

CP for System Programming

Virtual Machine/
System Product
Release 5

SC24-5285-0

First Edition (December 1986)

This edition, SC24-5285-0, applies to Release 5 of IBM Virtual Machine/System
Product (VM/SP) unless otherwise indicated in new editions or Technical
Newsletters. It contains material formerly included in the VM/SP System
Programmer’s Guide. Changes are continually made to the information contained
herein; before using this publication in connection with the operation of IBM
systems, consult the IBM System|370, 30xx, and 4300 Processors Bibliography,
GC20-0001, for the editions that are applicable and current.

Summary of Changes
A cumulative Summary of Changes begins on page 235.

Technical changes and additions to the text and illustrations are indicated by a
vertical bar to the left of the change.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below; requests for copies of IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for readers’ comments is provided at the back of this publication; if the
form has been removed, comments may be addressed to IBM Corporation,
Information Development, Dept. G60, P.O. Box 6, Endicott, New York, U.S.A.
13760. IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.

© Copyright International Business Machines Corporation 1986

Preface

This is a reference for system programmers, system analysts, and others
who implement and extend the functions of the Control Program (CP) of
IBM’s Virtual Machine/System Product (VM/SP). It assumes some
experience with programming concepts and techniques.

This CP reference is one of a set of reference manuals for VM/SP system
programmers. It consists mostly of material extracted from the VM/SP
System Programmer’s Guide for Release 4. Some material has been
transferred from the VM/SP Operator’s Guide for Release 4. Changes for
Release 5 of VM/SP are marked by a vertical bar in the left margin and
outlined in the “Summary of Changes” on page 235.

Other information formerly contained in the VM/SP System Programmer’s
Guide is now in VM/SP CMS for System Programming, VM System
Facilities for Programming, and VM Diagnosis Guide. The order numbers
for these and related publications can be found in the Bibliography.

This reference consists of three parts and an appendix:

“Part 1: Control Program (CP) Features” (chapters 1—11) describes the
functions of CP and provides guidance in using some CP features.

“Part 2: Performance” (chapters 12—14) describes options available in
VM/SP to analyze and improve the performance of virtual machines and
operating systems.

“Part 3: Hardware Considerations” (chapters 15—21) is a reference for
dealing with processor features and real peripheral devices.

Appendix, “VM/SP Monitor Tape Format and Content” on page 217
describes the format and contents of data records for classes and codes
of MONITOR CALL.

After the appendix, there are four sections that can help you use this
reference more easily:

“Summary of Changes” on page 235 is a cumulative summary of the
changes to the Control Program of the Virtual Machine/System
Product, as described here (Release 5) and in the VM/SP System
Programmer’s Guide (Release 4 and earlier).

“Glossary of Terms and Abbreviations” on page 243 defines technical
terms and abbreviations, and acronyms and device numbers that are

used for IBM products.

“Bibliography” on page 249 lists related publications.

Preface 111

“Index” on page 255 lists topics alphabetically and points to the pages
where they are discussed. It includes cross-references to the principal
topics of the other volumes of the system reference sublibrary.

1iv VM/SP CP for System Programming

Contents

Part 1: Control Program (CP) Features

Chapter 1. Introduction to the VM/SP Control Program (CP)

Chapter 2. Storage Protection

Chapter 3. Virtual Storage Preservation
Using the VMSAVE Optioncuuiietttnnrenennnnnn,
Setting Priority i e
Defining VMSAVE Areasc.iiiiuunnnneenennnnn.
Specifying Overlapping Areasuitiuinreenennn...
Saving Other Systems0 ittt

Chapter 4. I/O Managementc.0uteeetenneeneens
Virtual Machine I/O i,
Dedicated Channels iiiiiiiiinnnnnnn.
Spool Files i e
Recovering Spool Files
Warm Start e e
Checkpoint Startttt
Force Start00t e e e

Chapter 5. Alternate Nucleus Support
Backup Directories and Override Files

Chapter 6. Changing Commands and Privilege Classes
Command Privilege Classesand Typesc.cu....
Tailoring the Class Structurecu.....
Changing Privilege Classes and User Access
Planning the Command Authorization for the System
Determining Functions to be Done by Users
Assigning Commands to Kindsof Users
Associating Privilege Classes with Commands and Users
Further Considerations iiiiiinnnnnn.

How to Assign Privilege Classes to Commands and DIAGNOSE Codes

Creating a Class Override File
Class Override File Examplec0uuueuo...
Verifying and Activating the Override File
Reverting to the IBM-Defined User Classes
How Users Can Find Which Commands They Can Issue
Changing a User’s Privilege Classes
Directory Entry Example00 e,
Defining Privilege Classes for a Virtual Machine
How to Change the Privilege Class of Certain Internal CP Functions ..

Chapter 7. Interrupt Handling,

11
11
12
13
14
14
14
15

17
18

19
19
21
21
23
23
24
26
27

. 28

28
30
31
32
33
33
34
35
36

Contents V

viil

Device Support Facilities i, 121

Format/Allocate Service Programc¢coiiiiiiinnnon. 122
CPDisk Formats00 ittt 122
Format for CP-Owned CKD Devicescccvuvuun... 123
Format for CP-Owned FBA Devicesccvuiinn.. 125
Format/Allocate Program Input, 126
Format/Allocate Program CardInput 126
Format/Allocate Console Input 133
DASD Dump Restore Service Program (DDR) 138
Invoking DDR Under CMS i, 138
Invoking DDR as a Stand-alone Program 139
DDR 8809 Data Streaming Supportcciviue.... 140
DDR Control Statementsciuitunierrnneenn. 141
INPUT/OUTPUT Control Statementc.ccvvvvnn... 141
SYSPRINT Control Statementcc0viveon.. 145
Function Statements 00ttt iiinnnennn. 145
Restrictionsiiiiiiiiiiii ittt 150
PRINT/TYPE Function Statement 153
=YY o Lo o =Y J 156
Chapter 16. VM/SP Use of the IBM 3850 MSS 161
VM/SP Access to the MASS Storage Control 161
Asynchronous MSS Mount Processingcc0.o... 162
VM/SP Processing of MSS Cylinder Faults 162
Backup and Recovery of MSS Volumescouvvun.. 163
Chapter 17. Timers in a Virtual Machine 165
Interval Timer ittt ettt e it 165
Virtual Interval Timer Assistcc .. 165
Processor Timerscuiiiiinin e eneeeeneeneenennnnn 166
TOD CloCK ..ottt e e et et e i e e e e 167
Clock Comparatorc.iiiiniiineie e enenennnns 167
Pseudo Timer it e e e 167
Pseudo Timer Start I/O i, 168
Pseudo Timer DIAGNOSE ittt 168
Chapter 18. CP in Attached Processor and Multiprocessor Modes 169
Multiprocessor Environment it 169
Attached Processor Environmentc.couu.... 170
Advantages of the AP/MP Environment 170
Facilitating an AP/MP Environment 170
Prefixing e 170
Identifying a Processor Address 172
Signaling with the SIGNAL Macroouuouuuuuuennnnn 172
Time-of-Day (TOD) Clock Synchronization Check 175
Fetching and Storingttt iininnnnnn. 175
Locks and Serialization of Functions 176
Locking Hierarchyt 177
Locking Structure00t 177
LOCK MaCro ..ttt t ittt et ittt ettt it e e e iieeeens 179
ANty e e 181
How to Set Affinityt 181
Shared Segments in an AP/MP Environment 181

VM/SP CP for System Programming

SWTCHVM MaCIO ... it it ittt ittt ittt e e 181

Configuring I/O Devices for an MP System 182
Chapter 19. Print Buffers and Forms Control 183
Adding New Print Buffer Images 186
UCS Buffer Images for the 1408 Printer 186
UCSB Buffer Images for the 3211 Printer 188
FOB Buffer Images for the 3289 Model 4 Printer 192
UCC Buffer Images for the 3203 Printer 193
PIB Buffer Images for the 3262 Model I and II Printers 196
Forms Control Buffer00t 197
Extended FCB Macro Instruction 200
Chapter 20. IBM 3800 Printing Subsystem 203
Using the 3800 Printer as a Dedicated Device 204
Using the 3800 Printer as Virtual Spooling Devices 205
Defining a Virtual 3800 Printer 0., 205
Using the SPOOL and CHANGE Commands 205
Using the SETPRT Commandciiiirneenn.. 206
Using the 3800 Printer as a Real Spooling Device 206
Specifying Printer Optionst iiiinnnn.. 207
The GENIMAGE Command0iuiiinennnn.. 207
Maintaining the 3800 Image Library 207
The GENIMAGE Service Program 208
Responses from GENIMAGE Command 209
The IMAGELIB Service Routine 210
The IMAGEMOD Commandcoiiuuun..n. 210
Recovering from I/O Errors 212
Chapter 21. 3088 Multichannel Control Unit 213
System Programmer Considerations 213
RDEVICE MACRO i ittt iiiee e 213
RCTLUNIT MACRO i i e e i 213
Special Directory Control Statement 214
Virtual 3088 SUPPOTt v ittt e 214
Command Use and 3088 Supportcouiiiiiiinnnnennnn 214
Channel Command Wordscciiiiiiiiinnnnnnnn 215
Diagnostic Aidsttt e e e 215
Online Testingttt e it 215
Messages and MNOTES To Support 3088 Devices 215
Appendix. VM/SP Monitor Tape Format and Content 217
Header Recordttt 217
DataRecords ittt 218
Class Zero - Codes for Tape Header, Trailer, and Data Suspension
Recordst 218
Class Zero- PERFORM iiiiiinnnnnn. 219
Class One - RESPONSEttt 226
Class Two-SCHEDULEc.ciiiiiiiiiiiinnnnnnns 227
Class Four - USERciiiiiiiiinnennennnnnnn. 229
Class Five - INSTSIM it 230
Class Six - DASTAP it 231
Clagss Seven -SEEKS iiiiiiinnnnnnn. 232

Class Eight - SYSPROF -- Additional data for system profile class 233

Contents 1X

Glossary of Terms and Abbreviations 243
Bibliography e e e 249
Index ...t e e e e e 255

X VM/SP CP for System Programming

=

17.
18.
19.
20.
21.
22,
23.
24.
25.

26.
27.

Figures

2K Storage Protection Key 6
Relationships of Privilege Classes, Types, and Administrative
Functions ittt e e 20
Different System Users and Their Responsibilities 24
DIAGNOSE Instructions That Can Be Respecified on an

OVERRIDE Control Stat.c.c0iiiiinennnennn. 30
Relationships of Scheduler Lists and Queue Levels 71
Storage Layout in a Virtual=Real Machine 84
Definitions of storage levels and segment tables. 92
MONITOR CALL Classes ... vvvvviet e iiiee i 111
Format of 3330 Cylinders for Use by CP 124
3330, 3340, 3350 or 3380 Cylinder 0 Format 124
Using the Format Program Label Function 134
Using the Format Program Allocate Function 134
Using the Format Program Allocate Overlap Function 135
Using the Format Program Label Function for FBA Devices 135
Using the Format Program Allocate Overlap Function for FBA
DEVICES . vttt e e 136
Using the Format Program Allocate Overlap Function for FBA
DeviCeS .. ii i e e e e 137
Annotated Sample of Output from the TYPE and PRINT

Functions of the DDR Program 159
Formats of Pseudo Timer Information 168
Storage Layout in a Virtual=Real Machine 171
Sample of the Correct Way to Set a Flag in an AP/MP

Environment e 176
Hierarchy of VM/SP Locks iiiiiiunnn. .. 177
UCSB Associative Field Chart 191
VM-Supplied Character Arrangement Tables for the 3800 Model 1

and Model 3 Printerst 209
VM-Supplied Character Arrangement Tables for the 3800 Model 3
Only .. e 209
Prefixes of TEXT Deck Names, Output by the GENIMAGE

Command e 209
CP commands and 3088 Support, 214
VM/SP System Programming Manuals for VM/SP Release 5. ... 236

Figures X1

X1l VM/SP CP for System Programming

Part 1: Control Program (CP) Features

Part 1 contains the following information:

Introduction to the VM/SP Control Program
Storage Protection

Virtual Machine I/O Management

Alternate Nucleus Support

CP Coding Conventions

CP Command Classes

Interrupt Handling

Accounting Information

Generating Saved Systems

Security Measures

Part 1: Control Program (CP) Features 1

2 VM/SP CP for System Programming

Chapter 1. Introduction to the VM/SP Control Program (CP)

The VM/SP Control Program, CP, manages the resources of a single
computer so that multiple users each have the impression of controlling a
dedicated computer system. These apparent multiple computer systems are
called “virtual” machines and each is the functional equivalent of an IBM
System/370.

Each virtual machine is managed at two levels of operation: its own and the
system’s. The work to be done by the virtual machine is scheduled and
controlled by some System/360 or System/370 operating system running on
the virtual machine. Furthermore, the CP commands allow you to control
the virtual machine from the terminal, much as an operator controls a real
machine. You can stop virtual machine execution at any time by using the
3066 terminal’s attention key or the 3270 terminal’s ENTER or PAl key. To
restart execution, enter the CP BEGIN command. You can also simulate
external, attention, and device ready interrupts on the virtual machine and
inspect and change virtual storage, virtual machine registers, and status
words such as the PSW and the CSW. You can use extensive trace
facilities for the virtual machine, a single-instruction mode, and commands
that invoke the spooling and disk sharing functions of CP.

CP uses multiprogramming techniques to manage the concurrent execution
of many virtual machines:

CP overlaps the idle time of one virtual machine with the execution of
another by scheduling each virtual machine’s access to the processor
and “dispatching” each virtual machine for its turn.

CP mimics the response of a System/370 to the actions of the virtual
machine.

A virtual machine’s configuration matches the components of a real IBM
System/370:

A virtual operator’s console
Virtual storage

A virtual processor

Virtual I/O devices.

CP makes these components appear real to the operating system controlling
the work flow of the virtual machine.

A virtual machine is configured by describing it in the VM/SP directory.
When a user logs on, a virtual machine is created based on information

Chapter 1. Introduction to the VM/SP Control Program (CP) 3

Introduction

stored in the user’s entry in the directory. The entry for each userid J
includes:

e A list of the virtual I/O devices associated with the particular virtual
machine

The command privilege class

Accounting data

Normal and maximum virtual storage sizes

Dispatching priority

Optional virtual machine characteristics (such as extended control (EC)
mode).

VM/SP performs some functions differently when running in attached

processor or multiprocessor mode. For more information on attached

processor and multiprocessor support see Chapter 18, “CP in Attached

Processor and Multiprocessor Modes” on page 169. J

When instructions in the Control Program are being executed, the real
computer is in the supervisor state; when running virtual machines, the
real computer is in the problem state. Therefore, privileged instructions
cannot be executed by the virtual machine.

A problem program executes on the virtual machine in a manner identical
to its execution on a real System/370 processor, as long as the problem
program does not violate the CP restrictions. (See VM/SP Planning Guide
and Reference.) If the virtual machine’s virtual PSW indicates that it is J
functioning in supervisor mode, the privileged instruction is simulated
according to its type. If the virtual machine is in problem mode, a program
interrupt is reflected to the virtual machine for handling by its operating
system. User interrupts, including those caused by trying privileged
operations, are handled either by the control program or, if the virtual
machine assist feature or VM/370 Extended Control-Program Support is
enabled and supports that instruction, by the processor. Only those
interrupts that the user program would expect from a real machine are
reflected to it.

4 VM/SP CP for System Programming

Chapter 2. Stosage Protection
.

VM/SP provides both fetch and store protection for real storage. The
contents of real storage are protected from destruction or misuse caused by
erroneous or unauthorized storing or fetching by the program. When a
store access is prohibited because of protection, the contents of the
protected location remain unchanged. On fetching, the protected
information is not loaded into an addressable register, moved to another
storage location, or provided to an I/O device.

When a processor access is prohibited because of protection, the operation
is suppressed or terminated, and a program interruption for a protection
exception takes place. When a channel access is prohibited, a
protection-check condition is indicated in the channel status word (CSW)
stored as a result of the operation.

When the access to storage is inhibited by the processor, and protection
applies, the protection key of the processor occupies bit positions 8-11 of the
PSW. When the reference is made by a channel, and protection applies, the
protection key associated with the I/O operation is used as the comparand.
The protection key for an I/O operation is specified in bit positions 0-3 of
the channel-address word (CAW) and is recorded in bit positions 0-3 of the
channel status word stored as a result of the I/O operation.

To use fetch protection, a virtual machine must execute the Set Storage
Key (SSK) instruction referring to the data areas to be protected, with the
fetch-protect bit in the key set on. VM/SP subsequently:

o Checks for a fetch protect violation in handling privileged and
nonprivileged instructions

e Saves and restores the fetch protect bit (in the virtual storage key)
when writing and recovering virtual machine pages from the paging
device

e Checks for a fetch protection violation on a write CCW (except for
spooling or console devices).

The CMS nucleus presents a special case for storage protection. The
nucleus resides in a shared segment, which must be protected and still
shared among many CMS users. To protect the CMS nucleus in the shared
segment, user programs and disk-resident CMS commands run with a
different key from the nucleus code.

Chapter 2. Storage Protection 5

Storage Protection

n

0

Real
Storage

Key

Key — 4-bit protect key

Storage Key

2K 2K 2K 2K 2K

4L
LR

v

Addressable Storage

Figure 1. 2K Storage Protection Key

Storage keys protect information in real storage from unauthorized use. A
storage key contains a four-bit control field that is associated with an area
of real storage. When VM/SP is executing natively, each 2K area of
storage is protected by one storage key.

VM/SP contains support that allows it to execute as a guest virtual
machine on a processor that uses single-key real storage frames. Single-key
storage frames associate one storage key with each 4K area of storage.
VM/SP does not run natively on processors that have single-key storage
frames; however, under control of the VM/SP High Performance Option
program product, VM/SP executes as a guest virtual machine operating
system.

When VM/SP High Performance Option (Release 2 or subsequent release) is
controlling the processor equipped with single key storage frames, it
simulates virtual storage for the guest that resembles the type of real
storage installed on the processor. If the storage simulated for the VM/SP
guest requires 4K storage protection keys, VM/SP issues two key
instructions for each storage frame.

VM/SP CP for System Programming

<

Chapier 3. Virtual Storage Preservation

A VM/SP user can choose to preserve the contents of his virtual machine in
case:

e The system operator forces the machine off the system.

e The virtual machine is abnormally terminated by VM/SP.

e No shared pages of data to be saved are present in the virtual machine.
e VM/SP abnormally terminates.

This chapter describes how to enable this CP option with:

e The class G command, SET VMSAVE.

e The NAMESYS macro. It defines in the system name table which
machines are to be saved, the order in which they are saved, the
number of pages to be saved (up to 4096), and the DASD where they will
be saved. The NAMESYS macro is described in detail in the VM/SP
Planning Guide and Reference.

Using the VMSAVE Option

Subject to certain constraints, the user can control whether or not the
contents of his virtual machine are saved and which DASD area is used if
there is more than one DASD area. If the user has a single DASD area
defined, VMSAVE can be enabled either by the VMSAVE directory option
or by the SET VMSAVE ON command. A single VMSAVE area can be
designated for use by several virtual machines. However, the area is
assigned to only one user at a time; the user who first enables VMSAVE
has priority. The user releases the VMSAVE area with the SET VMSAVE
OFF command.

In contrast, the user with multiple DASD areas enables the VMSAVE
option with the SET VMSAVE name command. The SET VMSAVE OFF
command disables VMSAVE. Also, to release the VMSAVE area, the user
must either issue the SET VMSAVE OFF command, or log off, or issue the
SET VMSAVE name command specifying another area. The DASD save
area can be released only by the owner of the data stored in it. To release a
DASD area containing a saved system, the owner of the saved area must log
on and issue the SET VMSAVE name command for that area, then issue
either a SET VMSAVE OFF command or a DEFINE STORAGE command,
or log off.

Chapter 3. Virtual Storage Preservation 7

Virtual Storage

The current status of the VMSAVE option (ON or OFF) can be obtained
from the QUERY SET command. The QUERY VMSAVE command displays
the current status of the VMSAVE option, the names of the areas assigned
to the user, the page frames of each area, and the date and time that their
contents were saved.

If the VMSAVE option is enabled and an abnormal termination occurs
(such as a VM/SP abend and restart), the pages of the virtual machine
specified are saved. They are saved in the previously assigned DASD area
in the order specified at system generation time by the NAMESYS macro.
Afterwards, a logged on user can use the IPL command to bring a page
image copy of the saved virtual machine into an active virtual machine.
This does not give the saved virtual machine control. The copy can always
be dumped; however, it may or may not be executable.

The V=R area of the real machine (if active) is preserved if the system is
performing a warm start. The V=R area is cleared if the system terminates
to a hard wait state or if a different V=R user logs on.

Setting Priority

The SAVESEQ operand of the NAMESYS macro allows the user to force a
priority in the saving order of multiple virtual machines. The priority is
determined by number. If two virtual machines have the same priority, and
both have the VMSAVE option enabled, they are saved in the order in
which they enabled VMSAVE. Disabling and then enabling VMSAVE
causes a virtual machine to be last among all the virtual machines having
the same SAVESEQ priority value.

If SAVESEQ specifies a high priority for a production virtual machine and
lower or equal priorities are specified for other virtual machines, the
production machine is saved first; other virtual machines are saved in the
order in which the virtual machines logged onto the system.

If a different value of SAVESEQ is specified for each user (the range is
0-255), the order for saving each virtual machine is predictable.

Defining VMSAVE Areas

The VM/SP FORMAT/ALLOCATE program must format DASD space used
for VMSAVE areas before any user can store into the area. (Detailed
information on using the FORMAT/ALLOCATE program is contained in
“Format/Allocate Service Program” on page 122.)

You can specify multiple VMSAVE target areas for a single user; you do
this by including in the system name table more than one NAMESYS macro
with the same USERID = operand. Different target areas are required if a
user wishes to IPL, a VMSAVE system and have the VMSAVE option
enabled at the same time. Once the VMSAVE is enabled, the area referred

8 VM/SP CP for System Programming

Virtual Storage
|

to cannot be referred to by the IPL. command until a recovery operation has
been effected. Similarly, if a VMSAVE area currently contains a saved
system, it can be released only by the user who caused the system to be
stored there. That area cannot be the VMSAVE target area referred to by
a VMSAVE enable from another user until the stored system has been
released.

Specifying Overlapping Areas

The system programmer, at his option, can specify overlapping DASD areas
for VMSAVE target areas through NAMESYS macro specifications.
However, if two areas overlap, they must start at the same physical cylinder
and page. They can end at different locations if the areas are of different
lengths. Overlapping areas are useful for different environments of the
same user, and they are also valid as VMSAVE target areas for different
users.

Only one user can be using the area (for IPL or for a VMSAVE target area)
at any one time. In addition, if one user has caused a virtual machine to be
stored into an area, no other user can access that area. The user also
cannot issue the SET VMSAVE command with that area as the VMSAVE
target area, until the user who caused the virtual machine to be stored does
the following:

1. Enables VMSAVE to that area via the SET command, which effectively
clears the area

2. Releases the area by issuing a SET VMSAVE command to another area
command, a SET VMSAVE OFF command, a DEFINE STORAGE
command, or a normal LOGOFF command.

Only when the area has been cleared and released in this manner is it
available for other users.

For overlapping target areas, the user must load a system that has the same
name that it was saved under. This ensures that the page range returned
with the load is the same as the one stored by VMSAVE.

Only when the complete page range specified has been saved does the area
become valid and available. If an error occurs in the middle of a save
operation, the area is not valid, and therefore is not retrievable.

The user cannot force a save directly. The MESSAGE command may be
used to ask the operator to force the user off the system. The FORCE
command causes an automatic save, assuming that VMSAVE is enabled.
The user can also disconnect with a READ pending. After 15 minutes the
system logs off the user, causing an automatic save if VMSAVE is enabled.

Chapter 3. Virtual Storage Preservation 9

Virtual Storage
|

Saving Other Systems

Systems loaded by name under VM/SP must be saved by the VM/SP
SAVESYS command. Because of control block changes, systems saved
under other releases of VM/370 are not loaded properly on VM/SP.
Conversely, systems saved on VM/SP will not load properly on a system
that does not have this product installed.

For details of the SAVESYS command, refer to the VM/SP CP Command
Reference and the VM/SP Planning Guide and Reference.

10 VM/SP CP for System Programming

C

“Chapter 4. 1/0 Management

This chapter describes how CP manages the I/O requirements of virtual
machines in single-, attached-, and multiprocessor environments. A virtual
I/O device can be dedicated to an equivalent real device, or shared by
several virtual machines, or spooled to a temporary buffer.

Virtual Machine 1/0

A real disk device can be shared by several virtual machines. Virtual
device sharing is specified in the VM/SP directory entry or by a user
command. There are several ways to preserve data integrity on a shared
disk.

A user can limit access by defining a password for the virtual device.
Virtual machines can be assigned either read-only or read/write access to a
shared disk device. CP checks each virtual machine I/O operation against
the parameters in the virtual machine configuration to ensure device
integrity. Virtual Reserve/Release support can also increase data integrity
on shared minidisks. For details on Reserve/Release support, refer to the
VM/SP System Logic and Problem Determination Guide Volume 1 (CP).

The virtual machine operating system is responsible for the operation of all
virtual devices associated with it. These virtual devices can be defined in
the VM/SP directory entry of the virtual machine. A user can also attach
or detach a virtual device during a terminal session. Virtual devices may
be dedicated, shared, or spooled. A dedicated virtual device is mapped to a
fully equivalent real device. A shared virtual device is mapped to a
minidisk or is specified as a shared virtual device. A virtual device can
also be spooled by CP to intermediate direct access storage.

In a real machine, I/O operations are normally initiated when a problem
program requests the operating system to issue a START I/O instruction to
a specific device. Device error recovery is handled by the operating system.
In a virtual machine, the operating system performs these same functions,
but the device address and the storage locations are both virtual. It is the
responsibility of CP to translate the virtual specifications to real.

In addition, the interrupts caused by the I/O operation are reflected to the
virtual machine for its interpretation and processing. If I/O errors occur,
CP records them but does not initiate error recovery operations. The
virtual machine operating system must handle error recovery, but does not
record the error (if SVC 76 is used).

Chapter 4. 1/O Management 11

Virtual Machine I/0

In an attached processor environment, either processor can initiate virtual
I/O, but only the main processor has real I/O capability. All real I/O
requests must be executed by the main processor, and all I/O interrupts
must be received on the main processor. I/O requests by the attached
processor are transferred to the main processor.

In a multiprocessor environment, both processors have real 1/O capability.
If either processor receives an I/O request, that processor tries to initiate
I/O operations. If none of the online paths from the executing processor to
the required device are available, that processor queues the I/O request on
all busy and scheduled paths to the device, including the alternate paths to
the device from the second processor. If there is no online path from the
executing processor, that processor queues the I/O request on the first
online and available path for the second processor as well as on all its own
busy or scheduled paths.

Input/output operations initiated by CP for its own purposes (paging and
spooling) are performed directly and are not subject to translation.

Virtual machines may access data on mass storage volumes using that
virtual machine’s standard 3330 device support. MSS cylinder faults, and
associated asynchronous interruptions, are transparent to the virtual
machine in this situation.

Dedicated Channels

In most cases, the I/O devices and control units on a channel are shared
among many virtual machines as minidisks and dedicated devices and
shared with CP system functions such as paging and spooling. Because of
this sharing, CP has to schedule all the I/O requests to achieve a balance
between virtual machines. In addition, CP must reflect the results of the
subsequent I/O interrupts to the appropriate storage areas of each virtual
machine.

By specifying a dedicated channel (or channels) for a virtual machine via

the Class B ATTACH CHANNEL command, the CP channel scheduling
function is bypassed for that virtual machine. A virtual machine assigned a -
dedicated channel has exclusive use of that channel and all of its devices.

CP translates the virtual storage locations specified in channel commands

to real locations and performs any necessary paging operations, but does

not perform any device address translations. The virtual device addresses

on the dedicated channel must match the real device addresses; thus, a
minidisk cannot be used.

12 VM/SP CP for System Programming

C

Spool Files

Spool Files

CP spooling facilities allow multiple virtual machines to share real unit
record devices. Since virtual machines controlled by CMS ordinarily have
low requirements for unit record input/output devices, real device sharing
is advantageous, and is the standard mode of system operation.

CP, not the virtual machine, controls the unit record devices that are
designated as spooled in the virtual machine directory entry. When the
virtual machine issues a START I/O instruction to a spooled unit record
device, CP intercepts the instruction and changes it. CP moves data into
page-size records (4096-byte blocks) in a disk area that serves as
intermediate storage between the real unit record device and the virtual
machine.

A virtual unit record device can be dedicated to a real unit. The real
device is then controlled completely by the virtual machine’s operating
system. A virtual machine should not issue a clear channel to any
dedicated channel. If the CLRCH instruction is issued, the results are
unpredictable.

Spooling operations cease if the direct access storage space assigned to
spooling is filled or the virtual unit record devices appear in a not-ready
status. The system operator or the spooling operator can make additional
spooling space available by purging existing spool files or by assigning
additional direct access storage space to the spooling function. The
spooling operator can use the class D SPTAPE command to retrieve spool
files from tape for output processing when spooling space requirements are
not critical. See the description of the SPTAPE command in the VM/SP
CP Command Reference for further information.

Specific files can be transferred from the spooled card punch or printer of a
virtual machine to the card reader of the same or another virtual machine;
such files are not physically punched or printed. With this method, files
can be made available to multiple virtual machines or to different operating
systems executing at different times in the same virtual machine.

Files may also be spooled to remote systems via Remote Spooling Version 2
Communications Subsystem (RSCS) Networking.

CP spooling includes many desirable options for the virtual machine user
and the real machine operator. These options include printing multiple
copies of a single spool file, backspacing any number of printer pages on
unbuffered printers, and defining spooling classes for the scheduling of real
output. Each output spool file has, associated with it, a 136-byte area
known as the spool file tag. The information contained in this area and its
syntax are determined by the originator and receiver of the file. For
example, whenever an output spool file is destined for transmission to a
remote location via the Remote Spooling Communications Subsystem
Networking Version 2, RSCS expects to find the destination identification
in the file tag. Tag data is set, changed, and queried using the CP TAG
command.

Chapter 4. 1/O Management 13

Spool Files

It is possible to spool terminal input and output. All data sent to the
terminal from the virtual machine, the control program, or the virtual
machine operator, is spooled. Spooling is particularly desirable when a
virtual machine is run with its console disconnected. Console spooling is
usually started by the command

SPOOL CONSOLE START

There is an exception to this when a system operator logs on using a
graphics device. In this instance, console spooling is automatically started
and continues in effect even if the system operator should disconnect from
the graphics device and log on to a nongraphic device. To stop automatic
console spooling, the system operator must issue the command

SPOOL CONSOLE STOP

Recovering Spool Files

If the system should suffer an abnormal termination, there are three
degrees of recovery for the system spool files: warm start (WARM),
checkpoint start (CKPT), and force start (FORCE). Warm start is
automatically invoked if SET DUMP AUTO is in effect. Otherwise, the
operator can choose the method of recovery at IPL, when this message is
presented:

Start ((WARM|CKPT|FORCE|COLD) (DRAIN)) | (SHUTDOWN)

Note that a cold (COLD) start does not recover any spool files.

Warm Start

After a system failure, the warm start procedure copies spool file,
accounting, and system message data either to the warm start area on the
IPLed system residence volume (the default) or to the area designated in an
alternate nucleus definition. When the system is reloaded, this information
is retrieved and the spool file chains and other system data are restored to
their original status. If the warm start procedure fails because certain
required areas of storage are invalid, the operator is advised to use the
checkpoint or force starts.

Checkpoint Start

Any new or revised status of spool file blocks, spooling devices, and spool
hold queue blocks is copied to the checkpoint area on the IPLed system
residence volume as it occurs. When a checkpoint (CKPT) start is
requested, this is the information that is used to recreate the spool file
chains. It differs from warm start data in that only spool files are restored;
accounting and system messages information is not recovered. Also, the
order of spool files on any particular restored chain is not the original
sequence but a random one.

14 VM/SP CP for System Programming

Spool Files
.|
Force Start

A force start is required when a checkpoint start encounters I/O errors or

invalid data. The procedure is the same as for checkpoint start except that
unreadable or invalid files are bypassed.

Chapter 4. I/O Management 15

Spool Files

16 VM/SP CP for System Programming

Chapter 5. Alternate Nucleus Support

You can improve system availability if you define and save multiple
versions or copies of your CP nucleus. Then, if the primary nucleus is
damaged or unavailable, the system operator can select an alternate
nucleus to IPL.

For example, device 140 might contain your primary CP nucleus while 141
contains the alternate nucleus. If IPL 140 fails, or the primary nucleus has
a serious error, then the system operator can IPL 141 to bring up the
alternate CP nucleus.

The system operator can also use the REIPL option in the SHUTDOWN
command to IPL an alternate nucleus.

In addition to maintaining an alternate nucleus, you can also improve your
IPL procedure by:

® Sharing the same warm start data, checkpoint data, and error recording
data between two or more different versions of CP

e Protecting SPOOL files from hardware failures by defining the warm
start area and the checkpoint area on two different disk volumes

® Defining a length in the SYSNUC operand of the SYSRES macro
instruction to prevent a nucleus area overflow condition from occurring

o Using the same copy of the DMKSYS ASSEMBLE file for more than
one nucleus under the following conditions:

— SYSCKP, SYSERR, and SYSWRM area are shared
— The nucleus volumes are compatible with the specified SYSTYPE

— The nucleus area is defined in the same location on all nucleus
volumes.

You can define an alternate nucleus and the other IPL improvements
described above by using the options available in the SYSRES macro
instruction. Refer to the VM/SP Planning Guide and Reference for
information about preparing the DMKSYS ASSEMBLE file and for a
description of a sample alternate nucleus configuration. The VM/SP
Operator’s Guide describes how the alternate nucleus can be used.

Chapter 5. Alternate Nucleus Support 17

Alternate Nucleus
|

. Backup Directories and Override Files

| You can also improve system availability by maintaining backup CP

| directories. Any number of backup directories may be used (one on each

| SYSOWN volume, if needed). The primary directory is the directory on the
| current IPL volume. If an error occurred reading the primary directory, CP
| initialization searches CP-owned volumes in the order in which they are

\ specified in the SYSOWN macro for backup directories.

| Backup directories may include, for example, a copy of the primary
| directory, or a small emergency directory that only you can use to logon
| and repair any damage to the primary directory.

| Use the DIRECT command to maintain directory files. Refer to the VM/SP
| Planning Guide and Reference for information about the VM/SP directory
[program (DIRECT).

| Be aware that if your installation wants to override the IBM-defined

| classes, an override file must be established on each volume that contains a
| CP directory. This is because CP uses the override file found on the same

| volume as the directory. Therefore, when CP is forced to use a backup

l directory, it loads the override file from the same volume as the backup

| directory.

| Use the OVERRIDE command to maintain override files. (See “Creating a

| Class Override File” on page 28.) Refer to the VM/SP Planning Guide and
| Reference for information about the override program.

18 VM/SP CP for System Programming

Chapter 6. Changing Commands and Privilege Classes

Each CP command has one or more privilege classes assigned to it. Each
user is also assigned one or more privilege classes. The privilege class(es)
for each user are stored in the VM/SP directory. If a user tries to issue a
CP command in a class that is not assigned to him, the system will not
process the command. This prevents users from altering system functions
for which they are not authorized.

This chapter describes how to modify the class structure of your system to
meet your installation’s needs.

Command Privilege Classes and Types

privilege classes and types The privilege class(es) assigned to administrative
personnel are determined by the size and configuration of the system and by
the installation’s particular circumstances. For example, in a small
installation one person may be assigned all privilege classes to allow him to
handle all administrative tasks. In larger installations several people may
be assigned different privilege classes depending on the commands they
need to use to do their jobs.

Each version of each CP command is assigned a type code that corresponds
to the level of system control that is provided (operations, resource,
programming, spooling, analyst, general and CE).

IBM defines privilege classes for each command according to administrative
tasks that a typical installation might want to assign to the functions of
that command. The IBM-defined privilege classes can be changed by an
installation, but the type is permanent. Figure 2 on page 20 shows the
relationship of privilege class, type, and administrative function. This
relationship is discussed in the text that follows.

Chapter 6. Changing Commands and Privilege Classes 19

Changing User Access
L

IBM

Defined

Class User Functional Type

A Primary System Operator Operations
Type=0

B System Resource Operator Resource
Type=R

C System Programmer Programmer
Type=P

D Spool Operator Spooling
Type=S

E System Analyst Analyst
Type=A

F Service Representative (CE) CE
Type=C

G Virtual Machine User General
Type=G

ANY Any user No type

Figure 2. Relationships of Privilege Classes, Types, and Administrative
Functions

The Operations administrative function (type O) is assigned to those
commands used for primary system operations. The IBM-defined privilege
class for these commands is class A.

