request from a virtual machine
X'08' indicates that a virtual machine issued DIAGNOSE code X'48'.

Ry
Is not used in this DIAGNOSE.

Use: CP checks first for the X'04' value. If it is present, CP sets
VMSPMFLG in the virtual machine's VMBLOK to X'04' and processes the
SVC 76 request on behalf of the virtual machine.

If Rl contains a X'08' value, CP setsVMSPMFLG in the virtual machine's
VMBLOK to X'08'. It then reflects the SVC 76 back to the virtual machine.
The virtual machine then handles its own error recording.

For more information on SVC 76 and I/O error recording procedures, refer
to VM/SP OLTSEP and Error Recording Guide.

DIAGNOSE Code X'4C' -- Generate Accounting Records for the
Virtual User

All privilege classes (except ANY)

DIAGNOSE code X'4C' can be issued only by a user with the account
option (ACCT) in his directory.

Note: If you have VM/SP HPO, DIAGNOSE code X'4C' is supported by a
preferred machine assist guest with the control switch assist active.

36 VM System Facilities for Programming

DIAGNOSE Codes

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X' 4C':

Rx

Ry

Contains the virtual address of either a 24-byte parameter list
identifying the "charge to" user, or a variable length data area that is to
be stored in the accounting record. The interpretation of the address is
based on a hexadecimal subcode supplied in Ry. If the virtual address
represents a parameter list, it must be doubleword aligned; if it
represents a data area, the area must not cross a page boundary. If Rx
is interpreted as pointing to a parameter list and the value in Rx is zero,
the accounting record is spooled with the identification of the user
issuing the DIAGNOSE instruction.

Contains a hexadecimal subcode interpreted by DIAGNOSE code X' 4C'
as follows:

Sub code Rx points to:

0000 A parameter list containing only a userid.

0004 A parameter list containing a userid and account number.

0008 A parameter list containing a userid and distribution number.

OOOC A parameter list containing a userid, account number, and
distribution number.

0010 A data area containing up to 70 bytes of user information to
be transferred to the accounting card starting in column 9.

Ry+l
Contains the length of the data area pointed to by Rx. If Rx points to a
parameter list (Ry not equal to X'0010'), Ry + 1 is ignored.

DIAGNOSE code X'4C' checks the VMACCOUN flag in VMPSTAT to
verify that the user has the account option and if not, returns control to the
user without generating an accounting record.

Subcode X'OOOO' -- Subcode X'OOOC'

DIAGNOSE code X' 4C' verifies that the user has the account option, and if
not, returns control to the user. If the user has the ACCT option specified,
control is passed to DMKCPV to generate the record. DMKCPV passes
control to DMKACO to complete the "charge to" information; either from
the User Accounting Block (ACCTBLOK), if a pointer to it exists, or from
the user's VMBLOK. DMKCPV passes control back to DIAGNOSE code
X' 4C' to release the storage for the ACCTBLOK, if one exists. DIAGNOSE
code X' 4C' then checks the parameter list address. If the parameter list
address is zero, control is returned to the user with a condition code of zero.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 37

DIAGNOSE Codes

Subcode X'0010'

Program Exceptions: If DIAGNOSE code X' 4C' is specified incorrectly,
the following exceptions are generated:

Addressing
If an invalid parameter list address is specified.

Specifica tion
If the parameter list address is not aligned on a doubleword boundary.

If both the virtual address and the length are valid, DMKFREE is called to
obtain storage for an account buffer (ACNTBLOK) which is then initialized
to blanks. The userid of the user issuing the DIAGNOSE instruction is
placed in columns I through 8 and an accounting record identification code
of "CO" is placed in columns 79 and 80. The user data pointed to by the
address in Rx is moved to the accounting record starting at column 9 for a
length equal to the value in Ry + 1. A call to DMKACOQU collects the
accounting records on the system accounting chain (DMKRSP AC) and puts
them in spool format. DIAGNOSE code X'4C' then returns control to the
user with a condition code of zero.

Program Exceptions: If Ry contains a subcode of X'OOIO', and
DIAGNOSE code X' 4C' is specified incorrectly, the following exceptions are
generated:

Addressing
If the address specified in Rx is negative or greater than the size of the
user's virtual storage.

Specification
If the combination of the address in Rx and the length in Ry + I
indicates that the data area crosses a page boundary.

If the value in Ry + I is zero, negative, or greater than 70.

Notes:

1. For subcode X'OOl(J, the only valid accounting record identification code
(ACNTCODE field of the ACNTBLOK) is "CO". For the other four
subcodes listed above, the accounting record identification code can be
"C1", "C2", etc. For more information on accounting record identification
codes, see VM/SP Data Areas and Control Block Logic Volume 1 (CP) or
VM/SP HPO Data Areas and Control Block Logic - CPo

2. If Ry contains subcode X'OOl(J, Ry cannot be register 15.

38 VM System Facilities for Programming

lD~AGNOSlE Codes

Condition Codes: The condition codes returned are as follows:

Condition
Codes Meaning

CC = 0 Both userid and function hexadecimal subcode are valid and an
accounting record is generated. If subcodes X'OOOO' through
X'OOOC' have been specified, the User Accounting Block
(ACCTBLOK) is built and the userid, account number, and
distribution number are moved to the block from the parameter
list or the User Machine Block belonging to the userid in the
parameter list.

CC = 1 The ACCT option is not set in the directory entry. The user is
not authorized to issue this DIAGNOSE.

CC = 2 (Applies only to subcodes X'OOOO' thro'ugh X'OOOC'). The userid
provided in the parameter list is not found when checked against
the directory list. The parameter list address must be nonzero
and valid. No ACCTBLOK is built.

CC = 3 (Applies only to subcodes X'OOOO' through X'OOOC'). The function
hexadecimal subcode is invalid or an error occurs getting the
user machine block (UMACBLOK). No ACCTBLOK is built.

DIAGNOSE Code X'50' -- Save the 370X Control Program Image

Privilege class A, B, or C

This section applies only to EP (Emulator Program) generations as defined,
created, and loaded by VM.

DIAGNOSE code X'50' invokes the CP module DMKSNC to validate the
parameter list and write the page-format image of the 370X control program
to the appropriate system volume.

When a 370X control program load module is created, the CMS service
program SA VENCP builds a communications controller list (CCP ARM) of
control information. It passes this information to CP via a DIAGNOSE
code X'50'.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'50':

Rx
Contains the virtual address of the parameter list (CCP ARM).

Ry
Is ignored on entry.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 39

DIAGNOSE Codes

Exit Values: Upon return, Ry contains the following error codes:

Code
044
171
178

179
435

Meaning
'ncpname' was not found in system name table.
System volume specified not currently available.
Insufficient space reserved for program and system control
information.
System volume specified is not a CP-owned volume.
Paging error while writing saved system.

DIAGNOSE Code X'54' -- Control The Function of the PA2 Function
Key

All privilege classes (except ANY)

DIAGNOSE code X'54' controls the function of the P A2 function key. The
P A2 function key can be .used either to simulate an external interrupt to a
virtual machine or to clear the output area of a display screen.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'54'.

Rx
Determines the function of the PA2 key. If Rx contains a nonzero value,
the P A2 key simulates an external interrupt to the virtual machine.

If Rx contains a value of zero, the P A2 key clears the output area of the
display screen.

The external interrupt is simulated only when the display screen is in the
VM READ, HOLD, or MORE status and the TERMINAL APL ON
command has been issued.

DIAGNOSE Code X'58' -- 3270 Virtual Console Interface

All privilege classes (except ANY)

DIAGNOSE code X'58' enables a virtual machine to communicate with 3270
display stations. Using DIAGNOSE code X'58', a virtual machine may:

• Display up to a full screen of data using only one write operation.

• Provide attribute characters along with data that is sent to the display
station. An attribute character provides control information for the
data, for example, a request to intensify the data when it is displayed.

• Place a 3270 display station under control of the virtual machine (full
screen mode).

40 VM System Facilities for Programming

Displaying Data

DIAGNOSE Codes

Note: If you want to run multiple applications in a virtual machine, use
the CMS CONSOLE I/O macro. CONSOLE, a CMS interface to fullscreen
I/O, provides improved usability for 3270 applications. Refer to the VM/ SP
CMS Macros and Functions Reference for the macro format for CONSOLE.
VM/ SP CMS for System Programming contains details for using
CONSOLE.

Entry Values: When a virtual machine issues DIAGNOSE code X'58', the
virtual machine must provide one or more channel command words (CCWs).
These CCW s specify the 3270 operation to be performed, provide control
information for the display station, and specify the address of data to be
displayed during a write operation or the address of a buffer where data is
to be stored during a read operation.

Set up the input registers as follows when invoking DIAGNOSE code X'58':

Rx

Ry

Must contain the CCW address, if only one CCW is used.

If CCWs are chained, Rx must contain the address of the first CCW in
the chain.

Must contain the virtual address of the virtual console where the
operation is to be performed. This value must be right-justified.

To display up to a full screen of data, code a CCW using the following
assembler language instructions:

DS OD
DC ALl (CCWCODE) ,AL3(DATADDR),AL1(FLAGS) ,AL1(CTL) ,AL2(COUNT)

where:

CCWCODE is the command code X'19'.

DAT AD DR is the virtual storage address of the first byte of data to be
displayed.

FLAGS

CTL

are standard CCW flags. The suppress-incorrect-Iength
indicator, bit 34, must be set to a value of one. Set other bits
as needed.

is a control byte defined as follows:

The high-order bit (0), if set on, enables the screen "MORE"
status to be active before the displaying of data.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 41

DIAGNOSE Codes

COUNT

." t; r' , .r' • r~ , • ! If

Bits 2-7 identify the line on the display screen where the
display is to start. A value of 0 (B'xxOO 0000') corresponds
to the first or top line, a value of 1 (B'xxOO 0001')
corresponds to the second line and so forth.

If the control byte contains the value X'FF', CP erases the
display station's screen. No new data is displayed.

CCW's may be command chained to combine several
operations in one DIAGNOSE. When CP builds the real
CCW string, it will data chain as many CCW's as possible
to reduce the number of real I/O operations. If the control
byte contains a value of X'FE', CP will:

Not data chain this operation to any previous CCW in
the real CCW string.

Erase the entire screen.

Rewrite the attribute bytes for the CP screen format.

Reset the cursor to the beginning of the input area.

specifies the number of bytes of data to be displayed. The
maximum amount of data that can be displayed at one time
depends upon the 3270 model of the display station:

A model 2 can display up to 1760 bytes
A model 3 can display up to 2400 bytes
A model 4 can display up to 3280 bytes
A model 5 can display up to 3300 bytes

.)

To provide attribute characters for the data, place the attribute character
in the data stream immediately following a 3270 start-field order. The
start-field order, a one-byte value, notifies the 3270 display system that the
next byte in the data stream is an attribute character. For a description of
how the 3270 display system uses attribute characters, and to determine the
values to specify for attribute characters and the start-field order, see the
IBM 3270 Information Display System Library User's Guide.

Note: Through the use of the attribute character, it is possible to define a
display field as selector-pen detectable. However, when the selector pen is
used to select the field, CP does not return data from the field to the virtual
machine.

Condition Codes: After processing DIAGNOSE code X'58', CP sets a
condition code. If the operation was successful - that is, no I/O errors
occurred - CP sets a condition code of zero. If an I/O error occurred, CP
sets a condition code of one.

If an I/O error occurred, the application program can check the I/O status
and the error type by:

42 VM System Facilities for Programming

/

Full Screen Mode

DIAGNOSE Codes

• Issuing a TEST I/O (TIO) instruction
• Examining the returned condition code
• Examining the virtual CSW

The returned condition codes and CSW status are the standard condition
codes and status defined in the IBM System/370 Principles of Operation.

You must also make sure that the interrupt for the virtual device is enabled
by setting the appropriate bit and channel mask in the PSW. For example,
if the virtual address of your console is 009, bit 0 in the channel mask must
be set to one (that is, bit 0 must be on). This may be the case if you are
loading programs in the transient area.

DIAGNOSE code X'58' provides a means by which a virtual machine may
share, with CP, control of a 3270 display station. Three CCW operations,
X'29', X'2A', and X'49', in addition to performing the requested I/O, notify
CP that the display station is operating under the control of the virtual
machine.

CCW code X'29' performs a WRITE, ERASE/WRITE, ERASE/WRITE
ALTERNATE, or WRITE STRUCTURED FIELD operation, depending on
the value of the control field. For the WRITE, ERASE/WRITE, and
ERASE/WRITE ALTERNATE, the virtual machine must provide
appropriate control information beginning with the Write Control
Character (WCC) and including 3270 orders following the WCC. Data may
be written anywhere on the screen. The virtual machine must provide the
address where the write is to begin; it uses a SET BUFFER ADDRESS
(SBA) order to do this. Writing can also start at the current cursor
address.

CCW code X'29' performs a WRITE STRUCTURED FIELD operation when
the value of the control field is X'20'. The WRITE STRUCTURED FIELD
instruction sends control information to a 3274 controller. The application
program must provide the control information in the data stream in the
format required by the instruction. (See the 3270 Component Description for
more information on WRITE STRUCTURED FIELD operation.)

CCW code X'2A' performs a READ BUFFER or a READ MODIFIED
operation, depending on the value of the control field.

When the virtual machine issues CCW code X'49', CP treats the channel
program as a normal 3215 channel program, with the following exceptions:

• The data stream is processed as if TERMINAL LINE SIZE OFF has has
been issued. That is, the data stream will be broken up only when a
X'15' is encountered in the data stream.

• Each time a X'15' is encountered CP counts exactly one line.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 43

DIAGNOSE Codes
·,\·.·, . .t. .. : .. tt..J 4'p "~

• CP will not translate any code point from X'40' to X'FE', inclusive. CP
also will not translate code points X'OE' and X'OF'.

CCW code X' 49' is invoked the same as CCW code X'29' except that both
the CCW s and data stream should be for a 3215 instead of a 3270.

Before issuing DIAGNOSE code X'58' code X' 49', issue DIAGNOSE code
X'8C' to determine the width of the screen. Then, use this information to
determine the number of character positions that can be taken up between
X'15's. The width of the screen minus 2 should be the maximum for that
number. If this restriction is not observed, CP will not be able to manage
the screen correctly.

To specify the full screen mode CCW, use the following assembler language
instructions:

DS OD
DC ALI (CCWCODE) ,AL3(DATADDR) ,ALl(FLAGS) ,ALI (CONTROL) ,AL2(COUNT)

where:

CCWCODE is a CCW code (X'29' or X'2A')

DATADDR for a write operation, specifies the first byte of the data stream
(WCC) to be written. For a read operation, specifies the
address of the read buffer.

FLAGS is the standard CCW flag field.

CONTROL for a write operation (CCW code of X'29') the following control
field values cause the following operations to be performed:

Value
X'80'
X'CO'
X'40'
X'20'
all other
values

Operation Performed
ERASE/WRITE
ERASE/WRITE ALTERNATE
ERASE/WRITE ALTERNATE
WRITE STRUCTURED FIELD
WRITE

For a read operation (CCW code of X'2A') the following control
field values cause the following operations to be performed:

Value
X'80'
all other
values

Operation Performed
READ MODIFIED
READ BUFFER

By adding X'10' to the CONTROL field values for
ERASE/WRITE or ERASE/WRITE ALTERNATE, making
them X'90' or X'DO' respectively, the P Al key interrupt is
reflected to the virtual machine. This replaces the normal P Al
key function of returning the virtual machine to CP mode, and
allows a virtual machine to have full control of the keyboard.

44 VM System Facilities for Programming

Valid Channel Programs

Full Screen Interactions

COUNT

DIAGNOSE Codes

Normal PAl key function is restored when full screen mode is
reset.

The control field has no meaning for CCW code X'49'.

for a write operation, specifies the number of bytes to be
displayed plus the number of bytes of control information. For
a read operation, specifies the number of display characters to
be read plus the number of bytes of control information. The
maximum number of bytes that can be specified is 65503. The
maximum number of displayable positions for the supported
devices is:

3277 and 3275 Model 2 - 1920 bytes
3278, 3276 and 3279 Model 2 - 1920 bytes
3278, 3276 and 3279 Model 3 - 2560 bytes
3278 and 3276 Model 4 ~ 3440 bytes
3278 Model 5 - 3564 bytes
3290 - 9920 bytes

The channel program that is the input to DIAGNOSE code X'58' can be
composed of both full screen diagnose channel commands (X'29', X'2A') and
3215 channel commands. The channel program must follow these rules:

1. The first CCW must be a full screen operation.

2. Subsequent CCW s in the channel program can be either full screen
operations, 3215 operations, TRANSFER IN CHANNELs or NO-OPs.

3. Command chaining is allowed except when a CCW is chained from a
WRITE STRUCTURED FIELD CCW.

4. The total buffer length for data chained CCW s is 65,504 bytes.

5. A 3215 operation within a channel program resets full screen mode.
The next full screen operation must be an ERASE/WRITE operation.

6. WRITE STRUCTURED FIELD operations are rejected if the display
does not support extended data characteristics.

The virtual machine console exists in either of two modes, CP mode and full
screen mode. CP mode is the default screen mode and is indicated by the
screen status field in the lower right-hand corner of the screen. When in
CP mode, the screen format is controlled by CP, and the data that appears
on the screen is provided by CP and the programs running in the virtual
machine. Full screen mode is initiated by the application program running
in the virtual machine. When in full screen mode, the screen format and
data are under complete control of the program running in the virtual
machine.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 45

DIAGNOSE Codes

If TERMINAL BREAKIN GUESTCTL is specified, the screen mode changes
only when the break-in key is used. An audible alarm is sounded when CP
messages are queued. Priority CP messages and DIAGNOSE code X'08'
output take over the full screen.

CP mode is terminated and full screen mode is initiated when the
application program issues an ERASE/WRITE instruction. Full screen
mode may be terminated by a CP mode type I/O to the screen any time the
keyboard is in a locked state.

Interactions between CP and the application program in the virtual
machine using full screen support are listed below. The application
programmer must be familiar with the operation of the IBM 3270 display
station. For detailed information on its operation, see the appropriate 3270
Information Display System Description and Programmer's Guide listed in
the Bibliography. Also listed below are general programming
considerations that must be followed to effectively use the DIAGNOSE code
X'58' instruction for full screen I/O.

1. A full screen ERASE/WRITE or ERASE/WRITE ALTERNATE
operation establishes full screen mode.

2. The application program is responsible for all I/O status and error
checking, just as if START I/O (SIO) were being used instead of
DIAGNOSE. This is done by using the TEST I/O (TIO) instruction and
examining the returned condition code, and by examining the virtual
CSW. The returned condition codes and CSW status are the standard
condition codes and status as defined in the IBM System/370 Principles
of Operation, with one exception noted below in number 5.

3. When in full screen mode, all CP messages are queued. The entire
queue of CP messages is processed after each of the following
operations:

a. A full screen READ operation (any READ operation that locks the
keyboard).

b. A full screen WRITE operation that does not place the keyboard in
the active status.

c. The expiration of a 60-second timer for CP priority messages.

4. If a priority CP message (such as a warning message from the system
operator) is to be displayed while in full screen mode, an attention
interruption is posted to the application program and a 60-second timer
is set. This informs the application program that a READ operation
should be initiated. If a READ is not issued before the 60 seconds have
expired, CP erases the screen and displays all queued messages.

The only exception is if the application program has issued a Full
Screen Support WRITE STRUCTURED FIELD instruction. CP does
not take over the screen if the user has issued a WRITE STRUCTURED

46 VM System Facilities for Programming

DIAGNOSE Codes

FIELD. This exception does not apply to terminals controlled by
VM/VTAM.

5. When a mode switch has occurred and the screen is in CP mode, the
application program is notified by an X'BE' in the CSW unit status byte
following a full screen I/O operation. An ERASE/WRITE or
ERASE/WRITE ALTERNATE instruction should be issued to
reestablish full screen mode and reformat the screen. If control of the
PAl key interrupt had been transferred to the virtual machine via the
CONTROL option, it must be specified again to return PAl key control
back to the virtual machine. Otherwise, pressing the PAl key places
the display in CP mode.

An X'BE' in the CSW unit status byte following an ERASE/WRITE or
ERASE/WRITE ALTERNATE instruction indicates that non-full screen
data (CP mode) is waiting to be read. The application program should
issue a non-full screen READ and then reissue the ERASE/WRITE
instruction.

6. Other non-full screen virtual machine messages are displayed
immediately when in full screen mode.

7. The application program must establish an environment to handle
attention interruptions. This could be done using the CMS macros
HNDINT and W AITD. There are two conditions when CP posts an
attention interruption to the application program:

a. When CP receives an attention interruption indicating that the
virtual machine console operator has caused an interruption. (For
example, the operator pressed ENTER or a PF key on the display
keyboard).

b. When a CP priority message is to be displayed.

In either case, the application program should respond by issuing a
READ.

B. The application program must also establish an environment to handle
I/O interruptions and must ensure that channel end and device end
have been received before processing continues.

9. If the test request key is depressed from a local 3270 when in full screen
mode, X'604040' is returned to the application program in the read
buffer. The test request key is not supported for remote 3270 terminals.

10. If you press the PAl key in full screen mode, CP posts an attention
interrupt to your virtual machine. If the virtual machine does not
respond with a READ and you press the PAl key a second time, your
virtual machine is put in CP mode and "CP READ" is displayed in the
screen's status area. However, if you set bit X'lO' of the CONTROL
option on before the initial ERASE/WRITE or ERASE/WRITE
ALTERNATE, and press the PAl key, the interrupt is reflected to your
virtual machine for handling. If you have not set bit X'lO' of the

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 47

DIAGNOSE Codes
gUSk!

CONTROL option on and you press the PAl key, your virtual machine
is put in CP mode and "CP READ" is displayed in the screen's status
area.

11. The application programmer must be aware that long data streams may
result in very high CP storage use and possible system degradation. In
addition, long data streams sent over BSC lines may cause degradation
of response time on other terminals on the same BSC line.

Full Screen Interactions (3270 SIO)

Full screen console (3270 SIO) support enables a guest virtual machine and
CP to share a locally attached display terminal controlled by CPo The
virtual machine can use the display terminal as a graphics device in full
screen mode; CP can use the same terminal as a line device. When the
terminal is in full screen mode, the screen format, data checking, and error
checking are under the complete control of the application program
running in the virtual machine. A guest virtual machine can use either
DIAGNOSE code X'58' or the SIO instruction to initiate full screen mode,
but not both.

Before the guest virtual machine can issue 3270 SIO commands, it must first
issue the CP TERMINAL command with the CONMODE 3270 option to be
able to issue 3270 SIO commands. In addition, the SCRNSA VE ON option
of the CP TERMINAL command gives a virtual machine (that has also
specified CONMODE 3270) the ability to save the full screen display when
the screen enters CP mode. If SCRNSA VE ON is specified, the screen is
automatically displayed again when the console returns to full screen mode.
If SCRNSA VE OFF has been specified by a virtual machine that has
specified CONMODE 3270 and CP takes over a screen, CP presents a
CLEAR attention interrupt to the virtual machine when CP is ready to give
up control of the screen. It is the responsibility of the application program
to issue an ERASE/WRITE to refresh the screen. If the virtual machine
issues only a WRITE that does not cover the entire screen; information that
CP displayed can remain on the screen. To use the CP TERMINAL
SCRNSA VE OFF:

1. Always issue a WRITE after a READ.

2. CP can break into a CCW chain containing WRITEs (with the WCC
byte making the keyboard locked) and take over the screen. Upon
return to full screen mode, the next CCW in the chain is processed as if
it is the first CCW. The guest system must provide a means to handle
this situation.

3. Refresh the screen with an ERASE/WRITE when CP issues a CLEAR
attention interrupt.

4. When ATTENTION from the console is received, the guest program
must issue a READ.

48 VM System Facilities for Programming

DIAGNOSE Codes

The TERMINAL BREAKIN GUESTCTL option allows a guest operator
to control break-ins (when CP takes over the full screen). Each time a
CP request is received, it is put on a defer queue and an audible alarm
sounds. The guest operator can switch to CP mode by hitting the
break-in key.

The TERMINAL BRKKEY option allows the user to specify a PF key
as the break-in key in full screen mode. The default break-in key is
PAL PAl attentions are sent to the virtual machine when PAl is not
defined as the BRKKEY. Some applications may interpret this PAl
attention as a user request to enter the CP environment. TERMINAL
BRKKEY NONE disables the break-in key. Local 3270 terminal users
can set the break-in key to PAl, any PF key, or to NONE. Remote and
VM/VTAM terminal users can set the break-in key to PAl or NONE.

Notes:

1. DIAGNOSE code X'58' may be issued from the CONSOLE service. The
CONSOLE macro accesses CMS full-screen console services and performs
3270 I/O operations.

2. DIAGNOSE code X'58' is a 3215 command and causes command rejects if
executed with CON MODE 3270.

3. When invoking CCW code X'49' both APL and TEXT must be off.
Having either APL or TEXT on causes command rejects.

4. Issuing CCW code X'49' from a device other than a 3270 causes command
rejects.

5. DIAGNOSE code X'58' can be used with BREAKIN and BRKKEY.

6. CONMODE must be 3215 to run CMS. If CMS sets CONMODE to 3270
while CMS is running, results are unpredictable.

7. SCRNSA VE ON must be specified if running a guest SCP such as MVS
with CONMODE 3270. Otherwise results are unpredictable. The
SCRNSA VE option of the TERMINAL command is not supported for
VM/ VT AM and remote 3270 terminals.

8. Since the only devices known to a virtual machine appear to the virtual
machine as local, the CCW strings built for DIAGNOSE code X'58'
should be constructed for local devices.

9. When IPLing the loader from your virtual machine to create a CP
nucleus, CONMODE should be set to 3215 mode. Otherwise, console
messages generated by the loading process are not displayed at the
terminal.

10. CONMODE 3270 is not supported for disconnected users.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 49

DIAGNOSE Codes

DIAGNOSE Code X'5C' -- Error Message Editing

All privilege classes (except ANY)

DIAGNOSE code X'5C' causes the editing of an error message according to
the user's setting of the EMSG function.

A message consists of three parts:

• The message identifier
• A separator character, which is usually a blank
• The message text.

If you are unfamiliar with the format of a message, please see VM/SP
System Messages and Codes or VM/ SP HPO System Messages and Codes.

A user may set EMSG to receive error messages in specific formats.

SET EMSG ON Returns the entire error message; the message
identifier, the separator character, and the message
text.

SET EMSG CODE Returns the message identifier only; no separator
character, or message text.

SET EMSG TEXT Returns the message text only; no separator character,
or message identifier.

SET EMSG OFF Returns no message at all.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'5C':

Rx
Contains the address of the message to be edited.

Rx+l

Ry

Contains the (user-specified) length of the message identifier. Rx + 1 is
not used unless subcode X'40' is specified in the high-order byte of Ry.
The specified length must be greater than or equal to O.

Contains a one-byte subcode in the high-order byte; the other three bytes
specify the length of the message to be edited.

Set the subcode in the high-order byte of Ry as follows:

X'OO' For the default identifier length of 10

X'40' For a user-specified identifier length.

Specifying subcodes other than those listed above result in setting Ry to O.

50 VM System Facilities for Programming

DIAGNOSE Codes

Exit Values: The values returned in Rx and Ry depend on the setting of
the EMSG function and the sub code in Ry. Rx contains the address of the
message that should be issued. Ry contains the length of the message to be
issued. Rx + 1 remains unchanged. Rx and Ry are modified as follows:

SET EMSG Subcode Rx+l Rx Ry

ON X'OO' not used Rx Ry

CODE X'OO' not used Rx 10 (Length of
iden tifier)

TEXT X'OO' not used Rx + 11 Ry - 11
(pointer to (length of
text part of text alone)
message)

OFF X'OO' not used Rx 0

ON X'40' Rx+l Rx Ry

CODE X'40' Rx+l Rx Rx+l

TEXT X'40' Rx+l Rx + (Rx+l Ry - (Rx+l
+ 1) (pointer + 1) (length
to text part of of text alone)
message)

OFF X'40' Rx+l Rx 0

Note: DIAGNOSE code X'5C' does not write the message; it merely
rearranges the starting pointer and length. For CMS error messages, a
console write is performed following the DIAGNOSE unless Ry is returned
with a value of o.

Upon completing DIAGNOSE code X'5C', check Ry. If it is 0, then this
message should not be issued. Ry is set to 0 for the following conditions:

• SET EMSG ON if initially Ry is 0

• SET EMSG CODE if initially Rx + 1 is 0

• SET EMSG TEXT if initially Ry is less than or equal to (Rx + 1) + 1

• SET EMSG OFF

• If Rx + 1 is less than 0

• If a subcode other than X'OO' or X'40' is specified.

Program Exceptions: If DIAGNOSE code X'5C' is specified incorrectly,
the following exception is received:

Specification
If Rx is specified as R15 and the subcode in Ry is X'40'.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 51

DIAGNOSE Codes

DIAGNOSE Code X'60' -- Determining the Virtual Machine Storage
Size

All privilege classes (except ANY)

DIAGNOSE code X'60' allows a virtual machine to determine its size.

Exit Values: On return, Rx contains the virtual machine storage size.

DIAGNOSE Code X'64' -- Finding, Loading, and Purging a Named
Segment

All privilege classes (except ANY)

DIAGNOSE code X'64' controls the linkage of discontiguous saved
segments.

Entry Values: The type of linkage that is performed depends upon the
function subcode in Ry.

Set up the input registers as follows when invoking DIAGNOSE code X'64':

Rx

Ry

Must contain the address of the name of the segment. The segment
name must be 8 bytes long, on a doubleword boundary, left justified, and
padded with blanks.

Contains one of the function subcode listed below.

Subcode Function

X'OOOO' LOADSYS -- Loads a named segment in shared mode

X'0004' LOADSYS -- Loads a named segment in nonshared mode

X'0008' PURGESYS -- Releases the named segment from virtual
storage

X'OOOC' FINDSYS -- Finds the starting and ending address of the
named segment

52 VM System Facilities for Programming

DIAGNOSE Codes

Subcodes X'OOOO' and X'0004' -- The LOADSYS Function

Before the LOADSYS
Function Executes

When the LOADSYS function is executed, CP finds the system name table
entry for the segment and builds the necessary page and swap tables (two
sets one for each processor, when running in attached processor mode). CP
releases all the virtual pages of storage that are to contain the named
segment and then loads the segment in those virtual pages. When the
LOADSYS function is executed, CP expands the virtual machine size
dynamically, if necessary. CP also expands the segment tables to match
any expansion of virtual storage.

Note: If the named saved system is designated as Virtual Machine Group
via the VMGROUP = YES option on the NAMESYS macro, it cannot be
loaded using the LOADSYS function.

When LOADSYS executes successfully, the address of where the named
segment was loaded is returned in Rx. When the LOADSYS function loads
a segment in shared mode, it resets instruction and branch tracing if either
was active.

After a LOADSYS function executes, the storage occupied by the named
segment is addressable by the virtual machine, even if that storage is
beyond the storage defined for the virtual machine. However, any storage
beyond that defined for the virtual machine and below that defined for the
named segment is not addressable. Figure 3 shows the virtual storage that
is addressable before and after the LOADSYS function executes.

After LOADSYS Function
Executes

2560K~------------------~
Discontiguous Storage
Addressable by Virtual

Machine
2048K~------------------~

.///////////////////////// .

. /Storage Not Addressable/ .

. ///by Virtual Machine//// .

. /////////////////////////.
l024K ~---------, l024K~------------------~

All Storage
Addressable by
Virtual Machine

OK~--------------~
CMS Virtual Machine
without a Named Segment
Attached

Storage Still
Addressable by
Virtual Machine

OK~------------------~
CMS Virtual Machine with
a Named Segment Attached

Figure 3. Addressable Storage Before and After a LOADSYS Function

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 53

DIAGNOSE Codes

When you save a named segment that is later loaded by the LOADSYS
function, you must be sure that the addresses at which segments are saved
are correct and that they do not overlay required areas of storage in the
virtual machine. This is crucial because the LOADSYS function invokes
the PURGESYS function before it builds the new page and swap tables. CP
purges all saved systems that are overlayed in any way by the saved system
it is loading.

Condition and Return Codes: A condition code of 0 in the PSW indicates
that the named segment was loaded successfully; Rx contains the load
address.

A condition code of 1 in the PSW indicates the named segment was loaded
successfully within the defined storage of the virtual machine. Rx contains
the address at which the named segment was loaded. Ry contains the
ending address of the storage released before the named segment was
loaded.

Note: CMS only allows named segments to be attached beyond the defined
size of the virtual machine.

A condition code of 2 in the PSW indicates the LOADSYS function did not
execute successfully. Examine the return code in Ry to determine the
cause of the error.

Return Code
1

44
174
179

203

Meaning
Named segment defined as a VMGROUP
Named segment does not exist
Paging I/O errors
The DASD volume specified by "SYSVOL" in the NAMESYS
macro is not a CP-owned volume.
User in V=R area

Subcode X'0008' -- The PURGESYS Function

When the PURGESYS function is executed; CP releases the storage, and
associated page and swap tables, that were acquired when the
corresponding LOADSYS function was executed. If the storage occupied by
the named segment was beyond the defined virtual machine storage size,
that storage is no longer addressable by the virtual machine.

When a PURGESYS function is executed for a segment that was loaded in
nonshared mode, the storage area is cleared to binary zeroes and the keys
are reset to zeroes. If PURGESYS is invoked for a named segment that was
not previously loaded via LOADSYS, the request is ignored.

54 VM System Facilities for Programming

DIAGNOSE Codes

Condition and Return Codes: A condition code of 0 in the PSW indicates
successful completion.

A condition code of 1 in the PSW indicates that the named segment was not
found in the virtual machine.

A condition code of 2 in the PSW and a return code of 44 in Ry indicate
that the named segment either does not exist or was not previously loaded
via the LOADSYS function.

Subcode X'OOOC' -- The FINDSYS Function

When the FINDSYS function is executed, CP checks that the named
segment exists and that it has not been loaded previously. If the named
saved segment is designated as Virtual Machine Group, the FINDSYS
function cannot be used.

Condition and Return Codes: A condition code of 0 in the PSW indicates
that the named segment is already loaded. The address at which it was
loaded is returned in Rx and its highest address is returned in Ry.

A condition code of 1 in the PSW indicates that the named segment exists
but has not been loaded. In this case, the address at which the named
segment is to be loaded is returned in Rx and the highest address of the
named segment is returned in Ry.

A condition code of 2 in the PSW indicates the FINDSYS function did not
execute successfully. Examine the return code in Ry to determine the error
that occurred.

Return Code
1

44
174
203

Meaning
Named segment defined as a VMGROUP
Named segment does not exist
Paging I/O errors
User in V=R area

DIAGNOSE Code X'68' -- Virtual Machine Communication Facility
(VMCF)

All privilege classes (except ANY)

DIAGNOSE code X'68' is used by a virtual machine to initiate a function of
the Virtual Machine Communication Facility (VMCF).

Note: If you have VM/SP HPO, DIAGNOSE code X'68' is supported by a
preferred machine assist guest with the control switch assist active.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'68':

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 55

DIAGNOSE Codes

Rx
Contains the virtual address of a parameter list (VMCPARM). The
address of VMCPARM is doubleword aligned. One of the entries in this
parameter list is a function subcode, specifying the particular request
being initiated. The functions and their subcodes are as follows:

Subcode Function
X'OOOO' AUTHORIZE
X'OOOl' UNAUTHORIZE
X'0002' SEND
X'0003' SEND/RECV
X'0004' SENDX
X'0005' RECEIVE
X'OO06' CANCEL
X'0007' REPLY
X'0008' QUIESCE
X'0009' RESUME
X'OOOA' IDENTIFY
X'OOOB' REJECT

A description of all the fields of the VMCP ARM is contained in
Chapter 14, "The Virtual Machine Communication Facility" on page 283.

Return Codes: Ry contains the return code upon completion of
DIAGNOSE code X'68' or the detection of an error condition.

Return Code
o
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

I

18
19
20

Meaning
The normal response, successful completion
Invalid virtual buffer address or length
Invalid function subcode
Protocol violation
Source virtual machine not authorized
User not available
Protection violation
SENDX data too large
Duplicate message
Target virtual machine in QUIESCE status
Message limit exceeded
REPLY canceled
Message not found
Synchronization error
CANCEL too late
Paging I/O error
Incorrect length
Destructive overlap
User not authorized for PRIORITY messages
Data transfer error
CANCEL - busy

For more detail of the return codes, see Chapter 14, "The Virtual Machine
Communication Facility" on page 283.

56 VM System Facilities for Programming

DIAGNOSE Codes
y. , , ~r

Note: Rx and Ry can be any general purpose register, RO through R15.
They may also be the same register.

DIAGNOSE Code X'6C' -- Shadow Table Maintenance

All privilege classes (except ANY)

DIAGNOSE code X'6C' is an internal DIAGNOSE instruction issued by
MVS to VM that is used only to pass the virtual address of a page table
entry that maps to real page zero for the low storage protection facility.

Note: If you have VM/SP HPO, for a preferred machine assist guest, with
control switch assist, issuing DIAGNOSE code X'6C' is a NOP because page
o for a preferred machine assist guest with control switch assist is real page
O.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'6C':

Rx

Ry

Contains the virtual address of the a page table entry. The virtual
address is stored in the EXTVPORL field of the ECBLOK. The
VMVPOREL flag in the VMBLOK is set on.

Is not used.

Condition Codes: If a guest virtual machine (without EC mode capability,
EC mode is set off), tries to issue a DIAGNOSE code X'6C' a condition code
of 3 will be returned.

DIAGNOSE Code X'70' -- Activating the Time-of-Day (TOO) Clock
Accounting Interface

All privilege classes (except ANY)

DIAGNOSE code X'70' enables an operating system that is running in a
virtual machine to request timing information from CPo Each time the
virtual machine is dispatched, CP provides the accumulated processor time
the virtual machine has used and the time of day the virtu"al machine was
dispatched. Programs that are running in the virtual machine may use the
timing information to calculate the amount of processor time used by each
job, by each job step, and so forth.

DIAGNOSE code X'70' should be used by operating systems that use the
store clock (STCK) instruction to obtain the time of day to calculate
processor use. Because there is no virtual TOD clock, calculations that use
multiple STCK instructions may not reflect the time used by just one

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 57

DIAGNOSE Codes

virtual machine. They may also include the time used by all virtual
machines and by CP.

A virtual machine should issue DIAGNOSE code X'70' only one time. Once
issued, it is effective until the virtual machine is reset.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'70':

Rx
Must contain the address of a I6-byte area, the communication area.

Ry
Is not used.

The communication area must be aligned on a doubleword boundary and
must be in the virtual machine's real storage, preferably in page zero. Page
zero is preferred because CP always locks page zero and must also lock the
page that contains the communication area. Thus, when page zero is used,
CP does not have to lock an additional page.

Use: After DIAGNOSE code X'70' is issued, CP updates the communication
area each time the virtual machine is dispatched. The first 8 bytes of the
communication area contain the total processor time the virtual machine
has used. The last 8 bytes contain the time of day CP last dispatched the
virtual machine. Programs running in the virtual machine should not alter
the communication area.

To use the information that CP has stored in the communication area,
perform the following steps:

1. Obtain the current time of day by issuing the STCK instruction.

2. Compute the difference between the tome of day obtained in step 1 and
the time of day stored in the communication area. This difference is the
amount of processor time the virtual machine has used since it was last
dispatched.

3. To calculate the total amount of processor time the virtual machine has
used up to the present time, add the processor time that is stored in the
communication area to the difference obtained in step 2.

4. Ensure that the TOD value stored in the communication area has not
changed since step 2 was performed. If it has changed, repeat the
procedure from step 1.

Program Exceptions: If DIAGNOSE code X'70' is specified incorrectly,
the following exceptions are received:

58 VM System Facilities for Programming

DIAGNOSE Codes

Specification
If the virtual machine does not have the ECMODE option.

If the communication area is not aligned on a doubleword boundary.

If the address in Rx is not within the virtual machine's real address
range.

If DIAGNOSE code X'70' has already been issued for the virtual
machine.

DIAGNOSE code X'74' -- Saving or Loading a 3800 Named System

Privilege class A, B, or C

DIAGNOSE code X'74' saves an image library as a 3800 named system or
loads a named system into virtual storage when that named system is
required by the 3800 printer.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'74':

Rx and Rx+l

Ry

Must contain the eight-character name of the system to be saved or
loaded, left-justified and padded with blanks.

Must contain the virtual address at which to start saving or loading the
named system. Ry must start on a page boundary.

Ry+l
Must contain a X'OO' in the high order byte if a LOAD operation is
required, and a X'04' for a SAVE operation. The remainder of Ry must
contain the number of bytes to be saved or loaded into virtual storage.
CP rounds the byte count up to the nearest whole page before the pages
are saved or loaded. Partial pages are not saved or loaded.

Program Exceptions: If DIAGNOSE code X'74' is specified incorrectly,
the following exceptions are received:

Addressing
If the area to be saved or loaded extends beyond the user's virtual
storage.

Privileged operation
If the user does not have privileged class A, B, or C.

Specification
If Register 15 is specified in either Rx or Ry.

If the virtual address specified in Ry is not on a page boundary.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 59

DIAGNOSE Codes

These exceptions cause abnormal termination (abend) and the user is
notified.

Return Codes: When DIAGNOSE code X'74' processing completes, one of
the following return codes is placed into Ry and returned to CP:

Return Code
X'OO'

Meaning
Load/save successfully performed
Named system not found X'04'

X'08' Named system currently active
Volid for system not CP owned
Volid for system not mounted

X'OC'
X'IO'
X'14' Too many bytes to load/save; residual byte count is in Ry + I

Paging error during load/save X'18'
X/IC' Too few bytes to LOAD/SAVE. Needed byte count is in

Ry+1.

DIAGNOSE Code X'78' -- MSS Communication

All privilege classes (except ANY)

DIAGNOSE code X'78' is used to communicate with the VM control
program about MSS volume mounts and demounts.

Note: If you have VM/SP HPO, DIAGNOSE code X'78' is supported by a
preferred machine assist guest with the control switch assist active.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'78':

Ry
Contains a function subcode. The valid subcodes and their meanings
are:

Subcode Meaning

X'OO' The virtual machine issuing the DIAGNOSE instruction is
running OS/VS with MSS support and the DMKMSS program
for MSS communication. Rx contains the device address of
the virtual machine's MSS communicator virtual device.

X'04' The virtual machine is ready to process an MSS request. The
MSSCOM block representing the request should be placed at
the virtual machine address indicated by Rx.

X'08' An MSS request represented by the MSSCOM block located
at the virtual machine address indicated by Rx has been
accepted by the MSC.

60 VM System Facilities for Programming

/

X'OC'

X'10'

X'14'

DIAGNOSE Codes

An MSS request represented by the MSSCOM block located
at the virtual machine address indicated by Rx has been
rejected by the MSC.

The DMKMSS program is no longer available to process MSS
requests.

The DMKMSS program has created a list of all VUAs
associated with this processor (cpuid) and requests CP to
build its shared and non-shared SDG tables from that list.

Program Exceptions: If DIAGNOSE code X'78' is specified incorrectly,
CP terminates the user program with one of the following exceptions:

Protection
If no DMKSSV module exists.

Specifica tion
If MSSCOM crosses a page boundary.

Condition and Return Codes: DIAGNOSE code X'78' condition codes and
return codes are:

Condition
Codes Meaning

o Successful completion.

1 Error Condition. Register 15 contains one of the following
return codes:

RC Meaning
4 Sub code was either less than zero or greater than 16.
8 Subcode was within the valid range, but not a multiple of

4.
12 Addressing exception trying to bring in the buffer page.
16 Issuer is not the issuer of subcode zero.

DIAGNOSE Code X'7C' -- Logical Device Support Facility

All privilege classes (except ANY)

DIAGNOSE code X'7C' allows an application running in a virtual machine
to drive a logical 3270 as if it were a real display station locally attached to
the VM system. Communication between the application and the logical
device is done via the DIAGNOSE interface and a new external interrupt
code.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'7C':

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 61

DIAGNOSE Codes

Rx
Is a user-specified register (not GPR15) containing the logical device
number that is used to coordinate CP and local system operations. For
the INITIATE function, Rx may contain a specific address in the
low-order two bytes. The address must be X'OOOO' to X'OFFF'.

Rx+l
For the INITIATE function, contains the following information about
the pseudo device to be created:

• The first byte indicates optional features:

Bit 0 - 3270 extended features to be supported
Bit 1 - ACCEPT function must be followed by the STATUS
function (must be on for logical printers)
Bit 2 - specific device address is requested and specified in Rx.

• The second byte contains the model number. For the 3279 display
and for the 3284, 6, 7, 8, and 9 printers, the last digit is included in
the first four bits of the model byte.

• The third byte indicates the device class, and must be a X'40'.

• The fourth byte is the device type:

X'Ol' = 3278 or 3279
X'02' = 328x
X'04' = 3277

Therefore, the following are acceptable in Rx + 1:

X'xxyy4004'
will give a 3277 Model 2 regardless of yy

where xx = X'OO'

Note: X' 80' is not accepted because 3277 s do not have
extended features

X'xxyy4002'
will give a logical printer (xx must include X' 40')

where yy =

X'OO' = 3286
X'40' = 3284
X'60' = 3286
X'70' = 3287
X'80' = 3288
X'90' = 3289
X'94' = 3289 Model 4

62 VM System Facilities for Programming

Ry

X'xxyy4001'
will give a 3278 or 3279

where xx =

X'OO' for no extended features
X'80' for extended features

where yy =

X'02' = 3278 Model 2
X'03' = 3278 Model 3
X'04' = 3278 Model 4
X'05' = 3278 Model 5
X'92' = 3279 Model 2
X'93' = 3279 Model 3

DIAGNOSE Codes

For the ACCEPT function, Rx + I contains the address of a data buffer.

For the PRESENT function, Rx + 1 contains either an address or a
complemented address. If an address, it is the address of a single buffer
of data 4096 bytes or less in length. If a complemented address, it is the
address of a list that describes a data stream occupying multiple data
buffers and/or greater than 4096 bytes in length.

For the PRESENT function to a printer, if Rx + I is zero, a device end
interrupt is reflected.

For the STATUS function, Rx + I contaiD;s the sense data in the low
order byte.

Is a user-specified register (not GPR 15) containing the subcode of the
logical device function to be executed:

Subcode
X'OOOI'
X'0002'
X'0003'
X'0004'
X'0005'
X'0006'

Function
INITIATE
ACCEPT
PRESENT
TERMINATE
TERMINATE (all)
STATUS

Ry+l
Contains, for the ACCEPT and PRESENT functions, the length of the
data buffer when Rx + I specifies a buffer address.

Exit Values: On completion of an ACCEPT function, Ry contains the
length of the data.

On completion of any DIAGNOSE operation, Ry + I contains the return
code.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 63

DIAGNOSE Codes
&;;1'

Condition and Return Codes: Return codes are received from this facility
in Ry + 1. PSW condition codes and return codes are described below.
Functions that apply specifically to given combinations of condition and
return codes are shown in parentheses.

Condition
Codes Meaning

o Function completed with no errors.

1

2

RC Meaning
o (Any function) Normal completion.
1 (ACCEPT) Indicates another ACCEPT required for another

data stream.
2 (ACCEPT) Indicates another ACCEPT required for next

segment of current data stream.
3 (PRESENT) Indicates that an external interrupt is presented

when the data is finished.
4 (ACCEPT) Indicates that the STATUS function must be

issued to end the ACCEPT.
5 (ACCEPT or STATUS) Indicates that a READ-CCW was

chained to the WRITE-CCW.

Error condition.

RC Meaning
1 (Any function) Invalid function used in Ry.
2 (ACCEPT) No data available.
3 (ACCEPT) Buffer too short. No data transferred. Another

ACCEPT is required to retrieve the data. Ry contains the
required data length unless data chained CCW s are being
used. If data chained CCWs are being used, the byte count
returned in Ry only contains the amount of data up to the
CCW that exhausted the ACCEPT buffer and may not be the
total data amount.

4 (ACCEPT or PRESENT) One of the following:

• Buffer is greater than 4096 bytes.

• Buffer length is not positive.

• Buffer not in user's address space.

• Paging I/O error.
9 (INITIATE) Maximum of 512 logical devices per virtual

machine reached, or maximum of 4096 logical devices (for the
entire system) reached.

10 (ACCEPT or PRESENT) FETCH or STORE protection
violation.

Busy condition

RC Meaning
1 (PRESENT) CP has pending data that must be accepted first.

The PRESENT is not performed.

64 VM System Facilities for Programming

/

/

I

DIAGNOSE Codes

2 (PRESENT) A previous PRESENT has not completed
execution. The current PRESENT is not performed. An
external interrupt is issued to indicate when this PRESENT
should be reissued.

3 (PRESENT) CP has an active READ BUFFER command. The
PRESENT issued is for READ MODIFIED data.

4 (PRESENT) The data presented is from a READ BUFFER.
No CP READ is outstanding, or the READ is a READ
MODIFIED.

5 (PRESENT) CP is waiting for STATUS to be returned for a
WRITE.

3 One of the following conditions:

• (INITIATE) Logical device type, class, or model is invalid.
• (Other functions) Logical device number in Rx is invalid.

Re Meaning
1 (ACCEPT, PRESENT, TERMINATE) CP is in the process of

terminating the logical device.
2 (ACCEPT, PRESENT, TERMINATE) The logical device

number does not exist.
3 (INITIATE) The logical device type or model is invalid, or bit

1 of register Rx + 1 was not specified when initiating a printer.
4 (INITIATE) Specific device address in invalid.
5 (INITIATE) The requested device is already created.
6 (INITIATE) Paging I/O error.

Description of Logical Device Support Facility Functions

Logical device functions manage communications and the transfer of data
between CP and the virtual machine for which the logical device was
created.

INITIATE: DIAGNOSE CODE X'7C' SUBCODE X'OOOl'

The INITIATE function opens a logical communications path between the
calling virtual machine issuing the DIAGNOSE and the VM Control
Program. It causes a logical device to be created and the Virtual
Machine/System Product logo to be directed to it. This results in an
external interrupt to the issuing virtual machine to indicate that CP has
data to be processed.

Rx + 1 must contain the model number in byte 1, and the device class and
type in bytes 2 and 3. Rx is not used for input.

The address of the logical device is placed in Rx. This value is used on
subsequent DIAGNOSE operations to indicate the logical device being used.
This address is also provided with the external interrupt so that the issuing
virtual machine can associate the interrupt with a specific logical device.

ACCEPT: DIAGNOSE CODE X'7C' SUBCODE X'0002'

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 65

DIAGNOSE Codes
I",,· : : "{' ~ ,,:'t. ""r,.,.~, '''V', ·,1' i . · lP~1 ",-':',

The ACCEPT function reads data that CP has directed to a logical device.
It is invoked after the virtual machine that created the logical device is
notified via external interrupt that output data is to be processed. Upon
invocation, Rx + 1 must contain the data buffer address and Ry + 1 the
buffer length. If the data buffer supplied was too short to contain the data,
the function returns the required buffer size in Ry and no data is moved.
This action can be overridden by setting an indicator in the length register
(bit zero in Ry + 1 set to 1) when the function is invoked. In this case, the
data is be moved to the short buffer and a CC = 0, RC = 2 is sent. The
system moves the next portion of the data on the next ACCEPT. Upon
successful completion of function processing, the data length is returned in
Ry, and the data buffer contains the CCW OP code in its first byte and data
in the remaining buffer space.

PRESENT: DIAGNOSE CODE X'7C' SUB CODE X'0003'

The PRESENT function passes input data to CPo The location of the data
is described by an address or a complemented address in Rx + 1. If the
register contains an address, it is the address of a data buffer 4096 bytes or
less in length. In this case, Ry+ 1 contains the length of that data buffer.
If Rx + 1 contains a complemented address, it is the address of a list that
describes a data stream occupying multiple data buffers and/or greater than
4096 bytes in length. In this case, Ry + 1 is not used to describe the data
length. However, in either case, a high-order bit of 1 in Ry + 1 indicates
that the response is to a READ BUFFER command. Data format is the
same as that produced by a local display control unit in response to a
READ MODIFIED channel command.

If a list is used to describe the data, the list must be in the format:

Length SEGI Address SEGI

Length SEG2 Address SEG2

Length SEGn* Address SEGn

*Last entry indicated by a 1 in bit zero of its length field.

The list must start on a fullword boundary. Each entry consists of two
full word fields that describe the length and location of sequential segments
of a data stream. A single entry list may be used to describe a single data
buffer greater than 4096 bytes in length. Neither the list nor the data may
be modified before transfer of the data has completed. An external
interrupt signals completion of data transfer.

TERMINATE: DIAGNOSE CODE X'7C' SUBCODE X'0004'

66 VM System Facilities for Programming

t., .r&.

DIAGNOSE Codes

The TERMINATE function notifies CP to drop a specific logical device. If
the logical device is the console of a virtual machine, the virtual machine is
placed in FORCE DISCONNECT state. If the logical device is DIALed to a
virtual machine, it is detached from that virtual machine. If an input or
output operation is being processed, it is terminated with a unit check and
intervention required.

TERMINATE (ALL): DIAGNOSE CODE X'7C' SUBCODE X'0005'

The TERMINATE (all) function notifies CP to terminate all logical devices
created for the issuing virtual machine.

STATUS: DIAGNOSE CODE X'7C' SUBCODE X'0006'

The STATUS function allows status to be returned to CP after an ACCEPT
function is performed. It must be used with a logical 328x printer to
indicate when the printer has completed the printout and the ending status
of the printer.

External Interrupt Code X'2402'

The logical device support uses a service signal interrupt, (class 24 external
interrupt) to notify the virtual machine of a change in status for a specific
logical device. The external interrupt code is X'2402'. This interrupt
causes a full word of data to be stored at location 128 (decimal) in the
virtual machine. The interrupt is masked on and off by bit 22 of control
register o.

The format of the stored fullword is:

128-129

130

131

Logical device address

Flag byte
bit zero - PRESENT function purged
bit one - error in transmission or list

Interrupt reason code

The logical device address is returned to the user after an INITIATE, and
must be specified by the user for an ACCEPT, PRESENT, or TERMINATE.

Flag byte, bit zero is set to 1 if the data from the last PRESENT has been
discarded by the system (subsequent I/O to the logical device was a WRITE
instead of a READ). Flag byte, bit one is set to 1 if an error was
encountered in the address list describing multiple buffers of a data stream,
or one of the specified addresses in the list was not accessible. Otherwise,
the flag byte remains zero.

The reason codes are:

01 CP is terminating the connection.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 67

DIAGNOSE Codes

02 A WRITE has been issued, so an ACCEPT must be done. (External
interrupt flag byte, bit zero also indicates whether previous
PRESENT data has been discarded.)

03 A previous PRESENT is now finished (user received CC = 2 and
RC = 2 after a PRESENT).

A PRESENT has been suspended because of a transmission error.
(External interrupt flag byte, bit one indicates this.)

04 A READ BUFFER has been issued.

05 A READ MODIFIED has been issued.

Reason code 1 indicates that the logical device no longer exists. The user
receives a condition code 3 if he tries to perform another function with this
device.

Logical Device Interrupt Code X'2402'

The logical device address is returned to the user after an INITIATE and
must be specified by the user for an ACCEPT, PRESENT, STATUS, or
TERMINATE.

Logical Device Restrictions

The devices supported are:

Migration/Coexistence

local 3277 Model 2
local 3278 Models 2, 3, 4, and 5
3279 Models 2 and 3
3284,6, 7, 8, and 9 printers

For the INITIATE function of DIAGNOSE code X'7C', the high order byte
of register Rx + 1 indicates the following optional features:

Bit 0 - 3270 extended features to be supported
Bit 1 - ACCEPT function must be followed by STATUS function
Bit 2 - Specific device address requested

Existing applications that use the high-order byte of Rx + 1 will experience
migration and coexistence problems because this byte was not checked
prior to this support.

68 VM System Facilities for Programming

!DIAGNOSE Codes

DIAGNOSE Code X'80' -- MSSFCALL

All privilege classes (except ANY)

DIAGNOSE code X'80' is the VM interface for communicating between CP
and the Monitoring and Service Support Facility (MSSF). MSSF is a
hardware component of the processor controller of the 3081 processor
complex; it provides system configuration and storage information for the
3081 processor complex.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'80':

Rx

Ry

Is a user-specified register that contains the address of the MSSF data
block (MSFBLOK). MSFBLOK is defined in increments of 8 bytes to a
maximum of 2048 bytes. It must be aligned on a 2K boundary.
MSFBLOK is locked in storage during the MSSFCALL request.

Is a user-specified register that contains the MSSF command word
representing the function that MSSF is to perform. (See MSSF
command words below.)

Use: The CP module DMKMHC issues a real DIAGNOSE code X'80' and
services all MSSF external interruptions. DMKMHC issues a real
DIAGNOSE code X'80' when:

1. The operator issues a VARY ONLINE PROCESSOR nn command or a
VARY OFFLINE PROCESSOR nn VPHY command. (These commands
modify the real processor configuration to bring the processor
physically on-line or off-line.)

2. A V = R virtual machine running in EC mode issues the MSSF command
word SCPINFO.6 (Operating systems running in a virtual machine use
the MSSF SCPINFO command to get information about a system
configuration and storage allocation.

3. A user with privilege class C or E runs the IOCP program to read from
or write to the Input/Output Configuration Data Set (IOCDS).

When CP issues DIAGNOSE code X'80', the hardware call block that is
created (HCBLOK) contains the MSFBLOK address, the MSSF command
word, and the address to return to after the MSSF has processed the
request. See VM/SP Data Areas and Control Block Logic Volume 1 (CP) or

When a V = V virtual machine issues SCPINFO, DMKMHV does not pass
control to DMKMHC. CP does not issue the DIAGNOSE code X'80' but
simulates the MSSF response and returns predefined data and status codes to
the user. See VMjSP System Logic and Problem Determination Guide Volume
1 (CP) or VMj SP HPO System Logic and Problem Determination Guide - CP
for a description of the pre-defined data.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 69

DIAGNOSE Cod'es

VM/ SP HPO Data Areas and Control Block Logic - CP for the format of the
MSFBLOK and HCBLOK.

MSSF Command Words

X'OOllnnOl'

X'0010nnOl'

X'00020001'

X'00400002'

X'00400102'

X'00400202'

X'00400302'

X'00401002'

X'00401102'

X'00401202'

X'00401302'

X'00410002'

X'00410102'

X'00410202'

X'00410302'

X'00411002'

X'00411102'

X'00411202'

X'00411302'

VARY ONLINE PROCESSOR nn where nn is the ID of the
processor to be varied on-line. CP use only.

VARY OFFLINE PROCESSOR nn VPHY where nn is the
ID of the processor to be physically varied off-line. CP use
only.

SCPINFO command. Virtual machine use only.

IOCP WRITE to Level 0 IOCDS Side A

IOCP WRITE to Level 1 IOCDS Side A

IOCP WRITE to Level 2 IOCDS Side A

IOCP WRITE to Level 3 IOCDS Side A

IOCP WRITE to Level 0 IOCDS Side B

IOCP WRITE to Level 1 IOCDS Side B

IOCP WRITE to Level 2 IOCDS Side B

IOCP WRITE to Level 3 IOCDS Side B

IOCP READ from Level 0 IOCDS Side A

IOCP READ from Level 1 IOCDS Side A

IOCP READ from Level 2 IOCDS Side A

IOCP READ from Level 3 IOCDS Side A

IOCP READ from Level 0 IOCDS Side B

IOCP READ from Levell IOCDS Side B

IOCP READ from Level 2 IOCDS Side B

IOCP READ from Level 3 IOCDS Side B

Condition and Return Codes: Two possible condition codes returned for
DIAGNOSE code X'SO' are:

CC = 0 MSSF is processing the MSSFCALL request.

cc = 2 MSSF is busy.

70 VM System Facilities for Programming

ICUAGNOSIE Codes

Note: If CP issued the MSSFCALL request, and MSSF was already
processing a previous MSSFCALL request, abend MHC001 occurs. If a
V = R user issued the request, CP reflects the condition code (2) to the
virtual machine's PSW.

At the completion of an MSSFCALL, the following actions occur:

• MSSF generates a service signal interrupt, external interrupt X'2401'
(class 24 external interrupt). This interrupt stores the absolute address
of the MSSF data block (MSFBLOK) at decimal locations 128-131 in the
virtual machine's PSA. Bit 22 of control register 0 controls masking of
the service signal.

• MSSF passes a completion status code back in the MSFBLOK.

• CP returns control to the address specified in HCBLOK.

• If tracing is on, trace table entry X'17' traces all MSSFCALL requests.
In addition, trace table entry X'Ol' reflects external interrupt X'2401'
when the MSSF generates the service signal interrupt to CPo

Note: Please refer to the VM Diagnosis Guide for the format and
content of the entries of the CP Internal Trace Table. This information
is also available on the VM CP Internal Trace Table (Poster),
LX24-5202.

Successful MSSF completion status codes are:

0010 SCPINFO complete.

0020 The processor is varied on-line/off-line.

0120 The processor is already varied on-line/off-line. IOCP operation
complete.

8020 An IOCP READ is invalid because the file is open for writing.

4020 The IOCP read or write operation was performed on the active
IOCDS.

2020 The active IOCDS has been written to.

Reject status codes are:

01FO Invalid command code or identification byte.

41FO Attempt to read closed IOCDS.

0100 Data block not aligned on a 2K boundary.

0200 Data block length not a multiple of 8.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 71

DIAGNOSE Codes

0300 The data block length is not adequate for the amount of information
requested.

DIAGNOSE Code X'84' -- Directory Update-In-Place

Privilege class B

DIAGNOSE code X'84' enables a class B user to replace certain data in any
entry of the VM directory. The user must specify the directory entry and
may replace the following data:

• Logon password

• Virtual machine storage size

• Maximum virtual machine storage size

• Privilege classes

• Dispatching priority

• Logical editing symbols

• Initial program load (IPL) system

• IPL parameter data

• Account number

• Distribution word

• User options

• Minidisk access mode

• Minidisk read, write, or multiple password

• Options of the SCREEN directory control statement

With the exception of the account number, all changes to the entry take
effect the next time the USERID associated with the entry logs onto VM.
The account number may be updated such that the change

• Takes effect immediately,

• Takes effect immediately but is temporary lasting only until the
USERID is logged off, or

• Takes effect the next time the USERID associated with the entry is
logged on.

DIAGNOSE code X'84' cannot add new entries to the directory, cannot
delete existing entries, nor can it alter directory user-description
statements. It can only replace existing directory data. Data is replaced in
the form of the directory created by the directory service program, that is,
in VM control blocks.

For a detailed description of the directory data, see the VMjSP Planning
Guide and Reference or VMj SP HPO Planning Guide and Reference.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'84':

72 VM System Facilities for Programming

/

D~AGNOSE Codes

Rx
Must point to a variable length parameter list.

Ry
Must specify, in bytes, the length of the list.

The list cannot be greater than 112 bytes long or less than zero bytes. The
parameter list contains an area of fixed length followed by an area of
variable length. Data in the fixed-length area identifies the directory entry
to be updated, the password of the USERID associated with the entry, and
the data field to be replaced in the directory entry. The variable-length
area contains replacement data for the directory entry. All entries in the
parameter list must contain unpacked, EBCDIC data. The parameter list is
organized as follows:

USERID

password fixed-length area

operation

variable-length area

Fixed-length area

USERID

password

operation

The USERID of the user whose directory entry is updated. This
is an eight-character, left-justified value and must be padded with
blanks.

The current CP password of the USERID whose CP directory
entry is updated. This is an eight-character, left-justified value
and must be padded with blanks.

If this field is blank, the update-in-place function is processed in
'testmode'. When the DIAGNOSE is issued in this fashion, the
directory is not updated. 'Testmode' lets you check the syntax of
the directory statements without accessing the directory disk.

An eight-byte, left-justified character string that identifies the
data in the directory entry that is to be replaced. Valid values
and the data that each identifies for replacement are defined in
the description of the variable-length area which follows.

Variable-length area

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 73

::DIAGNOSE Codes

Operation
Field
Value

LOGPASS

STORAGE

MAXSTOR

PRIVLEGE

PRIORITY

EDITCHAR

The following diagram shows for each value of the operation field, the data
that must be in the variable-length area of the parameter list, and the
format and characteristics of the data.

Data Characteristics/Format

logon password An eight-byte, left-justified value padded with
blanks.

virtual machine An eight-byte, left-justified decimal value followed
storage size by the letter K. Pad with blanks following the

letter K.

maximum virtual An eight-byte, left-justified decimal value followed
machine storage size by the letter K. Pad with blanks following the

letter K.

privilege classes A 32-byte value where each byte represents a
privilege class. Valid values for each byte are A
through Z, and 1 through 6. All existing classes in
the directory entry are replaced. Therefore,
specify existing classes that are to be retained as
well as classes that are to be changed. The data
must be left-justified and padded with blanks. This
field can be all blanks in which case the specified
virtual machine will always have the default
classes (defined via SYSFCN) each time the user
logs on.

dispatching priority An eight-byte, left-justified value where the first
two bytes, counting from the left, specify the
dispatching priority. Valid values for these bytes
are 1 - 99. Values 1 through 9 must be padded with
a blank. The other six bytes are reserved for IBM
use.

logical editing An eight-byte value where the first four bytes,
symbols counting from the left, are line edit symbols. The

first or high-order byte is the "line-end" symbol,
the second byte is the "line-delete" symbol, the
third byte is the "character-delete" symbol, and the
fourth byte is the "escape-character" symbol. All
existing symbols in the directory are replaced.
Therefore, specify existing symbols that are to be
retained as well as symbols that are to be changed.
Unspecified symbols must contain blanks. The last
four bytes of the eight-byte value are reserved for
IBM use.

Figure 4 (Part 1 of 4). DIAGNOSE Code X'S4' -- Parameter List Operation Field

74 VM System Facilities for Programming

IJ)~AGNOSIE Codes

Operation
Field
Value Data Characteristics/Forma t

IPL system name or A one-to-eight character value, left-justified and
virtual device padded with blanks, followed by the keyword
address and variable P ARM and up to 48 characters of variable data.
data All existing values are replaced in the directory

entry; therefore, specify values that are to be
retained as well as values that are to be changed.
Trailing blanks are not truncated but passed.

ACCOUNT account number A one-to-eight character value, left justified and
padded with blanks. (This change takes effect the
next time the USERID is logged on.)

IACCOUNT account number A one-to-eight character value left-justified and
padded with blanks. (This change takes effect
immediately.)

TACCOUNT account number A one-to-eight character value, left-justified and
padded with blanks. (This change takes effect
immediately but is temporary, lasting only until
the USERID is logged off.)

Note: DIAGNOSE code X'84' with TACCOUNT or
IACCOUNT does not update the account number
in the user accounting block (ACCTBLOK).
DIAGNOSE code X'84' is for the directory update
which updates the account number in the user's
VMBLOK if change is to take effect immediately.
The user accounting block (ACCTBLOK) is
created by DIAGNOSE code X'4C' and the 'charge
to' information in the ACCTBLOK can only be
changed via DIAGNOSE code X'4C'. DIAGNOSE
code X'84' options TACCOUNT and IACCOUNT
have no effect on the accounting information in
the ACCTBLOK.

DISTRIB distri bu tion A one-to-eight character value, left-justified and
identification word padded with blanks.

Figure 4 (Part 2 of 4). DIAGNOSE Code X'84' -- Parameter List Operation Field

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 75

DIAGNOSE Codes

Operation
Field
Value Data Characteristics/Format

OPTIONS user options An eighty-byte, left-justified value padded with
blanks. Specify each option as a character string
with a blank character between options.

The following virtual machine OPTIONS may be
updated using DIAGNOSE code X'84':

• Realtimer
• Ecmode
• Isam
• Virt=real
• Acct
• Svcoff
• BMX
• CPUID
• AFFinity
• LANG

For a description of each option and a list of valid
values, see the VM/SP Planning Guide and
Reference or VM/ SP HPO Planning Guide and
Reference.

All existing options except for 'CPUID' and
'AFFINITY', are replaced in the directory entry.
Therefore, specify existing options (except for
'CPUID' and' AFFINITY') that are to be retained,
as well as options that are to be changed. The
options field must be followed by the value
X'FFFFFFFF' or by at least two blanks (X' 4040').

Figure 4 (Part 3 of 4). DIAGNOSE Code X'84' -- Parameter List Operation Field

76 VM System Facilities for Programming

Operation
Field
Value

MDISK

SCREEN

Data

minidisk address,
access mode, read
password, write
password, and
multiple password

display screen
options

DIAGNOSIE Codes

Characteristics/Forma t

A thirty-byte field defined as follows. All values
must be left justified and padded with blanks.
Valid values for the access mode and for passwords
are defined in the VM/ SP Planning Guide and
Reference or the VM/SP HPO Planning Guide and
Reference.

Bytes 1-3, counting from the left, specify a
minidisk address. This is the minidisk whose mode
and passwords will be changed. The address must
already exist in the directory entry.

Bytes 4-6 specify the access mode.

Bytes 7-14 specify the read password.

Bytes 15-22 specify the write password.

Bytes 23-30 specify the multiple password.

The access mode, the read password, the write
password, and the multiple password are replaced
in the directory entry. Therefore, specify existing
values that are to be retained as well as values
that are to be changed.

An eighty-byte area composed of ten double word
fields. The ten fields are paired into five sets
corresponding to the five display areas of the
screen. You must specify these areas in the
following order:

1. CP output
2. VM output
3. input redisplay
4. input area
5. status area.

Each of the five doubleword sets has a color field
and an extended highlight field. (See the SCREEN
option description in the VM/SP Planning Guide
and Reference or the VM/ SP HPO Planning Guide
and Reference for the valid color and extended
highlight values.) Within each doubleword set you
must specify the color first followed by the
extended highlight value. You must specify all
fields, including those you don't want to change.
All of the options you specify must also be left
justified in their eight-byte field.

Figure 4 (Part 4 of 4). DIAGNOSE Code X'84' -- Parameter List Operation Field

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 77

DIAGNOSE Codes

Condition and Return Codes: Before control is returned to the virtual
machine, DIAGNOSE code X'84' sets a condition code and, if errors were
detected, a return code in Ry. The condition codes and return codes are
defined as follows:

Condition Code Meaning

°
1

Return Code

10,11

The directory was successfully updated.

DIAGNOSE code X'84' detected an error. The directory
is unchanged. The return code defines the error.

Meaning

An error occurred writing the directory to a direct access
device. To update the directory, use the directory service
program described in the VM/ SP Planning Guide and
Reference or the VM/ SP HPO Planning Guide and
Reference.

20 - 25, 90, 112, 113

26

27

28

30

31

40,41

42,43

50,51

78 VM System Facilities for Programming

DIAGNOSE code X'84' encountered a processing error.
To update the directory, use the directory service
program described in the VM/ SP Planning Guide and
Reference. or the VM/SP HPO Planning Guide and
Reference.

Specified minidisk address does not exist in directory
entry, or specified userid does not have any devices
defined in the directory entry.

No directory volume is linked in read/write.

The value in the OPERATION field of the parameter list
is invalid.

The specified USERID could not be found.

The password specified in the fixed-length area of the
parameter list does not match the current password of the
USERID being updated.

The value specified for the virtual machine storage size
or for the maximum virtual machine storage size is too
large. The maximum allowable size is 16 megabytes.

The value specified for the virtual machine storage size
or for the maximum virtual machine storage size contains
a syntax error or an invalid character.

The specified privilege classes are invalid.

52, 53

60,61,62

63

65, 66

70

71

72

80

81

82, 83

91

92

101

102

110

111

[)~AGNOSIE Codes

The specified privilege classes contain a syntax error or
an invalid character.

The specified priority contains a syntax error or an
invalid character.

The priority value is too large. The maximum allowable
value is 99.

Parameter list size error; if return code = 65, the list
exceeds 112 bytes; if return code = 66, the list size is less
than zero bytes long.

A specified option is invalid. Refer to the description of
OPTIONS in Figure 4 on 76 for a list of OPTIONS that
can be updated with DIAGNOSE code X'84'.

The value X'FFFFFFFF' was not coded after the list of
options.

The option value contains a syntax error or an invalid
character.

The parameter list contains an invalid minidisk address.

The parameter list specifies an invalid access mode for a
minidisk.

The minidisk read, write, or multiple password specified
in the parameter list requires a change in the size of the
directory entry.

No attributes were found on the SCREEN command.

Invalid attributes were found on the SCREEN command.

The parameter list is too large.

The parameter list is less than 1.

No parameter data currently exists in the directory entry.

The parameter length is invalid.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 79

DIAGNOSE Codes

DIAGNOSE code X'8C' -- Access Certain Device Dependent
Information

Byte 0

Flags

Byte 1

All privilege classes (except ANY)

DIAGNOSE code X'8C' allows a virtual machine to obtain certain
device-dependent information without issuing a WRITE STRUCTURED
FIELD QUERY (WSF QUERY). DIAGNOSE code X'8C' retrieves this
information from the RDEVBLOK or NICBLOK and a pageable buffer and
creates a DIAGNOSE interface to enable the virtual machine to access it.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'8C':

Rx
Is the address of user-provided data buffer.

Rx+l

Ry

Is the virtual device address, or the value negative 1 (-1). Specify -1 for
Rx + 1 when the device is the virtual console of the user issuing the
DIAGNOSE code X'8C'.

Is the length of user-provided data buffer.

Exit Values: The data returned by DIAGNOSE code X'8C' is in the
following format:

Byte 2 and 3 Byte 4 and 5 Byte 6-n (n < 502)

Number of Screen Screen WSF Query
partitions width in height in Reply data

cells cells

Flags
80 = extended color
40 = extended highlight
20 = Programmable Symbol Sets (PSS) available
02 = 3270 Emulation Feature
01 = 14-bit addressing

Return Codes: Upon completion, Rx + 1 contains the following return
codes:

o If the DIAGNOSE completes successfully.

4 If an I/O error occurs.

Residual Count: If the user receives less data than he requested, the
difference between the amount of data requested and the amount received is
returned in Ry.

80 VM System Facilities for Programming

DIAGNOSE Codes

Program Exceptions: The user receives the following exceptions:

Addressing
If an invalid buffer address is specified.

Protection
The user receives a storage protection exception of the address in Rx
is a protected area. For example,

• A CMS module
• The nucleus area.

Specification
If the length specified is negative.

If the virtual device address specified is invalid. If the virtual device
is present, but the real device is not, it is considered an invalid virtual
device address.

If the buffer address is not on a doubleword boundary.

Notes:

1. Devices for which the write structured field is not applicable return zeroes
in bytes 0 and 1, and screen width and height in the remaining bytes.

2. For the 3290 Information Panel, dynamic changes in the characteristics of
the terminal are obtained by the virtual machine when the user
disconnects or logs off from the logical terminal. This change, therefore,
is reflected in the data returned by DIAGNOSE code X'8C'.

3. If a paging error occurs when paging in the pageable buffer, six bytes of
information are returned in the user-provided data buffer, and the
residual count is returned in the user's Ry.

DIAGNOSE code X'94' -- VMDUMP Function

All privilege classes (except ANY)

DIAGNOSE code X'94' allows ,a virtual machine to request dumping of its
virtual storage to a spool file for use with the Interactive Problem Control
System (IPCS). Upon completion of DIAGNOSE code X'94' execution,
control is returned to the invoker with a condition code set indicating the
status of the DIAGNOSE function. DIAGNOSE code X'94' uses the
VMDUMP command dump processor to produce the dump.

Only storage that the user is authorized to access will be dumped. Any
storage which is fetch protected (via storage keys and the fetch protection
bit) will:

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 81

DIAGNOSE Codes

• Be replaced by the mask value of X'EE' if only 2K of the 4K page
violated fetch protection

• Not be dumped,if the page is a single-key 4K block.

Only second level storage (storage that is created for the guest virtual
machine) is dumped. Certain operating systems running in a guest virtual
machine such as OS/VS and DOS/VSE have virtual storage (third level) of
their own. CP cannot dump this third level storage directly.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'94':

Rx

Ry

Must contain the pointer to the parameter list in the virtual machine
storage.

Must contain the length of the parameter list.

The parameter list cannot span a 4K page boundary, cannot exceed 240
bytes (30 doublewords), and must not reside in fetch protected storage.

82 VM System Facilities for Programming

[D~AGNOSrE Codes

Supported Parameters

The parameters supported by DIAGNOSE code X'94' are:

[DUMP list-addrJ

[NORETURNJ

[nexlOcl] {~} [

[
TO *] TO userid
SYSTEM

[FORMAT vmtypeJ

[DSSJ

[*dumpi dJ

DUMP list-addr

{.} [
hexloc2

END]
bytecount]

END

indicates that the dump address ranges are in hexadecimal within a
separate parameter list.

list-addr is the address of the dump address list. It is expressed as a
hexadecimal fullword immediately following the DUMP keyword with
a blank separating list-addr from the DUMP keyword. Additional
information about the dump address parameter list can be found in
"Dump Address Parameter List."

NORETURN
indicates that the invoker may not transfer the file back to himself.
This parameter must be used with the "TO userid" or "SYSTEM"
operand where "userid" is not the invoker of the DIAGNOSE
instruction.

{ - }[hex 1 oc2 : END]
{. } [bytecount]

END

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 83

DIAGNOSE Codes

hexlocl
is the first or only hexadecimal virtual storage address dumped.
If you omit the hexlocl operand, the default is zero, the
beginning of virtual machine storage.

hexloc2
is the last hexadecimal virtual storage address dumped. If you do
not specify the hexloc2 operand, the default is END, and CP
dumps the contents of virtual machine storage starting from
hexlocl to the end of virtual storage.

bytecount
is the hexadecimal number of bytes dumped. If you do not
specify bytecount, the default is END, and CP dumps the
contents of virtual machine storage from the first byte at hexlocl
to the end of virtual storage.

[
TO *] TO userid
SYSTEM

defines where the dump is to be transferred.

If you enter an asterisk (*) with the TO, CP transfers the dump to
your virtual card reader.

If you enter a userid with the TO, CP transfers the dump to that user's
virtual card reader.

If you enter SYSTEM, CP transfers the dump to the virtual card
reader of the userid specified on the SYSDUMP operand of the
SYSOPR system generation macro instruction. You must not specify
TO preceding the keyword SYSTEM.

FORMAT vmtype
provides VM/SP IPCS with the virtual machine type (vmtype) which
IPCS uses to format the dump.

vmtype is a one-to-eight byte name of the operating system running in
a virtual machine (for example, CMS). CP also uses the specified
vmtype as the virtual card reader filetype. CP does not validity check
the vmtype. Any vmtype longer than eight bytes generates an error
message and halts further VMDUMP processing. The dump header
record includes your specific vmtype and IPCS uses the vmtype
information to format the dump. If you enter FORMAT, you must also
specify a vmtype. If you do not specify FORMAT, the default vmtype
is FILE.

84 VM System Facilities for Programming

DSS

DIAGNOSIE Codes

specifies that CP take a dump of all discontiguous saved segments in
use by your virtual machine. When "DSS" is specified, only the
discontiguous saved segments will be dumped unless you explicitly
specify other locations. If "DSS" is specified, it overrides the
hexlocl-hexloc2 defaults of a and end.

*dumpid
is a line of user input up to 100 characters long including imbedded
blanks and asterisks which you can enter for your own benefit (that
is, for descriptive purposes, such as the time and date of the dump, or
what was being processed at the time of the dump). If you specify this
operand, it becomes the DMPDMPID field in the dump file
information record (DMPINREC) data area. If specified, you must
enter *dumpid as the last operand in the parameter area.

If you use the FORMAT CP operand, the dumpid information is not
saved. While using IPCS, the dumpid information is not available
when requested. CP dumps do not contain dumpid information.

Notes:

1. The DUMP operand and the in line hexadecimal ranges may not be
specified together on the same invocation (e.g. DUMP xxx x 4-5).

2. Absence of the DSS (Discontiguous Saved Segments) when DSS is
specified causes an error only if DSS is the only dump address range
specified.

3. Except for the *dumpid operand, you can specify the operands of the
DIAGNOSE code X'94' in any order. However, if you specify the
*dumpid operand, it must be the last operand on the command line.

4. The first asterisk of the dumpid is not included in the 100 characters for
the user input.

5. The DUMP address list must contain a minimum of one range.

Dump Address Parameter List

o
8

10

a 1 2

You must create your own dump address parameter list. An example of a
dump address parameter list showing the format and content follow. In the
example, field names are given for reference purposes only. As you create
your dump address parameter list, you can use names of your own choice.

3 4 5 6 7

ADSDNXTP I ADSDNUMN

ADSDFLAGII
ADSDDATA

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 85

DIAGNOSE Codes

where:

ADSDNXrp
(Displacement 0, Length 4) Address of the next list. This field is zero if
there is no additional list needed. The condition under which such a list
would be used is where the invoker has built multiple lists of storage
ranges to be dumped.

ADSDNUMN
(Displacement 4, Length 4) Number of address ranges in this list.

ADSDFLAG
(Displacement 8, Length 1) Flag field for dump list data.

Bit 0 = 0 - the dump list has the starting address and length of the area
to be dumped.

Bit 0 = 1 - the dump list has the starting and ending address of the area
to be dumped.

All other bits are reserved and should be set to zero.

ADSDDATA
(Displacement 10, Length is variable) Start of variable number of
entries. Beginning at ADSDDATA, the following structure is repeated
for the number of times equal to the value given in ADSDNUMN.

ADSDSTRT
(Displacement 0, Length 4) Starting address of storage to be dumped.

ADSDSTOP
(Displacement 4, Length 4) Length of storage area to be dumped or
address of last storage byte to be dumped, as determined by ADSDFLAG
setting.

Condition and Return Codes: Upon completion of DIAGNOSE code X'94'
execution, control is returned to the invoker with a condition code set to
indicate the status of the DIAGNOSE. The condition codes returned to the
invoker are:

Condition
Code Result

0 Function completed successfully. All requested
ranges have been dumped.

1 Function completed unsuccessfully. Portions of
the requested ranges have been dumped. Ry
contains a numeric value (the return code)
which indicates the reason for the failure.

86 VM System Facilities for Programming

,/

ID~AGNOSIE Coo]es

Condition
Code Result

2 Unsuccessful completion. No dump has been
created. Ry contains a numeric value (the
return code) which indicates the reason for the
failure.

The return codes returned to the invoker are:

Return Condition
Code Code Description

0 0,1 Successful completion.

4 2 Parameter list exceeds 240 bytes (30
doublewords)

8 1,2 System I/O error

C 1,2 Violation of fetch protection

10 2 Invalid range

14 2 Conflicting option

18 2 U serid missing or invalid

lC 2 Hexloc missing or invalid

20 2 Parameter missing

24 2 U serid not in directory

28 2 Spooling error

2C 2 Hexloc exceeds storage

30 2 List spans page boundary

34 2 Invalid address pointer

Detailed Description of Return Codes:

Return
Code Meaning

o Successful completion.

CC = 0 indicates that a dump of all the requested area has been
created.

CC = 1 indicates that a dump of only a portion of the requested area
has been created. This can occur when a valid address range and
DSS (discontiguous saved segments) are requested but no
discontiguous saved segments are loaded for the user.

4 The parameter list exceeds 240 bytes (30 doublewords). No dump
has been created.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 87

DIAGNOSE Codes

8 System I/O error.

CC = 1 indicates that the system failed to bring in a 4K page within
and address range. This causes a partial dump to be created.

Note: No dump is created if the 4K page is the only page
requested.

CC = 2 indicates that the system failed to bring in the parameter
list or the dump address list. These conditions do not create a
dump.

C Violation of fetch protection; the storage keys do not match.

CC = 1 indicates that the system found a 4K page within an address
range. A partial dump is created.

Note: No dump is created if the 4K page is the only page
requested.

CC = 2 indicates that a parameter list or dump address list is fetch
protected. No dump is created.

10 Invalid range. The ending address is less than the starting address
or the maximum number of ranges (2,049) was exceeded. No dump
has been created.

14 Conflicting option. No dump has been created.

18 Userid is missing or invalid. Userid consists of more than eight
characters. No dump has been created.

lC Hexloc missing or can not be converted into hexadecimal, or the
value specified for the number of address ranges in the address list
is zero. No dump has been created.

20 Required parameter missing. No dump has been created.

24 Userid not in directory. No dump has been created.

28 Spooling error. No dump has been created.

2C Hexloc exceeds storage size. No dump has been created.

30 Parameter list or dump list spans the page boundary. No dump has
been created.

34 Invalid address pointer. Pointer points to storage outside of the
user defined storage area. No dump has been created.

88 VM System Facilities for Programming

!DIAGNOSE Codes

DIAGNOSE Code X'98' -- Real Channel Program Support

All privilege classes (except ANY)

Using DIAGNOSE code X'98', a virtual machine can lock and unlock
virtual pages, and it can execute its own real channel programs.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'98':

Rx

Ry

Contains a hexadecimal code indicating the operation to be performed.
The possible codes are:

Code
0000
0004
0008

Function
Lock a virtual page
Unlock a virtual page
Perform I/O on a real CCW string

Contains either the virtual address of a user's page to be locked or
unlocked, or else, if Rx contains X'0008', a virtual device address.

The page address in Ry must fall within the virtual machine's storage
size. DIAGNOSE code X'98' does not support operations on pages in
saved segments which lie outside of the virtual machine's storage size.

Exit Values: Ry+ 1 contains a return code if the operation was
unsuccessful (indicated by condition code 3). If a lock operation was
successful, Ry + 1 contains the real address of the successfully locked page.

Program Exceptions: The user receives the following exceptions:

Operation
If a user tries to use DIAGNOSE code X'98' without being authorized
by the DIAG98 directory option. DIAGNOSE code X'98' is provided to
only those users defined as being authorized in the system directory by
the DIAG98 option.

Specification
If Ry is equal to 15, and Rx is equal to Ry or Ry + 1.

Note: A virtual machine should only use the real addresses returned by
DIAGNOSE code X'98' in its real channel programs. The virtual machine is
responsible for any security violations it may cause from using any other
real addresses.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 89

DIAGNOSE Codes

Subcode X'OOOO' -- Lock a Virtual Page

Rx = function subcode
Ry = virtual address of a page to be obtained and locked
Ry + 1 = real address of the user's page if the lock attempt was successful; a

return code if the locking operation was unsuccessful (indicated by
condition code three).

Return Code
1
2
3
4

Error
User is running virtual = real
Invalid virtual address
Page unavailable in dynamic page area
Page already locked

DIAGNOSE code X'98' subcode X'OOOO' locks in real storage a selected page
of a user's virtual storage, thus excluding the page from future paging
activity. Locking pages can enhance the efficiency of a particular virtual
machine by keeping frequently-used pages in real storage.

If too many pages of real storage are locked, other virtual machines may
not have enough available remaining pages to operate efficiently. This can
severely degrade the throughput in all virtual machines because of
excessive contention for the remaining available page frames. So, if the
amount of page frames available for paging is limited, DIAGNOSE code
X'98' subcode X'OOOO' should not be used without the system programmer's
approval.

Once a page is locked, it remains locked until the user either logs off the
system or issues the UNLOCK command for that page. If a user with the
locked pages option in effect re-IPLs the system by device address and
specifies the clear option, the locked pages are unlocked and available to
the system being loaded. If a user with the locked pages option in effect
re-IPLs the system by device address and doesn't specify the clear option,
all locked pages remain locked except the page given to DMKVMI for IPL.
If a user with the locked pages option in effect re-IPLs the system by name
(shared system), the locked pages are unlocked only if the locked pages are
not in the shared segment or if the page is in the shared segment and the
user who is re-IPLing is the last user of the shared segment. In addition,
issuing DIAGNOSE codes X'14', X'30', X'34', or X'38' against a locked page
causes the page to become unlocked. Shared pages cannot be locked in a
system generated for AP or MP operation.

The virtual pages locked in processor storage are blocks of 4K (4096) bytes.
This block of storage need not represent all of the user's virtual storage.
DIAGNOSE code X'98' subcode X'OOOO' may be issued as many times as
required for one virtual machine to lock noncontiguous pages of storage.
The remaining virtual machine storage blocks may remain pageable.

Note: For a user's virtual storage, DIAGNOSE code X'98' subcode X'OOOO'
operates exactly like the CP LOCK command.

90 VM System Facilities for Programming

DIAGNOSE Codes

Subcode X'0004' -- Unlock a Virtual Page

Rx = function subcode
Ry = virtual address of page to be unlocked
Ry + 1 = return code if the operation was unsuccessful (indicated by

condition code three).

Return Code
1
2
3

Error
User is running virtual = real
In valid virtual address
Page already unlocked

DIAGNOSE code X'98' subcode X'0004' unlocks a page of a virtual machine
that was previously locked by a DIAGNOSE code X'98' subcode X'OOOO' or a
CP LOCK command. Once pages are unlocked, they are available to CP for
other virtual machine paging operations.

Note: For a user's virtual storage, DIAGNOSE code X'98' subcode X'0004'
operates exactly like the CP UNLOCK command.

Subcode X'0008' -- Perform 1/0 on a Real CCW String

Rx = function subcode
Ry = virtual device address (bits 16-31)
Ry + 1 = return code if the operation was unsuccessful (indicated by

condition code three).

