
--------- -------- - ---- ------------_.-
Virtual Machine/ 
System Product 

Transparent Services Access 
Facility Reference 

Release 5 

SC24-5287 -0 

L 



First Edition (December 1986) 

This edition, SC24-5287-0, applies to Release 5 of Virtual Machine/System Product 
(VM/SP), program number 5664-167, and to all subsequent releases and 
modifications until otherwise indicated in new editions or Technical Newsletters. 
Changes are made periodically to the information herein; before using this 
publication in connection with the operation of IBM systems, consult the latest 
IBM System/370, 30xx, and 4300 Processors Bibliography, GC20-0001, for the 
editions that are applicable and current. 

References in this publication to IBM products, programs, or 
services do not imply that IBM intends to make these available in 
all countries in which IBM operates_ Any reference to an IBM 
licensed program in this publication is not intended to state or 
imply that only IBM's licensed program may be used. Any 
functionally equivalent program may be used instead. 

Ordering Publications 

Requests for IBM publications should be made to your IBM representative or to 
the IBM branch office serving your locality. Publications are not stocked at the 
address given below. 

A form for readers' comments is provided at the back of this publication. If the 
form has been removed, comments may be addressed to IBM Corporation, 
Information Development, Dept. G60, P.O. Box 6, Endicott, NY, U .S.A. 13760. IBM 
may use or distribute whatever information you supply in any way it believes 
appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1986 



How to Use this Book 

Preface 

This reference is primarily for those persons responsible for writing 
Advanced Program-to-Program Communication/VM (APPCjVM) application 
programs to communicate within a VM processor and among 
interconnected VM processors. It also contains information on how to set 
up, run, and maintain the Transparent Services Access Facility (TSAF) 
virtual machines that provide communication between VM processors. 

Depending on what your job is, you should find everything you need to 
know about TSAF in this manual. The major tasks involved are: 

• Running the TSAF virtual machine and diagnosing problems involving 
the TSAF virtual machine, which is Part One of this book 

• Writing the APPCjVM application programs, which is Part Two of this 
book 

• Using the CP system services for VM communication, which is Part 
Three of this book. 

If you are a system operator or system administrator in charge of running 
the TSAF virtual machine, use these chapters: 

• "Introduction to TSAF" on page 1 for a brief introduction to the TSAF 
facility 

• "Chapter 1. Preparing to Use TSAF" on page 11 to set up the necessary 
directory entries to use the TSAF facility 

• "Chapter 2. Setting Up TSAF Collections and Routes" on page 25 to set 
up VM systems with the TSAF virtual machines to form a TSAF 
collection 

• "Chapter 3. Running the TSAF Virtual Machine" on page 35 for 
descriptions of the commands to operate the TSAF virtual machine 

• "Chapter 4. Generating TSAF Accounting and Link Statistics" on 
page 49 to collect accounting and link statistics 

• "Chapter 5. Collecting TSAF Problem Diagnosis Information 
(Serviceability)" on page 55 for an overview of how to service the TSAF 
virtual machine. 

Preface III 



You may a lso want to glance through "Chapter 6. APPCjVM (VM·to·VM) 
Communications" on page 61 for an idea of how APPC/VM provides 
communication within a VM system or within a collection of 
inter connected VM systems using TSAF. 

If you are a programmer who writes the VM programs that communicate 
with other VM programs in the same or in different VM systems, use these 
chapters: 

• "Introduction to TSAF" on page 1 for a brief introduction to the TSAF 
facility 

• "Chapter 1. Preparing to Use TSAF" on page 11 for an overview of the 
types of directory entries that should be set up before you run your 
programs 

• "Chapter 6. APPCjVM (VM·to·VM) Communications" on page 61 for 
an overview of how APPC(VM communication works 

• "Chapter 7. APPC(VM and IUCV Communication Functions" on 
page 81 for descriptions of the APPCjVM and IUCV (VM·unique) 
functions to write VM application programs that communicate with 
each other 

• "Chapter 8. APPC Verbs Mapped with APPC(VM Functions" on 
page 185 for a list of APPC functions mapped with APPC/VM functions 

• Appendix A, "APP C(VM and IUCV Condition Codes and Return 
Codes" on page 225 for a summary of the APPC/VM and IUCV 
functions and their r elated error codes 

• Appendix B, "APPC· APPCjVM Mapping Summary" on page 233 for a 
list of APPC functions as they r elate to APPC/VM functions 

• Appendix C, "Sample TSAF User Program" on page 249 for a sample 
APPC/VM user (requestor) program 

• Appendix D, "Sample TSAF Resource Manager Program" on page 257 
for a sample APPC/VM resource manager (server) program. 

If you are a programmer or anyone else who needs to know about the CP 
system services for VM communications, use these chapters: 

• "Chapter 9. Collection Resource Management (*CRM) System Service" 
I 

on page 209 for a description of what the CP Collection Resource 
Management System Service does to allow a virtual machine to become 
a TSAF virtual machine. 

• " Chapter 10. Identify (*IDENT) System Service" on page 215 for a 
description of what the CP Identify System Service does to allow a 
virtual machine to become the resource manager of one or more VM 
r esources. 

I V Transparent Services Access Facility Reference 



Contents 

Introduction to TSAF ..... . . . . . . . . .. . ..... ... . . . .. .. . .. 1 
What is TSAF? ..... . ...................................... . 1 

TSAF Virtual Machine ..................................... 1 
What Is a TSAF Collection? ........... .. ..... . . . .. .. .. . . .. 2 
What Is a VM Resource? ................................ . :3 
What Is a Resource Manager? .................... .. ....... 4 
What Is a User Program? ................................. 4 

TSAF Program Communication Services ........ . .............. 4 
APPC/VM Program Interface . .. . ................. . .. . ..... :) 
IUCV Functions for Use with APPC/VM ..................... 6 

CP System Services for TSAF ................ . ........ .. .. . .. 6 
How TSAF Enhances Your VM/SP System ... . .......... . ........ 6 

Part One: TSAF Virtual Machine .. . ...... .. .... . 9 

Chapter 1. Preparing to Use TSAF . . . . ... ... .... .. ... . . .. . 11 
Setting Up the TSAF Virtual Machine ....... . ...... . ........ . .. 11 

Modifying the TSAF System Directory Entry ... ... .... . . . . .. ... 11 
Preparing to Install and Service TSAF ....... . ......... .. ..... 14 
Using the TSAF Message Repository ......................... 15 
Setting Up Links for Communication . . . ..... .. .. . ..... . .. . .. . 15 

Security Considerations when Setting Up TSAF ..... . ........... . 16 
Assigning Unique Userids ........................... . ..... 16 
Assigning Unique Node Ids .................... . ..... . ..... 17 
Assigning Unique Resource Ids ..................... . ...... . 17 
Considerations for Using the APPC/VM Program Interface . ... .... 17 

Local and Global Resources .................................. 18 
Authorizing Virtual Machines to Manage Resources ..... . ..... . .. . 18 

IUCV Directory Control Statement for *IDENT Authorization 19 
Other Statements in the Resource Manager's Directory Entry .. . . . . 20 
Identifying More than One Resource from the Same Virtual Machine 21 

Authorizing Virtual Machines to Connect to Resources ........ . ... . 22 

Chapter 2. Setting Up TSAF Collections and Routes . . ...... .. . 25 
Collection Structure .............................. ,........ . 25 

Collection Example . . . .... . . . .... . ...... . ...... . . .. . .... . . 25 
Reliability in a Collection ............ . ................. . ... 28 

When Two Collections Merge to Form One ............... .. ..... 30 
TSAF Routing .. . ........ . ................. . .. . ........ . . .. 32 

How TSAF Dynamically Configures a Collection Using Link 
Information ............................................ 32 

Route Failure ........................................... 33 
Performance Considerations ....... ... ....... . ........ . ....... 33 

Supported Links . . ........................... . ........... 33 
Optimizing Performance ................................... 33 

Contents V 



Chapter 3. Running the TSAF Virtual Machine . . ... . .. . . . ... 35 
Overview - TSAF Commands ...... . .... .. .................... 35 
Adding Links to the TSAF Virtual Machine-ADD LINK ........... 37 
Deleting Links from the TSAF Virtual Machine-DELETE LINK ..... 39 
Getting Status of the TSAF Configuration-QUERY ............... 40 
Starting the TSAF Virtual Machine-RUNTSAF ............... . .. 43 

. Setting External Tracing- SET ETRACE ........... .. ........... 45 
Stopping the TSAF Virtual Machine-STOP TSAF ................ 46 
Scenarios ...... . ......................................... 47 

Chapter 4. Generating TSAF Accounting and Link Statistics 49 
Initialization Accounting Record .............................. 49 

Format of the Initialization Accounting Record ................. 50 
Session Accounting Record ......................... .. ........ 50 

Format of the Session Accounting Record ........... . ......... 50 
Link Statistics Record .................................... . . 51 

Format of the Link Statistics Record ......................... 51 
Termination Accounting Record ........................ . ...... 52 

Format of the Termination Accounting Record ................. 52 

Chapter 5. Collecting TSAF Problem Diagnosis Information 
(Serviceability) . . .. .. ... . .... . . . . ... ....... . .. .. . . ... 55 

Summary of Steps to Follow When a TSAF Abend Occurs ....... . ... 55 
U sing the Console Log ........ . .... . ........... . ..... ... .... 56 
Using TSAF Dumps to Diagnose Problems ....................... 57 
Using System Trace Data to Diagnose Problems ........ .. ........ 58 
Interactive Service Queries ........... . .... .. ... ... .......... . 58 

Part Two: TSAF Program Communication Services . 59 

Chapter 6. APPC/VM (VM-to-VM) Communications . ... . .. . .. 61 
Overview of VM-to-VM Communications ........................ 61 

APPC/VM Paths ..................... ... ... .. ............ 62 
Your Communication Partner ............................... 62 
APPC/VM States .......................... 1.............. 62 
APPC/VM Interrupts ..................................... 64 
Communication Performance ........ . ...................... 66 
CMS and GCS IUCV Support ....... . .... . .................. 66 

Connecting to Another Virtual Machine ........................ 66 
Accepting or Rejecting a Connection ........................... 67 
Sending and Receiving Data .................................. 68 

How APPC Data Is Sent ............................. ~ .... , 69 
SEND-RECEIVE Scenario ................ .. ............... 70 

Requesting Confirmation ........................ ,......... . . 74 
Signalling an Error ............ ... .................... . ..... 74 
Requesting to Send .................................. . ...... 75 
Synchronous APPC/VM Support .............................. 75 
How APPC/VM Differs from General IUCV ..................... . 76 

Shared APPC/VM and IUCV Functions ....................... 76 
APPC/VM and IUCV Functions That Work Differently ... ... ..... 77 
IUCV Functions Not Supported on APPC/VM Paths . ............ 79 
APPC/VM Functions Not Supported'on IUCV Paths ............. 79 

VI Transparent Services Access Facility Reference 



APPC/VM Local Communication vs. Remote Communication ........ 80 

Chapter 7. APPC/VM and IUCV Communication Functions . .... 81 
APPCNM Communication Functions .......................... 81 
IUCV Functions Associated with APPC/VM ............... . ..... 82 
APPCNM and IUCV Functions Reference List ....... . ........... 82 
Some General Information about the APPCVM and IUCV Macros .... 84 
IUCV ACCEPT ............................................ 87 
APPCVM CONNECT .......................... .. ........... 90 
IUCV DCLBFR ....................... . ................... 102 
IUCV DESCRIBE ....... . ... . ............ . ............ .. .. 106 
IUCV QUERY ................. . ............ .. ........... . 109 
APPCVM RECEIVE .......... . ............................ 111 
IUCV RTRVBFR ... .. ........................ . ... . ... . .... 122 
APPCVM SENDCNF .. .. ... .. ........................... . . 124 
APPCVM SENDCNFD .... .. ....................... . .. . .... 130 
APPCVM SENDDATA ........................ . ... . ... . .... 134 
APPCVM SENDERR ................................. . .... 149 
APPCVM SENDREQ .............................. . ....... 156 
IUCV SETCMASK .......................... .. ... . ... . ... . 161 
IUCV SETMASK .......................... . . . .. .......... 165 
APPCVM SEVER ...................................... .. . 169 
IUCV TESTCMPL .......... . ..... . ....................... 177 
IUCV TESTMSG . . ........................................ 181 
APPC/VM Error/SEVER Codes ................. . ............ 183 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 185 
Conversations with APPC 185 
APPC Functions Not Supported .............................. 186 
APPC Return Codes ....................................... 186 
APPCNM Interrupts .. .................................... 187 
APPC ALLOCATE ........................................ 188 
APPC CONFIRM ......................................... 191 
APPC CONFIRMED .................................... . .. 193 
APPC DEALLOCATE ..................... . ................ 194 
APPC GET ATTRIBUTES ............................. . . .. . 196 
APPC RECEIVE_AND_WAIT ..... .. ........................ 197 
APPC REQUEST_TO_SEND ................................ 201 
APPC SEND_DATA ............... . .......... . ............ 202 
APPC SEND_ERROR ....... . .............................. 204 

Part Three: CP System Services for TSAF 207 

Chapter 9. Collection Resource Management (*CRM) System 
Service .. . . . . . .. ... ... ... ... .. . . .... . .. . ..... . .... 209 

Authorizing Virtual Machines to Connect to *CRM ............. . 209 
What *CRM Does ... . ..................................... 209 
Connecting to *CRM - Becoming the TSAF Virtual Machine ....... 210 
*CRM Communications ............ . ....................... 211 

Requesting System Resource Table Information ..... . ........ . . 211 
Revoking a Resource ..... . .............................. 212 

Severing the *CRM Connection ......................... . .... 213 
*CRM SEVER Reason Codes ........................ .. ...... 213 

Contents Vll 



Chapter 10. Identify (*IDENT) System Service . . . . . .. ....... 215 

Authorizing Virtual Machines to Connect to *IDENT ............. 215 
Wh at *IDENT Does ....................................... 215 

Some Rules about Resources ............................... 216 
*IDENT Communications - Connecting to *IDENT ............... 216 
How *IDENT Processes Requests to Manage a Resource ........... 218 

How CP Passes Requests to the TSAF Virtual Machine ........ 218 
Answer Data from the TSAF Virtual Machine ............... 219 

How Virtual Machines Connect to a Resource Manager ......... 220 
Severing the *IDENT Connection - Revoking a Resource .......... 220 

Connecting to *IDENT to Revoke a Resource ................. 220 
How CP Passes Revoke Requests to the TSAF Virtual Machine . 221 
Answer Data from the TSAF Virtual Machine ............... 222 

Revoking Your Own Resources . ............................ 223 
Revoking Resources in Merging Collections ...... . ........... 223 

*IDENT Sever Reason Codes ..................... . .......... 223 

Appendix A. APPC/VM and IUCV Condition Codes and Return 
Codes . . . ... ........ .. ........ . .. . ......... . ..... .. 225 

Condition Codes and IPRCODE Values ........................ 226 
IPAUDIT Values ....................................... . .. 231 

Appendix B. APPC - APPC/VM Mapping Summary . .. . ... . .. 233 

APPC Verb Name to APPCjVM Macro Parameter Name ........... 233 
APPC Verb Parameters Mapped with APPC/VM Macro Parameters .. 234 

APPC ALLOCATE to APPCjVM CONNECT .................. 235 
APPC CONFIRM to APPC/VM SENDCNF TYPE = NORMAL 236 
APPC CONFIRMED to APPCjVM SENDCNFD ............... 237 
APPC DEALLOCATE to APPC/VM SEVER or SENDCNF 

TYPE = SEVER . ....................................... 238 
APPC GET_ATTRIBUTES to Indirect APPCjVM Support ....... 239 
APPC RECEIVE_AND_WAIT to APPC/VM RECEIVE ......... 240 
APPC REQUEST_TO_SEND to APPC/VM SENDREQ .......... 242 
APPC SEND_DATA to APPC/VM SENDDATA RECEIVE=NO ... 243 
APPC SEND_DATA and RECEIVE_AND_WAIT to APPC/VM 

SENDDATA RECEIVE = YES ............................. 244 
APPC SEND_ERROR to APPCjVM SENDERR ................ 245 
APPC LU-Generated Responses to APPC/VM SEVER 

TYPE = ABEND ....................................... 246 
No APPC Function to IUCV ACCEPT ....................... 247 

Appendix C. Sample TSAF User Program 249 

Appendix D. Sample TSAF Resource Manager Program 257 

Glossary of Terms and Abbreviations . ..... . ..... . .... . ... 271 

Bibliography ....... . .. .. ... . . . ........... ... . . ... . .. 275 

Index .... . .. .. . . .... . ... . . . . . . .. .. . ... . . . .. .. ... . . . 279 

Vlll Transparent Services Access Facility Reference 



Figures 

I. A TSAF Virtual Machine Running in a VM/SP System .......... 2 
2. A Sample TSAF Collection ............ . ........... . ....... 3 
3. APPCjVM Programs Running in a VMjSP system ...... . ....... 5 
4. TSAF Virtual Machine Directory Entry Example ...... . ..... . 14 
5. Two VM Systems Communicating ........... . ........ . ... . 23 
6. TSAF Virtual Machine Identifying Itself . . ................. . 26 
7. TSAF Virtual Machines Exchanging Information . . ... . ....... 26 
8. Resource Manager Requesting to Manage a Resource ....... .. . 27 
9. A Local User Sharing a Resource .................. . .... . . 27 

10. A Remote User Sharing a Resource ...... .. ... . . . ..... . . . .. 28 
II. Sending and Receiving ...... . .. . .... . . . ... ... .... . ...... 28 
12. Multiple Connections between TSAF Virtual Machines .. . . .... 29 
13. TSAF with RSCS . . .... . .......... . ............. . .. . . .. 29 
14. A TSAF Collection ............ . .... .. . . . . .. . . ... .. . .. . . 30 
15. More Reliable TSAF Collection ......... . .... .. ......... .. 30 

", 
16. Two TSAF Collections Merged into One . . . ... . . . . ... . ... . . 31 
17. Output from QUERY COLLECT .. . .... . ... .. . . .. .. . ... .. . 41 
18. Output from QUERY LINK vdev ........... . . ... . ....... . . 41 
19. Output from QUERY LINK ALL .... . .. . . . .. . .... . .. . . . . .. 41 
20. Output from QUERY RESOURCE ...... . ......... . ...... . . 42 
2l. Sample TSAF Console Log ............ . .. .. .. . .. . .. . ..... 57 
22. APPCjVM States .......... . ... . .... . ............ . ..... 63 
23. User Program Connecting to a Resource Manager Program ..... 67 
24. User Program and Resource Manager Program Sending and 

Receiving ................ . ............ . .............. 68 
25. An APPCjVM logical record ........... . ....... . ... . ..... 69 
26. Declaring an APPCjVM Buffer ............... . .... . ..... . 70 
27. User Program Connecting to Resource Manager .. . .... . ...... 70 
28. Resource Manager Accepting the Connection .... . .... .. ..... 71 
29. User Program Sending Data via SENDDATA . . .......... . ... 71 
30. Resource Manager Receiving Data . ........ . . . . . . . . . . . . . . .. 72 
3l. User Program Sending and Switching States . . ... . ........... 73 
32. IUCV ACCEPT Input Parameter List .. . ... ... . . ... . ........ 88 
33. APPCVM CONNECT Input Parameter List .................. 93 
34. APPCVM CONNECT Output Parameter List (Connection 

Complete Interrupt) .................... . . . . .. . .. . ..... 95 
35. Connection Pending External Interrupt ......... . .. . ........ 97 
36. A VM-Architected Area .......... . ...... . ...... . ..... . .. 98 
37. Attach FMH5 Record for APPC Conversations .. . ......... . .. 99 
38. IUCV DCLBFR Input Parameter List .. ..... . ..... . . ... .. .. 103 
39. IUCV DESCRIBE Output Parameter List ... ..... . . ........ 107 
40. APPCVM RECEIVE Parameter List ........... . .......... 113 
40. APPCVM RECEIVE Input Parameter List ...... . ........... 113 
4l. APPCVM RECEIVE Output Parameter List (Function Complete 

Interrupt) ................ . ............... . .......... 116 
42. APPCVM SENDCNF Input Parameter List .... . . . .. . ... . ... 125 

Figures IX 



43. APPCVM SENDCNF Output Parameter List (Function Complete 
Interrupt) ........................................... 127 

44. APPCVM SENDCNFD Input Parameter List ................ 131 
45. APPCVM SENDCNFD Output Parameter List .............. 132 
46. APPCVM SENDDATA Input Parameter List ................ 138 
47. APPCVM SENDDATA Output Parameter List (Function 

Complete Interrupt) ................................... 141 
48. Message Pending External Interrupt ...................... 147 
49. APPCVM SENDERR Input Parameter List ................. 150 
50. APPCVM SENDERR Output Parameter List (Function Complete 

Interrupt) ........................................... 152 
51. APPCVM SENDREQ Input Parameter List ................. 157 
52. APPCVM SENDREQ Output Parameter List ................ 158 
53. SENDREQ (Request-to-send) Interrupt ..................... 160 
54. IUCV SETCMASK Input Parameter List ................... 162 
55. IUCV SETMASK Input Parameter List .................... 166 
56. APPCVM SEVER Input Parameter List .................... 171 
57. SEVER External Interrupt .............................. 175 
58. IUCV TESTCMPL Input Parameter List ................... 178 
59. IUCV TESTCMPL Output Parameter List .................. 179 
60. APPCNM Error Codes ................................. 183 
61. APPCNM SENDERR Codes from Within the TSAF Collection .. 184 
62. APPCNM-Defined SENDERR Codes ...................... 184 
63. An APPCNM Program ................................ 187 
64. SEND Data Format from TSAF Virtual Machine ............ 211 
65. SEND Data Format from *CRM .......................... 212 
66. Revoke Data from the TSAF Virtual Machine ............... 212 
67. User Data Field for CONNECT .......................... 216 
68. SEND Data Format from *IDENT ........................ 218 
69. Answer Data Format from the TSAF Virtual Machine ........ 219 
70. SEND Data Format from *IDENT ........................ 221 
71. Answer Data Format from the TSAF Virtual Machine ........ 222 
72. Meaningful Codes Based on CC = ........................ 226 
73. APPCNM and IUCV Condition Codes and IPRCODE Values ... 226 
74. IPAUDIT Values ..................................... 231 
75. APPC Verbs and APPCNM Functions .................... 233 
76. APPCNM SENDDATA RECEIVE=YES Input Fields ........ 244 
77. APPCNM SENDDATA RECEIVE = YES Output Fields ....... 244 

x Transparent Services Access Facility Reference 



What is TSAF? 

TSAF Virtual Machine 

The Transparent Services Access Facility (TSAF) lets users connect to and 
communicate with local or remote virtual machines within a collection of 
interconnected VM systems. With TSAF, a user can connect to a program 
by specifying a name that the program has made known, instead of 
specifying a userid and node id. 

TSAF provides the following support for each VM system: 

• The TSAF virtual machine, which provides the ability to communicate 
throughout a collection of VM systems 

• TSAF program communication services: 

An Advanced Program-to-Program Communication/VM (APPC/VM) 
program interface for VM program-to-VM program communication 

A set of IUCV (VM-unique) functions for use in conjunction with 
APPC/VM functions. 

• Two CP system services, which provide TSAF communication "set-up" 
services within a VM system. 

The TSAF virtual machine is described in part one of this book. 

The TSAF virtual machine is a separate component in the TSAF facility 
and handles communication between VM systems by letting APPC/VM 
paths span more than one VM system. Each system has its own TSAF 
virtual machine. 

The TSAF virtual machine runs on CMS (as shown in Figure 1 on page 2), 
and you control it using TSAF commands. 

Introduction to TSAF 1 



Introduction 

What Is a TSAF Collection? 

I 
~ 

~~I CMS ~ 

~ CP I 

F igure 1. A TSAF Virtual Machine Running in a VM/SP System 

Before you use the TSAF virtual machine, you should understand the 
following terms, which are described in the next few sections. 

TSAF Collection 

VM Resource 

Resource Manager (Server) 

User (Requestor) Program. 

A TSAF collection is a group of interconnected VMjSP systems that each 
have a TSAF virtual machine installed and running. Virtual machines 
within a collection can share data. A TSAF collection can contain up to 
eight in terconnected VM systems. 

The systems that make up the collection are connected, directly or 
indirectly, by either of the following TSAF-controlled links: 

• Channel-to-channel (CTC) links, including 3088 links 

• Binary Synchronous Communications (BSC) links. 

Figure 2 on page 3 represents a sample TSAF collection made up of four 
VMjSP systems. In this figure, VM2 and VM3 are not physically 
connected, but they can communicate because a route exists through VMl 
or VM4. 

2 Transparent Services Access Facility Reference 



What Is a VM Resource? 

Introduction 

VMl VM2 

I 
J 

VM3 VM4 

Figure 2. A Sample TSAF Collection 

The TSAF virtual machine takes care of setting up the TSAF collection. A 
collection is started by a TSAF virtual machine wanting to communicate 
with a TSAF virtual machine on another system. If a link comes up or 
becomes available between two systems and the systems are not yet in the 
same collection, the TSAF virtual machines: 

• Exchange information, including the names of the resources on both 
systems 

• Dynamically configure a new collection. 

Collections are discussed in more detail in "Chapter 2. Setting Up TSAF 
Collections and Routes" on page 25. 

A VM resource is a program, a data file, a specific set of files, a device or 
any other entity or set of entities that you might want to uniquely identify 
for purposes of application program processing in a VM system or within a 
TSAF collection. A VM resource is identified by a one-to-eight character 
name called a VM resource id. A single program may be represented by one 
or more resource names. For example, a data base program that manages 
two data bases, DBI and DB2, could be known by the resource name DBI 
for requests to data base DBI. However, the same program could be known 
by the resource name DB2 for requests to data base DB2. 

Resources are managed by resource manager virtual machines (see "What 
Is a Resource Manager?" on page 4). Each TSAF virtual machine keeps an 
up-to-date list of all the global resources within a specified TSAF collection. 

A resource can be either local or global. Only authorized users on the local 
system have access to local resources. An authorized user on any system in 
the collection has access to global resources. Refer to "Local and Global 
Resources" on page 18 for more information on resources. 

A resource can be located on the local system or on any other system 
within the collection. Each global resource name within a collection of 
systems must be unique. You can restrict resources so that only users on 

Introduction to TSAF 3 



Introduction 

the local system can use them; these are local resources. In those cases, 
when resources are local, the names of the resources only need to be unique 
within the system, and not within the collection. 

What Is a Resource Manager? 

What Is a User Program? 

A resource manager (also called a server) is a program or set of programs 
executing in a virtual machine and managing access to one or more VM 
resources. You can add entries to the resource manager's directory to 
authorize other virtual machines to connect to the resource. 

Some examples of resource managers are: 

• A database manager 

• A file server that manages a set of files 

• A virtual machine that manages a high-function printer. 

A user program (also called a requestor) is a program that executes in a 
virtual machine, and depends upon program-to-program communications 
with a resource manager for some or all of its processing. 

TSAF Program Communication Services 

The TSAF program communication services are described in part two of this 
book. 

TSAF provides services for any two VM programs to communicate with 
each other. These programs can be within the same VM processor or in 
different VM processors. The location of the programs can change at any 
time without affecting the operation of the programs; this "transparency" 
of access is what gives TSAF its name. 

So VM programs can communicate, a logical connection must be 
established between them. CP provides the APPCjVM path that logically 
connects the two VM programs. The TSAF virtual machine provides any 
necessary connections along this path between VM processors. In SNA LU 
6.2 (APPC architecture), this is known as establishing a conversation 
between programs. 

In TSAF, one of the two communicating VM programs is a user program, 
and the other is a resource manager. The user program requests the 

. services of the resource manager. A resource manager can connect to other 
resource managers; in this case, the connecting resource manager would be 
viewed as ,a user program for that connection. The TSAF virtual machine 
and the resource managers must each identify themselves to CP (refer to 
"Chapter 10. Identify (*IDENT) System Service" on page 215). User 
programs, on the other hand, do not have to identify themselves to CPo 

4 Transparent Services Access Facility Reference 



Introduction 

User programs communicate with resource managers by using two TSAF 
program communication services: 

• The APPC/VM program interface for VM program-to-VM program 
communication (provided by the APPCVM macro) 

• IUCV functions used as a VM program-to-CP interface (provided by the 
IUCV macro). 

APPC/VM Program Interface 

TSAF provides an APPC/VM program interface as a means of 
communication between programs in two virtual machines. This APPC/VM 
interface provides a limited set of the SNA LU 6.2 base communication 
functions within a single VM system and throughout a collection of VM 
systems to do the following: 

• Establish and sever communication paths 

• Send and receive data 

• Send and receive error and control information. 

When a program requests, through the APPC/VM program interface, a 
connection to a resource manager, CP makes the connection to the resource 
manager. The Systems Network Architecture Transaction Programmer's 
Reference Manual for LU Type 6.2 gives specific information on the LU 6.2 
verb interface. 

APpel APpel 
VM VM 
Program Program 

~ 
CMS GCS -. -

". 

CP 

Figure 3. APPCjVM Programs Running in a VMjSP system 

APPCjVM is discussed in more detail in "Chapter 6. APPCjVM 
(VM-to-VM) Communications" on page 61. The APPCjVM functions, as 
well as the necessary IUCV functions, are described in "Chapter 7. 
APPCjVM and IUCV Communication Functions" on page 81. 

Introduction to TSAF 5 



Introduction 

IUCV Functions for Use with APPC/VM 

Applicat ions that use APPCjVM must also use a set of IUCV functions in 
order to establish and control the APPCjVM environment. These IUCV 
functions are unique to VM and are not part of the SNA LU 6.2 (APPC 
architecture) verb interface. The IUCV functions provide information 
between a VM program and CP about the following: 

• APP CjVM communication paths 

IUCV provides functions to: 

- Establish an interrupt buffer for an APPCjVM path 
Accept an APPCjVM path connection 
Release an interrupt buffer for an APPCjVM path. 

• APPCjVM and IUCV interrupts 

IUCV provides functions to: 

Enable and disable interrupts 
Interrogate interrupts 
Pr ocess interrupts. 

CP System Services for TSAF 

The CP system services for TSAF are described in part three of this book. 

CP provides two system services for TSAF VM-to-VM communications: 

• The Collection Resource Management System Service, *CRM, which 
gives a TSAF virtual machine the ability to be a TSAF virtual machine 
and to query and change the local VM resource table 

• The Identify System Service, *IDENT, which allows authorized virtual 
machines to be a resource manager and to identify or revoke resources 
(i.e., begin or end management of individual VM resources). 

How TSAF Enhances Your VM/SP System 

TSAF provides more functions and data to more people in different systems, 
with less effort by users than more conventional ways of sharing data and 
functions. 

• More data and functions are available to your system. 

Because TSAF lets users have access to resource managers on their 
owl! system and with other systems within the TSAF collection, users 
can access more information. Multiple users can have access to a 

6 Transparent Services Access Facility Reference 



Introduction 

single resource manager at the same time. Each system in a TSAF 
collection can have up to 200 resources defined. 

• TSAF application programs are easy to program. 

Because TSAF lets applications connect to resource managers at local 
or remote systems within a collection by a resource name, rather than a 
userid, the application can reference the resource without knowing 
where it is located. This makes it easier for the application programmer 
to write APPCjVM programs. This also makes it easy to move the 
actual resource to another resource manager within the collection 
without changing the applications that access it. Note that 
communication may take some additional time when the resource is on 
another system. 

• The TSAF virtual machine is easy to install. 

The TSAF virtual machine is easy to install. The IT ASK EXEC, 
documented in the VMjSP Installation Guide, has an option to install 
TSAF. 

• The TSAF virtual machine and the TSAF collections are easy to 
operate. 

The TSAF virtual machine is easy to operate. When TSAF is started on 
a system, it automatically initiates communications with any other 
TSAF virtual machines it can reach over its defined links. The TSAF 
virtual machines dynamically compute the routes for their collections 
without the need for an operator or administrator. 

When a link becomes inoperative or another error condition occurs that 
affects the operation of the TSAF collection, the TSAF virtual machines 
that can still communicate with each other reconfigure the collection. 
In addition, if a system enters or leaves the collection, the TSAF virtual 
machines automatically reconfigure the collection and choose new 
routes for the communications to follow. Because the TSAF virtual 
machines are self-configuring, they do not require much operator 
intervention. 

"TSAF Routing" on page 32 contains more information about dynamic 
configuration. 

• TSAF application programs are movable. 

A TSAFapplication program using the APPCjVM program interface 
can execute on any VM system in a TSAF collection. 

Introduction to TSAF 7 



8 Transparent Services Access Facility Reference 



This part introduces how to set up and use the TSAF virtual machine and 
the communicating virtual machines, and includes the tasks that the system 
administrator and/or operator must do to run the TSAF virtual machine. 

• "Chapter 1. Preparing to Use TSAF" on page 11 introduces how to 
prepare to use the TSAF virtual machine: 

Setting up the TSAF virtual machine (TSAF directory, servicing, 
links, and system ids) 
Authorizing virtual machines to be resource managers 
Authorizing virtual machines to use resources. 

• "Chapter 2. Setting Up TSAF Collections and Routes" on page 25 
describes how to form collections, how collections merge, information 
about routes, and performance considerations. 

• "Chapter 3. Running the TSAF Virtual Machine" on page 35 describes 
how to use the TSAF commands to run and maintain the TSAF virtual 
machine. 

• "Chapter 4. Generating TSAF Accounting and Link Statistics" on 
page 49 describes the contents of the TSAF accounting and link 
statistics records. 

• "Chapter 5. Collecting TSAF Problem Diagnosis Information 
(Serviceability)" on page 55 gives a general overview of how to 
diagnose problems of the TSAF virtual machine by using dumps and/or 
system trace data. 

Part One: TSAF Virtual Machine 9 



10 Transparent Services Access Facility Reference 



Before you can use TSAF, you must do the following steps: 

1. Set up the TSAF virtual machine. 

a. Modify the TSAF entry in the system directory. 

b. Prepare to install and service the TSAF virtual machine. 

c. Use the TSAF message repository. 

d. Set up links through which processors can communicate. (This may 
have already been done during installation.) 

2. Assure a secure TSAF collection by assigning unique userids and node 
ids within a collection. 

3. Understand the difference between local and global resources. 

4. Set up virtual machines to be resource managers. 

5. Set up virtual machines to be able to connect to resources. 

This chapter describes these steps. 

Setting Up the TSAF Virtual Machine 

The TSAF virtual machine component of a system keeps track of all the 
global resources within the system and within the collection. With the 
TSAF virtual machine, APPC/VM communication between systems in a 
collection is possible. 

TSAF runs as a CMS application. 

Modifying the TSAF System Directory Entry 

The TSAF system directories that are provided have the following qualities: 

• Privilege class G 

• At least 4 MB of virtual storage 

• Dedicated links. 

Chapter 1. Preparing to Use TSAF 11 



Preparing to Use TSAF 

The following statements are part of the TSAF directory entry: 

1. The following OPTION statements: 

• OPTION MAXCONN nnnnn 

nnnnn is the maximum number of IUCV and APPC/VM connections 
allowed for this virtual machine. The value assigned to nnnnn 
should be large enough to handle all planned intersystem APPC/VM 
paths that start from, or end at, your system. 

• OPTION BMX 

This lets TSAF use CTC line drivers. 

• OPTION ECMODE 

This lets the TSAF virtual machine use certain S/370 instructions. 
These instructions are privileged operations that require extended 
control mode support for correct simulation by CPo 

• OPTION COMSRV 

This lets the TSAF virtual machine act as a communication server, 
routing connections on behalf of virtual machines to other servers. 
(COMSRV stands for communication server). Servers can establish 
connections to other servers while handling requests for other 
users. 

With this option, the TSAF virtual machine or any other 
communication server can put the userid of the virtual machine 
that issued the APPC/VM CONNECT in the CONNECT parameter 
list. 

When TSAF sends the connect request to the target 
resource-manager virtual machine, the request contains this 
information about the originating virtual machine. Without this 
option, CP would send the connect request with the communication 
server's userid. 

The authorized virtual machine can specify any SEVER or 
SENDERR code. CP does not verify the SEVER code. When the 
authorized virtual machine specifies a SENDERR code, CP does not 
generate a SENDERR code, but instead uses the one provided. 

• OPTION DIAG98 

This lets the TSAF virtual machine use DIAGNOSE code X'98'. See 
VM System Facilities for Programming for details about DIAGNOSE 
code X'98'. 

• OPTION ACCT 

12 Transparent Services Access Facility Reference 



Preparing to Use TSAF 

This causes the TSAF virtual machine to generate accounting 
records. 

• OPTION CONCEAL 

This places the TSAF virtual machine in a protected application 
environment at logon time. Protected application environment 
means the following: 

Multiple attentions do not cause the TSAF virtual machine to 
drop into CP mode. 

TERMINAL BRKKEY is set to NONE. 

If the TSAF virtual machine alters a shared page, CP tries to 
resume execution in the virtual machine, before it starts an 
automatic re-IPL. 

CP starts an automatic re-IPL when it encounters errors such 
as: a virtual machine disabled wait, a paging error, an invalid 
PSW, an external interrupt loop, or a translation exception. 

If a TSAF or CMS abend occurs, TSAF causes CP to start an 
automatic re-IPL. 

• OPTION REALTIMER 

This ensures that the timer functions that TSAF uses operate 
accurately, on a real time basis. 

2. The following IUCV statements: 

• IUCV ALLOW 

This lets any virtual machine connect to the TSAF virtual machine. 

You may not want to let every virtual machine connect to the TSAF 
virtual machine. Instead, you may explicitly authorize each virtual 
machine that wants to connect to a resource. You can do this by 
including "IUCV resource" or "IUCV ANY" statements in each 
virtual machine's directory entry. When you explicitly authorize 
each virtual machine this way, you should also give explicit 
directory authorization to the TSAF virtual machine residing on the 
same system as the resource, using "IUCV resource" or "IUCV 
ANY." 

• IUCV *CRM 

This lets the TSAF virtual machine connect to *CRM (Collection 
Resource Management System Service). Only one virtual machine 
in a system can connect to *CRM at any time. 

3. MDISK 191 

Chapter 1. Preparing to Use TSAF 13 



Preparing to Use TSAF 

This sets aside room for any user EXECs and for TSAF to write its link 
definition file called ATSLINKS FILE AI. Sufficient storage for the 
virtual machine should be forty, 1024-byte blocks or one cylinder. See 
the VMjSP Installation Guide for specific device information. 

For more information about the system directory entries, see the VMjSP 
Planning Guide and Reference. 

TSAF Virtual Machine Sample Directory 

Figure 4 is a sample 3380 directory entry for a TSAF virtual machine. 

USER TSAFVM NOLOG 4M 8M G 
ACCOUNT 1 xxxxxx 
OPTION MAXCONN 256 BMX ECMODE COMSRV DIAG98 ACCT CONCEAL REALTIMER 
IUCV ALLOW 
IUCV *CRM 
IPL CMS PARM AUTOCR 
CONSOLE 009 3215 A OPERATOR 
SPOOL OOC 2540 READER * 
SPOOL OOD 2540 PUNCH A 
SPOOL OOE 1403 A 
LINK MAINT 190 190 RR 
LINK MAINT 19D 19D RR 
LINK MAINT 19E 19E RR 
LINK MAINT 492 492 RR 
LINK MAINT 494 494 RR 
MDISK 191 3380 675 00 2 VMPK01 MR 
DEDICATE 4AO 300 

Figure 4. TSAF Virtual Machine Directory Entry Example 

To access the 492 and 494 disks, you must access them in TSAF's PROFILE 
EXEC. The 492 disk contains the TSAF object code. The 494 disk contains 
updated TSAF EXECs and modules. To ensure that you are working with 
the most recent fixes, access the 494 disk before the 492 base TSAF disk in 
the PROFILE EXEC. The PROFILE EXEC must also contain a SET 
LANGUAGE statement (shown in "Using the TSAF Message Repository" 
on page 15). 

The VMjSP Planning Guide and Reference contains more information 
about the directory entry statements, including the CONSOLE, SPOOL, and 
LINK statements. 

Preparing to Install and Service TSAF 

To load TSAF, you invoke the ITASK EXEC with the LOAD TSAF 
parameters. This loads the TSAF object code to the MAINT 492 minidisk. 
Because TSAF code is shipped pregenerated, no further processing is 
required. The VMjSP Installation Guide contains more information. 

The most recent build for the TSAF program creates a load map. You can 
use this load map to process problem information (dumps) for the TSAF 

14 Transparent Services Access Facility Reference 



Preparing to Use TSAF 

virtual machine. "Chapter 5. Collecting TSAF Problem Diagnosis 
Information (Serviceability)" on page 55 contains more information on 
servicing the TSAF virtual machine. 

Using the TSAF Message Repository 

The TSAF message repository source file is ATSCMRx REPOS (where x is 
the country code for a particular language). The VMFNLS EXEC applies 
updates to ATSCMRx REPOS and generates a text file called ATSUME 
TXTlangid. Check to make sure that ATSUME TXTlan gid is on a disk 
accessible to the TSAF virtual machine (for example, the 494 Service disk). 

To use the TSAF message repository, once the necessary service has been 
applied, add the following to the TSAF virtual machine's PROFILE EXEC: 

SET LANGUAGE AMENG (ADD ATS USER 

This loads the repository and parser tables in to the TSAF virtual machine. 
If your system is running in a language other than American English, refer 
to the VM/SP CMS Command R eference to alter this command format. 

If you do not add the SET LANGUAGE entry in the PROFILE EXEC, you 
do not have access to the repository. In this case, when TSAF tries to issue 
the usual message, you will, instead, receive the following message: 

813E ATS repository not found, message msgid cannot be 
retrieved 

The VM/ SP CMS Command Reference has more information on the SET 
LANGUAGE command and other commands for processing message 
reposi tories. 

Setting Up Links for Communication 

The only information that the TSAF virtual machine needs upon 
installation is the identity of the communication links that it can use. 
TSAF stores this information in a CMS file called ATSLINKS FILE AI. 
You receive error messages if you store the ATSLINKS FILE file on any 
disk other than TSAF's A-disk. You can create this file before you start 
TSAF, so you do not need to issue commands to add links after TSAF is 
started. 

The ATSLINKS FILE must contain the virtual device address for each link 
that TSAF can use. The virtual device address can start in any column in 
the AT SLINKS FILE (TSAF writes the device address in columns 2 through 
4). 

To physically set up the link so the system recognizes the link, follow these 
steps (Steps 1 and 2 may have already been done during installation): 

Chapter 1. Preparing to Use TSAF 15 



Preparing to Use TSAF 

1. Set up links between communicating processors by modifying DMKRIO 
to describe the physical links. The VM/SP Planning Guide and 
Reference descr ibes DMKRIO. 

2. Use the SPGEN EXE9 to regenerate the r eal I/O configuration 
(DMKRIO). See the VM/SP Installation Guide for more specific 
information about the SPGEN EXEC. 

3. Make sure that the TSAF virtual machine has the links it needs to 
communicate by doing one of the following: 

• Dedicate these links to the TSAF vir tu al machine in the TSAF 
entry of the system directory. For example, in Figure 4 on page 14, 

DEDICATE 4AO 300 

dedicates the real device at address 300 to TSAF as the virtual 
device with address 4AO. You specify the virtual address when you 
use the ADD LINKs command described in "Chapter 3. Running 
the TSAF Virtual Machine" on page 35. 

• Use the ATTACH command, described in the VM/SP CP Command 
Reference, to attach the links. 

Note that multiple active links from one TSAF virtual machine to another 
TSAF virtual machine may adversely affect th e ability of those TSAF 
vir tu al machines to join . "Reliability in a Collection" on page 28 contains 
more information about links between TSAF virtual machines. 

Security Considerations when SeHing Up TSAF 

You can provide a secure TSAF system and collection in various ways. 

Assigning Unique Userids 

Your applications may rely on the userids of the connecting applications to 
maintain security and check authorization. The userid that TSAF presents 
is always the userid of the virtual machine that originated the request. 
Even if the connect ion is through the TSAF virtual machine, TSAF 
presents the userid of the originating virtual machine, not the TSAF virtual 
machine userid. 

TSAF does not enforce it, but you must ensure that no two users in a 
collection h ave the same userid. The exception is when a user has the same 
userid on multiple nodes within the collection. In this case, the user would 
h ave the same authorization for resources from whatever system in the 
collection he or she is logged onto. 

16 Transparent Services Access Facility Reference 



Preparing to Use TSAF 

Assigning Unique Node Ids 

There are a few different identifiers for each system: 

• The processor id, or CPUID, which is preassigned 

• The node id, which the system administrator assigns at installation 
time. 

The SYSTEM NETID file , an existing CMS file, associates th e CPUID of a 
pr ocessor with its node id. Be sure that the processors within a collection 
have unique node ids. For information on how to update the SYSTEM 
NETID file, see the VM/8P Installation Guide. 

Assigning Unique Resource Ids 

A resource can be located on the local system or on any other system 
within the collection. Each global resource name within a collection must 
be unique. For local or global resources, do not specify the name to be the 
same as a userid on the system. Also, do not specify a r esource name as 
any of the following: ALLOW, ANY, SYSTEM. See "Author izing Virtual 
Machines to Connect to Resources" on page 22 for mor e information on 
resource n ames. 

When two collections are merging, and the same resour ce name exists on 
each collection, TSAF automatically awards management responsibility to 
one of the systems. Two systems in the same collection cannot manage the 
same global resource at the same time. For more information about 
merging collections, see "When Two Collections Merge to Form One" on 
page 30. "Some Rules about Resources" on page 216 describes how TSAF 
selects a resource manager. 

Considerations for Using the APPCIVM Program Interface 

The system administrator must authorize APPC/VM communications for 
users in their virtual machine directory entries. If you are not authorized 
for APPC/VM communications, you cannot communicate with virtual 
machines other than your own. If the target of the APPCVM CONNECT 
function (the resource manager) does not have IUCV ALLOW specified in 
its directory entry, the system administrator must specifically authorize 
each virtual machine to communicate within the TSAF collection. See 
"Authorizing Virtual Machines to Manage Resources" on page 18 and 
"Authorizing Virtual Machines to Connect to Resources" on page 22 for 
more information on the directory entries. 

Chapter 1. Preparing to Use TSAF 17 



Preparing to Use TSAF 

Security within APPCIVM Applications 

When a virtual machine running an APPCjVM application tries to connect 
to another virtual machine, the virtual machine being connected to must 
run through a few security measures. Most importantly, the virtual 
machine must check the userid of the connecting virtual machine and the 
resource id for which the connection is being made. See "Accepting or 
Rejecting a Connection" on page 67 for more information. 

Security for Communication Servers 

Communication servers are authorized in the CP directory with OPTION 
COMSRV. See "Considerations for Communication Servers" on page 100 
for more information on communication servers. 

Local and Global Resources 

A local resource is one that is known only to the local system. A global 
resource is one that is known to all systems in the TSAF collection. 

A system may have both a local and global resource defined with the same 
name. For example, a local resource called "Count" is different than the 
global resource called "Count". Both resource owners can coexist on the 
same system. In fact, both resources can be owned by the same virtual 
machine. If both the local and global "Count" resources are owned by the 
same virtual machine, the resources would be identical. However, if the 
local and global "Count" resources are owned by different virtual machines, 
the resources may be different. 

If a local and global resource are defined with the same name, the resources 
are accessed as follows: 

• When a local user on the local VM system requests to communicate 
with the resource, CP routes the user to the local resource. TSAF 
routes the local user to a global resource only if a local resource by 
that name does not exist. 

• When a remote user on another VM system in the collection requests to 
communicate with the resource, TSAF routes the user to the global 
resource, even if a local resource also exists on the target system. 

Keep in mind, if the local resource is revoked, users on the local VM 
system trying to communicate with the resource are automatically 
connected to the global resource. 

18 Transparent Services Access Facility Reference 



Preparing to Use TSAF 

Authorizing Virtual Machines to Manage Resources 

If you want to authorize a virtual machine to manage r esources, you must 
identify it in its directory entry so the virtual machine may connect to the 
Identify System Service. *IDENT is the assigned system service name for 
the Identify System Service. 

IUCV Directory Control Statement for *IDENT Authorization 

To authorize a virtual machine as a resource manager, you must add an 
IUCV *IDENT control statement , with appropriate parameters, to the 
virtual machine's directory entry. Be sure the IUCV directory statement 
appears before any CONSOLE, SPOOL, LINK, or MDISK statements; 
otherwise, you get error messages. 

The IUCV control statement syntax for *IDENT is: 

[ *IDENT {RESANY } {LOCAL } 1 
{resid } { GLOBAL} [REVOKE] 

IUCV 

*IDENT 
lets the virtual machine connect to the Identify System Service. 

RESANY 

resid 

lets the virtual machine identify any resource name. 

Be careful when you assign resource names and when you give 
authorization for RESANY. A virtual machine that has authorization 
for RESANY can identify a resource name as "resany." Also, this 
virtual machine would be authorized to identify any other resource 
name. 

is a one-to-eight character resource name. Virtual machines can 
connect to the resource manager that manages the resource specified 
by resid. The first byte of the resource name should be alphanumeric. 
(IBM reserves names beginning with the remaining characters for its 
own use.) 

Be sure that the resource name you specify is not the same as a userid 
on the system. Also, do not specify the resource name as any of the 
following: ALLOW, ANY, or SYSTEM. 

LOCAL 
authorizes the virtual machine to identify the resource as a local 
resource known only to the local system. If you specify LOCAL with 
RES ANY, the virtual machine can identify any resource as a local 
resource. 

Chapter 1. Preparing to Use TSAF 19 



Preparing to Use TSAF 

GLOBAL 
authorizes the virtual machine to identify the resource as a global 
resource known to all systems in the collection . This operand lets the 
virtual machine identify the resource as local also. If you specify 
GLOBAL with RESANY, the virtual machine can identify any 
resource either locally or globally. 

REVOKE 
authorizes the virtual machine to revoke the specified resource name. 
A virtual machine that can revoke resources can also identify them. 

If you specify REVOKE with: 

• LOCAL, the virtual machine can revoke and identify the r esource 
on the local system only. 

• GLOBAL, the virtual machine can do either of the following: 

Revoke and identify the global resource 
Revoke and identify the local resource on the local system. 

A virtual machine cannot revoke both the global and local 
resources at the same time. The virtual machine must specify 
which resource to revoke when the connection is made to *IDENT. 

• RESANY and LOCAL, the virtual machine can revoke and 
identify any local resource. 

• RESANY and GLOBAL, the virtual machine can revoke and 
identify any resource, local or global. 

Because the TSAF virtual machines do not keep track of the local 
resources, a vir tual machine cannot revoke a local resource on 
another system. 

The complete lUCY control statement is described in the VMjSP Planning 
Guide and Reference. 

Other Statements in the Resource Manager's Directory Entry 

Specify the OPTION statement with the MAXCONN keyword in the 
directory entry of the resource manager. Specify a large enough number to 
support an additional lUCY connection for: 

• Each resource that the reSOUI"ce manager virtual machine controls 

• Each user that connects to the resources. 

Though it is not a required directory statement, you should include lUCY 
ALLOW in the directory entry for any resource manager. This lets any 
virtual machine access the resource manager, instead of requiring directory 
authorization for each user who needs to connect to a specific resource. 

20 Transparent Services Access Facility Reference 



Preparing to Use TSAF 

However, for security reasons, you may want to, instead, explicitly 
authorize each virtual machine that wants to connect to a resource. 

Identifying More than One Resource from the Same Virtual Machine 

If a virtual machine must identify more than one resource, you can specify 
more than one IUCV control statement for *IDENT in the virtual machine's 
directory entry. *IDENT checks to see if the virtual machine is authorized 
to identify or revoke the resource specified on the AP PCVM CONNECT 
function. *IDENT searches the virtual machine' s dir ectory entry for IUCV 
control statements in this order: 

1. The first *IDENT entry that has the same resource name as specified on 
the CON NE CT. If *IDENT does not find or finds a match, but 
authorization for the LOCAL/GLOBAL and REVOKE parameters does 
not correspond to those specified in the CONNECT parameter list, 
*IDENT searches for, 

2. The first *IDENT entry th at has the resource name RESANY. If 
*IDENT finds a match, it checks that the authorization for the 
LOCAL/GLOBAL and REVOKE parameters correspond to those 
specified in the CONNECT parameter list. If it does not find a match, 
or if the other parameters do not correspond, then it severs the 
requested connection. 

A single system can have up to 200 resources identified. 

Examples of Multiple IUCV *IDENT Control Statements 

The following examples describe how to use multiple IUCV control 
statements for *IDENT. 

E xample 1: A resource manager, RESMGRl, has the following IUCV 
control statements: 

IUCV *IDENT RESANY GLOBAL 

IUCV *IDENT residx LOCAL REVOKE 

RESMGRI can identify any resource as a local or global resource, because 
of the first statement. This includes the local resour ce, r esidx. However, 
RESMGRI can only r evoke the r esource, residx, when it is defined on the 
local system as a local resource. 

Examp le 2: A r esource mana ger, RESMGR2, has the following IUCV 
control st atements: 

IUCV *IDENT residx GLOBAL 

IUCV *IDENT residy GLOBAL 

IUCV *IDENT RESANY LOCAL REVOKE 

Chapter 1. Preparing to Use TSAF 21 



Preparing to Use TSAF 

RESMGR2 can identify the resources, residx and residy, as local or global 
resources. RESMGR2 is not auth orized to revoke any global resources. 
Because of the last control statement, RESMGR2 can identify any resource 
as a local resource. Also, RESMGR2 can revoke any resource known on 
the local system as a local resource. 

Example 3: A resource manager, RESMGR3, has the following lUCY 
control statements: 

lUCY *IDENT residx LOCAL 

IUCV *IDENT residy GLOBAL 

IUCV *IDENT residx GLOBAL REVOKE 

RESMGR3 can identify the r esource, residx, as a local resource and the 
resource, residy, as either a local or a global resource. RESMGR3 cannot 
revoke any resources. The reason for this is that *IDENT searches for the 
first entry that matches the resource name specified on the CONNECT. If 
RESMGR3 tries to connect to *IDENT to identify or revoke the GLOBAL 
resource, residx, *IDENT severs the connection. In this case, if you want 
RESMGR3 to identify and revoke the global r esource, r esidx, you would 
delete the first control statement. 

Authorizing Virtual Machines to Connect to Resources 

You only need to do this procedure if the TSAF and resource manager virtual 
machines do not have IUCV A LLOW statements in their directory entries. If 
the TSAF and resource manager virtual machines have specified IUCV 
ALLOW statements in their directory entries, any user in the collection can 
connect to any global resource. 

For security reasons, you may want to explicitly authorize each virtual 
machine that wants to connect to a resource. In this case, you can add an 
lUCY control statement with the resource id parameter to the user's 
directory entry. If a virtual machine user has a specified alternate userid, 
you can authorize the user and the user's alternate userid to connect to a 
resource by adding the lUCY control statement to: 

• The user 's directory entry, or 
• The user's alternate userid directory entry. 

The complete lUCY control statement is described in the VM/SP Planning 
Guide and Reference. 

The syntax of the statement includes: 

IUCV resource id 

22 Transparent Services Access Facility Reference 



USERa 

-IUCV RES2 

USERb 

-IUCV RESI 

Preparing to Use TSAF 

resource id 
is a one-to-eight character resource name used to connect to a 
resource manager rather than to a specified virtual machine. The first 
byte of the resource name must be alphanumeric. (IBM reserves 
names beginning with the remaining characters for its own use.) 

Be sure that the resource name you specify is not the same as a userid 
on the system. Also, do not specify the resource name as any of the 
following: ALLOW, ANY, or SYSTEM. 

Specifying IUCV resource id does not give authority to connect by 
userid to the virtual machine that owns the specified resource. At the 
same time, specifying IUCV userid does not give authority to connect 
by resource-id to the specified virtual machine. 

When you explicitly authorize each virtual machine (with "IUCV 
resource" or "IUCV ANY"), you should also give explicit directory 
authorization to the TSAF virtual machine residing on the same 
system as the resource (with "IUCV resource" or "IUCV ANY"). 

Figure 5 shows a typical explicitly authorized TSAF collection involving 
two VM/SP systems. The entries within each box represent the directory 
entries of the particular virtual machine. 

USERc RESMGRI TSAFVM 

-IUCV RESI -IUCV *IDENT -IUCV *CRM 
RESI GLOBAL -IUCV RES 1 

VMl 

USERd RESMGR2 TSAFVM 

-IUCV RES2 -IUCV *IDENT -IUCV *CRM 
RES2 GLOBAL -IUCV RES2 

VM2 

Figure 5. Two VM Systems Communicating 

Chapter 1. Preparing to Use TSAF 23 



Preparing to Use TSAF 

In this figure, users have the following authorization: 

• USERa on VMl can connect only to RES2 on VM2. 

• USERb on VM2 can connect only to RESI on VMl. 

• USERc on VMl can connect only to RESI on VMl. 

• USERd on VM2 can connect only to RES2 on VM2. 

24 Transparent Services Access Facility Reference 



Collection Structure 

Collection Example 

A group of VM systems that each have the TSAF virtual machine 
component installed and running can form what is known as a collection. 
A collection can have up to eight systems. You must be sure of the 
following: 

• No two users in a collection have the same userid. 

Note: TSAF does not enforce this, but you should enforce this to avoid 
potential problems. 

• No two systems within the collection have the same node id. 

See "Assigning Unique Userids" on page 16 and "Assigning Unique Node 
Ids" on page 17 for more information. 

This section includes a six-step scenario that describes how to set up a 
collection and share resources. This particular example involves: 

• One resource manager that manages a resource. The resource manager 
is called RESMGR and manages the resource, RESl. 

• Two systems, A and B, each with a TSAF virtual machine. The TSAF 
virtual machines are TSAFa and TSAFb on systems A and B, 
respectively. The programs that want to use the resource, RESl, are 
PGMa and PGMb on systems A and B, respectively. 

Step 1-TSAF Virtual Machine Identifies Itself 

When the virtual machine, TSAFa, begins running, it requests a connection 
to the Collection Resource Management System Service (*CRM). Because 
no other local virtual machine is already connected to *CRM, and TSAFa is 
authorized, CP accepts TSAFa as the TSAF virtual machine and starts a 
connection. 