The Resource administrative function (type R) is assigned to those
commands used for the distribution of real system resources (such as
channels and devices) as they are requested by virtual machine users. The
IBM-defined privilege class for these commands is class B.

The Programmer administrative function (type P) is assigned to commands
used to control trace table information and to commands used to locate,
display, print, or change the information in specific storage 'locations to aid
in trouble analysis. The IBM-defined privilege class for these commands is
class C.

The Spooling administrative function (type S) is assigned to those
commands used to control the spool files and certain aspects of the real
card readers, punches, and printers. The IBM-defined privilege class for
these commands is class D.

The Analyst administrative function (type A) is assigned to commands used
for monitoring the system resources to ensure that enough resources are
available for the virtual machine users. The IBM-defined privilege class for
these commands is class E.

The CE administrative function (type C) is assigned to commands used for
problem determination and problem isolation. These commands allow the
service representative to get data about the VM/SP system. The
IBM-defined privilege class for these commands is class F.

20 VM/SP CP for System Programming

Changing User Access
|

The General function (type G) is assigned to commands used to control the
functions associated with a particular virtual machine. The IBM-defined
privilege class for these commands is class G.

Some commands have an IBM-defined privilege class of ANY. These
commands do not have a type associated with them and may be used by any
user. The privilege class for these commands cannot be changed.

For descriptions of all the CP commands, see the VM/SP CP Command
Reference. For descriptions of DIAGNOSE codes, see VM System Facilities
for Programming. The coding of the command table in DMKCFC is
described in VM/SP System Logic and Problem Determination Guide
Volume 1 (CP).

Tailoring the Class Structure

An installation can change the IBM-defined privilege classes to suit its
need to control over its resources and information. (This applies to all
IBM-defined privilege classes except class ANY, which cannot be changed.)
You can define up to 32 classes, A through Z and 1 through 6.

The rest of this chapter describes how to change command and DIAGNOSE
code classes, how to change users’ access to commands and DIAGNOSE
codes, and how to change class access to certain internal CP functions.

Changing Privilege Classes and User Access

To change the IBM-defined privilege classes, you must prepare a file that
contains the commands and DIAGNOSE codes for which you want to
change the privilege classes. This file is called the class override file.
Each control statement in the class override file shows the installation
supplied class for that particular command.

Because you are changing the existing class structure, you must also
change the VM/SP directory to include the newly defined classes.

In general to redefine the class authorization for your system, you must do
the following steps (each step is described more fully later in this section):

1. Plan for the effect of the changes.

® Determine the different kinds of users of your system and what
types of administrative functions they should be able to do.

e List the commands that you want each kind of user to be able to
use. If a command is assigned to more than one type, be sure to
include the type or types of that command that you want the user to
have access to.

Chapter 6. Changing Commands and Privilege Classes 21

Changing User Access

Determine from this which privilege classes you want to associate
with each command and type and with each kind of user. Note that
if you do not change the class on a command, the class remains the
IBM-defined class. For example, if the IBM-defined class for a
particular command is A and you do not change it in the override
file, it will remain class A.

Make sure you will not compromise system integrity or system
security with these changes.

Plan for updates to any HELP files caused by the changes.
Check whether you need to change the classes of any internal

functions using the SYSFCN macro (see “How to Change the
Privilege Class of Certain Internal CP Functions” on page 36).

2. Make any required class changes to commands:

a.

e.

f.

Create a class override source file on a CMS formatted minidisk to
which only the system administrator or other authorized person has
access. This same user should have WRITE access to the system
resident disk.

A class override file consists of:

e A DESTINATION control statement followed by,

e OVERRIDE control statements for those commands and
DIAGNOSE codes for which you want to change the
IBM-defined classes.

The DESTINATION statement must be the first control statement in
the override file.

Enter the OVERRIDE command with the EDIT operand to validate
the class override file.

When you are satisfied that the class override file is correct, enter
the OVERRIDE command without the EDIT operand to convert the
class override file to an internal format.

Set up a matching CP directory.

To activate the class overrides, IPL the system.

3. Make any required class definition changes to the virtual machine
directory:

Normally, to assign additional or different classes to a virtual
machine, change the CLASS field on the USER control statement.

22 VM/SP CP for System Programming

Changing User Access

e If the other parameters on the USER control statement do not leave
sufficient space for all of the new classes, place an * in the CLASS
field on the USER control statement for that virtual machine and
add a CLASS control statement on the next line.

When you want to make additional changes to the class overrides, make the
changes or additions to the class override file and enter the OVERRIDE
command to convert the changes to internal format as described above.
Then IPL the system.

To revert to the IBM-defined classes, enter the OVERRIDE command with
the FREE operand and then IPL the system. If your directory was updated
specifically for your new class structure, you need to install your original
directory when you issue the OVERRIDE command with the FREE
operand.

Note: If extensive changes are made in the command structure, you must
arrange to update the directory immediately before you IPL with your new
override file. Extensive changes in the use of classes A - F might also
require an update to the SYSFCN macro in DMKSYS.

Planning the Command Authorization for the System

Before changing the classes of commands, carefully consider the effect of
the changes on users and on system integrity. Such changes to the existing
command structure will either limit or extend access to system commands.
The key elements of this planning are system integrity, system security, and
how well these changes enhance your installation’s organization and
requirements.

Determining Functions to be Done by Users

The first step in restructuring your command classes is to determine the
different kinds of users of your system and what types of functions each of
these users needs to do the tasks associated with his job. You must
consider the existing structure and the users’ needs and requirements. This
can best be shown in an example.

Consider an Insurance Company where several individuals’ job
responsibilities and tasks vary. The installation has decided to implement a
new class structure. First the users of the system are closely examined to
determine their requirements. The system administrator has determined
that the users fall into the following categories:

Chapter 6. Changing Commands and Privilege Classes 23

Changing User Access

Job Title Abbrev | Duties

System Administrator SAD Responsible for general management of the system
and for determining how the system will be
structured and used.

System Programmer 1 SP1 Responsible for planning, generating, maintaining,
extending, and controlling the use of the operating
system with the aim of improving the general
productivity of the installation.

System Programmer 2 Sp2 Has same responsibilities as System Programmer 1
except that since the system is large, SP1 handles
a different portion of the system.

System Analyst 1 SA1l Responsible for analyzing the system to determine
what new applications, system programs, and
devices are needed by the installation.

System Analyst 2 SA2 Responsible for analyzing the system performance.
Primary System SO For each shift, there is a primary system operator
Operators who is responsible for ensuring the smooth

running of the system and carrying out such duties
as changing tapes and disk packs.

Data Base DBA Responsible for resources associated with and
Administrator access to the main data base of the system. Also
responsible for resources associated with spooling,
printing, and archiving.

Service CE Obtains and examines certain data about input
Representative and output devices connected to the system. Also,
controls intensive error recording and some
machine check error recording.

Experienced EP Responsible for developing, testing, and supporting
Application applications to do the work of the company.
Programmers

Inexperienced 1P Same as Experienced Application Programmers
Application except that IP develop less sophisticated
Programmers application programs and therefore do not require

access to some functions needed by the more
experienced application programmers.

Non-DP Users U1, U2 Two different types of non-DP users with different
requirements identified.

Figure 3. Different System Users and Their Responsibilities

Assigning Commands to Kinds of Users

So far you have determined the kinds of users you have on your system and
what types of system functions each user will need to access. Now for each
kind of user list all commands that each user will need to do the indicated
function. Do not list commands the user does not need or commands whose
IBM-defined class is ANY. For those commands that do different functions
depending on their assigned type, list the type that corresponds to the
functions that you want the user to able to do. For some users, you may
want to list more than one type for a particular command.

24 VM/SP CP for System Programming

C

Changing User Access

Command

ACNT
ADSTOP
ATTN
AUTOLOG
CHANGE
CHANGE
DCP
DEFINE
DEFINE
INDICATE
INDICATE
INDICATE
IPL
MESSAGE
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
SAVESYS
SPOOL
DIAGO4
DIAG1C
DIAG30
DIAG38
DIAG74
DIAGS84

New

In our example of the insurance company, one way of doing this is to make
a chart like the following one that lists all the commands along the side
and the types of users across the top. (Note that the example chart lists
only a few commands. You should list all commands.) It will help you to
list user types in order by level of system control. You should also include
a column for Type (especially if a command has more than one Type) and a
column for the new classes to be assigned. The next step is to decide which
commands you want each user to be able to use. For the example, asterisks
(*) were placed under each user if that user could access the command in
the left column.

Type Class SAD SP1 SP2 SA1 SA2SO DBA CE EP IP Ul U2

ok JoNeoR2k L -R -NeoNeoloNok Nelok-l-NoRCNeNoNoNe)

*

* * * *
* * * *
*
* * * *
*
* *
*
*
*
*
* *
* *
* *
*
* * * *
* * *
* * * *
* * * * *
*
*
*

Note: DIAGNOSE code X’84’ is not marked in any column. This is an
example of a function that might be restricted to one or two users.

Chapter 6. Changing Commands and Privilege Classes 25

Changing User Access

Associating Privilege Classes with Commands and Users

Once you have associated commands and command types with particular
users, you should be able to determine which privilege classes you want to
associate with each command and type and with each kind of user.

In our insurance company example, the system administrator could assign a
different user class to each type of user. Then, each command could be
assigned the list of classes that corresponds to the users who need access.
In the chart, each asterisk can be changed to the appropriate user class and
copied to the “New Class” field as indicated below:

New
Command Type Class SAD SP1 SP2 SAl SA2 SO DBA CE EP IP Ul U2
A B C D E F G H I J K L
ACNT 0] D D
ADSTOP G IJK I J K
ATTN G IJK I J K
AUTOLOG O FGI F G I
CHANGE S FG F G
CHANGE G IJKL I J K L
DCP P BCDH B C D H
DEFINE R F F
DEFINE G IJKL I J K L
INDICATE O F F
INDICATE A DE D E
INDICATE G IJK I J K
IPL G IJKL I J K L
MESSAGE O F F
QUERY 0] F F
QUERY R F F
QUERY P BC B C
QUERY A DE D E
QUERY S FG F G
QUERY C H H
QUERY G IJKL I J K L
SAVESYS A ABC A B C
SPOOL G IJKL I J K L
DIAGO04 ABCDE A B C D E
DIAG1C H H
DIAG30 ABCDEH A B C D E H
DIAG38 ABCDE A B C D E
DIAG74 ABC A B C
DIAGS84 1

26 VM/SP CP for System Programming

Changing User Access
1

As you can see, DIAGNOSE code X’84’ is still not available to any of these
user groups. However, a few individuals could be given access to this
function by assigning class 1 in addition to their normal privilege classes.

You will probably notice that the users with access to system functions and
resources (classes A-H) do not have any of the commands that would be
useful in controlling their own virtual machine (e.g. SPOOL). Users with
classes I - L have varying levels of control oveér their own virtual machine.
This arrangement allows the system administrator to control a user’s access
to system commands separately from his access to virtual machine
commands.

With a change as extensive as this, it is necessary to redefine the privilege
classes that control certain internal CP functions. For this example,
SYSFCN should be coded:

SYSFCN OPER=F,CPRD=BC,CPWT=B,SERV=H, PRIV=ABCF ,DFLT=K

For an explanation of the parameters to SYSFCN, see “How to Change the
Privilege Class of Certain Internal CP Functions” on page 36.

Further Considerations

While customizing the command privilege class structure of your system,
you should keep in mind:

Security and System Integrity
With the ability to define the command access to suit your installation’s
security and system integrity requirements, you have great flexibility
and control over each user’s access to CP commands. This can be used
to enhance security and system integrity at your installation by
restricting access to system resources and information controlled by
commands or DIAGNOSE codes. However, when you change the
privilege class of commands and make changes to user access, be careful
not to compromise security or system integrity by allowing users to use
commands that could provide access to unauthorized information or that
could affect system operation.

Help Files
You may also want to update the HELP files if changes to the command
classes affect a type G command. Refer to the VM/SP CMS User’s
Guide for information on tailoring the HELP facility.

Documentation
If you change the privilege class for commands or DIAGNOSE codes, the
privilege classes documented in this and other publications for
commands and DIAGNOSE codes might not be correct for your
installation.

Chapter 6. Changing Commands and Privilege Classes 27

Changing User Access

Migration
Altering the VM/SP directory to take advantage of the 32 class
command access support will make your directory incompatible with
earlier releases of the system.

How to Assign Privilege Classes to Commands and DIAGNOSE
Codes

If you want to assign privilege classes other than the IBM-defined classes to
certain commands or DIAGNOSE codes (that is, override the IBM-defined
privilege classes) you must:

1. Allocate DASD space for the override file. Refer to VM/SP Planning
Guide and Reference for information on allocating DASD space for the
override file.

2. Create a class override file.

3. Verify the syntax of the control statements in the class override file by
issuing the OVERRIDE command with the EDIT option.

4. Issue the OVERRIDE command without the EDIT option.

5. IPL the system.

Creating a Class Override File

To override the IBM-defined privilege classes for commands and
DIAGNOSE codes, you must first create a class override file. Since VM/SP
does not assign a filename to this file, you must assign the name. The
default filetype is OVERRIDE. You will specify the name on the
OVERRIDE command, which is used to process the class override file and
convert it to internal format.

The class override file consists of one DESTINATION control statement
followed by an OVERRIDE control statement for each command or
DIAGNOSE code whose IBM-defined privilege class is to be overridden.
The first statement in this file (the DESTINATION control statement) gives
the location of the CP-owned volume that contains the internal override
information. The DESTINATION statement has the same syntax as the
DIRECTORY statement in the CP directory file. The override space should
be on the same volume as the directory, so you could copy the DIRECTORY
statement, changing the first term from DIRECTORY to DESTINATION,
and use it in the override file.

In the class override file, follow the DESTINATION control statement with

the OVERRIDE control statements for the commands and DIAGNOSE codes
to be overridden. The format of the OVERRIDE control statement is:

28 VM/SP CP for System Programming

Changing User Access

command

[Type=c] Class=

{ classes }

{ * 0}

where:

command

specifies the command or DIAGNOSE code name. It must be the first
parameter on the control statement.

Note: VM|SP CP Command Reference lists the CP commands that
you can specify on the OVERRIDE control statement. Figure 4 lists
the DIAGNOSE codes that you can specify on the OVERRIDE control
statement. Only the commands and DIAGNOSE codes listed can have
their classes changed. Commands or DIAGNOSE codes defined by the
system as class ANY are not valid on the OVERRIDE control
statement.

Class = classes

*

specifies the classes to be assigned to this command. This parameter
is required. The minimum abbreviation of the keyword is C. classes
can be from 1 to 32 alphanumeric characters (with no intervening
spaces) from A - Z and 1 - 6. Duplicate characters are not allowed and
the characters may be in any order. An asterisk (*) specifies that this
command or DIAGNOSE code can be executed regardless of the class
defined for the virtual machine.

Type=c

specifies the functional type to which the command belongs. (The
types correspond to the IBM-defined privilege classes. The classes can
be changed but type is permanently associated with the command.)
The minimum abbreviation of the keyword is T. This parameter is
required only when a command belongs to more than one functional
type. For example, QUERY belongs to types O, R, P, S, A, C, and G. ¢
specifies one of the following functional types:

Operations
Resource
Programmer
Spooling

Analyst

Customer engineer
General

QQpnd=oO

The TYPE field is invalid for DIAGnn or DIAGnnn.

Chapter 6. Changing Commands and Privilege Classes 29

Changing User Access
.

DIAGNOSE IBM-Defined
Code Class
DIAGO4 CE
DIAG1C F
DIAG2C CEF
DIAG30 CEF
DIAG34 CE
DIAG38 CE
DIAG3C ABC
DIAGS50 ABC
DIAGT74 ABC
DIAGS84 B

Figure 4. DIAGNOSE Instructions That Can Be Respecified on an
OVERRIDE Control Stat.

Class Override File Example

Using the example of the insurance company from the section on planning,
the override file would contain the following entries:

DESTINATION 250 3350 VMSRES
CP COMMAND OVERRIDES FOR 'OUR INSURANCE COMPANY'
USER CLASSES REPRESENT:

SYSTEM ADMINISTRATOR (SAD)

SYSTEM PROGRAMMER - LEVEL 1 (SP1)
SYSTEM PROGRAMMER - LEVEL 2 (SP2)
SYSTEM ANALYST - LEVEL 1 (SAl)

SYSTEM ANALYST - LEVEL 2 (SA2)

SYSTEM OPERATOR (SO)

DATA BASE ADMINISTRATOR (DBA)

IBM SERVICE REPRESENTATIVE (IBM)
EXPERIENCED APPLICATION PROGRAMMER (EP)
INEXPERIENCED APPLICATION PROGRAMMER (IP)
COMPLEX USERS (U1l)

SIMPLE USERS (U2)

PRgHIOQOHEBOOQ®

[
{

= SPECIAL CLASS ASSIGNED TO DIAGNOSE CODE X'84'

COMMANDS ARE ARRANGED IN BROAD CATEGORIES:

A-G = SYSTEM CONTROLS OR INFORMATION REQUESTS
H = IBM SERVICE REPRESENTATIVE
I-L = VIRTUAL MACHINE OPERATION
NOTES:
(1) MOST SYSTEM USERS NEED PRIVILEGE CLASS 'I' IN ADDITION TO

THEIR PRIMARY FUNCTIONAL CLASS. THIS ENABLES THE SYSTEM
USER TO FULLY CONTROL A VIRTUAL MACHINE.

S ok b ok o ok ok Ok % % % o % ¥ ok H O O ¥ % F ¥ % ¥ F F ¥ X F* ¥ * *

30 VM/SP CP for System Programming

C

Changing User Access

* (2)

*
*

ACNT
ADSTOP
ATTN
AUTOLOG
CHANGE
CHANGE
DCP
DEFINE
DEFINE
INDICATE
INDICATE
INDICATE
IPL
MESSAGE
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
QUERY
SAVESYS
SPOOL
DIAGO4
DIAGIC
DIAG30
DIAG38
DIAG74
DIAG84

USER CLASS
FOR MISUSE

'1l' SHOULD BE RESTRICTED TO REDUCE THE POTENTIAL
OF DIAGNOSE CODE X'84'.

TYPE=0O CLASS=D
TYPE=G CLASS=IJK
TYPE=G CLASS=IJK
TYPE=0 CLASS=FGI
TYPE=S CLASS=FG
TYPE=G CLASS=IJKL
TYPE=P CLASS=BCDH
TYPE=R CLASS=F
TYPE=G CLASS=IJKL
TYPE=0 CLASS=F
TYPE=A CLASS=DE
TYPE=G CLASS=IJK
TYPE=G CLASS=IJKL
TYPE=0 CLASS=F
TYPE=0 CLASS=F
TYPE=R CLASS=F
TYPE=P CLASS=BC
TYPE=A CLASS=DE
TYPE=S CLASS=FG
TYPE=C CLASS=H
TYPE=G CLASS=IJKL
TYPE=A CLASS=ABC
TYPE=G CLASS=IJKL
CLASS=ABCDE
CLASS=H
CLASS=ABCDEH
CLASS=ABCDE
CLASS=ABC
CLASS=1

Note that the TYPE operand must be coded for the DEFINE and QUERY
commands because they are associated with more than one type. Note also
that to assign more than one class to a command or command type, all new
classes are placed on the same override control statement (see the QUERY
TYPE =S statement in the above example).

Verifying and Activating the Override File

To verify that the control statements in the class override file have the
correct syntax, issue the OVERRIDE command with the EDIT option:

OVERRIDE fn ft fm (EDIT

where ft fn fm are the filename, filetype, and filemode of. the class
override file. (Note that the default filetype is OVERRIDE.) If an error is
detected, the statement in error is displayed and a message informs you
what the error is.

For information on messages, refer to VM/SP System Messages and Codes.
After you create the class override file and verify the syntax of the control

statements in it, issue the OVERRIDE command with no options to make
the new privilege classes effective for the specified commands:

OVERRIDE fn ft fm

Chapter 6. Changing Commands and Privilege Classes 31

Changing User Access

where ft fn fm are the filename, filetype, and filemode of. the class
override file. If an error is detected, the statement in error is displayed, a
message informs you what the error is, and processing of the class override
file continues in edit mode but does not write the class override data.

If no errors are detected, the OVERRIDE command converts the class
override file to an internal format. This command is similar to the DIRECT
command used for converting an external directory source to internal
format. If an internal override file already exists, issuing the OVERRIDE
command replaces the existing override file with the new one. At this time,
however, the new class overrides do not take effect.

To make the new class overrides effective after issuing the OVERRIDE
command, IPL the system.

Warning: Restricting the user class on a console command
(for example, IPL) does NOT restrict the function of the
analogous directory control statement. Thus, a command
(such as IPL or LINK) may work at IPL time but not work
when issued by the user during his session.

Reverting to the IBM-Defined User Classes

If you want the commands to be assigned their IBM-defined privilege
classes again:

1. Issue the OVERRIDE command with the FREE option:

OVERRIDE fn ft fm (FREE
where ft fn fm are the filename, filetype, and filemode of. the class
override file.

2. IPL the system.

If, after reverting to the IBM-defined classes, you want to return to the
classes you defined in the override file:

1. Enter the OVERRIDE command without the FREE option:

OVERRIDE fn ft fm
2. IPL the system.

Note: If your changes are quite extensive, you may need to install a
different directory and/or build a new nucleus with an updated SYSFCN.

32 VM/SP CP for System Programming

Changing User Access
. _____________________________________|

L How Users Can Find Which Commands They Can Issue

To find out which IBM-defined and user-defined commands are available,
the user can issue the COMMANDS command. For example, if the
IBM-defined classes are in effect for all commands, a user whose virtual
machine is assigned privilege classes E and F would receive the response:

LOGON DIAL DISCONN LOGOFF MESSAGE SLEEP
* CP COMMANDS DCP DMCP INDICATE
MONITOR PER QUERY SAVESYS SET
DIAGOO DIAGO4 DIAGOS8 DIAGOC DIAG10 DIAG14
DIAG18 DIAGI1C DIAG20 DIAG24 DIAG28 DIAG2C
DIAG30 DIAG34 DIAG38 DIAG40 DIAG48 DIAGA4C
DIAG54 DIAGS58 DIAGSC DIAG60 DIAG64 DIAG68
DIAG6C DIAG70 DIAG78 DIAG7C DIAGS80 DIAGS8C
DIAG94 DIAG98

‘ Remember, this would include any commands of class E or F added by the

user’s installation.

Changing a User’s Privilege Classes

The VM/SP directory contains an entry for every virtual machine permitted
on the VM/SP system. Each entry includes the privilege class or classes of
commands that the virtual machine is permitted to issue. (For additional
(r information about the VM/SP directory and how to generate it, refer to
VM|SP Planning Guide and Reference.) The control statements in the
VM/SP directory that define the command privilege classes for a virtual
machine are the USER control statement and the CLASS control statement.

The USER control statement defines a virtual machine and creates a
VM/SP directory entry. It identifies the directory entry for one user. You
must prepare a separate USER statement for each virtual machine in your
system. The format of the USER statement is described in VM/SP
Planning Guide and Reference. Use the cl operand of the USER statement

&, or the CLASS control statement to define privilege classes for the virtual
machine. (Coding this operand is described later in this section.) You can
define up to 32 classes.

Warning: Make sure you have enough free disk space before
editing and making changes to the existing directory so that
you can file the updated directory. Refer to VM/SP Planning
Guide and Reference for information on how to allocate DASD
space for the directory.

Chapter 6. Changing Commands and Privilege Classes 33

Changing User Access
.|

Directory Entry Example

For the example of the insurance company that we used before the
directory might include the following USER and CLASS control statements:

DIRECTORY 250 3350 VMSRES

HAS ACCESS TO ANY CP COMMAND NO MATTER WHAT OVERRIDE FILE
IS APPLIED. THE PASSWORD SHOULD ONLY BE KNOWN TO A
VERY FEW KEY PEOPLE.

*

* CP DIRECTORY FOR 'OUR INSURANCE COMPANY'

*

* NOTES:

*

* (1) MOST SYSTEM USERS NEED PRIVILEGE CLASS 'I' IN ADDITION TO
* THEIR PRIMARY FUNCTIONAL CLASS. THIS ENABLES THE SYSTEM

* USER TO FULLY CONTROL A VIRTUAL MACHINE.

*

* (2) USER CLASS 'l' SHOULD BE RESTRICTED TO REDUCE THE POTENTIAL
* FOR MISUSE OF DIAGNOSE CODE X'84'.

*

* (3) USERID ALTMAINT IS SET ASIDE FOR EMERGENCY USE. THIS USER
*

*

*

*

USER ALTMAINT SECRET 2M 8M *
CLASS ABCDEFGHIJKLMNOPQRSTUVWXYZ123456

(other control
*

statements)

USER ADM XXXXXXXX 2M 8M AIl

(other control
*

statements)

USER SP1 XXXXXXXX 1M 2M BI

(other control
*

statements)

USER SP2 XXXXXXXX 1M 2M CI
(other control statements)

*

USER SA]l XXXXXXXX 1M 2M DI
(other control statements)

*

USER SA2 XXXXXXXX 1M 2M EI

(other control
*
USER SO XXXXXXXX

(other control
*

statements)

1M 2M FI
statements)

USER DBA XXXXXXXX 1M 4M GI

(other control
*

statements)

USER IBM XXXXXXXX 1M 4M HI

(other control
*
USER EP XXXXXXXX
(other control
*
USER IP XXXXXXXX
(other control
*
USER Ul XXXXXXXX
(other control
*
USER U2 XXXXXXXX
(other control

statements)

1M 4M I
statements)

M 2M J
statements)

1M 2M K
statements)

512K 1IM L
statements)

34 VM/SP CP for System Programming

Changing User Access
|

If no user named “OPERATOR” is defined, DMKSYS should be updated to
identify “SO” as the system operator.

Defining Privilege Classes for a Virtual Machine

To change the definition of privilege classes for a virtual machine do the
following steps. Step 3 will differ depending on whether you are defining
eight or fewer privilege classes, or more than eight privilege classes.

1. Use the XEDIT command to edit the VM/SP directory. The directory
will probably have a fileid of USER DIRECT, but it can have any
filename filetype.

2. Find the USER control statement for the virtual machine whose
privilege classes you want to change.

3. This next step is dependent on whether you are defining eight or fewer
classes or more than eight classes.

To define eight or fewer privilege classes for a virtual machine: Change the
cl operand to the classes that you want this virtual machine to have. The cl
operand consists of one to eight EBCDIC characters (with no intervening
blanks) that can be A - Z, and 1 - 6. These characters define privilege
classes for the virtual machine. If ¢l is not coded, the default is G. For
example, if you want the user whose virtual machine userid is DATABASE
to be able to use commands with the privilege classes D, E, L, and M, code
the USER control statement as:

USER DATABASE pass stor mstor DELM pri le 1ld cd es

Note: For information on coding other operands of the USER control
statement, refer to VM/SP Planning Guide and Reference.

To define more than eight privilege classes: statement, do the following:
a. Change the ¢l operand to an asterisk (*).

b. Immediately following the USER control statement, insert a CLASS
control statement. The format of the CLASS control statement is:

| CLASS | classes |

where:

classes
specifies up to 32 privilege classes that can consist of any
letters from A - Z and any numbers from 1 - 6 with no
intervening blanks or commas. Duplicate characters are not
allowed. The characters may appear in any order.

For example, if you want to assign privilege classes A through Q to
a virtual machine that belongs to a user whose userid is SYSADM,

Chapter 6. Changing Commands and Privilege Classes 35

Changing User Access

code the USER control statement and the CLASS control statement)
as follows:

USER SYSADM pass stor mstor * pri le 1d cd es
CLASS ABCDEFGHIJKLMNOPQ

Note: For information on coding other operands of the USER
control statement, refer to VM/SP Planning Guide and Reference.

4. After you make all the desired changes to the directory, file the
directory file.

5. To verify that the CMS file can be used as a directory file, issue the
DIRECT command with the EDIT option. (For the format of the
DIRECT command, refer to VM/SP Planning Guide and Reference.) If
you made a syntax error, an error message informs you of the error.

6. When you have verified that the directory file is correct, replace the old J
directory with the updated directory. Issue the command:

Note: The virtual machine that issues the DIRECT command must have

write access to the volume that will contain the new directory. If you

create a directory that is to be written on the active VM/SP system

residence volume, your virtual machine’s current directory entry must

have write access to the volume that contains the current VM/SP J
directory.

7. Once the directory is updated, directory changes for a virtual machine
currently logged on to the system do not take effect until the user logs
off the system and then logs back on.

8. If the new directory is written for a new system residence volume, to

have the new directory take effect, IPL the system. This causes the new
system resident volume to be loaded.

How to Change the Privilege Class of Certain Internal CP Functions

Certain internal functions are preset and need the SYSFCN macro to
change them. You can use the SYSFCN macro to change the privilege
classes of the following internal CP functions:

e Authorization to logon during CP initialization

o Authorization for intensive recording

o Authorization to issue Diagnostic Load/Write or Sense/Read commands

e Authorization to issue diagnostic reads to a non-dedicated control unit

<

36 VM/SP CP for System Programming

Changing User Access
.|

e Authorization to issue the Buffer Unload command

e Authorization for IOCP Read

o Authorization for IOCP Write

A default SYSFCN macro is supplied in the DMKSYS macro. If you want
to change some or all the privilege classes assigned to internal CP

functions, you must include a SYSFCN macro statement in DMKSYS that
specifies the changes you want to make. The macro format is:

[label] SYSFCN r
PRIV — ABCDEF}]
i classes
OPER= {4 }
i classes
CPRD= {CE }
| classes
cpwr= {€ }
i classes]
SERV= JE }
L classes]
DFLT= {G }1
| classes]

where:

PRIV specifies the classes authorized to issue X’42” CCW on a 37xx
emulation line that is not dedicated to the user. The default
classes are A through F.

OPER specifies the classes authorized to logon during initialization.
The default class is A.

CPRD specifies the classes authorized to issue IOCP READ. The

default classes are C and E.

CPWT specifies the classes authorized to issue IOCP WRITE. The
default class is C.

SERV specifies the classes authorized to issue Diagnostic Load/Write
and Sense/Read CCW commands. The default class is F.

DFLT specifies the default class or classes for a user who does not
have a class defined. The default class is G.

Chapter 6. Changing Commands and Privilege Classes 37

Changing User Access
- |

For an example of how our insurance company used the SYSFCN macro,
refer back to “Associating Privilege Classes with Commands and Users” on
page 26.

38 VM/SP CP for System Programming

Chapter 7. Interrupt Handling

1/0 Interrupts

Input/output interrupts from completed I/O operations initiate various
completion routines and the scheduling of further I/O requests. The I/O
interrupt handling routine also gathers device sense information.

Missing Interrupt Handler

An I/O operation, such as a minidisk operation or a paging operation, that
does not complete in a specified time period causes a missing interrupt
condition. An incomplete minidisk operation can lock out a virtual
machine user or an incomplete paging I/O operation can degrade the
performance of the system. The missing interrupt handler detects
incomplete I/O conditions by monitoring I/O activity and, in addition, it
takes action to correct incomplete I/O conditions without operator
intervention. The missing interrupt handler, therefore, is designed to
improve the availability of the system by preventing user lockout and
system degradation.

The missing interrupt handler scans the real device blocks (RDEVBLOKsS)
at specified time intervals. If the device is busy (RDEVBUZY flag is on), a
‘bit (RDEVMID) is set that indicates a possible missing interrupt condition.
The first level interrupt handler, DMKIOT, resets RDEVBUZY and
RDEVMID when the device causes an interrupt at the completion of an I/O
operation. Therefore, if RDEVMID is on at the end of the next time
interval, a missing interrupt condition exists.

The installation may use the default time interval for each distinct device
category or may specify a time value. For example, if the default time
interval value of ten minutes for tape devices is not appropriate for an
installation’s configuration, the installation may change this value. See
“Changing the Time Interval” on page 41 for a list of the default time
interval values and how you can change these values.

Chapter 7. Interrupt Handling 39

Interrupts

Using the Missing Interrupt Handler

To use the Missing Interrupt Handler (MIH), DMKDID must be included in
the load list during system generation. MIH can be set on either by
including it as an option in the directory or by issuing the SET command.
The default is MIH OFF. With MIH on, when a missing interrupt is
detected, CP simulates the interrupt. With MIH off, when a missing
interrupt is detected, message DMKDID5461 is issued but CP does not
simulate the interrupt. If DMKDID is deleted from the load list during
system generation, support for the Missing Interrupt Handler is removed
and no messages are written to notify the operator of a missing interrupt.

If you want to change the interval time value, you must include the
optional macro SYSMIH in the system control file (DMKSYS). You must
place this macro before the SYSLOCS macro.

When a missing interrupt occurs, the control program tries to correct the
condition and issues a message that either the condition is cleared or the
condition is pending. This message warns the system operator or system
programmer that a problem may exist. The system operator or the system
programmer can reset the hardware and schedule maintenance for the
device that caused the missing interrupt condition. If the same device class
causes frequent interrupts, the system programmer may want to set a larger
time interval for that particular device class.

The class G SET command can be used to turn MIH on and off. Use either
SET MIH ON or SET MIH OFF

To determine the status of MIH, use
QUERY SET

The response is

MIH ON or MIH OFF

Devices Monitored
Each device group has an expected time interval during which an I/O
operation should be completed. This interval varies widely among devices.
Therefore, the missing interrupt handler provides a means to specify a time
interval for the following distinct categories of I/O devices:
e Count-key-data devices (CLASDASD) and FB-512 devices (CLASFBA)
e Tape devices (CLASTAPE)
e Graphic devices (CLASGRAF) except TYP1053 and TYP328X

e Unit record devices (CLASURI and CLASURO) except TYP3800 and
TYP3289E

40 VM/SP CP for System Programming

Interrupts

Miscellaneous devices (MISC) include: Mass storage system (MSS)
devices (specified at system generation as CLASSPEC TYP3851, and
CLASDASD FEATURE = VIRTUAL or FEATURE =SYSVIRT), graphics
devices TYP1053 and TYP328X, and UR output devices TYP3800 and
TYP3289E.

Note: The missing interrupt handler does not support terminal devices,
remote graphic devices, SNA devices, pass-through virtual machine (logical)
devices, and special class devices (with the exception of MSS).

Changing the Time Interval

An installation may want to change the default time intervals because of
their particular configuration. For example, an installation that generates
a large number of devices might want to set the time interval value to a
larger number to prevent frequent timer interrupts.

Device Class Default

Class Parameter Time Interval
CLASDASD or DASD 15 seconds
CLASFBA

CLASGRAF GRAF 30 seconds
CLASTAPE TAPE 10 minutes
CLASURI/CLASURO UR 1 minute
MISCELLANEOUS MISC 12 minutes

The system programmer or the system operator can change the time
interval in the following ways:

Regenerate the system and, using the SYSMIH macro, specify a time
interval value in the system control file (DMKSYS) for the specific
device class to be changed. Specify the time interval value in minutes
and seconds:

SYSMIH GRAF=00:15,UR=00:00,TAPE=05:00

This example changes the time interval for graphic devices from the
default value of thirty seconds to fifteen seconds. In this example, no
further monitoring takes place for unit record devices since the user
specified a time value of zero for that class. In addition, the example
changes the time interval value for tape devices from ten minutes to
five minutes. This example does not change the time interval value for
DASD and MISC devices. If you do not specify a device class, or if you
do not include the SYSMIH macro in DMKSYS, the missing interrupt
handler uses the default value for that class.

To change the value specified in DMKSYS for a particular device class,
issue the class B CP command specifying the new time interval value
for that class in minutes and seconds:

SET MITIME GRAF 00:10

Chapter 7. Interrupt Handling 41

Interrupts

This example changes the time interval for graphic devices to ten
seconds. This change is in effect until the system is reinitialized, or
until a class B user issues another SET MITIME command. If the user
specifies a time value of zero for a specific device class, no further
monitoring takes place for that device class.

Note: If you set the time interval for a device class below its default
value, be careful not to shorten the time interval too much. This may
cause unnecessary missing interrupt handler processing for devices that
are functioning properly.

e To set all time values to zero and to prevent any monitoring for missing
interrupts for any devices, issue the class B CP command:

SET MITIME OFF

Monitoring for missing interrupts does not take place until the system
is reinitialized, or until the class B user issues another SET MITIME
command.

Determining Time Interval Settings

The class B user can determine the current missing interrupt handler time
intervals by issuing the following CP command:

QUERY MITIME

The system makes one of these four responses:

o The time interval setting for each device group in minutes and seconds
e The response MITIME OFF

® An error message if the user specified an invalid parameter

e The response that the missing interrupt handler is not available if
DMKDID is not in the load list during system generation.

Diagnostic Aids

Missing interrupt handler support provides aids so that the system
programmer can determine the frequency and status of interrupts and also
know when he has made an error in using the support. Diagnostic aids
available when using the missing interrupt handler include:

System messages

Macro notes

VM/SP system’s error recording area
Trace table.