Return Code
1
2
3

Error
Device not operational
Device not dedicated
Virtual CAW key is zero

Condition codes 0, 1, and 2 are compatible with normal virtual I/O so that
conditions can be consistently reflected to the virtual machine.

DIAGNOSE code X'98' subcode X'0008' executes the real channel program
built by the virtual machine. To do this, it interfaces with the current
virtual I/O support to perform actual I/O.

Notes:

1. The I/O for this function performs identically to the virtual SIOF
instruction, except that all I/O addresses are real addresses and channel
program translation can be bypassed.

2. The user must coordinate locking of pages containing CCWs and data
areas by using the lock and unlock subfunctions.

3. The I/O initiated by DIAGNOSE code X'98' cannot be traced by the CP
TRACE command.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 91

DIAGNOSE Codes

DIAGNOSE Code X'AO' -- Retrieve a Group Name

All privilege classes (except ANY)

DIAGNOSE code X' AO' retrieves a group name for a given userid.

Note: This group is not related to groups defined for the Group Control
System (GCS) component of VM.

This DIAGNOSE, along with access verification routines, can increase
security on your VM system. For more information on access verification
routines, see VM/ SP CP for System Programming or VM/ SP HPO CP for
System Programming.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X' AO':

Rx

Ry

Contains the address of a field consisting of two doublewords. The first
doubleword is a userid. The second doubleword is empty.

Contains the subcode X'OO'. This requests CP to retrieve a group name.

Exit Values: If a group name exists for the given userid, CP returns the
group name in the second doubleword of the two double words pointed to by
Rx.

Condition Codes: DIAGNOSE code X' AO' sets the following condition
codes:

Condition
Code
o
1

Meaning
Request completed successfully
Request failed

DIAGNOSE Code X'BO' -- Access Diagnostic Information Saved For
Protected Application Facility Users

All privilege classes (except ANY)

DIAGNOSE code X'BO' lets a virtual machine access diagnostic information
saved on behalf of a user running with the protected application facility
invoked, for whom a re-IPL has been attempted. This information consists
of the information normally displayed for one of the following errors:

• Shared page altered
• Virtual machine disabled wait
• Paging error

92 VM System Facilities for Programming

DIAGNOSE Codes

• Invalid PSW
• External interrupt loop
• Program interrupt loop
• Translation exception.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'BO':

Rx
Contains the virtual address of the user's buffer.

Ry
Contains the buffer length. Any non-negative buffer length is allowed,
as long as the user's buffer does not cross a page boundary.

Exit Values: If the DIAGNOSE completed successfully, the first byte of
the user's buffer contains one of the following codes:

X'01' Disabled Wait PSW
X'02' External Interrupt Loop
X'03' Paging Error
X'04' Program Interrupt Loop
X'05' Shared Page Altered
X'06' Translation Exception

If the code indicates a Disabled Wait PSW condition, the remainder of the
user's buffer contains:

Bytes 2-9 8-byte binary Disabled Wait PSW

If the code indicates an External Interrupt Loop, the remainder of the
user's buffer contains:

Bytes 2-9 8-byte External Old PSW

If the code indicates a Program Interrupt Loop, the remainder of the user's
buffer contains:

Bytes 2-9 8-byte Program Old PSW

If the code indicates a Shared Page Altered condition, the remainder of the
user's buffer contains:

Bytes 2-9 8-byte character representation of the shared system name
Bytes 10-13 4-byte binary page address

Rx still contains the virtual address of the user's buffer. Ry contains the
completion code.

Completion Codes: The completion codes returned in Ry are:

Code Meaning
o Operation successful

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 93

DIAGNOSE Codes

4 No re-IPL information found
8 I/O error paging in the user's buffer

Programming Exceptions: The user of DIAGNOSE code X'BO' receives
the following exceptions:

Addressing
If the buffer address specified is invalid.

Protection
If a storage protection violation has occurred.

Specification
If a negative buffer length is specified.

If the buffer crosses a page boundary.

DIAGNOSE Code X'B4' -- Virtual Printer External Attribute Buffer
Manipulation

All privilege classes (except ANY)

DIAGNOSE code X'B4' allows a user to associate an external attribute
buffer (XAB)7 he provides with his virtual printer device. A user is able to:

• Read the existing XAB into the storage of his virtual machine
• Write or rewrite an XAB
• Determine the size of an existing XAB
• Determine if an XAB has been defined
• Erase the XAB.

Each time a print file is CLOSED for the virtual printer, CP adds the XAB
information to the spool file. Both the character data actually written to
virtual printer and the XAB data for a print file are kept on SPOOL in
blocks called SPLINKs.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'B4':

Rx
Contains a 4-byte (unsigned) buffer address.

The XAB is a collection of data that defines how a print spool file is to be
processed. Each print file may have its own XAB, but the XAB is optional.
CP has the facilities to maintain the XABs.

94 VM System Facilities for Programming

Ry

rDtAGNOSIE Codes

Is divided up as follows. Bytes 0 and 1 of Ry contain the 2-byte
(unsigned) length of the XAB buffer. The maximum valid length is 32K-1
bytes. Bytes 2 and 3 of Ry contain the 2-byte virtual printer address.

Ry+l
Is divided up as follows. Bytes 2 and 3 of Ry + 1 contain a 2-byte
hexadecimal code indicating the function to be done. The function
sub codes are:

Code Function

0000 Read external attribute buffer
0004 Write to or erase the external attribute buffer

Condition Codes: On return, byte 0 of Ry + 1 may contain error codes that
further define a returned condition code of 2. Bytes 0 and 1 of Ry contain
the length of the XAB that overlays the original input value for the buffer
length if CC = 0, and if CC = 2 with the error code in Ry + 1 set to 'OS'. If an
XAB does not exist for the specified virtual printer, then a value of 0 is
returned as the length.

Notes:

1. The XAB is erased if the length specified for the XAB is zero and the
function is '0004' (WRITE). The virtual printer is marked to indicate
that there is no XAB associated with it.

2. If an invalid length is specified, then the the virtual storage address field
of the XAB is not checked for validity.

3. The total storage that would be changed by reading the XAB must be
addressable using the PSW key of the current PSW at the time the
DIAGNOSE code is issued. This storage must not include any portion of
a protected shared segment.

Condition
Code Ry + 1 Error

0 X'OO' Read, write, or erase function
successful

2 X'04' CUU not a valid virtual printer device
2 X'OS' Length of XAB buffer greater than the

user buffer
2 X'OC' Length of user buffer invalid
2 X'14' CP I/O error during paging operation
2 X'lC' Invalid subcode specified in bytes 2

and 3 ofRy+1
2 X'20' User buffer address invalid
2 X'24' User buffer in protected storage
2 X'2S' Erase functions unsuccessful (no

existing XAB)

Note: If register 15 is specified for Ry, then no Ry + 1 return code is given;
but, PSW condition code = 2 is set.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 95

DIAGNOSE Codes

Considerations

• The maximum length of the user buffer is 32K-l bytes (32,767 bytes).

• The length of the XAB overlays the input value for the user buffer
length. If an XAB does not exist for the specified virtual printer, then a
value of 0 is returned as the length.

• The total storage that would be changed by reading an XAB must be
addressable using the PSW key of the current PSW at the time the
DIAGNOSE code is issued. This storage must not include any portions
of a protected shared segment. For a WRITE operation, the storage
location that contains the XAB data must not violate fetch protection.
For a READ operation, the storage location to receive the XAB data
must not violate storage protection.

External Attribute Buffer (XAB)

The External Attribute Buffer (XAB) is a control block that contains data
you create to specify additional information about a print file. Each print
file has its own XAB and CP has the facilities to maintain XABs.

Suggested Format for an External Attribute Buffer

The following shows the suggested format for data contained in an External
Attribute Buffer. The basic design of the format is to create separate
blocks within the XAB. Using this format, you can create or locate a
specific block without affecting other blocks within the XAB.

first block second block
... etc

header header data

0 2 4 6 H1 o 2 4 6 H2 0
+ + + + + + +
4 L1 L1 L1 L1 4 L2
I I I + +
I I I L1 L1

H1-\ I I I I
I I I

L1
~H2--f I

I
I

L2 I

Figure 5. Suggested Format of an External Attribute Buffer

96 VM System Facilities for Programming

Lx

00

Hx

header

data

DIAGNOSE Codes

is the length of a block. This is a 2-byte field which specifies the
total number of bytes for this block.

is reserved.

is the length of the header. This is a 2-byte field which specifies
the total number of bytes used for header information. The value
is the size of the header + 2 (for the size of the Hx field itself).

is the header data. This is a variable size field which identifies the
block.

For multiple independent blocks to be contained in the XAB, it is
necessary for each block to have a unique header.

• The first part of the header should be a name or character
string that uniquely identifies who or what is defining the
block. For example, a company name or trademark.

• The second part of the header should be the name of the
product associated with the company or trademark.

• The third part of the header should be the name of the block.

• The fourth part of the header should be format level for the
block. If a change is made to a defined block, it is reflected in
the format level for that block.

The following are examples of headers.

Blocks defined for products from IBM might use a header like:

IBM - VM/SP - BLOCK XYZ - LEVEL 0.0.0

And if IBM changed this block, the header might look like:

IBM - VM/SP - BLOCK XYZ - LEVEL 1.0.0

Blocks defined for products from company JJKKLL might use a
header like:

JJKKLL - PRODI - BLOCK OPQ - LEVEL 0.0.0

is the actual data for the block. This is a variable size field.

Note: CP has no restrictions on the content of an XAB except that the
total size of the XAB cannot exceed 32K-l bytes (32,767 bytes). Although
CP does not check to see that the standard format has been followed, we

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 97

DIAGNOSE Codes

recommended that each user of an XAB use the suggested format for
multiple uses of the XAB.

DIAGNOSE Code X'BS' -- Spool File External Attribute Buffer
Manipulation

All privilege classes (except ANY)

DIAGNOSE code X'BS' allows an application virtual machine to read,
write, or erase an external attribute buffer (XAB)8. A user is able to:

• Read the existing XAB associated with the file
• Write or rewrite an XAB
• Determine the size of an existing XAB
• Determine if an XAB has been defined
• Prevent a file from being SELECTed while the XAB is being changed
• Erase the XAB.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'BS':

Rx

Ry

Contains a 4-byte (unsigned) buffer address.

Is divided as follows. Bytes 0 and i of Ry contain the 2-byte (unsigned)
length of the XAB. The maximum valid length is 32K-I bytes. Bytes 2
and 3 of Ry contain the 2-byte hexadecimal spoolid of the spool file that
is the target of the function.

Ry+1
Is divided as follows. Byte I of Ry + I contains a flag indicating the
special processing of the file. Bytes 2 and 3 of Ry + I contain a 2-byte
hexadecimal code indicating the function to be done. The I-byte flag in
Ry + I can be anyone of the following:

X'OO' No special processing
X'Ol' Spool file placed in USER HOLD status
X'02' Spool file placed in USER NOH OLD status
X'04' Spool file to be read is on the RDR chain rather than the PRT

chain

The function subcodes are:

8 The XAB is a collection of data that defines how a print spool file is to be
processed. Each print file may have its own XAB, but the XAB is optional.
CP has the facilities to maintain the XABs.

98 VM System Facilities for Programming

DIAGNOSE Codes

Code Function

0000 Read external attribute buffer
0004 Write to or erase the external attribute buffer

Condition Codes: On return, byte 0 of Ry+ 1 may contain error codes that
further define a returned condition code of 2. Bytes 0 and 1 of Ry contain
the length of the XAB that overlays the original input value for the buffer
length if CC = 0, and if CC = 2 with the error code in Ry + 1 set to 'OS'. If an
XAB does not exist for the spool file, then a value of 0 is returned as the
length.

Notes:

1. If the length of 0 is specified for the XAB, then the erase function is done.
The spool file is marked to indicate that there is no XAB associated with
it.

'2. If an invalid length is specified, then the virtual storage address field of
the XAB is not checked for validity.

3. The total storage that would be changed by reading the XAB must be
addressable using the PSW key of the current PSW at the time the
DIAGNOSE code is issued. This storage must not include any portion of
a protected shared segment.

Condition
Code Ry + 1 Error

0 X'OO' Read, write, or erase function successful9

2 X'04' Invalid spoolid
2 X'OS' Length of XAB buffer greater than the

user buffer9

2 X'OC' Length of user buffer invalid.
2 X'14' CP I/O error during paging operation
2 X'lS' Invalid special processing flag
2 X'lC' Invalid subcode specified in bytes 2 and 3

ofRy+1
2 X'20' User buffer address invalid
2 X'24' User buffer in protected storage
2 X'2S' Erase functions unsuccessful (no existing

XAB)
2 X'2C' Spool file not available

Note: If register 15 is specified for Ry, then no Ry + 1 return code is given;
but, PSW condition code = 2 is set.

Any special processing requested by the flag byte is completed.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 99

DIAGNOSE Codes

DIAGNOSE Code X'BC' -- Open A Spool File

All privilege classes (except ANY)

DIAGNOSE code X'BC' opens10 a spool file for a spooled reader device and
returns spool file identification into a user buffer. If a file is already open
on the reader device, DIAGNOSE code X'BC' returns spool file
identification for the open file regardless of the reader class.

DIAGNOSE code X'BC' allows a program running in a virtual machine to
open a file with the appropriate class for a spooled reader device. The
appropriate class is the current class of the spooled reader device. The
program receives the same information received from issuing the following
commands:

• QUERY READER spoolid
• QUERY READER spoolid ALL
• QUERY READER spoolid TBL.

Entry Values: Set the input registers up as follows when invoking
DIAGNOSE code X'BC':

Rx
Contains the virtual address of a buffer.

Rx+l
Contains the length of the buffer.

Ry
Contains the virtual address of a spooled reader device.

Exit Values: Upon return, Ry + 1 contains a return code.

Depending on the specified buffer length, the user's buffer contains as much.
of the following information as possible.

Character
Length
(in bytes)

4
8
1
3
8
3

12
12
8
8

Description
Spool file id (EBCDIC)
Userid
Class
Type
REC -- Number of records (EBCDIC)
Copies (EBCDIC)
Filename
Filetype
Date
Time

10 A file is opened when an SIO to the spooled device is issued.

100 VM System Facilities for Programming

/

ro~AGNOSIE Codes

8 Distribution
4 Status -- 'NONE'
8 FORM -- User forms
8 Destination
4 Flash name
3 Flash count (EBCDIC)
4 FCB -- Forms control buffer
4 CMOD -- Character modification
1 Character modification count (EBCDIC)
3 Load 3800 -- 'ANY' 'BEG' 'NO'

16 CHARS -- Character Arrangement Tables
8 SIZE -- Number of SPLINKs (EBCDIC)

Condition and Return Codes: Upon completion, DIAGNOSE code X'BC'
returns the following condition and return codes:

Condition Ry + 1
Code
o
2
3 04
3 08
3 12
3 16

Meaning

Data transfer is successful
No file is found
The device address is invalid
The device type is invalid
Device busy, not ready, or a real reader
A paging I/O error is received

Program Exceptions: If DIAGNOSE code X'BC' is specified incorrectly,
the following exception is received:

Addressing
If the user's buffer address is invalid.

Protection
If the user's buffer address storage key is invalid.

Specification
If the buffer length is less than or equal to O.

If the buffer address is equal to O.

If either Rx or Ry is specified as R15.

If Ry is specified as Rx.

DIAGNOSE Code X'C8' -- Set Language

All privilege classes (except ANY)

DIAGNOSE code X'C8' initiates the SET function required to make a
national language available.

When the SET function executes, CP finds or builds the control block
associated with the CP message repository for that language. The address

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 101

DIAGNOSE Codes

of that control block is saved in the user's VMBLOK. CP uses this
language to issue most CP system messages.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'C8':

Rx and Rx+l

Ry

Contain the identifier (langid) of the language to be set. This langid
must correspond to a LANGID parameter that is on the NAMELANG
macro in the DMKSNT entry for this language. Specify the language
identifier using up to 5 characters. Place the langid in the register pair
so that the first four characters of the langid are in Rx and the fifth
character is in the high-order byte of Rx + 1. Set the three unused bytes
of Rx + 1 to binary zeroes. If the langid is less than five characters, it
should be padded on the right with blanks as required.

Contains the function code for SET (X'OO') in the high-order byte.

Exit Values: When processing of the SET function completes, the first
five bytes of the register pair Rx, Rx + 1 contain the langid for the language
currently set for CP messages. If the langid is less than five characters, it
will be padded on the right with blanks as required.

Return Codes: The low-order byte of Ry contains one of the following
return codes:

Code Meaning and Action

X'OO' The language requested has been set.

If the return code is anything besides X'OO', the requested language has not
been set. Also, the language used to issue CP messages does not change.

X'04' The DMKSNT entry for the language specified does not exist.
Specify the appropriate NAMELANG macro in DMKSNT for this
language.

X'08' The volid specified in the DMKSNT entry for the language is not a
CP-owned volume. Ensure a CP-owned volume is specified in the
DMKSNT entry generated by the NAMELANG macro for this
language.

X'OC' The volid specified in the DMKSNT entry for the language is not
mounted. Ensure that the appropriate volume is mounted.

X'14' A paging error occurred during the SET operation.

X'lC' The DMKSNT entry for the language was found; however, the
langid in this DMKSNT entry does not match the langid in the
saved message repository. Ensure that the NAMELANG entries do
not specifjT o~lerlapping areas on Di\SD.

102 VM System Facilities for Programming

/

DIAGNOSE Codes

X'20' The "MSGREP" identifier was not found on the first page of the
requested message repository. CP looks for this identifier to
determine if a valid message repository is saved. Save the
appropriate CP message repository.

X'24' No more virtual page buffers are available.

Program Exceptions: If DIAGNOSE code X'C8' is specified incorrectly,
the following exception is received:

Specification
If the input registers are set up incorrectly for the DIAGNOSE.

DIAGNOSE Code X'CC' -- Saving the CP Message Repository

Privilege Class E

Use DIAGNOSE code X'CC' to initiate the SAVE function for the CP
message repository.

When the SAVE function executes, CP finds the DMKSNT entry for the
language to be saved. This entry specifies the DASD location where CP
saves its message repository. If the SAVE operation completes successfully,
then DIAGNOSE code X'C8' can be used to set that language. The CMS
SET LANGUAGE command can also be used provided the CMS language
files have previously been saved.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'CC':

Rx and Rx+l

Ry

Contain the identifier (langid) of the language to be saved. This langid
must correspond to a LANGID parameter that is on the NAMELANG
macro in the DMKSNT entry for this language. Specify the language
identifier using up to 5 characters. Place the langid in the register pair
so that the first four characters of the langid are in Rx and the fifth
character is in the high-order byte of Rx + 1. Set the three unused bytes
of Rx + 1 to binary zeroes. If the langid is less than five characters, it
should be padded on the right with blanks as required.

Contains the function code for SAVE (X'OO') in the high-order byte.

Ry+l
Contains the virtual address where you have loaded the CP message
repository to be saved. The virtual address specified must start on a 4K
page boundary.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 103

DIAGNOSE Codes

Return Codes: When processing of the SAVE function completes, the
low-order byte of Ry contains one of the following return codes:

Code Meaning and Action

X'OO' The entire CP message repository is successfully saved.

If the return code is anything besides X'OO', the CP message repository was
not saved.

X'04' The DMKSNT entry for the language specified does not exist.
Specify the appropriate NAMELANG macro in DMKSNT for this
language ..

X'OS' The volid specified in the DMKSNT entry for the language is not a
CP-owned volume. Ensure a CP-owned volume is specified in the
DMKSNT entry generated by the NAMELANG macro for this
language.

X'OC' The volid specified in the DMKSNT entry for the language is not
mounted. The operator must mount this volume.

X'lO' The repository is too large to be saved in the area reserved on
DASD. The compiled listing gives the number of pages for the
repository; the NLSPGCT parameter in NAMELANG must specify a
page count greater than or equal to that number.

X'14' A paging error occurred during the save operation. The previous
repository may be invalid.

X'lS' An error occurred while attempting to write a page of the repository
to DASD. The previous repository may be invalid.

X'lC' The langid specified with the DIAGNOSE does not match the langid
in the repository you want to save. Either the wrong text deck was
loaded into virtual storage, or the wrong langid was specified on the
DIAGNOSE instruction.

X'20' The message repository is invalid. The text loaded into virtual
storage to be saved is not the message repository.

Program Exceptions: If DIAGNOSE code X'CC' is specified incorrectly,
the following exceptions are received:

Addressing
If the area to be saved extends beyond the user's virtual storage.

Privileged Operation
If the user does not have the privilege class required to issue the
DIAGNOSE instruction.

104 VM System Facilities for Programming

li)~AGNOSIE Codes

Protection
If the area to be saved is fetch protected.

Specifica tion
If the input registers are set up incorrectly for the DIAGNOSE or if
the message repository to be saved is not found on a 4K page
boundary.

DIAGNOSE Code X'OO' -- Provide 3480 Tape Volume Serial Number

All privilege classes (except ANY)

DIAGNOSE code X'DO' allows any virtual machine to provide CP with the
virtual device address and the volume serial (VOLSER) of a 3480 volume.
The VOLSER is then recorded in the OBR or MDR when an OBR or MDR
is logged for the tape device.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'DO':

Rx

Ry

Contains the address of the tape volume serial. This number must be 6
bytes long and not cross a page boundary.

Contains the virtual device address.

Condition Codes: A condition code is returned for DIAGNOSE X'DO' as
follows:

Condition
Code Meaning

o DIAGNOSE complete.
1 Error condition. CP will not save the

VOLSER for the specific tape volume. Ry
contains one of the following return
codes:

Ry=l

Ry=2
Ry=3
Ry=4
Ry=5

Ry=6

Invalid VOLSER address pointer. The
pointer points to storage outside of the
user defined storage area.
VOLSER crosses the page boundary
I/O error during paging
VOLSER is fetch protected
Invalid virtual device address or device is
not dedicated
Dedicated device address not a 3480 tape
device

Example: The following example shows how to invoke DIAGNOSE code
X'DO':

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 105

DIAGNOSE Codes

DMKXXX

VOLSER

X182

CSECT

LA
L
DC

DC
DS
DC

END

R5,VOLSER
R6,X182
X'835600DO'

CL6'V00002'
OF
XL4'182'

:'.'

DIAGNOSE Code X'D4' -- Specify An Alternate Userid

Privilege class B

" , " '. : ;.:";; _ ' .~:l;; ;, '"j

DIAGNOSE code X'D4' lets a class B "master" virtual machine tell CP the
userid of a "worker" machine that is performing the work and the userid of
the "end-user" for which it is authorized to work. The end-user's userid is
considered to be the "alternate userid."

CP uses the alternate userid in the following ways:

• Placed in the IPVMID field of the APPC jVM connection pending
interrupt data when the "worker" issues an APPCjVM CONNECT.
(See the VMj SP Transparent Services Access Facility Reference for more
information on APPCjVM.)

• Used as the spool file origin id for spool files created by the worker.

Essentially, this lets the "worker" imitate or act on behalf of the "end-user"
in the ways specified above.

The class B virtual machine must

~ Be on the same system as the worker machine, but not necessarily on
the same system as the end-user.

• Guarantee the identity of a remote user.

• Provide the userid of the end-user. CP cannot verify the end-user's id.

• Use this DIAGNOSE to set and reset the identity of the end-user for
whom the worker machine is performing. When the worker machine is
finished, the master machine can reset the alternate userid by issuing
DIAGNOSE code X'D4' with the alternate userid set to zero.

106 VM System Facilities for Programming

DIAGNOSE Codes

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'D4':

Rx

Ry

Contains binary zero.

Contains the virtual address of a 16-byte parameter list. The parameter
list must not cross a page boundary. The 16-byte parameter list is
divided as follows:

Bytes

0-7

8 - 15

Contain:

The userid of the worker machine to be authorized to access
resources on behalf of an end-user. It must be left-justified
and padded with blanks.

The userid of the end-user (alternate userid). It must be
left-justified and padded with blanks. If the entire field is set
to binary zeros, then the alternate userid is cleared; thus
there is no alternate userid.

Return Codes: When DIAGNOSE code X'D4' processing completes, one of
the following return codes is placed into Rx by CP:

Return
Code Meaning
o The operation is successful.
4 There is an I/O error while paging in the parameter list.
8 The VMBLOK of the worker machine is not found.

12 The operation does not have RACF authorization.

Programming Exceptions: The user of DIAGNOSE code X'D4' receives
the following exceptions:

Addressing
If the parameter list address specified is invalid.

Protection
If the parameter list is fetch protected against the user.

Specifica tion
If the parameter list crosses a page boundary or Rx is not zero on
entry.

Note: Nothing prevents the "master" and the "worker" from being the
same virtual machine, but in this case, a security exposure may exist.

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 107

DIAGNOSE Codes

DIAGNOSE Code X'DB'-System Spool Information

o
8

10

o 1

08FILIO

0*1 I 0*2

2

I

Privilege Class D

Applying to VM/SP HPO only, DIAGNOSE code X'D8' allows the spooling
operator to access SFBLOKs regardless of which system queue they are on
(reader, printer, or punch). Either the system or a given user's spool file
chains can be used.

Entry Values: Set up the input registers as follows when invoking
DIAGNOSE code X'CC':

Rx

Ry

Contains the doubleword-aligned virtual storage address of a parameter
list (D8P ARMS). The entire parameter list must be within a 4K page.
The subfunction entry in this parameter list specifies the request being
initiated. The subfunctions and their codes are:

Code Subfunction

0000 Read next SFBLOK

Not used.

The parameter list pointed to- by Rx has the following format:

3 4 5 6 7

08FUNC I 08RETBUF

08USER

I 0*3 I 08RESRVO

where:

D8FILID
The spool file ID of the previous file. If D8FILID is 0, the first
SFBLOK on the specified queue is returned.

D8FUNC
The subfunction code.

D8RETBUF
The virtual address of a buffer where the requested information is to
be returned. The size of the buffer is defined by D8BUFSZ in
doublewords. If the buffer is larger than the requested information, it
is padded with zeroes.

108 VM System Facilities for Programming

DIAGNOSIE Codes

D8USER

D*l

D*2

D*3

The virtual machine ID that owns the previous spool file (specified in
D8FILID). If D8USER is 0 or blank, and D*FILID is non-zero, a
specification exception is returned.

D8QUEUE contains one of the following flags (only one can be
specified, otherwise a specification exception is returned):

D8PRINT (X'80') - Return the next print SFBLOK
D8PUNCH (X'40') - Return the next punch SFBLOK
D8READ (X'20') - Return the next reader SFBLOK

D8BUFSZ contains the size of the buffer in doublewords whose
address is specified in D8RETBUF. If 0 is specified, 20 doublewords
are returned. The specified amount of the SFBLOK is copied into the
virtual machine's response buffer if a value other than 0 is used.

D8FLAG contains the following flag:

D8ANYVM (X'80') - Return next SFBLOK regardless of owning
virtual machine. If this bit is off, the next file of the specified type
(printer, punch, or reader) that belongs to the virtual machine
specified in D8USER is returned.

D8RESRVD
Reserved. If this field is not 0, a specification exception is returned.

Exit Values: The contents of the SFBLOK is returned in the buffer
specified by D8RETBUF.

Condition Codes:

Condition
Code l\'1eaning
o
1
2

Data transfer successful
End of chain
Input file not found (or D8QUEUE is empty)

Program Exceptions: If DIAGNOSE code X'D8' is specified incorrectly,
the following exceptions are received:

Specification
If one of the following errors was detected:

• The specified buffer or parameter list crosses a page boundary
• D8USER, D8FILID, and D8ANYVM are all zero
• D8USER is zero and D8FILID and D8ANYVM are not zero
• D8USER and D8ANYVM are both zero and D8FILID is not

zero
• The subfunction (D8FUNC) is not defined

Chapter 1. The DIAGNOSE Instruction in a Virtual Machine 109

DIAGNOSE Codes

• The parameter list is not on a doubleword boundary
• More than one type of SFBLOK is specified in D*l
• D8RESRVD is not zero.

Subcode X'OOOO' -- Read next SFBLOK

If D8USER is 0 or blank and D8FILID is 0, the first SFBLOK on the
specified input chain (system or user) is copied into the issuer's buffer. If a
user ID and spool ID are specified, the queue specified by D8QUEUE is
scanned for the specified file. If the SFBLOK was found, the next SFBLOK
meeting the input criteria is copied into the issuer's buffer. If the file
specified by D8USER and D8QUEUE is not found, the condition code is set
to 2. If the file specified by D8USER and D8QUEUE is the last file meeting
the input criteria, the condition code is set to 1 and no data is transferred.

110 VM System Facilities for Programming

IUCV Paths

The Inter-User Communications Vehicle (IUCV) is a communications
facility that allows a program running in a virtual machine to communicate
with other virtual machines, with a CP system service, and with itself.

An lUCY communication takes place between a source communicator and a
target communicator. The communication takes place over a predefined
linkage called a path. Each communicator can have multiple paths, and
can receive or send multiple messages on the same path simultaneously.

lUCY provides functions, through the lUCY macro instruction, to:

• Create and dismantle paths
• Send and reply to messages
• Receive or reject messages
• Control the sequence of lUCY events.

Communicators receive information about lUCY events by handling lUCY
external interrupts.

Note: Advanced Program-to-Program Communication/VM (APPC/VM) is
based on the lUCY support described in this chapter. It lets users connect
to resource managers by specifying resource ids, instead of virtual machine
userids and nodeids. Unlike lUCY, the resource, controlled by the target
virtual machine, can be at the local system or, if the TSAF virtual machine
is running, at any other system within a TSAF collection (a defined group
of VM systems). For a complete description of how to use the APPC/VM
facility refer to the VM/SP Transparent Services Access Facility Reference.

The lUCY directory control statement authorizes the establishment of paths
between virtual machines, or between a virtual machine and a CP system
service. If the maximum number of paths is not specified by the
MAXCONN keyword of the OPTION statement in the user's directory, a
communicator can establish a maximum of four paths.

Once authorized, users establish a path when the source communicator
invokes the CONNECT function and the target communicator invokes the
ACCEPT function. Either communicator can terminate an established path
via the SEVER function. The target communicator can also prevent the
establishment of a path by invoking the SEVER function instead of the
ACCEPT function. In addition, communication over a path can be
temporarily suspended when a communicator invokes the QUIESCE

Chapter 2. Inter-User Communications Vehicle 111

IUCV

IUCV Messages

function. The quiesced path can be reactivated when a communicator
invokes the RESUME function.

A single communicator can have multiple paths defined, and virtual
machines may have multiple paths between them. The communicator could
be a source communicator on some of its defined paths, a target
communicator on other paths, and both a source and a target communicator
on still other paths. Communication over any and all paths can occur
simultaneously.

Every path has two ends: the source communicator's end and the target
communicator's end. The source communicator has a description of the
path from the source's perspective and the target communicator has a
description of the same path from the target's perspective.

Each path description has a path id that is unique for each communicator.
IUCV assigns path ids when communicators invoke the CONNECT and
ACCEPT functions. When invoking IUCV functions, the source
communicator identifies the path by using the source's path id. The target
communicator identifies the same path to IUCV by using the target's path
id. A pathid is IUCV's method of distinguishing among the paths available
to a communicator.

An IUCV communication is called a message. The source communicator
invoking the SEND function initiates communication and creates a
message. The target communicator obtains the message by invoking the
RECEIVE function.

The target communicator can optionally request information about
messages sent to it by invoking the DESCRIBE function, and can refuse a
message sent to it by invoking the REJECT function. The target
communicator can respond to a message via the REPLY function.

Communication is terminated and the message is destroyed when the source
communicator issues the TEST COMPLETION function or handles an
IUCV message complete external interrupt.

Message Data Transfer

When the target communicator issues the RECEIVE function, IUCV moves
the message data from the source communicator's SEND virtual address
space to the target communicator's RECEIVE virtual address space. When
the target communicator issues the REPLY function during a two-way
communication, lUCY moves data from the target communicator's REPLY
virtual address space to the source communicator's ANSWER virtual
address space.

112 VM System Facilities for Programming

I

~lUJCV

Figure 6 on page 113 illustrates the movement of message data during an
lUCY two-way communication.

SOURCE COMMUNICATOR
VIRTUAL MACHINE

SEND
AREA

ANSWER
AREA

RECEIVE

REPLY
....

..
r

TARGET COMMUNICATOR
VIRTUAL MACHINE

RECEIVE
AREA

REPLY
AREA

Figure 6. IUCV Two-Way Data Transfer

The source communicator's SEND and ANSWER areas may overlap.
Similarly, the target communicator's RECEIVE and REPLY areas may
overlap.

CP performs storage protection checking for all data moved during an
lUCY communication.

Message Identification

A message is fully identified to a virtual machine by three values. lUCY
functions allow one or more of these values to be specified to selectively
process messages.

o Message id

lUCY assigns a message id when the source communicator invokes the
SEND function. The message id is generated by a sequential counter
value and is unique for the system IPL.

o Message class

The source communicator identifies a message by using the source
message class and target communicator identifies a message by using
the target message class. The message classes are arbitrary values that
the source communicator specifies when invoking the SEND function.
The meaning of the message classes is agreed to in advance by the two
communicators. lUCY places no restrictions on the values specified for
message class. The communicators can use the message class to handle
messages selectively.

o Path id

lUCY assigns the path id when a path is established with the
CONNECT function.

There is no defined relationship between the values of the source and target
path ids lUCY assigns, or between the message classes the source and the

Chapter 2. Inter-User Communications Vehicle 113

IUCV

target communicators use. None of these values need to be the same
although they refer to the same message.

The message id always has the same value for both target and source
communicators.

When invoking lUCY functions, the source communicator may refer to a
message by a combination of its source path id, source message class, and
message id. The target communicator may refer to the same message by a
combination of its target path id, target message class, and message id.

The message tag information may optionally be used by the source
communicator to further identify a message. Since lUCY presents the tag
to the source communicator when the message completes, the tag may be
used to tie the completed message to the original SEND request.

Since a message can be identified as a priority message, the source
communicator may also use this as an indication to the target
communicator that special handling is required. lUCY queues a priority
message ahead of any nonpriority messages and behind any earlier priority
messages. A communicator must be authorized to handle priority messages
in the lUCY directory control statement.

IUCV External Interrupts

The lUCY external interrupt notifies a virtual machine about lUCY events.

To enable lUCY external interruptions, communicators must:

• Invoke the DECLARE BUFFER function to indicate to lUCY where to
store data associated with an external interruption.

• Set bit 7 in the virtual machine's PSW to one.

• Set submask bit 30 of control register 0 to one.

lUCY functions generate a type X'4000' external interruption. When a
virtual machine in EC mode receives an lUCY external interruption, lUCY
places the interruption code in locations X'86' and X'87' of the virtual
machine's storage. For a virtual machine in BC mode, lUCY places the
code in the external old PSW. In addition, lUCY stores an external
interrupt buffer containing information about the message or lUCY
function at the address specified when the communicator invoked the
DECLARE BUFFER function. One field of this buffer is an external
interrupt subtype that indicates why the external interrupt occurred. The
possible values of this field are:

• 01 - Connection pending
• 02 - Connection complete
• 03 - Connection severed
• 04 - Connection quiesced

114 VM System Facilities for Programming

IUCV

• 05 - Connection resumed
• 06 - Priority message completion
• 07 - Nonpriority message completion
• 08 - Priority message pending
• 09 - Nonpriority message pending

The first five types are called "control interrupts", and the last four types
are called "message interrupts".

Control interrupts are always reflected to the virtual machine in
first-in-first-out (FIFO) order before message interrupts. Message interrupts
of the same subtype are reflected in first-in-first-out (FIFO), but message
interrupts of different subtypes are reflected in the order shown above.

A virtual machine can use the SET MASK function to enable or disable
external interrupts selectively for lUCY communications. The SET MASK
function has mask bits that enable or disable external interruptions for:

• Priori ty message pending
• Nonpriority message pending
• Priority message completion
• N onpriority message completion
• lUCY control functions

To divide and handle the control type interrupts even further, the SET
CONTROL MASK function may be used on the lUCY macro. The types of
control interrupts may be separately enabled and disabled. These control
type interrupts are:

• Connection pending
• Connection complete
• Connection severed
• Connection quiesced
• Connection resumed

The SET MASK function is interrogated before the SET CONTROL MASK
function. If you specify that all control interrupts are disabled using the
SET MASK function, then the SET CONTROL MASK settings are not
interrogated. If you specify that all control interrupts are enabled using
the SET MASK function, then the SET CONTROL MASK settings are
interrogated to determine how to handle the individual types of control
interrupts.

After lUCY initialization and until you issue the SET MASK or SET
CONTROL MASK functions, all lUCY submask bits are on, enabling all
lUCY external interrupts.

Chapter 2. Inter-User Communications Vehicle 115

IUCV

Avoiding IUCVExternal Interrupts

A virtual machine can only be notified about an IUCV control function by
receiving an external interruption. However, a virtual machine can handle
pending messages either by an external interrupts or by using the
DESCRIBE function. Message completions can be handled either by an
external interrupt or with the TEST COMPLETION function.

IUCV also provides the TEST MESSAGE function to determine the
presence of any pending messages or message completions. If neither is
pending, the virtual machine goes into a wait state until one is pending.

For example, if a source communicator sends a priority message, IUCV
queues an external interrupt for the target communicator. If the target
virtual machine is enabled for external interrupts, then the target virtual
machine receives an external interrupt. However, if the target virtual
machine is not enabled, the message remains pending for the virtual
machine, and the target virtual machine can issue the DESCRIBE function
to obtain information about the message in the parameter list. The message
pending external interrupt is cleared. The target virtual machine can
continue processing the message with the RECEIVE or REJECT functions.

Note: If a communicator is enabled for external interrupts and issues the
DESCRIBE or TEST COMPLETION function, results are unpredictable. It
can not be determined whether information about a particular message is
received via external interrupt or by the completion of DESCRIBE or TEST
COMPLETION. However, IUCV supplies information about a message only
once.

Two IUCV functions, QUIESCE and RESUME, let a virtual machine
control the arrival of message pending external interrupts. The QUIESCE
function suspends incoming messages on one or all IUCV paths. Any
communicator trying to send a message over a path that has been quiesced
receives a return code indicating a quiesced path. No message is created
and thus no external interrupt is reflected. The RESUME function restores
normal communications.

Security Considerations

Installations control the use of IUCV through the virtual machine directory
entries. If the installation has not authorized a user for IUCV
communications in the directory, all requests for IUCV communications to
virtual machines other than the user's own are denied. Service virtual
machines and CP system services defined with the ALLOW (any virtual
machine to connect) option do their own authorization checking, and
individual directory entries are not needed.

IUCV moves data from one virtual machine address space to another. A
virtual machine never has access to the storage or registers of CP or
another virtual machine. When the user invokes the RECEIVE or REPLY

116 VM System Facilities for Programming

IUCV

functions, the data to be moved is described by a starting address and a
length, or a list of starting addresses and lengths. The length specified in
the parameter list is the maximum amount of data moved. No requirements
are placed on a virtual machine as to the location of these buffers.

lUCY assigns path ids and records the path id of each communicator. A
given communicator can reference only the paths that have been
established for his virtual machine.

lUCY assigns the message id for each message. lUCY does not use this
identifier as a direct reference, but only as an operand in a comparison. It
is conceivable that a virtual machine could generate a valid message
identifier and use this to request a message. However, when a message id is
used to request a message, a user must also specify a message class and a
path id. If the specified message is not associated with the specified path id
and message class, the user cannot access the messages. If the message id,
path id, and message class do match, the user could legitimately access the
message by specifying simply path id and/or message class without the
generated message id.

The installation can limit the number of connections for a particular
virtual machine by using the MAXCONN parameter of the OPTION control
statement in the virtual machine's directory entry.

Virtual Machine-to-Virtual Machine Communication

Using Data in a Buffer

Figure 7 on page 118 illustrates a typical sequence of functions invoked
when a virtual machine communicates with another virtual machine. The
functions include initializing, connecting to another virtual machine,
sending and receiving messages, replying to and waiting for messages,
severing communications with the other virtual machine, and terminating
communications.

Chapter 2. Inter-User Communications Vehicle 117

IUCV

Virtual Machine X Communicating to Virtual Machine Y

(VIRTUAL MACHINE X)

1 DECLARE BUFFER
2 CONNECT to Y

5 Get External Interrupt
6 SEND to Y

8 TEST COMPLETION

11 Get External Interrupt
lorl

TEST COMPLETION
12 SEVER

15 RETRIEVE BUFFER

Figure 7. Sequence of Functions

(VIRTUAL MACHINE Y)

1 DECLARE BUFFER

3 Get External Interrupt
4 ACCEPT

-
7 Get External Interrupt

lorl
DESCRIBE

9 RECEIVE
10 REPLY

13 Get External Interrupt
14 SEVER
15 RETRIEVE BUFFER

1. Virtual machine X wishes to communicate with virtual machine Y.
Both virtual machines must independently invoke the DECLARE
BUFFER function. The buffer provides the virtual machine with
information about incoming external interrupts concerning IUCV
functions.

2. Virtual machine X invokes the CONNECT function, indicating Y as the
target. IUCV checks the directory to determine if this connection is
authorized. If it is, IUCV queues an external interrupt for Y indicating
that there is a connection pending for it. IUCV returns control to X at
the next instruction after the CONNECT.

3. The external interrupt queued by step 2 is reflected to Y indicating a
connection pending. IUCV places the external interrupt information in
the buffer that Y provided in step 1. IUCV passes control to the
external interrupt handler of Y.

4. Virtual machine Y interprets the external interrupt and responds with
an ACCEPT to complete the connection. IUCV then completes the
connection and queues a Connection Complete external interrupt for X.
IUCV returns control to Y at the next instruction after the ACCEPT.

5. The external interrupt queued by step 4 is reflected to X, indicating that
the connection is complete, and the communication path is available for
use. IUCV places the external interrupt information in the buffer that
X provided in step 1. IUCV passes control to the external interrupt
handler of X.

118 VM System Facilities for Programming

~ucv

6. Virtual machine X issues a SEND. The SEND function queues an
external interrupt for Y indicating that a message is pending. Control
returns in X at the next instruction after the SEND.

7. If virtual machine Y is enabled for external interrupts and for IUCV
messages (via SET MASK), the external interrupt queued by step 6 is
reflected to Y, indicating that a message is pending. IUCV places
external interrupt information in the buffer specified in step 1. IUCV
passes control to the external interrupt handler of Y. If virtual
machine Y is disabled for external interrupts or IUCV messages and
invokes the DESCRIBE function, IUCV places the message information
in the DESCRIBE parameter list, and the Message Pending external
interrupt for this message is cleared. IUCV passes control to the next
instruction after the DESCRIBE.

8. While virtual machine Y is processing the message, virtual machine X
can decide to check if the communication has been completed by issuing
the TEST COMPLETION function. The condition code indicates that
(in this example) the communication is not complete.

9. With the message description from step 7, virtual machine Y starts
processing the message and issues a RECEIVE. The parameter list
associated with RECEIVE specifies where the message data is stored in
virtual machine Y.

If the message was one-way, the RECEIVE function queues an external
interrupt for X indicating that the message had completed. REPL Y
processing in step 10 would not be required for one-way messages.
Control returns to Y at the next instruction after the RECEIVE.

10. When processing the message is complete, virtual machine Y responds
to X by invoking the REPLY function. The REPLY function queues an
external interrupt for X indicating that the message has completed.
Control returns to Y at the next instruction after the REPLY.

11. If virtual machine X is both enabled for external interrupts and enabled
for IUCV replies, the external interrupt queued by step 10 is reflected to
X, indicating a reply pending. To identify the reply, the external
interrupt information is placed in the buffer specified in step 1. IUCV
passes control to the external interrupt handler of X. If virtual machine
X is disabled for external interrupts and issues a TEST COMPLETION,
IUCV places the message information in the TEST COMPLETION
parameter list, and the Message Completion external interrupt is
cleared. IUCV passes control to the next instruction after the TEST
COMPLETION.

12. Virtual machine X has now completed its communications with virtual
machine Y and issues a SEVER to break the communications path. The
SEVER function queues an external interrupt for Y indicating that the
communication link has been broken. Control returns in X at the next
instruction after the SEVER.

Chapter 2. Inter-User Communications Vehicle 119

IUCV

13. The external interrupt queued by step 12 is reflected to Y indicating
that the path has been broken by virtual machine X. Virtual machine
Y can now do any clean up needed in its storage.

14. After virtual machine Y has completed processing, the virtual machine
issues a SEVER notifying lUCV that it also is finished with the
communication path. lUCV can then clean up its control blocks.

15. When all communications are complete and all communication paths
have been severed, both virtual machines independently invoke the
RE'rRlEVE BUFFER function.

Using Data in a Parameter List

rYlost IUCV functions require a paralueter list which contains information
necessary for IUCV to perform the requested function. The lUCY macro
assists you in filling in the parameter list properly. The parameters used
with each function are described with the individual function descriptions
later in this chapter.

The parameters let you specify eight bytes of data in the parameter list. To
understand better how data specified in the parameter list is handled, the
lUCY functions are covered in a typical scenario.

1. The IUCV DECLARE BUFFER, CONNECT, and ACCEPT sequence
must be invoked to establish the user's external interrupt buffer and a
path to the target virtual machine (or CP). If you expect to receive data
in the parameter list, you must authorize such communication on the
CONNECT or ACCEPT by specifying PRMDATA=YES. The external
interrupt information to the target communicator includes a bit
indicating if PRMDAT A = YES was chosen.

2. Issue an lUCY SEND request. When the data is to be passed in the
parameter list, the DATA = PRMMSG option is used on the IUCV
macro, and the PRMMSG = option is used to move the data into the
parameter list. The sender of the message should be prepared to handle
a return code indicating that DATA = PRMMSG is not allowed if the
target communicator has not specified PRMDAT A ~ YES at connection
time. IUCV saves the message data until it is to be presented to the
target.

3. If the target is enabled for IUCV Message Pending external interrupts,
the target virtual machine receives an lUCV Message Pending external
interrupt because of the SEND request in the previous step. The
message data is stored in the external interrupt buffer. A flag is set in
the IPFLAGS1 field of the buffer indicating that the data is in the
parameter list. Since the message data has been presented to the target,
the target does not have to issue an IUCV RECEIVE for this message.
If the message was a one-way message, communication is complete.
There is no asynchronous return of message completion given to the
source (sending) virtual machine on a one-way message.

120 VM System Facilities for Programming

Using Control Paths

IUCV

4. If t.he target is disabled for lUCY Message Pending external interrupts
and issues the lUCY DESCRIBE or RECEIVE functions, the message
data is stored in the parameter list. A flag is set in the IPFLAGSI field
of the parameter list indicating that the data is in the parameter list.
Since the message data is presented to the target on a DESCRIBE, the
target does not have to issue an IUCV RECEIVE for this message. If
the message was a one-way message, the communication is complete.
There is no asynchronous return of message completion given to the
source (sending) virtual machine on a one-way message.

5. If the communication in the previous steps was a two-way message, a
REPL Y is issued by the target virtual machine. When the REPLY data
is to be passed in the parameter list, the DATA = PRMMSG option is
used on the lUCY macro, and the PRlVIMSG = option is used to move
the data into the parameter list. The REPL Yer of the message should
be prepared to handle a return code indicating that DATA = PRMMSG
is not allowed if the source communicator has not specified
PRlVIDATA=YES at connection time. lUCY saves the message data
until it is to be presented to the source communicator.

6. If the source communicator is enabled for IUCV Message Completion
external interrupts, the source virtual machine receives an lUCY
Message Completion external interrupt because of the REPLY in the
previous step. The message data is stored in the external interrupt
buffer. A flag is set in the IPFLAGSI field of the buffer indicating that
the data is in the parameter list. The communication is complete.

7. If the target is disabled for lUCY Message Completion external
interrupts, and issues the IUCV TEST COlVIPLETE function, the
message data is stored in the parameter list. A flag is set in the
lPFLAGSl field of the parameter list indicating that the data is in the
parameter list. The communication is complete.

8. SEVER and RETRIEVE BUFFER cause any messages pending to be
destroyed for that virtual machine. Since no asynchronous Message
Completion external interrupt is returned to the source communicator
for one-way messages using the DATA = PRMMSG option, the source
communicator must realize upon receiving an lUCY Connection
Severed external interrupt from the target communicator that messages
may not have been received by the target.

lUCY control paths and buffers allow a control program (like CMS)
running in a virtual machine to use the lUCY functions without interfering
with a user application that is also using lUCY. Applications would not be
coded using the CONTROL parameter on the lUCY DECLARE BUFFER
and CONNECT functions.

To understand better how control paths would be handled, the lUCY
functions are covered in a typical user scenario. In the scenario, CMS is

Chapter 2. Inter-User Communications Vehicle 121

IUCV
tt~i)(! - 1 L wj. .. e' - .,;

used as the control program running in a virtual machine executing a
normal lUCY application.

1. When CMS is IPLed in the virtual machine, CMS issues an lUCY
DECLARE BUFFER with the CONTROL = YES parameter. This
establishes a control buffer for CMS to use. All lUCY external
interrupt information for control paths is presented in this buffer.

2. After CMS has defined a control buffer, CMS may establish control
paths to other virtual machines by issuing an lUCY CONNECT with
the CONTROL = YES parameter. All paths used by CMS should be
specified as control paths.

3. If the target virtual machine accepts the connection request, an lUCY
Connection Complete external interrupt is presented to the CMS
control program. The IPCNTRL bit in IPFLAGSI of the external
interrupt indicates that a control path was accepted. CMS may now
start communications on this path.

4. When CMS allows the application program to run, the application
issues an lUCY DECLARE BUFFER with the CONTROL = NO
parameter. All application paths are established using lUCY
CONNECT with the CONTROL = NO parameter. These are the
functions that the application uses today so no changes are required to
the application.

5. The application starts communicating over its established paths.

6. Since both CMS and its application have established paths, both are
expecting and handling external interrupts.

If an external interrupt is on a control path, the lUCY information
about the interrupt is stored in the control buffer when the interrupt is
presented to CMS. CMS interrogates the control buffer, recognizes the
path id as belonging to a control path, and handles the lUCY interrupt.
The application's buffer remains unchanged.

If the external interrupt is on an application path, the lUCY
information about the interrupt is stored in the application's buffer
when the interrupt is presented to CMS. Since CMS only has access to
the control buffer, lUCY stores the path id in the control buffer and
clears (to zero) the remainder of the buffer. CMS interrogates the
control buffer, recognizes the path id as belonging to an application
path, and passes the lUCY external interrupt to the application for
handling.

7. When the application wishes to terminate a path or all lUCY
communications, it uses the lUCY SEVER or RETRIEVE BUFFER
functions. Neither of these functions affect the control paths being
used by CMS.

122 VM System Facilities for Programming

~ucv

Certain lUCY functions result in an operation exception if executed with
only a control buffer declared. These functions are:

• ACCEPT

• RETRIEVE BUFFER

• TEST MESSAGE

• DESCRIBE

• TEST COMPLETION

• SET MASK

• SET CONTROL MASK.

The ALL = YES parameter on the lUCY functions of SEVER, QUIESCE,
and RESUME does not affect control paths.

When handling lUCY messages with the lUCY functions of RECEIVE,
REPLY, REJECT, and PURGE on control paths, the message must be fully
qualified. The message id, path id, and class of the message must be
specified in the parameter list to reference the message.

The lUCY functions affecting lUCY external interrupts do not operate on
interrupts for control paths. These functions are TEST MESSAGE,
DESCRIBE, TEST COMPLETION, SET MASK, and SET CONTROL
MASK. These functions are never used by a control program since they
have no affect on control paths.

Since lUCY cannot tell what part of the virtual machine issued an lUCY
function, it is possible for an application to issue an lUCY function on a
control path. This reference to a control path by an application, whether
intentional or accidental, is considered a user application error. For
example, the SEVER function specifying a control path terminates that
path even though the function was issued by the application program.

Invoking IUCV Functions

You can invoke all lUCY functions through the lUCY macro. In general,
specify the name of the lUCY function you wish to perform, the address of a
parameter list to contain input to the function, and keyword parameters.
lUCY moves the values specified on the keyword parameters into the
specified parameter list.

The parameter list must be defined on a doubleword boundary.

You can specify lUCY parameters in two ways:

• By coding keyword parameters on the lUCY macro. lUCY stores values
in the parameter list based on values you specify on the macro.

• By storing required input to the function in the function parameter list
before invoking the lUCY macro instruction. To store input in an
IUCV parameter list, use labels generated by the IPARML DSECT.

Chapter 2. Inter-User Communications Vehicle 123

IUCV
:(''

You may use a combination of these methods to supply input to a single
lUCY function. If you specify any optional parameters on the lUCY macro,
you are responsible for providing the USING for the IP ARML DSECT when
the macro is invoked. If you do not specify an optional parameter to
initialize the parameter list, the macro assumes that you have stored a
value in the parameter list before invoking the lUCY macro.

Note: The lUCY macro does NOT clear parameter list fields since values
may have been already stored by the user. Therefore, it is the user's
responsibility to insure that all unused fields are cleared (set to zero). All
reserved fields in the parameter list should always be set to zero.

An advantage of using the lUCY macro instruction is that lUCY provides
extensive error checking of parameter combinations when input is supplied
on the macro. Many invalid parameter combinations can be detected by
lUCY when you assemble the program.

The lUCY macro, after formatting the parameter list with any optional
keyword parameters, generates two assembler instructions.

• A load address (LA) instruction to put the lUCY function code into
register zero (0).

• An lUCY instruction (B2FOxxxx) which indicates the lUCY parameter
list.

IUCV Functional Descriptions

In the functional descriptions the following terms are used:

Address A guest real address (real to the virtual machine). It can be
specified on the lUCY macro as either the

1. Label of the storage location, or
2. Number of a register in parentheses that contains the

address, "(reg)".

Address List
A virtual machine defined area used on an lUCY SEND,
RECEIVE, or REPLY that allows data to be moved from
discontiguous areas. The address list must be on a double word
boundary in the following format:

124 VM System Facilities for Programming

IUCV

address 1 length 1

address 2 length 2

address n length n

Each entry contains two fullwords; the address of the data to be
transferred and the number of bytes to be transferred from that
address.

Label An addressable label in the user's program. The IP ARML
DSECT provides common labels for referencing fields in an IUCV
parameter list.

Length The amount of data to be transferred on an IUCV request. It can
be specified on the IUCV macro as either the

1. Label of the storage location containing the length, or
2. Number of a register that contains the length, "(reg)".

The IUCV macro assumes a halfword value for the length at the
storage location, or the low-order halfword of the register .
specified. A length modifier of 2 or 4 may be used, (label,2) or
«reg),2), or (label,4) or «reg),4). If a length modifier of 4 is used,
the macro uses the fullword value for the length at the storage
location or in the register specified.

The functional descriptions are presented in the following groupings.

Basic communication functions:

QUERY
DECLARE BUFFER
CONNECT
ACCEPT
SEND
RECEIVE
REPLY
REJECT
PURGE
SEVER
RETRIEVE BUFFER

- Get IUCV information
- Initialize for IUCV communications
- Establish a path
- Complete a path
- Transmit a message
- Receive a message
- Respond to a message
- Refuse a message
- Cancel a message
- Terminate a path
- Terminate all IUCV communications

Controlling IUCV external interrupts:

QUIESCE
RESUME

- Suspend message pending interrupts
- Restore message pending interrupts

Chapter 2. Inter-User Communications Vehicle 125

IUCV

TEST MESSAGE
DESCRIBE
TEST COMPLETION
SET MASK
SET CONTROL MASK

126 VM System Facilities for Programming

- Check for interrupts or wait
. - Avoid Message pending interrupt
- Avoid Message complete interrupt
- Disable all types of IUCV interrupts
- Disable all IUCV control interrupts

1

QUERY Function

IUCV Macro Format

IUCV QUERY

The QUERY function determines how large an external interrupt buffer
lUCY requires to store information, and determines the maximum number
of communication paths you can establish in your virtual machine.

QUERY can be issued before DECLARE BUFFER to determine the buffer
size and allocate the buffer before it is declared to lUCY. The maximum
number of paths facilitates the allocation of a user-defined path table. This
function is useful to virtual machines that have dynamic storage
allocations routines. For those programs that must allocate fixed storage,
the buffer size is 40 bytes (X'28'), and the maximum number of paths
available would be the default of four or the number on the user's OPTION
directory control statement, the MAXCONN option.

I label I lUCY I QUERY

IUCV Macro Completion Status

Output from QUERY

CONDITION CODES

o -Normal completion
3 - Errors were encountered reading directory

PROGRAM INTERRUPTIONS

Operation Exception
Your virtual machine is not in supervisor state.

When you invoke the QUERY function, lUCY returns:

• The size of the lUCY external interrupt buffer in general register O.

• The maximum number of connections that can be outstanding for this
virtual machine in general register 1.

Chapter 2. Inter-User Communications Vehicle 127

IUCV DECLARE BUFFER
c::= ________________ ~ ______________ ~ ______________________ . ______________ ~~~~~

DECLARE BUFFER Function

IUCV Macro Format

The DECLARE BUFFER function specifies the address of an external
interrupt buffer where lUCY can store information. When a virtual
machine receives an lUCY external interruption, lUCY stores in this buffer
information about the message, reply, or control function that caused the
the interruption.

The DECLARE BUFFER function must be invoked before any other lUCY
function can be used (except QUERY).

After invoking the DECLARE BUFFER function and if enabled for lUCY
interrupts, the virtual machine can now start receiving lUCY external
interrupts.

label lUCY DCLBFR ,PRMLlST= {address}
,MF= L

,BUFFER = {address}
,CONTROL = {YESINO}

Only the PRMLlST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the DECLARE BUFFER parameter list. The
lUCY instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

BUFFER =

specifies the address of the external interrupt buffer.

CONTROL =
specifies whether this buffer is to be used with control paths or
application paths.

CONTROL = YES indicates that this buffer is to be used with control
paths. For a complete discussion on using control buffers and paths,
see "Using Control Paths" on page 121.

CONTROL = NO indicates that this buffer is to be used with
application paths.

128 VM System Facilities for Programming

/'

IUCV DECLARE BU-FFER
____ ••• __ 0 _______ _

IUCV Macro Completion Status

CONDITION CODES
o . Normal completion
1 - Nonzero value stored at IPRCODE
3 - Errors encountered in reading directory

PROGRAM INTERRUPTIONS
Specification Exception

The parameter list is not on a doubleword boundary.

Addressing Exception
The parameter list or buffer address that you specified
is outside the virtual machine's storage.

Operation Exception
Your virtual machine is not in supervisor state.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

DECLARE BUFFER Parameter List Format

o
8

10

18

20

1111111111111!IPFLAGSl!IPRCODE 11111111111111111111111111111

111111111111111111111111111111 IPBFADRI

11

11

117111

Parameter List Input Fields

o IPFLAGSI -- contains options for the CONNECT function.

IPCN'rRL (X'04') -- indicates that you want this to be a control
buffer.

o IPBFADRI - The address of your external interrupt buffer.

Chapter 2. Inter-User Communications Vehicle 129

IUCV DECLARE BUFFER

Output from DECLARE BUFFER

RETURN CODES in IPRCODE

o -Normal return
19 - A previously declared buffer is still in use

130 VM System Facilities for Programming

!UCV CONNIECT

CONNECT Function

IUCV Macro Format

The CONNECT function establishes an lUCY path to another virtual
machine. Although the CONNECT may complete successfully, you are not
able to use the path until you receive an lUCY Connection Complete
external interrupt (the target has ACCEPTed your connection) for this
path.

If you receive an lUCY Connection Severed external interrupt (the target
has SEVERed your connection) for this path, you may not use this path
since the connection has been refused by the target virtual machine.

If the CONNECT function completes successfully, the count of active
connections is incremented for both virtual machines. If a virtual machine
is connecting to itself, the active connection count is incremented by two.
The count is not decremented until the virtual machine issues an lUCY
SEVER for a particular path.

label lUCY CONNECT ,PRMLlST= {address}
,MF= L

,CONTROL = {YESINO}
,MSGLlM= {address}
,PRMDATA= {YESINO}
,PRTY= {YESINO}
,QUlESCE= {YESINO}
,USERDTA= {address}
,USERlD= {address}

Only the PRMLlST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLlST=
specifies the address of the CONNECT parameter list. The lUCV
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

CONTROL =
specifies whether this connection is to be associated with the external
interrupt buffer for control paths or application paths.

CONTROL = YES indicates that this path is to be associated with the
external interrupt buffer for control paths. For a complete discussion

Chapter 2. Inter-User Communications Vehicle 131

IUCV CONNECT

on using control paths and buffers, see "Using Control Paths" on
page 121.

CONTROL = NO indicates that this path is to be associated with the
external interrupt buffer for application paths.

II

MSGLIM=
specifies the limit of outstanding messages to be allowed on the path
established by this CONNECT. The address of the MSGLIM is to a
halfword value.

Upon executing the lUCY instruction, the message limit specified is
checked to insure that the maximum limit of 255 has not been
exceeded. The actual limit assigned to the path established by this
connection is the lower of this value in the parameter list or the value
on the lUCY directory control statement (if specified). If the message
limit is not specified in the parameter list or on the lUCY directory
control statement, IUCV assumes a default of 10. After executing the
lUCY instruction, the IPMSGLIM field reflects the actual message
limit established for the path.

If the SEND function completes successfully, the count of active
messages is incremented for the sending virtual machine. The count
is not decremented until the message complete external interrupt is
returned. For one-way messages using data in the parameter list, the
count is decremented when the message pending external interrupt is
presented to the target virtual machine.

PRMDATA=
specifies whether your program can handle message data in the
parameter list.

PRMDATA=YES indicates that your program can handle message
data in the parameter list (those messages sent using the parameter
DATA = PRMMSG on an IUCV SEND).

PRMDATA=NO indicates that your program can only handle
message data presented in a buffer (sent using the parameter
DATA = BUFFER on an IUCV SEND).

PRTY=
specifies if you want to send priority messages on this path. It does
not affect the program's ability to receive priority messages.

PRTY = YES indicates that you want to send priority messages.
Priority must be authorized on the lUCY directory control statement
for this parameter to be effective. After executing the lUCY
instruction, the IPPRTY bit in IPFLAGS1 should be checked to insure
that priority messages were authorized.

PRTY = NO indicates that you do not want to send priority messages.

132 VM System Facilities for Programming

IUCV CONNECT

If your program is unauthorized or if PRTY = NO is specified, lUCY
prevents your program from sending priority messages.

QUIESCE=
specifies whether you want to quiesce the path being established.

QUlESCE = YES prevents messages from coming across this path until
your program is ready to process them. You can restore the path to
full communication by invoking the lUCY RESUME function.

QUlESCE = NO indicates that the path is to become active as soon as
the corresponding lUCY ACCEPT is done by the target communicator.

USERDTA=
specifies the data area containing the 16 bytes of user data that lUCY
is to reflect to the target virtual machine. The user data is reflected
as part of the lUCY Connection Pending external interrupt.

USERID=

IUCV Macro Completion Status

specifies the 8-character userid of the target virtual machine or the
lUCY system service to which you want to establish this path.

CONDITION CODES

o - Normal completion
1 - Nonzero value stored in lPRCODE

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a double word boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

Chapter 2. Inter-User Communications Vehicle 133

IUCV CONNECT
'ii

CONNECT Parameter List Format

o 1 2 3 4 5 6 7

o
8

10

18

20

IPPATHID IIPFLAGSI IIPRCODE I IPMSGLIM 1//////////1/////

IPVMID

IPUSER

IPUSER

//

Parameter List Input Fields

Output from CONNECT

• IPFLAGSI -- contains options for the CONNECT function.

IPCNTRL (X'04') -- indicates that you want this to be a control path.

IP APPC (X'08') -- indicates the protocol to be used on this path.
This bit must be set to zero.

IPPRTY (X'20') -- indicates that you want to send priority messages
on this path.

IPQUSCE (X'40') -- indicates that you do not want to receive
messages on this path until an IUCV RESUME is issued.

IPRMDATA (X'80') -- indicates that your program can handle
message data in the parameter list.

• IPMSGLIM -- contains the limit of outstanding messages that IUCV is
to allow on the path.

• IPVMID -- contains the userid of the virtual machine or IUCV system
service to which you want to establish this path.

o IPUSER -- contains the user data that IUCV reflects to the target
virtual machine.

• IPPATHID -- contains the path id that IUCV assigns the new path.

o IPMSGLIM -- contains the message limit for this path.

o IPFLAGSI -- contains specific information about this connection.

IPPRTY (X'20') -- indicates that you may send priority messages on
this path.

134 VM System Facilities for Programming

IUCV CONNECT

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o - Normal return
11 - Target communicator is not logged on
12 - Target communicator has not invoked the DECLARE

BUFFER function
13 - Maximum number of connections for this

communicator exceeded
14 - Maximum number of connections for the target

exceeded
15 - No authorization found
16 - Invalid lUCY system service name
18 - Value in IPMSGLIM exceeds 255

Connection Pending External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the target virtual machine that you wish to establish a new path
(via the CONNECT), lUCY reflects an lUCY Connection Pending external
interrupt to the target virtual machine.

The target virtual machine receives this external interrupt if it is enabled
for lUCY interrupts in Control Register 0 and the PSW. The functions of
SET MASK and SET CONTROL MASK also control the presentation of
this type of interrupt.

The external interrupt contains the information that the target virtual
machine needs to either ACCEPT or SEVER the pending connection.

3 4 5 6 7

/IPFLAGSlfIPTYPE ~. IPMSGLIM / ///////////////

IPVMID

IPUSER

IPUSER

//

• IPFLAGSI -- contains options for this path.

IPPRTY (X'20') -- indicates that the virtual machine may receive
priority messages on this path.

IPQUSCE (X'40') -- indicates that lUCY will not allow messages to
be sent on this path until an lUCY RESUME is issued by the
connecting virtual machine.

IPRMDATA (X'80') -- indicates that the connecting virtual machine
can handle message data in the parameter list.

Chapter 2. Inter-User Communications Vehicle 135

IUCV CONNECT

• IPMSGLIM -- contains the maximum number of messages that IUCV
allows the connecting virtual machine to send on this path.

• IPPATHID -- contains the path id that IUCV assigns the new path.

• IPTYPE -- indicates a Connection Pending external interrupt with a
value of X'Ol'.

• IPUSER -- contains the user data specified by the virtual machine that
wants to establish this path.

136 VM System Facilities for Programming

IUCV ACCEPT

ACCEPT Function

IUCV Macro Format

The ACCEPT function is issued after the user receives a Connection
Pending external interrupt and now wishes to complete the lUCY
communication path.

label lUCY ACCEPT ,PRMLlST= {address}
,MF= L

,MSGLlM= {address}
,PATHlD= {address}
,PRTY= {YESINO}
,PRMDATA= {YESINO}
,QUlESCE= {YESINO}
,USERDTA= {address}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the ACCEPT parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

MSGLIM=
specifies the limit of outstanding messages to be allowed on the path
completing this ACCEPT. The address of the MSGLlM is to a
halfword value.

Upon executing the lUCY instruction, the message limit specified is
checked to insure that the maximum limit of 255 has not been
exceeded. The actual limit assigned to the path established by this
connection is the lower of this value in the parameter list or the value
on the lUCY directory control statement (if specified). If the message
limit is not specified in the parameter list or on on lUCY directory
control statement, lUCY assumes a default of 10. After executing the
lUCY instruction, the lPMSGLIM field reflects the actual message
limit established for the path.

PATHID=
specifies the path identification number on which you wish to
communicate. This path id is presented to the virtual machine in the
Connection Pending external interrupt.

Chapter 2. Inter-User Communications Vehicle 137

IUCV ACCEPT

PRMDATA=
specifies whether your program can handle message data in the
parameter list.

PRMDATA= YES indicates that your program can handle message
data in the parameter list (those messages sent using the parameter
DATA = PRMMSG on an lUCY SEND).

PRMDATA=NO indicates that your program can only handle
message data presented in a buffer (sent using the parameter
DATA = BUFFER on an lUCY SEND).

PRTY=
specifies if you want to send priority messages on this path. It does
not affect the program's ability to receive priority messages.

PRTY = YES indicates that you want to send priority messages.
Priority must be authorized in the lUCY directory control statement
for this parameter to be effective. After executing the lUCY
instruction, the IPPRTY bit in IPFLAGSI should be checked to insure
that priority messages were authorized.

PRTY = NO indicates that you cannot send priority messages.

If your program is unauthorized or if PRTY = NO is specified, lUCy
prevents your program from sending priority messages.

QUIESCE=
specifies whether you want to quiesce the path being established.

QUIESCE = YES prevents messages from coming across the path until
your program is ready to process them. You can restore the path to
full communication by invoking the lUCy RESUME function.

QUIESCE = NO indicates that the path will become active as soon as
the lUCY ACCEPT completes.

USERDTA=
specifies the data area containing the 16 bytes of user data that lUCY
is to reflect to the source virtual machine. The user data is reflected
as part of the lUCY Connection Complete external interrupt.

IUCV Macro Completion Status

CONDITION CODES
0- Normal completion
1 - Nonzero value stored in IPRCODE

138 VM System Facilities for Programming

IUCV ACCEPT

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a double word boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

ACCEPT Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE I IPMSGLIM I ///////////

///

IPUSER

IPUSER

///

Parameter List Input Fields

• IPFLAGSI -- contains options for the ACCEPT function.

lPPRTY (X'20') -- indicates that you want to send priority messages
on this path.

IPQUSCE (X'40') -- indicates that you do not want to receive
messages on this path until an lUCY RESUME is issued.

IPRMDATA (X'BO') -- indicates that you are prepared to handle
message data in the parameter list.

• lPMSGLlM -- contains the lim\t of outstanding messages that lUCY is
to allow on the path.

• lPPATHlD -- contains the path identification number of the path you
are completing.

Chapter 2. Inter-User Communications Vehicle 139

IUCV ACCEPT

• IPUSER -- contains the user data that lUCY reflects to the target
virtual machine.

Output from ACCEPT

• IPMSGLIM -- contains the message limit for this path.

• IPFLAGSI -- contains specific information about this connection.

lPPRTY (X'20') -- indicates that you may send priority messages.

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o - Normal return
1 - Connection is not pending on this path

18 - Value in IPMSGLIM exceeds 255
20 - Originator has severed this path
30 - IP APPC flag in IPFLAGSI not zero

Connection Complete External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the source virtual machine that you have accepted the connection
and completed a new lUCY path, lUCY reflects an lUCY Connection
Complete external interrupt to the source virtual machine.

The source virtual machine receives this external interrupt if it is enabled
for lUCY interrupts in Control Register 0 and the PSW. The functions of
SET MASK and SET CONTROL MASK also control the presentation of
this type of interrupt.

3 4 5 6 7

JIPFLAGSI IIPTYPE I IPMSGLIM I ////////////
//

IPUSER

IPUSER

//

• IPFLAGSI -- contains options for this path.

IPCNTRL (X'04') -- indicates that this is a control path.

IPPRTY (X'20') -- indicates that the virtual machine may receive
priority messages on this path.

140 VM System Facilities for Programming

Connec~ion Compleie

lPQUSCE (X'40') -- indicates that lUCY will not allow messages to
be sent on this path until an lUCY RESUME is issued by the
connecting virtual machine.

lPRMDATA (X'80') -- indicates that the connecting virtual machine
can handle message data in the parameter list.

• lPMSGLlM -- contains the maximum number of messages that lUCY
allows the connecting virtual machine to send on this path.

• lPPATHlD -- contains the path id of the path which has now been
established.

• lPTYPE -- indicates a Connection Complete external interrupt with a
value of X'02'.

• lPUSER -- contains the user data specified by the target virtual
machine when it ACCEPTed this connection.

Chapter 2. "Inter-User Communications Vehicle 141

IUCV SEND

SEND Function

IUCV Macro Format

The SEND function transmits data to another virtual machine. This data is
called a "message" and may be specified in the parameter list or in a buffer.
The message is sent over a path that has been established by the
CONNECT function.

label lUCY SEND ,PRMLIST= {address}
,MF= L

,PATHID= {address}
,TRGCLS= {address}

,DATA = {BUFFERIPRMMSG}
,BUFLIST= {YESINO}
,BUFFER = { address Ilist }
,BUFLEN= {length}
,PRMMSG= {address}

,TYPE = {lWAYI2WAY}
,ANSLIST= {YESINO}
,ANSBUF= {addressllist}
,ANSLEN= {length}

,MSGTAG= {address}
,PRTY= {YESINO}
,SRCCLS= {address}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the SEND parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

PATHID=
specifies the path over which you wish to send the message. The
address of the P ATHID is to a halfword value.

TRGCLS=
specifies the target message class associated with this message. This
value, which is user defined, is considered part of the message
identification (along with the PATHID and the MSGID field returned

142 VM System Facilities for Programming

IUCV SEND

by lUCY). It can be used by the target virtual machine to receive
particular messages.

With the SEND function you have an option of sending the message in a
buffer or in the parameter list. The size of a parameter list message is very
limited (only 8 bytes), but the overhead of an lUCY RECEIVE is avoided
which simplifies the communication process. The protocol that you chose
on SEND does not affect the protocol chosen if the target must REPLY.

DATA =

specifies the location of your message data for this lUCY
communication.

DAT A = BUFFER indicates that your message is in a buffer. You can
use the BUFFER, BUFLEN, or BUFLIST macro options to help you
fill in the parameter list.

DATA = PRMMSG indicates that your message is in the parameter
list. Use the PRMMSG option if you want the macro to fill in the
parameter list.

BUFLIST=
specifies if the list format is being used.

BUFLIST = NO indicates that the list format is not being used. The
BUFFER parameter is the address of the complete message.

BUFLIST = YES indicates that the address on the BUFFER parameter
identifies a list of addresses and lengths of discontiguous buffers that
hold the message text.

BUFFER =
specifies the address or the list of addresses from which lUCY moves
the message. Any message buffers should not be reused until you
receive a Message Complete external interrupt for this message.

BUFLEN=
specifies the total length of the message. If BUFFER specifies an
address list (BUFLIST = YES), the value specified with BUFLEN is the
total of the individual buffer lengths in the list.

PRMMSG=
specifies the eight bytes of message data that are moved into the
parameter list.

With the SEND function you have an option of sending the message with
and without a reply. If you depend on the target virtual machine
processing the message (for example, updating a data base), you should use
the 2-WAY protocol with a REPLY.

Chapter 2. Inter-User Communications Vehicle 143

IUCV SEND

TYPE =
specifies whether a reply is expected to this message.

TYPE = 1 WAY indicates that this is a one-way message and that the
receiver will not reply to the message.

TYPE = 2W A Y indicates that this is a two-way messages and that the
receiver is expected to reply to the message. You can use the
ANSBUF, ANSLEN, or ANSLlST macro options to help you fill in the
parameter list.

ANSLIST=
specifies whether the list format is being used.

ANSLlST = NO indicates that the list format is not being used. The
ANSBUF parameter is the address to contain the complete reply.

ANSLlST = YES indicates that .the address on the ANSBUF parameter
identifies a list of addresses and lengths of discontiguous buffers that
con tains the reply.

ANSBUF=
specifies the address or the list addresses into which lUCY moves the
reply to this message. You do not know that the reply has been stored
into this area until you receive a Message Complete external
interrupt.

ANSLEN=
specifies the total length of the expected reply. If ANSBUF specifies
an address list (ANSLlST = YES), the value specified with ANSLEN is
the total of the individual buffer lengths in the list.

Additional options for SEND include tagging the messages, sending priority
messages, and defining a source class.

MSGTAG=
specifies a tag to be associated with this message. This tag is returned
to you on the lUCY Message Complete external interrupt. lUCY does
not reference this tag so it may be used for any purpose that you
desire. The tag information is not presented to the target user.

PRTY=
specifies whether this is a priority messages.

PRTY = YES indicates that this is a priority message.

PRTY = NO indicates that this is not a priority messages.

SRCCLS=
specifies the source message class associated with this message.

The tag information is not presented to the target user. The source

144 VM System Facilities for Programming

/

IUCV SEND

class is returned on the Message ·Complete external interrupt. You
can use this field to identify different types of messages.

IUCV Macro Completion Status

CONDITION CODES

o - Normal completion
1 - Nonzero value stored in IPRCODE

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a doubleword boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list or buffer address that you specified
is outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

SEND Parameter List Format

o
8

10

18

20

o 1 2 3

IPPATHID IIPFLAGSI IIPRCODE

IPTRGCLS

IPBFLNIF / IPRMMSG2

IPMSGTAG

IPBFLN2F

4 5 6 7

IPMSGID

IPBFADRI / IPRMMSGI

IPSRCCLS

IPBFADR2

//////////////////////////////

Parameter List Input Fields

• IPPATHID -- contains the path id on which to send the message.

o IPFLAGSI -- contains options for the SEND function.

IP APPCSN (X'02') -- indicates the protocol to be used on this path.
This bit must be set to zero.

Chapter 2. Inter-User Communications Vehicle 145

IUCV SEND

Output from SEND

IP ANSLST (X'08') -- indicates that you are using an address list for
the reply data.

IPNORPY (X'lO') -- indicates that this is a one-way message. No
reply expected.

IPPRTY (X'20') -- indicates that you are sending a priority message.

IPBUFLST (X'40') -- indicates that you are using an address list for
the message data.

IPRMDATA (X'80') -- indicates that the mess~ge is in the parameter
list.

• IPTRGCLS -- contains the target message class.

• IPBF ADRI -- contains the address of the message.

• IPBFLNIF -- contains the length of the message buffer. Use this label
with a fullword value. Use IPBFLNI with a halfword value.

• IPRMMSGI/IPRMMSG2 -- contains the message when it is stored in the
parameter list rather than a buffer. The label IPRMMSG refers to the
combined IPRMMSGI and IPRMMSG2 fields.

• IPSRCCLS -- contains the source message class.

• IPMSGT AG -- contains the tag data of the message.

• IPBFADR2 -- contains the address to hold the reply.

• lPBFLN2F -- contains the length of the reply area. Use this label with
a fullword value. Use lPBFLN2 with a halfword value.

• lPMSGlD -- contains a message id that lUCY assigns the message.

• lPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

146 VM System Facilities for Programming

... t

RETURN CODES in IPRCODE

o - Normal return
1 - Invalid path id
2 - Path quiesced - SENDs not allowed
3 - Message limit exceeded
4 - Priority messages not allowed on this path

10 - Message length is negative
21 - Message in parameter list not allowed on this path
25 - PRMMSG invalid with BUFLIST option
26 - Buffer list not on a doubleword boundary
27 - Answer list not on a doubleword boundary
30 - IP APPCSN flag in IPFLAGSI not zero

IUCV SEND

Message Pending External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the target virtual machine that you have sent a message, IUCV
reflects an IUCV Message Pending external interrupt to the target virtual
machine.

The target virtual machine receives this external interrupt if it is enabled
for IUCV interrupts in Control Register 0 and the PSW. The SET MASK
function also controls the presentation of this type of interrupt.

The external interrupt contains the information that the target virtual
machine needs to continue processing the message. If the message is being
sent in a buffer, the target continues processing by issuing a RECEIVE or a
REJECT. If the message is contained in the interrupt information
(IPRMDATA in IPFLAGSI is on), a RECEIVE is not needed. If the
interrupt indicates a one-way message with the data in the parameter list,
no further IUCV processing is necessary.

3 4 5 6 7

I I PFLAGSI I IPTYPE IPMSGID

IPTRGCLS IPRMMSGI

IPBFLNIF / IPRMMSG2 //////////////////////////////

//

IPBFLN2F //////////////////////////////

• IPPATHID -- contains the path on which the message was sent.

o IPFLAGSI -- contains options for this message.

IPFGMCL (X'Ol') -- is always set to one indicating that the target
message class has been stored at IPTRGCLS.

IPFGPID (X'02') -- is always set to one indicating that the path id
has been stored at IPPATHID.

Chapter 2. Inter-User Communications Vehicle 147

Message Pending

IPFGMID (X'04') -- is always set to one indicating that the message
id has been stored at IPMSGID.

IPNORPY (X'lO') -- indicates that this is a one-way message and no
REPLY is expected.

IPPRTY (X'20') -- indicates that this is a priority message.

IPRMDATA (X'80') -- indicates that the 8-byte message is in the
interrupt information.

• IPTYPE -- indicates an Incoming Message external interrupt. If this is
an incoming priority message, the interrupt type is X'08'. If this is an
incoming nonpriority message, the interrupt type is X'09'.

• IPMSGID -- contains the message id.

• IPTRGCLS -- contains the target message class.

• IPBFLNIF -- contains the length of the message.

, j

• IPRMMSG1/IPRMMSG2 -- contains the message when it is stored with
the interrupt information (indicated by IPRMDATA in IPFLAGS1). The
label IPRMMSG refers to the combined IPRMMSG 1 and IPRMMSG2
fields.

• IPBFLN2F -- contains the length of the maximum expected reply.

148 VM System Facilities for Programming

IUCV RECEIVE

RECEIVE Function

IUCV Macro Format

The RECEIVE function receives messages that are being sent to you over
established paths. The RECEIVE function moves the message data from the
source virtual machine to your virtual machine.

When receiving a message, you can completely identify the message by
specifying the message id, path id, and target class. You can also identify
the message by either the path id or the target class, or both. If you do not
specify any identifiers when invoking the RECEIVE function, you receive
the first message that has not been partially received.

If your receive area cannot contain the complete message, you can issue
another RECEIVE to obtain the remainder of the message. If you use the
same parameter list on the subsequent RECEIVE, the message id, path id,
and message class that are already stored in the parameter list completely
identify the message. These fields are required on any subsequent
RECEIVEs for the same message. You must initialize the receive area and
length for the subsequent RECEIVEs.

The RECEIVE function completes a one-way communication when all the
data has been received.

label IUCV RECEIVE ,PRMLIST= {address}
,MF= L

,MSGID= {address}
,PATHID= {address}
,TRGCLS= {address}

,BUFLIST= {YESINO}
,BUFFER = { addressllist}
,BUFLEN= {length}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the IUCV macro.

PRMLIST=
specifies the address of the RECEIVE parameter list. The IUCV
instruction is generated to reference the address specified.

MF=L
lets you build an IUCV parameter list without initializing any
registers or executing the IUCV instruction.

Chapter 2. Inter-User Communications Vehicle 149

IUCV RECEIVE
11'~ .;."1

MSGID=
specifies the message id of the message to be received. If the message
id is used to locate the message, the path id and the target class must
also be correctly specified in the parameter list.

PATHID=
specifies the path over which you wish to receive the message. The
address of the PATHID is to a halfword value.

TRGCLS=
specifies the target message class associated with this message.

BUFLIST=
specifies that the list format is being used.

BUFLIST = NO indicates that the list format is not being used. The
BUFFER parameter is the address of the complete message.

BUFLIST = YES indicates that the address on the BUFFER parameter
identifies a list of addresses and lengths of discontiguous buffers that
hold the message text.

BUFFER =
specifies the address or the list of addresses into which IUCV moves
the message.

BUFLEN=
specifies the total length of the message to RECEIVE. If BUFFER
specifies an address list (BUFLIST = YES), the value specified with
BUFLEN is the total of the individual buffer lengths in the list.

IUCV Macro Completion Status

CONDITION CODES
o -Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found

150 VM System Facilities for Programming

IUCV RECIEIVE

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a doubleword boundary,
or the message id was specified without the path id
and the message class.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list, the buffer address, or the buffer
list address that you specified is outside the virtual
machine's storage.

Protection Exception
The storage key of the specified parameter list
address, buffer list address, or buffer address in the
parameter list or the buffer list does not match the
key of the user.

RECEIVE Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID I I PFLAGS 1 1 IPRCODE IPMSGID

IPTRGCLS IPBFADRI / IPRMMSGI

IPBFLNIF / IPRMMSG2 /////////////////////////////

//

IPBFLN2F //////////////////////////!//

Parameter List Input Fields

• IPP ATHID -- contains the path id of the path to receive the message.

• IPFLAGSI -- contains options for the RECEIVE function.

IPFGMCL (X'Ol') -- indicates that you have specified a target
message class (IPTRGCLS) to identify the message you are trying to
receIve.

IPFGPID (X'02') -- indicates that you have specified a path id
(IPPATHID) for the message you are trying to receive.

IPFGMID (X'04') -- indicates that you have specified a message id
(IPMSGID) for the messages you are trying to receive.

Chapter 2. Inter-User Communications Vehicle 151

IUCV RECEIVE

Output from RECEIVE

IP APPC (X'08') -- indicates the protocol to be used on this path.
This bit must be set to zero.

IPBUFLST (X'40') -- indicates that you are using an address list for
the message data.

• IPMSGID -- contains the message id of the message you are trying to
receive.

• IPTRGCLS -- contains the target message class of the message you are
trying to receive.

• IPBF ADRI -- contains the address of the receive buffer.

• IPBFLNIF -- contains the length of the receive buffer. Use this label
with a fullword value. Use IPBFLNI with a halfword value.

• IPP ATHID -- contains the path id of the message you received.

• IPFLAGSI -- contains specific information about the message received.

IPFGMCL (X'Ol') -- is always set to one indicating that the target
messa~e class has been stored at IPTRGCLS.

IPFGPID (X'02') -- is always set to one indicating that the path id
has been stored at IPPATHID.

IPFGMID (X'04') -- is always set to one indicating that the message
id has been stored at IPMSGID.

IPNORPY (X'lO') -- indicates that this is a one-way message and no
reply is expected.

IPPRTY (X;'20') -- indicates that this is a priority message.

IPRMDATA (X'80') -- indicates that the 8-byte message is contained
in the parameter list at IPRMMSG.

• IPMSGID -- contains the message id.

• IPTRGCLS -- contains the target message class.

• IPBF ADRI -- if BUFLIST = NO, contains the address of the buffer
updated by the number of bytes you have received. If BUFLIST = YES,
the address points to the current list entry IUCV is working on.

• IPRMMSGI/IPRMMSG2 -- contains the message when it is stored in the
parameter list (indicated by IPRMDATA in IPFLAGSl). The label
IPRMMSG refers to the combined IPRMMSGI and IPRMMSG2 fields.

152 VM System Facilities for Programming

IUCV RECEIVE

• IPBFLNIF -- contains one of the following values.

If the receive buffer is the same length as the message, this field
con tains zero.

If the receive buffer is longer than the message, this field contains
the number of bytes remaining in the buffer.

If the receive buffer shorter than the message, this field contains a
residual count (that is, the number of bytes remaining in the
message that does not fit into the buffer).

• IPBFLN2F -- contains the length of the expected reply. Use this label
with a full word value. Use IPBFLN2 with a halfword value.

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o - Normal return
1 - Invalid path id
5 - Receive buffer too short to contain message
6 - Fetch protection exception on send buffer
7 - Addressing exception on the send buffer
8 - Message id found but message class or path id

invalid
9 - Message has been purged

10 - Message length is negative
22 - Send buffer list invalid
23 - Negative length in buffer list
24 - Incorrect total length of buffer list lengths
26 - Buffer list not on a doubleword boundary
30 - IPAPPC flag in IPFLAGSI not zero

Chapter 2. Inter-User Communications Vehicle 153

IUCV REPLY

REPLY Function

IUCV Macro Formal

The REPLY function responds to the two-way messages that you receive.
The previous lUCY functions will have identified the the message to which
you are replying by providing the message id, the path id, and the target
class. You must identify completely the message to which you wish to
reply.

The REPLY function moves the reply data from your virtual machine to the
source virtual machine.

label lUCY REPLY ,PRMLIST= {address}
,MF= L

,MSGID= {address}
,PATHID= {address}
,TRGCLS= {address}

,DATA = {BUFFERIPRMMSG}
,ANSLIST= {YESINO}
,ANSBUF= { address llist}
,ANSLEN= {length}
,PRMMSG= {address}

,PRTY= {YESINO}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the REPLY parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

MSGID=
specifies the message id of the message to which you are replying.

PAT HID =
specifies the path associated with the message.

154 VM System Facilities for Programming

IUCV REPLY

TRGCLS=
specifies the target message class associated with the message.

With the reply function you have an option of replying to the message in a
buffer or in the parameter list. The size of a parameter list message is very
limited, but then the originator of the message (sender) does not have to
maintain an answer buffer (ANSBUF parameter on SEND). The protocol
you chose may be different from that used to send you the message.

DATA =
specifies the location of your message data for this lUCY
communication.

DAT A = BUFFER indicates that your reply data is in a buffer. You
can use the ANSBUF, ANSLEN, or BUFLIST macro options to help
you fill in the parameter list.

DAT A = PRMMSG indicates that your reply data is in the parameter
list. Use the PRMMSG parameter if you want the macro to fill in the
parameter list.

ANSLIST=
specifies whether the list format is being used.

ANSLIST = NO indicates that the list format is not being used. The
ANSBUF parameter is the address of the complete reply.

ANSLIST = YES indicates that the address on the ANSBUF parameter
identifies a list of addresses and lengths of discontiguous buffers that
contains the reply data.

ANSBUF=
specifies the address or a list of addresses from which lUCY moves the
reply data.

Since the data is moved as part of the REPLY function, all buffer
areas may be reused when the REPLY function completes.

ANSLEN=
specifies the total length of the reply data. If ANSBUF specifies an
address list (ANSLIST = YES), the value specified with ANSLEN is the
total of the individual buffer lengths in the list.