If any virtual machines in the system had identified themselves as the 
managers of any global resources, then, upon request, CP would send those 

Chapter 2. Setting Up TSAF Collections and Routes 25 



Setting Up TSAF Collections 

resource names to TSAFa. In this example, there are no previously 
establisned resources. 

TSAFa 

I 

TSAFI connects to *CRM 
CP 

F igure 6. TSAF Virtual Machine Identifying Itself 

Step 2-TSAF Virtual Machines Exchange Information 

CP 

Now that TSAFa is the TSAF virtual machine for the local system, it tries 
to connect itself to a collection. TSAFa sends out data along each physical 
link that it controls. So that TSAFa can join the collection, the TSAF 
vir tual machines on the other end of each link exchange the following 
information with TSAFa: 

• Names of the resources that TSAFa knows 

• Names of other resources in the collection that the remote TSAF 
virtual machines know about. 

In Figure 7 there is only one other TSAF virtual machine in the collection 
(TSAFb) and it does not know about any resources yet. 

I TSAFa .. ~ TSAFb I 

CP 

F igu r e 7. TSAF Virtua l Machines Exchanging Information 

Step 3-A Resource Manager Requests to Manage a Resource 

When the resource manager, RESMGR, enters the collection, it issues a 
CONNECT to the Identify System Service (*IDENT). This is so CP 
recognizes RESMGR as the manager of the global resource, RESl. CP 
notifies TSAFa over its *CRM connection that RESMGR wants to manage 
the resource, RESl. 

The TSAF virtual machines in the collection then agree that RESMGR can 
be the manager of the resource, RESl. TSAFa notifies the local CPo CP 
then adds the global resource, RESl, to its system resource table and 
accepts the connection from RESMGR to *IDENT. Both TSAFa and TSAFb 
add the resource, RESl, to their resource tables. If the resource had been 

26 Transparent Services Access Facility Reference 



RESMGR 
(RESl) 

I 

tESMGR requests 
CP resource RESI 

Setting Up TSAF Collections 

previously defined anywhere in the collection, then CP would have severed 
the requested connection. 

I TSAFa TSAFb 
J 

to manage 
CP 

Figure 8. Resource Manager Requesting to Manage a Resource 

Step 4-A Local User Connects to the Resource Manager to Share the Resource 

PGMa 
I 

cotect 
to RESMGR 

CP 

RESMGR 
(RESl) 

PGMa requests to connect to resource, RESl. The local CP finds RESl in 
its resource table, and connects PGMa to RESMGR. After the connection 
is complete, APPCjVM communication can begin over the established path. 
Because the resource is on the local system, there is no need to go through 
the TSAF virtual machine. 

TSAFa TSAFb 

CP 

Figure 9. A Local User Sharing a Resource 

Step 5-A Remote User Connects to the Resource Manager to Share the Resource 

PGMb requests to connect to resource, RESl. Because the local CP does 
not find RESl in its system resource table, it connects the user to TSAFb. 
TSAFb finds RESl in its resource table and sends the connection request to 
TSAFa. TSAFa issues the CONNECT to the resource, RESl. RESl is 
listed in the system resource table that TSAFa maintains, so the connection 
is made. 

As you can see, the connection actually consists of three APPCjVM paths 
(between PGMb and TSAFb, between TSAFa and RESMGR, and between 
the TSAF virtual machines, TSAFa and TSAFb). 

Chapter 2. Setting Up TSAF Collections and Routes 27 



Setting Up TSAF Collections 

PGMa I I RESMGRI I TSAFa 'III 
(RES1) 

TSAFb PGMb 

t~ect 
~ESl 

CP CP 

Figure 10. A Remote User Sharing a Resource 

Step 6-Sends and Receives for Local and Remote Users 

PGMa 

t 
CP 

After the connections are complete, TSAF routes the various SENDs and 
RECEIVEs between the resource manager and the program that wants 
access to the resource. 

TSAFa .4-----+~ TSAFb PGMb 

t t 
CP 

Figure 11. Sending and Receiving 

Reliability in a Collection 

In general, the reliability of communication within a collection depends on 
how the collection is set up. For example, communications from a 
processor where TSAF has three links to three different processors is more 
reliable than if the processor has only one link by which to get to the other 
processors. If a processor with only one link to the rest of the collection 
could no longer communicate through that link, the collection would be 
partitioned. 

Multiple Links from TSAF Virtual Machine to TSAF Virtual Machine 

Multiple active links from one TSAF virtual machine to another TSAF 
virtual machine may adversely affect the ability of those TSAF virtual 
machines to join. When there are multiple links, there is no guarantee that 
both TSAF virtual machines will use the same link to communicate. 

For example, in Figure 12 on page 29, there are two dedicated links 
between the TSAF virtual machines (link1 and link2). If link1 and link2 
were both added to TSAF, it is possible that the two TSAF virtual machines 
would not be able to join. This could be caused by the timing of the 
messages crossing those links. For example, the TSAF virtual machine on 

28 Transparent Services Access Facility Reference 



Setting Up TSAF Collections 

Proc A may prefer to use link1, while the TSAF virtual machine on Proc B 
may prefer to use link2. 

1· kl 1 n 

TSAF 1 i n k2 TSAF 

Proc A Proc B 

Figure 12. Multiple Connections between TSAF Virtual Machines 

If you want to have more than one link available between two TSAF virtual 
machines, one of them should remain detached from the TSAF virtual 
machines or deleted from TSAF's table of communication links. Then, 
when needed, you can attach the link or add the link to TSAF's table of 
communication links. For example, in Figure 12, link2 could be 
unattached. But when link1 fails, you could then attach link2. 

On the other hand, it is fine to have two or more links connecting the same 
two processors (see Figure 13), one between the TSAF virtual machines and 
the other links between other virtual machines, such as RSCS (Remote 
Spooling Communications Subsystem) or PVM (Pass· through Virtual 
Machine) virtual machines. 

TSAF TSAF 

RSCS RSCS 

Proc A Proc B 

Figure 13. TSAF with RSCS 

Multiple Links to Processors in a Collection 

When setting up a collection of more than two processors, try to assign 
links from each processor to at least two other processors. This way, each 
processor would have at least two fully or partially distinct physical routes 
through which to communicate, rather than just one. 

In Figure 14 on page 30, assume processors A, B, C, and D each have TSAF 
running. The processors, through the TSAF virtual machines, are 
connected by links A to B, B to C, and C to D. These systems form a 
collection. If the 'link from B to C failed for some reason, the collection 
would be partitioned. For example, users on A communicating with 
programs on C would be disconnected from those programs. 

Chapter 2. Setting Up TSAF Collections and Routes 29 



Setting Up TSAF Collections 

: : 1------1: ::: 

Figure 14. A TSAF Collection 

On the other hand, if a link were added between processors A and D, see 
Figure 15, the collection would be more reliable. Again, if a user on A 
were communicating with programs on C, and the link from B to C failed 
for some reason, communication could continue on the path from A to D to 
C. 

: :: ::: 
Figure 15. More Reliable TSAF Collection 

When Two Collections Merge to Form One 

When you make a link active or bring up a TSAF virtual machine, it may 
cause two or more collections to join. However, the collections may have 
one or more duplicate resource names. The TSAF virtual machine does not 
know about local resources. Therefore only global resources are affected 
when collections merge. 

When merging collections each have a resource with duplicate resource 
names, TSAF determines the collection that manages the resource in the 
following order: 

1. The largest collection (i.e., the collection with the most systems) wins 
management of the resource in the new merged collection. 

For example, in Figure 16 on page 31, Collection 1 and Collection 2 
merge to form Collection 3. The resource ACCOUNT is defined in both 
Collections 1 and 2. In this case, when the collections merge, the 
virtual machine resource manager in Collection 1 wins ownership of the 
resource ACCOUNT, because Collection 1 has three nodes and 
Collection 2 only has two. 

30 Transparent Services Access Facility Reference 



Setting Up TSAF Collections 

Collection 1 Collection 2 

JI rFSMcru

-

ACCOUNT 
DATA 

========-
RESMGR2 -- JI II ACCOUNT 

BANK 

========-

/ 
,----VMX--1! ~-! L-_VMY--, 

\/ 

Figure 16. Two TSAF Collections Merged into One 

2. If the collection sizes are the same, then TSAF looks at the two nodes 
that are going through the join. TSAF compares those two node ids; 
the first node id in alphabetical order wins management responsibility 
of the resource for its collection. In other words, the collection that 
wins management responsibility of the duplicate resource is that 
collection that has the first node in alphabetical order (between the two 
nodes involved with the join). 

In Figure 16, if the collections sizes were the same, Collection 1 would 
win management responsiblity for duplicate resources, since VMB and 
VMX are the two nodes joining, and VMB is before VMX in 
alphabetical order. 

TSAF does not sever existing APPCjVM paths to resource managers that 
lose management responsibility for the resource. However, new paths will 
go to the resource manager in the winning collection. 

Two collections may try to merge that total nine or more systems. Because 
only eight systems can be in a collection, any systems over eight are left 
out of the collection. Because of the timing involved with collection 
communication, you cannot predetermine the loser system. When this 
happens the TSAF virtual console of the system through which the ninth 
system was trying to join gets this message: 

5131 Node nodeid cannot join, maximum collection size 
has been reached 

Chapter 2. Setting Up TSAF Collections and Routes 31 



Setting Up TSAF Collections 

TSAF Routing 

where nodeid is the nodeid of the system trying to join. The TSAF virtual 
console of the losing VM system gets this message: 

531E Timeliness check failed on message from node nodeid 

When the TSAF collection configures itself, the TSAF virtual machines 
determine the various routes that connect each TSAF virtual machine to 
every other TSAF virtual machine. If more than one possible route exists 
between two TSAF virtual machines, TSAF chooses the route with a 
combination of the following: 

• Smallest number of intermediate systems 

• Fastest links. 

The TSAF virtual machines reconfigure the collection, if a route becomes 
unavailable because of an inoperative link, system or TSAF virtual 
machine. TSAF then selects a new route, if one exists. 

How TSAF Dynamically Configures a Collection Using Link Information 

A link is a physical connection between two systems. When you start the 
TSAF virtual machine, you must give it the link addresses that it needs to 
communicate with other systems. See "Adding Links to the TSAF Virtual 
Machine-ADD LINK" on page 37 for information on how to add links. 

TSAF sends out messages over each link. If there is a TSAF virtual 
machine on the other end of the link, they exchange information about the 
resources they manage. The TSAF virtual machines configure their own 
collection, based on the information they exchange. This procedure does 
not require an operator. 

If a particular link is not operating or if there is not an active TSAF virtual 
machine on the other end of the link, then TSAF does not use that link. 
TSAF periodically checks each link defined to it. TSAF dynamically 
reconfigures the collection when one of the following occurs: 

• A link becomes operational or inoperative 

• A TSAF virtual machine becomes active or inactive. 

32 Transparent Services Access Facility Reference 



Route Failure 

Setting Up TSAF Collections 

If APPCNM data does not get to its target within a specified time, the 
originating TSAF virtual machine starts to reconfigure the collection. 
After TSAF reconfigures the collection, the originating TSAF virtual 
machine tries to resend the data. If the SEND fails again, the TSAF virtual 
machine severs the APPCjVM connection. 

The TSAF virtual machines se~'d out test messages at variable intervals 
over each link. If a test message indicates that a link is not operating, the 
TSAF virtual machines reconfigure the collection and routes. 

Performance Considerations 

Supported Links 

The TSAF virtual machine runs on any VMjSP Release 5 supported 
processor. These processors must support at least one of the following 
connections between systems: 

• Channel-to-channel (CTC) links, including 3088 links 

• Binary Synchronous Communication (BSC) links. 

Optimizing Performance 

General Performance Characteristics for TSAF 

Applications that use local paths perform faster than applications that use 
TSAF for remote APPCjVM paths. The reason is that when communicating 
with a remote resource the following are involved: 

• Two or more APPCNM paths 

• Two or more TSAF virtual machines 

• One or more physical connection. 

With local communications, only one APPCjVM path is needed because 
there is no need to involve the TSAF virtual machine. 

TSAF performance also depends on the speed of the communication line 
that is routing the path. To improve performance of the remote paths, use 
the class A SET command with the following parameters: 

FAVORED use rid 
QDROP use rid OFF 

Chapter 2. Setting Up TSAF Collections and Routes 33 



Setting Up TSAF Collections 

userid is the userid of the TSAF virtual machine. To add improved 
performance, you may want to use the SET PRIORITY command. See the 
VM/SP CP Command Reference for more details on the SET command. 

Line Performance Characteristics 

TSAF functions that affect all the systems in a collection include: 

• Identifying a new global resource in the collection 

• Revoking a global resource from the collection 

• Joining another collection. 

How fast any of these functions complete is directly related to the speed of 
the slowest line that TSAF is using in the collection. A CTC line is much 
faster than a BSC line. So, using a BSC line can significantly slow down 
TSAF functions that affect all the systems in a collection. 

You should also consider the transmission error rate associated with each 
line in the collection. A BSC line with a fixed line speed is less reliable and 
not as available if the number of transmission errors increases. TSAF 
assumes the error rate to be less than one bit in every 500,000 bits 
transmitted. 

An error rate that is too high causes "thrashing" on the line, and the line is 
useless. In other words, when the error rate is high, TSAF will tend to 
break the communication path and mark the line "down." The performance 
of the entire collection can degrade when TSAF must continually change 
the status of the line. 

34 Transparent Services Access Facility Reference 



Because the TSAF virtual machine dynamically configures itself, you, as 
the operator, only need to issue a few commands to operate the virtual 
machine. 

This chapter describes each TSAF command and gives you the possible 
responses for each command. 

Overview - TSAF Commands 

The commands to run and maintain the TSAF virtual machine are: 

ADD LINK adds a link to the TSAF virtual machine. 

DELETE LINK 
deletes a link from the TSAF virtual machine. 

QUERY gets information about the TSAF configuration. 

RUNTSAF starts the TSAF virtual machine. 

SET ETRACE sets external tracing on or off. 

STOP TSAF stops the TSAF virtual machine. 

Notes about Command Syntax 

A Note about Messages 

Command parameters listed in braces { }, like the QUERY command 
description, are not optional - you must choose one. 

Command parameters listed in brackets [ ] are optional - you can enter or 
omit them. 

The following is a list of identifiers associated with the messages introduced 
in this chapter. The prefix: 

ATS identifies the TSAF component. 

The suffices: 

E represents an error message. 

Chapter 3. Running the TSAF Virtual Machine 35 



Running TSAF 

I represents an informational message. 

R represents a response message. 

T represents a terminating error message. 

W represents a warning message. 

For example, the following would be a TSAF error message: 

ATSLLM701E Driver rejected the new link vdev 

In this example, LLM in the message identifier is the name of the module 
that issued the message. 

36 Transparent Services Access Facility Reference 



TSAF ADD LINK Command 

Adding Links to the TSAF Virtual Machine-ADD LINK 

ADD LINK Syntax 

The ADD LINK command identifies a communication link to TSAF when 
the TSAF virtual machine is running. 

I ADD LINK vdev 

vdev 
is the virtual device address you want to use as a link. 

You only need to add a link once to the TSAF virtual machine. After that, 
if you do not delete the link, when the TSAF virtual machine starts, it 
sends out messages on that link to other TSAF virtual machines to identify 
itself. 

What Happens When You Invoke ADD LINK 

If there is a device operating at the address you specify, TSAF adds the link 
to the TSAF table of communication links. TSAF also adds the link 
information to the ATSLINKS FILE on the TSAF virtual machine's A-disk. 
If the TSAF A-disk is accessed as R/O, TSAF lets you use this link, but 
TSAF does not add this link as an entry in the AT SLINKS FILE. 
Therefore, the next time you initialize the TSAF virtual machine this link 
is not defined. 

For example, if you issue: 

ADD LINK 4AO 

the TSAF virtual machine issues a Test I/O to test the device at that virtual 
address. If the test is successful, along with a group of messages, you get 
this message: 

ATSLLM7241 Link 4AO added 

For bisynchronous links, you may receive the ATSL3W795I message along 
with the 7241 message. 

If you receive a few 7951 messages, communication could be slow across the 
links. However, if you receive a group of these (over ten), the link could be 
inoperative or the system on the other side of the link could be down. 
Check to see if the other system is running. If the system is up, delete the 

Chapter 3. Running the TSAF Virtual Machine 37 



TSAF ADD LINK Command 

Messages 

link and then try adding it again. If this does not work, stop TSAF (issue 
STOP TSAF) and restart it (issue RUNTSAF). 

When the command completes succesfully, the TSAF virtual machine then 
uses the link to reconfigure the collection, to join a collection, or to be 
joined by a collection. 

You may get any of the following messages: 

ATSCOP004E 
ATSCOP005E 
ATSNHR602E 
ATSNHR603E 
ATSLLM700E 

ATSLLM701E 
ATSLLM702E 
ATSLLM703E 
ATSLIA710E 
ATSLIA711E 
ATSLIA712E 
ATSLLM715E 

ATSLLM724I 
ATSL3W795I 
ATSLIA799I 

Parameter parameter is not valid 
A required parameter is missing 
Incompatible release or service level detected on link udeu 
Duplicate node nodeid detected on link udeu 
Link-Definition table overflow, unable to add the new link 
udeu 
Driver rejected the new link udeu 
Link unit address udeu is not valid 
Link udeu is not a supported link type 
Unable to allocate control block for link udeu 
Unable to allocate I/O buffer for link udeu 
Link unit address udeu is a duplicate 
Failed to add the definition of link udeu to ATSLINKS 
FILE AI. Return code from FSWRITE was nnnn. 
Link udeu added 
Retry limit exceeded on unit udeu 
Unit udeu is not operational 

38 Transparent Services Access Facility Reference 



TSAF DELETE LINK Command 

Deleting Links from the TSAF Virtual Machine-DELETE LINK 

DELETE LINK Syntax 

The DELETE LINK command removes a communication link from the 
TSAF table of communication links when the TSAF virtual machine is 
runmng. 

I DELETE LINK vdev 

udeu 
is the virtual device address you no longer want to use as a link. 

What Happens When You Invoke DELETE LINK 

Messages 

TSAF purges any link information related to the virtual address that you 
specified from the TSAF table of communication links. TSAF also 
comments the link information out of AT SLINKS FILE on the TSAF 
virtual machine's A-disk. For example, if you issue 

DELETE LINK 4AO 

the TSAF virtual machine reconfigures the collection, if necessary. If it 
does this successfully, you get this message: 

ATSLLM713I Link 4AO deleted 

You may get any of the following messages: 

ATSCOP004E 
ATSCOP005E 
ATSLLM702E 
ATSLLM713I 
ATSLLM716E 
ATSLLM720E 

ATSLLM721E 

ATSLLM723E 
ATSL3W795I 

Parameter parameter is not valid 
A required parameter is missing 
Link unit address vdev is not valid 
Link udev deleted 
Driver rejected the request to delete link vdev 
Failed to delete the definition of link vdev from 
ATSLINKS FILE AI. Return code from FSREAD was 
nnnn. 
Failed to delete the definition of link vdev from 
AT SLINKS FILE AI. Return code from FSWRITE was 
nnnn. 
Link vaddr not found 
Retry limit exceeded on unit vdev 

Chapter 3. Running the TSAF Virtual Machine 39 



TSAF QUERY Command 

GeHing Status of the TSAF Configuration-QUERY 

QUERY Syntax 

The QUERY command gets information about the TSAF configuradon 
when the TSAF virtual machine is running. 

{
COLLECT } ETRACE 
LINK [t~t] 
RESOURCE 

Query 

COLLECT 
displays the names of the processors that are currently in the TSAF 
collection. 

ETRACE 
displays the current setting of the external tracing. 

LINK 
displays information about the links that TSAF currently has. 

vdev 
displays the link type and operational status of the link to this 
virtual address. 

displays the link type and operational status for all of the links 
that TSAF currently has in its definition table. 

RESOURCE 
displays the current list of global resources in the collection. 

What Happens When You Invoke QUERY 

QUERY COLLECT 

If you enter QUERY COLLECT , TSAF displays the node ids of the 
processors in the following format: 

nodeOl node02 node03 node04 node05 node06 node07 node08 

Figure 17. Output from QUERY COLLECT 

40 Transparent Services Access Facility Reference 



QUERY ETRACE 

QUERY LINK 

QUERY RESOURCE 

TSAF QUERY Command 

If you enter QUERY ETRACE, TSAF displays the external trace option 
setting as on or off. You may get either of the following responses when 
you issue QUERY ETRACE: 

ETRACE ON 
ETRACE OFF 

When you issue QUERY with the LINK operand, TSAF displays the status 
of the link that you specify. Entering QUERY LINK 4AO, for example, 
would give you the following response: 

Link: 4AO Typ.e: CTCA Status: u 

Figure 18. Output from QUERY LINK vdev 

If you enter QUERY LINK ALL, TSAF displays the status of all the links 
to the TSAF virtual machine. 

For two CTC links at addresses 3AO and 4AO and one BSC link at address 
550, you get a group of messages in the following format, when entering 
QUERY LINK ALL: 

Link: 
Link : 
Link : 

3AO Type : 
4AO Type : 
550 Typ e : 

CTCA Status: 
CTCA Stat us: 
ESC Status: 

Figure 19. Output from QUERY LINK ALL 

up 
down 
up 

If you enter QUERY RESOURCE, TSAF displays the resources known in 
the collection. For each resource that is known throughout the collection, 
you may get a response in the following format: 

resourceid at node nodeid 

Figure 20. Output from QUERY RESOURCE 

If no global resources exist in the collection, you get the following message: 

No global resources identified 

Chapter 3. Running the TSAF Virtual Machine 41 



TSAF QUERY Command 

Messages 

You may get any of the following messages: 

ATSCOP004E Parameter parameter is not valid 
ATSCOP005E A required parameter is missing 
ATSLLM702E Link unit address vdev is not valid 
ATSLLM722I No links are defined 
ATSLLM723E Link vde~ not found 

42 Transparent Services Access Facility Reference 



TSAF RUNTSAF Command 

Starting the TSAF Virtual Machine-RUNTSAF 

RUNTSAF Syntax 

You must be logged onto the TSAF virtual machine to issue RUNTSAF. 

The RUNTSAF command starts the TSAF virtual machine. Because TSAF 
runs as a CMS application, you must be in the CMS environment to start 
TSAF. 

nnn 
is the number of lK-byte blocks of virtual storage that the TSAF 
virtual machine's internal trace table uses. The default is 40, and 
TSAF rounds up to the next 4K-byte boundary. 

ETRACE 
sets external tracing on. This causes TSAF to write certain inte:tIi~ 
TSAF trace records externally to a CPTRAP spool file. This is the 
only way to get an external trace during TSAF initialization. 

If you do not specify this option, external tracing is initially off. 
When external tracing is off, TSAF writes trace records only to TSAF 
virtual storage. 

What Happens When You Invoke RUNTSAF 

After you enter RUNTSAF, the TSAF virtual machine gets necessary 
parameters, such as the local node id, using the CMS IDENTIFY command. 
If links have been previously defined, then the TSAF virtual machine joins 
the collection. It does this by exchanging data with other TSAF virtual 
machines over the links. 

When TSAF has started all of its permanent tasks successfully, you may get 
a group of messages, including this message: 

ATSCTL001I Initialization is complete. The service level 
is ssss 

You do not receive the CMS ready message (Ready;) at the completion of 
this command, since you are now in TSAF. "Scenarios" on page 47 shows a 
sample set of messages you may receive when issuing RUNTSAF. 

Chapter 3. Running the TSAF Virtual Machine 43 



TSAF RUNTSAF Command 

Messages 

You may receive a number of different TSAF messages, described in the 
VM/SP System Messages and Codes. Some of the messages are as follows: 

ATSCTLOOlI 
ATSCTL002T 
ATSCAC006I 

ATSCTL013I 
ATSMJK513I 
ATSMRZ518I 
ATSMYC520I 
ATSMYC521I 
ATSLMN707I 
ATSL3Z795I 

Initialization is complete. The service level is ssss 
Parameter parameter is a duplicate or is not valid 
TSAF link statistics and session accounting records will 
be generated 
Trace area size is nnnK 
Attempting JOIN with node nodeid as the agent 
RESET: collection now has size 1 
Synchronization is now NORMAL 
Collection is roughly synchronized 
Link udeu came up 
Retry limit exceeded on unit udeu 

44 Transparent Services Access Facility Reference 



TSAF SET ETRACE Command 

Setting External Tracing-SET ETRACE 

SET ETRACE Syntax 

The SET ETRACE command lets you enable or disable external tracing. 

The command format is: 

ON 

OFF 

ETRACE JON} 
10FF 

causes TSAF to write certain internal TSAF trace records externally 
to a CPTRAP spool file. 

causes TSAF to write TSAF trace records only to TSAF virtual 
storage. No external tracing is done. 

What Happens When You Invoke SET ETRACE 

Messages 

• 

If you enter SET ETRACE ON, TSAF starts to write trace records to a 
CPTRAP spool file, and you get this message: 

ATSCOPOIOI External trace started 

If you enter SET ETRACE OFF, TSAF stops external tracing, and you get 
this message: 

ATSCOPOIII External trace ended 

You may get any of the following messages: 

ATSCOP004E 
ATSCOP005E 
ATSCOPOlOI 
ATSCOPOllI 

Parameter parameter is not valid 
A required parameter is missing 
External trace started 
External trace ended 

Chapter 3. Running the TSAF Virtual Machine 45 



TSAF STOP TSAF Command 

Stopping the TSAF Virtual Machine-STOP TSAF 

The STOP TSAF command stops running the TSAF virtual machine. 

STOP TSAF Syntax 

I STOP TSAF 

What Happens When You Invoke STOP TSAF 

Messages 

When TSAF accepts the STOP TSAF command, you get this message: 

ATSCTL0031 Termination is in progress 

After the TSAF virtual machine has stopped, you get the CMS "ready" 
message (Ready;). 

You may get any of the following messages: 

ATSCTL0031 
ATSCOP004E 
ATSCOP005E 

Termination is in progress 
Parameter parameter is not valid 
A required parameter is missing 

46 Transparent Servi.ces Access Facility Reference • 



Running TSAF 

Scenarios 

The following two examples show the results of issuing some of the TSAF 
commands. 

RUNTSAF with No Errors 

The following example shows what typically could happen when you issue 
the RUNTSAF command: 

RUNTSAF 250 

ATSCTL013I Trace area size is 252K 
ATSCAC006I TSAF link statistics and session accounting records will 

be generated 
ATSMRZ5l8I RESET: collection now has size 1 
ATSCTLOOII Initialization is complete. The service level is 0500. 
ATSMRX520I Synchronization is now NORMAL 
ATSLMN707I Link 500 came up 
ATSMD0515I JOIN in progress for node SMSNODE 
ATSMYCS2lI Collection is roughly synchronized 
ATSMYC520I Synchronization is now NORMAL 

QUERY COLLECT 

GDLS5 SMSNODE 

QUERY LINK 

Link: 500 Type: CTCA Status: up 

STOP TSAF 

ATSCTL003I Termination is in progress. 
Ready; 

Chapter 3. Running the TSAF Virtual Machine 47 



Running TSAF 

RUNTSAF with Errors 

RUNTSAF 200 

The following example shows what may happen when a link is not 
operational: 

ATSCTL013I Trace area size is 200K 
ATSCAC006I TSAF link stat i stics and session accounting records will 

be generated. 
ATSLIY708E An attempt to reset link 600 has failed 
ATSLIA799I Unit 600 is not operational 
ATSMRZ518I RESET: collection now has size 1 
ATSCTLOOII Initialization is complete. The service level is 0500. 
ATSLIY708E An attempt to reset link 600 has failed 
ATSMRX520I Synchronization is now NORMAL 

QUERY COLLECT 

GDLS5 

QUERY LINK 

Link: 600 Type: CTCA Status: down 

ADD LINK 500 

ATSLIY708E An attempt to reset link 500 has failed 
ATSLIA799I Unit 500 is not operational 
ATSLLM724I Link 500 added 
ATSLIY708E An attempt to reset link 500 has failed 

STOP TSAF 

ATSCTL003I Termination is in progress 
Ready; 

48 Transparent Services Access Facility Reference 



There are four different TSAF accounting records: 

1. Initialization accounting record - for information about when TSAF 
was active 

2. Session accounting record - for information about the user virtual 
machine and the resource manager virtual machine 

3. Link statistics record - for information about the load on a link over 
a period of time 

4. Termination accounting record - for information about TSAF 
termination. 

If you want TSAF to generate accounting records, you should specify the 
OPTION ACCT statement in the TSAF directory entry, as shown in 
"Modifying the TSAF System Directory Entry" on page 11. During TSAF 
initialization, you get one of the following messages: 

• If you specify OPTION ACCT, you get: 

ATSCAC0061 TSAF link statistics and session accounting 
records will be generated 

• If you do not specify OPTION ACCT, you get: 

ATSCAC0071 No TSAF link statistics or session accounting 
records will be generated 

You can modify the SYSACNT macro to specify where CP should store the 
accounting records. See the VM/SP Planning Guide and Reference for 
more information on the SYSACNT macro. 

Initialization Accounting Record 

TSAF produces the initialization accounting record during its initialization. 
You can use this record, along with the TSAF termination record, to find 
out when TSAF was active. 

Chapter 4. Generating TSAF Accounting and Link Statistics 49 



Accounting and Link Statistics 

Format of the Initialization Accounting Record 

The format of the initialization accounting record is: 

Column Contents 

1 Contains the CP-provided userid of the TSAF 
virtual machine. 

9 Reserved for IBM use. 

17 Lists the date and time when the accounting 
record was generated, 'MMDDYYHHMMSS' 
(month, day, year, hours, minutes, and seconds). 

29 Reserved for IBM use. 

75 'lATS' identifies record as the initialization 
accounting record. 

79 'CO' identifies the accounting record code that CP 
provides. 

Session Accounting Record 

Use the session accounting record to find out how long a user is connected 
to a resource manager, using a specific resource. The record also has 
information that tells you how much data the user virtual machine and the 
resource manager exchanged. 

TSAF generates a session accounting record at the following times: 

• Every hour 

• When an APPC/yM session ends (SEVER) 

• When the TSAF virtual machine stops. 

The TSAF virtual machine (on the same system as the virtual machine that 
started the connection) issues the DIAGNOSE code X' 4C' instruction to 
generate the records. For an application and/or server session, the system 
on which the application runs would generate the records. 

Format of the Session Accounting Record 

The format of the session accounting record is: 

Column Contents 

1 Contains the CP-provided userid of the TSAF 
virtual machine. 

50 Transparent Services Access Facility Reference 



Accounting and Link Statistics 

Column Contents 

9 Contains the userid of the application virtual 
machine. 

17 Lists the date and time when the accounting 
record was generated, 'MMDDYYHHMMSS' 
(month, day, year, hours, minutes, and seconds). 

29 Contains the resource name. 

37 Lists how long, in seconds, the session was active 
(unsigned binary full word). This is the time since 
the session started or since the last accounting 
record was taken for this session. 

41 Lists how many bytes of data were sent (unsigned 
binary fullword). 

45 Lists how many bytes of data were received 
(unsigned binary fullword). 

49 Reserved for IBM use. 

75 'SATS' identifies record as a session accounting 
record issued by TSAF. 

79 'CO' identifies the accounting record code that CP 
provides. 

Link Statistics Record 

Use the link statistics record to determine the load on the link over a 
period of time. 

TSAF generates a link statistics record at the following times: 

• Every hour when a link is up 

• When the system declares a link down 

• When the TSAF virtual machine stops. 

Both ends of the link generate link statistics records with the DIAGNOSE 
code X'4C' instruction. 

Format of the Link Statistics Record 

The format of the link statistics record is: 

Chapter 4. Generating TSAF Accounting and Link Statistics 51 



Accounting and Link Statistics 

Column Contents 

1 Contains the CP-provided userid of the TSAF 
virtual machine. 

9 Reserved for IBM use. 

17 Lists the date and time when the accounting 
record was generated, 'MMDDYYHHMMSS' 
(month, day, year, hours, minutes, and seconds). 

29 Contains the unit address of the link, four 
characters in the form 'vdev' . 

33 Reserved for IBM use. 

37 Lists how many bytes of data were sent since the 
link came up, or since the last accounting record 
was generated for this link (unsigned binary 
fullword). 

41 Lists how many bytes of data were received 
(unsigned binary fullword). 

45 Reserved for IBM use. 

75 'LATS' identifies record as a link statistics record 
issued by TSAF. 

79 'CO' identifies the accounting record code that CP 
provides. 

Termination Accounting Record 

TSAF produces the termination accounting record during normal TSAF 
termination as well as in some types of abnormal termination. When TSAF 
writes the TSAF termination accounting record, you can be sure that all 
applicable session accounting and link statistics records have also been 
written. On the other hand, if TSAF abnormally terminates without 
writing the termination accounting record, then some session accounting 
and link statistics data may be lost. 

Format of the Termination Accounting Record 

The format of the termination accounting record is: 

Column Contents 

1 Contains the CP-provided userid of the TSAF 
virtual machine. 

9 Reserved for IBM use. 

52 Transparent Services Access Facility Reference 



Accounting and Link Statistics 

Column Contents 

17 Lists the date and time when the accounting 
record was generated, 'MMDDYYHHMMSS' 
(month, day, year, hours, minutes, and seconds). 

29 Reserved for IBM use. 

75 'OATS' identifies record as the termination 
accounting record. 

79 'CO' identifies the accounting record code that CP 
provides. 

Chapter 4. Generating TSAF Accounting and Link Statistics 53 



Accounting and Link Statistics 

54 Transparent Services Access Facility Reference 



Chapter 5. Collecting TSAF Problem Diagnosis Information 
(Serviceability) 

The three ways that you can collect error information for problem diagnosis 
within TSAF are: 

1. U sing console logs 

2. Using dumps 

3. Using system trace data. 

In addition, "Interactive Service Queries" on page 58 describes how the 
TSAF QUERY command can also provide you with problem diagnosis 
information. 

Note: The TSAF operator does not necessarily diagnose problems, 
especially from the TSAF virtual machine. Dumps and system trace data 
are usually used by the system programmer or whoever is responsible for 
diagnosing system problems. 

Summary of Steps to Follow When a TSAF Abend Occurs 

When a TSAF abend occurs, you must do the following steps: 

1. Collect information about the error. 

• Save the console sheet or spooled console output from the TSAF 
virtual machine. 

• Save and process any dumps that TSAF produces. 

When an abend occurs in TSAF, either because TSAF issued an 
abend or because a TSAF or CMS operation caused a program 
exception, TSAF produces a dump via the CP VMDUMP command 
(described in the VMjSP CP Command Reference). CP sends the 
dump to TSAF's virtual reader. 

• Save any CPT RAP file that contains TSAF data. 

2. Collect other types of information about system status. 

• The status of real and virtual devices that TSAF is using 

Chapter 5. Collecting TSAF Problem Diagnosis Information (Serviceability) 55 



Servicing TSAF 

• The system load at the time of the failure on any systems using 
TSAF and the status of each system (for example, did another 
system abend?) 

• The types of applications that are using TSAF at the time and any 
information about them 

• The physical connection configuration of the systems in use. 

3 .. Recover from the abend to continue processing. 

After TSAF creates a dump, TSAF then issues a CP SYSTEM RESET 
command. If the CONCEAL option is on, as recommended, CP 
automatically IPLs CMS. Otherwise, you, the operator, must re-IPL 
CMS. Similarly, if TSAF is not invoked from the PROFILE EXEC, you 
must restart the TSAF virtual machine. 

VM/ SP System Messages and Codes lists the TSAF abend codes and their 
causes. The VM Diagnosis Guide contains a complete description of how to 
diagnosis problems in TSAF. 

Using the Console Log 

TSAF provides informational messages, as well as error messages, that may 
help you with problem determination. To keep track of the console 
messages, issue: 

SPOOL CONSOLE START TO userid 

use rid can be the userid of the TSAF virtual machine or another virtual 
machine userid to whom you want TSAF to send the console log. You may 
want to add this to TSAF's PROFILE EXEC so a console log is always 
created. 

To close the console log, issue: 

SPOOL CONSOLE CLOSE 

The log of messages received is sent to the specified userid. See the VM/SP 
CP Command Reference for more information on the SPOOL command. 

TSAF provides additional information at the time of an abend to help you 
diagnose the problem. The console log contains information about the 
abend, such as the abend code, the program old PSW (Program Status 
Word), arid the contents of the general purpose registers. TSAF also 
attempts to determine the displacement of the module in which the abend 
occurred and the displacement of the calling module. 

The following sample shows some of the messages that TSAF may issue in 
response to an abend condition: 

56 Transparent Services Access Facility Reference 



ATSCAC999T TSAF system error 
ATSCAB0171 Abend code ATS999 at 022730 
ATSCAB0181 Program old PSW is FFE002FF 40022730 

Servicing TSAF 

GPRO-7 00022FFC 000003E7 00022FOA 00052BCO 00208080 00020C58 0033E811 00000001 
GPR8-F 7F3B78AF 603COOOO 00020B64 0002206F 50021070 00022B48 40022718 00023FBO 
ATSCAB0191 Abend modifier is ATSCAC 
ATSCAB0211 Failure at offset OA06 in module ATSCAC dated 86.020 
ATSCAB0221 Called from offset 04B4 in module ATSSCN dated 86.078 
ATSCAB0231 VMOUMP ATSCAB*ATSCAB1 OS/28/86 16:02:06 taken 

Figure 21. Sample TSAF Console Log 

Using TSAF Dumps to Diagnose Problems 

IPCS is a dump analysis and problem tracking tool in VM/SP. You can use 
IPCS to collect and diagnose problem data for the TSAF virtual machine. 
The console listing, as described in "Using the Console Log" on page 56, 
may help you diagnose problems without using dumps. 

Because the TSAF virtual machine is not set up to process dumps, you need 
to transfer the dump file to the appropriate virtual machine. You can find 
out the userid of the virtual machine set up to process dumps by looking in 
the DMKSYS ASSEMBLE file. The SYSDUMP parameter on the SYSOPR 
macro specifies the appropriate virtual machine. 

The steps involved in using dumps to diagnose problems are: 

1. Create a TSAF IPCS map (if it does not already exist), using the IPCS 
MAP TSAF command. 

2. Create the TSAF dump, using the following CP command: 

VMDUMP SYSTEM FORMAT TSAF 

3. Process the TSAF dump, using the IPCS IPCSDUMP command. 

4. Diagnose the TSAF dump by doing the following: 

• Look at the symptom record. 
• Use the FDISPLAY subcommand of IPCS DUMPSCAN to display 

dump information. 
• Format and display trace records, using the TRACE subcommand of 

IPCS DUMPS CAN. 

5. Optionally, print the TSAF dump, using the IPCS PRTDUMP command. 

See the VM Diagnosis Guide for a complete description of using TSAF 
dumps. 

Chapter 5. Collecting TSAF Problem Diagnosis Information (Serviceability) 57 



Servicing TSAF 

Using System Trace Data to Diagnose Problems 

TSAF maintains an internal trace table within the TSAF virtual machine. 
You can use the IPCS DUMPS CAN TRACE subcommand to display the 
internal trace table entries. TSAF also writes trace entries to the system 
CPTRAP file. You can then use TRAPRED to view TSAF entries. 

The TSAF SET ETRACE command lets you enable or disable external 
tracing for the TSAF virtual machine. If you want to collect TSAF trace 
records, issue the following from the TSAF virtual machine before CPTRAP 
is started: 

SET ETRACE ON 

When you set external tracing on, certain internal TSAF trace records are 
written externally to a CPTRAP spool file. A complete description of the 
SET ETRACE command is in "Chapter 3. Running the TSAF Virtual 
Machine" on page 35. 

The CPTRAP command collects TSAF information in a reader file. The 
privilege class C, QUERY CPTRAP command gets information about the 
CPTRAP. This information helps with problem determination. For more 
information about the CP commands, CPTRAP and QUERY class C, see the 
VM/SP CP Command Reference. 

To access the CPTRAP reader file and review the entries contained in that 
file, use the TRAPRED command. For more information about CPTRAP, 
TRAPRED, and the trace table entry formats, see the VM Diagnosis Guide. 

Interactive Service Queries 

The TSAF QUERY command, issued from the TSAF virtual machine, can 
give you more information to help you diagnose problems. The TSAF 
QUERY command gives you data about the TSAF configuration when the 
TSAF virtual machine is running. 

• QUERY COLLECT displays the processor names that are currently in 
the TSAF collection. 

• QUERY ETRACE displays the current setting of the external tracing. 

• QUERY LINK displays information about the links that TSAF 
currently has. 

• QUERY RESOURCE displays the current list of global resources in the 
collection. 

See "Getting Status of the TSAF Configuration-QUERY" on page 40 for 
more specific information about this command. 

58 Transparent Services Access Facility Reference 



This part describes the VM program-to-VM program communication 
functions provided by TSAF. These functions are provided by: 

• The APPC/VM program interface, and 
• A set ofIUCV (VM-unique) functions for use with APPC/VM. 

The APPC/VM program interface depends upon lUCY formats and 
protocols. APPC/VM provides communication only among VM processors. 
lUCY provides functions that are related to APPC/VM communication 
paths and asynchronous CP interrupts. The lUCY functions are not a part 
of the APPC architecture. 

These chapters introduce communication functions that you can use to 
write APPCjVM application programs. 

• "Chapter 6. APPC/VM (VM-to-VM) Communications" on page 61 gives 
a general overview of APPC/VM communications by describing 
APPCjVM paths and states. The chapter talks about the basic 
APPC/VM functions of: 

Connecting to a resource 
Sending and receiving data 
Severing communications. 

This chapter introduces APPC/VM functions that let you send other 
kinds of data such as confirmation messages, error messages, and 
attention messages. · 

In addition, this chapter describes the lUCY functions that are 
complementary to APPCjVM but unique to VM. 

• "Chapter 7. APPCjVM and lUCY Communication Functions" on 
page 81 includes complete descriptions of both the APPCjVM 
communication functions and the related lUCY functions. Each 
function description includes the syntax, parameters, condition codes, 
exceptions, and states associated with each function. 

• "Chapter 8. APPC Verbs Mapped with APPC/VM Functions" on 
page 185 shows the mapping of the Systems Network Architecture 

Part Two: TSAF Program Communication Services 59 



Logical Unit Type 6.2 (SNA LU 6.2) APPC functions to the APPCjVM 
functions. The chapter begins with an overview of APPC 
conversations, return codes, and interrupts. It then lists the APPC/VM 
parameters that correspond with the APPC verbs. 

Note that Appendix C, "Sample TSAF User Program" on page 249 and 
Appendix D, "Sample TSAF Resource Manager Program" on page 257 
contain sample APPC/VM programs to help you understand the use of the 
various APPC/VM and IUCV functions. 

60 Transparent Services Access Facility Reference 



Overview of VM-to-VM Communications 

The Advanced Program-to-Program CommunicationNM (APPCNM) 
application program interface (API) lets TSAF support resources 
transparently among interconnected VM systems. Applications that use 
APPC/VM support can communicate with applications at remote systems 
within the same TSAF collection. APPC/VM lets users pass any amount of 
information between virtual machines within a collection of systems that 
each have the TSAF virtual machine running. 

TSAF provides functions, with the APPCVM and lUCY macros, to: 

• Establish and sever paths 
• Send and receive messages 
• Determine the presence of and describe pending messages. 

The complete APPC/VM function descriptions and associated lUCY 
function descriptions are in "Chapter 7. APPCNM and lUCY 
Communication Functions" on page 81. 

To start APPC/VM communications, you must first issue DCLBFR to 
declare a buffer for receiving APPC/VM interrupts. Then, you can 
establish a path to a program using the CONNECT function. 

The target of your CONNECT attempt may optionally receive the allocation 
data provided. The allocation data contains VM information and the 
Attach FMH5 (discussed on page 99.) If the target of your CONNECT 
wants to communicate, then the target should issue the ACCEPT function. 
When the ACCEPT completes, the target virtual machine is in RECEIVE 
state (unless an intermediate communication server has provided the 
ACCEPT). On the other hand, if the target of your CONNECT does not 
want to communicate, then it should issue the SEVER function. 

Note: The ACCEPT function is not part of the APPC architecture and is 
unique to VM. 

After your CONNECT completes, you can start sending data with the 
SENDDATA function. 

Chapter 6. APPC/yM (VM-to-VM) Communications 61 



APPC/VM Communications 

APPC/VM Paths 

An APPCjVM path is a logical connection between one or more virtual 
machines. Information flows on APPCjVM paths using IUCV and TSAF 
unique protocols. To establish an APPCjVM path between two virtual 
machines, at least one of the virtual machines must be authorized in the 
IUCV directory control statement (described in "IUCV Directory Control 
Statement for *IDENT Authorization" on page 19). 

A single virtual machine can have up to 65,536 IUCV and APPC/VM paths 
defined. Two virtual machines can have more than one path between them. 
Communication can occur over any and all paths at the same time. 

A path is created when the source virtual machine issues the CONNECT 
function and the target virtual machine issues the ACCEPT function. Once 
the path is created, communication can begin. The target virtual machine 
can prevent the path from being established by issuing the SEVER 
function. Either virtual machine can break an established path with the 
SEVER function. 

You identify a path by including its id in the PATHID parameter of the 
pertinent APPCjVM functions. 

Your Communication Partner 

APPC/VM States 

The virtual machine to which you are connected, through the APPCjVM 
path, is known as your communication partner, and you are that virtual 
machine's communication partner. 

The APPCjVM interface depends upon a half-duplex communication 
protocol. This means that only one of the communication partners can 
send data at any given time. Because of this, APPCjVM uses states to 
define which communicator can issue what functions at any given time. 
When you or your communication partner issues an APPC/VM function, 
the state of the conversation may change. If your virtual machine is 
communicating with different virtual machines through various paths, it 
may be in different states on different paths at the same time. 

The states that are possible within an APPCjVM application are: 

• RESET 

• CONNECT 

• SEND 

• RECEIVE 

• CONFIRM 

• SEVER. 

Figure 22 describes each state and the commands that you may use from 
each state. 

62 Transparent Services Access Facility Reference 



APPCNM Communications 

State When the State Occurs Functions You 
Can Issue 

RESET • Before the program sets up a path. CONNECT 

• After the program issues a SEVER or 
RTRVBFR. 

CONNECT • After the program issues CONNECT, IUCV SEVER 
but before the CONNECT completes. 

• After the program receives a IUCV SEVER 
connection pending interrupt, but RECEIVE 
before it ACCEPTs the connection. IUCV ACCEPT 

SEND • After the CONNECT completes. SENDDATA 
SENDCNF 

• After you receive notice that your RECEIVE 
communication partner issued SENDERR 
RECEIVE or SENDDAT A SENDREQ 
RECEIVE = YES. SEVER TYPE = NORMAL 

SEVER TYPE = ABEND 
• After SENDERR completes normally. SENDREQ 

RECEIVE • After the program ACCEPTs a RECEIVE 
connection. SENDERR 

SENDREQ 
• After RECEIVE completes. SEVER TYPE = ABEND 

• After any function completes, and you 
receive notice that your partner has 
issued a SEND ERR. 

• After you issue SENDCNFD, in 
response to your partner's SENDCNF 
TYPE = NORMAL. 

CONFIRM • After the program receives a SENDCNFD 
confirmation request from its SEND ERR 
communication partner. SENDREQ 

SEVER TYPE = ABEND 

SEVER • After a SEND or RECEIVE completes SEVER TYPE = NORMAL 
with an indication that your 
communication partner issued a 
SEVER. 

• After you issue SENDCNFD, in 
response to your partner's SENDCNF 
TYPE = SEVER. 

Figure 22. APPCjVM States 

Chapter 6. APPC/VM (VM-to-VM) Communications 63 



APPC/VM Communications 

APPC/VM Interrupts 

In APPC/VM, you may receive notification of pending functions through 
external interrupts. The IUCV SETCMASK and SETMASK functions let 
you enable and disable interrupts for your virtual machine. These 
functions are described in in "IUCV SETCMASK" on page 161 and "IUCV 
SETMASK" on page 165. 

Interrupts are caused by actions taken by the virtual machine on the other 
end of the local APPCNM path. Interrupts indicate locally pending and 
locally completed functions. For example, a message pending interrupt 
indicates that a message was sent to you by a virtual machine on your local 
system. This virtual machine may be the machine you are communicating 
with or an intermediate communication server virtual machine. 

When a function completes (you get a function complete or connection 
complete interrupt), you should not assume that the actual target 
application performed any action to cause your function to complete. 

The possible interrupts you may receive in VM-to-VM communication 
(APPCNM) fall into two categories. The first type of interrupt signals that 
your communication partner has invoked some function, independent of 
your actions. These interrupts are: 

• Connection pending 
• Message pending 
• SENDREQ (Request-to-Send) 
• SEVER. 

The second type of interrupt signals the completion of a function that you 
initiated. These interrupts are: 

• Connection complete 
• Function complete. 

Connection Pending External Interrupt 

You get a connection pending interrupt, IPTYPE = X/81', when a virtual 
machine issues the APPCVM CONNECT function in order to connect to 
your virtual machine. 

The connection pending external interrupt is shown in "APPCVM 
CONNECT" on page 97. 

Message Pending External Interrupt 

You get a message pending interrupt, IPTYPE = X'89', when your 
communication partner issues an APPCVM function which you should 
RECEIVE. Your communication partner issuing any of the following 
APPCVM functions can cause a message pending interrupt: 

• RECEIVE 

64 Transparent Services Access Facility Reference 



APPC/VM Communications 

• SENDCNF 
• SENDDATA 
• SENDERR. 

You only get a message pending interrupt if you are in RECEIVE state on 
the corresponding path. The message pending external interrupt is shown 
in "APPCVM SENDDATA" on page 147. 

SENDREQ (Request-to-Send) External Interrupt 

SEVER External Interrupt 

You get a SENDREQ interrupt, IPTYPE = X'88', when your communication 
partner issues the APPCVM SENDREQ function to request to send data. 

The SENDREQ external interrupt is shown in "APPCVM SENDREQ" on 
page 160. 

You get a SEVER interrupt, IPTYPE = X'83', when the virtual machine to 
which you are connected or trying to connect to issues the APPCVM 
SEVER, IUCV SEVER, or IUCV RTRVBFR function. You could also get a 
SEVER interrupt when the virtual machine to which you are connected or 
trying to connect to resets its virtual machine or logs off. 

The SEVER external interrupt is shown in "APPCVM SEVER" on page 
175. 

Connection Complete External Interrupt 

You get a connection complete interrupt, IPTYPE = X'82', when you issue 
the APPCVM CONNECT WAIT = NO function and the virtual machine on 
the other end of the local APPCNM path accepts the connection. 

The connection complete external interrupt is shown in "APPCVM 
CONNECT" on page 95. 

Function Complete External Interrupt 

You get a function complete in terru pt, IPTYPE = X'87' , when the function 
that you issued completes. The completion of any of the following 
APPCVM functions can cause a function complete interrupt: 

• RECEIVE 
• SENDCNF 
• SENDDATA 
• SENDERR. 

Chapter 6. APPCjVM (VM·to-VM) Communications 65 



APPC/VM Communications 

The function complete interrupts are shown in the following sections: 

• "APPCVM RECEIVE" on page 116 
• "APPCVM SENDCNF" on page 127 
• "APPCVM SENDDATA" on page 141 
• "APPCVM SENDERR" on page 152. 

Communication Performance 

You can reduce the overhead involved in reflecting APPCjVM external 
interrupts to the virtual machine if the buffer you declare on the DCLBFR 
function is entirely within one page. You can further reduce overhead if 
the buffer is entirely within page 0 of the virtual machine. 

CMS and GCS IUCV Support 

If you are writing applications for the CMS environment, use the CMS 
IUCV support, as described in the VM System Facilities for Programming. 
If you are writing applications for the GCS environment, use the GCS IUCV 
support, as described in the VMjSP Group Control System Command and 
Macro Reference. Using CMS and GCS IUCV support improves the 
coexistence characteristics of multiple APPCjVM and IUCV programs 
running in the same virtual machine. 

Connecting to Another Virtual Machine 

Before you can attempt to connect to a virtual machine, you should have 
issued DCLBFR to declare a buffer for CP to store external interrupt data. 

To connect to a virtual machine and establish an APPCjVM connection, 
you must issue the APPCjVM CONNECT function. You can use the 
RESID parameter on the CONNECT function to specify a resource name 
located anywhere within the TSAF collection. Any of the following could 
happen: 

• If a virtual machine on another system within the TSAF collection 
identified itself as managing the resource (RESID parameter specified 
on the IUCV *IDENT statement in its directory entry), the TSAF 
virtual machine routes the connection to that virtual machine. 

66 Transparent Services Access Facility Reference 



APPC/VM Communications 

(User Program) 
APPCVM CONNECT 

RESID=ACCOUNT (Resource Manager) 

OOI:JO 
00140 
00150 

IUCY *IDENT q 
ACCOUNT GLOBAL U -

CP Directory 

OOI:JO 
00140 
00150 

\ \ .~ 
\. i 
'. , 
';~ . ~ 

1 '~1m - - - > LSA~~ __ \ *IDENT System 
Service 

Figure 23. User Program Connecting to a Resource Manager Program 

• If the resource is on your own system, CP routes you there without the 
need for the TSAF virtual machine. 

• If no virtual machine within the collection identified itself as the 
resource manager, the connection fails. 

The WAIT = YES or WAIT = NO parameter controls whether or not the 
CONNECT is synchronous or asynchronous. 

When you issue an asynchronous CONNECT (WAIT = NO), your virtual 
machine regains control before the connection is complete. You can issue 
any APPC/VM function on any path except the path that you are trying to 
establish with the CONNECT. The only function that you can issue on the 
path you are trying to establish is IUCV SEVER. 

Accepting or Rejecting a Connection 

When you issue the CONNECT, your communication partner gets a 
connection pending interrupt. Your partner should examine the interrupt 
before accepting or rejecting the connection. The interrupt contains: 

• The resource id for which the connection is being made 

• An indication that an APPC path is being established 

• Ap indication as to whether or not synchronization functions, 
SENDCNF and SENDCNFD, can be issued on this path 

• The userid of the connecting virtual machine. 

Allocation data, which contains VM information and the FMH5, is also 
available to your communication partner (refer to "Allocate Data That 
Your Communication Partner May Receive" on page 98 for more detail): 
Your partner can issue a RECEIVE to get the data before accepting the 
connection. 

Chapter 6. APPCjVM (VM-to-VM) Communications 67 



APPC/VM Communications 

After examining all this data, your communication partner can do either of 
the following in response to your connect request: 

• ACCEPT - if it wants to communicate with your virtual machine, 
making sure to specify the path id that was on the connection pending 
interrupt. 

Note: The ACCEPT function is not part of the APPC architecture and 
is unique to VM. 

• IUCV SEVER - if it does not want to communicate with your virtual 
machine. 

Sending and Receiving Data 

(User Program) 

00260 

00280 

When your virtual machine issues the APPCVM CONNECT and your 
communication partner ACCEPTs the connection: 

• Your virtual machine is in SEND state. 
• The communication partner is in RECEIVE state. 

You can now send data, with the SENDDATA function. Remember that 
you can only send data when you are in the SEND state and receive data 
when you are in the RECEIVE state. As you send data, your 
communication partner is notified through one or more message pending 
interrupts. Your partner can then use the RECEIVE function to receive 
the data. 

1. 
APPCVM SENDDATA ... 

2. 
APPCVM RECENE ... 

(Resource Manager) 

00600 
00610 
00620 

\\ \v~·m. [SA!2/ (r---*ID~-T Sys-tem 

. ~ ServIce 

Figure 24. User Program and Resource Manager Program Sending and Receiving 

68 Transparent Services Access Facility Reference 



APPC/VM Communications 

How APPC Data Is Sent 

Message Lengths 

In APPC/VM, you send data from source to target by issuing one or more 
SENDDATA commands. The data that a single SENDDATA includes is 
referred to as a message. Each application involved in the communication 
determines the amount of data sent in each message (the message size). 
You may choose message sizes based on whatever is important to your 
application, such as the size of free storage buffers or efficient storage 
utilization. 

APPC defines a logical construct on top of the message protocol called a 
logical record. This is so applications can communicate without depending 
on each other's buffering priorities and the priorities of intermediate 
communication servers. APPCjVM requires that all data provided by the 
application be in a logical record format. A logical record consists of a 
2-byte LL (logical record length) field followed by a data field. The logical 
record length has the 15-bit length of the record, plus a high-order bit 
(APPC/VM does not examine the high-order bit). The data field can range 
from 0 to 32,765 bytes long. 

data 

Figure 25. An APPC/VM logical record 

Although the logical records are limited to 32,765 bytes, the amount of data 
that may be sent on a single SENDDATA is 231 minus 1. 

Your applications should not depend on the length of APPC/VM messages. 
The APPCjVM message is only the vehicle for transporting the logical 
records. A single logical record can span multiple APPC/VM messages, or 
a single APPC/VM message may contain multiple logical records. 

Even if you are responsible for both ends of the communication, do not set 
up your receiving application so that the length of the message determines 
the length of the logical record. Intermediate communication servers such 
as the TSAF virtual machine, because of their buffering needs, may break 
up your single SENDDATA into multiple SENDDATAs or combine 
numerous SENDDATAs. 

When a virtual machine on the local system issues the SENDDAT A, the 
lengt~ in the message pending interrupt is the actual length of the data 
sent by the SENDDATA. On the other hand, when a virtual machine on a 
remote system issues the SENDDATA, the length in the message pending 
interrupt is the length of the data sent by TSAF's SENDDATA. The length 
of TSAF's SENDDATA depends on the size of the TSAF virtual machine 
frames. 

When communicating through the TSAF virtual machine, there is not a 
one-to-one correspondence between the number of messages you send and 
the number of messages that the target virtual machine receives. For 
example, you may send a message of zero length followed by a message of 

Chapter 6. APPCjVM (VM-to-VM) Communications 69 



APPC/VM Communications 

100 bytes. However, the target virtual machine may get only one message 
with the length of 100 bytes. 