42 VM/SP CP for System Programming

<

Interrupts

System messages

Messages inform the system operator when a missing interrupt
occurs and indicate if the condition has been cleared or if the
interrupt is still pending. Other messages indicate that the
module DMKDID is not in the load list or that the user specified
an invalid parameter on the QUERY or SET MITIME command.
See VM/SP System Messages and Codes for a complete
discussion of messages that the missing interrupt handler issues.

The system programmer can use message information to increase
the availability of the system. If a particular device class causes
frequent interrupts even if the system clears the condition, the
system programmer may want to change the time interval.
Changing the time interval prevents the overhead of frequent
timer interrupts, frequent trips through the detector routine, and
rescheduling of timer request queues. On the other hand, if the
control program did not clear the condition, the messages make
the system programmer or system operator aware of the
condition and one of them can reset the hardware either
physically or using CP commands.

Macro notes

Macro notes (MNOTES) inform the user that SYSMIH is not
present in DMKSYS or that the user specified an invalid time
value in the SYSMIH macro. The system uses the default
interval time values and informs the user.

System’s Error Recording Area

Whether or not CP succeeds in correcting a missing interrupt
situation, it creates a record of the event in the system’s error
recording area (LOGREC).

Trace table

Program Interrupt

CP also traces the simulated interrupt and records it as trace
table entry X’19’. The system programmer uses the trace table to
determine the events that preceded a CP system failure. There is
a figure that shows the format of CP trace table entries in VM
Diagnosis Guide.

Program interrupts can occur in two states. If the processor is in
supervisor state, the interrupt indicates a system failure in the CP nucleus
and causes the system to abnormally terminate. If the processor is in
problem state, a virtual machine is executing. CP takes control to perform
any required paging operations to satisfy the exception, or to simulate the
instruction. The fault is transparent to the virtual machine execution.
Any other program interrupt is a result of the virtual machine processing
and is reflected to the machine for handling.

Chapter 7. Interrupt Handling 43

Interrupts

Machine Check Interrupt

SVC Interrupt

When a machine check occurs, the CP Recovery Management Support
(RMS) gains control to save data associated with the failure for the Field
Engineer. RMS analyzes the failure to determine the extent of damage.

Damage assessment results in one of the following actions being taken:
e System termination (CP disabled wait state)
o Attached processor disabled (system continues in uniprocessor mode)

e One processor of a multiprocessor configuration disabled (system
continues in uniprocessor mode)

® One or more failing channels disabled (system continues in same mode
as at time of the error)

o Selective virtual user termination
o Selective virtual machine reset

o Refreshing of damaged information with no effect on system
configuration

o Refreshing of damaged information with the defective storage page
removed from further system use

e Error recording only for certain soft machine checks.

The system operator is informed of all actions taken by the RMS routines.
When a machine check occurs during VM/SP startup (before the system is
sufficiently initialized to permit RMS to operate successfully), the processor
goes into a disabled wait state and places a completion code of X’00B’ in the
leftmost bytes of the current PSW.

When an SVC interrupt occurs, the SVC interrupt routine is entered. If the
machine is in problem mode, the type of interrupt (if it is other than an
SVC 76 or ADSTOP SVC) is reflected to the pseudo-supervisor (that is, the
supervisor operating in the user’s virtual machine). Control is transferred
to the appropriate interrupt handler for ADSTOP SVCs and all SVC 76s.

If the machine is in supervisor mode, the SVC interrupt code is determined,
and a branch is taken to the appropriate SVC interrupt handler.

44 VM/SP CP for System Programming

-

Interrupts
|

(, External Interrupt

If a timer interrupt occurs, CP processes it according to type. The interval
timer indicates time slice end for the running user. The clock comparator
indicates that a specified timer event occurred, such as midnight, scheduled
shutdown, or user event reached.

The external console interrupt invokes CP processing to switch from the
3210 or 3215 to an alternate operator’s console.

A service signal is a class 24 external interrupt that is generated when:

® A logical device signals completion of an operation initiated by a
program (DIAGNOSE X’7C’), or
v e The Maintenance and Service Support Facility (MSSF) signals
& completion of an operation initiated by CP (MSSFCALL DIAGNOSE
X’80’).

Descriptions of DIAGNOSE codes are in VM System Facilities for
Programming. IBM System|370 Principles of Operation, contains a general
description of external interrupts.

Synchronous Interrupts with Multiple Processors

Generally, when synchronous interrupts (such as program and SVC
interrupts) occur in an attached processor or multiprocessor system, the
processing of the interrupt can proceed without the global system lock for
mainline, nonerror paths. Otherwise, the global system lock is required. If
the global system lock is needed and it is already in use, the processing of
the interrupt is deferred until the global system lock is available. In this
case, the interrupted processor tries to run another user.

L Real I/O Interrupts

In an attached processor configuration, only the main processor can receive
real I/O interrupts. To ensure this, the channel masks in control register 2
on the main processor are initialized to ones to enable interrupts from any
available channel. On the attached processor, the channel masks in control
register 2 are initialized to zeroes. In a multiprocessor configuration, both
processors can receive real I/O interrupts. The channel masks in control
register 2 on both processors are initialized to ones to enable interrupts
from any available channel.

Chapter 7. Interrupt Handling 45

Interrupts

46 VM/SP CP for System Programming

(' Chapter 8. Accounting Records

The accounting data gathered by VM/SP can help in analysis of overall
system operation. Also, accounting data can be used to bill VM/SP users
for time and other system resources they use.

There are three types of accounting records: the virtual machine user
records, records for dedicated devices and T-disk space assigned to virtual
machine users, and accounting records generated by a DIAGNOSE X"4C’
instruction. A CMS batch virtual machine creates an accounting record

L with the userid and account number of the user who sent the job to the
batch machine.

Accounting records are prepared as 80-character card images and usually
spooled to disk. There are two ways to send the data to the punch for
punched output or spool it to the user’s reader for additional processing.
The SYSACNT macro does it when a specified number of records have
accumulated. The ACNT CLOSE command does it immediately.

C

Accounting Records for Virtual Machine Resource Use

The information stored in the accounting record in card image form when a
user ends his terminal session (or when the ACNT command is invoked) is
as follows (columns 1-28 contain character data; all other data is in
hexadecimal form, except as noted):

Column Contents

&’ 1-8 Userid
9-16 Account number
17-28 Date and Time of Accounting (mmddyyhhmmss)
29-32 Number of seconds connected to VM/SP System
33-36 Milliseconds of processor time used, including time for VM/SP
supervisor functions
37-40 Milliseconds of virtual processor time used
41-44 Number of page reads
45-48 Number of page writes
49-52 Number of virtual machine SIO instructions for nonspooled I/O
53-56 Number of spool cards to virtual punch
57-60 Number of spool lines to virtual printer (This includes one line
for each carriage control command)
61-64 Total number of spool records from virtual reader
(This is not the number of records read, rather it is the total
number of records in the spool file (SFBRECNO) when the file
&’ is open for processing.)
65-78 Reserved

Chapter 8. Accounting Records 47

Accounting Records

79-80 Accounting record identification code (01)

Accounting Records for Dedicated Devices and Temporary Disk
Space

Accounting records are recorded and spooled to disk when a previously
dedicated device and temporary disk space is released by a user via
DETACH, LOGOFTF, or releasing from DIAL (dedicated device only). A
dedicated device is any device assigned to a virtual machine for that
machine’s exclusive use. These include devices dedicated by the ATTACH
command, those being assigned at logon by directory entries, or by a user
establishing a connection (via DIAL) with a system that has virtual 2702 or
2703 lines. The information on the accounting record in card image form is
as follows (columns 1-28 contain character data; all other data is in
hexadecimal form, except as noted):

Type 02
Column Contents
1-8 Userid
9-16 Account number
17-28 Date and Time of Accounting (mmddyyhhmmss)
29-32 Number of seconds connected to VM/SP system
33 Device class
34 Device type
35 Model (if any)
36 Feature (if any)
37-64 Unused
65-72 Terminal identification
73-78 Unused
79-80 Accounting record identification code (02)
Type 03
Column Contents
1-8 Userid
9-16 Account number
17-28 Date and Time of Accounting (mmddyyhhmmss)
29-32 Number of seconds connected to VM/SP system
33 Device class
34 Device type
35 Model (if any)
36 Feature (if any)
37-38 Number of cylinders of temporary disk space used (if any) or
number of blocks used (columns 37-40) for fixed-block devices.
39-78 Unused (columns 41-78 unused for fixed-block devices)
79-80 Accounting record identification code (03)

VM Diagnosis Guide has a figure that shows the codes that go in columns
33-36 (device class, device type, model, and feature).

48 VM/SP CP for System Programming

Accounting Records

& Accounting Records for LOGON, AUTOLOG, and LINK Journaling

| When LOGON, AUTOLOG, and LINK journaling is on, VM/SP may write
| type 04, type 05, type 06, type 07, or type 08 records to the accounting data
set. These records are written under the following circumstances:

Type 04 records are written when VM/SP detects that a user has issued
enough LOGON or AUTOLOG commands with an invalid password to
reach or exceed an installation defined threshold value.

Type 05 records are written when VM/SP detects that a user has
successfully issued a LINK command to a protected minidisk not owned
by that user.

Type 06 records are written when VM/SP detects that a user has issued
enough LINK commands with an invalid password to reach or exceed
an installation defined threshold value.

Type 07 records are written when a user logs off a device controlled by
the VTAM Service Machine (VSM). The records indicate the user’s

share of the VSM resources used.

Type 08 records are written when a user disconnects or logs off.

(These records have the following formats:

Type 04

Column Contents
1- 8 USERID specified on the command
9-16 Reserved for IBM use
17-28 Date and time of accounting (mmddyyhhmmss)
29-32 Terminal address (see Note 1)
33-40 Invalid password (see Note 2)
’ 41-48 USERID that issued the AUTOLOG command
g_, 49-51 Reserved for IBM use
52-53 Current invalid password count
54-55 Accounting record limit (JPSLOGAR)
56-70 Reserved for IBM use
71-78 LUNAME for SNA terminal
79-80 Accounting card identification code (04)

Chapter 8. Accounting Records 49

Accounting Records
|

Type 05

Column Contents

1- 8 USERID that issued the command

9-16 Account number

17-28 Date and time of accounting (mmddyyhhmmss)

29-32 Terminal address (see Note 1)
33-40 Reserved for IBM use
41-48 USERID of user that owns the minidisk
49-51 Minidisk address for which the LINK command was issued

52-70 Reserved for IBM use
71-78 LUNAME for SNA terminal

79-80 Accounting card identification code (05)

Type 06

Column Contents

1-8 USERID that issued command

9-16 Account number

17-28 Date and time of accounting (mmddyyhhmmss)
29-32 Terminal address (see Note 1)

33-40 Invalid password (see Note 2)

41-48 USERID of user that owns the minidisk

49-51 Minidisk address for which the LINK command was issued
52-53 Invalid password count

54-55 Invalid password limit (JPSLNKAR)
56-70 Reserved for IBM use
71-78 LUNAME for SNA terminal

79-80 Accounting card identification code (06)
Type 07

Column Contents

1- 8 USERID or terminal identification

9-16 Accounting number or 0000

17-78 VTAM Service Machine accounting data
79-80 Accounting card identification (07)
Notes:

1. For the terminal address, columns 29-32 may contain one of the following:

o ‘NONE’—if no terminal is found
® resource id—for remote bisynchronous terminals
® real device addr—for all other cases.

2. For the invalid password, columns 33-40 may contain one of the
following:

® incorrect password

e ‘TERM/ERR’ - if the line dropped during password entry
e ‘TOO LONG’ - if entered password is more that eight characters.

50 VM]/SP CP for System Programming

Accounting Records
|

(| Type 08

Column Contents

I

| 1- 8 userid

| 9-16 Account number

| 17-28 Date and time of accounting (mmddyyhhmmss)
| 29-64 Reserved for IBM use

| 65-72 Terminal identification

| 73-78 Reserved for IBM use

| 79-80 Accounting record identification code (08)

Accounting Records Created by the User

that contains up to 70 bytes of information of his own choosing. To do this,

‘ A virtual machine user can initiate the creation of an accounting record
he issues a DIAGNOSE code X’4C’ instruction with the following operands:

® The address of a data area in virtual storage containing the
information, in the actual format, that he wishes to have recorded in
columns 9 through 78 of the card image record.
® A hexadecimal function code of X’10’
‘ o The length of the data area in bytes

The information on the accounting record is as follows:

Column Contents

1- 8 Userid
9-78 User formatted data
79-80 Accounting record identification code (C0)

A For information on using DIAGNOSE code X’4C’ see VM System Facilities
‘ for Programming.

For SNA users, the VTAM Service Machine (VSM) uses the VM/SP user
accounting record. See the VCNA Installation and Terminal Use Guide for
the format of this record.

| The Transparent Services Access Facility uses the VM/SP user accounting

| record. See VM/SP Transparent Services Access Facility Reference for the
| format of this record.

Chapter 8. Accounting Records 51

Accounting Records
L |

User Accounting Options

You may insert your own accounting procedures in the accounting
routines. See Chapter 10, “CP Conventions” for information on CP coding
conventions and load list requirements. Operator responsibilities in such
cases should be defined by the installation making the additions. When
designing such accounting procedures, you should understand that:

1.

The accounting routines are designed to be expanded. The entry point
provided in the accounting module for installation use is called
DMKACON. If you want to perform additional accounting functions,
you should modify the following copy files:

ACCTON (account on) -- for action at logon time. This is provided as a
null file. It can be expanded to provide additional functions at logon
time. The ACCTON routine can request the system to force the user off
by returning a nonzero value in SAVER2. However, if the operator is
automatically logged on during system initialization, the nonzero return
tode has no effect.

Note: The ACCTON COPY file distributed with VM/SP contains the
basic logic required to enhance system security based on the 3277
Operator Identification Card Reader feature. Additional checking may
be added to examine or validate the data read from the identification
card.

ACCTOFF (account off) -- for action at logoff time. This section
contains the code that fills in the account card fields. It does not reset
any internal data. This file exists in both DMKACO and DMKCKF
(checkpoint). If the ACCTOFF copy file is changed, both modules
should be reassembled.

In addition to CP accounting, your installation can use the accounting
routines to supply virtual machine operating system accounting
records. This provides a means of job accounting and operating system
resource use accounting.

If you specify, in the SYSACNT system generation macro, that your
spooled accounting records are to be sent to the reader of a virtual
machine, you can process the accounting data directly with your own
accounting routines.

52 VM/SP CP for System Programming

(— Chapter 9. Saved Systems, Discontiguous Saved Segments, and
Shared Segments

Saved systems are systems you can IPL in a virtual machine, initialize, and
save on a disk along with all the information you need to resume execution
at the point where you save the system. Saved systems provide an efficient
means of IPLing systems by bypassing many system initialization steps.

the address range of a virtual machine. These segments can contain
read-only data or reentrant code. Discontiguous saved segments provide an
efficient means of fetching programs by merely connecting discontiguous
segments to a virtual machine’s address space.

i Discontiguous saved segments (DCSS) are areas of virtual storage outside

Shared segments definition are segments within a saved system or DCSS.
These segments can contain read-only data or reentrant code that many
users can share. Many users can share all or portions of a saved system or
DCSS. This reduces the demand for real storage for the overall system.

(, A segment of storage is 64K bytes long on a 64K byte boundary.
The VM/SP Planning Guide and Reference contains more information on:
e Saved systems, discontiguous saved segments, and shared segments
o Using the CP SAVESYS command
o (Creating a system name table

k e Coding the NAMESYS, NAMENCP, and NAME3800 macros.

| The VM|SP Installation Guide contains more information on:

| e Loading and saving discontiguous saved segments

| e Using the SPGEN EXEC to reassemble DMKSNT.

Chapter 9. Saved Systems, Discontiguous Saved Segments, and Shared Segments 53

Saved Systems
. |

Before a discontiguous saved segment can be attached and detached by
name, it must be loaded and saved. The load address of the named segment
must be beyond the highest address of any virtual machine to which it will
be attached. Once the named segment is loaded at the correct address, you
can save it by issuing the CP SAVESYS command.

The system programmer should make sure the named segment is loaded at
an address that does not overlay the defined virtual machine or any other
named segment that may be attached at the same time.

To be sure that the CMS discontiguous saved segment has segment
protection, set the storage key for the segment to something other thanX’F’
before you save it. Use the CMS SETKEY command to change the storage
key.

CP DIAGNOSE Code Interface With A DCSS

The linkage to attach and detach discontiguous saved segments is
supported through several CP DIAGNOSE codes.

The virtual machine is responsible for insuring that the discontiguous
saved segment it is attaching does not overlay other programming code. To
do this, the virtual machine must know how much virtual storage it has.
By issuing DIAGNOSE code X’60’ during its initialization process, the
virtual machine can determine its virtual machine storage size.

When the virtual machine needs to attach a discontiguous saved segment, it
must first ensure that the segment is available and that it does not overlay
existing storage. By issuing the DIAGNOSE codeX’64’ with subcode
X’000C’, the virtual machine can verify that a loadable copy of the
discontiguous saved segment exists on a CP-owned volume. This
DIAGNOSE code is called the FINDSYS function. FINDSYS returns the
starting address of the segment. The virtual machine should compare the
starting address of the segment to its own ending address; if the segment
does not overlay existing storage, it can be loaded.

CP DIAGNOSE code X’64’ with subcode X’0000’ orX’0004” provides a
LOADSYS function. Subcode X"0000’ loads a named segment in shared
mode, and subcode X’0004’ loads a named segment in nonshared mode. VM
System Facilities for Programming contains a complete description of the
DIAGNOSE codes used in the discontiguous saved segment interface.

To load the named segment in nonshared mode, use the CMS command:

SET NONSHARE segmentname

before CMS attaches the named segment. If the segment is loaded in
nonshared mode you can test and debug it using the CP TRACE, STORE,

54 VM/SP CP for System Programming

Saved Systems
|

.

and ADSTOP commands and the CMS DEBUG subcommands BREAK and
STORE.

When CMS loads a named segment in shared mode, it issues the CP
DIAGNOSE code X’64’ with subcode X’0000°. CMS issues the same code
with subcode X’0004’ to load the named segment in nonshared mode.

When a discontiguous saved segment is loaded (or attached) to a virtual
machine, CP expands its segment table entries for that virtual machine to
reflect the highest address of the virtual machine.

When a named segment is successfully loaded, all of its storage is
addressable by the virtual machine. For example, when CMS attaches a
named segment, it can execute the routines contained in that segment. All
of the commands that are executable for CMS are also executable for the
attached named segment, with the following exceptions:

® The response for the CP QUERY VIRTUAL STORAGE command does
not reflect the storage occupied by the named segment.

e If you execute a command that alters storage (such as STORE), you are
given a nonshared copy of the named segment.

When the named segment is no longer needed, it can be detached. The CP
DIAGNOSE code X’64’ subcode X’0008’ is called the PURGESYS function; it
detaches named segments. When a named segment is detached, its storage
is no longer addressable by the virtual machine and CP updates its segment
tables. The entries for segments beyond the original virtual machine size
are deleted and the associated real storage is released.

Shared Segment Protection

VM/SP protects shared segments by default. However, at system generation
time, the system programmer can designate whether a shared segment is to
be protected or not. To do this, the programmer uses the PROTECT
operand of the NAMESYS MACRO. (See VM/SP Planning Guide and
Reference for details of coding the NAMESYS macro.)

Generally, the information contained in a protected shared segment should
not be modified. When segments are protected, CP ensures that one virtual
machine does not access a shared segment that another virtual machine has
changed. In addition, CP does not allow any user to change the storage
keys on the protected page, thus preventing other users from accessing the
information on that page.

If a named system is specified as protected, segment zero must not be
shared. Page zero in this segment contains areas that may change (such as

PSWs) and sharing it in protected mode can have unpredictable results.

Unprotected shared segments differ from protected shared segments in that
they contain data that can be modified by any user that accesses the shared

Chapter 9. Saved Systems, Discontiguous Saved Segments, and Shared Segments 55

Saved Systems

segment. CP takes no action to protect either the contents or accessibility
of these pages. When segments are not protected, CP lets one virtual
machine access a page in the shared segment that may have been changed
by another virtual machine. As a result, all the virtual machines that share
that storage must be aware of the change activity that can occur and must
act accordingly.

In addition, CP allows a user to change the storage keys on an unprotected
page by using the privileged instruction SSK. Changing the storage keys
can prevent users from accessing storage on the shared page; however, CP
only simulates a privileged instruction for a user in virtual supervisor state.
Therefore, only a user in virtual supervisor state is able to change the keys
on unprotected shared pages.

Virtual Machine Operation with Protected Segments

When dealing with protected shared segments, CP determines if the current
virtual machine altered any pages within a segment before it dispatches
another virtual machine. Altering a page causes CP to take additional
action before dispatching the next virtual machine. The action that CP
takes depends on what the virtual machine did to alter the protected page.

The current virtual machine may have altered a protected shared page by
issuing one of the following commands:

e CPTRACE
e CP ADSTOP
e CP STORE

In this instance CP gives exclusive use of the modified page to the virtual
machine that modified it. The user is given his own copy of the shared
system that contained the altered page. The user who issued the command
receives the message:

DMKATS181E Shared system name replaced with non-shared copy

This user’s virtual machine continues to execute using the private copy of
the shared system which contains the changes that were made to the page.
CP provides an unmodified copy of the page for other virtual machines to
share.

The current virtual machine may have altered a protected shared page as a
result of issuing the STCP command. When STCP is issued, CP does not
assign the modified page to the user issuing the STCP command. Instead,
the page changed by the STCP command is written to the paging volumes.
As a result, the change made by the single user reflects to all the virtual
machines using that shared page.

If operations overlap and a STCP command is issued for a shared page that

is about to be assigned to a particular user (because that user just altered
it), the user that issued the STCP command receives the following message:

56 VM/SP CP for System Programming

Saved Systems
|

DMKCDS161E Shared page hexloc altered by userid

It should be noted that it is invalid to issue the STCP command to a shared
segment in attached processor systems. The store function is not performed
and the user receives the following message:

DMKCDSO004E Invalid hexloc - XXXXXX

If the current virtual machine alters a protected shared page in any other
way, then the following happen:

1. CP sends this message to the current virtual machine to identify the
altered page:

DMKVMA456W CP entered; sysname - shared page hexloc
altered

2. CP frees the storage occupied by the page, thus making it inaccessible.
Later, when a virtual machine refers to the page, CP brings a fresh copy
of the page into storage.

3. CP places the current virtual machine into console function mode,
thereby stopping the virtual machine. To resume execution, the
operator of this virtual machine must issue the class G BEGIN
command. The virtual machine then continues to execute the unaltered
system in shared mode.

4. CP then dispatches another virtual machine.

I/O activity into protected shared segments is monitored by channel
program translators. A channel protection error occurs if a virtual
machine tries to read data into a protected page. A virtual machine is able
to write from a page in a protected segment. Shared systems contain
segments that are either protected or non-protected. No distinction is made
between shared and nonshared systems for storage key fetch instruction
simulation, DISPLAY command execution, and page key handling. In
addition, the Extended Control Program Support (ECPS) and the Virtual
Machine Assist feature (VMA) are available to users running shared
systems, except that there is no microcode assist for the SSK instruction.
This exception is necessary because VMA updates the key on SSK
instructions (including SWPTABLE fields), but the new value is not
detected by the hardware change bit monitoring.

A single bit in control register 6 determines whether the ISK (Insert
Storage Key) and SSK (Set Storage Key) instructions are handled by the
VMA feature. The dispatcher sets up control register 6 based on the type of
system that the virtual machine is running. If the virtual machine is
running a shared system of any kind (either protected or unprotected) then
the control registers are set up so that the SSK instruction is not microcode
assisted. Otherwise, the dispatcher sets up control register 6 so that the
SSK instruction is performed by the VMA feature.

Chapter 9. Saved Systems, Discontiguous Saved Segments, and Shared Segments 57

Saved Systems

58 VM/SP CP for System Programming

Chapter 10. CP Conventions

This chapter describes the conventions followed in the source code for CP
and the proper order of modules in the loadlist.

CP Coding Conventions

The following are coding conventions used by CP modules:

e FORMAT:

Column Contents

1 Labels

10 Op Code

16 Operands

31, 36, 41, etc. Comments (see Item 2)
e COMMENT:

Approximately 75 percent of the source code contains comments.
Sections of code performing distinct functions are separated from each
other by a comment section.

Constants follow the executable code and precede the copy files and/or
macros that contain DSECTs or system equates. The section defining
constants is followed by a section containing initialized working
storage, which is followed by working storage. Each of these sections is
identified by a comment. As much as possible in modules that are more
than than a page long, a reference to a constant or to working storage
is on the same page as the definitions.

o No program modifies its own instructions during execution.

o No program uses its own unlabeled instructions as data.

e REGISTER USE:

For CP, in general

Register Use

6 RCHBLOK, VCHBLOK

7 RCUBLOK, VCUBLOK

8 RDEVBLOK, VDEVBLOK
10 IOBLOK

11 VMBLOK

Chapter 10. CP Conventions 59

CP Conventions
]

12 Base register for modules called via SVC

13 SAVEAREA for modules called via SVC

14 Return linkage for modules called via BALR
15 Base address for modules called via BALR

For Virtual-to-Real address translation

Register Use
1 Virtual address
2 Real address

® When describing an area of storage in mainline code, a copy file, or a
macro, DSECT is issued containing DS instructions.

® Meaningful names are used instead of self-defining terms: for example,
5,X’02’,C‘T’ to represent a quantity (absolute address, displacement,
length, should be symbolic and defined by an equate (EQU) assembler
instruction. For example:

VMSTATUS EQU X'02'

To set a bit, use:

OI BYTE,BIT

where BYTE = name of field, BIT has been defined by an EQU
instruction.

To reset a bit, use:

NI BYTE,X'FF'-BIT

To set multiple bits, use:

OI BYTE,BIT1+BIT2

All registers are referred to as:

RO, Rl, ..., R15.

All lengths of fields or control blocks are symbolic, that is, length of
VMBLOK is:

VMBLOKSZ EQU *-VMBLOK

e Avoid absolute relative addressing in branches and data references,
(that is, location counter value (*) or symbolic label plus or minus a
self-defining term used to form a displacement).

e When using a single operation to refer to multiple values, specify each
value, for example:

LM R2,R4,CONT SET R2=CON1

SET R3=CON2
SET R4=CON3

60 VM/SP CP for System Programming

CP Conventions
|

CONI DC FT
CON2 DC F?
CON3s DC F3

o Do not use PRINT NOGEN or PRINT OFF in source code.

e MODULE NAMES:
Control Section Names and External References are as follows:
Control Section or Module Name

The first three letters of the module name are the assigned component
code.

Example: DMK

The next three letters of the module name identify the module and must
be unique.

Example: DSP

This three-letter, unique module identifier is the label of the TITLE
card.

Each entry point or external reference must be prefixed by the six letter
unique identifier of the module.

Example: DMKDSPCH

e TITLE CARD:

DSP TITLE 'DMKDSP (CP) * VIRTUAL MACHINE PRODUCT * 5664-167'
e ERROR MESSAGES:

There should be no insertions into the message at execution time and
the length of the message should be resolved by the assembler. If
insertions must be made, the message must be assembled as several DC
statements, and the insert positions must be individually labeled.

e For all Rx instructions use a comma (,) to specify the base register when
indexing is not being used, that is:

L R2,AB(,R4)

® To determine whether you are executing in a virtual machine or in a
real machine, issue the Store Processor ID (STIDP) instruction. If
STIDP is issued from a virtual machine, the version code, which
precedes the CPUID field, will be X'FF’.

Chapter 10. CP Conventions 61

CP Conventions

The CP loadlist EXEC contains a list of CP modules used by the
VMFLOAD procedures when punching the text decks that will make up the
CP system. All modules following DMKCPE in the list are pageable CP
modules. Each 4K page in this area may contain one or more modules. The
module grouping is governed by the order in which they appear in the
loadlist. An SPB! (Set Page Boundary) card, a loader control card placed in
the text file, forces the loader to start this module at the next higher 4K
boundary. The loader automatically moves a module to the next higher 4K
boundary if it cannot fit in with its predecessors on the load list. In this
case a message is placed on the load map:

"SPB INSERTED"

as part of the line

**EXTERNAL SYMBOL DICTIONARY FOR DMKXXX

An SPB card is required only for the first module following DMKCPE. If
more than one module is to be contained in a 4K page, only the first can be
assembled with an SPB card. The second and subsequent modules for a
multiple module 4K page must not contain SPB cards.

The positions of several modules in the loadlist are critical:

® We recommend that DMKPSA be the first module in the CP resident
nucleus.

e All modules following DMKCPE are pageable. They must be
reenterable and must not contain any address constants referring to
anything in the pageable CP area.

e The following modules must be the last six modules in the loadlist and
they must appear in this order:

DMKCKP
DMKCKD
DMKCKF
DMKCKH
DMKCKM
DMKCKN

e No change should be made to the sequence of modules in the resident or
pageable portion of the loadlist.

1 A 12-2-9 multipunch must be in ¢olumn 1 of an SPB card and the characters
SPB in columns 2, 3, and 4 respectively.

62 VM/SP CP for System Programming

Chapter 11. Security Measures

Virtual Machine/System Product has facilities for detecting and foiling
attempts to break system security:

e Journaling lets you monitor, record, and act on possible attempts to
gain unauthorized access to system resources.

e It is possible to suppress the display of passwords entered as part of the
‘ LOGON and LINK commands.

| e Automatic deactivation of passwords keeps restricted passwords from
| being assembled in the object directory.

| o The access verification routines let you install control routines that
| further impede unauthorized use of certain commands.

Q Journaling the Logon, Autolog, and Link Commands.

LOGON, AUTOLOG, and LINK journaling detects and records certain
occurrences of the LOGON, AUTOLOG, or LINK commands. Using the
recorded information, an installation may be able to identify attempts to
logon to VM/SP by users who issue invalid passwords. Also, the
installation may be able to identify any user who successfully issues the
LINK command to a protected minidisk that he does not own.

Briefly, LOGON, AUTOLOG, and LINK journaling works like this. While

k' journaling is turned on, CP monitors all occurrences of the LOGON,
AUTOLOG, and LINK commands. CP counts of the number of times a user
issues one of these commands with an invalid password. CP can be set to
take one or more of these actions when the count reaches a threshold
value:

o Write a record to the accounting data set to record the incident

o Reject subsequent LOGON, AUTOLOG, or LINK commands issued by
the user

e Lock that terminal for a designated period

e Send a message to a designated userid to alert the installation to the
incident.

(,, While journaling is turned on, CP creates an accounting record each time it
detects that a user has successfully issued a LINK command to a protected

Chapter 11. Security Measures 63

Deactivating Passwords

minidisk not owned by that user. A protected minidisk is a minidisk whose
password is anything but ALL for the type of LINK attempted.

For a description of the accounting records that CP writes for LOGON,
AUTOLOG, and LINK journaling, see the “Accounting Records for
LOGON, AUTOLOG, and LINK Journaling” on page 49.

The SYSJRL macro instruction, the SET command, and the QUERY
command enable an installation to control LOGON, AUTOLOG, and LINK
journaling. To make journaling available and to specify options, code the
SYSJRL macro instruction in module DMKSYS. Instructions for coding
this macro instruction are in the VM/SP Planning Guide and Reference.
To turn journaling on or off, use the class A SET command. To determine
whether journaling is on or off, use the class A QUERY command.

Suppressing Passwords Entered on the Command Line

CP can be set to reject LOGON or LINK commands that have the password
entered on the same line as the command. Rejecting these commands
prevents passwords from being displayed or from being printed without

masking (masking a password means overprinting the password so it cannot
be read).

This capability is also available to virtual machines that issue LINK
commands via DIAGNOSE code X’08’. For a description of DIAGNOSE
code X’'08’, see VM System Facilities for Programming.

To request password suppression, specify it as an option on the SYSJRL
macro instruction in module DMKSYS during system generation. Once
requested, password suppression is always on; an operator cannot turn it
off. Refer to the VM/SP Planning Guide and Reference for information on
how to use and code SYSJRL in DMKSYS.

. Auto-Deactivation of Restricted Passwords

Some installations have risked breaches of system security by using
published passwords or passwords that are included in sample directories
shipped with the system.

Auto-deactivation of restricted passwords keeps commonly known
passwords out of the object directory. A file called RPWLIST DATA resides
on the CMS system disk and contains a list of IBM’s restricted passwords.
When you execute the directory program to convert the source directory to
an object directory, passwords are checked against the passwords in the
RPWLIST DATA file. Passwords found in the restricted list are replaced
with the password NOLOG in the object directory (thereby NOLOGing the
userid) and the virtual machine issuing the DIRECT command receives a
warning message.

64 VM/SP CP for System Programming

Access Verification
|

| Before you install your system, you should assign a new password to any
| directory entry with a restricted password listed in the RPWLIST DATA
| file.

| Warning: This support can NOLOG the system administrator
| if that password is in the RPWLIST DATA file. The userid is

| NOLOGed when you run the directory program. Either

\ change the system administrator’s password to a non-restricted
1 one or remove it from the RPWLIST DATA file. If you do not

| do this, the system administrator will not be able to logon

| after the directory program is run.

| The auto-deactivation of restricted passwords is a part of the directory build
| process and is invoked each time the source directory is converted to an

| object directory. You do not need to do anything to invoke it. You can

| turn off auto-deactivation of restricted passwords by erasing the RPWLIST

| DATA file. If you do this, however, a warning message is issued each time

| the directory program is run.

| Access Verification Routines

| The access verification routines of VM/SP, when used with the Resource

| Access Control Facility (RACF)/VM 1.7.1, can be used to increase security:
| for example, by tightening control over minidisk access, logon passwords,

| and the movement of spool files. The access verification routines do not

| themselves provide security for your installation; they allow you to install
| software that does.

| For a description of RACF/VM 1.7.1 (Program Number 5740-XXH), refer to
| the following publications:

Resource Access Control Facility (RACF) General Information Manual
Resource Access Control Facility (RACF) Command Language Reference
System Programming Library: Resource Access Control Facility (RACF)
Resource Access Control Facility (RACF) Security Administrator’s Guide
Resource Access Control Facility (RACF) Auditor’s Guide

Resource Access Control Facility (RACF) Messages and Codes

| By themselves, access verification routines do not change any of VM/SP’s
| functions. All commands work as they always did, but inside CP, these

| routines change the flow of control for several CP commands, so that

| RACF/VM 1.7.1 is called if it is installed.

| You may want to use one feature furnished by the access verification

| routines. To identify userids as belonging to certain groups, you can define
| a new directory control statement, ACIGROUP. (See VM/SP Planning

| Guide and Reference.) You can also issue a DIAGNOSE code X’A0’ to find

| which group a userid belongs to. (See VM System Facilities for

| Programming.)

Chapter 11. Security Measures 65

Access Verification

Note: These groups are not related to the groups as defined for the Group
Control System (GCS) component.

Several commands can invoke an access verification routine:

LOGON/AUTOLOG
LOGOFF (FORCE)
LINK

TRANSFER
SPOOL

TAG

STCP

When a user enters one of these commands, the associated command
processor passes information to the appropriate access verification routine.
If you assign a group name to a user in the directory, CP passes the group
name to the verification routine with the userid.

66 VM/SP CP for System Programming

Part 2: Performance

Part 2 contains information about factors that affect the performance of
virtual machines:

e How CP manages the processor’s resources

e Performance guidelines, including VM/SP’s interaction with:
— Virtual Machine Assist Feature
— VM/370 Extended Control-Program Support
— VM/VS handshaking;

e Performance observation and analysis.

Part 2: Performance 67

68 VM/SP CP for System Programming

Chapter 12. Time and Storage Management

CP allocates processor resources to virtual machines according to their
operating characteristics, their priorities, and the system resources
available. This chapter describes how CP handles virtual machine time
management and virtual machine storage management. You need to
understand CP’s decision processes in order to use the commands that alter
CP’s algorithms for resource allocation.

Virtual Machine Time Management

CP allocates the real processor’s time among the virtual machines and
various system tasks. CP tries to give each user his fair share of time. It
also tries to keep users who are running many short jobs from getting stuck
behind a machine that is waiting for some external process to be completed
or that simply has a long job to do. Virtual machines that are executing
many short jobs are called interactive. Short jobs mean frequent terminal
interrupts, as happens when you are editing. Interactive virtual machines
are given access to the real processor more frequently than virtual
machines that are doing longer jobs (for example, doing a compilation), but
such a noninteractive machine’s turn is longer than an interactive
machine’s turn. Over a long period of time, a consistently interactive
machine should get about the same amount of processor time as a
consistently noninteractive machine.

At the end of each turn, CP determines the execution characteristics of a
virtual machine and puts it in an eligible list to wait for processor time.

CP’s scheduler and dispatcher use several lists to determine which CP task
or virtual machine is to be given processor time, as shown in Figure 5 on
page 71:

e The run list contains virtual machines that are currently being given
access to the processor. That is, they are taking their turns. The run
list has sometimes been called the dispatch list.