PRMMSG=
specifies the eight bytes of message data that are moved into the
parameter list.

An additional option on REPLY lets you define priority messages.

PRTY=
specifies whether this is a priority message.

PRTY = YES indicates that this is a priority message.

Chapter 2. Inter-User Communications Vehicle 155

IUCV REPLY
• p,.' .~~,. ": -'

PRTY = NO indicates that this is not a priority message.

IUCV Macro Completion Status

CONDITION CODES

0- Normal completion
1 - Nonzero value stored in IPRCODE
2 - No message found

PROGRAM: INTERRUPTIONS

Specification Exception
The parameter list is not on a doubleword boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address, the answer list address,
the answer buffer address, or an answer buffer
address in the answer list is outside the virtual
machine's storage.

Protection Exception
The storage key of the specified parameter list
address, answer list address, answer buffer address, or
an answer buffer address in the answer list does not
match the key of the user.

REPLY Parameter List Format

o
8

10

18

20

o 1 2 3

IPPATHID IIPFLAGS1 I IPRCODE

IPTRGCLS

IPRMMSG2

////////////////////////////////

IPBFLN2F

156 VM System Facilities for Programming

4 5 6 7

IPMSGID

IPRMMSG1

/////////////////////////////

IPBFADR2

/////////////////////////////

,;: I

Parameter List Input Fields

Output from REPLY

IUCV REPLY

• IPP ATHID -- contains the path id of the message to which you are
replying.

• IPFLAGSI -- contains the options for the REPLY function.

IP ANSLST (X'08') -- indicates that you are using an address list for
the reply data.

IPPRTY (X'20') -- indicates that this is a priority response.

IPRMDATA (X'80') -- indicates that the reply is in the parameter
list.

• IPMSGID -- contains the message id of the message to which you are
replying.

• IPTRGCLS -- contains the message class of the message to which you
are replying.

• IPRMMSGI/IPRMMSG2 -- contain the reply data when it is stored in
the parameter list rather than a buffer. The label IPRMMSG refers to
the combined IPRMMSGI and IPRMMSG2 fields.

o IPBFADR2 -- contains the address of the reply data.

o IPBFLN2F -- contains the length of the reply data. Use this label with
a full word value. Use IPBFLN2 with a halfword value.

o IPBF ADR2 -- contains the address of the reply data, when
ANSLIST = NO, updated by the number of bytes of data that IUCV
moved. If ANSLIST = YES is specified, the address points to the current
list entry IUCV is working on.

• IPBFLN2F -- contains one of the following values:

If the answer buffer is the same length as the reply, this field
contains zero.

If the answer buffer is longer than the reply, this field contains the
number of bytes remaining in the buffer.

If the answer buffer shorter than the reply, this field contains a
residual count (that is, the number of bytes remaining in the reply
that does not fit into the buffer).

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

Chapter 2. Inter-User Communications Vehicle 157

IUCV REPLY

RETURN CODES in IPRCODE

o -Normal return
1 - Invalid path id
5 - Answer buffer too short to contain message
6 - Storage protection exception on answer buffer
7 - Addressing exception on answer buffer
8 - Message id found but message class or path id

invalid
9 - Message has been purged

10 - Message length is negative
21 - Parameter list data not allowed on this path
22 - Send buffer list invalid
23 - Negative length in buffer list
24 - Incorrect total length of buffer list lengths
25 - PRMMSG option invalid with ANSLIST option
26 - Buffer list not on a double word boundary

Message Complete External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the originator of the message (the sender) that you have replied to
the message, IUCV reflects an IUCV Message Complete external interrupt
to the originator's virtual machine. If the sender had reserved buffers or
address lists for use with this message, they can now be reused.

Note: Even though the user may not be dependent on the information
contained in this interrupt, it should be processed as the message is not
considered complete until the interrupt is reflected to the virtual machine.

3 4 5 6 7

I IPFLAGSI IPTYPE IPMSGID

IPAUDIT /////// IPRMMSGI

IPRMMSG2 IPSRCCLS

IPMSGTAG /////////////////////////////

IPBFLN2F /////////////////////////////

• IPPATHID -- contains the path on which the message was sent.

• IPFLAGS1 -- contains specific information about the message.

IPPRTY (X'20') -- indicates that this is a priority reply.

IPRMDATA (X'80') -- indicates that the 8-byte reply is in the
interrupt information.

• IPTYPE -- indicates a Message Complete external interrupt. If this is
an incoming priority message completion, the interrupt type is X'06'. If

158 VM System Facilities for Programming

Message Compleie

this is an incoming nonpriority message completion, the interrupt type
is X'07'.

• IPMSGID -- contains the message id.

• IPAUDIT -- contains information about possible asynchronous error
conditions which may have affected the normal completion of this
message. If this field is zero, the message has completed successfully.

The meanings of the bits in the audit trail are:

IPADRPLE
IPADSNPX
IPADSNAX
IPADANPX
IPADANAX
IPADRJCT
IPADPRMD

IPADRCPX
IPADRCAX
IPADRPPX
IPADRPAX
IPADSVRD
IPADRLST

IPADBLEN
IPADALEN
IPADBTOT
IPADATOT

X'800000'
X'400000'
X'200000'
X'lOOOOO'
X'080000'
X'040000'
X'020000'

X'OlOOOO'
X'008000'
X'004000'
X'002000'
X'OOlOOO'
X'000800'
X'000400'
X'000200'
X'OOOlOO'
X'000080'
X'000040'
X'000020'
X'OOOOlO'
X'000008'
X'000004'
X'000002'
X'OOOOOl'

Reply too long for buffer
Protection exception on send buffer
Addressing exception on send buffer
Protection exception on answer buffer
Addressing exception on answer buffer
Message was rejected
Reply specified DATA = PRMMSG, but
this path cannot handle data in the
parameter list.
Reserved
Protection exception on receive buffer
Addressing exception on receive buffer
Protection exception on reply buffer
Addressing exception on reply buffer
Path was severed
Invalid RECEIVE or REPLY address list
Reserved
Reserved
Bad length in SEND buffer list
Bad length in SEND answer list
Invalid total SEND buffer length
Invalid total SEND answer length
Reserved
Reserved
Reserved
Reserved

• IPRMMSGljIPRMMSG2 -- contains the message when it is stored with
the interrupt information (indicated by IPRMDATA in IPFLAGSl). The
label IPRMMSG refers to the combined IPRMMSG 1 and IPRMMSG2
fields.

• IPSRCCLS -- contains the source message class.

• IPMSGTAG -- contains the tag data of the message.

• IPBFLN2F -- contains one of the following values:

If the answer buffer is the same length as the reply, this field
contains zero.

If the answer buffer is longer than the reply, this field contains the
number of bytes remaining in the buffer.

Chapter 2. Inter-User Communications Vehicle 159

Message Complete

If the answer buffer shorter than the reply, this field contains a
residual count (that is, the number of bytes remaining in the reply
that does not fit into the buffer). The IP ADRPLE bit is set in the
audit trail on this condition.

160 VM System Facilities for Programming

IUCV REJECT

REJECT Function

IUCV Macro Format

The REJECT function refuses a specified message. Between the time that
you are notified of a message and the time that you complete the message,
the message may be rej ected.

When a message is rejected, an lUCY Message Complete external interrupt
is reflected to the source virtual machine with an indication in the audit
trail (IPAUDlT) that the messages was rejected. Depending on when the
message was rejected and the type of message, message data mayor may
not have been moved. When a message is rejected, the sender has no way
to determine if any data has been transmitted.

When rejecting a message, you can completely identify the message by
specifying the message id, path id, and target message class. You can also
identify the message by either the path id or the target message class, or
both.

label lUCY REJECT ,PRMLlST= {address}
,MF= L

,MSGlD= {address}
,PATHlD= {address}
,TRGCLS= {address}

Only the PRMLlST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the REJECT parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

MSGID=
specifies the message id of the message to be rejected. If the messages
id is used to locate the message, the path id and the target class must
also be correctly specified in the parameter list.

PATHID=
specifies the path id of the message to be rejected.

Chapter 2. Inter-User Communications Vehicle 161

IUCV REJECT

TRGCLS=
specifies the target message class of the message to be rejected.

IUCV Macro Completion Status

CONDITION CODES

0- Normal completion
1 - Nonzero value stored in IPRCODE
2 - No message found

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a double word boundary,
or the message id was specified with the path id and
the message class.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

REJECT Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE IPMSGID

IPTRGCLS /////////////////////////////

//

//

//

162 VM System Facilities for Programming

IUCV REJECT

Parameter List Input Fields

Output of REJECT

• IPP ATHID -- contains the path id of the message you are rejecting.

• IPFLAGSI -- contains options for the REJECT function.

IPFGMCL (X'Ol') -- indicates that you have specified a target
message class (IPTRGCLS) for the message you are rejecting.

IPFGPID (X'02') -- indicates, that you have specified a path id
(IPPATHID) for the message you are rejecting.

IPFGMID (X'04') -- indicates that you have specified a message id
(IPMSGID) for the message you are rejecting.

• IPMSGID -- contains the message id of the message you are rejecting.

• IPTRGCLS -- contains the target message class of the message you are
rejecting.

• IPPATHID -- contains the path id of the message you rejected.

• IPMSGID -- contains the message id of the message you rejected.

• IPTRGCLS -- contains the target message class of the message you
rejected.

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE
o - Normal return
1 - Invalid path id
8 - Message id found but message class or path id

invalid

Chapter 2. Inter-User Communications Vehicle 163

IUCV PURGE

PURGE Function

IUCV Macro Format

.,:~\',j" r. '.'":'5,:~" :.', .. ~' ~ .~',:,,; .. " ",.

The PURGE function cancels a message that you have sent. When you
purge a message, one of the following actions takes place:

• If you purge a message before the target virtual machine has received
an lUCY Message Pending external interrupt for this message, the
target virtual machine is never aware that you sent the message.

• If you purge a message after the target virtual machine has received the
lUCY Message Pending external interrupt, but before the target has
completed handling the message, the target receives a return code
indicating that the message has been purged the next time it references
the message (normally, on a RECEIVE or a REPLY). The target is
given only one such indication about the purged message. Any future
references to the purged message results in a "no message found"
condition.

• If you purge a message on which the target virtual has already
completed its processing, the lUCY Message Complete external
interrupt is avoided, but the target virtual machine is never aware that
the message was purged.

When purging a message, you can completely identify the message by
specifying the message id, path id, and source message class. You can also
identify the message by the path id with or without the message class.

label lUCY PURGE ,PRMLIST= {address}
,MF= L

,MSGID= {address}
,PATHID= {address}
,SRCCLS= {address}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the PURGE parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

164 VM System Facilities for Programming

~!UJCV PlLDRGIE

MSGID=
specifies the message id of the message to be purged. If the message id
is used to identify the message, the pathid and the source class must
also be correctly specified in the parameter list.

PATHID=
specifies the path id on which the message was sent. The address of
the PATHID is a halfword value.

SRCCLS=
specifies the source message class associated with a message.

IUCV Macro Completion Status

CONDITION CODES

o -Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a doubleword boundary,
or the message id was specified without the path id or
the message class.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

PURGE Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IPFLAGSI IIPRCODE IPMSGID

IPAUDIT 11

11111111111111111111111111111111 IPSRCCLS

IPMSGTAG 111111111111111111111111111111

111

Chapter 2. Inter-User Communications Vehicle 165

IUCV PURGE

Parameter List Input Fields

Output for PURGE

• IPPATHID -- contains the path id of the message you are purging.

• IPFLAGSl -- specifies options for the PURGE function.

IPFGMCL (X'Ol') -- indicates that you have specified a source
message class (IPSRCCLS) to identify the message you are trying to
purge.

IPFGPID (X'02') -- indicates that you have specified a path id
(IPP ATHID) for the message you are purging.

IPFGMID (X'04') -- indicates that you have specified a message id
(IPMSGID) for the message you are purging.

• IPMSGID -- contains the message id of the message you are purging.

• IPSRCCLS -- contains the source message class of the message you are
purging.

• IPPATHID -- contains the path id of the message you purged.

• IPFLAGSl -- contains specific information about the message purged.

IPNORPY (X'lO') -- indicates that the message purged is a one-way
message.

IPPRTY (X'20') -- indicates that the message purged is a priority
message.

• IPMSGID -- contains the message id of the message you purged.

The meanings of the bits in the audit trail are:

. IPADRPLE
IPADSNPX
IPADSNAX
IPADANPX
IPADANAX
IPADRJCT
IPADPRMD

IPADRCPX
IPADRCAX
IPADRPPX
IPADRPAX

X'800000'
X'400000'
X'200000'
X'lOOOOO'
X'080000'
X'040000'
X'020000'

X'OlOOOO'
X'008000'
X'004000'
X'002000'
X'OOlOOO'

Reply too long for buffer
Protection exception on send buffer
Addressing exception on send buffer
Protection exception on answer buffer
Addressing exception on answer buffer
Message was rejected
Reply specified DATA=PRMMSG, but
this path cannot handle data in the
parameter list.
Reserved
Protection exception on receive buffer
Addressing exception on receive buffer
Protection exception on reply buffer
Addressing exception on reply buffer

166 VM System Facilities for Programming

IPADSVRD
IPADRLST

IPADBLEN
IPADALEN
IPADBTOT
IPADATOT

X'000800'
X'000400'
X'000200'
X'OOOlOO'
X'000080'
X'000040'
X'000020'
X'OOOOlO'
X'000008'
X'000004'
X'000002'
X'OOOOOl'

IUCV PURGE

Path was severed
Invalid RECEIVE or REPLY address list
Reserved
Reserved
Bad length in SEND buffer list
Bad length in SEND answer list
Invalid total SEND buffer length
Invalid total SEND answer length
Reserved
Reserved
Reserved
Reserved

• IPSRCCLS -- contains the message class of the message you purged.

• IPMSGTAG -- contains the message tag of the message you purged.

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o -Normal return
1 - Invalid path id
8 - Message found but message class invalid

Chapter 2. Inter-User Communications Vehicle 167

IUCV SEVER
I :

SEVER Function

IUCV Macro Format

The SEVER function terminates an lUCY path to another virtual machine.
You can terminate an established path or a pending connection. When you
SEVER an established path, all of your outstanding messages on that path
are purged, and any incoming messages on that path are rejected. When
you have severed a path, communications on that path are no longer
allowed and no communication, in either direction, can occur. The path id
may be reused by lUCY when new paths are established.

When you receive an lUCY Connection Severed external interrupt, you can
no longer send on that path, but you can process outstanding messages.
You should always issue a SEVER in response to a Connection Severed
interrupt to terminate your use of the path.

label lUCY SEVER ,PRMLlST= {address}
,MF= L

,ALL = {YESINO}
,PATHlD= {address}
,USERDTA= {address}

Only the PRMLlST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the SEVER parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

ALL=
specifies whether all paths for this virtual machine are to be severed.

ALL = YES indicates that all of your paths are to be severed.

ALL = NO indicates that you do not want all of your paths severed,
only the one specified by PATHlD.

PATHID=
specifies the path id to be severed.

168 VM System Facilities for Programming

IUCV SEVER

USERDTA=
specifies the data area containing the 16 bytes of user data that IUCV
is to reflect across the path. The user data is reflected as part of the
IUCV Connection Severed external interrupt.

IUCV Macro Completion Status

CONDITION CODES
o -Normal completion
1 - Nonzero value stored at IPRCODE

PROGRAM INTERRUPTIONS
Specification Exception

The parameter list is not on a double word boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

SEVER Parameter List Format

o

8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI (IPRCODEI //////////////////////////////

//

IPUSER

IPUSER

//

Chapter 2. Inter-User Communications Vehicle 169

IUCV SEVER

Parameter List Input Fields

• IPPATHID -- contains the path id of the path you want to sever.

• IPFLAGSl -- contains options for the SEVER function.

IP APPC (X'08') -- indicates the protocol to be used on this path.
This bit must be set to zero.

IP ALL (X'80') -- indicates that you want to sever all paths for this
virtual machine.

• IPUSER -- contains the user data that IUCV reflects across the path.

Output from SEVER

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o - Normal return
1 - Invalid path id specified

30 - IP APPC flag in IPFLAGSl not zero

Connection Severed External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the other side of the path that you wish to terminate
communication on a path, lUCY reflects an lUCY Connection Severed
external interrupt.

The target virtual machine receives this external interrupt if it is enabled
for IUCV interrupts in Control Register 0 and the PSW.The functions of
SET MASK and SET CONTROL MASK also control the presentation of
this type of interrupt.

3 4 5 6 7

I /////// IIPTYPE I //////////////////////////////
//

IPUSER

IPUSER

//

• IPP ATHID -- contains the path id of the path being severed.

• IPTYPE -- indicates a Connection Severed external interrupt with a
value of X'03'.

170 VM System Facilities for Programming

/

Connection Severed

• IPUSER -- contains the user data specified by the virtual machine that
severed this path.

Chapter 2. Inter-User Communications Vehicle 171

IUCV RETRIEVE BUFFER

RETRIEVE BUFFER Function

IUCV Macro Format

The RETRIEVE BUFFER function terminates all use of lUCY. After the
RETRIEVE BUFFER function completes, you may reuse the storage
allocated for the lUCY external interrupt buffer since you will no longer
receive lUCY external interrupts.

Since this function results in a SEVER of all lUCY paths, all outstanding
lUCY communications are terminated as if each path has been individually
SEVERed.

\ label \ lUCY \ RTRVBFR

IUCV Macro Completion Status

I CONDITION CODES

PROGRAM INTERRUPTIONS

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

172 VM System Facilities for Programming

~lUJCV QU~[ESClE

QUIESCE Function

IUCV Macro Format

The QUlESCE function temporarily suspends incoming messages on an
lUCY path. You can later reactivate the path by invoking the RESUME
function or you may leave the path quiesced, making it a one-way path.
You are still allowed to send messages as the path is only quiesced for
incoming messages.

If a message is sent to you on a quiesced path, a return code is returned to
the sender, and the message is not sent. Each end of a path can be quiesced
independen tly.

label lUCY QUlESCE ,PRMLlST= {address}
,MF= L

,PATHlD= {address}

,ALL = {YES/NO}
,USERDTA= {address}

Only the PRMLlST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the QUlESCE parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

PATHID=
specifies the path id of the path you want to quiesce.

ALL =
specifies whether all paths for this virtual machine are to be quiesced.

ALL = YES indicates that all of your paths are to be quiesced.

ALL=NO indicates that you do not want all of your paths quiesced,
only the one specified by PATHlD.

USERDTA=
specifies the data area containing the 16 bytes of user data to be
reflected across the path. The user data is reflected as part of the
lUCY Connection Quiesced external interrupt.

Chapter 2. Inter-User Communications Vehicle 173

IUCV QUIESCE

IUCV Macro Completion Status

CONDITION CODES

0- Normal completion
1 - Nonzero value stored at IPRCODE

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a doubleword boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in sup.ervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

QUIESCE Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE I /////////////////////////////

//

IPUSER

IPUSER

//

Parameter List Input Fields

• IPPATHID -- contains the path id of the path you are quiescing.

• IPFLAGSI -- contains options for the QUIESCE function.

IP ALL (X'BO') -- indicates that you want to quiesce all paths for this
virtual machine.

• IPUSER -- contains the user data that is reflected across the path.

174 VM System Facilities for Programming

IUCV QUIESCE

Output of aUIESCE

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o - Normal return
1 - Invalid path id specified

Connection Quiesced External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the other side of the path that the path has been quiesced, IUCV
reflects an IUCV Connection Quiesced external interrupt.

The target virtual machine receives this external interrupt if it is enabled
for IUCV interrupts in Control Register 0 and the PSW. The functions of
SET MASK and SET CONTROL MASK also control the presentation of
this type of interrupt.

3 4 5 6 7

I /////// IIPTYPE I //////////////////////////////
//

IPUSER

IPUSER

//

• IPP ATHID -- contains the path id of the path quiesced.

• IPTYPE -- indicates a Connection Quiesced external interrupt with a
value of X'04'.

• IPUSER -- contains the user data specified by the virtual machine that
quiesced the path.

Chapter 2. Inter-User Communications Vehicle 175

IUCV RESUME

RESUME Function

IUCV Macro Format

The RESUME function restores communications over a quiesced path.

label lUCY RESUME ,PRMLIST= {address}
,MF= L

,PATHID= {address}

,ALL = {YESINO}
,USERDTA= {address}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the lUCY macro.

PRMLIST=
specifies the address of the RESUME parameter list. The lUCY
instruction is generated to reference the address specified.

MF=L
lets you build an lUCY parameter list without initializing any
registers or executing the lUCY instruction.

PATHID=
specifies the path id of the path on which you want to resume getting
messages.

ALL =
specifies whether communications should be restored for all paths for
this virtual machine.

ALL = YES indicates that communications should be restored on all
paths.

ALL = NO indicates that communications should be restored only on
the path specified by PATHlD.

USERDTA=
specifies the data area containing the 16 bytes of user data that is to
be reflected across the path. The user data is reflected as part of the
lUCY Connection Resumed external interrupt.

176 VM System Facilities for Programming

IUCV RESUMIE

IUCV Macro Completion Status

CONDITION CODES

o -Normal completion
1 - Nonzero value stored at IPRCODE

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a doubleword boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
- The storage key of the specified parameter list address

does not match the key of the user.

RESUME Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE J //////////////////////////////

//

IPUSER

IPUSER

//

Parameter List Input Fields

• IPP ATHID -- contains the path id of the path you are resuming.

• IPFLAGSI -- contains options for the RESUME function.

IP ALL (X'80') -- indicates that you want to resume all paths for this -
virtual machine.

• IPUSER -- contains the user data that is reflected across the path.

Chapter 2. Inter-User Communications Vehicle 177

IUCV RESUME

Output of RESUME

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o -Normal return
1 - Invalid path id specified

Connection Resumed External Interrupt

o
8

10

18

20

o 1

IPPATHID

2

To notify the other side of the path that the path has been resumed, lUCY
reflects an lUCY Connection Resumed external interrupt.

The target virtual machine receives this external interrupt if it is enabled
for lUCY interrupts in Control Register 0 and the PSW. The functions of
SET MASK and SET CONTROL MASK also control the presentation of
this type of interrupt.

3 4 5 6 7

I /////// IIPTYPE I //////////////////////////////
//

IPUSER

IPUSER

//

• lPPATHlD -- contains the path id of the path quiesced.

• lPTYPE -- indicates a Connection Quiesced external interrupt with a
value of X'05'.

• lPUSER -- contains the user data specified by the virtual machine that
quiesced the path.

178 VM System Facilities for Programming

IUCV TEST MESSAGE

TEST MESSAGE Function

IUCV Macro Format

The TEST MESSAGE function determines whether any IUCV Message
Pending or IUCV Message Complete external interrupts are queued for
your virtual machine.

This function, when used with the DESCRIBE and TEST COMPLETION
functions, lets the virtual machine avoid the external interrupt handling
associated with messages. In some applications, as when only one type of
message is ever handled, the DESCRIBE may also be avoided and a
RECEIVE issued directly.

When you receive message or message completions, IUCV informs you by
reflecting a Message Pending or Message Complete external interrupt to
your virtual machine. Therefore, unless you disable your virtual machine
for Message Pending and Message Complete external interrupts, you should
not use the TEST MESSAGE function.

If, when your virtual machine invokes the TEST MESSAGE function, it
finds that there are no messages or message completions pending, your
virtual machine enters a wait state. Your virtual machine remains enabled
for all interrupts that were enabled when the TEST MESSAGE function
was issued.

If, while your virtual machine is in a wait state, you receive an IUCV
message or message completion, your virtual machine resumes execution by
re-executing the TEST MESSAGE function (which returns a condition
code).

I label I IUCV I TESTMSG

IUCV Macro Completion Status

CONDITION CODES

1 - Message pending
2 - Message completion pending
3 - Both message and message completion pending

Chapter 2. Inter-User Communications Vehicle 179

IUCV TEST MESSAGE

PROGRAM INTERRUPTIONS

Opera tion Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

180 VM System Facilities for Programming

IUCV DESCRIBE

DESCRIBE Function

IUCV Macro Format

The DESCRIBE function determines whether you have a message pending
for your virtual machine. If there is a message pending, information about
the message is returned in the parameter list. Since you now have the
message information, there is no need for IUCV to reflect an IUCV Message
Pending external interrupt and you do not receive one for this message.

Since IUCV normally informs you of the message by reflecting a Message
Pending external interrupt, you should not use the DESCRIBE function
unless you have disabled for this type of interrupt. The IUCV SET MASK
function can be used to disable your virtual machine for Message Pending
external interrupts.

A message is described only once; either in the parameter list of. a
DESCRIBE or by a Message Pending external interrupt.

,PRMLIST=
,MF=

{address}
L

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the IUCV macro.

PRMLIST=
specifies the address of the DESCRIBE parameter list. The IUCV
instruction is generated to reference the address specified.

MF=L
lets you build an IUCV parameter list without initializing any
registers or executing the IUCV instruction.

IUCV Macro Completion Status

CONDITION CODES

o -Normal completion
2 - No message found

Chapter 2. Inter-User Communications Vehicle 181

IUCV DESCRIBE

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a double word boundary.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

DESCRIBE Parameter List Format

o
8

10

18

20

o 1 2 3 4 5 6 7

IPPATHID IIPFLAGSI IIPRCODE IPMSGID

IPTRGCLS IPRMMSGI

IPBFLNIF / IPRMMSG2 ////////////////////////////

//

IPBFLN2F ////////////////////////////

Output of DESCRIBE

• IPPATHID -- contains the path on which the message was sent.

• IPFLAGSl -- contains specific information about the message.

IPFGMCL (X'Ol') -- is always set to one indicating that the target
message class has been stored at IPTRGCLS.

IPFGPID (X'02') -- is always set to one indicating that the path id
has been stored at IPPATHID.

IPFGMID (X'04') -- is always set to one indicating that the message
id has been stored at IPMSGID.

IPNORPY (X'lO') -- indicates that this is a one-way message and no
REPLY is expected.

IPPRTY (X'20') -- indicates that this is a priority message.

182 VM System Facilities for Programming

~IUCV D[ESCR~IBIE

IPRMDATA (X'80') -- indicates that the 8-byte message is in the
parameter list at IPRMMSG.

• IPMSGID -- contains the message id.

• IPTRGCLS -- contains the target message class.

• IPRMMSGljIPRMMSG2 -- contains the message when it is stored in the
parameter list (indicated by IPRMDATA in IPFLAGSl). The label
IPRMMSG refers to the combined IPRMMSGI and IPRMMSG2 fields.

• IPBFLNIF -- contains the length of the message.

• IPBFLN2F -- contains the length of the maximum expected reply.

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o -Normal return

Chapter 2. Inter-User Communications Vehicle 183

IUCV TEST COMPLETION

TEST COMPLETION Function

IUCV Macro Format

The TEST COMPLETION function determines whether you have a message
completion pending for your virtual machine. If a message completion is
pending, information about the message is returned in the parameter list.
Since you now have the message completion information, there is no need
for IUCV to reflect an IUCV Message Completion external interrupt and
you will not receive one for this message.

Since IUCV normally informs you of a message completion by reflecting a
Message Completion external interrupt, you should not use the TEST
COMPLETION function unless you have disabled for this type of interrupt.
The IUCV SET MASK function can be used to disable your virtual machine
for Message Completion external interrupts.

When invoking the TEST COMPLETION function, you can completely
identify the message by specifying the message id, path id, and source
message class. You can also identify the message by either the path id or
the source message class, or both. If you do not specify any identifiers
when invoking the TEST COMPLETION function, any available message
completion satisfies the function.

label IUCV TESTCMPL ,PRMLIST= {address}
,MF= L

,MSGID= {address}
,PATHID= {address}
,SRCCLS= {address}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the IUCV macro.

PRMLIST=
specifies the address of the TEST COMPLETION parameter list. The
IUCV instruction is generated to reference the address specified.

MF=L
lets you build an IUCV parameter list without initializing any
registers or executing the IUCV instruction.

MSGID=
specifies the message id of the message. If the message id is used to
locate the message, the path id and the source class must also be
correctly specified in the parameter list.

184 VM System Facilities for Programming

IUCV TEST COMPllET~ON

PATHID=
specifies the unique path identification number associated with a
message.

SRCCLS=
specifies the source message class associated with a message.

IUCV Macro Completion Status

CONDITION CODES

o - Normal completion
1 - Nonzero value stored at IPRCODE
2 - No message found
3 - Nonzero audit trail stored

PROGRAM INTERRUPTIONS

Specification Exception
The parameter list is not on a double word boundary,
or the message id was specified without the path id
and the message class.

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Addressing Exception
The parameter list address that you specified is
outside the virtual machine's storage.

Protection Exception
The storage key of the specified parameter list address
does not match the key of the user.

TEST COMPLETION Parameter List Format

o
8

10

18

20

o 1 2 3

IPPATHIO IPFLAGSI IIPRCOOE

IPAUOIT ////////////////

IPRMMSG2

IPMSGTAG

IPBFLN2F

4 5 6 7

IPMSGIO

IPRMMSGI

IPSRCCLS

//////////////////////////////

//////////////////////////////

Chapter 2. Inter-User Communications Vehicle 185

IUCV TEST COMPLETION

Parameter List Input Fields

• IPPATHID -- contains the path id for the message completion.

• IPFLAGSI -- contains options for the TEST COMPLETION function.

IPFGMCL (X'Ol') -- indicates that you have specified a source
message class (IPSRCCL) to identify the message completion.

IPFGPID (X'02') -- indicates that you have specified a path id
(IPP ATHID) to identify the message completion.

IPFGMID (X'04') -- indicates that you have specified a message id
(IPMSGID) to identify the message completion.

• IPMSGID -- contains the message id for the message completion.

• IPSRCCLS -- contains the source message class for the message
completion.

Output of TEST COMPLETION

• IPPATHID -- contains the path id on which the message was sent.

• IPFLAGSI -- contains specific information about the message.

IPPRTY (X'20') -- indicates that this is a priority message.

IPRMDATA (X'80') -- indicates that the 8-byte reply is in the
parameter list.

• IPMSGID -- contains the message id.

• IP AUDIT -- contains information about possible asynchronous error
conditions which may have affected the normal completion of this
message. It this field is zero, the message has completed successfully.

The meanings of the bits in the audit trail are:

IPADRPLE
IPADSNPX
IPADSNAX
IPADANPX
IPADANAX
IPADRJCT
IPADPRMD

IPADRCPX
IPADRCAX

X'800000'
X'400000'
X'200000'
X'lOOOOO'
X'080000'
X'040000'
X'020000'

X'OlOOOO'
X'008000'
X'004000'

186 VM System Facilities for Programming

Reply too long for buffer
Protection exception on send buffer
Addressing exception on send buffer
Protection exception on answer buffer
Addressing exception on answer buffer
Message was rejected
Reply specified DATA = PRMMSG, but
this path cannot handle data in the
parameter list.
Reserved
Protection exception on receive buffer
Addressing exception on receive buffer

IPADRPPX
IPADRPAX
IPADSVRD
IPADRLST

IPADBLEN
IPADALEN
IPADBTOT
IPADATOT

X'002000'
X'OOlOOO'
X'000800'
X'000400'
X'000200'
X'OOOlOO'
X'000080'
X'000040'
X'000020'
X'OOOOlO'
X'000008'
X'000004'
X'000002'
X'OOOOOl'

IUCV TEST COMPLETION

Protection exception on reply buffer
Addressing exception on reply buffer
Path was severed
Invalid RECEIVE or REPLY address list
Reserved
Reserved
Bad length in SEND buffer list
Bad length in SEND answer list
Invalid total SEND buffer length
Invalid total SEND answer length
Reserved
Reserved
Reserved
Reserved

• IPRMMSGI/IPRMMSG2 -- contains the message when it is stored in the
parameter list (indicated by IPRMDAT A in IPFLAGSl). The label
IPRMMSG refers to the combined IPRMMSG 1 and IPRMMSG2 fields.

• IPSRCCLS -- contains the source message class.

• IPMSGTAG -- contains the tag data of the message.

• IPBFLN2F -- contains one of the following values:

If the buffer is exactly the correct length, this field contains zero.

If the buffer is too long, this field contains the number of bytes
unused in the buffer.

If the buffer is too short, this field contains a residual count (that is,
the number of bytes remaining of the reply that do not fit into the
buffer). The IPADRPLE bit is set in the audit trail on this
condition.

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o - Normal return
1 - Invalid path id
8 - Message id found but message class or path id

invalid

Chapter 2. Inter-User Communications Vehicle 187

IUCV SET MASK

SET MASK Function

IUCV Macro Format

The SET MASK function enables or disables the following IUCV external
interruptions:

• Nonpriority message interrupts
• Priority message interrupts
• Priority reply interrupts
• Nonpriority reply interrupts
• IUCV control interrupts

Individual IUCV control interrupts can be controlled by using the SET
CONTROL MASK function.

IUCV external interrupts are controlled by several masks in the following
priority order:

1. Submask bit 30 of Control Register 0
2. Bit 7 of the virtual machine PSW
3. Bits defined by the SET MASK function
4. Bits defined by the SET CONTROL MASK function

label IUCV SETMASK ,PRMLIST= {address}
,MF= L

,MASK = {address}

Only the PRMLIST parameter is required. If you do' not specify the other
parameters, the macro assumes that you have stored the 'desired values into
the parameter list before invoking the IUCV macro.

PRMLIST=
specifies the address of the SET parameter list. The IUCV instruction
is generated to reference the address specified.

MF=L
lets you build an IUCV parameter list without initializing any
registers or executing the IUCV instruction.

MASK =
specifies the mask byte to determine for which, if any, IUCV external
interrupts a virtual machine is enabled.

188 VM System Facilities for Programming

IUCV SET MASK

IUCV Macro Completion Status

I CONDITION CODES

PROGRAM INTERRUPTIONS
Operation Exception

The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Protection Exception
The storage key of the specified parameter list does
not match the key of the user.

SET MASK Parameter List Format

a 1 2 3 4 5 6 7

a IPMASK I ///////////// IIPRCODE I ///////////////////////////

8 //

10 //

18 //

20 //

Parameter List Input Fields

o IPMASK -- contains the mask that specifies for which, if any, lUCY
interrupts your virtual machine is enabled. The meanings of the bits in
the mask are:

IPSNDN
IPSNDP
IPRPYN

IPRPYP

IPCTRL

X'80' Enable for nonpriority message interrupts
X' 40' Enable for priority message interrupts
X'20' Enable for nonpriority message completion

interrupts
X'lO' Enable for priority message completion

interrupts
X'08' Enable for lUCY control interrupts

Chapter 2. Inter-User Communications Vehicle 189

IUCV SET MASK

Output of SET MASK

; .

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o -Normal return

190 VM System Facilities for Programming

~ucv SET CONTROL MASK

SET CONTROL MASK Function

IUCV Macro Format

The SET CONTROL MASK function enables or disables the following
IUCV external interruptions:

• Pending Connection
• Connection Complete
• Connection Severed
• Connection Quiesced
• Connection Resumed

IUCV external interrupts are controlled by several masks in the following
priority order:

1. Submask bit 30 of Control Register 0
2. Bit 7 of the virtual machine PSW
3. Bits defined by the SET MASK function
4. Bits defined by the SET CONTROL MASK function

label IUCV SETCMASK ,PRMLIST= {address}
,MF= L

,MASK = {address}

Only the PRMLIST parameter is required. If you do not specify the other
parameters, the macro assumes that you have stored the desired values into
the parameter list before invoking the IUCV macro.

PRMLIST=
specifies the address of the SET parameter list. The IUCV instruction
is generated to reference the address specified.

MF=L
lets you build an IUCV parameter list without initializing any
registers or executing the IUCV instruction.

MASK =
specifies the mask byte to determine for which, if any, IUCV external
interrupts a virtual machine is enabled.

Chapter 2. Inter-User Communications Vehicle 191

IUCV SET CONTROL MASK

IUCV Macro Completion Status

I CONDITION CODES

PROGRAM INTERRUPTIONS

Operation Exception
The external interrupt buffer has not been declared
using the DECLARE BUFFER function, or your
virtual machine is not in supervisor state.

Protection Exception
The storage key of the specified parameter list does
not match the key of the user.

SET CONTROL MASK Parameter List Format

o 1 2 3 4 5 6 7

o IPMASK I /////////1/// IIPRCODE I ///////////////////////////
8 //

10 //

18 ///1//////

20 //

Parameter List Input Fields

• lPMASK -- contains the mask that specifies for which, if any, lUCY
interrupts your virtual machine is enabled. The meanings of the bits in
the mask are:

lPCLPC
lPCLCC
lPCLPS
lPCLPQ
IPCLPR

X'80' Enable for pending connections interrupts
X' 40' Enable for connection complete interrupts
X'20' Enable for connection severed interrupts
X'lO' Enable for connection quiesced interrupts
X'08' Enable for connection resumed interrupts

192 VM System Facilities for Programming

~ucv StET CONTROL MAS~(

Output of SET CONTROL MASK

• IPRCODE -- contains the return code describing how this function
completed. Possible values are listed below.

RETURN CODES in IPRCODE

o -Normal return

Trace Table Entries

lUCY support generates a trace table entry for each IUCV function. There
is one trace table entry type for IUCV entries (X'15'). Each entry contains
a subtype field to indicate the exact IUCV function a communicator
invoked.

Whether invoked from a virtual machine or from CP system code, all uses
of IUCV are recorded in the CP trace table. The address portion of the old
PSW is recorded as part of the entry. The X'80' bit in the RCODE byte
indicates that this address is a real address (when invoked from CP) rather
than a virtual address (when invoked from a virtual machine). For virtual
machine addresses, the address of the associated VMBLOK can be obtained
from preceding trace table entries.

The IUCV trace facilities can be suppressed at assembly time by setting
&TRACE(9) to 0 or at execution time by setting the X'80' bit to 0 in
TRACFLG3 in PSA.

IUCV functions invoked by other functions are also recorded as if they had
been invoked from CPo These secondary functions include:

• The RETRIEVE BUFFER function generates a SEVER for all
established paths.

• The SEVER function generates a REJECT for each incoming
outstanding message and a PURGE for each outgoing outstanding
message.

• A CONNECT issued to a CP system service passes control to that
service. The selected CP system service usually invokes the ACCEPT
function.

• The CP dispatcher invokes the DESCRIBE and TEST COMPLETION
functions to dequeue messages intended for the CP system.

Chapter 2. Inter-User Communications Vehicle 193

IUCV

IUCV Trace Table Entry Formats

ACCEPT (X'OA'), CONNECT (X'OB'), DESCRIBE (X'03'), PURGE (X'09'), QUIESCE (X'OD'),
RECEIVE (X'05'), REJECT (X'08'), REPLY (X'06'), RESUME (X'OE'), SEND (X'04'), SEVER (X'OF'),
TEST COMPLETION (X'07') .

o
8

o
X' 15 1

RCODE

1 2

FCODE I
MSGBLOK

3 4 5 6 7

PATH IUCVBLOK

FLAGS I INSTRUCTION

DECLARE BUFFER (X'OC'), RETRIEVE BUFFER (X'02')

o 1 2 3

o
8

X' 15 1 FCODE I /////////////
RCODE

QUERY (X'OO')

o
8

o 1

X' 15 1 I FCODE

/////////////

BUFFER

2 3

PARMSIZE

MAX CONN

4 5

FLAGS I

4 5

///// I

SET MASK (X'lO'), SET CONTROL MASK (X'll')

o
8

o 1

X' 15 1

RCODE

2 3

FCODE I MASK I /////
//////////////////////

TEST MESSAGE (X'Ol')

4 5

FLAGS I

o 1 234 5

o X' 15 1 I FCODE I CCODE I ///// I
8 ///////////////////////////////////// I

194 VM System Facilities for Programming

6 7

IUCVBLOK

INSTRUCTION

6 7

IUCVBLOK

INSTRUCTION

6 7

IUCVBLOK

INSTRUCTION

6 7

IUCVBLOK

INSTRUCTION

IUCV

Trace Table Entry Field Definitions

This section explains, for each IUCV trace table field, the functions for
which this field is valid, and the meaning of the field.

BUFFER

CCODE

FCODE

FLAGS

(Used on DECLARE BUFFER, RETRIEVE BUFFER)

This field contains the virtual buffer address specified by
the user for IUCV external interrupt information.

(Used on TEST MESSAGE)

This field contains the condition code returned to the
invoker of the TEST MESSAGE function if a message was
pending at the time the TEST MESSAGE function was
issued. If no message is pending when TEST MESSAGE is
issued, this field contains zero. Bits 6 and 7 of this
CCODE field are used for the condition code.

(Used on all entries)

This field indicates the exact function executed. One of
the following function codes is found in this field.

X'OO' - QUERY
X'Ol' - TEST MESSAGE
X'02' - RETRIEVE BUFFER
X'03' - DESCRIBE
X'04' - SEND
X'05' - RECEIVE
X'06' - REPLY
X'07' - TEST COMPLETION
X'08' - REJECT
X'09' - PURGE
X'OA' - ACCEPT
X'OB' - CONNECT
X'OC' - DECLARE BUFFER
X'OD' - QUIESCE
X'OE' - RESUME
X'OF' - SEVER
X'lO' - SET MASK
X'll' - SET CONTROL MASK

(Used on ACCEPT, CONNECT, DECLARE BUFFER,
DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SET CONTROL MASK, SET
MASK, SEVER, TEST COMPLETION)

This field is a copy of the input flags specified by the user
in the field IPFLAGSI of the parameter list. Note that the
use of these flags varies by function and that the user may
have set flags that are not used by the function.

Chapter 2. Inter-User Communications Vehicle 195

IUCV
M"HMM# __ i'.FaW'.- aWMWi@s)f"5 8eAM & a

INSTRUCTION (Used on all entries)

IUCVBLOK

MASK

MAXCONN

MSGBLOK

PARMSIZE

PATH

RCODE

This field contains the address of the instruction following
where the function was invoked. This address is a real
address if the IPCPENTY (X'08') bit in the field FLAGS is
set to one. Otherwise, the address is an address in a
virtual machine.

(Used on all entries)

This field contains the address of the IUCVBLOK
associated with the invoker. For the QUERY function,
this field may be zero if no IUCVBLOK currently exists for
the invoker. For the DECLARE BUFFER function, this
field contains the address of the IUCVBLOK created by
this function.

(Used on SET MASK, SET CONTROL MASK)

This field contains a copy of the mask field that was
specified by the virtual machine.

(Used on QUERY)

This field contains the maximum number of connections
allowed by the virtual machine issuing this request.

(Used on DESCRIBE, PUHGE, RECEIVE, REJECT,
REPLY, SEND, TEST COMPLETION)

This field contains the real address of the MSGBLOK
processed by this request.

(Used on QUERY)

This field contains the size of IUCV parameter list
returned to the invoker of the QUERY function.

(Used on ACCEPT, CONNECT, DESCRIBE, PURGE,
QUIESCE, RECEIVE, REJECT, REPLY, RESUME,
SEND, SEVER, TEST COMPLETION)

This field contains the path id of the path associated with
this request. For the CONNECT function, this is the path
id associated with the path being created. For the other
functions, this is the path id used to process the request.

(Used on ACCEPT, CONNECT, DECLARE BUFFER,
DESCRIBE, PURGE, QUIESCE, RECEIVE, REJECT,
REPLY, RESUME, SEND, SET CONTROL MASK, SET
MASK, SEVER, TEST COMPLETION)

196 VM System Facilities for Programming

IUCV System Services

This field contains the code returned in the field
IPRCODE of the parameter list. If this return code field is
non-zero, only the TYPE, FCODE, INSTRUCTION,
FLAGS, and IUCVBLOK fields are valid. The other fields
may be invalid because of the return code. Invalid fields
always contain zeroes.

IUCV treats communications with CP as if CP were a single virtual
machine. IUCV gathers information about a message and routes it to the
proper module in CP for processing.

IUCV provides:

• Routing of connections to IUCV system services
• Routing of messages to IUCV system services
• Routing of message completions to the IUCV system service that issued

the SEND
• Severing of connections to IUCV system services.

Each IUCV system service that interfaces with virtual machines is uniquely
defined to IUCV. The following table shows the corresponding userid for
each of the IUCV system services. This userid must be specified on the
USE RID = parameter when invoking the IUCV CONNECT function.

System
Service
Userid System Service

*BLOCKIO DASD Block I/O System Service

*CCS Console Communication Services

*IDENT Identify System Servicell

*LOGREC Error Logging System Service

*MSG Message System Service

*MSGALL Message All System Service

*RPI Access Verification System Service

*SIGNAL Signal System Service

*SPL SPOOL System Service

*CRM Collection Resource Management System Servicell

Figure 8. CP System Services and Their Userids

The IUCV System Services use the IUCV macro to invoke IUCV functions
just as a virtual machine does. However, to generate the proper linkage,
two parameters are provided on the macro for use by CP system code.

11 This system service is documented in the VM/ SP Transparent Services Access
Facility Reference.

Chapter 2. Inter-User Communications Vehicle 197

IUCV

These macro parameters are CP = and VMBLOK =. These parameters are
used to indicate CP system code is invoking the macro and to indicate if the
function is for a system service or for a virtual machine.

CP does not, and can not, use all of the functions provided by the IU CV
macro. Only those currently used by CP are supported for use by CPo

198 VM System Facilities for Programming

HNDIUCV Macro

The Inter-User Communications Vehicle (IUCV) and the Advanced
Program-to-Program CommunicationjVM (APPCjVM) are communication
facilities. lUCY allows a program running in a virtual machine to
communicate with other virtual machines, with a CP system service, and
with itself. See "The Inter-User Communications Vehicle" for more detail.

APPCjVM enables a program running in a virtual machine to communicate
with resources in virtual machines in the same system, or if TSAF is
running, on different systems within a specified group, or collection. See
the VMjSP Transparent Services Access Facility Reference for more detail.
CMS support of lUCY and APPCjVM makes it easier for multiple programs,
operating within one virtual machine, to use lUCY and APPCjVM
functions.

You can invoke lUCY and APPCjVM functions through the CMS macros,
HNDlUCV and CMSIUCV. These macros enable you to:

• Initialize and terminate a program's lUCY or APPCjVM environment

• Begin or terminate communications with another virtual machine (in
the same system or different systems) or with a CP system service
(IUCVonly)

• Specify path-specific exits for lUCY and APPCjVM external interrupts.

Use the HNDlUCV macro to identify an lUCY or APPCjVM program to
CMS. HNDlUCV initializes or terminates the virtual machine's lUCY and
APPCjVM environment. No CMS lUCY function is permitted by a
particular program unless the program has first issued the HNDIUCV
macro and identified itself to CMS.

The four formats of the HNDIUCV macro are:

• Standard
• List (MF = L)
• Complex List (MF = (L,addr[,label])
• Execute (MF = (E,addr».

Chapter 3. CMS lUCY 199

eMS IUCV

Standard Format

[label] HNDIUCV

The Standard format of the HNDIUCV macro is:

~ ~

SET ,NAME = addr ,EXIT = addr [,UWORD =addr][,ERROR =addr]

< REP,NAME= addr[,ERROR = addr] ,UWORD=addr >
{
,EXIT = addr }

,EXIT =addr ,UWORD = addr

CLR,NAME = addr [,ERROR = addr]
, J

where:

addr

label

SET

CLR

REP

is an assembler program label or an address stored in a general
purpose register. If a register is used, it must be enclosed in
parentheses. Also, the register must contain a non-zero value. A zero
value is treated as though the parameter was not specified, and any
defaults are use.d. If the parameter is required by the macro function,
a non-zero return code is generated.

is an assembler program label.

identifies the program to CMS. It must be issued before invoking any
CMS IUCV functions. Upon error free completion, register 0 contains
the maximum number of possible connections for the virtual machine.
If the user is connecting to the Identify System Service (*IDENT) for
resource identification, the NAME field must be equal to the resource
name that is being identified.

removes the program from the list of active CMS IUCV programs.
This ftinction should be issued when the program no longer wishes to
do any more IUCV or APPC/VM communications. Any paths
associated with this program are SEVERed when this function is
requested (the IPUSER field of the IUCV SEVER parameter list is set
to binary ones to indicate the SEVER was done by CMS).

replaces the currently defined exit address and/or UWORD field for a
specified program. Only the parameters specified are replaced.

NAME =

label is an assembler program label that is the address of an 8
character symbolic name.

200 VM System Facilities for Programming

eMS IUCV

(Rn) is a general purpose register. Its value is the address of an 8
character symbolic name.

This symbolic name is used as the CMS IUCV program's identity.
When this program issues the CMSIUCV macro to perform an IUCV
or APPCjVM function, the NAME parameter specified on the
CMSIUCV macro must be the same as the one specified here. This
parameter is required to execute the HNDIUCV function.

EXIT =

label is an assembler program label that is the address of the exit
routine.

(Rn) is a purpose general register. Its value is the address of the
exit routine.

The exit routine receives control whenever an IUCV or APPCjVM
external interrupt of the type "PENDING CONNECT" occurs for this
program. To activate this exit, the connecting virtual machine must
specify the same symbolic name in the first 8 bytes of the IPUSER
field of its CONNECT parameter list as the NAME parameter here.
This exit address is the default address associated with any path
owned by this program. If an IUCV or APPCjVM external interrupt
occurs on a path where no specific exit has been established (a
pending connect external interrupt has previously occurred on this
path and no CMSIUCV ACCEPT has been issued yet, or the EXIT
parameter was not specified on the CMSIUCV CONNECT or ACCEPT
that established the path), this address receives control. This
parameter must be specified on the SET function, but it is optional on
the REP function.

UWORD=

label is an assembler program label that is the address stored as the
UWORD.

(Rn) is a general purpose register. Its contents are stored as the
UWORD.

UWORD is an optional fullword that can be specified by the invoker
for any purpose desired. When the exit routine receives control,
register 0 contains either an address if a label was used or the value of
the register if a register was used. If this parameter is not specified,
the UWORD is set to zero. (If the UWORD value is not specified when
a CMSIUCV ACCEPT or CONNECT is issued, it defaults to the
UWORD value specified on this HNDIUCV macro.)

ERROR =

label is an assembler program label that is the address of the error
routine.

Chapter 3. CMS lUCY 201

eMS ~ucv

List Format

(Rn) is a general purpose register. Its value is the address of the
error routine.

The error routine receives control if an error is found. If this
parameter is not specified and an error occurs, control returns to the
next sequential instruction in the calling program.

The List format (MF = L) of the HNDIUCV:macro is:

r- -
[label] HNDIUCV MF=L [,NAME = label] [,EXIT = label] [, UWORD = label]

Complex List Format

,SET [,NAME =labez] [,EXIT = label][,UWORD = label]

,REP [,NAME =labez] [,EXIT = label][,UWORD = label]

,CLR [,NAME = label]
L... -

All parameters have the same meaning as the Standard format with the
following difference:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

Note: When using the MF= parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the List and Execute formats of the macro.

The Complex List format (MF = (L,addr[,label]) of the HNDIUCV macro is:

- -
[label] HNDIUCV MF = (L, addrLlabel]) [,NAME =addr] [,EXIT=addr] [,UWORD=addr]

,SET [,NAME =addr][,EXIT =addr] [,UWORD =addr]

,REP [,NAME =addr] [,EXIT = addr] [, UWORD =addr]

,CLR [,NAME =addr]
-

All parameters have the same meaning as the Standard format with the
following difference:

MF = (L,addr[,label])

-

indicates that the parameter list is created in the area specified by
"addr". The address may represent an area within your program or an
area of free storage obtained by a system service. You can determine

202 VM System Facilities for Programming

Execute Format

the size of the parameter list by coding the "label" operand. The
macro expansion equates "label" to the size of the parameter list. This
format of the macro produces executable code to move the data into

I

the parameter list speCified by "addr". However, it does not generate
instructions to invoke the function. If this version of the List format
is used, it must be executed before any related invocation of the
Execute format.

Note: When using the MF = parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the List and Execute formats of the macro.

The Execute format (MF = (E,addr» of the HNDIUCV macro is:

- -
[zabel] HNDIUCV MF = (E, addr) [,NAME =addr] [,EXIT = addr] [,UWORD =addr]

Error Conditions

[,ERROR = addr]

,SET [,NAME =addr][,EXIT =addr] [,UWORD =addr]

[,ERRO R = addr]

,REP [,NAME =addr] [,EXIT = addr] [, UWORD = addr]

[,ERROR = addr]

,CLR [,NAME =addr] [,ERROR = addr] ...

All parameters have the same meaning as the Standard format with the
following difference:

MF=(E,addr)
indicates that instructions are generated to execute the HNDIUCV
function. "addr" represents the location of the parameter list.
Information in the parameter list may be changed by specifying the
appropriate operands on the macro.

-

Note: When using the MF = parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the List and Execute formats of the macro.

If an error occurs, register 15 contains one of the following return codes:

Code Meaning

4 A program with this name has previously issued a HNDIUCV SET
(SET)

8 No HNDIUCV SET has been issued for this program (REP,CLR)

Chapter 3. CMS lUCY 203

eMS ~lUJCV

CMSIUCV Macro

16 The NAME parameter was not specified or its address is equal to
zero (SET,REP,CLR)

20 The EXIT parameter was not specified or its address is equal to zero
(SET)

32 An lUCY DECLARE BUFFER has already been issued by a
non-CMS lUCY program. CMS lUCY cannot be initialized (SET)

36 Errors were encountered reading the directory for the virtual
machine during CMS lUCY initialization (SET)

40 Unrecognized function

48 The lUCY DCLBFR CONTROL = YES failed, as indicated by CPo

60 HNDIUCV CLR or HNDIUCV REP cannot be issued by the CMS
supervisor.

72 The HNDIUCV SET cannot be performed because the SET for the
CMS supervisor failed during IPL.

2xx An error was encountered in getting CMS free storage. "xx" = the
return code from DMSFREE. (SET)

lxxx While trying to SEVER all of the program's paths, an lUCY SEVER
error occurred. "xxx" is the IPRCODE field that was returned by
lUCY to aid in diagnosing the error. (CLR)

Use the CMSIUCV macro to begin or terminate lUCY communications with
another lUCY program or with CPo Also, use the CMSIUCV macro to
begin or terminate APPC/VM communications with an APPC/VM resource
manager.

The four formats of the CMSIUCV macro are:

• Standard
• List (MF = L)
• Complex List (MF = (L,addr[,labelD)
• Execute (MF=(E,addr)).

204 VM System Facilities for Programming

Standard Format

[label] CMSIUCV

The Standard format of the CMSlUCV macro is:

,.
CONNECT ,NAME = addr ,PRMLIST = addr [,EXIT = addr] '"

[,UWORD= addr] [,ERROR= addr]

<
ACCEPT,NAME=addr ,PRMLIST=addr [,EXIT= addr] >

[,UWORD= addr] [,ERROR = addr]

SEVER ,NAME=addr ,PRMLIST=addr [,ERROR = addr]

'"
[,CODE = {ALL I ONE}]

oJ

where:

addr

label

is an assembler program label or an address stored in a general
purpose register. If a register is used, it must be enclosed in
parentheses. Also, the register must contain a non-zero value. A zero
value is treated as though the parameter was not specified, and
defaults are used. If the parameter was required by the macro
function, a non-zero return code is generated.

is an assembler program label.

CONNECT
requests CMS to perform an lUCV or APPCjVM CONNECT. A
CONNECT parameter list must be set up by the program and passed to
CMS.

ACCEPT
requests CMS to perform an lUCV or APPCjVM ACCEPT. An
ACCEPT parameter list must be set up by the program and passed to
CMS.

SEVER
requests CMS to perform an lUCV or APPCjVM SEVER. A SEVER
parameter list must be set up by the program and passed to CMS. Any
EXIT established for the path being SEVERed is terminated. A
SEVER with the lP ALL bit turned on, which would cause a SEVER of
all paths for the virtual machine, is not permitted.

EXIT=

label is an assembler program label that is the address of the exit
routine.

(Rn) is a general purpose register. Its value is the address of the
exit routine.

Chapter 3. CMS lUCY 205

CMS IUCV

The exit routine receives control whenever an lUCY or APPC/VM
external interrupt occurs on this lUCY or APPC/VM path. If this
parameter is not specified, the exit address defaults to the address
specified in the HNDlUCV macro for this program. Any time an
lUCY or APPC/VM external interrupt occurs for the specific lUCY or
APPC/VM path, the address is given control.

UWORD=

label is an assembler program label that is the address that is
stored as the UWORD.

(Rn) is a general purpose register. Its contents are stored as the
UWORD.

UWORD is an optional full word that can be specified by the invoker
for any purpose desired. When the exit routine receives control,
register 0 contains the value of the UWORD associated with the path
on which the lUCY or APPC/VM external interrupt occurred.
Register 0 contains the address if a label was used, or the value of the
register if a register was used. If this parameter is not specified, the
UWORD value defaults to the value specified on the HNDlUCV macro
for this program.

PRMLIST=

label is an assembler program label. It is the address of the
program's lUCY PRMLlST.

(Rn) is a general purpose register. Its value is the address of the
program's lUCY PRMLlST.

This address points to the block of storage that contains the lUCY or
APPC/VM parameter list for the function desired. This parameter list
must be previously prepared by the program. It is suggested that the
program use the List form of the lUCY or APPC/VM macro to prepare
the parameter list. By using this form, the program may set up the
lUCY or APPC/VM parameter list by using KEYWORD parameters on
the lUCY or APPC/VM macro instead of storing information using the
lP ARML DSECT. This parameter is required.

CODE =

is only valid when the SEVER function is requested. If CODE = ALL,
all paths owned by the program are SEVERed. If CODE = ONE, only
the one path specified via the pathid is SEVERed. If this parameter is
not specified, CODE = ONE is used as the default.

206 VM System Facilities for Programming

List Format

[label]

NAME =

label is an assembler program label. It is the address of an 8
character symbolic name.

(Rn) is a general purpose register. Its value is the address of an 8
character symbolic name.

This symbolic name identifies the program associated with this path.
A program with this name must have previously issued an HNDIUCV
macro to identify itself as a CMS lUCY program to CMS. This
parameter must be specified.

ERROR =

label is an assembler program label that is the address of the error
routine.

(Rn) is a general purpose register. Its value is the address of the
error routine.

The error routine receives control if an error is found. If this
parameter is not specified and an error occurs, control returns to the
next sequential instruction in the calling program.

The List format (MF = L) of the CMSIUCV macro is:

CMSIUCV MF=L - [,NAME=label][,PRMLIST=label] [,EXIT= label] -

[, UWORD = label] [,CODE ={ ALL I ONE}]

,CONNECT [,NAME=label][,PRMLIST=label][,EXIT= label]
[, UWORD = label]

,ACCEPT [,NAME =label] [,PRMLIST =label] [,EXIT = label]
[, UWORD = label]

,SEVER [,NAME = label] [,PRMLIST =label]

- ['CODE={ALL lONE}]

All parameters have the same meaning as the Standard format with the
following difference:

MF=L
indicates that the parameter list is created in-line. No executable
code is generated. Register notation cannot be used for macro
parameter addresses.

-

Note: When using the MF = parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the List and Execute formats of the macro.

Chapter 3. CMS IUCV 207

CMS IUCV

Complex List Format

The Complex List format (MF = (L,addr[,labeID) of the CMSIUCV macro is:

, -
[label] CMSIUCV MF = (L, addr~label]) [,NAME =addr] [,PRMLIST = addr] [,EXIT = addr]

Execute Format

[,UWORD=addr][,CODE={ALL I ONE}]

,CONNECT [,NAME =addr] [,PRMLIST = addr]

[,EXIT =addr] [,UWORD =addr]

,ACCEPT [,NAME =addr] [,PRMLIST = addr]

~EXIT = addr] [,UWORD =addr]

,SEVER [,NAME = addr] [,PRMLIST = addr]

[,CODE = {ALL I ONE}]
-

All parameters have the same meaning as the Standard format with the
following difference:

MF = (L,addr[,label])

-

indicates that the parameter list is created in the area specified by
"addr". The address may represent an area within your program or an
area of free storage obtained by a system service. You can determine
the size of the parameter list coding the "label" operand. The macro
expansion equates "label" to the size of the parameter list. This
format of the macro produces executable code to move the data in the
parameter list specified by "addr". However, it does not generate
instructions to invoke the function. If this version of the List format
is used, it must be executed before any related invocation of the
Execute format.

Note: When using the MF= parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the List and Execute formats of the macro.

The Execute format (MF = (E,addr» of the CMSIUCV macro is:

208 VM System Facilities for Programming

eMS IUCV

r- -;;:

[zabel] CMSIUCV MF = (E, addr) [,NAME = addr] [,PRMLIST = addr] [,EXIT = addr]

Usage Notes:

[, UWORD = addr] [,ERROR = addr]

[,CODE={ALLI ONE}]

,CONNECT [,NAME =addr] [,PRMLIST = addr]

[,EXIT =addr] [,UWORD =addr] [,ERROR = addr]

,ACCEPT [,NAME = addr] [,PRMLIST = addr]

[,EXIT=addr] [,UWORD =addr] [,ERROR = addr]

,SEVER [,NAME =addr] [,PRMLIST = addr]

[,CODE={ALLI ONE}] [,ERROR= addr]
'-

All parameters have the same meaning as the Standard format with the
following difference:

MF=(E,addr)
indicates that instructions are generated to execute the CMSIUCV
function. "addr" represents the location of the parameter list.
Information in the parameter list may be changed by specifying the
appropriate operands on the macro.

-

Note: When using the MF = parameter, all other parameters are optional.
When the function is executed, however, a valid combination of parameters
must have been specified by the List and Execute formats of the macro.

1. To insure that no program tries to SEVER a path that another program
established, each individual IUCV and APPC/VM path has a NAME
associated with it. When a program requests a CONNECT or ACCEPT
function, the NAME specified becomes the owner of this path. If the
program requests a SEVER or an ACCEPT for a specific path and the
NAME specified does not correspond with the owner of that path, the
SEVER or ACCEPT is not permitted.

2. The HNDIUCV macro must be issued to identify the program to CMS
before issuing the CMSIUCV macro.

3. If the program requests a SEVER function with CODE = ALL, all IUCV
and APPC/VM paths owned by that program are SEVERed. The
lPUSER field of the IUCV SEVER PRMLIST is set to binary ones. The
CP parameter list passed as input on the CMSIUCV SEVER,
CODE = ALL must be an lUCY parameter list. A non-zero return code
is returned to the user program if an APPC/VM parameter list is
passed. Any APPC/VM paths that the user owns will be severed as
TYPE=ABEND with CODE=X'0620'.

4. lUCY and APPC/VM generate exceptions for some error conditions. If
lUCY or APPC/VM generates an operation, specification, or addressing

Chapter 3. CMS IUCV 209

Error Conditions:

exception while a HNDIUCV or CMSIUCV macro is executing, control
does not directly return to the next sequential instruction. Instead, a
program check is generated.

5. The HNDIUCV REP function will only replace the general exit address
and/or UWORD set up by your program via the HNDIUCV SET
function. If your program had previously issued any CMSIUCV
CONNECTs and had the EXIT address or UWORD default to the
HNDIUCV SET's EXIT and UWORD, the HNDIUCV REP function does
not replace the path specific EXIT or UWORD set up via the CMSIUCV
function. The EXIT and UWORD remain as established when the
CMSIUCV function was issued.

If an error occurs, register 15 contains one of the following return codes:

Code Meaning

2 An APPC/VM parameter list was passed as input to CMSIUCV, and
the requested function completed immediately. The function
complete information is in the parameter list. The user's
path-specific exit will not be driven because CP does not reflect an
interrupt to the virtual machine.

3 An APPC/VM SENDDATA or RECEIVE function was requested,
and completed immediately. CP stored error information in the
IPAUDIT field of the CP APPC/VM parameter list. The user's
path-specific exit will not be driven because CP does not reflect an
interrupt to the virtual machine.

8 No HNDIUCV SET has been issued for this program
(CONNECT,ACCEPT,SEVER)

12 The program doesn't own the path (ACCEPT,SEVER)

16 The NAME parameter was not specified or its address is equal to
zero (CONNECT,ACCEPT,SEVER)

24 The PRMLIST parameter was not specified or its address is equal to
zero (CONNECT,ACCEPT,SEVER)

28 An IUCV SEVER with the IPALL bit on is not allowed (SEVER)

40 Unrecognized function

52 The IUCV CONNECT parameter list is invalid. Only the CMS
supervisor can specify CONTROL = YES.

68 An APPC/VM parameter list is not allowed as input on a CMSIUCV
SEVER, CODE = ALL.

210 VM System Facilities for Programming

Exits

Usage Notes

eMS ~lDCV

lxxx Indicates that an lUCY error occurred. "xxx" is the IPRCODE field
that was returned by lUCY to aid in diagnosing the error.
(CONNECT,ACCEPT,SEVER)

When the program's lUCY or APPC/VM external interruption routine is
given control, all interruptions are disabled. The exit routine is responsible
for providing proper entry and exit linkage for its lUCY or APPC/VM
external interruption handling routine. The exit routine has the following
requirements:

• The routine should not enable itself for any type of interrupts.

• The routine should not perform any I/O operations, since all
interruptions are disabled.

• The routine must return control to the address in register 14.

When the routine receives control, the significant registers contain:

Register Contents

o UWORD Field
1 Points to a SA VEAREA in the format:

Displacement
Dec Hex

GRS o 0

FRS 64 40

PSW 96 60

UAREA 104 68

END 176 BO

Contents

Control registers 0-15 at
the time of the interrupt.
Floating point registers 0-7
at the time of the interrupt.
External Old PSW at the
time of the interrupt.
Register save area for exit
routine's use.
End of save area.

2 Address of the lUCY External Interrupt Buffer
13 Points to the save area at label UAREA for use by the exit

routine
14 Return address
15 Entry point address

1. If the CMS lUCY support is active, the external interrupt handler
recognizes two error conditions.

• An lUCY or APPC/VM pending-connect external interrupt occurs
and the first eight bytes of the IPUSER field does not match any
currently active CMS lUCY program's identity.

Chapter 3. CMS IUCV 211

I

eMS ~(lJCV

• Any other type of IUCV or APPC/VM external interrupts occurs
and the path that it occurs on is not owned by any active CMS
lUCY programs in the virtual machine.

In either condition, CMS issues an IUCV SEVER for the path in error.
The 16 bytes in the IPUSER field contain binary ones (X'F').

2. If a CMS abend occurs, the CMS IUCV environment is terminated. An
IUCV RETRIEVE BUFFER is issued, and any exits set up by the
CMSIUCV or HNDIUCV macros are cancelled.

3. CMS lUCY clean up does not occur at end-of-command processing.

4. A program must be ready to handle any incoming external interrupts as
soon as a HNDlUCV or CMSIUCV macro has finished execution. A
program may even be interrupted before the next sequential instruction
after the macro in the program is executed.

Using CMS IUCV to Communicate Between Two Virtual Machines

Figure 9 on page 213 illustrates the sequence of macro instructions issued
when a virtual machine communicates with another virtual machine using
CMS IUCV. With APPC/VM, this virtual machine to virtual machine
communication can occur between two systems.

The functions performed by these instructions include:

• Initializing IUCV or APPC/VM communications

• Connecting to another virtual machine

• Sending and receiving messages

• Replying to and waiting for messages

• Severing connections with the other virtual machine

• Terminating lUCY or APPC/VM communications.

212 VM System Facilities for Programming

eMS IIUCV

Virtual Machine X Virtual Machine Y

1. HNDIUCV SET,NAME=ONE,EXIT=A 1. HNDIUCV SET,NAME=TWO,EXIT=l
2. Set up the IUCV parameter list
3. CMSIUCV CONNECT,NAME=ONE,EXIT=B

4. CONNECT-pending external
interrupt

5. EXIT 1 receives control
6. CMSIUCV ACCEPT,NAME=TWO,EXIT=2

7. CONNECT-complete external
interrupt

B. EXIT B receives control

9. CMSIUCV SEVER,NAME=ONE
10. SEVER external interrupt
11. EXIT 2 receives control
12. CMSIUCV SEVER,NAME=TWO

13. HNDIUCV CLR,NAME=ONE 13. HNDIUCV CLR,NAME=TWO

14. ONE DC CLB'RED '
15. TWO DC CLB'BLUE '

Figure 9. Sequence of Instructions in Virtual Machine to Virtual Machine Communication

The sequence of instructions shown in Figure 9 is an example of how to use
lUCY in CMS. You can substitute APPCjVM instructions where lUCY
instructions are shown. Note that the target program (NAME = TWO) must
have established itself as a resource (to CP) before the soU:rce program
(NAME = ONE) can request an APPCjVM connection to it. Refer to the
VMj SP Transparent Services Access Facility Reference for details about how
a resource identifies itself.

See Appendix B, "Sample CMS lUCY Program" on page 425 for an actual
program using CMS lUCY.

The following list is an explanation of the sequence of instructions used
above.

1. A program running in virtual machine X wishes to communicate with a
program running in virtual machine Y. Each program must
independently issue the HNDIUCV macro to begin lUCY
communications. By issuing HNDIUCV SET, CMS invokes the lUCY
DECLARE BUFFER function. The EXIT parameter establishes a
general exit to handle lUCY CONNECT PENDING external interrupts.

2. Before issuing a CMSIUCV CONNECT, an lUCY CONNECT parameter
list must be set up by the program. The IPVMID field of the lUCY
parameter list contains the userid of the virtual machine you are
connecting to (virtual machine Y). The first 8 bytes of the IPUSER
field of the lUCY parameter list contains the eight-character identifying
name of the program that issued a HNDIUCV SET in virtual machine

Chapter 3. CMS lUCY 213

eMS IUCV

Y. This name must match the name specified on the HNDIUCV macro
issued by the program in virtual machine Y. In this example, the first
eight bytes of the IPUSER field equals BLUE.

3. The program in virtual machine X issues a CMSIUCV CONNECT to
initiate a communication link with virtual machine Y. By issuing
CMSIUCV CONNECT, CMS invokes the IUCV CONNECT function.
This associates the exit address, "B", with the IUCV pathid.

4. Virtual machine Y receives a CONNECT-pending external interrupt as
a result of the CMSIUCV CONNECT issued by the program in virtual
machine X.

5. "EXIT 1" receives control as a result of the external interrupt. ("EXIT
1" receives control because it was specified on the EXIT parameter of
the HNDIUCV macro.)

6. To complete the connection, the program in virtual machine Y issues a
CMSIUCV ACCEPT. By issuing CMSIUCV ACCEPT, CMS invokes the
IUCV ACCEPT function. This completes the IUCV communication link
with virtual machine X. The CMSIUCV ACCEPT also associates the
exit address, "2", with the pathid.

7. Virtual machine X receives a connection-complete external interrupt as
a result of the CMSIUCV ACCEPT issued by the program in virtual
machine Y.

8. "EXIT B" receives control as a result of the external interrupt. ("EXIT
B" receives control because it is specified on the EXIT parameter of the
CMSIUCV macro.)

9. Virtual machine X completed its communications with virtual machine
Y and terminates the IUCV communication link. The program in
virtual machine X issues an CMSIUCV SEVER to terminate this link.
By issuing CMSIUCV SEVER, CMS invokes the IUCV SEVER function
and clears the exit associated with the communication link.

10. Virtual machine Y receives a SEVER external interrupt as a result of
the CMSIUCV SEVER issued by virtual machine X.

11. "EXIT 2" receives control as a result of the external interrupt. ("EXIT
2" receives control because it was specified on the EXIT parameter of
the CMSIUCV macro.)

12. The program in virtual machine Y issues a CMSIUCV SEVER to
terminate the communication link. By issuing CMSIUCV SEVER, CMS
invokes the lUCY SEVER function and clears the exit associated with
the communication link.

13. After all communications are complete and all communication paths
have been SEVERed, the program in virtual machine X and the
program in virtual machine Y independently issue HNDIUCV CLR.

214 VM System Facilities for Programming

I
I
I
I
I

CMS IUCV

HNDIUCV CLR terminates lUCY communications and clears the
general exit for lUCY PENDING CONNECTs. CMS invokes the lUCY
RETRIEVE BUFFER function if there are no other programs in the
virtual machine using lUCY.

14. This is the label specified in the NAME parameter. This location
contains the identifying name of the program in virtual machine X. The
name of this program is RED.

15. This is the label specified in the NAME parameter. This location
contains the identifying name of the program in virtual machine Y.
The name of this program is BLUE.

Guidelines and Limitations of the CMS IUCV

Some lUCY and APPC/VM functions affect the lUCY and APPC/VM
environment of the entire virtual machine. Since CMS cannot intercept
any lUCY or APPC/VM functions directly issued by a program, any
program using CMS lUCY has certain limitations on its use of lUCY and
APPC/VM functions. The program must not issue any lUCY or APPC/VM
function that interferes with the operation of other lUCY or APPC/VM
applications running in the virtual machine.

The following is a list of IUCV and APPC/VM functions. The list describes
their relationship to the CMS lUCY and some guidelines for their use. If
any functions listed as "Should not be used ... " are indeed used, other
programs using CMS lUCY functions in the virtual machine may be
affected. For information on coding the following functions, see the
Chapter 2, "Inter-User Communications Vehicle" on page 111 tor lUCY
functions, and the VM/ SP Transparent Services Access Facility Reference
for APPC/VM functions.

The functions that only exist in IUCV are noted, as are the functions that
only exist in APPC/VM.

ACCEPT
Is invoked by a program via the CMSIUCV macro. It should not be
issued directly by a program.

CONNECT
Is invoked by a program via the CMSIUCV macro. It should not be
issued directly by a program.

DECLARE BUFFER
Is used by HNDIUCV to initialize the virtual machine's lUCY
environment. It should not be issued directly by a program.

DESCRIBE
Should not be used because this function clears the pending-message
external interruption for the described message. This interrupt may
not belong to the issuer of the DESCRIBE function. Thus, other

Chapter 3. CMS lUCY 215

CMS IUCV
.''''' .. '

programs running in the same virtual machine may be affected since
the message is lost and never reflected to the true target.

PURGE (IUCV only)
Is issued directly by a program.

QUERY
Is used by HNDIUCV to determine the size of the external interrupt
buffer and the maximum number of connections for this virtual
machine. It may be issued directly by an application program.

QUIESCE (IUCV only)
Is issued directly by a program to quiesce a specific path. However,
the issuer must be careful that the IP ALL bit is not turned on in the
IPFLAGSI byte of the parameter list. This would quiesce all paths in
the virtual machine.

RECEIVE
Is issued directly by the application program. However, the issuer
must be careful that a specific message id or path id is specified in the
IUCV parameter list. If it is not, IUCV RECEIVEs the first message
that has not yet been partially received for the entire virtual machine.
This message may not belong to the program that issued the IUCV
RECEIVE.

REJECT (IUCV only)
Is issued directly by a program.

REPLY (lUCV only)
Is issued directly by a program.

RESUME (IUCV only)
Is issued directly by a program in order to resume a specific path.
However, the issuer must be careful that the IP ALL bit is not turned
on in the IPFLAGSI byte of the parameter list. This would resume all
paths in the virtual machine.

RETRIEVE BUFFER
Is used by HNDIUCV and CMS abend processing to terminate the
virtual machine's IUCV environment. It should not be issued directly
by a program.

SEND (IUCV only)
Is issued directly by a program.

SENDCNF (APPC/VM only)
is issued directly by a program.

SENDCNFD (APPC/VM only)
is issued directly by a program.

216 VM System Facilities for Programming

/'

eMS IUCV

SENDDATA (APPC/VM only)
is issued directly by a program.

SENDERR (APPC/VM only)
is issued directly by a program.

SENDREQ (APPC/VM only)
is issued directly by a program.

SET MASK
Should not be used because this function disables certain lUCY
external interrupts for the entire virtual machine. Thus, other
programs running in the same virtual machine may be affected.

SET CONTROL MASK
Should not be used because this function disables certain lUCY
external interrupts for the entire virtual machine. Thus, other
programs running in the same virtual machine may be affected.

SEVER
Is invoked by a program via the CMSIUCV macro. This lUCY
function may be invoked to SEVER all existing paths for the CMS
IUCV program that has issued the HNDIUCV CLR macro. This lUCY
function should not be issued directly by a program.

TEST COMPLETION
Is issued directly by a program. However, the issuer must be careful
that a specified message id or path id is specified in the IUCV
parameter list. If it is not, lUCY completes the first message on the
REPL Y queue for the entire virtual machine. This message may not
belong to the application that issued the TEST COMPLETION.

TEST MESSAGE
Should not be used because this function places the entire virtual
machine in a wait state if no incoming messages or replies are
pending. Thus, other programs running in the same virtual machine
may be affected.

Chapter 3. CMS IUCV 217

',')" ','

218 VM System Facilities for Programming

SNA Virtual Console Support provides full VM console capabilities to
terminal operators on SNA terminal devices and allows the VM user to use
SNA terminals as virtual operator consoles.

SNA Virtual Console Communications Services support the following
console functions:

• CP/CMS command processing capabilities

• System product or CMS editor processing mode

• Full screen support for 3270 type terminal devices

• Support for 3290 type terminal devices

• Data stream processing for TWX devices, including APL/ASCII support
and display roll-over presentation.

This support is provided through a VT AM service machine (VSM) that acts
as an interface between an SNA network and CPo The VSM passes data
between the SNA network and the SNA Console Communications Services
(CCS) feature of VM/SP. CCS passes data between existing non-SNA CP
system console services and the VSM.

The VSM can be a virtual machine running either the VTAM SNA Console
Support component (VSCS) of the Advanced Communication
Function/Virtual Telecommunications Access Method (ACF/VTAM) or the
VM/VTAM Communications Network Application (VM/VCNA).

The screen management services are divided between the SNA CCS and
either VSCS or VCNA. VSCS or VCNA is responsible for the physical
screen management and therefore, the device dependent characteristics.
Thus, VSCS or VCNA handles such things as screen size and redisplay of
the input line at the terminal. SNA CCS is responsible for logical screen
management and thus remains device independent in most cases. SNA CCS
also passes the terminal input to CP and reflects status and actions to and
from the rest of the CP system.

Chapter 4. SNA Virtual Console Communication Services 219

CP System Services

System Structure

; -

Figure 10 illustrates a VM system with the SNA virtual console support.
The VT AM service machine (VSM) consists of VT AM and VSCS running
under the control of VM's Group Control System (GCS).

Guest
Virtual
Machine

A

OP SYS
or

CMS

X
(5)1(6)

r--X

Guest
Virtual
Machine

B

OP SYS
or

CMS

X

1-
CP CONSOLE

SERVICES
f-(4)-*

(3)
r--*

VTAM Service
Machine

I ACFj
VSCS (2) VTAM

X
(11)

(10)
-*-----X~

GCS

* X-

I (9) (L
r*

i...--*

IUCV
SNA CONSOLE (7) (3) (8) I
COMMUNICATIONS * *
SERVICES (SNA CCS) I I

CP

~--X-

X - EXISTING INTERFACE
* - SNA VIRTUAL CONSOLE

SUPPORT INTERFACE

Figure 10. Virtual Console Support in CP

370X I
LUl--~NCP X
LU2 -,-X

X
PEP

1. 8NA CC8 supports the 8NA ,terminals (LUI, LU2) as virtual consoles.
These SNA terminals are attached to a 3705 or 3725 communications
controller dedicated to the VTAM service machine.

Data entered at the terminal goes through its normal path of the NCP,
CP, GC8, and VTAM. The guest virtual machine interface to CP is the
8/370 architecture provided by virtual machine simulation.

2. V8C8 interfaces to VTAM through the standard Application Program
Interface (API) to perform physical I/O to/from the 8NA devices.

220 VM System Facilities for Programming

CP System Services

3. The terminal input is communicated to the SNA CCS through the
Inter-User Communication Vehicle (IUCV) SEND, RECEIVE, and
REPL Y protocols.

4. SNA CCS receives the interface control block (Work Element Block)
with the terminal input data. It interprets the control information that
describes the screen environment and the user's actions, and determines
the action to be reflected to CPo SNA CCS edits the input line, and
passes it to CP along with the action required.

5. SNA CCS either processes the line or sends it to the guest virtual
machine for processing.

6. Guest virtual machines request console I/O through the Start I/O
interface (SIO) or through DIAGNOSE code X'58'.

7. SNA CCS intercepts the I/O request and performs logical screen
management. A Work Element Block is built to inform VSCS of the
action to be initiated on the screen and to hold the output line.

8. SNA CCS uses the IUCV SEND, RECEIVE, and REPLY protocols to
communicate the work transaction to VSCS.

9. The IUCV request from SNA CCS to VSCS in the VTAM Service
Machine is intercepted by GCS.

10. GCS notifies VSCS of the incoming message.

11. VSCS receives the Work Element Block, interprets the orders, and
performs the physical screen management for the SNA terminal.

Environments Supported

SNA CCS and either VSCS or VCNA handle three 'environments' for
screen management: console mode, CMS mode, and full screen support
mode. These environments represent the interfaces that CP supports for
console services to a virtual user terminal and a guest virtual machine
(GVM).

1. Console mode is communications between a display operator and either
CP or an operating system in a virtual machine (CMS or another
operating system). In this mode, the screen is divided into three areas,
(input, output, and status), and data to the output area is always
directed to the next available line. Console mode I/O is generated when
a guest virtual machine issues an SIO to the 3215 user console or CP
generates console I/O requests internally in response to CP commands.

2. CMS mode is DIAGNOSE code X'58', CCW op code X'19' transactions.
In this mode, the CMS editor or an application program directs output
to specific lines on the screen. As with console mode, the screen is
divided into three areas (input, output, and status).

Chapter 4. SNA Virtual Console Communication Services 221

CP System Services

3. Full screen support mode (FSSM) is the environment where the display
screen is under control of a full screen application program. In this
mode, the format of the screen is under application program control and
the application program provides all 3270 orders. The interface to CP
from a guest virtual machine is DIAGNOSE code X'58', CCW op code
X'29' or X'2A', for a full screen write or read.

Processing Descriptions

Screen Management

In non-SNA processing, DMKGRF handles the console support for local
327x, 3066, and 3290 devices. DMKRGA, DMKRGB, DMKRGC, DMKRGD,
and DMKRGE contain the support for remote devices. These modules
perform both the logical and physical screen management needed for the
graphic display and printer keyboard terminals.

In SNA processing, to support a virtual console for a VTAM service
machine terminal user, virtual console support has been divided between
the SNA CCS and either VSCS or VCNA.

Either VSCS or VCNA handles the physical, device-dependent
characteristics of the screen, setting up the I/O, and maintaining the
current state of the screen. VSCS or VCNA uses VTAM to perform the I/O.
SNA CCS handles the logical control of the screen, directs the VSCS or
VCNA actions, and serves as the interface between the VTAM machine and
the existing CP console function support. SNA CCS communicates with
VSCS or VCNA via IUCV.

The following modules perform the logical functions for CP SNA CCS that
are described above:

• DMKVCP

• DMKVCQ

• DMKVCR

• DMKVCS

• DMKVCT

• DMKVCU

• DMKVCV

• DMKVCW

• DMKVCX

As with non-SNA processing, DMKGRF processes the local 327x/3066 and
3290 devices, and DMKRGA, DMKRGB, DMKRGC, DMKGRD, and
DMKRGE support the remote devices.

Note that the logical units supported by VSCS or VCNA are independent of
CP; they cannot be mapped to any real device defined to CP (that is, they
are not defined in the RDEVICE macro). SNA CCS provides the necessary
interface to make the SNA terminal appear to be a real CP device.

222 VM System Facilities for Programming

Communication Interfaces

CP System Services

To communicate, SNA CCS and VSCS or VCNA pass a work element block
(WEBLOK) between them. The WEBLOK contains the transaction orders
for the other component (SNA CCS or either VSCS or VCNA), the
environment, and the data for the CP system or the user's terminal. See the
section "Work Element Block" that follows or see VM/ SP Data Areas and
Control Block Logic Volume 1 (CP) or VM/SP HPO Data Areas and Control
Block Logic - CP for a detailed description of the WEBLOK.

SNA CCS and either VSCS or VCNA communicate via the Inter-User
Communication Vehicle (IUCV). Figure 11 on page 224 illustrates the
interfaces used in SNA processing. DMKQCN presents requests from CP,
CMS or, a guest virtual machine for terminal writes to SNA CCS via
CONTASKS. DMKQCO presents requests from CP, CMS or, a guest virtual
machine for terminal reads to SNA CCS via CONTASKS. SNA CCS passes
input from the SNA terminal to CP and the virtual machines via DMKCFM
and DMKVCN. This is the same way DMKGRF handles local terminal
support.

In SNA processing, CP handles terminal input and interfaces normally with
one exception: CP must use logical unit names, instead of real addresses, to
reference SNA terminals.

Chapter 4. SNA Virtual Console Communication Services 223

CP System Services

Functions

• SNA user ~
• terminals ~

VM/VTAM
Communications

Network Application
(VM/VCNA)
or VSCS

lInter User Communications
Vehicle (IUCV)

Virtual Machine

CP

SNA Console
communications~------~IIOMKTTY I

Services
(SNA CCS)

I
IOMKQCN I IOMKQCO I IOMKCFM I 'OMKVCN I

I
I THE REST OF VM I

Figure 11. SNA Virtual Console Support Interfaces

SNA CCS handles the following functions in support of the console, CMS,
and full screen mode environments for SNA terminals:

• Connect VTAM service machine and Logical Units
• Logon a Logical Unit
• Request a read
• Request a write
• Process an enter key
• Process a PAl key
• Process a P A2 key
• Process a P A3 key
• Process a PF key
• Process an Attention Interrupt
• Process a Cursor Back One
• Logoff a Logical Unit

224 VM System Facilities for Programming

Enabling SNA Terminals

CP System Services

• Process error conditions
• Sever a communications path
• Process data streams from TTY devices
• Pass VSCS the system identification for the status area.

The CP operator must issue the ENABLE SNA command. The SNA
parameter on the ENABLE command enables all SNA devices and has no
effect on non-SNA devices. The ENABLE ALL command enables both
non-SNA and SNA devices.

In the multiple VTAM service machine environment, the operator may
selectively enable or disable any given VT AM service machine by using the
userid option on the ENABLE/DISABLE SNA command. The operator
cannot enable and disable individual logical units, although the VTAM
operator may.

Establishing Communications Links

The VTAM service machine issues an IUCV CONNECT under two separate
conditions:

• VTAM Service Machine CONNECT

VSCS or VCNA issues a CONNECT via lUCY to establish an initial
global connection between VSCS or VCNA and SNA CCS. This
CONNECT notifies SNA CCS that a new VTAM service machine has
logged on and is ready to service logical units. If the VM operator has
issued the ENABLE SNA or ENABLE ALL command, SNA CCS
accepts the CONNECT, and authorizes VSCS or VCNA to allow users
to logon to SNA terminals. SNA CCS creates a VTAM Service
Machine Block (VSMBLOK) for that VT AM service machine. In a
multiple VT AM service machine environment, the VSMBLOK allows
SNA CCS to associate the logged on SNA user with the correct VSCS
or VCNA. See VM/SP Data Areas and Control Block Logic Volume 1
(CP) or VM/SP HPO Data Areas and Control Block Logic - CP for a
detailed description of the VSMBLOK.

• Logical Unit CONNECT

To logon to VM, the SNA terminal user must first logon to VSCS or
VCNA running in the VTAM service machine. To logon to VSCS or
VCNA, the user issues the ACF/VTAM LOGON command. When
logging on, the terminal user may optionally specify the userid (or the
userid and password) of his virtual machine in the DATA portion of the
ACF/VTAM LOGON command. Specifying information in DATA allows
you to reach VM in one step. The commands for logging on differ
slightly between VSCS and VCNA. The examples below show VM
information included on a VSCS or VCNA logon:

LOGON APPLID{VM)
LOGON APPLID{VM) DATA (userid)
LOGON APPLID{VM) DATA ('userid options')

Chapter 4. SNA Virtual Console Communication Services 225

CP System Services

If you specify VM in the APPLID field, ACF/VTAM queues a logon
request to VSCS.

The syntax for LOGON commands with VCNA is similar, but the
APPLID name must be "VCNA" instead of "VM". VSCS also allows a­
shorter form of the LOGON command:

VM

The userid and password may be included on the "VM" form.

VSCS also allows terminals it supports to use the CP DIAL command.
It can be included as DATA on a "LOGON" or "VM" command.
Examples are:

LOGON APPLID(VM) DATA ('DIAL userid')
VM DIAL userid

Any CP command valid before a CP logon can be used as data. Only
display terminals can use the DIAL command; keyboard/printer
terminals may not.

If no logon data (VM userid and password) is specified, the system
writes a Vitual Machine/System Product logo (VM/SP or VM/SP HPO
logo) to the terminal under the control of VSCS or VCNA. From this
point on, the user logs on to VM much the same as he does with a local
terminal. The attention interrupt generated when the user clears the
VM/SP or VM/SP HPO logo from the screen causes VSCS or VCNA to
issue an IUCV CONNECT SVC for the terminal. If SNA is still
enabled, CCS builds an RDEVBLOK and a SNA Resource Block
(SNARBLOK) and chains them to the VSMBLOK built during the
VSCS or VCNA connect described above. This ties the user's control
block (SNARBLOK) to the VTAM service machine the user is logged
onto. The system must tie these blocks together since the logical unit's
LUNAME, which is represented by the SNARBLOK, is unique only to
its own VTAM service machine. That is, it is possible to have duplicate
lunames among two or more VT AM service machines.