SEND-RECEIVE Scenario 

A typical SEND-RECEIVE sequence may look like the following. In this 
particular scenario, assume that the resource manager has already defined 
itself as managing the resource. 

1. You declare a buffer for VM to store external interrupt data, using 
DCLBFR. 

(User Program) 

I = =+-illev DeL 

\ 
L--8 
~ 

BFR . .. 

(Resource Managery 

j 
TSAF I 

VM2 

\ 
I *IDE 

Serv 
NT System 
ice 

Fig ure 26. Declaring an APPC/VM Buffer 

2. You connect to a resource manager, using CONNECT. 

(User Program) 

1==+-1 00200 APPCVM CONNECT 
~ RES!D=ACCOUNT 

TSAF - "- ,- -- -. -, -.- - - ,-, -.- . - . ~~~ 

VMl 

TSAF 

(Resource Manager) 

*IDENT System 
Service 

Figure 27. User Program Connecting to Resource Manager 

3. Your communication partner accepts the connection, using ACCEPT. 

70 Transparent Services Access Facility Reference 



(User Program) 

D 
\ 

it, 
i\ Connection Complete 

, Interrupt 

'\ I TSAF 

VMl 

APPC/VM Communications 

(Resource Manager) 

NCV ACCEPT -1 = 
, 

I 
i/, 

TSAF 1" 

VM2 

\ 
*IDENT System 
Service 

Figure 28. Resource Manager Accepting the Connection 

4. You send data, using SENDDATA RECEIVE=NO. 

(User Program) (Resource ManageI7 

APPCVM SENDDATA 
RECENE=NO 

'. Message Pend.ing '. '. Interrupt , , , 

\~ ~/' , I 

'~ TSAF -"- "- "- "- ._._.- -- -- ----------,;. 

VMl VM2 

;,i' 
i'i\ 

l , , 
i I \ 

I *IDE 
Sem 

NT System 
ce 

Figure 29. User Program Sending Data via SENDDATA 

When the SENDDATA RECEIVE = NO completes, 

• The data has been copied into your communication partner's virtual 
machine 

• Your virtual machine remains in SEND state. 

Your communication partner is in RECEIVE state as it receives the 
data. 

Note: When you are communicating asynchronously (specified 
WAIT=NO on the SENDDATA statement), you must be careful not to 
use any buffers that are involved in IUCV functions, until the function 
actually completes. After you issue a SENDDATA with WAIT=NO, do 
not assume that the data is moved out of the buffer until you receive a 
function complete indication. 

If your virtual machine started the connection but you do not have data 
to send, issue RECEIVE to switch the conversation state. 

5. Your communication partner receives the data, using RECEIVE. 

Chapter 6. APPC/VM (VM-to-VM) Communications 71 



APPC/VM Communications 

(User Program) 

o 
:\' Function Complete 
'\ Interrupt 

, , 

APPCVM RECENE 

, , TSAF <~:~ __ ___ ____ __ _ _ 

(Resource Managery 

, , 

, , 

r-----~--~ r--~----~ 

I *IDE!'IT System I 
Servlce VMl VM2 

Figu re 30. Resource Manager Receiving Data 

Your communication partner does not get a message until it issues 
RECEIVE. In this example, your partner did not allocate any 
RECEIVE areas for a certain path , and, instead, waited until it received 
a message pending interrupt . Then your partner issued a RECEIVE for 
the amount of data pending. 

The length of the pending message does not necessarily correspond to 
the logical record length. The length is the amount of data currently 
available to be received. Your communication partner can issue a 
RECEIVE for any length that is convenient; part of the data, all of the 
data, or more data than is currently pending. When your partner issues 
the RECEIVE for more data than is available, the RECEIVE does not 
complete until one of the following occurs: 

• You send enough additional data to fill your communication 
partner's RECEIVE area 

• You send your partner an indication of something other than data 
(for example, switch conversation states or issue a SENDERR). 

6. When you finish sending all the data that you want to, issue one of the 
following to enter RECEIVE state: 

• _ RECEIVE specified with a RECEIVE area whose length could be 
zero. 

Your communication partner receives notice of this in IPWHATRC 
in the function complete data. Note that you cannot issue 
RECEIVE if you have star ted, but not yet finished, sending a logical 
record on the path. 

• SENDDATA RECEIVE= YES 

Your communication partner receives notice of this as if you had 
issued a SEND followed by a RECEIVE. See "APPCVM 
SENDDATA" on page 134 for more information on the SENDDATA 
RECEIVE = YES. 

72 Transparent Services Access Facility Reference 



APPC/VM Communications 

(User Program) (Resource Manageq 

lEI, . APPCVM SENDDATA 
~ RECErvE=YES 
, , [] 

\ 

, , , 

Message Pending ..-iii 
Interrupt I 

I 

I 

:,~ I TSAF, i------'---------\ '-'- '- ' - '-'-'- '-'- '-'-'-'- ':-;.? TSAF I / 

VMl VM2 

\ 
* IDENT System 
Service 

Figure 31. User Program Sending and Switching States 

Interrupts That You Receive 

When your RECEIVE or SENDDAT A RECEIVE = YES completes, 

a. Your virtual machine enters RECEIVE state 
b. Your communication partner is switched to SEND state as soon as 

it receives all outstanding data. 

When you issue a RECEIVE with WAIT = NO, VM only notifies you 
when the RECEIVE is complete. See "RECEIVE Completion" on 
page 120 for more information on when a RECEIVE is complete. 

When you issue SENDDATA RECEIVE=NO WAIT=NO (Step 4 on page 
71), followed by a RECEIVE (Step 5 on page 71), you get two function 
complete interrupts. You get the first interrupt when the data you sent is 
copied out of your SEND buffer. Then, when you issue the RECEIVE (Step 
5), you get a second function complete interrupt when the communication 
partner either: 

• Sends back enough data to fill your RECEIVE area, or 
• Changes the conversation states. 

On the other hand, when you issue SENDDATA RECEIVE = YES, you get 
only one function complete interrupt. You get this interrupt when the 
communication partner either: 

• Sends back enough data to fill your RECEIVE area, or 
• Changes the conversation states. 

Chapter 6. APPC/VM (VM-to-VM) Communications 73 



- ---- ~-----------

APPC/VM Communications 

Requesting Confirmation 

When you are sending data to another virtual machine, you may want to 
confirm tha t you should continue to send. To do this, you would invoke 
SENDCNF TYPE = NORMAL. The SENDCNF is not complete until your 
partner issues one of the following functions: 

• SENDCNFD, to indicate that the sender may continue 
• SENDERR, to indicate that something is wrong 
• SEVER, to end communications. 

When you are sending data to another virtual machine, you may want to 
sever the connection. You can confirm this decision with your 
communication partner, by issuing SENDCNF TYPE = SEVER. 

To use SENDCNF and SENDCNFD, you or your communication partner 
must have specified SYNCLVL = CONFIRM on the CONNECT function. 

Note: You cannot issue SENDCNF if you have started, but not yet 
finished, sending a logical record on the path. 

Signalling an Error 

When you sense that there is an error in the communication, whether you 
are in SEND or RECEIVE state, you can issue SENDERR. This signals 
your communication partner and causes a break in the normal 
SEND/RECEIVE logical record sequence. 

If you are in RECEIVE state, and issue SENDERR: 

1. The error notice goes to your communication partner. 
2. Your virtual machine enters SEND state, when the SENDERR 

completes. 

If you are in SEND state, and issue SENDERR: 

1. The error notice goes to your communication partner. 
2. Your virtual machine remains in SEND state. 

There may be a time when your communication partner, who is in 
RECEIVE state, sends a SEND ERR before it receives your SENDERR 
notice. Because your partner is in RECEIVE state, its SEND ERR is 
invoked over yours. In this case, your' communication partner would enter 
SEND state and you would be switched to RECEIVE state. 

The SENDERR code that your partner receives (IPCODE) depends on your 
conversation state and whether or not your SEND ERR truncated a logical 
record. For example, if you are in SEND state in the middle of sending a 
logical record, and you issue SENDERR, your communication partner 
would get an IPCODE of X'0420' (PROG_ERROR_TRUNC). 

74 Transparent Services Access Facility Reference 



APPC/VM 'Communications 

Requesting to Send 

At some point, when your partner is sending data, you may want to 
interrupt. You could issue a SENDREQ, which would be presented to your 
partner as a SENDREQ interrupt. Because APPC/VM presents a 
SENDREQ as an interrupt, your partner cannot receive it. Your partner 
can even choose to ignore your SENDREQ. 

SENDREQ does not cause state changes. However, if your partner decides 
to change states (by issuing RECEIVE or SENDDATA RECEIVE = YES) 
because of your SENDREQ, then you would be able to send some data. 

Synchronous APPC/VM Support 

When you issue a synchronous APPC/VM function (WAIT = YES), your 
virtual machine remains in aWAIT state until your function completes. 
The following can cause your function to complete: 

• Your partner issues a function to complete your function 
• Your partner logs off or resets its virtual machine 
• You log off or reset your virtual machine. 

The synchronous functions are not interruptible. Even if your virtual 
machine is enabled for interrupts, you are not given control until your 
function completes. Your communication partner sees no difference if you 
issue functions synchronously (WAIT = YES) or asynchronously 
(WAIT=NO). 

Use synchronous functions with caution! If your communication 
partner does not respond, logoff, or do a system reset, your virtual machine 
cannot execute any instructions until you do a logoff or reset your virtual 
machine. Applications should take responsibility to avoid deadlock 
situations. A deadlock situation is when two virtual machines are waiting 
for an action by or a response from the other. The WAIT = NO option may 
help you handle a deadlock situation. 

To compare synchronous with asynchronous: 

• With synchronous functions, your virtual machine is in a WAIT state. 
This means you cannot issue any APPC/VM functions to any paths 
{mtil the synchronous function that you issued completes. When the 
function completes you do not get an interrupt; instead, the function 
complete data goes to your output parameter list. 

Do not use the synchronous option for a program that must serve more 
than one user at the same time, or for a program that must run in a 
multitasking environment within a virtual machine. 

• With asynchronous functions, the function mayor may not complete 
immediately. When the function does not complete immediately, your 

Chapter 6. APPC/VM (VM-to-VM) Communications 75 



APPC/VM Communications 

virtual machine still has to wait before issuing other APPC/VM 
functions on the path. However, you can issue APPCjVM functions to 
other paths while waiting for the asynchronous function to complete. 
In this case, you get an interrupt when the asynchronous function 
completes. 

On the other hand, when the function does complete immediately, you 
get the function complete data in the output parameter list. In this 
case, you would not receive a function complete interrupt. 

You can receive notice that any asynchronous function has completed by 
doing either of the following: 

• Enable your virtual machine for function complete interrupts using the 
SETMASK or SETCMASK commands. These are described in "IUCV 
SETMASK" on page 165 and "IUCV SETCMASK" on page 161. 

• Use the TESTCMPL function, described in "IUCV TESTCMPL" on 
page 177. 

How APPC/VM Differs from General IUCV 

APPC jVM makes use of the general IUCV support. APPCjVM depends on 
a half duplex protocol, while IUCV communication uses a full duplex 
protocol. In support of half duplex protocol, APPC/VM defines and 
enforces states on each path. In APPCjVM, the high order bit of the 
IPTYPE field is set for APPC/VM interrupts. 

APPCjVM functions may not be issued in CP code except by the IUCV 
support. This section outlines the differences between APPC/VM functionE 
and general IUCV functions. 

Shared APPC/VM and IUCV Functions 

The functions that are shared for both APPC/VM and IUCV are: 

• ACCEPT 

When ACCEPT is issued to establish an APPC path, 

- ACCEPT does not have a message limit parameter, whereas 
non-APPC ACCEPT does. This is because the message limit is 
always one on APPC/VM paths. 

- ACCEPT does not have a user data field. 

• DCLBFR and RTRVBFR 

76 Transparent Services Access Facility Reference 



APPC/VM Communications 

Both APPCjVM and IUCV interrupts are presented in the same buffers. 
You declare these buffers with DCLBFR and release them with 
RTRVBFR. 

• DESCRIBE 

DESCRIBE gives the following information: 

The next message pending on non-APPC paths 
The next message pending on an APPC path that is in RECEIVE 
state 

- A SENDREQ on an APPC path. 

• QUERY 

QUERY gives you the following information about a vir tual machine: 

The size of the external interrupt buffer 
- The maximum number of communication paths that can be 

established for the virtual machine. 

• SETMASK and SETCMASK 

You can use SETMASK and SETCMASK to mask on and mask off 
APPC and non-APPC interr upts. 

• TESTCMPL 

You can use TESTCMPL to determine the next APPC or non-APPC 
function that has completed. 

• TESTMSG 

TESTMSG waits for the following: 

A message pending or message complete on non-APPC paths 
- A message pending on an APPC path that is in RECEIVE state 

A SENDREQ on an APPC path 
- A function complete on an APPC path. 

APPC/VM and IUCV Functions That Work Differently 

The functions that work differently between APPCjVM and IUCV are: 

• CONNECT 

The resource id in the APPCjVM CONNECT defines the target of the 
connection. In the IUCV CONNECT, the userid defines the target. The 
location of the resource id within the APPCjVM CONNECT parameter 
list corresponds to the program name of CMS and GCS IUCV support. 

In addition, APPCjVM differences are: 

Chapter 6. APPC/VM(VM-to-VM) Communications 77 



APPC/VM Communications 

- APPCjVM CONNECT does not have a message limit parameter, 
whereas IUCV CONNECT does. This is because the message limit 
is always one on APPCjVM paths. 

- APPCjVM CONNECT does not have a user data field. 

- You cannot use APPCjVM CONNECT to connect to a CP system 
service. 

A connection extension is defined for APPCjVM CONNECT that 
lets you specify an LU name and mode name. 

• RECEIVE 

APPCjVM differences are: 

- You must provide a path id on APPCjVM RECEIVE. 

- You can issue APPCjVM RECEIVE before data arrives on a path. 

- APPCjVM RECEIVE has a WAIT = YES option. 

• SEND (for APPCjVM, SENDDATA) 

You can use both APPCjVM SENDDATA and IUCV SEND to send data 
to your communication partner. APPCjVM differences are: 

- APPCjVM SENDDATA does not have a parameter list data option. 

- APPCjVM SENDDATA does not have a priority message option. 

APPCjVM SENDDATA does not have any special message 
identifiers (a message class or a message tag). 

- APPCjVM SENDATA has a WAIT=YES option. 

- APPCjVM SENDDATA has a RECEIVE=YES option that lets you 
define an answer area. IUCV SEND has a TYPE = 2W A Y option 
that lets you define an answer area. 

The APPCjVM user responds to a SENDDATA RECEIVE=YES 
with a SENDDATA. The length of the response does not depend on 
the size of the answer area. The IUCV user, on the other hand, 
responds to a SEND TYPE=2WAY with a REPLY. The length of 
the response cannot be bigger than the size of the answer area. 

- With APPCjVM, the data sent is in logical record format. With 
IUCV, the data can be in any format. 

• SEVER 

APPCjVM differences are: 

78 Transparent Services Access Facility Reference 



APPC/VM Communications 

- APPCfVM SEVER does not have a user data field. 

There are two APPCVM SEVER types, TYPE = NORMAL and 
TYPE = ABEND. There is only one lUCY SEVER type. 

IUCV Functions Not Supported on APPC/VM Paths 

The following lUCY functions are not supported on APPCfVM paths: 

• PURGE 

• QUIESCE and RESUME 

Because the message limit on APPC/VM paths is one, an application 
can "quiesce" a path by not receiving a message pending on that path. 

• REJECT 

APPCfVM SENDERR is similar to lUCY REJECT. 

• REPLY 

APPCfVM SENDDATA can be used in place of lUCY REPLY. Refer to 
"APPC/VM and lUCY Functions That Work Differently" on page 77 for 
more information. 

APPC/VM Functions Not Supported on IUCV Paths 

The following APPCfVM functions are not supported on lUCY paths: 

• SENDCNF and SENDCNFD 

lUCY does not have any equivalent functions. 

• SENDERR 

lUCY REJECT is similar to APPCfVM SEND ERR. 

• SENDREQ 

APPCfVM SENDREQ is similar to an lUCY priority 1 WAY parameter 
data SEND, when that SEND is used as a signal and does not contain 
any'data. 

Chapter 6. APPCjVM (VM-to-VM) Communications 79 



APPC/VM Communications 

APPC/VM Local Communication vs. Remote Communication 

With APPCjVM, you can write applications the same whether or not the 
communicating virtual machines are on the same VM system or different 
VM systems. However, a program that works when communicating with a 
program on the same system may not always work when communicating 
with the identical program on a different system in the TSAF collection. 

In order to ensure that an application running within a system continues to 
run when communicatin g outside of a single system, you should follow 
these guidelines when writing applications: 

• Write your application to handle all possible completion indications for 
each verb your application issues. Do not assume that only a subset of 
completion indications can occur. 

• In general, you cannot determine when a function completes 
immediately or when a function completes asynchronously. Your 
application should be prepared for both immediate and asynchronous 
completions where appropriate. Appendix D, "Sample TSAF Resource 
Manager Program" on page 257 shows how to handle both types of 
completions in a simple manner. 

You, as the application programmer, should be familiar with the general 
APPC program interface as defined in the Systems Network Architecture 
Transaction Programmer's Reference Manual for LU Type 6.2. 

80 Transparent Services Access Facility Reference 



This chapter describes the following functions: 

• VM program-to-VM program communication functions provided by the 
APPCNM program interface 

• The set of IUCV (VM-unique) functions for use in conjunction with 
APPCNM functions. 

APPC/VM Communication Functions 

Supported Functions 

The APPC/VM communication functions are provided as parameters of the 
APPCVM macro. These functions provide program-to-program 
communication over an APPCNM path that has a unique path id and that 
exists for the exclusive use of a pair of communicating VM programs. VM 
programs at each end of the APPCNM path use APPCNM functions to 
communicate with each other. 

The APPC/VM functions are available only for communications between 
VM programs. These functions relate only to APPCNM paths. The 
APPC/VM interface provides a limited set of the SNA LU 6.2 base 
communication functions. 

The APPC/VM communication functions are: 

• CONNECT 

• RECEIVE 

• SENDCNF 

• SENDCNFD 

• SENDDATA 

• SENDERR 

• SENDREQ 

• SEVER. 

Chapter 7. APPC/VM and IUCV Communication Functions 81 



Communication Functions 

IUCV Functions Associated with APPC/VM 

Supported Functions 

The VM-unique lUCY functions are provided as parameters of the lUCY 
macro. These functions provide a program-to-CP (not program-to-program) 
interface to do the following types of functions: 

• Establish a VM path 

• Handle asynchronous APPC/VM interrupts that occur on a VM path 

• Terminate a VM path. 

The functions relate to both APPCjVM and lUCY paths. The lUCY 
functions are not defined by the SNA LU 6.2 (APPC architecture) verb 
interface, but instead are a necessary complement for APPC programs 
executing in a VM processor. The asynchronous capability of APPCjVM is 
not based on APPC architecture, but, instead, is a VM-unique 
asynchronous implementation. 

The lUCY functions are: 

• ACCEPT 
• DCLBFR 
• DESCRIBE 
• QUERY 
• RTRVBFR 
• SETCMASK 
• SETMASK 
• TESTCMPL 
• TESTMSG. 

APPC/VM and IUCV Functions Reference List 

The APPCjVM and lUCY functions are listed alphabetically in this chapter 
by function name, without regard to the macro on which the parameter 
(function) name is found. The functions defined in this chapter are: 

ACCEPT (IUCV) 
accepts the connection from a virtual machine. 

CONNECT (APPCVM) 
establishes and reserves a path to communicate with another 
program. 

82 Transparent Services Access Facility Reference 



Communication Functions 

DCLBFR (IUCV) 
declares a buffer to store external interrupt data for APPC/VM . 
and lUCY functions. 

DESCRIBE (lUCy) 
gets an indication and description of a pending message without 
receiving it. 

QUERY (IUCV) 
gets information about the external interrupt buffer and to find 
out how many paths can be established. 

RECEIVE (APPC/yM) 
receives data and information sent to your program. 

RTRVBFR (lUCY) 
ends APPC/VM and lUCY communications by releasing 
(retrieving) the buffer defined by DCLBFR. 

SENDCNF (APPC/yM) 
sends a confirmation request. 

SENDCNFD (APPC/VM) 
sends a response to a confirmation request. 

SENDDATA(APPC/yM) 
sends data to another program. 

SENDERR (APPC/YM) 
sends notice that an error has been detected. 

SENDREQ (APPC/yM) 
requests permission to send data. 

SETCMASK (IUCV) 
enables or disables lUCY control external interrupts. 

SETMASK (lUCV) 
enables or disables general lUCY external interrupts. 

SEVER (APPC/VM) 
ends communication with another program. 

TESTCMPL (lUCV) 
determines if any messages or functions have been completed. 

TESTMSG (IUCV) 
tests if any messages or functions are pending or complete. 

For the non-APPC IUCV versions of these functions, unrelated to 
APPC/VM, and the other functions that lUCY supports, see VM System 
Facilities for Programming. 

Chapter 7. APJ;>CjVM and lUCY Communication Functions 83 



Communication Functions 

Appendix C, "Sample TSAF User Program" on page 249 and 
Appendix D, "Sample TSAF Resource Manager PlOgram" on page 257 
illustrate the various APPC/VM functions and their parameters. 

Some General Information about the APPCVM and IUCV Macros 

In most cases, the APPCVM and lUCY macros move a fixed amount of data 
as specified with each parameter definition. Unlike the lUCY macro, all 
lengths in the APPCVM macro are fullwords. 

Both the APPCVM and lUCY macros are in the DMKSP MACLIB, along 
with the IPARML DSECT. 

Completing the Parameter List (Parameter Addressability) 

The APPCVM and lUCY macros use labels defined in IP ARML DSECT to 
complete the parameter list. You need to provide a USING for the IP ARML 
DSECT when you invoke the macro. 

To reference fields in the APPCVM and lUCY parameter lists, always use 
the name defined for that field in the IPARML DSECT, rather than using 
the displacement within IPARML DSECT. The parameter lists (IPARML 
DSECT mappings) are shown for each function. These are provided so you 
can visualize the IPARML DSECT. However, these parameter list pictures 
are not meant to define the interface. 

Setting Defaults for Optional Parameters 

If you do not specify a parameter marked as "Optional" when you invoke 
the APPCVM macro, the macro assumes that you have stored a value in the 
parameter list before invoking the APPCVM macro. 

Note: All fields and flag bits in the parameter list that are not defined for a 
particular function should be set to zero. This helps ensure that if these 
fields are defined in the future, applications will continue to work. 

Expanding the Macro with MF = L 

With the MF = L parameter on the APPC/yM and lUCY functions, you 
have a choice of the following: 

• Formatting the parameter list (specifying MF = L) 

• Formatting and executing or just executing the parameter list (not 
specifying MF = L). 

If you do specify MF = L, then the macro generates the instructions 
necessary to format the parameter list, using the parameter values provided 
on the macro. However, the macro does not generate any instructions to 

84 Transparent Services Access Facility Reference 



Communication Functions 

execute the parameter list. In other words, parameter list formatting is 
provided, and parameter list execution is not. 

You can use the lUCY or APPCVM macro to issue an APPCjVM function 
with a parameter list that is already formatted for the function. You can 
also use the CMS lUCY macros or the GCS lUCY macros to issue an 
APPC/VM function with a parameter list that is already formatted for the 
function. Do not use the APPCVM macro to issue non-APPC functions. 

Note: The CMS lUCY macros are described in the VM System Facilities for 
Programming, and the GCS lUCY macros are described in the VM/SP 
Group Control System Command and Macro Reference. 

If you do not specify MF = L on the APPCVM macro, the macro generates 
the instructions necessary to: 

1. Format the parameter list as specified by parameter values on the 
macro. 

2. Execute the APPC/VM function. 

When you do not specify MF = L, RO is altered. 

When you want to invoke the APPCjVM SEND functions (SENDCNF, 
SENDCNFD, SENDDATA, SENDERR, SENDREQ) with the lUCY or 
IUCVCOM macro, specify the SEND function on the lUCY or IUCVCOM 
macro. 

Declaring the Buffer for Interrupts 

At the start of your program, you declare a buffer, with the DCLBFR 
function, to hold the APPC/VM and lUCY interrupt information for the 
established path. You can specify two types of buffers: 

• Control Buffer - DCLBFR CONTROL = YES 
• Application Buffer - DCLBFR CONTROL = NO. 

The control buffer and control paths are for CMS and GCS use, and not for 
general application use. CMS and GCS declare a control buffer during 
their initialization process. CMS and GCS do not let applications that use 
the control buffer establish paths. See the VM System Facilities for 
Programming and the VM/SP Group Control System Command and Macro 
Reference for more specific information. 

However, for applications not running with CMS or GCS, you can use both 
buffers. If you declare a control buffer with the DCLBFR function, then 
you can establish control paths with CONNECT CONTROL = YES. When 
you specify CONTROL = YES, only you view the path as a control path. 
Your communication partner views it as an application path. 

When an interrupt for a control path is presented to your virtual machine, 
i.t goes to the control buffer. When an interrupt for an application path 

Chapter 7. APPCfVM and lUCY Communication Functions 85 



Communication Functions 

comes in, it goes to the application buffer, and the path id is stored in the 
control buffer. The rest of the control buffer contains zeroes. 

Enabling or Disabling for Interrupts 

How you communicate with another virtual machine depends on how you 
have your virtual machine set up for external interrupts. You can use the 
SETCMASK and SETMASK functions to control what types of APPC/VM 
and IUCV interrupts your virtual machine can receive. SETCMASK and 
SETMASK affect both APPC/VM and IUCV interrupts. 

Condition Codes and Return Codes That You May Receive 

The condition codes and return codes that you may receive for the various 
APPC/VM functions are listed under each function description. In 
addition, Appendix A, "APPC/VM and IUCV Condition Codes and Return 
Codes" on page 225 summarizes the codes in a chart that lists every 
APPC/VM function. Return codes are stored in the IPRCODE field, which 
is a field defined in IPARML DSECT when CC = 1. 

At some point, when running an APPC/VM application, you may receive a 
return code that is not documented under the APPC/VM functions. In this 
case, the return code is most likely issued from an IUCV function. See the 
VM System Facilities for Programming for details on these return codes. 

86 Transparent Services Access Facility Reference 



IUCV ACCEPT 

ACCEPT Function (lUCY} 

Function Code: X'OA' 

This function accepts a connection from another virtual machine or from 
your own virtual machine. You should use ACCEPT only after your virtual 
machine gets a connection pending external interrupt. 

The VM System Facilities for Programming describes the lUCY version of 
this function unrelated to APPCjVM. Parameters other than those listed 
here are available, but have no meaning on APPCjVM paths and .are 
ignored. The ACCEPT function is not part of the APPC architecture and is 
unique to VM. 

The lUCY ACCEPT syntax is: 

label IUCV ACCEPT, Required 
Required 
Optional 
Optional 

PRMLIST = label/(reg), 
MF=L, 
PATHID = label/(reg) 

PRMLIST = label/(reg) 
lets you specify the address of the lUCY parameter list. The address 
must be a guest real address (real to the virtual machine), and the 
parameter list must be on a doubleword boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

expands the lUCY macro to generate the instructions necessary to 
initialize the lUCY parameter list as specified, but not to invoke the 
lUCY function. 

PATHID = label/(reg) 
lets you identify the path on which to accept the connection. 

label 

reg 

is the relocatable label of a halfword that contains the path id. 

is the register number that contains the path id in the low-order 
halfword. 

Chapter 7. APPC/VM and IUCV Communication Functions 87 



ACCEPT Function (lUCY) 

ACCEPT Parameter List 

o 

8 

10 

18 

20 

o 1 

IPPATHID 

2 

The lUCV ACCEPT parameter list has the following input format when 
accepting a connection on an APPC path: 

3 4 5 6 7 

I /////////////////////////////////////////////// 
///////////////////////////////////////////////////////////// 

///////////////////////////////////////////////////////////// 

///////////////////////////////////////////////////////////// 

///////////////////////////////////////////////////////////// 

Figure 32. IUCV ACCEPT Input Parameter List 

Th e supplied parameters are: 

lPPATHID 
is the path id on which to accept the connection. 

Error Codes and Exceptions 

Condition Codes 

CC=o CC=1 CC=2 CC=3 

Not Possible X X Not Possible 

CC=1 
An error occurred. The output parameter list is the same as the input 
shown in "ACCEPT Parameter List," except the return code is stored in 
lPRCODE. 

You may get either of these return codes (listed here in decimal): 

01 You specified a path id that is not yet established. 

20 Connection cannot be completed-originator has severed the path. 

CC=2 

Note: You must still issue lUCV SEVER to clean up your side of 
the path. 

Accept is complete. The output parameter list is the same as the input, 
shown in "ACCEPT Parameter List." 

88 Transparent Services Access Facility Reference 



ACCEPT Function (lUCY) 

ACCEPT Program Exceptions 

State Changes 

ACCEPT Completion 

The program exceptions for ACCEPT are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation A noncontrol external interrupt buffer has 
not been declared with the DCLBFR 
function, or the invoker is not in 
supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

Your virtual machine path is in: 

• CONNECT state-after you receive the connection pending interrupt. 
You may only issue ACCEPT, APPCVM RECEIVE, or IUCV SEVER 
from CONNECT state. 

• RECEIVE state-after the ACCEPT completes successfully. 

Because you can issue ACCEPT only when there is a connection pending, 
the ACCEPT function completes immediately. If you have not yet received 
the allocation data pending for this path, the data is purged when ACCEPT 
completes. "Allocate Data That Your Communication Partner May 
Receive" on page 98 describes allocation data in more detail. 

What Happens to Your Communication Partner 

When you issue the ACCEPT function, the virtual machine that issued the 
CONNECT (your communication partner) gets a connection complete 
indication. This ACCEPT function can be is~ued by an intermediate 
communication server that is not the target of the CONNECT. In this case, 
accepting a connection does not necessarily mean that the APPCjVM path 
has been completed between two communicating programs. See "APPCVM 
CONNECT" on page 90 for more details on the connection complete 
indication. 

Chapter 7. APPC/VM and IUCV Communication Functions 89 



CONNECT Function (APPC/VM) 

APPCVM CONNECT 

Function Code: X'OB' 

This function establishes a communications path with a program residing in 
another virtual machine or your own virtual machine. 

The APPCVM CONNECT syntax is: 

label APPCVM CONNECT, 
PRMLIST = label/(reg), 
MF=L, 
CONTROL = YES/NO, 
RESID = label/(reg), 
SYNCLVL = NONE/CONFIRM, 
WAIT = YES/NO, 
BUFFER = label/(reg), 
BUFLEN = label/(reg), 
ALTID = label/(reg) 

PRMLIST = label/(reg) 

Required 
Required 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 
Restricted 

lets you specify the address of the APPCjVM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a doubleword boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

expands the APPCVM macro to generate the instructions necessary to 
initialize the APPCjVM parameter list as specified, but not to invoke 
the APPCjVM function. 

CONTROL = YES/NO 
lets you specify whether or not a control path is being established and 
if all interrupt information for your half of the path is be placed in the 
control buffer for control paths. 

• CONTROL = YES sends APPCjVM interrupt information on this 
path to the control buffer. 

• CONTROL = NO sends APPCjVM interrupt information on this 
path to the application buffer. 

90 Transparent Services Access Facility Reference 



CONNECT Function (APPC/VM) 

RESID = label/(reg) 
lets you specify a one-to-eight character resource name. Your virtual 
machine is connected to the resource manager that manages the 
resource specified by IPRESID. If the resource id you specify is less 
than 8 bytes, left justify the value in this field and pad the right with 
blanks. 

label 

reg 

is the relocatable label of the storage area that contains the 
resource id. 

is the register number that contains the address of the storage 
area. This storage area contains the resource id. 

Note: The location of the resource id in the parameter list 
corresponds to the program name required by eMS and GCS lUCY 
support. 

SYNCL VL = NONE/CONFIRM 
lets you specify the synchronization level for the path being 
established. 

• SYNCLVL=NONE does not let either communication partner 
issue SENDCNF or SENDCNFD on the path that this connection 
is establishing. 

• SYNCLVL = CONFIRM lets either communication partner issue 
SENDCNF and SENDCNFD on the path that this connection is 
establishing. 

WAIT = YES/NO 
lets you specify when control is returned to your virtual machine. 

• WAIT = YES returns control to your virtual machine after the 
CONNECT completes. 

• WAIT = NO returns control to your virtual machine as soon as the 
CONNECT request is initiated. When the CONNECT completes, 
you are notified via an interrupt. 

BUFFER = label/(reg) 
lets you specify the address of the area that contains the connection 
parameter list extension. 

label 

reg 

is the relocatable label of the storage area that contains the 
connection parameter list extension. 

is the register number that contains the address of the storage 
area. This storage area contains the connection parameter list 
extension. 

Chapter 7. APPCNM and lUCY Communication Functions 91 



CONNECT Function (APPC/VM) 

The connection extension supplied by the virtual machine is currently 
16 bytes long: 

1. The first 8 bytes, which must be all zeroes to signify LU_NAME 
(OWN). 

2. The second 8 bytes represent the mode name, which also must be 
all zeroes. 

Note: Information on LU_NAME and mode name is in the Systems 
Network Architecture Transaction Programmer's Reference Manual for 
LU Type 6.2. 

BUFLEN = label/(reg) 
lets you specify the 4·byte length of the area that has the connection 
parameter list extension. Valid lengths are 0 and 16. If you specify 0, 
APPC/VM ignores the address that you specified with BUFFER = and 
defaults the data in the connection extension. 

label 

reg 

is the relocatable label of the storage area that contains the 
length. 

is the register number that contains the length of the storage 
area. 

ALTID = label/(reg) 
is the 8·byte userid of the virtual machine for which the 
communication server is establishing the path. If the userid that you 
specify is less than 8 bytes, left justify the value in this field and pad 
the right with blanks. 

label 

reg 

is the relocatable label of the storage area that contains the 
userid. 

is the register number that contains the address of the storage 
area. This storage area contains the userid. 

Note: The ALTID parameter is for communication servers, like the TSAF 
virtual machine. You must have directory authorization to use it (OPTION 
COMSRV). When you specify ALTID, APPCNM sets the IPCOMSRV flag. 
For more details, see "Considerations for Communication Servers" on 
page 100. 

92 Transparent Services Access Facility Reference 



CONNECT Function (APPC/VM) 

CONNECT Parameter List 

o 

8 

10 

18 

20 

o 1 2 

The APPCjVM CONNECT parameter list has the following input format 
when establishing APPC paths: 

3 4 5 6 7 

///////// IIPFLAGSll /////////////////////// IIPFLAGS21 ////// 

IPVMID 

IPRESID 

//////////////////////////// IPBFADR2 

IPBFLN2F /////////////////////////////// 

Figure 33. APPCVM CONNECT Input Parameter List 

The supplied parameters are: 

lPFLAGSl 
contains the input flags: 

lPAPPC (X'08')-APPC protocol is used on the path. 
lPCNTRL (X'04')-A control path is being established. 

lPFLAGS2 
contains the input flags: 

lPW AlT (X'80')-A synchronous return was specified. 
lPLVLCF (X'40')-The synchronization functions, SENDCNF and 

SENDCNFD, are permitted. 
lPCOMSRV (X'20')-This connection is being made for another user. 

lPVMID 

See "Considerations for Communication Servers" on 
page 100. 

is the userid that this connection is being made for. It is only valid 
when lPCOMSRV is set. See "Considerations for Communication 
Servers" on page 100. 

Only communication servers can supply this parameter. 

lPRESID 
is the name of the resource for this connection. 

Note.; The location of the resource id in the parameter list 
corresponds to the program name required by CMS and GCS lUCV 
support. 

lPBFADR2 
is the address of the connection parameter list extension. 

Chapter 7. APPC/VM and lUCY Communication Functions 93 



CONNECT Function (APPC/VM) 

IPBFLN2F 
is the length of the connection parameter list extension. 

Error Codes and Exceptions 

Condition Codes 

CC=o 
When you specify WAIT = YES, CC = 0 is not possible. CC = 0 means 
that the CONNECT started successfully, but has not completed. The 
output parameter list field, IPPATHID, identifies the path being started 
by this connection. 

When the function does complete and your virtual machine is properly 
enabled for interrupts (see "IUCV SETCMASK" on page 161), you get a 
connection complete or SEVER interrupt. Both the connection complete 
and the SEVER interrupt have the same format as the output 
CONNECT parameter list (see CC = 2). 

CC=1 
An error occurred before the CONNECT was initiated. The output 
parameter list is the same as the input shown in "CONNECT Parameter 
List" on page 93, except the return code is stored in IPRCODE. 

You may get any of these return codes (listed here in decimal): 

11 CP could not find the resource, or the resource is not available for 
connections, and no TSAF virtual machine is currently operating 
on your system. 

12 Your communication partner has not invoked the DCLBFR 
function. 

13 Your virtual machine already has the maximum number of 
connections. 

14 Your communication partner already has the maximum number of 
connections. 

15 Your virtual machine is not authorized to connect to the resource 

28 You specified CONTROL = YES, but no control buffer exists. 

29 You are not authorized to act for another user. 

94 Transparent Services Access Facility Reference 



o 
8 

10 

18 

20 

o 1 2 

CONNECT Function (APPC/VM) 

39 You specified an invalid connection parameter list extension 
length. 

40 You specified an invalid LU_NAME. 

41 You specified an invalid mode name. 

CC=2 
Connect completed (see section "Connection Completion" on page 96). 
When you specify WAIT = NO, CC = 2 is not possible. The output 
parameter list when CC = 2 is: 

3 4 5 6 7 

IPPATHID IIPFLAGSII IPTYPE I IPCODE IIPWHATRCI/////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 34. APPCVM CONNECT Output Parameter List (Connection Complete Interrupt) 

The parameters are: 

IPPATHID 
contains the path id on which the connection was completed or 
severed. 

IPFLAGS1 
contains the flag: 

IPCNTRL (X'04')-A connection complete is on a control path. 
This flag is not set if IPTYPE = X'83'. 

IPTYPE 
if your partner or an intermediate communication server accepted 
the connection, this field contains the connection complete 
interrupt code (IPTYPCCA, X'82'). If your partner or an 
intermediate communication server rejected the connection with 
the SEVER function, IPTYPE is the SEVER interrupt code 
(IPTYPSV A, X'83'). 

IPCODE 
contains the SEVER code from the partner's SEVER. IPCODE is 
only valid when IPTYPE =X'83'. See "APPC/VM Error/SEVER 
Codes" on page 183 for a description of the error/SEVER codes. 

IPWHATRC 
contains the what-received code. IPWHATRC is only valid when 
IPTYPE = X'83'. 

Chapter 7. APPCjVM and IUCV Communication Functions 95 



CONNECT Function (APPC/VM) 

IPSABEND (X'09')-Your partner issued SEVER TYPE = ABEND. 

CONNECT Program Exceptions 

State Changes 

The program exceptions for CONNECT are: 

Type Description 

Addressing The parameter list address or connection 
extension address is outside of the virtual 
machine. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. This exception also occurs if the 
connection extension address is fetch 
protected. 

Specification The parameter list is not on a doubleword 
boundary. 

Your virtual machine path is in one of the following states: 

• CONNECT state-for either of the following situations: 

After you issue the CONNECT, but before your communication 
partner or an intermediate communication server ACCEPTS the 
connection (CC = 0). 

If your communication partner or an intermediate communication 
server issues a SEVER when you issue the CONNECT, you get a 
SEVER interrupt and no path is established. You remain in 
CONNECT state, and you must issue IUCV SEVER to delete your 
side of the path. 

• SEND state-after you receive the connection complete indication. 

Connection Completion 

Connection complete data can be in different forms, depending on whether 
you specify WAIT = YES or WAIT = NO on the CONNECT. 

If you specify WAIT = YES on the CONNECT, and your communication 
partner or an intermediate communication server: 

• ACCEPTs the connection, you get a connection complete indication. 

96 Transparent Services Access Facility Reference 



CONNECT Function (APPC/VM) 

• SEVERs the connection, you get a SEVER indication in the connection 
complete data. 

The connection complete data goes to the parameter list that you specified 
on the APPCVM CONNECT macro. The format of the connection complete 
interrupt data is the same as described under CC = 2 in Figure 34 on 
page 95. 

On the other hand, if you specify WAIT = NO on the CONNECT, and your 
communication partner or an intermediate communication server: 

• ACCEPTs the connection, you get a connection complete interrupt. 

• SEVERs the connection, you get a SEVER interrupt. 

When you specify WAIT = NO on the APPCVM CONNECT and your virtual 
machine is enabled for the proper external interrupts, the connection 
complete data goes to the buffer that you specified with the DCLBFR 
function. When you specify CONTROL = YES on the CONNECT function, 
the interrupt data goes to the control buffer. When you specify 
CONTROL = NO on the CONNECT function, the interrupt data goes to the 
application buffer. The format of the connection complete interrupt data is 
the same as described under CC = 2 in Figure 34 on page 95. All 
subsequent interrupts for the established path are presented in the same 
buffer as the connection complete interrupt. 

Note: The connection complete interrupt indicates only that your 
CONNECT has completed and that you are now in SEND state on the path. 
A connection complete interrupt does not necessarily indicate that the 
actual target of your CONNECT has ACCEPTed the connection, or even 
that the target of the CONNECT has been invoked. 

What Happens to Your Communication Partner 

o 
8 

10 

18 

20 

o 1 2 

When you issue CONNECT, if your communication partner is enabled for 
connection pending interrupts, your partner gets a connection pending 
external interrupt. The connection pending external interrupt data always 
goes to the APPCjVM interrupt buffer that your communication partner 
defined with DCLBFR, and never into the control buffer. The connection 
pending external interrupt format is the following: 

3 4 5 6 7 

IPPATHID I 111111 I IPTYPE I 1111111111111 IIPFLAGS2 JIIIIII 
IPVMID 

IPRESID 

IIIIIIIIIIIIIIIIIIIII!IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11111111 
IPBFLN2F I 1111111111111111111111111111111 

Figure 35. Connection Pending External Interrupt 

Chapter 7. APPCfVM and IUCV Communication Functions 97 



CONNECT Function (APPC/VM) 

The parameters are: 

IPPATHID 
contains the path id on which a connection is pending. 

IPTYPE 
contains the interrupt type for a connection pending (X'Sl'). 

IPFLAGS2 
contains the flag: 

IPL VLCF (X' 40'}--SENDCNF and SENDCNFD functions are 
permitted on this path. 

IPVMID 
contains the userid of the virtual machine that wants to connect. If 
the connecting virtual machine has an alternate userid specified, 
this field contains the alternate userid. The field may be zero, 
which indicates that the identity of the connecting virtual machine 
is unknown. 

IPRESID 
contains the name of the resource that this connection is for. 

IPBFLN2F 
contains the length of the allocate data that is pending. 

Allocate Data That Your Communication Partner May Receive 

After your partner gets a connection pending interrupt, your partner may 
issue a RECEIVE. Your partner would receive the following 
variable-length allocate data, consisting of two parts: 

1. A VM-architected area (variable). 

o 1 2 3 4 5 6 7 

o 
8 

10 

18 

VI I V2 I IIIIIIIIIIIIIIII 
V3 / 

V4 

V5 

Figure 36. A VM-Architected Area 

The fields are the following: 

VI is the total length of the VM architected area, including the 
length fields. This is now 32 bytes, but may change in the future. 

98 Transparent Services Access Facility Reference 



CONNECT Function (APPC/VM) 

V2 is the length of the fixed length fields area. This is now 24 bytes, 
but may change in the future. 

V3 is zero, indicating LV_NAME (OWN). 

V 4 is the mode name. 

2. The Attach FMH5. CP specifies the values shown below when 
creating an FMH5. FMH5 is a Function Management Header Type 5. 
LV type 6.2 uses this header to carry a request for a conversation to be 
established between two transaction programs. This header identifies 
the transaction program that is to be put into execution and connected 
to the receiving half-session. Treat the FMH5 as a variable length 
construct. See the Systems Network Architecture Format and Protocol 
Reference Manual: Architecture Logic for LU Type 6.2 for more 
information on the FMH5. 

o 
4 

8 

6+j 

o I 

Al 

A4 

A7 

A8 

2 3 

A2 A3 

AS A6 I111111 

A9 

(where j is the length specified by AS). 

Figure 37. Attach FMH5 Record for APPC Conversations 

The fields are the following: 

Al is the total length of the Attach FMH5, including the length fields. 
This is 18 bytes, but may change in the future. 

A2 is the type code, B'OOOOOI01' (FMH5). 

A3 is the command code, X'02FF' (Attach). 

A4 is a flag byte. 

• Bit O- is the security indicator. CP sets it to 0 to indicate the 
userid and password are not verified. 

• Bits 1-3- are reserved and set to O. 
• Bit 4--is on when a PIP (Program Initialization Parameter) is 

present. CP sets this field to 0 to indicate no PIP is present. 
• Bits 5-7-are reserved and set to O. 

A5 is the length of the fixed length parameters field, which is 
currently 3 bytes. 

A6 is the conversation type. X'DO' indicates a basic conversation. 

Chapter 7. APPC/VM and IUCV Communication Functions 99 



.CONNECT Function (APPC/VM) 

A 7 is a flag byte. 

• Bits O-I-is the synchronization level. When you specified 
SYNCLVL = NONE, this field is 00. When you specified 
SYNCLVL = CONFIRM, this field is Ol. 

• Bit 2-is on for reconnect support. CP sets this field to 0 to 
indicate there is no reconnect support. 

• Bits 3-7- are reserved and set to o. 

A8 is the length of the transaction program name, which is currently 
8 bytes. 

A9 is the transaction program name. CP fills in the resource id that 
you specified. 

All reserved fields are set to zero. 

For example, if you specify the following: 

• An LU_NAME and MODE NAME of zeroes 
• A RESOURCE ID of "PAYROLL" 
• SYNCLVL = CONFIRM 

you would get a VM area and FMH5 that looks like the following: 

x'0020001800000000' 
x'OOOOOOOOOOOOOOOO' 
x'OOOOOOOOOOOOOOOO' 
x'OOOOOOOOOOOOOOOO' 
x'120502FF0003D00001' 
x'08D7C1E8D9D6D3D340' 

Your partner mayor may not receive the data. If your partner wants to 
receive the data, your partner must do so before issuing ACCEPT. CP 
purges the data that it created on CONNECT after your partner issues 
ACCEPT. 

Considerations for Communication Servers 

Communication servers must be authorized in the CP directory with 
OPTION COMSRV. When a communication server is establishing a 
connection for another virtual machine, the communication server may 
specify the userid (IPVMID) of the virtual machine for which the 
connection is being made. 

The communication server must turn on the IPCOMSRV flag before issuing 
the CONNECT for another user. Note that IPCOMSRV set to "on" tells CP 
the following: 

• The communication server is authorized to connect for other users. 

100 Transparent Services Access Facility Reference 



CONNECT Function (APPC/VM) 

• CP should pass the userid supplied by the communication server in 
IPVMID on to the communication partner. The userid is that which 
initiated the CONNECT. 

Note that the userid in the connection pending interrupt should always be 
the userid of the virtual machine that issued the original CONNECT. Also, 
when you do specify IPCOMSRV, you can only connect to globally defined 
resources. 

Chapter 7. APPCjVM and IUCV Communication Functions 101 



· DCLBFR Function (IUCV) 

IUCV DCLBFR 

Function Code: X'OC' 

Use DCLBFR before you use any other APPCjVM or lUCY functions 
(except QUERY) to set the address of a buffer that APPCjVM and lUCY 
can use to store exter~al interrupt data. After you receive an external 
interrupt, this buffer contains information about the message, reply, or 
control function that caused the interrupt. 

To improve performance, declare a buffer entirely within one page. To 
further reduce overhead, declare the buffer entirely within page 0 of the 
virtual machine. 

When you issue DCLBFR, the virtual machine is enabled for all types of 
APPCjVM and lUCY external interrupts. Use the SETMASK and the 
SETCMASK functions to change these initial settings. 

Note: The lUCY interrupt mask in control register 0 is not affected by 
DCLBFR. See "IUCV SETMASK" on page 165 for more details. 

The VM System Facilities for Programming describes the lUCY version of 
this function unrelated to APPCjVM. 

The lUCY DCLBFR syntax is: 

label IUCV DCLBFR, Required 
Required 
Optional 
Optional 
Optional 

PRMLIST = label/(reg), 
BUFFER = label/(reg), 
CONTROL = YES/NO, 
MF=L 

PRMLIST = label/(reg) 
lets you specify the address of the APPCjVM ·parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a double word boundary. 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

102 Transparent Services Access Facility Reference 



DCLBFR Function (IUCV) 

BUFFER = label/(reg) 
identifies the external interrupt buffer. When an external interrupt is 
sent to the virtual machine, APPC/VM stores information about the 
message or the control interrupt in this buffer. 

label 

reg 

is the relocatable label of the storage area that is used as the 
external interrupt buffer. 

is the register number that contains the address of the storage 
area that is used as the external interrupt buffer. 

CONTROL = YES/NO 
lets you declare an application buffer or a control buffer. 

• CONTROL = YES declares a control buffer. 
• CONTROL = NO declares an application buffer. 

MF=L 
expands the IUCV macro to generate the instructions necessary to 
initialize the IUCV parameter list as specified, but not to invoke the 
IUCV function. 

DCLBFR Parameter List 

o 
8 

10 

18 

20 

o 

The IUCV DCLBFR parameter list has the following input format: 

1 2 3 4 5 6 7 

1111/IIIIIIIIIIPFLAGSlllllllllllllllllllllllllllllllll11111111 

11I111111111111111111111111111 I IPBFADRI 

11111111111111111111111111111111111111111111111111111111111111 

1111/1111111111111111111111111111111111111/1111111111111111I11 

11111111111111111111111111111111111111111111111111111111111111 

Figure 38. IUCV DCLBFR Input Parameter List 

The supplied parameters are: 

IPFLAGSI 
contains the flag: 

IPCNTRL (X'04'}-A control buffer is being established. 

IPBFADRI 
identifies the area in which IUCV stores information about an 
APPCjVM or IUCV external interrupt. 

Chapter 7. APPC/VM and IUCV Communication Functions 103 



DCLBFR Function (IUCV) 

Error Codes and Exceptions 

Condition Codes 

I CC~2 I :C~3 

CC=O 
DCLBFR completed with no errors. 

CC=l 
An error occurred before the DCLBFR was initiated. The output 
parameter list is the same as the input shown in "DCLBFR Parameter 
List" on page 103, except the return code is stored in IPRCODE. You 
may get the following return code (listed here in decimal): 

19 depends on how you specified CONTROL =: 

CC=3 

• If you specified CONTROL = YES, a control buffer has already 
been defined. 

• If you specified CONTROL = NO, an application buffer has 
already been defined. 

IUCV found errors while reading the directory. The output parameter 
list is the same as the input shown in "DCLBFR Parameter List" on 
page 103. 

DCLBFR Program Exceptions 

The program exceptions for DCLBFR are: 

Type Description 

Addressing The parameter list address or specified 
buffer address is outside the virtual 
machine. 

Operation The invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

104 Transparent Services Access Facility Reference 



State Changes 

DCLBFR Completion 

DCLBFR Function {lUCVl 

DCLBFR does not act on anyone path and does not cause any state 
changes. 

The DCLBFR function completes immediately. 

What Happens to Your Communication Partner 

Not applicable. 

Chapter 7. APPC/VM and IUCV Communication Functions 105 



DESCRIBE Function (IUCV) 

IUCV DESCRIBE 

Function Code: X'03' 

This function can do the following: 

• Get a description of a pending IUCV or APPCjVM message without 
receiving it. 

• Get a SENDREQ indication. 

DESCRIBE returns information on a given message only once. The next 
time you invoke DESCRIBE, you get a description of the next 
"unDESCRIBEd" message. You can use the RECEIVE function to receive 
messages after you have performed a DESCRIBE on the message. However, 
it is not necessary to DESCRIBE a message before receiving it. 

The VM System Facilities for Programming describes the IUCV version of 
this function unrelated to APPCjVM. Parameters other than those listed 
here are available, but have no meaning on APPCjVM paths and are 
ignored. 

The IUCV DESCRIBE syntax is: 

label IUCV DESCRIBE, 
PRMLIST = label/(reg) 

PRMLIST = label/(reg) 

Required 
Required 

lets you specify the address of the IUCV parameter list. The address 
must be a guest real address (real to the virtual machine), and the 
parameter list must be on a doubleword boundary. 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

106 Transparent Services Access Facility Reference 



DESCRIBE Function (IUCV) 

Some Notes about DESCRIBE 

1. For APPC messages, the message is only described if the corresponding 
path is in RECEIVE state. APPC/VM presents SENDREQ indications 
no matter what the state is of the corresponding path. 

2. DESCRIBE does not describe messages that are pending on control 
paths. 

3. If there is a function outstanding on a path, APPC/VM may report the 
message on the completion of that function, and not on DESCRIBE. 

4. CP considers a message described if you do one of the following: 

• Completely or partially receive a message 
• Get a message pending interrupt 
• Get a SENDREQ interrupt. 

DESCRIBE Parameter List 

There are no input parameters for DESCRIBE. 

Error Codes and Exceptions 

Condition Codes 

o 
8 

10 

18 

20 

o 1 2 

CC=o CC=l CC=2 CC=3 

X Not Possible X Not Possible 

CC=O 
DESCRIBE completed with no errors. The output parameter list when 
an APPC/VM message is being described follows. See the VM System 
Facilities for Programming for non-APPC messages. 

3 4 5 6 7 

IPPATHID I ////// I IPTYPE I /////////////////////////////// 
////////////////////////////////////////////////////////////// 

IPBFLNIF I /////////////////////////////// 
////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 39. IUCV DESCRIBE Output Parameter List 

The parameters are: 

Chapter 7. APPCjVM and IUCV Communication Functions 107 



DESCRIBE Function (IUCV) 

IPPATHID 

IPTYPE 

IPBFLNIF 

CC=2 

contains the path id on which the message is pending. 

contains the interrupt type for a message pending 
(IPTYPMP A, X'89') or SENDREQ (IPTYPSRA, X'88'). 

contains the length of the message that is pending. This 
length has no relationship to the length of the APPC data 
stream being sent. It is only the length of the data that has 
arrived and is ready to receive. If the interrupt type is not 
X'89', this field has no meaning. 

IUCV did not find any APPCjVM or IUCV "unDESCRIBEd" messages. 

DESCRIBE Program Exceptions 

The program exceptions for DESCRIBE are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation A normal interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

State Changes 

No state changes occur. 

DESCRIBE Completion 

The DESCRIBE function completes immediately with CC = 0 or CC = 2. 

What Happens to Your Communication Partner 

Not applicable. 

108 Transparent Services Access Facility Reference 



IUCV QUERY 

QUERY Function (IUCV) 

Function Code: X'OO' 

This function gets the following type of information about a virtual 
machine: 

• The size of the external interrupt buffer (returned in register 0) 
• The maximum number of communication paths that can be established 

for your virtual machine (returned in register 1). 

You can issue QUERY before DECLARE BUFFER to determine the buffer 
size, and allocate the buffer before declaring it to APPCNM. 

The VM System Facilities for Programming describes the IUCV version of 
this function unrelated to APPCjVM. 

The IUCV QUERY syntax is: 

label IUCV QUERY Required 

QUERY Parameter List 

There are no input parameters for QUERY. 

Error Codes and Exceptions 

Condition Codes 

I CC-l I :C-' 

CC=Q 
QUERY completed with no errors. 

CC=2 
The user is not found in the CP directory. 

CC=3 
CP found errors when reading the CP user directory. 

Chapter 7. APPC/VM and IUCV Communication Functions 109 



QUERY Function (IUCV) 

QUERY Program Exceptions 

The program exceptions for QUERY are: 

Type Description 

Operation The invoker is not in supervisor state. 

State Changes 

No state changes occur. 

QUERY Completion 

The QUERY function completes immediately. 

What Happens to Your Communication Partner 

Not applicable. 

110 Transparent Services Access Facility Reference 



RECEIVE Function (APPC/VM) 

APPCVM RECEIVE 

Function Code: X'05' 

This function receives any of the following: 

• Data sent to your virtual machine from another virtual machine 

• Data sent to your virtual machine from your own virtual machine 

• Allocation data, before accepting a connection. 

When you issue RECEIVE and no message is currently pending on the 
path, the buffer that you specified is allocated for future messages on the 
path. See "RECEIVE Completion" on page 120 for more details. 

The APPCVM RECEIVE syntax is: 

label APPCVM RECEIVE, Required 
Required 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 

PRMLIST = label/(reg), 
MF=L, 
PATHID = label/(reg), 
BUFLIST = YES/NO, 
BUFFER = label/(reg), 
BUFLEN = label/(reg) , 
WAIT = YES/NO 

PRMLIST = label/(reg) 
lets you specify the address of the APPC/VM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a double word boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

expands the APPCVM macro to generate the instructions necessary to 
initialize the APPCNM parameter list as specified, but not to invoke 
the APPC/VM function. 

PATHID = label/(reg) 
lets you identify the path on which to receive data. 

Chapter 7. APPC/VM and IUCV Communication Functions 111 



RECEIVE Function (APPC/VM) 

label 

reg 

is the relocatable label of a halfword that contains the path id. 

is the register number that contains the path id in the low-order 
halfword. 

BUFLIST = YES/NO 
specifies the type of buffer address that the BUFFER parameter refers 
to. 

• BUFLIST = YES refers to a list of addresses. 
• BUFLIST = NO refers to a single address. 

For more information, see "Specifying Buffers on RECEIVE" on 
page 113. 

BUFFER = label/(reg) 
specifies the address of the area(s) into which CP places the data 
received. For more information, see "Specifying Buffers on 
RECEIVE" on page 113. 

label 

reg 

is the relocatable label in storage where CP places the data 
received. 

is the register number that contains the address of the storage 
area. This storage area is where CP places the message. 

BUFLEN = label/(reg) 
specifies the length of the area(s) into which APPCNM places th e 
message. For more information, see "Specifying Buffers on 
RECEIVE" on page 113. 

label 
is the relocatable label of the full word that contains the length. 

reg 
is the register number that contains the length. 