® The eligible lists contain machines waiting to move to the run list.
There are separate eligible lists for interactive and noninteractive
virtual machines. A machine waits in an eligible list until there is
enough real storage to meet its requirements and the requirements of
the machines already in the run list. The eligible lists have sometimes
been called queue 1 and queue 2/queue 3.

Chapter 12. Time and Storage Management 69

CP Scheduler

Queue Levels

e The dispatch request queues contain pointers to CP tasks that are
awaiting execution. The tasks are dispatched before virtual machines
in the run list.

The scheduler implements the distinction between interactive and
noninteractive users by classifying a virtual machine as queue 1 (Q1),
queue 2 (Q2), or queue 3 (Q3). These queue levels determine a virtual
machine’s queue slice and how long it must wait in the eligible list.

Note: Although users are sometimes spoken of as being “in queue 1,” etc.,
the “queues” do not refer to real lists, like the run list and the eligible
lists. However, for historical reasons, a machine in the run list is said
to be in queue (not “in a queue”), and being dropped from the run
list is called queue drop or being dropped from queue.

The queue slice is the maximum length of time that a machine can stay in
the run list.

Q1 machines are interactive. They get into the run list eight times
as often as Q2 machines, but a Q1 queue slice is only one-eighth as long
as a Q2 queue slice. In fact, Q1 users do not use their entire queue
slices, since a machine is put into Q1 if it finished its task and went
into a wait for terminal input during its last time in the run list.
Machines are also put into Q1 at logon.

Q2 machines are noninteractive. A Q2 machine completed its last
queue slice without finishing its job, that is, without going into a
terminal I/O wait.

Q3 machines have not done any terminal I/O for a long time.
They are executing very long jobs rather than switching back and forth
between Q2 and Q1. A Q2 machine is classified as Q3 after it has used
six Q2 queue slices without becoming a Q1 machine. Q3 machines have
to wait eight times as long as Q2 machines to get into the run list. The
Q8 queue slice is the same as the Q2 queue slice, but a Q3 machine gets
to stay in the run list for eight Q2 queue slices before it is dropped.?

Over an extended period, a Q3 virtual machine should receive as much
processor time as it would as a Q2 machine. However, its performance may
be better because it is using less overhead doing queue drops. For some
programs using a lot of virtual storage, Q3 operation cuts in half the total

2 The CMS BLIP facility causes CMS to perform a write operation to the
terminal after every 2 seconds of virtual processor use. This feature
effectively cancels Queue 3 use for normal, connected CMS virtual machines,
regardless of what types of programs they are running. The CMS BLIP
facility can be turned off with the CMS SET BLIP OFF command or it can be
disabled with the CP SET TIMER OFF command.

70 VM/SP CP for System Programming

.

<

<

CP Scheduler

Eligible Lists Run List
Queue 1 Queue 1
Eligible List
—/ —/
—// —- —
— —/
—/ —
Queue 2/3 Queue 2/3
Eligible List
—/ —
—/ —— —
—/ —
— —/

1. Virtual machines in the eligible lists are sorted in deadline
priority order.

Scheduler searches Q1 eligible list from top down.

If the Q1 eligible list is empty, the Q2 eligible list is searched.

If the highest priority virtual machine can fit in the run list, it

is moved from the eligible list to the run list, which is also ordered
according to deadline priority.

W

Figure 5. Relationships of Scheduler Lists and Queue Levels

use of processor resources, compared with Q2 operation. Q2 machines have
a similar gain in performance over Q1 machines.

Selecting a Virtual Machine to Run

The Eligibie Lists

Virtual machines in the run list take turns using the processor. When a
machine completes its task or finishes its queue slice, it is dropped from the
run list and inserted into an eligible list according to its deadline priority.
A virtual machine is then selected from the top of an eligible list and
inserted into the run list according to its deadline priority.

This section describes how a virtual machine is sorted into an eligible list
and eventually moves into the run list.

In order to put a virtual machine in the right place in the eligible list, the
scheduler calculates its execution characteristics at queue drop time.
Queue drop occurs in three circumstances: when the virtual machine first
logs on; when the virtual machine uses up its queue slice; and when the
virtual machine recovers from a long wait, during which it could have been
waiting for terminal input, in CP console mode, for a timer to expire, or
because it had loaded a wait PSW.

Chapter 12. Time and Storage Management 71

CP Scheduler

Three calculations are made at queue drop:

e CP assigns a queue level, as described above. Machines that are
recovering from a long wait or that have just logged on are assigned to

Q1.

e CP computes the projected working set size. Virtual machines are
expected to do a certain amount of paging during a queue slice, but the
working sets are adjusted to keep paging activity within an acceptable
range. CP first calculates the average amount of main storage the
virtual machine used during its queue slice. It compares the average
with an ideal level of storage use, which is based on how much of the
machine’s queue slice was spent swapping pages between virtual and
main storage. If the virtual machine is not doing too much paging, the
projected working set is the average. Otherwise, the projected working
set size is adjusted toward the ideal.

The projected working set size is important in several ways. CP uses
working set size as a measure of resource use when it determines where
to place the virtual machine in the eligible list (see next paragraph). A
virtual machine at the top of an eligible list cannot enter the run list if
its working set is too large to fit in main storage with the other
in-queue machines’. Finally, the projected working set size is part of
the feedback mechanism by which CP adjusts the system to the current
load.

e CP calculates the machine’s deadline priority.

Once a machine has its deadline priority, it can be sorted into the
appropriate eligible list. The deadline priority is a list-position number
that indicates the delay until the user can be expected to finish its next
queue slice. It is based upon how well the user has been doing
compared with the average of all the users and is adjusted to bring the
user toward the average. The idea is to give every user a fair share of
the system’s resources by trying to make everyone an “average user.”

The deadline priority is explained in more detail below.

The queue level, projected working set size, and deadline priority interact
with one another in affecting a machine’s performance. For instance, it
was noted above that a machine’s performance improves when it enters Q3,
because overhead from doing queue drops is reduced. Some of the gain in
performance can come from reduced paging activity. At first, as a Q1 and
Q2 machine, it would have spent much of each queue slice swapping pages
(page fault) and getting little work done. The high number of page faults
would cause its working set and deadline priority to be increased at each
queue drop, until it was classified Q3. Then, when it got into the run list, it
would probably have the time and space to work effectively.

72 VM/SP CP for System Programming

CP Scheduler

(The Run List

A virtual machine in the run list gets to execute, but it still has to share
storage and processor time with the other in-queue machines.

Entry into the run list is controlled by deadline priority and the availability
of real storage. As users drop from the run list, the top machine in the Q1
eligible list becomes the candidate to be put into the run list. If the Q1
eligible list is empty, the top virtual machine in the Q2 eligible list becomes
the candidate. Thus, a Q1 machine generally gets into the run list sooner
than a Q2 machine. If the candidate’s working set is too large to fit into
main storage, it and the machines lower down in the eligible list must wait
until enough machines have dropped from queue to free the storage needed
by the candidate.

CP’s promotion logic contains provisions for special cases. The two most
k, important are :

e Within limits, CP will squeeze Q1 machines into the run list.

o CP makes sure that no user waits too long in the Q2 eligible list: a Q2
machine that has passed its deadline is given priority over any Q1
machines. If it is necessary, CP will search the run list to see if any
in-queue virtual machines can be dropped (“preempted”) to make room
for this large, behind schedule Q2 machine.

Qv The in-queue machines also share the processor in a round-robin fashion. A
virtual machine is not allowed to run continuously during a queue slice. It
is allowed to run only for short periods of time called time slices.? After it
executes for a time slice, it must yield to another runnable machine. A
machine in the run list becomes nonrunnable if it is waiting for a page of
storage, for an input/output operation—except terminal I/O—to be translated
and started, for a CP command to finish execution, or for some other
activity or resource.

k’ A user stays in the run list, getting access to the processor for a time slice
at a time, until he completes the current job (and goes into terminal-wait
state, waiting for a new command) or when he uses up his queue slice. In
either case, he is dropped from the run list into an eligible list. CP selects
the next CP task or virtual machine to run from the dispatch request queue
or the run list, respectively.

3 The time slice is the basic unit of scheduling calculations. Its length varies
with the speed of the processor. It is set at initialization but can be modified
by the SET SRM DSPSLICE command. The different queue slices are:

Q1 8 time slices
Q2 64 time slices

" Q3 64 time slices. However, the Q3 user remains in the run list until he
has used 8 queue slices.

Chapter 12. Time and Storage Management 73

CP Scheduler

Deadline Priority

CP calculates the deadline priority at queue drop time by the following
formula:

deadline priority = TOD + Virtual machine queue delay factor
where:

TOD
is the current time of day.

Virtual machine queue delay factor
is the user bias ratio * prioritized Q2 delay factor.

User bias ratio
depends on the amount of specified resources the particular virtual
machine is currently receiving. It is the weighted average of the
paging and processor resource ratios.

Q2 delay factor
is based on configuration and load. It is the average elapsed time
required by a virtual machine to receive an amount of processor time
equal to one Q2 queue slice.

For Q1 virtual machines, the user bias ratio is divided by 8, since the Q1
queue slice is one-eighth the Q2 queue slice.

A virtual machine can be assigned a priority of execution. Priority, a
parameter in the virtual machine’s directory entry, determines how soon a
particular virtual machine is allowed to run again, compared with other
virtual machines that have the same general execution characteristics. The
system operator can reset the priority parameter with the class A SET
PRIORITY command.

Virtual Machine Storage Management

The normal and maximum storage sizes of a virtual machine are defined as
part of the virtual machine configuration in the VM/SP directory. You may
redefine virtual storage size to any value that is a multiple of 4K and not
greater than the maximum value defined in the directory. VM/SP
implements this storage as virtual storage. The storage may appear as
paged or unpaged to the virtual machine, depending upon whether or not
the extended control mode option was specified for that virtual machine.
This option is required if operating systems that control virtual storage,
such as OS/VS1, VM/370 or VM/SP are run in the virtual machine.

Virtual machine storage is logically divided into 4096-byte areas called
pages. Segments are contiguous 64K areas of virtual storage. Segment and
page tables describe the storage of each virtual machine. A page table
shows whether a page is in real storage and matches virtual addresses to
real storage addresses. A segment table is used with dynamic address

74 VM/SP CP for System Programming

<

CP Scheduler

translation to control user access to virtual storage segments. Each entry
shows the length, location, and availability of a corresponding page table.

CP updates these tables to reflect the allocation of virtual storage pages to
blocks of real storage. These page and segment tables are used for virtual
storage addressing in a System/370 machine.

To make the best use of real storage, CP keeps only active virtual storage
pages in real storage. Further, CP can bring a page into any available page
frame. During program execution, a combination of VM/SP and the
dynamic address translation feature on the System/370 relocates the page.
The active pages from all logged on virtual machines and from the pageable
routines of CP compete for available page frames. When the number of
page frames available for allocation falls below a threshold value, CP
determines which virtual storage pages currently allocated to real storage
are relatively inactive and starts suitable page-out operations for them.

CP keeps track of where each virtual machine’s page zero resides.
Normally, CP does this by issuing a TRANS macro that checks for page
residency (LRA) and demands a page-in if the page is not in real storage.
However, if an in-storage pointer in the VMBLOK contains the address of
the virtual machine’s page zero, the page is resident and CP bypasses
issuing the TRANS macro. Thus, unnecessary LCTL and LRA instructions
are eliminated.

Inactive pages are kept on a direct access storage device (DASD). If an
inactive page has been changed during virtual machine execution, CP
assigns it to a paging device, selecting the fastest such device with
available space. If the page has not changed, it remains in its original
direct access location and is paged into real storage when the virtual
machine next refers to that page. A virtual machine program can use the
DIAGNOSE instruction to tell CP that the information from specific pages
of virtual storage is no longer needed. CP then releases the paging devices
areas which were assigned to hold the specified pages.

Paging is done on demand by CP. This means that a page of virtual storage
is not read (paged) from the paging device to a real storage block until it is
actually needed for virtual machine execution. CP makes no attempt to
anticipate what pages might be required by a virtual machine. During
paging for one virtual machine, another virtual machine can be executing.
Any paging operation started by CP is transparent to the virtual machine.

If the virtual machine is executing in extended control mode with translate
on, two additional sets of segment and page tables are kept. The virtual
machine operating system must map the virtual storage created by it to the
storage of the virtual machine. CP uses these tables and the page and
segment tables created for the virtual machine at logon to build shadow
page tables for the virtual machine. These shadow tables map the virtual
storage created by the virtual machine operating system to the storage of
the real computing system. The tables created by the virtual machine
operating system may describe any page and segment size permissible in the
IBM System/370.

Chapter 12. Time and Storage Management 75

CP Scheduler

76 VM/SP CP for System Programming

Chapter 13. Performance Guidelines

The performance characteristics of an operating system running in a virtual
machine environment depend upon:

® The System/370 model used

® The characteristics of the operating system and its work level
e The total number of virtual machines executing

® The type of work being done by each virtual machine

o The speed, capacity, and number of the paging devices

e The order in which devices are selected for preferred paging and
spooling

e The amount of real storage available

e The degree of channel and control unit contention, as well as arm
contention, affecting the paging device

e The type and number of VM/SP performance options in use by one or
more virtual machines

® The degree of MSS 3330 volume use
e The amount of fixed head paging storage (drum, 3340, 3344, 3350, 3380)

The performance of any virtual machine can be improved by the choice of
hardware, operating system, and VM/SP options. This section describes:

e The performance options available in VM/SP to improve the
performance of a particular virtual machine.

o The system options and operational characteristics of operating systems
running in virtual machines that affect their execution in the virtual
machine environment.

The performance of a specific virtual machine may never equal that of the
same operating system running alone on the same System/370, but the total
throughput obtained in the virtual machine environment may equal or
better that obtained on a real machine.

Chapter 13. Performance Guidelines 77

Performance
|

When a function executing in a virtual machine cannot be performed
completely by the hardware, the virtual machine’s performance is degraded
to some degree. As the control program for the real machine, CP initially
processes all real interrupts. The instructions of a virtual machine’s
operating system always execute in problem state. Any privileged
instruction issued by the virtual machine causes a real privileged
instruction exception interruption. The amount of work to be done by CP
to analyze and handle a virtual machine-initiated interrupt depends on the
type and complexity of the interrupt.

The simulation effort required of CP may be trivial, as for a supervisor call
(SVC) interrupt (which is generally reflected back to the virtual machine),
or may be more complex, like a Start I/O (SIO) privileged instruction, which
starts extensive CP processing.

When you plan the virtual machine environment, consider the number and
type of privileged instructions to be executed by the virtual machines.
Reducing the number of privileged instructions issued by the virtual
machine’s operating system reduces the amount of extra work CP must do
to support the machine.

Before deciding which performance options to apply to your system, you
should monitor the current performance of your system to decide which
options would most likely give the system a performance gain and where
performance bottlenecks are occurring. Refer to Chapter 14, “Performance
Observation and Analysis” on page 107 for guidelines and functions you
can use to observe the present system performance.

Reducing the Number of Virtual Machine SIOs Handled by CP

Handling of SIOs for virtual machines can be one of the most significant
causes of reduced performance in virtual machines. To support I/O
processing in a virtual machine, CP must translate all virtual machine
channel command word (CCW) sequences to refer to real storage and real
devices and, for minidisks, real cylinders. When a virtual machine issues
an SIO, CP must:

1. Intercept the virtual machine SIO
2. Allocate real storage space to hold the real CCW list to be created
3. Translate the virtual data addresses to real data addresses

4. Translate the virtual device addresses referred to in the virtual CCWs
to real device addresses

5. Page into real storage and lock, for the duration of the I/O operation,
all virtual storage pages required to support the I/O operation

6. Generate a new CCW sequence building a Channel Indirect Data
Address list if the real storage locations cross page boundaries

78 VM/SP CP for System Programming

Performance
|

7. If the real device is a 3330V, append an MSS cylinder fault prefix to the
CCW prefix to prevent the channel from doing channel command retry

8. Schedule the I/O request
9. Present the SIO condition code to the virtual machine

10. Recognize an MSS cylinder fault, queue the I/O request, and reschedule
the request when the subsequent interruption is received (indicating
staging is complete)

11. Intercept, retranslate, and present the channel end and device end
interrupts to the appropriate virtual machine, where they must then be
processed by the virtual machine operating system.

The number of SIO operations required by a virtual machine can be
significantly reduced by:

e Using large blocking factors (up to 4096 bytes) for user data sets to
reduce the total number of SIOs needed

e Using preallocated data sets

o Using virtual machine operating system options (such as chained
scheduling in OS) that reduce the number of SIO instructions

e Substituting a faster resource (virtual storage) for I/O operations, by
building small temporary data sets in virtual storage rather than using
an I/O device.

Frequently, performance is improved when CP paging is substituted for
virtual machine I/O operations. To improve the performance of an
operating system, such as OS, specify frequently-used OS functions
(transient subroutines, ISAM indexes, and so forth) as resident in second
level storage if possible. In this way, paging I/O is substituted for virtual
machine-initiated I/O. Thus, CP only needs to place the page that contains
the desired routine or data into real storage.

You can use the following CP performance options to reduce the CP
overhead associated with privileged instructions used by the virtual
machine’s I/O Supervisor (for example, virtual machine I/O instructions).

e The virtual=real (V=R) option in VM/SP removes the need for CP to
translate storage references and to do paging before each I/O operation
for a specific virtual machine.

® The virtual machine assist feature reduces the real supervisor state
time used by VM/SP. For a detailed description of the feature, see
“Virtual Machine Assist Feature” later in this section. For a list of
processors on which the feature is available, see the VM/SP Planning
Guide and Reference.

Chapter 13. Performance Guidelines 79

Performance

e VM/370 Extended Control-Program Support (ECPS) further reduces the
real supervisor state time used by VM/SP. For a detailed description of
ECPS, see “Extended Control-Program Support: VM/370” on page 98.
For a list of processors on which ECPS is available, see the VM/SP
Planning Guide and Reference.

Assignment and use of these options are discussed in “VM/SP Performance
Options” on page 87.

Reducing Paging Activity

When virtual machines refer to virtual storage addresses not currently in
real storage, they cause a paging exception and associated CP paging
activity.

The addressing characteristics of programs executing in virtual storage
significantly affect the number of page exceptions for that virtual machine.
Routines with widely scattered storage references tend to increase the
paging load of a particular virtual machine. When possible, place modules
of code that depend on each other in the same page. Place reference tables,
constants, and literals near the routines that use them. Do not place
infrequently used exception or error routines in main routines, put them
elsewhere.

When an available page of virtual storage contains only reenterable code,
paging activity can be reduced, since the page, although referred to, is
never changed, and thus does not cause a write operation to the paging
device. The first copy of that page is written on the paging device when
that frame is needed for some other more active page. Only inactive pages
that have changed must be paged out.

Virtual machines that reduce their paging activity by controlling their use
of addressable space improve resource management for that virtual
machine, the VM/SP system, and all other virtual machines. The total
paging load handled by CP is reduced, and more time is available for
productive virtual machine use.

Using the SYSCOR Macro to Control Free Storage Allocation

The more dynamic paging storage available, the less paging activity occurs.
To gain additional dynamic paging storage, control the amount of free
storage allocated at VM/SP initialization time. When you generate the
system, use the FREE operand of the SYSCOR macro statement to specify
the number of free storage pages to be allocated at system load time.

At IPL time, if the amount of storage that these pages represent is greater
than 25 percent of the VM/SP storage size (not including the V=R area, if
any), a default number of pages is used. The default value is 3 pages for the
first 256K bytes of storage plus 1 page for each additional 64K bytes (not
including the V=R size, if any).

80 VM/SP CP for System Programming

Performance
]

‘ The SYSCOR macro definition can be found in VM/SP Planning Guide and
Reference.

Paging Performance Options

To reduce the paging requirements of virtual machines, CP provides locked
pages, reserved page frames, and a V=R area. Generally, these facilities
require some dedication of real storage to the chosen virtual machine and,
therefore, improve its performance at the expense of other virtual machines.

Locking Pages into Real Storage

To fix or lock specific pages of virtual storage permanently into real
‘ storage, use the LOCK command (privilege class A). In so doing, all paging
I/O for these page frames is eliminated.

Since the LOCK command reduces total real storage resources (real page
frames) available for other virtual machines, lock only frequently used
pages into real storage. Since page zero (the first 4096 bytes) of a virtual
machine storage is referred to and changed frequently (for example,
whenever a virtual machine interrupt occurs or when a CSW is stored),
consider locking page zero of a particular virtual machine first. Also
consider locking virtual machine interrupt handler pages.

Other pages to be locked depend upon the work being done by the
particular virtual machine and its use of virtual storage.

The normal CP paging mechanism selects inactive page frames in real
storage for replacement by active pages. Page frames belonging to inactive
virtual machines are normally all selected eventually and paged out if the
real storage frames are needed to support active virtual machine pages.

When virtual machine activity is started on an infrequent or irregular

k basis, such as from a remote terminal in a teleprocessing inquiry system,
some or all of its virtual storage may have been paged out before the time
the virtual machine begins processing. Some pages then have to be paged
in so that the virtual machine can respond to the teleprocessing request.
This paging activity might increase the time to respond to the request
compared with running the same teleprocessing program on a real machine.
Further response time is variable, depending upon the number of paging
operations that must occur. Locking specific pages of the virtual machine’s
program into real storage can ease this problem, but you may not be able to
identify which specific pages are required.

Once a page is locked, it remains locked until either the user logs off or the
system operator (privilege class A) issues the UNLOCK command for that
page. If the “locked pages” option is in effect and the user loads his system
again (via IPL) or loads another system, the virtual machine’s locked pages
k are unlocked by the system. When a user issues the SYSTEM CLEAR

Chapter 13. Performance Guidelines 81

Performance
|

command, virtual machine storage is cleared, and the user’s locked pages
are unlocked.

Note: In a system generated for attached processor or multiprocessor
operation, no shared pages are locked. If the system operator tries to lock a
shared page or an address range containing one or more shared pages, he
receives the message:

DMKCPV165I Page hexloc not locked; shared page

for each of the shared pages within the range.

Reserving Page Frames

The reserved page frames option is a more flexible approach than locked
pages. To provide a specified virtual machine with an essentially private
set of real page frames, use the CP SET RESERVE command. If the
program code or data required to satisfy the request was in real storage at
the time the virtual machine became inactive, paging is not required for the
virtual machine to respond.

This option is usually more efficient than locked pages since the pages with
the most references at that moment remain in real storage, as determined
automatically by the system. Although multiple virtual machines may use
the LOCK option, only one virtual machine at a time may have the reserved
page frames option active. Assignment of this option is discussed further in
“VM/SP Performance Options” on page 87.

The reserved page frames option provides performance that is generally
consistent from run to run with regard to paging activity. This can be
especially valuable for production-oriented virtual machines with critical
schedules, or those running teleprocessing applications where response
times must be kept as short as possible. The SET RESERVE command can
be used to increase the efficiency of certain noninteractive virtual machines
such as system control programs and special service machines. You can
use the SET RESERVE command to reserve page frames for multiple
virtual machines.

To specify the maximum number of reserved page frames, use the class A
command:

SET RESERVE userid nnnn

where nnnn is the maximum number required (1-4096). The number of
frames held is nnnn or the working set size whichever is smaller. You can
specify SET RESERVE for multiple virtual machines at any one time.

Note: nnnn should never approach the total available pages, since CP

overhead is substantially increased in this situation, and excessive paging
activity is likely to occur in other virtual machines.

82 VM/SP CP for System Programming

Performance
|

L Eliminating CP Paging for a Selected Virtual Machine

To eliminate CP paging for the selected virtual machine, use the VM/SP

V =R directory option. All pages of virtual machine storage, except page
zero, are locked in the real storage locations they would use on a real
computer. CP controls real page zero, but the remainder of the CP nucleus
is relocated and placed beyond the V=R machine in real storage.

Since the entire address space required by the virtual machine is locked,
these page frames are not available for use by other virtual machines
except when the V=R area is unlocked. This option often increases the
paging activity for other virtual machine users, and sometimes for VM/SP.
(Paging activity on the system may increase substantially, since all other
virtual machine storage requirements must be managed with fewer
remaining real page frames.)

&, The V=R option may be desirable or mandatory in certain situations. The
V =R option is desirable when running a virtual machine operating system
(like DOS/VS or OS/VS) that does paging of its own because the possibility
of double paging is eliminated. You must use the option to allow programs
that execute self-modifying channel programs or have a certain degree of
hardware timing dependencies to run under VM/SP.

For this option, the VM/SP nucleus is reorganized to provide an area in
real storage large enough to contain the entire V=R machine. In the

L selected virtual machine, each page from page 1 to the end is in its true real
storage location; only its page zero is relocated. The virtual machine is
still run in dynamic address translation mode, but since the virtual page
address is the same as the real page address, no CCW translation is
required.

For information about generating a V=R system, see the VM/SP
Installation Guide.

Figure 6 shows an example of a real storage layout with the V=R option.
‘ The V=R area is 128K and real storage is 512K.

Chapter 13. Performance Guidelines 83

Performance

Virtual Storage Real Storage

Addresses Addresses
Absolute Page 0O (Module DMKPSA)

4K 4K

Virtual Page 1

Virtual=Real Area

/ /
/ Size = 128K bytes /
(Minimum size is 32K bytes.)
128K 128K
0K Virtual Page 0
4K 132K (DMKSLC)
132K

; Remainder of CP Resident Nucleus /
/

End of CP Nucleus

(DMKCPE)
/ Dynamic Paging Area /
/ and /
Free Storage
——
PSA for Attached or non-IPL Processor ——— DMKPSA

PSA for MAIN or IPL Processor

512K (End of real
storage)

Figure 6. Storage Layout in a Virtual=Real Machine

Consider the following when planning to use the V=R option because of
the effect on overall system operation:

1. The area of contiguous storage built for the V=R machine must be
large enough to contain the entire addressing space of the largest V=R
machine. During system generation when the V=R option is selected,
define the V=R storage size for the VM/SP system.

2. Only a virtual machine with the V=R option specified in its directory
entry can use the storage reserved for a V=R machine. This storage is
not available to other users for paging space, nor for VM/SP use until
released from V=R status by a system operator via the CP UNLOCK
command. Once this storage is released, VM/SP must be loaded again
before the V=R option can become active again.

3. The virtual machine with the V=R option operates in the preallocated
storage area with normal CCW translation in effect until the CP SET
NOTRANS ON command is issued. At that time, with several
exceptions, all subsequent I/O operations are performed from the virtual
CCWs in the V=R space without translation. The exceptions occur
when:

SIO tracing is active

The first CCW is not in the V=R region
I/O operation is a sense command

I/O device is a dial-up terminal

84 VM/SP CP for System Programming

Performance
|

o I/O is for a device that is not dedicated (spooled unit record console
virtual CTCA or minidisks that are less than a full volume)

e I/O device has an alternate path

e Device status is pending.

Any one of the above conditions forces CCW translation. Since
minidisks are nondedicated devices, they may be used by programs
running in the V=R region even though CP SET NOTRANS ON is in
effect.

4. If the V=R machine performs a virtual reset or IPL, the normal CCW
translation goes into effect until the CP SET NOTRANS ON command
is again issued. This permits simulation of an IPL sequence by CP.
Only the V=R virtual machine can issue the command. A message is
issued if normal translation mode is entered.

5. A V=R machine must not IPL. a named or shared system. It must IPL
by device address.

6. When NOTRANS is in effect for a V=R machine, no significant SEEK
data is collected by MONITOR operations for the V=R machine.

7. If you define a V=R area on a 3081 processor, the reliability and
availability of the V=R machine can be improved if the V=R machine
issues the TEST BLOCK instruction to validate storage in the V=R
area. Note that the only two SCPs that issue TEST BLOCK are
MVS/SP and VM/SP. The hardware system area (HSA) on a 3081
processor can reside in the middle of the V=R area; these two control
programs mark the HSA as invalid and continue validating storage.
Any other system control program, such as OS/VS, validates storage
with the MVCL instruction. When OS/VS encounters the beginning of
the HSA, it assumes that it has reached the end of storage. Therefore,
such a control program running in the V=R area of VM/SP on a 3081
processor may not have access to the full V=R area.

8. If your system runs in single processor mode on a 3081 processor, the
system operator must issue a VARY OFF PROCESSOR nn VLOG
command.

9. A V=R machine running in extended control mode on a 3081 processor
can issue a MSSFCALL (DIAGNOSE X’80") for VARY PROCESSOR
commands, MSSF SCPINFO commands, and Input/Output
Configuration Program (IOCP) commands. MSSF processes these
commands.

Chapter 13. Performance Guidelines 85

Performance

Managing Page Migration

To keep 12% of the preferred paging area available, CP moves inactive
pages from preferred to nonpreferred paging areas. The preferred paging
area includes a fixed-head area and a movable-head area. The fixed-head
paging area is paging space on a drum and space under the fixed heads of a
DASD volume that has the fixed head feature installed. The movable-head
paging area is paging space on a DASD volume that is accessed by a
movable arm. Normally, CP invokes page migration, based on calculated
load levels, once every ten minutes.

Inactive pages in the fixed-head preferred paging area are moved every time
CP invokes migration. For pages in the movable-head preferred paging
area, you can decide at what point inactive pages are selected for
migration. Use the SET SRM MHFULL command to set movable-head page
migration limits.

If a percentage for MHFULL has been specified, CP moves pages from
movable-head preferred paging areas only when that percentage is reached
and ten minutes has elapsed, rather than whenever fixed-head areas are
full. Thus, migration from movable-head preferred paging areas and
fixed-head preferred paging areas can take place separately.

In addition, you can use the MIGRATE command to invoke page and swap
table migration immediately. Page migration can also be invoked only for a
specific virtual machine. The format of the MIGRATE command is
described in the VM/SP CP Command Reference.

Displaying, Changing, or Setting System Resource Management Variables

To display internal system activity counters or parameters, use the QUERY
SRM command. To set or change internal system activity counters or
parameters, use the SET SRM command. Formats for the QUERY SRM
and SET SRM commands are contained in the VM/SP CP Command
Reference.

Use the class A or class E QUERY SRM command to display the following
information:

Current number of pageable pages

Size of the queue slice

Setting of the maximum working set estimate

Maximum drum page allocation limit

Current page migration counters

Unused segment elapsed time as criteria for page migration
Current PCI flag setting mode for 2305 page requests
Maximum page bias value

Current interactive shift bias value

Moveable head page migration limit.

Use the class E SET SRM command to set some of the system variables that
can affect the values displayed by the QUERY SRM command.

86 VM/SP CP for System Programming

Performance
. |

k Displaying and Setting Paging Variables

The paging variable is used in the working set size algorithm. The current
paging load is constantly compared with the paging variable. CP adjusts
the working set size estimates based on how the actual load compares with
the paging load variable.

Use the QUERY PAGING command to display the paging variable used in
the working set size estimate control algorithm. To get information on the
paging rate use the INDICATE LOAD command.

Use the SET PAGING command to change the paging variable used in the
working set size estimate.

Information about the formats of the QUERY PAGING and SET PAGING
‘ commands is contained in the VM/SP CP Command Reference.

VM/SP Performance Options

VM/SP provides a number of options you may use to improve the

performance of virtual machines and VM/SP. Several options improve the

performance of installation specified virtual machines; other options

improve the performance of all virtual machines and VM/SP. The options
& described in the following discussion are:

Small CP option

Favored execution

Virtual machine priority

Affinity

Multiple shadow table support
Shadow table bypass

Single processor mode

Dynamic SCP transition to or from native mode
Queue drop elimination

Virtual machine assist

Extended Control-Program Support
MYVS Extensions support.

When you specify a performance option, you may be improving the
performance of one virtual machine at the expense of VM/SP and other
virtual machines. For example, after an operator specifies favored
execution for a virtual machine, that virtual machine receives more
processor time than other virtual machines. Therefore, before specifying
any performance option, identify the option’s performance trade-offs and
assess their impact on system performance. (See Chapter 14, “Performance
Observation and Analysis” on page 107.)

Chapter 13. Performance Guidelines 87

Performance

The Small CP Option

During CP system generation, the installation can specify the Small CP
Option, which removes some of the resident CP nucleus functions. This
reduces the size of the resident CP nucleus, making more storage available
for the area where virtual machine pages reside. The Small CP option can
improves performance on any system. However, it is better used when
limited real processor storage size has already limited function, that is, real
storage is less than 2 megabytes. See VM/SP Planning Guide and
Reference for a full description of the Small CP option.

Giving More Time to a Virtual Machine

The favored execution option and virtual machine priority option change
the normal scheduler algorithm. The virtual machine priority option tends
to take precedence over the favored execution option even when you specify
a percentage. For example, suppose a user with the required privilege class
issues a SET FAVORED command for USERIDA. If USERIDA was
assigned a lower priority than USERIDB, USERIDA may get a smaller
percentage of processor time than was specified with the favored option.

Favored Execution Options

To change the normal CP deadline priority calculations in the fair share
scheduler to force the system to devote more of its processor resources to a
given virtual machine, use the favored execution options. The options are:

o The basic favored execution option
e The favored execution percentage option.

To specify that a virtual machine is to remain in the run list at all times,
unless it becomes nonexecutable, use the basic favored execution option.
When the virtual machine is executable, it is placed in the run list at its
normal priority position. However, any active virtual machine represents
either an explicit or implicit commitment of main storage. You can specify
an explicit storage commitment by either the V=R option or the reserved
page frames option. An implicit commitment exists if neither of these
options is specified, and the scheduler recomputes the virtual machine’s
projected working set at what it would normally have been at queue drop
time. You can set multiple virtual machines for the basic favored execution
option. However, if their combined main storage requirements exceed the
system’s capacity, performance can suffer since the system can do little
useful work because of excessive paging.

If the favored task is highly compute bound and must compete for the
processor with many other tasks of the same type, you should define how
much time the favored task should get. In this case, you can use the
favored execution percentage option. This option specifies that the selected
virtual machine is requesting a specified minimum percentage (from 1 to
100) of the total processor time. If the requested percentage is from 1 to 99,
CP tries to place the virtual machine in the run list so that it gets that
percentage of processor time, if it can use it. If you want the virtual

88 VM/SP CP for System Programming

Performance
. |

machine to stay in the run list, you must also invoke the basic favored
option.

If a virtual machine requests 100 percent of the processor time, CP attempts
to keep that virtual machine at the top of the run list. Since the dispatcher
searches the run list top down when selecting a virtual machine to be
dispatched, the 100% favored userid will usually be the first virtual
machine examined (and thus be selected to run).

To select the favored execution option, specify the FAVORED operand on
the class A SET command. The description of the SET command is in the
VM/|SP CP Command Reference. After the option is invoked, VM/SP
provides processor time for the selected virtual machine as follows:

1. CP multiplies the queue slice by the specified percentage to arrive at
the virtual machine’s requested processor time.

2. The scheduler tries to place the virtual machine, when it is executable,
at the top of the run list until it has obtained its requested processor
time.

3. If the virtual machine obtains its requested processor time before the
end of its queue slice, it is placed in the run list according to its
calculated dispatching priority.

4. In either case (2 or 3), at the end of the queue slice the requested
percentage is recomputed as in step 1 and the process is repeated.

If a percentage is not specified, a virtual machine with the favored
execution option active is kept in the run list except under the following

conditions:

e Entering CP console function mode

® Loading a disabled PSW

e Loading an enabled PSW with no active I/O in process
e Logging on or off.

When the virtual machine becomes executable again, it is put back on the
run list as a Q1 virtual machine. If it is dropped from Q1, the virtual
machine is placed directly in the run list as a Q2 virtual machine. If you
specified the percentage option of the SET FAVORED command, the
deadline priority is calculated at queue drop time by:

Deadline = current time-of-day + length of queue slice
favored percentage

For example, if the queue slice is 1 second, and the specified percentage is
10, then 10 seconds are added to the current time-of-day. The virtual
machine should receive one queue slice (1 second) once every 10 seconds.

Note, however, that these options can affect response times of other virtual
machines. To provide a virtual machine with both options, basic and

Chapter 13. Performance Guidelines 89

Performance

percentage, issue both forms of the command for that virtual machine. You
can use the percentage form of the SET FAVORED command to specify any
number of logged-on virtual machines.

Although the SET FAVORED command prevents specifying more than
100% for a particular virtual machine, nothing prevents you from
allocating a total of more than 100% to several virtual machines. Where
more than 100% has been allocated, the favored virtual machines compete
for the available resources on a pro rata basis. An individual virtual
machine’s allocation is roughly proportional to the percentage allocated to
it, divided by the total percentage allocated to all virtual machines. The
effect of allocating more than 100% of the system on interactive (Q1)
responses is unpredictable.

Note: The percentage of the processor time actually received by the
favored user normally remains close to the percentage specified in the
command. However, it is not an absolute value and varies depending on
the total load and type of load on the system. If, for example, multiple
virtual machines on the run list are compute bound (that is, are not queue
dropped before the end of their queue slices), the favored user may not
receive its requested percentage of the total processor time.