After the connection is established, VSCS or VCNA and SNA CCS
exchange initialization information. VSCS or VCNA sends luname,
device class, device type, line length, pace value (for controlling the
number of writes to the screen), model number, and its IUCV path ID
for this logical unit and then waits for LOGON processing to complete.
SNA CCS initializes the SNARBLOK and RDEVBLOK with the data
supplied by VSCS or VCNA. VSCS also exchanges some additional
information with SNA CCS. It passes the information from a Write
Structured Field Query to SNA CCS and receives the VM system id
from SNA CCS.

If the user specified a userid and password on the ACF/VTAM LOGON,
the VM/SP or VM/SP HPO logo is not displayed. VM/VCNA sends the
logon data to SNA CCS in response to the first CP read request to enter

226 VM System Facilities for Programming

CP System Services

userid. If the user specified only the userid, CP prompts the terminal
user for the password.

The installation may specify "automatic" logon to VSCS or VCNA for
SNA terminals. This can be accomplished in two ways:

1. The installation can specify LOGAPPL = (VM) or
LOGAPPL = (VCNA) in the logical unit definition. This causes
ACFjVTAM to queue a logon request to the appropriate program
when the logical unit is started.

2. The ACFjVTAM operator may issue a VARY ACTIVATE command
for the logical unit, specifying VSCS or VCNA on the LOGON =
parameter.

For further information concerning ACFjVTAM LOGON refer to the
ACFjVTAM System Programmer's Guide or the VMjSP Terminal
Reference.

DIAL Command Processing

A VMjSNA user whose display is controlled by VSCS may issue the CP
DIAL command to establish communication with an IPLed guest virtual
machine. When the DIAL command is issued, DMKDIA tries to locate the
VMBLOK in the target virtual machine. If unsuccessful, DMKDIA issues a
message to the user indicating that the target virtual machine is not logged
on. A VMjVTAM terminal is not allowed to dial to the virtual machine
running VT AM. The user receives an error message when the user tries to
dial the VT AM virtual machine.

If DMKDIA does locate the desired VMBLOK, it examines the
VDEVBLOKs to determine if the virtual machine has defined a local
virtual graphic terminal. If not, DMKDIA issues a message to the user
indicating that no lines are available. When a user tries to connect to a
specific virtual address and DMKDIA cannot locate a VDEVBLOK for that
address, the user receives a message indicating that the specified address
does not exist.

When the necessary conditions are satisfied, DMKDIA sets flags in the
target virtual machine control blocks to show the following:

o VDEVBLOK - dialed SNA device

o SNARBLOK - dialed SNA terminal

o RDEVBLOK - dedicated device.

DMKDIA then stacks an IOBLOK for the virtual machine on behalf of the
device to signal a DEVICE END from a virtual power on.

DMKDIA issues a message to the user giving the virtual address of the
dialed virtual machine. It also sends a message to the operator saying that
this user is dialed to the target virtual machine.

Chapter 4. SNA Virtual Console Communication Services 227

CP System Services

Real Device Simulation

Command Handling

.;

The DIAL session is terminated when the virtual terminal device is reset by
the virtual machine. DMKDIB then drops the device from the virtual
machine, and issues a related message to the user and to the operator. CCS
(Console Communications Services) cleans up SNA control blocks and CP
resets all flags set during session initiation. This frees the virtual device to
be used by another user.

When VSCS or VCNA connects to SNA CCS for a logical unit, it identifies
the SNA logical unit to SNA CCS. Also, VSCS or VCNA identifies any
device characteristics that CP or CMS needs to perform their functions.
SNA CCS simulates a real device by dynamically building a Real Device
Block (RDEVBLOK) and assigning this RDEVBLOK to the SNA user's
virtual machine.

SNA CCS initializes the fields for the RDEVBLOK instead of DMKRIO.
Also, SNA CCS builds a control block for SNA, a SNARBLOK. The
SNARBLOK contains the status and control fields for SNA CCS. See
VM/SP Data Areas and Control Block Logic Volume 1 (CP) or VM/SP HPO
Data Areas and Control Block Logic - CP for a detailed description of the
SNARBLOK.

The RDEVBLOK is chained to the VSMBLOK belonging to the VSM that
issued the IUCV CONNECT for it, and the RDEVBLOK points to the
SNARBLOK for that LU. The RDEVBLOK and SNARBLOK are, however,
contiguous in storage. CP references to the RDEVBLOK are still valid in
the SNA environment.

As in non-SNA processing, the VMTERM field of the VMBLOK and the
VDEVREAL field of the VDEVBLOK point to the RDEVBLOK.

When special SNA processing is necessary, an indicator in the RDEVBLOK
(RDEVSNA) denotes that this is a SNA type RDEVBLOK. The RDEVSNA
field is an alternate definition for the current RDEV ADD field. The real
device address has no meaning for SNA logical units.

After VSCS or VCNA completes the initial processing for the SNA logical
unit, it passes the user's LOGON request to SNA CCS. SNA CCS edits the
LOGON command and all subsequent commands and passes them to CP
console services using CP interfaces. CP processes the commands the same
way it processes non-SNA commands. However, VSCS or VCNA, rather
than CP, manages redisplay of the input line.

228 VM System Facilities for Programming

Work Element Block

CP Svsttem Selr"ices

The work element block serves as the interface between SNA CCS and
VSCS or VCNA. Both SNA CCS in CP and VSCS or VCNA in the VTAM
service machine create work element blocks. In SNA CCS, the work
element block is known as the WEBLOK. In VSCS or VCNA, the work
element block is known as the DTIWEB. SNA CCS and VSCS or VCNA
pass the WEBLOK between them and use it as the interface for all requests
for work from the other component. The data portion of the work element
block contains input or output lines to be passed and the control portion
contains transaction orders and environment data. See VM/ SP Data Areas
and Control Block Logic Volume 1 (CP) or VM/SP HPO Data Areas and
Control Block Logic - CP for a detailed description of the WEBLOK.

Work Element Indicator Block

SNA 1/0 Processing

Redisplay of Input Line

SNA CCS creates the work element indicator block (WEIBLOK) as a
header for the WEBLOK. Its function is to identify a unit of work that is
in progress or that has not yet been processed. The WEIBLOK points to
the WEBLOK and CONT ASK associated with a given user. See VM/ SP
Data Areas and Control Block Logic Volume 1 (CP) or VM/SP HPO Data
Areas and Control Block Logic - CP for a detailed description of the
WEIBLOK.

For non-SNA processing, CP console services build channel programs,
lOBs, and use DMKIOS to perform their I/O. SNA processing moves the
physical device management to VSCS or VCNA. Instead of calling
DMKIOS, CP then passes control to SNA CCS. SNA CCS does not build
any channel programs or lOBs. It determines what action must be taken
for the console and sends the transaction to VSCS or VCNA instead of to
DMKIOS. VSCS or VCNA and VTAM set up the I/O operations to the
terminal and issue an SIO. CP intercepts this SIO and performs the I/O the
same way it does for non-SNA processing.

Input line redisplay for SNA terminals is handled by VSCS or VCNA.

• VSCS or VCNA redisplay of input line

To reduce the number of VTAM SENDs to the terminal, VSCS or
VCNA does not immediately redisplay the input line. Instead, it holds
the I/O operation until SNA CCS requests more I/O to that terminal; for
example, the response to the input or a message. When VSCS or VCNA
receives a write to the device, it sends the input line to be redisplayed
and the information from SNA CCS to be written to the device in one
VTAM send.

VSCS or VCNA clears the input area, updates the status field, and
red is plays the line using the same VTAM SEND.

Chapter 4. SNA Virtual Console Communication Services 229

CP System Services

TRQBLOK

1/0 REQUESTS

• CCS Redisplay Timer

VSCS or VCNA passes a timer variable to SNA CCS when it invokes
the lUCY CONNECT function. This value indicates to SNA CCS how
long it should wait for a command to complete before SNA CCS issues
an lUCY SEND to the VTAM service machine to request input line
redisplay.

SNA CCS sets a timer to tell it how long to wait before requesting
redisplay of the line. This is necessary since some commands do not
produce any output, and CP or CMS might require a significant amount
of time to finish the command processing. If the timer expires before
CP has output to write to that terminal, SNA CCS issues an lUCY
SEND to VSCS orVCNA requesting a write for the redisplay.

In non-SNA processing, DMKGRF builds a Timer Request Block
(TRQBLOK) that it uses

• For its status flags
• For an interrupt return address after an I/O operation
• After a timer expires and
• As a header to chain CONT ASKS when in FSS mode.

In SNA processing, SNA CCS does not use TRQBLOK for the above
functions because:

1. Status fields are kept by VSCS or VCNA for each SNA terminal user

2. lUCY mechanisms are used to return control after SEND requests to
VSCS orVCNA

3. The timer support for the alarm, MORE/HOLDING state, and NOT
ACCEPTED has been moved to VSCS or VCNA

4. SNA CCS has its own control block structure to associate a user with
its related CONTASKS, lUCY control blocks, and the work element
block. Since the processing of CONTASKs has been streamlined to help
performance, the TRQBLOK is no longer needed for queueing
CONTASKs.

However, in SNA processing, a TRQBLOK is still created, since a timer is
required for the input line redisplay processing described above.

DMKGRF, the module that manages I/O to a real 3270, performs requests
for I/O from DMKQCN synchronously. When DMKQCN requests a
response, DMKGRF schedules an lOB for the I/O operation and waits for
the I/O to complete before sending the response. SNA CCS takes the
virtual machine out of SIO wait state as soon as the I/O to the real device is
started. For a write, SNA CCS sends the write request to VSCS or VCNA,

230 VM System Facilities for Programming

VTAM 110 Reduction

MORE/HOLDING Condition

SNA Accounting

CfP Sysiem Services

takes the virtual machine out of the SIO wait state, and returns
immediately to the caller with a successful completion response as if the I/O
had completed successfully.

In some situations, SNA CCS waits for a response from VSCS or VCNA
before responding with a return code to the CP system. This is governed by
a 'pacing value' equivalent to the number of lines for a full screen. In this
way, VSCS or VCNA can reach SNA CCS with a PAl key indicator to stop
processing; SNA CCS does not flood IUCV and VSCS or VCNA with output
from some commands (for example, DISPLAY). SNA CCS always waits for
a response from VSCS or VCNA for DIAGNOSE code X'58' writes for CMS
and full screen support modes before returning to the caller with a
response.

SNA CCS queues a CONTASK if it is waiting for a response on either a
write or a read request. It does not split CONTASKs for multiple line
writes hut passes the entire write buffer to VSCS or VCNA, thus reducing
IUCV SENDs and RECEIVEs.

SNA CCS batches console function and virtual machine SIO output lines in
a lK byte buffer. The batch lines are sent to VSCS or VCNA when the
buffer is full, a read is initiated by a virtual machine or CP to a SNA
terminal, the pace value reaches zero, the redisplay timer expires, a
DIAGNOSE code X'58' operation takes place, or the virtual machine is
dropped from the dispatch queue.

The hatching technique and priority structure ensures that either a full
screen of information is presented to VSCS or VCN A for each CP or CMS
console transaction or the transaction is complete (for those transactions
with less than a full screen of data) before control is given to the VSM.

To reduce the number of IUCV transactions, VSCS or VCNA resolves the
MORE/HOLDING condition when it occurs on the screen. VSCS or VCNA
takes whatever action is appropriate and avoids notifying SNA CCS of the
screen status in most cases. In cases when a mode change may take place
(PAl key) or an interrupt must be reflected to a user's virtual machine (PAl
or PA2 key), VSCS or VCNA resolves the MORE/HOLDING condition, then
notifies SNA CCS of which key was pressed and the screen status at the
time. VSCS or VCNA resolves pressing of the clear key or enter key in
MORE/HOLDING status without notifying SNA CCS.

VSCS or VCNA records accounting data on a terminal user basis. When
the SNA user logs off, VSCS or VCNA passes a maximum of 62 bytes of
accounting data, in the WEBLOK, to SNA CCS. SNA CCS uses the CP
accounting module, DMKACO to write a VTAM accounting record (type
X'07') in the CP accounting file. Neither SNA CCS nor DMKACO are
aware of the contents of the VTAM accounting record.

Chapter 4. SNA Virtual Console Communication Services 231

CP System Services

NCP and PEP Sharing

User Termination

Shutdown

Operator Considerations

SNA CCS accrues processor time for a terminal user while it is processing
for that user. This time is added to the time CP already accumulated for the
user. The time appears in the accounting record produced when the user
logs off.

Note: Refer to VT AM Customization for details of VSCS records and
VM/VCNA Installation, Operation, and Terminal Use, for details of VCNA
records.

Since CP supports only a back level of NCP that does not support SNA and
VTAM loads ACF/NCP, you must prevent CP from loading/reloading the
back-level NCP at initialization and at restart. Refer to the VM/SP
Planning Guide and Reference or the VM/ SP HPO Planning Guide and
Reference for information on how to accomplish this.

When a user issues the VM LOGOFF or a ACF/VTAM LOGOFF, the
control blocks related to the user's virtual machine and SNA terminal are
released to free storage. When VSCS or VCNA issues the SEVER
indicating that a user has logged off, SNA CCS need only issue a SEVER
for its path. If a SEVER reaches SNA CCS and there is a SNARBLOK that
shows the user is disconnected, the path is severed. The control blocks are
released when the user is eventually logged off. If SNA CCS gets the
SEVER and there is a SNARBLOK but the user is not disconnected, then
SNA CCS disconnects the virtual machine associated with the SNARBLOK.

To shutdown the system, the VM system operator should notify users that
the system is shutting down. If the SNA operator has the proper class, he
can force off any SNA user that did not log off. In this way, VSCS or .
VCNA can collect accounting data for its users and record it in CPo The
DISABLE SNA (userid) command can be used to prevent additional users
from logging on. In this way, VSCS or VCNA can be stopped without
bringing down the VT AM service machine that it is running in. Any other
application in the VTAM service machine may continue to run unaffected.

While it is possible for the operator of the VTAM service machine to
disconnect from a local terminal, extreme care must be exercised. The
VSCS or VCNA operator must issue the command SET RUN ON before
disconnecting from the local terminal. If the operator does not do this,
unpredictable results occur and a deadlock of the VSCS or VCNA is likely.

The operator of the VT AM service machine (VSM) cannot disconnect from
the service machine and then reconnect from a SNA logical unit controlled
by that service machine, using the same operator userid that was used for
the service machine. That is, the operator cannot logon as the VSCS or
VCNA operator at a terminal managed by VSCS or VCNA. The operator of

232 VM System Facilities for Programming

CP System Ser"Dces

one VSM (i.e. VSMl) may disconnect from that VSM and reconnect as
operator (of VSMl) from a terminal controlled by a second VSM (VSM2).
The restriction means that the operator of VSMI may not have as his
terminal, one which is controlled by VSMl. Also, the userid that is
running VTAM cannot logon at a terminal controlled by the virtual
machine running VT AM.

SNA CCS Entries in CP Internal Trace Table

SNA Console Communications Services (SNA CCS) creates trace table
entries in the CP Internal Trace Table to leave an audit trail of its
activities.

SNA CCS places an entry in the CP trace table for each inbound
transaction; SNA CCS creates a trace table entry for each outbound
transaction after going to lUCY to communicate the entry to VSCS or
VCNA.

The entry identifies the type of lUCY transaction, the SNA user that
initiated the transaction, and the pertinent characteristics of the
transaction environment itself. The transaction can be correlated
throughout the system by using the CCS and VSCS or VCNA path id's and
the lUCY message id. These fields can be matched with corresponding or
similar fields in the lUCY trace elements in CP and VSCS or VCNA trace
elements in VTAM.

For an error trace, SNA CCS places an entry in the CP trace table for
logical errors and errors on lUCY transmissions. If the WEBLOK that is
passed between SNA ecs and vses or VCNA is invalid, the data in the
trace element pertains to the invalid WEBLOK.

Trace Table Entry Formats

The following tables show the formats of trace table entries created by SNA
CCS.

ACCEPT (X'OO') (VTAM service machine and Logical Unit), CONNECT for Logical Unit (X'12')

o 1 2 345 6 7

o X' 16 1 !TRATNTYP! IIIIIIIIIIIIIII! TRAVCSPA ! IIIIIIIIIIIII
8 TRAUDATA

Chapter 4. SNA Virtual Console Communication Services 233

CP System Services
I.

PURGE (X'03')

o 1 2 3

o
8

X' 16 1 !TRATNTypITRAMODE ! IIIIII
TRAINSTR

4 5 6 7

TRAVCSPA ! IIIIIIIIIIIII
TRAVMADR

RECEIVE (X'04'), REPLY (X'06'), SEND 1 WAY (X'08'), SEND 2W A Y (X'09'), LOGIC ERROR in CCS
WEBLOK (X'OB'), LOGIC ERROR in VCNA or VSCS WEBLOK (X'13')

o
8

o
X' 16 1

TRAFUNCT

1

TRATNTYP

TRACPSAF

SEVER (X'OA')

2 3 4 5

TRAMODE TRALGAID TRAVCSPA

TRAEDCHR TRACHAR

o 1 2 3 4 5

o X' 16 1 !TRATNTYP!TRAUSERII IIIIII I TRAVCSPA

8 TRAUDATA

REPLY from VSCS or VeNA (X'OC')

o
8

o 1

X' 16 1

TRAFUNCT

2 3

TRATNTYP TRAMODE TRALGAID

TRACPSAF TRAUDITI TRAUDIT2

4

CONNECT for VTAM service machine (X'OE')

012 3 4

5

TRAVCSPA

5

6 7

J TRAVSAPA

TRAIXBLK

6 7

I IIIIIIIIIIIII

6 7

I TRAVSAPA

TRAIXBLK

6 7

o X' 16 1 ITRATNTypl

8

TRATIMER I TRAVCSPA I TRAMSGLM

TRAUDATA

234 VM System Facilities for Programming

CP System Services

SEVER from VSCS or VCNA (X'IO')

o 1 2 3 4 5 6 7

o X' 16 1 ITRATNTyplTRAUSERll ////// I TRAVCSPA I TRAVSAPA

8 TRAUDATA

MESSAGE COMPLETE (X'II')

o
8

o 1

X' 16 1 ITRATNTYP

///////////////

ABEND 02 (X'15')

2 3

//////

TRAUDITI

4 5 6 7

////// TRAVCSPA I TRAVSAPA

TRAUDIT2 TRAIXBLK

o 1 2 345 6 7

o X' 16 1 ITRATNTypl //

8 TRAINSTR I TRAVMADR

Trace Table Entry Field Definitions

TRATNTYP
Indicates the type of transaction that the trace table entry is for.

Note: The high-order bit when on indicates a nonzero return code
from IUCV on this transaction. DMKVCXFU writes the trace table
entry. The IUCV return code (IPRCODE) is in TRAIPRCD, a
one-byte field in the fourth byte of the trace entry.

Values Defined for TRATNTYP

TRACCEPT
TRACNECT
TRAQUISC
TRAPURGE
TRARCEIV
TRAREJCT
TRAREPLY
TRARESUM
TRASENDI

X'OO'
X'OI'
X'02'
X'03'
X'04'
X'05'
X'06'
X'07'
X'OB'

ACCEPT
CONNECT (not used)
QUIESCE (not used)
PURGE
RECEIVE
REJECT (not used)
REPLY
RESUME (not used)
SEND 1 WAY

Chapter 4. SNA Virtual Console Communication Services 235

CP System Services

TRASEND2
TRASEVER
TRAVCSLE
TRAVSARP
TRAVSAQS
TRAVSMCN
TRAVSARM
TRAVSASV
TRAVSAMC

TRALUCON
TRAVSALE
TRAERRSV

TRACTLBK

TRAMODE

X'09'
X'OA'
X'OB'
X'OC'
X'OD'
X'OE'
X'OF'
X'IO'
X'll'

X'12'
X'13'
X'14'

X'15'

SEND 2 WAY
SEVER
LOGIC ERROR IN CCS WEBLOK
REPLY FROM VSCS OR VCNA
QUIESCE (not used)
CONNECT FOR VTAM service machine
RESUME (not used)
SEVER FROM VSCS OR VCNA
MESSAGE COMPLETE FROM VSCS OR VCNA - I
WAY SEND
CONNECT FROM VSCS OR VCNA FOR LU
LOGIC ERROR IN VSCS OR VCNA WEBLOK
ERROR IN USER ENVIRONMENT-SEVER USER
(not used)
SNA CONTROL BLOCK CHAIN INVALID

Mode for the transaction (see WEBLOK (WEBMODE)).

TRALGAID
Logical ~apping of the Attention Identifier (AID) for inbound
transactions to CCS (see WEBLOK (WEBLAID)). The field does not
have meaning for outbound transactions to VSCS or VCNA.

TRAUSERI
First byte from the IUCV user data field

TRATIMER
Two bytes of timer value from the VSM CONNECT

TRAVCSPA
The IUCV path id that identifies the CCS side of the IUCV path for this
transaction.

TRAVSAPA
The IUCV path id that identifies the VCNA side of the IUCV path for
this transaction.

TRAFUNCT
Transaction to be performed (See WEBLOK (WEBFUN))

TRACPSAF
This field is WEBSAFLG on inbound transactions to CCS and
WEBCPFLG on outbound transactions to VSCS or VCNA. (See
WEBLOK (WEBFUN))

TRAEDCHR
Editing characteristics (See WEBLOK (WEBEDIT))

TRACHAR
Character set (see WEBLOK (WEBCHAR))

236 VM System Facilities for Programming

CP Svsftem SerUDCeS

TRAIPRCD
IPRCODE from lUCY IPARML for lUCY return code processing

TRAIXBLK
Address of the IXBLOK constructed for this transaction

TRAMSGLM
lUCY message limit to be specified for CONNECT

TRAUDATA
IPUSER from lUCY external interrupt buffer
For inbound: QUIESCE, RESUME, CONNECT for LU
For outbound: ACCEPT

VM userid
For inbound: CONNECT for VT AM service machine
For outbound: SEVER

LUNAME
For inbound: SEVER

TRAUDITI
lUCY IPAUDITI flags from IXBLOK (used for
TRAVSARP,TRAVSAMC)

TRAUDIT2
lUCY IPAUDIT2 flags from IXBLOK (used for
TRAVSARP,TRAVSAMC)

TRAINSTR
Address of last instruction issued before invoking abend routine
(TRACTLBK) or RDEVBLOK address (for PURGE)

TRAVMADR
Current VMBLOK address-used for abend situations (TRACTLBK)

Chapter 4. SNA Virtual Console Communication Services 237

CP System Services
, ... ',,,,",

,/

238 VM System Facilities for Programming

The Message System Service is a CP system service. It allows a virtual
machine to read incoming messages and responses from CP, as opposed to
displaying them on the terminal.

Establishing Communications with the Message System Service

"*MSG" is the assigned Message System Service userid. Communications
are established with the Message System Service (*MSG) through lUCY.
The lUCY DECLARE BUFFER function is invoked by the virtual machine
to allow communications with lUCY, and the lUCY CONNECT function is
invoked to establish the communications path to the Message System
Service.

The types of messages that the virtual machine can receive are controlled
by specifying the lUCY parameter on the CP SET command. For example,
if a user has specified "CP SET MSG IUCV", all messages received from the
CP MESSAGE command are sent to the virtual machine through lUCY.
lUCY signals the receiving virtual machine with an external interrupt.
The message may be retrieved by using the lUCY RECEIVE function and
may be used by a program running in the virtual machine.

For a complete list of the CP SET commands that can use the lUCY
parameter, see the VM/SP CP Command Reference or the VM/SP HPO CP
Command Reference.

The Message System Service uses the lUCY maximum value of 255 for the
number of outstanding messages. If this message limit is exceeded, any
additional incoming messages are routed directly to the virtual machine
console or alternate console, and the virtual machine is not notified about
these messages. This situation is most likely to occur when there is a high
volume of incoming messages and the virtual machine is running with
external interrupts disabled.

The Message System Service identifies the source of the message it
intercepts by a code in the lUCY message class field. The message source
is interpreted as follows:

Class Message Source

1 Message sent using CP MESSAGE (MSG) or CP MSGNOH

2 Message sent using CP WARNING (WNG)

Chapter 5. The Message System Service 239

CP System Services

3 Asynchronous CP messages, CP responses to a CP command
executed by a virtual machine using *MSG, and any other console
I/O initiated by CPo

4 Message sent using CP SMSG command

5 Any data directed to the virtual console by the virtual machine
(WRTERM, LINEDIT, etc.)

6 Error message from CP (EMSG)

7 Information messages for CP (IMSG)

8 Single Console Image Facility (SCIF) message from CPo

Error and information messages (classes 6 and 7) are types of CP messages
and are included in class 3 when EMSG and IMSG are not specifically set
to IUCV through the CP SET commands.

The format of the data received from IUCV is as follows:

col 1
I
V
userid

col 9
I

V
text

The userid portion of the data identifies the sender. If the data is not
received by a MSG, WNG, SMSG, or using SCIF, then the userid is that of
the recipient.

If a virtual machine has both a valid path to the Message System Service
and a secondary user specified in the CONSOLE directory control
statement (enabling that virtual machine to use SCIF), then incoming
messages (except for SMSGs, which are not console messages) are directed
to the secondary user instead of the lUCY Message System Service. If the
secondary user is not available, the message is queued on the Message
System Service path.

For information on SCIF, see Chapter 12, "Single Console Image Facility"
on page 279.

Note: The following types of data are not placed in the console spool file
for the indicated conditions:

• CP command output -- if this is being received in a buffer through
DIAGNOSE code X'08'.

• Messages and Warnings -- if they are being trapped by IUCV and the
Message System Service.

240 VM System Facilities for Programming

I

,/

The Message All System Service is an IUCV system service that interacts
with the existing Message System Service. Messages not requested by the
Message System Service will be sent on the *MSGALL path; they are never
sent by IUCV twice.

Connections to the Message System Service have priority; all messages
requested by that connection with SET commands are sent on that path.
Messages for the Message All System Service are not affected by the SET
command settings.

The userid in the IUCV CONNECT function statement must be specified as
*MSGALL to use the Message All System Service. If no connection is
established to the Message System Service, all currently trapped messages
are sent to the virtual machine, through IUCV, over the path established by
connecting to the Message All System Service.

Note: The following conditions apply:

Console output sent over the *MSGALL path if unsuccessful with
*MSG

• CPCONIO and EMSGs generated as part of a DIAGNOSE code X'08'
operation.

• MSGs, WNGs, IMSGs, VMGENIO, and SCIFed messages.

Console output sent directly to the terminal

• Asynchronous CPCONIO (including PER/TRACE events) and EMSGs
not generated as part of a DIAGNOSE code X'08' operation.

Console output never sent over * MSGALL path

• SMSGs
• Output generated by the CP ECHO and SET LOGMSG commands.

The Message All System Service uses the IUCV maximum value of 255 for
the number of outstanding messages. If this message limit is exceeded, any
additional incoming messages are routed directly to the virtual machine
console or alternate console, and the virtual machine is not notified about
these messages. This situation is most likely to occur when there is a high
volume of incoming messages and the virtual machine is running with
external interrupts disabled.

Chapter 6. The Message All System Service 241

CP System Services
. .. ~ : . - ~ ¢--t .. !·, 5.,- .+.414411

242 VM System Facilities for Programming

The DASD Block I/O System Service is a CP system service. It provides a
virtual machine with device-independent access to its virtual DASD devices.
Device types supported are the Count Key Data (CKD) devices: 2314, 2319,
3330, 3333, 3340, 3344, 3350, 3375, and 3380, and the Fixed Block
Architecture (FBA) devices: 3310 and 3370. (Device 2319 is formatted as a
2314, device 3333 is formatted as a 3330, and device 3344 is formatted as a
3340.) This service supports logical block sizes of 512, 1024, 2048, and 4096
bytes.

Notes:

1. The CMS 4K block structure on the first track of a 3340 disk is formatted
differently than the other tracks of a 3340 CMS disk. The first track of
the mini-disk contains three blocks. The first block has a length of 80
bytes, the second, 4096 bytes, and the third, 80 bytes. The remainder of
the mini-disk is formatted as usual, two 4096-byte blocks on each track.

2. Multiple I/O requests can be outstanding, and you may continue with
asynchronous processing or choose to wait for the completion of an I/O
request. Although multiple I/O requests may be requested in a
first-inlfirst-out (FIFO) manner, be aware that queuing within CP may
result in the I/O completion in a different sequence.

Establishing Communications with DASD Block 1/0 Service

The CMS RESERVE command and the CMS DISKID function should be
issued before using the DASD Block I/O System Service. These two
facilities enable you to create a uniquely organized CMS file on a DASD
and obtain information about the file needed to use the DASD Block I/O
System Service. For further information, see "Using the DASD Block I/O
System Service from CMS" on page 246, or see the VM/ SP CMS Command
Reference and VM/ SP CMS Macros and Functions Reference.

DASD Block I/O uses lUCY to set up communication between itself and a
virtual machine. The lUCY macro checks the validity of all the lUCY
parameters. Any lUCY errors are handled according to lUCY
specifications. The DASD Block I/O System Service checks the validity of
all the parameters it requires. Any errors resulting from this check are
handled as described in the following sections.

lUCY requires that the virtual machine use the DECLARE BUFFER
function to initialize the virtual machine for lUCY communication. This
function also specifies a buffer where lUCY can store external interrupt

Cha"pter 7. The DASD Block I/O System Service 243

CP System Services

information. After communication is established with lUCY, the virtual
machine must issue an lUCY CONNECT to establish a path between itself
and the target communicator. Here, the target communicator, is the DASD
Block I/O System Service. Only one CONNECT may be issued to userid
*BLOCKIO for each virtual device that is intended to receive I/O requests.

No special authorization is required for a virtual machine to use DASD
Block I/O. The MAXCONN (maximum connection) limit in the directory
can be enlarged to satisfy the user's requirements. The DASD Block I/O
System Service allows connections from any user.

IUCV CONNECT to the DASD Block 1/0 System Service

An lUCY CONNECT is issued by the virtual machine with
USERID = *BLOCKIO and PRMDATA = YES specified in the lUCY
CONNECT parameter list. Here, IPUSER, the user data field in the lUCY
parameter list, must have the following format. These values are obtained
by the CMS DISKID function.

o 1 2 3 4 5 6 7

o BLKSIZE I OFFSET

8 VDEVADDR I 1111111////////////1/////1////////1/////

where:

BLKSIZE
is the block size of the specified disk. The block size may be 512, 1K, 2K,
or 4K bytes.

OFFSET
associates a physical block number to the first user data block on the
disk. Note that this number represents the number of sequential blocks
used on the disk by the CMS file system to implement its structure. The
DASD Block I/O System Service does not check the validity of this
number. Therefore, the application may change this number if desired,
but you could overlay files used by CMS.

VDEVADDR
is the virtual device address of the disk where the Block I/O is to be
performed.

All reserved fields must be set to zero.

If all the parameters required by DASD Block I/O are valid, DASD Block
I/O issues an lUCY ACCEPT on the path specifying PRMDATA=YES. The
following information is returned in the IPUSER field of the lUCY
Connection-Complete external interrupt buffer:

244 VM System Facilities for Programming

CIP Svsiem Services

o 1 2 3 4 5 6 7

o START BLOCK I END BLOCK

8 FLAGS I 11111111////////////////////////////////

where:

START BLOCK
1 minus the OFFSET specified on the lUCY CONNECT. This value
along with END BLOCK is the range of block numbers allowable on the
DASD Block I/O request.

END BLOCK
The number of blocks on the specified virtual device minus the OFFSET
specified on the lUCY CONNECT. This value along with START
BLOCK is the range of block numbers allowable on the DASD Block I/O
request.

FLAGS
A set of bits defining the status of the virtual device. One bit is defined
and the others are reserved.

RDONLY
Unused

X'OOOl'
X'FFFE'

Virtual device is read only
Zero

All reserved fields are returned as zero.

If any of the parameters passed to DASD Block I/O are invalid, DASD
Block I/O issues an lUCY SEVER on the path and flags the error. The first
byte of the IPUSER field contains one of the following error codes:

X'Ol'
X'02'
X'03'
X'04'
X'05'
X'06'

Virtual device is not defined
virtual device is not supported
Block size is not supported
IUCV path already exists for this device
Connection is not using PRMDATA=YES
Reserved field is not set to zero

IUCV SEND to the DASD Block 1/0 System Service

When the connection to the device is ACCEPTed by DASD Block I/O, you
can start sending I/O requests to DASD Block I/O. You can specify
TRGCLS=, DATA=PRMMSG, and the PRMMSG= options on the lUCY
SEND or you can move the necessary data into the lUCY parameter list
yourself. The TRGCLS = option sets the type of I/O requested, read or
write. The DATA=PRMMSG option sets a flag in IPFLAGSl, and the
PRMMSG = option moves the block number and virtual buffer address into
the lUCY parameter list. The following list defines the input necessary for
the DASD Block I/O System Service on an lUCY SEND:

Chapter 7. The DASD Block I/O System Service 245

C~ Slfs~em Serrvftces

IPRMMSGI
IPRMMSG2
IPTRGCLS

Block number
Virtual buffer address
Block I/O service requested

F'Ol'
F'02'

Write request (CMS formatted)
Read request (CMS formatted)

DASD Block I/O tries to perform the request. It issues an IUCV REPLY to
return the results of the I/O requests. One of the following return codes is
returned in the IPRMMSG1 field of the IUCV parameter list:

F'OO'
F'Ol'
F'02'
F'03'
F'04'
F'OS'
F'06'
F'07'

I/O completed successful
Invalid block number
Invalid data buffer address
Write on read/only DASD
Incorrect block size - format error
Unrecoverable I/O error
Invalid service requested
Protection exception on virtual buffer

If you have misused IUCV protocol set up for this system service, DASD
Block I/O issues an IUCV SEVER on the path and flags the error. The first
byte of the IPUSER field contains one of the following error codes:

X'07'
X'08'

IUCV communication was not sent using DATA=PRMMSG
No one-way messages are allowed on the path

If the device is reset, the path is QUIESCEd and no more requests are
allowed. When there are no I/O requests outstanding, DASD Block I/O
issues an IUCV SEVER on the path and flags the error. The first byte of
the IPUSER field contains the following return code:

X'09' Virtual device has been reset

When all communications with the DASD Block I/O System Service are
completed, you can terminate communications by issuing either an IUCV
SEVER or/and IUCV RETRIEVE BUFFER.

Using the DASD Block 1/0 System Service from eMS

The DASD Block I/O System Service provides a virtual machine with
device-independent access to its virtual DASD devices. Programs using the
DASD Block I/O System Service bypass the CMS file system, and they read
or write directly from CPo

Before using the DASD Block I/O System Service, you should issue the
eMS RESERVE command and the CMS DIS KID function.

The CMS RESERVE command allocates ail available blocks of a 512-, 1K-,
2K-, or 4K-byte block formatted minidisk to a unique CMS file. The file
created has the following format:

• Filename, filetype, and filemode letter the user specified

246 VM System Facilities for Programming

,/

C~ Sl'sftem SSIf'U'ices

• Filemode number 6, if the filemode number was not specified in the
command

• Logical record length equal to the CMS disk block size

• Fixed (F) record format

• The number of records is the total number of blocks available on the
disk minus the number of blocks used by CMS. The number of blocks
used by CMS is referred to as the offset. This CMS overhead varies
with the size of the minidisk. The data blocks physically follow the
blocks used by eMS.

The file created can be read or written via the DASD Block I/O System
Service or the eMS file system. Because a CMS file structure has been
created on the disk, the file may be accessed using the CMS file system.
Let's consider the following example:

If you have a 3330 device with one cylinder formatted with 1024-byte block
size, 209 blocks are available. After you issue the RESERVE command, tlie
file created has the following format:

1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 110 111 1 ... 120712081209

where:

Physical block
number(s)

1 and 2
3
4 or 5
6
7
8
9 through 209

Description

Contain the IPL records
Contains the volume label
Contain the CMS directory file
Contains the allocation map
Contains the alternate allocation map
CMS level 1 pointer block
Data blocks

Physical blocks 1 through 8 are the blocks used by the eMS file system.
Physical blocks 9 through 209 are the data blocks. Next, issue the
following format of the FILEDEF command:

FILEDEF ddname DISK vaddr

This command associates the name of the virtual minidisk referred to in
your program, "ddname", to the virtual address of the minidisk, "vaddr".
The "ddname" is input to the DIS KID function.

The DIS KID function obtains the necessary information on the physical
organization of the RESERVEd mini disk that will be used by the DASD
Block I/O Service. The DISKID function obtains the virtual address, the
block size, and the offset of this minidisk. (In the above example, the block
size is 1024 bytes and the offset is 8.)

Chapter 7. The DASD Block I/O System Service 247

CP Sysiem Services

Before using the DASD Block I/O System Service, you must initialize your
virtual machine for IUCV communications. IUCV enables a program
running in your virtual machine to communicate with DASD Block I/O.
Use the IUCV DECLARE BUFFER function or the CMS HNDIUCV SET
macro to initialize your virtual machine for IUCV communications. You
should use the CMS IUCV support since this support allows other programs
running in the virtual machine to use IUCV.

To establish a path between your virtual machine and the DASD Block I/O
System Service, your program must issue either the IUCV CONNECT
function or the CMSIUCV CONNECT macro. The USERID parameter on
the IUCV CONNECT macro must be "*BLOCKIO" and the PRMDATA
parameter must be "YES". PRMDATA=YES indicates that the your
program will receive messages in its parameter list. Information about the
minidisk returned by the DISKID function -- the virtual address, blocksize,
and offset -- must be moved into the IPUSER field of the lUCY CONNECT
parameter list.

If all the parameters required by DASD Block I/O are valid, DASD Block
I/O issues the IUCV ACCEPT function with the PRMDATA = YES
parameter specified. Here, PRMDATA=YES indicates that the DASD
Block I/O System Service will receive messages in its parameter list. If
invalid parameters are passed from the CONNECT to DASD Block I/O,
DASD Block I/O issues an IUCV SEVER on the path.

If DASD Block I/O issued an IUCV ACCEPT, your virtual machine receives
an IUCV Connection Complete external interrupt. The IPUSER field of the
Connection Complete external interrupt buffer contains the starting and
ending block numbers allowable on the DASD Block I/O requests, and
contains flags describing the status of the virtual device. The starting
block number (START BLOCK) is 1 minus the offset. The ending block
number (END BLOCK) is the total number of available blocks minus the
offset.

Since DASD Block I/O bypasses the CMS file system, START BLOCK can
contain a negative value (1 - OFFSET) and these blocks can be used by
DASD Block I/O. In the example above, START BLOCK would be -7 (1 - 8)
and END BLOCK would be 201 (209 - 8). The range -7 to 201 equals 209 -
the number of available blocks on the device. Data block 1 is actually
physical block 9, data block 2 is actually physical block 10, and the last
block (data block 201) is actually physical block 209. Programs using
DASD Block I/O should only write data blocks; therefore, a block number
less than 1 should never be written. This would destroy a block that was
used to implement the CMS file structure.

You can now start sending I/O requests to DASD Block I/O by issuing the
IUCV SEND function. You must specify the block number, virtual buffer
address, and type of request desired in the IUCV SEND parameter list.
Blocks are read or written randomly as requested.

248 VM System Facilities for Programming

If no error occurred in the IUCV SEND, DASD Block I/O issues an IUCV
REPLY to return the results of the I/O requests. If an error occurred in the
IUCV SEND, DASD Block I/O issues an IUCV SEVER.

When you want to terminate communications with the DASD Block I/O
System Service, issue the IUCV SEVER function, CMS CMSIUCV SEVER
macro, IUCV RETRIEVE BUFFER function, or CMS HNDIUCV CLR
macro.

Chapter 7. The DASD Block I/O System Service 249

CIP Sys~em Se6"vices

/'

250 VM System Facilities for Programming

The Signal System Service is a CP system service. It allows virtual
machines in a virtual machine group to signal each other. The Signal
System Service can only be used by virtual machines in a virtual machine
group. Each virtual machine in a group is identified by a unique I6-bit
signal ID. When a virtual machine connects to the Signal System Service,
it may request that a particular signal ID be assigned to it. If you have not
set up the virtual machine to request a specific signal ID, the Signal System
Service automatically assigns one to your virtual machine.

All members of a virtual machine group can send 8 bytes of signal data
(user information) to any member in the group using lUCY SEND,
specifying the signal ID of the virtual machine they want to receive the
signal data. A virtual machine can also signal all members in a group
using a Broadcast signal. Group members can request notification of
members entering and leaving the group by specifying Signal-In and
Signal-Out flags when they connect to the Signal System Service.

Using the Signal System Service requires no directory authorization. The
Signal System Service allows only one connection per virtual machine.

Establishing Communications with the Signal System Service

The Signal System Service uses lUCY to communicate between itself and a
virtual machine. The lUCY macro checks the validity of all the lUCY
parameters and any errors are handled according to lUCY specifications.
The Signal System Service checks the validity of all the parameters it
requires. Any errors resulting from this check are handled as described in
the following sections.

Your first step in establishing lUCY communications with the Signal
System Service is to issue an lUCY DECLARE BUFFER. This initializes
the virtual machine for lUCY communication. This function also specifies
a buffer where lUCY can store external interrupt information.

Chapter 8. The Signal System Service 251

CP System Services
,,1,.,< , :' :: .1

IUCV CONNECT to the Signal System Service

o
8

o 1 2

FLAGS I ///// I

After you establish communications with IUCV, you must issue an IUCV
CONNECT with USERID=*SIGNAL and PRMDATA=YES in the IUCV
CONNECT parameter list. The user data field must have the following
format:

3 4 5 6 7

SIGNAL DATA

SIGNAL ID I /////////////////////////////

where:

SIGNAL DATA
is the eight bytes of user information or signal you want passed to other
members of the group. Only group members that have specified the
Signal-In flag when they connected will receive the data.

FLAGS
is a set of bits defining the signal options chosen by you for your virtual
machine. The first three bits are defined and the others are reserved.
The defined bits are:

X'80'
X'40'
X'20'
X'lF'

SIGNAL ID

Signal-In
Signal-Out
Signal ID has been specified
Reserved

is the signal ID you want assigned to your virtual machine. This signal
ID is used by other group members to communicate with your virtual
machine. This field is only used if you set the signal ID flag bit (X'20')
in the FLAGS field.

You must set all reserved fields and flags to zero.

If you specify the Signal-In flag, your virtual machine is signaled when
future group members enter your group by connecting to the Signal System
Service.

If you specify the Signal-Out flag, your virtual machine is signaled when
group members in your group break their connection (via IUCV SEVER)
with the Signal System Service.

The IUCV CONNECT function returns a P ATHID to your virtual machine.
You must specify this P ATHID in the IUCV SEND parameter list for all
subsequent communication to the Signal System Service.

252 VM System Facilities for Programming

o 1 2

CP System Services

When you issue lUCY CONNECT to the Signal System Service, the
connection is either accepted (the Signal System Service issues an lUCY
ACCEPT) or severed (the Signal System Service issues an lUCY SEVER).

If the connection is accepted, the user data field on the lUCY connection
complete external interrupt will have the following format:

3 4 5 6 7

o SIGNAL DATA

8 FLAGS I ///// I SIGNAL 10 I /////////////////////////////

o 1 2

where:

SIGNAL DATA
is unchanged from the lUCY CONNECT.

FLAGS
are unchanged from the lUCY CONNECT.

SIGNAL ID
is the signal lD you assigned to your virtual machine. If you did not
assign a signal lD, the Signal System Service assigns a unique signal lD
for you and stores it in this field.

All unused fields remain unchanged from the lUCY CONNECT.

If the connection is rejected, the user data field on the lUCV SEVER
external interrupt will have the following format:

3 4 5 6 7

o ReODE I ///
8 ///

where:

ReODE
is the return code indicating the reason the connection was severed.

Return codes resulting from connection errors:

X'Ol'
X'02'
X'03'

X'04'
X'05'

You are not a member of a Virtual Machine Group.
You are already connected to the Signal System Service.
You did not specify PRMDATA=YES in the lUCY
CONNECT parameter list.
The reserved fields were not set to zero.
The signal lD you specified was not unique.

Chapter 8. The Signal System Service 253

CP Slfs~ernrn SelrUDCeS

Sending Signals

Upon notification of a successful connection, your virtual machine is ready
to send signals. You may now issue IUCV SEND requests to the Signal

, System Service specifying the eight byte signal (parameter list data), the
, target's signal ID, and the flag settings. Specify the target's signal ID and

the flag settings in the target class (TRGCLS) ~ith the following format:

a 1 2 3

FLAGS IIIII SIGNAL ID

where:

FLAGS
is a set of bits defining the the handling of the signal. Only two bits are
defined and the others are reserved. The defined bits are:

X'lO'
X'08'
X'E7'

SIGNAL ID

Broadcast Signal
Invalid Signal ID
Reserved

is the target's signal ID.

If you specify the Broadcast Signal (X'lO') flag, a signal is sent to all of the
other users in your group that are connected to the Signal System Service.

If you send a signal using an invalid Signal ID, the Signal System Service
returns the signal to you with an error indicator (X'OB') in the FLAGS field.
The target class and the signal data remain unchanged.

If the parameter list data option is not used, or if the signal is not one-way,
then the connection is severed.

Return codes resulting from send errors:

X'06' The signal was sent without the DATA=PRMMSG option
specified.

X'07' The signal sent was not a one-way signal.

Receiving Signals

As a member of a Virtual Machine Group, your virtual machine can receive
three types of signals. These are Signal-In, Signal-Out, and a normal signal
sent by another group member via an IUCV SEND. The Signal System
Service passes these signals to your virtual machine via an IUCV SEND
using a one-way message with the signal specified in the parameter list /'
data.

254 VM System Facilities for Programming

Specify the source's signal ID and the flag settings in the target class
(TRGCLS) with the following format:

a 1 2 3

FLAGS ///// SIGNAL ID

where:

FLAGS
is a set of bits defining the type of signal sent. Only three bits are
defined and the others are unused. The defined bits are:

X'80'
X'40'
X'lO'
X'2F'

SIGNAL ID

Signal-In
Signal-Out
Broadcast signal
Unused

is the source's signal ID.

The Signal System Service sets all unused fields to zero.

If the Signal-In flag is on, this signal was specified in the user data of the
user's lUCY CONNECT to the Signal System Service.

If the Signal-Out flag is on, this signal was specified in the user data of the
user's lUCY SEVER to the Signal System Service.

If the Broadcast flag or no flags are on, this signal was specified in the
parameter list data of the user's lUCY SEND to the Signal System Service.

If you want to stop receiving signals from the Signal System Service, you
can use lUCY QUIESCE. However, the Signal System Service does not
queue signals, and the signals from other members of the group will be lost
until you issue an lUCY RESUME.

Leaving the Signal System Service

a 2

When all communications with the Signal SYstem Service are completed,
you can terminate communication by issuing either an IUCV SEVER or an,
IUCV RETRIEVE BUFFER. The user data field on a SEVER must have
the following format:

3 4 5 6 7

a SIGNAL DATA

8 ///

Chapter 8. The Signal System Service 255

CP System Services

where:

SIGNAL DATA
is the eight byte signal you want passed to other members of the group.
Only group members that have specified the Signal-Out flag when they
connected to the Signal System Service will receive the data.

If a SEVER is generated by the CP system, as on a RETRIEVE BUFFER or
a virtual machine reset, the SIGNAL DATA is set to all zeroes.

256 VM System Facilities for Programming

The Error Logging System Service is a CP system service. It lets a virtual
machine receive a copy of all records currently written to the VM CP Error
Recording Area. The virtual machine can record this information, act on
it, or report it to other programming support.

Establishing Communications with the Error logging System
Service

Interactions

"*LOGREC" is the Error Logging System Service userid. The virtual
machine communicates with the Error Logging System Service via lUCY in
the following way:

• Issues an lUCY DECLARE BUFFER.

o Enables for lUCY interrupts in CR 0 and PSW.

o Has an lUCY *LOGREC authorization card in the directory.

• Issues an lUCY CONNECT to *LOGREC.

• Processes lUCY external interrupts.

• Issues an lUCY RECEIVE for each record.

The VM CP Error Recording Area records errors even if a virtual machine
does not connect to *LOGREC.

lUCY messages are of the same length and format as records that appear in
the CP Error Recording Area. When lUCY sends a message, the IPBFLNIF
field in the lUCY externals interrupt information indicates the messages
length.

The CP directory must authorize the virtual machine to connect to the
Error Logging System Service. Although the directory may authorize many
virtual machines to connect to the Error Logging System Service, only one
virtual machine may connect at anyone time.

lUCY does not send messages under the following conditions:

Chapter 9. The Error Logging System Service 257

CP Sl'sftem Services

• When a virtual machine does not connect to the Error Logging System
Service.

• When a virtual machine issues an lUCY QUlESCE on the *LOGREC
path to prevent *LOGREC from sending messages.

• When a virtual machine is not processing messages and the number of
outstanding messages reaches the limit of 255.

258 VM System Facilities for Programming

The SPOOL System Service is a CP system service. No special
authorization is required for a virtual machine to use the SPOOL System
Service. The directory entry for the virtual machine to be used as logical
printers must specify the lUCY *SPL option. It allows users an interface
for communication between CP and a printer subsystem. To a VM
operator, printers driven by this subsystem appear very similar to existing
system printers (1403, 3211, 3800, etc.). These subsystem printers are called
logical printers to differentiate them from system printers supported
directly by CPo
The SPOOL System Service allows a virtual machine to:

• Select a spool file from the print chain for processing
• Close a SELECTed file
• Send messages or command responses to the operator or other users
• Read the spool records (SFBLOKs and SPLlNKs) for a selected file
o Read an external attribute buffer (XAB)12 for a selected file
• Receive CP commands that affect the logical printer
• Be notified when a print file is available for processing
o Purge a print file.

Establishing Communications with the SPOOL System Service

The SPOOL System Service uses lUCY to communicate between itself and a
logical printer. The lUCY macro checks the validity of all lUCY
parameters. All lUCY errors are handled according to lUCY specifications.
*SPL validity checks all the parameters the system service requires and
handles the errors as described below. *SPL is the SPOOL System Service
userid. lUCY requires the virtual machine to do a DECLARE BUFFER to
initialize the virtual machine for lUCY communication. The virtual
machine which runs the logical printer does an lUCY CONNECT to the
SPOOL System Service. The connection lets the logical printer use the
SPOOL System Service to obtain spool print files for processing. It also
makes possible the support of operator and user commands for the logical
printer.

12 The External Attribute Buffer (XAB) is a control block that contains data the
user creates to specify additional information about a print file. Each print
file has its own XAB and CP has the facilities to maintain the XABs. See
page 96 for more details about an XAB.

Chapter 10. The SPOOL System Service 259

CP System Services
;

Printer
Subsystem

--~

ATTACHed
device

Printer
Subsystem

Virtual Machine

via IUCV

VM (CP)
Spoo l File Queue

I Figure 12. Printer Subsystem Support

I
I
I
I
I
I
I

, I

IUCV CONNECT to the SPOOL System Service

An IUCV CONNECT is issued by the virtual machine with USERID = *SPL,
PRIORITY = NO, PRMDATA = YES, and USERDTA = logical printer name.

A logical printer name is a one-to-eight alphameric name your installation
assigns. If you specify a logical printer name less than four characters,
then the name cannot contain all hexadecimal characters. A logical printer
name cannot be ALL. A logical printer name must not contain imbedded
blanks; however, trailing blanks are permitted. It is the installation's
responsibility to control the names assigned to logical printers. The name
should not conflict with any other names, options, or notation the
installation uses.

260 VM System Facilities for Programming

CIP Slfs~em Services

Example: It is recommended that a logical printer name should:

• Not be the same as a userid on the system
• Not be "PROC" or "PROCESSOR"
• Not use a dash ("-").

FFF is not a valid logical printer name, whereas BLDG! is.

The SPOOL System Service allows multiple logical printers to be connected
with the same name. This way, when you use the SPOOL System Service
SEND function, each logical printer of the specified name is sent a message.
The CP SEND command sends data or commands to the logical printer if
the target of the CP SEND is a logical printer.

If you want to create your own lUCY parameter list, then the IPUSER user
data field must have the following data.

ORG
SPLNAME os

IPUSER
CL8 LOGICAL PRINTER NAME

If all the parameters required by SPOOL System Service are valid, SPOOL
System Service issues an lUCY ACCEPT to complete the connection with
the authorized virtual machine. It also identifies the logical printer to CPo
All other SPOOL System Service functions depend on the lUCY CONNECT
and ACCEPT being complete.

If any of the parameters passed to SPOOL System Service are invalid,
SPOOL System Service issues an lUCY SEVER. However, SPOOL System
Service also issues an lUCY SEVER when the logical printer is ready to
end its connection with SPOOL System Service. When the lUCY SEVER is
issued, SPOOL System Service releases all storage associated with the
SEVERed printer. Any spool files being processed at the time of the
SEVER are recovered and returned to the print chain.

IUCV SEND to the SPOOL System Service

When the SPOOL System Service ACCEPTs the connection to a logical
printer, you can send the following types of requests to the SPOOL System
Service with an lUCY SEND:

SELECT .
CLOSE
MESSAGE
READ

The pages that follow describe these functions.

Chapter 10. The SPOOL System Service 261

CP System Services

The SELECT Function

Through a file-select, a logical printer can obtain a spool print file for
processing. To select a file to process, the logical printer sends a SELECT
(via IUCV SEND, TYPE = 2WA Y communication, IPTRGCLS = F'4'13,
DATA = PRMMSG or DATA = BUFFER) to the SPOOL System Service.

The SELECT function does not require that a previously SELECTed file be
CLOSEd before another file is SELECTed. Thus several files can have
SELECTed status at the same time.

When DATA=PRMMSG (all the user data is in the parameter list), then
PRMMSG= contains the following information:

IPRMMSGl bytes 0 and 1 spoolid of file (if applicable;
see the SPLSESID flag)

bytes 2 and 3 reserved
IPRMMSG2 byte 0 a flag

bytes 1 to 3 reserved

BITS DEFINED in BYTE 0 of IPRMMSG2
SPLSESID EQU X'80' select spool file by spoolid
SPLSECON EQU X'40' select spool file for "convert"

process

Notes:

1. If the SPLSESID bit is off, then select the next available file matching
the default selection criteria.

2. If the SPLSECON bit is off, then select a spool file to start the print
process.

A file that is selected for print processing is similar to files which are
being handled by CP driven system printers. The file is removed from the
print chain while it is being processed.

A file that is selected for convert processing is special because it remains
on the print chain while it is being processed. The operator or owner of a
file for which conversion is active can issue the CHANGE, PURGE, and
TRANSFER commands for the file. (See the PURGE function on page
275).

When DATA = BUFFER (the user data is in the buffer and IUCV RECEIVE
transfers the data), the BUFLEN = 50 and the buffer contains the following
information:

13 The value for IPSRCCLS should match the value for IPTRGCLS to correlate
the SEND with the REPLY.

262 VM System Facilities for Programming

SPLSEFLG
SPLSETYP

SPLSECLS
SPLSEFSH
SPLSEFRM
SPLSEDES

SPLSECHG

SPLSECON

SPLSESAC
SPLSENSA
SPLSECNV
SPLSENCV
SPLSN38L
SPLSBE38

SPLSAN38

DS IX
DS IX

DS 4CLI
DS CL4
DS CL8
DS 4CL8

BITS DEFINED
EQU X'80'

CP Slfs~em Services

flag
type of file eligible for selection

CLASSes
FLASH
FORM
DESTinations

in SPLSEFLG
change default selection criteria
to the new selection criteria sent in
the BUFFER.
Note: All selection criteria is
changed so all data must be specified
in the buffer.

EQU X'40' select spool file for "convert"
process.

BITS DEFINED
EQU X'80'
EQU X'40'
EQU X'20'
EQU X'IO'
EQU X'08'
EQU X'04'

EQU X'02'

Note: If this bit is off, files
selected will be for the print process.

in SPLSETYP
select files using X'SA' CCWs
select files not using X'SA' CCWs
select files that are converted
select files that are not converted
select files not using 3800 load CCWs
select files containing 3800 load CCWs
at the beginning of the file
select files containing 3800 load CCWs
anywhere within the file

If the three flags: SPLSN38L, SPLSBE38, and SPLSAN38 are all either B'O'
or B'l', then using of 3800 load CCWs within a spool file does not affect
whether the file is SELECTed. (The tests are bypassed.) If the setting of
these three flags is MIXED, then a particular spool file is SELECTed only if
its used 3800 load CCWs matches that of one of the flags that is B'l'.

Notes:

1. If the SPLSECON bit is off, then select a spool file to start the print
process.

A file that is selected for print processing is similar to files which are
being handled by CP driven system printers. The file is removed from the
print chain while it is being processed.

A file that is selected for convert processing is special because it remains
on the print chain while it is being processed. The operator or owner of a
file for which conversion is active can issue the CHANGE, PURGE, and
TRANSFER commands for the file. (See the PURGE function on page
275).

2. You must specify at least one each of CLASS, FLASH, FORM,
DESTination, and bit in SPLSETYP

3. If you specify a value of blank for CLASSes, FLASH, FORM, or
DESTinations, then no file is SELECTed.

Chapter 10. The SPOOL System Service 263

CP System Services

4. Any unused length of the CLASSes, FLASH, FORM, or DESTinations
fields must be blanks.

5. A value of asterisk (c'*') for a CLASS, means that any CLASS file can be
selected.

6. A value of c'* __ ' (each '_' is a blank and there are seven of them), for
FORM (or DESTination) means that any FORM or DESTination file
can be se lected.

7. A value of c'*_' (there are three blanks), for FLASH means that any
FLASH file can be selected.

8. A value of c'OFF_' (there are five blanks), for FORM means that a file
is eligible for selection if it has either been assigned a FORM of 'OFF' or
if it has been assigned the default printer FORM. (See the DEFPRT
options of the SYSFORM macro for DMKSYS ASSEMBLE in the
VM/ SP Planning Guide and Reference) or the VM/ SP HPO Planning
Guide and Reference).

9. A value of c'OFF _' (there are five blanks), for DESTination means that
files which do not have a DESTination assigned to them, or have been
assigned OFF, can be selected.

10. A value of c'OFF_' (there is one blank), for FLASH means that files
which do not have a FLASH assigned to them, or have been assigned
OFF, can be selected.

The SPOOL System Service responds to the SELECT request, using an
lUCY REPLY with DATA = PRMMSG, and PRMMSG= containing the
following information:

IPRMMSGI

IPRMMSG2

bytes
bytes
byte
byte
bytes

o and 1 spoolid
2 and 3 COpy count for the file
o flag - primary response information
1 flag - secondary response information
2 and 3 reserved

BITS DEFINED in BYTE 0 of IPRMMSG2
EQU X'04'1 file not SELECTed

BITS DEFINED in BYTE 1 of IPRMMSG2
EQU X' 80 '2 SFBLOK marked "to be purged"
EQU X'40'2 file has been CONVerted
EQU X'20'2 file contains X'5A' CCW's
EQU X'10'3 specified file not found on PRINT queue
EQU X'08'3 specified file in USER HOLD status
EQU X'04'3 specified file in SYSTEM HOLD status
EQU X'02' file has been "selected for printing"
EQU X'Ol' reserved

1 If this bit is 0, then a file has been selected.

2 The selected file has this characteristic.

3 The specified spoolid was not selected.

264 VM System Facilities for Programming

CP System Services

Reasons The SELECT Function May Sever

The CLOSE Function

The following situations are considered user errors and cause the SPOOL
System Service to sever the IUCV path to a logical printer.

• Use of TYPE = 1 WAY communication, return code = X'80'

• Incorrect buffer length, return code = X'80'.
The specified buffer length must be 50 bytes.

• Conflicting selection criteria options, return code = X'80'

DATA = PRMMSG, SPLSESID flag is off, and default selection
criteria has not been defined
DAT A = BUFFER and both the SPLSE5AC and SPLSEN5A flags are
off
DAT A = BUFFER and both the SPLSECNV and SPLSENCV flags
are off.

When the SPOOL System Service SELECT does a SEVER, the format of the
IPUSER field is:

IPUSER + 0:
IPUSER + 1:
IPUSER + 2:

error code
X'04'
IPMSGID from the IUCV parameter list

that caused error

A logical printer uses the SPOOL System Service CLOSE function when
processing of a SELECTed file is complete. The spool file copy count can
also be changed with the CLOSE function. When the CLOSE is complete,
the logical printer can specify to delete or requeue the print file from the
VM spool. To CLOSE a file, the logical printer sends a CLOSE request (via
an IUCV SEND TYPE = 2WA Y communication, IPTRGCLS = F'5'14,
DATA=PRMMSG or DATA = BUFFER) to the SPOOL System Service.

When a logical printer does a CLOSE, it sends the following information to
the SPOOL System Service.

• Spoolid of the file
• COpy count processing information
• Flag indicating the status of the file (if applicable)
• New CLASS, FORM, and DESTination (if applicable) of the file.

When DATA=PRMMSG (all the user data is in the parameter list), then
PRMMSG = contains the following information:

14 The value for IPSRCCLS should match the value for IPTRGCLS to correlate
the SEND with the REPLY.

Chapter 10. The SPOOL System Service 265

ep System Services

IPRMMSGI bytes 0 and
bytes 2 and

IPRMMSG2 byte 0
bytes I to

BITS DEFINED
EQU X'OOOO'

I
3

3

in

spoolid of file
COpy count processing information
a flag
reserved

BYTES 2 and 3 of IPRMMSGI
CLOSE does not change the
file's COpy count (other CLOSE
functions performed as usual)

EQU X'OOOI'-X'OOFF' CLOSE updates the COpy

BITS DEFINED
SPLCLPUR EQU X'80'
SPLCLUHO EQU X'40'
SPLCLSHO EQU X'20'
SPLCLCON EQU X'IO'

EQU X'08'
EQU x'04'
EQU X'02'

SPLCLUNC EQU X'OI'

Notes:

count (file remains in
SELECTed status and no other
changes are done)

in BYTE 0 of IPRMMSG2
close and purge file
close and requeue in user hold
close and requeue in system hold
close and requeue converted
reserved
reserved
reserved
close and requeue non-converted

1. If bytes 2 and 3 of IPRMMSGl are greater than X'OOFF' then the
SPOOL System Service severs the IUCV path.

2. When you specify SPLCLPUR, it is invalid to specify any other option in
byte 0 of IPRMMSG2.

3. It is invalid to specify both SPLCLCON and SPLCL UNC.

When DATA = BUFFER (the user data is in the buffer and IUCV RECEIVE
transfers the data), the BUFLEN = 20 and BUFFER = contains the
following information:

SPLCSPID DS IH file spoolid
SPLCFLCL DS IX flag
SPLCCLAS DS IX CLASS
SPLCFORM DS CL8 FORM
SPLCDEST DS CL8 DESTination

BITS DEFINED in SPLSFLCL
SPLCLPUR EQU X'80' close and purge file
SPLCLUHO EQU X'40' close and requeue in user hold
SPLCLSHO EQU X' 20' close and requeue in system hold
SPLCLCON EQU X'IO' close and requeue converted
SPLCLCLA EQU X'08' close and requeue with new CLASS
SPLCLFRM EQU X'04' close and requeue with new FORM
SPLCLDES EQU X'02' close and requeue with new DESTination
SPLCLUNC EQU X'OI' close and requeue non-converted

266 VM System Facilities for Programming

CP SysRem SelluDCeS

Notes:

1. When you specify SPLCLPUR, it is invalid to specify any other option in
SPLCFLCL.

2. It is invalid to specify both SPLCLCON and SPLCLUNC.

The SPOOL System Service responds to the CLOSE request using an IUCV
REPLY with DATA=PRMMSG, and PRMMSG= containing the following
information:

IPRMMSG1 bytes 0 and 1
bytes 2 and 3

IPRMMSG2 byte 0
bytes 1 to 3

spoolid
reserved
flag
reserved

BIT DEFINED
EQU X'04'

in BYTE 1 of IPRMMSG2

Reasons The CLOSE Function May Sever

file not SELECTed or *SPL processing
for the file stopped and a *SPL PURGE
message already sent to the logical
printer which SELECTed the file.

The following situations are considered user errors and cause the SPOOL
System Service to sever the IUCV path to a logical printer.

• Use of TYPE = 1 WAY communication, return code = X'80'

• Incorrect buffer length, return code = X' 80'.
The specified buffer length must be 20 bytes.

• Conflicting file-disposition options, return code = X' 80'.
For example, specifying close and purge file at the same time you
specify close and requeue in user hold.

• I/O pending, return code = X'lO'

• DATA = PRMMSG and bytes 2 and 3 of IPRMMSGI contain a value
greater than X'OOFF', return code = X'80'

When the SPOOL System Service CLOSE does a SEVER, the format of the
IPUSER field is:

IPUSER + 0:
IPUSER + 1:
IPUSER + 2:

error code
X'OS'
IPMSGID from the IUCV parameter list

that caused error

Chapter 10. The SPOOL System Service 267

CP System Services
I r ',\" .".1,

The MESSAGE Function

A logical printer uses the SPOOL System Service MESSAGE function to
send messages or command responses to the operator or other users. To
send messages, the logical printer sends a MESSAGE (via the IUCV SEND,
TYPE=2WAY communication, IPTRGCLS=F'6', DATA = BUFFER,
BUFFER = address, and BUFLEN = length-of-buffer) to the SPOOL System
Service.

When a logical printer sends a MESSAGE, it sends the following
information to the SPOOL System Service in a buffer.

• Userid to receive the message (8 bytes)
• Type of message

'S' - sent via CP SMSG
'M' - sent via CP MSG
'W' - sent via CP MSGNOH and console 'alarm' is sounded

• Message text
length - n + 2 long
text - n characters long

where n is the number of bytes in the message.

The buffer contains the following information:

SPLMSUIO OS CL8 USERIO to receive the message
SPLMSTYP OS CLI TYPE of message
SPLMSARE os OXL224 Message area (maximum size is 224 bytes)

- first 2 bytes: message area length
- next 'n' bytes: message text

SPLMSLEN os XL2 Message area length
(actual size of SPLMSARE)

SPLMSTXT os CL222 Message text (maximum size is 222.)

Note:

When a message is sent to a different node using RSCS, the issuer is
responsible for placing the necessary networking control-sequence and
the actual message.

For example, if a userid of a local RSCS machine (NETMATCH) wants
to send a message (HI from OVERHERE) to a VM node (RCVNODE)
userid (OVERTHER), then the issuer needs to specify that the message
text be sent to the RSCS machine. To do that, the issuer must use the
following format for the message text.

MSG RCVNOOE OVERTHER HI from OVERHERE

RSCS Cmd VM node userid message

networking-control sequence

You can send this message text using the CP SMSG command. The
virtual machine receiving an SMSG must be authorized to receive and /'
process that SMSG. For more information about SMSG, refer to the

268 VM System Facilities for Programming

CP Slfs~em Services

VM/ SP CP Command Reference or the VM/ SP HPO CP Command
Reference. For more information about networking control, refer to the
Remote Spooling Communications Subsystem Operation and Use.

When the SPOOL System Service MESSAGE finishes processing the
issuer's request, the SPOOL System Service MESSAGE replies to the issuer
with return codes indicating the success or failure of the function.

The reply is sent using an IUCV REPLY, DATA=PRMMSG, and
PRMMSG = return-code.

Return codes which do not sever the path are:

X'OO' Successful message
X'2B' Userid not logged on
X'39' Userid not receiving

Reasons The MESSAGE Function May Sever

The following situations are considered user errors and cause the SPOOL
System Service to sever the IUCV path to a logical printer.

• Use ofTYPE=lWAY communication, return code=X'80'

o Use ofDATA=PRMMSG, return code=X'80'.
The SPOOL System Service MESSAGE only allows DATA = BUFFER.

• Target userid is all blanks, return code = X'80'.
The SPOOL System Service MESSAGE does not allow character blanks
for the target userid.

• Invalid message type, return code = X'80'.
The SPOOL System Service only allows message types'S', 'M', and 'W'.

• Invalid data buffer length, return code = X'80'.
The SPOOL System Service only allows the data buffer length to be
greater than 12 and less than 233.

• Invalid message text format, return code = X'80'.
The SPOOL System Service MESSAGE has the following restrictions
on the format of the message text.

It cannot extend beyond the end of the buffer (the message line
cannot extend beyond the end either) lines
The length of the message line area must be greater than two but
less than 224.

When the SPOOL System Service MESSAGE does a SEVER, the format of
the IPUSER field is:

IPUSER + 0:
IPUSER + 1:
IPUSER + 2:

error code
X'06'
IPMSGID from the IUCV parameter list

that caused error

Chapter 10. The SPOOL System Service 269

CP System Services

The READ Functions

The SPOOL System Service provides three READ functions for use by
logical printers:

READ SPLlNK
READ SFBLOK
READ XAB (external attribute buffer)

The SPOOL System Service READs are lUCY SEND TYPE = 2W A Y
communications DATA = PRMMSG, and PRMMSG= from a logical printer
to the SPOOL System Service.

The READ-SPUNK Function

This function is used to read print lines of a file. With this function, a
logical printer can read the CP DASD records (SPLlNKs) for a SELECTed
spool file. For The SPOOL System Service READ-SPLlNK,
lPTRGCLS = F'l' and PRMMSG = contains the following information:

IPRMMSGI bytes 0 and 1
bytes 2 and 3

spoolid of file
number of 4K DASD records to read
buffer address (on a 4K boundary) IPRMMSG2

Note: The size is the number of contiguous 4K buffers for the SPLlNKs to
be read (each SPLlNK has a size of 4K bytes). SPLlNKs are read in
sequential order. The first READ for a SPLlNK after the file has been
SELECTed reads the first n (number to be read) SPLlNK(s) for that file.
Following READs read the next n SPLlNK(s) for the file.

When the READ SPLlNK is complete, the SPOOL System Service replies
using an lUCY REPLY with DATA=PRMMSG, and PRMMSG=
containing the following:

IPRMMSGI bytes 0 and 1
bytes 2 and 3

IPRMMSG2 byte 0

spoolid'
number of SPLINKs read
flag

bytes 1 to 3 reserved

BITS DEFINED
EQU X'20'
EQU X'04'

EQU X'02'

Reasons The READ-SPUNK Function May Sever

in BYTE 1 of IPRMMSG2
CP I/O error
file not SELECTed or *SPL processing
for the file stopped and a *SPL PURGE
message already sent to the logical
printer which SELECTed the file.
end-of-file for READ-SPLINK

The following situations are considered user errors and cause the SPOOL
System Service to sever the lUCY path to a logical printer.

• Use of TYPE = lWAY communication, return code=X'80'

• Use of DATA = BUFFER, return code=X'80'.

270 VM System Facilities for Programming

C~ Sysllem Services

The SPOOL System Service READ SPLINK only allows
DATA=PRMMSG.

• Protection or addressing violation for the user buffer, return
code = X'08'.
Any of the following has happened:

The address of the user buffer in not on a 4K boundary
There is a storage protection violation involving the user buffer
The address range specified for the buffer is not addressable.

• Numbers of buffers specified was zero, return code = X'08'

• I/O pending, return code = X'lO'.
The READ-SPLINK function was done while a previous READ-SPLINK
request was outstanding for the file. The IUCV REPLY for a previous
READ-SPLINK request must be received before the next READ-SPLINK
can be done.

When the SPOOL System Service READ-SPLINK does a SEVER, the format
of the IPUSER field is:

IPUSER + 0: error code
X'Ol' IPUSER + 1:

IPUSER + 2: IPMSGID from the IUCV parameter list
that caused error

The READ-SFBLOK Function

You use this function to read the SFBLOK. With this function, a logical
printer can read the information contained in a SELECTed spool file's
SFBLOK. For the SPOOL System Service READ-SFBLOK,
IPTRGCLS = F'2' and PRMMSG = contains the following information:

IPRMMSG1

IPRMMSG2

bytes 0 and 1
bytes 2 and 3

spoolid of file
buffer size
buffer address

When READ-SFBLOK is complete, the SPOOL System Service replies using
an IUCV REPLY with DATA=PRMMSG, PRMMSG= containing the
following information:

IPRMMSG1 bytes 0 and 1
bytes 2 and 3

IPRMMSG2 byte 0
bytes 1 to 3

spoolid
length of data
flag
reserved

BITS DEFINED in BYTE 0 of IPRMMSG2
EQU X'20' CP paging error
EQU X'08' user buffer not large enough to

hold requested data
EQU X'04' file not SELECTed or *SPL processing

for the file stopped and a *SPL PURGE
message already sent to the logical
printer which SELECTed the file.

Chapter 10. The SPOOL System Service 271

CP System Services
..• p,.. ,.,. ,'··,li".·~ .. .lI..,,:." , ;, J h-

Notes:

1. If the READ-SFBLOK was successful, then bytes 2 and 3 of IPRMMSGl
contain the actual length of the SFBLOK.

2. If the READ-SFBLOK was unsuccessful because the specified file was
not SELECTed, then bytes 2 and 3 of IPRMMSGl contain (/s.

3. If the READ-SFBLOK was unsuccessful because the user buffer was not
large enough to hold the SFBLOK or because of a CP paging error, then
bytes 2 and 3 of IPRMMSGl contain the actual length of the SFBLOK.

Reasons The READ-SFBLOK Function May Sever

The READ-XAB Function

The following situations are considered user errors and cause the SPOOL
System Service to sever the lUCV path to a logical printer.

• Use of TYPE = 1 WAY communication, return code = X'80'

• Use of DATA = BUFFER, return code=X'80'.
The SPOOL System Service READ SFBLOK only allows
DATA=PRMMSG.

• Protection or addressing violation for the user buffer, return
code = X'08'.
There is either a storage protection violation involving the user buffer,
or the address range specified for the buffer is not addressable.

When the SPOOL System Service READ-SFBLOK does a SEVER, the
format of the lPUSER field is:

IPUSER + 0:
IPUSER + 1:
IPUSER + 2:

error code
X'02'
IPMSGID from the IUCV parameter list

that caused error

This function is used to read the external attribute buffer (XAB) of a file.
The READ-XAB functions allows a logical printer to read the information
contained in a SELECTed spool file's XAB. For the SPO.oL System Service
READ-XAB, lPTRGCLS = F'3' and PRMMSG = contains the following
information:

IPRMMSG1

IPRMMSG2

bytes 0 and 1
bytes 2 and 3

spoolid of file
buffer size15

buffer address

When the SPOOL System Service READ-XAB is complete, the SPOOL
System Service replies using an lUCV REPLY, with DATA=PRMMSG, and
PRMMSG = containing the following information:

15 The maximum valid size is 32,767 bytes.

272 VM System Facilities for Programming

/

I ~ .; , A""

IPRMMSG1 bytes 0 and 1
bytes 2 and 3

IPRMMSG2 byte 0
bytes 1 to 3

CP System Services

spoolid
length of data
flag
reserved

BITS DEFINED in BYTE 0 of IPRMMSG2
EQU X'20' CP I/O error
EQU X'08' user buffer not large enough to

hold requested data
EQU X'04' file not SELECTed or *SPL processing.

for the file stopped and a *SPL PURGE
message already sent to the logical
printer which SELECTed the file.

Note: If there is no XAB then the size returned is zero. If the size returned
is greater than the size of the buffer provided, then no data was put in the
buffer. Here, the requester must get a buffer large enough to hold the XAB
and repeat the READ-XAB function.

Reasons The READ-XAB Function May Sever

The following situations are considered user errors and cause the SPOOL
System Service to sever the IUCV path to a logical printer.

• Use ofTYPE=lWAY communication, return code=X'80'

• Use of DATA = BUFFER, return code = X'80'.
The SPOOL System Service READ XAB only allows DATA=PRMMSG.

• Invalid user buffer length, return code = X'08' The buffer length cannot
be greater than 32,767 bytes.

• Protection or addressing violation for the user buffer, return
code = X'08'.
There is either a storage protection violation involving the user buffer,
or the address range specified for the buffer is not addressable.

When the SPOOL System Service READ-XAB does a SEVER, the format of
the IPUSER field is:

IPUSER + 0:
IPUSER + 1:
IPUSER + 2:

error code
X'03'
IPMSGID from the IUCV parameter list

that caused error

The SPOOL System Service to a Logical Printer

When the SPOOL System Service accepts the connection to a logical
printer, the SPOOL System Service can send the following types of requests
to a logical printer.

SEND
NOTIFY
PURGE

Chapter 10. The SPOOL System Service 273

CP System Services

The SEND Function

The pages that follow describe these functions.

The SPOOL System Service uses the SPOOL System Service SEND function
to pass printer type commands directly to a logical printer.

The SPOOL System Service SEND function is used for two cases.

1. You specifically issue the CP SEND command to pass data from a
non-privileged user to a logical printer.

2. Operator commands are routed to logical printers using the SPOOL
System Service SEND because they deal with the internals of logical
printers. The commands in this group are those existing class D, Spool
Operator, CP commands that control physical system printers.
Commands such as:

• BACKSPAC

• DRAIN

• FLUSH

• QUERY

• REPEAT

• SPACE

• START

• VARY

The syntax for all these commands specifically identifies the particular
logical printer that is the target of the command. For example,
"QUERY LPRTl" where LPRTI is the name of the logical printer.

The SPOOL System Service SEND function is an IUCV SEND
TYPE = 1 WAY communication, IPTRGCLS = F'9' (DATA = BUFFER,
BUFFER = address, and BUFLEN = 253).

Note: SPOOL System Service SEND handles the parameter" ALL" as a
special keyword for the DRAIN, QUERY, and START commands. When
you use "ALL", SPOOL System Service SEND sends the text to every
CONNECTed logical printer. Also, when logical printers have the same
name, the SPOOL System Service SEND function is done to each of them
independently.

It is the responsibility of the logical printer to do the necessary privilege
class and authorization checks for all commands sent to it via the SPOOL
System Service SEND function. The logical printer uses the SPOOL
System Service MESSAGE function to respond to the issuer of the
command.

With SPOOL System Service SEND, the SPOOL System Service passes the
following information to a logical printer:

274 VM System Facilities for Programming

The NOTIFY Function

The PURGE Function

SPLSNUID
SPLSNPCS
SPLSNTXT

DS
DS
DS
DC

CL8
XL4
CL240
X'lS'

CP Slfs~em Sen-voces

USERID of the issuer of the command
Privilege CLASSes of the issuer
TEXT of the command
end-of-text indicator

The end-of-text indicator can occur anywhere within the SPLSNTXT field
or in the byte following this field.

The SPOOL System Service NOTIFY function signals an idle logical printer
when a print file is available for processing. The SPOOL System Service
NOTIFIES a logical printer via an IUCV SEND TYPE = 1 WAY
communication, IPTRGCLS=F'8', DATA=PRMMSG. (No information is
sent to the logical printer concerning the spool file(s) associated with the
NOTIFY. There is no significant data in the PRMMSG fields).

With SPOOL System Service NOTIFY, a logical printer does not have to do
a SELECT function. If a logical printer is sent a response of file not
available when SELECTing the next file, then a message is sent to the
logical printer when a file becomes available. The SPOOL System Service
continues to send notification of other files as they become available.

The SPOOL System Service stops sending notifications to the virtual
machine when a SELECT request results in a file being chosen for the
logical printer.

The SPOOL System Service signals a logical printer to stop processing
immediately a print file that the logical printer has SELECTed. For the
PURGE function, the SPOOL System Service does an IUCV SEND
TYPE=lWAY, IPTRGCLS=F'7', DATA = PRMMSG, and PRMMSG=the
spoolid of the file to purge (in bytes 0 and 1 of IPRMMSGl), to the logical
printer.

PURGE is done when a PURGE, CHANGE, or TRANSFER command is
issued for a file being CONVERTed. The SPOOL System Service checks for
a previous PURGE request for the specified file. If the SPOOL System
Service receives the PURGE request while I/O is outstanding, the user's
buffer is still in use until a READ request is done. The file will not be
PURGEd until I/O is complete.

Chapter 10. The SPOOL System Service 275

/'

276 VM System Facilities for Programming

The Special Message Facility enables a virtual machine to send messages to
another virtual machine by issuing the CP SMSG command. The Special
Message Facility may be used with the Virtual Machine Communication
Facility (VMCF) or with the Inter-User Communication Vehicle (IUCV).
However, the sending virtual machine does not need to perform the
initialization required by VMCF or IUCV. Initialization is handled by CP
and is described later in this topic.

To send a message, a virtual machine need only prepare the message text
and issue the class G SMSG command. Parameters on the SMSG command
identify the USERID of the receiving virtual machine and specify the
message text. The format of the message text must be acceptable to the
receiving virtual machine. The SMSG command is described in the VM/ SP
CP Command Reference and VM/ SP HPO CP Command Reference.

For VMCF: Before the receiving virtual machine can receive special
messages via VMCF, it must:

• Enable itself to receive external interrupts.

• Set bit 31 of control register 0 to a value of 1.

• Authorize itself by issuing DIAGNOSE code X'68', AUTHORIZE. The
parameter list, VMCPARM, specified with DIAGNOSE code X'68' must
contain a pointer to an external-interrupt buffer, should specify a buffer
length of 280 bytes, and must have the special message flag
(VMCPSMSG) turned on.

Note that you may receive a message, "Message too large" if you issue
the SMSG command from a 3279 or 3287 Model 5 terminal to send a
message longer than what the receiving virtual machine has specified.

• Turn on this special message flag (VMCPSMSG) by setting
VMCPSMSG to a value of B'l' or by issuing the class G command, SET
SMSG ON. For information on using DIAGNOSE code X'68', see
"Description of VMCF Functions" and "Invoking VMCF Functions." in
the VMCF chapter or the section on DIAGNOSE code X'68' in this
manual.

To understand how a special message is presented to the receiving virtual
machine via VMCF, see "The SENDX Protocol" in the section, "VMCF
Protocol."

Chapter 11. The Special Message Facility 277

Special Message Facility

For lUCY: Before the receiving virtual machine can receive special
messages via lUCY, it must do the following:

• Enable itself to receive external interrupts

• Set bit 30 of control register 0 to a value of 1

• Issue the lUCY DECLARE BUFFER function

• Issue the lUCY CONNECT function to the CP Message System Service

• Turn on the special message flag by issuing the class G command SET
SMSGIUCV.

When a virtual machine no longer wishes to accept special messages, it may,
turn off the special message flag by issuing the command SET SMSG OFF.
To resume receiving messages, the virtual machine may issue the command
SET SMSG ON or SET SMSG lUCY. CP sends an error message to any
virtual machine that tries to send a special message to another virtual
machine that is not accepting special messages.

Special messages are queued only as long as the virtual machine is logged
on. If the virtual machine sets SMSG off or logs off, this queue of SMSGs
is lost. A system IPL also loses this queue of messages for the virtual
machine.

CP handles VMCFjlUCV initialization and special message processing as
follows. When the SMSG command is issued, CP verifies that no invalid
options were specified and that a valid USERID was specified. CP also
verifies that the receiving virtual machine is accepting special messages.
CP then obtains storage for the message, builds the appropriate parameter
list, and sends the message to the receiving virtual machine.

278 VM System Facilities for Programming

The Single Console Image Facility allows one user logged on to a single
virtual machine to control multiple disconnected virtual machines. CP
prefixes any output coming to the controlling virtual machine, from or on
behalf of the originating virtual machine, with the userid of the originating
virtual machine. The controlling virtual machine uses the CP class G
SEND command to communicate with the virtual machines it is controlling.

The user whose virtual machine is being controlled is the primary user.
The user whose virtual machine controls the primary user's virtual machine
is the secondary user. The secondary user may run disconnected if he has a
valid path to the IUCV Message System Service. Refer to the
Chapter 5, "The Message System Service" on page 239 for more
information.

Using the Single Console Image Facility

To enable a virtual machine to use the Single Console Image Facility, the
installation must specify the userid of the secondary user on the CONSOLE
directory control statement of the primary user. See VM/SP Planning
Guide and Reference or the VM/ SP HPO Planning Guide and Reference for
a description of the CONSOLE directory control statement.

When the primary user disconnects his virtual machine and the secondary
user is logged on, the secondary user receives control of the primary user's
virtual machine. Even if the secondary user is not logged on when the
primary user disconnects, the secondary user receives control of the
disconnected virtual machine whenever he does logon. The primary user
can regain control of his virtual machine at his own terminal by entering
the LOGON command.

After the primary user disconnects, all console output from the
disconnected virtual machine appears on the console of the secondary user
if he is logged on. Output from the primary user's disconnected virtual
machine is prefixed with the userid of the primary user.

The secondary user uses the CP SEND command to communicate with the
primary user's disconnected virtual machine. See VM/SP CP Command
Reference or VM/ SP HPO CP Command Reference for a description of the
SEND command.

Chapter 12. Single Console Image Facility 279

selF

Notes:

1. When the message, "DMKQC0150A User use rid has issued a CP read"
is received by the secondary user, the secondary user must reply with a
SEND command, sending a CP command to the disconnected user named
in the message.

2. When the message, "DMKQC0150A User userid has issued a VM read"
is received by the secondary user, the secondary user must reply with a
SEND command, sending a virtual machine command or a virtual
machine reply to the disconnected llser named in the message.

3. The console attributes of the secondary user are used for the display of
messages. For example, if the primary user console is spooled TERM and
the secondary user console is spooled NOTERM, only the messages that
would normally be displayed with the NO TERM option are displayed at
the secondary user's console.

4. The language setting of the primary user determines what language is
used for error messages and commands. The secondary user should have
the same language set as the primary user to avoid unexpected results.

280 VM System Facilities for Programming

,/

The Logical Device Support Facility allows an application running in a
virtual machine to create within CP one or more logical devices. 3270
extended data streams are supported to enable logical devices to utilize full
color, programmed symbol sets, and extended highlighting capabilities.
3284, 6, 7, 8, 9 logical printer devices are supported to allow the
presentation of status from a logical device printer. Applications are
allowed to create logical 328x printers in addition to logical 327x display
devices. Except for the logical device support facility, CP is unaware of the
fact that this device has no real existence and is driven by the application
program. In particular, CP sees it as a local 3270 device. Any output
directed to a logical device is redirected to the virtual machine for which
the device was created. The virtual machine can also transfer data to CP to
be entered as input from a specific logical device, as if it were interactively
produced on a real terminal.

The logical device support facility is made up of two data transfer
functions, four control functions, a special external interrupt (code X'2402'),
and an external control word for passing control information with the
external interrupt.

To implement this facility, functions are invoked using DIAGNOSE code
X'7C'. Registers Rx, Rx + 1, Ry, and Ry + 1 are used to indicate the function,
logical device identification, and other function-dependent information.

A special interrupt code (X'2402') is used by module DMKHPS to notify a
virtual machine of pending logical device status for a logical device created
for that virtual machine. Along with this interrupt, the virtual machine
receives a control word at a virtual storage location indicating the ID of
the associated logical device and the reason for the interrupt.

Figure 13 is a summary of logical device support facility functions. More
complete information about each of these functions is included under
"Description of Logical Device Support Facility Functions."

Data is directed to a logical device using the logical device ID. This ID is
assigned by CP during execution of the INITIATE function. Data transfer
takes place within CP at a channel command level. I/O directed to a logical
device proceeds within CP via the normal path for a local device up to the
point that DMKIOS is normally called to start I/O. At that point, control
passes to DMKHPS to process the CCW string. Channel commands
requiring interaction cause external interrupts to the virtual machine for
which the associated logical device was created.

Chapter 13. Logical Device Support Facility 281

Logical Device Support Facility

The format of data from the virtual machine must conform to 3270
architecture for local devices.

.,

The addresses of logical devices are kept in a table and accessed through an
indexing algorithm. There is a limit of 512 logical devices per host and a
maximum of 4096 logical devices for the system. There is no limit to the
number of hosts as long as the number of logical devices does not exceed
4096 devices.

Function Description

INITIATE Initiate logical device communications

ACCEPT Transfer data written to logical device to
virtual machine storage.

PRESENT Transfer data from virtual machine to CP as
input from logical device.

TERMINATE Drop a specific logical device.

TERMINATE Drop all logical devices created for this virtual
ALL machine.

STATUS Allows status to be returned to CP after an
ACCEPT function is performed.

Figure 13. Summary of Logical Device Support Facility Functions

The VM/Pass-Through Facility licensed program is an example of an
application using the logical device support facility. Through the combined
support of these two facilities, a VM user attached to system A via a 3270
Display Station can access VM system B as though the display station were
locally attached to system B.

282 VM System Facilities for Programming

/'

The Virtual Machine Communication Facility (VMCF) is part of the CP
component of VM. VMCF provides virtual machines with the ability to
send data to and receive data from any other virtual machine.

VMCF is made up of five data transfer functions, seven control functions, a
special external interrupt (code X'4001') to asynchronously alert virtual
machines to pending messages, and an external interrupt message header to
pass control information (and data, at times) to another user.

VMCF is implemented by means of functions invoked using the DIAGNOSE
instruction code X'68' and a special 40-byte parameter list called
VMCPARM. A VMCF function is indicated by a particular function
subcode in the VMCPFUNC field in the parameter list.

Note: Before you can use any other VMCF function, you must use the
AUTHORIZE function for communications. Before you can communicate
with another user, that user must also have used the AUTHORIZE
function.

A special external interrupt (code X'4001') is used by module DMKVMC to
notify one virtual machine of a pending transfer of data. This interrupt is
also used to synchronize sending and receiving of data.