WAIT = YES/NO 
lets you specify when control is returned to your virtual machine. 

• WAIT = YES returns control to your virtual machine after the 
receive completes. 

• WAIT = NO returns control to your virtual machine when you 
initiate the RECEIVE. If the RECEIVE does not complete 
immediately, when it does complete, you are notified with a 
function complete interrupt. 

112 Transparent Services Access Facility Reference 



RECEIVE Function (APPC/VM) 

Specifying Buffers on RECEIVE 

For APPCVM RECEIVE, you can specify the buffers with a single address 
and a single length (BUFLIST = NO) or with a list of addresses and lengths 
(BUFLIST = YES). 

When you specify the buffer with a single address and a single length, 
BUFFER specifies the address, and BUFLEN specifies the length. When 
you specify the buffer with a list of addresses and lengths, BUFFER 
specifies the address of the list and BUFLEN specifies the sum of the 
lengths of the buffers in the list. 

When specifying address lists, note the following: 

1. When you use an address list (BUFLIST = YES), you must follow these 
rules: 

• The list must begin on a doubleword boundary. 

• Each list entry must be two fullwords: 

- The first full word is the address of that portion of the list. 
- The second full word is the length of that portion of the list. 

2. The addresses and lengths in the address list are updated during 
APPC/VM processing. Do not alter them during processing or assume 
that they are unchanged when APPC/VM processing is complete. 

3. APPC/VM assumes that there is another entry in the list until the sum 
of the lengths of the entries processed is equal to the total length 
specified by BUFLEN. 

RECEIVE Parameter List 

o 
8 

10 

18 

20 

o 
The APPCVM RECEIVE parameter list "has the following input format: 

1 2 3 4 5 6 7 

IPPATHID IIPFLAGSII 11111111(11111111111111 IIPFLAGS21 111111 

1111111111111111111111111111 IPBFADRI 

I PBFLNlF 1111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111 

11111111111111111111111111111111111111111111111111111111111111 

Figure 40. APPCVM RECEIVE Input Parameter List 

The supplied parameters are: 

Chapter 7. APPCjVM and IUCV Communication Functions 113 



RECEIVE Function (APPC/VM) 

IPPATHID 
contains the path id over which you receive data. 

IPFLAGSI 
contains the flags: 

IPBUFLST (X' 40'}-A buffer list was specified. 
IP APPC (X'08'}-An APPC function was issued. 

IPFLAGS2 
contains the input flag: 

IPW AIT (X'80'}-A synchronous return is desired. 

IPBFADRI 
contains the address of the area where APPCjVM stores the 
received data or the address of the list. See "Specifying Buffers on 
RECEIVE" on page 113. 

IPBFLNIF 
contains receive area length that IPBF ADRI specifies. See 
"Specifying Buffers on RECEIVE" on page 113. 

Error Codes and Exceptions 

Condition Codes 

cc=o 
RECEIVE started successfully, but has not yet completed. If your 
virtual machine is enabled for function complete interrupts, one is sent 
to your virtual machine when RECEIVE completes. The interrupt 
format is the same as the RECEIVE output parameter list (see CC = 2,3). 
When you get the function complete interrupt, check the IPAUDIT field 
for error information. 

When control is returned to your virtual machine with CC = 0, the 
parameter list may have been altered. 

Note: When you specify WAIT = YES, CC = 0 is not possible. 

CC=l 
An error occurred before the RECEIVE was initiated. The parameter 
list format is the same as the input shown in "RECEIVE Parameter 
List" on page 113, except that the return code is stored in IPRCODE. 
Other fields in the parameter list may also have been altered. 

114 Transparent Services Access Facility Reference 



RECEIVE Function (APPC/VM) 

You may get the following return codes (listed here in decimal): 

01 You specified a path id that is not yet established. 

03 A function is pending on this path. 

06 A storage protection exception occurred on your partner's SEND 
buffer. 

07 An addressing exception occurred on your partner's SEND buffer. 

10 The buffer length is negative. 

22 Your communication partner's SEND list is invalid. 

23 A length specified in the RECEIVE list is negative. 

24 The total length specified is not the total of the lengths in your 
list. 

26 The buffer list address is not on a doubleword boundary. 

30 You specified an APPCNM function on a non-APPC path. 

32 RECEIVE is an invalid function from CONNECT state. (See 
"State Changes" on page 119.) 

35 RECEIVE is an invalid function from CONFIRM state. 

36 RECEIVE is an invalid function from SEVER state. 

43 There is an invalid logical record length in your communication 
partner's data stream. 

44 Before issuing RECEIVE, you started, but did not finish, sending a 
logical record. 

45 Your communication partner started, but did not finish, sending a 
logical record and tried to change to RECEIVE state. 

Return codes 6, 7, 22, 23, 24, 43 and 45 can only occur if a message is 
pending for the specified path at the time you issued the RECEIVE. If 
no message is pending for the specified path at the time you issued the 
RECEIVE, CP reports those error conditions in the corresponding audit 
flags when the RECEIVE completes. For return codes 22, 23, 24, 43 and 
45, some data may have been received; however, the results are 
unpredictable. 

Chapter 7. APPC/VM and IUCV Communication Functions 115 



RECEIVE Function (APPC/VM) 

o 

8 

10 

18 

20 

o 1 2 

CC=2 or 
CC=3 

Function is complete (also see "RECEIVE Completion" on page 120). 
When CC = 2, the function completed with no errors. When CC = 3, there 
is error information in IPAUDIT. When you specify WAIT = NO, CC = 3 
is not possible. The output parameter list when CC = 2 or 3 is: 

3 4 5 6 7 

IPPATHIDl ////// IPTYPE J IPCODE jIPWHATRCIIPSENDOP 
I 

I PAUDIT ////////////1//////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

IPBFLN2F I /////////////////////////////// 
Figure 41. APPCVM RECEIVE Output Parameter List (Function Complete Interrupt) 

The parameters are: 

IPPATHID 
contains the path id on which the function is complete. 

IPTYPE 
contains the function complete interrupt code (IPTYPFCA, 
X'87'). 

IPCODE 
contains the error/SEVER code from the partner's SENDERR or 
SEVER. IPCODE is only valid when IPWHATRC=IPERROR or 
IPSABEND. See "APPC/VM Error/SEVER Codes" on page 183 
for a description of the error/SEVER codes. 

IPWHATRC 
contains the what-received code: 

IPDATA (Ol)--Only data was received, with no other 
indications. 

IPSEND (02)--Your partner has switched the conversation 
around and you are now in SEND state. 

IPERROR (03)--Your partner issued SENDERR. 
IPCNFRM (04)--Your partner is requesting confirmation. 
IPCNFSEV (05)--Your partner is requesting confirmation that it 

can issue a SEVER. 
IPS NORM (08)--Your partner issued a SEVER 

TYPE = NORMAL. 
IPSABEND (09)--Your partner issued a SEVER TYPE = ABEND. 
IPALLOCD (11)--The allocate data was received. 

IPSENDOP 
contains the SEND option code: 

116 Transparent Services Access Facility Reference 



RECEIVE Function (APPC/VM) 

IPRECV (lO)--The RECEIVE is being completed. 

IPAUDIT 
contains the following flags (only when CC = 3): 

IPAUDITI 
IP ADANPX (X'lO')- A protection exception occurred on your 

RECEIVE buffer (IPBF ADRl). 
IPADANAX (X'08')-An addressing exception occurred on your 

RECEIVE buffer (IPBF ADRl). 
IPAUDIT2 

IPADRPPX (X'20'}-A protection exception occurred on your 
communication partner's SEND data area. 

IPADRPAX (X'lO')-An addressing exception occurred on your 
communication partner's SEND data area. 

IPADRLST (X'04')--Your communication partner had an 
invalid SEND list. 

IPAUDIT3 
IPADALEN (X' 40'}-A bad length is in your RECEIVE buffer 

list. 
IPADATOT (X'lO'}-Your RECEIVE buffer length is invalid. 
IPADTINV (X'08')-Your communication partner's data stream 

has an invalid logical record length. 
IPADTTRN (X'02'}-Y our communication partner started, but 

did not finish, sending a logical record and tried to 
change to RECEIVE state. 

CP reflects the exception to you, if a message is pending for the 
specified path when you issue the RECEIVE, and one of the 
following is present: 

• Protection exception on the RECEIVE buffer 
• Addressing exception on the RECEIVE buffer. 

CP reflects the error in IPAUDITI when the RECEIVE 
completes, if there is no message pending for the specified path 
when you issue the RECEIVE, and one of the following is 
present: 

• Protection exception on the RECEIVE buffer 
• Addressing exception on the RECEIVE buffer. 

IPBFLN2F 
contains one of the following depending on the value of 
IPWHATRC: 

• If IPWHATRC is equal to IPDATA, then IPBFLN2F contains 
the number of bytes that were sent but did not fit into the 
defined RECEIVE area. This length is the byte length of 
your partner's SENDDATA minus the length that you 
already received. 

Chapter 7. APPC/VM and IUCV Communication Functions 117 



RECEIVE Function (APPC/VM) 

For example, your partner issues a SENDDAT A with a data 
length of 100, and you issue a RECEIVE with a buffer length 
of 40. In this case, IPBFLN2F would contain 60. 

• If IPWHATRC is not equal to IPDATA, then IPBFLN2F 
contains the number of bytes left in the defined RECEIVE 
area. 

Note: Nondata indications such as IPSEND do not appear in 
IPWHATRC until all data sent with or before the nondata function 
notice has been received. For example, IPWHATRC would be IPDATA 
if the following occurred: 

1. Your communication partner issued SENDDAT A RECEIVE = YES 
with a data length of 200 bytes, and 

2. You did a RECEIVE for 199 bytes. 

When you issue a RECEIVE for the 200th byte, then IPWHATRC would 
become IPSEND. 

Data may have been received for any IPWHATRC value. 

RECEIVE Program Exceptions 

The program exceptions for RECEIVE are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. An addressing 
exception also occurs for any of the 
following: 

• An invalid buffer address in the 
parameter list 

• An invalid buffer address in the buffer 
list 

• An invalid buffer list address. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. A protection exception also occurs 
for any of the following: 

• Buffer address in the parameter list is 
protected 

• Buffer address in the buffer list is 
protected 

• Buffer list address is protected. 

118 Transparent Services Access Facility Reference 



State Changes 

IPWHATRC 
Value 

IPDATA 

IPSEND 

IPERROR 

IPCNFRM 

State 

RECEIVE Function (APPCNM) 

Type Description 

Specification The parameter list is not on a double word 
boundary. 

A state check occurs (CC = 1 and IPRCODE = 32, 35 or 36) if your virtual 
machine is not in SEND or RECEIVE state on this path. If you are the 
target of a CONNECT on the path, no state check occurs on RECEIVE 
while you are in CONNECT state, unless you have received all of the 
allocate data. If you issue a RECEIVE from CONNECT state after you 
have received all of the allocate data, you get a state check 
(IPRCODE = 32). 

A state check also occurs (IPRCODE = 44) if you start, but do not finish, 
sending a logical record on this path. 

No state change occurs when CC = 1. State changes can occur when either 
of the following occurs: 

• The function completes, that is, control is returned to the virtual 
machine (CC = 2 or 3) 

• The function complete interrupt is accepted by your virtual machine or 
you use TESTCMPL to discover that the function was completed. 

The state change depends on the IPWHATRC value: 

Cause 

RECEIVE Depends on your state when you invoke RECEIVE: 
or 
CONNECT • If you are not in CONNECT state, you enter 

RECEIVE state. The RECEIVE completed without 
you receiving any non-data indications. Your 
communication partner sent data to complete the 
RECEIVE, or the receive length was zero. 

• If you are in CONNECT state, you remain in 
CONNECT state. An IPDATA indication means that 
there is still some allocation data left for you to 
receive. 

SEND Your communication partner issued RECEIVE or 
SENDDATA RECEIVE = YES to complete the RECEIVE. 

RECEIVE Your communication partner issued a SEND ERR to 
complete the RECEIVE. \ 

CONFIRM Your communication partner issued a SENDCNF 
TYPE = NORMAL to complete the RECEIVE. 

Chapter 7. APPC/VM and IUCV Communication Functions 119 



RECEIVE Function (APPC/VM) 

, 

IPWHATRC State Cause 
Value 

IPCNFSEV CONFIRM Your communication partner issued a SENDCNF 
TYPE = SEVER to complete the RECEIVE. 

IPSNORM SEVER Your communication partner issued a SEVER 
TYPE = NORMAL to complete the RECEIVE. 

IPSABEND SEVER Your communication partner issued a SEVER 
TYPE = ABEND to complete the RECEIVE. 

IPALLOCD CONNECT You completed the RECEIVE of the allocate data. 

RECEIVE Completion 

You cannot issue another SEND!, RECEIVE, or SEVER TYPE = NORMAL 
on the same path, until the outstanding RECEIVE is complete. The 
RECEIVE is complete when your communication partner does one of the 
following: 

• Sends a message or messages to your virtual machine to completely fill 
the receive area specified by the RECEIVE 

• Issues RECEIVE, SENDCNF, SENDDAT A RECEIVE = YES, 
SENDERR, or SEVER. 

When the receive area has zero length and you are in: 

• RECEIVE state, the RECEIVE completes immediately 
• SEND state, the RECEIVE completes when your communication 

partner or an intermediate communication server receives notice that it 
is in SEND state. 

When the RECEIVE is for the allocate data created by the CONNECT, the 
RECEIVE always completes immediately. See "Allocate Data That Your 
Communication Partner May Receive" on page 98 for information on the 
type of data you may receive. If your communication partner severs, the 
RECEIVE completes immediately with no indication of the SEVER in the 
output parameter list. However, you will get a SEVER interrupt. 

The RECEIVE completes immediately, when a message is pending with one 
of the following: 

• No data 
• Data greater than the size of the RECEIVE area that you specified 
• Data equal to the size of the RECEIVE area that you specified. 

SEND generally refers to all of the APPC/VM "SEND" functions: SENDCNF, 
SENDCNFD, SENDDATA, SENDERR, and SENDREQ. 

120 Transparent Services Access Facility Reference 



RECEIVE Function (APPC/VM} 

What Happens to Your Communication Partner 

Your communication partner may get a function complete or a message 
pending interrupt, or your partner may not receive any indications. 

Your partner gets a function complete interrupt, for either of the following: 

• Your partner has a SENDDATA RECEIVE=NO or SENDDATA 
RECEIVE = YES with a zero answer length outstanding on its half of 
the path, and you have received all the data sent. 

• Your partner has a SENDERR outstanding on its half of the path. 

If your communication partner has a SENDCNF or SENDDATA 
RECEIVE = YES outstanding on its half of the path, your partner does not 
get any notification of your actions on that path until you respond. 

Your partner gets a message pending interrupt, if your partner has the 
following qualities: 

• Has no function outstanding on its half of the path 
• Is in RECEIVE state on its half of the path 
• Is enabled for message pending interrupts. 

See "Message Pending External Interrupt" on page 147. 

Chapter 7. APPC/VM and IUCV Communication Functions 121 



RTRVBFR Function (lUCY) 

lUCY RTRYBFR 

Function Code: X'02' 

RTRVBFR does the following: 

• Stops all lUCY and APPC/VM outstanding messages on non-control 
paths 

• Severs all lUCY and APPCjVM non-control communication paths 

• Ends lUCY and APPCjVM communications, except for lUCY and 
APPCjVM communications on control paths. 

RTRVBFR has no effect on control paths. Control paths are paths that 
your virtual machine establishes by issuing the CONTROL = YES parameter 
on CONNECT. 

The VM System Facilities for Programming describes the lUCY version of 
this function unrelated to APPC/VM. 

The lUCY RTRVBFR syntax is: 

label IUCV RTRVBFR Required 

RTRVBFR Parameter List 

The RTRVBFR function does not use a parameter list. 

Error Codes and Exceptions 

Condition Codes 

CC=o CC=l CC=2 CC=3 

X Not Possible Not Possible Not Possible 

CC=o 
Normal Completion. 

122 Transparent Services Access Facility Reference 



RTRVBFR Function (lUCY) 

RTRVBFR Program Exceptions 

State Changes 

RTRVBFR Completion 

The program exception for RTRVBFR is: 

Type Description 

Operation An application interrupt buffer has not 
been declared with the DCLBFR function, 
or the invoker is not in supervisor state. 

RTRVBFR does not act on anyone path; therefore no state checks occur. 
When RTRVBFR is done executing, you are in RESET state on all paths, 
except your control paths. Your control paths experience no state change. 
Reset state means that the path no longer exists. 

The RTRVBFR function completes immediately. 

What Happens to Your Communication Partner 

When you invoke RTRVBFR, all your non-control APPC/VM and IUCV 
communication paths are severed. APPC/VM informs your communication 
partners as if you issued a SEVER TYPE = ABEND with SEVER code 
X'06l0'. 

Chapter 7. APPC/VM and IUCV Communication Functions 123 



SENDCNF Function (APPC/VM) 

APPCVM SENDCNF 

Function Code: X'04' 

Use this function to send a confirmation request from your virtual machine 
to another virtual machine or to your own virtual machine. 

The APPCVM SENDCNF syntax is: 

label APPCVM SENDCNF, Required 
PRMLIST = label/(reg), Required 
TYPE = NORMAL/SEVER, Required 
MF = L, Optional 
PATHID = label/(reg), Optional 
WAIT = YES/NO Optional 

PRMLIST = label/(reg) 
lets you specify the address of the APPCjVM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a doubleword boundary. 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

TYPE = NORMALfflEVER 
specifies what type of confirmation is being requested. 

• TYPE = NORMAL requests a normal confirmation. 
• TYPE = SEVER requests a confirmation that you may issue a 

SEVER. 

MF=L 
expands the APPCVM macro to generate the instructions necessary to 
initialize the APPCjVM parameter list as specified, but not to invoke 
the APPCjVM function. 

PAT HID = label/(reg) 
lets you identify the path on which to send the confirmation request. 

label 
is the relocatable label of a halfword that contains the path id. 

124 Transparent Services Access Facility Reference 



reg 

SENDCNF Function (APPC/VM) 

is the register number that contains the path id in the low-order 
halfword. 

WAIT = YES/NO 
lets you specify when control is returned to your virtual machine. 

• WAIT = YES returns control to your virtual machine when the 
SENDCNF is complete. 

• WAIT = NO returns control to your virtual machine as soon as the 
SENDCNF request is initiated. When the SENDCNF completes, 
you are notified with a function complete interrupt. 

SENDCNF Parameter List 

The APPCVM SENDCNF parameter list has the following input format: 

o 1 2 3 4 5 6 7 

o IPPATHID IIPFLAGSll /////////////////////// IIPFLAGS21IPSENDOP 

8 //////////////!/////////////////////////////////////////////// 

10 ////////////////////////////////////////////////////////////// 

18 ////////////////////////////////////////////////////////////// 

20 ////////!///////////////////////////////////////////////////// 

Figure 42. APPCVM SENDCNF Input Parameter List 

The supplied parameters are: 

IPPATHID 
contains the path id on which the confirmation request is sent. 

IPFLAGSI 
contains the input flag: 

IPAPPCSN (X'02')-An APPC SEND function was issued. 

IPFLAGS2 
contains the input flag: 

IPW AIT (X'80')-A synchronous return was requested. 

IPSENDOP 
contains one of the following SEND option codes: 

IPCNFRM (04)-You are requesting confirmation from your 
communication partner. 

IPCNFSEV (05)-You are requesting confirmation from your 
communication partner that you can issue a SEVER. 

Chapter 7. APPCjVM and IUCV Communication Functions 125 



SENDCNF Function (APPC/VM) 

Error Codes and Exceptions 

Condition Codes 

CC=O 
SENDCNF started successfully, but has not yet completed. When it 
completes, CP sends you a function complete interrupt. The function 
complete interrupt buffer has the same format as the SENDCNF output 
parameter list (see CC = 2). 

Note: When WAIT = YES, CC = 0 is not possible. 

CC=1 
An error occurred. The output parameter list is the same as the input 
shown in "SENDCNF Parameter List" on page 125, except that the 
return code is stored in IPRCODE. 

You may get the following return codes (listed here in decimal): 

01 You specified a path id that is not yet established. 

03 A function is pending on this path. 

30 You specified an APPCjVM function on a non·APPC path. 

32 SENDCNF is an invalid func tion from CONNECT state. 

34 SENDCNF is an invalid function from RECEIVE state. 

35 SENDCNF is an invalid function from CONFIRM state. 

36 SENDCNF is an invalid func t ion from SEVER state. 

37 The connection was established with SYNCLVL = NONE. 

38 The IPSENDOP field contains an invalid value. 

44 Before invoking SENDCNF, you started, but did not finish, sending 
a logical record. 

CC=2 
SENDCNF completed (see section "SENDCNF Completion" on 
page 129), with no errors. When WAIT = NO, CC = 2 is not possible. 
The output parameter list when CC = 2 is: 

126 Transparent Services Access Facility Reference 



o 
8 

10 

18 

20 

o 

SENDCNF Function (APPC/VM) 

1 2 3 4 5 6 7 

IPPATHID I ////// I IPTYPE I IPCODE I I PWHATRC I IPSENDOP 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 43. APPCVM SENDCNF Output Parameter List (Function Complete Interrupt) 

The parameters are: 

IPPATHID 
contains the path id on which the function is complete. 

IPTYPE 
contains the function complete interrupt code (IPTYPFCA, X'87'). 

IPCODE 
contains the error/SEVER code from the partner's SENDERR or 
SEVER. IPCODE is only valid when IPWHATRC=IPERROR or 
IPSABEND. See "APPC/VM Error/SEVER Codes" on page 183 
for a description of the error/SEVER codes. 

IPWHATRC 
contains the what-received code: 

IPCOMP (OO)-Your partner's SENDCNFD completed the 
function. 

IPERROR (03)-Your partner issued SEND ERR. 
IPSABEND (09)-Your partner issued a SEVER TYPE = ABEND. 

IPSENDOP 

SENDCNF Program Exceptions 

contains one of the following SEND option codes: 

IPCNFRM (04)-The SENDCNF TYPE = NORMAL is being 
completed. 

IPCNFSEV (05)-The SENDCNF TYPE = SEVER is being 
completed. 

The program exceptions for SENDCNF are: 

Chapter 7. APPC/VM and IUCV Communication Functions 127 



SENDCNF Function (APPC/VM) 

State Changes 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

A state check occurs (lPRCODE = 32, 34, 35 or 36) if your virtual machine'is 
not in SEND state on this path. A state check also occurs (IPRCODE = 44) 
if you started, but did not finish, sending a logical record on this path. 

No state change occurs when CC= 1. State changes can occur when the 
function completes, and one of the following occurs: 

You regain control (CC=2). 

You accept the function complete interrupt (CC=O), or you use 
lESTCMPL to discover that the function was completed. 

The state change depends on the IPWHA TRC value: 

IPWHATRC State Cause 
Va lue 

IPCOMP SEND The SENDCNF TYPE = NORMAL was 
completed by the communication 
partner issuing a SENDCNFD. 

IPCOMP SEVER The SENDCNF TYPE = SEVER was 
completed by the communication 
partner issuing a SENDCNFD, 

IPERROR RECEIVE The SENDCNF was completed by the 
communication partner issuing a 
SENDERR. 

IPSABEND SEVER The SENDCNF was completed by the 
communication partner issuing a 
SEVER TYPE = ABEND. 

Note: When you issue SENDCNF, you have no way of telling if the 
SENDERR or SEVER indication received is in response to your 
confirmation request or if it was issued before your SENDCNF. 

128 Transparent Services Access Facility Reference 



SENDCNF Completion 

SENDCNF Function (APPC/VM) 

After issuing a SENDCNF, you cannot issue another SEND2 , RECEIVE, or 
SEVER TYPE = NORMAL on that path until the outstanding SENDCNF is 
complete. SENDCNF is complete when the communication partner 
responds with a SENDCNFD, SENDERR or SEVER. 

What Happens to Your Communication Partner 

Your communication partner's outstanding function may complete, or your 
partner may get a message pending interrupt. 

If your partner has a RECEIVE, SENDDAT A RECEIVE = YES, or 
SENDERR outstanding on its half of the path, your partner's outstanding 
function is completed. 

Your partner gets a message pending interrupt, if your partner has the 
following qualities: 

• Has no function outstanding on its half of the path 
• Is in RECEIVE state on its half of the path 
• Is enabled for message pending interrupts. 

See "Message Pending External Interrupt" on page 147. 

2 SEND generally refers to all of the APPC/VM "SEND" functions: SENDCNF, 
SENDCNFD, SENDDATA, SEND ERR, and SENDREQ. 

Chapter 7. APPC/VM and IUCV Communication Functions 129 



SENDCNFD Function (APPCNM) 

APPCVM SENDCNFD 

Function Code: X'04' 

This function sends a confirmation response from your virtual machine to 
another virtual machine or to your own virtual machine. Invoke this as a 
positive response to your partner sending a SENDCNF. (For a negative 
response, invoke SENDERR.) 

The APPCVM SENDCNFD syntax is: 

label APPCVM SENDCNFD, 
PRMLIST = label/(reg), 
MF=L, 
PATHID = label/(reg) 

PRMLIST = label/(reg) 

Required 
Required 
Optional 
Optional 

lets you specify the address of the APPC/VM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a double word boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is register number that contains the address of the parameter 
list. 

expands the APPCjVM to generate the instructions necessary to 
initialize the APPCjVM parameter list as specified, but not to invoke 
the APPCjVM function. 

PATHID = label/(reg) 
lets you identify the path on which to send the confirmation. 

label 

reg 

is the relocatable label of a halfword that contains the path id. 

is the register number that contains the path id in the low-order 
halfword. 

130 Transparent Services Access Facility Reference 



SENDCNFD Function (APPCNM) 

SENDCNFD Parameter List 

The APPCVM SENDCNFD parameter list has the following input format: 

o 1 2 3 4 5 6 7 

o IPPATHID JIPFLAGSIJ /////////////////////////////////II PSENDOP 

8 ////1/ // // / / / /////////////////// / ////////////// / ////// / ////// / 

10 /1////////////////////////////////////////////////////1/////// 

18 ///////1/////////////////////////1//////////////////// //////// 

20 ///////11//////////////////////////////// / / / ////////// // / ///// 

Figure 44. APPCVM SENDCNFD Input Parameter List 

The supplied parameters are: 

IPPATHID 
contains the path id on which the confirmation is sent. 

IPFLAGSI 
contains the input flag: 

IP APPCSN (X'02')--The APPC SEND function was issued. 

IPSENDOP 
contains the SEND option code: 

IPCNFRMD (06)--Your communication partner is sending 
confirmation as requested. 

Error Codes and Exceptions 

Condition Codes 

CC=O CC=l CC=2 CC=3 

Not Possible X X Not Possible 

SENDCNFD always completes immediately. 

CC=l 
An error occurred. The parameter list format is the same as the input 
shown in "SENDCNFD Parameter List," except that the return code is 
stored in IPRCODE. 

You may get the following return codes (listed here in decimal): 

Chapter 7. APPCjVM and IUCV Communication Functions 131 



SENDCNFD Function (APPC/VM) 

o 1 2 

01 You specified a path id that is not yet established. 

30 You specified an APPC/VM function on a non-APPC path. 

32 SENDCNFD is an invalid function from CONNECT state. 

33 SENDCNFD is an invalid function from SEND state. 

34 SENDCNFD is an invalid function from RECEIVE state. 

36 SENDCNFD is an invalid function from SEVER state. 

38 The IPSENDOP field contains an invalid value. 

CC=2 
SENDCNFD completed (see "SENDCNFD Completion" on page 133). 
The output parameter list when CC = 2 is: 

3 4 5 6 7 

o IPPATHID I ////// J IPTYPE I //////////////JIPWHATRCIIPSENDOP 

8 ////////////////////////////////////////////////////////////// 

10 ////////////////////////////////////////////////////////////// 

18 ////////////////////////////////////////////////////////////// 

20 ////////////////////////////////////////////////////////////// 

Figure 45. APPCVM SENDCNFD Output Parameter List 

The parameters are: 

IPPATHID 
contains the path id on which the function is complete. 

IPTYPE 
contains the function complete interrupt code (IPTYPFCA, 
X'87'). 

IPWHATRC 
contains the what-received code. 

IPCOMP (OO)-SENDCNFD completed in response to a 
SENDCNF TYPE = NORMAL. 

IPSNORM (08)-SENDCNFD completed in response to a 
SENDCNF TYPE = SEVER. 

IPSENDOP 
contains the SEND option code: 

IPCNFRMD (06)-The SENDCNFD is being completed. 

132 Transparent Services Access Facility Reference 



SENDCNFD Function (APPC/VM) 

SENDCNFD Program Exceptions 

State Changes 

The program exceptions for SENDCNFD are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

A state check will occur (IPRCODE = 32, 33, 34, or 36) if the virtual machine 
is not in CONFIRM state on this path. 

No state change occurs when CC = 1. State changes do occur when the 
function completes; that is, when control is returned to the virtual machine 
(CC = 2). The state change depends on the value of IPWHATRC: 

IPWHATRC State Cause 
Value 

IPCOMP RECEIVE SENDCNFD was in response to 
SENDCNF TYPE = NORMAL. 

IPSNORM SEVER SENDCNFD was in response to 
SENDCNF TYPE = SEVER. 

SENDCNFD Completion 

Because the SENDCNFD function completes immediately, you can issue 
another function on the same path as soon as your virtual machine regains 
control. 

What Happens to Your Communication Partner 

You can only issue SENDCNFD in response to a SENDCNF. SENDCNFD 
always causes the completion of the SENDCNF. If your communication 
partner issued SENDCNF with WAIT = NO, and your partner is enabled for 
function complete interrupts, then your partner will get a function complete 
interrupt. 

Chapter 7. APPC/VM and IUCV Communication Functions 133 



SENDDATA Function (APPC/VM) 

APPCVM SENDDATA 

Function Code: X'04' 

This function sends data from your virtual machine to another virtual 
machine or to your own virtual machine. You can also use this function to 
switch the conversation state from SEND state to RECEIVE state and to 
define an answer area for your partner's SENDDATA. 

The APPCVM SENDDATA syntax is: 

label APPCVM SENDDATA, 
PRMLIST = label/(reg), 
RECEIVE = YES/NO, 
MF=L, 
PAT HID = label/(reg), 
BUFLIST = YES/NO, 
BUFFER = label/(reg), 
BUFLEN = label/(reg), 
ANSLIST = YES/NO, 
ANSBUF = label/(reg), 
ANSLEN = label/(reg) , 
WAIT = YES/NO 

PRMLIST = label/(reg) 

Required 
Required 
Required 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 
Optional 

lets you specify the address of the APPC{VM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a doubleword boundary. 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

RECEIVE = YES/NO 
lets you specify whether or not to define an answer area. 

• RECEIVE = YES defines an answer area. 
• RECEIVE = NO does not define an answer area. 

MF=L 
expands the APPCVM macro to generate the instructions necessary to 
initialize the APPCjVM parameter list as specified, but not to invoke 
the APPC{VM function. 

134 Transparent Services Access Facility Reference 



SENDDATA Function (APPC/VMl 

PATHID = label/(reg) 
lets you specify the path id on which you send the data. 

label 

reg 

is the relocatable label of a halfword that contains the path id. 

is the register number that contains the path id in the low-order 
halfword. 

BUFLIST = YES/NO 
specifies the type of buffer address that the BUFFER parameter refers 
to. For more information, see "Specifying Buffers on SENDDATA" on 
page 137. 

• BUFLIST = YES refers to a list of addresses. 
• BUFLIST = NO refers to a single address. 

BUFFER = label/(reg) 
specifies the area(s) from which CP takes the data to be sent. For 
more information, see "Specifying Buffers on SENDDATA" on 
page 137. 

label 

reg 

is the relocatable label in storage where CP gets the data to 
send. 

is the register number that contains the address of the storage 
area. The storage area contains the data. 

BUFLEN = label/(reg) 
specifies the length of the area(s) from which APPCjVM takes the 
data to be sent. This length is not related to the length of a logical 
record. For more information, see "Specifying Buffers on 
SENDDATA" on page 137. 

label 
is the relocatable label of the full word that contains the length. 

reg 
is the register number that contains the length. 

ANSLIST = YES/NO 
specifies the type of address that the ANSBUF parameter refers to. 
For more information, see "Specifying Buffers on SENDDATA" on 
page 137. 

• ANSLIST = YES specifies that ANSBUF is referring to a list of 
addresses. 

• ANSLIST = NO specifies that ANSBUF is referring to data. 

Chapter 7. APPC/VM and IUCV Communication Functions 135 



SENDDATA Function (APPC/VM) 

ANSBUF = label/(reg) 
specifies the address of the area(s) where APP C/VM places the data 
that is sent by your communication partner. For more information, 
see "Specifying Buffers on SENDDATA" on page 137. 

label 

reg 

is the relocatable label in storage that contains the data. 

is the register number that contains the address of the storage 
area. This area contains the data. 

ANSLEN = label/(reg) 
specifies the length of the area(s) into which APPC/VM places the 
data sent by the communication partner. For more information, refer 
to "Specifying Buffers on SENDDATA" on page 137. 

label 
is the relocatable label of the full word that contains the length. 

reg 
is the register number that contains the length. 

WAIT = YES/NO 
lets you specify when control is returned to your virtual machine. 

• WAIT = YES returns control to your virtual machine when the 
SENDDATA is complete. 

• WAIT = NO returns control to your virtual machine when the 
SENDDATA request is initiated. 

What the SENDDATA Data Looks Like 

The SENDDATA data is made up of logical records. Each logical record 
has a 2-byte length field followed by a data field. The data field can range 
from 0 to 32,765 bytes long. The length field has the 15-bit length of the 
record, plus the high-order bit (APPC/VM does not examine the high-order 
bit). The length of the record includes the 2-byte length field; so, the length 
of the record is the data field length plus two. These logical record length 
values would be invalid, since the length must be greater than or equal to 
two and the high-order bit is ignored: 

X'OOOO' 
X'OOOl' 
X'8000' 
X'800l' 

The logical record length does not depend on the length of data specified in 
a single SENDDATA BUFLEN = label/(reg). In other words, the data may 
consist of one or more complete records, the beginning of a record, the 
middle of a record, or the end of a record. You may specify any of the 
following combinations: 

136 Transparent Services Access Facility Reference 



SENDDATA Function (APPC/VM) 

• One or more complete records, followed by the beginning of a record 

• The end of a record, followed by one or more complete records 

• The end of a record, followed by one or more complete records, followed 
by the beginning of a record 

• The end of a record, followed by the beginning of a record. 

A complete logical record has the 2-byte length field and all bytes of the 
data field, determined by the logical record length. If the data field has a 
length of zero, the complete logical record has only the 2-byte length field. 

Specifying Buffers on SENDDATA 

For APPCVM SENDDATA, you can specify the buffers with a single 
address and a single length (BUFLIST = NO or ANSLIST = NO) or with a 
list of addresses and lengths (BUFLIST = YES or ANSLIST = YES). 

When you specify the buffer with a single address and a single length, 
BUFFER (or ANSBUF) specifies the address and BUFLEN (or ANSLEN) 
specifies the length. When you specify the buffer with a list of addresses 
and lengths, BUFFER (or ANSBUF) specifies the address of the list and 
BUFLEN (or ANSLEN) specifies the sum of the lengths of the buffers in the 
list. 

You must follow these conventions when you use address lists 
(BUFLIST = YES or ANSLIST = YES): 

• The list must begin on a doubleword boundary. 

• Each list entry must be two fullwords: 

- The first full word is the address of that portion of the list, and 
- The second full word is the length of that portion of the list. 

When you use an address list, the addresses and lengths in the address list 
are updated during APPCjVM processing. Do not alter them during 
processing or assume that they are unchanged when APPCjVM processing 
is complete. Also, APPCjVM assumes that there is another entry in the list 
until the sum of the lengths of the entries processed is equal to the total 
length specified (by BUFLEN or ANSLEN). 

SENDDATA Parameter List 

The APPCVM SENDDATA parameter list has the following input format: 

Chapter 7. APPCjVM and IUCV Communication Functions 137 



SENDDATA Function (APPC/VM) 

o 

8 

10 

18 

20 

o 1 2 3 4 5 6 7 

IPPATHID I IPFLAGSll /////////////////////// IIPFLAGS21IPSENDOP 

//////////////////////////// IPBFADRI 

IPBFLNIF /////////////////////////////// 

//////////////////////////// IPBFADR2 

IPBFLN2F /////////////////////////////// 

Figure 46. APPCVM SENDDATA Input Parameter List 

The supplied parameters are: 

IPPATHID 
contains the path id over which you send the data. 

IPFLAGS1 
contains the flags: 

IPBUFLST (X' 40')--You specified the buffer list option. 
IPANSLST (X'08')--You specified the answer list option. 
IPAPPCSN (X'02')--The APPC SEND function was issued. 

IPFLAGS2 
contains the input flag: 

IPW AIT (X'80'}--A synchronous return is desired. 

IPSENDOP 
contains one of the following SEND option codes: 

IPDATA (Ol}--You are sending data. 
IPSNDRCV (02)--Y ou are sending the data, the conversation is to be 

turned around, and an answer area is defined by 
IPBFADR2 and IPBFLN2F. 

IPBFADR1 
contains the address of the area from which APPC/VM takes the 
message or the address of the address or length list. See "Specifying 
Buffers on SENDDATA" on page 137. 

IPBFLN1F 
contains the length of the message being sent. This length is not 
related to the length of a logical record. It is used only to determine 
the length of the data to be moved by this SENDDATA. See 
"Specifying Buffers on SENDDATA" on page 137. 

138 Transparent Services Access Facility Reference 



SENDDATA Function (APPC/VM) 

IPBFADR2 
contains the address of the area where APPC/VM places the answer 
from the communication partner, or the address of the address or 
length list (only valid when IPSENDOP=02). See "Specifying 
Buffers on SENDDATA" on page 137. 

IPBFLN2F 
contains the length of the answer buffer (only valid when 
IPSENDOP=02). See "Specifying Buffers on SENDDATA" on 
page 137. 

Error Codes and Exceptions 

Condition Codes 

cc=o 
SENDDATA started successfully, but has not yet completed. If your 
virtual machine is enabled for function complete interrupts, one is sent 
to your virtual machine when SENDDATA completes. The function 
complete interrupt has the same format as the SENDDATA output 
parameter list (see CC = 2,3). However, no condition code may be used to 
determine if a nonzero value is stored in IPAUDIT. 

When control is returned to your virtual machine with CC = 0, the 
parameter list may have been altered. 

Note: When you specify WAIT = YES, CC = 0 is not possible. 

CC=l 
An error occurred before the SENDDATA was initiated. The output 
parameter list is the same as the input shown in "SENDDATA 
Parameter List" on page 137, except that the return code is stored in 
IPRCODE. Other fields in the parameter list may also have been 
altered. 

You may get the following return codes (listed here in decimal): 

01 You specified a path id that is not yet established. 

03 A function is pending on this path. 

06 A protection exception occurred on your communication partner's 
predefined answer or RECEIVE area. 

Chapter 7. APPCNM and IUCV Communication Functions 139 



SENDDATA Function (APPC/VM) 

07 An addressing exception occurred on your communication 
partner's predefined answer or RECEIVE area. 

10 Your buffer length or answer length is negative. 

22 Your communication partner's predefined answer list or RECEIVE 
list is invalid. 

23 A length specified in your SEND buffer list is negative. 

24 The total length that you specified is not the total of the lengths in 
your SEND buffer list. 

26 The buffer list address is not on a doubleword boundary. 

27 The answer list address is not on a doubleword boundary. 

30 You specified an APPCjVM function on a non-APPC path. 

32 SENDDATA is an invalid function from CONNECT state. 

34 SENDDAT A is an invalid function from RECEIVE state. 

35 SENDDAT A is an invalid function from CONFIRM state. 

36 SENDDAT A is an invalid function from SEVER state. 

38 There was an invalid value in IPSENDOP field. 

42 There is an invalid logical record length in your data stream. 

44 You started, but did not finish, sending a logical record. For 
SENDDAT A, this can only occur if you specified RECEIVE = YES. 

Return codes 6, 7, 22, 23, 24, 42, and 44 can only occur if your 
communication partner defined an answer area or RECEIVE area before 
you issued the SENDDATA. If your communication partner did not 
define an answer area or RECEIVE area before you issued the 
SENDDATA, CP reports those error conditions to you in the 
corresponding audit flags when your partner's RECEIVE completes. 
Your partner learns of the error through one of the following: 

• A protection exception 
• An addressing exception 
• A return code on the RECEIVE 
• In the audit flags when the RECEIVE completes. 

For return codes 22, 23, 24, 42 or 44, data may have been copied to your 
communication partner's virtual machine before the error was detected. 
How much data was copied is unpredictable. 

140 Transparent Services Access Facility Reference 



o 

8 

10 

18 

20 

o 1 2 

CC=2 or 
CC=3 

SENDDATA Function (APPC/VM) 

Function completed (also see "SENDDATA Completion" on page 146). 
When CC = 2, then the function completed with no error caused by the 
invoker. When CC=3, there is some error information in IPAUDIT. 
When WAIT = NO, CC = 3 is not possible. The output parameter list 
when CC = 2 or 3 is: 

3 4 5 6 7 

IPPATHID I ////// I PTYPE I IPCODE IIPWHATRCIIPSENDOP 

IP}I.UDIT ///////////////////////////////////////// 

////////1///////////////////////////////////////////// //////// 

////////////////////////////////////////////////////////////// 

IPBFLN2F I //////////////////////////!//// 

Figure 47. APPCVM SENDDATA Output Parameter List (Function Complete Interrupt) 

The parameters are: 

IPPATHID 
contains the path id on which the function is complete. 

IPTYPE 
contains the function complete interrupt code (IPTYPFCA, 
X'87'). 

IPCODE 
contains the error/SEVER code from the partner's SENDERR or 
SEVER. IPCODE is only valid when IPWHATRC = IPERROR or 
IPSABEND. See "APPC/VM Error/SEVER Codes" on page 183 
for a description of the error/SEVER codes. 

IPWHATRC 
contains the what-received code. For RECEIVE = YES or 
RECEIVE = NO: 

IPCOMP (OO)-Either of the following has occurred: 

IPERROR 

• The SENDDAT A RECEIVE = NO completed 
normally. 

• The SENDDATA RECEIVE = YES or NO 
completed with an error on your SEND buffer or 
on your partner's answer or RECEIVE buffer. See 
the IPAUDIT description. 

(03)-Your partner issued SENDERR. 
IPSABEND 

(09)-Your partner issued a SEVER TYPE = ABEND. 

For RECEIVE = YES only: 

Chapter 7. APPC/VM and lUCY Communication Functions 141 



SENDDATA Function (APPC/VM) 

IPDATA (01)- Only data was received. 
IPS END (02)-Your partner switched the conversation around 

and you are now in SEND state. 
IPCNFRM 

(04)-Your partner is requesting confirmation. 
IPCNFSEV 

(05)-Y our partner is requesting confirmation that it 
can issue a SEVER. 

IPSNORM 
(08)- Your partner issued a SEVER TYPE = NORMAL. 

IPSENDOP 
contains one of the following SEND option codes: 

IPDAT A (01)-Y our SENDDAT A RECEIVE = NO is completing. 
IPSNDRCV (02)-Your SENDDATA RECEIVE=YES is 

completing. 

IPAUDIT 
contains the following flags (if it's nonzero). If you specified 
WAIT=NO, IPAUDIT is in the function complete interrupt. 

IPAUDIT1 
IPADSNPX (X' 40')- A protection exception occurred on your 

SEND buffer (IPBF ADR1). 
IPADSNAX (X'20')-An addressing exception occurred on 

your SEND buffer (IPBF ADR1). 
IPADANPX (X'10')- A protection exception occurred on your 

answer buffer (IPBF ADR2). 
IPADANAX (X'08')- An addressing exception occurred on 

your answer buffer (IPBF ADR2). 
IPAUDIT2 

IPADRCPX (X'80')-A protection exception occurred on your 
communication partner's answer area or 
RECEIVE area. 

IPADRCAX (X' 40')-An addressing exception occurred on 
your communication partner's answer area or 
RECEIVE area. 

IP ADRPPX (X'20')- A protection exception occurred on your 
communication partner's SEND data area. 

IPADRPAX (X'lO')-An addressing exception occurred on 
your communication partner's SEND data area. 

IPADRLST (X'04')- Your communication partner had an 
invalid SEND, answer or RECEIVE list. 

IPAUDIT3 
IPADBLEN (X'80')- A bad length is in your SEND buffer 

list. 
IPADALEN (X'40')-A bad length is in your SEND answer 

list. 
IPADBTOT (X'20')-Your total SEND buffer length is 

invalid. 

142 Transparent Services Access Facility Reference 



SENDDATA Function (APPC/VM) 

IPADATOT (X'lO'}-Your total SEND answer length is 
invalid. 

IPADTINV (X'08'}-There is an invalid logical record length 
in your communication partner's data stream. 

IP ADIINV (X'04')-There is an invalid logical record length 
in your data stream. 

IPADTTRN (X'02')-Your communication partner started, 
but did not finish, sending a logical record and 
tried to change to RECEIVE state. 

IPADITRN (X'Ol')-You started, but did not finish, sending a 
logical record and tried to change to RECEIVE 
state. 

CP reflects the exception to you, if your communication partner 
defined an answer or RECEIVE area before you issued the 
SENDDATA, and one of the following is present: 

• Protection exception on your SEND buffer 
• Addressing exception on your SEND buffer. 

CP reflects the error to you in IPAUDITI when the SENDDATA 
completes, if your communication partner did not define an 
answer or RECEIVE area before you issued the SENDDATA, and 
one of the following is present: 

• Protection exception on your SEND buffer 
• Addressing exception on your SEND buffer. 

IPBFLN2F 
contains one of the following depending on the value of 
IPWHATRC. 

• If IPWHATRC is equal to IPDATA, then IPBFLN2F contains 
the number of bytes that were sent by your communication 
partner, but did not fit into the defined answer area. This 
length is not the length of the APPC data stream being sent. 
Rather, it is the length of the data that has arrived and is 
ready to receive. 

• If IPWHATRC is not equal to IPDATA, then IPBFLN2F 
contains the number of bytes left in your defined answer 
area. 

Note: Nondata indications such as IPSEND do not appear in 
IPWHATRC until all data sent with or before the nondata function 
notice has been received. For 8xample, IPWHATRC would be IPDATA 
if the following occurred: 

1. You did a SENDDATA RECEIVE = YES with a 199-byte answer area, 
and 

2. Your communication partner issued SENDDATA RECEIVE = YES 
with a data length of 200 bytes. 

Chapter 7. APPCjVM and lUCY Communication Functions 143 



SENDDATA Function (APPC/VM) 

When you issue a RECEIVE for the 200th byte, then IPWHATRC would 
become IPSEND. 

When RECEIVE = YES is specified, data may have been received for any 
value of IPWHATRC. 

SENDDATA Program Exceptions 

State Changes 

The program exceptions for SENDDATA are: 

Type Description 

Addressing The parameter list address is outside of the 
virtual machine. An addressing exception also 
occurs for any of the following: 

• An invalid buffer address in the parameter 
list 

• An invalid buffer address in the buffer list 
II An invalid buffer list address. 

Oper ation An external interrupt buffer has not been 
declared with the DCLBFR function, or the 
invoker is not in supervisor state. 

Protection The storage key of the parameter list address 
does not match the key of the user. A protect ion 
exception also occurs for any of the following: 

• Buffer address in the parameter list is 
protected 

• Buffer address in the buffer list is protected 
e Buffer list address is protected. 

Specification The parameter list is not on a double word 
boundary. 

A state check occurs (IPRCODE = 32, 34, 35, or 36) if your virtual machine 
is not in SEND state on this path. A state check also occurs 
(IPRCODE = 44) if you started, but did not finish, sending a logical record 
on this path at the completion of the SEND portion of your SENDDATA 
RECEIVE = YES. 

When you issue SENDDATA RECEIVE = YES, your communication partner 
receives notice of this as if you had issued SEND followed by a RECEIVE. 
SEND DATA RECEIVE = YES is like the following sequence offunctions: 

1. SENDDATA RECEIVE=NO 
2. RECEIVE. 

When the "RECEIVE" part of the SENDDAT A RECEIVE = YES begins, you 
should have completed sending any outstanding logical records. For 
example, the following sequence would cause an error: 

144 Transparent Services Access Facility Reference 



IPWHATRC 
Value 

IPCOMP 

IPDATA 

IPS END 

IPERROR 

IPCNFRM 

IPCNFSEV 

SENDDATA Function (APPC/VM) 

1. You issue SENDDAT A RECEIVE = YES BUFLEN = 999 to send a 
logical record with a logical record length of 1000 bytes. 

2. Your partner RECEIVEs the 999 bytes. 

3. The "RECEIVE" portion of your SENDDATA RECEIVE begins. 

In this situation, the error is caused because you did not send all 1000 
bytes; therefore, you did not complete sending the outstanding logical 
record. 

No state change occurs when CC = 1. State changes occur when: 

• The function completes; that is, control returns to the virtual machine 
(CC = 2 or 3). 

• The function complete interrupt is accepted by the virtual machine 
(CC = 0) or you complete the function using TESTCMPL. 

The state change depends on the IPWHATRC value: 

State Cause 

:-.Jo state Either of the following could be the cause: 
change 
occurs. • The SENDDATA RECEIVE = NO has completed 

normally. 
• The SENDDAT A RECEIVE = YES or NO completed 

with an error on your SEND buffer or on your 
partner's answer or RECEIVE buffer. See IPAUDIT 
for details. 

RECEIVE Either of the following could be the cause: 

• The SENDDAT A RECEIVE = YES with a nonzero 
length answer area was completed by your partner 
sending data. 

• The SENDDAT A RECEIVE = YES with a zero 
length answer area was completed by your partner 
receiving the data sent. 

SEND The SENDDAT A RECEIVE = YES was completed by the 
communication partner issuing a RECEIVE or 
SENDDAT A RECEIVE = YES. 

RECEIVE The SENDDATA was completed by the communication 
partner issuing a SENDERR. 

CONFIRM The SENDDATA RECEIVE = YES was completed by the 
communication partner issuing a SENDCNF 
TYPE = NORMAL. 

CONFIRM The SENDDAT A RECEIVE = YES was completed by the 
communication partner issuing a SENDCNF 
TYPE = SEVER. 

Chapter 7. APPCjVM and IUCV Communication Functions 145 



SENDDATA Function (APPC/VM) 

IPWHATRC State Cause 
Value 

IPSNORM SEVER The SENDDAT A RECEIVE = YES was completed by the 
communication partner issuing a SEVER 
TYPE = NORMAL. 

IPSABEND SEVER The SENDDATA was completed by the communication 
partner issuing a SEVER TYPE = ABEND. 

SENDDATA Completion 

After issuing a SENDDATA, you cannot issue another SEND3 , RECEIVE, 
or SEVER TYPE = NORMAL on that path until the outstanding 
SENDDATA is complete. When the SENDDATA completes for a 
communicator depends on the value you give to the RECEIVE parameter of 
SENDDATA: 

• When RECEIVE = NO, your SENDDATA is complete when all of the 
data is copied out of your SEND buffer, or when your communication 
partner issues a SEND ERR or a SEVER. 

• When RECEIVE = YES and you specify a zero answer area, your 
SENDDATA is complete when all of the data is copied out of your 
SEND buffer. 

• When RECEIVE = YES and you specify a nonzero answer area, then the 
SENDDATA is complete when all of the data is copied out of your 
SEND buffer and your communication partner: 

Sends a message(s) to your virtual machine to completely fill the 
answer area specified on your virtual machine's SENDDATA, or 

Issues RECEIVE, SENDCNF, SENDDAT A RECEIVE = YES, 
SEND ERR, or SEVER. 

Remember when you specify SENDDATA RECEIVE = YES with a nonzero 
answer area length, you get one function complete interrupt when your 
communication partner or an intermediate communication server issues a 
function. But, when you specify SENDDATA RECEIVE=NO followed by a 
RECEIVE, you receive two function complete interrupts. The first 
interrupt is a result of the data being copied out of your SEND buffer; the 
second interrupt is when your RECEIVE is completed. 

SEND generally refers to all of the APPCjVM "SEND" functions: SENDCNF, 
SENDCNFD, SENDDATA, SENDERR, and SENDREQ. 

146 Transparent Services Access Facility Reference 



SENDDATA Function (APPC/VM) 

What Happens to Your Communication Partner 

Your communication partner's outstanding function may complete, or your 
partner may get a message pending interrupt. 

If your partner has a RECEIVE or SEND ERR outstanding on its half of the 
path, your partner's function is completed. If your partner has a 
SENDDAT A RECEIVE = YES outstanding on its half of the path, your 
partner's function is completed when you send enough data to fill your 
partner's predefined RECEIVE area if you specified RECEIVE = NO. If you 
specify RECEIVE = YES on your SENDDATA, then your partner's 
SENDDATA RECEIVE=YES completes in any case. 

Your partner gets a message pending interrupt, if your partner has the 
following qualities: 

• Has no function outstanding on its half of the path 
• Is in RECEIVE state on its half of the path 
• Is enabled for message pending interrupts. 

Message Pending External Interrupt 

o 
8 

10 

18 

20 

o 1 2 

Any of the following functions can cause a message pending interrupt to be 
sent to your communication partner: 

RECEIVE 
SENDCNF 
SENDDATA 
SENDERR. 

For all functions, except SENDDATA, the IPBFLNIF field is zero. In fact, 
the IPBFLNIF could contain zeroes for SENDDATA as well. 

APPCjVM always sends the message pending external interrupt data to the 
APPCjVM interrupt buffer defined by DCLBFR. The APPCjVM message 
pending external interrupt has the following format: 

3 4 5 6 7 

IPPATHID I ////// I IPTYPE I /////////////////////////////// 
////////////////////////////////////////////////////////////// 

I PBFLN1F I /////////////////////////////// 
////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 48. Message Pending External Interrupt 

The parameters are: 

Chapter 7. APPCjVM and IUCV Communication Functions 147 



SENDDATA Function (APPC/VM) 

IPPATHID 
contains the path id on which a message is pending. 

IPTYPE 
contains the interrupt type for a message pending (IPTYPMPA, 
X'89'). 

IPBFLN1F 
contains the length of the pending message. This length is the length 
of the data that has arrived and is ready to receive. 

When the SENDDATA is sent by a virtual machine on the local 
system, the length in IPBFLN1F is the actual length of the data sent 
by the SENDDATA. On the other hand, when the SENDDATA is 
sent by a virtual machine on a remote system, the length in 
IPBFLN1F is the length of the data sent by TSAF's SENDDATA. 

You get a message pending interrupt for a path only when your half of the 
path is in RECEIVE state. If your virtual machine is not in RECEIVE state 
on that path, the message pending interrupt is kept pending until your half 
of the path enters RECEIVE state. Then you get the message pending 
interrupt. When you receive the message, check the condition code or the 
IPWHATRC field to find what to do next. See "APPCVM RECEIVE" on 
page 111 for more information. 

IUCV only reflects a message once. You cannot DESCRIBE a message 
again or get another message pending interrupt, if your virtual machine 
does any of the following: 

• RECEIVEs the message 
• DESCRIBEs the message 
• Gets the message pending interrupt 
• Is notified of the pending function on the completion of another 

function. 

However, if you only partially received the message, you can issue 
additional RECEIVEs to receive the rest of the message. 

148 Transparent Services Access Facility Reference 



SENDERR Function (APPC/VM) 

APPCVM SENDERR 

Function Code: X'04' 

This function tells your communication partner that an error has occurred 
and causes a break in the usual SEND/RECEIVE sequence. This is done so 
your virtual machine can send error information. 

The APPCVM SENDERR syntax is: 

label APPCVM SENDERR, Required 
Required 
Optional 
Optional 
Optional 
Restricted 

PRMLIST = label/(reg), 
MF=L, 
P ATHID = labe l/ (reg), 
WAIT = YES/NO, 
CODE = label/(reg) 

PRMLIST = labeIJ(reg) 
lets you specify the address of the APPC/VM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a doubleword boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

expands the APPCVM macro to generate the instructions necessary to 
initialize the APPC/VM parameter list as specified, but not to invoke 
the APPCjVM function. 

PAT HID = label/(reg) 
lets you specify the path id of the path on which you send the error 
notice. 

label 

reg 

is the relocatable label of a halfword that contains the path id. 

is the register number that contains the path id in the low-order 
halfword. 

Chapter 7. APPC/VM and IUCV Communication Functions 149 



SENDERR Function (APPC/VM) 

WAIT = YES/NO 
lets you specify when control is returned to your virtual machine. 

• WAIT = YES returns control to your virtual machine when the 
SENDERR is complete. 

• WAIT = NO returns control to your virtual machine as soon as you 
issue the SENDERR request. When the SENDERR completes, you 
are notified with a function complete interrupt. 

CODE = label/(reg) 
specifies a 2-byte error code that your communication partner gets. 
IBM defines all the codes; applications may not define error/SEVER 
codes for their own use. 

label 

reg 

is a relocatable label in the storage area that contains the error 
code. 

is the register number that contains the error code in the 
low-order halfword. 

Only communication servers (authorized by OPTION COMSRV in 
their directory entries) can specify CODE. When you do specify 
CODE, the APPCVM macro sets the IPCOMSRV flag. 

For a complete list of the error/SEVER codes, see "APPCjVM 
Error/SEVER Codes" on page 183. 

SENDERR Parameter List 

o 
8 

10 

18 

20 

o 

The APPCVM SENDERR parameter list has the following input format: 

1 2 3 4 5 6 7 

IPPATHID IIPFLAGSII /////// I IPCODE IIPFLAGS21IPSENDOP 

//////////////////////// / ///////////////////////////////////// 

////////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////II/II/II 

///////////////////////////////////////////////////111II/II/II 

Figure 49. APPCVM SENDERR Input Parameter List 

The supplied parameters are: 

IPPATHID 
contains the path id over which to send the SENDERR. 

150 Transparent Services Access Facility Reference 



SENDERR Function (APPC/VM) 

IPFLAGS1 
contains the input flag: 

IP APPCSN (X'02')-The APPC SEND function was issued. 