Setting Virtual Machine Priority

The VM/SP operator can assign specific priority values to different virtual
machines. A virtual machine with higher priority is allocated a larger
share of the system resources than a virtual machine with lower priority.
To assign specific priority values to different virtual machines, use the
following class A command:

SET PRIORITY userid {nn}
{64}
where
userid is the user’s identification
nn is the priority value. It is an integer value from 0 to 99. The

default is 64. The priority value figures in the deadline priority
calculations and thereby affects the virtual machine’s
dispatching priority with respect to other users.

Selecting Attached Processor or Multiprocessor Affinity for a Program

To allow virtual machines that operate on attached processor or
multiprocessor systems to select the processor of their choice for program
execution, use the affinity option. To select the affinity option, use the
directory OPTION statement, or specify the AFFINITY operand on the
class A or G SET command. The directory OPTION statement is described
in the VM/SP Planning Guide and Reference. The class A SET command

90 VM/SP CP for System Programming

Performance

and the class G SET command are described in the VM/SP CP Command
Reference.

The affinity setting of a virtual machine implies a preference of operation
to either (or neither) processor. Affinity of operation for a virtual machine
means the program of that virtual machine is executed on the selected or
named processor. It does not imply that supervisory functions and CP
housekeeping functions associated with that virtual machine are handled
by the same processor.

In attached processor systems, all real I/O operations and associated
interrupts are handled by the main processor. Virtual I/O started on the
attached processor that is mapped to real devices must transfer control to
the main processor for real I/O execution. Therefore, your system can
benefit in a virtual machine “mix” if you relegate those virtual machines
that have a high I/O-to-compute ratio to the main processor, and those
virtual machines that have a high compute-to-I/O ratio to the attached
processor. Weigh such decisions carefully as every virtual machine is
contending with other virtual machines for system resources.

To improve a virtual machine’s performance on a multiprocessor where the
path(s) to a user’s primary minidisks are from one processor only, set the
user’s affinity to that processor.

More importantly, use of the affinity setting in applications where a virtual
machine program requires special hardware features available on one
processor and not the other. Such features could be a performance
enhancement such as virtual machine assist (described later) or a special
RPQ required for a particular program’s execution.

Virtual Relocation and Shadow Table

CP allows the virtual machine to use the dynamic address translation
(DAT) feature of the real System/370. Programming simulation and
hardware features are combined to allow the virtual machine to use the
available features in the real hardware (2K or 4K pages, 64K segments).

Chapter 13. Performance Guidelines 91

Performance

First-level storage
The physical storage of the real processor, in which CP
resides.

Second-level storage
The virtual storage available to any virtual machine. This
storage is maintained by CP.

Third-level storage
The virtual storage space defined by the system operating in
second-level.

Page and segment tables
Logical mapping between first-level and second-level storage.

Virtual page and segment tables
Logical mapping between second-level and third-level)
storage.

Shadow page and segment tables
Logical mapping between first-level storage and third-level
storage.

Figure 7. Definitions of storage levels and segment tables.

A standard, nonrelocating virtual machine uses control register 0 for: J
o Extended masking of external interruptions

® Special interruption traps for SSM

e Enabling virtual block multiplexing.

A virtual machine that is allowed to use the extended control feature of

System/370 is provided with a full complement of 16 control registers,

allowing virtual monitor calls, PER, extended channel masking, and J
dynamic address translation.

An extension to the normal virtual machine VMBLOK is built in when an
extended control virtual machine logs on to CP. This ECBLOK contains
the 16 virtual control registers, two shadow control registers, and several
words of information for maintenance of the shadow control tables, virtual
processor timer, virtual TOD clock comparator, and virtual PER event data.

When an extended-control virtual machine is first active, it has only the
real page and segment tables provided by CP and operates entirely in
second-level storage. CP determines when the virtual machine enters or
leaves extended control or translate mode. CP also determines any changes
in the virtual machine’s operating mode. The virtual machine can load or
store any control register, enter or leave extended control mode, take
interruptions, and so forth without invoking the address translation

feature.)

92 VM/SP CP for System Programming

Performance
|

If the virtual machine, already in extended control mode, turns on the
translate bit in the EC mode PSW, CP examines the virtual control
registers and builds the required shadow tables. (Shadow tables are
required because the real DAT hardware can map only first-level storage.)
CP determines whether control registers 0 and 1 contain valid information
for use in constructing the shadow tables. Control register 0 specifies the
size of the page and segment the virtual machine is using in the virtual
page and segment tables. The shadow tables are always in the same format
as the virtual tables.

This shadow segment table is constructed in first-level storage and
initialized to indicate that all segments are unavailable. CP also constructs
the shadow control registers 0 and 1. Shadow control register 0 contains
the external interruption mask bits used by CP, mixed with the hardware
controls and enabling bits from virtual control register 0. Shadow control
register 1 contains the segment table origin address of the shadow segment
table.

When the virtual machine is operating in virtual translate mode, CP loads
the shadow control registers into the real control registers and dispatches
the virtual machine. The immediate result of trying to execute an
instruction is a segment exception. CP examines the virtual segment table
in second-level storage. If the virtual segment is marked available, CP:

1. Allocates a segment of the shadow page table in the format specified by
virtual control register 0

2. Sets the page table entries to indicate that the page is not in storage
3. Marks the segment available in the shadow segment table
4. Dispatches the virtual machine again.

The immediate result is an interruption (a paging exception), which refers
to the virtual page table in second-level storage to determine whether the
virtual page is available. If the page is not available, the paging
interruption is reflected to the virtual machine. However, if the virtual
page is marked in storage, the virtual page table entry determines which
page of second-level storage is being referred to by the third-level storage
address provided. CP next determines whether that page of second-level
storage is resident in first-level storage at that time. If so, the appropriate
entry in the shadow page table is filled in and marked in storage. If not,
the required page is brought into the first-level storage and the shadow
table filled in as above.

As the virtual machine continues execution, more shadow tables are filled
in or allocated as the third-level storage locations are added. Whenever a
new segment is referred to, another segment of shadow page tables is
allocated. Whenever a new page is referred to, the appropriate shadow
table entry is validated. No changes are made in the shadow tables if the
virtual machine leaves translate mode unless it also leaves extended control
mode. Dropping out of EC mode is the signal for CP to release all shadow
page and segment tables and the copy of the virtual segment table.

Chapter 13. Performance Guidelines 93

Performance
]

Some situations require invalidating the shadow tables constructed by CP J
or even releasing and allocating them. Whenever CP pages out a page that
belongs to a virtual relocating machine, it selectively invalidates the
shadow page tables. If the stolen page is below the high-water mark, the
shadow page table entry for the stolen page is invalidated. (The high-water
mark is the highest contiguous address, starting from location zero, where
the virtual system’s real address equals the virtual system’s virtual
address.) If the stolen page is above the high-water mark and virtual
machine assist is on, all of the shadow page tables above the high-water
mark are invalidated when the virtual machine is about to be dispatched.
The shadow tables are scanned to selectively invalidate shadow page table
entries that map to the real page being stolen.

Reducing Purges When the Virtual Machine Dispatches New Address Space

To reduce the number of purges when the virtual machine dispatches a new J
address space (changes control register (CR1) values), VM/SP maintains a

queue of segment table origins (STO) and associated shadow tables for the

virtual machine.

To specify multiple shadow table support, use the SET STMULTI command.

This command adds the segment table origin control block (STOBLOK)

pointed to by the ECBLOK to the STO queue. The STOBLOK contains the

the shadow segment table, information pertaining to it, and the virtual CR1

value. It also provides forward and backward queue pointers to the next :
STOBLOK on the queue. The first STOBLOK on the queue contains the J
shadow STO to be loaded into CR1 when the virtual machine is dispatched

in translation mode. CP maintains the queue of STOBLOKSs in the

following manner:

1. If a virtual machine loads a new CR1 value, CP searches the queue of
STOBLOKSs for the virtual CR1 value.

2. If CP finds the proper STO, it places that STOBLOK first on the queue.
3. If CP does not find proper STO, it checks the maximum STO count. J

a. If the number of STOBLOKS equals the maximum STO count, CP
steals the last STOBLOK, purges the shadow tables, and initializes
the STOBLOK. The STOBLOK is reused by being chained first on
the queue with the new virtual CR1 value.

b. If the number of STOBLOKS is less than the maximum STO count,
CP obtains free storage from VM/SP, and initializes the free storage
area as the STOBLOK and chains it first on the queue.

Multiple shadow table support is controlled by the SET STMULTI

command. The default minimum number of shadow tables is 3 and the
maximum is 6 per virtual machine.

94 VM/SP CP for System Programming

Performance
]

L Eliminating and Reestablishing Shadow Table Bypass

Shadow table bypass, invoked by the SET STBYPASS command, allows CP
to eliminate the shadow tables for an operating system running in the V=R
area. When CP runs a V=R virtual machine, the shadow table for the

V =R machine is identical to the virtual system’s own page and segment
tables, except for page zero. CP relocates the virtual machine’s page zero
(via the shadow table) to the highest real address within the V=R area.
When STBYPASS is turned on, CP modifies the virtual operating system’s
page table to relocate virtual page zero to the highest real address. It can
then dispatch the virtual machine with control register 1 pointing to the
virtual page and segment tables.

To eliminate and reestablish shadow table bypass, use the SET STBYPASS
command.

Q, Note: If virtual machine assist is enabled on the system, the virtual
machine must have the STFIRST directory option to issue the SET
STBYPASS nnM/nnnnK command.

For the V=V User: This technique is based on several characteristics of
VS systems:

® VS systems have a large area of addressing space starting with location
zero where the virtual address is equal to the real address.

(v o This addressing space is common to each segment table when multiple
segment tables are used (MVS or SVS address space).

e The VS system never pages within this fixed area.

Thus, you can establish an area starting at location zero where the
second-level address equals the third-level address or
virtual-virtual = virtual-real (VV=VR). A second-level address is the
_ virtual address specified by the operating system operating in a first-level

&' virtual machine; a third-level address is the address specified by a program
running under control of the virtual machine guest. You can then establish
the highest VV =VR address for a VS system. Because the second-level
address is the same as the third-level address, a reverse translation allows
the shadow tables to be indirectly indexed. Then, whenever VM/SP steals a
page from the VV=VR area, it invalidates the shadow page table entry and
executes a real PTLB (purge-translation-lookaside buffer) before
redispatching the VS system’s virtual machine.

In addition, whenever a shadow table is purged because a page frame is
stolen from above the highest VV=VR address or the virtual machine
executed a PTLB or LCTL, the invalidation starts above the highest
VV=VR address. Thus, purge and revalidation time is reduced.

Chapter 13. Performance Guidelines 95

Performance
|

For the V=R User: You can use a V=R shadow table bypass technique to J
eliminate both the shadow tables and the overhead associated with

maintaining them. This can be done by VM/SP changing the virtual

operating system’s page table to relocate virtual page zero to the highest

real address in the V=R area. The virtual machine can then be dispatched

pointing to its own page and segment tables.

Notes:

1. With MVS single processor mode enhancement support, absolute page
zero is made available to the MVS guest when single processor mode is
set on.

2. If the MVS guest in single processor mode issues the SET STBYPASS
VR command, CP issues an invalid option error.

Eliminating Queue Drop Overhead for a Virtual Machine J

VM/SP tries to optimize system throughput by monitoring the execution
status of virtual machines. When a virtual machine becomes idle, VM/SP
drops it from the run list. The virtual machine’s page and segment tables
are scanned, and resident pages are invalidated and put on the flush list.

VM/SP determines that a virtual machine is idle when it voluntarily

suspends execution (by loading a virtual PSW with the wait state bit on, for)
example), and no high-speed I/O operation is active. Normally, this is an J
adequate procedure.

However, in certain special cases, an idle virtual machine that is dropped
from a queue becomes active again sooner than expected. If this cycle of
queue dropping and reactivation is executed repeatedly, the overhead of
invalidating and revalidating the virtual machine’s pages may become
large.

The SNA VTAM service machine is an example of this special case. The)
VTAM service machine operates by processing an Inter-User

Communication Vehicle (IUCV) message (or queue of messages), and then

suspending execution until the next message arrives. VM/SP queue drops

the VTAM service machine from the queue when it suspends execution.

When the next message arrives, all the VTAM service machine’s pages must

be revalidated. If the message rate is moderate to high, the repeated queue

dropping causes excessive overhead.

To control this situation, use the CP class A command SET QDROP userid
ON/OFF [USERS]. If SET QDROP OFF is in effect for a virtual machine,
the virtual machine is not dropped from the queue and its pages are not
scanned or flushed.

If you specify SET QDROP OFF for a service virtual machine, system

performance and throughput may improve when queue dropping would
otherwise occur rapidly. But applying SET QDROP OFF indiscriminately)

96 VM/SP CP for System Programming

Performance
]

may degrade system throughput by defeating the page flush mechanism and
forcing page stealing to take place.

A large overhead may be associated with a virtual machine being dropped
from its queue during communications with a service machine for which the
QDROP OFF specification is in effect. This can occur in small systems in
which a high degree of virtual machine intercommunications occurs. If you
specify SET QDROP userid OFF USERS, the QDROP OFF status is
temporarily extended to any virtual machine communicating via VMCF or
IUCV to the service virtual machine specified. The QDROP status for the
“served” virtual machine remains in effect only while messages are
outstanding between it and the service machine. Thus you can improve
performance in systems that heavily use products such as VM/Interactive
File Sharing (VM/IFS) or VM/Pass-Through Facility (PVM) (invoked via
the CMS PASSTHRU command). This option will not improve performance
in systems in which PVM is invoked via CP DIAL or with the SNA VTAM
service machine, since the communication is with CP rather than another
virtual machine.

To list the userids for which SET QDROP OFF and the USERS parameter
have been specified, use the QUERY QDROP command (CP class A and E).

Improving Performance With the Virtual Machine Assist Feature

The Virtual Machine Assist Feature is a processor hardware feature that
improves the performance of VM/SP. Virtual storage operating systems,
which run in problem state under the control of VM/SP, use many
privileged instructions and SVCs that cause interruptions that VM/SP must
handle. When the virtual machine assist feature is used, many of these
interrupts are intercepted and handled by the processor. Consequently,
VM/SP performance is improved.

The virtual machine assist feature intercepts and handles interruptions
caused by SVCs (other than SVC 76), invalid page conditions, and several
privileged instructions. An SVC 76 is never handled by the hardware; it is
always handled by CP.

Although the assist feature was designed to improve the performance of
VM/SP, virtual machines may see a performance improvement because
more resources are available for virtual machine users. For a list of
processors on which the Virtual Machine Assist Feature is available, see
the VM/SP Planning Guide and Reference.

Using the Virtual Machine Assist Feature

When you IPL VM/SP on a processor with the virtual machine assist
feature, the feature is available for all VM/SP virtual machines. However,
the class A or E SET command can make the feature unavailable to VM/SP
and, subsequently, available again for all users. If you do not know
whether the virtual machine assist feature is available to VM/SP, use the

Chapter 13. Performance Guidelines 97

Performance
]

class A and E QUERY command. For a complete description of the class A
and E QUERY and SET commands, see the VM/SP CP Command Reference.

If the virtual machine assist feature is available to VM/SP when you log on
to your virtual machine, it is also supported for your virtual machine
unless you are running a second-level VM/370 or VM/SP system in your
virtual machine. If your directory entry has the SVCOFF option, the SVC
handling portion of the assist feature is not available when you log on. Use
the class G SET command to disable the assist feature (or only disable SVC
handling), or to enable the assist feature, or if the assist feature is
available, to enable the SVC handling. Use the class G QUERY SET
command to find whether you have full, partial, or none of the assist
feature available. For details on the class G QUERY and SET commands,
see the VM/SP CP Command Reference.

Restricted Use of the Virtual Machine Assist Feature

Certain interrupts must be handled by VM/SP. Consequently, VM/SP
automatically turns off the assist feature in a virtual machine that:

e Has set an instruction address stop
® Is tracing SVC and program interrupts.

Since an address stop is recognized by an SVC interrupt, VM/SP must
handle SVC interrupts while address stops are set. When you issue the
ADSTOP command, VM/SP automatically turns off the SVC handling
portion of the assist feature for your virtual machine. The assist feature is
turned on again after the instruction is encountered and the address stop
removed. If you issue the QUERY SET command while an address stop is
in effect, the response shows that the SVC handling portion of the assist
feature is off.

When a virtual machine issues a TRACE command with the SVC, PRIV,
BRANCH, INSTRUCT, or ALL operands, the virtual assist feature is
automatically turned off for that virtual machine. The assist feature is
turned on again when the tracing is completed. If the QUERY SET
command line is issued while SVCs or program interrupts are being traced,
the response indicates the assist feature is off.

The virtual machine assist feature is not available to a second-level virtual
machine, that is, a virtual machine that is running in a virtual machine.

Extended Control-Program Support: VM/370

Extended Control-Program Support: VM/370 (ECPS) extends, for specific
privileged instructions, the hardware assistance that the virtual machine
assist feature provides. ECPS also provides hardware assistance for
frequently used VM/SP functions. ECPS improves VM/SP performance
beyond the performance gains that the virtual machine assist feature
provides.

98 VM/SP CP for System Programming

Performance

ECPS consists of three functions:

® CP assist
e Expanded virtual machine assist
e Virtual interval timer assist.

CP assist provides hardware assistance for frequently used paths of specific
CP functions.

Expanded virtual machine assist extends the hardware assistance that the
virtual machine assist feature provides for the instructions LPSW, STNSM,
STOSM, and SSM. In addition, expanded virtual machine assist provides
hardware assistance for certain other privileged instructions.

Virtual interval timer assist provides hardware updating of the virtual
interval timer at virtual address X’50°. Timer updating occurs only while
the virtual machine is in control of the real processor. Virtual interval
timer assist updates the virtual timer at the same frequency hardware
updates the real timer, 300 times per second. Thus, virtual interval timer
assist updates the virtual timer more frequently than CP updates it.
Because the timer is updated more frequently, accounting routines might
provide more accurate accounting data.

Using the Extended Control-Program Support: VM/370

You can control Extended Control-Program Support: VM/370 (ECPS) at
two levels: the VM/SP system and the virtual machine.

At the VM/SP system level, ECPS is automatically enabled when the
system is loaded (except for AP and MP systems in which ECPS is always
disabled). You can use the class A command:

SET CPASSIST OFF

to disable both CP assist and expanded virtual machine assist. You can use
the class A command:

SET SASSIST OFF

to disable only the expanded virtual machine assist facility and the virtual
interval timer assist function of ECPS.

At the virtual machine level, whenever ECPS is enabled on the system,
both expanded virtual machine assist and virtual interval timer assist are
automatically enabled when you log on. If you issue the class G command:

SET ASSIST OFF

the expanded virtual machine assist, the virtual interval timer assist, and
the existing virtual machine assist are disabled. If you issue:

SET ASSIST NOTMR

Chapter 13. Performance Guidelines 99

Performance
X

only the virtual interval timer assist is disabled. If CP assist is disabled for)
the system, and you issue the class A command:

SET SASSIST ON

the virtual machine assist is enabled. To enable virtual machine assist and
virtual interval timer assist for your virtual machine, issue the class G
command:

SET ASSIST ON TMR

Restricted Use of ECPS

The restrictions on the use of ECPS are the same as those described for the

virtual machine assist feature with one addition. When a virtual machine

traces external interrupts, the virtual interval timer assist is automatically -
disabled. When external interrupt tracing is completed, virtual interval J
timer assist is reenabled.

Improving Channel Use

Using the Virtual Block Multiplexer Channel Option i
Virtual machine SIO operations are simulated by CP in three ways:

e Byte-multiplexer
e Selector
e Block multiplexer channel mode.

Virtual byte-multiplexer mode is reserved for I/O operations that apply to
devices allocated to channel zero.

In virtual selector channel operations, CP reflects a busy condition J
(condition code 2) to the virtual machine’s operating system if the system
tries a second SIO to the same device, or another device on the same
channel, before the first SIO is completed.

Bloek multiplexer channel mode is a CP simulation of real block
multiplexer operation; it allows the virtual machine’s operating system to
overlap SIO requests to multiple devices connected to the same channel. If
you select block multiplexer mode of operation, the virtual machine’s
throughput may increase, particularly for systems or programs designed to
use the block multiplexer channels.

Note: CP simulation of block multiplexer processing does not reflect
channel available interruptions (CAls) to the user’s virtual machine.

100 VM/SP CP for System Programming

C

Performance

You can select the channel mode of operation for the virtual machine by a
system generation DIRECTORY OPTION operand or by the CP DEFINE
command. Enter the DEFINE command as:

DEFINE CHAN BMX

Alternate Path Support

With the Two-Channel Switch and Two-Channel Switch Additional
Features, alternate path support for DASD or tape provides for up to four
channels on one control unit to be attached to VM/SP (up to 2 channels per
control unit in multiprocessing configurations). In addition, one device can
be attached to two logical control units, providing support for the String
Switch feature. This allows the control program up to eight paths to a
given device when the maximum number of alternate channels and
alternate control units is specified.

When an I/O request is received for a device that has alternate paths
defined, and the primary path is unavailable, VM/370 searches for the first
available path beginning with the first alternate path. It examines
successive alternate paths, if required, until an available path is found. If
no available path to the device exists, alternate path I/O scheduling queues
the request on multiple busy/scheduled paths, and the first path to become
available is the path the I/O request is started on.

The VM/SP System Logic and Problem Determination Guide Volume 1 (CP)
describes how the scheduler selects the alternate path.

MVS/System Extensions Support

The MVS/System Extensions support in VM/SP allows an MVS system
running in a virtual machine to use the enhancements available in the
MVS/System Extensions Program Product (Program No. 5740-XE1) if the
System/370 Extended Facility or System/370 Extended Feature is present on
the hardware.

Included in the MVS/System Extensions Program Product enhancement is
the use of:

1. The System/370 Extended Facility for the 303x and the 308x processors,
or

2. The System/370 Extended Feature for the System/370 Model 158 and 168
processors, or

3. ECPS:MVS for the 4341.
Note: An RPQ (MK3272) is available for the 158-3 processor that allows the
coexistence of virtual machine assist and System/370 Extended Facility

(S370E) and VM/370 Extended Feature. Thus, an MVS/SE virtual machine
can run under VM/SP with virtual machine assist active on a 158-3

Chapter 13. Performance Guidelines 101

Performance

processor. ECPS:MVS and ECPS:VM/370 are mutually exclusive in the
4341 Model Group 1 and 4341 Model Group 2. The control storage
expansion feature of the Model Group 2 allows coexistence of ECPS:MVS
and ECPS:VM/370.

The System/370 Extended Facility and System/370 Extended Feature, and
ECPS:MVS are enabled by the MVS/System Extensions support as defined
by the directory OPTION statement or via the CP SET command. For
details, refer to the Planning Guide and Reference and to the VM/SP CP
Command Reference, respectively.

MVS/System Extensions support includes:

o Low address protection facility*
e Common segment facility+
e Special MVS instruction operation facilities.

Low Address Protection Facility

Low address protection protects against improper storing by instructions
using logical storage addresses in the range 0-511. It prevents inadvertent
program destruction of those storage locations that the processor uses to
fetch new PSWs during interruption processing. Low address protection
does not apply to the storing of status by the processor (for example, old

PSWs, logout data), nor does it apply to any channel stores (for example,
CSW or LCL).

Bit 3 of control register 0 is the low address protection bit, and controls
whether or not store instructions using logical addresses in the range 0 to
511 are permitted. When this bit is zero in real control register zero, stores
are permitted; when this bit is one, stores are not permitted. When an
instruction tries to store at an address in the range 0 to 511 and low address
protection applies, the contents of the storage area addressed by the
instruction are not modified. Execution of the current instruction is
terminated or suppressed, and a protection exception occurs.

Common Segment Facility

The common segment facility allows addressing segments to be classified as
private or common. If bit 30 of the segment table entry for a given segment
is 1, the segment is a common segment; otherwise it is private. A private
segment table entry and the page table it designates can be used with only
the segment table origin (STO) that designates the segment table in which
the segment table entry resides. A common segment table entry and the
page table it designates may continue to be used for translating addresses
even though a different STO is specified by changing control register 1.

4 ECPS:MVS is identical to the Extended Facility, except that the Low Address
Protection Facility and the Common Segment Facility are not included.

102 VM/SP CP for System Programming

Performance
]

Special operations and instructions in the MVS/System Extensions Program
Product that enhance MVS operations are handled by System/370 Extended
Facility or System/370 Extended Feature, and are described in System/370
Extended Facility, GA22-7022. Invalidate Page Table Entry (IPTE) and Test
Protection (TPROT) instructions described in this publication are simulated
in VM/SP.

Enabling MVS/System Extensions Support

To enable the MVS/System Extensions support for all virtual machines, use
the class A SET S370E ON command. The general user uses the class G
SET 370E ON command (or 370E option on the directory OPTION control
statement), to enable the support for a particular virtual machine.

Note: The virtual machine must be running with ECMODE on to set 370E
on.

Improving Throughput of an OS/VS2 MVS AP or MP System

When an OS/VS2 MVS system runs on a multiprocessor under VM/SP,
without using single processor mode, MVS runs in uniprocessor mode.
That is, MVS programs do not execute simultaneously on both processors.
Therefore, MVS does not attain the level of throughput it could attain were
it running in multiprocessor mode.

To improve the throughput of an OS/VS2 MVS system in an AP or MP
system, run MVS in the V=R machine and use single processor mode. In
this mode, MVS has exclusive use of one processor while VM/SP and the
V=R machine (running MVS) use the other processor. In other words,
MYVS runs on two processors instead of one. This improves MVS’s
throughput.

The throughput of an OS/VS2 MVS system in an AP or MP system running
under VM/SP and using single processor mode is higher than the
throughput would be were single processor mode not used. However, single
processor mode may reduce the throughput of VM/SP and virtual machines
not using the V=R area.

Single processor mode cannot improve the throughput of a VM/SP attached
processor or multiprocessor system. A VM/SP AP or MP system initialized
(by IPL) in the V=R machine with single processor mode on runs in
uniprocessor mode.

Two commands provide operator control of single processor mode.
SPMODE, a class A command, turns single processor mode on or off.
QUERY, a class A or G command, indicates whether single processor mode
is on or off.

Chapter 13. Performance Guidelines 103

Performance
|

Detailed instructions for turning single processor mode on or off are in VM)
Running Guest Operating Systems.

Switching the System Control Program (SCP) to or from Native Mode

Sometimes an installation benefits from switching an SCP to or from native
mode. For example, when obtaining the best possible performance from an
SCP is important, switch it to native mode. To do different kinds of work
simultaneously, switch the SCP from native mode to the VM/SP
environment.

Installations have always had the capability to switch an SCP to or from

native mode, but to do so has been time consuming. Switching an SCP to

native mode meant quiescing the SCP and VM/SP and then initial program

loading the SCP. To return the SCP to the VM/SP environment meant

quiescing the SCP and then initial program loading VM/SP and the SCP. J

Dynamic SCP transition to or from native mode enables an operator to
dynamically switch an SCP to or from native mode. Switching to native
mode, there is no longer a need to quiesce or reinitialize (via IPL) the SCP.
The SCP continues to run and can do productive work. Switching back to
the VM/SP environment, there is no longer a need to quiesce the SCP or
IPL VM/SP or the SCP.

VM/SP and the SCP for the switch: for example, all users except the VM/SP
operator and the operator on the V=R machine must log off VM/SP.
Detailed instructions on preparing the systems and switching to or from
native mode are in VM Running Guest Operating Systems. The following
discussion highlights the switching process and defines precautions that
must be observed.

Before switching an SCP to or from native mode, an operator must prepare)

To switch an SCP to native mode, it must be running in the V=R machine.
The VM/SP operator then prepares VM/SP and the SCP for the switch. To
complete the switch, the operator issues the QVM command (quiesce VM).)

After the switch to native mode is completed, there are two areas of real
storage that must not be altered. Addresses 0-7 contain the restart PSW
(program status word) used to make the transition back to the VM/SP
environment. Storage above the upper limit of the V=R area contains the
VM/SP nucleus. Altering either area may make it impossible to return to
the VM/SP environment.

To return the SCP to the VM/SP environment, an operator uses the
System/370 restart facility. After stopping the processor, the operator
stores the value X’FF” into the real storage address located eight bytes
prior to the address pointed to by the restart PSW. To complete the
switching process, the operator restarts the processor.

Caution: This process does not work unless the SCP was switched to
native mode with the QVM command.)

104 VM/SP CP for System Programming

Performance

The performance of an SCP switched to native mode depends on the size of
the V=R area. The SCP’s performance will be the same as it would attain
if it initialized (by IPL) directly on a hardware configuration identical to
the V=R machine’s configuration with a real storage size equal to the
storage size of the V=R area. In other words, the larger the V=R area, the
better the SCP performs.

You can can switch to or from native mode using the procedures just
described for:

e OS/VS1 running without VM VS1 Handshaking

e 0S/VS2 SVS
e 0OS/VS2 MVS.

Chapter 13. Performance Guidelines 105

Performance
.|

106 VM/SP CP for System Programming

Q’ Chapter 14. Performance Observation and Analysis

You can use the INDICATE, QUERY SRM, and MONITOR commands to
measure system performance.

INDICATE
Displays load conditions while the system is running.

QUERY SRM
‘ Displays information about system activities and counters.

MONITOR
Samples and records a wide range of data. Keywords in the MONITOR
command enable the collection of data and identify the various data
collection classes. Data can be collected from more than one class at a
time. Other keywords control the recording of collected data on tape for
later examination and reduction.

(« Using the INDICATE Command

Use the INDICATE command to check the system for persistently heavy
loads, to judge when it is best to apply additional scheduling controls (if
appropriate).

Use the INDICATE command to display the basic uses of and contentions
for major system resources (possible bottleneck conditions) and
characteristics of the active users and the resources that they use.

With the INDICATE command, virtual machine users can observe the basic
smoothed conditions of contention and use of the primary resources of
processor and storage. The INDICATE command allows them to base their
use of the system on an intelligent guess of what the service is likely to be.
Over a period of time, virtual machine users relate certain conditions of
service to certain utilization and contention figures and know what kind of
responses to expect when they start their terminal session.

The INDICATE command lets general users and the system analyst display
on a console at any time the use of and contention for major system
resources. They can also display the total amount of resources used during
the terminal session and the number of I/O requests. If they use the
INDICATE command before and after the execution of a program, users can
determine the execution characteristics of that program in terms of

‘ resource use.

Chapter 14. Performance Observation and Analysis 107

Performance

The system analyst can identify active users, the queues they are using,
their I/O activity, their paging activity, and many other user characteristics
and use data.

The system analyst can use the data on system resource usage and
contention to monitor the performance of the system. The analyst can thus
be aware of heavy load conditions or low performance situations that may
require the use of more sophisticated data collection, reduction, and
analysis techniques for resolution.

The VM/SP Scheduler maintains exponentially smoothed values for data
provided by the LOAD option. Every few seconds (the exact interval
depends on the processor model), the scheduler calculates the total
activities for variables such as CP and storage use for the most recent
interval and factors them into a smoothed wait value:

New smoothed value =
0.75 old smoothed value + 0.25 current interval

Thus, only one-fourth of the most recent interval is factored into the new
smoothed value.

The remaining INDICATE components are sampled prior to a user being
dropped from a queue. Because of the frequency of this event, the
remaining components are subject to a heavier smoothing than the wait
time. The general expression for the smoothing is:

nsv = ((rate - int) (osv) [rate) + civ

where:

nsv is the new smoothing value

rate 1is either the history interval (hrate) of 8 minutes, or data interval
(drate) of 75 seconds

int is the current interval (time period being tested)
osv is the old smoothing value

civ is the current interval value (results found during the current
interval (int))

Other operands of the command allow users to obtain other performance
information that enables them to understand the reasons for the observed
conditions. For the formats of the class G INDICATE command and the
class E INDICATE command, see the VM/SP CP Command Reference.

108 VM/SP CP for System Programming

Performance
|

The section “VM/SP Performance Options” on page 87 contains detailed
information on favored execution. For information on the setting of
favored execution options, refer to the VM/SP Operator’s Guide.

Using the QUERY SRM and SET SRM Commands

Use the QUERY SRM and SET SRM commands to query and/or change
internal system activity counters or parameters. Formats for the QUERY
SRM and SET SRM commands are contained in the VM/SP CP Command
Reference.

Use the Class E QUERY SRM command to display the following

information:

e Current number of pageable pages

e Size of the dispatching time slice

e Setting of the maximum working set estimate

e Maximum drum page allocation limit

e Current page migration counters

e Unused segment elapsed time as criteria for page migration
e Current PCI flag setting mode for 2305 page requests
® Maximum page bias value

o Current interactive shift bias value

e Moveable head page migration limit.

Use the class E SET SRM command to set some of the system variables that
can affect the values displayed by the QUERY SRM command.

Using the MONITOR Command

VM/SP Monitor collects data by:

e Handling interruptions caused by executing MONITOR CALL (MC)
instructions.

® Using timer interruptions to give control periodically to sampling
routines.

MONITOR CALL instructions with appropriate classes and codes are
embedded in strategic places throughout the main body of VM/SP code
(CP). When a MONITOR CALL instruction executes, a program
interruption occurs if the particular class of MONITOR CALL is enabled.
The classes of MONITOR CALL that are enabled are determined by the
mask in control register 8. For the format and function of the MONITOR
CALL instruction, refer to the System/370 Principles of Operation. The
format of control register 8 is as follows:

Chapter 14. Performance Observation and Analysis 109

Performance

| XXXX | XXXX | XXXX | XXXX | 0123] 4567] 89AB1 CDEF—‘l

where:
X indicates an unassigned bit.

0-F (hexadecimal) indicates the bit associated with each class of the
MONITOR CALL.

When a MONITOR CALL interruption occurs, the CP program interruption
handler (DMKPRG) transfers control to the VM/SP monitor interruption
handler (DMKMON) where data collection takes place.

Sixteen classes of separately enabled MONITOR CALL instructions are
possible, but only eight are implemented in the VM/SP Monitor.

Monitor output consists of event data and sampled data. MONITOR CALL
instructions in the VM/SP code obtain data. Sampled data is collected
following timer interruptions. All data is recorded as though it were
obtained through a MONITOR CALL instruction. This simplifies the
identification of the records.

The following table shows the type of collection mechanism for each
Monitor class:

Monitor Class Collection
Class Name Mechanism

0 PERFORM Timer requests
1 RESPONSE MC instructions
2 SCHEDULE MC instructions
35 - -

4 USER Timer requests
5 INSTSIM MC instructions
6 DASTAP Timer requests
7 SEEKS MC instructions
8 SYSPROF Collected with class 2

Another function, separate from the VM/SP Monitor, is also handled by the
MONITOR command. The MONITOR command can stop and start
collecting CP internal trace table data, which is not initiated by MONITOR

CALLs.

Note: The VM/SP Monitor record format and contents are shown in
Appendix, “VM/SP Monitor Tape Format and Content”

The class A and E MONITOR command:

e Stops and starts CP internal trace table data collection.

5 There is no class name for monitor class 3, but it is reserved.

110 VM/SP CP for System Programming

Performance

Implemented Classes

e Displays the status of the internal trace table and each implemented
class of VM/SP Monitor data collection.

e Displays the specifications for automatic monitoring defined by the
SYSMON macro in DMKSYS.

o Displays those specifications for automatic monitoring that are
overridden by Monitor commands.

e Displays whether the tape or spool file is the recording medium.

e Starts and stops VM/SP data collection using tape or spool file. It also
closes the spool file, if desired.

o Specifies VM/SP monitor classes of data collection enabled, number of
buffers used, and time of data collection. It also specifies other options
which override the specifications for automatic monitoring on the
SYSMON macro contained in DMKSYS.

o Specifies the interval to be used for timer driven data collection.

e Specifies direct access devices to be included or excluded from a list of
devices. The list defines direct access devices for which CP is to collect
data for the SEEKs class.

See the VM/SP CP Command Reference for the format and details of the
MONITOR command.

The following MONITOR CALL classes correlate with the corresponding
classes in control register 8. Refer to the System/370 Principles of Operation
for details of the MC instruction and the bits in control register 8.

Monitor

Class Keyword Data Collection Function

0 PERFORM | Samples system resource usage data by accessing system
counters of interest to system performance analysts.

1 RESPONSE | Collects data on terminal I/O. Simplifies analyses of command

usage, user, and system response times. It can relate user
activity to system performance. This class is invalid. No data
RESPONSE data (MONITOR class 1) can be collected unless
the system programmer sets the TRACE(1) bit to a 1 in the
LOCAL COPY file and reassembles DMKMCC. Refer to the
VM/SP Installation Guide for details.

Figure 8 (Part 1 of 3).

MONITOR CALL Classes

Chapter 14. Performance Observation and Analysis 111

Performance

Monitor
Class Keyword Data Collection Function

2 SCHEDULE| Collects data about scheduler queue manipulation, monitors
flow of work through the system, and indicates the resource
allocation strategies of the scheduler.

3] e Reserved.