Along with this interrupt, the virtual machine receives a message header
that is logged into a preassigned virtual storage area. This message header
is used to define the type of request and to provide data transfer
information, such as length of data. The message header is also used to
notify the originator of a transaction of the success or failure of the
transaction. In this case, the message header includes such information as
residual counts and data transfer return codes.

Figure 14 lists the VMCF functions and gives a brief description of each.
The functions are described in detail in the section "Descriptions of VMCF
Functions" .

Messages and data are directed to other virtual machines logically via the
userid. Data is transferred in up to 2048-byte blocks from the sending
virtual machine's storage to the receiving virtual machine's storage. The
amount of data that can be moved in a single transfer is limited only by the
sizes of virtual machine storage of the respective virtual machines. Use of
real storage is minimal. Only one real storage page per virtual machine (a
total of two pages, one for the sender and one for the receiver) need to be
locked during the data transfer.

Chapter 14. The Virtual Machine Communication Facility 283

VMCF

Function

AUTHORIZE

UNAUTHORIZE

SEND

SEND/RECV

SENDX

RECEIVE

CANCEL

REPLY

QUIESCE

RESUME

IDENTIFY

REJECT

The special message facility uses VMCF to send messages from one virtual
machine storage area to another virtual machine storage area. For a
description of the special message facility and how it uses VMCF, see
Chapter 11, "The Special Message Facility" on page 277.

Code* Comments

Control Initializes VMCF for a given virtual machine. Once
AUTHORIZE is executed, the virtual machine can
execute other VMCF functions and receive messages
or requests from other users.

Control Terminates VMCF activity.

Data Directs a message or block of data to another virtual
machine.

Data Directs a message or block of data to another virtual
machine, and requests a reply.

Data Directs data to another virtual machine on a faster
but more restrictive protocol than the SEND
function.

Data Allows you to accept selective messages or data sent
via a SEND or SEND/RECV function.

Control Cancels a message or data transfer directed to
another user but not yet accepted by that user.

Data Allows you to direct data back to the originator of a
SEND/RECV function, simulating full duplex
communIcation.

Control Temporarily rejects further SEND, SENDX,
SEND/RECV, or IDENTIFY requests from other
users.

Control Resets the status set by the QUIESCE function and
allows execution of subsequent requests from other
users.

Control Notifies another user that your virtual machine is
available for VMCF communication.

Control Allows you to reject specific SEND or SEND/RECV
requests pending for your virtual machine.

Figure 14. Virtual Machine Communication Facility (VMCF) Functions

* The word "Data" in this column indicates a data transfer function
whereas the word "Control" indicates a VMCF control function.

Using the Virtual Machine Communication Facility

The following discussion presents ideas and suggestions for using the
Virtual Machine Communication Facility (VMCF).

284 VM System Facilities for Programming

/

VMCF Applications

Multitasking Programming

Resource Sharing

Virtual Extensions to VM

Program Testing

VMCF

The VM system with VMCF provides the user with the potential to apply
new and different techniques to current applications.

The VMCF functions may be used to multitask virtual machines. Each
virtual machine can become a subtask, parallel or otherwise, of another
virtual machine. A virtual machine task can be a simple program or a
large processor. The VMCF functions provide the WAIT/POST,
serialization and communication facilities to control such an environment.
The existing VM functions provide efficient scheduling, dispatching, and
basic resource controls. The advantage of such an environment is that a
user is less restricted by operating system (software) limitations and gains
the flexibility of machine languages and hardware.

VMCF provides a clear and concise method for sharing and serializing
resources between virtual machines. The resources can range from
multi-write minidisks to entire processors. The control functions for
resource sharing (such as, resource management, serialization) can be
contained in a virtual machine.

It is conceivable that functions could be added to VM without altering the
control program (CP). A special privilege class virtual machine could be
used to provide additional functions to non-privilege class users using the
VMCF interface. Similarly, CMS capabilities could be expanded (or at least
appear to be expanded) by linking CMS with other virtual machines.

The program testing capabilities offered by VMCF can range from device
simulation to teleprocessing network simulation. In particular, VMCF can
be used to provide external interactions from one virtual machine to
another. A simulated teleprocessing network could be constructed with
virtual machines. Each virtual machine would effectively become a node
within the network. The network structure could range from a simple tree
type structure to a complicated multi-path mesh type structure. The
program logic wi thin each node virtual machine would be the same logic as
required for a real teleprocessing node. In theory, a reasonably complicated
structure could be simulated without requiring the physical hardware.

The significant testing capability provided by VMCF is the ability to link
the test system with test/simulation routines in another virtual machine.

Chapter 14. The Virtual Machine Communication Facility 285

VMCF
'.>,i

Intra-Virtual Machine Communication

Virtual Multiprocessing

Although the VMCF interface is intended for communication from one
virtual machine to another it can also be used to communicate within a
single virtual machine (wrap connection). The VMCF interface could
conceivably be used to link one or more operating system tasks that are
logically separated by the software. This would allow task-to-task
communication rather than virtual machine-to-virtual machine
communication.

The VMCF interface could possibly be used to simulate a virtual
multiprocessing environment.

Security and Data Integrity

The VMCF interface provides the following security aids:

• The user double word in the external interrupt message header can be
used to contain a security code to prevent unwarranted users from
accessing a shared data base or other confidential information.

• The AUTHORIZE SPECIFIC option allows a user to restrict messages
sent to his virtual machine. This option is useful when slave machines
are to communicate only with a host machine. The slave machines can
AUTHORIZE SPECIFIC with the host and prevent unwarranted users
from clogging their message queues.

• The design of VMCF prevents malicious users from intercepting
transactions in process for other users (for example, user D cannot
execute a RECEIVE, REPLY, REJECT or CANCEL to a message sent
to user B from user A).

The VMCF support module is designed such that a user is always informed
of conditions that could threaten the integrity of his own data. The user is
notified either with a DIAGNOSE code X'68' return code or data transfer
error code. There is no internal buffering of user data within the control
program (CP), a message is always retained by either the SOURCE or SINK
virtual machine. If a SEND type request fails, the SOURCE still has a copy
of the original message. If a SINK REPLY fails, the SINK user still has a
copy of the REPLY data. The DIAGNOSE return code or data transfer
error code can indicate to a user that a transaction failed. It is up to the
user to preserve the associated transaction data. A VMCF user should
consider the following notes:

1. The buffer used for SOURCE data in a SEND, SENDX or SEND/RECV
request should not be freed or reused until the final response external
interrupt is received by the SOURCE.

286 VM System Facilities for Programming

VMCF

2. The buffer used for SINK data in a REPLY function can be reused by
the SINK after the DIAGNOSE instruction (REPLY) has successfully
completed.

3. The user parameter list, VMCP ARM, may be re-used upon completion of
the DIAGNOSE instruction. At that point the VMCPARM data has
been copied to a VMCF control block, VMCBLOK, by the control
program. A user should, however, maintain queues of VMCPARM data
to associate an external interrupt message header, VMCMHDR, with a
particular request.

4. A user should always interrogate the DIAGNOSE return code or data
transfer error code for possible error conditions. It is the user's
responsibility to determine the types and extent of error recovery. The
DIAGNOSE return code 19 for a SOURCE SEND, SEND/RECV or
SENDX request indicates that an error was associated with the SINK
user and for a SINK RECEIVE or REPLY request indicates that an
error was associated with the SOURCE user. The user who receives
this return code does not have to invoke error recovery for himself but
only be aware that the transaction did not complete successfully
because of an error associated with the other user.

Performance Considerations

There are several factors that can affect the performance of VMCF:

• The VMCF support module, DMKVMC, is a pageable CP module. If a
user has significant paging activity, it may be advantageous to either
lock the module in real storage (CP LOCK command) or alter the CP
LOADLIST to make DMKVMC resident.

• It is to a user's benefit to have the user parameter list, VMCPARM, in
the same 4K page as the DIAGNOSE code X'68' instruction. This may
eliminate a paging operation.

• User support modules using the VMCF interface should be written as
reentrant modules and be contained within a CP shared segment
whenever possible. This helps reduce CP paging overhead.

• For applications that involve serial message processing, the SENDX
function is the most efficient. The SENDX function eliminates the need
for the SINK to do a RECEIVE operation.

Note: Overall system VM performance is not affected when VMCF is not
being used by an installation.

Chapter 14. The Virtual Machine Communication Facility 287

VMCF
I

General Considerations

VMCF Protocol

The SENDX function is a fast way to transfer messages or data and can be
used in place of the CP MSG command where the message length exceeds
the capacity of the terminal input line. Its use is somewhat restricted in
that the maximum data length must be agreed upon by all VMCF users and
then remains fixed unless renegotiated.

The SEND and SENDjRECV functions are better suited to transfer high
volume data base type information. This type of data transfer requires the
flexibility of a wide range of data lengths along with rigorous management
and control techniques.

The QUIESCE function allows a virtual machine to discontinue receiving
messages. The virtual machine can process those messages already stacked
and then use the RESUME function to continue reception. The QUIESCE
function also allows a virtual machine to process all queued messages prior
to terminating VMCF operation.

The user parameter list, VMCPARM, is designed such that it can be used
for any function by simply varying the contents of its fields.

Users should keep copies of VMCPARMs for all requests made via the
SEND, SENDjRECV, or SENDX functions. When a final response interrupt
is received and the interrupt message header indicates no data transfer
errors, the corresponding VMCPARM copy can be released. If a data
transfer error is indicated, the copy can be used to reinitiate the

. transaction.

VMCF provides four types of protocol:

• SEND
• SENDjRECV
• SENDX
• IDENTIFY.

The protocol used to communicate between two virtual machines depends
on the application of VMCF and conventions established by virtual
machine users authorized to use VMCF. A virtual machine must invoke
the AUTHORIZE function before it is allowed to use any of the other
functions.

The types of transactions that virtual machines can be involved in are
described by a series of VMCF protocols. In these protocols the originating
virtual machine is called the "source" virtual machine. The destination
virtual machine is called the "sink" virtual machine.

288 VM System Facilities for Programming

/'

The SEND Protocol

VMCF

The protocol for a transaction remains in effect for the duration of the
transaction.

The SEND protocol defines a one-way transfer of data from source virtual
machine storage to sink virtual machine storage. The SEND protocol uses
the SEND and RECEIVE functions, as described in Figure 15. The source
virtual machine first transfers data to the sink virtual machine. This is
done by executing the SEND function which specifies the userid of the sink
virtual machine, a message ID, and the address and length of the data being
sent. The sink virtual machine receives an external interrupt from CP
notifying it of the data transfer request. The sink virtual machine can then
respond via the RECEIVE function. The RECEIVE request specifies the
address and the length of the SINK buffer that is to receive the data and
causes the data to be transferred from source virtual machine storage to
sink virtual machine storage. When the data transfer is complete, the
source virtual machine receives an external interrupt from CP, indicating
that the transaction is complete and that the sink virtual machine has
received the data.

All virtual machines authorized to use VMCF can send data using this
protocol.

The amount of data transferred is limited only by virtual machine storage
size. Data is transferred in blocks of up to 2K (when necessary) and only
one real page frame is locked during the data transfer operation.

Chapter 14. The Virtual Machine Communication Facility 289

VMCF
.,' i·" \1

1
"";;,, '1.1' 1. .. ,'

CONTROL PROGRAM

DMKVMC

VMCF
Interface
Module

Source Sink
Virtual Virtual
Machine Machine

SEND ~ ~

External Interrupt ~

.. .. RECEIVE

~ Data Transfer ~

.--External Interrupt-
(Fi na 1 Response)

Figure 15. The SEND Protocol

The SEND/RECV Protocol

The SENDjRECV protocol defines a transaction calling for two-way
transfer of data, as described in Figure 16. The SENDjRECV protocol uses
the SEND/RECV, RECEIVE, and REPLY functions.

The source virtual machine initiates the transaction using the SEND/RECV
function. Using an external interrupt, CP notifies the sink virtual machine
that there is a message waiting. The sink virtual machine uses the
RECEIVE function to cause the data to be transferred from the source
virtual machine's storage to the sink virtual machine storage. The sink
virtual machine now uses the REPLY function to cause data to be
transferred from its storage to the source virtual machine's storage. When
the REPLY function completes processing, CP causes an external interrupt
in the source virtual machine, notifying it that the transaction is complete.

The SEND/RECV request requires that the source virtual machine specify
the address and length of the data to be transferred and the address where
data is expected from the REPLY function. (Both addresses are in source
virtual machine storage.) These addresses, along with the length of the
data to be transferred, are specified via the VMCP ARM parameter list,
described below.

When RECEIVE is issued by the sink virtual machine in response to the
SEND/RECV request, VMCPARM contains the address in sink virtual

290 VM System Facilities for Programming

The SENDX Protocol

VMCF

machine storage where data is to be received. Finally, when the REPLY
request is issued, VMCPARM contains the address in the sink virtual
machine storage from which data is to be transferred.

CONTROL PROGRAM

DMKVMC

VMCF
Interface
Module

Source Sink
Virtual Virtual
Machine Machine

SEN DjRECV ~ ~

r--Externa 1 Interrupt ~

41 41 RECEIVE

~ Da a ransfer ~

1 l41 41 REPLY

~.----------------Da a ransfer-------41.-----------

~External Interrupt
(Final Response)

Figure 16. The SEND/RECV Protocol

The SENDX protocol defines a transaction calling for an expedited one-way
transfer of data. Figure 17 shows the SENDX protocol graphically.
SENDX differs from the SEND protocol in that the sink virtual machine
need not issue the RECEIVE function; data is transferred from source
virtual machine storage to sink virtual machine storage at the same time
the external interrupt from CP notifies the sink virtual machine of the
transaction. Data sent by the source virtual machine is placed in the·
external interrupt buffer of the sink virtual machine.

Virtual machines using the SENDX protocol are responsible for specifying
the userid for the sink virtual machine, a message ID, the address and
length of the data being sent, and the external interrupt buffer address and
data length for the sink virtual machine. A virtual machine to be used as a
sink virtual machine with the SENDX protocol must specify this
information via VMCPARM when that virtual machine issues the
AUTHORIZE function. The data length specified must be at least as long
as the maximum amount of data to be transferred during a transaction; it
need not be limited to the usual 40-byte external interrupt buffer. Effective
use of the SENDX protocol requires that VMCF users agree on a maximum

Chapter 14. The Virtual Machine Communication Facility 291

VMCF
-:- : "<

size for SENDX data and then issue the AUTHORIZE function with the
appropriate external interrupt buffer size.

If the sink virtual machine has not provided enough SENDX buffer area in
the external interrupt buffer, CP notifies the source virtual machine that
the transaction was not completed.

When a SENDX data transfer is complete, CP directs a response external
interrupt to the source virtual machine, notifying it that the transaction is
complete.

CONTROL PROGRAM

So
Vi
Ma

SENDX

urce
rtual
chine

•

DMKVMC

VMCF
Interface
Module

•

Sink
Virtual
Machine

.Da a ransfer

.-Externa 1 Interrupt
(Final Response)

Figure 17. The SENDX Protocol

External Interrupt •
(Buffer Contains Data)

The IDENTIFY Protocol

The IDENTIFY protocol defines a means for virtual machines to identify
themselves to other virtual machines by passing user-defined control
information via a standard VMCF message header. Figure 18 shows the
IDENTIFY protocol graphically.

When the IDENTIFY function is issued, CP directs an external interrupt to
the sink virtual machine. Along with the external interrupt, the sink
virtual machine receives a standard VMCF message header that contains
user-defined information. The IDENTIFY protocol does not cause a
response external interrupt to be directed to the source virtual machine.

292 VM System Facilities for Programming

/

VMCF
I,.,

CONTROL PROGRAM

DMKVMC

VMCF
Interface
Module

Source Sink
Virtual Virtual
Machine Machine

IDENTIFY • •
-External Interrupt ~
(IDENTIFY Sequence Complete)

Figure 18. The IDENTIFY Protocol

Descriptions of VMCF Functions

The Control Functions

There are two types of VMCF functions:

• Control functions
• Data transfer functions.

The VMCF control functions allow efficient management of data transfer
operations from your virtual machine console. The control functions are:

• AUTHORIZE

• UNAUTHORIZE

• CANCEL

• QUIESCE

• RESUME

• IDENTIFY

• REJECT.

AUTHORIZE: DIAGNOSE Code X'68' Subcode X'OOOO'

AUTHORIZE enables VMCF for a virtual machine; once AUTHORIZE has
been executed, the virtual machine can execute other VMCF functions and
receive messages and data from other authorized VMCF virtual machines.
It is possible to specify three options with the AUTHORIZE function:
SPECIFIC, PRIORITY, and VMCPSMSG.

Chapter 14. The Virtual Machine Communication Facility 293

VMCF
."'" . s I

The SPECIFIC option authorizes communication with a specific virtual
machine. Any messages sent to the virtual machine from other than the
specified virtual machine will be rejected. The SPECIFIC option can be
used in an application where virtual machines desire to communicate with
a master controller but not among themselves. Under the special message
facility, CP is authorized with every virtual machine that is to receive
messages sent with the SMSG command. Virtual machines that are to
receive messages must authorize themselves.

The PRIORITY option allows a virtual machine to authorize the receipt of
priority messages. A virtual machine is allowed to send priority messages
to another virtual machine only if the other virtual machine is authorized
to receive priority messages. A priority message is one that is queued
ahead of non priority messages and therefore accepted first.

When you execute the AUTHORIZE function, you must specify the address
and length of the external interrupt buffer for your virtual machine. The
buffer must be large enough to contain a fixed message header (40 bytes).
The message header identifies messages sent by other virtual machines or
responses to messages you might send to your own virtual machine.

If you are going to accept SENDX-type communications, you must specify
the size of the external interrupt buffer as 40 plus the maximum size of
SENDX data that you plan to accept. This has the effect of authorizing
SENDX protocol. That is, a virtual machine may receive data along with
the external interrupt in its external interrupt buffer. When a virtual
machine sends data to another virtual machine via the SENDX function the
data must fit in that virtual machine's external interrupt buffer or the
function is rej ected. It is recommended to specify a buffer length of 280
bytes.

Note: You may receive a message, "Message too large" if you issue the
SMSG command from a 3279 or 3287 Model 5 terminal to send a message
longer than what the receiving virtual machine has specified.

Any AUTHORIZE options in effect can be reset or changed by executing
the AUTHORIZE function again. If there are errors during execution of
the AUTHORIZE function, a virtual machine's authorization status is not
changed.

UNAUTHORIZE: DIAGNOSE Code X'68' Subcode X'0001'

UNAUTHORIZE terminates VMCF activity for a virtual machine. The
UNAUTHORIZE function causes any stacked or queued messages
associated with the virtual machine to be purged. A virtual machine should
execute the QUIESCE function before executing UNAUTHORIZE if
messages that are already queued are to be handled. When a virtual
machine executing UNAUTHORIZE has pending final response external
interrupts, the interrupts are purged. If a virtual machine has pending
SEND external interrupts from another source virtual machine, a
RESPONSE interrupt is reflected to the source indicating that the virtual
machine is no longer available.

294 VM System Facilities for Programming

VMCF
I.·, , .. .Ap. !$i,l

CANCEL: DIAGNOSE Code X'68' Subcode X'0006'

CANCEL cancels a message or data transfer pending for but not accepted
by another VMCF virtual machine. A virtual machine can CANCEL
messages it originates with SEND, SENDX, or SENDjRECV functions. A
message cannot be canceled if any of the following conditions exist:

• The request was SENDX or IDENTIFY and the sink had already
received the SEND external interrupt.

• The request was SEND and the sink had already executed the
RECEIVE or REJECT functions.

• The request was SENDjRECV and the sink had already executed the
REPLY or REJECT functions.

If the original request was SENDjRECV and the sink virtual machine had
executed the RECEIVE function but not the REPLY, the REPLY can be
canceled. A virtual machine is notified of this condition with a DIAGNOSE
return code. (For a description of the return codes, see Figure 19.)

QUIESCE: DIAGNOSE Code X'68' Subcode X'0008'

QUIESCE temporarily rejects SEND, SENDX, SENDjRECV, or IDENTIFY
requests from other virtual machines. QUIESCE allows a virtual machine
to receive any stacked or queued messages but reject further SEND,
SENDX, IDENTIFY, or SENDjRECV requests from other virtual machines.
QUIESCE can be used to indicate to other virtual machines that the virtual
machine is in QUIESCE status, authorized for communication but not able
to accept messages at this time (e.g., entering slowdown, my buffers are full,
try again later). The IDENTIFY function could be used to inform other
virtual machines that a particular user is no longer in QUIESCE status.
You should execute the QUIESCE function before executing the
UNAUTHORIZE function to avoid losing messages (see "UNAUTHORIZE:
DIAGNOSE Code X'68' Subcode X'OOOl'.") A virtual machine can reset the
QUIESCE status (exit slowdown) by executing the RESUME function. (See
"RESUME: DIAGNOSE Code X'68' Subcode X'0009'.") A virtual machine
in QUIESCE status may continue to send messages to other virtual
machines. QUIESCE status for a virtual machine only affects messages
sent from other virtual machines.

RESUME: DIAGNOSE Code X'68' Subcode X'0009'

RESUME cancels the QUIESCE status, allowing your virtual machine to
resume reception of VMCF requests from other virtual machines. You can
use the IDENTIFY function to inform other virtual machines that your
virtual machine is no longer in QUIESCE status. (See "IDENTIFY:
DIAGNOSE Code X'68' Subcode X'OOOA'.")

Chapter 14. The Virtual Machine Communication Facility 295

VMCF

IDENTIFY: DIAGNOSE Code X'68' Subcode X'OOOA'

IDENTIFY notifies another virtual machine that your virtual machine is
available for VMCF communication. Use the IDENTIFY function after
issuing the AUTHORIZE function or after your virtual machine has been in
the VMCF QUIESCE state and you have issued the RESUME function.
IDENTIFY causes an external interrupt to be stacked for a specified virtual
machine. The virtual machine executing the IDENTIFY function specifies
the userid of the user to receive the external interrupt. The external
interrupt identifies the virtual machine executing the IDENTIFY function.
The IDENTIFY function is provided to inform a host or controller virtual
machine that a virtual machine is activated (logged on) and ready for
VMCF communication. The IDENTIFY function can also be used to inform
other virtual machines that your virtual machine has exited QUIESCE
state. There is no response external interrupt associated with the
IDENTIFY function.

The IDENTIFY function can also be used to pass virtual machine defined
control information. The fields in the VMCF parameter list, VMCPARM,
not used by the IDENTIFY function may be used to contain additional
virtual machine data.

REJECT: DIAGNOSE Code X'68' Subcode X'OOOB'

REJECT selectively rejects pending SEND or SEND/RECV requests from
other VMCF virtual machines. REJECT causes a response external
interrupt to be reflected to the originator of a message. The external
interrupt indicates to the originator that the message was rejected. The
user double word within the external interrupt header may tell a user why
the message was rejected. When the user of a virtual machine executes the
REJECT function, he specifies within the VMCF parameter list,
VMCPARM, the message ID of the message to be rejected. A virtual
machine cannot reject a message sent with the SENDX function since the
message is received at the same time the external interrupt is received. The
REJECT function can be executed as response to either SEND or
SEND/RECV requests.

The Data Transfer Functions

The data transfer functions are:

• SEND
• SEND/RECV
• SENDX
• RECEIVE
• REPLY.

These operations involve the movement of data from one virtual machine
storage to another virtual machine storage.

296 VM System Facilities for Programming

VMCF

SEND: DIAGNOSE Code X'68' Subcode X'0002'

SEND directs a message or block of data to another virtual machine.
Specify the virtual address and length of data to be sent within the user
parameter list, VMCPARM. Also, specify in the parameter list a message
ID to be associated with the message and the userid of the user to receive
the message data. You can also send a doubleword of data to be
transmitted within the external interrupt message header (refer to the
section "VMCF User Doubleword"). If the SEND function is executed with
a data length of zero, only the user doubleword is transmitted to the sink
virtual machine. The sink virtual machine can then respond with a
RECEIVE function (zero length) and pass back a doubleword of data to the
source virtual machine. The external interrupt message header identifies
the SEND request. When the sink virtual machine executes a RECEIVE
function, the message is transmitted from the source virtual machine
storage to the sink virtual storage. There is no internal buffering of data
within the control program (CP). All data is transferred in 2K blocks from
virtual storage to virtual storage. Data is transferred in 2K blocks to test
for STORE/FETCH protection violations. When the data transfer function
is complete, the source virtual machine receives a response external
interrupt indicating that the SEND request is complete. The sink virtual
machine receives a DIAGNOSE code X'68' return code indicating that the
RECEIVE function is complete. The return code can indicate error
conditions associated with the RECEIVE function or normal completion.

The sink virtual machine has the option to reject a message rather than
execute the RECEIVE function. (See "REJECT: DIAGNOSE Code X'68'
Subcode X'OOII'.") The source virtual machine may cancel a SEND request
before the sink virtual machine has executed a RECEIVE function or
REJECT function. (See "CANCEL: DIAGNOSE Code X'68' Subcode
X/0006'.")

If you are executing the SEND function, you may specify the PRIORITY
option. The PRIORITY option causes the external interrupt for the sink
virtual machine to be queued ahead of all other nonpriority external
interrupts. If there are other PRIORITY external interrupts pending for the
sink virtual machine, the queuing is done in a first in first out manner.
That is, PRIORITY interrupts are queued FIFO among themselves but
ahead of all nonpriority interrupts.

SEND/RECV: DIAGNOSE Code X'68' Subcode X'0003'

SEND/RECV provides the capability to both send and receive data in a
single VMCF transaction. The SEND/RECV function causes an external
interrupt to be queued for the sink virtual machine. When the sink virtual
machine receives the external interrupt, it can respond with the RECEIVE
function. The RECEIVE function causes data to be transferred from the
source virtual storage to sink virtual storage. The sink virtual machine
can then respond with a REPLY function. The REPLY function causes
data to be transferred from specified sink virtual storage to a REPLY buffer
in the source virtual storage. The source virtual machine then receives a
response external interrupt indicating that the SEND/RECV request is
complete.

Chapter 14. The Virtual Machine Communication Facility 297

VMCF
.€-I J .. .:, 4 ,,$; ., , ~ .:'.' ,

When the source virtual machine executes the SEND/RECV function it
specifies the address and length of both the SEND buffer and REPLY
buffer. The address and length specifications are contained within the user
parameter list, VMCPARM. The user parameter list also contains a
message ID and userid of the user to receive the data. (See the
"VMCPARM Parameter List.")

The source virtual machine can cancel a previously executed SEND/RECV
request provided the sink virtual machine has not yet executed the REPLY
or REJECT function. If the sink virtual machine has already executed the
RECEIVE function, only the REPLY can be canceled. (See "CANCEL:
DIAGNOSE Code X'68' Subcode X'0006'.")

The sink virtual machine can execute the REJECT function in response to
the SEND/RECV request and cause the entire operation to be terminated.
(See "REJECT: DIAGNOSE Code X'68' Subcode X'OOll'.")

The sink virtual machine can respond to a SEND/RECV request with the
REPLY function without executing the RECEIVE function. This has the
effect of informing the source virtual machine that the sink virtual machine
cannot accept data but that it can send data. The source virtual machine
could have executed the SEND/RECV function only as a means to solicit
data from the sink virtual machine. The application of this protocol is up
to VMCF users. The user double word can be used as a means to control
such an application. (See "VMCF User Doubleword.")

You can execute a SEND/RECV request using the PRIORITY option. The
PRIORITY option causes the sink external interrupt for the SEND/RECV
request to be queued ahead of any other nonpriority external interrupts. .
Response external interrupts directed to the source of a PRIORITY message
are also queued in priority order.

SENDX: DIAGNOSE Code X'68' Subcode X'0004'

SENDX directs data to another virtual machine via a faster but more
restrictive protocol than the SEND function. SENDX function data reaches
the sink virtual machine at the same time the SEND external interrupt
reaches the sink. To use the SENDX function, the sink virtual machine
must have an external interrupt buffer large enough to contain both the
standard message header and the data. The size of the external interrupt
buffer is specified when you execute the AUTHORIZE function. Attempts
to execute SENDX are rejected when the sink virtual machine's external
interrupt buffer is not large enough to contain the data. After the sink
virtual machine receives the SEND external interrupt and data, a response
external interrupt is directed to the source virtual machine. The SENDX
function eliminates the need 'for a sink virtual machine to execute a
RECEIVE function.

A SENDX request can be canceled by the source virtual machine provided
the SENDX external interrupt has not yet been reflected to the sink virtual
machine. (See "CANCEL: DIAGNOSE Code X'68' Subcode X'0006'.")

298 VM System Facilities for Programming

VMCF

Specify the SENDX buffer address and length in the user parameter list,
VMCPARM. The message ID and userid of the sink virtual machine are
also specified in VMCPARM.

The SENDX function can be executed with the PRIORITY option allowing
the SEND external interrupt to be queued ahead of all non priority external
interrupts for the sink virtual machine.

A SENDX request cannot be rejected by the sink virtual machine since the
message is received at the same time the external interrupt is received.

You can execute the SENDX function with a zero data length causing only
the message header and user doubleword to be transmitted.

RECEIVE: DIAGNOSE Code X'68' Subcode X'0005'

RECEIVE allows you to selectively accept messages or data sent via the
SEND or SENDjRECV functions. You must specify in the user parameter
list, VMCPARM, the virtual address and length of the RECEIVE buffer.
The parameter list also contains the message ID of the message to be
received and userid of the virtual machine that originated the SEND or
SEND/RECV request. When a virtual machine has more than one message
pending, the RECEIVE function can be executed to select messages in any
order by message ID.

You can execute the REJECT function to reject messages sent by other
virtual machines. The REJECT function terminates the SEND or
SENDjRECV request. (See "REJECT: DIAGNOSE Code X'68' Subcode
X'OOOB'.")

You can execute the RECEIVE function in response to a SENDjRECV
request and then execute a REJECT function rather than a REPLY. The
user doubleword passed back with the REJECT function could indicate
"RESEND", for example, if the original data was not received correctly
(depending on how you want to use the protocol).

REPLY: DIAGNOSE Code X'68' Subcode X'0007'

REPLY allows you to direct data back to the sender of a SENDjRECV
function. This simulates full duplex communication. The REPLY function
is used with the SENDjRECV function. A user who receives a
SENDjRECV external interrupt normally responds by executing the
RECEIVE function. The RECEIVE function causes data to be transferred
from the source virtual storage to the sink virtual storage. The sink virtual
machine can then respond with the REPLY function causing data to be
transferred from specified sink virtual storage to the source virtual storage.
The REPLY function causes a response external interrupt to be reflected to
the source virtual machine.

The user parameter list, VMCP ARM identifies the virtual buffer address
and length of reply data. When the REPLY function is executed, the user
parameter list, VMCP ARM, also contains the message ID and the userid of
the virtual machine to receive the reply.

Chapter 14. The Virtual Machine Communication Facility 299

VMCF

The REPLY function can be executed with a zero data length indicating no
response. You can transmit a reply, zero length or otherwise, using the
user doubleword.

A reply can be executed in response to a SEND/RECV request without
executing the RECEIVE function. This indicates that you do not want to
receive the message but may want to send a reply. A reply of zero length
could be executed simply to terminate the SEND/RECV request. The
application of the REPLY function is a user decision. It must be used to
terminate a SEND/RECV request, however, unless the REJECT function is
executed. (See "REJECT: DIAGNOSE Code X'68' Subcode X'OOll'.") The
reply is complete when the source virtual machine receives the external
interrupt response.

A REPLY function cannot be executed in response to a SEND request, this
is a protocol violation.

Invoking VMCF Functions

VMCF functions are invoked by means of:

• DIAGNOSE code X'68' subcodes
• The VM CP ARM parameter list
• External interrupt code X' 4001'
• The external interrupt message header.

DIAGNOSE Code X'68'

All VMCF functions are invoked from within assembler language programs
by means of DIAGNOSE code X'68':

o 1 2 3

83 Rx Ry CODE

where:

83

Rx

Ry

is X'83' and interpreted by the assembler as the DIAGNOSE instruction.

Note: There is no mnemonic for DIAGNOSE.

specifies a register containing the address of the VMCPARM parameter
list.

is a register in which the return code is stored.

300 VM System Facilities for Programming

/'

VMCF

CODE
is X'0068' and specifies that you are requesting execution of a VMCF.

The VMCPARM Parameter List

The Rx register of DIAGNOSE code X'68' contains the address of a
parameter list, VMCPARM. This parameter list is used to specify the
VMCF function to be executed, along with other information required by
VMCF to execute that function. The address of VMCPARM must be
doubleword-aligned. The following is the format of the VMCPARM
parameter list and a description of each of the fields in that list.

o
8

10

18

20

where:

V*1 I V*2 I VMCPFUNC VMCPMID

VMCPUSER

VMCPVADA VMCPLENA

VMCPVADB VMCPLENB

VMCPUSE

V*l (VMCPFLGl)
is a flag byte used to specify options associated with a particular
function.

This flag byte can be set to the following values:

VMCPAUTS (X'80')
Indicates, for the AUTHORIZE function, an AUTHORIZE
SPECIFIC request. When this bit is set, the VMCPUSER
field must contain the userid of the sink virtual machine.
The status of the specified sink virtual machine is not
checked by the control program (CP) at this time.

VMCPPRTY (X'40')
Indicates, for SEND, SEND/RECV, SENDX, and IDENTIFY
requests, a PRIORITY message request. For an
AUTHORIZE request, it indicates an AUTHORIZE
PRIORITY request. You cannot send PRIORITY messages
to another virtual machine unless that virtual machine has
been authorized for PRIORITY messages. The SEND and
RESPONSE external interrupts for a PRIORITY message are
queued ahead of pending non priority external interrupts.

VMCPSMSG (X'20')
Indicates that the virtual machine accepts messages sent via
the SMSG command.

Bits 3 through 7 are reserved for IBM use.

Chapter 14. The Virtual Machine Communication Facility 301

VMCF

V*2 (VMCPFLG2)
Reserved for IBM use, and therefore should be X'OO' initially.

VMCPFUNC
Contains the halfword DIAGNOSE code X'68' subcode that
defines the VMCF function being requested as follows:

Hexadecimal
Command Subcode Function

VMCPAUTH X'OOOO' AUTHORIZE
VMCPUAUT X'OOOl' UNAUTHORIZE
VMCPSEND X'OOO2' SEND
VMCPSENR X'OOO3' SEND/RECV
VMCPSENX X'OOO4' SENDX
VMCPRECV X'OOO5' RECEIVE
VMCPCANC X'OOO6' CANCEL
VMCPREPL X'OOO7' REPLY
VMCPQUIE X'OOO8' QUIESCE
VMCPRESM X'OOO9' RESUME
VMCPIDEN X'OOOA' IDENTIFY
VMCPRJCT X'OOOB' REJECT

VMCPMID
Contains a unique message identifier associated with a
transaction. The source virtual machine must originate the
message ID for SEND, SEND/RECV, and SENDX requests. The
message ID is used by the sink virtual machine (along with
VMCPUSER) to respond to the source request with a RECEIVE,
REPLY, or REJECT request. The message ID allows the sink
virtual machine to selectively RECEIVE, REPLY, or REJECT
messages when more than one message is enqueued. The
message ID is used by both the source and sink as a unique
identification for all messages. You may send messages with the
same message ID to multiple users; you cannot send multiple
messages with the same message ID to one user. Once a
transaction is completed, however, the message ID may be
reused.

VMCPUSER
Specifies the userid of the sink virtual machine for SEND,
SEND/RECV, SENDX, IDENTIFY, and CANCEL requests and
the userid of the source virtual machine for RECEIVE, REPLY,
and REJECT requests. The sink virtual machine uses this field
in combination with the message ID (VMCPMID) to respond" to
source requests. When the original source parameter list
VMCPARM is passed to the sink as the message header
VMCMHDR, the userid is changed from sink to source.

This field is also used to specify the SPECIFIC userid for an
AUTHORIZE SPECIFIC request.

302 VM System Facilities for Programming

VMCF

VMCPVADA
Contains one of four addresses, depending upon which VMCF
function is requested.

For SEND, SEND/RECV, and SENDX requests, VMCPVADA
contains the address of the source virtual machine data. For
RECEIVE requests, VMCPV ADA contains the address of a sink
virtual machine RECEIVE buffer. For REPLY requests,
VMCPVADA contains the address in sink virtual machine
storage where REPLY data is located. For an AUTHORIZE
request, VMCPVADA specifies the address of the virtual
machine external interrupt buffer.

The length of the associated data or buffer is specified in the
VMCPLENA field.

VMCPLENA
Contains the length of the data sent by a user, the length of a
RECEIVE buffer, or the length of an external interrupt buffer,
whichever is specified in the field VMCPVADA. The size of the
value specified in VMCPLENA is restricted only by virtual
machine storage size.

The sink virtual machine can use the value in this field as the
data length for RECEIVE operations.

VMCPVADB
Contains the address of a source virtual machine's REPLY buffer
for a SEND/RECV request. When the sink virtual machine
issues a REPLY in response to a SEND/RECV from the source
virtual machine, the REPLY data is moved in this buffer. The
length of the REPLY buffer is contained in the field
VMCPLENB.

VMCPLENB
Specifies the length of the source virtual machine's REPLY
buffer. The sink virtual machine uses this field to determine the
maximum length of the REPLY. A corresponding field within
the response message header contains a residual data count. The
source virtual machine uses this residual count to determine the
length of the sink reply. The original REPLY buffer length (less
the residual count) is the length of the REPLY from the sink
virtual machine.

VMCPUSE
Contains the VMCF user doubleword. The user double word is
transmitted to the sink virtual machine in the SEND message
header for SEND, SEND/RECV, SENDX, and IDENTIFY
requests. For RECEIVE, REPLY, and REJECT requests, the
user double word is transmitted to the source virtual machine
within the RESPONSE message header. The sink virtual
machine can transmit the user double word to the source virtual
machine with REJECT or REPLY requests only if the original

Chapter 14. The Virtual Machine Communication Facility 303

VMCF

VMCF
Function
AUTHORIZE

UNAUTHORIZE

SEND

SEND/RECV

SENDX

··=4· 45

request was a SEND/RECV. The user doubleword is transmitted
only with requests that result in SEND or RESPONSE external
interrupts.

The following chart summarizes the VMCP ARM fields required
for execution of each of the VMCF functions. Possible return
codes associated with each function are also listed. A discussion
of the return codes and their meanings can be found in the
section "DIAGNOSE Code X'68' Return Codes".

Applicable VMCP ARM Parameters Return Codes

VMCPFLG1 - SPECIFIC/PRIORITY option 0,1,2,6,15
VMCPFUNC - X'OOOO' - subcode
VMCPUSER - SPECIFIC userid
VMCPVADA - external interrupt buffer address
VMCPLENA - external interrupt buffer length

VMCPFUNC - X'OOOl' - subcode 0,2,4,15

VMCPFLG1 - PRIORITY option 0,1,2,4,5,8,9,
VMCPFUNC - X'0002' - subcode 10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPVADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user double word

(See Note)

VMCPFLG1 - PRIORITY option 0,1,2,4,5,8,9,
VMCPFUNC - X'0003' - subcode 10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPV ADA - SEND data address
VMCPLENA - SEND data length
VMCPVADB - REPLY buffer address
VMCPLENB - REPLY buffer length
VMCPUSE - user doubleword

VMCPFLG1 - PRIORITY option 0,1,2,4,5,7,8,
VMCPFUNC - X'0004' - subcode 9,10,15,18
VMCPMID - message identifier
VMCPUSER - sink userid
VMCPVADA - SEND data address
VMCPLENA - SEND data length
VMCPUSE - user doubleword

(See Note)

Figure 19 (Part 1 of 2). VMCF Functions, Parameters, and Return Codes

304 VM System Facilities for Programming

VMCF

VMCF
Function Applicable VMCPARM Parameters Return Codes

RECEIVE VMCPFUNC - X'0005' - subcode 0,1,3,2,4,5,6,
VMCPMID - message identifier 12,13,15,16,17
VMCPUSER - source use rid
VMCPV ADA - RECEIVE buffer address
VMCPLENA - RECEIVE buffer length
VMCPUSE - user doubleword

CANCEL VMCPFUNC - X'0006' - subcode 0,2,3,4,5,11,
VMCPMID - message identifier 12,14,15,20
VMCPUSER - sink userid

REPLY VMCPFUNC - X'0007' - subcode 0,1,2,3,4,5,6,
VMCPMID - message identifier 12,13,15,16,
VMCPUSER - source userid 17,19
VMCPVADA - REPLY data address
VMCPLENA - REPLY data length
VMCPUSE - user double word

QUIESCE VMCPFUNC - X'0008' - subcode 0,2,4,15

RESUME VMCPFUNC - X'0009' - subcode 0,2,4,15

IDENTIFY VMCPFLG1 - PRIORITY option 0,2,4,5,9,10
VMCPFUNC - X'OOOA' - subcode 15,18
VMCPUSER - sink userid
VMCPUSE - user doubleword

(See Note)

REJECT VMCPFUNC - X'OOOB' - subcode 0,2,3,4,12,13,
VMCPMID - message identifier 15
VMCPUSER - source userid
VMCPUSE - user doubleword

Figure 19 (Part 2 of 2). VMCF Functions, Parameters, and Return Codes

Note: Fields within the user parameter list that are not used by a
particular function may be used to contain additional user data. The data,
however, can only be passed to the sink virtual machine by the source
virtual machine. The REPLY buffer address and length fields
(VMCPV ADB + VMCPLENB) may be used to transmit additional user data
for SEND and SENDX requests. All fields except VMCPFLG1,
VMCPFLG2, VMCPFUNC, and VMCPUSER may be used to pass control
information with an IDENTIFY request.

External Interrupt Code X'4001'

External interrupt code X' 4001' is a special interrupt code recognized by CP
as part of a VMCF transaction. Just as virtual machines use the
DIAGNOSE instruction to communicate with CP, so too CP uses this
interrupt code to communicate with virtual machines. External interrupt
code X'4001' and DIAGNOSE code X'6S' provide the mechanism VMCF uses
to synchronize message processing.

Chapter 14. The Virtual Machine Communication Facility 305

VMCF

The External Interrupt Message Header

Associated with external interrupt code X' 4001' is a storage area referred to
as the external interrupt message header. The external interrupt message
header (VMCMHDR) contains the control information required to SEND
and RECEIVE messages. The fields within the message header are, for the
most part, a copy of VMCPARM parameter list fields.

Before the receiving virtual machine can receive special messages via
VMCF, it must

• Enable itself to receive external interrupts

• Set bit 31 of control register 0 ·to a value of 1

• Authorize itself by issuing DIAGNOSE code X'68', AUTHORIZE.

The parameter list, VMCPARM, specified with DIAGNOSE code X'68' must

• Contain a pointer to an external-interrupt buffer

• Specify a buffer length of 169 bytes

• Have the special message flag (VMCPSMSG) turned on.

The receiving virtual machine may turn on this flag by setting
VMCPSMSG to a value of B'l'. Optionally, the receiving virtual machine
may turn on the special message flag by issuing the class G command, SET
SMSG ON. For information on using DIAGNOSE code X'68', see
"Description of VMCF Functions" and "Invoking VMCF Functions."

CP passes the external interrupt buffer (containing the external interrupt
message header) to the user's interrupt handler for processing. The user
must specify the address and length' of this buffer when he executes the
AUTHORIZE function. Then, when the user sends or receives messages,
CP knows the address of the buffer and passes it to the appropriate
interrupt handler routine.

Fields VMCMFUNC through VMCMUSE correspond to the fields
VMCPFUNC through VMCPUSE in the VMCPARM parameter list
transmitted by the source virtual machine. The format of the message
header and optional SENDX data buffer is:

306 VM System Facilities for Programming

o
8

10

18

20

28

where:

V*1 I V*2 I VMCMFUNC

VMCMUSER

VMCMVADA

VMCMVADB

VMCMUSE

VMCMBUF
Optional Message

VMCF

VMCMMID

VMCMLENA

VMCMLENB

Buffer

V*l (VMCMSTAT)
is a status byte associated with the message header. The bits
within the status byte are defined as follows:

VMCMRESP (X'80')
Indicates final external interrupt (transaction complete).
This bit is set for all RESPONSE external interrupts and the
SEND external interrupt resulting from an IDENTIFY
request.

VMCMRJCT (X'40')
This bit is set in a RESPONSE external interrupt to indicate
that the sink virtual machine rejected the message via the
REJECT function.

VMCMPRTY (X'20')
This bit is set in both SEND and RESPONSE external
interrupts to indicate a priority message. A virtual machine
must be authorized for priority messages before it can
receive them.

V*2 (VMCMEFLG)
Contains a data transfer error code indicating success or errors
associated with a data transfer operation. (Refer to the section
"Data Transfer Error Codes".)

VMCMFUNC
Contains the function subcode of the original request. The sink
virtual machine uses this field to determine the type of request.
The possible subcodes are:

VMCPSEND X'0002' - SEND
VMCPSENR X'0003' - SEND/RECV
VMCPSENX X'0004' - SENDX
VMCPIDEN X'OOOA' - IDENTIFY

Chapter 14. The Virtual Machine Communication Facility 307

VMCF

VMCMMID
Contains the message ID associated with the original source
request.

VMCMUSER
Contains the userid of the source virtual machine for SEND
external interrupts and the userid of the sink virtual machine for
RESPONSE external interrupts. If a SMSG command was
issued, "SYSTEM" appears in this field.

VMCMVADA
Contains the address of the original SEND data for SEND
requests. This field would normally have no meaning to the sink
virtual machine.

VMCMLENA
Indicates the length of SEND data for SEND external interrupts.
It indicates a data transfer residual count for RESPONSE
external interrupts.

VMCMVADB
Contains the virtual address of the REPLY buffer for
SEND/RECV requests. This field has no meaning to the sink
virtual machine.

VMCMLENB
Contains the length of the source virtual machine REPLY buffer
for SEND/RECV external interrupts; contains the residual
REPL Y count for RESPONSE external interrupts. The sink
virtual machine uses this field to determine the maximum length
of the REPLY; the source virtual machine uses this field to
determine the length of the sink virtual machine REPLY data.

VMCMUSE
Contains the user double word, which is transmitted to the sink
virtual machine with SEND external interrupts and to the source
virtual machine with RESPONSE external interrupts. If a
SMSG command was issued, this field contains the virtual
machine identifier of the issuer of that command.

VMCMBUF
This is the optional data buffer used by the SENDX function.
The data sent with the SENDX function is moved into this
buffer. The buffer size is specified when a virtual machine
executes the AUTHORIZE function.

308 VM System Facilities for Programming

VMCF

VMCF User Doubleword

VMCF provides a double word for user data that can be transmitted within
the external interrupt message header. A user supplies the doubleword of
data within the parameter list (VMCPARM) for certain VMCF requests
(that is, SEND, SENDX, SEND/RECV, RECEIVE, REPLY, IDENTIFY, and
REJECT). You can use the user doubleword in any manner you desire.
The doubleword is transmitted within the external interrupt message
header for both SEND and RESPONSE type external interrupts.

The user double word can be used for control information in a user-defined
higher level protocol. That is, you could have your own message headers
defined within the data transmitted from one virtual machine to another.
The user doubleword could be used to control such a protocol.

The user double word can also be used as a security code or provide
additional information for functions such as IDENTIFY and REJECT. You
can specify a zero data length for any VMCF transaction. The effect of this
is that only the external interrupt message header with user doubleword is
transmitted or received.

DIAGNOSE Code X'68' Return Codes

Return
Code

0

1

2

The virtual machine initiating a VMCF request receives a return code in
the general purpose register specified as "Ry" in the DIAGNOSE
instruction. The return code indicates successful completion of the request
or error conditions associated with the request. Figure 20 is a description
of all possible return codes returned to a virtual machine executing
DIAGNOSE code X'68'.

Meaning

The normal response. Indicates successful completion of a request or successful
initiation of a request. For example, for an AUTHORIZE request, 0 indicates
that the AUTHORIZE function is complete; for a SEND request, 0 indicates
that the SEND was successfully initiated. The SEND request, of course, would
not be complete until the final RESPONSE external interrupt was received by
the source virtual machine.

Invalid virtual buffer address or length. A virtual machine tried to execute a
VMCF function but specified an invalid address or length:

0 External interrupt buffer not within virtual storage.
0 External interrupt buffer address not doubleword aligned.
0 Message data or buffer not within virtual storage.
• External interrupt buffer less than the standard message header length .

Invalid function code. A virtual machine tried to execute a VMCF function but
specified an unsupported subcode.

Figure 20 (Part 1 of 3). DIAGNOSE Code X'68' Return Codes

Chapter 14. The Virtual Machine Communication Facility 309

VMCF

Return
Code Meaning

3 Protocol violation. A virtual machine tried to execute a function which would
violate the defined protocol:

• Cancel a message it did not originate.
• Reply to a message not sent via SEND/RECV.
• Executed more than one RECEIVE to a SEND or SEND/RECV request.

4 Source virtual machine not authorized. A virtual machine tried to execute a
function (other than AUTHORIZE) but was not authorized to use VMCF (had
not successfully executed the AUTHORIZE function).

5 User not available. A virtual machine tried to execute a function and specified
a virtual machine currently not available for VMCF communication:

• Not logged on.
• Not authorized for VMCF communication.
• Virtual machine authorized SPECIFIC for some other virtual machine.

6 Protection violation. A virtual machine tried to execute a VMCF function that
would result in a STORE or FETCH protection violation. The virtual machine
specified a data or buffer address that contained a storage key other than its
current PSW key (assume the key was nonzero). This return code is also set if
a virtual machine tries to receive data in a CP-owned shared segment.

7 SENDX data too large. A virtual machine tried to execute a SENDX request
but specified a SENDX data length larger than the sink virtual machine
external interrupt buffer.

S Duplicate message. A virtual machine tried to execute a SEND-type function
and specified a message ID and virtual machine userid for which there was
already an active message.

9 Target virtual machine in QUIESCE status. A virtual machine tried to execute
a SEND-type function and specified a sink virtual machine userid of a virtual
machine in QUIESCE status.

10 Message limit exceeded. A virtual machine tried to execute a SEND function
but already had 50 messages active. The virtual machine should clear any
pending RESPONSE external interrupts or CANCEL previously sent messages
to continue processing.

11 REPL Y canceled. The source virtual machine executed a CANCEL to a
previous SEND/RECV request. The sink virtual machine had already
RECEIVED the message but had not yet executed a REPLY. The sink virtual
machine REPLY in this case is canceled. The sink virtual machine receives
return code 12 (message not found) when it executes the REPLY function.

12 Message not found. A virtual machine tried to execute a function and specified
a message ID and virtual machine userid for a message that does not exist. The
message may have existed at one time but could have been cancelled by the
originator.

13 Synchronization error. The sink virtual machine tried to respond to a message
for which it had not yet received the SEND external interrupt. This condition
can occur if the sink virtual machine is anticipating certain messages but does
not wait for the SEND external interrupt.

Figure 20 (Part 2 of 3). DIAGNOSE Code X'68' Return Codes

310 VM System Facilities for Programming

VMCF
I I

Return
Code Meaning

14 CANCEL too late. A virtual machine tried to CANCEL a message that had
already been processed. The sink virtual machine had already responded with
RECEIVE or REJECT (SEND request) or REPLY or REJECT (SEND/RECV
request). This return code is also set if a virtual machine tries to CANCEL a
SENDX request for which the sink virtual machine had already received the
SEND external interrupt.

15 Paging I/O error. A virtual machine tried to execute a function which resulted
in an uncorrectable paging I/O error. This is a hardware failure.

16 Incorrect length. A virtual machine executed a RECEIVE or REPLY function
and specified a RECEIVE buffer length less than the source virtual machine
SEND data length or a REPLY data length larger than the source virtual
machine REPLY buffer length. The source virtual machine receives a data
transfer return code identifying the condition.

17 Destructive overlap. A virtual machine executed a RECEIVE or REPLY
function and specified a RECEIVE buffer address which overlapped the source
virtual machine SEND data address or a REPLY data address that overlapped
the source virtual machine REPLY buffer address. This condition can occur
only when a virtual machine is sending messages to itself (a "wrap
connection").

18 User not authorized for PRIORITY messages. A virtual machine tried to send a
PRIORITY message to a virtual machine that was not authorized to accept
PRIORITY messages (that is, had not executed the AUTHORIZE function with
the PRIORITY option).

19 Data transfer error. A virtual machine executed a request that resulted in a
data transfer error condition associated with the other virtual machine. The
return code is returned to the sink virtual machine to indicate that the
transaction did not complete successfully.

20 CANCEL - busy. A virtual machine tried to cancel a message being processed.
If this is a SEND/RECV request and the RECEIVE function is in process,
repeated retries may cancel the REPLY function.

Figure 20 (Part 3 of 3). DIAGNOSE Code X'68' Return Codes

Chapter 14. The Virtual Machine Communication Facility 311

VMCF

Data Transfer Error Codes

Error
Code

0

1

5

6

7

15

16

17

19

Meaning

When a virtual machine executes a SEND, SENDX, or SEND/RECV
function, the normal DIAGNOSE return code is zero, indicating that the
request was successfully initiated. However, when the actual data transfer
takes place, errors can occur. All errors occurring at data transfer time are
communicated to the source virtual machine in the RESPONSE external
interrupt message header, VMCMHDR. Figure 21 shows error codes
indicating conditions that are possible after the SENDX, SEND, or
SEND/RECV request is initiated. The error codes correspond to
DIAGNOSE return code numbers.

The normal response (no errors).

Invalid buffer address or length. The SEND and/or RECEIVE buffers
used for a data transfer operation are not within the virtual machine's
virtual storage. The beginning and ending addresses were valid when a
request was initiated but all addresses are not valid.

User not available. The sink virtual machine executed the
UNAUTHORIZE function, executed the AUTHORIZE SPECIFIC function
again, or implicitly reset his virtual machine after the source virtual
machine request was initiated.

Protection violation. The storage key for a virtual machine's SEND or
RECEIVE buffer did not match its PSW key at the time the transfer was
initiated (assume the key was nonzero). This error code is also set if a
virtual machine tries to RECEIVE data into a CP-owned shared segment.

SENDX data is too large. The sink virtual machine executed
AUTHORIZE again and specified an external interrupt buffer size less
than the buffer size at the time a SENDX function was executed. The
SENDX data no longer fits in the sink virtual machine buffer.

Paging I/O error. An uncorrectable paging I/O error occurred during the
data transfer operation trying to fetch a virtual machine SEND or
RECEIVE buffer. This is a hardware failure.

Incorrect length. The sink virtual machine executed a RECEIVE function
with a data length (VMCPLENA) smaller than the original SEND data
length or a REPLY function with a REPLY data length larger than the
source virtual machine REPL Y buffer length.

Destructive overlap. A virtual machine was communicating with itself in
a "wrap connection" and his SEND or RECEIVE buffers overlapped one
another (intra-virtual machine communication).

Data transfer error. A data transfer error occurred which was associated
with the other virtual machine. The transaction did not complete
successfully.

Figure 21. DIAGNOSE Code X'68' Data Transfer Error Codes

312 VM System Facilities for Programming

/'

Part 2 contains a chapter about the following VM system application:

• The Programmable Operator Facility
• Getting Languages on Your System

Part 2. VM System Applications 313

· I

/

314 VM System Facilities for Programming

Overview

The Programmable Operator Facility is designed to increase the
efficiency of system operation and to allow remote operation of systems in a
distributed data processing environment. It does this by intercepting all
messages/requests directed to its virtual machine and by handling them
according to preprogrammed actions. It determines whether a message is to
be simply recorded for future reference, whether the message is to be acted
upon, or whether the message is to be sent on to the operator to handle.

Note: The programmable operator should always run with American
English as the system national language. Routing tables and
messages to the programmable operator should always be in American
English to ensure that the uppercasing and routing table comparisons
are handled correctly.

The tasks that can be performed by the programmable operator facility
include:

• Logging messages
• Suppressing message display and routing messages to a logical (real)

operator
• Executing commands
• Responding with preprogrammed message responses.

I Using the Programmable Operator Facility in Various System Environments

Use in a Single System

When the programmable operator facility is operational in a single-system
environment, it can:

• Ease message traffic to the system operator, by:

Filtering (logging) non-essential, information-only messages

Routing messages (for example, I/O intervention requests) to
someone else for specialized action.

Chapter 15. The Programmable Operator Facility 315

Programmable Operator
iaa!,*, FM,!). ¥$l, 'JM, ,', ·":k.-" " ,I ,,', ! -k, ,",~ '." 1,- • ";" "r4.;p I, ,,\' ¥ .l," t .;.' " '~.' " j.~ ;"'l" >.,

• Increase productivity, by freeing the system operator from certain
routine responses or tasks. Such responses (whether they consist of
one or a series of commands, whether VM or guest operating system)
may be preprogrammed to execute automatically upon receipt of a given
message.

Use in Distributed VM Systems

Thus, only essential, non-routine messages (that is, those requiring the
skill and experience of a system operator to handle) are sent on to the
operator for response or action.

The capabilities of the programmable operator, outlined above, also allow
for the remote operation of systems in a distributed VM environment.
When the programmable operator facility is operational in a distributed VM
system, it can:

• Issue responses and perform tasks that do not require an on-site
operator

o Filter (log) non-essential, information-only messages

o Route messages requiring on-site (that is, manual) intervention to
someone, not necessarily an operator, at the distributed site for action

• Route messages that require the skill and experience of a system
operator to handle to the operator at the host system. The operator at
the host site can also send commands to the programmable operator
facility to control its operation, as well as commands to execute on the
distributed system to control the system itself.

By running the programmable operator facility on VM systems distributed
at several different locations (network nodes), one operator at a host site
can control a network of systems.

Use in a Mixed Environment

The programmable operator facility also provides for distributed data
processing in an SNA environment with mixed VM, OS/VS, and VSE
distributed systems and host systems. We will call this a "mixed
environment". The Programmable Operator/NCCF Message Exchange
(PMX) provides an interface with the Network Communications Control
Facility (NCCF) or NetView so that an NCCF or NetView operator can
operate a VM distributed system, whether the operator is on a VM, OS/VS,
or VSE system.

Notes:

1. The Group Control System (GCS) is a requirement to use the
programmable operator in a mixed environment. The Programmable
Operator/NCCF Message Exchange (PMX) uses facilities unique to GCS,
and therefore cannot run on any other supervisor. For more information
on GCS, see the VM/ SP Group Control System Command and Macro

316 VM System Facilities for Programming

The Logical Operator

Programmable Operaior

Reference and the VM/SP Planning Guide and Reference or the VM/SP
HPO Planning Guide and Reference.

2. NCCF and Net View are network management VT AM applications.
NCCF requires the Advanced Communications Function/ Virtual
Telecommunications Access Method (ACF/VTAM) Version 3 for VM.
Net View requires the Advanced Communications Function/ Virtual
Telecommunications Access Method (ACF/VTAM) Version 3 Release 1
Modification Levell for VM. NCCF and Net View run on subsequent
release of ACF/VTAM unless otherwise stated.

3. The programmable operator facility does not allow a user logged
on to a VM virtual machine to issue NCCF or NetView
commands. A VM user cannot try to control NCCF or Net View as an
authorized operator. The system only lets authorized NCCF or Net View
operators issue VM commands within the programmable operator virtual
machine.

Occasionally the programmable operator must send messages to another
virtual machine. To ensure that the programmable operator will function
properly, a user (other than the programmable operator virtual machine on
the local system, in a distributed system, or in a mixed environment) is
identified to the programmable operator to receive these messages. This
user is called the logical operator, as opposed to the CP system operator.
When the programmable operator starts (in the CP system operator virtual
machine, for example), the logical operator receives an initiation message.
The logical operator also receives error messages for severe errors, such as
logging errors, and receives all messages routed to the logical operator
explicitly or by default.

In a mixed environment, an NCCF or NetView operator can be assigned as
the logical operator to control a VM distributed system. For more
information, see "The NCCF or NetView Logical Operator" on page 333.

The default logical operator is specified in the LGLOPR statement of the
routing table. However, other logical operators can be dynamically
assigned, released, or replaced using the LGLOPR command of the
programmable operator facility. Both methods of identifying the logical
operator are described in detail later in this section.

Routing Table Information

The programmable operator routing table identifies the programmable
operator facility environment, including the default logical operator's
userid and nodeid. It also specifies the action to take for each message, and
authorizes certain users to invoke specific programmable operator
commands. For a complete description of the information contained in a
routing table, see "The Routing Table" on page 336.

Chapter 15. The Programmable Operator Facility 317

Programmable Operator

Action Routines

How it Works

The routing table is a separate CMS file that must be tailored for a specific
use. The first routing table to be used is specified when the programmable
operator facility is invoked. If no routing table name is specified, the
default filename "PROP" is used.

The installation may define multiple routing tables to cover varying
situations. For example, multiple routing tables can be defined to cover
shift changes. Only one routing table can be active at a time. The active
routing table may be replaced by issuing the LOADTBL command. Any
person authorized in the active routing table may issue this command.

Action routines are programs or EXECs that receive control in response to
the match of a message and a routing table entry. They handle a particular
type of message or command intercepted by the programmable operator
facility. A set of action routines is provided with the programmable
operator facility. These need no tailoring to provide you with the control
and function needed to operate the programmable operator facility. You
can extend the programmable operator facility by writing a new action
routine and adding it to the appropriate routing table. Action routines can
be EXECs or written in Basic Assembler Language. (Basic Assembler
Language action routines must also be added to the PROPLIB LOADLIB.
You can do this by invoking CMSGEND PROP.)

The programmable operator facility runs in a CMS virtual machine.
Although it can run in any virtual machine, because of its programmed
capability to log, handle, or redirect messages, it is most commonly run in
the CP system operator's virtual machine.

The programmable operator facility compares all messages directed to it
against entries listed in a routing table (a CMS file). When a match occurs,
the prescribed action is performed. Any messages requiring a real
operator's response or action are sent on to the defined operator (system,
network, NCCF, etc.) at another console, a "logical" operator console. If
the logical operator is on a virtual machine in the same system, the
programmable operator sends the messages with either the CP MESSAGE
or CP MSGNOH command. If the logical operator is on a virtual machine
in a different VM system (network node), a host system for example, it
sends the messages via RSCS Networking.

Consider this example:
The SYSOPR macro in DMKSYS specifies the userid OPERI for the CP
system operator. Set up the programmable operator to run in the OPERI
virtual machine and establish another virtual machine with userid OPERX.
In the routing table file(s), specify OPERX as the logical operator. Now
any CP or user messages sent to the system operator virtual machine can be
handled or filtered by the programmable operator or routed to userid
OPERX.

318 VM System Facilities for Programming

Flow of Operation

Programmable Operator

Note: The logical operator cannot receive the messages when the logical
operator virtual machine is not receiving, such as (but not limited to), being
logged off, disconnected, has SET MSG OFF, or passed through to another
system. If another user sends messages to the virtual machine running the
programmable operator, the originator of the messages receives the message
DMKMSG057. This happens because the TELL command, which sends the
messages from the programmable operator virtual machine to the logical
operator virtual machine, verifies the ability of the logical operator to
receive messages.

If the logical operator is an NCCF or NetView operator, the programmable
operator sends messages though the Programmable Operator/NCCF
Message Exchange (PMX) portion of the programmable operator facility.

When the programmable operator facility is running in a virtual machine,
CP intercepts all messages intended for that virtual machine console. CP
then passes these messages to the programmable operator facility via
IUCVI6. The messages are logged in a CMS file. The programmable
operator facility then uses the active routing table to analyze the message
and determine if further action is needed. Based on the contents of the
routing table (such as message texts, message types, and user
authorizations), the message can be passed to some specified action routine
for further action.

If the message is to be routed to the logical operator, and that person is on
another virtual machine in the same physical machine, the programmable
operator facility routes the message directly to the logical operator. To do
this, it uses the CP MSGNOH or c.p MESSAGE command depending on the
classification of the programmable operator virtual machine. If the logical
operator is on a different physical machine, the programmable operator
facility prefaces the message with the appropriate tag information and
sends the message to RSCS Networking using the CP SMSG command. If
the logical operator is an NCCF or NetView operator, the programmable
operator facility sends the message through the Programmable
Operator/NCCF Message Exchange (PMX) which passes the message on to
the NCCF or NetView logical operator.

The programmable operator facility usually operates in a disconnected
virtual machine. If someone logs on to this disconnected virtual machine
with the programmable operator facility running, no messages are displayed

16 Warning: The maximum number of outstanding messages which IUCV
queues for presentation to the programmable operator facility is the IUCV
maximum value of 255. A high volume of incoming messages while executing
an action routine or an exit EXEC, which requires external interrupts to be
disabled for a period of time, may exceed the message limit. If this happens,
additional incoming messages are routed directly to the programmable
operator virtual machine console or alternate console without notifying the
programmable operator facility. These additional messages cannot be handled
or logged by the programmable operator facility.

Chapter 15. The Programmable Operator Facility 319

Programmable Operator
I

(unless the programmable operator facility is running in DEBUG mode).
All messages are being intercepted or received by the programmable
operator program from IUCV. If that person should enter a command, the
programmable operator facility gets control and reads the command
entered. Only two commands are accepted from this environment; the
STOP command and the SET command. The programmable operator
facility rejects any other commands. However, in some situations the
redisplay of the entered command is CP console I/O and is presented to the
programmable operator facility as a type-3 message. If the text of this
command matches a record in the active routing table, the programmable
operator facility may invoke an action routine.

If a CMS abend occurs while the programmable operator facility is
executing, all files are closed and abend error messages are sent to the
logical operator. A dump of the virtual machine storage is taken using the
CP VMDUMP command and the last system or device that was IPLed is
re-IPLed. If the abend occurs while an action routine is executing, abend
error messages are sent to the logical operator and the requester (if any).
Control is returned to the point in the programmable operator facility
immediately following the action routine call.

Relationship to RSCS Networking

When the programmable operator facility is running in a VM network
environment, it is a normal user of RSCS Networking. This means that the
programmable operator facility communicates to RSCS using the CP SMSG
command. Any configuration of systems and networks supported by RSCS
Networking can use the programmable operator facility. The time needed
for a message to go from the system at a distributed site to the logical
operator at the host system, or vice versa, depends on the number and type
of communications links between the message sources and destinations.

When the logical operator is an NCCF or NetView operator, the
programmable operator does not use RSCS to route messages to the logical
operator. It, instead, passes the messages to NCCF or NetView through the
Message Queueing Service so that the messages are presented at the
appropriate NCCF or NetView operator console.

A programmable operator can check on its ability to communicate with a
host or distributed system. See "Communications Checking" on page 359.
later in this section.

320 VM System Facilities for Programming

Programmable Operator
I ,. I~

The Programmable Operator Virtual Machine

Installing the Programmable Operator Facility

The VM product contains the file PROPLIB LOADLIB which is the basis
for the programmable operator facility. After receiving and installing VM,
take the following steps before running the programmable operator facility.

1. Reserve enough minidisk space to contain the log file(s) and feedback
file for the virtual machine that the programmable operator facility will
be running in. The amount of space needed depends on the amount of
message traffic that will be going through the programmable operator
facility, and on the number 6f comments you expect users to place in
the log and feedback files. To help you determine the amount of space
needed for the log and feedback files, see "The Log File" on page 354
and "The Feedback File" on page 358.

2. The sample routing table is located on the CMS 190 minidisk. To use
the sample PROP RTABLE, take the following steps:

ACCESS 190 CIA
COPYFILE PROP RTABLE C = = A

This places the sample routing table on a read/write minidisk accessed
by the virtual machine. Edit the sample routing table (PROP RTABLE)
to include the functions and authorizations to meet the various needs of
the installation For more information on tailoring the routing table see
"The Routing Table" on page 336. Place the edited file on a minidisk
accessed by the programmable operator facility virtual machine.

3. Optionally, if you have made any changes to the supplied action
routines, link the TEXT file to the PROPLIB LOADLIB. The
CMSGEND EXEC, using the CMSGEND PROP function, allows
user-modified routines to be added or replaced in the PROPLIB
LOADLIB.

If you have written any additional action routines, use the CMS LKED
command to add these routines to the PROPLIB LOADLIB. Copy the
PROPLIB LOADLIB from the CMS system disk to a read/write disk
because any changes would invalidate the directory entry on the system
disk. For example, to link a user-written action routine named
ACTIONA to the PROPLIB LOADLIB, you would issue:

LKED ACTIONA (LET LIBE PROPLIB

Action routines written in Basic Assembler Language must be put in
the PROPLIB LOADLIB. EXEC action routines need not be put in the
PROPLIB LOADLIB, but can reside on any minidisk accessible to the
programmable operator.

Chapter 15. The Programmable Operator Facility 321

Programmable Operator
= 2 4

If you are operating in a mixed environment and need the Programmable
Operator/NCCF Message Exchange (PMX) to route messages to the NCCF
or NetView logical operator, you must first install the PMX. For details on
the installation procedure, see "Installing the PMX" on page 328.

Invoking the Programmable Operator Facility

Manual Invocation

Before loading and invoking the programmable operator facility, load CMS
in the virtual machine that will be running the programmable operator
facility.

Use the PROPST EXEC to invoke the programmable operator facility
manually. The PROPST EXEC drops any IBM-supplied programmable
operator routines that are currently loaded as a nucleus extension, and
loads the programmable operator as a nucleus extension. It then invokes
the programmable operator facility with the specified RT ABLE. If you do
not specify a routing table, the default RT ABLE name is "PROP" . You may
specify a disconnect parameter to disconnect the programmable operator
before it is invoked. PROPST EXEC is located on the CMS System Disk
(190) and can be tailored to your needs. The format of the invocation EXEC
is as follows:

PROPST
[

rtable-name]
PROP

[DISConn]

Alternatively, you can take the following steps before each time you invoke
the programmable operator facility:

1. Issue a FILEDEF command to assign a CMS filename to the PROPLIB
LOADLIB file so CMS can read and load from it. Do this with the
following command:

FILEDEF PROPLIB DISK PROPLIB LOADLIB *

2. Next, load the programmable operator program as a CMS nucleus
extension via the NUCXLOAD command. Issue the command as
follows:

NUCXLOAD PROP DMSPOP PROPLIB

(See the VM/ SP CMS Command Reference for more details on the
NUCXLOAD command.) These first two steps may be omitted for
subsequent invocations as long as you do not:

• IPL CMS or

322 VM System Facilities for Programming

Automatic Invocation

Programmable Operator

• Have a CMS abend from which the programmable operator does not
automatically recover.

3. Following its loading as a CMS nucleus extension, invoke the
programmable operator facility as if it were a CMS command. The
format of the invocation is:

PROP [rtable-narne
[PROP

rtable-name is the filename of the routing table that is to be used for
the programmable operator facility. "PROP" is the
default filename of the routing table if no other is
specified at invocation.

If you wish, you can set up the programmable operator facility to start
running when the system is IPLed and to restart automatically in the event
of CP system restart. This can be done as follows:

1. Place an "IPL CMS PARM AUTOCR" entry for programmable
operator's virtual machine in the CP directory. You can do this even if
the programmable operator virtual machine is the CP system ope~ator.

2. Place the following entry in the PROFILE EXEC of the programmable
operator's virtual machine:

EXEC PROPST rtable-narne [DISConn]

You can precede or follow the invocation of the PROPST EXEC by
issuing any virtual machine commands that you wish to have executed
before or after the programmable operator facility is invoked. Virtual
machine commands that are placed after the invocation of the PROPST
EXEC are not executed until the programmable operator facility is
stopped.

3. If you want the programmable operator to run in other than the
operator's virtual machine, place an AUTOLOG entry for the
programmable operator's virtual machine in the PROFILE EXEC of the
system operator or the AUTOLOGI user.

4. Once this is complete, if the logical operator is not already logged on,
he should do so on the appropriate system. .

The following example shows how to place entries in the CP Directory and
the PROFILE EXEC of operator's virtual machine. These entries
automatically invoke the programmable operator facility in the operator's
virtual machine when the system is IPLed. The userid of the programmable
operator virtual machine is "OPERATOR". The default, "PROP RTABLE",
is the name of the routing table being used.

CP directory entries:

Chapter 15. The Programmable Operator Facility 323

I '

Programmable Operator

Initialization

USER OPERATOR password 1M 2M ABCDEFG
IPL CMS PARM AUTOCR

Entries in the PROFILE EXEC of the Operator's virtual machine:

EXEC PROPST DISCONN

Once these changes (or similar ones) have been made, IPLing the system
causes the programmable operator to be invoked automatically in the
disconnected system operator virtual machine. After the DISCONNECTED
message has been written to the console, indicating that the system
operator virtual machine is disconnected, the operator can log on to
whatever virtual machine is normally used, for example, the default logical
operator virtual machine specified in the routing table.

The programmable operator facility is initiated by IPLing a CMS virtual
machine of at least IMeg in size and invoking the programmable operator
facility. When the programmable operator facility gets control, it locates
the specified or default routing table and loads it into virtual storage. The
action routines named in this routing table are in turn loaded as CMS
nucleus extensions. For each action routine specified in the routing table,
an EXEC file or a corresponding member in a CMS simulated OS load
library named PROPLIB LOADLIB must exist. If an EXEC does not exist,
the LOADLIB member is loaded as a nucleus extension via the NUCXLOAD
command. If both exist, the EXEC takes precedence.

If upon invocation, the programmable operator facility cannot find an
action routine named in the routing table, an error message is issued, and,
after displaying all detectable routing table errors, the programmable
operator facility terminates operation. Otherwise, the programmable
operator facility is fully initialized, and writes a message to the
programmable operator's console, to the logical operator, and to the LOG
file, indicating that the programmable operator facility has started.

The programmable operator facility then waits for either an incoming
message or a programmable operator console command (STOP and SET are
the only valid commands). The operator can disconnect at this point by
having specified the DIS Conn parameter for the PROPST EXEC, by
entering CP (pressing the PAl key or equivalent) and typing CP DISCONN
or by issuing #CP DISCONN where "#" is the logical line end character.
After the DISCONNECTED message has been written to the console,
indicating that the system operator virtual machine is disconnected, the
operator can log on to whatever virtual machine is normally used, for
example, the default logical operator virtual machine specified in the
routing table.

324 VM System Facilities for Programming

Programmable Operator

When the programmable operator starts, it executes an EXEC called
PROPPROF, which is located on the CMS System Disk (190). This EXEC
can be copied to your A-disk and tailored. PROPPROF is called after the
programmable operator initialization is complete, that is, after the
programmable operator message environment has been set up. PROPPROF
tailors the programmable operator message environment to your specific
needs. For example, to prevent the programmable operator from trapping
warning messages, PROPPROF could look like this:

/* PROPPROF Example */
"CP SET WNG ON"
Exit

PROPPROF can be used for any special programmable operator start
processing desired without having to rewrite the PROPST EXEC or create a
new EXEC to invoke the programmable operator facility. After executing
PROPPROF, the programmable operator then begins routing messages as
defined by the routing table entries and the LGLOPR statement in the
specified routing table.

When the programmable operator facility is automatically restarted
following an abend, it, if possible, uses the routing table in effect at the
time of the abend rather than that specified at invocation. Also, if a logical
operator (other than the default logical operator) had been assigned, that
assignment is restored.

Note: If the user enters a nodeid into the SYSTEM NETID file that is
invalid as a CMS filetype, the programmable operator cannot start because
it is not able to open the log file.

How the Programmable Operator Establishes Communications with IUCV

The programmable operator facility automatically establishes
communications with CP through the Inter-User Communications Vehicle
(IUCV). When the programmable operator facility is initialized, a
CMSIUCV CONNECT, specifying *MSG and an application id of PROP, is
issued to establish the communications path with the Message System
Service (See the "Message System Service" section earlier in this manual).
This allows the programmable operator program to read and evaluate
messages directly from CP.

Several CP command settings determine the types of messages that the
programmable operator facility can receive. The programmable operator
facility issues these SET commands when initializing, and resets them when
terminating. The commands issued during initialization are:

SET MSG IUCV
SET WNG IUCV
SET SMSG IUCV
SET EMSG IUCV
SET IMSG IUCV
SET CPCONIO IUCV
SET VMCONIO OFF

Chapter 15. The Programmable Operator Facility 325

Programmable Operaior

VMCONIO is set OFF so that any messages produced by CMS or the
programmable operator during initialization of the programmable operator
facility are typed on its virtual machine console. If VMCONIO was set to
IUCV, such data would be trapped by IUCV and not displayed.

When the programmable operator STOP command is issued, the following
SET commands are issued:

SET MSG ON
SET WNG ON
SET SMSG OFF
SET EMSG ON
SET IMSG ON
SET CPCONIO OFF
SET VMCONIO OFF

Then, after the existing messages are handled, the IUCV connection is
severed using the IUCV SEVER function.

Some other virtual machine settings that the programmable operator
facility modifies are "SET RUN ON", "SET TIMER REAL", and
"TERMINAL MODE VM" at initialization, and "SET RUN OFF" and "SET
TIMER ON" at termination. "SET RUN ON" is issued to ensure that the
programmable operator is not held up in CP console function mode for
excessive periods of time, either because of some operator command entry
or because of logging on to a disconnected programmable operator virtual
machine. "TERMINAL MODE VM" is to ensure that programmable
operator console commands are handled correctly.

Notes:

1. Single Console Image Facility (SCIF) operation supersedes IUCV
Message System Service operation. If the programmable operator virtual
machine has a SCIF secondary user, messages would be sent via SCIF to
the secondary user rather than handled by the programmable operator
virtual machine through the IUCV Message System Service. However,
the programmable operator facility may be a SCIF secondary user for
another virtual machine. For example, this can be used to control the
operation of a guest operating system running in another virtual machine.
In this case, SCIF messages are presented to the programmable operator
virtual machine as IUCV message-type 8.

2. If you have installed VM using the Starter System but you plan to run
the programmable operator facility in the operator's virtual machine, you
must remove the secondary user from the operator virtual machine
directory entry. Otherwise, the Single Console Image Facility (SCIF)
overrides the programmable operator facility.

326 VM System Facilities for Programming

Programmable Operator

Message Output Format

The messages and responses from the programmable operator facility are
sent to local VM users via the CP MSGNOH command if the programmable
operator virtual machine has user class B authorization. Otherwise, the CP
MESSAGE command is used. Regardless of which message command is
used the messages from another user that are routed to the logical operator
are prefixed with the userid and nodeid of the originating user.

The format of these messages appears as follows:

col 1
I
V
userid

col 10
I
V
nodeid:

col 20
I
V
text

Messages that the programmable operator facility sends as responses to the
issuer of a programmable operator command or an asynchronous message to
the CP operator originating at the programmable operator virtual machine
have no such prefix. These responses are displayed in the language
that is set for the programmable operator virtual machine. This
language should always be American English.

Stopping the Programmable Operator Facility

The programmable operator facility is easily stopped with the
programmable operator STOP command. This command can be issued by a
user logged on to the programmable operator facility virtual machine by
typing STOP and pressing the ENTER key (or its equivalent). The
programmable operator facility completes processing of all pending
messages before stopping and returning control to CMS.

An alternative way to stop the programmable operator facility is for an
authorized user to pass the STOP command to the programmable operator
facility virtual machine from another virtual machine. The facility will
stop processing as described above and return control to CMS. If the
programmable operator facility virtual machine was running disconnected,
it is left disconnected and the programmable operator facility is not active.
To restart the programmable operator facility, someone must log on to the
programmable operator facility virtual machine and invoke the facility as
described in "Invoking the Programmable Operator Facility" on page 322.

PROPEPIF EXEC: Before the programmable operator facility terminates
completely, it executes an EXEC called PROPEPIF, which is located on the
CMS System Disk (190). This EXEC can be copied to your A-disk and
tailored. PROPEPIF lets you restore any virtual machine settings that the
programmable operator may have modified during operation. For example,
when the programmable operator stops, it issues the command SET EMSG
ON. If you want the final setting of EMSG to be something other than ON,
simply put a command in the PROPEPIF EXEC, such as:

/* PROPEPIF Example */
"CP SET EMSG TEXT"
Exit

Chapter 15. The Programmable Operator Facility 327

Programmable Operator

PROPEPIF, along with PROPPROF, simply gives you more control over the
changes that the programmable operator makes to a virtual machine while
operating.

Effect on an NCCF or Net View Logical Operator: If you use the STOP
command to stop the programmable operator facility, the system sends a
message to you (the NCCF or NetView logical operator). Someone must
then logon to the programmable operator virtlial machine and restart the
programmable operator facility to continue operating in the mixed
environment. If the programmable operator stops because of an abend and
is able to recover, the programmable operator facility tries to re-establish
the lUCY connection between the programmable operator and the PMX. In
either case (STOP or ABEND), the programmable operator informs any
assigned (using the LGLOPR ASN command) NCCF or NetView logical
operator of its status (stopped or abended) via the PMX.

Running the Programmable Operator Facility from NCCF or NetView

To enhance the use of the programmable operator, it can be controlled by
an NCCF or NetView operator, thus giving this operator control over mixed
VM, OS/VS, and VSE distributed systems and host systems.

The Programmable Operator/NCCF Message Exchange

Installing the PMX

The Programmable Operator/NCCF Message Exchange (PMX) serves as a
pipeline to transfer programmable operator commands from NCCF or
NetView to the programmable operator virtual machine and to transfer
routed messages and programmable operator responses to NCCF or
NetView. The PMX executes in a GCS virtual machine with NCCF or
NetView thus making GCS a requirement for programmable operator and
NCCF or NetView communication. PMX uses lUCY to communicate with
the programmable operator facility. The PMX also uses an NCCF or
NetView command processor and the DSIMQS macro to communicate with
NCCF or NetView logical operators. See NCCF Customization, Version 2,
Release 1, SC27 -0662 or Net View Customization, L Y30-5586.

To use the Programmable Operator/NCCF or NetView connection, the user
must:

1. Authorize the programmable operator virtual machine. and the GCS
virtual machine in which the PMX will execute to obtain lUCY
connections with each other. The maximum number of lUCY
connections allowed for the programmable operator must be at least
three. For the PMX it must be at least two.

Make this authorization by adding lUCY statements for each of these
users to the CP directory. For more information on the CP directory,

328 VM System Facilities for Programming

/'

~u-ogrammable Operaftorr

please refer to the VM/ SP Planning Guide and Reference or the VM/ SP
HPO Planning Guide and Reference.

2. Set up the GCS virtual machine in which the PMX will run as an
unauthorized GCS virtual machine. That is, the PMX (along with
NCCF or NetView) should run in problem state rather than supervisor
state.

3. Specify in the GCS PROFILE (filename filetype, PROFILE GCS) that
the PMX should start when GCS is IPLed. The format of the GCS
command provided by NCCF for invoking the PMX is:

NCCF START PMX PARM userid

where 'userid' is the userid of the programmable operator virtual
machine. Do this by modifying the EXEC NCCFSTRT GCS that is
provided with NCCF.

The format of the GCS command provided by NetView for invoking the
PMX is:

NETVIEW START PMX PARM userid (LOCAL)

where 'userid' is the userid of the programmable operator virtual
machine. Do this by modifying the EXEC NETSTRT GCS that is
provided with NetView.

If you do not specify this in the GCS PROFILE or the EXECs mentioned
above, then the PMX must start manually after the programmable
operator is started by issuing the same GCS command. When started,
the PMX ATTACHes NCCF or NetView; that is, it runs as a sub task of
the PMX in the same GCS virtual machine. When you specify the
'LOCAL' option, the PMX attaches the hardware component of NetView
which captures LOCAL device errors.

Note: For NCCF, see NCCF Version 2 for VM/SP Installation and
Resource Definition, SC30-3264. For NetView, see NetView Installation
and Administration, SC30-3360.

4. Run the VMFLKED EXEC with input file PROPMX LKEDCTRL to
build the PROPMX LOAD LIB from which the PMX module is loaded by
the NCCF or NetView command. The PROPMX LOADLIB must then
be placed on a minidisk which is accessed by the virtual machine
running PMX and NCCF or NetView. For example, it could be placed
on the same minidisk as the NCCF LOADLIB. The PROPMX LOAD LIB
must also be "GLOBALed" (that is, GLOBAL LOADLIB PROPMX),
along with the NCCF LOADLIB prior to invoking the NCCF or
NetView command. This GLOBAL command can also be issued in the
NCCFSTRT or NETSTRT GCS EXEC. The commentary in the EXEC
describes how to do this.

5. Ensure that entries are added to the appropriate routing table files to
authorize one or more NCCF or NetView operators to be assigned as

Chapter 15. The Programmable Operator Facility 329

Programmable Operator

the logical operator; that is, authorize them to issue the programmable
operator LGLOPR command. For more uses of the LGLOPR command,
see "Assigning or Changing the Logical Operator" on page 334.

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C y S 0 C A
*X 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
* AUTHORIZE NCCF OR NETVIEW OPERATORS TO CHANGE LGLOPR ASSIGNMENT
*------------------------
/LGLOPR / 1 7 30 *NCCF DMSPOR LGLOPR
*------------------------

Figure 22. LGLOPR Command Authorization for an NCCF or NetView Operator

. Figure 22 would authorize any NCCF or NetView operator to issue the
LGLOPR command. Restricted or specific authorization would be
provided by putting the desired NCCF or NetView operator id in the
user field of the RTABLE entry.

6. A PROP command name must be supplied to NCCF or NetView through
the CMDMDL statement in the file DSICMD NCCFLST, such as,

PROP CMDMDL MOD=CSIPNP'

For more information on NCCF, NetView, and GCS, please read the
appropriate documentation for each product.

Communication Between the Programmable Operator and NCCF or NetView

An NCCF or NetView operator (not necessarily the logical operator) and
the programmable operator interact through both the NCCF or NetView
PROP command and the Programmable Operator/NCCF Message Exchange
(PMX). The PROP command is the NCCF or NetView operator's only
means of sending data (commands) to the programmable operator. The
PMXmediates all messages intended for NCCF or NetView logical
operators.

An NCCF or NetView operator issues a programmable operator command
by using PROP, an NCCF or NetView command, like this:

PROP CMD DETACH OOA FROM USERl

In a different domain, the operator must first establish an NCCF or
NetView cross-domain session with the NCCF or NetView START
command. Then, any programmable operator commands to be issued in that
domain must be encapsulated in an NCCF or NetView ROUTE command.
For example,

330 VM System Facilities for Programming

START DOMAIN=DOMN2

ROUTE DOMN2,PROP CMD SET LOGMSG 1 SHUTDOWN IS AT 7PM TONIGHT

Refer to NCCF or NetView documentation for further information on
domains and cross-domain sessions.

PMX Communication Protocol

This section describes the protocol to be used by the programmable
operator facility and PMX application programs in establishing and
breaking the IUCV communications path between them. Also described are
other actions relating to this communication protocol.

Starting up:

Programmable operator: If PMX and the programmable operator
have previously been active, CONNECT to the PMX using the
previously saved userid. If a non-zero return code is received, reset
any saved information relating to the PMX. If the PMX was not
previously active then the programmable operator waits for a
CONNECT PENDING interrupt from the PMX. The programmable
operator ACCEPTs only the first PMX CONNECT.

PMX: CONNECT to the programmable operator (having obtained
the userid from the input parameters). If necessary, retry 10 times
with a 15-second wait preceding each retry.

Stopping the programmable operator:

Programmable operator: Perform a CMSIUCV SEVER, in addition
to the normal STOP processing.

PMX: Reset the saved LGLOPR identification and wait for a
CONNECT PENDING from the programmable operator.

A programmable operator abend occurs:

Programmable operator: For a programmable operator mainline
abend or a CMS system abend, CP does an implicit SEVER when
the virtual machine is re-IPLed.

PMX: Notify the NCCF or NetView logical operator, if any, and
wait for a CONNECT PENDING from the programmable operator.

A PMX abend occurs:

Programmable operator: A SEVER is received from the PMX. Reset
any saved information relating to the PMX and if the current
logical operator is an NCCF or NetView operator, enqueue a
"LGLOPR RLS" command for that operator at the top of the

Chapter 15. The Programmable Operator Facility 331

Programmable Operator

Stopping the PMX

programmable operator message queue. The programmable operator
then continues normal operation and waits for a CONNECT
PENDING interrupt from the PMX. When it is received, the old
PMX path is SEVERed and the new one ACCEPTed.

PMX: Notify the NCCF or NetView logical operator, if any,
perform a SEVER and wait for NCCF or NetView to terminate.
(Note: NCCF or NetView will have to be CLOSEd to restart the
PMX.)

If PMX stops or the NCCF or NetView operator session that is controlling
the programmable operator stops, the NCCF or NetView logical operator (if
any) is implicitly released. The programmable operator continues with the
default logical operator specified on the LGLOPR statement of the active
routing table.

The PMX may stop because:

• VM GCS stops
• NCCF or NetView stops (or the hardware monitor component of

NetView, if the 'LOCAL' option of the GCS NETVIEW command was
used when starting the PMX.)

• The PMX abends.

There are no PMX commands, per se; stopping NCCF or NetView normally
stops the PMX.

When the PMX stops, NCCF or NetView does not necessarily stop -- the
PMX tries to wait until NCCF or NetView has stopped. However, you must
stop NCCF or NetView before restarting the PMX.