IPCODE 
contains the SENDERR code. IPCODE is only valid when 
IPCOMSRV is set. For a complete list of the error/SEVER codes, 
see section "APPC/VM Error/SEVER Codes" on page 183. 

IPFLAGS2 
contains the input flags: 

IPW AIT (X'80')-Y ou specified a synchronous return. 
IPCOMSRV 

IPSENDOP 

(X'20')-The SEND ERR is being issued for another user. 
Only an authorized virtual machine (OPTION COMSRV 
in the directory entry) may specify IPCOMSRV. When 
you do specify IPCOMSRV, CP does not generate a 
SENDERR code, but, instead, uses the one that you 
provide. It is your responsibility to ensure that the code 
is appropriate. 

contains the SEND option code: 

IPERROR (03)-Indicates the SENDERR. 

Error Codes and Exceptions 

Condition Codes 

cc=o 
SENDERR started successfully, but has not yet completed. When the 
function completes, a function complete interrupt is sent to your virtual 
machine. The function complete interrupt has the same format as the 
SENDERR output parameter list (see CC = 2). 

Note: When you specify WAIT = YES, CC = 0 is not possible. 

CC=l 
An error occurred. The output parameter list is the same as the input 
shown in "SEND ERR Parameter List" on page 150, except that the 
return code is stored in IPRCODE. 

You may get the following return codes (listed here in decimal): 

Chapter 7. APPC/VM and IUCV Communication Functions 151 



SENDERR Function (APPC/VM) 

o 
8 

10 

18 

20 

o 1 2 

01 You specified a path id that is not yet established. 

03 A function is pending on this path. 

29 You are not authorized to act for another user. 

30 You specified an APPCjVM function on a non-APPC path. 

32 SENDERR is an invalid function from CONNECT state. 

36 SENDERR is an invalid function from SEVER state. 

38 There is an invalid value in IPSENDOP field. 

CC=2 
SENDERR completed (also see i'SENDERR Completion" on page 154). 
The output parameter list when CC = 2 is: 

3 4 5 6 7 

IPPATHID I ////// I IPTYPE I IPCODE I IPWHATRCI IPSENDOP 
////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 50. APPCVM SENDERR Output Parameter List (Function Complete Interrupt) 

The parameters are: 

IPPATHID 
contains the path id on which the function is complete. 

IPTYPE 
contains the function complete interrupt code (IPTYPFCA, 
X'87'). 

IPCODE 
contains the error/SEVER code from the partner's SENDERR or 
SEVER. IPCODE is only valid when IPWHATRC=IPERROR or 
IPSABEND. For a complete list of the error/SEVER codes, see 
"APPCjVM Error/SEVER Codes" on page 183. 

IPWHATRC 
contains the what-received code: 

IPCOMP (OO)---indicates that a function completed with nothing 
received. 

IPERROR (03)- means that your partner issued SENDERR. 
IPSNORM (08)---means that your partner issued a SEVER 

TYPE = NORMAL. 

152 Transparent Services Access Facility Reference 



SENDERR Function (APPC/VM) 

IPSABEND (09)--means that your partner issued a SEVER 
TYPE =ABEND. 

IPSENDOP 
contains the SEND option code: 

IPERROR (03)--means that the SEND ERR is being completed. 

SENDERR Program Exceptions 

State Changes 

The program exceptions for SENDERR are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a double word 
boundary. 

A state check occurs (IPRCODE = 32 or 36) if the virtual machine is not in 
SEND, RECEIVE or CONFIRM state on this path. 

No state change occurs when CC = 1. State changes occur when: 

• The function completes, that is, when control is returned to the virtual 
machine (CC = 2) 

• The function complete interrupt is accepted by the virtual machine or 
you use TESTCMPL to discover that the function was completed. 

The state change depends on the IPWHATRC value: 

IPWHATRC State Cause 
Value 

IPCOMP SEND The SENDERR has completed. 

IPERROR RECEIVE The SENDERR was completed by the 
communication partner issuing a 
SENDERR from RECEIVE state. 

IPSNORM SEVER The SENDERR was completed by the 
communication partner issuing a 
SEVER TYPE = NORMAL. 

Chapter 7. APPCjVM and IUCV Communication Functions 153 



SENDERR Function (APPC/VM) 

SENDERR Completion 

IPWHATRC State Cause 
Value 

IPSABEND SEVER The SENDERR was completed by the 
communication partner issuing a 
SEVER TYPE = ABEND. 

After you issue a SEND ERR, you cannot issue another SEND. RECEIVE, 
or SEVER TYPE = NORMAL on that path until the outstanding SEND ERR 
is complete. SENDERR is complete when your communication partner or 
an intermediate communication server is notified of the SENDERR. 

APPC/VM notifies your communication partner of the SENDERR when 
your partner's SENDDATA, SENDCNF, SENDERR, or RECEIVE 
completes. SENDERR causes your partner's outstanding functions to 
complete. If none of these functions are outstanding when your 
communication partner issues a function, that function completes 
immediately. 

If your communication partner is in RECEIVE state and sends a SENDERR 
before it receives your SENDERR notice, your partner's SENDERR is 
invoked over yours. In this case, your partner would enter SEND state and 
you would be switched to RECEIVE state. 

When SENDERR completes, CP resets your logical record counts to zero, as 
well as your communication partner's; that is, your next SENDDATA would 
be a new logical record. 

SEVER Codes that You May Receive 

The SEVER code you receive when your SENDERR completes depends on 
the state you are in when you issue SENDERR. 

• If you are in SEND state, you may get any valid SEVER code. 

• If you are in RECEIVE state, you may get any of the following SEVER 
codes: 

Condition IPCODE 

RESOURCE_FAILURE_NO_RETRY X'0610' 

RESOURCE_FAILURE_RETRY X'0620' 

In addition, you get an indication of SEVER TYPE = NORMAL when 
your SEND ERR completes, if your communication partner issued 
SEVER TYPE = NORMAL. You also get an indication of SEVER 
TYPE = NORMAL when your SENDERR completes, if your partner 
issued SEVER TYPE = ABEND with any of these SEVER codes: 

154 Transparent Services Access Facility Reference 



SENDERR Function (APPC/VM) 

- DEALLOCATE_ABEND_PROG (X'0210') 
DEALLOCATE_ABEND_SVC (X'0220') 
DEALLOCATE_ABEND_TIMER (X'0230') 

You would receive notice of any other SEVER condition on a following 
verb (APPC function). 

• If you are in CONFIRM state, you may get any of the following SEVER 
codes: 

Condition IPCODE 

RESOURCE_FAIL URE_NO _RETRY X'0610' 

RESOURCE_FAIL URE_RETRY X'0620' 

You would receive notice of any other SEVER condition on a following 
verb. 

What Happens to Your Communication Partner 

Your communications partner's outstanding function may complete, or your 
partner may get a message pending interrupt. 

If your partner has a RECEIVE, SENDDATA, SENDCNF, or SENDERR 
outstanding on its half of the path, your partner's function is completed. 

Your partner gets a message pending interrupt, if your partner has these 
qualities: 

• Has no function outstanding on its half of the path 
• Is in RECEIVE state on its half of the path 
• Is enabled for message pending interrupts. 

See "Message Pending External Interrupt" on page 147. 

If you do not specify "CODE =", the SENDERR code (IPCODE) that your 
communication partner gets depends on the state of the conversation and 
whether or not a logical record is being truncated. For communication 
servers, the SEND ERR code that your communication partner gets depends 
on how you specified "CODE = ". For a complete list of the error/SEVER 
codes, see "APPCjVM Error/SEVER Codes" on page 183. 

Chapter 7. APPCjVM and IUCV Communication Functions 155 



SENDREQ Function (APPC/VM) 

APPCVM SENDREQ 

Function Code: X'04' 

This function signals your communication partner that you would like to 
send data. The communication partner can ignore your request. 

The APPCVM SENDREQ syntax is: 

label APPCVM SENDREQ, Required 
Required 
Optional 
Optional 

PRMLIST = label/(reg), 
MF=L, 
PATHID = label/(reg) 

PRMLIST = label/(reg) 
lets you specify the address of the APPCjVM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a doubleword boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

expands the APPCVM macro to generate the instructions necessary to 
initialize the APPCjVM parameter list as specified, but not to invoke 
the APPCjVM function. 

PATHID = label/(reg) 
lets you specify the path id on which to send the request. 

label 

reg 

is the relocatable label of a halfword that contains the path id. 

is the register number that contains the path id in the low-order 
halfword. 

156 Transparent Services Access Facility Reference 



SENDREQ Function (APPC/VM) 

SENDREQ Parameter List 

The APPCVM SENDREQ parameter list has the following input format: 

o 1 2 3 4 5 6 7 

o :1 IPPATHID I IPFLAGSll /////////////////////////////////IIPSENDOP 

8 ////1///////////////////////////////////////////////////////// 

10 ////////////////////////////////////////////////////////////// 

18 ////////////////////////////////////////////////////////////// 

20 ////////////////////////////////////////////////////////////// 

Figure 51. APPCVM SENDREQ Input Parameter List 

The supplied parameters are: 

IPPATHID 
contains the path id on which the request to send is to be sent. 

IPFLAGSI 
contains the input flag: 

IPAPPCSN (X'02')- The APPC SEND function is issued. 

IPSENDOP 
contains the SEND option code: 

IPREQSND (07)-Indicates the request to send. 

Error Codes and Exceptions 

Condition Codes 

CC=o CC=1 CC=2 CC=3 

Not Possible X X Not Possible 

SENDREQ always completes immediately. 

CC=1 
An error occurred. The output parameter list is the same as the input 
shown in "SENDREQ Parameter List," except that the return code is 
stored in IPRCODE. 

You may get the following return codes (listed here in decimal): 

01 You specified a path id that is not yet established. 

Chapter 7. APPCjVM and IUCV Communication Functions 157 



SENDREQ Function (APPC/VM) 

o 1 2 

30 You specified an APPC/VM function on a non-APPC path. 

32 SENDREQ is an invalid function from CONNECT state. 

36 SENDREQ is an invalid function from SEVER state. 

38 There is an invalid value in the IPSENDOP field . 

CC=2 
SENDREQ completed (also see "SENDREQ Completion" on page 159). 
The output parameter list when CC = 2 is: 

3 4 5 6 7 

o IPPATHID I ////// I IPTYPE I ////////////////////// IIPSENDOP 

8 ////////////////////////////////////////////////////////////// 

10 ////////////////////////////////////////////////////////////// 

18 ////////////////////////////////////////////////////////////// 

20 /1//////////////////////////////////////////////////// //////// 

Figure 52. APPCVM SENDREQ Output Parameter List 

The parameters are: 

IPPATHID 
contains the path id on which the function is complete. 

IPTYPE 
contains the function complete interrupt code (IPTYPFCA, 
X'87'). 

IPSENDOP 
contains the SEND option code: 

IPREQSND (07)-The SENDREQ is being completed. 

SENDREQ Program Exceptions 

The program exceptions for SENDREQ are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

158 Transparent Services Access Facility Reference 



State Changes 

SENDREQ Completion 

SENDREQ Function (APPC/VM) 

Type Description 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

A state check occurs (IPRCODE = 32 or 36) if the virtual machine is not in 
SEND, RECEIVE or CONFIRM state on this path. 

No state change occurs. 

Because the SENDREQ function completes immediately, you can issue 
another SEND or RECEIVE on the path when your virtual machine regains 
control. 

You may issue more than one SENDREQ. Your communication partner 
does not get additional SENDREQs until it receives an indication of any 
preceding SENDREQs. Those SENDREQs sent before previous SENDREQs 
have been indicated to your partner are lost. CP does not notify you when 
your communication partner actually gets the SENDREQ interrupt. You 
also do not receive an error message if you issue another SENDREQ before 
'your partner receives notification of previous SENDREQs. 

You can issue SENDREQ even when another function is pending on the 
path. If the pending function is a SENDCNF TYPE = SEVER, then your 
partner may not be informed of your SENDREQ. 

If you issue a SEVER before your communication partner learns of your 
SENDREQ, your communication partner may not be informed of your 
SENDREQ. 

What Happens to Your Communication Partner 

If your communication partner is enabled for SENDREQ interrupts, it gets 
the following SENDREQ interrupt: 

Chapter 7. APPC/VM and IUCV Communication Functions 159 



SENDREQ Function (APPC/VM) 

o 1 2 3 4 5 6 7 

o IPPATHID I ////// I IPTYPE I ///////////////////////1/////// 

8 ///////////////////////////////////////////////////////1////// 

10 //////1/////////////////////////////////////////////////////// 

18 ///////////////////////////////////////////////////////1////// 

20 ////////////////////////////////////////////////////////////// 

Figure 53. SENDREQ (Request-to-send) Interrupt 

The parameters are: 

IPPATHID 
is the path id on which you get the SENDREQ notice. 

IPTYPE 
is the interrupt type for a SENDREQ notification (IPTYPSRA, 
X'88'). 

CP does not queue more than one SENDREQ int.errupt on a single path for 
the communication part.ner at one time. So, the number of SENDREQ 
interrupts reflected to your communication partner may be less than the 
number of SENDREQs issued. 

You cannot receive SENDREQ indicators with the RECEIVE function. 
They are only presented as an interrupt or with the DESCRIBE function. 

160 Transparent Services Access Facility Reference 



SETCMASK Function (IUCV) 

IUCV SETCMASK 

Function Code: X'Il' 

SETCMASK (Set Control Mask) enables or disables external interrupts for 
the following APPCjVM and iucv control functions: 

• Connection pending 
• Connection complete 
• Path 'severed 
• Path quiesced (non-APPC only) 
• Path resumed (non-APPC only). 

You cannot use the SETCMASK function to disable interrupts on control 
paths. 

To recognize this function, you must enable your virtual machine for 
external interrupts by setting the following bits to 1: 

• Bit 7 in the virtual PSW 
• Submask bit 30 in the control register O. 

You must also enable control interrupts with the SETMASK function. 
(Otherwise, APPCjVM ignores the SETCMASK settings.) 

The VM System Facilities for Programming describes the lUCY version of 
this function unrelated to APPCjVM. 

The lUCy SETCMASK syntax is: 

.. 
label IUCV SETCMASK, 

PRMLIST = label/(reg), 
MF=L, 
MASK = label/(reg) 

PRMLIST = label/(reg) 

Required 
Required 
Optional 
Optional 

lets you specify the address of the lUCy parameter list. The address 
must be a guest real address (real to the virtual machine), and the 
parameter list must be on a doubleword boundary. 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

Chapter 7. APPC/VM and IUCV Communication Functions 161 



SETCMASK Function (IUCV) 

MF=L 
expands the IUCV macro to generate the instructions necessary to 
initialize the IUCV parameter list as specified, but not to invoke the 
IUCV function. 

MASK = labeIJ(reg) 
lets you specify the mask byte to determine which, if any, of the 
APPCjVM and IUCV external interrupts a virtual machine is to be 
enabled for. 

label 

reg 

is the relocatable label of a byte containing the mask. 

is the register number that contains the mask in its low-order 
byte. 

SETCMASK Parameter List 

o 
8 

10 

18 

20 

The IUCV SETCMASK parameter list has the following input format: 

o 1 2 3 4 5 6 7 

IPCMASK 1//////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////// 

//////////////////////////////////////////////////////////// I 
//////////////////////////////////!///////////////////////// 

Figure 54. IUCV SETCMASK Input Parameter List 

The supplied parameters are: 

IPCMASK 
specifies the mask byte to determine which of the IUCV control 
interrupts a virtual machine is to be enabled and disabled for. When 
a bit is off, the virtual machine is disabled for that interrupt. 

For example, if IPCMASK contains X'CO', this means that the virtual 
machine is enabled for connection pending and connection complete 
interrupts, but disabled for all other interrupts. 

IPCLPC (X'80'}-You enabled for Type X'OI' (non-APPC) and Type 
X'8I' (APPC}- Pending connection. 

IPCLCC (X' 40'}-Y ou enabled for Type X'02' (non-APPC) and Type 
X'82' (APPC)-- Connection complete. 

IPCLPS (X'20')-You enabled for Type X'03' (non-APPC) and Type 
X'83' (APPC)- Path severed. 

162 Transparent Services Access Facility Reference 



SETCMASK Function (IUCV) 

IPCLPQ (X'IO')-You enabled for Type X'04' (non-APPC only)-Path 
quiesced. 

IPCLPR (X'08')-You enabled for Type X'05' (non-APPC only)-Path 
resumed. 

(X'04') - Reserved (Should be set to zero). 
(X'02') - Reserved (Should be set to zero). 
(X'OI') - Reserved (Should be set to zero). 

Error Codes and Exceptions 

Condition Codes 

CC=o CC=l CC=2 CC=3 

X Not Possible Not Possible Not Possible 

CC=O 
Normal completion. 

SETCMASK Program Exceptions 

The program exceptions for SETCMASK are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation A normal interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

State Changes 

There are no states associated with the SETCMASK function. 

Chapter 7. APPC/VM and IUCV Communication Functions 163 



SETCMASK Function (IUCV) 

SETCMASK Completion 

The SETCMASK function completes immediately. 

What Happens to Your Communication Partner 

Not applicable. 

164 Transparent Services Access Facility Reference 



IUCV SETMASK 

SETMASK Function (IUCV) 

Function Code: X'lO' 

SETMASK (Set Mask) enables or disables external interrupts for the 
following APPC/VM and IUCV functions: 

• Message pending interrupts 
• SENDREQ (request-to-send) interrupts 
• Function complete interrupts 
• APPC/VM and IUCV control interrupts. 

You cannot use the SETMASK function to disable interrupts on control 
paths. 

To recognize this function, you must enable your virtual machine for 
external interrupts by setting the following bits to 1: 

• Bit 7 in the virtual PSW 
• Submask bit 30 in control register O. 

The IUCV SET MASK function specifies a byte of selective masks. This lets 
you selectively mask APPC/VM and IUCV external interrupts and, as a 
group, lets you mask APPC/VM and IUCV control external interrupts. 

The VM System Facilities for Programming describes the IUCV version of 
this function unrelated to APPC/VM. 

The IUCV SETMASK syntax is: 

label IUCV SETMASK, Required 
Required 
Optional 
Optional 

PRMLIST = label/(reg), 
MF=L, 
MASK = label/(reg) 

PRMLIST = label/(reg) 
lets you specify the address of the IUCV parameter list. The address 
must be a guest real address (real to the virtual machine), and the 
parameter list must be on a doubleword boundary. 

I 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

Chapter 7. APPC/VM and IUCV Communication Functions 165 



SETMASK Function (IUCV) 

MF=L 
expands the lUCY macro to generate the instructions necessary to 
initialize the lUCy parameter list as specified, but not to invoke the 
lUCy function. 

MASK = label/(reg) 
lets you specify the mask byte to determine which, if any, of the 
APPC jVM and lUCy external interrupts a virtual machine is to be 
enabled for. 

label 

reg 

is the relocatable label of a byte containing the mask. 

is the register number that contains the mask in its low-order 
byte. 

SETMASK Parameter List 

The APPCVM SETMASK parameter list has the following input format: 

o 1 2 3 4 5 6 7 

o IPMASK I //////////////////////////////////////////////////// 
8 //////1/////////////////////////////////////////////////////// 

10 ////////////////////////////////////////////////////////////// 

18 ////////////////////////////////////////////////////////////// 

20 ////////////////////////////////////////////////////////////// 

Figure 55. lUCY SETMASK Input Parameter List 

IPMASK 
specifies the mask byte to determine which of the APPC jVM and 
lUCy interrupts a virtual machine is to be enabled for. 

For example, if lPMASK contains X'CO', this means that the virtual 
machine is enabled for APPC message interrupts and SENDREQ 
interrupts, but disabled for all other interrupts. 

lPSNDN (X'80')--You enabled for Type X'09', nonpriority message 
interrupts (non-APPC), and Type X'89', message pending 
interrupts (APPC). 

lPSNDP (X' 40')-You enabled for Type X'08', priority message 
interrupts (non-APPC), and Type X'88', SENDREQ interrupts 
(APPC). 

lPRPYN (X'20')---You enabled for Type X'07', nonpriority reply 
interrupts (non-APPC), and Type X'87', function complete 
interrupts (APPC). 

166 Transparent Services Access Facility Reference 



SETMASK Function (IUCV) 

IPRPYP (X'lO'}-You enabled for Type X'06', priority reply interrupts 
(non-APPC only). 

IPCTRL (X'08')-You enabled for control interrupts (non-APPC and 
APPC). 

(X'04') - Reserved (Should be set to zero). 
(X'02') - Reserved (Should be set to zero). 
(X'Ol') - Reserved (Should be set to zero). 

Error Codes and Exceptions 

Condition Codes 

CC=o CC=l CC=2 CC=3 / 

X Not Possible Not Possible Not Possible 

CC=O 
Normal completion. 

SETMASK Program Exceptions 

The program exceptions for SETMASK are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation A normal interrupt buffer has not been 
declared with the the DCLBFR function, 
or the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

State Changes 

No states are associated with the SETMASK function. 

SETMASK Completion 

The SETMASK function completes immediately. 

Chapter 7. APPC/VM and lUCY Communication Functions 167 



SETMASK Function (IUCV) 

What Happens to Your Communication Partner 

Not applicable. 

168 Transparent Services Access Facility Reference 



APPCVM SEVER 

SEVER Function (APPC/VM) 

Function Code: X'OF' 

This function breaks a communications path with another virtual machine 
or your own virtual machine. After severing the connection with the other 
virtual machine, you cannot send or receive any other messages on that 
connection. Remember that your communication partner cannot receive 
any of the data that has not yet been copied out of your storage. 

The APPCVM SEVER syntax is: 

label APPCVM SEVER, Required 
PRMLIST = label/(reg), Required 
TYPE = NORMAL/ABEND, Required 
CODE = label/(reg), Optional 
MF = L, Optional 
PATHID = label/(reg) Optional 

PRMLIST = label/(reg) 
lets you specify the address of the APPCjVM parameter list. The 
address must be a guest real address (real to the virtual machine), and 
the parameter list must be on a doubleword boundary. 

label 

reg 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

TYPE = NORMAL/ABEND 
indicates the type of SEVER that is to be performed. 

• TYPE = NORMAL severs the path normally. You can only sever 
the path normally if you are in SEND state and not in the middle 
of sending a logical record, or if you are in SEVER state. 

• TYPE = ABEND severs the path abnormally. APPCjVM invokes 
SEVER TYPE = ABEND from SEND, RECEIVE, or CONFIRM 
state, even if there is a function that still has not completed on the 
specified path. 

CODE = label/(reg) 
specifies a 2-byte SEVER code. CODE is only valid when you specify 
TYPE = ABEND. IBM defines all the codes; applications may not 
define error or SEVER codes for their own use. 

Chapter 7. APPCjVM and IUCV Communication Functions 169 



SEVER' Function (APPC/VM) 

label 
is the relocatable label in storage of the 2-byte SEVER code. 

reg 
is the register number that contains the address of the SEVER 
code. 

When CP issues a SEVER, or your communication partner issues an 
IUCV SEVER or RTRVBFR, CP determines the SEVER code to 
reflect. This code is X'0610'. See "APPC/VM Error/SEVER Codes" on 
page 183 for a complete list of the SEVER codes. 

MF=L 
expands the APPCVM macro to generate the instructions necessary to 
initialize the APPC/VM parameter list as specified, but not to invoke 
the APPCjVM function. 

PATHID = label/(reg) 
lets you specify the path id that is to be severed. 

label 
is the relocatable label of a halfword that contains the path id. 

reg 
is the register number that contains the path id in the low-order 
halfword. 

SEVER Codes That You Can Issue 

When you can specify each SEVER code depends on the state of your path. 
However, you can issue IUCV SEVER on any APPC path at any time. 

• If you are in CONNECT state, you can only issue IUCV SEVER. 

• After you ACCEPT the connection, and before you issue any other 
function on the path, you can issue any of the following APPCVM 
SEVERs in addition to IUCV SEVER: 

APPC Error Condition APPC/VM 
Code 

CONVERSATION_ TYPE_MISMATCH X'0120' 

SYNC_LEVEL_NOT _SUPPORTED _BY _PGM X'0130' 

TRANS_PGM_NOT_AVAIL_NO_RETRY X'0140' 

TRANS_PGM_NOT_AV AIL_RETRY X'0141' 

TPN_NOT_RECOGNIZED X'0142' 

170 Transparent Services Access Facility Reference 



SEVER Function (APPC/VM) 

APPC Error Condition APPC/VM 
Code 

PIP _NOT _SPECIFIED _ CORRECTL Y X'0150' 

DEALLOCATE_ABEND_PROG X'021O' 

• After the path is established (that is, the CONNECT/ACCEPT sequence 
is complete), you can issue the following APPCVM SEVER in addition 
to IUCV SEVER: 

APPC Error Condition APPC/VM 
Code 

DEALLOCATE_ABEND_PROG X'021O' 

The SEVER type and code presented to your partner may not always be the 
SEVER type and code that you specified. For example, if your partner 
issues a SENDERR from RECEIVE state, a SEVER code of . 
DEALLOCATE_ABEND_PROGis presented to your partner as 
DEALLOCATE_NORMAL in the completion data of your partner's 
SENDERR See "APPCVM SENDERR" on page 149 for more information. 

See "APPCjVM Error/SEVER Codes" on page 183 for a complete list of the 
SEVER codes. 

SEVER Parameter Ust 

o 
8 

10 

18 

20 

o 
The APPCVM SEVER parameter list has the following input format: 

1 2 3 4 5 6 7 

IPPATHID I IPFLAGSll ////////1 IPCODE I IPFLAGS21IPSENDOP 
////1///////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

/~//////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 56. APPCVM SEVER Input Parameter List 

The supplied parameters are: 

IPPATHID 
contains the path id being severed. 

IPFLAGSI 
contains the input flag: 

IPAPPC (X'08')--The APPC SEVER function was issued. 

Chapter 7. APPCNM and IUCV Communication Functions 171 



SEVER Function (APPC/VM) 

IPCODE 
contains the SEVER code. IPCODE is only valid when 
IPSENDOP = IPSABEND. See "APPCjVM Error/SEVER Codes" on 
page 183 for a description of the SEVER codes. 

IPFLAGS2 
contains the input flag: 

IPCOMSRV (X'20')-means that the SEVER is on behalf of another 
user. Only an authorized user (OPTION COMSRV in 
directory) can specify IPCOMSRV. When you do specify 
IPCOMSRV, CP does not verify the SEVER code. It is 
your responsibility to ensure that the code is valid. 

IPSENDOP 
contains one of the following SEND option codes: 

IPSNORM (08)-You requested that the path be severed normally. 
IPSABEND (09)-You requested that the path be severed 

abnormally. 

Error Codes and Exceptions 

Condition Codes 

CC=O CC=l CC=2 CC=3 

Not Possible X X Not Possible 

CC=l 
An error occurred. The parameter list format is the same as the input 
shown in "SEVER Parameter List" on page 171, except that the return 
code is stored in IPRCODE. 

You may get the following return codes (listed here in decimal): 

01 You specified a path id that is not y'et established. 

03 A function is pending on this path. 

29 You are not authorized to act for another user. 

30 You specified an APPC/VM function on a non-APPC path. 

32 APPC/VM SEVER is an invalid function from CONNECT state. 

34 SEVER TYPE = NORMAL is an invalid function from RECEIVE 
state. 

172 Transparent Services Access Facility Reference 



SEVER Function (APPC/VM) 

35 SEVER TYPE = NORMAL is an invalid function from CONFIRM 
state. 

36 SEVER TYPE = ABEND is an invalid function from SEVER state. 

38 There is an invalid value in the IPSENDOP field. 

44 Before invoking SEVER TYPE = NORMAL, you started, but did 
not finish, sending a logical record. 

46 You specified an invalid SEVER code. 

CC=2 
SEVER completed (see "SEVER Completion" on page 174). The output 
parameter list is the same as the input shown in "SEVER Parameter 
List" on page 17l. 

SEVER Program Exceptions 

State Changes 

The program exceptions for SEVER are: 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation An external interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specifica tion The parameter list is not on a doubleword 
boundary. 

State checks depend on the TYPE you specify: 

• When TYPE = NORMAL, a state check occurs (IPRCODE = 32, 34, or 35) 
if the virtual machine is not in SEND or SEVER state on this path. 

• When TYPE = NORMAL, a state check occurs (IPRCODE = 44) if the 
virtual machine is in SEND state on this path and started, but did not 
finish, sending a logical record. 

• When TYPE = ABEND, a state check occurs (IPRCODE = 32 or 36) if the 
virtual machine is in CONNECT or SEVER state on this path. 

When your virtual machine regains control after successfully completing 
the SEVER (CC = 2), you enter the RESET state. 

Chapter 7. APPC/VM and IUCV Communication Functions 173 



SEVER Function (APPC/VM) 

SEVER Completion 

No state change occurs when CC = 1. 

The SEVER function completes immediately. After SEVER completes, you 
cannot issue any other functions on that path. 

You cannot issue SEVER TYPE = NORMAL if there is another function 
outstanding on the path. You can, however, issue SEVER TYPE = ABEND 
even if there is an outstanding function on a path. CP may not present the 
outstanding function to your communication partner. For example, if you 
issue the following sequence of commands, your communication partner is 
notified of the SEVER, but not the SEND ERR: 

1. SENDERR 

2. SEVER TYPE = ABEND (before your partner receives the SENDERR) 

Also, for example, in the following sequence of commands, your 
communication partner cannot receive more than the amount of data 
specified in the RECEIVE. 

1. You issue a SENDDAT A BUFLEN = 200. 

2. Your communication partner issues a RECEIVE BUFLEN = 100. 

3. You issue a SEVER TYPE = ABEND. 

CP notifies your communication partner of the SEVER with a SEVER 
interrupt. In addition, CP notifies your partner the next time your partner 
issues a function on which CP can report the SEVER. 

What Happens to Your Communication Partner 

Your communication partner may be affected different ways, depending on 
the sequence of functions that you issue. Any of the following conditions 
can occur: 

• You issue CONNECT, and then issue IUCV SEVER before your partner 
gets the connection pending interrupt. In this case, your partner does 
not get a connection pending interrupt or a SEVER interrupt. 

• You issue CONNECT, and then issue IUCV SEVER after your partner 
gets the connection pending interrupt, but before your partner issues 
ACCEPT. In this case, if your partner is enabled for SEVER interrupts, 
your partner gets a SEVER interrupt. 

• You issue an IUCV SEVER after receiving a connection pending 
interrupt, instead of issuing an ACCEPT. If your partner issued: 

174 Transparent Services Access Facility Reference 



SEVER Function (APPC/VM) 

- CONNECT with WAIT = NO and is enabled for SEVER interrupts, 
your partner gets a SEVER interrupt. 

- CONNECT with WAIT = YES, your partner's CONNECT completes 
with a SEVER indication. 

• You issue a SEVER TYPE = NORMAL or SEVER TYPE = ABEND 
(whichever is appropriate) anytime after you and your partner have 
established a path (that is, after the CONNECT/ACCEPT sequence is 
complete). In this case, if your partner is enabled for SEVER 
interrupts, your partner gets a SEVER interrupt. 

In addition to the SEVER interrupt, if your partner has a RECEIVE, 
SENDDATA, SENDCNF, or SENDERR outstanding on its half of the 
path, the function completes. 

If your partner issues a RECEIVE, SENDDATA, SENDCNF, or 
SENDERR after you have issued the SEVER, your partner's function 
completes immediately. Your partner gets an indication of 
IPWHATRC=IPSNORM or IPWHATRC=IPSABEND. 

When your partner gets the SEVER interrupt, its state does not change to 
SEVER state. Your partner only enters SEVER state after a function 
completes (IPTYPE = X'87') with IPWHATRC = IPSNORM or 
IPWHATRC = IPSABEND. 

SEVER External Interrupt 

o 
8 

10 

18 

20 

o 1 2 

The SEVER external interrupt on the APPC/VM path has the following 
format: 

3 4 5 6 7 

IPPATHID 1////////1 IPTYPE t IPCODE IIPWHATRCI/////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

Figure 57. SEVER External Interrupt 

The parameters are: 

IPPATHID 
contains the path id being severed. 

IPTYPE 
contains the interrupt type for SEVER (IPTYPSV A, X'83'). 

Chapter 7. APPC/VM and IUCV Communication Functions 175 



SEVER Function (APPC/VM) 

IPCODE 
contains the SEVER code from the partner's SEVER. See 
"APPC/VM Error/SEVER Codes" on page 183 for a description of 
the error/SEVER codes. 

IPWHATRC 
contains the what-received code: 

IPSNORM (08)-Y our partner issued a SEVER TYPE = NORMAL. 
IPSABEND (09)-Your partner issued SEVER TYPE = ABEND. 

Non-APPC SEVERs, with ALL specified as YES or NO, function on APPC 
paths. CP ignores the user data field and ret1ects a SEVER 
TYPE -c=ABEND to your communication partner. The SEVER code is 
X'0610'. 

176 Transparent Services Access Facility Reference 



IUCV TESTCMPL 

TESTCMPL Function (IUCV) 

Function Code: X'07' 

TESTCMPL determines if any messages or functions have been completed. 
You can identify a specific path when you invoke this function. If you do 
not specify a path, the next function on the queue of completed functions (if 
there is a function) is displayed. 

TESTCMPL does not present functions completed on control paths. 

The VM System Facilities for Programming describes the lUCY version of 
this function unrelated to APPC/VM. Parameters other than those listed 
here are available, but have no meaning on APPC/VM paths and are 
ignored. 

The lUCY TESTCMPL syntax is: 

label IUCV TESTCMPL, 
PRMLIST = label/(reg), 
MF=L, 
PATHID = label/(reg) 

PRMLIST = label/(reg) 

Required 
Required 
Optional 
Optional 

lets you specify the address of the lUCY parameter list. The address 
must be a guest real address (real to the virtual machine), and the 
parameter list must be on a double word boundary. 

label 

reg 

MF=L 

is the relocatable label of the parameter list. 

is the register number that contains the address of the parameter 
list. 

expands the lUCY macro to generate the instructions necessary to 
initialize the lUCY parameter list as specified, but not to invoke the 
lUCY function. 

PATHID = label/(reg) 
lets you identify the path id to do the test completion. 

label 
is the relocatable label of a halfword that contains the path id. 

Chapter 7. APPC/VM and IUCV Communication Functions 177 



TESTCMPL Function (IUCV) 

reg 
is the register number that contains the path id in the low-order 
halfword. 

TESTCMPL Parameter List 

The lUCY TESTCMPL parameter list has the following input format: 

o 1 2 3 4 5 6 7 

o IPPATHID IIPFLAGSll /// ///// / / // / ///// / / / ///////// //// // / /// 

8 // // // / / / // / / // //// /////// / //// // //// / / //// / ////// /// //////// 

10 // ////////// // // / / / /////// / ///// / // / ///// / /////////////////// 

18 / ////////////////// / // / / / / / ///// / ///// / ///////////// / / J////// 

20 //// //// / / //////// // / // / /// / ////// //// / / ///// / / /// / /// / ////// 

Figure 58. IUCV TESTCMPL Input Parameter List 

The supplied parameters are: 

IPPATHID 

IPFLAGSI 

contains the path id on which you want to complete the function. 
This parameter is only valid when the IPFGPID flag is set. 

contains the following input flag: 

IPFGPID (X'02'}-means that you specified path id. 

Error Codes and Exceptions 

Condition Codes 

cc=o 
Normal completion. 

The output parameter list is: 

178 Transparent Services Access Facility Reference 



o 
8 

10 

18 

20 

o 

TESTCMPL Function (lUCY) 

1 2 3 4 5 6 7 

IPPATHID I ////// IPTYPE I IPCODE lIPWHATRCIIPSENDOP 
IPAUDIT ///////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

////////////////////////////////////////////////////////////// 

IPBFLN2F I /////////////////////////////// 

Figure 59. IUCV TESTCMPL Output Parameter List 

The parameters are: 

IPSENDOP 
contains one of the following SEND option codes: 

IPDATA (Ol)--SENDDATA RECEIVE=NO is being 
completed. 

IPSNDRCV (02)--SENDDATA RECEIVE = YES is being 
completed. 

IPERROR (03)--SENDERR is being completed. 
IPCNFRM (04)--SENDCNF TYPE = NORMAL is being 

completed. 
IPCNFSEV (05)--SENDCNF TYPE = SEVER is being completed. 
IPRECV (10)--RECEIVE is being completed. 

The contents of the other fields in this parameter list depend on what 
function has completed. The function that has completed is indicated in 
IPSENDOP. See the CC = 2 description under the specific function being 
completed for more information. 

CC=1 
An error occurred. The parameter list format is the same as the input 
shown in "TESTCMPL Parameter List" on page 178, except the return 
code is stored in IPRCODE. 

You may get this return code (listed here in decimal): 

01 You specified a path id that is not yet established. 

CC=2 
IUCV did not find any APPCfVM function completes or IUCV message 
completes. 

CC=3 
Nonzero IPAUDIT stored. 

Chapter 7. APPCjVM and IUCV Communication Functions 179 



--------------- - --- - -

TESTCMPL Function (IUCV) 

TESTCMPL Program Exceptions 

The program exceptions for the lUCY TESTCMPL are: 

State Changes 

Type Description 

Addressing The parameter list address is outside of 
the virtual machine. 

Operation A normal interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

Protection The storage key of the parameter list 
address does not match the key of the 
user. 

Specification The parameter list is not on a doubleword 
boundary. 

The state of the path on which the function is being completed is set 
according to the function. See each function description for details. 

TESTCMPL Completion 

The TESTCMPL function completes immediately. 

What Happens to Your Communication Partner 

Not applicable. 

180 Transparent Services Access Facility Reference 



IUCV TESTMSG 

TESTMSG Function (IUCV) 

Function Code: X'Ol' 

TESTMSG (Test Message) lets you avoid using external interrupt handling. 
When you invoke the TESTMSG function, your virtual machine enters a 
WAIT state if none of the following are pending: 

• SENDREQ interrupts (APPC) 
e Function complete interrupts (APPC) 
• Message pending interrupts (non-APPC and APPC) 
• Message complete interrupts (non-APPC). 

If any of these interrupts become pending while your virtual machine is in 
the WAIT state, the virtual machine re-executes the TESTMSG function. 
TESTMSG then returns a condition code. TESTMSG ignores APPCjVM 
message pending interrupts unless the path corresponding to the message 
pending is in RECEIVE state. 

TESTMSG does not receive or describe the interrupt. You must use 
RECEIVE, DESCRIBE or TESTCMPL, or enable for interrupts to clear the 
interrupt. 

TESTMSG ignores interrupts pending on control paths. 

The VM System Facilities for Programming describes the IUCV version of 
this function unrelated to APPCjVM. 

The IUCV TESTMSG syntax is: 

label IUCV TESTMSG Required 

TESTMSG Parameter List 

The TESTMSG function does not use a parameter list. 

Chapter 7. APPC/VM and IUCV Communication Functions 181 



------------- --- -

TESTMSG Function (IUCV) 

Error Codes and Exceptions 

Condition Codes 

I cc~o I :C~l 

CC=l 
A message or SENDREQ indication is pending. 

CC=2 
A message completion or function completion is pending. 

CC=3 
One or more conditions causing a condition code 1 and one or more 
conditions causing a condition 'code 2 are pending. 

TESTMSG Program Exceptions 

, The program exceptions for TESTMSG are: 

State Changes 

TESTMSG Completion 

Type Description 

Operation A normal interrupt buffer has not been 
declared with the DCLBFR function, or 
the invoker is not in supervisor state. 

No states are associated with the TESTMSG function. 

The TESTMSG function completes when control is returned to your virtual 
machine. 

What Happens to Your Communication Partner 

Not applicable. 

182 Transparent Services Access Facility Reference 



Communication Functions. 

APPC/VM Error/SEVER Codes 

APPC/VM defines 2-byte error and SEVER codes. Applications may not 
define any APPC/VM error or SEVER codes for their own use. 

When CP does a SEVER, or when your communication partner issues IUCV 
SEVER or RTRVBFR, CP determines the SEVER code to reflect. This code 
is X'0610'. 

The following is a list of the defined APPCjVM error/SEVER codes. See 
the SNA Transaction Programmer's Reference Manual For LU Type 6.2 for 
a description of the meaning of each error condition. This manual also 
describes when to use each error/SEVER code. 

"SEVER Codes That You Can Issue" on page 170 lists the SEVER codes 
that you can specify in your applications. Communication servers can issue 
any valid SEVER code at any time. For example, after the local path is 
established, the communication server may have to report an allocation 
failure to the local program. 

Note: Code your applications to be adaptable to change if any additional 
SEVER codes are defined. 

The following three tables list all of the currently defined SEVER codes: 

APPC Error Condition APPC/VM Code 

ALLOCATION_FAILURE_NO_RETRY X'OllO' 

ALLOCATION_FAILURE_RETRY X'Olll' 

CONVERSATION_TYPE_MISMATCH X'0120' 

SYNC _LEVEL_NOT _SUPPORTED _BY _PGM X'0130' 

SYNC _LEVEL_NOT _SUPPORTED _BY _L U X'0131' 

TRANS_PGM_NOT_AVAIL_NO_RETRY X'0140' 

TRANS_PGM_NOT_A V AIL_RETRY X'0141' 

TPN_NOT_RECOGNIZED X'0142' 

PIP _NOT_SPECIFIED_CORRECTLY X'0150' 

DEALLOCATE_ABEND_PROG X'0210' 

DEALLOCATE_ABEND_SVC X'0220' 

DEALLOCATE_ABEND _TIMER X'0230' 

INVALID_LU_NAME X'0301' 

INV ALID MODE_NAME X'0302' 

Figure 60 (Part 1 of 2). APPC/VM Error Codes 

Chapter 7. APPC/VM and IUCV Communication Functions 183 



Communication Functions 

APPC Error Condition APPC/VM Code 

RESOURCE FAILURE NO RETRY4 X'0610' 
ALLOCATION_F AlLURE_NO _RETRY 

RESOURCE_F AlLURE_RETRY X'0620' 

Figure 60 (Part 2 of 2). APPC/VM Error Codes 

The following table lists the codes that are possible when your 
communication partner issues SENDERR from within the VM collection: 

APPC Error Condition APPC/VM Code 

PROG_ERROR_NO _TRUNC X'0410' 

PROG_ERROR_TRUNC X'0420' 

PROG_ERROR_PURGING X'0430' 

Figure 61. APPC/VM SENDERR Codes from Within the TSAF Collection 

The following table lists the SENDERR codes that are currently defined: 

APPC Error Condition APPC/VM Code 

PROG_ERROR_NO _TRUNC X'0410' 

PROG_ERROR_TRUNC X'0420' 

PROG_ERROR_PURGING X'0430' 

SVC _ERROR_NO _TRUNC X'0510' 

SVC_ERROR_TRUNC X'0520' 

SVC_ERROR_PURGING X'0530' 

Figure 62. APPC/VM-Defined SENDERR Codes 

4 X'061O' on the CONNECT functions means an 
ALLOCATION_FAILURE_NO_RETRY. On all other functions X'061O' means 
a RESOURCE]AILURE_NO_RETRY. 

184 Transparent Services Access Facility Reference 



APPCjVM is a means of communication between two virtual machines. 
This APPCjVM interface provides a limited set of the SNA LU 6.2 base 
communication functions. See the Systems Network Architecture 
Transaction Programmer's Reference Manual for LU Type 6.2 for more 
specific information on the LU 6.2 protocol. This chapter maps APPCjVM 
functions with the APPC functions provided with the SNA LU 6.2 protocol. 

Appendix B, "APPC - APPCjVM Mapping Summary" on page 233 contains 
a summary of the mapping between APPC and APPCjVM. 

Conversations with APPC 

Programs that connect to a resource and the resource manager must follow 
the rules of an APPC conversation. APPCjVM supports and enforces these 
rules, as described in the following sections. 

Starting a Conversation 

If your virtual machine manages a resource, and another virtual machine is 
trying to establish a path to the resource (you receive a connection pending 
interrupt), check to be sure that the connection pending interrupt is for an 
APPC connection. Do not assume that the virtual machine trying to 
connect is on the local TSAF collection, or that the virtual machine is a 
VM program. 

The resource manager virtual machine is responsible for invoking the 
transaction program and verifying the contents of the FMH5. CP 
recognizes nothing smaller than the resource manager virtual rpachine. 
CMS and GCS recognize nothing smaller than a program. In general, in 

_ the CMS and GCS environments, each inbound connection does not cause 
the resource manager to create another instance of the transaction 
program. Instead, the program is notified that another path is being 
established. 

It is the program's responsiblity to receive the Attach FMH5 (optionally) 
. and save its relevant contents. In addition, the program must issue an 
IUCV ACCEPT before communicating on the APPCjVM path. ACCEPT is 
not part of the APPC architecture. If there is something wrong in the 
Attach FMH5 data (for example, the program does not support the 
synchronization level specified), then it is the program's responsibility to 
SEVER the connection with the appropriate SEVER code. 

Chapter 8. APPC Verbs Mapped with APPCjVM Functions 185 



APPC Mapped with APPC/VM 

After the CONNECT/ACCEPT sequence has been successfully completed on 
both sides, the two programs can exchange data using the half-duplex 
protocol of an APPC conversation. APPCjVM fully supports the basic 
functions of this communication. 

APPC Functions Not Supported 

APPC/VM supports the base set of APPC basic conversation functions. 
APPC/VM does not provide support for mapped conversations or operator 
control verbs. Although not explicitly provided, you can use the following 
APPC option sets by providing a general purpose application running on 
top of APPCjVM: 

• The GET_ATTRIBUTES verb 
• The GET_TYPE verb 
• The FILL(LL) option ofRECEIVE __ AND_WAIT. 

APPC Return Codes 

CP reports errors that it finds in the IPRCODE or IPAUDIT field. The 
application or communication servers report errors that they find in the 
IPCODE field on SEVER or SEND ERR functions. This same condition may 
be reported in IPRCODE, IPAUDIT, or IPCODE depending on the 
following: 

• Whether or not the path goes through an intermediate communication 
server (for example, TSAF), and 

• Where CP detected the error along the path. 

CP does not report the error in both IPRCODE/IPAUDIT and IPCODE at 
the same time. 

The tables in the following sections have entries for the return code (or 
condition), and the corresponding IPRCODE and/or IPCODE. 

When an application receives an error via an IPRCODE, the application 
should sever. The application can sever the path using the APPCVM 
SEVER function with a SEVER code that indicates 
DEALLOCATE_ABEND_PROG. 

There are some APPC/VM return codes that do not correspond to defined 
APPC return codes. The IUCV return codes that do not correspond to any 
defined APPC return code are not discussed in this chapter. 

186 Transparent Services Access Facility Reference 



APPC Mapped with APPC/VM 

APPC/VM Interrupts 

APPCjVM uses external interrupts to signal certain events. The interrupts 
are: 

• Those that allow applications to process other paths while waiting for 
input or a function to complete on other paths: 

Message pending interrupts 
Connection pending interrupts 
Function complete interrupts 
Connection complete interrupts. 

This asynchronous capability of APPCjVM is not based on the APPC 
architecture functions (POST_ON_RECEIPT, WAIT, and TEST), but, 
instead, is a VM-unique asynchronous implementation. 

• Those that asynchronously indicate your partner has issued a 
SENDREQ or a SEVER: 

SENDREQ interrupts 
SEVER interrupts. 

Programs must take care when taking advantage of the asynchronous 
nature of the SENDREQ and SEVER interrupts. For example, deadlock 
may result if an application waits for a SENDREQ interrupt before 
continuing processing. Though SENDREQ and SEVER interrupts are 
asynchronous, they may not always travel from the invoker to the target 
without the target issuing the appropriate verbs. The APPC architecture 
specifies the verbs on which the SENDREQ may be reported to the target. 

Asynchronous APPC 

I CONNECT 

WAIT 

I SEND 

WAIT 

I RECEIVE 

WAIT 

Figure 63. An APPC/VM Program 

In Figure 63, the white area indicates the APPCjVM verbs that correspond 
to APPC. The shaded area indicates the asynchronous functions of 
APPCjVM that do not correspond to the APPC architecture. These 
APPCjVM functions do not correspond to any function of APPC. A 
program that wants to avoid non-APPC functions should: 

• Only use the APPCjVM functions and IUCV DCLBFR and RTRVBFR 
• Be enabled only for connection pending interrupts. 

Chapter 8. APPC Verbs Mapped with APPCjVM Functions 187 



APPC ALLOCATE Verb 

APPC ALLOCATE 

Parameters 

The APPC ALLOCATE verb maps to the APPC/VM function, CONNECT. 

Do not make assumptions about the target of the CONNECT when the 
CONNECT completes. Your CONNECT may complete before the target 
program is even invoked. 

The following list maps APPC parameters to APPC/VM parameters. Each 
entry lists the APPC parameter first, followed by the APPC/VM parameter 
in italics. 

LU_NAME - first 8 bytes of the connection extension 
Each TSAF collection is an SNA LU. The first eight bytes of the 
connection extension must be zero in APPC/VM to specify LU_NAME 
(OWN). The parameter value LU_NAME (OWN) is an optional 
parameter. It is not part of the base set. 

MODE_NAME - mode name in the connection extension 
The APPC MODE_NAME(variable) corresponds to the mode name 
field in the connect parameter list extension. If you want APPC/VM 
to use the default mode name for the LU, specify a mode name of zeros 
in APPC/VM. 

Mode names are 8 bytes in APPC/VM. 

TPN - RESID 
APPC TPN(variable) corresponds to the IPRESID field in the connect 
parameter list. 

TYPE - no parameter 
APPC/VM only supports TYPE(BASIC_CONVERSATION). 

RETURN_CONTROL(WHEN_SESSION_ALLOCATED) - no parameter 
APPC/VM only supports 
RETURN_CONTROL(WHEN_SESSION_ALLOCATED), so you do not 
need a parameter in APPC/VM. APPC/VM does not support the 
option sets: 

• RETURN_ CONTROL(DELA YED _ALLOCATION_PERMITTED) 

• RETURN_ CONTROL(IMMEDIATE). 

Note: The program may use WAIT = NO and get control back before 
the ALLOCATE sequence completes. However, the program may not 
use the path because the CONNECT has not yet completed. 

188 Transparent Services Access Facility Reference 



APPC ALLOCATE Verb 

Therefore, this maps to 
RETURN_CONTROL(WHEN_SESSION_ALLOCATED) on the path. 

SYNC LEVEL - SYNCL VL 
APPC/VM supports the APPC options: 

• SYNC_LEVEL(NONE) as SYNCLVL=NONE 

• SYNC_LEVEL(CONFIRM) as SYNCLVL = CONFIRM. 

APPC/VM does not support the option set SYNCLVL(SYNCPT). 

SECURITY - no parameter 
APPC/VM does not support the security option set. 

PIP - no parameter 
APPCjVM does not support the PIP option set. 

RESOURCE - IPPATHID 
The resource id returned in APPC/VM is a path id. The path id is a 
halfword number. 

RETURN CODE-IPRCODEandIPCODE 
The APPC RETURN_CODE variable corresponds to: 

• The APPC/VM IPRCODEof CONNECT 

• The APPC/VM IPCODE in the SEVER indication. 

The connecting program must look at the IPRCODE when it receives 
a CC = 1 on CONNECT. Also, if your partner rejects the connection 
with SEVER, then the connecting program must look at IPCODE to 
determine the allocation error. 

RETURN CODE IPRCODE IPCODE 

OK 0 Not 
applicable 

ALLOCA TION_ERROR 
ALLOCATION_FAILURE_RETRY 11,12,13,14 X'Olll' 
ALLOCATION_F AIL URE_NO _RETRY 15 X'0110' 

X'061O' 

PARAMETER_ERROR 
Invalid LV name 40 Not 
Invalid mode name 41 applicable 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 189 



APPC ALLOCATE Verb 

State Changes 

ABEND Conditions 

For either of the following: 

• APPC ALLOCATE 
• APPC/VM CONNECT, 

you, the invoker, are in SEND state when the function completes 
successfully. 

The ABEND conditions are: 

Parameter Check Condition IPRCODE 

MODE_NAME(SNASVCMG) is not 41 
supported. 

The program is not allowed to specify 41 
MODENAME(SNASVCMG). 

190 Transparent Services Access Facility Reference · 



APPC CONFIRM 

Parameters 

APPC CONFIRM Verb 

The APPC CONFIRM verb maps to the APPCjVM function, SENDCNF 
TYPE = NORMAL. 

The following list maps APPC parameters to APPCjVM parameters. Each 
entry lists the APPC parameter first, followed by the APPCjVM parameter 
in italics. 

RESOURCE - PATHID 
The resource id returned in APPCjVM is a path id. The path id is a 
halfword number. 

REQUEST_TO_SEND_RECEIVED 
APPCjVM indicates that the partner issued REQUEST_TO_SEND by 
reflecting a SENDREQ interrupt. 

RETURN CODE-IPCODE 
The APPC RETURN_CODE variable corresponds to: 

• The APPCjVM IPCODE of SEND ERR 

• The APPCjVM IPCODE of SEVER. 

If the SENDCNF completes with a SENDERR or SEVER, then the 
virtual machine that invoked SENDCNF should look at the IPCODE 
field to determine the error. 

RETURN CODE IPCODE 
OK X'OOOO' 

ALLOCATION_ERROR Anyalloc 
error code 

DEALLOCATE_ABEND_PROG X'0210' 

DEALLOCATE_ABEND_SVC X'0220' 

DEALLOCATE_ABEND_TIMER X'0230' 

PROG_ERROR_PURGING X'0430' 

RESOURCE_FAIL URE_NO_RETRY X'0610' 

RESOURCE_F AILURE_RETRY X'0620' 

SVC_ERROR_PURGING X'0530' 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 191 



APPC CONFIRM Verb 

State Changes 

No state changes occur. APPC/VM does not support the DEFER state. 

ABEND Conditions 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 

SYNC_LEVEL(NONE) 37 

Invalid resource id 1 

The state check conditions follow: 

State Check Condition IPRCODE 

Conversation not in SEND state. 32, 34, 35, 36 

Conversation started but did not finish 44 
sending a logical record 

192 Transparent Services Access Facility Reference 



APPC CONFIRMED Verb 

APPC CONFIRMED 

Parameters 

State Changes 

ABEND Conditions 

The APPC CONFIRMED verb maps to the APPC/VM function, 
SENDCNFD. 

The following maps the APPC parameter to the APPC/VM parameter. The 
entry lists the APPC parameter first in blue, followed by the APPC/VM 
parameter in italics. 

RESOURCE - PATHID 
The resource id returned in APPC/VM is a path id. The path id is a 
halfword number. 

Your program may be in either of the following states: 

• RECEIVE, if the SENDCNFD is in response to a SENDCNF 
TYPE = NORMAL 

• SEVER, if the SENDCNFD is in response to a SENDCNF 
TYPE = SEVER. SEVER state is the APPC/VM equivalent of 
DEALLOCATE state. 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 

Invalid resource id 1 

The state check conditions follow: 

State Check Condition IPRCODE 

Conversation not in CONFIRM state. 32, 33, 34, 36 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 193 



APPC DEALLOCATE Verb 

APPC DEALLOCATE 

Parameters 

The APPC DEALLOCATE verb maps to the APPCjVM functions, SEVER 
and SENDCNF TYPE = SEVER. 

The following list maps APPC parameters to APPC/VM parameters. Each 
entry lists the APPC parameter first in blue, followed by the APPCjVM 
parameter in italics. 

RESOURCE - PATHID 
The resource id returned in APPC/VM is a path id. The path id is a 
halfword number. 

TYPE - TYPE and CODE 

TYPE(SYNC _LEVEL) 
Use the following APPC/VM functions: 

• SEVER TYPE = NORMAL, to do a SYNC_LEVEL(NONE). 

• SENDCNF TYPE = SEVER, followed by SEVER 
TYPE = NORMAL, to do a SYNC_LEVEL(CONFIRM). 

TYPE(FL USH) 
Use APPC/VM SEVER TYPE = NORMAL. 

TYPE(CONFIRM) 
Use the SENDCNF TYPE = SEVER, followed by SEVER 
TYPE = NORMAL, to do a TYPE(CONFIRM). 

TYPE(ABEND _PROG) 
Use APPC/VM SEVER with the appropriate SEVER code 
(CODE = X'210'). 

TYPE(ABEND_SVC) and TYPE(ABEND_TIMER) 
APPC/VM does not support these for general applications. 

TYPE(LOCAL) 
Use APPCjVM SEVER TYPE = NORMAL after receiving a 
SEVER from your partner. 

LOG_DATA - no support 
APPCjVM does not support the APPC log data function. 

194 Transparent Services Access Facility Reference 



State Changes 

ABEND Conditions 

APPC DEALLOCATE Verb 

RETURN_CODE-IPRCODEandIPCODE 
For all types of DEALLOCATE, except SYNC_LEVEL(CONFIRM), 
the only possible return code is OK. For SYNC_LEVEL(CONFIRM), 
the same mapping exists as for the return codes from CONFIRM (see 
"APPC CONFIRM" on page 191 for details). 

After the SEVER completes, your program is in RESET state. 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 

Invalid resource id 1 

The state check conditions follow: 

State Check Condition IPRCODE 

Issued TYPE(FLUSH), TYPE(CONFIRM), 32, 34, 35, 36 
TYPE(LOCAL) or TYPE(SYNC_LEVEL) 
from the wrong state. 

Issued TYPE(FLUSH) or 44 
TYPE(SYNC_LEVEL), and the conversation 
started but did not finish sending a logical 
record. 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 195 



APPC GET_ATTRIBUTES Verb 

APPC GET_ATTRIBUTES 

APPCNM provides the function of the GET_ATTRIBUTES verb, but does 
not provide a specific APPC/VM function. 

The transaction program is responsible for remembering: 

• The MODE_NAME from the VM area of the initial receive of the 
FMH5 

• The PARTNER_LU_NAME from the VM area of the initial RECEIVE 
of the FMH5 

• The SYNC_LEVEL in the connection pending interrupt and/or FMH5 
ATTACH. 

APPC/VM does not provide: 

• OWN_FULLY_QUALIFIED_LU_NAME 
• PARTNER_FULLY_QUALIFIED_LU_NAME. 