4 USER Periodically scans the chain of VMBLOKS in the system, and
extracts user resource utilization and status data.

5 INSTSIM Records every virtual machine privileged instruction handled
by the control program (CP) standard simulation routines
(DMKPRV, DMKPRW). Because simulation of privileged
instructions is a major source of overhead, this data may lead
to methods of improving performance.

The fast path simulation routines (DMKFPS) result in
significantly less control program overhead than the standard

paths. Therefore, privileged instructions simulated by
DMKFPS are not recorded.

If the VMA feature is active, the number of privileged
instructions that are handled by the control program is reduced
for those virtual machines that are running with the feature
activated. Privileged instructions handled by the VMA are not
recorded.

6 DASTAP Periodically samples device I/O activity counts (SIOs), for tape
and DASD devices only. DASTAP samples only those tapes and
DASD devices that are online when the MONITOR START
command is issued.

It is possible that the number of DASD and tape devices defined
in DMKRIO may exceed 291 (the maximum number of
MONITOR DASTAP records that fit in a MONITOR buffer).
The following algorithm determines which devices are
monitored:

1. If the total number of DASD and tape devices that are
on-line is less than or equal to 291, all on-line DASD and
tape devices are monitored.

2. If the total number of on-line DASD devices is less than or
equal to 291, all on-line DASD devices are monitored.

3. Otherwise, the first 291 on-line DASD devices are
monitored.

Figure 8 (Part 2 of 3). MONITOR CALL Classes

112 VM/SP CP for System Programming

Performance

(v Monitor

Class

Keyword

Data Collection Function

SEEKS

Collects data for every I/O request to DASD. Reveals channel,
control unit, or device contention and arm movement
interference problems.

Note: When NOTRANS is in effect for a virtual =real machine,
no meaningful data is collected.

No data is collected for TIO or HIO operations. For SIO
operations, data is collected when the request for the I/O
operation is initially handled and again when the request is
satisfied.

This means that a single SIO request could result in two
MONITOR CALLs. For example, if the request gets queued
because the device is already busy, then a MONITOR CALL
would be issued as the request is queued. Later, when the
device becomes free and is restarted, a second MONITOR CALL
is issued.

Both MONITOR CALLs collect the same data, except that the
first records a nonzero number of queued requests. The second
records zero I/O requests in the queue. If the request for I/O is
satisfied without being queued, only one MONITOR CALL
results. In this case, too, the count of I/O requests queued for
the device is zero.

SYSPROF

Collects data complementary to the DASTAP and SCHEDULE
classes to provide a more detailed “profile” of system
performance through a closer examination of DASD utilization.

Figure 8 (Part 3 of 3).

MONITOR CALL Classes

Monitor Response to Special Tape Conditions

o~

o

Suspension

When I/O to the tape is requested, the device may still be busy from the
previous request. If this occurs, two data pages are full and data
collection must be temporarily suspended. Control register 8 is saved
and then set to zero to disable MONITOR CALL program interruptions
and timer data collection. A running count is kept of the number of
times suspension occurs. The current Monitor event is disregarded.
When the current tape I/O operation ends, the next full data page is
scheduled for output. MONITOR CALL interruptions are reenabled
(control register 8 is restored), a record containing the time of
suspension, the time of resumption, and the suspension count is recorded
and data collection continues. Note that suspension records can cause
the results of analyzing monitor data to be unpredictable. The
suspension count is reset to zero when the MONITOR STOP TAPE is
issued. If a MONITOR command is issued when monitor is suspended, a
message is displayed to the invoker of the command stating:

SEEK, STOP, OR CLOSE CMD IN PROGRESS, RETRY

Chapter 14. Performance Observation and Analysis 113

Performance

Unrecoverable Tape Error
When an unrecoverable error occurs, DMKMON receives control and
tries to write two tape marks, rewind, and unload the tape. The use of
the tape is discontinued and data collection stops. The operator is
informed of the action taken. Whether or not the write-tape-marks,
rewind, and unload are successful, the tape drive is released.

End-of-Tape Condition
When an end-of-tape condition occurs, DMKMON receives control. A
tape mark is written on the tape and it is rewound and unloaded. The
monitor is stopped and the operator is informed of the action taken.

Initial Program Load
MONITOR START CPTRACE is active after real system IPL (manual or
automatic). The monitor tape data collection is off after IPL. If
automatic performance monitoring is specified in the SYSMON macro
and IPL occurs within the range of the TIME operand of the SYSMON
macro, monitor data collection to a spool file is started.

System Shutdown
If the monitor data collection to a spool file is taking place, a system
shutdown causes closing of the file and termination of monitoring. If
data collection is to tape, a system shutdown implies a MONITOR STOP
TAPE command. Normal command processing for the MONITOR STOP
TAPE function is performed by the system.

System Failure
If the VM/SP system fails and data collection to a spool file is active,
the spool file is closed and preserved, except for the last buffer. If the
VM/SP system fails and data collection is active on tape, an attempt is
made to write two tape marks, rewind, and unload the tape. If the tape
drive fails to rewind and unload, be sure to write a tape mark before
rewinding and unloading the tape. Monitor data collection is
terminated by the system failure.

I/O Devices
If monitor data collection is active using tape, a supported tape drive
must be dedicated to the system for the duration of the monitoring. For
accounting purposes, all I/O is charged to the system.

Monitor Output
Monitor output requires that you have the IBM program product
program VMMAP (Virtual Machine Monitor Analysis Program,
5664-191) or some other user application program to read the file and
process it.

114 VM/SP CP for System Programming

Performance
]

L Monitor Data Volume and Overhead

Use of the monitor usually requires that three pages be locked in storage
for the entire time the monitor is active; however, only two pages are
required if the single buffer option is used with only the PERFORM class of
data collection enabled. This reduces by three the number of page frames
available for paging and can affect the performance of the rest of the
system when there is a limited number of page frames available for paging.

PERFORM
This class of data collection is activated once every 60 seconds (or as
defined by the MONITOR INTERVAL command), and records system
counters relevant to performance statistics. It is, therefore, a very low
overhead data collection option.

RESPONSE
L This class collects terminal interaction data and, because of the human
factor, has a very low rate of occurrence relative to processor speeds.
Consequently, this class causes negligible overhead and produces a low
volume of data.

SCHEDULE
This class records the queue manipulation activity of the scheduler and
generates a record every time a user is added to the eligible list, added
to queuel, queue2, or queued, or removed from queue. The recording

(overhead is very low.

USER
This class of data collection is active once every 60 seconds (or as
defined by the MONITOR INTERVAL command). Data is extracted
from each user’s VMBLOK, including the system VMBLOK. The
overhead incurred is comparable with that of the statistical data of the
PERFORM class; however, it increases with the number of users logged
onto the system.

INSTSIM

Q, This class of data collection can give rise to large volumes of data
because of the frequency of privileged instructions in some virtual
machines. This may increase overhead significantly. It should be
activated for short periods of time and preferably, though not
necessarily, when other classes of data collection are inactive. If the
Virtual Machine Assist feature is active for the virtual machine, the
data volume and, consequently, the CP overhead may be reduced.

DASTAP
This class of data collection samples device activity counts once every
60 seconds (or as defined by the MONITOR INTERVAL command) and is
a very low source of overhead, similar to the PERFORM and USER
classes.

Chapter 14. Performance Observation and Analysis 115

Performance

SEEKS
This class of data collection can give rise to large volumes of data
because every start I/O request to DASD is recorded by a MONITOR
CALL. It should be activated for short periods of time and preferably,
though not necessarily, when other classes of data collection are
inactive.

SYSPROF
This class of data collection is complementary to the SCHEDULE and
DASTAP classes and results in a small amount of additional overhead.
It obtains more refined data on DASD resource usage.

Performance for Time-Shared Multibatch Virtual Machines

First you must determine how many similar users can be run concurrently
on a given configuration before the throughput of individual users becomes
unacceptable.

Monltoring Recommendations

To simplify and automate the collection of performance data, use the
automatic monitoring facilities. You should also set up a virtual machine
to analyze and report the collected data. The Virtual Machine Monitor
Analysis Program (VMMAP) does such a task. (For more information
about this program and for details about ordering VMMAP, see VMMAP
General Information.) You should use VMMARP or user-written analysis
programs on a daily basis to analyze the collected data. Run such analysis
programs preferably at off-peak hours to minimize the effect on the
performance of the system doing data reduction. Initially, analyze the data
collected with MONITOR default options to establish a familiarity with the
load environment and performance profile of each virtual machine system
and its effect on CP.

Once you establish a performance profile for each system and associated
virtual machines, you should be able to detect points of contention between
processor(s) storage, I/O, and paging subsystems.

Normally, you should use the spool file monitoring options. However, if
large volumes of monitor data are to be collected, then use monitoring to
tape. Tape is also useful if benchmarking is set up frequently and all of the
new monitor trace and sampled data must be archived for possible future
use. The default mode of operation of the Performance/Monitor Analysis
Program is to keep the condensed ACUM files and not the raw data.

If you need SEEKs data, use a sampling technique. One technique is to use
a CMS EXEC procedure to enable SEEKs for ten seconds every ten
minutes. This would produce SEEKs data while limiting the volume of data
collected. An alternative is to create a list of devices for which data for the
SEEKSs class is to be collected. CP collects data for only those devices in
the list. To create the list, use the INCLUDE or EXCLUDE options of the
MONITOR command’s SEEK operand. If data is collected for only a few
devices, consider collecting data for longer periods of time.

116 VM/SP CP for System Programming

Performance
|

k Load Environments of VM/SP

Two distinct uses of VM/SP can be readily identified: The system may
serve mostly time-sharing virtual machines running batch jobs, with
interactive machines performing minor support roles; or, the system may
primarily be required to provide good interactive time-sharing services in
the foreground, with a batch background absorbing spare resources of real
storage and processor. Because of these distinct uses, there may be some
differences in criteria for acceptable performance.

After determining the minimum acceptable performance, perform external
observations of turnaround time on benchmarks and specify a point beyond
which adding more users would be unacceptable. However, when that point
is reached, you must do more sophisticated internal measurement to
determine the scarcest resource and how the bottleneck can be relieved by
additional hardware or by reassigning resources.

L Several conditions can result from different bottlenecks. They are:

e There is too little real storage for the number of contending users. The
run list can accommodate only a small portion of the eligible users and
each user is dispatched so infrequently that response time becomes
intolerable.

e Storage may be adequate to contain the working sets of contending
users, but the processor is being shared among so many users that each
‘ is receiving inadequate attention for good throughput.

e Real storage space may be adequate for the processor, and a high speed
drum is used for paging; however, some virtual storage pages of some
users have spilled onto slower paging devices because the drum is full.
With low levels of multiprogramming, user page wait can become a
significant portion of system wait time. Consequently, processor
utilization falls and throughput deteriorates.

) e Storage, processor, and paging resources are adequate, yet several users
L are heavily I/O-bound on the same disk, control unit, or channel. In
these circumstances, real storage may be fully committed because the
correct level of multiprogramming is selected, yet device contention is
forcing high I/O wait times and unacceptable processor use.

Obtain estimates of typical working set sizes to determine how well an
application may run in a multiprogramming environment on a given virtual
storage system. A measure of the application’s processor requirements may
be required for similar reasons. Measurements may be required on the type
and density of privileged instructions a certain programming system may
execute, because, in the virtual machine environment, privileged
instruction execution may be a major source of overhead. If the virtual
machine environment is used for programming development, where the
improvement in programmer productivity outweighs the disadvantages of
extra overheads, the above points may not be too critical. However, if
t throughput and turnaround time are important, then the converse is true,

Chapter 14. Performance Observation and Analysis 117

Performance

and the points need close evaluation before allocating resources to a virtual
machine operation.

High levels of multiprogramming and over-commitment of real storage
space lead to high paging rates. High paging rates can indicate a healthy
condition, but you should be concerned about page stealing. Get evidence
that this rate is maintained at an acceptable level. A system with a high
rate of page stealing is probably thrashing.

Performance of Mixed Mode Systems

Most of the conditions for good performance, established for the
time-shared batch systems, apply equally well to mixed mode systems.
However, two additional criteria are important for evaluating system
performance. First, in all circumstances, priority should be given to
maintaining good interactive response and nontrivial tasks must be kept in
the background. Second, background tasks, no matter how large,
inefficient, or demanding, should not be allowed to dominate the overall use
of the time-sharing system. In other words, in mixed mode operation, users
with poor characteristics are discriminated against for the sake of
maintaining a healthy system for the remaining users.

A number of other conditions are more obvious and straightforward. You
need to measure response and determine at what point it becomes
unacceptable and why. Studies of time-sharing systems have shown that a
user’s rate of working is closely correlated with the system response. When
the system responds quickly, the user is alert, ready for the next
interaction, and thought processes are uninterrupted. When the system
response is poor, the user becomes sluggish.

For interactive environments, analyze command use. Average execution

time of the truly interactive commands can provide data for validation of
the Queue 1 execution time.

118 VM/SP CP for System Programming

Part 3: Hardware Considerations

This section contains information about processor features, printers, and
other peripheral devices.

Part 3: Hardware Considerations 119

120 VM/SP CP for System Programming

Chapter 15. DASD Operations

This chapter describes three programs that perform operations on direct
access storage devices: Device Support Facilities, Format/Allocate
Program, and DASD Dump Restore (DDR).

Device Support Facilities

Device Support Facilities is a program used with IBM operating systems to
perform various operations on direct-access storage devices. It replaces
IBCDASDI, INITDISK, and SURFANAL in that it can:

e Initialize direct-access storage volumes so that they can be used in
OS/VS or DOS/VSE systems

e Inspect a volume for defective tracks
e Reformat the volume label, and IPL bootstrap and program records

® Provide an analysis function for nonremovable DASD, both CKD and
FBA.

See Device Support Facilities User’s Guide and Reference (Current Release) ,
which describes procedures for initializing, formatting, and analyzing disk
space.

Disk initialization and alternate track assignment should be performed by
the Device Support Facility stand-alone utility, which is on the CMS system
disk with a fileid IPL DSF S2.

All direct access volumes used by the VM/SP system (for paging, spooling,
system residence, directory, or temporary disk allocation) must be properly
labeled, formatted, and allocated. The CP Format/Allocate service program
prepares disks for use by CP.

All direct access volumes (including both real disks and minidisks) to be
used by VSAM under CMS, OS, or DOS, must be formatted by the device
support facility utility.

If certain information in the OS Format 4 label on track 0 cylinder 0 is
destroyed, no additional alternate tracks can be assigned by the device
support facility until the volume is reformatted by the device support
facility:

Chapter 15. DASD Operations 121

Format/Allocate
|

e The CMS Format Program destroys the OS Format 4 label when it ’
formats a volume or when it formats a minidisk whose origin is cylinder
0 of the volume.

e The device support facility and the CP Format/Allocate program (IPL
FMT) preserve the information in the OS Format 4 label.

Format/Allocate Service Program

The Format/Allocate service program formats, allocates, and labels direct
access volumes for paging, spooling and CP file residence. This service
program is executed as part of CP system generation procedures and may
also be executed as a stand-alone program to:

e Format direct access volumes for CP use ;
o Allocate specific disk areas to particular functions or to CP use
e Write six-character volume serial number labels.

Note: The Format/Allocate program should be used with care since it
destroys any existing data. Also, user minidisks and temporary minidisks
must not begin on real cylinder zero of CP-owned volumes, because
information critical to CP is stored in that cylinder.

An object deck version of the CP Format/Allocate service program is a
stand-alone program and can be loaded from a virtual or real card reader
into a virtual or a real machine. (If run in a virtual machine, the virtual
machine must have write access to the volume being formatted.) The
program accepts control statements from the operator’s system console
(commands) or from the IPL device (card reader).

Note: 1/O error messages DMKFMT736E and DMKFMT735E may be issued
if an available path to the device cannot be found after an appropriate
number of retries. High activity can cause this situation. L 4

CP Disk Formats

Cylinders used by CP for paging, spooling, and so on, must be preformatted
(using FMT) with fixed length unblocked records of 4096 bytes.

It is important to note the differences in the terminology for fixed-block
DASD devices (for example, 3310) and count-key-data DASD devices (for
example, 3330).

The basic unit of DASD space used by the VM/SP system is the page. A
page contains 4096 bytes of data. On count-key-data devices, a page is
recorded in a DASD record data area that is 4096 bytes in size. The count
area of this record indicates the location (by cylinder and track) and size

122 VM/SP CP for System Programming

Format/Allocate
|

‘ (4096 bytes) of the recorded page. The preformatting of count-key-data
volumes initializes the count areas and sets the data areas to zero.

On FBA devices, a page is recorded in eight successive blocks of data.
Each block contains 512 bytes of a page. Control data, such as the count
area for count-key-data, is not required. Preformatting FBA volumes sets
all the pages to zero.

Format for CP-Owned CKD Devices

The unit of formatting or allocation for count-key-data devices is the
cylinder. After you decide how many pages of DASD space are required for
system operation, convert the number to a corresponding number of
cylinders for communication with the Format/Allocate program.

Count-key-data DASD capacities when formatted for CP use (4096-byte

‘ pages) are:

| Device Records/ Tracks/ Highest
| track cylinder cylinder
| 2305-1 3 8 47
| 2305-2 3 8 95
| 3330 3 19 403
| 3330-11 3 19 807
| 3340-35 2 12 347
| 3340-70 2 12 695
| 3350 4 30 554
L | 3375 8 12 958
| 3380 10 15 884
| 3380(AE4/BE4) 10 15 1769

The format operation writes 4096-byte blocks on all cylinders being
formatted. The service program does write-checking to verify that parts of
the track are not defective. A count is maintained of pages with read check
errors detected during the format operation. At the completion of the
format operation, the count of the pages with read check errors is printed.

‘ Format for All Cylinders Except Cylinder Zero For example, the 3330

track format for all formatted cylinders except cylinder 0 is shown in
Figure 9 on page 124.

Chapter 15. DASD Operations 123

Format/Allocate

Track O:
RO R1 R2 R3
8 bytes 4096 bytes 4096 bytes 4096 bytes

Track 1 to Track 18:
RO R1 R2 R3

8 bytes 4096 bytes 4096 bytes 4096 bytes

Figure 9. Format of 3330 Cylinders for Use by CP

Format for Cylinder Zero: All volumes containing space for CP use
(paging, spooling, and so on) must have a properly formatted cylinder 0.
The only service program that can do this is the Format/Allocate program .

Cylinder 0 is formatted like other cylinders except that the space associated
with the first three 4096-byte blocks is reserved for system use. This area is
then formatted as illustrated in Figure 10.

Track O
R1 R2 KEY R3
IPL DMKCKP v
rec Module E VOLID
8 24 4096 1
4 80
R4 KEY R5 KEY R6 /;R
Allocation Format Format
Byte map 4 DSCB 5 DSCB 1/
1024 44 96 44 96
Track 1 to Track 18 are the same as the nonzero cylinders.

Figure 10. 3330, 3340, 3350 or 3380 Cylinder 0 Format
The contents of each record in cylinder 0 track 0 are:

RO Nothing.

124 VM/SP CP for System Programming

Format/Allocate

R1

R2

R3

R4

R5

R6

FR

IPL record. Puts the system into wait state if storage volume is
loaded before CP nucleus is built.

Checkpoint record. Used by CP to save and retrieve information for a
warm start.

Volume label. Same as OS VOL1 label. On CP system residence
volume, area in data record marks the beginning of the system
directory. A label is automatically written when cylinder 0 is
formatted. The owner field of the label record contains “CP370” if
there is allocation data present in R4.

Allocation Byte Map. Each byte identifies a cylinder and specifies its
usage (paging, spooling, directory, and so on). This map is filled in by
the ALLOCATE function of the Format/Allocate service program. For
certain 3380 models, this record is greater than 1024 bytes to
accommodate a larger number of cylinders.

Format 4 OS DSCB type label (for compatibility with OS). Also, the
device support facility program uses this label to keep a record of how
many alternate tracks remain available for assignment on this disk.
The Format/Allocate program will preserve this information by first
reading it from any existing Format 4 label, and then writing it back
in the new label.

Format 5 OS DSCB type label (for compatibility with OS). Label
indicates to OS that no space is available on this volume.

Is one or more filler records.

Format for CP-Owned FBA Devices

For FBA devices, the unit of formatting or allocation is the page. Fixed
block device capacity when formatted for CP use is:

3310

15752 pages/spindle

3370, A1 or B1 69750 pages/spindle
3370, A2 or B2 89094 pages/spindle

Each block is 512 bytes long. The first 16 blocks (pages 0 and 1) are
reserved for system use.

Block

0

1

2 3-4 5-12 13-15 16-nn

Contents

IPL REC

VOLID | VTOC | Allocation DMKCKP Reserved | Pages

Extent Map 2-N

Each block contains:

Chapter 15. DASD Operations 125

Format/Allocate

Block Contents J

0 IPL record. Places the system into the wait state if IPL occurs
before the CP nucleus is built.

1 Volume label. Same as DOS/VS1 VOL1 label. On CP system
residence volumes, a field in this record contains a pointer to
the page where the system directory starts. A label is
automatically written when the format function is used,
specifying page 0 as the starting page. The owner field of the
label record contains “CP370” if there is allocation data in
blocks 3 and 4.

2 Volume Table of Contents. The Format 4 and Format 5 DSCB's.

These labels are written for compatibility with OS. They

indicate that no space is available on this volume. ’
3-4 Allocation Extent Map. Each entry is 12 bytes long and

describes a range of pages on the device as well as the usage of
the pages (PERM, TEMP, DRCT, etc.).

5-12 Checkpoint Program. The CP module (DMKCKP).
13-15 Reserved.
16-nn Contains the pages used by the VM/SP system. The area starts v)

at block 16, which corresponds to page 2 on the volume.

Format/Allocate Program Input

Format/Allocate program control statements may be entered through a card
reader or from the system console. All error messages for improperly
specified control statements are displayed at the console.

Format/Allocate Program Card Input)

Punch control statements for card input start in column 1, and each field is
separated from the adjacent field by a comma. Two commas in a row cause
the insertion of a default value. Three commas in a row cause the insertion
of two default values.

Note: The only default values permitted are those that define the starting
and ending cylinders or DASD extents. The defaults are the first and last
cylinders of the volume (or pages), respectively.

Comments must be preceded by at least three blanks.

The control card entries for the Format/Allocate program must be in the
following order:

e Format function J

126 VM/SP CP for System Programming

Format/Allocate
]

FORMAT,devadr,devtype,volser,startadr,endadr
o Allocate function

ALLOCATE,devadr,devtype,volser
TEMP,startadr,endadr
PERM,startadr,endadr
TDSK,startadr,endadr
DRCT,startadr,endadr
OVRD,startadr,endadr
PAGE,startadr,endadr
DUMP,startadr,endadr

END

e Label functions
FORMAT,devadr,devtype,volser, LABEL

FORMAT, ALLOCATE, and LABEL are Format/Allocate program control
words and may be abbreviated to one letter.

FORMAT Control Statement: The format of the FORMAT control
statement is:

FORMAT, devadr,devtype,volser,startadr,endadr

devadr
is a three-digit hexadecimal number that identifies the address of the
device that the Format/Allocate program is to act upon. Valid device
addresses under CMS are X001’ to X’5FF’ for ECMODE OFF and
X’001’ to X’FFF’ for ECMODE ON.

Note: To avoid I/O contention when formatting two device types
(3375/3380) in two virtual machines, do not use consecutive even/odd
pairs of device addresses (e.g., 290,291); rather, it is advisable to use
consecutive odd/even pair device addresses (e.g., 291,292).

deuvtype

is a four-to-seven character field that defines a supported device for
the Format/Allocate program.

Chapter 15. DASD Operations 127

Format/Allocate
|

2305-1 J

2305-2

2314

2319

3330

3330-11

3330 for a 3333 device

3340-35

3340-70

3340-70 for 3340-70F or 3344 devices

3350

3330 for a 3350 device in 3330-1 compatibility mode
3330-11 for a 3350 in 3330-11 compatibility mode
3375

3380 refers to all 3380 models

FB-512 for a 3310 or 3370 device

volser J

is a one-to-six character field that represents the volume serial number
of the volume you are formatting.

startadr
is the starting cylinder address on the DASD on which the format
function is to be performed. For fixed-block devices, this is the
starting page number. The starting address is entered as decimal

digits.]

endadr
is the last cylinder address on the DASD on which the format function
is to be performed. For fixed-block devices, this is the ending page

number. The end address is entered as decimal digits.

ALLOCATE Control Statements: The formats of the ALLOCATE control
statements are:

ALLOCATE,devadr,devtype,volser J
TEMP,startadr,endadr
PERM,startadr,endadr
TDSK,startadr,endadr

DRCT,startadr,endadr

OVRD,startadr,endadr
PAGE,startadr,endadr

DUMP,startadr,endadr
END

Note: You must enter the ALLOCATE and END statements to perform
some type of allocation. Any allocation type control statement is optional
depending on what kind of space you want on the disk. Any space not
allocated on the disk will default to “TEMP’ space.

128 VM/SP CP for System Programming

Format/Allocate
|

devadr
is a three-digit hexadecimal number that identifies the address of the
device that the Format/Allocate program is to act upon. Valid device
addresses under CMS are X’001’ to X’5FF’ for ECMODE OFF and
X’001’ to X’FFF’ for ECMODE ON.

deuvtype
is a four-to-seven character field that defines a supported device for
the Format/Allocate program:

2305-1

2305-2

2314

2319

3330

3330-11

3330 for a 3333 device

3340-35

3340-70

3340-70 for 3340-70F or 3344 devices

3350

3330 for a 3350 device in 3330-1 compatibility mode
3330-11 for a 3350 in 3330-11 compatibility mode
3375

3380 refers to all 3380 models

FB-512 for a 3310 or 3370 device

Note: There are 8 blocks per page, so any format or allocation
specification would be:
Page no. = Block no./8.

volser
is a one-to-six character field that represents the volume serial number
of the volume you are formatting.

startadr
is the starting cylinder address on the DASD on which the allocate
function is to be performed. For fixed-block devices, this is the
starting page number. The starting address is entered as decimal
digits.

endadr
is the last cylinder address on the DASD on which the allocate
function is to be performed. For fixed-block devices, this is the ending
page number. The end address is entered as decimal digits.

TEMP
indicates that the following operands identify temporary storage space
reserved for spooling or paging activity. DMKPGT allocates TEMP
storage space for spooling.

Chapter 15. DASD Operations 129

Format/Allocate

PERM
defines an area that can contain the logout area, the CP nucleus, and
space that is not used by the system but is available for use by virtual
machine users (for example, for user minidisks).

TDSK
defines the temporary minidisk space available for virtual machine
users during a single terminal session on the VM/SP system.

DRCT
indicates that the following space is reserved for directory files.

Note: If you wish to reallocate the system directory, it may be
necessary to rerun the system directory program (DMKDIR) because
the active directory pointer can be destroyed.

OVRD
indicates the space reserved for an override file. This file assigns
classes to CP commands to override the IBM-defined command
structure. For count-key-data devices, the system allocates only the
first cylinder that it finds allocated for OVRD. For FBA devices, the
system will use the first extent defined as OVRD; the minimum
allocation is 2 pages.

PAGE
indicates that the following operands identify DASD storage space for
preferred paging activity.

Note: Cylinders and blocks which are to be used for non-preferred
paging space (spooling, overflow paging operations, and so forth)
should be allocated as ‘TEMP’.

DUMP
indicates that the appropriate DASD space be marked reserved for CP
allocation of system dumps. This reserved area will not be used for
CP paging and spooling.

Note: DUMP allocation must be contiguous since CP will look for

contiguous cylinders or blocks when assigning the system dump spool
file.

END
ends the ALLOCATE function. This statement causes termination of
ALLOCATE functions, and a display of the allocation results. If
‘END’ is the only control statement specified after the ‘ALLOCATE’
statement, then the existing disk allocation is displayed but not
updated, unless an allocation record mismatch occurs on an FBA
device. In the case of a record mismatch (which may have happened
if, for example, a 3370 was restored to a 3310 device) ALLOCATE
followed by END provides a way of rewriting the allocation data and
avoiding future disk errors. For cases where FBA devices have an

130 VM/SP CP for System Programming

Format/Allocate
]

allocation record mismatch, the unallocated space will be allocated as
PERM.

Specify END after you have entered all desired allocation statements.

TEMP, PERM, TDSK, PAGE, DUMP, DRCT, and OVRD are all functions
of ALLOCATE. These cards can follow the ALLOCATE control statement
in any sequence. Each card in turn overlays the cylinder (or allocate)
table, and any space not reallocated remains the same. If an ALLOCATE
function overlays the previous allotment, then the previous cylinder space
allotment is truncated to the beginning of the next allotment. The
allocation operation is executed after you re-IPL. VM/SP. For example:

Disk Storage First Last
Allocation Cylinder Cylinder
1st Entry PAGE 000 002

2nd Entry TEMP 003 403

3rd Entry PERM 010 050

4th Entry TDSK 040 050

5th Entry DRCT 003 004

6th Entry OVRD 005 005

7th Entry END

The result of this disk volume allocation is:

Disk Storage First Last
Allocation Cylinder Cylinder
PAGE 000 002
DRCT 003 004
OVRD 005 005
TEMP 006 009
PERM 010 039
TDSK 040 050
TEMP 051 403

Once an ALLOCATE control statement is encountered, all cards following
it until an END card is encountered are assumed to be part of a single
allocation. The Format/Allocate service functions cannot be performed on
another disk volume until the END card is encountered. Any area not
allocated will default to “TEMP” space. (See Figure 12 on page 134.)

Note: Reallocation of an area containing an active VM/SP directory
deallocates the directory to allow a new directory to be written in the same
area.

After any reallocation, the directory program (DMKDIR) must be executed
to reinitialize the directory. If this is not done, CP will abend with an
ABENDCPI002 when you initialize at IPL.

LABEL Control Statement: The format of the LABEL control statement
is:

Chapter 15. DASD Operations 131

Format/Allocate
|

FORMAT,devadr,devtype,volser, LABEL

devadr
is a three-digit hexadecimal number that identifies the address of the
device that the Format/Allocate program is to act upon. Valid device
addresses under CMS are X’001’ to X’5FF’ for ECMODE OFF and
X’001’ to X’FFF’ for ECMODE ON.

deuvtype
is a four-to-seven character field that defines a supported device for
the Format/Allocate program:

2305-1

2305-2

2314

2319

3330

3330-11

3330 for a 3333 device

3340-35

3340-70

3340-70 for 3340-70F or 3344 devices

3350

3330 for a 3350 device in 3330-1 compatibility mode
3330-11 for a 3350 in 3330-11 compatibility mode
3375

3380 refers to all 3380 models

FB-512 for a 3310 or 3370 device

volser
is a one-to-six character field that represents the volume serial
number.

LABEL
is a keyword designating the label function of the Format/Allocate
program.

Note: Format of cylinder 0 is a prerequisite for the label only function.

If the volume is to be used for paging, spooling, dump, directory, override,
or temp space, ‘CP370’ is required in record 3 for CKD or block 1 for
FB-512. The label option does not write it out; the FORMAT function must
be used to format cylinder 0 for CKD or page 0 for FB-512 to insure the
inclusion of the ‘CP370’.

Examples:

FORMAT

FORMAT,232,3330,MYDISK,000,006
FORMAT,232,3330,MYDISK,,,

132 VM/SP CP for System Programming

Format/Allocate
|

‘ FORMAT,232,3330,MYDISK,,00
FORMAT,232,3330,MYDISK,001,,

ALLOCATE

ALLOCATE,232,3330,MYDISK
PAGE,000,020

TEMP,021,150

PERM, 055,060

TDSK,100,108

OVRD,109,109

DRCT,110,120

DUMP,121,150

END

(LABEL

F,232,3330,M YDISK,label
Format/Allocate Console Input

The Format/Allocate program can be controlled by control statements
entered into the real or virtual console instead of by a deck of cards
containing control statements. If the program finds no control statements
at the card reader, it issues a prompting message to the console. The

t proper response causes the prompting message for the next operand to
appear until the Format, Allocate, or Label function is completely defined;
then the Format/Allocate program is executed. After execution, the
prompting begins again until all DASD allocation requirements are
fulfilled.

Follow these steps to run the Format/Allocate program from the console:

1. Load the card reader with a loader, followed by the Format/Allocate
deck. Under CMS, the loader and the deck are contained in one file,
‘ named IPL FMT S, on the CMS system disk.

2. IPL the card reader.
3. Respond to the prompts.

4. In a virtual machine environment, you must re-IPL. CMS to exit from
the Format/Allocate program.

Following are examples of Format/Allocate program execution under CP

control. Figure 11 on page 134 is an example of the label operation.

Figure 12 on page 134 is an example of the allocate operation. Figure 13 on

page 135 is an example of the allocate overlap operation. All responses are

entered after the colon, as shown, except on 3270-type terminals. After a

function is complete, the program returns and again issues the ENTER
& ‘FORMAT’ OR ‘ALLOCATE’: statement.

Chapter 15. DASD Operations 133

Format/Allocate

VM/SP FORMAT/ALLOCATE PROGRAM

ENTER "FORMAT" OR "ALLOCATE":
format

FORMAT FUNCTION SELECTED
ENTER DEVICE ADDRESS (CUU):

131

ENTER DEVICE TYPE:

3380
ENTER START CYLINDER (XXX OR XXXX) OR "LABEL":
L

ENTER DEVICE LABEL:
cpdsk2

Figure 11. Using the Format Program Label Function

ENTER "FORMAT" OR "ALLOCATE":
allocate

ALLOCATE FUNCTION SELECTED

ENTER DEVICE ADDRESS (CUU):
131

ENTER DEVICE TYPE:
3380

ENTER DEVICE LABEL:
cpdsk2

ENTER ALLOCATION DATA FOR VOLUME CPDSK2

TYPE CYL CYL

drct 0000 0001

ovrd 0002 0002

perm 0004 0008

page 0009 0070

dump 0071 0099

tdsk 0100 0150

end

ALLOCATION RESULTS

DRCT 0000 0001

OVRD 0002 0002

TEMP 0003 0003

PERM 0004 0008

PAGE 0009 0070

DUMP 0071 0099

TDSK 0100 0150

TEMP 0151 0884

DEVICE 131 VOLUME CPDSK2 ALLOCATION ENDED

Figure 12. Using the Format Program Allocate Function

134 VM/SP CP for System Programming

Format/Allocate
]

ENTER "FORMAT" OR "ALLOCATE":
allocate

ALLOCATE FUNCTION SELECTED

ENTER DEVICE ADDRESS (CUU):
131

ENTER DEVICE TYPE:
3350

ENTER DEVICE LABEL:
cpdsk2

ENTER ALLOCATION DATA FOR VOLUME CPDSK2

TYPE CYL CYL

perm 004 004

temp 000 010

tdsk 000 010

perm 010 202

drect 000 004

ovrd 005 005

end

ALLOCATION RESULTS

DRCT 000 004

OVRD 005 005

TDSK 006 009

PERM 010 202

TEMP 203 554
DEVICE 131 VOLUME CPDSK2 ALLOCATION ENDED

Figure 13. Using the Format Program Allocate Overlap Function

Figure 14 shows the label function for FBA devices. Figure 15 on page 136
shows the allocate function for FBA devices. Figure 16 on page 137 shows
the allocate overlap function for FBA devices.

VM/SP FORMAT/ALLOCATE PROGRAM

ENTER "FORMAT" OR "ALLOCATE":
format
FORMAT FUNCTION SELECTED
ENTER DEVICE ADDRESS (CUU):
131
ENTER DEVICE TYPE:
FB-512
ENTER START PAGE NUMBER OR "LABEL":
label
ENTER DEVICE LABEL:
cpdsk?2

Figure 14. Using the Format Program Label Function for FBA Devices

Chapter 15. DASD Operations 135

Format/Allocate
]

ENTER "FORMAT" OR "ALLOCATE":
allocate
ALLOCATE FUNCTION SELECTED
ENTER DEVICE ADDRESS (CUU):
131
ENTER DEVICE TYPE:
FB-512
ENTER DEVICE LABEL:
cpdsk2
ENTER ALLOCATION DATA FOR VOLUME CPDSK2
TYPE PAGE PAGE

perm 2 1000
temp 1001 5000
drct 5001 5100
ovrd 5101 5108
tdsk 5109 9000

end

ALLOCATION RESULTS
PERM 2 1000
TEMP 1001 5000
DRCT 5001 5100
OVRD 5101 5108
TDSK 5109 9000

TEMP 9001 15751
DEVICE 131 VOLUME CPDSK2 ALLOCATION ENDED

Figure 15. Using the Format Program Allocate Overlap Function for FBA
Devices. Specifications for 3310 are shown

136 VM/SP CP for System Programming

Format/Allocate
e

ENTER "FORMAT" OR "ALLOCATE":
allocate

ALLOCATE FUNCTION SELECTED

ENTER DEVICE ADDRESS (CUU):
131

ENTER DEVICE TYPE:
FB-512

ENTER DEVICE LABEL:
cpdsk2

ENTER ALLOCATION DATA FOR VOLUME CPDSK2

TYPE PAGE PAGE

temp 2 500

page 9500 11000

end

ALLOCATION RESULTS

TEMP 2 500

PERM 501 1000

TEMP 1001 5000

DRCT 5001 5100

OVRD 5101 5108

TDSK 5109 9000

TEMP 9001 9499

PAGE 9500 11000

TEMP 11001 15751

DEVICE 131 VOLUME CPDSK2 ALLOCATION ENDED

ENTER "FORMAT" OR "ALLOCATE":

ALLOCATE FUNCTION SELECTED
ENTER DEVICE ADDRESS (CUU):
131
ENTER DEVICE TYPE:
FB-512
ENTER DEVICE LABEL:
cpdsk2
ENTER ALLOCATION DATA FOR VOLUME CPDSK2
TYPE PAGE PAGE

perm 0 1000

LOWEST ALLOCATABLE PAGE IS PAGE 2 -- RESPECIFY

perm 217345 ,

HIGHEST ALLOCATABLE PAGE IS PAGE 15751 -- RESPECIFY
perm 2 1000

end

ALLOCATION RESULTS

PERM 2 1000

TEMP 1001 5000
DRCT 5001 5100
OVRD 5101 5108
TDSK 5109 9000
TEMP 9001 9499
PAGE 9500 11000
TEMP 11001 15751
DEVICE 131 VOLUME CPDSKZ2 ALLOCATION ENDED

Figure 16. Using the Format Program Allocate Overlap Function for FBA
Devices. Specifications for 3310 are shown

Note that before the ALLOCATE function was invoked, page 0 was
formatted and labeled CPDSK2. The area associated with the first three
4096-byte blocks on page 0 are not used for spooling but contain system
information (page allocation map, label, and so on).