The Logical Operator

The programmable operator facility is most commonly run in the CP system
operator's virtual machine. It intercepts messages to the system operator,
logs them in a CMS file and then performs additional actions on the
messages, as defined by the active routing table. Sometimes, it is necessary
for the programmable operator to send an intercepted message to another
user for handling, because the programmable operator does not know or is
not capable of performing the required action. (One example would be a
message requesting that a tape be mounted. Since the programmable
operator cannot perform physical tasks, such as mounting tapes, it simply
sends the message to another user for handling.) For this reason, a user,
other than the programmable operator virtual machine, is identified to the
programmable operator to receive these messages. This user is called the
logical operator, as opposed to the CP system operator.

332 VM System Facilities for Programming

,/

!Programmable Operaftorr

When the programmable operator starts, the logical operator is sent an
initiation message. While the programmable operator is active, the logical
operator receives error messages for severe errors, such as logging errors,
as well as all messages routed to the logical operator, either explicitly or by
default. The logical operator also receives a message when the
programmable operator is stopped.

The programmable operator facility can have only one logical operator at
any given time. However, the role of the logical operator can be passed
dynamically between several VM users and/or NCCF or NetView operators
by means of the programmable operator LGLOPR command. Refer to the
"LGLOPR Command" on page 373 and "Assigning or Changing the Logical
Operator" on page 334 for more information.

The Default Logical Operator

Although the role of the logical operator can be passed from one VM or
NCCF (or NetView) user to another, a single VM user must still be
identified to the programmable operator. This user is called the DEFAULT
logical operator and is identified to the programmable operator facility by
means of the LGLOPR statement of the active routing table. The
programmable operator facility begins routing messages to this DEFAULT
logical operator when no other logical operator has been assigned or when
the current logical operator issues the LGLOPR RLS command, implicitly
or explicitly.

During programmable operator initialization, a message is sent to the
logical operator indicating that the programmable operator facility is
running. Normally (i.e. unless the programmable operator is restarting
after an ABEND situation), this logical operator is the DEFAULT logical
operator specified in the active routing table, since the programmable
operator is just starting up and no other users have been assigned yet. The
DEFAULT logical operator will continue to be the current logical operator
until an authorized VM or NCCF (or NetView) user issues the
programmable operator LGLOPR command. Thus, if the active routing
table does not authorize ANY users to issue the LGLOPR command, the
DEFAULT logical operator will ALWAYS be the logical operator, until a
new routing table is loaded.

Again, the DEFAULT logical operator MUST be a local or remote VM user;
that is, the DEFAULT logical operator CANNOT be an NCCF or NetView
operator.

Note: To avoid ambiguity, it should be noted that the term 'logical
operator' throughout this section is actually referring to the currently
assigned logical operator, which MAY also be the DEFAULT logical
operator. References to the 'DEFAULT logical operator' are made when
the information being discussed pertains ONLY to the DEFAULT logical
operator.

Chapter 15. The Programmable Operator Facility 333

The NCCF or NetView Logical Operator

To run a VM system from NCCF or NetView an NCCF or NetView operator
must be assigned as the logical operator of the programmable operator in
that particular system. This operator is the NCCF logical operator. or
the NetView logical operator. The routing table should specify which
NCCF or NetView operators may be assigned as logical operators. The
network installation through NCCF or NetView and VTAM defines where
such NCCF or NetView operators may be logged on. This is independent of
the programmable operator facility.

An NCCF or NetView operator may be authorized to be the logical operator
by allowing him to issue the programmable operator LGLOPR command.
An NCCF or NetView operator can also be authorized to issue other
programmable operator commands (QUERY, SET, CMD, etc.) without being
authorized to use the LGLOPR command. That is, an NCCF or NetView
operator can issue programmable operator commands without being
authorized to be a logical operator. For example, assume the following
record was in the active routing table.

*------------------------ -------- -------- -------- --------
*T S E T U N A P
*E C C Y S 0 C A
*X 0 0 P E D T R
*T L L E R E N M
*------------------------ -------- -------- -------- --------
/QUERY / 1 6 30 NTWKOPl *NCCF DMSPOR QUERY
*------------------------ -------- -------- -------- --------

Figure 23. QUERY Command Authorization for an NCCF or NetView Operator

The entry above allows the NCCF or NetView operator, NTWKOPl, to
issue the programmable operator QUERY command and r.eceive the
responses, even if he is not authorized to use the programmable operator
LGLOPR command to assign himself as logical operator.

Assigning or Changing the Logical Operator

The LGLOPR command provides three options for assigning and releasing
logical operators. These three options allow the role of logical operator to
be passed back and forth between VM users and/or NCCF or NetView
operators. For the format of this command, see "LGLOPR Command" on
page 373. To authorize operators to use the LGLOPR command, place an
entry for" /LGLOPR /" in the routing table to be used. Specify DMSPOR as
the action routine, and LGLOPR as the parameter to DMSPOR.

Using the ASN (assign) and RLS (release) options is sufficient for many
installations where perhaps there is only one VM operator or key operator
(specified as the default logical operator) and one NCCF or NetView
operator.

334 VM System Facilities for Programming

Programmable Operatoli'"

When more than one NCCF or NetView operator is capable of controlling
the system or when a combination of multiple VM and NCCF or NetView
logical operators are capable, the installation might want to allow some or
all of the logical operators to use the RPL (replace) option. RPL forces the
issuer of the command to be assigned as the logical operator, whether or
not a logical operator is already assigned. This ensures that no messages
are lost while changing logical operators because no messages are handled
during the change. .

For example, in establishment X, two NCCF or NetView operators on an
MVS host system share responsibility for control of a set of VM distributed
systems. The role of logical operator is passed back and forth between them
depending on their individual workload. These operators pass control using
the RPL option of the LGLOPR command so that no messages are routed to
the default logical operator between releasing the old logical operator and
assigning the new one.

The RPL option is also useful for forcing the assignment of a logical
operator when the current logical operator is for some reason cut off from
communication with the programmable operator and cannot do a RLS
(release).

For example, a communications line connecting the terminal for an NCCF
or NetView logical operator to the NCCF or NetView subsystem has gone
down. The NCCF or NetView logical operator informs a local VM operator
by telephone that the VM operator will have to take over as logical
operator until the communications line can be brought back up. The VM
operator, if authorized, can issue a LGLOPR RPL command to take over the
role of logical operator.

When the logical operator is re-assigned, the programmable operator tries
the HOSTCHK function, if specified, following the re-assignment. However,
if the new logical operator is an NCCF or NetView operator or a VM user
on the same system as the programmable operator, the HOSTCHK function
is suspended until a remote VM user is again assigned as the logical
operator. For information on the HOSTCHK function, see
"Communications Checking" on page 359 and the HOSTCHK statement in
"Routing Table Entry Formats" on page 337.

If a user is assigned as the logical operator by the LGLOPR command, the
assignment is accepted. The user specified on the LGLOPR statement
remains a default logical operator in the event that the assigned logical
operator is released. The user specified on the LGLOPR statement is
always maintained as the default, and can never be released.

Here are some sample uses of the LGLOPR command. In the samples,
ACTIONX is an action routine that is executed each time an unauthorized
user issues some form of the LGLOPR command. ACTIONX could be
DMSPOS sending the offending command to the logical operator or it could
be a user-written routine taking some other action against the issuer.

Chapter 15. The Programmable Operator Facility 335

Programmable Opera~or

*------------------------
*T
*E
*X
*T
*------------------------

S
C
o
L

E T
C Y
0 P
L E

U
S
E
R

N
o
D
E

A
C
T
N

P
A
R
M

* GENERAL AUTHORIZATION FOR LGLOPR COMMAND -- ASN, RLS, AND RPL
*------------------------
/LGLOPR / 1 7 NTWKOP1 *NCCF DMSPOR LGLOPR
*------------------------ --- --- -- --------
* EXPLICIT AUTHORIZATION FOR LGLOPR REPLACE
*------------------------ -------- --------
/LGLOPR /RPL/ 1 16 OPER2 HOSTSYS
/LGLOPR /RPL/
*------------------------ -------- --------
* EXPLICIT AUTHORIZATION FOR LGLOPR ASSIGN
*------------------------
/LGLOPR /ASN/
/LGLOPR /ASN/

1 16 NTWKOP4 *NCCF

An entry or entries could also be added as follows:

*------------------------ --- ---
* AUTHORIZATION FOR LGLOPR ASSIGN AND RELEASE
*------------------------
/LGLOPR /-,RPL/ 1 NTWKOP5 *NCCF

Figure 24. Sample LGLOPR Command Entries in a Routing Table

The Routing Table

-------- --------
DMSPOR LGLOPR
ACTIONX
-------- --------

DMSPOR LGLOPR
ACTIONX

DMSPOR LGLOPR

The routing table is a eMS file that contains the information used to
control the operation of the programmable operator facility. The routing
table enables the programmable operator facility to recognize a message as
a command, to determine the action to take when a message comes in, and
to recognize the authorized users of programmable operator functions.

Note: The routing table should always be coded in American English.
Messages to the programmable operator should also always be in
American English to ensure that the uppercasing and routing table
comparisons are handled correctly.

336 VM System Facilities for Programming

I?roglrammable Opelra~or

How the Programmable Operator Facility Uses the Routing Table

When the programmable operator facility receives an lUCY interrupt with
an incoming message, the active routing table is searched to find a
matching entry. When the routing table is searched, all fields are checked.
For a match to occur, each field must either match or be blank. If a
matching entry is found, that entry contains information pertaining to any
action to be taken. The action routine name tells the programmable
operator facility which action routine to invoke when a routing table entry
matches the incoming message. If no matching entry is found in the active
routing table, no action is taken besides logging the message.

The order that the entries are placed in the routing table affects the way
the programmable operator facility performs. The routing table is searched
from top to bottom until a match is found. As the table is searched, lines
that begin with an asterisk (*) in column 1 are ignored, and therefore may
be used to place comments in the routing table. Also, lines that are
completely blank are ignored in the routing table search and can be used to
separate lines of text for easier reading. All entries must be made in upper
case.

Note: The routing table format is different from the format in the initial
version of the programmable operator facility in Release 2 of VM. The
original format from Release 2 is not compatible with later versions of the
programmable operator facility. The routing tables must be converted to
reflect this change. See Appendix C, "Converting Programmable Operator
Routing Tables" on page 429 if your routing tables apply to Release 2.

Routing Table Entry Formats

Every routing table must have specific configuration information in the
first records of the routing table file (filetype RT ABLE) that are not
comments or blank lines. These statements are in free format, meaning
that they need not be positioned in any particular columns. See Figure 26
on page 345 for an example of a partial routing table. The statements and
their parameters are as follows:

1. The LGLOPR statement identifies the default logical operator. The
logical operator assignment can be changed using the LGLOPR
command, but if a logical operator is released but not replaced the user
specified in this statement resumes logical operator responsibilities.
This userid or nickname must be on a VM system.

LGLOPR I {u~erid [nodeid]}
nlCkname

userid is a valid userid on the specified VM node.

Chapter 15. The Programmable Operator Facility 337

Programmable Operator

nodeid is a valid id of a VM system in the network. If no nodeid is
specified, the local system's nodeid is used.

nickname is a nickname defined in the programmable operator facility
virtual machine eMS NAMES file.

Note: If a nickname is used to identify the logical operator,
the nickname cannot be a list of nicknames. The
programmable operator must have one nodeid to associate
with the logical operator.

Either a nickname or a userid must be specified. If a userid is specified,
a nodeid may be specified. If both a userid and a nodeid are specified,
they must be separated by one or more blanks. If the name specified is
both a local userid and a nickname, the programmable operator regards
it as a nickname.

IMPORTANT NOTE: The programmable operator virtual machine
should not be identified as the logical operator. This causes the
programmable operator to go into a loop in the event it tries to do the
routing. This includes specifying a userid of OPERATOR (or any
abbreviation thereof) in the LGLOPR statement. This also causes the
message to be sent to the system operator virtual machine, even if the
system operator virtual machine has a different userid.

2. The optional TEXTSYM statement specifies the characters that the
programmable operator facility interprets as special symbols in the text
field of the routing table entries. All three parameters must be specified
if the statement is specified.

I TEXTSYM

blank-sep

arbchar-sep

338 VM System Facilities for Programming

I blank-sep arbchar-sep not-symbol

is a separator character indicating that blanks are to be
skipped over when scanning the message. A message is
scanned for the next non-blank character string. This
non-blank character string is then compared to the text
in the routing table entry following this separator
character. The default character is "/".

is a separator character indicating that all
non-matching characters are to be skipped over when
scanning the message. A message is scanned for the text
specified in the routing table entry until it is found or
until the end of the message is reached. The default
character is "$".

,/

not-symbol when it immediately follows a separator is the character
indicating that the text should not be found in the
message. If the text following the not-symbol is found in
the message, then the message does not match that
routing table entry. The default character is "--,".

See "Filtering Messages" on page 350 for the use of TEXTSYM
characters in routing table entries.

3. The optional PROPCHK statement identifies the distributed nodes that
the host system is to check on. The RSCS nodeids of these distributed
systems must be specified in this statement. A programmable operator
must be' running in the system operator virtual machine on the
distributed systems being checked. Specify as many nodes on one
statement as fit in an 80-column record. The programmable operator
facility only reads the first 80 columns. Enter any number of
PROPCHK statements to specify different checking or response wait
intervals for different RSCS nodes. The PROPCHK statement must be
after the LGLOPR statement.

Note: Nodes to be checked with PROPCHK must be systems running
VM Release 3 or above, with a programmable operator in the system
operator virtual machine.

I PROPCHK I ccc ww nodeid (nodeid .. J

ccc is the checking interval. This interval, in minutes, indicates
how often acknowledgment requests are sent out to the
specified nodes.

ww is the response wait interval. This interval is the number of
minutes permitted to pass before a response must be received
from the specified node(s).

nodeid is a valid id of a system in the network.

Notes:

a. The checking interval specified must be greater than the response wait
interval.

b. The nodeid of the logical operator must not be specified as a nodeid
on this statement.

4. The optional HOSTCHK statement specifies the time interval for
checking communication with the RSCS virtual machine at the logical
operator node and the wait time for a response. The HOSTCHK
statement must be after the LGLOPR statement.

Chapter 15. The Programmable Operator Facility 339

Programmable Operator

I HOSTCHK Ieee ww

cc is the checking interval. This interval, in minutes, indicates
how often acknowledgment requests are sent out to the
logical operator's node.

ww is the response wait interval. This interval is the number of
minutes permitted to pass before a response must be received
from the logical operator's node.

Notes:

a. The checking interval specified must be greater than the response wait
interval.

b. The HOSTCHK function is suspended when an NCCF or Net View
operator or a local VM user is assigned as the logical operator. It is
resumed when a remote VM user is assigned as the logical operator.

5. The optional LOGGING statement specifies whether messages or
messages and command responses are to be logged or not logged. If the
LOGGING statement is not in the routing table, messages are logged
and LOGGING is ON. If the LOGGING statement is in the routing
table, one of the three operands must also be specified, because there is
no default operand.