196 Transparent Services Access Facility Reference 



APPC RECEIVE_AND_WAIT 

Parameters 

The APPC RECEIVE_AND_WAIT verb maps to the APPCjVM function, 
RECEIVE. 

The following list maps APPC parameters to APPCjVM parameters. Each 
entry lists the APPC parameter first, followed by the APPCjVM parameter 
in italics. 

RESOURCE - PATHID 
The resource id returned in APPCjVM is a path id. The path id is a 
halfword number. 

FILL - no parameter 
APPC/VM supports FILL(BUFFER), but does not support FILL(LL). 

DATA - BUFFER 
The APPC parameter, DATA(variable), and the APPCjVM parameter, 
BUFFER =, specifies the address of the buffer to place the data being 
received. 

LENGTH - BUFLEN 
The APPC parameter, LENGTH(variable), and the APPCjVM 
parameter, BUFLEN =, define the RECEIVE area length. 

When control is returned to the program at the completion of 
RECEIVE_AND_WAIT, the LENGTH variable contains the length of 
data received. For APPCjVM, the length variable, IPBFLN2F, 
contains one of the following: 

• The amount of space left in the buffer 

• A count of how much data is pending that did not fit into the 
buffer. 

When you are in SEND state and specify a zero length, the RECEIVE 
completes before the target responds. This maps to 
PREPARE_TO_RECEIVE TYPE (FLUSH). When you issue RECEIVE 
with a zero length from RECEIVE state, it completes immediately 
even if nothing is pending on the path. In APPCjVM, you can use 
RECEIVE and TESTMSG to do the equivalent of an APPC 
RECEIVE_AND_WAIT with a zero length. 

REQUEST_TO _SEND_RECEIVED - SENDREQ interrupt 
APPCjVM indicates that the partner issued REQUEST_TO_SEND by 
reflecting a SENDREQ interrupt. 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 197 



WHAT RECEIVED - IPWHATRC 
You can receive data along with other indicators. 

WHAT_RECEIVED(DATA) 
In APPCjVM, this indication is presented by either 
IPWHATRC=IPDATA or IPWHATRC#IPDATA with the length 
field, IPBFLN2F, less than IPBFLNIF when you issued 
RECEIVE. 

WHAT_RECEIVED(DATA_COMPLETE,DATA_INCOMPLETE, 
LL_TRUNCATED) 
Does not occur in APPCjVM, because APPCjVM does not 
support FILL(LL). 

WHAT_RECEIVED(SEND) 
In APPCjVM, this indication is IPWHATRC = IPSEND. 

WHAT_RECEIVED(CONFIRM) 
In APPCjVM, this indication is IPWHATRC = IPCNFRM. 

WHAT_RECEIVED(CONFIRM_SEND) 
Does not occur in APPCjVM. APPCjVM does not provide 
remote support of PREPARE-TO-RECEIVE. 

WHAT_RECEIVED(CONFIRM_DEALLOCATE) 
In APPCjVM, this function is IPWHATRC = IPCNFSEV. 

WHAT_RECEIVED(TAKE_SYNCPT, TAKE_SYNCPT_SEND, 
TAKE_SYNCPT_DEALLOCATE) 
Does not occur in APPCjVM, because APPC/VM does not 
support the SYNCPT option set. 

RETURN_CODE - IPCODE 
The APPC RETURN_CODE variable corresponds to: 

• The APPC/VM IPCODE of SEND ERR or SEVER TYPE = ABEND 

• The IPWHATRC field of the function. 

If the RECEIVE completes with a SEND ERR or SEVER 
TYPE = ABEND, then the virtual machine that issued RECEIVE 
should look at the IPCODE field to determine the error. IPWHATRC 
reports the DEALLOCATE_NORMAL indication as IPSNORM. 

I~~TURN CODE IIPCODE 

198 Transparent Services Access Facility Reference 



State Changes 

ABEND Conditions 

RETURN CODE IPCODE 
ALLOCATION_ERROR Anyalloc 

error code 

DEALLOCATE_ABEND_PROG X'02l0' 

DEALLOCATE_ABEND_SVC X'0220' 

DEALLOCATE_ABEND_TIMER X'0230' 

PROG_ERROR_NO _TRUNC X'04l0' 

PROG_ERROR_ TRUNC X'0420' 

PROG_ERROR_PURGING X'0430' 

SVC_ERROR_NO_TRUNC X'051O' 

SVC_ERROR_TRUNC X'0520' 

SVC_ERROR_PURGING X'0530' 

RESOURCE_FAILURE_NO _RETRY X'06l0' 

RESOURCE_F AlLURE_RETRY X'0620' 

When RECEIVE completes, your program may be in any of the following 
states: 

• RECEIVE state, when WHAT_RECEIVED is DATA 

• SEND state, when WHAT_RECEIVED is SEND 

• CONFIRM state, when WHAT_RECEIVED is CONFIRM or 
CONFIRM_DEALLOCATE. 

APPC/VM does not support the optional SYNCPT state. Also, no state 
change occurs when the verb is issued in RECEIVE state and 
WHAT_RECEIVED is DATA. 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 
Invalid resource id 1 

The state check conditions follow: 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 199 



State Check Condition IPRCODE 
Conversation not in SEND or RECEIVE 32,35,36 
state 

Conversation started but did not finish 445 

sending a logical record 

This condition may also be reported in IPAUDIT by the IPADITRN flag. 

200 Transparent Services Access Facility Reference 



Parameters 

State Changes 

ABEND Conditions 

AP·PC REQUEST~TO_SEND Verb 

The APPC REQUEST_TO_SEND verb maps to the APPC/VM function, 
SENDREQ. 

The following maps the APPC parameter to the APPC/VM parameter. The 
entry lists the APPC parameter first, followed by the APPC/VM parameter 
in italics. 

RESOURCE - PATHID 
The resource id returned in APPC/VM is a path id. The path id is a 
halfword number. 

No state changes occur. 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 

Invalid resource id 1 

The state check conditions follow: 

State Check Condition IPRCODE 

Conversation not in SEND, RECEIVE, or 32, 33, 36 
CONFIRM state 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 201 



APPC SEND_DATA Verb 

APPC SEND_DATA 

Parameters 

The APPC SEND_DATA verb maps to the APPCjVM function SENDDATA 
RECEIVE = NO. 

The following list maps APPC parameters to APPC/VM parameters. Each 
entry lists the APPC parameter first, followed by the APPCjVM parameter 
in italics. 

RESOURCE - PATHID 
The resource id returned in APPCjVM is a path id. The path id is a 
halfword number. 

DATA - BUFFER 
The APPC parameter, DATA(variable), and the APPCjVM parameter, 
BUFFER =, specify the address of the data to send. 

LENGTH - BUFLEN 
The APPC parameter, LENGTH(variable), and the APPCjVM 
parameter, BUFLEN =, specify the length of the data to send. 

REQUEST_TO_SEND_RECEIVED - SENDREQ interrupt 
APPCjVM indicates that the partner issued REQUEST_TO_SEND by 
reflecting a SENDREQ interrupt. 

RETURN_CODE-andIPCODE 
The APPC RETURN_CODE variable corresponds to: 

• The APPCjVM IPCODE of SENDERR 

• The APPCjVM IPCODE of SEVER. 

If the SENDDATA completes with a SENDERR or SEVER, the virtual 
machine that issued the SENDDATA should look at the IPCODE field 
to determine the error. 

RETURN_CODE IPCODE 

OK X'OOOO' 

ALLOCATION_ERROR Anyalloc 
error code 

DEALLOCATE ABEND PROG X'021O' 

DEALLOCATE_ABEND_SVC X'0220' 

202 Transparent Services Access Facility Reference 



APPC SEND_DATA Verb 

RETURN CODE IPCODE 

DEALLOCATE_ABEND_TIMER X'0230" 

PROG_ERROR_PURGING X'0430' 

SVC_ERROR_PURGING X'0530' 

RESOURCE_F AlLURE_NO _RETRY X'06l0' 

RESOURCE_F AlLURE_RETRY X'0620' 

State Changes 

No state changes occur. APPC/VM does not support the DEFER state. 

ABEND Conditions 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 

Invalid resource id 1 

Invalid logical record length 426 

The state check conditions follow: 

State Check Condition IPRCODE 

Conversation not in SEND state 32, 34, 35, 36 

6 This condition may also be reported in IPAUDIT by the IPADIINV flag. 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 203 



APPC SEND_ERROR Verb 

APPC SEND_ERROR 

Parameters 

The APPC SEND_ERROR verb maps to the APPCjVM function, SENDERR. 

The following list maps APPC parameters to APPCjVM parameters. Each 
entry lists the APPC parameter first, followed by the APPCjVM parameter 
in italics. 

RESOURCE - PATHID 
The resource id returned in APPCjVM is a path id. The path id is a 
halfword number. 

TYPE - no parameter 
APPCjVM only supports the APPC TYPE (PROG) option. APPC/VM 
does not support the APPC TYPE(SVC) option for general 
applications. 

LOG_DATA - no support 
APPCjVM does not support the APPC log data function. 

REQUEST TO SEND RECEIVED - SENDREQ interrupt - - -
APPCjVM indicates that the partner issued REQUEST_TO_SEND by 
reflecting a SENDREQ interrupt. 

RETURN CODE - IPCODE 
The APP,C RETURN_CODE variable corresponds to: 

• The APPCjVM IPCODE of SENDERR or SEVER TYPE = ABEND 

• The IPWHA TRC field of the function. 

If the SEND ERR completes with an indication that the 
communication partner issued a SENDERR or SEVER, the virtual 
machine should look at the IPCODE field to determine the error. 

If you issue SEND_ERROR from the SEND state, the following return 
codes are possible. You may also get an indication of 
DEALLOCATE_NORMAL in IPWHATRC as IPSNORM. 

I ~~TURN CODE IIPCODE 
x'oooo' 

204 Transparent Services Access Facility Reference 



State Changes 

ABEND Conditions 

APPC SEND_ERROR Verb 

RETURN CODE IPCODE 
ALLOCATION_ERROR Anyalloc 

error code 

DEALLOCATE_ABEND_PROG X'0210' 

DEALLOCATE_ABEND_SVC X'0220' 

DEALLOCATE_ABEND_TIMER X'0230' 

PROG_ERROR_PURGING X'0430' 

SVC_ERROR_PURGING X'0530' 

RESOURCE_FAILURE_NO _RETRY X'0610' 

RESOURCE_FAILURE_RETRY X'0620' 

If you issue SEND_ERROR from the RECEIVE state, the following 
return codes are possible. You may also get an indication of 
DEALLOCATE_NORMAL in IPWHATRC. 

RETURN CODE IPCODE 

OK X'OOOO' 

RESOURCE_FAIL URE_NO _RETRY X'061O' 

RESOURCE_FAIL URE_RETRY X'0620' 

If you issue SEND_ERROR from the CONFIRM state, the following 
return codes are possible: 

RETURN CODE IPCODE 

OK X'OOOO' 

RESOURCE_FAILURE_NO _RETRY X'0610' 

RESOURCE_FAIL URE_RETRY X'0620' 

If you issue the SENDERR, you remain in or are put into SEND state. 

The parameter check conditions follow: 

Parameter Check Condition IPRCODE 
LOG_DATA not supported Not 

supported 

Invalid resource id 1 

The state check conditions follow: 

Chapter 8. APPC Verbs Mapped with APPC/VM Functions 205 



APPC SEND_ERROR Verb 

State Check Condition IPRCODE 

Conversation not in SEND, RECEIVE, or 32,36 
CONFIRM state 

206 Transparent Services Access Facility Reference 



This part describes the two CP system services that let TSAF communicate 
with CPo It introduces and describes how the system services contribute to 
the TSAF facility. 

• "Chapter 9. Collection Resource Management (*CRM) System Service" 
on page 209 describes what the Collection Resource Management 
System Service (*CRM) is responsible for and how the intended TSAF 
virtual machine connects to and severs from the Collection Resource 
Management System Service. This chapter also describes the two types 
of messages that the Collection Resource Management System Service 
expects from the TSAF virtual machine. 

• "Chapter 10. Identify (*IDENT) System Service" on page 215 describes 
what the Identify System Service (*IDENT) is responsible for, how to 
connect to it, and how to sever from it. This chapter also describes how 
the Identify System Service lets different virtual machines revoke 
resources. 

Part Three: CP System Services for TSAF 207 



208 Transparent Services Access Facility Reference 



The Collection Resource Management System Service is a CP system 
service, known as *CRM. It lets an authorized virtual machine connect to 
it and become the TSAF virtual machine. 

Authorizing Virtual Machines to Connect to *CRM 

You, the system administrator, can authorize a virtual machine to connect 
to *CRM, and thus become the TSAF virtual machine, with the *CRM 
parameter of the IUCV control statement. This parameter is described in 
"Setting Up the TSAF Virtual Machine" on page 11. 

What *CRM Does 

*CRM provides a communications path between CP and the TSAF virtual 
machine. The messages sent back and forth on the *CRM path keep the 
collection resource table and the CP system resource table current. 

The TSAF virtual machine uses the *CRM path to: 

• Get the names of the global resources listed in the local system resource 
table. The TSAF virtual machine receives this information only while 
it is connected to *CRM. 

• Notify CP of a revoke for the loser of a global resource when two 
disjoint collections merge. 

• Notify CP of a revoke, initiated by a virtual machine on another 
system, for a global resource managed on the local system. 

The Identify System Service (*IDENT) uses the *CRM path to: 

• Send an Identify request to the TSAF virtual machine when a virtual 
machine tries to connect to *IDENT to identify a global resource. The 
TSAF virtual machine verifies if another system in the collection 
manages the resource. Then the TSAF virtual machine replies yes or 
no to the Identify request. 

• Send the TSAF virtual machine a revoke request when a resource 
manager gives up managing a global resource. The resource manager 

Chapter 9. Collection Resource Management (*CRM) System Service 209 



*CRM System Service 

gives up managing by severing its connection to the Identify System 
Service. 

• Send the TSAF virtual machine a revoke request when an authorized 
virtual machine connects to the Identify System Service to revoke a 
global resource. 

When another system in the collection manages the global resource, the 
TSAF virtual machine on that system tells CP, through its *CRM path, 
that a virtual machine revoked the resource. 

Connecting to *CRM - Becoming the TSAF Virtual Machine 

The intended TSAF virtual machine does an IUCV CONNECT to *CRM 
during its initialization. This establishes an IUCV path, called the *CRM 
path. Only one virtual machine can connect to *CRM, and the virtual 
machine must be authorized in its directory entry. 

When a virtual machine tries to connect to *CRM, *CRM severs the 
pending connection for the following conditions: 

• A virtual machine is already connected to *CRM. 

• The virtual machine trying to connect to *CRM specified 
PRMDAT A = YES or QUIESCE = YES on the connect request. 

• The virtual machine trying to connect to *CRM specified PRTY = YES 
on the connect request and is authorized to send priority messages to 
*CRM. In some cases, however, *CRM accepts the connection, but the 
virtual machine (now the TSAF virtual machine) is not allowed to send 
priority messages on the path. 

After *CRM accepts the connection to the virtual machine, if the TSAF 
virtual machine, 

• Issues a SEVER on the path to *CRM, *CRM severs the path to the 
TSAF virtual machine. 

• Issues a QUIESCE on the path to *CRM, *CRM severs the path to the 
TSAF virtual machine. 

• Issues a RESUME on the path to *CRM, IUCV returns without taking 
any action. 

210 Transparent Services Access Facility Reference 



*CRM System Service 

*CRM Communications 

When the TSAF virtual machine is connected to *CRM, *CRM expects 
either of these two types of messages from the TSAF virtual machine: 

1. A request that *CRM send the global resources in the system resource 
table to the TSAF virtual machine. 

2. A REVOKE request. The request could be remote from a virtual 
machine on another system. Or, the revoke could be one that the TSAF 
virtual machine requests because another collection is joining this 
collection. The local system manager may lose management of the 
resource when there are duplicate resources in the merging collections. 
See "When Two Collections Merge to Form One" on page 30 for details 
on merging collections. 

Requesting System Resource Table Information 

o 1 2 

The TSAF virtual machine issues a one-way lUCV SEND to send messages 
on the *CRM path. For the format of the lUCV SEND function; see the 
VM System Facilities for Programming. 

For a request to send the global resource~ in the system resource table, the 
TSAF virtual machine sends the data in the following format: 

3 4 5 6 7 

o ///////////////////////////////////////////////////////////// 

8 FCODE I ///////////////////////////////////////////////////// 
10 ///////////////////////////////////////////////////////////// 

Figure 64. SEND Data Format from TSAF Virtual Machine 

FCODE 
is the function code for the request. FCODE = 3 indicates that the 
TSAF virtual machine wants *CRM to send the global resourtes in the 
system resource table. 

*CRM responds to a request to send the global resources in the system 
resource table by issuing a one-way SEND on the *CRM path. The SEND 
data has the following format: 

Chapter 9. Collection Resource Management (*CRM) System Service 211 



*CRM System Service 

o 
8 

10 

18 

xx 

o 

= 

1 2 3 4 5 6 7 

//////////////////////////////// ///////////////////////////// 

/ // / / IRSCOOE I /////// / ///// I RES COUNT I ///////////// 

RESOURCE #1 

RE SOURCE #2 

= 

RESOURCE #n 

Figure 65. SEND Data Format from *CRM 

Revoking a Resource 

o 1 2 

RSCODE = 3 
is the response to a request to send the global resources in the system 
resource table. 

RESCOUNT 
is the number of resource names that follow, starting in byte 16. If 
there are no global resources in the table, RESCOUNT is 0 and the 
SEND data is 16 bytes in length. 

*CRM only includes non pending resources in the SEND data, because the 
TSAF virtual machine already has information about pending resources. 
See "What *IDENT Does" on page 215 for information about pending 
resources. 

For a REVOKE request, the TSAF virtual machine sends the data in the 
following format: 

3 4 5 6 7 

o RESOURCE 10 

8 FCOOE I //////////////////////////////////////////// // /////// 
10 //////////////// / ///////////////////////// / / // / / ////// // / //// 

Figure 66. Revoke Data from the TSAF Virtual Machine 

RESOURCEID 
is the resource that the TSAF virtual machine is revoking. 

FCODE 
is the function code for the request. FCODE = 2 indicates a revoke 
request. 

When the TSAF virtual machine sends a revoke request for a global 
resource managed on the local system, *CRM invokes a routine in *IDENT 
to: 

212 Transparent Services Access Facility Reference 



*CRM System Service 

1. Delete the resource from the system resource table. 

2. Sever the path between *IDENT and the resource manager virtual 
machine. 

Severing the *CRM Connection 

If the TSAF virtual machine severs its connection to *CRM, it gives up its 
status as the TSAF virtual machine. The sever does not directly affect any 
existing APPC/VM paths. However, you cannot establish new remote 
connections until a virtual machine, which can handle remote connections, 
connects to *CRM to become the TSAF virtual machine. 

The condition of the TSAF virtual machine can affect any remote paths 
that the TSAF virtual machine is supporting. For example, if you re-IPL 
the TSAF virtual machine, not only does CP sever the path to *CRM, but 
CP severs any other IUCV connections that the TSAF virtual machine has. 
Also, if the TSAF virtual machine that you re-IPLed has any cross-system 
paths through it (meaning that the TSAF virtual machine is not on the 
source or target system for the path, that is, it is an intermediate TSAF 
virtual machine), the TSAF virtual machines on the other systems in the 
collection may sever the cross-system paths. The TSAF virtual machines in 
the collection would sever the paths if they could not find another way to 
route them. 

*CRM SEVER Reason Codes 

When CP severs the *CRM path, it stores a return code in byte 0 of the 
IPUSER field in the IUCV SEVER interrupt buffer. This indicates the 
reason for the SEVER. The following lists the possible Collection Resource 
Management System Service return codes. 

*CRM issues return codes 0 through 6, and lxx. The Identify System 
Service (*IDENT) issues return codes 6, 7, and 8. 

Code Description 

o The SEVER is a response to a SEVER that the TSAF virtual machine 
issued. 

1 CP cannot make the connection because a virtual machine is already 
connected to *CRM. The virtual machine trying to connect to *CRM 
could be the same virtual machine that is already connected. 

2 The virtual machine specified one of the following in the pending 
connection parameter list: PRMDAT A = YES, PRTY = YES, or 
QUIESCE = YES. When PRTY = YES is specified, this return code is 
issued only if the virtual machine has directory authorization to send 
priority messages to *CRM. 

Chapter 9. Collection Resource Management (*CRM) System Service 213 



*CRM System Service 

3 *CRM received a message with an invalid FCODE from the TSAF 
virtual machine. 

4 The TSAF virtual machine sent a message to *CRM that was not 
TYPE = 1WAY. 

5 The TSAF virtual machine is not allowed to issue lUCY QUIESCE 
on the *CRM path. 

6 CP severed the *CRM path because the message limit was exceeded 
on the path. The TSAF virtual machine was not receiving the 
messages sent by CP on the *CRM path. 

7 The reply to a "2W A Y" message sent by *IDENT to the TSAF virtual 
machine on the *CRM path contained an invalid return code. 
RCODE is not 0, 1, or 2. 

8 The message complete interrupt for a two-way message contained a 
nonzero lPAUDlT trail with bits other than lPADSVRD set. *IDENT 
sent this message on the *CRM path to the TSAF virtual machine. 

1xx The TSAF virtual machine sent a message that caused an lPRCODE 
of xx when *CRM received it. 

214 Transparent Services Access Facility Reference 



The Identify System Service is a CP system service, known as *IDENT, that 
lets authorized virtual machines connect to it and identify themselves as 
resource managers. *IDENT also lets authorized virtual machines revoke 
ownership of a resource. 

Authorizing Virtual Machines to Connect to *IDENT 

You, the system administrator, can authorize virtual machines to connect 
to *IDENT, and thus become resource managers, with the *IDENT 
parameter of the IUCV control statement, explained in "IUCV Directory 
Control Statement for *IDENT Authorization" on page 19. The parameters 
on the IUCV *IDENT control statement follow: 

1. The first parameter following *IDENT authorizes for: 

• A specific resource name (resid) 
• Any resource names (RESANY). 

2. The second parameter authorizes for: 

• Local resources only (LOCAL) 
• Global and local resources (GLOBAL). 

3. The third parameter authorizes a virtual machine to REVOKE the 
current management of the resource. 

What *IDENT Does 

*IDENT maintains a local system resource table. Each entry contains: 

• Pointers to the next and previous entries in the table 

• Resource name and the VMBLOK address of the virtual machine that 
manages the resource 

• Path id of the IUCV path between *IDENT and the virtual machine that 
manages the resource 

• Local and/or global indicator 

• Other indicators for pending functions related to the resource: 

Chapter 10. Identify (*IDENT) System Service 215 



*IDENT System Service 

Identify is pending. 
Sever by the resource manager is pending. 
Revoke is pending. 
Remote revoke is pending; that is, the TSAF vir tual machine or Ii 
virtual machine on another system is trying to revoke the global 
resource. 

*IDENT adds an entry to the table each time it accepts a virt ual machine 
connection. *IDENT deletes the entry when it severs the associated 
connection . A virtual machine manages a resour ce only while it is 
connected to *IDENT. 

*IDENT also uses the *CRM path, described in "What *CRM Does" on 
page 209. 

Some Rules about Resources 

Only the local system knows about local resources. However, a global 
r esource is known to all the TSAF virtual machines within the collection . 
Only one virtual machine can manage a global resource at a time. A 
resource can have a local manager and a global manager on the same 
system. 

The general rule is that the first virtual machine to request to be the 
resource manager will manage the resource. No more than 200 resources, 
be th local and global, can be defined on the local system at one time. 

CP passes identify and revoke requests for global r esources to the TSAF 
virtual machine. This is so all TSAF virtual machines in the collection can 
reach an agreement. CP marks the resour ce table entry as pending until 
the TSAF virtual machine responds. The resource becomes unavailable; a 
virtual machine cannot connect to, identify, or revoke a resource that is 
marked as pending in the system resource table. 

*IDENT Cotrlmunications - Connecting to *IDENT 

o 1 2 

To use the Identify System Service, issue an IUCV CONNECT. You must 
specify the userid as *IDENT, and the user data field must have the 
foHowing format: 

3 4 5 6 7 

o RE SO UR CE 10 

8 FCODE I FLAG I ////////////////////// //////// ///////// ////// 
Figure 67. User Data Field for CONNECT 

216 Transparent Services Access Facility Reference 



*IDENT System Service 

RESOURCEID 
is the name of the resource that you are requesting to manage. The 
first byte of the resource id must be alphanumeric. (IBM reserves 
names beginning with the remaining characters for its own use.) 
The resource id that you specify cannot be blank, hex zeroes, or 
"ANY", "ALLOW", or "SYSTEM". 

FCODE 
is the function code. 

FCODE = l 
indicates an Identify request. 

FCODE=2 
indicates a REVOKE request. 

FLAG is a flag byte that indicates the following: 

For Identify requests: 

Bit 0 on 
defines the resource as global, known to all TSAF virtual 
machines in the collection. 

Bit 0 off 
defines the resource as local, known only to the local system. 

For REVOKE requests: 

Bit 0 on 
tells CP to revoke the global resource, known to all TSAF 
virtual machines in the collection. 

Bit 0 off 
tells CP to revoke the local resource, known only to the local 
system. 

When you try to connect to *IDENT to manage or revoke a resource, 
*IDENT checks the validity of the pending connection parameter list. 
*IDENT severs the connection for any of the following: 

• The function code is not equal to 1 (to manage a resource) or 2 (to 
revoke a resource). 

• PRMDATA=YES is specified. 

• The IUCV control statements in the CP directory do not show you 
authorized for the connection. 

• The resource id is invalid. 

Chapter 10. Identify (*IDENT) System Service 217 



*IDENT System Service 

How *IDENT Processes Requests to Manage a Resource 

If you are requesting to manage a resource and the parameter list is valid, 
*IDENT checks its system resource table. If it finds the resource in its 
table, it severs the connection to you, because that resource already exists. 
If *IDENT does not find the resource in the table, and you request to 
manage: 

• A local resource, *IDENT adds the resource to the table and accepts 
your connection. 

• A global resource, *IDENT: 

1 . Adds the resource name to the system resource table 

2. Marks the table entry as a pending Identify 

3. Passes the request to the TSAF virtual machine. 

So that you do not send any messages over the path, CP accepts 
connections to *IDENT by specifying QUIESCE = YES. Because *IDENT 
quiesces the path to you, the resource manager, on the ACCEPT, *IDENT 
can never receive an incoming message on the path. If you issue a 
QUIESCE or a RESUME on the path, IUCV returns with no action taken. 

How CP Passes Requests to the TSAF Virtual Machine 

o 1 2 

o I 

*IDENT issues a two-way IUCV SEND. This passes the request to manage 
the global resource on the *CRM path to the TSAF virtual machine. For 
the complete format of the IUCV SEND function, see the VM System 
Facilities for Programming. 

The SEND data has the following format: 

3 4 5 6 7 

RESOURCE ID 

8 FCODE I ///////////////////////////////////////////////////// 
Figure 68. SEND Data Format from *IDENT 

RESOURCE ID 
contains the resource that you are requesting to manage. 

FCODE 
contains the function code for the request. FCODE = 1 is an Identify 
request to add the resource. 

218 Transparent Services Access Facility Reference 



*IDENT System Service 

Answer Data from the TSAF Virtual Machine 

o 1 2 

Because the Identify message to the TSAF virtual machine from *IDENT is 
two-way, *IDENT provides an answer area. The answer data from the 
TSAF virtual machine is in the following format: 

3 4 5 6 7 

o RESOURCE ID 

8 ///// IRSCODE I RCODE I ///////////////////////////////////// 

Figure 69. Answer Data Format from the TSAF Virtual Machine 

RESOURCE ID 
contains the resource that you are requesting to manage. 

RSCODE 
contains the response code. RSCODE = 1 is an Identify response. 

RCODE 
contains the TSAF virtual machine's return code for the response. 

RCODE=O 
means to *IDENT that the Identify was successful, and TSAF 
lets your virtual machine manage the global resource. The 
TSAF virtual machine sends this reply if no other virtual 
machine in the collection already manages the resource. 
*IDENT marks the system resource table entry as not pending 
and accepts the connection. 

If, when you request to manage a global resource, there is no 
virtual machine connected to *CRM, then your system is not 
part of a collection. *IDENT acts as if the TSAF virtual 
machine told it to accept the connection. If CP or the TSAF 
virtual machine severs the *CRM path before the TSAF virtual 
machine sends the reply to the Identify request, *IDENT acts as 
if the TSAF virtual machine told it to accept the connection. 

RCODE=l 
means that the Identify was unsuccessful. *IDENT severs the 
pending connection and deletes the pending resource table entry. 

RCODE=2 
means that the TSAF virtual machine was busy, and *IDENT 
should retry the SEND. 

Chapter 10. Identify (*IDENT) System Service 219 



*IDENT System Service 

How Virtual Machines Connect to a Resource Manager 

If your virtual machine becomes a resource manager (establishes a 
connection to *IDENT), APPC/VM lets authorized virtual machines 
connect to your virtual machine. Virtual machines can connect to your 
virtual machine by specifying the resource name. If a virtual machine on 
your local system tries to connect to your resource, CP handles the 
connection; TSAF does not get involved with local connections. If the 
resource is defined as both local and global, CP connects the requesting 
virtual machine to the local resource manager. 

However, if a virtual machine on a different system tries to connect to your 
resource, the following occurs: 

1. The other system's CP passes the connect request to the TSAF virtual 
machine on the other system. 

2. The TSAF virtual machine checks its table, and, as a result, passes the 
request on to your local TSAF virtual machine. 

3. Your local TSAF virtual machine issues a CONNECT to you on behalf 
of the original requesting virtual machine. 

You, as the resource manager, can either ACCEPT or SEVER the 
connection. The TSAF virtual machine on your system r eflects your 
answer back to the TSAF virtual machine on the other system, who passes 
the answer to CP and then to the requesting virtual machine. 

Severing the *IDENT Connection - Revoking a Resource 

The following can revoke a resource: 

• A virtual machine authorized to revoke the r esource 

• The resource manager virtual machine (by severing its path to *IDENT) 

• The TSAF virtual machine. 

Connecting to *IDENT to Revoke a Resource 

If you are authorized, you can revoke a resource. Your system 
administrator can authorize you to revoke a particular resource (resid) by 
specifying the following in your CP directory entry: 

IUCV *IDENT resid LOCAL/GLOBAL REVOKE 

This is also explained in "Chapter 1. Preparing to Use TSAF" on page 11. 

220 Transparent Services Access Facility Reference 



*IDENT System Service 

You can connect to *IDENT (function code = 2) to revoke a local or a global 
resource. See "*IDENT Communications - Connecting to *IDENT" on 
page 216 for the CONNECT data. If the resource is local, *IDENT: 

1. Deletes the resource from the system resource table 

2. Severs the connection to the former resource manager 

3. Severs the connection to your virtual machine. 

If the resource is global, and managed on the local system, *IDENT: 

1. Marks the resource as a pending revoke in the system resource table 

2. Passes the request to the TSAF virtual machine through the *CRM 
connection. 

If the resource is not defined on the local system as a global resource, 
*IDENT passes the request on to the TSAF virtual machine. 

How CP Passes Revoke Requests to the TSAF Virtual Machine 

o 1 2 

*IDENT issues a two-way IUCV SEND to pass the request on the *CRM 
path to the TSAF virtual machine. For the complete format of the IUCV 
SEND function, see the VM System Facilities for Programming. 

The SEND data has the following format: 

3 4 5 6 7 

o RESOURCE ID 

8 FCODE I 111 1111 1111111111111111111111111111111111111111111111 

Figure 70. SEND Data Format from *IDENT 

RESOURCE ID 

FCODE 

contains the resource that you are requesting to revoke. 

contains the function code for the request. FCODE = 2 is a 
REVOKE request to delete the global resource. 

The TSAF virtual machine notifies the other TSAF virtual machines in the 
collection of the revoke. If the resource that you revoked was not on your 
system, the TSAF virtual machine on the system where the resource was 
tells CP that the resource was r evoked remotely. (See "Chapter 9. 
Collection Resource Management (*CRM) System Service" on page 209 for 
the format of the revoke message that the TSAF virtual machine sends to 
*CRM). *IDENT deletes the resource on that system from the system 
resource table and severs the connection between *IDENT and the virtual 
machine that managed the resource. 

Chapter 10. Identify (*IDENT) System Service 221 



*IDENT System Service 

After notifying the other TSAF virtual machines in the collection, the 
TSAF virtual machine on your system tells *IDENT the results of the 
revoke request. 

Answer Data from the TSAF Virtual Machine 

o 1 2 

Because the SEND to the TSAF virtual machine is 2-WA Y, *IDENT 
provides an answer area. The answer data from the TSAF virtual machine 
is in the following format: 

3 4 5 6 7 

o RESOURCE ID 

8 ///// lRSCOD E I RCOD E I /// // ////////// ////////////////////// 
Figure 71. Answer Data Format from the TSAF Virtual Machine 

RESOURCE ID 
contains the resource that you are revoking. 

RSCODE 

RCODE 

contains the response code. RSCODE = 2 is a REVOKE response. 

contains the TSAF virtual machine's return code for the response. 

RCODE=O 
means that TSAF revoked the resource. 

RCODE=l 
means that TSAF could not find the resource. *IDENT severs 
the pending connection with your virtual machine. 

RCODE = 2 
means that the TSAF virtual machine was busy, and *IDENT 
should retry the SEND. 

When *IDENT gets the reply with RCODE = 0, and the global resource that 
you are revoking is managed on the local system, *IDENT: 

1. Deletes the resource from the system resource table. 

2. Severs the connection to the resource manager virtual machine. 

3. Severs the pending connection with your virtual machine. 

When *IDENT gets the reply with RCODE = 0, and the global resource that 
you are revoking is not managed on the local system, *IDENT severs the 
pending connection with your virtual machine. 

222 Transparent Services Access Facility Reference 



*IDENT Sy •• em Service 

Revoking Your Own Resources 

To stop managing a resource on your virtual machine, issue a SEVER on 
the path to *lDENT. If you defined the resource as a local resource, 
*IDENT: 

1. Deletes the local resource from the system resource table. 
2. Severs its half of the path. 

If you defined the resource as a global resource, *lDENT marks the 
resource as a pending revoke (due to the manager's SEVER) in the system 
resource table. *lDENT then sends a revoke notification to the TSAF 
virtual machine on the *CRM path. See the format on page 221 for revoke 
requests sent to the TSAF virtual machine. The TSAF virtual machine 
notifies all the other TSAF virtual machines in the collection. When 
notified of the reply from the TSAF virtual machine, *lDENT: 

1. Deletes the global resource from the system resource table. 
2. Severs its half of the path. 

The SEVER does not affect existing APPCjVM paths to your virtual 
machine. However, CP does not establish any new paths to you. If another 
virtual machine connects to *lDENT to manage the resource that you 
revoked, requests to connect to the resource go to that virtual machine. 

Note: If a virtual machine initiates a connection request to a resource that 
you manage before your revoke completes, the path may be established. 

Revoking Resources in Merging Collections 

When two disjoint collections merge, and the same resource name is 
specified on both collections, the TSAF virtual machine issues a revoke for 
the virtual machine that loses management responsibility. TSAF does this 
through the *CRM connection. *CRM passes the revoke to *lDENT, which 
severs the path between *lDENT and the former resource manager virtual 
machine. 

See "When Two Collections Merge to Form One" on page 30 for 
information on how TSAF determines what collection wins management 
responsibility of duplicate resources. 

*IDENT Sever Reason Codes 

When *lDENT severs one of its paths, it stores a return code in byte 10 of 
the lPUSER field in the lUCV SEVER parameter list. This indicates the 
reason for the SEVER. The *lDENT return code is zero for SEVERs that 
are in response to a SEVER by the virtual machine. The following lists the 
possible *lDENT return codes: 

Chapter 10. Identify (*IDENT) System Service 223 



*IDENT System Service 

Code Description 

o *IDENT revoked the resource as requested. 

1 An I/O error occurred while CP was reading the CP directory. 
*IDENT was checking for authorization to identify or revoke the 
resource. 

2 The CONNECT parameter list h as an invalid function code in FCODE 
of IPUSER; it is not equal to 1 for Identify or 2 for Revoke. 

3 The CONNECT parameter list has an invalid parameter PRMDATA. 

4 The virtual machine is not authorized to connect to *IDENT for the 
specified resource. 

5 The virtual machine is not authorized to identify the resource as a 
global resource. 

6 The virtual machine is not authorized to revoke the specified reeource. 

7 The virtual machine is not authorized to revoke the specified resource 
globally. 

8 CP cannot identify the resource because the system resource table 
currently contains the maximum of 200 entries owned on the local 
system. (These resources can be any combination of local and global 
resources). 

9 A virtual machine already manages the resource being identified. The 
virtual machine trying to identify a resource could be the same virtual 
machine that already manages the resource. 

10 A virtual machine revoked the resource. The resource may have been 
revoked by the virtual machine that managed the resource. 

11 The resource to be revoked does not exist. 

12 The resource is pending identification by a virtual machine and is not 
available to be identified or revoked. 

13 The resource is pending a revoke by a virtual machine and is not 
available to be identified or revoked. An authorized vir tual machine 
is revoking the resource, or the resource manager virtual machine is 
severing its path to *IDENT. 

14 The connect parameter list has an invalid resource name specified. 

224 Transparen t Ser vices Access Facility Reference 



Appendix A. APPC/VM and IUCV Condition Codes and Return 
Codes 

This appendix summarizes the return codes and conditions codes that you 
may get upon execution of the APPCjVM or lUCY functions available with 
the TSAF suppor t . 

There ar e four possible values for condition codes (0,1,2,3). Condition codes 
vary in meaning depending on the function on the APPCVM macro. 

With the APPCjVM support, there are four types of return codes. The 
types of return codes are meaningful depending on the condition code 
value. The types of return codes (and what-received indications) follow: 

IPRCODE 
reports error conditions that CP detects when the function is initiated. 

There is no corrective action for this type of error. You should sever 
the path when you get nonzero in this field. 

IPAUDIT 
reports error conditions that CP detects between the time th at the 
function is initiated and the time that the function completes. 
lPAUDlT codes are only issued for RECEIVE and SENDDATA. 

Like lPRCODE, there is no corrective action for this type of error. 
You should sever the path when you get a nonzero IPAUDlT. 

IPCODE 
contains the SEVER or error return code caused by your partner 
application or intermediate communication server. If IPWHATRC is: 

• X'09', the return code is a SEVER code. 
• X'03', the return code is an er ror code. 

IPWHATRC 
contains the r eturn code or what-received indication caused by your 
partner application or intermediate communication server. 

lPCODE and IPWHATRC are contiguous fields. You can think of 
them as a logical 3-byte entity. 

When IPWHATRC is a wh at-received indication, lPCODE contains 
zero and serves no purpose. IPWHATRC represents a what-received 
indication when it contains one of the following: 

• X'Ol'-DATA 

Appendix A. APPC/VM and lUCY Condition Codes and Return Codes 225 



• X'02'- SEND 
• X'04'-CONFIRM 
• X'05' - CONFIRM_DEALLOCATE 

On the other hand, IPWHATRC and IPCODE represent a return code 
when IPWHATRC contains one of the following: 

• X'03'- SENDERR 
• X'08'- SEVER TYPE = NORMAL 
• X'09' - SEVER TYPE = ABEND 

Figure 72 summarizes the conditions under which each of the four return 
code fields is meaningful. In the figure, an "X" indicates that the field is 
meaningful for the corresponding condition code. For WAIT = YES, CC = 0 
is not possible. For WAIT = NO, CC = 3 is not possible. 

IPRCODE IPAUDIT IPCODE IPWHATRC 
CC= (IUCV) (lUCV) (APPC/VM) (APPC/VM) 

CC=O X X X 

CC=l X 

CC=2 X X 

CC=3 X 

Figure 72. Meaningful Codes Based on CC = 

Note: CC=O (WAIT=NO), IPAUDIT, IPCODE, and IPWHATRC are only 
meaningful in the function complete interrupt. The interrupt signals the 
completion of the function that started with CC = o. 

The remainder of this appendix contains two figures: 

1. Figure 73 shows condition codes and IPRCODE return code values for 
each APPC/VM and IUCV function. 

2. Figure 74 on page 231 lists the IPAUDIT fields for the appropriate 
APPC/VM functions (RECEIVE, SENDDATA, TESTCMPL). 

Condition Codes and IPRCODE Values 

Function Condition Codes (CC = ) Return Codes (Stored in IPRCODE) for CC=l 

ACCEPT 1 Nonzero value stored 01 Invalid path id - not a pending connection. 
(IUCV) in IPRCODE. 20 Connection cannot be completed -

2 ACCEPT is complete. originator has severed the path. 

Figure 73 (Part 1 of 5). APPC/VM and IUCV Condition Codes and IPRCODE Values 

226 Transparent Services Access Facility Reference 



Function Condition Codes (CC = ) Return Codes (Stored in IPRCODE) for CC = 1 

CONNECT 0 Started successfully, 11 TSAF could not find the resource, or it is 
(APPCjVM) but not yet complete. not available. 

1 Nonzero value stored 12 Your partner has not invoked the DCLBFR 
in IPRCODE. function. 

2 CONNECT completed. 13 Your virtual machine already has the 
maximum number of connections. 

14 Your partner already has the maximum 
number of connections. 

15 You are not authorized to connect to the 
resource. 

28 You specified CONTROL = YES, but no 
control buffer exists. 

29 Not authorized to act for another user. 
39 Invalid connection parameter list extension 

length. 
40 Invalid LU-NAME. 
41 Invalid mode name. 

DCLBFR 0 Normal completion. 19 Buffer already declared. 
(IUCV) 1 Nonzero value stored 

in IPRCODE. 
3 Errors while reading 

directory. 

DESCRIBE 0 Normal completion. None. 
(IUCV) 2 No message found. 

QUERY 0 Normal return. None 
(IUCV) 2 User not in CP 

directory. 
3 Errors when reading 

CP directory. 

Figure 73 (Part 2 of 5). APPC/VM and IUCV Condition Codes and IPRCODE Values 

Appendix A. APPCjVM and IUCV Condition Codes and Return Codes 227 



Function Condition Codes (CC = ) Return Codes (Stored in IP RCODE ) for CC = 1 

RECEIVE 0 Started successfully, 01 Invalid path id. 
(APPC jVM) but not yet complete. 03 Pending function on this path. 

1 Nonzero value in 06 Storage protection exception on partner's 
IPRCODE. SEND buffer . 

2 RECEIVE completed. 07 Addressing exception on your partner's 
3 RECEIVE completed, SEND buffer. 

with errors. The type 10 Negative buffer length. 
of error is repor ted in 22 Partner's SEND list is invalid. 
the IPAUDIT field, 23 Negative length in RECEIVE list. 
listed in Figur e 74 on 24 Incorrect total length. 
page 23l. 26 Buffer list address is not on a doubleword 

boundary. 
30 APPCjVM function on a non-APPC path. 
32 Invalid function from CONNECT state. 
35 Invalid function from CONFIRM state. 
36 Invalid function from SEVER state. 
43 Invalid record length in partner's data 

stream. 
44 Did not finish sending a logical record. 
45 Your partner did not finish sending a 

logical record. 

RTRVBFR 0 Normal completion. None. 
(IUCV) 

SENDCNF 0 Started, but not yet 01 Invalid path id. 
(APPCjVM) completed. 03 Pending funct ion on this path. 

1 Nonzero value stored 30 APPCjVM function on a non-APPC path. 
in IPRCODE. 32 Invalid function from CONNECT state. 

2 SENDCNF completed. 34 Invalid function from RECEIVE state. 
35 Invalid function from CONFIRM state. 
36 Invalid function from SEVER state. 
37 Connection established with 

SYNCLVL = NONE. 
38 Invalid value in IPSENDOP. 
44 Did not finish sending a logical record. 

SENDCNFD 1 Nonzero value stored 01 Invalid path id 
(APPC/VM) in IPRCODE. 30 APPCjVM function on a non-APPC path. 

2 SENDCNFD 32 Invalid function from CONNECT state. 
completed. 33 Invalid function from SEND state. 

34 Invalid function from RECEIVE state. 
36 Invalid function from SEVER state. 
38 Invalid value in IPSENDOP. 

Figur e 73 (Part 3 of 5). APPC/VM and IUCV Condition Codes and IPRCODE Values 

228 Transparent Services Access Facility Reference 



F unction Condition Codes (CC = ) Return Codes (St ored in IPRCODE) for CC = 1 

SENDDATA 0 Started successfully, 01 Invalid path id. 
(APPCN M ) but not yet complete. 03 Pending function on this path . 

1 Nonzero value in 06 Protect ion exception on partner's answer 
IPRCODE. or RECEIVE area. 

2 SENDDATA 07 Addressing exception on partner's answer 
completed. or RECEIVE area. 

3 SENDDATA 10 Negative buffer or answer length. 
completed, with errors. 22 Partner's answer or RECEIVE list is 
The type of error is invalid. 
reported in the 23 Negative length in SEND buffer list. 
IPAUDIT field, listed 24 Incorrect total length. 
in Figure 74 on 26 Buffer list address is not on a doubleword 
page 23l. boundary. 

27 Buffer list or answer list is not on a 
doubleword boundary. 

30 APPC/VM fun ction on a non-APPC path. 
32 Invalid function from CONNECT state. 
34 Invalid function from RECEIVE state. 
35 Invalid function from CONFIRM state. 
36 Invalid function from SEVER state. 
38 Invalid value in IPSENDOP. 
42 Invalid logical record length in data 

stream. 
44 Did not finish sending a logical record. 

SENDERR 0 Started successfully, 01 Invalid path id. 
(APPCNM) but not yet complete. 03 Pending function on this path. 

1 Nonzero value in 29 Not authorized to act for another user. 
IPRCODE. 30 APPC/VM function on a non-APPC path. 

2 SENDERR completed. 32 Invalid function from CONNECT state. 
36 Invalid function from SEVER state. 
38 Invalid value in IPSENDOP. 

SENDREQ 1 Nonzero value in 01 Invalid path id. 
(APPCNM) IPRCODE. 30 APPC/VM function on a non-APPC path. 

2 SENDREQ completed. 32 Invalid function from CONNECT state. 
36 Invalid function from SEVER state. 
38 Invalid value in IPSENDOP. 

SETCMASK 0 Normal completion. None 
(IUCV) 

SETMASK 0 Normal completion. None 
(IUCV) 

Figure 73 (Part 4 of 5). APPC/VM and IUCV Condition Codes and IPRCODE Values 

Appendix A. APPC/VM and IUCV Condition Codes and Return Codes 229 



Function Condition Codes (CC = ) Return Codes (Stored in IPRCODE) for CC = 1 

SEVER 1 Nonzero value in 01 Invalid path id. 
(APPCjVM) IPRCODE. 03 Pending function on this path. 

2 SEVER completed. 29 Not authorized to act for another user. 
30 APPCjVM function on a non-APPC path. 
32 Invalid function from CONNECT state. 
34 Invalid function from RECEIVE state. 
35 Invalid function from CONFIRM state. 
36 Invalid function from SEVER state. 
38 Invalid value in IPSENDOP. 
44 Did not finish sending a logical record. 
46 Invalid SEVER code. 

TESTCMPL 0 Normal completion. 01 Invalid path id. 
(IUCV) 1 Nonzero value in 

IPRCODE. 
2 No message or 

function was found. 
3 Function completed 

with errors. The type 
of error is reported in 
the IPAUDIT field, 
listed in Figure 74 on 
page 231. 

TESTMSG 1 Pending message or None. 
(IUCV) SENDREQ indication. 

2 Pending message or 
function completion. 

3 CC=l and CC=2 
occurred. 

Figure 73 (Part 5 of 5). APPC/VM and IUCV Condition Codes and IPRCODE Values 

230 Transparent Services Access Facility Reference 



IPAUDIT Values 

Function 

RECEIVE 
(APPCjVM) 

SENDDATA 
(APPCjVM) 

The following table lists the IPAUDIT codes for the appropriate functions. 
The IPAUDIT field in the TESTCMPL output parameter list can contain 
any of the following values, depending on the function TESTCMPL is 
completing. 

IPAUDIT Code (Stored in IPAUDIT) 

X'IOOOOO' Protection exception on your RECEIVE buffer. 
X'080000' Addressing exception on your RECEIVE buffer. 
X'OO2000' Protection exception on your partner's SEND buffer. 
X'OOIOOO' Addressing exception on your partner's SEND buffer. 
X'OOO400' Your partner had an invalid SEND list. 
X'000040' Bad length in your RECEIVE buffer list. 
X'OOOOIO' RECEIVE buffer length is invalid. 
X'000008' Partner's data stream has invalid logical record length. 
X'000002' Partner did not finish sending logical record and tried to 

change to RECEIVE state. 

X'400000' Protection exception on your SEND buffer. 
X'200000' Addressing exception on your SEND buffer. 
X'IOOOOO' Protection exception on your answer buffer. 
X'080000' Addressing exception on your answer buffer. 
X'OO8000' Protection exception on your partner's answer or 

RECEIVE area. 
X'OO4000' Addressing exception on your partner's answer or 

RECEIVE area. 
X'OO2000' Protection exception on your partner's SEND data area. 
X'OOlOOO' Addressing exception on your partner's SEND data area. 
X'OOO400' Partner had an invalid SEND, answer or RECEIVE list. 
X'OOOO80' Bad length in your SEND buffer list. 
X'OOOO40' Bad length in your SEND answer list. 
X'OOOO20' Total SEND buffer length is invalid. 
X'OOOOIO' Total SEND answer length is invalid. 
X'OOOOO8' Invalid logical record length in partner's data stream. 
X'OOOOO4' Invalid logical record length in your data stream. 
X'OOOOO2' Partner did not finish sending a logical record and tried 

to change to RECEIVE state. 
X'OOOOOI' You did not finish sending a logical record and tried to 

change to RECEIVE state. 

Figure 74. IPAUDIT Values 

Appendix A. APPCjVM and IUCV Condition Codes and Return Codes 231 



232 Transparent Services Access Facility Reference 



Appendix B. APPC - APPCNM Mapping Summary 

This appendix summarizes the mapping of SNA LU 6.2 (APPC architecture) 
verb functions to APPCVM and IUCV macro functions. Figure 75 contains 
a list of the APPC verbs and their equivalents in VM. The tables on pages 
235 through 248 summarize the APPC to APPCjVM mapping in a detailed 
manner. The mapping is organized in tables by APPC verb names and 
APPCjVM (and IUCV) macro names. Both inputs and outputs are shown. 

To make the APPCjVM to APPCjSNA mapping throughout this appendix 
more readable, the following name values are used in places where the 
program interface specifies numeric values. 

CC = started for CC = o. 

CC = error for CC = 1. 

CC = completed 
for CC = 2. 

CC=3 indicates that the function completed with error 
information available in the IP AUDIT fields of the 
interrupt buffer. 

APPC Verb Name to APPC/VM Macro Parameter Name 

The following chart lists the APPC verbs and their APPCjVM equivalents 
and gives an overall view of how APPC and APPCjVM functions are 
related. 

Note: The IUCV functions related to APPCjVM are unique to VM and 
have no equivalents in APPC. 

APPC Verb APPC/VM Equivalent 

ACTIVATE_SESSION No equivalent 

ALLOCATE CONNECT 

CHANGE_SESSION_LIMIT No equivalent 

Figure 75 (Part 1 of 2). APPC Verbs and APPC/VM Functions 

Appendix B. APPC - APPC/VM Mapping Summary 233 



APPC Verb APPC/VM Equivalent 

CONFIRM SENDCNF TYPE = NORMAL 

CONFIRMED SENDCNFD 

DEACTIVATE_SESSION No equivalent 

DEALLOCATE SEVER and SENDCNF 
TYPE = SEVER 

FLUSH (remote) No equivalent 

GET ATTRIBUTES No direct support 

INITIALIZE_SESSION_LIMIT No equivalent 

PREPARE_TO_RECEIVE (remote) No equivalent 

PROCESS_SESSION_LIMIT No equivalent 

RECEIVE_AND _WAIT RECEIVE 

REQUEST_TO_SEND SENDREQ 

RESET_SESSION_LIMIT No equivalent 

SEND_DATA SENDDATA RECEIVE=NO 

SEND DATA and SENDATA RECEIVE = YES 
RECEIVE_AND_ WAIT 

SEND_ERROR SENDERR 

Figure 75 (Part 2 of 2). APPC Verbs and APPC/VM Functions 

All VM programs that communicate by APPCjVM reside within a single 
TSAF collection, the logical equivalent of a single SNA Logical Unit (LU). 
Therefore, as shown in Figure 75, the LU-to-LU session control (CNOS) 
verbs are not supported by VM. For the same reason, the remote LU 
support of the optional APPC FLUSH and PREPARE_TO_RECEIVE verbs 
are not provided by VM. 

APPC Verb Parameters Mapped with APPC/VM Macro Parameters 

The tables in this section provide, for each supported APPC function, a 
detailed view of how APPC verb parameters and APPCjVM macro 
parameters are related. 

234 Transparent Services Access Facility Reference 



APPC ALLOCATE to APPC/VM CONNECT 

APPC ALLOCATE parameters and the APPC/VM equivalents are listed below: 

APPC ALLOCATE Input APPC/VM CONNECT Input 

LU_NAME ( OWN )7 BUFFER = [VM architected data] 
LU_NAME ( OTHER ( variable) ) bytes O· 7 = 0 = > OWN 
MODE_NAME ( variable) bytes 8·15 = mode name 

TPN ( variable) RESID = variable 

TYPE (BASIC_CONVERSATION) Default, no parameter 

RETURN CONTROL Default, no parameter 
(WHEN-='SESSION_ALLOCATED) 

SYNC_LEVEL ( NONE) SYNCLVL = NONE 
(CONFIRM) = CONFIRM 

RECOVERY _LEVEL ( NONE) Default, no parameter 

SECURITY ( NONE) Default, no parameter 

PIP ( NO) Default, no parameter 

Not Available8 ALTID = variable 

APPC ALLOCATE Output APPC/VM CONNECT Output 

RESOURCE (variable) IPPATHID 

RETURN_CODE CC =error9 CC = {startedlcomplete} 
(OK) IPTYPE = '82' 

RETURN_CODE 
( ALLOCATION_ERROR IPTYPE = '83', CC=error 

{ALLOCATION_FAILURE_RETRY, IPCODE = X'Ol11', 
IPRCODE = 11,12,13,14 

ALLOCATION_FAILURE_NO_RETRY, IPCODE =X'0110',X'061O', 
IPRCODE= 15 

SYNC_LEVEL_NOT_SUPPORTED _BY _LU N/A 
RETURN CODE 

( PARAMETER_ERROR) 
{invalid LU name IPRCODE = 40 
invalid mode name} IPRCODE = 41 

The APPC/VM output appears in the connection complete interrupt buffer. 

Option set supported for communication within the collection. 

8 This function is provided for communication servers only, and is not part of the general API. 

9 Possible IPRCODEs when CC = error are 28,29,39,40,41. 

Appendix B. APPC· APPC/VM Mapping Summary 235 



APPC CONFIRM to APPC/VM SENDCNF TYPE = NORMAL 

APPC CONFIRM parameters and the APPC/VM equivalents are listed below: 

APPC CONFIRM Input APPC/VM SENDCNF 
TYPE = NORMAL Input 

RESOURCE ( variable) P ATHID = variable 

Default, no parameter WAIT = YES 
No equivalent WAIT = NO 

APPC CONFIRM Output APPC/VM SENDCNF 
TYPE = NORMAL Output 

RETURN_CODE CC = {started I complete} and 
(IPCODE + IPWHATRC) 

(OK) X'OOOO' + X'OO' 
( ALLOCATION_ERROR) {X'OIIO' ,X'OIII' ,X'OI30'} 

+ X'09' 
(DEALLOCATE_ABEND_PROG) X'02IO' + X'09' 
(DEALLOCATE_ABEND_SVC) X'0220' + X'09' 
(DEALLOCATE_ABEND_TIMER) X'0230' + X'09' 
( PROG_ERROR_PURGING ) X'0430' + X'03' 
(RESOURCE_FAILURE_NO_RETRY) X'06IO' + X'09' 
(RESOURCE_FAILURE_RETRY) X'0620' + X'09' 
(SVC_ERROR_PURGING) X'0530' + X'03' 

REQUEST_TO_SEND_RECEIVED (SENDREQ interrupt presented 
(YES) for YES condition ) 
(NO) 

Possible IPRCODEs when CC = error are: 1, 3, 30, 32, 34, 35, 36, 37, 38, 44. 

236 Transparent Services Access Facility Reference 



APPC CONFIRMED to APPC/VM SENDCNFD 

APPC CONFIRMED parameters and the APPC/VM equivalents are listed below: 

APPC CONFIRMED Input APPC/VM SENDCNFD Input 

RESOURCE ( variable) P ATHID = variable 

Possible IPRCODEs when CC = error are: 0, 1, 30, 32, 33, 34, 36, 38. 