Chapter 15. DASD Operations 137

DDR

These CP-formatted volumes can be made usable by CP in one of two ways:
e They may be attached to the system by the VM/SP operator.
® Their volume serial numbers may appear in the SYSOWN macro in the

DMKSYS module. The CP system residence volume’s serial number
must appear in the SYSOWN macro.

DASD Dump Restore Service Program (DDR)

The DASD Dump Restore (DDR) program dumps, restores, copies, or prints
data from a direct access storage device, such as a whole volume of real
DASD or a VM/SP user minidisk. The DDR program may run as a
stand-alone program, or under CMS via the DDR command.

The DDR program has five functions:

e Dumping part or all of the data from DASD to tape.

e Transferring data from tapes created by the DDR dump function to a
direct access device. The direct access device must be of the same type
as that which originally contained the data.

e Copying data from one device to another of the same type. Data may be
reordered by cylinder (or block) when copied from disk to disk. In order
to copy one tape to another, the original tape must have been created

by the DDR DUMP function.

e Printing selected parts of DASD and tape records in hexadecimal and
EBCDIC on the virtual printer.

o Displaying selected parts of DASD and tape records in hexadecimal and
EBCDIC on the terminal.

To generate the VM/SP starter system from the distribution tape, the
stand-alone RESTORE function must be used.

Invoking DDR Under CMS

The format of the DDR command is:

on [0 [5]]

138 VM/SP CP for System Programming

DDR

|
o 2]

is the identification of the file containing the control statements for
the DDR program. If no file identification is provided, the DDR
program prompts for control statements from the console. The
filemode defaults to an asterisk (*) if a value is not provided.

DDR handles two logical line editing symbols:

o The logical character delete symbol (@), which allows deletion of
one or more of the previously entered characters.

o The logical line delete symbol (¢), which deletes the entire
previous physical line.

Most often, the default values for these two symbols are defined for
each virtual machine at system generation time. When you use the
CP TERMINAL command to redefine the CHARDEL and LINEDEL
characters, the re-definitions have no affect on DDR line editing.
DDR continues to recognize “@” as valid CHARDEL and “¢” as valid
LINEDEL symbols.

Comments:

1. In a virtual machine, DDR informational messages are directed by
default to the CMS virtual printer, X’00E’, unless the SYSPRINT CONS
option is specified.

2. When DDR is invoked in CMS, the I/O operation is performed by CP,
which has built-in error recovery facilities.
Invoking DDR as a Stand-alone Program
To use DDR as a stand-alone program, the operator should IPL it from a
real or virtual IPL device as he would any other stand-alone program.

Then indicate where the DDR program is to obtain its control statements by
responding to prompting messages at the console.

Comments:

1. When DDR is run as a stand-alone program, it has only the most
elementary error recovery support.

2. When running stand-alone, DDR will search for a console at address 009

or O1F. If these consoles are not operational, the program will enter a
wait state, waiting for an interrupt to identify the console. If any

Chapter 15. DASD Operations 139

DDR

nonconsole type device is physically connected to address 009 or 01F, it
must be made nonoperational or the results will be unpredictable.

3. The stand-alone DDR utility will not support cylinder faults for MSS
virtual volumes when performing the DUMP or COPY functions.

4. It may be necessary to disable channel-to-channel devices in order for
the DDR utility to run as a stand-alone program.

5. The DDR utility does not assign 3480 tape drives to itself. So, when a
3480 is in use during stand-alone DDR processing, do not IPL any other
processor that has a path to the device. This is because the other
processor might steal the 3480 drive by assigning it to itself. This would
immediately stop DDR’s access to the device. For the same reason, do
not vary the 3480 device online to any other processor until DDR
processing completes.

6. When you are doing a stand-alone DDR and you have a failure on a
tape drive, you can re-IPL the DDR tape and restart at the failed tape
without having to go back to the beginning.

| DDR 8809 Data Streaming Support

| The 8809 operates in either start/stop (12.5 inches per second) or streaming
| mode (100 inches per second). In streaming mode, the 8809 maintains the

| tape velocity through the interblock gap, anticipating the next command.

| This means that the tape motion continues without losing time either

| starting or stopping if the next command is received in time.

| If a command doesn’t arrive on time, the tape proceeds past the next record,
| backs up, and then performs the next command. This process of stopping

| and re-positioning is called backhitching, and takes more than one second

| to complete.

| So DDR can use 8809 ‘Data Streaming’, the following conditions must be
| met:

| e DDR is Operating in a stand-alone real mode.
| e The DDR function is either DUMP or RESTORE.
| e The DASD is an FB-512 (FBA) device.

| e The input and output devices are on different channels.

140 VM/SP CP for System Programming

DDR
L __|

L DDR Control Statements

DDR control statements describe the intended processing and the needed
I/O devices. I/O definition statements must be specified first.

All control statements may be entered from either the console or the card
reader. Only columns 1 to 71 are inspected by the program. All data after
the last operand in a statement is ignored. An output tape must have the
DASD cylinder header records in ascending sequence; therefore, the extents
must be entered in sequence by cylinder or by extent. Only one type of
function—dump, restore, or copy—may be performed in one execution, but
up to 20 statements describing DASD cylinder extents may be entered.

The function statements are delimited by (preceded by) an INPUT and
OUTPUT statement. If additional functions are to be performed, the
sequence of control cards must be repeated. If you do not use INPUT or

L OUTPUT control statements to separate the functions you specify when the
input is read from a card reader or CMS file, an error message is displayed.
However, the remainder of the input stream will be checked for proper
syntax, but no further DDR operations will be performed. Only those I/O
devices defined by the INPUT statement and the OUTPUT statement must
be redefined in subsequent steps. The SYSPRINT I/O definition remains
the same.

To return to CMS, enter a null line (carriage return) in response to the
‘ prompting message (ENTER:). To return directly to CP, key in #CP.

The PRINT and TYPE statements work differently than other DDR control
statements in that they operate on only one data extent at a time and it is
not necessary to respecify the INPUT statement ahead of each PRINT or
TYPE statement. If the input is from a tape created by the dump function,
the tape must be positioned at the header record for each step. The PRINT
and TYPE statements have an implied output of either the console (TYPE)
or system printer (PRINT), so no OUTPUT statement is required.

The I/O definition statements describe the tape devices, DASD, and printers
k,« used while executing the DASD Dump Restore program.

INPUT/OUTPUT Control Statement

An INPUT or OUTPUT statement describes each tape unit and DASD used.
The format of the INPUT/OUTPUT statement is:

Chapter 15. DASD Operations 141

DDR

volser
INput cuu type altape [(Options...)]
OUTput SCRATCH
Options:
MOde 6250
SKip nn| | MOde 1600 | | REWIND
[SKip Q] MOde 800 —EEN;“’,:d COmpact
MOde 38K
INPUT

indicates that the device described is an input device.

OUTPUT
indicates that the device described is an output device.

Note: If the output device is a DASD and DDR is running under CMS,
the device is released using the CMS RELEASE command function
and DDR processing continues.

cuu

is the unit address of the device.
type

is the one of the following device types:
2305-1 2400 3330-11 3380 3430
2305-2 2401 3340-35 3410 3480
2311 2415 3340-70 3411 8809
2314 2420 3350 3420 FB-512
2319 3330 3375 3422

There is no 7-track support for any tape devices.

Specify a 3340-70F as a 3340-70, and a 3333 as a 3330. Specify a 3350
that is in 3330-1 or 3330-11 compatibility mode as a 3330 or 3330-11.
Specify a 3344 as a 3340-70, and specify 3350 for a 3350 operating in
native mode (as opposed to compatibility mode). Specify any 3380
model as a 3380. Both 3310 and 3370 are denoted by specifying FB-512
or FB.

The DASD Dump Restore (DDR) program, executing in a virtual
machine, uses I/O DIAGNOSE 20 to perform I/O operations on tape
and direct access storage devices.

DDR under CMS requires that the device type entered agree with the
device type of the real device as recognized by VM/SP. (DDR uses
DIAGNOSE X’24’ If there is a conflict with device types, the following
message is issued:

142 VM/SP CP for System Programming

DDR

DMKDDR708E INVALID INPUT OR OUTPUT DEFINITION

However, if DDR executes in a virtual machine, DDR uses DIAGNOSE
24 to determine the real device type. If the device types do not agree,
an error message is issued. The speed setting for 8809 tape drives is
not under your control. When DDR is running as a command under
CMS, the 8809 is supported only in start/stop mode. If DDR is run
stand-alone, DDR attempts to run the 8809 in high-speed mode. In this
mode, the data transfer time is reduced. However, this does not
necessarily mean that the time for a DDR job is reduced; job duration
depends on many factors such as processor and device contention.

volser
is the volume serial number of a DASD. If the keyword “SCRATCH”
is specified instead of the volume serial number, no label verification
is performed.

altape
is the address of an alternate tape drive.

If multiple reels of tape are required and “altape” is not specified,
DDR types one of the the following at the end of the reel:

END OF VOLUME CYL xxxx HD xx, MOUNT NEXT TAPE
or

END OF VOLUME BLOCK xxxxxx, MOUNT NEXT TAPE

After the new tape is mounted, DDR continues automatically.

SKip [”(_,"]

forward spaces nn files on the tape, where nn is any number up to 255.
The SKIP option is reset to zero after the tape has been positioned.

Use the SKIP option if there is more than one dump on the tape or if
other files precede the dump.

MOde 6250
MOde 1600

MOde 800
MOde 38K

Modes 6250, 1600, 800, or 38K causes all output tapes that are opened
for the first time and at the load point to be written or read in the
specified density. All subsequent tapes mounted are also set to the
specified density. If no mode option is specified, then no mode set is
performed and the density setting remains as it previously was unless

Chapter 15. DASD Operations 143

DDR

the tape is positioned at the load point. When this occurs, the density
setting resets to 1600 (the default value).

MODE also specifies the recording density for the 3480 magnetic tape
subsystem. Since the 3480 records only at a density of 38K, the default
for the MODE option of the 3480 is 38K.

Notes:

1. If a user specifies a density mode that the tape cannot handle, the
control unit may not return an error condition. Instead, the mode
setting is ignored and the default control unit setting is used.

2. 800 BPI is an invalid mode option for the 3430 tape drive. An error
message is issued if a user specifies 800 as a mode option for a 3430.

3. Only modes 1600 and 6250 can be specified for the 3422 magnetic
tape subsystem. An invalid mode will generate an error message.

REWIND

rewinds the tape at the end of a function.

UNLOAD

rewinds and unloads the tape at the end of a function.

LEAVE

leaves the tape positioned at the end of the file at the end of a
function.

COMPACT

causes the output tape to be in a compact format, which uses less tape
space than standard format. DDR stores data in a compact format by
compressing strings of duplicate data into a smaller amount of space
and reducing the amount of space necessary to represent the
characters in the data. This option is valid only on the OUTPUT
control statement for the DUMP functions.

You can use tapes in the compact format as input to the RESTORE,
COPY, PRINT, and TYPE functions without any changes. For more
information, refer to the following sections about function statements.

Comments:

1.

When the wrong input tape is mounted, the message

DMKDDR709E WRONG INPUT TAPE MOUNTED

is displayed and the tape will rewind and unload regardless of options
REWIND, UNLOAD, or LEAVE being specified.

If DDR is executed from CMS, failure to attach the tape drive or the
disk device (or both) to your virtual machine prior to invoking the
input/output statement causes the following response to be displayed:

144 VM/SP CP for System Programming

C

DDR

DMKDDR708E INVALID INPUT OR OUTPUT DEFINITION

SYSPRINT Control Statement

Function Statements

The SYSPRINT control statement describes the device that output is to be
sent to. If the SYSPRINT CONS option is specified, the output is directed
to the console for both the CMS environment and the DDR virtual machine.

In the CMS environment, all output is directed (by default) to 00E, unless
the SYSPRINT CONS option is specified. Any SYSPRINT cuu option
specification is ignored.

In the DDR virtual machine, the output is directed to the output device
specified by the SYSPRINT cuu option. If the SYSPRINT CONS option is
specified, all output is directed to the console. If no options are specified,
the output is directed (by default) to 00E.

cuu
SYsprint CONS
00E

cuu
specifies the unit address of the device.

CONS
specifies the console as the output device.

The function statements tell the DDR program what action to perform. The
function commands also describe the extents to be dumped, copied, or
restored. The format of the DUMP/COPY/RESTORE control statement is:

ﬁ’y"l’fkl [TO] [fy"l’gkz [Reorder] [To] [g;ggk3]]
[FTr] | cPvol

ALL

NUecleus

DUmp

Chapter 15. DASD Operations 145

DDR

k
copy || (101 [£255* Reorder) rmal [255%°] |
REstore CPvol
ALL
NUcleus
DUMP

requests the program to move data from a direct access volume onto a
magnetic tape or tapes. After the system dumps the data, if you
specified the COMPACT option on the OUTPUT control statement,
you will receive these messages:

BYTES IN BYTES OUT
TRACKS NOT COMPACTED ON TAPE
BLOCKS NOT COMPACTED ON TAPE

The format of the tape depends on the type of the direct access
volume. Comments:

1. The FTr operand is valid only with the DUMP control statement.

2. If you specify dump with the COmpact option on the OUTPUT
card, the system dumps the data in an FTR format.

FTr
requests an output tape format of variable unblocked records. The
size of the records and the number of records per track written to the
tape depend on the density of the tape. The FTr operand is valid only
with the DUMP control statement.

The option can be used for those devices supporting the full-track-read
(FTR) feature (3330, 3340, 3344, 3350, 3375, and 3380) and for FBA
devices (FTR is the default for 3375 and 3380 and, therefore, need not
be specified).

If FTr is specified on the DUMP control statement for a
count-key-data DASD but the control unit does not support the
feature, a message is written and the operation proceeds with data
written in the old format.

For count-key-data direct access volumes, the data is moved cylinder
by cylinder.

The format of the resulting tape is:
Non-FTR format:

Record 1
A volume header record, consisting of data describing the volumes.

146 VM/SP CP for System Programming

DDR

Record 2

A track header record, consisting of a list of count fields to restore
the track, and the number of data records written on tape. After
the last count field, the record contains key and data records to
fill the 4K buffer.

Record 3
Track data records, consisting of key and data records packed into
4K blocks, with the last record truncated.

Record 4

Either the end-of-volume (EOV) or end-of-job (EQJ) trailer label.
The end-of-volume label contains the same information as the next
volume header record, except that the ID field contains EOV. The
end-of-job trailer label contains the same information as record 1
except that the cylinder number field contains the disk address of
the last record on tape and the ID field contains EOJ.

FTR format:

Record 1
The same as described for the non-FTR format.

Record 2

A track header record, consisting of fields containing the length of
the track, the density of the tape, and the number of count fields
in the track followed by the track contents to fill the record,
making it the same length as Record 3.

Record 3

Track data records, consisting of count-key-data records in 8K,
12K, or 48K blocks for 800, 1600, or 6250 BPI respectively, or 48K
blocks for the 3480 Tape Subsystem. The last block, in all cases, is
a short block.

Record 4
The same as described for the non-FTR format.

For FBA devices, the data is moved in sets of blocks. Each set
contains 95 (or less for the last set) blocks of data. Any number of
blocks can be moved with one DUMP statement. The format of the
resulting tape depends on whether the FTR option is used or not,
and/or the density of the output tape.

Record 1
The same as described for the non-FTR format of CKD devices.

Record 2

A data header record. This consists of data that describes the set
of blocks that follow (such as block numbers and the number of
tape records required to hold these FB-512 blocks). Following the
control data are the actual FB-512 blocks filling out the tape
record.

Chapter 15. DASD Operations 147

DDR

Record 3
FB-512 data records. These contain the rest of the blocks making
up the set.

Record 4
The same as described for the non-FTR format of CKD devices.

In non-FTR format the record length of record 2 and record 3 is 4K
bytes.

For FTR or compact formatted tapes, record length is 8K, 12K, or 48K
blocks for 800, 1600, or 6250 BPI respectively, or 48K blocks for the
3480 Tape Subsystem. The last block, in all cases, may be a short one.

COPY
requests the program to copy data from one device to another device
of the same or equivalent type. Data may be recorded on a cylinder or
block basis from input device to output device. A tape-to-tape copy
can be accomplished only with data dumped by this program.

You may use a tape in compact format as input. For a tape-to-tape
copy, the output tape will be in the same format (compact or standard)
as the input tape. The COMPACT option on the OUTPUT control
statement is not valid for the COPY function. If it is specified, the
system displays the following message:

COMPACT OPTION IGNORED FOR COPY OPERATIONS

Note: You cannot copy between FBA and count-key-data devices.

RESTORE
requests the program to return data that has been dumped by this
program. Data can be restored only to a DASD volume of the same or
equivalent device type from which it was dumped. It is possible to
dump from a real disk and restore to a minidisk as long as the device
types are the same.

You can use a tape in compact format as input. DDR checks if the
input is in compact format, and expands the data back to standard
format, if needed. You do not need to specify anything to the program
about the tape format. After the system restores the data, you will
receive the following message:

BYTES RESTORED

cyll [TO] [cyl2 [REORDER] [TO] [cyl3]]
Only those cylinders specified are moved, starting with the first track
of the first cylinder (cyll), and ending with the last track of the second
cylinder (cyl2). The REORDER operand causes the output to be
reordered, that is, moved to different cylinders, starting at the
specified cylinder (cyl3) or at the starting cylinder (cyll) if cyl3 is not
specified. The REORDER operand must not be specified unless
specified limits are defined for the operation; the starting and, if

148 VM/SP CP for System Programming

DDR

required, ending cylinders (cyll and cyl2) must be specified. If the
input device cylinder extents exceed the number of cylinders specified
on the output device, an error message results.

Note: The DDR program accepts either a 3-digit or 4-digit cylinder
specification.

blockl[To] [block2 [REORDER] [TO] [block3]]
only the specified blocks are moved, starting with the first block, up to
and including the last block. The REORDER operand causes the data
to be moved to a different DASD location. The REORDER operand
must not be specified unless limits are defined for the operation. If the
input block extents exceed the capacity of the output device, an error
message results.

CAUTION

Use the REORDER operand to move minidisks to new
locations, not to re-locate non-minidisk cylinders. To
understand the difference, consider a 10-cylinder
minidisk. Its cylinders are numbered 0-9 and the
count fields of its records refer to cylinders 0-9. If
the minidisk contains location-dependent data, then
references to cylinders 0-9 will be hidden within that
data. When you use REORDER to move the minidisk
to a new real location, the minidisk cylinders are still
regarded as being cylinders 0-9, and you do not need
to change the cylinder numbers in the count field of
the records. On the other hand, when moving
non-minidisk cylinders, you would want the count
fields of the moved records to reflect the new
cylinder addresses, but REORDER keeps the original
cylinder numbers in the count fields.

CPVOL
specifies that cylinder 0 for count-key-data devices, or blocks 0-16 for
FBA devices including all active directory, override space, and
permanent disk space are to be copied, dumped, or restored. This
indicates that both source and target disk must be in CP format, that
is, the CP Format/Allocate program must have formatted them. This
includes space allocated as DRCT, PERM, and OVRD. When a
tape-input function specifies CPVOL, the system restores or copies all
the data.

ALL
specifies that the operation is to be performed on the entire DASD
volume, either cylinders or blocks. This operation is not valid for
alternate track cylinder assignments on some devices. (See
“Restrictions” on page 150.)

Chapter 15. DASD Operations 149

DDR

Restrictions

Note: The occurrence of message DMKDDR705E (issued upon
completion of the copy restore or dump operation) indicates that an
attempt was made to copy, restore, or dump the contents of cylinders
beyond the extents of the designated minidisk.

When you do a COPY ALL function of the DDR program from an
existing 3380 DASD to a 3380 AE4/BE4, and vice versa, you must
reallocate all cylinders to reflect the change in device capacity. (Use
the ALLOCATE function of the FORMAT/ALLOCATE program.)

When DDR is run under CMS and you specify the ALL option for a
minidisk that resides on a CKD DASD volume, you will get message
DMKDDR705E when the operation completes.

NUCLEUS

specifies that record 2 on cylinder 0, track 0 and the nucleus cylinders
for count-key-data devices are dumped, copied, or restored. These are
blocks 5-12 for FBA devices.

Note: To do a ‘DDR RESTORE NUC’, the tape must be created by
‘DDR DUMP NUC’. Otherwise, the system would issue message
DMKDDR723E.

Each track processed by this utility must have a valid home address on
it containing the real cylinder and track location. Even when restoring
and copying data to a track it must have a pre-existing home address on
it.

Each track on an input DASD must have a valid record zero on it, with
no more than eight bytes in the key and data fields of the record. Each
track on an output DASD must also have a valid record zero on it
unless that device is a 2314, 2319, 2305-1, or 2305-2.

Flagged tracks are treated just as any other track for all 2314, 2319, and
2305 devices. That is, no attempt is made to substitute the alternate
track data when a defective primary track is read. In addition, tracks
are not inspected to determine whether they were previously flagged
when written. Therefore, volumes containing flagged tracks should be
restored to the same cylinders of the volume from which they were
dumped. The message DMKDDR715E occurs each time a defective
track is dumped, copied or restored, and the operation continues. When
ALL is specified for these device types, both the primary cylinders and
the high-order cylinders normally reserved for alternate tracks are
dumped, copied, or restored.

Flagged tracks on 3330, 3340, 3350, 3375, and 3380 devices are handled
so that data is transferred to or from the assigned alternate track in
place of the defective track. (For 3330, 3375, 3380 and 3350 this is
accomplished automatically by the hardware of the control unit while
for the 3340 and 3344 it is accomplished through software.)

150 VM/SP CP for System Programming

DDR

Note: Alternate track recovery for overflow records is not provided by
VM/SP for 3340s and 3344s.

The tape created by dumping one of these types of DASD will appear as
if it had been dumped from a defect-free device and the tape can be
restored to any device of the same type, even though that device might
not have the same tracks flagged defective as the original device had.
(The COPY function works this way also.) If a track is flagged as
defective, but has no alternate assigned, a warning message is issued
and the only data transferred is the home address record and record
zero. When ALL is specified for these device types, only the primary
cylinders are processed; the cylinders reserved for alternate tracks are
not processed except that an assigned alternate track is processed
whenever the corresponding defective track is processed. However, by
specifying the cylinder range explicitly (cyll to cyl2 format), all
cylinders, including cylinders in the alternate track area, can be
dumped or copied from. But these same cylinders cannot be restored to
or copied to explicitly. It is intended that explicitly dumped cylinders
in the alternate track area will be restored to another area via the
REORDER operand. The only reason the explicit dumping and copying
of cylinders from the alternate track area is allowed at all is to
facilitate conversion of 3340 and 3344 disks that were written using
early releases of VM/SP.

You should move any minidisk that extended into the alternate track
cylinder to either another area of the disk or to another disk. To do
this, use the REORDER option to copy or restore a minidisk to another
area.

3375 or 3380 DASD default to full track read mode. For other devices
that support full track read processing, you must specify the option.
Otherwise, the tape will be produced in the current non-FTR DDR
format of 4096 blocks. The 3330/3340 DASD can only take advantage of
the full track read feature only when the 3830 or 3880 has microcode
supporting either 3344 or 3350.

The system cannot use tapes created by the DDR DUMP function,
which are in compact format, as input to earlier levels of DDR.

If you specify the COMPACT option, do not specify the FTR option with
it. The full-track-read feature will be utilized by COMPACT if it is

available.

The 8809 tape drive may not operate efficiently in streaming mode while
DDR is processing data in the compact format.

Chapter 15. DASD Operations 151

DDR

Some Examples:

Example 1:

INPUT 191 3330 SYSRES

OUTPUT 180 3420 181 (MODE 1600
SYSPRINT OOF

DUMP FTR CPVOL

INPUT 130 3330 MINIO1l

DUMP 1 TO 50 REORDER 51

60 70 101

This example sets the tape density to 1600 BPI, then dumps all pertinent
data (for CPVOL, this includes label/allocation data, directory space,
permanent space, and override space) from the volume labeled SYSRES
onto the tape that is mounted on unit 180. The data is dumped in a
full-track-read format, so, in this case, the records will be in 8K blocks. If
the program runs out of space on the first tape, it continues dumping onto
the alternate device (181). A map of the dumped cylinders is printed on unit
00F while the program is dumping.

When the first function is complete, the volume labeled MINIO1 is dumped
onto the tape. Its cylinder header records are labeled 51 to 100. A map of
the dumped cylinders is printed on unit 00F. Next, cylinders 60 to 70 are
dumped and labeled 101 to 111. This extent is added to the cylinder map on
unit 00F. When the DDR processing is complete, the tapes are unloaded
and the program stops.

Example 2:

INPUT 150 3375 SYSTEST
OUTPUT 181 3480 182 (MODE 38K LEAVE COMPACT
DUMP ALL

This example sets the tape density to 38K BPI (which is required for a 3480
tape device). After the data is dumped, the tape will not rewind or unload
due to the LEAVE option. DDR will compact all data dumped before
writing it out to tape. When the first tape is full, DDR will begin dumping
to the alternate tape (182). DDR will dump all cylinders on the 3375 to the
tapes.

Example 3:

INPUT 101 3380
OUTPUT 202 3380
COPY NUCLEUS

This example copies the following from device 101 to the same location on
device 202:

o Record 2 on cylinder 0, track 0
e The nucleus cylinders.

In this case, the input and output device types must be the same. All FBA
devices are considered to be of the same device type: FB-512.

152 VM/SP CP for System Programming

DDR

Example 4:

INPUT 182 3420 (MODE 1600 REWIND
OUTPUT 250 FB-512 SYSTEST
RESTORE 10 TO 20 REORDER TO 30

This example restores data previously dumped from an FBA device to
another FBA device with address 250. Blocks 10 through 20 on the tape are
restored to the DASD starting at block 30 to block 40.

In any case, if you are defining cylinder extents from the console, you only
need to enter DUMP, COPY or RESTORE on the command line. The
system displays the following:

ENTER CYLINDER EXTENTS
ENTER:

For any extent after the first extent, the message

ENTER NEXT EXTENT OR NULL LINE
ENTER:

is displayed. The user may then enter additional extents to be dumped,
restored, or copied. A null line causes the job step to start.

Comments:

1. When a cylinder map is printed on the virtual printer (00F as in the
previous example) a heading precedes the map information. Module
DMEKDDR controls the disk, time and zone printed in the heading.
Your installation must apply a local modification to DMKDDR to
ensure that local time, rather than GMT (Greenwich Mean Time), is
printed in the heading.

2. Attempts to restore cylinders or blocks beyond the capacity that had
been recorded on the tape produces a successful EOJ, but the printout
only indicates the last cylinder or block found on the tape.

3. An end-of-file mark is written to the tape following each DUMP
function. Multiple extents can be written within one DUMP function.
Multiple DUMP functions can be performed within one DDR session. If
an extent table is built within one DUMP function, then a tape mark is
written after all of these extents have been dumped, to indicate
end-of-file.

PRINT/TYPE Function Statement

Use the PRINT and TYPE function statement to print or type (display) a
hexadecimal and EBCDIC translation of each record specified. The first of
a group of PRINT or TYPE statements must be preceded by an INPUT
statement defining either a direct access device or a tape. The output is
directed to the system console for the TYPE function, or to the SYSPRINT
device for the PRINT function. (This does not cause redefinition of the
output unit definition.) PRINT and TYPE may be used to display the

Chapter 15. DASD Operations 153

DDR

]

contents of any track including those in the alternate track cylinders. For
3330, 3340, and 3350 devices, the following is displayed when alternate
tracks are involved:

When displaying a defective track that has a properly assigned
alternate, the home address record displayed is taken from the defective
track while record zero and all other records are taken from the
alternate. The “defective” flag, visible in the displayed home address, is
the only hint that this is not a normal track.

When displaying a flagged defective track which does not have a proper
alternate, only the home address record and record zero are displayed,
and they are both taken from the defective track.

When displaying an alternate track explicitly, all data displayed is from
that track.

The input may be any valid device as described under “INPUT/OUTPUT
Control Statement” on page 141. If the input device is tape, it must be a
tape created by the DDR service program. You do not need to specify
whether the tape is in compact or standard format, as the input format does

not

The

affect the printed or displayed output.

format of the PRINT/TYPE control statement is:

PRint cyll [hh1 [rri]] [To cyl2 [hR2 [rr2 1] [(Options...)]]
TYpe

blockl [To block2] [(Options...)]
Options

[Hex] [Graphic] [Count]

cyll

hhl

rrl

TO

is the starting cylinder.

is the starting track. If present, it must follow the cyll operand. The
default is track zero.

is the starting record. If present, it must follow the hhl operand. The
default is home address and record zero.

cyl2
is the ending cylinder. If more than one cylinder is to be printed or
typed, “TO cyl2” must be specified.

154 VM/SP CP for System Programming

<

DDR

hh2
is the ending track. If present, it must follow the cyl2 operand. The
default is the last track on the ending cylinder.
rr2
is the record ID of the last record to print. The default is the last
record on the ending track.
blockl1
is the starting FB-512 block number.
TO block2
is the ending block number. If more than one block is to be printed or
typed, “To block2” must be specified.
Options:
HEX
prints or displays a hexadecimal representation of each record
specified.
GRAPHIC
prints or displays an EBCDIC translation of each record specified.
COUNT
prints or displays only the count field for each record specified. The
COUNT option is ignored for FBA data.
Usage:

If the TYPE statement follows the occurrence of error message
DMKDDR705E and specifies the same cylinder, track, and record extents
indicated in the error message, the contents of the printed record must be
interpreted in the context of the I/O error information given in the initial
message.

Examples:

PRINTO0TO 3
Prints all of the records from cylinders 0, 1, 2, and 3.

PRINT 013

Prints only one record, from cylinder 0, track 1, record 3. Count-key-data
devices print only one record; from cylinder 0, track 1, record 3; FBA
devices print blocks 0 to 3.

PRINT1103TO 1154

Prints all records starting with cylinder 1, track 10, record 3, and ending
with cylinder 1, track 15, record 4.

Chapter 15. DASD Operations 155

DDR

The example in Figure 17 on page 159 shows the information displayed at
the console (TYPE function) or system printer (PRINT function) by the
DDR program. The listing is annotated to describe some of the data fields.

The printed output for FBA data is also provided by the DDR program. The
program first prints a heading that lists the block number and then prints
the 512 bytes of data in the block.

Responses

Message (DMKDDR711R) indicates that the volume serial number read
from the device at cuu is not the same as that specified on the INPUT or
OUTPUT control card:

DMKDDR711R VOLID READ IS volid2 NOT volidl
DO YOU WISH TO CONTINUE? RESPOND YES NO OR
REREAD:

volid2
is the volume serial number from the VOL1 label on the DASD unit.

volidl
is the volume serial number from the INPUT or OUTPUT control
card.

Message (DMKDDR716R) indicates that the device at cuu (as specified in
the INPUT or OUTPUT control card) contains no volume serial number:

DMKDDR716R NO VOL1 LABEL FOUND FOR volser
DO YOU WISH TO CONTINUE? RESPOND YES NO OR
REREAD:

volser
is the volume serial number of the DASD from the INPUT or the
OUTPUT control card.

Message (DMKDDR717R) requests verification of the input parameters:

DMKDDR717R DATA DUMPED FROM volidl TO BE RESTORED TO volid2
DO YOU WISH TO CONTINUE? RESPOND YES NO OR
REREAD:

volidl
is the volume serial number from the input tape header record
(volume dumped).

volid2
is the volume serial number from the output device.

Message (DMKDDR725R) indicates that the input device has more storage
units than the output device:

DMKDDR725R DASD INPUT DEVICE WAS (IS) LARGER THAN OUTPUT
DEVICE.
DO YOU WISH TO CONTINUE? RESPOND YES NO OR
REREAD:

156 VM/SP CP for System Programming

DDR

Explanation: RESTORE function - The number of cylinders or blocks on
the original DASD input unit is compared with the number on the
output device.

COPY function - The input device contains more cylinders or blocks
than the output device.

Operator Action: The operator must determine if the COPY or
RESTORE function is to continue. The response is either yes, no, or

reread.

Other messages from DDR prompt for input and report progress in
processing.

The following two messages prompt for input from the terminal:

ENTER CYLINDER EXTENTS
ENTER:

ENTER BLOCK EXTENTS
ENTER:

The following two messages prompt for the next tape reel:

® END OF VOLUME CYL xxxx HD xx, MOUNT NEXT TAPE
® END OF VOLUME BLOCK xxxxxXx, MOUNT NEXT TAPE
After the tape is mounted, DDR continues processing.

This message reports that the RESTORE operation has begun:

RESTORING volser
volser is the volume serial number of the disk dumped.

This message reports that the COPY operation has begun:

COPYING volser
volser is the volume serial number described by the input unit.

This message reports that the dumping operation has begun:

DUMPING volser

volser is the volume serial number described by the input unit.

Chapter 15. DASD Operations 157

DDR

This message reports that the PRINT operation has begun: J

PRINTING volser
volser is the volume serial number described by the input unit.

This message reports that the DUMP operation has ended:

END OF DUMP

This message reports that the RESTORE operation has ended:

END OF RESTORE

This message reports that the COPY operation has ended:

END OF COPY

This message reports that the PRINT operation has ended: J

END OF PRINT

This message reports that all specified operations have completed:

END OF JOB

When this message

Enter: J

prompts for input from the terminal, pressing the ENTER key (or
equivalent) causes control to return to CMS, if the virtual machine is in the
CMS environment.

In addition to these responses, other messages that require the operator to
continue, terminate, or reinitiate the current operation are described in
VM/[SP System Messages and Codes.

158 VM/SP CP for System Programming

DDR

Home Address -
Record 0

2nd Halt of —
Record 2

Record 3 —

Record 4 —

Home Addressd— g ICYL 019 HD 00 | HOME ADDRESS 0000130000 lRECORD ZERO 0013000000

Record 0 - ¢ o i
Cylinder and head Home Address of track Record 0 ID from the Key | Data Data
identification for in hexadecimal format count field Len | Length (hexadecimal)
Record 0 (hexadecimal)
q — CYL 019 H
Record 1 —— I : D 00 REC 901 ICOUNT 0013000001] 00 l 1000 e '_6 If the data length field is not zero
- _' - - D‘b I ® A heading is printed containing the |
Cylinder. head. gnd Record ID ey ata data length from the count field first in
record numbers in (hexadecimal) Len LC_"E”‘ ; decimal. then in hexadecimal
decimal (hexadecimal) I @ The data is then printed in hexadecimal

I'st Half of —4———= CYL 019 HD 00 REC 002 COUNT 0013000002 QO Note: Data Length field repeated
Record 2 in heading.
02472 DATA LENGTH

00 | 0008 | 00000000 FEFFEFFF

with graphic interpretation to the right
(not shown here).

04096 1000 DATA LENGTH =

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE

00000 0000 00000000 00000000 00000000 00000000 000QO000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE

ABOVE RECORD WRITTEN USING RECORD OVERFLOW e

g— — — — — — — 4
| This statement indicates that this portion
of Record 2 was written using the Write

Special Count. Key. and Data command. The
| remainder of Record 2 is found on the next |
track as the first record after Record 0.