LOGGING I {ON }

~~~ 

ON indicates that messages are to be logged while this RTABLE 
is active, unless it is explicitly turned off using the SET 
LOGGING command. 

ALL indicates that messages and programmable operator 
command responses are to be logged while this RT ABLE is 
active, unless it is explicitly turned off using the SET 
LOGGING command. 

OFF indicates that messages are not to be logged while this 
RTABLE is active, unless it is explicitly turned on using the 
SET LOGGING command. 

6. The ROUTE statement indicates the end of the configuration 
statements and the start of the routing entries. 

340 VM System Facilities for Programming 



!Programmable OperaRolr 

I ROUTE 

This statement must follow the other statements specified in this 
section. 

The LGLOPR and ROUTE statements are required in every routing table. 
The TEXTSYM, LOGGING, PROPCHK, and HOSTCHK statements are 
optional. An example of these statements in a routing table is as follows: 

LGLOPR OPERATNS HOSTNODE 
TEXTSYM / $ -, 
PROPCHK S 1 NaDEl NODE2 NODE3 
PROPCHK 3 1 NODE4 NODES 
HOSTCHK 2 1 
LOGGING ALL 
ROUTE 

These special statements may be specified for each routing table in any 
order (as long as LGLOPR is first and ROUTE is last) and with at least one 
blank separating each parameter. The statements depend on the 
installation and, therefore, must be supplied by the installation for each 
routing table. These entries are processed only when the routing table is 
loaded, so they are not searched during programmable operator message 
handling. 

The configuration shown in Figure 25 can be described in a routing table 
with the first few lines like those in Figure 26. 

Local System 
Nodeid = NODEI 

Distributed System 
Nodeid = NODE2 

RSCS Virtual 
Machine 

ID = NETI 

Logical 
User Operator 
Virtual Virtual 
Machine Machine 

Userid = Userid = 
USERll LGLOPR 

RSCS Virtual 
Machine 

ID = NET2 

Programmable 
User Operator 
Virtual Virtual 
Machine Machine 

Userid = Userid = 
USER2l OPERATOR 

Figure 25. The Programmable Operator Facility in a Distributed System. The logical operator is 
situated at the Host system and the programmable operator is running in a different system at a 
distributed site. 

The routing table entries to be searched must be in the following fixed 
format. The contents of the fields described below may appear anywhere in 

Chapter 15. The Programmable Operator Facility 341 



Programmable Operator 

FIELD 

the defined columns for that field (unaligned) unless the description for that 
field explicitly states that alignment is required. 

Note: The words in parentheses correspond to the vertically aligned words 
in the comment records in Figure 26 through Figure 31, and also in the 
IBM sample routing table file. 

EXAMPLE 
FIELD 

COLUMNS 
LENGTH 

OF FIELD 

COMPARISON TEXT (TEXT) 
STARTING COLUMN (SCOL) 
ENDING COLUMN (ECOL) 
MESSAGE CLASS (TYPE) 
USERID (USER) 

/FEEDBACK / 
1 
9 
1 
USER21 
NODE2 
DMSPOR 
TOFB 

1-25 
27-29 
31-33 
35-36 
38-45 
47-54 
56-63 
65-72 

25 
3 
3 
2 
8 
8 
8 
8 

NODEID (NODE) 
ACTION ROUTINE NAME (ACTN) 
PARAMETER TO ACTION ROUTINE 
(PARM) 

where: 

COMPARISON TEXT 
is a particular character string that the programmable operator facility 
searches for in the incoming message. If this field is left blank, any text 
compared with this field is considered a match. Multiple texts may be 
specified, with the capability to skip over intervening blank or 
non-blank characters. 

STARTING COLUMN 
is the column in the incoming message where the programmable 
operator facility starts looking for the character string mentioned in the 
COMPARISON TEXT field. If this field is left blank, the programmable 
operator facility starts scanning at the beginning of the message. 

ENDING COLUMN 
is the column in the incoming message where the programmable 
operator facility stops looking for the character string(s) mentioned in 
the COMPARISON TEXT field. If this field is left blank, the 
programmable operator facility continues scanning until the end of the 
message. 

MESSAGE CLASS 
identifies the origin of the incoming message according to the message 
type. Classes 1-9 are IUCV message types; class 30 is strictly a 
programmable operator facility message type for NCCF or NetView 
messages. For more details on IUCV message types, see the Message 
System Service section of this manual. If this field is left blank, any 
value compared with this field is considered a match. 

The message types available to the programmable operator facility are: 

342 VM System Facilities for Programming 

/' 



Class 

1 
2 
3 

4 
5 

6 
7 
8 

30 

Message Types 

Message sent using CP MESSAGE and CP MSGNOH. 
Message sent using CP WARNING. 
Asynchronous CP messages, CP responses to a CP command 
executed by the programmable operator facility virtual 
machine, and any other console I/O initiated by CPo 
Message sent using CP SMSG command. 
Any data directed to the virtual console by the virtual 
machine (WRTERM, LINEDIT, etc.). 
Error messages from CP (EMSG). 
Information messages from CP (IMSG). 
Single Console Image Facility (SCIF) message from CPo 
Message coming from the Network Communication Control 
Facility or NetView (*NCCF). 

Note: CP responses that are trapped in a buffer using the extended 
DIAGNOSE code X'08' do not become type-3 messages. For example, CP 
responses from the programmable operator CMD command are not type-3 
messages, and therefore are not logged when LOGGING is set to "ON". 

USERID 
is the character string compared to the userid of the user that sent the 
incoming message to the programmable operator facility. It determines 
the authority of the user to cause an action to be performed. The 
identifiers for all NCCF or NetView operators, who may use the 
programmable operator, must be unique. If this field is left blank, all 
userids compared with this field are assumed to match. If this field is 
not left blank, the userid must be left-justified in the field or you will 
receive an error message; 

NODEID 
is the character string compared to the nodeid of the user that sent the 
incoming message to the programmable operator facility. Again, it 
determines the authority of the user to cause an action to be performed. 
To authorize an NCCF or NetView operator, '*NCCF' or blanks must be 
in the nodeid field of the routing table. Also, the identifiers for all 
NCCF or NetView operators, who may use the programmable operator, 
must be unique. If this field is left blank, all nodeids compared with this 
field are assumed to match. If this field is not left blank, the nodeid 
must be left-justified in the field or you will receive an error message. 

ACTION ROUTINE NAME 
is the name of the LOADLIB member (a Basic Assembler Language 
routine) that the programmable operator facility is to NUCXLOAD when 
the LOADTBL function is performed, or the name of an EXEC, and 
subsequently, the routine that the programmable operator is to call 
when a match occurs on the entry in which the name is specified. If this 
field is left blank, no action is performed. If this field is not left blank, 
the action routine name must be left-justified in the field or you will 
receive an error message. 

Chapter 15. The Programmable Operator Facility 343 



Programmable Operator 
I. 

PARAMETER TO ACTION ROUTINE 
is a character string of up to eight bytes passed as a parameter to the 
action routine by way of the programmable operator P ARMLIST for a 
Basic Assembler Language routine or by way of a program stack for an 
EXEC. Often, this is used to specify a particular subroutine in the 
action routine. If this field is left blank, no parameter is passed. If this 
field is not left blank, the action routine parameter must be left-justified 
in the field or you will receive an error message. 

Column 73 and beyond are reserved for future use. 

344 VM System Facilities for Programming 



* THIS IS THE DEFINITION OF THE PROP CONFIGURATION. 
* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE. 
* LOGICAL OPERATOR (NICKNAME "LOP") IS "OPERATOR" AT NODEID "NODE1". 
LGLOPR LOP 
* THE TEXT SEPARATOR CHARACTERS. 
TEXTSYM I $ , 
* WHICH NODES TO CHECK, AND AT WHAT INTERVAL. 
HOSTCHK 5 1 
* THE ROUTING ENTRIES START 
ROUTE 
*------------------------
*T S 
*E C 
*X 0 
*T L 
*------------------------

E 
C 
0 
L 

--------
T U 
Y S 
P E 
E R 

--------

--------
N 
0 
D 
E 
--------

* SEND PROP FEEDBACK COMMAND TO FEEDBACK ACTION ROUTINE 
*------------------------

-------- --------
A P 
C A 
T R 
N M 
-------- --------

IFEEDBACK I 1 9 1 USER21 NODE2 DMSPOR TOFB 
*------------------------
* AUTHORIZE NCCF OR NETVIEW OPERATORS TO CHANGE LGLOPR 
* WITH THE LGLOPR COMMAND 
*------------------------
ILGLOPR I 1 7 30 
*------------------------

DMSPOR LGLOPR 

* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEEDN'T SEE THEM 
* BUT LET "FORCED" LOGOFF MESSAGES THROUGH 
*------------------------
$LOGON 
$LOGOFF$,FORCED 
*------------------------

18 24 3 
18 3 

* FILTER OUT COMMANDS THAT WE DON'T WANT ISSUED. 
*------------------------
ICMD ISYSTEM 
ICMD ISET IEC 
*------------------------
* ALLOW ONLY OPERATOR ON HOST TO ISSUE SHUTDOWN. 
*------------------------

WARNING 
WARNING 

ICMD ISHUTDOWN OPERATOR NODEl DMSPOR TOVM 
*------------------------
* ROUTE ALL MESSAGES ABOUT DEVICE OOE TO THE SPOOL OPERATOR. 
*------------------------
$ OOE 3 DMSPOS SPOOLOP 

where: 

"WARNINGH 

represents a user action routine which may send a warning message to the user issuing that 
command. 

"SPOOLOpH 

represents a nickname or userid of the spool operator. 

Figure 26. Partial Routing Table 

Chapter 15. The Programmable Operator Facility 345 



~roglralmma[Ole OpelrB.l~or 

Tailoring the Routing Table 

Specifying Routing Texts 

Routing table entries determine what messages the programmable operator 
facility ignores (filtering), who is authorized to issue a particular command 
(authorization), and what action routines to invoke Jor a given 
circumstance. You can tailor the routing table to suit your system's 
individual needs by adding or changing entries in the routing table. 

The programmable operator facility comes with a general purpose routing 
table named "PROP RTABLE". (See the section on "Installing the 
Programmable Operator Facility" on page 321 to locate the "PROP 
RTABLE".) You can only use this supplied routing table after the 
LGLOPR, HOSTCHK, and PROPCHK statements are modified. You may 
also have to modify the routing table entries. Make these changes using 
the VM System Product Editor. The programmable operator facility 
operates satisfactorily with no further changes. However, if you choose, 
you can modify the supplied routing table to change the operation of the 
programmable operator facility. You can also create different routing 
tables to cover varying circumstances. These tables can be dynamically 
loaded using the LOADTBL command. Only one routing table may be 
active at a time. 

Here are more examples of text comparisons for the programmable operator 
facility. "$" is the arbitrary character separator, "I" is the blank separator, 
and "I" is the not-syinbol. In all of these examples, it is assumed that the 
starting and ending columns do not interfere with the matching. 

1. The RTABLE entry 

$LOGOFF 

is matched by any message containing the word "LOGOFF". If one text 
is preceded by the arbitrary character separator ($), the text can appear 
anywhere in the message to be a match. 

2. The RTABLE entry 

/LOGOFF 

matches the message 

LOGOFF USER 1 IN 5 minutes 

as there are no non-blank characters preceding the word "LOGOFF", 
but the entry does not match the message . 

11:20:15 GRAF OAO LOGOFF AS USER1 USERS = 020 

If only one text is preceded by the blank character separator (/), the text 
must be the first non-blank string in the message order to be a match. 

346 VM System Facilities for Programming 



IProgrammalb~e O~oera~or 

3. The RT ABLE entry 

$AUTO$LOGON$AUTOLOG 

matches the message 

11:09:02 AUTO LOGON 

and the message 

11:09:02 AUTO LOGON 

but not the message 

*** USER2 USERS 

*** AUTOLOG2 USERS 

11:09:02 GRAF OAO LOGON AS AUTOLOG1 USERS 

or the message 

AUTOLOG WON'T LOGON TOMORROW 

021 BY AUTOLOG1 

021 BY SYSTEM 

023 

A text with two or more texts preceded by arbitrary character separators 
($), is matched by a message with all those texts appearing in that order. 

The texts in the message are scanned in the order that they appear in the 
routing table entry. One text is searched for at a time. If the arbitrary 
character separator ($) precedes the text in the entry, a message is scanned 
until a match is found or the end of the message is reached. If the blank 
character separator (/) precedes the comparison text, blanks are skipped 
over and the first non-blank string of characters is compared to the 
comparison text, which mayor may not match. 

Routing table entries and messages are also affected if the text is preceded 
by a not-symbol (--,). The not-symbol is always used with one of the other 
separator characters; it never stands alone. If matching text is found and 
the text in the routing table is preceded only by a "$" or a "/", the position 
following the last matched text is remembered. If there are no more 
RTABLE texts to be searched for, the entry is a match. If there is another 
text in that RTABLE entry to be searched for, the scan continues from the 
position following the last matched text. A match depends on the rest of 
the message text and the routing table entry. If matching text is found but 
the text in the routing table is preceded by the not-symbol (--,), the entry is 
not a match and checking goes no further. Similarly, if a matching text is 
not found but the text in the routing table is not preceded by the 
not-symbol, the entry is not a match. If a match is not found and the text 
is preceded by the not-symbol (--,), and if there is no more text, the entry 
matches the message. If there is more text to scan for, the scan continues 
as above starting with the character following the last match. A match 
depends on the rest of the message text and the routing table entry. 

Consider the following example: 

4. The RTABLE entry 

$ -,AUTO$LOGON 

Chapter 15. The Programmable Operator Facility 347 



Programmable Operator 

does match the message 

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027 

Because the first text in the RTABLE entry (AUTO) is preceded by the 
arbitrary character separator ($), the entire text is searched for 
"AUTO". No match is found. Because the text is preceded by the 
not-symbol (I), the text is still a match at this point. The scan for the 
next text (LOGON) begins at the end of the last match. Because there 
was no previous match, the scan begins again at the start of the 
message. The LOGON text is preceded by the arbitrary character 
separator ($), so the search proceeds through the message until 
"LOGON" is matched. Because "LOGON" appears in the message, this 
RT ABLE entry and message do match. 

Now consider this example: 

5. The RTABLE entry 

$ ,AUTO/LOGON 

does not match the same message 

12:04:28 GRAF OAO LOGON AS USER1 USERS = 027 

The message is scanned for "AUTO" as above. The search for 
"LOGON" again begins at the beginning of the message. In this case, 
however, the LOGON text is preceded by the blank separator (/), so only. 
blanks are skipped prior to the comparison. No blanks are found, so 
the comparison is made at the beginning of the text and "LOGON" is 
compared with "12:04:". This is not a match. Because this text was not 
preceded by the not-symbol, this RT ABLE entry and message do not 
match. 

Another example: 

6. The RT ABLE entry 

$ ,AUTO/LOGON 

does not match the message 

12:04:28 AUTO LOGON *** USER1 USERS = 027 BY AUTOLOG1 

Because "AUTO" is found in the message and is preceded in the 
RTABLE entry by the arbitrary character separator ($) and the 
not-symbol (I), the RTABLE entry and message do not match. 

Here is another example: 

7. The RT ABLE entry 

$LOGOFF$,030/FORCED 

does not match the message 

348 VM System Facilities for Programming 

/' 



12:04:28 USER DSC LOGOFF AS USER1 USERS = 026 FORCED 

The first text, "LOGOFF", is preceded by the arbitrary character 
separator ($) and is scanned for through the text. "LOGOFF" is found. 
Because "LOGOFF" is not preceded by the not-symbol, the next text is 
scanned. The scan continues from the end of the previous match, which 
is the character following the LOGOFF text. Since the arbitrary 
character separator ($), precedes "030", the entire remaining text is 
searched for "030". It is not found but because "030" is preceded by the 
not-symbol, the message and RTABLE entry still match. Finally, 
"FORCED" is scanned for. It is preceded by the blank separator (f). 
Blanks are skipped, and starting with the character following the last 
matched string (which was "LOGOFF"), "FORCED" is compared to "AS 
USE". This is not a match. Because "FORCED" is not matched and is 
not preceded by the not-symbol, this RTABLE entry and message do not 
match. 

Here are routing table entries that do match this message: 

$LOGOFF$,030$FORCED 

would match because arbitrary characters would be skipped before 
comparison for "FORCED" and 

$LOGOFF$,030/,FORCED 

would match because the first non-blank string after "LOGOFF" is not 
"FORCED". 

Specifying Routing Texts to an NCCF or NetView Operator 

To route a message to an NCCF or NetView logical operator, that NCCF or 
NetView operator must have issued a LGLOPR ASN or LGLOPR RPL 
command. Be sure that the appropriate NCCF or NetView operators are 
authorized in the active routing table to issue the command. 

For example, to route the message 

12:04:15 GRAF OAO LOGOFF AS USER1 USERS = 020 FORCED 

to the NCCF or NetView logical operator, the routing table should have the 
following entries: 

Chapter 15. The Programmable Operator Facility 349 



Programmable Operator 

*------------------------ -------- -------- -------- --------
*T S E T U N A P 
*E C C y S 0 C A 
*X 0 0 P E 0 T R 
*T L L E R E N M 
*------------------------ -------- -------- -------- --------
* AUTHORIZE OPERATORS TO CHANGE LGLOPR ASSIGNMENT 
*------------------------ -------- -------- -------- --------
/LGLOPR / 1 7 30 DMSPOR LGLOPR 
*------------------------ -------- -------- -------- --------
* FILTER OUT SPECIFIC MESSAGES 
*------------------------ -------- -------- -------- --------
$GRAF$LOGOFF AS$FORCED$ 3 DMSPOS LGLOPR 
*------------------------ -------- -------- -------- --------

Figure 27. Routing Entries to Send Messages to an NCCF or NetView Operator 

Filtering Messages 

DMSPOR LGLOPR specifies that the programmable operator LGLOPR 
command can be executed. Message type 30 says that the user executing 
the LGLOPR command must be an NCCF or NetView operator. DMSPOS 
LGLOPR specifies that the desired action is to send the matching message 
to the logical operator. First, the NCCF or NetView logical operator must 
have issued LGLOPR ASN or LGLOPR RPL command to the programmable 
operator facility. Then, when the above message arrives at the 
programmable operator virtual machine, it is routed to the assigned NCCF 
or NetView logical operator. 

If you wish to put an id in the nodeid field of the routing table entries for 
the NCCF or NetView operator, it must be "*NCCF". 

This is the simplest application of the programmable operator facility. 
Entries can be placed in the routing table to filter informational messages. 
The messages are filtered because no action routine is specified in the 
routing table entries. For example, when the programmable operator 
facility is running in the system operator's virtual machine, informational 
messages resulting from commands such as, LOGON, LOGOFF, and 
DISCONN, can be prevented from being displayed at the logical operator's 
console. Although the messages are not displayed at the operator's console, 
they can be logged in the current day's log file. The routing table entries 
must identify the text(s) in the message that makes it unique and identify 
the columns between which the text(s) should be found in the message. 
With single or multiple texts, TEXTSYM characters should be selected 
accordingly. Figure 28 shows an example of how entries may be placed in 
the routing table to filter unwanted responses directed to the logical 
operator. For example, using Figure 28 below as the routing table, the 
message 

12:04:50 GRAF 055 LOGON AS USERl 

350 VM System Facilities for Programming 

/ 



would match the second routing table entry (j-,AUTO$LOGON). This 
RTABLE specification means that, starting in column 9 (SCOL) of the 
message, "AUTO" cannot be the first non-blank string and that "LOGON" 
must appear somewhere in the message. The message would be filtered out 
but logged in the current day's log file. 

However, the message 

12:04:28 AUTO LOGON *** USER BY AUTOLOG1 

would not match the second routing table entry (/-,AUTO$LOGON) 
because "AUTO" is the first non-blank string in the message appearing in 
the columns between the SCOL and ECOL fields. Thus, the message would 
not be filtered out and would be routed to the logical operator, as specified 
in the last entry in Figure 28. 

* THIS IS THE DEFINITION OF THE PROP CONFIGURATION. 
* LOGICAL OPERATOR IS NICKNAME "LOP". SEE "OPERATOR NAMES" FILE. 
LGLOPR LOP 
* THE TEXT SEPARATOR CHARACTERS. 
TEXTSYM / $ , 
* WHICH NODES TO CHECK, AND AT WHAT INTERVAL. 
PROPCHK 5 1 NODE2A NODE2B 
PROPCHK 2 1 NODE1A NODE1B 
* THE ROUTING ENTRIES START 
ROUTE 
*------------------------
*T S 
*E C 
*X 0 
*T L 
*------------------------

E 
C 
0 
L 

--------
T U 
Y S 
P E 
E R 

--------

-------- -------- --------
N A P 
0 C A 
D T R 
E N M 
-------- -------- --------

* FILTER OUT LOGON AND LOGOFF MESSAGES SO OPERATOR NEEDN'T SEE THEM 
*------------------------
$OUTPUT/OF 
/,AUTO$LOGON 
$LOGOFF 
$DSCONNECT 
$RECONNECT 
$DIAL 
$DROP 

19 36 3 
9 33 3 

19 34 3 
19 36 3 
19 36 3 
19 32 3 
19 32 3 

*------------------------* SEND REMAINING ASYNCHRONOUS CP MESSAGES TO LOGICAL OPERATOR 
*------------------------ ---

3 DMSPOS LGLOPR 

Figure 28. Routing Entries to Filter Responses to Routine Commands 

In Figure 28, the entries that appear in the "TEXT" field (OUTPUT OF, 
LOGON, etc.) are the texts contained in the messages that are to be trapped 
by the programmable operator facility when they are issued by CP. 

No userids and nodeids are specified for these entries because they are 
issued by CPo Because no action routine is specified, the only action taken 
is the logging of the messages in the current day's log file. 

Chapter 15. The Programmable Operator Facility 351 



Programmable OperaRor 

Controlling Authorization 

Looking at the last line in Figure 28, you can see that if a type-3 IUCV 
message is received that does not have a corresponding entry in the routing 
table, action routine DMSPOS together with the LGLOPR parameter routes 
the message to the logical operator. In this case, this entry has to be placed 
after the specific text entries that you want filtered from the message 
stream. If this entry appeared before the text entries in Figure 28, all 
type-3 IUCV messages would be routed to the logical operator. 

The routing table determines who is authorized to issue specific commands 
in the programmable operator facility. Programmable operator 
authorization is based entirely on the contents of the routing table. 
Therefore, controlling authorization is a relatively simple procedure. 
·Authorization checking uses either the userid, nodeid, the command text, or 
any combination of these fields in a routing table entry. A change to any of 
these fields can result in a change in authorization. You can easily tailor 
the authorization structure to your particular needs by changing only these 
fields in the routing table entries, without changing the action routines. 

When a userid and nodeid are not specified for a routing table entry, all 
users are authorized to match that entry and to use the function that it 
describes. Figure 29 shows an example of unrestricted authorization for 
the FEEDBACK command. A message sent with the FEEDBACK command 
is passed to module DMSPOR, which supports most of the programmable 
operator commands. The TOFB parameter invokes the proper action 
routine contained in module DMSPOR that writes the message to the 
FEEDBACK file. (See "The Feedback File" on page 358 or"FEEDBACK 
Command" on page 371 . 

Note: In the following examples, the TYPE (message class) field is left 
blank to allow the FEEDBACK (or FB) command to be issued with any 
class of IUCV message. The ECOL fields are 9 and 3 because the character 
string being looked for is FEEDBACK or FB followed by a blank, for 
example, "FEEDBACK " or "FB " would match. 

*------------------------ -------- -------- -------- --------
*T S E T U N 
*E C C y S 0 
*X 0 0 P E D 
*T L L E R E 
*------------------------ -------- --------
* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE 
*------------------------
/FEEDBACK / 
/FB / 

1 
1 

Figure 29. Uncontrolled Authorization 

352 VM System Facilities for Programming 

9 
3 

A 
C 
T 
N 
--------

DMSPOR 
DMSPOR 

P 
A 
R 
M 
--------

TOFB 
TOFB 

/' 



Programmable Open-aRon-

Authorization can be restricted to users at a particular network node by 
specifying only the nodeid. In Figure 30, only users at NODE1 are 
authorized to issue the FEEDBACK command. 

*------------------------ -------- -------- -------- --------
*T 
*E 
*X 
*T 

S 
C 
o 
L 

E 
C 
o 
L 

T 
Y 
P 
E 

U 
S 
E 
R 

N A P 
0 C A 
D T R 
E N M 

*------------------------ -------- -------- -------- --------
* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE 
*------------------------ -- -------- -------- -------- --------

IFEEDBACK I 
IFB I 

1 
1 

9 
3 

NODEl 
NODEl 

DMSPOR TOFB 
DMSPOR TOFB 

Figure 30. Restricting Authorization by Nodeid 

When a userid and nodeid are specified, only that user at the specified node 
is authorized to match that entry. In Figure 31, only JOHNDOE at NODE1 
and JANEDOE at NODE2 are authorized to place messages in the feedback 
file. 

*------------------------ -------- -------- -------- --------
*T S E T U N A P 
*E C C y S 0 C A 
*X 0 0 P E D T R 
*T L L E R E N M 
*------------------------ -------- -------- -------- --------
* PLACE A FEEDBACK MESSAGE IN THE PROP FEEDBACK FILE 
*------------------------ -------- -------- -------- --------
IFEEDBACK I 1 9 JOHNDOE NODEl DMSPOR TOFB 
IFEEDBACK I 1 9 JANE DOE NODE2 DMSPOR TOFB 
IFB I 1 3 JOHNDOE NODEl DMSPOR TOFB 
IFB I 1 3 JANE DOE NODE2 DMSPOR TOFB 

*------------------------
* SEND REMAINING REQUESTS AND COMMANDS TO THE LOGICAL OPERATOR 
*------------------------ --- -- -------- -------- --------

DMSPOS LGLOPR 

Figure 31. Restricting Authorization by Userid and Nodeid 

Since the user must explicitly issue the FEEDBACK or FB command to 
have a message placed in the feedback file, action routine DMSPOR TOFB 
must be specified in the routing table to carry out the required action. Any 
user trying to issue the FEEDBACK command that is not authorized by the 
routing table in Figure 31 will have their command sent to the logical 
operator as a message via action routine DMSPOS with parameter 
LGLOPR, as specified by the last record of the routing table. 

Chapter 15. The Programmable Operator Facility 353 



Prrogrammable Oper@tor 

Additional userids and node ids may be added to the table to grant 
authorization to issue these commands. Conversely, userids and node ids 
may be removed to revoke authorization. 

Restricting Command Use 

You can easily restrict command use to a specific group of users. You can 
specify first entries for those users who should be allowed to use the 
command, then specify an entry to trap the use of that command by any 
other user. Finally have an entry for any users who should have general 
command usage except for the restriction. The following example 
demonstrates command restriction. 

*------------------------ -------- -------- -------- --------
*T S E T U N A P 
*E C C Y S 0 C A 
*X 0 0 P E D T R 
*T L L E R E N M 
*------------------------ -------- -------- -------- --------
/CMD /SHUTDOWN / 1 12 LGLOPR HOSTNODE DMSPOR TOVM 
/CMD /SHUTDOWN / ACTIONX 
/CMD /NETWORK /SHUTDOWN / 1 25 NETOP1 HOSTNODE DMSPOR TOVM 
/CMD /NETWORK /SHUTDOWN / ACTIONX 
/CMD /NETWORK / 1 20 NETOP1 HOSTNODE DMSPOR TOVM 
/CMD /NETWORK / 1 20 NETOP RMTNODE DMSPOR TOVM 
/CMD /NETWORK / ACTIONX 
/CMD / 1 4 LGLOPR HOSTNODE DMSPOR TOVM 
/CMD / 1 4 MAINT HOSTNODE DMSPOR TOVM 
/CMD / 1 4 MAINT PROPNODE DMSPOR TOVM 
*------------------------ -------- -------- -------- --------

Figure 32. Restricting Command Use to Specific Users 

The Log File 

An RTABLE containing these entries allows LGLOPR at HOSTNODE to 
use the SHUTDOWN command, but anyone else trying to use it invokes 
ACTIONX. ACTIONX could be DMSPOS sending the offending command 
to the logical operator or it could be a user-written action routine taking 
some other action against the issuer, depending of the severity of the 
offense. The same description applies to the NETWORK SHUTDOWN and 
NETWORK commands. So, routing table coding provides considerable 
flexibility in granting or restricting command authority. 

If LOGGING is set to ON or ALL, every incoming message that the 
programmable operator facility receives is put into a CMS file referred to as 
the log file. If LOGGING is set to ALL, all error messages and command 
responses generated by the programmable operator facility are also put in 
the log file. If LOGGING is set ON, responses from CP, eMS, and 
programmable operator facility commands are not logged; messages are. 

354 VM System Facilities for Programming 

/ 



I?rogrammabie Operaitor 

Each message is identified by the date and time received. The userid and 
nodeid appear only if the text was sent by a CP MSG, SMSG, WNG, or sent 
using SCIF (Single Console Image Facility). The userid and nodeid are 
blank for a message sent by CPo A message sent by a remote RSCS network 
virtual machine has a nodeid, but no userid. A message sent from an NCCF 
or NetView operator console has '*NCCF' as the nodeid. 

Log entries generated and logged by the programmable operator have a 
userid of PROP. The log file has the following format: 

col 1 col 10 col 19 
I I I 
V V V 
yy/mm/dd hh:mm:ssffiuserid 

col 28 
I 
V 
nodeid": 

col 39 
I 
V 
text 

The log file contains variable length records. The maximum record length 
that the programmable operator facility can place in the log file is 132 
characters. Because the prefix uses 38 of the 132 characters, the text can be 
only 94 characters long. Therefore if the text of a message exceeds the 
maximum length of 94 characters the overflow is continued on the next 
record. This continued record has the same prefix as the preceding record, 
with no colon (:) preceding the text in column 37. 

A separate log file is started for each day. The name of the file is: 

LGyymmdd nodeid AS 

where: 

yy 

mm 

dd 

nodeid 

is the current year 

is the current month 

is the current day 

is the current RSCS nodeid of the system on which the 
programmable operator facility is running. 

When the programmable operator facility is started, stopped, or debug mode 
is changed, a record is written to the log file. The messages written to the 
file have the normal log prefix and a text corresponding to the changed 
function. Generally, responses to the programmable operator console 
commands are written to the log file when LOGGING is set to ON or ALL. 
It is also possible to have responses from the programmable operator 
commands written to the log file. See the LOGGING statement of the 
routing table or the programmable operator SET command for more 
information. Note that when LOGGING is set to ALL, the log file may be 
used as an alternative to spooling the virtual console. When node-checking 
is in effect, by having PROPCHK or HOSTCHK statements in the RTABLE, 
if a node changes status from UP to DOWN or vice versa, a message is also 
written to the log file. 

If a virtual machine resource limit is reached, such as "disk-full", it may 
not be possible to write another record to the programmable operator 

Chapter 15. The Programmable Operator Facility 355 



Programmable Operator 

facility log file. If this happens, a user-written EXEC is invoked to perform 
whatever recovery action the user thinks is desirable or necessary. The 
user EXEC must have the filename of PROPLGER. See "LOG Error Exit" 
on page 397 later in this section. 

Any VM user authorized in the active routing table17 can obtain the log file 
as a reader spool file by using the programmable operator GET LOG 
command (this does not include NCCF or NetView users). Messages can be 
placed in the log file by authorized users by using the programmable 
operator LOG command with no other action being taken. 

An old log file can be purged by any user authorized in the active routing 
table to use the programmable operator CMD command by issuing the CMS 
ERASE command. 

Logging NCCF or NetView messages in the Log File 

A message from an NCCF or NetView operator is logged just as any other 
message sent to the programmable operator. When logging a message or 
command from an NCCF or NetView operator, the keyword "*NCCF" is 
placed in the nodeid field of the log record. You must ensure that the 
identifiers for all of the NCCF or NetView operators who may access the 
programmable operator facility are unique. This is also an NCCF or 
NetView requirement. As a result, the operator identifier with the 
"*NCCF" nodeid is sufficient to identify the issuer of the programmable 
operator command. Also, messages received by the programmable operator 
facility from NCCF or NetView have the message type of '30'. 

Ensuring a Complete Log 

When the programmable operator facility routes a message to the logical 
operator, the message contains the userid of the sender. The operator, in 
responding to the message, may choose to send a message directly to the 
user without going through the programmable operator facility. However, 
if this is done, the message is not logged in the log file. To ensure that 
these messages are logged, the operator should send the message to the user 
through the programmable operator facility by using the programmable 
operator facility CMD command. For information about the programmable 
operator facility CMD command, See the "CMD Command" on page 369. 

Whether the message was sent through the programmable operator or not 
has little significance to the user. However, so that the messages received 
by the user always have the same id (the programmable operator facility id), 
the message should always be sent from the logical operator through the 
programmable operator facility. 

17 An NCCF or NetView operator cannot use the GET command to obtain the 
log file. Use CMS commands (and the programmable operator CMD 
command) to type the file or portions of the file or to send the file to a userid 
where you can process it. 

356 VM System Facilities for Programming 

/ 



Programmalble Opera~or 

In a Single System: To route a message through the programmable 
operator facility where the operator and user are on the same physical 
system, use the MSG command: 

MSG operator CMD MSG userl- RESPONDING TO YOUR REQUEST 

operator 

CMD 

MSG 

userl 

is the userid of the programmable operator facility virtual machine. 

is the programmable operator facility CMD command. 

is the VM command that the programmable operator facility will 
execute. 

is the userid of the user who will receive the message. 

RESPONDING TO YOUR REQUEST 
is the message text sent to the user. 

In VM Distributed Systems: To route a message through the 
programmable operator facility where the operator and user are not on the 
same physical VM system, use the SMSG command: 

SMSG netl MSG nodel operator CMD MSG user 1 - RESPONDING TO 
YOUR REQUEST 

netl 
is the userid of the network machine at the user's node. 

MSG 
(first appearance) is the RSCS message command. 

nodel 
is the nodeid of the programmable operator facility virtual machine. 

operator 

CMD 

MSG 

userl 

is the userid of the programmable operator facility virtual machine. 

is the programmable operator facility CMD command. 

(second appearance) is the VM command that the programmable 
operator facility executes. 

is the userid of the user to receive the message. 

Chapter 15. The Programmable Operator Facility 357 



Programmable Opera~or 

RESPONDING TO YOUR REQUEST 
is the message text sent to the user. 

In a Mixed Environment: To route a message through the programmable 
operator facility from the logical operator who is an NCCF or NetView 
operator to the user on a VM system, use PROP, an NCCF and NetView 
command as follows: 

PROP CMD MSG userl- RESPONDING TO YOUR REQUEST 

PROP 

CMD 

MSG 

userl 

is the NCCF or NetView c<?mmand that sends the message from an 
NCCF or NetView operator to the programmable operator facility. 

is the programmable operator CMD command. 

is the VM command that the programmable operator facility will 
execute. 

is the userid of the VM user who will receive the message. 

RESPONDING TO YOUR REQUEST 
is the ~essage text sent to the user. 

Note: Refer to "Helpful Hints" on page 367 for ways to reduce typing of 
long text strings. 

The Feedback File 

The feedback file is another CMS disk file (named FEEDBACK nodeid A5) 
that the programmable operator facility manages. The feedback file, unlike 
the log file, is not automatically written by the programmable operator 
facility. Authorized users can write time stamped notes and complaints 
about the operation of the system to this feedback file. To write a notice to 
the feedback file, you, as a user, must explicitly use the FEEDBACK (or 
FB) command. An example of such a message is 

M OP FEEDBACK RESPONSE TIME WAS SLOW DURING MORNING SHIFT. 

Because the feedback file is normally smaller than the log file, it is easier 
for the personnel in charge of the programmable operator facility's 
maintenance to review the users' comments and identify when and where· 
particular problems occurred. 

Each record in the feedback file is prefixed with the date and time the 
message was logged along with the sender's userid and nodeid. The 
feedback file has the following format: 

358 VM System Facilities for Programming 



col 1 col 10 col 19 
I I I 
V V V 
yy/mm/dd hh:mm:ss userid 

Progu-ammalb~e OrPeu-a~ou-

col 28 
I 
V 
nodeid: 

col 39 
I 
V 
text 

The feedback file contains variable length records. The maximum record 
length that the programmable operator facility can place in the feedback 
file is 132 characters. Because the prefix uses 38 of the 132 characters, the 
text can be only 94 characters long. Therefore if the text of a message 
exceeds the maximum length of 94 characters the overflow is continued on 
the next record. This continued record has the same prefix as the preceding 
record, with no colon preceding the text. 

Any user authorized in the active routing table except an NCCF or 
NetView operator18 can obtain the feedback file as a reader spool file by 
using the programmable operator GET FEEDBACK or GET FB command. 

An old feedback file can be purged by any user authorized in the active 
routing table to use the programmable operator CMD command by issuing 
the CMS ERASE command. 

Communications Checking 

In a VM-only environment, the programmable operator facility can operate 
either from the host system or from a distributed system in a network or 
from both sides. Special functions can be performed depending on the 
ability of the programmable operators to communicate through RSCS 
Networking. The purpose of these functions is: 

• To provide the host operator (logical operator) with timely information 
and/or action in the event of a break in communication with the 
programmable operator on one of the network's distributed systems. 

• To provide a distributed system with timely information and/or 
capability for action in the event of a break in communication with the 
host system. 

A programmable operator can periodically check on the link with another 
system to determine whether it is possible to communicate with that system. 
The systems to be checked must be identified in the routing table of the 
programmable operator doing the checking. This may be either the 
programmable operator at the host system checking on specified distributed 
systems or a distributed programmable operator checking on 
communications with its host system. When the programmable operator at 
the host system is checking on the distributed systems, the programmable 
operator needs another programmable operator running in the system 

18 An NCCF or NetView operator cannot use the GET command to obtain the 
feedback file. Use CMS commands (and the programmable operator CMD 
command) to type the file or portions of the file or to send the file to a userid 
where you can process it. 

Chapter 15. The Programmable Operator Facility 359 



Programmable Operator 

operator virtual machine on the distributed system. This is not required 
when a distributed system is checking on the host system. In other words, 
for "host checking", no programmable operator is required at the host 
system, but for "distributed system checking" programmable operators must 
be running at the distributed systems. These various types of checking may 
be collectively referred to as "node-checking". 

Note that the roles of the 'host' and 'distributed' systems need not be 
strictly defined. For example, a programmable operator may use the 
PROPCHK function to check communication with any other system (node) 
running a programmable operator in its system operator virtual machine in 
the network. With the HOSTCHK function, the system being checked is 
simply the system defined as the checking system's logical operator, and not 
necessarily 'the' host system for the network. 

The programmable operator facility that has been instructed to check on its 
distributed system(s) periodically tries to communicate with those systems 
by sending a message that causes a response. The programmable operator 
then waits a specified time for a response. For checking the host system 
(HOSTCHK), the acknowledgement request goes to the RSCS on the logical 
operator node. For checking the distributed systems (PROPCHK), it goes 
to the programmable operator on the distributed system. No response 
indicates that something has prevented communication between the host 
and the distributed system(s). Getting a response after being delinquent for 
a time indicates that communication between the programmable operators 
has been restored. With the SET command, the user is able to set the 
checking function ON or OFF. 

Any time that the programmable operator detects that a node has exceeded 
the time allowed for responding, that fact is recorded in the programmable 
operator log. Also logged is the fact that a node has resumed responding. 

When one of these conditions, no response or a late response, is detected, 
the programmable operator facility invokes one of two EXECs supplied by 
IBM for this purpose. For checking a distributed system, the PROPPCHK 
EXEC is invoked. For checking on the host, the PROPHCHK EXEC is 
invoked. 

The programmable operator doing the checking invokes the EXEC. For 
example, if a programmable operator on a distributed system has a 
HOSTCHK statement in its routing table, the PROPHCHK EXEC would be 
invoked if communication with the host system were lost for a long enough 
period that the request or the response were prevented from getting 
through. Similarly, if a programmable operator on a host system has a 
PROPCHK statement in its routing table, that programmable operator 
would invoke the PROPPCHK EXEC if communication with one of the 
specified distributed nodes were lost for such a period. These EXECs are 
supplied as samples only and may be modified or replaced with user-written 
EXECs, allowing the user to tailor the resulting action(s). 

The IBM-supplied PROPHCHK EXEC operates as follows: 

360 VM System Facilities for Programming 



Programmable Operator 

• When the logical operator's node fails to respond or resumes 
responding, type a message on the programmable operator console and 
send a message to the userid MAINT indicating that communication 
with the host system has been broken or restored. 

The IBM-supplied PROPPCHK EXEC operates as follows: 

• For each node that has failed to respond, notify the logical operator 
that the programmable operator facility is unable to communicate with 
that particular node (distributed system). 

• For each node that has resumed responding from a failed state, notify 
the logical operator that communication with that node (distributed 
system) has been reestablished. 

Note: PROPPCHK does not try to send a message to the logical operator if 
the logical operator is an NCCF or NetView operator. 

Invoking Programmable Operator Facility Commands 

The commands used with the Programmable Operator Facility can be 
executed by anyone who is authorized by the active routing table. If an 
unauthorized user issues a programmable operator facility command, the 
command is not executed but is routed to the logical operator. To send a 
command to the programmable operator facility you must send a message to 
the programmable operator facility virtual machine. The text of the 
message is the command to be issued. Unless otherwise noted, the response 
from the command is returned to the user who sent the command to the 
programmable operator facility virtual machine. Responses are sent one 
line at a time via the CP MSGNOH or MESSAGE commands. For NCCF or 
NetView operators, the responses are sent via the Programmable 
Operator/NCCF Message Exchange (PMX). These responses are displayed 
in the language in which the programmable operator virtual machine is set. 

The format of the message sent to the programmable operator facility 
virtual machine is the same as used with the CP MESSAGE command for 
local use and the CP SMSG command for distributed (network) use. In a 
mixed environment, an NCCF or NetView operator uses PROP, an NCCF or 
NetView command, to send messages to the programmable operator facility 
virtual machine. 

The local format is: 

Message 
MSG 

userid propcmd [ parameters ] 

Chapter 15. The Programmable Operator Facility 361 



Programmable Operator 

The distributed (network) format is: 

SMsg netid Msg nodeid userid propcmd [ parameters] 

netid 

Msg 

is the userid of the RSCS network machine at the user's node. 

is the required RSCS message command. It can be entered as M or 
MSG. 

nodeid 
is the nodeid of the programmable operator facility virtual machine. 

use rid 
is the userid of the programmable operator facility virtual machine. 

propcmd 
is the command to be executed by the programmable operator facility. 
See "Programmable Operator Facility Command Descriptions" for 
information about the commands. 

parameters 
are the parameters associated with the command to be executed. 

The format for an NCCF or NetView operator station is: 

I PROP I propcmd [parameters] 

propcmd 
is the command that the programmable operator facility will execute 

parameters 
are the parameters associated with the command to be executed. 

Notes: 

1. To use this format, you must be authorized by NCCF or NetView 

2. If you (NCCF or NetView operator) are not attached to the local 
system, use the NCCF or NetView ROUTE command to specify the 
domain where you want to execute the command. 

362 VM System Facilities for Programming 

/' 



Issuing Commands in the Single System Environment 

If the Programmable Operator Facility is running in the operator's virtual 
machine, a user on the same physical machine might send the messages: 

MESSAGE OPERATOR QUERY RTABLE 

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN? 

where "QUERY" is a programmable operator facility command. See 
"QUERY Command" on page 379 for information about the programmable 
operator facility QUERY command. 

Figure 33 shows how messages are transferred between a user, the 
programmable operator facility, and the logical operator when all are 
located on the same physical system. 

Local System 

Logical Operator 
Virtual Machine 

Userid = LGLOPR 
A--------------~ 

( ) (!) 
r----~~ 

Programmable.-(1) 
Operator ~ 
Virtual (2)-. 

.-(3) 

User Virtual 
Machine 

Machine -1 
Userid = I Userid = 
OPERATORt-(4)~ USER1 

(1) USERl issues the message: 

(2) 

MESSAGE OPERATOR QUERY RTABLE 

The programmable operator facility responds by sending 
the following message to USERl: 

PROP running with routing table 'PROP RTABLE AS' 

(3) USERl issues the message: 

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN? 

Because this message cannot be processed by the 
programmable operator facility, the message is routed 
to the logical operator. 

(4) The logical operator responds to USERl's message by 
sending a message to USERl by way of the programmable 
operator facility. (See 'Ensuring a Complete Log'). 

Figure 33. Example of Communication in the Single System Environment 

Chapter 15. The Programmable Operator Facility 363 



Programmable Operator 

Issuing Commands In The Distributed VM Environment 

A user (USER21) on another VM system (assuming a remote system with 
the nodeid of "NODE2", a network machine with the id of "NET2", and that 
the programmable operator facility is running in the operator's virtual 
machine with a userid of "OPERATOR") might send the messages: 

MESSAGE OPERATOR QUERY RTABLE 

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN? 

where "QUERY" is a programmable operator facility command. See 
"QUERY Command" on page 379 for information about the programmable 
operator facility QUERY command. 

Figure 34 shows how a user on one physical system exchanges messages 
with the programmable operator facility on a different physical system and 
how the programmable operator facility responds directly to a user on the 
same physical system or routes messages to the logical operator who is 
located on a different physical system. 

Local System 
Nodeid = NODEl 

Distributed System 
Nodeid = NODE2 

RSCS Virtual 
Machine 

~-----+-<l)~------~ 
~----~~~(2)-+------~ 
~----~~~ < 5 ) 

10 = NETl ~--f-(6)~----~ 
----A A· 

<l)<!)<!)<!) 

Jdll 
r-----.., V-V--

User 
Virtual 
Machine 

Userid = 
USERll 

Logical 
Operator 
Virtual 
Machine 

Userid = 
LGLOPR 

RSCS Virtual 
Machine 

Userid = 
OPERATOR 

I Figure 34 (Part 1 of 2). Example of Communication in the Distributed Environment 

364 VM System Facilities for Programming 



(1) LGLOPR issues the message: 

CP SMSG NETI MSG NODE2 OPERATOR QUERY RTABLE 

(2) The programmable operator facility responds by sending the 
following message to LGLOPR: 

PROP running with routing table 'PROP RTABLE A5' 

(3) USER21 issues the message: 

MESSAGE OPERATOR QUERY RTABLE 

(4) The programmable operator facility responds by sending the 
following message to USER21: 

PROP running with routing table 'PROP RTABLE A5' 

(5) USER21 issues the message: 

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN? 

Because this message cannot be processed by the programmable 
operator facility, the message is routed to the logical 
operator. 

(6) The logical operator responds to USER2l ' s message by sending a 
message to USER2l by way of the programmable operator facility. 
(See 'Ensuring a Complete Log'). 

I Figure 34 (Part 2 of 2). Example of Communication in the Distributed Environment 

Issuing Commands in a Mixed Environment 

In a mixed environment, message paths are more complex. A user on a VM 
system (VMUSER3) might send the messages: 

MESSAGE OPERATOR QUERY RTABLE 

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN? 

where "QUERY" is a programmable operator facility command. See 
"QUERY Command" on page 379 for information about the programmable 
operator QUERY command. 

The message sent containing the QUERY command simply follows the paths 
of a message sent by a user to the programmable operator facility in the 
same system. The message is processed by the programmable operator 
facility and a response is returned to the user (VMUSER3). 

Figure 35 on page 366 shows how messages are transferred between a user, 
the programmable operator facility, and an NCCF or NetView logical 
operator. It also shows how messages and commands are transferred from 
an NCCF or NetView operator to the programmable operator facility and 
its VM system. 

Chapter 15. The Programmable Operator Facility 365 



User CP Sys Op SNA Servo Mach. 

Userid= N N 
VMUSER3 PROGRAMMABLE P -(3)- -+C e 

+(4)- - OPERATOR M +(4)- -C t 
X +(5)- - F v-

I 
Userid= -(8)- -+ i 
OPERATOR 0 e 

r w 

C 

I 
A C X A A X A X X A 

M I M I I I I I I I I GCS 
S S 

t (I) 
@m~ lUCY 

lUCY *MSG---I 

(7) 
VM CP 

VMj 
VTAM 

NCCF 
or NetView 
Operator 
Station 

Operator id= 
LGLOPR 

I Figure 35 (Part 1 of 2). Example of Communication in the Mixed Environment 

366 VM System Facilities for Programming 

/ 



(1) VMUSER3 issues the message 

(2) 

(3) 

(4) 

MESSAGE OPERATOR WHAT TIME IS SHUT DOWN? 

that reaches the programmable operator facility through the IUCV 
*MSG service. The programmable operator facility determines that 
the message is to be routed to the logical operator. 

The programmable operator determines that the logical 0Berator is an 
NCCF or NetView operator and sends the message though I CV to the PMX. 

The PMX, upon receiving the message from IUCV, queues (through the 
NCCF or NetView Message Queueing Service) the message for display on 
the specified NCCF or NetView operator's console. 

Upon receiving the message from VMUSER3, the NCCF or NetView logical 
operator issues the command 

PROP CMD MSG VMUSER3 SHUTDOWN IS AT 10:00 PM. 

which travels back through the PMX, IUCV, and the programmable 
operator facility, before the response reaches VMUSER3's screen. 

(5) An NCCF or NetView operator issues a programmable operator command 

PROP QUERY RTABLE 

which is queued for the PMX. 

(6) The PMX sends the command as an IUCV message to the programmable 
operator. 

(7) The programmable operator receives the message from IUCV and processes 
it. Upon determining that the requester was an NCCF or NetView 
0Berator, the programmable operator sends any responses through 
I CV to the PMX. 

(8) The PMX receives the response: 

PROP running with routing table 'PROP RTABLE A5' 

from IUCV and queues the response for display on the specified 
NCCF or NetView operator's terminal. 

I Figure 35 (Part 2 of 2). Example of Communication in the Mixed Environment 

Helpful Hints 

The typing of large text strings, such as the message command string 
preceding the message text, can be minimized by assigning the string, up to 
the userid, to a PF key. An EXEC can also be used that prompts for, or 
accepts as parameters, that part of the message command that the user 
must type in. 

For example: 

SET PFOl IMMED SMSG NETl MSG NODE2 OPERATOR QUERY RTABLE 

Chapter 15. The Programmable Operator Facility 367 



Programmable Operator 

will allow the logical operator to press PFOI to find out the name of the 
active routing table when the logical operator and programmable operator 
facility are located on different physical systems. 

The CMS TELL and NAMES exec procedures may also be used by the 
logical operator to send a message to a user. If the logical operator has a 
NAMES file entry assigning the nickname PROPl to OP at node NODEl, 
the logical operator could send a message in the following manner: 

TELL PROPl QUERY RTABLE 

TELL PROPl CMD WNG ALL ... WILL RE-IPL IN 5 MIN - PLS LOGOFF. 

These exec procedures are described in VM/ SP CMS Command Reference 
and VM/SP CMS User's Guide. 

Programmable Operator Facility Command Descriptions 

The routing table controls authorization for the programmable operator 
facility. So, in the following command descriptions, an authorized user 
must have a routing table entry for the command he or she wants to issue. 
All programmable operator facility commands are sent by users as 
messages; these messages should be in English to ensure that they get 
routed properly. 

368 VM System Facilities for Programming 



CMD Command 

Usage Notes 

CMD Command 

Use the CMD command to execute CP or CMS commands in the 
programmable operator facility virtual machine. The command is accepted 
or rej ected by CP based on the CP user class defined for the programmable 
operator facility virtual machine. Also, the programmable operator facility 
may reject or accept the command based on the authorization granted in 
the active routing table. The user class assigned to the programmable 
operator facility virtual machine is determined by the installation. If 
accepted, the response from the command is returned to the issuer of the 
command. 

The format of the CMD command is: 

ivmcmd 

vmcmd 
is the VM command sent to the programmable operator facility virtual 
machine for execution according to the CMS IMPCP and IMPEX 
settings. 

1. Any commands that alter or overlay CMS storage (CP DEFINE 
STORAGE, CP IPL CMS, CP SHUTDOWN, etc.) will have an adverse 
effect on the operation of the programmable operator facility and should 
not be issued under the programmable operator facility. 

2. Reissuing the PROP command once the programmable operator facility 
is running will cause it to stop operating correctly. The user must then 
re-IPL CMS and restart the programmable operator facility using the 
procedure described under "Invoking the Programmable Operator 
Facility" on page 322. 

3. Issuing commands that cause a VM READ or a CP READ (such as the 
DDR command) will stop the programmable operator facility. It must 
then be restarted using the procedure described under "Invoking the 
Programmable Operator Facility," or the read must be answered from 
the console of the programmable operator facility virtual machine. 
Commands of this type should not be sent to the programmable operator 
facility. 

4. Line editing characters (CHARDEL, LINEDEL, LINEND, and 
ESCAPE), although interpreted by your terminal when you have SET 
LINEDIT ON in effect, are not interpreted as line editing characters 
when sent to the programmable operator facility. In other words, they 
are interpreted as the characters they are (that is, @, ¢, #, :). For 
example, the string: 

Chapter 15. The Programmable Operator Facility 369 



CMD Command 

Examples 

Responses 

M OP CMD ACCESS 191 A"#RECEIVE 

will cause an "INVALID MODE" A#RECEIV "" message to be 
returned to the issuer.· The default line editing characters may be 
defined by the installation. You may also define your own line editing 
characters by using the CP TERMINAL command. 

5. The programmable operator facility does not recognize the CMS 
immediate commands (HB, HI, HO, HT, HX, RO, RT, SO, TE, and TS). 
If you issue any of these commands, the programmable operator facility 
issues "Unknown CP/CMS command". 

The command issued at a virtual machine console: 

M OP CMD INDICATE 

M OP CMD QUERY FILES 

M OP CMD QUERY PRINTER ALL 

M OP CMD ERASE LG861015 NODE1 A5 

M OP CMD QUERY SEARCH 

M OP CMD LISTFILE 

The command issued at an NCCF or NetView operator terminal: 

PROP CMD INDICATE 

PROP CMD QUERY FILES 

PROP CMD QUERY PRINTER ALL 

PROP CMD ERASE LG861015 NODE1 A5 

PROP CMD QUERY SEARCH 

PROP CMD LISTFILE 

The response returned by CP or CMS is sent to the issuer of the command. 
After the response from CP or CMS, the programmable operator facility 
responds with: 

Comm-and complete 

370 VM System Facilities for Programming 

/' 



FEEDBACK Command 

Usage Notes 

Example 

Response 

FlEfElO)[BAC~( COmmaUlo] 

Use the FEEDBACK command to place comments about the operation of 
the system and/or the programmable operator facility in the feedback file. 
These comments are available for review by personnel responsible for 
maintenance of the programmable operator facility. The comment 
(preceded by the date and time it was received, and the sender's userid and 
nodeid) is placed in a file named "FEEDBACK nodeid A5,". 

The format of the FEEDBACK command is: 

I ~~EDBACK I text ... 

text •.. 
is the user's comments placed in the feedback file (FEEDBACK nodeid 
A5). 

1. Authorized VM users can retrieve the feedback file using thee GET 
FEEDBACK command (this does not include NCCF or NetView users). 

2. The length of the message is limited by the maximum length of the 
command used to send the message to the programmable operator 
facility. If the user desires to send a longer message, the command must 
be used multiple times. 

The command issued at a virtual machine console: 

M OP FEEDBACK SYSTEM RESPONSE WAS SLOW DURING THE MORNING 
SHIFT 

The command issued at an NCCF or NetView 'operator terminal: 

PROP FEEDBACK SYSTEM RESPONSE WAS SLOW DURING THE MORNING 
SHIFT 

Command complete 

Chapter 15. The Programmable Operator Facility 371 



GET Command 

Usage Notes 

Examples 

Response 

Use the GET command to retrieve one of the programmable operator 
facility files; the feedback file (FB or FEEDBACK) or the log file (LOG). 
The file is sent to the requesting user if he is authorized in the active 
routing table to receive it. If LOG is specified, the user will receive the log 
file for either the current day or the specified day. 

The format of the GET command is: 

GET I { FEEDBACK } 

r~G [yymmddl 

FEEDBACK or FB 
indicates that the feedback file is to be retrieved. 

LOG [yymmddl 
indicates that the log file for date "yymmdd" is to be retrieved. If no 
date is given, the log file for the current day is retrieved. 

1. An NCCF or Netview operator cannot use the GET command to 
retrieve the LOG and FEEDBACK files. Use CMS commands (and the 
programmable operator CMD command) to type the file(s) or portions of 
the files, or send the file(s) to some userid where you can process them. 

2. The file appears in the requesting user's virtual reader in DISK DUMP 
format. The user must execute a DISK LOAD or RECEIVE command to 
read the file. 

MOP GET FB 

M OP GET LOG 861030 

Command complete 

372 VM System Facilities for Programming 



LGLOPR Command 

Usage Notes 

lGlO~A COrr'"uIlmall1Hc] 

Use the LGLOPR command to assign or release yourself as the logical 
operator for the programmable operator facility under which the command 
is executed. This programmable operator command can be used by a VM 
user or an NCCF or NetView operator. 

Users are authorized in the active programmable operator routing table. 

LGLOPR 

ASN 

RLS 

RPL 

assigns the issuer of the command as the logical operator, if a logical 
operator is not currently assigned (i.e. the current LGLOPR is the 
default). If a logical operator is already assigned to the programmable 
operator facility, an error response is given. 

releases the issuer from being the logical operator, if he currently is 
the logical operator and assigns the default LGLOPR. If the issuer is 
not the logical operator, no operation is performed and the system 
gives the following response: 

DMSPOR763E Not currently assigned as LGLOPR, 
cannot be released 

replaces the current logical operator with the issuer of the command. 
The programmable operator determines if a logical operator is 
currently assigned. If there is, an implicit release is done. Then the 
issuer of the command becomes the logical operator. 

1. The system keeps the logical operator that is specified on the LGLOPR 
statement in the routing table as a default. You cannot release this 
logical operator. The LGLOPR ASN and LGLOPR RPL commands 
override the default. 

2. To ensure that messages are not lost when changing logical operators, 
the new logical operator should issue a "LGLOPR RPL" command, 
rather than the current logical operator issuing a "LGLOPR RLS" 
command and the new logical operator issuing a "LGLOPR ASN" 
command. 

3. If the default logical operator is the current logical operator and he 
issues the LGLOPR ASN command, CP will send a message stating that 
he already assigned as the logical operator 

Chapter 15. The Programmable Operator Facility 373 



lGLOPR Command 

Examples 

Responses 

4. The HOSTCHK function is suspended when an NCCF or NetView 
operator or a local VM user is assigned as the logical operator. It is 
resumed when a remote VM user is assigned as the logical operator. 

The command issued at a virtual machine console: 

MSG OP LGLOPR ASN 

The command issued at an NCCF or NetView operator terminal: 

PROP LGLOPR ASN 

Both the new and old logical operators receive the message: 

DMSPOR7581 {NCCFIVM} user userid [nodeid] is now LGLOPR for PROP 
on node nodeid 

to notify them of the change of logical operators. The requester also 
receives the response: 

Command complete 

374 VM System Facilities for Programming 



LOADTBL Command 

Usage Notes 

Use the LOADTBL command to dynamically load a new routing table. 
You, as a VM user or an NCCF or NetView operator, can specify whether 
or not the currently assigned logical operator should be replaced by the 
logical operator specified in the new routing table. 

I LOADTBL I [filename] [( RPL [) ] ] 

filename 

RPL 

is the name of the routing table to be loaded. If filename is not given, 
the default routing table (filename = PROP) is used. 

replaces the currently assigned logical operator with the logical 
operator specified in the new routing table. The logical operator is 
replaced only after the new routing table has been successfully loaded. 

If RPL is not specified, the logical operator in the new routing table 
simply becomes the new default logical operator, and any explicitly 
assigned logical operator (i.e. a logical operator assigned by the 
LGLOPR command) remains the logical operator. 

1. If any action routines named in the specified routing table can not be 
located or loaded, an error message is issued, and the programmable 
operator facility drops any action routine modules associated with the 
specified routing table. It then tries to reload the action routine 
modules associated with the routing table that was active before the 
LOADTBL command was issued. If it cannot load these modules, the 
programmable operator facility terminates operation. 

Note: If any of the action routines associated with the previous routing 
table were modified (that is, replaced in LOADLIB) between the time 
the programmable operator facility dropped the specified routing table 
modules and reloaded the previously active routing table modules, the 
modified version of the action routines are used when the previous 
routing table is reloaded. 

2. Only the filename is used to identify the routing table file to the 
LOADTBL command. 

3. Because DMSPOL is the action routine module executing the 
LOADTBL command, it is not dropped and reloaded as are the other 
action routine modules listed in the routing table. If you want to 
replace this module, you must stop the programmable operator facility 
(using the STOP command), make the desired modifications or 
replacement, and invoke the programmable operator facility again as 

Chapter 15. The Programmable Operator Facility 375 



LOADTlBl Command 

Example 

Responses 

described under "Invoking the Programmable Operator Facility" on 
page 322. 

If the programmable operator virtual machine is set up so that the 
programmable operator is started automatically when CMS is IPLed in 
that virtual machine, it is sufficient to do the replacement and then IPL 
CMS again. 

4. With the loading done by DMSPOL, it is possible for the other routines 
in DMSPOR to be replaced when a LOADTBL occurs. This permits 
changes to action routines other than DMSPOL to be made 
dynamically, without stopping the programmable operator. It is also 
possible to specify the name of a table to be loaded as a parameter to 
the action routine. The logical operator will be notified of the loading. 

5. If the current logical operator is the default logical operator (not 
explicitly assigned), then the current logical operator will be replaced 
even if the RPL option is not specified. 

6. When you issue LOADTBL and replace the logical operator, both the 
old and new logical operators receive the following message: 

DMSPOR7581 (NCCF I VM} user use rid [nodeid] is now LGLOPR 
f or PROP on node nodeid 

Both operators receive this message, even if you have not specified the 
RPL option. 

The command issued at a virtual machine console: 

Msa OP LOADTBL ROUTE3 (RPL 

The command issued at an NCCF or NetView operator terminal: 

PROP LOADTBL ROUTE3 (RPL 

New RTABLE not loaded 

PROP terminated 

PROP running with routing table fn ft fm 

376 VM System Facilities for Programming 

/ 



LOG Command 

Usage Notes 

Example 

lOG Command 

Use the LOG command to write a message to the log file. Use of the LOG 
command allows messages to be placed in the log file with no action taken 
by the programmable operator facility. 

The format of the LOG command is:" 

I text ... 

text... 
is the message text to be placed in the log file. 

1. All messages are logged whether or not the LOG command is explicitly 
used. 

2. Authorized VM users can retrieve the log file using the GET LOG 
command (this does not include NCCF or NetView users). The log file 
has a fileid of "LGyymmdd nodeid A5" where "yy" is the year, "mm" is 
the month, "dd" is the day, and "nodeid" is the nodeid of the system on 
which the programmable operator facility is running. 

The userid and nodeid of the sender is recorded along with the message. 

3. The length of the message is limited by the maximum length of the 
command used to send the message to the programmable operator 
facility. If you want to send a longer message, you must use the 
command multiple times. 

The command issued at a virtual machine console: 

M OP LOG THIS MESSAGE IS TO BE LOGGED. 

The command issued at an NCCF or NetView operator terminal: 

PROP LOG THIS MESSAGE IS TO BE LOGGED. 

Chapter 15. The Programmable Operator Facility 377 



lOG Command 

Response 

Command complete 

,/ 

378 VM System Facilities for Programming 



QUERY Command 

Ql!J[E~V Command 

Use QUERY RTABLE to find the name of the active routing table. 

Use QUERY PROPCHK and QUERY HOSTCHK to query the status of the 
programmable operator node-checking. 

Use QUERY LOGGING to query the status of the logging messages. 

Use QUERY LGLOPR to find the name of the currently assigned logical 
operator. 

The format of the QUERY command is: 

QUERY 

RTABLE 

{

RTABLE } PROPCHK [nodeid] 
HOSTCHK 
LOGGING 
LGLOPR 

displays the name of the active routing table. 

PROPCHK 
displays a message with node-checking status. The message will state 
whether PROPCHK is set ON or OFF. If a nodeid is supplied, only 
the node specified is checked. 

HOSTCHK 
displays a message with node-checking status. The message will state 
whether HOSTCHK is set ON or OFF. 

LOGGING 
displays a message with logging status. The message will state 
whether messages and responses are being logged (LOGGING ALL), 
incoming messages and special programmable operator messages are 
being logged (LOGGING ON), or there is no log (LOGGING OFF). 

LGLOPR 
for a VM logical operator, displays a message with the userid and 
nodeid of the operator. For an NCCF or NetView logical operator, 
LGLOPR displays only the userid (i.e. operator-id) of the operator. 

Chapter 15. The Programmable Operator Facility 379 



QUERY Command 

Example 

Responses 

The command issued at a virtual machine console: 

MOP QUERY RTABLE 

M OP QUERY PROPCHK NODEI 

M OP QUERY HOSTCHK 

M OP QUERY LOGGING 

M OP QUERY LGLOPR 

The command issued at an NCCF or NetView operator terminal: 

PROP QUERY RTABLE 

PROP QUERY PROPCHK VIvISYSl 

PROP QUERY HOSTCHK 

PROP QUERY LOGGING 

PROP QUERY LGLOPR 

PROP running with routing table in it im 
is received if the programmable operator facility is running. 

in 
is the filename of the active routing table. 

it 
is the filetype of the active routing table. 

im 
is the filemode of the active routing table. 

{PROPCHKIHOSTCHK} is ON 
is received if node-checking is in effect. 

{PROPCHKIHOSTCHK} is OFF 
is received if node-checking was specified in the RTABLE but is 
currently off. 

PROPCHK is {ONIOFF} for nodeid nodeid 
is received if a specified nodeid is being queried. 

DMSPOR762E Host checking is suspended -- LGLOPR not on a checkable 
node 
is received if the logical operator is an NCCF or NetView 
operator or a local VM user. 

380 VM System Facilities for Programming 

/ 



QllJlE~V Command 

DMSPOR690E {PROPCHKIHOSTCHK} not specified in RTABLE 
is received if node-checking was not specified in the current 
RTABLE. 

DMSPOR709E PROPCHK not specified in RT ABLE for nodeid nodeid 
is received if a nodeid was specified on the QUERY command 
and node-checking was not specified in the current RT ABLE for 
that node. 

Logging ALL 
is received if incoming messages and all programmable operator 
responses are being logged. 

Logging ON 
is received if incoming messages and special programmable 
operator responses are being logged. 

Logging OFF 
is received if no logging is being done. 

DMSPOR7581 {NCCFIVM} user use rid {nodeid} is now LGLOPR for PROP 
on node nodeid 
is received when the logical operator is being queried. 

Chapter 15. The Programmable Operator Facility 381 



SfET Command 

SET Command 

Use SET DEBUG to enter or exit the programmable operator facility 
DEBUG mode. DEBUG mode is used to do problem determination on the 
programmable operator facility. 

Use SET PROPCHK to set the periodic checking of the programmable 
operator on the distributed systems ON or OFF. The distributed systems 
are identified by the PROPCHK statements in the routing table of the host 
programmable operator. The programmable operator facility with the 
PROPCHK statement (e.g. the host system) does the checking. 

Use SET HOSTCHK to set the periodic checking of the link to the host 
system ON or OFF. HOSTCHK must be specified in the routing table of the 
programmable operator at the distributed system. The programmable 
operator facility with the HOSTCHK statement (e.g. the distributed system) 
does the checking. 

Use SET LOGGING to control messages going to the programmable 
operator log file. SET LOGGING allows the message sender control the 
logging level: no logging, logging incoming messages and special 
programmable operator messages, or incoming messages plus response 
messages. 

The format of the SET command is: 

SET r DEBUG {g~F } 
PROPCHK {ON } [nodeidJ 

OFF 

< HOSTCHK {ON } 
> 

OFF 

LOGGING {ON } 
OFF 

\. ALL J 

DEBUG{ON } 
OFF 

SET DEBUG ON stops the programmable operator facility from 
intercepting responses to CP commands. SET DEBUG OFF allows the 
programmable operator facility to return to its normal function of 
intercepting messages and responses from CPo SET DEBUG OFF is 
the initial setting. 

382 VM System Facilities for Programming 



Usage Notes 

StET Command 

PROPCHK {g~F}rwdeid ] 
SET PROPCHK OFF halts checking of the programmable operators on 
the distributed systems until this command is reissued to set the 
checking back on, or until the programmable operator is stopped and 
restarted, or the PROP LOADTBL command is issued. SET 
PROPCHK ON restarts the checking. If nodeid is specified, 
PROPCHK applies to the specified node only. The initial setting is 
determined by the existence of the PROPCHK statement(s) in the 
RT ABLE (ON if they exist, OFF if they do not). 

An error message is received if the SET PROPCHK command is given 
and the routing table does not contain a PROPCHK statement or if 
the nodeid specified in the SET PROPCHK command is not found in a 
PROPCHK statement in the routing table. 

HOSTCHK-{g~F} 

SET HOSTCHK OFF halts checking of the host system by the 
distributed system. SET HOSTCHK ON restarts the checking. The 
initial setting is determined by the existence of a HOSTCHK 
statement in the RTABLE (ON if it exists, OFF if it does not.) 

LOGGING {ON } 
OFF 
ALL 

SET LOGGING OFF causes the programmable operator facility to stop 
writing any messages to the log file. SET LOGGING ON or ALL 
causes logging to be resumed. SET LOGGING ALL causes logging of 
all programmable operator command responses, such as virtual 
machine console I/O generated by action routines. The LOGGING 
statement in the configuration portion of the routing table determines 
the initial setting. If no LOGGING statement appears in the routing 
table, the default is ON. 

1. The SET DEBUG command is only valid from the console of the 
programmable operator facility virtual machine. 

2. The SET DEBUG ON command permits an authorized user to stop the 
programmable operator facility from intercepting messages associated 
with CP commands entered from the console of the programmable 
operator facility virtual machine. The programmable operator facility 
responds to CP messages (MSG), warnings (WNG), and special messages 
(SMSG), and messages sent using the Single Console Image Facility 
(SCIF), but not to responses from CPo 

3. When SET DEBUG OFF is in effect, all responses to CP commands are 
intercepted by the programmable operator facility. SET DEBUG OFF is 
in effect when the programmable operator facility is initialized. 

Chapter 15. The Programmable Operator Facility 383 



SIET Command 

Example 

Responses 

4. If the logical operator is on a non-checkable node (for example an 
NCCF or NetView operator) when he turns HOSTCHK ON, the issuer 
of the SET command receives an error message. 

The command issued at the programmable operator virtual machine 
console: 

SET DEBUG ON 

SET DEBUG OFF 

The command issued at a virtual machine console: 

M OP SET HOSTCHK OFF 

M OP SET PROPCHK ON SYS2 

M OP SET LOGGING OFF 

The command issued at an NCCF or NetView operator terminal: 

PROP SET HOSTCHK OFF 

PROP SET PROPCHK ON SYS2 

PROP SET LOGGING OFF 

For commands sent by message: 

Command complete 

For commands issued at the programmable operator console: 

{PROPCHKIHOSTCHK} has been started 

{PROPCHKIHOSTCHK} has been stopped 

Logging has been started 

Logging has been stopped 

PROP running in DEBUG mode 

PROP has exited DEBUG mode 

384 VM System Facilities for Programming 

I 
I 

\ 



STOP Command 

Usage Note 

Response 

STOP Command 

Use the STOP command to stop the operation of the programmable operator 
facility. When the STOP command is issued, the programmable operator 
facility processes all outstanding messages, closes files, stops operation, and 
returns control to eMS. The STOP command is logged in the log file for 
the current day. 

'The format of the STOP command is: 

I STOP 

The STOP command is also valid from the console of the programmable 
operator facility virtual machine if an operator is logged on to the 
programmable operator facility virtual machine. 

PROP has terminated 

Chapter 15. The Programmable Operator Facility 385 



Action Routines 

Action routines are programs or EXECs that receive control in'response to 
the match of a message and a routing table entry. They handle a particular 
type of message or command intercepted by the programmable operator 
facility. A set of action routines is provided with the programmable 
operator facility. These need no tailoring to provide you with the control 
and function needed to operate the programmable operator facility. You 
can extend the programmable operator facility by writing a new action 
routine and adding it to the appropriate routing table. Action routines can 
be EXECs or written in Basic Assembler Language. (Basic Assembler 
Language action routines must also be added to the PROPLIB LOADLIB. 
You can do this by invoking CMSGEND PROP.) 

When the programmable operator facility invokes an action routine, it 
assumes that the originator of the message (the requester) is authorized to 
receive any responses or error messages issued by the action routine. 
Therefore, all VMCONIO responses (console I/O generated by LINEDIT, 
WRTERM, DMSERR, &TYPE, SAY, etc.) or error messages resulting from 
CP commands issued by the action routine are sent back to the requester. 
However, if the action routine uses the extended DIAGNOSE code X'OS' to 
issue a CP command and receive the responses in a buffer, the 
programmable operator facility never sees these responses, and therefore, 
cannot send them to the requester. 

An action routine is provided with the programmable operator facility that 
uses the extended DIAGNOSE code X'OS' to issue a CP command and 
receive the responses in a buffer. This method ensures that the responses, 
error messages, or informational messages from the CP command are NOT 
presented to the programmable operator facility as IUCV message types 3, 
4, or 7, respectively. Instead, the programmable operator will send the 
buffered messages or responses to the requester. 

If an action routine abends, abend error messages are sent to the logical 
operator and the requester (if any). Control is returned to the point in the 
programmable operator facility immediately following the action routine 
call. 

Note: Programs written in Basic Assembler Language can access the 
parameter list built by the programmable operator facility. The 
programmable operator parameters are available in a different fashion for 
EXEC action routines19• 

19 EXECs may be written using the System Product Interpreter, EXEC 2, or 
CMS EXEC languages. 

386 VM System Facilities for Programming 



Programmable OrPerra~olr 

The Action Routine Interface 

Action Routine Call Interface 

Action routines are loaded by the programmable operator facility as CMS 
nucleus extensions. As a result, they must be invoked by the programmable 
operator facility as CMS commands via SVC 202. Also, addresses cannot be 
resolved between separate nucleus extensions; they must be passed 
dynamically if they are desired. 

Action Routine Parameter Interface 

An installation can write additional action routines in Basic Assembler 
Language. Action routines may also be written as EXECs. Programs 
written in Basic Assembler Language can access the parameter list built by 
the programmable operator facility. (The programmable operator 
parameters are available in a different fashion for EXEC action 
routines--see below.) The parameter list contains a list of addresses 
pointing to data that may be significant to the action routine invoked .. The 
programmable operator facility then passes the address of the list as a 
parameter when it invokes the required action routine. See VM/SP Data 
Areas and Control Block Logic Volume 2 (CMS) for descriptions of the 
DSECTs mentioned below. 

The register conventions used for invoking an action routine are: 

• Register 1 points to a list of eight-byte tokens (CMS PLIST) containing 
the following information: 

TOKEN 1 Contains the command name (action routine name). 

TOKEN 2 Contains two fullwords. These fullwords contain the 
following: 

Fullword 1 - Contains the address of the PROP common 
area as described by the PROPCOM DSECT. 

Fullword 2 - Contains the address of a list of addresses that 
point to data that may be needed by the action 
routine. This list is described by the 
PARMLIST DSECT .. 

TOKEN 3 Contains eight X'FF's to mark the end of the parameter list. 

• Register 13 points to a standard OS eighteen word save area. 

• Register 14 points to the address that receives control when the action 
routine completes processing, that is, the address to which the action 
routine must return control. 

• Register 15 points to the action routine entry point and may be used as 
a base register. 

Chapter 15. The Programmable Operator Facility 387 



ProgU'amma[ole OperaftoU' 

R I ~ egister 1 
o 

Fu llword 1 ----+ 8 

Fu 11 word 2 ----+ C 

10 

18 

Figure 36 offers a graphic representation of the previous discussion. It 
illustrates the data areas that can be accessed through Register 1. 

Command Name 
(Action 
Routine Name) 

programmable 
operator 

common area 
pointer 

address list 
pointer 

8X ' FF' 

PLIST of three 
8-byte tokens 

+-TOKEN 1 

+-TOKEN 2 ! 

+-TOKEN 3 

Descr 

programmable 
operator 

common 
area 

ibed by PROPCOM DSECT 

Figure 36 (Part 1 of 2). Register Conventions for Invoking an Action Routine 

388 VM System Facilities for Programming 



Programmable Operator 

4 

8 

C 

10 

14 

18 

lC 

20 

24 

28 

2C 

30 

34 

38 

Data Item ---- Length 

Message text 

Message length 

IMessage text (tokenized) 

10 of network machine 

240 bytes 

4 bytes 

256 bytes 

Requester's userid 

Requester's nodeid 

Programmable operator's userid 

Programmable operator's nodeid 

Logical operator's userid 

Logical operator's nodeid 

Routing table fileid 

Parameter from Routing Table 

Message type (message class) 

2Action routine name 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

8 bytes 

18 bytes 

8 bytes 

1 byte 

8 bytes 

Address List described by P ARMLIST DSECT 

Efi1 ename 8 bytes 
filetype 8 bytes 
filemode 2 bytes 

IIn addition to the original message text, the message text is also provided in CMS tokenized form 
(eight-byte tokens followed by 8X'FF'). 

2The high order bit (X'80') of the last full word of this list of addresses is set to one to indicate that it 
is the last entry in the list according to standard OS linkage conventions. 

Figure 36 (Part 2 of 2). Register Conventions for Invoking an Action Routine 

Chapter 15. The Programmable Operator Facility 389 



Programmable Operator 

EXEC Action Routines 

Writing Action Routines 

Action routines may also be written as EXECs20. The programmable 
operator parameters are available in a different fashion for EXEC action 
routines. The method is described below. 

1. Having determined that the action routine is an EXEC, the 
programmable operator facility calls the action routine accordingly. 

2. The following information is passed as parameters (arguments) on the 
EXEC invocation, in this order: 

• Requester's userid 

• Requester's nodeid 

• Logical operator's userid 

• Logical operator's nodeid 

• Message type code 

• The programmable operator facility's userid 

• The programmable operator facility's nodeid 

• Networking machine userid 

• RT ABLE filename. 

3. The following parameters are stacked LIFO for the EXEC in this order: 

• RT ABLE PARAMETER field contents 

• Message text. 

To ease handling by an EXEC, if the requester is CP, the requester's userid 
and nodeid are "CP". 

How an action routine is written using Basic Assembler Language depends 
on the function(s) that the action routine performs and the conditions 
under which it runs. Since the programmable operator can use message 
content and message origin to determine which action routine to call, it 
may not be necessary for the action routine to check any further 
conditions. However, by using the PARMLIST supplied by the 
programmable operator facility, the action routine may obtain additional 
information about the message. Each entry in the P ARMLIST points to 

20 EXECs may be written using the System Product Interpreter, EXEC 2, or 
CMS EXEC languages. 

390 VM System Facilities for Programming 



Programmable Operator 

some item of data about the message just received or about the 
programmable operator environment. 

As described in the section, "Action Routine Parameter Interface" on 
page 387, the information initially provided to the action routine is in the 
form of a CMS tokenized PLIST. By loading the second full word of the 
second token of that PLIST into a register, the user can establish 
address ability to the PROP PARMLIST. For example, 

SAVE 
LR 
USING 
L 
USING 

(14,12) 
R12,R15 
ROUTINEX,R12 
R2 , 12 ( , R1) 
PARMLIST,R2 

SAVE REGISTERS 
LOAD BASE REGISTER 
ESTABLISH ADDRESSABILITY 
LOAD PROP PARMLIST ADDRESS 
PARM ADDRESSABILITY 

These instructions would be sufficient for many action routines to establish 
address ability for the action routine and the PROP PARMLIST. The 
following instructions could then be used to obtain the addresses of the 
requester's (message originator's) userid and nodeid. 

L 
L 

R4,PARMRUSR 
R6,PARMRNOD 

GET REQUESTER'S USERID ADDRESS 
GET REQUESTER'S NODEID ADDRESS 

The Programmable Operator DSECTs, such as PARMLIST, define the above 
labels. To include the PROP DSECT in the action routine insert the 
following assembler instruction in the source file for the routine: 

COpy PROP 

In addition, it may be desirable to include the CMS REGEQU macro 
instruction for register equates. When the action routine is complete, it is 
necessary to restore registers and branch to the address in register 14, or 
use the OS RETURN macro. 

Action Routine Error Message and Response Handling 

It is sometimes necessary to issue error messages and/or responses from an 
action routine that are to be sent to the message originator (requester). To 
do this, the action routine should simply TYPE the messages/responses (via 
LINEDIT, DMSERR, or WRTERM for action routines written in BAL, and 
&TYPE or SAY for EXEC action routines). Upon completion of the action 
routine, the programmable operator facility collects these VMCONIO 
messages (IUCV type 5 messages), as well as any error messages (IUCV type 
6 messages), and sends them back to the requester. To prevent the 
programmable operator facility from sending error messages from CP 
commands back to the requester, the action routine should be coded to use 
the extended DIAGNOSE code X'08' to obtain the responses in a buffer. 

Chapter 15. The Programmable Operator Facility 391 



Programmable Operator 
.,-,:.""" ! I 

Handling Console 1/0 in an Action Routine 

The installation must determine how an action routine is to handle console 
I/O generated by the virtual machine and CPo Normal operation of the 
programmable operator facility sets VMCONIO to IUCV (by default) before 
calling an action routine and sends the VMCONlO to the message 
originator (requester). If it is desired that console I/O (VMCONIO) 
produced by the action routine be typed on the programmable operator 
virtual machine console, the action routine must SET VMCONIO OFF. 
However, because there would not normally be an operator at the 
programmable operator virtual machine console, an installation can code 
an action routine to receive and handle VMCONIO instead of allowing the 
programmable operator to receive it and send it to the requester (message 
originator). To accomplish this, the action routine can receive the 
VMCONIO that was generated by using the IUCV RECEIVE function with 
message type 5 specified as the IUCV target class (TRGCLS). For details on 
using IUCV, refer to the section on lUCY earlier in this manual. 

An example of this may be found in the subroutine CALLARTN of the 
IBM-supplied module DMSPOA. To use IUCV, it is necessary'to include 
the CP COpy files, IPARML and EQU. 

CP generated console I/O (CPCONIO) should be handled differently than 
above. The CPCONIO setting should not be changed because this could 
cause the programmable operator facility to miss some asynchronous CP 
messages. 

If the action routine is to receive the responses from CP commands that it 
issues, it should use the DIAGNOSE code X'OS' support with a command 
response buffer, rather than trying to receive it with IUCV. (See 
"DIAGNOSE Code X'OS' -- Virtual Console Function" on page 9.) The 
reason for this is that other CP messages can be mixed in with the 
command response, and therefore the program cannot be assured of 
receiving its response in consecutive lUCY messages. 

If the CP command response is to be typed on the programmable operator's 
virtual machine console, the action routine should use a CMS function, 
such as WRTERM, to write the lines in the program's CP command 
response buffer to the terminal. 

Description of Supplied Action Routines 

The action routines supplied with the programmable operator facility are 
DMSPOR, DMSPOS, and DMSPOL. A parameter must be supplied for 
module DMSPOR. This parameter is the name of the function or action 
that DMSPOR is to perform. DMSPOS may be invoked along with a 
parameter, which, in this case, is a userid or nickname. DMSPOL may be 
invoked with a parameter, which is a routing table name. 

Note that new action routines are not required to be in this format. The 
programmable operator facility supports any desired number of action 

392 VM System Facilities for Programming 



Programmable Operator 

routines. Each one is loaded separately when the programmable operator 
facility is initialized, or when a LOADTBL command is issued. 

The following sections describe the action routines that are supplied with 
the programmable operator facility. These action routines (or subroutines 
in the case of DMSPOR) correspond to the programmable operator 
commands described later in this chapter. ' 

DMSPOR - Miscellaneous supplied action routines 

GET - Send the indicated file to an authorized user 

This routine sends programmable operator files, such as log and 
feedback files, to requesting user. The files are sent using the CMS 
DISK DUMP command. 

LGLOPR - Process the LGLOPR command 

This routine processes the LGLOPR command to assign (ASN), release 
(RLS), or replace (RPL) the logical operator as specified by an 
authorized user of the LGLOPR command. 

QUERY - Return a response to a user query 

This routine returns the fileid of the currently active routing table, 
returns the userid of the current logical operator, or returns the status 
of programmable operator node-checking or logging to the user who 
issued the command. 

SET - Change the status of specific functions 

This routine stops or resumes the periodic checking of the distributed 
systems or the host system, or the logging of messages in the log file. 

STOP - Stop the programmable operator facility 

This routine stops the programmable operator operation after 
processing currently queued messages. The programmable operator 
virtual machine returns control to CMS. 

TOFB - Write a message to the feedback file 

This routine attaches the date and time received to the head of the 
incoming message and writes it to the feedback file. See "The Feedback 
File" on page 358 for more information. 

TOVM - Execute a CP/CMS command 

This routine is invoked when the programmable operator CMD 
command is issued. The text following "CMD" is regarded as the CP or 
CMS command to be executed in the programmable operator virtual 
machine. The command is treated as if it were entered at a CMS 
console (that is, such things as synonyms and the IMPCP and IMPEX 

Chapter 15. The Programmable Operator Facility 393 



Programmable Operator 

DMSPOS - Route a message 

settings apply to its interpretation as supported by the CMS 
COMMAND SUBCOMM environment). The response to the executed 
CP or CMS command is returned to the authorized user who invoked 
the CMD command. 

Authorized users of the CMD command should be aware of the 
following: 

• Issuing commands that alter or overlay CMS storage, such as CP 
DEFINE STORAGE, CP IPL CMS, CP SHUTDOWN, and so on, has 
an adverse effect on the operation of the programmable operator 
facility. 

• Reissuing the PROP command once the programmable operator 
facility is running causes the programmable operator facility to stop 
operating correctly. The user must re-IPL CMS and restart the 
programmable operator facility using the procedure described under 
"Invoking the Programmable Operator Facility" on page 322. 

• Issuing commands that cause a VM READ or CP READ (interactive 
commands such as the DDR command) stop the operation of the 
programmable operator facility. The programmable operator facility 
must then be restarted in the manner described under "Invoking the 
Programmable Operator Facility" on page 322. 

• Line editing characters (pound sign (#), for example), as defined by 
the CP TERMINAL command, are not recognized as line editing 
characters by the programmable operator facility. 

• The CMS immediate commands (e.g. HB, HI, HO, HT, HX, RO, RT, 
SO, TE, and TS) are not recognized by the programmable operator 
facility. If a user issues any of these commands, he receives an 
"Unknown CP/CMS command" response from the programmable 
operator facility. 

In general, the programmable operator facility does no checking to 
ensure or prevent any of the above circumstances from occurring. 

DMSPOS sends (routes) a message to the user specified in the RTABLE 
PARAMETER field. The user is identified by a nickname from the CMS 
userid NAMES file or by a userid. If the user is on another system, 
identification must be through a nickname. LGLOPR may be specified in 
the PARAMETER field of the routing table, which would indicate that 
DMSPOS uses the value of the currently assigned logical operator. If no 
logical operator has been explicitly assigned, DMSPOS uses the value 
specified in the LGLOPR statement in the routing table. This is the default 
if the parameter field -is left blank. 

A message longer than 94 characters (including the 19-character 
programmable operator origin id) is split and sent as multiple messages. 

394 VM System' Facilities for Programming 



Programmable Operator 

The first piece is no more than 94 characters. The remaining pieces are no 
longer than 91 characters, and preceded by a continuation mark (" .. "). 
This splitting ensures that the message is small enough to be sent through 
an RSCS network. 

If an error occurs because of an invalid target id, for example, the 
nickname was not in the "userid NAMES" file, the programmable operator 
tries to send the message to the logical operator. 

Messages are sent with the CMS TELL command. If the programmable 
operator virtual machine is authorized (class B), the CP MSGNOH 
command is used. If the virtual machine is not authorized to use the CP 
MSGNOH command, then the CP MESSAGE command is used. For more 
information on the CMS TELL command, see the VM/SP CMS Command 
Reference. 

Notes: 

1. Using the CMS TELL command requires the user to have a SYSTEM 
NETID file set up. 

2. DMSPOS must not be invoked if the logical operator virtual machine is 
the same as the programmable operator virtual machine. Also, a 
parameter should not be specified that directs the message to the 
programmable operator virtual machine. 

To prevent a LOOP condition, a message being handled may not be sent on 
to the routing target by the DMSPOS routine. A message is not sent if it 
falls into anyone of the following categories: 

1. The preceding message could not be sent, and the current message is 
the same as the preceding message. In other words, the programmable 
operator receives an error return code when trying to send consecutive 
identical messages. 

2. The programmable operator tries to route a message that originated 
from the networking virtual machine on the programmable operator's 
node. The message is identical to the last message from that virtual 
machine that the programmable operator tried to route. For example, a 
local network machine detects that a link is down. 

3. The programmable operator tries to route a message that originated 
from the networking virtual machine on another system (node), and 
that message is identical to the last message that the programmable 
operator tried to route. For example, messages are being routed from 
system A to the logical operator who is supposed to be on another 
system (B), but is not logged on. The networking virtual machine on 
system B sends the programmable operator an error message each time 
it tries to route a message to the logical operator. This could cause a 
loop if not detected. 

If the DMSPOS routine tries to send a message to the logical operator, but 
for some reason the logical operator's network node is unavailable for 

Chapter 15. The Programmable Operator Facility 395 



Programmable Operator 

messages (not logged on, SMSG and/or MSG off), DMSPOS detects this 
condition and stops any further attempts to send that message. The unsent 
message, although logged in the current days log file, is not displayed at 
the logical operator's console. 

DMSPOL - Load a routing table 

Exit EXECs 

Exit EXEC Interface 

This routine dynamically loads the routing table indicated by the 
programmable operator LOADTBL command. The routing table name must 
be "filename RTABLE", where "filename" can be any name that conforms 
to CMS file naming conventions. Although the routing table name 
specified with the LOADTBL command takes precedence, it is also possible 
to specify in a routing table the filename of the table to be loaded as a 
parameter to the action routine. (This can be used as a default.) Therefore, 
any message selected by the system programmer can cause a new RT ABLE 
to be loaded. Also, the programmer can change the LOADTBL default of 
"PROP" to whatever is desired without changing the LOADTBL action 
routine. 

Note: With the loading of the routing table done by a separate action 
routine, it is possible for the other routines, DMSPOR and DMSPOS and 
any user-written routines, to be replaced when a LOADTBL occurs. This 
permits changes to action routines other than DMSPOL to be made 
dynamically without stopping the programmable operator. 

The programmable operator facility exit EXECs have the same parameter 
list provided as an EXEC action routine, with the exception that no 
RT ABLE parameter field value and no message text are stacked for the 
EXEC. When an exit EXEC is called, contents of the program stack depend 
upon which exit is being invoked. Descriptions of the stack contents for 
the different types of exits follow: 

Notes: 

1. Some of the parameter values have no meaning for a particular exit 
EXEC and their use is left to the discretion of the EXEC writer. For 
example, the requester's userid and nodeid have no meaning for the 
communication error EXECs, PROPPCHK and PROPHCHK. 

2. The programmable operator facility does not trap VMCONIO-type or CP 
EMSGs produced by exit EXECs as it does for action routines. 

396 VM System Facilities for Programming 



Programmable Operator 

Supplied Error Exit EXECs 

Communication Error Exit 

LOG Error Exit 

The PROPPCHK EXEC is invoked when the programmable operator facility 
determines that communication with a node that is being checked has 
changed status. When this occurs, the following information is stacked, 
LIFO, for the EXEC. 

1. Entries having the format 

"nodeid UP" or "nodeid DOWN" 

where: 

nodeid is the RSCS nodeid of a node that has changed communication 
status. 

UP indicates that the node had not been responding and has 
resumed responding to acknowledgement requests. 

DOWN indicates that the node had been responding and has ceased 
responding. 

2. Total number of nodeid entries stacked. 

The PROPHCHK EXEC is invoked when the programmable operator 
determines that communication with the logical operator node (if it is being 
checked) has changed status. If the status has changed, a line is stacked 
LIFO for the EXEC. The line is either "nodeid UP" or "nodeid DOWN", 
where "nodeid" is the RSCS nodeid of the logical operator and "UP" and 
"DOWN" have the same meaning as for PROPPCHK. 

If a virtual machine resource limit is reached, such as "disk-full", it may 
not be possible to write another record to the programmable operator 
facility log file. If this happens, a user-written EXEC is invoked to perform 
whatever recovery action the user thinks is desirable or necessary. The 
user EXEC must have the filename of PROPLGER. The programmable 
operator facility stacks (LIFO) the error code received from the CMS 
FSWRITE function. The programmable operator performs the following 
actions depending on the return code from the EXEC: 

RC = 0 recovered from error. The programmable operator facility should 
retry logging. If it is still unable to log, an error message is sent. 

RC = 4 unable to do recovery. The programmable operator facility should 
send an error message. 

The error message is sent to the logical operator. If the PROPLGER EXEC 
cannot be found, the programmable operator facility acts as if RC = 4 has 

Chapter 15. The Programmable Operator Facility 397 



Programmable Operator 
,! .t·· , 

been returned thus, an error message is sent to the logical operator. 
Whatever action is taken, the programmable operator facility continues 
operation. The IBM-supplied sample PROPLGER EXEC: 

• Closes the current log file 

• Sends the last two log files to the logical operator 

• Erases the last two log files. 

Note: PROPLGER does not try to send the log files to the logical operator 
if the logical operator is an NCCF or NetView operator. The files are 
instead sent to the programmable operator's virtual reader. You can 
change the EXEC to have the files sent elsewhere, if you wish. 

If the same logging error occurs on two successive logging attempts, (for 
example, two consecutive incoming messages cause the same logging error) 
the programmable operator sets LOGGING to "OFF". This prevents 
unpredictable looping in some situations. Note, though, that the logical 
operator may receive only two error messages when logging errors occur. 

Problem Determination - Debug Mode 

Debug mode determines problems with the programmable operator facility 
itself. It allows responses to commands issued from the programmable 
operator virtual machine console to be returned back to the console 
without being intercepted by the programmable operator facility. This 
permits any CP command (for example, CP TRACE and ADSTOP 
commands), to be issued without having its response trapped by the 
programmable operator facility. 

SET DEBUG ON may be used after the programmable operator facility 
responds with the message: 

PROP running - enter STOP to terminate 

indicating that the programmable operator facility is running and 
operational. The programmable operator facility then responds with the 
message: 

PROP is running in DEBUG mode 

which is also written to the log file. Once in debug mode, the 
programmable operator facility waits to receive messages from another 
virtual machine, or for the system programmer to enter input from the 
console. Because only two commands, STOP and SET are accepted from 
the programmable operator virtual machine console, the system 
programmer must enter the CP environment (using the PAl key.) to issue 
any CP commands. Otherwise, the commands are intercepted and rejected 
as invalid programmable operator commands. 

398 VM System Facilities for Programming 



Programmable Operator 

Pressing the PAl key or issuing the BEGIN command returns control to the 
programmable operator facility. From this environment, issuing SET 
DEBUG OFF returns the programmable operator facility to its normal 
function of trapping messages. 

Chapter 15. The Programmable Operator Facility 399 



Programmable Operator 

400 VM System Facilities for Programming 



VM is shipped with a system national language of American English. The 
system national language is automatically set for all virtual machines once 
VM is completely installed from the product tape -- when users log on, they 
receive messages, see panels, and can enter CMS commands in American 
English. 

You can also order other languages for your VM system. When you order 
another language, you receive a feature tape with files for that language on 
it. These files contain translated information that let users interact with 
VM in this new language. Unique VM/SP HPO messages are translated. 
However, unique VM/SP HPO HELP files for commands and messages are 
not translated. 

All VM languages are identified by a I-to-5 character langid. The langid 
for American English, the default language, is "AMENG." Here are the 
langids for the default language and the other languages you can order: 

Langid Language 

AMENG American English 

KANJI Kanji 

UCENG Upper Case English 

FRANC French 

PORTG Brazilian Portuguese 

GER German 

Contents of the Feature Tape 

The feature tape you receive for a language contains three types of files: 

• Source files 

• Object code files 

• Listing files. 

Chapter 16. Getting National Languages on Your System 401 



National Languages 
,., > Jl.~ 

Source Files and Listing Files 

The language source files are in external form -- they cannot be read 
internally, but they can be edited. These source files then are converted 
into object files that can be read internally. 

Fileid 

DMKMES[y] REPOS 

DMKMES[y] LISTING 

DMSMES[y] REPOS 

Description 

CP message repository. 
This contains the translated versions of CP 
system messages. 

This is the listing file produced when compiling 
the CP message repository. 

CMS message repository. 
This contains the translated versions of CMS 
system messages. 

DMSMES[y] LISTING This is the listing file produced when compiling 
the CMS message repository. 

DMSSPA[y] DLCS CMS system command syntax definition file. 
This contains the translated syntax definitions 
for CMS commands. 

DMSTRT[y] ASSEMBLE CMS uppercase translate table. 
This maps lowercase alphabetic characters to 
uppercase for the language. (DMSTRT can be 
modified to display certain characters in special 
situations.) 

CSIMES[y] REPOS GCS message repository. 
This contains GCS messages (not translated for 
Release 5). 

CSIMES[y] LISTING This is the listing file produced when compiling 
the GCS message repository. 

ATSCMR[y] REPOS TSAF message repository. 
This contains TSAF messages (not translated for 
Release 5). 

ATSCMR[y] LISTING This is the listing file produced when compiling 
the TSAF message repository. 

xxxxxxxx HELP ecce 

402 VM System Facilities for Programming 

HELP files, where xxxxxxxx is the command 
name and ecce is the VM component name (CP, 
CMS, etc.) The HELP files always have the 
same fileids regardless of the language. They 
reside on a different disk for each language. 

,/ 



;"., .. 

Object Files 

National languages 

Note: Not all Release 5 HELP files are 
translated. Also, VM/SP HPO-unique HELP files 
for commands and messages are not translated. 

y is a unique character (or two-character string) that corresponds to a 
particular langid and language. The possible values for this "country code" 
are shown in the following table. 

y langid language represented 

A KANJI Kanji 

B UCENG Uppercase English 

C PORTG Brazilian Portuguese 

D FRANC French 

E GER German 

These country code values are stored internally in a file called VMFNLS 
LANGLIST. 

Note: The American English versions of translatable source files have a 
six-character filename; they do not use the country code. 

The language object files have been converted to internal form. These files 
get loaded into the CP, CMS, or GCS nucleus during the installation 
procedure. 

(The text file produced for the TSAF message repository is loaded into the 
TSAF virtual machine storage using the SET LANGUAGE command.) 

Fileid Description 

DMKMES TXTlangid CP message repository, compiled by GENMSG 

DMSMES TXTlangid CMS message repository, compiled by GENMSG 

DMSSPA TXTlangid CMS system command syntax definition file, created 
by CONVERT COMMANDS 

DMSSSY TXTlangid CMS system national language translation and 
synonym table, created by CONVERT COMMANDS 

DMSTRT TXTlangid CMS uppercase translate table, created by 
VMFASM 

CSIMES TXTlangid GCS message repository, created by GENMSG 

ATSUME TXTlangid TSAF message repository, created by GENMSG. 

Chapter 16. Getting National Languages on Your System 403 



National Languages 

Installing National Language Files on Your VM System 

You must decide which language is to be the system national language 
(instead of American English), or if you just want to make a certain 
language available as an option to users. 

If you want a language other than American English to be the system 
national language, see "Installing aNew System National Language" in the 
VM/ SP Installation Guide or the VM/ SP HPO Installation Guide. 
However, if you want a new language available for people to use but you 
don't want it to be the system national language, you must save all 
language information as described below. 

Note: Some languages have character sets that require special hardware. 
Be sure that all display devices in your configuration can properly display 
the character set of any new language you add to your system. 

Loading the National Language Files From Tape to Disk 

The first thing you must do is load each language file from the feature tape 
to the proper minidisk. Use the VMFPLC2 command or the IT ASK EXEC 
to do this. (See the VM/SP Installation Guide or the VM/SP HPO 
Installation Guide for more information on VMFPLC2 and ITASK.) 

Saving National Language Files for CP and CMS 

For each additional language you want to install on your VM system, you 
must perform some tasks to make the language files available to users. (See 
the VM/ SP Installation Guide or the VM/ SP HPO Installation Guide for 
the tasks you must perform to change your system national language.) 
Here is an overview of these steps: 

1. Determine how much DASD space you need for the CP message 
repository. 

2. Specify DASD space for the CP repository. 
3. Create a DCSS to store the CMS language files. 
4. Regenerate the CP nucleus. 
5. Save CP language files on DASD and CMS language files in a DCSS. 
6. Update users' directory entries. 

Determine DASD space for CP Repository: If you plan to have more 
languages than American English available on your VM system, you must 
allocate DASD space for CP message repositories. 

Each language has its own repository file for CP messages. The feature 
tape for a language has three forms of this repository: a source file, a 
compiled object file, and a listing file. You must reserve DASD space for 
the compiled object file. The last few lines of the listing file indicates the 
number of 4K pages required to save this repository. 

404 VM System Facilities for Programming 



National languages 

Specify DASD space for the CP repository: Edit the DMKSNT 
ASSEMBLE file using the VM System Product Editor (XEDIT) and code a 
NAMELANG macro. The LANGID operand on this macro specifies the 
language of the repository you are saving. The NLSPGCT operatnd of this 
macro specifies the number of 4K pages to be reserved on DASD for the 
reposi tory. 

See the VMjSP Planning Guide and Reference or the VMjSP HPO 
Planning Guide and Reference for a detailed discussion of the NAMELANG 
macro. 

Create a DCSS to store the CMS language files 

1. Determine the size of the contents of the CMS repository 

a. Make a control file for the LANGMERG command that contains 
information for CMS language files. Name this file DMSlangid 
LANGMCTL. Here is a sample: 

* * This is the LANGMERG control file for langid in CMS. 
* The fileid of this control file is DMSlangid LANGMCTL. 
* 
DISK 19D 
ETMODE OFF 
MESSAGE DMSMES TXTlangid * 
PARSERS DMSSPA TXTlangid * 
SYNONYMS DMSSSY TXTlangid * 
TRTABLES DMSTRT TXTlangid * 
USER DMSUSE TXTlangid * 

h. Issue LANGMERG to create a single text deck from all CMS 
language files. 

LANGMERG langid DMS 

This text deck has the fileid DMSNLS TXTlangid. A second file is 
also created with the fileid DMSlangid LANGMAP. In this file, add 
the last length to the last starting location listed to find the sjze of 
the CMS segment (SYSPGCT). Now, given this size, you should 
determine the following: 

• DASD starting location (SYSSTRT) 
• Starting segment addresses in virtual storage (SYSHRSG) 
• Page addresses in virtual storage corresponding to the segment 

address (SYSPGNM). 

See the NAMESYS macro in the VMjSP Planning Guide and 
Reference or in the VMj SP HPO Planning Guide and Reference for 
more information about determining these values. 

2. Edit the DMKSNT ASSEMBLE file using XEDIT and code a 
NAMESYS macro. The SYSNAME operand on this macro, which 
names the DCSS, must be in this format: 

SYSNAME=NL~. 

Chapter 16. Getting National Languages on Your System 405 



National Languages 
M,e *-'i¥fMBiiNW4*'P' f'f' 

where: 

x 

y 

Is the levelid, which describes the particular version of a language 
DCSS. The levelid is a single alphameric character. 

Describes the langid, which is the identifier for the language whose 
files you are saving. 

Note: Be sure to use the same langid on NAMESYS that you 
specified on NAMELANG. 

See the VM/SP Planning Guide and Reference or the VM/SP HPO 
Planning Guide and Reference for a detailed discussion bf the 
NAMESYS macro and DCSSs. 

Regenerate the CP nucleus: After assembling the modified DMKSNT 
module, you should regenerate the CP nucleus to get the new System Name 
Table (DMKSNT) into effect. Refer to the VM/ SP Installation Guide or the 
VM/SP HPO Installation Guide for instructions on how to do this. 

Save CP files on DASD and CMS files in a DCSS: First, you have to 
make sure all users are logged off the system. 

1. Make a control file for the LANGGEN command that shows what object 
CP message repository and what CMS language files will be saved. 

DMKMES TXTlangid * 
DMSNLS TXTlangid A 

Name this file NLxy LANGGCTL where x is the levelid and y is the 
langid. 

2. Make sure you have a current copy of the SYSTEM LANGUAGE file 
on your A-disk. If you don't, copy the SYSTEM LANGUAGE file from 
the system disk to your A-disk, if one exists. If no SYSTEM 
LANGUAGE file exists, LANGGEN creates one on the first read/write 
disk you have accessed. 

3. Issue LANGGEN for this language, which puts the CP message 
repository into the DASD space named by NAMELANG, and puts the 
CMS text deck in the DCSS named in NAMESYS. 

LANGGEN langid 

4. If you have other language files you want to save, repeat steps la, 1b, 1, 
and 3. 

5. When you are finished, copy the SYSTEM LANGUAGE file from your 
A-disk back to the system disk. Note that you need read/write access to 
the system disk to perform this step. If this is not possible, have the 
system administrator copy the file to the system disk for you. 

406 VM System Facilities for Programming 



National Languages 

(See "The LANGMERG Command" on page 411 and "The LANGGEN 
Command" on page 413 for detailed explanations of the LANGMERG and 
LANGGEN commands.) 

Update User's Directory Entries: You must update the directory for 
anyone who wants this new language as a system default when they log on. 

All users' virtual machines are set to the system national language during 
logon, unless their directory contains an "OPTION LANG langid" 
statement that overrides the system national language. 

If you want to change such a user's default language, you must do one of 
two things: 

1. If the user was set to the system national language, add an "OPTION 
LANG langid" statement to that user's directory. Or, 

2. If the user was set to a different default language, change the langid in 
the directory statement "OPTION LANG langid." 

Users can now interact with VM in this new language. The language 
information is either automatically available to the users when they log on, 
or available by using the SET LANGUAGE command during a CMS 
seSSIon. 

Saving National Language Files for GCS 

If you want GCS to use a particular language to issue messages, you must 
build GCS with the appropriate text decks using VMFLOAD. 

Adding National Language Information for an Application 

VM is shipped with a single "application", CMS. However, you can add 
other applications to VM; these may be system applications, such as GCS or 
TSAF, or your own applications, such as an accounting package. 

The application you add may include message files or command syntax files. 
If it does, and if you want the application to be available in another 
language already on your system, you must follow these steps: 

1. Create an identifier for the application. 
2. Ensure that the files for the new application can fit in the DCSS for a 

-language. 
3. Compile source message or command syntax files into object code. 
4. Create a control file for the LANGMERG command, and then issue 

LANGMERG to create a single text deck from the application files. 
5. Create a control file for the LANGGEN command, and then issue 

LANGGEN to save the application text deck in a language DCSS. 

Chapter 16. Getting National Languages on Your System 407 



National Languages 
Hi ¥'iiMt&¥G ij!.WwM¥§##m-1s eMM4ii}ii-$@US§WWiWiiMW#.t§we 

You must repeat these steps once for every language on the system that will 
support the new application. 

Create an identifier for the application: You must give the application a 
3-character identifier, called an applid. You will use this applid when 
issuing commands to save the application's files for a language. The applid 
for CMS is "DMS." 

Check the size of the language DCSS: You must ensure that the 
application's files can fit in the language DCSS. (The size of a DCSS is 
defined on the NAMESYS macro in CP's System Name Table, DMKSNT.) 
If a DCSS is not large enough to accommodate the new application, you 
must follow these steps: 

1. Change the NAMESYS macro that is coded for the language DCSS in 
CP's System Name Table; 

2. Regenerate the CP nucleus; and 
3. Re-IPL the system to activate the new System Name Table. 

Compile the Message Repository: If the application has a source message 
repository file, issue GENMSG to convert it into a machine-readable object· 
file: 

GENMSG fn ft fm applid langid (options 

(See the VM/ SP CMS Command Reference for a detailed explanation of 
GENMSG.) 

Compile the Command Syntax File: If the application has a source 
command syntax file, issue CONVERT COMMANDS to convert it into a 
machine-readable object file: 

CONVERT COMMANDS fn ft fm (options 

(See the VM/ SP CMS Command Reference for a detailed explanation of 
CONVERT COMMANDS.) 

Create a LANGMERG Control File: This file identifies the language files 
for this application. You should name this file "ay LANGMCTL" where a 
is the applid and y is the langid for the language files. Here is a sample 
LANGMERG control file for an application that has a message file and a 
command syntax file: 

* * This is the LANGMERG control file for 
* langid in applid. 
* The f~leid of this control file is 
* ~ LANGMCTL. 
* where £ is the applid and 
* y is the langid for the language files. 
* 
DISK address 
ETMODE OFF 
MESSAGE applidMES TXTlangid * 
PARSERS applidSPA TXTlangid * 

408 VM System Facilities for Programming 



National Languages 

Issue the LANGMERG command: LANGMERG makes one text deck 
from all the application's language files: . 
LANGMERG langid applid 

See "The LANGMERG Command" on page 411 for a complete discussion of 
LANGMERG. 

Update the LANGGEN control file: A LANGGEN control file should 
exist for every language that is supported on your system. (The default 
identifier is "NLxy LANGGCTL," where x is the levelid and y is the langid 
for the file.) This file contains the language text decks for all applications. 
You must add an entry for the new application's text deck; it should be in 
the format "applid TXTlangid." Here is an example of a text deck for a 
language that has CMS and one other application: 

DMSNLS TXTlangid A 
apolidNLS TXTlangid A 

Issue the LANGGEN command: LANGGEN saves the application's text 
deck in the language DCSS. This new version of the DCSS attaches to a 
user's virtual machine when that user issues a SET LANGUAGE command: 

LANGGEN langid 

See "The LANGGEN Command" on page 413 for a complete discussion of 
LANGGEN. 

Updating Files for an Existing National Language 

When CMS or a CMS application using NLS has changed some message or 
command syntax information, you will have to update the language DCSS. 
Or, if some message information has changed for CP, you will have to 
update the repository that is on DASD. 

1. For message repositories and command syntax definition files, issue the 
VMFNLS EXEC. 

VMFNLS fn ft ctrlfile (options 

(See the VM/SP Installation Guide or the VM/SP HPO Installation 
Guide for a detailed explanation of VMFNLS.) 

2. Issue a LANGMERG command, with the appropriate control file, to get 
the changed file(s) into the merged object file in machine-readable 
format. 

3. Issue a LANGGEN command, with the appropriate control file, to get 
both the updated CP message repository (which is on DASD) and the 
updated language DCSS saved. 

4. Re-IPL the system. CP must be re-IPLed after resaving the repository. 

Chapter 16. Getting National Languages on Your System 409 



National Languages 

Deleting a National Language 

If you have a national language available on your system,' but decide that 
you no longer want the language available to users, you must follow these 
steps: 

1. Edit (with XEDIT) DMKSNT ASSEMBLE and delete the NAMESYS 
and NAMELANG entries for the langid you want to remove. 

2. Regenerate the CP nucleus to get the new DMKSNT ASSEMBLE file 
into effect. 

3. Update the directory entry of any user who had this language as their 
logon default. If this is not done, a user receives this error message 
when logging on: 

DMKLOH365E Requested language langidl is unavailable. 
Language langid2 set. RC=rc 

The system national language is set for the user's virtual machine. 

4. Re-IPL the system. 

You must also delete language information for any application (other than 
eMS) that was available in that language. 

Deleting Language Information for an Application 

If you decide that you no longer want to have language information for an 
application in a language DeSS, here are some steps you must perform: 
(you must do this once for each application) 

1. Delete the entry for the application in the LANGGEN control file of the 
language. 

2. Issue the LANGGEN command for the language that is getting this 
application deleted. 

3. If any users no longer want this language as their default, update their 
directory entry. 

You must perform this sequence of steps when you delete language 
information for one application. If you are deleting information for an 
entire language, you must go through these steps once for every application 
that uses that language. 

410 VM System Facilities for Programming 



National Languages 

The LANGMERG Command 

Use LANGMERG to combine all the language-related files for an 
application into one text file. The LANGGEN command can then load this 
single text file into a DCSS as a language segment. 

You should use LANGMERG for two purposes: 

1. When you have changed something in a language file and you want to 
recombine all the updated language information for an application. 

2. When you are building a language text deck for an application. 

The format of LANGMERG is: 

ILANGMERG Ilangid applid [( CTL filename D]] 

where: 

langid 
represents the language whose text file is being created. A langid may 
be I-to-5 characters in length and must be made up of only CMS file 
system characters. 

applid 
represents the application whose text file is being created. This must 
be three characters long. 

CTL filename 
specifies the filename of a control file that is used instead of the 
default ay (where a is the applid and y is the langid for the language 
files). The file type of this control file must be LANGMCTL. 

See below for more information about LANGMERG's control file. 

Notes: 

1. The single text deck created by LANGMERG has the fileid applidNLS 
TXTlangid. You can then use the LANGGEN command to save this text 
deck in a DeSS. 

2. When you want to use a different language file, you must either 

a. Edit the default LANGMERG control file, or 
b. Make your own control file and specify it as an option when you 

invoke LANGMERG. 

3. LANGMERG creates a map on your A-disk which shows where language 
information is stored within a text deck. The fileid of this map is ay 
LANGMAP where a is the applid and y is the langid for the map. 

Chapter 16. Getting National Languages on Your System 411 



National Languages 

4. The text files produced by CONVERT COMMANDS may be empty. 
LANGMERG detects this condition and notes it in the LANGMAP file. 
This normal condition indicates that no entries were produced for the file. 

LANGMERG's Control File 

LANGMERG's control file supplies information about the language and 
identifies which files are to be loaded. You have to create a LANGMERG 
control file to issue the LANGMERG command. 

The LANGMERG control file may contain the following types of records: 

1. Comment - "*,, 

Anything may follow the * on a comment record. The asterisk must 
be the first character on the record. 

2. A DISK record, which identifies the address of a disk that is 
associated with the language. 

DISK vaddr 

For CMS, the DISK record identifies the HELP disk; other 
applications can use this record for different purposes. 

3. An ETMODE record, which identifies whether the language named 
is a double-byte character set (DBCS) language. 

ETMODE ONIOFF 

ETMODE should be ON if the language is a DBCS language. If this 
record is omitted in the control file, OFF is assumed. 

4. Records which identify the fileids of language files in the language 
control block: 

keyword [fileid] 

Valid keywords are: 

MESSAGE for a system message repository 
PARSERS for system command syntax definition files 
SYNONYMS for system national language synonym and 

translation file 
TRTABLES for translate tables 
USER for your installation's use. 

"fileid" is a filename, and optionally a filetype and filemode, that 
identifies from where the information is to be read. The filenames 
should be in this format: 

applidMES 
applidSPA 

412 VM System Facilities for Programming 

for a system message repository 
for system command syntax definition files 



* 

applidSSY 

applidTRT 
applidUSE 

National languages 

for a national language system synonym and 
translation file 
for translate tables 
for your installation's use. 

The default filetype is TXTlangid, and the default filemode is *. 

Example: Use the following LANGMERG control file for CMS in 
American English (applid for CMS is "DMS"; langid for American English 
is "AMENG"): 

* This is the LANGMERG control file for American English in CMS. 
* The fileid of this control file is DMSAMENG LANGMCTL. 
* 
DISK 19D 
ETMODE OFF 
MESSAGE DMSMES TXTAMENG * 
PARSERS DMSSPA TXTAMENG * 
SYNONYMS DMSSSY TXTAMENG * 
TRTABLES DMSTRT TXTAMENG * 
USER DMSUSE TXTAMENG * 

The order of the records in the LANGMERG control file determines where 