Appendix B. APPC - APPCjVM Mapping Summary 237 



APPC DEALLOCATE to APPC/VM SEVER or SENDCNF TYPE = SEVER 

APPC DEALLOCATE parameters and the APPCjVM equivalents are listed below: 

APPC DEALLOCATE Input APPC/VM SEVER and 
SENDCNF TYPE = SEVER Input 

RESOURCE ( variable) P ATHID = variable 

TYPE ( SYNC_LEVEL) SEVER TYPE = NORMAL (2 steps) 

"if SYNC_LEVEL = NONE" SENDCNF TYPE = SEVER and 
"if SYNC_LEVEL = CONFIRM" "if ( CC = {started Icomplete} 

& IPCODE = 0 )" 
"then" SEVER TYPE = NORMAL 

TYPE ( FLUSH) SEVER TYPE = NORMAL 

TYPE ( CONFIRM) SENDCNF TYPE = SEVER and 
"if CC = {started I complete} 
& IPCODE = 0 )" 

"then" SEVER TYPE = NORMAL 

TYPE ( ABEND _PROG ) SEVER TYPE = ABEND 
CODE = {DEALLOCATE_ABEND_PROG} 

TYPE ( ABEND _SVC )10 SEVER TYPE = ABEND 
CODE = {DEALLOCATE_ABEND_SVC} 

TYPE ( ABEND_TIMER )10 SEVER TYPE = ABEND 
CODE = {DEALLOCATE ABEND_TIMER} 

TYPE ( LOCAL) SEVER TYPE = NORMAL 

LOG_DATA ( NO ) Default, no parameter 
LOG_DATA ( YES ( variable) )10 Not supported 

APPC DEALLOCATE Output APPC/VM SEVER or 
SENDCNF TYPE = SEVER Output 

RETURN_CODE CC = {started} and 
(IPCODE + IPWHATRC) 

"if TYPE( -, CONFIRM )" X'OOOO' + X'OO' 
(OK) 

10 For remote support only. 

238 Transparent Services Access Facility Reference 



APPC DEALLOCATE Output APPC/VM SEVER or 
SENDCNF TYPE = SEVER Output 

"if TYPE( CONFIRM )" 
(OK) X'OOOO' + X'OO' 
(ALLOCATION_ERROR) X'OIxx' + X'09' 
(DEALLOCATE_ABEND_PROG) X'02IO' + X'09' 
(DEALLOCATE_ABEND_SVC) X'0220' + X'09' 
( DEALLOCATE_ABEND_TIMER ) X'0230' + X'09' 
( PROG_ERROR_PURGING ) X'0430' + X'03' 
(RESOURCE_FAILURE_NO_RETRY) X'06IO' + X'09' 
( RESOURCE_F AlLURE_RETRY) X'0620' + X'09' 
(SVC_ERROR_PURGING) X'0530' + X'03' 

Possible IPRCODEs when CC = error are: 1, 3, 29, 30, 32, 34, 35, 36, 38, 44, 46. 

Appendix B. APPC - APPC/VM Mapping Summary 239 



APPC GET_ ATTRIBUTES to Indirect APPC/VM Support 

APPC GET_ATTRIBUTES and the APPCjVM equivalents are listed below: 

APPC GET_ATTRIBUTES Input APPC/VM Input 

RESOURCE ( variable) No direct support. 

APPC GET_ATTRIBUTES Output APPC/VM Output 

OWN_FULLY_QUALIFIED_LU_NAME Not available; a null value is valid if 
(variable) the name is not known. 

PARTNER_LU_NAME (variable) From VM architected data in the 
first RECEIVE. 

PARTNER_FULLY_QUALIFIED_LU_NAME Not available; a null value is valid if 
( variable) the name is not known. 

MODE_NAME ( variable) From VM architected data in the 
first RECEIVE. 

SYNC_LEVEL ( variable ) From connection pending interrupt 
buffer or FMH5 in first RECEIVE. 

240 Transparent Services Access Facility Reference 



APPC RECEIVE AND WAIT to APPCIVM RECEIVE - -

The RECEIVE function is used by the transaction program to receive the FMH5. This use of 
RECEIVE is unique to APPCjVM. 

APPC RECEIVE_AND_ WAIT parameters and the APPCjVM equivalents are listed below: 

APPC RECEIVE_AND_WAIT Input APPC/VM PRECEIVE Input 

RESOURCE ( variable) P ATHID = variable 

FILL (LL) Not supported (not required if FILL 
(BUFFER) supported) 

FILL ( BUFFER) Default, no parameter 

APPC RECEIVE AND WAIT APPC/VM RECEIVE - -
Input/Output Input/Output 

LENGTH ( variable) "input" BUFLEN = variablell 

LENGTH ( variable) "output" IfIPWHATRC = DATA 
then IPBFLN2F = #arrived - BUFLEN 
else IPBFLN2F = BUFLEN - #received 

APPC RECEIVE AND WAIT APPC/VM RECEIVE Output - -
Output 

DATA ( variable) BUFFER = variable 

"If verb issued in SEND state" CC = {started I complete} and 
RETURN_CODE (IPCODE + IPWHATRC) 

(OK) X'061O' + X'09' 
(ALLOCATION_ERROR) X'OOOO' + X'OO' 
( DEALLOCATE_ABEND _PROG ) X'Olxx' + X'09' 
(DEALLOCATE_ABEND_SVC) X'021O' + X'09' 
(DEALLOCATE_ABEND_TIMER) X'0220' + X'09' 
( PROG_ERROR_PURGING ) X'0230' + X'09' 
(RESOURCE_FAILURE_NO_RETRY) X'0430' + X'03' 
(RESOURCE_FAILURE_RETRY) X'0620' + X'09' 
( SVC_ERROR_PURGING ) X'0530' + X'03' 

11 If the length specified is zero, the APPC/VM verb could complete before the partner responds. 

Appendix B. APPC - APPC/yM Mapping Summary 241 



APPC RECEIVE AND WAIT 
Output --

"If verb issued in RECEIVE state" 
RETURN_CODE 

(OK) 
(ALLOCATION_ERROR) 
(DEALLOCATE_ABEND_PROG) 
(DEALLOCATE_ABEND_SVC) 
(DEALLOCATE_ABEND_TIMER) 
( DEALLOCATE_NORMAL) 
(PROG_ERROR_NO_TRUNC) 
( PROG_ERROR_PURGING ) 
( PROG_ERROR_TRUNC ) 
(RESOURCE_FAILUREc:...NO_RETRY) 
(RESOURCE_FAILURE_RETRY) 
(SVC_ERROR_NO_TRUNC) 
( SVC_ERROR_PURGING ) 
(SVC_ERROR_TRUNC) 

REQUEST_TO _SEND _RECEIVED 
(YES) 
(NO) 

WHAT_RECEIVED 
(DATA) 

(DATA_COMPLETE) 
( DATA_INCOMPLETE ) 
(LL_TRUNCATED) 
(SEND) 
(CONFIRM) 
( CONFIRM_SEND) 
( CONFIRM_DEALLOCATE) 

APPC/VM RECEIVE Output 

CC = {started I complete} and 
(IPCODE + IPWHATRC)12 

X'OOOO' + X'OO' 
X'Olxx' + X'09' 
X'02l0' + X'09' 
X'0220' + X'09' 
X'0230' + X'09' 
X'OOOO' + X'08' 
X'041O' + X'03' 
X'0430' + X'03' 
X'0420' + X'03' 
X'06l0' + X'09' 
X'0620' + X'09' 
X'05l0' + X'03' 
X'0530' + X'03' 
X'0520' + X'03' 

(SENDREQ interrupt presented for YES 
condition) 

IPWHATRC 
= X'Ol' or 

-, = X'Ol' & IPBFLN2F < BUFLEN 

Cannot occur, no FILL(LL) 
Cannot occur, no FILL(LL) 
Cannot occur, no FILL(LL) 

= X'02'12 
= X'04'12 
Cannot occur 

= X'05'12 

The APPCjVM output appears in the function complete interrupt buffer, except for BUFFER = 

variable. 

Possible IPRCODEs when CC = error are: 1, 3, 6, 7, 10, 22, 23, 24, 26, 30, 32, 35, 36, 43, 44, 45. 

12 Data may also have been RECEIVEd. This represents combined architecture functions implemented for 
efficiency. 

242 Transparent Services Access Facility Reference 



APPC REQUEST_TO_SEND to APPC/VM SENDREQ 

APPC REQUEST_TO_SEND parameters and the APPC/VM equivalents are listed below: 

APPC REQUEST_TO_SEND Input APPC/VM SENDREQ Input 

RESOURCE ( variable) P A THID = variable 

Possible IPRCODEs when CC = error are: 1, 30, 32, 36, 38. 

Appendix B. APPC - APPC/VM Mapping Summary 243 



APPC SEND_DATA to APPC/VM SENDDATA RECEIVE = NO 

APPC SEND_DATA parameters and the APPC/VM equivalents are listed below: 

APPC SEND_DATA Input APPC/VM SENDDATA 
RECEIVE = NO Input 

RESOURCE ( variable) P A THID = variable 

DATA ( variable) BUFFER = variable 

LENGTH ( variable) BUFLEN = variable 

APPC SEND_DATA Output APPC/VM SENDDATA 
RECEIVE = NO Output 

RETURN_CODE CC = {started I complete} and 
(IPCODE + IPWHATRC) 

(OK) X'OOOO' + X'OO' 
( ALLOCATION_ERROR) X'Olxx' + X'Og' 
(DEALLOCATE_ABEND_PROG) X'0210' + X'Og' 
(DEALLOCATE_ABEND_SVC) X'0220' + X'Og' 
( DEALLOCATE_ABEND_TIMER ) X'0230' + X'Og' 
( PROG_ERROR_PURGING ) X'0430' + X'03' 
(RESOURCE_FAILURE_NO_RETRY) X'061O' + X'Og' 
(RESOURCE_FAILURE_RETRY) X'0620' + X'Og' 
(SVC ERROR PURGING) X'0530' + X'03' 

REQUEST _TO _SEND _RECEIVED (SENDREQ interrupt presented 
(YES) for YES condition ) 
(NO) 

APPC/VM output appears in the function complete interrupt buffer. 

The possible IPRCODEs when CC = error are: 1, 3, 6, 7, 10, 22, 23, 24, 26, 27, 30, 32, 34, 35, 36, 38, 42. 

244 Transparent Services Access Facility Reference 



APPC SEND_DATA and RECEIVE_AND_WAIT to APPC/VM SENDDATA RECEIVE = YES 

The APPC architecture-defined equivalent of the SENDDATA RECEIVE = YES is the following 
APPC verbs immediately following one another: 

1. SEND_DATA 
2. RECEIVE_AND_ WAIT 

The SENDDATA RECEIVE=YES fields for input are: 

PATHID = variable 

BUFFER = variable 

BUFLEN = variable 

WAIT = YES 

ANSBUF = variable 

ANSLEN = variable 

Figure 76. APPC/VM SENDDATA RECEIVE=YES Input Fields 

The APPC/VM output is in the function complete interrupt buffer. The SENDDATA 
RECEIVE = YES fields for output are: 

CC = {started I complete} and 
(IPCODE + IPWHATRC) 
X'OOOO' + X'OO' 
X'OIxx' + X'09' 
X'021O' + X'09' 
X'0220' + X'09' 
X'0230' + X'09' 
X'0430' + X'03' 
X'06IO' + X'09' 
X'0620' + X'09' 
X'0530' + X'03' 

WHATRC13 = {X'OI', X'02', X'08', 
X'04', and X'05'} 

Figure 77. APPC/VM SENDDATA RECEIVE=YES Output Fields 

Possible IPRCODEs when CC = error are 1, 3, 6, 7, 10, 22, 23, 24, 26, 27, 30, 32, 34, 35, 36, 38, 42, 44. 

13 A consequence of the RECEIVE = YES option; IPCODE is zero. 

Appendix B. APPC - APPC/VM Mapping Summary 245 



APPC SEND_ERROR to APPCIVM SENDERR 

APPC SEND_ERROR parameters and the APPCjVM equivalents are listed below: 

APPC SEND_ERROR Input APPC/yM SENDERR Input 

RESOURCE ( variable) PATHID = variable 

1YPE (PROG) Default, no parameter 
( SVC )14 CODE = { 510, 520, 530ps 

LOG_DATA (NO) Default, no parameter 
LOG_DATA ( YES (variable) )IS Not supported 

IXfault, no parameter WAIT = YES 
No e uivalent q WAIT = NO 

APPC SEND_ERROR Output APPC/yM SENDERR Output 

RETURN_CODE CC = {started I complete} and 
(IPCODE + IPWHA TRC) 

"if verb issued in SEND state" 
(OK) X'OOOO' + X'OO' 
( ALLOCATION_ERROR) X'Olxx' + X'09' 
(DEALLOCATE_ABEND_PROG) X'0210' + X'09' 
(DEALLOCATE_ABEND_SVC) X'0220' + X'09' 
(DEALLOCATE_ABEND_TIMER) X'0230' + X'09' 
( PROG_ERROR_PURGING) X'0430' + X'03' 
( RESOURCE_FAILURE_NO_RETRY ) X'0610' + X'09' 
(RESOURCE_FAILURE_RETRY) X'0620' + X'09' 
( SVC_ERROR_PURGING ) X'0530' + X'03' 

"if verb issued in RECEIVE state" 
(OK) X'OOOO' + X'OO' 
( DEALLOCATE_NORMAL) X'OOOO' + X'08' 
(RESOURCE_FAILURE_NO_RETRY) X'061O' + X'09' 
( RESOURCE_FAILURE_RETRY ) X'0620' + X'09' 

"if verb issued in CONFIRM state" 
(OK) X'OOOO' + X'OO' 
( RESOURCE_FAILURE_NO_RETRY ) X'061O' + X'09' 
( RES OURCE_FAILURE_RETRY ) X'0620' + X'09' 

REQUEST_ TO_SEND_RECEIVED (SENDREQ interrupt presented 
(YES) for YES condition ) 
(NO) 

The SENDERR output is in the function complete interrupt bufIer. 

Possible IPRCODEs when CC=error are 1,3,29,30,32,36,38. 

14 Remote support only. 

IS Use of CODE parameter is restricted to communication servers. 

246 Transparent Services Access Facility Reference 



APPC LU-Generated Responses to APPC/VM SEVER TYPE = ABEND 

APPC LU Generated Responses APPC/VM SEVER 
TYPE = ABEND Codes 

CONVERSATION_TYPE_MISMATCH X'0120' 

SYNC_LEVEL_NOT_SUPPORTED_BY _PGM X'0130' 

TRANS_PGM_NOT_AVAIL_NO_RETRY X'0140' 

TRANS_PGM_NOT_AVAIL_RETRY X'0141' 

TPN_NOT_RECOGNIZED X'0142' 

PIP _NOT_SPECIFIED _ CORRECTLY X'0150' 

DEALLOCATE_ABEND_PROG X'021O' or X'061O' 

In a VM application, this SEVER can only be issued between the ACCEPT and the "next" APPCjVM 
operation. In an APPCjSNA implementation, these "deallocate" conversation return codes would be 
issued by the LU before starting the TPN. 

Appendix B. APPC - APPC/VM Mapping Summary 247 



No APPC Function to IUCV ACCEPT 

(APPC Equivalent) IUCV ACCEPT 

ACCEPT causes a Connection Complete P ATHID = variable 
interrupt for CONNECT WAIT = NO. For 
CONNECT WAIT = YES, ACCEPT causes 
IPTYPE = Connection Complete. 

CONNECT completes when your communication partner issues ACCEP'r . Your communication 
partner may not be the actual target of your CONNECT, but, instead, may be an intermediate 
communication server. Do not make assumptions about the target of the CONNECT when the 
CONNECT completes. Your CONNECT may complete before the tar get program is even invoked. 
ACCEPT is part of the LUCY interface, and you should not use it for special significance such as 
synchronization. 

248 Transparent Services Access Facility Reference 



Appendix C. Sample TSAF User Program 

This section contains a sample TSAF user application. The program shows 
how to use APPC/VM to connect to and request a service from a resource. 
When reviewing this program, note the following: 

• This sample demonstrates the APPC/VM functions. It does not show 
how to use APPC/VM efficiently or how to write a user application. 

• Though this program could be used as a CMS application, it does not 
use the CMS lUCY support; rather it uses the CP lUCY support 
directly. 

• For simplicity, this program only uses synchronous support. This is not 
recommended for use by general applications. When you use 
synchronous support, if the resource that you are communicating with 
becomes hung up, you must either "LOGOFF" or reset your virtual 
machine to get out of the APPCjVM WAIT. 

The amount of data being sent and received by this program and the sample 
resource program (in Appendix D, "Sample TSAF Resource Manager 
Program" on page 257) is transparent to the other side. However, the two 
communicating programs must use the same format for data that is being 
exchanged, and they both must follow the APPC/VM protocol. 

After assembling this program, you may invoke it by entering: 

START USER resid filename filetype 

where: 

resid 
is the resource id that has the requested file. 

filename 
is the file name of the requested file. 

fi le type 
is the file type of the requested file. 

This program can then connect to the resource and request the file. After 
the resource sends the contents of the specified file, this program types out 
the file. 

Appendix C. Sample TSAF User Program 249 



PRINT NOGEN Don't expand macro calls 
* 
*----------------------------------------------------------------------
* Basic housekeeping 
*----------------------------------------------------------------------
USER 

* 

START X'20000' 
USING 
STM 
ST 
LA 
LA 
USING 

USER,R12 
R14,R12,12(R13) 
R13,SAVEMAIN+4 
R13,SAVEMAIN 
R2,PLIST 
IPARML,R2 

Start program counter at X'20000' 
Establish base register 12 
Save system's registers 
Save pointer to system's save area 
R13 points to our save area 
Get address of APPCjVM parm list 
Establish parameter list mapping 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 

When invoking this program, you must specify a resource id 
and the file name and file type of the requested file. 
We get the resource id, file name and file type out of the 
parameter list; CMS passes the address of the parameter list to us 
i n register 1. You can find more information about this interface 
in the VMj SP CMS Command Reference under the START command. 

*----------------------------------------------------------------------

* 

MVC 
MVC 
MVC 

RESIDSP,8 (Rl) 
FILENAME, 16 (Rl) 
FILETYPE, 24 (Rl) 

Get the resource id 
Get the file name 
Get the file type 

*----------------------------------------------------------------------
* 
* 

For the purposes of this example, we keep track of the state of 
the path. Before we establish the path, it is in RESET state. 

*----------------------------------------------------------------------
MVI STATE,RESET Show that no path is established yet 

* *----------------------------------------------------------------------
* 
* 
* 
* 
* 

Be fore using APPCjVM, we must define an interrupt buffer for our 
program to use, using the DCLBFR function. The interrupt buffer 
that we use is at label INTBUF. Even though we may not get any 
i nterrupts, we must still issue DCLBFR to establish ourselves as 
an APPCjVM user before we can issue any other APPCjVM functions. 

*----------------------------------------------------------------------

* 

XC PLIST,PLIST 
IUCV DCLBFR, 

PRMLIST=PLIST, 
BUFFER=INTBUF, 
CONTROL=NO 

BC CC1,DCLFAIL 
BC CC3,DIRERROR 

Start with a clean parameter list 
DCLBFR function $ 
Use PLIST as the parameter list $ 
Use INTBUF as t:he interrupt buffer $ 
Declare INTBUF an application buffer 
Go to DCLFAIL, if a user error 
Go to DIRERROR, if a directory error 

*-----------------------------------------------_._---------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

After establishing our virtual machine as an APPCjVM user, we try 
to CONNECT to the resource (specified with resource id). Because 
this program isn't interested in LU_NAME and mode name, we specify 
a connection extension length of zero. CP uses the default 
LU_NAME and mode name when creating the allocation data for our 
target. Whether or not the target is interested in this 
information is not a concern of our program. 

Because we specify WAIT=YES, our virtual machine won't regain 
control until the target resource accepts or rejects (SEVERs) our 
connection. The possible condition codes are: 

CC=l An error. 
CC=2 Connection completes successfully (partner ACCEPTs), or 

Connection completes unsuccessfully (partner SEVERs). 
*----------------------------------------------------------------------

XC PLIST,PLIST Start with a clean parameter list 

250 Transparent Services Access Facility Reference 



APPCVM CONNECT, 
PRMLIST=PLIST, 
RESID=RESIDSP, 
SYNCLVL=NONE, 
BUFLEN=ZERO, 
WAIT=YES 

CONNECT function $ 
Use PLIST as the parameter list $ 
RESIDSP contains the target resourceS 
Don't allow SENDCNF or SENDCNFD $ 
No connection extension $ 
Wait for the ACCEPT or SEVER 

BC CC1,CONERROR Go to CONERROR, if error 
* 
*----------------------------------------------------------------------

* 
* 
* 

The CONNECT is complete. We examine the connection complete data 
to see if the target ACCEPTed or SEVERed. If the target severed, 
we issue a RTRVBFR and exit the program. 

*----------------------------------------------------------------------

* 

MVC 
CLI 
BE 
MVI 

USERPATH, IPPATHID 
IPTYPE,IPTYPSVA 
CONERROR 
STATE ,SEND 

Save the path id 
Was the CONNECT rejected? 
If CONNECT was rejected, exit 
Otherwise, change to SEND state 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

We have established an APPCjVM path between our program and the 
resource. We are in SEND state, and the resource is in RECEIVE 
state. 

We send the file request to the resource. We use SENDDATA 
RECEIVE=YES to do the following: 

1) Send the request. 
2) Switch the resource to SEND state so the resource can respond. 
3) Define a receive area for the initial SEND by the resource. 

The length of the SEND is the length of the file name and file type 
plus the 2-byte length field sent with the data. 

- The length is the length of the data being sent (including 
the 2-byte header). 

* Because we specify WAIT=YES on this SENDDATA, we do not get 
* control back until the resource sends a response. We define our 
* response area just large enough for the response header, which 
* contains the length of the response. 
*----------------------------------------------------------------------

LA R7,SENDBLEN 
STH R7,SENDLEN 
LA R3,RECVHLEN 
XC PLIST,PLIST 
APPCVM SENDDATA, 

BC 
MVI 
CLI 
BE 
MVI 
CLI 
BE 
MVI 
CLI 
BE 
MVI 

PRMLIST=PLIST, 
PATHID=USERPATH, 
BUFFER=SENDBUF, 
BUFLEN=(R7) , 
ANSBUF=RECVBUF, 
ANSLEN=(R3) , 
RECEIVE=YES, 
WAIT=YES 
CC1+CC3,SENDERR 
STATE ,RECEIVE 
IPWHATRC,IPDATA 
SENDOK 
STATE,SEND 
IPWHATRC, IPSEND 
SENDOK 
STATE ,RECEIVE 
IPWHATRC, IPERROR 
SENDERR 
STATE ,SEVER 

Get length of header and data 
Store the length in the header 
Receive just the header 
Start with a clean parameter list 
SENDDATA function 
Use PLIST as the parameter list 
Send the data on the user path 
Take the data out of SENDBUF 
Get the length of SENDBUF 
Predefine an answer area 
Receive just the header 
Switch to RECEIVE state 
Get control after the SEND starts 
Go to SENDERR, if error 
Assume we end up in RECEIVE state 
Is there more data coming? 
If so, go to SENDOK 
Maybe it's SEND state 
Is that the end of the data? 
Yes, just the header was sent 
Maybe there was a SENDERR 
Was there a SENDERR? 
Yes, go to SENDERR 
Otherwise, sever the path 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

Appendix C. Sample TSAF User Program 251 



B SENDERR Go to SENDERR 
* *-------------------------------------------------_._-------------------
* 
* 
* 

The SENDDATA RECEIVE=YES completed. The resource sent us t he 
respons p to our request. We check the return code sent by the 
resource to s e e if our request was successful. 

*-----------------------------------------------_._---------------------
SENDOK DS 

CLC 
BNE 

OH 
RECVRC,ZERO 
READERR 

* 

Was the file read cor r e ctly? 
If not, go to READERR 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

We now display the file contents by receiving and displaying 
80 bytes at a time. We could have easily defined a larger buffer 
and received all of the data at once on the SENDDATA RECEIVE=YES . 
However, allocating a large buffer would be unne cessa ry fo r some 
file requests. We've written this program to wor k no matter h ow 
much data the resource sent in response (up to 32K ) o r how ma ny 
SENDDATAs the resource used to send the response. 

In the f o llowing set of instructions, R3 contains t h e number of 
bytes being r e ce i v e d, and R4 contain s the number of b ytes left 
to receive. 

*-- - -------------------------------------------------------------------
LH R4,RECVLEN 
LA R3,RECVHLEN 
SR R4,R3 

DISPLAY OS OH 
LA R3, RECVOLEN 
CR R4, R3 
BNL OI SPIT 
LR R3,R4 

DISPIT OS OH 
XC PLIST,PL I ST 
APPCVM RECEIVE, 

PRMLIST=PLIST, 
PATHID=USERPATH, 
BUFFER=RECVDATA, 
BUFLEN= (R3) , 
WAIT=YES 

BC CC1+CC3,RECVERR 
MVI STATE,RECEIVE 
CLI IPWHATRC,IPDATA 
BE RECVOK 
MVI STATE,SEND 
CLI IPWHATRC,IPSEND 
BE RECVOK 
MVI STATE,RECEIVE 
CLI IPWHATRC,IPERROR 
BE RECVERR 
MVI STATE,SEVER 
B RECVERR 

* 

Get the logic a l record l ength 
Get the length o f the header 
Get the l ength of the data 

Get the 80-byt e t ypica l length 
Ar e there 80 b ytes l eft ? 
If so, continue 
If not, d i sp lay wh at ' s l ef t 

Start with a clean paramet er l i st 
RECEIVE function $ 
Us e PLI ST as the p a r amet e r list $ 
Use the user p ath $ 
Use data a rea--no more heade rs sent $ 
RECEIVE more data $ 
Wa.it fo r the RECEIVE to complete 
If there i s a n error , go to RE CVERR 
Assume we 're in RECEIVE sta t e 
Is there mor e data to come? 
If so, go to RECVOK 
Maybe it's SEND s t a t e 
Is that the e n d of t h e d a ta? 
If so, go to RECVOK 
Maybe there was a SENDERR 
Was there a SENDERR? 
If so, go to RECVERR 
Sever the p a th 
Go to RECVERR 

*----------------------------------------------------------------------
* The RECEIVE was suc cessful. Display the next l ine o f t he f ile. 
*----------------------------------------------------------------------
RECVOK DS OH 

WRTERM RECVDATA,(R3) Display the next line 
* *----------------------------------------------------------------------
* Subtract the a mount of data just received fr om t he t otal amount 
* le f t. If there is data left to receive and d i s play , t h en go back 

252 Transparent Services Access Facility Reference 



* to DI SPLAY to d i sp lay it. 
*----------------------------------------------------------------------

* 

SR 
BH 

R4,R3 
DISPLAY 

Subtract the amount rece ived 
Go to DISPLAY, if more to rece i ve 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 

At this point, we have displayed the ent i re contents of the file. 
For simplicity, this program is de signed to request a single file 
and then seve r the path. Our last RECEIVE should have indicated 
that the r e source switched us back to SEND state (IPWHATRC=IPSEND). 

If we are in SEND state, we issue a SEVER TYPE=NORMAL to end 
our conversation normally. If we aren't in SEND state, we issue 
a SEVER TYPE=ABEND to e nd our conversation in an abnormal way. 

*----------------------------------------------------------------------

* 

SR 
CLI 
BE 
B 

R15,R15 
S'l'ATE, SEND 
NRMSEVER 
ERRSEVER 

Indicate normal completion 
Are we in SEND state? 
If so, sever normally (NRMSEVER ) 
If not, sever abnormally (ERRSEVER) 

*----------------------------------------------------------------------
* 
* 
* 

Th e fo llowi n g sets o f instructions cover the possible errors that 
could occur wh ile running this program. These routines s e t 
the appropriate return codes, sever the path, and exit the program. 

*----------------------------------------------------------------------
* 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 

Ther e wa s an e r ror on the DCLBFR. The only IPRCODE defined for 
DCLBFR is 19 , which me ans that an IUCV interrupt buffer has already 
bee n defined by our virt ual machine. Because the buffe r was not 
declared b y our progr am , we should not do a RTRVBFR. 

*------------- ---------------------------------------------------------
DCLFAIL OS OH 

* 

LA 
B 

R15 , DCLBFAIL 
EX I T 

Indicate the DCLBFR failed 
Go to the EXIT 

*------------- ---------------------------------------------------------
* 
* 
* 
* 

Condition cod e 3 from DCLBFR means that CP encountered an I / O 
error wh ile readin g the directory entry for this virtual machine. 
Be c a use the buf fe r wa s n ever dec l ared, we cannot issue a SEVER or 
a RTRVBFR . 

*----------~--- - -- -- --- -- - - --- - ----------------------------------------
DI RERROR OS OH 

* 

LA 
B 

R15, DCLBFR IO 
EX I T 

Indicate an I/O error on DCLBFR 
Go to the EXIT 

*--------- -------------------------------------------------------------
* 
* 

Th e r e was a n error on t he CONNECT. We do not have a path, and, 
therefore, c a nnot i nvok e SEVER. We must do the RTRVBFR. 

*---------------- ~ - -- -- - -------- ---------------------------------------
CONERROR OS 

LA 
B 

* 

OH 
R15 ,CONFAI L 
RTREXI T 

Indicate error on CONNECT to *IDENT 
Do a RTRVBFR and exit 

*----------------_._----------------------------------------------------
* 
* 

An error occurred on the SENDDATA that sent the request to the 
resourc e. 

*----------------------------------------------------------------------
SENDERR OS OH 

* 

LA 
B 

R15,SENDFAIL 
SEVERERR 

I ndicate SEND of the request failed 
Sever and exit 

*----------------------------------------------------------------------

Appendix C. Sample TSAF User Program 253 



* 
* 

The reso,urce reported an error. We add 100 to the code returned 
and exit. 

*----------------------------------------------------------------------
READERR OS OH 

* 

ICM 
LA 
B 

R15,B'llll' ,RECVRC 
R15, 100 ( , R15) 
SEVERERR 

Get the return code 
Add 100 
Sever and exit 

*----------------------------------------------------------------------
* An error occurred while receiving the data sent. 
*----------------------------------------------------------------------
RECVERR OS OH 

LA R15,RECVFAIL Indicate a RECEIVE failed 
* 
*----------------------------------------------------------------------
* 
* 
* 

An error occurred. We want to sever the path abnormally. However, 
if the error that occurred was that the path was severed, then we 
are in SEVER state and must issue SEVER TYPE=NORMAL. 

*----------------------------------------------------------------------
SEVERERR OS OH 

* 

CLI 
BE 

STATE, SEVER 
NRMSEVER 

Are we in SEVER state? 
If so, sever normally (NRMSEVER) 

*----------------------------------------------------------------------
* Sever the path normally or abnormally. 
*----------------------------------------------------------------------
ERRS EVER OS OH 

XC PLIST,PLIST Clear the parameter list 
APPCVM SEVER, 

PRMLIST=PLIST, 
PATHID=USERPATH, 
TYPE=ABEND, 
CODE=DEALPROG 

SEVER function $ 
Use PLIST as the parameter list $ 
Sever the user's path $ 
SEVER type is ABEND $ 

B 
NRMSEVER OS 

RTREXIT 
OH 

* 

XC PLIST,PLIST 
APPCVM SEVER, 

PRMLIST=PLIST, 
PATHID=USERPATH, 
TYPE=NORMAL 

SEVER code for DEALLOCATE_ABEND_PROG 
Exit now 

Clear the parameter list 
SEVER function 
Use PLIST as the parameter list 
Sever the user's path 
SEVER type is normal 

*----------------------------------------------------------------------
EXITS: * 

* 
* 

We use this exit to leave the program anytime after we have 
issue d the DCLBFR successfully. 

*----------------------------------------------------------------------
RTREXIT 

EXIT 

* 

OS 
IUCV 
DS 
ST 

OH 
RTRVBFR 
OH 
R15,SAVERC 

Do the RTRVBFR 

Save the return code 

*----------------------------------------------------------------------
* Basic housekeeping to exit 
*----------------------------------------------------------------------

L R13,SAVEMAIN+4 
LM R14,R12,12(R13) 
L R15,SAVERC 
BR R14 
DROP R2 

* 

Restore ptr. to system's save area 
Restore the system registers 
Restore the return code 
Return control to the system 
End parameter list addressability 

*----------------------------------------------------------------------
* Program storage areas 
*----------------------------------------------------------------------

254 Transparent Services Access Facility Reference 

$ 
$ 
$ 



SAVEMAIN OS 18F Save area for the user program 
RESIDSP OS CL8 Resource id 
USERPATH OS H Path id for the user path 
SAVERC OS F Save area for the return code 
* 
*----------------------------------------------------------------------
* Program constants and equates 
*----------------------------------------------------------------------
ZERO 
* 

DC F'O' Zero 

*----------------------------------------------------------------------
* SEVER Codes 
*----------------------------------------------------------------------
DEALPROG DC 
* 

X'0210' SEVER code for DEALLOCATE_ABEND_PROG 

*----------------------------------------------------------------------
* Return Codes 
*----------------------------------------------------------------------
DCLBFAIL EQU 1 DCLBFR failed 
DCLBFRIO EQU 2 I/O error on DCLBFR 
CONFAIL EQU 3 Error on CONNECT to resource 
SENDFAIL EQU 4 Error on SEND of request 
RECVFAIL EQU 5 Error on RECEIVE of response 
* 
*----------------------------------------------------------------------
* Storage for the IUCV parameter list 
*----------------------------------------------------------------------

PLIST 
INTBUF 
* 

OS 
OS 
OS 

00 
XL40 
XL40 

Force doubleword boundary 
Parameter list for IUCV function~ 
Buffer for DCLBFR function 

*----------------------------------------------------------------------
* State flag 
*----------------------------------------------------------------------
STATE DC CLl' State of the path indication 
RESET EQU C'P' RESET state 
SEND EQU C'S' SEND state 
RECEIVE EQU C'R' RECEIVE state 
SEVER EQU C'V' SEVER state 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 

The SEND bQffer for the file request to the resource consists of 
the following: 

- The first two bytes contain the length of the data being sent 
(including the 2-byte length field). 

- Following that is the file name and file type that we want 
from the resource. 

*--------------------------------------.--------------------------------
SENDBUF OS OH Buffer for SEND function 
SEND LEN OS ~L2 SENDDATA data length 
FILENAME OS CL8 File name 
FILETYPE OS CL8 File type 
SENDBLEN EQU *-SENDBUF Length of the SEND header and data 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 

When receiving the response from the resource, the RECEIVE buffer 
for the data sent consists of the following: 

- The first two bytes contain the length of the data sent 
(including the 2~byte length field). 

- The next four bytes contain the return code. 
- Following that is the response. 

*----------------------------------------------------------------------
RECVBUF OS 
RECVLEN OS 

OCL88 
XL2 

Buffer for RECEIVE function 
Length of data sent 

Appendix C. Sample TSAF User Program 255 



RECVRC DS XL4 Return code from re s ource 
RECVHLEN EQU *-RECVBUF Le ngth of RECEI VE header 
RECVDATA DS XL 80 The data portion of the data s t r eam 
RE CVDLEN EQU *-RECVDATA Length of RECEIVE d a t a ar ea 
* 
* -------------------------------------~--------------- --------------- --
* DSE CTS 
*-----------------------------------------~----------------------------

COpy 
COpy 
END 

EQU 
I PARML 
USER 

Incl~de the regi s t e r equates 
Include IUCV p a rameter l i st DSECT 

256 Transparent Services Access Facility Reference 



Appendix D. Sample TSAF Resource Manager Program 

This section contains a sample TSAF resource application. The program 
shows how to use the *IDENT System Service and APPCjVM. When 
reviewing this program, note the following: 

• This sample demonstrates the l UCY and APPCjVM functions. It does 
not show how to use lUCY or APPCjVM efficiently or how to write a 
good server vir tual machine application. 

• Though this program could be used as a CMS application, it does not 
use the CMS l UCY support; r ather it uses the CP lUCY and APPCjVM 
support directly. However, for simplicity, th is program does use various 
CMS macros (for example, the W AITECB macro). Descriptions of these 
macros can be fo und in the VMjSP eMS Macros and Functions 
Reference. 

• To highlight the lUCY and APPCjVM func tions" we have simplified the 
program logic in the following ways: 

The program only accepts one user connection at any given t ime. 

The r esponse to most error conditions is to sever the corresponding 
path. 

It is a good practice to display the IPAUDIT or IPRCODE fields 
when an error occurs , so system support personnel can take 
appropriate action. In general, programs cannot correct errors that 
are repor ted in IPAUDIT or IPRCODE. 

- This program does not check all error conditions. For example, the 
program does not check to verify that you, the invoker, specified a 
resource id. 

This program can only handle fixed length fi les with 80-byte 
records. The maximum number of records this program can read is 
400. 

This program runs disabled for lUCY interrupts. Th e PSW that we are 
given control with is enabled for external in terrupts. However, the lUCY 
interrupt mask in control register 0 is not set. The IUCVW ArT routine sets 
the mask before entering aWAIT state. The interrupt routine disables our 
program again by turning off the lUCY mask in control register 0 after 
each interrupt has been received. 

After assembling this program, you may invoke it by entering: 

START RESOURCE resid 

Appendix D. Sample TSAF Resource Manager Program 257 



resid 
is the resource id that manages the files. 

This program can then identify itself to CP as the manager of the specified 
resource and wait to handle user requests for specific files. 

PRINT NOGEN Don't expand macro calls 
*----------------------------------------------------------------------
* Basic housekeeping 
*----------------------------------------------------------------------
RESOURCE START X'20000' Start program counter at X'20000' 

Establish base register 12 

* 

USING RESOURCE,Rl2 
STM R14,R12,12(R13 
ST R13,SAVEMAIN+4 
LA R13,SAVEMAIN 
LA R2,PLIST 
USING IPARML,R2 
LA R3 , INTBUF 

Save system's registers 
Save pointer to system's save area 
R13 points to our save area 
Get address of APPC/VM parm list 
Establish parameter list mapping 
Get address of the interrupt buffer 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 

When invoking this program, you must specify a resource id. We get 
the resource id out of the parameter list. CMS passes the address 
of the parameter list to us in register 1. You can find more 
information about this interface in the VM/SP CMS Command Reference 
under the START command. 

*----------------------------------------------------------------------
MVC RE SID, 8 ( R 1 ) Get the resource id 

* 
*----------------------------------------------------------------------
* 
* 
* 

Before using IUCV or APPC/VM, we must define an interrupt buffer 
for our program to use, using the DCLBFR function. The interrupt 
buffer that we use is at label INTBUF. 

*----------------------------------------------------------------------
XC PLIST,PLIST Start with a clean parameter list 
IUCV DCLBFR, 

PRMLIST=PLIST, 
BUFFER=INTBUF, 
CONTROL=NO 

DCLBFR function $ 
Use PLIST as the parameter list $ 

BC CC1,DCLERR 

Use INTBUF as the interrupt buffer $ 
Declare INTBUF an application buffer 
Go to DCLERR, if DCLBFR failed 

BC CC3,DIRERROR Go to DIRERROR, if a directory error 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 

After establishing our virtual machine as an IUCV user, we try to 
CONNECT to the *IDENT System Service and identify our virtual 
machine as the manager of the specified resource. This connection 
is non-APPC, because we cannot use APPC/VM to connect to CP 
system services. The VM/SP System Reference for Programmers 
contains a description of the non-APPC IUCV CONNECT. 

*----------------------------------------------------------------------

* 

XC 
MVC 
IUCV 

BC 

PLIST,PLIST 
IDRESID,RESID 
CONNECT, 
PRMLIST=PLIST, 
USERID=IDENT, 
USERDTA=IDDATA 
CC1,CONERROR 

Start with a clean parameter list 
Move resource id into user data 
CONNECT function 
Use PLIST as the parameter list 
*IDENT is the target userid 
User data for identify 
Go to CONERROR, if error 

*----------------------------------------------------------------------
* We have successfully started the connection to *IDENT. IUCV 
* returns the path id for our half of the path in the parameter list. 

258 Transparent Services Access Facility Reference 

$ 
$ 
$ 



* We keep track of this path over which we are connected to *IDENT. 
*----------------------------------------------------------------------

MVC IDENTPTH,IPPATHID Save the path to *IDENT 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

We are interested in the following interrupts: 
- Connection complete interrupts - These indicates that 

*IDENT accepted our connection and we now manage the resource 
that we specified. 

- SEVER interrupts - These indicates that *IDENT rejected 
our connection and that we do not manage the specified 
resource. 

We issue a SETMASK to disable all noncontrol interrupts. 
We also must issue a SETCMASK to specifically disable all control 
interrupts except connection complete and SEVER. 

*--~-------------------------------------------------------------------
XC PLIST,PLIST Start with a clean parameter list 
LA Rl,CNTRLMSK Load the enable mask 
IUCV SETMASK, SETMASK function 

PRMLIST=PLIST, PLIST is the parameter list 
MASK= (Rl) The mask is in Rl 

XC PLIST,PLIST Start with a clean parameter list 
LA Rl,CCOMPMSK+SEVERMSK Load the enable mask 
IUCV SETCMASK, SETCMASK function 

PRMLIST=PLIST, PLIST is the parameter list 
MASK= (Rl) The mask is in Rl 

* 
*----------------------------------------------------------------------
* 
* 

Subroutine IUCVWAIT enables for IUCV interrupts and then waits 
until an IUCV interrupt occurs. 

*----------------------------------------------------------------------
BAL R9,IUCVWAIT Go to IUCVWAIT, wait for interrupt 

* 
*----------------------------------------------------------------------
* 
* 
* 

If the path is severed now it means that we never became the 
resource manager. In this case, we issue RTRVBFR and exit. We do 
not need to do a SEVER, because RTRVBFR cleans up the path. 

*----------------------------------------------------------------------
DROP 
USING 
CLI 
BE 
DROP 
USING 

* 

R2 
IPARML,R3 
IPTYPE,IPTYPSV 
IDNTERR 
R3 
IPARML,R2 

End parameter list addressability 
Interrupt buffer addressability 
Was the identify rejected via SEVER? 
If so, go to IDNTERR 
Done with interrupt buffer for now 
Back to the parameter list 

*----------------------------------------------------------------------
* 
* 

At this point, we have established ourselves as the resource 
manager. 

*----------------------------------------------------------------------
* 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Now we wait for either a connection pending to indicate that 
a user has work for us or a SEVER to indicate that we no longer 
manage the resource. We issue SETMASK to enable for control 
interrupts only and SETCMASK to enable for connection pending and 
SEVER interrupts. 

NOTE: The SEVER interrupt tells us that we no longer manage the 
resource, and we will not be getting any connection routed to us. 
Since we only handle one user at a time and currently do not have 
anyone connected to us, we would exit. However, if we did have 
a user connected to us, we could continue processing even after 

$ 
$ 

$ 
$ 

Appendix D. Sample TSAF Resource Manager Program 259 



* we lose management responsibility of a particular resource. 
*----------------------------------------------------------------------
NEXTUSEll. OS 

XC 
LA 
IUCV 

OH 
PLIST,PLIST 
Rl,CNTRLMSK 
SETMASK, 
PRMLIST=PLIST, 
MASK= (Rl) 

Start with a clean p ar ameter list 
Load the enable mask 
SETMASK function 
PLIST is the par amet e r list 
The mask is in Rl 

XC PLIST ,PLIST Start with a clean parameter list 
LA Rl,CPENDMSK+SEVERMSK Load the enable mask 

$ 
$ 

IUCV SETCMASK, SETCMASK function $ 
PRMLIST=PLIST, PLIST is the parameter list $ 
MASK=(Rl) The mask is in Rl 

BAL R9,IUCVWAI T Go to IUCVWAIT, wait for interrupt 
DROP R2 End parameter list addressability 
USING IPARML, R3 Interrupt buffer addressability 
CLI IPTYPE,IPTYPSV Do we still manage the resource? 
BE IDREVOKE If not, do a RTRVBFR and exit 
DROP R3 Done with interrupt buffer for now 
USI NG IPARML, R2 Back to the parameter list 

* 
*----------------------------------------------------------------- - ----
* 
* 
* 
* 

A new user has connected to us. This program lets anyon e 
authorized in the CP directory conneot to it. However, if the 
program was concerned with security here is where we would check 
the user's userid. 

*----------------------------------------------------------------------

* 

DROP R2 
USING IPARML, R3 
MVC USERPATH,IPPATHID 
DROP R3 

End parameter list addressability 
Establish interrupt buffer address 
Save the path id of the user path 
End interrupt buffer addressability 

*----------------------------------------------------------------------
* We accept the connection. 
*----------------------------------------------------------------------

* 

USING IPARML,R2 
XC PLIST,PLIST 
IUCV ACCEPT, 

PRMLIST=PLIST, 
PATHID=USERPATH 

BC CC2,ACCEPTOK 

Establish parameter list address 
Start with a clean parameter list 
ACCEPT function 
Use PLIST as the parameter list 
Accept the user path 
Go to ACCEPTOK, if successful 

*----------------------------------------------------------------------
* The ACCEPT failed. The us er who connected mu s t have severed the 
* path or logged off. We sever our half of the path and wait 
* for someone else to connect to us. We use IUCV SEVER since we 
* are in CONNECT state and APPCVM SEVER is not valid from this 
* state. 
*----------------------------------------------------------------------

* 

XC PLIST,PLIST 
IUCV SEVER, 

PRMLIST=PLIST, 
PATHID=USERPATH 

BC CCl,SEVERR 
B NEXTUSER 

Start with a clean parameter list 
Non-IUCV SEVER 
Use PLIST as the parameter list 
Sever the user's path 
Indicate SEVER error 
Go get the next user 

*----------------------------------------------------------------------
* The ACCEPT wa s successful. We now issue a RECEIVE to define a 
* buffer to get the user's request. 
*----------------------------------------------------------------------
ACCEPTOK OS OH 

XC PLIST,PLIST 
APPCVM RECEIVE, 

Start with a clean parameter list 
RECEIVE function 

260 Transparent Services Access Facility Reference 

$ 
$ 

$ 
$ 

$ 



PRMLIST=PLIST, 
PATHID=USERPATH, 
BUFFER=RECVBUF, 
BUFLEN=RECVBUFL, 
WAIT=NO 
CC1,RECVERR 
CC2,RECVCOMP 

Use PLIST as the parameter list $ 
RECEIVE data on user path $ 
Put the data into the RECEIVE bufferS 
Length of the RECEIVE buffer $ 
Return after RECEIVE is started 

* 

BC 
BC 

Go to RECVERR, if there is an error 
Go to RECVCOMP, if receive completed 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

When the RECEIVE does not complete immediately, we must wait for 
it to complete. We could enable for IUCV function complete 
interrupts and wait for an interrupt. However, so we can show the 
the use of more IUCV functions in this program, we use the 
TESTMSG and TESTCMPL functions. 

TESTMSG puts the virtual machine in a WAIT state until a message 
become pending (CC=l), a SENDREQ indication is posted (CC=l), or a 
function completes (CC=2). If both function completes and message 
pendings or SENDREQs are posted, TESTMSG completes with CC=3. 

For CC=l, we issue a DESCRIBE to drain the message pending or 
SENDREQ interrupt. For CC=2 or 3, we issue a TESTCMPL to complete 
the function and get the function complete data. 

*----------------------------------------------------------------------
TESTMSG DS OH 

IUCV TESTMSG Wait for the function to complete 
BC CC2+CC3,TESTCMPL Function completed, issue TESTCMPL 
XC PLIST,PLIST Start with a clean parameter list 
IUCV DESCRIBE, DESCRIBE function 

PRMLIST=PLIST Use PLIST as the parameter list 
B TESTMSG Wait for what we want 

TESTCMPL DS OH 
XC PLIST,PLIST Start with a clean parameter list 
IUCV TESTCMPL, TESTCMPL function 

PRMLIST=PLIST Use PLIST as the parameter list 
RECVCOMP DS OH 

LA R4,PLIST Function complete data in PLIST 
BAL R9,CHKFCOMP Check for SEVER, etc. 
BNZ NEXTUSER Go to NEXTUSER, if path was severed 

* 
*----------------------------------------------------------------------
* The data has been received. Read the file on behalf of the user. 
* 
* 

See the VM/SP Macros and Functions Reference for descriptions of 
the FSOPEN, FSREAD and FSCLOSE macros. 

*----------------------------------------------------------------------
DATARCVD DS OH 

MVC RECVDATA+16 (2) ,Al Add file mode to input 
LA R4,RECVDATA Address of file name and file type 
LA RS,SENDDATA Get address I/O buffer 
FSOPEN (R4) ,FSCB=FILEFSCB,ERROR=READERR 
LA R6,400 Read maximum of 400 records 

READLOOP DS OH 
XC O(SO,RS) ,O(RS) Clear the next 80 bytes 
FSREAD (R4) ,FSCB=FILEFSCB,ERROR=CHECKEOF,BUFFER=(RS) 
LA RS,80(,RS) Bump to next record position 
BCT R6,READLOOP Read the next record 
LH R1S,EOF Pretend it was end of file 

CHECKEOF DS OH 
LR R6,R1S Save the return code from FSREAD 
FSCLOSE (R4),FSCB=FILEFSCB 
LR R1S,R6 Restore the FSREAD return code 
CH R1S,EOF Was this the end of the file? 
BNE READERR If not, go to READERR 

$ 

$ 

Appendix D. Sample TSAF Resource Manager Program 261 



SR R15,R15 Zero the return code 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

We send the file back to the user in the following format: 
- The first 2 bytes contain the length of the variable 

(including the 2 byte length field). 
- The next 4 bytes contain the return code from the FSREAD. 
- Following these are the file contents. 

Note that the data is sent as a single SEND. The sample user 
program reads it in 80 byte records. Neither end of the 
conversation needs to know what the sizes are of the SENDs and 
RECEIVEs being issued. Also note that we specify the RECEIVE=YES 
to put the user back in SEND state and allocate a buffer for the 
next request. The sample user program does not make a second 
request during this connection, but this is irrelevant to our 
program. 

*----------------------------------------------------~-----------------
READERR DS OH 

LA R4,SENDBUF 
SR R5,R4 
STH R5,SENDLEN 
STCM R15,B'1111' ,SENDRC 
LA R4,PLIST 
XC PLIST,PLIST 

Get address of start of SEND area 
Get length of SEND 
Length of data plus header 
Save the return code 
Function complete data in PLIST 
Start with a clean parameter list 

APPCVM SENDDATA, SENDDATA function $ 

* 

PRMLIST=PLIST, 
PATHID=USERPATH, 
BUFFER=SENDBUF, 
BUFLEN=(R5) , 
RECEIVE=YES, 
ANSBUF=RECVBUF, 
ANSLEN=RECVBUFL, 
WAIT=NO 

BC CCl,SENDERR 
BC CC2,SENDCOMP 

Use PLIST as the parameter list $ 
Send the data on the user path $ 
Take the data out of SENDBUF $ 
The length of the data to send $ 
Switch to RECEIVE state $ 
Next request into RECEIVE buffer $ 
Length of the RECEIVE buffer $ 
Return after the SEND is started 
Go to SENDERR, if there is an error 
Go to SENDCOMP, SENDDATA completed 

*----------------------------------------------------------------------
* 
* 
* 

If the SENDDATA doesn't complete immediately, we enable for IUCV 
function complete interrupts and wait for the interrupt. R4 is 
set to point to the interrupt buffer for CHKFCOMP. 

*----------------------------------------------------------------------
SPACE 
XC PLIST,PLIST Start with a clean parameter list 
LA Rl,FCOMPMSK Enable for function complete 
IUCV SETMASK, SETMASK function 

PRMLIST=PLIST, PLIST is the parameter list 
MASK= (Rl) The mask is in Rl 

BAL R9,IUCVWAIT Wait for the IUCV interrupt 
LA R4,INTBUF Function complete data in INTBUF 

SENOCOMP DS Oli 
BAL R9,CHKFCOMP Check for SEVER, etc. 
BNZ NEXTUSER Go to NEXTUSER, if path was severed 

* *----------------------------------------------------------------------
* 
* 

The function is complete, and we receive a second request. Go to 
DATARCVD to handle it. 

*----------------------------------------------------------------------
* 
* 

B DATARCVD Go to DATARCVD, handle the request 

*----------------------------------------------------------------------
* The following sets of instructions cover the possible errors that 

262 Transparent Services Access Facility Reference 

$ 
$ 



* 
* 

could occur while running this program. These routines set the 
appropriate return codes, sever the path, and exit the program. 

*----------------------------------------------------------------------
* 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 

There was an error on the DCLBFR. The only IPRCOOE defined for 
OCLBFR is 19 which means that an IUCV interrupt buffer has already 
been defined by our virtual machine. Because the buffer was not 
declared by our program, we should not do a RTRVBFR. 

*----------------------------------------------------------------------
OCLERR OS 

LA 
B 

OH 
R1S,DCLFAIL 
EXIT 

* 

Indicate the DCLBFR failed 
Exit 

*----------------------------------------------------------------------
* 
* 
* 
* 

Condition code 3 from DCLBFR means that CP encountered an I/O 
error while reading the directory entry for this virtual machine. 
Since the buffer was never declared, we cannot SEVER or do a 
RTRVBFR. 

*----------------------------------------------------------------------
DIRERROR DS OH 

* 

LA 
B 

R1S,DCLBFRIO 
EXIT 

Indicate an I/O error on DCLBFR 
Exit 

*----------------------------------------------------------------------
* 
* 

There was an error on the CONNECT. We do not have a path and, 
therefore, cannot invoke SEVER. We must do the RTRVBFR. 

*----------------------------------------------------------------------
CONERROR OS OH 

* 

LA 
B 

R1S,CONFAIL 
RTREXIT 

Indicate error on CONNECT to *IDENT 
Do a RTRVBFR and exit 

*----------------------------------------------------------------------
* An error occurred on the Identify. We do a RTRVBFR and exit. 
*----------------------------------------------------------------------
IONTERR OS OH 

* 

LA 
B 

R1S,IONTFAIL 
RTREXIT 

Indicate error on Identify 
Do a RTRVBFR and exit 

*----------------------------------------------------------------------
* We no longer manage the resource. We do a RTRVBFR and exit. 
*----------------------------------------------------------------------
IDREVOKE OS OH 

* 

LA 
B 

R1S,REVOKE 
RTREXIT 

Indicate ownership revoked 
Do a RTRVBFR and exit 

*----------------------------------------------------------------------
* An error occurred on SEVER. We do a RTRVBFR and exit. 
*----------------------------------------------------------------------
SEVERR 

* 

OS 
LA 
B 

OH 
R1S,SEVFAIL 
RTREXIT 

Indicate error on SEVER 
Do a RTRVBFR and exit 

*----------------------------------------------------------------------
* An error occurred on RECEIVE. We do a SEVER, then a RTRVBFR. 
*----------------------------------------------------------------------
RECVERR DS OH 

* 

LA 
B 

R1S,RECFAIL 
ERRSEVER 

Indicate error on RECEIVE 
SEVER and exit 

*----------------------------------------------------------------------
* An error occurred on SENODATA. We do a SEVER, then a RTRVBFR. 

Appendix D. Sample TSAF Resource Manager Program 263 



*----------------------------------------------------------------------
SENOERR OS 

LA 
OH 
R15,SENDFAIL Indicate error on RECEIVE 

* *----------------------------------------------------------------------* SEVER the user path abnormally and exit. 
*----------------------------------------------------------------------
ERRS EVER DS OH 

* 

XC PLIST,PLIST 
APPCVM SEVER, 

PRMLIST=PLIST, 
PATHID=USERPATH, 
TYPE=ABEND, 
CODE=DEALPROG 

Clear the parameter list 
SEVER function 
Use PLIST as the parameter list 
Sever the user's path 
SEVER type is abend 
SEVER code for DEALLOCATEPROG 

*----------------------------------------------------------------------* EXITS: 
* We use this exit to leave the program any time after we have 
* successfully issued the DCLBFR. 
*----------------------------------------------------------------------
RTREXIT 

EXIT 

* 

DS 
IUCV 
DS 
ST 

OH 
RTRVBFR 

OH 
R15,SAVERC 

Do the RTRVBFR 

Save the return code 

*----------------------------------------------------------------------* Basic housekeeping to leave 
*----------------------------------------------------------------------

L R13,SAVEMAIN+4 Restore pointer to system's savearea 
LM R14,R12,12(R13) Restore the system's registers 
L R15,SAVERC Restore the return code 
BR R14 Return control to the system 

* *----------------------------------------------------------------------* The following subroutine checks the function complete data. 
* On input, R4 should point to the function complete data. On 
* output, if function complete data is: 
* 
* 
* 
* 

- OK, the condition code is O. 
- Not OK, we sever the user path and set condition code to 

non-zero. 
*----------------------------------------------------------------------

USING IPARML,R4 Parameter list addressability 
CHKFCOMP DS OH 
* *----------------------------------------------------------------------* Check for IPSEND. If IPSEND is present, then the user has turned 
* the conversation around. This marks a successful completion of all 
* SENDDATAs and RECEIVEs performed by this program. 
*----------------------------------------------------------------------
CHKSEND DS 

CLI 
BER 

* 

OH 
IPWHATRC, IPSEND 
R9 

Did user turn around conversation? 
If so, return 

*----------------------------------------------------------------------* Any indication other than the user turned around the conversation 
* is abnormal, and we sever the path. If the user issued 
* SEVER, we sever the path with SEVER TYPE=NORMAL. If the user 
* did not issue SEVER, we sever the path with SEVER TYPE=ABEND. 
*---------------------------~------------------------------------------

CLI IPWHATRC, IPSNORM Did the user sever normally? 
BE NRMSEVER If so, sever the path normally 
CLI IPWHATRC,IPSABEND Did the user sever abnormally? 

264 Transparent Services Access Facility Reference 

$ 
$ 
$ 
$ 



BE NRMSEVER 
DROP R4 
USING IPARML,R2 
XC PLIST,PLIST 
APPCVM SEVER, 

PRMLIST=PLIST, 
PATHID=USERPATH, 
TYPE=ABEND, 
CODE=DEALPROG 

BC CC1,SEVERR 

If so, sever the path normally 
Done with function complete data 
Use the parameter list 
Start with a clean parameter list 
User didn't sever, but we do 
Use PLIST as the parameter list 
Sever the user's path 
SEVER type is ABEND 
SEVER code is DEALLOCATE PROG 

CLI 
BR 

NRMSEVER OS 

*,X'FF' 
R9 
OH 

Go to SEVERR, if the SEVER fails 
Set non-zero condition code 
Return 

* 

XC PLIST,PLIST 
APPCVM SEVER, 

PRMLIST=PLIST, 
PATHID=USERPATH, 
TYPE=NORMAL 

BC 
CLI 
BR 
DROP 

CC1,SEVERR 
*,X'FF' 
R9 
R2 

Start with a clean parameter list 
User severed, we sever normally 
Use PLIST as the parameter list 
Sever the user's path 
SEVER type is NORMAL 
Go to SEVERR, if the SEVER fails 
Set non-zero condition code 
Return 
End parameter list addressability 

*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

The following routine enables for IUCV interrupts, and then waits 
for any IUCV interrupt. So our program can specify an address to 
gain control when an external interrupt occurs, we use the 
HNDEXT CMS macro. We can set bit 30 of control register 0, 
which is the IUCV interrupt mask, to enable for IUCV external 
interrupts. 