—

|-——= CYL 019 HD 01 HOME ADDRESS 0000130001 RECORD ZERO 0013000100 00 0008 00000000 00000000

/CYL 019 HD 01 REC 002 COUNT 0013000102 00 0658~

01624 0658 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE

If the key length field is not zero

® A heading is printed containing the key length |
first in decimal. then in hexadecimal.

® The key is then printed in hexadecimal with |
graphic interpretation to the right (not shown here).

)
[—® CYL 019 HD 01 REC 003 COUNT 0013000103 80 OF80 /

00128 0080 KEY LENGTH =

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE .

03968 OF80 DATA LENGTH

00000 0000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
SUPPRESSED CHARACTERS SAME AS ABOVE ...

™ CYL 019 HD 01 REC 004 COUNT 0013000104 00 0000 Q y— — — — — — — 7

END OF FILE RECORD I Whenever the data length field is zero
\I an end-of-file prints next. I
[S

—— —— —— —]

Figure 17.

Annotated Sample of Output from the TYPE and PRINT Functions of the DDR Program

Chapter 15. DASD Operations 159

DDR

160 VM/SP CP for System Programming

Chapter 16. VM/SP Use of the IBM 3850 MSS

Virtual machines operating CMS, OS/VS1, or OS/VS2 (MVS) may access
mass storage volumes containing VM/SP minidisks or entire mass storage
volumes dedicated to the virtual machine. These volumes appear to the
virtual machine as 3330 volumes and are accessed using 3330 device support
in the virtual machine. VM/SP controls allocation, volume mounting, and
volume demounting. Virtual machines that run OS/VS1 or OS/VS2 (MVS)
with MSS support can also access mass storage volumes using dedicated
device support.

VM/SP Access to the MASS Storage Control

Whenever an MSS 3330V volume must be mounted or demounted, the
VM/SP control program first selects an appropriate device address. If a
volume mount is required, the device is selected from the pool of available
3330V devices created at system generation time. If a volume must be
demounted, CP selects the address of the device on which the volume is
currently mounted.

To pass mount and demount orders, the virtual machine must have an MSC
port dedicated to it via the ATTACH command or the DEDICATE directory
statement. An application program named DMKMSS is distributed as part
of VM/SP; it acts as an interface between CP and the MSC. After
DMEKMSS is started in an OS/VS1 or OS/VS2 (MVS) virtual machine, it
uses a special virtual I/O device and the VM/SP DIAGNOSE interface to
communicate with the VM/SP control program.

If the MSC request was for a volume mount, the MSC ending status
indicated that the MSC was processed. If the MSC accepts the mount
order, the MSC orders the staging adapter to generate a pack change
interrupt (an unsolicited device end) on the device when that device has
been mounted. CP receives the pack change interrupt, the RDEVBLOK is
set to indicate that the volume is mounted, and any VM/SP task waiting for
the volume is marked dispatchable. If the mount order was rejected, no
further processing of the mount occurs. The previously allocated
RDEVBLOK is marked free and processing continues with the next MSS
request.

Chapter 16. VM/SP Use of the IBM 3850 MSS 161

Mass Storage

Asynchronous MSS Mount Processing

When an MSS volume mount is required to satisfy a LINK or ATTACH
command or an MDISK or DED directory statement, CP returns control to
the virtual machine as soon as MSC accepts the mount requests. The

virtual machine may continue to execute before the virtual device specified
on the MDISK, DED, LINK, or ATTACH is available.

The reasons for asynchronous MSS mount processing are the relatively
long time required to complete the mount, and the chance that an error
may occur in the MSS after the mount order is accepted. The virtual
device to be mounted may not be vital to the specific task to be
accomplished. Also, if an error occurs in the MSS (such as a permanent
read error on a cartridge) after the mount is accepted, the error indication
is passed from the MSC to the virtual machine. VM/SP cannot determine
that an error has occurred and that the mount will not complete. If the
virtual machine were not dispatchable until the mount completed, it would
be locked out until the MSS error was corrected.

With asynchronous mount processing, the virtual machine has the
flexibility to either continue processing without the affected virtual device,
or wait until the MSS mount completes. If the virtual machine issues an
SIO instruction to a virtual device that is defined on the volume being
mounted, VM/SP queues the I/O request until the mount completes. The
virtual machine is marked I/O wait nondispatchable until the mount
completes and the SIO is started.

VM/SP Processing of MSS Cylinder Faults

VM/SP supports 3330V cylinder fault processing in two ways: real channel
programs directed to 3330Vs are constructed so that cylinder faults can be
recognized and the channel program restarted; and the attention
interruption (indicating that the cylinder fault has been satisfied) is
recognized and any I/O for that device restarted.

When the VM/SP processor issues a seek CCW to a 3330V device, the
staging adapter must translate the seek argument to the correct cylinder of
staging space. If the cylinder is staged, then the SIO is passed to the
associated staging DASD drive. If the cylinder is not staged, the staging
adapter initiates cylinder fault processing. The staging adapter first passes
a cylinder fault indication to the MSC, requesting the cylinder of data to be
staged. It then returns a status modifier to the channel in response to the
seek, which causes the channel to skip one CCW in its CCW fetch

6 However, the central server cannot issue these CP commands. The central
server is the MSS communicator virtual machine which acts as an interface
between CP and the MSC. CP commands issued to the central server are
ignored and a message is issued.

162 VM/SP CP for System Programming

Mass Storage
]

processing. That is, the channel does not fetch the next CCW after the
seek.

As a result of the cylinder fault, the MSC allocates staging space for the
requested data and causes it to be staged. The staging adapter then
generates a channel end/device end interruption to indicate that the
cylinder has been staged.

It is possible in error situations that the attention interruption may not be
received. Each time an I/O request is queued by VM/SP as a result of a
cylinder fault, a timer is set. If the timer expires before the interruption is
received, a message (DMKSSS074I) is written to the VM/SP system operator
and the request is retried.

Backup and Recovery of MSS Volumes

The process of creating backup copies of MSS volumes, and restoring from
those backup copies, can be controlled through the OS/VS access methods
services COPYV command. This command can operate without system
operator intervention.

For each active volume in the MSS, there may be one or more copy
volumes. At any time, the active volume may be copied to a copy volume
with the access method services COPYV command. All volume mounts and
data transfer are controlled by this command. If at any time it is necessary
to restore the level of a volume to that of a copy, the OS/VS access methods
services RECOVERV command is used.

All the OS/VS access methods services commands can be run from either a
real processor or a VS virtual machine. If the MSS communicator virtual
machine is in operation, these commands can be run from that virtual
machine while it is acting as the communicator.

Chapter 16. VM/SP Use of the IBM 3850 MSS 163

Mass Storage
]

164 VM/SP CP for System Programming

Interval Timer

Chapter 17. Timers in a Virtual Machine

This chapter describes the timing facilities available to a virtual machine
created by CP.

The interval timer at virtual location 80 (X’50") does not behave exactly like
a real machine’s. On a real machine, the interval timer is updated 300
times per second when enabled and when the real machine is not in manual
state. The interval timer on a real machine thus reflects system time and
wait state time.

In a virtual machine, the interval timer reflects virtual processor time but
not wait time. (This behavior can be controlled with the virtual timer
assist feature. See the REALTIMER option in the next subsection.) CP
adds the virtual processor time used to the virtual interval timer when it
regains control, and this one updating reflects the entire time the virtual
machine had control. During the time a virtual machine has control, the
virtual interval timer does not change.

For some privileged instructions, CP can to simulate the instruction and
still return control to the virtual machine before the end of that virtual
machine’s queue slice. In such cases, CP updates the virtual interval timer.
This happens only with those privileged instructions that require normal or
fast reflect entry into the dispatcher. For those privileged instructions that
do not require entry into the dispatcher, the virtual interval timer is not
updated until CP gets control at the end of the queue slice.

If the virtual machine assist feature or Extended Control Program Support
(ECPS) is ON, more time is charged to the virtual interval timer than if the
feature is OFF. When the virtual machine assist feature is OFF, the time
spent by CP to simulate privileged instructions is not charged to the virtual
interval timer; whereas, with the feature ON, the time spent is charged to

the virtual interval timer.

Virtual Interval Timer Assist

The virtual interval timer assist is a hardware feature that updates the
virtual interval timer and presents timer interrupts to the virtual machine.
When the software simulates the interval timer, updating occurs only when
CP takes over control. This usually results in an update frequency of once
per queue slice and the intervals between updates are irregular. When the
virtual interval timer assist feature is active, both virtual and real interval
timers are updated 300 times per second.

Chapter 17. Timers in a Virtual Machine 165

Timers
|

For the virtual interval timer assist feature to be active, the following)
conditions must be met:

e VM/SP must be running on a Model 135-3, 138, 145-3, 148, 3031, 3031AP,
4321, 4331, 4341, 4361, or 4381.

o The assist feature must have been enabled for the system by the class A
command SET SASSIST ON.

e The virtual machine must have enabled the virtual interval timer assist
option by the class G command SET ASSIST ON TMR.

VM/SP provides an option, called the REALTIMER option, which causes

the virtual interval timer to be updated during virtual wait state as well.

With the REALTIMER option in effect, a virtual interval timer reflects

virtual processor time and virtual wait time, but not CP time used for

services for that virtual machine, such as privileged instruction execution. J
The more services a virtual machine requires from CP, the greater the

difference between the time represented by the interval timer and the actual

time used by and for the virtual machine. The larger the number of active

virtual machines contending for system resources, the greater the difference

between virtual machine time and actual elapsed (wall clock) time.

The REALTIMER option is turned on by the class G command
SET TIMER REAL or by the REALTIMER parameter on the OPTION
control statement of the user’s directory. ’

Processor Timers

A virtual machine must have the ECMODE directory option to use the
System/370 processor (CPU) timer.

The CPU timer is decremented when the virtual machine is in the running

state, and in a virtual PSW wait state. It is not decremented when J
runnable but undispatched, or when in a CP function. The CPU timer is

unaffected by the setting of SET TIMER (whether OFF, ON, or REAL).

The interval timer is decremented when the virtual machine is in the
running state if SET TIMER is ON or REAL. It is decremented in virtual
PSW wait state if and only if SET TIMER is REAL. It is not decremented
when runnable but undispatched, or when in a CP function, regardless of
the setting of SET TIMER. It is never decremented if TIMER is OFF.

The method of sampling the value in the CPU timer causes it to appear to a

virtual machine to be updated more often than an interval timer. The

privileged instructions Set Processor Timer (SPT) and STore Processor

Timer (STPT) are used to set a doubleword value in the CPU timer and to

store it in a doubleword location of virtual storage. When a virtual

machine samples the value in the virtual processor timer by issuing a STPT

instruction, CP regains control to execute the privileged instruction, and J

166 VM/SP CP for System Programming

Timers

TOD Clock

updates the time. The act of sampling the CPU timer from a virtual
machine causes it to be brought up to date.

The System/370 time-of-day (TOD) clock does not require simulation in a
virtual machine. The System/370 in which CP is operating may have one
real TOD clock for each processor, and all virtual machines can interrogate
the real TOD clock. The Store Clock (STCK) instruction is nonprivileged;
any virtual machine can execute it to store the current value of the TOD
clock in its virtual storage. The Set Clock (SCK) instruction, which is used
to set the TOD Clock value, can be issued from a virtual machine, but CP
always returns a condition code of zero and does not actually set the clock.
Note that the TOD clock is the only true source of actual elapsed time
information for a virtual machine. The base value for the TOD clock in
VM/SP is 00:00:00 GMT, January 1, 1900.

4361 processors are offered with an Auto Start feature. Using a battery
operated clock, this feature maintains the time while the power is off. For
these processors, if you shut down the system using the SHUTDOWN
command with the POWEROFF parameter, then during the next IPL, you
will not be prompted to set the time-of-day clock.

In an attached processor or multiprocessor environment, the TOD clocks
are synchronized using the procedure described in the IBM System/370:
Principles of Operation.

Clock Comparator

Pseudo Timer

The clock comparator associated with the TOD clock is used in virtual
machines for generating interrupts based on actual elapsed time. The

‘ECMODE option must be specified for a virtual machine to use the clock

comparator feature. The Set Clock Comparator (SCKC) instruction
specifies a doubleword value that is placed in the clock comparator. When
the TOD clock passes that value, an interrupt is generated.

The pseudo timer is a special VM/SP timing facility. It provides 24 or 32
bytes of time and date information in the format shown in Figure 18 on
page 168.

Chapter 17. Timers in a Virtual Machine 167

Timers

Start 1/0 DIAGNOSE
4—— 8 bytes ——» <4—— 8 bytes ———»
MM/DD/YY MM/DD/YY
HH:MM:SS HH:MM:SS
VIRTCPU TOTCPU or VIRTCPU

TOTCPU

Figure 18. Formats of Pseudo Timer Information

The first eight-byte field is the date, in EBCDIC, in the form
Month/Date/Year. The next eight-byte field is the Time of Day in
Hours:Minutes:Seconds. The VIRTCPU and TOTCPU fields contain virtual
processor and total processor time used. The units in which the processor
times are expressed and the length of the fields depend upon which of two
methods is used for interrogating the pseudo timer.

Pseudo Timer Start 1/0

The pseudo timer can be interrogated by issuing a START I/O to the pseudo
timer device, which is device type TIMER, and is usually at device address
OFF. No I/O interrupt is returned from the SIO. The address in virtual
storage where the timer information is to be placed is specified in the data
address portion of the CCW associated with the SIO. This address must not
cross a page boundary in the user’s address space. If this method is used,
the virtual processor and the total processor times are expressed as
fullwords in high resolution interval timer units. One unit is 13
microseconds.

Pseudo Timer DIAGNOSE

The pseudo timer can also be interrogated by issuing DIAGNOSE with an
operation code of C, as described in VM System Facilities for Programming.
If this method is used, the virtual and total processor times are expressed as
doublewords in microseconds.

168 VM/SP CP for System Programming

Chapter 18. CP in Attached Processor and Multiprocessor Modes

This chapter describes how to:

o Define attached processor (AP) mode

o Define multiprocessor (MP) mode

e Understand the use of the channel set switching instructions

o Understand the use of the privileged instructions that set and inspect
the processor’s prefix register

o Understand the use of the privileged instruction that determines the
address of the processor that is executing

o Understand the use of hardware signaling to communicate between
processors

e Understand the use of a TOD clock synchronization check

o Code fetch and store sequences that can be safely used in the AP/MP
environment

® Use locks for serialization of functions
e Set processor affinity
e Change processors using the SWTCHVM macro

o Configure I/O devices to obtain maximum availability and recovery
potential

Multiprocessor Environment

In a tightly coupled multiprocessor (MP) environment, two processors share
real storage under the control of a single control program. Both processors
have I/O capability in an MP environment. See “Configuring I/O Devices
for an MP System” on page 182 for a discussion on how to configure I/O
devices for maximum availability and recovery potential.

In a dyadic environment, two processors share real storage under the
control of a single control program. Both processors have I/O capability.
However, unlike an MP complex, a dyadic processor cannot be partitioned
into two distinct uniprocessor systems.

Chapter 18. Attached and Multiprocessors 169

AP/MP

Attached Processor Environment

In an attached processor (AP) environment, two processors share real
storage under the control of a single control program. However, unlike a
multiprocessing environment, only one processor in an AP environment has
I/O capability. If you are running on a 3033 or a 3081, the channel set
switching feature is available. If a severe hardware error occurs on the
first processor in an AP environment, the control program may be able to
use the channel set switching feature to switch the channels of one
processor to the other processor. The channel set switching instructions
that the control program can use to connect and disconnect a channel set
to a processor are:

CONCS connect channel set
DISCS disconnect channel set

Note: When you generate VM/SP as an MP system it does not use the
channel set switching facility even if the facility is installed on the
hardware.

Advantages of the AP/MP Environment

An AP/MP environment provides additional processing capability when
compared to a uniprocessor environment. An AP/MP environment also
provides increased availability. In case of hardware malfunction on one
processor, the other processor can frequently continue operating.
Serviceability is enhanced because it is possible to use the VARY ON/OFF
PROCESSOR command to vary a processor off-line for system repair or to
upgrade the system.

Facilitating an AP/MP Environment

In an AP or MP environment, two processors share main storage. To
facilitate this sharing, VM/SP provides for the unique features and
requirements of this environment: prefixing, processor address
identification, processor signaling, time-of-day clock synchronization,
interlocks on certain fetch and store instructions, locks, and affinity
setting. The system programmer should be familiar with the instructions
used to accomplish these tasks.

Prefixing

When VM/SP is executing in an AP/MP environment both processors
cannot use absolute page zero for status information. Instead, each
processor has its own prefixed storage area (PSA) in the high end of real
storage. However, if the system operator varies a processor on-line after CP
initialization completes, the processor’s PSA may be located in any page of

170 VM/SP CP for System Programming

AP/MP

the dynamic paging area. See Figure 19 for a storage map of the V=R
machine after CP initialization.

Virtual Storage Real Storage
Addresses Addgﬁsses
ABSOLUTE PAGE 0
4K 4K

Virtual Page 1
VIRTUAL=REAL AREA

SIZE = 128K BYTES

128K-1 (Minimum size is 32K bytes.)
0K 128K

Virtual page 0

4K-1 132K (DMKSLC)

REMAINDER OF CP Resident Nucleus .

End of CP Nucleus
DYNAMIC PAGING AREA (DMKCPE)
and '
FREE STORAGE
PSA FOR ATTACHED OR NON-IPL PROCESSOR o — DMKPSA
+—
PSA FOR MAIN OR IPL PROCESSOR
512K — End of

real storage

Figure 19. Storage Layout in a Virtual = Real Machine

The control program puts the addresses of the PSAs in the prefix registers
of-the two processors during system initialization. The control program can
set and inspect the contents of the processor’s prefix register by using these
privileged instructions:

e SPX - set prefix
o STPX - store prefix.

If you are operating in AP/MP mode, VM/SP uses the prefix registers.
When code executing on either processor refers to an address from 0 to
4095, the address is added to the contents of the prefix register for that
processor to produce the absolute address that will be accessed. In this
way, each processor can independently control its operations with separate
channel address words and channel status words. Prefixing is described in
detail in System/370 Principles of Operation.

Chapter 18. Attached and Multiprocessors 171

AP/MP

Identifying a Processor Address

The hardware assigns the processor address during system installation. To
determine the address of the processor that is executing, the control
program issues the privileged instruction:

e STAP store CPU address.

VM/SP stores both processor addresses in both PSAs in the following fields:
o JTPUADDR CPU address of this processor

e IJPUADDRX CPU address of the other processor.

The system uses this information for interprocessor communication.

Signaling with the SIGNAL Macro

During certain critical periods, such as when a processor malfunctions or
when a processor synchronization must occurs, one processor must signal
the other processor. There are three types of program-controlled signals
possible under VM/SP. They are:

e Emergency signals
o Direct signals
e External call signals.

Use the SIGNAL macro to issue the signal processor (SIGP) instruction. If
you have generated the system as an AP/MP system, the control program
expands the macro. The macro expansion code destroys the contents of
registers 0, 1, 14, and 15. The macro expansion loads register 0 with the
signalled processor address, loads register 1 with the function code, and
uses registers 14 and 15 for linkage.

Note: If you have not generated the system as an AP/MP system, the
control program treats the SIGNAL macro as a no-operation.

The SIGNAL macro causes all signaling requests to be sent to the external
interruption handler so that error analysis and recovery attempts are

centralized.

The format of the SIGNAL macro and the functions that you can perform
using each type of signal are:

172 VM/SP CP for System Programming

AP/MP

label

SIGNAL

CLKCHK
EXTEND
QUIESCE

SHUTDOWN
SYNC
XTNDEXIT

,CONTROL = SERIAL

{APR

DISPATCH B [
RESUME [,CONTROL— AUTO

WAKEUP

PARALLEL]]

RESTART
START

STOP
SSS

PARALLEL }
} ,CONTROL= [AUTO

where:

label

is any desired label.

first operand
is the function to be performed and is a required positional parameter.
This parameter can be an emergency signal, an external call signal, or
a direct signal.

Emergency Signals

When one processor wants the other processor to perform an action
immediately, it executes an emergency signal instruction. Since
emergency signals can only be serial, control is not returned to the
issuing processor until the other processor performs the function.
The emergency signals are:

CLKCHK
indicates that the high order bits of the time-of-day clocks are
not synchronized.

EXTEND
indicates that free storage extend processing is to take place.

QUIESCE
indicates that the receiving processor is to halt all execution
until it receives a RESUME signal.

SHUTDOWN
indicates that the system is about to shutdown.

SYNC

indicates that the low order bits of the time of day clocks are
no longer synchronized.

Chapter 18. Attached and Multiprocessors 173

AP/MP

174

XTNDEXIT
indicates that the free storage extension is complete and
virtual machines can be dispatched again.

External Call Signals
When one processor wants to call the other processor’s attention to
an event or condition, it executes an external call order. The
external call functions are:

APR
causes automatic processor recovery to be invoked to try to
remove a failing processor from the configuration

DISPATCH
indicates that a CPEXBLOX is on the dispatcher’s queue for
the receiving processor

RESUME
cancels a previous QUIESCE signal

WAKEUP

indicates that the processor is to resume operations after
having stopped processing

Direct Signals
Direct signals correspond to physical buttons on the real processor.
These signals are controlled by the hardware, and cannot be
masked off. The direct signals are:

RESTART
START
STOP

SSS

stop and store status.

,CONTROL =
is the second operand.

,CONTROL =SERIAL
specifies that control returns to the sender after the function
is complete. CONTROL =SERIAL is the only parameter that

you can use with the emergency signals. You cannot specify
CONTROL =SERIAL for the external calls and direct signals.

VM/SP CP for System Programming

AP/MP

,CONTROL=PARALLEL
specifies that control returns to the sender even though the
function may not be complete. You can use
CONTROL =PARALLEL with the external calls and direct
signals; it is the default for these signals.

,CONTROL=AUTO
specifies that the signal is sent to the issuing processor. You
can use CONTROL =AUTO with the external calls and direct
signals.

Time-of-Day (TOD) Clock Synchronization Check

Fetching and Storing

If more than one TOD clock exists in a tightly coupled configuration, the
clocks must be synchronized. If TOD clocks are not in high order
synchronization during initialization of an AP/MP system, the system
issues a message to the system operator to enable the TOD clock set key. If
the clocks are out of low order synchronization, that is bits 32 to 63 of the
two clocks do not match, the system receives a time-of-day-clock-sync-check
when external interruptions are enabled. Then the system synchronizes the
clocks.

Since main storage is shared, there is a possibility that both processors may
be accessing the same location in storage simultaneously. The control
program must prevent simultaneous updates to the same storage location.
In a tightly-coupled multiprocessor environment certain instructions cannot
safely execute if there is a chance that their execution might change
storage that the other processor is also using. Fetch and store instructions
such as OI, NI, and NC could cause one processor to update storage that
the other processor is also using. To prevent this type of error in a
multiprocessing environment, the following fetch and store instructions
have interlocks:

e CDS - compare double and swap
e CS - compare and swap
e TS - test and set.

The following example shows how you could use the compare and swap
instruction to set a flag in a multiprocessing environment.

Chapter 18. Attached and Multiprocessors 175

AP/MP

Processor A

LA Rx,FLAGS load Rx with address of FLAGS byte
LA Ry,X'80' load Ry with byte to set FLAGS
SLL Ry,24 line up fields
L Rz ,0(Rx) load Rz with FLAGS byte
RETRY LR Rw,Rz load Rw with contents of Rz
OR Rw,Ry load Rw with reset value of FLAGS
CS Rz,Rw,0(Rx) reset FLAGS byte if =; otherwise load Rz from
FLAGS
BNE RETRY if contents of Rz # FLAGS, branch to
RETRY
FLAGS DC X'20' initial setting of field
Processor B
LA Ra,FLAGS load Ra with address of FLAGS byte
LA Rb,X'40' load Rb with byte to set FLAGS
SLL Rb,24 line up fields
L Rc,0(Ra) load Rc with FLAGS byte
RETRY LR R4,Rc load Rd with contents of Rc
OR R4,Rb load Ra with reset value of FLAGS
CS Rc,Rd,0(Ra) reset FLAGS byte if =; otherwise load Rc from
FLAGS
BNE RETRY if contents of Rc # FLAGS, branch to
RETRY
FLAGS DC X'20'
Figure 20. Sample of the Correct Way to Set a Flag in an AP/MP Environment

Locks and Serialization of Functions

If VM/SP is executing in AP/MP mode, critical sections of code must be
serialized. A critical section of code is code that is executing on one
processor and must appear as one indivisible operation to the other
processor. An example of a critical section of code is code that updates a
queue. The other processor should not have access to the queue until the
element is either added or deleted and all pointers are updated. VM/SP
uses locks to accomplish serialization of critical functions. A lock is an
area of storage. It is initialized to a value, usually zero, to signify that the
lock is not held. Before entering a critical section of code, the processor
requests the lock to serialize the operation. The operating system

determines if a lock is free and gives it to the processor requesting the lock
by means of a hardware interlocked update operation such as compare and
swap (CS). When the critical section of code has been executed, the system
releases the lock by changing its value back to zero.

176 VM/SP CP for System Programming

C

AP/MP

Locking Hierarchy

Locking Structure

The introduction of a locking structure makes the avoidance of processor
deadlock a prime concern. A deadlock occurs if the processors have
different locks and want to obtain the lock that the other processor holds.
VM/SP uses a locking hierarchy to avoid these deadlock situations. A
locking hierarchy provides for the ordering of the set of locks. If a
processor holds a given lock, it can only request a lock that is lower in the
locking hierarchy. For example if a processor holds the free storage lock,
the processor cannot perform input/output. On the other hand, if a
processor holds the I/O lock, the processor can obtain free storage.

Figure 21 shows the hierarchy of locks under VM/SP where the global
system lock is the highest lock. The real storage management lock and the
I/O lock are on the same level, since there is no situation that requires
simultaneous ownership of the I/O lock and the real storage management
lock. If a conflict arises, the system will define a hierarchy between these
locks.

Global System Lock
)

Real Storage l
Management Lock | I/O Lock
)
Run List Lock
) Spin
Timer Request Queue Lock Locks
!
Dispatcher Stack Lock
)
RDEVBLOK Lock | Private Locks

!
Free Storage Lock

Note: The VMBLOK is a defer lock and is not shown in this hierarchy.

Figure 21. Hierarchy of VM/SP Locks

There are two basic types of locks:

e Defer locks
e Spin locks.

If a function requests a defer lock and it is not available, control is
returned to the caller with a condition code that indicates that the lock is
not available. However, if a function requests a spin lock and it is not
available, the lock manager loops until the lock becomes available.

Chapter 18. Attached and Multiprocessors 177

AP/MP

To provide system integrity, VM/SP attached processor and multiprocessor
support is designed around one global lock, a VMBLOK local lock, and
several system local locks for specifically identified queues or modules.

Global System Lock: Much of CP runs under the global system lock,
which is a defer lock. For example, all command processing requires the
global system lock. Also, all code executed via an IOBLOK, TRQBLOK, or
CPEXBLOK is protected by the global system lock. Certain basic system
functions, however, are able to execute without the global system lock on
the mainline, non-error paths. These functions include virtual page fault
processing, the simulation of virtual I/O requests and some other privileged
operations, and the processing of a real I/O interruption.

If a processor needs the global system lock and cannot obtain it, the
processor must defer the function until the global system lock is available.
The function is deferred by either stacking the VMBLOK appendage (called
the deferred interrupt block) or a CPEXBLOK for later processing. The
processor that could not obtain the global system lock then uses the
unlocked dispatcher entry to dispatch a new virtual machine.

In some situations, a function cannot be deferred even though the global
system lock is not available. In these cases, the dispatcher spins on the
global system lock until it becomes available. The dispatcher requires the
system lock to unstack CPEXBLOKs, IOBLOKs, and TRQBLOKSs.

To ensure system integrity along the paths that do not require the global
system lock, other local locks have been defined. With the exception of the
VMBLOK lock, these locks are all spin locks and are held for relatively
short periods of time.

VMBLOK Lock: The VMBLOK lock, which is a defer lock, is obtained by
the dispatcher before dispatching a virtual machine in problem program
state or before performing any system service for that virtual machine.
This lock prevents a virtual machine from being serviced by CP while it is
running in problem program state.

Real Storage Management Lock (RM Lock): The real storage
management lock (called the RM lock) is a spin lock that serializes
functions within the paging subsystem. This lock controls all accesses to
the free and flush lists, the page read and write request queues, the deferred
allocation queue, the active paging queue, CPEXBLOKSs chained via
CPEXMISC, and certain nonreentrant fields within DMKPTR and
DMKPAG.

I/O Lock: The I/O lock is a spin lock that serializes access to I/O devices
by serializing access to fields in the real I/O control blocks: RCHBLOK,
RCUBLOK, and RDEVBLOK.

Run List Lock: The run list lock is a spin lock that controls all additions
to and deletions from the run list.

178 VM/SP CP for System Programming

AP/MP

Timer Request Queue Lock: The timer request queue lock is a spin lock
that allows the external first-level interruption handler to process a timer
interruption without the global system lock.

Dispatcher Stack Lock: The dispatcher stack lock is a spin lock that
controls all additions to or deletions from the IOBLOK/TRQBLOK queue or
the CPEXBLOK queue.

RDEVBLOK Lock: The RDEVBLOK lock is a private spin lock that the
paging subsystem uses to serialize the IOBLOK queue.

Free Storage Lock: The free storage lock is a spin lock obtained by
DMKFRE and DMKFRT for FREE and FRET requests for free storage. All
of the locks that CP uses are described in further detail in VM/SP System
Logic and Problem Determination Guide Volume 1 (CP).

LOCK Macro
Use the LOCK macro to obtain or release a lock. The format of the LOCK
macro 1is:
SYS
VMBLOK
FREE
label | LOCK

RELEASE
DS ,OPTion = NOUPDT

{ PRIVATE

RL ,SPIN = {YES} SAVE
OBTAIN },TYPE= {TR } S [LSAVE]

where

label
is any desired label.

OBTAIN
RELEASE

is a required positional operand indicating whether the lock is to be
obtained or released.

TYPE=
is a required keyword parameter. The possible values are:

SYS for the global system lock
VMBLOK for the VMBLOK
FREE for the free storage lock

RL for the runlist lock

Chapter 18. Attached and Multiprocessors 179

AP/MP

TR for the timer request queue lock

DS for the dispatch lock

10 for the I/O lock

RM for the real storage management lock

PRIVATE for a private user-defined lock. If you have user-defined
areas that are used by more than one virtual machine,
you will need to define your own locking conventions.
You can use the LOCK macro to obtain and release a
private lock.

You must specify the address of the lockword in register 1
and the lockword must be a fullword aligned on a
fullword boundary. Spin time for private locks is kept in
the DMKLOKSI timer value for all non—DMKLOK
locks.

— JYES
»SPIN = { NO

specifies whether control is to be returned without the lock being
held. The default is SPIN = YES.

,SSAVE
is an optional keyword that indicates register 0, 1, 14, and 15 are to be
saved before the rest of the macro expansion. These registers are
saved in the PSA of the processor that is executing this macro. The
registers are restored before exit from the macro expansion.

,OPTion= NOUPDT
indicates that the VMBLOK should be locked without checking for
shared segments.

Condition Codes

The condition code (cc) is set by the LOCK macro:.

Condition Parameter Meaning
Code
cc=0 OBTAIN lock obtained
RELEASE lock released
cc=1 OBTAIN,SPIN=NO lock owned by another processor

For various abend codes related to lock use, see VM/SP System Messages
and Codes.

180 VM/SP CP for System Programming

C

Affinity

How to Set Affinity

AP/MP

When you specify the affinity option for a virtual machine, the program of
that virtual machine is executed only on the specified processor. You
might want to specify affinity in the following cases:

e If one processor has a special hardware feature or a special RPQ that is
required for a particular program, set affinity to this processor.

e If a virtual machine has a high I/O-to-compute ratio, you might want to
set affinity to the I/O processor. On the other hand, if a virtual
machine has a high compute-to-I/O ratio, you could set affinity to the
attached processor.

You request affinity either in the directory or with a SET AFFINITY
command. See the VM/SP CP Command Reference for details on the class
G SET AFFINITY command. See the VM/SP Operator’s Guide for other
privilege classes of the SET AFFINITY command.

Shared Segments in an AP/MP Environment

SWTCHVM Macro

When two processors are executing simultaneously, it is necessary to know
when a user changes a shared page. In attached processor or
multiprocessor mode, there are two sets of page tables and swap tables
maintained for each shared segment unless a user is running unprotected.
If a user is running unprotected shared segments, there is only one copy.

Routines that must lock a virtual machine other than the current virtual
machine use the SWTCHVM macro. The SWTCHVM macro unlocks the
VMBLOK specified in register 11 and locks the VMBLOK specified in
register 1. Time charging is also switched. The format of the SWTCHVM
macro 1is:

label SWTCHVM OPT = [STAY] [NOUPDT]
[UNLOCK]

where:

label

is any desired label

STAY
indicates that if the VMBLOK lock is not available, a CPEXBLOK
will be stacked for the current processor.

Chapter 18. Attached and Multiprocessors 181

AP/MP

NOUPDT
indicates that the VMBLOK should be locked without checking for
shared segments.

UNLOCK
indicates that the current VMBLOK is unlocked, register 11 is
updated to point to VMBLOK specified in register 1, the timer is
switched to start charging supervisor time to the new VMBLOK, but
the new VMBLOK is not locked. Note: The UNLOCK option cannot
be specified with either of the other options.

Configuring 1/0 Devices for an MP System

When you configure I/O devices, you should consider the following:
® The possibility of a hardware failure

e Smooth transition when you reconfigure between MP and uniprocessor
(UP) modes for maintenance.

In either of these cases to ensure maximum system availability, you should
provide paths from both processors to I/O devices. You can do this in
several ways:

e Configure symmetrically as many channels and I/O devices as possible.

e Install channel-switching and string-switching features on control units
where possible. A channel switch is a feature on a control unit that
enables two real processors to share a symmetric device. A symmetric
device is a device that can be accessed by both processors, while an
asymmetric device cannot be shared. A string switch enables you to
attach a symmetric I/O device to two separate control units. These
features provide access to I/O devices from both processors. This
increased access reduces the possible loss of access to critical I/O
devices because of hardware malfunctioning.

e Symmetric devices are also defined as alternate path devices.
Reserve/release support is mutually exclusive with alternate path
support.

e Configure asymmetric devices through a manual switching unit. Then
the operator can physically attach these devices to either processor, one
processor at a time. Asymmetric devices include printers, card readers,

punches, and information display systems.

® Provide redundant control units for critical I/O devices.

182 VM/SP CP for System Programming

J

Chapter 19. Print Buffers and Forms Control

The 3203, 3262, 3289 Model 4, 4245, and 4248 use the same type Forms
Control Buffer (FCB) as the 3211 Printer. The 4248 can also use the
extended FCB. The FCB loaded in a virtual 3203, 3211, or 3262 should be
compatible with the FCB loaded in the real counterpart. Otherwise, the
results can be unpredictable. The 3203 and 3262 use the Universal
Character Set (UCS) used by the 1403 Printer.

The 3203 and 3262 attach a 64-byte associative field to the end of the UCS
to check, during print line buffer (PLB) loading, that each character loaded
into the PLB for printing is also on the print train. The 3203 assaciative
field is exactly like the 3211 associative field described in Figure 22 on
page 191, with the exception that the addresses begin at 240. You also need
an associative field when making use of the UCS buffer. Refer to your
printer’s components description manual for a detailed layout of the
associative field.

For the 4245 and 4248, the UCS image is loaded by the printer.

Buffer images are supplied for the Universal Character Set (UCS) buffer,
the Universal Character Set Buffer (UCSB), the Font Offset Buffer (FOB),

and the Forms Control Buffer (FCB). The VM/SP-supplied buffer images
are:

e TUCS - for the 1403 and 3203 Printers

Name Meaning

AN Normal AN arrangement
HN Normal HN arrangement
PCAN Preferred character set, AN
PCHN Preferred character set, HN
QN PL/I - 60 graphics

QNC PL/I - 60 graphics

RN FORTRAN, COBOL commercial
YN High speed alphanumeric
TN Text printing 120 graphics
PN PL/I - 60 graphics

SN Text printing 84 graphics

e TUCSB - for the 3211 Printer
Name Meaning
All Standard Commercial

H11 Standard Scientific
Gl11 ASCII

Chapter 19. Print Buffers and Forms Control 183

Print Buffers

P11 PLI
T11 Text Printing

e TUCSB - for the 3262 Printer

Name Meaning

P48 48 character print image

P52 52 character print image (Austria/Germany)
P63 63 character print image, optimized

P64 64 character print image

P96 96 character print image

P116 116 character print image (French/Canadian)
P128 128 character print image (Katakana)

e FOB - for the 3289 Model 4 printer

Name Meaning

F48 Font Offset Buffer for the 48-character print belt
F64 Font Offset Buffer for the 64-character print belt
F94 Font Offset Buffer for the 94-character print belt
F127 Font Offset Buffer for the 127-character print belt

e FCB - for the 3203, 3211, 3262, 3289 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>