the application's files will go in the language DCSS. You may be able to 
improve your system's performance by changing the order of these files. 

The LANGGEN Command 

Use LANGGEN when adding a language to your system, adding an 
application to a language, or regenerating a language after a 
language-related file has been changed. 

The LANGGEN command gets all the text files created by LANGMERG for 
a language and saves them in a DCSS named NLxy, where x is the levelid 
and y is the langid for the DCSS. 

LANGGEN also saves CP's message repository on DASD. 

The format of LANGGEN is as follows: 

I LANGGEN Ilangid [I eve lid] [( CTL filename [)ll 

where: 

langid 
Represents the language whose files you are saving in a DCSS. A 
langid may be one-to-five characters in length and must be made up of 
only CMS file system characters. 

Chapter 16. Getting National Languages on Your System 413 



National Languages 

levelid 
is one character (A-Z,O-9) that identifies the version of the DCSS being 
built. It is used as the third character of the DCSS name after "NL." 
If omitted, it defaults to "S." 

CTL filename 
specifies the filename of a control file to be used instead of the default 
of NLxy, where x is the levelid and y is the langid for the file. The 
filetype of this control file must be LANGGCTL. 

(See below for more information about LANGGEN's control file.) 

Notes: 

1. You must have the system national language set on your virtual machine 
to use the LANGGEN command. The virtual machine must be large 
enough to include the segment being saved. 

2. You can use the levelid operand of LANGGEN when you want to have 
more than one version of a language DCSS. For instance, you may have 
an American English DCSS called NLSAMENG that contains everything 
you want; however, you want to add some things to the DCSS while 
preserving your original copy. You could call this new American English 
DCSS NL2AMENG. If you want to save a language DCSS with a different 
levelid, a DCSS whose name contains the levelid must be defined in 
DMKSNT. This new language DCSS can be used by building a new 
CMS nucleus and specifying the new levelid in response to message 295R 
during the build process. Note that you must have a saved language 
DCSS with this levelid for every language that will be used with the new 
CMS nucleus. 

3. When it successfully saves a language DCSS, LANGGEN tries to add an 
entry with that langid to the SYSTEM LANGUAGE file. For this to be 
successful, a copy of the SYSTEM LANGUAGE file must be on a 
read/write disk accessed before any read-only disk that contains a 
SYSTEM LANGUAGE file. To ensure this, copy the SYSTEM 
LANGUAGE file from the S-disk to your A-disk before running 
LA NG GEN. When you are done, the SYSTEM LANGUAGE file on your 
A -disk must be copied back to the system disk. If you do not have 
read/ write access to the system disk, ask someone who does to copy it back 
to the system disk for you. 

4. LANGGEN creates a map on your A-disk which shows the location of 
each application text deck that was loaded into the DCSS. The fileid of 
this map is NLxy DCSSMAP where x is the levelid and y is the langid 
for the map. 

For more information about DCSSs, see the VM/SP Planning Guide and 
Reference or the VM/ SP HPO Planning Guide and Reference. 

414 VM System Facilities for Programming 



National Languages 

LANGGEN's Control File 

You must create a LANGGEN control file to issue the LANGGEN 
command. 

For CP, the LANGGEN control file contains the identifier of the CP 
message repository. LANGGEN loads this message repository on the DASD 
that was previously defined with the NAMELANG macro. LANGGEN then 
saves the repository using DIAGNOSE code X'CC'. 

For CMS or other applications, this control file identifies the language text 
decks (files) that LANGGEN loads into a DCSS for the language. These 
language text decks, which are produced by the LANGMERG command, 
have a fileid of the form applidNLS TXTlangid *. 

The order of the CMS and CMS application files in the LANGGEN control 
file determines their order in the DCSS. Also, you may not have a 
LANGGEN control file that identifies only an application; you must include 
an entry for CMS or else the language is not saved. 

Example: Here is a sample LANGGEN control file for American English 
(langid= AMENG). The file identifies text decks for CP, CMS, and two 
applications named API and AP2. 

DMKMES TXTAMENG F 
DMSNLS TXTAMENG F 
AP1NLS TXTAMENG G 
AP2NLS TXTAMENG B 

When adding a new file for an application, you must be sure to include that 
application's text deck in the LANGGEN control file. 

Chapter 16. Getting~ National Languages on Your System 415 



/ 

416 VM System Facilities for Programming 



Appendbces 

• Appendix A: CP Device Classes, Types, Models, and Features (for 
DIAGNOSE code X'24') 

• Appendix B: Sample CMS IUCV Program 

• Appendix C: Converting Programmable Operator Routing Tables 

Appendixes 417 



418 VM System Facilities for Programming 



Appendil( A. CP Device Classes, Types, Models, and Features 

DIAGNOSE code X'24' requests CP to provide a virtual machine with 
identifying information and status information about a specified virtual 
device. The virtual machine must specify the virtual device for which 
information is requested. CP returns information about the virtual device 
and associated real device in the Rx, Ry, and Ry + 1 registers. CP also 
provides a condition code identifying the specific device information 
returned to the virtual machine. These codes are as follows: 

DEVICE CLASS CODES 

Code 
X'SO' 
X'40' 
X'20' 
X'lO' 
X'OS' 
X'04' 
X'02' 
X'Ol' 

Device Class 
Terminal Device 
Graphics Device 
Unit Record Input Device 
Unit Record Output Device 
Magnetic Tape Device 
Direct Access Storage Device 
Special Device 
Fixed-Block Storage 

DEVICE TYPE CODES 

• For Terminal Device Class 

Code 
X'SO' 
X'40' 
X'40' 
X'30' 
X'20' 
X'20' 
X'lC' 
X'IS' 
X'14' 
X'lO' 
X'OS' 
X'OO' 
X'OO' 
X'OO' 
X'OO' 

Device Type 
Binary Synchronous Line for Remote 
2700 Binary Synchronous Line 
2955 Communication Line 
Start/Stop Console 
Telegraph Terminal Control Type II 
Teletype Terminal 
Undefined Terminal Device 
IBM 2741 Communication Terminal 
IBM 1050 Data Communication System 
IBM Terminal Control Type I 
Synchronous Data Link Control 
IBM 3210 Console 
IBM 3215 Console 
IBM 2150 Console 
IBM 1052 Console 

Figure 37 (Part 1 of 6). CP Device Classes, Types, Models, and Features 

Appendix A. CP Device Classes, Types, Models, and Features 419 



• For Graphics Device Class 

Code 
X'CO' 
X'80' 
X'40' 
X'20' 
X' 10' 
X'08' 
X'04' 
X'04' 
X'04' 
X'04' 
X'Ol' 
X'Ol' 
X'Ol' 
X'02' 
X'02' 
X'02' 
X'02' 
X'02' 
X'02' 

Device Type 
High Function Graphics Device 
IBM 2250 Display Unit 
IBM 2260 Display Station 
IBM 2265 Display Station 
IBM 3066 Console 
IBM 1053 Printer 
IBM 3138 System Console 
IBM 3148 System Console 
IBM 3158 System Console 
IBM 3277 Display Station 
IBM 3278 Display Station 
IBM 3279 Display Station 
IBM 3290 Information Panel 
IBM 3284 Printer 
IBM 3286 Printer 
IBM 3287 Printer 
IBM 3288 Printer 
IBM 3289-E Printer 
IBM 4250 Printer 

• For Unit Record Input Device Class 

Code 
X'90' 
X'88' 
X'84' 
X'82' 
X'81' 
X'80' 
X'40' 
X' 24' 
X'22' 
X'21' 
X'20' 

Device Type 
IBM 2520 Card Reader/Punch 
IBM 1442 Card Reader/Punch 
IBM 3505 Card Reader 
IBM 2540 Card Reader 
IBM 2501 Card Reader 
Card Reader 
Timer 
IBM 1017 Paper Tape Reader 
IBM 2671 Paper Tape Reader 
IBM 2495 Magnetic Tape Cartridge Reader 
Tape Reader 

Figure 37 (Part 2 of 6). CP Device Classes, Types, Models, and Features 

420 VM System Facilities for Programming 



• For Unit Record Output Device Class 

Code 
X'90' 
X'88' 
X'84' 
X'82' 
X'80' 
X'4D' 
X'4B' 
X'4A' 
X'49' 
X'47' 
X'46' 
X'45' 
X'44' 
X'43' 
X'42' 
X'41' 
X'40' 
X'24' 
X'20' 

Device Type 
IBM 2520 Card Punch 
IBM 1442 Card Punch 
IBM 3525 Card Punch 
IBM 2540 Card Punch 
Card Punch 
IBM 3800 Model 8 Printing Subsystem 
IBM 4248 Printer 
IBM 4245 Printer 
IBM 3800 Model 3 Printing Subsystem 
IBM 3262 Printer 
IBM 3289 Printer 
IBM 3800 Modell Printing Subsystem 
IBM 1443 Printer 
IBM 3203 Printer 
IBM 3211 Printer 
IBM 1403 Printer 
Printer 
IBM 1018 Paper Tape Punch 
Tape Punch 

• For Magnetic Tape Device Class 

Code 
X'82' 
X'80' 
X'40' 
X'20' 
X'10' 
X'08' 
X'04' 
X'02' 
X'Ol' 

Device Type 
IBM 3422 Tape Drive 
IBM 2401 Tape Drive 
IBM 2415 Tape Drive 
IBM 2420 Tape Drive 
IBM 3420 Tape Drive 
IBM 3410/3411 Tape Drive 
IBM 8809 Tape Drive 
IBM 3430 Tape Drive 
IBM 3480 Tape Drive 

Figure 37 (Part 3 of 6). CP Device Classes, Types, Models, and Features 

Appendix A. CP Device Classes, Types, Models, and Features 421 



• For Direct Access Storage Device Class 

Code 
X'80' 
X'80' 
X'80' 
X'80' 
X'40' 
X'40' 
X'20' 
X'lO' 
X'lO' 
X'08' 
X'04' 
X'02' 
X'Ol' 

Device Type 
IBM 2301 Parallel Drum 
IBM 2303 Serial Drum 
IBM 2311 Disk Storage Drive 
IBM 2321 Data Cell Drive· 
IBM 2314 Disk Storage Facility 
IBM 2319 Disk Storage Facility 
IBM 3380 Disk Storage Facility 
IBM 3330 Disk Storage Facility 
IBM 3333 Disk Storage and Control 
IBM 3350 Disk Storage Facility 
IBM 3375 Disk Storage Facility 
IBM 2305 Fixed Head Storage Device 
IBM 3340 Disk Storage Facility 

• For Special Device Class 

Code 
X'80' 
X'40' 
X'20' 
X'04' 
X'Ol' 

Device Type 
Channel-to-ChaOnnel Device (CTCA or 3088) 
37XX Programmable Communications Controller 
3851 Mass Storage Controller 
SRF (7443) device 
Device not supported by VM/SP 

• For Fixed-Block Storage Device Class 

Code 
X'05' 
X'02' 
X'Ol' 
X'OO' 

Device Type 
3370-4 
3370, Model AI, A2, Bl, and B2 
3310 
Generic Fixed-Block (see Note) 

Note: Code X'OO' applies to a device whose specific type CP has not yet 
determined. The proper bit value is assigned when a 'Read Device 
Characteristics' command is issued at IPL. 

MODEL CODES (Column 35 in Accounting Card) 

As specified in the RDEVICE macro at system generation. 

Note: FB-5l2 device model codes are specified as: 

Code 
X'OO' 
X'04' 

Device Type 
3310, 3370 Models Al and Bl 
3370 Models A2 and B2 

Figure 37 (Part 4 of 6). CP Device Classes, Types, Models, and Features 

422 VM System Facilities for Programming 



FEATURE CODES (Column 36 in Accounting Card) 

• For Printer Devices 

Code 
X'80' 

X'40' 
X'Ol' 

Feature 
3800 has four Writable Character Graphic Modifications 
(WCGM) 
Extended Sense Bytes 
UCS 

• For Magnetic Tape Devices 

Code 
X'80' 
X'40' 
X'20' 
X'lO' 

Feature 
7-Track 
Dual Density 
Translate 
Data Conversion 

• For Direct Access Storage Devices 

Code 
X'80' 
X'80' 
X'40' 
X'20' 
X'20' 
X'lO' 
X'08' 
X'04' 
X'02' 
X'Ol' 
X'Ol' 

Feature 
Rotational Position Sensing (RPS) 
Fixed Head Device 
Extended Sense Bytes (24 bytes) 
Top Half of 2314 Used as 2311 
Device is a 3330V system virtual machine 
Bottom Half of 2314 Used as 2311 
35MB Data Module (mounted) 
70MB Data Module (mounted) 
Reserve/Release are valid CCW operation codes 
Device is a 3330V virtual machine 
3330 Virtual MSS volume 

• For special devices 

Code 
X'80' 
X'40' 
X'20' 
X'20' 
X'lO' 
X'lO' 

Feature 
Type Five Channel Adapter (3725) 
Channel-to-Channel is type 3088 
Type 2 channel adapter for 370X 
Type 3 channel adapter for 370X 
Type 1 channel adapter for 370X 
Type 4 channel adapter for 370X 

• For terminal devices 

Code 
X'02' 
X'Ol' 

Feature 
3270 Mode, Virtual 3215 Device 
Dial Feature 

Figure 37 (Part 5 of 6). CP Device Classes, Types, Models, and Features 

Appendix A. CP Device Classes, Types, Models, and Features 423 



• For Graphic Devices 

Code 
X'80' 
X'OI' 

Feature 
Operator Identification Card Reader 
Device Supports WRITE STRUCTURED FIELD QUERY 

Figure 37 (Part 6 of 6). CP Device Classes, Types, Models, and Features 

424 VM System Facilities for Programming 



Appendix B. Sample CMS IUCV Program 

This program demonstrates how one might use the CMS lUCY support in 
VM to use the CP Message System Service. It establishes communications 
via lUCY and then waits for incoming messages. Each time a message 
comes in, it is logged in a file named 'MSG FILE'. When the user wishes to 
have the program terminate, he sends himself a message which contains 
'STOP'. 

Note: This program works, however, it could be enhanced as it virtually 
ignores any error conditions. It is presented as a sample and should be 
viewed as such. 

Appendix B. Sample CMS IUCV Program 425 



********************************************************************** 
* 
* 
* 

CMS IUCV program to use the CP Message System Service. 
* 
* 
* 

********************************************************************** 
SPACE 2 

MSG CSECT 

* 
* 
* 
* 
* 

* 
* 
* 
* 

* 
* 
* 
* 
* 

* 
* 
* 
* 
* 

BALR R12,0 
USING *,12 
USING NUCON,RO 
SSM DISABLE 
LR 11,14 

Establish 
addressability 

Disable interrupts til we want them 
Save the return address in R11 

Tell CMS that this program wishes to use IUCV, and will be 
identified by the name of SAM. An address is given for pending 
connects, however, this should never happen. 

HNDIUCV SET,NAME=SAM,EXIT=CONPEND 
LA R2,IUCVPLST Get the address of our IUCV parameter 
USING IPARML,R2 list and establish addressability 

Build the parameter list with the IUCV macro, then establish the 
connection and set up the path's exit. 

IUCV CONNECT,PRMLIST =(R2),USERID=STARMSG,MF=L 
CMSIUCV CONNECT,NAME=SAM,PRMLIST=(R2),EXIT=MSGPATH 
MVC PATHID(2),IPPATHID Save the path id IUCV gives us 
DROP R2 

Wait for *MSG to tell us our connection is complete. Our exit will 
post that CONCOMP ECB when the interrupt comes in. Note that 
WAITECB internally will enable us for interrupts. 

WAITECB ECB=CONCOMP,FORMAT=OS 
LA R11,SETMSG Issue the SET MSG IUCV command to 
SVC 202 tell CP we want messages via IUCV 
DC AL4(l) 

Wait here for messages. The MSGIN ECB will be posted each time a 
message comes in. If the message is 'STOP', quit and clean up, 
otherwise, write the message to a log file name 'MSG FILE'. 

WAITLOOP EQU * 

*. 

* 
* 
* 
* 

WAITECB ECB=MSGIN,FORMAT=OS 
CLC MSGAREA+8(4),=CL4'STOP' If the message says to stop, 
BE CLEANUP Stop and clean up. 
FSWRITE 'MSG FILE A' ,FORM=E,BUFFER=MSGAREA,RECFM=F,BSIZE=140 
XC MSGIN(4),MSGIN Zero out the ECB 
B WAITLOOP Wait for next message 

Issue the CP SET MSG ON command to tell CP we no longer want 
messages via IUCV. Then issue the HNDIUCV CLR macro to tell CMS 
we no longer wish to use IUCV and return to CMS. 

CLEANUP EQU * 
LA R1,SETON 
SVC 202 
DC AL4 (1) 
HNDIUCV CLR,NAME=SAM 
BR R11 
DROP R12 
EJECT 

426 VM System Facilities for Programming 

Issue the SET MSG ON command to 
tell CP we no longer want our 
messages via IUCV 

Return to CMS 



********************************************************************** 
* 
* 
* 
* 
* 
* 
* 
* 
* 

This is our external interrupt exit for the path we've set up 
between *MSG and ourselves. It works as follows: 

Connection Complete: Post the CONCOMP ECB and return 

Incoming message: Receive the message data in our message 
buffer, post the MSGIN ECB and return. 

* 
* 
* 
* 
* 
* 
* 
* 
* 

********************************************************************** 
SPACE 2 

MSGPATH EQU 
BALR 
USING 
USING 
CLI 
BE 

* 

* 
* 
* 
* 

XC 
XC 
MVC 
MVC 
LA 

R12,O Establish 
*,R12 addressability 
IPARML,R2 R2 points to ext. into buffer 
IPTYPE,X'02' Is it a connection complete? 
CONNCOMP If so, it's a special case.' 
IUCVPLST(40),IUCVPLST Zero out the IUCV parameter 
MSGAREA(140),MSGAREA and the message buffer 
MSGCLASS,IPTRGCLS Save the class 
MSGID,IPMSGID and the id of the message 
R2,IUCVPLST Let R2 point to the PRMLIST 

Get the message which has been sent to you by issuing an 
IUCV RECEIVE. Put the message in MSGAREA. 

list 

IUCV RECEIVE,PATHID=PATHID,PRMLIST=(R2),MSGID=MSGI~,TRGCLS=MS* 
GCLASS,BUFFER=MSGAREA,BUFLEN=BUFERLEN 

01 
BR 

MSGIN,X'40' 
R14 

Post the MSGIN ECB 
and return to CMS 

* 
* 
* 

Corne here if it's a connection complete interrupt (IPTYPE X'02') 

CONNCOMP EQU 
01 
BR 

* 
MSGIN,X'40' 
R14 

Post the CONCOMP ECB 
and return 

* 
* 
* 
* 

This is our connect pending exit. It should never be driven. 
If it is, we'll just ignore it and return. 

COMPEND EQU 
BR 
EJECT 

* 
R14 

Appendix B. Sample eMS IUCV Program 427 



********************************************************************** 
* 
* 
* 

E QUA T E Sand CON S TAN T S 
* 
* 
* 

********************************************************************** 

SETMSG 

SETON 

IUCVPLST 
MSGID 
MSGCLASS 
STARMSG 
SAM 
CONCOMP 
MSGIN 
PATHID 
BUFERLEN 
MSGAREA 
DISABLE 

SPACE 2 
DS OD 
DC CL8'CP' 
DC CL8'SET' 
DC CL8'MSG' 
DC CL8'IUCV' 
DC 8X'FF' 
DC CL8'CP' 
DC CL8'SET' 
DC CL8'MSG' 
DC CL8'ON' 
DC 8X'FF' 
DC 40X'00' 
DS F 
DS F 
DC CL8'*MSG' 
DC CL8'SAM' 
DC F'O' 
DC F'O' 
DC H'O' 
DC H'140' 
DC CL140' 
DC X'OO' 
REGEQU 
NUCON 
COpy IPARML 
END 

428 VM System Facilities for Programming 

Parameter list to tell CP we 
want our message via IUCV. 

Parameter list to tell CP we 
want our message set back 
to 'ON'. 

Used for the IUCV parameter list 
Holds the IUCV message id 
Holds the IUCV message class 
The name of the IUCV Message Service 
Name wh~ch CMS will know us by 
Connection Complete ECB 
Message has arrived ECB 
Holds the IUCV path id 
Says our buffer will be 140 chars 
Message buffer area 
Byte to disable us for interrupts 



The routing table is a CMS file that contains the information used to 
control the operation of the programmable operator facility. The routing 
table enables the programmable operator facility to recognize a message as 
a command, to determine the action to take when a message comes in, and 
to recognize the authorized users of programmable operator functions. 

The format of the routing table is different from the format in the initial 
version of the programmable operator facility documented in Release 2 of 
VM. This format makes the specifications easier and the information 
clearer. Release 2 routing tables are not compatible with the current 
format and must either be regenerated by hand or converted using 
PROPRTCV. PROPRTCV is a utility provided to convert old routing tables 
to the current format. This utility is written using the System Product 
Interpreter. Using an old RTABLE as input, PROPRTCV creates a new 
RTABLE, leaving the old one unchanged. When you execute PROPRTCV, 
it converts routing tables in the following order: 

1. Generates the appropriate configuration statements at the beginning of 
the new routing table file. See "Routing Table Entry Formats" in the 
chapter on the Programmable Operator Facility. 

• A LGLOPR statement is added using the existing logical operator 
userid and nodeid. PROPRTCV prompts you to change this 
information, if you wish. 

• A TEXTSYM statement is added. Select the TEXTSYM characters 
to be used. The text fields of the file are scanned for these 
characters. If any of these characters are found, PROPRTCV 
informs you and then prompts you for different characters. You can 
also exit and change the texts that caused the conflict. 

• PROPCHK statements are added, if desired. PROPRTCV prompts 
you for this information. 

• A HOSTCHK statement is added, if desired. PROPRTCV prompts 
you for this information. 

• A ROUTE statement is placed after all the above statements have 
been completed. 

• An entry for the SET command is added with text" /SET /", message 
type 1, action routine DMSPOR, and parameter SET. PROPRTCV 
prompts you for any authorization desired for this entry. See 
"DMSPOR - Miscellaneous supplied action routines" for more 
information on the SET command. 

Appendix C. Converting Programmable Operator Routing Tables 429 



Note: The SET entry is simply placed after the ROUTE statement. 
This is probably not where you want it. Move the entry when the 
routing table conversion is completed. 

For each routing table entry, PROPRTCV 

2. Encloses the specified text with the blank-separator, (f), for the specified 
length of the text. 

3. Generates a starting column value and an ending column value from 
the existing displacement and length values. 

4. Converts an entry with action routine DMSPOR and parameter 
TOLGLOPR to the action routine name DMSPOS. PROPRTCV prompts 
you for the routing target information to be used as the parameter. 

5. Converts an entry with action routine DMSPOR and parameter 
LOADTBL to the action routine name DMSPOL and no parameter. 

430 VM System Facilities for Programming 



Structural Changes 

Summary of Changes 

This book contains material formerly found in the VM/SP System Programmer's 
Guide, SC19-6203. and the VM/SP HPO System Programmer's Guide, SC19-6224. 
Figure 38 shows the Release 4 books made obsolete by this reorganization, the 
new system programming books, and the topics these new books contain. 

To obtain editions of the VM/SP System Programmer's Guide, you must order 
using the pseudo-number assigned to the respective edition. For: 

VM/SP Release 4, order STOO-1578 
VM/SP Release 3, order STOO-1352 
VM/SP Release 2, order SQ19-6203 
VM/SP Release 1, order ST19-6203. 

To obtain editions of the VM/SP HPO System Programmer's Guide, you must 
order using the pseudo-number assigned to the respective edition. For: 

VM/SP HPO Release 4.2, order STOO-1897. 

Summary of Changes 431 



Release 4 

System 
Programmer's 
Guide 

VM/SP, SC19-6203 
VM/SP HPO, SC19-6224 

SC24-5249-1 

VM/SP IPcsl 
Guide • SC24-5260-0 

Release 5 

VM/SP CP For 
System 
Prograrrmi ng 

VM/SP. SC24-5285 
VM/SP HPO. SC23-0341 

VM/SP CMS For 
System 
Prograrrmi ng 

SC24-5286 

VM System 
Facilities 
For prograil V 

SC24-5288 

VM Diagnosis 
Guide 

LY24-5241 

Introduction to CP 
Program States 
Processor Resources 
Storage Protection 
Virtual Storage Preservation 
VM I/O Management 
Spooling Functions 
CP Corrmands 
Interrupt Handling 
Accounting Records 
Saved System. DCSSs. Shared Segs 
CP Conventions 
Journa ling 
Suppressing Passwords 
Performance 
3850 MSS 
Timers 
CP in AP/MP Mode 
Print Buffers and Forms Control 
3800 Printing Subsystem 

Introduction to CMS 
Abend Processing 
Interrupt Handling in CMS 
Functional Information 
OS Macro Simulation 
VSE Support 
CMS Support for OS and VSE/VSAM 
Saving CMS 
CMS Batch Fac i l i ty 
Auxi liary Directories 
Assembler Virt Stor Requirements 

'- CMS Macro Li brary 

VMCF 
IUCV 
SNA CCS 
*MSG 
*BLOCKIO 
*SIGNAL 
Special Message Faci lity 
Single Console Image Facility 
Logical Device Support Faci lity 
DIAGNOSE Instructidn and Codes 
Using *BLOCKIO from OMS 
CMS IUCV 
Prograrrmab le Operator Fac i l i ty 

{

Introduction to Debugging 
Debugging the Virtual Machine 
Debugging CP 
Debugging CMS 
Debugging GCS 
Debugging Using IPCS 
Using DUMPSCAN Subcommands 

Figure 38. New VM System Programming Manuals for Release 5 

432 VM System Facilities for Programming 



Technical Changes for VM System Facilities for Programming 

Summary of Changes 
for SC24-5288-0 
for VM Release 5 

Transparent Services Access Facility (TSAF) 

This new facility lets users connect to and communicate with local or remote 
virtual machines within a group of systems. With TSAF, a user can connect 
to a program by specifying a name that the program has made known, instead 
of specifying a userid and node id. The Transparent Services Access Facility 
(TSAF) consists of the TSAF virtual machine component, APPC/VM, and two 
CP system services. 

Advanced Program-to-Program Communication/VM (APPC/VM) 

Is based on IUCV and provides services similar to IUCV. APPC/VM, with the 
TSAF virtual machine, provides services within a single system and 
throughout a group of systems, unlike IUCV, which provides services only 
within a single system. 

TSAF virtual machine component 

This new new VM/SP component handles communication between systems by 
letting APPC/VM paths span more than one system. 

National Languages Supported by VM/SP 

VM/SP now supports the following national languages: American English, 
German, French, Kanji, and Uppercase English. This book shows how to store 
language-related files and make them available to users. This information 
includes, 

• The LANGMERG and LANGGEN commands 
• DIAGNOSE Codes X'C8' and X'CC'. 

The SPOOL System Service 

This new CP system service provides a way for VM/SP to support a printer 
subsystem. It allows authorized users an interface for communication between 
CP and a printer subsystem. (The subsystem printers are called logical 
printers.) The SPOOL System Service allows a virtual machine to manipulate 
spool files in several ways. 

Enhanced lUCY 

IUCV adds a new parameter on the IUCV macro and a new CP system service. 

• The new CONTROL = parameter on the DECLARE BUFFER and 
CONNECT functions enable the control program to manage paths to the 
virtual machine. 

• The new Message All System Service controls output to the terminal. 

• The entire IUCV chapter has been rewritten and reorganized for easier 
use. 

Summary of Changes 433 



CMS and GCS Support for IUCV 

CMS and GCS IUCV changes are due to requirements needed for windowing 
in CMS, CMS and GCS Supervisor IUCV use, and the Transparent Services 
Access Facility (TSAF). 

Access Verification Routines 

While VM/SP provides many security functions, added support for access 
verification routines provides a standard interface to RACFjVM Support 
PRPQ or user-written routines that can provide a higher lever of security. 
Although the access verification routines support does not by itself provide 
security functions, it allows you to install software that does. 

For example, to increase security of minidisk accesses, logon passwords, and 
movement of spool files, you can install access verification routines with the 
Resource Access Control Facility (RACF) (Program Number 5740-XXH) and 
RACFjVM Support PRPQ (Program Number 5767-002). 

This support added DIAGNOSE code X'AO'. 

Enhanced DIAGNOSE Code X'08' 

This enhanced DIAGNOSE code provides a virtual machine with the 
capability of managing a full-screen environment at all times. (The 8K 
response buffer limit is eliminated.) 

Enhanced DIAGNOSE Code X'5C' 

This enhanced DIAGNOSE code supports the use of a message number greater 
than three characters. A user may now change the length of the message 
identifier. 

DIAGNOSE Code X'BO' 

This new DIAGNOSE code allows a virtual madchine to access diagnostic 
information saved for a user running in a protected application, for whom a 
re-IPL has been tried. 

DIAGNOSE Code X'B4' 

This new DIAGNOSE code allows a user to associate an External Attribute 
Buffer (XAB) that an application provides with a virtual printer device. The 
XAB is a control block that contains data the user creates to specify 
additional information about a print file. Each print file has its own XAB and 
CP has the facilities to maintain the XABs. 

DIAGNOSE Code X'B8' 

This new DIAGNOSE code lets an application virtual machine read, write, or 
erase an External Attribute Buffer (XAB) associated with a spool file. The 
XAB is a control block that contains data the user creates to specify 
additional information about a print file. Each print file has its own XAB and 
CP has the facilities to maintain the XABs. 

DIAGNOSE Code X'BC' 

This new DIAGNOSE code opens a spool file for a spooled reader device and 
returns spool file identification. If the spool file is already open on the reader 

434 VM System Facilities for Programming 



device, this DIAGNOSE still returns the spool file identification for the open 
file. 

DIAGNOSE Code X'DO' 

This new DIAGNOSE code lets any virtual machine provide CP with the 
virtual device address and the volume serial of a 3480 volume. 

DIAGNOSE Code X'D4' 

This new DIAGNOSE code provides support for an alternate userid. It lets a 
class B virtual machine tell CP the userid of a worker machine that is 
performing the work and the use rid of the end-user for which it is authorized 
to work. The end-user's userid is considered to be the "alternate userid." 

Miscellaneous changes 

TERMINAL CONMODE 3270 Enhancements 

Support for TERMINAL CONMODE 3270 is expanded so that ·virtual machine 
START I/Os are handled as 3270 START I/Os. The console is placed in 
full-screen mode with an application program controlling information sent to 
the terminal. 

Programmable Operator Facility Documentation 

The Programmable Operator chapter of the VM/ SP System Programmer's 
Guide has been combined with the same chapter in the VM/SP Operator's 
Guide. This chapter now contains a complete description of the programmable 
operator and all commands formats. 

DIAGNOSE codes 

The DIAGNOSE codes have been reorganized for ease-of-use. The entry 
values for the registers are now easier to find as are the program exceptions. 

Minor technical and editorial changes have been made throughout this 
publication. 

Summary of Changes for VM/SP and VM/SP HPO System Programmer's Guides 

Summary of Changes 
for SC19-6203-3 
for VM/SP Release 4 

Group Control System (VM/SP GCS) 

This new component of VM/SP is a virtual machine supervisor that provides 
simulated MVS services and supports a multitasking environment. For more 
information on the Group Control System (GCS), refer to the VM/SP Group 
Control System Guide, SC24-5249. 

Signal System Service 

This new CP system service allows virtual machines in a Virtual Machine 
Group to signal each other. The Signal System Service can only be used by 
virtual machines in a Virtual Machine Group. 

Summary of Changes 435 



Saved System 8M Byte Limit Removal 

With the addition of this support, the SA VESYS, VMSA VE, and IPL functions 
have been enhanced to allow a page image copy of up to a 16M byte virtual 
machine to be saved and restored. 

CPFRETTrap 

The CP FRET Trap can be used as an aid in solving problems caused by 
improper use of CP storage and to solve many storage overlay problems. 

VMDUMP Enhancements 

DIAGNOSE Code X'94' is available to allow a virtual machine to request 
dumping of its virtual storage. Also, the three address range restriction has 
been removed from the VMDUMP command. 

DIAGNOSE Code X~98' 

Using DIAGNOSE Code X'98', a virtual machine can lock and unlock virtual 
pages, and execute its own real channel programs. 

The Programmable Operator Facility 

The Programmable Operator Facility has been enhanced to support distributed 
operations in an SNA network through an interface, the Programmable 
Operator/NCCF Message Exchange (PMX), with the Network Communications 
Control Facility (NCCF). The VM/SP Release 4 programmable operator: 

• Allows an NCCF operator to be identified to the programmable operator 
so that any messages intended for the logical operator may be routed to 
that NCCF operator. 

• Allows an NCCF operator to issue programmable operator commands and 
receive responses. 

• Provides the LGLOPR command for assigning, releasing and replacing the 
logical operator during operation. 

CPTRAP Enhancements 

CPTRAP is a major service aid used in problem determination. Enhancements 
to the CPTRAP command provide two additional functions, GROUPID and 
WRAP, and one additional entry type, X'3D'. 

Enhancements to TRAPRED makes reviewing the trap data easier by 
providing more selectivity for X'3D', X'3E', and X'3F' entries and by providing 
a way to display formatted output of the trapped data. 

Information on CPTRAP has been rewritten and reorganized for ease-of-use. 
It has also been moved to the Part 3, the debugging section, since it is a 
debugging tool. 

Interactive Problem Control System (VM/SP IPCS) 

VM/SP Release 4 has been enhanced to include IPCS as a component of 
VM/SP. VM/SP IPCS is equivalent to the VM/Interactive Problem Control 
System Extension (VM/IPCS/E) Licensed Program (5748-SAl). 

436 VM System Facilities for Programming 



Inter-User Communications Vehicle (IUCV) Enhancements 

IUCV now supports the movement of data on the SEND, RECEIVE, and 
REPL Y functions from discontiguous buffers. The modified IUCV macro 
handles the new BUFLIST = parameter on SEND and RECEIVE functions and 
the new ANSLIST = parameter on the SEND and REPLY functions. 

Expansion of User Classes 

The DIRECT command has been enhanced and the OVERRIDE command has 
been added to provide the user with more than the seven IBM defined user 
classes. You can now choose from 32 user classes, A - Z, and 1 - 6. 

Remote Spooling Communications Subsystem Networking Version 2 

With the release of the Remote Spooling Communications Subsystem 
Networking Version 2 licensed program (5664-188), any reference to RSCS in 
this manual applies to RSCS Version 2. Information pertaining to RSCS can 
be found in the VM/SP Remote Spooling Communications Subsystem Version 2 
General Information, GH24-5055. 

Miscellaneous changes 

IOCP Support Enhancements 

This support adds new MSSF command words to DIAGNOSE code X'80'~ 

Integration of Functional Enhancements to VM/SP Release 3 

Information has been added to support: 

• The 3290 Information Panel 

• The 3370 Direct Access Storage Model 

• The 4248 Printer 

• The 4361 Model Groups 3, 4, and 5 Processor 

• The 4381 Model Groups 1 and 2 Processor 

• VM/SP 3800 Model 3 Compatibility Support 

Compatibility support allows VM/SP users to access the 3800 Model 3 
Printing Subsystem. Existing programs designed to produce 3800 Model 1 
printer output may produce output for the 3800 Model 3 printer with little 
or no program change. Use of this support provides improved print 
quality (240 x 240 pel resolution) and the addition of a 10 lines-per-inch 
(LPI) vertical space option. 

DIAGNOSE Code X'8C' 

DIAGNOSE code X'8C' has been enhanced to allow a user to access all of the 
data returned by CP's WRITE STRUCTURED FIELD QUERY. 

DMKFRE/DMKFRT Split 

The module DMKFRE has been split into two modules, DMKFRE and 
DMKFRT. DMKFRE handles all requests for free storage as well as calls to 
DMKFRET to release free storage. DMKFRT handles all requests to return 

Summary of Changes 437 



free storage that cannot be handled by the microcoded CP assist FRET 
function. 

Minor technical and editorial changes have been made throughout this 
publication. . 

Summary of Changes 
for SC19-6223-6 
As Updated January 1986 
for VM/SP HPO Release 4.2 

AUTODEACTIVATION OF RESTRICTED PASSWORDS AND DIRECTORY 
ENHANCEMENTS 

New: Programming Support 

Adds support to enhance system integrity by minimizing the exposure of 
unauthorized system access through the use of restricted passwords. 

Directory enhancements include two new control statements, PROFILE and 
INCLUDE, which permit a group of control statements common to more than one 
user directory entry to be coded only once, and the removal of the directory size 
limit. 

ACCESS VERIFICATION ROUTINES 

New: Programming Support 

Adds support, including a new directory control statement, ACIGROUP, for access 
verification routines. When used with the RACF/VM Support PRPQ, access 
verification routines help increase security for VM/HPO installations. The access 
verification routines support does not itself provide security functions; but it 
allows the installation to install software that does. To increase security of 
minidisk accesses, logon passwords, and movement of spool files, an installation 
should install access verification routines with the Resource Access Control 
Facility (RACF) (Program Number 5740-XXH) and RACF/VM Support PRPQ 
(Program Number 5767-002). 

SECURITY ENHANCEMENTS 

New: Programming Support 

This support allows an installation to specify the number of password attempts 
that a user is allowed before being locked out of the system and the amount of 
time that the user will be locked out after the unsuccessful attempts. In addition, 
if an installation has installed RACF, this support now calls RACE to authorize 
the use of STCP and LINK commands. 

VECTOR FACILITY 

New: Hardware Support 

Support is provided for the Vector Facility in System/370 mode configured to a 
3090 Processor. The Vector Facility is a synchronous vector/scalar instruction 
processor that can manipulate values (usually floating-point) at high speed. 
Compiled engineering and scientific FORTRAN applications can use the array 
processing capability of the Vector Facility. VM/SP HPO supports the use of this 
facility by multiple virtual machines. 

PAGE MIGRATION 

438 VM System Facilities for Programming 



Changed: Programming Support 

Page migration is changed to select pages (rather than segments) for migration on 
a reference basis instead of by time-stamp (age basis). Also, pages are migrated 
down the demand page hierarchy, instead of being migrated directly to the 
pre-allocated migration area. This reduces the time required to retrieve those 
pages that become active in the near future. 

Because migration of swap tables is sometimes necessary even when page 
migration is not actively moving pages, swap table migration is now invoked 
independently of page migration (rather than after page migration). Swap table 
migration is further improved by migrating swap tables regardless of whether all 
the pages in the segment have been migrated. 

SYSP AG macro, commands, and monitor are enhanced to support the changed 
migration algorithms. Installations should retune free storage. 

3380 DIRECT ACCESS STORAGE DEVICE MODELS AE4/BE4 

New: Hardware Support 

VM/SP HPO now supports the 3380 DASD Models AE4/BE4. The 3380 Models 
. AE4/BE4 are count-key-data (CKD) devices that attach to high-speed channels 
only, via the 3880 Control Unit. The 3880 can attach up to 16 physical spindles (32 
logical devices) of 3380 Models AE4 and BE4 directly to data streaming channels. 
The AE4 models attach to the system and may be the first device on a string. 
Strings of different 3380 device models may be intermixed at the control unit level. 

DOCUMENTATION CHANGES 

Minor technical and editorial changes have been made throughout this 
publication. 

Summary of Changes 
for SC19-6203-2 
for VM/SP Release 3 

Programmable Operator Facility 

Several enhancements to the programmable operator facility added are: 

• Message routing with nicknames 

• Remote node availability 

• Enhanced text comparison 

• EXEC action routines 

• LOG recording and error handling 

PER 

Problem determination capability is greatly extended and enhanced by the 
new CP command, PER. 

DASD Block I/O System Service 

Summary of Changes 439 



The DASD Block I/O System Service allows a virtual machine fast, 
device-independent asynchronous access to fixed size blocks on CMS 
formatted virtual DASD I/O devices. 

lUCY 

Inter-User Communication Vehicle (IUCV) extensions provide: 

• SEND and REPLY extensions 

• An extended mask capability for control interrupts 

• An expanded trace capability to record all IUCV operations 

• A macro option to initialize the parameter list 

• Support for the DASD block I/O system service. 

The IBM 3088 Multisystem Communications Unit 

The IBM 3088 Multisystem Communications Unit interconnects multiple 
systems using block multiplexer channels. The 3088 uses an unshared 
sub channel for each unique address and is fully compatible with existing 
channel-to-channel adapter protocol. 

eMS lUCY support 

Support for IUCV communication has been introduced into CMS. This 
support allows multiple programs within a virtual machine to use IUCV 
functions. Included is the ability to initialize a CMS machine for IUCV 
communication and to invoke IUCV functions via new CMS macros. These 
macros also allow the user to specify path-specific exits for IUCV external 
interrupts. 

eMS abend exits 

A general CMS abnormal exit capability is provided so that user programs 
may specify the address of a routine to get control before CMS abend recovery 
begins. An exit is established and cleared through a new CMS macro. 

Enhanced immediate command support 

The immediate command capability of CMS is extended by allowing users to 
define their own immediate commands. 

Enhanced VSAM support 

CMS supports VSE/VSAM Release 3 which includes significant enhancements 
designed to improve catalog reliability and integrity while providing 
additional serviceability and usability. VSE/VSAM Release 2 is not 
supported. 

Miscellaneous 

Changes to the DIAGNOSE code X'OO' interface provide the time zone 
differential from Greenwich Mean Time. 

DIAGNOSE code X'8C' allows a virtual machine to access device dependent 
information without having to issue a WRITE STRUCTURE FIELD QUERY 
REPLY. 

440 VM System Facilities for Programming 



CMSSEG has been eliminated and the code was merged into the CMS 
Nucleus. 

The Remote Spooling Communications Subsystem (RSCS) section of this 
manual has been removed as it pertained to RSCS as a component of VM/370. 
Now, any reference to RSCS in this manual applies to the RSCS Networking 
Programming Product, and information can be found in the VM/SP Remote 
Spooling Communications Subsystem Networking Program Reference and 
Operations Manual, SH24-5005. 

A newly added appendix lists and describes the CMS macros applicable to 
VM/SP. 

Minor technical and editorial changes have been made throughout this 
publication. 

Summary of Changes 441 



442 VM System Facilities for Programming 



Glossary og Terms and Abbreviaiions 

This glossary defines new terms and all-capitals 
abbreviations related to the VM/SP and VM/SP 
HPO. This glossary is especially oriented for 
system programmers. Therefore, some terms already 
defined in the VM/SP Library Guide, Glossary, and 
Master Index, SC19-6207, do not appear here or may 
be defined slightly differently. Another glossary 
you may want to reference is the IBM Data 
Processing Glossary. 

ACF/VTAM. Advanced Communications Function 
for the Virtual Telecommunications Access Method 

Advanced Communications Function for the 
Virtual Telecommunications Access Method 
(ACF/VTAM). An IBM licensed program that 
controls communication and the flow of data in an 
SNA network. It provides single-domain, 
multiple-domain, and interconnected network 
capability. VTAM runs under MVS (OS/VSI and 
OS/VS2), VSE, VM/SP, and VM/SP HPO, and 
supports direct control application programs and 
subsystems such as VSE/POWER. 

Advanced Prog~am-to-Program 
Communication/VM (APPC/VM). An application 
program interface (API) for communicating between 
two virtual machines that is mappable to the SNA 
LU 6.2 APPC interface and is based on IUCV 
functions. Along with the TSAF virtual machine 
APPC/VM provides this communication within a' 
single system and throughout a collection of 
systems. 

AP /MP mode. A mode of VM used when running 
in an attached processor or multiprocessor system. 

attached processor. A processor with no I/O 
capability. An attached processor is always linked 
to the processor initialized for I/O handling. 

auxiliary storage. Data storage other than main 
storage; in VM, auxiliary storage is usually a direct 
access device. 

basic control (BC) mode. A mode in which a 
virtual machine resumes execution after an I/O 
interrupt, a page fault, or a DIAGNOSE code X'IS'. 

CA W. channel address word 

CCW. channel command word 

channel address word (CAW). An area in storage 
that specifies the location in main storage at which 
a channel program begins. 

channel command word (CCW). A doubleword at 
the location in main storage specified by the 
channel address word. One or more CCW s make up 
the channel program that directs data channel 
operations. 

channel status word (CSW). An area in storage 
that provides information about the termination of 
input/output operations. 

Channel-to-Channel Adapter. A hardware device 
that can be used to connect two channels on the 
same computing system or on different systems. 

CKD. Count-Key-Data 

CMS. refers to the VM/370 Conversational 
Monitor System component enhanced by the 
functions included in the VM/SP package. 

CMS/DOS. refers to the DOS-like simulation 
environment provided under the CMS component of 
the VM/SP. 

concurrently. Concerning a mode of operation 
that includes the performance of two or more 
operations within a given interval of time. 

CMS system disk. The virtual disk (S-disk) that 
contains the CMS nucleus and the disk-resident 

Glossary of Terms and Abbreviations 443 



CMS commands. The CMS system disk can have 
extensions, usually the Y-disk. 

Count-Key-Data. Those DASD devices whose 
architecture defines variable size records consisting 
of count, key, and data fields. 

CP. refers to the VM/370 Control Program 
component enhanced by the functions included in 
the VM/SP package. 

CSW. channel status word 

DCSS. Discontiguous shared segments. 

directory. For VM, a CP disk file that defines 
each virtual machine's normal configuration: the 
userid, password, normal and maximum allowable 
virtual storage, CP command privilege class or 
classes allowed, dispatching priority, logical editing 
symbols to be used, account number, and CP options 
desired. 

discontiguous shared segments (DCSS). 
Synonymous with discontiguous segment. 

discontiguous segment. A 64K segment of 
storage that was previously loaded and saved and 
assigned a unique name. The segment(s) can be 
shared among virtual machines if the segment(s) 
contain reentrant code. 

dispatch list. A list of those virtual machines that 
are executable and currently competing for a time 
slice of processor resources. 

dispatcher. The program in CP that places virtual 
machines or CP tasks into execution. The 
dispatcher selects the next virtual machine to run 
and prepares the virtual machine for problem state 
execution. 

dispatch request queue. A queue of executable 
CP tasks, I/O tasks, and timer requests that are 
ready to be dispatched. 

DPA. dynamic paging area 

dynamic address translation. In System/370 
virtual storage systems, the change of a virtual 
address to a real storage address during execution 
of an instruction. 

444 VM System Facilities for Programming 

EXEC. refers to EXECs using the System Product 
Interpreter (REXX), EXEC 2, or CMS EXEC 
languages. 

extended control (EC) mode. Extended control 
mode, a System/370 mode for formatting and use of 
control and status information. Contrast with 
"basic control (BC) mode." 

FBA. Fixed-block architecture. 

file status table (FST). A table that describes the 
attributes of a file on a CMS disk, including 
filename, filetype, filemode, date last written, and 
other status information. 

Fixed-Block Architecture (FBA). Those DASD 
devices whose architecture uses fixed blocks or 
records of 512 bytes. 

FST. file status table 

GCS. Group Control System facility 

Group Control System. An operating 
environment that provides a problem state as 
subtasking environment with common storage 
access for members of a virtual machine group. 

guest virtual machine. A virtual machine in 
which an operating system is running. 

interactive. (1) An application in which each user 
entry calls forth a response from a system or 
program. (2) The classification given to a virtual 
machine depending on this virtual machine's 
processing characteristics. When a virtual machine 
uses less than its allocated time slice because of 
terminal I/O, the virtual machine is classified as 
being interactive. See also non-interactive. 



Interactive Problem Control System (IPCS or 
VM/SP IPCS). A component of VM that permits 
on-line problem management, interactive problem 
diagnosis, on-line debugging for disk-related CP or 
virtual machine abend dumps, problem tracking, and 
problem reporting. 

Inter-User Communication Vehicle (IUCV). A 
VM generalized CP interface that aids the transfer 
of messages either among virtual machines or 
between CP and a virtual machine. 

IPCS. Interactive Problem Control System. 

IUCV. Inter-User Communication Vehicle. 

logical operator. The name given to the virtual 
machine from which OPERATOR functions 
requested by the programmable operator facility 
virtual machine are performed. This name also may 
describe the person who normally operates the 
logical operator virtual machine. In a mixed 
environment, an NCCF operator can be assigned as 
the logical operator to control a VM distributed 
system. 

logon. The procedure by which a user begins a 
terminal session. 

logoff. The procedure by which a user ends a 
terminal session. 

message repository. A source file that contains 
message texts for a VM component or user 
application. It is compiled into internal form by the 
GENMSG command. The message texts in a 
repository file can be translated and used to support 
national languages. 

minidisk. Synonym for virtual disk. 

MSSF. Monitoring and service support facility 

named system. A collection of saved pages a user 
can IPL or load by name. 

native mode. A mode in which an operating 
system is run stand-alone on the real machine 
instead of under VM. 

noninteractive. The classification given to a 
virtual machine depending on this virtual machine's 
processing characteristics. When a virtual machine 
usually uses all its allocated time slice, it is 
classified as being noninteractive or compute bound. 
See also interactive. 

non-resident pages. Pages whose contents are on 
DASD but not in real storage. A page is considered 
non-resident when an attempt to load its real 
address returns a nonzero condition code. 

page frame. A block of 4096 bytes of real storage. 

page table. A table in CP that indicates whether a 
page is in real storage and matches virtual 
addresses with real storage addresse:,. 

prefix storage area (PSA). a page zero of real 
storage that contains machine-used data areas and 
CP global data. 

preferred machine assist. The hardware feature 
of certain processors that improves MVS/SP V = R 
virtual machine performance. The MVS/SP guest 
virtual machine operates in supervisor state with 
direct control of its own I/O operations under 
VM/SP High Performance Option. Note that 
preferred machine assist is an extension of virtual 
machine assist, which eliminates CP simulation of 
certain instruction and interrupts. 

programmable operator facility. A facility that 
allows automatic filtering and routing of messages 
from a specified virtual machine (for example, the 
system operator's virtual machine) to a logical 
operator virtual machine. The logical operator 
virtual machine is in a local, distributed, or mixed 
environment. The programmable operator facility 
also permits installation defined actions to be 
carried out automatically. 

program status word (PSW). An area in storage 
used to indicate the order in which instructions are 

Glossary of Terms and Abbreviations 445 



executed, and to hold and indicate the status of the 
computer system. Synonymous with processor 
status word. 

PSA. Prefix storage area. 

PSW. Program status word, or processor stat"~s 
word. 

real machine. The actual processor, channels, 
storage, and I/O devices required for operation of 
VM. 

routing table. A CMS file that contains the 
information used to control the operation of the 
programmable operator facility. It lets the 
programmable operator facility recognize a message 
as a command, determine the action to take when a 
message comes in, and recognize the authorized 
users of programmable operator functions. 

RSCS. unless otherwise noted, refers to the RSCS 
Networking Version 2 Program Product (5664-188). 
When you install and use VM/SP in conjunction 
with the VM/370 Release 6 System Control Program 
(SCP), it becomes a functional operating system that 
provides extended features to the Control Program 
(CP) and Conversational Monitor System (CMS) 
components of VM/370 Release 6. VM/SP adds no 
additional functions to the Remote Spooling 
Communications Subsystem (RSCS) component of 
VM/370. However, you can appreciably expand the 
capabilities of this component in a VM/SP system 
by installing RSCS Networking Version 2 (5664-188). 

S-disk. See CMS system disk. 

S-STAT. A block of storage that contains the file 
status tables (FSTs) associated with the S-disk. The 
FSTs are sorted so that a binary search can be used 
to search for files. The S-STAT usually resides in 
the CMS nucleus so it can be shared. Only files 
with filemode of 2 will have their associated FSTs 
in the S-STAT. 

segment. A contiguous 64K area of virtual storage 
(not necessarily contiguous in real storage) that is 
allocated to virtual machine or CPo 

shadow page table. A table that maps real 
storage allocations (first level storage) to a virtual 

446 VM System Facilities for Programming 

machine's virtual storage (third level storage) for 
use by the real machine in its paging operations. 

spool, spooled, spooling. Relates to the reading 
of input data streams and the writing of output data 
streams on auxiliary storage devices. 

System/370. applies to the 4300 and 303X series of 
processors. 

time sharing. Sharing of computer time and 
resources. 

Transparent Services Access Facility (TSAF). 
A facility that lets users connect to and 
communicate with local or remote virtual machines 
within a collection of systems. With TSAF, a user 
can connect to a program by specifying a name that 
the program has made known, instead of specifying 
a userid and nodeid. The Transparent Services 
Access Facility consists of the TSAF virtual 
machine component, APPC/VM, and two CP system 
services. 

TSAF. Transparent Services Access Facility 

TSAF virtual machine component. A component 
in VM that handles communication between systems 
by letting APPC/VM paths span more than one 
system. 

virtual address. An address that refers to virtual 
storage or a virtual I/O device address. It must, 
therefore, be translated into a real storage or I/O 
device address when it is used. 

virtual disk. A logical subdivision (or all) of a 
physical disk storage device that has its own 
address, consecutive storage space for data, and an 
index or description of the stored data so that the 
data can be accessed. A virtual disk is also called a 
minidisk. 

virtual machine. A functional simulation of a 
computer and its associated devices. 

Virtual Machine Communication Facility 
(VMCF). A CP function that provides a method of 
communication and data transfer between virtual 
machines operating under the same VM systems. 



virtual machine group. The concept in the Group 
Control System of two or more virtual machines 
associated with each other through the same named 
system (e.g. IPL GCS1). Virtual machines in a 
group share common read/write storage and can 
communicate with one another through facilities 
provided by the Group Control System. 

virtual storage. Storage space that can be 
regarded as addressable main storage by the user of 
a computer system in which virtual addresses are 
mapped into real addresses. The size of virtual 
storage is limited by the addressing scheme of the 
computing system and by the amount of auxiliary 
storage available, and not by the actual number of 
main storage locations. 

VM. refers to VM/370, VM/SP, or VM/SP HPO. 

VMCF. Virtual Machine Communication Facility. 

VM/SP. refers to the VM/SP program package 
when you use it in conjunction with VM/370 
Release 6. 

VM/VCNA. VM/VTAM Communication Network 
Application 

VM/VTAM Communication Network 
Application (VM/VCNA). A VTAM application 

which allows a SNA terminal user to logon to VM 
though OS/VSl or VSE. 

VSCS. VTAM SNA Console Support component 

VSE. refers to the combination of the DOS/VSE 
system control program and the VSE/Advanced 
Functions licensed program. "DOS", in certain 
cases, is still used as a generic term. For example, 
disk packs initialized for use with VSE or any 
predecessor DOS or DOS/VSE system may be 
referred to as DOS disks. 

VTAM SNA Console Support component 
(VSCS). A VTAM application which allows a SNA 
terminal user to logon to VM though the Group 
Control System (GCS) facility. 

Y -disk. An extension of the CMS system disk. 

Y-STAT. A block of storage that contains the file 
status tables (FSTs) associated with the Y-disk. The 
FSTs are sorted so that a binary search can be used 
to search for files. The Y -STAT usually resides in 
the CMS nucleus so it can be shared. Only files 
with file mode of 2 will have their associated FSTs 
in the Y-STAT. 

Glossary of Terms and Abbreviations 447 



448 VM System Facilities for Programming 



Bibliography 

Here is a list of IBM books that can help you use your system. If you don't see 
the book you want in this list, you might want to check the IBM System/370, 30xx, 
and 4300 Processors Bibliography, GC20-0001. 

• Prerequisite Publications 

IBM System/360 Principles of Operation, GA22-6821 

IBM System/370 Principles of Operation, GA22-7000. 

• Books About VM/SP 

Virtual Machine/ System Product: 

General Information, GC20-1838 
Introduction, GC19-6200 
Release 5 Guide, SC24-5290 
CP for System Programming, SC24-5285 
CMS for System Programming, SC24-5286 
Transparent Services Access Facility Reference, SC24-5287 
Group Control System Command and Macro Reference, SC24-5250 
CMS Command Reference, SC19-6209 
CMS Macros and Functions Reference, SC24-5284 
Application Development Guide, SC24-5247 
Planning Guide and Reference, SC19-6201 
CP Command Reference, SC19-6211 
CMS User's Guide, SC19-6210 
Installation Guide, SC24-5237 
System Messages and Codes, SC19-6204 
System Messages Cross-Reference, SC24-5264 
OLTSEP and Error Recording Guide, SC19-6205 
Terminal Reference, SC19-6206 
Library Guide, Glossary, and Master Index, SC19-6207 
Operator's Guide, SC19-6202 
EXEC 2 Reference, SC24-5219 
System Product Editor User's Guide, SC24-5220 
System Product Editor Command and Macro Reference, SC24-5221 
System Product Interpreter User's Guide, SC24-5238 
System Product Interpreter Reference, SC24-5239 
Problem Reporting Guide, SC24-5282 

Virtual Machine/System Product High Performance Option: 

Operator's Guide, SC19-6225 
Planning Guide and Reference, SC19-6223 
CP for System Programming, SC19-6224 
Installation Guide, SC38-0107 
CP Command Reference, SC19-6227 
System Messages and Codes, SC19-6226 
System Messages Cross-Reference, SC20-0190 

Bibliography 449 



Virtual Machine: 

Diagnosis Guide, LY24-5241 
Running Guest Operating Systems, SC19-6212 

Notes: 

1. References in text to titles of publications are given in abbreviated form. 

2. The VM/SP Library Guide, Glossary, and Master Index, GCI9-6207, 
describes all the VM/SP books and contains an expanded glossary and 
master index to all the books in the VM/SP library. 

3. The VM/SP HPO Library Guide, Glossary, and Master Index, 
GC23-0187 describes all the VM/SP HPO books and contains an 
expanded glossary and master index to all the books in the VM/SP 
HPO library. 

• Other Publications 

IBM 2821 Control Unit Component Description, GA24-3312 

IBM 3211 Printer, 3216 Interchangeable Train Cartridge, and 3811 Printer 
Control Unit Component Description and Operator's Guide, GA24-3543 

IBM 3262 Printers 1 and 11 Component Description, GA24-3733 

IBM 3270 Information Display System Library User's Guide, GA23-0058 

3704 and 3705 Communications Controllers 

Introduction to the IBM 3704 and 3705 Communications Controllers, 
GA27-3051 

IBM 3704 and 3705 Communications Controllers Operator's Guide, 
GA27-3055 

IBM 3704 Control Panel Guide, GA27-3086 

IBM 3705 Control Panel Guide, GA27-3087 

IBM 3704 and 3705 Control Program Generation and Utilities Guide 
and Reference Manual (OS/VS TCAM Levels 5 and 6 SVS - 5742-017) 
SCP 5742, 5744-ANl/BA2, 5747-AGl/AJ2, GC30-3008 in VS1; VS2 ReI 
1.6, 1.7, 2, SCP 5744-BA1, GC30-3007 

IBM 3704 and 3705 Control Program Generation and Utilities Guide 
and Reference Manual (TCAM 10 SVS - 5742-017) SCP 5742, 
5744-ANl/BA2, 5747-AGl/AJ2, GC30-3008 

IBM 3725 Communication Controller Operator's Guide, GA33-0014 

IBM 3725 Operator Console Reference and Problem Analysis Guide, 
GA33-0015 

IBM Virtual Machine Facility/370: Performance/Monitor Analysis 
Program, SB21-2101 

ACF/VTAM 

450 VM System Facilities for Programming 



Network Program Product General Information Manual, GC23-0108 
A CF/ VTAM System Programmer's Guide, SC38-0258 
Network Program Products Planning, SC23-0110 
VTAM Installation and Resource Definition, SC23-0111 
VTAM Customization, SC23-0112. 
VT AM Operation, SC23-0113. 

EREP 

Environmental Recording Editing and Printing (EREP) Program, 
GC28-1178 
Environmental Recording Editing and Printing (EREP) Program 
User's Guide and Reference, GC28-1378 

VM/SP Remote Spooling Communications Subsystem Networking (RSCS 
Networking) Version 2 

Planning and Installation, SH24-5057 
Operation and Use, SH24-5058 
Diagnosis Reference, L Y24-5228 

VM/SP Data Areas and Control Block Logic, 

Volume 1 Control Program (CP), LY24-5220 
Volume 2 Conversational Monitor System (CMS), LY24-5221 

VM/SP HPO Data Areas and Control Block Logic - CP, LY20-0896 

VM/ SP System Logic and Problem Determination, 

Volume 1 Control Program (CP), LY20-0892 
Volume 2 Conversational Monitor System (CMS) , L Y20-0893 

VM/ SP HPO System Logic and Problem Determination - CP, L Y20-0897 

IBM 3850 Mass Storage System (MSS) 

Introduction and Preinstallation Planning, GA32-0038 
Principles of Operation: Theory, GA32-0035 
Principles of Operation: Reference, GA32-0036 

OS/ VS Mass Storage System (MSS) Services: 

General Information, GC35-0016 
Reference Information, GC35-0017 

OS/ VS Message Library: Mass Storage System (MSS) Messages, GC38-1000 

Operator's Library: IBM 3850 Mass Storage System (MSS) Under OS/ VS, 
GC35-0014. 

OS/ VS Data Management Macro Instructions, GC26-3793 

OS/VS Supervisor Service and Macro Instructions, GC27-6979 

If you use the IBM 3767 Communication Terminal as a virtual machine console, 
the IBM 3767 Operator's Guide, GA18-2000 may also be helpful. 

Bibliography 451 



452 VM System Facilities for Programming 



I Special Characters I 

+ and - subcommands of DUMPS CAN command 
See DIAG 

(VTOC) Volume Table of Contents 
See CMSPROG 

&name subcommand of DUMPSCAN command 
See DIAG 

bclose 
See CMSPROG 

bdump 
See CMSPROG 

bopen 
See CMSPROG 

bopenr 
See CMSPROG 

bopnlb 
See CMSPROG 

bopnr2 
See CMSPROG 

bopnr3 
See CMSPROG 

bosvlt 
See CMSPROG 

*BLOCKIO (DASD Block I/O System Service) 
*CCS (SNA Console Communication Services) 
*LOGREC (Error Logging System Service) 257 
*MSG (Message System Service) 239 
*MSGALL (Message All System Service) 241 
*NCCF 343, 355, 356 
*SIGNAL (Signal System Service) 252 
*SPL (Spool System Service 259 
/JOB control cards 

See CMSPROG 
? subcommand of DUMPS CAN command 

See DIAG 

abend 
See abnormal termination (abend) 

ABEND macro 
See DIAG 

ABEND macro (SVC 13) 
See CMSPROG 

abend messages 

244 
219 

See DIAG 
identification 

See DIAG 
abend, reason for 

See DIAG 
ABENDs 

See also CMSPROG 
See also DIAG 
programmable operator facility 

ABNEXIT macro 
See CMSPROG 

abnormal termination (abend) 
See also CMSPROG 
programmable operator facility 

abnormal termination procedures 
See DIAG 

ACCEPT 
IUCV function 111, 137 

parameter list format 139 
trace table entry format 194 
using 137 

Index 

320, 386 

320, 386 

logical device support facility function 63, 65, 
282 

ACCESS command 
See CMSPROG 

access diagnostic information saved for protected 
application facility users 92 

access method services 
See CMSPROG 

access method, OS, support of 
See CMSPROG 

account number, replacing directory entry 75 
accounting 

See also CPPROG 
activating the TOD-clock interface 57 
records, generating 36 
VM SNA support 231 

accounting records 36 
ACF/VTAM, VM/SP SNA support 219 
action routines 318, 386 

See also programmable operator facility 
call interface 387 
DMSPOL 396 
DMSPOR 393 

GET 393 
LGLOPR 393 
QUERY 393 
SET 393 
STOP 393 
TOFB 393 

These symbols are used in the index to refer to other VM and VM/SP books: . 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System. Prog~amm~ng 

(for VMjSP or VMjSP HPO) DIAG-VM DIag~~~~ GUl~; 



TOVM 393 
DMSPOS 394 
error message and response handling 391 
EXEC 390 
handling console I/O 392 
interface 387 
parameter interface 387 
supplied 392 
writing 390 

activating the TOD-clock accounting interface 57 
active disk table (ADT) 

See CMSPROG 
adding national language information for an 

application 407 
ADSTOP command 

See DIAG 
ADT (active disk table) 

See CMSPROG 
ALL subcommand of TRAPRED command 

See DIAG 
alter contents of storage 

See DIAG 
altering storage contents 

See DIAG 
alternate userid, DIAGNOSE code X'D4' 106 
AP AR command 

See DIAG 
AP ARs (Authorized Program Analysis Reports) 

See DIAG 
APPC/VM synchronous event (type X'OC') entry 

See DIAG 
applications, VMCF 285 
AREGS subcommand of DUMPS CAN command 

See DIAG 
ARIOBLOK subcommand of DUMPSCAN command 

See DIAG 
assembler language macros 

See CMSPROG 
assembler language programs 

See CMSPROG 
assembler virtual storage 

See CMSPROG 
ASSGN command 

See CMSPROG 
assigning logical operator 334 

LGLOPR action routine 393 
LGLOPR command 334 

ATTACH macro (SVC 42) 
See CMSPROG 

attached processor mode (AP) 
See also CPPROG 
examine real storage 8 

AUTHORIZE function of VMCF 293 
automatic invocation of the programmable 

operator 323 
auxiliary directories 

See CMSPROG 
auxiliary files 

See CMSPROG 
AUXPROC option of FILEDEF command 

454 VM System Facilities for Programming 

See CMSPROG 
avoiding IUCV external interrupts 116 

batch facility 
See CMSPROG 

BATEXIT1 routine 
See CMSPROG 

BATEXIT2 routine 
See CMSPROG 

BATLIMIT macro 
See CMSPROG 

BDAM 
See CMSPROG 

BEGIN command 
See DIAG 

bits for licensed program identification 6 
BLDL macro (SVC 18) 

See CMSPROG 
BLIP character 

See CMSPROG 
*BLOCKIO 244 
BOTTOM subcommand of TRAPRED command 

See DIAG 
BPAM 

See CMSPROG 
branch entry Freemain (type X'OB') entry 

See DIAG 
branch entry Getmain (type X'OA') entry 

See DIAG 
breakpoint setting 

See DIAG 
BSAM/QSAM 

See CMSPROG 
BSP macro (SVC 69) 

See CMSPROG 

C subcommand of DUMPS CAN command 
See DIAG 

calling IBM for assistance, data needed 
See DIAG 
inquiry data sheet 

See DIAG 
CANCEL function of VMCF 295 
*CCS 219 
CHAIN subcommand of DUMPS CAN command 

See DIAG 
changes, summary of 431 
changing a logical operator 334 

LGLOPR action routine 393 
LGLOPR command 334 



channel program modification 30 
channel program support, real 89 
CHAP macro (SVC 44) 

See CMSPROG 
CHECK macro 

See CMSPROG 
CHKPT macro (SVC 63) 

See CMSPROG 
class override file 

See CPPROG 
classes, types, models, and features of devices 

(DIAGNOSE code X'24') 27, 419 
classes, user privilege 

See CPPROG 
clear error recording cylinders 24 
CLOSE function of SPOOL system service 265 
CLOSE/TCLOSE macro (SVC 20/23) 

See CMSPROG 
CMD command, programmable operator 369 
CMD option of the PER command 

See DIAG 
CMS (Conversational Monitor System) 

abnormal termination 
See CMSPROG 

commands 
See CMS (Conversational Monitor System) 

commands 
IUCV 199 

between two virtual machines 212 
CMSIUCV macro 204 
example 212 
exits 211 
guidelines and limitations 215 
HNDIUCV macro 199 
sample program 425 

macros 
See CMSPROG 

message repository 
updating 409 

modules 
See CMSPROG 

sequence of functions 212 
storage 

See CMSPROG 
CMS (Conversational Monitor System) commands 

immediate commands 394 
LANGGEN 413 
LANGMERG 411 
RESERVE 246 

CMS abend dump reading 
See DIAG 

CMS abend recovery function 
See DIAG 

CMS control block relationship 
See DIAG 

CMS debugging 
See DIAG 

CMS dump file printing 

See DIAG 
CMS IUCV 199-217 

exits 211 
sample program 425 

CMS subcommand of DUMPSCAN command 
See DIAG 

CMS/DOS 
See CMSPROG 

CMSGEND EXEC and function 321 
CMSIUCV macro 204 

complex list format (MF = (L,addr[,labelD) 208 
execute format (MF = (E,addr» 208 
list format (MF = L) 207 
standard format 205 

CMSPOINT subcommand of DUMPS CAN command 
See DIAG 

CMSPROG 
See the VM/SP CMS for System Programming 

manual 
coding conventions 

See CPPROG 
collecting CP data 

See DIAG 
collecting virtual machine data 

See DIAG 
command access, CP 

See CPPROG 
command handling, SNA CCS 228 
commands 

DIAL used with VSCS 227 
immediate commands 394 
LANGGEN 413 
LANGMERG 411 
programmable operator 369 

CMD 369 
FEEDBACK 371 
GET 372 
LGLOPR 373 
LOADTBL 375 
LOG 377 
QUERY 379 
SET 382 
STOP 385 

RESERVE 246 
SEND used with single console image 

facility 279 
SET EMSG 51 
SMSG 277 
TERMINAL 

BREAKIN GUESTCTL 49 
BRKKEY 49 
CONMODE 3270 48 
SCRNSAVE OFF 48 
SCRNSA VE ON 48 

communication 
between the programmable operator and the 

network 320 
between virtual machines 111, 283 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 455 



checking for the programmable operator 359 
establishing SNA links 225 
example 117 
interfaces of SNA 223 
IUCV 

DASD block I/O system service 243 
error logging system service 257 
message system service 239 
signal system service 251 
spool system service 259 

PMX protocol 331 
programmable operator 325 
programmable operator and NCCF or 

NetView 330 
complex list format (MF = (L,addr[,label]) 

CMSIUCV macro 208 
HNDIUCV macro 202 

condition codes 
DIAGNOSE code 

X'AO' 92 
X'BC' 101 
X'B4' 95 
X'B8' 99 
X'DO' 105 
X'OC' 13 
X'OO' 7 
X'08' 10 
X'10' 13 
X'14' 14 
X'18' 24 
X'28' 31 
X'3C' 35 
X'30' 33 
X'34' 33 
X'38' 34 
X'4C' 39 
X'58' 42 
X'6C' 57 
X'64' 54,55 
X'7C' 64 
X'78' 61 
X'80' 70 
X'84' 78 
X'94' 86 

FINDSYS function 55 
IUCV 

ACCEPT 138 
CONNECT 133 
DECLARE BUFFER 129 
DESCRIBE 181 
PURGE 165 
QUERY 127 
QUIESCE 174 
RECEIVE 150 
REJECT 162 
REPLY 156 
RESUME 177 
RETRIEVE BUFFER 172 
SEND 145 
SET CONTROL MASK 192 

456 VM System Facilities for Programming 

SET MASK 189 
SEVER 169 
TEST COMPLETION 185 
TEST MESSAGE 179 

LOADSYS function 54 
PURGESYS function 55 

configuration file for GCS 
See DIAG 

CONNECT function of IUCV 131 
parameter list format 134 
to the DASD block I/O system service 244 
to the signal system service 252 
to the SPOOL system service 260 
trace table entry format 194 
using 131 

connection complete external interrupt in 
IUCV 140 

connection pending external interrupt in 
IUCV 135 

connection quiesced external interrupt in 
IUCV 175 

connection resumed external interrupt in 
IUCV 178 

connection severed external interrupt in IUCV 170 
console function, virtual 9 
console, single 279 
contents of the feature tape for a national 

language 401 
control blocks 

See CMSPROG 
control file 

LANGGEN 415 
example 415 
updating 409 

LANGMERG 405, 412 
example 413 

control functions of VMCF 293 
control paths in IUCV 121 
Control Program (CP) 

commands 
See CP (Control Program) commands 

device classes, types, models, and features 
(DIAGNOSE code X'24') 27, 419 

message repository 404 
DASD space for 404, 405 
saving with DIAGNOSE code X'CC' 103 

system service 
DASD block I/O 243 
error logging 257 
IUCV communication 197 
message 239 
message all 241 
signal 251 
SNA virtual console communication 219 
spool 259 

control program, 370X 39 
control register allocation 

See DIAG 
control registers 

/ 



See DIAG 
controlling authorization 352 
Conversational Monitor System (CMS) 

abnormal termination 
See CMSPROG 

commands 
See CMS (Conversational Monitor System) 

commands 
IUCV 199 

between two virtual machines 212 
CMSIUCV macro 204 
example 212 
exits 211 
guidelines and limitations 215 
HNDIUCV macro 199 
sample program 425 

macros 
See CMSPROG 

message repository 
updating 409 

modules 
See CMSPROG 

sequence of functions 212 
storage 

See CMSPROG 
CONVERT command 

See DIAG 
converting routing tables 429 
CONVIPCS EXEC 

See DIAG 
CORTABLE subcommand of DUMPS CAN command 

See DIAG 
COUNT subcommand of the PER command 

See DIAG 
CP (Control Program) 

See also CPPROG 
commands 

See CP (Control Program) commands 
device classes, types, models, and features 

(DIAGNOSE code X'24') 27, 419 
message repository 404 

DASD space for 404,405 
saving with DIAGNOSE code X'CC' 103 

system service 
DASD block I/O 243 
error logging 257 
IUCV communication 197 
message 239 
message all 241 
signal 251 
SNA virtual console communication 219 
spool 259 

CP (Control Program) commands 
DIAL used with VSCS 227 
SEND used with single console image 

facility 279 
SET EMSG 51 
SMSG 277 

TERMINAL 
BREAKIN GUESTCTL 49 
BRKKEY 49 
CONMODE 3270 48 
SCRNSAVE OFF 48 
SCRNSA VE ON 48 

CP abend dumps, reading 
See DIAG 

CP data, recording 
See DIAG 

CP debugging 
See DIAG 

CP FRET Trap 
See DIAG 

CP internal trace table 
See DIAG 

CP SET DUMP command 
See DIAG 

CP trace table entries, recording 
See DIAG 

CPEREP program 
See DIAG 

CPPROG 
See the CP for System Programming manual. 

CPTRAP command 
See DIAG 

CPTRAP facility 
See DIAG 

CSIYTD control program 
See DIAG 

CUSTOMER PROFILE file 
See DIAG 

CVTSECT (CMS Communications Vector Table) 
See DIAG 

DASD Block I/O System Service 243-249 
establishing communications 243 
from CMS 246 
IUCV communication 248 
IUCV CONNECT 244 
IUCV SEND 245 

DASD Dump/Restore (DDR) program 
See DIAG 

DASD I/O function 22 
DASD space for CP message repository 404,405 
data extraction routine 

See DIAG 
data management 

See DIAG 
data needed before calling IBM for assistance 

See DIAG 
data security in batch facility 

See CMSPROG 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 457 



Data Set Control Block (DSCB) 
See CMSPROG 

data sets, DOS 
See CMSPROG 

data sheet, problem inquiry 
See DIAG 

data transfer error codes, VMCF 312 
data transfer functions of VMCF 296 
DCB (data control block) 

See CMSPROG 
DCB macro 

See CMSPROG 
DCP command 

See DIAG 
DCSS 

See discontiguous saved segment (DCSS) 
DCSS (discontiguous shared segment) 

See CMSPROG 
DDR command 

See CMSPROG 
DDR program 

See DIAG 
debug mode, programmable operator 398 
debugging a dump 

See DIAG 
debugging an AP/MP system 

See DIAG 
debugging CMS 

See DIAG 
debugging CP 

See DIAG 
debugging GCS 

See DIAG 
debugging the virtual machine 

See DIAG 
debugging tools summary 

See DIAG 
debugging TSAF 

See DIAG 
debugging, introduction 

See DIAG 
declarative macros, DOS 

See CMSPROG 
DECLARE BUFFER function of IUCV 128 

parameter list format 129 
trace table entry format 194 
using 128 

default logical operator 317 
DELETE macro (SVC 9) 

See CMSPROG 
deleting a national language 410 
DEQ macro (SVC 48) 

See CMSPROG 
DESCRIBE function of IUCV 181 

parameter list format 182 
trace table entry format 194 
using 181 

descriptions of IUCV macro parameters 124 
DETACH macro (SVC 62) 

See CMSPROG 

458 VM System Facilities for Programming 

determining DASD space for CP message 
reposi tory 404 

determining virtual machine storage size 52 
device classes, types, models, and features 

(DIAGNOSE code X'24') 27, 419 
device table (DEVTAB) 

See CMSPROG 
device type class and values 

See DIAG 
devices 

feature codes 423 
model codes 422 
type codes 419 

DEVTAB (device table) 
See CMSPROG 

DEVTYPE macro (SVC 24) 
See CMSPROG 

DIAG 
See the VM Diagnosis Guide 

DIAGNOSE code 
instruction use 3 
X' AO', retrieve a group name 92 
X'BC', open a spool file 100 
X'BO', access diagnostic information saved for 

protected application facility users 92 
X'B4', virtual printer external attribute buffer 

manipulation 94 
X'B8', spool file external attribute buffer 

manipulation 98 
X'CC', saving the CP message repository 103 
X'C8', set language 101 
X'DO', provide 3480 tape volume serial 

number 105 
X'D4', specify an alternate userid 106 
X'D8', system spool information 108 
X'OC', pseudo timer 12 
X'OO', store extended-identification code 4 

licensed program identification bits 6 
X'04', examine real storage 7 
X'08', virtual console function 9 
X'lC', clear error recording cylinders 24 
X'10', release pages 13 
X'14', input spool file manipulation 14 
X'18', standard DASD I/O 22 
X'2C', start of LOGREC area 31 
X'20', general I/O 25 
X'24', device type and features 27 

device classes, types, models, and 
features 419 

X'28', channel program modification 30 
X'3C', VM directory 34 
X'30', read LOGREC data 32 
X'34', read system dump spool file 33 
X'38', read system symbol table 34 
X'4C', generate accounting records for the 
virtual user 36 

X'40', clean-up after virtual IPL by device 35 
X'48', issue SVC 76 from a second level 

machine 36 



X'5C', error message editing 50 
X'50', save the 370X control program image 39 
X'54', control function of the P A2 function 

key 40 
X'58' 40 

display data on 3270 console screen 41 
3270 virtual console interface, full screen 
interactions 45 

3270 virtual console interface, full screen 
interactions (3270 SIO) 48 

3270 virtual console interface, full screen 
mode 43 

X'6C', shadow table maintenance 57 
X'60', determine virtual machine storage 

size 52 
X'64', finding, loading, purging named 

segments 52 
FINDSYS function 55 
LOADSYS function 53 
PURGESYS function 54 

X'68', VMCF function 55,283,300 
X'7C', logical device support facility 61 
X'70', activating TOD-clock accounting 

interface 57 
X'74', saving or loading a 3800 named system 59 
X'78', MSS communication 60 
X'8C', access device dependent information 80 
X'80', MSSFCALL 69 
X'84', directory update in-place 72 
X'94', VMDUMP Function 81 
X'98', real channel program support 89 

DIAGNOSE code interface with a DCSS 
See CPPROG 

DIAGNOSE code interface with named segments 
See CPPROG 

DIAGNOSE instruction 3 
access device dependent information 80 
access diagnostic information saved for 

protected application facility users 92 
activating the TOD-clock accounting 

interface 57 
channel program modification 30 
clean-up after virtual IPL by device 35 
clear error recording 24 
control function of the PA2 function key 40 
determine virtual machine storage size 52 
device type and features 27 
directory update in-place 72 
display data on 3270 console screen 41 
error message editing 50 
examine real storage 7 
finding, loading, purging named segments 52 
FINDSYS function 55 
format 3, 300 
general I/O 25 
generate accounting records for the virtual 

user 36 
input spool file manipulation 14 

issue SVC 76 from a second level virtual 
machine 36 

logical device support facility 61 
MSS communication 60 
MSSFCALL 69 
open a spool file 100 
page release function 13 
provide 3480 tape volume serial number 105 
pseudo timer 12 
PURGESYS function 54 
read LOGREC data 32 
read system dump spool file 33 
read system symbol table 34 
real channel program support 89 
retrieve a group name 92 
save the 370X control program image 39 
saving or loading a 3800 named system 59 
saving the CP messages repository 103 
set language 101 
shadow table maintenance 57 
specify an alternate userid 106 
spool file external attribute buffer 

manipulation 98 
standard DASD I/O 22 
start of LOGREC area 31 
store extended-identification code 4 
system spool information 108 
update VM directory 34 
virtual console function 9 
virtual printer external attribute buffer 

manipulation 94 
VMCF function 55,283,300 

data transfer error codes 312 
return codes 309 
VMCPARM parameter list 301 

VMDUMP Function 81 
3270 virtual console interface 

full screen interactions 45, 61 
full screen interactions (3270 SIO) 48 
full screen mode 43 

diagnosing problems 
See DIAG 

diagnostic information saved for protected 
application facility users 92 

DIAL command used with VSCS 227 
directory 

authorization for IUCV 116 
control statement for IUCV 111, 114, 118, 132, 

137 
entries for national languages, updating 407 
entries in IUCV 116, 132, 138 
reading 34 
replacing entries 72 
update in-place 72 
updating with DIAGNOSE code X'3C' 34 

discontiguous saved segment (DCSS) 
loading 53 
purging 54 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 459 



discontiguous saved segments (DCSS) 
See CPPROG 

discontiguous shared segment (DCSS) 
See CMSPROG 

Disk Operating System (DOS) 
See CMSPROG 

dispatcher (type X'Ol') entry 
See DIAG 

dispatching priority, replacing directory entry 74 
dispatching virtual machines 

See CPPROG 
DISPLAY command 

See DIAG 
display real CP data 

See DIAG 
DISPLA Y subcommand of DUMPSCAN command 

See DIAG 
display terminals, CMS interface 

See CMSPROG 
display virtual data 

See DIAG 
displaying 

data on a 3270 console screen 41 
DISPW macro 

See CMSPROG 
distributed system use of the programmable 

operator 316 
distribution word, replacing directory entry 75 
DMMTAB communication table 

See DIAG 
DMSABN macro 

See CMSPROG 
See DIAG 

DMSEXS macro 
See CMSPROG 

DMSFRE service routines 
See CMSPROG 

DMSFREE macro 
See CMSPROG 

DMSFRES macro 
See CMSPROG 

DMSFRET macro 
See CMSPROG 

DMSFST macro 
See CMSPROG 

DMSINA module 
See CMSPROG 

DMSINT module 
See CMSPROG 

DMSIOW module 
See CMSPROG 

DMSITE module 
See CMSPROG 

DMSITI module 
See CMSPROG 

DMSITP module 
See CMSPROG 

DMSITP routine 
See DIAG 

DMSITS module 

460 VM System Facilities for Programming 

See CMSPROG 
DMSKEY macro 

See CMSPROG 
DMSNUC 

See CMSPROG 
DMSPOL programmable operator action 
routine 396 

DMSPOR programmable operator action 
routine 393 

DMSPOS programmable operator action 
routine 394 

DMSTVS module 
See CMSPROG 

DMSXFLPT XEDIT routine 
See CMSPROG 

DMSXFLRD XEDIT routine 
See CMSPROG 

DMSXFLST XEDIT routine 
See CMSPROG 

DMSXFLWR XEDIT routine 
See CMSPROG 

DOS (Disk Operating System) 
See CMSPROG 

DOSPOINT subcommand of DUMPS CAN command 
See DIAG 

DOWN subcommand of TRAPRED command 
See DIAG 

DSCB (Data Set Control Block) 
See CMSPROG 

DTFCD macro 
See CMSPROG 

DTFCN macro 
See CMSPROG 

DTFDI macro 
See CMSPROG 

DTFMT macro 
See CMSPROG 

DTFPR macro 
See CMSPROG 

DTFSD macro 
See CMSPROG 

dump address parameter list 85 
DUMP command 

See DIAG 
dump debugging 

See DIAG 
dump spool file, read 33 
dump, used in problem determination 

See DIAG 
DUMPID subcommand of DUMPSCAN command 

See DIAG 
dumping to DASD 

See DIAG 
dumping to printer 

See DIAG 
dumping to tape 

See DIAG 
DUMPS CAN command and subcommands 

See DIAG 



DUMPSCAN scroll interface 
See DIAG 

dynamic linkage 
See CMSPROG 

dynamic load overlay 
See CMSPROG 

editing error messages with DIAGNOSE code 
X'5C' 50 

EMSG setting 50, 51 
enabling SNA terminals 225 
END subcommand of DUMPS CAN command 

See DIAG 
end, abnormal 

See abnormal termination (abend) 
ENQ macro (SVC 56) 

See CMSPROG 
ensuring a complete log 356 

in a distributed system 357 
in a mixed environment 358 
in a single system 357 

entry points 
See CMSPROG 

environments 
programmable operator 315 

distributed VM 316 
mixed 316 
single system 315 

SNA 221 
EPLIST (extended PLIST) 

See CMSPROG 
EPLIST macro 

See CMSPROG 
error codes for DMSFREE, DMSFRES, DMSFRET 

See CMSPROG 
Error Logging System Service 257 -258 

establishing communications with 257 
error message editing with DIAGNOSE code 

X'5C' 50 
error recording cylinders, clear 24 
establishing communication 

DASD block I/O system service 243 
error logging system service 257 
message system service 239 
programmable operator and NCCF or 

NetView 330 
programmable operator to IUCV 325 
signal system service 251 
spool system service 259 

establishing SNA communications links 225 
ETRACE command 

See DIAG 
ETRACE GROUP 

See DIAG 

examine real storage with DIAGNOSE code X'04' 7 
example of IUCV virtual machine 

communication 117 
examples 

DIAGNOSE code X'08' 11 
programmable operator 363 

in a distributed environment 364 
in a local environment 363 
in a mixed environment 365 

EXCP, CMS/DOS support for 
See CMSPROG 

EXEC action routines 390 
EXEC procedures 

See CMSPROG 
execute format (MF=(E,addr» 

CMSIUCV macro 208 
HNDIUCV macro 203 

exit EXECs, programmable operator 396 
communication error 397 

PROPHCHK 397 
PROPPCHK 397 

interface 396 
log error 397 

PROPLGER 397 
EXIT/RETURN macro (SVC 3) 

. See CMSPROG 
extended control PSW description 

See DIAG 
extended-identification code 4 
External Attribute Buffer (XAB) 94 

manipulation of spool file 98 
manipulation of virtual printer 94 
READ-XAB function of SPOOL system 

service 272 
external interrupt 

See also CPPROG 
functions controlling 125 
in VMCF 283,305 

message header 306 
IUCV 114 

avoiding 116 
connection complete 140 
connection pending 135 
connection quiesced 175 
connection resumed 178 
connection severed 170 
control 115 
enabling or disabling 115 
message 115 
message complete 158 
message pending 147 

external interrupt (type X'02') entry 
See DIAG 

external interrupt, CMS 
See CMSPROG 

external tracing facilities, GCS 
See DIAG 

EXTRACT macro (SVC 40) 

These symbols are used in the index to refer to other VM and VM/SP books: . 
CPPROG-CP for System Programming CMSPROG-VM/SP CMS for Syste~ Progr.amm~ng 

(for VM/SP or VM/SP HPO) DIAG-VM DIagI:~~~ GUlg~ 



See CMSPROG 

FCB (file control block) 
See CMSPROG 

FDISPLA Y subcommand of DUMPSCAN command 
See DIAG 

feature tape, national language 401 
listing files 402 
obj ect files 403 
source files 402 

features, device 423 
features, types, models, and classes of devices 

(DIAGNOSE code X'24') 27, 419 
FEEDBACK command, programmable operator 371 
feedback file 358 

See also programmable operator facility 
FEOV macro (SVC 31) 

See CMSPROG 
fetch-protected storage, not dumped 81 
file control block (FCB) 

See CMSPROG 
FILEDEF command 

See also CMSPROG 
options 

See CMSPROG 
to invoke the programmable operator 322 

files 
for a language 

listing 402 
object 403 
source 402 

updating 
for a national language 409 

filtering messages 350 
FIND macro (SVC 18) 

See CMSPROG 
finding 

saved systems 55 
FINDSYS function 55 
FOB (font offset buffer) 

See CPPROG 
foreign languages 

See languages, national 
format of DIAGNOSE instruction 3 
FORMAT subcommand of TRAPRED command 

See DIAG 
free storage, CMS 

See CMSPROG 
FREEDBUF macro (SVC 56) 

See CMSPROG 
FREELOWE 

See CMSPROG 
FREEMAIN macro (SVC 5) 

See CMSPROG 
Freemain via SVC (type X'09') entry 

462 VM System Facilities for Programming 

See DIAG 
FREEWORK (DMKFRE and DMKFRT save area) 

See DIAG 
FSCB (file system control block) 

See CMSPROG 
FSCB macro 

See CMSPROG 
FST (file status table) 

See CMSPROG 
functional descriptions of IUCV macro 

parameters 124 
functions, SN A 224 

G subcommand of DUMPSCAN command 
See DIAG 

GCS (Group Control System) 
and the programmable operator facility 316, 

328 
national language files, saving 407 

GCS configuration file 
See DIAG 

GCS debugging 
See DIAG 

GCS dumping facilities 
See DIAG 

GCS dumps, analyzing 
See DIAG 

GCS dumps, initiating 
See DIAG 

GCS external tracing facilities 
See DIAG 

GCS internal trace table 
See DIAG 

GCS internal trace table formats 
See DIAG 

GDUMP command 
See DIAG 

GENDIRT command 
See CMSPROG 

general I/O function 25 
generate accounting records with DIAGNOSE code 

X'4C' 36 
GENIMAGE command 

See CPPROG 
GENIMAGE service program 

See CPPROG 
GENMOD command 

See DIAG 
GET 

action routine 393 
command, programmable operator 372 

GET macro 
See CMSPROG 

GETMAIN macro 
See CMSPROG 



GETMAIN macro (SVC 4) 
See CMSPROG 

Getmain via SVC (type X'08') entry 
See DIAG 

GETPOOL/FREEPOOL macro 
See CMSPROG 

getting national languages on your system 401-415 
deleting a language 410 
feature tape 401 
installing 404 
LANGGEN command 413 
LANGMERG command 411 
loading the files from disk to tape 404 
saving files for CP and CMS 404 
updating files for an existing language 409 

Group Control System (GCS) 
and the programmable operator facility 316, 

328 
national language files, saving 407 

group name, retrieve with DIAGNOSE code 
X'AO' 92 

group, virtual machine 251 
GTF header 

See DIAG 
GTRACE (type X'OE') entry 

See DIAG 
GTRACE macro 

See DIAG 
G UESTR option of PER command 

See DIAG 
GUESTV option of PER command 

See DIAG 
guidelines and limitations of CMS IUCV 215 

HELP subcommand of DUMPS CAN command 
See DIAG 

helpful hints, programmable operator 367 
HEX subcommand of TRAPRED command 

See DIAG 
HNDIUCV macro 199 

complex list format (MF = (L,addr[,label]) 202 
execute format (MF = (E,addr» 203 
list format (MF = L) 202 
standard format 200 

HOSTCHK statement 339 
See also programmable operator facility 

HX subcommand of DUMPS CAN command 
See DIAG 

I/O (input/output) 
function 

DASD 22 
general 25 

reduction, VTAM 231 
VM SNA support 

processing 229, 230 
I/O interrupt (type X'03') entry 

See DIAG 
identification bits for licensed programs 6 
IDENTIFY 

VMCF function 296 
VMCF protocol 292 

IDENTIFY macro (SVC 41) 
See CMSPROG 

lIP (ISAM Interface Program) 
See CMSPROG 

immediate commands in CMS 394 
imperative macros 

See CMSPROG 
INDICATE command 

See DIAG 
Initial Program Load (lPL) . 

device, replacing directory entry 75 
initializing the programmable operator 324 
INITIATE, logical device support facility 

function 61,62,65, 282 
input spool file manipulation with DIAGNOSE code 

X'14' 14 
input/output 

See I/O (input/output) 
installing 

national languages on VM 404 
PMX 328 
programmable operator 321 

instruction 
See DIAGNOSE instruction 

Inter-User Communications Vehicle (IUCV) 111 
basic communication functions 125 
CMS 199 
CMS, between two virtual machines 212 
communication 

DASD block I/O system service 243 
error logging system service 257 
example 117 
message system service 239 
signal system service 251 
spool system service 259 
using control paths 121 
using data in a buffer 117 
using data in a parameter list 120 
with CP system services 197 
with DASD Block I/O 248 

connection complete 140 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 463 



connection pending 135 
connection quiesced 175 
connection resumed 178 
connection severed 170 
control paths 121 
DASD block I/O system service, use 243 
Error Logging System Service, use 257 
external interrupt 114 

avoiding 116 
control 115 
enabling or disabling 115 
message 115 

functional terminology 124 
functions 

See IUCV functions 
functions controlling external interrupts 125 
introduction 111 
invoking 123 
macro description 123 
Message All System Service 241 
message complete 158 
message pending 147 
Message System Service use 239 
messages 111, 112 

data transfer 112 
identification 113 

parameters, specifying 123 
paths 111 

control 121 
programmable operator 325 
receiving messages from the special message 

facility 278 
security considerations 116 
sequence of functions 117, 120 
signal system service, use 251 
SNA environment use 223 
special message facility 278 
Spool System Service, use 259 
system services 197 

DASD block I/O 243 
error logging 257 
message 239 
message all 241 
signal 251 
SNA console communication services 221 
spool 259 

trace table entries 193 
field definitions 195 
formats 194 
suppressing 193 

Interactive Problem Control System (IPCS) 
See DIAG 

internal trace table formats, GCS 
See DIAG 

internal trace table, CP 
See DIAG 

internal trace table, GCS 
See DIAG 

internal trace table, TSAF 
See DIAG 

464 VM System Facilities for Programming 

internal tracing facilities, GCS 
See DIAG 

interrupt handler, DMSITI module 
See CMSPROG 

interrupt handling 
See CPPROG 

interrupt handling, CMS 
See CMSPROG 

interrupt, external 
functions controlling 125 
IUCV 114 

avoiding 116 
control 115 
enabling or disabling 115 
message 115 

INTSVC for SVC handling routine 
See CMSPROG 

invoking 
IUCV functions 123 
programmable operator facility 322 

automatically 323 
commands 361 
manually 322 

VMCF functions 300 
IPCS (Interactive Problem Control System) 

See DIAG 
IPCS interface files 

See DIAG 
IPCS variables 

See DIAG 
IPCSDUMP command 

See DIAG 
IPCSMAP subcommand of DUMPS CAN command 

See DIAG 
IPL (Initial Program Load) 

See also CPPROG 
device, replacing directory entry 75 

IPL performance using saved system 
See CMSPROG 

ISAM Interface Program (IIP)) 
See CMSPROG 

ITRACE command 
See DIAG 

IUCV (Inter-User Communications Vehicle) 111 
basic communication functions 125 
CMS 199 
CMS, between two virtual machines 212 
communication 

DASD block I/O system service 243 
error logging system service 257 
example 117 
message system service 239 
signal system service 251 
spool system service 259 
using control paths 121 
using data in a buffer 117 
using data in a parameter list 120 
with CP system services 197 
with DASD Block I/O 248 



connection complete 140 
connection pending 135 
connection quiesced 175 
connection resumed 178 
connection severed 170 
control paths 121 
DASD block I/O system service, use 243 
Error Logging System Service, use 257 
external interrupt 114 

avoiding 116 
control 115 
enabling or disabling 115 
message 115 

functional terminology 124 
functions 

See IUCV functions 
functions controlling external interrupts 125 
introduction 111 
invoking 123 
macro description 123 
Message All System Service 241 
message complete 158 
message pending 147 
Message System Service use 239 
messages 111, 112 

data transfer 112 
identification 113 

parameters, specifying 123 
paths 111 

control 121 
programmable operator 325 
receiving messages from the special message 

facility 278 
security considerations 116 
sequence of functions 117, 120 
signal system service, use 251 
SNA environment use 223 
special message facility 278 
Spool System Service, use 259 
system services 197 

DASD block I/O 243 
error logging 257 
message 239 
message all 241 
signal 251 
SNA console communication services 221 
spool 259 

trace table entries 193 
field definitions 195 
formats 194 
suppressing 193 

IUCV control paths 121 
IUCV functions 111 

ACCEPT 111 

parameter list format 139 
using 137 

CONNECT 111 
parameter list format 134 
to the SPOOL system service 260 
using 131 

DECLARE BUFFER, using 128 
parameter list format 129 

DESCRIBE 112 
parameter list format 182 
using 181 

PURGE 
parameter list format 165 
using 164 

QUERY, using 127 
QUIESCE 112 

parameter list format 174 
using 173 

RECEIVE 112 
parameter list format 151 
using 149 

REJECT 112 
parameter list format 162 
using 161 

REPLY 112 
parameter list format 156 
using 154 

RESUME 112 
parameter list format 177 
using 176 

RETRIEVE BUFFER, using 172 
SEND 112 

parameter list format 145 
to the DASD block I/O system service 245 
to the signal system service 254 
to the SPOOL system service 261 
using 142 

SET CONTROL MASK 115, 191 
parameter list format 192 
using 191 

SET MASK 115, 188 
parameter list format 189 
using 188 

SEVER 111 
parameter list format 169 
using 168 

terminology 124 
TEST COMPLETION 112 

parameter list format 185 
using 184 

TEST MESSAGE, using 179 
IUCV subcommand of DUMPS CAN command 

See DIAG 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 465 



job control cards (/JOB) 
See CMSPROG 

journaling 
See CPPROG 

keys 
See CMSPROG 

LANGGEN command 409,413 
control file 415 

example 415 
updating 409 

format 413 
LANGMERG command 405, 408, 411 

control file 405, 412 
example 413 

format 411 
languages, national 401,415 

adding information for an application 407 
deleting 410 
deleting application information 410 
feature tape 401 
installing on VM 404 
LANGGEN command 413 
LANGMERG command 411 
loading the files from tape to disk 404 
saving files for CP and CMS 404 
setting, DIAGNOSE code X'C8' 101 
update user directory entries for 407 
updating 

files for an existing language 409 
message repositories 409 

leaving the signal system service 255 
LGLOPR 

See also programmable operator facility 
action routine 393 
command 393 
statement 337 

libraries 
See CMSPROG 

licensed program identification bits 6 
limitations of CMS IUCV 215 
LINK command 

See CPPROG 
LINK macro (SVC 6) 

See CMSPROG 

466 VM System Facilities for Programming 

LIOCS routines supported by CMS/DOS 
See CMSPROG 

list format (MF = L) 
CMSIUCV macro 207 
HNDIUCV macro 202 

listing files, national language 402 
LOAD command 

See DIAG 
LOAD macro (SVC 8) 

See CMSPROG 
load map generation 

See DIAG 
load maps 

See DIAG 
load maps, CMS 

See CMSPROG 
loader 

. See CMSPROG 
loader tables in CMS 

See CMSPROG 
loading 

a 3800 named system with DIAGNOSE code 
X'74' 59 

national language files for CP and CMS 404 
loading discontiguous saved segments 53 
LOADSYS function 53 
LOADTBL command, programmable operator 375 
LOCATE (UP) subcommand of DUMPS CAN 

command 
See DIAG 

LOG command, programmable operator 377 
log file 354 

See also programmable operator facility 
LOGGING statement 340 

See also programmable operator facility 
logical device support facility 281, 282 

description 281 
implementing via DIAGNOSE code X'7C' 61 

logical editing symbols, replacing directory 
entry 74 

logical operator 317, 318, 332 
action routine 393 
assigning, releasing, replacing 334 
command 334, 373, 393 
compared to the CP system operator 332 
default 317,333 
NCCF or NetView 334 
statement 337 

logical units 
See CMSPROG 

LOGON command 
See CPPROG 

*LOGREC 257 
LOGREC area 

getting starting address 31 
reading 32 

loop procedures 
See DIAG 

looping programs 
See DIAG 



machine check 
See CPPROG 

machine check interrupts in CMS 
See CMSPROG 

macros 
See also CPPROG 
CMS 

CMSIUCV 204 
HNDIUCV 199 

CP 
IUCV, description 123 

IUCV 111 
ACCEPT 137 
advantages of using 124 
CONNECT 131 
DECLARE BUFFER 128 
DESCRIBE 181 
PURGE 164 
QUERY 127 
QUIESCE 173 
RECEIVE 149 
REJECT 161 
REPLY 154 
RESUME 176 
RETRIEVE BUFFER 172 
SEND 142 
SET CONTROL MASK 191 
SET MASK 188 
SEVER 168 
terminology 124 
TEST COMPLETION 184 
TEST MESSAGE 179 

MAINHIGH 
See CMSPROG 

management of data 
See DIAG 

management of problems 
See DIAG 

manual invocation of the programmable 
operator 322 

MAP command 
See DIAG 

map compressing routine 
See DIAG 

MAP option of GENMOD command 
See DIAG 

MAP option of LOAD command 
See DIAG 

MAPA subcommand of DUMPS CAN command 
See DIAG 

MAPN subcommand of DUMPS CAN command 
See DIAG 

Mass Storage System (MSS) 
communication 60 

mount and demount processing 60 
Message All System Service 241 
message complete external interrupt, IUCV 158 
MESSAGE function of SPOOL system service 268 
message output format, programmable operator 327 
message pending external interrupt, IUCV 147 
message repository 

for CMS 
updating 409 

for CP 103, 404 
DASD space for 404, 405 
saving 103 
updating 409 

updating 409 
Message System Service 239-240 

establishing communications 239 
messages 

data transfer, IUCV 112 
identification, IUCV 113 
IUCV 111, 112 

minidisk link mode, replacing directory entry 77 
minidisk multiple password, replacing directory 

entry 77 
minidisk read password, replacing directory 

entry 77 
mini disk write password, replacing directory 

entry 77 
minidisks 

See CMSPROG 
mixed environment use of the programmable 

operator 316 
model, device 422 
models, classes, types, and features of devices 

(DIAGNOSE code X'24') 27,419 
modifying channel program 30 
MODMAP command 

See DIAG 
module load map 

See DIAG 
MONITOR command 

See DrAG 
MONITOR START command 

See DIAG 
MORE/HOLDING condition, SNA handling 231 
MOVEFILE command 

See CMSPROG 
MREGS subcommand of DUMPS CAN command 

See DIAG 
MRIOBLOK subcommand of DUMPSCAN command 

See DIAG 
*MSG 239 
*MSGALL 241 
MSS (Mass Storage System) 

See also CPPROG 
communication 60 
mount and demount processing 60 

MSSF SCPINFO command 69 
MSSFCALL 69 

These symbols are used in the index to refer to other VM and VM/SP books: 
CPPROG-CP for System Programming CMSPROG-VM/SP CMS for System Programming 

(for VM/SP or VM/SP HPO) DIAG-VM Diagnosis Guide 
Index 467 

I 
; ~ 



SCPINFO command 69 
multiple address stops 

See DIAG 
multiprocessor 

See also CPPROG 
examine real storage 8 

multiprocessor mode (MP) 
See CPPROG 

named segments, finding, loading, purging 52 
named system 

saving or loading a 3800 59 
national languages 401 
na ti ve languages 

See languages, national 
*NCCF 343, 355, 356 
NCCF (Network Communications Control Facility) 

and the programmable operator facility 316, 
328 

logging NCCF messages 356 
logical operator 334 

operator 334 
command authorization 330 
QUERY command authorization 334 
routing messages to 350 

operator station 362 
PMX 316,328 
when stopping programmable operator 328 

NCP and PEP sharing 232 
NCPDUMP command 

See DIAG 
NCPDUMP service program 

See DIAG 
NetView 

and the programmable operator facility 316, 
328 

logging Net View messages 356 
logical operator 334 

operator 334 
command authorization 330 
QUERY command authorization 334 

operator station 362 
PMX 316,328 
when stopping programmable operator 328 

NETWORK command 
See DIAG 

Network Communications Control Facility (NCCF) 
and the programmable operator facility 316, 

328 
logging NCCF messages 356 
logical operator 334 

operator 334' 
command authorization 330 
QUERY command authorization 334 
routing messages to 350 

468 VM System Facilities for Programming 

operator station 362 
PMX 316,328 
when stopping programmable operator 328 

network dump operations 
See DIAG 

non-recoverable machine check 
See DIAG 

NOTE macro 
See CMSPROG 

NOTIFY function of SPOOL system service 275 
nucleus free storage 

See CMSPROG 
nucleus load map 

See DIAG 
nucleus, CMS 

See CMSPROG 
NUCON macro 

See CMSPROG 

object files for a national language 403 
open a spool file with DIAGNOSE code X'BC' 100 
OPEN macro 

See CMSPROG 
OPEN/OPENJ macro (SVC 19/22) 

See CMSPROG 
Operating System (OS) 

See CMSPROG 
operator 

NCCF station 362 
NetView station 362 

operator considerations, SNA 232 
operator, logical 317 
order of functions in CMS IUCV 212 
order of functions in IUCV 117, 120 
OS (Operating System) 

See CMSPROG 
OS/VSAM 

See CMSPROG 
OSPOINT subcommand of DUMPS CAN command 

See DIAG 
overlay structures in CMS 

See CMSPROG 
overview, programmable operator 315 

page 
See also CPPROG 
contiguous storage 

discontiguous storage 54 
page management 

See CMSPROG 



pageable module, identify and locate 
See DIAG 

parameter list 
IUCV 

ACCEPT 139 
CONNECT 134 
DECLARE BUFFER 129 
DESCRIBE 182 
parameter list data 120 
PURGE 165 
QUIESCE 174 
RECEIVE 151 
REJECT 162 
REPLY 156 
RESUME 177 
SEND 145 
SET CONTROL MASK 192 
SET MASK 189 
SEVER 169 
TEST COMPLETION 185 

VMCPARM 301 
parameters, IUCV, specifying 123 
password 

See also CPPROG 
replacing directory entry 72, 73, 74 

paths, IUCV 
control, IUCV 121 

PAl program function key 49 
with DIAGNOSE code X'58' 44, 47, 49 
with the programmable operator facility 324, 

398 
with VSCS or VCNA 231 

P A2 program function key 40 
PEP and NCP sharing 232 
PER command 

See DIAG 
performance of virtual machines 

See CPPROG 
PGRLSE macro (SVC 112) 

See CMSPROG 
PLIST (parameter list) 

See CMSPROG 
PMX (Programmable Operator/NCCF Message 

Exchange) 328 
See also programmable operator facility 

POINT macro 
See CMSPROG 

POST macro (SVC 2) 
See CMSPROG 

poster, CP internal trace table 
See DIAG 

PRB command 
See DIAG 

PRBnnnnn aaaaaaaa file 
See DIAG 

PRBnnnnn dump file 
See DIAG 

PRBnnnnn report 

See DIAG 
number assignment 

See DIAG 
PRBnnnnn report file 

See DIAG 
report file (PRBnnnnn REPORT) 

See DIAG 
PRB00003 report file with status updates added 

See DIAG 
PRESENT, logical device support facility 

function 63,66, 282 
prestructured overlays 

See CMSPROG 
PRINT subcommand of DUMPSCAN command 

See DIAG 
printer 

See CPPROG 
printer external attribute buffer manipulation, 

virtual 94 
printer interrupts 

See CMSPROG 
PRINTER subcommand of TRAPRED command 

See DIAG 
printing tape dump 

See DIAG 
priority 

messages 294, 298 
privilege classes 

replacing directory entry 74 
privilege classes, user 

See CPPROG 
PROB command 

See DIAG 
problem exist? 

See DIAG 
processing descriptions, SNA 222 
processor 

See CPPROG 
program check debugging 

See DIAG 
program exceptions 

See DIAG 
program interrupt (type X'04') entry 

See DIAG 
program interrupts 

See CMSPROG 
Program Support Representative (PSR) 

See DIAG 
program temporary fix (PTF) 

See DIAG 
programmable operator facility 315-399 

abend 320, 331, 386 
action routine interface 

call interface 387 
parameter interface 387 

action routines 318, 386 
DMSPOL 396 
DMSPOR 393 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 469 



DMSPOS 394 
error message and response handling 391 
EXEC 386, 390 
handling console 1/0 392 
supplied 392 
writing 390 

assigning a logical operator 334, 393 
authorization 352 
commands 368 

CMD 369 
FEEDBACK 371 
GET 372 
LGLOPR 373 
LOADTBL 375 
LOG 377 
QUERY 379 
SET 382 
STOP 385 

communication 
checking 359 
with the network 320 

debug mode 398 
default 333 
ensuring a complete log 356 
environments 

distributed VM 316, 364 
mixed 316, 365 
single system 315, 363 

examples of communicating 
distributed environment 364 
local environment 363 
mixed environment 365 

exit EXECs 
communication error 397 
interface 396 
log error 397 
PROPHCHK EXEC 360, 397 
PROPLGER EXEC 356, 397 
PROPPCHK EXEC 360, 397 

feedback file 358 
helpful hints 367 
ini tializing 324 
installing 321 

CMSGEND EXEC 321 
PMX 328 

invoking 322 
automatically 323 
commands 361 
manually 322 
PROPPROF EXEC 325 
PROPST EXEC 322 

issuing commands 361, 363-367 
LGLOPR 332 

action routine 393 
command 334, 373, 393 
default 317 
sample command entries in RTABLE 336 
statement 317, 337 

log file 354 
logging NCCF or NetView messages 356 

470 VM System Facilities for Programming 

logical operator 318, 332 
action routine 393 
assigning, releasing, replacing 334 
command 334, 393 
default 333 
NCCF or NetView 334 
statement 337 

message format 
distributed 362 
local 361 

message output format 327 
NCCF or NetView logical operator 334 
overview 315 

flow of operation 319 
how it works 318 
in a distributed VM system 316 
in a mixed environment 316 
in a single system 315 
logical operator 317 

partial routing table 344 
PMX 316,328 

abend 331 
installing 328 
starting 331 
stopping 331, 332 

PROPEPIF EXEC 327 
PROPLIB LOAD LIB 321, 324 
PROPPROF EXEC 325 
PROPRTCV 429 
QUERY command authorization for an NCCF 
operator 334 

register conventions for invoking an action 
routine 389 

relationship with RSCS Networking 320 
releasing a logical operator 334, 393 
replacing a logical operator 334, 393 
restricting 353 

authorization by nodeid 353 
authorization by userid and nodeid 353 
command use 354 

routing entries to filter responses to 
commands 351 

routing messages 357 
routing table 336, 341 

converting 429 
entry formats and statements 337 
tailoring 346 
use 337 

routing table (RTABLE) 317 
routing table entries 341 

specifying routing texts 346 
routing table statements 

HOSTCHK 339 
LGLOPR 337 
LOGGING 340 
order of 341 
PROPCHK 339 
ROUTE 340 
TEXTSYM 338 



shortcuts 367 
starting 324 
stopping 327, 331 

PROPEPIF EXEC 327 
tasks 315 
uncontrolled authorization 353 
use in a distributed VM system 316 
use in a mixed environment 316 
use in a single system 315 
virtual machine 321 
with IUCV 325 
with NCCF 316, 328, 350 

command authorization 330 
routing messages to 350 

with NetView 316, 328, 350 
routing messages to 350 

Programmable Operator/NCCF Message Exchange 
(PM X) 328 

See also programmable operator facility 
PROP 

See programmable operator facility 
PROPCHK statement 339 

See also programmable operator facility 
PROPEPIF EXEC 327 
PROPHCHK EXEC 397 
PROPLGER EXEC 397 
PROPLIB LOAD LIB 321, 324 
PROPPCHK EXEC 397 
PROPPROF EXEC 325 
PROPRTCV, for converting routing tables 429 
protected application facility, DIAGNOSE code 

X'BO' 92 
protocol 

PMX communication 331 
VMCF 288 

IDENTIFY 292 
SEND 289 
SEND/RECV 290 
SENDX 291 

provide 3480 tape volume serial number, 
DIAGNOSE code X'DO' 105 

PRTDUMP command 
See DIAG 

PSA (Prefix Storage Area) 
See CPPROG 

pseudo timer, DIAGNOSE code X'OC' 12 
PSR (Program Support Representative) 

See DIAG 
PSW (program status word) 

See CMSPROG 
PTF (program temporary fix) 

See DIAG 
punch interrupts 

See CMSPROG 
PURGE 

IUCV function 164 
parameter list format 165 
trace table entry format 194 

using 164 
SPOOL system service function 275 

PURGESYS function 54 
purging discontiguous saved segments 54 
PUT macro 

See CMSPROG 
PUTX macro 

See CMSPROG 

QUERY 
action routine 393 
command, programmable operator 379 
IUCV function 127 

trace table entry format 194 
using 127 

QUERY command, CMS 
See CMSPROG 

QUERY SRM command 
See DIAG 

QUIESCE 
IUCV function 112, 173 

parameter list format 174 
trace table entry format 194 
using 173 

VMCF function 295 
QUIT subcommand of DUMPS CAN command 

See DIAG 
QUIT subcommand of TRAPRED command 

See DIAG 

RDJFCB macro (SVC 64) 
See CMSPROG 

READ functions of SPOOL system service 270 
READ-SFBLOK 271 
READ-SPLINK 270 
READ-XAB 272 

READ macro 
See CMSPROG 

read system dump spool file with DIAGNOSE code 
X'34' 33 

read system symbol table with DIAGNOSE code 
X'38' 34 

reader interrupts 
See CMSPROG 

real channel program support 89 
real device simulation, VM SNA support 228 
real storage 

See also CPPROG 
examine with DIAGNOSE code X'04' 7 

These symbols are used in the index to refer to other VM and VM/SP books: 
CPPROG-CP for System Programming CMSPROG-VM/SP eMS for System Programming 

(for VM/SP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 471 



in attached processor environment 8 
in multiprocessor environment 8 

RECEIVE 
IUCV function 112, 149 

parameter list format 151 
trace table entry format 194 
using 149 

VMCF function 299 
receiving signals from the signal system 

service 254 
records, accounting 36 

See also CPPROG 
recovery, CMS abend 

See CMSPROG 
redisplay of input line for SNA terminals 229 
REGS subcommand of DUMPSCAN command 

See DIAG 
REJECT 

IUCV function 112, 161 
parameter list format 162 
trace table entry format 194 
using 161 

VM CF function 296 
release pages with DIAGNOSE code X'10' 13 
releasing a logical operator 334 

LGLOPR action routine 393 
LGLOPR command 334 

Remote Spooling Communications Subsystem 
(RSCS) Networking 

programmable operator facility 
relationship 320, 359 

repetitive output, analysis and types 
See DIAG 

replacing a logical operator 334 
LGLOPR action routine 393 
LGLOPR command 334 

REPLY 
IUCV function 112, 154 

parameter list format 156 
trace table entry format 194 
using 154 

VMCF function 299 
reporting problems 

See DIAG 
diagnosis 

See DIAG 
RESERVE 

command 246 
Resource Access Control Facility (RACF) 

See CPPROG 
RESTORE macro (SVC 17) 

See CMSPROG 
restricting command use 354 
RESUME 

IUCV function 112, 176 
parameter list format 177 
trace table entry format 194 
using 176 

VMCF function 295 

472 VM System Facilities for Programming 

retrieve a group name with DIAGNOSE code 
X'AO' 92 

RETRIEVE BUFFER function of IUCV 172 
trace table entry format 194 
using 172 

return codes 
CMSIUCV 210 
DASD Block I/O System Service 
DIAGNOSE code 

X'BC' 101 
X'CC' 104 
X'C8' 102 
X'DO' 105 
X'D4' 107 
X'OC' 13 
X'OO' 7 
X'08' 10 
X'10' 13 
X'18' 24 
X'28' 31 
X'64' 54 
X'68' 56, 309 
X'7C' 64 
X'74' 60 
X'78' 61 
X'8C' 80 
X'80' 70 
X'84' 78 
X'94' 86,87 
X'98', subcode X'OOOO' 90 
X'98', subcode X'0004' 91 
X'98', subcode X'0008' 91 

FINDSYS function 55 
HNDIUCV 203 
IUCV 

ACCEPT 140 
CONNECT 135 
DECLARE BUFFER 130 
DESCRIBE 183 
PURGE 167 
QUIESCE 175 
RECEIVE 153 
REJECT 163 
REPLY 157 
RESUME 178 
SEND 146 
SET CONTROL MASK 193 
SET MASK 190 
SEVER 170 
TEST COMPLETION 187 

LOADSYS function 54 
PURGESYS function 55 

246 

read, write, multi password prompt 10 
Signal System Service 253 
VMCF 304, 309 

return DASD start of LOGREC area 31 
REUSE subcommand of DUMPSCAN command 

See DIAG 
RIOBLOK subcommand of DUMPSCAN command 



See DIAG 
ROUTE statement 340 

See also programmable operator facility 
routines, action 318 
routing table (RTABLE) 317,336 

See also programmable operator facility 
RSCS (Remote Spooling Communications 

Subsystem) Networking 
programmable operator facility 
relationship 320, 359 

RTABLE (routing table) 317, 336 
See also programmable operator facility 

running the programmable operator from NCCF or 
NetView 328 

SAD MACRO 
See DIAG 

SADGEN ASSEMBLE file 
See DIAG 

SADGEN TEXT file 
See DIAG 

SADUMP EXEC 
See DIAG 

sample CMS IUCV program 425 
saved system 

See CMSPROG 
See CPPROG 

saving 
a 3800 named system with DIAGNOSE code 

X'74' 59 
CP message repository, DIAGNOSE code 

X'CC' 103 
national language files for CP and CMS 404 
national language files for GCS 407 
the 370X control program 39 

SCBLOCK control block 
See CMSPROG 

SCBLOCK macro 
See CMSPROG 

scheduling virtual machines 
See CPPROG 

SCIF (Single Console Image Facility) 279-280 
controlling multiple virtual machines 279 
using 279 

SCPINFO command 69 
screen management, VM SNA support 222 
scroll interface, DUMPS CAN 

See DIAG 
SCROLL subcommand of DUMPS CAN command 

See DIAG 
SDUMP command 

See DIAG 
search order 

See CMSPROG 

second level storage, dumping of 82 
second level virtual machine issues SVC 76 36 
secondary user 279 
security considerations, IUCV 116 
SELECT function of SPOOL system service 262 
SEND 

command with single console image facility 279 
IUCV function 112,142 

parameter list format 145 
to the DASD block I/O system service 245· 
to the signal system service 254 
to the SPOOL system service 261 
trace table entry format 194 
using 142 

SPOOL system service function 274 
VMCF function 297 
VMCF protocol 289 

SEND/RECV 
VMCF function 297 
VMCF protocol 290 

sending signals to the signal system service 254 
SENDX 

VMCF function 298 
VMCF protocol 291 

sequence of functions in CMS IUCV 212 
sequence of functions in IUCV 117, 120 
SET 

action routine 393 
command, programmable operator 382 

SET command 
See CMSPROG 

SET CONTROL MASK function of IUCV 115, 191 
parameter list format 192 
trace table entry format 194 
using 191 

set language, DIAGNOSE code X'C8' 101 
SET MASK function of IUCV 115, 188 

parameter list format 189 
trace table entry format 194 
using 188 

SEVER function of IUCV 111, 168 
parameter list format 169 
trace table entry format 194 
using 168 

shadow table maintenance with DIAGNOSE code 
X'6C' 57 

shared segments 
See CPPROG 

shutdown, SNA 232 
*SIGNAL 252 
Signal System Service 251-256 

connecting with 252 
establishing communications with 251 
leaving 255 
receiving signals 254 
sending signals 254 

simulated OS supervisor calls 
See CMSPROG 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP CMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 473 



simulation 
See CMSPROG 

Single Console Image Facility 279 
Single Console Image Facility (SCIF) 279 

controlling multiple virtual machines 279 
using 279 

single processor mode 
See CPPROG 

single system use of the programmable 
operator 315 

SIO (Start I/O instruction) 
initiating full screen mode 48 

SIO (type X'06') entry 
See DIAG 

SMSG command 277 
SNA (System Network Architecture) 

console communication services 219 
VM/SP support 219 

accounting 231 
CMS mode 221 
command handling 228 
communication interfaces 223 
console mode 221 
enabling SNA terminals 225 
environments supported 221 
establishing connections 225 
full screen support mode 222 
functions, SNA 224 
I/O processing 229, 230 
MORE/HOLDING condition 231 
NCP and PEP sharing 232 
operator considerations 232 
real device simulation 228 
redisplay of input line for terminals 229 
screen management 222 
shutdown 232 
system structure 220 
trace table entries 233 
TRQBLOK 230 
user termination 232 
WEBLOK 223,229 
WEIBLOK 229 

VM/SP virtual console support 219 
VT AM service machine 220 

SNAP macro (SVC 51) 
See CMSPROG 

source files, national language 402 
spanned records, usage 

See CMSPROG 
Special Message Facility 277-278 

buffer length 277 
description 277 
introduction 277 
receiving messages via IUCV 278 
receiving messages via VMCF 277 
sending messages 277 
SMSG command 277 

special message flag (VMCPSMSG) 277 
turning on or off 278 

474 VM System Facilities for Programming 

specify an alternate userid with DIAGNOSE code 
X'D4' 106 

specifying DASD space for CP message 
repository 405 

specifying routing texts 346 
to an NCCF or NetView operator 349 

SPIE macro (SVC 14) 
See CMSPROG 

*SPL 259 
spool file 

See also CPPROG 
manipulation 14 

spool file external attribute buffer manipulation 98 
spool file opening with DIAGNOSE code X'BC' 100 
spool file, system dump 33 
SPOOL System Service 259-275 

definition 259 
establishing communications 259 
functions 259 

CLOSE 265 
IUCV CONNECT 260 
IUCV SEND 261 
MESSAGE 268 
NOTIFY 275 
PURGE 275 
READ-SFBLOK 271 
READ-SPLINK 270 
READ-XAB 272 
SELECT 262 
SEND 274 

to a logical printer 273 
spooling 

See CPPROG 
STAE macro (SVC 60) 

See CMSPROG 
stand-alone dump facility 

See DIAG 
standard format 

CMSIUCV macro 205 
HNDIUCV macro 200 

Start I/O (SIO) instruction 
initiating full screen mode 48 

starting the programmable operator 324 
STAT command 

See DIAG 
statall local file 

See DIAG 
status file 

See DIAG 
STATUS, logical device support facility 

function 63, 67, 282 
STAX macro (SVC 96) 

See CMSPROG 
STCP command 

See DIAG 
STIMER macro (SVC 47) 

See CMSPROG 
STOP 

action routine 393 



command 385 
STOP command, programmable operator 385 
stop execution 

See DIAG 
stopping the programmable operator facility 327 
storage contents, altering 

See DIAG 
storage protection 

See CPPROG 
storage size 

maximum, replacing directory entry 74 
virtual machine, replacing directory entry 74 

STORE command 
See DIAG 

store extended-identification code with DIAGNOSE 
code X'OO' 4 

store real CP data 
See DIAG 

store virtual data 
See DIAG 

STOW macro (SVC 21) 
See CMSPROG 

STRINIT macro 
See CMSPROG 

structure of CMS storage 
See CMSPROG 

structure, SNA system 220 
structured data base (SDB) 

See DIAG 
reporting 

See DIAG 
SUBCOM function 

See CMSPROG 
summary of changes 431 
summary record file 

See DIAG 
supervisor calls 

See CMSPROG 
SVC interrupt (type X'05') entry 

See DIAG 
SVC interrupts 

See CMSPROG 
SVC save area (SVCSA VE) 

See DIAG 
SVC types 

See CMSPROG 
SVC 199 services 

See DIAG 
SVC 202 

See CMSPROG 
SVC 203 

See CMSPROG 
SVC 76 from a second level virtual machine 36 
SVCTRACE command 

See DIAG 
switching, CMS tape volume 

See CMSPROG 
symbol table, read 34 

SYMP subcommand of DUMPS CAN command. 
See DIAG 

symptom records 
See DIAG 

symptom summary file 
See DIAG 

symptom summary file conversion 
See DIAG 

SYNADAF macro (SVC 68) 
See CMSPROG 

SYNADRLS macro (SVC 68) 
See CMSPROG 

SYSCOR macro 
See DIAG 

SYSOPR macro 
See DIAG 

SYSRLB system logical units assigned in CMS/DOS 
See CMSPROG 

SYSSLB system logical units assigned in CMS/DOS 
See CMSPROG 

system 
dump spool file, reading 33 
structure, SNA 220 
symbol table, reading 34 

system abend 
See DIAG 

system information, collect and analyze 
See DIAG 

System Network Architecture (SNA) 
See also SNA (System Network Architecture) 
console communication services 219 
VM/SP support 219 

accounting 231 
CMS mode 221 
command handling 228 
communication interfaces 223 
console mode 221 
enabling SNA terminals 225 
environments supported 221 
establishing connections 225 
full screen support mode 222 
functions, SNA 224 
I/O processing 229, 230 
MORE/HOLDING condition 231 
NCP and PEP sharing 232 
operator considerations 232 
real device simulation 228 
redisplay of input line for terminals 229 
screen management 222 
shutdown 232 
system structure 220 
trace table entries 233 
TRQBLOK 230 
user termination 232 
WEBLOK 223,229 
WEIBLOK 229 

VMjSP virtual console support 219 
VT AM service machine 220 

These symbols are used in the index to refer to other VM and VM/SP books: 
CPPROG-CP for System Programming CMSPROG-VM/SP CMS for System Programming 

(for VM/SP or VM/SP HPO) DIAG-VM Diagnosis Guide 
Index 475 



system security 
See CPPROG 

system service, CP 
DASD block I/O 243 
error logging 257 
IUCV communication 197 
message 239 
message all 241 
signal 251 
SNA virtual console communication 219 
spool 259 

system spool information, DIAGNOSE code 
X'D8' 108 

table, routing 317 
TACTIVE subcommand of DUMPS CAN command 

See DIAG 
tailoring a programmable operator routing 

table 346 
tape volume serial number, 3480 105 
tape volume switching in CMS 

See CMSPROG 
TCLEARQ macro (SVC 94) 

See CMSPROG 
TERMINAL command 

BREAKIN GUESTCTL 49 
BRKKEY 49 
CONMODE 3270 48 
SCRNSAVE OFF 48 
SCRNSAVE ON 48 

terminal interrupts 
See CMSPROG 

TERMINATE ALL, logical device support facility 
function 63, 67, 282 

TERMINATE, logical device support facility 
function 63, 66, 282 

terminating the programmable operator 
facility 327 

termination, abnormal 
See abnormal termination (abend) 

terminology of IUCV macro parameters 124 
TEST COMPLETION 

IUCV function 112 
TEST COMPLETION function of IUCV 184 

parameter list format 185 
trace table entry format 194 
using 184 

TEST MESSAGE function of IUCV, using 179 
trace table entry format 194 

TEVC (trace entry verification code) 
See DIAG 

TEXTSYM statement 338 
See also programmable operator facility 

TGET/TPUT macro (SVC 93) 
See CMSPROG 

476 VM System Facilities for Programming 

third level storage, not dumped 82 
TIME macro (SVC 11) 

See CMSPROG 
timer, pseudo 12 
timers 

See CPPROG 
TLOADL subcommand of DUMPSCAN command 

See DIAG 
TOD-clock accounting interface 57 
TOFB action routine 393 
tokenized PLIST 

See CMSPROG 
TOP subcommand of TRAPRED command 

See DIAG 
TOVM action routine 393 
TRACCURR (current CP internal trace table entry) 

See DIAG 
TRACE command 

See CPPROG 
See DIAG 

trace entry verification code (TEVC) 
See DIAG 

trace execution 
See DIAG 

trace real machine events 
See DIAG 

TRACE subcommand of DUMPS CAN command 
See DIAG 

trace table 
CP 

See CPPROG 
entry 

formats, IUCV 194 
formats, SNA CCS 233 
IUCV field definitions 195 

TRACEND (end of CP internal trace table) 
See DIAG 

tracing 
See also DIAG 
IUCV functions 193 
SNA Console Communication Services 233 

tracing capabilities in EXECs 
See DIAG 

tracing storage alteration using PER 
See DIAG 

TRACSTRT (start of CP internal trace table) 
See DIAG 

transient program area 
See CMSPROG 

transient routines 
See CMSPROG 

TRAPRED command format 
See DIAG 

TRAPRED facility 
See DIAG 

TRAPRED subcommands 
See DIAG 

TRKBAL macro (SVC 25) 
See CMSPROG 



TRQBLOK, VM SNA support 230 
TSAB subcommand of DUMPSCAN command 

See DIAG 
TSAF console log sample 

See DIAG 
TSAF debugging 

See DIAG 
TSAF dumps 

See DIAG 
TSAF internal trace table 

See DIAG 
TSAF QUERY command 

See DIAG 
TSAF SET ETRACE command 

See DIAG 
TSAFIPCS MAP 

See DIAG 
TTIMER macro (SVC 46) 

See CMSPROG 
TVSPARMS macro 

See CMSPROG 
type (device) 419 
TYPE subcommand of TRAPRED command 

See DIAG 
TYPEBACK subcommand of TRAPRED command 

See DIAG 
typenum subcommand of TRAPRED command 

See DIAG 
types, classes, models, and features of devices 

(DIAGNOSE code X'24') 27, 419 

UCS (Universal Character Set) 
See CPPROG 

UCSB (Universal Character Set Buffer) 
See CPPROG 

UNAUTHORIZE function of VMCF 294 
unexpected results procedures 

See DIAG 
UP subcommand of TRAPRED command 

See DIAG 
updating 

directory 
entries for national languages 407 
in-place with DIAGNOSE code X'84' 72 
with DIAGNOSE code X'3C' 34 

files for an existing national language 409 
updating problem report 

See DIAG 
user area (USERSECT) 

See CMSPROG 
user directory 

entries for national languages, updating 407 
reading 34 
updating with DIAGNOSE code X'3C' 34 

user doubleword function of VMCF 309 
user free storage 

See CMSPROG 
user options, replacing directory entry 76 
user privilege classes 

See CPPROG 
user program area 

See CMSPROG 
user save area 

See CMSPROG 
user termination, SNA 232 
user-controlled device interrupts 

See CMSPROG 
userid, alternate 106 
USERMAP subcommand of DUMPS CAN command 

See DIAG 
USERSECT (user area) 

See CMSPROG 
using 

CMS IUCV to communicate between two virtual 
machines 212 

DASD block I/O system service from CMS 246 
IUCV data in a buffer 117 
IUCV data in a parameter list 120 
programmable operator facility 

in a distributed VM system 316 
in a mixed environment 316 
in a single system 315 

single console image facility (SCIF) 279 
VMCF 284 

verifying existence of saved systems 55 
VIOBLOK subcommand of DUMPS CAN command 

See DIAG 
virtual 

console function, DIAGNOSE instruction 9 
IPL by device, clean-up after 35 

virtual machine 
See CPPROG 

virtual machine assist feature 
See CPPROG 

Virtual Machine Communication Facility 
(VMCF) 283 

control functions 293 
data transfer functions 296 
DIAGNOSE code X'68' 55,283,300 

data transfer error codes 312 
return codes 309 

external interrupt 305 
functions 293 

AUTHORIZE 293 
CANCEL 295 
IDENTIFY 296 

These symbols are used in the index to refer to other VM and VM/SP books: 
CPPROG-CP for System Programming CMSPROG-VM/SP CMS for System Programming 

(for VM/SP or VM/SP HPO) DIAG-VM Diagnosis Guide 
Index 477 



PRIORITY option 294, 298 
QUIESCE 295 
RECEIVE 299 
REJECT 296 
REPLY 299 
RESUME 295 
SEND 297 
SEND/RECV 297 
SENDX 298 
special message facility 294 
SPECIFIC option 294 
UNAUTHORIZE 294 

introduction 283 
invoking functions 300 
protocol 288 

IDENTIFY 292 
SEND 289 
SEND/RECV 290 
SENDX 291 

receiving messages from the special message 
facility 277 

return codes 309 
special message facility 284 
table of functions 284 
user doubleword 309 
using 284 

applications 285 
general considerations 288 
performance considerations 287 
security 286 

virtual machine data, recording 
See DIAG 

virtual machine debugging 
See DIAG 

virtual machine storage size 
maximum, replacing directory entry 74 
replacing directory entry 74 

Virtual Machine/System Product (VM/SP) 
See VM/SP (Virtual Machine/System Product) 

virtual machines 
determine storage size with DIAGNOSE code 

X'60' 52 
DIAGNOSE instruction use 3 
group 251 
multiple, controlling from a single console 279 
programmable operator 321 
to virtual machine communication, CMS 

IUCV 212 
to virtual machine communication, IUCV 

example 117 
virtual printer external attribute buffer 

manipulation 94 
Virtual Storage Access Method (VSAM) 

See CMSPROG 
virtual storage preservation 

See CPPROG 
virtual storage, altering 

See DIAG 
VM/SP (Virtual Machine/System Product) 

device types in 27 

478 VM System Facilities fo~ Programming 

DIAGNOSE instruction 3 
directory 

authorization for IUCV 116 
entries for national languages, updating 407 
entries in IUCV 116 
replacing entries 72 
update in-place 72 
updating with DIAGNOSE code X'3C' 34 

VM/VCNA, VM/SP SNA support 219 
VM/VTAM, VM/SP SNA support 219 
VMBLOK subcommand of DUMPS CAN command 

See DIAG 
VMCF (Virtual Machine Communication 

Facility) 283, 312 
control functions 293 
data transfer functions 296 
DIAGNOSE code X'68' 55, 283, 300 

data transfer error codes 312 
return codes 309 

external interrupt 305 
functions 293 

AUTHORIZE 293 
CANCEL 295 
IDENTIFY 296 
PRIORITY option 294, 298 
QUIESCE 295 
RECEIVE 299 
REJECT 296 
REPLY 299 
RESUME 295 
SEND 297 
SEND/RECV 297 
SENDX 298 
special message facility 294 
SPECIFIC option 294 
UNAUTHORIZE 294 

introduction 283 
invoking functions 300 
protocol 288 

IDENTIFY 292 
SEND 289 
SEND/RECV 290 
SENDX 291 

receiving messages from the special message 
facility 277 

return codes 309 
special message facility 284 
table of functions 284 
user double word 309 
using 284 

applications 285 
general considerations 288 
performance considerations 287 
security 286 

VMCPARM parameter list 301 
VMDUMP command 

See DIAG 
VMDUMP function 81 
VMLOADL subcommand of DUMPSCAN command 



See DIAG 
Volume Table of Contents (VTOC) 

See CMSPROG 
VSAM (Virtual Storage Access Method) 

See CMSPROG 
VSAM data sets 

See CMSPROG 
VSAM dumping information 

See DIAG 
VSCS printing formatted control blocks 

See DIAG 
VSCS, VM/SP SNA support 219 
VSE 

See CMSPROG 
VSE/VSAM 

See CMSPROG 
VTAM I/O reduction 231 
VTAM printing formatted control blocks 

See DIAG 
VTAM service machine, VM SNA support 220 

wait bit, modifying 
See DIAG 

WAIT macro (SVC 1) 
See CMSPROG 

wait state procedures 
See DIAG 

WEBLOK, VM SNA support 223,229 
WEIBLOK, VM SNA support 229 
WRITE macro 

See CMSPROG 
WTO/WTOR macro (SVC 35) 

See CMSPROG 

XAB (External Attribute Buffer) 94 
defini tion 96 
format 96 
manipulation of spool file 98 
manipulation of virtual printer 94 

READ-XAB function of SPOOL system 
service 272 

XCTL macro (SVC 7) 
See CMSPROG 

XDAP macro (SVC 0) 
See CMSPROG 

XEDIT (System Product Editor) 
See CMSPROG 

ZAP command 
See DIAG 

ZAPTEXT command 
See DIAG 

I Numerics I 

3081 processor, MSSFCALL - DIAGNOSE code 
X'80' 69 

3203 
See CPPROG 

3270 
logical, creating via logical device support 

facility 281 
virtual console interface 

attribute bytes, how to supply 42 
full screen interactions 45 
full screen interactions (3270 SIO) 48 
full screen mode 43 
selector-pen limitations 42 

37XX Control Program 
See also CPPROG 
DIAGNOSE code X'50' 39 

370X control program, saving 39 
DIAGNOSE code X'50' 39 

370X dump processing 
See DIAG 

3800 printer 
See also CPPROG 
load CCW s in spool file 19 

These symbols are used in the index to refer to other VM and VMjSP books: 
CPPROG-CP for System Programming CMSPROG-VMjSP eMS for System Programming 

(for VMjSP or VMjSP HPO) DIAG-VM Diagnosis Guide 
Index 479 



International Business 
Machines Corporation 
P.O. Box 6 
Endicott, New York 13760 

File No. 537014300-36 
Printed in U.S.A. 

SC24-5288-0 

--------- ------- - - -----------,-
® 



VMjSP System Facilities 
for Programming 
Order No. SC24-5288-0 

Is there anything you especially like or dislike about this book? Feel free to 
comment on specific errors or omissions, accuracy, organization, or 
completeness of this book. 

If you use this form to comment on the online HELP facility, please copy the 
top line of the HELP screen. 

____ Help Information line of 

Ht:AUl:tl ~ 

COMMENT 
FORM 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered non confidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, 
contact your IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly to us or give this 
form to an IBM representative who will forward it to us. 



SC24-5288-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------- -------- - ---- - - ----------_.-
INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

I. " II •• " .1. " 1.11 •• 11 ••• 1.1 " 1.1 •• 1 " 1.1 ••• 1 " ••• 1 

Fold and tape Please Do Not Staple 

--------- - ---- ---- - ---- - - -----------y-
® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 



II 

SC24-5288-00 