WAITECB is a CMS macro that gives control to CMS until the 
corresponding ECB is posted. Our interrupt routine (at label 
EXTINT) posts the ECB when an IUCV interrupt is reflected to 
the virtual machine. 
NOTE: Both the HNDEXT and WAITECB MACROS are explained in the 
VM/SP Macros and Functions Reference. 

*----------------------------------------------------------------------
IUCVWAIT OS OH 

* 

MVI ECBIUCV,X'OO' 
HNDEXT SET,EXTINT 
STCTL CO,CO,COSAVE 
01 COSAVE+3,IUCVENAB 
LCTL CO,CO,COSAVE 
WAITECB ECB=ECBIUCV 
BR R9 

Clear previous ECB flags 
Handle external interrupts 
Get control register 0 
Enable for IUCV interrupts 
Put new value back 
Wait for the interrupt 
Return 

*----------------------------------------------------------------------
* 
* 
. * 
* 
* 
* 
* 
* 

The following routine is the external interrupt handler for IUCV 
interrupts. Since we enabled for particular types of 
interrupts, we only need to verify that the interrupt is IUCV . 
However, in this program we check that the interrupt type 
received is the type that we want. For example, when we're 
enabled for connection pending interrupts we may get both APPC and 
non-APPC connection pendings, even if we're only interested in the 
APPC type. 

*----------------------------------------------------------------------
DROP 
USING 

EXTINT OS 
STM 
ST 
LA 
LR 

R12 
EXTINT,R15 
OH 
R14, R12 , 12 (R13 ) 
R13, SAVEEXT+4 
R13,SAVEEXT 
R12,R15 

Drop the base register for awhile 
Temporary addressability 

Save system's registers 
Save pointer to system's save area 
R13 points to our save area 
Restore the base register 

$ 
$ 
$ 
$ 

$ 
S 
$ 

Appendix D. Sample TSAF Resource Manager Program 265 



SL R12,=A(EXTINT-RESOURCE) 
DROP R15 Get back to base register 12 
USING RESOURCE,R12 Establish base register 12 
CLC X'62' (2,R1) ,IUCVTYPE Is this an IUCV interrupt? 
BNE EXTEXIT If not, ignore the interrupt 
LA R3,INTBUF Get address of the interrupt buffer 
USING IPARML,R3 Interrupt buffer addressability 

* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 

The following routine checks for connection pending interrupts. 
Our program gets a connection pending interrupt when a user 
issues an APPCVM CONNECT to the resource that our program 
manages. This program only checks for APPC connection pending 
interrupts, not non-APPC connection pending interrupts. 

*--------------------~-------------------------------------------------

* 

CLI 
BE 

IPTYPE,IPTYPPCA 
EXTPOST 

Is this an APPC connection pending? 
If so, post the ECB 

*----------------------------------------------------------------------
* 
* 
* 
* 

This routine checks for connection complete interrupts. Our 
program gets connection complete interrupts when our 
communication partner accepts our CONNECT. This program only 
initiates one CONNECT, the connection to *IDENT. 

*----------------------------------------------------------------------

* 

CLI 
BE 

IPTYPE,IPTYPCC 
EXTPOST 

Is this a non-APPC connection comp? 
If so, post the ECB 

*----------------------------------------------------------------------
* This routine checks for a SEVER interrupt. 
*----------------------------------------------------------------------

CLI 
BE 
CLI 
BE 

IPTYPE,IPTYPSVA 
EXTEXIT 
IPTYPE,IPTYPSV 
EXTPOST 

Is this an APPC SEVER? 
If so, wait for function complete 
Is this a non-APPC SEVER? 
If so, post the ECB 

*----------------------------------------------------------------------
* 
* 
* 
* 

This routine checks for a function complete interrupt. Our 
program gets a function complete interrupt when a function 
completes. In our case, the function is SENDDATA RECEIVE=YES or 
RECEIVE. 

*----------------------------------------------------------------------
CLI 
BE 

IPTYPE, IPTYPFCA 
EXTPOST 

Is this a function completion? 
If so, post the ECB 

*-----------------------------------------------_._---------------------

* 
* 
* 
* 
* 
* 
* 

This routine takes care of when we get an IUCV interrupt type that 
we don't want (for example, a non-APPC connection pending). We 
SEVER the path shown in the interrupt buffer, using a non-APPC 
SEVER since it works on either type of path. If the path is 
non-APPC, our communication partner gets a SEVER interrupt with 
user data set to zero. If the path is APPC, our partner gets 
a SEVER indication with TYPE=ABEND and SEVER CODE=X'0610'. 

*----------------------------------------------------------------------

* 

LH 
DROP 
USING 
XC 
I UCV 

RO,IPPATHID 
R3 
IPARML,R2 
PLIST,PLIST 
SEVER, 
PRMLIST=PLIST, 
PATHID=(RO) 

BC CC1,SEVERR 
B EXTEXIT 
DROP R2 
USING IPARML,R3 

Save the pathid 
Done with interrupt buffer for now 
Establish parameter list mapping 
Zero the parameter list 
Non-APPC SEVER function $ 
Use PLIST as the parameter list $ 
Use the interrupt's path 
Go to SEVERR, if the SEVER fails 
Otherwise, exit 
Done with parameter list for now 
Back to interrupt buffer mapping 

266 Transparent Services Access Facility Reference 



*----------------------------------------------------------------------
We post the ECB so CMS returns control to the main program. * 

* 
* 
* 

We also disable for IUCV interrupt by resetting bit 30 in control 
register O. We issue the HNDEXT macro to give control over 
external interrupts back to CMS. 

*----------------------------------------------------------------------
EXTPOST DS OH 

MVI ECBIUCV,EVENTCMP Indicate IUCV interrupt received 
STCTL CO,CO,COSAVE Get control register 0 
NI COSAVE+3,X'FF'-IUCVENAB Disable for IUCV interrupts 
LCTL CO,CO,COSAVE Put new value back 
HNDEXT CLR Give interrupts back to CMS 

EXTEXIT DS OH 
LA R2,PLIST Use the PLIST 
L R13, SAVEEXT+4 Restore R13 pointer 
LM R14,R12,12(R13) Restore the system's registers 
BR R14 Return to CMS 
DROP R3 Done with interrupt buffer for now 

* 
*----------------------------------------------------------------------
* Program storage areas 
*----------------------------------------------------------------------
SAVEMAIN DS 18F Save area for the resource program 
SAVEEXT DS 18F Save area for external interrupt handler 
RESID DS CL8 Resource id 
COSAVE DS F Save area for control register 0 
IDENTPTH DS H Path id for *IDENT connection 
USERPATH DS H Path id for user path 
SAVERC DS F Save area for the return code 
* 
*----------------------------------------------------------------------
* Program constants and equates 
*----------------------------------------------------------------------
IDENT DC CL8'*IDENT' Userid of *IDENT System Service 
ZERO DC F'O' Zero 
IUCVTYPE DC X'4000' External interrupt code for IUCV 
RECVBUFL DC A(RECVBLEN) Length of RECEIVE buffer 
SENDBUFL DC A(SENDBLEN) Length of SEND buffer 
EOF DC H'12' End of file indicator from FSREAD 
Al DC C'~l' File mode 
IUCVENAB EQU X'02' CR 0 bit to enable IUCV interrupts 
* 
*----------------------------------------------------------------------
* SEVER Codes 
*----------------------------------------------------------------------
DEALPROG DC 
* 

X'0210' SEVER code for DEALLOCATE_ABEND_PROG 

*----------------------------------------------------------------------
* Return Codes 
*----------------------------------------------------------------------
DCLFAIL EQU 1 DCLBFR failed 
DCLBFRIO EQU 2 I/O error on DCLBFR 
CONFAIL EQU 3 Error on CONNECT to *IDENT 
IDNTFAIL EQU 4 Connection to *IDENT was rejected 
REVOKE EQU 5 Connection to *IDENT was severed 
SEVFAIL EQU 6 SEVER failed 
RECFAIL EQU 7 RECEIVE on user path failed 
SENDFAIL EQU 8 SENDDATA on user path failed 
* 
*----------------------------------------------------------------------
* SETMASK mask values 
*----------------------------------------------------------------------
FCOMPMSK EQU 
CNTRLMSK EQU 

X '20' 
X'08' 

Enable for function complete interrupts 
Enable for control interrupts 

Appendix D. Sample TSAF Resource Manager Program 267 



* 
*----------------------------------------------------------------------
* SETCMASK MASK VALUES 
*----------------------------------------------------------------------
CPENDMSK EQU 
CCOMPMSK EQU 
SEVERMSK EQU 

X'80' 
X'40' 
X'20' 

Enable for connect pending interrupts 
Enable for connect complete interrupts 
Enable for SEVER interrupts 

* 
*----------------------------------------------------------------------
* User data for the CONNECT to *IDENT 
*----------------------------------------------------------------------
IDDATA DS OCL16 User data for CONNECT to *IDENT 
IDRESID DC CL8' Resource id for *IDENT 

DC X'Ol' Indicate an identify request 
DC X'80' Declare a global resource 
DC XL6'OO' Unused 

* 
*----------------~-----------------------------------------------------
* Storage for the IUCV parameter list and interrupt buffer 
*----------------------------------------------------------------------
PLIST 
INTBUF 

DS 
DS 
DS 

OD 
XL40 
XL40 

Force doubleword boundary 
Parameter list for IUCV functions 
Buffer of IUCV interrupt data 

* 
*----------------------------------------------------------------------
* 
* 

This set of instructions is the ECB used to wait for IUCV external 
interrupts. 

*------------------------------------------------_._--------------------
ECBIUCV DC 
EVENTCMP EQU 

F'O' 
X'40' 

ECB for WAIT function 
Event complete ECB flag 

* 
*----------------------------------------------------------------------
* 
* 

FSCB for the FSOPEN, FSREAD and FSCLOSE macros. The FSCB macro 
is described in the VMjSP Macros and Functions Refer e nce. 

*---------------------------------,-------------------------------------
FILEFSCB FSCB 'FILENAME FILETYPE FM' ,RECFM=F 
* 
*----------------------------------------------------------------------
* Force the literals to come out here. Because the SEND buffer is so 
* large, we don't have addressability to the end of it. 
*----------------------------------------------------------------------

LTORG 
* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 

The following is the RECEIVE buffer for the data sent from the 
user. When receiving the file, we receive the following: 

- The first two bytes contain the length of the data sent 
(including the 2-byte length field). 

- The next bytes are the file name (8 bytes) and the file type 
(8 bytes). 

*--------------------------------------------~-------------------------
RECVBUF OS 
RECVLEN OS 
RECVDATA OS 
RECVBLEN EQU 

OCL244 
XL2 
XL240 
*-RECVBUF 

Buffer for RECEIVE function 
Length of data sent 
The data portion of the data stream 
Length of RECEIVE header and data 

* 
*----------------------------------------------------------------------
* 
* 
* 
* 
* 
* 

268 

The following is the SEND buffer for the response back to the user. 
- The first two bytes contain the length of the data being sent 

(including the 2-byte length field). 
- The next four bytes contain the return code. 

Following that are the file contents. The maximum size of 
the response is 400, 80-byte records. (This number has no 

Transparent Services Access Facility Reference 



* significance) . 
*----------------------------------------------------------------------
SENDBUF os OXL32008 Buffer for SEND function 
SENDLEN OS XL2 SEND data length 
SENDRC OS XL4 Return code 
SENDDATA OS XL32000 The data being sent 
SENDBLEN EQU *-SENDBUF Length of SEND header and SEND data 
* 
*----------------------------------------------------------------------
* DSECTS 
*----------------------------------------------------------------------

COPY EQU 
COpy IPARML 
END RESOURCE 

Include the register equates 
Include the IUCV parameter list DSECT 

Appendix D. Sample TSAF Resource Manager Program 269 



270 Transparent Services Access Facility Reference 



Glossary of Terms and Abbreviations 

This section explains or defines the terms, 
acronyms, and abbreviations that appear in this 
manual. For a complete list of terms used in VM/SP 
refer to the VM/SP Library Guide, Glossary, and 
Master Index. You may also want to refer to the 
IBM Vocabulary for Data Processing, 
Telecommunications, and Office Systems, GC20-1699. 

*IDENT. The Identify System Service. This CP 
system service allows authorized virtual machines 
to connect to it and identify themselves as resource 
managers. 

*CRM. The Collection Resource Management 
System Service. This CP system service allows an 
authorized virtual machine to connect to it and 
become the TSAF virtual machine. 

accept. The act of allowing a connection to your 
virtual machine from another virtual machine or 
from your own virtual machine. 

Advanced Program-to-Program Communication 
(APPC). The inter-program communication service 
within Systems Network Architecture LU 6.2 (SNA 
LU 6.2) on which the APPC/VM interface is based. 

Advanced Program-to-Program 
CommunicationjVM (APPCjVM). An application 
program interface (API) for communicating between 
two virtual machines that is mappable to the SNA 
LU 6.2 APPC interface and is based on IUCV 
functions. Along with the TSAF virtual machine, 
APPC/VM provides this communication within a 
single system and throughout a collection of 
systems. 

API. Application Program Interface. 

APPC. Advanced Program-to-Program 
Communication. 

APPCjVM. Advanced Program-to-Program 
Communication/VM (APPCjVM) 

asynchronous communication. Communication 
when you have specified WAIT = NO on the 
particular APPC/VM function. Communicating 
asynchronously means that you can issue APPC/VM 
functions to other paths, while waiting for the 
asynchronous function to complete. 

BSC. Binary synchronous communication. 

collection. A group of VM/SP systems that can 
share resources. Each system within the collection 
must have the TSAF virtual machine installed and 
running. 

communication. See asynchronous 
communication and/or synchronous communication. 

communication partner. The virtual machine on 
the other end of the local APPC/VM path, not 
necessarily the target of the communication. 

communication server. A server, such as the 
TSAF virtual machine, that provides 
communications between systems. 

connect. The act of establishing a path to 
communicate with another virtual machine or with 
your own virtual machine. 

conversation state. A state that is associated 
with an APPC/VM program at each end of an 
APPC/VM path to define which communicator can 
issue which functions at any given time. The 
possible states are: CONFIRM, CONNECT, 
RECEIVE, RESET, SEND, SEVER. 

CTC. Channel-to-channel (links). 

Glossary of Terms and Abbreviations 271 



data stream. A set of logical records sent one 
after the other. 

dynamic configuration. The act of configuring a 
collection, or reconfiguring a collection when a 
system enters or leaves the collection after a link 
goes down within the collection. 

GCS. Group Control System component of VM/SP. 

interrupt. In APPC/VM, a way in which you may 
receive notification of pending functions. 

IPCS. Interactive Problem Control System 
component of VM/SP. 

link. In TSAF, the physical connection between 
two systems. 

LL. Logical record length. 

logical record. A formatted record that consists of 
a 2-byte logical record length field and a data field 
of variable length. 

LU. Logical unit. 

message. The data sent by a single APPC/VM 
SENDDATA function. 

272 Transparent Services Access Facility Reference 

path. In TSAF, any connection between two 
virtual machines either on the same or different 
systems. 

receive. The act of bringing into the specified 
buffer that data sent to your virtual machine from 
another virtual machine or from your own virtual 
machine. 

record. See logical record. 

resource. A program, a data file, a specific set of 
files, a device or any other entity or set of entities 
that you might want to uniquely identify for 
purposes of application program processing in a VM 
system. A resource can be identified by up to eight 
characters. 

resource id. A one-to-eight character name used 
to identify a resource. 

resource manager. A program or set of programs 
executing in a virtual machine and managing access 
to one or more VM resources; also called a server. 

route. In TSAF, a number of links and possible 
intermediate systems that allow the connection of 
one system to another. 

server. A program or set of programs executing in 
a virtual machine and managing access to one or 
more VM resources; also called a resource manager. 

sever. The act of ending communication with 
another virtual machine or with your own virtual 
machine. 

SNA. Systems Network Architecture. 

state. See conversation state. 

synchronous communication. Communication 
when you have specified WAIT = YES on the 
particular APPCjVM function. Communicating 
synchronously means that your virtual machine is 
put ina WAIT state, and you cannot issue any 



APPCjVM functions to any paths until the function 
completes. 

TSAF. Transparent Services Access Facility. 

Transparent Services Access Facility. A facility 
that lets users connect to and communicate with 
local or remote virtual machines within a collection 

of systems. With TSAF, a user can connect to a 
program by specifying a name that the program has 
made known, instead of specifying a userid and 
nodeid. 

TSAF virtual machine component. A component 
within VMjSP that handles communication between 
systems by letting APPCjVM paths span more than 
one system. 

Glossary of Terms and Abbreviations 273 



274 Transparent Services Access Facility Reference 



Bibliography 

For general VM/SP reference: 

VM/SP Planning Guide and Reference, SC19-6201 

VM/SP Operator's Guide, SC19-6202 

VM/SP CP Command Reference, SC19-6211 

VM/SP Installation Guide, SC24-5237 

VM/SP CMS Macros and Functions Reference, SC24-5284 

VM Diagnosis Guide, LY24-5241 

For IUCV programming and reference: 

VM/SP Group Control System Command and Macro Reference, SC24-5250 

VM System Facilities for Programming, SC24-5288 

For SNA LU Type 6.2 APPC architecture reference: 

Systems Network Architecture Transaction Programmer's Reference Manual for 
L U Type 6.2, GC30-3084 

Systems Network ATchitecture Format and Protocol Reference Manual: 
Architecture Logic for LU Type 6.2, SC30-3112 

Bibliography 275 



The YM/SP Library (Part 1 of 3) 

Evaluation 

General 
Information 

GC20-1838 

Planning 

Planning 
Guide and 
Reference 

SC19-6201 

Applications 

Application 
Development 
Guide 

SC24-5247 

Introduction 

GC19-6200 

Running 
Guest 
Operating 
Systems 

SC19-6212 

Programmer's 
Guide to the 
SRPI 
for VM/SP 

SC24-5291 

Release 5 
Guide 

SC24-5290 

Distributed 
Data 
Processing 
Guide 

SC24-5241 

Index 

Library 
Guide, 
Glossary, and 
Master Index 

GC19-6207 

Installation 

Installation 
Guide 

SC24-5237 

Operation 

Operator's 
Guide 

SC19-6202 

Reference Summaries To order all of the Reference Summaries, use order number SBOF-3242 

Commands 
(General User) 

SX20-4401 

CMS Primer 
Summary of 
Commands 

SX24-5151 

Commands 
(Other than 
General User) 

SX20-4402 

CMS Primer 
Line-Oriented 
Summary of 
Commands 

SX24-5159 

SP Editor 
Command 
Reference 
Summary 

SX24-5122 

Problem 
Reporting 
Summary 
(Poster) 

SX24-5171 

276 Transparent Services Access Facility Reference 

EXEC 2 Sys.Prod 
Reference Interpreter 
Summary Reference 

Summary 

SX24-5124 SX24-5126 

Summary of 
End Use 
Tasks and 
Commands 
(Poster) 

SX24-5173 



The VM/SP Library (Part 2 of 3) 

End Use 

Terminal CMS CMS Primer CMS CMS CMS 
Reference Primer for Line- User's Command Macros and 

Oriented Guide Reference Functions 
Terminals Reference 

GC19-6206 SC24-5236 SC24-5242 SC19-6210 SC19-6209 SC24-5284 

System System System System EXEC 2 CP 
Product Product Product Product Reference Command 
Editor Editor Interpreter Interpreter Reference 
User's Guide Command and User's Guide Reference 

Macro 
Reference 

SC24-5220 SC24-5221 SC24-5238 SC24-5239 SC24-5219 SC19-6211 

Quick 
Reference 

SX20-4400 

Diagnosis 
'7 

System System Service Problem VM GCS 
Messages Messages Rout ines Reporting Diagnosis Diagnosis 
and Codes Cross- Program Guide Guide Reference 

Reference Logic 

SC19-6204 IJ 
SC24-5264 IJ LY20-0890 SC24-5282 1/ LY24-5241 \I LY24-5239 1/ 

r/ 

Problem Data Areas Problem Data Areas OLTSEP VM 
Determination and Control Determination and Control and Error Problem 
Vol. 1 (CP) Blocks Vol. 2 (CMS) Blocks Recording Determination 

Vol. 1 (CP) Vol. 2 (CMS) Guide Reference 
Information 

LY20-0892 LY24-5220 LY20-0893 LY24-5221 SC19-6205 LX23-0347 

VM 
CP Internal 
Trace Table 
(Poster) 

LX24-5202 

Bibliography 277 



The VM/SP Library (Part 3 of 3) 

Administration 
"/ 

VM CP for CMS for 
System System System 
Facilities Programming Programming 
for 
Programming 

SC24-52BB SC24-52B5 V SC24-52B6 

Auxiliary Communication Support 

VTAM 
Installation 
and Resource 
Definition 

SC23-0111 

VTAM 
Programming 

SC23-0115 

RSCS 
Networking 
Version 2 
General 
Information 

GH24-5055 

VM/Pass-
Through 
Facility 
General 
Information 

GC24-5206 

V 

V 

VTAM 
Customization 

SC23-0112 

VTAM 
Diagnosis 
Guide 

SC23-0116 

RSCS 
Networking 
Version 2 
Planning and 
Installation 

SH24-5057 

VM/Pass-
Through 
Facility 
Guide and 
Reference 

SC24-520B 

V 

'/ 

VTAM 
Operation 

SC23-0113 

VTAM 
Diagnosis 
Reference 

LY30-5582 

RSCS 
Networking 
Version 2 
Operation 
and Use 

SH24-505B 

VM/PASS-
Through 
Facility 
Logic 

LY24-520B 

278 Transparent Services Access Facility Reference 

'/ 

TSAF 
Reference 

SC24-52B7 

VTAM 
Messages 
and Codes 

SC23-0114 

VTAM 
Data 
Areas (VM) 

LY30-5583 

RSCS 
Networking 
Version 2 
Diagnosis 
Reference 

LY24-522B V 

GCS 
Command 
and Macro 
Reference 

SC24-5250 

VTAM 
Reference 
Summory 

SC23-0135 

RSCS 
Networking 
Version 2 

Ref. Summary 

SX24-5135 



I Special Characters I 

*CRM 
*IDENT's use of the *CRM path 209 
authorizing a virtual machine to connect to 11, 

209 
communications 211 
connecting to 210 
path 209 
request resource table information 211 
responsibilities 209 
revoking a resource 212 
send format 211 
SEVER reason codes 213 
severing connection to 213 

*IDENT 
answer data 

answer area 219 
connecting to *IDENT 219 
severing the *IDENT connection 222 

authorizing virtual machine to connect to 215 
connect format 216 
connecting to 

*IDENT 19, 216 
do a revoke 220 
resource manager 220 

local system resource table 215 
multiple connections to 21 
passing requests to TSAF 218 
processing requests to manage a resource 
responsibilities 215 
revoking 

requests to TSAF 221 
resource 220 
resources in merging collections 223 
your own resources 223 

SEND format 220, 221 
sever reason codefj 223 
severing connection to 220 
using the *CRM path 209 

abbreviations 271 
abend conditions 

ALLOCATE (APPC) 190 
CONFIRM (APPC) 192 
CONFIRMED (APPC) 193 

218 

DEALLOCATE (APPC) 195 

RECEIVE_AND_WAIT (APPC) 199 

REQUEST_TO_SEND (APPC) 201 
responding to TSAF abends 55 

SEND_DATA (APPC) 203 

SEND_ERROR (APPC) 205 
abends, TSAF 55 
ACCEPT function of IUCV 87 

completion 89 
condition codes 88, 226 
mapped with APPC 247 
overview 67 
parameter list 88 
parameters 

MF = L parameter 87 
P ATHID parameter 87 
PRMLIST parameter 87 

program exceptions 89 
return codes 88, 226 
scenario 70 
state changes 89 
use in sample resource program 260 

accepting a connection 67 
accounting records 

initialization 49 
link 51 
session 50 
SYSACNT macro 49 
termination 52 

accounting statistics, generating 49 
ACCT directory option 12,49 
ADD LINK command 37 
address lists 113, 137 
address ability, parameter 84 
addressing exception 

ACCEPT 89 
CONNECT 96 
DCLBFR 104 
DESCRIBE 108 
RECEIVE 118 
SENDCNF 128 
SENDCNFD 133 
SENDDATA 144 
SENDERR 153 
SENDREQ 158 
SETCMASK 163 
SETMASK 167 
SEVER 173 
TESTCUPL 180 

Index 

Advanced Program-to-Program Communication 
(APPC) 

Index 279 



See also APPC (Advanced Program-to-Program 
Communication) 

conversations in 185 
error conditions 183 
functions 187-206 
functions not supported 186 
interrupts 187 
return codes 186 

Advanced Program-to-Program Communication/VM 
(APPC/VM) 

See also APPC/VM (Advanced 
Program-to-Program Communication/VM) 

communications overview 61 
differences from IUCV 76 
error/SEVER codes 183 
functions 86 

CONNECT 90 
RECEIVE 111 
SENDCNF 124 
SENDCNFD 130 
SENDDATA 134 
SENDERR 149 
SENDREQ 156 
SEVER 169 

paths 62 
performance 66 
security 17 
services 5 
states 62 

ALLOCATE, APPC verb 
abend conditions 190 
mapped with APPC/VM 188, 235 
parameters 188 
state changes 190 

AL TID parameter 
of CONNECT 92 

AL TSYS parameter 
ANSBUF parameter of SENDDATA 136 
ANSLEN parameter of SENDDATA 136 
ANSLIST parameter of SENDDATA 135 
answer area, *IDENT 219, 222 
answer data 

connecting to *IDENT 219 
severing the *IDENT connection 222 

APPC (Advanced Program-to-Program 
Communication) 

conversations in 185 
error conditions 183 
functions 187, 206 
functions not supported 186 
interrupts 187 
return codes 186 

APPC/VM (Advanced Program-to-Program 
Communication/VM) 

communications overview 61 
differences from IUCV 76 
error/SEVER codes 183 
functions 86, 182 

CONNECT 90 
RECEIVE 111 

280 Transparent Services Access Facility Reference 

SENDCNF 124 
SENDCNFD 130 
SENDDAT A 134 
SENDERR 149 
SENDREQ 156 
SEVER 169 

paths 62 
performance 66 
security 17 
services 5 
states 62 

APPC/VM function 
See ACCEPT function of IUCV 
See CONNECT function of APPC/VM 
See DCLBFR function of IUCV 
See DESCRIBE function of IUCV 
See QUERY function of IUCV 
See RECEIVE function of APPC/VM 
See RTRVBFR function of IUCV 
See SENDCNF function of APPC/VM 
See SENDCNFD function of APPC/VM 
See SENDDATA function of APPC/VM 
See SENDERR function of APPC/VM 
See SENDREQ function of APPC/VM 
See SETCMASK function of IUCV 
See SETMASK function of IUCV 
See SEVER function of APPC/VM 
See TESTCMPL function of IUCV 
See TESTMSG function of IUCV 

APPCVM macro 85 
asynchronous communication 

compared with synchronous 75 
RECEIVE 73 
scenario 71 

ATSLINKS FILE 14,15 
using ADD LINK to manipulate 37 
using DELETE LINK to manipulate 39 

ATTACH command (CP) 16 
authorization 

connect to *CRM 209 
connect to *IDENT 215 
connect to resources 22 
manage resources 19 
revoke a resource 220 

binary sYflchronous lines (BSC) 33 
BMX directory option 12 
buffer 

application 85 
control 85 

BUFFER parameter 
of DCLBFR 103 
of RECEIVE 112 
of SENDDAT A 135 

buffer, declaring 



See DCLBFR function of IUCV 
buffer, retrieving 

See RTRVBFR function of IUCV 
BUFLEN parameter 

of RECEIVE 112 
of SENDDATA 135 

BUFLIST parameter 
of RECEIVE 112 
of SENDDATA 135 

build process 14 

changes, state 
See state changes 

channel-to-channel adapter (CTCA) 33 
CMS macros 85 

HNDEXT (use in sample program) 265 
W AITECB (use in sample program) 265 

CODE parameter 
of SEND ERR 150 
of SEVER 169 

collection 
See also inter-collection communication 
example 2, 25-28 
initialization 3 
links for 2 
merging 30 
querying 40 
querying (TSAF QUERY) 58 
revoking resources when merging 223 
sharing resources within 2 
sizes 31 
structure 25 

Collection Resource Management System Service 
*IDENT's use of the *CRM path 209 
authorizing a virtual machine to connect to 11, 

209 
communications 211 
connecting to 210 
path 209 
request resource table information 211 
responsibilities 209 
revoking a resource 212 
send format 211 
SEVER reason codes 213 
severing connection to 213 

command syntax 35 
commands, TSAF (Transparent Services Access 

Facility) 
ADD LINK 37 
DELETE LINK 39 
QUERY 40 
RUNTSAF 43 
SET ETRACE 45 
STOP TSAF 46 

communication 

*CRM 211 
APPCjVM 61 

communication partner 
connecting to 97 
overview 62 
receiving from 121 
sending to (SENDCNF) 129 
sending to (SENDCNFD) 133 
sending to (SENDDATA) 147 
sending to (SENDERR) 155 
sending to (SENDREQ) 159 
severing from 174 
severing paths 123 

communication server 12 
completion, function 

See function completion 
COMSRV directory option 12 
CONCEAL directory option 13 
condition codes 

ACCEPT 88 
CONNECT 94 
DCLBFR 104 
DESCRIBE 107 
QUERY 109 
RECEIVE 114 
RTRVBFR 122 
SENDCNF 126 
SENDCNFD 131 
SENDDAT A 139 
SEND ERR 151 
SENDREQ 157 
SETCMASK 163 
SETMASK 167 
SEVER 172 
TESTCMPL 178 
TESTMSG 182 

CONFIRM state 63 
CONFIRM, APPC verb 

abend conditions 192 
mapped with APPCjVM 191,236 
parameters 191 
state changes 192 

confirmation, request 74 
See also SENDCNF function of APPCjVM 

CONFIRMED, APPC verb 
abend conditions 193 
mapped with APPCjVM 193, 237 
parameters 193 
state changes 193 

CONNECT function of APPCjVM 90 
communication servers 100 
completion 96 
condition codes ~94, 227 
mapped with APPC 188,235 
overview 66 
parameter list 93 
parameters 

ALTID 92 
CONTROL 90 
MF=L 90 

Index 281 



PRMLIST 90 
RESID 91 
SYNCLVL 91 
WAIT 91 

program exceptions 96 
return codes 94, 227 
scenario 70 
state changes 96 
to communication partner 97 
use in sample resource program 258 
use in sample user program 250 

CONNECT state 63 
connecting to 

*CRM 210 
*IDENT 216, 220 
*IDENT to revoke a resource 220 
resource manager 220 
resources 22 
virtual machines 66 

connection complete interrupt 65 
format 95, 97 

connection pending interrupt 64 
contents 67 
format 97 

CONRES parameter 
console log, TSAF 56 
control buffer 85 
CONTROL parameter 

of CONNECT 90 
of DCLBFR 103 

control path 85 
control statements 

IUCV 19,22 
multiple IUCV 21 

conversations 
APPC 185 
starting an APPC one 185 
states 62 

CP system services 
See Collection Resource Management System 

Service 
See Identify System Service 

CPTRAP command 58 
querying 58 
viewing data 58 

CPU id 17 
creating dumps 57 

DATA parameter (APPC) 

of RECEIVE_ AND_WAIT 197 

of SEND_DATA 202 
data, how it is sent 69 
DCLBFR function of IUCV 102 

completion 105 

282 Transparent Services Access Facility Reference 

condition codes 104 
considerations for 85 
parameter list 103 
parameters 

BUFFER 103 
CONTROL 103 
MF=L 103 
PRMLIST 102 

program exceptions 104 
return codes 104 
scenario 70 
state changes 105 
use in sample resource program 258 
use in sample user program 250 

DEALLOCATE, APPC verb 
abend conditions 195 
mapped with APPC/VM 194,238 
parameters 194 
state changes 195 

declare buffer 85 
See also DCLBFR function of IUCV 

dedicating links 16 
defaults for optional parameters 84 
definition 7 
definition of terms 271 
DELETE LINK command 39 
DESCRIBE function of IUCV 106 

completion 108 
condition codes 107, 227 
parameter list 107 
parameters 

PRMLIST 106 
program exceptions 108 
return codes 227 
use in sample resource program 261 

DIAGNOSE code X'4C' 51 
diagnosing dumps 57 
diagnosing problems 55 
directory 

See also TSAF virtual machine 
entry for resource manager 20 
for TSAF 11 
multiple resource owner 21 
resource manager 19 
resource owner 19 
sample TSAF 14 

displaying dump information 57 
displaying trace records 57 
displays, TSAF 
DMKRIO 16 
dumps 

creating 57 
diagnosing 57 
displaying dump information 57 
displaying trace records 57 
formatting trace records 57 
loading 57 
printing 57 

DUMPSCAN TRACE command (IPCS) 57 
dynamic configuration 32 



inoperationallink 32 
route failure 33 

ECMODE directory option 12 
error codes 183 
error rate of lines 34 
error, signalling an 74 
exception, programming 

See program exceptions 
expand macro (MF = L) 84 
external interrupt 

See interrupt handler 
external trace option 

querying 41 

failure of routes 33 
FCODE field 

of CONNECT request (*IDENT) 217 
of REVOKE request (*CRM) 212 
of SEND request (*CRM) 211 
of SEND request (*IDENT) 218, 221 

FDISPLA Y command (IPCS) 57 
FILL parameter (APPC) 

of RECEIVE_ AND_WAIT 197 
FLAG field 

of CONNECT request (*IDENT) 217 
formatting trace records 57 
function complete interrupt 65 

multiple 73 
RECEIVE 116 
SENDCNF 127 
SENDDATA 141 
SEND ERR 152 

function completion 
ACCEPT 89 
CONNECT 96 
DCLBFR 105 
DESCRIBE 108 
QUERY , 110 
RECEIVE 120 
RTRVBFR 123 
SENDCNF 129 
SENDCNFD 133 
SENDDATA 146 
SENDERR 154 
SENDREQ 159 
SETCMASK 164 
SETMASK 167 
SEVER 174 
TESTCMPL 180 
TESTMSG 182 

GCS (Group Control System) macros 85 

GET_ATTRIBUTES, APPC verb 
mapped "'(ith APPC/VM 196,239 

giving up status as TSAF virtual machine 213 
global resource 

access to 3 
control statements for 21 
how *IDENT handles 218 
how *IDENT handles requests 216 
identifying 20 
request to send 211 
revoking 20, 212 
revoking your own 223 

global TSAF functions 34 
glossary 271 

half-duplex communication 62, 76 
HNDEXT macro (use in sample program) 265 

Identify System Service 19 
answer data 

answer area 219 
connecting to *IDENT 219 
severing the *IDENT connection 222 

authorizing virtual machine to connect to 215 
connect format 216 
connecting to 

*IDENT 19, 216 
do a revoke 220 
resource manager 220 

lUCV 
*IDENT 19 
syntax 19 

local system resource table 215 
multiple connections to 21 
passing requests to TSAF 218 
processing requests to manage a resource 218 
responsibilities 215 
revoking 

requests to TSAF 221 
resource 220 
resources in merging collections 223 
your own resources 223 

SEND format 220, 221 
sever reason codes 223 

Index 283 



· severing connection to 220 
using the *CRM path 209 

initialization accounting record 49 
inter-collection communication 
Inter-User Communications Vehicle (IUCV) 

See also IUCV (Inter-User Communications 
Vehicle) 

CONNECT function 210, 216, 220 
differences from APPCjVM 76 
SEND function 211 
two-way SEND 218, 219, 221, 222 

interrupt 
APPC/VM 64-66 

interrupt handler 
APPC 187 
connection complete 65, 95, 97 
connection pending 64, 97 
disabling for 86, 161, 165 
enabling for 86, 161, 165 
function complete 65, 116, 127, 141, 152 
message pending 64, 147 
SENDREQ 65, 159 
SEVER 65, 175 

IP ARML DSECT 84 
IPCS (Interactive Problem Control System) 

commands 
DUMPSCAN TRACE 57 
FDISPLAY 57 
PRTDUMP 57 

IUCV (Inter-User Communications Vehicle) 
ACCEPT function 87 
CONNECT function 210, 216, 220 
DCLBFR function 102 
DESCRIBE function 106 
differences from APPC/VM 76 
QUERY function 109 
RTRVBFR function 122 
SEND function 211 
SETCMASK function 161 
SETMASK function 165 
TESTCMPL function 177 
TESTMSG function 181 
two-way SEND 218, 219, 221, 222 

IUCV *CRM directory entry 13 
IUCV ALLOW directory entry 13 

joining collections 30 

284 Transparent Services Access Facility Reference 

LENGTH parameter (APPC) 

of RECEIVE_ AND_WAIT 197 

of SEND_DATA 202 
lengths, message 69 
lines 

error rate 34 
performance 34 
speed 34 

link accounting record 51 
links, TSAF 15 

adding (ADD LINK) 37 
ATTACH command 16 
DEDICATE command 16 
deleting (DELETE LINK) 39 
in operational 32 
performance of 33 
querying 41, 58 
supported 33 

lists, address 113, 137 
load map, creating 57 
loading dumps 57 
local resource 

access to 3 
control statements for 21 
how *IDENT handles 218 
how *IDENT handles requests 216 
identifying 19 
revoking 20, 212 
revoking your own 223 

log, TSAF console 56 

LOG DATA parameter (APPC) 
of DEALLOCATE 194 

of SEND_ERROR 204 
logical record 

definition 69 
figure 69 
length 69 
multiple APPC/VM messages 69 

LU generated responses 246 

LU NAME parameter (APPC) 
~f ALLOCATE 188 

macro 
APPCVM 85 
CMS (Conversational Monitor System) 85 

HNDEXT (use in sample program) 265 
W AITECB (use in sample program) 265 

GCS (Group Control System) 85 
IUCV 85 

managing a resource 19 



map, TSAF load 57 
mapping between APPC/VM and APPC 

parameters and conditions 187-206 
summary 233-247 

MASK parameter 
of SETCMASK 162 
of SETMASK 166 

MAXCONN directory option 12, 20 
merging collection 

resource management in 30 
revoking resources in 223 

message 
definition 69 
finding out the length 69 
length of pending 72 
lengths 69 
size 69 

message pending interrupt 64 
format 147 

message repository (TSAF) 15 
MF = L parameter 

expanding the macro with 84 
of ACCEPT function 87 
of CONNECT 90 
of DCLBFR 103 
of RECEIVE 111 
of SENDCNF 124 
of SENDCNFD 130 
of SENDDATA 134 
of SENDERR 149 
of SETCMASK 162 
of SETMASK 166 
of SEVER 170 
of TESTCMPL 177 

MODE_NAME parameter (APPC) 
of ALLOCATE 188 

multiple resources 21 
samples 21 

node id 17 

of ALLOCATE 188, 189 
operation exception 

ACCEPT 89 
CONNECT 96 
DCLBFR 104 
DESCRIBE 108 
QUERY 110 
RECEIVE 118 
RTRVBFR 123 
SENDCNF 128 

SENDCNFD 133 
SENDDATA 144 
SENDERR 153 
SENDREQ 158 
SETCMASK 163 
SETMASK 167 
SEVER 173 
TESTCMPL 180 
TESTMSG 182 

owning a resource 19, 21 
multiple resources 21 

parameter address ability 84 
parameter lists, APPC/VM 

CONNECT 93 
RECEIVE 113 
SENDCNF 125 
SENDCNFD 131 
SENDDATA 137 
SENDERR 150 
SENDREQ 157 
SEVER 171 

parameter lists, IUCV 
ACCEPT 88 
DCLBFR 103 
DESCRIBE 107 
QUERY 109 
RTRVBFR 122 
SETCMASK 162 
SETMASK 166 
TESTCMPL 178 
TESTMSG 181 

parameters, APPC 
on ALLOCATE 188 
on CONFIRM 191 
on CONFIRMED 193 
on DEALLOCATE 194 

on RECEIVE AND WAIT 197 

on REQUEST_TO_SEND 201 

on SEND DATA 202 

on SEND ERROR 204 
partner, communication 

See communication partner 
passing requests to TSAF virtual machine 218, 221 
path 

*CRM 209 
APPC/VM communications 62 

P ATHID parameter 
of ACCEPT function 87 
of RECEIVE 111 
of SENDCNF 124 
of SENDCNFD 130 
of SENDDATA 135 
of SEND ERR 149 

Index 285 



of SENDREQ 156 
of SEVER 170 
of TESTCMPL 177 

paths, speed of 33 
pending interrupt, message 147 
performance 

APPC/VM 66 
applications 33 
commands to improve 34 
considerations 33 
degradation 34 
line 34 
of remote paths 33 

PIP parameter (APPC) 

PREPARE_TO_RECEIVE, APPC verb 
printing TSAF dumps 57 
PRMLIST parameter 

of ACCEPT function 87 
of CONNECT 90 
of DCLBFR 102 
of DESCRIBE 106 
of RECEIVE 111 
of SENDCNF 124 
of SENDCNFD 130 
of SENDDATA 134 
of SENDERR 149 
of SENDREQ 156 
of SETCMASK 161 
of SETMASK 165 
of SEVER 169 
of TESTCMPL 177 

problem diagnosis 
dumps 57 

creating 57 
diagnosing 57 
displaying 57 
displaying trace records 57 
formatting trace records 57 
loading 57 
printing 57 

system trace data 58 
external tracing 58 
trapping entries (CPTRAP) 58 
viewing CPTRAP data 58 

processor id 17 
PROFILE EXEC, TSAF 14 
program 

sample resource 
ACCEPT function 260 
CONNECT function 258 
DCLBFR function 258 
DESCRIBE function 261 
RECEIVE function 260 
RTRVBFR function 264 

286 Transparent Services Access Facility Reference 

SENDDATA function 262 
SETCMASK function 259, 260 
SETMASK function 259, 260, 262 
SEVER function 260, 264, 266 
TESTCMPL function 261 
TESTMSG function 261 

sample user 
CONNECT function 250 
DCLBFR function 250 
RECEIVE function 252 
RTRVBFR function 254 
SEND DATA function 251 
SEVER function 254 

program exceptions 
See also addressing exception 
See also operation exception 
See also protection exception 
See also specification exception 
ACCEPT 89 
CONNECT 96 
DCLBFR 104 
DESCRIBE 108 
QUERY 110 
RECEIVE 118 
RTRVBFR 123 
SENDCNF 127 
SENDCNFD 133 
SENDDATA 144 
SENDERR 153 
SENDREQ 158 
SETCMASK 163 
SETMASK 167 
SEVER 173 
TESTCMPL 180 
TESTMSG 182 

programs 
sample resource 257-269 
sample user 249-256 

protected application environment 13 
protection exception 

ACCEPT 89 
CONNECT 96 
DCLBFR 104 
DESCRIBE 108 
RECEIVE 118 
SENDCNF 128 
SENDCNFD 133 
SENDDATA 144 
SENDERR 153 
SENDREQ 159 
SETCMASK 163 
SETMASK 167 
SEVER 173 
TESTCMPL 180 

PRTDUMP command (IPCS) 57 



QUERY command 40 
QUERY CPTRAP command (CP) 58 
QUERY function of IUCV 109 

completion 110 
condition codes 109, 227 
parameter list 109 
program exceptions 110 
return codes 227 

RCODE field of answer data 219, 222 
REALTIMER directory option 13 
reason codes, SEVER 

Collection Resource Management System 
Service (*CRM) 213 

Identify System Service (*IDENT) 223 
RECEIVE area 72 
RECEIVE function of APPC/VM 111 

addressing for 113 
completion 120 
condition codes 114, 228 \ 
from communication partner 121 
mapped with APPC 197, 240 
overview 68 
parameter list 113 
parameters 

BUFFER 112 
BUFLEN 112 
BUFLIST 112 
MF=L 111 
PATHID 111 
PRMLIST 111 
WAIT 112 

program exceptions 118 
return codes 115, 228 
scenario 71 
state changes 119 
use in sample resource program 260 
use in sample user program 252 

RECEIVE parameter of SENDDATA 134 
RECEIVE state 63, 68 

RECEIVE_AND_WAIT, APPC verb 
abend conditions 199 
mapped with APPC/VM 197, 240, 244 
parameters 197 
state changes 199 

receiving data 68 
rej ecting a connection 67 
repository, TSAF message 15 
request confirmation 

See SENDCNF function of APPC/VM 
request to send 

See SENDREQ function of APPC/VM 
request-to-send interrupt 65 

REQUEST_TO_SEND, APPC verb 
abend conditions 201 
mapped with APPC/VM 201,242 
parameters 201 
state changes 201 

REQUEST _TO _SEND _RECEIVED parameter 
(APPC) 

of CONFIRM 191 

of RECEIVE_AND_WAIT 197 

of SEND_DATA 202 

of SEND_ERROR 204 
RES COUNT field 
RESCOUNT field of SEND data (*CRM) 212 
RESET state 63 
RESID parameter of CONNECT 66, 91 
resource 3 

authorization to connect to 22 
authorization to manage 19 
global 3 
how *IDENT selects a resource manager 216 
identifying multiple resources 21 
local 3 
request to send global 211 
requesting to manage - how *IDENT 

processes 218 
revoking 212 
revoking your own 223 
virtual machines connecting to 220 

RESOURCE ID field 
of answer data 219, 222 
of CONNECT request (*IDENT) 217 
of REVOKE request (*CRM) 212 
of SEND request (*IDENT) 218, 221 

RESOURCE parameter (APPC) 
of CONFIRM 191 
of CONFIRMED 193 
of DEALLOCATE 194 

of RECEIVE_ AND_WAIT 197 

of REQUEST_TO_SEND 201 

of SEND_DATA 202 

of SEND_ERROR 204 
resource program (sample) 257, 269 

ACCEPT function 260 
CONNECT function 258 
DCLBFR function 258 
DESCRIBE function 261 
RECEIVE function 260 
RTRVBFR function 264 
SENDDATA function 262 
SETCMASK function 259, 260 
SETMASK function 259, 260, 262 
SEVER function 260, 264, 266 
TESTCMPL function 261 
TESTMSG function 261 

retrieve buffer 

Index 287 



See RTRVBFR function of IU CV 
return codes 

ACCEPT 88 
APPC 186 
CONNECT 94 
DCLBFR 104 
RECEIVE 115 
SENDCNF 126 
SENDCNFD 131 
SENDDATA 139 
SENDERR 151 
SENDREQ 157 
SEVER 172 
TESTCMPL 179 

RETURN_CODE parameter (APPC) 
of CONFIRM 191 
of DEALLOCATE 195 

of RECEIVE AND WAIT 198 - -
of SEND DATA 202 

of SEND_ERROR 204 

RETURN_CONTROL 
(WHEN_SESSION_ALLOCATED) parameter 
(APPC) 

revoke 
groups that can revoke 220 
your own resources 223 

routing 32 
dynamic configuration 32 
failure 33 
selection 32 

RSCODE field 
of answer data 219, 222 
of SEND data (*CRM) 212 

RTRVBFR function of IUCV 122 
communication partner, affect on 123 
.::ompletion 123 
condition codes 122, 228 
parameter list 122 
program exceptions 123 
ret~rn codes 228 
state changes 123 
use in sample resource program 264 
use in sample user program 254 

running TSAF 35 
RUNTSAF command 43 

sample resource program 257, 269 
ACCEPT function 260 
CONNECT function 258 
DCLBFR function 258 
DESCRIBE function 261 
RECEIVE function 260 
RTRVBFR function 264 
SENDDAT A function 262 

288 Transparent Services Access Facility Reference 

SETCMASK function 259, 260 
SETMASK function 259, 260, 262 
SEVER function 260, 264, 266 
TESTCMPL function 261 
TESTMSG function 261 

sample user program 249, 256 
CONNECT function 250 
DCLBFR function 250 
RECEIVE function 252 
RTRVBFR function 254 
SENDDATA function 251 
SEVER function 254 

security of APPC/VM 17 
send confirmation 

See SENDCNF function of APPCIVM 
send confirmation response 

See SENDCNFD function of APPC/VM 
send data 

See SENDDATA function of APPC/VM 
send error notice 

See SENDERR function of APPC/VM 
send request 

See SENDREQ function of APPC/VM 
SEND state 63, 68 
send-receive scenario 

accepting 70 
connecting 70 
declaring a buffer 70 
receiving data 71 
sending data 71 

SEND_DATA, APPC verb 
abend conditions 203 
mapped with APPC/VM 202,243,244 
parameters 202 
state changes 203 

SEND_ERROR, APPC verb 
abend conditions 205 
mapped with APPC/VM 204,245 
parameters 204 
state changes 205 

SENDCNF function of APPCjVM 124 
completion 129 
condition codes 126, 228 
mapped with APPC 191, 194, 236, 238 
overview 74 
parameter list 125 
parameters 

MF=L 124 
PATHID 124 
PRMLIST 124 
TYPE 124 
WAIT 125 

program exceptions 127 
return codes 126, 228 
state changes 128 
to communication partner 129 

SENDCNFD function of APPCjVM 130 
completion ] 33 
condition codes 131, 228 



mapped with APPC 193, 237 
overview 74 
parameter list 131 
parameters 

MF = L 130 
PATHID 130 
PRMLIST 130 

program exceptions 133 
return codes 131, 228 
state changes 133 
to communication partner 133 

SENDDATA function of APPC/VM 134 
addressing for 137 
completion 146 
condition codes 139, 229 
mapped with AP P C 202,243, 244 
message pending interrupt 147 
multiple 69 
overview 68 
parameter list 137 
parameters 

ANSBUF 136 
ANSLEN 136 
ANSLIST 135 
BUFFER 135 
BUFLEN 135 
BUFLIST 135 
MF = L 134 
PATHID 135 
PRMLIST 134 
RECEIVE 134 
WAIT 136 

program exceptions 144 
return codes 139, 229 
scenario 71 
state changes 144 
to communication partner 147 
use in sample resource program 262 
use in sample user program 251 

SEND ERR function of APPCjVM 149 
completion 154 
condition codes 151, 229 
mapped with APPC 204,245 
overview 74 
parameter list 150 
parameters 

CODE 150 
MF = L 149 
PATHID 149 
PRMLIST 149 
WAIT 150 

program exceptions 153 
return codes 151, 229 
state changes 153 
to communication partner 155 

sending data 
APPC data 69 
overview 68 

SENDREQ function of APPC/VM 156 
completion 159 

condition codes 157, 229 
mapped with APPC 201,242 
overview 75 
parameter list 157 
parameters 

PATHID 156 
PRMLIST 156 

program exceptions 158 
return codes 157, 229 
state changes 159 
to communication partner 159 

SENDREQ interrupt 65 
format 159 

server 
considerations for 100 
directory entry 4 
directory option 12 
examples of 4 

service queries 58 
service, TSAF 

See also problem diagnosis 
preparing to 14 

session accounting record 50 
Set Control Mask function 

See SETCMASK function of lUCY 
SET ETRACE command 45 
Set Mask Function 

See SETMASK function of IUCV 
SET QDROP (CP command) 34 
SETCMASK function of lUCY 161 

completion 164 
condition codes 163, 229 
parameter list 162 
parameters 

MASK 162 
MF=L 162 
PRMLIST 161 

program exceptions 163 
return codes 229 
use in sample resource program 259, 260 

SETMASK function of lUCY 165 
completion 167 
condition codes 167, 229 
parameter list 166 
parameters 

MASK 166 
MF=L 166 
PRMLIST 165 

program exceptions 167 
return codes 229 
use in sample resource program 259, 260, 262 

SEVER codes 183 
SEVER function of APPCjVM 169 

completion 174 
condition codes 172, 230 
from communication partner 174 
mapped with APPC 194,238,246 
overview 68 
parameter list 171 
parameters 

Index 289 



CODE 169 
MF=L 170 
PATHID 170 
PRMLIST 169 
TYPE 169 

program exceptions 173 
return code 172 
return codes 230 
revoking your own resources 223 
state changes 173 
use in sample resource program 260, 264, 266 
use in sample user program 254 

SEVER interrupt 65 
format 175 

SEVER reason codes 
Collection Resource Management System 

Service (*CRM) 213 
Identify System Service (*IDENT) 223 

SEVER state 63 
severing 

connection to *CRM 213 
connection to your communication partner 68 

signaling an error 
See SENDERR function of APPCjVM 

size of messages 69 
specification exception 

ACCEPT 89 
CONNECT 96 
DCLBFR 104 
DESCRIBE 108 
RECEIVE 119 
SENDCNF 128 
SENDCNFD 133 
SENDDATA 144 
SENDERR 153 
SENDREQ 159 
SETCMASK 163 
SETMASK 167 
SEVER 173 
TESTCMPL 180 

speed of paths 33 
SPGEN EXEC 16 
starting TSAF 43 
state changes 

ACCEPT 89 
ALLOCATE (APPC) 190 
CONFIRM (APPC) 192 
CONFIRMED (APPC) 193 
CONNECT 96 
DCLBFR 105 
DEALLOCATE (APPC) 195 
RECEIVE 119 

RECEIVE_AND_WAIT (APPC) 199 

REQUEST...:.,.TO_SEND (APPC) 201 
RTRVBFR 123 

SEND_DATA (APPC) 203 

SEND_ERROR (APPC) 205 
SENDCNF 128 

290 Transparent Services Access Facility Reference 

SENDCNFD 133 
SENDDATA 144 
SENDERR 153 
SENDREQ 159 
SEVER 173 

states, APPCjVM 62 
CONFIRM 63 
CONNECT 63 
RECEIVE 63, 68 
RESET 63 
SEND 6a,68 
SEVER 63 
switching 71 

STOP TSAF command 46 
stopping TSAF 46 
switching states 71 
symptom records 57 

SYNC_LEVEL parameter (APPC) 
synchronous communication 

compared with asynchronous 75 
functions 75 

SYNCL VL parameter 
of CONNECT 91 

syntax, command 35 
SYSACNT macro 49 
system directory entry, TSAF 

See TSAF virtual machine 
SYSTEM NETID file 17 
system resource table 211 
system services 

See also Collection Resource Management 
System Service 

See also Identify System Service 
Collection Resource Management System 
Service 6 

Identify System Service 6 
system trace data 

external tracing 58 
query external trace setting 58 
trapping entries (CPTRAP) 58 
viewing CPTRAP data 58 

termination accounting records 52 
test complete 

See TESTCMPL function of IUCV 
test message 

See TESTMSG function of IUCV 
TESTCMPL function of IUCV 177 

completion 180 
condition codes 178, 230 
parameter list 178 
parameters 

MF=L 177 
PATHID 177 
PRMLIST 177 



program exceptions 180 
return code 179 
return codes 230 
use in sample resource program 261 

TESTMSG function of IUCV 181 
completion 182 
condition codes 182, 230 
parameter list 181 
program exceptions 182 
return codes 230 
use in sample resource program 261 

thrashing 34 
TPN parameter (APPC) 
trace table entry 
transmission error rate 34 
TSAF enhancements to your system 6 
TSAF performance 

See performance 
TSAF service 

See also problem diagnosis 
preparing to 14 

TSAF virtual machine 
accounting record 

initialization 49 
link 51 
session 50 
termination 52 

ACCT option 49 
commands 35-46 

ADD LINK 37 
DELETE LINK 39 
QUERY 40 
RUNTSAF 43 
STOP TSAF 46 

description 1 
diagnosing problems 

dumps 57 
system trace data 58 
trapping entries (CPTRAP) 58 
viewing CPTRAP data 58 

directory entry 11 
ACCT option 12 
BMX option 12 
COMSRV option 12 
CONCEAL option 13 
ECMODE option 12 
IUCV *CRM 13 
IUCV ALLOW 13 
MAXCONN option 12 
REALTIMER option 13 
sample TSAF 14 

global functions 34 

installation 7, 11 
links 15 
setting up 11 

TYPE parameter 
of SENDCNF 124 
of SEVER 169 

TYPE parameter (APPC) 
of DEALLOCATE 194 

of SEND ERROR 204 

user program (sample) 249, 256 
CONNECT function 250 
DCLBFR function 250 
RECEIVE function 252 
RTRVBFR function 254 
SENDDATA function 251 
SEVER function 254 

verbs, APPC 

WAIT parameter 
of CONNECT 91 
of RECEIVE 112 
of SENDCNF 125 
of SENDDATA 136 
of SEND ERR 150 

WAIT state 75 
W AITECB macro (use in sample program) 265 

WHAT_RECEIVED parameter (APPC) 

of RECEIVE_AND_WAIT 198 

I Numerics I 
3088 links 33 

Index 291 



International Business 
Machines Corporation 
P.O. Box 6 
Endicott, New York 13760 

File No. 5370/4300-34 
Printed in U.S.A. 

SC24-5287 -0 

--..- -------- - ----------- - ------- -------., -
® 



VM/SP Transparent Services 
Access Facility Reference 
Order No. SC24-52B7-0 

Is there anything you especially like or dislike about this book? Feel free to 
comment on specific errors or omissions, accuracy, organization, or 
completeness of this book. 

If you use this form to comment on the online HELP facility, please copy the 
top line of the HELP screen. 

____ Help Information line of 

READER'S 
COMMENT 
FORM 

IBM may use or distribute whatever information you supply in any way it believes appropriate without 
incurring any obligation to you, and all such information will be considered non confidential. 

Note: Do not use this form to report system problems or to request copies of publications. Instead, 
contact your IBM representative or the IBM branch office serving you. 

Would you like a reply? _YES _NO 

Please print your name, company name, and address: 

IBM Branch Office serving you: 

Thank you for your cooperation. You can either mail this form directly ·to us or give this 
form to an IBM representative who will forward it to us. 



SC24-S287-0 

Reader's Comment Form 

Fold and tape Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NY 

POSTAGE WILL BE PAID BY ADDRESSEE: 

--------- -------- - ---- - - -----------'-
INTERNATIONAL BUSINESS MACHINES CORPORATION 
DEPARTMENT G60 
PO BOX 6 
ENDICOTT NY 13760-9987 

1111 " II " 1111.1. " •• " ,"1.1 •• 1.1"1 •• 1.1".1 " ••• 1 

Fold and tape Please Do Not Staple 

--...- ------ -------- -. ---- - - --------------" -® 

CUT 
OR 

FOLD 
ALONG 

LINE 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fo'd and tape 


